1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/stat.h> 101 #include <net/dst.h> 102 #include <net/pkt_sched.h> 103 #include <net/checksum.h> 104 #include <net/xfrm.h> 105 #include <linux/highmem.h> 106 #include <linux/init.h> 107 #include <linux/module.h> 108 #include <linux/netpoll.h> 109 #include <linux/rcupdate.h> 110 #include <linux/delay.h> 111 #include <net/iw_handler.h> 112 #include <asm/current.h> 113 #include <linux/audit.h> 114 #include <linux/dmaengine.h> 115 #include <linux/err.h> 116 #include <linux/ctype.h> 117 #include <linux/if_arp.h> 118 #include <linux/if_vlan.h> 119 #include <linux/ip.h> 120 #include <net/ip.h> 121 #include <net/mpls.h> 122 #include <linux/ipv6.h> 123 #include <linux/in.h> 124 #include <linux/jhash.h> 125 #include <linux/random.h> 126 #include <trace/events/napi.h> 127 #include <trace/events/net.h> 128 #include <trace/events/skb.h> 129 #include <linux/pci.h> 130 #include <linux/inetdevice.h> 131 #include <linux/cpu_rmap.h> 132 #include <linux/static_key.h> 133 #include <linux/hashtable.h> 134 #include <linux/vmalloc.h> 135 #include <linux/if_macvlan.h> 136 #include <linux/errqueue.h> 137 #include <linux/hrtimer.h> 138 139 #include "net-sysfs.h" 140 141 /* Instead of increasing this, you should create a hash table. */ 142 #define MAX_GRO_SKBS 8 143 144 /* This should be increased if a protocol with a bigger head is added. */ 145 #define GRO_MAX_HEAD (MAX_HEADER + 128) 146 147 static DEFINE_SPINLOCK(ptype_lock); 148 static DEFINE_SPINLOCK(offload_lock); 149 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 150 struct list_head ptype_all __read_mostly; /* Taps */ 151 static struct list_head offload_base __read_mostly; 152 153 static int netif_rx_internal(struct sk_buff *skb); 154 static int call_netdevice_notifiers_info(unsigned long val, 155 struct net_device *dev, 156 struct netdev_notifier_info *info); 157 158 /* 159 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 160 * semaphore. 161 * 162 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 163 * 164 * Writers must hold the rtnl semaphore while they loop through the 165 * dev_base_head list, and hold dev_base_lock for writing when they do the 166 * actual updates. This allows pure readers to access the list even 167 * while a writer is preparing to update it. 168 * 169 * To put it another way, dev_base_lock is held for writing only to 170 * protect against pure readers; the rtnl semaphore provides the 171 * protection against other writers. 172 * 173 * See, for example usages, register_netdevice() and 174 * unregister_netdevice(), which must be called with the rtnl 175 * semaphore held. 176 */ 177 DEFINE_RWLOCK(dev_base_lock); 178 EXPORT_SYMBOL(dev_base_lock); 179 180 /* protects napi_hash addition/deletion and napi_gen_id */ 181 static DEFINE_SPINLOCK(napi_hash_lock); 182 183 static unsigned int napi_gen_id; 184 static DEFINE_HASHTABLE(napi_hash, 8); 185 186 static seqcount_t devnet_rename_seq; 187 188 static inline void dev_base_seq_inc(struct net *net) 189 { 190 while (++net->dev_base_seq == 0); 191 } 192 193 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 194 { 195 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 196 197 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 198 } 199 200 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 201 { 202 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 203 } 204 205 static inline void rps_lock(struct softnet_data *sd) 206 { 207 #ifdef CONFIG_RPS 208 spin_lock(&sd->input_pkt_queue.lock); 209 #endif 210 } 211 212 static inline void rps_unlock(struct softnet_data *sd) 213 { 214 #ifdef CONFIG_RPS 215 spin_unlock(&sd->input_pkt_queue.lock); 216 #endif 217 } 218 219 /* Device list insertion */ 220 static void list_netdevice(struct net_device *dev) 221 { 222 struct net *net = dev_net(dev); 223 224 ASSERT_RTNL(); 225 226 write_lock_bh(&dev_base_lock); 227 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 228 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 229 hlist_add_head_rcu(&dev->index_hlist, 230 dev_index_hash(net, dev->ifindex)); 231 write_unlock_bh(&dev_base_lock); 232 233 dev_base_seq_inc(net); 234 } 235 236 /* Device list removal 237 * caller must respect a RCU grace period before freeing/reusing dev 238 */ 239 static void unlist_netdevice(struct net_device *dev) 240 { 241 ASSERT_RTNL(); 242 243 /* Unlink dev from the device chain */ 244 write_lock_bh(&dev_base_lock); 245 list_del_rcu(&dev->dev_list); 246 hlist_del_rcu(&dev->name_hlist); 247 hlist_del_rcu(&dev->index_hlist); 248 write_unlock_bh(&dev_base_lock); 249 250 dev_base_seq_inc(dev_net(dev)); 251 } 252 253 /* 254 * Our notifier list 255 */ 256 257 static RAW_NOTIFIER_HEAD(netdev_chain); 258 259 /* 260 * Device drivers call our routines to queue packets here. We empty the 261 * queue in the local softnet handler. 262 */ 263 264 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 265 EXPORT_PER_CPU_SYMBOL(softnet_data); 266 267 #ifdef CONFIG_LOCKDEP 268 /* 269 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 270 * according to dev->type 271 */ 272 static const unsigned short netdev_lock_type[] = 273 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 274 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 275 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 276 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 277 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 278 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 279 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 280 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 281 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 282 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 283 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 284 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 285 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 286 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 287 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 288 289 static const char *const netdev_lock_name[] = 290 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 291 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 292 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 293 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 294 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 295 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 296 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 297 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 298 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 299 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 300 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 301 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 302 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 303 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 304 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 305 306 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 307 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 308 309 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 310 { 311 int i; 312 313 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 314 if (netdev_lock_type[i] == dev_type) 315 return i; 316 /* the last key is used by default */ 317 return ARRAY_SIZE(netdev_lock_type) - 1; 318 } 319 320 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 321 unsigned short dev_type) 322 { 323 int i; 324 325 i = netdev_lock_pos(dev_type); 326 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 327 netdev_lock_name[i]); 328 } 329 330 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 331 { 332 int i; 333 334 i = netdev_lock_pos(dev->type); 335 lockdep_set_class_and_name(&dev->addr_list_lock, 336 &netdev_addr_lock_key[i], 337 netdev_lock_name[i]); 338 } 339 #else 340 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 341 unsigned short dev_type) 342 { 343 } 344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 345 { 346 } 347 #endif 348 349 /******************************************************************************* 350 351 Protocol management and registration routines 352 353 *******************************************************************************/ 354 355 /* 356 * Add a protocol ID to the list. Now that the input handler is 357 * smarter we can dispense with all the messy stuff that used to be 358 * here. 359 * 360 * BEWARE!!! Protocol handlers, mangling input packets, 361 * MUST BE last in hash buckets and checking protocol handlers 362 * MUST start from promiscuous ptype_all chain in net_bh. 363 * It is true now, do not change it. 364 * Explanation follows: if protocol handler, mangling packet, will 365 * be the first on list, it is not able to sense, that packet 366 * is cloned and should be copied-on-write, so that it will 367 * change it and subsequent readers will get broken packet. 368 * --ANK (980803) 369 */ 370 371 static inline struct list_head *ptype_head(const struct packet_type *pt) 372 { 373 if (pt->type == htons(ETH_P_ALL)) 374 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 375 else 376 return pt->dev ? &pt->dev->ptype_specific : 377 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 378 } 379 380 /** 381 * dev_add_pack - add packet handler 382 * @pt: packet type declaration 383 * 384 * Add a protocol handler to the networking stack. The passed &packet_type 385 * is linked into kernel lists and may not be freed until it has been 386 * removed from the kernel lists. 387 * 388 * This call does not sleep therefore it can not 389 * guarantee all CPU's that are in middle of receiving packets 390 * will see the new packet type (until the next received packet). 391 */ 392 393 void dev_add_pack(struct packet_type *pt) 394 { 395 struct list_head *head = ptype_head(pt); 396 397 spin_lock(&ptype_lock); 398 list_add_rcu(&pt->list, head); 399 spin_unlock(&ptype_lock); 400 } 401 EXPORT_SYMBOL(dev_add_pack); 402 403 /** 404 * __dev_remove_pack - remove packet handler 405 * @pt: packet type declaration 406 * 407 * Remove a protocol handler that was previously added to the kernel 408 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 409 * from the kernel lists and can be freed or reused once this function 410 * returns. 411 * 412 * The packet type might still be in use by receivers 413 * and must not be freed until after all the CPU's have gone 414 * through a quiescent state. 415 */ 416 void __dev_remove_pack(struct packet_type *pt) 417 { 418 struct list_head *head = ptype_head(pt); 419 struct packet_type *pt1; 420 421 spin_lock(&ptype_lock); 422 423 list_for_each_entry(pt1, head, list) { 424 if (pt == pt1) { 425 list_del_rcu(&pt->list); 426 goto out; 427 } 428 } 429 430 pr_warn("dev_remove_pack: %p not found\n", pt); 431 out: 432 spin_unlock(&ptype_lock); 433 } 434 EXPORT_SYMBOL(__dev_remove_pack); 435 436 /** 437 * dev_remove_pack - remove packet handler 438 * @pt: packet type declaration 439 * 440 * Remove a protocol handler that was previously added to the kernel 441 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 442 * from the kernel lists and can be freed or reused once this function 443 * returns. 444 * 445 * This call sleeps to guarantee that no CPU is looking at the packet 446 * type after return. 447 */ 448 void dev_remove_pack(struct packet_type *pt) 449 { 450 __dev_remove_pack(pt); 451 452 synchronize_net(); 453 } 454 EXPORT_SYMBOL(dev_remove_pack); 455 456 457 /** 458 * dev_add_offload - register offload handlers 459 * @po: protocol offload declaration 460 * 461 * Add protocol offload handlers to the networking stack. The passed 462 * &proto_offload is linked into kernel lists and may not be freed until 463 * it has been removed from the kernel lists. 464 * 465 * This call does not sleep therefore it can not 466 * guarantee all CPU's that are in middle of receiving packets 467 * will see the new offload handlers (until the next received packet). 468 */ 469 void dev_add_offload(struct packet_offload *po) 470 { 471 struct list_head *head = &offload_base; 472 473 spin_lock(&offload_lock); 474 list_add_rcu(&po->list, head); 475 spin_unlock(&offload_lock); 476 } 477 EXPORT_SYMBOL(dev_add_offload); 478 479 /** 480 * __dev_remove_offload - remove offload handler 481 * @po: packet offload declaration 482 * 483 * Remove a protocol offload handler that was previously added to the 484 * kernel offload handlers by dev_add_offload(). The passed &offload_type 485 * is removed from the kernel lists and can be freed or reused once this 486 * function returns. 