xref: /openbmc/linux/net/core/dev.c (revision 609e478b)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134 #include <linux/if_macvlan.h>
135 #include <linux/errqueue.h>
136 
137 #include "net-sysfs.h"
138 
139 /* Instead of increasing this, you should create a hash table. */
140 #define MAX_GRO_SKBS 8
141 
142 /* This should be increased if a protocol with a bigger head is added. */
143 #define GRO_MAX_HEAD (MAX_HEADER + 128)
144 
145 static DEFINE_SPINLOCK(ptype_lock);
146 static DEFINE_SPINLOCK(offload_lock);
147 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
148 struct list_head ptype_all __read_mostly;	/* Taps */
149 static struct list_head offload_base __read_mostly;
150 
151 static int netif_rx_internal(struct sk_buff *skb);
152 static int call_netdevice_notifiers_info(unsigned long val,
153 					 struct net_device *dev,
154 					 struct netdev_notifier_info *info);
155 
156 /*
157  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
158  * semaphore.
159  *
160  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
161  *
162  * Writers must hold the rtnl semaphore while they loop through the
163  * dev_base_head list, and hold dev_base_lock for writing when they do the
164  * actual updates.  This allows pure readers to access the list even
165  * while a writer is preparing to update it.
166  *
167  * To put it another way, dev_base_lock is held for writing only to
168  * protect against pure readers; the rtnl semaphore provides the
169  * protection against other writers.
170  *
171  * See, for example usages, register_netdevice() and
172  * unregister_netdevice(), which must be called with the rtnl
173  * semaphore held.
174  */
175 DEFINE_RWLOCK(dev_base_lock);
176 EXPORT_SYMBOL(dev_base_lock);
177 
178 /* protects napi_hash addition/deletion and napi_gen_id */
179 static DEFINE_SPINLOCK(napi_hash_lock);
180 
181 static unsigned int napi_gen_id;
182 static DEFINE_HASHTABLE(napi_hash, 8);
183 
184 static seqcount_t devnet_rename_seq;
185 
186 static inline void dev_base_seq_inc(struct net *net)
187 {
188 	while (++net->dev_base_seq == 0);
189 }
190 
191 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
192 {
193 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
194 
195 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
196 }
197 
198 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
199 {
200 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
201 }
202 
203 static inline void rps_lock(struct softnet_data *sd)
204 {
205 #ifdef CONFIG_RPS
206 	spin_lock(&sd->input_pkt_queue.lock);
207 #endif
208 }
209 
210 static inline void rps_unlock(struct softnet_data *sd)
211 {
212 #ifdef CONFIG_RPS
213 	spin_unlock(&sd->input_pkt_queue.lock);
214 #endif
215 }
216 
217 /* Device list insertion */
218 static void list_netdevice(struct net_device *dev)
219 {
220 	struct net *net = dev_net(dev);
221 
222 	ASSERT_RTNL();
223 
224 	write_lock_bh(&dev_base_lock);
225 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
226 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
227 	hlist_add_head_rcu(&dev->index_hlist,
228 			   dev_index_hash(net, dev->ifindex));
229 	write_unlock_bh(&dev_base_lock);
230 
231 	dev_base_seq_inc(net);
232 }
233 
234 /* Device list removal
235  * caller must respect a RCU grace period before freeing/reusing dev
236  */
237 static void unlist_netdevice(struct net_device *dev)
238 {
239 	ASSERT_RTNL();
240 
241 	/* Unlink dev from the device chain */
242 	write_lock_bh(&dev_base_lock);
243 	list_del_rcu(&dev->dev_list);
244 	hlist_del_rcu(&dev->name_hlist);
245 	hlist_del_rcu(&dev->index_hlist);
246 	write_unlock_bh(&dev_base_lock);
247 
248 	dev_base_seq_inc(dev_net(dev));
249 }
250 
251 /*
252  *	Our notifier list
253  */
254 
255 static RAW_NOTIFIER_HEAD(netdev_chain);
256 
257 /*
258  *	Device drivers call our routines to queue packets here. We empty the
259  *	queue in the local softnet handler.
260  */
261 
262 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
263 EXPORT_PER_CPU_SYMBOL(softnet_data);
264 
265 #ifdef CONFIG_LOCKDEP
266 /*
267  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
268  * according to dev->type
269  */
270 static const unsigned short netdev_lock_type[] =
271 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
272 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
273 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
274 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
275 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
276 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
277 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
278 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
279 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
280 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
281 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
282 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
283 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
284 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
285 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
286 
287 static const char *const netdev_lock_name[] =
288 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
289 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
290 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
291 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
292 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
293 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
294 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
295 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
296 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
297 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
298 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
299 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
300 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
301 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
302 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
303 
304 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
305 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
306 
307 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
308 {
309 	int i;
310 
311 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
312 		if (netdev_lock_type[i] == dev_type)
313 			return i;
314 	/* the last key is used by default */
315 	return ARRAY_SIZE(netdev_lock_type) - 1;
316 }
317 
318 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
319 						 unsigned short dev_type)
320 {
321 	int i;
322 
323 	i = netdev_lock_pos(dev_type);
324 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
325 				   netdev_lock_name[i]);
326 }
327 
328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
329 {
330 	int i;
331 
332 	i = netdev_lock_pos(dev->type);
333 	lockdep_set_class_and_name(&dev->addr_list_lock,
334 				   &netdev_addr_lock_key[i],
335 				   netdev_lock_name[i]);
336 }
337 #else
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 						 unsigned short dev_type)
340 {
341 }
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344 }
345 #endif
346 
347 /*******************************************************************************
348 
349 		Protocol management and registration routines
350 
351 *******************************************************************************/
352 
353 /*
354  *	Add a protocol ID to the list. Now that the input handler is
355  *	smarter we can dispense with all the messy stuff that used to be
356  *	here.
357  *
358  *	BEWARE!!! Protocol handlers, mangling input packets,
359  *	MUST BE last in hash buckets and checking protocol handlers
360  *	MUST start from promiscuous ptype_all chain in net_bh.
361  *	It is true now, do not change it.
362  *	Explanation follows: if protocol handler, mangling packet, will
363  *	be the first on list, it is not able to sense, that packet
364  *	is cloned and should be copied-on-write, so that it will
365  *	change it and subsequent readers will get broken packet.
366  *							--ANK (980803)
367  */
368 
369 static inline struct list_head *ptype_head(const struct packet_type *pt)
370 {
371 	if (pt->type == htons(ETH_P_ALL))
372 		return &ptype_all;
373 	else
374 		return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
375 }
376 
377 /**
378  *	dev_add_pack - add packet handler
379  *	@pt: packet type declaration
380  *
381  *	Add a protocol handler to the networking stack. The passed &packet_type
382  *	is linked into kernel lists and may not be freed until it has been
383  *	removed from the kernel lists.
384  *
385  *	This call does not sleep therefore it can not
386  *	guarantee all CPU's that are in middle of receiving packets
387  *	will see the new packet type (until the next received packet).
388  */
389 
390 void dev_add_pack(struct packet_type *pt)
391 {
392 	struct list_head *head = ptype_head(pt);
393 
394 	spin_lock(&ptype_lock);
395 	list_add_rcu(&pt->list, head);
396 	spin_unlock(&ptype_lock);
397 }
398 EXPORT_SYMBOL(dev_add_pack);
399 
400 /**
401  *	__dev_remove_pack	 - remove packet handler
402  *	@pt: packet type declaration
403  *
404  *	Remove a protocol handler that was previously added to the kernel
405  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
406  *	from the kernel lists and can be freed or reused once this function
407  *	returns.
408  *
409  *      The packet type might still be in use by receivers
410  *	and must not be freed until after all the CPU's have gone
411  *	through a quiescent state.
412  */
413 void __dev_remove_pack(struct packet_type *pt)
414 {
415 	struct list_head *head = ptype_head(pt);
416 	struct packet_type *pt1;
417 
418 	spin_lock(&ptype_lock);
419 
420 	list_for_each_entry(pt1, head, list) {
421 		if (pt == pt1) {
422 			list_del_rcu(&pt->list);
423 			goto out;
424 		}
425 	}
426 
427 	pr_warn("dev_remove_pack: %p not found\n", pt);
428 out:
429 	spin_unlock(&ptype_lock);
430 }
431 EXPORT_SYMBOL(__dev_remove_pack);
432 
433 /**
434  *	dev_remove_pack	 - remove packet handler
435  *	@pt: packet type declaration
436  *
437  *	Remove a protocol handler that was previously added to the kernel
438  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
439  *	from the kernel lists and can be freed or reused once this function
440  *	returns.
441  *
442  *	This call sleeps to guarantee that no CPU is looking at the packet
443  *	type after return.
444  */
445 void dev_remove_pack(struct packet_type *pt)
446 {
447 	__dev_remove_pack(pt);
448 
449 	synchronize_net();
450 }
451 EXPORT_SYMBOL(dev_remove_pack);
452 
453 
454 /**
455  *	dev_add_offload - register offload handlers
456  *	@po: protocol offload declaration
457  *
458  *	Add protocol offload handlers to the networking stack. The passed
459  *	&proto_offload is linked into kernel lists and may not be freed until
460  *	it has been removed from the kernel lists.
461  *
462  *	This call does not sleep therefore it can not
463  *	guarantee all CPU's that are in middle of receiving packets
464  *	will see the new offload handlers (until the next received packet).
465  */
466 void dev_add_offload(struct packet_offload *po)
467 {
468 	struct list_head *head = &offload_base;
469 
470 	spin_lock(&offload_lock);
471 	list_add_rcu(&po->list, head);
472 	spin_unlock(&offload_lock);
473 }
474 EXPORT_SYMBOL(dev_add_offload);
475 
476 /**
477  *	__dev_remove_offload	 - remove offload handler
478  *	@po: packet offload declaration
479  *
480  *	Remove a protocol offload handler that was previously added to the
481  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
482  *	is removed from the kernel lists and can be freed or reused once this
483  *	function returns.
484  *
485  *      The packet type might still be in use by receivers
486  *	and must not be freed until after all the CPU's have gone
487  *	through a quiescent state.
488  */
489 static void __dev_remove_offload(struct packet_offload *po)
490 {
491 	struct list_head *head = &offload_base;
492 	struct packet_offload *po1;
493 
494 	spin_lock(&offload_lock);
495 
496 	list_for_each_entry(po1, head, list) {
497 		if (po == po1) {
498 			list_del_rcu(&po->list);
499 			goto out;
500 		}
501 	}
502 
503 	pr_warn("dev_remove_offload: %p not found\n", po);
504 out:
505 	spin_unlock(&offload_lock);
506 }
507 
508 /**
509  *	dev_remove_offload	 - remove packet offload handler
510  *	@po: packet offload declaration
511  *
512  *	Remove a packet offload handler that was previously added to the kernel
513  *	offload handlers by dev_add_offload(). The passed &offload_type is
514  *	removed from the kernel lists and can be freed or reused once this
515  *	function returns.
516  *
517  *	This call sleeps to guarantee that no CPU is looking at the packet
518  *	type after return.
519  */
520 void dev_remove_offload(struct packet_offload *po)
521 {
522 	__dev_remove_offload(po);
523 
524 	synchronize_net();
525 }
526 EXPORT_SYMBOL(dev_remove_offload);
527 
528 /******************************************************************************
529 
530 		      Device Boot-time Settings Routines
531 
532 *******************************************************************************/
533 
534 /* Boot time configuration table */
535 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
536 
537 /**
538  *	netdev_boot_setup_add	- add new setup entry
539  *	@name: name of the device
540  *	@map: configured settings for the device
541  *
542  *	Adds new setup entry to the dev_boot_setup list.  The function
543  *	returns 0 on error and 1 on success.  This is a generic routine to
544  *	all netdevices.
545  */
546 static int netdev_boot_setup_add(char *name, struct ifmap *map)
547 {
548 	struct netdev_boot_setup *s;
549 	int i;
550 
551 	s = dev_boot_setup;
552 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
553 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
554 			memset(s[i].name, 0, sizeof(s[i].name));
555 			strlcpy(s[i].name, name, IFNAMSIZ);
556 			memcpy(&s[i].map, map, sizeof(s[i].map));
557 			break;
558 		}
559 	}
560 
561 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
562 }
563 
564 /**
565  *	netdev_boot_setup_check	- check boot time settings
566  *	@dev: the netdevice
567  *
568  * 	Check boot time settings for the device.
569  *	The found settings are set for the device to be used
570  *	later in the device probing.
571  *	Returns 0 if no settings found, 1 if they are.
572  */
573 int netdev_boot_setup_check(struct net_device *dev)
574 {
575 	struct netdev_boot_setup *s = dev_boot_setup;
576 	int i;
577 
578 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
579 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
580 		    !strcmp(dev->name, s[i].name)) {
581 			dev->irq 	= s[i].map.irq;
582 			dev->base_addr 	= s[i].map.base_addr;
583 			dev->mem_start 	= s[i].map.mem_start;
584 			dev->mem_end 	= s[i].map.mem_end;
585 			return 1;
586 		}
587 	}
588 	return 0;
589 }
590 EXPORT_SYMBOL(netdev_boot_setup_check);
591 
592 
593 /**
594  *	netdev_boot_base	- get address from boot time settings
595  *	@prefix: prefix for network device
596  *	@unit: id for network device
597  *
598  * 	Check boot time settings for the base address of device.
599  *	The found settings are set for the device to be used
600  *	later in the device probing.
601  *	Returns 0 if no settings found.
602  */
603 unsigned long netdev_boot_base(const char *prefix, int unit)
604 {
605 	const struct netdev_boot_setup *s = dev_boot_setup;
606 	char name[IFNAMSIZ];
607 	int i;
608 
609 	sprintf(name, "%s%d", prefix, unit);
610 
611 	/*
612 	 * If device already registered then return base of 1
613 	 * to indicate not to probe for this interface
614 	 */
615 	if (__dev_get_by_name(&init_net, name))
616 		return 1;
617 
618 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
619 		if (!strcmp(name, s[i].name))
620 			return s[i].map.base_addr;
621 	return 0;
622 }
623 
624 /*
625  * Saves at boot time configured settings for any netdevice.
626  */
627 int __init netdev_boot_setup(char *str)
628 {
629 	int ints[5];
630 	struct ifmap map;
631 
632 	str = get_options(str, ARRAY_SIZE(ints), ints);
633 	if (!str || !*str)
634 		return 0;
635 
636 	/* Save settings */
637 	memset(&map, 0, sizeof(map));
638 	if (ints[0] > 0)
639 		map.irq = ints[1];
640 	if (ints[0] > 1)
641 		map.base_addr = ints[2];
642 	if (ints[0] > 2)
643 		map.mem_start = ints[3];
644 	if (ints[0] > 3)
645 		map.mem_end = ints[4];
646 
647 	/* Add new entry to the list */
648 	return netdev_boot_setup_add(str, &map);
649 }
650 
651 __setup("netdev=", netdev_boot_setup);
652 
653 /*******************************************************************************
654 
655 			    Device Interface Subroutines
656 
657 *******************************************************************************/
658 
659 /**
660  *	__dev_get_by_name	- find a device by its name
661  *	@net: the applicable net namespace
662  *	@name: name to find
663  *
664  *	Find an interface by name. Must be called under RTNL semaphore
665  *	or @dev_base_lock. If the name is found a pointer to the device
666  *	is returned. If the name is not found then %NULL is returned. The
667  *	reference counters are not incremented so the caller must be
668  *	careful with locks.
669  */
670 
671 struct net_device *__dev_get_by_name(struct net *net, const char *name)
672 {
673 	struct net_device *dev;
674 	struct hlist_head *head = dev_name_hash(net, name);
675 
676 	hlist_for_each_entry(dev, head, name_hlist)
677 		if (!strncmp(dev->name, name, IFNAMSIZ))
678 			return dev;
679 
680 	return NULL;
681 }
682 EXPORT_SYMBOL(__dev_get_by_name);
683 
684 /**
685  *	dev_get_by_name_rcu	- find a device by its name
686  *	@net: the applicable net namespace
687  *	@name: name to find
688  *
689  *	Find an interface by name.
690  *	If the name is found a pointer to the device is returned.
691  * 	If the name is not found then %NULL is returned.
692  *	The reference counters are not incremented so the caller must be
693  *	careful with locks. The caller must hold RCU lock.
694  */
695 
696 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
697 {
698 	struct net_device *dev;
699 	struct hlist_head *head = dev_name_hash(net, name);
700 
701 	hlist_for_each_entry_rcu(dev, head, name_hlist)
702 		if (!strncmp(dev->name, name, IFNAMSIZ))
703 			return dev;
704 
705 	return NULL;
706 }
707 EXPORT_SYMBOL(dev_get_by_name_rcu);
708 
709 /**
710  *	dev_get_by_name		- find a device by its name
711  *	@net: the applicable net namespace
712  *	@name: name to find
713  *
714  *	Find an interface by name. This can be called from any
715  *	context and does its own locking. The returned handle has
716  *	the usage count incremented and the caller must use dev_put() to
717  *	release it when it is no longer needed. %NULL is returned if no
718  *	matching device is found.
719  */
720 
721 struct net_device *dev_get_by_name(struct net *net, const char *name)
722 {
723 	struct net_device *dev;
724 
725 	rcu_read_lock();
726 	dev = dev_get_by_name_rcu(net, name);
727 	if (dev)
728 		dev_hold(dev);
729 	rcu_read_unlock();
730 	return dev;
731 }
732 EXPORT_SYMBOL(dev_get_by_name);
733 
734 /**
735  *	__dev_get_by_index - find a device by its ifindex
736  *	@net: the applicable net namespace
737  *	@ifindex: index of device
738  *
739  *	Search for an interface by index. Returns %NULL if the device
740  *	is not found or a pointer to the device. The device has not
741  *	had its reference counter increased so the caller must be careful
742  *	about locking. The caller must hold either the RTNL semaphore
743  *	or @dev_base_lock.
744  */
745 
746 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
747 {
748 	struct net_device *dev;
749 	struct hlist_head *head = dev_index_hash(net, ifindex);
750 
751 	hlist_for_each_entry(dev, head, index_hlist)
752 		if (dev->ifindex == ifindex)
753 			return dev;
754 
755 	return NULL;
756 }
757 EXPORT_SYMBOL(__dev_get_by_index);
758 
759 /**
760  *	dev_get_by_index_rcu - find a device by its ifindex
761  *	@net: the applicable net namespace
762  *	@ifindex: index of device
763  *
764  *	Search for an interface by index. Returns %NULL if the device
765  *	is not found or a pointer to the device. The device has not
766  *	had its reference counter increased so the caller must be careful
767  *	about locking. The caller must hold RCU lock.
768  */
769 
770 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
771 {
772 	struct net_device *dev;
773 	struct hlist_head *head = dev_index_hash(net, ifindex);
774 
775 	hlist_for_each_entry_rcu(dev, head, index_hlist)
776 		if (dev->ifindex == ifindex)
777 			return dev;
778 
779 	return NULL;
780 }
781 EXPORT_SYMBOL(dev_get_by_index_rcu);
782 
783 
784 /**
785  *	dev_get_by_index - find a device by its ifindex
786  *	@net: the applicable net namespace
787  *	@ifindex: index of device
788  *
789  *	Search for an interface by index. Returns NULL if the device
790  *	is not found or a pointer to the device. The device returned has
791  *	had a reference added and the pointer is safe until the user calls
792  *	dev_put to indicate they have finished with it.
793  */
794 
795 struct net_device *dev_get_by_index(struct net *net, int ifindex)
796 {
797 	struct net_device *dev;
798 
799 	rcu_read_lock();
800 	dev = dev_get_by_index_rcu(net, ifindex);
801 	if (dev)
802 		dev_hold(dev);
803 	rcu_read_unlock();
804 	return dev;
805 }
806 EXPORT_SYMBOL(dev_get_by_index);
807 
808 /**
809  *	netdev_get_name - get a netdevice name, knowing its ifindex.
810  *	@net: network namespace
811  *	@name: a pointer to the buffer where the name will be stored.
812  *	@ifindex: the ifindex of the interface to get the name from.
813  *
814  *	The use of raw_seqcount_begin() and cond_resched() before
815  *	retrying is required as we want to give the writers a chance
816  *	to complete when CONFIG_PREEMPT is not set.
817  */
818 int netdev_get_name(struct net *net, char *name, int ifindex)
819 {
820 	struct net_device *dev;
821 	unsigned int seq;
822 
823 retry:
824 	seq = raw_seqcount_begin(&devnet_rename_seq);
825 	rcu_read_lock();
826 	dev = dev_get_by_index_rcu(net, ifindex);
827 	if (!dev) {
828 		rcu_read_unlock();
829 		return -ENODEV;
830 	}
831 
832 	strcpy(name, dev->name);
833 	rcu_read_unlock();
834 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
835 		cond_resched();
836 		goto retry;
837 	}
838 
839 	return 0;
840 }
841 
842 /**
843  *	dev_getbyhwaddr_rcu - find a device by its hardware address
844  *	@net: the applicable net namespace
845  *	@type: media type of device
846  *	@ha: hardware address
847  *
848  *	Search for an interface by MAC address. Returns NULL if the device
849  *	is not found or a pointer to the device.
850  *	The caller must hold RCU or RTNL.
851  *	The returned device has not had its ref count increased
852  *	and the caller must therefore be careful about locking
853  *
854  */
855 
856 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
857 				       const char *ha)
858 {
859 	struct net_device *dev;
860 
861 	for_each_netdev_rcu(net, dev)
862 		if (dev->type == type &&
863 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
864 			return dev;
865 
866 	return NULL;
867 }
868 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
869 
870 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
871 {
872 	struct net_device *dev;
873 
874 	ASSERT_RTNL();
875 	for_each_netdev(net, dev)
876 		if (dev->type == type)
877 			return dev;
878 
879 	return NULL;
880 }
881 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
882 
883 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
884 {
885 	struct net_device *dev, *ret = NULL;
886 
887 	rcu_read_lock();
888 	for_each_netdev_rcu(net, dev)
889 		if (dev->type == type) {
890 			dev_hold(dev);
891 			ret = dev;
892 			break;
893 		}
894 	rcu_read_unlock();
895 	return ret;
896 }
897 EXPORT_SYMBOL(dev_getfirstbyhwtype);
898 
899 /**
900  *	__dev_get_by_flags - find any device with given flags
901  *	@net: the applicable net namespace
902  *	@if_flags: IFF_* values
903  *	@mask: bitmask of bits in if_flags to check
904  *
905  *	Search for any interface with the given flags. Returns NULL if a device
906  *	is not found or a pointer to the device. Must be called inside
907  *	rtnl_lock(), and result refcount is unchanged.
908  */
909 
910 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
911 				      unsigned short mask)
912 {
913 	struct net_device *dev, *ret;
914 
915 	ASSERT_RTNL();
916 
917 	ret = NULL;
918 	for_each_netdev(net, dev) {
919 		if (((dev->flags ^ if_flags) & mask) == 0) {
920 			ret = dev;
921 			break;
922 		}
923 	}
924 	return ret;
925 }
926 EXPORT_SYMBOL(__dev_get_by_flags);
927 
928 /**
929  *	dev_valid_name - check if name is okay for network device
930  *	@name: name string
931  *
932  *	Network device names need to be valid file names to
933  *	to allow sysfs to work.  We also disallow any kind of
934  *	whitespace.
935  */
936 bool dev_valid_name(const char *name)
937 {
938 	if (*name == '\0')
939 		return false;
940 	if (strlen(name) >= IFNAMSIZ)
941 		return false;
942 	if (!strcmp(name, ".") || !strcmp(name, ".."))
943 		return false;
944 
945 	while (*name) {
946 		if (*name == '/' || isspace(*name))
947 			return false;
948 		name++;
949 	}
950 	return true;
951 }
952 EXPORT_SYMBOL(dev_valid_name);
953 
954 /**
955  *	__dev_alloc_name - allocate a name for a device
956  *	@net: network namespace to allocate the device name in
957  *	@name: name format string
958  *	@buf:  scratch buffer and result name string
959  *
960  *	Passed a format string - eg "lt%d" it will try and find a suitable
961  *	id. It scans list of devices to build up a free map, then chooses
962  *	the first empty slot. The caller must hold the dev_base or rtnl lock
963  *	while allocating the name and adding the device in order to avoid
964  *	duplicates.
965  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
966  *	Returns the number of the unit assigned or a negative errno code.
967  */
968 
969 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
970 {
971 	int i = 0;
972 	const char *p;
973 	const int max_netdevices = 8*PAGE_SIZE;
974 	unsigned long *inuse;
975 	struct net_device *d;
976 
977 	p = strnchr(name, IFNAMSIZ-1, '%');
978 	if (p) {
979 		/*
980 		 * Verify the string as this thing may have come from
981 		 * the user.  There must be either one "%d" and no other "%"
982 		 * characters.
983 		 */
984 		if (p[1] != 'd' || strchr(p + 2, '%'))
985 			return -EINVAL;
986 
987 		/* Use one page as a bit array of possible slots */
988 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
989 		if (!inuse)
990 			return -ENOMEM;
991 
992 		for_each_netdev(net, d) {
993 			if (!sscanf(d->name, name, &i))
994 				continue;
995 			if (i < 0 || i >= max_netdevices)
996 				continue;
997 
998 			/*  avoid cases where sscanf is not exact inverse of printf */
999 			snprintf(buf, IFNAMSIZ, name, i);
1000 			if (!strncmp(buf, d->name, IFNAMSIZ))
1001 				set_bit(i, inuse);
1002 		}
1003 
1004 		i = find_first_zero_bit(inuse, max_netdevices);
1005 		free_page((unsigned long) inuse);
1006 	}
1007 
1008 	if (buf != name)
1009 		snprintf(buf, IFNAMSIZ, name, i);
1010 	if (!__dev_get_by_name(net, buf))
1011 		return i;
1012 
1013 	/* It is possible to run out of possible slots
1014 	 * when the name is long and there isn't enough space left
1015 	 * for the digits, or if all bits are used.
1016 	 */
1017 	return -ENFILE;
1018 }
1019 
1020 /**
1021  *	dev_alloc_name - allocate a name for a device
1022  *	@dev: device
1023  *	@name: name format string
1024  *
1025  *	Passed a format string - eg "lt%d" it will try and find a suitable
1026  *	id. It scans list of devices to build up a free map, then chooses
1027  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1028  *	while allocating the name and adding the device in order to avoid
1029  *	duplicates.
1030  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1031  *	Returns the number of the unit assigned or a negative errno code.
1032  */
1033 
1034 int dev_alloc_name(struct net_device *dev, const char *name)
1035 {
1036 	char buf[IFNAMSIZ];
1037 	struct net *net;
1038 	int ret;
1039 
1040 	BUG_ON(!dev_net(dev));
1041 	net = dev_net(dev);
1042 	ret = __dev_alloc_name(net, name, buf);
1043 	if (ret >= 0)
1044 		strlcpy(dev->name, buf, IFNAMSIZ);
1045 	return ret;
1046 }
1047 EXPORT_SYMBOL(dev_alloc_name);
1048 
1049 static int dev_alloc_name_ns(struct net *net,
1050 			     struct net_device *dev,
1051 			     const char *name)
1052 {
1053 	char buf[IFNAMSIZ];
1054 	int ret;
1055 
1056 	ret = __dev_alloc_name(net, name, buf);
1057 	if (ret >= 0)
1058 		strlcpy(dev->name, buf, IFNAMSIZ);
1059 	return ret;
1060 }
1061 
1062 static int dev_get_valid_name(struct net *net,
1063 			      struct net_device *dev,
1064 			      const char *name)
1065 {
1066 	BUG_ON(!net);
1067 
1068 	if (!dev_valid_name(name))
1069 		return -EINVAL;
1070 
1071 	if (strchr(name, '%'))
1072 		return dev_alloc_name_ns(net, dev, name);
1073 	else if (__dev_get_by_name(net, name))
1074 		return -EEXIST;
1075 	else if (dev->name != name)
1076 		strlcpy(dev->name, name, IFNAMSIZ);
1077 
1078 	return 0;
1079 }
1080 
1081 /**
1082  *	dev_change_name - change name of a device
1083  *	@dev: device
1084  *	@newname: name (or format string) must be at least IFNAMSIZ
1085  *
1086  *	Change name of a device, can pass format strings "eth%d".
