1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitops.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/mm.h> 81 #include <linux/mutex.h> 82 #include <linux/rwsem.h> 83 #include <linux/string.h> 84 #include <linux/mm.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/errno.h> 88 #include <linux/interrupt.h> 89 #include <linux/if_ether.h> 90 #include <linux/netdevice.h> 91 #include <linux/etherdevice.h> 92 #include <linux/ethtool.h> 93 #include <linux/skbuff.h> 94 #include <linux/kthread.h> 95 #include <linux/bpf.h> 96 #include <linux/bpf_trace.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <net/busy_poll.h> 100 #include <linux/rtnetlink.h> 101 #include <linux/stat.h> 102 #include <net/dsa.h> 103 #include <net/dst.h> 104 #include <net/dst_metadata.h> 105 #include <net/gro.h> 106 #include <net/pkt_sched.h> 107 #include <net/pkt_cls.h> 108 #include <net/checksum.h> 109 #include <net/xfrm.h> 110 #include <linux/highmem.h> 111 #include <linux/init.h> 112 #include <linux/module.h> 113 #include <linux/netpoll.h> 114 #include <linux/rcupdate.h> 115 #include <linux/delay.h> 116 #include <net/iw_handler.h> 117 #include <asm/current.h> 118 #include <linux/audit.h> 119 #include <linux/dmaengine.h> 120 #include <linux/err.h> 121 #include <linux/ctype.h> 122 #include <linux/if_arp.h> 123 #include <linux/if_vlan.h> 124 #include <linux/ip.h> 125 #include <net/ip.h> 126 #include <net/mpls.h> 127 #include <linux/ipv6.h> 128 #include <linux/in.h> 129 #include <linux/jhash.h> 130 #include <linux/random.h> 131 #include <trace/events/napi.h> 132 #include <trace/events/net.h> 133 #include <trace/events/skb.h> 134 #include <trace/events/qdisc.h> 135 #include <linux/inetdevice.h> 136 #include <linux/cpu_rmap.h> 137 #include <linux/static_key.h> 138 #include <linux/hashtable.h> 139 #include <linux/vmalloc.h> 140 #include <linux/if_macvlan.h> 141 #include <linux/errqueue.h> 142 #include <linux/hrtimer.h> 143 #include <linux/netfilter_netdev.h> 144 #include <linux/crash_dump.h> 145 #include <linux/sctp.h> 146 #include <net/udp_tunnel.h> 147 #include <linux/net_namespace.h> 148 #include <linux/indirect_call_wrapper.h> 149 #include <net/devlink.h> 150 #include <linux/pm_runtime.h> 151 #include <linux/prandom.h> 152 #include <linux/once_lite.h> 153 154 #include "dev.h" 155 #include "net-sysfs.h" 156 157 158 static DEFINE_SPINLOCK(ptype_lock); 159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 160 struct list_head ptype_all __read_mostly; /* Taps */ 161 162 static int netif_rx_internal(struct sk_buff *skb); 163 static int call_netdevice_notifiers_info(unsigned long val, 164 struct netdev_notifier_info *info); 165 static int call_netdevice_notifiers_extack(unsigned long val, 166 struct net_device *dev, 167 struct netlink_ext_ack *extack); 168 static struct napi_struct *napi_by_id(unsigned int napi_id); 169 170 /* 171 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 172 * semaphore. 173 * 174 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 175 * 176 * Writers must hold the rtnl semaphore while they loop through the 177 * dev_base_head list, and hold dev_base_lock for writing when they do the 178 * actual updates. This allows pure readers to access the list even 179 * while a writer is preparing to update it. 180 * 181 * To put it another way, dev_base_lock is held for writing only to 182 * protect against pure readers; the rtnl semaphore provides the 183 * protection against other writers. 184 * 185 * See, for example usages, register_netdevice() and 186 * unregister_netdevice(), which must be called with the rtnl 187 * semaphore held. 188 */ 189 DEFINE_RWLOCK(dev_base_lock); 190 EXPORT_SYMBOL(dev_base_lock); 191 192 static DEFINE_MUTEX(ifalias_mutex); 193 194 /* protects napi_hash addition/deletion and napi_gen_id */ 195 static DEFINE_SPINLOCK(napi_hash_lock); 196 197 static unsigned int napi_gen_id = NR_CPUS; 198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 199 200 static DECLARE_RWSEM(devnet_rename_sem); 201 202 static inline void dev_base_seq_inc(struct net *net) 203 { 204 while (++net->dev_base_seq == 0) 205 ; 206 } 207 208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 209 { 210 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 211 212 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 213 } 214 215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 216 { 217 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 218 } 219 220 static inline void rps_lock_irqsave(struct softnet_data *sd, 221 unsigned long *flags) 222 { 223 if (IS_ENABLED(CONFIG_RPS)) 224 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags); 225 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 226 local_irq_save(*flags); 227 } 228 229 static inline void rps_lock_irq_disable(struct softnet_data *sd) 230 { 231 if (IS_ENABLED(CONFIG_RPS)) 232 spin_lock_irq(&sd->input_pkt_queue.lock); 233 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 234 local_irq_disable(); 235 } 236 237 static inline void rps_unlock_irq_restore(struct softnet_data *sd, 238 unsigned long *flags) 239 { 240 if (IS_ENABLED(CONFIG_RPS)) 241 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags); 242 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 243 local_irq_restore(*flags); 244 } 245 246 static inline void rps_unlock_irq_enable(struct softnet_data *sd) 247 { 248 if (IS_ENABLED(CONFIG_RPS)) 249 spin_unlock_irq(&sd->input_pkt_queue.lock); 250 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 251 local_irq_enable(); 252 } 253 254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 255 const char *name) 256 { 257 struct netdev_name_node *name_node; 258 259 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 260 if (!name_node) 261 return NULL; 262 INIT_HLIST_NODE(&name_node->hlist); 263 name_node->dev = dev; 264 name_node->name = name; 265 return name_node; 266 } 267 268 static struct netdev_name_node * 269 netdev_name_node_head_alloc(struct net_device *dev) 270 { 271 struct netdev_name_node *name_node; 272 273 name_node = netdev_name_node_alloc(dev, dev->name); 274 if (!name_node) 275 return NULL; 276 INIT_LIST_HEAD(&name_node->list); 277 return name_node; 278 } 279 280 static void netdev_name_node_free(struct netdev_name_node *name_node) 281 { 282 kfree(name_node); 283 } 284 285 static void netdev_name_node_add(struct net *net, 286 struct netdev_name_node *name_node) 287 { 288 hlist_add_head_rcu(&name_node->hlist, 289 dev_name_hash(net, name_node->name)); 290 } 291 292 static void netdev_name_node_del(struct netdev_name_node *name_node) 293 { 294 hlist_del_rcu(&name_node->hlist); 295 } 296 297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 298 const char *name) 299 { 300 struct hlist_head *head = dev_name_hash(net, name); 301 struct netdev_name_node *name_node; 302 303 hlist_for_each_entry(name_node, head, hlist) 304 if (!strcmp(name_node->name, name)) 305 return name_node; 306 return NULL; 307 } 308 309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 310 const char *name) 311 { 312 struct hlist_head *head = dev_name_hash(net, name); 313 struct netdev_name_node *name_node; 314 315 hlist_for_each_entry_rcu(name_node, head, hlist) 316 if (!strcmp(name_node->name, name)) 317 return name_node; 318 return NULL; 319 } 320 321 bool netdev_name_in_use(struct net *net, const char *name) 322 { 323 return netdev_name_node_lookup(net, name); 324 } 325 EXPORT_SYMBOL(netdev_name_in_use); 326 327 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 328 { 329 struct netdev_name_node *name_node; 330 struct net *net = dev_net(dev); 331 332 name_node = netdev_name_node_lookup(net, name); 333 if (name_node) 334 return -EEXIST; 335 name_node = netdev_name_node_alloc(dev, name); 336 if (!name_node) 337 return -ENOMEM; 338 netdev_name_node_add(net, name_node); 339 /* The node that holds dev->name acts as a head of per-device list. */ 340 list_add_tail(&name_node->list, &dev->name_node->list); 341 342 return 0; 343 } 344 345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 346 { 347 list_del(&name_node->list); 348 netdev_name_node_del(name_node); 349 kfree(name_node->name); 350 netdev_name_node_free(name_node); 351 } 352 353 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 354 { 355 struct netdev_name_node *name_node; 356 struct net *net = dev_net(dev); 357 358 name_node = netdev_name_node_lookup(net, name); 359 if (!name_node) 360 return -ENOENT; 361 /* lookup might have found our primary name or a name belonging 362 * to another device. 363 */ 364 if (name_node == dev->name_node || name_node->dev != dev) 365 return -EINVAL; 366 367 __netdev_name_node_alt_destroy(name_node); 368 369 return 0; 370 } 371 372 static void netdev_name_node_alt_flush(struct net_device *dev) 373 { 374 struct netdev_name_node *name_node, *tmp; 375 376 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) 377 __netdev_name_node_alt_destroy(name_node); 378 } 379 380 /* Device list insertion */ 381 static void list_netdevice(struct net_device *dev) 382 { 383 struct net *net = dev_net(dev); 384 385 ASSERT_RTNL(); 386 387 write_lock(&dev_base_lock); 388 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 389 netdev_name_node_add(net, dev->name_node); 390 hlist_add_head_rcu(&dev->index_hlist, 391 dev_index_hash(net, dev->ifindex)); 392 write_unlock(&dev_base_lock); 393 394 dev_base_seq_inc(net); 395 } 396 397 /* Device list removal 398 * caller must respect a RCU grace period before freeing/reusing dev 399 */ 400 static void unlist_netdevice(struct net_device *dev, bool lock) 401 { 402 ASSERT_RTNL(); 403 404 /* Unlink dev from the device chain */ 405 if (lock) 406 write_lock(&dev_base_lock); 407 list_del_rcu(&dev->dev_list); 408 netdev_name_node_del(dev->name_node); 409 hlist_del_rcu(&dev->index_hlist); 410 if (lock) 411 write_unlock(&dev_base_lock); 412 413 dev_base_seq_inc(dev_net(dev)); 414 } 415 416 /* 417 * Our notifier list 418 */ 419 420 static RAW_NOTIFIER_HEAD(netdev_chain); 421 422 /* 423 * Device drivers call our routines to queue packets here. We empty the 424 * queue in the local softnet handler. 425 */ 426 427 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 428 EXPORT_PER_CPU_SYMBOL(softnet_data); 429 430 #ifdef CONFIG_LOCKDEP 431 /* 432 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 433 * according to dev->type 434 */ 435 static const unsigned short netdev_lock_type[] = { 436 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 437 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 438 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 439 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 440 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 441 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 442 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 443 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 444 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 445 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 446 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 447 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 448 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 449 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 450 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 451 452 static const char *const netdev_lock_name[] = { 453 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 454 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 455 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 456 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 457 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 458 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 459 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 460 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 461 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 462 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 463 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 464 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 465 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 466 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 467 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 468 469 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 470 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 471 472 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 473 { 474 int i; 475 476 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 477 if (netdev_lock_type[i] == dev_type) 478 return i; 479 /* the last key is used by default */ 480 return ARRAY_SIZE(netdev_lock_type) - 1; 481 } 482 483 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 484 unsigned short dev_type) 485 { 486 int i; 487 488 i = netdev_lock_pos(dev_type); 489 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 490 netdev_lock_name[i]); 491 } 492 493 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 494 { 495 int i; 496 497 i = netdev_lock_pos(dev->type); 498 lockdep_set_class_and_name(&dev->addr_list_lock, 499 &netdev_addr_lock_key[i], 500 netdev_lock_name[i]); 501 } 502 #else 503 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 504 unsigned short dev_type) 505 { 506 } 507 508 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 509 { 510 } 511 #endif 512 513 /******************************************************************************* 514 * 515 * Protocol management and registration routines 516 * 517 *******************************************************************************/ 518 519 520 /* 521 * Add a protocol ID to the list. Now that the input handler is 522 * smarter we can dispense with all the messy stuff that used to be 523 * here. 524 * 525 * BEWARE!!! Protocol handlers, mangling input packets, 526 * MUST BE last in hash buckets and checking protocol handlers 527 * MUST start from promiscuous ptype_all chain in net_bh. 528 * It is true now, do not change it. 529 * Explanation follows: if protocol handler, mangling packet, will 530 * be the first on list, it is not able to sense, that packet 531 * is cloned and should be copied-on-write, so that it will 532 * change it and subsequent readers will get broken packet. 533 * --ANK (980803) 534 */ 535 536 static inline struct list_head *ptype_head(const struct packet_type *pt) 537 { 538 if (pt->type == htons(ETH_P_ALL)) 539 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 540 else 541 return pt->dev ? &pt->dev->ptype_specific : 542 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 543 } 544 545 /** 546 * dev_add_pack - add packet handler 547 * @pt: packet type declaration 548 * 549 * Add a protocol handler to the networking stack. The passed &packet_type 550 * is linked into kernel lists and may not be freed until it has been 551 * removed from the kernel lists. 552 * 553 * This call does not sleep therefore it can not 554 * guarantee all CPU's that are in middle of receiving packets 555 * will see the new packet type (until the next received packet). 556 */ 557 558 void dev_add_pack(struct packet_type *pt) 559 { 560 struct list_head *head = ptype_head(pt); 561 562 spin_lock(&ptype_lock); 563 list_add_rcu(&pt->list, head); 564 spin_unlock(&ptype_lock); 565 } 566 EXPORT_SYMBOL(dev_add_pack); 567 568 /** 569 * __dev_remove_pack - remove packet handler 570 * @pt: packet type declaration 571 * 572 * Remove a protocol handler that was previously added to the kernel 573 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 574 * from the kernel lists and can be freed or reused once this function 575 * returns. 576 * 577 * The packet type might still be in use by receivers 578 * and must not be freed until after all the CPU's have gone 579 * through a quiescent state. 580 */ 581 void __dev_remove_pack(struct packet_type *pt) 582 { 583 struct list_head *head = ptype_head(pt); 584 struct packet_type *pt1; 585 586 spin_lock(&ptype_lock); 587 588 list_for_each_entry(pt1, head, list) { 589 if (pt == pt1) { 590 list_del_rcu(&pt->list); 591 goto out; 592 } 593 } 594 595 pr_warn("dev_remove_pack: %p not found\n", pt); 596 out: 597 spin_unlock(&ptype_lock); 598 } 599 EXPORT_SYMBOL(__dev_remove_pack); 600 601 /** 602 * dev_remove_pack - remove packet handler 603 * @pt: packet type declaration 604 * 605 * Remove a protocol handler that was previously added to the kernel 606 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 607 * from the kernel lists and can be freed or reused once this function 608 * returns. 609 * 610 * This call sleeps to guarantee that no CPU is looking at the packet 611 * type after return. 612 */ 613 void dev_remove_pack(struct packet_type *pt) 614 { 615 __dev_remove_pack(pt); 616 617 synchronize_net(); 618 } 619 EXPORT_SYMBOL(dev_remove_pack); 620 621 622 /******************************************************************************* 623 * 624 * Device Interface Subroutines 625 * 626 *******************************************************************************/ 627 628 /** 629 * dev_get_iflink - get 'iflink' value of a interface 630 * @dev: targeted interface 631 * 632 * Indicates the ifindex the interface is linked to. 633 * Physical interfaces have the same 'ifindex' and 'iflink' values. 634 */ 635 636 int dev_get_iflink(const struct net_device *dev) 637 { 638 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 639 return dev->netdev_ops->ndo_get_iflink(dev); 640 641 return dev->ifindex; 642 } 643 EXPORT_SYMBOL(dev_get_iflink); 644 645 /** 646 * dev_fill_metadata_dst - Retrieve tunnel egress information. 647 * @dev: targeted interface 648 * @skb: The packet. 649 * 650 * For better visibility of tunnel traffic OVS needs to retrieve 651 * egress tunnel information for a packet. Following API allows 652 * user to get this info. 653 */ 654 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 655 { 656 struct ip_tunnel_info *info; 657 658 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 659 return -EINVAL; 660 661 info = skb_tunnel_info_unclone(skb); 662 if (!info) 663 return -ENOMEM; 664 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 665 return -EINVAL; 666 667 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 668 } 669 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 670 671 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack) 672 { 673 int k = stack->num_paths++; 674 675 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX)) 676 return NULL; 677 678 return &stack->path[k]; 679 } 680 681 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 682 struct net_device_path_stack *stack) 683 { 684 const struct net_device *last_dev; 685 struct net_device_path_ctx ctx = { 686 .dev = dev, 687 }; 688 struct net_device_path *path; 689 int ret = 0; 690 691 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr)); 692 stack->num_paths = 0; 693 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) { 694 last_dev = ctx.dev; 695 path = dev_fwd_path(stack); 696 if (!path) 697 return -1; 698 699 memset(path, 0, sizeof(struct net_device_path)); 700 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path); 701 if (ret < 0) 702 return -1; 703 704 if (WARN_ON_ONCE(last_dev == ctx.dev)) 705 return -1; 706 } 707 708 if (!ctx.dev) 709 return ret; 710 711 path = dev_fwd_path(stack); 712 if (!path) 713 return -1; 714 path->type = DEV_PATH_ETHERNET; 715 path->dev = ctx.dev; 716 717 return ret; 718 } 719 EXPORT_SYMBOL_GPL(dev_fill_forward_path); 720 721 /** 722 * __dev_get_by_name - find a device by its name 723 * @net: the applicable net namespace 724 * @name: name to find 725 * 726 * Find an interface by name. Must be called under RTNL semaphore 727 * or @dev_base_lock. If the name is found a pointer to the device 728 * is returned. If the name is not found then %NULL is returned. The 729 * reference counters are not incremented so the caller must be 730 * careful with locks. 731 */ 732 733 struct net_device *__dev_get_by_name(struct net *net, const char *name) 734 { 735 struct netdev_name_node *node_name; 736 737 node_name = netdev_name_node_lookup(net, name); 738 return node_name ? node_name->dev : NULL; 739 } 740 EXPORT_SYMBOL(__dev_get_by_name); 741 742 /** 743 * dev_get_by_name_rcu - find a device by its name 744 * @net: the applicable net namespace 745 * @name: name to find 746 * 747 * Find an interface by name. 748 * If the name is found a pointer to the device is returned. 749 * If the name is not found then %NULL is returned. 750 * The reference counters are not incremented so the caller must be 751 * careful with locks. The caller must hold RCU lock. 752 */ 753 754 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 755 { 756 struct netdev_name_node *node_name; 757 758 node_name = netdev_name_node_lookup_rcu(net, name); 759 return node_name ? node_name->dev : NULL; 760 } 761 EXPORT_SYMBOL(dev_get_by_name_rcu); 762 763 /** 764 * dev_get_by_name - find a device by its name 765 * @net: the applicable net namespace 766 * @name: name to find 767 * 768 * Find an interface by name. This can be called from any 769 * context and does its own locking. The returned handle has 770 * the usage count incremented and the caller must use dev_put() to 771 * release it when it is no longer needed. %NULL is returned if no 772 * matching device is found. 773 */ 774 775 struct net_device *dev_get_by_name(struct net *net, const char *name) 776 { 777 struct net_device *dev; 778 779 rcu_read_lock(); 780 dev = dev_get_by_name_rcu(net, name); 781 dev_hold(dev); 782 rcu_read_unlock(); 783 return dev; 784 } 785 EXPORT_SYMBOL(dev_get_by_name); 786 787 /** 788 * __dev_get_by_index - find a device by its ifindex 789 * @net: the applicable net namespace 790 * @ifindex: index of device 791 * 792 * Search for an interface by index. Returns %NULL if the device 793 * is not found or a pointer to the device. The device has not 794 * had its reference counter increased so the caller must be careful 795 * about locking. The caller must hold either the RTNL semaphore 796 * or @dev_base_lock. 797 */ 798 799 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 800 { 801 struct net_device *dev; 802 struct hlist_head *head = dev_index_hash(net, ifindex); 803 804 hlist_for_each_entry(dev, head, index_hlist) 805 if (dev->ifindex == ifindex) 806 return dev; 807 808 return NULL; 809 } 810 EXPORT_SYMBOL(__dev_get_by_index); 811 812 /** 813 * dev_get_by_index_rcu - find a device by its ifindex 814 * @net: the applicable net namespace 815 * @ifindex: index of device 816 * 817 * Search for an interface by index. Returns %NULL if the device 818 * is not found or a pointer to the device. The device has not 819 * had its reference counter increased so the caller must be careful 820 * about locking. The caller must hold RCU lock. 821 */ 822 823 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 824 { 825 struct net_device *dev; 826 struct hlist_head *head = dev_index_hash(net, ifindex); 827 828 hlist_for_each_entry_rcu(dev, head, index_hlist) 829 if (dev->ifindex == ifindex) 830 return dev; 831 832 return NULL; 833 } 834 EXPORT_SYMBOL(dev_get_by_index_rcu); 835 836 837 /** 838 * dev_get_by_index - find a device by its ifindex 839 * @net: the applicable net namespace 840 * @ifindex: index of device 841 * 842 * Search for an interface by index. Returns NULL if the device 843 * is not found or a pointer to the device. The device returned has 844 * had a reference added and the pointer is safe until the user calls 845 * dev_put to indicate they have finished with it. 846 */ 847 848 struct net_device *dev_get_by_index(struct net *net, int ifindex) 849 { 850 struct net_device *dev; 851 852 rcu_read_lock(); 853 dev = dev_get_by_index_rcu(net, ifindex); 854 dev_hold(dev); 855 rcu_read_unlock(); 856 return dev; 857 } 858 EXPORT_SYMBOL(dev_get_by_index); 859 860 /** 861 * dev_get_by_napi_id - find a device by napi_id 862 * @napi_id: ID of the NAPI struct 863 * 864 * Search for an interface by NAPI ID. Returns %NULL if the device 865 * is not found or a pointer to the device. The device has not had 866 * its reference counter increased so the caller must be careful 867 * about locking. The caller must hold RCU lock. 868 */ 869 870 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 871 { 872 struct napi_struct *napi; 873 874 WARN_ON_ONCE(!rcu_read_lock_held()); 875 876 if (napi_id < MIN_NAPI_ID) 877 return NULL; 878 879 napi = napi_by_id(napi_id); 880 881 return napi ? napi->dev : NULL; 882 } 883 EXPORT_SYMBOL(dev_get_by_napi_id); 884 885 /** 886 * netdev_get_name - get a netdevice name, knowing its ifindex. 887 * @net: network namespace 888 * @name: a pointer to the buffer where the name will be stored. 889 * @ifindex: the ifindex of the interface to get the name from. 890 */ 891 int netdev_get_name(struct net *net, char *name, int ifindex) 892 { 893 struct net_device *dev; 894 int ret; 895 896 down_read(&devnet_rename_sem); 897 rcu_read_lock(); 898 899 dev = dev_get_by_index_rcu(net, ifindex); 900 if (!dev) { 901 ret = -ENODEV; 902 goto out; 903 } 904 905 strcpy(name, dev->name); 906 907 ret = 0; 908 out: 909 rcu_read_unlock(); 910 up_read(&devnet_rename_sem); 911 return ret; 912 } 913 914 /** 915 * dev_getbyhwaddr_rcu - find a device by its hardware address 916 * @net: the applicable net namespace 917 * @type: media type of device 918 * @ha: hardware address 919 * 920 * Search for an interface by MAC address. Returns NULL if the device 921 * is not found or a pointer to the device. 922 * The caller must hold RCU or RTNL. 923 * The returned device has not had its ref count increased 924 * and the caller must therefore be careful about locking 925 * 926 */ 927 928 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 929 const char *ha) 930 { 931 struct net_device *dev; 932 933 for_each_netdev_rcu(net, dev) 934 if (dev->type == type && 935 !memcmp(dev->dev_addr, ha, dev->addr_len)) 936 return dev; 937 938 return NULL; 939 } 940 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 941 942 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 943 { 944 struct net_device *dev, *ret = NULL; 945 946 rcu_read_lock(); 947 for_each_netdev_rcu(net, dev) 948 if (dev->type == type) { 949 dev_hold(dev); 950 ret = dev; 951 break; 952 } 953 rcu_read_unlock(); 954 return ret; 955 } 956 EXPORT_SYMBOL(dev_getfirstbyhwtype); 957 958 /** 959 * __dev_get_by_flags - find any device with given flags 960 * @net: the applicable net namespace 961 * @if_flags: IFF_* values 962 * @mask: bitmask of bits in if_flags to check 963 * 964 * Search for any interface with the given flags. Returns NULL if a device 965 * is not found or a pointer to the device. Must be called inside 966 * rtnl_lock(), and result refcount is unchanged. 967 */ 968 969 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 970 unsigned short mask) 971 { 972 struct net_device *dev, *ret; 973 974 ASSERT_RTNL(); 975 976 ret = NULL; 977 for_each_netdev(net, dev) { 978 if (((dev->flags ^ if_flags) & mask) == 0) { 979 ret = dev; 980 break; 981 } 982 } 983 return ret; 984 } 985 EXPORT_SYMBOL(__dev_get_by_flags); 986 987 /** 988 * dev_valid_name - check if name is okay for network device 989 * @name: name string 990 * 991 * Network device names need to be valid file names to 992 * allow sysfs to work. We also disallow any kind of 993 * whitespace. 994 */ 995 bool dev_valid_name(const char *name) 996 { 997 if (*name == '\0') 998 return false; 999 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1000 return false; 1001 if (!strcmp(name, ".") || !strcmp(name, "..")) 1002 return false; 1003 1004 while (*name) { 1005 if (*name == '/' || *name == ':' || isspace(*name)) 1006 return false; 1007 name++; 1008 } 1009 return true; 1010 } 1011 EXPORT_SYMBOL(dev_valid_name); 1012 1013 /** 1014 * __dev_alloc_name - allocate a name for a device 1015 * @net: network namespace to allocate the device name in 1016 * @name: name format string 1017 * @buf: scratch buffer and result name string 1018 * 1019 * Passed a format string - eg "lt%d" it will try and find a suitable 1020 * id. It scans list of devices to build up a free map, then chooses 1021 * the first empty slot. The caller must hold the dev_base or rtnl lock 1022 * while allocating the name and adding the device in order to avoid 1023 * duplicates. 1024 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1025 * Returns the number of the unit assigned or a negative errno code. 1026 */ 1027 1028 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1029 { 1030 int i = 0; 1031 const char *p; 1032 const int max_netdevices = 8*PAGE_SIZE; 1033 unsigned long *inuse; 1034 struct net_device *d; 1035 1036 if (!dev_valid_name(name)) 1037 return -EINVAL; 1038 1039 p = strchr(name, '%'); 1040 if (p) { 1041 /* 1042 * Verify the string as this thing may have come from 1043 * the user. There must be either one "%d" and no other "%" 1044 * characters. 1045 */ 1046 if (p[1] != 'd' || strchr(p + 2, '%')) 1047 return -EINVAL; 1048 1049 /* Use one page as a bit array of possible slots */ 1050 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1051 if (!inuse) 1052 return -ENOMEM; 1053 1054 for_each_netdev(net, d) { 1055 struct netdev_name_node *name_node; 1056 list_for_each_entry(name_node, &d->name_node->list, list) { 1057 if (!sscanf(name_node->name, name, &i)) 1058 continue; 1059 if (i < 0 || i >= max_netdevices) 1060 continue; 1061 1062 /* avoid cases where sscanf is not exact inverse of printf */ 1063 snprintf(buf, IFNAMSIZ, name, i); 1064 if (!strncmp(buf, name_node->name, IFNAMSIZ)) 1065 __set_bit(i, inuse); 1066 } 1067 if (!sscanf(d->name, name, &i)) 1068 continue; 1069 if (i < 0 || i >= max_netdevices) 1070 continue; 1071 1072 /* avoid cases where sscanf is not exact inverse of printf */ 1073 snprintf(buf, IFNAMSIZ, name, i); 1074 if (!strncmp(buf, d->name, IFNAMSIZ)) 1075 __set_bit(i, inuse); 1076 } 1077 1078 i = find_first_zero_bit(inuse, max_netdevices); 1079 free_page((unsigned long) inuse); 1080 } 1081 1082 snprintf(buf, IFNAMSIZ, name, i); 1083 if (!netdev_name_in_use(net, buf)) 1084 return i; 1085 1086 /* It is possible to run out of possible slots 1087 * when the name is long and there isn't enough space left 1088 * for the digits, or if all bits are used. 1089 */ 1090 return -ENFILE; 1091 } 1092 1093 static int dev_alloc_name_ns(struct net *net, 1094 struct net_device *dev, 1095 const char *name) 1096 { 1097 char buf[IFNAMSIZ]; 1098 int ret; 1099 1100 BUG_ON(!net); 1101 ret = __dev_alloc_name(net, name, buf); 1102 if (ret >= 0) 1103 strlcpy(dev->name, buf, IFNAMSIZ); 1104 return ret; 1105 } 1106 1107 /** 1108 * dev_alloc_name - allocate a name for a device 1109 * @dev: device 1110 * @name: name format string 1111 * 1112 * Passed a format string - eg "lt%d" it will try and find a suitable 1113 * id. It scans list of devices to build up a free map, then chooses 1114 * the first empty slot. The caller must hold the dev_base or rtnl lock 1115 * while allocating the name and adding the device in order to avoid 1116 * duplicates. 1117 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1118 * Returns the number of the unit assigned or a negative errno code. 1119 */ 1120 1121 int dev_alloc_name(struct net_device *dev, const char *name) 1122 { 1123 return dev_alloc_name_ns(dev_net(dev), dev, name); 1124 } 1125 EXPORT_SYMBOL(dev_alloc_name); 1126 1127 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1128 const char *name) 1129 { 1130 BUG_ON(!net); 1131 1132 if (!dev_valid_name(name)) 1133 return -EINVAL; 1134 1135 if (strchr(name, '%')) 1136 return dev_alloc_name_ns(net, dev, name); 1137 else if (netdev_name_in_use(net, name)) 1138 return -EEXIST; 1139 else if (dev->name != name) 1140 strlcpy(dev->name, name, IFNAMSIZ); 1141 1142 return 0; 1143 } 1144 1145 /** 1146 * dev_change_name - change name of a device 1147 * @dev: device 1148 * @newname: name (or format string) must be at least IFNAMSIZ 1149 * 1150 * Change name of a device, can pass format strings "eth%d". 1151 * for wildcarding. 1152 */ 1153 int dev_change_name(struct net_device *dev, const char *newname) 1154 { 1155 unsigned char old_assign_type; 1156 char oldname[IFNAMSIZ]; 1157 int err = 0; 1158 int ret; 1159 struct net *net; 1160 1161 ASSERT_RTNL(); 1162 BUG_ON(!dev_net(dev)); 1163 1164 net = dev_net(dev); 1165 1166 /* Some auto-enslaved devices e.g. failover slaves are 1167 * special, as userspace might rename the device after 1168 * the interface had been brought up and running since 1169 * the point kernel initiated auto-enslavement. Allow 1170 * live name change even when these slave devices are 1171 * up and running. 1172 * 1173 * Typically, users of these auto-enslaving devices 1174 * don't actually care about slave name change, as 1175 * they are supposed to operate on master interface 1176 * directly. 1177 */ 1178 if (dev->flags & IFF_UP && 1179 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK))) 1180 return -EBUSY; 1181 1182 down_write(&devnet_rename_sem); 1183 1184 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1185 up_write(&devnet_rename_sem); 1186 return 0; 1187 } 1188 1189 memcpy(oldname, dev->name, IFNAMSIZ); 1190 1191 err = dev_get_valid_name(net, dev, newname); 1192 if (err < 0) { 1193 up_write(&devnet_rename_sem); 1194 return err; 1195 } 1196 1197 if (oldname[0] && !strchr(oldname, '%')) 1198 netdev_info(dev, "renamed from %s\n", oldname); 1199 1200 old_assign_type = dev->name_assign_type; 1201 dev->name_assign_type = NET_NAME_RENAMED; 1202 1203 rollback: 1204 ret = device_rename(&dev->dev, dev->name); 1205 if (ret) { 1206 memcpy(dev->name, oldname, IFNAMSIZ); 1207 dev->name_assign_type = old_assign_type; 1208 up_write(&devnet_rename_sem); 1209 return ret; 1210 } 1211 1212 up_write(&devnet_rename_sem); 1213 1214 netdev_adjacent_rename_links(dev, oldname); 1215 1216 write_lock(&dev_base_lock); 1217 netdev_name_node_del(dev->name_node); 1218 write_unlock(&dev_base_lock); 1219 1220 synchronize_rcu(); 1221 1222 write_lock(&dev_base_lock); 1223 netdev_name_node_add(net, dev->name_node); 1224 write_unlock(&dev_base_lock); 1225 1226 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1227 ret = notifier_to_errno(ret); 1228 1229 if (ret) { 1230 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1231 if (err >= 0) { 1232 err = ret; 1233 down_write(&devnet_rename_sem); 1234 memcpy(dev->name, oldname, IFNAMSIZ); 1235 memcpy(oldname, newname, IFNAMSIZ); 1236 dev->name_assign_type = old_assign_type; 1237 old_assign_type = NET_NAME_RENAMED; 1238 goto rollback; 1239 } else { 1240 netdev_err(dev, "name change rollback failed: %d\n", 1241 ret); 1242 } 1243 } 1244 1245 return err; 1246 } 1247 1248 /** 1249 * dev_set_alias - change ifalias of a device 1250 * @dev: device 1251 * @alias: name up to IFALIASZ 1252 * @len: limit of bytes to copy from info 1253 * 1254 * Set ifalias for a device, 1255 */ 1256 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1257 { 1258 struct dev_ifalias *new_alias = NULL; 1259 1260 if (len >= IFALIASZ) 1261 return -EINVAL; 1262 1263 if (len) { 1264 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1265 if (!new_alias) 1266 return -ENOMEM; 1267 1268 memcpy(new_alias->ifalias, alias, len); 1269 new_alias->ifalias[len] = 0; 1270 } 1271 1272 mutex_lock(&ifalias_mutex); 1273 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1274 mutex_is_locked(&ifalias_mutex)); 1275 mutex_unlock(&ifalias_mutex); 1276 1277 if (new_alias) 1278 kfree_rcu(new_alias, rcuhead); 1279 1280 return len; 1281 } 1282 EXPORT_SYMBOL(dev_set_alias); 1283 1284 /** 1285 * dev_get_alias - get ifalias of a device 1286 * @dev: device 1287 * @name: buffer to store name of ifalias 1288 * @len: size of buffer 1289 * 1290 * get ifalias for a device. Caller must make sure dev cannot go 1291 * away, e.g. rcu read lock or own a reference count to device. 1292 */ 1293 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1294 { 1295 const struct dev_ifalias *alias; 1296 int ret = 0; 1297 1298 rcu_read_lock(); 1299 alias = rcu_dereference(dev->ifalias); 1300 if (alias) 1301 ret = snprintf(name, len, "%s", alias->ifalias); 1302 rcu_read_unlock(); 1303 1304 return ret; 1305 } 1306 1307 /** 1308 * netdev_features_change - device changes features 1309 * @dev: device to cause notification 1310 * 1311 * Called to indicate a device has changed features. 1312 */ 1313 void netdev_features_change(struct net_device *dev) 1314 { 1315 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1316 } 1317 EXPORT_SYMBOL(netdev_features_change); 1318 1319 /** 1320 * netdev_state_change - device changes state 1321 * @dev: device to cause notification 1322 * 1323 * Called to indicate a device has changed state. This function calls 1324 * the notifier chains for netdev_chain and sends a NEWLINK message 1325 * to the routing socket. 1326 */ 1327 void netdev_state_change(struct net_device *dev) 1328 { 1329 if (dev->flags & IFF_UP) { 1330 struct netdev_notifier_change_info change_info = { 1331 .info.dev = dev, 1332 }; 1333 1334 call_netdevice_notifiers_info(NETDEV_CHANGE, 1335 &change_info.info); 1336 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1337 } 1338 } 1339 EXPORT_SYMBOL(netdev_state_change); 1340 1341 /** 1342 * __netdev_notify_peers - notify network peers about existence of @dev, 1343 * to be called when rtnl lock is already held. 1344 * @dev: network device 1345 * 1346 * Generate traffic such that interested network peers are aware of 1347 * @dev, such as by generating a gratuitous ARP. This may be used when 1348 * a device wants to inform the rest of the network about some sort of 1349 * reconfiguration such as a failover event or virtual machine 1350 * migration. 1351 */ 1352 void __netdev_notify_peers(struct net_device *dev) 1353 { 1354 ASSERT_RTNL(); 1355 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1356 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1357 } 1358 EXPORT_SYMBOL(__netdev_notify_peers); 1359 1360 /** 1361 * netdev_notify_peers - notify network peers about existence of @dev 1362 * @dev: network device 1363 * 1364 * Generate traffic such that interested network peers are aware of 1365 * @dev, such as by generating a gratuitous ARP. This may be used when 1366 * a device wants to inform the rest of the network about some sort of 1367 * reconfiguration such as a failover event or virtual machine 1368 * migration. 1369 */ 1370 void netdev_notify_peers(struct net_device *dev) 1371 { 1372 rtnl_lock(); 1373 __netdev_notify_peers(dev); 1374 rtnl_unlock(); 1375 } 1376 EXPORT_SYMBOL(netdev_notify_peers); 1377 1378 static int napi_threaded_poll(void *data); 1379 1380 static int napi_kthread_create(struct napi_struct *n) 1381 { 1382 int err = 0; 1383 1384 /* Create and wake up the kthread once to put it in 1385 * TASK_INTERRUPTIBLE mode to avoid the blocked task 1386 * warning and work with loadavg. 1387 */ 1388 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d", 1389 n->dev->name, n->napi_id); 1390 if (IS_ERR(n->thread)) { 1391 err = PTR_ERR(n->thread); 1392 pr_err("kthread_run failed with err %d\n", err); 1393 n->thread = NULL; 1394 } 1395 1396 return err; 1397 } 1398 1399 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1400 { 1401 const struct net_device_ops *ops = dev->netdev_ops; 1402 int ret; 1403 1404 ASSERT_RTNL(); 1405 dev_addr_check(dev); 1406 1407 if (!netif_device_present(dev)) { 1408 /* may be detached because parent is runtime-suspended */ 1409 if (dev->dev.parent) 1410 pm_runtime_resume(dev->dev.parent); 1411 if (!netif_device_present(dev)) 1412 return -ENODEV; 1413 } 1414 1415 /* Block netpoll from trying to do any rx path servicing. 1416 * If we don't do this there is a chance ndo_poll_controller 1417 * or ndo_poll may be running while we open the device 1418 */ 1419 netpoll_poll_disable(dev); 1420 1421 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1422 ret = notifier_to_errno(ret); 1423 if (ret) 1424 return ret; 1425 1426 set_bit(__LINK_STATE_START, &dev->state); 1427 1428 if (ops->ndo_validate_addr) 1429 ret = ops->ndo_validate_addr(dev); 1430 1431 if (!ret && ops->ndo_open) 1432 ret = ops->ndo_open(dev); 1433 1434 netpoll_poll_enable(dev); 1435 1436 if (ret) 1437 clear_bit(__LINK_STATE_START, &dev->state); 1438 else { 1439 dev->flags |= IFF_UP; 1440 dev_set_rx_mode(dev); 1441 dev_activate(dev); 1442 add_device_randomness(dev->dev_addr, dev->addr_len); 1443 } 1444 1445 return ret; 1446 } 1447 1448 /** 1449 * dev_open - prepare an interface for use. 1450 * @dev: device to open 1451 * @extack: netlink extended ack 1452 * 1453 * Takes a device from down to up state. The device's private open 1454 * function is invoked and then the multicast lists are loaded. Finally 1455 * the device is moved into the up state and a %NETDEV_UP message is 1456 * sent to the netdev notifier chain. 