487 * 488 * The packet type might still be in use by receivers 489 * and must not be freed until after all the CPU's have gone 490 * through a quiescent state. 491 */ 492 static void __dev_remove_offload(struct packet_offload *po) 493 { 494 struct list_head *head = &offload_base; 495 struct packet_offload *po1; 496 497 spin_lock(&offload_lock); 498 499 list_for_each_entry(po1, head, list) { 500 if (po == po1) { 501 list_del_rcu(&po->list); 502 goto out; 503 } 504 } 505 506 pr_warn("dev_remove_offload: %p not found\n", po); 507 out: 508 spin_unlock(&offload_lock); 509 } 510 511 /** 512 * dev_remove_offload - remove packet offload handler 513 * @po: packet offload declaration 514 * 515 * Remove a packet offload handler that was previously added to the kernel 516 * offload handlers by dev_add_offload(). The passed &offload_type is 517 * removed from the kernel lists and can be freed or reused once this 518 * function returns. 519 * 520 * This call sleeps to guarantee that no CPU is looking at the packet 521 * type after return. 522 */ 523 void dev_remove_offload(struct packet_offload *po) 524 { 525 __dev_remove_offload(po); 526 527 synchronize_net(); 528 } 529 EXPORT_SYMBOL(dev_remove_offload); 530 531 /****************************************************************************** 532 533 Device Boot-time Settings Routines 534 535 *******************************************************************************/ 536 537 /* Boot time configuration table */ 538 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 539 540 /** 541 * netdev_boot_setup_add - add new setup entry 542 * @name: name of the device 543 * @map: configured settings for the device 544 * 545 * Adds new setup entry to the dev_boot_setup list. The function 546 * returns 0 on error and 1 on success. This is a generic routine to 547 * all netdevices. 548 */ 549 static int netdev_boot_setup_add(char *name, struct ifmap *map) 550 { 551 struct netdev_boot_setup *s; 552 int i; 553 554 s = dev_boot_setup; 555 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 556 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 557 memset(s[i].name, 0, sizeof(s[i].name)); 558 strlcpy(s[i].name, name, IFNAMSIZ); 559 memcpy(&s[i].map, map, sizeof(s[i].map)); 560 break; 561 } 562 } 563 564 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 565 } 566 567 /** 568 * netdev_boot_setup_check - check boot time settings 569 * @dev: the netdevice 570 * 571 * Check boot time settings for the device. 572 * The found settings are set for the device to be used 573 * later in the device probing. 574 * Returns 0 if no settings found, 1 if they are. 575 */ 576 int netdev_boot_setup_check(struct net_device *dev) 577 { 578 struct netdev_boot_setup *s = dev_boot_setup; 579 int i; 580 581 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 582 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 583 !strcmp(dev->name, s[i].name)) { 584 dev->irq = s[i].map.irq; 585 dev->base_addr = s[i].map.base_addr; 586 dev->mem_start = s[i].map.mem_start; 587 dev->mem_end = s[i].map.mem_end; 588 return 1; 589 } 590 } 591 return 0; 592 } 593 EXPORT_SYMBOL(netdev_boot_setup_check); 594 595 596 /** 597 * netdev_boot_base - get address from boot time settings 598 * @prefix: prefix for network device 599 * @unit: id for network device 600 * 601 * Check boot time settings for the base address of device. 602 * The found settings are set for the device to be used 603 * later in the device probing. 604 * Returns 0 if no settings found. 605 */ 606 unsigned long netdev_boot_base(const char *prefix, int unit) 607 { 608 const struct netdev_boot_setup *s = dev_boot_setup; 609 char name[IFNAMSIZ]; 610 int i; 611 612 sprintf(name, "%s%d", prefix, unit); 613 614 /* 615 * If device already registered then return base of 1 616 * to indicate not to probe for this interface 617 */ 618 if (__dev_get_by_name(&init_net, name)) 619 return 1; 620 621 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 622 if (!strcmp(name, s[i].name)) 623 return s[i].map.base_addr; 624 return 0; 625 } 626 627 /* 628 * Saves at boot time configured settings for any netdevice. 629 */ 630 int __init netdev_boot_setup(char *str) 631 { 632 int ints[5]; 633 struct ifmap map; 634 635 str = get_options(str, ARRAY_SIZE(ints), ints); 636 if (!str || !*str) 637 return 0; 638 639 /* Save settings */ 640 memset(&map, 0, sizeof(map)); 641 if (ints[0] > 0) 642 map.irq = ints[1]; 643 if (ints[0] > 1) 644 map.base_addr = ints[2]; 645 if (ints[0] > 2) 646 map.mem_start = ints[3]; 647 if (ints[0] > 3) 648 map.mem_end = ints[4]; 649 650 /* Add new entry to the list */ 651 return netdev_boot_setup_add(str, &map); 652 } 653 654 __setup("netdev=", netdev_boot_setup); 655 656 /******************************************************************************* 657 658 Device Interface Subroutines 659 660 *******************************************************************************/ 661 662 /** 663 * dev_get_iflink - get 'iflink' value of a interface 664 * @dev: targeted interface 665 * 666 * Indicates the ifindex the interface is linked to. 667 * Physical interfaces have the same 'ifindex' and 'iflink' values. 668 */ 669 670 int dev_get_iflink(const struct net_device *dev) 671 { 672 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 673 return dev->netdev_ops->ndo_get_iflink(dev); 674 675 /* If dev->rtnl_link_ops is set, it's a virtual interface. */ 676 if (dev->rtnl_link_ops) 677 return 0; 678 679 return dev->ifindex; 680 } 681 EXPORT_SYMBOL(dev_get_iflink); 682 683 /** 684 * __dev_get_by_name - find a device by its name 685 * @net: the applicable net namespace 686 * @name: name to find 687 * 688 * Find an interface by name. Must be called under RTNL semaphore 689 * or @dev_base_lock. If the name is found a pointer to the device 690 * is returned. If the name is not found then %NULL is returned. The 691 * reference counters are not incremented so the caller must be 692 * careful with locks. 693 */ 694 695 struct net_device *__dev_get_by_name(struct net *net, const char *name) 696 { 697 struct net_device *dev; 698 struct hlist_head *head = dev_name_hash(net, name); 699 700 hlist_for_each_entry(dev, head, name_hlist) 701 if (!strncmp(dev->name, name, IFNAMSIZ)) 702 return dev; 703 704 return NULL; 705 } 706 EXPORT_SYMBOL(__dev_get_by_name); 707 708 /** 709 * dev_get_by_name_rcu - find a device by its name 710 * @net: the applicable net namespace 711 * @name: name to find 712 * 713 * Find an interface by name. 714 * If the name is found a pointer to the device is returned. 715 * If the name is not found then %NULL is returned. 716 * The reference counters are not incremented so the caller must be 717 * careful with locks. The caller must hold RCU lock. 718 */ 719 720 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 721 { 722 struct net_device *dev; 723 struct hlist_head *head = dev_name_hash(net, name); 724 725 hlist_for_each_entry_rcu(dev, head, name_hlist) 726 if (!strncmp(dev->name, name, IFNAMSIZ)) 727 return dev; 728 729 return NULL; 730 } 731 EXPORT_SYMBOL(dev_get_by_name_rcu); 732 733 /** 734 * dev_get_by_name - find a device by its name 735 * @net: the applicable net namespace 736 * @name: name to find 737 * 738 * Find an interface by name. This can be called from any 739 * context and does its own locking. The returned handle has 740 * the usage count incremented and the caller must use dev_put() to 741 * release it when it is no longer needed. %NULL is returned if no 742 * matching device is found. 743 */ 744 745 struct net_device *dev_get_by_name(struct net *net, const char *name) 746 { 747 struct net_device *dev; 748 749 rcu_read_lock(); 750 dev = dev_get_by_name_rcu(net, name); 751 if (dev) 752 dev_hold(dev); 753 rcu_read_unlock(); 754 return dev; 755 } 756 EXPORT_SYMBOL(dev_get_by_name); 757 758 /** 759 * __dev_get_by_index - find a device by its ifindex 760 * @net: the applicable net namespace 761 * @ifindex: index of device 762 * 763 * Search for an interface by index. Returns %NULL if the device 764 * is not found or a pointer to the device. The device has not 765 * had its reference counter increased so the caller must be careful 766 * about locking. The caller must hold either the RTNL semaphore 767 * or @dev_base_lock. 768 */ 769 770 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 771 { 772 struct net_device *dev; 773 struct hlist_head *head = dev_index_hash(net, ifindex); 774 775 hlist_for_each_entry(dev, head, index_hlist) 776 if (dev->ifindex == ifindex) 777 return dev; 778 779 return NULL; 780 } 781 EXPORT_SYMBOL(__dev_get_by_index); 782 783 /** 784 * dev_get_by_index_rcu - find a device by its ifindex 785 * @net: the applicable net namespace 786 * @ifindex: index of device 787 * 788 * Search for an interface by index. Returns %NULL if the device 789 * is not found or a pointer to the device. The device has not 790 * had its reference counter increased so the caller must be careful 791 * about locking. The caller must hold RCU lock. 792 */ 793 794 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 795 { 796 struct net_device *dev; 797 struct hlist_head *head = dev_index_hash(net, ifindex); 798 799 hlist_for_each_entry_rcu(dev, head, index_hlist) 800 if (dev->ifindex == ifindex) 801 return dev; 802 803 return NULL; 804 } 805 EXPORT_SYMBOL(dev_get_by_index_rcu); 806 807 808 /** 809 * dev_get_by_index - find a device by its ifindex 810 * @net: the applicable net namespace 811 * @ifindex: index of device 812 * 813 * Search for an interface by index. Returns NULL if the device 814 * is not found or a pointer to the device. The device returned has 815 * had a reference added and the pointer is safe until the user calls 816 * dev_put to indicate they have finished with it. 817 */ 818 819 struct net_device *dev_get_by_index(struct net *net, int ifindex) 820 { 821 struct net_device *dev; 822 823 rcu_read_lock(); 824 dev = dev_get_by_index_rcu(net, ifindex); 825 if (dev) 826 dev_hold(dev); 827 rcu_read_unlock(); 828 return dev; 829 } 830 EXPORT_SYMBOL(dev_get_by_index); 831 832 /** 833 * netdev_get_name - get a netdevice name, knowing its ifindex. 834 * @net: network namespace 835 * @name: a pointer to the buffer where the name will be stored. 836 * @ifindex: the ifindex of the interface to get the name from. 837 * 838 * The use of raw_seqcount_begin() and cond_resched() before 839 * retrying is required as we want to give the writers a chance 840 * to complete when CONFIG_PREEMPT is not set. 841 */ 842 int netdev_get_name(struct net *net, char *name, int ifindex) 843 { 844 struct net_device *dev; 845 unsigned int seq; 846 847 retry: 848 seq = raw_seqcount_begin(&devnet_rename_seq); 849 rcu_read_lock(); 850 dev = dev_get_by_index_rcu(net, ifindex); 851 if (!dev) { 852 rcu_read_unlock(); 853 return -ENODEV; 854 } 855 856 strcpy(name, dev->name); 857 rcu_read_unlock(); 858 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 859 cond_resched(); 860 goto retry; 861 } 862 863 return 0; 864 } 865 866 /** 867 * dev_getbyhwaddr_rcu - find a device by its hardware address 868 * @net: the applicable net namespace 869 * @type: media type of device 870 * @ha: hardware address 871 * 872 * Search for an interface by MAC address. Returns NULL if the device 873 * is not found or a pointer to the device. 874 * The caller must hold RCU or RTNL. 875 * The returned device has not had its ref count increased 876 * and the caller must therefore be careful about locking 877 * 878 */ 879 880 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 881 const char *ha) 882 { 883 struct net_device *dev; 884 885 for_each_netdev_rcu(net, dev) 886 if (dev->type == type && 887 !memcmp(dev->dev_addr, ha, dev->addr_len)) 888 return dev; 889 890 return NULL; 891 } 892 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 893 894 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 895 { 896 struct net_device *dev; 897 898 ASSERT_RTNL(); 899 for_each_netdev(net, dev) 900 if (dev->type == type) 901 return dev; 902 903 return NULL; 904 } 905 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 906 907 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 908 { 909 struct net_device *dev, *ret = NULL; 910 911 rcu_read_lock(); 912 for_each_netdev_rcu(net, dev) 913 if (dev->type == type) { 914 dev_hold(dev); 915 ret = dev; 916 break; 917 } 918 rcu_read_unlock(); 919 return ret; 920 } 921 EXPORT_SYMBOL(dev_getfirstbyhwtype); 922 923 /** 924 * __dev_get_by_flags - find any device with given flags 925 * @net: the applicable net namespace 926 * @if_flags: IFF_* values 927 * @mask: bitmask of bits in if_flags to check 928 * 929 * Search for any interface with the given flags. Returns NULL if a device 930 * is not found or a pointer to the device. Must be called inside 931 * rtnl_lock(), and result refcount is unchanged. 