1087  *	for wildcarding.
1088  */
1089 int dev_change_name(struct net_device *dev, const char *newname)
1090 {
1091 	unsigned char old_assign_type;
1092 	char oldname[IFNAMSIZ];
1093 	int err = 0;
1094 	int ret;
1095 	struct net *net;
1096 
1097 	ASSERT_RTNL();
1098 	BUG_ON(!dev_net(dev));
1099 
1100 	net = dev_net(dev);
1101 	if (dev->flags & IFF_UP)
1102 		return -EBUSY;
1103 
1104 	write_seqcount_begin(&devnet_rename_seq);
1105 
1106 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1107 		write_seqcount_end(&devnet_rename_seq);
1108 		return 0;
1109 	}
1110 
1111 	memcpy(oldname, dev->name, IFNAMSIZ);
1112 
1113 	err = dev_get_valid_name(net, dev, newname);
1114 	if (err < 0) {
1115 		write_seqcount_end(&devnet_rename_seq);
1116 		return err;
1117 	}
1118 
1119 	if (oldname[0] && !strchr(oldname, '%'))
1120 		netdev_info(dev, "renamed from %s\n", oldname);
1121 
1122 	old_assign_type = dev->name_assign_type;
1123 	dev->name_assign_type = NET_NAME_RENAMED;
1124 
1125 rollback:
1126 	ret = device_rename(&dev->dev, dev->name);
1127 	if (ret) {
1128 		memcpy(dev->name, oldname, IFNAMSIZ);
1129 		dev->name_assign_type = old_assign_type;
1130 		write_seqcount_end(&devnet_rename_seq);
1131 		return ret;
1132 	}
1133 
1134 	write_seqcount_end(&devnet_rename_seq);
1135 
1136 	netdev_adjacent_rename_links(dev, oldname);
1137 
1138 	write_lock_bh(&dev_base_lock);
1139 	hlist_del_rcu(&dev->name_hlist);
1140 	write_unlock_bh(&dev_base_lock);
1141 
1142 	synchronize_rcu();
1143 
1144 	write_lock_bh(&dev_base_lock);
1145 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1146 	write_unlock_bh(&dev_base_lock);
1147 
1148 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1149 	ret = notifier_to_errno(ret);
1150 
1151 	if (ret) {
1152 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1153 		if (err >= 0) {
1154 			err = ret;
1155 			write_seqcount_begin(&devnet_rename_seq);
1156 			memcpy(dev->name, oldname, IFNAMSIZ);
1157 			memcpy(oldname, newname, IFNAMSIZ);
1158 			dev->name_assign_type = old_assign_type;
1159 			old_assign_type = NET_NAME_RENAMED;
1160 			goto rollback;
1161 		} else {
1162 			pr_err("%s: name change rollback failed: %d\n",
1163 			       dev->name, ret);
1164 		}
1165 	}
1166 
1167 	return err;
1168 }
1169 
1170 /**
1171  *	dev_set_alias - change ifalias of a device
1172  *	@dev: device
1173  *	@alias: name up to IFALIASZ
1174  *	@len: limit of bytes to copy from info
1175  *
1176  *	Set ifalias for a device,
1177  */
1178 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1179 {
1180 	char *new_ifalias;
1181 
1182 	ASSERT_RTNL();
1183 
1184 	if (len >= IFALIASZ)
1185 		return -EINVAL;
1186 
1187 	if (!len) {
1188 		kfree(dev->ifalias);
1189 		dev->ifalias = NULL;
1190 		return 0;
1191 	}
1192 
1193 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1194 	if (!new_ifalias)
1195 		return -ENOMEM;
1196 	dev->ifalias = new_ifalias;
1197 
1198 	strlcpy(dev->ifalias, alias, len+1);
1199 	return len;
1200 }
1201 
1202 
1203 /**
1204  *	netdev_features_change - device changes features
1205  *	@dev: device to cause notification
1206  *
1207  *	Called to indicate a device has changed features.
1208  */
1209 void netdev_features_change(struct net_device *dev)
1210 {
1211 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1212 }
1213 EXPORT_SYMBOL(netdev_features_change);
1214 
1215 /**
1216  *	netdev_state_change - device changes state
1217  *	@dev: device to cause notification
1218  *
1219  *	Called to indicate a device has changed state. This function calls
1220  *	the notifier chains for netdev_chain and sends a NEWLINK message
1221  *	to the routing socket.
1222  */
1223 void netdev_state_change(struct net_device *dev)
1224 {
1225 	if (dev->flags & IFF_UP) {
1226 		struct netdev_notifier_change_info change_info;
1227 
1228 		change_info.flags_changed = 0;
1229 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1230 					      &change_info.info);
1231 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1232 	}
1233 }
1234 EXPORT_SYMBOL(netdev_state_change);
1235 
1236 /**
1237  * 	netdev_notify_peers - notify network peers about existence of @dev
1238  * 	@dev: network device
1239  *
1240  * Generate traffic such that interested network peers are aware of
1241  * @dev, such as by generating a gratuitous ARP. This may be used when
1242  * a device wants to inform the rest of the network about some sort of
1243  * reconfiguration such as a failover event or virtual machine
1244  * migration.
1245  */
1246 void netdev_notify_peers(struct net_device *dev)
1247 {
1248 	rtnl_lock();
1249 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1250 	rtnl_unlock();
1251 }
1252 EXPORT_SYMBOL(netdev_notify_peers);
1253 
1254 static int __dev_open(struct net_device *dev)
1255 {
1256 	const struct net_device_ops *ops = dev->netdev_ops;
1257 	int ret;
1258 
1259 	ASSERT_RTNL();
1260 
1261 	if (!netif_device_present(dev))
1262 		return -ENODEV;
1263 
1264 	/* Block netpoll from trying to do any rx path servicing.
1265 	 * If we don't do this there is a chance ndo_poll_controller
1266 	 * or ndo_poll may be running while we open the device
1267 	 */
1268 	netpoll_poll_disable(dev);
1269 
1270 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1271 	ret = notifier_to_errno(ret);
1272 	if (ret)
1273 		return ret;
1274 
1275 	set_bit(__LINK_STATE_START, &dev->state);
1276 
1277 	if (ops->ndo_validate_addr)
1278 		ret = ops->ndo_validate_addr(dev);
1279 
1280 	if (!ret && ops->ndo_open)
1281 		ret = ops->ndo_open(dev);
1282 
1283 	netpoll_poll_enable(dev);
1284 
1285 	if (ret)
1286 		clear_bit(__LINK_STATE_START, &dev->state);
1287 	else {
1288 		dev->flags |= IFF_UP;
1289 		dev_set_rx_mode(dev);
1290 		dev_activate(dev);
1291 		add_device_randomness(dev->dev_addr, dev->addr_len);
1292 	}
1293 
1294 	return ret;
1295 }
1296 
1297 /**
1298  *	dev_open	- prepare an interface for use.
1299  *	@dev:	device to open
1300  *
1301  *	Takes a device from down to up state. The device's private open
1302  *	function is invoked and then the multicast lists are loaded. Finally
1303  *	the device is moved into the up state and a %NETDEV_UP message is
1304  *	sent to the netdev notifier chain.
1305  *
1306  *	Calling this function on an active interface is a nop. On a failure
1307  *	a negative errno code is returned.
1308  */
1309 int dev_open(struct net_device *dev)
1310 {
1311 	int ret;
1312 
1313 	if (dev->flags & IFF_UP)
1314 		return 0;
1315 
1316 	ret = __dev_open(dev);
1317 	if (ret < 0)
1318 		return ret;
1319 
1320 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1321 	call_netdevice_notifiers(NETDEV_UP, dev);
1322 
1323 	return ret;
1324 }
1325 EXPORT_SYMBOL(dev_open);
1326 
1327 static int __dev_close_many(struct list_head *head)
1328 {
1329 	struct net_device *dev;
1330 
1331 	ASSERT_RTNL();
1332 	might_sleep();
1333 
1334 	list_for_each_entry(dev, head, close_list) {
1335 		/* Temporarily disable netpoll until the interface is down */
1336 		netpoll_poll_disable(dev);
1337 
1338 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1339 
1340 		clear_bit(__LINK_STATE_START, &dev->state);
1341 
1342 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1343 		 * can be even on different cpu. So just clear netif_running().
1344 		 *
1345 		 * dev->stop() will invoke napi_disable() on all of it's
1346 		 * napi_struct instances on this device.
1347 		 */
1348 		smp_mb__after_atomic(); /* Commit netif_running(). */
1349 	}
1350 
1351 	dev_deactivate_many(head);
1352 
1353 	list_for_each_entry(dev, head, close_list) {
1354 		const struct net_device_ops *ops = dev->netdev_ops;
1355 
1356 		/*
1357 		 *	Call the device specific close. This cannot fail.
1358 		 *	Only if device is UP
1359 		 *
1360 		 *	We allow it to be called even after a DETACH hot-plug
1361 		 *	event.
1362 		 */
1363 		if (ops->ndo_stop)
1364 			ops->ndo_stop(dev);
1365 
1366 		dev->flags &= ~IFF_UP;
1367 		netpoll_poll_enable(dev);
1368 	}
1369 
1370 	return 0;
1371 }
1372 
1373 static int __dev_close(struct net_device *dev)
1374 {
1375 	int retval;
1376 	LIST_HEAD(single);
1377 
1378 	list_add(&dev->close_list, &single);
1379 	retval = __dev_close_many(&single);
1380 	list_del(&single);
1381 
1382 	return retval;
1383 }
1384 
1385 static int dev_close_many(struct list_head *head)
1386 {
1387 	struct net_device *dev, *tmp;
1388 
1389 	/* Remove the devices that don't need to be closed */
1390 	list_for_each_entry_safe(dev, tmp, head, close_list)
1391 		if (!(dev->flags & IFF_UP))
1392 			list_del_init(&dev->close_list);
1393 
1394 	__dev_close_many(head);
1395 
1396 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1397 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1398 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1399 		list_del_init(&dev->close_list);
1400 	}
1401 
1402 	return 0;
1403 }
1404 
1405 /**
1406  *	dev_close - shutdown an interface.
1407  *	@dev: device to shutdown
1408  *
1409  *	This function moves an active device into down state. A
1410  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1411  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1412  *	chain.
1413  */
1414 int dev_close(struct net_device *dev)
1415 {
1416 	if (dev->flags & IFF_UP) {
1417 		LIST_HEAD(single);
1418 
1419 		list_add(&dev->close_list, &single);
1420 		dev_close_many(&single);
1421 		list_del(&single);
1422 	}
1423 	return 0;
1424 }
1425 EXPORT_SYMBOL(dev_close);
1426 
1427 
1428 /**
1429  *	dev_disable_lro - disable Large Receive Offload on a device
1430  *	@dev: device
1431  *
1432  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1433  *	called under RTNL.  This is needed if received packets may be
1434  *	forwarded to another interface.
1435  */
1436 void dev_disable_lro(struct net_device *dev)
1437 {
1438 	/*
1439 	 * If we're trying to disable lro on a vlan device
1440 	 * use the underlying physical device instead
1441 	 */
1442 	if (is_vlan_dev(dev))
1443 		dev = vlan_dev_real_dev(dev);
1444 
1445 	/* the same for macvlan devices */
1446 	if (netif_is_macvlan(dev))
1447 		dev = macvlan_dev_real_dev(dev);
1448 
1449 	dev->wanted_features &= ~NETIF_F_LRO;
1450 	netdev_update_features(dev);
1451 
1452 	if (unlikely(dev->features & NETIF_F_LRO))
1453 		netdev_WARN(dev, "failed to disable LRO!\n");
1454 }
1455 EXPORT_SYMBOL(dev_disable_lro);
1456 
1457 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1458 				   struct net_device *dev)
1459 {
1460 	struct netdev_notifier_info info;
1461 
1462 	netdev_notifier_info_init(&info, dev);
1463 	return nb->notifier_call(nb, val, &info);
1464 }
1465 
1466 static int dev_boot_phase = 1;
1467 
1468 /**
1469  *	register_netdevice_notifier - register a network notifier block
1470  *	@nb: notifier
1471  *
1472  *	Register a notifier to be called when network device events occur.
1473  *	The notifier passed is linked into the kernel structures and must
1474  *	not be reused until it has been unregistered. A negative errno code
1475  *	is returned on a failure.
1476  *
1477  * 	When registered all registration and up events are replayed
1478  *	to the new notifier to allow device to have a race free
1479  *	view of the network device list.
1480  */
1481 
1482 int register_netdevice_notifier(struct notifier_block *nb)
1483 {
1484 	struct net_device *dev;
1485 	struct net_device *last;
1486 	struct net *net;
1487 	int err;
1488 
1489 	rtnl_lock();
1490 	err = raw_notifier_chain_register(&netdev_chain, nb);
1491 	if (err)
1492 		goto unlock;
1493 	if (dev_boot_phase)
1494 		goto unlock;
1495 	for_each_net(net) {
1496 		for_each_netdev(net, dev) {
1497 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1498 			err = notifier_to_errno(err);
1499 			if (err)
1500 				goto rollback;
1501 
1502 			if (!(dev->flags & IFF_UP))
1503 				continue;
1504 
1505 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1506 		}
1507 	}
1508 
1509 unlock:
1510 	rtnl_unlock();
1511 	return err;
1512 
1513 rollback:
1514 	last = dev;
1515 	for_each_net(net) {
1516 		for_each_netdev(net, dev) {
1517 			if (dev == last)
1518 				goto outroll;
1519 
1520 			if (dev->flags & IFF_UP) {
1521 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1522 							dev);
1523 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1524 			}
1525 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1526 		}
1527 	}
1528 
1529 outroll:
1530 	raw_notifier_chain_unregister(&netdev_chain, nb);
1531 	goto unlock;
1532 }
1533 EXPORT_SYMBOL(register_netdevice_notifier);
1534 
1535 /**
1536  *	unregister_netdevice_notifier - unregister a network notifier block
1537  *	@nb: notifier
1538  *
1539  *	Unregister a notifier previously registered by
1540  *	register_netdevice_notifier(). The notifier is unlinked into the
1541  *	kernel structures and may then be reused. A negative errno code
1542  *	is returned on a failure.
1543  *
1544  * 	After unregistering unregister and down device events are synthesized
1545  *	for all devices on the device list to the removed notifier to remove
1546  *	the need for special case cleanup code.
1547  */
1548 
1549 int unregister_netdevice_notifier(struct notifier_block *nb)
1550 {
1551 	struct net_device *dev;
1552 	struct net *net;
1553 	int err;
1554 
1555 	rtnl_lock();
1556 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1557 	if (err)
1558 		goto unlock;
1559 
1560 	for_each_net(net) {
1561 		for_each_netdev(net, dev) {
1562 			if (dev->flags & IFF_UP) {
1563 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1564 							dev);
1565 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1566 			}
1567 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1568 		}
1569 	}
1570 unlock:
1571 	rtnl_unlock();
1572 	return err;
1573 }
1574 EXPORT_SYMBOL(unregister_netdevice_notifier);
1575 
1576 /**
1577  *	call_netdevice_notifiers_info - call all network notifier blocks
1578  *	@val: value passed unmodified to notifier function
1579  *	@dev: net_device pointer passed unmodified to notifier function
1580  *	@info: notifier information data
1581  *
1582  *	Call all network notifier blocks.  Parameters and return value
1583  *	are as for raw_notifier_call_chain().
1584  */
1585 
1586 static int call_netdevice_notifiers_info(unsigned long val,
1587 					 struct net_device *dev,
1588 					 struct netdev_notifier_info *info)
1589 {
1590 	ASSERT_RTNL();
1591 	netdev_notifier_info_init(info, dev);
1592 	return raw_notifier_call_chain(&netdev_chain, val, info);
1593 }
1594 
1595 /**
1596  *	call_netdevice_notifiers - call all network notifier blocks
1597  *      @val: value passed unmodified to notifier function
1598  *      @dev: net_device pointer passed unmodified to notifier function
1599  *
1600  *	Call all network notifier blocks.  Parameters and return value
1601  *	are as for raw_notifier_call_chain().
1602  */
1603 
1604 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1605 {
1606 	struct netdev_notifier_info info;
1607 
1608 	return call_netdevice_notifiers_info(val, dev, &info);
1609 }
1610 EXPORT_SYMBOL(call_netdevice_notifiers);
1611 
1612 static struct static_key netstamp_needed __read_mostly;
1613 #ifdef HAVE_JUMP_LABEL
1614 /* We are not allowed to call static_key_slow_dec() from irq context
1615  * If net_disable_timestamp() is called from irq context, defer the
1616  * static_key_slow_dec() calls.
1617  */
1618 static atomic_t netstamp_needed_deferred;
1619 #endif
1620 
1621 void net_enable_timestamp(void)
1622 {
1623 #ifdef HAVE_JUMP_LABEL
1624 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1625 
1626 	if (deferred) {
1627 		while (--deferred)
1628 			static_key_slow_dec(&netstamp_needed);
1629 		return;
1630 	}
1631 #endif
1632 	static_key_slow_inc(&netstamp_needed);
1633 }
1634 EXPORT_SYMBOL(net_enable_timestamp);
1635 
1636 void net_disable_timestamp(void)
1637 {
1638 #ifdef HAVE_JUMP_LABEL
1639 	if (in_interrupt()) {
1640 		atomic_inc(&netstamp_needed_deferred);
1641 		return;
1642 	}
1643 #endif
1644 	static_key_slow_dec(&netstamp_needed);
1645 }
1646 EXPORT_SYMBOL(net_disable_timestamp);
1647 
1648 static inline void net_timestamp_set(struct sk_buff *skb)
1649 {
1650 	skb->tstamp.tv64 = 0;
1651 	if (static_key_false(&netstamp_needed))
1652 		__net_timestamp(skb);
1653 }
1654 
1655 #define net_timestamp_check(COND, SKB)			\
1656 	if (static_key_false(&netstamp_needed)) {		\
1657 		if ((COND) && !(SKB)->tstamp.tv64)	\
1658 			__net_timestamp(SKB);		\
1659 	}						\
1660 
1661 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1662 {
1663 	unsigned int len;
1664 
1665 	if (!(dev->flags & IFF_UP))
1666 		return false;
1667 
1668 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1669 	if (skb->len <= len)
1670 		return true;
1671 
1672 	/* if TSO is enabled, we don't care about the length as the packet
1673 	 * could be forwarded without being segmented before
1674 	 */
1675 	if (skb_is_gso(skb))
1676 		return true;
1677 
1678 	return false;
1679 }
1680 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1681 
1682 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1683 {
1684 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1685 		if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1686 			atomic_long_inc(&dev->rx_dropped);
1687 			kfree_skb(skb);
1688 			return NET_RX_DROP;
1689 		}
1690 	}
1691 
1692 	if (unlikely(!is_skb_forwardable(dev, skb))) {
1693 		atomic_long_inc(&dev->rx_dropped);
1694 		kfree_skb(skb);
1695 		return NET_RX_DROP;
1696 	}
1697 
1698 	skb_scrub_packet(skb, true);
1699 	skb->protocol = eth_type_trans(skb, dev);
1700 
1701 	return 0;
1702 }
1703 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1704 
1705 /**
1706  * dev_forward_skb - loopback an skb to another netif
1707  *
1708  * @dev: destination network device
1709  * @skb: buffer to forward
1710  *
1711  * return values:
1712  *	NET_RX_SUCCESS	(no congestion)
1713  *	NET_RX_DROP     (packet was dropped, but freed)
1714  *
1715  * dev_forward_skb can be used for injecting an skb from the
1716  * start_xmit function of one device into the receive queue
1717  * of another device.
1718  *
1719  * The receiving device may be in another namespace, so
1720  * we have to clear all information in the skb that could
1721  * impact namespace isolation.
1722  */
1723 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1724 {
1725 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1726 }
1727 EXPORT_SYMBOL_GPL(dev_forward_skb);
1728 
1729 static inline int deliver_skb(struct sk_buff *skb,
1730 			      struct packet_type *pt_prev,
1731 			      struct net_device *orig_dev)
1732 {
1733 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1734 		return -ENOMEM;
1735 	atomic_inc(&skb->users);
1736 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1737 }
1738 
1739 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1740 {
1741 	if (!ptype->af_packet_priv || !skb->sk)
1742 		return false;
1743 
1744 	if (ptype->id_match)
1745 		return ptype->id_match(ptype, skb->sk);
1746 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1747 		return true;
1748 
1749 	return false;
1750 }
1751 
1752 /*
1753  *	Support routine. Sends outgoing frames to any network
1754  *	taps currently in use.
1755  */
1756 
1757 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1758 {
1759 	struct packet_type *ptype;
1760 	struct sk_buff *skb2 = NULL;
1761 	struct packet_type *pt_prev = NULL;
1762 
1763 	rcu_read_lock();
1764 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1765 		/* Never send packets back to the socket
1766 		 * they originated from - MvS (miquels@drinkel.ow.org)
1767 		 */
1768 		if ((ptype->dev == dev || !ptype->dev) &&
1769 		    (!skb_loop_sk(ptype, skb))) {
1770 			if (pt_prev) {
1771 				deliver_skb(skb2, pt_prev, skb->dev);
1772 				pt_prev = ptype;
1773 				continue;
1774 			}
1775 
1776 			skb2 = skb_clone(skb, GFP_ATOMIC);
1777 			if (!skb2)
1778 				break;
1779 
1780 			net_timestamp_set(skb2);
1781 
1782 			/* skb->nh should be correctly
1783 			   set by sender, so that the second statement is
1784 			   just protection against buggy protocols.
1785 			 */
1786 			skb_reset_mac_header(skb2);
1787 
1788 			if (skb_network_header(skb2) < skb2->data ||
1789 			    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1790 				net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1791 						     ntohs(skb2->protocol),
1792 						     dev->name);
1793 				skb_reset_network_header(skb2);
1794 			}
1795 
1796 			skb2->transport_header = skb2->network_header;
1797 			skb2->pkt_type = PACKET_OUTGOING;
1798 			pt_prev = ptype;
1799 		}
1800 	}
1801 	if (pt_prev)
1802 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1803 	rcu_read_unlock();
1804 }
1805 
1806 /**
1807  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1808  * @dev: Network device
1809  * @txq: number of queues available
1810  *
1811  * If real_num_tx_queues is changed the tc mappings may no longer be
1812  * valid. To resolve this verify the tc mapping remains valid and if
1813  * not NULL the mapping. With no priorities mapping to this
1814  * offset/count pair it will no longer be used. In the worst case TC0
1815  * is invalid nothing can be done so disable priority mappings. If is
1816  * expected that drivers will fix this mapping if they can before
1817  * calling netif_set_real_num_tx_queues.
