1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/proc_fs.h> 101 #include <linux/seq_file.h> 102 #include <linux/stat.h> 103 #include <net/dst.h> 104 #include <net/pkt_sched.h> 105 #include <net/checksum.h> 106 #include <net/xfrm.h> 107 #include <linux/highmem.h> 108 #include <linux/init.h> 109 #include <linux/kmod.h> 110 #include <linux/module.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <net/wext.h> 115 #include <net/iw_handler.h> 116 #include <asm/current.h> 117 #include <linux/audit.h> 118 #include <linux/dmaengine.h> 119 #include <linux/err.h> 120 #include <linux/ctype.h> 121 #include <linux/if_arp.h> 122 #include <linux/if_vlan.h> 123 #include <linux/ip.h> 124 #include <net/ip.h> 125 #include <linux/ipv6.h> 126 #include <linux/in.h> 127 #include <linux/jhash.h> 128 #include <linux/random.h> 129 #include <trace/events/napi.h> 130 #include <trace/events/net.h> 131 #include <trace/events/skb.h> 132 #include <linux/pci.h> 133 #include <linux/inetdevice.h> 134 #include <linux/cpu_rmap.h> 135 #include <linux/net_tstamp.h> 136 #include <linux/static_key.h> 137 #include <net/flow_keys.h> 138 139 #include "net-sysfs.h" 140 141 /* Instead of increasing this, you should create a hash table. */ 142 #define MAX_GRO_SKBS 8 143 144 /* This should be increased if a protocol with a bigger head is added. */ 145 #define GRO_MAX_HEAD (MAX_HEADER + 128) 146 147 /* 148 * The list of packet types we will receive (as opposed to discard) 149 * and the routines to invoke. 150 * 151 * Why 16. Because with 16 the only overlap we get on a hash of the 152 * low nibble of the protocol value is RARP/SNAP/X.25. 153 * 154 * NOTE: That is no longer true with the addition of VLAN tags. Not 155 * sure which should go first, but I bet it won't make much 156 * difference if we are running VLANs. The good news is that 157 * this protocol won't be in the list unless compiled in, so 158 * the average user (w/out VLANs) will not be adversely affected. 159 * --BLG 160 * 161 * 0800 IP 162 * 8100 802.1Q VLAN 163 * 0001 802.3 164 * 0002 AX.25 165 * 0004 802.2 166 * 8035 RARP 167 * 0005 SNAP 168 * 0805 X.25 169 * 0806 ARP 170 * 8137 IPX 171 * 0009 Localtalk 172 * 86DD IPv6 173 */ 174 175 #define PTYPE_HASH_SIZE (16) 176 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 177 178 static DEFINE_SPINLOCK(ptype_lock); 179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 180 static struct list_head ptype_all __read_mostly; /* Taps */ 181 182 /* 183 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 184 * semaphore. 185 * 186 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 187 * 188 * Writers must hold the rtnl semaphore while they loop through the 189 * dev_base_head list, and hold dev_base_lock for writing when they do the 190 * actual updates. This allows pure readers to access the list even 191 * while a writer is preparing to update it. 192 * 193 * To put it another way, dev_base_lock is held for writing only to 194 * protect against pure readers; the rtnl semaphore provides the 195 * protection against other writers. 196 * 197 * See, for example usages, register_netdevice() and 198 * unregister_netdevice(), which must be called with the rtnl 199 * semaphore held. 200 */ 201 DEFINE_RWLOCK(dev_base_lock); 202 EXPORT_SYMBOL(dev_base_lock); 203 204 static inline void dev_base_seq_inc(struct net *net) 205 { 206 while (++net->dev_base_seq == 0); 207 } 208 209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 210 { 211 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 212 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 213 } 214 215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 216 { 217 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 218 } 219 220 static inline void rps_lock(struct softnet_data *sd) 221 { 222 #ifdef CONFIG_RPS 223 spin_lock(&sd->input_pkt_queue.lock); 224 #endif 225 } 226 227 static inline void rps_unlock(struct softnet_data *sd) 228 { 229 #ifdef CONFIG_RPS 230 spin_unlock(&sd->input_pkt_queue.lock); 231 #endif 232 } 233 234 /* Device list insertion */ 235 static int list_netdevice(struct net_device *dev) 236 { 237 struct net *net = dev_net(dev); 238 239 ASSERT_RTNL(); 240 241 write_lock_bh(&dev_base_lock); 242 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 243 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 244 hlist_add_head_rcu(&dev->index_hlist, 245 dev_index_hash(net, dev->ifindex)); 246 write_unlock_bh(&dev_base_lock); 247 248 dev_base_seq_inc(net); 249 250 return 0; 251 } 252 253 /* Device list removal 254 * caller must respect a RCU grace period before freeing/reusing dev 255 */ 256 static void unlist_netdevice(struct net_device *dev) 257 { 258 ASSERT_RTNL(); 259 260 /* Unlink dev from the device chain */ 261 write_lock_bh(&dev_base_lock); 262 list_del_rcu(&dev->dev_list); 263 hlist_del_rcu(&dev->name_hlist); 264 hlist_del_rcu(&dev->index_hlist); 265 write_unlock_bh(&dev_base_lock); 266 267 dev_base_seq_inc(dev_net(dev)); 268 } 269 270 /* 271 * Our notifier list 272 */ 273 274 static RAW_NOTIFIER_HEAD(netdev_chain); 275 276 /* 277 * Device drivers call our routines to queue packets here. We empty the 278 * queue in the local softnet handler. 279 */ 280 281 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 282 EXPORT_PER_CPU_SYMBOL(softnet_data); 283 284 #ifdef CONFIG_LOCKDEP 285 /* 286 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 287 * according to dev->type 288 */ 289 static const unsigned short netdev_lock_type[] = 290 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 291 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 292 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 293 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 294 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 295 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 296 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 297 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 298 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 299 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 300 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 301 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 302 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 303 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, 304 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154, 305 ARPHRD_VOID, ARPHRD_NONE}; 306 307 static const char *const netdev_lock_name[] = 308 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 309 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 310 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 311 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 312 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 313 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 314 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 315 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 316 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 317 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 318 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 319 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 320 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 321 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", 322 "_xmit_PHONET_PIPE", "_xmit_IEEE802154", 323 "_xmit_VOID", "_xmit_NONE"}; 324 325 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 326 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 327 328 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 329 { 330 int i; 331 332 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 333 if (netdev_lock_type[i] == dev_type) 334 return i; 335 /* the last key is used by default */ 336 return ARRAY_SIZE(netdev_lock_type) - 1; 337 } 338 339 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 340 unsigned short dev_type) 341 { 342 int i; 343 344 i = netdev_lock_pos(dev_type); 345 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 346 netdev_lock_name[i]); 347 } 348 349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 350 { 351 int i; 352 353 i = netdev_lock_pos(dev->type); 354 lockdep_set_class_and_name(&dev->addr_list_lock, 355 &netdev_addr_lock_key[i], 356 netdev_lock_name[i]); 357 } 358 #else 359 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 360 unsigned short dev_type) 361 { 362 } 363 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 364 { 365 } 366 #endif 367 368 /******************************************************************************* 369 370 Protocol management and registration routines 371 372 *******************************************************************************/ 373 374 /* 375 * Add a protocol ID to the list. Now that the input handler is 376 * smarter we can dispense with all the messy stuff that used to be 377 * here. 378 * 379 * BEWARE!!! Protocol handlers, mangling input packets, 380 * MUST BE last in hash buckets and checking protocol handlers 381 * MUST start from promiscuous ptype_all chain in net_bh. 382 * It is true now, do not change it. 383 * Explanation follows: if protocol handler, mangling packet, will 384 * be the first on list, it is not able to sense, that packet 385 * is cloned and should be copied-on-write, so that it will 386 * change it and subsequent readers will get broken packet. 387 * --ANK (980803) 388 */ 389 390 static inline struct list_head *ptype_head(const struct packet_type *pt) 391 { 392 if (pt->type == htons(ETH_P_ALL)) 393 return &ptype_all; 394 else 395 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 396 } 397 398 /** 399 * dev_add_pack - add packet handler 400 * @pt: packet type declaration 401 * 402 * Add a protocol handler to the networking stack. The passed &packet_type 403 * is linked into kernel lists and may not be freed until it has been 404 * removed from the kernel lists. 405 * 406 * This call does not sleep therefore it can not 407 * guarantee all CPU's that are in middle of receiving packets 408 * will see the new packet type (until the next received packet). 409 */ 410 411 void dev_add_pack(struct packet_type *pt) 412 { 413 struct list_head *head = ptype_head(pt); 414 415 spin_lock(&ptype_lock); 416 list_add_rcu(&pt->list, head); 417 spin_unlock(&ptype_lock); 418 } 419 EXPORT_SYMBOL(dev_add_pack); 420 421 /** 422 * __dev_remove_pack - remove packet handler 423 * @pt: packet type declaration 424 * 425 * Remove a protocol handler that was previously added to the kernel 426 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 427 * from the kernel lists and can be freed or reused once this function 428 * returns. 429 * 430 * The packet type might still be in use by receivers 431 * and must not be freed until after all the CPU's have gone 432 * through a quiescent state. 433 */ 434 void __dev_remove_pack(struct packet_type *pt) 435 { 436 struct list_head *head = ptype_head(pt); 437 struct packet_type *pt1; 438 439 spin_lock(&ptype_lock); 440 441 list_for_each_entry(pt1, head, list) { 442 if (pt == pt1) { 443 list_del_rcu(&pt->list); 444 goto out; 445 } 446 } 447 448 pr_warn("dev_remove_pack: %p not found\n", pt); 449 out: 450 spin_unlock(&ptype_lock); 451 } 452 EXPORT_SYMBOL(__dev_remove_pack); 453 454 /** 455 * dev_remove_pack - remove packet handler 456 * @pt: packet type declaration 457 * 458 * Remove a protocol handler that was previously added to the kernel 459 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 460 * from the kernel lists and can be freed or reused once this function 461 * returns. 462 * 463 * This call sleeps to guarantee that no CPU is looking at the packet 464 * type after return. 465 */ 466 void dev_remove_pack(struct packet_type *pt) 467 { 468 __dev_remove_pack(pt); 469 470 synchronize_net(); 471 } 472 EXPORT_SYMBOL(dev_remove_pack); 473 474 /****************************************************************************** 475 476 Device Boot-time Settings Routines 477 478 *******************************************************************************/ 479 480 /* Boot time configuration table */ 481 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 482 483 /** 484 * netdev_boot_setup_add - add new setup entry 485 * @name: name of the device 486 * @map: configured settings for the device 487 * 488 * Adds new setup entry to the dev_boot_setup list. The function 489 * returns 0 on error and 1 on success. This is a generic routine to 490 * all netdevices. 491 */ 492 static int netdev_boot_setup_add(char *name, struct ifmap *map) 493 { 494 struct netdev_boot_setup *s; 495 int i; 496 497 s = dev_boot_setup; 498 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 499 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 500 memset(s[i].name, 0, sizeof(s[i].name)); 501 strlcpy(s[i].name, name, IFNAMSIZ); 502 memcpy(&s[i].map, map, sizeof(s[i].map)); 503 break; 504 } 505 } 506 507 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 508 } 509 510 /** 511 * netdev_boot_setup_check - check boot time settings 512 * @dev: the netdevice 513 * 514 * Check boot time settings for the device. 515 * The found settings are set for the device to be used 516 * later in the device probing. 517 * Returns 0 if no settings found, 1 if they are. 518 */ 519 int netdev_boot_setup_check(struct net_device *dev) 520 { 521 struct netdev_boot_setup *s = dev_boot_setup; 522 int i; 523 524 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 525 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 526 !strcmp(dev->name, s[i].name)) { 527 dev->irq = s[i].map.irq; 528 dev->base_addr = s[i].map.base_addr; 529 dev->mem_start = s[i].map.mem_start; 530 dev->mem_end = s[i].map.mem_end; 531 return 1; 532 } 533 } 534 return 0; 535 } 536 EXPORT_SYMBOL(netdev_boot_setup_check); 537 538 539 /** 540 * netdev_boot_base - get address from boot time settings 541 * @prefix: prefix for network device 542 * @unit: id for network device 543 * 544 * Check boot time settings for the base address of device. 545 * The found settings are set for the device to be used 546 * later in the device probing. 547 * Returns 0 if no settings found. 548 */ 549 unsigned long netdev_boot_base(const char *prefix, int unit) 550 { 551 const struct netdev_boot_setup *s = dev_boot_setup; 552 char name[IFNAMSIZ]; 553 int i; 554 555 sprintf(name, "%s%d", prefix, unit); 556 557 /* 558 * If device already registered then return base of 1 559 * to indicate not to probe for this interface 560 */ 561 if (__dev_get_by_name(&init_net, name)) 562 return 1; 563 564 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 565 if (!strcmp(name, s[i].name)) 566 return s[i].map.base_addr; 567 return 0; 568 } 569 570 /* 571 * Saves at boot time configured settings for any netdevice. 572 */ 573 int __init netdev_boot_setup(char *str) 574 { 575 int ints[5]; 576 struct ifmap map; 577 578 str = get_options(str, ARRAY_SIZE(ints), ints); 579 if (!str || !*str) 580 return 0; 581 582 /* Save settings */ 583 memset(&map, 0, sizeof(map)); 584 if (ints[0] > 0) 585 map.irq = ints[1]; 586 if (ints[0] > 1) 587 map.base_addr = ints[2]; 588 if (ints[0] > 2) 589 map.mem_start = ints[3]; 590 if (ints[0] > 3) 591 map.mem_end = ints[4]; 592 593 /* Add new entry to the list */ 594 return netdev_boot_setup_add(str, &map); 595 } 596 597 __setup("netdev=", netdev_boot_setup); 598 599 /******************************************************************************* 600 601 Device Interface Subroutines 602 603 *******************************************************************************/ 604 605 /** 606 * __dev_get_by_name - find a device by its name 607 * @net: the applicable net namespace 608 * @name: name to find 609 * 610 * Find an interface by name. Must be called under RTNL semaphore 611 * or @dev_base_lock. If the name is found a pointer to the device 612 * is returned. If the name is not found then %NULL is returned. The 613 * reference counters are not incremented so the caller must be 614 * careful with locks. 615 */ 616 617 struct net_device *__dev_get_by_name(struct net *net, const char *name) 618 { 619 struct hlist_node *p; 620 struct net_device *dev; 621 struct hlist_head *head = dev_name_hash(net, name); 622 623 hlist_for_each_entry(dev, p, head, name_hlist) 624 if (!strncmp(dev->name, name, IFNAMSIZ)) 625 return dev; 626 627 return NULL; 628 } 629 EXPORT_SYMBOL(__dev_get_by_name); 630 631 /** 632 * dev_get_by_name_rcu - find a device by its name 633 * @net: the applicable net namespace 634 * @name: name to find 635 * 636 * Find an interface by name. 637 * If the name is found a pointer to the device is returned. 638 * If the name is not found then %NULL is returned. 639 * The reference counters are not incremented so the caller must be 640 * careful with locks. The caller must hold RCU lock. 641 */ 642 643 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 644 { 645 struct hlist_node *p; 646 struct net_device *dev; 647 struct hlist_head *head = dev_name_hash(net, name); 648 649 hlist_for_each_entry_rcu(dev, p, head, name_hlist) 650 if (!strncmp(dev->name, name, IFNAMSIZ)) 651 return dev; 652 653 return NULL; 654 } 655 EXPORT_SYMBOL(dev_get_by_name_rcu); 656 657 /** 658 * dev_get_by_name - find a device by its name 659 * @net: the applicable net namespace 660 * @name: name to find 661 * 662 * Find an interface by name. This can be called from any 663 * context and does its own locking. The returned handle has 664 * the usage count incremented and the caller must use dev_put() to 665 * release it when it is no longer needed. %NULL is returned if no 666 * matching device is found. 667 */ 668 669 struct net_device *dev_get_by_name(struct net *net, const char *name) 670 { 671 struct net_device *dev; 672 673 rcu_read_lock(); 674 dev = dev_get_by_name_rcu(net, name); 675 if (dev) 676 dev_hold(dev); 677 rcu_read_unlock(); 678 return dev; 679 } 680 EXPORT_SYMBOL(dev_get_by_name); 681 682 /** 683 * __dev_get_by_index - find a device by its ifindex 684 * @net: the applicable net namespace 685 * @ifindex: index of device 686 * 687 * Search for an interface by index. Returns %NULL if the device 688 * is not found or a pointer to the device. The device has not 689 * had its reference counter increased so the caller must be careful 690 * about locking. The caller must hold either the RTNL semaphore 691 * or @dev_base_lock. 692 */ 693 694 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 695 { 696 struct hlist_node *p; 697 struct net_device *dev; 698 struct hlist_head *head = dev_index_hash(net, ifindex); 699 700 hlist_for_each_entry(dev, p, head, index_hlist) 701 if (dev->ifindex == ifindex) 702 return dev; 703 704 return NULL; 705 } 706 EXPORT_SYMBOL(__dev_get_by_index); 707 708 /** 709 * dev_get_by_index_rcu - find a device by its ifindex 710 * @net: the applicable net namespace 711 * @ifindex: index of device 712 * 713 * Search for an interface by index. Returns %NULL if the device 714 * is not found or a pointer to the device. The device has not 715 * had its reference counter increased so the caller must be careful 716 * about locking. The caller must hold RCU lock. 717 */ 718 719 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 720 { 721 struct hlist_node *p; 722 struct net_device *dev; 723 struct hlist_head *head = dev_index_hash(net, ifindex); 724 725 hlist_for_each_entry_rcu(dev, p, head, index_hlist) 726 if (dev->ifindex == ifindex) 727 return dev; 728 729 return NULL; 730 } 731 EXPORT_SYMBOL(dev_get_by_index_rcu); 732 733 734 /** 735 * dev_get_by_index - find a device by its ifindex 736 * @net: the applicable net namespace 737 * @ifindex: index of device 738 * 739 * Search for an interface by index. Returns NULL if the device 740 * is not found or a pointer to the device. The device returned has 741 * had a reference added and the pointer is safe until the user calls 742 * dev_put to indicate they have finished with it. 743 */ 744 745 struct net_device *dev_get_by_index(struct net *net, int ifindex) 746 { 747 struct net_device *dev; 748 749 rcu_read_lock(); 750 dev = dev_get_by_index_rcu(net, ifindex); 751 if (dev) 752 dev_hold(dev); 753 rcu_read_unlock(); 754 return dev; 755 } 756 EXPORT_SYMBOL(dev_get_by_index); 757 758 /** 759 * dev_getbyhwaddr_rcu - find a device by its hardware address 760 * @net: the applicable net namespace 761 * @type: media type of device 762 * @ha: hardware address 763 * 764 * Search for an interface by MAC address. Returns NULL if the device 765 * is not found or a pointer to the device. 766 * The caller must hold RCU or RTNL. 767 * The returned device has not had its ref count increased 768 * and the caller must therefore be careful about locking 769 * 770 */ 771 772 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 773 const char *ha) 774 { 775 struct net_device *dev; 776 777 for_each_netdev_rcu(net, dev) 778 if (dev->type == type && 779 !memcmp(dev->dev_addr, ha, dev->addr_len)) 780 return dev; 781 782 return NULL; 783 } 784 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 785 786 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 787 { 788 struct net_device *dev; 789 790 ASSERT_RTNL(); 791 for_each_netdev(net, dev) 792 if (dev->type == type) 793 return dev; 794 795 return NULL; 796 } 797 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 798 799 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 800 { 801 struct net_device *dev, *ret = NULL; 802 803 rcu_read_lock(); 804 for_each_netdev_rcu(net, dev) 805 if (dev->type == type) { 806 dev_hold(dev); 807 ret = dev; 808 break; 809 } 810 rcu_read_unlock(); 811 return ret; 812 } 813 EXPORT_SYMBOL(dev_getfirstbyhwtype); 814 815 /** 816 * dev_get_by_flags_rcu - find any device with given flags 817 * @net: the applicable net namespace 818 * @if_flags: IFF_* values 819 * @mask: bitmask of bits in if_flags to check 820 * 821 * Search for any interface with the given flags. Returns NULL if a device 822 * is not found or a pointer to the device. Must be called inside 823 * rcu_read_lock(), and result refcount is unchanged. 824 */ 825 826 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 827 unsigned short mask) 828 { 829 struct net_device *dev, *ret; 830 831 ret = NULL; 832 for_each_netdev_rcu(net, dev) { 833 if (((dev->flags ^ if_flags) & mask) == 0) { 834 ret = dev; 835 break; 836 } 837 } 838 return ret; 839 } 840 EXPORT_SYMBOL(dev_get_by_flags_rcu); 841 842 /** 843 * dev_valid_name - check if name is okay for network device 844 * @name: name string 845 * 846 * Network device names need to be valid file names to 847 * to allow sysfs to work. We also disallow any kind of 848 * whitespace. 