932 */ 933 934 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 935 unsigned short mask) 936 { 937 struct net_device *dev, *ret; 938 939 ASSERT_RTNL(); 940 941 ret = NULL; 942 for_each_netdev(net, dev) { 943 if (((dev->flags ^ if_flags) & mask) == 0) { 944 ret = dev; 945 break; 946 } 947 } 948 return ret; 949 } 950 EXPORT_SYMBOL(__dev_get_by_flags); 951 952 /** 953 * dev_valid_name - check if name is okay for network device 954 * @name: name string 955 * 956 * Network device names need to be valid file names to 957 * to allow sysfs to work. We also disallow any kind of 958 * whitespace. 959 */ 960 bool dev_valid_name(const char *name) 961 { 962 if (*name == '\0') 963 return false; 964 if (strlen(name) >= IFNAMSIZ) 965 return false; 966 if (!strcmp(name, ".") || !strcmp(name, "..")) 967 return false; 968 969 while (*name) { 970 if (*name == '/' || *name == ':' || isspace(*name)) 971 return false; 972 name++; 973 } 974 return true; 975 } 976 EXPORT_SYMBOL(dev_valid_name); 977 978 /** 979 * __dev_alloc_name - allocate a name for a device 980 * @net: network namespace to allocate the device name in 981 * @name: name format string 982 * @buf: scratch buffer and result name string 983 * 984 * Passed a format string - eg "lt%d" it will try and find a suitable 985 * id. It scans list of devices to build up a free map, then chooses 986 * the first empty slot. The caller must hold the dev_base or rtnl lock 987 * while allocating the name and adding the device in order to avoid 988 * duplicates. 989 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 990 * Returns the number of the unit assigned or a negative errno code. 991 */ 992 993 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 994 { 995 int i = 0; 996 const char *p; 997 const int max_netdevices = 8*PAGE_SIZE; 998 unsigned long *inuse; 999 struct net_device *d; 1000 1001 p = strnchr(name, IFNAMSIZ-1, '%'); 1002 if (p) { 1003 /* 1004 * Verify the string as this thing may have come from 1005 * the user. There must be either one "%d" and no other "%" 1006 * characters. 1007 */ 1008 if (p[1] != 'd' || strchr(p + 2, '%')) 1009 return -EINVAL; 1010 1011 /* Use one page as a bit array of possible slots */ 1012 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1013 if (!inuse) 1014 return -ENOMEM; 1015 1016 for_each_netdev(net, d) { 1017 if (!sscanf(d->name, name, &i)) 1018 continue; 1019 if (i < 0 || i >= max_netdevices) 1020 continue; 1021 1022 /* avoid cases where sscanf is not exact inverse of printf */ 1023 snprintf(buf, IFNAMSIZ, name, i); 1024 if (!strncmp(buf, d->name, IFNAMSIZ)) 1025 set_bit(i, inuse); 1026 } 1027 1028 i = find_first_zero_bit(inuse, max_netdevices); 1029 free_page((unsigned long) inuse); 1030 } 1031 1032 if (buf != name) 1033 snprintf(buf, IFNAMSIZ, name, i); 1034 if (!__dev_get_by_name(net, buf)) 1035 return i; 1036 1037 /* It is possible to run out of possible slots 1038 * when the name is long and there isn't enough space left 1039 * for the digits, or if all bits are used. 1040 */ 1041 return -ENFILE; 1042 } 1043 1044 /** 1045 * dev_alloc_name - allocate a name for a device 1046 * @dev: device 1047 * @name: name format string 1048 * 1049 * Passed a format string - eg "lt%d" it will try and find a suitable 1050 * id. It scans list of devices to build up a free map, then chooses 1051 * the first empty slot. The caller must hold the dev_base or rtnl lock 1052 * while allocating the name and adding the device in order to avoid 1053 * duplicates. 1054 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1055 * Returns the number of the unit assigned or a negative errno code. 1056 */ 1057 1058 int dev_alloc_name(struct net_device *dev, const char *name) 1059 { 1060 char buf[IFNAMSIZ]; 1061 struct net *net; 1062 int ret; 1063 1064 BUG_ON(!dev_net(dev)); 1065 net = dev_net(dev); 1066 ret = __dev_alloc_name(net, name, buf); 1067 if (ret >= 0) 1068 strlcpy(dev->name, buf, IFNAMSIZ); 1069 return ret; 1070 } 1071 EXPORT_SYMBOL(dev_alloc_name); 1072 1073 static int dev_alloc_name_ns(struct net *net, 1074 struct net_device *dev, 1075 const char *name) 1076 { 1077 char buf[IFNAMSIZ]; 1078 int ret; 1079 1080 ret = __dev_alloc_name(net, name, buf); 1081 if (ret >= 0) 1082 strlcpy(dev->name, buf, IFNAMSIZ); 1083 return ret; 1084 } 1085 1086 static int dev_get_valid_name(struct net *net, 1087 struct net_device *dev, 1088 const char *name) 1089 { 1090 BUG_ON(!net); 1091 1092 if (!dev_valid_name(name)) 1093 return -EINVAL; 1094 1095 if (strchr(name, '%')) 1096 return dev_alloc_name_ns(net, dev, name); 1097 else if (__dev_get_by_name(net, name)) 1098 return -EEXIST; 1099 else if (dev->name != name) 1100 strlcpy(dev->name, name, IFNAMSIZ); 1101 1102 return 0; 1103 } 1104 1105 /** 1106 * dev_change_name - change name of a device 1107 * @dev: device 1108 * @newname: name (or format string) must be at least IFNAMSIZ 1109 * 1110 * Change name of a device, can pass format strings "eth%d". 1111 * for wildcarding. 1112 */ 1113 int dev_change_name(struct net_device *dev, const char *newname) 1114 { 1115 unsigned char old_assign_type; 1116 char oldname[IFNAMSIZ]; 1117 int err = 0; 1118 int ret; 1119 struct net *net; 1120 1121 ASSERT_RTNL(); 1122 BUG_ON(!dev_net(dev)); 1123 1124 net = dev_net(dev); 1125 if (dev->flags & IFF_UP) 1126 return -EBUSY; 1127 1128 write_seqcount_begin(&devnet_rename_seq); 1129 1130 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1131 write_seqcount_end(&devnet_rename_seq); 1132 return 0; 1133 } 1134 1135 memcpy(oldname, dev->name, IFNAMSIZ); 1136 1137 err = dev_get_valid_name(net, dev, newname); 1138 if (err < 0) { 1139 write_seqcount_end(&devnet_rename_seq); 1140 return err; 1141 } 1142 1143 if (oldname[0] && !strchr(oldname, '%')) 1144 netdev_info(dev, "renamed from %s\n", oldname); 1145 1146 old_assign_type = dev->name_assign_type; 1147 dev->name_assign_type = NET_NAME_RENAMED; 1148 1149 rollback: 1150 ret = device_rename(&dev->dev, dev->name); 1151 if (ret) { 1152 memcpy(dev->name, oldname, IFNAMSIZ); 1153 dev->name_assign_type = old_assign_type; 1154 write_seqcount_end(&devnet_rename_seq); 1155 return ret; 1156 } 1157 1158 write_seqcount_end(&devnet_rename_seq); 1159 1160 netdev_adjacent_rename_links(dev, oldname); 1161 1162 write_lock_bh(&dev_base_lock); 1163 hlist_del_rcu(&dev->name_hlist); 1164 write_unlock_bh(&dev_base_lock); 1165 1166 synchronize_rcu(); 1167 1168 write_lock_bh(&dev_base_lock); 1169 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1170 write_unlock_bh(&dev_base_lock); 1171 1172 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1173 ret = notifier_to_errno(ret); 1174 1175 if (ret) { 1176 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1177 if (err >= 0) { 1178 err = ret; 1179 write_seqcount_begin(&devnet_rename_seq); 1180 memcpy(dev->name, oldname, IFNAMSIZ); 1181 memcpy(oldname, newname, IFNAMSIZ); 1182 dev->name_assign_type = old_assign_type; 1183 old_assign_type = NET_NAME_RENAMED; 1184 goto rollback; 1185 } else { 1186 pr_err("%s: name change rollback failed: %d\n", 1187 dev->name, ret); 1188 } 1189 } 1190 1191 return err; 1192 } 1193 1194 /** 1195 * dev_set_alias - change ifalias of a device 1196 * @dev: device 1197 * @alias: name up to IFALIASZ 1198 * @len: limit of bytes to copy from info 1199 * 1200 * Set ifalias for a device, 1201 */ 1202 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1203 { 1204 char *new_ifalias; 1205 1206 ASSERT_RTNL(); 1207 1208 if (len >= IFALIASZ) 1209 return -EINVAL; 1210 1211 if (!len) { 1212 kfree(dev->ifalias); 1213 dev->ifalias = NULL; 1214 return 0; 1215 } 1216 1217 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1218 if (!new_ifalias) 1219 return -ENOMEM; 1220 dev->ifalias = new_ifalias; 1221 1222 strlcpy(dev->ifalias, alias, len+1); 1223 return len; 1224 } 1225 1226 1227 /** 1228 * netdev_features_change - device changes features 1229 * @dev: device to cause notification 1230 * 1231 * Called to indicate a device has changed features. 1232 */ 1233 void netdev_features_change(struct net_device *dev) 1234 { 1235 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1236 } 1237 EXPORT_SYMBOL(netdev_features_change); 1238 1239 /** 1240 * netdev_state_change - device changes state 1241 * @dev: device to cause notification 1242 * 1243 * Called to indicate a device has changed state. This function calls 1244 * the notifier chains for netdev_chain and sends a NEWLINK message 1245 * to the routing socket. 1246 */ 1247 void netdev_state_change(struct net_device *dev) 1248 { 1249 if (dev->flags & IFF_UP) { 1250 struct netdev_notifier_change_info change_info; 1251 1252 change_info.flags_changed = 0; 1253 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 1254 &change_info.info); 1255 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1256 } 1257 } 1258 EXPORT_SYMBOL(netdev_state_change); 1259 1260 /** 1261 * netdev_notify_peers - notify network peers about existence of @dev 1262 * @dev: network device 1263 * 1264 * Generate traffic such that interested network peers are aware of 1265 * @dev, such as by generating a gratuitous ARP. This may be used when 1266 * a device wants to inform the rest of the network about some sort of 1267 * reconfiguration such as a failover event or virtual machine 1268 * migration. 1269 */ 1270 void netdev_notify_peers(struct net_device *dev) 1271 { 1272 rtnl_lock(); 1273 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1274 rtnl_unlock(); 1275 } 1276 EXPORT_SYMBOL(netdev_notify_peers); 1277 1278 static int __dev_open(struct net_device *dev) 1279 { 1280 const struct net_device_ops *ops = dev->netdev_ops; 1281 int ret; 1282 1283 ASSERT_RTNL(); 1284 1285 if (!netif_device_present(dev)) 1286 return -ENODEV; 1287 1288 /* Block netpoll from trying to do any rx path servicing. 1289 * If we don't do this there is a chance ndo_poll_controller 1290 * or ndo_poll may be running while we open the device 1291 */ 1292 netpoll_poll_disable(dev); 1293 1294 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1295 ret = notifier_to_errno(ret); 1296 if (ret) 1297 return ret; 1298 1299 set_bit(__LINK_STATE_START, &dev->state); 1300 1301 if (ops->ndo_validate_addr) 1302 ret = ops->ndo_validate_addr(dev); 1303 1304 if (!ret && ops->ndo_open) 1305 ret = ops->ndo_open(dev); 1306 1307 netpoll_poll_enable(dev); 1308 1309 if (ret) 1310 clear_bit(__LINK_STATE_START, &dev->state); 1311 else { 1312 dev->flags |= IFF_UP; 1313 dev_set_rx_mode(dev); 1314 dev_activate(dev); 1315 add_device_randomness(dev->dev_addr, dev->addr_len); 1316 } 1317 1318 return ret; 1319 } 1320 1321 /** 1322 * dev_open - prepare an interface for use. 1323 * @dev: device to open 1324 * 1325 * Takes a device from down to up state. The device's private open 1326 * function is invoked and then the multicast lists are loaded. Finally 1327 * the device is moved into the up state and a %NETDEV_UP message is 1328 * sent to the netdev notifier chain. 1329 * 1330 * Calling this function on an active interface is a nop. On a failure 1331 * a negative errno code is returned. 1332 */ 1333 int dev_open(struct net_device *dev) 1334 { 1335 int ret; 1336 1337 if (dev->flags & IFF_UP) 1338 return 0; 1339 1340 ret = __dev_open(dev); 1341 if (ret < 0) 1342 return ret; 1343 1344 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1345 call_netdevice_notifiers(NETDEV_UP, dev); 1346 1347 return ret; 1348 } 1349 EXPORT_SYMBOL(dev_open); 1350 1351 static int __dev_close_many(struct list_head *head) 1352 { 1353 struct net_device *dev; 1354 1355 ASSERT_RTNL(); 1356 might_sleep(); 1357 1358 list_for_each_entry(dev, head, close_list) { 1359 /* Temporarily disable netpoll until the interface is down */ 1360 netpoll_poll_disable(dev); 1361 1362 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1363 1364 clear_bit(__LINK_STATE_START, &dev->state); 1365 1366 /* Synchronize to scheduled poll. We cannot touch poll list, it 1367 * can be even on different cpu. So just clear netif_running(). 