1818  */
1819 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1820 {
1821 	int i;
1822 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1823 
1824 	/* If TC0 is invalidated disable TC mapping */
1825 	if (tc->offset + tc->count > txq) {
1826 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1827 		dev->num_tc = 0;
1828 		return;
1829 	}
1830 
1831 	/* Invalidated prio to tc mappings set to TC0 */
1832 	for (i = 1; i < TC_BITMASK + 1; i++) {
1833 		int q = netdev_get_prio_tc_map(dev, i);
1834 
1835 		tc = &dev->tc_to_txq[q];
1836 		if (tc->offset + tc->count > txq) {
1837 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1838 				i, q);
1839 			netdev_set_prio_tc_map(dev, i, 0);
1840 		}
1841 	}
1842 }
1843 
1844 #ifdef CONFIG_XPS
1845 static DEFINE_MUTEX(xps_map_mutex);
1846 #define xmap_dereference(P)		\
1847 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1848 
1849 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1850 					int cpu, u16 index)
1851 {
1852 	struct xps_map *map = NULL;
1853 	int pos;
1854 
1855 	if (dev_maps)
1856 		map = xmap_dereference(dev_maps->cpu_map[cpu]);
1857 
1858 	for (pos = 0; map && pos < map->len; pos++) {
1859 		if (map->queues[pos] == index) {
1860 			if (map->len > 1) {
1861 				map->queues[pos] = map->queues[--map->len];
1862 			} else {
1863 				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1864 				kfree_rcu(map, rcu);
1865 				map = NULL;
1866 			}
1867 			break;
1868 		}
1869 	}
1870 
1871 	return map;
1872 }
1873 
1874 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1875 {
1876 	struct xps_dev_maps *dev_maps;
1877 	int cpu, i;
1878 	bool active = false;
1879 
1880 	mutex_lock(&xps_map_mutex);
1881 	dev_maps = xmap_dereference(dev->xps_maps);
1882 
1883 	if (!dev_maps)
1884 		goto out_no_maps;
1885 
1886 	for_each_possible_cpu(cpu) {
1887 		for (i = index; i < dev->num_tx_queues; i++) {
1888 			if (!remove_xps_queue(dev_maps, cpu, i))
1889 				break;
1890 		}
1891 		if (i == dev->num_tx_queues)
1892 			active = true;
1893 	}
1894 
1895 	if (!active) {
1896 		RCU_INIT_POINTER(dev->xps_maps, NULL);
1897 		kfree_rcu(dev_maps, rcu);
1898 	}
1899 
1900 	for (i = index; i < dev->num_tx_queues; i++)
1901 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1902 					     NUMA_NO_NODE);
1903 
1904 out_no_maps:
1905 	mutex_unlock(&xps_map_mutex);
1906 }
1907 
1908 static struct xps_map *expand_xps_map(struct xps_map *map,
1909 				      int cpu, u16 index)
1910 {
1911 	struct xps_map *new_map;
1912 	int alloc_len = XPS_MIN_MAP_ALLOC;
1913 	int i, pos;
1914 
1915 	for (pos = 0; map && pos < map->len; pos++) {
1916 		if (map->queues[pos] != index)
1917 			continue;
1918 		return map;
1919 	}
1920 
1921 	/* Need to add queue to this CPU's existing map */
1922 	if (map) {
1923 		if (pos < map->alloc_len)
1924 			return map;
1925 
1926 		alloc_len = map->alloc_len * 2;
1927 	}
1928 
1929 	/* Need to allocate new map to store queue on this CPU's map */
1930 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1931 			       cpu_to_node(cpu));
1932 	if (!new_map)
1933 		return NULL;
1934 
1935 	for (i = 0; i < pos; i++)
1936 		new_map->queues[i] = map->queues[i];
1937 	new_map->alloc_len = alloc_len;
1938 	new_map->len = pos;
1939 
1940 	return new_map;
1941 }
1942 
1943 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1944 			u16 index)
1945 {
1946 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1947 	struct xps_map *map, *new_map;
1948 	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1949 	int cpu, numa_node_id = -2;
1950 	bool active = false;
1951 
1952 	mutex_lock(&xps_map_mutex);
1953 
1954 	dev_maps = xmap_dereference(dev->xps_maps);
1955 
1956 	/* allocate memory for queue storage */
1957 	for_each_online_cpu(cpu) {
1958 		if (!cpumask_test_cpu(cpu, mask))
1959 			continue;
1960 
1961 		if (!new_dev_maps)
1962 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1963 		if (!new_dev_maps) {
1964 			mutex_unlock(&xps_map_mutex);
1965 			return -ENOMEM;
1966 		}
1967 
1968 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1969 				 NULL;
1970 
1971 		map = expand_xps_map(map, cpu, index);
1972 		if (!map)
1973 			goto error;
1974 
1975 		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1976 	}
1977 
1978 	if (!new_dev_maps)
1979 		goto out_no_new_maps;
1980 
1981 	for_each_possible_cpu(cpu) {
1982 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1983 			/* add queue to CPU maps */
1984 			int pos = 0;
1985 
1986 			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1987 			while ((pos < map->len) && (map->queues[pos] != index))
1988 				pos++;
1989 
1990 			if (pos == map->len)
1991 				map->queues[map->len++] = index;
1992 #ifdef CONFIG_NUMA
1993 			if (numa_node_id == -2)
1994 				numa_node_id = cpu_to_node(cpu);
1995 			else if (numa_node_id != cpu_to_node(cpu))
1996 				numa_node_id = -1;
1997 #endif
1998 		} else if (dev_maps) {
1999 			/* fill in the new device map from the old device map */
2000 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2001 			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2002 		}
2003 
2004 	}
2005 
2006 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2007 
2008 	/* Cleanup old maps */
2009 	if (dev_maps) {
2010 		for_each_possible_cpu(cpu) {
2011 			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2012 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2013 			if (map && map != new_map)
2014 				kfree_rcu(map, rcu);
2015 		}
2016 
2017 		kfree_rcu(dev_maps, rcu);
2018 	}
2019 
2020 	dev_maps = new_dev_maps;
2021 	active = true;
2022 
2023 out_no_new_maps:
2024 	/* update Tx queue numa node */
2025 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2026 				     (numa_node_id >= 0) ? numa_node_id :
2027 				     NUMA_NO_NODE);
2028 
2029 	if (!dev_maps)
2030 		goto out_no_maps;
2031 
2032 	/* removes queue from unused CPUs */
2033 	for_each_possible_cpu(cpu) {
2034 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2035 			continue;
2036 
2037 		if (remove_xps_queue(dev_maps, cpu, index))
2038 			active = true;
2039 	}
2040 
2041 	/* free map if not active */
2042 	if (!active) {
2043 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2044 		kfree_rcu(dev_maps, rcu);
2045 	}
2046 
2047 out_no_maps:
2048 	mutex_unlock(&xps_map_mutex);
2049 
2050 	return 0;
2051 error:
2052 	/* remove any maps that we added */
2053 	for_each_possible_cpu(cpu) {
2054 		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2055 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2056 				 NULL;
2057 		if (new_map && new_map != map)
2058 			kfree(new_map);
2059 	}
2060 
2061 	mutex_unlock(&xps_map_mutex);
2062 
2063 	kfree(new_dev_maps);
2064 	return -ENOMEM;
2065 }
2066 EXPORT_SYMBOL(netif_set_xps_queue);
2067 
2068 #endif
2069 /*
2070  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2071  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2072  */
2073 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2074 {
2075 	int rc;
2076 
2077 	if (txq < 1 || txq > dev->num_tx_queues)
2078 		return -EINVAL;
2079 
2080 	if (dev->reg_state == NETREG_REGISTERED ||
2081 	    dev->reg_state == NETREG_UNREGISTERING) {
2082 		ASSERT_RTNL();
2083 
2084 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2085 						  txq);
2086 		if (rc)
2087 			return rc;
2088 
2089 		if (dev->num_tc)
2090 			netif_setup_tc(dev, txq);
2091 
2092 		if (txq < dev->real_num_tx_queues) {
2093 			qdisc_reset_all_tx_gt(dev, txq);
2094 #ifdef CONFIG_XPS
2095 			netif_reset_xps_queues_gt(dev, txq);
2096 #endif
2097 		}
2098 	}
2099 
2100 	dev->real_num_tx_queues = txq;
2101 	return 0;
2102 }
2103 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2104 
2105 #ifdef CONFIG_SYSFS
2106 /**
2107  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2108  *	@dev: Network device
2109  *	@rxq: Actual number of RX queues
2110  *
2111  *	This must be called either with the rtnl_lock held or before
2112  *	registration of the net device.  Returns 0 on success, or a
2113  *	negative error code.  If called before registration, it always
2114  *	succeeds.
2115  */
2116 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2117 {
2118 	int rc;
2119 
2120 	if (rxq < 1 || rxq > dev->num_rx_queues)
2121 		return -EINVAL;
2122 
2123 	if (dev->reg_state == NETREG_REGISTERED) {
2124 		ASSERT_RTNL();
2125 
2126 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2127 						  rxq);
2128 		if (rc)
2129 			return rc;
2130 	}
2131 
2132 	dev->real_num_rx_queues = rxq;
2133 	return 0;
2134 }
2135 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2136 #endif
2137 
2138 /**
2139  * netif_get_num_default_rss_queues - default number of RSS queues
2140  *
2141  * This routine should set an upper limit on the number of RSS queues
2142  * used by default by multiqueue devices.
2143  */
2144 int netif_get_num_default_rss_queues(void)
2145 {
2146 	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2147 }
2148 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2149 
2150 static inline void __netif_reschedule(struct Qdisc *q)
2151 {
2152 	struct softnet_data *sd;
2153 	unsigned long flags;
2154 
2155 	local_irq_save(flags);
2156 	sd = this_cpu_ptr(&softnet_data);
2157 	q->next_sched = NULL;
2158 	*sd->output_queue_tailp = q;
2159 	sd->output_queue_tailp = &q->next_sched;
2160 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2161 	local_irq_restore(flags);
2162 }
2163 
2164 void __netif_schedule(struct Qdisc *q)
2165 {
2166 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2167 		__netif_reschedule(q);
2168 }
2169 EXPORT_SYMBOL(__netif_schedule);
2170 
2171 struct dev_kfree_skb_cb {
2172 	enum skb_free_reason reason;
2173 };
2174 
2175 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2176 {
2177 	return (struct dev_kfree_skb_cb *)skb->cb;
2178 }
2179 
2180 void netif_schedule_queue(struct netdev_queue *txq)
2181 {
2182 	rcu_read_lock();
2183 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2184 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2185 
2186 		__netif_schedule(q);
2187 	}
2188 	rcu_read_unlock();
2189 }
2190 EXPORT_SYMBOL(netif_schedule_queue);
2191 
2192 /**
2193  *	netif_wake_subqueue - allow sending packets on subqueue
2194  *	@dev: network device
2195  *	@queue_index: sub queue index
2196  *
2197  * Resume individual transmit queue of a device with multiple transmit queues.
2198  */
2199 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2200 {
2201 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2202 
2203 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2204 		struct Qdisc *q;
2205 
2206 		rcu_read_lock();
2207 		q = rcu_dereference(txq->qdisc);
2208 		__netif_schedule(q);
2209 		rcu_read_unlock();
2210 	}
2211 }
2212 EXPORT_SYMBOL(netif_wake_subqueue);
2213 
2214 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2215 {
2216 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2217 		struct Qdisc *q;
2218 
2219 		rcu_read_lock();
2220 		q = rcu_dereference(dev_queue->qdisc);
2221 		__netif_schedule(q);
2222 		rcu_read_unlock();
2223 	}
2224 }
2225 EXPORT_SYMBOL(netif_tx_wake_queue);
2226 
2227 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2228 {
2229 	unsigned long flags;
2230 
2231 	if (likely(atomic_read(&skb->users) == 1)) {
2232 		smp_rmb();
2233 		atomic_set(&skb->users, 0);
2234 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2235 		return;
2236 	}
2237 	get_kfree_skb_cb(skb)->reason = reason;
2238 	local_irq_save(flags);
2239 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2240 	__this_cpu_write(softnet_data.completion_queue, skb);
2241 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2242 	local_irq_restore(flags);
2243 }
2244 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2245 
2246 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2247 {
2248 	if (in_irq() || irqs_disabled())
2249 		__dev_kfree_skb_irq(skb, reason);
2250 	else
2251 		dev_kfree_skb(skb);
2252 }
2253 EXPORT_SYMBOL(__dev_kfree_skb_any);
2254 
2255 
2256 /**
2257  * netif_device_detach - mark device as removed
2258  * @dev: network device
2259  *
2260  * Mark device as removed from system and therefore no longer available.
2261  */
2262 void netif_device_detach(struct net_device *dev)
2263 {
2264 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2265 	    netif_running(dev)) {
2266 		netif_tx_stop_all_queues(dev);
2267 	}
2268 }
2269 EXPORT_SYMBOL(netif_device_detach);
2270 
2271 /**
2272  * netif_device_attach - mark device as attached
2273  * @dev: network device
2274  *
2275  * Mark device as attached from system and restart if needed.
2276  */
2277 void netif_device_attach(struct net_device *dev)
2278 {
2279 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2280 	    netif_running(dev)) {
2281 		netif_tx_wake_all_queues(dev);
2282 		__netdev_watchdog_up(dev);
2283 	}
2284 }
2285 EXPORT_SYMBOL(netif_device_attach);
2286 
2287 static void skb_warn_bad_offload(const struct sk_buff *skb)
2288 {
2289 	static const netdev_features_t null_features = 0;
2290 	struct net_device *dev = skb->dev;
2291 	const char *driver = "";
2292 
2293 	if (!net_ratelimit())
2294 		return;
2295 
2296 	if (dev && dev->dev.parent)
2297 		driver = dev_driver_string(dev->dev.parent);
2298 
2299 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2300 	     "gso_type=%d ip_summed=%d\n",
2301 	     driver, dev ? &dev->features : &null_features,
2302 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2303 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2304 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2305 }
2306 
2307 /*
2308  * Invalidate hardware checksum when packet is to be mangled, and
2309  * complete checksum manually on outgoing path.
2310  */
2311 int skb_checksum_help(struct sk_buff *skb)
2312 {
2313 	__wsum csum;
2314 	int ret = 0, offset;
2315 
2316 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2317 		goto out_set_summed;
2318 
2319 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2320 		skb_warn_bad_offload(skb);
2321 		return -EINVAL;
2322 	}
2323 
2324 	/* Before computing a checksum, we should make sure no frag could
2325 	 * be modified by an external entity : checksum could be wrong.
2326 	 */
2327 	if (skb_has_shared_frag(skb)) {
2328 		ret = __skb_linearize(skb);
2329 		if (ret)
2330 			goto out;
2331 	}
2332 
2333 	offset = skb_checksum_start_offset(skb);
2334 	BUG_ON(offset >= skb_headlen(skb));
2335 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2336 
2337 	offset += skb->csum_offset;
2338 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2339 
2340 	if (skb_cloned(skb) &&
2341 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2342 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2343 		if (ret)
2344 			goto out;
2345 	}
2346 
2347 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2348 out_set_summed:
2349 	skb->ip_summed = CHECKSUM_NONE;
2350 out:
2351 	return ret;
2352 }
2353 EXPORT_SYMBOL(skb_checksum_help);
2354 
2355 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2356 {
2357 	unsigned int vlan_depth = skb->mac_len;
2358 	__be16 type = skb->protocol;
2359 
2360 	/* Tunnel gso handlers can set protocol to ethernet. */
2361 	if (type == htons(ETH_P_TEB)) {
2362 		struct ethhdr *eth;
2363 
2364 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2365 			return 0;
2366 
2367 		eth = (struct ethhdr *)skb_mac_header(skb);
2368 		type = eth->h_proto;
2369 	}
2370 
2371 	/* if skb->protocol is 802.1Q/AD then the header should already be
2372 	 * present at mac_len - VLAN_HLEN (if mac_len > 0), or at
2373 	 * ETH_HLEN otherwise
2374 	 */
2375 	if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2376 		if (vlan_depth) {
2377 			if (WARN_ON(vlan_depth < VLAN_HLEN))
2378 				return 0;
2379 			vlan_depth -= VLAN_HLEN;
2380 		} else {
2381 			vlan_depth = ETH_HLEN;
2382 		}
2383 		do {
2384 			struct vlan_hdr *vh;
2385 
2386 			if (unlikely(!pskb_may_pull(skb,
2387 						    vlan_depth + VLAN_HLEN)))
2388 				return 0;
2389 
2390 			vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2391 			type = vh->h_vlan_encapsulated_proto;
2392 			vlan_depth += VLAN_HLEN;
2393 		} while (type == htons(ETH_P_8021Q) ||
2394 			 type == htons(ETH_P_8021AD));
2395 	}
2396 
2397 	*depth = vlan_depth;
2398 
2399 	return type;
2400 }
2401 
2402 /**
2403  *	skb_mac_gso_segment - mac layer segmentation handler.
2404  *	@skb: buffer to segment
2405  *	@features: features for the output path (see dev->features)
2406  */
2407 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2408 				    netdev_features_t features)
2409 {
2410 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2411 	struct packet_offload *ptype;
2412 	int vlan_depth = skb->mac_len;
2413 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2414 
2415 	if (unlikely(!type))
2416 		return ERR_PTR(-EINVAL);
2417 
2418 	__skb_pull(skb, vlan_depth);
2419 
2420 	rcu_read_lock();
2421 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2422 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2423 			segs = ptype->callbacks.gso_segment(skb, features);
2424 			break;
2425 		}
2426 	}
2427 	rcu_read_unlock();
2428 
2429 	__skb_push(skb, skb->data - skb_mac_header(skb));
2430 
2431 	return segs;
2432 }
2433 EXPORT_SYMBOL(skb_mac_gso_segment);
2434 
2435 
2436 /* openvswitch calls this on rx path, so we need a different check.
2437  */
2438 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2439 {
2440 	if (tx_path)
2441 		return skb->ip_summed != CHECKSUM_PARTIAL;
2442 	else
2443 		return skb->ip_summed == CHECKSUM_NONE;
2444 }
2445 
2446 /**
2447  *	__skb_gso_segment - Perform segmentation on skb.
2448  *	@skb: buffer to segment
2449  *	@features: features for the output path (see dev->features)
2450  *	@tx_path: whether it is called in TX path
2451  *
2452  *	This function segments the given skb and returns a list of segments.
2453  *
2454  *	It may return NULL if the skb requires no segmentation.  This is
2455  *	only possible when GSO is used for verifying header integrity.
2456  */
2457 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2458 				  netdev_features_t features, bool tx_path)
2459 {
2460 	if (unlikely(skb_needs_check(skb, tx_path))) {
2461 		int err;
2462 
2463 		skb_warn_bad_offload(skb);
2464 
2465 		err = skb_cow_head(skb, 0);
2466 		if (err < 0)
2467 			return ERR_PTR(err);
2468 	}
2469 
2470 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2471 	SKB_GSO_CB(skb)->encap_level = 0;
2472 
2473 	skb_reset_mac_header(skb);
2474 	skb_reset_mac_len(skb);
2475 
2476 	return skb_mac_gso_segment(skb, features);
2477 }
2478 EXPORT_SYMBOL(__skb_gso_segment);
2479 
2480 /* Take action when hardware reception checksum errors are detected. */
2481 #ifdef CONFIG_BUG
2482 void netdev_rx_csum_fault(struct net_device *dev)
2483 {
2484 	if (net_ratelimit()) {
2485 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2486 		dump_stack();
2487 	}
2488 }
2489 EXPORT_SYMBOL(netdev_rx_csum_fault);
2490 #endif
2491 
2492 /* Actually, we should eliminate this check as soon as we know, that:
2493  * 1. IOMMU is present and allows to map all the memory.
2494  * 2. No high memory really exists on this machine.
2495  */
2496 
2497 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2498 {
2499 #ifdef CONFIG_HIGHMEM
2500 	int i;
2501 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2502 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2503 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2504 			if (PageHighMem(skb_frag_page(frag)))
2505 				return 1;
2506 		}
2507 	}
2508 
2509 	if (PCI_DMA_BUS_IS_PHYS) {
2510 		struct device *pdev = dev->dev.parent;
2511 
2512 		if (!pdev)
2513 			return 0;
2514 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2515 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2516 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2517 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2518 				return 1;
2519 		}
2520 	}
2521 #endif
2522 	return 0;
2523 }
2524 
2525 /* If MPLS offload request, verify we are testing hardware MPLS features
2526  * instead of standard features for the netdev.
2527  */
2528 #ifdef CONFIG_NET_MPLS_GSO
2529 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2530 					   netdev_features_t features,
2531 					   __be16 type)
2532 {
2533 	if (type == htons(ETH_P_MPLS_UC) || type == htons(ETH_P_MPLS_MC))
2534 		features &= skb->dev->mpls_features;
2535 
2536 	return features;
2537 }
2538 #else
2539 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2540 					   netdev_features_t features,
2541 					   __be16 type)
2542 {
2543 	return features;
2544 }
2545 #endif
2546 
2547 static netdev_features_t harmonize_features(struct sk_buff *skb,
2548 	netdev_features_t features)
2549 {
2550 	int tmp;
2551 	__be16 type;
2552 
2553 	type = skb_network_protocol(skb, &tmp);
2554 	features = net_mpls_features(skb, features, type);
2555 
2556 	if (skb->ip_summed != CHECKSUM_NONE &&
2557 	    !can_checksum_protocol(features, type)) {
2558 		features &= ~NETIF_F_ALL_CSUM;
2559 	} else if (illegal_highdma(skb->dev, skb)) {
2560 		features &= ~NETIF_F_SG;
2561 	}
2562 
2563 	return features;
2564 }
2565 
2566 netdev_features_t netif_skb_features(struct sk_buff *skb)
2567 {
2568 	const struct net_device *dev = skb->dev;
2569 	netdev_features_t features = dev->features;
2570 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2571 	__be16 protocol = skb->protocol;
2572 
2573 	if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2574 		features &= ~NETIF_F_GSO_MASK;
2575 
2576 	if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2577 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2578 		protocol = veh->h_vlan_encapsulated_proto;
2579 	} else if (!vlan_tx_tag_present(skb)) {
2580 		return harmonize_features(skb, features);
2581 	}
2582 
2583 	features = netdev_intersect_features(features,
2584 					     dev->vlan_features |
2585 					     NETIF_F_HW_VLAN_CTAG_TX |
2586 					     NETIF_F_HW_VLAN_STAG_TX);
2587 
2588 	if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2589 		features = netdev_intersect_features(features,
2590 						     NETIF_F_SG |
2591 						     NETIF_F_HIGHDMA |
2592 						     NETIF_F_FRAGLIST |
2593 						     NETIF_F_GEN_CSUM |
2594 						     NETIF_F_HW_VLAN_CTAG_TX |
2595 						     NETIF_F_HW_VLAN_STAG_TX);
2596 
2597 	return harmonize_features(skb, features);
2598 }
2599 EXPORT_SYMBOL(netif_skb_features);
2600 
2601 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2602 		    struct netdev_queue *txq, bool more)
2603 {
2604 	unsigned int len;
2605 	int rc;
2606 
2607 	if (!list_empty(&ptype_all))
2608 		dev_queue_xmit_nit(skb, dev);
2609 
2610 	len = skb->len;
2611 	trace_net_dev_start_xmit(skb, dev);
2612 	rc = netdev_start_xmit(skb, dev, txq, more);
2613 	trace_net_dev_xmit(skb, rc, dev, len);
2614 
2615 	return rc;
2616 }
2617 
2618 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2619 				    struct netdev_queue *txq, int *ret)
2620 {
2621 	struct sk_buff *skb = first;
2622 	int rc = NETDEV_TX_OK;
2623 
2624 	while (skb) {
2625 		struct sk_buff *next = skb->next;
2626 
2627 		skb->next = NULL;
2628 		rc = xmit_one(skb, dev, txq, next != NULL);
2629 		if (unlikely(!dev_xmit_complete(rc))) {
2630 			skb->next = next;
2631 			goto out;
2632 		}
2633 
2634 		skb = next;
2635 		if (netif_xmit_stopped(txq) && skb) {
2636 			rc = NETDEV_TX_BUSY;
2637 			break;
2638 		}
2639 	}
2640 
2641 out:
2642 	*ret = rc;
2643 	return skb;
2644 }
2645 
2646 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2647 					  netdev_features_t features)
2648 {
2649 	if (vlan_tx_tag_present(skb) &&
2650 	    !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2651 		skb = __vlan_put_tag(skb, skb->vlan_proto,
2652 				     vlan_tx_tag_get(skb));
2653 		if (skb)
2654 			skb->vlan_tci = 0;
2655 	}
2656 	return skb;
2657 }
2658 
2659 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2660 {
2661 	netdev_features_t features;
2662 
2663 	if (skb->next)
2664 		return skb;
2665 
2666 	features = netif_skb_features(skb);
2667 	skb = validate_xmit_vlan(skb, features);
2668 	if (unlikely(!skb))
2669 		goto out_null;
2670 
2671 	/* If encapsulation offload request, verify we are testing
2672 	 * hardware encapsulation features instead of standard
2673 	 * features for the netdev
2674 	 */
2675 	if (skb->encapsulation)
2676 		features &= dev->hw_enc_features;
2677 
2678 	if (netif_needs_gso(dev, skb, features)) {
2679 		struct sk_buff *segs;
2680 
2681 		segs = skb_gso_segment(skb, features);
2682 		if (IS_ERR(segs)) {
2683 			segs = NULL;
2684 		} else if (segs) {
2685 			consume_skb(skb);
2686 			skb = segs;
2687 		}
2688 	} else {
2689 		if (skb_needs_linearize(skb, features) &&
2690 		    __skb_linearize(skb))
2691 			goto out_kfree_skb;
2692 
2693 		/* If packet is not checksummed and device does not
2694 		 * support checksumming for this protocol, complete
2695 		 * checksumming here.
2696 		 */
2697 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2698 			if (skb->encapsulation)
2699 				skb_set_inner_transport_header(skb,
2700 							       skb_checksum_start_offset(skb));
2701 			else
2702 				skb_set_transport_header(skb,
2703 							 skb_checksum_start_offset(skb));
2704 			if (!(features & NETIF_F_ALL_CSUM) &&
2705 			    skb_checksum_help(skb))
2706 				goto out_kfree_skb;
2707 		}
2708 	}
2709 
2710 	return skb;
2711 
2712 out_kfree_skb:
2713 	kfree_skb(skb);
2714 out_null:
2715 	return NULL;
2716 }
2717 
2718 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2719 {
2720 	struct sk_buff *next, *head = NULL, *tail;
2721 
2722 	for (; skb != NULL; skb = next) {
2723 		next = skb->next;
2724 		skb->next = NULL;
2725 
2726 		/* in case skb wont be segmented, point to itself */
2727 		skb->prev = skb;
2728 
2729 		skb = validate_xmit_skb(skb, dev);
2730 		if (!skb)
2731 			continue;
2732 
2733 		if (!head)
2734 			head = skb;
2735 		else
2736 			tail->next = skb;
2737 		/* If skb was segmented, skb->prev points to
2738 		 * the last segment. If not, it still contains skb.
2739 		 */
2740 		tail = skb->prev;
2741 	}
2742 	return head;
2743 }
2744 
2745 static void qdisc_pkt_len_init(struct sk_buff *skb)
2746 {
2747 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2748 
2749 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2750 
2751 	/* To get more precise estimation of bytes sent on wire,
2752 	 * we add to pkt_len the headers size of all segments
2753 	 */
2754 	if (shinfo->gso_size)  {
2755 		unsigned int hdr_len;
2756 		u16 gso_segs = shinfo->gso_segs;
2757 
2758 		/* mac layer + network layer */
2759 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2760 
2761 		/* + transport layer */
2762 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2763 			hdr_len += tcp_hdrlen(skb);
2764 		else
2765 			hdr_len += sizeof(struct udphdr);
2766 
2767 		if (shinfo->gso_type & SKB_GSO_DODGY)
2768 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2769 						shinfo->gso_size);
2770 
2771 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2772 	}
2773 }
2774 
2775 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2776 				 struct net_device *dev,
2777 				 struct netdev_queue *txq)
2778 {
2779 	spinlock_t *root_lock = qdisc_lock(q);
2780 	bool contended;
2781 	int rc;
2782 
2783 	qdisc_pkt_len_init(skb);
2784 	qdisc_calculate_pkt_len(skb, q);
2785 	/*
2786 	 * Heuristic to force contended enqueues to serialize on a
2787 	 * separate lock before trying to get qdisc main lock.
2788 	 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2789 	 * often and dequeue packets faster.
2790 	 */
2791 	contended = qdisc_is_running(q);
2792 	if (unlikely(contended))
2793 		spin_lock(&q->busylock);
2794 
2795 	spin_lock(root_lock);
2796 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2797 		kfree_skb(skb);
2798 		rc = NET_XMIT_DROP;
2799 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2800 		   qdisc_run_begin(q)) {
2801 		/*
2802 		 * This is a work-conserving queue; there are no old skbs
2803 		 * waiting to be sent out; and the qdisc is not running -
2804 		 * xmit the skb directly.
2805 		 */
2806 
2807 		qdisc_bstats_update(q, skb);
2808 
2809 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2810 			if (unlikely(contended)) {
2811 				spin_unlock(&q->busylock);
2812 				contended = false;
2813 			}
2814 			__qdisc_run(q);
2815 		} else
2816 			qdisc_run_end(q);
2817 
2818 		rc = NET_XMIT_SUCCESS;
2819 	} else {
2820 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2821 		if (qdisc_run_begin(q)) {
2822 			if (unlikely(contended)) {
2823 				spin_unlock(&q->busylock);
2824 				contended = false;
2825 			}
2826 			__qdisc_run(q);
2827 		}
2828 	}
2829 	spin_unlock(root_lock);
2830 	if (unlikely(contended))
2831 		spin_unlock(&q->busylock);
2832 	return rc;
2833 }
2834 
2835 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2836 static void skb_update_prio(struct sk_buff *skb)
2837 {
2838 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2839 
2840 	if (!skb->priority && skb->sk && map) {
2841 		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2842 
2843 		if (prioidx < map->priomap_len)
2844 			skb->priority = map->priomap[prioidx];
2845 	}
2846 }
2847 #else
2848 #define skb_update_prio(skb)
2849 #endif
2850 
2851 static DEFINE_PER_CPU(int, xmit_recursion);
2852 #define RECURSION_LIMIT 10
2853 
2854 /**
2855  *	dev_loopback_xmit - loop back @skb
2856  *	@skb: buffer to transmit
2857  */
2858 int dev_loopback_xmit(struct sk_buff *skb)
2859 {
2860 	skb_reset_mac_header(skb);
2861 	__skb_pull(skb, skb_network_offset(skb));
2862 	skb->pkt_type = PACKET_LOOPBACK;
2863 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2864 	WARN_ON(!skb_dst(skb));
2865 	skb_dst_force(skb);
2866 	netif_rx_ni(skb);
2867 	return 0;
2868 }
2869 EXPORT_SYMBOL(dev_loopback_xmit);
2870 
2871 /**
2872  *	__dev_queue_xmit - transmit a buffer
2873  *	@skb: buffer to transmit
2874  *	@accel_priv: private data used for L2 forwarding offload
2875  *
2876  *	Queue a buffer for transmission to a network device. The caller must
2877  *	have set the device and priority and built the buffer before calling
2878  *	this function. The function can be called from an interrupt.
2879  *
2880  *	A negative errno code is returned on a failure. A success does not
2881  *	guarantee the frame will be transmitted as it may be dropped due
2882  *	to congestion or traffic shaping.