1457 * 1458 * Calling this function on an active interface is a nop. On a failure 1459 * a negative errno code is returned. 1460 */ 1461 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1462 { 1463 int ret; 1464 1465 if (dev->flags & IFF_UP) 1466 return 0; 1467 1468 ret = __dev_open(dev, extack); 1469 if (ret < 0) 1470 return ret; 1471 1472 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1473 call_netdevice_notifiers(NETDEV_UP, dev); 1474 1475 return ret; 1476 } 1477 EXPORT_SYMBOL(dev_open); 1478 1479 static void __dev_close_many(struct list_head *head) 1480 { 1481 struct net_device *dev; 1482 1483 ASSERT_RTNL(); 1484 might_sleep(); 1485 1486 list_for_each_entry(dev, head, close_list) { 1487 /* Temporarily disable netpoll until the interface is down */ 1488 netpoll_poll_disable(dev); 1489 1490 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1491 1492 clear_bit(__LINK_STATE_START, &dev->state); 1493 1494 /* Synchronize to scheduled poll. We cannot touch poll list, it 1495 * can be even on different cpu. So just clear netif_running(). 1496 * 1497 * dev->stop() will invoke napi_disable() on all of it's 1498 * napi_struct instances on this device. 1499 */ 1500 smp_mb__after_atomic(); /* Commit netif_running(). */ 1501 } 1502 1503 dev_deactivate_many(head); 1504 1505 list_for_each_entry(dev, head, close_list) { 1506 const struct net_device_ops *ops = dev->netdev_ops; 1507 1508 /* 1509 * Call the device specific close. This cannot fail. 1510 * Only if device is UP 1511 * 1512 * We allow it to be called even after a DETACH hot-plug 1513 * event. 1514 */ 1515 if (ops->ndo_stop) 1516 ops->ndo_stop(dev); 1517 1518 dev->flags &= ~IFF_UP; 1519 netpoll_poll_enable(dev); 1520 } 1521 } 1522 1523 static void __dev_close(struct net_device *dev) 1524 { 1525 LIST_HEAD(single); 1526 1527 list_add(&dev->close_list, &single); 1528 __dev_close_many(&single); 1529 list_del(&single); 1530 } 1531 1532 void dev_close_many(struct list_head *head, bool unlink) 1533 { 1534 struct net_device *dev, *tmp; 1535 1536 /* Remove the devices that don't need to be closed */ 1537 list_for_each_entry_safe(dev, tmp, head, close_list) 1538 if (!(dev->flags & IFF_UP)) 1539 list_del_init(&dev->close_list); 1540 1541 __dev_close_many(head); 1542 1543 list_for_each_entry_safe(dev, tmp, head, close_list) { 1544 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1545 call_netdevice_notifiers(NETDEV_DOWN, dev); 1546 if (unlink) 1547 list_del_init(&dev->close_list); 1548 } 1549 } 1550 EXPORT_SYMBOL(dev_close_many); 1551 1552 /** 1553 * dev_close - shutdown an interface. 1554 * @dev: device to shutdown 1555 * 1556 * This function moves an active device into down state. A 1557 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1558 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1559 * chain. 1560 */ 1561 void dev_close(struct net_device *dev) 1562 { 1563 if (dev->flags & IFF_UP) { 1564 LIST_HEAD(single); 1565 1566 list_add(&dev->close_list, &single); 1567 dev_close_many(&single, true); 1568 list_del(&single); 1569 } 1570 } 1571 EXPORT_SYMBOL(dev_close); 1572 1573 1574 /** 1575 * dev_disable_lro - disable Large Receive Offload on a device 1576 * @dev: device 1577 * 1578 * Disable Large Receive Offload (LRO) on a net device. Must be 1579 * called under RTNL. This is needed if received packets may be 1580 * forwarded to another interface. 1581 */ 1582 void dev_disable_lro(struct net_device *dev) 1583 { 1584 struct net_device *lower_dev; 1585 struct list_head *iter; 1586 1587 dev->wanted_features &= ~NETIF_F_LRO; 1588 netdev_update_features(dev); 1589 1590 if (unlikely(dev->features & NETIF_F_LRO)) 1591 netdev_WARN(dev, "failed to disable LRO!\n"); 1592 1593 netdev_for_each_lower_dev(dev, lower_dev, iter) 1594 dev_disable_lro(lower_dev); 1595 } 1596 EXPORT_SYMBOL(dev_disable_lro); 1597 1598 /** 1599 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1600 * @dev: device 1601 * 1602 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1603 * called under RTNL. This is needed if Generic XDP is installed on 1604 * the device. 1605 */ 1606 static void dev_disable_gro_hw(struct net_device *dev) 1607 { 1608 dev->wanted_features &= ~NETIF_F_GRO_HW; 1609 netdev_update_features(dev); 1610 1611 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1612 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1613 } 1614 1615 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1616 { 1617 #define N(val) \ 1618 case NETDEV_##val: \ 1619 return "NETDEV_" __stringify(val); 1620 switch (cmd) { 1621 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1622 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1623 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1624 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1625 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1626 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1627 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1628 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1629 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1630 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE) 1631 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA) 1632 } 1633 #undef N 1634 return "UNKNOWN_NETDEV_EVENT"; 1635 } 1636 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1637 1638 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1639 struct net_device *dev) 1640 { 1641 struct netdev_notifier_info info = { 1642 .dev = dev, 1643 }; 1644 1645 return nb->notifier_call(nb, val, &info); 1646 } 1647 1648 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1649 struct net_device *dev) 1650 { 1651 int err; 1652 1653 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1654 err = notifier_to_errno(err); 1655 if (err) 1656 return err; 1657 1658 if (!(dev->flags & IFF_UP)) 1659 return 0; 1660 1661 call_netdevice_notifier(nb, NETDEV_UP, dev); 1662 return 0; 1663 } 1664 1665 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1666 struct net_device *dev) 1667 { 1668 if (dev->flags & IFF_UP) { 1669 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1670 dev); 1671 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1672 } 1673 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1674 } 1675 1676 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1677 struct net *net) 1678 { 1679 struct net_device *dev; 1680 int err; 1681 1682 for_each_netdev(net, dev) { 1683 err = call_netdevice_register_notifiers(nb, dev); 1684 if (err) 1685 goto rollback; 1686 } 1687 return 0; 1688 1689 rollback: 1690 for_each_netdev_continue_reverse(net, dev) 1691 call_netdevice_unregister_notifiers(nb, dev); 1692 return err; 1693 } 1694 1695 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1696 struct net *net) 1697 { 1698 struct net_device *dev; 1699 1700 for_each_netdev(net, dev) 1701 call_netdevice_unregister_notifiers(nb, dev); 1702 } 1703 1704 static int dev_boot_phase = 1; 1705 1706 /** 1707 * register_netdevice_notifier - register a network notifier block 1708 * @nb: notifier 1709 * 1710 * Register a notifier to be called when network device events occur. 1711 * The notifier passed is linked into the kernel structures and must 1712 * not be reused until it has been unregistered. A negative errno code 1713 * is returned on a failure. 1714 * 1715 * When registered all registration and up events are replayed 1716 * to the new notifier to allow device to have a race free 1717 * view of the network device list. 1718 */ 1719 1720 int register_netdevice_notifier(struct notifier_block *nb) 1721 { 1722 struct net *net; 1723 int err; 1724 1725 /* Close race with setup_net() and cleanup_net() */ 1726 down_write(&pernet_ops_rwsem); 1727 rtnl_lock(); 1728 err = raw_notifier_chain_register(&netdev_chain, nb); 1729 if (err) 1730 goto unlock; 1731 if (dev_boot_phase) 1732 goto unlock; 1733 for_each_net(net) { 1734 err = call_netdevice_register_net_notifiers(nb, net); 1735 if (err) 1736 goto rollback; 1737 } 1738 1739 unlock: 1740 rtnl_unlock(); 1741 up_write(&pernet_ops_rwsem); 1742 return err; 1743 1744 rollback: 1745 for_each_net_continue_reverse(net) 1746 call_netdevice_unregister_net_notifiers(nb, net); 1747 1748 raw_notifier_chain_unregister(&netdev_chain, nb); 1749 goto unlock; 1750 } 1751 EXPORT_SYMBOL(register_netdevice_notifier); 1752 1753 /** 1754 * unregister_netdevice_notifier - unregister a network notifier block 1755 * @nb: notifier 1756 * 1757 * Unregister a notifier previously registered by 1758 * register_netdevice_notifier(). The notifier is unlinked into the 1759 * kernel structures and may then be reused. A negative errno code 1760 * is returned on a failure. 1761 * 1762 * After unregistering unregister and down device events are synthesized 1763 * for all devices on the device list to the removed notifier to remove 1764 * the need for special case cleanup code. 1765 */ 1766 1767 int unregister_netdevice_notifier(struct notifier_block *nb) 1768 { 1769 struct net *net; 1770 int err; 1771 1772 /* Close race with setup_net() and cleanup_net() */ 1773 down_write(&pernet_ops_rwsem); 1774 rtnl_lock(); 1775 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1776 if (err) 1777 goto unlock; 1778 1779 for_each_net(net) 1780 call_netdevice_unregister_net_notifiers(nb, net); 1781 1782 unlock: 1783 rtnl_unlock(); 1784 up_write(&pernet_ops_rwsem); 1785 return err; 1786 } 1787 EXPORT_SYMBOL(unregister_netdevice_notifier); 1788 1789 static int __register_netdevice_notifier_net(struct net *net, 1790 struct notifier_block *nb, 1791 bool ignore_call_fail) 1792 { 1793 int err; 1794 1795 err = raw_notifier_chain_register(&net->netdev_chain, nb); 1796 if (err) 1797 return err; 1798 if (dev_boot_phase) 1799 return 0; 1800 1801 err = call_netdevice_register_net_notifiers(nb, net); 1802 if (err && !ignore_call_fail) 1803 goto chain_unregister; 1804 1805 return 0; 1806 1807 chain_unregister: 1808 raw_notifier_chain_unregister(&net->netdev_chain, nb); 1809 return err; 1810 } 1811 1812 static int __unregister_netdevice_notifier_net(struct net *net, 1813 struct notifier_block *nb) 1814 { 1815 int err; 1816 1817 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 1818 if (err) 1819 return err; 1820 1821 call_netdevice_unregister_net_notifiers(nb, net); 1822 return 0; 1823 } 1824 1825 /** 1826 * register_netdevice_notifier_net - register a per-netns network notifier block 1827 * @net: network namespace 1828 * @nb: notifier 1829 * 1830 * Register a notifier to be called when network device events occur. 1831 * The notifier passed is linked into the kernel structures and must 1832 * not be reused until it has been unregistered. A negative errno code 1833 * is returned on a failure. 1834 * 1835 * When registered all registration and up events are replayed 1836 * to the new notifier to allow device to have a race free 1837 * view of the network device list. 1838 */ 1839 1840 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 1841 { 1842 int err; 1843 1844 rtnl_lock(); 1845 err = __register_netdevice_notifier_net(net, nb, false); 1846 rtnl_unlock(); 1847 return err; 1848 } 1849 EXPORT_SYMBOL(register_netdevice_notifier_net); 1850 1851 /** 1852 * unregister_netdevice_notifier_net - unregister a per-netns 1853 * network notifier block 1854 * @net: network namespace 1855 * @nb: notifier 1856 * 1857 * Unregister a notifier previously registered by 1858 * register_netdevice_notifier(). The notifier is unlinked into the 1859 * kernel structures and may then be reused. A negative errno code 1860 * is returned on a failure. 1861 * 1862 * After unregistering unregister and down device events are synthesized 1863 * for all devices on the device list to the removed notifier to remove 1864 * the need for special case cleanup code. 1865 */ 1866 1867 int unregister_netdevice_notifier_net(struct net *net, 1868 struct notifier_block *nb) 1869 { 1870 int err; 1871 1872 rtnl_lock(); 1873 err = __unregister_netdevice_notifier_net(net, nb); 1874 rtnl_unlock(); 1875 return err; 1876 } 1877 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 1878 1879 int register_netdevice_notifier_dev_net(struct net_device *dev, 1880 struct notifier_block *nb, 1881 struct netdev_net_notifier *nn) 1882 { 1883 int err; 1884 1885 rtnl_lock(); 1886 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 1887 if (!err) { 1888 nn->nb = nb; 1889 list_add(&nn->list, &dev->net_notifier_list); 1890 } 1891 rtnl_unlock(); 1892 return err; 1893 } 1894 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 1895 1896 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 1897 struct notifier_block *nb, 1898 struct netdev_net_notifier *nn) 1899 { 1900 int err; 1901 1902 rtnl_lock(); 1903 list_del(&nn->list); 1904 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 1905 rtnl_unlock(); 1906 return err; 1907 } 1908 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 1909 1910 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 1911 struct net *net) 1912 { 1913 struct netdev_net_notifier *nn; 1914 1915 list_for_each_entry(nn, &dev->net_notifier_list, list) { 1916 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb); 1917 __register_netdevice_notifier_net(net, nn->nb, true); 1918 } 1919 } 1920 1921 /** 1922 * call_netdevice_notifiers_info - call all network notifier blocks 1923 * @val: value passed unmodified to notifier function 1924 * @info: notifier information data 1925 * 1926 * Call all network notifier blocks. Parameters and return value 1927 * are as for raw_notifier_call_chain(). 1928 */ 1929 1930 static int call_netdevice_notifiers_info(unsigned long val, 1931 struct netdev_notifier_info *info) 1932 { 1933 struct net *net = dev_net(info->dev); 1934 int ret; 1935 1936 ASSERT_RTNL(); 1937 1938 /* Run per-netns notifier block chain first, then run the global one. 1939 * Hopefully, one day, the global one is going to be removed after 1940 * all notifier block registrators get converted to be per-netns. 1941 */ 1942 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 1943 if (ret & NOTIFY_STOP_MASK) 1944 return ret; 1945 return raw_notifier_call_chain(&netdev_chain, val, info); 1946 } 1947 1948 /** 1949 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks 1950 * for and rollback on error 1951 * @val_up: value passed unmodified to notifier function 1952 * @val_down: value passed unmodified to the notifier function when 1953 * recovering from an error on @val_up 1954 * @info: notifier information data 1955 * 1956 * Call all per-netns network notifier blocks, but not notifier blocks on 1957 * the global notifier chain. Parameters and return value are as for 1958 * raw_notifier_call_chain_robust(). 1959 */ 1960 1961 static int 1962 call_netdevice_notifiers_info_robust(unsigned long val_up, 1963 unsigned long val_down, 1964 struct netdev_notifier_info *info) 1965 { 1966 struct net *net = dev_net(info->dev); 1967 1968 ASSERT_RTNL(); 1969 1970 return raw_notifier_call_chain_robust(&net->netdev_chain, 1971 val_up, val_down, info); 1972 } 1973 1974 static int call_netdevice_notifiers_extack(unsigned long val, 1975 struct net_device *dev, 1976 struct netlink_ext_ack *extack) 1977 { 1978 struct netdev_notifier_info info = { 1979 .dev = dev, 1980 .extack = extack, 1981 }; 1982 1983 return call_netdevice_notifiers_info(val, &info); 1984 } 1985 1986 /** 1987 * call_netdevice_notifiers - call all network notifier blocks 1988 * @val: value passed unmodified to notifier function 1989 * @dev: net_device pointer passed unmodified to notifier function 1990 * 1991 * Call all network notifier blocks. Parameters and return value 1992 * are as for raw_notifier_call_chain(). 1993 */ 1994 1995 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1996 { 1997 return call_netdevice_notifiers_extack(val, dev, NULL); 1998 } 1999 EXPORT_SYMBOL(call_netdevice_notifiers); 2000 2001 /** 2002 * call_netdevice_notifiers_mtu - call all network notifier blocks 2003 * @val: value passed unmodified to notifier function 2004 * @dev: net_device pointer passed unmodified to notifier function 2005 * @arg: additional u32 argument passed to the notifier function 2006 * 2007 * Call all network notifier blocks. Parameters and return value 2008 * are as for raw_notifier_call_chain(). 2009 */ 2010 static int call_netdevice_notifiers_mtu(unsigned long val, 2011 struct net_device *dev, u32 arg) 2012 { 2013 struct netdev_notifier_info_ext info = { 2014 .info.dev = dev, 2015 .ext.mtu = arg, 2016 }; 2017 2018 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2019 2020 return call_netdevice_notifiers_info(val, &info.info); 2021 } 2022 2023 #ifdef CONFIG_NET_INGRESS 2024 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2025 2026 void net_inc_ingress_queue(void) 2027 { 2028 static_branch_inc(&ingress_needed_key); 2029 } 2030 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2031 2032 void net_dec_ingress_queue(void) 2033 { 2034 static_branch_dec(&ingress_needed_key); 2035 } 2036 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2037 #endif 2038 2039 #ifdef CONFIG_NET_EGRESS 2040 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2041 2042 void net_inc_egress_queue(void) 2043 { 2044 static_branch_inc(&egress_needed_key); 2045 } 2046 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2047 2048 void net_dec_egress_queue(void) 2049 { 2050 static_branch_dec(&egress_needed_key); 2051 } 2052 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2053 #endif 2054 2055 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2056 EXPORT_SYMBOL(netstamp_needed_key); 2057 #ifdef CONFIG_JUMP_LABEL 2058 static atomic_t netstamp_needed_deferred; 2059 static atomic_t netstamp_wanted; 2060 static void netstamp_clear(struct work_struct *work) 2061 { 2062 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2063 int wanted; 2064 2065 wanted = atomic_add_return(deferred, &netstamp_wanted); 2066 if (wanted > 0) 2067 static_branch_enable(&netstamp_needed_key); 2068 else 2069 static_branch_disable(&netstamp_needed_key); 2070 } 2071 static DECLARE_WORK(netstamp_work, netstamp_clear); 2072 #endif 2073 2074 void net_enable_timestamp(void) 2075 { 2076 #ifdef CONFIG_JUMP_LABEL 2077 int wanted; 2078 2079 while (1) { 2080 wanted = atomic_read(&netstamp_wanted); 2081 if (wanted <= 0) 2082 break; 2083 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 2084 return; 2085 } 2086 atomic_inc(&netstamp_needed_deferred); 2087 schedule_work(&netstamp_work); 2088 #else 2089 static_branch_inc(&netstamp_needed_key); 2090 #endif 2091 } 2092 EXPORT_SYMBOL(net_enable_timestamp); 2093 2094 void net_disable_timestamp(void) 2095 { 2096 #ifdef CONFIG_JUMP_LABEL 2097 int wanted; 2098 2099 while (1) { 2100 wanted = atomic_read(&netstamp_wanted); 2101 if (wanted <= 1) 2102 break; 2103 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 2104 return; 2105 } 2106 atomic_dec(&netstamp_needed_deferred); 2107 schedule_work(&netstamp_work); 2108 #else 2109 static_branch_dec(&netstamp_needed_key); 2110 #endif 2111 } 2112 EXPORT_SYMBOL(net_disable_timestamp); 2113 2114 static inline void net_timestamp_set(struct sk_buff *skb) 2115 { 2116 skb->tstamp = 0; 2117 skb->mono_delivery_time = 0; 2118 if (static_branch_unlikely(&netstamp_needed_key)) 2119 skb->tstamp = ktime_get_real(); 2120 } 2121 2122 #define net_timestamp_check(COND, SKB) \ 2123 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2124 if ((COND) && !(SKB)->tstamp) \ 2125 (SKB)->tstamp = ktime_get_real(); \ 2126 } \ 2127 2128 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2129 { 2130 return __is_skb_forwardable(dev, skb, true); 2131 } 2132 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2133 2134 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb, 2135 bool check_mtu) 2136 { 2137 int ret = ____dev_forward_skb(dev, skb, check_mtu); 2138 2139 if (likely(!ret)) { 2140 skb->protocol = eth_type_trans(skb, dev); 2141 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2142 } 2143 2144 return ret; 2145 } 2146 2147 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2148 { 2149 return __dev_forward_skb2(dev, skb, true); 2150 } 2151 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2152 2153 /** 2154 * dev_forward_skb - loopback an skb to another netif 2155 * 2156 * @dev: destination network device 2157 * @skb: buffer to forward 2158 * 2159 * return values: 2160 * NET_RX_SUCCESS (no congestion) 2161 * NET_RX_DROP (packet was dropped, but freed) 2162 * 2163 * dev_forward_skb can be used for injecting an skb from the 2164 * start_xmit function of one device into the receive queue 2165 * of another device. 2166 * 2167 * The receiving device may be in another namespace, so 2168 * we have to clear all information in the skb that could 2169 * impact namespace isolation. 2170 */ 2171 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2172 { 2173 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2174 } 2175 EXPORT_SYMBOL_GPL(dev_forward_skb); 2176 2177 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb) 2178 { 2179 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb); 2180 } 2181 2182 static inline int deliver_skb(struct sk_buff *skb, 2183 struct packet_type *pt_prev, 2184 struct net_device *orig_dev) 2185 { 2186 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2187 return -ENOMEM; 2188 refcount_inc(&skb->users); 2189 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2190 } 2191 2192 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2193 struct packet_type **pt, 2194 struct net_device *orig_dev, 2195 __be16 type, 2196 struct list_head *ptype_list) 2197 { 2198 struct packet_type *ptype, *pt_prev = *pt; 2199 2200 list_for_each_entry_rcu(ptype, ptype_list, list) { 2201 if (ptype->type != type) 2202 continue; 2203 if (pt_prev) 2204 deliver_skb(skb, pt_prev, orig_dev); 2205 pt_prev = ptype; 2206 } 2207 *pt = pt_prev; 2208 } 2209 2210 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2211 { 2212 if (!ptype->af_packet_priv || !skb->sk) 2213 return false; 2214 2215 if (ptype->id_match) 2216 return ptype->id_match(ptype, skb->sk); 2217 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2218 return true; 2219 2220 return false; 2221 } 2222 2223 /** 2224 * dev_nit_active - return true if any network interface taps are in use 2225 * 2226 * @dev: network device to check for the presence of taps 2227 */ 2228 bool dev_nit_active(struct net_device *dev) 2229 { 2230 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 2231 } 2232 EXPORT_SYMBOL_GPL(dev_nit_active); 2233 2234 /* 2235 * Support routine. Sends outgoing frames to any network 2236 * taps currently in use. 2237 */ 2238 2239 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2240 { 2241 struct packet_type *ptype; 2242 struct sk_buff *skb2 = NULL; 2243 struct packet_type *pt_prev = NULL; 2244 struct list_head *ptype_list = &ptype_all; 2245 2246 rcu_read_lock(); 2247 again: 2248 list_for_each_entry_rcu(ptype, ptype_list, list) { 2249 if (ptype->ignore_outgoing) 2250 continue; 2251 2252 /* Never send packets back to the socket 2253 * they originated from - MvS (miquels@drinkel.ow.org) 2254 */ 2255 if (skb_loop_sk(ptype, skb)) 2256 continue; 2257 2258 if (pt_prev) { 2259 deliver_skb(skb2, pt_prev, skb->dev); 2260 pt_prev = ptype; 2261 continue; 2262 } 2263 2264 /* need to clone skb, done only once */ 2265 skb2 = skb_clone(skb, GFP_ATOMIC); 2266 if (!skb2) 2267 goto out_unlock; 2268 2269 net_timestamp_set(skb2); 2270 2271 /* skb->nh should be correctly 2272 * set by sender, so that the second statement is 2273 * just protection against buggy protocols. 2274 */ 2275 skb_reset_mac_header(skb2); 2276 2277 if (skb_network_header(skb2) < skb2->data || 2278 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2279 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2280 ntohs(skb2->protocol), 2281 dev->name); 2282 skb_reset_network_header(skb2); 2283 } 2284 2285 skb2->transport_header = skb2->network_header; 2286 skb2->pkt_type = PACKET_OUTGOING; 2287 pt_prev = ptype; 2288 } 2289 2290 if (ptype_list == &ptype_all) { 2291 ptype_list = &dev->ptype_all; 2292 goto again; 2293 } 2294 out_unlock: 2295 if (pt_prev) { 2296 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2297 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2298 else 2299 kfree_skb(skb2); 2300 } 2301 rcu_read_unlock(); 2302 } 2303 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2304 2305 /** 2306 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2307 * @dev: Network device 2308 * @txq: number of queues available 2309 * 2310 * If real_num_tx_queues is changed the tc mappings may no longer be 2311 * valid. To resolve this verify the tc mapping remains valid and if 2312 * not NULL the mapping. With no priorities mapping to this 2313 * offset/count pair it will no longer be used. In the worst case TC0 2314 * is invalid nothing can be done so disable priority mappings. If is 2315 * expected that drivers will fix this mapping if they can before 2316 * calling netif_set_real_num_tx_queues. 2317 */ 2318 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2319 { 2320 int i; 2321 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2322 2323 /* If TC0 is invalidated disable TC mapping */ 2324 if (tc->offset + tc->count > txq) { 2325 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2326 dev->num_tc = 0; 2327 return; 2328 } 2329 2330 /* Invalidated prio to tc mappings set to TC0 */ 2331 for (i = 1; i < TC_BITMASK + 1; i++) { 2332 int q = netdev_get_prio_tc_map(dev, i); 2333 2334 tc = &dev->tc_to_txq[q]; 2335 if (tc->offset + tc->count > txq) { 2336 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2337 i, q); 2338 netdev_set_prio_tc_map(dev, i, 0); 2339 } 2340 } 2341 } 2342 2343 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2344 { 2345 if (dev->num_tc) { 2346 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2347 int i; 2348 2349 /* walk through the TCs and see if it falls into any of them */ 2350 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2351 if ((txq - tc->offset) < tc->count) 2352 return i; 2353 } 2354 2355 /* didn't find it, just return -1 to indicate no match */ 2356 return -1; 2357 } 2358 2359 return 0; 2360 } 2361 EXPORT_SYMBOL(netdev_txq_to_tc); 2362 2363 #ifdef CONFIG_XPS 2364 static struct static_key xps_needed __read_mostly; 2365 static struct static_key xps_rxqs_needed __read_mostly; 2366 static DEFINE_MUTEX(xps_map_mutex); 2367 #define xmap_dereference(P) \ 2368 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2369 2370 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2371 struct xps_dev_maps *old_maps, int tci, u16 index) 2372 { 2373 struct xps_map *map = NULL; 2374 int pos; 2375 2376 if (dev_maps) 2377 map = xmap_dereference(dev_maps->attr_map[tci]); 2378 if (!map) 2379 return false; 2380 2381 for (pos = map->len; pos--;) { 2382 if (map->queues[pos] != index) 2383 continue; 2384 2385 if (map->len > 1) { 2386 map->queues[pos] = map->queues[--map->len]; 2387 break; 2388 } 2389 2390 if (old_maps) 2391 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL); 2392 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2393 kfree_rcu(map, rcu); 2394 return false; 2395 } 2396 2397 return true; 2398 } 2399 2400 static bool remove_xps_queue_cpu(struct net_device *dev, 2401 struct xps_dev_maps *dev_maps, 2402 int cpu, u16 offset, u16 count) 2403 { 2404 int num_tc = dev_maps->num_tc; 2405 bool active = false; 2406 int tci; 2407 2408 for (tci = cpu * num_tc; num_tc--; tci++) { 2409 int i, j; 2410 2411 for (i = count, j = offset; i--; j++) { 2412 if (!remove_xps_queue(dev_maps, NULL, tci, j)) 2413 break; 2414 } 2415 2416 active |= i < 0; 2417 } 2418 2419 return active; 2420 } 2421 2422 static void reset_xps_maps(struct net_device *dev, 2423 struct xps_dev_maps *dev_maps, 2424 enum xps_map_type type) 2425 { 2426 static_key_slow_dec_cpuslocked(&xps_needed); 2427 if (type == XPS_RXQS) 2428 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2429 2430 RCU_INIT_POINTER(dev->xps_maps[type], NULL); 2431 2432 kfree_rcu(dev_maps, rcu); 2433 } 2434 2435 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type, 2436 u16 offset, u16 count) 2437 { 2438 struct xps_dev_maps *dev_maps; 2439 bool active = false; 2440 int i, j; 2441 2442 dev_maps = xmap_dereference(dev->xps_maps[type]); 2443 if (!dev_maps) 2444 return; 2445 2446 for (j = 0; j < dev_maps->nr_ids; j++) 2447 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count); 2448 if (!active) 2449 reset_xps_maps(dev, dev_maps, type); 2450 2451 if (type == XPS_CPUS) { 2452 for (i = offset + (count - 1); count--; i--) 2453 netdev_queue_numa_node_write( 2454 netdev_get_tx_queue(dev, i), NUMA_NO_NODE); 2455 } 2456 } 2457 2458 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2459 u16 count) 2460 { 2461 if (!static_key_false(&xps_needed)) 2462 return; 2463 2464 cpus_read_lock(); 2465 mutex_lock(&xps_map_mutex); 2466 2467 if (static_key_false(&xps_rxqs_needed)) 2468 clean_xps_maps(dev, XPS_RXQS, offset, count); 2469 2470 clean_xps_maps(dev, XPS_CPUS, offset, count); 2471 2472 mutex_unlock(&xps_map_mutex); 2473 cpus_read_unlock(); 2474 } 2475 2476 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2477 { 2478 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2479 } 2480 2481 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2482 u16 index, bool is_rxqs_map) 2483 { 2484 struct xps_map *new_map; 2485 int alloc_len = XPS_MIN_MAP_ALLOC; 2486 int i, pos; 2487 2488 for (pos = 0; map && pos < map->len; pos++) { 2489 if (map->queues[pos] != index) 2490 continue; 2491 return map; 2492 } 2493 2494 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2495 if (map) { 2496 if (pos < map->alloc_len) 2497 return map; 2498 2499 alloc_len = map->alloc_len * 2; 2500 } 2501 2502 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2503 * map 2504 */ 2505 if (is_rxqs_map) 2506 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2507 else 2508 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2509 cpu_to_node(attr_index)); 2510 if (!new_map) 2511 return NULL; 2512 2513 for (i = 0; i < pos; i++) 2514 new_map->queues[i] = map->queues[i]; 2515 new_map->alloc_len = alloc_len; 2516 new_map->len = pos; 2517 2518 return new_map; 2519 } 2520 2521 /* Copy xps maps at a given index */ 2522 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps, 2523 struct xps_dev_maps *new_dev_maps, int index, 2524 int tc, bool skip_tc) 2525 { 2526 int i, tci = index * dev_maps->num_tc; 2527 struct xps_map *map; 2528 2529 /* copy maps belonging to foreign traffic classes */ 2530 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2531 if (i == tc && skip_tc) 2532 continue; 2533 2534 /* fill in the new device map from the old device map */ 2535 map = xmap_dereference(dev_maps->attr_map[tci]); 2536 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2537 } 2538 } 2539 2540 /* Must be called under cpus_read_lock */ 2541 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2542 u16 index, enum xps_map_type type) 2543 { 2544 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL; 2545 const unsigned long *online_mask = NULL; 2546 bool active = false, copy = false; 2547 int i, j, tci, numa_node_id = -2; 2548 int maps_sz, num_tc = 1, tc = 0; 2549 struct xps_map *map, *new_map; 2550 unsigned int nr_ids; 2551 2552 if (dev->num_tc) { 2553 /* Do not allow XPS on subordinate device directly */ 2554 num_tc = dev->num_tc; 2555 if (num_tc < 0) 2556 return -EINVAL; 2557 2558 /* If queue belongs to subordinate dev use its map */ 2559 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2560 2561 tc = netdev_txq_to_tc(dev, index); 2562 if (tc < 0) 2563 return -EINVAL; 2564 } 2565 2566 mutex_lock(&xps_map_mutex); 2567 2568 dev_maps = xmap_dereference(dev->xps_maps[type]); 2569 if (type == XPS_RXQS) { 2570 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2571 nr_ids = dev->num_rx_queues; 2572 } else { 2573 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2574 if (num_possible_cpus() > 1) 2575 online_mask = cpumask_bits(cpu_online_mask); 2576 nr_ids = nr_cpu_ids; 2577 } 2578 2579 if (maps_sz < L1_CACHE_BYTES) 2580 maps_sz = L1_CACHE_BYTES; 2581 2582 /* The old dev_maps could be larger or smaller than the one we're 2583 * setting up now, as dev->num_tc or nr_ids could have been updated in 2584 * between. We could try to be smart, but let's be safe instead and only 2585 * copy foreign traffic classes if the two map sizes match. 2586 */ 2587 if (dev_maps && 2588 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids) 2589 copy = true; 2590 2591 /* allocate memory for queue storage */ 2592 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2593 j < nr_ids;) { 2594 if (!new_dev_maps) { 2595 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2596 if (!new_dev_maps) { 2597 mutex_unlock(&xps_map_mutex); 2598 return -ENOMEM; 2599 } 2600 2601 new_dev_maps->nr_ids = nr_ids; 2602 new_dev_maps->num_tc = num_tc; 2603 } 2604 2605 tci = j * num_tc + tc; 2606 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL; 2607 2608 map = expand_xps_map(map, j, index, type == XPS_RXQS); 2609 if (!map) 2610 goto error; 2611 2612 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2613 } 2614 2615 if (!new_dev_maps) 2616 goto out_no_new_maps; 2617 2618 if (!dev_maps) { 2619 /* Increment static keys at most once per type */ 2620 static_key_slow_inc_cpuslocked(&xps_needed); 2621 if (type == XPS_RXQS) 2622 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2623 } 2624 2625 for (j = 0; j < nr_ids; j++) { 2626 bool skip_tc = false; 2627 2628 tci = j * num_tc + tc; 2629 if (netif_attr_test_mask(j, mask, nr_ids) && 2630 netif_attr_test_online(j, online_mask, nr_ids)) { 2631 /* add tx-queue to CPU/rx-queue maps */ 2632 int pos = 0; 2633 2634 skip_tc = true; 2635 2636 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2637 while ((pos < map->len) && (map->queues[pos] != index)) 2638 pos++; 2639 2640 if (pos == map->len) 2641 map->queues[map->len++] = index; 2642 #ifdef CONFIG_NUMA 2643 if (type == XPS_CPUS) { 2644 if (numa_node_id == -2) 2645 numa_node_id = cpu_to_node(j); 2646 else if (numa_node_id != cpu_to_node(j)) 2647 numa_node_id = -1; 2648 } 2649 #endif 2650 } 2651 2652 if (copy) 2653 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc, 2654 skip_tc); 2655 } 2656 2657 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps); 2658 2659 /* Cleanup old maps */ 2660 if (!dev_maps) 2661 goto out_no_old_maps; 2662 2663 for (j = 0; j < dev_maps->nr_ids; j++) { 2664 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) { 2665 map = xmap_dereference(dev_maps->attr_map[tci]); 2666 if (!map) 2667 continue; 2668 2669 if (copy) { 2670 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2671 if (map == new_map) 2672 continue; 2673 } 2674 2675 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2676 kfree_rcu(map, rcu); 2677 } 2678 } 2679 2680 old_dev_maps = dev_maps; 2681 2682 out_no_old_maps: 2683 dev_maps = new_dev_maps; 2684 active = true; 2685 2686 out_no_new_maps: 2687 if (type == XPS_CPUS) 2688 /* update Tx queue numa node */ 2689 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2690 (numa_node_id >= 0) ? 2691 numa_node_id : NUMA_NO_NODE); 2692 2693 if (!dev_maps) 2694 goto out_no_maps; 2695 2696 /* removes tx-queue from unused CPUs/rx-queues */ 2697 for (j = 0; j < dev_maps->nr_ids; j++) { 2698 tci = j * dev_maps->num_tc; 2699 2700 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2701 if (i == tc && 2702 netif_attr_test_mask(j, mask, dev_maps->nr_ids) && 2703 netif_attr_test_online(j, online_mask, dev_maps->nr_ids)) 2704 continue; 2705 2706 active |= remove_xps_queue(dev_maps, 2707 copy ? old_dev_maps : NULL, 2708 tci, index); 2709 } 2710 } 2711 2712 if (old_dev_maps) 2713 kfree_rcu(old_dev_maps, rcu); 2714 2715 /* free map if not active */ 2716 if (!active) 2717 reset_xps_maps(dev, dev_maps, type); 2718 2719 out_no_maps: 2720 mutex_unlock(&xps_map_mutex); 2721 2722 return 0; 2723 error: 2724 /* remove any maps that we added */ 2725 for (j = 0; j < nr_ids; j++) { 2726 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2727 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2728 map = copy ? 2729 xmap_dereference(dev_maps->attr_map[tci]) : 2730 NULL; 2731 if (new_map && new_map != map) 2732 kfree(new_map); 2733 } 2734 } 2735 2736 mutex_unlock(&xps_map_mutex); 2737 2738 kfree(new_dev_maps); 2739 return -ENOMEM; 2740 } 2741 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2742 2743 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2744 u16 index) 2745 { 2746 int ret; 2747 2748 cpus_read_lock(); 2749 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS); 2750 cpus_read_unlock(); 2751 2752 return ret; 2753 } 2754 EXPORT_SYMBOL(netif_set_xps_queue); 2755 2756 #endif 2757 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2758 { 2759 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2760 2761 /* Unbind any subordinate channels */ 2762 while (txq-- != &dev->_tx[0]) { 2763 if (txq->sb_dev) 2764 netdev_unbind_sb_channel(dev, txq->sb_dev); 2765 } 2766 } 2767 2768 void netdev_reset_tc(struct net_device *dev) 2769 { 2770 #ifdef CONFIG_XPS 2771 netif_reset_xps_queues_gt(dev, 0); 2772 #endif 2773 netdev_unbind_all_sb_channels(dev); 2774 2775 /* Reset TC configuration of device */ 2776 dev->num_tc = 0; 2777 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2778 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2779 } 2780 EXPORT_SYMBOL(netdev_reset_tc); 2781 2782 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2783 { 2784 if (tc >= dev->num_tc) 2785 return -EINVAL; 2786 2787 #ifdef CONFIG_XPS 2788 netif_reset_xps_queues(dev, offset, count); 2789 #endif 2790 dev->tc_to_txq[tc].count = count; 2791 dev->tc_to_txq[tc].offset = offset; 2792 return 0; 2793 } 2794 EXPORT_SYMBOL(netdev_set_tc_queue); 2795 2796 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2797 { 2798 if (num_tc > TC_MAX_QUEUE) 2799 return -EINVAL; 2800 2801 #ifdef CONFIG_XPS 2802 netif_reset_xps_queues_gt(dev, 0); 2803 #endif 2804 netdev_unbind_all_sb_channels(dev); 2805 2806 dev->num_tc = num_tc; 2807 return 0; 2808 } 2809 EXPORT_SYMBOL(netdev_set_num_tc); 2810 2811 void netdev_unbind_sb_channel(struct net_device *dev, 2812 struct net_device *sb_dev) 2813 { 2814 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2815 2816 #ifdef CONFIG_XPS 2817 netif_reset_xps_queues_gt(sb_dev, 0); 2818 #endif 2819 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2820 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2821 2822 while (txq-- != &dev->_tx[0]) { 2823 if (txq->sb_dev == sb_dev) 2824 txq->sb_dev = NULL; 2825 } 2826 } 2827 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2828 2829 int netdev_bind_sb_channel_queue(struct net_device *dev, 2830 struct net_device *sb_dev, 2831 u8 tc, u16 count, u16 offset) 2832 { 2833 /* Make certain the sb_dev and dev are already configured */ 2834 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2835 return -EINVAL; 2836 2837 /* We cannot hand out queues we don't have */ 2838 if ((offset + count) > dev->real_num_tx_queues) 2839 return -EINVAL; 2840 2841 /* Record the mapping */ 2842 sb_dev->tc_to_txq[tc].count = count; 2843 sb_dev->tc_to_txq[tc].offset = offset; 2844 2845 /* Provide a way for Tx queue to find the tc_to_txq map or 2846 * XPS map for itself. 2847 */ 2848 while (count--) 2849 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2850 2851 return 0; 2852 } 2853 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2854 2855 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2856 { 2857 /* Do not use a multiqueue device to represent a subordinate channel */ 2858 if (netif_is_multiqueue(dev)) 2859 return -ENODEV; 2860 2861 /* We allow channels 1 - 32767 to be used for subordinate channels. 2862 * Channel 0 is meant to be "native" mode and used only to represent 2863 * the main root device. We allow writing 0 to reset the device back 2864 * to normal mode after being used as a subordinate channel. 