xref: /openbmc/linux/net/core/dev.c (revision 63dc02bd)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/net_tstamp.h>
136 #include <linux/static_key.h>
137 #include <net/flow_keys.h>
138 
139 #include "net-sysfs.h"
140 
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143 
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146 
147 /*
148  *	The list of packet types we will receive (as opposed to discard)
149  *	and the routines to invoke.
150  *
151  *	Why 16. Because with 16 the only overlap we get on a hash of the
152  *	low nibble of the protocol value is RARP/SNAP/X.25.
153  *
154  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
155  *             sure which should go first, but I bet it won't make much
156  *             difference if we are running VLANs.  The good news is that
157  *             this protocol won't be in the list unless compiled in, so
158  *             the average user (w/out VLANs) will not be adversely affected.
159  *             --BLG
160  *
161  *		0800	IP
162  *		8100    802.1Q VLAN
163  *		0001	802.3
164  *		0002	AX.25
165  *		0004	802.2
166  *		8035	RARP
167  *		0005	SNAP
168  *		0805	X.25
169  *		0806	ARP
170  *		8137	IPX
171  *		0009	Localtalk
172  *		86DD	IPv6
173  */
174 
175 #define PTYPE_HASH_SIZE	(16)
176 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
177 
178 static DEFINE_SPINLOCK(ptype_lock);
179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
180 static struct list_head ptype_all __read_mostly;	/* Taps */
181 
182 /*
183  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
184  * semaphore.
185  *
186  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
187  *
188  * Writers must hold the rtnl semaphore while they loop through the
189  * dev_base_head list, and hold dev_base_lock for writing when they do the
190  * actual updates.  This allows pure readers to access the list even
191  * while a writer is preparing to update it.
192  *
193  * To put it another way, dev_base_lock is held for writing only to
194  * protect against pure readers; the rtnl semaphore provides the
195  * protection against other writers.
196  *
197  * See, for example usages, register_netdevice() and
198  * unregister_netdevice(), which must be called with the rtnl
199  * semaphore held.
200  */
201 DEFINE_RWLOCK(dev_base_lock);
202 EXPORT_SYMBOL(dev_base_lock);
203 
204 static inline void dev_base_seq_inc(struct net *net)
205 {
206 	while (++net->dev_base_seq == 0);
207 }
208 
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 	unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
212 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214 
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219 
220 static inline void rps_lock(struct softnet_data *sd)
221 {
222 #ifdef CONFIG_RPS
223 	spin_lock(&sd->input_pkt_queue.lock);
224 #endif
225 }
226 
227 static inline void rps_unlock(struct softnet_data *sd)
228 {
229 #ifdef CONFIG_RPS
230 	spin_unlock(&sd->input_pkt_queue.lock);
231 #endif
232 }
233 
234 /* Device list insertion */
235 static int list_netdevice(struct net_device *dev)
236 {
237 	struct net *net = dev_net(dev);
238 
239 	ASSERT_RTNL();
240 
241 	write_lock_bh(&dev_base_lock);
242 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
243 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
244 	hlist_add_head_rcu(&dev->index_hlist,
245 			   dev_index_hash(net, dev->ifindex));
246 	write_unlock_bh(&dev_base_lock);
247 
248 	dev_base_seq_inc(net);
249 
250 	return 0;
251 }
252 
253 /* Device list removal
254  * caller must respect a RCU grace period before freeing/reusing dev
255  */
256 static void unlist_netdevice(struct net_device *dev)
257 {
258 	ASSERT_RTNL();
259 
260 	/* Unlink dev from the device chain */
261 	write_lock_bh(&dev_base_lock);
262 	list_del_rcu(&dev->dev_list);
263 	hlist_del_rcu(&dev->name_hlist);
264 	hlist_del_rcu(&dev->index_hlist);
265 	write_unlock_bh(&dev_base_lock);
266 
267 	dev_base_seq_inc(dev_net(dev));
268 }
269 
270 /*
271  *	Our notifier list
272  */
273 
274 static RAW_NOTIFIER_HEAD(netdev_chain);
275 
276 /*
277  *	Device drivers call our routines to queue packets here. We empty the
278  *	queue in the local softnet handler.
279  */
280 
281 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
282 EXPORT_PER_CPU_SYMBOL(softnet_data);
283 
284 #ifdef CONFIG_LOCKDEP
285 /*
286  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
287  * according to dev->type
288  */
289 static const unsigned short netdev_lock_type[] =
290 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
291 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
292 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
293 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
294 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
295 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
296 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
297 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
298 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
299 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
300 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
301 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
302 	 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
303 	 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
304 	 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
305 	 ARPHRD_VOID, ARPHRD_NONE};
306 
307 static const char *const netdev_lock_name[] =
308 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
309 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
310 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
311 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
312 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
313 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
314 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
315 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
316 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
317 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
318 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
319 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
320 	 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
321 	 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
322 	 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
323 	 "_xmit_VOID", "_xmit_NONE"};
324 
325 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
326 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
327 
328 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
329 {
330 	int i;
331 
332 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
333 		if (netdev_lock_type[i] == dev_type)
334 			return i;
335 	/* the last key is used by default */
336 	return ARRAY_SIZE(netdev_lock_type) - 1;
337 }
338 
339 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
340 						 unsigned short dev_type)
341 {
342 	int i;
343 
344 	i = netdev_lock_pos(dev_type);
345 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
346 				   netdev_lock_name[i]);
347 }
348 
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350 {
351 	int i;
352 
353 	i = netdev_lock_pos(dev->type);
354 	lockdep_set_class_and_name(&dev->addr_list_lock,
355 				   &netdev_addr_lock_key[i],
356 				   netdev_lock_name[i]);
357 }
358 #else
359 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
360 						 unsigned short dev_type)
361 {
362 }
363 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
364 {
365 }
366 #endif
367 
368 /*******************************************************************************
369 
370 		Protocol management and registration routines
371 
372 *******************************************************************************/
373 
374 /*
375  *	Add a protocol ID to the list. Now that the input handler is
376  *	smarter we can dispense with all the messy stuff that used to be
377  *	here.
378  *
379  *	BEWARE!!! Protocol handlers, mangling input packets,
380  *	MUST BE last in hash buckets and checking protocol handlers
381  *	MUST start from promiscuous ptype_all chain in net_bh.
382  *	It is true now, do not change it.
383  *	Explanation follows: if protocol handler, mangling packet, will
384  *	be the first on list, it is not able to sense, that packet
385  *	is cloned and should be copied-on-write, so that it will
386  *	change it and subsequent readers will get broken packet.
387  *							--ANK (980803)
388  */
389 
390 static inline struct list_head *ptype_head(const struct packet_type *pt)
391 {
392 	if (pt->type == htons(ETH_P_ALL))
393 		return &ptype_all;
394 	else
395 		return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
396 }
397 
398 /**
399  *	dev_add_pack - add packet handler
400  *	@pt: packet type declaration
401  *
402  *	Add a protocol handler to the networking stack. The passed &packet_type
403  *	is linked into kernel lists and may not be freed until it has been
404  *	removed from the kernel lists.
405  *
406  *	This call does not sleep therefore it can not
407  *	guarantee all CPU's that are in middle of receiving packets
408  *	will see the new packet type (until the next received packet).
409  */
410 
411 void dev_add_pack(struct packet_type *pt)
412 {
413 	struct list_head *head = ptype_head(pt);
414 
415 	spin_lock(&ptype_lock);
416 	list_add_rcu(&pt->list, head);
417 	spin_unlock(&ptype_lock);
418 }
419 EXPORT_SYMBOL(dev_add_pack);
420 
421 /**
422  *	__dev_remove_pack	 - remove packet handler
423  *	@pt: packet type declaration
424  *
425  *	Remove a protocol handler that was previously added to the kernel
426  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
427  *	from the kernel lists and can be freed or reused once this function
428  *	returns.
429  *
430  *      The packet type might still be in use by receivers
431  *	and must not be freed until after all the CPU's have gone
432  *	through a quiescent state.
433  */
434 void __dev_remove_pack(struct packet_type *pt)
435 {
436 	struct list_head *head = ptype_head(pt);
437 	struct packet_type *pt1;
438 
439 	spin_lock(&ptype_lock);
440 
441 	list_for_each_entry(pt1, head, list) {
442 		if (pt == pt1) {
443 			list_del_rcu(&pt->list);
444 			goto out;
445 		}
446 	}
447 
448 	pr_warn("dev_remove_pack: %p not found\n", pt);
449 out:
450 	spin_unlock(&ptype_lock);
451 }
452 EXPORT_SYMBOL(__dev_remove_pack);
453 
454 /**
455  *	dev_remove_pack	 - remove packet handler
456  *	@pt: packet type declaration
457  *
458  *	Remove a protocol handler that was previously added to the kernel
459  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
460  *	from the kernel lists and can be freed or reused once this function
461  *	returns.
462  *
463  *	This call sleeps to guarantee that no CPU is looking at the packet
464  *	type after return.
465  */
466 void dev_remove_pack(struct packet_type *pt)
467 {
468 	__dev_remove_pack(pt);
469 
470 	synchronize_net();
471 }
472 EXPORT_SYMBOL(dev_remove_pack);
473 
474 /******************************************************************************
475 
476 		      Device Boot-time Settings Routines
477 
478 *******************************************************************************/
479 
480 /* Boot time configuration table */
481 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
482 
483 /**
484  *	netdev_boot_setup_add	- add new setup entry
485  *	@name: name of the device
486  *	@map: configured settings for the device
487  *
488  *	Adds new setup entry to the dev_boot_setup list.  The function
489  *	returns 0 on error and 1 on success.  This is a generic routine to
490  *	all netdevices.
491  */
492 static int netdev_boot_setup_add(char *name, struct ifmap *map)
493 {
494 	struct netdev_boot_setup *s;
495 	int i;
496 
497 	s = dev_boot_setup;
498 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
499 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
500 			memset(s[i].name, 0, sizeof(s[i].name));
501 			strlcpy(s[i].name, name, IFNAMSIZ);
502 			memcpy(&s[i].map, map, sizeof(s[i].map));
503 			break;
504 		}
505 	}
506 
507 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
508 }
509 
510 /**
511  *	netdev_boot_setup_check	- check boot time settings
512  *	@dev: the netdevice
513  *
514  * 	Check boot time settings for the device.
515  *	The found settings are set for the device to be used
516  *	later in the device probing.
517  *	Returns 0 if no settings found, 1 if they are.
518  */
519 int netdev_boot_setup_check(struct net_device *dev)
520 {
521 	struct netdev_boot_setup *s = dev_boot_setup;
522 	int i;
523 
524 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
525 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
526 		    !strcmp(dev->name, s[i].name)) {
527 			dev->irq 	= s[i].map.irq;
528 			dev->base_addr 	= s[i].map.base_addr;
529 			dev->mem_start 	= s[i].map.mem_start;
530 			dev->mem_end 	= s[i].map.mem_end;
531 			return 1;
532 		}
533 	}
534 	return 0;
535 }
536 EXPORT_SYMBOL(netdev_boot_setup_check);
537 
538 
539 /**
540  *	netdev_boot_base	- get address from boot time settings
541  *	@prefix: prefix for network device
542  *	@unit: id for network device
543  *
544  * 	Check boot time settings for the base address of device.
545  *	The found settings are set for the device to be used
546  *	later in the device probing.
547  *	Returns 0 if no settings found.
548  */
549 unsigned long netdev_boot_base(const char *prefix, int unit)
550 {
551 	const struct netdev_boot_setup *s = dev_boot_setup;
552 	char name[IFNAMSIZ];
553 	int i;
554 
555 	sprintf(name, "%s%d", prefix, unit);
556 
557 	/*
558 	 * If device already registered then return base of 1
559 	 * to indicate not to probe for this interface
560 	 */
561 	if (__dev_get_by_name(&init_net, name))
562 		return 1;
563 
564 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
565 		if (!strcmp(name, s[i].name))
566 			return s[i].map.base_addr;
567 	return 0;
568 }
569 
570 /*
571  * Saves at boot time configured settings for any netdevice.
572  */
573 int __init netdev_boot_setup(char *str)
574 {
575 	int ints[5];
576 	struct ifmap map;
577 
578 	str = get_options(str, ARRAY_SIZE(ints), ints);
579 	if (!str || !*str)
580 		return 0;
581 
582 	/* Save settings */
583 	memset(&map, 0, sizeof(map));
584 	if (ints[0] > 0)
585 		map.irq = ints[1];
586 	if (ints[0] > 1)
587 		map.base_addr = ints[2];
588 	if (ints[0] > 2)
589 		map.mem_start = ints[3];
590 	if (ints[0] > 3)
591 		map.mem_end = ints[4];
592 
593 	/* Add new entry to the list */
594 	return netdev_boot_setup_add(str, &map);
595 }
596 
597 __setup("netdev=", netdev_boot_setup);
598 
599 /*******************************************************************************
600 
601 			    Device Interface Subroutines
602 
603 *******************************************************************************/
604 
605 /**
606  *	__dev_get_by_name	- find a device by its name
607  *	@net: the applicable net namespace
608  *	@name: name to find
609  *
610  *	Find an interface by name. Must be called under RTNL semaphore
611  *	or @dev_base_lock. If the name is found a pointer to the device
612  *	is returned. If the name is not found then %NULL is returned. The
613  *	reference counters are not incremented so the caller must be
614  *	careful with locks.
615  */
616 
617 struct net_device *__dev_get_by_name(struct net *net, const char *name)
618 {
619 	struct hlist_node *p;
620 	struct net_device *dev;
621 	struct hlist_head *head = dev_name_hash(net, name);
622 
623 	hlist_for_each_entry(dev, p, head, name_hlist)
624 		if (!strncmp(dev->name, name, IFNAMSIZ))
625 			return dev;
626 
627 	return NULL;
628 }
629 EXPORT_SYMBOL(__dev_get_by_name);
630 
631 /**
632  *	dev_get_by_name_rcu	- find a device by its name
633  *	@net: the applicable net namespace
634  *	@name: name to find
635  *
636  *	Find an interface by name.
637  *	If the name is found a pointer to the device is returned.
638  * 	If the name is not found then %NULL is returned.
639  *	The reference counters are not incremented so the caller must be
640  *	careful with locks. The caller must hold RCU lock.
641  */
642 
643 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
644 {
645 	struct hlist_node *p;
646 	struct net_device *dev;
647 	struct hlist_head *head = dev_name_hash(net, name);
648 
649 	hlist_for_each_entry_rcu(dev, p, head, name_hlist)
650 		if (!strncmp(dev->name, name, IFNAMSIZ))
651 			return dev;
652 
653 	return NULL;
654 }
655 EXPORT_SYMBOL(dev_get_by_name_rcu);
656 
657 /**
658  *	dev_get_by_name		- find a device by its name
659  *	@net: the applicable net namespace
660  *	@name: name to find
661  *
662  *	Find an interface by name. This can be called from any
663  *	context and does its own locking. The returned handle has
664  *	the usage count incremented and the caller must use dev_put() to
665  *	release it when it is no longer needed. %NULL is returned if no
666  *	matching device is found.
667  */
668 
669 struct net_device *dev_get_by_name(struct net *net, const char *name)
670 {
671 	struct net_device *dev;
672 
673 	rcu_read_lock();
674 	dev = dev_get_by_name_rcu(net, name);
675 	if (dev)
676 		dev_hold(dev);
677 	rcu_read_unlock();
678 	return dev;
679 }
680 EXPORT_SYMBOL(dev_get_by_name);
681 
682 /**
683  *	__dev_get_by_index - find a device by its ifindex
684  *	@net: the applicable net namespace
685  *	@ifindex: index of device
686  *
687  *	Search for an interface by index. Returns %NULL if the device
688  *	is not found or a pointer to the device. The device has not
689  *	had its reference counter increased so the caller must be careful
690  *	about locking. The caller must hold either the RTNL semaphore
691  *	or @dev_base_lock.
692  */
693 
694 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
695 {
696 	struct hlist_node *p;
697 	struct net_device *dev;
698 	struct hlist_head *head = dev_index_hash(net, ifindex);
699 
700 	hlist_for_each_entry(dev, p, head, index_hlist)
701 		if (dev->ifindex == ifindex)
702 			return dev;
703 
704 	return NULL;
705 }
706 EXPORT_SYMBOL(__dev_get_by_index);
707 
708 /**
709  *	dev_get_by_index_rcu - find a device by its ifindex
710  *	@net: the applicable net namespace
711  *	@ifindex: index of device
712  *
713  *	Search for an interface by index. Returns %NULL if the device
714  *	is not found or a pointer to the device. The device has not
715  *	had its reference counter increased so the caller must be careful
716  *	about locking. The caller must hold RCU lock.
717  */
718 
719 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
720 {
721 	struct hlist_node *p;
722 	struct net_device *dev;
723 	struct hlist_head *head = dev_index_hash(net, ifindex);
724 
725 	hlist_for_each_entry_rcu(dev, p, head, index_hlist)
726 		if (dev->ifindex == ifindex)
727 			return dev;
728 
729 	return NULL;
730 }
731 EXPORT_SYMBOL(dev_get_by_index_rcu);
732 
733 
734 /**
735  *	dev_get_by_index - find a device by its ifindex
736  *	@net: the applicable net namespace
737  *	@ifindex: index of device
738  *
739  *	Search for an interface by index. Returns NULL if the device
740  *	is not found or a pointer to the device. The device returned has
741  *	had a reference added and the pointer is safe until the user calls
742  *	dev_put to indicate they have finished with it.
743  */
744 
745 struct net_device *dev_get_by_index(struct net *net, int ifindex)
746 {
747 	struct net_device *dev;
748 
749 	rcu_read_lock();
750 	dev = dev_get_by_index_rcu(net, ifindex);
751 	if (dev)
752 		dev_hold(dev);
753 	rcu_read_unlock();
754 	return dev;
755 }
756 EXPORT_SYMBOL(dev_get_by_index);
757 
758 /**
759  *	dev_getbyhwaddr_rcu - find a device by its hardware address
760  *	@net: the applicable net namespace
761  *	@type: media type of device
762  *	@ha: hardware address
763  *
764  *	Search for an interface by MAC address. Returns NULL if the device
765  *	is not found or a pointer to the device.
766  *	The caller must hold RCU or RTNL.
767  *	The returned device has not had its ref count increased
768  *	and the caller must therefore be careful about locking
769  *
770  */
771 
772 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
773 				       const char *ha)
774 {
775 	struct net_device *dev;
776 
777 	for_each_netdev_rcu(net, dev)
778 		if (dev->type == type &&
779 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
780 			return dev;
781 
782 	return NULL;
783 }
784 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
785 
786 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
787 {
788 	struct net_device *dev;
789 
790 	ASSERT_RTNL();
791 	for_each_netdev(net, dev)
792 		if (dev->type == type)
793 			return dev;
794 
795 	return NULL;
796 }
797 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
798 
799 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
800 {
801 	struct net_device *dev, *ret = NULL;
802 
803 	rcu_read_lock();
804 	for_each_netdev_rcu(net, dev)
805 		if (dev->type == type) {
806 			dev_hold(dev);
807 			ret = dev;
808 			break;
809 		}
810 	rcu_read_unlock();
811 	return ret;
812 }
813 EXPORT_SYMBOL(dev_getfirstbyhwtype);
814 
815 /**
816  *	dev_get_by_flags_rcu - find any device with given flags
817  *	@net: the applicable net namespace
818  *	@if_flags: IFF_* values
819  *	@mask: bitmask of bits in if_flags to check
820  *
821  *	Search for any interface with the given flags. Returns NULL if a device
822  *	is not found or a pointer to the device. Must be called inside
823  *	rcu_read_lock(), and result refcount is unchanged.
824  */
825 
826 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
827 				    unsigned short mask)
828 {
829 	struct net_device *dev, *ret;
830 
831 	ret = NULL;
832 	for_each_netdev_rcu(net, dev) {
833 		if (((dev->flags ^ if_flags) & mask) == 0) {
834 			ret = dev;
835 			break;
836 		}
837 	}
838 	return ret;
839 }
840 EXPORT_SYMBOL(dev_get_by_flags_rcu);
841 
842 /**
843  *	dev_valid_name - check if name is okay for network device
844  *	@name: name string
845  *
846  *	Network device names need to be valid file names to
847  *	to allow sysfs to work.  We also disallow any kind of
848  *	whitespace.
849  */
850 bool dev_valid_name(const char *name)
851 {
852 	if (*name == '\0')
853 		return false;
854 	if (strlen(name) >= IFNAMSIZ)
855 		return false;
856 	if (!strcmp(name, ".") || !strcmp(name, ".."))
857 		return false;
858 
859 	while (*name) {
860 		if (*name == '/' || isspace(*name))
861 			return false;
862 		name++;
863 	}
864 	return true;
865 }
866 EXPORT_SYMBOL(dev_valid_name);
867 
868 /**
869  *	__dev_alloc_name - allocate a name for a device
870  *	@net: network namespace to allocate the device name in
871  *	@name: name format string
872  *	@buf:  scratch buffer and result name string
873  *
874  *	Passed a format string - eg "lt%d" it will try and find a suitable
875  *	id. It scans list of devices to build up a free map, then chooses
876  *	the first empty slot. The caller must hold the dev_base or rtnl lock
877  *	while allocating the name and adding the device in order to avoid
878  *	duplicates.
879  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
880  *	Returns the number of the unit assigned or a negative errno code.
881  */
882 
883 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
884 {
885 	int i = 0;
886 	const char *p;
887 	const int max_netdevices = 8*PAGE_SIZE;
888 	unsigned long *inuse;
889 	struct net_device *d;
890 
891 	p = strnchr(name, IFNAMSIZ-1, '%');
892 	if (p) {
893 		/*
894 		 * Verify the string as this thing may have come from
895 		 * the user.  There must be either one "%d" and no other "%"
896 		 * characters.
897 		 */
898 		if (p[1] != 'd' || strchr(p + 2, '%'))
899 			return -EINVAL;
900 
901 		/* Use one page as a bit array of possible slots */
902 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
903 		if (!inuse)
904 			return -ENOMEM;
905 
906 		for_each_netdev(net, d) {
907 			if (!sscanf(d->name, name, &i))
908 				continue;
909 			if (i < 0 || i >= max_netdevices)
910 				continue;
911 
912 			/*  avoid cases where sscanf is not exact inverse of printf */
913 			snprintf(buf, IFNAMSIZ, name, i);
914 			if (!strncmp(buf, d->name, IFNAMSIZ))
915 				set_bit(i, inuse);
916 		}
917 
918 		i = find_first_zero_bit(inuse, max_netdevices);
919 		free_page((unsigned long) inuse);
920 	}
921 
922 	if (buf != name)
923 		snprintf(buf, IFNAMSIZ, name, i);
924 	if (!__dev_get_by_name(net, buf))
925 		return i;
926 
927 	/* It is possible to run out of possible slots
928 	 * when the name is long and there isn't enough space left
929 	 * for the digits, or if all bits are used.
930 	 */
931 	return -ENFILE;
932 }
933 
934 /**
935  *	dev_alloc_name - allocate a name for a device
936  *	@dev: device
937  *	@name: name format string
938  *
939  *	Passed a format string - eg "lt%d" it will try and find a suitable
940  *	id. It scans list of devices to build up a free map, then chooses
941  *	the first empty slot. The caller must hold the dev_base or rtnl lock
942  *	while allocating the name and adding the device in order to avoid
943  *	duplicates.
944  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
945  *	Returns the number of the unit assigned or a negative errno code.
946  */
947 
948 int dev_alloc_name(struct net_device *dev, const char *name)
949 {
950 	char buf[IFNAMSIZ];
951 	struct net *net;
952 	int ret;
953 
954 	BUG_ON(!dev_net(dev));
955 	net = dev_net(dev);
956 	ret = __dev_alloc_name(net, name, buf);
957 	if (ret >= 0)
958 		strlcpy(dev->name, buf, IFNAMSIZ);
959 	return ret;
960 }
961 EXPORT_SYMBOL(dev_alloc_name);
962 
963 static int dev_get_valid_name(struct net_device *dev, const char *name)
964 {
965 	struct net *net;
966 
967 	BUG_ON(!dev_net(dev));
968 	net = dev_net(dev);
969 
970 	if (!dev_valid_name(name))
971 		return -EINVAL;
972 
973 	if (strchr(name, '%'))
974 		return dev_alloc_name(dev, name);
975 	else if (__dev_get_by_name(net, name))
976 		return -EEXIST;
977 	else if (dev->name != name)
978 		strlcpy(dev->name, name, IFNAMSIZ);
979 
980 	return 0;
981 }
982 
983 /**
984  *	dev_change_name - change name of a device
985  *	@dev: device
986  *	@newname: name (or format string) must be at least IFNAMSIZ
987  *
988  *	Change name of a device, can pass format strings "eth%d".
989  *	for wildcarding.