2883  *
2884  * -----------------------------------------------------------------------------------
2885  *      I notice this method can also return errors from the queue disciplines,
2886  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2887  *      be positive.
2888  *
2889  *      Regardless of the return value, the skb is consumed, so it is currently
2890  *      difficult to retry a send to this method.  (You can bump the ref count
2891  *      before sending to hold a reference for retry if you are careful.)
2892  *
2893  *      When calling this method, interrupts MUST be enabled.  This is because
2894  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2895  *          --BLG
2896  */
2897 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2898 {
2899 	struct net_device *dev = skb->dev;
2900 	struct netdev_queue *txq;
2901 	struct Qdisc *q;
2902 	int rc = -ENOMEM;
2903 
2904 	skb_reset_mac_header(skb);
2905 
2906 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2907 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2908 
2909 	/* Disable soft irqs for various locks below. Also
2910 	 * stops preemption for RCU.
2911 	 */
2912 	rcu_read_lock_bh();
2913 
2914 	skb_update_prio(skb);
2915 
2916 	/* If device/qdisc don't need skb->dst, release it right now while
2917 	 * its hot in this cpu cache.
2918 	 */
2919 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2920 		skb_dst_drop(skb);
2921 	else
2922 		skb_dst_force(skb);
2923 
2924 	txq = netdev_pick_tx(dev, skb, accel_priv);
2925 	q = rcu_dereference_bh(txq->qdisc);
2926 
2927 #ifdef CONFIG_NET_CLS_ACT
2928 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2929 #endif
2930 	trace_net_dev_queue(skb);
2931 	if (q->enqueue) {
2932 		rc = __dev_xmit_skb(skb, q, dev, txq);
2933 		goto out;
2934 	}
2935 
2936 	/* The device has no queue. Common case for software devices:
2937 	   loopback, all the sorts of tunnels...
2938 
2939 	   Really, it is unlikely that netif_tx_lock protection is necessary
2940 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2941 	   counters.)
2942 	   However, it is possible, that they rely on protection
2943 	   made by us here.
2944 
2945 	   Check this and shot the lock. It is not prone from deadlocks.
2946 	   Either shot noqueue qdisc, it is even simpler 8)
2947 	 */
2948 	if (dev->flags & IFF_UP) {
2949 		int cpu = smp_processor_id(); /* ok because BHs are off */
2950 
2951 		if (txq->xmit_lock_owner != cpu) {
2952 
2953 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2954 				goto recursion_alert;
2955 
2956 			skb = validate_xmit_skb(skb, dev);
2957 			if (!skb)
2958 				goto drop;
2959 
2960 			HARD_TX_LOCK(dev, txq, cpu);
2961 
2962 			if (!netif_xmit_stopped(txq)) {
2963 				__this_cpu_inc(xmit_recursion);
2964 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
2965 				__this_cpu_dec(xmit_recursion);
2966 				if (dev_xmit_complete(rc)) {
2967 					HARD_TX_UNLOCK(dev, txq);
2968 					goto out;
2969 				}
2970 			}
2971 			HARD_TX_UNLOCK(dev, txq);
2972 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2973 					     dev->name);
2974 		} else {
2975 			/* Recursion is detected! It is possible,
2976 			 * unfortunately
2977 			 */
2978 recursion_alert:
2979 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2980 					     dev->name);
2981 		}
2982 	}
2983 
2984 	rc = -ENETDOWN;
2985 drop:
2986 	rcu_read_unlock_bh();
2987 
2988 	atomic_long_inc(&dev->tx_dropped);
2989 	kfree_skb_list(skb);
2990 	return rc;
2991 out:
2992 	rcu_read_unlock_bh();
2993 	return rc;
2994 }
2995 
2996 int dev_queue_xmit(struct sk_buff *skb)
2997 {
2998 	return __dev_queue_xmit(skb, NULL);
2999 }
3000 EXPORT_SYMBOL(dev_queue_xmit);
3001 
3002 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3003 {
3004 	return __dev_queue_xmit(skb, accel_priv);
3005 }
3006 EXPORT_SYMBOL(dev_queue_xmit_accel);
3007 
3008 
3009 /*=======================================================================
3010 			Receiver routines
3011   =======================================================================*/
3012 
3013 int netdev_max_backlog __read_mostly = 1000;
3014 EXPORT_SYMBOL(netdev_max_backlog);
3015 
3016 int netdev_tstamp_prequeue __read_mostly = 1;
3017 int netdev_budget __read_mostly = 300;
3018 int weight_p __read_mostly = 64;            /* old backlog weight */
3019 
3020 /* Called with irq disabled */
3021 static inline void ____napi_schedule(struct softnet_data *sd,
3022 				     struct napi_struct *napi)
3023 {
3024 	list_add_tail(&napi->poll_list, &sd->poll_list);
3025 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3026 }
3027 
3028 #ifdef CONFIG_RPS
3029 
3030 /* One global table that all flow-based protocols share. */
3031 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3032 EXPORT_SYMBOL(rps_sock_flow_table);
3033 
3034 struct static_key rps_needed __read_mostly;
3035 
3036 static struct rps_dev_flow *
3037 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3038 	    struct rps_dev_flow *rflow, u16 next_cpu)
3039 {
3040 	if (next_cpu != RPS_NO_CPU) {
3041 #ifdef CONFIG_RFS_ACCEL
3042 		struct netdev_rx_queue *rxqueue;
3043 		struct rps_dev_flow_table *flow_table;
3044 		struct rps_dev_flow *old_rflow;
3045 		u32 flow_id;
3046 		u16 rxq_index;
3047 		int rc;
3048 
3049 		/* Should we steer this flow to a different hardware queue? */
3050 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3051 		    !(dev->features & NETIF_F_NTUPLE))
3052 			goto out;
3053 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3054 		if (rxq_index == skb_get_rx_queue(skb))
3055 			goto out;
3056 
3057 		rxqueue = dev->_rx + rxq_index;
3058 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3059 		if (!flow_table)
3060 			goto out;
3061 		flow_id = skb_get_hash(skb) & flow_table->mask;
3062 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3063 							rxq_index, flow_id);
3064 		if (rc < 0)
3065 			goto out;
3066 		old_rflow = rflow;
3067 		rflow = &flow_table->flows[flow_id];
3068 		rflow->filter = rc;
3069 		if (old_rflow->filter == rflow->filter)
3070 			old_rflow->filter = RPS_NO_FILTER;
3071 	out:
3072 #endif
3073 		rflow->last_qtail =
3074 			per_cpu(softnet_data, next_cpu).input_queue_head;
3075 	}
3076 
3077 	rflow->cpu = next_cpu;
3078 	return rflow;
3079 }
3080 
3081 /*
3082  * get_rps_cpu is called from netif_receive_skb and returns the target
3083  * CPU from the RPS map of the receiving queue for a given skb.
3084  * rcu_read_lock must be held on entry.
3085  */
3086 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3087 		       struct rps_dev_flow **rflowp)
3088 {
3089 	struct netdev_rx_queue *rxqueue;
3090 	struct rps_map *map;
3091 	struct rps_dev_flow_table *flow_table;
3092 	struct rps_sock_flow_table *sock_flow_table;
3093 	int cpu = -1;
3094 	u16 tcpu;
3095 	u32 hash;
3096 
3097 	if (skb_rx_queue_recorded(skb)) {
3098 		u16 index = skb_get_rx_queue(skb);
3099 		if (unlikely(index >= dev->real_num_rx_queues)) {
3100 			WARN_ONCE(dev->real_num_rx_queues > 1,
3101 				  "%s received packet on queue %u, but number "
3102 				  "of RX queues is %u\n",
3103 				  dev->name, index, dev->real_num_rx_queues);
3104 			goto done;
3105 		}
3106 		rxqueue = dev->_rx + index;
3107 	} else
3108 		rxqueue = dev->_rx;
3109 
3110 	map = rcu_dereference(rxqueue->rps_map);
3111 	if (map) {
3112 		if (map->len == 1 &&
3113 		    !rcu_access_pointer(rxqueue->rps_flow_table)) {
3114 			tcpu = map->cpus[0];
3115 			if (cpu_online(tcpu))
3116 				cpu = tcpu;
3117 			goto done;
3118 		}
3119 	} else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3120 		goto done;
3121 	}
3122 
3123 	skb_reset_network_header(skb);
3124 	hash = skb_get_hash(skb);
3125 	if (!hash)
3126 		goto done;
3127 
3128 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3129 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3130 	if (flow_table && sock_flow_table) {
3131 		u16 next_cpu;
3132 		struct rps_dev_flow *rflow;
3133 
3134 		rflow = &flow_table->flows[hash & flow_table->mask];
3135 		tcpu = rflow->cpu;
3136 
3137 		next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
3138 
3139 		/*
3140 		 * If the desired CPU (where last recvmsg was done) is
3141 		 * different from current CPU (one in the rx-queue flow
3142 		 * table entry), switch if one of the following holds:
3143 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
3144 		 *   - Current CPU is offline.
3145 		 *   - The current CPU's queue tail has advanced beyond the
3146 		 *     last packet that was enqueued using this table entry.
3147 		 *     This guarantees that all previous packets for the flow
3148 		 *     have been dequeued, thus preserving in order delivery.
3149 		 */
3150 		if (unlikely(tcpu != next_cpu) &&
3151 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3152 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3153 		      rflow->last_qtail)) >= 0)) {
3154 			tcpu = next_cpu;
3155 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3156 		}
3157 
3158 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3159 			*rflowp = rflow;
3160 			cpu = tcpu;
3161 			goto done;
3162 		}
3163 	}
3164 
3165 	if (map) {
3166 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3167 		if (cpu_online(tcpu)) {
3168 			cpu = tcpu;
3169 			goto done;
3170 		}
3171 	}
3172 
3173 done:
3174 	return cpu;
3175 }
3176 
3177 #ifdef CONFIG_RFS_ACCEL
3178 
3179 /**
3180  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3181  * @dev: Device on which the filter was set
3182  * @rxq_index: RX queue index
3183  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3184  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3185  *
3186  * Drivers that implement ndo_rx_flow_steer() should periodically call
3187  * this function for each installed filter and remove the filters for
3188  * which it returns %true.
3189  */
3190 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3191 			 u32 flow_id, u16 filter_id)
3192 {
3193 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3194 	struct rps_dev_flow_table *flow_table;
3195 	struct rps_dev_flow *rflow;
3196 	bool expire = true;
3197 	int cpu;
3198 
3199 	rcu_read_lock();
3200 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3201 	if (flow_table && flow_id <= flow_table->mask) {
3202 		rflow = &flow_table->flows[flow_id];
3203 		cpu = ACCESS_ONCE(rflow->cpu);
3204 		if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3205 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3206 			   rflow->last_qtail) <
3207 		     (int)(10 * flow_table->mask)))
3208 			expire = false;
3209 	}
3210 	rcu_read_unlock();
3211 	return expire;
3212 }
3213 EXPORT_SYMBOL(rps_may_expire_flow);
3214 
3215 #endif /* CONFIG_RFS_ACCEL */
3216 
3217 /* Called from hardirq (IPI) context */
3218 static void rps_trigger_softirq(void *data)
3219 {
3220 	struct softnet_data *sd = data;
3221 
3222 	____napi_schedule(sd, &sd->backlog);
3223 	sd->received_rps++;
3224 }
3225 
3226 #endif /* CONFIG_RPS */
3227 
3228 /*
3229  * Check if this softnet_data structure is another cpu one
3230  * If yes, queue it to our IPI list and return 1
3231  * If no, return 0
3232  */
3233 static int rps_ipi_queued(struct softnet_data *sd)
3234 {
3235 #ifdef CONFIG_RPS
3236 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3237 
3238 	if (sd != mysd) {
3239 		sd->rps_ipi_next = mysd->rps_ipi_list;
3240 		mysd->rps_ipi_list = sd;
3241 
3242 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3243 		return 1;
3244 	}
3245 #endif /* CONFIG_RPS */
3246 	return 0;
3247 }
3248 
3249 #ifdef CONFIG_NET_FLOW_LIMIT
3250 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3251 #endif
3252 
3253 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3254 {
3255 #ifdef CONFIG_NET_FLOW_LIMIT
3256 	struct sd_flow_limit *fl;
3257 	struct softnet_data *sd;
3258 	unsigned int old_flow, new_flow;
3259 
3260 	if (qlen < (netdev_max_backlog >> 1))
3261 		return false;
3262 
3263 	sd = this_cpu_ptr(&softnet_data);
3264 
3265 	rcu_read_lock();
3266 	fl = rcu_dereference(sd->flow_limit);
3267 	if (fl) {
3268 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3269 		old_flow = fl->history[fl->history_head];
3270 		fl->history[fl->history_head] = new_flow;
3271 
3272 		fl->history_head++;
3273 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3274 
3275 		if (likely(fl->buckets[old_flow]))
3276 			fl->buckets[old_flow]--;
3277 
3278 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3279 			fl->count++;
3280 			rcu_read_unlock();
3281 			return true;
3282 		}
3283 	}
3284 	rcu_read_unlock();
3285 #endif
3286 	return false;
3287 }
3288 
3289 /*
3290  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3291  * queue (may be a remote CPU queue).
3292  */
3293 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3294 			      unsigned int *qtail)
3295 {
3296 	struct softnet_data *sd;
3297 	unsigned long flags;
3298 	unsigned int qlen;
3299 
3300 	sd = &per_cpu(softnet_data, cpu);
3301 
3302 	local_irq_save(flags);
3303 
3304 	rps_lock(sd);
3305 	qlen = skb_queue_len(&sd->input_pkt_queue);
3306 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3307 		if (skb_queue_len(&sd->input_pkt_queue)) {
3308 enqueue:
3309 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3310 			input_queue_tail_incr_save(sd, qtail);
3311 			rps_unlock(sd);
3312 			local_irq_restore(flags);
3313 			return NET_RX_SUCCESS;
3314 		}
3315 
3316 		/* Schedule NAPI for backlog device
3317 		 * We can use non atomic operation since we own the queue lock
3318 		 */
3319 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3320 			if (!rps_ipi_queued(sd))
3321 				____napi_schedule(sd, &sd->backlog);
3322 		}
3323 		goto enqueue;
3324 	}
3325 
3326 	sd->dropped++;
3327 	rps_unlock(sd);
3328 
3329 	local_irq_restore(flags);
3330 
3331 	atomic_long_inc(&skb->dev->rx_dropped);
3332 	kfree_skb(skb);
3333 	return NET_RX_DROP;
3334 }
3335 
3336 static int netif_rx_internal(struct sk_buff *skb)
3337 {
3338 	int ret;
3339 
3340 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3341 
3342 	trace_netif_rx(skb);
3343 #ifdef CONFIG_RPS
3344 	if (static_key_false(&rps_needed)) {
3345 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3346 		int cpu;
3347 
3348 		preempt_disable();
3349 		rcu_read_lock();
3350 
3351 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3352 		if (cpu < 0)
3353 			cpu = smp_processor_id();
3354 
3355 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3356 
3357 		rcu_read_unlock();
3358 		preempt_enable();
3359 	} else
3360 #endif
3361 	{
3362 		unsigned int qtail;
3363 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3364 		put_cpu();
3365 	}
3366 	return ret;
3367 }
3368 
3369 /**
3370  *	netif_rx	-	post buffer to the network code
3371  *	@skb: buffer to post
3372  *
3373  *	This function receives a packet from a device driver and queues it for
3374  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3375  *	may be dropped during processing for congestion control or by the
3376  *	protocol layers.
3377  *
3378  *	return values:
3379  *	NET_RX_SUCCESS	(no congestion)
3380  *	NET_RX_DROP     (packet was dropped)
3381  *
3382  */
3383 
3384 int netif_rx(struct sk_buff *skb)
3385 {
3386 	trace_netif_rx_entry(skb);
3387 
3388 	return netif_rx_internal(skb);
3389 }
3390 EXPORT_SYMBOL(netif_rx);
3391 
3392 int netif_rx_ni(struct sk_buff *skb)
3393 {
3394 	int err;
3395 
3396 	trace_netif_rx_ni_entry(skb);
3397 
3398 	preempt_disable();
3399 	err = netif_rx_internal(skb);
3400 	if (local_softirq_pending())
3401 		do_softirq();
3402 	preempt_enable();
3403 
3404 	return err;
3405 }
3406 EXPORT_SYMBOL(netif_rx_ni);
3407 
3408 static void net_tx_action(struct softirq_action *h)
3409 {
3410 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3411 
3412 	if (sd->completion_queue) {
3413 		struct sk_buff *clist;
3414 
3415 		local_irq_disable();
3416 		clist = sd->completion_queue;
3417 		sd->completion_queue = NULL;
3418 		local_irq_enable();
3419 
3420 		while (clist) {
3421 			struct sk_buff *skb = clist;
3422 			clist = clist->next;
3423 
3424 			WARN_ON(atomic_read(&skb->users));
3425 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3426 				trace_consume_skb(skb);
3427 			else
3428 				trace_kfree_skb(skb, net_tx_action);
3429 			__kfree_skb(skb);
3430 		}
3431 	}
3432 
3433 	if (sd->output_queue) {
3434 		struct Qdisc *head;
3435 
3436 		local_irq_disable();
3437 		head = sd->output_queue;
3438 		sd->output_queue = NULL;
3439 		sd->output_queue_tailp = &sd->output_queue;
3440 		local_irq_enable();
3441 
3442 		while (head) {
3443 			struct Qdisc *q = head;
3444 			spinlock_t *root_lock;
3445 
3446 			head = head->next_sched;
3447 
3448 			root_lock = qdisc_lock(q);
3449 			if (spin_trylock(root_lock)) {
3450 				smp_mb__before_atomic();
3451 				clear_bit(__QDISC_STATE_SCHED,
3452 					  &q->state);
3453 				qdisc_run(q);
3454 				spin_unlock(root_lock);
3455 			} else {
3456 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3457 					      &q->state)) {
3458 					__netif_reschedule(q);
3459 				} else {
3460 					smp_mb__before_atomic();
3461 					clear_bit(__QDISC_STATE_SCHED,
3462 						  &q->state);
3463 				}
3464 			}
3465 		}
3466 	}
3467 }
3468 
3469 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3470     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3471 /* This hook is defined here for ATM LANE */
3472 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3473 			     unsigned char *addr) __read_mostly;
3474 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3475 #endif
3476 
3477 #ifdef CONFIG_NET_CLS_ACT
3478 /* TODO: Maybe we should just force sch_ingress to be compiled in
3479  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3480  * a compare and 2 stores extra right now if we dont have it on
3481  * but have CONFIG_NET_CLS_ACT
3482  * NOTE: This doesn't stop any functionality; if you dont have
3483  * the ingress scheduler, you just can't add policies on ingress.
3484  *
3485  */
3486 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3487 {
3488 	struct net_device *dev = skb->dev;
3489 	u32 ttl = G_TC_RTTL(skb->tc_verd);
3490 	int result = TC_ACT_OK;
3491 	struct Qdisc *q;
3492 
3493 	if (unlikely(MAX_RED_LOOP < ttl++)) {
3494 		net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3495 				     skb->skb_iif, dev->ifindex);
3496 		return TC_ACT_SHOT;
3497 	}
3498 
3499 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3500 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3501 
3502 	q = rcu_dereference(rxq->qdisc);
3503 	if (q != &noop_qdisc) {
3504 		spin_lock(qdisc_lock(q));
3505 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3506 			result = qdisc_enqueue_root(skb, q);
3507 		spin_unlock(qdisc_lock(q));
3508 	}
3509 
3510 	return result;
3511 }
3512 
3513 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3514 					 struct packet_type **pt_prev,
3515 					 int *ret, struct net_device *orig_dev)
3516 {
3517 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3518 
3519 	if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc)
3520 		goto out;
3521 
3522 	if (*pt_prev) {
3523 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3524 		*pt_prev = NULL;
3525 	}
3526 
3527 	switch (ing_filter(skb, rxq)) {
3528 	case TC_ACT_SHOT:
3529 	case TC_ACT_STOLEN:
3530 		kfree_skb(skb);
3531 		return NULL;
3532 	}
3533 
3534 out:
3535 	skb->tc_verd = 0;
3536 	return skb;
3537 }
3538 #endif
3539 
3540 /**
3541  *	netdev_rx_handler_register - register receive handler
3542  *	@dev: device to register a handler for
3543  *	@rx_handler: receive handler to register
3544  *	@rx_handler_data: data pointer that is used by rx handler
3545  *
3546  *	Register a receive handler for a device. This handler will then be
3547  *	called from __netif_receive_skb. A negative errno code is returned
3548  *	on a failure.
3549  *
3550  *	The caller must hold the rtnl_mutex.
3551  *
3552  *	For a general description of rx_handler, see enum rx_handler_result.
3553  */
3554 int netdev_rx_handler_register(struct net_device *dev,
3555 			       rx_handler_func_t *rx_handler,
3556 			       void *rx_handler_data)
3557 {
3558 	ASSERT_RTNL();
3559 
3560 	if (dev->rx_handler)
3561 		return -EBUSY;
3562 
3563 	/* Note: rx_handler_data must be set before rx_handler */
3564 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3565 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3566 
3567 	return 0;
3568 }
3569 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3570 
3571 /**
3572  *	netdev_rx_handler_unregister - unregister receive handler
3573  *	@dev: device to unregister a handler from
3574  *
3575  *	Unregister a receive handler from a device.
3576  *
3577  *	The caller must hold the rtnl_mutex.
3578  */
3579 void netdev_rx_handler_unregister(struct net_device *dev)
3580 {
3581 
3582 	ASSERT_RTNL();
3583 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3584 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3585 	 * section has a guarantee to see a non NULL rx_handler_data
3586 	 * as well.
3587 	 */
3588 	synchronize_net();
3589 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3590 }
3591 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3592 
3593 /*
3594  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3595  * the special handling of PFMEMALLOC skbs.
3596  */
3597 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3598 {
3599 	switch (skb->protocol) {
3600 	case htons(ETH_P_ARP):
3601 	case htons(ETH_P_IP):
3602 	case htons(ETH_P_IPV6):
3603 	case htons(ETH_P_8021Q):
3604 	case htons(ETH_P_8021AD):
3605 		return true;
3606 	default:
3607 		return false;
3608 	}
3609 }
3610 
3611 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3612 {
3613 	struct packet_type *ptype, *pt_prev;
3614 	rx_handler_func_t *rx_handler;
3615 	struct net_device *orig_dev;
3616 	struct net_device *null_or_dev;
3617 	bool deliver_exact = false;
3618 	int ret = NET_RX_DROP;
3619 	__be16 type;
3620 
3621 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3622 
3623 	trace_netif_receive_skb(skb);
3624 
3625 	orig_dev = skb->dev;
3626 
3627 	skb_reset_network_header(skb);
3628 	if (!skb_transport_header_was_set(skb))
3629 		skb_reset_transport_header(skb);
3630 	skb_reset_mac_len(skb);
3631 
3632 	pt_prev = NULL;
3633 
3634 	rcu_read_lock();
3635 
3636 another_round:
3637 	skb->skb_iif = skb->dev->ifindex;
3638 
3639 	__this_cpu_inc(softnet_data.processed);
3640 
3641 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3642 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3643 		skb = skb_vlan_untag(skb);
3644 		if (unlikely(!skb))
3645 			goto unlock;
3646 	}
3647 
3648 #ifdef CONFIG_NET_CLS_ACT
3649 	if (skb->tc_verd & TC_NCLS) {
3650 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3651 		goto ncls;
3652 	}
3653 #endif
3654 
3655 	if (pfmemalloc)
3656 		goto skip_taps;
3657 
3658 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3659 		if (!ptype->dev || ptype->dev == skb->dev) {
3660 			if (pt_prev)
3661 				ret = deliver_skb(skb, pt_prev, orig_dev);
3662 			pt_prev = ptype;
3663 		}
3664 	}
3665 
3666 skip_taps:
3667 #ifdef CONFIG_NET_CLS_ACT
3668 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3669 	if (!skb)
3670 		goto unlock;
3671 ncls:
3672 #endif
3673 
3674 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3675 		goto drop;
3676 
3677 	if (vlan_tx_tag_present(skb)) {
3678 		if (pt_prev) {
3679 			ret = deliver_skb(skb, pt_prev, orig_dev);
3680 			pt_prev = NULL;
3681 		}
3682 		if (vlan_do_receive(&skb))
3683 			goto another_round;
3684 		else if (unlikely(!skb))
3685 			goto unlock;
3686 	}
3687 
3688 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3689 	if (rx_handler) {
3690 		if (pt_prev) {
3691 			ret = deliver_skb(skb, pt_prev, orig_dev);
3692 			pt_prev = NULL;
3693 		}
3694 		switch (rx_handler(&skb)) {
3695 		case RX_HANDLER_CONSUMED:
3696 			ret = NET_RX_SUCCESS;
3697 			goto unlock;
3698 		case RX_HANDLER_ANOTHER:
3699 			goto another_round;
3700 		case RX_HANDLER_EXACT:
3701 			deliver_exact = true;
3702 		case RX_HANDLER_PASS:
3703 			break;
3704 		default:
3705 			BUG();
3706 		}
3707 	}
3708 
3709 	if (unlikely(vlan_tx_tag_present(skb))) {
3710 		if (vlan_tx_tag_get_id(skb))
3711 			skb->pkt_type = PACKET_OTHERHOST;
3712 		/* Note: we might in the future use prio bits
3713 		 * and set skb->priority like in vlan_do_receive()
3714 		 * For the time being, just ignore Priority Code Point
3715 		 */
3716 		skb->vlan_tci = 0;
3717 	}
3718 
3719 	/* deliver only exact match when indicated */
3720 	null_or_dev = deliver_exact ? skb->dev : NULL;
3721 
3722 	type = skb->protocol;
3723 	list_for_each_entry_rcu(ptype,
3724 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3725 		if (ptype->type == type &&
3726 		    (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3727 		     ptype->dev == orig_dev)) {
3728 			if (pt_prev)
3729 				ret = deliver_skb(skb, pt_prev, orig_dev);
3730 			pt_prev = ptype;
3731 		}
3732 	}
3733 
3734 	if (pt_prev) {
3735 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3736 			goto drop;
3737 		else
3738 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3739 	} else {
3740 drop:
3741 		atomic_long_inc(&skb->dev->rx_dropped);
3742 		kfree_skb(skb);
3743 		/* Jamal, now you will not able to escape explaining
3744 		 * me how you were going to use this. :-)
3745 		 */
3746 		ret = NET_RX_DROP;
3747 	}
3748 
3749 unlock:
3750 	rcu_read_unlock();
3751 	return ret;
3752 }
3753 
3754 static int __netif_receive_skb(struct sk_buff *skb)
3755 {
3756 	int ret;
3757 
3758 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3759 		unsigned long pflags = current->flags;
3760 
3761 		/*
3762 		 * PFMEMALLOC skbs are special, they should
3763 		 * - be delivered to SOCK_MEMALLOC sockets only
3764 		 * - stay away from userspace
3765 		 * - have bounded memory usage
3766 		 *
3767 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
3768 		 * context down to all allocation sites.
