1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/stat.h> 101 #include <net/dst.h> 102 #include <net/pkt_sched.h> 103 #include <net/checksum.h> 104 #include <net/xfrm.h> 105 #include <linux/highmem.h> 106 #include <linux/init.h> 107 #include <linux/module.h> 108 #include <linux/netpoll.h> 109 #include <linux/rcupdate.h> 110 #include <linux/delay.h> 111 #include <net/iw_handler.h> 112 #include <asm/current.h> 113 #include <linux/audit.h> 114 #include <linux/dmaengine.h> 115 #include <linux/err.h> 116 #include <linux/ctype.h> 117 #include <linux/if_arp.h> 118 #include <linux/if_vlan.h> 119 #include <linux/ip.h> 120 #include <net/ip.h> 121 #include <linux/ipv6.h> 122 #include <linux/in.h> 123 #include <linux/jhash.h> 124 #include <linux/random.h> 125 #include <trace/events/napi.h> 126 #include <trace/events/net.h> 127 #include <trace/events/skb.h> 128 #include <linux/pci.h> 129 #include <linux/inetdevice.h> 130 #include <linux/cpu_rmap.h> 131 #include <linux/static_key.h> 132 #include <linux/hashtable.h> 133 #include <linux/vmalloc.h> 134 #include <linux/if_macvlan.h> 135 #include <linux/errqueue.h> 136 137 #include "net-sysfs.h" 138 139 /* Instead of increasing this, you should create a hash table. */ 140 #define MAX_GRO_SKBS 8 141 142 /* This should be increased if a protocol with a bigger head is added. */ 143 #define GRO_MAX_HEAD (MAX_HEADER + 128) 144 145 static DEFINE_SPINLOCK(ptype_lock); 146 static DEFINE_SPINLOCK(offload_lock); 147 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 148 struct list_head ptype_all __read_mostly; /* Taps */ 149 static struct list_head offload_base __read_mostly; 150 151 static int netif_rx_internal(struct sk_buff *skb); 152 static int call_netdevice_notifiers_info(unsigned long val, 153 struct net_device *dev, 154 struct netdev_notifier_info *info); 155 156 /* 157 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 158 * semaphore. 159 * 160 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 161 * 162 * Writers must hold the rtnl semaphore while they loop through the 163 * dev_base_head list, and hold dev_base_lock for writing when they do the 164 * actual updates. This allows pure readers to access the list even 165 * while a writer is preparing to update it. 166 * 167 * To put it another way, dev_base_lock is held for writing only to 168 * protect against pure readers; the rtnl semaphore provides the 169 * protection against other writers. 170 * 171 * See, for example usages, register_netdevice() and 172 * unregister_netdevice(), which must be called with the rtnl 173 * semaphore held. 174 */ 175 DEFINE_RWLOCK(dev_base_lock); 176 EXPORT_SYMBOL(dev_base_lock); 177 178 /* protects napi_hash addition/deletion and napi_gen_id */ 179 static DEFINE_SPINLOCK(napi_hash_lock); 180 181 static unsigned int napi_gen_id; 182 static DEFINE_HASHTABLE(napi_hash, 8); 183 184 static seqcount_t devnet_rename_seq; 185 186 static inline void dev_base_seq_inc(struct net *net) 187 { 188 while (++net->dev_base_seq == 0); 189 } 190 191 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 192 { 193 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 194 195 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 196 } 197 198 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 199 { 200 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 201 } 202 203 static inline void rps_lock(struct softnet_data *sd) 204 { 205 #ifdef CONFIG_RPS 206 spin_lock(&sd->input_pkt_queue.lock); 207 #endif 208 } 209 210 static inline void rps_unlock(struct softnet_data *sd) 211 { 212 #ifdef CONFIG_RPS 213 spin_unlock(&sd->input_pkt_queue.lock); 214 #endif 215 } 216 217 /* Device list insertion */ 218 static void list_netdevice(struct net_device *dev) 219 { 220 struct net *net = dev_net(dev); 221 222 ASSERT_RTNL(); 223 224 write_lock_bh(&dev_base_lock); 225 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 226 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 227 hlist_add_head_rcu(&dev->index_hlist, 228 dev_index_hash(net, dev->ifindex)); 229 write_unlock_bh(&dev_base_lock); 230 231 dev_base_seq_inc(net); 232 } 233 234 /* Device list removal 235 * caller must respect a RCU grace period before freeing/reusing dev 236 */ 237 static void unlist_netdevice(struct net_device *dev) 238 { 239 ASSERT_RTNL(); 240 241 /* Unlink dev from the device chain */ 242 write_lock_bh(&dev_base_lock); 243 list_del_rcu(&dev->dev_list); 244 hlist_del_rcu(&dev->name_hlist); 245 hlist_del_rcu(&dev->index_hlist); 246 write_unlock_bh(&dev_base_lock); 247 248 dev_base_seq_inc(dev_net(dev)); 249 } 250 251 /* 252 * Our notifier list 253 */ 254 255 static RAW_NOTIFIER_HEAD(netdev_chain); 256 257 /* 258 * Device drivers call our routines to queue packets here. We empty the 259 * queue in the local softnet handler. 260 */ 261 262 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 263 EXPORT_PER_CPU_SYMBOL(softnet_data); 264 265 #ifdef CONFIG_LOCKDEP 266 /* 267 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 268 * according to dev->type 269 */ 270 static const unsigned short netdev_lock_type[] = 271 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 272 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 273 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 274 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 275 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 276 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 277 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 278 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 279 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 280 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 281 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 282 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 283 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 284 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 285 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 286 287 static const char *const netdev_lock_name[] = 288 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 289 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 290 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 291 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 292 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 293 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 294 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 295 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 296 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 297 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 298 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 299 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 300 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 301 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 302 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 303 304 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 305 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 306 307 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 308 { 309 int i; 310 311 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 312 if (netdev_lock_type[i] == dev_type) 313 return i; 314 /* the last key is used by default */ 315 return ARRAY_SIZE(netdev_lock_type) - 1; 316 } 317 318 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 319 unsigned short dev_type) 320 { 321 int i; 322 323 i = netdev_lock_pos(dev_type); 324 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 325 netdev_lock_name[i]); 326 } 327 328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 329 { 330 int i; 331 332 i = netdev_lock_pos(dev->type); 333 lockdep_set_class_and_name(&dev->addr_list_lock, 334 &netdev_addr_lock_key[i], 335 netdev_lock_name[i]); 336 } 337 #else 338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 339 unsigned short dev_type) 340 { 341 } 342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 343 { 344 } 345 #endif 346 347 /******************************************************************************* 348 349 Protocol management and registration routines 350 351 *******************************************************************************/ 352 353 /* 354 * Add a protocol ID to the list. Now that the input handler is 355 * smarter we can dispense with all the messy stuff that used to be 356 * here. 357 * 358 * BEWARE!!! Protocol handlers, mangling input packets, 359 * MUST BE last in hash buckets and checking protocol handlers 360 * MUST start from promiscuous ptype_all chain in net_bh. 361 * It is true now, do not change it. 362 * Explanation follows: if protocol handler, mangling packet, will 363 * be the first on list, it is not able to sense, that packet 364 * is cloned and should be copied-on-write, so that it will 365 * change it and subsequent readers will get broken packet. 366 * --ANK (980803) 367 */ 368 369 static inline struct list_head *ptype_head(const struct packet_type *pt) 370 { 371 if (pt->type == htons(ETH_P_ALL)) 372 return &ptype_all; 373 else 374 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 375 } 376 377 /** 378 * dev_add_pack - add packet handler 379 * @pt: packet type declaration 380 * 381 * Add a protocol handler to the networking stack. The passed &packet_type 382 * is linked into kernel lists and may not be freed until it has been 383 * removed from the kernel lists. 384 * 385 * This call does not sleep therefore it can not 386 * guarantee all CPU's that are in middle of receiving packets 387 * will see the new packet type (until the next received packet). 388 */ 389 390 void dev_add_pack(struct packet_type *pt) 391 { 392 struct list_head *head = ptype_head(pt); 393 394 spin_lock(&ptype_lock); 395 list_add_rcu(&pt->list, head); 396 spin_unlock(&ptype_lock); 397 } 398 EXPORT_SYMBOL(dev_add_pack); 399 400 /** 401 * __dev_remove_pack - remove packet handler 402 * @pt: packet type declaration 403 * 404 * Remove a protocol handler that was previously added to the kernel 405 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 406 * from the kernel lists and can be freed or reused once this function 407 * returns. 408 * 409 * The packet type might still be in use by receivers 410 * and must not be freed until after all the CPU's have gone 411 * through a quiescent state. 412 */ 413 void __dev_remove_pack(struct packet_type *pt) 414 { 415 struct list_head *head = ptype_head(pt); 416 struct packet_type *pt1; 417 418 spin_lock(&ptype_lock); 419 420 list_for_each_entry(pt1, head, list) { 421 if (pt == pt1) { 422 list_del_rcu(&pt->list); 423 goto out; 424 } 425 } 426 427 pr_warn("dev_remove_pack: %p not found\n", pt); 428 out: 429 spin_unlock(&ptype_lock); 430 } 431 EXPORT_SYMBOL(__dev_remove_pack); 432 433 /** 434 * dev_remove_pack - remove packet handler 435 * @pt: packet type declaration 436 * 437 * Remove a protocol handler that was previously added to the kernel 438 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 439 * from the kernel lists and can be freed or reused once this function 440 * returns. 441 * 442 * This call sleeps to guarantee that no CPU is looking at the packet 443 * type after return. 444 */ 445 void dev_remove_pack(struct packet_type *pt) 446 { 447 __dev_remove_pack(pt); 448 449 synchronize_net(); 450 } 451 EXPORT_SYMBOL(dev_remove_pack); 452 453 454 /** 455 * dev_add_offload - register offload handlers 456 * @po: protocol offload declaration 457 * 458 * Add protocol offload handlers to the networking stack. The passed 459 * &proto_offload is linked into kernel lists and may not be freed until 460 * it has been removed from the kernel lists. 461 * 462 * This call does not sleep therefore it can not 463 * guarantee all CPU's that are in middle of receiving packets 464 * will see the new offload handlers (until the next received packet). 465 */ 466 void dev_add_offload(struct packet_offload *po) 467 { 468 struct list_head *head = &offload_base; 469 470 spin_lock(&offload_lock); 471 list_add_rcu(&po->list, head); 472 spin_unlock(&offload_lock); 473 } 474 EXPORT_SYMBOL(dev_add_offload); 475 476 /** 477 * __dev_remove_offload - remove offload handler 478 * @po: packet offload declaration 479 * 480 * Remove a protocol offload handler that was previously added to the 481 * kernel offload handlers by dev_add_offload(). The passed &offload_type 482 * is removed from the kernel lists and can be freed or reused once this 483 * function returns. 484 * 485 * The packet type might still be in use by receivers 486 * and must not be freed until after all the CPU's have gone 487 * through a quiescent state. 488 */ 489 static void __dev_remove_offload(struct packet_offload *po) 490 { 491 struct list_head *head = &offload_base; 492 struct packet_offload *po1; 493 494 spin_lock(&offload_lock); 495 496 list_for_each_entry(po1, head, list) { 497 if (po == po1) { 498 list_del_rcu(&po->list); 499 goto out; 500 } 501 } 502 503 pr_warn("dev_remove_offload: %p not found\n", po); 504 out: 505 spin_unlock(&offload_lock); 506 } 507 508 /** 509 * dev_remove_offload - remove packet offload handler 510 * @po: packet offload declaration 511 * 512 * Remove a packet offload handler that was previously added to the kernel 513 * offload handlers by dev_add_offload(). The passed &offload_type is 514 * removed from the kernel lists and can be freed or reused once this 515 * function returns. 516 * 517 * This call sleeps to guarantee that no CPU is looking at the packet 518 * type after return. 519 */ 520 void dev_remove_offload(struct packet_offload *po) 521 { 522 __dev_remove_offload(po); 523 524 synchronize_net(); 525 } 526 EXPORT_SYMBOL(dev_remove_offload); 527 528 /****************************************************************************** 529 530 Device Boot-time Settings Routines 531 532 *******************************************************************************/ 533 534 /* Boot time configuration table */ 535 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 536 537 /** 538 * netdev_boot_setup_add - add new setup entry 539 * @name: name of the device 540 * @map: configured settings for the device 541 * 542 * Adds new setup entry to the dev_boot_setup list. The function 543 * returns 0 on error and 1 on success. This is a generic routine to 544 * all netdevices. 545 */ 546 static int netdev_boot_setup_add(char *name, struct ifmap *map) 547 { 548 struct netdev_boot_setup *s; 549 int i; 550 551 s = dev_boot_setup; 552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 553 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 554 memset(s[i].name, 0, sizeof(s[i].name)); 555 strlcpy(s[i].name, name, IFNAMSIZ); 556 memcpy(&s[i].map, map, sizeof(s[i].map)); 557 break; 558 } 559 } 560 561 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 562 } 563 564 /** 565 * netdev_boot_setup_check - check boot time settings 566 * @dev: the netdevice 567 * 568 * Check boot time settings for the device. 569 * The found settings are set for the device to be used 570 * later in the device probing. 571 * Returns 0 if no settings found, 1 if they are. 572 */ 573 int netdev_boot_setup_check(struct net_device *dev) 574 { 575 struct netdev_boot_setup *s = dev_boot_setup; 576 int i; 577 578 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 579 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 580 !strcmp(dev->name, s[i].name)) { 581 dev->irq = s[i].map.irq; 582 dev->base_addr = s[i].map.base_addr; 583 dev->mem_start = s[i].map.mem_start; 584 dev->mem_end = s[i].map.mem_end; 585 return 1; 586 } 587 } 588 return 0; 589 } 590 EXPORT_SYMBOL(netdev_boot_setup_check); 591 592 593 /** 594 * netdev_boot_base - get address from boot time settings 595 * @prefix: prefix for network device 596 * @unit: id for network device 597 * 598 * Check boot time settings for the base address of device. 599 * The found settings are set for the device to be used 600 * later in the device probing. 601 * Returns 0 if no settings found. 602 */ 603 unsigned long netdev_boot_base(const char *prefix, int unit) 604 { 605 const struct netdev_boot_setup *s = dev_boot_setup; 606 char name[IFNAMSIZ]; 607 int i; 608 609 sprintf(name, "%s%d", prefix, unit); 610 611 /* 612 * If device already registered then return base of 1 613 * to indicate not to probe for this interface 614 */ 615 if (__dev_get_by_name(&init_net, name)) 616 return 1; 617 618 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 619 if (!strcmp(name, s[i].name)) 620 return s[i].map.base_addr; 621 return 0; 622 } 623 624 /* 625 * Saves at boot time configured settings for any netdevice. 626 */ 627 int __init netdev_boot_setup(char *str) 628 { 629 int ints[5]; 630 struct ifmap map; 631 632 str = get_options(str, ARRAY_SIZE(ints), ints); 633 if (!str || !*str) 634 return 0; 635 636 /* Save settings */ 637 memset(&map, 0, sizeof(map)); 638 if (ints[0] > 0) 639 map.irq = ints[1]; 640 if (ints[0] > 1) 641 map.base_addr = ints[2]; 642 if (ints[0] > 2) 643 map.mem_start = ints[3]; 644 if (ints[0] > 3) 645 map.mem_end = ints[4]; 646 647 /* Add new entry to the list */ 648 return netdev_boot_setup_add(str, &map); 649 } 650 651 __setup("netdev=", netdev_boot_setup); 652 653 /******************************************************************************* 654 655 Device Interface Subroutines 656 657 *******************************************************************************/ 658 659 /** 660 * __dev_get_by_name - find a device by its name 661 * @net: the applicable net namespace 662 * @name: name to find 663 * 664 * Find an interface by name. Must be called under RTNL semaphore 665 * or @dev_base_lock. If the name is found a pointer to the device 666 * is returned. If the name is not found then %NULL is returned. The 667 * reference counters are not incremented so the caller must be 668 * careful with locks. 669 */ 670 671 struct net_device *__dev_get_by_name(struct net *net, const char *name) 672 { 673 struct net_device *dev; 674 struct hlist_head *head = dev_name_hash(net, name); 675 676 hlist_for_each_entry(dev, head, name_hlist) 677 if (!strncmp(dev->name, name, IFNAMSIZ)) 678 return dev; 679 680 return NULL; 681 } 682 EXPORT_SYMBOL(__dev_get_by_name); 683 684 /** 685 * dev_get_by_name_rcu - find a device by its name 686 * @net: the applicable net namespace 687 * @name: name to find 688 * 689 * Find an interface by name. 690 * If the name is found a pointer to the device is returned. 691 * If the name is not found then %NULL is returned. 692 * The reference counters are not incremented so the caller must be 693 * careful with locks. The caller must hold RCU lock. 694 */ 695 696 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 697 { 698 struct net_device *dev; 699 struct hlist_head *head = dev_name_hash(net, name); 700 701 hlist_for_each_entry_rcu(dev, head, name_hlist) 702 if (!strncmp(dev->name, name, IFNAMSIZ)) 703 return dev; 704 705 return NULL; 706 } 707 EXPORT_SYMBOL(dev_get_by_name_rcu); 708 709 /** 710 * dev_get_by_name - find a device by its name 711 * @net: the applicable net namespace 712 * @name: name to find 713 * 714 * Find an interface by name. This can be called from any 715 * context and does its own locking. The returned handle has 716 * the usage count incremented and the caller must use dev_put() to 717 * release it when it is no longer needed. %NULL is returned if no 718 * matching device is found. 719 */ 720 721 struct net_device *dev_get_by_name(struct net *net, const char *name) 722 { 723 struct net_device *dev; 724 725 rcu_read_lock(); 726 dev = dev_get_by_name_rcu(net, name); 727 if (dev) 728 dev_hold(dev); 729 rcu_read_unlock(); 730 return dev; 731 } 732 EXPORT_SYMBOL(dev_get_by_name); 733 734 /** 735 * __dev_get_by_index - find a device by its ifindex 736 * @net: the applicable net namespace 737 * @ifindex: index of device 738 * 739 * Search for an interface by index. Returns %NULL if the device 740 * is not found or a pointer to the device. The device has not 741 * had its reference counter increased so the caller must be careful 742 * about locking. The caller must hold either the RTNL semaphore 743 * or @dev_base_lock. 744 */ 745 746 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 747 { 748 struct net_device *dev; 749 struct hlist_head *head = dev_index_hash(net, ifindex); 750 751 hlist_for_each_entry(dev, head, index_hlist) 752 if (dev->ifindex == ifindex) 753 return dev; 754 755 return NULL; 756 } 757 EXPORT_SYMBOL(__dev_get_by_index); 758 759 /** 760 * dev_get_by_index_rcu - find a device by its ifindex 761 * @net: the applicable net namespace 762 * @ifindex: index of device 763 * 764 * Search for an interface by index. Returns %NULL if the device 765 * is not found or a pointer to the device. The device has not 766 * had its reference counter increased so the caller must be careful 767 * about locking. The caller must hold RCU lock. 768 */ 769 770 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 771 { 772 struct net_device *dev; 773 struct hlist_head *head = dev_index_hash(net, ifindex); 774 775 hlist_for_each_entry_rcu(dev, head, index_hlist) 776 if (dev->ifindex == ifindex) 777 return dev; 778 779 return NULL; 780 } 781 EXPORT_SYMBOL(dev_get_by_index_rcu); 782 783 784 /** 785 * dev_get_by_index - find a device by its ifindex 786 * @net: the applicable net namespace 787 * @ifindex: index of device 788 * 789 * Search for an interface by index. Returns NULL if the device 790 * is not found or a pointer to the device. The device returned has 791 * had a reference added and the pointer is safe until the user calls 792 * dev_put to indicate they have finished with it. 793 */ 794 795 struct net_device *dev_get_by_index(struct net *net, int ifindex) 796 { 797 struct net_device *dev; 798 799 rcu_read_lock(); 800 dev = dev_get_by_index_rcu(net, ifindex); 801 if (dev) 802 dev_hold(dev); 803 rcu_read_unlock(); 804 return dev; 805 } 806 EXPORT_SYMBOL(dev_get_by_index); 807 808 /** 809 * netdev_get_name - get a netdevice name, knowing its ifindex. 810 * @net: network namespace 811 * @name: a pointer to the buffer where the name will be stored. 812 * @ifindex: the ifindex of the interface to get the name from. 813 * 814 * The use of raw_seqcount_begin() and cond_resched() before 815 * retrying is required as we want to give the writers a chance 816 * to complete when CONFIG_PREEMPT is not set. 817 */ 818 int netdev_get_name(struct net *net, char *name, int ifindex) 819 { 820 struct net_device *dev; 821 unsigned int seq; 822 823 retry: 824 seq = raw_seqcount_begin(&devnet_rename_seq); 825 rcu_read_lock(); 826 dev = dev_get_by_index_rcu(net, ifindex); 827 if (!dev) { 828 rcu_read_unlock(); 829 return -ENODEV; 830 } 831 832 strcpy(name, dev->name); 833 rcu_read_unlock(); 834 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 835 cond_resched(); 836 goto retry; 837 } 838 839 return 0; 840 } 841 842 /** 843 * dev_getbyhwaddr_rcu - find a device by its hardware address 844 * @net: the applicable net namespace 845 * @type: media type of device 846 * @ha: hardware address 847 * 848 * Search for an interface by MAC address. Returns NULL if the device 849 * is not found or a pointer to the device. 850 * The caller must hold RCU or RTNL. 851 * The returned device has not had its ref count increased 852 * and the caller must therefore be careful about locking 853 * 854 */ 855 856 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 857 const char *ha) 858 { 859 struct net_device *dev; 860 861 for_each_netdev_rcu(net, dev) 862 if (dev->type == type && 863 !memcmp(dev->dev_addr, ha, dev->addr_len)) 864 return dev; 865 866 return NULL; 867 } 868 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 869 870 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 871 { 872 struct net_device *dev; 873 874 ASSERT_RTNL(); 875 for_each_netdev(net, dev) 876 if (dev->type == type) 877 return dev; 878 879 return NULL; 880 } 881 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 882 883 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 884 { 885 struct net_device *dev, *ret = NULL; 886 887 rcu_read_lock(); 888 for_each_netdev_rcu(net, dev) 889 if (dev->type == type) { 890 dev_hold(dev); 891 ret = dev; 892 break; 893 } 894 rcu_read_unlock(); 895 return ret; 896 } 897 EXPORT_SYMBOL(dev_getfirstbyhwtype); 898 899 /** 900 * __dev_get_by_flags - find any device with given flags 901 * @net: the applicable net namespace 902 * @if_flags: IFF_* values 903 * @mask: bitmask of bits in if_flags to check 904 * 905 * Search for any interface with the given flags. Returns NULL if a device 906 * is not found or a pointer to the device. Must be called inside 907 * rtnl_lock(), and result refcount is unchanged. 908 */ 909 910 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 911 unsigned short mask) 912 { 913 struct net_device *dev, *ret; 914 915 ASSERT_RTNL(); 916 917 ret = NULL; 918 for_each_netdev(net, dev) { 919 if (((dev->flags ^ if_flags) & mask) == 0) { 920 ret = dev; 921 break; 922 } 923 } 924 return ret; 925 } 926 EXPORT_SYMBOL(__dev_get_by_flags); 927 928 /** 929 * dev_valid_name - check if name is okay for network device 930 * @name: name string 931 * 932 * Network device names need to be valid file names to 933 * to allow sysfs to work. We also disallow any kind of 934 * whitespace. 935 */ 936 bool dev_valid_name(const char *name) 937 { 938 if (*name == '\0') 939 return false; 940 if (strlen(name) >= IFNAMSIZ) 941 return false; 942 if (!strcmp(name, ".") || !strcmp(name, "..")) 