849 */ 850 bool dev_valid_name(const char *name) 851 { 852 if (*name == '\0') 853 return false; 854 if (strlen(name) >= IFNAMSIZ) 855 return false; 856 if (!strcmp(name, ".") || !strcmp(name, "..")) 857 return false; 858 859 while (*name) { 860 if (*name == '/' || isspace(*name)) 861 return false; 862 name++; 863 } 864 return true; 865 } 866 EXPORT_SYMBOL(dev_valid_name); 867 868 /** 869 * __dev_alloc_name - allocate a name for a device 870 * @net: network namespace to allocate the device name in 871 * @name: name format string 872 * @buf: scratch buffer and result name string 873 * 874 * Passed a format string - eg "lt%d" it will try and find a suitable 875 * id. It scans list of devices to build up a free map, then chooses 876 * the first empty slot. The caller must hold the dev_base or rtnl lock 877 * while allocating the name and adding the device in order to avoid 878 * duplicates. 879 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 880 * Returns the number of the unit assigned or a negative errno code. 881 */ 882 883 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 884 { 885 int i = 0; 886 const char *p; 887 const int max_netdevices = 8*PAGE_SIZE; 888 unsigned long *inuse; 889 struct net_device *d; 890 891 p = strnchr(name, IFNAMSIZ-1, '%'); 892 if (p) { 893 /* 894 * Verify the string as this thing may have come from 895 * the user. There must be either one "%d" and no other "%" 896 * characters. 897 */ 898 if (p[1] != 'd' || strchr(p + 2, '%')) 899 return -EINVAL; 900 901 /* Use one page as a bit array of possible slots */ 902 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 903 if (!inuse) 904 return -ENOMEM; 905 906 for_each_netdev(net, d) { 907 if (!sscanf(d->name, name, &i)) 908 continue; 909 if (i < 0 || i >= max_netdevices) 910 continue; 911 912 /* avoid cases where sscanf is not exact inverse of printf */ 913 snprintf(buf, IFNAMSIZ, name, i); 914 if (!strncmp(buf, d->name, IFNAMSIZ)) 915 set_bit(i, inuse); 916 } 917 918 i = find_first_zero_bit(inuse, max_netdevices); 919 free_page((unsigned long) inuse); 920 } 921 922 if (buf != name) 923 snprintf(buf, IFNAMSIZ, name, i); 924 if (!__dev_get_by_name(net, buf)) 925 return i; 926 927 /* It is possible to run out of possible slots 928 * when the name is long and there isn't enough space left 929 * for the digits, or if all bits are used. 930 */ 931 return -ENFILE; 932 } 933 934 /** 935 * dev_alloc_name - allocate a name for a device 936 * @dev: device 937 * @name: name format string 938 * 939 * Passed a format string - eg "lt%d" it will try and find a suitable 940 * id. It scans list of devices to build up a free map, then chooses 941 * the first empty slot. The caller must hold the dev_base or rtnl lock 942 * while allocating the name and adding the device in order to avoid 943 * duplicates. 944 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 945 * Returns the number of the unit assigned or a negative errno code. 946 */ 947 948 int dev_alloc_name(struct net_device *dev, const char *name) 949 { 950 char buf[IFNAMSIZ]; 951 struct net *net; 952 int ret; 953 954 BUG_ON(!dev_net(dev)); 955 net = dev_net(dev); 956 ret = __dev_alloc_name(net, name, buf); 957 if (ret >= 0) 958 strlcpy(dev->name, buf, IFNAMSIZ); 959 return ret; 960 } 961 EXPORT_SYMBOL(dev_alloc_name); 962 963 static int dev_get_valid_name(struct net_device *dev, const char *name) 964 { 965 struct net *net; 966 967 BUG_ON(!dev_net(dev)); 968 net = dev_net(dev); 969 970 if (!dev_valid_name(name)) 971 return -EINVAL; 972 973 if (strchr(name, '%')) 974 return dev_alloc_name(dev, name); 975 else if (__dev_get_by_name(net, name)) 976 return -EEXIST; 977 else if (dev->name != name) 978 strlcpy(dev->name, name, IFNAMSIZ); 979 980 return 0; 981 } 982 983 /** 984 * dev_change_name - change name of a device 985 * @dev: device 986 * @newname: name (or format string) must be at least IFNAMSIZ 987 * 988 * Change name of a device, can pass format strings "eth%d". 989 * for wildcarding. 990 */ 991 int dev_change_name(struct net_device *dev, const char *newname) 992 { 993 char oldname[IFNAMSIZ]; 994 int err = 0; 995 int ret; 996 struct net *net; 997 998 ASSERT_RTNL(); 999 BUG_ON(!dev_net(dev)); 1000 1001 net = dev_net(dev); 1002 if (dev->flags & IFF_UP) 1003 return -EBUSY; 1004 1005 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 1006 return 0; 1007 1008 memcpy(oldname, dev->name, IFNAMSIZ); 1009 1010 err = dev_get_valid_name(dev, newname); 1011 if (err < 0) 1012 return err; 1013 1014 rollback: 1015 ret = device_rename(&dev->dev, dev->name); 1016 if (ret) { 1017 memcpy(dev->name, oldname, IFNAMSIZ); 1018 return ret; 1019 } 1020 1021 write_lock_bh(&dev_base_lock); 1022 hlist_del_rcu(&dev->name_hlist); 1023 write_unlock_bh(&dev_base_lock); 1024 1025 synchronize_rcu(); 1026 1027 write_lock_bh(&dev_base_lock); 1028 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1029 write_unlock_bh(&dev_base_lock); 1030 1031 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1032 ret = notifier_to_errno(ret); 1033 1034 if (ret) { 1035 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1036 if (err >= 0) { 1037 err = ret; 1038 memcpy(dev->name, oldname, IFNAMSIZ); 1039 goto rollback; 1040 } else { 1041 pr_err("%s: name change rollback failed: %d\n", 1042 dev->name, ret); 1043 } 1044 } 1045 1046 return err; 1047 } 1048 1049 /** 1050 * dev_set_alias - change ifalias of a device 1051 * @dev: device 1052 * @alias: name up to IFALIASZ 1053 * @len: limit of bytes to copy from info 1054 * 1055 * Set ifalias for a device, 1056 */ 1057 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1058 { 1059 ASSERT_RTNL(); 1060 1061 if (len >= IFALIASZ) 1062 return -EINVAL; 1063 1064 if (!len) { 1065 if (dev->ifalias) { 1066 kfree(dev->ifalias); 1067 dev->ifalias = NULL; 1068 } 1069 return 0; 1070 } 1071 1072 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1073 if (!dev->ifalias) 1074 return -ENOMEM; 1075 1076 strlcpy(dev->ifalias, alias, len+1); 1077 return len; 1078 } 1079 1080 1081 /** 1082 * netdev_features_change - device changes features 1083 * @dev: device to cause notification 1084 * 1085 * Called to indicate a device has changed features. 1086 */ 1087 void netdev_features_change(struct net_device *dev) 1088 { 1089 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1090 } 1091 EXPORT_SYMBOL(netdev_features_change); 1092 1093 /** 1094 * netdev_state_change - device changes state 1095 * @dev: device to cause notification 1096 * 1097 * Called to indicate a device has changed state. This function calls 1098 * the notifier chains for netdev_chain and sends a NEWLINK message 1099 * to the routing socket. 1100 */ 1101 void netdev_state_change(struct net_device *dev) 1102 { 1103 if (dev->flags & IFF_UP) { 1104 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1105 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1106 } 1107 } 1108 EXPORT_SYMBOL(netdev_state_change); 1109 1110 int netdev_bonding_change(struct net_device *dev, unsigned long event) 1111 { 1112 return call_netdevice_notifiers(event, dev); 1113 } 1114 EXPORT_SYMBOL(netdev_bonding_change); 1115 1116 /** 1117 * dev_load - load a network module 1118 * @net: the applicable net namespace 1119 * @name: name of interface 1120 * 1121 * If a network interface is not present and the process has suitable 1122 * privileges this function loads the module. If module loading is not 1123 * available in this kernel then it becomes a nop. 1124 */ 1125 1126 void dev_load(struct net *net, const char *name) 1127 { 1128 struct net_device *dev; 1129 int no_module; 1130 1131 rcu_read_lock(); 1132 dev = dev_get_by_name_rcu(net, name); 1133 rcu_read_unlock(); 1134 1135 no_module = !dev; 1136 if (no_module && capable(CAP_NET_ADMIN)) 1137 no_module = request_module("netdev-%s", name); 1138 if (no_module && capable(CAP_SYS_MODULE)) { 1139 if (!request_module("%s", name)) 1140 pr_err("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s instead.\n", 1141 name); 1142 } 1143 } 1144 EXPORT_SYMBOL(dev_load); 1145 1146 static int __dev_open(struct net_device *dev) 1147 { 1148 const struct net_device_ops *ops = dev->netdev_ops; 1149 int ret; 1150 1151 ASSERT_RTNL(); 1152 1153 if (!netif_device_present(dev)) 1154 return -ENODEV; 1155 1156 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1157 ret = notifier_to_errno(ret); 1158 if (ret) 1159 return ret; 1160 1161 set_bit(__LINK_STATE_START, &dev->state); 1162 1163 if (ops->ndo_validate_addr) 1164 ret = ops->ndo_validate_addr(dev); 1165 1166 if (!ret && ops->ndo_open) 1167 ret = ops->ndo_open(dev); 1168 1169 if (ret) 1170 clear_bit(__LINK_STATE_START, &dev->state); 1171 else { 1172 dev->flags |= IFF_UP; 1173 net_dmaengine_get(); 1174 dev_set_rx_mode(dev); 1175 dev_activate(dev); 1176 } 1177 1178 return ret; 1179 } 1180 1181 /** 1182 * dev_open - prepare an interface for use. 1183 * @dev: device to open 1184 * 1185 * Takes a device from down to up state. The device's private open 1186 * function is invoked and then the multicast lists are loaded. Finally 1187 * the device is moved into the up state and a %NETDEV_UP message is 1188 * sent to the netdev notifier chain. 1189 * 1190 * Calling this function on an active interface is a nop. On a failure 1191 * a negative errno code is returned. 1192 */ 1193 int dev_open(struct net_device *dev) 1194 { 1195 int ret; 1196 1197 if (dev->flags & IFF_UP) 1198 return 0; 1199 1200 ret = __dev_open(dev); 1201 if (ret < 0) 1202 return ret; 1203 1204 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1205 call_netdevice_notifiers(NETDEV_UP, dev); 1206 1207 return ret; 1208 } 1209 EXPORT_SYMBOL(dev_open); 1210 1211 static int __dev_close_many(struct list_head *head) 1212 { 1213 struct net_device *dev; 1214 1215 ASSERT_RTNL(); 1216 might_sleep(); 1217 1218 list_for_each_entry(dev, head, unreg_list) { 1219 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1220 1221 clear_bit(__LINK_STATE_START, &dev->state); 1222 1223 /* Synchronize to scheduled poll. We cannot touch poll list, it 1224 * can be even on different cpu. So just clear netif_running(). 1225 * 1226 * dev->stop() will invoke napi_disable() on all of it's 1227 * napi_struct instances on this device. 1228 */ 1229 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1230 } 1231 1232 dev_deactivate_many(head); 1233 1234 list_for_each_entry(dev, head, unreg_list) { 1235 const struct net_device_ops *ops = dev->netdev_ops; 1236 1237 /* 1238 * Call the device specific close. This cannot fail. 1239 * Only if device is UP 1240 * 1241 * We allow it to be called even after a DETACH hot-plug 1242 * event. 1243 */ 1244 if (ops->ndo_stop) 1245 ops->ndo_stop(dev); 1246 1247 dev->flags &= ~IFF_UP; 1248 net_dmaengine_put(); 1249 } 1250 1251 return 0; 1252 } 1253 1254 static int __dev_close(struct net_device *dev) 1255 { 1256 int retval; 1257 LIST_HEAD(single); 1258 1259 list_add(&dev->unreg_list, &single); 1260 retval = __dev_close_many(&single); 1261 list_del(&single); 1262 return retval; 1263 } 1264 1265 static int dev_close_many(struct list_head *head) 1266 { 1267 struct net_device *dev, *tmp; 1268 LIST_HEAD(tmp_list); 1269 1270 list_for_each_entry_safe(dev, tmp, head, unreg_list) 1271 if (!(dev->flags & IFF_UP)) 1272 list_move(&dev->unreg_list, &tmp_list); 1273 1274 __dev_close_many(head); 1275 1276 list_for_each_entry(dev, head, unreg_list) { 1277 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1278 call_netdevice_notifiers(NETDEV_DOWN, dev); 1279 } 1280 1281 /* rollback_registered_many needs the complete original list */ 1282 list_splice(&tmp_list, head); 1283 return 0; 1284 } 1285 1286 /** 1287 * dev_close - shutdown an interface. 1288 * @dev: device to shutdown 1289 * 1290 * This function moves an active device into down state. A 1291 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1292 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1293 * chain. 1294 */ 1295 int dev_close(struct net_device *dev) 1296 { 1297 if (dev->flags & IFF_UP) { 1298 LIST_HEAD(single); 1299 1300 list_add(&dev->unreg_list, &single); 1301 dev_close_many(&single); 1302 list_del(&single); 1303 } 1304 return 0; 1305 } 1306 EXPORT_SYMBOL(dev_close); 1307 1308 1309 /** 1310 * dev_disable_lro - disable Large Receive Offload on a device 1311 * @dev: device 1312 * 1313 * Disable Large Receive Offload (LRO) on a net device. Must be 1314 * called under RTNL. This is needed if received packets may be 1315 * forwarded to another interface. 1316 */ 1317 void dev_disable_lro(struct net_device *dev) 1318 { 1319 /* 1320 * If we're trying to disable lro on a vlan device 1321 * use the underlying physical device instead 1322 */ 1323 if (is_vlan_dev(dev)) 1324 dev = vlan_dev_real_dev(dev); 1325 1326 dev->wanted_features &= ~NETIF_F_LRO; 1327 netdev_update_features(dev); 1328 1329 if (unlikely(dev->features & NETIF_F_LRO)) 1330 netdev_WARN(dev, "failed to disable LRO!\n"); 1331 } 1332 EXPORT_SYMBOL(dev_disable_lro); 1333 1334 1335 static int dev_boot_phase = 1; 1336 1337 /** 1338 * register_netdevice_notifier - register a network notifier block 1339 * @nb: notifier 1340 * 1341 * Register a notifier to be called when network device events occur. 1342 * The notifier passed is linked into the kernel structures and must 1343 * not be reused until it has been unregistered. A negative errno code 1344 * is returned on a failure. 1345 * 1346 * When registered all registration and up events are replayed 1347 * to the new notifier to allow device to have a race free 1348 * view of the network device list. 1349 */ 1350 1351 int register_netdevice_notifier(struct notifier_block *nb) 1352 { 1353 struct net_device *dev; 1354 struct net_device *last; 1355 struct net *net; 1356 int err; 1357 1358 rtnl_lock(); 1359 err = raw_notifier_chain_register(&netdev_chain, nb); 1360 if (err) 1361 goto unlock; 1362 if (dev_boot_phase) 1363 goto unlock; 1364 for_each_net(net) { 1365 for_each_netdev(net, dev) { 1366 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1367 err = notifier_to_errno(err); 1368 if (err) 1369 goto rollback; 1370 1371 if (!(dev->flags & IFF_UP)) 1372 continue; 1373 1374 nb->notifier_call(nb, NETDEV_UP, dev); 1375 } 1376 } 1377 1378 unlock: 1379 rtnl_unlock(); 1380 return err; 1381 1382 rollback: 1383 last = dev; 1384 for_each_net(net) { 1385 for_each_netdev(net, dev) { 1386 if (dev == last) 1387 goto outroll; 1388 1389 if (dev->flags & IFF_UP) { 1390 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1391 nb->notifier_call(nb, NETDEV_DOWN, dev); 1392 } 1393 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1394 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1395 } 1396 } 1397 1398 outroll: 1399 raw_notifier_chain_unregister(&netdev_chain, nb); 1400 goto unlock; 1401 } 1402 EXPORT_SYMBOL(register_netdevice_notifier); 1403 1404 /** 1405 * unregister_netdevice_notifier - unregister a network notifier block 1406 * @nb: notifier 1407 * 1408 * Unregister a notifier previously registered by 1409 * register_netdevice_notifier(). The notifier is unlinked into the 1410 * kernel structures and may then be reused. A negative errno code 1411 * is returned on a failure. 1412 * 1413 * After unregistering unregister and down device events are synthesized 1414 * for all devices on the device list to the removed notifier to remove 1415 * the need for special case cleanup code. 1416 */ 1417 1418 int unregister_netdevice_notifier(struct notifier_block *nb) 1419 { 1420 struct net_device *dev; 1421 struct net *net; 1422 int err; 1423 1424 rtnl_lock(); 1425 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1426 if (err) 1427 goto unlock; 1428 1429 for_each_net(net) { 1430 for_each_netdev(net, dev) { 1431 if (dev->flags & IFF_UP) { 1432 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1433 nb->notifier_call(nb, NETDEV_DOWN, dev); 1434 } 1435 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1436 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1437 } 1438 } 1439 unlock: 1440 rtnl_unlock(); 1441 return err; 1442 } 1443 EXPORT_SYMBOL(unregister_netdevice_notifier); 1444 1445 /** 1446 * call_netdevice_notifiers - call all network notifier blocks 1447 * @val: value passed unmodified to notifier function 1448 * @dev: net_device pointer passed unmodified to notifier function 1449 * 1450 * Call all network notifier blocks. Parameters and return value 1451 * are as for raw_notifier_call_chain(). 1452 */ 1453 1454 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1455 { 1456 ASSERT_RTNL(); 1457 return raw_notifier_call_chain(&netdev_chain, val, dev); 1458 } 1459 EXPORT_SYMBOL(call_netdevice_notifiers); 1460 1461 static struct static_key netstamp_needed __read_mostly; 1462 #ifdef HAVE_JUMP_LABEL 1463 /* We are not allowed to call static_key_slow_dec() from irq context 1464 * If net_disable_timestamp() is called from irq context, defer the 1465 * static_key_slow_dec() calls. 1466 */ 1467 static atomic_t netstamp_needed_deferred; 1468 #endif 1469 1470 void net_enable_timestamp(void) 1471 { 1472 #ifdef HAVE_JUMP_LABEL 1473 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1474 1475 if (deferred) { 1476 while (--deferred) 1477 static_key_slow_dec(&netstamp_needed); 1478 return; 1479 } 1480 #endif 1481 WARN_ON(in_interrupt()); 1482 static_key_slow_inc(&netstamp_needed); 1483 } 1484 EXPORT_SYMBOL(net_enable_timestamp); 1485 1486 void net_disable_timestamp(void) 1487 { 1488 #ifdef HAVE_JUMP_LABEL 1489 if (in_interrupt()) { 1490 atomic_inc(&netstamp_needed_deferred); 1491 return; 1492 } 1493 #endif 1494 static_key_slow_dec(&netstamp_needed); 1495 } 1496 EXPORT_SYMBOL(net_disable_timestamp); 1497 1498 static inline void net_timestamp_set(struct sk_buff *skb) 1499 { 1500 skb->tstamp.tv64 = 0; 1501 if (static_key_false(&netstamp_needed)) 1502 __net_timestamp(skb); 1503 } 1504 1505 #define net_timestamp_check(COND, SKB) \ 1506 if (static_key_false(&netstamp_needed)) { \ 1507 if ((COND) && !(SKB)->tstamp.tv64) \ 1508 __net_timestamp(SKB); \ 1509 } \ 1510 1511 static int net_hwtstamp_validate(struct ifreq *ifr) 1512 { 1513 struct hwtstamp_config cfg; 1514 enum hwtstamp_tx_types tx_type; 1515 enum hwtstamp_rx_filters rx_filter; 1516 int tx_type_valid = 0; 1517 int rx_filter_valid = 0; 1518 1519 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1520 return -EFAULT; 1521 1522 if (cfg.flags) /* reserved for future extensions */ 1523 return -EINVAL; 1524 1525 tx_type = cfg.tx_type; 1526 rx_filter = cfg.rx_filter; 1527 1528 switch (tx_type) { 1529 case HWTSTAMP_TX_OFF: 1530 case HWTSTAMP_TX_ON: 1531 case HWTSTAMP_TX_ONESTEP_SYNC: 1532 tx_type_valid = 1; 1533 break; 1534 } 1535 1536 switch (rx_filter) { 1537 case HWTSTAMP_FILTER_NONE: 1538 case HWTSTAMP_FILTER_ALL: 1539 case HWTSTAMP_FILTER_SOME: 1540 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1541 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1542 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1543 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1544 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1545 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1546 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1547 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1548 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1549 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1550 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1551 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1552 rx_filter_valid = 1; 1553 break; 1554 } 1555 1556 if (!tx_type_valid || !rx_filter_valid) 1557 return -ERANGE; 1558 1559 return 0; 1560 } 1561 1562 static inline bool is_skb_forwardable(struct net_device *dev, 1563 struct sk_buff *skb) 1564 { 1565 unsigned int len; 1566 1567 if (!(dev->flags & IFF_UP)) 1568 return false; 1569 1570 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1571 if (skb->len <= len) 1572 return true; 1573 1574 /* if TSO is enabled, we don't care about the length as the packet 1575 * could be forwarded without being segmented before 1576 */ 1577 if (skb_is_gso(skb)) 1578 return true; 1579 1580 return false; 1581 } 1582 1583 /** 1584 * dev_forward_skb - loopback an skb to another netif 1585 * 1586 * @dev: destination network device 1587 * @skb: buffer to forward 1588 * 1589 * return values: 1590 * NET_RX_SUCCESS (no congestion) 1591 * NET_RX_DROP (packet was dropped, but freed) 1592 * 1593 * dev_forward_skb can be used for injecting an skb from the 1594 * start_xmit function of one device into the receive queue 1595 * of another device. 1596 * 1597 * The receiving device may be in another namespace, so 1598 * we have to clear all information in the skb that could 1599 * impact namespace isolation. 1600 */ 1601 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1602 { 1603 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1604 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1605 atomic_long_inc(&dev->rx_dropped); 1606 kfree_skb(skb); 1607 return NET_RX_DROP; 1608 } 1609 } 1610 1611 skb_orphan(skb); 1612 nf_reset(skb); 1613 1614 if (unlikely(!is_skb_forwardable(dev, skb))) { 1615 atomic_long_inc(&dev->rx_dropped); 1616 kfree_skb(skb); 1617 return NET_RX_DROP; 1618 } 1619 skb->skb_iif = 0; 1620 skb->dev = dev; 1621 skb_dst_drop(skb); 1622 skb->tstamp.tv64 = 0; 1623 skb->pkt_type = PACKET_HOST; 1624 skb->protocol = eth_type_trans(skb, dev); 1625 skb->mark = 0; 1626 secpath_reset(skb); 1627 nf_reset(skb); 1628 return netif_rx(skb); 1629 } 1630 EXPORT_SYMBOL_GPL(dev_forward_skb); 1631 1632 static inline int deliver_skb(struct sk_buff *skb, 1633 struct packet_type *pt_prev, 1634 struct net_device *orig_dev) 1635 { 1636 atomic_inc(&skb->users); 1637 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1638 } 1639 1640 /* 1641 * Support routine. Sends outgoing frames to any network 1642 * taps currently in use. 1643 */ 1644 1645 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1646 { 1647 struct packet_type *ptype; 1648 struct sk_buff *skb2 = NULL; 1649 struct packet_type *pt_prev = NULL; 1650 1651 rcu_read_lock(); 1652 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1653 /* Never send packets back to the socket 1654 * they originated from - MvS (miquels@drinkel.ow.org) 1655 */ 1656 if ((ptype->dev == dev || !ptype->dev) && 1657 (ptype->af_packet_priv == NULL || 1658 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1659 if (pt_prev) { 1660 deliver_skb(skb2, pt_prev, skb->dev); 1661 pt_prev = ptype; 1662 continue; 1663 } 1664 1665 skb2 = skb_clone(skb, GFP_ATOMIC); 1666 if (!skb2) 1667 break; 1668 1669 net_timestamp_set(skb2); 1670 1671 /* skb->nh should be correctly 1672 set by sender, so that the second statement is 1673 just protection against buggy protocols. 