990  */
991 int dev_change_name(struct net_device *dev, const char *newname)
992 {
993 	char oldname[IFNAMSIZ];
994 	int err = 0;
995 	int ret;
996 	struct net *net;
997 
998 	ASSERT_RTNL();
999 	BUG_ON(!dev_net(dev));
1000 
1001 	net = dev_net(dev);
1002 	if (dev->flags & IFF_UP)
1003 		return -EBUSY;
1004 
1005 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1006 		return 0;
1007 
1008 	memcpy(oldname, dev->name, IFNAMSIZ);
1009 
1010 	err = dev_get_valid_name(dev, newname);
1011 	if (err < 0)
1012 		return err;
1013 
1014 rollback:
1015 	ret = device_rename(&dev->dev, dev->name);
1016 	if (ret) {
1017 		memcpy(dev->name, oldname, IFNAMSIZ);
1018 		return ret;
1019 	}
1020 
1021 	write_lock_bh(&dev_base_lock);
1022 	hlist_del_rcu(&dev->name_hlist);
1023 	write_unlock_bh(&dev_base_lock);
1024 
1025 	synchronize_rcu();
1026 
1027 	write_lock_bh(&dev_base_lock);
1028 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1029 	write_unlock_bh(&dev_base_lock);
1030 
1031 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1032 	ret = notifier_to_errno(ret);
1033 
1034 	if (ret) {
1035 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1036 		if (err >= 0) {
1037 			err = ret;
1038 			memcpy(dev->name, oldname, IFNAMSIZ);
1039 			goto rollback;
1040 		} else {
1041 			pr_err("%s: name change rollback failed: %d\n",
1042 			       dev->name, ret);
1043 		}
1044 	}
1045 
1046 	return err;
1047 }
1048 
1049 /**
1050  *	dev_set_alias - change ifalias of a device
1051  *	@dev: device
1052  *	@alias: name up to IFALIASZ
1053  *	@len: limit of bytes to copy from info
1054  *
1055  *	Set ifalias for a device,
1056  */
1057 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1058 {
1059 	ASSERT_RTNL();
1060 
1061 	if (len >= IFALIASZ)
1062 		return -EINVAL;
1063 
1064 	if (!len) {
1065 		if (dev->ifalias) {
1066 			kfree(dev->ifalias);
1067 			dev->ifalias = NULL;
1068 		}
1069 		return 0;
1070 	}
1071 
1072 	dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1073 	if (!dev->ifalias)
1074 		return -ENOMEM;
1075 
1076 	strlcpy(dev->ifalias, alias, len+1);
1077 	return len;
1078 }
1079 
1080 
1081 /**
1082  *	netdev_features_change - device changes features
1083  *	@dev: device to cause notification
1084  *
1085  *	Called to indicate a device has changed features.
1086  */
1087 void netdev_features_change(struct net_device *dev)
1088 {
1089 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1090 }
1091 EXPORT_SYMBOL(netdev_features_change);
1092 
1093 /**
1094  *	netdev_state_change - device changes state
1095  *	@dev: device to cause notification
1096  *
1097  *	Called to indicate a device has changed state. This function calls
1098  *	the notifier chains for netdev_chain and sends a NEWLINK message
1099  *	to the routing socket.
1100  */
1101 void netdev_state_change(struct net_device *dev)
1102 {
1103 	if (dev->flags & IFF_UP) {
1104 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1105 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1106 	}
1107 }
1108 EXPORT_SYMBOL(netdev_state_change);
1109 
1110 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1111 {
1112 	return call_netdevice_notifiers(event, dev);
1113 }
1114 EXPORT_SYMBOL(netdev_bonding_change);
1115 
1116 /**
1117  *	dev_load 	- load a network module
1118  *	@net: the applicable net namespace
1119  *	@name: name of interface
1120  *
1121  *	If a network interface is not present and the process has suitable
1122  *	privileges this function loads the module. If module loading is not
1123  *	available in this kernel then it becomes a nop.
1124  */
1125 
1126 void dev_load(struct net *net, const char *name)
1127 {
1128 	struct net_device *dev;
1129 	int no_module;
1130 
1131 	rcu_read_lock();
1132 	dev = dev_get_by_name_rcu(net, name);
1133 	rcu_read_unlock();
1134 
1135 	no_module = !dev;
1136 	if (no_module && capable(CAP_NET_ADMIN))
1137 		no_module = request_module("netdev-%s", name);
1138 	if (no_module && capable(CAP_SYS_MODULE)) {
1139 		if (!request_module("%s", name))
1140 			pr_err("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated).  Use CAP_NET_ADMIN and alias netdev-%s instead.\n",
1141 			       name);
1142 	}
1143 }
1144 EXPORT_SYMBOL(dev_load);
1145 
1146 static int __dev_open(struct net_device *dev)
1147 {
1148 	const struct net_device_ops *ops = dev->netdev_ops;
1149 	int ret;
1150 
1151 	ASSERT_RTNL();
1152 
1153 	if (!netif_device_present(dev))
1154 		return -ENODEV;
1155 
1156 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1157 	ret = notifier_to_errno(ret);
1158 	if (ret)
1159 		return ret;
1160 
1161 	set_bit(__LINK_STATE_START, &dev->state);
1162 
1163 	if (ops->ndo_validate_addr)
1164 		ret = ops->ndo_validate_addr(dev);
1165 
1166 	if (!ret && ops->ndo_open)
1167 		ret = ops->ndo_open(dev);
1168 
1169 	if (ret)
1170 		clear_bit(__LINK_STATE_START, &dev->state);
1171 	else {
1172 		dev->flags |= IFF_UP;
1173 		net_dmaengine_get();
1174 		dev_set_rx_mode(dev);
1175 		dev_activate(dev);
1176 	}
1177 
1178 	return ret;
1179 }
1180 
1181 /**
1182  *	dev_open	- prepare an interface for use.
1183  *	@dev:	device to open
1184  *
1185  *	Takes a device from down to up state. The device's private open
1186  *	function is invoked and then the multicast lists are loaded. Finally
1187  *	the device is moved into the up state and a %NETDEV_UP message is
1188  *	sent to the netdev notifier chain.
1189  *
1190  *	Calling this function on an active interface is a nop. On a failure
1191  *	a negative errno code is returned.
1192  */
1193 int dev_open(struct net_device *dev)
1194 {
1195 	int ret;
1196 
1197 	if (dev->flags & IFF_UP)
1198 		return 0;
1199 
1200 	ret = __dev_open(dev);
1201 	if (ret < 0)
1202 		return ret;
1203 
1204 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1205 	call_netdevice_notifiers(NETDEV_UP, dev);
1206 
1207 	return ret;
1208 }
1209 EXPORT_SYMBOL(dev_open);
1210 
1211 static int __dev_close_many(struct list_head *head)
1212 {
1213 	struct net_device *dev;
1214 
1215 	ASSERT_RTNL();
1216 	might_sleep();
1217 
1218 	list_for_each_entry(dev, head, unreg_list) {
1219 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1220 
1221 		clear_bit(__LINK_STATE_START, &dev->state);
1222 
1223 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1224 		 * can be even on different cpu. So just clear netif_running().
1225 		 *
1226 		 * dev->stop() will invoke napi_disable() on all of it's
1227 		 * napi_struct instances on this device.
1228 		 */
1229 		smp_mb__after_clear_bit(); /* Commit netif_running(). */
1230 	}
1231 
1232 	dev_deactivate_many(head);
1233 
1234 	list_for_each_entry(dev, head, unreg_list) {
1235 		const struct net_device_ops *ops = dev->netdev_ops;
1236 
1237 		/*
1238 		 *	Call the device specific close. This cannot fail.
1239 		 *	Only if device is UP
1240 		 *
1241 		 *	We allow it to be called even after a DETACH hot-plug
1242 		 *	event.
1243 		 */
1244 		if (ops->ndo_stop)
1245 			ops->ndo_stop(dev);
1246 
1247 		dev->flags &= ~IFF_UP;
1248 		net_dmaengine_put();
1249 	}
1250 
1251 	return 0;
1252 }
1253 
1254 static int __dev_close(struct net_device *dev)
1255 {
1256 	int retval;
1257 	LIST_HEAD(single);
1258 
1259 	list_add(&dev->unreg_list, &single);
1260 	retval = __dev_close_many(&single);
1261 	list_del(&single);
1262 	return retval;
1263 }
1264 
1265 static int dev_close_many(struct list_head *head)
1266 {
1267 	struct net_device *dev, *tmp;
1268 	LIST_HEAD(tmp_list);
1269 
1270 	list_for_each_entry_safe(dev, tmp, head, unreg_list)
1271 		if (!(dev->flags & IFF_UP))
1272 			list_move(&dev->unreg_list, &tmp_list);
1273 
1274 	__dev_close_many(head);
1275 
1276 	list_for_each_entry(dev, head, unreg_list) {
1277 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1278 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1279 	}
1280 
1281 	/* rollback_registered_many needs the complete original list */
1282 	list_splice(&tmp_list, head);
1283 	return 0;
1284 }
1285 
1286 /**
1287  *	dev_close - shutdown an interface.
1288  *	@dev: device to shutdown
1289  *
1290  *	This function moves an active device into down state. A
1291  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1292  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1293  *	chain.
1294  */
1295 int dev_close(struct net_device *dev)
1296 {
1297 	if (dev->flags & IFF_UP) {
1298 		LIST_HEAD(single);
1299 
1300 		list_add(&dev->unreg_list, &single);
1301 		dev_close_many(&single);
1302 		list_del(&single);
1303 	}
1304 	return 0;
1305 }
1306 EXPORT_SYMBOL(dev_close);
1307 
1308 
1309 /**
1310  *	dev_disable_lro - disable Large Receive Offload on a device
1311  *	@dev: device
1312  *
1313  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1314  *	called under RTNL.  This is needed if received packets may be
1315  *	forwarded to another interface.
1316  */
1317 void dev_disable_lro(struct net_device *dev)
1318 {
1319 	/*
1320 	 * If we're trying to disable lro on a vlan device
1321 	 * use the underlying physical device instead
1322 	 */
1323 	if (is_vlan_dev(dev))
1324 		dev = vlan_dev_real_dev(dev);
1325 
1326 	dev->wanted_features &= ~NETIF_F_LRO;
1327 	netdev_update_features(dev);
1328 
1329 	if (unlikely(dev->features & NETIF_F_LRO))
1330 		netdev_WARN(dev, "failed to disable LRO!\n");
1331 }
1332 EXPORT_SYMBOL(dev_disable_lro);
1333 
1334 
1335 static int dev_boot_phase = 1;
1336 
1337 /**
1338  *	register_netdevice_notifier - register a network notifier block
1339  *	@nb: notifier
1340  *
1341  *	Register a notifier to be called when network device events occur.
1342  *	The notifier passed is linked into the kernel structures and must
1343  *	not be reused until it has been unregistered. A negative errno code
1344  *	is returned on a failure.
1345  *
1346  * 	When registered all registration and up events are replayed
1347  *	to the new notifier to allow device to have a race free
1348  *	view of the network device list.
1349  */
1350 
1351 int register_netdevice_notifier(struct notifier_block *nb)
1352 {
1353 	struct net_device *dev;
1354 	struct net_device *last;
1355 	struct net *net;
1356 	int err;
1357 
1358 	rtnl_lock();
1359 	err = raw_notifier_chain_register(&netdev_chain, nb);
1360 	if (err)
1361 		goto unlock;
1362 	if (dev_boot_phase)
1363 		goto unlock;
1364 	for_each_net(net) {
1365 		for_each_netdev(net, dev) {
1366 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1367 			err = notifier_to_errno(err);
1368 			if (err)
1369 				goto rollback;
1370 
1371 			if (!(dev->flags & IFF_UP))
1372 				continue;
1373 
1374 			nb->notifier_call(nb, NETDEV_UP, dev);
1375 		}
1376 	}
1377 
1378 unlock:
1379 	rtnl_unlock();
1380 	return err;
1381 
1382 rollback:
1383 	last = dev;
1384 	for_each_net(net) {
1385 		for_each_netdev(net, dev) {
1386 			if (dev == last)
1387 				goto outroll;
1388 
1389 			if (dev->flags & IFF_UP) {
1390 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1391 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1392 			}
1393 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1394 			nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1395 		}
1396 	}
1397 
1398 outroll:
1399 	raw_notifier_chain_unregister(&netdev_chain, nb);
1400 	goto unlock;
1401 }
1402 EXPORT_SYMBOL(register_netdevice_notifier);
1403 
1404 /**
1405  *	unregister_netdevice_notifier - unregister a network notifier block
1406  *	@nb: notifier
1407  *
1408  *	Unregister a notifier previously registered by
1409  *	register_netdevice_notifier(). The notifier is unlinked into the
1410  *	kernel structures and may then be reused. A negative errno code
1411  *	is returned on a failure.
1412  *
1413  * 	After unregistering unregister and down device events are synthesized
1414  *	for all devices on the device list to the removed notifier to remove
1415  *	the need for special case cleanup code.
1416  */
1417 
1418 int unregister_netdevice_notifier(struct notifier_block *nb)
1419 {
1420 	struct net_device *dev;
1421 	struct net *net;
1422 	int err;
1423 
1424 	rtnl_lock();
1425 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1426 	if (err)
1427 		goto unlock;
1428 
1429 	for_each_net(net) {
1430 		for_each_netdev(net, dev) {
1431 			if (dev->flags & IFF_UP) {
1432 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1433 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1434 			}
1435 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1436 			nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1437 		}
1438 	}
1439 unlock:
1440 	rtnl_unlock();
1441 	return err;
1442 }
1443 EXPORT_SYMBOL(unregister_netdevice_notifier);
1444 
1445 /**
1446  *	call_netdevice_notifiers - call all network notifier blocks
1447  *      @val: value passed unmodified to notifier function
1448  *      @dev: net_device pointer passed unmodified to notifier function
1449  *
1450  *	Call all network notifier blocks.  Parameters and return value
1451  *	are as for raw_notifier_call_chain().
1452  */
1453 
1454 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1455 {
1456 	ASSERT_RTNL();
1457 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1458 }
1459 EXPORT_SYMBOL(call_netdevice_notifiers);
1460 
1461 static struct static_key netstamp_needed __read_mostly;
1462 #ifdef HAVE_JUMP_LABEL
1463 /* We are not allowed to call static_key_slow_dec() from irq context
1464  * If net_disable_timestamp() is called from irq context, defer the
1465  * static_key_slow_dec() calls.
1466  */
1467 static atomic_t netstamp_needed_deferred;
1468 #endif
1469 
1470 void net_enable_timestamp(void)
1471 {
1472 #ifdef HAVE_JUMP_LABEL
1473 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1474 
1475 	if (deferred) {
1476 		while (--deferred)
1477 			static_key_slow_dec(&netstamp_needed);
1478 		return;
1479 	}
1480 #endif
1481 	WARN_ON(in_interrupt());
1482 	static_key_slow_inc(&netstamp_needed);
1483 }
1484 EXPORT_SYMBOL(net_enable_timestamp);
1485 
1486 void net_disable_timestamp(void)
1487 {
1488 #ifdef HAVE_JUMP_LABEL
1489 	if (in_interrupt()) {
1490 		atomic_inc(&netstamp_needed_deferred);
1491 		return;
1492 	}
1493 #endif
1494 	static_key_slow_dec(&netstamp_needed);
1495 }
1496 EXPORT_SYMBOL(net_disable_timestamp);
1497 
1498 static inline void net_timestamp_set(struct sk_buff *skb)
1499 {
1500 	skb->tstamp.tv64 = 0;
1501 	if (static_key_false(&netstamp_needed))
1502 		__net_timestamp(skb);
1503 }
1504 
1505 #define net_timestamp_check(COND, SKB)			\
1506 	if (static_key_false(&netstamp_needed)) {		\
1507 		if ((COND) && !(SKB)->tstamp.tv64)	\
1508 			__net_timestamp(SKB);		\
1509 	}						\
1510 
1511 static int net_hwtstamp_validate(struct ifreq *ifr)
1512 {
1513 	struct hwtstamp_config cfg;
1514 	enum hwtstamp_tx_types tx_type;
1515 	enum hwtstamp_rx_filters rx_filter;
1516 	int tx_type_valid = 0;
1517 	int rx_filter_valid = 0;
1518 
1519 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1520 		return -EFAULT;
1521 
1522 	if (cfg.flags) /* reserved for future extensions */
1523 		return -EINVAL;
1524 
1525 	tx_type = cfg.tx_type;
1526 	rx_filter = cfg.rx_filter;
1527 
1528 	switch (tx_type) {
1529 	case HWTSTAMP_TX_OFF:
1530 	case HWTSTAMP_TX_ON:
1531 	case HWTSTAMP_TX_ONESTEP_SYNC:
1532 		tx_type_valid = 1;
1533 		break;
1534 	}
1535 
1536 	switch (rx_filter) {
1537 	case HWTSTAMP_FILTER_NONE:
1538 	case HWTSTAMP_FILTER_ALL:
1539 	case HWTSTAMP_FILTER_SOME:
1540 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1541 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1542 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1543 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1544 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1545 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1546 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1547 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1548 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1549 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1550 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1551 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1552 		rx_filter_valid = 1;
1553 		break;
1554 	}
1555 
1556 	if (!tx_type_valid || !rx_filter_valid)
1557 		return -ERANGE;
1558 
1559 	return 0;
1560 }
1561 
1562 static inline bool is_skb_forwardable(struct net_device *dev,
1563 				      struct sk_buff *skb)
1564 {
1565 	unsigned int len;
1566 
1567 	if (!(dev->flags & IFF_UP))
1568 		return false;
1569 
1570 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1571 	if (skb->len <= len)
1572 		return true;
1573 
1574 	/* if TSO is enabled, we don't care about the length as the packet
1575 	 * could be forwarded without being segmented before
1576 	 */
1577 	if (skb_is_gso(skb))
1578 		return true;
1579 
1580 	return false;
1581 }
1582 
1583 /**
1584  * dev_forward_skb - loopback an skb to another netif
1585  *
1586  * @dev: destination network device
1587  * @skb: buffer to forward
1588  *
1589  * return values:
1590  *	NET_RX_SUCCESS	(no congestion)
1591  *	NET_RX_DROP     (packet was dropped, but freed)
1592  *
1593  * dev_forward_skb can be used for injecting an skb from the
1594  * start_xmit function of one device into the receive queue
1595  * of another device.
1596  *
1597  * The receiving device may be in another namespace, so
1598  * we have to clear all information in the skb that could
1599  * impact namespace isolation.
1600  */
1601 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1602 {
1603 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1604 		if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1605 			atomic_long_inc(&dev->rx_dropped);
1606 			kfree_skb(skb);
1607 			return NET_RX_DROP;
1608 		}
1609 	}
1610 
1611 	skb_orphan(skb);
1612 	nf_reset(skb);
1613 
1614 	if (unlikely(!is_skb_forwardable(dev, skb))) {
1615 		atomic_long_inc(&dev->rx_dropped);
1616 		kfree_skb(skb);
1617 		return NET_RX_DROP;
1618 	}
1619 	skb->skb_iif = 0;
1620 	skb->dev = dev;
1621 	skb_dst_drop(skb);
1622 	skb->tstamp.tv64 = 0;
1623 	skb->pkt_type = PACKET_HOST;
1624 	skb->protocol = eth_type_trans(skb, dev);
1625 	skb->mark = 0;
1626 	secpath_reset(skb);
1627 	nf_reset(skb);
1628 	return netif_rx(skb);
1629 }
1630 EXPORT_SYMBOL_GPL(dev_forward_skb);
1631 
1632 static inline int deliver_skb(struct sk_buff *skb,
1633 			      struct packet_type *pt_prev,
1634 			      struct net_device *orig_dev)
1635 {
1636 	atomic_inc(&skb->users);
1637 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1638 }
1639 
1640 /*
1641  *	Support routine. Sends outgoing frames to any network
1642  *	taps currently in use.
1643  */
1644 
1645 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1646 {
1647 	struct packet_type *ptype;
1648 	struct sk_buff *skb2 = NULL;
1649 	struct packet_type *pt_prev = NULL;
1650 
1651 	rcu_read_lock();
1652 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1653 		/* Never send packets back to the socket
1654 		 * they originated from - MvS (miquels@drinkel.ow.org)
1655 		 */
1656 		if ((ptype->dev == dev || !ptype->dev) &&
1657 		    (ptype->af_packet_priv == NULL ||
1658 		     (struct sock *)ptype->af_packet_priv != skb->sk)) {
1659 			if (pt_prev) {
1660 				deliver_skb(skb2, pt_prev, skb->dev);
1661 				pt_prev = ptype;
1662 				continue;
1663 			}
1664 
1665 			skb2 = skb_clone(skb, GFP_ATOMIC);
1666 			if (!skb2)
1667 				break;
1668 
1669 			net_timestamp_set(skb2);
1670 
1671 			/* skb->nh should be correctly
1672 			   set by sender, so that the second statement is
1673 			   just protection against buggy protocols.
1674 			 */
1675 			skb_reset_mac_header(skb2);
1676 
1677 			if (skb_network_header(skb2) < skb2->data ||
1678 			    skb2->network_header > skb2->tail) {
1679 				if (net_ratelimit())
1680 					pr_crit("protocol %04x is buggy, dev %s\n",
1681 						ntohs(skb2->protocol),
1682 						dev->name);
1683 				skb_reset_network_header(skb2);
1684 			}
1685 
1686 			skb2->transport_header = skb2->network_header;
1687 			skb2->pkt_type = PACKET_OUTGOING;
1688 			pt_prev = ptype;
1689 		}
1690 	}
1691 	if (pt_prev)
1692 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1693 	rcu_read_unlock();
1694 }
1695 
1696 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1697  * @dev: Network device
1698  * @txq: number of queues available
1699  *
1700  * If real_num_tx_queues is changed the tc mappings may no longer be
1701  * valid. To resolve this verify the tc mapping remains valid and if
1702  * not NULL the mapping. With no priorities mapping to this
1703  * offset/count pair it will no longer be used. In the worst case TC0
1704  * is invalid nothing can be done so disable priority mappings. If is
1705  * expected that drivers will fix this mapping if they can before
1706  * calling netif_set_real_num_tx_queues.
1707  */
1708 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1709 {
1710 	int i;
1711 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1712 
1713 	/* If TC0 is invalidated disable TC mapping */
1714 	if (tc->offset + tc->count > txq) {
1715 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1716 		dev->num_tc = 0;
1717 		return;
1718 	}
1719 
1720 	/* Invalidated prio to tc mappings set to TC0 */
1721 	for (i = 1; i < TC_BITMASK + 1; i++) {
1722 		int q = netdev_get_prio_tc_map(dev, i);
1723 
1724 		tc = &dev->tc_to_txq[q];
1725 		if (tc->offset + tc->count > txq) {
1726 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1727 				i, q);
1728 			netdev_set_prio_tc_map(dev, i, 0);
1729 		}
1730 	}
1731 }
1732 
1733 /*
1734  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1735  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1736  */
1737 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1738 {
1739 	int rc;
1740 
1741 	if (txq < 1 || txq > dev->num_tx_queues)
1742 		return -EINVAL;
1743 
1744 	if (dev->reg_state == NETREG_REGISTERED ||
1745 	    dev->reg_state == NETREG_UNREGISTERING) {
1746 		ASSERT_RTNL();
1747 
1748 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1749 						  txq);
1750 		if (rc)
1751 			return rc;
1752 
1753 		if (dev->num_tc)
1754 			netif_setup_tc(dev, txq);
1755 
1756 		if (txq < dev->real_num_tx_queues)
1757 			qdisc_reset_all_tx_gt(dev, txq);
1758 	}
1759 
1760 	dev->real_num_tx_queues = txq;
1761 	return 0;
1762 }
1763 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1764 
1765 #ifdef CONFIG_RPS
1766 /**
1767  *	netif_set_real_num_rx_queues - set actual number of RX queues used
1768  *	@dev: Network device
1769  *	@rxq: Actual number of RX queues
1770  *
1771  *	This must be called either with the rtnl_lock held or before
1772  *	registration of the net device.  Returns 0 on success, or a
1773  *	negative error code.  If called before registration, it always
1774  *	succeeds.
1775  */
1776 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1777 {
1778 	int rc;
1779 
1780 	if (rxq < 1 || rxq > dev->num_rx_queues)
1781 		return -EINVAL;
1782 
1783 	if (dev->reg_state == NETREG_REGISTERED) {
1784 		ASSERT_RTNL();
1785 
1786 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1787 						  rxq);
1788 		if (rc)
1789 			return rc;
1790 	}
1791 
1792 	dev->real_num_rx_queues = rxq;
1793 	return 0;
1794 }
1795 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1796 #endif
1797 
1798 static inline void __netif_reschedule(struct Qdisc *q)
1799 {
1800 	struct softnet_data *sd;
1801 	unsigned long flags;
1802 
1803 	local_irq_save(flags);
1804 	sd = &__get_cpu_var(softnet_data);
1805 	q->next_sched = NULL;
1806 	*sd->output_queue_tailp = q;
1807 	sd->output_queue_tailp = &q->next_sched;
1808 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
1809 	local_irq_restore(flags);
1810 }
1811 
1812 void __netif_schedule(struct Qdisc *q)
1813 {
1814 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1815 		__netif_reschedule(q);
1816 }
1817 EXPORT_SYMBOL(__netif_schedule);
1818 
1819 void dev_kfree_skb_irq(struct sk_buff *skb)
1820 {
1821 	if (atomic_dec_and_test(&skb->users)) {
1822 		struct softnet_data *sd;
1823 		unsigned long flags;
1824 
1825 		local_irq_save(flags);
1826 		sd = &__get_cpu_var(softnet_data);
1827 		skb->next = sd->completion_queue;
1828 		sd->completion_queue = skb;
1829 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1830 		local_irq_restore(flags);
1831 	}
1832 }
1833 EXPORT_SYMBOL(dev_kfree_skb_irq);
1834 
1835 void dev_kfree_skb_any(struct sk_buff *skb)
1836 {
1837 	if (in_irq() || irqs_disabled())
1838 		dev_kfree_skb_irq(skb);
1839 	else
1840 		dev_kfree_skb(skb);
1841 }
1842 EXPORT_SYMBOL(dev_kfree_skb_any);
1843 
1844 
1845 /**
1846  * netif_device_detach - mark device as removed
1847  * @dev: network device
1848  *
1849  * Mark device as removed from system and therefore no longer available.