943 return false; 944 945 while (*name) { 946 if (*name == '/' || isspace(*name)) 947 return false; 948 name++; 949 } 950 return true; 951 } 952 EXPORT_SYMBOL(dev_valid_name); 953 954 /** 955 * __dev_alloc_name - allocate a name for a device 956 * @net: network namespace to allocate the device name in 957 * @name: name format string 958 * @buf: scratch buffer and result name string 959 * 960 * Passed a format string - eg "lt%d" it will try and find a suitable 961 * id. It scans list of devices to build up a free map, then chooses 962 * the first empty slot. The caller must hold the dev_base or rtnl lock 963 * while allocating the name and adding the device in order to avoid 964 * duplicates. 965 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 966 * Returns the number of the unit assigned or a negative errno code. 967 */ 968 969 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 970 { 971 int i = 0; 972 const char *p; 973 const int max_netdevices = 8*PAGE_SIZE; 974 unsigned long *inuse; 975 struct net_device *d; 976 977 p = strnchr(name, IFNAMSIZ-1, '%'); 978 if (p) { 979 /* 980 * Verify the string as this thing may have come from 981 * the user. There must be either one "%d" and no other "%" 982 * characters. 983 */ 984 if (p[1] != 'd' || strchr(p + 2, '%')) 985 return -EINVAL; 986 987 /* Use one page as a bit array of possible slots */ 988 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 989 if (!inuse) 990 return -ENOMEM; 991 992 for_each_netdev(net, d) { 993 if (!sscanf(d->name, name, &i)) 994 continue; 995 if (i < 0 || i >= max_netdevices) 996 continue; 997 998 /* avoid cases where sscanf is not exact inverse of printf */ 999 snprintf(buf, IFNAMSIZ, name, i); 1000 if (!strncmp(buf, d->name, IFNAMSIZ)) 1001 set_bit(i, inuse); 1002 } 1003 1004 i = find_first_zero_bit(inuse, max_netdevices); 1005 free_page((unsigned long) inuse); 1006 } 1007 1008 if (buf != name) 1009 snprintf(buf, IFNAMSIZ, name, i); 1010 if (!__dev_get_by_name(net, buf)) 1011 return i; 1012 1013 /* It is possible to run out of possible slots 1014 * when the name is long and there isn't enough space left 1015 * for the digits, or if all bits are used. 1016 */ 1017 return -ENFILE; 1018 } 1019 1020 /** 1021 * dev_alloc_name - allocate a name for a device 1022 * @dev: device 1023 * @name: name format string 1024 * 1025 * Passed a format string - eg "lt%d" it will try and find a suitable 1026 * id. It scans list of devices to build up a free map, then chooses 1027 * the first empty slot. The caller must hold the dev_base or rtnl lock 1028 * while allocating the name and adding the device in order to avoid 1029 * duplicates. 1030 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1031 * Returns the number of the unit assigned or a negative errno code. 1032 */ 1033 1034 int dev_alloc_name(struct net_device *dev, const char *name) 1035 { 1036 char buf[IFNAMSIZ]; 1037 struct net *net; 1038 int ret; 1039 1040 BUG_ON(!dev_net(dev)); 1041 net = dev_net(dev); 1042 ret = __dev_alloc_name(net, name, buf); 1043 if (ret >= 0) 1044 strlcpy(dev->name, buf, IFNAMSIZ); 1045 return ret; 1046 } 1047 EXPORT_SYMBOL(dev_alloc_name); 1048 1049 static int dev_alloc_name_ns(struct net *net, 1050 struct net_device *dev, 1051 const char *name) 1052 { 1053 char buf[IFNAMSIZ]; 1054 int ret; 1055 1056 ret = __dev_alloc_name(net, name, buf); 1057 if (ret >= 0) 1058 strlcpy(dev->name, buf, IFNAMSIZ); 1059 return ret; 1060 } 1061 1062 static int dev_get_valid_name(struct net *net, 1063 struct net_device *dev, 1064 const char *name) 1065 { 1066 BUG_ON(!net); 1067 1068 if (!dev_valid_name(name)) 1069 return -EINVAL; 1070 1071 if (strchr(name, '%')) 1072 return dev_alloc_name_ns(net, dev, name); 1073 else if (__dev_get_by_name(net, name)) 1074 return -EEXIST; 1075 else if (dev->name != name) 1076 strlcpy(dev->name, name, IFNAMSIZ); 1077 1078 return 0; 1079 } 1080 1081 /** 1082 * dev_change_name - change name of a device 1083 * @dev: device 1084 * @newname: name (or format string) must be at least IFNAMSIZ 1085 * 1086 * Change name of a device, can pass format strings "eth%d". 1087 * for wildcarding. 1088 */ 1089 int dev_change_name(struct net_device *dev, const char *newname) 1090 { 1091 unsigned char old_assign_type; 1092 char oldname[IFNAMSIZ]; 1093 int err = 0; 1094 int ret; 1095 struct net *net; 1096 1097 ASSERT_RTNL(); 1098 BUG_ON(!dev_net(dev)); 1099 1100 net = dev_net(dev); 1101 if (dev->flags & IFF_UP) 1102 return -EBUSY; 1103 1104 write_seqcount_begin(&devnet_rename_seq); 1105 1106 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1107 write_seqcount_end(&devnet_rename_seq); 1108 return 0; 1109 } 1110 1111 memcpy(oldname, dev->name, IFNAMSIZ); 1112 1113 err = dev_get_valid_name(net, dev, newname); 1114 if (err < 0) { 1115 write_seqcount_end(&devnet_rename_seq); 1116 return err; 1117 } 1118 1119 if (oldname[0] && !strchr(oldname, '%')) 1120 netdev_info(dev, "renamed from %s\n", oldname); 1121 1122 old_assign_type = dev->name_assign_type; 1123 dev->name_assign_type = NET_NAME_RENAMED; 1124 1125 rollback: 1126 ret = device_rename(&dev->dev, dev->name); 1127 if (ret) { 1128 memcpy(dev->name, oldname, IFNAMSIZ); 1129 dev->name_assign_type = old_assign_type; 1130 write_seqcount_end(&devnet_rename_seq); 1131 return ret; 1132 } 1133 1134 write_seqcount_end(&devnet_rename_seq); 1135 1136 netdev_adjacent_rename_links(dev, oldname); 1137 1138 write_lock_bh(&dev_base_lock); 1139 hlist_del_rcu(&dev->name_hlist); 1140 write_unlock_bh(&dev_base_lock); 1141 1142 synchronize_rcu(); 1143 1144 write_lock_bh(&dev_base_lock); 1145 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1146 write_unlock_bh(&dev_base_lock); 1147 1148 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1149 ret = notifier_to_errno(ret); 1150 1151 if (ret) { 1152 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1153 if (err >= 0) { 1154 err = ret; 1155 write_seqcount_begin(&devnet_rename_seq); 1156 memcpy(dev->name, oldname, IFNAMSIZ); 1157 memcpy(oldname, newname, IFNAMSIZ); 1158 dev->name_assign_type = old_assign_type; 1159 old_assign_type = NET_NAME_RENAMED; 1160 goto rollback; 1161 } else { 1162 pr_err("%s: name change rollback failed: %d\n", 1163 dev->name, ret); 1164 } 1165 } 1166 1167 return err; 1168 } 1169 1170 /** 1171 * dev_set_alias - change ifalias of a device 1172 * @dev: device 1173 * @alias: name up to IFALIASZ 1174 * @len: limit of bytes to copy from info 1175 * 1176 * Set ifalias for a device, 1177 */ 1178 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1179 { 1180 char *new_ifalias; 1181 1182 ASSERT_RTNL(); 1183 1184 if (len >= IFALIASZ) 1185 return -EINVAL; 1186 1187 if (!len) { 1188 kfree(dev->ifalias); 1189 dev->ifalias = NULL; 1190 return 0; 1191 } 1192 1193 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1194 if (!new_ifalias) 1195 return -ENOMEM; 1196 dev->ifalias = new_ifalias; 1197 1198 strlcpy(dev->ifalias, alias, len+1); 1199 return len; 1200 } 1201 1202 1203 /** 1204 * netdev_features_change - device changes features 1205 * @dev: device to cause notification 1206 * 1207 * Called to indicate a device has changed features. 1208 */ 1209 void netdev_features_change(struct net_device *dev) 1210 { 1211 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1212 } 1213 EXPORT_SYMBOL(netdev_features_change); 1214 1215 /** 1216 * netdev_state_change - device changes state 1217 * @dev: device to cause notification 1218 * 1219 * Called to indicate a device has changed state. This function calls 1220 * the notifier chains for netdev_chain and sends a NEWLINK message 1221 * to the routing socket. 1222 */ 1223 void netdev_state_change(struct net_device *dev) 1224 { 1225 if (dev->flags & IFF_UP) { 1226 struct netdev_notifier_change_info change_info; 1227 1228 change_info.flags_changed = 0; 1229 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 1230 &change_info.info); 1231 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1232 } 1233 } 1234 EXPORT_SYMBOL(netdev_state_change); 1235 1236 /** 1237 * netdev_notify_peers - notify network peers about existence of @dev 1238 * @dev: network device 1239 * 1240 * Generate traffic such that interested network peers are aware of 1241 * @dev, such as by generating a gratuitous ARP. This may be used when 1242 * a device wants to inform the rest of the network about some sort of 1243 * reconfiguration such as a failover event or virtual machine 1244 * migration. 1245 */ 1246 void netdev_notify_peers(struct net_device *dev) 1247 { 1248 rtnl_lock(); 1249 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1250 rtnl_unlock(); 1251 } 1252 EXPORT_SYMBOL(netdev_notify_peers); 1253 1254 static int __dev_open(struct net_device *dev) 1255 { 1256 const struct net_device_ops *ops = dev->netdev_ops; 1257 int ret; 1258 1259 ASSERT_RTNL(); 1260 1261 if (!netif_device_present(dev)) 1262 return -ENODEV; 1263 1264 /* Block netpoll from trying to do any rx path servicing. 1265 * If we don't do this there is a chance ndo_poll_controller 1266 * or ndo_poll may be running while we open the device 1267 */ 1268 netpoll_poll_disable(dev); 1269 1270 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1271 ret = notifier_to_errno(ret); 1272 if (ret) 1273 return ret; 1274 1275 set_bit(__LINK_STATE_START, &dev->state); 1276 1277 if (ops->ndo_validate_addr) 1278 ret = ops->ndo_validate_addr(dev); 1279 1280 if (!ret && ops->ndo_open) 1281 ret = ops->ndo_open(dev); 1282 1283 netpoll_poll_enable(dev); 1284 1285 if (ret) 1286 clear_bit(__LINK_STATE_START, &dev->state); 1287 else { 1288 dev->flags |= IFF_UP; 1289 dev_set_rx_mode(dev); 1290 dev_activate(dev); 1291 add_device_randomness(dev->dev_addr, dev->addr_len); 1292 } 1293 1294 return ret; 1295 } 1296 1297 /** 1298 * dev_open - prepare an interface for use. 1299 * @dev: device to open 1300 * 1301 * Takes a device from down to up state. The device's private open 1302 * function is invoked and then the multicast lists are loaded. Finally 1303 * the device is moved into the up state and a %NETDEV_UP message is 1304 * sent to the netdev notifier chain. 1305 * 1306 * Calling this function on an active interface is a nop. On a failure 1307 * a negative errno code is returned. 1308 */ 1309 int dev_open(struct net_device *dev) 1310 { 1311 int ret; 1312 1313 if (dev->flags & IFF_UP) 1314 return 0; 1315 1316 ret = __dev_open(dev); 1317 if (ret < 0) 1318 return ret; 1319 1320 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1321 call_netdevice_notifiers(NETDEV_UP, dev); 1322 1323 return ret; 1324 } 1325 EXPORT_SYMBOL(dev_open); 1326 1327 static int __dev_close_many(struct list_head *head) 1328 { 1329 struct net_device *dev; 1330 1331 ASSERT_RTNL(); 1332 might_sleep(); 1333 1334 list_for_each_entry(dev, head, close_list) { 1335 /* Temporarily disable netpoll until the interface is down */ 1336 netpoll_poll_disable(dev); 1337 1338 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1339 1340 clear_bit(__LINK_STATE_START, &dev->state); 1341 1342 /* Synchronize to scheduled poll. We cannot touch poll list, it 1343 * can be even on different cpu. So just clear netif_running(). 1344 * 1345 * dev->stop() will invoke napi_disable() on all of it's 1346 * napi_struct instances on this device. 1347 */ 1348 smp_mb__after_atomic(); /* Commit netif_running(). */ 1349 } 1350 1351 dev_deactivate_many(head); 1352 1353 list_for_each_entry(dev, head, close_list) { 1354 const struct net_device_ops *ops = dev->netdev_ops; 1355 1356 /* 1357 * Call the device specific close. This cannot fail. 1358 * Only if device is UP 1359 * 1360 * We allow it to be called even after a DETACH hot-plug 1361 * event. 1362 */ 1363 if (ops->ndo_stop) 1364 ops->ndo_stop(dev); 1365 1366 dev->flags &= ~IFF_UP; 1367 netpoll_poll_enable(dev); 1368 } 1369 1370 return 0; 1371 } 1372 1373 static int __dev_close(struct net_device *dev) 1374 { 1375 int retval; 1376 LIST_HEAD(single); 1377 1378 list_add(&dev->close_list, &single); 1379 retval = __dev_close_many(&single); 1380 list_del(&single); 1381 1382 return retval; 1383 } 1384 1385 static int dev_close_many(struct list_head *head) 1386 { 1387 struct net_device *dev, *tmp; 1388 1389 /* Remove the devices that don't need to be closed */ 1390 list_for_each_entry_safe(dev, tmp, head, close_list) 1391 if (!(dev->flags & IFF_UP)) 1392 list_del_init(&dev->close_list); 1393 1394 __dev_close_many(head); 1395 1396 list_for_each_entry_safe(dev, tmp, head, close_list) { 1397 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1398 call_netdevice_notifiers(NETDEV_DOWN, dev); 1399 list_del_init(&dev->close_list); 1400 } 1401 1402 return 0; 1403 } 1404 1405 /** 1406 * dev_close - shutdown an interface. 1407 * @dev: device to shutdown 1408 * 1409 * This function moves an active device into down state. A 1410 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1411 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1412 * chain. 1413 */ 1414 int dev_close(struct net_device *dev) 1415 { 1416 if (dev->flags & IFF_UP) { 1417 LIST_HEAD(single); 1418 1419 list_add(&dev->close_list, &single); 1420 dev_close_many(&single); 1421 list_del(&single); 1422 } 1423 return 0; 1424 } 1425 EXPORT_SYMBOL(dev_close); 1426 1427 1428 /** 1429 * dev_disable_lro - disable Large Receive Offload on a device 1430 * @dev: device 1431 * 1432 * Disable Large Receive Offload (LRO) on a net device. Must be 1433 * called under RTNL. This is needed if received packets may be 1434 * forwarded to another interface. 1435 */ 1436 void dev_disable_lro(struct net_device *dev) 1437 { 1438 /* 1439 * If we're trying to disable lro on a vlan device 1440 * use the underlying physical device instead 1441 */ 1442 if (is_vlan_dev(dev)) 1443 dev = vlan_dev_real_dev(dev); 1444 1445 /* the same for macvlan devices */ 1446 if (netif_is_macvlan(dev)) 1447 dev = macvlan_dev_real_dev(dev); 1448 1449 dev->wanted_features &= ~NETIF_F_LRO; 1450 netdev_update_features(dev); 1451 1452 if (unlikely(dev->features & NETIF_F_LRO)) 1453 netdev_WARN(dev, "failed to disable LRO!\n"); 1454 } 1455 EXPORT_SYMBOL(dev_disable_lro); 1456 1457 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1458 struct net_device *dev) 1459 { 1460 struct netdev_notifier_info info; 1461 1462 netdev_notifier_info_init(&info, dev); 1463 return nb->notifier_call(nb, val, &info); 1464 } 1465 1466 static int dev_boot_phase = 1; 1467 1468 /** 1469 * register_netdevice_notifier - register a network notifier block 1470 * @nb: notifier 1471 * 1472 * Register a notifier to be called when network device events occur. 1473 * The notifier passed is linked into the kernel structures and must 1474 * not be reused until it has been unregistered. A negative errno code 1475 * is returned on a failure. 1476 * 1477 * When registered all registration and up events are replayed 1478 * to the new notifier to allow device to have a race free 1479 * view of the network device list. 1480 */ 1481 1482 int register_netdevice_notifier(struct notifier_block *nb) 1483 { 1484 struct net_device *dev; 1485 struct net_device *last; 1486 struct net *net; 1487 int err; 1488 1489 rtnl_lock(); 1490 err = raw_notifier_chain_register(&netdev_chain, nb); 1491 if (err) 1492 goto unlock; 1493 if (dev_boot_phase) 1494 goto unlock; 1495 for_each_net(net) { 1496 for_each_netdev(net, dev) { 1497 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1498 err = notifier_to_errno(err); 1499 if (err) 1500 goto rollback; 1501 1502 if (!(dev->flags & IFF_UP)) 1503 continue; 1504 1505 call_netdevice_notifier(nb, NETDEV_UP, dev); 1506 } 1507 } 1508 1509 unlock: 1510 rtnl_unlock(); 1511 return err; 1512 1513 rollback: 1514 last = dev; 1515 for_each_net(net) { 1516 for_each_netdev(net, dev) { 1517 if (dev == last) 1518 goto outroll; 1519 1520 if (dev->flags & IFF_UP) { 1521 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1522 dev); 1523 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1524 } 1525 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1526 } 1527 } 1528 1529 outroll: 1530 raw_notifier_chain_unregister(&netdev_chain, nb); 1531 goto unlock; 1532 } 1533 EXPORT_SYMBOL(register_netdevice_notifier); 1534 1535 /** 1536 * unregister_netdevice_notifier - unregister a network notifier block 1537 * @nb: notifier 1538 * 1539 * Unregister a notifier previously registered by 1540 * register_netdevice_notifier(). The notifier is unlinked into the 1541 * kernel structures and may then be reused. A negative errno code 1542 * is returned on a failure. 1543 * 1544 * After unregistering unregister and down device events are synthesized 1545 * for all devices on the device list to the removed notifier to remove 1546 * the need for special case cleanup code. 1547 */ 1548 1549 int unregister_netdevice_notifier(struct notifier_block *nb) 1550 { 1551 struct net_device *dev; 1552 struct net *net; 1553 int err; 1554 1555 rtnl_lock(); 1556 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1557 if (err) 1558 goto unlock; 1559 1560 for_each_net(net) { 1561 for_each_netdev(net, dev) { 1562 if (dev->flags & IFF_UP) { 1563 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1564 dev); 1565 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1566 } 1567 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1568 } 1569 } 1570 unlock: 1571 rtnl_unlock(); 1572 return err; 1573 } 1574 EXPORT_SYMBOL(unregister_netdevice_notifier); 1575 1576 /** 1577 * call_netdevice_notifiers_info - call all network notifier blocks 1578 * @val: value passed unmodified to notifier function 1579 * @dev: net_device pointer passed unmodified to notifier function 1580 * @info: notifier information data 1581 * 1582 * Call all network notifier blocks. Parameters and return value 1583 * are as for raw_notifier_call_chain(). 1584 */ 1585 1586 static int call_netdevice_notifiers_info(unsigned long val, 1587 struct net_device *dev, 1588 struct netdev_notifier_info *info) 1589 { 1590 ASSERT_RTNL(); 1591 netdev_notifier_info_init(info, dev); 1592 return raw_notifier_call_chain(&netdev_chain, val, info); 1593 } 1594 1595 /** 1596 * call_netdevice_notifiers - call all network notifier blocks 1597 * @val: value passed unmodified to notifier function 1598 * @dev: net_device pointer passed unmodified to notifier function 1599 * 1600 * Call all network notifier blocks. Parameters and return value 1601 * are as for raw_notifier_call_chain(). 1602 */ 1603 1604 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1605 { 1606 struct netdev_notifier_info info; 1607 1608 return call_netdevice_notifiers_info(val, dev, &info); 1609 } 1610 EXPORT_SYMBOL(call_netdevice_notifiers); 1611 1612 static struct static_key netstamp_needed __read_mostly; 1613 #ifdef HAVE_JUMP_LABEL 1614 /* We are not allowed to call static_key_slow_dec() from irq context 1615 * If net_disable_timestamp() is called from irq context, defer the 1616 * static_key_slow_dec() calls. 1617 */ 1618 static atomic_t netstamp_needed_deferred; 1619 #endif 1620 1621 void net_enable_timestamp(void) 1622 { 1623 #ifdef HAVE_JUMP_LABEL 1624 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1625 1626 if (deferred) { 1627 while (--deferred) 1628 static_key_slow_dec(&netstamp_needed); 1629 return; 1630 } 1631 #endif 1632 static_key_slow_inc(&netstamp_needed); 1633 } 1634 EXPORT_SYMBOL(net_enable_timestamp); 1635 1636 void net_disable_timestamp(void) 1637 { 1638 #ifdef HAVE_JUMP_LABEL 1639 if (in_interrupt()) { 1640 atomic_inc(&netstamp_needed_deferred); 1641 return; 1642 } 1643 #endif 1644 static_key_slow_dec(&netstamp_needed); 1645 } 1646 EXPORT_SYMBOL(net_disable_timestamp); 1647 1648 static inline void net_timestamp_set(struct sk_buff *skb) 1649 { 1650 skb->tstamp.tv64 = 0; 1651 if (static_key_false(&netstamp_needed)) 1652 __net_timestamp(skb); 1653 } 1654 1655 #define net_timestamp_check(COND, SKB) \ 1656 if (static_key_false(&netstamp_needed)) { \ 1657 if ((COND) && !(SKB)->tstamp.tv64) \ 1658 __net_timestamp(SKB); \ 1659 } \ 1660 1661 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb) 1662 { 1663 unsigned int len; 1664 1665 if (!(dev->flags & IFF_UP)) 1666 return false; 1667 1668 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1669 if (skb->len <= len) 1670 return true; 1671 1672 /* if TSO is enabled, we don't care about the length as the packet 1673 * could be forwarded without being segmented before 1674 */ 1675 if (skb_is_gso(skb)) 1676 return true; 1677 1678 return false; 1679 } 1680 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1681 1682 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1683 { 1684 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1685 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1686 atomic_long_inc(&dev->rx_dropped); 1687 kfree_skb(skb); 1688 return NET_RX_DROP; 1689 } 1690 } 1691 1692 if (unlikely(!is_skb_forwardable(dev, skb))) { 1693 atomic_long_inc(&dev->rx_dropped); 1694 kfree_skb(skb); 1695 return NET_RX_DROP; 1696 } 1697 1698 skb_scrub_packet(skb, true); 1699 skb->protocol = eth_type_trans(skb, dev); 1700 1701 return 0; 1702 } 1703 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1704 1705 /** 1706 * dev_forward_skb - loopback an skb to another netif 1707 * 1708 * @dev: destination network device 1709 * @skb: buffer to forward 1710 * 1711 * return values: 1712 * NET_RX_SUCCESS (no congestion) 1713 * NET_RX_DROP (packet was dropped, but freed) 1714 * 1715 * dev_forward_skb can be used for injecting an skb from the 1716 * start_xmit function of one device into the receive queue 1717 * of another device. 1718 * 1719 * The receiving device may be in another namespace, so 1720 * we have to clear all information in the skb that could 1721 * impact namespace isolation. 1722 */ 1723 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1724 { 1725 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1726 } 1727 EXPORT_SYMBOL_GPL(dev_forward_skb); 1728 1729 static inline int deliver_skb(struct sk_buff *skb, 1730 struct packet_type *pt_prev, 1731 struct net_device *orig_dev) 1732 { 1733 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1734 return -ENOMEM; 1735 atomic_inc(&skb->users); 1736 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1737 } 1738 1739 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1740 { 1741 if (!ptype->af_packet_priv || !skb->sk) 1742 return false; 1743 1744 if (ptype->id_match) 1745 return ptype->id_match(ptype, skb->sk); 1746 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1747 return true; 1748 1749 return false; 1750 } 1751 1752 /* 1753 * Support routine. Sends outgoing frames to any network 1754 * taps currently in use. 1755 */ 1756 1757 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1758 { 1759 struct packet_type *ptype; 1760 struct sk_buff *skb2 = NULL; 1761 struct packet_type *pt_prev = NULL; 1762 1763 rcu_read_lock(); 1764 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1765 /* Never send packets back to the socket 1766 * they originated from - MvS (miquels@drinkel.ow.org) 1767 */ 1768 if ((ptype->dev == dev || !ptype->dev) && 1769 (!skb_loop_sk(ptype, skb))) { 1770 if (pt_prev) { 1771 deliver_skb(skb2, pt_prev, skb->dev); 1772 pt_prev = ptype; 1773 continue; 1774 } 1775 1776 skb2 = skb_clone(skb, GFP_ATOMIC); 1777 if (!skb2) 1778 break; 1779 1780 net_timestamp_set(skb2); 1781 1782 /* skb->nh should be correctly 1783 set by sender, so that the second statement is 1784 just protection against buggy protocols. 1785 */ 1786 skb_reset_mac_header(skb2); 1787 1788 if (skb_network_header(skb2) < skb2->data || 1789 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1790 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1791 ntohs(skb2->protocol), 1792 dev->name); 1793 skb_reset_network_header(skb2); 1794 } 1795 1796 skb2->transport_header = skb2->network_header; 1797 skb2->pkt_type = PACKET_OUTGOING; 1798 pt_prev = ptype; 1799 } 1800 } 1801 if (pt_prev) 1802 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1803 rcu_read_unlock(); 1804 } 1805 1806 /** 1807 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1808 * @dev: Network device 1809 * @txq: number of queues available 1810 * 1811 * If real_num_tx_queues is changed the tc mappings may no longer be 1812 * valid. To resolve this verify the tc mapping remains valid and if 1813 * not NULL the mapping. With no priorities mapping to this 1814 * offset/count pair it will no longer be used. In the worst case TC0 1815 * is invalid nothing can be done so disable priority mappings. If is 1816 * expected that drivers will fix this mapping if they can before 1817 * calling netif_set_real_num_tx_queues. 