2865 */ 2866 if (channel > S16_MAX) 2867 return -EINVAL; 2868 2869 dev->num_tc = -channel; 2870 2871 return 0; 2872 } 2873 EXPORT_SYMBOL(netdev_set_sb_channel); 2874 2875 /* 2876 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2877 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2878 */ 2879 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2880 { 2881 bool disabling; 2882 int rc; 2883 2884 disabling = txq < dev->real_num_tx_queues; 2885 2886 if (txq < 1 || txq > dev->num_tx_queues) 2887 return -EINVAL; 2888 2889 if (dev->reg_state == NETREG_REGISTERED || 2890 dev->reg_state == NETREG_UNREGISTERING) { 2891 ASSERT_RTNL(); 2892 2893 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2894 txq); 2895 if (rc) 2896 return rc; 2897 2898 if (dev->num_tc) 2899 netif_setup_tc(dev, txq); 2900 2901 dev_qdisc_change_real_num_tx(dev, txq); 2902 2903 dev->real_num_tx_queues = txq; 2904 2905 if (disabling) { 2906 synchronize_net(); 2907 qdisc_reset_all_tx_gt(dev, txq); 2908 #ifdef CONFIG_XPS 2909 netif_reset_xps_queues_gt(dev, txq); 2910 #endif 2911 } 2912 } else { 2913 dev->real_num_tx_queues = txq; 2914 } 2915 2916 return 0; 2917 } 2918 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2919 2920 #ifdef CONFIG_SYSFS 2921 /** 2922 * netif_set_real_num_rx_queues - set actual number of RX queues used 2923 * @dev: Network device 2924 * @rxq: Actual number of RX queues 2925 * 2926 * This must be called either with the rtnl_lock held or before 2927 * registration of the net device. Returns 0 on success, or a 2928 * negative error code. If called before registration, it always 2929 * succeeds. 2930 */ 2931 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2932 { 2933 int rc; 2934 2935 if (rxq < 1 || rxq > dev->num_rx_queues) 2936 return -EINVAL; 2937 2938 if (dev->reg_state == NETREG_REGISTERED) { 2939 ASSERT_RTNL(); 2940 2941 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2942 rxq); 2943 if (rc) 2944 return rc; 2945 } 2946 2947 dev->real_num_rx_queues = rxq; 2948 return 0; 2949 } 2950 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2951 #endif 2952 2953 /** 2954 * netif_set_real_num_queues - set actual number of RX and TX queues used 2955 * @dev: Network device 2956 * @txq: Actual number of TX queues 2957 * @rxq: Actual number of RX queues 2958 * 2959 * Set the real number of both TX and RX queues. 2960 * Does nothing if the number of queues is already correct. 2961 */ 2962 int netif_set_real_num_queues(struct net_device *dev, 2963 unsigned int txq, unsigned int rxq) 2964 { 2965 unsigned int old_rxq = dev->real_num_rx_queues; 2966 int err; 2967 2968 if (txq < 1 || txq > dev->num_tx_queues || 2969 rxq < 1 || rxq > dev->num_rx_queues) 2970 return -EINVAL; 2971 2972 /* Start from increases, so the error path only does decreases - 2973 * decreases can't fail. 2974 */ 2975 if (rxq > dev->real_num_rx_queues) { 2976 err = netif_set_real_num_rx_queues(dev, rxq); 2977 if (err) 2978 return err; 2979 } 2980 if (txq > dev->real_num_tx_queues) { 2981 err = netif_set_real_num_tx_queues(dev, txq); 2982 if (err) 2983 goto undo_rx; 2984 } 2985 if (rxq < dev->real_num_rx_queues) 2986 WARN_ON(netif_set_real_num_rx_queues(dev, rxq)); 2987 if (txq < dev->real_num_tx_queues) 2988 WARN_ON(netif_set_real_num_tx_queues(dev, txq)); 2989 2990 return 0; 2991 undo_rx: 2992 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq)); 2993 return err; 2994 } 2995 EXPORT_SYMBOL(netif_set_real_num_queues); 2996 2997 /** 2998 * netif_set_tso_max_size() - set the max size of TSO frames supported 2999 * @dev: netdev to update 3000 * @size: max skb->len of a TSO frame 3001 * 3002 * Set the limit on the size of TSO super-frames the device can handle. 3003 * Unless explicitly set the stack will assume the value of 3004 * %GSO_LEGACY_MAX_SIZE. 3005 */ 3006 void netif_set_tso_max_size(struct net_device *dev, unsigned int size) 3007 { 3008 dev->tso_max_size = min(GSO_MAX_SIZE, size); 3009 if (size < READ_ONCE(dev->gso_max_size)) 3010 netif_set_gso_max_size(dev, size); 3011 } 3012 EXPORT_SYMBOL(netif_set_tso_max_size); 3013 3014 /** 3015 * netif_set_tso_max_segs() - set the max number of segs supported for TSO 3016 * @dev: netdev to update 3017 * @segs: max number of TCP segments 3018 * 3019 * Set the limit on the number of TCP segments the device can generate from 3020 * a single TSO super-frame. 3021 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS. 3022 */ 3023 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs) 3024 { 3025 dev->tso_max_segs = segs; 3026 if (segs < READ_ONCE(dev->gso_max_segs)) 3027 netif_set_gso_max_segs(dev, segs); 3028 } 3029 EXPORT_SYMBOL(netif_set_tso_max_segs); 3030 3031 /** 3032 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper 3033 * @to: netdev to update 3034 * @from: netdev from which to copy the limits 3035 */ 3036 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from) 3037 { 3038 netif_set_tso_max_size(to, from->tso_max_size); 3039 netif_set_tso_max_segs(to, from->tso_max_segs); 3040 } 3041 EXPORT_SYMBOL(netif_inherit_tso_max); 3042 3043 /** 3044 * netif_get_num_default_rss_queues - default number of RSS queues 3045 * 3046 * Default value is the number of physical cores if there are only 1 or 2, or 3047 * divided by 2 if there are more. 3048 */ 3049 int netif_get_num_default_rss_queues(void) 3050 { 3051 cpumask_var_t cpus; 3052 int cpu, count = 0; 3053 3054 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL))) 3055 return 1; 3056 3057 cpumask_copy(cpus, cpu_online_mask); 3058 for_each_cpu(cpu, cpus) { 3059 ++count; 3060 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu)); 3061 } 3062 free_cpumask_var(cpus); 3063 3064 return count > 2 ? DIV_ROUND_UP(count, 2) : count; 3065 } 3066 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3067 3068 static void __netif_reschedule(struct Qdisc *q) 3069 { 3070 struct softnet_data *sd; 3071 unsigned long flags; 3072 3073 local_irq_save(flags); 3074 sd = this_cpu_ptr(&softnet_data); 3075 q->next_sched = NULL; 3076 *sd->output_queue_tailp = q; 3077 sd->output_queue_tailp = &q->next_sched; 3078 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3079 local_irq_restore(flags); 3080 } 3081 3082 void __netif_schedule(struct Qdisc *q) 3083 { 3084 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3085 __netif_reschedule(q); 3086 } 3087 EXPORT_SYMBOL(__netif_schedule); 3088 3089 struct dev_kfree_skb_cb { 3090 enum skb_free_reason reason; 3091 }; 3092 3093 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3094 { 3095 return (struct dev_kfree_skb_cb *)skb->cb; 3096 } 3097 3098 void netif_schedule_queue(struct netdev_queue *txq) 3099 { 3100 rcu_read_lock(); 3101 if (!netif_xmit_stopped(txq)) { 3102 struct Qdisc *q = rcu_dereference(txq->qdisc); 3103 3104 __netif_schedule(q); 3105 } 3106 rcu_read_unlock(); 3107 } 3108 EXPORT_SYMBOL(netif_schedule_queue); 3109 3110 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3111 { 3112 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3113 struct Qdisc *q; 3114 3115 rcu_read_lock(); 3116 q = rcu_dereference(dev_queue->qdisc); 3117 __netif_schedule(q); 3118 rcu_read_unlock(); 3119 } 3120 } 3121 EXPORT_SYMBOL(netif_tx_wake_queue); 3122 3123 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 3124 { 3125 unsigned long flags; 3126 3127 if (unlikely(!skb)) 3128 return; 3129 3130 if (likely(refcount_read(&skb->users) == 1)) { 3131 smp_rmb(); 3132 refcount_set(&skb->users, 0); 3133 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3134 return; 3135 } 3136 get_kfree_skb_cb(skb)->reason = reason; 3137 local_irq_save(flags); 3138 skb->next = __this_cpu_read(softnet_data.completion_queue); 3139 __this_cpu_write(softnet_data.completion_queue, skb); 3140 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3141 local_irq_restore(flags); 3142 } 3143 EXPORT_SYMBOL(__dev_kfree_skb_irq); 3144 3145 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 3146 { 3147 if (in_hardirq() || irqs_disabled()) 3148 __dev_kfree_skb_irq(skb, reason); 3149 else 3150 dev_kfree_skb(skb); 3151 } 3152 EXPORT_SYMBOL(__dev_kfree_skb_any); 3153 3154 3155 /** 3156 * netif_device_detach - mark device as removed 3157 * @dev: network device 3158 * 3159 * Mark device as removed from system and therefore no longer available. 3160 */ 3161 void netif_device_detach(struct net_device *dev) 3162 { 3163 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3164 netif_running(dev)) { 3165 netif_tx_stop_all_queues(dev); 3166 } 3167 } 3168 EXPORT_SYMBOL(netif_device_detach); 3169 3170 /** 3171 * netif_device_attach - mark device as attached 3172 * @dev: network device 3173 * 3174 * Mark device as attached from system and restart if needed. 3175 */ 3176 void netif_device_attach(struct net_device *dev) 3177 { 3178 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3179 netif_running(dev)) { 3180 netif_tx_wake_all_queues(dev); 3181 __netdev_watchdog_up(dev); 3182 } 3183 } 3184 EXPORT_SYMBOL(netif_device_attach); 3185 3186 /* 3187 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3188 * to be used as a distribution range. 3189 */ 3190 static u16 skb_tx_hash(const struct net_device *dev, 3191 const struct net_device *sb_dev, 3192 struct sk_buff *skb) 3193 { 3194 u32 hash; 3195 u16 qoffset = 0; 3196 u16 qcount = dev->real_num_tx_queues; 3197 3198 if (dev->num_tc) { 3199 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3200 3201 qoffset = sb_dev->tc_to_txq[tc].offset; 3202 qcount = sb_dev->tc_to_txq[tc].count; 3203 if (unlikely(!qcount)) { 3204 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n", 3205 sb_dev->name, qoffset, tc); 3206 qoffset = 0; 3207 qcount = dev->real_num_tx_queues; 3208 } 3209 } 3210 3211 if (skb_rx_queue_recorded(skb)) { 3212 hash = skb_get_rx_queue(skb); 3213 if (hash >= qoffset) 3214 hash -= qoffset; 3215 while (unlikely(hash >= qcount)) 3216 hash -= qcount; 3217 return hash + qoffset; 3218 } 3219 3220 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3221 } 3222 3223 static void skb_warn_bad_offload(const struct sk_buff *skb) 3224 { 3225 static const netdev_features_t null_features; 3226 struct net_device *dev = skb->dev; 3227 const char *name = ""; 3228 3229 if (!net_ratelimit()) 3230 return; 3231 3232 if (dev) { 3233 if (dev->dev.parent) 3234 name = dev_driver_string(dev->dev.parent); 3235 else 3236 name = netdev_name(dev); 3237 } 3238 skb_dump(KERN_WARNING, skb, false); 3239 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3240 name, dev ? &dev->features : &null_features, 3241 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3242 } 3243 3244 /* 3245 * Invalidate hardware checksum when packet is to be mangled, and 3246 * complete checksum manually on outgoing path. 3247 */ 3248 int skb_checksum_help(struct sk_buff *skb) 3249 { 3250 __wsum csum; 3251 int ret = 0, offset; 3252 3253 if (skb->ip_summed == CHECKSUM_COMPLETE) 3254 goto out_set_summed; 3255 3256 if (unlikely(skb_is_gso(skb))) { 3257 skb_warn_bad_offload(skb); 3258 return -EINVAL; 3259 } 3260 3261 /* Before computing a checksum, we should make sure no frag could 3262 * be modified by an external entity : checksum could be wrong. 3263 */ 3264 if (skb_has_shared_frag(skb)) { 3265 ret = __skb_linearize(skb); 3266 if (ret) 3267 goto out; 3268 } 3269 3270 offset = skb_checksum_start_offset(skb); 3271 ret = -EINVAL; 3272 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3273 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3274 goto out; 3275 } 3276 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3277 3278 offset += skb->csum_offset; 3279 if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb))) { 3280 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3281 goto out; 3282 } 3283 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3284 if (ret) 3285 goto out; 3286 3287 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3288 out_set_summed: 3289 skb->ip_summed = CHECKSUM_NONE; 3290 out: 3291 return ret; 3292 } 3293 EXPORT_SYMBOL(skb_checksum_help); 3294 3295 int skb_crc32c_csum_help(struct sk_buff *skb) 3296 { 3297 __le32 crc32c_csum; 3298 int ret = 0, offset, start; 3299 3300 if (skb->ip_summed != CHECKSUM_PARTIAL) 3301 goto out; 3302 3303 if (unlikely(skb_is_gso(skb))) 3304 goto out; 3305 3306 /* Before computing a checksum, we should make sure no frag could 3307 * be modified by an external entity : checksum could be wrong. 3308 */ 3309 if (unlikely(skb_has_shared_frag(skb))) { 3310 ret = __skb_linearize(skb); 3311 if (ret) 3312 goto out; 3313 } 3314 start = skb_checksum_start_offset(skb); 3315 offset = start + offsetof(struct sctphdr, checksum); 3316 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3317 ret = -EINVAL; 3318 goto out; 3319 } 3320 3321 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3322 if (ret) 3323 goto out; 3324 3325 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 3326 skb->len - start, ~(__u32)0, 3327 crc32c_csum_stub)); 3328 *(__le32 *)(skb->data + offset) = crc32c_csum; 3329 skb->ip_summed = CHECKSUM_NONE; 3330 skb->csum_not_inet = 0; 3331 out: 3332 return ret; 3333 } 3334 3335 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3336 { 3337 __be16 type = skb->protocol; 3338 3339 /* Tunnel gso handlers can set protocol to ethernet. */ 3340 if (type == htons(ETH_P_TEB)) { 3341 struct ethhdr *eth; 3342 3343 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3344 return 0; 3345 3346 eth = (struct ethhdr *)skb->data; 3347 type = eth->h_proto; 3348 } 3349 3350 return __vlan_get_protocol(skb, type, depth); 3351 } 3352 3353 /* openvswitch calls this on rx path, so we need a different check. 3354 */ 3355 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 3356 { 3357 if (tx_path) 3358 return skb->ip_summed != CHECKSUM_PARTIAL && 3359 skb->ip_summed != CHECKSUM_UNNECESSARY; 3360 3361 return skb->ip_summed == CHECKSUM_NONE; 3362 } 3363 3364 /** 3365 * __skb_gso_segment - Perform segmentation on skb. 3366 * @skb: buffer to segment 3367 * @features: features for the output path (see dev->features) 3368 * @tx_path: whether it is called in TX path 3369 * 3370 * This function segments the given skb and returns a list of segments. 3371 * 3372 * It may return NULL if the skb requires no segmentation. This is 3373 * only possible when GSO is used for verifying header integrity. 3374 * 3375 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb. 3376 */ 3377 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3378 netdev_features_t features, bool tx_path) 3379 { 3380 struct sk_buff *segs; 3381 3382 if (unlikely(skb_needs_check(skb, tx_path))) { 3383 int err; 3384 3385 /* We're going to init ->check field in TCP or UDP header */ 3386 err = skb_cow_head(skb, 0); 3387 if (err < 0) 3388 return ERR_PTR(err); 3389 } 3390 3391 /* Only report GSO partial support if it will enable us to 3392 * support segmentation on this frame without needing additional 3393 * work. 3394 */ 3395 if (features & NETIF_F_GSO_PARTIAL) { 3396 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 3397 struct net_device *dev = skb->dev; 3398 3399 partial_features |= dev->features & dev->gso_partial_features; 3400 if (!skb_gso_ok(skb, features | partial_features)) 3401 features &= ~NETIF_F_GSO_PARTIAL; 3402 } 3403 3404 BUILD_BUG_ON(SKB_GSO_CB_OFFSET + 3405 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 3406 3407 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 3408 SKB_GSO_CB(skb)->encap_level = 0; 3409 3410 skb_reset_mac_header(skb); 3411 skb_reset_mac_len(skb); 3412 3413 segs = skb_mac_gso_segment(skb, features); 3414 3415 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 3416 skb_warn_bad_offload(skb); 3417 3418 return segs; 3419 } 3420 EXPORT_SYMBOL(__skb_gso_segment); 3421 3422 /* Take action when hardware reception checksum errors are detected. */ 3423 #ifdef CONFIG_BUG 3424 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3425 { 3426 netdev_err(dev, "hw csum failure\n"); 3427 skb_dump(KERN_ERR, skb, true); 3428 dump_stack(); 3429 } 3430 3431 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3432 { 3433 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb); 3434 } 3435 EXPORT_SYMBOL(netdev_rx_csum_fault); 3436 #endif 3437 3438 /* XXX: check that highmem exists at all on the given machine. */ 3439 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3440 { 3441 #ifdef CONFIG_HIGHMEM 3442 int i; 3443 3444 if (!(dev->features & NETIF_F_HIGHDMA)) { 3445 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3446 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3447 3448 if (PageHighMem(skb_frag_page(frag))) 3449 return 1; 3450 } 3451 } 3452 #endif 3453 return 0; 3454 } 3455 3456 /* If MPLS offload request, verify we are testing hardware MPLS features 3457 * instead of standard features for the netdev. 3458 */ 3459 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3460 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3461 netdev_features_t features, 3462 __be16 type) 3463 { 3464 if (eth_p_mpls(type)) 3465 features &= skb->dev->mpls_features; 3466 3467 return features; 3468 } 3469 #else 3470 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3471 netdev_features_t features, 3472 __be16 type) 3473 { 3474 return features; 3475 } 3476 #endif 3477 3478 static netdev_features_t harmonize_features(struct sk_buff *skb, 3479 netdev_features_t features) 3480 { 3481 __be16 type; 3482 3483 type = skb_network_protocol(skb, NULL); 3484 features = net_mpls_features(skb, features, type); 3485 3486 if (skb->ip_summed != CHECKSUM_NONE && 3487 !can_checksum_protocol(features, type)) { 3488 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3489 } 3490 if (illegal_highdma(skb->dev, skb)) 3491 features &= ~NETIF_F_SG; 3492 3493 return features; 3494 } 3495 3496 netdev_features_t passthru_features_check(struct sk_buff *skb, 3497 struct net_device *dev, 3498 netdev_features_t features) 3499 { 3500 return features; 3501 } 3502 EXPORT_SYMBOL(passthru_features_check); 3503 3504 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3505 struct net_device *dev, 3506 netdev_features_t features) 3507 { 3508 return vlan_features_check(skb, features); 3509 } 3510 3511 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3512 struct net_device *dev, 3513 netdev_features_t features) 3514 { 3515 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3516 3517 if (gso_segs > READ_ONCE(dev->gso_max_segs)) 3518 return features & ~NETIF_F_GSO_MASK; 3519 3520 if (!skb_shinfo(skb)->gso_type) { 3521 skb_warn_bad_offload(skb); 3522 return features & ~NETIF_F_GSO_MASK; 3523 } 3524 3525 /* Support for GSO partial features requires software 3526 * intervention before we can actually process the packets 3527 * so we need to strip support for any partial features now 3528 * and we can pull them back in after we have partially 3529 * segmented the frame. 3530 */ 3531 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3532 features &= ~dev->gso_partial_features; 3533 3534 /* Make sure to clear the IPv4 ID mangling feature if the 3535 * IPv4 header has the potential to be fragmented. 3536 */ 3537 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3538 struct iphdr *iph = skb->encapsulation ? 3539 inner_ip_hdr(skb) : ip_hdr(skb); 3540 3541 if (!(iph->frag_off & htons(IP_DF))) 3542 features &= ~NETIF_F_TSO_MANGLEID; 3543 } 3544 3545 return features; 3546 } 3547 3548 netdev_features_t netif_skb_features(struct sk_buff *skb) 3549 { 3550 struct net_device *dev = skb->dev; 3551 netdev_features_t features = dev->features; 3552 3553 if (skb_is_gso(skb)) 3554 features = gso_features_check(skb, dev, features); 3555 3556 /* If encapsulation offload request, verify we are testing 3557 * hardware encapsulation features instead of standard 3558 * features for the netdev 3559 */ 3560 if (skb->encapsulation) 3561 features &= dev->hw_enc_features; 3562 3563 if (skb_vlan_tagged(skb)) 3564 features = netdev_intersect_features(features, 3565 dev->vlan_features | 3566 NETIF_F_HW_VLAN_CTAG_TX | 3567 NETIF_F_HW_VLAN_STAG_TX); 3568 3569 if (dev->netdev_ops->ndo_features_check) 3570 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3571 features); 3572 else 3573 features &= dflt_features_check(skb, dev, features); 3574 3575 return harmonize_features(skb, features); 3576 } 3577 EXPORT_SYMBOL(netif_skb_features); 3578 3579 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3580 struct netdev_queue *txq, bool more) 3581 { 3582 unsigned int len; 3583 int rc; 3584 3585 if (dev_nit_active(dev)) 3586 dev_queue_xmit_nit(skb, dev); 3587 3588 len = skb->len; 3589 trace_net_dev_start_xmit(skb, dev); 3590 rc = netdev_start_xmit(skb, dev, txq, more); 3591 trace_net_dev_xmit(skb, rc, dev, len); 3592 3593 return rc; 3594 } 3595 3596 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3597 struct netdev_queue *txq, int *ret) 3598 { 3599 struct sk_buff *skb = first; 3600 int rc = NETDEV_TX_OK; 3601 3602 while (skb) { 3603 struct sk_buff *next = skb->next; 3604 3605 skb_mark_not_on_list(skb); 3606 rc = xmit_one(skb, dev, txq, next != NULL); 3607 if (unlikely(!dev_xmit_complete(rc))) { 3608 skb->next = next; 3609 goto out; 3610 } 3611 3612 skb = next; 3613 if (netif_tx_queue_stopped(txq) && skb) { 3614 rc = NETDEV_TX_BUSY; 3615 break; 3616 } 3617 } 3618 3619 out: 3620 *ret = rc; 3621 return skb; 3622 } 3623 3624 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3625 netdev_features_t features) 3626 { 3627 if (skb_vlan_tag_present(skb) && 3628 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3629 skb = __vlan_hwaccel_push_inside(skb); 3630 return skb; 3631 } 3632 3633 int skb_csum_hwoffload_help(struct sk_buff *skb, 3634 const netdev_features_t features) 3635 { 3636 if (unlikely(skb_csum_is_sctp(skb))) 3637 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3638 skb_crc32c_csum_help(skb); 3639 3640 if (features & NETIF_F_HW_CSUM) 3641 return 0; 3642 3643 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3644 switch (skb->csum_offset) { 3645 case offsetof(struct tcphdr, check): 3646 case offsetof(struct udphdr, check): 3647 return 0; 3648 } 3649 } 3650 3651 return skb_checksum_help(skb); 3652 } 3653 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3654 3655 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3656 { 3657 netdev_features_t features; 3658 3659 features = netif_skb_features(skb); 3660 skb = validate_xmit_vlan(skb, features); 3661 if (unlikely(!skb)) 3662 goto out_null; 3663 3664 skb = sk_validate_xmit_skb(skb, dev); 3665 if (unlikely(!skb)) 3666 goto out_null; 3667 3668 if (netif_needs_gso(skb, features)) { 3669 struct sk_buff *segs; 3670 3671 segs = skb_gso_segment(skb, features); 3672 if (IS_ERR(segs)) { 3673 goto out_kfree_skb; 3674 } else if (segs) { 3675 consume_skb(skb); 3676 skb = segs; 3677 } 3678 } else { 3679 if (skb_needs_linearize(skb, features) && 3680 __skb_linearize(skb)) 3681 goto out_kfree_skb; 3682 3683 /* If packet is not checksummed and device does not 3684 * support checksumming for this protocol, complete 3685 * checksumming here. 3686 */ 3687 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3688 if (skb->encapsulation) 3689 skb_set_inner_transport_header(skb, 3690 skb_checksum_start_offset(skb)); 3691 else 3692 skb_set_transport_header(skb, 3693 skb_checksum_start_offset(skb)); 3694 if (skb_csum_hwoffload_help(skb, features)) 3695 goto out_kfree_skb; 3696 } 3697 } 3698 3699 skb = validate_xmit_xfrm(skb, features, again); 3700 3701 return skb; 3702 3703 out_kfree_skb: 3704 kfree_skb(skb); 3705 out_null: 3706 dev_core_stats_tx_dropped_inc(dev); 3707 return NULL; 3708 } 3709 3710 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3711 { 3712 struct sk_buff *next, *head = NULL, *tail; 3713 3714 for (; skb != NULL; skb = next) { 3715 next = skb->next; 3716 skb_mark_not_on_list(skb); 3717 3718 /* in case skb wont be segmented, point to itself */ 3719 skb->prev = skb; 3720 3721 skb = validate_xmit_skb(skb, dev, again); 3722 if (!skb) 3723 continue; 3724 3725 if (!head) 3726 head = skb; 3727 else 3728 tail->next = skb; 3729 /* If skb was segmented, skb->prev points to 3730 * the last segment. If not, it still contains skb. 3731 */ 3732 tail = skb->prev; 3733 } 3734 return head; 3735 } 3736 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3737 3738 static void qdisc_pkt_len_init(struct sk_buff *skb) 3739 { 3740 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3741 3742 qdisc_skb_cb(skb)->pkt_len = skb->len; 3743 3744 /* To get more precise estimation of bytes sent on wire, 3745 * we add to pkt_len the headers size of all segments 3746 */ 3747 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3748 unsigned int hdr_len; 3749 u16 gso_segs = shinfo->gso_segs; 3750 3751 /* mac layer + network layer */ 3752 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3753 3754 /* + transport layer */ 3755 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3756 const struct tcphdr *th; 3757 struct tcphdr _tcphdr; 3758 3759 th = skb_header_pointer(skb, skb_transport_offset(skb), 3760 sizeof(_tcphdr), &_tcphdr); 3761 if (likely(th)) 3762 hdr_len += __tcp_hdrlen(th); 3763 } else { 3764 struct udphdr _udphdr; 3765 3766 if (skb_header_pointer(skb, skb_transport_offset(skb), 3767 sizeof(_udphdr), &_udphdr)) 3768 hdr_len += sizeof(struct udphdr); 3769 } 3770 3771 if (shinfo->gso_type & SKB_GSO_DODGY) 3772 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3773 shinfo->gso_size); 3774 3775 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3776 } 3777 } 3778 3779 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q, 3780 struct sk_buff **to_free, 3781 struct netdev_queue *txq) 3782 { 3783 int rc; 3784 3785 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK; 3786 if (rc == NET_XMIT_SUCCESS) 3787 trace_qdisc_enqueue(q, txq, skb); 3788 return rc; 3789 } 3790 3791 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3792 struct net_device *dev, 3793 struct netdev_queue *txq) 3794 { 3795 spinlock_t *root_lock = qdisc_lock(q); 3796 struct sk_buff *to_free = NULL; 3797 bool contended; 3798 int rc; 3799 3800 qdisc_calculate_pkt_len(skb, q); 3801 3802 if (q->flags & TCQ_F_NOLOCK) { 3803 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) && 3804 qdisc_run_begin(q)) { 3805 /* Retest nolock_qdisc_is_empty() within the protection 3806 * of q->seqlock to protect from racing with requeuing. 3807 */ 3808 if (unlikely(!nolock_qdisc_is_empty(q))) { 3809 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3810 __qdisc_run(q); 3811 qdisc_run_end(q); 3812 3813 goto no_lock_out; 3814 } 3815 3816 qdisc_bstats_cpu_update(q, skb); 3817 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) && 3818 !nolock_qdisc_is_empty(q)) 3819 __qdisc_run(q); 3820 3821 qdisc_run_end(q); 3822 return NET_XMIT_SUCCESS; 3823 } 3824 3825 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3826 qdisc_run(q); 3827 3828 no_lock_out: 3829 if (unlikely(to_free)) 3830 kfree_skb_list_reason(to_free, 3831 SKB_DROP_REASON_QDISC_DROP); 3832 return rc; 3833 } 3834 3835 /* 3836 * Heuristic to force contended enqueues to serialize on a 3837 * separate lock before trying to get qdisc main lock. 3838 * This permits qdisc->running owner to get the lock more 3839 * often and dequeue packets faster. 3840 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit 3841 * and then other tasks will only enqueue packets. The packets will be 3842 * sent after the qdisc owner is scheduled again. To prevent this 3843 * scenario the task always serialize on the lock. 3844 */ 3845 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT); 3846 if (unlikely(contended)) 3847 spin_lock(&q->busylock); 3848 3849 spin_lock(root_lock); 3850 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3851 __qdisc_drop(skb, &to_free); 3852 rc = NET_XMIT_DROP; 3853 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3854 qdisc_run_begin(q)) { 3855 /* 3856 * This is a work-conserving queue; there are no old skbs 3857 * waiting to be sent out; and the qdisc is not running - 3858 * xmit the skb directly. 3859 */ 3860 3861 qdisc_bstats_update(q, skb); 3862 3863 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3864 if (unlikely(contended)) { 3865 spin_unlock(&q->busylock); 3866 contended = false; 3867 } 3868 __qdisc_run(q); 3869 } 3870 3871 qdisc_run_end(q); 3872 rc = NET_XMIT_SUCCESS; 3873 } else { 3874 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3875 if (qdisc_run_begin(q)) { 3876 if (unlikely(contended)) { 3877 spin_unlock(&q->busylock); 3878 contended = false; 3879 } 3880 __qdisc_run(q); 3881 qdisc_run_end(q); 3882 } 3883 } 3884 spin_unlock(root_lock); 3885 if (unlikely(to_free)) 3886 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP); 3887 if (unlikely(contended)) 3888 spin_unlock(&q->busylock); 3889 return rc; 3890 } 3891 3892 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3893 static void skb_update_prio(struct sk_buff *skb) 3894 { 3895 const struct netprio_map *map; 3896 const struct sock *sk; 3897 unsigned int prioidx; 3898 3899 if (skb->priority) 3900 return; 3901 map = rcu_dereference_bh(skb->dev->priomap); 3902 if (!map) 3903 return; 3904 sk = skb_to_full_sk(skb); 3905 if (!sk) 3906 return; 3907 3908 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3909 3910 if (prioidx < map->priomap_len) 3911 skb->priority = map->priomap[prioidx]; 3912 } 3913 #else 3914 #define skb_update_prio(skb) 3915 #endif 3916 3917 /** 3918 * dev_loopback_xmit - loop back @skb 3919 * @net: network namespace this loopback is happening in 3920 * @sk: sk needed to be a netfilter okfn 3921 * @skb: buffer to transmit 3922 */ 3923 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3924 { 3925 skb_reset_mac_header(skb); 3926 __skb_pull(skb, skb_network_offset(skb)); 3927 skb->pkt_type = PACKET_LOOPBACK; 3928 if (skb->ip_summed == CHECKSUM_NONE) 3929 skb->ip_summed = CHECKSUM_UNNECESSARY; 3930 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb)); 3931 skb_dst_force(skb); 3932 netif_rx(skb); 3933 return 0; 3934 } 3935 EXPORT_SYMBOL(dev_loopback_xmit); 3936 3937 #ifdef CONFIG_NET_EGRESS 3938 static struct sk_buff * 3939 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3940 { 3941 #ifdef CONFIG_NET_CLS_ACT 3942 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3943 struct tcf_result cl_res; 3944 3945 if (!miniq) 3946 return skb; 3947 3948 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3949 tc_skb_cb(skb)->mru = 0; 3950 tc_skb_cb(skb)->post_ct = false; 3951 mini_qdisc_bstats_cpu_update(miniq, skb); 3952 3953 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) { 3954 case TC_ACT_OK: 3955 case TC_ACT_RECLASSIFY: 3956 skb->tc_index = TC_H_MIN(cl_res.classid); 3957 break; 3958 case TC_ACT_SHOT: 3959 mini_qdisc_qstats_cpu_drop(miniq); 3960 *ret = NET_XMIT_DROP; 3961 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS); 3962 return NULL; 3963 case TC_ACT_STOLEN: 3964 case TC_ACT_QUEUED: 3965 case TC_ACT_TRAP: 3966 *ret = NET_XMIT_SUCCESS; 3967 consume_skb(skb); 3968 return NULL; 3969 case TC_ACT_REDIRECT: 3970 /* No need to push/pop skb's mac_header here on egress! */ 3971 skb_do_redirect(skb); 3972 *ret = NET_XMIT_SUCCESS; 3973 return NULL; 3974 default: 3975 break; 3976 } 3977 #endif /* CONFIG_NET_CLS_ACT */ 3978 3979 return skb; 3980 } 3981 3982 static struct netdev_queue * 3983 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb) 3984 { 3985 int qm = skb_get_queue_mapping(skb); 3986 3987 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm)); 3988 } 3989 3990 static bool netdev_xmit_txqueue_skipped(void) 3991 { 3992 return __this_cpu_read(softnet_data.xmit.skip_txqueue); 3993 } 3994 3995 void netdev_xmit_skip_txqueue(bool skip) 3996 { 3997 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip); 3998 } 3999 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 4000 #endif /* CONFIG_NET_EGRESS */ 4001 4002 #ifdef CONFIG_XPS 4003 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 4004 struct xps_dev_maps *dev_maps, unsigned int tci) 4005 { 4006 int tc = netdev_get_prio_tc_map(dev, skb->priority); 4007 struct xps_map *map; 4008 int queue_index = -1; 4009 4010 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids) 4011 return queue_index; 4012 4013 tci *= dev_maps->num_tc; 4014 tci += tc; 4015 4016 map = rcu_dereference(dev_maps->attr_map[tci]); 4017 if (map) { 4018 if (map->len == 1) 4019 queue_index = map->queues[0]; 4020 else 4021 queue_index = map->queues[reciprocal_scale( 4022 skb_get_hash(skb), map->len)]; 4023 if (unlikely(queue_index >= dev->real_num_tx_queues)) 4024 queue_index = -1; 4025 } 4026 return queue_index; 4027 } 4028 #endif 4029 4030 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 4031 struct sk_buff *skb) 4032 { 4033 #ifdef CONFIG_XPS 4034 struct xps_dev_maps *dev_maps; 4035 struct sock *sk = skb->sk; 4036 int queue_index = -1; 4037 4038 if (!static_key_false(&xps_needed)) 4039 return -1; 4040 4041 rcu_read_lock(); 4042 if (!static_key_false(&xps_rxqs_needed)) 4043 goto get_cpus_map; 4044 4045 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]); 4046 if (dev_maps) { 4047 int tci = sk_rx_queue_get(sk); 4048 4049 if (tci >= 0) 4050 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4051 tci); 4052 } 4053 4054 get_cpus_map: 4055 if (queue_index < 0) { 4056 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]); 4057 if (dev_maps) { 4058 unsigned int tci = skb->sender_cpu - 1; 4059 4060 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4061 tci); 4062 } 4063 } 4064 rcu_read_unlock(); 4065 4066 return queue_index; 4067 #else 4068 return -1; 4069 #endif 4070 } 4071 4072 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 4073 struct net_device *sb_dev) 4074 { 4075 return 0; 4076 } 4077 EXPORT_SYMBOL(dev_pick_tx_zero); 4078 4079 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 4080 struct net_device *sb_dev) 4081 { 4082 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 4083 } 4084 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 4085 4086 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 4087 struct net_device *sb_dev) 4088 { 4089 struct sock *sk = skb->sk; 4090 int queue_index = sk_tx_queue_get(sk); 4091 4092 sb_dev = sb_dev ? : dev; 4093 4094 if (queue_index < 0 || skb->ooo_okay || 4095 queue_index >= dev->real_num_tx_queues) { 4096 int new_index = get_xps_queue(dev, sb_dev, skb); 4097 4098 if (new_index < 0) 4099 new_index = skb_tx_hash(dev, sb_dev, skb); 4100 4101 if (queue_index != new_index && sk && 4102 sk_fullsock(sk) && 4103 rcu_access_pointer(sk->sk_dst_cache)) 4104 sk_tx_queue_set(sk, new_index); 4105 4106 queue_index = new_index; 4107 } 4108 4109 return queue_index; 4110 } 4111 EXPORT_SYMBOL(netdev_pick_tx); 4112 4113 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4114 struct sk_buff *skb, 4115 struct net_device *sb_dev) 4116 { 4117 int queue_index = 0; 4118 4119 #ifdef CONFIG_XPS 4120 u32 sender_cpu = skb->sender_cpu - 1; 4121 4122 if (sender_cpu >= (u32)NR_CPUS) 4123 skb->sender_cpu = raw_smp_processor_id() + 1; 4124 #endif 4125 4126 if (dev->real_num_tx_queues != 1) { 4127 const struct net_device_ops *ops = dev->netdev_ops; 4128 4129 if (ops->ndo_select_queue) 4130 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4131 else 4132 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4133 4134 queue_index = netdev_cap_txqueue(dev, queue_index); 4135 } 4136 4137 skb_set_queue_mapping(skb, queue_index); 4138 return netdev_get_tx_queue(dev, queue_index); 4139 } 4140 4141 /** 4142 * __dev_queue_xmit() - transmit a buffer 4143 * @skb: buffer to transmit 4144 * @sb_dev: suboordinate device used for L2 forwarding offload 4145 * 4146 * Queue a buffer for transmission to a network device. The caller must 4147 * have set the device and priority and built the buffer before calling 4148 * this function. The function can be called from an interrupt. 4149 * 4150 * When calling this method, interrupts MUST be enabled. This is because 4151 * the BH enable code must have IRQs enabled so that it will not deadlock. 4152 * 4153 * Regardless of the return value, the skb is consumed, so it is currently 4154 * difficult to retry a send to this method. (You can bump the ref count 4155 * before sending to hold a reference for retry if you are careful.) 4156 * 4157 * Return: 4158 * * 0 - buffer successfully transmitted 4159 * * positive qdisc return code - NET_XMIT_DROP etc. 4160 * * negative errno - other errors 4161 */ 4162 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4163 { 4164 struct net_device *dev = skb->dev; 4165 struct netdev_queue *txq = NULL; 4166 struct Qdisc *q; 4167 int rc = -ENOMEM; 4168 bool again = false; 4169 4170 skb_reset_mac_header(skb); 4171 4172 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 4173 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED); 4174 4175 /* Disable soft irqs for various locks below. Also 4176 * stops preemption for RCU. 4177 */ 4178 rcu_read_lock_bh(); 4179 4180 skb_update_prio(skb); 4181 4182 qdisc_pkt_len_init(skb); 4183 #ifdef CONFIG_NET_CLS_ACT 4184 skb->tc_at_ingress = 0; 4185 #endif 4186 #ifdef CONFIG_NET_EGRESS 4187 if (static_branch_unlikely(&egress_needed_key)) { 4188 if (nf_hook_egress_active()) { 4189 skb = nf_hook_egress(skb, &rc, dev); 4190 if (!skb) 4191 goto out; 4192 } 4193 4194 netdev_xmit_skip_txqueue(false); 4195 4196 nf_skip_egress(skb, true); 4197 skb = sch_handle_egress(skb, &rc, dev); 4198 if (!skb) 4199 goto out; 4200 nf_skip_egress(skb, false); 4201 4202 if (netdev_xmit_txqueue_skipped()) 4203 txq = netdev_tx_queue_mapping(dev, skb); 4204 } 4205 #endif 4206 /* If device/qdisc don't need skb->dst, release it right now while 4207 * its hot in this cpu cache. 4208 */ 4209 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4210 skb_dst_drop(skb); 4211 else 4212 skb_dst_force(skb); 4213 4214 if (!txq) 4215 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4216 4217 q = rcu_dereference_bh(txq->qdisc); 4218 4219 trace_net_dev_queue(skb); 4220 if (q->enqueue) { 4221 rc = __dev_xmit_skb(skb, q, dev, txq); 4222 goto out; 4223 } 4224 4225 /* The device has no queue. Common case for software devices: 4226 * loopback, all the sorts of tunnels... 4227 4228 * Really, it is unlikely that netif_tx_lock protection is necessary 4229 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4230 * counters.) 4231 * However, it is possible, that they rely on protection 4232 * made by us here. 4233 4234 * Check this and shot the lock. It is not prone from deadlocks. 4235 *Either shot noqueue qdisc, it is even simpler 8) 4236 */ 4237 if (dev->flags & IFF_UP) { 4238 int cpu = smp_processor_id(); /* ok because BHs are off */ 4239 4240 /* Other cpus might concurrently change txq->xmit_lock_owner 4241 * to -1 or to their cpu id, but not to our id. 4242 */ 4243 if (READ_ONCE(txq->xmit_lock_owner) != cpu) { 4244 if (dev_xmit_recursion()) 4245 goto recursion_alert; 4246 4247 skb = validate_xmit_skb(skb, dev, &again); 4248 if (!skb) 4249 goto out; 4250 4251 HARD_TX_LOCK(dev, txq, cpu); 4252 4253 if (!netif_xmit_stopped(txq)) { 4254 dev_xmit_recursion_inc(); 4255 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4256 dev_xmit_recursion_dec(); 4257 if (dev_xmit_complete(rc)) { 4258 HARD_TX_UNLOCK(dev, txq); 4259 goto out; 4260 } 4261 } 4262 HARD_TX_UNLOCK(dev, txq); 4263 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4264 dev->name); 4265 } else { 4266 /* Recursion is detected! It is possible, 4267 * unfortunately 4268 */ 4269 recursion_alert: 4270 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4271 dev->name); 4272 } 4273 } 4274 4275 rc = -ENETDOWN; 4276 rcu_read_unlock_bh(); 4277 4278 dev_core_stats_tx_dropped_inc(dev); 4279 kfree_skb_list(skb); 4280 return rc; 4281 out: 4282 rcu_read_unlock_bh(); 4283 return rc; 4284 } 4285 EXPORT_SYMBOL(__dev_queue_xmit); 4286 4287 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4288 { 4289 struct net_device *dev = skb->dev; 4290 struct sk_buff *orig_skb = skb; 4291 struct netdev_queue *txq; 4292 int ret = NETDEV_TX_BUSY; 4293 bool again = false; 4294 4295 if (unlikely(!netif_running(dev) || 4296 !netif_carrier_ok(dev))) 4297 goto drop; 4298 4299 skb = validate_xmit_skb_list(skb, dev, &again); 4300 if (skb != orig_skb) 4301 goto drop; 4302 4303 skb_set_queue_mapping(skb, queue_id); 4304 txq = skb_get_tx_queue(dev, skb); 4305 4306 local_bh_disable(); 4307 4308 dev_xmit_recursion_inc(); 4309 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4310 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4311 ret = netdev_start_xmit(skb, dev, txq, false); 4312 HARD_TX_UNLOCK(dev, txq); 4313 dev_xmit_recursion_dec(); 4314 4315 local_bh_enable(); 4316 return ret; 4317 drop: 4318 dev_core_stats_tx_dropped_inc(dev); 4319 kfree_skb_list(skb); 4320 return NET_XMIT_DROP; 4321 } 4322 EXPORT_SYMBOL(__dev_direct_xmit); 4323 4324 /************************************************************************* 4325 * Receiver routines 4326 *************************************************************************/ 4327 4328 int netdev_max_backlog __read_mostly = 1000; 4329 EXPORT_SYMBOL(netdev_max_backlog); 4330 4331 int netdev_tstamp_prequeue __read_mostly = 1; 4332 unsigned int sysctl_skb_defer_max __read_mostly = 64; 4333 int netdev_budget __read_mostly = 300; 4334 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */ 4335 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ; 4336 int weight_p __read_mostly = 64; /* old backlog weight */ 4337 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4338 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4339 int dev_rx_weight __read_mostly = 64; 4340 int dev_tx_weight __read_mostly = 64; 4341 4342 /* Called with irq disabled */ 4343 static inline void ____napi_schedule(struct softnet_data *sd, 4344 struct napi_struct *napi) 4345 { 4346 struct task_struct *thread; 4347 4348 lockdep_assert_irqs_disabled(); 4349 4350 if (test_bit(NAPI_STATE_THREADED, &napi->state)) { 4351 /* Paired with smp_mb__before_atomic() in 4352 * napi_enable()/dev_set_threaded(). 