3769 		 */
3770 		current->flags |= PF_MEMALLOC;
3771 		ret = __netif_receive_skb_core(skb, true);
3772 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
3773 	} else
3774 		ret = __netif_receive_skb_core(skb, false);
3775 
3776 	return ret;
3777 }
3778 
3779 static int netif_receive_skb_internal(struct sk_buff *skb)
3780 {
3781 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3782 
3783 	if (skb_defer_rx_timestamp(skb))
3784 		return NET_RX_SUCCESS;
3785 
3786 #ifdef CONFIG_RPS
3787 	if (static_key_false(&rps_needed)) {
3788 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3789 		int cpu, ret;
3790 
3791 		rcu_read_lock();
3792 
3793 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3794 
3795 		if (cpu >= 0) {
3796 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3797 			rcu_read_unlock();
3798 			return ret;
3799 		}
3800 		rcu_read_unlock();
3801 	}
3802 #endif
3803 	return __netif_receive_skb(skb);
3804 }
3805 
3806 /**
3807  *	netif_receive_skb - process receive buffer from network
3808  *	@skb: buffer to process
3809  *
3810  *	netif_receive_skb() is the main receive data processing function.
3811  *	It always succeeds. The buffer may be dropped during processing
3812  *	for congestion control or by the protocol layers.
3813  *
3814  *	This function may only be called from softirq context and interrupts
3815  *	should be enabled.
3816  *
3817  *	Return values (usually ignored):
3818  *	NET_RX_SUCCESS: no congestion
3819  *	NET_RX_DROP: packet was dropped
3820  */
3821 int netif_receive_skb(struct sk_buff *skb)
3822 {
3823 	trace_netif_receive_skb_entry(skb);
3824 
3825 	return netif_receive_skb_internal(skb);
3826 }
3827 EXPORT_SYMBOL(netif_receive_skb);
3828 
3829 /* Network device is going away, flush any packets still pending
3830  * Called with irqs disabled.
3831  */
3832 static void flush_backlog(void *arg)
3833 {
3834 	struct net_device *dev = arg;
3835 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3836 	struct sk_buff *skb, *tmp;
3837 
3838 	rps_lock(sd);
3839 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3840 		if (skb->dev == dev) {
3841 			__skb_unlink(skb, &sd->input_pkt_queue);
3842 			kfree_skb(skb);
3843 			input_queue_head_incr(sd);
3844 		}
3845 	}
3846 	rps_unlock(sd);
3847 
3848 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3849 		if (skb->dev == dev) {
3850 			__skb_unlink(skb, &sd->process_queue);
3851 			kfree_skb(skb);
3852 			input_queue_head_incr(sd);
3853 		}
3854 	}
3855 }
3856 
3857 static int napi_gro_complete(struct sk_buff *skb)
3858 {
3859 	struct packet_offload *ptype;
3860 	__be16 type = skb->protocol;
3861 	struct list_head *head = &offload_base;
3862 	int err = -ENOENT;
3863 
3864 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3865 
3866 	if (NAPI_GRO_CB(skb)->count == 1) {
3867 		skb_shinfo(skb)->gso_size = 0;
3868 		goto out;
3869 	}
3870 
3871 	rcu_read_lock();
3872 	list_for_each_entry_rcu(ptype, head, list) {
3873 		if (ptype->type != type || !ptype->callbacks.gro_complete)
3874 			continue;
3875 
3876 		err = ptype->callbacks.gro_complete(skb, 0);
3877 		break;
3878 	}
3879 	rcu_read_unlock();
3880 
3881 	if (err) {
3882 		WARN_ON(&ptype->list == head);
3883 		kfree_skb(skb);
3884 		return NET_RX_SUCCESS;
3885 	}
3886 
3887 out:
3888 	return netif_receive_skb_internal(skb);
3889 }
3890 
3891 /* napi->gro_list contains packets ordered by age.
3892  * youngest packets at the head of it.
3893  * Complete skbs in reverse order to reduce latencies.
3894  */
3895 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3896 {
3897 	struct sk_buff *skb, *prev = NULL;
3898 
3899 	/* scan list and build reverse chain */
3900 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3901 		skb->prev = prev;
3902 		prev = skb;
3903 	}
3904 
3905 	for (skb = prev; skb; skb = prev) {
3906 		skb->next = NULL;
3907 
3908 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3909 			return;
3910 
3911 		prev = skb->prev;
3912 		napi_gro_complete(skb);
3913 		napi->gro_count--;
3914 	}
3915 
3916 	napi->gro_list = NULL;
3917 }
3918 EXPORT_SYMBOL(napi_gro_flush);
3919 
3920 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3921 {
3922 	struct sk_buff *p;
3923 	unsigned int maclen = skb->dev->hard_header_len;
3924 	u32 hash = skb_get_hash_raw(skb);
3925 
3926 	for (p = napi->gro_list; p; p = p->next) {
3927 		unsigned long diffs;
3928 
3929 		NAPI_GRO_CB(p)->flush = 0;
3930 
3931 		if (hash != skb_get_hash_raw(p)) {
3932 			NAPI_GRO_CB(p)->same_flow = 0;
3933 			continue;
3934 		}
3935 
3936 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3937 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3938 		if (maclen == ETH_HLEN)
3939 			diffs |= compare_ether_header(skb_mac_header(p),
3940 						      skb_mac_header(skb));
3941 		else if (!diffs)
3942 			diffs = memcmp(skb_mac_header(p),
3943 				       skb_mac_header(skb),
3944 				       maclen);
3945 		NAPI_GRO_CB(p)->same_flow = !diffs;
3946 	}
3947 }
3948 
3949 static void skb_gro_reset_offset(struct sk_buff *skb)
3950 {
3951 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
3952 	const skb_frag_t *frag0 = &pinfo->frags[0];
3953 
3954 	NAPI_GRO_CB(skb)->data_offset = 0;
3955 	NAPI_GRO_CB(skb)->frag0 = NULL;
3956 	NAPI_GRO_CB(skb)->frag0_len = 0;
3957 
3958 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3959 	    pinfo->nr_frags &&
3960 	    !PageHighMem(skb_frag_page(frag0))) {
3961 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3962 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3963 	}
3964 }
3965 
3966 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3967 {
3968 	struct skb_shared_info *pinfo = skb_shinfo(skb);
3969 
3970 	BUG_ON(skb->end - skb->tail < grow);
3971 
3972 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3973 
3974 	skb->data_len -= grow;
3975 	skb->tail += grow;
3976 
3977 	pinfo->frags[0].page_offset += grow;
3978 	skb_frag_size_sub(&pinfo->frags[0], grow);
3979 
3980 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3981 		skb_frag_unref(skb, 0);
3982 		memmove(pinfo->frags, pinfo->frags + 1,
3983 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
3984 	}
3985 }
3986 
3987 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3988 {
3989 	struct sk_buff **pp = NULL;
3990 	struct packet_offload *ptype;
3991 	__be16 type = skb->protocol;
3992 	struct list_head *head = &offload_base;
3993 	int same_flow;
3994 	enum gro_result ret;
3995 	int grow;
3996 
3997 	if (!(skb->dev->features & NETIF_F_GRO))
3998 		goto normal;
3999 
4000 	if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4001 		goto normal;
4002 
4003 	gro_list_prepare(napi, skb);
4004 
4005 	rcu_read_lock();
4006 	list_for_each_entry_rcu(ptype, head, list) {
4007 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4008 			continue;
4009 
4010 		skb_set_network_header(skb, skb_gro_offset(skb));
4011 		skb_reset_mac_len(skb);
4012 		NAPI_GRO_CB(skb)->same_flow = 0;
4013 		NAPI_GRO_CB(skb)->flush = 0;
4014 		NAPI_GRO_CB(skb)->free = 0;
4015 		NAPI_GRO_CB(skb)->udp_mark = 0;
4016 
4017 		/* Setup for GRO checksum validation */
4018 		switch (skb->ip_summed) {
4019 		case CHECKSUM_COMPLETE:
4020 			NAPI_GRO_CB(skb)->csum = skb->csum;
4021 			NAPI_GRO_CB(skb)->csum_valid = 1;
4022 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4023 			break;
4024 		case CHECKSUM_UNNECESSARY:
4025 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4026 			NAPI_GRO_CB(skb)->csum_valid = 0;
4027 			break;
4028 		default:
4029 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4030 			NAPI_GRO_CB(skb)->csum_valid = 0;
4031 		}
4032 
4033 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4034 		break;
4035 	}
4036 	rcu_read_unlock();
4037 
4038 	if (&ptype->list == head)
4039 		goto normal;
4040 
4041 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4042 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4043 
4044 	if (pp) {
4045 		struct sk_buff *nskb = *pp;
4046 
4047 		*pp = nskb->next;
4048 		nskb->next = NULL;
4049 		napi_gro_complete(nskb);
4050 		napi->gro_count--;
4051 	}
4052 
4053 	if (same_flow)
4054 		goto ok;
4055 
4056 	if (NAPI_GRO_CB(skb)->flush)
4057 		goto normal;
4058 
4059 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4060 		struct sk_buff *nskb = napi->gro_list;
4061 
4062 		/* locate the end of the list to select the 'oldest' flow */
4063 		while (nskb->next) {
4064 			pp = &nskb->next;
4065 			nskb = *pp;
4066 		}
4067 		*pp = NULL;
4068 		nskb->next = NULL;
4069 		napi_gro_complete(nskb);
4070 	} else {
4071 		napi->gro_count++;
4072 	}
4073 	NAPI_GRO_CB(skb)->count = 1;
4074 	NAPI_GRO_CB(skb)->age = jiffies;
4075 	NAPI_GRO_CB(skb)->last = skb;
4076 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4077 	skb->next = napi->gro_list;
4078 	napi->gro_list = skb;
4079 	ret = GRO_HELD;
4080 
4081 pull:
4082 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4083 	if (grow > 0)
4084 		gro_pull_from_frag0(skb, grow);
4085 ok:
4086 	return ret;
4087 
4088 normal:
4089 	ret = GRO_NORMAL;
4090 	goto pull;
4091 }
4092 
4093 struct packet_offload *gro_find_receive_by_type(__be16 type)
4094 {
4095 	struct list_head *offload_head = &offload_base;
4096 	struct packet_offload *ptype;
4097 
4098 	list_for_each_entry_rcu(ptype, offload_head, list) {
4099 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4100 			continue;
4101 		return ptype;
4102 	}
4103 	return NULL;
4104 }
4105 EXPORT_SYMBOL(gro_find_receive_by_type);
4106 
4107 struct packet_offload *gro_find_complete_by_type(__be16 type)
4108 {
4109 	struct list_head *offload_head = &offload_base;
4110 	struct packet_offload *ptype;
4111 
4112 	list_for_each_entry_rcu(ptype, offload_head, list) {
4113 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4114 			continue;
4115 		return ptype;
4116 	}
4117 	return NULL;
4118 }
4119 EXPORT_SYMBOL(gro_find_complete_by_type);
4120 
4121 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4122 {
4123 	switch (ret) {
4124 	case GRO_NORMAL:
4125 		if (netif_receive_skb_internal(skb))
4126 			ret = GRO_DROP;
4127 		break;
4128 
4129 	case GRO_DROP:
4130 		kfree_skb(skb);
4131 		break;
4132 
4133 	case GRO_MERGED_FREE:
4134 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4135 			kmem_cache_free(skbuff_head_cache, skb);
4136 		else
4137 			__kfree_skb(skb);
4138 		break;
4139 
4140 	case GRO_HELD:
4141 	case GRO_MERGED:
4142 		break;
4143 	}
4144 
4145 	return ret;
4146 }
4147 
4148 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4149 {
4150 	trace_napi_gro_receive_entry(skb);
4151 
4152 	skb_gro_reset_offset(skb);
4153 
4154 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4155 }
4156 EXPORT_SYMBOL(napi_gro_receive);
4157 
4158 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4159 {
4160 	__skb_pull(skb, skb_headlen(skb));
4161 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4162 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4163 	skb->vlan_tci = 0;
4164 	skb->dev = napi->dev;
4165 	skb->skb_iif = 0;
4166 	skb->encapsulation = 0;
4167 	skb_shinfo(skb)->gso_type = 0;
4168 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4169 
4170 	napi->skb = skb;
4171 }
4172 
4173 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4174 {
4175 	struct sk_buff *skb = napi->skb;
4176 
4177 	if (!skb) {
4178 		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
4179 		napi->skb = skb;
4180 	}
4181 	return skb;
4182 }
4183 EXPORT_SYMBOL(napi_get_frags);
4184 
4185 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4186 				      struct sk_buff *skb,
4187 				      gro_result_t ret)
4188 {
4189 	switch (ret) {
4190 	case GRO_NORMAL:
4191 	case GRO_HELD:
4192 		__skb_push(skb, ETH_HLEN);
4193 		skb->protocol = eth_type_trans(skb, skb->dev);
4194 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4195 			ret = GRO_DROP;
4196 		break;
4197 
4198 	case GRO_DROP:
4199 	case GRO_MERGED_FREE:
4200 		napi_reuse_skb(napi, skb);
4201 		break;
4202 
4203 	case GRO_MERGED:
4204 		break;
4205 	}
4206 
4207 	return ret;
4208 }
4209 
4210 /* Upper GRO stack assumes network header starts at gro_offset=0
4211  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4212  * We copy ethernet header into skb->data to have a common layout.
4213  */
4214 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4215 {
4216 	struct sk_buff *skb = napi->skb;
4217 	const struct ethhdr *eth;
4218 	unsigned int hlen = sizeof(*eth);
4219 
4220 	napi->skb = NULL;
4221 
4222 	skb_reset_mac_header(skb);
4223 	skb_gro_reset_offset(skb);
4224 
4225 	eth = skb_gro_header_fast(skb, 0);
4226 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4227 		eth = skb_gro_header_slow(skb, hlen, 0);
4228 		if (unlikely(!eth)) {
4229 			napi_reuse_skb(napi, skb);
4230 			return NULL;
4231 		}
4232 	} else {
4233 		gro_pull_from_frag0(skb, hlen);
4234 		NAPI_GRO_CB(skb)->frag0 += hlen;
4235 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4236 	}
4237 	__skb_pull(skb, hlen);
4238 
4239 	/*
4240 	 * This works because the only protocols we care about don't require
4241 	 * special handling.
4242 	 * We'll fix it up properly in napi_frags_finish()
4243 	 */
4244 	skb->protocol = eth->h_proto;
4245 
4246 	return skb;
4247 }
4248 
4249 gro_result_t napi_gro_frags(struct napi_struct *napi)
4250 {
4251 	struct sk_buff *skb = napi_frags_skb(napi);
4252 
4253 	if (!skb)
4254 		return GRO_DROP;
4255 
4256 	trace_napi_gro_frags_entry(skb);
4257 
4258 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4259 }
4260 EXPORT_SYMBOL(napi_gro_frags);
4261 
4262 /* Compute the checksum from gro_offset and return the folded value
4263  * after adding in any pseudo checksum.
4264  */
4265 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4266 {
4267 	__wsum wsum;
4268 	__sum16 sum;
4269 
4270 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4271 
4272 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4273 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4274 	if (likely(!sum)) {
4275 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4276 		    !skb->csum_complete_sw)
4277 			netdev_rx_csum_fault(skb->dev);
4278 	}
4279 
4280 	NAPI_GRO_CB(skb)->csum = wsum;
4281 	NAPI_GRO_CB(skb)->csum_valid = 1;
4282 
4283 	return sum;
4284 }
4285 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4286 
4287 /*
4288  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4289  * Note: called with local irq disabled, but exits with local irq enabled.
4290  */
4291 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4292 {
4293 #ifdef CONFIG_RPS
4294 	struct softnet_data *remsd = sd->rps_ipi_list;
4295 
4296 	if (remsd) {
4297 		sd->rps_ipi_list = NULL;
4298 
4299 		local_irq_enable();
4300 
4301 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4302 		while (remsd) {
4303 			struct softnet_data *next = remsd->rps_ipi_next;
4304 
4305 			if (cpu_online(remsd->cpu))
4306 				smp_call_function_single_async(remsd->cpu,
4307 							   &remsd->csd);
4308 			remsd = next;
4309 		}
4310 	} else
4311 #endif
4312 		local_irq_enable();
4313 }
4314 
4315 static int process_backlog(struct napi_struct *napi, int quota)
4316 {
4317 	int work = 0;
4318 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4319 
4320 #ifdef CONFIG_RPS
4321 	/* Check if we have pending ipi, its better to send them now,
4322 	 * not waiting net_rx_action() end.
4323 	 */
4324 	if (sd->rps_ipi_list) {
4325 		local_irq_disable();
4326 		net_rps_action_and_irq_enable(sd);
4327 	}
4328 #endif
4329 	napi->weight = weight_p;
4330 	local_irq_disable();
4331 	while (1) {
4332 		struct sk_buff *skb;
4333 
4334 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4335 			local_irq_enable();
4336 			__netif_receive_skb(skb);
4337 			local_irq_disable();
4338 			input_queue_head_incr(sd);
4339 			if (++work >= quota) {
4340 				local_irq_enable();
4341 				return work;
4342 			}
4343 		}
4344 
4345 		rps_lock(sd);
4346 		if (skb_queue_empty(&sd->input_pkt_queue)) {
4347 			/*
4348 			 * Inline a custom version of __napi_complete().
4349 			 * only current cpu owns and manipulates this napi,
4350 			 * and NAPI_STATE_SCHED is the only possible flag set
4351 			 * on backlog.
4352 			 * We can use a plain write instead of clear_bit(),
4353 			 * and we dont need an smp_mb() memory barrier.
4354 			 */
4355 			list_del(&napi->poll_list);
4356 			napi->state = 0;
4357 			rps_unlock(sd);
4358 
4359 			break;
4360 		}
4361 
4362 		skb_queue_splice_tail_init(&sd->input_pkt_queue,
4363 					   &sd->process_queue);
4364 		rps_unlock(sd);
4365 	}
4366 	local_irq_enable();
4367 
4368 	return work;
4369 }
4370 
4371 /**
4372  * __napi_schedule - schedule for receive
4373  * @n: entry to schedule
4374  *
4375  * The entry's receive function will be scheduled to run
4376  */
4377 void __napi_schedule(struct napi_struct *n)
4378 {
4379 	unsigned long flags;
4380 
4381 	local_irq_save(flags);
4382 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4383 	local_irq_restore(flags);
4384 }
4385 EXPORT_SYMBOL(__napi_schedule);
4386 
4387 void __napi_complete(struct napi_struct *n)
4388 {
4389 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4390 	BUG_ON(n->gro_list);
4391 
4392 	list_del(&n->poll_list);
4393 	smp_mb__before_atomic();
4394 	clear_bit(NAPI_STATE_SCHED, &n->state);
4395 }
4396 EXPORT_SYMBOL(__napi_complete);
4397 
4398 void napi_complete(struct napi_struct *n)
4399 {
4400 	unsigned long flags;
4401 
4402 	/*
4403 	 * don't let napi dequeue from the cpu poll list
4404 	 * just in case its running on a different cpu
4405 	 */
4406 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4407 		return;
4408 
4409 	napi_gro_flush(n, false);
4410 	local_irq_save(flags);
4411 	__napi_complete(n);
4412 	local_irq_restore(flags);
4413 }
4414 EXPORT_SYMBOL(napi_complete);
4415 
4416 /* must be called under rcu_read_lock(), as we dont take a reference */
4417 struct napi_struct *napi_by_id(unsigned int napi_id)
4418 {
4419 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4420 	struct napi_struct *napi;
4421 
4422 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4423 		if (napi->napi_id == napi_id)
4424 			return napi;
4425 
4426 	return NULL;
4427 }
4428 EXPORT_SYMBOL_GPL(napi_by_id);
4429 
4430 void napi_hash_add(struct napi_struct *napi)
4431 {
4432 	if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4433 
4434 		spin_lock(&napi_hash_lock);
4435 
4436 		/* 0 is not a valid id, we also skip an id that is taken
4437 		 * we expect both events to be extremely rare
4438 		 */
4439 		napi->napi_id = 0;
4440 		while (!napi->napi_id) {
4441 			napi->napi_id = ++napi_gen_id;
4442 			if (napi_by_id(napi->napi_id))
4443 				napi->napi_id = 0;
4444 		}
4445 
4446 		hlist_add_head_rcu(&napi->napi_hash_node,
4447 			&napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4448 
4449 		spin_unlock(&napi_hash_lock);
4450 	}
4451 }
4452 EXPORT_SYMBOL_GPL(napi_hash_add);
4453 
4454 /* Warning : caller is responsible to make sure rcu grace period
4455  * is respected before freeing memory containing @napi
4456  */
4457 void napi_hash_del(struct napi_struct *napi)
4458 {
4459 	spin_lock(&napi_hash_lock);
4460 
4461 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4462 		hlist_del_rcu(&napi->napi_hash_node);
4463 
4464 	spin_unlock(&napi_hash_lock);
4465 }
4466 EXPORT_SYMBOL_GPL(napi_hash_del);
4467 
4468 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4469 		    int (*poll)(struct napi_struct *, int), int weight)
4470 {
4471 	INIT_LIST_HEAD(&napi->poll_list);
4472 	napi->gro_count = 0;
4473 	napi->gro_list = NULL;
4474 	napi->skb = NULL;
4475 	napi->poll = poll;
4476 	if (weight > NAPI_POLL_WEIGHT)
4477 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4478 			    weight, dev->name);
4479 	napi->weight = weight;
4480 	list_add(&napi->dev_list, &dev->napi_list);
4481 	napi->dev = dev;
4482 #ifdef CONFIG_NETPOLL
4483 	spin_lock_init(&napi->poll_lock);
4484 	napi->poll_owner = -1;
4485 #endif
4486 	set_bit(NAPI_STATE_SCHED, &napi->state);
4487 }
4488 EXPORT_SYMBOL(netif_napi_add);
4489 
4490 void netif_napi_del(struct napi_struct *napi)
4491 {
4492 	list_del_init(&napi->dev_list);
4493 	napi_free_frags(napi);
4494 
4495 	kfree_skb_list(napi->gro_list);
4496 	napi->gro_list = NULL;
4497 	napi->gro_count = 0;
4498 }
4499 EXPORT_SYMBOL(netif_napi_del);
4500 
4501 static void net_rx_action(struct softirq_action *h)
4502 {
4503 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4504 	unsigned long time_limit = jiffies + 2;
4505 	int budget = netdev_budget;
4506 	void *have;
4507 
4508 	local_irq_disable();
4509 
4510 	while (!list_empty(&sd->poll_list)) {
4511 		struct napi_struct *n;
4512 		int work, weight;
4513 
4514 		/* If softirq window is exhuasted then punt.
4515 		 * Allow this to run for 2 jiffies since which will allow
4516 		 * an average latency of 1.5/HZ.
4517 		 */
4518 		if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4519 			goto softnet_break;
4520 
4521 		local_irq_enable();
4522 
4523 		/* Even though interrupts have been re-enabled, this
4524 		 * access is safe because interrupts can only add new
4525 		 * entries to the tail of this list, and only ->poll()
4526 		 * calls can remove this head entry from the list.
4527 		 */
4528 		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4529 
4530 		have = netpoll_poll_lock(n);
4531 
4532 		weight = n->weight;
4533 
4534 		/* This NAPI_STATE_SCHED test is for avoiding a race
4535 		 * with netpoll's poll_napi().  Only the entity which
4536 		 * obtains the lock and sees NAPI_STATE_SCHED set will
4537 		 * actually make the ->poll() call.  Therefore we avoid
4538 		 * accidentally calling ->poll() when NAPI is not scheduled.
4539 		 */
4540 		work = 0;
4541 		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4542 			work = n->poll(n, weight);
4543 			trace_napi_poll(n);
4544 		}
4545 
4546 		WARN_ON_ONCE(work > weight);
4547 
4548 		budget -= work;
4549 
4550 		local_irq_disable();
4551 
4552 		/* Drivers must not modify the NAPI state if they
4553 		 * consume the entire weight.  In such cases this code
4554 		 * still "owns" the NAPI instance and therefore can
4555 		 * move the instance around on the list at-will.
4556 		 */
4557 		if (unlikely(work == weight)) {
4558 			if (unlikely(napi_disable_pending(n))) {
4559 				local_irq_enable();
4560 				napi_complete(n);
4561 				local_irq_disable();
4562 			} else {
4563 				if (n->gro_list) {
4564 					/* flush too old packets
4565 					 * If HZ < 1000, flush all packets.
4566 					 */
4567 					local_irq_enable();
4568 					napi_gro_flush(n, HZ >= 1000);
4569 					local_irq_disable();
4570 				}
4571 				list_move_tail(&n->poll_list, &sd->poll_list);
4572 			}
4573 		}
4574 
4575 		netpoll_poll_unlock(have);
4576 	}
4577 out:
4578 	net_rps_action_and_irq_enable(sd);
4579 
4580 	return;
4581 
4582 softnet_break:
4583 	sd->time_squeeze++;
4584 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4585 	goto out;
4586 }
4587 
4588 struct netdev_adjacent {
4589 	struct net_device *dev;
4590 
4591 	/* upper master flag, there can only be one master device per list */
4592 	bool master;
4593 
4594 	/* counter for the number of times this device was added to us */
4595 	u16 ref_nr;
4596 
4597 	/* private field for the users */
4598 	void *private;
4599 
4600 	struct list_head list;
4601 	struct rcu_head rcu;
4602 };
4603 
4604 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4605 						 struct net_device *adj_dev,
4606 						 struct list_head *adj_list)
4607 {
4608 	struct netdev_adjacent *adj;
4609 
4610 	list_for_each_entry(adj, adj_list, list) {
4611 		if (adj->dev == adj_dev)
4612 			return adj;
4613 	}
4614 	return NULL;
4615 }
4616 
4617 /**
4618  * netdev_has_upper_dev - Check if device is linked to an upper device
4619  * @dev: device
4620  * @upper_dev: upper device to check
4621  *
4622  * Find out if a device is linked to specified upper device and return true
4623  * in case it is. Note that this checks only immediate upper device,
4624  * not through a complete stack of devices. The caller must hold the RTNL lock.
4625  */
4626 bool netdev_has_upper_dev(struct net_device *dev,
4627 			  struct net_device *upper_dev)
4628 {
4629 	ASSERT_RTNL();
4630 
4631 	return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4632 }
4633 EXPORT_SYMBOL(netdev_has_upper_dev);
4634 
4635 /**
4636  * netdev_has_any_upper_dev - Check if device is linked to some device
4637  * @dev: device
4638  *
4639  * Find out if a device is linked to an upper device and return true in case
4640  * it is. The caller must hold the RTNL lock.
4641  */
4642 static bool netdev_has_any_upper_dev(struct net_device *dev)
4643 {
4644 	ASSERT_RTNL();
4645 
4646 	return !list_empty(&dev->all_adj_list.upper);
4647 }
4648 
4649 /**
4650  * netdev_master_upper_dev_get - Get master upper device
4651  * @dev: device
4652  *
4653  * Find a master upper device and return pointer to it or NULL in case
4654  * it's not there. The caller must hold the RTNL lock.
4655  */
4656 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4657 {
4658 	struct netdev_adjacent *upper;
4659 
4660 	ASSERT_RTNL();
4661 
4662 	if (list_empty(&dev->adj_list.upper))
4663 		return NULL;
4664 
4665 	upper = list_first_entry(&dev->adj_list.upper,
4666 				 struct netdev_adjacent, list);
4667 	if (likely(upper->master))
4668 		return upper->dev;
4669 	return NULL;
4670 }
4671 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4672 
4673 void *netdev_adjacent_get_private(struct list_head *adj_list)
4674 {
4675 	struct netdev_adjacent *adj;
4676 
4677 	adj = list_entry(adj_list, struct netdev_adjacent, list);
4678 
4679 	return adj->private;
4680 }
4681 EXPORT_SYMBOL(netdev_adjacent_get_private);
4682 
4683 /**
4684  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4685  * @dev: device
4686  * @iter: list_head ** of the current position
4687  *
4688  * Gets the next device from the dev's upper list, starting from iter
4689  * position. The caller must hold RCU read lock.