1818 */ 1819 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1820 { 1821 int i; 1822 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1823 1824 /* If TC0 is invalidated disable TC mapping */ 1825 if (tc->offset + tc->count > txq) { 1826 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1827 dev->num_tc = 0; 1828 return; 1829 } 1830 1831 /* Invalidated prio to tc mappings set to TC0 */ 1832 for (i = 1; i < TC_BITMASK + 1; i++) { 1833 int q = netdev_get_prio_tc_map(dev, i); 1834 1835 tc = &dev->tc_to_txq[q]; 1836 if (tc->offset + tc->count > txq) { 1837 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1838 i, q); 1839 netdev_set_prio_tc_map(dev, i, 0); 1840 } 1841 } 1842 } 1843 1844 #ifdef CONFIG_XPS 1845 static DEFINE_MUTEX(xps_map_mutex); 1846 #define xmap_dereference(P) \ 1847 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1848 1849 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps, 1850 int cpu, u16 index) 1851 { 1852 struct xps_map *map = NULL; 1853 int pos; 1854 1855 if (dev_maps) 1856 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1857 1858 for (pos = 0; map && pos < map->len; pos++) { 1859 if (map->queues[pos] == index) { 1860 if (map->len > 1) { 1861 map->queues[pos] = map->queues[--map->len]; 1862 } else { 1863 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL); 1864 kfree_rcu(map, rcu); 1865 map = NULL; 1866 } 1867 break; 1868 } 1869 } 1870 1871 return map; 1872 } 1873 1874 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 1875 { 1876 struct xps_dev_maps *dev_maps; 1877 int cpu, i; 1878 bool active = false; 1879 1880 mutex_lock(&xps_map_mutex); 1881 dev_maps = xmap_dereference(dev->xps_maps); 1882 1883 if (!dev_maps) 1884 goto out_no_maps; 1885 1886 for_each_possible_cpu(cpu) { 1887 for (i = index; i < dev->num_tx_queues; i++) { 1888 if (!remove_xps_queue(dev_maps, cpu, i)) 1889 break; 1890 } 1891 if (i == dev->num_tx_queues) 1892 active = true; 1893 } 1894 1895 if (!active) { 1896 RCU_INIT_POINTER(dev->xps_maps, NULL); 1897 kfree_rcu(dev_maps, rcu); 1898 } 1899 1900 for (i = index; i < dev->num_tx_queues; i++) 1901 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 1902 NUMA_NO_NODE); 1903 1904 out_no_maps: 1905 mutex_unlock(&xps_map_mutex); 1906 } 1907 1908 static struct xps_map *expand_xps_map(struct xps_map *map, 1909 int cpu, u16 index) 1910 { 1911 struct xps_map *new_map; 1912 int alloc_len = XPS_MIN_MAP_ALLOC; 1913 int i, pos; 1914 1915 for (pos = 0; map && pos < map->len; pos++) { 1916 if (map->queues[pos] != index) 1917 continue; 1918 return map; 1919 } 1920 1921 /* Need to add queue to this CPU's existing map */ 1922 if (map) { 1923 if (pos < map->alloc_len) 1924 return map; 1925 1926 alloc_len = map->alloc_len * 2; 1927 } 1928 1929 /* Need to allocate new map to store queue on this CPU's map */ 1930 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 1931 cpu_to_node(cpu)); 1932 if (!new_map) 1933 return NULL; 1934 1935 for (i = 0; i < pos; i++) 1936 new_map->queues[i] = map->queues[i]; 1937 new_map->alloc_len = alloc_len; 1938 new_map->len = pos; 1939 1940 return new_map; 1941 } 1942 1943 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 1944 u16 index) 1945 { 1946 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 1947 struct xps_map *map, *new_map; 1948 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES); 1949 int cpu, numa_node_id = -2; 1950 bool active = false; 1951 1952 mutex_lock(&xps_map_mutex); 1953 1954 dev_maps = xmap_dereference(dev->xps_maps); 1955 1956 /* allocate memory for queue storage */ 1957 for_each_online_cpu(cpu) { 1958 if (!cpumask_test_cpu(cpu, mask)) 1959 continue; 1960 1961 if (!new_dev_maps) 1962 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 1963 if (!new_dev_maps) { 1964 mutex_unlock(&xps_map_mutex); 1965 return -ENOMEM; 1966 } 1967 1968 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 1969 NULL; 1970 1971 map = expand_xps_map(map, cpu, index); 1972 if (!map) 1973 goto error; 1974 1975 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1976 } 1977 1978 if (!new_dev_maps) 1979 goto out_no_new_maps; 1980 1981 for_each_possible_cpu(cpu) { 1982 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 1983 /* add queue to CPU maps */ 1984 int pos = 0; 1985 1986 map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1987 while ((pos < map->len) && (map->queues[pos] != index)) 1988 pos++; 1989 1990 if (pos == map->len) 1991 map->queues[map->len++] = index; 1992 #ifdef CONFIG_NUMA 1993 if (numa_node_id == -2) 1994 numa_node_id = cpu_to_node(cpu); 1995 else if (numa_node_id != cpu_to_node(cpu)) 1996 numa_node_id = -1; 1997 #endif 1998 } else if (dev_maps) { 1999 /* fill in the new device map from the old device map */ 2000 map = xmap_dereference(dev_maps->cpu_map[cpu]); 2001 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 2002 } 2003 2004 } 2005 2006 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2007 2008 /* Cleanup old maps */ 2009 if (dev_maps) { 2010 for_each_possible_cpu(cpu) { 2011 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2012 map = xmap_dereference(dev_maps->cpu_map[cpu]); 2013 if (map && map != new_map) 2014 kfree_rcu(map, rcu); 2015 } 2016 2017 kfree_rcu(dev_maps, rcu); 2018 } 2019 2020 dev_maps = new_dev_maps; 2021 active = true; 2022 2023 out_no_new_maps: 2024 /* update Tx queue numa node */ 2025 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2026 (numa_node_id >= 0) ? numa_node_id : 2027 NUMA_NO_NODE); 2028 2029 if (!dev_maps) 2030 goto out_no_maps; 2031 2032 /* removes queue from unused CPUs */ 2033 for_each_possible_cpu(cpu) { 2034 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) 2035 continue; 2036 2037 if (remove_xps_queue(dev_maps, cpu, index)) 2038 active = true; 2039 } 2040 2041 /* free map if not active */ 2042 if (!active) { 2043 RCU_INIT_POINTER(dev->xps_maps, NULL); 2044 kfree_rcu(dev_maps, rcu); 2045 } 2046 2047 out_no_maps: 2048 mutex_unlock(&xps_map_mutex); 2049 2050 return 0; 2051 error: 2052 /* remove any maps that we added */ 2053 for_each_possible_cpu(cpu) { 2054 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2055 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2056 NULL; 2057 if (new_map && new_map != map) 2058 kfree(new_map); 2059 } 2060 2061 mutex_unlock(&xps_map_mutex); 2062 2063 kfree(new_dev_maps); 2064 return -ENOMEM; 2065 } 2066 EXPORT_SYMBOL(netif_set_xps_queue); 2067 2068 #endif 2069 /* 2070 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2071 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2072 */ 2073 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2074 { 2075 int rc; 2076 2077 if (txq < 1 || txq > dev->num_tx_queues) 2078 return -EINVAL; 2079 2080 if (dev->reg_state == NETREG_REGISTERED || 2081 dev->reg_state == NETREG_UNREGISTERING) { 2082 ASSERT_RTNL(); 2083 2084 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2085 txq); 2086 if (rc) 2087 return rc; 2088 2089 if (dev->num_tc) 2090 netif_setup_tc(dev, txq); 2091 2092 if (txq < dev->real_num_tx_queues) { 2093 qdisc_reset_all_tx_gt(dev, txq); 2094 #ifdef CONFIG_XPS 2095 netif_reset_xps_queues_gt(dev, txq); 2096 #endif 2097 } 2098 } 2099 2100 dev->real_num_tx_queues = txq; 2101 return 0; 2102 } 2103 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2104 2105 #ifdef CONFIG_SYSFS 2106 /** 2107 * netif_set_real_num_rx_queues - set actual number of RX queues used 2108 * @dev: Network device 2109 * @rxq: Actual number of RX queues 2110 * 2111 * This must be called either with the rtnl_lock held or before 2112 * registration of the net device. Returns 0 on success, or a 2113 * negative error code. If called before registration, it always 2114 * succeeds. 2115 */ 2116 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2117 { 2118 int rc; 2119 2120 if (rxq < 1 || rxq > dev->num_rx_queues) 2121 return -EINVAL; 2122 2123 if (dev->reg_state == NETREG_REGISTERED) { 2124 ASSERT_RTNL(); 2125 2126 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2127 rxq); 2128 if (rc) 2129 return rc; 2130 } 2131 2132 dev->real_num_rx_queues = rxq; 2133 return 0; 2134 } 2135 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2136 #endif 2137 2138 /** 2139 * netif_get_num_default_rss_queues - default number of RSS queues 2140 * 2141 * This routine should set an upper limit on the number of RSS queues 2142 * used by default by multiqueue devices. 2143 */ 2144 int netif_get_num_default_rss_queues(void) 2145 { 2146 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2147 } 2148 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2149 2150 static inline void __netif_reschedule(struct Qdisc *q) 2151 { 2152 struct softnet_data *sd; 2153 unsigned long flags; 2154 2155 local_irq_save(flags); 2156 sd = this_cpu_ptr(&softnet_data); 2157 q->next_sched = NULL; 2158 *sd->output_queue_tailp = q; 2159 sd->output_queue_tailp = &q->next_sched; 2160 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2161 local_irq_restore(flags); 2162 } 2163 2164 void __netif_schedule(struct Qdisc *q) 2165 { 2166 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2167 __netif_reschedule(q); 2168 } 2169 EXPORT_SYMBOL(__netif_schedule); 2170 2171 struct dev_kfree_skb_cb { 2172 enum skb_free_reason reason; 2173 }; 2174 2175 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2176 { 2177 return (struct dev_kfree_skb_cb *)skb->cb; 2178 } 2179 2180 void netif_schedule_queue(struct netdev_queue *txq) 2181 { 2182 rcu_read_lock(); 2183 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2184 struct Qdisc *q = rcu_dereference(txq->qdisc); 2185 2186 __netif_schedule(q); 2187 } 2188 rcu_read_unlock(); 2189 } 2190 EXPORT_SYMBOL(netif_schedule_queue); 2191 2192 /** 2193 * netif_wake_subqueue - allow sending packets on subqueue 2194 * @dev: network device 2195 * @queue_index: sub queue index 2196 * 2197 * Resume individual transmit queue of a device with multiple transmit queues. 2198 */ 2199 void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 2200 { 2201 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2202 2203 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) { 2204 struct Qdisc *q; 2205 2206 rcu_read_lock(); 2207 q = rcu_dereference(txq->qdisc); 2208 __netif_schedule(q); 2209 rcu_read_unlock(); 2210 } 2211 } 2212 EXPORT_SYMBOL(netif_wake_subqueue); 2213 2214 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2215 { 2216 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2217 struct Qdisc *q; 2218 2219 rcu_read_lock(); 2220 q = rcu_dereference(dev_queue->qdisc); 2221 __netif_schedule(q); 2222 rcu_read_unlock(); 2223 } 2224 } 2225 EXPORT_SYMBOL(netif_tx_wake_queue); 2226 2227 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2228 { 2229 unsigned long flags; 2230 2231 if (likely(atomic_read(&skb->users) == 1)) { 2232 smp_rmb(); 2233 atomic_set(&skb->users, 0); 2234 } else if (likely(!atomic_dec_and_test(&skb->users))) { 2235 return; 2236 } 2237 get_kfree_skb_cb(skb)->reason = reason; 2238 local_irq_save(flags); 2239 skb->next = __this_cpu_read(softnet_data.completion_queue); 2240 __this_cpu_write(softnet_data.completion_queue, skb); 2241 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2242 local_irq_restore(flags); 2243 } 2244 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2245 2246 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2247 { 2248 if (in_irq() || irqs_disabled()) 2249 __dev_kfree_skb_irq(skb, reason); 2250 else 2251 dev_kfree_skb(skb); 2252 } 2253 EXPORT_SYMBOL(__dev_kfree_skb_any); 2254 2255 2256 /** 2257 * netif_device_detach - mark device as removed 2258 * @dev: network device 2259 * 2260 * Mark device as removed from system and therefore no longer available. 2261 */ 2262 void netif_device_detach(struct net_device *dev) 2263 { 2264 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2265 netif_running(dev)) { 2266 netif_tx_stop_all_queues(dev); 2267 } 2268 } 2269 EXPORT_SYMBOL(netif_device_detach); 2270 2271 /** 2272 * netif_device_attach - mark device as attached 2273 * @dev: network device 2274 * 2275 * Mark device as attached from system and restart if needed. 2276 */ 2277 void netif_device_attach(struct net_device *dev) 2278 { 2279 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2280 netif_running(dev)) { 2281 netif_tx_wake_all_queues(dev); 2282 __netdev_watchdog_up(dev); 2283 } 2284 } 2285 EXPORT_SYMBOL(netif_device_attach); 2286 2287 static void skb_warn_bad_offload(const struct sk_buff *skb) 2288 { 2289 static const netdev_features_t null_features = 0; 2290 struct net_device *dev = skb->dev; 2291 const char *driver = ""; 2292 2293 if (!net_ratelimit()) 2294 return; 2295 2296 if (dev && dev->dev.parent) 2297 driver = dev_driver_string(dev->dev.parent); 2298 2299 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2300 "gso_type=%d ip_summed=%d\n", 2301 driver, dev ? &dev->features : &null_features, 2302 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2303 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2304 skb_shinfo(skb)->gso_type, skb->ip_summed); 2305 } 2306 2307 /* 2308 * Invalidate hardware checksum when packet is to be mangled, and 2309 * complete checksum manually on outgoing path. 2310 */ 2311 int skb_checksum_help(struct sk_buff *skb) 2312 { 2313 __wsum csum; 2314 int ret = 0, offset; 2315 2316 if (skb->ip_summed == CHECKSUM_COMPLETE) 2317 goto out_set_summed; 2318 2319 if (unlikely(skb_shinfo(skb)->gso_size)) { 2320 skb_warn_bad_offload(skb); 2321 return -EINVAL; 2322 } 2323 2324 /* Before computing a checksum, we should make sure no frag could 2325 * be modified by an external entity : checksum could be wrong. 2326 */ 2327 if (skb_has_shared_frag(skb)) { 2328 ret = __skb_linearize(skb); 2329 if (ret) 2330 goto out; 2331 } 2332 2333 offset = skb_checksum_start_offset(skb); 2334 BUG_ON(offset >= skb_headlen(skb)); 2335 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2336 2337 offset += skb->csum_offset; 2338 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2339 2340 if (skb_cloned(skb) && 2341 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2342 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2343 if (ret) 2344 goto out; 2345 } 2346 2347 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 2348 out_set_summed: 2349 skb->ip_summed = CHECKSUM_NONE; 2350 out: 2351 return ret; 2352 } 2353 EXPORT_SYMBOL(skb_checksum_help); 2354 2355 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2356 { 2357 unsigned int vlan_depth = skb->mac_len; 2358 __be16 type = skb->protocol; 2359 2360 /* Tunnel gso handlers can set protocol to ethernet. */ 2361 if (type == htons(ETH_P_TEB)) { 2362 struct ethhdr *eth; 2363 2364 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2365 return 0; 2366 2367 eth = (struct ethhdr *)skb_mac_header(skb); 2368 type = eth->h_proto; 2369 } 2370 2371 /* if skb->protocol is 802.1Q/AD then the header should already be 2372 * present at mac_len - VLAN_HLEN (if mac_len > 0), or at 2373 * ETH_HLEN otherwise 2374 */ 2375 if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) { 2376 if (vlan_depth) { 2377 if (WARN_ON(vlan_depth < VLAN_HLEN)) 2378 return 0; 2379 vlan_depth -= VLAN_HLEN; 2380 } else { 2381 vlan_depth = ETH_HLEN; 2382 } 2383 do { 2384 struct vlan_hdr *vh; 2385 2386 if (unlikely(!pskb_may_pull(skb, 2387 vlan_depth + VLAN_HLEN))) 2388 return 0; 2389 2390 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 2391 type = vh->h_vlan_encapsulated_proto; 2392 vlan_depth += VLAN_HLEN; 2393 } while (type == htons(ETH_P_8021Q) || 2394 type == htons(ETH_P_8021AD)); 2395 } 2396 2397 *depth = vlan_depth; 2398 2399 return type; 2400 } 2401 2402 /** 2403 * skb_mac_gso_segment - mac layer segmentation handler. 2404 * @skb: buffer to segment 2405 * @features: features for the output path (see dev->features) 2406 */ 2407 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2408 netdev_features_t features) 2409 { 2410 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2411 struct packet_offload *ptype; 2412 int vlan_depth = skb->mac_len; 2413 __be16 type = skb_network_protocol(skb, &vlan_depth); 2414 2415 if (unlikely(!type)) 2416 return ERR_PTR(-EINVAL); 2417 2418 __skb_pull(skb, vlan_depth); 2419 2420 rcu_read_lock(); 2421 list_for_each_entry_rcu(ptype, &offload_base, list) { 2422 if (ptype->type == type && ptype->callbacks.gso_segment) { 2423 segs = ptype->callbacks.gso_segment(skb, features); 2424 break; 2425 } 2426 } 2427 rcu_read_unlock(); 2428 2429 __skb_push(skb, skb->data - skb_mac_header(skb)); 2430 2431 return segs; 2432 } 2433 EXPORT_SYMBOL(skb_mac_gso_segment); 2434 2435 2436 /* openvswitch calls this on rx path, so we need a different check. 2437 */ 2438 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2439 { 2440 if (tx_path) 2441 return skb->ip_summed != CHECKSUM_PARTIAL; 2442 else 2443 return skb->ip_summed == CHECKSUM_NONE; 2444 } 2445 2446 /** 2447 * __skb_gso_segment - Perform segmentation on skb. 2448 * @skb: buffer to segment 2449 * @features: features for the output path (see dev->features) 2450 * @tx_path: whether it is called in TX path 2451 * 2452 * This function segments the given skb and returns a list of segments. 2453 * 2454 * It may return NULL if the skb requires no segmentation. This is 2455 * only possible when GSO is used for verifying header integrity. 2456 */ 2457 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2458 netdev_features_t features, bool tx_path) 2459 { 2460 if (unlikely(skb_needs_check(skb, tx_path))) { 2461 int err; 2462 2463 skb_warn_bad_offload(skb); 2464 2465 err = skb_cow_head(skb, 0); 2466 if (err < 0) 2467 return ERR_PTR(err); 2468 } 2469 2470 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2471 SKB_GSO_CB(skb)->encap_level = 0; 2472 2473 skb_reset_mac_header(skb); 2474 skb_reset_mac_len(skb); 2475 2476 return skb_mac_gso_segment(skb, features); 2477 } 2478 EXPORT_SYMBOL(__skb_gso_segment); 2479 2480 /* Take action when hardware reception checksum errors are detected. */ 2481 #ifdef CONFIG_BUG 2482 void netdev_rx_csum_fault(struct net_device *dev) 2483 { 2484 if (net_ratelimit()) { 2485 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2486 dump_stack(); 2487 } 2488 } 2489 EXPORT_SYMBOL(netdev_rx_csum_fault); 2490 #endif 2491 2492 /* Actually, we should eliminate this check as soon as we know, that: 2493 * 1. IOMMU is present and allows to map all the memory. 2494 * 2. No high memory really exists on this machine. 2495 */ 2496 2497 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2498 { 2499 #ifdef CONFIG_HIGHMEM 2500 int i; 2501 if (!(dev->features & NETIF_F_HIGHDMA)) { 2502 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2503 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2504 if (PageHighMem(skb_frag_page(frag))) 2505 return 1; 2506 } 2507 } 2508 2509 if (PCI_DMA_BUS_IS_PHYS) { 2510 struct device *pdev = dev->dev.parent; 2511 2512 if (!pdev) 2513 return 0; 2514 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2515 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2516 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2517 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2518 return 1; 2519 } 2520 } 2521 #endif 2522 return 0; 2523 } 2524 2525 /* If MPLS offload request, verify we are testing hardware MPLS features 2526 * instead of standard features for the netdev. 2527 */ 2528 #ifdef CONFIG_NET_MPLS_GSO 2529 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2530 netdev_features_t features, 2531 __be16 type) 2532 { 2533 if (type == htons(ETH_P_MPLS_UC) || type == htons(ETH_P_MPLS_MC)) 2534 features &= skb->dev->mpls_features; 2535 2536 return features; 2537 } 2538 #else 2539 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2540 netdev_features_t features, 2541 __be16 type) 2542 { 2543 return features; 2544 } 2545 #endif 2546 2547 static netdev_features_t harmonize_features(struct sk_buff *skb, 2548 netdev_features_t features) 2549 { 2550 int tmp; 2551 __be16 type; 2552 2553 type = skb_network_protocol(skb, &tmp); 2554 features = net_mpls_features(skb, features, type); 2555 2556 if (skb->ip_summed != CHECKSUM_NONE && 2557 !can_checksum_protocol(features, type)) { 2558 features &= ~NETIF_F_ALL_CSUM; 2559 } else if (illegal_highdma(skb->dev, skb)) { 2560 features &= ~NETIF_F_SG; 2561 } 2562 2563 return features; 2564 } 2565 2566 netdev_features_t netif_skb_features(struct sk_buff *skb) 2567 { 2568 const struct net_device *dev = skb->dev; 2569 netdev_features_t features = dev->features; 2570 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2571 __be16 protocol = skb->protocol; 2572 2573 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs) 2574 features &= ~NETIF_F_GSO_MASK; 2575 2576 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) { 2577 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2578 protocol = veh->h_vlan_encapsulated_proto; 2579 } else if (!vlan_tx_tag_present(skb)) { 2580 return harmonize_features(skb, features); 2581 } 2582 2583 features = netdev_intersect_features(features, 2584 dev->vlan_features | 2585 NETIF_F_HW_VLAN_CTAG_TX | 2586 NETIF_F_HW_VLAN_STAG_TX); 2587 2588 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) 2589 features = netdev_intersect_features(features, 2590 NETIF_F_SG | 2591 NETIF_F_HIGHDMA | 2592 NETIF_F_FRAGLIST | 2593 NETIF_F_GEN_CSUM | 2594 NETIF_F_HW_VLAN_CTAG_TX | 2595 NETIF_F_HW_VLAN_STAG_TX); 2596 2597 return harmonize_features(skb, features); 2598 } 2599 EXPORT_SYMBOL(netif_skb_features); 2600 2601 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 2602 struct netdev_queue *txq, bool more) 2603 { 2604 unsigned int len; 2605 int rc; 2606 2607 if (!list_empty(&ptype_all)) 2608 dev_queue_xmit_nit(skb, dev); 2609 2610 len = skb->len; 2611 trace_net_dev_start_xmit(skb, dev); 2612 rc = netdev_start_xmit(skb, dev, txq, more); 2613 trace_net_dev_xmit(skb, rc, dev, len); 2614 2615 return rc; 2616 } 2617 2618 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 2619 struct netdev_queue *txq, int *ret) 2620 { 2621 struct sk_buff *skb = first; 2622 int rc = NETDEV_TX_OK; 2623 2624 while (skb) { 2625 struct sk_buff *next = skb->next; 2626 2627 skb->next = NULL; 2628 rc = xmit_one(skb, dev, txq, next != NULL); 2629 if (unlikely(!dev_xmit_complete(rc))) { 2630 skb->next = next; 2631 goto out; 2632 } 2633 2634 skb = next; 2635 if (netif_xmit_stopped(txq) && skb) { 2636 rc = NETDEV_TX_BUSY; 2637 break; 2638 } 2639 } 2640 2641 out: 2642 *ret = rc; 2643 return skb; 2644 } 2645 2646 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 2647 netdev_features_t features) 2648 { 2649 if (vlan_tx_tag_present(skb) && 2650 !vlan_hw_offload_capable(features, skb->vlan_proto)) { 2651 skb = __vlan_put_tag(skb, skb->vlan_proto, 2652 vlan_tx_tag_get(skb)); 2653 if (skb) 2654 skb->vlan_tci = 0; 2655 } 2656 return skb; 2657 } 2658 2659 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) 2660 { 2661 netdev_features_t features; 2662 2663 if (skb->next) 2664 return skb; 2665 2666 features = netif_skb_features(skb); 2667 skb = validate_xmit_vlan(skb, features); 2668 if (unlikely(!skb)) 2669 goto out_null; 2670 2671 /* If encapsulation offload request, verify we are testing 2672 * hardware encapsulation features instead of standard 2673 * features for the netdev 2674 */ 2675 if (skb->encapsulation) 2676 features &= dev->hw_enc_features; 2677 2678 if (netif_needs_gso(dev, skb, features)) { 2679 struct sk_buff *segs; 2680 2681 segs = skb_gso_segment(skb, features); 2682 if (IS_ERR(segs)) { 2683 segs = NULL; 2684 } else if (segs) { 2685 consume_skb(skb); 2686 skb = segs; 2687 } 2688 } else { 2689 if (skb_needs_linearize(skb, features) && 2690 __skb_linearize(skb)) 2691 goto out_kfree_skb; 2692 2693 /* If packet is not checksummed and device does not 2694 * support checksumming for this protocol, complete 2695 * checksumming here. 2696 */ 2697 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2698 if (skb->encapsulation) 2699 skb_set_inner_transport_header(skb, 2700 skb_checksum_start_offset(skb)); 2701 else 2702 skb_set_transport_header(skb, 2703 skb_checksum_start_offset(skb)); 2704 if (!(features & NETIF_F_ALL_CSUM) && 2705 skb_checksum_help(skb)) 2706 goto out_kfree_skb; 2707 } 2708 } 2709 2710 return skb; 2711 2712 out_kfree_skb: 2713 kfree_skb(skb); 2714 out_null: 2715 return NULL; 2716 } 2717 2718 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev) 2719 { 2720 struct sk_buff *next, *head = NULL, *tail; 2721 2722 for (; skb != NULL; skb = next) { 2723 next = skb->next; 2724 skb->next = NULL; 2725 2726 /* in case skb wont be segmented, point to itself */ 2727 skb->prev = skb; 2728 2729 skb = validate_xmit_skb(skb, dev); 2730 if (!skb) 2731 continue; 2732 2733 if (!head) 2734 head = skb; 2735 else 2736 tail->next = skb; 2737 /* If skb was segmented, skb->prev points to 2738 * the last segment. If not, it still contains skb. 2739 */ 2740 tail = skb->prev; 2741 } 2742 return head; 2743 } 2744 2745 static void qdisc_pkt_len_init(struct sk_buff *skb) 2746 { 2747 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2748 2749 qdisc_skb_cb(skb)->pkt_len = skb->len; 2750 2751 /* To get more precise estimation of bytes sent on wire, 2752 * we add to pkt_len the headers size of all segments 2753 */ 2754 if (shinfo->gso_size) { 2755 unsigned int hdr_len; 2756 u16 gso_segs = shinfo->gso_segs; 2757 2758 /* mac layer + network layer */ 2759 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 2760 2761 /* + transport layer */ 2762 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 2763 hdr_len += tcp_hdrlen(skb); 2764 else 2765 hdr_len += sizeof(struct udphdr); 2766 2767 if (shinfo->gso_type & SKB_GSO_DODGY) 2768 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 2769 shinfo->gso_size); 2770 2771 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 2772 } 2773 } 2774 2775 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2776 struct net_device *dev, 2777 struct netdev_queue *txq) 2778 { 2779 spinlock_t *root_lock = qdisc_lock(q); 2780 bool contended; 2781 int rc; 2782 2783 qdisc_pkt_len_init(skb); 2784 qdisc_calculate_pkt_len(skb, q); 2785 /* 2786 * Heuristic to force contended enqueues to serialize on a 2787 * separate lock before trying to get qdisc main lock. 2788 * This permits __QDISC___STATE_RUNNING owner to get the lock more 2789 * often and dequeue packets faster. 2790 */ 2791 contended = qdisc_is_running(q); 2792 if (unlikely(contended)) 2793 spin_lock(&q->busylock); 2794 2795 spin_lock(root_lock); 2796 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2797 kfree_skb(skb); 2798 rc = NET_XMIT_DROP; 2799 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2800 qdisc_run_begin(q)) { 2801 /* 2802 * This is a work-conserving queue; there are no old skbs 2803 * waiting to be sent out; and the qdisc is not running - 2804 * xmit the skb directly. 