1674 */ 1675 skb_reset_mac_header(skb2); 1676 1677 if (skb_network_header(skb2) < skb2->data || 1678 skb2->network_header > skb2->tail) { 1679 if (net_ratelimit()) 1680 pr_crit("protocol %04x is buggy, dev %s\n", 1681 ntohs(skb2->protocol), 1682 dev->name); 1683 skb_reset_network_header(skb2); 1684 } 1685 1686 skb2->transport_header = skb2->network_header; 1687 skb2->pkt_type = PACKET_OUTGOING; 1688 pt_prev = ptype; 1689 } 1690 } 1691 if (pt_prev) 1692 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1693 rcu_read_unlock(); 1694 } 1695 1696 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1697 * @dev: Network device 1698 * @txq: number of queues available 1699 * 1700 * If real_num_tx_queues is changed the tc mappings may no longer be 1701 * valid. To resolve this verify the tc mapping remains valid and if 1702 * not NULL the mapping. With no priorities mapping to this 1703 * offset/count pair it will no longer be used. In the worst case TC0 1704 * is invalid nothing can be done so disable priority mappings. If is 1705 * expected that drivers will fix this mapping if they can before 1706 * calling netif_set_real_num_tx_queues. 1707 */ 1708 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1709 { 1710 int i; 1711 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1712 1713 /* If TC0 is invalidated disable TC mapping */ 1714 if (tc->offset + tc->count > txq) { 1715 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1716 dev->num_tc = 0; 1717 return; 1718 } 1719 1720 /* Invalidated prio to tc mappings set to TC0 */ 1721 for (i = 1; i < TC_BITMASK + 1; i++) { 1722 int q = netdev_get_prio_tc_map(dev, i); 1723 1724 tc = &dev->tc_to_txq[q]; 1725 if (tc->offset + tc->count > txq) { 1726 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1727 i, q); 1728 netdev_set_prio_tc_map(dev, i, 0); 1729 } 1730 } 1731 } 1732 1733 /* 1734 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 1735 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 1736 */ 1737 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 1738 { 1739 int rc; 1740 1741 if (txq < 1 || txq > dev->num_tx_queues) 1742 return -EINVAL; 1743 1744 if (dev->reg_state == NETREG_REGISTERED || 1745 dev->reg_state == NETREG_UNREGISTERING) { 1746 ASSERT_RTNL(); 1747 1748 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 1749 txq); 1750 if (rc) 1751 return rc; 1752 1753 if (dev->num_tc) 1754 netif_setup_tc(dev, txq); 1755 1756 if (txq < dev->real_num_tx_queues) 1757 qdisc_reset_all_tx_gt(dev, txq); 1758 } 1759 1760 dev->real_num_tx_queues = txq; 1761 return 0; 1762 } 1763 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 1764 1765 #ifdef CONFIG_RPS 1766 /** 1767 * netif_set_real_num_rx_queues - set actual number of RX queues used 1768 * @dev: Network device 1769 * @rxq: Actual number of RX queues 1770 * 1771 * This must be called either with the rtnl_lock held or before 1772 * registration of the net device. Returns 0 on success, or a 1773 * negative error code. If called before registration, it always 1774 * succeeds. 1775 */ 1776 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 1777 { 1778 int rc; 1779 1780 if (rxq < 1 || rxq > dev->num_rx_queues) 1781 return -EINVAL; 1782 1783 if (dev->reg_state == NETREG_REGISTERED) { 1784 ASSERT_RTNL(); 1785 1786 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 1787 rxq); 1788 if (rc) 1789 return rc; 1790 } 1791 1792 dev->real_num_rx_queues = rxq; 1793 return 0; 1794 } 1795 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 1796 #endif 1797 1798 static inline void __netif_reschedule(struct Qdisc *q) 1799 { 1800 struct softnet_data *sd; 1801 unsigned long flags; 1802 1803 local_irq_save(flags); 1804 sd = &__get_cpu_var(softnet_data); 1805 q->next_sched = NULL; 1806 *sd->output_queue_tailp = q; 1807 sd->output_queue_tailp = &q->next_sched; 1808 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1809 local_irq_restore(flags); 1810 } 1811 1812 void __netif_schedule(struct Qdisc *q) 1813 { 1814 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1815 __netif_reschedule(q); 1816 } 1817 EXPORT_SYMBOL(__netif_schedule); 1818 1819 void dev_kfree_skb_irq(struct sk_buff *skb) 1820 { 1821 if (atomic_dec_and_test(&skb->users)) { 1822 struct softnet_data *sd; 1823 unsigned long flags; 1824 1825 local_irq_save(flags); 1826 sd = &__get_cpu_var(softnet_data); 1827 skb->next = sd->completion_queue; 1828 sd->completion_queue = skb; 1829 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1830 local_irq_restore(flags); 1831 } 1832 } 1833 EXPORT_SYMBOL(dev_kfree_skb_irq); 1834 1835 void dev_kfree_skb_any(struct sk_buff *skb) 1836 { 1837 if (in_irq() || irqs_disabled()) 1838 dev_kfree_skb_irq(skb); 1839 else 1840 dev_kfree_skb(skb); 1841 } 1842 EXPORT_SYMBOL(dev_kfree_skb_any); 1843 1844 1845 /** 1846 * netif_device_detach - mark device as removed 1847 * @dev: network device 1848 * 1849 * Mark device as removed from system and therefore no longer available. 1850 */ 1851 void netif_device_detach(struct net_device *dev) 1852 { 1853 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1854 netif_running(dev)) { 1855 netif_tx_stop_all_queues(dev); 1856 } 1857 } 1858 EXPORT_SYMBOL(netif_device_detach); 1859 1860 /** 1861 * netif_device_attach - mark device as attached 1862 * @dev: network device 1863 * 1864 * Mark device as attached from system and restart if needed. 1865 */ 1866 void netif_device_attach(struct net_device *dev) 1867 { 1868 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1869 netif_running(dev)) { 1870 netif_tx_wake_all_queues(dev); 1871 __netdev_watchdog_up(dev); 1872 } 1873 } 1874 EXPORT_SYMBOL(netif_device_attach); 1875 1876 static void skb_warn_bad_offload(const struct sk_buff *skb) 1877 { 1878 static const netdev_features_t null_features = 0; 1879 struct net_device *dev = skb->dev; 1880 const char *driver = ""; 1881 1882 if (dev && dev->dev.parent) 1883 driver = dev_driver_string(dev->dev.parent); 1884 1885 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 1886 "gso_type=%d ip_summed=%d\n", 1887 driver, dev ? &dev->features : &null_features, 1888 skb->sk ? &skb->sk->sk_route_caps : &null_features, 1889 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 1890 skb_shinfo(skb)->gso_type, skb->ip_summed); 1891 } 1892 1893 /* 1894 * Invalidate hardware checksum when packet is to be mangled, and 1895 * complete checksum manually on outgoing path. 1896 */ 1897 int skb_checksum_help(struct sk_buff *skb) 1898 { 1899 __wsum csum; 1900 int ret = 0, offset; 1901 1902 if (skb->ip_summed == CHECKSUM_COMPLETE) 1903 goto out_set_summed; 1904 1905 if (unlikely(skb_shinfo(skb)->gso_size)) { 1906 skb_warn_bad_offload(skb); 1907 return -EINVAL; 1908 } 1909 1910 offset = skb_checksum_start_offset(skb); 1911 BUG_ON(offset >= skb_headlen(skb)); 1912 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1913 1914 offset += skb->csum_offset; 1915 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1916 1917 if (skb_cloned(skb) && 1918 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1919 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1920 if (ret) 1921 goto out; 1922 } 1923 1924 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1925 out_set_summed: 1926 skb->ip_summed = CHECKSUM_NONE; 1927 out: 1928 return ret; 1929 } 1930 EXPORT_SYMBOL(skb_checksum_help); 1931 1932 /** 1933 * skb_gso_segment - Perform segmentation on skb. 1934 * @skb: buffer to segment 1935 * @features: features for the output path (see dev->features) 1936 * 1937 * This function segments the given skb and returns a list of segments. 1938 * 1939 * It may return NULL if the skb requires no segmentation. This is 1940 * only possible when GSO is used for verifying header integrity. 1941 */ 1942 struct sk_buff *skb_gso_segment(struct sk_buff *skb, 1943 netdev_features_t features) 1944 { 1945 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1946 struct packet_type *ptype; 1947 __be16 type = skb->protocol; 1948 int vlan_depth = ETH_HLEN; 1949 int err; 1950 1951 while (type == htons(ETH_P_8021Q)) { 1952 struct vlan_hdr *vh; 1953 1954 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 1955 return ERR_PTR(-EINVAL); 1956 1957 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 1958 type = vh->h_vlan_encapsulated_proto; 1959 vlan_depth += VLAN_HLEN; 1960 } 1961 1962 skb_reset_mac_header(skb); 1963 skb->mac_len = skb->network_header - skb->mac_header; 1964 __skb_pull(skb, skb->mac_len); 1965 1966 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1967 skb_warn_bad_offload(skb); 1968 1969 if (skb_header_cloned(skb) && 1970 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1971 return ERR_PTR(err); 1972 } 1973 1974 rcu_read_lock(); 1975 list_for_each_entry_rcu(ptype, 1976 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1977 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1978 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1979 err = ptype->gso_send_check(skb); 1980 segs = ERR_PTR(err); 1981 if (err || skb_gso_ok(skb, features)) 1982 break; 1983 __skb_push(skb, (skb->data - 1984 skb_network_header(skb))); 1985 } 1986 segs = ptype->gso_segment(skb, features); 1987 break; 1988 } 1989 } 1990 rcu_read_unlock(); 1991 1992 __skb_push(skb, skb->data - skb_mac_header(skb)); 1993 1994 return segs; 1995 } 1996 EXPORT_SYMBOL(skb_gso_segment); 1997 1998 /* Take action when hardware reception checksum errors are detected. */ 1999 #ifdef CONFIG_BUG 2000 void netdev_rx_csum_fault(struct net_device *dev) 2001 { 2002 if (net_ratelimit()) { 2003 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2004 dump_stack(); 2005 } 2006 } 2007 EXPORT_SYMBOL(netdev_rx_csum_fault); 2008 #endif 2009 2010 /* Actually, we should eliminate this check as soon as we know, that: 2011 * 1. IOMMU is present and allows to map all the memory. 2012 * 2. No high memory really exists on this machine. 2013 */ 2014 2015 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2016 { 2017 #ifdef CONFIG_HIGHMEM 2018 int i; 2019 if (!(dev->features & NETIF_F_HIGHDMA)) { 2020 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2021 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2022 if (PageHighMem(skb_frag_page(frag))) 2023 return 1; 2024 } 2025 } 2026 2027 if (PCI_DMA_BUS_IS_PHYS) { 2028 struct device *pdev = dev->dev.parent; 2029 2030 if (!pdev) 2031 return 0; 2032 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2033 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2034 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2035 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2036 return 1; 2037 } 2038 } 2039 #endif 2040 return 0; 2041 } 2042 2043 struct dev_gso_cb { 2044 void (*destructor)(struct sk_buff *skb); 2045 }; 2046 2047 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 2048 2049 static void dev_gso_skb_destructor(struct sk_buff *skb) 2050 { 2051 struct dev_gso_cb *cb; 2052 2053 do { 2054 struct sk_buff *nskb = skb->next; 2055 2056 skb->next = nskb->next; 2057 nskb->next = NULL; 2058 kfree_skb(nskb); 2059 } while (skb->next); 2060 2061 cb = DEV_GSO_CB(skb); 2062 if (cb->destructor) 2063 cb->destructor(skb); 2064 } 2065 2066 /** 2067 * dev_gso_segment - Perform emulated hardware segmentation on skb. 2068 * @skb: buffer to segment 2069 * @features: device features as applicable to this skb 2070 * 2071 * This function segments the given skb and stores the list of segments 2072 * in skb->next. 2073 */ 2074 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features) 2075 { 2076 struct sk_buff *segs; 2077 2078 segs = skb_gso_segment(skb, features); 2079 2080 /* Verifying header integrity only. */ 2081 if (!segs) 2082 return 0; 2083 2084 if (IS_ERR(segs)) 2085 return PTR_ERR(segs); 2086 2087 skb->next = segs; 2088 DEV_GSO_CB(skb)->destructor = skb->destructor; 2089 skb->destructor = dev_gso_skb_destructor; 2090 2091 return 0; 2092 } 2093 2094 /* 2095 * Try to orphan skb early, right before transmission by the device. 2096 * We cannot orphan skb if tx timestamp is requested or the sk-reference 2097 * is needed on driver level for other reasons, e.g. see net/can/raw.c 2098 */ 2099 static inline void skb_orphan_try(struct sk_buff *skb) 2100 { 2101 struct sock *sk = skb->sk; 2102 2103 if (sk && !skb_shinfo(skb)->tx_flags) { 2104 /* skb_tx_hash() wont be able to get sk. 2105 * We copy sk_hash into skb->rxhash 2106 */ 2107 if (!skb->rxhash) 2108 skb->rxhash = sk->sk_hash; 2109 skb_orphan(skb); 2110 } 2111 } 2112 2113 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol) 2114 { 2115 return ((features & NETIF_F_GEN_CSUM) || 2116 ((features & NETIF_F_V4_CSUM) && 2117 protocol == htons(ETH_P_IP)) || 2118 ((features & NETIF_F_V6_CSUM) && 2119 protocol == htons(ETH_P_IPV6)) || 2120 ((features & NETIF_F_FCOE_CRC) && 2121 protocol == htons(ETH_P_FCOE))); 2122 } 2123 2124 static netdev_features_t harmonize_features(struct sk_buff *skb, 2125 __be16 protocol, netdev_features_t features) 2126 { 2127 if (!can_checksum_protocol(features, protocol)) { 2128 features &= ~NETIF_F_ALL_CSUM; 2129 features &= ~NETIF_F_SG; 2130 } else if (illegal_highdma(skb->dev, skb)) { 2131 features &= ~NETIF_F_SG; 2132 } 2133 2134 return features; 2135 } 2136 2137 netdev_features_t netif_skb_features(struct sk_buff *skb) 2138 { 2139 __be16 protocol = skb->protocol; 2140 netdev_features_t features = skb->dev->features; 2141 2142 if (protocol == htons(ETH_P_8021Q)) { 2143 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2144 protocol = veh->h_vlan_encapsulated_proto; 2145 } else if (!vlan_tx_tag_present(skb)) { 2146 return harmonize_features(skb, protocol, features); 2147 } 2148 2149 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX); 2150 2151 if (protocol != htons(ETH_P_8021Q)) { 2152 return harmonize_features(skb, protocol, features); 2153 } else { 2154 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2155 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX; 2156 return harmonize_features(skb, protocol, features); 2157 } 2158 } 2159 EXPORT_SYMBOL(netif_skb_features); 2160 2161 /* 2162 * Returns true if either: 2163 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2164 * 2. skb is fragmented and the device does not support SG, or if 2165 * at least one of fragments is in highmem and device does not 2166 * support DMA from it. 2167 */ 2168 static inline int skb_needs_linearize(struct sk_buff *skb, 2169 int features) 2170 { 2171 return skb_is_nonlinear(skb) && 2172 ((skb_has_frag_list(skb) && 2173 !(features & NETIF_F_FRAGLIST)) || 2174 (skb_shinfo(skb)->nr_frags && 2175 !(features & NETIF_F_SG))); 2176 } 2177 2178 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2179 struct netdev_queue *txq) 2180 { 2181 const struct net_device_ops *ops = dev->netdev_ops; 2182 int rc = NETDEV_TX_OK; 2183 unsigned int skb_len; 2184 2185 if (likely(!skb->next)) { 2186 netdev_features_t features; 2187 2188 /* 2189 * If device doesn't need skb->dst, release it right now while 2190 * its hot in this cpu cache 2191 */ 2192 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2193 skb_dst_drop(skb); 2194 2195 if (!list_empty(&ptype_all)) 2196 dev_queue_xmit_nit(skb, dev); 2197 2198 skb_orphan_try(skb); 2199 2200 features = netif_skb_features(skb); 2201 2202 if (vlan_tx_tag_present(skb) && 2203 !(features & NETIF_F_HW_VLAN_TX)) { 2204 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb)); 2205 if (unlikely(!skb)) 2206 goto out; 2207 2208 skb->vlan_tci = 0; 2209 } 2210 2211 if (netif_needs_gso(skb, features)) { 2212 if (unlikely(dev_gso_segment(skb, features))) 2213 goto out_kfree_skb; 2214 if (skb->next) 2215 goto gso; 2216 } else { 2217 if (skb_needs_linearize(skb, features) && 2218 __skb_linearize(skb)) 2219 goto out_kfree_skb; 2220 2221 /* If packet is not checksummed and device does not 2222 * support checksumming for this protocol, complete 2223 * checksumming here. 2224 */ 2225 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2226 skb_set_transport_header(skb, 2227 skb_checksum_start_offset(skb)); 2228 if (!(features & NETIF_F_ALL_CSUM) && 2229 skb_checksum_help(skb)) 2230 goto out_kfree_skb; 2231 } 2232 } 2233 2234 skb_len = skb->len; 2235 rc = ops->ndo_start_xmit(skb, dev); 2236 trace_net_dev_xmit(skb, rc, dev, skb_len); 2237 if (rc == NETDEV_TX_OK) 2238 txq_trans_update(txq); 2239 return rc; 2240 } 2241 2242 gso: 2243 do { 2244 struct sk_buff *nskb = skb->next; 2245 2246 skb->next = nskb->next; 2247 nskb->next = NULL; 2248 2249 /* 2250 * If device doesn't need nskb->dst, release it right now while 2251 * its hot in this cpu cache 2252 */ 2253 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2254 skb_dst_drop(nskb); 2255 2256 skb_len = nskb->len; 2257 rc = ops->ndo_start_xmit(nskb, dev); 2258 trace_net_dev_xmit(nskb, rc, dev, skb_len); 2259 if (unlikely(rc != NETDEV_TX_OK)) { 2260 if (rc & ~NETDEV_TX_MASK) 2261 goto out_kfree_gso_skb; 2262 nskb->next = skb->next; 2263 skb->next = nskb; 2264 return rc; 2265 } 2266 txq_trans_update(txq); 2267 if (unlikely(netif_xmit_stopped(txq) && skb->next)) 2268 return NETDEV_TX_BUSY; 2269 } while (skb->next); 2270 2271 out_kfree_gso_skb: 2272 if (likely(skb->next == NULL)) 2273 skb->destructor = DEV_GSO_CB(skb)->destructor; 2274 out_kfree_skb: 2275 kfree_skb(skb); 2276 out: 2277 return rc; 2278 } 2279 2280 static u32 hashrnd __read_mostly; 2281 2282 /* 2283 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2284 * to be used as a distribution range. 2285 */ 2286 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb, 2287 unsigned int num_tx_queues) 2288 { 2289 u32 hash; 2290 u16 qoffset = 0; 2291 u16 qcount = num_tx_queues; 2292 2293 if (skb_rx_queue_recorded(skb)) { 2294 hash = skb_get_rx_queue(skb); 2295 while (unlikely(hash >= num_tx_queues)) 2296 hash -= num_tx_queues; 2297 return hash; 2298 } 2299 2300 if (dev->num_tc) { 2301 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2302 qoffset = dev->tc_to_txq[tc].offset; 2303 qcount = dev->tc_to_txq[tc].count; 2304 } 2305 2306 if (skb->sk && skb->sk->sk_hash) 2307 hash = skb->sk->sk_hash; 2308 else 2309 hash = (__force u16) skb->protocol ^ skb->rxhash; 2310 hash = jhash_1word(hash, hashrnd); 2311 2312 return (u16) (((u64) hash * qcount) >> 32) + qoffset; 2313 } 2314 EXPORT_SYMBOL(__skb_tx_hash); 2315 2316 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index) 2317 { 2318 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2319 if (net_ratelimit()) { 2320 pr_warn("%s selects TX queue %d, but real number of TX queues is %d\n", 2321 dev->name, queue_index, 2322 dev->real_num_tx_queues); 2323 } 2324 return 0; 2325 } 2326 return queue_index; 2327 } 2328 2329 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 2330 { 2331 #ifdef CONFIG_XPS 2332 struct xps_dev_maps *dev_maps; 2333 struct xps_map *map; 2334 int queue_index = -1; 2335 2336 rcu_read_lock(); 2337 dev_maps = rcu_dereference(dev->xps_maps); 2338 if (dev_maps) { 2339 map = rcu_dereference( 2340 dev_maps->cpu_map[raw_smp_processor_id()]); 2341 if (map) { 2342 if (map->len == 1) 2343 queue_index = map->queues[0]; 2344 else { 2345 u32 hash; 2346 if (skb->sk && skb->sk->sk_hash) 2347 hash = skb->sk->sk_hash; 2348 else 2349 hash = (__force u16) skb->protocol ^ 2350 skb->rxhash; 2351 hash = jhash_1word(hash, hashrnd); 2352 queue_index = map->queues[ 2353 ((u64)hash * map->len) >> 32]; 2354 } 2355 if (unlikely(queue_index >= dev->real_num_tx_queues)) 2356 queue_index = -1; 2357 } 2358 } 2359 rcu_read_unlock(); 2360 2361 return queue_index; 2362 #else 2363 return -1; 2364 #endif 2365 } 2366 2367 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 2368 struct sk_buff *skb) 2369 { 2370 int queue_index; 2371 const struct net_device_ops *ops = dev->netdev_ops; 2372 2373 if (dev->real_num_tx_queues == 1) 2374 queue_index = 0; 2375 else if (ops->ndo_select_queue) { 2376 queue_index = ops->ndo_select_queue(dev, skb); 2377 queue_index = dev_cap_txqueue(dev, queue_index); 2378 } else { 2379 struct sock *sk = skb->sk; 2380 queue_index = sk_tx_queue_get(sk); 2381 2382 if (queue_index < 0 || skb->ooo_okay || 2383 queue_index >= dev->real_num_tx_queues) { 2384 int old_index = queue_index; 2385 2386 queue_index = get_xps_queue(dev, skb); 2387 if (queue_index < 0) 2388 queue_index = skb_tx_hash(dev, skb); 2389 2390 if (queue_index != old_index && sk) { 2391 struct dst_entry *dst = 2392 rcu_dereference_check(sk->sk_dst_cache, 1); 2393 2394 if (dst && skb_dst(skb) == dst) 2395 sk_tx_queue_set(sk, queue_index); 2396 } 2397 } 2398 } 2399 2400 skb_set_queue_mapping(skb, queue_index); 2401 return netdev_get_tx_queue(dev, queue_index); 2402 } 2403 2404 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2405 struct net_device *dev, 2406 struct netdev_queue *txq) 2407 { 2408 spinlock_t *root_lock = qdisc_lock(q); 2409 bool contended; 2410 int rc; 2411 2412 qdisc_skb_cb(skb)->pkt_len = skb->len; 2413 qdisc_calculate_pkt_len(skb, q); 2414 /* 2415 * Heuristic to force contended enqueues to serialize on a 2416 * separate lock before trying to get qdisc main lock. 2417 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2418 * and dequeue packets faster. 2419 */ 2420 contended = qdisc_is_running(q); 2421 if (unlikely(contended)) 2422 spin_lock(&q->busylock); 2423 2424 spin_lock(root_lock); 2425 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2426 kfree_skb(skb); 2427 rc = NET_XMIT_DROP; 2428 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2429 qdisc_run_begin(q)) { 2430 /* 2431 * This is a work-conserving queue; there are no old skbs 2432 * waiting to be sent out; and the qdisc is not running - 2433 * xmit the skb directly. 2434 */ 2435 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2436 skb_dst_force(skb); 2437 2438 qdisc_bstats_update(q, skb); 2439 2440 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2441 if (unlikely(contended)) { 2442 spin_unlock(&q->busylock); 2443 contended = false; 2444 } 2445 __qdisc_run(q); 2446 } else 2447 qdisc_run_end(q); 2448 2449 rc = NET_XMIT_SUCCESS; 2450 } else { 2451 skb_dst_force(skb); 2452 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2453 if (qdisc_run_begin(q)) { 2454 if (unlikely(contended)) { 2455 spin_unlock(&q->busylock); 2456 contended = false; 2457 } 2458 __qdisc_run(q); 2459 } 2460 } 2461 spin_unlock(root_lock); 2462 if (unlikely(contended)) 2463 spin_unlock(&q->busylock); 2464 return rc; 2465 } 2466 2467 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 2468 static void skb_update_prio(struct sk_buff *skb) 2469 { 2470 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2471 2472 if ((!skb->priority) && (skb->sk) && map) 2473 skb->priority = map->priomap[skb->sk->sk_cgrp_prioidx]; 2474 } 2475 #else 2476 #define skb_update_prio(skb) 2477 #endif 2478 2479 static DEFINE_PER_CPU(int, xmit_recursion); 2480 #define RECURSION_LIMIT 10 2481 2482 /** 2483 * dev_queue_xmit - transmit a buffer 2484 * @skb: buffer to transmit 2485 * 2486 * Queue a buffer for transmission to a network device. The caller must 2487 * have set the device and priority and built the buffer before calling 2488 * this function. The function can be called from an interrupt. 