1368 * 1369 * dev->stop() will invoke napi_disable() on all of it's 1370 * napi_struct instances on this device. 1371 */ 1372 smp_mb__after_atomic(); /* Commit netif_running(). */ 1373 } 1374 1375 dev_deactivate_many(head); 1376 1377 list_for_each_entry(dev, head, close_list) { 1378 const struct net_device_ops *ops = dev->netdev_ops; 1379 1380 /* 1381 * Call the device specific close. This cannot fail. 1382 * Only if device is UP 1383 * 1384 * We allow it to be called even after a DETACH hot-plug 1385 * event. 1386 */ 1387 if (ops->ndo_stop) 1388 ops->ndo_stop(dev); 1389 1390 dev->flags &= ~IFF_UP; 1391 netpoll_poll_enable(dev); 1392 } 1393 1394 return 0; 1395 } 1396 1397 static int __dev_close(struct net_device *dev) 1398 { 1399 int retval; 1400 LIST_HEAD(single); 1401 1402 list_add(&dev->close_list, &single); 1403 retval = __dev_close_many(&single); 1404 list_del(&single); 1405 1406 return retval; 1407 } 1408 1409 int dev_close_many(struct list_head *head, bool unlink) 1410 { 1411 struct net_device *dev, *tmp; 1412 1413 /* Remove the devices that don't need to be closed */ 1414 list_for_each_entry_safe(dev, tmp, head, close_list) 1415 if (!(dev->flags & IFF_UP)) 1416 list_del_init(&dev->close_list); 1417 1418 __dev_close_many(head); 1419 1420 list_for_each_entry_safe(dev, tmp, head, close_list) { 1421 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1422 call_netdevice_notifiers(NETDEV_DOWN, dev); 1423 if (unlink) 1424 list_del_init(&dev->close_list); 1425 } 1426 1427 return 0; 1428 } 1429 EXPORT_SYMBOL(dev_close_many); 1430 1431 /** 1432 * dev_close - shutdown an interface. 1433 * @dev: device to shutdown 1434 * 1435 * This function moves an active device into down state. A 1436 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1437 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1438 * chain. 1439 */ 1440 int dev_close(struct net_device *dev) 1441 { 1442 if (dev->flags & IFF_UP) { 1443 LIST_HEAD(single); 1444 1445 list_add(&dev->close_list, &single); 1446 dev_close_many(&single, true); 1447 list_del(&single); 1448 } 1449 return 0; 1450 } 1451 EXPORT_SYMBOL(dev_close); 1452 1453 1454 /** 1455 * dev_disable_lro - disable Large Receive Offload on a device 1456 * @dev: device 1457 * 1458 * Disable Large Receive Offload (LRO) on a net device. Must be 1459 * called under RTNL. This is needed if received packets may be 1460 * forwarded to another interface. 1461 */ 1462 void dev_disable_lro(struct net_device *dev) 1463 { 1464 struct net_device *lower_dev; 1465 struct list_head *iter; 1466 1467 dev->wanted_features &= ~NETIF_F_LRO; 1468 netdev_update_features(dev); 1469 1470 if (unlikely(dev->features & NETIF_F_LRO)) 1471 netdev_WARN(dev, "failed to disable LRO!\n"); 1472 1473 netdev_for_each_lower_dev(dev, lower_dev, iter) 1474 dev_disable_lro(lower_dev); 1475 } 1476 EXPORT_SYMBOL(dev_disable_lro); 1477 1478 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1479 struct net_device *dev) 1480 { 1481 struct netdev_notifier_info info; 1482 1483 netdev_notifier_info_init(&info, dev); 1484 return nb->notifier_call(nb, val, &info); 1485 } 1486 1487 static int dev_boot_phase = 1; 1488 1489 /** 1490 * register_netdevice_notifier - register a network notifier block 1491 * @nb: notifier 1492 * 1493 * Register a notifier to be called when network device events occur. 1494 * The notifier passed is linked into the kernel structures and must 1495 * not be reused until it has been unregistered. A negative errno code 1496 * is returned on a failure. 1497 * 1498 * When registered all registration and up events are replayed 1499 * to the new notifier to allow device to have a race free 1500 * view of the network device list. 1501 */ 1502 1503 int register_netdevice_notifier(struct notifier_block *nb) 1504 { 1505 struct net_device *dev; 1506 struct net_device *last; 1507 struct net *net; 1508 int err; 1509 1510 rtnl_lock(); 1511 err = raw_notifier_chain_register(&netdev_chain, nb); 1512 if (err) 1513 goto unlock; 1514 if (dev_boot_phase) 1515 goto unlock; 1516 for_each_net(net) { 1517 for_each_netdev(net, dev) { 1518 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1519 err = notifier_to_errno(err); 1520 if (err) 1521 goto rollback; 1522 1523 if (!(dev->flags & IFF_UP)) 1524 continue; 1525 1526 call_netdevice_notifier(nb, NETDEV_UP, dev); 1527 } 1528 } 1529 1530 unlock: 1531 rtnl_unlock(); 1532 return err; 1533 1534 rollback: 1535 last = dev; 1536 for_each_net(net) { 1537 for_each_netdev(net, dev) { 1538 if (dev == last) 1539 goto outroll; 1540 1541 if (dev->flags & IFF_UP) { 1542 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1543 dev); 1544 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1545 } 1546 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1547 } 1548 } 1549 1550 outroll: 1551 raw_notifier_chain_unregister(&netdev_chain, nb); 1552 goto unlock; 1553 } 1554 EXPORT_SYMBOL(register_netdevice_notifier); 1555 1556 /** 1557 * unregister_netdevice_notifier - unregister a network notifier block 1558 * @nb: notifier 1559 * 1560 * Unregister a notifier previously registered by 1561 * register_netdevice_notifier(). The notifier is unlinked into the 1562 * kernel structures and may then be reused. A negative errno code 1563 * is returned on a failure. 1564 * 1565 * After unregistering unregister and down device events are synthesized 1566 * for all devices on the device list to the removed notifier to remove 1567 * the need for special case cleanup code. 1568 */ 1569 1570 int unregister_netdevice_notifier(struct notifier_block *nb) 1571 { 1572 struct net_device *dev; 1573 struct net *net; 1574 int err; 1575 1576 rtnl_lock(); 1577 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1578 if (err) 1579 goto unlock; 1580 1581 for_each_net(net) { 1582 for_each_netdev(net, dev) { 1583 if (dev->flags & IFF_UP) { 1584 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1585 dev); 1586 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1587 } 1588 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1589 } 1590 } 1591 unlock: 1592 rtnl_unlock(); 1593 return err; 1594 } 1595 EXPORT_SYMBOL(unregister_netdevice_notifier); 1596 1597 /** 1598 * call_netdevice_notifiers_info - call all network notifier blocks 1599 * @val: value passed unmodified to notifier function 1600 * @dev: net_device pointer passed unmodified to notifier function 1601 * @info: notifier information data 1602 * 1603 * Call all network notifier blocks. Parameters and return value 1604 * are as for raw_notifier_call_chain(). 1605 */ 1606 1607 static int call_netdevice_notifiers_info(unsigned long val, 1608 struct net_device *dev, 1609 struct netdev_notifier_info *info) 1610 { 1611 ASSERT_RTNL(); 1612 netdev_notifier_info_init(info, dev); 1613 return raw_notifier_call_chain(&netdev_chain, val, info); 1614 } 1615 1616 /** 1617 * call_netdevice_notifiers - call all network notifier blocks 1618 * @val: value passed unmodified to notifier function 1619 * @dev: net_device pointer passed unmodified to notifier function 1620 * 1621 * Call all network notifier blocks. Parameters and return value 1622 * are as for raw_notifier_call_chain(). 1623 */ 1624 1625 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1626 { 1627 struct netdev_notifier_info info; 1628 1629 return call_netdevice_notifiers_info(val, dev, &info); 1630 } 1631 EXPORT_SYMBOL(call_netdevice_notifiers); 1632 1633 #ifdef CONFIG_NET_CLS_ACT 1634 static struct static_key ingress_needed __read_mostly; 1635 1636 void net_inc_ingress_queue(void) 1637 { 1638 static_key_slow_inc(&ingress_needed); 1639 } 1640 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1641 1642 void net_dec_ingress_queue(void) 1643 { 1644 static_key_slow_dec(&ingress_needed); 1645 } 1646 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1647 #endif 1648 1649 static struct static_key netstamp_needed __read_mostly; 1650 #ifdef HAVE_JUMP_LABEL 1651 /* We are not allowed to call static_key_slow_dec() from irq context 1652 * If net_disable_timestamp() is called from irq context, defer the 1653 * static_key_slow_dec() calls. 1654 */ 1655 static atomic_t netstamp_needed_deferred; 1656 #endif 1657 1658 void net_enable_timestamp(void) 1659 { 1660 #ifdef HAVE_JUMP_LABEL 1661 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1662 1663 if (deferred) { 1664 while (--deferred) 1665 static_key_slow_dec(&netstamp_needed); 1666 return; 1667 } 1668 #endif 1669 static_key_slow_inc(&netstamp_needed); 1670 } 1671 EXPORT_SYMBOL(net_enable_timestamp); 1672 1673 void net_disable_timestamp(void) 1674 { 1675 #ifdef HAVE_JUMP_LABEL 1676 if (in_interrupt()) { 1677 atomic_inc(&netstamp_needed_deferred); 1678 return; 1679 } 1680 #endif 1681 static_key_slow_dec(&netstamp_needed); 1682 } 1683 EXPORT_SYMBOL(net_disable_timestamp); 1684 1685 static inline void net_timestamp_set(struct sk_buff *skb) 1686 { 1687 skb->tstamp.tv64 = 0; 1688 if (static_key_false(&netstamp_needed)) 1689 __net_timestamp(skb); 1690 } 1691 1692 #define net_timestamp_check(COND, SKB) \ 1693 if (static_key_false(&netstamp_needed)) { \ 1694 if ((COND) && !(SKB)->tstamp.tv64) \ 1695 __net_timestamp(SKB); \ 1696 } \ 1697 1698 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb) 1699 { 1700 unsigned int len; 1701 1702 if (!(dev->flags & IFF_UP)) 1703 return false; 1704 1705 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1706 if (skb->len <= len) 1707 return true; 1708 1709 /* if TSO is enabled, we don't care about the length as the packet 1710 * could be forwarded without being segmented before 1711 */ 1712 if (skb_is_gso(skb)) 1713 return true; 1714 1715 return false; 1716 } 1717 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1718 1719 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1720 { 1721 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1722 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1723 atomic_long_inc(&dev->rx_dropped); 1724 kfree_skb(skb); 1725 return NET_RX_DROP; 1726 } 1727 } 1728 1729 if (unlikely(!is_skb_forwardable(dev, skb))) { 1730 atomic_long_inc(&dev->rx_dropped); 1731 kfree_skb(skb); 1732 return NET_RX_DROP; 1733 } 1734 1735 skb_scrub_packet(skb, true); 1736 skb->priority = 0; 1737 skb->protocol = eth_type_trans(skb, dev); 1738 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1739 1740 return 0; 1741 } 1742 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1743 1744 /** 1745 * dev_forward_skb - loopback an skb to another netif 1746 * 1747 * @dev: destination network device 1748 * @skb: buffer to forward 1749 * 1750 * return values: 1751 * NET_RX_SUCCESS (no congestion) 1752 * NET_RX_DROP (packet was dropped, but freed) 1753 * 1754 * dev_forward_skb can be used for injecting an skb from the 1755 * start_xmit function of one device into the receive queue 1756 * of another device. 1757 * 1758 * The receiving device may be in another namespace, so 1759 * we have to clear all information in the skb that could 1760 * impact namespace isolation. 1761 */ 1762 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1763 { 1764 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1765 } 1766 EXPORT_SYMBOL_GPL(dev_forward_skb); 1767 1768 static inline int deliver_skb(struct sk_buff *skb, 1769 struct packet_type *pt_prev, 1770 struct net_device *orig_dev) 1771 { 1772 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1773 return -ENOMEM; 1774 atomic_inc(&skb->users); 1775 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1776 } 1777 1778 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1779 struct packet_type **pt, 1780 struct net_device *orig_dev, 1781 __be16 type, 1782 struct list_head *ptype_list) 1783 { 1784 struct packet_type *ptype, *pt_prev = *pt; 1785 1786 list_for_each_entry_rcu(ptype, ptype_list, list) { 1787 if (ptype->type != type) 1788 continue; 1789 if (pt_prev) 1790 deliver_skb(skb, pt_prev, orig_dev); 1791 pt_prev = ptype; 1792 } 1793 *pt = pt_prev; 1794 } 1795 1796 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1797 { 1798 if (!ptype->af_packet_priv || !skb->sk) 1799 return false; 1800 1801 if (ptype->id_match) 1802 return ptype->id_match(ptype, skb->sk); 1803 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1804 return true; 1805 1806 return false; 1807 } 1808 1809 /* 1810 * Support routine. Sends outgoing frames to any network 1811 * taps currently in use. 1812 */ 1813 1814 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1815 { 1816 struct packet_type *ptype; 1817 struct sk_buff *skb2 = NULL; 1818 struct packet_type *pt_prev = NULL; 1819 struct list_head *ptype_list = &ptype_all; 1820 1821 rcu_read_lock(); 1822 again: 1823 list_for_each_entry_rcu(ptype, ptype_list, list) { 1824 /* Never send packets back to the socket 1825 * they originated from - MvS (miquels@drinkel.ow.org) 1826 */ 1827 if (skb_loop_sk(ptype, skb)) 1828 continue; 1829 1830 if (pt_prev) { 1831 deliver_skb(skb2, pt_prev, skb->dev); 1832 pt_prev = ptype; 1833 continue; 1834 } 1835 1836 /* need to clone skb, done only once */ 1837 skb2 = skb_clone(skb, GFP_ATOMIC); 1838 if (!skb2) 1839 goto out_unlock; 1840 1841 net_timestamp_set(skb2); 1842 1843 /* skb->nh should be correctly 1844 * set by sender, so that the second statement is 1845 * just protection against buggy protocols. 