4690  */
4691 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4692 						 struct list_head **iter)
4693 {
4694 	struct netdev_adjacent *upper;
4695 
4696 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4697 
4698 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4699 
4700 	if (&upper->list == &dev->adj_list.upper)
4701 		return NULL;
4702 
4703 	*iter = &upper->list;
4704 
4705 	return upper->dev;
4706 }
4707 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4708 
4709 /**
4710  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4711  * @dev: device
4712  * @iter: list_head ** of the current position
4713  *
4714  * Gets the next device from the dev's upper list, starting from iter
4715  * position. The caller must hold RCU read lock.
4716  */
4717 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4718 						     struct list_head **iter)
4719 {
4720 	struct netdev_adjacent *upper;
4721 
4722 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4723 
4724 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4725 
4726 	if (&upper->list == &dev->all_adj_list.upper)
4727 		return NULL;
4728 
4729 	*iter = &upper->list;
4730 
4731 	return upper->dev;
4732 }
4733 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4734 
4735 /**
4736  * netdev_lower_get_next_private - Get the next ->private from the
4737  *				   lower neighbour list
4738  * @dev: device
4739  * @iter: list_head ** of the current position
4740  *
4741  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4742  * list, starting from iter position. The caller must hold either hold the
4743  * RTNL lock or its own locking that guarantees that the neighbour lower
4744  * list will remain unchainged.
4745  */
4746 void *netdev_lower_get_next_private(struct net_device *dev,
4747 				    struct list_head **iter)
4748 {
4749 	struct netdev_adjacent *lower;
4750 
4751 	lower = list_entry(*iter, struct netdev_adjacent, list);
4752 
4753 	if (&lower->list == &dev->adj_list.lower)
4754 		return NULL;
4755 
4756 	*iter = lower->list.next;
4757 
4758 	return lower->private;
4759 }
4760 EXPORT_SYMBOL(netdev_lower_get_next_private);
4761 
4762 /**
4763  * netdev_lower_get_next_private_rcu - Get the next ->private from the
4764  *				       lower neighbour list, RCU
4765  *				       variant
4766  * @dev: device
4767  * @iter: list_head ** of the current position
4768  *
4769  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4770  * list, starting from iter position. The caller must hold RCU read lock.
4771  */
4772 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4773 					struct list_head **iter)
4774 {
4775 	struct netdev_adjacent *lower;
4776 
4777 	WARN_ON_ONCE(!rcu_read_lock_held());
4778 
4779 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4780 
4781 	if (&lower->list == &dev->adj_list.lower)
4782 		return NULL;
4783 
4784 	*iter = &lower->list;
4785 
4786 	return lower->private;
4787 }
4788 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4789 
4790 /**
4791  * netdev_lower_get_next - Get the next device from the lower neighbour
4792  *                         list
4793  * @dev: device
4794  * @iter: list_head ** of the current position
4795  *
4796  * Gets the next netdev_adjacent from the dev's lower neighbour
4797  * list, starting from iter position. The caller must hold RTNL lock or
4798  * its own locking that guarantees that the neighbour lower
4799  * list will remain unchainged.
4800  */
4801 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4802 {
4803 	struct netdev_adjacent *lower;
4804 
4805 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4806 
4807 	if (&lower->list == &dev->adj_list.lower)
4808 		return NULL;
4809 
4810 	*iter = &lower->list;
4811 
4812 	return lower->dev;
4813 }
4814 EXPORT_SYMBOL(netdev_lower_get_next);
4815 
4816 /**
4817  * netdev_lower_get_first_private_rcu - Get the first ->private from the
4818  *				       lower neighbour list, RCU
4819  *				       variant
4820  * @dev: device
4821  *
4822  * Gets the first netdev_adjacent->private from the dev's lower neighbour
4823  * list. The caller must hold RCU read lock.
4824  */
4825 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4826 {
4827 	struct netdev_adjacent *lower;
4828 
4829 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
4830 			struct netdev_adjacent, list);
4831 	if (lower)
4832 		return lower->private;
4833 	return NULL;
4834 }
4835 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4836 
4837 /**
4838  * netdev_master_upper_dev_get_rcu - Get master upper device
4839  * @dev: device
4840  *
4841  * Find a master upper device and return pointer to it or NULL in case
4842  * it's not there. The caller must hold the RCU read lock.
4843  */
4844 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4845 {
4846 	struct netdev_adjacent *upper;
4847 
4848 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
4849 				       struct netdev_adjacent, list);
4850 	if (upper && likely(upper->master))
4851 		return upper->dev;
4852 	return NULL;
4853 }
4854 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4855 
4856 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4857 			      struct net_device *adj_dev,
4858 			      struct list_head *dev_list)
4859 {
4860 	char linkname[IFNAMSIZ+7];
4861 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
4862 		"upper_%s" : "lower_%s", adj_dev->name);
4863 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4864 				 linkname);
4865 }
4866 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4867 			       char *name,
4868 			       struct list_head *dev_list)
4869 {
4870 	char linkname[IFNAMSIZ+7];
4871 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
4872 		"upper_%s" : "lower_%s", name);
4873 	sysfs_remove_link(&(dev->dev.kobj), linkname);
4874 }
4875 
4876 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
4877 						 struct net_device *adj_dev,
4878 						 struct list_head *dev_list)
4879 {
4880 	return (dev_list == &dev->adj_list.upper ||
4881 		dev_list == &dev->adj_list.lower) &&
4882 		net_eq(dev_net(dev), dev_net(adj_dev));
4883 }
4884 
4885 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4886 					struct net_device *adj_dev,
4887 					struct list_head *dev_list,
4888 					void *private, bool master)
4889 {
4890 	struct netdev_adjacent *adj;
4891 	int ret;
4892 
4893 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
4894 
4895 	if (adj) {
4896 		adj->ref_nr++;
4897 		return 0;
4898 	}
4899 
4900 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4901 	if (!adj)
4902 		return -ENOMEM;
4903 
4904 	adj->dev = adj_dev;
4905 	adj->master = master;
4906 	adj->ref_nr = 1;
4907 	adj->private = private;
4908 	dev_hold(adj_dev);
4909 
4910 	pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4911 		 adj_dev->name, dev->name, adj_dev->name);
4912 
4913 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
4914 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4915 		if (ret)
4916 			goto free_adj;
4917 	}
4918 
4919 	/* Ensure that master link is always the first item in list. */
4920 	if (master) {
4921 		ret = sysfs_create_link(&(dev->dev.kobj),
4922 					&(adj_dev->dev.kobj), "master");
4923 		if (ret)
4924 			goto remove_symlinks;
4925 
4926 		list_add_rcu(&adj->list, dev_list);
4927 	} else {
4928 		list_add_tail_rcu(&adj->list, dev_list);
4929 	}
4930 
4931 	return 0;
4932 
4933 remove_symlinks:
4934 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
4935 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4936 free_adj:
4937 	kfree(adj);
4938 	dev_put(adj_dev);
4939 
4940 	return ret;
4941 }
4942 
4943 static void __netdev_adjacent_dev_remove(struct net_device *dev,
4944 					 struct net_device *adj_dev,
4945 					 struct list_head *dev_list)
4946 {
4947 	struct netdev_adjacent *adj;
4948 
4949 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
4950 
4951 	if (!adj) {
4952 		pr_err("tried to remove device %s from %s\n",
4953 		       dev->name, adj_dev->name);
4954 		BUG();
4955 	}
4956 
4957 	if (adj->ref_nr > 1) {
4958 		pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4959 			 adj->ref_nr-1);
4960 		adj->ref_nr--;
4961 		return;
4962 	}
4963 
4964 	if (adj->master)
4965 		sysfs_remove_link(&(dev->dev.kobj), "master");
4966 
4967 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
4968 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4969 
4970 	list_del_rcu(&adj->list);
4971 	pr_debug("dev_put for %s, because link removed from %s to %s\n",
4972 		 adj_dev->name, dev->name, adj_dev->name);
4973 	dev_put(adj_dev);
4974 	kfree_rcu(adj, rcu);
4975 }
4976 
4977 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4978 					    struct net_device *upper_dev,
4979 					    struct list_head *up_list,
4980 					    struct list_head *down_list,
4981 					    void *private, bool master)
4982 {
4983 	int ret;
4984 
4985 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4986 					   master);
4987 	if (ret)
4988 		return ret;
4989 
4990 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4991 					   false);
4992 	if (ret) {
4993 		__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4994 		return ret;
4995 	}
4996 
4997 	return 0;
4998 }
4999 
5000 static int __netdev_adjacent_dev_link(struct net_device *dev,
5001 				      struct net_device *upper_dev)
5002 {
5003 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5004 						&dev->all_adj_list.upper,
5005 						&upper_dev->all_adj_list.lower,
5006 						NULL, false);
5007 }
5008 
5009 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5010 					       struct net_device *upper_dev,
5011 					       struct list_head *up_list,
5012 					       struct list_head *down_list)
5013 {
5014 	__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5015 	__netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5016 }
5017 
5018 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5019 					 struct net_device *upper_dev)
5020 {
5021 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5022 					   &dev->all_adj_list.upper,
5023 					   &upper_dev->all_adj_list.lower);
5024 }
5025 
5026 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5027 						struct net_device *upper_dev,
5028 						void *private, bool master)
5029 {
5030 	int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5031 
5032 	if (ret)
5033 		return ret;
5034 
5035 	ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5036 					       &dev->adj_list.upper,
5037 					       &upper_dev->adj_list.lower,
5038 					       private, master);
5039 	if (ret) {
5040 		__netdev_adjacent_dev_unlink(dev, upper_dev);
5041 		return ret;
5042 	}
5043 
5044 	return 0;
5045 }
5046 
5047 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5048 						   struct net_device *upper_dev)
5049 {
5050 	__netdev_adjacent_dev_unlink(dev, upper_dev);
5051 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5052 					   &dev->adj_list.upper,
5053 					   &upper_dev->adj_list.lower);
5054 }
5055 
5056 static int __netdev_upper_dev_link(struct net_device *dev,
5057 				   struct net_device *upper_dev, bool master,
5058 				   void *private)
5059 {
5060 	struct netdev_adjacent *i, *j, *to_i, *to_j;
5061 	int ret = 0;
5062 
5063 	ASSERT_RTNL();
5064 
5065 	if (dev == upper_dev)
5066 		return -EBUSY;
5067 
5068 	/* To prevent loops, check if dev is not upper device to upper_dev. */
5069 	if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5070 		return -EBUSY;
5071 
5072 	if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
5073 		return -EEXIST;
5074 
5075 	if (master && netdev_master_upper_dev_get(dev))
5076 		return -EBUSY;
5077 
5078 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5079 						   master);
5080 	if (ret)
5081 		return ret;
5082 
5083 	/* Now that we linked these devs, make all the upper_dev's
5084 	 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5085 	 * versa, and don't forget the devices itself. All of these
5086 	 * links are non-neighbours.
5087 	 */
5088 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5089 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5090 			pr_debug("Interlinking %s with %s, non-neighbour\n",
5091 				 i->dev->name, j->dev->name);
5092 			ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5093 			if (ret)
5094 				goto rollback_mesh;
5095 		}
5096 	}
5097 
5098 	/* add dev to every upper_dev's upper device */
5099 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5100 		pr_debug("linking %s's upper device %s with %s\n",
5101 			 upper_dev->name, i->dev->name, dev->name);
5102 		ret = __netdev_adjacent_dev_link(dev, i->dev);
5103 		if (ret)
5104 			goto rollback_upper_mesh;
5105 	}
5106 
5107 	/* add upper_dev to every dev's lower device */
5108 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5109 		pr_debug("linking %s's lower device %s with %s\n", dev->name,
5110 			 i->dev->name, upper_dev->name);
5111 		ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5112 		if (ret)
5113 			goto rollback_lower_mesh;
5114 	}
5115 
5116 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5117 	return 0;
5118 
5119 rollback_lower_mesh:
5120 	to_i = i;
5121 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5122 		if (i == to_i)
5123 			break;
5124 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5125 	}
5126 
5127 	i = NULL;
5128 
5129 rollback_upper_mesh:
5130 	to_i = i;
5131 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5132 		if (i == to_i)
5133 			break;
5134 		__netdev_adjacent_dev_unlink(dev, i->dev);
5135 	}
5136 
5137 	i = j = NULL;
5138 
5139 rollback_mesh:
5140 	to_i = i;
5141 	to_j = j;
5142 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5143 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5144 			if (i == to_i && j == to_j)
5145 				break;
5146 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5147 		}
5148 		if (i == to_i)
5149 			break;
5150 	}
5151 
5152 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5153 
5154 	return ret;
5155 }
5156 
5157 /**
5158  * netdev_upper_dev_link - Add a link to the upper device
5159  * @dev: device
5160  * @upper_dev: new upper device
5161  *
5162  * Adds a link to device which is upper to this one. The caller must hold
5163  * the RTNL lock. On a failure a negative errno code is returned.
5164  * On success the reference counts are adjusted and the function
5165  * returns zero.
5166  */
5167 int netdev_upper_dev_link(struct net_device *dev,
5168 			  struct net_device *upper_dev)
5169 {
5170 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5171 }
5172 EXPORT_SYMBOL(netdev_upper_dev_link);
5173 
5174 /**
5175  * netdev_master_upper_dev_link - Add a master link to the upper device
5176  * @dev: device
5177  * @upper_dev: new upper device
5178  *
5179  * Adds a link to device which is upper to this one. In this case, only
5180  * one master upper device can be linked, although other non-master devices
5181  * might be linked as well. The caller must hold the RTNL lock.
5182  * On a failure a negative errno code is returned. On success the reference
5183  * counts are adjusted and the function returns zero.
5184  */
5185 int netdev_master_upper_dev_link(struct net_device *dev,
5186 				 struct net_device *upper_dev)
5187 {
5188 	return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5189 }
5190 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5191 
5192 int netdev_master_upper_dev_link_private(struct net_device *dev,
5193 					 struct net_device *upper_dev,
5194 					 void *private)
5195 {
5196 	return __netdev_upper_dev_link(dev, upper_dev, true, private);
5197 }
5198 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5199 
5200 /**
5201  * netdev_upper_dev_unlink - Removes a link to upper device
5202  * @dev: device
5203  * @upper_dev: new upper device
5204  *
5205  * Removes a link to device which is upper to this one. The caller must hold
5206  * the RTNL lock.
5207  */
5208 void netdev_upper_dev_unlink(struct net_device *dev,
5209 			     struct net_device *upper_dev)
5210 {
5211 	struct netdev_adjacent *i, *j;
5212 	ASSERT_RTNL();
5213 
5214 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5215 
5216 	/* Here is the tricky part. We must remove all dev's lower
5217 	 * devices from all upper_dev's upper devices and vice
5218 	 * versa, to maintain the graph relationship.
5219 	 */
5220 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5221 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5222 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5223 
5224 	/* remove also the devices itself from lower/upper device
5225 	 * list
5226 	 */
5227 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5228 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5229 
5230 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5231 		__netdev_adjacent_dev_unlink(dev, i->dev);
5232 
5233 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5234 }
5235 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5236 
5237 void netdev_adjacent_add_links(struct net_device *dev)
5238 {
5239 	struct netdev_adjacent *iter;
5240 
5241 	struct net *net = dev_net(dev);
5242 
5243 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5244 		if (!net_eq(net,dev_net(iter->dev)))
5245 			continue;
5246 		netdev_adjacent_sysfs_add(iter->dev, dev,
5247 					  &iter->dev->adj_list.lower);
5248 		netdev_adjacent_sysfs_add(dev, iter->dev,
5249 					  &dev->adj_list.upper);
5250 	}
5251 
5252 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5253 		if (!net_eq(net,dev_net(iter->dev)))
5254 			continue;
5255 		netdev_adjacent_sysfs_add(iter->dev, dev,
5256 					  &iter->dev->adj_list.upper);
5257 		netdev_adjacent_sysfs_add(dev, iter->dev,
5258 					  &dev->adj_list.lower);
5259 	}
5260 }
5261 
5262 void netdev_adjacent_del_links(struct net_device *dev)
5263 {
5264 	struct netdev_adjacent *iter;
5265 
5266 	struct net *net = dev_net(dev);
5267 
5268 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5269 		if (!net_eq(net,dev_net(iter->dev)))
5270 			continue;
5271 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5272 					  &iter->dev->adj_list.lower);
5273 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5274 					  &dev->adj_list.upper);
5275 	}
5276 
5277 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5278 		if (!net_eq(net,dev_net(iter->dev)))
5279 			continue;
5280 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5281 					  &iter->dev->adj_list.upper);
5282 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5283 					  &dev->adj_list.lower);
5284 	}
5285 }
5286 
5287 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5288 {
5289 	struct netdev_adjacent *iter;
5290 
5291 	struct net *net = dev_net(dev);
5292 
5293 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5294 		if (!net_eq(net,dev_net(iter->dev)))
5295 			continue;
5296 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5297 					  &iter->dev->adj_list.lower);
5298 		netdev_adjacent_sysfs_add(iter->dev, dev,
5299 					  &iter->dev->adj_list.lower);
5300 	}
5301 
5302 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5303 		if (!net_eq(net,dev_net(iter->dev)))
5304 			continue;
5305 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5306 					  &iter->dev->adj_list.upper);
5307 		netdev_adjacent_sysfs_add(iter->dev, dev,
5308 					  &iter->dev->adj_list.upper);
5309 	}
5310 }
5311 
5312 void *netdev_lower_dev_get_private(struct net_device *dev,
5313 				   struct net_device *lower_dev)
5314 {
5315 	struct netdev_adjacent *lower;
5316 
5317 	if (!lower_dev)
5318 		return NULL;
5319 	lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5320 	if (!lower)
5321 		return NULL;
5322 
5323 	return lower->private;
5324 }
5325 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5326 
5327 
5328 int dev_get_nest_level(struct net_device *dev,
5329 		       bool (*type_check)(struct net_device *dev))
5330 {
5331 	struct net_device *lower = NULL;
5332 	struct list_head *iter;
5333 	int max_nest = -1;
5334 	int nest;
5335 
5336 	ASSERT_RTNL();
5337 
5338 	netdev_for_each_lower_dev(dev, lower, iter) {
5339 		nest = dev_get_nest_level(lower, type_check);
5340 		if (max_nest < nest)
5341 			max_nest = nest;
5342 	}
5343 
5344 	if (type_check(dev))
5345 		max_nest++;
5346 
5347 	return max_nest;
5348 }
5349 EXPORT_SYMBOL(dev_get_nest_level);
5350 
5351 static void dev_change_rx_flags(struct net_device *dev, int flags)
5352 {
5353 	const struct net_device_ops *ops = dev->netdev_ops;
5354 
5355 	if (ops->ndo_change_rx_flags)
5356 		ops->ndo_change_rx_flags(dev, flags);
5357 }
5358 
5359 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5360 {
5361 	unsigned int old_flags = dev->flags;
5362 	kuid_t uid;
5363 	kgid_t gid;
5364 
5365 	ASSERT_RTNL();
5366 
5367 	dev->flags |= IFF_PROMISC;
5368 	dev->promiscuity += inc;
5369 	if (dev->promiscuity == 0) {
5370 		/*
5371 		 * Avoid overflow.
5372 		 * If inc causes overflow, untouch promisc and return error.
5373 		 */
5374 		if (inc < 0)
5375 			dev->flags &= ~IFF_PROMISC;
5376 		else {
5377 			dev->promiscuity -= inc;
5378 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5379 				dev->name);
5380 			return -EOVERFLOW;
5381 		}
5382 	}
5383 	if (dev->flags != old_flags) {
5384 		pr_info("device %s %s promiscuous mode\n",
5385 			dev->name,
5386 			dev->flags & IFF_PROMISC ? "entered" : "left");
5387 		if (audit_enabled) {
5388 			current_uid_gid(&uid, &gid);
5389 			audit_log(current->audit_context, GFP_ATOMIC,
5390 				AUDIT_ANOM_PROMISCUOUS,
5391 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5392 				dev->name, (dev->flags & IFF_PROMISC),
5393 				(old_flags & IFF_PROMISC),
5394 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
5395 				from_kuid(&init_user_ns, uid),
5396 				from_kgid(&init_user_ns, gid),
5397 				audit_get_sessionid(current));
5398 		}
5399 
5400 		dev_change_rx_flags(dev, IFF_PROMISC);
5401 	}
5402 	if (notify)
5403 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
5404 	return 0;
5405 }
5406 
5407 /**
5408  *	dev_set_promiscuity	- update promiscuity count on a device
5409  *	@dev: device
5410  *	@inc: modifier
5411  *
5412  *	Add or remove promiscuity from a device. While the count in the device
5413  *	remains above zero the interface remains promiscuous. Once it hits zero
5414  *	the device reverts back to normal filtering operation. A negative inc
5415  *	value is used to drop promiscuity on the device.
5416  *	Return 0 if successful or a negative errno code on error.
5417  */
5418 int dev_set_promiscuity(struct net_device *dev, int inc)
5419 {
5420 	unsigned int old_flags = dev->flags;
5421 	int err;
5422 
5423 	err = __dev_set_promiscuity(dev, inc, true);
5424 	if (err < 0)
5425 		return err;
5426 	if (dev->flags != old_flags)
5427 		dev_set_rx_mode(dev);
5428 	return err;
5429 }
5430 EXPORT_SYMBOL(dev_set_promiscuity);
5431 
5432 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5433 {
5434 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5435 
5436 	ASSERT_RTNL();
5437 
5438 	dev->flags |= IFF_ALLMULTI;
5439 	dev->allmulti += inc;
5440 	if (dev->allmulti == 0) {
5441 		/*
5442 		 * Avoid overflow.
5443 		 * If inc causes overflow, untouch allmulti and return error.
5444 		 */
5445 		if (inc < 0)
5446 			dev->flags &= ~IFF_ALLMULTI;
5447 		else {
5448 			dev->allmulti -= inc;
5449 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5450 				dev->name);
5451 			return -EOVERFLOW;
5452 		}
5453 	}
5454 	if (dev->flags ^ old_flags) {
5455 		dev_change_rx_flags(dev, IFF_ALLMULTI);
5456 		dev_set_rx_mode(dev);
5457 		if (notify)
5458 			__dev_notify_flags(dev, old_flags,
5459 					   dev->gflags ^ old_gflags);
5460 	}
5461 	return 0;
5462 }
5463 
5464 /**
5465  *	dev_set_allmulti	- update allmulti count on a device
5466  *	@dev: device
5467  *	@inc: modifier
5468  *
5469  *	Add or remove reception of all multicast frames to a device. While the
5470  *	count in the device remains above zero the interface remains listening
5471  *	to all interfaces. Once it hits zero the device reverts back to normal
5472  *	filtering operation. A negative @inc value is used to drop the counter
5473  *	when releasing a resource needing all multicasts.
5474  *	Return 0 if successful or a negative errno code on error.
5475  */
5476 
5477 int dev_set_allmulti(struct net_device *dev, int inc)
5478 {
5479 	return __dev_set_allmulti(dev, inc, true);
5480 }
5481 EXPORT_SYMBOL(dev_set_allmulti);
5482 
5483 /*
5484  *	Upload unicast and multicast address lists to device and
5485  *	configure RX filtering. When the device doesn't support unicast
5486  *	filtering it is put in promiscuous mode while unicast addresses
5487  *	are present.
5488  */
5489 void __dev_set_rx_mode(struct net_device *dev)
5490 {
5491 	const struct net_device_ops *ops = dev->netdev_ops;
5492 
5493 	/* dev_open will call this function so the list will stay sane. */
5494 	if (!(dev->flags&IFF_UP))
5495 		return;
5496 
5497 	if (!netif_device_present(dev))
5498 		return;
5499 
5500 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5501 		/* Unicast addresses changes may only happen under the rtnl,
5502 		 * therefore calling __dev_set_promiscuity here is safe.
5503 		 */
5504 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5505 			__dev_set_promiscuity(dev, 1, false);
5506 			dev->uc_promisc = true;
5507 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5508 			__dev_set_promiscuity(dev, -1, false);
5509 			dev->uc_promisc = false;
5510 		}
5511 	}
5512 
5513 	if (ops->ndo_set_rx_mode)
5514 		ops->ndo_set_rx_mode(dev);
5515 }
5516 
5517 void dev_set_rx_mode(struct net_device *dev)
5518 {
5519 	netif_addr_lock_bh(dev);
5520 	__dev_set_rx_mode(dev);
5521 	netif_addr_unlock_bh(dev);
5522 }
5523 
5524 /**
5525  *	dev_get_flags - get flags reported to userspace
5526  *	@dev: device
5527  *
5528  *	Get the combination of flag bits exported through APIs to userspace.
5529  */
5530 unsigned int dev_get_flags(const struct net_device *dev)
5531 {
5532 	unsigned int flags;
5533 
5534 	flags = (dev->flags & ~(IFF_PROMISC |
5535 				IFF_ALLMULTI |
5536 				IFF_RUNNING |
5537 				IFF_LOWER_UP |
5538 				IFF_DORMANT)) |
5539 		(dev->gflags & (IFF_PROMISC |
5540 				IFF_ALLMULTI));
5541 
5542 	if (netif_running(dev)) {
5543 		if (netif_oper_up(dev))
5544 			flags |= IFF_RUNNING;
5545 		if (netif_carrier_ok(dev))
5546 			flags |= IFF_LOWER_UP;
5547 		if (netif_dormant(dev))
5548 			flags |= IFF_DORMANT;
5549 	}
5550 
5551 	return flags;
5552 }
5553 EXPORT_SYMBOL(dev_get_flags);
5554 
5555 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5556 {
5557 	unsigned int old_flags = dev->flags;
5558 	int ret;
5559 
5560 	ASSERT_RTNL();
5561 
5562 	/*
5563 	 *	Set the flags on our device.
5564 	 */
5565 
5566 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5567 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5568 			       IFF_AUTOMEDIA)) |
5569 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5570 				    IFF_ALLMULTI));
5571 
5572 	/*
5573 	 *	Load in the correct multicast list now the flags have changed.
5574 	 */
5575 
5576 	if ((old_flags ^ flags) & IFF_MULTICAST)
5577 		dev_change_rx_flags(dev, IFF_MULTICAST);
5578 
5579 	dev_set_rx_mode(dev);
5580 
5581 	/*
5582 	 *	Have we downed the interface. We handle IFF_UP ourselves
5583 	 *	according to user attempts to set it, rather than blindly
5584 	 *	setting it.
5585 	 */
5586 
5587 	ret = 0;
5588 	if ((old_flags ^ flags) & IFF_UP)
5589 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5590 
5591 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
5592 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
5593 		unsigned int old_flags = dev->flags;
5594 
5595 		dev->gflags ^= IFF_PROMISC;
5596 
5597 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
5598 			if (dev->flags != old_flags)
5599 				dev_set_rx_mode(dev);
5600 	}
5601 
5602 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5603 	   is important. Some (broken) drivers set IFF_PROMISC, when
5604 	   IFF_ALLMULTI is requested not asking us and not reporting.
5605 	 */
5606 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5607 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5608 
5609 		dev->gflags ^= IFF_ALLMULTI;
5610 		__dev_set_allmulti(dev, inc, false);
5611 	}
5612 
5613 	return ret;
5614 }
5615 
5616 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5617 			unsigned int gchanges)
5618 {
5619 	unsigned int changes = dev->flags ^ old_flags;
5620 
5621 	if (gchanges)
5622 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5623 
5624 	if (changes & IFF_UP) {
5625 		if (dev->flags & IFF_UP)
5626 			call_netdevice_notifiers(NETDEV_UP, dev);
5627 		else
5628 			call_netdevice_notifiers(NETDEV_DOWN, dev);
5629 	}
5630 
5631 	if (dev->flags & IFF_UP &&
5632 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5633 		struct netdev_notifier_change_info change_info;
5634 
5635 		change_info.flags_changed = changes;
5636 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5637 					      &change_info.info);
5638 	}
5639 }
5640 
5641 /**
5642  *	dev_change_flags - change device settings
5643  *	@dev: device
5644  *	@flags: device state flags
5645  *
5646  *	Change settings on device based state flags. The flags are
5647  *	in the userspace exported format.