4353 * Use READ_ONCE() to guarantee a complete 4354 * read on napi->thread. Only call 4355 * wake_up_process() when it's not NULL. 4356 */ 4357 thread = READ_ONCE(napi->thread); 4358 if (thread) { 4359 /* Avoid doing set_bit() if the thread is in 4360 * INTERRUPTIBLE state, cause napi_thread_wait() 4361 * makes sure to proceed with napi polling 4362 * if the thread is explicitly woken from here. 4363 */ 4364 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE) 4365 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 4366 wake_up_process(thread); 4367 return; 4368 } 4369 } 4370 4371 list_add_tail(&napi->poll_list, &sd->poll_list); 4372 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4373 } 4374 4375 #ifdef CONFIG_RPS 4376 4377 /* One global table that all flow-based protocols share. */ 4378 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 4379 EXPORT_SYMBOL(rps_sock_flow_table); 4380 u32 rps_cpu_mask __read_mostly; 4381 EXPORT_SYMBOL(rps_cpu_mask); 4382 4383 struct static_key_false rps_needed __read_mostly; 4384 EXPORT_SYMBOL(rps_needed); 4385 struct static_key_false rfs_needed __read_mostly; 4386 EXPORT_SYMBOL(rfs_needed); 4387 4388 static struct rps_dev_flow * 4389 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4390 struct rps_dev_flow *rflow, u16 next_cpu) 4391 { 4392 if (next_cpu < nr_cpu_ids) { 4393 #ifdef CONFIG_RFS_ACCEL 4394 struct netdev_rx_queue *rxqueue; 4395 struct rps_dev_flow_table *flow_table; 4396 struct rps_dev_flow *old_rflow; 4397 u32 flow_id; 4398 u16 rxq_index; 4399 int rc; 4400 4401 /* Should we steer this flow to a different hardware queue? */ 4402 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4403 !(dev->features & NETIF_F_NTUPLE)) 4404 goto out; 4405 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4406 if (rxq_index == skb_get_rx_queue(skb)) 4407 goto out; 4408 4409 rxqueue = dev->_rx + rxq_index; 4410 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4411 if (!flow_table) 4412 goto out; 4413 flow_id = skb_get_hash(skb) & flow_table->mask; 4414 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4415 rxq_index, flow_id); 4416 if (rc < 0) 4417 goto out; 4418 old_rflow = rflow; 4419 rflow = &flow_table->flows[flow_id]; 4420 rflow->filter = rc; 4421 if (old_rflow->filter == rflow->filter) 4422 old_rflow->filter = RPS_NO_FILTER; 4423 out: 4424 #endif 4425 rflow->last_qtail = 4426 per_cpu(softnet_data, next_cpu).input_queue_head; 4427 } 4428 4429 rflow->cpu = next_cpu; 4430 return rflow; 4431 } 4432 4433 /* 4434 * get_rps_cpu is called from netif_receive_skb and returns the target 4435 * CPU from the RPS map of the receiving queue for a given skb. 4436 * rcu_read_lock must be held on entry. 4437 */ 4438 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4439 struct rps_dev_flow **rflowp) 4440 { 4441 const struct rps_sock_flow_table *sock_flow_table; 4442 struct netdev_rx_queue *rxqueue = dev->_rx; 4443 struct rps_dev_flow_table *flow_table; 4444 struct rps_map *map; 4445 int cpu = -1; 4446 u32 tcpu; 4447 u32 hash; 4448 4449 if (skb_rx_queue_recorded(skb)) { 4450 u16 index = skb_get_rx_queue(skb); 4451 4452 if (unlikely(index >= dev->real_num_rx_queues)) { 4453 WARN_ONCE(dev->real_num_rx_queues > 1, 4454 "%s received packet on queue %u, but number " 4455 "of RX queues is %u\n", 4456 dev->name, index, dev->real_num_rx_queues); 4457 goto done; 4458 } 4459 rxqueue += index; 4460 } 4461 4462 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4463 4464 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4465 map = rcu_dereference(rxqueue->rps_map); 4466 if (!flow_table && !map) 4467 goto done; 4468 4469 skb_reset_network_header(skb); 4470 hash = skb_get_hash(skb); 4471 if (!hash) 4472 goto done; 4473 4474 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4475 if (flow_table && sock_flow_table) { 4476 struct rps_dev_flow *rflow; 4477 u32 next_cpu; 4478 u32 ident; 4479 4480 /* First check into global flow table if there is a match */ 4481 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 4482 if ((ident ^ hash) & ~rps_cpu_mask) 4483 goto try_rps; 4484 4485 next_cpu = ident & rps_cpu_mask; 4486 4487 /* OK, now we know there is a match, 4488 * we can look at the local (per receive queue) flow table 4489 */ 4490 rflow = &flow_table->flows[hash & flow_table->mask]; 4491 tcpu = rflow->cpu; 4492 4493 /* 4494 * If the desired CPU (where last recvmsg was done) is 4495 * different from current CPU (one in the rx-queue flow 4496 * table entry), switch if one of the following holds: 4497 * - Current CPU is unset (>= nr_cpu_ids). 4498 * - Current CPU is offline. 4499 * - The current CPU's queue tail has advanced beyond the 4500 * last packet that was enqueued using this table entry. 4501 * This guarantees that all previous packets for the flow 4502 * have been dequeued, thus preserving in order delivery. 4503 */ 4504 if (unlikely(tcpu != next_cpu) && 4505 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4506 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4507 rflow->last_qtail)) >= 0)) { 4508 tcpu = next_cpu; 4509 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4510 } 4511 4512 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4513 *rflowp = rflow; 4514 cpu = tcpu; 4515 goto done; 4516 } 4517 } 4518 4519 try_rps: 4520 4521 if (map) { 4522 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4523 if (cpu_online(tcpu)) { 4524 cpu = tcpu; 4525 goto done; 4526 } 4527 } 4528 4529 done: 4530 return cpu; 4531 } 4532 4533 #ifdef CONFIG_RFS_ACCEL 4534 4535 /** 4536 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4537 * @dev: Device on which the filter was set 4538 * @rxq_index: RX queue index 4539 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4540 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4541 * 4542 * Drivers that implement ndo_rx_flow_steer() should periodically call 4543 * this function for each installed filter and remove the filters for 4544 * which it returns %true. 4545 */ 4546 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4547 u32 flow_id, u16 filter_id) 4548 { 4549 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4550 struct rps_dev_flow_table *flow_table; 4551 struct rps_dev_flow *rflow; 4552 bool expire = true; 4553 unsigned int cpu; 4554 4555 rcu_read_lock(); 4556 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4557 if (flow_table && flow_id <= flow_table->mask) { 4558 rflow = &flow_table->flows[flow_id]; 4559 cpu = READ_ONCE(rflow->cpu); 4560 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4561 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4562 rflow->last_qtail) < 4563 (int)(10 * flow_table->mask))) 4564 expire = false; 4565 } 4566 rcu_read_unlock(); 4567 return expire; 4568 } 4569 EXPORT_SYMBOL(rps_may_expire_flow); 4570 4571 #endif /* CONFIG_RFS_ACCEL */ 4572 4573 /* Called from hardirq (IPI) context */ 4574 static void rps_trigger_softirq(void *data) 4575 { 4576 struct softnet_data *sd = data; 4577 4578 ____napi_schedule(sd, &sd->backlog); 4579 sd->received_rps++; 4580 } 4581 4582 #endif /* CONFIG_RPS */ 4583 4584 /* Called from hardirq (IPI) context */ 4585 static void trigger_rx_softirq(void *data) 4586 { 4587 struct softnet_data *sd = data; 4588 4589 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4590 smp_store_release(&sd->defer_ipi_scheduled, 0); 4591 } 4592 4593 /* 4594 * Check if this softnet_data structure is another cpu one 4595 * If yes, queue it to our IPI list and return 1 4596 * If no, return 0 4597 */ 4598 static int napi_schedule_rps(struct softnet_data *sd) 4599 { 4600 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4601 4602 #ifdef CONFIG_RPS 4603 if (sd != mysd) { 4604 sd->rps_ipi_next = mysd->rps_ipi_list; 4605 mysd->rps_ipi_list = sd; 4606 4607 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4608 return 1; 4609 } 4610 #endif /* CONFIG_RPS */ 4611 __napi_schedule_irqoff(&mysd->backlog); 4612 return 0; 4613 } 4614 4615 #ifdef CONFIG_NET_FLOW_LIMIT 4616 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4617 #endif 4618 4619 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4620 { 4621 #ifdef CONFIG_NET_FLOW_LIMIT 4622 struct sd_flow_limit *fl; 4623 struct softnet_data *sd; 4624 unsigned int old_flow, new_flow; 4625 4626 if (qlen < (netdev_max_backlog >> 1)) 4627 return false; 4628 4629 sd = this_cpu_ptr(&softnet_data); 4630 4631 rcu_read_lock(); 4632 fl = rcu_dereference(sd->flow_limit); 4633 if (fl) { 4634 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4635 old_flow = fl->history[fl->history_head]; 4636 fl->history[fl->history_head] = new_flow; 4637 4638 fl->history_head++; 4639 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4640 4641 if (likely(fl->buckets[old_flow])) 4642 fl->buckets[old_flow]--; 4643 4644 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4645 fl->count++; 4646 rcu_read_unlock(); 4647 return true; 4648 } 4649 } 4650 rcu_read_unlock(); 4651 #endif 4652 return false; 4653 } 4654 4655 /* 4656 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4657 * queue (may be a remote CPU queue). 4658 */ 4659 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4660 unsigned int *qtail) 4661 { 4662 enum skb_drop_reason reason; 4663 struct softnet_data *sd; 4664 unsigned long flags; 4665 unsigned int qlen; 4666 4667 reason = SKB_DROP_REASON_NOT_SPECIFIED; 4668 sd = &per_cpu(softnet_data, cpu); 4669 4670 rps_lock_irqsave(sd, &flags); 4671 if (!netif_running(skb->dev)) 4672 goto drop; 4673 qlen = skb_queue_len(&sd->input_pkt_queue); 4674 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 4675 if (qlen) { 4676 enqueue: 4677 __skb_queue_tail(&sd->input_pkt_queue, skb); 4678 input_queue_tail_incr_save(sd, qtail); 4679 rps_unlock_irq_restore(sd, &flags); 4680 return NET_RX_SUCCESS; 4681 } 4682 4683 /* Schedule NAPI for backlog device 4684 * We can use non atomic operation since we own the queue lock 4685 */ 4686 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) 4687 napi_schedule_rps(sd); 4688 goto enqueue; 4689 } 4690 reason = SKB_DROP_REASON_CPU_BACKLOG; 4691 4692 drop: 4693 sd->dropped++; 4694 rps_unlock_irq_restore(sd, &flags); 4695 4696 dev_core_stats_rx_dropped_inc(skb->dev); 4697 kfree_skb_reason(skb, reason); 4698 return NET_RX_DROP; 4699 } 4700 4701 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4702 { 4703 struct net_device *dev = skb->dev; 4704 struct netdev_rx_queue *rxqueue; 4705 4706 rxqueue = dev->_rx; 4707 4708 if (skb_rx_queue_recorded(skb)) { 4709 u16 index = skb_get_rx_queue(skb); 4710 4711 if (unlikely(index >= dev->real_num_rx_queues)) { 4712 WARN_ONCE(dev->real_num_rx_queues > 1, 4713 "%s received packet on queue %u, but number " 4714 "of RX queues is %u\n", 4715 dev->name, index, dev->real_num_rx_queues); 4716 4717 return rxqueue; /* Return first rxqueue */ 4718 } 4719 rxqueue += index; 4720 } 4721 return rxqueue; 4722 } 4723 4724 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 4725 struct bpf_prog *xdp_prog) 4726 { 4727 void *orig_data, *orig_data_end, *hard_start; 4728 struct netdev_rx_queue *rxqueue; 4729 bool orig_bcast, orig_host; 4730 u32 mac_len, frame_sz; 4731 __be16 orig_eth_type; 4732 struct ethhdr *eth; 4733 u32 metalen, act; 4734 int off; 4735 4736 /* The XDP program wants to see the packet starting at the MAC 4737 * header. 4738 */ 4739 mac_len = skb->data - skb_mac_header(skb); 4740 hard_start = skb->data - skb_headroom(skb); 4741 4742 /* SKB "head" area always have tailroom for skb_shared_info */ 4743 frame_sz = (void *)skb_end_pointer(skb) - hard_start; 4744 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4745 4746 rxqueue = netif_get_rxqueue(skb); 4747 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq); 4748 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len, 4749 skb_headlen(skb) + mac_len, true); 4750 4751 orig_data_end = xdp->data_end; 4752 orig_data = xdp->data; 4753 eth = (struct ethhdr *)xdp->data; 4754 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr); 4755 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4756 orig_eth_type = eth->h_proto; 4757 4758 act = bpf_prog_run_xdp(xdp_prog, xdp); 4759 4760 /* check if bpf_xdp_adjust_head was used */ 4761 off = xdp->data - orig_data; 4762 if (off) { 4763 if (off > 0) 4764 __skb_pull(skb, off); 4765 else if (off < 0) 4766 __skb_push(skb, -off); 4767 4768 skb->mac_header += off; 4769 skb_reset_network_header(skb); 4770 } 4771 4772 /* check if bpf_xdp_adjust_tail was used */ 4773 off = xdp->data_end - orig_data_end; 4774 if (off != 0) { 4775 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4776 skb->len += off; /* positive on grow, negative on shrink */ 4777 } 4778 4779 /* check if XDP changed eth hdr such SKB needs update */ 4780 eth = (struct ethhdr *)xdp->data; 4781 if ((orig_eth_type != eth->h_proto) || 4782 (orig_host != ether_addr_equal_64bits(eth->h_dest, 4783 skb->dev->dev_addr)) || 4784 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4785 __skb_push(skb, ETH_HLEN); 4786 skb->pkt_type = PACKET_HOST; 4787 skb->protocol = eth_type_trans(skb, skb->dev); 4788 } 4789 4790 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull 4791 * before calling us again on redirect path. We do not call do_redirect 4792 * as we leave that up to the caller. 4793 * 4794 * Caller is responsible for managing lifetime of skb (i.e. calling 4795 * kfree_skb in response to actions it cannot handle/XDP_DROP). 4796 */ 4797 switch (act) { 4798 case XDP_REDIRECT: 4799 case XDP_TX: 4800 __skb_push(skb, mac_len); 4801 break; 4802 case XDP_PASS: 4803 metalen = xdp->data - xdp->data_meta; 4804 if (metalen) 4805 skb_metadata_set(skb, metalen); 4806 break; 4807 } 4808 4809 return act; 4810 } 4811 4812 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4813 struct xdp_buff *xdp, 4814 struct bpf_prog *xdp_prog) 4815 { 4816 u32 act = XDP_DROP; 4817 4818 /* Reinjected packets coming from act_mirred or similar should 4819 * not get XDP generic processing. 4820 */ 4821 if (skb_is_redirected(skb)) 4822 return XDP_PASS; 4823 4824 /* XDP packets must be linear and must have sufficient headroom 4825 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4826 * native XDP provides, thus we need to do it here as well. 4827 */ 4828 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 4829 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4830 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4831 int troom = skb->tail + skb->data_len - skb->end; 4832 4833 /* In case we have to go down the path and also linearize, 4834 * then lets do the pskb_expand_head() work just once here. 4835 */ 4836 if (pskb_expand_head(skb, 4837 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4838 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4839 goto do_drop; 4840 if (skb_linearize(skb)) 4841 goto do_drop; 4842 } 4843 4844 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog); 4845 switch (act) { 4846 case XDP_REDIRECT: 4847 case XDP_TX: 4848 case XDP_PASS: 4849 break; 4850 default: 4851 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act); 4852 fallthrough; 4853 case XDP_ABORTED: 4854 trace_xdp_exception(skb->dev, xdp_prog, act); 4855 fallthrough; 4856 case XDP_DROP: 4857 do_drop: 4858 kfree_skb(skb); 4859 break; 4860 } 4861 4862 return act; 4863 } 4864 4865 /* When doing generic XDP we have to bypass the qdisc layer and the 4866 * network taps in order to match in-driver-XDP behavior. This also means 4867 * that XDP packets are able to starve other packets going through a qdisc, 4868 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX 4869 * queues, so they do not have this starvation issue. 4870 */ 4871 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4872 { 4873 struct net_device *dev = skb->dev; 4874 struct netdev_queue *txq; 4875 bool free_skb = true; 4876 int cpu, rc; 4877 4878 txq = netdev_core_pick_tx(dev, skb, NULL); 4879 cpu = smp_processor_id(); 4880 HARD_TX_LOCK(dev, txq, cpu); 4881 if (!netif_xmit_frozen_or_drv_stopped(txq)) { 4882 rc = netdev_start_xmit(skb, dev, txq, 0); 4883 if (dev_xmit_complete(rc)) 4884 free_skb = false; 4885 } 4886 HARD_TX_UNLOCK(dev, txq); 4887 if (free_skb) { 4888 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4889 dev_core_stats_tx_dropped_inc(dev); 4890 kfree_skb(skb); 4891 } 4892 } 4893 4894 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4895 4896 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4897 { 4898 if (xdp_prog) { 4899 struct xdp_buff xdp; 4900 u32 act; 4901 int err; 4902 4903 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4904 if (act != XDP_PASS) { 4905 switch (act) { 4906 case XDP_REDIRECT: 4907 err = xdp_do_generic_redirect(skb->dev, skb, 4908 &xdp, xdp_prog); 4909 if (err) 4910 goto out_redir; 4911 break; 4912 case XDP_TX: 4913 generic_xdp_tx(skb, xdp_prog); 4914 break; 4915 } 4916 return XDP_DROP; 4917 } 4918 } 4919 return XDP_PASS; 4920 out_redir: 4921 kfree_skb_reason(skb, SKB_DROP_REASON_XDP); 4922 return XDP_DROP; 4923 } 4924 EXPORT_SYMBOL_GPL(do_xdp_generic); 4925 4926 static int netif_rx_internal(struct sk_buff *skb) 4927 { 4928 int ret; 4929 4930 net_timestamp_check(netdev_tstamp_prequeue, skb); 4931 4932 trace_netif_rx(skb); 4933 4934 #ifdef CONFIG_RPS 4935 if (static_branch_unlikely(&rps_needed)) { 4936 struct rps_dev_flow voidflow, *rflow = &voidflow; 4937 int cpu; 4938 4939 rcu_read_lock(); 4940 4941 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4942 if (cpu < 0) 4943 cpu = smp_processor_id(); 4944 4945 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4946 4947 rcu_read_unlock(); 4948 } else 4949 #endif 4950 { 4951 unsigned int qtail; 4952 4953 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail); 4954 } 4955 return ret; 4956 } 4957 4958 /** 4959 * __netif_rx - Slightly optimized version of netif_rx 4960 * @skb: buffer to post 4961 * 4962 * This behaves as netif_rx except that it does not disable bottom halves. 4963 * As a result this function may only be invoked from the interrupt context 4964 * (either hard or soft interrupt). 4965 */ 4966 int __netif_rx(struct sk_buff *skb) 4967 { 4968 int ret; 4969 4970 lockdep_assert_once(hardirq_count() | softirq_count()); 4971 4972 trace_netif_rx_entry(skb); 4973 ret = netif_rx_internal(skb); 4974 trace_netif_rx_exit(ret); 4975 return ret; 4976 } 4977 EXPORT_SYMBOL(__netif_rx); 4978 4979 /** 4980 * netif_rx - post buffer to the network code 4981 * @skb: buffer to post 4982 * 4983 * This function receives a packet from a device driver and queues it for 4984 * the upper (protocol) levels to process via the backlog NAPI device. It 4985 * always succeeds. The buffer may be dropped during processing for 4986 * congestion control or by the protocol layers. 4987 * The network buffer is passed via the backlog NAPI device. Modern NIC 4988 * driver should use NAPI and GRO. 4989 * This function can used from interrupt and from process context. The 4990 * caller from process context must not disable interrupts before invoking 4991 * this function. 4992 * 4993 * return values: 4994 * NET_RX_SUCCESS (no congestion) 4995 * NET_RX_DROP (packet was dropped) 4996 * 4997 */ 4998 int netif_rx(struct sk_buff *skb) 4999 { 5000 bool need_bh_off = !(hardirq_count() | softirq_count()); 5001 int ret; 5002 5003 if (need_bh_off) 5004 local_bh_disable(); 5005 trace_netif_rx_entry(skb); 5006 ret = netif_rx_internal(skb); 5007 trace_netif_rx_exit(ret); 5008 if (need_bh_off) 5009 local_bh_enable(); 5010 return ret; 5011 } 5012 EXPORT_SYMBOL(netif_rx); 5013 5014 static __latent_entropy void net_tx_action(struct softirq_action *h) 5015 { 5016 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5017 5018 if (sd->completion_queue) { 5019 struct sk_buff *clist; 5020 5021 local_irq_disable(); 5022 clist = sd->completion_queue; 5023 sd->completion_queue = NULL; 5024 local_irq_enable(); 5025 5026 while (clist) { 5027 struct sk_buff *skb = clist; 5028 5029 clist = clist->next; 5030 5031 WARN_ON(refcount_read(&skb->users)); 5032 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 5033 trace_consume_skb(skb); 5034 else 5035 trace_kfree_skb(skb, net_tx_action, 5036 SKB_DROP_REASON_NOT_SPECIFIED); 5037 5038 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 5039 __kfree_skb(skb); 5040 else 5041 __kfree_skb_defer(skb); 5042 } 5043 } 5044 5045 if (sd->output_queue) { 5046 struct Qdisc *head; 5047 5048 local_irq_disable(); 5049 head = sd->output_queue; 5050 sd->output_queue = NULL; 5051 sd->output_queue_tailp = &sd->output_queue; 5052 local_irq_enable(); 5053 5054 rcu_read_lock(); 5055 5056 while (head) { 5057 struct Qdisc *q = head; 5058 spinlock_t *root_lock = NULL; 5059 5060 head = head->next_sched; 5061 5062 /* We need to make sure head->next_sched is read 5063 * before clearing __QDISC_STATE_SCHED 5064 */ 5065 smp_mb__before_atomic(); 5066 5067 if (!(q->flags & TCQ_F_NOLOCK)) { 5068 root_lock = qdisc_lock(q); 5069 spin_lock(root_lock); 5070 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 5071 &q->state))) { 5072 /* There is a synchronize_net() between 5073 * STATE_DEACTIVATED flag being set and 5074 * qdisc_reset()/some_qdisc_is_busy() in 5075 * dev_deactivate(), so we can safely bail out 5076 * early here to avoid data race between 5077 * qdisc_deactivate() and some_qdisc_is_busy() 5078 * for lockless qdisc. 5079 */ 5080 clear_bit(__QDISC_STATE_SCHED, &q->state); 5081 continue; 5082 } 5083 5084 clear_bit(__QDISC_STATE_SCHED, &q->state); 5085 qdisc_run(q); 5086 if (root_lock) 5087 spin_unlock(root_lock); 5088 } 5089 5090 rcu_read_unlock(); 5091 } 5092 5093 xfrm_dev_backlog(sd); 5094 } 5095 5096 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 5097 /* This hook is defined here for ATM LANE */ 5098 int (*br_fdb_test_addr_hook)(struct net_device *dev, 5099 unsigned char *addr) __read_mostly; 5100 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 5101 #endif 5102 5103 static inline struct sk_buff * 5104 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 5105 struct net_device *orig_dev, bool *another) 5106 { 5107 #ifdef CONFIG_NET_CLS_ACT 5108 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 5109 struct tcf_result cl_res; 5110 5111 /* If there's at least one ingress present somewhere (so 5112 * we get here via enabled static key), remaining devices 5113 * that are not configured with an ingress qdisc will bail 5114 * out here. 5115 */ 5116 if (!miniq) 5117 return skb; 5118 5119 if (*pt_prev) { 5120 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5121 *pt_prev = NULL; 5122 } 5123 5124 qdisc_skb_cb(skb)->pkt_len = skb->len; 5125 tc_skb_cb(skb)->mru = 0; 5126 tc_skb_cb(skb)->post_ct = false; 5127 skb->tc_at_ingress = 1; 5128 mini_qdisc_bstats_cpu_update(miniq, skb); 5129 5130 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) { 5131 case TC_ACT_OK: 5132 case TC_ACT_RECLASSIFY: 5133 skb->tc_index = TC_H_MIN(cl_res.classid); 5134 break; 5135 case TC_ACT_SHOT: 5136 mini_qdisc_qstats_cpu_drop(miniq); 5137 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS); 5138 return NULL; 5139 case TC_ACT_STOLEN: 5140 case TC_ACT_QUEUED: 5141 case TC_ACT_TRAP: 5142 consume_skb(skb); 5143 return NULL; 5144 case TC_ACT_REDIRECT: 5145 /* skb_mac_header check was done by cls/act_bpf, so 5146 * we can safely push the L2 header back before 5147 * redirecting to another netdev 5148 */ 5149 __skb_push(skb, skb->mac_len); 5150 if (skb_do_redirect(skb) == -EAGAIN) { 5151 __skb_pull(skb, skb->mac_len); 5152 *another = true; 5153 break; 5154 } 5155 return NULL; 5156 case TC_ACT_CONSUMED: 5157 return NULL; 5158 default: 5159 break; 5160 } 5161 #endif /* CONFIG_NET_CLS_ACT */ 5162 return skb; 5163 } 5164 5165 /** 5166 * netdev_is_rx_handler_busy - check if receive handler is registered 5167 * @dev: device to check 5168 * 5169 * Check if a receive handler is already registered for a given device. 5170 * Return true if there one. 5171 * 5172 * The caller must hold the rtnl_mutex. 5173 */ 5174 bool netdev_is_rx_handler_busy(struct net_device *dev) 5175 { 5176 ASSERT_RTNL(); 5177 return dev && rtnl_dereference(dev->rx_handler); 5178 } 5179 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5180 5181 /** 5182 * netdev_rx_handler_register - register receive handler 5183 * @dev: device to register a handler for 5184 * @rx_handler: receive handler to register 5185 * @rx_handler_data: data pointer that is used by rx handler 5186 * 5187 * Register a receive handler for a device. This handler will then be 5188 * called from __netif_receive_skb. A negative errno code is returned 5189 * on a failure. 5190 * 5191 * The caller must hold the rtnl_mutex. 5192 * 5193 * For a general description of rx_handler, see enum rx_handler_result. 5194 */ 5195 int netdev_rx_handler_register(struct net_device *dev, 5196 rx_handler_func_t *rx_handler, 5197 void *rx_handler_data) 5198 { 5199 if (netdev_is_rx_handler_busy(dev)) 5200 return -EBUSY; 5201 5202 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5203 return -EINVAL; 5204 5205 /* Note: rx_handler_data must be set before rx_handler */ 5206 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5207 rcu_assign_pointer(dev->rx_handler, rx_handler); 5208 5209 return 0; 5210 } 5211 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5212 5213 /** 5214 * netdev_rx_handler_unregister - unregister receive handler 5215 * @dev: device to unregister a handler from 5216 * 5217 * Unregister a receive handler from a device. 5218 * 5219 * The caller must hold the rtnl_mutex. 5220 */ 5221 void netdev_rx_handler_unregister(struct net_device *dev) 5222 { 5223 5224 ASSERT_RTNL(); 5225 RCU_INIT_POINTER(dev->rx_handler, NULL); 5226 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5227 * section has a guarantee to see a non NULL rx_handler_data 5228 * as well. 5229 */ 5230 synchronize_net(); 5231 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5232 } 5233 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5234 5235 /* 5236 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5237 * the special handling of PFMEMALLOC skbs. 5238 */ 5239 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5240 { 5241 switch (skb->protocol) { 5242 case htons(ETH_P_ARP): 5243 case htons(ETH_P_IP): 5244 case htons(ETH_P_IPV6): 5245 case htons(ETH_P_8021Q): 5246 case htons(ETH_P_8021AD): 5247 return true; 5248 default: 5249 return false; 5250 } 5251 } 5252 5253 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5254 int *ret, struct net_device *orig_dev) 5255 { 5256 if (nf_hook_ingress_active(skb)) { 5257 int ingress_retval; 5258 5259 if (*pt_prev) { 5260 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5261 *pt_prev = NULL; 5262 } 5263 5264 rcu_read_lock(); 5265 ingress_retval = nf_hook_ingress(skb); 5266 rcu_read_unlock(); 5267 return ingress_retval; 5268 } 5269 return 0; 5270 } 5271 5272 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5273 struct packet_type **ppt_prev) 5274 { 5275 struct packet_type *ptype, *pt_prev; 5276 rx_handler_func_t *rx_handler; 5277 struct sk_buff *skb = *pskb; 5278 struct net_device *orig_dev; 5279 bool deliver_exact = false; 5280 int ret = NET_RX_DROP; 5281 __be16 type; 5282 5283 net_timestamp_check(!netdev_tstamp_prequeue, skb); 5284 5285 trace_netif_receive_skb(skb); 5286 5287 orig_dev = skb->dev; 5288 5289 skb_reset_network_header(skb); 5290 if (!skb_transport_header_was_set(skb)) 5291 skb_reset_transport_header(skb); 5292 skb_reset_mac_len(skb); 5293 5294 pt_prev = NULL; 5295 5296 another_round: 5297 skb->skb_iif = skb->dev->ifindex; 5298 5299 __this_cpu_inc(softnet_data.processed); 5300 5301 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5302 int ret2; 5303 5304 migrate_disable(); 5305 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 5306 migrate_enable(); 5307 5308 if (ret2 != XDP_PASS) { 5309 ret = NET_RX_DROP; 5310 goto out; 5311 } 5312 } 5313 5314 if (eth_type_vlan(skb->protocol)) { 5315 skb = skb_vlan_untag(skb); 5316 if (unlikely(!skb)) 5317 goto out; 5318 } 5319 5320 if (skb_skip_tc_classify(skb)) 5321 goto skip_classify; 5322 5323 if (pfmemalloc) 5324 goto skip_taps; 5325 5326 list_for_each_entry_rcu(ptype, &ptype_all, list) { 5327 if (pt_prev) 5328 ret = deliver_skb(skb, pt_prev, orig_dev); 5329 pt_prev = ptype; 5330 } 5331 5332 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5333 if (pt_prev) 5334 ret = deliver_skb(skb, pt_prev, orig_dev); 5335 pt_prev = ptype; 5336 } 5337 5338 skip_taps: 5339 #ifdef CONFIG_NET_INGRESS 5340 if (static_branch_unlikely(&ingress_needed_key)) { 5341 bool another = false; 5342 5343 nf_skip_egress(skb, true); 5344 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 5345 &another); 5346 if (another) 5347 goto another_round; 5348 if (!skb) 5349 goto out; 5350 5351 nf_skip_egress(skb, false); 5352 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5353 goto out; 5354 } 5355 #endif 5356 skb_reset_redirect(skb); 5357 skip_classify: 5358 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5359 goto drop; 5360 5361 if (skb_vlan_tag_present(skb)) { 5362 if (pt_prev) { 5363 ret = deliver_skb(skb, pt_prev, orig_dev); 5364 pt_prev = NULL; 5365 } 5366 if (vlan_do_receive(&skb)) 5367 goto another_round; 5368 else if (unlikely(!skb)) 5369 goto out; 5370 } 5371 5372 rx_handler = rcu_dereference(skb->dev->rx_handler); 5373 if (rx_handler) { 5374 if (pt_prev) { 5375 ret = deliver_skb(skb, pt_prev, orig_dev); 5376 pt_prev = NULL; 5377 } 5378 switch (rx_handler(&skb)) { 5379 case RX_HANDLER_CONSUMED: 5380 ret = NET_RX_SUCCESS; 5381 goto out; 5382 case RX_HANDLER_ANOTHER: 5383 goto another_round; 5384 case RX_HANDLER_EXACT: 5385 deliver_exact = true; 5386 break; 5387 case RX_HANDLER_PASS: 5388 break; 5389 default: 5390 BUG(); 5391 } 5392 } 5393 5394 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 5395 check_vlan_id: 5396 if (skb_vlan_tag_get_id(skb)) { 5397 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5398 * find vlan device. 5399 */ 5400 skb->pkt_type = PACKET_OTHERHOST; 5401 } else if (eth_type_vlan(skb->protocol)) { 5402 /* Outer header is 802.1P with vlan 0, inner header is 5403 * 802.1Q or 802.1AD and vlan_do_receive() above could 5404 * not find vlan dev for vlan id 0. 5405 */ 5406 __vlan_hwaccel_clear_tag(skb); 5407 skb = skb_vlan_untag(skb); 5408 if (unlikely(!skb)) 5409 goto out; 5410 if (vlan_do_receive(&skb)) 5411 /* After stripping off 802.1P header with vlan 0 5412 * vlan dev is found for inner header. 5413 */ 5414 goto another_round; 5415 else if (unlikely(!skb)) 5416 goto out; 5417 else 5418 /* We have stripped outer 802.1P vlan 0 header. 5419 * But could not find vlan dev. 5420 * check again for vlan id to set OTHERHOST. 5421 */ 5422 goto check_vlan_id; 5423 } 5424 /* Note: we might in the future use prio bits 5425 * and set skb->priority like in vlan_do_receive() 5426 * For the time being, just ignore Priority Code Point 5427 */ 5428 __vlan_hwaccel_clear_tag(skb); 5429 } 5430 5431 type = skb->protocol; 5432 5433 /* deliver only exact match when indicated */ 5434 if (likely(!deliver_exact)) { 5435 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5436 &ptype_base[ntohs(type) & 5437 PTYPE_HASH_MASK]); 5438 } 5439 5440 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5441 &orig_dev->ptype_specific); 5442 5443 if (unlikely(skb->dev != orig_dev)) { 5444 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5445 &skb->dev->ptype_specific); 5446 } 5447 5448 if (pt_prev) { 5449 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 5450 goto drop; 5451 *ppt_prev = pt_prev; 5452 } else { 5453 drop: 5454 if (!deliver_exact) 5455 dev_core_stats_rx_dropped_inc(skb->dev); 5456 else 5457 dev_core_stats_rx_nohandler_inc(skb->dev); 5458 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO); 5459 /* Jamal, now you will not able to escape explaining 5460 * me how you were going to use this. :-) 5461 */ 5462 ret = NET_RX_DROP; 5463 } 5464 5465 out: 5466 /* The invariant here is that if *ppt_prev is not NULL 5467 * then skb should also be non-NULL. 5468 * 5469 * Apparently *ppt_prev assignment above holds this invariant due to 5470 * skb dereferencing near it. 5471 */ 5472 *pskb = skb; 5473 return ret; 5474 } 5475 5476 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5477 { 5478 struct net_device *orig_dev = skb->dev; 5479 struct packet_type *pt_prev = NULL; 5480 int ret; 5481 5482 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5483 if (pt_prev) 5484 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5485 skb->dev, pt_prev, orig_dev); 5486 return ret; 5487 } 5488 5489 /** 5490 * netif_receive_skb_core - special purpose version of netif_receive_skb 5491 * @skb: buffer to process 5492 * 5493 * More direct receive version of netif_receive_skb(). It should 5494 * only be used by callers that have a need to skip RPS and Generic XDP. 5495 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 5496 * 5497 * This function may only be called from softirq context and interrupts 5498 * should be enabled. 5499 * 5500 * Return values (usually ignored): 5501 * NET_RX_SUCCESS: no congestion 5502 * NET_RX_DROP: packet was dropped 5503 */ 5504 int netif_receive_skb_core(struct sk_buff *skb) 5505 { 5506 int ret; 5507 5508 rcu_read_lock(); 5509 ret = __netif_receive_skb_one_core(skb, false); 5510 rcu_read_unlock(); 5511 5512 return ret; 5513 } 5514 EXPORT_SYMBOL(netif_receive_skb_core); 5515 5516 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5517 struct packet_type *pt_prev, 5518 struct net_device *orig_dev) 5519 { 5520 struct sk_buff *skb, *next; 5521 5522 if (!pt_prev) 5523 return; 5524 if (list_empty(head)) 5525 return; 5526 if (pt_prev->list_func != NULL) 5527 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 5528 ip_list_rcv, head, pt_prev, orig_dev); 5529 else 5530 list_for_each_entry_safe(skb, next, head, list) { 5531 skb_list_del_init(skb); 5532 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5533 } 5534 } 5535 5536 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5537 { 5538 /* Fast-path assumptions: 5539 * - There is no RX handler. 5540 * - Only one packet_type matches. 5541 * If either of these fails, we will end up doing some per-packet 5542 * processing in-line, then handling the 'last ptype' for the whole 5543 * sublist. This can't cause out-of-order delivery to any single ptype, 5544 * because the 'last ptype' must be constant across the sublist, and all 5545 * other ptypes are handled per-packet. 5546 */ 5547 /* Current (common) ptype of sublist */ 5548 struct packet_type *pt_curr = NULL; 5549 /* Current (common) orig_dev of sublist */ 5550 struct net_device *od_curr = NULL; 5551 struct list_head sublist; 5552 struct sk_buff *skb, *next; 5553 5554 INIT_LIST_HEAD(&sublist); 5555 list_for_each_entry_safe(skb, next, head, list) { 5556 struct net_device *orig_dev = skb->dev; 5557 struct packet_type *pt_prev = NULL; 5558 5559 skb_list_del_init(skb); 5560 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5561 if (!pt_prev) 5562 continue; 5563 if (pt_curr != pt_prev || od_curr != orig_dev) { 5564 /* dispatch old sublist */ 5565 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5566 /* start new sublist */ 5567 INIT_LIST_HEAD(&sublist); 5568 pt_curr = pt_prev; 5569 od_curr = orig_dev; 5570 } 5571 list_add_tail(&skb->list, &sublist); 5572 } 5573 5574 /* dispatch final sublist */ 5575 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5576 } 5577 5578 static int __netif_receive_skb(struct sk_buff *skb) 5579 { 5580 int ret; 5581 5582 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5583 unsigned int noreclaim_flag; 5584 5585 /* 5586 * PFMEMALLOC skbs are special, they should 5587 * - be delivered to SOCK_MEMALLOC sockets only 5588 * - stay away from userspace 5589 * - have bounded memory usage 5590 * 5591 * Use PF_MEMALLOC as this saves us from propagating the allocation 5592 * context down to all allocation sites. 5593 */ 5594 noreclaim_flag = memalloc_noreclaim_save(); 5595 ret = __netif_receive_skb_one_core(skb, true); 5596 memalloc_noreclaim_restore(noreclaim_flag); 5597 } else 5598 ret = __netif_receive_skb_one_core(skb, false); 5599 5600 return ret; 5601 } 5602 5603 static void __netif_receive_skb_list(struct list_head *head) 5604 { 5605 unsigned long noreclaim_flag = 0; 5606 struct sk_buff *skb, *next; 5607 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5608 5609 list_for_each_entry_safe(skb, next, head, list) { 5610 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5611 struct list_head sublist; 5612 5613 /* Handle the previous sublist */ 5614 list_cut_before(&sublist, head, &skb->list); 5615 if (!list_empty(&sublist)) 5616 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5617 pfmemalloc = !pfmemalloc; 5618 /* See comments in __netif_receive_skb */ 5619 if (pfmemalloc) 5620 noreclaim_flag = memalloc_noreclaim_save(); 5621 else 5622 memalloc_noreclaim_restore(noreclaim_flag); 5623 } 5624 } 5625 /* Handle the remaining sublist */ 5626 if (!list_empty(head)) 5627 __netif_receive_skb_list_core(head, pfmemalloc); 5628 /* Restore pflags */ 5629 if (pfmemalloc) 5630 memalloc_noreclaim_restore(noreclaim_flag); 5631 } 5632 5633 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5634 { 5635 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5636 struct bpf_prog *new = xdp->prog; 5637 int ret = 0; 5638 5639 switch (xdp->command) { 5640 case XDP_SETUP_PROG: 5641 rcu_assign_pointer(dev->xdp_prog, new); 5642 if (old) 5643 bpf_prog_put(old); 5644 5645 if (old && !new) { 5646 static_branch_dec(&generic_xdp_needed_key); 5647 } else if (new && !old) { 5648 static_branch_inc(&generic_xdp_needed_key); 5649 dev_disable_lro(dev); 5650 dev_disable_gro_hw(dev); 5651 } 5652 break; 5653 5654 default: 5655 ret = -EINVAL; 5656 break; 5657 } 5658 5659 return ret; 5660 } 5661 5662 static int netif_receive_skb_internal(struct sk_buff *skb) 5663 { 5664 int ret; 5665 5666 net_timestamp_check(netdev_tstamp_prequeue, skb); 5667 5668 if (skb_defer_rx_timestamp(skb)) 5669 return NET_RX_SUCCESS; 5670 5671 rcu_read_lock(); 5672 #ifdef CONFIG_RPS 5673 if (static_branch_unlikely(&rps_needed)) { 5674 struct rps_dev_flow voidflow, *rflow = &voidflow; 5675 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5676 5677 if (cpu >= 0) { 5678 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5679 rcu_read_unlock(); 5680 return ret; 5681 } 5682 } 5683 #endif 5684 ret = __netif_receive_skb(skb); 5685 rcu_read_unlock(); 5686 return ret; 5687 } 5688 5689 void netif_receive_skb_list_internal(struct list_head *head) 5690 { 5691 struct sk_buff *skb, *next; 5692 struct list_head sublist; 5693 5694 INIT_LIST_HEAD(&sublist); 5695 list_for_each_entry_safe(skb, next, head, list) { 5696 net_timestamp_check(netdev_tstamp_prequeue, skb); 5697 skb_list_del_init(skb); 5698 if (!skb_defer_rx_timestamp(skb)) 5699 list_add_tail(&skb->list, &sublist); 5700 } 5701 list_splice_init(&sublist, head); 5702 5703 rcu_read_lock(); 5704 #ifdef CONFIG_RPS 5705 if (static_branch_unlikely(&rps_needed)) { 5706 list_for_each_entry_safe(skb, next, head, list) { 5707 struct rps_dev_flow voidflow, *rflow = &voidflow; 5708 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5709 5710 if (cpu >= 0) { 5711 /* Will be handled, remove from list */ 5712 skb_list_del_init(skb); 5713 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5714 } 5715 } 5716 } 5717 #endif 5718 __netif_receive_skb_list(head); 5719 rcu_read_unlock(); 5720 } 5721 5722 /** 5723 * netif_receive_skb - process receive buffer from network 5724 * @skb: buffer to process 5725 * 5726 * netif_receive_skb() is the main receive data processing function. 5727 * It always succeeds. The buffer may be dropped during processing 5728 * for congestion control or by the protocol layers. 5729 * 5730 * This function may only be called from softirq context and interrupts 5731 * should be enabled. 5732 * 5733 * Return values (usually ignored): 5734 * NET_RX_SUCCESS: no congestion 5735 * NET_RX_DROP: packet was dropped 5736 */ 5737 int netif_receive_skb(struct sk_buff *skb) 5738 { 5739 int ret; 5740 5741 trace_netif_receive_skb_entry(skb); 5742 5743 ret = netif_receive_skb_internal(skb); 5744 trace_netif_receive_skb_exit(ret); 5745 5746 return ret; 5747 } 5748 EXPORT_SYMBOL(netif_receive_skb); 5749 5750 /** 5751 * netif_receive_skb_list - process many receive buffers from network 5752 * @head: list of skbs to process. 