1846 */ 1847 skb_reset_mac_header(skb2); 1848 1849 if (skb_network_header(skb2) < skb2->data || 1850 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1851 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1852 ntohs(skb2->protocol), 1853 dev->name); 1854 skb_reset_network_header(skb2); 1855 } 1856 1857 skb2->transport_header = skb2->network_header; 1858 skb2->pkt_type = PACKET_OUTGOING; 1859 pt_prev = ptype; 1860 } 1861 1862 if (ptype_list == &ptype_all) { 1863 ptype_list = &dev->ptype_all; 1864 goto again; 1865 } 1866 out_unlock: 1867 if (pt_prev) 1868 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1869 rcu_read_unlock(); 1870 } 1871 1872 /** 1873 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1874 * @dev: Network device 1875 * @txq: number of queues available 1876 * 1877 * If real_num_tx_queues is changed the tc mappings may no longer be 1878 * valid. To resolve this verify the tc mapping remains valid and if 1879 * not NULL the mapping. With no priorities mapping to this 1880 * offset/count pair it will no longer be used. In the worst case TC0 1881 * is invalid nothing can be done so disable priority mappings. If is 1882 * expected that drivers will fix this mapping if they can before 1883 * calling netif_set_real_num_tx_queues. 1884 */ 1885 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1886 { 1887 int i; 1888 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1889 1890 /* If TC0 is invalidated disable TC mapping */ 1891 if (tc->offset + tc->count > txq) { 1892 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1893 dev->num_tc = 0; 1894 return; 1895 } 1896 1897 /* Invalidated prio to tc mappings set to TC0 */ 1898 for (i = 1; i < TC_BITMASK + 1; i++) { 1899 int q = netdev_get_prio_tc_map(dev, i); 1900 1901 tc = &dev->tc_to_txq[q]; 1902 if (tc->offset + tc->count > txq) { 1903 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1904 i, q); 1905 netdev_set_prio_tc_map(dev, i, 0); 1906 } 1907 } 1908 } 1909 1910 #ifdef CONFIG_XPS 1911 static DEFINE_MUTEX(xps_map_mutex); 1912 #define xmap_dereference(P) \ 1913 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1914 1915 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps, 1916 int cpu, u16 index) 1917 { 1918 struct xps_map *map = NULL; 1919 int pos; 1920 1921 if (dev_maps) 1922 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1923 1924 for (pos = 0; map && pos < map->len; pos++) { 1925 if (map->queues[pos] == index) { 1926 if (map->len > 1) { 1927 map->queues[pos] = map->queues[--map->len]; 1928 } else { 1929 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL); 1930 kfree_rcu(map, rcu); 1931 map = NULL; 1932 } 1933 break; 1934 } 1935 } 1936 1937 return map; 1938 } 1939 1940 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 1941 { 1942 struct xps_dev_maps *dev_maps; 1943 int cpu, i; 1944 bool active = false; 1945 1946 mutex_lock(&xps_map_mutex); 1947 dev_maps = xmap_dereference(dev->xps_maps); 1948 1949 if (!dev_maps) 1950 goto out_no_maps; 1951 1952 for_each_possible_cpu(cpu) { 1953 for (i = index; i < dev->num_tx_queues; i++) { 1954 if (!remove_xps_queue(dev_maps, cpu, i)) 1955 break; 1956 } 1957 if (i == dev->num_tx_queues) 1958 active = true; 1959 } 1960 1961 if (!active) { 1962 RCU_INIT_POINTER(dev->xps_maps, NULL); 1963 kfree_rcu(dev_maps, rcu); 1964 } 1965 1966 for (i = index; i < dev->num_tx_queues; i++) 1967 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 1968 NUMA_NO_NODE); 1969 1970 out_no_maps: 1971 mutex_unlock(&xps_map_mutex); 1972 } 1973 1974 static struct xps_map *expand_xps_map(struct xps_map *map, 1975 int cpu, u16 index) 1976 { 1977 struct xps_map *new_map; 1978 int alloc_len = XPS_MIN_MAP_ALLOC; 1979 int i, pos; 1980 1981 for (pos = 0; map && pos < map->len; pos++) { 1982 if (map->queues[pos] != index) 1983 continue; 1984 return map; 1985 } 1986 1987 /* Need to add queue to this CPU's existing map */ 1988 if (map) { 1989 if (pos < map->alloc_len) 1990 return map; 1991 1992 alloc_len = map->alloc_len * 2; 1993 } 1994 1995 /* Need to allocate new map to store queue on this CPU's map */ 1996 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 1997 cpu_to_node(cpu)); 1998 if (!new_map) 1999 return NULL; 2000 2001 for (i = 0; i < pos; i++) 2002 new_map->queues[i] = map->queues[i]; 2003 new_map->alloc_len = alloc_len; 2004 new_map->len = pos; 2005 2006 return new_map; 2007 } 2008 2009 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2010 u16 index) 2011 { 2012 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2013 struct xps_map *map, *new_map; 2014 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES); 2015 int cpu, numa_node_id = -2; 2016 bool active = false; 2017 2018 mutex_lock(&xps_map_mutex); 2019 2020 dev_maps = xmap_dereference(dev->xps_maps); 2021 2022 /* allocate memory for queue storage */ 2023 for_each_online_cpu(cpu) { 2024 if (!cpumask_test_cpu(cpu, mask)) 2025 continue; 2026 2027 if (!new_dev_maps) 2028 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2029 if (!new_dev_maps) { 2030 mutex_unlock(&xps_map_mutex); 2031 return -ENOMEM; 2032 } 2033 2034 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2035 NULL; 2036 2037 map = expand_xps_map(map, cpu, index); 2038 if (!map) 2039 goto error; 2040 2041 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 2042 } 2043 2044 if (!new_dev_maps) 2045 goto out_no_new_maps; 2046 2047 for_each_possible_cpu(cpu) { 2048 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 2049 /* add queue to CPU maps */ 2050 int pos = 0; 2051 2052 map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2053 while ((pos < map->len) && (map->queues[pos] != index)) 2054 pos++; 2055 2056 if (pos == map->len) 2057 map->queues[map->len++] = index; 2058 #ifdef CONFIG_NUMA 2059 if (numa_node_id == -2) 2060 numa_node_id = cpu_to_node(cpu); 2061 else if (numa_node_id != cpu_to_node(cpu)) 2062 numa_node_id = -1; 2063 #endif 2064 } else if (dev_maps) { 2065 /* fill in the new device map from the old device map */ 2066 map = xmap_dereference(dev_maps->cpu_map[cpu]); 2067 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 2068 } 2069 2070 } 2071 2072 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2073 2074 /* Cleanup old maps */ 2075 if (dev_maps) { 2076 for_each_possible_cpu(cpu) { 2077 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2078 map = xmap_dereference(dev_maps->cpu_map[cpu]); 2079 if (map && map != new_map) 2080 kfree_rcu(map, rcu); 2081 } 2082 2083 kfree_rcu(dev_maps, rcu); 2084 } 2085 2086 dev_maps = new_dev_maps; 2087 active = true; 2088 2089 out_no_new_maps: 2090 /* update Tx queue numa node */ 2091 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2092 (numa_node_id >= 0) ? numa_node_id : 2093 NUMA_NO_NODE); 2094 2095 if (!dev_maps) 2096 goto out_no_maps; 2097 2098 /* removes queue from unused CPUs */ 2099 for_each_possible_cpu(cpu) { 2100 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) 2101 continue; 2102 2103 if (remove_xps_queue(dev_maps, cpu, index)) 2104 active = true; 2105 } 2106 2107 /* free map if not active */ 2108 if (!active) { 2109 RCU_INIT_POINTER(dev->xps_maps, NULL); 2110 kfree_rcu(dev_maps, rcu); 2111 } 2112 2113 out_no_maps: 2114 mutex_unlock(&xps_map_mutex); 2115 2116 return 0; 2117 error: 2118 /* remove any maps that we added */ 2119 for_each_possible_cpu(cpu) { 2120 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2121 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2122 NULL; 2123 if (new_map && new_map != map) 2124 kfree(new_map); 2125 } 2126 2127 mutex_unlock(&xps_map_mutex); 2128 2129 kfree(new_dev_maps); 2130 return -ENOMEM; 2131 } 2132 EXPORT_SYMBOL(netif_set_xps_queue); 2133 2134 #endif 2135 /* 2136 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2137 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2138 */ 2139 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2140 { 2141 int rc; 2142 2143 if (txq < 1 || txq > dev->num_tx_queues) 2144 return -EINVAL; 2145 2146 if (dev->reg_state == NETREG_REGISTERED || 2147 dev->reg_state == NETREG_UNREGISTERING) { 2148 ASSERT_RTNL(); 2149 2150 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2151 txq); 2152 if (rc) 2153 return rc; 2154 2155 if (dev->num_tc) 2156 netif_setup_tc(dev, txq); 2157 2158 if (txq < dev->real_num_tx_queues) { 2159 qdisc_reset_all_tx_gt(dev, txq); 2160 #ifdef CONFIG_XPS 2161 netif_reset_xps_queues_gt(dev, txq); 2162 #endif 2163 } 2164 } 2165 2166 dev->real_num_tx_queues = txq; 2167 return 0; 2168 } 2169 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2170 2171 #ifdef CONFIG_SYSFS 2172 /** 2173 * netif_set_real_num_rx_queues - set actual number of RX queues used 2174 * @dev: Network device 2175 * @rxq: Actual number of RX queues 2176 * 2177 * This must be called either with the rtnl_lock held or before 2178 * registration of the net device. Returns 0 on success, or a 2179 * negative error code. If called before registration, it always 2180 * succeeds. 2181 */ 2182 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2183 { 2184 int rc; 2185 2186 if (rxq < 1 || rxq > dev->num_rx_queues) 2187 return -EINVAL; 2188 2189 if (dev->reg_state == NETREG_REGISTERED) { 2190 ASSERT_RTNL(); 2191 2192 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2193 rxq); 2194 if (rc) 2195 return rc; 2196 } 2197 2198 dev->real_num_rx_queues = rxq; 2199 return 0; 2200 } 2201 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2202 #endif 2203 2204 /** 2205 * netif_get_num_default_rss_queues - default number of RSS queues 2206 * 2207 * This routine should set an upper limit on the number of RSS queues 2208 * used by default by multiqueue devices. 2209 */ 2210 int netif_get_num_default_rss_queues(void) 2211 { 2212 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2213 } 2214 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2215 2216 static inline void __netif_reschedule(struct Qdisc *q) 2217 { 2218 struct softnet_data *sd; 2219 unsigned long flags; 2220 2221 local_irq_save(flags); 2222 sd = this_cpu_ptr(&softnet_data); 2223 q->next_sched = NULL; 2224 *sd->output_queue_tailp = q; 2225 sd->output_queue_tailp = &q->next_sched; 2226 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2227 local_irq_restore(flags); 2228 } 2229 2230 void __netif_schedule(struct Qdisc *q) 2231 { 2232 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2233 __netif_reschedule(q); 2234 } 2235 EXPORT_SYMBOL(__netif_schedule); 2236 2237 struct dev_kfree_skb_cb { 2238 enum skb_free_reason reason; 2239 }; 2240 2241 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2242 { 2243 return (struct dev_kfree_skb_cb *)skb->cb; 2244 } 2245 2246 void netif_schedule_queue(struct netdev_queue *txq) 2247 { 2248 rcu_read_lock(); 2249 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2250 struct Qdisc *q = rcu_dereference(txq->qdisc); 2251 2252 __netif_schedule(q); 2253 } 2254 rcu_read_unlock(); 2255 } 2256 EXPORT_SYMBOL(netif_schedule_queue); 2257 2258 /** 2259 * netif_wake_subqueue - allow sending packets on subqueue 2260 * @dev: network device 2261 * @queue_index: sub queue index 2262 * 2263 * Resume individual transmit queue of a device with multiple transmit queues. 