1850  */
1851 void netif_device_detach(struct net_device *dev)
1852 {
1853 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1854 	    netif_running(dev)) {
1855 		netif_tx_stop_all_queues(dev);
1856 	}
1857 }
1858 EXPORT_SYMBOL(netif_device_detach);
1859 
1860 /**
1861  * netif_device_attach - mark device as attached
1862  * @dev: network device
1863  *
1864  * Mark device as attached from system and restart if needed.
1865  */
1866 void netif_device_attach(struct net_device *dev)
1867 {
1868 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1869 	    netif_running(dev)) {
1870 		netif_tx_wake_all_queues(dev);
1871 		__netdev_watchdog_up(dev);
1872 	}
1873 }
1874 EXPORT_SYMBOL(netif_device_attach);
1875 
1876 static void skb_warn_bad_offload(const struct sk_buff *skb)
1877 {
1878 	static const netdev_features_t null_features = 0;
1879 	struct net_device *dev = skb->dev;
1880 	const char *driver = "";
1881 
1882 	if (dev && dev->dev.parent)
1883 		driver = dev_driver_string(dev->dev.parent);
1884 
1885 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
1886 	     "gso_type=%d ip_summed=%d\n",
1887 	     driver, dev ? &dev->features : &null_features,
1888 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
1889 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
1890 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
1891 }
1892 
1893 /*
1894  * Invalidate hardware checksum when packet is to be mangled, and
1895  * complete checksum manually on outgoing path.
1896  */
1897 int skb_checksum_help(struct sk_buff *skb)
1898 {
1899 	__wsum csum;
1900 	int ret = 0, offset;
1901 
1902 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1903 		goto out_set_summed;
1904 
1905 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1906 		skb_warn_bad_offload(skb);
1907 		return -EINVAL;
1908 	}
1909 
1910 	offset = skb_checksum_start_offset(skb);
1911 	BUG_ON(offset >= skb_headlen(skb));
1912 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1913 
1914 	offset += skb->csum_offset;
1915 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1916 
1917 	if (skb_cloned(skb) &&
1918 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1919 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1920 		if (ret)
1921 			goto out;
1922 	}
1923 
1924 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1925 out_set_summed:
1926 	skb->ip_summed = CHECKSUM_NONE;
1927 out:
1928 	return ret;
1929 }
1930 EXPORT_SYMBOL(skb_checksum_help);
1931 
1932 /**
1933  *	skb_gso_segment - Perform segmentation on skb.
1934  *	@skb: buffer to segment
1935  *	@features: features for the output path (see dev->features)
1936  *
1937  *	This function segments the given skb and returns a list of segments.
1938  *
1939  *	It may return NULL if the skb requires no segmentation.  This is
1940  *	only possible when GSO is used for verifying header integrity.
1941  */
1942 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
1943 	netdev_features_t features)
1944 {
1945 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1946 	struct packet_type *ptype;
1947 	__be16 type = skb->protocol;
1948 	int vlan_depth = ETH_HLEN;
1949 	int err;
1950 
1951 	while (type == htons(ETH_P_8021Q)) {
1952 		struct vlan_hdr *vh;
1953 
1954 		if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1955 			return ERR_PTR(-EINVAL);
1956 
1957 		vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1958 		type = vh->h_vlan_encapsulated_proto;
1959 		vlan_depth += VLAN_HLEN;
1960 	}
1961 
1962 	skb_reset_mac_header(skb);
1963 	skb->mac_len = skb->network_header - skb->mac_header;
1964 	__skb_pull(skb, skb->mac_len);
1965 
1966 	if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1967 		skb_warn_bad_offload(skb);
1968 
1969 		if (skb_header_cloned(skb) &&
1970 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1971 			return ERR_PTR(err);
1972 	}
1973 
1974 	rcu_read_lock();
1975 	list_for_each_entry_rcu(ptype,
1976 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1977 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1978 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1979 				err = ptype->gso_send_check(skb);
1980 				segs = ERR_PTR(err);
1981 				if (err || skb_gso_ok(skb, features))
1982 					break;
1983 				__skb_push(skb, (skb->data -
1984 						 skb_network_header(skb)));
1985 			}
1986 			segs = ptype->gso_segment(skb, features);
1987 			break;
1988 		}
1989 	}
1990 	rcu_read_unlock();
1991 
1992 	__skb_push(skb, skb->data - skb_mac_header(skb));
1993 
1994 	return segs;
1995 }
1996 EXPORT_SYMBOL(skb_gso_segment);
1997 
1998 /* Take action when hardware reception checksum errors are detected. */
1999 #ifdef CONFIG_BUG
2000 void netdev_rx_csum_fault(struct net_device *dev)
2001 {
2002 	if (net_ratelimit()) {
2003 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2004 		dump_stack();
2005 	}
2006 }
2007 EXPORT_SYMBOL(netdev_rx_csum_fault);
2008 #endif
2009 
2010 /* Actually, we should eliminate this check as soon as we know, that:
2011  * 1. IOMMU is present and allows to map all the memory.
2012  * 2. No high memory really exists on this machine.
2013  */
2014 
2015 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2016 {
2017 #ifdef CONFIG_HIGHMEM
2018 	int i;
2019 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2020 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2021 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2022 			if (PageHighMem(skb_frag_page(frag)))
2023 				return 1;
2024 		}
2025 	}
2026 
2027 	if (PCI_DMA_BUS_IS_PHYS) {
2028 		struct device *pdev = dev->dev.parent;
2029 
2030 		if (!pdev)
2031 			return 0;
2032 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2033 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2034 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2035 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2036 				return 1;
2037 		}
2038 	}
2039 #endif
2040 	return 0;
2041 }
2042 
2043 struct dev_gso_cb {
2044 	void (*destructor)(struct sk_buff *skb);
2045 };
2046 
2047 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2048 
2049 static void dev_gso_skb_destructor(struct sk_buff *skb)
2050 {
2051 	struct dev_gso_cb *cb;
2052 
2053 	do {
2054 		struct sk_buff *nskb = skb->next;
2055 
2056 		skb->next = nskb->next;
2057 		nskb->next = NULL;
2058 		kfree_skb(nskb);
2059 	} while (skb->next);
2060 
2061 	cb = DEV_GSO_CB(skb);
2062 	if (cb->destructor)
2063 		cb->destructor(skb);
2064 }
2065 
2066 /**
2067  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
2068  *	@skb: buffer to segment
2069  *	@features: device features as applicable to this skb
2070  *
2071  *	This function segments the given skb and stores the list of segments
2072  *	in skb->next.
2073  */
2074 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2075 {
2076 	struct sk_buff *segs;
2077 
2078 	segs = skb_gso_segment(skb, features);
2079 
2080 	/* Verifying header integrity only. */
2081 	if (!segs)
2082 		return 0;
2083 
2084 	if (IS_ERR(segs))
2085 		return PTR_ERR(segs);
2086 
2087 	skb->next = segs;
2088 	DEV_GSO_CB(skb)->destructor = skb->destructor;
2089 	skb->destructor = dev_gso_skb_destructor;
2090 
2091 	return 0;
2092 }
2093 
2094 /*
2095  * Try to orphan skb early, right before transmission by the device.
2096  * We cannot orphan skb if tx timestamp is requested or the sk-reference
2097  * is needed on driver level for other reasons, e.g. see net/can/raw.c
2098  */
2099 static inline void skb_orphan_try(struct sk_buff *skb)
2100 {
2101 	struct sock *sk = skb->sk;
2102 
2103 	if (sk && !skb_shinfo(skb)->tx_flags) {
2104 		/* skb_tx_hash() wont be able to get sk.
2105 		 * We copy sk_hash into skb->rxhash
2106 		 */
2107 		if (!skb->rxhash)
2108 			skb->rxhash = sk->sk_hash;
2109 		skb_orphan(skb);
2110 	}
2111 }
2112 
2113 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2114 {
2115 	return ((features & NETIF_F_GEN_CSUM) ||
2116 		((features & NETIF_F_V4_CSUM) &&
2117 		 protocol == htons(ETH_P_IP)) ||
2118 		((features & NETIF_F_V6_CSUM) &&
2119 		 protocol == htons(ETH_P_IPV6)) ||
2120 		((features & NETIF_F_FCOE_CRC) &&
2121 		 protocol == htons(ETH_P_FCOE)));
2122 }
2123 
2124 static netdev_features_t harmonize_features(struct sk_buff *skb,
2125 	__be16 protocol, netdev_features_t features)
2126 {
2127 	if (!can_checksum_protocol(features, protocol)) {
2128 		features &= ~NETIF_F_ALL_CSUM;
2129 		features &= ~NETIF_F_SG;
2130 	} else if (illegal_highdma(skb->dev, skb)) {
2131 		features &= ~NETIF_F_SG;
2132 	}
2133 
2134 	return features;
2135 }
2136 
2137 netdev_features_t netif_skb_features(struct sk_buff *skb)
2138 {
2139 	__be16 protocol = skb->protocol;
2140 	netdev_features_t features = skb->dev->features;
2141 
2142 	if (protocol == htons(ETH_P_8021Q)) {
2143 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2144 		protocol = veh->h_vlan_encapsulated_proto;
2145 	} else if (!vlan_tx_tag_present(skb)) {
2146 		return harmonize_features(skb, protocol, features);
2147 	}
2148 
2149 	features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2150 
2151 	if (protocol != htons(ETH_P_8021Q)) {
2152 		return harmonize_features(skb, protocol, features);
2153 	} else {
2154 		features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2155 				NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2156 		return harmonize_features(skb, protocol, features);
2157 	}
2158 }
2159 EXPORT_SYMBOL(netif_skb_features);
2160 
2161 /*
2162  * Returns true if either:
2163  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
2164  *	2. skb is fragmented and the device does not support SG, or if
2165  *	   at least one of fragments is in highmem and device does not
2166  *	   support DMA from it.
2167  */
2168 static inline int skb_needs_linearize(struct sk_buff *skb,
2169 				      int features)
2170 {
2171 	return skb_is_nonlinear(skb) &&
2172 			((skb_has_frag_list(skb) &&
2173 				!(features & NETIF_F_FRAGLIST)) ||
2174 			(skb_shinfo(skb)->nr_frags &&
2175 				!(features & NETIF_F_SG)));
2176 }
2177 
2178 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2179 			struct netdev_queue *txq)
2180 {
2181 	const struct net_device_ops *ops = dev->netdev_ops;
2182 	int rc = NETDEV_TX_OK;
2183 	unsigned int skb_len;
2184 
2185 	if (likely(!skb->next)) {
2186 		netdev_features_t features;
2187 
2188 		/*
2189 		 * If device doesn't need skb->dst, release it right now while
2190 		 * its hot in this cpu cache
2191 		 */
2192 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2193 			skb_dst_drop(skb);
2194 
2195 		if (!list_empty(&ptype_all))
2196 			dev_queue_xmit_nit(skb, dev);
2197 
2198 		skb_orphan_try(skb);
2199 
2200 		features = netif_skb_features(skb);
2201 
2202 		if (vlan_tx_tag_present(skb) &&
2203 		    !(features & NETIF_F_HW_VLAN_TX)) {
2204 			skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2205 			if (unlikely(!skb))
2206 				goto out;
2207 
2208 			skb->vlan_tci = 0;
2209 		}
2210 
2211 		if (netif_needs_gso(skb, features)) {
2212 			if (unlikely(dev_gso_segment(skb, features)))
2213 				goto out_kfree_skb;
2214 			if (skb->next)
2215 				goto gso;
2216 		} else {
2217 			if (skb_needs_linearize(skb, features) &&
2218 			    __skb_linearize(skb))
2219 				goto out_kfree_skb;
2220 
2221 			/* If packet is not checksummed and device does not
2222 			 * support checksumming for this protocol, complete
2223 			 * checksumming here.
2224 			 */
2225 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
2226 				skb_set_transport_header(skb,
2227 					skb_checksum_start_offset(skb));
2228 				if (!(features & NETIF_F_ALL_CSUM) &&
2229 				     skb_checksum_help(skb))
2230 					goto out_kfree_skb;
2231 			}
2232 		}
2233 
2234 		skb_len = skb->len;
2235 		rc = ops->ndo_start_xmit(skb, dev);
2236 		trace_net_dev_xmit(skb, rc, dev, skb_len);
2237 		if (rc == NETDEV_TX_OK)
2238 			txq_trans_update(txq);
2239 		return rc;
2240 	}
2241 
2242 gso:
2243 	do {
2244 		struct sk_buff *nskb = skb->next;
2245 
2246 		skb->next = nskb->next;
2247 		nskb->next = NULL;
2248 
2249 		/*
2250 		 * If device doesn't need nskb->dst, release it right now while
2251 		 * its hot in this cpu cache
2252 		 */
2253 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2254 			skb_dst_drop(nskb);
2255 
2256 		skb_len = nskb->len;
2257 		rc = ops->ndo_start_xmit(nskb, dev);
2258 		trace_net_dev_xmit(nskb, rc, dev, skb_len);
2259 		if (unlikely(rc != NETDEV_TX_OK)) {
2260 			if (rc & ~NETDEV_TX_MASK)
2261 				goto out_kfree_gso_skb;
2262 			nskb->next = skb->next;
2263 			skb->next = nskb;
2264 			return rc;
2265 		}
2266 		txq_trans_update(txq);
2267 		if (unlikely(netif_xmit_stopped(txq) && skb->next))
2268 			return NETDEV_TX_BUSY;
2269 	} while (skb->next);
2270 
2271 out_kfree_gso_skb:
2272 	if (likely(skb->next == NULL))
2273 		skb->destructor = DEV_GSO_CB(skb)->destructor;
2274 out_kfree_skb:
2275 	kfree_skb(skb);
2276 out:
2277 	return rc;
2278 }
2279 
2280 static u32 hashrnd __read_mostly;
2281 
2282 /*
2283  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2284  * to be used as a distribution range.
2285  */
2286 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2287 		  unsigned int num_tx_queues)
2288 {
2289 	u32 hash;
2290 	u16 qoffset = 0;
2291 	u16 qcount = num_tx_queues;
2292 
2293 	if (skb_rx_queue_recorded(skb)) {
2294 		hash = skb_get_rx_queue(skb);
2295 		while (unlikely(hash >= num_tx_queues))
2296 			hash -= num_tx_queues;
2297 		return hash;
2298 	}
2299 
2300 	if (dev->num_tc) {
2301 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2302 		qoffset = dev->tc_to_txq[tc].offset;
2303 		qcount = dev->tc_to_txq[tc].count;
2304 	}
2305 
2306 	if (skb->sk && skb->sk->sk_hash)
2307 		hash = skb->sk->sk_hash;
2308 	else
2309 		hash = (__force u16) skb->protocol ^ skb->rxhash;
2310 	hash = jhash_1word(hash, hashrnd);
2311 
2312 	return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2313 }
2314 EXPORT_SYMBOL(__skb_tx_hash);
2315 
2316 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2317 {
2318 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2319 		if (net_ratelimit()) {
2320 			pr_warn("%s selects TX queue %d, but real number of TX queues is %d\n",
2321 				dev->name, queue_index,
2322 				dev->real_num_tx_queues);
2323 		}
2324 		return 0;
2325 	}
2326 	return queue_index;
2327 }
2328 
2329 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2330 {
2331 #ifdef CONFIG_XPS
2332 	struct xps_dev_maps *dev_maps;
2333 	struct xps_map *map;
2334 	int queue_index = -1;
2335 
2336 	rcu_read_lock();
2337 	dev_maps = rcu_dereference(dev->xps_maps);
2338 	if (dev_maps) {
2339 		map = rcu_dereference(
2340 		    dev_maps->cpu_map[raw_smp_processor_id()]);
2341 		if (map) {
2342 			if (map->len == 1)
2343 				queue_index = map->queues[0];
2344 			else {
2345 				u32 hash;
2346 				if (skb->sk && skb->sk->sk_hash)
2347 					hash = skb->sk->sk_hash;
2348 				else
2349 					hash = (__force u16) skb->protocol ^
2350 					    skb->rxhash;
2351 				hash = jhash_1word(hash, hashrnd);
2352 				queue_index = map->queues[
2353 				    ((u64)hash * map->len) >> 32];
2354 			}
2355 			if (unlikely(queue_index >= dev->real_num_tx_queues))
2356 				queue_index = -1;
2357 		}
2358 	}
2359 	rcu_read_unlock();
2360 
2361 	return queue_index;
2362 #else
2363 	return -1;
2364 #endif
2365 }
2366 
2367 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2368 					struct sk_buff *skb)
2369 {
2370 	int queue_index;
2371 	const struct net_device_ops *ops = dev->netdev_ops;
2372 
2373 	if (dev->real_num_tx_queues == 1)
2374 		queue_index = 0;
2375 	else if (ops->ndo_select_queue) {
2376 		queue_index = ops->ndo_select_queue(dev, skb);
2377 		queue_index = dev_cap_txqueue(dev, queue_index);
2378 	} else {
2379 		struct sock *sk = skb->sk;
2380 		queue_index = sk_tx_queue_get(sk);
2381 
2382 		if (queue_index < 0 || skb->ooo_okay ||
2383 		    queue_index >= dev->real_num_tx_queues) {
2384 			int old_index = queue_index;
2385 
2386 			queue_index = get_xps_queue(dev, skb);
2387 			if (queue_index < 0)
2388 				queue_index = skb_tx_hash(dev, skb);
2389 
2390 			if (queue_index != old_index && sk) {
2391 				struct dst_entry *dst =
2392 				    rcu_dereference_check(sk->sk_dst_cache, 1);
2393 
2394 				if (dst && skb_dst(skb) == dst)
2395 					sk_tx_queue_set(sk, queue_index);
2396 			}
2397 		}
2398 	}
2399 
2400 	skb_set_queue_mapping(skb, queue_index);
2401 	return netdev_get_tx_queue(dev, queue_index);
2402 }
2403 
2404 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2405 				 struct net_device *dev,
2406 				 struct netdev_queue *txq)
2407 {
2408 	spinlock_t *root_lock = qdisc_lock(q);
2409 	bool contended;
2410 	int rc;
2411 
2412 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2413 	qdisc_calculate_pkt_len(skb, q);
2414 	/*
2415 	 * Heuristic to force contended enqueues to serialize on a
2416 	 * separate lock before trying to get qdisc main lock.
2417 	 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2418 	 * and dequeue packets faster.
2419 	 */
2420 	contended = qdisc_is_running(q);
2421 	if (unlikely(contended))
2422 		spin_lock(&q->busylock);
2423 
2424 	spin_lock(root_lock);
2425 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2426 		kfree_skb(skb);
2427 		rc = NET_XMIT_DROP;
2428 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2429 		   qdisc_run_begin(q)) {
2430 		/*
2431 		 * This is a work-conserving queue; there are no old skbs
2432 		 * waiting to be sent out; and the qdisc is not running -
2433 		 * xmit the skb directly.
2434 		 */
2435 		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2436 			skb_dst_force(skb);
2437 
2438 		qdisc_bstats_update(q, skb);
2439 
2440 		if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2441 			if (unlikely(contended)) {
2442 				spin_unlock(&q->busylock);
2443 				contended = false;
2444 			}
2445 			__qdisc_run(q);
2446 		} else
2447 			qdisc_run_end(q);
2448 
2449 		rc = NET_XMIT_SUCCESS;
2450 	} else {
2451 		skb_dst_force(skb);
2452 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2453 		if (qdisc_run_begin(q)) {
2454 			if (unlikely(contended)) {
2455 				spin_unlock(&q->busylock);
2456 				contended = false;
2457 			}
2458 			__qdisc_run(q);
2459 		}
2460 	}
2461 	spin_unlock(root_lock);
2462 	if (unlikely(contended))
2463 		spin_unlock(&q->busylock);
2464 	return rc;
2465 }
2466 
2467 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2468 static void skb_update_prio(struct sk_buff *skb)
2469 {
2470 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2471 
2472 	if ((!skb->priority) && (skb->sk) && map)
2473 		skb->priority = map->priomap[skb->sk->sk_cgrp_prioidx];
2474 }
2475 #else
2476 #define skb_update_prio(skb)
2477 #endif
2478 
2479 static DEFINE_PER_CPU(int, xmit_recursion);
2480 #define RECURSION_LIMIT 10
2481 
2482 /**
2483  *	dev_queue_xmit - transmit a buffer
2484  *	@skb: buffer to transmit
2485  *
2486  *	Queue a buffer for transmission to a network device. The caller must
2487  *	have set the device and priority and built the buffer before calling
2488  *	this function. The function can be called from an interrupt.
2489  *
2490  *	A negative errno code is returned on a failure. A success does not
2491  *	guarantee the frame will be transmitted as it may be dropped due
2492  *	to congestion or traffic shaping.
2493  *
2494  * -----------------------------------------------------------------------------------
2495  *      I notice this method can also return errors from the queue disciplines,
2496  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2497  *      be positive.
2498  *
2499  *      Regardless of the return value, the skb is consumed, so it is currently
2500  *      difficult to retry a send to this method.  (You can bump the ref count
2501  *      before sending to hold a reference for retry if you are careful.)
2502  *
2503  *      When calling this method, interrupts MUST be enabled.  This is because
2504  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2505  *          --BLG
2506  */
2507 int dev_queue_xmit(struct sk_buff *skb)
2508 {
2509 	struct net_device *dev = skb->dev;
2510 	struct netdev_queue *txq;
2511 	struct Qdisc *q;
2512 	int rc = -ENOMEM;
2513 
2514 	/* Disable soft irqs for various locks below. Also
2515 	 * stops preemption for RCU.
2516 	 */
2517 	rcu_read_lock_bh();
2518 
2519 	skb_update_prio(skb);
2520 
2521 	txq = dev_pick_tx(dev, skb);
2522 	q = rcu_dereference_bh(txq->qdisc);
2523 
2524 #ifdef CONFIG_NET_CLS_ACT
2525 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2526 #endif
2527 	trace_net_dev_queue(skb);
2528 	if (q->enqueue) {
2529 		rc = __dev_xmit_skb(skb, q, dev, txq);
2530 		goto out;
2531 	}
2532 
2533 	/* The device has no queue. Common case for software devices:
2534 	   loopback, all the sorts of tunnels...
2535 
2536 	   Really, it is unlikely that netif_tx_lock protection is necessary
2537 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2538 	   counters.)
2539 	   However, it is possible, that they rely on protection
2540 	   made by us here.
2541 
2542 	   Check this and shot the lock. It is not prone from deadlocks.
2543 	   Either shot noqueue qdisc, it is even simpler 8)
2544 	 */
2545 	if (dev->flags & IFF_UP) {
2546 		int cpu = smp_processor_id(); /* ok because BHs are off */
2547 
2548 		if (txq->xmit_lock_owner != cpu) {
2549 
2550 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2551 				goto recursion_alert;
2552 
2553 			HARD_TX_LOCK(dev, txq, cpu);
2554 
2555 			if (!netif_xmit_stopped(txq)) {
2556 				__this_cpu_inc(xmit_recursion);
2557 				rc = dev_hard_start_xmit(skb, dev, txq);
2558 				__this_cpu_dec(xmit_recursion);
2559 				if (dev_xmit_complete(rc)) {
2560 					HARD_TX_UNLOCK(dev, txq);
2561 					goto out;
2562 				}
2563 			}
2564 			HARD_TX_UNLOCK(dev, txq);
2565 			if (net_ratelimit())
2566 				pr_crit("Virtual device %s asks to queue packet!\n",
2567 					dev->name);
2568 		} else {
2569 			/* Recursion is detected! It is possible,
2570 			 * unfortunately
2571 			 */
2572 recursion_alert:
2573 			if (net_ratelimit())
2574 				pr_crit("Dead loop on virtual device %s, fix it urgently!\n",
2575 					dev->name);
2576 		}
2577 	}
2578 
2579 	rc = -ENETDOWN;
2580 	rcu_read_unlock_bh();
2581 
2582 	kfree_skb(skb);
2583 	return rc;
2584 out:
2585 	rcu_read_unlock_bh();
2586 	return rc;
2587 }
2588 EXPORT_SYMBOL(dev_queue_xmit);
2589 
2590 
2591 /*=======================================================================
2592 			Receiver routines
2593   =======================================================================*/
2594 
2595 int netdev_max_backlog __read_mostly = 1000;
2596 int netdev_tstamp_prequeue __read_mostly = 1;
2597 int netdev_budget __read_mostly = 300;
2598 int weight_p __read_mostly = 64;            /* old backlog weight */
2599 
2600 /* Called with irq disabled */
2601 static inline void ____napi_schedule(struct softnet_data *sd,
2602 				     struct napi_struct *napi)
2603 {
2604 	list_add_tail(&napi->poll_list, &sd->poll_list);
2605 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2606 }
2607 
2608 /*
2609  * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2610  * and src/dst port numbers.  Sets rxhash in skb to non-zero hash value
2611  * on success, zero indicates no valid hash.  Also, sets l4_rxhash in skb
2612  * if hash is a canonical 4-tuple hash over transport ports.