5753 * 5754 * Since return value of netif_receive_skb() is normally ignored, and 5755 * wouldn't be meaningful for a list, this function returns void. 5756 * 5757 * This function may only be called from softirq context and interrupts 5758 * should be enabled. 5759 */ 5760 void netif_receive_skb_list(struct list_head *head) 5761 { 5762 struct sk_buff *skb; 5763 5764 if (list_empty(head)) 5765 return; 5766 if (trace_netif_receive_skb_list_entry_enabled()) { 5767 list_for_each_entry(skb, head, list) 5768 trace_netif_receive_skb_list_entry(skb); 5769 } 5770 netif_receive_skb_list_internal(head); 5771 trace_netif_receive_skb_list_exit(0); 5772 } 5773 EXPORT_SYMBOL(netif_receive_skb_list); 5774 5775 static DEFINE_PER_CPU(struct work_struct, flush_works); 5776 5777 /* Network device is going away, flush any packets still pending */ 5778 static void flush_backlog(struct work_struct *work) 5779 { 5780 struct sk_buff *skb, *tmp; 5781 struct softnet_data *sd; 5782 5783 local_bh_disable(); 5784 sd = this_cpu_ptr(&softnet_data); 5785 5786 rps_lock_irq_disable(sd); 5787 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5788 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5789 __skb_unlink(skb, &sd->input_pkt_queue); 5790 dev_kfree_skb_irq(skb); 5791 input_queue_head_incr(sd); 5792 } 5793 } 5794 rps_unlock_irq_enable(sd); 5795 5796 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5797 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5798 __skb_unlink(skb, &sd->process_queue); 5799 kfree_skb(skb); 5800 input_queue_head_incr(sd); 5801 } 5802 } 5803 local_bh_enable(); 5804 } 5805 5806 static bool flush_required(int cpu) 5807 { 5808 #if IS_ENABLED(CONFIG_RPS) 5809 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 5810 bool do_flush; 5811 5812 rps_lock_irq_disable(sd); 5813 5814 /* as insertion into process_queue happens with the rps lock held, 5815 * process_queue access may race only with dequeue 5816 */ 5817 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 5818 !skb_queue_empty_lockless(&sd->process_queue); 5819 rps_unlock_irq_enable(sd); 5820 5821 return do_flush; 5822 #endif 5823 /* without RPS we can't safely check input_pkt_queue: during a 5824 * concurrent remote skb_queue_splice() we can detect as empty both 5825 * input_pkt_queue and process_queue even if the latter could end-up 5826 * containing a lot of packets. 5827 */ 5828 return true; 5829 } 5830 5831 static void flush_all_backlogs(void) 5832 { 5833 static cpumask_t flush_cpus; 5834 unsigned int cpu; 5835 5836 /* since we are under rtnl lock protection we can use static data 5837 * for the cpumask and avoid allocating on stack the possibly 5838 * large mask 5839 */ 5840 ASSERT_RTNL(); 5841 5842 cpus_read_lock(); 5843 5844 cpumask_clear(&flush_cpus); 5845 for_each_online_cpu(cpu) { 5846 if (flush_required(cpu)) { 5847 queue_work_on(cpu, system_highpri_wq, 5848 per_cpu_ptr(&flush_works, cpu)); 5849 cpumask_set_cpu(cpu, &flush_cpus); 5850 } 5851 } 5852 5853 /* we can have in flight packet[s] on the cpus we are not flushing, 5854 * synchronize_net() in unregister_netdevice_many() will take care of 5855 * them 5856 */ 5857 for_each_cpu(cpu, &flush_cpus) 5858 flush_work(per_cpu_ptr(&flush_works, cpu)); 5859 5860 cpus_read_unlock(); 5861 } 5862 5863 static void net_rps_send_ipi(struct softnet_data *remsd) 5864 { 5865 #ifdef CONFIG_RPS 5866 while (remsd) { 5867 struct softnet_data *next = remsd->rps_ipi_next; 5868 5869 if (cpu_online(remsd->cpu)) 5870 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5871 remsd = next; 5872 } 5873 #endif 5874 } 5875 5876 /* 5877 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5878 * Note: called with local irq disabled, but exits with local irq enabled. 5879 */ 5880 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5881 { 5882 #ifdef CONFIG_RPS 5883 struct softnet_data *remsd = sd->rps_ipi_list; 5884 5885 if (remsd) { 5886 sd->rps_ipi_list = NULL; 5887 5888 local_irq_enable(); 5889 5890 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5891 net_rps_send_ipi(remsd); 5892 } else 5893 #endif 5894 local_irq_enable(); 5895 } 5896 5897 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5898 { 5899 #ifdef CONFIG_RPS 5900 return sd->rps_ipi_list != NULL; 5901 #else 5902 return false; 5903 #endif 5904 } 5905 5906 static int process_backlog(struct napi_struct *napi, int quota) 5907 { 5908 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5909 bool again = true; 5910 int work = 0; 5911 5912 /* Check if we have pending ipi, its better to send them now, 5913 * not waiting net_rx_action() end. 5914 */ 5915 if (sd_has_rps_ipi_waiting(sd)) { 5916 local_irq_disable(); 5917 net_rps_action_and_irq_enable(sd); 5918 } 5919 5920 napi->weight = dev_rx_weight; 5921 while (again) { 5922 struct sk_buff *skb; 5923 5924 while ((skb = __skb_dequeue(&sd->process_queue))) { 5925 rcu_read_lock(); 5926 __netif_receive_skb(skb); 5927 rcu_read_unlock(); 5928 input_queue_head_incr(sd); 5929 if (++work >= quota) 5930 return work; 5931 5932 } 5933 5934 rps_lock_irq_disable(sd); 5935 if (skb_queue_empty(&sd->input_pkt_queue)) { 5936 /* 5937 * Inline a custom version of __napi_complete(). 5938 * only current cpu owns and manipulates this napi, 5939 * and NAPI_STATE_SCHED is the only possible flag set 5940 * on backlog. 5941 * We can use a plain write instead of clear_bit(), 5942 * and we dont need an smp_mb() memory barrier. 5943 */ 5944 napi->state = 0; 5945 again = false; 5946 } else { 5947 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5948 &sd->process_queue); 5949 } 5950 rps_unlock_irq_enable(sd); 5951 } 5952 5953 return work; 5954 } 5955 5956 /** 5957 * __napi_schedule - schedule for receive 5958 * @n: entry to schedule 5959 * 5960 * The entry's receive function will be scheduled to run. 5961 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5962 */ 5963 void __napi_schedule(struct napi_struct *n) 5964 { 5965 unsigned long flags; 5966 5967 local_irq_save(flags); 5968 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5969 local_irq_restore(flags); 5970 } 5971 EXPORT_SYMBOL(__napi_schedule); 5972 5973 /** 5974 * napi_schedule_prep - check if napi can be scheduled 5975 * @n: napi context 5976 * 5977 * Test if NAPI routine is already running, and if not mark 5978 * it as running. This is used as a condition variable to 5979 * insure only one NAPI poll instance runs. We also make 5980 * sure there is no pending NAPI disable. 5981 */ 5982 bool napi_schedule_prep(struct napi_struct *n) 5983 { 5984 unsigned long val, new; 5985 5986 do { 5987 val = READ_ONCE(n->state); 5988 if (unlikely(val & NAPIF_STATE_DISABLE)) 5989 return false; 5990 new = val | NAPIF_STATE_SCHED; 5991 5992 /* Sets STATE_MISSED bit if STATE_SCHED was already set 5993 * This was suggested by Alexander Duyck, as compiler 5994 * emits better code than : 5995 * if (val & NAPIF_STATE_SCHED) 5996 * new |= NAPIF_STATE_MISSED; 5997 */ 5998 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 5999 NAPIF_STATE_MISSED; 6000 } while (cmpxchg(&n->state, val, new) != val); 6001 6002 return !(val & NAPIF_STATE_SCHED); 6003 } 6004 EXPORT_SYMBOL(napi_schedule_prep); 6005 6006 /** 6007 * __napi_schedule_irqoff - schedule for receive 6008 * @n: entry to schedule 6009 * 6010 * Variant of __napi_schedule() assuming hard irqs are masked. 6011 * 6012 * On PREEMPT_RT enabled kernels this maps to __napi_schedule() 6013 * because the interrupt disabled assumption might not be true 6014 * due to force-threaded interrupts and spinlock substitution. 6015 */ 6016 void __napi_schedule_irqoff(struct napi_struct *n) 6017 { 6018 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6019 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6020 else 6021 __napi_schedule(n); 6022 } 6023 EXPORT_SYMBOL(__napi_schedule_irqoff); 6024 6025 bool napi_complete_done(struct napi_struct *n, int work_done) 6026 { 6027 unsigned long flags, val, new, timeout = 0; 6028 bool ret = true; 6029 6030 /* 6031 * 1) Don't let napi dequeue from the cpu poll list 6032 * just in case its running on a different cpu. 6033 * 2) If we are busy polling, do nothing here, we have 6034 * the guarantee we will be called later. 6035 */ 6036 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6037 NAPIF_STATE_IN_BUSY_POLL))) 6038 return false; 6039 6040 if (work_done) { 6041 if (n->gro_bitmask) 6042 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6043 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs); 6044 } 6045 if (n->defer_hard_irqs_count > 0) { 6046 n->defer_hard_irqs_count--; 6047 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6048 if (timeout) 6049 ret = false; 6050 } 6051 if (n->gro_bitmask) { 6052 /* When the NAPI instance uses a timeout and keeps postponing 6053 * it, we need to bound somehow the time packets are kept in 6054 * the GRO layer 6055 */ 6056 napi_gro_flush(n, !!timeout); 6057 } 6058 6059 gro_normal_list(n); 6060 6061 if (unlikely(!list_empty(&n->poll_list))) { 6062 /* If n->poll_list is not empty, we need to mask irqs */ 6063 local_irq_save(flags); 6064 list_del_init(&n->poll_list); 6065 local_irq_restore(flags); 6066 } 6067 6068 do { 6069 val = READ_ONCE(n->state); 6070 6071 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6072 6073 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | 6074 NAPIF_STATE_SCHED_THREADED | 6075 NAPIF_STATE_PREFER_BUSY_POLL); 6076 6077 /* If STATE_MISSED was set, leave STATE_SCHED set, 6078 * because we will call napi->poll() one more time. 6079 * This C code was suggested by Alexander Duyck to help gcc. 6080 */ 6081 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6082 NAPIF_STATE_SCHED; 6083 } while (cmpxchg(&n->state, val, new) != val); 6084 6085 if (unlikely(val & NAPIF_STATE_MISSED)) { 6086 __napi_schedule(n); 6087 return false; 6088 } 6089 6090 if (timeout) 6091 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6092 HRTIMER_MODE_REL_PINNED); 6093 return ret; 6094 } 6095 EXPORT_SYMBOL(napi_complete_done); 6096 6097 /* must be called under rcu_read_lock(), as we dont take a reference */ 6098 static struct napi_struct *napi_by_id(unsigned int napi_id) 6099 { 6100 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6101 struct napi_struct *napi; 6102 6103 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6104 if (napi->napi_id == napi_id) 6105 return napi; 6106 6107 return NULL; 6108 } 6109 6110 #if defined(CONFIG_NET_RX_BUSY_POLL) 6111 6112 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) 6113 { 6114 if (!skip_schedule) { 6115 gro_normal_list(napi); 6116 __napi_schedule(napi); 6117 return; 6118 } 6119 6120 if (napi->gro_bitmask) { 6121 /* flush too old packets 6122 * If HZ < 1000, flush all packets. 6123 */ 6124 napi_gro_flush(napi, HZ >= 1000); 6125 } 6126 6127 gro_normal_list(napi); 6128 clear_bit(NAPI_STATE_SCHED, &napi->state); 6129 } 6130 6131 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll, 6132 u16 budget) 6133 { 6134 bool skip_schedule = false; 6135 unsigned long timeout; 6136 int rc; 6137 6138 /* Busy polling means there is a high chance device driver hard irq 6139 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6140 * set in napi_schedule_prep(). 6141 * Since we are about to call napi->poll() once more, we can safely 6142 * clear NAPI_STATE_MISSED. 6143 * 6144 * Note: x86 could use a single "lock and ..." instruction 6145 * to perform these two clear_bit() 6146 */ 6147 clear_bit(NAPI_STATE_MISSED, &napi->state); 6148 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6149 6150 local_bh_disable(); 6151 6152 if (prefer_busy_poll) { 6153 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs); 6154 timeout = READ_ONCE(napi->dev->gro_flush_timeout); 6155 if (napi->defer_hard_irqs_count && timeout) { 6156 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED); 6157 skip_schedule = true; 6158 } 6159 } 6160 6161 /* All we really want here is to re-enable device interrupts. 6162 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6163 */ 6164 rc = napi->poll(napi, budget); 6165 /* We can't gro_normal_list() here, because napi->poll() might have 6166 * rearmed the napi (napi_complete_done()) in which case it could 6167 * already be running on another CPU. 6168 */ 6169 trace_napi_poll(napi, rc, budget); 6170 netpoll_poll_unlock(have_poll_lock); 6171 if (rc == budget) 6172 __busy_poll_stop(napi, skip_schedule); 6173 local_bh_enable(); 6174 } 6175 6176 void napi_busy_loop(unsigned int napi_id, 6177 bool (*loop_end)(void *, unsigned long), 6178 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6179 { 6180 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6181 int (*napi_poll)(struct napi_struct *napi, int budget); 6182 void *have_poll_lock = NULL; 6183 struct napi_struct *napi; 6184 6185 restart: 6186 napi_poll = NULL; 6187 6188 rcu_read_lock(); 6189 6190 napi = napi_by_id(napi_id); 6191 if (!napi) 6192 goto out; 6193 6194 preempt_disable(); 6195 for (;;) { 6196 int work = 0; 6197 6198 local_bh_disable(); 6199 if (!napi_poll) { 6200 unsigned long val = READ_ONCE(napi->state); 6201 6202 /* If multiple threads are competing for this napi, 6203 * we avoid dirtying napi->state as much as we can. 6204 */ 6205 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6206 NAPIF_STATE_IN_BUSY_POLL)) { 6207 if (prefer_busy_poll) 6208 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6209 goto count; 6210 } 6211 if (cmpxchg(&napi->state, val, 6212 val | NAPIF_STATE_IN_BUSY_POLL | 6213 NAPIF_STATE_SCHED) != val) { 6214 if (prefer_busy_poll) 6215 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6216 goto count; 6217 } 6218 have_poll_lock = netpoll_poll_lock(napi); 6219 napi_poll = napi->poll; 6220 } 6221 work = napi_poll(napi, budget); 6222 trace_napi_poll(napi, work, budget); 6223 gro_normal_list(napi); 6224 count: 6225 if (work > 0) 6226 __NET_ADD_STATS(dev_net(napi->dev), 6227 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6228 local_bh_enable(); 6229 6230 if (!loop_end || loop_end(loop_end_arg, start_time)) 6231 break; 6232 6233 if (unlikely(need_resched())) { 6234 if (napi_poll) 6235 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget); 6236 preempt_enable(); 6237 rcu_read_unlock(); 6238 cond_resched(); 6239 if (loop_end(loop_end_arg, start_time)) 6240 return; 6241 goto restart; 6242 } 6243 cpu_relax(); 6244 } 6245 if (napi_poll) 6246 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget); 6247 preempt_enable(); 6248 out: 6249 rcu_read_unlock(); 6250 } 6251 EXPORT_SYMBOL(napi_busy_loop); 6252 6253 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6254 6255 static void napi_hash_add(struct napi_struct *napi) 6256 { 6257 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 6258 return; 6259 6260 spin_lock(&napi_hash_lock); 6261 6262 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6263 do { 6264 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6265 napi_gen_id = MIN_NAPI_ID; 6266 } while (napi_by_id(napi_gen_id)); 6267 napi->napi_id = napi_gen_id; 6268 6269 hlist_add_head_rcu(&napi->napi_hash_node, 6270 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6271 6272 spin_unlock(&napi_hash_lock); 6273 } 6274 6275 /* Warning : caller is responsible to make sure rcu grace period 6276 * is respected before freeing memory containing @napi 6277 */ 6278 static void napi_hash_del(struct napi_struct *napi) 6279 { 6280 spin_lock(&napi_hash_lock); 6281 6282 hlist_del_init_rcu(&napi->napi_hash_node); 6283 6284 spin_unlock(&napi_hash_lock); 6285 } 6286 6287 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6288 { 6289 struct napi_struct *napi; 6290 6291 napi = container_of(timer, struct napi_struct, timer); 6292 6293 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6294 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6295 */ 6296 if (!napi_disable_pending(napi) && 6297 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) { 6298 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6299 __napi_schedule_irqoff(napi); 6300 } 6301 6302 return HRTIMER_NORESTART; 6303 } 6304 6305 static void init_gro_hash(struct napi_struct *napi) 6306 { 6307 int i; 6308 6309 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6310 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6311 napi->gro_hash[i].count = 0; 6312 } 6313 napi->gro_bitmask = 0; 6314 } 6315 6316 int dev_set_threaded(struct net_device *dev, bool threaded) 6317 { 6318 struct napi_struct *napi; 6319 int err = 0; 6320 6321 if (dev->threaded == threaded) 6322 return 0; 6323 6324 if (threaded) { 6325 list_for_each_entry(napi, &dev->napi_list, dev_list) { 6326 if (!napi->thread) { 6327 err = napi_kthread_create(napi); 6328 if (err) { 6329 threaded = false; 6330 break; 6331 } 6332 } 6333 } 6334 } 6335 6336 dev->threaded = threaded; 6337 6338 /* Make sure kthread is created before THREADED bit 6339 * is set. 6340 */ 6341 smp_mb__before_atomic(); 6342 6343 /* Setting/unsetting threaded mode on a napi might not immediately 6344 * take effect, if the current napi instance is actively being 6345 * polled. In this case, the switch between threaded mode and 6346 * softirq mode will happen in the next round of napi_schedule(). 6347 * This should not cause hiccups/stalls to the live traffic. 6348 */ 6349 list_for_each_entry(napi, &dev->napi_list, dev_list) { 6350 if (threaded) 6351 set_bit(NAPI_STATE_THREADED, &napi->state); 6352 else 6353 clear_bit(NAPI_STATE_THREADED, &napi->state); 6354 } 6355 6356 return err; 6357 } 6358 EXPORT_SYMBOL(dev_set_threaded); 6359 6360 /* Double check that napi_get_frags() allocates skbs with 6361 * skb->head being backed by slab, not a page fragment. 6362 * This is to make sure bug fixed in 3226b158e67c 6363 * ("net: avoid 32 x truesize under-estimation for tiny skbs") 6364 * does not accidentally come back. 6365 */ 6366 static void napi_get_frags_check(struct napi_struct *napi) 6367 { 6368 struct sk_buff *skb; 6369 6370 local_bh_disable(); 6371 skb = napi_get_frags(napi); 6372 WARN_ON_ONCE(skb && skb->head_frag); 6373 napi_free_frags(napi); 6374 local_bh_enable(); 6375 } 6376 6377 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 6378 int (*poll)(struct napi_struct *, int), int weight) 6379 { 6380 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 6381 return; 6382 6383 INIT_LIST_HEAD(&napi->poll_list); 6384 INIT_HLIST_NODE(&napi->napi_hash_node); 6385 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6386 napi->timer.function = napi_watchdog; 6387 init_gro_hash(napi); 6388 napi->skb = NULL; 6389 INIT_LIST_HEAD(&napi->rx_list); 6390 napi->rx_count = 0; 6391 napi->poll = poll; 6392 if (weight > NAPI_POLL_WEIGHT) 6393 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6394 weight); 6395 napi->weight = weight; 6396 napi->dev = dev; 6397 #ifdef CONFIG_NETPOLL 6398 napi->poll_owner = -1; 6399 #endif 6400 set_bit(NAPI_STATE_SCHED, &napi->state); 6401 set_bit(NAPI_STATE_NPSVC, &napi->state); 6402 list_add_rcu(&napi->dev_list, &dev->napi_list); 6403 napi_hash_add(napi); 6404 napi_get_frags_check(napi); 6405 /* Create kthread for this napi if dev->threaded is set. 6406 * Clear dev->threaded if kthread creation failed so that 6407 * threaded mode will not be enabled in napi_enable(). 6408 */ 6409 if (dev->threaded && napi_kthread_create(napi)) 6410 dev->threaded = 0; 6411 } 6412 EXPORT_SYMBOL(netif_napi_add_weight); 6413 6414 void napi_disable(struct napi_struct *n) 6415 { 6416 unsigned long val, new; 6417 6418 might_sleep(); 6419 set_bit(NAPI_STATE_DISABLE, &n->state); 6420 6421 for ( ; ; ) { 6422 val = READ_ONCE(n->state); 6423 if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) { 6424 usleep_range(20, 200); 6425 continue; 6426 } 6427 6428 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC; 6429 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL); 6430 6431 if (cmpxchg(&n->state, val, new) == val) 6432 break; 6433 } 6434 6435 hrtimer_cancel(&n->timer); 6436 6437 clear_bit(NAPI_STATE_DISABLE, &n->state); 6438 } 6439 EXPORT_SYMBOL(napi_disable); 6440 6441 /** 6442 * napi_enable - enable NAPI scheduling 6443 * @n: NAPI context 6444 * 6445 * Resume NAPI from being scheduled on this context. 6446 * Must be paired with napi_disable. 6447 */ 6448 void napi_enable(struct napi_struct *n) 6449 { 6450 unsigned long val, new; 6451 6452 do { 6453 val = READ_ONCE(n->state); 6454 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val)); 6455 6456 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC); 6457 if (n->dev->threaded && n->thread) 6458 new |= NAPIF_STATE_THREADED; 6459 } while (cmpxchg(&n->state, val, new) != val); 6460 } 6461 EXPORT_SYMBOL(napi_enable); 6462 6463 static void flush_gro_hash(struct napi_struct *napi) 6464 { 6465 int i; 6466 6467 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6468 struct sk_buff *skb, *n; 6469 6470 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6471 kfree_skb(skb); 6472 napi->gro_hash[i].count = 0; 6473 } 6474 } 6475 6476 /* Must be called in process context */ 6477 void __netif_napi_del(struct napi_struct *napi) 6478 { 6479 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 6480 return; 6481 6482 napi_hash_del(napi); 6483 list_del_rcu(&napi->dev_list); 6484 napi_free_frags(napi); 6485 6486 flush_gro_hash(napi); 6487 napi->gro_bitmask = 0; 6488 6489 if (napi->thread) { 6490 kthread_stop(napi->thread); 6491 napi->thread = NULL; 6492 } 6493 } 6494 EXPORT_SYMBOL(__netif_napi_del); 6495 6496 static int __napi_poll(struct napi_struct *n, bool *repoll) 6497 { 6498 int work, weight; 6499 6500 weight = n->weight; 6501 6502 /* This NAPI_STATE_SCHED test is for avoiding a race 6503 * with netpoll's poll_napi(). Only the entity which 6504 * obtains the lock and sees NAPI_STATE_SCHED set will 6505 * actually make the ->poll() call. Therefore we avoid 6506 * accidentally calling ->poll() when NAPI is not scheduled. 6507 */ 6508 work = 0; 6509 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 6510 work = n->poll(n, weight); 6511 trace_napi_poll(n, work, weight); 6512 } 6513 6514 if (unlikely(work > weight)) 6515 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 6516 n->poll, work, weight); 6517 6518 if (likely(work < weight)) 6519 return work; 6520 6521 /* Drivers must not modify the NAPI state if they 6522 * consume the entire weight. In such cases this code 6523 * still "owns" the NAPI instance and therefore can 6524 * move the instance around on the list at-will. 6525 */ 6526 if (unlikely(napi_disable_pending(n))) { 6527 napi_complete(n); 6528 return work; 6529 } 6530 6531 /* The NAPI context has more processing work, but busy-polling 6532 * is preferred. Exit early. 6533 */ 6534 if (napi_prefer_busy_poll(n)) { 6535 if (napi_complete_done(n, work)) { 6536 /* If timeout is not set, we need to make sure 6537 * that the NAPI is re-scheduled. 6538 */ 6539 napi_schedule(n); 6540 } 6541 return work; 6542 } 6543 6544 if (n->gro_bitmask) { 6545 /* flush too old packets 6546 * If HZ < 1000, flush all packets. 6547 */ 6548 napi_gro_flush(n, HZ >= 1000); 6549 } 6550 6551 gro_normal_list(n); 6552 6553 /* Some drivers may have called napi_schedule 6554 * prior to exhausting their budget. 6555 */ 6556 if (unlikely(!list_empty(&n->poll_list))) { 6557 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6558 n->dev ? n->dev->name : "backlog"); 6559 return work; 6560 } 6561 6562 *repoll = true; 6563 6564 return work; 6565 } 6566 6567 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6568 { 6569 bool do_repoll = false; 6570 void *have; 6571 int work; 6572 6573 list_del_init(&n->poll_list); 6574 6575 have = netpoll_poll_lock(n); 6576 6577 work = __napi_poll(n, &do_repoll); 6578 6579 if (do_repoll) 6580 list_add_tail(&n->poll_list, repoll); 6581 6582 netpoll_poll_unlock(have); 6583 6584 return work; 6585 } 6586 6587 static int napi_thread_wait(struct napi_struct *napi) 6588 { 6589 bool woken = false; 6590 6591 set_current_state(TASK_INTERRUPTIBLE); 6592 6593 while (!kthread_should_stop()) { 6594 /* Testing SCHED_THREADED bit here to make sure the current 6595 * kthread owns this napi and could poll on this napi. 6596 * Testing SCHED bit is not enough because SCHED bit might be 6597 * set by some other busy poll thread or by napi_disable(). 6598 */ 6599 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) { 6600 WARN_ON(!list_empty(&napi->poll_list)); 6601 __set_current_state(TASK_RUNNING); 6602 return 0; 6603 } 6604 6605 schedule(); 6606 /* woken being true indicates this thread owns this napi. */ 6607 woken = true; 6608 set_current_state(TASK_INTERRUPTIBLE); 6609 } 6610 __set_current_state(TASK_RUNNING); 6611 6612 return -1; 6613 } 6614 6615 static int napi_threaded_poll(void *data) 6616 { 6617 struct napi_struct *napi = data; 6618 void *have; 6619 6620 while (!napi_thread_wait(napi)) { 6621 for (;;) { 6622 bool repoll = false; 6623 6624 local_bh_disable(); 6625 6626 have = netpoll_poll_lock(napi); 6627 __napi_poll(napi, &repoll); 6628 netpoll_poll_unlock(have); 6629 6630 local_bh_enable(); 6631 6632 if (!repoll) 6633 break; 6634 6635 cond_resched(); 6636 } 6637 } 6638 return 0; 6639 } 6640 6641 static void skb_defer_free_flush(struct softnet_data *sd) 6642 { 6643 struct sk_buff *skb, *next; 6644 unsigned long flags; 6645 6646 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */ 6647 if (!READ_ONCE(sd->defer_list)) 6648 return; 6649 6650 spin_lock_irqsave(&sd->defer_lock, flags); 6651 skb = sd->defer_list; 6652 sd->defer_list = NULL; 6653 sd->defer_count = 0; 6654 spin_unlock_irqrestore(&sd->defer_lock, flags); 6655 6656 while (skb != NULL) { 6657 next = skb->next; 6658 napi_consume_skb(skb, 1); 6659 skb = next; 6660 } 6661 } 6662 6663 static __latent_entropy void net_rx_action(struct softirq_action *h) 6664 { 6665 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6666 unsigned long time_limit = jiffies + 6667 usecs_to_jiffies(netdev_budget_usecs); 6668 int budget = netdev_budget; 6669 LIST_HEAD(list); 6670 LIST_HEAD(repoll); 6671 6672 local_irq_disable(); 6673 list_splice_init(&sd->poll_list, &list); 6674 local_irq_enable(); 6675 6676 for (;;) { 6677 struct napi_struct *n; 6678 6679 skb_defer_free_flush(sd); 6680 6681 if (list_empty(&list)) { 6682 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 6683 goto end; 6684 break; 6685 } 6686 6687 n = list_first_entry(&list, struct napi_struct, poll_list); 6688 budget -= napi_poll(n, &repoll); 6689 6690 /* If softirq window is exhausted then punt. 6691 * Allow this to run for 2 jiffies since which will allow 6692 * an average latency of 1.5/HZ. 6693 */ 6694 if (unlikely(budget <= 0 || 6695 time_after_eq(jiffies, time_limit))) { 6696 sd->time_squeeze++; 6697 break; 6698 } 6699 } 6700 6701 local_irq_disable(); 6702 6703 list_splice_tail_init(&sd->poll_list, &list); 6704 list_splice_tail(&repoll, &list); 6705 list_splice(&list, &sd->poll_list); 6706 if (!list_empty(&sd->poll_list)) 6707 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6708 6709 net_rps_action_and_irq_enable(sd); 6710 end:; 6711 } 6712 6713 struct netdev_adjacent { 6714 struct net_device *dev; 6715 netdevice_tracker dev_tracker; 6716 6717 /* upper master flag, there can only be one master device per list */ 6718 bool master; 6719 6720 /* lookup ignore flag */ 6721 bool ignore; 6722 6723 /* counter for the number of times this device was added to us */ 6724 u16 ref_nr; 6725 6726 /* private field for the users */ 6727 void *private; 6728 6729 struct list_head list; 6730 struct rcu_head rcu; 6731 }; 6732 6733 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6734 struct list_head *adj_list) 6735 { 6736 struct netdev_adjacent *adj; 6737 6738 list_for_each_entry(adj, adj_list, list) { 6739 if (adj->dev == adj_dev) 6740 return adj; 6741 } 6742 return NULL; 6743 } 6744 6745 static int ____netdev_has_upper_dev(struct net_device *upper_dev, 6746 struct netdev_nested_priv *priv) 6747 { 6748 struct net_device *dev = (struct net_device *)priv->data; 6749 6750 return upper_dev == dev; 6751 } 6752 6753 /** 6754 * netdev_has_upper_dev - Check if device is linked to an upper device 6755 * @dev: device 6756 * @upper_dev: upper device to check 6757 * 6758 * Find out if a device is linked to specified upper device and return true 6759 * in case it is. Note that this checks only immediate upper device, 6760 * not through a complete stack of devices. The caller must hold the RTNL lock. 6761 */ 6762 bool netdev_has_upper_dev(struct net_device *dev, 6763 struct net_device *upper_dev) 6764 { 6765 struct netdev_nested_priv priv = { 6766 .data = (void *)upper_dev, 6767 }; 6768 6769 ASSERT_RTNL(); 6770 6771 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6772 &priv); 6773 } 6774 EXPORT_SYMBOL(netdev_has_upper_dev); 6775 6776 /** 6777 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device 6778 * @dev: device 6779 * @upper_dev: upper device to check 6780 * 6781 * Find out if a device is linked to specified upper device and return true 6782 * in case it is. Note that this checks the entire upper device chain. 6783 * The caller must hold rcu lock. 6784 */ 6785 6786 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 6787 struct net_device *upper_dev) 6788 { 6789 struct netdev_nested_priv priv = { 6790 .data = (void *)upper_dev, 6791 }; 6792 6793 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6794 &priv); 6795 } 6796 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 6797 6798 /** 6799 * netdev_has_any_upper_dev - Check if device is linked to some device 6800 * @dev: device 6801 * 6802 * Find out if a device is linked to an upper device and return true in case 6803 * it is. The caller must hold the RTNL lock. 6804 */ 6805 bool netdev_has_any_upper_dev(struct net_device *dev) 6806 { 6807 ASSERT_RTNL(); 6808 6809 return !list_empty(&dev->adj_list.upper); 6810 } 6811 EXPORT_SYMBOL(netdev_has_any_upper_dev); 6812 6813 /** 6814 * netdev_master_upper_dev_get - Get master upper device 6815 * @dev: device 6816 * 6817 * Find a master upper device and return pointer to it or NULL in case 6818 * it's not there. The caller must hold the RTNL lock. 6819 */ 6820 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 6821 { 6822 struct netdev_adjacent *upper; 6823 6824 ASSERT_RTNL(); 6825 6826 if (list_empty(&dev->adj_list.upper)) 6827 return NULL; 6828 6829 upper = list_first_entry(&dev->adj_list.upper, 6830 struct netdev_adjacent, list); 6831 if (likely(upper->master)) 6832 return upper->dev; 6833 return NULL; 6834 } 6835 EXPORT_SYMBOL(netdev_master_upper_dev_get); 6836 6837 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 6838 { 6839 struct netdev_adjacent *upper; 6840 6841 ASSERT_RTNL(); 6842 6843 if (list_empty(&dev->adj_list.upper)) 6844 return NULL; 6845 6846 upper = list_first_entry(&dev->adj_list.upper, 6847 struct netdev_adjacent, list); 6848 if (likely(upper->master) && !upper->ignore) 6849 return upper->dev; 6850 return NULL; 6851 } 6852 6853 /** 6854 * netdev_has_any_lower_dev - Check if device is linked to some device 6855 * @dev: device 6856 * 6857 * Find out if a device is linked to a lower device and return true in case 6858 * it is. The caller must hold the RTNL lock. 6859 */ 6860 static bool netdev_has_any_lower_dev(struct net_device *dev) 6861 { 6862 ASSERT_RTNL(); 6863 6864 return !list_empty(&dev->adj_list.lower); 6865 } 6866 6867 void *netdev_adjacent_get_private(struct list_head *adj_list) 6868 { 6869 struct netdev_adjacent *adj; 6870 6871 adj = list_entry(adj_list, struct netdev_adjacent, list); 6872 6873 return adj->private; 6874 } 6875 EXPORT_SYMBOL(netdev_adjacent_get_private); 6876 6877 /** 6878 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 6879 * @dev: device 6880 * @iter: list_head ** of the current position 6881 * 6882 * Gets the next device from the dev's upper list, starting from iter 6883 * position. The caller must hold RCU read lock. 6884 */ 6885 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 6886 struct list_head **iter) 6887 { 6888 struct netdev_adjacent *upper; 6889 6890 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6891 6892 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6893 6894 if (&upper->list == &dev->adj_list.upper) 6895 return NULL; 6896 6897 *iter = &upper->list; 6898 6899 return upper->dev; 6900 } 6901 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 6902 6903 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 6904 struct list_head **iter, 6905 bool *ignore) 6906 { 6907 struct netdev_adjacent *upper; 6908 6909 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 6910 6911 if (&upper->list == &dev->adj_list.upper) 6912 return NULL; 6913 6914 *iter = &upper->list; 6915 *ignore = upper->ignore; 6916 6917 return upper->dev; 6918 } 6919 6920 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 6921 struct list_head **iter) 6922 { 6923 struct netdev_adjacent *upper; 6924 6925 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6926 6927 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6928 6929 if (&upper->list == &dev->adj_list.upper) 6930 return NULL; 6931 6932 *iter = &upper->list; 6933 6934 return upper->dev; 6935 } 6936 6937 static int __netdev_walk_all_upper_dev(struct net_device *dev, 6938 int (*fn)(struct net_device *dev, 6939 struct netdev_nested_priv *priv), 6940 struct netdev_nested_priv *priv) 6941 { 6942 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 6943 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 6944 int ret, cur = 0; 6945 bool ignore; 6946 6947 now = dev; 6948 iter = &dev->adj_list.upper; 6949 6950 while (1) { 6951 if (now != dev) { 6952 ret = fn(now, priv); 6953 if (ret) 6954 return ret; 6955 } 6956 6957 next = NULL; 6958 while (1) { 6959 udev = __netdev_next_upper_dev(now, &iter, &ignore); 6960 if (!udev) 6961 break; 6962 if (ignore) 6963 continue; 6964 6965 next = udev; 6966 niter = &udev->adj_list.upper; 6967 dev_stack[cur] = now; 6968 iter_stack[cur++] = iter; 6969 break; 6970 } 6971 6972 if (!next) { 6973 if (!cur) 6974 return 0; 6975 next = dev_stack[--cur]; 6976 niter = iter_stack[cur]; 6977 } 6978 6979 now = next; 6980 iter = niter; 6981 } 6982 6983 return 0; 6984 } 6985 6986 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 6987 int (*fn)(struct net_device *dev, 6988 struct netdev_nested_priv *priv), 6989 struct netdev_nested_priv *priv) 6990 { 6991 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 6992 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 6993 int ret, cur = 0; 6994 6995 now = dev; 6996 iter = &dev->adj_list.upper; 6997 6998 while (1) { 6999 if (now != dev) { 7000 ret = fn(now, priv); 7001 if (ret) 7002 return ret; 7003 } 7004 7005 next = NULL; 7006 while (1) { 7007 udev = netdev_next_upper_dev_rcu(now, &iter); 7008 if (!udev) 7009 break; 7010 7011 next = udev; 7012 niter = &udev->adj_list.upper; 7013 dev_stack[cur] = now; 7014 iter_stack[cur++] = iter; 7015 break; 7016 } 7017 7018 if (!next) { 7019 if (!cur) 7020 return 0; 7021 next = dev_stack[--cur]; 7022 niter = iter_stack[cur]; 7023 } 7024 7025 now = next; 7026 iter = niter; 7027 } 7028 7029 return 0; 7030 } 7031 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 7032 7033 static bool __netdev_has_upper_dev(struct net_device *dev, 7034 struct net_device *upper_dev) 7035 { 7036 struct netdev_nested_priv priv = { 7037 .flags = 0, 7038 .data = (void *)upper_dev, 7039 }; 7040 7041 ASSERT_RTNL(); 7042 7043 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 7044 &priv); 7045 } 7046 7047 /** 7048 * netdev_lower_get_next_private - Get the next ->private from the 7049 * lower neighbour list 7050 * @dev: device 7051 * @iter: list_head ** of the current position 7052 * 7053 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7054 * list, starting from iter position. The caller must hold either hold the 7055 * RTNL lock or its own locking that guarantees that the neighbour lower 7056 * list will remain unchanged. 7057 */ 7058 void *netdev_lower_get_next_private(struct net_device *dev, 7059 struct list_head **iter) 7060 { 7061 struct netdev_adjacent *lower; 7062 7063 lower = list_entry(*iter, struct netdev_adjacent, list); 7064 7065 if (&lower->list == &dev->adj_list.lower) 7066 return NULL; 7067 7068 *iter = lower->list.next; 7069 7070 return lower->private; 7071 } 7072 EXPORT_SYMBOL(netdev_lower_get_next_private); 7073 7074 /** 7075 * netdev_lower_get_next_private_rcu - Get the next ->private from the 7076 * lower neighbour list, RCU 7077 * variant 7078 * @dev: device 7079 * @iter: list_head ** of the current position 7080 * 7081 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7082 * list, starting from iter position. The caller must hold RCU read lock. 7083 */ 7084 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 7085 struct list_head **iter) 7086 { 7087 struct netdev_adjacent *lower; 7088 7089 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 7090 7091 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7092 7093 if (&lower->list == &dev->adj_list.lower) 7094 return NULL; 7095 7096 *iter = &lower->list; 7097 7098 return lower->private; 7099 } 7100 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 7101 7102 /** 7103 * netdev_lower_get_next - Get the next device from the lower neighbour 7104 * list 7105 * @dev: device 7106 * @iter: list_head ** of the current position 7107 * 7108 * Gets the next netdev_adjacent from the dev's lower neighbour 7109 * list, starting from iter position. The caller must hold RTNL lock or 7110 * its own locking that guarantees that the neighbour lower 7111 * list will remain unchanged. 