2264 */ 2265 void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 2266 { 2267 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2268 2269 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) { 2270 struct Qdisc *q; 2271 2272 rcu_read_lock(); 2273 q = rcu_dereference(txq->qdisc); 2274 __netif_schedule(q); 2275 rcu_read_unlock(); 2276 } 2277 } 2278 EXPORT_SYMBOL(netif_wake_subqueue); 2279 2280 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2281 { 2282 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2283 struct Qdisc *q; 2284 2285 rcu_read_lock(); 2286 q = rcu_dereference(dev_queue->qdisc); 2287 __netif_schedule(q); 2288 rcu_read_unlock(); 2289 } 2290 } 2291 EXPORT_SYMBOL(netif_tx_wake_queue); 2292 2293 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2294 { 2295 unsigned long flags; 2296 2297 if (likely(atomic_read(&skb->users) == 1)) { 2298 smp_rmb(); 2299 atomic_set(&skb->users, 0); 2300 } else if (likely(!atomic_dec_and_test(&skb->users))) { 2301 return; 2302 } 2303 get_kfree_skb_cb(skb)->reason = reason; 2304 local_irq_save(flags); 2305 skb->next = __this_cpu_read(softnet_data.completion_queue); 2306 __this_cpu_write(softnet_data.completion_queue, skb); 2307 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2308 local_irq_restore(flags); 2309 } 2310 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2311 2312 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2313 { 2314 if (in_irq() || irqs_disabled()) 2315 __dev_kfree_skb_irq(skb, reason); 2316 else 2317 dev_kfree_skb(skb); 2318 } 2319 EXPORT_SYMBOL(__dev_kfree_skb_any); 2320 2321 2322 /** 2323 * netif_device_detach - mark device as removed 2324 * @dev: network device 2325 * 2326 * Mark device as removed from system and therefore no longer available. 2327 */ 2328 void netif_device_detach(struct net_device *dev) 2329 { 2330 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2331 netif_running(dev)) { 2332 netif_tx_stop_all_queues(dev); 2333 } 2334 } 2335 EXPORT_SYMBOL(netif_device_detach); 2336 2337 /** 2338 * netif_device_attach - mark device as attached 2339 * @dev: network device 2340 * 2341 * Mark device as attached from system and restart if needed. 2342 */ 2343 void netif_device_attach(struct net_device *dev) 2344 { 2345 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2346 netif_running(dev)) { 2347 netif_tx_wake_all_queues(dev); 2348 __netdev_watchdog_up(dev); 2349 } 2350 } 2351 EXPORT_SYMBOL(netif_device_attach); 2352 2353 static void skb_warn_bad_offload(const struct sk_buff *skb) 2354 { 2355 static const netdev_features_t null_features = 0; 2356 struct net_device *dev = skb->dev; 2357 const char *driver = ""; 2358 2359 if (!net_ratelimit()) 2360 return; 2361 2362 if (dev && dev->dev.parent) 2363 driver = dev_driver_string(dev->dev.parent); 2364 2365 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2366 "gso_type=%d ip_summed=%d\n", 2367 driver, dev ? &dev->features : &null_features, 2368 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2369 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2370 skb_shinfo(skb)->gso_type, skb->ip_summed); 2371 } 2372 2373 /* 2374 * Invalidate hardware checksum when packet is to be mangled, and 2375 * complete checksum manually on outgoing path. 2376 */ 2377 int skb_checksum_help(struct sk_buff *skb) 2378 { 2379 __wsum csum; 2380 int ret = 0, offset; 2381 2382 if (skb->ip_summed == CHECKSUM_COMPLETE) 2383 goto out_set_summed; 2384 2385 if (unlikely(skb_shinfo(skb)->gso_size)) { 2386 skb_warn_bad_offload(skb); 2387 return -EINVAL; 2388 } 2389 2390 /* Before computing a checksum, we should make sure no frag could 2391 * be modified by an external entity : checksum could be wrong. 2392 */ 2393 if (skb_has_shared_frag(skb)) { 2394 ret = __skb_linearize(skb); 2395 if (ret) 2396 goto out; 2397 } 2398 2399 offset = skb_checksum_start_offset(skb); 2400 BUG_ON(offset >= skb_headlen(skb)); 2401 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2402 2403 offset += skb->csum_offset; 2404 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2405 2406 if (skb_cloned(skb) && 2407 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2408 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2409 if (ret) 2410 goto out; 2411 } 2412 2413 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 2414 out_set_summed: 2415 skb->ip_summed = CHECKSUM_NONE; 2416 out: 2417 return ret; 2418 } 2419 EXPORT_SYMBOL(skb_checksum_help); 2420 2421 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2422 { 2423 __be16 type = skb->protocol; 2424 2425 /* Tunnel gso handlers can set protocol to ethernet. */ 2426 if (type == htons(ETH_P_TEB)) { 2427 struct ethhdr *eth; 2428 2429 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2430 return 0; 2431 2432 eth = (struct ethhdr *)skb_mac_header(skb); 2433 type = eth->h_proto; 2434 } 2435 2436 return __vlan_get_protocol(skb, type, depth); 2437 } 2438 2439 /** 2440 * skb_mac_gso_segment - mac layer segmentation handler. 2441 * @skb: buffer to segment 2442 * @features: features for the output path (see dev->features) 2443 */ 2444 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2445 netdev_features_t features) 2446 { 2447 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2448 struct packet_offload *ptype; 2449 int vlan_depth = skb->mac_len; 2450 __be16 type = skb_network_protocol(skb, &vlan_depth); 2451 2452 if (unlikely(!type)) 2453 return ERR_PTR(-EINVAL); 2454 2455 __skb_pull(skb, vlan_depth); 2456 2457 rcu_read_lock(); 2458 list_for_each_entry_rcu(ptype, &offload_base, list) { 2459 if (ptype->type == type && ptype->callbacks.gso_segment) { 2460 segs = ptype->callbacks.gso_segment(skb, features); 2461 break; 2462 } 2463 } 2464 rcu_read_unlock(); 2465 2466 __skb_push(skb, skb->data - skb_mac_header(skb)); 2467 2468 return segs; 2469 } 2470 EXPORT_SYMBOL(skb_mac_gso_segment); 2471 2472 2473 /* openvswitch calls this on rx path, so we need a different check. 2474 */ 2475 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2476 { 2477 if (tx_path) 2478 return skb->ip_summed != CHECKSUM_PARTIAL; 2479 else 2480 return skb->ip_summed == CHECKSUM_NONE; 2481 } 2482 2483 /** 2484 * __skb_gso_segment - Perform segmentation on skb. 2485 * @skb: buffer to segment 2486 * @features: features for the output path (see dev->features) 2487 * @tx_path: whether it is called in TX path 2488 * 2489 * This function segments the given skb and returns a list of segments. 2490 * 2491 * It may return NULL if the skb requires no segmentation. This is 2492 * only possible when GSO is used for verifying header integrity. 2493 */ 2494 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2495 netdev_features_t features, bool tx_path) 2496 { 2497 if (unlikely(skb_needs_check(skb, tx_path))) { 2498 int err; 2499 2500 skb_warn_bad_offload(skb); 2501 2502 err = skb_cow_head(skb, 0); 2503 if (err < 0) 2504 return ERR_PTR(err); 2505 } 2506 2507 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2508 SKB_GSO_CB(skb)->encap_level = 0; 2509 2510 skb_reset_mac_header(skb); 2511 skb_reset_mac_len(skb); 2512 2513 return skb_mac_gso_segment(skb, features); 2514 } 2515 EXPORT_SYMBOL(__skb_gso_segment); 2516 2517 /* Take action when hardware reception checksum errors are detected. */ 2518 #ifdef CONFIG_BUG 2519 void netdev_rx_csum_fault(struct net_device *dev) 2520 { 2521 if (net_ratelimit()) { 2522 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2523 dump_stack(); 2524 } 2525 } 2526 EXPORT_SYMBOL(netdev_rx_csum_fault); 2527 #endif 2528 2529 /* Actually, we should eliminate this check as soon as we know, that: 2530 * 1. IOMMU is present and allows to map all the memory. 2531 * 2. No high memory really exists on this machine. 2532 */ 2533 2534 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2535 { 2536 #ifdef CONFIG_HIGHMEM 2537 int i; 2538 if (!(dev->features & NETIF_F_HIGHDMA)) { 2539 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2540 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2541 if (PageHighMem(skb_frag_page(frag))) 2542 return 1; 2543 } 2544 } 2545 2546 if (PCI_DMA_BUS_IS_PHYS) { 2547 struct device *pdev = dev->dev.parent; 2548 2549 if (!pdev) 2550 return 0; 2551 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2552 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2553 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2554 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2555 return 1; 2556 } 2557 } 2558 #endif 2559 return 0; 2560 } 2561 2562 /* If MPLS offload request, verify we are testing hardware MPLS features 2563 * instead of standard features for the netdev. 2564 */ 2565 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2566 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2567 netdev_features_t features, 2568 __be16 type) 2569 { 2570 if (eth_p_mpls(type)) 2571 features &= skb->dev->mpls_features; 2572 2573 return features; 2574 } 2575 #else 2576 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2577 netdev_features_t features, 2578 __be16 type) 2579 { 2580 return features; 2581 } 2582 #endif 2583 2584 static netdev_features_t harmonize_features(struct sk_buff *skb, 2585 netdev_features_t features) 2586 { 2587 int tmp; 2588 __be16 type; 2589 2590 type = skb_network_protocol(skb, &tmp); 2591 features = net_mpls_features(skb, features, type); 2592 2593 if (skb->ip_summed != CHECKSUM_NONE && 2594 !can_checksum_protocol(features, type)) { 2595 features &= ~NETIF_F_ALL_CSUM; 2596 } else if (illegal_highdma(skb->dev, skb)) { 2597 features &= ~NETIF_F_SG; 2598 } 2599 2600 return features; 2601 } 2602 2603 netdev_features_t passthru_features_check(struct sk_buff *skb, 2604 struct net_device *dev, 2605 netdev_features_t features) 2606 { 2607 return features; 2608 } 2609 EXPORT_SYMBOL(passthru_features_check); 2610 2611 static netdev_features_t dflt_features_check(const struct sk_buff *skb, 2612 struct net_device *dev, 2613 netdev_features_t features) 2614 { 2615 return vlan_features_check(skb, features); 2616 } 2617 2618 netdev_features_t netif_skb_features(struct sk_buff *skb) 2619 { 2620 struct net_device *dev = skb->dev; 2621 netdev_features_t features = dev->features; 2622 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2623 2624 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs) 2625 features &= ~NETIF_F_GSO_MASK; 2626 2627 /* If encapsulation offload request, verify we are testing 2628 * hardware encapsulation features instead of standard 2629 * features for the netdev 2630 */ 2631 if (skb->encapsulation) 2632 features &= dev->hw_enc_features; 2633 2634 if (skb_vlan_tagged(skb)) 2635 features = netdev_intersect_features(features, 2636 dev->vlan_features | 2637 NETIF_F_HW_VLAN_CTAG_TX | 2638 NETIF_F_HW_VLAN_STAG_TX); 2639 2640 if (dev->netdev_ops->ndo_features_check) 2641 features &= dev->netdev_ops->ndo_features_check(skb, dev, 2642 features); 2643 else 2644 features &= dflt_features_check(skb, dev, features); 2645 2646 return harmonize_features(skb, features); 2647 } 2648 EXPORT_SYMBOL(netif_skb_features); 2649 2650 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 2651 struct netdev_queue *txq, bool more) 2652 { 2653 unsigned int len; 2654 int rc; 2655 2656 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 2657 dev_queue_xmit_nit(skb, dev); 2658 2659 len = skb->len; 2660 trace_net_dev_start_xmit(skb, dev); 2661 rc = netdev_start_xmit(skb, dev, txq, more); 2662 trace_net_dev_xmit(skb, rc, dev, len); 2663 2664 return rc; 2665 } 2666 2667 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 2668 struct netdev_queue *txq, int *ret) 2669 { 2670 struct sk_buff *skb = first; 2671 int rc = NETDEV_TX_OK; 2672 2673 while (skb) { 2674 struct sk_buff *next = skb->next; 2675 2676 skb->next = NULL; 2677 rc = xmit_one(skb, dev, txq, next != NULL); 2678 if (unlikely(!dev_xmit_complete(rc))) { 2679 skb->next = next; 2680 goto out; 2681 } 2682 2683 skb = next; 2684 if (netif_xmit_stopped(txq) && skb) { 2685 rc = NETDEV_TX_BUSY; 2686 break; 2687 } 2688 } 2689 2690 out: 2691 *ret = rc; 2692 return skb; 2693 } 2694 2695 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 2696 netdev_features_t features) 2697 { 2698 if (skb_vlan_tag_present(skb) && 2699 !vlan_hw_offload_capable(features, skb->vlan_proto)) 2700 skb = __vlan_hwaccel_push_inside(skb); 2701 return skb; 2702 } 2703 2704 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) 2705 { 2706 netdev_features_t features; 2707 2708 if (skb->next) 2709 return skb; 2710 2711 features = netif_skb_features(skb); 2712 skb = validate_xmit_vlan(skb, features); 2713 if (unlikely(!skb)) 2714 goto out_null; 2715 2716 if (netif_needs_gso(skb, features)) { 2717 struct sk_buff *segs; 2718 2719 segs = skb_gso_segment(skb, features); 2720 if (IS_ERR(segs)) { 2721 goto out_kfree_skb; 2722 } else if (segs) { 2723 consume_skb(skb); 2724 skb = segs; 2725 } 2726 } else { 2727 if (skb_needs_linearize(skb, features) && 2728 __skb_linearize(skb)) 2729 goto out_kfree_skb; 2730 2731 /* If packet is not checksummed and device does not 2732 * support checksumming for this protocol, complete 2733 * checksumming here. 2734 */ 2735 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2736 if (skb->encapsulation) 2737 skb_set_inner_transport_header(skb, 2738 skb_checksum_start_offset(skb)); 2739 else 2740 skb_set_transport_header(skb, 2741 skb_checksum_start_offset(skb)); 2742 if (!