2613  */
2614 void __skb_get_rxhash(struct sk_buff *skb)
2615 {
2616 	struct flow_keys keys;
2617 	u32 hash;
2618 
2619 	if (!skb_flow_dissect(skb, &keys))
2620 		return;
2621 
2622 	if (keys.ports) {
2623 		if ((__force u16)keys.port16[1] < (__force u16)keys.port16[0])
2624 			swap(keys.port16[0], keys.port16[1]);
2625 		skb->l4_rxhash = 1;
2626 	}
2627 
2628 	/* get a consistent hash (same value on both flow directions) */
2629 	if ((__force u32)keys.dst < (__force u32)keys.src)
2630 		swap(keys.dst, keys.src);
2631 
2632 	hash = jhash_3words((__force u32)keys.dst,
2633 			    (__force u32)keys.src,
2634 			    (__force u32)keys.ports, hashrnd);
2635 	if (!hash)
2636 		hash = 1;
2637 
2638 	skb->rxhash = hash;
2639 }
2640 EXPORT_SYMBOL(__skb_get_rxhash);
2641 
2642 #ifdef CONFIG_RPS
2643 
2644 /* One global table that all flow-based protocols share. */
2645 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2646 EXPORT_SYMBOL(rps_sock_flow_table);
2647 
2648 struct static_key rps_needed __read_mostly;
2649 
2650 static struct rps_dev_flow *
2651 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2652 	    struct rps_dev_flow *rflow, u16 next_cpu)
2653 {
2654 	if (next_cpu != RPS_NO_CPU) {
2655 #ifdef CONFIG_RFS_ACCEL
2656 		struct netdev_rx_queue *rxqueue;
2657 		struct rps_dev_flow_table *flow_table;
2658 		struct rps_dev_flow *old_rflow;
2659 		u32 flow_id;
2660 		u16 rxq_index;
2661 		int rc;
2662 
2663 		/* Should we steer this flow to a different hardware queue? */
2664 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2665 		    !(dev->features & NETIF_F_NTUPLE))
2666 			goto out;
2667 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2668 		if (rxq_index == skb_get_rx_queue(skb))
2669 			goto out;
2670 
2671 		rxqueue = dev->_rx + rxq_index;
2672 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
2673 		if (!flow_table)
2674 			goto out;
2675 		flow_id = skb->rxhash & flow_table->mask;
2676 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2677 							rxq_index, flow_id);
2678 		if (rc < 0)
2679 			goto out;
2680 		old_rflow = rflow;
2681 		rflow = &flow_table->flows[flow_id];
2682 		rflow->filter = rc;
2683 		if (old_rflow->filter == rflow->filter)
2684 			old_rflow->filter = RPS_NO_FILTER;
2685 	out:
2686 #endif
2687 		rflow->last_qtail =
2688 			per_cpu(softnet_data, next_cpu).input_queue_head;
2689 	}
2690 
2691 	rflow->cpu = next_cpu;
2692 	return rflow;
2693 }
2694 
2695 /*
2696  * get_rps_cpu is called from netif_receive_skb and returns the target
2697  * CPU from the RPS map of the receiving queue for a given skb.
2698  * rcu_read_lock must be held on entry.
2699  */
2700 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2701 		       struct rps_dev_flow **rflowp)
2702 {
2703 	struct netdev_rx_queue *rxqueue;
2704 	struct rps_map *map;
2705 	struct rps_dev_flow_table *flow_table;
2706 	struct rps_sock_flow_table *sock_flow_table;
2707 	int cpu = -1;
2708 	u16 tcpu;
2709 
2710 	if (skb_rx_queue_recorded(skb)) {
2711 		u16 index = skb_get_rx_queue(skb);
2712 		if (unlikely(index >= dev->real_num_rx_queues)) {
2713 			WARN_ONCE(dev->real_num_rx_queues > 1,
2714 				  "%s received packet on queue %u, but number "
2715 				  "of RX queues is %u\n",
2716 				  dev->name, index, dev->real_num_rx_queues);
2717 			goto done;
2718 		}
2719 		rxqueue = dev->_rx + index;
2720 	} else
2721 		rxqueue = dev->_rx;
2722 
2723 	map = rcu_dereference(rxqueue->rps_map);
2724 	if (map) {
2725 		if (map->len == 1 &&
2726 		    !rcu_access_pointer(rxqueue->rps_flow_table)) {
2727 			tcpu = map->cpus[0];
2728 			if (cpu_online(tcpu))
2729 				cpu = tcpu;
2730 			goto done;
2731 		}
2732 	} else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2733 		goto done;
2734 	}
2735 
2736 	skb_reset_network_header(skb);
2737 	if (!skb_get_rxhash(skb))
2738 		goto done;
2739 
2740 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2741 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
2742 	if (flow_table && sock_flow_table) {
2743 		u16 next_cpu;
2744 		struct rps_dev_flow *rflow;
2745 
2746 		rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2747 		tcpu = rflow->cpu;
2748 
2749 		next_cpu = sock_flow_table->ents[skb->rxhash &
2750 		    sock_flow_table->mask];
2751 
2752 		/*
2753 		 * If the desired CPU (where last recvmsg was done) is
2754 		 * different from current CPU (one in the rx-queue flow
2755 		 * table entry), switch if one of the following holds:
2756 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
2757 		 *   - Current CPU is offline.
2758 		 *   - The current CPU's queue tail has advanced beyond the
2759 		 *     last packet that was enqueued using this table entry.
2760 		 *     This guarantees that all previous packets for the flow
2761 		 *     have been dequeued, thus preserving in order delivery.
2762 		 */
2763 		if (unlikely(tcpu != next_cpu) &&
2764 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2765 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2766 		      rflow->last_qtail)) >= 0))
2767 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2768 
2769 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2770 			*rflowp = rflow;
2771 			cpu = tcpu;
2772 			goto done;
2773 		}
2774 	}
2775 
2776 	if (map) {
2777 		tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2778 
2779 		if (cpu_online(tcpu)) {
2780 			cpu = tcpu;
2781 			goto done;
2782 		}
2783 	}
2784 
2785 done:
2786 	return cpu;
2787 }
2788 
2789 #ifdef CONFIG_RFS_ACCEL
2790 
2791 /**
2792  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2793  * @dev: Device on which the filter was set
2794  * @rxq_index: RX queue index
2795  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2796  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2797  *
2798  * Drivers that implement ndo_rx_flow_steer() should periodically call
2799  * this function for each installed filter and remove the filters for
2800  * which it returns %true.
2801  */
2802 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2803 			 u32 flow_id, u16 filter_id)
2804 {
2805 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2806 	struct rps_dev_flow_table *flow_table;
2807 	struct rps_dev_flow *rflow;
2808 	bool expire = true;
2809 	int cpu;
2810 
2811 	rcu_read_lock();
2812 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2813 	if (flow_table && flow_id <= flow_table->mask) {
2814 		rflow = &flow_table->flows[flow_id];
2815 		cpu = ACCESS_ONCE(rflow->cpu);
2816 		if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2817 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2818 			   rflow->last_qtail) <
2819 		     (int)(10 * flow_table->mask)))
2820 			expire = false;
2821 	}
2822 	rcu_read_unlock();
2823 	return expire;
2824 }
2825 EXPORT_SYMBOL(rps_may_expire_flow);
2826 
2827 #endif /* CONFIG_RFS_ACCEL */
2828 
2829 /* Called from hardirq (IPI) context */
2830 static void rps_trigger_softirq(void *data)
2831 {
2832 	struct softnet_data *sd = data;
2833 
2834 	____napi_schedule(sd, &sd->backlog);
2835 	sd->received_rps++;
2836 }
2837 
2838 #endif /* CONFIG_RPS */
2839 
2840 /*
2841  * Check if this softnet_data structure is another cpu one
2842  * If yes, queue it to our IPI list and return 1
2843  * If no, return 0
2844  */
2845 static int rps_ipi_queued(struct softnet_data *sd)
2846 {
2847 #ifdef CONFIG_RPS
2848 	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2849 
2850 	if (sd != mysd) {
2851 		sd->rps_ipi_next = mysd->rps_ipi_list;
2852 		mysd->rps_ipi_list = sd;
2853 
2854 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2855 		return 1;
2856 	}
2857 #endif /* CONFIG_RPS */
2858 	return 0;
2859 }
2860 
2861 /*
2862  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2863  * queue (may be a remote CPU queue).
2864  */
2865 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2866 			      unsigned int *qtail)
2867 {
2868 	struct softnet_data *sd;
2869 	unsigned long flags;
2870 
2871 	sd = &per_cpu(softnet_data, cpu);
2872 
2873 	local_irq_save(flags);
2874 
2875 	rps_lock(sd);
2876 	if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2877 		if (skb_queue_len(&sd->input_pkt_queue)) {
2878 enqueue:
2879 			__skb_queue_tail(&sd->input_pkt_queue, skb);
2880 			input_queue_tail_incr_save(sd, qtail);
2881 			rps_unlock(sd);
2882 			local_irq_restore(flags);
2883 			return NET_RX_SUCCESS;
2884 		}
2885 
2886 		/* Schedule NAPI for backlog device
2887 		 * We can use non atomic operation since we own the queue lock
2888 		 */
2889 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2890 			if (!rps_ipi_queued(sd))
2891 				____napi_schedule(sd, &sd->backlog);
2892 		}
2893 		goto enqueue;
2894 	}
2895 
2896 	sd->dropped++;
2897 	rps_unlock(sd);
2898 
2899 	local_irq_restore(flags);
2900 
2901 	atomic_long_inc(&skb->dev->rx_dropped);
2902 	kfree_skb(skb);
2903 	return NET_RX_DROP;
2904 }
2905 
2906 /**
2907  *	netif_rx	-	post buffer to the network code
2908  *	@skb: buffer to post
2909  *
2910  *	This function receives a packet from a device driver and queues it for
2911  *	the upper (protocol) levels to process.  It always succeeds. The buffer
2912  *	may be dropped during processing for congestion control or by the
2913  *	protocol layers.
2914  *
2915  *	return values:
2916  *	NET_RX_SUCCESS	(no congestion)
2917  *	NET_RX_DROP     (packet was dropped)
2918  *
2919  */
2920 
2921 int netif_rx(struct sk_buff *skb)
2922 {
2923 	int ret;
2924 
2925 	/* if netpoll wants it, pretend we never saw it */
2926 	if (netpoll_rx(skb))
2927 		return NET_RX_DROP;
2928 
2929 	net_timestamp_check(netdev_tstamp_prequeue, skb);
2930 
2931 	trace_netif_rx(skb);
2932 #ifdef CONFIG_RPS
2933 	if (static_key_false(&rps_needed)) {
2934 		struct rps_dev_flow voidflow, *rflow = &voidflow;
2935 		int cpu;
2936 
2937 		preempt_disable();
2938 		rcu_read_lock();
2939 
2940 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
2941 		if (cpu < 0)
2942 			cpu = smp_processor_id();
2943 
2944 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2945 
2946 		rcu_read_unlock();
2947 		preempt_enable();
2948 	} else
2949 #endif
2950 	{
2951 		unsigned int qtail;
2952 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2953 		put_cpu();
2954 	}
2955 	return ret;
2956 }
2957 EXPORT_SYMBOL(netif_rx);
2958 
2959 int netif_rx_ni(struct sk_buff *skb)
2960 {
2961 	int err;
2962 
2963 	preempt_disable();
2964 	err = netif_rx(skb);
2965 	if (local_softirq_pending())
2966 		do_softirq();
2967 	preempt_enable();
2968 
2969 	return err;
2970 }
2971 EXPORT_SYMBOL(netif_rx_ni);
2972 
2973 static void net_tx_action(struct softirq_action *h)
2974 {
2975 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
2976 
2977 	if (sd->completion_queue) {
2978 		struct sk_buff *clist;
2979 
2980 		local_irq_disable();
2981 		clist = sd->completion_queue;
2982 		sd->completion_queue = NULL;
2983 		local_irq_enable();
2984 
2985 		while (clist) {
2986 			struct sk_buff *skb = clist;
2987 			clist = clist->next;
2988 
2989 			WARN_ON(atomic_read(&skb->users));
2990 			trace_kfree_skb(skb, net_tx_action);
2991 			__kfree_skb(skb);
2992 		}
2993 	}
2994 
2995 	if (sd->output_queue) {
2996 		struct Qdisc *head;
2997 
2998 		local_irq_disable();
2999 		head = sd->output_queue;
3000 		sd->output_queue = NULL;
3001 		sd->output_queue_tailp = &sd->output_queue;
3002 		local_irq_enable();
3003 
3004 		while (head) {
3005 			struct Qdisc *q = head;
3006 			spinlock_t *root_lock;
3007 
3008 			head = head->next_sched;
3009 
3010 			root_lock = qdisc_lock(q);
3011 			if (spin_trylock(root_lock)) {
3012 				smp_mb__before_clear_bit();
3013 				clear_bit(__QDISC_STATE_SCHED,
3014 					  &q->state);
3015 				qdisc_run(q);
3016 				spin_unlock(root_lock);
3017 			} else {
3018 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3019 					      &q->state)) {
3020 					__netif_reschedule(q);
3021 				} else {
3022 					smp_mb__before_clear_bit();
3023 					clear_bit(__QDISC_STATE_SCHED,
3024 						  &q->state);
3025 				}
3026 			}
3027 		}
3028 	}
3029 }
3030 
3031 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3032     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3033 /* This hook is defined here for ATM LANE */
3034 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3035 			     unsigned char *addr) __read_mostly;
3036 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3037 #endif
3038 
3039 #ifdef CONFIG_NET_CLS_ACT
3040 /* TODO: Maybe we should just force sch_ingress to be compiled in
3041  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3042  * a compare and 2 stores extra right now if we dont have it on
3043  * but have CONFIG_NET_CLS_ACT
3044  * NOTE: This doesn't stop any functionality; if you dont have
3045  * the ingress scheduler, you just can't add policies on ingress.
3046  *
3047  */
3048 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3049 {
3050 	struct net_device *dev = skb->dev;
3051 	u32 ttl = G_TC_RTTL(skb->tc_verd);
3052 	int result = TC_ACT_OK;
3053 	struct Qdisc *q;
3054 
3055 	if (unlikely(MAX_RED_LOOP < ttl++)) {
3056 		if (net_ratelimit())
3057 			pr_warn("Redir loop detected Dropping packet (%d->%d)\n",
3058 				skb->skb_iif, dev->ifindex);
3059 		return TC_ACT_SHOT;
3060 	}
3061 
3062 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3063 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3064 
3065 	q = rxq->qdisc;
3066 	if (q != &noop_qdisc) {
3067 		spin_lock(qdisc_lock(q));
3068 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3069 			result = qdisc_enqueue_root(skb, q);
3070 		spin_unlock(qdisc_lock(q));
3071 	}
3072 
3073 	return result;
3074 }
3075 
3076 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3077 					 struct packet_type **pt_prev,
3078 					 int *ret, struct net_device *orig_dev)
3079 {
3080 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3081 
3082 	if (!rxq || rxq->qdisc == &noop_qdisc)
3083 		goto out;
3084 
3085 	if (*pt_prev) {
3086 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3087 		*pt_prev = NULL;
3088 	}
3089 
3090 	switch (ing_filter(skb, rxq)) {
3091 	case TC_ACT_SHOT:
3092 	case TC_ACT_STOLEN:
3093 		kfree_skb(skb);
3094 		return NULL;
3095 	}
3096 
3097 out:
3098 	skb->tc_verd = 0;
3099 	return skb;
3100 }
3101 #endif
3102 
3103 /**
3104  *	netdev_rx_handler_register - register receive handler
3105  *	@dev: device to register a handler for
3106  *	@rx_handler: receive handler to register
3107  *	@rx_handler_data: data pointer that is used by rx handler
3108  *
3109  *	Register a receive hander for a device. This handler will then be
3110  *	called from __netif_receive_skb. A negative errno code is returned
3111  *	on a failure.
3112  *
3113  *	The caller must hold the rtnl_mutex.
3114  *
3115  *	For a general description of rx_handler, see enum rx_handler_result.
3116  */
3117 int netdev_rx_handler_register(struct net_device *dev,
3118 			       rx_handler_func_t *rx_handler,
3119 			       void *rx_handler_data)
3120 {
3121 	ASSERT_RTNL();
3122 
3123 	if (dev->rx_handler)
3124 		return -EBUSY;
3125 
3126 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3127 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3128 
3129 	return 0;
3130 }
3131 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3132 
3133 /**
3134  *	netdev_rx_handler_unregister - unregister receive handler
3135  *	@dev: device to unregister a handler from
3136  *
3137  *	Unregister a receive hander from a device.
3138  *
3139  *	The caller must hold the rtnl_mutex.
3140  */
3141 void netdev_rx_handler_unregister(struct net_device *dev)
3142 {
3143 
3144 	ASSERT_RTNL();
3145 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3146 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3147 }
3148 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3149 
3150 static int __netif_receive_skb(struct sk_buff *skb)
3151 {
3152 	struct packet_type *ptype, *pt_prev;
3153 	rx_handler_func_t *rx_handler;
3154 	struct net_device *orig_dev;
3155 	struct net_device *null_or_dev;
3156 	bool deliver_exact = false;
3157 	int ret = NET_RX_DROP;
3158 	__be16 type;
3159 
3160 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3161 
3162 	trace_netif_receive_skb(skb);
3163 
3164 	/* if we've gotten here through NAPI, check netpoll */
3165 	if (netpoll_receive_skb(skb))
3166 		return NET_RX_DROP;
3167 
3168 	if (!skb->skb_iif)
3169 		skb->skb_iif = skb->dev->ifindex;
3170 	orig_dev = skb->dev;
3171 
3172 	skb_reset_network_header(skb);
3173 	skb_reset_transport_header(skb);
3174 	skb_reset_mac_len(skb);
3175 
3176 	pt_prev = NULL;
3177 
3178 	rcu_read_lock();
3179 
3180 another_round:
3181 
3182 	__this_cpu_inc(softnet_data.processed);
3183 
3184 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3185 		skb = vlan_untag(skb);
3186 		if (unlikely(!skb))
3187 			goto out;
3188 	}
3189 
3190 #ifdef CONFIG_NET_CLS_ACT
3191 	if (skb->tc_verd & TC_NCLS) {
3192 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3193 		goto ncls;
3194 	}
3195 #endif
3196 
3197 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3198 		if (!ptype->dev || ptype->dev == skb->dev) {
3199 			if (pt_prev)
3200 				ret = deliver_skb(skb, pt_prev, orig_dev);
3201 			pt_prev = ptype;
3202 		}
3203 	}
3204 
3205 #ifdef CONFIG_NET_CLS_ACT
3206 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3207 	if (!skb)
3208 		goto out;
3209 ncls:
3210 #endif
3211 
3212 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3213 	if (vlan_tx_tag_present(skb)) {
3214 		if (pt_prev) {
3215 			ret = deliver_skb(skb, pt_prev, orig_dev);
3216 			pt_prev = NULL;
3217 		}
3218 		if (vlan_do_receive(&skb, !rx_handler))
3219 			goto another_round;
3220 		else if (unlikely(!skb))
3221 			goto out;
3222 	}
3223 
3224 	if (rx_handler) {
3225 		if (pt_prev) {
3226 			ret = deliver_skb(skb, pt_prev, orig_dev);
3227 			pt_prev = NULL;
3228 		}
3229 		switch (rx_handler(&skb)) {
3230 		case RX_HANDLER_CONSUMED:
3231 			goto out;
3232 		case RX_HANDLER_ANOTHER:
3233 			goto another_round;
3234 		case RX_HANDLER_EXACT:
3235 			deliver_exact = true;
3236 		case RX_HANDLER_PASS:
3237 			break;
3238 		default:
3239 			BUG();
3240 		}
3241 	}
3242 
3243 	/* deliver only exact match when indicated */
3244 	null_or_dev = deliver_exact ? skb->dev : NULL;
3245 
3246 	type = skb->protocol;
3247 	list_for_each_entry_rcu(ptype,
3248 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3249 		if (ptype->type == type &&
3250 		    (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3251 		     ptype->dev == orig_dev)) {
3252 			if (pt_prev)
3253 				ret = deliver_skb(skb, pt_prev, orig_dev);
3254 			pt_prev = ptype;
3255 		}
3256 	}
3257 
3258 	if (pt_prev) {
3259 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3260 	} else {
3261 		atomic_long_inc(&skb->dev->rx_dropped);
3262 		kfree_skb(skb);
3263 		/* Jamal, now you will not able to escape explaining
3264 		 * me how you were going to use this. :-)
3265 		 */
3266 		ret = NET_RX_DROP;
3267 	}
3268 
3269 out:
3270 	rcu_read_unlock();
3271 	return ret;
3272 }
3273 
3274 /**
3275  *	netif_receive_skb - process receive buffer from network
3276  *	@skb: buffer to process
3277  *
3278  *	netif_receive_skb() is the main receive data processing function.
3279  *	It always succeeds. The buffer may be dropped during processing
3280  *	for congestion control or by the protocol layers.
3281  *
3282  *	This function may only be called from softirq context and interrupts
3283  *	should be enabled.
3284  *
3285  *	Return values (usually ignored):
3286  *	NET_RX_SUCCESS: no congestion
3287  *	NET_RX_DROP: packet was dropped
3288  */
3289 int netif_receive_skb(struct sk_buff *skb)
3290 {
3291 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3292 
3293 	if (skb_defer_rx_timestamp(skb))
3294 		return NET_RX_SUCCESS;
3295 
3296 #ifdef CONFIG_RPS
3297 	if (static_key_false(&rps_needed)) {
3298 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3299 		int cpu, ret;
3300 
3301 		rcu_read_lock();
3302 
3303 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3304 
3305 		if (cpu >= 0) {
3306 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3307 			rcu_read_unlock();
3308 			return ret;
3309 		}
3310 		rcu_read_unlock();
3311 	}
3312 #endif
3313 	return __netif_receive_skb(skb);
3314 }
3315 EXPORT_SYMBOL(netif_receive_skb);
3316 
3317 /* Network device is going away, flush any packets still pending
3318  * Called with irqs disabled.