2489 * 2490 * A negative errno code is returned on a failure. A success does not 2491 * guarantee the frame will be transmitted as it may be dropped due 2492 * to congestion or traffic shaping. 2493 * 2494 * ----------------------------------------------------------------------------------- 2495 * I notice this method can also return errors from the queue disciplines, 2496 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2497 * be positive. 2498 * 2499 * Regardless of the return value, the skb is consumed, so it is currently 2500 * difficult to retry a send to this method. (You can bump the ref count 2501 * before sending to hold a reference for retry if you are careful.) 2502 * 2503 * When calling this method, interrupts MUST be enabled. This is because 2504 * the BH enable code must have IRQs enabled so that it will not deadlock. 2505 * --BLG 2506 */ 2507 int dev_queue_xmit(struct sk_buff *skb) 2508 { 2509 struct net_device *dev = skb->dev; 2510 struct netdev_queue *txq; 2511 struct Qdisc *q; 2512 int rc = -ENOMEM; 2513 2514 /* Disable soft irqs for various locks below. Also 2515 * stops preemption for RCU. 2516 */ 2517 rcu_read_lock_bh(); 2518 2519 skb_update_prio(skb); 2520 2521 txq = dev_pick_tx(dev, skb); 2522 q = rcu_dereference_bh(txq->qdisc); 2523 2524 #ifdef CONFIG_NET_CLS_ACT 2525 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2526 #endif 2527 trace_net_dev_queue(skb); 2528 if (q->enqueue) { 2529 rc = __dev_xmit_skb(skb, q, dev, txq); 2530 goto out; 2531 } 2532 2533 /* The device has no queue. Common case for software devices: 2534 loopback, all the sorts of tunnels... 2535 2536 Really, it is unlikely that netif_tx_lock protection is necessary 2537 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2538 counters.) 2539 However, it is possible, that they rely on protection 2540 made by us here. 2541 2542 Check this and shot the lock. It is not prone from deadlocks. 2543 Either shot noqueue qdisc, it is even simpler 8) 2544 */ 2545 if (dev->flags & IFF_UP) { 2546 int cpu = smp_processor_id(); /* ok because BHs are off */ 2547 2548 if (txq->xmit_lock_owner != cpu) { 2549 2550 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2551 goto recursion_alert; 2552 2553 HARD_TX_LOCK(dev, txq, cpu); 2554 2555 if (!netif_xmit_stopped(txq)) { 2556 __this_cpu_inc(xmit_recursion); 2557 rc = dev_hard_start_xmit(skb, dev, txq); 2558 __this_cpu_dec(xmit_recursion); 2559 if (dev_xmit_complete(rc)) { 2560 HARD_TX_UNLOCK(dev, txq); 2561 goto out; 2562 } 2563 } 2564 HARD_TX_UNLOCK(dev, txq); 2565 if (net_ratelimit()) 2566 pr_crit("Virtual device %s asks to queue packet!\n", 2567 dev->name); 2568 } else { 2569 /* Recursion is detected! It is possible, 2570 * unfortunately 2571 */ 2572 recursion_alert: 2573 if (net_ratelimit()) 2574 pr_crit("Dead loop on virtual device %s, fix it urgently!\n", 2575 dev->name); 2576 } 2577 } 2578 2579 rc = -ENETDOWN; 2580 rcu_read_unlock_bh(); 2581 2582 kfree_skb(skb); 2583 return rc; 2584 out: 2585 rcu_read_unlock_bh(); 2586 return rc; 2587 } 2588 EXPORT_SYMBOL(dev_queue_xmit); 2589 2590 2591 /*======================================================================= 2592 Receiver routines 2593 =======================================================================*/ 2594 2595 int netdev_max_backlog __read_mostly = 1000; 2596 int netdev_tstamp_prequeue __read_mostly = 1; 2597 int netdev_budget __read_mostly = 300; 2598 int weight_p __read_mostly = 64; /* old backlog weight */ 2599 2600 /* Called with irq disabled */ 2601 static inline void ____napi_schedule(struct softnet_data *sd, 2602 struct napi_struct *napi) 2603 { 2604 list_add_tail(&napi->poll_list, &sd->poll_list); 2605 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2606 } 2607 2608 /* 2609 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses 2610 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value 2611 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb 2612 * if hash is a canonical 4-tuple hash over transport ports. 2613 */ 2614 void __skb_get_rxhash(struct sk_buff *skb) 2615 { 2616 struct flow_keys keys; 2617 u32 hash; 2618 2619 if (!skb_flow_dissect(skb, &keys)) 2620 return; 2621 2622 if (keys.ports) { 2623 if ((__force u16)keys.port16[1] < (__force u16)keys.port16[0]) 2624 swap(keys.port16[0], keys.port16[1]); 2625 skb->l4_rxhash = 1; 2626 } 2627 2628 /* get a consistent hash (same value on both flow directions) */ 2629 if ((__force u32)keys.dst < (__force u32)keys.src) 2630 swap(keys.dst, keys.src); 2631 2632 hash = jhash_3words((__force u32)keys.dst, 2633 (__force u32)keys.src, 2634 (__force u32)keys.ports, hashrnd); 2635 if (!hash) 2636 hash = 1; 2637 2638 skb->rxhash = hash; 2639 } 2640 EXPORT_SYMBOL(__skb_get_rxhash); 2641 2642 #ifdef CONFIG_RPS 2643 2644 /* One global table that all flow-based protocols share. */ 2645 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2646 EXPORT_SYMBOL(rps_sock_flow_table); 2647 2648 struct static_key rps_needed __read_mostly; 2649 2650 static struct rps_dev_flow * 2651 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2652 struct rps_dev_flow *rflow, u16 next_cpu) 2653 { 2654 if (next_cpu != RPS_NO_CPU) { 2655 #ifdef CONFIG_RFS_ACCEL 2656 struct netdev_rx_queue *rxqueue; 2657 struct rps_dev_flow_table *flow_table; 2658 struct rps_dev_flow *old_rflow; 2659 u32 flow_id; 2660 u16 rxq_index; 2661 int rc; 2662 2663 /* Should we steer this flow to a different hardware queue? */ 2664 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 2665 !(dev->features & NETIF_F_NTUPLE)) 2666 goto out; 2667 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 2668 if (rxq_index == skb_get_rx_queue(skb)) 2669 goto out; 2670 2671 rxqueue = dev->_rx + rxq_index; 2672 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2673 if (!flow_table) 2674 goto out; 2675 flow_id = skb->rxhash & flow_table->mask; 2676 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 2677 rxq_index, flow_id); 2678 if (rc < 0) 2679 goto out; 2680 old_rflow = rflow; 2681 rflow = &flow_table->flows[flow_id]; 2682 rflow->filter = rc; 2683 if (old_rflow->filter == rflow->filter) 2684 old_rflow->filter = RPS_NO_FILTER; 2685 out: 2686 #endif 2687 rflow->last_qtail = 2688 per_cpu(softnet_data, next_cpu).input_queue_head; 2689 } 2690 2691 rflow->cpu = next_cpu; 2692 return rflow; 2693 } 2694 2695 /* 2696 * get_rps_cpu is called from netif_receive_skb and returns the target 2697 * CPU from the RPS map of the receiving queue for a given skb. 2698 * rcu_read_lock must be held on entry. 2699 */ 2700 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2701 struct rps_dev_flow **rflowp) 2702 { 2703 struct netdev_rx_queue *rxqueue; 2704 struct rps_map *map; 2705 struct rps_dev_flow_table *flow_table; 2706 struct rps_sock_flow_table *sock_flow_table; 2707 int cpu = -1; 2708 u16 tcpu; 2709 2710 if (skb_rx_queue_recorded(skb)) { 2711 u16 index = skb_get_rx_queue(skb); 2712 if (unlikely(index >= dev->real_num_rx_queues)) { 2713 WARN_ONCE(dev->real_num_rx_queues > 1, 2714 "%s received packet on queue %u, but number " 2715 "of RX queues is %u\n", 2716 dev->name, index, dev->real_num_rx_queues); 2717 goto done; 2718 } 2719 rxqueue = dev->_rx + index; 2720 } else 2721 rxqueue = dev->_rx; 2722 2723 map = rcu_dereference(rxqueue->rps_map); 2724 if (map) { 2725 if (map->len == 1 && 2726 !rcu_access_pointer(rxqueue->rps_flow_table)) { 2727 tcpu = map->cpus[0]; 2728 if (cpu_online(tcpu)) 2729 cpu = tcpu; 2730 goto done; 2731 } 2732 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) { 2733 goto done; 2734 } 2735 2736 skb_reset_network_header(skb); 2737 if (!skb_get_rxhash(skb)) 2738 goto done; 2739 2740 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2741 sock_flow_table = rcu_dereference(rps_sock_flow_table); 2742 if (flow_table && sock_flow_table) { 2743 u16 next_cpu; 2744 struct rps_dev_flow *rflow; 2745 2746 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 2747 tcpu = rflow->cpu; 2748 2749 next_cpu = sock_flow_table->ents[skb->rxhash & 2750 sock_flow_table->mask]; 2751 2752 /* 2753 * If the desired CPU (where last recvmsg was done) is 2754 * different from current CPU (one in the rx-queue flow 2755 * table entry), switch if one of the following holds: 2756 * - Current CPU is unset (equal to RPS_NO_CPU). 2757 * - Current CPU is offline. 2758 * - The current CPU's queue tail has advanced beyond the 2759 * last packet that was enqueued using this table entry. 2760 * This guarantees that all previous packets for the flow 2761 * have been dequeued, thus preserving in order delivery. 2762 */ 2763 if (unlikely(tcpu != next_cpu) && 2764 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 2765 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 2766 rflow->last_qtail)) >= 0)) 2767 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 2768 2769 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 2770 *rflowp = rflow; 2771 cpu = tcpu; 2772 goto done; 2773 } 2774 } 2775 2776 if (map) { 2777 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 2778 2779 if (cpu_online(tcpu)) { 2780 cpu = tcpu; 2781 goto done; 2782 } 2783 } 2784 2785 done: 2786 return cpu; 2787 } 2788 2789 #ifdef CONFIG_RFS_ACCEL 2790 2791 /** 2792 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 2793 * @dev: Device on which the filter was set 2794 * @rxq_index: RX queue index 2795 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 2796 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 2797 * 2798 * Drivers that implement ndo_rx_flow_steer() should periodically call 2799 * this function for each installed filter and remove the filters for 2800 * which it returns %true. 2801 */ 2802 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 2803 u32 flow_id, u16 filter_id) 2804 { 2805 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 2806 struct rps_dev_flow_table *flow_table; 2807 struct rps_dev_flow *rflow; 2808 bool expire = true; 2809 int cpu; 2810 2811 rcu_read_lock(); 2812 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2813 if (flow_table && flow_id <= flow_table->mask) { 2814 rflow = &flow_table->flows[flow_id]; 2815 cpu = ACCESS_ONCE(rflow->cpu); 2816 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 2817 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 2818 rflow->last_qtail) < 2819 (int)(10 * flow_table->mask))) 2820 expire = false; 2821 } 2822 rcu_read_unlock(); 2823 return expire; 2824 } 2825 EXPORT_SYMBOL(rps_may_expire_flow); 2826 2827 #endif /* CONFIG_RFS_ACCEL */ 2828 2829 /* Called from hardirq (IPI) context */ 2830 static void rps_trigger_softirq(void *data) 2831 { 2832 struct softnet_data *sd = data; 2833 2834 ____napi_schedule(sd, &sd->backlog); 2835 sd->received_rps++; 2836 } 2837 2838 #endif /* CONFIG_RPS */ 2839 2840 /* 2841 * Check if this softnet_data structure is another cpu one 2842 * If yes, queue it to our IPI list and return 1 2843 * If no, return 0 2844 */ 2845 static int rps_ipi_queued(struct softnet_data *sd) 2846 { 2847 #ifdef CONFIG_RPS 2848 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 2849 2850 if (sd != mysd) { 2851 sd->rps_ipi_next = mysd->rps_ipi_list; 2852 mysd->rps_ipi_list = sd; 2853 2854 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2855 return 1; 2856 } 2857 #endif /* CONFIG_RPS */ 2858 return 0; 2859 } 2860 2861 /* 2862 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 2863 * queue (may be a remote CPU queue). 2864 */ 2865 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 2866 unsigned int *qtail) 2867 { 2868 struct softnet_data *sd; 2869 unsigned long flags; 2870 2871 sd = &per_cpu(softnet_data, cpu); 2872 2873 local_irq_save(flags); 2874 2875 rps_lock(sd); 2876 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) { 2877 if (skb_queue_len(&sd->input_pkt_queue)) { 2878 enqueue: 2879 __skb_queue_tail(&sd->input_pkt_queue, skb); 2880 input_queue_tail_incr_save(sd, qtail); 2881 rps_unlock(sd); 2882 local_irq_restore(flags); 2883 return NET_RX_SUCCESS; 2884 } 2885 2886 /* Schedule NAPI for backlog device 2887 * We can use non atomic operation since we own the queue lock 2888 */ 2889 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 2890 if (!rps_ipi_queued(sd)) 2891 ____napi_schedule(sd, &sd->backlog); 2892 } 2893 goto enqueue; 2894 } 2895 2896 sd->dropped++; 2897 rps_unlock(sd); 2898 2899 local_irq_restore(flags); 2900 2901 atomic_long_inc(&skb->dev->rx_dropped); 2902 kfree_skb(skb); 2903 return NET_RX_DROP; 2904 } 2905 2906 /** 2907 * netif_rx - post buffer to the network code 2908 * @skb: buffer to post 2909 * 2910 * This function receives a packet from a device driver and queues it for 2911 * the upper (protocol) levels to process. It always succeeds. The buffer 2912 * may be dropped during processing for congestion control or by the 2913 * protocol layers. 2914 * 2915 * return values: 2916 * NET_RX_SUCCESS (no congestion) 2917 * NET_RX_DROP (packet was dropped) 2918 * 2919 */ 2920 2921 int netif_rx(struct sk_buff *skb) 2922 { 2923 int ret; 2924 2925 /* if netpoll wants it, pretend we never saw it */ 2926 if (netpoll_rx(skb)) 2927 return NET_RX_DROP; 2928 2929 net_timestamp_check(netdev_tstamp_prequeue, skb); 2930 2931 trace_netif_rx(skb); 2932 #ifdef CONFIG_RPS 2933 if (static_key_false(&rps_needed)) { 2934 struct rps_dev_flow voidflow, *rflow = &voidflow; 2935 int cpu; 2936 2937 preempt_disable(); 2938 rcu_read_lock(); 2939 2940 cpu = get_rps_cpu(skb->dev, skb, &rflow); 2941 if (cpu < 0) 2942 cpu = smp_processor_id(); 2943 2944 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 2945 2946 rcu_read_unlock(); 2947 preempt_enable(); 2948 } else 2949 #endif 2950 { 2951 unsigned int qtail; 2952 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 2953 put_cpu(); 2954 } 2955 return ret; 2956 } 2957 EXPORT_SYMBOL(netif_rx); 2958 2959 int netif_rx_ni(struct sk_buff *skb) 2960 { 2961 int err; 2962 2963 preempt_disable(); 2964 err = netif_rx(skb); 2965 if (local_softirq_pending()) 2966 do_softirq(); 2967 preempt_enable(); 2968 2969 return err; 2970 } 2971 EXPORT_SYMBOL(netif_rx_ni); 2972 2973 static void net_tx_action(struct softirq_action *h) 2974 { 2975 struct softnet_data *sd = &__get_cpu_var(softnet_data); 2976 2977 if (sd->completion_queue) { 2978 struct sk_buff *clist; 2979 2980 local_irq_disable(); 2981 clist = sd->completion_queue; 2982 sd->completion_queue = NULL; 2983 local_irq_enable(); 2984 2985 while (clist) { 2986 struct sk_buff *skb = clist; 2987 clist = clist->next; 2988 2989 WARN_ON(atomic_read(&skb->users)); 2990 trace_kfree_skb(skb, net_tx_action); 2991 __kfree_skb(skb); 2992 } 2993 } 2994 2995 if (sd->output_queue) { 2996 struct Qdisc *head; 2997 2998 local_irq_disable(); 2999 head = sd->output_queue; 3000 sd->output_queue = NULL; 3001 sd->output_queue_tailp = &sd->output_queue; 3002 local_irq_enable(); 3003 3004 while (head) { 3005 struct Qdisc *q = head; 3006 spinlock_t *root_lock; 3007 3008 head = head->next_sched; 3009 3010 root_lock = qdisc_lock(q); 3011 if (spin_trylock(root_lock)) { 3012 smp_mb__before_clear_bit(); 3013 clear_bit(__QDISC_STATE_SCHED, 3014 &q->state); 3015 qdisc_run(q); 3016 spin_unlock(root_lock); 3017 } else { 3018 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3019 &q->state)) { 3020 __netif_reschedule(q); 3021 } else { 3022 smp_mb__before_clear_bit(); 3023 clear_bit(__QDISC_STATE_SCHED, 3024 &q->state); 3025 } 3026 } 3027 } 3028 } 3029 } 3030 3031 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3032 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3033 /* This hook is defined here for ATM LANE */ 3034 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3035 unsigned char *addr) __read_mostly; 3036 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3037 #endif 3038 3039 #ifdef CONFIG_NET_CLS_ACT 3040 /* TODO: Maybe we should just force sch_ingress to be compiled in 3041 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3042 * a compare and 2 stores extra right now if we dont have it on 3043 * but have CONFIG_NET_CLS_ACT 3044 * NOTE: This doesn't stop any functionality; if you dont have 3045 * the ingress scheduler, you just can't add policies on ingress. 3046 * 3047 */ 3048 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3049 { 3050 struct net_device *dev = skb->dev; 3051 u32 ttl = G_TC_RTTL(skb->tc_verd); 3052 int result = TC_ACT_OK; 3053 struct Qdisc *q; 3054 3055 if (unlikely(MAX_RED_LOOP < ttl++)) { 3056 if (net_ratelimit()) 3057 pr_warn("Redir loop detected Dropping packet (%d->%d)\n", 3058 skb->skb_iif, dev->ifindex); 3059 return TC_ACT_SHOT; 3060 } 3061 3062 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3063 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3064 3065 q = rxq->qdisc; 3066 if (q != &noop_qdisc) { 3067 spin_lock(qdisc_lock(q)); 3068 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3069 result = qdisc_enqueue_root(skb, q); 3070 spin_unlock(qdisc_lock(q)); 3071 } 3072 3073 return result; 3074 } 3075 3076 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3077 struct packet_type **pt_prev, 3078 int *ret, struct net_device *orig_dev) 3079 { 3080 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3081 3082 if (!rxq || rxq->qdisc == &noop_qdisc) 3083 goto out; 3084 3085 if (*pt_prev) { 3086 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3087 *pt_prev = NULL; 3088 } 3089 3090 switch (ing_filter(skb, rxq)) { 3091 case TC_ACT_SHOT: 3092 case TC_ACT_STOLEN: 3093 kfree_skb(skb); 3094 return NULL; 3095 } 3096 3097 out: 3098 skb->tc_verd = 0; 3099 return skb; 3100 } 3101 #endif 3102 3103 /** 3104 * netdev_rx_handler_register - register receive handler 3105 * @dev: device to register a handler for 3106 * @rx_handler: receive handler to register 3107 * @rx_handler_data: data pointer that is used by rx handler 3108 * 3109 * Register a receive hander for a device. This handler will then be 3110 * called from __netif_receive_skb. A negative errno code is returned 3111 * on a failure. 3112 * 3113 * The caller must hold the rtnl_mutex. 3114 * 3115 * For a general description of rx_handler, see enum rx_handler_result. 3116 */ 3117 int netdev_rx_handler_register(struct net_device *dev, 3118 rx_handler_func_t *rx_handler, 3119 void *rx_handler_data) 3120 { 3121 ASSERT_RTNL(); 3122 3123 if (dev->rx_handler) 3124 return -EBUSY; 3125 3126 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3127 rcu_assign_pointer(dev->rx_handler, rx_handler); 3128 3129 return 0; 3130 } 3131 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3132 3133 /** 3134 * netdev_rx_handler_unregister - unregister receive handler 3135 * @dev: device to unregister a handler from 3136 * 3137 * Unregister a receive hander from a device. 3138 * 3139 * The caller must hold the rtnl_mutex. 3140 */ 3141 void netdev_rx_handler_unregister(struct net_device *dev) 3142 { 3143 3144 ASSERT_RTNL(); 3145 RCU_INIT_POINTER(dev->rx_handler, NULL); 3146 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3147 } 3148 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3149 3150 static int __netif_receive_skb(struct sk_buff *skb) 3151 { 3152 struct packet_type *ptype, *pt_prev; 3153 rx_handler_func_t *rx_handler; 3154 struct net_device *orig_dev; 3155 struct net_device *null_or_dev; 3156 bool deliver_exact = false; 3157 int ret = NET_RX_DROP; 3158 __be16 type; 3159 3160 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3161 3162 trace_netif_receive_skb(skb); 3163 3164 /* if we've gotten here through NAPI, check netpoll */ 3165 if (netpoll_receive_skb(skb)) 3166 return NET_RX_DROP; 3167 3168 if (!skb->skb_iif) 3169 skb->skb_iif = skb->dev->ifindex; 3170 orig_dev = skb->dev; 3171 3172 skb_reset_network_header(skb); 3173 skb_reset_transport_header(skb); 3174 skb_reset_mac_len(skb); 3175 3176 pt_prev = NULL; 3177 3178 rcu_read_lock(); 3179 3180 another_round: 3181 3182 __this_cpu_inc(softnet_data.processed); 3183 3184 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) { 3185 skb = vlan_untag(skb); 3186 if (unlikely(!skb)) 3187 goto out; 3188 } 3189 3190 #ifdef CONFIG_NET_CLS_ACT 3191 if (skb->tc_verd & TC_NCLS) { 3192 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3193 goto ncls; 3194 } 3195 #endif 3196 3197 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3198 if (!ptype->dev || ptype->dev == skb->dev) { 3199 if (pt_prev) 3200 ret = deliver_skb(skb, pt_prev, orig_dev); 3201 pt_prev = ptype; 3202 } 3203 } 3204 3205 #ifdef CONFIG_NET_CLS_ACT 3206 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3207 if (!skb) 3208 goto out; 3209 ncls: 3210 #endif 3211 3212 rx_handler = rcu_dereference(skb->dev->rx_handler); 3213 if (vlan_tx_tag_present(skb)) { 3214 if (pt_prev) { 3215 ret = deliver_skb(skb, pt_prev, orig_dev); 3216 pt_prev = NULL; 3217 } 3218 if (vlan_do_receive(&skb, !rx_handler)) 3219 goto another_round; 3220 else if (unlikely(!skb)) 3221 goto out; 3222 } 3223 3224 if (rx_handler) { 3225 if (pt_prev) { 3226 ret = deliver_skb(skb, pt_prev, orig_dev); 3227 pt_prev = NULL; 3228 } 3229 switch (rx_handler(&skb)) { 3230 case RX_HANDLER_CONSUMED: 3231 goto out; 3232 case RX_HANDLER_ANOTHER: 3233 goto another_round; 3234 case RX_HANDLER_EXACT: 3235 deliver_exact = true; 3236 case RX_HANDLER_PASS: 3237 break; 3238 default: 3239 BUG(); 3240 } 3241 } 3242 3243 /* deliver only exact match when indicated */ 3244 null_or_dev = deliver_exact ? skb->dev : NULL; 3245 3246 type = skb->protocol; 3247 list_for_each_entry_rcu(ptype, 3248 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3249 if (ptype->type == type && 3250 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3251 ptype->dev == orig_dev)) { 3252 if (pt_prev) 3253 ret = deliver_skb(skb, pt_prev, orig_dev); 3254 pt_prev = ptype; 3255 } 3256 } 3257 3258 if (pt_prev) { 3259 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3260 } else { 3261 atomic_long_inc(&skb->dev->rx_dropped); 3262 kfree_skb(skb); 3263 /* Jamal, now you will not able to escape explaining 3264 * me how you were going to use this. :-) 3265 */ 3266 ret = NET_RX_DROP; 3267 } 3268 3269 out: 3270 rcu_read_unlock(); 3271 return ret; 3272 } 3273 3274 /** 3275 * netif_receive_skb - process receive buffer from network 3276 * @skb: buffer to process 3277 * 3278 * netif_receive_skb() is the main receive data processing function. 