2805 */ 2806 2807 qdisc_bstats_update(q, skb); 2808 2809 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 2810 if (unlikely(contended)) { 2811 spin_unlock(&q->busylock); 2812 contended = false; 2813 } 2814 __qdisc_run(q); 2815 } else 2816 qdisc_run_end(q); 2817 2818 rc = NET_XMIT_SUCCESS; 2819 } else { 2820 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2821 if (qdisc_run_begin(q)) { 2822 if (unlikely(contended)) { 2823 spin_unlock(&q->busylock); 2824 contended = false; 2825 } 2826 __qdisc_run(q); 2827 } 2828 } 2829 spin_unlock(root_lock); 2830 if (unlikely(contended)) 2831 spin_unlock(&q->busylock); 2832 return rc; 2833 } 2834 2835 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2836 static void skb_update_prio(struct sk_buff *skb) 2837 { 2838 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2839 2840 if (!skb->priority && skb->sk && map) { 2841 unsigned int prioidx = skb->sk->sk_cgrp_prioidx; 2842 2843 if (prioidx < map->priomap_len) 2844 skb->priority = map->priomap[prioidx]; 2845 } 2846 } 2847 #else 2848 #define skb_update_prio(skb) 2849 #endif 2850 2851 static DEFINE_PER_CPU(int, xmit_recursion); 2852 #define RECURSION_LIMIT 10 2853 2854 /** 2855 * dev_loopback_xmit - loop back @skb 2856 * @skb: buffer to transmit 2857 */ 2858 int dev_loopback_xmit(struct sk_buff *skb) 2859 { 2860 skb_reset_mac_header(skb); 2861 __skb_pull(skb, skb_network_offset(skb)); 2862 skb->pkt_type = PACKET_LOOPBACK; 2863 skb->ip_summed = CHECKSUM_UNNECESSARY; 2864 WARN_ON(!skb_dst(skb)); 2865 skb_dst_force(skb); 2866 netif_rx_ni(skb); 2867 return 0; 2868 } 2869 EXPORT_SYMBOL(dev_loopback_xmit); 2870 2871 /** 2872 * __dev_queue_xmit - transmit a buffer 2873 * @skb: buffer to transmit 2874 * @accel_priv: private data used for L2 forwarding offload 2875 * 2876 * Queue a buffer for transmission to a network device. The caller must 2877 * have set the device and priority and built the buffer before calling 2878 * this function. The function can be called from an interrupt. 2879 * 2880 * A negative errno code is returned on a failure. A success does not 2881 * guarantee the frame will be transmitted as it may be dropped due 2882 * to congestion or traffic shaping. 2883 * 2884 * ----------------------------------------------------------------------------------- 2885 * I notice this method can also return errors from the queue disciplines, 2886 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2887 * be positive. 2888 * 2889 * Regardless of the return value, the skb is consumed, so it is currently 2890 * difficult to retry a send to this method. (You can bump the ref count 2891 * before sending to hold a reference for retry if you are careful.) 2892 * 2893 * When calling this method, interrupts MUST be enabled. This is because 2894 * the BH enable code must have IRQs enabled so that it will not deadlock. 2895 * --BLG 2896 */ 2897 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 2898 { 2899 struct net_device *dev = skb->dev; 2900 struct netdev_queue *txq; 2901 struct Qdisc *q; 2902 int rc = -ENOMEM; 2903 2904 skb_reset_mac_header(skb); 2905 2906 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 2907 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 2908 2909 /* Disable soft irqs for various locks below. Also 2910 * stops preemption for RCU. 2911 */ 2912 rcu_read_lock_bh(); 2913 2914 skb_update_prio(skb); 2915 2916 /* If device/qdisc don't need skb->dst, release it right now while 2917 * its hot in this cpu cache. 2918 */ 2919 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2920 skb_dst_drop(skb); 2921 else 2922 skb_dst_force(skb); 2923 2924 txq = netdev_pick_tx(dev, skb, accel_priv); 2925 q = rcu_dereference_bh(txq->qdisc); 2926 2927 #ifdef CONFIG_NET_CLS_ACT 2928 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2929 #endif 2930 trace_net_dev_queue(skb); 2931 if (q->enqueue) { 2932 rc = __dev_xmit_skb(skb, q, dev, txq); 2933 goto out; 2934 } 2935 2936 /* The device has no queue. Common case for software devices: 2937 loopback, all the sorts of tunnels... 2938 2939 Really, it is unlikely that netif_tx_lock protection is necessary 2940 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2941 counters.) 2942 However, it is possible, that they rely on protection 2943 made by us here. 2944 2945 Check this and shot the lock. It is not prone from deadlocks. 2946 Either shot noqueue qdisc, it is even simpler 8) 2947 */ 2948 if (dev->flags & IFF_UP) { 2949 int cpu = smp_processor_id(); /* ok because BHs are off */ 2950 2951 if (txq->xmit_lock_owner != cpu) { 2952 2953 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2954 goto recursion_alert; 2955 2956 skb = validate_xmit_skb(skb, dev); 2957 if (!skb) 2958 goto drop; 2959 2960 HARD_TX_LOCK(dev, txq, cpu); 2961 2962 if (!netif_xmit_stopped(txq)) { 2963 __this_cpu_inc(xmit_recursion); 2964 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 2965 __this_cpu_dec(xmit_recursion); 2966 if (dev_xmit_complete(rc)) { 2967 HARD_TX_UNLOCK(dev, txq); 2968 goto out; 2969 } 2970 } 2971 HARD_TX_UNLOCK(dev, txq); 2972 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 2973 dev->name); 2974 } else { 2975 /* Recursion is detected! It is possible, 2976 * unfortunately 2977 */ 2978 recursion_alert: 2979 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 2980 dev->name); 2981 } 2982 } 2983 2984 rc = -ENETDOWN; 2985 drop: 2986 rcu_read_unlock_bh(); 2987 2988 atomic_long_inc(&dev->tx_dropped); 2989 kfree_skb_list(skb); 2990 return rc; 2991 out: 2992 rcu_read_unlock_bh(); 2993 return rc; 2994 } 2995 2996 int dev_queue_xmit(struct sk_buff *skb) 2997 { 2998 return __dev_queue_xmit(skb, NULL); 2999 } 3000 EXPORT_SYMBOL(dev_queue_xmit); 3001 3002 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3003 { 3004 return __dev_queue_xmit(skb, accel_priv); 3005 } 3006 EXPORT_SYMBOL(dev_queue_xmit_accel); 3007 3008 3009 /*======================================================================= 3010 Receiver routines 3011 =======================================================================*/ 3012 3013 int netdev_max_backlog __read_mostly = 1000; 3014 EXPORT_SYMBOL(netdev_max_backlog); 3015 3016 int netdev_tstamp_prequeue __read_mostly = 1; 3017 int netdev_budget __read_mostly = 300; 3018 int weight_p __read_mostly = 64; /* old backlog weight */ 3019 3020 /* Called with irq disabled */ 3021 static inline void ____napi_schedule(struct softnet_data *sd, 3022 struct napi_struct *napi) 3023 { 3024 list_add_tail(&napi->poll_list, &sd->poll_list); 3025 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3026 } 3027 3028 #ifdef CONFIG_RPS 3029 3030 /* One global table that all flow-based protocols share. */ 3031 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3032 EXPORT_SYMBOL(rps_sock_flow_table); 3033 3034 struct static_key rps_needed __read_mostly; 3035 3036 static struct rps_dev_flow * 3037 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3038 struct rps_dev_flow *rflow, u16 next_cpu) 3039 { 3040 if (next_cpu != RPS_NO_CPU) { 3041 #ifdef CONFIG_RFS_ACCEL 3042 struct netdev_rx_queue *rxqueue; 3043 struct rps_dev_flow_table *flow_table; 3044 struct rps_dev_flow *old_rflow; 3045 u32 flow_id; 3046 u16 rxq_index; 3047 int rc; 3048 3049 /* Should we steer this flow to a different hardware queue? */ 3050 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3051 !(dev->features & NETIF_F_NTUPLE)) 3052 goto out; 3053 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3054 if (rxq_index == skb_get_rx_queue(skb)) 3055 goto out; 3056 3057 rxqueue = dev->_rx + rxq_index; 3058 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3059 if (!flow_table) 3060 goto out; 3061 flow_id = skb_get_hash(skb) & flow_table->mask; 3062 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3063 rxq_index, flow_id); 3064 if (rc < 0) 3065 goto out; 3066 old_rflow = rflow; 3067 rflow = &flow_table->flows[flow_id]; 3068 rflow->filter = rc; 3069 if (old_rflow->filter == rflow->filter) 3070 old_rflow->filter = RPS_NO_FILTER; 3071 out: 3072 #endif 3073 rflow->last_qtail = 3074 per_cpu(softnet_data, next_cpu).input_queue_head; 3075 } 3076 3077 rflow->cpu = next_cpu; 3078 return rflow; 3079 } 3080 3081 /* 3082 * get_rps_cpu is called from netif_receive_skb and returns the target 3083 * CPU from the RPS map of the receiving queue for a given skb. 3084 * rcu_read_lock must be held on entry. 3085 */ 3086 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3087 struct rps_dev_flow **rflowp) 3088 { 3089 struct netdev_rx_queue *rxqueue; 3090 struct rps_map *map; 3091 struct rps_dev_flow_table *flow_table; 3092 struct rps_sock_flow_table *sock_flow_table; 3093 int cpu = -1; 3094 u16 tcpu; 3095 u32 hash; 3096 3097 if (skb_rx_queue_recorded(skb)) { 3098 u16 index = skb_get_rx_queue(skb); 3099 if (unlikely(index >= dev->real_num_rx_queues)) { 3100 WARN_ONCE(dev->real_num_rx_queues > 1, 3101 "%s received packet on queue %u, but number " 3102 "of RX queues is %u\n", 3103 dev->name, index, dev->real_num_rx_queues); 3104 goto done; 3105 } 3106 rxqueue = dev->_rx + index; 3107 } else 3108 rxqueue = dev->_rx; 3109 3110 map = rcu_dereference(rxqueue->rps_map); 3111 if (map) { 3112 if (map->len == 1 && 3113 !rcu_access_pointer(rxqueue->rps_flow_table)) { 3114 tcpu = map->cpus[0]; 3115 if (cpu_online(tcpu)) 3116 cpu = tcpu; 3117 goto done; 3118 } 3119 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) { 3120 goto done; 3121 } 3122 3123 skb_reset_network_header(skb); 3124 hash = skb_get_hash(skb); 3125 if (!hash) 3126 goto done; 3127 3128 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3129 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3130 if (flow_table && sock_flow_table) { 3131 u16 next_cpu; 3132 struct rps_dev_flow *rflow; 3133 3134 rflow = &flow_table->flows[hash & flow_table->mask]; 3135 tcpu = rflow->cpu; 3136 3137 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask]; 3138 3139 /* 3140 * If the desired CPU (where last recvmsg was done) is 3141 * different from current CPU (one in the rx-queue flow 3142 * table entry), switch if one of the following holds: 3143 * - Current CPU is unset (equal to RPS_NO_CPU). 3144 * - Current CPU is offline. 3145 * - The current CPU's queue tail has advanced beyond the 3146 * last packet that was enqueued using this table entry. 3147 * This guarantees that all previous packets for the flow 3148 * have been dequeued, thus preserving in order delivery. 3149 */ 3150 if (unlikely(tcpu != next_cpu) && 3151 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 3152 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3153 rflow->last_qtail)) >= 0)) { 3154 tcpu = next_cpu; 3155 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3156 } 3157 3158 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 3159 *rflowp = rflow; 3160 cpu = tcpu; 3161 goto done; 3162 } 3163 } 3164 3165 if (map) { 3166 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3167 if (cpu_online(tcpu)) { 3168 cpu = tcpu; 3169 goto done; 3170 } 3171 } 3172 3173 done: 3174 return cpu; 3175 } 3176 3177 #ifdef CONFIG_RFS_ACCEL 3178 3179 /** 3180 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3181 * @dev: Device on which the filter was set 3182 * @rxq_index: RX queue index 3183 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3184 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3185 * 3186 * Drivers that implement ndo_rx_flow_steer() should periodically call 3187 * this function for each installed filter and remove the filters for 3188 * which it returns %true. 3189 */ 3190 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3191 u32 flow_id, u16 filter_id) 3192 { 3193 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3194 struct rps_dev_flow_table *flow_table; 3195 struct rps_dev_flow *rflow; 3196 bool expire = true; 3197 int cpu; 3198 3199 rcu_read_lock(); 3200 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3201 if (flow_table && flow_id <= flow_table->mask) { 3202 rflow = &flow_table->flows[flow_id]; 3203 cpu = ACCESS_ONCE(rflow->cpu); 3204 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 3205 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3206 rflow->last_qtail) < 3207 (int)(10 * flow_table->mask))) 3208 expire = false; 3209 } 3210 rcu_read_unlock(); 3211 return expire; 3212 } 3213 EXPORT_SYMBOL(rps_may_expire_flow); 3214 3215 #endif /* CONFIG_RFS_ACCEL */ 3216 3217 /* Called from hardirq (IPI) context */ 3218 static void rps_trigger_softirq(void *data) 3219 { 3220 struct softnet_data *sd = data; 3221 3222 ____napi_schedule(sd, &sd->backlog); 3223 sd->received_rps++; 3224 } 3225 3226 #endif /* CONFIG_RPS */ 3227 3228 /* 3229 * Check if this softnet_data structure is another cpu one 3230 * If yes, queue it to our IPI list and return 1 3231 * If no, return 0 3232 */ 3233 static int rps_ipi_queued(struct softnet_data *sd) 3234 { 3235 #ifdef CONFIG_RPS 3236 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3237 3238 if (sd != mysd) { 3239 sd->rps_ipi_next = mysd->rps_ipi_list; 3240 mysd->rps_ipi_list = sd; 3241 3242 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3243 return 1; 3244 } 3245 #endif /* CONFIG_RPS */ 3246 return 0; 3247 } 3248 3249 #ifdef CONFIG_NET_FLOW_LIMIT 3250 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3251 #endif 3252 3253 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3254 { 3255 #ifdef CONFIG_NET_FLOW_LIMIT 3256 struct sd_flow_limit *fl; 3257 struct softnet_data *sd; 3258 unsigned int old_flow, new_flow; 3259 3260 if (qlen < (netdev_max_backlog >> 1)) 3261 return false; 3262 3263 sd = this_cpu_ptr(&softnet_data); 3264 3265 rcu_read_lock(); 3266 fl = rcu_dereference(sd->flow_limit); 3267 if (fl) { 3268 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3269 old_flow = fl->history[fl->history_head]; 3270 fl->history[fl->history_head] = new_flow; 3271 3272 fl->history_head++; 3273 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3274 3275 if (likely(fl->buckets[old_flow])) 3276 fl->buckets[old_flow]--; 3277 3278 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3279 fl->count++; 3280 rcu_read_unlock(); 3281 return true; 3282 } 3283 } 3284 rcu_read_unlock(); 3285 #endif 3286 return false; 3287 } 3288 3289 /* 3290 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3291 * queue (may be a remote CPU queue). 3292 */ 3293 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3294 unsigned int *qtail) 3295 { 3296 struct softnet_data *sd; 3297 unsigned long flags; 3298 unsigned int qlen; 3299 3300 sd = &per_cpu(softnet_data, cpu); 3301 3302 local_irq_save(flags); 3303 3304 rps_lock(sd); 3305 qlen = skb_queue_len(&sd->input_pkt_queue); 3306 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3307 if (skb_queue_len(&sd->input_pkt_queue)) { 3308 enqueue: 3309 __skb_queue_tail(&sd->input_pkt_queue, skb); 3310 input_queue_tail_incr_save(sd, qtail); 3311 rps_unlock(sd); 3312 local_irq_restore(flags); 3313 return NET_RX_SUCCESS; 3314 } 3315 3316 /* Schedule NAPI for backlog device 3317 * We can use non atomic operation since we own the queue lock 3318 */ 3319 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3320 if (!rps_ipi_queued(sd)) 3321 ____napi_schedule(sd, &sd->backlog); 3322 } 3323 goto enqueue; 3324 } 3325 3326 sd->dropped++; 3327 rps_unlock(sd); 3328 3329 local_irq_restore(flags); 3330 3331 atomic_long_inc(&skb->dev->rx_dropped); 3332 kfree_skb(skb); 3333 return NET_RX_DROP; 3334 } 3335 3336 static int netif_rx_internal(struct sk_buff *skb) 3337 { 3338 int ret; 3339 3340 net_timestamp_check(netdev_tstamp_prequeue, skb); 3341 3342 trace_netif_rx(skb); 3343 #ifdef CONFIG_RPS 3344 if (static_key_false(&rps_needed)) { 3345 struct rps_dev_flow voidflow, *rflow = &voidflow; 3346 int cpu; 3347 3348 preempt_disable(); 3349 rcu_read_lock(); 3350 3351 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3352 if (cpu < 0) 3353 cpu = smp_processor_id(); 3354 3355 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3356 3357 rcu_read_unlock(); 3358 preempt_enable(); 3359 } else 3360 #endif 3361 { 3362 unsigned int qtail; 3363 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3364 put_cpu(); 3365 } 3366 return ret; 3367 } 3368 3369 /** 3370 * netif_rx - post buffer to the network code 3371 * @skb: buffer to post 3372 * 3373 * This function receives a packet from a device driver and queues it for 3374 * the upper (protocol) levels to process. It always succeeds. The buffer 3375 * may be dropped during processing for congestion control or by the 3376 * protocol layers. 3377 * 3378 * return values: 3379 * NET_RX_SUCCESS (no congestion) 3380 * NET_RX_DROP (packet was dropped) 3381 * 3382 */ 3383 3384 int netif_rx(struct sk_buff *skb) 3385 { 3386 trace_netif_rx_entry(skb); 3387 3388 return netif_rx_internal(skb); 3389 } 3390 EXPORT_SYMBOL(netif_rx); 3391 3392 int netif_rx_ni(struct sk_buff *skb) 3393 { 3394 int err; 3395 3396 trace_netif_rx_ni_entry(skb); 3397 3398 preempt_disable(); 3399 err = netif_rx_internal(skb); 3400 if (local_softirq_pending()) 3401 do_softirq(); 3402 preempt_enable(); 3403 3404 return err; 3405 } 3406 EXPORT_SYMBOL(netif_rx_ni); 3407 3408 static void net_tx_action(struct softirq_action *h) 3409 { 3410 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 3411 3412 if (sd->completion_queue) { 3413 struct sk_buff *clist; 3414 3415 local_irq_disable(); 3416 clist = sd->completion_queue; 3417 sd->completion_queue = NULL; 3418 local_irq_enable(); 3419 3420 while (clist) { 3421 struct sk_buff *skb = clist; 3422 clist = clist->next; 3423 3424 WARN_ON(atomic_read(&skb->users)); 3425 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 3426 trace_consume_skb(skb); 3427 else 3428 trace_kfree_skb(skb, net_tx_action); 3429 __kfree_skb(skb); 3430 } 3431 } 3432 3433 if (sd->output_queue) { 3434 struct Qdisc *head; 3435 3436 local_irq_disable(); 3437 head = sd->output_queue; 3438 sd->output_queue = NULL; 3439 sd->output_queue_tailp = &sd->output_queue; 3440 local_irq_enable(); 3441 3442 while (head) { 3443 struct Qdisc *q = head; 3444 spinlock_t *root_lock; 3445 3446 head = head->next_sched; 3447 3448 root_lock = qdisc_lock(q); 3449 if (spin_trylock(root_lock)) { 3450 smp_mb__before_atomic(); 3451 clear_bit(__QDISC_STATE_SCHED, 3452 &q->state); 3453 qdisc_run(q); 3454 spin_unlock(root_lock); 3455 } else { 3456 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3457 &q->state)) { 3458 __netif_reschedule(q); 3459 } else { 3460 smp_mb__before_atomic(); 3461 clear_bit(__QDISC_STATE_SCHED, 3462 &q->state); 3463 } 3464 } 3465 } 3466 } 3467 } 3468 3469 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3470 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3471 /* This hook is defined here for ATM LANE */ 3472 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3473 unsigned char *addr) __read_mostly; 3474 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3475 #endif 3476 3477 #ifdef CONFIG_NET_CLS_ACT 3478 /* TODO: Maybe we should just force sch_ingress to be compiled in 3479 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3480 * a compare and 2 stores extra right now if we dont have it on 3481 * but have CONFIG_NET_CLS_ACT 3482 * NOTE: This doesn't stop any functionality; if you dont have 3483 * the ingress scheduler, you just can't add policies on ingress. 3484 * 3485 */ 3486 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3487 { 3488 struct net_device *dev = skb->dev; 3489 u32 ttl = G_TC_RTTL(skb->tc_verd); 3490 int result = TC_ACT_OK; 3491 struct Qdisc *q; 3492 3493 if (unlikely(MAX_RED_LOOP < ttl++)) { 3494 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n", 3495 skb->skb_iif, dev->ifindex); 3496 return TC_ACT_SHOT; 3497 } 3498 3499 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3500 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3501 3502 q = rcu_dereference(rxq->qdisc); 3503 if (q != &noop_qdisc) { 3504 spin_lock(qdisc_lock(q)); 3505 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3506 result = qdisc_enqueue_root(skb, q); 3507 spin_unlock(qdisc_lock(q)); 3508 } 3509 3510 return result; 3511 } 3512 3513 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3514 struct packet_type **pt_prev, 3515 int *ret, struct net_device *orig_dev) 3516 { 3517 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3518 3519 if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc) 3520 goto out; 3521 3522 if (*pt_prev) { 3523 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3524 *pt_prev = NULL; 3525 } 3526 3527 switch (ing_filter(skb, rxq)) { 3528 case TC_ACT_SHOT: 3529 case TC_ACT_STOLEN: 3530 kfree_skb(skb); 3531 return NULL; 3532 } 3533 3534 out: 3535 skb->tc_verd = 0; 3536 return skb; 3537 } 3538 #endif 3539 3540 /** 3541 * netdev_rx_handler_register - register receive handler 3542 * @dev: device to register a handler for 3543 * @rx_handler: receive handler to register 3544 * @rx_handler_data: data pointer that is used by rx handler 3545 * 3546 * Register a receive handler for a device. This handler will then be 3547 * called from __netif_receive_skb. A negative errno code is returned 3548 * on a failure. 3549 * 3550 * The caller must hold the rtnl_mutex. 3551 * 3552 * For a general description of rx_handler, see enum rx_handler_result. 3553 */ 3554 int netdev_rx_handler_register(struct net_device *dev, 3555 rx_handler_func_t *rx_handler, 3556 void *rx_handler_data) 3557 { 3558 ASSERT_RTNL(); 3559 3560 if (dev->rx_handler) 3561 return -EBUSY; 3562 3563 /* Note: rx_handler_data must be set before rx_handler */ 3564 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3565 rcu_assign_pointer(dev->rx_handler, rx_handler); 3566 3567 return 0; 3568 } 3569 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3570 3571 /** 3572 * netdev_rx_handler_unregister - unregister receive handler 3573 * @dev: device to unregister a handler from 3574 * 3575 * Unregister a receive handler from a device. 3576 * 3577 * The caller must hold the rtnl_mutex. 3578 */ 3579 void netdev_rx_handler_unregister(struct net_device *dev) 3580 { 3581 3582 ASSERT_RTNL(); 3583 RCU_INIT_POINTER(dev->rx_handler, NULL); 3584 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 3585 * section has a guarantee to see a non NULL rx_handler_data 3586 * as well. 3587 */ 3588 synchronize_net(); 3589 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3590 } 3591 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3592 3593 /* 3594 * Limit the use of PFMEMALLOC reserves to those protocols that implement 3595 * the special handling of PFMEMALLOC skbs. 3596 */ 3597 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 3598 { 3599 switch (skb->protocol) { 3600 case htons(ETH_P_ARP): 3601 case htons(ETH_P_IP): 3602 case htons(ETH_P_IPV6): 3603 case htons(ETH_P_8021Q): 3604 case htons(ETH_P_8021AD): 3605 return true; 3606 default: 3607 return false; 3608 } 3609 } 3610 3611 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 3612 { 3613 struct packet_type *ptype, *pt_prev; 3614 rx_handler_func_t *rx_handler; 3615 struct net_device *orig_dev; 3616 struct net_device *null_or_dev; 3617 bool deliver_exact = false; 3618 int ret = NET_RX_DROP; 3619 __be16 type; 3620 3621 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3622 3623 trace_netif_receive_skb(skb); 3624 3625 orig_dev = skb->dev; 3626 3627 skb_reset_network_header(skb); 3628 if (!skb_transport_header_was_set(skb)) 3629 skb_reset_transport_header(skb); 3630 skb_reset_mac_len(skb); 3631 3632 pt_prev = NULL; 3633 3634 rcu_read_lock(); 3635 3636 another_round: 3637 skb->skb_iif = skb->dev->ifindex; 3638 3639 __this_cpu_inc(softnet_data.processed); 3640 3641 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 3642 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 3643 skb = skb_vlan_untag(skb); 3644 if (unlikely(!skb)) 3645 goto unlock; 3646 } 3647 3648 #ifdef CONFIG_NET_CLS_ACT 3649 if (skb->tc_verd & TC_NCLS) { 3650 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3651 goto ncls; 3652 } 3653 #endif 3654 3655 if (pfmemalloc) 3656 goto skip_taps; 3657 3658 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3659 if (!ptype->dev || ptype->dev == skb->dev) { 3660 if (pt_prev) 3661 ret = deliver_skb(skb, pt_prev, orig_dev); 3662 pt_prev = ptype; 3663 } 3664 } 3665 3666 skip_taps: 3667 #ifdef CONFIG_NET_CLS_ACT 3668 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3669 if (!skb) 3670 goto unlock; 3671 ncls: 3672 #endif 3673 3674 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 3675 goto drop; 3676 3677 if (vlan_tx_tag_present(skb)) { 3678 if (pt_prev) { 3679 ret = deliver_skb(skb, pt_prev, orig_dev); 3680 pt_prev = NULL; 3681 } 3682 if (vlan_do_receive(&skb)) 3683 goto another_round; 3684 else if (unlikely(!skb)) 3685 goto unlock; 3686 } 3687 3688 rx_handler = rcu_dereference(skb->dev->rx_handler); 3689 if (rx_handler) { 3690 if (pt_prev) { 3691 ret = deliver_skb(skb, pt_prev, orig_dev); 3692 pt_prev = NULL; 3693 } 3694 switch (rx_handler(&skb)) { 3695 case RX_HANDLER_CONSUMED: 3696 ret = NET_RX_SUCCESS; 3697 goto unlock; 3698 case RX_HANDLER_ANOTHER: 3699 goto another_round; 3700 case RX_HANDLER_EXACT: 3701 deliver_exact = true; 3702 case RX_HANDLER_PASS: 3703 break; 3704 default: 3705 BUG(); 3706 } 3707 } 3708 3709 if (unlikely(vlan_tx_tag_present(skb))) { 3710 if (vlan_tx_tag_get_id(skb)) 3711 skb->pkt_type = PACKET_OTHERHOST; 3712 /* Note: we might in the future use prio bits 3713 * and set skb->priority like in vlan_do_receive() 3714 * For the time being, just ignore Priority Code Point 3715 */ 3716 skb->vlan_tci = 0; 3717 } 3718 3719 /* deliver only exact match when indicated */ 3720 null_or_dev = deliver_exact ? skb->dev : NULL; 3721 3722 type = skb->protocol; 3723 list_for_each_entry_rcu(ptype, 3724 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3725 if (ptype->type == type && 3726 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3727 ptype->dev == orig_dev)) { 3728 if (pt_prev) 3729 ret = deliver_skb(skb, pt_prev, orig_dev); 3730 pt_prev = ptype; 3731 } 3732 } 3733 3734 if (pt_prev) { 3735 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 3736 goto drop; 3737 else 3738 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3739 } else { 3740 drop: 3741 atomic_long_inc(&skb->dev->rx_dropped); 3742 kfree_skb(skb); 3743 /* Jamal, now you will not able to escape explaining 3744 * me how you were going to use this. :-) 3745 */ 3746 ret = NET_RX_DROP; 3747 } 3748 3749 unlock: 3750 rcu_read_unlock(); 3751 return ret; 3752 } 3753 3754 static int __netif_receive_skb(struct sk_buff *skb) 3755 { 3756 int ret; 3757 3758 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 3759 unsigned long pflags = current->flags; 3760 3761 /* 3762 * PFMEMALLOC skbs are special, they should 3763 * - be delivered to SOCK_MEMALLOC sockets only 3764 * - stay away from userspace 3765 * - have bounded memory usage 3766 * 3767 * Use PF_MEMALLOC as this saves us from propagating the allocation 3768 * context down to all allocation sites. 