3319  */
3320 static void flush_backlog(void *arg)
3321 {
3322 	struct net_device *dev = arg;
3323 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3324 	struct sk_buff *skb, *tmp;
3325 
3326 	rps_lock(sd);
3327 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3328 		if (skb->dev == dev) {
3329 			__skb_unlink(skb, &sd->input_pkt_queue);
3330 			kfree_skb(skb);
3331 			input_queue_head_incr(sd);
3332 		}
3333 	}
3334 	rps_unlock(sd);
3335 
3336 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3337 		if (skb->dev == dev) {
3338 			__skb_unlink(skb, &sd->process_queue);
3339 			kfree_skb(skb);
3340 			input_queue_head_incr(sd);
3341 		}
3342 	}
3343 }
3344 
3345 static int napi_gro_complete(struct sk_buff *skb)
3346 {
3347 	struct packet_type *ptype;
3348 	__be16 type = skb->protocol;
3349 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3350 	int err = -ENOENT;
3351 
3352 	if (NAPI_GRO_CB(skb)->count == 1) {
3353 		skb_shinfo(skb)->gso_size = 0;
3354 		goto out;
3355 	}
3356 
3357 	rcu_read_lock();
3358 	list_for_each_entry_rcu(ptype, head, list) {
3359 		if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3360 			continue;
3361 
3362 		err = ptype->gro_complete(skb);
3363 		break;
3364 	}
3365 	rcu_read_unlock();
3366 
3367 	if (err) {
3368 		WARN_ON(&ptype->list == head);
3369 		kfree_skb(skb);
3370 		return NET_RX_SUCCESS;
3371 	}
3372 
3373 out:
3374 	return netif_receive_skb(skb);
3375 }
3376 
3377 inline void napi_gro_flush(struct napi_struct *napi)
3378 {
3379 	struct sk_buff *skb, *next;
3380 
3381 	for (skb = napi->gro_list; skb; skb = next) {
3382 		next = skb->next;
3383 		skb->next = NULL;
3384 		napi_gro_complete(skb);
3385 	}
3386 
3387 	napi->gro_count = 0;
3388 	napi->gro_list = NULL;
3389 }
3390 EXPORT_SYMBOL(napi_gro_flush);
3391 
3392 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3393 {
3394 	struct sk_buff **pp = NULL;
3395 	struct packet_type *ptype;
3396 	__be16 type = skb->protocol;
3397 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3398 	int same_flow;
3399 	int mac_len;
3400 	enum gro_result ret;
3401 
3402 	if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3403 		goto normal;
3404 
3405 	if (skb_is_gso(skb) || skb_has_frag_list(skb))
3406 		goto normal;
3407 
3408 	rcu_read_lock();
3409 	list_for_each_entry_rcu(ptype, head, list) {
3410 		if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3411 			continue;
3412 
3413 		skb_set_network_header(skb, skb_gro_offset(skb));
3414 		mac_len = skb->network_header - skb->mac_header;
3415 		skb->mac_len = mac_len;
3416 		NAPI_GRO_CB(skb)->same_flow = 0;
3417 		NAPI_GRO_CB(skb)->flush = 0;
3418 		NAPI_GRO_CB(skb)->free = 0;
3419 
3420 		pp = ptype->gro_receive(&napi->gro_list, skb);
3421 		break;
3422 	}
3423 	rcu_read_unlock();
3424 
3425 	if (&ptype->list == head)
3426 		goto normal;
3427 
3428 	same_flow = NAPI_GRO_CB(skb)->same_flow;
3429 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3430 
3431 	if (pp) {
3432 		struct sk_buff *nskb = *pp;
3433 
3434 		*pp = nskb->next;
3435 		nskb->next = NULL;
3436 		napi_gro_complete(nskb);
3437 		napi->gro_count--;
3438 	}
3439 
3440 	if (same_flow)
3441 		goto ok;
3442 
3443 	if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3444 		goto normal;
3445 
3446 	napi->gro_count++;
3447 	NAPI_GRO_CB(skb)->count = 1;
3448 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3449 	skb->next = napi->gro_list;
3450 	napi->gro_list = skb;
3451 	ret = GRO_HELD;
3452 
3453 pull:
3454 	if (skb_headlen(skb) < skb_gro_offset(skb)) {
3455 		int grow = skb_gro_offset(skb) - skb_headlen(skb);
3456 
3457 		BUG_ON(skb->end - skb->tail < grow);
3458 
3459 		memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3460 
3461 		skb->tail += grow;
3462 		skb->data_len -= grow;
3463 
3464 		skb_shinfo(skb)->frags[0].page_offset += grow;
3465 		skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3466 
3467 		if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3468 			skb_frag_unref(skb, 0);
3469 			memmove(skb_shinfo(skb)->frags,
3470 				skb_shinfo(skb)->frags + 1,
3471 				--skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3472 		}
3473 	}
3474 
3475 ok:
3476 	return ret;
3477 
3478 normal:
3479 	ret = GRO_NORMAL;
3480 	goto pull;
3481 }
3482 EXPORT_SYMBOL(dev_gro_receive);
3483 
3484 static inline gro_result_t
3485 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3486 {
3487 	struct sk_buff *p;
3488 	unsigned int maclen = skb->dev->hard_header_len;
3489 
3490 	for (p = napi->gro_list; p; p = p->next) {
3491 		unsigned long diffs;
3492 
3493 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3494 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3495 		if (maclen == ETH_HLEN)
3496 			diffs |= compare_ether_header(skb_mac_header(p),
3497 						      skb_gro_mac_header(skb));
3498 		else if (!diffs)
3499 			diffs = memcmp(skb_mac_header(p),
3500 				       skb_gro_mac_header(skb),
3501 				       maclen);
3502 		NAPI_GRO_CB(p)->same_flow = !diffs;
3503 		NAPI_GRO_CB(p)->flush = 0;
3504 	}
3505 
3506 	return dev_gro_receive(napi, skb);
3507 }
3508 
3509 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3510 {
3511 	switch (ret) {
3512 	case GRO_NORMAL:
3513 		if (netif_receive_skb(skb))
3514 			ret = GRO_DROP;
3515 		break;
3516 
3517 	case GRO_DROP:
3518 	case GRO_MERGED_FREE:
3519 		kfree_skb(skb);
3520 		break;
3521 
3522 	case GRO_HELD:
3523 	case GRO_MERGED:
3524 		break;
3525 	}
3526 
3527 	return ret;
3528 }
3529 EXPORT_SYMBOL(napi_skb_finish);
3530 
3531 void skb_gro_reset_offset(struct sk_buff *skb)
3532 {
3533 	NAPI_GRO_CB(skb)->data_offset = 0;
3534 	NAPI_GRO_CB(skb)->frag0 = NULL;
3535 	NAPI_GRO_CB(skb)->frag0_len = 0;
3536 
3537 	if (skb->mac_header == skb->tail &&
3538 	    !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) {
3539 		NAPI_GRO_CB(skb)->frag0 =
3540 			skb_frag_address(&skb_shinfo(skb)->frags[0]);
3541 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]);
3542 	}
3543 }
3544 EXPORT_SYMBOL(skb_gro_reset_offset);
3545 
3546 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3547 {
3548 	skb_gro_reset_offset(skb);
3549 
3550 	return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3551 }
3552 EXPORT_SYMBOL(napi_gro_receive);
3553 
3554 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3555 {
3556 	__skb_pull(skb, skb_headlen(skb));
3557 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
3558 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3559 	skb->vlan_tci = 0;
3560 	skb->dev = napi->dev;
3561 	skb->skb_iif = 0;
3562 
3563 	napi->skb = skb;
3564 }
3565 
3566 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3567 {
3568 	struct sk_buff *skb = napi->skb;
3569 
3570 	if (!skb) {
3571 		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3572 		if (skb)
3573 			napi->skb = skb;
3574 	}
3575 	return skb;
3576 }
3577 EXPORT_SYMBOL(napi_get_frags);
3578 
3579 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3580 			       gro_result_t ret)
3581 {
3582 	switch (ret) {
3583 	case GRO_NORMAL:
3584 	case GRO_HELD:
3585 		skb->protocol = eth_type_trans(skb, skb->dev);
3586 
3587 		if (ret == GRO_HELD)
3588 			skb_gro_pull(skb, -ETH_HLEN);
3589 		else if (netif_receive_skb(skb))
3590 			ret = GRO_DROP;
3591 		break;
3592 
3593 	case GRO_DROP:
3594 	case GRO_MERGED_FREE:
3595 		napi_reuse_skb(napi, skb);
3596 		break;
3597 
3598 	case GRO_MERGED:
3599 		break;
3600 	}
3601 
3602 	return ret;
3603 }
3604 EXPORT_SYMBOL(napi_frags_finish);
3605 
3606 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3607 {
3608 	struct sk_buff *skb = napi->skb;
3609 	struct ethhdr *eth;
3610 	unsigned int hlen;
3611 	unsigned int off;
3612 
3613 	napi->skb = NULL;
3614 
3615 	skb_reset_mac_header(skb);
3616 	skb_gro_reset_offset(skb);
3617 
3618 	off = skb_gro_offset(skb);
3619 	hlen = off + sizeof(*eth);
3620 	eth = skb_gro_header_fast(skb, off);
3621 	if (skb_gro_header_hard(skb, hlen)) {
3622 		eth = skb_gro_header_slow(skb, hlen, off);
3623 		if (unlikely(!eth)) {
3624 			napi_reuse_skb(napi, skb);
3625 			skb = NULL;
3626 			goto out;
3627 		}
3628 	}
3629 
3630 	skb_gro_pull(skb, sizeof(*eth));
3631 
3632 	/*
3633 	 * This works because the only protocols we care about don't require
3634 	 * special handling.  We'll fix it up properly at the end.
3635 	 */
3636 	skb->protocol = eth->h_proto;
3637 
3638 out:
3639 	return skb;
3640 }
3641 EXPORT_SYMBOL(napi_frags_skb);
3642 
3643 gro_result_t napi_gro_frags(struct napi_struct *napi)
3644 {
3645 	struct sk_buff *skb = napi_frags_skb(napi);
3646 
3647 	if (!skb)
3648 		return GRO_DROP;
3649 
3650 	return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3651 }
3652 EXPORT_SYMBOL(napi_gro_frags);
3653 
3654 /*
3655  * net_rps_action sends any pending IPI's for rps.
3656  * Note: called with local irq disabled, but exits with local irq enabled.
3657  */
3658 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3659 {
3660 #ifdef CONFIG_RPS
3661 	struct softnet_data *remsd = sd->rps_ipi_list;
3662 
3663 	if (remsd) {
3664 		sd->rps_ipi_list = NULL;
3665 
3666 		local_irq_enable();
3667 
3668 		/* Send pending IPI's to kick RPS processing on remote cpus. */
3669 		while (remsd) {
3670 			struct softnet_data *next = remsd->rps_ipi_next;
3671 
3672 			if (cpu_online(remsd->cpu))
3673 				__smp_call_function_single(remsd->cpu,
3674 							   &remsd->csd, 0);
3675 			remsd = next;
3676 		}
3677 	} else
3678 #endif
3679 		local_irq_enable();
3680 }
3681 
3682 static int process_backlog(struct napi_struct *napi, int quota)
3683 {
3684 	int work = 0;
3685 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3686 
3687 #ifdef CONFIG_RPS
3688 	/* Check if we have pending ipi, its better to send them now,
3689 	 * not waiting net_rx_action() end.
3690 	 */
3691 	if (sd->rps_ipi_list) {
3692 		local_irq_disable();
3693 		net_rps_action_and_irq_enable(sd);
3694 	}
3695 #endif
3696 	napi->weight = weight_p;
3697 	local_irq_disable();
3698 	while (work < quota) {
3699 		struct sk_buff *skb;
3700 		unsigned int qlen;
3701 
3702 		while ((skb = __skb_dequeue(&sd->process_queue))) {
3703 			local_irq_enable();
3704 			__netif_receive_skb(skb);
3705 			local_irq_disable();
3706 			input_queue_head_incr(sd);
3707 			if (++work >= quota) {
3708 				local_irq_enable();
3709 				return work;
3710 			}
3711 		}
3712 
3713 		rps_lock(sd);
3714 		qlen = skb_queue_len(&sd->input_pkt_queue);
3715 		if (qlen)
3716 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
3717 						   &sd->process_queue);
3718 
3719 		if (qlen < quota - work) {
3720 			/*
3721 			 * Inline a custom version of __napi_complete().
3722 			 * only current cpu owns and manipulates this napi,
3723 			 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3724 			 * we can use a plain write instead of clear_bit(),
3725 			 * and we dont need an smp_mb() memory barrier.
3726 			 */
3727 			list_del(&napi->poll_list);
3728 			napi->state = 0;
3729 
3730 			quota = work + qlen;
3731 		}
3732 		rps_unlock(sd);
3733 	}
3734 	local_irq_enable();
3735 
3736 	return work;
3737 }
3738 
3739 /**
3740  * __napi_schedule - schedule for receive
3741  * @n: entry to schedule
3742  *
3743  * The entry's receive function will be scheduled to run
3744  */
3745 void __napi_schedule(struct napi_struct *n)
3746 {
3747 	unsigned long flags;
3748 
3749 	local_irq_save(flags);
3750 	____napi_schedule(&__get_cpu_var(softnet_data), n);
3751 	local_irq_restore(flags);
3752 }
3753 EXPORT_SYMBOL(__napi_schedule);
3754 
3755 void __napi_complete(struct napi_struct *n)
3756 {
3757 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3758 	BUG_ON(n->gro_list);
3759 
3760 	list_del(&n->poll_list);
3761 	smp_mb__before_clear_bit();
3762 	clear_bit(NAPI_STATE_SCHED, &n->state);
3763 }
3764 EXPORT_SYMBOL(__napi_complete);
3765 
3766 void napi_complete(struct napi_struct *n)
3767 {
3768 	unsigned long flags;
3769 
3770 	/*
3771 	 * don't let napi dequeue from the cpu poll list
3772 	 * just in case its running on a different cpu
3773 	 */
3774 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3775 		return;
3776 
3777 	napi_gro_flush(n);
3778 	local_irq_save(flags);
3779 	__napi_complete(n);
3780 	local_irq_restore(flags);
3781 }
3782 EXPORT_SYMBOL(napi_complete);
3783 
3784 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3785 		    int (*poll)(struct napi_struct *, int), int weight)
3786 {
3787 	INIT_LIST_HEAD(&napi->poll_list);
3788 	napi->gro_count = 0;
3789 	napi->gro_list = NULL;
3790 	napi->skb = NULL;
3791 	napi->poll = poll;
3792 	napi->weight = weight;
3793 	list_add(&napi->dev_list, &dev->napi_list);
3794 	napi->dev = dev;
3795 #ifdef CONFIG_NETPOLL
3796 	spin_lock_init(&napi->poll_lock);
3797 	napi->poll_owner = -1;
3798 #endif
3799 	set_bit(NAPI_STATE_SCHED, &napi->state);
3800 }
3801 EXPORT_SYMBOL(netif_napi_add);
3802 
3803 void netif_napi_del(struct napi_struct *napi)
3804 {
3805 	struct sk_buff *skb, *next;
3806 
3807 	list_del_init(&napi->dev_list);
3808 	napi_free_frags(napi);
3809 
3810 	for (skb = napi->gro_list; skb; skb = next) {
3811 		next = skb->next;
3812 		skb->next = NULL;
3813 		kfree_skb(skb);
3814 	}
3815 
3816 	napi->gro_list = NULL;
3817 	napi->gro_count = 0;
3818 }
3819 EXPORT_SYMBOL(netif_napi_del);
3820 
3821 static void net_rx_action(struct softirq_action *h)
3822 {
3823 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3824 	unsigned long time_limit = jiffies + 2;
3825 	int budget = netdev_budget;
3826 	void *have;
3827 
3828 	local_irq_disable();
3829 
3830 	while (!list_empty(&sd->poll_list)) {
3831 		struct napi_struct *n;
3832 		int work, weight;
3833 
3834 		/* If softirq window is exhuasted then punt.
3835 		 * Allow this to run for 2 jiffies since which will allow
3836 		 * an average latency of 1.5/HZ.
3837 		 */
3838 		if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3839 			goto softnet_break;
3840 
3841 		local_irq_enable();
3842 
3843 		/* Even though interrupts have been re-enabled, this
3844 		 * access is safe because interrupts can only add new
3845 		 * entries to the tail of this list, and only ->poll()
3846 		 * calls can remove this head entry from the list.
3847 		 */
3848 		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3849 
3850 		have = netpoll_poll_lock(n);
3851 
3852 		weight = n->weight;
3853 
3854 		/* This NAPI_STATE_SCHED test is for avoiding a race
3855 		 * with netpoll's poll_napi().  Only the entity which
3856 		 * obtains the lock and sees NAPI_STATE_SCHED set will
3857 		 * actually make the ->poll() call.  Therefore we avoid
3858 		 * accidentally calling ->poll() when NAPI is not scheduled.
3859 		 */
3860 		work = 0;
3861 		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3862 			work = n->poll(n, weight);
3863 			trace_napi_poll(n);
3864 		}
3865 
3866 		WARN_ON_ONCE(work > weight);
3867 
3868 		budget -= work;
3869 
3870 		local_irq_disable();
3871 
3872 		/* Drivers must not modify the NAPI state if they
3873 		 * consume the entire weight.  In such cases this code
3874 		 * still "owns" the NAPI instance and therefore can
3875 		 * move the instance around on the list at-will.
3876 		 */
3877 		if (unlikely(work == weight)) {
3878 			if (unlikely(napi_disable_pending(n))) {
3879 				local_irq_enable();
3880 				napi_complete(n);
3881 				local_irq_disable();
3882 			} else
3883 				list_move_tail(&n->poll_list, &sd->poll_list);
3884 		}
3885 
3886 		netpoll_poll_unlock(have);
3887 	}
3888 out:
3889 	net_rps_action_and_irq_enable(sd);
3890 
3891 #ifdef CONFIG_NET_DMA
3892 	/*
3893 	 * There may not be any more sk_buffs coming right now, so push
3894 	 * any pending DMA copies to hardware
3895 	 */
3896 	dma_issue_pending_all();
3897 #endif
3898 
3899 	return;
3900 
3901 softnet_break:
3902 	sd->time_squeeze++;
3903 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3904 	goto out;
3905 }
3906 
3907 static gifconf_func_t *gifconf_list[NPROTO];
3908 
3909 /**
3910  *	register_gifconf	-	register a SIOCGIF handler
3911  *	@family: Address family
3912  *	@gifconf: Function handler
3913  *
3914  *	Register protocol dependent address dumping routines. The handler
3915  *	that is passed must not be freed or reused until it has been replaced
3916  *	by another handler.
3917  */
3918 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3919 {
3920 	if (family >= NPROTO)
3921 		return -EINVAL;
3922 	gifconf_list[family] = gifconf;
3923 	return 0;
3924 }
3925 EXPORT_SYMBOL(register_gifconf);
3926 
3927 
3928 /*
3929  *	Map an interface index to its name (SIOCGIFNAME)
3930  */
3931 
3932 /*
3933  *	We need this ioctl for efficient implementation of the
3934  *	if_indextoname() function required by the IPv6 API.  Without
3935  *	it, we would have to search all the interfaces to find a
3936  *	match.  --pb
3937  */
3938 
3939 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3940 {
3941 	struct net_device *dev;
3942 	struct ifreq ifr;
3943 
3944 	/*
3945 	 *	Fetch the caller's info block.
3946 	 */
3947 
3948 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3949 		return -EFAULT;
3950 
3951 	rcu_read_lock();
3952 	dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3953 	if (!dev) {
3954 		rcu_read_unlock();
3955 		return -ENODEV;
3956 	}
3957 
3958 	strcpy(ifr.ifr_name, dev->name);
3959 	rcu_read_unlock();
3960 
3961 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3962 		return -EFAULT;
3963 	return 0;
3964 }
3965 
3966 /*
3967  *	Perform a SIOCGIFCONF call. This structure will change
3968  *	size eventually, and there is nothing I can do about it.
3969  *	Thus we will need a 'compatibility mode'.
3970  */
3971 
3972 static int dev_ifconf(struct net *net, char __user *arg)
3973 {
3974 	struct ifconf ifc;
3975 	struct net_device *dev;
3976 	char __user *pos;
3977 	int len;
3978 	int total;
3979 	int i;
3980 
3981 	/*
3982 	 *	Fetch the caller's info block.
3983 	 */
3984 
3985 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3986 		return -EFAULT;
3987 
3988 	pos = ifc.ifc_buf;
3989 	len = ifc.ifc_len;
3990 
3991 	/*
3992 	 *	Loop over the interfaces, and write an info block for each.
3993 	 */
3994 
3995 	total = 0;
3996 	for_each_netdev(net, dev) {
3997 		for (i = 0; i < NPROTO; i++) {
3998 			if (gifconf_list[i]) {
3999 				int done;
4000 				if (!pos)
4001 					done = gifconf_list[i](dev, NULL, 0);
4002 				else
4003 					done = gifconf_list[i](dev, pos + total,
4004 							       len - total);
4005 				if (done < 0)
4006 					return -EFAULT;
4007 				total += done;
4008 			}
4009 		}
4010 	}
4011 
4012 	/*
4013 	 *	All done.  Write the updated control block back to the caller.
4014 	 */
4015 	ifc.ifc_len = total;
4016 
4017 	/*
4018 	 * 	Both BSD and Solaris return 0 here, so we do too.
4019 	 */
4020 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4021 }
4022 
4023 #ifdef CONFIG_PROC_FS
4024 
4025 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1)
4026 
4027 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4028 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4029 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4030 
4031 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos)
4032 {
4033 	struct net *net = seq_file_net(seq);
4034 	struct net_device *dev;
4035 	struct hlist_node *p;
4036 	struct hlist_head *h;
4037 	unsigned int count = 0, offset = get_offset(*pos);
4038 
4039 	h = &net->dev_name_head[get_bucket(*pos)];
4040 	hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4041 		if (++count == offset)
4042 			return dev;
4043 	}
4044 
4045 	return NULL;
4046 }
4047 
4048 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos)
4049 {
4050 	struct net_device *dev;
4051 	unsigned int bucket;
4052 
4053 	do {
4054 		dev = dev_from_same_bucket(seq, pos);
4055 		if (dev)
4056 			return dev;
4057 
4058 		bucket = get_bucket(*pos) + 1;
4059 		*pos = set_bucket_offset(bucket, 1);
4060 	} while (bucket < NETDEV_HASHENTRIES);
4061 
4062 	return NULL;
4063 }
4064 
4065 /*
4066  *	This is invoked by the /proc filesystem handler to display a device
4067  *	in detail.
4068  */
4069 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4070 	__acquires(RCU)
4071 {
4072 	rcu_read_lock();
4073 	if (!*pos)
4074 		return SEQ_START_TOKEN;
4075 
4076 	if (get_bucket(*pos) >= NETDEV_HASHENTRIES)
4077 		return NULL;
4078 
4079 	return dev_from_bucket(seq, pos);
4080 }
4081 
4082 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4083 {
4084 	++*pos;
4085 	return dev_from_bucket(seq, pos);
4086 }
4087 
4088 void dev_seq_stop(struct seq_file *seq, void *v)
4089 	__releases(RCU)
4090 {
4091 	rcu_read_unlock();
4092 }
4093 
4094 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4095 {
4096 	struct rtnl_link_stats64 temp;
4097 	const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4098 
4099 	seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4100 		   "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4101 		   dev->name, stats->rx_bytes, stats->rx_packets,
4102 		   stats->rx_errors,
4103 		   stats->rx_dropped + stats->rx_missed_errors,
4104 		   stats->rx_fifo_errors,
4105 		   stats->rx_length_errors + stats->rx_over_errors +
4106 		    stats->rx_crc_errors + stats->rx_frame_errors,
4107 		   stats->rx_compressed, stats->multicast,
4108 		   stats->tx_bytes, stats->tx_packets,
4109 		   stats->tx_errors, stats->tx_dropped,
4110 		   stats->tx_fifo_errors, stats->collisions,
4111 		   stats->tx_carrier_errors +
4112 		    stats->tx_aborted_errors +
4113 		    stats->tx_window_errors +
4114 		    stats->tx_heartbeat_errors,
4115 		   stats->tx_compressed);
4116 }
4117 
4118 /*
4119  *	Called from the PROCfs module. This now uses the new arbitrary sized
4120  *	/proc/net interface to create /proc/net/dev
4121  */
4122 static int dev_seq_show(struct seq_file *seq, void *v)
4123 {
4124 	if (v == SEQ_START_TOKEN)
4125 		seq_puts(seq, "Inter-|   Receive                            "
4126 			      "                    |  Transmit\n"
4127 			      " face |bytes    packets errs drop fifo frame "
4128 			      "compressed multicast|bytes    packets errs "
4129 			      "drop fifo colls carrier compressed\n");
4130 	else
4131 		dev_seq_printf_stats(seq, v);
4132 	return 0;
4133 }
4134 
4135 static struct softnet_data *softnet_get_online(loff_t *pos)
4136 {
4137 	struct softnet_data *sd = NULL;
4138 
4139 	while (*pos < nr_cpu_ids)
4140 		if (cpu_online(*pos)) {
4141 			sd = &per_cpu(softnet_data, *pos);
4142 			break;
4143 		} else
4144 			++*pos;
4145 	return sd;
4146 }
4147 
4148 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4149 {
4150 	return softnet_get_online(pos);
4151 }
4152 
4153 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4154 {
4155 	++*pos;
4156 	return softnet_get_online(pos);
4157 }
4158 
4159 static void softnet_seq_stop(struct seq_file *seq, void *v)
4160 {
4161 }
4162 
4163 static int softnet_seq_show(struct seq_file *seq, void *v)
4164 {
4165 	struct softnet_data *sd = v;
4166 
4167 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4168 		   sd->processed, sd->dropped, sd->time_squeeze, 0,
4169 		   0, 0, 0, 0, /* was fastroute */
4170 		   sd->cpu_collision, sd->received_rps);
4171 	return 0;
4172 }
4173 
4174 static const struct seq_operations dev_seq_ops = {
4175 	.start = dev_seq_start,
4176 	.next  = dev_seq_next,
4177 	.stop  = dev_seq_stop,
4178 	.show  = dev_seq_show,
4179 };
4180 
4181 static int dev_seq_open(struct inode *inode, struct file *file)
4182 {
4183 	return seq_open_net(inode, file, &dev_seq_ops,
4184 			    sizeof(struct seq_net_private));
4185 }
4186 
4187 static const struct file_operations dev_seq_fops = {
4188 	.owner	 = THIS_MODULE,
4189 	.open    = dev_seq_open,
4190 	.read    = seq_read,
4191 	.llseek  = seq_lseek,
4192 	.release = seq_release_net,
4193 };
4194 
4195 static const struct seq_operations softnet_seq_ops = {
4196 	.start = softnet_seq_start,
4197 	.next  = softnet_seq_next,
4198 	.stop  = softnet_seq_stop,
4199 	.show  = softnet_seq_show,
4200 };
4201 
4202 static int softnet_seq_open(struct inode *inode, struct file *file)
4203 {
4204 	return seq_open(file, &softnet_seq_ops);
4205 }
4206 
4207 static const struct file_operations softnet_seq_fops = {
4208 	.owner	 = THIS_MODULE,
4209 	.open    = softnet_seq_open,
4210 	.read    = seq_read,
4211 	.llseek  = seq_lseek,
4212 	.release = seq_release,
4213 };
4214 
4215 static void *ptype_get_idx(loff_t pos)
4216 {
4217 	struct packet_type *pt = NULL;
4218 	loff_t i = 0;
4219 	int t;
4220 
4221 	list_for_each_entry_rcu(pt, &ptype_all, list) {
4222 		if (i == pos)
4223 			return pt;
4224 		++i;
4225 	}
4226 
4227 	for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4228 		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4229 			if (i == pos)
4230 				return pt;
4231 			++i;
4232 		}
4233 	}
4234 	return NULL;
4235 }
4236 
4237 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4238 	__acquires(RCU)
4239 {
4240 	rcu_read_lock();
4241 	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4242 }
4243 
4244 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4245 {
4246 	struct packet_type *pt;
4247 	struct list_head *nxt;
4248 	int hash;
4249 
4250 	++*pos;
4251 	if (v == SEQ_START_TOKEN)
4252 		return ptype_get_idx(0);
4253 
4254 	pt = v;
4255 	nxt = pt->list.next;
4256 	if (pt->type == htons(ETH_P_ALL)) {
4257 		if (nxt != &ptype_all)
4258 			goto found;
4259 		hash = 0;
4260 		nxt = ptype_base[0].next;
4261 	} else
4262 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4263 
4264 	while (nxt == &ptype_base[hash]) {
4265 		if (++hash >= PTYPE_HASH_SIZE)
4266 			return NULL;
4267 		nxt = ptype_base[hash].next;
4268 	}
4269 found:
4270 	return list_entry(nxt, struct packet_type, list);
4271 }
4272 
4273 static void ptype_seq_stop(struct seq_file *seq, void *v)
4274 	__releases(RCU)
4275 {
4276 	rcu_read_unlock();
4277 }
4278 
4279 static int ptype_seq_show(struct seq_file *seq, void *v)
4280 {
4281 	struct packet_type *pt = v;
4282 
4283 	if (v == SEQ_START_TOKEN)
4284 		seq_puts(seq, "Type Device      Function\n");
4285 	else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4286 		if (pt->type == htons(ETH_P_ALL))
4287 			seq_puts(seq, "ALL ");
4288 		else
4289 			seq_printf(seq, "%04x", ntohs(pt->type));
4290 
4291 		seq_printf(seq, " %-8s %pF\n",
4292 			   pt->dev ? pt->dev->name : "", pt->func);
4293 	}
4294 
4295 	return 0;
4296 }
4297 
4298 static const struct seq_operations ptype_seq_ops = {
4299 	.start = ptype_seq_start,
4300 	.next  = ptype_seq_next,
4301 	.stop  = ptype_seq_stop,
4302 	.show  = ptype_seq_show,
4303 };
4304 
4305 static int ptype_seq_open(struct inode *inode, struct file *file)
4306 {
4307 	return seq_open_net(inode, file, &ptype_seq_ops,
4308 			sizeof(struct seq_net_private));
4309 }
4310 
4311 static const struct file_operations ptype_seq_fops = {
4312 	.owner	 = THIS_MODULE,
4313 	.open    = ptype_seq_open,
4314 	.read    = seq_read,
4315 	.llseek  = seq_lseek,
4316 	.release = seq_release_net,
4317 };
4318 
4319 
4320 static int __net_init dev_proc_net_init(struct net *net)
4321 {
4322 	int rc = -ENOMEM;
4323 
4324 	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4325 		goto out;
4326 	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4327 		goto out_dev;
4328 	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4329 		goto out_softnet;
4330 
4331 	if (wext_proc_init(net))
4332 		goto out_ptype;
4333 	rc = 0;
4334 out:
4335 	return rc;
4336 out_ptype:
4337 	proc_net_remove(net, "ptype");
4338 out_softnet:
4339 	proc_net_remove(net, "softnet_stat");
4340 out_dev:
4341 	proc_net_remove(net, "dev");
4342 	goto out;
4343 }
4344 
4345 static void __net_exit dev_proc_net_exit(struct net *net)
4346 {
4347 	wext_proc_exit(net);
4348 
4349 	proc_net_remove(net, "ptype");
4350 	proc_net_remove(net, "softnet_stat");
4351 	proc_net_remove(net, "dev");
4352 }
4353 
4354 static struct pernet_operations __net_initdata dev_proc_ops = {
4355 	.init = dev_proc_net_init,
4356 	.exit = dev_proc_net_exit,
4357 };
4358 
4359 static int __init dev_proc_init(void)
4360 {
4361 	return register_pernet_subsys(&dev_proc_ops);
4362 }
4363 #else
4364 #define dev_proc_init() 0
4365 #endif	/* CONFIG_PROC_FS */
4366 
4367 
4368 /**
4369  *	netdev_set_master	-	set up master pointer
4370  *	@slave: slave device
4371  *	@master: new master device
4372  *
4373  *	Changes the master device of the slave. Pass %NULL to break the
4374  *	bonding. The caller must hold the RTNL semaphore. On a failure
4375  *	a negative errno code is returned. On success the reference counts
4376  *	are adjusted and the function returns zero.