3279 * It always succeeds. The buffer may be dropped during processing 3280 * for congestion control or by the protocol layers. 3281 * 3282 * This function may only be called from softirq context and interrupts 3283 * should be enabled. 3284 * 3285 * Return values (usually ignored): 3286 * NET_RX_SUCCESS: no congestion 3287 * NET_RX_DROP: packet was dropped 3288 */ 3289 int netif_receive_skb(struct sk_buff *skb) 3290 { 3291 net_timestamp_check(netdev_tstamp_prequeue, skb); 3292 3293 if (skb_defer_rx_timestamp(skb)) 3294 return NET_RX_SUCCESS; 3295 3296 #ifdef CONFIG_RPS 3297 if (static_key_false(&rps_needed)) { 3298 struct rps_dev_flow voidflow, *rflow = &voidflow; 3299 int cpu, ret; 3300 3301 rcu_read_lock(); 3302 3303 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3304 3305 if (cpu >= 0) { 3306 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3307 rcu_read_unlock(); 3308 return ret; 3309 } 3310 rcu_read_unlock(); 3311 } 3312 #endif 3313 return __netif_receive_skb(skb); 3314 } 3315 EXPORT_SYMBOL(netif_receive_skb); 3316 3317 /* Network device is going away, flush any packets still pending 3318 * Called with irqs disabled. 3319 */ 3320 static void flush_backlog(void *arg) 3321 { 3322 struct net_device *dev = arg; 3323 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3324 struct sk_buff *skb, *tmp; 3325 3326 rps_lock(sd); 3327 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3328 if (skb->dev == dev) { 3329 __skb_unlink(skb, &sd->input_pkt_queue); 3330 kfree_skb(skb); 3331 input_queue_head_incr(sd); 3332 } 3333 } 3334 rps_unlock(sd); 3335 3336 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3337 if (skb->dev == dev) { 3338 __skb_unlink(skb, &sd->process_queue); 3339 kfree_skb(skb); 3340 input_queue_head_incr(sd); 3341 } 3342 } 3343 } 3344 3345 static int napi_gro_complete(struct sk_buff *skb) 3346 { 3347 struct packet_type *ptype; 3348 __be16 type = skb->protocol; 3349 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3350 int err = -ENOENT; 3351 3352 if (NAPI_GRO_CB(skb)->count == 1) { 3353 skb_shinfo(skb)->gso_size = 0; 3354 goto out; 3355 } 3356 3357 rcu_read_lock(); 3358 list_for_each_entry_rcu(ptype, head, list) { 3359 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 3360 continue; 3361 3362 err = ptype->gro_complete(skb); 3363 break; 3364 } 3365 rcu_read_unlock(); 3366 3367 if (err) { 3368 WARN_ON(&ptype->list == head); 3369 kfree_skb(skb); 3370 return NET_RX_SUCCESS; 3371 } 3372 3373 out: 3374 return netif_receive_skb(skb); 3375 } 3376 3377 inline void napi_gro_flush(struct napi_struct *napi) 3378 { 3379 struct sk_buff *skb, *next; 3380 3381 for (skb = napi->gro_list; skb; skb = next) { 3382 next = skb->next; 3383 skb->next = NULL; 3384 napi_gro_complete(skb); 3385 } 3386 3387 napi->gro_count = 0; 3388 napi->gro_list = NULL; 3389 } 3390 EXPORT_SYMBOL(napi_gro_flush); 3391 3392 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3393 { 3394 struct sk_buff **pp = NULL; 3395 struct packet_type *ptype; 3396 __be16 type = skb->protocol; 3397 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3398 int same_flow; 3399 int mac_len; 3400 enum gro_result ret; 3401 3402 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3403 goto normal; 3404 3405 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3406 goto normal; 3407 3408 rcu_read_lock(); 3409 list_for_each_entry_rcu(ptype, head, list) { 3410 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 3411 continue; 3412 3413 skb_set_network_header(skb, skb_gro_offset(skb)); 3414 mac_len = skb->network_header - skb->mac_header; 3415 skb->mac_len = mac_len; 3416 NAPI_GRO_CB(skb)->same_flow = 0; 3417 NAPI_GRO_CB(skb)->flush = 0; 3418 NAPI_GRO_CB(skb)->free = 0; 3419 3420 pp = ptype->gro_receive(&napi->gro_list, skb); 3421 break; 3422 } 3423 rcu_read_unlock(); 3424 3425 if (&ptype->list == head) 3426 goto normal; 3427 3428 same_flow = NAPI_GRO_CB(skb)->same_flow; 3429 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3430 3431 if (pp) { 3432 struct sk_buff *nskb = *pp; 3433 3434 *pp = nskb->next; 3435 nskb->next = NULL; 3436 napi_gro_complete(nskb); 3437 napi->gro_count--; 3438 } 3439 3440 if (same_flow) 3441 goto ok; 3442 3443 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3444 goto normal; 3445 3446 napi->gro_count++; 3447 NAPI_GRO_CB(skb)->count = 1; 3448 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3449 skb->next = napi->gro_list; 3450 napi->gro_list = skb; 3451 ret = GRO_HELD; 3452 3453 pull: 3454 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3455 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3456 3457 BUG_ON(skb->end - skb->tail < grow); 3458 3459 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3460 3461 skb->tail += grow; 3462 skb->data_len -= grow; 3463 3464 skb_shinfo(skb)->frags[0].page_offset += grow; 3465 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow); 3466 3467 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) { 3468 skb_frag_unref(skb, 0); 3469 memmove(skb_shinfo(skb)->frags, 3470 skb_shinfo(skb)->frags + 1, 3471 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3472 } 3473 } 3474 3475 ok: 3476 return ret; 3477 3478 normal: 3479 ret = GRO_NORMAL; 3480 goto pull; 3481 } 3482 EXPORT_SYMBOL(dev_gro_receive); 3483 3484 static inline gro_result_t 3485 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3486 { 3487 struct sk_buff *p; 3488 unsigned int maclen = skb->dev->hard_header_len; 3489 3490 for (p = napi->gro_list; p; p = p->next) { 3491 unsigned long diffs; 3492 3493 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3494 diffs |= p->vlan_tci ^ skb->vlan_tci; 3495 if (maclen == ETH_HLEN) 3496 diffs |= compare_ether_header(skb_mac_header(p), 3497 skb_gro_mac_header(skb)); 3498 else if (!diffs) 3499 diffs = memcmp(skb_mac_header(p), 3500 skb_gro_mac_header(skb), 3501 maclen); 3502 NAPI_GRO_CB(p)->same_flow = !diffs; 3503 NAPI_GRO_CB(p)->flush = 0; 3504 } 3505 3506 return dev_gro_receive(napi, skb); 3507 } 3508 3509 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3510 { 3511 switch (ret) { 3512 case GRO_NORMAL: 3513 if (netif_receive_skb(skb)) 3514 ret = GRO_DROP; 3515 break; 3516 3517 case GRO_DROP: 3518 case GRO_MERGED_FREE: 3519 kfree_skb(skb); 3520 break; 3521 3522 case GRO_HELD: 3523 case GRO_MERGED: 3524 break; 3525 } 3526 3527 return ret; 3528 } 3529 EXPORT_SYMBOL(napi_skb_finish); 3530 3531 void skb_gro_reset_offset(struct sk_buff *skb) 3532 { 3533 NAPI_GRO_CB(skb)->data_offset = 0; 3534 NAPI_GRO_CB(skb)->frag0 = NULL; 3535 NAPI_GRO_CB(skb)->frag0_len = 0; 3536 3537 if (skb->mac_header == skb->tail && 3538 !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) { 3539 NAPI_GRO_CB(skb)->frag0 = 3540 skb_frag_address(&skb_shinfo(skb)->frags[0]); 3541 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]); 3542 } 3543 } 3544 EXPORT_SYMBOL(skb_gro_reset_offset); 3545 3546 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3547 { 3548 skb_gro_reset_offset(skb); 3549 3550 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 3551 } 3552 EXPORT_SYMBOL(napi_gro_receive); 3553 3554 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3555 { 3556 __skb_pull(skb, skb_headlen(skb)); 3557 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 3558 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 3559 skb->vlan_tci = 0; 3560 skb->dev = napi->dev; 3561 skb->skb_iif = 0; 3562 3563 napi->skb = skb; 3564 } 3565 3566 struct sk_buff *napi_get_frags(struct napi_struct *napi) 3567 { 3568 struct sk_buff *skb = napi->skb; 3569 3570 if (!skb) { 3571 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3572 if (skb) 3573 napi->skb = skb; 3574 } 3575 return skb; 3576 } 3577 EXPORT_SYMBOL(napi_get_frags); 3578 3579 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3580 gro_result_t ret) 3581 { 3582 switch (ret) { 3583 case GRO_NORMAL: 3584 case GRO_HELD: 3585 skb->protocol = eth_type_trans(skb, skb->dev); 3586 3587 if (ret == GRO_HELD) 3588 skb_gro_pull(skb, -ETH_HLEN); 3589 else if (netif_receive_skb(skb)) 3590 ret = GRO_DROP; 3591 break; 3592 3593 case GRO_DROP: 3594 case GRO_MERGED_FREE: 3595 napi_reuse_skb(napi, skb); 3596 break; 3597 3598 case GRO_MERGED: 3599 break; 3600 } 3601 3602 return ret; 3603 } 3604 EXPORT_SYMBOL(napi_frags_finish); 3605 3606 struct sk_buff *napi_frags_skb(struct napi_struct *napi) 3607 { 3608 struct sk_buff *skb = napi->skb; 3609 struct ethhdr *eth; 3610 unsigned int hlen; 3611 unsigned int off; 3612 3613 napi->skb = NULL; 3614 3615 skb_reset_mac_header(skb); 3616 skb_gro_reset_offset(skb); 3617 3618 off = skb_gro_offset(skb); 3619 hlen = off + sizeof(*eth); 3620 eth = skb_gro_header_fast(skb, off); 3621 if (skb_gro_header_hard(skb, hlen)) { 3622 eth = skb_gro_header_slow(skb, hlen, off); 3623 if (unlikely(!eth)) { 3624 napi_reuse_skb(napi, skb); 3625 skb = NULL; 3626 goto out; 3627 } 3628 } 3629 3630 skb_gro_pull(skb, sizeof(*eth)); 3631 3632 /* 3633 * This works because the only protocols we care about don't require 3634 * special handling. We'll fix it up properly at the end. 3635 */ 3636 skb->protocol = eth->h_proto; 3637 3638 out: 3639 return skb; 3640 } 3641 EXPORT_SYMBOL(napi_frags_skb); 3642 3643 gro_result_t napi_gro_frags(struct napi_struct *napi) 3644 { 3645 struct sk_buff *skb = napi_frags_skb(napi); 3646 3647 if (!skb) 3648 return GRO_DROP; 3649 3650 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 3651 } 3652 EXPORT_SYMBOL(napi_gro_frags); 3653 3654 /* 3655 * net_rps_action sends any pending IPI's for rps. 3656 * Note: called with local irq disabled, but exits with local irq enabled. 3657 */ 3658 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 3659 { 3660 #ifdef CONFIG_RPS 3661 struct softnet_data *remsd = sd->rps_ipi_list; 3662 3663 if (remsd) { 3664 sd->rps_ipi_list = NULL; 3665 3666 local_irq_enable(); 3667 3668 /* Send pending IPI's to kick RPS processing on remote cpus. */ 3669 while (remsd) { 3670 struct softnet_data *next = remsd->rps_ipi_next; 3671 3672 if (cpu_online(remsd->cpu)) 3673 __smp_call_function_single(remsd->cpu, 3674 &remsd->csd, 0); 3675 remsd = next; 3676 } 3677 } else 3678 #endif 3679 local_irq_enable(); 3680 } 3681 3682 static int process_backlog(struct napi_struct *napi, int quota) 3683 { 3684 int work = 0; 3685 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 3686 3687 #ifdef CONFIG_RPS 3688 /* Check if we have pending ipi, its better to send them now, 3689 * not waiting net_rx_action() end. 3690 */ 3691 if (sd->rps_ipi_list) { 3692 local_irq_disable(); 3693 net_rps_action_and_irq_enable(sd); 3694 } 3695 #endif 3696 napi->weight = weight_p; 3697 local_irq_disable(); 3698 while (work < quota) { 3699 struct sk_buff *skb; 3700 unsigned int qlen; 3701 3702 while ((skb = __skb_dequeue(&sd->process_queue))) { 3703 local_irq_enable(); 3704 __netif_receive_skb(skb); 3705 local_irq_disable(); 3706 input_queue_head_incr(sd); 3707 if (++work >= quota) { 3708 local_irq_enable(); 3709 return work; 3710 } 3711 } 3712 3713 rps_lock(sd); 3714 qlen = skb_queue_len(&sd->input_pkt_queue); 3715 if (qlen) 3716 skb_queue_splice_tail_init(&sd->input_pkt_queue, 3717 &sd->process_queue); 3718 3719 if (qlen < quota - work) { 3720 /* 3721 * Inline a custom version of __napi_complete(). 3722 * only current cpu owns and manipulates this napi, 3723 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 3724 * we can use a plain write instead of clear_bit(), 3725 * and we dont need an smp_mb() memory barrier. 3726 */ 3727 list_del(&napi->poll_list); 3728 napi->state = 0; 3729 3730 quota = work + qlen; 3731 } 3732 rps_unlock(sd); 3733 } 3734 local_irq_enable(); 3735 3736 return work; 3737 } 3738 3739 /** 3740 * __napi_schedule - schedule for receive 3741 * @n: entry to schedule 3742 * 3743 * The entry's receive function will be scheduled to run 3744 */ 3745 void __napi_schedule(struct napi_struct *n) 3746 { 3747 unsigned long flags; 3748 3749 local_irq_save(flags); 3750 ____napi_schedule(&__get_cpu_var(softnet_data), n); 3751 local_irq_restore(flags); 3752 } 3753 EXPORT_SYMBOL(__napi_schedule); 3754 3755 void __napi_complete(struct napi_struct *n) 3756 { 3757 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 3758 BUG_ON(n->gro_list); 3759 3760 list_del(&n->poll_list); 3761 smp_mb__before_clear_bit(); 3762 clear_bit(NAPI_STATE_SCHED, &n->state); 3763 } 3764 EXPORT_SYMBOL(__napi_complete); 3765 3766 void napi_complete(struct napi_struct *n) 3767 { 3768 unsigned long flags; 3769 3770 /* 3771 * don't let napi dequeue from the cpu poll list 3772 * just in case its running on a different cpu 3773 */ 3774 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 3775 return; 3776 3777 napi_gro_flush(n); 3778 local_irq_save(flags); 3779 __napi_complete(n); 3780 local_irq_restore(flags); 3781 } 3782 EXPORT_SYMBOL(napi_complete); 3783 3784 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 3785 int (*poll)(struct napi_struct *, int), int weight) 3786 { 3787 INIT_LIST_HEAD(&napi->poll_list); 3788 napi->gro_count = 0; 3789 napi->gro_list = NULL; 3790 napi->skb = NULL; 3791 napi->poll = poll; 3792 napi->weight = weight; 3793 list_add(&napi->dev_list, &dev->napi_list); 3794 napi->dev = dev; 3795 #ifdef CONFIG_NETPOLL 3796 spin_lock_init(&napi->poll_lock); 3797 napi->poll_owner = -1; 3798 #endif 3799 set_bit(NAPI_STATE_SCHED, &napi->state); 3800 } 3801 EXPORT_SYMBOL(netif_napi_add); 3802 3803 void netif_napi_del(struct napi_struct *napi) 3804 { 3805 struct sk_buff *skb, *next; 3806 3807 list_del_init(&napi->dev_list); 3808 napi_free_frags(napi); 3809 3810 for (skb = napi->gro_list; skb; skb = next) { 3811 next = skb->next; 3812 skb->next = NULL; 3813 kfree_skb(skb); 3814 } 3815 3816 napi->gro_list = NULL; 3817 napi->gro_count = 0; 3818 } 3819 EXPORT_SYMBOL(netif_napi_del); 3820 3821 static void net_rx_action(struct softirq_action *h) 3822 { 3823 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3824 unsigned long time_limit = jiffies + 2; 3825 int budget = netdev_budget; 3826 void *have; 3827 3828 local_irq_disable(); 3829 3830 while (!list_empty(&sd->poll_list)) { 3831 struct napi_struct *n; 3832 int work, weight; 3833 3834 /* If softirq window is exhuasted then punt. 3835 * Allow this to run for 2 jiffies since which will allow 3836 * an average latency of 1.5/HZ. 3837 */ 3838 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 3839 goto softnet_break; 3840 3841 local_irq_enable(); 3842 3843 /* Even though interrupts have been re-enabled, this 3844 * access is safe because interrupts can only add new 3845 * entries to the tail of this list, and only ->poll() 3846 * calls can remove this head entry from the list. 3847 */ 3848 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 3849 3850 have = netpoll_poll_lock(n); 3851 3852 weight = n->weight; 3853 3854 /* This NAPI_STATE_SCHED test is for avoiding a race 3855 * with netpoll's poll_napi(). Only the entity which 3856 * obtains the lock and sees NAPI_STATE_SCHED set will 3857 * actually make the ->poll() call. Therefore we avoid 3858 * accidentally calling ->poll() when NAPI is not scheduled. 3859 */ 3860 work = 0; 3861 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 3862 work = n->poll(n, weight); 3863 trace_napi_poll(n); 3864 } 3865 3866 WARN_ON_ONCE(work > weight); 3867 3868 budget -= work; 3869 3870 local_irq_disable(); 3871 3872 /* Drivers must not modify the NAPI state if they 3873 * consume the entire weight. In such cases this code 3874 * still "owns" the NAPI instance and therefore can 3875 * move the instance around on the list at-will. 3876 */ 3877 if (unlikely(work == weight)) { 3878 if (unlikely(napi_disable_pending(n))) { 3879 local_irq_enable(); 3880 napi_complete(n); 3881 local_irq_disable(); 3882 } else 3883 list_move_tail(&n->poll_list, &sd->poll_list); 3884 } 3885 3886 netpoll_poll_unlock(have); 3887 } 3888 out: 3889 net_rps_action_and_irq_enable(sd); 3890 3891 #ifdef CONFIG_NET_DMA 3892 /* 3893 * There may not be any more sk_buffs coming right now, so push 3894 * any pending DMA copies to hardware 3895 */ 3896 dma_issue_pending_all(); 3897 #endif 3898 3899 return; 3900 3901 softnet_break: 3902 sd->time_squeeze++; 3903 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3904 goto out; 3905 } 3906 3907 static gifconf_func_t *gifconf_list[NPROTO]; 3908 3909 /** 3910 * register_gifconf - register a SIOCGIF handler 3911 * @family: Address family 3912 * @gifconf: Function handler 3913 * 3914 * Register protocol dependent address dumping routines. The handler 3915 * that is passed must not be freed or reused until it has been replaced 3916 * by another handler. 3917 */ 3918 int register_gifconf(unsigned int family, gifconf_func_t *gifconf) 3919 { 3920 if (family >= NPROTO) 3921 return -EINVAL; 3922 gifconf_list[family] = gifconf; 3923 return 0; 3924 } 3925 EXPORT_SYMBOL(register_gifconf); 3926 3927 3928 /* 3929 * Map an interface index to its name (SIOCGIFNAME) 3930 */ 3931 3932 /* 3933 * We need this ioctl for efficient implementation of the 3934 * if_indextoname() function required by the IPv6 API. Without 3935 * it, we would have to search all the interfaces to find a 3936 * match. --pb 3937 */ 3938 3939 static int dev_ifname(struct net *net, struct ifreq __user *arg) 3940 { 3941 struct net_device *dev; 3942 struct ifreq ifr; 3943 3944 /* 3945 * Fetch the caller's info block. 3946 */ 3947 3948 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3949 return -EFAULT; 3950 3951 rcu_read_lock(); 3952 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex); 3953 if (!dev) { 3954 rcu_read_unlock(); 3955 return -ENODEV; 3956 } 3957 3958 strcpy(ifr.ifr_name, dev->name); 3959 rcu_read_unlock(); 3960 3961 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 3962 return -EFAULT; 3963 return 0; 3964 } 3965 3966 /* 3967 * Perform a SIOCGIFCONF call. This structure will change 3968 * size eventually, and there is nothing I can do about it. 3969 * Thus we will need a 'compatibility mode'. 3970 */ 3971 3972 static int dev_ifconf(struct net *net, char __user *arg) 3973 { 3974 struct ifconf ifc; 3975 struct net_device *dev; 3976 char __user *pos; 3977 int len; 3978 int total; 3979 int i; 3980 3981 /* 3982 * Fetch the caller's info block. 3983 */ 3984 3985 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 3986 return -EFAULT; 3987 3988 pos = ifc.ifc_buf; 3989 len = ifc.ifc_len; 3990 3991 /* 3992 * Loop over the interfaces, and write an info block for each. 3993 */ 3994 3995 total = 0; 3996 for_each_netdev(net, dev) { 3997 for (i = 0; i < NPROTO; i++) { 3998 if (gifconf_list[i]) { 3999 int done; 4000 if (!pos) 4001 done = gifconf_list[i](dev, NULL, 0); 4002 else 4003 done = gifconf_list[i](dev, pos + total, 4004 len - total); 4005 if (done < 0) 4006 return -EFAULT; 4007 total += done; 4008 } 4009 } 4010 } 4011 4012 /* 4013 * All done. Write the updated control block back to the caller. 4014 */ 4015 ifc.ifc_len = total; 4016 4017 /* 4018 * Both BSD and Solaris return 0 here, so we do too. 4019 */ 4020 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 4021 } 4022 4023 #ifdef CONFIG_PROC_FS 4024 4025 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1) 4026 4027 #define get_bucket(x) ((x) >> BUCKET_SPACE) 4028 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1)) 4029 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o)) 4030 4031 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos) 4032 { 4033 struct net *net = seq_file_net(seq); 4034 struct net_device *dev; 4035 struct hlist_node *p; 4036 struct hlist_head *h; 4037 unsigned int count = 0, offset = get_offset(*pos); 4038 4039 h = &net->dev_name_head[get_bucket(*pos)]; 4040 hlist_for_each_entry_rcu(dev, p, h, name_hlist) { 4041 if (++count == offset) 4042 return dev; 4043 } 4044 4045 return NULL; 4046 } 4047 4048 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos) 4049 { 4050 struct net_device *dev; 4051 unsigned int bucket; 4052 4053 do { 4054 dev = dev_from_same_bucket(seq, pos); 4055 if (dev) 4056 return dev; 4057 4058 bucket = get_bucket(*pos) + 1; 4059 *pos = set_bucket_offset(bucket, 1); 4060 } while (bucket < NETDEV_HASHENTRIES); 4061 4062 return NULL; 4063 } 4064 4065 /* 4066 * This is invoked by the /proc filesystem handler to display a device 4067 * in detail. 4068 */ 4069 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 4070 __acquires(RCU) 4071 { 4072 rcu_read_lock(); 4073 if (!