7112 */ 7113 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 7114 { 7115 struct netdev_adjacent *lower; 7116 7117 lower = list_entry(*iter, struct netdev_adjacent, list); 7118 7119 if (&lower->list == &dev->adj_list.lower) 7120 return NULL; 7121 7122 *iter = lower->list.next; 7123 7124 return lower->dev; 7125 } 7126 EXPORT_SYMBOL(netdev_lower_get_next); 7127 7128 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 7129 struct list_head **iter) 7130 { 7131 struct netdev_adjacent *lower; 7132 7133 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7134 7135 if (&lower->list == &dev->adj_list.lower) 7136 return NULL; 7137 7138 *iter = &lower->list; 7139 7140 return lower->dev; 7141 } 7142 7143 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 7144 struct list_head **iter, 7145 bool *ignore) 7146 { 7147 struct netdev_adjacent *lower; 7148 7149 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7150 7151 if (&lower->list == &dev->adj_list.lower) 7152 return NULL; 7153 7154 *iter = &lower->list; 7155 *ignore = lower->ignore; 7156 7157 return lower->dev; 7158 } 7159 7160 int netdev_walk_all_lower_dev(struct net_device *dev, 7161 int (*fn)(struct net_device *dev, 7162 struct netdev_nested_priv *priv), 7163 struct netdev_nested_priv *priv) 7164 { 7165 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7166 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7167 int ret, cur = 0; 7168 7169 now = dev; 7170 iter = &dev->adj_list.lower; 7171 7172 while (1) { 7173 if (now != dev) { 7174 ret = fn(now, priv); 7175 if (ret) 7176 return ret; 7177 } 7178 7179 next = NULL; 7180 while (1) { 7181 ldev = netdev_next_lower_dev(now, &iter); 7182 if (!ldev) 7183 break; 7184 7185 next = ldev; 7186 niter = &ldev->adj_list.lower; 7187 dev_stack[cur] = now; 7188 iter_stack[cur++] = iter; 7189 break; 7190 } 7191 7192 if (!next) { 7193 if (!cur) 7194 return 0; 7195 next = dev_stack[--cur]; 7196 niter = iter_stack[cur]; 7197 } 7198 7199 now = next; 7200 iter = niter; 7201 } 7202 7203 return 0; 7204 } 7205 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 7206 7207 static int __netdev_walk_all_lower_dev(struct net_device *dev, 7208 int (*fn)(struct net_device *dev, 7209 struct netdev_nested_priv *priv), 7210 struct netdev_nested_priv *priv) 7211 { 7212 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7213 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7214 int ret, cur = 0; 7215 bool ignore; 7216 7217 now = dev; 7218 iter = &dev->adj_list.lower; 7219 7220 while (1) { 7221 if (now != dev) { 7222 ret = fn(now, priv); 7223 if (ret) 7224 return ret; 7225 } 7226 7227 next = NULL; 7228 while (1) { 7229 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 7230 if (!ldev) 7231 break; 7232 if (ignore) 7233 continue; 7234 7235 next = ldev; 7236 niter = &ldev->adj_list.lower; 7237 dev_stack[cur] = now; 7238 iter_stack[cur++] = iter; 7239 break; 7240 } 7241 7242 if (!next) { 7243 if (!cur) 7244 return 0; 7245 next = dev_stack[--cur]; 7246 niter = iter_stack[cur]; 7247 } 7248 7249 now = next; 7250 iter = niter; 7251 } 7252 7253 return 0; 7254 } 7255 7256 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 7257 struct list_head **iter) 7258 { 7259 struct netdev_adjacent *lower; 7260 7261 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7262 if (&lower->list == &dev->adj_list.lower) 7263 return NULL; 7264 7265 *iter = &lower->list; 7266 7267 return lower->dev; 7268 } 7269 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 7270 7271 static u8 __netdev_upper_depth(struct net_device *dev) 7272 { 7273 struct net_device *udev; 7274 struct list_head *iter; 7275 u8 max_depth = 0; 7276 bool ignore; 7277 7278 for (iter = &dev->adj_list.upper, 7279 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 7280 udev; 7281 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 7282 if (ignore) 7283 continue; 7284 if (max_depth < udev->upper_level) 7285 max_depth = udev->upper_level; 7286 } 7287 7288 return max_depth; 7289 } 7290 7291 static u8 __netdev_lower_depth(struct net_device *dev) 7292 { 7293 struct net_device *ldev; 7294 struct list_head *iter; 7295 u8 max_depth = 0; 7296 bool ignore; 7297 7298 for (iter = &dev->adj_list.lower, 7299 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 7300 ldev; 7301 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 7302 if (ignore) 7303 continue; 7304 if (max_depth < ldev->lower_level) 7305 max_depth = ldev->lower_level; 7306 } 7307 7308 return max_depth; 7309 } 7310 7311 static int __netdev_update_upper_level(struct net_device *dev, 7312 struct netdev_nested_priv *__unused) 7313 { 7314 dev->upper_level = __netdev_upper_depth(dev) + 1; 7315 return 0; 7316 } 7317 7318 #ifdef CONFIG_LOCKDEP 7319 static LIST_HEAD(net_unlink_list); 7320 7321 static void net_unlink_todo(struct net_device *dev) 7322 { 7323 if (list_empty(&dev->unlink_list)) 7324 list_add_tail(&dev->unlink_list, &net_unlink_list); 7325 } 7326 #endif 7327 7328 static int __netdev_update_lower_level(struct net_device *dev, 7329 struct netdev_nested_priv *priv) 7330 { 7331 dev->lower_level = __netdev_lower_depth(dev) + 1; 7332 7333 #ifdef CONFIG_LOCKDEP 7334 if (!priv) 7335 return 0; 7336 7337 if (priv->flags & NESTED_SYNC_IMM) 7338 dev->nested_level = dev->lower_level - 1; 7339 if (priv->flags & NESTED_SYNC_TODO) 7340 net_unlink_todo(dev); 7341 #endif 7342 return 0; 7343 } 7344 7345 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 7346 int (*fn)(struct net_device *dev, 7347 struct netdev_nested_priv *priv), 7348 struct netdev_nested_priv *priv) 7349 { 7350 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7351 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7352 int ret, cur = 0; 7353 7354 now = dev; 7355 iter = &dev->adj_list.lower; 7356 7357 while (1) { 7358 if (now != dev) { 7359 ret = fn(now, priv); 7360 if (ret) 7361 return ret; 7362 } 7363 7364 next = NULL; 7365 while (1) { 7366 ldev = netdev_next_lower_dev_rcu(now, &iter); 7367 if (!ldev) 7368 break; 7369 7370 next = ldev; 7371 niter = &ldev->adj_list.lower; 7372 dev_stack[cur] = now; 7373 iter_stack[cur++] = iter; 7374 break; 7375 } 7376 7377 if (!next) { 7378 if (!cur) 7379 return 0; 7380 next = dev_stack[--cur]; 7381 niter = iter_stack[cur]; 7382 } 7383 7384 now = next; 7385 iter = niter; 7386 } 7387 7388 return 0; 7389 } 7390 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 7391 7392 /** 7393 * netdev_lower_get_first_private_rcu - Get the first ->private from the 7394 * lower neighbour list, RCU 7395 * variant 7396 * @dev: device 7397 * 7398 * Gets the first netdev_adjacent->private from the dev's lower neighbour 7399 * list. The caller must hold RCU read lock. 7400 */ 7401 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 7402 { 7403 struct netdev_adjacent *lower; 7404 7405 lower = list_first_or_null_rcu(&dev->adj_list.lower, 7406 struct netdev_adjacent, list); 7407 if (lower) 7408 return lower->private; 7409 return NULL; 7410 } 7411 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 7412 7413 /** 7414 * netdev_master_upper_dev_get_rcu - Get master upper device 7415 * @dev: device 7416 * 7417 * Find a master upper device and return pointer to it or NULL in case 7418 * it's not there. The caller must hold the RCU read lock. 7419 */ 7420 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 7421 { 7422 struct netdev_adjacent *upper; 7423 7424 upper = list_first_or_null_rcu(&dev->adj_list.upper, 7425 struct netdev_adjacent, list); 7426 if (upper && likely(upper->master)) 7427 return upper->dev; 7428 return NULL; 7429 } 7430 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 7431 7432 static int netdev_adjacent_sysfs_add(struct net_device *dev, 7433 struct net_device *adj_dev, 7434 struct list_head *dev_list) 7435 { 7436 char linkname[IFNAMSIZ+7]; 7437 7438 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7439 "upper_%s" : "lower_%s", adj_dev->name); 7440 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 7441 linkname); 7442 } 7443 static void netdev_adjacent_sysfs_del(struct net_device *dev, 7444 char *name, 7445 struct list_head *dev_list) 7446 { 7447 char linkname[IFNAMSIZ+7]; 7448 7449 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7450 "upper_%s" : "lower_%s", name); 7451 sysfs_remove_link(&(dev->dev.kobj), linkname); 7452 } 7453 7454 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 7455 struct net_device *adj_dev, 7456 struct list_head *dev_list) 7457 { 7458 return (dev_list == &dev->adj_list.upper || 7459 dev_list == &dev->adj_list.lower) && 7460 net_eq(dev_net(dev), dev_net(adj_dev)); 7461 } 7462 7463 static int __netdev_adjacent_dev_insert(struct net_device *dev, 7464 struct net_device *adj_dev, 7465 struct list_head *dev_list, 7466 void *private, bool master) 7467 { 7468 struct netdev_adjacent *adj; 7469 int ret; 7470 7471 adj = __netdev_find_adj(adj_dev, dev_list); 7472 7473 if (adj) { 7474 adj->ref_nr += 1; 7475 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 7476 dev->name, adj_dev->name, adj->ref_nr); 7477 7478 return 0; 7479 } 7480 7481 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 7482 if (!adj) 7483 return -ENOMEM; 7484 7485 adj->dev = adj_dev; 7486 adj->master = master; 7487 adj->ref_nr = 1; 7488 adj->private = private; 7489 adj->ignore = false; 7490 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL); 7491 7492 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 7493 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 7494 7495 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 7496 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 7497 if (ret) 7498 goto free_adj; 7499 } 7500 7501 /* Ensure that master link is always the first item in list. */ 7502 if (master) { 7503 ret = sysfs_create_link(&(dev->dev.kobj), 7504 &(adj_dev->dev.kobj), "master"); 7505 if (ret) 7506 goto remove_symlinks; 7507 7508 list_add_rcu(&adj->list, dev_list); 7509 } else { 7510 list_add_tail_rcu(&adj->list, dev_list); 7511 } 7512 7513 return 0; 7514 7515 remove_symlinks: 7516 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7517 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7518 free_adj: 7519 netdev_put(adj_dev, &adj->dev_tracker); 7520 kfree(adj); 7521 7522 return ret; 7523 } 7524 7525 static void __netdev_adjacent_dev_remove(struct net_device *dev, 7526 struct net_device *adj_dev, 7527 u16 ref_nr, 7528 struct list_head *dev_list) 7529 { 7530 struct netdev_adjacent *adj; 7531 7532 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 7533 dev->name, adj_dev->name, ref_nr); 7534 7535 adj = __netdev_find_adj(adj_dev, dev_list); 7536 7537 if (!adj) { 7538 pr_err("Adjacency does not exist for device %s from %s\n", 7539 dev->name, adj_dev->name); 7540 WARN_ON(1); 7541 return; 7542 } 7543 7544 if (adj->ref_nr > ref_nr) { 7545 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 7546 dev->name, adj_dev->name, ref_nr, 7547 adj->ref_nr - ref_nr); 7548 adj->ref_nr -= ref_nr; 7549 return; 7550 } 7551 7552 if (adj->master) 7553 sysfs_remove_link(&(dev->dev.kobj), "master"); 7554 7555 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7556 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7557 7558 list_del_rcu(&adj->list); 7559 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 7560 adj_dev->name, dev->name, adj_dev->name); 7561 netdev_put(adj_dev, &adj->dev_tracker); 7562 kfree_rcu(adj, rcu); 7563 } 7564 7565 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 7566 struct net_device *upper_dev, 7567 struct list_head *up_list, 7568 struct list_head *down_list, 7569 void *private, bool master) 7570 { 7571 int ret; 7572 7573 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 7574 private, master); 7575 if (ret) 7576 return ret; 7577 7578 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 7579 private, false); 7580 if (ret) { 7581 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 7582 return ret; 7583 } 7584 7585 return 0; 7586 } 7587 7588 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 7589 struct net_device *upper_dev, 7590 u16 ref_nr, 7591 struct list_head *up_list, 7592 struct list_head *down_list) 7593 { 7594 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 7595 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 7596 } 7597 7598 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 7599 struct net_device *upper_dev, 7600 void *private, bool master) 7601 { 7602 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 7603 &dev->adj_list.upper, 7604 &upper_dev->adj_list.lower, 7605 private, master); 7606 } 7607 7608 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 7609 struct net_device *upper_dev) 7610 { 7611 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 7612 &dev->adj_list.upper, 7613 &upper_dev->adj_list.lower); 7614 } 7615 7616 static int __netdev_upper_dev_link(struct net_device *dev, 7617 struct net_device *upper_dev, bool master, 7618 void *upper_priv, void *upper_info, 7619 struct netdev_nested_priv *priv, 7620 struct netlink_ext_ack *extack) 7621 { 7622 struct netdev_notifier_changeupper_info changeupper_info = { 7623 .info = { 7624 .dev = dev, 7625 .extack = extack, 7626 }, 7627 .upper_dev = upper_dev, 7628 .master = master, 7629 .linking = true, 7630 .upper_info = upper_info, 7631 }; 7632 struct net_device *master_dev; 7633 int ret = 0; 7634 7635 ASSERT_RTNL(); 7636 7637 if (dev == upper_dev) 7638 return -EBUSY; 7639 7640 /* To prevent loops, check if dev is not upper device to upper_dev. */ 7641 if (__netdev_has_upper_dev(upper_dev, dev)) 7642 return -EBUSY; 7643 7644 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 7645 return -EMLINK; 7646 7647 if (!master) { 7648 if (__netdev_has_upper_dev(dev, upper_dev)) 7649 return -EEXIST; 7650 } else { 7651 master_dev = __netdev_master_upper_dev_get(dev); 7652 if (master_dev) 7653 return master_dev == upper_dev ? -EEXIST : -EBUSY; 7654 } 7655 7656 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7657 &changeupper_info.info); 7658 ret = notifier_to_errno(ret); 7659 if (ret) 7660 return ret; 7661 7662 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7663 master); 7664 if (ret) 7665 return ret; 7666 7667 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7668 &changeupper_info.info); 7669 ret = notifier_to_errno(ret); 7670 if (ret) 7671 goto rollback; 7672 7673 __netdev_update_upper_level(dev, NULL); 7674 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7675 7676 __netdev_update_lower_level(upper_dev, priv); 7677 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7678 priv); 7679 7680 return 0; 7681 7682 rollback: 7683 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7684 7685 return ret; 7686 } 7687 7688 /** 7689 * netdev_upper_dev_link - Add a link to the upper device 7690 * @dev: device 7691 * @upper_dev: new upper device 7692 * @extack: netlink extended ack 7693 * 7694 * Adds a link to device which is upper to this one. The caller must hold 7695 * the RTNL lock. On a failure a negative errno code is returned. 7696 * On success the reference counts are adjusted and the function 7697 * returns zero. 7698 */ 7699 int netdev_upper_dev_link(struct net_device *dev, 7700 struct net_device *upper_dev, 7701 struct netlink_ext_ack *extack) 7702 { 7703 struct netdev_nested_priv priv = { 7704 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7705 .data = NULL, 7706 }; 7707 7708 return __netdev_upper_dev_link(dev, upper_dev, false, 7709 NULL, NULL, &priv, extack); 7710 } 7711 EXPORT_SYMBOL(netdev_upper_dev_link); 7712 7713 /** 7714 * netdev_master_upper_dev_link - Add a master link to the upper device 7715 * @dev: device 7716 * @upper_dev: new upper device 7717 * @upper_priv: upper device private 7718 * @upper_info: upper info to be passed down via notifier 7719 * @extack: netlink extended ack 7720 * 7721 * Adds a link to device which is upper to this one. In this case, only 7722 * one master upper device can be linked, although other non-master devices 7723 * might be linked as well. The caller must hold the RTNL lock. 7724 * On a failure a negative errno code is returned. On success the reference 7725 * counts are adjusted and the function returns zero. 7726 */ 7727 int netdev_master_upper_dev_link(struct net_device *dev, 7728 struct net_device *upper_dev, 7729 void *upper_priv, void *upper_info, 7730 struct netlink_ext_ack *extack) 7731 { 7732 struct netdev_nested_priv priv = { 7733 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7734 .data = NULL, 7735 }; 7736 7737 return __netdev_upper_dev_link(dev, upper_dev, true, 7738 upper_priv, upper_info, &priv, extack); 7739 } 7740 EXPORT_SYMBOL(netdev_master_upper_dev_link); 7741 7742 static void __netdev_upper_dev_unlink(struct net_device *dev, 7743 struct net_device *upper_dev, 7744 struct netdev_nested_priv *priv) 7745 { 7746 struct netdev_notifier_changeupper_info changeupper_info = { 7747 .info = { 7748 .dev = dev, 7749 }, 7750 .upper_dev = upper_dev, 7751 .linking = false, 7752 }; 7753 7754 ASSERT_RTNL(); 7755 7756 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 7757 7758 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7759 &changeupper_info.info); 7760 7761 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7762 7763 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7764 &changeupper_info.info); 7765 7766 __netdev_update_upper_level(dev, NULL); 7767 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7768 7769 __netdev_update_lower_level(upper_dev, priv); 7770 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7771 priv); 7772 } 7773 7774 /** 7775 * netdev_upper_dev_unlink - Removes a link to upper device 7776 * @dev: device 7777 * @upper_dev: new upper device 7778 * 7779 * Removes a link to device which is upper to this one. The caller must hold 7780 * the RTNL lock. 7781 */ 7782 void netdev_upper_dev_unlink(struct net_device *dev, 7783 struct net_device *upper_dev) 7784 { 7785 struct netdev_nested_priv priv = { 7786 .flags = NESTED_SYNC_TODO, 7787 .data = NULL, 7788 }; 7789 7790 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 7791 } 7792 EXPORT_SYMBOL(netdev_upper_dev_unlink); 7793 7794 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 7795 struct net_device *lower_dev, 7796 bool val) 7797 { 7798 struct netdev_adjacent *adj; 7799 7800 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 7801 if (adj) 7802 adj->ignore = val; 7803 7804 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 7805 if (adj) 7806 adj->ignore = val; 7807 } 7808 7809 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 7810 struct net_device *lower_dev) 7811 { 7812 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 7813 } 7814 7815 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 7816 struct net_device *lower_dev) 7817 { 7818 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 7819 } 7820 7821 int netdev_adjacent_change_prepare(struct net_device *old_dev, 7822 struct net_device *new_dev, 7823 struct net_device *dev, 7824 struct netlink_ext_ack *extack) 7825 { 7826 struct netdev_nested_priv priv = { 7827 .flags = 0, 7828 .data = NULL, 7829 }; 7830 int err; 7831 7832 if (!new_dev) 7833 return 0; 7834 7835 if (old_dev && new_dev != old_dev) 7836 netdev_adjacent_dev_disable(dev, old_dev); 7837 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 7838 extack); 7839 if (err) { 7840 if (old_dev && new_dev != old_dev) 7841 netdev_adjacent_dev_enable(dev, old_dev); 7842 return err; 7843 } 7844 7845 return 0; 7846 } 7847 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 7848 7849 void netdev_adjacent_change_commit(struct net_device *old_dev, 7850 struct net_device *new_dev, 7851 struct net_device *dev) 7852 { 7853 struct netdev_nested_priv priv = { 7854 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7855 .data = NULL, 7856 }; 7857 7858 if (!new_dev || !old_dev) 7859 return; 7860 7861 if (new_dev == old_dev) 7862 return; 7863 7864 netdev_adjacent_dev_enable(dev, old_dev); 7865 __netdev_upper_dev_unlink(old_dev, dev, &priv); 7866 } 7867 EXPORT_SYMBOL(netdev_adjacent_change_commit); 7868 7869 void netdev_adjacent_change_abort(struct net_device *old_dev, 7870 struct net_device *new_dev, 7871 struct net_device *dev) 7872 { 7873 struct netdev_nested_priv priv = { 7874 .flags = 0, 7875 .data = NULL, 7876 }; 7877 7878 if (!new_dev) 7879 return; 7880 7881 if (old_dev && new_dev != old_dev) 7882 netdev_adjacent_dev_enable(dev, old_dev); 7883 7884 __netdev_upper_dev_unlink(new_dev, dev, &priv); 7885 } 7886 EXPORT_SYMBOL(netdev_adjacent_change_abort); 7887 7888 /** 7889 * netdev_bonding_info_change - Dispatch event about slave change 7890 * @dev: device 7891 * @bonding_info: info to dispatch 7892 * 7893 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 7894 * The caller must hold the RTNL lock. 7895 */ 7896 void netdev_bonding_info_change(struct net_device *dev, 7897 struct netdev_bonding_info *bonding_info) 7898 { 7899 struct netdev_notifier_bonding_info info = { 7900 .info.dev = dev, 7901 }; 7902 7903 memcpy(&info.bonding_info, bonding_info, 7904 sizeof(struct netdev_bonding_info)); 7905 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 7906 &info.info); 7907 } 7908 EXPORT_SYMBOL(netdev_bonding_info_change); 7909 7910 static int netdev_offload_xstats_enable_l3(struct net_device *dev, 7911 struct netlink_ext_ack *extack) 7912 { 7913 struct netdev_notifier_offload_xstats_info info = { 7914 .info.dev = dev, 7915 .info.extack = extack, 7916 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 7917 }; 7918 int err; 7919 int rc; 7920 7921 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3), 7922 GFP_KERNEL); 7923 if (!dev->offload_xstats_l3) 7924 return -ENOMEM; 7925 7926 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE, 7927 NETDEV_OFFLOAD_XSTATS_DISABLE, 7928 &info.info); 7929 err = notifier_to_errno(rc); 7930 if (err) 7931 goto free_stats; 7932 7933 return 0; 7934 7935 free_stats: 7936 kfree(dev->offload_xstats_l3); 7937 dev->offload_xstats_l3 = NULL; 7938 return err; 7939 } 7940 7941 int netdev_offload_xstats_enable(struct net_device *dev, 7942 enum netdev_offload_xstats_type type, 7943 struct netlink_ext_ack *extack) 7944 { 7945 ASSERT_RTNL(); 7946 7947 if (netdev_offload_xstats_enabled(dev, type)) 7948 return -EALREADY; 7949 7950 switch (type) { 7951 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 7952 return netdev_offload_xstats_enable_l3(dev, extack); 7953 } 7954 7955 WARN_ON(1); 7956 return -EINVAL; 7957 } 7958 EXPORT_SYMBOL(netdev_offload_xstats_enable); 7959 7960 static void netdev_offload_xstats_disable_l3(struct net_device *dev) 7961 { 7962 struct netdev_notifier_offload_xstats_info info = { 7963 .info.dev = dev, 7964 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 7965 }; 7966 7967 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE, 7968 &info.info); 7969 kfree(dev->offload_xstats_l3); 7970 dev->offload_xstats_l3 = NULL; 7971 } 7972 7973 int netdev_offload_xstats_disable(struct net_device *dev, 7974 enum netdev_offload_xstats_type type) 7975 { 7976 ASSERT_RTNL(); 7977 7978 if (!netdev_offload_xstats_enabled(dev, type)) 7979 return -EALREADY; 7980 7981 switch (type) { 7982 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 7983 netdev_offload_xstats_disable_l3(dev); 7984 return 0; 7985 } 7986 7987 WARN_ON(1); 7988 return -EINVAL; 7989 } 7990 EXPORT_SYMBOL(netdev_offload_xstats_disable); 7991 7992 static void netdev_offload_xstats_disable_all(struct net_device *dev) 7993 { 7994 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3); 7995 } 7996 7997 static struct rtnl_hw_stats64 * 7998 netdev_offload_xstats_get_ptr(const struct net_device *dev, 7999 enum netdev_offload_xstats_type type) 8000 { 8001 switch (type) { 8002 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8003 return dev->offload_xstats_l3; 8004 } 8005 8006 WARN_ON(1); 8007 return NULL; 8008 } 8009 8010 bool netdev_offload_xstats_enabled(const struct net_device *dev, 8011 enum netdev_offload_xstats_type type) 8012 { 8013 ASSERT_RTNL(); 8014 8015 return netdev_offload_xstats_get_ptr(dev, type); 8016 } 8017 EXPORT_SYMBOL(netdev_offload_xstats_enabled); 8018 8019 struct netdev_notifier_offload_xstats_ru { 8020 bool used; 8021 }; 8022 8023 struct netdev_notifier_offload_xstats_rd { 8024 struct rtnl_hw_stats64 stats; 8025 bool used; 8026 }; 8027 8028 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest, 8029 const struct rtnl_hw_stats64 *src) 8030 { 8031 dest->rx_packets += src->rx_packets; 8032 dest->tx_packets += src->tx_packets; 8033 dest->rx_bytes += src->rx_bytes; 8034 dest->tx_bytes += src->tx_bytes; 8035 dest->rx_errors += src->rx_errors; 8036 dest->tx_errors += src->tx_errors; 8037 dest->rx_dropped += src->rx_dropped; 8038 dest->tx_dropped += src->tx_dropped; 8039 dest->multicast += src->multicast; 8040 } 8041 8042 static int netdev_offload_xstats_get_used(struct net_device *dev, 8043 enum netdev_offload_xstats_type type, 8044 bool *p_used, 8045 struct netlink_ext_ack *extack) 8046 { 8047 struct netdev_notifier_offload_xstats_ru report_used = {}; 8048 struct netdev_notifier_offload_xstats_info info = { 8049 .info.dev = dev, 8050 .info.extack = extack, 8051 .type = type, 8052 .report_used = &report_used, 8053 }; 8054 int rc; 8055 8056 WARN_ON(!netdev_offload_xstats_enabled(dev, type)); 8057 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED, 8058 &info.info); 8059 *p_used = report_used.used; 8060 return notifier_to_errno(rc); 8061 } 8062 8063 static int netdev_offload_xstats_get_stats(struct net_device *dev, 8064 enum netdev_offload_xstats_type type, 8065 struct rtnl_hw_stats64 *p_stats, 8066 bool *p_used, 8067 struct netlink_ext_ack *extack) 8068 { 8069 struct netdev_notifier_offload_xstats_rd report_delta = {}; 8070 struct netdev_notifier_offload_xstats_info info = { 8071 .info.dev = dev, 8072 .info.extack = extack, 8073 .type = type, 8074 .report_delta = &report_delta, 8075 }; 8076 struct rtnl_hw_stats64 *stats; 8077 int rc; 8078 8079 stats = netdev_offload_xstats_get_ptr(dev, type); 8080 if (WARN_ON(!stats)) 8081 return -EINVAL; 8082 8083 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 8084 &info.info); 8085 8086 /* Cache whatever we got, even if there was an error, otherwise the 8087 * successful stats retrievals would get lost. 8088 */ 8089 netdev_hw_stats64_add(stats, &report_delta.stats); 8090 8091 if (p_stats) 8092 *p_stats = *stats; 8093 *p_used = report_delta.used; 8094 8095 return notifier_to_errno(rc); 8096 } 8097 8098 int netdev_offload_xstats_get(struct net_device *dev, 8099 enum netdev_offload_xstats_type type, 8100 struct rtnl_hw_stats64 *p_stats, bool *p_used, 8101 struct netlink_ext_ack *extack) 8102 { 8103 ASSERT_RTNL(); 8104 8105 if (p_stats) 8106 return netdev_offload_xstats_get_stats(dev, type, p_stats, 8107 p_used, extack); 8108 else 8109 return netdev_offload_xstats_get_used(dev, type, p_used, 8110 extack); 8111 } 8112 EXPORT_SYMBOL(netdev_offload_xstats_get); 8113 8114 void 8115 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta, 8116 const struct rtnl_hw_stats64 *stats) 8117 { 8118 report_delta->used = true; 8119 netdev_hw_stats64_add(&report_delta->stats, stats); 8120 } 8121 EXPORT_SYMBOL(netdev_offload_xstats_report_delta); 8122 8123 void 8124 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used) 8125 { 8126 report_used->used = true; 8127 } 8128 EXPORT_SYMBOL(netdev_offload_xstats_report_used); 8129 8130 void netdev_offload_xstats_push_delta(struct net_device *dev, 8131 enum netdev_offload_xstats_type type, 8132 const struct rtnl_hw_stats64 *p_stats) 8133 { 8134 struct rtnl_hw_stats64 *stats; 8135 8136 ASSERT_RTNL(); 8137 8138 stats = netdev_offload_xstats_get_ptr(dev, type); 8139 if (WARN_ON(!stats)) 8140 return; 8141 8142 netdev_hw_stats64_add(stats, p_stats); 8143 } 8144 EXPORT_SYMBOL(netdev_offload_xstats_push_delta); 8145 8146 /** 8147 * netdev_get_xmit_slave - Get the xmit slave of master device 8148 * @dev: device 8149 * @skb: The packet 8150 * @all_slaves: assume all the slaves are active 8151 * 8152 * The reference counters are not incremented so the caller must be 8153 * careful with locks. The caller must hold RCU lock. 8154 * %NULL is returned if no slave is found. 8155 */ 8156 8157 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 8158 struct sk_buff *skb, 8159 bool all_slaves) 8160 { 8161 const struct net_device_ops *ops = dev->netdev_ops; 8162 8163 if (!ops->ndo_get_xmit_slave) 8164 return NULL; 8165 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 8166 } 8167 EXPORT_SYMBOL(netdev_get_xmit_slave); 8168 8169 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, 8170 struct sock *sk) 8171 { 8172 const struct net_device_ops *ops = dev->netdev_ops; 8173 8174 if (!ops->ndo_sk_get_lower_dev) 8175 return NULL; 8176 return ops->ndo_sk_get_lower_dev(dev, sk); 8177 } 8178 8179 /** 8180 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket 8181 * @dev: device 8182 * @sk: the socket 8183 * 8184 * %NULL is returned if no lower device is found. 8185 */ 8186 8187 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 8188 struct sock *sk) 8189 { 8190 struct net_device *lower; 8191 8192 lower = netdev_sk_get_lower_dev(dev, sk); 8193 while (lower) { 8194 dev = lower; 8195 lower = netdev_sk_get_lower_dev(dev, sk); 8196 } 8197 8198 return dev; 8199 } 8200 EXPORT_SYMBOL(netdev_sk_get_lowest_dev); 8201 8202 static void netdev_adjacent_add_links(struct net_device *dev) 8203 { 8204 struct netdev_adjacent *iter; 8205 8206 struct net *net = dev_net(dev); 8207 8208 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8209 if (!net_eq(net, dev_net(iter->dev))) 8210 continue; 8211 netdev_adjacent_sysfs_add(iter->dev, dev, 8212 &iter->dev->adj_list.lower); 8213 netdev_adjacent_sysfs_add(dev, iter->dev, 8214 &dev->adj_list.upper); 8215 } 8216 8217 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8218 if (!net_eq(net, dev_net(iter->dev))) 8219 continue; 8220 netdev_adjacent_sysfs_add(iter->dev, dev, 8221 &iter->dev->adj_list.upper); 8222 netdev_adjacent_sysfs_add(dev, iter->dev, 8223 &dev->adj_list.lower); 8224 } 8225 } 8226 8227 static void netdev_adjacent_del_links(struct net_device *dev) 8228 { 8229 struct netdev_adjacent *iter; 8230 8231 struct net *net = dev_net(dev); 8232 8233 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8234 if (!net_eq(net, dev_net(iter->dev))) 8235 continue; 8236 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8237 &iter->dev->adj_list.lower); 8238 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8239 &dev->adj_list.upper); 8240 } 8241 8242 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8243 if (!net_eq(net, dev_net(iter->dev))) 8244 continue; 8245 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8246 &iter->dev->adj_list.upper); 8247 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8248 &dev->adj_list.lower); 8249 } 8250 } 8251 8252 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 8253 { 8254 struct netdev_adjacent *iter; 8255 8256 struct net *net = dev_net(dev); 8257 8258 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8259 if (!net_eq(net, dev_net(iter->dev))) 8260 continue; 8261 netdev_adjacent_sysfs_del(iter->dev, oldname, 8262 &iter->dev->adj_list.lower); 8263 netdev_adjacent_sysfs_add(iter->dev, dev, 8264 &iter->dev->adj_list.lower); 8265 } 8266 8267 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8268 if (!net_eq(net, dev_net(iter->dev))) 8269 continue; 8270 netdev_adjacent_sysfs_del(iter->dev, oldname, 8271 &iter->dev->adj_list.upper); 8272 netdev_adjacent_sysfs_add(iter->dev, dev, 8273 &iter->dev->adj_list.upper); 8274 } 8275 } 8276 8277 void *netdev_lower_dev_get_private(struct net_device *dev, 8278 struct net_device *lower_dev) 8279 { 8280 struct netdev_adjacent *lower; 8281 8282 if (!lower_dev) 8283 return NULL; 8284 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 8285 if (!lower) 8286 return NULL; 8287 8288 return lower->private; 8289 } 8290 EXPORT_SYMBOL(netdev_lower_dev_get_private); 8291 8292 8293 /** 8294 * netdev_lower_state_changed - Dispatch event about lower device state change 8295 * @lower_dev: device 8296 * @lower_state_info: state to dispatch 8297 * 8298 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 8299 * The caller must hold the RTNL lock. 8300 */ 8301 void netdev_lower_state_changed(struct net_device *lower_dev, 8302 void *lower_state_info) 8303 { 8304 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 8305 .info.dev = lower_dev, 8306 }; 8307 8308 ASSERT_RTNL(); 8309 changelowerstate_info.lower_state_info = lower_state_info; 8310 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 8311 &changelowerstate_info.info); 8312 } 8313 EXPORT_SYMBOL(netdev_lower_state_changed); 8314 8315 static void dev_change_rx_flags(struct net_device *dev, int flags) 8316 { 8317 const struct net_device_ops *ops = dev->netdev_ops; 8318 8319 if (ops->ndo_change_rx_flags) 8320 ops->ndo_change_rx_flags(dev, flags); 8321 } 8322 8323 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 8324 { 8325 unsigned int old_flags = dev->flags; 8326 kuid_t uid; 8327 kgid_t gid; 8328 8329 ASSERT_RTNL(); 8330 8331 dev->flags |= IFF_PROMISC; 8332 dev->promiscuity += inc; 8333 if (dev->promiscuity == 0) { 8334 /* 8335 * Avoid overflow. 8336 * If inc causes overflow, untouch promisc and return error. 8337 */ 8338 if (inc < 0) 8339 dev->flags &= ~IFF_PROMISC; 8340 else { 8341 dev->promiscuity -= inc; 8342 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n"); 8343 return -EOVERFLOW; 8344 } 8345 } 8346 if (dev->flags != old_flags) { 8347 pr_info("device %s %s promiscuous mode\n", 8348 dev->name, 8349 dev->flags & IFF_PROMISC ? "entered" : "left"); 8350 if (audit_enabled) { 8351 current_uid_gid(&uid, &gid); 8352 audit_log(audit_context(), GFP_ATOMIC, 8353 AUDIT_ANOM_PROMISCUOUS, 8354 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 8355 dev->name, (dev->flags & IFF_PROMISC), 8356 (old_flags & IFF_PROMISC), 8357 from_kuid(&init_user_ns, audit_get_loginuid(current)), 8358 from_kuid(&init_user_ns, uid), 8359 from_kgid(&init_user_ns, gid), 8360 audit_get_sessionid(current)); 8361 } 8362 8363 dev_change_rx_flags(dev, IFF_PROMISC); 8364 } 8365 if (notify) 8366 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 8367 return 0; 8368 } 8369 8370 /** 8371 * dev_set_promiscuity - update promiscuity count on a device 8372 * @dev: device 8373 * @inc: modifier 8374 * 8375 * Add or remove promiscuity from a device. While the count in the device 8376 * remains above zero the interface remains promiscuous. Once it hits zero 8377 * the device reverts back to normal filtering operation. A negative inc 8378 * value is used to drop promiscuity on the device. 8379 * Return 0 if successful or a negative errno code on error. 8380 */ 8381 int dev_set_promiscuity(struct net_device *dev, int inc) 8382 { 8383 unsigned int old_flags = dev->flags; 8384 int err; 8385 8386 err = __dev_set_promiscuity(dev, inc, true); 8387 if (err < 0) 8388 return err; 8389 if (dev->flags != old_flags) 8390 dev_set_rx_mode(dev); 8391 return err; 8392 } 8393 EXPORT_SYMBOL(dev_set_promiscuity); 8394 8395 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 8396 { 8397 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 8398 8399 ASSERT_RTNL(); 8400 8401 dev->flags |= IFF_ALLMULTI; 8402 dev->allmulti += inc; 8403 if (dev->allmulti == 0) { 8404 /* 8405 * Avoid overflow. 8406 * If inc causes overflow, untouch allmulti and return error. 8407 */ 8408 if (inc < 0) 8409 dev->flags &= ~IFF_ALLMULTI; 8410 else { 8411 dev->allmulti -= inc; 8412 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n"); 8413 return -EOVERFLOW; 8414 } 8415 } 8416 if (dev->flags ^ old_flags) { 8417 dev_change_rx_flags(dev, IFF_ALLMULTI); 8418 dev_set_rx_mode(dev); 8419 if (notify) 8420 __dev_notify_flags(dev, old_flags, 8421 dev->gflags ^ old_gflags); 8422 } 8423 return 0; 8424 } 8425 8426 /** 8427 * dev_set_allmulti - update allmulti count on a device 8428 * @dev: device 8429 * @inc: modifier 8430 * 8431 * Add or remove reception of all multicast frames to a device. While the 8432 * count in the device remains above zero the interface remains listening 8433 * to all interfaces. Once it hits zero the device reverts back to normal 8434 * filtering operation. A negative @inc value is used to drop the counter 8435 * when releasing a resource needing all multicasts. 8436 * Return 0 if successful or a negative errno code on error. 8437 */ 8438 8439 int dev_set_allmulti(struct net_device *dev, int inc) 8440 { 8441 return __dev_set_allmulti(dev, inc, true); 8442 } 8443 EXPORT_SYMBOL(dev_set_allmulti); 8444 8445 /* 8446 * Upload unicast and multicast address lists to device and 8447 * configure RX filtering. When the device doesn't support unicast 8448 * filtering it is put in promiscuous mode while unicast addresses 8449 * are present. 8450 */ 8451 void __dev_set_rx_mode(struct net_device *dev) 8452 { 8453 const struct net_device_ops *ops = dev->netdev_ops; 8454 8455 /* dev_open will call this function so the list will stay sane. */ 8456 if (!(dev->flags&IFF_UP)) 8457 return; 8458 8459 if (!netif_device_present(dev)) 8460 return; 8461 8462 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 8463 /* Unicast addresses changes may only happen under the rtnl, 8464 * therefore calling __dev_set_promiscuity here is safe. 8465 */ 8466 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 8467 __dev_set_promiscuity(dev, 1, false); 8468 dev->uc_promisc = true; 8469 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 8470 __dev_set_promiscuity(dev, -1, false); 8471 dev->uc_promisc = false; 8472 } 8473 } 8474 8475 if (ops->ndo_set_rx_mode) 8476 ops->ndo_set_rx_mode(dev); 8477 } 8478 8479 void dev_set_rx_mode(struct net_device *dev) 8480 { 8481 netif_addr_lock_bh(dev); 8482 __dev_set_rx_mode(dev); 8483 netif_addr_unlock_bh(dev); 8484 } 8485 8486 /** 8487 * dev_get_flags - get flags reported to userspace 8488 * @dev: device 8489 * 8490 * Get the combination of flag bits exported through APIs to userspace. 8491 */ 8492 unsigned int dev_get_flags(const struct net_device *dev) 8493 { 8494 unsigned int flags; 8495 8496 flags = (dev->flags & ~(IFF_PROMISC | 8497 IFF_ALLMULTI | 8498 IFF_RUNNING | 8499 IFF_LOWER_UP | 8500 IFF_DORMANT)) | 8501 (dev->gflags & (IFF_PROMISC | 8502 IFF_ALLMULTI)); 8503 8504 if (netif_running(dev)) { 8505 if (netif_oper_up(dev)) 8506 flags |= IFF_RUNNING; 8507 if (netif_carrier_ok(dev)) 8508 flags |= IFF_LOWER_UP; 8509 if (netif_dormant(dev)) 8510 flags |= IFF_DORMANT; 8511 } 8512 8513 return flags; 8514 } 8515 EXPORT_SYMBOL(dev_get_flags); 8516 8517 int __dev_change_flags(struct net_device *dev, unsigned int flags, 8518 struct netlink_ext_ack *extack) 8519 { 8520 unsigned int old_flags = dev->flags; 8521 int ret; 8522 8523 ASSERT_RTNL(); 8524 8525 /* 8526 * Set the flags on our device. 8527 */ 8528 8529 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 8530 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 8531 IFF_AUTOMEDIA)) | 8532 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 8533 IFF_ALLMULTI)); 8534 8535 /* 8536 * Load in the correct multicast list now the flags have changed. 8537 */ 8538 8539 if ((old_flags ^ flags) & IFF_MULTICAST) 8540 dev_change_rx_flags(dev, IFF_MULTICAST); 8541 8542 dev_set_rx_mode(dev); 8543 8544 /* 8545 * Have we downed the interface. We handle IFF_UP ourselves 8546 * according to user attempts to set it, rather than blindly 8547 * setting it. 8548 */ 8549 8550 ret = 0; 8551 if ((old_flags ^ flags) & IFF_UP) { 8552 if (old_flags & IFF_UP) 8553 __dev_close(dev); 8554 else 8555 ret = __dev_open(dev, extack); 8556 } 8557 8558 if ((flags ^ dev->gflags) & IFF_PROMISC) { 8559 int inc = (flags & IFF_PROMISC) ? 1 : -1; 8560 unsigned int old_flags = dev->flags; 8561 8562 dev->gflags ^= IFF_PROMISC; 8563 8564 if (__dev_set_promiscuity(dev, inc, false) >= 0) 8565 if (dev->flags != old_flags) 8566 dev_set_rx_mode(dev); 8567 } 8568 8569 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 8570 * is important. Some (broken) drivers set IFF_PROMISC, when 8571 * IFF_ALLMULTI is requested not asking us and not reporting. 8572 */ 8573 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 8574 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 8575 8576 dev->gflags ^= IFF_ALLMULTI; 8577 __dev_set_allmulti(dev, inc, false); 8578 } 8579 8580 return ret; 8581 } 8582 8583 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 8584 unsigned int gchanges) 8585 { 8586 unsigned int changes = dev->flags ^ old_flags; 8587 8588 if (gchanges) 8589 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 8590 8591 if (changes & IFF_UP) { 8592 if (dev->flags & IFF_UP) 8593 call_netdevice_notifiers(NETDEV_UP, dev); 8594 else 8595 call_netdevice_notifiers(NETDEV_DOWN, dev); 8596 } 8597 8598 if (dev->flags & IFF_UP && 8599 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 8600 struct netdev_notifier_change_info change_info = { 8601 .info = { 8602 .dev = dev, 8603 }, 8604 .flags_changed = changes, 8605 }; 8606 8607 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 8608 } 8609 } 8610 8611 /** 8612 * dev_change_flags - change device settings 8613 * @dev: device 8614 * @flags: device state flags 8615 * @extack: netlink extended ack 8616 * 8617 * Change settings on device based state flags. The flags are 8618 * in the userspace exported format. 8619 */ 8620 int dev_change_flags(struct net_device *dev, unsigned int flags, 8621 struct netlink_ext_ack *extack) 8622 { 8623 int ret; 8624 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 8625 8626 ret = __dev_change_flags(dev, flags, extack); 8627 if (ret < 0) 8628 return ret; 8629 8630 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 8631 __dev_notify_flags(dev, old_flags, changes); 8632 return ret; 8633 } 8634 EXPORT_SYMBOL(dev_change_flags); 8635 8636 int __dev_set_mtu(struct net_device *dev, int new_mtu) 8637 { 8638 const struct net_device_ops *ops = dev->netdev_ops; 8639 8640 if (ops->ndo_change_mtu) 8641 return ops->ndo_change_mtu(dev, new_mtu); 8642 8643 /* Pairs with all the lockless reads of dev->mtu in the stack */ 8644 WRITE_ONCE(dev->mtu, new_mtu); 8645 return 0; 8646 } 8647 EXPORT_SYMBOL(__dev_set_mtu); 8648 8649 int dev_validate_mtu(struct net_device *dev, int new_mtu, 8650 struct netlink_ext_ack *extack) 8651 { 8652 /* MTU must be positive, and in range */ 8653 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 8654 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 8655 return -EINVAL; 8656 } 8657 8658 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 8659 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 8660 return -EINVAL; 8661 } 8662 return 0; 8663 } 8664 8665 /** 8666 * dev_set_mtu_ext - Change maximum transfer unit 8667 * @dev: device 8668 * @new_mtu: new transfer unit 8669 * @extack: netlink extended ack 8670 * 8671 * Change the maximum transfer size of the network device. 8672 */ 8673 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 8674 struct netlink_ext_ack *extack) 8675 { 8676 int err, orig_mtu; 8677 8678 if (new_mtu == dev->mtu) 8679 return 0; 8680 8681 err = dev_validate_mtu(dev, new_mtu, extack); 8682 if (err) 8683 return err; 8684 8685 if (!netif_device_present(dev)) 8686 return -ENODEV; 8687 8688 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 8689 err = notifier_to_errno(err); 8690 if (err) 8691 return err; 8692 8693 orig_mtu = dev->mtu; 8694 err = __dev_set_mtu(dev, new_mtu); 8695 8696 if (!err) { 8697 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8698 orig_mtu); 8699 err = notifier_to_errno(err); 8700 if (err) { 8701 /* setting mtu back and notifying everyone again, 8702 * so that they have a chance to revert changes. 