4377  */
4378 int netdev_set_master(struct net_device *slave, struct net_device *master)
4379 {
4380 	struct net_device *old = slave->master;
4381 
4382 	ASSERT_RTNL();
4383 
4384 	if (master) {
4385 		if (old)
4386 			return -EBUSY;
4387 		dev_hold(master);
4388 	}
4389 
4390 	slave->master = master;
4391 
4392 	if (old)
4393 		dev_put(old);
4394 	return 0;
4395 }
4396 EXPORT_SYMBOL(netdev_set_master);
4397 
4398 /**
4399  *	netdev_set_bond_master	-	set up bonding master/slave pair
4400  *	@slave: slave device
4401  *	@master: new master device
4402  *
4403  *	Changes the master device of the slave. Pass %NULL to break the
4404  *	bonding. The caller must hold the RTNL semaphore. On a failure
4405  *	a negative errno code is returned. On success %RTM_NEWLINK is sent
4406  *	to the routing socket and the function returns zero.
4407  */
4408 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4409 {
4410 	int err;
4411 
4412 	ASSERT_RTNL();
4413 
4414 	err = netdev_set_master(slave, master);
4415 	if (err)
4416 		return err;
4417 	if (master)
4418 		slave->flags |= IFF_SLAVE;
4419 	else
4420 		slave->flags &= ~IFF_SLAVE;
4421 
4422 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4423 	return 0;
4424 }
4425 EXPORT_SYMBOL(netdev_set_bond_master);
4426 
4427 static void dev_change_rx_flags(struct net_device *dev, int flags)
4428 {
4429 	const struct net_device_ops *ops = dev->netdev_ops;
4430 
4431 	if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4432 		ops->ndo_change_rx_flags(dev, flags);
4433 }
4434 
4435 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4436 {
4437 	unsigned int old_flags = dev->flags;
4438 	uid_t uid;
4439 	gid_t gid;
4440 
4441 	ASSERT_RTNL();
4442 
4443 	dev->flags |= IFF_PROMISC;
4444 	dev->promiscuity += inc;
4445 	if (dev->promiscuity == 0) {
4446 		/*
4447 		 * Avoid overflow.
4448 		 * If inc causes overflow, untouch promisc and return error.
4449 		 */
4450 		if (inc < 0)
4451 			dev->flags &= ~IFF_PROMISC;
4452 		else {
4453 			dev->promiscuity -= inc;
4454 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4455 				dev->name);
4456 			return -EOVERFLOW;
4457 		}
4458 	}
4459 	if (dev->flags != old_flags) {
4460 		pr_info("device %s %s promiscuous mode\n",
4461 			dev->name,
4462 			dev->flags & IFF_PROMISC ? "entered" : "left");
4463 		if (audit_enabled) {
4464 			current_uid_gid(&uid, &gid);
4465 			audit_log(current->audit_context, GFP_ATOMIC,
4466 				AUDIT_ANOM_PROMISCUOUS,
4467 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4468 				dev->name, (dev->flags & IFF_PROMISC),
4469 				(old_flags & IFF_PROMISC),
4470 				audit_get_loginuid(current),
4471 				uid, gid,
4472 				audit_get_sessionid(current));
4473 		}
4474 
4475 		dev_change_rx_flags(dev, IFF_PROMISC);
4476 	}
4477 	return 0;
4478 }
4479 
4480 /**
4481  *	dev_set_promiscuity	- update promiscuity count on a device
4482  *	@dev: device
4483  *	@inc: modifier
4484  *
4485  *	Add or remove promiscuity from a device. While the count in the device
4486  *	remains above zero the interface remains promiscuous. Once it hits zero
4487  *	the device reverts back to normal filtering operation. A negative inc
4488  *	value is used to drop promiscuity on the device.
4489  *	Return 0 if successful or a negative errno code on error.
4490  */
4491 int dev_set_promiscuity(struct net_device *dev, int inc)
4492 {
4493 	unsigned int old_flags = dev->flags;
4494 	int err;
4495 
4496 	err = __dev_set_promiscuity(dev, inc);
4497 	if (err < 0)
4498 		return err;
4499 	if (dev->flags != old_flags)
4500 		dev_set_rx_mode(dev);
4501 	return err;
4502 }
4503 EXPORT_SYMBOL(dev_set_promiscuity);
4504 
4505 /**
4506  *	dev_set_allmulti	- update allmulti count on a device
4507  *	@dev: device
4508  *	@inc: modifier
4509  *
4510  *	Add or remove reception of all multicast frames to a device. While the
4511  *	count in the device remains above zero the interface remains listening
4512  *	to all interfaces. Once it hits zero the device reverts back to normal
4513  *	filtering operation. A negative @inc value is used to drop the counter
4514  *	when releasing a resource needing all multicasts.
4515  *	Return 0 if successful or a negative errno code on error.
4516  */
4517 
4518 int dev_set_allmulti(struct net_device *dev, int inc)
4519 {
4520 	unsigned int old_flags = dev->flags;
4521 
4522 	ASSERT_RTNL();
4523 
4524 	dev->flags |= IFF_ALLMULTI;
4525 	dev->allmulti += inc;
4526 	if (dev->allmulti == 0) {
4527 		/*
4528 		 * Avoid overflow.
4529 		 * If inc causes overflow, untouch allmulti and return error.
4530 		 */
4531 		if (inc < 0)
4532 			dev->flags &= ~IFF_ALLMULTI;
4533 		else {
4534 			dev->allmulti -= inc;
4535 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4536 				dev->name);
4537 			return -EOVERFLOW;
4538 		}
4539 	}
4540 	if (dev->flags ^ old_flags) {
4541 		dev_change_rx_flags(dev, IFF_ALLMULTI);
4542 		dev_set_rx_mode(dev);
4543 	}
4544 	return 0;
4545 }
4546 EXPORT_SYMBOL(dev_set_allmulti);
4547 
4548 /*
4549  *	Upload unicast and multicast address lists to device and
4550  *	configure RX filtering. When the device doesn't support unicast
4551  *	filtering it is put in promiscuous mode while unicast addresses
4552  *	are present.
4553  */
4554 void __dev_set_rx_mode(struct net_device *dev)
4555 {
4556 	const struct net_device_ops *ops = dev->netdev_ops;
4557 
4558 	/* dev_open will call this function so the list will stay sane. */
4559 	if (!(dev->flags&IFF_UP))
4560 		return;
4561 
4562 	if (!netif_device_present(dev))
4563 		return;
4564 
4565 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4566 		/* Unicast addresses changes may only happen under the rtnl,
4567 		 * therefore calling __dev_set_promiscuity here is safe.
4568 		 */
4569 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4570 			__dev_set_promiscuity(dev, 1);
4571 			dev->uc_promisc = true;
4572 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4573 			__dev_set_promiscuity(dev, -1);
4574 			dev->uc_promisc = false;
4575 		}
4576 	}
4577 
4578 	if (ops->ndo_set_rx_mode)
4579 		ops->ndo_set_rx_mode(dev);
4580 }
4581 
4582 void dev_set_rx_mode(struct net_device *dev)
4583 {
4584 	netif_addr_lock_bh(dev);
4585 	__dev_set_rx_mode(dev);
4586 	netif_addr_unlock_bh(dev);
4587 }
4588 
4589 /**
4590  *	dev_get_flags - get flags reported to userspace
4591  *	@dev: device
4592  *
4593  *	Get the combination of flag bits exported through APIs to userspace.
4594  */
4595 unsigned dev_get_flags(const struct net_device *dev)
4596 {
4597 	unsigned flags;
4598 
4599 	flags = (dev->flags & ~(IFF_PROMISC |
4600 				IFF_ALLMULTI |
4601 				IFF_RUNNING |
4602 				IFF_LOWER_UP |
4603 				IFF_DORMANT)) |
4604 		(dev->gflags & (IFF_PROMISC |
4605 				IFF_ALLMULTI));
4606 
4607 	if (netif_running(dev)) {
4608 		if (netif_oper_up(dev))
4609 			flags |= IFF_RUNNING;
4610 		if (netif_carrier_ok(dev))
4611 			flags |= IFF_LOWER_UP;
4612 		if (netif_dormant(dev))
4613 			flags |= IFF_DORMANT;
4614 	}
4615 
4616 	return flags;
4617 }
4618 EXPORT_SYMBOL(dev_get_flags);
4619 
4620 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4621 {
4622 	unsigned int old_flags = dev->flags;
4623 	int ret;
4624 
4625 	ASSERT_RTNL();
4626 
4627 	/*
4628 	 *	Set the flags on our device.
4629 	 */
4630 
4631 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4632 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4633 			       IFF_AUTOMEDIA)) |
4634 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4635 				    IFF_ALLMULTI));
4636 
4637 	/*
4638 	 *	Load in the correct multicast list now the flags have changed.
4639 	 */
4640 
4641 	if ((old_flags ^ flags) & IFF_MULTICAST)
4642 		dev_change_rx_flags(dev, IFF_MULTICAST);
4643 
4644 	dev_set_rx_mode(dev);
4645 
4646 	/*
4647 	 *	Have we downed the interface. We handle IFF_UP ourselves
4648 	 *	according to user attempts to set it, rather than blindly
4649 	 *	setting it.
4650 	 */
4651 
4652 	ret = 0;
4653 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
4654 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4655 
4656 		if (!ret)
4657 			dev_set_rx_mode(dev);
4658 	}
4659 
4660 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
4661 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
4662 
4663 		dev->gflags ^= IFF_PROMISC;
4664 		dev_set_promiscuity(dev, inc);
4665 	}
4666 
4667 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4668 	   is important. Some (broken) drivers set IFF_PROMISC, when
4669 	   IFF_ALLMULTI is requested not asking us and not reporting.
4670 	 */
4671 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4672 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4673 
4674 		dev->gflags ^= IFF_ALLMULTI;
4675 		dev_set_allmulti(dev, inc);
4676 	}
4677 
4678 	return ret;
4679 }
4680 
4681 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4682 {
4683 	unsigned int changes = dev->flags ^ old_flags;
4684 
4685 	if (changes & IFF_UP) {
4686 		if (dev->flags & IFF_UP)
4687 			call_netdevice_notifiers(NETDEV_UP, dev);
4688 		else
4689 			call_netdevice_notifiers(NETDEV_DOWN, dev);
4690 	}
4691 
4692 	if (dev->flags & IFF_UP &&
4693 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4694 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
4695 }
4696 
4697 /**
4698  *	dev_change_flags - change device settings
4699  *	@dev: device
4700  *	@flags: device state flags
4701  *
4702  *	Change settings on device based state flags. The flags are
4703  *	in the userspace exported format.
4704  */
4705 int dev_change_flags(struct net_device *dev, unsigned int flags)
4706 {
4707 	int ret;
4708 	unsigned int changes, old_flags = dev->flags;
4709 
4710 	ret = __dev_change_flags(dev, flags);
4711 	if (ret < 0)
4712 		return ret;
4713 
4714 	changes = old_flags ^ dev->flags;
4715 	if (changes)
4716 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4717 
4718 	__dev_notify_flags(dev, old_flags);
4719 	return ret;
4720 }
4721 EXPORT_SYMBOL(dev_change_flags);
4722 
4723 /**
4724  *	dev_set_mtu - Change maximum transfer unit
4725  *	@dev: device
4726  *	@new_mtu: new transfer unit
4727  *
4728  *	Change the maximum transfer size of the network device.
4729  */
4730 int dev_set_mtu(struct net_device *dev, int new_mtu)
4731 {
4732 	const struct net_device_ops *ops = dev->netdev_ops;
4733 	int err;
4734 
4735 	if (new_mtu == dev->mtu)
4736 		return 0;
4737 
4738 	/*	MTU must be positive.	 */
4739 	if (new_mtu < 0)
4740 		return -EINVAL;
4741 
4742 	if (!netif_device_present(dev))
4743 		return -ENODEV;
4744 
4745 	err = 0;
4746 	if (ops->ndo_change_mtu)
4747 		err = ops->ndo_change_mtu(dev, new_mtu);
4748 	else
4749 		dev->mtu = new_mtu;
4750 
4751 	if (!err && dev->flags & IFF_UP)
4752 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4753 	return err;
4754 }
4755 EXPORT_SYMBOL(dev_set_mtu);
4756 
4757 /**
4758  *	dev_set_group - Change group this device belongs to
4759  *	@dev: device
4760  *	@new_group: group this device should belong to
4761  */
4762 void dev_set_group(struct net_device *dev, int new_group)
4763 {
4764 	dev->group = new_group;
4765 }
4766 EXPORT_SYMBOL(dev_set_group);
4767 
4768 /**
4769  *	dev_set_mac_address - Change Media Access Control Address
4770  *	@dev: device
4771  *	@sa: new address
4772  *
4773  *	Change the hardware (MAC) address of the device
4774  */
4775 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4776 {
4777 	const struct net_device_ops *ops = dev->netdev_ops;
4778 	int err;
4779 
4780 	if (!ops->ndo_set_mac_address)
4781 		return -EOPNOTSUPP;
4782 	if (sa->sa_family != dev->type)
4783 		return -EINVAL;
4784 	if (!netif_device_present(dev))
4785 		return -ENODEV;
4786 	err = ops->ndo_set_mac_address(dev, sa);
4787 	if (!err)
4788 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4789 	return err;
4790 }
4791 EXPORT_SYMBOL(dev_set_mac_address);
4792 
4793 /*
4794  *	Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4795  */
4796 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4797 {
4798 	int err;
4799 	struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4800 
4801 	if (!dev)
4802 		return -ENODEV;
4803 
4804 	switch (cmd) {
4805 	case SIOCGIFFLAGS:	/* Get interface flags */
4806 		ifr->ifr_flags = (short) dev_get_flags(dev);
4807 		return 0;
4808 
4809 	case SIOCGIFMETRIC:	/* Get the metric on the interface
4810 				   (currently unused) */
4811 		ifr->ifr_metric = 0;
4812 		return 0;
4813 
4814 	case SIOCGIFMTU:	/* Get the MTU of a device */
4815 		ifr->ifr_mtu = dev->mtu;
4816 		return 0;
4817 
4818 	case SIOCGIFHWADDR:
4819 		if (!dev->addr_len)
4820 			memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4821 		else
4822 			memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4823 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4824 		ifr->ifr_hwaddr.sa_family = dev->type;
4825 		return 0;
4826 
4827 	case SIOCGIFSLAVE:
4828 		err = -EINVAL;
4829 		break;
4830 
4831 	case SIOCGIFMAP:
4832 		ifr->ifr_map.mem_start = dev->mem_start;
4833 		ifr->ifr_map.mem_end   = dev->mem_end;
4834 		ifr->ifr_map.base_addr = dev->base_addr;
4835 		ifr->ifr_map.irq       = dev->irq;
4836 		ifr->ifr_map.dma       = dev->dma;
4837 		ifr->ifr_map.port      = dev->if_port;
4838 		return 0;
4839 
4840 	case SIOCGIFINDEX:
4841 		ifr->ifr_ifindex = dev->ifindex;
4842 		return 0;
4843 
4844 	case SIOCGIFTXQLEN:
4845 		ifr->ifr_qlen = dev->tx_queue_len;
4846 		return 0;
4847 
4848 	default:
4849 		/* dev_ioctl() should ensure this case
4850 		 * is never reached
4851 		 */
4852 		WARN_ON(1);
4853 		err = -ENOTTY;
4854 		break;
4855 
4856 	}
4857 	return err;
4858 }
4859 
4860 /*
4861  *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
4862  */
4863 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4864 {
4865 	int err;
4866 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4867 	const struct net_device_ops *ops;
4868 
4869 	if (!dev)
4870 		return -ENODEV;
4871 
4872 	ops = dev->netdev_ops;
4873 
4874 	switch (cmd) {
4875 	case SIOCSIFFLAGS:	/* Set interface flags */
4876 		return dev_change_flags(dev, ifr->ifr_flags);
4877 
4878 	case SIOCSIFMETRIC:	/* Set the metric on the interface
4879 				   (currently unused) */
4880 		return -EOPNOTSUPP;
4881 
4882 	case SIOCSIFMTU:	/* Set the MTU of a device */
4883 		return dev_set_mtu(dev, ifr->ifr_mtu);
4884 
4885 	case SIOCSIFHWADDR:
4886 		return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4887 
4888 	case SIOCSIFHWBROADCAST:
4889 		if (ifr->ifr_hwaddr.sa_family != dev->type)
4890 			return -EINVAL;
4891 		memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4892 		       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4893 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4894 		return 0;
4895 
4896 	case SIOCSIFMAP:
4897 		if (ops->ndo_set_config) {
4898 			if (!netif_device_present(dev))
4899 				return -ENODEV;
4900 			return ops->ndo_set_config(dev, &ifr->ifr_map);
4901 		}
4902 		return -EOPNOTSUPP;
4903 
4904 	case SIOCADDMULTI:
4905 		if (!ops->ndo_set_rx_mode ||
4906 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4907 			return -EINVAL;
4908 		if (!netif_device_present(dev))
4909 			return -ENODEV;
4910 		return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4911 
4912 	case SIOCDELMULTI:
4913 		if (!ops->ndo_set_rx_mode ||
4914 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4915 			return -EINVAL;
4916 		if (!netif_device_present(dev))
4917 			return -ENODEV;
4918 		return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4919 
4920 	case SIOCSIFTXQLEN:
4921 		if (ifr->ifr_qlen < 0)
4922 			return -EINVAL;
4923 		dev->tx_queue_len = ifr->ifr_qlen;
4924 		return 0;
4925 
4926 	case SIOCSIFNAME:
4927 		ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4928 		return dev_change_name(dev, ifr->ifr_newname);
4929 
4930 	case SIOCSHWTSTAMP:
4931 		err = net_hwtstamp_validate(ifr);
4932 		if (err)
4933 			return err;
4934 		/* fall through */
4935 
4936 	/*
4937 	 *	Unknown or private ioctl
4938 	 */
4939 	default:
4940 		if ((cmd >= SIOCDEVPRIVATE &&
4941 		    cmd <= SIOCDEVPRIVATE + 15) ||
4942 		    cmd == SIOCBONDENSLAVE ||
4943 		    cmd == SIOCBONDRELEASE ||
4944 		    cmd == SIOCBONDSETHWADDR ||
4945 		    cmd == SIOCBONDSLAVEINFOQUERY ||
4946 		    cmd == SIOCBONDINFOQUERY ||
4947 		    cmd == SIOCBONDCHANGEACTIVE ||
4948 		    cmd == SIOCGMIIPHY ||
4949 		    cmd == SIOCGMIIREG ||
4950 		    cmd == SIOCSMIIREG ||
4951 		    cmd == SIOCBRADDIF ||
4952 		    cmd == SIOCBRDELIF ||
4953 		    cmd == SIOCSHWTSTAMP ||
4954 		    cmd == SIOCWANDEV) {
4955 			err = -EOPNOTSUPP;
4956 			if (ops->ndo_do_ioctl) {
4957 				if (netif_device_present(dev))
4958 					err = ops->ndo_do_ioctl(dev, ifr, cmd);
4959 				else
4960 					err = -ENODEV;
4961 			}
4962 		} else
4963 			err = -EINVAL;
4964 
4965 	}
4966 	return err;
4967 }
4968 
4969 /*
4970  *	This function handles all "interface"-type I/O control requests. The actual
4971  *	'doing' part of this is dev_ifsioc above.
4972  */
4973 
4974 /**
4975  *	dev_ioctl	-	network device ioctl
4976  *	@net: the applicable net namespace
4977  *	@cmd: command to issue
4978  *	@arg: pointer to a struct ifreq in user space
4979  *
4980  *	Issue ioctl functions to devices. This is normally called by the
4981  *	user space syscall interfaces but can sometimes be useful for
4982  *	other purposes. The return value is the return from the syscall if
4983  *	positive or a negative errno code on error.
4984  */
4985 
4986 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4987 {
4988 	struct ifreq ifr;
4989 	int ret;
4990 	char *colon;
4991 
4992 	/* One special case: SIOCGIFCONF takes ifconf argument
4993 	   and requires shared lock, because it sleeps writing
4994 	   to user space.
4995 	 */
4996 
4997 	if (cmd == SIOCGIFCONF) {
4998 		rtnl_lock();
4999 		ret = dev_ifconf(net, (char __user *) arg);
5000 		rtnl_unlock();
5001 		return ret;
5002 	}
5003 	if (cmd == SIOCGIFNAME)
5004 		return dev_ifname(net, (struct ifreq __user *)arg);
5005 
5006 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5007 		return -EFAULT;
5008 
5009 	ifr.ifr_name[IFNAMSIZ-1] = 0;
5010 
5011 	colon = strchr(ifr.ifr_name, ':');
5012 	if (colon)
5013 		*colon = 0;
5014 
5015 	/*
5016 	 *	See which interface the caller is talking about.