*pos) 4074 return SEQ_START_TOKEN; 4075 4076 if (get_bucket(*pos) >= NETDEV_HASHENTRIES) 4077 return NULL; 4078 4079 return dev_from_bucket(seq, pos); 4080 } 4081 4082 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4083 { 4084 ++*pos; 4085 return dev_from_bucket(seq, pos); 4086 } 4087 4088 void dev_seq_stop(struct seq_file *seq, void *v) 4089 __releases(RCU) 4090 { 4091 rcu_read_unlock(); 4092 } 4093 4094 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 4095 { 4096 struct rtnl_link_stats64 temp; 4097 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 4098 4099 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu " 4100 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n", 4101 dev->name, stats->rx_bytes, stats->rx_packets, 4102 stats->rx_errors, 4103 stats->rx_dropped + stats->rx_missed_errors, 4104 stats->rx_fifo_errors, 4105 stats->rx_length_errors + stats->rx_over_errors + 4106 stats->rx_crc_errors + stats->rx_frame_errors, 4107 stats->rx_compressed, stats->multicast, 4108 stats->tx_bytes, stats->tx_packets, 4109 stats->tx_errors, stats->tx_dropped, 4110 stats->tx_fifo_errors, stats->collisions, 4111 stats->tx_carrier_errors + 4112 stats->tx_aborted_errors + 4113 stats->tx_window_errors + 4114 stats->tx_heartbeat_errors, 4115 stats->tx_compressed); 4116 } 4117 4118 /* 4119 * Called from the PROCfs module. This now uses the new arbitrary sized 4120 * /proc/net interface to create /proc/net/dev 4121 */ 4122 static int dev_seq_show(struct seq_file *seq, void *v) 4123 { 4124 if (v == SEQ_START_TOKEN) 4125 seq_puts(seq, "Inter-| Receive " 4126 " | Transmit\n" 4127 " face |bytes packets errs drop fifo frame " 4128 "compressed multicast|bytes packets errs " 4129 "drop fifo colls carrier compressed\n"); 4130 else 4131 dev_seq_printf_stats(seq, v); 4132 return 0; 4133 } 4134 4135 static struct softnet_data *softnet_get_online(loff_t *pos) 4136 { 4137 struct softnet_data *sd = NULL; 4138 4139 while (*pos < nr_cpu_ids) 4140 if (cpu_online(*pos)) { 4141 sd = &per_cpu(softnet_data, *pos); 4142 break; 4143 } else 4144 ++*pos; 4145 return sd; 4146 } 4147 4148 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 4149 { 4150 return softnet_get_online(pos); 4151 } 4152 4153 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4154 { 4155 ++*pos; 4156 return softnet_get_online(pos); 4157 } 4158 4159 static void softnet_seq_stop(struct seq_file *seq, void *v) 4160 { 4161 } 4162 4163 static int softnet_seq_show(struct seq_file *seq, void *v) 4164 { 4165 struct softnet_data *sd = v; 4166 4167 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 4168 sd->processed, sd->dropped, sd->time_squeeze, 0, 4169 0, 0, 0, 0, /* was fastroute */ 4170 sd->cpu_collision, sd->received_rps); 4171 return 0; 4172 } 4173 4174 static const struct seq_operations dev_seq_ops = { 4175 .start = dev_seq_start, 4176 .next = dev_seq_next, 4177 .stop = dev_seq_stop, 4178 .show = dev_seq_show, 4179 }; 4180 4181 static int dev_seq_open(struct inode *inode, struct file *file) 4182 { 4183 return seq_open_net(inode, file, &dev_seq_ops, 4184 sizeof(struct seq_net_private)); 4185 } 4186 4187 static const struct file_operations dev_seq_fops = { 4188 .owner = THIS_MODULE, 4189 .open = dev_seq_open, 4190 .read = seq_read, 4191 .llseek = seq_lseek, 4192 .release = seq_release_net, 4193 }; 4194 4195 static const struct seq_operations softnet_seq_ops = { 4196 .start = softnet_seq_start, 4197 .next = softnet_seq_next, 4198 .stop = softnet_seq_stop, 4199 .show = softnet_seq_show, 4200 }; 4201 4202 static int softnet_seq_open(struct inode *inode, struct file *file) 4203 { 4204 return seq_open(file, &softnet_seq_ops); 4205 } 4206 4207 static const struct file_operations softnet_seq_fops = { 4208 .owner = THIS_MODULE, 4209 .open = softnet_seq_open, 4210 .read = seq_read, 4211 .llseek = seq_lseek, 4212 .release = seq_release, 4213 }; 4214 4215 static void *ptype_get_idx(loff_t pos) 4216 { 4217 struct packet_type *pt = NULL; 4218 loff_t i = 0; 4219 int t; 4220 4221 list_for_each_entry_rcu(pt, &ptype_all, list) { 4222 if (i == pos) 4223 return pt; 4224 ++i; 4225 } 4226 4227 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 4228 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 4229 if (i == pos) 4230 return pt; 4231 ++i; 4232 } 4233 } 4234 return NULL; 4235 } 4236 4237 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 4238 __acquires(RCU) 4239 { 4240 rcu_read_lock(); 4241 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 4242 } 4243 4244 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4245 { 4246 struct packet_type *pt; 4247 struct list_head *nxt; 4248 int hash; 4249 4250 ++*pos; 4251 if (v == SEQ_START_TOKEN) 4252 return ptype_get_idx(0); 4253 4254 pt = v; 4255 nxt = pt->list.next; 4256 if (pt->type == htons(ETH_P_ALL)) { 4257 if (nxt != &ptype_all) 4258 goto found; 4259 hash = 0; 4260 nxt = ptype_base[0].next; 4261 } else 4262 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 4263 4264 while (nxt == &ptype_base[hash]) { 4265 if (++hash >= PTYPE_HASH_SIZE) 4266 return NULL; 4267 nxt = ptype_base[hash].next; 4268 } 4269 found: 4270 return list_entry(nxt, struct packet_type, list); 4271 } 4272 4273 static void ptype_seq_stop(struct seq_file *seq, void *v) 4274 __releases(RCU) 4275 { 4276 rcu_read_unlock(); 4277 } 4278 4279 static int ptype_seq_show(struct seq_file *seq, void *v) 4280 { 4281 struct packet_type *pt = v; 4282 4283 if (v == SEQ_START_TOKEN) 4284 seq_puts(seq, "Type Device Function\n"); 4285 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 4286 if (pt->type == htons(ETH_P_ALL)) 4287 seq_puts(seq, "ALL "); 4288 else 4289 seq_printf(seq, "%04x", ntohs(pt->type)); 4290 4291 seq_printf(seq, " %-8s %pF\n", 4292 pt->dev ? pt->dev->name : "", pt->func); 4293 } 4294 4295 return 0; 4296 } 4297 4298 static const struct seq_operations ptype_seq_ops = { 4299 .start = ptype_seq_start, 4300 .next = ptype_seq_next, 4301 .stop = ptype_seq_stop, 4302 .show = ptype_seq_show, 4303 }; 4304 4305 static int ptype_seq_open(struct inode *inode, struct file *file) 4306 { 4307 return seq_open_net(inode, file, &ptype_seq_ops, 4308 sizeof(struct seq_net_private)); 4309 } 4310 4311 static const struct file_operations ptype_seq_fops = { 4312 .owner = THIS_MODULE, 4313 .open = ptype_seq_open, 4314 .read = seq_read, 4315 .llseek = seq_lseek, 4316 .release = seq_release_net, 4317 }; 4318 4319 4320 static int __net_init dev_proc_net_init(struct net *net) 4321 { 4322 int rc = -ENOMEM; 4323 4324 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 4325 goto out; 4326 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 4327 goto out_dev; 4328 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 4329 goto out_softnet; 4330 4331 if (wext_proc_init(net)) 4332 goto out_ptype; 4333 rc = 0; 4334 out: 4335 return rc; 4336 out_ptype: 4337 proc_net_remove(net, "ptype"); 4338 out_softnet: 4339 proc_net_remove(net, "softnet_stat"); 4340 out_dev: 4341 proc_net_remove(net, "dev"); 4342 goto out; 4343 } 4344 4345 static void __net_exit dev_proc_net_exit(struct net *net) 4346 { 4347 wext_proc_exit(net); 4348 4349 proc_net_remove(net, "ptype"); 4350 proc_net_remove(net, "softnet_stat"); 4351 proc_net_remove(net, "dev"); 4352 } 4353 4354 static struct pernet_operations __net_initdata dev_proc_ops = { 4355 .init = dev_proc_net_init, 4356 .exit = dev_proc_net_exit, 4357 }; 4358 4359 static int __init dev_proc_init(void) 4360 { 4361 return register_pernet_subsys(&dev_proc_ops); 4362 } 4363 #else 4364 #define dev_proc_init() 0 4365 #endif /* CONFIG_PROC_FS */ 4366 4367 4368 /** 4369 * netdev_set_master - set up master pointer 4370 * @slave: slave device 4371 * @master: new master device 4372 * 4373 * Changes the master device of the slave. Pass %NULL to break the 4374 * bonding. The caller must hold the RTNL semaphore. On a failure 4375 * a negative errno code is returned. On success the reference counts 4376 * are adjusted and the function returns zero. 4377 */ 4378 int netdev_set_master(struct net_device *slave, struct net_device *master) 4379 { 4380 struct net_device *old = slave->master; 4381 4382 ASSERT_RTNL(); 4383 4384 if (master) { 4385 if (old) 4386 return -EBUSY; 4387 dev_hold(master); 4388 } 4389 4390 slave->master = master; 4391 4392 if (old) 4393 dev_put(old); 4394 return 0; 4395 } 4396 EXPORT_SYMBOL(netdev_set_master); 4397 4398 /** 4399 * netdev_set_bond_master - set up bonding master/slave pair 4400 * @slave: slave device 4401 * @master: new master device 4402 * 4403 * Changes the master device of the slave. Pass %NULL to break the 4404 * bonding. The caller must hold the RTNL semaphore. On a failure 4405 * a negative errno code is returned. On success %RTM_NEWLINK is sent 4406 * to the routing socket and the function returns zero. 4407 */ 4408 int netdev_set_bond_master(struct net_device *slave, struct net_device *master) 4409 { 4410 int err; 4411 4412 ASSERT_RTNL(); 4413 4414 err = netdev_set_master(slave, master); 4415 if (err) 4416 return err; 4417 if (master) 4418 slave->flags |= IFF_SLAVE; 4419 else 4420 slave->flags &= ~IFF_SLAVE; 4421 4422 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 4423 return 0; 4424 } 4425 EXPORT_SYMBOL(netdev_set_bond_master); 4426 4427 static void dev_change_rx_flags(struct net_device *dev, int flags) 4428 { 4429 const struct net_device_ops *ops = dev->netdev_ops; 4430 4431 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4432 ops->ndo_change_rx_flags(dev, flags); 4433 } 4434 4435 static int __dev_set_promiscuity(struct net_device *dev, int inc) 4436 { 4437 unsigned int old_flags = dev->flags; 4438 uid_t uid; 4439 gid_t gid; 4440 4441 ASSERT_RTNL(); 4442 4443 dev->flags |= IFF_PROMISC; 4444 dev->promiscuity += inc; 4445 if (dev->promiscuity == 0) { 4446 /* 4447 * Avoid overflow. 4448 * If inc causes overflow, untouch promisc and return error. 4449 */ 4450 if (inc < 0) 4451 dev->flags &= ~IFF_PROMISC; 4452 else { 4453 dev->promiscuity -= inc; 4454 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 4455 dev->name); 4456 return -EOVERFLOW; 4457 } 4458 } 4459 if (dev->flags != old_flags) { 4460 pr_info("device %s %s promiscuous mode\n", 4461 dev->name, 4462 dev->flags & IFF_PROMISC ? "entered" : "left"); 4463 if (audit_enabled) { 4464 current_uid_gid(&uid, &gid); 4465 audit_log(current->audit_context, GFP_ATOMIC, 4466 AUDIT_ANOM_PROMISCUOUS, 4467 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4468 dev->name, (dev->flags & IFF_PROMISC), 4469 (old_flags & IFF_PROMISC), 4470 audit_get_loginuid(current), 4471 uid, gid, 4472 audit_get_sessionid(current)); 4473 } 4474 4475 dev_change_rx_flags(dev, IFF_PROMISC); 4476 } 4477 return 0; 4478 } 4479 4480 /** 4481 * dev_set_promiscuity - update promiscuity count on a device 4482 * @dev: device 4483 * @inc: modifier 4484 * 4485 * Add or remove promiscuity from a device. While the count in the device 4486 * remains above zero the interface remains promiscuous. Once it hits zero 4487 * the device reverts back to normal filtering operation. A negative inc 4488 * value is used to drop promiscuity on the device. 4489 * Return 0 if successful or a negative errno code on error. 4490 */ 4491 int dev_set_promiscuity(struct net_device *dev, int inc) 4492 { 4493 unsigned int old_flags = dev->flags; 4494 int err; 4495 4496 err = __dev_set_promiscuity(dev, inc); 4497 if (err < 0) 4498 return err; 4499 if (dev->flags != old_flags) 4500 dev_set_rx_mode(dev); 4501 return err; 4502 } 4503 EXPORT_SYMBOL(dev_set_promiscuity); 4504 4505 /** 4506 * dev_set_allmulti - update allmulti count on a device 4507 * @dev: device 4508 * @inc: modifier 4509 * 4510 * Add or remove reception of all multicast frames to a device. While the 4511 * count in the device remains above zero the interface remains listening 4512 * to all interfaces. Once it hits zero the device reverts back to normal 4513 * filtering operation. A negative @inc value is used to drop the counter 4514 * when releasing a resource needing all multicasts. 4515 * Return 0 if successful or a negative errno code on error. 4516 */ 4517 4518 int dev_set_allmulti(struct net_device *dev, int inc) 4519 { 4520 unsigned int old_flags = dev->flags; 4521 4522 ASSERT_RTNL(); 4523 4524 dev->flags |= IFF_ALLMULTI; 4525 dev->allmulti += inc; 4526 if (dev->allmulti == 0) { 4527 /* 4528 * Avoid overflow. 4529 * If inc causes overflow, untouch allmulti and return error. 4530 */ 4531 if (inc < 0) 4532 dev->flags &= ~IFF_ALLMULTI; 4533 else { 4534 dev->allmulti -= inc; 4535 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 4536 dev->name); 4537 return -EOVERFLOW; 4538 } 4539 } 4540 if (dev->flags ^ old_flags) { 4541 dev_change_rx_flags(dev, IFF_ALLMULTI); 4542 dev_set_rx_mode(dev); 4543 } 4544 return 0; 4545 } 4546 EXPORT_SYMBOL(dev_set_allmulti); 4547 4548 /* 4549 * Upload unicast and multicast address lists to device and 4550 * configure RX filtering. When the device doesn't support unicast 4551 * filtering it is put in promiscuous mode while unicast addresses 4552 * are present. 4553 */ 4554 void __dev_set_rx_mode(struct net_device *dev) 4555 { 4556 const struct net_device_ops *ops = dev->netdev_ops; 4557 4558 /* dev_open will call this function so the list will stay sane. */ 4559 if (!(dev->flags&IFF_UP)) 4560 return; 4561 4562 if (!netif_device_present(dev)) 4563 return; 4564 4565 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 4566 /* Unicast addresses changes may only happen under the rtnl, 4567 * therefore calling __dev_set_promiscuity here is safe. 4568 */ 4569 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4570 __dev_set_promiscuity(dev, 1); 4571 dev->uc_promisc = true; 4572 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4573 __dev_set_promiscuity(dev, -1); 4574 dev->uc_promisc = false; 4575 } 4576 } 4577 4578 if (ops->ndo_set_rx_mode) 4579 ops->ndo_set_rx_mode(dev); 4580 } 4581 4582 void dev_set_rx_mode(struct net_device *dev) 4583 { 4584 netif_addr_lock_bh(dev); 4585 __dev_set_rx_mode(dev); 4586 netif_addr_unlock_bh(dev); 4587 } 4588 4589 /** 4590 * dev_get_flags - get flags reported to userspace 4591 * @dev: device 4592 * 4593 * Get the combination of flag bits exported through APIs to userspace. 4594 */ 4595 unsigned dev_get_flags(const struct net_device *dev) 4596 { 4597 unsigned flags; 4598 4599 flags = (dev->flags & ~(IFF_PROMISC | 4600 IFF_ALLMULTI | 4601 IFF_RUNNING | 4602 IFF_LOWER_UP | 4603 IFF_DORMANT)) | 4604 (dev->gflags & (IFF_PROMISC | 4605 IFF_ALLMULTI)); 4606 4607 if (netif_running(dev)) { 4608 if (netif_oper_up(dev)) 4609 flags |= IFF_RUNNING; 4610 if (netif_carrier_ok(dev)) 4611 flags |= IFF_LOWER_UP; 4612 if (netif_dormant(dev)) 4613 flags |= IFF_DORMANT; 4614 } 4615 4616 return flags; 4617 } 4618 EXPORT_SYMBOL(dev_get_flags); 4619 4620 int __dev_change_flags(struct net_device *dev, unsigned int flags) 4621 { 4622 unsigned int old_flags = dev->flags; 4623 int ret; 4624 4625 ASSERT_RTNL(); 4626 4627 /* 4628 * Set the flags on our device. 4629 */ 4630 4631 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4632 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4633 IFF_AUTOMEDIA)) | 4634 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4635 IFF_ALLMULTI)); 4636 4637 /* 4638 * Load in the correct multicast list now the flags have changed. 4639 */ 4640 4641 if ((old_flags ^ flags) & IFF_MULTICAST) 4642 dev_change_rx_flags(dev, IFF_MULTICAST); 4643 4644 dev_set_rx_mode(dev); 4645 4646 /* 4647 * Have we downed the interface. We handle IFF_UP ourselves 4648 * according to user attempts to set it, rather than blindly 4649 * setting it. 4650 */ 4651 4652 ret = 0; 4653 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4654 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4655 4656 if (!ret) 4657 dev_set_rx_mode(dev); 4658 } 4659 4660 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4661 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4662 4663 dev->gflags ^= IFF_PROMISC; 4664 dev_set_promiscuity(dev, inc); 4665 } 4666 4667 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4668 is important. Some (broken) drivers set IFF_PROMISC, when 4669 IFF_ALLMULTI is requested not asking us and not reporting. 4670 */ 4671 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4672 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4673 4674 dev->gflags ^= IFF_ALLMULTI; 4675 dev_set_allmulti(dev, inc); 4676 } 4677 4678 return ret; 4679 } 4680 4681 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4682 { 4683 unsigned int changes = dev->flags ^ old_flags; 4684 4685 if (changes & IFF_UP) { 4686 if (dev->flags & IFF_UP) 4687 call_netdevice_notifiers(NETDEV_UP, dev); 4688 else 4689 call_netdevice_notifiers(NETDEV_DOWN, dev); 4690 } 4691 4692 if (dev->flags & IFF_UP && 4693 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) 4694 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4695 } 4696 4697 /** 4698 * dev_change_flags - change device settings 4699 * @dev: device 4700 * @flags: device state flags 4701 * 4702 * Change settings on device based state flags. The flags are 4703 * in the userspace exported format. 4704 */ 4705 int dev_change_flags(struct net_device *dev, unsigned int flags) 4706 { 4707 int ret; 4708 unsigned int changes, old_flags = dev->flags; 4709 4710 ret = __dev_change_flags(dev, flags); 4711 if (ret < 0) 4712 return ret; 4713 4714 changes = old_flags ^ dev->flags; 4715 if (changes) 4716 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4717 4718 __dev_notify_flags(dev, old_flags); 4719 return ret; 4720 } 4721 EXPORT_SYMBOL(dev_change_flags); 4722 4723 /** 4724 * dev_set_mtu - Change maximum transfer unit 4725 * @dev: device 4726 * @new_mtu: new transfer unit 4727 * 4728 * Change the maximum transfer size of the network device. 4729 */ 4730 int dev_set_mtu(struct net_device *dev, int new_mtu) 4731 { 4732 const struct net_device_ops *ops = dev->netdev_ops; 4733 int err; 4734 4735 if (new_mtu == dev->mtu) 4736 return 0; 4737 4738 /* MTU must be positive. */ 4739 if (new_mtu < 0) 4740 return -EINVAL; 4741 4742 if (!netif_device_present(dev)) 4743 return -ENODEV; 4744 4745 err = 0; 4746 if (ops->ndo_change_mtu) 4747 err = ops->ndo_change_mtu(dev, new_mtu); 4748 else 4749 dev->mtu = new_mtu; 4750 4751 if (!err && dev->flags & IFF_UP) 4752 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4753 return err; 4754 } 4755 EXPORT_SYMBOL(dev_set_mtu); 4756 4757 /** 4758 * dev_set_group - Change group this device belongs to 4759 * @dev: device 4760 * @new_group: group this device should belong to 4761 */ 4762 void dev_set_group(struct net_device *dev, int new_group) 4763 { 4764 dev->group = new_group; 4765 } 4766 EXPORT_SYMBOL(dev_set_group); 4767 4768 /** 4769 * dev_set_mac_address - Change Media Access Control Address 4770 * @dev: device 4771 * @sa: new address 4772 * 4773 * Change the hardware (MAC) address of the device 4774 */ 4775 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4776 { 4777 const struct net_device_ops *ops = dev->netdev_ops; 4778 int err; 4779 4780 if (!ops->ndo_set_mac_address) 4781 return -EOPNOTSUPP; 4782 if (sa->sa_family != dev->type) 4783 return -EINVAL; 4784 if (!netif_device_present(dev)) 4785 return -ENODEV; 4786 err = ops->ndo_set_mac_address(dev, sa); 4787 if (!err) 4788 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4789 return err; 4790 } 4791 EXPORT_SYMBOL(dev_set_mac_address); 4792 4793 /* 4794 * Perform the SIOCxIFxxx calls, inside rcu_read_lock() 4795 */ 4796 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 4797 { 4798 int err; 4799 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name); 4800 4801 if (!dev) 4802 return -ENODEV; 4803 4804 switch (cmd) { 4805 case SIOCGIFFLAGS: /* Get interface flags */ 4806 ifr->ifr_flags = (short) dev_get_flags(dev); 4807 return 0; 4808 4809 case SIOCGIFMETRIC: /* Get the metric on the interface 4810 (currently unused) */ 4811 ifr->ifr_metric = 0; 4812 return 0; 4813 4814 case SIOCGIFMTU: /* Get the MTU of a device */ 4815 ifr->ifr_mtu = dev->mtu; 4816 return 0; 4817 4818 case SIOCGIFHWADDR: 4819 if (!dev->addr_len) 4820 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 4821 else 4822 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 4823 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4824 ifr->ifr_hwaddr.sa_family = dev->type; 4825 return 0; 4826 4827 case SIOCGIFSLAVE: 4828 err = -EINVAL; 4829 break; 4830 4831 case SIOCGIFMAP: 4832 ifr->ifr_map.mem_start = dev->mem_start; 4833 ifr->ifr_map.mem_end = dev->mem_end; 4834 ifr->ifr_map.base_addr = dev->base_addr; 4835 ifr->ifr_map.irq = dev->irq; 4836 ifr->ifr_map.dma = dev->dma; 4837 ifr->ifr_map.port = dev->if_port; 4838 return 0; 4839 4840 case SIOCGIFINDEX: 4841 ifr->ifr_ifindex = dev->ifindex; 4842 return 0; 4843 4844 case SIOCGIFTXQLEN: 4845 ifr->ifr_qlen = dev->tx_queue_len; 4846 return 0; 4847 4848 default: 4849 /* dev_ioctl() should ensure this case 4850 * is never reached 4851 */ 4852 WARN_ON(1); 4853 err = -ENOTTY; 4854 break; 4855 4856 } 4857 return err; 4858 } 4859 4860 /* 4861 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 4862 */ 4863 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 4864 { 4865 int err; 4866 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4867 const struct net_device_ops *ops; 4868 4869 if (!dev) 4870 return -ENODEV; 4871 4872 ops = dev->netdev_ops; 4873 4874 switch (cmd) { 4875 case SIOCSIFFLAGS: /* Set interface flags */ 4876 return dev_change_flags(dev, ifr->ifr_flags); 4877 4878 case SIOCSIFMETRIC: /* Set the metric on the interface 4879 (currently unused) */ 4880 return -EOPNOTSUPP; 4881 4882 case SIOCSIFMTU: /* Set the MTU of a device */ 4883 return dev_set_mtu(dev, ifr->ifr_mtu); 4884 4885 case SIOCSIFHWADDR: 4886 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 4887 4888 case SIOCSIFHWBROADCAST: 4889 if (ifr->ifr_hwaddr.sa_family != dev->type) 4890 return -EINVAL; 4891 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 4892 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4893 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4894 return 0; 4895 4896 case SIOCSIFMAP: 4897 if (ops->ndo_set_config) { 4898 if (!netif_device_present(dev)) 4899 return -ENODEV; 4900 return ops->ndo_set_config(dev, &ifr->ifr_map); 4901 } 4902 return -EOPNOTSUPP; 4903 4904 case SIOCADDMULTI: 4905 if (!ops->ndo_set_rx_mode || 4906 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4907 return -EINVAL; 4908 if (!netif_device_present(dev)) 4909 return -ENODEV; 4910 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data); 4911 4912 case SIOCDELMULTI: 4913 if (!ops->ndo_set_rx_mode || 4914 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4915 return -EINVAL; 4916 if (!netif_device_present(dev)) 4917 return -ENODEV; 4918 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data); 4919 4920 case SIOCSIFTXQLEN: 4921 if (ifr->ifr_qlen < 0) 4922 return -EINVAL; 4923 dev->tx_queue_len = ifr->ifr_qlen; 4924 return 0; 4925 4926 case SIOCSIFNAME: 4927 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 4928 return dev_change_name(dev, ifr->ifr_newname); 4929 4930 case SIOCSHWTSTAMP: 4931 err = net_hwtstamp_validate(ifr); 4932 if (err) 4933 return err; 4934 /* fall through */ 4935 4936 /* 4937 * Unknown or private ioctl 4938 */ 4939 default: 4940 if ((cmd >= SIOCDEVPRIVATE && 4941 cmd <= SIOCDEVPRIVATE + 15) || 4942 cmd == SIOCBONDENSLAVE || 4943 cmd == SIOCBONDRELEASE || 4944 cmd == SIOCBONDSETHWADDR || 4945 cmd == SIOCBONDSLAVEINFOQUERY || 4946 cmd == SIOCBONDINFOQUERY || 4947 cmd == SIOCBONDCHANGEACTIVE || 4948 cmd == SIOCGMIIPHY || 4949 cmd == SIOCGMIIREG || 4950 cmd == SIOCSMIIREG || 4951 cmd == SIOCBRADDIF || 4952 cmd == SIOCBRDELIF || 4953 cmd == SIOCSHWTSTAMP || 4954 cmd == SIOCWANDEV) { 4955 err = -EOPNOTSUPP; 4956 if (ops->ndo_do_ioctl) { 4957 if (netif_device_present(dev)) 4958 err = ops->ndo_do_ioctl(dev, ifr, cmd); 4959 else 4960 err = -ENODEV; 4961 } 4962 } else 4963 err = -EINVAL; 4964 4965 } 4966 return err; 4967 } 4968 4969 /* 4970 * This function handles all "interface"-type I/O control requests. The actual 4971 * 'doing' part of this is dev_ifsioc above. 4972 */ 4973 4974 /** 4975 * dev_ioctl - network device ioctl 4976 * @net: the applicable net namespace 4977 * @cmd: command to issue 4978 * @arg: pointer to a struct ifreq in user space 4979 * 4980 * Issue ioctl functions to devices. This is normally called by the 4981 * user space syscall interfaces but can sometimes be useful for 4982 * other purposes. The return value is the return from the syscall if 4983 * positive or a negative errno code on error. 