(features & NETIF_F_ALL_CSUM) && 2743 skb_checksum_help(skb)) 2744 goto out_kfree_skb; 2745 } 2746 } 2747 2748 return skb; 2749 2750 out_kfree_skb: 2751 kfree_skb(skb); 2752 out_null: 2753 return NULL; 2754 } 2755 2756 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev) 2757 { 2758 struct sk_buff *next, *head = NULL, *tail; 2759 2760 for (; skb != NULL; skb = next) { 2761 next = skb->next; 2762 skb->next = NULL; 2763 2764 /* in case skb wont be segmented, point to itself */ 2765 skb->prev = skb; 2766 2767 skb = validate_xmit_skb(skb, dev); 2768 if (!skb) 2769 continue; 2770 2771 if (!head) 2772 head = skb; 2773 else 2774 tail->next = skb; 2775 /* If skb was segmented, skb->prev points to 2776 * the last segment. If not, it still contains skb. 2777 */ 2778 tail = skb->prev; 2779 } 2780 return head; 2781 } 2782 2783 static void qdisc_pkt_len_init(struct sk_buff *skb) 2784 { 2785 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2786 2787 qdisc_skb_cb(skb)->pkt_len = skb->len; 2788 2789 /* To get more precise estimation of bytes sent on wire, 2790 * we add to pkt_len the headers size of all segments 2791 */ 2792 if (shinfo->gso_size) { 2793 unsigned int hdr_len; 2794 u16 gso_segs = shinfo->gso_segs; 2795 2796 /* mac layer + network layer */ 2797 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 2798 2799 /* + transport layer */ 2800 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 2801 hdr_len += tcp_hdrlen(skb); 2802 else 2803 hdr_len += sizeof(struct udphdr); 2804 2805 if (shinfo->gso_type & SKB_GSO_DODGY) 2806 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 2807 shinfo->gso_size); 2808 2809 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 2810 } 2811 } 2812 2813 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2814 struct net_device *dev, 2815 struct netdev_queue *txq) 2816 { 2817 spinlock_t *root_lock = qdisc_lock(q); 2818 bool contended; 2819 int rc; 2820 2821 qdisc_pkt_len_init(skb); 2822 qdisc_calculate_pkt_len(skb, q); 2823 /* 2824 * Heuristic to force contended enqueues to serialize on a 2825 * separate lock before trying to get qdisc main lock. 2826 * This permits __QDISC___STATE_RUNNING owner to get the lock more 2827 * often and dequeue packets faster. 2828 */ 2829 contended = qdisc_is_running(q); 2830 if (unlikely(contended)) 2831 spin_lock(&q->busylock); 2832 2833 spin_lock(root_lock); 2834 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2835 kfree_skb(skb); 2836 rc = NET_XMIT_DROP; 2837 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2838 qdisc_run_begin(q)) { 2839 /* 2840 * This is a work-conserving queue; there are no old skbs 2841 * waiting to be sent out; and the qdisc is not running - 2842 * xmit the skb directly. 2843 */ 2844 2845 qdisc_bstats_update(q, skb); 2846 2847 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 2848 if (unlikely(contended)) { 2849 spin_unlock(&q->busylock); 2850 contended = false; 2851 } 2852 __qdisc_run(q); 2853 } else 2854 qdisc_run_end(q); 2855 2856 rc = NET_XMIT_SUCCESS; 2857 } else { 2858 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2859 if (qdisc_run_begin(q)) { 2860 if (unlikely(contended)) { 2861 spin_unlock(&q->busylock); 2862 contended = false; 2863 } 2864 __qdisc_run(q); 2865 } 2866 } 2867 spin_unlock(root_lock); 2868 if (unlikely(contended)) 2869 spin_unlock(&q->busylock); 2870 return rc; 2871 } 2872 2873 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2874 static void skb_update_prio(struct sk_buff *skb) 2875 { 2876 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2877 2878 if (!skb->priority && skb->sk && map) { 2879 unsigned int prioidx = skb->sk->sk_cgrp_prioidx; 2880 2881 if (prioidx < map->priomap_len) 2882 skb->priority = map->priomap[prioidx]; 2883 } 2884 } 2885 #else 2886 #define skb_update_prio(skb) 2887 #endif 2888 2889 DEFINE_PER_CPU(int, xmit_recursion); 2890 EXPORT_SYMBOL(xmit_recursion); 2891 2892 #define RECURSION_LIMIT 10 2893 2894 /** 2895 * dev_loopback_xmit - loop back @skb 2896 * @skb: buffer to transmit 2897 */ 2898 int dev_loopback_xmit(struct sock *sk, struct sk_buff *skb) 2899 { 2900 skb_reset_mac_header(skb); 2901 __skb_pull(skb, skb_network_offset(skb)); 2902 skb->pkt_type = PACKET_LOOPBACK; 2903 skb->ip_summed = CHECKSUM_UNNECESSARY; 2904 WARN_ON(!skb_dst(skb)); 2905 skb_dst_force(skb); 2906 netif_rx_ni(skb); 2907 return 0; 2908 } 2909 EXPORT_SYMBOL(dev_loopback_xmit); 2910 2911 /** 2912 * __dev_queue_xmit - transmit a buffer 2913 * @skb: buffer to transmit 2914 * @accel_priv: private data used for L2 forwarding offload 2915 * 2916 * Queue a buffer for transmission to a network device. The caller must 2917 * have set the device and priority and built the buffer before calling 2918 * this function. The function can be called from an interrupt. 2919 * 2920 * A negative errno code is returned on a failure. A success does not 2921 * guarantee the frame will be transmitted as it may be dropped due 2922 * to congestion or traffic shaping. 2923 * 2924 * ----------------------------------------------------------------------------------- 2925 * I notice this method can also return errors from the queue disciplines, 2926 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2927 * be positive. 2928 * 2929 * Regardless of the return value, the skb is consumed, so it is currently 2930 * difficult to retry a send to this method. (You can bump the ref count 2931 * before sending to hold a reference for retry if you are careful.) 2932 * 2933 * When calling this method, interrupts MUST be enabled. This is because 2934 * the BH enable code must have IRQs enabled so that it will not deadlock. 2935 * --BLG 2936 */ 2937 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 2938 { 2939 struct net_device *dev = skb->dev; 2940 struct netdev_queue *txq; 2941 struct Qdisc *q; 2942 int rc = -ENOMEM; 2943 2944 skb_reset_mac_header(skb); 2945 2946 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 2947 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 2948 2949 /* Disable soft irqs for various locks below. Also 2950 * stops preemption for RCU. 2951 */ 2952 rcu_read_lock_bh(); 2953 2954 skb_update_prio(skb); 2955 2956 /* If device/qdisc don't need skb->dst, release it right now while 2957 * its hot in this cpu cache. 2958 */ 2959 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2960 skb_dst_drop(skb); 2961 else 2962 skb_dst_force(skb); 2963 2964 txq = netdev_pick_tx(dev, skb, accel_priv); 2965 q = rcu_dereference_bh(txq->qdisc); 2966 2967 #ifdef CONFIG_NET_CLS_ACT 2968 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2969 #endif 2970 trace_net_dev_queue(skb); 2971 if (q->enqueue) { 2972 rc = __dev_xmit_skb(skb, q, dev, txq); 2973 goto out; 2974 } 2975 2976 /* The device has no queue. Common case for software devices: 2977 loopback, all the sorts of tunnels... 2978 2979 Really, it is unlikely that netif_tx_lock protection is necessary 2980 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2981 counters.) 2982 However, it is possible, that they rely on protection 2983 made by us here. 2984 2985 Check this and shot the lock. It is not prone from deadlocks. 2986 Either shot noqueue qdisc, it is even simpler 8) 2987 */ 2988 if (dev->flags & IFF_UP) { 2989 int cpu = smp_processor_id(); /* ok because BHs are off */ 2990 2991 if (txq->xmit_lock_owner != cpu) { 2992 2993 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2994 goto recursion_alert; 2995 2996 skb = validate_xmit_skb(skb, dev); 2997 if (!skb) 2998 goto drop; 2999 3000 HARD_TX_LOCK(dev, txq, cpu); 3001 3002 if (!netif_xmit_stopped(txq)) { 3003 __this_cpu_inc(xmit_recursion); 3004 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3005 __this_cpu_dec(xmit_recursion); 3006 if (dev_xmit_complete(rc)) { 3007 HARD_TX_UNLOCK(dev, txq); 3008 goto out; 3009 } 3010 } 3011 HARD_TX_UNLOCK(dev, txq); 3012 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3013 dev->name); 3014 } else { 3015 /* Recursion is detected! It is possible, 3016 * unfortunately 3017 */ 3018 recursion_alert: 3019 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3020 dev->name); 3021 } 3022 } 3023 3024 rc = -ENETDOWN; 3025 drop: 3026 rcu_read_unlock_bh(); 3027 3028 atomic_long_inc(&dev->tx_dropped); 3029 kfree_skb_list(skb); 3030 return rc; 3031 out: 3032 rcu_read_unlock_bh(); 3033 return rc; 3034 } 3035 3036 int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb) 3037 { 3038 return __dev_queue_xmit(skb, NULL); 3039 } 3040 EXPORT_SYMBOL(dev_queue_xmit_sk); 3041 3042 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3043 { 3044 return __dev_queue_xmit(skb, accel_priv); 3045 } 3046 EXPORT_SYMBOL(dev_queue_xmit_accel); 3047 3048 3049 /*======================================================================= 3050 Receiver routines 3051 =======================================================================*/ 3052 3053 int netdev_max_backlog __read_mostly = 1000; 3054 EXPORT_SYMBOL(netdev_max_backlog); 3055 3056 int netdev_tstamp_prequeue __read_mostly = 1; 3057 int netdev_budget __read_mostly = 300; 3058 int weight_p __read_mostly = 64; /* old backlog weight */ 3059 3060 /* Called with irq disabled */ 3061 static inline void ____napi_schedule(struct softnet_data *sd, 3062 struct napi_struct *napi) 3063 { 3064 list_add_tail(&napi->poll_list, &sd->poll_list); 3065 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3066 } 3067 3068 #ifdef CONFIG_RPS 3069 3070 /* One global table that all flow-based protocols share. */ 3071 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3072 EXPORT_SYMBOL(rps_sock_flow_table); 3073 u32 rps_cpu_mask __read_mostly; 3074 EXPORT_SYMBOL(rps_cpu_mask); 3075 3076 struct static_key rps_needed __read_mostly; 3077 3078 static struct rps_dev_flow * 3079 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3080 struct rps_dev_flow *rflow, u16 next_cpu) 3081 { 3082 if (next_cpu != RPS_NO_CPU) { 3083 #ifdef CONFIG_RFS_ACCEL 3084 struct netdev_rx_queue *rxqueue; 3085 struct rps_dev_flow_table *flow_table; 3086 struct rps_dev_flow *old_rflow; 3087 u32 flow_id; 3088 u16 rxq_index; 3089 int rc; 3090 3091 /* Should we steer this flow to a different hardware queue? */ 3092 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3093 !(dev->features & NETIF_F_NTUPLE)) 3094 goto out; 3095 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3096 if (rxq_index == skb_get_rx_queue(skb)) 3097 goto out; 3098 3099 rxqueue = dev->_rx + rxq_index; 3100 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3101 if (!flow_table) 3102 goto out; 3103 flow_id = skb_get_hash(skb) & flow_table->mask; 3104 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3105 rxq_index, flow_id); 3106 if (rc < 0) 3107 goto out; 3108 old_rflow = rflow; 3109 rflow = &flow_table->flows[flow_id]; 3110 rflow->filter = rc; 3111 if (old_rflow->filter == rflow->filter) 3112 old_rflow->filter = RPS_NO_FILTER; 3113 out: 3114 #endif 3115 rflow->last_qtail = 3116 per_cpu(softnet_data, next_cpu).input_queue_head; 3117 } 3118 3119 rflow->cpu = next_cpu; 3120 return rflow; 3121 } 3122 3123 /* 3124 * get_rps_cpu is called from netif_receive_skb and returns the target 3125 * CPU from the RPS map of the receiving queue for a given skb. 3126 * rcu_read_lock must be held on entry. 