5017 	 */
5018 
5019 	switch (cmd) {
5020 	/*
5021 	 *	These ioctl calls:
5022 	 *	- can be done by all.
5023 	 *	- atomic and do not require locking.
5024 	 *	- return a value
5025 	 */
5026 	case SIOCGIFFLAGS:
5027 	case SIOCGIFMETRIC:
5028 	case SIOCGIFMTU:
5029 	case SIOCGIFHWADDR:
5030 	case SIOCGIFSLAVE:
5031 	case SIOCGIFMAP:
5032 	case SIOCGIFINDEX:
5033 	case SIOCGIFTXQLEN:
5034 		dev_load(net, ifr.ifr_name);
5035 		rcu_read_lock();
5036 		ret = dev_ifsioc_locked(net, &ifr, cmd);
5037 		rcu_read_unlock();
5038 		if (!ret) {
5039 			if (colon)
5040 				*colon = ':';
5041 			if (copy_to_user(arg, &ifr,
5042 					 sizeof(struct ifreq)))
5043 				ret = -EFAULT;
5044 		}
5045 		return ret;
5046 
5047 	case SIOCETHTOOL:
5048 		dev_load(net, ifr.ifr_name);
5049 		rtnl_lock();
5050 		ret = dev_ethtool(net, &ifr);
5051 		rtnl_unlock();
5052 		if (!ret) {
5053 			if (colon)
5054 				*colon = ':';
5055 			if (copy_to_user(arg, &ifr,
5056 					 sizeof(struct ifreq)))
5057 				ret = -EFAULT;
5058 		}
5059 		return ret;
5060 
5061 	/*
5062 	 *	These ioctl calls:
5063 	 *	- require superuser power.
5064 	 *	- require strict serialization.
5065 	 *	- return a value
5066 	 */
5067 	case SIOCGMIIPHY:
5068 	case SIOCGMIIREG:
5069 	case SIOCSIFNAME:
5070 		if (!capable(CAP_NET_ADMIN))
5071 			return -EPERM;
5072 		dev_load(net, ifr.ifr_name);
5073 		rtnl_lock();
5074 		ret = dev_ifsioc(net, &ifr, cmd);
5075 		rtnl_unlock();
5076 		if (!ret) {
5077 			if (colon)
5078 				*colon = ':';
5079 			if (copy_to_user(arg, &ifr,
5080 					 sizeof(struct ifreq)))
5081 				ret = -EFAULT;
5082 		}
5083 		return ret;
5084 
5085 	/*
5086 	 *	These ioctl calls:
5087 	 *	- require superuser power.
5088 	 *	- require strict serialization.
5089 	 *	- do not return a value
5090 	 */
5091 	case SIOCSIFFLAGS:
5092 	case SIOCSIFMETRIC:
5093 	case SIOCSIFMTU:
5094 	case SIOCSIFMAP:
5095 	case SIOCSIFHWADDR:
5096 	case SIOCSIFSLAVE:
5097 	case SIOCADDMULTI:
5098 	case SIOCDELMULTI:
5099 	case SIOCSIFHWBROADCAST:
5100 	case SIOCSIFTXQLEN:
5101 	case SIOCSMIIREG:
5102 	case SIOCBONDENSLAVE:
5103 	case SIOCBONDRELEASE:
5104 	case SIOCBONDSETHWADDR:
5105 	case SIOCBONDCHANGEACTIVE:
5106 	case SIOCBRADDIF:
5107 	case SIOCBRDELIF:
5108 	case SIOCSHWTSTAMP:
5109 		if (!capable(CAP_NET_ADMIN))
5110 			return -EPERM;
5111 		/* fall through */
5112 	case SIOCBONDSLAVEINFOQUERY:
5113 	case SIOCBONDINFOQUERY:
5114 		dev_load(net, ifr.ifr_name);
5115 		rtnl_lock();
5116 		ret = dev_ifsioc(net, &ifr, cmd);
5117 		rtnl_unlock();
5118 		return ret;
5119 
5120 	case SIOCGIFMEM:
5121 		/* Get the per device memory space. We can add this but
5122 		 * currently do not support it */
5123 	case SIOCSIFMEM:
5124 		/* Set the per device memory buffer space.
5125 		 * Not applicable in our case */
5126 	case SIOCSIFLINK:
5127 		return -ENOTTY;
5128 
5129 	/*
5130 	 *	Unknown or private ioctl.
5131 	 */
5132 	default:
5133 		if (cmd == SIOCWANDEV ||
5134 		    (cmd >= SIOCDEVPRIVATE &&
5135 		     cmd <= SIOCDEVPRIVATE + 15)) {
5136 			dev_load(net, ifr.ifr_name);
5137 			rtnl_lock();
5138 			ret = dev_ifsioc(net, &ifr, cmd);
5139 			rtnl_unlock();
5140 			if (!ret && copy_to_user(arg, &ifr,
5141 						 sizeof(struct ifreq)))
5142 				ret = -EFAULT;
5143 			return ret;
5144 		}
5145 		/* Take care of Wireless Extensions */
5146 		if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5147 			return wext_handle_ioctl(net, &ifr, cmd, arg);
5148 		return -ENOTTY;
5149 	}
5150 }
5151 
5152 
5153 /**
5154  *	dev_new_index	-	allocate an ifindex
5155  *	@net: the applicable net namespace
5156  *
5157  *	Returns a suitable unique value for a new device interface
5158  *	number.  The caller must hold the rtnl semaphore or the
5159  *	dev_base_lock to be sure it remains unique.
5160  */
5161 static int dev_new_index(struct net *net)
5162 {
5163 	static int ifindex;
5164 	for (;;) {
5165 		if (++ifindex <= 0)
5166 			ifindex = 1;
5167 		if (!__dev_get_by_index(net, ifindex))
5168 			return ifindex;
5169 	}
5170 }
5171 
5172 /* Delayed registration/unregisteration */
5173 static LIST_HEAD(net_todo_list);
5174 
5175 static void net_set_todo(struct net_device *dev)
5176 {
5177 	list_add_tail(&dev->todo_list, &net_todo_list);
5178 }
5179 
5180 static void rollback_registered_many(struct list_head *head)
5181 {
5182 	struct net_device *dev, *tmp;
5183 
5184 	BUG_ON(dev_boot_phase);
5185 	ASSERT_RTNL();
5186 
5187 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5188 		/* Some devices call without registering
5189 		 * for initialization unwind. Remove those
5190 		 * devices and proceed with the remaining.
5191 		 */
5192 		if (dev->reg_state == NETREG_UNINITIALIZED) {
5193 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5194 				 dev->name, dev);
5195 
5196 			WARN_ON(1);
5197 			list_del(&dev->unreg_list);
5198 			continue;
5199 		}
5200 		dev->dismantle = true;
5201 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
5202 	}
5203 
5204 	/* If device is running, close it first. */
5205 	dev_close_many(head);
5206 
5207 	list_for_each_entry(dev, head, unreg_list) {
5208 		/* And unlink it from device chain. */
5209 		unlist_netdevice(dev);
5210 
5211 		dev->reg_state = NETREG_UNREGISTERING;
5212 	}
5213 
5214 	synchronize_net();
5215 
5216 	list_for_each_entry(dev, head, unreg_list) {
5217 		/* Shutdown queueing discipline. */
5218 		dev_shutdown(dev);
5219 
5220 
5221 		/* Notify protocols, that we are about to destroy
5222 		   this device. They should clean all the things.
5223 		*/
5224 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5225 
5226 		if (!dev->rtnl_link_ops ||
5227 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5228 			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5229 
5230 		/*
5231 		 *	Flush the unicast and multicast chains
5232 		 */
5233 		dev_uc_flush(dev);
5234 		dev_mc_flush(dev);
5235 
5236 		if (dev->netdev_ops->ndo_uninit)
5237 			dev->netdev_ops->ndo_uninit(dev);
5238 
5239 		/* Notifier chain MUST detach us from master device. */
5240 		WARN_ON(dev->master);
5241 
5242 		/* Remove entries from kobject tree */
5243 		netdev_unregister_kobject(dev);
5244 	}
5245 
5246 	/* Process any work delayed until the end of the batch */
5247 	dev = list_first_entry(head, struct net_device, unreg_list);
5248 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5249 
5250 	synchronize_net();
5251 
5252 	list_for_each_entry(dev, head, unreg_list)
5253 		dev_put(dev);
5254 }
5255 
5256 static void rollback_registered(struct net_device *dev)
5257 {
5258 	LIST_HEAD(single);
5259 
5260 	list_add(&dev->unreg_list, &single);
5261 	rollback_registered_many(&single);
5262 	list_del(&single);
5263 }
5264 
5265 static netdev_features_t netdev_fix_features(struct net_device *dev,
5266 	netdev_features_t features)
5267 {
5268 	/* Fix illegal checksum combinations */
5269 	if ((features & NETIF_F_HW_CSUM) &&
5270 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5271 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5272 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5273 	}
5274 
5275 	/* Fix illegal SG+CSUM combinations. */
5276 	if ((features & NETIF_F_SG) &&
5277 	    !(features & NETIF_F_ALL_CSUM)) {
5278 		netdev_dbg(dev,
5279 			"Dropping NETIF_F_SG since no checksum feature.\n");
5280 		features &= ~NETIF_F_SG;
5281 	}
5282 
5283 	/* TSO requires that SG is present as well. */
5284 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5285 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5286 		features &= ~NETIF_F_ALL_TSO;
5287 	}
5288 
5289 	/* TSO ECN requires that TSO is present as well. */
5290 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5291 		features &= ~NETIF_F_TSO_ECN;
5292 
5293 	/* Software GSO depends on SG. */
5294 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5295 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5296 		features &= ~NETIF_F_GSO;
5297 	}
5298 
5299 	/* UFO needs SG and checksumming */
5300 	if (features & NETIF_F_UFO) {
5301 		/* maybe split UFO into V4 and V6? */
5302 		if (!((features & NETIF_F_GEN_CSUM) ||
5303 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5304 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5305 			netdev_dbg(dev,
5306 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
5307 			features &= ~NETIF_F_UFO;
5308 		}
5309 
5310 		if (!(features & NETIF_F_SG)) {
5311 			netdev_dbg(dev,
5312 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5313 			features &= ~NETIF_F_UFO;
5314 		}
5315 	}
5316 
5317 	return features;
5318 }
5319 
5320 int __netdev_update_features(struct net_device *dev)
5321 {
5322 	netdev_features_t features;
5323 	int err = 0;
5324 
5325 	ASSERT_RTNL();
5326 
5327 	features = netdev_get_wanted_features(dev);
5328 
5329 	if (dev->netdev_ops->ndo_fix_features)
5330 		features = dev->netdev_ops->ndo_fix_features(dev, features);
5331 
5332 	/* driver might be less strict about feature dependencies */
5333 	features = netdev_fix_features(dev, features);
5334 
5335 	if (dev->features == features)
5336 		return 0;
5337 
5338 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5339 		&dev->features, &features);
5340 
5341 	if (dev->netdev_ops->ndo_set_features)
5342 		err = dev->netdev_ops->ndo_set_features(dev, features);
5343 
5344 	if (unlikely(err < 0)) {
5345 		netdev_err(dev,
5346 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
5347 			err, &features, &dev->features);
5348 		return -1;
5349 	}
5350 
5351 	if (!err)
5352 		dev->features = features;
5353 
5354 	return 1;
5355 }
5356 
5357 /**
5358  *	netdev_update_features - recalculate device features
5359  *	@dev: the device to check
5360  *
5361  *	Recalculate dev->features set and send notifications if it
5362  *	has changed. Should be called after driver or hardware dependent
5363  *	conditions might have changed that influence the features.
5364  */
5365 void netdev_update_features(struct net_device *dev)
5366 {
5367 	if (__netdev_update_features(dev))
5368 		netdev_features_change(dev);
5369 }
5370 EXPORT_SYMBOL(netdev_update_features);
5371 
5372 /**
5373  *	netdev_change_features - recalculate device features
5374  *	@dev: the device to check
5375  *
5376  *	Recalculate dev->features set and send notifications even
5377  *	if they have not changed. Should be called instead of
5378  *	netdev_update_features() if also dev->vlan_features might
5379  *	have changed to allow the changes to be propagated to stacked
5380  *	VLAN devices.
5381  */
5382 void netdev_change_features(struct net_device *dev)
5383 {
5384 	__netdev_update_features(dev);
5385 	netdev_features_change(dev);
5386 }
5387 EXPORT_SYMBOL(netdev_change_features);
5388 
5389 /**
5390  *	netif_stacked_transfer_operstate -	transfer operstate
5391  *	@rootdev: the root or lower level device to transfer state from
5392  *	@dev: the device to transfer operstate to
5393  *
5394  *	Transfer operational state from root to device. This is normally
5395  *	called when a stacking relationship exists between the root
5396  *	device and the device(a leaf device).
5397  */
5398 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5399 					struct net_device *dev)
5400 {
5401 	if (rootdev->operstate == IF_OPER_DORMANT)
5402 		netif_dormant_on(dev);
5403 	else
5404 		netif_dormant_off(dev);
5405 
5406 	if (netif_carrier_ok(rootdev)) {
5407 		if (!netif_carrier_ok(dev))
5408 			netif_carrier_on(dev);
5409 	} else {
5410 		if (netif_carrier_ok(dev))
5411 			netif_carrier_off(dev);
5412 	}
5413 }
5414 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5415 
5416 #ifdef CONFIG_RPS
5417 static int netif_alloc_rx_queues(struct net_device *dev)
5418 {
5419 	unsigned int i, count = dev->num_rx_queues;
5420 	struct netdev_rx_queue *rx;
5421 
5422 	BUG_ON(count < 1);
5423 
5424 	rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5425 	if (!rx) {
5426 		pr_err("netdev: Unable to allocate %u rx queues\n", count);
5427 		return -ENOMEM;
5428 	}
5429 	dev->_rx = rx;
5430 
5431 	for (i = 0; i < count; i++)
5432 		rx[i].dev = dev;
5433 	return 0;
5434 }
5435 #endif
5436 
5437 static void netdev_init_one_queue(struct net_device *dev,
5438 				  struct netdev_queue *queue, void *_unused)
5439 {
5440 	/* Initialize queue lock */
5441 	spin_lock_init(&queue->_xmit_lock);
5442 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5443 	queue->xmit_lock_owner = -1;
5444 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5445 	queue->dev = dev;
5446 #ifdef CONFIG_BQL
5447 	dql_init(&queue->dql, HZ);
5448 #endif
5449 }
5450 
5451 static int netif_alloc_netdev_queues(struct net_device *dev)
5452 {
5453 	unsigned int count = dev->num_tx_queues;
5454 	struct netdev_queue *tx;
5455 
5456 	BUG_ON(count < 1);
5457 
5458 	tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5459 	if (!tx) {
5460 		pr_err("netdev: Unable to allocate %u tx queues\n", count);
5461 		return -ENOMEM;
5462 	}
5463 	dev->_tx = tx;
5464 
5465 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5466 	spin_lock_init(&dev->tx_global_lock);
5467 
5468 	return 0;
5469 }
5470 
5471 /**
5472  *	register_netdevice	- register a network device
5473  *	@dev: device to register
5474  *
5475  *	Take a completed network device structure and add it to the kernel
5476  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5477  *	chain. 0 is returned on success. A negative errno code is returned
5478  *	on a failure to set up the device, or if the name is a duplicate.
5479  *
5480  *	Callers must hold the rtnl semaphore. You may want
5481  *	register_netdev() instead of this.
5482  *
5483  *	BUGS:
5484  *	The locking appears insufficient to guarantee two parallel registers
5485  *	will not get the same name.
5486  */
5487 
5488 int register_netdevice(struct net_device *dev)
5489 {
5490 	int ret;
5491 	struct net *net = dev_net(dev);
5492 
5493 	BUG_ON(dev_boot_phase);
5494 	ASSERT_RTNL();
5495 
5496 	might_sleep();
5497 
5498 	/* When net_device's are persistent, this will be fatal. */
5499 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5500 	BUG_ON(!net);
5501 
5502 	spin_lock_init(&dev->addr_list_lock);
5503 	netdev_set_addr_lockdep_class(dev);
5504 
5505 	dev->iflink = -1;
5506 
5507 	ret = dev_get_valid_name(dev, dev->name);
5508 	if (ret < 0)
5509 		goto out;
5510 
5511 	/* Init, if this function is available */
5512 	if (dev->netdev_ops->ndo_init) {
5513 		ret = dev->netdev_ops->ndo_init(dev);
5514 		if (ret) {
5515 			if (ret > 0)
5516 				ret = -EIO;
5517 			goto out;
5518 		}
5519 	}
5520 
5521 	dev->ifindex = dev_new_index(net);
5522 	if (dev->iflink == -1)
5523 		dev->iflink = dev->ifindex;
5524 
5525 	/* Transfer changeable features to wanted_features and enable
5526 	 * software offloads (GSO and GRO).
5527 	 */
5528 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
5529 	dev->features |= NETIF_F_SOFT_FEATURES;
5530 	dev->wanted_features = dev->features & dev->hw_features;
5531 
5532 	/* Turn on no cache copy if HW is doing checksum */
5533 	if (!(dev->flags & IFF_LOOPBACK)) {
5534 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
5535 		if (dev->features & NETIF_F_ALL_CSUM) {
5536 			dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5537 			dev->features |= NETIF_F_NOCACHE_COPY;
5538 		}
5539 	}
5540 
5541 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5542 	 */
5543 	dev->vlan_features |= NETIF_F_HIGHDMA;
5544 
5545 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5546 	ret = notifier_to_errno(ret);
5547 	if (ret)
5548 		goto err_uninit;
5549 
5550 	ret = netdev_register_kobject(dev);
5551 	if (ret)
5552 		goto err_uninit;
5553 	dev->reg_state = NETREG_REGISTERED;
5554 
5555 	__netdev_update_features(dev);
5556 
5557 	/*
5558 	 *	Default initial state at registry is that the
5559 	 *	device is present.
5560 	 */
5561 
5562 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5563 
5564 	dev_init_scheduler(dev);
5565 	dev_hold(dev);
5566 	list_netdevice(dev);
5567 
5568 	/* Notify protocols, that a new device appeared. */
5569 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5570 	ret = notifier_to_errno(ret);
5571 	if (ret) {
5572 		rollback_registered(dev);
5573 		dev->reg_state = NETREG_UNREGISTERED;
5574 	}
5575 	/*
5576 	 *	Prevent userspace races by waiting until the network
5577 	 *	device is fully setup before sending notifications.
5578 	 */
5579 	if (!dev->rtnl_link_ops ||
5580 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5581 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5582 
5583 out:
5584 	return ret;
5585 
5586 err_uninit:
5587 	if (dev->netdev_ops->ndo_uninit)
5588 		dev->netdev_ops->ndo_uninit(dev);
5589 	goto out;
5590 }
5591 EXPORT_SYMBOL(register_netdevice);
5592 
5593 /**
5594  *	init_dummy_netdev	- init a dummy network device for NAPI
5595  *	@dev: device to init
5596  *
5597  *	This takes a network device structure and initialize the minimum
5598  *	amount of fields so it can be used to schedule NAPI polls without
5599  *	registering a full blown interface. This is to be used by drivers
5600  *	that need to tie several hardware interfaces to a single NAPI
5601  *	poll scheduler due to HW limitations.
5602  */
5603 int init_dummy_netdev(struct net_device *dev)
5604 {
5605 	/* Clear everything. Note we don't initialize spinlocks
5606 	 * are they aren't supposed to be taken by any of the
5607 	 * NAPI code and this dummy netdev is supposed to be
5608 	 * only ever used for NAPI polls
5609 	 */
5610 	memset(dev, 0, sizeof(struct net_device));
5611 
5612 	/* make sure we BUG if trying to hit standard
5613 	 * register/unregister code path
5614 	 */
5615 	dev->reg_state = NETREG_DUMMY;
5616 
5617 	/* NAPI wants this */
5618 	INIT_LIST_HEAD(&dev->napi_list);
5619 
5620 	/* a dummy interface is started by default */
5621 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5622 	set_bit(__LINK_STATE_START, &dev->state);
5623 
5624 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
5625 	 * because users of this 'device' dont need to change
5626 	 * its refcount.
5627 	 */
5628 
5629 	return 0;
5630 }
5631 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5632 
5633 
5634 /**
5635  *	register_netdev	- register a network device
5636  *	@dev: device to register
5637  *
5638  *	Take a completed network device structure and add it to the kernel
5639  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5640  *	chain. 0 is returned on success. A negative errno code is returned
5641  *	on a failure to set up the device, or if the name is a duplicate.
5642  *
5643  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
5644  *	and expands the device name if you passed a format string to
5645  *	alloc_netdev.
5646  */
5647 int register_netdev(struct net_device *dev)
5648 {
5649 	int err;
5650 
5651 	rtnl_lock();
5652 	err = register_netdevice(dev);
5653 	rtnl_unlock();
5654 	return err;
5655 }
5656 EXPORT_SYMBOL(register_netdev);
5657 
5658 int netdev_refcnt_read(const struct net_device *dev)
5659 {
5660 	int i, refcnt = 0;
5661 
5662 	for_each_possible_cpu(i)
5663 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5664 	return refcnt;
5665 }
5666 EXPORT_SYMBOL(netdev_refcnt_read);
5667 
5668 /*
5669  * netdev_wait_allrefs - wait until all references are gone.
5670  *
5671  * This is called when unregistering network devices.
5672  *
5673  * Any protocol or device that holds a reference should register
5674  * for netdevice notification, and cleanup and put back the
5675  * reference if they receive an UNREGISTER event.
5676  * We can get stuck here if buggy protocols don't correctly
5677  * call dev_put.
5678  */
5679 static void netdev_wait_allrefs(struct net_device *dev)
5680 {
5681 	unsigned long rebroadcast_time, warning_time;
5682 	int refcnt;
5683 
5684 	linkwatch_forget_dev(dev);
5685 
5686 	rebroadcast_time = warning_time = jiffies;
5687 	refcnt = netdev_refcnt_read(dev);
5688 
5689 	while (refcnt != 0) {
5690 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5691 			rtnl_lock();
5692 
5693 			/* Rebroadcast unregister notification */
5694 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5695 			/* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5696 			 * should have already handle it the first time */
5697 
5698 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5699 				     &dev->state)) {
5700 				/* We must not have linkwatch events
5701 				 * pending on unregister. If this
5702 				 * happens, we simply run the queue
5703 				 * unscheduled, resulting in a noop
5704 				 * for this device.
5705 				 */
5706 				linkwatch_run_queue();
5707 			}
5708 
5709 			__rtnl_unlock();
5710 
5711 			rebroadcast_time = jiffies;
5712 		}
5713 
5714 		msleep(250);
5715 
5716 		refcnt = netdev_refcnt_read(dev);
5717 
5718 		if (time_after(jiffies, warning_time + 10 * HZ)) {
5719 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5720 				 dev->name, refcnt);
5721 			warning_time = jiffies;
5722 		}
5723 	}
5724 }
5725 
5726 /* The sequence is:
5727  *
5728  *	rtnl_lock();
5729  *	...
5730  *	register_netdevice(x1);
5731  *	register_netdevice(x2);
5732  *	...
5733  *	unregister_netdevice(y1);
5734  *	unregister_netdevice(y2);
5735  *      ...
5736  *	rtnl_unlock();
5737  *	free_netdev(y1);
5738  *	free_netdev(y2);
5739  *
5740  * We are invoked by rtnl_unlock().
5741  * This allows us to deal with problems:
5742  * 1) We can delete sysfs objects which invoke hotplug
5743  *    without deadlocking with linkwatch via keventd.
5744  * 2) Since we run with the RTNL semaphore not held, we can sleep
5745  *    safely in order to wait for the netdev refcnt to drop to zero.
5746  *
5747  * We must not return until all unregister events added during
5748  * the interval the lock was held have been completed.
5749  */
5750 void netdev_run_todo(void)
5751 {
5752 	struct list_head list;
5753 
5754 	/* Snapshot list, allow later requests */
5755 	list_replace_init(&net_todo_list, &list);
5756 
5757 	__rtnl_unlock();
5758 
5759 	/* Wait for rcu callbacks to finish before attempting to drain
5760 	 * the device list.  This usually avoids a 250ms wait.
5761 	 */
5762 	if (!list_empty(&list))
5763 		rcu_barrier();
5764 
5765 	while (!list_empty(&list)) {
5766 		struct net_device *dev
5767 			= list_first_entry(&list, struct net_device, todo_list);
5768 		list_del(&dev->todo_list);
5769 
5770 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5771 			pr_err("network todo '%s' but state %d\n",
5772 			       dev->name, dev->reg_state);
5773 			dump_stack();
5774 			continue;
5775 		}
5776 
5777 		dev->reg_state = NETREG_UNREGISTERED;
5778 
5779 		on_each_cpu(flush_backlog, dev, 1);
5780 
5781 		netdev_wait_allrefs(dev);
5782 
5783 		/* paranoia */
5784 		BUG_ON(netdev_refcnt_read(dev));
5785 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
5786 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5787 		WARN_ON(dev->dn_ptr);
5788 
5789 		if (dev->destructor)
5790 			dev->destructor(dev);
5791 
5792 		/* Free network device */
5793 		kobject_put(&dev->dev.kobj);
5794 	}
5795 }
5796 
5797 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
5798  * fields in the same order, with only the type differing.