3769 */ 3770 current->flags |= PF_MEMALLOC; 3771 ret = __netif_receive_skb_core(skb, true); 3772 tsk_restore_flags(current, pflags, PF_MEMALLOC); 3773 } else 3774 ret = __netif_receive_skb_core(skb, false); 3775 3776 return ret; 3777 } 3778 3779 static int netif_receive_skb_internal(struct sk_buff *skb) 3780 { 3781 net_timestamp_check(netdev_tstamp_prequeue, skb); 3782 3783 if (skb_defer_rx_timestamp(skb)) 3784 return NET_RX_SUCCESS; 3785 3786 #ifdef CONFIG_RPS 3787 if (static_key_false(&rps_needed)) { 3788 struct rps_dev_flow voidflow, *rflow = &voidflow; 3789 int cpu, ret; 3790 3791 rcu_read_lock(); 3792 3793 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3794 3795 if (cpu >= 0) { 3796 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3797 rcu_read_unlock(); 3798 return ret; 3799 } 3800 rcu_read_unlock(); 3801 } 3802 #endif 3803 return __netif_receive_skb(skb); 3804 } 3805 3806 /** 3807 * netif_receive_skb - process receive buffer from network 3808 * @skb: buffer to process 3809 * 3810 * netif_receive_skb() is the main receive data processing function. 3811 * It always succeeds. The buffer may be dropped during processing 3812 * for congestion control or by the protocol layers. 3813 * 3814 * This function may only be called from softirq context and interrupts 3815 * should be enabled. 3816 * 3817 * Return values (usually ignored): 3818 * NET_RX_SUCCESS: no congestion 3819 * NET_RX_DROP: packet was dropped 3820 */ 3821 int netif_receive_skb(struct sk_buff *skb) 3822 { 3823 trace_netif_receive_skb_entry(skb); 3824 3825 return netif_receive_skb_internal(skb); 3826 } 3827 EXPORT_SYMBOL(netif_receive_skb); 3828 3829 /* Network device is going away, flush any packets still pending 3830 * Called with irqs disabled. 3831 */ 3832 static void flush_backlog(void *arg) 3833 { 3834 struct net_device *dev = arg; 3835 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 3836 struct sk_buff *skb, *tmp; 3837 3838 rps_lock(sd); 3839 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3840 if (skb->dev == dev) { 3841 __skb_unlink(skb, &sd->input_pkt_queue); 3842 kfree_skb(skb); 3843 input_queue_head_incr(sd); 3844 } 3845 } 3846 rps_unlock(sd); 3847 3848 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3849 if (skb->dev == dev) { 3850 __skb_unlink(skb, &sd->process_queue); 3851 kfree_skb(skb); 3852 input_queue_head_incr(sd); 3853 } 3854 } 3855 } 3856 3857 static int napi_gro_complete(struct sk_buff *skb) 3858 { 3859 struct packet_offload *ptype; 3860 __be16 type = skb->protocol; 3861 struct list_head *head = &offload_base; 3862 int err = -ENOENT; 3863 3864 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 3865 3866 if (NAPI_GRO_CB(skb)->count == 1) { 3867 skb_shinfo(skb)->gso_size = 0; 3868 goto out; 3869 } 3870 3871 rcu_read_lock(); 3872 list_for_each_entry_rcu(ptype, head, list) { 3873 if (ptype->type != type || !ptype->callbacks.gro_complete) 3874 continue; 3875 3876 err = ptype->callbacks.gro_complete(skb, 0); 3877 break; 3878 } 3879 rcu_read_unlock(); 3880 3881 if (err) { 3882 WARN_ON(&ptype->list == head); 3883 kfree_skb(skb); 3884 return NET_RX_SUCCESS; 3885 } 3886 3887 out: 3888 return netif_receive_skb_internal(skb); 3889 } 3890 3891 /* napi->gro_list contains packets ordered by age. 3892 * youngest packets at the head of it. 3893 * Complete skbs in reverse order to reduce latencies. 3894 */ 3895 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 3896 { 3897 struct sk_buff *skb, *prev = NULL; 3898 3899 /* scan list and build reverse chain */ 3900 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 3901 skb->prev = prev; 3902 prev = skb; 3903 } 3904 3905 for (skb = prev; skb; skb = prev) { 3906 skb->next = NULL; 3907 3908 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 3909 return; 3910 3911 prev = skb->prev; 3912 napi_gro_complete(skb); 3913 napi->gro_count--; 3914 } 3915 3916 napi->gro_list = NULL; 3917 } 3918 EXPORT_SYMBOL(napi_gro_flush); 3919 3920 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 3921 { 3922 struct sk_buff *p; 3923 unsigned int maclen = skb->dev->hard_header_len; 3924 u32 hash = skb_get_hash_raw(skb); 3925 3926 for (p = napi->gro_list; p; p = p->next) { 3927 unsigned long diffs; 3928 3929 NAPI_GRO_CB(p)->flush = 0; 3930 3931 if (hash != skb_get_hash_raw(p)) { 3932 NAPI_GRO_CB(p)->same_flow = 0; 3933 continue; 3934 } 3935 3936 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3937 diffs |= p->vlan_tci ^ skb->vlan_tci; 3938 if (maclen == ETH_HLEN) 3939 diffs |= compare_ether_header(skb_mac_header(p), 3940 skb_mac_header(skb)); 3941 else if (!diffs) 3942 diffs = memcmp(skb_mac_header(p), 3943 skb_mac_header(skb), 3944 maclen); 3945 NAPI_GRO_CB(p)->same_flow = !diffs; 3946 } 3947 } 3948 3949 static void skb_gro_reset_offset(struct sk_buff *skb) 3950 { 3951 const struct skb_shared_info *pinfo = skb_shinfo(skb); 3952 const skb_frag_t *frag0 = &pinfo->frags[0]; 3953 3954 NAPI_GRO_CB(skb)->data_offset = 0; 3955 NAPI_GRO_CB(skb)->frag0 = NULL; 3956 NAPI_GRO_CB(skb)->frag0_len = 0; 3957 3958 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 3959 pinfo->nr_frags && 3960 !PageHighMem(skb_frag_page(frag0))) { 3961 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 3962 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 3963 } 3964 } 3965 3966 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 3967 { 3968 struct skb_shared_info *pinfo = skb_shinfo(skb); 3969 3970 BUG_ON(skb->end - skb->tail < grow); 3971 3972 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3973 3974 skb->data_len -= grow; 3975 skb->tail += grow; 3976 3977 pinfo->frags[0].page_offset += grow; 3978 skb_frag_size_sub(&pinfo->frags[0], grow); 3979 3980 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 3981 skb_frag_unref(skb, 0); 3982 memmove(pinfo->frags, pinfo->frags + 1, 3983 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 3984 } 3985 } 3986 3987 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3988 { 3989 struct sk_buff **pp = NULL; 3990 struct packet_offload *ptype; 3991 __be16 type = skb->protocol; 3992 struct list_head *head = &offload_base; 3993 int same_flow; 3994 enum gro_result ret; 3995 int grow; 3996 3997 if (!(skb->dev->features & NETIF_F_GRO)) 3998 goto normal; 3999 4000 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad) 4001 goto normal; 4002 4003 gro_list_prepare(napi, skb); 4004 4005 rcu_read_lock(); 4006 list_for_each_entry_rcu(ptype, head, list) { 4007 if (ptype->type != type || !ptype->callbacks.gro_receive) 4008 continue; 4009 4010 skb_set_network_header(skb, skb_gro_offset(skb)); 4011 skb_reset_mac_len(skb); 4012 NAPI_GRO_CB(skb)->same_flow = 0; 4013 NAPI_GRO_CB(skb)->flush = 0; 4014 NAPI_GRO_CB(skb)->free = 0; 4015 NAPI_GRO_CB(skb)->udp_mark = 0; 4016 4017 /* Setup for GRO checksum validation */ 4018 switch (skb->ip_summed) { 4019 case CHECKSUM_COMPLETE: 4020 NAPI_GRO_CB(skb)->csum = skb->csum; 4021 NAPI_GRO_CB(skb)->csum_valid = 1; 4022 NAPI_GRO_CB(skb)->csum_cnt = 0; 4023 break; 4024 case CHECKSUM_UNNECESSARY: 4025 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 4026 NAPI_GRO_CB(skb)->csum_valid = 0; 4027 break; 4028 default: 4029 NAPI_GRO_CB(skb)->csum_cnt = 0; 4030 NAPI_GRO_CB(skb)->csum_valid = 0; 4031 } 4032 4033 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4034 break; 4035 } 4036 rcu_read_unlock(); 4037 4038 if (&ptype->list == head) 4039 goto normal; 4040 4041 same_flow = NAPI_GRO_CB(skb)->same_flow; 4042 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 4043 4044 if (pp) { 4045 struct sk_buff *nskb = *pp; 4046 4047 *pp = nskb->next; 4048 nskb->next = NULL; 4049 napi_gro_complete(nskb); 4050 napi->gro_count--; 4051 } 4052 4053 if (same_flow) 4054 goto ok; 4055 4056 if (NAPI_GRO_CB(skb)->flush) 4057 goto normal; 4058 4059 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4060 struct sk_buff *nskb = napi->gro_list; 4061 4062 /* locate the end of the list to select the 'oldest' flow */ 4063 while (nskb->next) { 4064 pp = &nskb->next; 4065 nskb = *pp; 4066 } 4067 *pp = NULL; 4068 nskb->next = NULL; 4069 napi_gro_complete(nskb); 4070 } else { 4071 napi->gro_count++; 4072 } 4073 NAPI_GRO_CB(skb)->count = 1; 4074 NAPI_GRO_CB(skb)->age = jiffies; 4075 NAPI_GRO_CB(skb)->last = skb; 4076 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 4077 skb->next = napi->gro_list; 4078 napi->gro_list = skb; 4079 ret = GRO_HELD; 4080 4081 pull: 4082 grow = skb_gro_offset(skb) - skb_headlen(skb); 4083 if (grow > 0) 4084 gro_pull_from_frag0(skb, grow); 4085 ok: 4086 return ret; 4087 4088 normal: 4089 ret = GRO_NORMAL; 4090 goto pull; 4091 } 4092 4093 struct packet_offload *gro_find_receive_by_type(__be16 type) 4094 { 4095 struct list_head *offload_head = &offload_base; 4096 struct packet_offload *ptype; 4097 4098 list_for_each_entry_rcu(ptype, offload_head, list) { 4099 if (ptype->type != type || !ptype->callbacks.gro_receive) 4100 continue; 4101 return ptype; 4102 } 4103 return NULL; 4104 } 4105 EXPORT_SYMBOL(gro_find_receive_by_type); 4106 4107 struct packet_offload *gro_find_complete_by_type(__be16 type) 4108 { 4109 struct list_head *offload_head = &offload_base; 4110 struct packet_offload *ptype; 4111 4112 list_for_each_entry_rcu(ptype, offload_head, list) { 4113 if (ptype->type != type || !ptype->callbacks.gro_complete) 4114 continue; 4115 return ptype; 4116 } 4117 return NULL; 4118 } 4119 EXPORT_SYMBOL(gro_find_complete_by_type); 4120 4121 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4122 { 4123 switch (ret) { 4124 case GRO_NORMAL: 4125 if (netif_receive_skb_internal(skb)) 4126 ret = GRO_DROP; 4127 break; 4128 4129 case GRO_DROP: 4130 kfree_skb(skb); 4131 break; 4132 4133 case GRO_MERGED_FREE: 4134 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 4135 kmem_cache_free(skbuff_head_cache, skb); 4136 else 4137 __kfree_skb(skb); 4138 break; 4139 4140 case GRO_HELD: 4141 case GRO_MERGED: 4142 break; 4143 } 4144 4145 return ret; 4146 } 4147 4148 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4149 { 4150 trace_napi_gro_receive_entry(skb); 4151 4152 skb_gro_reset_offset(skb); 4153 4154 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 4155 } 4156 EXPORT_SYMBOL(napi_gro_receive); 4157 4158 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 4159 { 4160 __skb_pull(skb, skb_headlen(skb)); 4161 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 4162 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 4163 skb->vlan_tci = 0; 4164 skb->dev = napi->dev; 4165 skb->skb_iif = 0; 4166 skb->encapsulation = 0; 4167 skb_shinfo(skb)->gso_type = 0; 4168 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4169 4170 napi->skb = skb; 4171 } 4172 4173 struct sk_buff *napi_get_frags(struct napi_struct *napi) 4174 { 4175 struct sk_buff *skb = napi->skb; 4176 4177 if (!skb) { 4178 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 4179 napi->skb = skb; 4180 } 4181 return skb; 4182 } 4183 EXPORT_SYMBOL(napi_get_frags); 4184 4185 static gro_result_t napi_frags_finish(struct napi_struct *napi, 4186 struct sk_buff *skb, 4187 gro_result_t ret) 4188 { 4189 switch (ret) { 4190 case GRO_NORMAL: 4191 case GRO_HELD: 4192 __skb_push(skb, ETH_HLEN); 4193 skb->protocol = eth_type_trans(skb, skb->dev); 4194 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 4195 ret = GRO_DROP; 4196 break; 4197 4198 case GRO_DROP: 4199 case GRO_MERGED_FREE: 4200 napi_reuse_skb(napi, skb); 4201 break; 4202 4203 case GRO_MERGED: 4204 break; 4205 } 4206 4207 return ret; 4208 } 4209 4210 /* Upper GRO stack assumes network header starts at gro_offset=0 4211 * Drivers could call both napi_gro_frags() and napi_gro_receive() 4212 * We copy ethernet header into skb->data to have a common layout. 4213 */ 4214 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4215 { 4216 struct sk_buff *skb = napi->skb; 4217 const struct ethhdr *eth; 4218 unsigned int hlen = sizeof(*eth); 4219 4220 napi->skb = NULL; 4221 4222 skb_reset_mac_header(skb); 4223 skb_gro_reset_offset(skb); 4224 4225 eth = skb_gro_header_fast(skb, 0); 4226 if (unlikely(skb_gro_header_hard(skb, hlen))) { 4227 eth = skb_gro_header_slow(skb, hlen, 0); 4228 if (unlikely(!eth)) { 4229 napi_reuse_skb(napi, skb); 4230 return NULL; 4231 } 4232 } else { 4233 gro_pull_from_frag0(skb, hlen); 4234 NAPI_GRO_CB(skb)->frag0 += hlen; 4235 NAPI_GRO_CB(skb)->frag0_len -= hlen; 4236 } 4237 __skb_pull(skb, hlen); 4238 4239 /* 4240 * This works because the only protocols we care about don't require 4241 * special handling. 4242 * We'll fix it up properly in napi_frags_finish() 4243 */ 4244 skb->protocol = eth->h_proto; 4245 4246 return skb; 4247 } 4248 4249 gro_result_t napi_gro_frags(struct napi_struct *napi) 4250 { 4251 struct sk_buff *skb = napi_frags_skb(napi); 4252 4253 if (!skb) 4254 return GRO_DROP; 4255 4256 trace_napi_gro_frags_entry(skb); 4257 4258 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4259 } 4260 EXPORT_SYMBOL(napi_gro_frags); 4261 4262 /* Compute the checksum from gro_offset and return the folded value 4263 * after adding in any pseudo checksum. 4264 */ 4265 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 4266 { 4267 __wsum wsum; 4268 __sum16 sum; 4269 4270 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 4271 4272 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 4273 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 4274 if (likely(!sum)) { 4275 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 4276 !skb->csum_complete_sw) 4277 netdev_rx_csum_fault(skb->dev); 4278 } 4279 4280 NAPI_GRO_CB(skb)->csum = wsum; 4281 NAPI_GRO_CB(skb)->csum_valid = 1; 4282 4283 return sum; 4284 } 4285 EXPORT_SYMBOL(__skb_gro_checksum_complete); 4286 4287 /* 4288 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 4289 * Note: called with local irq disabled, but exits with local irq enabled. 4290 */ 4291 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 4292 { 4293 #ifdef CONFIG_RPS 4294 struct softnet_data *remsd = sd->rps_ipi_list; 4295 4296 if (remsd) { 4297 sd->rps_ipi_list = NULL; 4298 4299 local_irq_enable(); 4300 4301 /* Send pending IPI's to kick RPS processing on remote cpus. */ 4302 while (remsd) { 4303 struct softnet_data *next = remsd->rps_ipi_next; 4304 4305 if (cpu_online(remsd->cpu)) 4306 smp_call_function_single_async(remsd->cpu, 4307 &remsd->csd); 4308 remsd = next; 4309 } 4310 } else 4311 #endif 4312 local_irq_enable(); 4313 } 4314 4315 static int process_backlog(struct napi_struct *napi, int quota) 4316 { 4317 int work = 0; 4318 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 4319 4320 #ifdef CONFIG_RPS 4321 /* Check if we have pending ipi, its better to send them now, 4322 * not waiting net_rx_action() end. 4323 */ 4324 if (sd->rps_ipi_list) { 4325 local_irq_disable(); 4326 net_rps_action_and_irq_enable(sd); 4327 } 4328 #endif 4329 napi->weight = weight_p; 4330 local_irq_disable(); 4331 while (1) { 4332 struct sk_buff *skb; 4333 4334 while ((skb = __skb_dequeue(&sd->process_queue))) { 4335 local_irq_enable(); 4336 __netif_receive_skb(skb); 4337 local_irq_disable(); 4338 input_queue_head_incr(sd); 4339 if (++work >= quota) { 4340 local_irq_enable(); 4341 return work; 4342 } 4343 } 4344 4345 rps_lock(sd); 4346 if (skb_queue_empty(&sd->input_pkt_queue)) { 4347 /* 4348 * Inline a custom version of __napi_complete(). 4349 * only current cpu owns and manipulates this napi, 4350 * and NAPI_STATE_SCHED is the only possible flag set 4351 * on backlog. 4352 * We can use a plain write instead of clear_bit(), 4353 * and we dont need an smp_mb() memory barrier. 4354 */ 4355 list_del(&napi->poll_list); 4356 napi->state = 0; 4357 rps_unlock(sd); 4358 4359 break; 4360 } 4361 4362 skb_queue_splice_tail_init(&sd->input_pkt_queue, 4363 &sd->process_queue); 4364 rps_unlock(sd); 4365 } 4366 local_irq_enable(); 4367 4368 return work; 4369 } 4370 4371 /** 4372 * __napi_schedule - schedule for receive 4373 * @n: entry to schedule 4374 * 4375 * The entry's receive function will be scheduled to run 4376 */ 4377 void __napi_schedule(struct napi_struct *n) 4378 { 4379 unsigned long flags; 4380 4381 local_irq_save(flags); 4382 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4383 local_irq_restore(flags); 4384 } 4385 EXPORT_SYMBOL(__napi_schedule); 4386 4387 void __napi_complete(struct napi_struct *n) 4388 { 4389 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 4390 BUG_ON(n->gro_list); 4391 4392 list_del(&n->poll_list); 4393 smp_mb__before_atomic(); 4394 clear_bit(NAPI_STATE_SCHED, &n->state); 4395 } 4396 EXPORT_SYMBOL(__napi_complete); 4397 4398 void napi_complete(struct napi_struct *n) 4399 { 4400 unsigned long flags; 4401 4402 /* 4403 * don't let napi dequeue from the cpu poll list 4404 * just in case its running on a different cpu 4405 */ 4406 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 4407 return; 4408 4409 napi_gro_flush(n, false); 4410 local_irq_save(flags); 4411 __napi_complete(n); 4412 local_irq_restore(flags); 4413 } 4414 EXPORT_SYMBOL(napi_complete); 4415 4416 /* must be called under rcu_read_lock(), as we dont take a reference */ 4417 struct napi_struct *napi_by_id(unsigned int napi_id) 4418 { 4419 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 4420 struct napi_struct *napi; 4421 4422 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 4423 if (napi->napi_id == napi_id) 4424 return napi; 4425 4426 return NULL; 4427 } 4428 EXPORT_SYMBOL_GPL(napi_by_id); 4429 4430 void napi_hash_add(struct napi_struct *napi) 4431 { 4432 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) { 4433 4434 spin_lock(&napi_hash_lock); 4435 4436 /* 0 is not a valid id, we also skip an id that is taken 4437 * we expect both events to be extremely rare 4438 */ 4439 napi->napi_id = 0; 4440 while (!napi->napi_id) { 4441 napi->napi_id = ++napi_gen_id; 4442 if (napi_by_id(napi->napi_id)) 4443 napi->napi_id = 0; 4444 } 4445 4446 hlist_add_head_rcu(&napi->napi_hash_node, 4447 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 4448 4449 spin_unlock(&napi_hash_lock); 4450 } 4451 } 4452 EXPORT_SYMBOL_GPL(napi_hash_add); 4453 4454 /* Warning : caller is responsible to make sure rcu grace period 4455 * is respected before freeing memory containing @napi 4456 */ 4457 void napi_hash_del(struct napi_struct *napi) 4458 { 4459 spin_lock(&napi_hash_lock); 4460 4461 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) 4462 hlist_del_rcu(&napi->napi_hash_node); 4463 4464 spin_unlock(&napi_hash_lock); 4465 } 4466 EXPORT_SYMBOL_GPL(napi_hash_del); 4467 4468 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 4469 int (*poll)(struct napi_struct *, int), int weight) 4470 { 4471 INIT_LIST_HEAD(&napi->poll_list); 4472 napi->gro_count = 0; 4473 napi->gro_list = NULL; 4474 napi->skb = NULL; 4475 napi->poll = poll; 4476 if (weight > NAPI_POLL_WEIGHT) 4477 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 4478 weight, dev->name); 4479 napi->weight = weight; 4480 list_add(&napi->dev_list, &dev->napi_list); 4481 napi->dev = dev; 4482 #ifdef CONFIG_NETPOLL 4483 spin_lock_init(&napi->poll_lock); 4484 napi->poll_owner = -1; 4485 #endif 4486 set_bit(NAPI_STATE_SCHED, &napi->state); 4487 } 4488 EXPORT_SYMBOL(netif_napi_add); 4489 4490 void netif_napi_del(struct napi_struct *napi) 4491 { 4492 list_del_init(&napi->dev_list); 4493 napi_free_frags(napi); 4494 4495 kfree_skb_list(napi->gro_list); 4496 napi->gro_list = NULL; 4497 napi->gro_count = 0; 4498 } 4499 EXPORT_SYMBOL(netif_napi_del); 4500 4501 static void net_rx_action(struct softirq_action *h) 4502 { 4503 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4504 unsigned long time_limit = jiffies + 2; 4505 int budget = netdev_budget; 4506 void *have; 4507 4508 local_irq_disable(); 4509 4510 while (!list_empty(&sd->poll_list)) { 4511 struct napi_struct *n; 4512 int work, weight; 4513 4514 /* If softirq window is exhuasted then punt. 4515 * Allow this to run for 2 jiffies since which will allow 4516 * an average latency of 1.5/HZ. 4517 */ 4518 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit))) 4519 goto softnet_break; 4520 4521 local_irq_enable(); 4522 4523 /* Even though interrupts have been re-enabled, this 4524 * access is safe because interrupts can only add new 4525 * entries to the tail of this list, and only ->poll() 4526 * calls can remove this head entry from the list. 4527 */ 4528 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 4529 4530 have = netpoll_poll_lock(n); 4531 4532 weight = n->weight; 4533 4534 /* This NAPI_STATE_SCHED test is for avoiding a race 4535 * with netpoll's poll_napi(). Only the entity which 4536 * obtains the lock and sees NAPI_STATE_SCHED set will 4537 * actually make the ->poll() call. Therefore we avoid 4538 * accidentally calling ->poll() when NAPI is not scheduled. 4539 */ 4540 work = 0; 4541 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 4542 work = n->poll(n, weight); 4543 trace_napi_poll(n); 4544 } 4545 4546 WARN_ON_ONCE(work > weight); 4547 4548 budget -= work; 4549 4550 local_irq_disable(); 4551 4552 /* Drivers must not modify the NAPI state if they 4553 * consume the entire weight. In such cases this code 4554 * still "owns" the NAPI instance and therefore can 4555 * move the instance around on the list at-will. 4556 */ 4557 if (unlikely(work == weight)) { 4558 if (unlikely(napi_disable_pending(n))) { 4559 local_irq_enable(); 4560 napi_complete(n); 4561 local_irq_disable(); 4562 } else { 4563 if (n->gro_list) { 4564 /* flush too old packets 4565 * If HZ < 1000, flush all packets. 4566 */ 4567 local_irq_enable(); 4568 napi_gro_flush(n, HZ >= 1000); 4569 local_irq_disable(); 4570 } 4571 list_move_tail(&n->poll_list, &sd->poll_list); 4572 } 4573 } 4574 4575 netpoll_poll_unlock(have); 4576 } 4577 out: 4578 net_rps_action_and_irq_enable(sd); 4579 4580 return; 4581 4582 softnet_break: 4583 sd->time_squeeze++; 4584 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4585 goto out; 4586 } 4587 4588 struct netdev_adjacent { 4589 struct net_device *dev; 4590 4591 /* upper master flag, there can only be one master device per list */ 4592 bool master; 4593 4594 /* counter for the number of times this device was added to us */ 4595 u16 ref_nr; 4596 4597 /* private field for the users */ 4598 void *private; 4599 4600 struct list_head list; 4601 struct rcu_head rcu; 4602 }; 4603 4604 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev, 4605 struct net_device *adj_dev, 4606 struct list_head *adj_list) 4607 { 4608 struct netdev_adjacent *adj; 4609 4610 list_for_each_entry(adj, adj_list, list) { 4611 if (adj->dev == adj_dev) 4612 return adj; 4613 } 4614 return NULL; 4615 } 4616 4617 /** 4618 * netdev_has_upper_dev - Check if device is linked to an upper device 4619 * @dev: device 4620 * @upper_dev: upper device to check 4621 * 4622 * Find out if a device is linked to specified upper device and return true 4623 * in case it is. Note that this checks only immediate upper device, 4624 * not through a complete stack of devices. The caller must hold the RTNL lock. 4625 */ 4626 bool netdev_has_upper_dev(struct net_device *dev, 4627 struct net_device *upper_dev) 4628 { 4629 ASSERT_RTNL(); 4630 4631 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper); 4632 } 4633 EXPORT_SYMBOL(netdev_has_upper_dev); 4634 4635 /** 4636 * netdev_has_any_upper_dev - Check if device is linked to some device 4637 * @dev: device 4638 * 4639 * Find out if a device is linked to an upper device and return true in case 4640 * it is. The caller must hold the RTNL lock. 4641 */ 4642 static bool netdev_has_any_upper_dev(struct net_device *dev) 4643 { 4644 ASSERT_RTNL(); 4645 4646 return !list_empty(&dev->all_adj_list.upper); 4647 } 4648 4649 /** 4650 * netdev_master_upper_dev_get - Get master upper device 4651 * @dev: device 4652 * 4653 * Find a master upper device and return pointer to it or NULL in case 4654 * it's not there. The caller must hold the RTNL lock. 4655 */ 4656 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 4657 { 4658 struct netdev_adjacent *upper; 4659 4660 ASSERT_RTNL(); 4661 4662 if (list_empty(&dev->adj_list.upper)) 4663 return NULL; 4664 4665 upper = list_first_entry(&dev->adj_list.upper, 4666 struct netdev_adjacent, list); 4667 if (likely(upper->master)) 4668 return upper->dev; 4669 return NULL; 4670 } 4671 EXPORT_SYMBOL(netdev_master_upper_dev_get); 4672 4673 void *netdev_adjacent_get_private(struct list_head *adj_list) 4674 { 4675 struct netdev_adjacent *adj; 4676 4677 adj = list_entry(adj_list, struct netdev_adjacent, list); 4678 4679 return adj->private; 4680 } 4681 EXPORT_SYMBOL(netdev_adjacent_get_private); 4682 4683 /** 4684 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 4685 * @dev: device 4686 * @iter: list_head ** of the current position 4687 * 4688 * Gets the next device from the dev's upper list, starting from iter 4689 * position. The caller must hold RCU read lock. 4690 */ 4691 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4692 struct list_head **iter) 4693 { 4694 struct netdev_adjacent *upper; 4695 4696 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 4697 4698 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4699 4700 if (&upper->list == &dev->adj_list.upper) 4701 return NULL; 4702 4703 *iter = &upper->list; 4704 4705 return upper->dev; 4706 } 4707 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 4708 4709 /** 4710 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list 4711 * @dev: device 4712 * @iter: list_head ** of the current position 4713 * 4714 * Gets the next device from the dev's upper list, starting from iter 4715 * position. The caller must hold RCU read lock. 4716 */ 4717 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4718 struct list_head **iter) 4719 { 4720 struct netdev_adjacent *upper; 4721 4722 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 4723 4724 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4725 4726 if (&upper->list == &dev->all_adj_list.upper) 4727 return NULL; 4728 4729 *iter = &upper->list; 4730 4731 return upper->dev; 4732 } 4733 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu); 4734 4735 /** 4736 * netdev_lower_get_next_private - Get the next ->private from the 4737 * lower neighbour list 4738 * @dev: device 4739 * @iter: list_head ** of the current position 4740 * 4741 * Gets the next netdev_adjacent->private from the dev's lower neighbour 4742 * list, starting from iter position. The caller must hold either hold the 4743 * RTNL lock or its own locking that guarantees that the neighbour lower 4744 * list will remain unchainged. 