8703 */ 8704 __dev_set_mtu(dev, orig_mtu); 8705 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8706 new_mtu); 8707 } 8708 } 8709 return err; 8710 } 8711 8712 int dev_set_mtu(struct net_device *dev, int new_mtu) 8713 { 8714 struct netlink_ext_ack extack; 8715 int err; 8716 8717 memset(&extack, 0, sizeof(extack)); 8718 err = dev_set_mtu_ext(dev, new_mtu, &extack); 8719 if (err && extack._msg) 8720 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 8721 return err; 8722 } 8723 EXPORT_SYMBOL(dev_set_mtu); 8724 8725 /** 8726 * dev_change_tx_queue_len - Change TX queue length of a netdevice 8727 * @dev: device 8728 * @new_len: new tx queue length 8729 */ 8730 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 8731 { 8732 unsigned int orig_len = dev->tx_queue_len; 8733 int res; 8734 8735 if (new_len != (unsigned int)new_len) 8736 return -ERANGE; 8737 8738 if (new_len != orig_len) { 8739 dev->tx_queue_len = new_len; 8740 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 8741 res = notifier_to_errno(res); 8742 if (res) 8743 goto err_rollback; 8744 res = dev_qdisc_change_tx_queue_len(dev); 8745 if (res) 8746 goto err_rollback; 8747 } 8748 8749 return 0; 8750 8751 err_rollback: 8752 netdev_err(dev, "refused to change device tx_queue_len\n"); 8753 dev->tx_queue_len = orig_len; 8754 return res; 8755 } 8756 8757 /** 8758 * dev_set_group - Change group this device belongs to 8759 * @dev: device 8760 * @new_group: group this device should belong to 8761 */ 8762 void dev_set_group(struct net_device *dev, int new_group) 8763 { 8764 dev->group = new_group; 8765 } 8766 8767 /** 8768 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 8769 * @dev: device 8770 * @addr: new address 8771 * @extack: netlink extended ack 8772 */ 8773 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 8774 struct netlink_ext_ack *extack) 8775 { 8776 struct netdev_notifier_pre_changeaddr_info info = { 8777 .info.dev = dev, 8778 .info.extack = extack, 8779 .dev_addr = addr, 8780 }; 8781 int rc; 8782 8783 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 8784 return notifier_to_errno(rc); 8785 } 8786 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 8787 8788 /** 8789 * dev_set_mac_address - Change Media Access Control Address 8790 * @dev: device 8791 * @sa: new address 8792 * @extack: netlink extended ack 8793 * 8794 * Change the hardware (MAC) address of the device 8795 */ 8796 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 8797 struct netlink_ext_ack *extack) 8798 { 8799 const struct net_device_ops *ops = dev->netdev_ops; 8800 int err; 8801 8802 if (!ops->ndo_set_mac_address) 8803 return -EOPNOTSUPP; 8804 if (sa->sa_family != dev->type) 8805 return -EINVAL; 8806 if (!netif_device_present(dev)) 8807 return -ENODEV; 8808 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 8809 if (err) 8810 return err; 8811 err = ops->ndo_set_mac_address(dev, sa); 8812 if (err) 8813 return err; 8814 dev->addr_assign_type = NET_ADDR_SET; 8815 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 8816 add_device_randomness(dev->dev_addr, dev->addr_len); 8817 return 0; 8818 } 8819 EXPORT_SYMBOL(dev_set_mac_address); 8820 8821 static DECLARE_RWSEM(dev_addr_sem); 8822 8823 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 8824 struct netlink_ext_ack *extack) 8825 { 8826 int ret; 8827 8828 down_write(&dev_addr_sem); 8829 ret = dev_set_mac_address(dev, sa, extack); 8830 up_write(&dev_addr_sem); 8831 return ret; 8832 } 8833 EXPORT_SYMBOL(dev_set_mac_address_user); 8834 8835 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) 8836 { 8837 size_t size = sizeof(sa->sa_data); 8838 struct net_device *dev; 8839 int ret = 0; 8840 8841 down_read(&dev_addr_sem); 8842 rcu_read_lock(); 8843 8844 dev = dev_get_by_name_rcu(net, dev_name); 8845 if (!dev) { 8846 ret = -ENODEV; 8847 goto unlock; 8848 } 8849 if (!dev->addr_len) 8850 memset(sa->sa_data, 0, size); 8851 else 8852 memcpy(sa->sa_data, dev->dev_addr, 8853 min_t(size_t, size, dev->addr_len)); 8854 sa->sa_family = dev->type; 8855 8856 unlock: 8857 rcu_read_unlock(); 8858 up_read(&dev_addr_sem); 8859 return ret; 8860 } 8861 EXPORT_SYMBOL(dev_get_mac_address); 8862 8863 /** 8864 * dev_change_carrier - Change device carrier 8865 * @dev: device 8866 * @new_carrier: new value 8867 * 8868 * Change device carrier 8869 */ 8870 int dev_change_carrier(struct net_device *dev, bool new_carrier) 8871 { 8872 const struct net_device_ops *ops = dev->netdev_ops; 8873 8874 if (!ops->ndo_change_carrier) 8875 return -EOPNOTSUPP; 8876 if (!netif_device_present(dev)) 8877 return -ENODEV; 8878 return ops->ndo_change_carrier(dev, new_carrier); 8879 } 8880 8881 /** 8882 * dev_get_phys_port_id - Get device physical port ID 8883 * @dev: device 8884 * @ppid: port ID 8885 * 8886 * Get device physical port ID 8887 */ 8888 int dev_get_phys_port_id(struct net_device *dev, 8889 struct netdev_phys_item_id *ppid) 8890 { 8891 const struct net_device_ops *ops = dev->netdev_ops; 8892 8893 if (!ops->ndo_get_phys_port_id) 8894 return -EOPNOTSUPP; 8895 return ops->ndo_get_phys_port_id(dev, ppid); 8896 } 8897 8898 /** 8899 * dev_get_phys_port_name - Get device physical port name 8900 * @dev: device 8901 * @name: port name 8902 * @len: limit of bytes to copy to name 8903 * 8904 * Get device physical port name 8905 */ 8906 int dev_get_phys_port_name(struct net_device *dev, 8907 char *name, size_t len) 8908 { 8909 const struct net_device_ops *ops = dev->netdev_ops; 8910 int err; 8911 8912 if (ops->ndo_get_phys_port_name) { 8913 err = ops->ndo_get_phys_port_name(dev, name, len); 8914 if (err != -EOPNOTSUPP) 8915 return err; 8916 } 8917 return devlink_compat_phys_port_name_get(dev, name, len); 8918 } 8919 8920 /** 8921 * dev_get_port_parent_id - Get the device's port parent identifier 8922 * @dev: network device 8923 * @ppid: pointer to a storage for the port's parent identifier 8924 * @recurse: allow/disallow recursion to lower devices 8925 * 8926 * Get the devices's port parent identifier 8927 */ 8928 int dev_get_port_parent_id(struct net_device *dev, 8929 struct netdev_phys_item_id *ppid, 8930 bool recurse) 8931 { 8932 const struct net_device_ops *ops = dev->netdev_ops; 8933 struct netdev_phys_item_id first = { }; 8934 struct net_device *lower_dev; 8935 struct list_head *iter; 8936 int err; 8937 8938 if (ops->ndo_get_port_parent_id) { 8939 err = ops->ndo_get_port_parent_id(dev, ppid); 8940 if (err != -EOPNOTSUPP) 8941 return err; 8942 } 8943 8944 err = devlink_compat_switch_id_get(dev, ppid); 8945 if (!recurse || err != -EOPNOTSUPP) 8946 return err; 8947 8948 netdev_for_each_lower_dev(dev, lower_dev, iter) { 8949 err = dev_get_port_parent_id(lower_dev, ppid, true); 8950 if (err) 8951 break; 8952 if (!first.id_len) 8953 first = *ppid; 8954 else if (memcmp(&first, ppid, sizeof(*ppid))) 8955 return -EOPNOTSUPP; 8956 } 8957 8958 return err; 8959 } 8960 EXPORT_SYMBOL(dev_get_port_parent_id); 8961 8962 /** 8963 * netdev_port_same_parent_id - Indicate if two network devices have 8964 * the same port parent identifier 8965 * @a: first network device 8966 * @b: second network device 8967 */ 8968 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 8969 { 8970 struct netdev_phys_item_id a_id = { }; 8971 struct netdev_phys_item_id b_id = { }; 8972 8973 if (dev_get_port_parent_id(a, &a_id, true) || 8974 dev_get_port_parent_id(b, &b_id, true)) 8975 return false; 8976 8977 return netdev_phys_item_id_same(&a_id, &b_id); 8978 } 8979 EXPORT_SYMBOL(netdev_port_same_parent_id); 8980 8981 /** 8982 * dev_change_proto_down - set carrier according to proto_down. 8983 * 8984 * @dev: device 8985 * @proto_down: new value 8986 */ 8987 int dev_change_proto_down(struct net_device *dev, bool proto_down) 8988 { 8989 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN)) 8990 return -EOPNOTSUPP; 8991 if (!netif_device_present(dev)) 8992 return -ENODEV; 8993 if (proto_down) 8994 netif_carrier_off(dev); 8995 else 8996 netif_carrier_on(dev); 8997 dev->proto_down = proto_down; 8998 return 0; 8999 } 9000 9001 /** 9002 * dev_change_proto_down_reason - proto down reason 9003 * 9004 * @dev: device 9005 * @mask: proto down mask 9006 * @value: proto down value 9007 */ 9008 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask, 9009 u32 value) 9010 { 9011 int b; 9012 9013 if (!mask) { 9014 dev->proto_down_reason = value; 9015 } else { 9016 for_each_set_bit(b, &mask, 32) { 9017 if (value & (1 << b)) 9018 dev->proto_down_reason |= BIT(b); 9019 else 9020 dev->proto_down_reason &= ~BIT(b); 9021 } 9022 } 9023 } 9024 9025 struct bpf_xdp_link { 9026 struct bpf_link link; 9027 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 9028 int flags; 9029 }; 9030 9031 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 9032 { 9033 if (flags & XDP_FLAGS_HW_MODE) 9034 return XDP_MODE_HW; 9035 if (flags & XDP_FLAGS_DRV_MODE) 9036 return XDP_MODE_DRV; 9037 if (flags & XDP_FLAGS_SKB_MODE) 9038 return XDP_MODE_SKB; 9039 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 9040 } 9041 9042 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 9043 { 9044 switch (mode) { 9045 case XDP_MODE_SKB: 9046 return generic_xdp_install; 9047 case XDP_MODE_DRV: 9048 case XDP_MODE_HW: 9049 return dev->netdev_ops->ndo_bpf; 9050 default: 9051 return NULL; 9052 } 9053 } 9054 9055 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 9056 enum bpf_xdp_mode mode) 9057 { 9058 return dev->xdp_state[mode].link; 9059 } 9060 9061 static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 9062 enum bpf_xdp_mode mode) 9063 { 9064 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 9065 9066 if (link) 9067 return link->link.prog; 9068 return dev->xdp_state[mode].prog; 9069 } 9070 9071 u8 dev_xdp_prog_count(struct net_device *dev) 9072 { 9073 u8 count = 0; 9074 int i; 9075 9076 for (i = 0; i < __MAX_XDP_MODE; i++) 9077 if (dev->xdp_state[i].prog || dev->xdp_state[i].link) 9078 count++; 9079 return count; 9080 } 9081 EXPORT_SYMBOL_GPL(dev_xdp_prog_count); 9082 9083 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 9084 { 9085 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 9086 9087 return prog ? prog->aux->id : 0; 9088 } 9089 9090 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 9091 struct bpf_xdp_link *link) 9092 { 9093 dev->xdp_state[mode].link = link; 9094 dev->xdp_state[mode].prog = NULL; 9095 } 9096 9097 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 9098 struct bpf_prog *prog) 9099 { 9100 dev->xdp_state[mode].link = NULL; 9101 dev->xdp_state[mode].prog = prog; 9102 } 9103 9104 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 9105 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 9106 u32 flags, struct bpf_prog *prog) 9107 { 9108 struct netdev_bpf xdp; 9109 int err; 9110 9111 memset(&xdp, 0, sizeof(xdp)); 9112 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 9113 xdp.extack = extack; 9114 xdp.flags = flags; 9115 xdp.prog = prog; 9116 9117 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 9118 * "moved" into driver), so they don't increment it on their own, but 9119 * they do decrement refcnt when program is detached or replaced. 9120 * Given net_device also owns link/prog, we need to bump refcnt here 9121 * to prevent drivers from underflowing it. 9122 */ 9123 if (prog) 9124 bpf_prog_inc(prog); 9125 err = bpf_op(dev, &xdp); 9126 if (err) { 9127 if (prog) 9128 bpf_prog_put(prog); 9129 return err; 9130 } 9131 9132 if (mode != XDP_MODE_HW) 9133 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 9134 9135 return 0; 9136 } 9137 9138 static void dev_xdp_uninstall(struct net_device *dev) 9139 { 9140 struct bpf_xdp_link *link; 9141 struct bpf_prog *prog; 9142 enum bpf_xdp_mode mode; 9143 bpf_op_t bpf_op; 9144 9145 ASSERT_RTNL(); 9146 9147 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 9148 prog = dev_xdp_prog(dev, mode); 9149 if (!prog) 9150 continue; 9151 9152 bpf_op = dev_xdp_bpf_op(dev, mode); 9153 if (!bpf_op) 9154 continue; 9155 9156 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9157 9158 /* auto-detach link from net device */ 9159 link = dev_xdp_link(dev, mode); 9160 if (link) 9161 link->dev = NULL; 9162 else 9163 bpf_prog_put(prog); 9164 9165 dev_xdp_set_link(dev, mode, NULL); 9166 } 9167 } 9168 9169 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 9170 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 9171 struct bpf_prog *old_prog, u32 flags) 9172 { 9173 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); 9174 struct bpf_prog *cur_prog; 9175 struct net_device *upper; 9176 struct list_head *iter; 9177 enum bpf_xdp_mode mode; 9178 bpf_op_t bpf_op; 9179 int err; 9180 9181 ASSERT_RTNL(); 9182 9183 /* either link or prog attachment, never both */ 9184 if (link && (new_prog || old_prog)) 9185 return -EINVAL; 9186 /* link supports only XDP mode flags */ 9187 if (link && (flags & ~XDP_FLAGS_MODES)) { 9188 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 9189 return -EINVAL; 9190 } 9191 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ 9192 if (num_modes > 1) { 9193 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 9194 return -EINVAL; 9195 } 9196 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ 9197 if (!num_modes && dev_xdp_prog_count(dev) > 1) { 9198 NL_SET_ERR_MSG(extack, 9199 "More than one program loaded, unset mode is ambiguous"); 9200 return -EINVAL; 9201 } 9202 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 9203 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 9204 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 9205 return -EINVAL; 9206 } 9207 9208 mode = dev_xdp_mode(dev, flags); 9209 /* can't replace attached link */ 9210 if (dev_xdp_link(dev, mode)) { 9211 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 9212 return -EBUSY; 9213 } 9214 9215 /* don't allow if an upper device already has a program */ 9216 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 9217 if (dev_xdp_prog_count(upper) > 0) { 9218 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program"); 9219 return -EEXIST; 9220 } 9221 } 9222 9223 cur_prog = dev_xdp_prog(dev, mode); 9224 /* can't replace attached prog with link */ 9225 if (link && cur_prog) { 9226 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 9227 return -EBUSY; 9228 } 9229 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 9230 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 9231 return -EEXIST; 9232 } 9233 9234 /* put effective new program into new_prog */ 9235 if (link) 9236 new_prog = link->link.prog; 9237 9238 if (new_prog) { 9239 bool offload = mode == XDP_MODE_HW; 9240 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 9241 ? XDP_MODE_DRV : XDP_MODE_SKB; 9242 9243 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 9244 NL_SET_ERR_MSG(extack, "XDP program already attached"); 9245 return -EBUSY; 9246 } 9247 if (!offload && dev_xdp_prog(dev, other_mode)) { 9248 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 9249 return -EEXIST; 9250 } 9251 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) { 9252 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported"); 9253 return -EINVAL; 9254 } 9255 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 9256 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 9257 return -EINVAL; 9258 } 9259 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 9260 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 9261 return -EINVAL; 9262 } 9263 } 9264 9265 /* don't call drivers if the effective program didn't change */ 9266 if (new_prog != cur_prog) { 9267 bpf_op = dev_xdp_bpf_op(dev, mode); 9268 if (!bpf_op) { 9269 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 9270 return -EOPNOTSUPP; 9271 } 9272 9273 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 9274 if (err) 9275 return err; 9276 } 9277 9278 if (link) 9279 dev_xdp_set_link(dev, mode, link); 9280 else 9281 dev_xdp_set_prog(dev, mode, new_prog); 9282 if (cur_prog) 9283 bpf_prog_put(cur_prog); 9284 9285 return 0; 9286 } 9287 9288 static int dev_xdp_attach_link(struct net_device *dev, 9289 struct netlink_ext_ack *extack, 9290 struct bpf_xdp_link *link) 9291 { 9292 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 9293 } 9294 9295 static int dev_xdp_detach_link(struct net_device *dev, 9296 struct netlink_ext_ack *extack, 9297 struct bpf_xdp_link *link) 9298 { 9299 enum bpf_xdp_mode mode; 9300 bpf_op_t bpf_op; 9301 9302 ASSERT_RTNL(); 9303 9304 mode = dev_xdp_mode(dev, link->flags); 9305 if (dev_xdp_link(dev, mode) != link) 9306 return -EINVAL; 9307 9308 bpf_op = dev_xdp_bpf_op(dev, mode); 9309 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9310 dev_xdp_set_link(dev, mode, NULL); 9311 return 0; 9312 } 9313 9314 static void bpf_xdp_link_release(struct bpf_link *link) 9315 { 9316 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9317 9318 rtnl_lock(); 9319 9320 /* if racing with net_device's tear down, xdp_link->dev might be 9321 * already NULL, in which case link was already auto-detached 9322 */ 9323 if (xdp_link->dev) { 9324 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 9325 xdp_link->dev = NULL; 9326 } 9327 9328 rtnl_unlock(); 9329 } 9330 9331 static int bpf_xdp_link_detach(struct bpf_link *link) 9332 { 9333 bpf_xdp_link_release(link); 9334 return 0; 9335 } 9336 9337 static void bpf_xdp_link_dealloc(struct bpf_link *link) 9338 { 9339 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9340 9341 kfree(xdp_link); 9342 } 9343 9344 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 9345 struct seq_file *seq) 9346 { 9347 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9348 u32 ifindex = 0; 9349 9350 rtnl_lock(); 9351 if (xdp_link->dev) 9352 ifindex = xdp_link->dev->ifindex; 9353 rtnl_unlock(); 9354 9355 seq_printf(seq, "ifindex:\t%u\n", ifindex); 9356 } 9357 9358 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 9359 struct bpf_link_info *info) 9360 { 9361 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9362 u32 ifindex = 0; 9363 9364 rtnl_lock(); 9365 if (xdp_link->dev) 9366 ifindex = xdp_link->dev->ifindex; 9367 rtnl_unlock(); 9368 9369 info->xdp.ifindex = ifindex; 9370 return 0; 9371 } 9372 9373 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 9374 struct bpf_prog *old_prog) 9375 { 9376 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9377 enum bpf_xdp_mode mode; 9378 bpf_op_t bpf_op; 9379 int err = 0; 9380 9381 rtnl_lock(); 9382 9383 /* link might have been auto-released already, so fail */ 9384 if (!xdp_link->dev) { 9385 err = -ENOLINK; 9386 goto out_unlock; 9387 } 9388 9389 if (old_prog && link->prog != old_prog) { 9390 err = -EPERM; 9391 goto out_unlock; 9392 } 9393 old_prog = link->prog; 9394 if (old_prog->type != new_prog->type || 9395 old_prog->expected_attach_type != new_prog->expected_attach_type) { 9396 err = -EINVAL; 9397 goto out_unlock; 9398 } 9399 9400 if (old_prog == new_prog) { 9401 /* no-op, don't disturb drivers */ 9402 bpf_prog_put(new_prog); 9403 goto out_unlock; 9404 } 9405 9406 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 9407 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 9408 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 9409 xdp_link->flags, new_prog); 9410 if (err) 9411 goto out_unlock; 9412 9413 old_prog = xchg(&link->prog, new_prog); 9414 bpf_prog_put(old_prog); 9415 9416 out_unlock: 9417 rtnl_unlock(); 9418 return err; 9419 } 9420 9421 static const struct bpf_link_ops bpf_xdp_link_lops = { 9422 .release = bpf_xdp_link_release, 9423 .dealloc = bpf_xdp_link_dealloc, 9424 .detach = bpf_xdp_link_detach, 9425 .show_fdinfo = bpf_xdp_link_show_fdinfo, 9426 .fill_link_info = bpf_xdp_link_fill_link_info, 9427 .update_prog = bpf_xdp_link_update, 9428 }; 9429 9430 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 9431 { 9432 struct net *net = current->nsproxy->net_ns; 9433 struct bpf_link_primer link_primer; 9434 struct bpf_xdp_link *link; 9435 struct net_device *dev; 9436 int err, fd; 9437 9438 rtnl_lock(); 9439 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 9440 if (!dev) { 9441 rtnl_unlock(); 9442 return -EINVAL; 9443 } 9444 9445 link = kzalloc(sizeof(*link), GFP_USER); 9446 if (!link) { 9447 err = -ENOMEM; 9448 goto unlock; 9449 } 9450 9451 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog); 9452 link->dev = dev; 9453 link->flags = attr->link_create.flags; 9454 9455 err = bpf_link_prime(&link->link, &link_primer); 9456 if (err) { 9457 kfree(link); 9458 goto unlock; 9459 } 9460 9461 err = dev_xdp_attach_link(dev, NULL, link); 9462 rtnl_unlock(); 9463 9464 if (err) { 9465 link->dev = NULL; 9466 bpf_link_cleanup(&link_primer); 9467 goto out_put_dev; 9468 } 9469 9470 fd = bpf_link_settle(&link_primer); 9471 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 9472 dev_put(dev); 9473 return fd; 9474 9475 unlock: 9476 rtnl_unlock(); 9477 9478 out_put_dev: 9479 dev_put(dev); 9480 return err; 9481 } 9482 9483 /** 9484 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 9485 * @dev: device 9486 * @extack: netlink extended ack 9487 * @fd: new program fd or negative value to clear 9488 * @expected_fd: old program fd that userspace expects to replace or clear 9489 * @flags: xdp-related flags 9490 * 9491 * Set or clear a bpf program for a device 9492 */ 9493 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 9494 int fd, int expected_fd, u32 flags) 9495 { 9496 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 9497 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 9498 int err; 9499 9500 ASSERT_RTNL(); 9501 9502 if (fd >= 0) { 9503 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 9504 mode != XDP_MODE_SKB); 9505 if (IS_ERR(new_prog)) 9506 return PTR_ERR(new_prog); 9507 } 9508 9509 if (expected_fd >= 0) { 9510 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 9511 mode != XDP_MODE_SKB); 9512 if (IS_ERR(old_prog)) { 9513 err = PTR_ERR(old_prog); 9514 old_prog = NULL; 9515 goto err_out; 9516 } 9517 } 9518 9519 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 9520 9521 err_out: 9522 if (err && new_prog) 9523 bpf_prog_put(new_prog); 9524 if (old_prog) 9525 bpf_prog_put(old_prog); 9526 return err; 9527 } 9528 9529 /** 9530 * dev_new_index - allocate an ifindex 9531 * @net: the applicable net namespace 9532 * 9533 * Returns a suitable unique value for a new device interface 9534 * number. The caller must hold the rtnl semaphore or the 9535 * dev_base_lock to be sure it remains unique. 9536 */ 9537 static int dev_new_index(struct net *net) 9538 { 9539 int ifindex = net->ifindex; 9540 9541 for (;;) { 9542 if (++ifindex <= 0) 9543 ifindex = 1; 9544 if (!__dev_get_by_index(net, ifindex)) 9545 return net->ifindex = ifindex; 9546 } 9547 } 9548 9549 /* Delayed registration/unregisteration */ 9550 LIST_HEAD(net_todo_list); 9551 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 9552 9553 static void net_set_todo(struct net_device *dev) 9554 { 9555 list_add_tail(&dev->todo_list, &net_todo_list); 9556 atomic_inc(&dev_net(dev)->dev_unreg_count); 9557 } 9558 9559 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 9560 struct net_device *upper, netdev_features_t features) 9561 { 9562 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9563 netdev_features_t feature; 9564 int feature_bit; 9565 9566 for_each_netdev_feature(upper_disables, feature_bit) { 9567 feature = __NETIF_F_BIT(feature_bit); 9568 if (!(upper->wanted_features & feature) 9569 && (features & feature)) { 9570 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 9571 &feature, upper->name); 9572 features &= ~feature; 9573 } 9574 } 9575 9576 return features; 9577 } 9578 9579 static void netdev_sync_lower_features(struct net_device *upper, 9580 struct net_device *lower, netdev_features_t features) 9581 { 9582 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9583 netdev_features_t feature; 9584 int feature_bit; 9585 9586 for_each_netdev_feature(upper_disables, feature_bit) { 9587 feature = __NETIF_F_BIT(feature_bit); 9588 if (!(features & feature) && (lower->features & feature)) { 9589 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 9590 &feature, lower->name); 9591 lower->wanted_features &= ~feature; 9592 __netdev_update_features(lower); 9593 9594 if (unlikely(lower->features & feature)) 9595 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 9596 &feature, lower->name); 9597 else 9598 netdev_features_change(lower); 9599 } 9600 } 9601 } 9602 9603 static netdev_features_t netdev_fix_features(struct net_device *dev, 9604 netdev_features_t features) 9605 { 9606 /* Fix illegal checksum combinations */ 9607 if ((features & NETIF_F_HW_CSUM) && 9608 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 9609 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 9610 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 9611 } 9612 9613 /* TSO requires that SG is present as well. */ 9614 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 9615 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 9616 features &= ~NETIF_F_ALL_TSO; 9617 } 9618 9619 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 9620 !(features & NETIF_F_IP_CSUM)) { 9621 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 9622 features &= ~NETIF_F_TSO; 9623 features &= ~NETIF_F_TSO_ECN; 9624 } 9625 9626 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 9627 !(features & NETIF_F_IPV6_CSUM)) { 9628 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 9629 features &= ~NETIF_F_TSO6; 9630 } 9631 9632 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 9633 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 9634 features &= ~NETIF_F_TSO_MANGLEID; 9635 9636 /* TSO ECN requires that TSO is present as well. */ 9637 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 9638 features &= ~NETIF_F_TSO_ECN; 9639 9640 /* Software GSO depends on SG. */ 9641 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 9642 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 9643 features &= ~NETIF_F_GSO; 9644 } 9645 9646 /* GSO partial features require GSO partial be set */ 9647 if ((features & dev->gso_partial_features) && 9648 !(features & NETIF_F_GSO_PARTIAL)) { 9649 netdev_dbg(dev, 9650 "Dropping partially supported GSO features since no GSO partial.\n"); 9651 features &= ~dev->gso_partial_features; 9652 } 9653 9654 if (!(features & NETIF_F_RXCSUM)) { 9655 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 9656 * successfully merged by hardware must also have the 9657 * checksum verified by hardware. If the user does not 9658 * want to enable RXCSUM, logically, we should disable GRO_HW. 9659 */ 9660 if (features & NETIF_F_GRO_HW) { 9661 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 9662 features &= ~NETIF_F_GRO_HW; 9663 } 9664 } 9665 9666 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 9667 if (features & NETIF_F_RXFCS) { 9668 if (features & NETIF_F_LRO) { 9669 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 9670 features &= ~NETIF_F_LRO; 9671 } 9672 9673 if (features & NETIF_F_GRO_HW) { 9674 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 9675 features &= ~NETIF_F_GRO_HW; 9676 } 9677 } 9678 9679 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) { 9680 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n"); 9681 features &= ~NETIF_F_LRO; 9682 } 9683 9684 if (features & NETIF_F_HW_TLS_TX) { 9685 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) == 9686 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 9687 bool hw_csum = features & NETIF_F_HW_CSUM; 9688 9689 if (!ip_csum && !hw_csum) { 9690 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n"); 9691 features &= ~NETIF_F_HW_TLS_TX; 9692 } 9693 } 9694 9695 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { 9696 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n"); 9697 features &= ~NETIF_F_HW_TLS_RX; 9698 } 9699 9700 return features; 9701 } 9702 9703 int __netdev_update_features(struct net_device *dev) 9704 { 9705 struct net_device *upper, *lower; 9706 netdev_features_t features; 9707 struct list_head *iter; 9708 int err = -1; 9709 9710 ASSERT_RTNL(); 9711 9712 features = netdev_get_wanted_features(dev); 9713 9714 if (dev->netdev_ops->ndo_fix_features) 9715 features = dev->netdev_ops->ndo_fix_features(dev, features); 9716 9717 /* driver might be less strict about feature dependencies */ 9718 features = netdev_fix_features(dev, features); 9719 9720 /* some features can't be enabled if they're off on an upper device */ 9721 netdev_for_each_upper_dev_rcu(dev, upper, iter) 9722 features = netdev_sync_upper_features(dev, upper, features); 9723 9724 if (dev->features == features) 9725 goto sync_lower; 9726 9727 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 9728 &dev->features, &features); 9729 9730 if (dev->netdev_ops->ndo_set_features) 9731 err = dev->netdev_ops->ndo_set_features(dev, features); 9732 else 9733 err = 0; 9734 9735 if (unlikely(err < 0)) { 9736 netdev_err(dev, 9737 "set_features() failed (%d); wanted %pNF, left %pNF\n", 9738 err, &features, &dev->features); 9739 /* return non-0 since some features might have changed and 9740 * it's better to fire a spurious notification than miss it 9741 */ 9742 return -1; 9743 } 9744 9745 sync_lower: 9746 /* some features must be disabled on lower devices when disabled 9747 * on an upper device (think: bonding master or bridge) 9748 */ 9749 netdev_for_each_lower_dev(dev, lower, iter) 9750 netdev_sync_lower_features(dev, lower, features); 9751 9752 if (!err) { 9753 netdev_features_t diff = features ^ dev->features; 9754 9755 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 9756 /* udp_tunnel_{get,drop}_rx_info both need 9757 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 9758 * device, or they won't do anything. 9759 * Thus we need to update dev->features 9760 * *before* calling udp_tunnel_get_rx_info, 9761 * but *after* calling udp_tunnel_drop_rx_info. 9762 */ 9763 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 9764 dev->features = features; 9765 udp_tunnel_get_rx_info(dev); 9766 } else { 9767 udp_tunnel_drop_rx_info(dev); 9768 } 9769 } 9770 9771 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 9772 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 9773 dev->features = features; 9774 err |= vlan_get_rx_ctag_filter_info(dev); 9775 } else { 9776 vlan_drop_rx_ctag_filter_info(dev); 9777 } 9778 } 9779 9780 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 9781 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 9782 dev->features = features; 9783 err |= vlan_get_rx_stag_filter_info(dev); 9784 } else { 9785 vlan_drop_rx_stag_filter_info(dev); 9786 } 9787 } 9788 9789 dev->features = features; 9790 } 9791 9792 return err < 0 ? 0 : 1; 9793 } 9794 9795 /** 9796 * netdev_update_features - recalculate device features 9797 * @dev: the device to check 9798 * 9799 * Recalculate dev->features set and send notifications if it 9800 * has changed. Should be called after driver or hardware dependent 9801 * conditions might have changed that influence the features. 9802 */ 9803 void netdev_update_features(struct net_device *dev) 9804 { 9805 if (__netdev_update_features(dev)) 9806 netdev_features_change(dev); 9807 } 9808 EXPORT_SYMBOL(netdev_update_features); 9809 9810 /** 9811 * netdev_change_features - recalculate device features 9812 * @dev: the device to check 9813 * 9814 * Recalculate dev->features set and send notifications even 9815 * if they have not changed. Should be called instead of 9816 * netdev_update_features() if also dev->vlan_features might 9817 * have changed to allow the changes to be propagated to stacked 9818 * VLAN devices. 9819 */ 9820 void netdev_change_features(struct net_device *dev) 9821 { 9822 __netdev_update_features(dev); 9823 netdev_features_change(dev); 9824 } 9825 EXPORT_SYMBOL(netdev_change_features); 9826 9827 /** 9828 * netif_stacked_transfer_operstate - transfer operstate 9829 * @rootdev: the root or lower level device to transfer state from 9830 * @dev: the device to transfer operstate to 9831 * 9832 * Transfer operational state from root to device. This is normally 9833 * called when a stacking relationship exists between the root 9834 * device and the device(a leaf device). 9835 */ 9836 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 9837 struct net_device *dev) 9838 { 9839 if (rootdev->operstate == IF_OPER_DORMANT) 9840 netif_dormant_on(dev); 9841 else 9842 netif_dormant_off(dev); 9843 9844 if (rootdev->operstate == IF_OPER_TESTING) 9845 netif_testing_on(dev); 9846 else 9847 netif_testing_off(dev); 9848 9849 if (netif_carrier_ok(rootdev)) 9850 netif_carrier_on(dev); 9851 else 9852 netif_carrier_off(dev); 9853 } 9854 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 9855 9856 static int netif_alloc_rx_queues(struct net_device *dev) 9857 { 9858 unsigned int i, count = dev->num_rx_queues; 9859 struct netdev_rx_queue *rx; 9860 size_t sz = count * sizeof(*rx); 9861 int err = 0; 9862 9863 BUG_ON(count < 1); 9864 9865 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 9866 if (!rx) 9867 return -ENOMEM; 9868 9869 dev->_rx = rx; 9870 9871 for (i = 0; i < count; i++) { 9872 rx[i].dev = dev; 9873 9874 /* XDP RX-queue setup */ 9875 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0); 9876 if (err < 0) 9877 goto err_rxq_info; 9878 } 9879 return 0; 9880 9881 err_rxq_info: 9882 /* Rollback successful reg's and free other resources */ 9883 while (i--) 9884 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 9885 kvfree(dev->_rx); 9886 dev->_rx = NULL; 9887 return err; 9888 } 9889 9890 static void netif_free_rx_queues(struct net_device *dev) 9891 { 9892 unsigned int i, count = dev->num_rx_queues; 9893 9894 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 9895 if (!dev->_rx) 9896 return; 9897 9898 for (i = 0; i < count; i++) 9899 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 9900 9901 kvfree(dev->_rx); 9902 } 9903 9904 static void netdev_init_one_queue(struct net_device *dev, 9905 struct netdev_queue *queue, void *_unused) 9906 { 9907 /* Initialize queue lock */ 9908 spin_lock_init(&queue->_xmit_lock); 9909 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 9910 queue->xmit_lock_owner = -1; 9911 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 9912 queue->dev = dev; 9913 #ifdef CONFIG_BQL 9914 dql_init(&queue->dql, HZ); 9915 #endif 9916 } 9917 9918 static void netif_free_tx_queues(struct net_device *dev) 9919 { 9920 kvfree(dev->_tx); 9921 } 9922 9923 static int netif_alloc_netdev_queues(struct net_device *dev) 9924 { 9925 unsigned int count = dev->num_tx_queues; 9926 struct netdev_queue *tx; 9927 size_t sz = count * sizeof(*tx); 9928 9929 if (count < 1 || count > 0xffff) 9930 return -EINVAL; 9931 9932 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 9933 if (!tx) 9934 return -ENOMEM; 9935 9936 dev->_tx = tx; 9937 9938 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 9939 spin_lock_init(&dev->tx_global_lock); 9940 9941 return 0; 9942 } 9943 9944 void netif_tx_stop_all_queues(struct net_device *dev) 9945 { 9946 unsigned int i; 9947 9948 for (i = 0; i < dev->num_tx_queues; i++) { 9949 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 9950 9951 netif_tx_stop_queue(txq); 9952 } 9953 } 9954 EXPORT_SYMBOL(netif_tx_stop_all_queues); 9955 9956 /** 9957 * register_netdevice() - register a network device 9958 * @dev: device to register 9959 * 9960 * Take a prepared network device structure and make it externally accessible. 9961 * A %NETDEV_REGISTER message is sent to the netdev notifier chain. 9962 * Callers must hold the rtnl lock - you may want register_netdev() 9963 * instead of this. 9964 */ 9965 int register_netdevice(struct net_device *dev) 9966 { 9967 int ret; 9968 struct net *net = dev_net(dev); 9969 9970 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 9971 NETDEV_FEATURE_COUNT); 9972 BUG_ON(dev_boot_phase); 9973 ASSERT_RTNL(); 9974 9975 might_sleep(); 9976 9977 /* When net_device's are persistent, this will be fatal. */ 9978 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 9979 BUG_ON(!net); 9980 9981 ret = ethtool_check_ops(dev->ethtool_ops); 9982 if (ret) 9983 return ret; 9984 9985 spin_lock_init(&dev->addr_list_lock); 9986 netdev_set_addr_lockdep_class(dev); 9987 9988 ret = dev_get_valid_name(net, dev, dev->name); 9989 if (ret < 0) 9990 goto out; 9991 9992 ret = -ENOMEM; 9993 dev->name_node = netdev_name_node_head_alloc(dev); 9994 if (!dev->name_node) 9995 goto out; 9996 9997 /* Init, if this function is available */ 9998 if (dev->netdev_ops->ndo_init) { 9999 ret = dev->netdev_ops->ndo_init(dev); 10000 if (ret) { 10001 if (ret > 0) 10002 ret = -EIO; 10003 goto err_free_name; 10004 } 10005 } 10006 10007 if (((dev->hw_features | dev->features) & 10008 NETIF_F_HW_VLAN_CTAG_FILTER) && 10009 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 10010 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 10011 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 10012 ret = -EINVAL; 10013 goto err_uninit; 10014 } 10015 10016 ret = -EBUSY; 10017 if (!dev->ifindex) 10018 dev->ifindex = dev_new_index(net); 10019 else if (__dev_get_by_index(net, dev->ifindex)) 10020 goto err_uninit; 10021 10022 /* Transfer changeable features to wanted_features and enable 10023 * software offloads (GSO and GRO). 10024 */ 10025 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 10026 dev->features |= NETIF_F_SOFT_FEATURES; 10027 10028 if (dev->udp_tunnel_nic_info) { 10029 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10030 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10031 } 10032 10033 dev->wanted_features = dev->features & dev->hw_features; 10034 10035 if (!(dev->flags & IFF_LOOPBACK)) 10036 dev->hw_features |= NETIF_F_NOCACHE_COPY; 10037 10038 /* If IPv4 TCP segmentation offload is supported we should also 10039 * allow the device to enable segmenting the frame with the option 10040 * of ignoring a static IP ID value. This doesn't enable the 10041 * feature itself but allows the user to enable it later. 10042 */ 10043 if (dev->hw_features & NETIF_F_TSO) 10044 dev->hw_features |= NETIF_F_TSO_MANGLEID; 10045 if (dev->vlan_features & NETIF_F_TSO) 10046 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 10047 if (dev->mpls_features & NETIF_F_TSO) 10048 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 10049 if (dev->hw_enc_features & NETIF_F_TSO) 10050 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 10051 10052 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 10053 */ 10054 dev->vlan_features |= NETIF_F_HIGHDMA; 10055 10056 /* Make NETIF_F_SG inheritable to tunnel devices. 10057 */ 10058 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 10059 10060 /* Make NETIF_F_SG inheritable to MPLS. 10061 */ 10062 dev->mpls_features |= NETIF_F_SG; 10063 10064 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 10065 ret = notifier_to_errno(ret); 10066 if (ret) 10067 goto err_uninit; 10068 10069 ret = netdev_register_kobject(dev); 10070 write_lock(&dev_base_lock); 10071 dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED; 10072 write_unlock(&dev_base_lock); 10073 if (ret) 10074 goto err_uninit; 10075 10076 __netdev_update_features(dev); 10077 10078 /* 10079 * Default initial state at registry is that the 10080 * device is present. 10081 */ 10082 10083 set_bit(__LINK_STATE_PRESENT, &dev->state); 10084 10085 linkwatch_init_dev(dev); 10086 10087 dev_init_scheduler(dev); 10088 10089 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL); 10090 list_netdevice(dev); 10091 10092 add_device_randomness(dev->dev_addr, dev->addr_len); 10093 10094 /* If the device has permanent device address, driver should 10095 * set dev_addr and also addr_assign_type should be set to 10096 * NET_ADDR_PERM (default value). 10097 */ 10098 if (dev->addr_assign_type == NET_ADDR_PERM) 10099 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 10100 10101 /* Notify protocols, that a new device appeared. */ 10102 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 10103 ret = notifier_to_errno(ret); 10104 if (ret) { 10105 /* Expect explicit free_netdev() on failure */ 10106 dev->needs_free_netdev = false; 10107 unregister_netdevice_queue(dev, NULL); 10108 goto out; 10109 } 10110 /* 10111 * Prevent userspace races by waiting until the network 10112 * device is fully setup before sending notifications. 10113 */ 10114 if (!dev->rtnl_link_ops || 10115 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 10116 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 10117 10118 out: 10119 return ret; 10120 10121 err_uninit: 10122 if (dev->netdev_ops->ndo_uninit) 10123 dev->netdev_ops->ndo_uninit(dev); 10124 if (dev->priv_destructor) 10125 dev->priv_destructor(dev); 10126 err_free_name: 10127 netdev_name_node_free(dev->name_node); 10128 goto out; 10129 } 10130 EXPORT_SYMBOL(register_netdevice); 10131 10132 /** 10133 * init_dummy_netdev - init a dummy network device for NAPI 10134 * @dev: device to init 10135 * 10136 * This takes a network device structure and initialize the minimum 10137 * amount of fields so it can be used to schedule NAPI polls without 10138 * registering a full blown interface. This is to be used by drivers 10139 * that need to tie several hardware interfaces to a single NAPI 10140 * poll scheduler due to HW limitations. 