5799  */
5800 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5801 			     const struct net_device_stats *netdev_stats)
5802 {
5803 #if BITS_PER_LONG == 64
5804 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5805 	memcpy(stats64, netdev_stats, sizeof(*stats64));
5806 #else
5807 	size_t i, n = sizeof(*stats64) / sizeof(u64);
5808 	const unsigned long *src = (const unsigned long *)netdev_stats;
5809 	u64 *dst = (u64 *)stats64;
5810 
5811 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5812 		     sizeof(*stats64) / sizeof(u64));
5813 	for (i = 0; i < n; i++)
5814 		dst[i] = src[i];
5815 #endif
5816 }
5817 EXPORT_SYMBOL(netdev_stats_to_stats64);
5818 
5819 /**
5820  *	dev_get_stats	- get network device statistics
5821  *	@dev: device to get statistics from
5822  *	@storage: place to store stats
5823  *
5824  *	Get network statistics from device. Return @storage.
5825  *	The device driver may provide its own method by setting
5826  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5827  *	otherwise the internal statistics structure is used.
5828  */
5829 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5830 					struct rtnl_link_stats64 *storage)
5831 {
5832 	const struct net_device_ops *ops = dev->netdev_ops;
5833 
5834 	if (ops->ndo_get_stats64) {
5835 		memset(storage, 0, sizeof(*storage));
5836 		ops->ndo_get_stats64(dev, storage);
5837 	} else if (ops->ndo_get_stats) {
5838 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5839 	} else {
5840 		netdev_stats_to_stats64(storage, &dev->stats);
5841 	}
5842 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5843 	return storage;
5844 }
5845 EXPORT_SYMBOL(dev_get_stats);
5846 
5847 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5848 {
5849 	struct netdev_queue *queue = dev_ingress_queue(dev);
5850 
5851 #ifdef CONFIG_NET_CLS_ACT
5852 	if (queue)
5853 		return queue;
5854 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5855 	if (!queue)
5856 		return NULL;
5857 	netdev_init_one_queue(dev, queue, NULL);
5858 	queue->qdisc = &noop_qdisc;
5859 	queue->qdisc_sleeping = &noop_qdisc;
5860 	rcu_assign_pointer(dev->ingress_queue, queue);
5861 #endif
5862 	return queue;
5863 }
5864 
5865 /**
5866  *	alloc_netdev_mqs - allocate network device
5867  *	@sizeof_priv:	size of private data to allocate space for
5868  *	@name:		device name format string
5869  *	@setup:		callback to initialize device
5870  *	@txqs:		the number of TX subqueues to allocate
5871  *	@rxqs:		the number of RX subqueues to allocate
5872  *
5873  *	Allocates a struct net_device with private data area for driver use
5874  *	and performs basic initialization.  Also allocates subquue structs
5875  *	for each queue on the device.
5876  */
5877 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5878 		void (*setup)(struct net_device *),
5879 		unsigned int txqs, unsigned int rxqs)
5880 {
5881 	struct net_device *dev;
5882 	size_t alloc_size;
5883 	struct net_device *p;
5884 
5885 	BUG_ON(strlen(name) >= sizeof(dev->name));
5886 
5887 	if (txqs < 1) {
5888 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5889 		return NULL;
5890 	}
5891 
5892 #ifdef CONFIG_RPS
5893 	if (rxqs < 1) {
5894 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5895 		return NULL;
5896 	}
5897 #endif
5898 
5899 	alloc_size = sizeof(struct net_device);
5900 	if (sizeof_priv) {
5901 		/* ensure 32-byte alignment of private area */
5902 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5903 		alloc_size += sizeof_priv;
5904 	}
5905 	/* ensure 32-byte alignment of whole construct */
5906 	alloc_size += NETDEV_ALIGN - 1;
5907 
5908 	p = kzalloc(alloc_size, GFP_KERNEL);
5909 	if (!p) {
5910 		pr_err("alloc_netdev: Unable to allocate device\n");
5911 		return NULL;
5912 	}
5913 
5914 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
5915 	dev->padded = (char *)dev - (char *)p;
5916 
5917 	dev->pcpu_refcnt = alloc_percpu(int);
5918 	if (!dev->pcpu_refcnt)
5919 		goto free_p;
5920 
5921 	if (dev_addr_init(dev))
5922 		goto free_pcpu;
5923 
5924 	dev_mc_init(dev);
5925 	dev_uc_init(dev);
5926 
5927 	dev_net_set(dev, &init_net);
5928 
5929 	dev->gso_max_size = GSO_MAX_SIZE;
5930 
5931 	INIT_LIST_HEAD(&dev->napi_list);
5932 	INIT_LIST_HEAD(&dev->unreg_list);
5933 	INIT_LIST_HEAD(&dev->link_watch_list);
5934 	dev->priv_flags = IFF_XMIT_DST_RELEASE;
5935 	setup(dev);
5936 
5937 	dev->num_tx_queues = txqs;
5938 	dev->real_num_tx_queues = txqs;
5939 	if (netif_alloc_netdev_queues(dev))
5940 		goto free_all;
5941 
5942 #ifdef CONFIG_RPS
5943 	dev->num_rx_queues = rxqs;
5944 	dev->real_num_rx_queues = rxqs;
5945 	if (netif_alloc_rx_queues(dev))
5946 		goto free_all;
5947 #endif
5948 
5949 	strcpy(dev->name, name);
5950 	dev->group = INIT_NETDEV_GROUP;
5951 	return dev;
5952 
5953 free_all:
5954 	free_netdev(dev);
5955 	return NULL;
5956 
5957 free_pcpu:
5958 	free_percpu(dev->pcpu_refcnt);
5959 	kfree(dev->_tx);
5960 #ifdef CONFIG_RPS
5961 	kfree(dev->_rx);
5962 #endif
5963 
5964 free_p:
5965 	kfree(p);
5966 	return NULL;
5967 }
5968 EXPORT_SYMBOL(alloc_netdev_mqs);
5969 
5970 /**
5971  *	free_netdev - free network device
5972  *	@dev: device
5973  *
5974  *	This function does the last stage of destroying an allocated device
5975  * 	interface. The reference to the device object is released.
5976  *	If this is the last reference then it will be freed.
5977  */
5978 void free_netdev(struct net_device *dev)
5979 {
5980 	struct napi_struct *p, *n;
5981 
5982 	release_net(dev_net(dev));
5983 
5984 	kfree(dev->_tx);
5985 #ifdef CONFIG_RPS
5986 	kfree(dev->_rx);
5987 #endif
5988 
5989 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
5990 
5991 	/* Flush device addresses */
5992 	dev_addr_flush(dev);
5993 
5994 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5995 		netif_napi_del(p);
5996 
5997 	free_percpu(dev->pcpu_refcnt);
5998 	dev->pcpu_refcnt = NULL;
5999 
6000 	/*  Compatibility with error handling in drivers */
6001 	if (dev->reg_state == NETREG_UNINITIALIZED) {
6002 		kfree((char *)dev - dev->padded);
6003 		return;
6004 	}
6005 
6006 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6007 	dev->reg_state = NETREG_RELEASED;
6008 
6009 	/* will free via device release */
6010 	put_device(&dev->dev);
6011 }
6012 EXPORT_SYMBOL(free_netdev);
6013 
6014 /**
6015  *	synchronize_net -  Synchronize with packet receive processing
6016  *
6017  *	Wait for packets currently being received to be done.
6018  *	Does not block later packets from starting.
6019  */
6020 void synchronize_net(void)
6021 {
6022 	might_sleep();
6023 	if (rtnl_is_locked())
6024 		synchronize_rcu_expedited();
6025 	else
6026 		synchronize_rcu();
6027 }
6028 EXPORT_SYMBOL(synchronize_net);
6029 
6030 /**
6031  *	unregister_netdevice_queue - remove device from the kernel
6032  *	@dev: device
6033  *	@head: list
6034  *
6035  *	This function shuts down a device interface and removes it
6036  *	from the kernel tables.
6037  *	If head not NULL, device is queued to be unregistered later.
6038  *
6039  *	Callers must hold the rtnl semaphore.  You may want
6040  *	unregister_netdev() instead of this.
6041  */
6042 
6043 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6044 {
6045 	ASSERT_RTNL();
6046 
6047 	if (head) {
6048 		list_move_tail(&dev->unreg_list, head);
6049 	} else {
6050 		rollback_registered(dev);
6051 		/* Finish processing unregister after unlock */
6052 		net_set_todo(dev);
6053 	}
6054 }
6055 EXPORT_SYMBOL(unregister_netdevice_queue);
6056 
6057 /**
6058  *	unregister_netdevice_many - unregister many devices
6059  *	@head: list of devices
6060  */
6061 void unregister_netdevice_many(struct list_head *head)
6062 {
6063 	struct net_device *dev;
6064 
6065 	if (!list_empty(head)) {
6066 		rollback_registered_many(head);
6067 		list_for_each_entry(dev, head, unreg_list)
6068 			net_set_todo(dev);
6069 	}
6070 }
6071 EXPORT_SYMBOL(unregister_netdevice_many);
6072 
6073 /**
6074  *	unregister_netdev - remove device from the kernel
6075  *	@dev: device
6076  *
6077  *	This function shuts down a device interface and removes it
6078  *	from the kernel tables.
6079  *
6080  *	This is just a wrapper for unregister_netdevice that takes
6081  *	the rtnl semaphore.  In general you want to use this and not
6082  *	unregister_netdevice.
6083  */
6084 void unregister_netdev(struct net_device *dev)
6085 {
6086 	rtnl_lock();
6087 	unregister_netdevice(dev);
6088 	rtnl_unlock();
6089 }
6090 EXPORT_SYMBOL(unregister_netdev);
6091 
6092 /**
6093  *	dev_change_net_namespace - move device to different nethost namespace
6094  *	@dev: device
6095  *	@net: network namespace
6096  *	@pat: If not NULL name pattern to try if the current device name
6097  *	      is already taken in the destination network namespace.
6098  *
6099  *	This function shuts down a device interface and moves it
6100  *	to a new network namespace. On success 0 is returned, on
6101  *	a failure a netagive errno code is returned.
6102  *
6103  *	Callers must hold the rtnl semaphore.
6104  */
6105 
6106 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6107 {
6108 	int err;
6109 
6110 	ASSERT_RTNL();
6111 
6112 	/* Don't allow namespace local devices to be moved. */
6113 	err = -EINVAL;
6114 	if (dev->features & NETIF_F_NETNS_LOCAL)
6115 		goto out;
6116 
6117 	/* Ensure the device has been registrered */
6118 	err = -EINVAL;
6119 	if (dev->reg_state != NETREG_REGISTERED)
6120 		goto out;
6121 
6122 	/* Get out if there is nothing todo */
6123 	err = 0;
6124 	if (net_eq(dev_net(dev), net))
6125 		goto out;
6126 
6127 	/* Pick the destination device name, and ensure
6128 	 * we can use it in the destination network namespace.
6129 	 */
6130 	err = -EEXIST;
6131 	if (__dev_get_by_name(net, dev->name)) {
6132 		/* We get here if we can't use the current device name */
6133 		if (!pat)
6134 			goto out;
6135 		if (dev_get_valid_name(dev, pat) < 0)
6136 			goto out;
6137 	}
6138 
6139 	/*
6140 	 * And now a mini version of register_netdevice unregister_netdevice.
6141 	 */
6142 
6143 	/* If device is running close it first. */
6144 	dev_close(dev);
6145 
6146 	/* And unlink it from device chain */
6147 	err = -ENODEV;
6148 	unlist_netdevice(dev);
6149 
6150 	synchronize_net();
6151 
6152 	/* Shutdown queueing discipline. */
6153 	dev_shutdown(dev);
6154 
6155 	/* Notify protocols, that we are about to destroy
6156 	   this device. They should clean all the things.
6157 
6158 	   Note that dev->reg_state stays at NETREG_REGISTERED.
6159 	   This is wanted because this way 8021q and macvlan know
6160 	   the device is just moving and can keep their slaves up.
6161 	*/
6162 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6163 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6164 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6165 
6166 	/*
6167 	 *	Flush the unicast and multicast chains
6168 	 */
6169 	dev_uc_flush(dev);
6170 	dev_mc_flush(dev);
6171 
6172 	/* Actually switch the network namespace */
6173 	dev_net_set(dev, net);
6174 
6175 	/* If there is an ifindex conflict assign a new one */
6176 	if (__dev_get_by_index(net, dev->ifindex)) {
6177 		int iflink = (dev->iflink == dev->ifindex);
6178 		dev->ifindex = dev_new_index(net);
6179 		if (iflink)
6180 			dev->iflink = dev->ifindex;
6181 	}
6182 
6183 	/* Fixup kobjects */
6184 	err = device_rename(&dev->dev, dev->name);
6185 	WARN_ON(err);
6186 
6187 	/* Add the device back in the hashes */
6188 	list_netdevice(dev);
6189 
6190 	/* Notify protocols, that a new device appeared. */
6191 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
6192 
6193 	/*
6194 	 *	Prevent userspace races by waiting until the network
6195 	 *	device is fully setup before sending notifications.
6196 	 */
6197 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6198 
6199 	synchronize_net();
6200 	err = 0;
6201 out:
6202 	return err;
6203 }
6204 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6205 
6206 static int dev_cpu_callback(struct notifier_block *nfb,
6207 			    unsigned long action,
6208 			    void *ocpu)
6209 {
6210 	struct sk_buff **list_skb;
6211 	struct sk_buff *skb;
6212 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
6213 	struct softnet_data *sd, *oldsd;
6214 
6215 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6216 		return NOTIFY_OK;
6217 
6218 	local_irq_disable();
6219 	cpu = smp_processor_id();
6220 	sd = &per_cpu(softnet_data, cpu);
6221 	oldsd = &per_cpu(softnet_data, oldcpu);
6222 
6223 	/* Find end of our completion_queue. */
6224 	list_skb = &sd->completion_queue;
6225 	while (*list_skb)
6226 		list_skb = &(*list_skb)->next;
6227 	/* Append completion queue from offline CPU. */
6228 	*list_skb = oldsd->completion_queue;
6229 	oldsd->completion_queue = NULL;
6230 
6231 	/* Append output queue from offline CPU. */
6232 	if (oldsd->output_queue) {
6233 		*sd->output_queue_tailp = oldsd->output_queue;
6234 		sd->output_queue_tailp = oldsd->output_queue_tailp;
6235 		oldsd->output_queue = NULL;
6236 		oldsd->output_queue_tailp = &oldsd->output_queue;
6237 	}
6238 	/* Append NAPI poll list from offline CPU. */
6239 	if (!list_empty(&oldsd->poll_list)) {
6240 		list_splice_init(&oldsd->poll_list, &sd->poll_list);
6241 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
6242 	}
6243 
6244 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
6245 	local_irq_enable();
6246 
6247 	/* Process offline CPU's input_pkt_queue */
6248 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6249 		netif_rx(skb);
6250 		input_queue_head_incr(oldsd);
6251 	}
6252 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6253 		netif_rx(skb);
6254 		input_queue_head_incr(oldsd);
6255 	}
6256 
6257 	return NOTIFY_OK;
6258 }
6259 
6260 
6261 /**
6262  *	netdev_increment_features - increment feature set by one
6263  *	@all: current feature set
6264  *	@one: new feature set
6265  *	@mask: mask feature set
6266  *
6267  *	Computes a new feature set after adding a device with feature set
6268  *	@one to the master device with current feature set @all.  Will not
6269  *	enable anything that is off in @mask. Returns the new feature set.
6270  */
6271 netdev_features_t netdev_increment_features(netdev_features_t all,
6272 	netdev_features_t one, netdev_features_t mask)
6273 {
6274 	if (mask & NETIF_F_GEN_CSUM)
6275 		mask |= NETIF_F_ALL_CSUM;
6276 	mask |= NETIF_F_VLAN_CHALLENGED;
6277 
6278 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6279 	all &= one | ~NETIF_F_ALL_FOR_ALL;
6280 
6281 	/* If one device supports hw checksumming, set for all. */
6282 	if (all & NETIF_F_GEN_CSUM)
6283 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6284 
6285 	return all;
6286 }
6287 EXPORT_SYMBOL(netdev_increment_features);
6288 
6289 static struct hlist_head *netdev_create_hash(void)
6290 {
6291 	int i;
6292 	struct hlist_head *hash;
6293 
6294 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6295 	if (hash != NULL)
6296 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
6297 			INIT_HLIST_HEAD(&hash[i]);
6298 
6299 	return hash;
6300 }
6301 
6302 /* Initialize per network namespace state */
6303 static int __net_init netdev_init(struct net *net)
6304 {
6305 	INIT_LIST_HEAD(&net->dev_base_head);
6306 
6307 	net->dev_name_head = netdev_create_hash();
6308 	if (net->dev_name_head == NULL)
6309 		goto err_name;
6310 
6311 	net->dev_index_head = netdev_create_hash();
6312 	if (net->dev_index_head == NULL)
6313 		goto err_idx;
6314 
6315 	return 0;
6316 
6317 err_idx:
6318 	kfree(net->dev_name_head);
6319 err_name:
6320 	return -ENOMEM;
6321 }
6322 
6323 /**
6324  *	netdev_drivername - network driver for the device
6325  *	@dev: network device
6326  *
6327  *	Determine network driver for device.
6328  */
6329 const char *netdev_drivername(const struct net_device *dev)
6330 {
6331 	const struct device_driver *driver;
6332 	const struct device *parent;
6333 	const char *empty = "";
6334 
6335 	parent = dev->dev.parent;
6336 	if (!parent)
6337 		return empty;
6338 
6339 	driver = parent->driver;
6340 	if (driver && driver->name)
6341 		return driver->name;
6342 	return empty;
6343 }
6344 
6345 int __netdev_printk(const char *level, const struct net_device *dev,
6346 			   struct va_format *vaf)
6347 {
6348 	int r;
6349 
6350 	if (dev && dev->dev.parent)
6351 		r = dev_printk(level, dev->dev.parent, "%s: %pV",
6352 			       netdev_name(dev), vaf);
6353 	else if (dev)
6354 		r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6355 	else
6356 		r = printk("%s(NULL net_device): %pV", level, vaf);
6357 
6358 	return r;
6359 }
6360 EXPORT_SYMBOL(__netdev_printk);
6361 
6362 int netdev_printk(const char *level, const struct net_device *dev,
6363 		  const char *format, ...)
6364 {
6365 	struct va_format vaf;
6366 	va_list args;
6367 	int r;
6368 
6369 	va_start(args, format);
6370 
6371 	vaf.fmt = format;
6372 	vaf.va = &args;
6373 
6374 	r = __netdev_printk(level, dev, &vaf);
6375 	va_end(args);
6376 
6377 	return r;
6378 }
6379 EXPORT_SYMBOL(netdev_printk);
6380 
6381 #define define_netdev_printk_level(func, level)			\
6382 int func(const struct net_device *dev, const char *fmt, ...)	\
6383 {								\
6384 	int r;							\
6385 	struct va_format vaf;					\
6386 	va_list args;						\
6387 								\
6388 	va_start(args, fmt);					\
6389 								\
6390 	vaf.fmt = fmt;						\
6391 	vaf.va = &args;						\
6392 								\
6393 	r = __netdev_printk(level, dev, &vaf);			\
6394 	va_end(args);						\
6395 								\
6396 	return r;						\
6397 }								\
6398 EXPORT_SYMBOL(func);
6399 
6400 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6401 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6402 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6403 define_netdev_printk_level(netdev_err, KERN_ERR);
6404 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6405 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6406 define_netdev_printk_level(netdev_info, KERN_INFO);
6407 
6408 static void __net_exit netdev_exit(struct net *net)
6409 {
6410 	kfree(net->dev_name_head);
6411 	kfree(net->dev_index_head);
6412 }
6413 
6414 static struct pernet_operations __net_initdata netdev_net_ops = {
6415 	.init = netdev_init,
6416 	.exit = netdev_exit,
6417 };
6418 
6419 static void __net_exit default_device_exit(struct net *net)
6420 {
6421 	struct net_device *dev, *aux;
6422 	/*
6423 	 * Push all migratable network devices back to the
6424 	 * initial network namespace
6425 	 */
6426 	rtnl_lock();
6427 	for_each_netdev_safe(net, dev, aux) {
6428 		int err;
6429 		char fb_name[IFNAMSIZ];
6430 
6431 		/* Ignore unmoveable devices (i.e. loopback) */
6432 		if (dev->features & NETIF_F_NETNS_LOCAL)
6433 			continue;
6434 
6435 		/* Leave virtual devices for the generic cleanup */
6436 		if (dev->rtnl_link_ops)
6437 			continue;
6438 
6439 		/* Push remaining network devices to init_net */
6440 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6441 		err = dev_change_net_namespace(dev, &init_net, fb_name);
6442 		if (err) {
6443 			pr_emerg("%s: failed to move %s to init_net: %d\n",
6444 				 __func__, dev->name, err);
6445 			BUG();
6446 		}
6447 	}
6448 	rtnl_unlock();
6449 }
6450 
6451 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6452 {
6453 	/* At exit all network devices most be removed from a network
6454 	 * namespace.  Do this in the reverse order of registration.
6455 	 * Do this across as many network namespaces as possible to
6456 	 * improve batching efficiency.
6457 	 */
6458 	struct net_device *dev;
6459 	struct net *net;
6460 	LIST_HEAD(dev_kill_list);
6461 
6462 	rtnl_lock();
6463 	list_for_each_entry(net, net_list, exit_list) {
6464 		for_each_netdev_reverse(net, dev) {
6465 			if (dev->rtnl_link_ops)
6466 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6467 			else
6468 				unregister_netdevice_queue(dev, &dev_kill_list);
6469 		}
6470 	}
6471 	unregister_netdevice_many(&dev_kill_list);
6472 	list_del(&dev_kill_list);
6473 	rtnl_unlock();
6474 }
6475 
6476 static struct pernet_operations __net_initdata default_device_ops = {
6477 	.exit = default_device_exit,
6478 	.exit_batch = default_device_exit_batch,
6479 };
6480 
6481 /*
6482  *	Initialize the DEV module. At boot time this walks the device list and
6483  *	unhooks any devices that fail to initialise (normally hardware not
6484  *	present) and leaves us with a valid list of present and active devices.
6485  *
6486  */
6487 
6488 /*
6489  *       This is called single threaded during boot, so no need
6490  *       to take the rtnl semaphore.
6491  */
6492 static int __init net_dev_init(void)
6493 {
6494 	int i, rc = -ENOMEM;
6495 
6496 	BUG_ON(!dev_boot_phase);
6497 
6498 	if (dev_proc_init())
6499 		goto out;
6500 
6501 	if (netdev_kobject_init())
6502 		goto out;
6503 
6504 	INIT_LIST_HEAD(&ptype_all);
6505 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
6506 		INIT_LIST_HEAD(&ptype_base[i]);
6507 
6508 	if (register_pernet_subsys(&netdev_net_ops))
6509 		goto out;
6510 
6511 	/*
6512 	 *	Initialise the packet receive queues.
6513 	 */
6514 
6515 	for_each_possible_cpu(i) {
6516 		struct softnet_data *sd = &per_cpu(softnet_data, i);
6517 
6518 		memset(sd, 0, sizeof(*sd));
6519 		skb_queue_head_init(&sd->input_pkt_queue);
6520 		skb_queue_head_init(&sd->process_queue);
6521 		sd->completion_queue = NULL;
6522 		INIT_LIST_HEAD(&sd->poll_list);
6523 		sd->output_queue = NULL;
6524 		sd->output_queue_tailp = &sd->output_queue;
6525 #ifdef CONFIG_RPS
6526 		sd->csd.func = rps_trigger_softirq;
6527 		sd->csd.info = sd;
6528 		sd->csd.flags = 0;
6529 		sd->cpu = i;
6530 #endif
6531 
6532 		sd->backlog.poll = process_backlog;
6533 		sd->backlog.weight = weight_p;
6534 		sd->backlog.gro_list = NULL;
6535 		sd->backlog.gro_count = 0;
6536 	}
6537 
6538 	dev_boot_phase = 0;
6539 
6540 	/* The loopback device is special if any other network devices
6541 	 * is present in a network namespace the loopback device must
6542 	 * be present. Since we now dynamically allocate and free the
6543 	 * loopback device ensure this invariant is maintained by
6544 	 * keeping the loopback device as the first device on the
6545 	 * list of network devices.  Ensuring the loopback devices
6546 	 * is the first device that appears and the last network device
6547 	 * that disappears.
6548 	 */
6549 	if (register_pernet_device(&loopback_net_ops))
6550 		goto out;
6551 
6552 	if (register_pernet_device(&default_device_ops))
6553 		goto out;
6554 
6555 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6556 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6557 
6558 	hotcpu_notifier(dev_cpu_callback, 0);
6559 	dst_init();
6560 	dev_mcast_init();
6561 	rc = 0;
6562 out:
6563 	return rc;
6564 }
6565 
6566 subsys_initcall(net_dev_init);
6567 
6568 static int __init initialize_hashrnd(void)
6569 {
6570 	get_random_bytes(&hashrnd, sizeof(hashrnd));
6571 	return 0;
6572 }
6573 
6574 late_initcall_sync(initialize_hashrnd);
6575 
6576