4984 */ 4985 4986 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 4987 { 4988 struct ifreq ifr; 4989 int ret; 4990 char *colon; 4991 4992 /* One special case: SIOCGIFCONF takes ifconf argument 4993 and requires shared lock, because it sleeps writing 4994 to user space. 4995 */ 4996 4997 if (cmd == SIOCGIFCONF) { 4998 rtnl_lock(); 4999 ret = dev_ifconf(net, (char __user *) arg); 5000 rtnl_unlock(); 5001 return ret; 5002 } 5003 if (cmd == SIOCGIFNAME) 5004 return dev_ifname(net, (struct ifreq __user *)arg); 5005 5006 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 5007 return -EFAULT; 5008 5009 ifr.ifr_name[IFNAMSIZ-1] = 0; 5010 5011 colon = strchr(ifr.ifr_name, ':'); 5012 if (colon) 5013 *colon = 0; 5014 5015 /* 5016 * See which interface the caller is talking about. 5017 */ 5018 5019 switch (cmd) { 5020 /* 5021 * These ioctl calls: 5022 * - can be done by all. 5023 * - atomic and do not require locking. 5024 * - return a value 5025 */ 5026 case SIOCGIFFLAGS: 5027 case SIOCGIFMETRIC: 5028 case SIOCGIFMTU: 5029 case SIOCGIFHWADDR: 5030 case SIOCGIFSLAVE: 5031 case SIOCGIFMAP: 5032 case SIOCGIFINDEX: 5033 case SIOCGIFTXQLEN: 5034 dev_load(net, ifr.ifr_name); 5035 rcu_read_lock(); 5036 ret = dev_ifsioc_locked(net, &ifr, cmd); 5037 rcu_read_unlock(); 5038 if (!ret) { 5039 if (colon) 5040 *colon = ':'; 5041 if (copy_to_user(arg, &ifr, 5042 sizeof(struct ifreq))) 5043 ret = -EFAULT; 5044 } 5045 return ret; 5046 5047 case SIOCETHTOOL: 5048 dev_load(net, ifr.ifr_name); 5049 rtnl_lock(); 5050 ret = dev_ethtool(net, &ifr); 5051 rtnl_unlock(); 5052 if (!ret) { 5053 if (colon) 5054 *colon = ':'; 5055 if (copy_to_user(arg, &ifr, 5056 sizeof(struct ifreq))) 5057 ret = -EFAULT; 5058 } 5059 return ret; 5060 5061 /* 5062 * These ioctl calls: 5063 * - require superuser power. 5064 * - require strict serialization. 5065 * - return a value 5066 */ 5067 case SIOCGMIIPHY: 5068 case SIOCGMIIREG: 5069 case SIOCSIFNAME: 5070 if (!capable(CAP_NET_ADMIN)) 5071 return -EPERM; 5072 dev_load(net, ifr.ifr_name); 5073 rtnl_lock(); 5074 ret = dev_ifsioc(net, &ifr, cmd); 5075 rtnl_unlock(); 5076 if (!ret) { 5077 if (colon) 5078 *colon = ':'; 5079 if (copy_to_user(arg, &ifr, 5080 sizeof(struct ifreq))) 5081 ret = -EFAULT; 5082 } 5083 return ret; 5084 5085 /* 5086 * These ioctl calls: 5087 * - require superuser power. 5088 * - require strict serialization. 5089 * - do not return a value 5090 */ 5091 case SIOCSIFFLAGS: 5092 case SIOCSIFMETRIC: 5093 case SIOCSIFMTU: 5094 case SIOCSIFMAP: 5095 case SIOCSIFHWADDR: 5096 case SIOCSIFSLAVE: 5097 case SIOCADDMULTI: 5098 case SIOCDELMULTI: 5099 case SIOCSIFHWBROADCAST: 5100 case SIOCSIFTXQLEN: 5101 case SIOCSMIIREG: 5102 case SIOCBONDENSLAVE: 5103 case SIOCBONDRELEASE: 5104 case SIOCBONDSETHWADDR: 5105 case SIOCBONDCHANGEACTIVE: 5106 case SIOCBRADDIF: 5107 case SIOCBRDELIF: 5108 case SIOCSHWTSTAMP: 5109 if (!capable(CAP_NET_ADMIN)) 5110 return -EPERM; 5111 /* fall through */ 5112 case SIOCBONDSLAVEINFOQUERY: 5113 case SIOCBONDINFOQUERY: 5114 dev_load(net, ifr.ifr_name); 5115 rtnl_lock(); 5116 ret = dev_ifsioc(net, &ifr, cmd); 5117 rtnl_unlock(); 5118 return ret; 5119 5120 case SIOCGIFMEM: 5121 /* Get the per device memory space. We can add this but 5122 * currently do not support it */ 5123 case SIOCSIFMEM: 5124 /* Set the per device memory buffer space. 5125 * Not applicable in our case */ 5126 case SIOCSIFLINK: 5127 return -ENOTTY; 5128 5129 /* 5130 * Unknown or private ioctl. 5131 */ 5132 default: 5133 if (cmd == SIOCWANDEV || 5134 (cmd >= SIOCDEVPRIVATE && 5135 cmd <= SIOCDEVPRIVATE + 15)) { 5136 dev_load(net, ifr.ifr_name); 5137 rtnl_lock(); 5138 ret = dev_ifsioc(net, &ifr, cmd); 5139 rtnl_unlock(); 5140 if (!ret && copy_to_user(arg, &ifr, 5141 sizeof(struct ifreq))) 5142 ret = -EFAULT; 5143 return ret; 5144 } 5145 /* Take care of Wireless Extensions */ 5146 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 5147 return wext_handle_ioctl(net, &ifr, cmd, arg); 5148 return -ENOTTY; 5149 } 5150 } 5151 5152 5153 /** 5154 * dev_new_index - allocate an ifindex 5155 * @net: the applicable net namespace 5156 * 5157 * Returns a suitable unique value for a new device interface 5158 * number. The caller must hold the rtnl semaphore or the 5159 * dev_base_lock to be sure it remains unique. 5160 */ 5161 static int dev_new_index(struct net *net) 5162 { 5163 static int ifindex; 5164 for (;;) { 5165 if (++ifindex <= 0) 5166 ifindex = 1; 5167 if (!__dev_get_by_index(net, ifindex)) 5168 return ifindex; 5169 } 5170 } 5171 5172 /* Delayed registration/unregisteration */ 5173 static LIST_HEAD(net_todo_list); 5174 5175 static void net_set_todo(struct net_device *dev) 5176 { 5177 list_add_tail(&dev->todo_list, &net_todo_list); 5178 } 5179 5180 static void rollback_registered_many(struct list_head *head) 5181 { 5182 struct net_device *dev, *tmp; 5183 5184 BUG_ON(dev_boot_phase); 5185 ASSERT_RTNL(); 5186 5187 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5188 /* Some devices call without registering 5189 * for initialization unwind. Remove those 5190 * devices and proceed with the remaining. 5191 */ 5192 if (dev->reg_state == NETREG_UNINITIALIZED) { 5193 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 5194 dev->name, dev); 5195 5196 WARN_ON(1); 5197 list_del(&dev->unreg_list); 5198 continue; 5199 } 5200 dev->dismantle = true; 5201 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5202 } 5203 5204 /* If device is running, close it first. */ 5205 dev_close_many(head); 5206 5207 list_for_each_entry(dev, head, unreg_list) { 5208 /* And unlink it from device chain. */ 5209 unlist_netdevice(dev); 5210 5211 dev->reg_state = NETREG_UNREGISTERING; 5212 } 5213 5214 synchronize_net(); 5215 5216 list_for_each_entry(dev, head, unreg_list) { 5217 /* Shutdown queueing discipline. */ 5218 dev_shutdown(dev); 5219 5220 5221 /* Notify protocols, that we are about to destroy 5222 this device. They should clean all the things. 5223 */ 5224 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5225 5226 if (!dev->rtnl_link_ops || 5227 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5228 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 5229 5230 /* 5231 * Flush the unicast and multicast chains 5232 */ 5233 dev_uc_flush(dev); 5234 dev_mc_flush(dev); 5235 5236 if (dev->netdev_ops->ndo_uninit) 5237 dev->netdev_ops->ndo_uninit(dev); 5238 5239 /* Notifier chain MUST detach us from master device. */ 5240 WARN_ON(dev->master); 5241 5242 /* Remove entries from kobject tree */ 5243 netdev_unregister_kobject(dev); 5244 } 5245 5246 /* Process any work delayed until the end of the batch */ 5247 dev = list_first_entry(head, struct net_device, unreg_list); 5248 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 5249 5250 synchronize_net(); 5251 5252 list_for_each_entry(dev, head, unreg_list) 5253 dev_put(dev); 5254 } 5255 5256 static void rollback_registered(struct net_device *dev) 5257 { 5258 LIST_HEAD(single); 5259 5260 list_add(&dev->unreg_list, &single); 5261 rollback_registered_many(&single); 5262 list_del(&single); 5263 } 5264 5265 static netdev_features_t netdev_fix_features(struct net_device *dev, 5266 netdev_features_t features) 5267 { 5268 /* Fix illegal checksum combinations */ 5269 if ((features & NETIF_F_HW_CSUM) && 5270 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5271 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 5272 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5273 } 5274 5275 /* Fix illegal SG+CSUM combinations. */ 5276 if ((features & NETIF_F_SG) && 5277 !(features & NETIF_F_ALL_CSUM)) { 5278 netdev_dbg(dev, 5279 "Dropping NETIF_F_SG since no checksum feature.\n"); 5280 features &= ~NETIF_F_SG; 5281 } 5282 5283 /* TSO requires that SG is present as well. */ 5284 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 5285 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 5286 features &= ~NETIF_F_ALL_TSO; 5287 } 5288 5289 /* TSO ECN requires that TSO is present as well. */ 5290 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 5291 features &= ~NETIF_F_TSO_ECN; 5292 5293 /* Software GSO depends on SG. */ 5294 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 5295 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 5296 features &= ~NETIF_F_GSO; 5297 } 5298 5299 /* UFO needs SG and checksumming */ 5300 if (features & NETIF_F_UFO) { 5301 /* maybe split UFO into V4 and V6? */ 5302 if (!((features & NETIF_F_GEN_CSUM) || 5303 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5304 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5305 netdev_dbg(dev, 5306 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 5307 features &= ~NETIF_F_UFO; 5308 } 5309 5310 if (!(features & NETIF_F_SG)) { 5311 netdev_dbg(dev, 5312 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 5313 features &= ~NETIF_F_UFO; 5314 } 5315 } 5316 5317 return features; 5318 } 5319 5320 int __netdev_update_features(struct net_device *dev) 5321 { 5322 netdev_features_t features; 5323 int err = 0; 5324 5325 ASSERT_RTNL(); 5326 5327 features = netdev_get_wanted_features(dev); 5328 5329 if (dev->netdev_ops->ndo_fix_features) 5330 features = dev->netdev_ops->ndo_fix_features(dev, features); 5331 5332 /* driver might be less strict about feature dependencies */ 5333 features = netdev_fix_features(dev, features); 5334 5335 if (dev->features == features) 5336 return 0; 5337 5338 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 5339 &dev->features, &features); 5340 5341 if (dev->netdev_ops->ndo_set_features) 5342 err = dev->netdev_ops->ndo_set_features(dev, features); 5343 5344 if (unlikely(err < 0)) { 5345 netdev_err(dev, 5346 "set_features() failed (%d); wanted %pNF, left %pNF\n", 5347 err, &features, &dev->features); 5348 return -1; 5349 } 5350 5351 if (!err) 5352 dev->features = features; 5353 5354 return 1; 5355 } 5356 5357 /** 5358 * netdev_update_features - recalculate device features 5359 * @dev: the device to check 5360 * 5361 * Recalculate dev->features set and send notifications if it 5362 * has changed. Should be called after driver or hardware dependent 5363 * conditions might have changed that influence the features. 5364 */ 5365 void netdev_update_features(struct net_device *dev) 5366 { 5367 if (__netdev_update_features(dev)) 5368 netdev_features_change(dev); 5369 } 5370 EXPORT_SYMBOL(netdev_update_features); 5371 5372 /** 5373 * netdev_change_features - recalculate device features 5374 * @dev: the device to check 5375 * 5376 * Recalculate dev->features set and send notifications even 5377 * if they have not changed. Should be called instead of 5378 * netdev_update_features() if also dev->vlan_features might 5379 * have changed to allow the changes to be propagated to stacked 5380 * VLAN devices. 5381 */ 5382 void netdev_change_features(struct net_device *dev) 5383 { 5384 __netdev_update_features(dev); 5385 netdev_features_change(dev); 5386 } 5387 EXPORT_SYMBOL(netdev_change_features); 5388 5389 /** 5390 * netif_stacked_transfer_operstate - transfer operstate 5391 * @rootdev: the root or lower level device to transfer state from 5392 * @dev: the device to transfer operstate to 5393 * 5394 * Transfer operational state from root to device. This is normally 5395 * called when a stacking relationship exists between the root 5396 * device and the device(a leaf device). 5397 */ 5398 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5399 struct net_device *dev) 5400 { 5401 if (rootdev->operstate == IF_OPER_DORMANT) 5402 netif_dormant_on(dev); 5403 else 5404 netif_dormant_off(dev); 5405 5406 if (netif_carrier_ok(rootdev)) { 5407 if (!netif_carrier_ok(dev)) 5408 netif_carrier_on(dev); 5409 } else { 5410 if (netif_carrier_ok(dev)) 5411 netif_carrier_off(dev); 5412 } 5413 } 5414 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5415 5416 #ifdef CONFIG_RPS 5417 static int netif_alloc_rx_queues(struct net_device *dev) 5418 { 5419 unsigned int i, count = dev->num_rx_queues; 5420 struct netdev_rx_queue *rx; 5421 5422 BUG_ON(count < 1); 5423 5424 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5425 if (!rx) { 5426 pr_err("netdev: Unable to allocate %u rx queues\n", count); 5427 return -ENOMEM; 5428 } 5429 dev->_rx = rx; 5430 5431 for (i = 0; i < count; i++) 5432 rx[i].dev = dev; 5433 return 0; 5434 } 5435 #endif 5436 5437 static void netdev_init_one_queue(struct net_device *dev, 5438 struct netdev_queue *queue, void *_unused) 5439 { 5440 /* Initialize queue lock */ 5441 spin_lock_init(&queue->_xmit_lock); 5442 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5443 queue->xmit_lock_owner = -1; 5444 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5445 queue->dev = dev; 5446 #ifdef CONFIG_BQL 5447 dql_init(&queue->dql, HZ); 5448 #endif 5449 } 5450 5451 static int netif_alloc_netdev_queues(struct net_device *dev) 5452 { 5453 unsigned int count = dev->num_tx_queues; 5454 struct netdev_queue *tx; 5455 5456 BUG_ON(count < 1); 5457 5458 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL); 5459 if (!tx) { 5460 pr_err("netdev: Unable to allocate %u tx queues\n", count); 5461 return -ENOMEM; 5462 } 5463 dev->_tx = tx; 5464 5465 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5466 spin_lock_init(&dev->tx_global_lock); 5467 5468 return 0; 5469 } 5470 5471 /** 5472 * register_netdevice - register a network device 5473 * @dev: device to register 5474 * 5475 * Take a completed network device structure and add it to the kernel 5476 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5477 * chain. 0 is returned on success. A negative errno code is returned 5478 * on a failure to set up the device, or if the name is a duplicate. 5479 * 5480 * Callers must hold the rtnl semaphore. You may want 5481 * register_netdev() instead of this. 5482 * 5483 * BUGS: 5484 * The locking appears insufficient to guarantee two parallel registers 5485 * will not get the same name. 5486 */ 5487 5488 int register_netdevice(struct net_device *dev) 5489 { 5490 int ret; 5491 struct net *net = dev_net(dev); 5492 5493 BUG_ON(dev_boot_phase); 5494 ASSERT_RTNL(); 5495 5496 might_sleep(); 5497 5498 /* When net_device's are persistent, this will be fatal. */ 5499 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5500 BUG_ON(!net); 5501 5502 spin_lock_init(&dev->addr_list_lock); 5503 netdev_set_addr_lockdep_class(dev); 5504 5505 dev->iflink = -1; 5506 5507 ret = dev_get_valid_name(dev, dev->name); 5508 if (ret < 0) 5509 goto out; 5510 5511 /* Init, if this function is available */ 5512 if (dev->netdev_ops->ndo_init) { 5513 ret = dev->netdev_ops->ndo_init(dev); 5514 if (ret) { 5515 if (ret > 0) 5516 ret = -EIO; 5517 goto out; 5518 } 5519 } 5520 5521 dev->ifindex = dev_new_index(net); 5522 if (dev->iflink == -1) 5523 dev->iflink = dev->ifindex; 5524 5525 /* Transfer changeable features to wanted_features and enable 5526 * software offloads (GSO and GRO). 5527 */ 5528 dev->hw_features |= NETIF_F_SOFT_FEATURES; 5529 dev->features |= NETIF_F_SOFT_FEATURES; 5530 dev->wanted_features = dev->features & dev->hw_features; 5531 5532 /* Turn on no cache copy if HW is doing checksum */ 5533 if (!(dev->flags & IFF_LOOPBACK)) { 5534 dev->hw_features |= NETIF_F_NOCACHE_COPY; 5535 if (dev->features & NETIF_F_ALL_CSUM) { 5536 dev->wanted_features |= NETIF_F_NOCACHE_COPY; 5537 dev->features |= NETIF_F_NOCACHE_COPY; 5538 } 5539 } 5540 5541 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 5542 */ 5543 dev->vlan_features |= NETIF_F_HIGHDMA; 5544 5545 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5546 ret = notifier_to_errno(ret); 5547 if (ret) 5548 goto err_uninit; 5549 5550 ret = netdev_register_kobject(dev); 5551 if (ret) 5552 goto err_uninit; 5553 dev->reg_state = NETREG_REGISTERED; 5554 5555 __netdev_update_features(dev); 5556 5557 /* 5558 * Default initial state at registry is that the 5559 * device is present. 5560 */ 5561 5562 set_bit(__LINK_STATE_PRESENT, &dev->state); 5563 5564 dev_init_scheduler(dev); 5565 dev_hold(dev); 5566 list_netdevice(dev); 5567 5568 /* Notify protocols, that a new device appeared. */ 5569 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5570 ret = notifier_to_errno(ret); 5571 if (ret) { 5572 rollback_registered(dev); 5573 dev->reg_state = NETREG_UNREGISTERED; 5574 } 5575 /* 5576 * Prevent userspace races by waiting until the network 5577 * device is fully setup before sending notifications. 5578 */ 5579 if (!dev->rtnl_link_ops || 5580 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5581 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5582 5583 out: 5584 return ret; 5585 5586 err_uninit: 5587 if (dev->netdev_ops->ndo_uninit) 5588 dev->netdev_ops->ndo_uninit(dev); 5589 goto out; 5590 } 5591 EXPORT_SYMBOL(register_netdevice); 5592 5593 /** 5594 * init_dummy_netdev - init a dummy network device for NAPI 5595 * @dev: device to init 5596 * 5597 * This takes a network device structure and initialize the minimum 5598 * amount of fields so it can be used to schedule NAPI polls without 5599 * registering a full blown interface. This is to be used by drivers 5600 * that need to tie several hardware interfaces to a single NAPI 5601 * poll scheduler due to HW limitations. 5602 */ 5603 int init_dummy_netdev(struct net_device *dev) 5604 { 5605 /* Clear everything. Note we don't initialize spinlocks 5606 * are they aren't supposed to be taken by any of the 5607 * NAPI code and this dummy netdev is supposed to be 5608 * only ever used for NAPI polls 5609 */ 5610 memset(dev, 0, sizeof(struct net_device)); 5611 5612 /* make sure we BUG if trying to hit standard 5613 * register/unregister code path 5614 */ 5615 dev->reg_state = NETREG_DUMMY; 5616 5617 /* NAPI wants this */ 5618 INIT_LIST_HEAD(&dev->napi_list); 5619 5620 /* a dummy interface is started by default */ 5621 set_bit(__LINK_STATE_PRESENT, &dev->state); 5622 set_bit(__LINK_STATE_START, &dev->state); 5623 5624 /* Note : We dont allocate pcpu_refcnt for dummy devices, 5625 * because users of this 'device' dont need to change 5626 * its refcount. 5627 */ 5628 5629 return 0; 5630 } 5631 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5632 5633 5634 /** 5635 * register_netdev - register a network device 5636 * @dev: device to register 5637 * 5638 * Take a completed network device structure and add it to the kernel 5639 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5640 * chain. 0 is returned on success. A negative errno code is returned 5641 * on a failure to set up the device, or if the name is a duplicate. 5642 * 5643 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5644 * and expands the device name if you passed a format string to 5645 * alloc_netdev. 5646 */ 5647 int register_netdev(struct net_device *dev) 5648 { 5649 int err; 5650 5651 rtnl_lock(); 5652 err = register_netdevice(dev); 5653 rtnl_unlock(); 5654 return err; 5655 } 5656 EXPORT_SYMBOL(register_netdev); 5657 5658 int netdev_refcnt_read(const struct net_device *dev) 5659 { 5660 int i, refcnt = 0; 5661 5662 for_each_possible_cpu(i) 5663 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 5664 return refcnt; 5665 } 5666 EXPORT_SYMBOL(netdev_refcnt_read); 5667 5668 /* 5669 * netdev_wait_allrefs - wait until all references are gone. 5670 * 5671 * This is called when unregistering network devices. 5672 * 5673 * Any protocol or device that holds a reference should register 5674 * for netdevice notification, and cleanup and put back the 5675 * reference if they receive an UNREGISTER event. 5676 * We can get stuck here if buggy protocols don't correctly 5677 * call dev_put. 5678 */ 5679 static void netdev_wait_allrefs(struct net_device *dev) 5680 { 5681 unsigned long rebroadcast_time, warning_time; 5682 int refcnt; 5683 5684 linkwatch_forget_dev(dev); 5685 5686 rebroadcast_time = warning_time = jiffies; 5687 refcnt = netdev_refcnt_read(dev); 5688 5689 while (refcnt != 0) { 5690 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5691 rtnl_lock(); 5692 5693 /* Rebroadcast unregister notification */ 5694 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5695 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users 5696 * should have already handle it the first time */ 5697 5698 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5699 &dev->state)) { 5700 /* We must not have linkwatch events 5701 * pending on unregister. If this 5702 * happens, we simply run the queue 5703 * unscheduled, resulting in a noop 5704 * for this device. 5705 */ 5706 linkwatch_run_queue(); 5707 } 5708 5709 __rtnl_unlock(); 5710 5711 rebroadcast_time = jiffies; 5712 } 5713 5714 msleep(250); 5715 5716 refcnt = netdev_refcnt_read(dev); 5717 5718 if (time_after(jiffies, warning_time + 10 * HZ)) { 5719 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 5720 dev->name, refcnt); 5721 warning_time = jiffies; 5722 } 5723 } 5724 } 5725 5726 /* The sequence is: 5727 * 5728 * rtnl_lock(); 5729 * ... 5730 * register_netdevice(x1); 5731 * register_netdevice(x2); 5732 * ... 5733 * unregister_netdevice(y1); 5734 * unregister_netdevice(y2); 5735 * ... 5736 * rtnl_unlock(); 5737 * free_netdev(y1); 5738 * free_netdev(y2); 5739 * 5740 * We are invoked by rtnl_unlock(). 5741 * This allows us to deal with problems: 5742 * 1) We can delete sysfs objects which invoke hotplug 5743 * without deadlocking with linkwatch via keventd. 5744 * 2) Since we run with the RTNL semaphore not held, we can sleep 5745 * safely in order to wait for the netdev refcnt to drop to zero. 5746 * 5747 * We must not return until all unregister events added during 5748 * the interval the lock was held have been completed. 5749 */ 5750 void netdev_run_todo(void) 5751 { 5752 struct list_head list; 5753 5754 /* Snapshot list, allow later requests */ 5755 list_replace_init(&net_todo_list, &list); 5756 5757 __rtnl_unlock(); 5758 5759 /* Wait for rcu callbacks to finish before attempting to drain 5760 * the device list. This usually avoids a 250ms wait. 5761 */ 5762 if (!list_empty(&list)) 5763 rcu_barrier(); 5764 5765 while (!list_empty(&list)) { 5766 struct net_device *dev 5767 = list_first_entry(&list, struct net_device, todo_list); 5768 list_del(&dev->todo_list); 5769 5770 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5771 pr_err("network todo '%s' but state %d\n", 5772 dev->name, dev->reg_state); 5773 dump_stack(); 5774 continue; 5775 } 5776 5777 dev->reg_state = NETREG_UNREGISTERED; 5778 5779 on_each_cpu(flush_backlog, dev, 1); 5780 5781 netdev_wait_allrefs(dev); 5782 5783 /* paranoia */ 5784 BUG_ON(netdev_refcnt_read(dev)); 5785 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 5786 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 5787 WARN_ON(dev->dn_ptr); 5788 5789 if (dev->destructor) 5790 dev->destructor(dev); 5791 5792 /* Free network device */ 5793 kobject_put(&dev->dev.kobj); 5794 } 5795 } 5796 5797 /* Convert net_device_stats to rtnl_link_stats64. They have the same 5798 * fields in the same order, with only the type differing. 