10141 */ 10142 int init_dummy_netdev(struct net_device *dev) 10143 { 10144 /* Clear everything. Note we don't initialize spinlocks 10145 * are they aren't supposed to be taken by any of the 10146 * NAPI code and this dummy netdev is supposed to be 10147 * only ever used for NAPI polls 10148 */ 10149 memset(dev, 0, sizeof(struct net_device)); 10150 10151 /* make sure we BUG if trying to hit standard 10152 * register/unregister code path 10153 */ 10154 dev->reg_state = NETREG_DUMMY; 10155 10156 /* NAPI wants this */ 10157 INIT_LIST_HEAD(&dev->napi_list); 10158 10159 /* a dummy interface is started by default */ 10160 set_bit(__LINK_STATE_PRESENT, &dev->state); 10161 set_bit(__LINK_STATE_START, &dev->state); 10162 10163 /* napi_busy_loop stats accounting wants this */ 10164 dev_net_set(dev, &init_net); 10165 10166 /* Note : We dont allocate pcpu_refcnt for dummy devices, 10167 * because users of this 'device' dont need to change 10168 * its refcount. 10169 */ 10170 10171 return 0; 10172 } 10173 EXPORT_SYMBOL_GPL(init_dummy_netdev); 10174 10175 10176 /** 10177 * register_netdev - register a network device 10178 * @dev: device to register 10179 * 10180 * Take a completed network device structure and add it to the kernel 10181 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 10182 * chain. 0 is returned on success. A negative errno code is returned 10183 * on a failure to set up the device, or if the name is a duplicate. 10184 * 10185 * This is a wrapper around register_netdevice that takes the rtnl semaphore 10186 * and expands the device name if you passed a format string to 10187 * alloc_netdev. 10188 */ 10189 int register_netdev(struct net_device *dev) 10190 { 10191 int err; 10192 10193 if (rtnl_lock_killable()) 10194 return -EINTR; 10195 err = register_netdevice(dev); 10196 rtnl_unlock(); 10197 return err; 10198 } 10199 EXPORT_SYMBOL(register_netdev); 10200 10201 int netdev_refcnt_read(const struct net_device *dev) 10202 { 10203 #ifdef CONFIG_PCPU_DEV_REFCNT 10204 int i, refcnt = 0; 10205 10206 for_each_possible_cpu(i) 10207 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 10208 return refcnt; 10209 #else 10210 return refcount_read(&dev->dev_refcnt); 10211 #endif 10212 } 10213 EXPORT_SYMBOL(netdev_refcnt_read); 10214 10215 int netdev_unregister_timeout_secs __read_mostly = 10; 10216 10217 #define WAIT_REFS_MIN_MSECS 1 10218 #define WAIT_REFS_MAX_MSECS 250 10219 /** 10220 * netdev_wait_allrefs_any - wait until all references are gone. 10221 * @list: list of net_devices to wait on 10222 * 10223 * This is called when unregistering network devices. 10224 * 10225 * Any protocol or device that holds a reference should register 10226 * for netdevice notification, and cleanup and put back the 10227 * reference if they receive an UNREGISTER event. 10228 * We can get stuck here if buggy protocols don't correctly 10229 * call dev_put. 10230 */ 10231 static struct net_device *netdev_wait_allrefs_any(struct list_head *list) 10232 { 10233 unsigned long rebroadcast_time, warning_time; 10234 struct net_device *dev; 10235 int wait = 0; 10236 10237 rebroadcast_time = warning_time = jiffies; 10238 10239 list_for_each_entry(dev, list, todo_list) 10240 if (netdev_refcnt_read(dev) == 1) 10241 return dev; 10242 10243 while (true) { 10244 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 10245 rtnl_lock(); 10246 10247 /* Rebroadcast unregister notification */ 10248 list_for_each_entry(dev, list, todo_list) 10249 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10250 10251 __rtnl_unlock(); 10252 rcu_barrier(); 10253 rtnl_lock(); 10254 10255 list_for_each_entry(dev, list, todo_list) 10256 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 10257 &dev->state)) { 10258 /* We must not have linkwatch events 10259 * pending on unregister. If this 10260 * happens, we simply run the queue 10261 * unscheduled, resulting in a noop 10262 * for this device. 10263 */ 10264 linkwatch_run_queue(); 10265 break; 10266 } 10267 10268 __rtnl_unlock(); 10269 10270 rebroadcast_time = jiffies; 10271 } 10272 10273 if (!wait) { 10274 rcu_barrier(); 10275 wait = WAIT_REFS_MIN_MSECS; 10276 } else { 10277 msleep(wait); 10278 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 10279 } 10280 10281 list_for_each_entry(dev, list, todo_list) 10282 if (netdev_refcnt_read(dev) == 1) 10283 return dev; 10284 10285 if (time_after(jiffies, warning_time + 10286 netdev_unregister_timeout_secs * HZ)) { 10287 list_for_each_entry(dev, list, todo_list) { 10288 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 10289 dev->name, netdev_refcnt_read(dev)); 10290 ref_tracker_dir_print(&dev->refcnt_tracker, 10); 10291 } 10292 10293 warning_time = jiffies; 10294 } 10295 } 10296 } 10297 10298 /* The sequence is: 10299 * 10300 * rtnl_lock(); 10301 * ... 10302 * register_netdevice(x1); 10303 * register_netdevice(x2); 10304 * ... 10305 * unregister_netdevice(y1); 10306 * unregister_netdevice(y2); 10307 * ... 10308 * rtnl_unlock(); 10309 * free_netdev(y1); 10310 * free_netdev(y2); 10311 * 10312 * We are invoked by rtnl_unlock(). 10313 * This allows us to deal with problems: 10314 * 1) We can delete sysfs objects which invoke hotplug 10315 * without deadlocking with linkwatch via keventd. 10316 * 2) Since we run with the RTNL semaphore not held, we can sleep 10317 * safely in order to wait for the netdev refcnt to drop to zero. 10318 * 10319 * We must not return until all unregister events added during 10320 * the interval the lock was held have been completed. 10321 */ 10322 void netdev_run_todo(void) 10323 { 10324 struct net_device *dev, *tmp; 10325 struct list_head list; 10326 #ifdef CONFIG_LOCKDEP 10327 struct list_head unlink_list; 10328 10329 list_replace_init(&net_unlink_list, &unlink_list); 10330 10331 while (!list_empty(&unlink_list)) { 10332 struct net_device *dev = list_first_entry(&unlink_list, 10333 struct net_device, 10334 unlink_list); 10335 list_del_init(&dev->unlink_list); 10336 dev->nested_level = dev->lower_level - 1; 10337 } 10338 #endif 10339 10340 /* Snapshot list, allow later requests */ 10341 list_replace_init(&net_todo_list, &list); 10342 10343 __rtnl_unlock(); 10344 10345 /* Wait for rcu callbacks to finish before next phase */ 10346 if (!list_empty(&list)) 10347 rcu_barrier(); 10348 10349 list_for_each_entry_safe(dev, tmp, &list, todo_list) { 10350 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 10351 netdev_WARN(dev, "run_todo but not unregistering\n"); 10352 list_del(&dev->todo_list); 10353 continue; 10354 } 10355 10356 write_lock(&dev_base_lock); 10357 dev->reg_state = NETREG_UNREGISTERED; 10358 write_unlock(&dev_base_lock); 10359 linkwatch_forget_dev(dev); 10360 } 10361 10362 while (!list_empty(&list)) { 10363 dev = netdev_wait_allrefs_any(&list); 10364 list_del(&dev->todo_list); 10365 10366 /* paranoia */ 10367 BUG_ON(netdev_refcnt_read(dev) != 1); 10368 BUG_ON(!list_empty(&dev->ptype_all)); 10369 BUG_ON(!list_empty(&dev->ptype_specific)); 10370 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 10371 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 10372 #if IS_ENABLED(CONFIG_DECNET) 10373 WARN_ON(dev->dn_ptr); 10374 #endif 10375 if (dev->priv_destructor) 10376 dev->priv_destructor(dev); 10377 if (dev->needs_free_netdev) 10378 free_netdev(dev); 10379 10380 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count)) 10381 wake_up(&netdev_unregistering_wq); 10382 10383 /* Free network device */ 10384 kobject_put(&dev->dev.kobj); 10385 } 10386 } 10387 10388 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 10389 * all the same fields in the same order as net_device_stats, with only 10390 * the type differing, but rtnl_link_stats64 may have additional fields 10391 * at the end for newer counters. 10392 */ 10393 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 10394 const struct net_device_stats *netdev_stats) 10395 { 10396 #if BITS_PER_LONG == 64 10397 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 10398 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 10399 /* zero out counters that only exist in rtnl_link_stats64 */ 10400 memset((char *)stats64 + sizeof(*netdev_stats), 0, 10401 sizeof(*stats64) - sizeof(*netdev_stats)); 10402 #else 10403 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 10404 const unsigned long *src = (const unsigned long *)netdev_stats; 10405 u64 *dst = (u64 *)stats64; 10406 10407 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 10408 for (i = 0; i < n; i++) 10409 dst[i] = src[i]; 10410 /* zero out counters that only exist in rtnl_link_stats64 */ 10411 memset((char *)stats64 + n * sizeof(u64), 0, 10412 sizeof(*stats64) - n * sizeof(u64)); 10413 #endif 10414 } 10415 EXPORT_SYMBOL(netdev_stats_to_stats64); 10416 10417 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev) 10418 { 10419 struct net_device_core_stats __percpu *p; 10420 10421 p = alloc_percpu_gfp(struct net_device_core_stats, 10422 GFP_ATOMIC | __GFP_NOWARN); 10423 10424 if (p && cmpxchg(&dev->core_stats, NULL, p)) 10425 free_percpu(p); 10426 10427 /* This READ_ONCE() pairs with the cmpxchg() above */ 10428 return READ_ONCE(dev->core_stats); 10429 } 10430 EXPORT_SYMBOL(netdev_core_stats_alloc); 10431 10432 /** 10433 * dev_get_stats - get network device statistics 10434 * @dev: device to get statistics from 10435 * @storage: place to store stats 10436 * 10437 * Get network statistics from device. Return @storage. 10438 * The device driver may provide its own method by setting 10439 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 10440 * otherwise the internal statistics structure is used. 10441 */ 10442 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 10443 struct rtnl_link_stats64 *storage) 10444 { 10445 const struct net_device_ops *ops = dev->netdev_ops; 10446 const struct net_device_core_stats __percpu *p; 10447 10448 if (ops->ndo_get_stats64) { 10449 memset(storage, 0, sizeof(*storage)); 10450 ops->ndo_get_stats64(dev, storage); 10451 } else if (ops->ndo_get_stats) { 10452 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 10453 } else { 10454 netdev_stats_to_stats64(storage, &dev->stats); 10455 } 10456 10457 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 10458 p = READ_ONCE(dev->core_stats); 10459 if (p) { 10460 const struct net_device_core_stats *core_stats; 10461 int i; 10462 10463 for_each_possible_cpu(i) { 10464 core_stats = per_cpu_ptr(p, i); 10465 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped); 10466 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped); 10467 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler); 10468 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped); 10469 } 10470 } 10471 return storage; 10472 } 10473 EXPORT_SYMBOL(dev_get_stats); 10474 10475 /** 10476 * dev_fetch_sw_netstats - get per-cpu network device statistics 10477 * @s: place to store stats 10478 * @netstats: per-cpu network stats to read from 10479 * 10480 * Read per-cpu network statistics and populate the related fields in @s. 10481 */ 10482 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 10483 const struct pcpu_sw_netstats __percpu *netstats) 10484 { 10485 int cpu; 10486 10487 for_each_possible_cpu(cpu) { 10488 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 10489 const struct pcpu_sw_netstats *stats; 10490 unsigned int start; 10491 10492 stats = per_cpu_ptr(netstats, cpu); 10493 do { 10494 start = u64_stats_fetch_begin_irq(&stats->syncp); 10495 rx_packets = u64_stats_read(&stats->rx_packets); 10496 rx_bytes = u64_stats_read(&stats->rx_bytes); 10497 tx_packets = u64_stats_read(&stats->tx_packets); 10498 tx_bytes = u64_stats_read(&stats->tx_bytes); 10499 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 10500 10501 s->rx_packets += rx_packets; 10502 s->rx_bytes += rx_bytes; 10503 s->tx_packets += tx_packets; 10504 s->tx_bytes += tx_bytes; 10505 } 10506 } 10507 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 10508 10509 /** 10510 * dev_get_tstats64 - ndo_get_stats64 implementation 10511 * @dev: device to get statistics from 10512 * @s: place to store stats 10513 * 10514 * Populate @s from dev->stats and dev->tstats. Can be used as 10515 * ndo_get_stats64() callback. 10516 */ 10517 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) 10518 { 10519 netdev_stats_to_stats64(s, &dev->stats); 10520 dev_fetch_sw_netstats(s, dev->tstats); 10521 } 10522 EXPORT_SYMBOL_GPL(dev_get_tstats64); 10523 10524 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 10525 { 10526 struct netdev_queue *queue = dev_ingress_queue(dev); 10527 10528 #ifdef CONFIG_NET_CLS_ACT 10529 if (queue) 10530 return queue; 10531 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 10532 if (!queue) 10533 return NULL; 10534 netdev_init_one_queue(dev, queue, NULL); 10535 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 10536 queue->qdisc_sleeping = &noop_qdisc; 10537 rcu_assign_pointer(dev->ingress_queue, queue); 10538 #endif 10539 return queue; 10540 } 10541 10542 static const struct ethtool_ops default_ethtool_ops; 10543 10544 void netdev_set_default_ethtool_ops(struct net_device *dev, 10545 const struct ethtool_ops *ops) 10546 { 10547 if (dev->ethtool_ops == &default_ethtool_ops) 10548 dev->ethtool_ops = ops; 10549 } 10550 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 10551 10552 void netdev_freemem(struct net_device *dev) 10553 { 10554 char *addr = (char *)dev - dev->padded; 10555 10556 kvfree(addr); 10557 } 10558 10559 /** 10560 * alloc_netdev_mqs - allocate network device 10561 * @sizeof_priv: size of private data to allocate space for 10562 * @name: device name format string 10563 * @name_assign_type: origin of device name 10564 * @setup: callback to initialize device 10565 * @txqs: the number of TX subqueues to allocate 10566 * @rxqs: the number of RX subqueues to allocate 10567 * 10568 * Allocates a struct net_device with private data area for driver use 10569 * and performs basic initialization. Also allocates subqueue structs 10570 * for each queue on the device. 10571 */ 10572 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 10573 unsigned char name_assign_type, 10574 void (*setup)(struct net_device *), 10575 unsigned int txqs, unsigned int rxqs) 10576 { 10577 struct net_device *dev; 10578 unsigned int alloc_size; 10579 struct net_device *p; 10580 10581 BUG_ON(strlen(name) >= sizeof(dev->name)); 10582 10583 if (txqs < 1) { 10584 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 10585 return NULL; 10586 } 10587 10588 if (rxqs < 1) { 10589 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 10590 return NULL; 10591 } 10592 10593 alloc_size = sizeof(struct net_device); 10594 if (sizeof_priv) { 10595 /* ensure 32-byte alignment of private area */ 10596 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 10597 alloc_size += sizeof_priv; 10598 } 10599 /* ensure 32-byte alignment of whole construct */ 10600 alloc_size += NETDEV_ALIGN - 1; 10601 10602 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10603 if (!p) 10604 return NULL; 10605 10606 dev = PTR_ALIGN(p, NETDEV_ALIGN); 10607 dev->padded = (char *)dev - (char *)p; 10608 10609 ref_tracker_dir_init(&dev->refcnt_tracker, 128); 10610 #ifdef CONFIG_PCPU_DEV_REFCNT 10611 dev->pcpu_refcnt = alloc_percpu(int); 10612 if (!dev->pcpu_refcnt) 10613 goto free_dev; 10614 __dev_hold(dev); 10615 #else 10616 refcount_set(&dev->dev_refcnt, 1); 10617 #endif 10618 10619 if (dev_addr_init(dev)) 10620 goto free_pcpu; 10621 10622 dev_mc_init(dev); 10623 dev_uc_init(dev); 10624 10625 dev_net_set(dev, &init_net); 10626 10627 dev->gso_max_size = GSO_LEGACY_MAX_SIZE; 10628 dev->gso_max_segs = GSO_MAX_SEGS; 10629 dev->gro_max_size = GRO_LEGACY_MAX_SIZE; 10630 dev->tso_max_size = TSO_LEGACY_MAX_SIZE; 10631 dev->tso_max_segs = TSO_MAX_SEGS; 10632 dev->upper_level = 1; 10633 dev->lower_level = 1; 10634 #ifdef CONFIG_LOCKDEP 10635 dev->nested_level = 0; 10636 INIT_LIST_HEAD(&dev->unlink_list); 10637 #endif 10638 10639 INIT_LIST_HEAD(&dev->napi_list); 10640 INIT_LIST_HEAD(&dev->unreg_list); 10641 INIT_LIST_HEAD(&dev->close_list); 10642 INIT_LIST_HEAD(&dev->link_watch_list); 10643 INIT_LIST_HEAD(&dev->adj_list.upper); 10644 INIT_LIST_HEAD(&dev->adj_list.lower); 10645 INIT_LIST_HEAD(&dev->ptype_all); 10646 INIT_LIST_HEAD(&dev->ptype_specific); 10647 INIT_LIST_HEAD(&dev->net_notifier_list); 10648 #ifdef CONFIG_NET_SCHED 10649 hash_init(dev->qdisc_hash); 10650 #endif 10651 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 10652 setup(dev); 10653 10654 if (!dev->tx_queue_len) { 10655 dev->priv_flags |= IFF_NO_QUEUE; 10656 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 10657 } 10658 10659 dev->num_tx_queues = txqs; 10660 dev->real_num_tx_queues = txqs; 10661 if (netif_alloc_netdev_queues(dev)) 10662 goto free_all; 10663 10664 dev->num_rx_queues = rxqs; 10665 dev->real_num_rx_queues = rxqs; 10666 if (netif_alloc_rx_queues(dev)) 10667 goto free_all; 10668 10669 strcpy(dev->name, name); 10670 dev->name_assign_type = name_assign_type; 10671 dev->group = INIT_NETDEV_GROUP; 10672 if (!dev->ethtool_ops) 10673 dev->ethtool_ops = &default_ethtool_ops; 10674 10675 nf_hook_netdev_init(dev); 10676 10677 return dev; 10678 10679 free_all: 10680 free_netdev(dev); 10681 return NULL; 10682 10683 free_pcpu: 10684 #ifdef CONFIG_PCPU_DEV_REFCNT 10685 free_percpu(dev->pcpu_refcnt); 10686 free_dev: 10687 #endif 10688 netdev_freemem(dev); 10689 return NULL; 10690 } 10691 EXPORT_SYMBOL(alloc_netdev_mqs); 10692 10693 /** 10694 * free_netdev - free network device 10695 * @dev: device 10696 * 10697 * This function does the last stage of destroying an allocated device 10698 * interface. The reference to the device object is released. If this 10699 * is the last reference then it will be freed.Must be called in process 10700 * context. 10701 */ 10702 void free_netdev(struct net_device *dev) 10703 { 10704 struct napi_struct *p, *n; 10705 10706 might_sleep(); 10707 10708 /* When called immediately after register_netdevice() failed the unwind 10709 * handling may still be dismantling the device. Handle that case by 10710 * deferring the free. 10711 */ 10712 if (dev->reg_state == NETREG_UNREGISTERING) { 10713 ASSERT_RTNL(); 10714 dev->needs_free_netdev = true; 10715 return; 10716 } 10717 10718 netif_free_tx_queues(dev); 10719 netif_free_rx_queues(dev); 10720 10721 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 10722 10723 /* Flush device addresses */ 10724 dev_addr_flush(dev); 10725 10726 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 10727 netif_napi_del(p); 10728 10729 ref_tracker_dir_exit(&dev->refcnt_tracker); 10730 #ifdef CONFIG_PCPU_DEV_REFCNT 10731 free_percpu(dev->pcpu_refcnt); 10732 dev->pcpu_refcnt = NULL; 10733 #endif 10734 free_percpu(dev->core_stats); 10735 dev->core_stats = NULL; 10736 free_percpu(dev->xdp_bulkq); 10737 dev->xdp_bulkq = NULL; 10738 10739 /* Compatibility with error handling in drivers */ 10740 if (dev->reg_state == NETREG_UNINITIALIZED) { 10741 netdev_freemem(dev); 10742 return; 10743 } 10744 10745 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 10746 dev->reg_state = NETREG_RELEASED; 10747 10748 /* will free via device release */ 10749 put_device(&dev->dev); 10750 } 10751 EXPORT_SYMBOL(free_netdev); 10752 10753 /** 10754 * synchronize_net - Synchronize with packet receive processing 10755 * 10756 * Wait for packets currently being received to be done. 10757 * Does not block later packets from starting. 10758 */ 10759 void synchronize_net(void) 10760 { 10761 might_sleep(); 10762 if (rtnl_is_locked()) 10763 synchronize_rcu_expedited(); 10764 else 10765 synchronize_rcu(); 10766 } 10767 EXPORT_SYMBOL(synchronize_net); 10768 10769 /** 10770 * unregister_netdevice_queue - remove device from the kernel 10771 * @dev: device 10772 * @head: list 10773 * 10774 * This function shuts down a device interface and removes it 10775 * from the kernel tables. 10776 * If head not NULL, device is queued to be unregistered later. 10777 * 10778 * Callers must hold the rtnl semaphore. You may want 10779 * unregister_netdev() instead of this. 10780 */ 10781 10782 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 10783 { 10784 ASSERT_RTNL(); 10785 10786 if (head) { 10787 list_move_tail(&dev->unreg_list, head); 10788 } else { 10789 LIST_HEAD(single); 10790 10791 list_add(&dev->unreg_list, &single); 10792 unregister_netdevice_many(&single); 10793 } 10794 } 10795 EXPORT_SYMBOL(unregister_netdevice_queue); 10796 10797 /** 10798 * unregister_netdevice_many - unregister many devices 10799 * @head: list of devices 10800 * 10801 * Note: As most callers use a stack allocated list_head, 10802 * we force a list_del() to make sure stack wont be corrupted later. 10803 */ 10804 void unregister_netdevice_many(struct list_head *head) 10805 { 10806 struct net_device *dev, *tmp; 10807 LIST_HEAD(close_head); 10808 10809 BUG_ON(dev_boot_phase); 10810 ASSERT_RTNL(); 10811 10812 if (list_empty(head)) 10813 return; 10814 10815 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 10816 /* Some devices call without registering 10817 * for initialization unwind. Remove those 10818 * devices and proceed with the remaining. 10819 */ 10820 if (dev->reg_state == NETREG_UNINITIALIZED) { 10821 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 10822 dev->name, dev); 10823 10824 WARN_ON(1); 10825 list_del(&dev->unreg_list); 10826 continue; 10827 } 10828 dev->dismantle = true; 10829 BUG_ON(dev->reg_state != NETREG_REGISTERED); 10830 } 10831 10832 /* If device is running, close it first. */ 10833 list_for_each_entry(dev, head, unreg_list) 10834 list_add_tail(&dev->close_list, &close_head); 10835 dev_close_many(&close_head, true); 10836 10837 list_for_each_entry(dev, head, unreg_list) { 10838 /* And unlink it from device chain. */ 10839 write_lock(&dev_base_lock); 10840 unlist_netdevice(dev, false); 10841 dev->reg_state = NETREG_UNREGISTERING; 10842 write_unlock(&dev_base_lock); 10843 } 10844 flush_all_backlogs(); 10845 10846 synchronize_net(); 10847 10848 list_for_each_entry(dev, head, unreg_list) { 10849 struct sk_buff *skb = NULL; 10850 10851 /* Shutdown queueing discipline. */ 10852 dev_shutdown(dev); 10853 10854 dev_xdp_uninstall(dev); 10855 10856 netdev_offload_xstats_disable_all(dev); 10857 10858 /* Notify protocols, that we are about to destroy 10859 * this device. They should clean all the things. 10860 */ 10861 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10862 10863 if (!dev->rtnl_link_ops || 10864 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 10865 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 10866 GFP_KERNEL, NULL, 0); 10867 10868 /* 10869 * Flush the unicast and multicast chains 10870 */ 10871 dev_uc_flush(dev); 10872 dev_mc_flush(dev); 10873 10874 netdev_name_node_alt_flush(dev); 10875 netdev_name_node_free(dev->name_node); 10876 10877 if (dev->netdev_ops->ndo_uninit) 10878 dev->netdev_ops->ndo_uninit(dev); 10879 10880 if (skb) 10881 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 10882 10883 /* Notifier chain MUST detach us all upper devices. */ 10884 WARN_ON(netdev_has_any_upper_dev(dev)); 10885 WARN_ON(netdev_has_any_lower_dev(dev)); 10886 10887 /* Remove entries from kobject tree */ 10888 netdev_unregister_kobject(dev); 10889 #ifdef CONFIG_XPS 10890 /* Remove XPS queueing entries */ 10891 netif_reset_xps_queues_gt(dev, 0); 10892 #endif 10893 } 10894 10895 synchronize_net(); 10896 10897 list_for_each_entry(dev, head, unreg_list) { 10898 netdev_put(dev, &dev->dev_registered_tracker); 10899 net_set_todo(dev); 10900 } 10901 10902 list_del(head); 10903 } 10904 EXPORT_SYMBOL(unregister_netdevice_many); 10905 10906 /** 10907 * unregister_netdev - remove device from the kernel 10908 * @dev: device 10909 * 10910 * This function shuts down a device interface and removes it 10911 * from the kernel tables. 10912 * 10913 * This is just a wrapper for unregister_netdevice that takes 10914 * the rtnl semaphore. In general you want to use this and not 10915 * unregister_netdevice. 10916 */ 10917 void unregister_netdev(struct net_device *dev) 10918 { 10919 rtnl_lock(); 10920 unregister_netdevice(dev); 10921 rtnl_unlock(); 10922 } 10923 EXPORT_SYMBOL(unregister_netdev); 10924 10925 /** 10926 * __dev_change_net_namespace - move device to different nethost namespace 10927 * @dev: device 10928 * @net: network namespace 10929 * @pat: If not NULL name pattern to try if the current device name 10930 * is already taken in the destination network namespace. 10931 * @new_ifindex: If not zero, specifies device index in the target 10932 * namespace. 10933 * 10934 * This function shuts down a device interface and moves it 10935 * to a new network namespace. On success 0 is returned, on 10936 * a failure a netagive errno code is returned. 10937 * 10938 * Callers must hold the rtnl semaphore. 10939 */ 10940 10941 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 10942 const char *pat, int new_ifindex) 10943 { 10944 struct net *net_old = dev_net(dev); 10945 int err, new_nsid; 10946 10947 ASSERT_RTNL(); 10948 10949 /* Don't allow namespace local devices to be moved. */ 10950 err = -EINVAL; 10951 if (dev->features & NETIF_F_NETNS_LOCAL) 10952 goto out; 10953 10954 /* Ensure the device has been registrered */ 10955 if (dev->reg_state != NETREG_REGISTERED) 10956 goto out; 10957 10958 /* Get out if there is nothing todo */ 10959 err = 0; 10960 if (net_eq(net_old, net)) 10961 goto out; 10962 10963 /* Pick the destination device name, and ensure 10964 * we can use it in the destination network namespace. 10965 */ 10966 err = -EEXIST; 10967 if (netdev_name_in_use(net, dev->name)) { 10968 /* We get here if we can't use the current device name */ 10969 if (!pat) 10970 goto out; 10971 err = dev_get_valid_name(net, dev, pat); 10972 if (err < 0) 10973 goto out; 10974 } 10975 10976 /* Check that new_ifindex isn't used yet. */ 10977 err = -EBUSY; 10978 if (new_ifindex && __dev_get_by_index(net, new_ifindex)) 10979 goto out; 10980 10981 /* 10982 * And now a mini version of register_netdevice unregister_netdevice. 10983 */ 10984 10985 /* If device is running close it first. */ 10986 dev_close(dev); 10987 10988 /* And unlink it from device chain */ 10989 unlist_netdevice(dev, true); 10990 10991 synchronize_net(); 10992 10993 /* Shutdown queueing discipline. */ 10994 dev_shutdown(dev); 10995 10996 /* Notify protocols, that we are about to destroy 10997 * this device. They should clean all the things. 10998 * 10999 * Note that dev->reg_state stays at NETREG_REGISTERED. 11000 * This is wanted because this way 8021q and macvlan know 11001 * the device is just moving and can keep their slaves up. 11002 */ 11003 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11004 rcu_barrier(); 11005 11006 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 11007 /* If there is an ifindex conflict assign a new one */ 11008 if (!new_ifindex) { 11009 if (__dev_get_by_index(net, dev->ifindex)) 11010 new_ifindex = dev_new_index(net); 11011 else 11012 new_ifindex = dev->ifindex; 11013 } 11014 11015 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 11016 new_ifindex); 11017 11018 /* 11019 * Flush the unicast and multicast chains 11020 */ 11021 dev_uc_flush(dev); 11022 dev_mc_flush(dev); 11023 11024 /* Send a netdev-removed uevent to the old namespace */ 11025 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 11026 netdev_adjacent_del_links(dev); 11027 11028 /* Move per-net netdevice notifiers that are following the netdevice */ 11029 move_netdevice_notifiers_dev_net(dev, net); 11030 11031 /* Actually switch the network namespace */ 11032 dev_net_set(dev, net); 11033 dev->ifindex = new_ifindex; 11034 11035 /* Send a netdev-add uevent to the new namespace */ 11036 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 11037 netdev_adjacent_add_links(dev); 11038 11039 /* Fixup kobjects */ 11040 err = device_rename(&dev->dev, dev->name); 11041 WARN_ON(err); 11042 11043 /* Adapt owner in case owning user namespace of target network 11044 * namespace is different from the original one. 11045 */ 11046 err = netdev_change_owner(dev, net_old, net); 11047 WARN_ON(err); 11048 11049 /* Add the device back in the hashes */ 11050 list_netdevice(dev); 11051 11052 /* Notify protocols, that a new device appeared. */ 11053 call_netdevice_notifiers(NETDEV_REGISTER, dev); 11054 11055 /* 11056 * Prevent userspace races by waiting until the network 11057 * device is fully setup before sending notifications. 11058 */ 11059 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 11060 11061 synchronize_net(); 11062 err = 0; 11063 out: 11064 return err; 11065 } 11066 EXPORT_SYMBOL_GPL(__dev_change_net_namespace); 11067 11068 static int dev_cpu_dead(unsigned int oldcpu) 11069 { 11070 struct sk_buff **list_skb; 11071 struct sk_buff *skb; 11072 unsigned int cpu; 11073 struct softnet_data *sd, *oldsd, *remsd = NULL; 11074 11075 local_irq_disable(); 11076 cpu = smp_processor_id(); 11077 sd = &per_cpu(softnet_data, cpu); 11078 oldsd = &per_cpu(softnet_data, oldcpu); 11079 11080 /* Find end of our completion_queue. */ 11081 list_skb = &sd->completion_queue; 11082 while (*list_skb) 11083 list_skb = &(*list_skb)->next; 11084 /* Append completion queue from offline CPU. */ 11085 *list_skb = oldsd->completion_queue; 11086 oldsd->completion_queue = NULL; 11087 11088 /* Append output queue from offline CPU. */ 11089 if (oldsd->output_queue) { 11090 *sd->output_queue_tailp = oldsd->output_queue; 11091 sd->output_queue_tailp = oldsd->output_queue_tailp; 11092 oldsd->output_queue = NULL; 11093 oldsd->output_queue_tailp = &oldsd->output_queue; 11094 } 11095 /* Append NAPI poll list from offline CPU, with one exception : 11096 * process_backlog() must be called by cpu owning percpu backlog. 11097 * We properly handle process_queue & input_pkt_queue later. 11098 */ 11099 while (!list_empty(&oldsd->poll_list)) { 11100 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 11101 struct napi_struct, 11102 poll_list); 11103 11104 list_del_init(&napi->poll_list); 11105 if (napi->poll == process_backlog) 11106 napi->state = 0; 11107 else 11108 ____napi_schedule(sd, napi); 11109 } 11110 11111 raise_softirq_irqoff(NET_TX_SOFTIRQ); 11112 local_irq_enable(); 11113 11114 #ifdef CONFIG_RPS 11115 remsd = oldsd->rps_ipi_list; 11116 oldsd->rps_ipi_list = NULL; 11117 #endif 11118 /* send out pending IPI's on offline CPU */ 11119 net_rps_send_ipi(remsd); 11120 11121 /* Process offline CPU's input_pkt_queue */ 11122 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 11123 netif_rx(skb); 11124 input_queue_head_incr(oldsd); 11125 } 11126 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 11127 netif_rx(skb); 11128 input_queue_head_incr(oldsd); 11129 } 11130 11131 return 0; 11132 } 11133 11134 /** 11135 * netdev_increment_features - increment feature set by one 11136 * @all: current feature set 11137 * @one: new feature set 11138 * @mask: mask feature set 11139 * 11140 * Computes a new feature set after adding a device with feature set 11141 * @one to the master device with current feature set @all. Will not 11142 * enable anything that is off in @mask. Returns the new feature set. 11143 */ 11144 netdev_features_t netdev_increment_features(netdev_features_t all, 11145 netdev_features_t one, netdev_features_t mask) 11146 { 11147 if (mask & NETIF_F_HW_CSUM) 11148 mask |= NETIF_F_CSUM_MASK; 11149 mask |= NETIF_F_VLAN_CHALLENGED; 11150 11151 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 11152 all &= one | ~NETIF_F_ALL_FOR_ALL; 11153 11154 /* If one device supports hw checksumming, set for all. */ 11155 if (all & NETIF_F_HW_CSUM) 11156 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 11157 11158 return all; 11159 } 11160 EXPORT_SYMBOL(netdev_increment_features); 11161 11162 static struct hlist_head * __net_init netdev_create_hash(void) 11163 { 11164 int i; 11165 struct hlist_head *hash; 11166 11167 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 11168 if (hash != NULL) 11169 for (i = 0; i < NETDEV_HASHENTRIES; i++) 11170 INIT_HLIST_HEAD(&hash[i]); 11171 11172 return hash; 11173 } 11174 11175 /* Initialize per network namespace state */ 11176 static int __net_init netdev_init(struct net *net) 11177 { 11178 BUILD_BUG_ON(GRO_HASH_BUCKETS > 11179 8 * sizeof_field(struct napi_struct, gro_bitmask)); 11180 11181 INIT_LIST_HEAD(&net->dev_base_head); 11182 11183 net->dev_name_head = netdev_create_hash(); 11184 if (net->dev_name_head == NULL) 11185 goto err_name; 11186 11187 net->dev_index_head = netdev_create_hash(); 11188 if (net->dev_index_head == NULL) 11189 goto err_idx; 11190 11191 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 11192 11193 return 0; 11194 11195 err_idx: 11196 kfree(net->dev_name_head); 11197 err_name: 11198 return -ENOMEM; 11199 } 11200 11201 /** 11202 * netdev_drivername - network driver for the device 11203 * @dev: network device 11204 * 11205 * Determine network driver for device. 11206 */ 11207 const char *netdev_drivername(const struct net_device *dev) 11208 { 11209 const struct device_driver *driver; 11210 const struct device *parent; 11211 const char *empty = ""; 11212 11213 parent = dev->dev.parent; 11214 if (!parent) 11215 return empty; 11216 11217 driver = parent->driver; 11218 if (driver && driver->name) 11219 return driver->name; 11220 return empty; 11221 } 11222 11223 static void __netdev_printk(const char *level, const struct net_device *dev, 11224 struct va_format *vaf) 11225 { 11226 if (dev && dev->dev.parent) { 11227 dev_printk_emit(level[1] - '0', 11228 dev->dev.parent, 11229 "%s %s %s%s: %pV", 11230 dev_driver_string(dev->dev.parent), 11231 dev_name(dev->dev.parent), 11232 netdev_name(dev), netdev_reg_state(dev), 11233 vaf); 11234 } else if (dev) { 11235 printk("%s%s%s: %pV", 11236 level, netdev_name(dev), netdev_reg_state(dev), vaf); 11237 } else { 11238 printk("%s(NULL net_device): %pV", level, vaf); 11239 } 11240 } 11241 11242 void netdev_printk(const char *level, const struct net_device *dev, 11243 const char *format, ...) 11244 { 11245 struct va_format vaf; 11246 va_list args; 11247 11248 va_start(args, format); 11249 11250 vaf.fmt = format; 11251 vaf.va = &args; 11252 11253 __netdev_printk(level, dev, &vaf); 11254 11255 va_end(args); 11256 } 11257 EXPORT_SYMBOL(netdev_printk); 11258 11259 #define define_netdev_printk_level(func, level) \ 11260 void func(const struct net_device *dev, const char *fmt, ...) \ 11261 { \ 11262 struct va_format vaf; \ 11263 va_list args; \ 11264 \ 11265 va_start(args, fmt); \ 11266 \ 11267 vaf.fmt = fmt; \ 11268 vaf.va = &args; \ 11269 \ 11270 __netdev_printk(level, dev, &vaf); \ 11271 \ 11272 va_end(args); \ 11273 } \ 11274 EXPORT_SYMBOL(func); 11275 11276 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 11277 define_netdev_printk_level(netdev_alert, KERN_ALERT); 11278 define_netdev_printk_level(netdev_crit, KERN_CRIT); 11279 define_netdev_printk_level(netdev_err, KERN_ERR); 11280 define_netdev_printk_level(netdev_warn, KERN_WARNING); 11281 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 11282 define_netdev_printk_level(netdev_info, KERN_INFO); 11283 11284 static void __net_exit netdev_exit(struct net *net) 11285 { 11286 kfree(net->dev_name_head); 11287 kfree(net->dev_index_head); 11288 if (net != &init_net) 11289 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 11290 } 11291 11292 static struct pernet_operations __net_initdata netdev_net_ops = { 11293 .init = netdev_init, 11294 .exit = netdev_exit, 11295 }; 11296 11297 static void __net_exit default_device_exit_net(struct net *net) 11298 { 11299 struct net_device *dev, *aux; 11300 /* 11301 * Push all migratable network devices back to the 11302 * initial network namespace 11303 */ 11304 ASSERT_RTNL(); 11305 for_each_netdev_safe(net, dev, aux) { 11306 int err; 11307 char fb_name[IFNAMSIZ]; 11308 11309 /* Ignore unmoveable devices (i.e. loopback) */ 11310 if (dev->features & NETIF_F_NETNS_LOCAL) 11311 continue; 11312 11313 /* Leave virtual devices for the generic cleanup */ 11314 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) 11315 continue; 11316 11317 /* Push remaining network devices to init_net */ 11318 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 11319 if (netdev_name_in_use(&init_net, fb_name)) 11320 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 11321 err = dev_change_net_namespace(dev, &init_net, fb_name); 11322 if (err) { 11323 pr_emerg("%s: failed to move %s to init_net: %d\n", 11324 __func__, dev->name, err); 11325 BUG(); 11326 } 11327 } 11328 } 11329 11330 static void __net_exit default_device_exit_batch(struct list_head *net_list) 11331 { 11332 /* At exit all network devices most be removed from a network 11333 * namespace. Do this in the reverse order of registration. 11334 * Do this across as many network namespaces as possible to 11335 * improve batching efficiency. 11336 */ 11337 struct net_device *dev; 11338 struct net *net; 11339 LIST_HEAD(dev_kill_list); 11340 11341 rtnl_lock(); 11342 list_for_each_entry(net, net_list, exit_list) { 11343 default_device_exit_net(net); 11344 cond_resched(); 11345 } 11346 11347 list_for_each_entry(net, net_list, exit_list) { 11348 for_each_netdev_reverse(net, dev) { 11349 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 11350 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 11351 else 11352 unregister_netdevice_queue(dev, &dev_kill_list); 11353 } 11354 } 11355 unregister_netdevice_many(&dev_kill_list); 11356 rtnl_unlock(); 11357 } 11358 11359 static struct pernet_operations __net_initdata default_device_ops = { 11360 .exit_batch = default_device_exit_batch, 11361 }; 11362 11363 /* 11364 * Initialize the DEV module. At boot time this walks the device list and 11365 * unhooks any devices that fail to initialise (normally hardware not 11366 * present) and leaves us with a valid list of present and active devices. 11367 * 11368 */ 11369 11370 /* 11371 * This is called single threaded during boot, so no need 11372 * to take the rtnl semaphore. 11373 */ 11374 static int __init net_dev_init(void) 11375 { 11376 int i, rc = -ENOMEM; 11377 11378 BUG_ON(!dev_boot_phase); 11379 11380 if (dev_proc_init()) 11381 goto out; 11382 11383 if (netdev_kobject_init()) 11384 goto out; 11385 11386 INIT_LIST_HEAD(&ptype_all); 11387 for (i = 0; i < PTYPE_HASH_SIZE; i++) 11388 INIT_LIST_HEAD(&ptype_base[i]); 11389 11390 if (register_pernet_subsys(&netdev_net_ops)) 11391 goto out; 11392 11393 /* 11394 * Initialise the packet receive queues. 11395 */ 11396 11397 for_each_possible_cpu(i) { 11398 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 11399 struct softnet_data *sd = &per_cpu(softnet_data, i); 11400 11401 INIT_WORK(flush, flush_backlog); 11402 11403 skb_queue_head_init(&sd->input_pkt_queue); 11404 skb_queue_head_init(&sd->process_queue); 11405 #ifdef CONFIG_XFRM_OFFLOAD 11406 skb_queue_head_init(&sd->xfrm_backlog); 11407 #endif 11408 INIT_LIST_HEAD(&sd->poll_list); 11409 sd->output_queue_tailp = &sd->output_queue; 11410 #ifdef CONFIG_RPS 11411 INIT_CSD(&sd->csd, rps_trigger_softirq, sd); 11412 sd->cpu = i; 11413 #endif 11414 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd); 11415 spin_lock_init(&sd->defer_lock); 11416 11417 init_gro_hash(&sd->backlog); 11418 sd->backlog.poll = process_backlog; 11419 sd->backlog.weight = weight_p; 11420 } 11421 11422 dev_boot_phase = 0; 11423 11424 /* The loopback device is special if any other network devices 11425 * is present in a network namespace the loopback device must 11426 * be present. Since we now dynamically allocate and free the 11427 * loopback device ensure this invariant is maintained by 11428 * keeping the loopback device as the first device on the 11429 * list of network devices. Ensuring the loopback devices 11430 * is the first device that appears and the last network device 11431 * that disappears. 11432 */ 11433 if (register_pernet_device(&loopback_net_ops)) 11434 goto out; 11435 11436 if (register_pernet_device(&default_device_ops)) 11437 goto out; 11438 11439 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 11440 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 11441 11442 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 11443 NULL, dev_cpu_dead); 11444 WARN_ON(rc < 0); 11445 rc = 0; 11446 out: 11447 return rc; 11448 } 11449 11450 subsys_initcall(net_dev_init); 11451