4745 */ 4746 void *netdev_lower_get_next_private(struct net_device *dev, 4747 struct list_head **iter) 4748 { 4749 struct netdev_adjacent *lower; 4750 4751 lower = list_entry(*iter, struct netdev_adjacent, list); 4752 4753 if (&lower->list == &dev->adj_list.lower) 4754 return NULL; 4755 4756 *iter = lower->list.next; 4757 4758 return lower->private; 4759 } 4760 EXPORT_SYMBOL(netdev_lower_get_next_private); 4761 4762 /** 4763 * netdev_lower_get_next_private_rcu - Get the next ->private from the 4764 * lower neighbour list, RCU 4765 * variant 4766 * @dev: device 4767 * @iter: list_head ** of the current position 4768 * 4769 * Gets the next netdev_adjacent->private from the dev's lower neighbour 4770 * list, starting from iter position. The caller must hold RCU read lock. 4771 */ 4772 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4773 struct list_head **iter) 4774 { 4775 struct netdev_adjacent *lower; 4776 4777 WARN_ON_ONCE(!rcu_read_lock_held()); 4778 4779 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4780 4781 if (&lower->list == &dev->adj_list.lower) 4782 return NULL; 4783 4784 *iter = &lower->list; 4785 4786 return lower->private; 4787 } 4788 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 4789 4790 /** 4791 * netdev_lower_get_next - Get the next device from the lower neighbour 4792 * list 4793 * @dev: device 4794 * @iter: list_head ** of the current position 4795 * 4796 * Gets the next netdev_adjacent from the dev's lower neighbour 4797 * list, starting from iter position. The caller must hold RTNL lock or 4798 * its own locking that guarantees that the neighbour lower 4799 * list will remain unchainged. 4800 */ 4801 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 4802 { 4803 struct netdev_adjacent *lower; 4804 4805 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 4806 4807 if (&lower->list == &dev->adj_list.lower) 4808 return NULL; 4809 4810 *iter = &lower->list; 4811 4812 return lower->dev; 4813 } 4814 EXPORT_SYMBOL(netdev_lower_get_next); 4815 4816 /** 4817 * netdev_lower_get_first_private_rcu - Get the first ->private from the 4818 * lower neighbour list, RCU 4819 * variant 4820 * @dev: device 4821 * 4822 * Gets the first netdev_adjacent->private from the dev's lower neighbour 4823 * list. The caller must hold RCU read lock. 4824 */ 4825 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 4826 { 4827 struct netdev_adjacent *lower; 4828 4829 lower = list_first_or_null_rcu(&dev->adj_list.lower, 4830 struct netdev_adjacent, list); 4831 if (lower) 4832 return lower->private; 4833 return NULL; 4834 } 4835 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 4836 4837 /** 4838 * netdev_master_upper_dev_get_rcu - Get master upper device 4839 * @dev: device 4840 * 4841 * Find a master upper device and return pointer to it or NULL in case 4842 * it's not there. The caller must hold the RCU read lock. 4843 */ 4844 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 4845 { 4846 struct netdev_adjacent *upper; 4847 4848 upper = list_first_or_null_rcu(&dev->adj_list.upper, 4849 struct netdev_adjacent, list); 4850 if (upper && likely(upper->master)) 4851 return upper->dev; 4852 return NULL; 4853 } 4854 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 4855 4856 static int netdev_adjacent_sysfs_add(struct net_device *dev, 4857 struct net_device *adj_dev, 4858 struct list_head *dev_list) 4859 { 4860 char linkname[IFNAMSIZ+7]; 4861 sprintf(linkname, dev_list == &dev->adj_list.upper ? 4862 "upper_%s" : "lower_%s", adj_dev->name); 4863 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 4864 linkname); 4865 } 4866 static void netdev_adjacent_sysfs_del(struct net_device *dev, 4867 char *name, 4868 struct list_head *dev_list) 4869 { 4870 char linkname[IFNAMSIZ+7]; 4871 sprintf(linkname, dev_list == &dev->adj_list.upper ? 4872 "upper_%s" : "lower_%s", name); 4873 sysfs_remove_link(&(dev->dev.kobj), linkname); 4874 } 4875 4876 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 4877 struct net_device *adj_dev, 4878 struct list_head *dev_list) 4879 { 4880 return (dev_list == &dev->adj_list.upper || 4881 dev_list == &dev->adj_list.lower) && 4882 net_eq(dev_net(dev), dev_net(adj_dev)); 4883 } 4884 4885 static int __netdev_adjacent_dev_insert(struct net_device *dev, 4886 struct net_device *adj_dev, 4887 struct list_head *dev_list, 4888 void *private, bool master) 4889 { 4890 struct netdev_adjacent *adj; 4891 int ret; 4892 4893 adj = __netdev_find_adj(dev, adj_dev, dev_list); 4894 4895 if (adj) { 4896 adj->ref_nr++; 4897 return 0; 4898 } 4899 4900 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 4901 if (!adj) 4902 return -ENOMEM; 4903 4904 adj->dev = adj_dev; 4905 adj->master = master; 4906 adj->ref_nr = 1; 4907 adj->private = private; 4908 dev_hold(adj_dev); 4909 4910 pr_debug("dev_hold for %s, because of link added from %s to %s\n", 4911 adj_dev->name, dev->name, adj_dev->name); 4912 4913 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 4914 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 4915 if (ret) 4916 goto free_adj; 4917 } 4918 4919 /* Ensure that master link is always the first item in list. */ 4920 if (master) { 4921 ret = sysfs_create_link(&(dev->dev.kobj), 4922 &(adj_dev->dev.kobj), "master"); 4923 if (ret) 4924 goto remove_symlinks; 4925 4926 list_add_rcu(&adj->list, dev_list); 4927 } else { 4928 list_add_tail_rcu(&adj->list, dev_list); 4929 } 4930 4931 return 0; 4932 4933 remove_symlinks: 4934 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 4935 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 4936 free_adj: 4937 kfree(adj); 4938 dev_put(adj_dev); 4939 4940 return ret; 4941 } 4942 4943 static void __netdev_adjacent_dev_remove(struct net_device *dev, 4944 struct net_device *adj_dev, 4945 struct list_head *dev_list) 4946 { 4947 struct netdev_adjacent *adj; 4948 4949 adj = __netdev_find_adj(dev, adj_dev, dev_list); 4950 4951 if (!adj) { 4952 pr_err("tried to remove device %s from %s\n", 4953 dev->name, adj_dev->name); 4954 BUG(); 4955 } 4956 4957 if (adj->ref_nr > 1) { 4958 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name, 4959 adj->ref_nr-1); 4960 adj->ref_nr--; 4961 return; 4962 } 4963 4964 if (adj->master) 4965 sysfs_remove_link(&(dev->dev.kobj), "master"); 4966 4967 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 4968 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 4969 4970 list_del_rcu(&adj->list); 4971 pr_debug("dev_put for %s, because link removed from %s to %s\n", 4972 adj_dev->name, dev->name, adj_dev->name); 4973 dev_put(adj_dev); 4974 kfree_rcu(adj, rcu); 4975 } 4976 4977 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 4978 struct net_device *upper_dev, 4979 struct list_head *up_list, 4980 struct list_head *down_list, 4981 void *private, bool master) 4982 { 4983 int ret; 4984 4985 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private, 4986 master); 4987 if (ret) 4988 return ret; 4989 4990 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private, 4991 false); 4992 if (ret) { 4993 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 4994 return ret; 4995 } 4996 4997 return 0; 4998 } 4999 5000 static int __netdev_adjacent_dev_link(struct net_device *dev, 5001 struct net_device *upper_dev) 5002 { 5003 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 5004 &dev->all_adj_list.upper, 5005 &upper_dev->all_adj_list.lower, 5006 NULL, false); 5007 } 5008 5009 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 5010 struct net_device *upper_dev, 5011 struct list_head *up_list, 5012 struct list_head *down_list) 5013 { 5014 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 5015 __netdev_adjacent_dev_remove(upper_dev, dev, down_list); 5016 } 5017 5018 static void __netdev_adjacent_dev_unlink(struct net_device *dev, 5019 struct net_device *upper_dev) 5020 { 5021 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 5022 &dev->all_adj_list.upper, 5023 &upper_dev->all_adj_list.lower); 5024 } 5025 5026 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 5027 struct net_device *upper_dev, 5028 void *private, bool master) 5029 { 5030 int ret = __netdev_adjacent_dev_link(dev, upper_dev); 5031 5032 if (ret) 5033 return ret; 5034 5035 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 5036 &dev->adj_list.upper, 5037 &upper_dev->adj_list.lower, 5038 private, master); 5039 if (ret) { 5040 __netdev_adjacent_dev_unlink(dev, upper_dev); 5041 return ret; 5042 } 5043 5044 return 0; 5045 } 5046 5047 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 5048 struct net_device *upper_dev) 5049 { 5050 __netdev_adjacent_dev_unlink(dev, upper_dev); 5051 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 5052 &dev->adj_list.upper, 5053 &upper_dev->adj_list.lower); 5054 } 5055 5056 static int __netdev_upper_dev_link(struct net_device *dev, 5057 struct net_device *upper_dev, bool master, 5058 void *private) 5059 { 5060 struct netdev_adjacent *i, *j, *to_i, *to_j; 5061 int ret = 0; 5062 5063 ASSERT_RTNL(); 5064 5065 if (dev == upper_dev) 5066 return -EBUSY; 5067 5068 /* To prevent loops, check if dev is not upper device to upper_dev. */ 5069 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper)) 5070 return -EBUSY; 5071 5072 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper)) 5073 return -EEXIST; 5074 5075 if (master && netdev_master_upper_dev_get(dev)) 5076 return -EBUSY; 5077 5078 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private, 5079 master); 5080 if (ret) 5081 return ret; 5082 5083 /* Now that we linked these devs, make all the upper_dev's 5084 * all_adj_list.upper visible to every dev's all_adj_list.lower an 5085 * versa, and don't forget the devices itself. All of these 5086 * links are non-neighbours. 5087 */ 5088 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5089 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5090 pr_debug("Interlinking %s with %s, non-neighbour\n", 5091 i->dev->name, j->dev->name); 5092 ret = __netdev_adjacent_dev_link(i->dev, j->dev); 5093 if (ret) 5094 goto rollback_mesh; 5095 } 5096 } 5097 5098 /* add dev to every upper_dev's upper device */ 5099 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 5100 pr_debug("linking %s's upper device %s with %s\n", 5101 upper_dev->name, i->dev->name, dev->name); 5102 ret = __netdev_adjacent_dev_link(dev, i->dev); 5103 if (ret) 5104 goto rollback_upper_mesh; 5105 } 5106 5107 /* add upper_dev to every dev's lower device */ 5108 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5109 pr_debug("linking %s's lower device %s with %s\n", dev->name, 5110 i->dev->name, upper_dev->name); 5111 ret = __netdev_adjacent_dev_link(i->dev, upper_dev); 5112 if (ret) 5113 goto rollback_lower_mesh; 5114 } 5115 5116 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 5117 return 0; 5118 5119 rollback_lower_mesh: 5120 to_i = i; 5121 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5122 if (i == to_i) 5123 break; 5124 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5125 } 5126 5127 i = NULL; 5128 5129 rollback_upper_mesh: 5130 to_i = i; 5131 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 5132 if (i == to_i) 5133 break; 5134 __netdev_adjacent_dev_unlink(dev, i->dev); 5135 } 5136 5137 i = j = NULL; 5138 5139 rollback_mesh: 5140 to_i = i; 5141 to_j = j; 5142 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5143 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5144 if (i == to_i && j == to_j) 5145 break; 5146 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5147 } 5148 if (i == to_i) 5149 break; 5150 } 5151 5152 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5153 5154 return ret; 5155 } 5156 5157 /** 5158 * netdev_upper_dev_link - Add a link to the upper device 5159 * @dev: device 5160 * @upper_dev: new upper device 5161 * 5162 * Adds a link to device which is upper to this one. The caller must hold 5163 * the RTNL lock. On a failure a negative errno code is returned. 5164 * On success the reference counts are adjusted and the function 5165 * returns zero. 5166 */ 5167 int netdev_upper_dev_link(struct net_device *dev, 5168 struct net_device *upper_dev) 5169 { 5170 return __netdev_upper_dev_link(dev, upper_dev, false, NULL); 5171 } 5172 EXPORT_SYMBOL(netdev_upper_dev_link); 5173 5174 /** 5175 * netdev_master_upper_dev_link - Add a master link to the upper device 5176 * @dev: device 5177 * @upper_dev: new upper device 5178 * 5179 * Adds a link to device which is upper to this one. In this case, only 5180 * one master upper device can be linked, although other non-master devices 5181 * might be linked as well. The caller must hold the RTNL lock. 5182 * On a failure a negative errno code is returned. On success the reference 5183 * counts are adjusted and the function returns zero. 5184 */ 5185 int netdev_master_upper_dev_link(struct net_device *dev, 5186 struct net_device *upper_dev) 5187 { 5188 return __netdev_upper_dev_link(dev, upper_dev, true, NULL); 5189 } 5190 EXPORT_SYMBOL(netdev_master_upper_dev_link); 5191 5192 int netdev_master_upper_dev_link_private(struct net_device *dev, 5193 struct net_device *upper_dev, 5194 void *private) 5195 { 5196 return __netdev_upper_dev_link(dev, upper_dev, true, private); 5197 } 5198 EXPORT_SYMBOL(netdev_master_upper_dev_link_private); 5199 5200 /** 5201 * netdev_upper_dev_unlink - Removes a link to upper device 5202 * @dev: device 5203 * @upper_dev: new upper device 5204 * 5205 * Removes a link to device which is upper to this one. The caller must hold 5206 * the RTNL lock. 5207 */ 5208 void netdev_upper_dev_unlink(struct net_device *dev, 5209 struct net_device *upper_dev) 5210 { 5211 struct netdev_adjacent *i, *j; 5212 ASSERT_RTNL(); 5213 5214 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5215 5216 /* Here is the tricky part. We must remove all dev's lower 5217 * devices from all upper_dev's upper devices and vice 5218 * versa, to maintain the graph relationship. 5219 */ 5220 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5221 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) 5222 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5223 5224 /* remove also the devices itself from lower/upper device 5225 * list 5226 */ 5227 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5228 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5229 5230 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) 5231 __netdev_adjacent_dev_unlink(dev, i->dev); 5232 5233 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 5234 } 5235 EXPORT_SYMBOL(netdev_upper_dev_unlink); 5236 5237 void netdev_adjacent_add_links(struct net_device *dev) 5238 { 5239 struct netdev_adjacent *iter; 5240 5241 struct net *net = dev_net(dev); 5242 5243 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5244 if (!net_eq(net,dev_net(iter->dev))) 5245 continue; 5246 netdev_adjacent_sysfs_add(iter->dev, dev, 5247 &iter->dev->adj_list.lower); 5248 netdev_adjacent_sysfs_add(dev, iter->dev, 5249 &dev->adj_list.upper); 5250 } 5251 5252 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5253 if (!net_eq(net,dev_net(iter->dev))) 5254 continue; 5255 netdev_adjacent_sysfs_add(iter->dev, dev, 5256 &iter->dev->adj_list.upper); 5257 netdev_adjacent_sysfs_add(dev, iter->dev, 5258 &dev->adj_list.lower); 5259 } 5260 } 5261 5262 void netdev_adjacent_del_links(struct net_device *dev) 5263 { 5264 struct netdev_adjacent *iter; 5265 5266 struct net *net = dev_net(dev); 5267 5268 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5269 if (!net_eq(net,dev_net(iter->dev))) 5270 continue; 5271 netdev_adjacent_sysfs_del(iter->dev, dev->name, 5272 &iter->dev->adj_list.lower); 5273 netdev_adjacent_sysfs_del(dev, iter->dev->name, 5274 &dev->adj_list.upper); 5275 } 5276 5277 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5278 if (!net_eq(net,dev_net(iter->dev))) 5279 continue; 5280 netdev_adjacent_sysfs_del(iter->dev, dev->name, 5281 &iter->dev->adj_list.upper); 5282 netdev_adjacent_sysfs_del(dev, iter->dev->name, 5283 &dev->adj_list.lower); 5284 } 5285 } 5286 5287 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 5288 { 5289 struct netdev_adjacent *iter; 5290 5291 struct net *net = dev_net(dev); 5292 5293 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5294 if (!net_eq(net,dev_net(iter->dev))) 5295 continue; 5296 netdev_adjacent_sysfs_del(iter->dev, oldname, 5297 &iter->dev->adj_list.lower); 5298 netdev_adjacent_sysfs_add(iter->dev, dev, 5299 &iter->dev->adj_list.lower); 5300 } 5301 5302 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5303 if (!net_eq(net,dev_net(iter->dev))) 5304 continue; 5305 netdev_adjacent_sysfs_del(iter->dev, oldname, 5306 &iter->dev->adj_list.upper); 5307 netdev_adjacent_sysfs_add(iter->dev, dev, 5308 &iter->dev->adj_list.upper); 5309 } 5310 } 5311 5312 void *netdev_lower_dev_get_private(struct net_device *dev, 5313 struct net_device *lower_dev) 5314 { 5315 struct netdev_adjacent *lower; 5316 5317 if (!lower_dev) 5318 return NULL; 5319 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower); 5320 if (!lower) 5321 return NULL; 5322 5323 return lower->private; 5324 } 5325 EXPORT_SYMBOL(netdev_lower_dev_get_private); 5326 5327 5328 int dev_get_nest_level(struct net_device *dev, 5329 bool (*type_check)(struct net_device *dev)) 5330 { 5331 struct net_device *lower = NULL; 5332 struct list_head *iter; 5333 int max_nest = -1; 5334 int nest; 5335 5336 ASSERT_RTNL(); 5337 5338 netdev_for_each_lower_dev(dev, lower, iter) { 5339 nest = dev_get_nest_level(lower, type_check); 5340 if (max_nest < nest) 5341 max_nest = nest; 5342 } 5343 5344 if (type_check(dev)) 5345 max_nest++; 5346 5347 return max_nest; 5348 } 5349 EXPORT_SYMBOL(dev_get_nest_level); 5350 5351 static void dev_change_rx_flags(struct net_device *dev, int flags) 5352 { 5353 const struct net_device_ops *ops = dev->netdev_ops; 5354 5355 if (ops->ndo_change_rx_flags) 5356 ops->ndo_change_rx_flags(dev, flags); 5357 } 5358 5359 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 5360 { 5361 unsigned int old_flags = dev->flags; 5362 kuid_t uid; 5363 kgid_t gid; 5364 5365 ASSERT_RTNL(); 5366 5367 dev->flags |= IFF_PROMISC; 5368 dev->promiscuity += inc; 5369 if (dev->promiscuity == 0) { 5370 /* 5371 * Avoid overflow. 5372 * If inc causes overflow, untouch promisc and return error. 5373 */ 5374 if (inc < 0) 5375 dev->flags &= ~IFF_PROMISC; 5376 else { 5377 dev->promiscuity -= inc; 5378 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 5379 dev->name); 5380 return -EOVERFLOW; 5381 } 5382 } 5383 if (dev->flags != old_flags) { 5384 pr_info("device %s %s promiscuous mode\n", 5385 dev->name, 5386 dev->flags & IFF_PROMISC ? "entered" : "left"); 5387 if (audit_enabled) { 5388 current_uid_gid(&uid, &gid); 5389 audit_log(current->audit_context, GFP_ATOMIC, 5390 AUDIT_ANOM_PROMISCUOUS, 5391 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 5392 dev->name, (dev->flags & IFF_PROMISC), 5393 (old_flags & IFF_PROMISC), 5394 from_kuid(&init_user_ns, audit_get_loginuid(current)), 5395 from_kuid(&init_user_ns, uid), 5396 from_kgid(&init_user_ns, gid), 5397 audit_get_sessionid(current)); 5398 } 5399 5400 dev_change_rx_flags(dev, IFF_PROMISC); 5401 } 5402 if (notify) 5403 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 5404 return 0; 5405 } 5406 5407 /** 5408 * dev_set_promiscuity - update promiscuity count on a device 5409 * @dev: device 5410 * @inc: modifier 5411 * 5412 * Add or remove promiscuity from a device. While the count in the device 5413 * remains above zero the interface remains promiscuous. Once it hits zero 5414 * the device reverts back to normal filtering operation. A negative inc 5415 * value is used to drop promiscuity on the device. 5416 * Return 0 if successful or a negative errno code on error. 5417 */ 5418 int dev_set_promiscuity(struct net_device *dev, int inc) 5419 { 5420 unsigned int old_flags = dev->flags; 5421 int err; 5422 5423 err = __dev_set_promiscuity(dev, inc, true); 5424 if (err < 0) 5425 return err; 5426 if (dev->flags != old_flags) 5427 dev_set_rx_mode(dev); 5428 return err; 5429 } 5430 EXPORT_SYMBOL(dev_set_promiscuity); 5431 5432 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 5433 { 5434 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 5435 5436 ASSERT_RTNL(); 5437 5438 dev->flags |= IFF_ALLMULTI; 5439 dev->allmulti += inc; 5440 if (dev->allmulti == 0) { 5441 /* 5442 * Avoid overflow. 5443 * If inc causes overflow, untouch allmulti and return error. 5444 */ 5445 if (inc < 0) 5446 dev->flags &= ~IFF_ALLMULTI; 5447 else { 5448 dev->allmulti -= inc; 5449 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 5450 dev->name); 5451 return -EOVERFLOW; 5452 } 5453 } 5454 if (dev->flags ^ old_flags) { 5455 dev_change_rx_flags(dev, IFF_ALLMULTI); 5456 dev_set_rx_mode(dev); 5457 if (notify) 5458 __dev_notify_flags(dev, old_flags, 5459 dev->gflags ^ old_gflags); 5460 } 5461 return 0; 5462 } 5463 5464 /** 5465 * dev_set_allmulti - update allmulti count on a device 5466 * @dev: device 5467 * @inc: modifier 5468 * 5469 * Add or remove reception of all multicast frames to a device. While the 5470 * count in the device remains above zero the interface remains listening 5471 * to all interfaces. Once it hits zero the device reverts back to normal 5472 * filtering operation. A negative @inc value is used to drop the counter 5473 * when releasing a resource needing all multicasts. 5474 * Return 0 if successful or a negative errno code on error. 5475 */ 5476 5477 int dev_set_allmulti(struct net_device *dev, int inc) 5478 { 5479 return __dev_set_allmulti(dev, inc, true); 5480 } 5481 EXPORT_SYMBOL(dev_set_allmulti); 5482 5483 /* 5484 * Upload unicast and multicast address lists to device and 5485 * configure RX filtering. When the device doesn't support unicast 5486 * filtering it is put in promiscuous mode while unicast addresses 5487 * are present. 5488 */ 5489 void __dev_set_rx_mode(struct net_device *dev) 5490 { 5491 const struct net_device_ops *ops = dev->netdev_ops; 5492 5493 /* dev_open will call this function so the list will stay sane. */ 5494 if (!(dev->flags&IFF_UP)) 5495 return; 5496 5497 if (!netif_device_present(dev)) 5498 return; 5499 5500 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 5501 /* Unicast addresses changes may only happen under the rtnl, 5502 * therefore calling __dev_set_promiscuity here is safe. 5503 */ 5504 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 5505 __dev_set_promiscuity(dev, 1, false); 5506 dev->uc_promisc = true; 5507 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 5508 __dev_set_promiscuity(dev, -1, false); 5509 dev->uc_promisc = false; 5510 } 5511 } 5512 5513 if (ops->ndo_set_rx_mode) 5514 ops->ndo_set_rx_mode(dev); 5515 } 5516 5517 void dev_set_rx_mode(struct net_device *dev) 5518 { 5519 netif_addr_lock_bh(dev); 5520 __dev_set_rx_mode(dev); 5521 netif_addr_unlock_bh(dev); 5522 } 5523 5524 /** 5525 * dev_get_flags - get flags reported to userspace 5526 * @dev: device 5527 * 5528 * Get the combination of flag bits exported through APIs to userspace. 5529 */ 5530 unsigned int dev_get_flags(const struct net_device *dev) 5531 { 5532 unsigned int flags; 5533 5534 flags = (dev->flags & ~(IFF_PROMISC | 5535 IFF_ALLMULTI | 5536 IFF_RUNNING | 5537 IFF_LOWER_UP | 5538 IFF_DORMANT)) | 5539 (dev->gflags & (IFF_PROMISC | 5540 IFF_ALLMULTI)); 5541 5542 if (netif_running(dev)) { 5543 if (netif_oper_up(dev)) 5544 flags |= IFF_RUNNING; 5545 if (netif_carrier_ok(dev)) 5546 flags |= IFF_LOWER_UP; 5547 if (netif_dormant(dev)) 5548 flags |= IFF_DORMANT; 5549 } 5550 5551 return flags; 5552 } 5553 EXPORT_SYMBOL(dev_get_flags); 5554 5555 int __dev_change_flags(struct net_device *dev, unsigned int flags) 5556 { 5557 unsigned int old_flags = dev->flags; 5558 int ret; 5559 5560 ASSERT_RTNL(); 5561 5562 /* 5563 * Set the flags on our device. 