5799 */ 5800 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 5801 const struct net_device_stats *netdev_stats) 5802 { 5803 #if BITS_PER_LONG == 64 5804 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 5805 memcpy(stats64, netdev_stats, sizeof(*stats64)); 5806 #else 5807 size_t i, n = sizeof(*stats64) / sizeof(u64); 5808 const unsigned long *src = (const unsigned long *)netdev_stats; 5809 u64 *dst = (u64 *)stats64; 5810 5811 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 5812 sizeof(*stats64) / sizeof(u64)); 5813 for (i = 0; i < n; i++) 5814 dst[i] = src[i]; 5815 #endif 5816 } 5817 EXPORT_SYMBOL(netdev_stats_to_stats64); 5818 5819 /** 5820 * dev_get_stats - get network device statistics 5821 * @dev: device to get statistics from 5822 * @storage: place to store stats 5823 * 5824 * Get network statistics from device. Return @storage. 5825 * The device driver may provide its own method by setting 5826 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 5827 * otherwise the internal statistics structure is used. 5828 */ 5829 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 5830 struct rtnl_link_stats64 *storage) 5831 { 5832 const struct net_device_ops *ops = dev->netdev_ops; 5833 5834 if (ops->ndo_get_stats64) { 5835 memset(storage, 0, sizeof(*storage)); 5836 ops->ndo_get_stats64(dev, storage); 5837 } else if (ops->ndo_get_stats) { 5838 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 5839 } else { 5840 netdev_stats_to_stats64(storage, &dev->stats); 5841 } 5842 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 5843 return storage; 5844 } 5845 EXPORT_SYMBOL(dev_get_stats); 5846 5847 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 5848 { 5849 struct netdev_queue *queue = dev_ingress_queue(dev); 5850 5851 #ifdef CONFIG_NET_CLS_ACT 5852 if (queue) 5853 return queue; 5854 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 5855 if (!queue) 5856 return NULL; 5857 netdev_init_one_queue(dev, queue, NULL); 5858 queue->qdisc = &noop_qdisc; 5859 queue->qdisc_sleeping = &noop_qdisc; 5860 rcu_assign_pointer(dev->ingress_queue, queue); 5861 #endif 5862 return queue; 5863 } 5864 5865 /** 5866 * alloc_netdev_mqs - allocate network device 5867 * @sizeof_priv: size of private data to allocate space for 5868 * @name: device name format string 5869 * @setup: callback to initialize device 5870 * @txqs: the number of TX subqueues to allocate 5871 * @rxqs: the number of RX subqueues to allocate 5872 * 5873 * Allocates a struct net_device with private data area for driver use 5874 * and performs basic initialization. Also allocates subquue structs 5875 * for each queue on the device. 5876 */ 5877 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 5878 void (*setup)(struct net_device *), 5879 unsigned int txqs, unsigned int rxqs) 5880 { 5881 struct net_device *dev; 5882 size_t alloc_size; 5883 struct net_device *p; 5884 5885 BUG_ON(strlen(name) >= sizeof(dev->name)); 5886 5887 if (txqs < 1) { 5888 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 5889 return NULL; 5890 } 5891 5892 #ifdef CONFIG_RPS 5893 if (rxqs < 1) { 5894 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 5895 return NULL; 5896 } 5897 #endif 5898 5899 alloc_size = sizeof(struct net_device); 5900 if (sizeof_priv) { 5901 /* ensure 32-byte alignment of private area */ 5902 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5903 alloc_size += sizeof_priv; 5904 } 5905 /* ensure 32-byte alignment of whole construct */ 5906 alloc_size += NETDEV_ALIGN - 1; 5907 5908 p = kzalloc(alloc_size, GFP_KERNEL); 5909 if (!p) { 5910 pr_err("alloc_netdev: Unable to allocate device\n"); 5911 return NULL; 5912 } 5913 5914 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5915 dev->padded = (char *)dev - (char *)p; 5916 5917 dev->pcpu_refcnt = alloc_percpu(int); 5918 if (!dev->pcpu_refcnt) 5919 goto free_p; 5920 5921 if (dev_addr_init(dev)) 5922 goto free_pcpu; 5923 5924 dev_mc_init(dev); 5925 dev_uc_init(dev); 5926 5927 dev_net_set(dev, &init_net); 5928 5929 dev->gso_max_size = GSO_MAX_SIZE; 5930 5931 INIT_LIST_HEAD(&dev->napi_list); 5932 INIT_LIST_HEAD(&dev->unreg_list); 5933 INIT_LIST_HEAD(&dev->link_watch_list); 5934 dev->priv_flags = IFF_XMIT_DST_RELEASE; 5935 setup(dev); 5936 5937 dev->num_tx_queues = txqs; 5938 dev->real_num_tx_queues = txqs; 5939 if (netif_alloc_netdev_queues(dev)) 5940 goto free_all; 5941 5942 #ifdef CONFIG_RPS 5943 dev->num_rx_queues = rxqs; 5944 dev->real_num_rx_queues = rxqs; 5945 if (netif_alloc_rx_queues(dev)) 5946 goto free_all; 5947 #endif 5948 5949 strcpy(dev->name, name); 5950 dev->group = INIT_NETDEV_GROUP; 5951 return dev; 5952 5953 free_all: 5954 free_netdev(dev); 5955 return NULL; 5956 5957 free_pcpu: 5958 free_percpu(dev->pcpu_refcnt); 5959 kfree(dev->_tx); 5960 #ifdef CONFIG_RPS 5961 kfree(dev->_rx); 5962 #endif 5963 5964 free_p: 5965 kfree(p); 5966 return NULL; 5967 } 5968 EXPORT_SYMBOL(alloc_netdev_mqs); 5969 5970 /** 5971 * free_netdev - free network device 5972 * @dev: device 5973 * 5974 * This function does the last stage of destroying an allocated device 5975 * interface. The reference to the device object is released. 5976 * If this is the last reference then it will be freed. 5977 */ 5978 void free_netdev(struct net_device *dev) 5979 { 5980 struct napi_struct *p, *n; 5981 5982 release_net(dev_net(dev)); 5983 5984 kfree(dev->_tx); 5985 #ifdef CONFIG_RPS 5986 kfree(dev->_rx); 5987 #endif 5988 5989 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 5990 5991 /* Flush device addresses */ 5992 dev_addr_flush(dev); 5993 5994 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 5995 netif_napi_del(p); 5996 5997 free_percpu(dev->pcpu_refcnt); 5998 dev->pcpu_refcnt = NULL; 5999 6000 /* Compatibility with error handling in drivers */ 6001 if (dev->reg_state == NETREG_UNINITIALIZED) { 6002 kfree((char *)dev - dev->padded); 6003 return; 6004 } 6005 6006 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 6007 dev->reg_state = NETREG_RELEASED; 6008 6009 /* will free via device release */ 6010 put_device(&dev->dev); 6011 } 6012 EXPORT_SYMBOL(free_netdev); 6013 6014 /** 6015 * synchronize_net - Synchronize with packet receive processing 6016 * 6017 * Wait for packets currently being received to be done. 6018 * Does not block later packets from starting. 6019 */ 6020 void synchronize_net(void) 6021 { 6022 might_sleep(); 6023 if (rtnl_is_locked()) 6024 synchronize_rcu_expedited(); 6025 else 6026 synchronize_rcu(); 6027 } 6028 EXPORT_SYMBOL(synchronize_net); 6029 6030 /** 6031 * unregister_netdevice_queue - remove device from the kernel 6032 * @dev: device 6033 * @head: list 6034 * 6035 * This function shuts down a device interface and removes it 6036 * from the kernel tables. 6037 * If head not NULL, device is queued to be unregistered later. 6038 * 6039 * Callers must hold the rtnl semaphore. You may want 6040 * unregister_netdev() instead of this. 6041 */ 6042 6043 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 6044 { 6045 ASSERT_RTNL(); 6046 6047 if (head) { 6048 list_move_tail(&dev->unreg_list, head); 6049 } else { 6050 rollback_registered(dev); 6051 /* Finish processing unregister after unlock */ 6052 net_set_todo(dev); 6053 } 6054 } 6055 EXPORT_SYMBOL(unregister_netdevice_queue); 6056 6057 /** 6058 * unregister_netdevice_many - unregister many devices 6059 * @head: list of devices 6060 */ 6061 void unregister_netdevice_many(struct list_head *head) 6062 { 6063 struct net_device *dev; 6064 6065 if (!list_empty(head)) { 6066 rollback_registered_many(head); 6067 list_for_each_entry(dev, head, unreg_list) 6068 net_set_todo(dev); 6069 } 6070 } 6071 EXPORT_SYMBOL(unregister_netdevice_many); 6072 6073 /** 6074 * unregister_netdev - remove device from the kernel 6075 * @dev: device 6076 * 6077 * This function shuts down a device interface and removes it 6078 * from the kernel tables. 6079 * 6080 * This is just a wrapper for unregister_netdevice that takes 6081 * the rtnl semaphore. In general you want to use this and not 6082 * unregister_netdevice. 6083 */ 6084 void unregister_netdev(struct net_device *dev) 6085 { 6086 rtnl_lock(); 6087 unregister_netdevice(dev); 6088 rtnl_unlock(); 6089 } 6090 EXPORT_SYMBOL(unregister_netdev); 6091 6092 /** 6093 * dev_change_net_namespace - move device to different nethost namespace 6094 * @dev: device 6095 * @net: network namespace 6096 * @pat: If not NULL name pattern to try if the current device name 6097 * is already taken in the destination network namespace. 6098 * 6099 * This function shuts down a device interface and moves it 6100 * to a new network namespace. On success 0 is returned, on 6101 * a failure a netagive errno code is returned. 6102 * 6103 * Callers must hold the rtnl semaphore. 6104 */ 6105 6106 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6107 { 6108 int err; 6109 6110 ASSERT_RTNL(); 6111 6112 /* Don't allow namespace local devices to be moved. */ 6113 err = -EINVAL; 6114 if (dev->features & NETIF_F_NETNS_LOCAL) 6115 goto out; 6116 6117 /* Ensure the device has been registrered */ 6118 err = -EINVAL; 6119 if (dev->reg_state != NETREG_REGISTERED) 6120 goto out; 6121 6122 /* Get out if there is nothing todo */ 6123 err = 0; 6124 if (net_eq(dev_net(dev), net)) 6125 goto out; 6126 6127 /* Pick the destination device name, and ensure 6128 * we can use it in the destination network namespace. 6129 */ 6130 err = -EEXIST; 6131 if (__dev_get_by_name(net, dev->name)) { 6132 /* We get here if we can't use the current device name */ 6133 if (!pat) 6134 goto out; 6135 if (dev_get_valid_name(dev, pat) < 0) 6136 goto out; 6137 } 6138 6139 /* 6140 * And now a mini version of register_netdevice unregister_netdevice. 6141 */ 6142 6143 /* If device is running close it first. */ 6144 dev_close(dev); 6145 6146 /* And unlink it from device chain */ 6147 err = -ENODEV; 6148 unlist_netdevice(dev); 6149 6150 synchronize_net(); 6151 6152 /* Shutdown queueing discipline. */ 6153 dev_shutdown(dev); 6154 6155 /* Notify protocols, that we are about to destroy 6156 this device. They should clean all the things. 6157 6158 Note that dev->reg_state stays at NETREG_REGISTERED. 6159 This is wanted because this way 8021q and macvlan know 6160 the device is just moving and can keep their slaves up. 6161 */ 6162 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6163 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 6164 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 6165 6166 /* 6167 * Flush the unicast and multicast chains 6168 */ 6169 dev_uc_flush(dev); 6170 dev_mc_flush(dev); 6171 6172 /* Actually switch the network namespace */ 6173 dev_net_set(dev, net); 6174 6175 /* If there is an ifindex conflict assign a new one */ 6176 if (__dev_get_by_index(net, dev->ifindex)) { 6177 int iflink = (dev->iflink == dev->ifindex); 6178 dev->ifindex = dev_new_index(net); 6179 if (iflink) 6180 dev->iflink = dev->ifindex; 6181 } 6182 6183 /* Fixup kobjects */ 6184 err = device_rename(&dev->dev, dev->name); 6185 WARN_ON(err); 6186 6187 /* Add the device back in the hashes */ 6188 list_netdevice(dev); 6189 6190 /* Notify protocols, that a new device appeared. */ 6191 call_netdevice_notifiers(NETDEV_REGISTER, dev); 6192 6193 /* 6194 * Prevent userspace races by waiting until the network 6195 * device is fully setup before sending notifications. 6196 */ 6197 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 6198 6199 synchronize_net(); 6200 err = 0; 6201 out: 6202 return err; 6203 } 6204 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 6205 6206 static int dev_cpu_callback(struct notifier_block *nfb, 6207 unsigned long action, 6208 void *ocpu) 6209 { 6210 struct sk_buff **list_skb; 6211 struct sk_buff *skb; 6212 unsigned int cpu, oldcpu = (unsigned long)ocpu; 6213 struct softnet_data *sd, *oldsd; 6214 6215 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 6216 return NOTIFY_OK; 6217 6218 local_irq_disable(); 6219 cpu = smp_processor_id(); 6220 sd = &per_cpu(softnet_data, cpu); 6221 oldsd = &per_cpu(softnet_data, oldcpu); 6222 6223 /* Find end of our completion_queue. */ 6224 list_skb = &sd->completion_queue; 6225 while (*list_skb) 6226 list_skb = &(*list_skb)->next; 6227 /* Append completion queue from offline CPU. */ 6228 *list_skb = oldsd->completion_queue; 6229 oldsd->completion_queue = NULL; 6230 6231 /* Append output queue from offline CPU. */ 6232 if (oldsd->output_queue) { 6233 *sd->output_queue_tailp = oldsd->output_queue; 6234 sd->output_queue_tailp = oldsd->output_queue_tailp; 6235 oldsd->output_queue = NULL; 6236 oldsd->output_queue_tailp = &oldsd->output_queue; 6237 } 6238 /* Append NAPI poll list from offline CPU. */ 6239 if (!list_empty(&oldsd->poll_list)) { 6240 list_splice_init(&oldsd->poll_list, &sd->poll_list); 6241 raise_softirq_irqoff(NET_RX_SOFTIRQ); 6242 } 6243 6244 raise_softirq_irqoff(NET_TX_SOFTIRQ); 6245 local_irq_enable(); 6246 6247 /* Process offline CPU's input_pkt_queue */ 6248 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 6249 netif_rx(skb); 6250 input_queue_head_incr(oldsd); 6251 } 6252 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 6253 netif_rx(skb); 6254 input_queue_head_incr(oldsd); 6255 } 6256 6257 return NOTIFY_OK; 6258 } 6259 6260 6261 /** 6262 * netdev_increment_features - increment feature set by one 6263 * @all: current feature set 6264 * @one: new feature set 6265 * @mask: mask feature set 6266 * 6267 * Computes a new feature set after adding a device with feature set 6268 * @one to the master device with current feature set @all. Will not 6269 * enable anything that is off in @mask. Returns the new feature set. 6270 */ 6271 netdev_features_t netdev_increment_features(netdev_features_t all, 6272 netdev_features_t one, netdev_features_t mask) 6273 { 6274 if (mask & NETIF_F_GEN_CSUM) 6275 mask |= NETIF_F_ALL_CSUM; 6276 mask |= NETIF_F_VLAN_CHALLENGED; 6277 6278 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 6279 all &= one | ~NETIF_F_ALL_FOR_ALL; 6280 6281 /* If one device supports hw checksumming, set for all. */ 6282 if (all & NETIF_F_GEN_CSUM) 6283 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 6284 6285 return all; 6286 } 6287 EXPORT_SYMBOL(netdev_increment_features); 6288 6289 static struct hlist_head *netdev_create_hash(void) 6290 { 6291 int i; 6292 struct hlist_head *hash; 6293 6294 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6295 if (hash != NULL) 6296 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6297 INIT_HLIST_HEAD(&hash[i]); 6298 6299 return hash; 6300 } 6301 6302 /* Initialize per network namespace state */ 6303 static int __net_init netdev_init(struct net *net) 6304 { 6305 INIT_LIST_HEAD(&net->dev_base_head); 6306 6307 net->dev_name_head = netdev_create_hash(); 6308 if (net->dev_name_head == NULL) 6309 goto err_name; 6310 6311 net->dev_index_head = netdev_create_hash(); 6312 if (net->dev_index_head == NULL) 6313 goto err_idx; 6314 6315 return 0; 6316 6317 err_idx: 6318 kfree(net->dev_name_head); 6319 err_name: 6320 return -ENOMEM; 6321 } 6322 6323 /** 6324 * netdev_drivername - network driver for the device 6325 * @dev: network device 6326 * 6327 * Determine network driver for device. 6328 */ 6329 const char *netdev_drivername(const struct net_device *dev) 6330 { 6331 const struct device_driver *driver; 6332 const struct device *parent; 6333 const char *empty = ""; 6334 6335 parent = dev->dev.parent; 6336 if (!parent) 6337 return empty; 6338 6339 driver = parent->driver; 6340 if (driver && driver->name) 6341 return driver->name; 6342 return empty; 6343 } 6344 6345 int __netdev_printk(const char *level, const struct net_device *dev, 6346 struct va_format *vaf) 6347 { 6348 int r; 6349 6350 if (dev && dev->dev.parent) 6351 r = dev_printk(level, dev->dev.parent, "%s: %pV", 6352 netdev_name(dev), vaf); 6353 else if (dev) 6354 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6355 else 6356 r = printk("%s(NULL net_device): %pV", level, vaf); 6357 6358 return r; 6359 } 6360 EXPORT_SYMBOL(__netdev_printk); 6361 6362 int netdev_printk(const char *level, const struct net_device *dev, 6363 const char *format, ...) 6364 { 6365 struct va_format vaf; 6366 va_list args; 6367 int r; 6368 6369 va_start(args, format); 6370 6371 vaf.fmt = format; 6372 vaf.va = &args; 6373 6374 r = __netdev_printk(level, dev, &vaf); 6375 va_end(args); 6376 6377 return r; 6378 } 6379 EXPORT_SYMBOL(netdev_printk); 6380 6381 #define define_netdev_printk_level(func, level) \ 6382 int func(const struct net_device *dev, const char *fmt, ...) \ 6383 { \ 6384 int r; \ 6385 struct va_format vaf; \ 6386 va_list args; \ 6387 \ 6388 va_start(args, fmt); \ 6389 \ 6390 vaf.fmt = fmt; \ 6391 vaf.va = &args; \ 6392 \ 6393 r = __netdev_printk(level, dev, &vaf); \ 6394 va_end(args); \ 6395 \ 6396 return r; \ 6397 } \ 6398 EXPORT_SYMBOL(func); 6399 6400 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6401 define_netdev_printk_level(netdev_alert, KERN_ALERT); 6402 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6403 define_netdev_printk_level(netdev_err, KERN_ERR); 6404 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6405 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6406 define_netdev_printk_level(netdev_info, KERN_INFO); 6407 6408 static void __net_exit netdev_exit(struct net *net) 6409 { 6410 kfree(net->dev_name_head); 6411 kfree(net->dev_index_head); 6412 } 6413 6414 static struct pernet_operations __net_initdata netdev_net_ops = { 6415 .init = netdev_init, 6416 .exit = netdev_exit, 6417 }; 6418 6419 static void __net_exit default_device_exit(struct net *net) 6420 { 6421 struct net_device *dev, *aux; 6422 /* 6423 * Push all migratable network devices back to the 6424 * initial network namespace 6425 */ 6426 rtnl_lock(); 6427 for_each_netdev_safe(net, dev, aux) { 6428 int err; 6429 char fb_name[IFNAMSIZ]; 6430 6431 /* Ignore unmoveable devices (i.e. loopback) */ 6432 if (dev->features & NETIF_F_NETNS_LOCAL) 6433 continue; 6434 6435 /* Leave virtual devices for the generic cleanup */ 6436 if (dev->rtnl_link_ops) 6437 continue; 6438 6439 /* Push remaining network devices to init_net */ 6440 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6441 err = dev_change_net_namespace(dev, &init_net, fb_name); 6442 if (err) { 6443 pr_emerg("%s: failed to move %s to init_net: %d\n", 6444 __func__, dev->name, err); 6445 BUG(); 6446 } 6447 } 6448 rtnl_unlock(); 6449 } 6450 6451 static void __net_exit default_device_exit_batch(struct list_head *net_list) 6452 { 6453 /* At exit all network devices most be removed from a network 6454 * namespace. Do this in the reverse order of registration. 6455 * Do this across as many network namespaces as possible to 6456 * improve batching efficiency. 6457 */ 6458 struct net_device *dev; 6459 struct net *net; 6460 LIST_HEAD(dev_kill_list); 6461 6462 rtnl_lock(); 6463 list_for_each_entry(net, net_list, exit_list) { 6464 for_each_netdev_reverse(net, dev) { 6465 if (dev->rtnl_link_ops) 6466 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6467 else 6468 unregister_netdevice_queue(dev, &dev_kill_list); 6469 } 6470 } 6471 unregister_netdevice_many(&dev_kill_list); 6472 list_del(&dev_kill_list); 6473 rtnl_unlock(); 6474 } 6475 6476 static struct pernet_operations __net_initdata default_device_ops = { 6477 .exit = default_device_exit, 6478 .exit_batch = default_device_exit_batch, 6479 }; 6480 6481 /* 6482 * Initialize the DEV module. At boot time this walks the device list and 6483 * unhooks any devices that fail to initialise (normally hardware not 6484 * present) and leaves us with a valid list of present and active devices. 6485 * 6486 */ 6487 6488 /* 6489 * This is called single threaded during boot, so no need 6490 * to take the rtnl semaphore. 6491 */ 6492 static int __init net_dev_init(void) 6493 { 6494 int i, rc = -ENOMEM; 6495 6496 BUG_ON(!dev_boot_phase); 6497 6498 if (dev_proc_init()) 6499 goto out; 6500 6501 if (netdev_kobject_init()) 6502 goto out; 6503 6504 INIT_LIST_HEAD(&ptype_all); 6505 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6506 INIT_LIST_HEAD(&ptype_base[i]); 6507 6508 if (register_pernet_subsys(&netdev_net_ops)) 6509 goto out; 6510 6511 /* 6512 * Initialise the packet receive queues. 6513 */ 6514 6515 for_each_possible_cpu(i) { 6516 struct softnet_data *sd = &per_cpu(softnet_data, i); 6517 6518 memset(sd, 0, sizeof(*sd)); 6519 skb_queue_head_init(&sd->input_pkt_queue); 6520 skb_queue_head_init(&sd->process_queue); 6521 sd->completion_queue = NULL; 6522 INIT_LIST_HEAD(&sd->poll_list); 6523 sd->output_queue = NULL; 6524 sd->output_queue_tailp = &sd->output_queue; 6525 #ifdef CONFIG_RPS 6526 sd->csd.func = rps_trigger_softirq; 6527 sd->csd.info = sd; 6528 sd->csd.flags = 0; 6529 sd->cpu = i; 6530 #endif 6531 6532 sd->backlog.poll = process_backlog; 6533 sd->backlog.weight = weight_p; 6534 sd->backlog.gro_list = NULL; 6535 sd->backlog.gro_count = 0; 6536 } 6537 6538 dev_boot_phase = 0; 6539 6540 /* The loopback device is special if any other network devices 6541 * is present in a network namespace the loopback device must 6542 * be present. Since we now dynamically allocate and free the 6543 * loopback device ensure this invariant is maintained by 6544 * keeping the loopback device as the first device on the 6545 * list of network devices. Ensuring the loopback devices 6546 * is the first device that appears and the last network device 6547 * that disappears. 6548 */ 6549 if (register_pernet_device(&loopback_net_ops)) 6550 goto out; 6551 6552 if (register_pernet_device(&default_device_ops)) 6553 goto out; 6554 6555 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6556 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6557 6558 hotcpu_notifier(dev_cpu_callback, 0); 6559 dst_init(); 6560 dev_mcast_init(); 6561 rc = 0; 6562 out: 6563 return rc; 6564 } 6565 6566 subsys_initcall(net_dev_init); 6567 6568 static int __init initialize_hashrnd(void) 6569 { 6570 get_random_bytes(&hashrnd, sizeof(hashrnd)); 6571 return 0; 6572 } 6573 6574 late_initcall_sync(initialize_hashrnd); 6575 6576