5648  */
5649 int dev_change_flags(struct net_device *dev, unsigned int flags)
5650 {
5651 	int ret;
5652 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5653 
5654 	ret = __dev_change_flags(dev, flags);
5655 	if (ret < 0)
5656 		return ret;
5657 
5658 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5659 	__dev_notify_flags(dev, old_flags, changes);
5660 	return ret;
5661 }
5662 EXPORT_SYMBOL(dev_change_flags);
5663 
5664 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5665 {
5666 	const struct net_device_ops *ops = dev->netdev_ops;
5667 
5668 	if (ops->ndo_change_mtu)
5669 		return ops->ndo_change_mtu(dev, new_mtu);
5670 
5671 	dev->mtu = new_mtu;
5672 	return 0;
5673 }
5674 
5675 /**
5676  *	dev_set_mtu - Change maximum transfer unit
5677  *	@dev: device
5678  *	@new_mtu: new transfer unit
5679  *
5680  *	Change the maximum transfer size of the network device.
5681  */
5682 int dev_set_mtu(struct net_device *dev, int new_mtu)
5683 {
5684 	int err, orig_mtu;
5685 
5686 	if (new_mtu == dev->mtu)
5687 		return 0;
5688 
5689 	/*	MTU must be positive.	 */
5690 	if (new_mtu < 0)
5691 		return -EINVAL;
5692 
5693 	if (!netif_device_present(dev))
5694 		return -ENODEV;
5695 
5696 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5697 	err = notifier_to_errno(err);
5698 	if (err)
5699 		return err;
5700 
5701 	orig_mtu = dev->mtu;
5702 	err = __dev_set_mtu(dev, new_mtu);
5703 
5704 	if (!err) {
5705 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5706 		err = notifier_to_errno(err);
5707 		if (err) {
5708 			/* setting mtu back and notifying everyone again,
5709 			 * so that they have a chance to revert changes.
5710 			 */
5711 			__dev_set_mtu(dev, orig_mtu);
5712 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5713 		}
5714 	}
5715 	return err;
5716 }
5717 EXPORT_SYMBOL(dev_set_mtu);
5718 
5719 /**
5720  *	dev_set_group - Change group this device belongs to
5721  *	@dev: device
5722  *	@new_group: group this device should belong to
5723  */
5724 void dev_set_group(struct net_device *dev, int new_group)
5725 {
5726 	dev->group = new_group;
5727 }
5728 EXPORT_SYMBOL(dev_set_group);
5729 
5730 /**
5731  *	dev_set_mac_address - Change Media Access Control Address
5732  *	@dev: device
5733  *	@sa: new address
5734  *
5735  *	Change the hardware (MAC) address of the device
5736  */
5737 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5738 {
5739 	const struct net_device_ops *ops = dev->netdev_ops;
5740 	int err;
5741 
5742 	if (!ops->ndo_set_mac_address)
5743 		return -EOPNOTSUPP;
5744 	if (sa->sa_family != dev->type)
5745 		return -EINVAL;
5746 	if (!netif_device_present(dev))
5747 		return -ENODEV;
5748 	err = ops->ndo_set_mac_address(dev, sa);
5749 	if (err)
5750 		return err;
5751 	dev->addr_assign_type = NET_ADDR_SET;
5752 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5753 	add_device_randomness(dev->dev_addr, dev->addr_len);
5754 	return 0;
5755 }
5756 EXPORT_SYMBOL(dev_set_mac_address);
5757 
5758 /**
5759  *	dev_change_carrier - Change device carrier
5760  *	@dev: device
5761  *	@new_carrier: new value
5762  *
5763  *	Change device carrier
5764  */
5765 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5766 {
5767 	const struct net_device_ops *ops = dev->netdev_ops;
5768 
5769 	if (!ops->ndo_change_carrier)
5770 		return -EOPNOTSUPP;
5771 	if (!netif_device_present(dev))
5772 		return -ENODEV;
5773 	return ops->ndo_change_carrier(dev, new_carrier);
5774 }
5775 EXPORT_SYMBOL(dev_change_carrier);
5776 
5777 /**
5778  *	dev_get_phys_port_id - Get device physical port ID
5779  *	@dev: device
5780  *	@ppid: port ID
5781  *
5782  *	Get device physical port ID
5783  */
5784 int dev_get_phys_port_id(struct net_device *dev,
5785 			 struct netdev_phys_port_id *ppid)
5786 {
5787 	const struct net_device_ops *ops = dev->netdev_ops;
5788 
5789 	if (!ops->ndo_get_phys_port_id)
5790 		return -EOPNOTSUPP;
5791 	return ops->ndo_get_phys_port_id(dev, ppid);
5792 }
5793 EXPORT_SYMBOL(dev_get_phys_port_id);
5794 
5795 /**
5796  *	dev_new_index	-	allocate an ifindex
5797  *	@net: the applicable net namespace
5798  *
5799  *	Returns a suitable unique value for a new device interface
5800  *	number.  The caller must hold the rtnl semaphore or the
5801  *	dev_base_lock to be sure it remains unique.
5802  */
5803 static int dev_new_index(struct net *net)
5804 {
5805 	int ifindex = net->ifindex;
5806 	for (;;) {
5807 		if (++ifindex <= 0)
5808 			ifindex = 1;
5809 		if (!__dev_get_by_index(net, ifindex))
5810 			return net->ifindex = ifindex;
5811 	}
5812 }
5813 
5814 /* Delayed registration/unregisteration */
5815 static LIST_HEAD(net_todo_list);
5816 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5817 
5818 static void net_set_todo(struct net_device *dev)
5819 {
5820 	list_add_tail(&dev->todo_list, &net_todo_list);
5821 	dev_net(dev)->dev_unreg_count++;
5822 }
5823 
5824 static void rollback_registered_many(struct list_head *head)
5825 {
5826 	struct net_device *dev, *tmp;
5827 	LIST_HEAD(close_head);
5828 
5829 	BUG_ON(dev_boot_phase);
5830 	ASSERT_RTNL();
5831 
5832 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5833 		/* Some devices call without registering
5834 		 * for initialization unwind. Remove those
5835 		 * devices and proceed with the remaining.
5836 		 */
5837 		if (dev->reg_state == NETREG_UNINITIALIZED) {
5838 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5839 				 dev->name, dev);
5840 
5841 			WARN_ON(1);
5842 			list_del(&dev->unreg_list);
5843 			continue;
5844 		}
5845 		dev->dismantle = true;
5846 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
5847 	}
5848 
5849 	/* If device is running, close it first. */
5850 	list_for_each_entry(dev, head, unreg_list)
5851 		list_add_tail(&dev->close_list, &close_head);
5852 	dev_close_many(&close_head);
5853 
5854 	list_for_each_entry(dev, head, unreg_list) {
5855 		/* And unlink it from device chain. */
5856 		unlist_netdevice(dev);
5857 
5858 		dev->reg_state = NETREG_UNREGISTERING;
5859 	}
5860 
5861 	synchronize_net();
5862 
5863 	list_for_each_entry(dev, head, unreg_list) {
5864 		/* Shutdown queueing discipline. */
5865 		dev_shutdown(dev);
5866 
5867 
5868 		/* Notify protocols, that we are about to destroy
5869 		   this device. They should clean all the things.
5870 		*/
5871 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5872 
5873 		/*
5874 		 *	Flush the unicast and multicast chains
5875 		 */
5876 		dev_uc_flush(dev);
5877 		dev_mc_flush(dev);
5878 
5879 		if (dev->netdev_ops->ndo_uninit)
5880 			dev->netdev_ops->ndo_uninit(dev);
5881 
5882 		if (!dev->rtnl_link_ops ||
5883 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5884 			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5885 
5886 		/* Notifier chain MUST detach us all upper devices. */
5887 		WARN_ON(netdev_has_any_upper_dev(dev));
5888 
5889 		/* Remove entries from kobject tree */
5890 		netdev_unregister_kobject(dev);
5891 #ifdef CONFIG_XPS
5892 		/* Remove XPS queueing entries */
5893 		netif_reset_xps_queues_gt(dev, 0);
5894 #endif
5895 	}
5896 
5897 	synchronize_net();
5898 
5899 	list_for_each_entry(dev, head, unreg_list)
5900 		dev_put(dev);
5901 }
5902 
5903 static void rollback_registered(struct net_device *dev)
5904 {
5905 	LIST_HEAD(single);
5906 
5907 	list_add(&dev->unreg_list, &single);
5908 	rollback_registered_many(&single);
5909 	list_del(&single);
5910 }
5911 
5912 static netdev_features_t netdev_fix_features(struct net_device *dev,
5913 	netdev_features_t features)
5914 {
5915 	/* Fix illegal checksum combinations */
5916 	if ((features & NETIF_F_HW_CSUM) &&
5917 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5918 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5919 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5920 	}
5921 
5922 	/* TSO requires that SG is present as well. */
5923 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5924 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5925 		features &= ~NETIF_F_ALL_TSO;
5926 	}
5927 
5928 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5929 					!(features & NETIF_F_IP_CSUM)) {
5930 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5931 		features &= ~NETIF_F_TSO;
5932 		features &= ~NETIF_F_TSO_ECN;
5933 	}
5934 
5935 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5936 					 !(features & NETIF_F_IPV6_CSUM)) {
5937 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5938 		features &= ~NETIF_F_TSO6;
5939 	}
5940 
5941 	/* TSO ECN requires that TSO is present as well. */
5942 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5943 		features &= ~NETIF_F_TSO_ECN;
5944 
5945 	/* Software GSO depends on SG. */
5946 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5947 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5948 		features &= ~NETIF_F_GSO;
5949 	}
5950 
5951 	/* UFO needs SG and checksumming */
5952 	if (features & NETIF_F_UFO) {
5953 		/* maybe split UFO into V4 and V6? */
5954 		if (!((features & NETIF_F_GEN_CSUM) ||
5955 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5956 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5957 			netdev_dbg(dev,
5958 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
5959 			features &= ~NETIF_F_UFO;
5960 		}
5961 
5962 		if (!(features & NETIF_F_SG)) {
5963 			netdev_dbg(dev,
5964 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5965 			features &= ~NETIF_F_UFO;
5966 		}
5967 	}
5968 
5969 #ifdef CONFIG_NET_RX_BUSY_POLL
5970 	if (dev->netdev_ops->ndo_busy_poll)
5971 		features |= NETIF_F_BUSY_POLL;
5972 	else
5973 #endif
5974 		features &= ~NETIF_F_BUSY_POLL;
5975 
5976 	return features;
5977 }
5978 
5979 int __netdev_update_features(struct net_device *dev)
5980 {
5981 	netdev_features_t features;
5982 	int err = 0;
5983 
5984 	ASSERT_RTNL();
5985 
5986 	features = netdev_get_wanted_features(dev);
5987 
5988 	if (dev->netdev_ops->ndo_fix_features)
5989 		features = dev->netdev_ops->ndo_fix_features(dev, features);
5990 
5991 	/* driver might be less strict about feature dependencies */
5992 	features = netdev_fix_features(dev, features);
5993 
5994 	if (dev->features == features)
5995 		return 0;
5996 
5997 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5998 		&dev->features, &features);
5999 
6000 	if (dev->netdev_ops->ndo_set_features)
6001 		err = dev->netdev_ops->ndo_set_features(dev, features);
6002 
6003 	if (unlikely(err < 0)) {
6004 		netdev_err(dev,
6005 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
6006 			err, &features, &dev->features);
6007 		return -1;
6008 	}
6009 
6010 	if (!err)
6011 		dev->features = features;
6012 
6013 	return 1;
6014 }
6015 
6016 /**
6017  *	netdev_update_features - recalculate device features
6018  *	@dev: the device to check
6019  *
6020  *	Recalculate dev->features set and send notifications if it
6021  *	has changed. Should be called after driver or hardware dependent
6022  *	conditions might have changed that influence the features.
6023  */
6024 void netdev_update_features(struct net_device *dev)
6025 {
6026 	if (__netdev_update_features(dev))
6027 		netdev_features_change(dev);
6028 }
6029 EXPORT_SYMBOL(netdev_update_features);
6030 
6031 /**
6032  *	netdev_change_features - recalculate device features
6033  *	@dev: the device to check
6034  *
6035  *	Recalculate dev->features set and send notifications even
6036  *	if they have not changed. Should be called instead of
6037  *	netdev_update_features() if also dev->vlan_features might
6038  *	have changed to allow the changes to be propagated to stacked
6039  *	VLAN devices.
6040  */
6041 void netdev_change_features(struct net_device *dev)
6042 {
6043 	__netdev_update_features(dev);
6044 	netdev_features_change(dev);
6045 }
6046 EXPORT_SYMBOL(netdev_change_features);
6047 
6048 /**
6049  *	netif_stacked_transfer_operstate -	transfer operstate
6050  *	@rootdev: the root or lower level device to transfer state from
6051  *	@dev: the device to transfer operstate to
6052  *
6053  *	Transfer operational state from root to device. This is normally
6054  *	called when a stacking relationship exists between the root
6055  *	device and the device(a leaf device).
6056  */
6057 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6058 					struct net_device *dev)
6059 {
6060 	if (rootdev->operstate == IF_OPER_DORMANT)
6061 		netif_dormant_on(dev);
6062 	else
6063 		netif_dormant_off(dev);
6064 
6065 	if (netif_carrier_ok(rootdev)) {
6066 		if (!netif_carrier_ok(dev))
6067 			netif_carrier_on(dev);
6068 	} else {
6069 		if (netif_carrier_ok(dev))
6070 			netif_carrier_off(dev);
6071 	}
6072 }
6073 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6074 
6075 #ifdef CONFIG_SYSFS
6076 static int netif_alloc_rx_queues(struct net_device *dev)
6077 {
6078 	unsigned int i, count = dev->num_rx_queues;
6079 	struct netdev_rx_queue *rx;
6080 
6081 	BUG_ON(count < 1);
6082 
6083 	rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
6084 	if (!rx)
6085 		return -ENOMEM;
6086 
6087 	dev->_rx = rx;
6088 
6089 	for (i = 0; i < count; i++)
6090 		rx[i].dev = dev;
6091 	return 0;
6092 }
6093 #endif
6094 
6095 static void netdev_init_one_queue(struct net_device *dev,
6096 				  struct netdev_queue *queue, void *_unused)
6097 {
6098 	/* Initialize queue lock */
6099 	spin_lock_init(&queue->_xmit_lock);
6100 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6101 	queue->xmit_lock_owner = -1;
6102 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6103 	queue->dev = dev;
6104 #ifdef CONFIG_BQL
6105 	dql_init(&queue->dql, HZ);
6106 #endif
6107 }
6108 
6109 static void netif_free_tx_queues(struct net_device *dev)
6110 {
6111 	kvfree(dev->_tx);
6112 }
6113 
6114 static int netif_alloc_netdev_queues(struct net_device *dev)
6115 {
6116 	unsigned int count = dev->num_tx_queues;
6117 	struct netdev_queue *tx;
6118 	size_t sz = count * sizeof(*tx);
6119 
6120 	BUG_ON(count < 1 || count > 0xffff);
6121 
6122 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6123 	if (!tx) {
6124 		tx = vzalloc(sz);
6125 		if (!tx)
6126 			return -ENOMEM;
6127 	}
6128 	dev->_tx = tx;
6129 
6130 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6131 	spin_lock_init(&dev->tx_global_lock);
6132 
6133 	return 0;
6134 }
6135 
6136 /**
6137  *	register_netdevice	- register a network device
6138  *	@dev: device to register
6139  *
6140  *	Take a completed network device structure and add it to the kernel
6141  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6142  *	chain. 0 is returned on success. A negative errno code is returned
6143  *	on a failure to set up the device, or if the name is a duplicate.
6144  *
6145  *	Callers must hold the rtnl semaphore. You may want
6146  *	register_netdev() instead of this.
6147  *
6148  *	BUGS:
6149  *	The locking appears insufficient to guarantee two parallel registers
6150  *	will not get the same name.
6151  */
6152 
6153 int register_netdevice(struct net_device *dev)
6154 {
6155 	int ret;
6156 	struct net *net = dev_net(dev);
6157 
6158 	BUG_ON(dev_boot_phase);
6159 	ASSERT_RTNL();
6160 
6161 	might_sleep();
6162 
6163 	/* When net_device's are persistent, this will be fatal. */
6164 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6165 	BUG_ON(!net);
6166 
6167 	spin_lock_init(&dev->addr_list_lock);
6168 	netdev_set_addr_lockdep_class(dev);
6169 
6170 	dev->iflink = -1;
6171 
6172 	ret = dev_get_valid_name(net, dev, dev->name);
6173 	if (ret < 0)
6174 		goto out;
6175 
6176 	/* Init, if this function is available */
6177 	if (dev->netdev_ops->ndo_init) {
6178 		ret = dev->netdev_ops->ndo_init(dev);
6179 		if (ret) {
6180 			if (ret > 0)
6181 				ret = -EIO;
6182 			goto out;
6183 		}
6184 	}
6185 
6186 	if (((dev->hw_features | dev->features) &
6187 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
6188 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6189 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6190 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6191 		ret = -EINVAL;
6192 		goto err_uninit;
6193 	}
6194 
6195 	ret = -EBUSY;
6196 	if (!dev->ifindex)
6197 		dev->ifindex = dev_new_index(net);
6198 	else if (__dev_get_by_index(net, dev->ifindex))
6199 		goto err_uninit;
6200 
6201 	if (dev->iflink == -1)
6202 		dev->iflink = dev->ifindex;
6203 
6204 	/* Transfer changeable features to wanted_features and enable
6205 	 * software offloads (GSO and GRO).
6206 	 */
6207 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
6208 	dev->features |= NETIF_F_SOFT_FEATURES;
6209 	dev->wanted_features = dev->features & dev->hw_features;
6210 
6211 	if (!(dev->flags & IFF_LOOPBACK)) {
6212 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
6213 	}
6214 
6215 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6216 	 */
6217 	dev->vlan_features |= NETIF_F_HIGHDMA;
6218 
6219 	/* Make NETIF_F_SG inheritable to tunnel devices.
6220 	 */
6221 	dev->hw_enc_features |= NETIF_F_SG;
6222 
6223 	/* Make NETIF_F_SG inheritable to MPLS.
6224 	 */
6225 	dev->mpls_features |= NETIF_F_SG;
6226 
6227 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6228 	ret = notifier_to_errno(ret);
6229 	if (ret)
6230 		goto err_uninit;
6231 
6232 	ret = netdev_register_kobject(dev);
6233 	if (ret)
6234 		goto err_uninit;
6235 	dev->reg_state = NETREG_REGISTERED;
6236 
6237 	__netdev_update_features(dev);
6238 
6239 	/*
6240 	 *	Default initial state at registry is that the
6241 	 *	device is present.
6242 	 */
6243 
6244 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6245 
6246 	linkwatch_init_dev(dev);
6247 
6248 	dev_init_scheduler(dev);
6249 	dev_hold(dev);
6250 	list_netdevice(dev);
6251 	add_device_randomness(dev->dev_addr, dev->addr_len);
6252 
6253 	/* If the device has permanent device address, driver should
6254 	 * set dev_addr and also addr_assign_type should be set to
6255 	 * NET_ADDR_PERM (default value).
6256 	 */
6257 	if (dev->addr_assign_type == NET_ADDR_PERM)
6258 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6259 
6260 	/* Notify protocols, that a new device appeared. */
6261 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6262 	ret = notifier_to_errno(ret);
6263 	if (ret) {
6264 		rollback_registered(dev);
6265 		dev->reg_state = NETREG_UNREGISTERED;
6266 	}
6267 	/*
6268 	 *	Prevent userspace races by waiting until the network
6269 	 *	device is fully setup before sending notifications.
6270 	 */
6271 	if (!dev->rtnl_link_ops ||
6272 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6273 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6274 
6275 out:
6276 	return ret;
6277 
6278 err_uninit:
6279 	if (dev->netdev_ops->ndo_uninit)
6280 		dev->netdev_ops->ndo_uninit(dev);
6281 	goto out;
6282 }
6283 EXPORT_SYMBOL(register_netdevice);
6284 
6285 /**
6286  *	init_dummy_netdev	- init a dummy network device for NAPI
6287  *	@dev: device to init
6288  *
6289  *	This takes a network device structure and initialize the minimum
6290  *	amount of fields so it can be used to schedule NAPI polls without
6291  *	registering a full blown interface. This is to be used by drivers
6292  *	that need to tie several hardware interfaces to a single NAPI
6293  *	poll scheduler due to HW limitations.
6294  */
6295 int init_dummy_netdev(struct net_device *dev)
6296 {
6297 	/* Clear everything. Note we don't initialize spinlocks
6298 	 * are they aren't supposed to be taken by any of the
6299 	 * NAPI code and this dummy netdev is supposed to be
6300 	 * only ever used for NAPI polls
6301 	 */
6302 	memset(dev, 0, sizeof(struct net_device));
6303 
6304 	/* make sure we BUG if trying to hit standard
6305 	 * register/unregister code path
6306 	 */
6307 	dev->reg_state = NETREG_DUMMY;
6308 
6309 	/* NAPI wants this */
6310 	INIT_LIST_HEAD(&dev->napi_list);
6311 
6312 	/* a dummy interface is started by default */
6313 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6314 	set_bit(__LINK_STATE_START, &dev->state);
6315 
6316 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
6317 	 * because users of this 'device' dont need to change
6318 	 * its refcount.
6319 	 */
6320 
6321 	return 0;
6322 }
6323 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6324 
6325 
6326 /**
6327  *	register_netdev	- register a network device
6328  *	@dev: device to register
6329  *
6330  *	Take a completed network device structure and add it to the kernel
6331  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6332  *	chain. 0 is returned on success. A negative errno code is returned
6333  *	on a failure to set up the device, or if the name is a duplicate.
6334  *
6335  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
6336  *	and expands the device name if you passed a format string to
6337  *	alloc_netdev.
6338  */
6339 int register_netdev(struct net_device *dev)
6340 {
6341 	int err;
6342 
6343 	rtnl_lock();
6344 	err = register_netdevice(dev);
6345 	rtnl_unlock();
6346 	return err;
6347 }
6348 EXPORT_SYMBOL(register_netdev);
6349 
6350 int netdev_refcnt_read(const struct net_device *dev)
6351 {
6352 	int i, refcnt = 0;
6353 
6354 	for_each_possible_cpu(i)
6355 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6356 	return refcnt;
6357 }
6358 EXPORT_SYMBOL(netdev_refcnt_read);
6359 
6360 /**
6361  * netdev_wait_allrefs - wait until all references are gone.
6362  * @dev: target net_device
6363  *
6364  * This is called when unregistering network devices.
6365  *
6366  * Any protocol or device that holds a reference should register
6367  * for netdevice notification, and cleanup and put back the
6368  * reference if they receive an UNREGISTER event.
6369  * We can get stuck here if buggy protocols don't correctly
6370  * call dev_put.
6371  */
6372 static void netdev_wait_allrefs(struct net_device *dev)
6373 {
6374 	unsigned long rebroadcast_time, warning_time;
6375 	int refcnt;
6376 
6377 	linkwatch_forget_dev(dev);
6378 
6379 	rebroadcast_time = warning_time = jiffies;
6380 	refcnt = netdev_refcnt_read(dev);
6381 
6382 	while (refcnt != 0) {
6383 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6384 			rtnl_lock();
6385 
6386 			/* Rebroadcast unregister notification */
6387 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6388 
6389 			__rtnl_unlock();
6390 			rcu_barrier();
6391 			rtnl_lock();
6392 
6393 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6394 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6395 				     &dev->state)) {
6396 				/* We must not have linkwatch events
6397 				 * pending on unregister. If this
6398 				 * happens, we simply run the queue
6399 				 * unscheduled, resulting in a noop
6400 				 * for this device.
6401 				 */
6402 				linkwatch_run_queue();
6403 			}
6404 
6405 			__rtnl_unlock();
6406 
6407 			rebroadcast_time = jiffies;
6408 		}
6409 
6410 		msleep(250);
6411 
6412 		refcnt = netdev_refcnt_read(dev);
6413 
6414 		if (time_after(jiffies, warning_time + 10 * HZ)) {
6415 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6416 				 dev->name, refcnt);
6417 			warning_time = jiffies;
6418 		}
6419 	}
6420 }
6421 
6422 /* The sequence is:
6423  *
6424  *	rtnl_lock();
6425  *	...
6426  *	register_netdevice(x1);
6427  *	register_netdevice(x2);
6428  *	...
6429  *	unregister_netdevice(y1);
6430  *	unregister_netdevice(y2);
6431  *      ...
6432  *	rtnl_unlock();
6433  *	free_netdev(y1);
6434  *	free_netdev(y2);
6435  *
6436  * We are invoked by rtnl_unlock().
6437  * This allows us to deal with problems:
6438  * 1) We can delete sysfs objects which invoke hotplug
6439  *    without deadlocking with linkwatch via keventd.
6440  * 2) Since we run with the RTNL semaphore not held, we can sleep
6441  *    safely in order to wait for the netdev refcnt to drop to zero.
6442  *
6443  * We must not return until all unregister events added during
6444  * the interval the lock was held have been completed.
6445  */
6446 void netdev_run_todo(void)
6447 {
6448 	struct list_head list;
6449 
6450 	/* Snapshot list, allow later requests */
6451 	list_replace_init(&net_todo_list, &list);
6452 
6453 	__rtnl_unlock();
6454 
6455 
6456 	/* Wait for rcu callbacks to finish before next phase */
6457 	if (!list_empty(&list))
6458 		rcu_barrier();
6459 
6460 	while (!list_empty(&list)) {
6461 		struct net_device *dev
6462 			= list_first_entry(&list, struct net_device, todo_list);
6463 		list_del(&dev->todo_list);
6464 
6465 		rtnl_lock();
6466 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6467 		__rtnl_unlock();
6468 
6469 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6470 			pr_err("network todo '%s' but state %d\n",
6471 			       dev->name, dev->reg_state);
6472 			dump_stack();
6473 			continue;
6474 		}
6475 
6476 		dev->reg_state = NETREG_UNREGISTERED;
6477 
6478 		on_each_cpu(flush_backlog, dev, 1);
6479 
6480 		netdev_wait_allrefs(dev);
6481 
6482 		/* paranoia */
6483 		BUG_ON(netdev_refcnt_read(dev));
6484 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
6485 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6486 		WARN_ON(dev->dn_ptr);
6487 
6488 		if (dev->destructor)
6489 			dev->destructor(dev);
6490 
6491 		/* Report a network device has been unregistered */
6492 		rtnl_lock();
6493 		dev_net(dev)->dev_unreg_count--;
6494 		__rtnl_unlock();
6495 		wake_up(&netdev_unregistering_wq);
6496 
6497 		/* Free network device */
6498 		kobject_put(&dev->dev.kobj);
6499 	}
6500 }
6501 
6502 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6503  * fields in the same order, with only the type differing.