5564 */ 5565 5566 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 5567 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 5568 IFF_AUTOMEDIA)) | 5569 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 5570 IFF_ALLMULTI)); 5571 5572 /* 5573 * Load in the correct multicast list now the flags have changed. 5574 */ 5575 5576 if ((old_flags ^ flags) & IFF_MULTICAST) 5577 dev_change_rx_flags(dev, IFF_MULTICAST); 5578 5579 dev_set_rx_mode(dev); 5580 5581 /* 5582 * Have we downed the interface. We handle IFF_UP ourselves 5583 * according to user attempts to set it, rather than blindly 5584 * setting it. 5585 */ 5586 5587 ret = 0; 5588 if ((old_flags ^ flags) & IFF_UP) 5589 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 5590 5591 if ((flags ^ dev->gflags) & IFF_PROMISC) { 5592 int inc = (flags & IFF_PROMISC) ? 1 : -1; 5593 unsigned int old_flags = dev->flags; 5594 5595 dev->gflags ^= IFF_PROMISC; 5596 5597 if (__dev_set_promiscuity(dev, inc, false) >= 0) 5598 if (dev->flags != old_flags) 5599 dev_set_rx_mode(dev); 5600 } 5601 5602 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 5603 is important. Some (broken) drivers set IFF_PROMISC, when 5604 IFF_ALLMULTI is requested not asking us and not reporting. 5605 */ 5606 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 5607 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 5608 5609 dev->gflags ^= IFF_ALLMULTI; 5610 __dev_set_allmulti(dev, inc, false); 5611 } 5612 5613 return ret; 5614 } 5615 5616 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 5617 unsigned int gchanges) 5618 { 5619 unsigned int changes = dev->flags ^ old_flags; 5620 5621 if (gchanges) 5622 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 5623 5624 if (changes & IFF_UP) { 5625 if (dev->flags & IFF_UP) 5626 call_netdevice_notifiers(NETDEV_UP, dev); 5627 else 5628 call_netdevice_notifiers(NETDEV_DOWN, dev); 5629 } 5630 5631 if (dev->flags & IFF_UP && 5632 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 5633 struct netdev_notifier_change_info change_info; 5634 5635 change_info.flags_changed = changes; 5636 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 5637 &change_info.info); 5638 } 5639 } 5640 5641 /** 5642 * dev_change_flags - change device settings 5643 * @dev: device 5644 * @flags: device state flags 5645 * 5646 * Change settings on device based state flags. The flags are 5647 * in the userspace exported format. 5648 */ 5649 int dev_change_flags(struct net_device *dev, unsigned int flags) 5650 { 5651 int ret; 5652 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 5653 5654 ret = __dev_change_flags(dev, flags); 5655 if (ret < 0) 5656 return ret; 5657 5658 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 5659 __dev_notify_flags(dev, old_flags, changes); 5660 return ret; 5661 } 5662 EXPORT_SYMBOL(dev_change_flags); 5663 5664 static int __dev_set_mtu(struct net_device *dev, int new_mtu) 5665 { 5666 const struct net_device_ops *ops = dev->netdev_ops; 5667 5668 if (ops->ndo_change_mtu) 5669 return ops->ndo_change_mtu(dev, new_mtu); 5670 5671 dev->mtu = new_mtu; 5672 return 0; 5673 } 5674 5675 /** 5676 * dev_set_mtu - Change maximum transfer unit 5677 * @dev: device 5678 * @new_mtu: new transfer unit 5679 * 5680 * Change the maximum transfer size of the network device. 5681 */ 5682 int dev_set_mtu(struct net_device *dev, int new_mtu) 5683 { 5684 int err, orig_mtu; 5685 5686 if (new_mtu == dev->mtu) 5687 return 0; 5688 5689 /* MTU must be positive. */ 5690 if (new_mtu < 0) 5691 return -EINVAL; 5692 5693 if (!netif_device_present(dev)) 5694 return -ENODEV; 5695 5696 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 5697 err = notifier_to_errno(err); 5698 if (err) 5699 return err; 5700 5701 orig_mtu = dev->mtu; 5702 err = __dev_set_mtu(dev, new_mtu); 5703 5704 if (!err) { 5705 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 5706 err = notifier_to_errno(err); 5707 if (err) { 5708 /* setting mtu back and notifying everyone again, 5709 * so that they have a chance to revert changes. 5710 */ 5711 __dev_set_mtu(dev, orig_mtu); 5712 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 5713 } 5714 } 5715 return err; 5716 } 5717 EXPORT_SYMBOL(dev_set_mtu); 5718 5719 /** 5720 * dev_set_group - Change group this device belongs to 5721 * @dev: device 5722 * @new_group: group this device should belong to 5723 */ 5724 void dev_set_group(struct net_device *dev, int new_group) 5725 { 5726 dev->group = new_group; 5727 } 5728 EXPORT_SYMBOL(dev_set_group); 5729 5730 /** 5731 * dev_set_mac_address - Change Media Access Control Address 5732 * @dev: device 5733 * @sa: new address 5734 * 5735 * Change the hardware (MAC) address of the device 5736 */ 5737 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 5738 { 5739 const struct net_device_ops *ops = dev->netdev_ops; 5740 int err; 5741 5742 if (!ops->ndo_set_mac_address) 5743 return -EOPNOTSUPP; 5744 if (sa->sa_family != dev->type) 5745 return -EINVAL; 5746 if (!netif_device_present(dev)) 5747 return -ENODEV; 5748 err = ops->ndo_set_mac_address(dev, sa); 5749 if (err) 5750 return err; 5751 dev->addr_assign_type = NET_ADDR_SET; 5752 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 5753 add_device_randomness(dev->dev_addr, dev->addr_len); 5754 return 0; 5755 } 5756 EXPORT_SYMBOL(dev_set_mac_address); 5757 5758 /** 5759 * dev_change_carrier - Change device carrier 5760 * @dev: device 5761 * @new_carrier: new value 5762 * 5763 * Change device carrier 5764 */ 5765 int dev_change_carrier(struct net_device *dev, bool new_carrier) 5766 { 5767 const struct net_device_ops *ops = dev->netdev_ops; 5768 5769 if (!ops->ndo_change_carrier) 5770 return -EOPNOTSUPP; 5771 if (!netif_device_present(dev)) 5772 return -ENODEV; 5773 return ops->ndo_change_carrier(dev, new_carrier); 5774 } 5775 EXPORT_SYMBOL(dev_change_carrier); 5776 5777 /** 5778 * dev_get_phys_port_id - Get device physical port ID 5779 * @dev: device 5780 * @ppid: port ID 5781 * 5782 * Get device physical port ID 5783 */ 5784 int dev_get_phys_port_id(struct net_device *dev, 5785 struct netdev_phys_port_id *ppid) 5786 { 5787 const struct net_device_ops *ops = dev->netdev_ops; 5788 5789 if (!ops->ndo_get_phys_port_id) 5790 return -EOPNOTSUPP; 5791 return ops->ndo_get_phys_port_id(dev, ppid); 5792 } 5793 EXPORT_SYMBOL(dev_get_phys_port_id); 5794 5795 /** 5796 * dev_new_index - allocate an ifindex 5797 * @net: the applicable net namespace 5798 * 5799 * Returns a suitable unique value for a new device interface 5800 * number. The caller must hold the rtnl semaphore or the 5801 * dev_base_lock to be sure it remains unique. 5802 */ 5803 static int dev_new_index(struct net *net) 5804 { 5805 int ifindex = net->ifindex; 5806 for (;;) { 5807 if (++ifindex <= 0) 5808 ifindex = 1; 5809 if (!__dev_get_by_index(net, ifindex)) 5810 return net->ifindex = ifindex; 5811 } 5812 } 5813 5814 /* Delayed registration/unregisteration */ 5815 static LIST_HEAD(net_todo_list); 5816 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 5817 5818 static void net_set_todo(struct net_device *dev) 5819 { 5820 list_add_tail(&dev->todo_list, &net_todo_list); 5821 dev_net(dev)->dev_unreg_count++; 5822 } 5823 5824 static void rollback_registered_many(struct list_head *head) 5825 { 5826 struct net_device *dev, *tmp; 5827 LIST_HEAD(close_head); 5828 5829 BUG_ON(dev_boot_phase); 5830 ASSERT_RTNL(); 5831 5832 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5833 /* Some devices call without registering 5834 * for initialization unwind. Remove those 5835 * devices and proceed with the remaining. 5836 */ 5837 if (dev->reg_state == NETREG_UNINITIALIZED) { 5838 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 5839 dev->name, dev); 5840 5841 WARN_ON(1); 5842 list_del(&dev->unreg_list); 5843 continue; 5844 } 5845 dev->dismantle = true; 5846 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5847 } 5848 5849 /* If device is running, close it first. */ 5850 list_for_each_entry(dev, head, unreg_list) 5851 list_add_tail(&dev->close_list, &close_head); 5852 dev_close_many(&close_head); 5853 5854 list_for_each_entry(dev, head, unreg_list) { 5855 /* And unlink it from device chain. */ 5856 unlist_netdevice(dev); 5857 5858 dev->reg_state = NETREG_UNREGISTERING; 5859 } 5860 5861 synchronize_net(); 5862 5863 list_for_each_entry(dev, head, unreg_list) { 5864 /* Shutdown queueing discipline. */ 5865 dev_shutdown(dev); 5866 5867 5868 /* Notify protocols, that we are about to destroy 5869 this device. They should clean all the things. 5870 */ 5871 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5872 5873 /* 5874 * Flush the unicast and multicast chains 5875 */ 5876 dev_uc_flush(dev); 5877 dev_mc_flush(dev); 5878 5879 if (dev->netdev_ops->ndo_uninit) 5880 dev->netdev_ops->ndo_uninit(dev); 5881 5882 if (!dev->rtnl_link_ops || 5883 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5884 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 5885 5886 /* Notifier chain MUST detach us all upper devices. */ 5887 WARN_ON(netdev_has_any_upper_dev(dev)); 5888 5889 /* Remove entries from kobject tree */ 5890 netdev_unregister_kobject(dev); 5891 #ifdef CONFIG_XPS 5892 /* Remove XPS queueing entries */ 5893 netif_reset_xps_queues_gt(dev, 0); 5894 #endif 5895 } 5896 5897 synchronize_net(); 5898 5899 list_for_each_entry(dev, head, unreg_list) 5900 dev_put(dev); 5901 } 5902 5903 static void rollback_registered(struct net_device *dev) 5904 { 5905 LIST_HEAD(single); 5906 5907 list_add(&dev->unreg_list, &single); 5908 rollback_registered_many(&single); 5909 list_del(&single); 5910 } 5911 5912 static netdev_features_t netdev_fix_features(struct net_device *dev, 5913 netdev_features_t features) 5914 { 5915 /* Fix illegal checksum combinations */ 5916 if ((features & NETIF_F_HW_CSUM) && 5917 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5918 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 5919 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5920 } 5921 5922 /* TSO requires that SG is present as well. */ 5923 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 5924 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 5925 features &= ~NETIF_F_ALL_TSO; 5926 } 5927 5928 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 5929 !(features & NETIF_F_IP_CSUM)) { 5930 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 5931 features &= ~NETIF_F_TSO; 5932 features &= ~NETIF_F_TSO_ECN; 5933 } 5934 5935 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 5936 !(features & NETIF_F_IPV6_CSUM)) { 5937 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 5938 features &= ~NETIF_F_TSO6; 5939 } 5940 5941 /* TSO ECN requires that TSO is present as well. */ 5942 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 5943 features &= ~NETIF_F_TSO_ECN; 5944 5945 /* Software GSO depends on SG. */ 5946 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 5947 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 5948 features &= ~NETIF_F_GSO; 5949 } 5950 5951 /* UFO needs SG and checksumming */ 5952 if (features & NETIF_F_UFO) { 5953 /* maybe split UFO into V4 and V6? */ 5954 if (!((features & NETIF_F_GEN_CSUM) || 5955 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5956 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5957 netdev_dbg(dev, 5958 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 5959 features &= ~NETIF_F_UFO; 5960 } 5961 5962 if (!(features & NETIF_F_SG)) { 5963 netdev_dbg(dev, 5964 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 5965 features &= ~NETIF_F_UFO; 5966 } 5967 } 5968 5969 #ifdef CONFIG_NET_RX_BUSY_POLL 5970 if (dev->netdev_ops->ndo_busy_poll) 5971 features |= NETIF_F_BUSY_POLL; 5972 else 5973 #endif 5974 features &= ~NETIF_F_BUSY_POLL; 5975 5976 return features; 5977 } 5978 5979 int __netdev_update_features(struct net_device *dev) 5980 { 5981 netdev_features_t features; 5982 int err = 0; 5983 5984 ASSERT_RTNL(); 5985 5986 features = netdev_get_wanted_features(dev); 5987 5988 if (dev->netdev_ops->ndo_fix_features) 5989 features = dev->netdev_ops->ndo_fix_features(dev, features); 5990 5991 /* driver might be less strict about feature dependencies */ 5992 features = netdev_fix_features(dev, features); 5993 5994 if (dev->features == features) 5995 return 0; 5996 5997 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 5998 &dev->features, &features); 5999 6000 if (dev->netdev_ops->ndo_set_features) 6001 err = dev->netdev_ops->ndo_set_features(dev, features); 6002 6003 if (unlikely(err < 0)) { 6004 netdev_err(dev, 6005 "set_features() failed (%d); wanted %pNF, left %pNF\n", 6006 err, &features, &dev->features); 6007 return -1; 6008 } 6009 6010 if (!err) 6011 dev->features = features; 6012 6013 return 1; 6014 } 6015 6016 /** 6017 * netdev_update_features - recalculate device features 6018 * @dev: the device to check 6019 * 6020 * Recalculate dev->features set and send notifications if it 6021 * has changed. Should be called after driver or hardware dependent 6022 * conditions might have changed that influence the features. 6023 */ 6024 void netdev_update_features(struct net_device *dev) 6025 { 6026 if (__netdev_update_features(dev)) 6027 netdev_features_change(dev); 6028 } 6029 EXPORT_SYMBOL(netdev_update_features); 6030 6031 /** 6032 * netdev_change_features - recalculate device features 6033 * @dev: the device to check 6034 * 6035 * Recalculate dev->features set and send notifications even 6036 * if they have not changed. Should be called instead of 6037 * netdev_update_features() if also dev->vlan_features might 6038 * have changed to allow the changes to be propagated to stacked 6039 * VLAN devices. 6040 */ 6041 void netdev_change_features(struct net_device *dev) 6042 { 6043 __netdev_update_features(dev); 6044 netdev_features_change(dev); 6045 } 6046 EXPORT_SYMBOL(netdev_change_features); 6047 6048 /** 6049 * netif_stacked_transfer_operstate - transfer operstate 6050 * @rootdev: the root or lower level device to transfer state from 6051 * @dev: the device to transfer operstate to 6052 * 6053 * Transfer operational state from root to device. This is normally 6054 * called when a stacking relationship exists between the root 6055 * device and the device(a leaf device). 6056 */ 6057 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 6058 struct net_device *dev) 6059 { 6060 if (rootdev->operstate == IF_OPER_DORMANT) 6061 netif_dormant_on(dev); 6062 else 6063 netif_dormant_off(dev); 6064 6065 if (netif_carrier_ok(rootdev)) { 6066 if (!netif_carrier_ok(dev)) 6067 netif_carrier_on(dev); 6068 } else { 6069 if (netif_carrier_ok(dev)) 6070 netif_carrier_off(dev); 6071 } 6072 } 6073 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 6074 6075 #ifdef CONFIG_SYSFS 6076 static int netif_alloc_rx_queues(struct net_device *dev) 6077 { 6078 unsigned int i, count = dev->num_rx_queues; 6079 struct netdev_rx_queue *rx; 6080 6081 BUG_ON(count < 1); 6082 6083 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 6084 if (!rx) 6085 return -ENOMEM; 6086 6087 dev->_rx = rx; 6088 6089 for (i = 0; i < count; i++) 6090 rx[i].dev = dev; 6091 return 0; 6092 } 6093 #endif 6094 6095 static void netdev_init_one_queue(struct net_device *dev, 6096 struct netdev_queue *queue, void *_unused) 6097 { 6098 /* Initialize queue lock */ 6099 spin_lock_init(&queue->_xmit_lock); 6100 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 6101 queue->xmit_lock_owner = -1; 6102 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 6103 queue->dev = dev; 6104 #ifdef CONFIG_BQL 6105 dql_init(&queue->dql, HZ); 6106 #endif 6107 } 6108 6109 static void netif_free_tx_queues(struct net_device *dev) 6110 { 6111 kvfree(dev->_tx); 6112 } 6113 6114 static int netif_alloc_netdev_queues(struct net_device *dev) 6115 { 6116 unsigned int count = dev->num_tx_queues; 6117 struct netdev_queue *tx; 6118 size_t sz = count * sizeof(*tx); 6119 6120 BUG_ON(count < 1 || count > 0xffff); 6121 6122 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6123 if (!tx) { 6124 tx = vzalloc(sz); 6125 if (!tx) 6126 return -ENOMEM; 6127 } 6128 dev->_tx = tx; 6129 6130 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 6131 spin_lock_init(&dev->tx_global_lock); 6132 6133 return 0; 6134 } 6135 6136 /** 6137 * register_netdevice - register a network device 6138 * @dev: device to register 6139 * 6140 * Take a completed network device structure and add it to the kernel 6141 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 6142 * chain. 0 is returned on success. A negative errno code is returned 6143 * on a failure to set up the device, or if the name is a duplicate. 6144 * 6145 * Callers must hold the rtnl semaphore. You may want 6146 * register_netdev() instead of this. 6147 * 6148 * BUGS: 6149 * The locking appears insufficient to guarantee two parallel registers 6150 * will not get the same name. 6151 */ 6152 6153 int register_netdevice(struct net_device *dev) 6154 { 6155 int ret; 6156 struct net *net = dev_net(dev); 6157 6158 BUG_ON(dev_boot_phase); 6159 ASSERT_RTNL(); 6160 6161 might_sleep(); 6162 6163 /* When net_device's are persistent, this will be fatal. */ 6164 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 6165 BUG_ON(!net); 6166 6167 spin_lock_init(&dev->addr_list_lock); 6168 netdev_set_addr_lockdep_class(dev); 6169 6170 dev->iflink = -1; 6171 6172 ret = dev_get_valid_name(net, dev, dev->name); 6173 if (ret < 0) 6174 goto out; 6175 6176 /* Init, if this function is available */ 6177 if (dev->netdev_ops->ndo_init) { 6178 ret = dev->netdev_ops->ndo_init(dev); 6179 if (ret) { 6180 if (ret > 0) 6181 ret = -EIO; 6182 goto out; 6183 } 6184 } 6185 6186 if (((dev->hw_features | dev->features) & 6187 NETIF_F_HW_VLAN_CTAG_FILTER) && 6188 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 6189 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 6190 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 6191 ret = -EINVAL; 6192 goto err_uninit; 6193 } 6194 6195 ret = -EBUSY; 6196 if (!dev->ifindex) 6197 dev->ifindex = dev_new_index(net); 6198 else if (__dev_get_by_index(net, dev->ifindex)) 6199 goto err_uninit; 6200 6201 if (dev->iflink == -1) 6202 dev->iflink = dev->ifindex; 6203 6204 /* Transfer changeable features to wanted_features and enable 6205 * software offloads (GSO and GRO). 6206 */ 6207 dev->hw_features |= NETIF_F_SOFT_FEATURES; 6208 dev->features |= NETIF_F_SOFT_FEATURES; 6209 dev->wanted_features = dev->features & dev->hw_features; 6210 6211 if (!(dev->flags & IFF_LOOPBACK)) { 6212 dev->hw_features |= NETIF_F_NOCACHE_COPY; 6213 } 6214 6215 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 6216 */ 6217 dev->vlan_features |= NETIF_F_HIGHDMA; 6218 6219 /* Make NETIF_F_SG inheritable to tunnel devices. 6220 */ 6221 dev->hw_enc_features |= NETIF_F_SG; 6222 6223 /* Make NETIF_F_SG inheritable to MPLS. 6224 */ 6225 dev->mpls_features |= NETIF_F_SG; 6226 6227 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 6228 ret = notifier_to_errno(ret); 6229 if (ret) 6230 goto err_uninit; 6231 6232 ret = netdev_register_kobject(dev); 6233 if (ret) 6234 goto err_uninit; 6235 dev->reg_state = NETREG_REGISTERED; 6236 6237 __netdev_update_features(dev); 6238 6239 /* 6240 * Default initial state at registry is that the 6241 * device is present. 6242 */ 6243 6244 set_bit(__LINK_STATE_PRESENT, &dev->state); 6245 6246 linkwatch_init_dev(dev); 6247 6248 dev_init_scheduler(dev); 6249 dev_hold(dev); 6250 list_netdevice(dev); 6251 add_device_randomness(dev->dev_addr, dev->addr_len); 6252 6253 /* If the device has permanent device address, driver should 6254 * set dev_addr and also addr_assign_type should be set to 6255 * NET_ADDR_PERM (default value). 6256 */ 6257 if (dev->addr_assign_type == NET_ADDR_PERM) 6258 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 6259 6260 /* Notify protocols, that a new device appeared. */ 6261 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 6262 ret = notifier_to_errno(ret); 6263 if (ret) { 6264 rollback_registered(dev); 6265 dev->reg_state = NETREG_UNREGISTERED; 6266 } 6267 /* 6268 * Prevent userspace races by waiting until the network 6269 * device is fully setup before sending notifications. 6270 */ 6271 if (!dev->rtnl_link_ops || 6272 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 6273 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 6274 6275 out: 6276 return ret; 6277 6278 err_uninit: 6279 if (dev->netdev_ops->ndo_uninit) 6280 dev->netdev_ops->ndo_uninit(dev); 6281 goto out; 6282 } 6283 EXPORT_SYMBOL(register_netdevice); 6284 6285 /** 6286 * init_dummy_netdev - init a dummy network device for NAPI 6287 * @dev: device to init 6288 * 6289 * This takes a network device structure and initialize the minimum 6290 * amount of fields so it can be used to schedule NAPI polls without 6291 * registering a full blown interface. This is to be used by drivers 6292 * that need to tie several hardware interfaces to a single NAPI 6293 * poll scheduler due to HW limitations. 6294 */ 6295 int init_dummy_netdev(struct net_device *dev) 6296 { 6297 /* Clear everything. Note we don't initialize spinlocks 6298 * are they aren't supposed to be taken by any of the 6299 * NAPI code and this dummy netdev is supposed to be 6300 * only ever used for NAPI polls 6301 */ 6302 memset(dev, 0, sizeof(struct net_device)); 6303 6304 /* make sure we BUG if trying to hit standard 6305 * register/unregister code path 6306 */ 6307 dev->reg_state = NETREG_DUMMY; 6308 6309 /* NAPI wants this */ 6310 INIT_LIST_HEAD(&dev->napi_list); 6311 6312 /* a dummy interface is started by default */ 6313 set_bit(__LINK_STATE_PRESENT, &dev->state); 6314 set_bit(__LINK_STATE_START, &dev->state); 6315 6316 /* Note : We dont allocate pcpu_refcnt for dummy devices, 6317 * because users of this 'device' dont need to change 6318 * its refcount. 6319 */ 6320 6321 return 0; 6322 } 6323 EXPORT_SYMBOL_GPL(init_dummy_netdev); 6324 6325 6326 /** 6327 * register_netdev - register a network device 6328 * @dev: device to register 6329 * 6330 * Take a completed network device structure and add it to the kernel 6331 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 6332 * chain. 0 is returned on success. A negative errno code is returned 6333 * on a failure to set up the device, or if the name is a duplicate. 6334 * 6335 * This is a wrapper around register_netdevice that takes the rtnl semaphore 6336 * and expands the device name if you passed a format string to 6337 * alloc_netdev. 6338 */ 6339 int register_netdev(struct net_device *dev) 6340 { 6341 int err; 6342 6343 rtnl_lock(); 6344 err = register_netdevice(dev); 6345 rtnl_unlock(); 6346 return err; 6347 } 6348 EXPORT_SYMBOL(register_netdev); 6349 6350 int netdev_refcnt_read(const struct net_device *dev) 6351 { 6352 int i, refcnt = 0; 6353 6354 for_each_possible_cpu(i) 6355 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 6356 return refcnt; 6357 } 6358 EXPORT_SYMBOL(netdev_refcnt_read); 6359 6360 /** 6361 * netdev_wait_allrefs - wait until all references are gone. 6362 * @dev: target net_device 6363 * 6364 * This is called when unregistering network devices. 6365 * 6366 * Any protocol or device that holds a reference should register 6367 * for netdevice notification, and cleanup and put back the 6368 * reference if they receive an UNREGISTER event. 6369 * We can get stuck here if buggy protocols don't correctly 6370 * call dev_put. 6371 */ 6372 static void netdev_wait_allrefs(struct net_device *dev) 6373 { 6374 unsigned long rebroadcast_time, warning_time; 6375 int refcnt; 6376 6377 linkwatch_forget_dev(dev); 6378 6379 rebroadcast_time = warning_time = jiffies; 6380 refcnt = netdev_refcnt_read(dev); 6381 6382 while (refcnt != 0) { 6383 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 6384 rtnl_lock(); 6385 6386 /* Rebroadcast unregister notification */ 6387 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6388 6389 __rtnl_unlock(); 6390 rcu_barrier(); 6391 rtnl_lock(); 6392 6393 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6394 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 6395 &dev->state)) { 6396 /* We must not have linkwatch events 6397 * pending on unregister. If this 6398 * happens, we simply run the queue 6399 * unscheduled, resulting in a noop 6400 * for this device. 6401 */ 6402 linkwatch_run_queue(); 6403 } 6404 6405 __rtnl_unlock(); 6406 6407 rebroadcast_time = jiffies; 6408 } 6409 6410 msleep(250); 6411 6412 refcnt = netdev_refcnt_read(dev); 6413 6414 if (time_after(jiffies, warning_time + 10 * HZ)) { 6415 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 6416 dev->name, refcnt); 6417 warning_time = jiffies; 6418 } 6419 } 6420 } 6421 6422 /* The sequence is: 6423 * 6424 * rtnl_lock(); 6425 * ... 6426 * register_netdevice(x1); 6427 * register_netdevice(x2); 6428 * ... 6429 * unregister_netdevice(y1); 6430 * unregister_netdevice(y2); 6431 * ... 6432 * rtnl_unlock(); 6433 * free_netdev(y1); 6434 * free_netdev(y2); 6435 * 6436 * We are invoked by rtnl_unlock(). 6437 * This allows us to deal with problems: 6438 * 1) We can delete sysfs objects which invoke hotplug 6439 * without deadlocking with linkwatch via keventd. 6440 * 2) Since we run with the RTNL semaphore not held, we can sleep 6441 * safely in order to wait for the netdev refcnt to drop to zero. 6442 * 6443 * We must not return until all unregister events added during 6444 * the interval the lock was held have been completed. 6445 */ 6446 void netdev_run_todo(void) 6447 { 6448 struct list_head list; 6449 6450 /* Snapshot list, allow later requests */ 6451 list_replace_init(&net_todo_list, &list); 6452 6453 __rtnl_unlock(); 6454 6455 6456 /* Wait for rcu callbacks to finish before next phase */ 6457 if (!list_empty(&list)) 6458 rcu_barrier(); 6459 6460 while (!list_empty(&list)) { 6461 struct net_device *dev 6462 = list_first_entry(&list, struct net_device, todo_list); 6463 list_del(&dev->todo_list); 6464 6465 rtnl_lock(); 6466 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6467 __rtnl_unlock(); 6468 6469 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 6470 pr_err("network todo '%s' but state %d\n", 6471 dev->name, dev->reg_state); 6472 dump_stack(); 6473 continue; 6474 } 6475 6476 dev->reg_state = NETREG_UNREGISTERED; 6477 6478 on_each_cpu(flush_backlog, dev, 1); 6479 6480 netdev_wait_allrefs(dev); 6481 6482 /* paranoia */ 6483 BUG_ON(netdev_refcnt_read(dev)); 6484 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 6485 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 6486 WARN_ON(dev->dn_ptr); 6487 6488 if (dev->destructor) 6489 dev->destructor(dev); 6490 6491 /* Report a network device has been unregistered */ 6492 rtnl_lock(); 6493 dev_net(dev)->dev_unreg_count--; 6494 __rtnl_unlock(); 6495 wake_up(&netdev_unregistering_wq); 6496 6497 /* Free network device */ 6498 kobject_put(&dev->dev.kobj); 6499 } 6500 } 6501 6502 /* Convert net_device_stats to rtnl_link_stats64. They have the same 6503 * fields in the same order, with only the type differing. 6504 */ 6505 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 6506 const struct net_device_stats *netdev_stats) 6507 { 6508 #if BITS_PER_LONG == 64 6509 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 6510 memcpy(stats64, netdev_stats, sizeof(*stats64)); 6511 #else 6512 size_t i, n = sizeof(*stats64) / sizeof(u64); 6513 const unsigned long *src = (const unsigned long *)netdev_stats; 6514 u64 *dst = (u64 *)stats64; 6515 6516 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 6517 sizeof(*stats64) / sizeof(u64)); 6518 for (i = 0; i < n; i++) 6519 dst[i] = src[i]; 6520 #endif 6521 } 6522 EXPORT_SYMBOL(netdev_stats_to_stats64); 6523 6524 /** 6525 * dev_get_stats - get network device statistics 6526 * @dev: device to get statistics from 6527 * @storage: place to store stats 6528 * 6529 * Get network statistics from device. Return @storage. 6530 * The device driver may provide its own method by setting 6531 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 6532 * otherwise the internal statistics structure is used. 6533 */ 6534 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 6535 struct rtnl_link_stats64 *storage) 6536 { 6537 const struct net_device_ops *ops = dev->netdev_ops; 6538 6539 if (ops->ndo_get_stats64) { 6540 memset(storage, 0, sizeof(*storage)); 6541 ops->ndo_get_stats64(dev, storage); 6542 } else if (ops->ndo_get_stats) { 6543 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 6544 } else { 6545 netdev_stats_to_stats64(storage, &dev->stats); 6546 } 6547 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 6548 storage->tx_dropped += atomic_long_read(&dev->tx_dropped); 6549 return storage; 6550 } 6551 EXPORT_SYMBOL(dev_get_stats); 6552 6553 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 6554 { 6555 struct netdev_queue *queue = dev_ingress_queue(dev); 6556 6557 #ifdef CONFIG_NET_CLS_ACT 6558 if (queue) 6559 return queue; 6560 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 6561 if (!queue) 6562 return NULL; 6563 netdev_init_one_queue(dev, queue, NULL); 6564 queue->qdisc = &noop_qdisc; 6565 queue->qdisc_sleeping = &noop_qdisc; 6566 rcu_assign_pointer(dev->ingress_queue, queue); 6567 #endif 6568 return queue; 6569 } 6570 6571 static const struct ethtool_ops default_ethtool_ops; 6572 6573 void netdev_set_default_ethtool_ops(struct net_device *dev, 6574 const struct ethtool_ops *ops) 6575 { 6576 if (dev->ethtool_ops == &default_ethtool_ops) 6577 dev->ethtool_ops = ops; 6578 } 6579 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 6580 6581 void netdev_freemem(struct net_device *dev) 6582 { 6583 char *addr = (char *)dev - dev->padded; 6584 6585 kvfree(addr); 6586 } 6587 6588 /** 6589 * alloc_netdev_mqs - allocate network device 6590 * @sizeof_priv: size of private data to allocate space for 6591 * @name: device name format string 6592 * @name_assign_type: origin of device name 6593 * @setup: callback to initialize device 6594 * @txqs: the number of TX subqueues to allocate 6595 * @rxqs: the number of RX subqueues to allocate 6596 * 6597 * Allocates a struct net_device with private data area for driver use 6598 * and performs basic initialization. Also allocates subqueue structs 6599 * for each queue on the device. 6600 */ 6601 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 6602 unsigned char name_assign_type, 6603 void (*setup)(struct net_device *), 6604 unsigned int txqs, unsigned int rxqs) 6605 { 6606 struct net_device *dev; 6607 size_t alloc_size; 6608 struct net_device *p; 6609 6610 BUG_ON(strlen(name) >= sizeof(dev->name)); 6611 6612 if (txqs < 1) { 6613 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 6614 return NULL; 6615 } 6616 6617 #ifdef CONFIG_SYSFS 6618 if (rxqs < 1) { 6619 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 6620 return NULL; 6621 } 6622 #endif 6623 6624 alloc_size = sizeof(struct net_device); 6625 if (sizeof_priv) { 6626 /* ensure 32-byte alignment of private area */ 6627 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 6628 alloc_size += sizeof_priv; 6629 } 6630 /* ensure 32-byte alignment of whole construct */ 6631 alloc_size += NETDEV_ALIGN - 1; 6632 6633 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6634 if (!p) 6635 p = vzalloc(alloc_size); 6636 if (!p) 6637 return NULL; 6638 6639 dev = PTR_ALIGN(p, NETDEV_ALIGN); 6640 dev->padded = (char *)dev - (char *)p; 6641 6642 dev->pcpu_refcnt = alloc_percpu(int); 6643 if (!dev->pcpu_refcnt) 6644 goto free_dev; 6645 6646 if (dev_addr_init(dev)) 6647 goto free_pcpu; 6648 6649 dev_mc_init(dev); 6650 dev_uc_init(dev); 6651 6652 dev_net_set(dev, &init_net); 6653 6654 dev->gso_max_size = GSO_MAX_SIZE; 6655 dev->gso_max_segs = GSO_MAX_SEGS; 6656 dev->gso_min_segs = 0; 6657 6658 INIT_LIST_HEAD(&dev->napi_list); 6659 INIT_LIST_HEAD(&dev->unreg_list); 6660 INIT_LIST_HEAD(&dev->close_list); 6661 INIT_LIST_HEAD(&dev->link_watch_list); 6662 INIT_LIST_HEAD(&dev->adj_list.upper); 6663 INIT_LIST_HEAD(&dev->adj_list.lower); 6664 INIT_LIST_HEAD(&dev->all_adj_list.upper); 6665 INIT_LIST_HEAD(&dev->all_adj_list.lower); 6666 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 6667 setup(dev); 6668 6669 dev->num_tx_queues = txqs; 6670 dev->real_num_tx_queues = txqs; 6671 if (netif_alloc_netdev_queues(dev)) 6672 goto free_all; 6673 6674 #ifdef CONFIG_SYSFS 6675 dev->num_rx_queues = rxqs; 6676 dev->real_num_rx_queues = rxqs; 6677 if (netif_alloc_rx_queues(dev)) 6678 goto free_all; 6679 #endif 6680 6681 strcpy(dev->name, name); 6682 dev->name_assign_type = name_assign_type; 6683 dev->group = INIT_NETDEV_GROUP; 6684 if (!dev->ethtool_ops) 6685 dev->ethtool_ops = &default_ethtool_ops; 6686 return dev; 6687 6688 free_all: 6689 free_netdev(dev); 6690 return NULL; 6691 6692 free_pcpu: 6693 free_percpu(dev->pcpu_refcnt); 6694 free_dev: 6695 netdev_freemem(dev); 6696 return NULL; 6697 } 6698 EXPORT_SYMBOL(alloc_netdev_mqs); 6699 6700 /** 6701 * free_netdev - free network device 6702 * @dev: device 6703 * 6704 * This function does the last stage of destroying an allocated device 6705 * interface. The reference to the device object is released. 6706 * If this is the last reference then it will be freed. 6707 */ 6708 void free_netdev(struct net_device *dev) 6709 { 6710 struct napi_struct *p, *n; 6711 6712 release_net(dev_net(dev)); 6713 6714 netif_free_tx_queues(dev); 6715 #ifdef CONFIG_SYSFS 6716 kfree(dev->_rx); 6717 #endif 6718 6719 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 6720 6721 /* Flush device addresses */ 6722 dev_addr_flush(dev); 6723 6724 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 6725 netif_napi_del(p); 6726 6727 free_percpu(dev->pcpu_refcnt); 6728 dev->pcpu_refcnt = NULL; 6729 6730 /* Compatibility with error handling in drivers */ 6731 if (dev->reg_state == NETREG_UNINITIALIZED) { 6732 netdev_freemem(dev); 6733 return; 6734 } 6735 6736 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 6737 dev->reg_state = NETREG_RELEASED; 6738 6739 /* will free via device release */ 6740 put_device(&dev->dev); 6741 } 6742 EXPORT_SYMBOL(free_netdev); 6743 6744 /** 6745 * synchronize_net - Synchronize with packet receive processing 6746 * 6747 * Wait for packets currently being received to be done. 6748 * Does not block later packets from starting. 6749 */ 6750 void synchronize_net(void) 6751 { 6752 might_sleep(); 6753 if (rtnl_is_locked()) 6754 synchronize_rcu_expedited(); 6755 else 6756 synchronize_rcu(); 6757 } 6758 EXPORT_SYMBOL(synchronize_net); 6759 6760 /** 6761 * unregister_netdevice_queue - remove device from the kernel 6762 * @dev: device 6763 * @head: list 6764 * 6765 * This function shuts down a device interface and removes it 6766 * from the kernel tables. 6767 * If head not NULL, device is queued to be unregistered later. 6768 * 6769 * Callers must hold the rtnl semaphore. You may want 6770 * unregister_netdev() instead of this. 6771 */ 6772 6773 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 6774 { 6775 ASSERT_RTNL(); 6776 6777 if (head) { 6778 list_move_tail(&dev->unreg_list, head); 6779 } else { 6780 rollback_registered(dev); 6781 /* Finish processing unregister after unlock */ 6782 net_set_todo(dev); 6783 } 6784 } 6785 EXPORT_SYMBOL(unregister_netdevice_queue); 6786 6787 /** 6788 * unregister_netdevice_many - unregister many devices 6789 * @head: list of devices 6790 * 6791 * Note: As most callers use a stack allocated list_head, 6792 * we force a list_del() to make sure stack wont be corrupted later. 6793 */ 6794 void unregister_netdevice_many(struct list_head *head) 6795 { 6796 struct net_device *dev; 6797 6798 if (!list_empty(head)) { 6799 rollback_registered_many(head); 6800 list_for_each_entry(dev, head, unreg_list) 6801 net_set_todo(dev); 6802 list_del(head); 6803 } 6804 } 6805 EXPORT_SYMBOL(unregister_netdevice_many); 6806 6807 /** 6808 * unregister_netdev - remove device from the kernel 6809 * @dev: device 6810 * 6811 * This function shuts down a device interface and removes it 6812 * from the kernel tables. 6813 * 6814 * This is just a wrapper for unregister_netdevice that takes 6815 * the rtnl semaphore. In general you want to use this and not 6816 * unregister_netdevice. 6817 */ 6818 void unregister_netdev(struct net_device *dev) 6819 { 6820 rtnl_lock(); 6821 unregister_netdevice(dev); 6822 rtnl_unlock(); 6823 } 6824 EXPORT_SYMBOL(unregister_netdev); 6825 6826 /** 6827 * dev_change_net_namespace - move device to different nethost namespace 6828 * @dev: device 6829 * @net: network namespace 6830 * @pat: If not NULL name pattern to try if the current device name 6831 * is already taken in the destination network namespace. 6832 * 6833 * This function shuts down a device interface and moves it 6834 * to a new network namespace. On success 0 is returned, on 6835 * a failure a netagive errno code is returned. 6836 * 6837 * Callers must hold the rtnl semaphore. 6838 */ 6839 6840 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6841 { 6842 int err; 6843 6844 ASSERT_RTNL(); 6845 6846 /* Don't allow namespace local devices to be moved. */ 6847 err = -EINVAL; 6848 if (dev->features & NETIF_F_NETNS_LOCAL) 6849 goto out; 6850 6851 /* Ensure the device has been registrered */ 6852 if (dev->reg_state != NETREG_REGISTERED) 6853 goto out; 6854 6855 /* Get out if there is nothing todo */ 6856 err = 0; 6857 if (net_eq(dev_net(dev), net)) 6858 goto out; 6859 6860 /* Pick the destination device name, and ensure 6861 * we can use it in the destination network namespace. 6862 */ 6863 err = -EEXIST; 6864 if (__dev_get_by_name(net, dev->name)) { 6865 /* We get here if we can't use the current device name */ 6866 if (!pat) 6867 goto out; 6868 if (dev_get_valid_name(net, dev, pat) < 0) 6869 goto out; 6870 } 6871 6872 /* 6873 * And now a mini version of register_netdevice unregister_netdevice. 6874 */ 6875 6876 /* If device is running close it first. */ 6877 dev_close(dev); 6878 6879 /* And unlink it from device chain */ 6880 err = -ENODEV; 6881 unlist_netdevice(dev); 6882 6883 synchronize_net(); 6884 6885 /* Shutdown queueing discipline. */ 6886 dev_shutdown(dev); 6887 6888 /* Notify protocols, that we are about to destroy 6889 this device. They should clean all the things. 6890 6891 Note that dev->reg_state stays at NETREG_REGISTERED. 6892 This is wanted because this way 8021q and macvlan know 6893 the device is just moving and can keep their slaves up. 6894 */ 6895 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6896 rcu_barrier(); 6897 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6898 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 6899 6900 /* 6901 * Flush the unicast and multicast chains 6902 */ 6903 dev_uc_flush(dev); 6904 dev_mc_flush(dev); 6905 6906 /* Send a netdev-removed uevent to the old namespace */ 6907 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 6908 netdev_adjacent_del_links(dev); 6909 6910 /* Actually switch the network namespace */ 6911 dev_net_set(dev, net); 6912 6913 /* If there is an ifindex conflict assign a new one */ 6914 if (__dev_get_by_index(net, dev->ifindex)) { 6915 int iflink = (dev->iflink == dev->ifindex); 6916 dev->ifindex = dev_new_index(net); 6917 if (iflink) 6918 dev->iflink = dev->ifindex; 6919 } 6920 6921 /* Send a netdev-add uevent to the new namespace */ 6922 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 6923 netdev_adjacent_add_links(dev); 6924 6925 /* Fixup kobjects */ 6926 err = device_rename(&dev->dev, dev->name); 6927 WARN_ON(err); 6928 6929 /* Add the device back in the hashes */ 6930 list_netdevice(dev); 6931 6932 /* Notify protocols, that a new device appeared. */ 6933 call_netdevice_notifiers(NETDEV_REGISTER, dev); 6934 6935 /* 6936 * Prevent userspace races by waiting until the network 6937 * device is fully setup before sending notifications. 6938 */ 6939 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 6940 6941 synchronize_net(); 6942 err = 0; 6943 out: 6944 return err; 6945 } 6946 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 6947 6948 static int dev_cpu_callback(struct notifier_block *nfb, 6949 unsigned long action, 6950 void *ocpu) 6951 { 6952 struct sk_buff **list_skb; 6953 struct sk_buff *skb; 6954 unsigned int cpu, oldcpu = (unsigned long)ocpu; 6955 struct softnet_data *sd, *oldsd; 6956 6957 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 6958 return NOTIFY_OK; 6959 6960 local_irq_disable(); 6961 cpu = smp_processor_id(); 6962 sd = &per_cpu(softnet_data, cpu); 6963 oldsd = &per_cpu(softnet_data, oldcpu); 6964 6965 /* Find end of our completion_queue. */ 6966 list_skb = &sd->completion_queue; 6967 while (*list_skb) 6968 list_skb = &(*list_skb)->next; 6969 /* Append completion queue from offline CPU. */ 6970 *list_skb = oldsd->completion_queue; 6971 oldsd->completion_queue = NULL; 6972 6973 /* Append output queue from offline CPU. */ 6974 if (oldsd->output_queue) { 6975 *sd->output_queue_tailp = oldsd->output_queue; 6976 sd->output_queue_tailp = oldsd->output_queue_tailp; 6977 oldsd->output_queue = NULL; 6978 oldsd->output_queue_tailp = &oldsd->output_queue; 6979 } 6980 /* Append NAPI poll list from offline CPU. */ 6981 if (!list_empty(&oldsd->poll_list)) { 6982 list_splice_init(&oldsd->poll_list, &sd->poll_list); 6983 raise_softirq_irqoff(NET_RX_SOFTIRQ); 6984 } 6985 6986 raise_softirq_irqoff(NET_TX_SOFTIRQ); 6987 local_irq_enable(); 6988 6989 /* Process offline CPU's input_pkt_queue */ 6990 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 6991 netif_rx_internal(skb); 6992 input_queue_head_incr(oldsd); 6993 } 6994 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 6995 netif_rx_internal(skb); 6996 input_queue_head_incr(oldsd); 6997 } 6998 6999 return NOTIFY_OK; 7000 } 7001 7002 7003 /** 7004 * netdev_increment_features - increment feature set by one 7005 * @all: current feature set 7006 * @one: new feature set 7007 * @mask: mask feature set 7008 * 7009 * Computes a new feature set after adding a device with feature set 7010 * @one to the master device with current feature set @all. Will not 7011 * enable anything that is off in @mask. Returns the new feature set. 7012 */ 7013 netdev_features_t netdev_increment_features(netdev_features_t all, 7014 netdev_features_t one, netdev_features_t mask) 7015 { 7016 if (mask & NETIF_F_GEN_CSUM) 7017 mask |= NETIF_F_ALL_CSUM; 7018 mask |= NETIF_F_VLAN_CHALLENGED; 7019 7020 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 7021 all &= one | ~NETIF_F_ALL_FOR_ALL; 7022 7023 /* If one device supports hw checksumming, set for all. */ 7024 if (all & NETIF_F_GEN_CSUM) 7025 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 7026 7027 return all; 7028 } 7029 EXPORT_SYMBOL(netdev_increment_features); 7030 7031 static struct hlist_head * __net_init netdev_create_hash(void) 7032 { 7033 int i; 7034 struct hlist_head *hash; 7035 7036 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 7037 if (hash != NULL) 7038 for (i = 0; i < NETDEV_HASHENTRIES; i++) 7039 INIT_HLIST_HEAD(&hash[i]); 7040 7041 return hash; 7042 } 7043 7044 /* Initialize per network namespace state */ 7045 static int __net_init netdev_init(struct net *net) 7046 { 7047 if (net != &init_net) 7048 INIT_LIST_HEAD(&net->dev_base_head); 7049 7050 net->dev_name_head = netdev_create_hash(); 7051 if (net->dev_name_head == NULL) 7052 goto err_name; 7053 7054 net->dev_index_head = netdev_create_hash(); 7055 if (net->dev_index_head == NULL) 7056 goto err_idx; 7057 7058 return 0; 7059 7060 err_idx: 7061 kfree(net->dev_name_head); 7062 err_name: 7063 return -ENOMEM; 7064 } 7065 7066 /** 7067 * netdev_drivername - network driver for the device 7068 * @dev: network device 7069 * 7070 * Determine network driver for device. 7071 */ 7072 const char *netdev_drivername(const struct net_device *dev) 7073 { 7074 const struct device_driver *driver; 7075 const struct device *parent; 7076 const char *empty = ""; 7077 7078 parent = dev->dev.parent; 7079 if (!parent) 7080 return empty; 7081 7082 driver = parent->driver; 7083 if (driver && driver->name) 7084 return driver->name; 7085 return empty; 7086 } 7087 7088 static void __netdev_printk(const char *level, const struct net_device *dev, 7089 struct va_format *vaf) 7090 { 7091 if (dev && dev->dev.parent) { 7092 dev_printk_emit(level[1] - '0', 7093 dev->dev.parent, 7094 "%s %s %s%s: %pV", 7095 dev_driver_string(dev->dev.parent), 7096 dev_name(dev->dev.parent), 7097 netdev_name(dev), netdev_reg_state(dev), 7098 vaf); 7099 } else if (dev) { 7100 printk("%s%s%s: %pV", 7101 level, netdev_name(dev), netdev_reg_state(dev), vaf); 7102 } else { 7103 printk("%s(NULL net_device): %pV", level, vaf); 7104 } 7105 } 7106 7107 void netdev_printk(const char *level, const struct net_device *dev, 7108 const char *format, ...) 7109 { 7110 struct va_format vaf; 7111 va_list args; 7112 7113 va_start(args, format); 7114 7115 vaf.fmt = format; 7116 vaf.va = &args; 7117 7118 __netdev_printk(level, dev, &vaf); 7119 7120 va_end(args); 7121 } 7122 EXPORT_SYMBOL(netdev_printk); 7123 7124 #define define_netdev_printk_level(func, level) \ 7125 void func(const struct net_device *dev, const char *fmt, ...) \ 7126 { \ 7127 struct va_format vaf; \ 7128 va_list args; \ 7129 \ 7130 va_start(args, fmt); \ 7131 \ 7132 vaf.fmt = fmt; \ 7133 vaf.va = &args; \ 7134 \ 7135 __netdev_printk(level, dev, &vaf); \ 7136 \ 7137 va_end(args); \ 7138 } \ 7139 EXPORT_SYMBOL(func); 7140 7141 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 7142 define_netdev_printk_level(netdev_alert, KERN_ALERT); 7143 define_netdev_printk_level(netdev_crit, KERN_CRIT); 7144 define_netdev_printk_level(netdev_err, KERN_ERR); 7145 define_netdev_printk_level(netdev_warn, KERN_WARNING); 7146 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 7147 define_netdev_printk_level(netdev_info, KERN_INFO); 7148 7149 static void __net_exit netdev_exit(struct net *net) 7150 { 7151 kfree(net->dev_name_head); 7152 kfree(net->dev_index_head); 7153 } 7154 7155 static struct pernet_operations __net_initdata netdev_net_ops = { 7156 .init = netdev_init, 7157 .exit = netdev_exit, 7158 }; 7159 7160 static void __net_exit default_device_exit(struct net *net) 7161 { 7162 struct net_device *dev, *aux; 7163 /* 7164 * Push all migratable network devices back to the 7165 * initial network namespace 7166 */ 7167 rtnl_lock(); 7168 for_each_netdev_safe(net, dev, aux) { 7169 int err; 7170 char fb_name[IFNAMSIZ]; 7171 7172 /* Ignore unmoveable devices (i.e. loopback) */ 7173 if (dev->features & NETIF_F_NETNS_LOCAL) 7174 continue; 7175 7176 /* Leave virtual devices for the generic cleanup */ 7177 if (dev->rtnl_link_ops) 7178 continue; 7179 7180 /* Push remaining network devices to init_net */ 7181 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 7182 err = dev_change_net_namespace(dev, &init_net, fb_name); 7183 if (err) { 7184 pr_emerg("%s: failed to move %s to init_net: %d\n", 7185 __func__, dev->name, err); 7186 BUG(); 7187 } 7188 } 7189 rtnl_unlock(); 7190 } 7191 7192 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 7193 { 7194 /* Return with the rtnl_lock held when there are no network 7195 * devices unregistering in any network namespace in net_list. 7196 */ 7197 struct net *net; 7198 bool unregistering; 7199 DEFINE_WAIT(wait); 7200 7201 for (;;) { 7202 prepare_to_wait(&netdev_unregistering_wq, &wait, 7203 TASK_UNINTERRUPTIBLE); 7204 unregistering = false; 7205 rtnl_lock(); 7206 list_for_each_entry(net, net_list, exit_list) { 7207 if (net->dev_unreg_count > 0) { 7208 unregistering = true; 7209 break; 7210 } 7211 } 7212 if (!unregistering) 7213 break; 7214 __rtnl_unlock(); 7215 schedule(); 7216 } 7217 finish_wait(&netdev_unregistering_wq, &wait); 7218 } 7219 7220 static void __net_exit default_device_exit_batch(struct list_head *net_list) 7221 { 7222 /* At exit all network devices most be removed from a network 7223 * namespace. Do this in the reverse order of registration. 7224 * Do this across as many network namespaces as possible to 7225 * improve batching efficiency. 7226 */ 7227 struct net_device *dev; 7228 struct net *net; 7229 LIST_HEAD(dev_kill_list); 7230 7231 /* To prevent network device cleanup code from dereferencing 7232 * loopback devices or network devices that have been freed 7233 * wait here for all pending unregistrations to complete, 7234 * before unregistring the loopback device and allowing the 7235 * network namespace be freed. 7236 * 7237 * The netdev todo list containing all network devices 7238 * unregistrations that happen in default_device_exit_batch 7239 * will run in the rtnl_unlock() at the end of 7240 * default_device_exit_batch. 7241 */ 7242 rtnl_lock_unregistering(net_list); 7243 list_for_each_entry(net, net_list, exit_list) { 7244 for_each_netdev_reverse(net, dev) { 7245 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 7246 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 7247 else 7248 unregister_netdevice_queue(dev, &dev_kill_list); 7249 } 7250 } 7251 unregister_netdevice_many(&dev_kill_list); 7252 rtnl_unlock(); 7253 } 7254 7255 static struct pernet_operations __net_initdata default_device_ops = { 7256 .exit = default_device_exit, 7257 .exit_batch = default_device_exit_batch, 7258 }; 7259 7260 /* 7261 * Initialize the DEV module. At boot time this walks the device list and 7262 * unhooks any devices that fail to initialise (normally hardware not 7263 * present) and leaves us with a valid list of present and active devices. 7264 * 7265 */ 7266 7267 /* 7268 * This is called single threaded during boot, so no need 7269 * to take the rtnl semaphore. 7270 */ 7271 static int __init net_dev_init(void) 7272 { 7273 int i, rc = -ENOMEM; 7274 7275 BUG_ON(!dev_boot_phase); 7276 7277 if (dev_proc_init()) 7278 goto out; 7279 7280 if (netdev_kobject_init()) 7281 goto out; 7282 7283 INIT_LIST_HEAD(&ptype_all); 7284 for (i = 0; i < PTYPE_HASH_SIZE; i++) 7285 INIT_LIST_HEAD(&ptype_base[i]); 7286 7287 INIT_LIST_HEAD(&offload_base); 7288 7289 if (register_pernet_subsys(&netdev_net_ops)) 7290 goto out; 7291 7292 /* 7293 * Initialise the packet receive queues. 7294 */ 7295 7296 for_each_possible_cpu(i) { 7297 struct softnet_data *sd = &per_cpu(softnet_data, i); 7298 7299 skb_queue_head_init(&sd->input_pkt_queue); 7300 skb_queue_head_init(&sd->process_queue); 7301 INIT_LIST_HEAD(&sd->poll_list); 7302 sd->output_queue_tailp = &sd->output_queue; 7303 #ifdef CONFIG_RPS 7304 sd->csd.func = rps_trigger_softirq; 7305 sd->csd.info = sd; 7306 sd->cpu = i; 7307 #endif 7308 7309 sd->backlog.poll = process_backlog; 7310 sd->backlog.weight = weight_p; 7311 } 7312 7313 dev_boot_phase = 0; 7314 7315 /* The loopback device is special if any other network devices 7316 * is present in a network namespace the loopback device must 7317 * be present. Since we now dynamically allocate and free the 7318 * loopback device ensure this invariant is maintained by 7319 * keeping the loopback device as the first device on the 7320 * list of network devices. Ensuring the loopback devices 7321 * is the first device that appears and the last network device 7322 * that disappears. 7323 */ 7324 if (register_pernet_device(&loopback_net_ops)) 7325 goto out; 7326 7327 if (register_pernet_device(&default_device_ops)) 7328 goto out; 7329 7330 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 7331 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 7332 7333 hotcpu_notifier(dev_cpu_callback, 0); 7334 dst_init(); 7335 rc = 0; 7336 out: 7337 return rc; 7338 } 7339 7340 subsys_initcall(net_dev_init); 7341