6504  */
6505 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6506 			     const struct net_device_stats *netdev_stats)
6507 {
6508 #if BITS_PER_LONG == 64
6509 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6510 	memcpy(stats64, netdev_stats, sizeof(*stats64));
6511 #else
6512 	size_t i, n = sizeof(*stats64) / sizeof(u64);
6513 	const unsigned long *src = (const unsigned long *)netdev_stats;
6514 	u64 *dst = (u64 *)stats64;
6515 
6516 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6517 		     sizeof(*stats64) / sizeof(u64));
6518 	for (i = 0; i < n; i++)
6519 		dst[i] = src[i];
6520 #endif
6521 }
6522 EXPORT_SYMBOL(netdev_stats_to_stats64);
6523 
6524 /**
6525  *	dev_get_stats	- get network device statistics
6526  *	@dev: device to get statistics from
6527  *	@storage: place to store stats
6528  *
6529  *	Get network statistics from device. Return @storage.
6530  *	The device driver may provide its own method by setting
6531  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6532  *	otherwise the internal statistics structure is used.
6533  */
6534 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6535 					struct rtnl_link_stats64 *storage)
6536 {
6537 	const struct net_device_ops *ops = dev->netdev_ops;
6538 
6539 	if (ops->ndo_get_stats64) {
6540 		memset(storage, 0, sizeof(*storage));
6541 		ops->ndo_get_stats64(dev, storage);
6542 	} else if (ops->ndo_get_stats) {
6543 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6544 	} else {
6545 		netdev_stats_to_stats64(storage, &dev->stats);
6546 	}
6547 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6548 	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6549 	return storage;
6550 }
6551 EXPORT_SYMBOL(dev_get_stats);
6552 
6553 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6554 {
6555 	struct netdev_queue *queue = dev_ingress_queue(dev);
6556 
6557 #ifdef CONFIG_NET_CLS_ACT
6558 	if (queue)
6559 		return queue;
6560 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6561 	if (!queue)
6562 		return NULL;
6563 	netdev_init_one_queue(dev, queue, NULL);
6564 	queue->qdisc = &noop_qdisc;
6565 	queue->qdisc_sleeping = &noop_qdisc;
6566 	rcu_assign_pointer(dev->ingress_queue, queue);
6567 #endif
6568 	return queue;
6569 }
6570 
6571 static const struct ethtool_ops default_ethtool_ops;
6572 
6573 void netdev_set_default_ethtool_ops(struct net_device *dev,
6574 				    const struct ethtool_ops *ops)
6575 {
6576 	if (dev->ethtool_ops == &default_ethtool_ops)
6577 		dev->ethtool_ops = ops;
6578 }
6579 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6580 
6581 void netdev_freemem(struct net_device *dev)
6582 {
6583 	char *addr = (char *)dev - dev->padded;
6584 
6585 	kvfree(addr);
6586 }
6587 
6588 /**
6589  *	alloc_netdev_mqs - allocate network device
6590  *	@sizeof_priv:		size of private data to allocate space for
6591  *	@name:			device name format string
6592  *	@name_assign_type: 	origin of device name
6593  *	@setup:			callback to initialize device
6594  *	@txqs:			the number of TX subqueues to allocate
6595  *	@rxqs:			the number of RX subqueues to allocate
6596  *
6597  *	Allocates a struct net_device with private data area for driver use
6598  *	and performs basic initialization.  Also allocates subqueue structs
6599  *	for each queue on the device.
6600  */
6601 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6602 		unsigned char name_assign_type,
6603 		void (*setup)(struct net_device *),
6604 		unsigned int txqs, unsigned int rxqs)
6605 {
6606 	struct net_device *dev;
6607 	size_t alloc_size;
6608 	struct net_device *p;
6609 
6610 	BUG_ON(strlen(name) >= sizeof(dev->name));
6611 
6612 	if (txqs < 1) {
6613 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6614 		return NULL;
6615 	}
6616 
6617 #ifdef CONFIG_SYSFS
6618 	if (rxqs < 1) {
6619 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6620 		return NULL;
6621 	}
6622 #endif
6623 
6624 	alloc_size = sizeof(struct net_device);
6625 	if (sizeof_priv) {
6626 		/* ensure 32-byte alignment of private area */
6627 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6628 		alloc_size += sizeof_priv;
6629 	}
6630 	/* ensure 32-byte alignment of whole construct */
6631 	alloc_size += NETDEV_ALIGN - 1;
6632 
6633 	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6634 	if (!p)
6635 		p = vzalloc(alloc_size);
6636 	if (!p)
6637 		return NULL;
6638 
6639 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
6640 	dev->padded = (char *)dev - (char *)p;
6641 
6642 	dev->pcpu_refcnt = alloc_percpu(int);
6643 	if (!dev->pcpu_refcnt)
6644 		goto free_dev;
6645 
6646 	if (dev_addr_init(dev))
6647 		goto free_pcpu;
6648 
6649 	dev_mc_init(dev);
6650 	dev_uc_init(dev);
6651 
6652 	dev_net_set(dev, &init_net);
6653 
6654 	dev->gso_max_size = GSO_MAX_SIZE;
6655 	dev->gso_max_segs = GSO_MAX_SEGS;
6656 	dev->gso_min_segs = 0;
6657 
6658 	INIT_LIST_HEAD(&dev->napi_list);
6659 	INIT_LIST_HEAD(&dev->unreg_list);
6660 	INIT_LIST_HEAD(&dev->close_list);
6661 	INIT_LIST_HEAD(&dev->link_watch_list);
6662 	INIT_LIST_HEAD(&dev->adj_list.upper);
6663 	INIT_LIST_HEAD(&dev->adj_list.lower);
6664 	INIT_LIST_HEAD(&dev->all_adj_list.upper);
6665 	INIT_LIST_HEAD(&dev->all_adj_list.lower);
6666 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
6667 	setup(dev);
6668 
6669 	dev->num_tx_queues = txqs;
6670 	dev->real_num_tx_queues = txqs;
6671 	if (netif_alloc_netdev_queues(dev))
6672 		goto free_all;
6673 
6674 #ifdef CONFIG_SYSFS
6675 	dev->num_rx_queues = rxqs;
6676 	dev->real_num_rx_queues = rxqs;
6677 	if (netif_alloc_rx_queues(dev))
6678 		goto free_all;
6679 #endif
6680 
6681 	strcpy(dev->name, name);
6682 	dev->name_assign_type = name_assign_type;
6683 	dev->group = INIT_NETDEV_GROUP;
6684 	if (!dev->ethtool_ops)
6685 		dev->ethtool_ops = &default_ethtool_ops;
6686 	return dev;
6687 
6688 free_all:
6689 	free_netdev(dev);
6690 	return NULL;
6691 
6692 free_pcpu:
6693 	free_percpu(dev->pcpu_refcnt);
6694 free_dev:
6695 	netdev_freemem(dev);
6696 	return NULL;
6697 }
6698 EXPORT_SYMBOL(alloc_netdev_mqs);
6699 
6700 /**
6701  *	free_netdev - free network device
6702  *	@dev: device
6703  *
6704  *	This function does the last stage of destroying an allocated device
6705  * 	interface. The reference to the device object is released.
6706  *	If this is the last reference then it will be freed.
6707  */
6708 void free_netdev(struct net_device *dev)
6709 {
6710 	struct napi_struct *p, *n;
6711 
6712 	release_net(dev_net(dev));
6713 
6714 	netif_free_tx_queues(dev);
6715 #ifdef CONFIG_SYSFS
6716 	kfree(dev->_rx);
6717 #endif
6718 
6719 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6720 
6721 	/* Flush device addresses */
6722 	dev_addr_flush(dev);
6723 
6724 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6725 		netif_napi_del(p);
6726 
6727 	free_percpu(dev->pcpu_refcnt);
6728 	dev->pcpu_refcnt = NULL;
6729 
6730 	/*  Compatibility with error handling in drivers */
6731 	if (dev->reg_state == NETREG_UNINITIALIZED) {
6732 		netdev_freemem(dev);
6733 		return;
6734 	}
6735 
6736 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6737 	dev->reg_state = NETREG_RELEASED;
6738 
6739 	/* will free via device release */
6740 	put_device(&dev->dev);
6741 }
6742 EXPORT_SYMBOL(free_netdev);
6743 
6744 /**
6745  *	synchronize_net -  Synchronize with packet receive processing
6746  *
6747  *	Wait for packets currently being received to be done.
6748  *	Does not block later packets from starting.
6749  */
6750 void synchronize_net(void)
6751 {
6752 	might_sleep();
6753 	if (rtnl_is_locked())
6754 		synchronize_rcu_expedited();
6755 	else
6756 		synchronize_rcu();
6757 }
6758 EXPORT_SYMBOL(synchronize_net);
6759 
6760 /**
6761  *	unregister_netdevice_queue - remove device from the kernel
6762  *	@dev: device
6763  *	@head: list
6764  *
6765  *	This function shuts down a device interface and removes it
6766  *	from the kernel tables.
6767  *	If head not NULL, device is queued to be unregistered later.
6768  *
6769  *	Callers must hold the rtnl semaphore.  You may want
6770  *	unregister_netdev() instead of this.
6771  */
6772 
6773 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6774 {
6775 	ASSERT_RTNL();
6776 
6777 	if (head) {
6778 		list_move_tail(&dev->unreg_list, head);
6779 	} else {
6780 		rollback_registered(dev);
6781 		/* Finish processing unregister after unlock */
6782 		net_set_todo(dev);
6783 	}
6784 }
6785 EXPORT_SYMBOL(unregister_netdevice_queue);
6786 
6787 /**
6788  *	unregister_netdevice_many - unregister many devices
6789  *	@head: list of devices
6790  *
6791  *  Note: As most callers use a stack allocated list_head,
6792  *  we force a list_del() to make sure stack wont be corrupted later.
6793  */
6794 void unregister_netdevice_many(struct list_head *head)
6795 {
6796 	struct net_device *dev;
6797 
6798 	if (!list_empty(head)) {
6799 		rollback_registered_many(head);
6800 		list_for_each_entry(dev, head, unreg_list)
6801 			net_set_todo(dev);
6802 		list_del(head);
6803 	}
6804 }
6805 EXPORT_SYMBOL(unregister_netdevice_many);
6806 
6807 /**
6808  *	unregister_netdev - remove device from the kernel
6809  *	@dev: device
6810  *
6811  *	This function shuts down a device interface and removes it
6812  *	from the kernel tables.
6813  *
6814  *	This is just a wrapper for unregister_netdevice that takes
6815  *	the rtnl semaphore.  In general you want to use this and not
6816  *	unregister_netdevice.
6817  */
6818 void unregister_netdev(struct net_device *dev)
6819 {
6820 	rtnl_lock();
6821 	unregister_netdevice(dev);
6822 	rtnl_unlock();
6823 }
6824 EXPORT_SYMBOL(unregister_netdev);
6825 
6826 /**
6827  *	dev_change_net_namespace - move device to different nethost namespace
6828  *	@dev: device
6829  *	@net: network namespace
6830  *	@pat: If not NULL name pattern to try if the current device name
6831  *	      is already taken in the destination network namespace.
6832  *
6833  *	This function shuts down a device interface and moves it
6834  *	to a new network namespace. On success 0 is returned, on
6835  *	a failure a netagive errno code is returned.
6836  *
6837  *	Callers must hold the rtnl semaphore.
6838  */
6839 
6840 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6841 {
6842 	int err;
6843 
6844 	ASSERT_RTNL();
6845 
6846 	/* Don't allow namespace local devices to be moved. */
6847 	err = -EINVAL;
6848 	if (dev->features & NETIF_F_NETNS_LOCAL)
6849 		goto out;
6850 
6851 	/* Ensure the device has been registrered */
6852 	if (dev->reg_state != NETREG_REGISTERED)
6853 		goto out;
6854 
6855 	/* Get out if there is nothing todo */
6856 	err = 0;
6857 	if (net_eq(dev_net(dev), net))
6858 		goto out;
6859 
6860 	/* Pick the destination device name, and ensure
6861 	 * we can use it in the destination network namespace.
6862 	 */
6863 	err = -EEXIST;
6864 	if (__dev_get_by_name(net, dev->name)) {
6865 		/* We get here if we can't use the current device name */
6866 		if (!pat)
6867 			goto out;
6868 		if (dev_get_valid_name(net, dev, pat) < 0)
6869 			goto out;
6870 	}
6871 
6872 	/*
6873 	 * And now a mini version of register_netdevice unregister_netdevice.
6874 	 */
6875 
6876 	/* If device is running close it first. */
6877 	dev_close(dev);
6878 
6879 	/* And unlink it from device chain */
6880 	err = -ENODEV;
6881 	unlist_netdevice(dev);
6882 
6883 	synchronize_net();
6884 
6885 	/* Shutdown queueing discipline. */
6886 	dev_shutdown(dev);
6887 
6888 	/* Notify protocols, that we are about to destroy
6889 	   this device. They should clean all the things.
6890 
6891 	   Note that dev->reg_state stays at NETREG_REGISTERED.
6892 	   This is wanted because this way 8021q and macvlan know
6893 	   the device is just moving and can keep their slaves up.
6894 	*/
6895 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6896 	rcu_barrier();
6897 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6898 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6899 
6900 	/*
6901 	 *	Flush the unicast and multicast chains
6902 	 */
6903 	dev_uc_flush(dev);
6904 	dev_mc_flush(dev);
6905 
6906 	/* Send a netdev-removed uevent to the old namespace */
6907 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6908 	netdev_adjacent_del_links(dev);
6909 
6910 	/* Actually switch the network namespace */
6911 	dev_net_set(dev, net);
6912 
6913 	/* If there is an ifindex conflict assign a new one */
6914 	if (__dev_get_by_index(net, dev->ifindex)) {
6915 		int iflink = (dev->iflink == dev->ifindex);
6916 		dev->ifindex = dev_new_index(net);
6917 		if (iflink)
6918 			dev->iflink = dev->ifindex;
6919 	}
6920 
6921 	/* Send a netdev-add uevent to the new namespace */
6922 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6923 	netdev_adjacent_add_links(dev);
6924 
6925 	/* Fixup kobjects */
6926 	err = device_rename(&dev->dev, dev->name);
6927 	WARN_ON(err);
6928 
6929 	/* Add the device back in the hashes */
6930 	list_netdevice(dev);
6931 
6932 	/* Notify protocols, that a new device appeared. */
6933 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
6934 
6935 	/*
6936 	 *	Prevent userspace races by waiting until the network
6937 	 *	device is fully setup before sending notifications.
6938 	 */
6939 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6940 
6941 	synchronize_net();
6942 	err = 0;
6943 out:
6944 	return err;
6945 }
6946 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6947 
6948 static int dev_cpu_callback(struct notifier_block *nfb,
6949 			    unsigned long action,
6950 			    void *ocpu)
6951 {
6952 	struct sk_buff **list_skb;
6953 	struct sk_buff *skb;
6954 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
6955 	struct softnet_data *sd, *oldsd;
6956 
6957 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6958 		return NOTIFY_OK;
6959 
6960 	local_irq_disable();
6961 	cpu = smp_processor_id();
6962 	sd = &per_cpu(softnet_data, cpu);
6963 	oldsd = &per_cpu(softnet_data, oldcpu);
6964 
6965 	/* Find end of our completion_queue. */
6966 	list_skb = &sd->completion_queue;
6967 	while (*list_skb)
6968 		list_skb = &(*list_skb)->next;
6969 	/* Append completion queue from offline CPU. */
6970 	*list_skb = oldsd->completion_queue;
6971 	oldsd->completion_queue = NULL;
6972 
6973 	/* Append output queue from offline CPU. */
6974 	if (oldsd->output_queue) {
6975 		*sd->output_queue_tailp = oldsd->output_queue;
6976 		sd->output_queue_tailp = oldsd->output_queue_tailp;
6977 		oldsd->output_queue = NULL;
6978 		oldsd->output_queue_tailp = &oldsd->output_queue;
6979 	}
6980 	/* Append NAPI poll list from offline CPU. */
6981 	if (!list_empty(&oldsd->poll_list)) {
6982 		list_splice_init(&oldsd->poll_list, &sd->poll_list);
6983 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
6984 	}
6985 
6986 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
6987 	local_irq_enable();
6988 
6989 	/* Process offline CPU's input_pkt_queue */
6990 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6991 		netif_rx_internal(skb);
6992 		input_queue_head_incr(oldsd);
6993 	}
6994 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6995 		netif_rx_internal(skb);
6996 		input_queue_head_incr(oldsd);
6997 	}
6998 
6999 	return NOTIFY_OK;
7000 }
7001 
7002 
7003 /**
7004  *	netdev_increment_features - increment feature set by one
7005  *	@all: current feature set
7006  *	@one: new feature set
7007  *	@mask: mask feature set
7008  *
7009  *	Computes a new feature set after adding a device with feature set
7010  *	@one to the master device with current feature set @all.  Will not
7011  *	enable anything that is off in @mask. Returns the new feature set.
7012  */
7013 netdev_features_t netdev_increment_features(netdev_features_t all,
7014 	netdev_features_t one, netdev_features_t mask)
7015 {
7016 	if (mask & NETIF_F_GEN_CSUM)
7017 		mask |= NETIF_F_ALL_CSUM;
7018 	mask |= NETIF_F_VLAN_CHALLENGED;
7019 
7020 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7021 	all &= one | ~NETIF_F_ALL_FOR_ALL;
7022 
7023 	/* If one device supports hw checksumming, set for all. */
7024 	if (all & NETIF_F_GEN_CSUM)
7025 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7026 
7027 	return all;
7028 }
7029 EXPORT_SYMBOL(netdev_increment_features);
7030 
7031 static struct hlist_head * __net_init netdev_create_hash(void)
7032 {
7033 	int i;
7034 	struct hlist_head *hash;
7035 
7036 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7037 	if (hash != NULL)
7038 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
7039 			INIT_HLIST_HEAD(&hash[i]);
7040 
7041 	return hash;
7042 }
7043 
7044 /* Initialize per network namespace state */
7045 static int __net_init netdev_init(struct net *net)
7046 {
7047 	if (net != &init_net)
7048 		INIT_LIST_HEAD(&net->dev_base_head);
7049 
7050 	net->dev_name_head = netdev_create_hash();
7051 	if (net->dev_name_head == NULL)
7052 		goto err_name;
7053 
7054 	net->dev_index_head = netdev_create_hash();
7055 	if (net->dev_index_head == NULL)
7056 		goto err_idx;
7057 
7058 	return 0;
7059 
7060 err_idx:
7061 	kfree(net->dev_name_head);
7062 err_name:
7063 	return -ENOMEM;
7064 }
7065 
7066 /**
7067  *	netdev_drivername - network driver for the device
7068  *	@dev: network device
7069  *
7070  *	Determine network driver for device.
7071  */
7072 const char *netdev_drivername(const struct net_device *dev)
7073 {
7074 	const struct device_driver *driver;
7075 	const struct device *parent;
7076 	const char *empty = "";
7077 
7078 	parent = dev->dev.parent;
7079 	if (!parent)
7080 		return empty;
7081 
7082 	driver = parent->driver;
7083 	if (driver && driver->name)
7084 		return driver->name;
7085 	return empty;
7086 }
7087 
7088 static void __netdev_printk(const char *level, const struct net_device *dev,
7089 			    struct va_format *vaf)
7090 {
7091 	if (dev && dev->dev.parent) {
7092 		dev_printk_emit(level[1] - '0',
7093 				dev->dev.parent,
7094 				"%s %s %s%s: %pV",
7095 				dev_driver_string(dev->dev.parent),
7096 				dev_name(dev->dev.parent),
7097 				netdev_name(dev), netdev_reg_state(dev),
7098 				vaf);
7099 	} else if (dev) {
7100 		printk("%s%s%s: %pV",
7101 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
7102 	} else {
7103 		printk("%s(NULL net_device): %pV", level, vaf);
7104 	}
7105 }
7106 
7107 void netdev_printk(const char *level, const struct net_device *dev,
7108 		   const char *format, ...)
7109 {
7110 	struct va_format vaf;
7111 	va_list args;
7112 
7113 	va_start(args, format);
7114 
7115 	vaf.fmt = format;
7116 	vaf.va = &args;
7117 
7118 	__netdev_printk(level, dev, &vaf);
7119 
7120 	va_end(args);
7121 }
7122 EXPORT_SYMBOL(netdev_printk);
7123 
7124 #define define_netdev_printk_level(func, level)			\
7125 void func(const struct net_device *dev, const char *fmt, ...)	\
7126 {								\
7127 	struct va_format vaf;					\
7128 	va_list args;						\
7129 								\
7130 	va_start(args, fmt);					\
7131 								\
7132 	vaf.fmt = fmt;						\
7133 	vaf.va = &args;						\
7134 								\
7135 	__netdev_printk(level, dev, &vaf);			\
7136 								\
7137 	va_end(args);						\
7138 }								\
7139 EXPORT_SYMBOL(func);
7140 
7141 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7142 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7143 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7144 define_netdev_printk_level(netdev_err, KERN_ERR);
7145 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7146 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7147 define_netdev_printk_level(netdev_info, KERN_INFO);
7148 
7149 static void __net_exit netdev_exit(struct net *net)
7150 {
7151 	kfree(net->dev_name_head);
7152 	kfree(net->dev_index_head);
7153 }
7154 
7155 static struct pernet_operations __net_initdata netdev_net_ops = {
7156 	.init = netdev_init,
7157 	.exit = netdev_exit,
7158 };
7159 
7160 static void __net_exit default_device_exit(struct net *net)
7161 {
7162 	struct net_device *dev, *aux;
7163 	/*
7164 	 * Push all migratable network devices back to the
7165 	 * initial network namespace
7166 	 */
7167 	rtnl_lock();
7168 	for_each_netdev_safe(net, dev, aux) {
7169 		int err;
7170 		char fb_name[IFNAMSIZ];
7171 
7172 		/* Ignore unmoveable devices (i.e. loopback) */
7173 		if (dev->features & NETIF_F_NETNS_LOCAL)
7174 			continue;
7175 
7176 		/* Leave virtual devices for the generic cleanup */
7177 		if (dev->rtnl_link_ops)
7178 			continue;
7179 
7180 		/* Push remaining network devices to init_net */
7181 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7182 		err = dev_change_net_namespace(dev, &init_net, fb_name);
7183 		if (err) {
7184 			pr_emerg("%s: failed to move %s to init_net: %d\n",
7185 				 __func__, dev->name, err);
7186 			BUG();
7187 		}
7188 	}
7189 	rtnl_unlock();
7190 }
7191 
7192 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7193 {
7194 	/* Return with the rtnl_lock held when there are no network
7195 	 * devices unregistering in any network namespace in net_list.
7196 	 */
7197 	struct net *net;
7198 	bool unregistering;
7199 	DEFINE_WAIT(wait);
7200 
7201 	for (;;) {
7202 		prepare_to_wait(&netdev_unregistering_wq, &wait,
7203 				TASK_UNINTERRUPTIBLE);
7204 		unregistering = false;
7205 		rtnl_lock();
7206 		list_for_each_entry(net, net_list, exit_list) {
7207 			if (net->dev_unreg_count > 0) {
7208 				unregistering = true;
7209 				break;
7210 			}
7211 		}
7212 		if (!unregistering)
7213 			break;
7214 		__rtnl_unlock();
7215 		schedule();
7216 	}
7217 	finish_wait(&netdev_unregistering_wq, &wait);
7218 }
7219 
7220 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7221 {
7222 	/* At exit all network devices most be removed from a network
7223 	 * namespace.  Do this in the reverse order of registration.
7224 	 * Do this across as many network namespaces as possible to
7225 	 * improve batching efficiency.
7226 	 */
7227 	struct net_device *dev;
7228 	struct net *net;
7229 	LIST_HEAD(dev_kill_list);
7230 
7231 	/* To prevent network device cleanup code from dereferencing
7232 	 * loopback devices or network devices that have been freed
7233 	 * wait here for all pending unregistrations to complete,
7234 	 * before unregistring the loopback device and allowing the
7235 	 * network namespace be freed.
7236 	 *
7237 	 * The netdev todo list containing all network devices
7238 	 * unregistrations that happen in default_device_exit_batch
7239 	 * will run in the rtnl_unlock() at the end of
7240 	 * default_device_exit_batch.
7241 	 */
7242 	rtnl_lock_unregistering(net_list);
7243 	list_for_each_entry(net, net_list, exit_list) {
7244 		for_each_netdev_reverse(net, dev) {
7245 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7246 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7247 			else
7248 				unregister_netdevice_queue(dev, &dev_kill_list);
7249 		}
7250 	}
7251 	unregister_netdevice_many(&dev_kill_list);
7252 	rtnl_unlock();
7253 }
7254 
7255 static struct pernet_operations __net_initdata default_device_ops = {
7256 	.exit = default_device_exit,
7257 	.exit_batch = default_device_exit_batch,
7258 };
7259 
7260 /*
7261  *	Initialize the DEV module. At boot time this walks the device list and
7262  *	unhooks any devices that fail to initialise (normally hardware not
7263  *	present) and leaves us with a valid list of present and active devices.
7264  *
7265  */
7266 
7267 /*
7268  *       This is called single threaded during boot, so no need
7269  *       to take the rtnl semaphore.
7270  */
7271 static int __init net_dev_init(void)
7272 {
7273 	int i, rc = -ENOMEM;
7274 
7275 	BUG_ON(!dev_boot_phase);
7276 
7277 	if (dev_proc_init())
7278 		goto out;
7279 
7280 	if (netdev_kobject_init())
7281 		goto out;
7282 
7283 	INIT_LIST_HEAD(&ptype_all);
7284 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
7285 		INIT_LIST_HEAD(&ptype_base[i]);
7286 
7287 	INIT_LIST_HEAD(&offload_base);
7288 
7289 	if (register_pernet_subsys(&netdev_net_ops))
7290 		goto out;
7291 
7292 	/*
7293 	 *	Initialise the packet receive queues.
7294 	 */
7295 
7296 	for_each_possible_cpu(i) {
7297 		struct softnet_data *sd = &per_cpu(softnet_data, i);
7298 
7299 		skb_queue_head_init(&sd->input_pkt_queue);
7300 		skb_queue_head_init(&sd->process_queue);
7301 		INIT_LIST_HEAD(&sd->poll_list);
7302 		sd->output_queue_tailp = &sd->output_queue;
7303 #ifdef CONFIG_RPS
7304 		sd->csd.func = rps_trigger_softirq;
7305 		sd->csd.info = sd;
7306 		sd->cpu = i;
7307 #endif
7308 
7309 		sd->backlog.poll = process_backlog;
7310 		sd->backlog.weight = weight_p;
7311 	}
7312 
7313 	dev_boot_phase = 0;
7314 
7315 	/* The loopback device is special if any other network devices
7316 	 * is present in a network namespace the loopback device must
7317 	 * be present. Since we now dynamically allocate and free the
7318 	 * loopback device ensure this invariant is maintained by
7319 	 * keeping the loopback device as the first device on the
7320 	 * list of network devices.  Ensuring the loopback devices
7321 	 * is the first device that appears and the last network device
7322 	 * that disappears.
7323 	 */
7324 	if (register_pernet_device(&loopback_net_ops))
7325 		goto out;
7326 
7327 	if (register_pernet_device(&default_device_ops))
7328 		goto out;
7329 
7330 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7331 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7332 
7333 	hotcpu_notifier(dev_cpu_callback, 0);
7334 	dst_init();
7335 	rc = 0;
7336 out:
7337 	return rc;
7338 }
7339 
7340 subsys_initcall(net_dev_init);
7341