3127 */ 3128 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3129 struct rps_dev_flow **rflowp) 3130 { 3131 const struct rps_sock_flow_table *sock_flow_table; 3132 struct netdev_rx_queue *rxqueue = dev->_rx; 3133 struct rps_dev_flow_table *flow_table; 3134 struct rps_map *map; 3135 int cpu = -1; 3136 u32 tcpu; 3137 u32 hash; 3138 3139 if (skb_rx_queue_recorded(skb)) { 3140 u16 index = skb_get_rx_queue(skb); 3141 3142 if (unlikely(index >= dev->real_num_rx_queues)) { 3143 WARN_ONCE(dev->real_num_rx_queues > 1, 3144 "%s received packet on queue %u, but number " 3145 "of RX queues is %u\n", 3146 dev->name, index, dev->real_num_rx_queues); 3147 goto done; 3148 } 3149 rxqueue += index; 3150 } 3151 3152 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3153 3154 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3155 map = rcu_dereference(rxqueue->rps_map); 3156 if (!flow_table && !map) 3157 goto done; 3158 3159 skb_reset_network_header(skb); 3160 hash = skb_get_hash(skb); 3161 if (!hash) 3162 goto done; 3163 3164 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3165 if (flow_table && sock_flow_table) { 3166 struct rps_dev_flow *rflow; 3167 u32 next_cpu; 3168 u32 ident; 3169 3170 /* First check into global flow table if there is a match */ 3171 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3172 if ((ident ^ hash) & ~rps_cpu_mask) 3173 goto try_rps; 3174 3175 next_cpu = ident & rps_cpu_mask; 3176 3177 /* OK, now we know there is a match, 3178 * we can look at the local (per receive queue) flow table 3179 */ 3180 rflow = &flow_table->flows[hash & flow_table->mask]; 3181 tcpu = rflow->cpu; 3182 3183 /* 3184 * If the desired CPU (where last recvmsg was done) is 3185 * different from current CPU (one in the rx-queue flow 3186 * table entry), switch if one of the following holds: 3187 * - Current CPU is unset (equal to RPS_NO_CPU). 3188 * - Current CPU is offline. 3189 * - The current CPU's queue tail has advanced beyond the 3190 * last packet that was enqueued using this table entry. 3191 * This guarantees that all previous packets for the flow 3192 * have been dequeued, thus preserving in order delivery. 3193 */ 3194 if (unlikely(tcpu != next_cpu) && 3195 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 3196 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3197 rflow->last_qtail)) >= 0)) { 3198 tcpu = next_cpu; 3199 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3200 } 3201 3202 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 3203 *rflowp = rflow; 3204 cpu = tcpu; 3205 goto done; 3206 } 3207 } 3208 3209 try_rps: 3210 3211 if (map) { 3212 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3213 if (cpu_online(tcpu)) { 3214 cpu = tcpu; 3215 goto done; 3216 } 3217 } 3218 3219 done: 3220 return cpu; 3221 } 3222 3223 #ifdef CONFIG_RFS_ACCEL 3224 3225 /** 3226 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3227 * @dev: Device on which the filter was set 3228 * @rxq_index: RX queue index 3229 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3230 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3231 * 3232 * Drivers that implement ndo_rx_flow_steer() should periodically call 3233 * this function for each installed filter and remove the filters for 3234 * which it returns %true. 3235 */ 3236 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3237 u32 flow_id, u16 filter_id) 3238 { 3239 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3240 struct rps_dev_flow_table *flow_table; 3241 struct rps_dev_flow *rflow; 3242 bool expire = true; 3243 int cpu; 3244 3245 rcu_read_lock(); 3246 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3247 if (flow_table && flow_id <= flow_table->mask) { 3248 rflow = &flow_table->flows[flow_id]; 3249 cpu = ACCESS_ONCE(rflow->cpu); 3250 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 3251 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3252 rflow->last_qtail) < 3253 (int)(10 * flow_table->mask))) 3254 expire = false; 3255 } 3256 rcu_read_unlock(); 3257 return expire; 3258 } 3259 EXPORT_SYMBOL(rps_may_expire_flow); 3260 3261 #endif /* CONFIG_RFS_ACCEL */ 3262 3263 /* Called from hardirq (IPI) context */ 3264 static void rps_trigger_softirq(void *data) 3265 { 3266 struct softnet_data *sd = data; 3267 3268 ____napi_schedule(sd, &sd->backlog); 3269 sd->received_rps++; 3270 } 3271 3272 #endif /* CONFIG_RPS */ 3273 3274 /* 3275 * Check if this softnet_data structure is another cpu one 3276 * If yes, queue it to our IPI list and return 1 3277 * If no, return 0 3278 */ 3279 static int rps_ipi_queued(struct softnet_data *sd) 3280 { 3281 #ifdef CONFIG_RPS 3282 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3283 3284 if (sd != mysd) { 3285 sd->rps_ipi_next = mysd->rps_ipi_list; 3286 mysd->rps_ipi_list = sd; 3287 3288 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3289 return 1; 3290 } 3291 #endif /* CONFIG_RPS */ 3292 return 0; 3293 } 3294 3295 #ifdef CONFIG_NET_FLOW_LIMIT 3296 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3297 #endif 3298 3299 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3300 { 3301 #ifdef CONFIG_NET_FLOW_LIMIT 3302 struct sd_flow_limit *fl; 3303 struct softnet_data *sd; 3304 unsigned int old_flow, new_flow; 3305 3306 if (qlen < (netdev_max_backlog >> 1)) 3307 return false; 3308 3309 sd = this_cpu_ptr(&softnet_data); 3310 3311 rcu_read_lock(); 3312 fl = rcu_dereference(sd->flow_limit); 3313 if (fl) { 3314 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3315 old_flow = fl->history[fl->history_head]; 3316 fl->history[fl->history_head] = new_flow; 3317 3318 fl->history_head++; 3319 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3320 3321 if (likely(fl->buckets[old_flow])) 3322 fl->buckets[old_flow]--; 3323 3324 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3325 fl->count++; 3326 rcu_read_unlock(); 3327 return true; 3328 } 3329 } 3330 rcu_read_unlock(); 3331 #endif 3332 return false; 3333 } 3334 3335 /* 3336 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3337 * queue (may be a remote CPU queue). 3338 */ 3339 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3340 unsigned int *qtail) 3341 { 3342 struct softnet_data *sd; 3343 unsigned long flags; 3344 unsigned int qlen; 3345 3346 sd = &per_cpu(softnet_data, cpu); 3347 3348 local_irq_save(flags); 3349 3350 rps_lock(sd); 3351 qlen = skb_queue_len(&sd->input_pkt_queue); 3352 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3353 if (qlen) { 3354 enqueue: 3355 __skb_queue_tail(&sd->input_pkt_queue, skb); 3356 input_queue_tail_incr_save(sd, qtail); 3357 rps_unlock(sd); 3358 local_irq_restore(flags); 3359 return NET_RX_SUCCESS; 3360 } 3361 3362 /* Schedule NAPI for backlog device 3363 * We can use non atomic operation since we own the queue lock 3364 */ 3365 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3366 if (!rps_ipi_queued(sd)) 3367 ____napi_schedule(sd, &sd->backlog); 3368 } 3369 goto enqueue; 3370 } 3371 3372 sd->dropped++; 3373 rps_unlock(sd); 3374 3375 local_irq_restore(flags); 3376 3377 atomic_long_inc(&skb->dev->rx_dropped); 3378 kfree_skb(skb); 3379 return NET_RX_DROP; 3380 } 3381 3382 static int netif_rx_internal(struct sk_buff *skb) 3383 { 3384 int ret; 3385 3386 net_timestamp_check(netdev_tstamp_prequeue, skb); 3387 3388 trace_netif_rx(skb); 3389 #ifdef CONFIG_RPS 3390 if (static_key_false(&rps_needed)) { 3391 struct rps_dev_flow voidflow, *rflow = &voidflow; 3392 int cpu; 3393 3394 preempt_disable(); 3395 rcu_read_lock(); 3396 3397 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3398 if (cpu < 0) 3399 cpu = smp_processor_id(); 3400 3401 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3402 3403 rcu_read_unlock(); 3404 preempt_enable(); 3405 } else 3406 #endif 3407 { 3408 unsigned int qtail; 3409 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3410 put_cpu(); 3411 } 3412 return ret; 3413 } 3414 3415 /** 3416 * netif_rx - post buffer to the network code 3417 * @skb: buffer to post 3418 * 3419 * This function receives a packet from a device driver and queues it for 3420 * the upper (protocol) levels to process. It always succeeds. The buffer 3421 * may be dropped during processing for congestion control or by the 3422 * protocol layers. 3423 * 3424 * return values: 3425 * NET_RX_SUCCESS (no congestion) 3426 * NET_RX_DROP (packet was dropped) 3427 * 3428 */ 3429 3430 int netif_rx(struct sk_buff *skb) 3431 { 3432 trace_netif_rx_entry(skb); 3433 3434 return netif_rx_internal(skb); 3435 } 3436 EXPORT_SYMBOL(netif_rx); 3437 3438 int netif_rx_ni(struct sk_buff *skb) 3439 { 3440 int err; 3441 3442 trace_netif_rx_ni_entry(skb); 3443 3444 preempt_disable(); 3445 err = netif_rx_internal(skb); 3446 if (local_softirq_pending()) 3447 do_softirq(); 3448 preempt_enable(); 3449 3450 return err; 3451 } 3452 EXPORT_SYMBOL(netif_rx_ni); 3453 3454 static void net_tx_action(struct softirq_action *h) 3455 { 3456 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 3457 3458 if (sd->completion_queue) { 3459 struct sk_buff *clist; 3460 3461 local_irq_disable(); 3462 clist = sd->completion_queue; 3463 sd->completion_queue = NULL; 3464 local_irq_enable(); 3465 3466 while (clist) { 3467 struct sk_buff *skb = clist; 3468 clist = clist->next; 3469 3470 WARN_ON(atomic_read(&skb->users)); 3471 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 3472 trace_consume_skb(skb); 3473 else 3474 trace_kfree_skb(skb, net_tx_action); 3475 __kfree_skb(skb); 3476 } 3477 } 3478 3479 if (sd->output_queue) { 3480 struct Qdisc *head; 3481 3482 local_irq_disable(); 3483 head = sd->output_queue; 3484 sd->output_queue = NULL; 3485 sd->output_queue_tailp = &sd->output_queue; 3486 local_irq_enable(); 3487 3488 while (head) { 3489 struct Qdisc *q = head; 3490 spinlock_t *root_lock; 3491 3492 head = head->next_sched; 3493 3494 root_lock = qdisc_lock(q); 3495 if (spin_trylock(root_lock)) { 3496 smp_mb__before_atomic(); 3497 clear_bit(__QDISC_STATE_SCHED, 3498 &q->state); 3499 qdisc_run(q); 3500 spin_unlock(root_lock); 3501 } else { 3502 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3503 &q->state)) { 3504 __netif_reschedule(q); 3505 } else { 3506 smp_mb__before_atomic(); 3507 clear_bit(__QDISC_STATE_SCHED, 3508 &q->state); 3509 } 3510 } 3511 } 3512 } 3513 } 3514 3515 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3516 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3517 /* This hook is defined here for ATM LANE */ 3518 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3519 unsigned char *addr) __read_mostly; 3520 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3521 #endif 3522 3523 #ifdef CONFIG_NET_CLS_ACT 3524 /* TODO: Maybe we should just force sch_ingress to be compiled in 3525 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3526 * a compare and 2 stores extra right now if we dont have it on 3527 * but have CONFIG_NET_CLS_ACT 3528 * NOTE: This doesn't stop any functionality; if you dont have 3529 * the ingress scheduler, you just can't add policies on ingress. 3530 * 3531 */ 3532 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3533 { 3534 struct net_device *dev = skb->dev; 3535 u32 ttl = G_TC_RTTL(skb->tc_verd); 3536 int result = TC_ACT_OK; 3537 struct Qdisc *q; 3538 3539 if (unlikely(MAX_RED_LOOP < ttl++)) { 3540 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n", 3541 skb->skb_iif, dev->ifindex); 3542 return TC_ACT_SHOT; 3543 } 3544 3545 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3546 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3547 3548 q = rcu_dereference(rxq->qdisc); 3549 if (q != &noop_qdisc) { 3550 spin_lock(qdisc_lock(q)); 3551 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3552 result = qdisc_enqueue_root(skb, q); 3553 spin_unlock(qdisc_lock(q)); 3554 } 3555 3556 return result; 3557 } 3558 3559 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3560 struct packet_type **pt_prev, 3561 int *ret, struct net_device *orig_dev) 3562 { 3563 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3564 3565 if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc) 3566 return skb; 3567 3568 if (*pt_prev) { 3569 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3570 *pt_prev = NULL; 3571 } 3572 3573 switch (ing_filter(skb, rxq)) { 3574 case TC_ACT_SHOT: 3575 case TC_ACT_STOLEN: 3576 kfree_skb(skb); 3577 return NULL; 3578 } 3579 3580 return skb; 3581 } 3582 #endif 3583 3584 /** 3585 * netdev_rx_handler_register - register receive handler 3586 * @dev: device to register a handler for 3587 * @rx_handler: receive handler to register 3588 * @rx_handler_data: data pointer that is used by rx handler 3589 * 3590 * Register a receive handler for a device. This handler will then be 3591 * called from __netif_receive_skb. A negative errno code is returned 3592 * on a failure. 3593 * 3594 * The caller must hold the rtnl_mutex. 3595 * 3596 * For a general description of rx_handler, see enum rx_handler_result. 3597 */ 3598 int netdev_rx_handler_register(struct net_device *dev, 3599 rx_handler_func_t *rx_handler, 3600 void *rx_handler_data) 3601 { 3602 ASSERT_RTNL(); 3603 3604 if (dev->rx_handler) 3605 return -EBUSY; 3606 3607 /* Note: rx_handler_data must be set before rx_handler */ 3608 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3609 rcu_assign_pointer(dev->rx_handler, rx_handler); 3610 3611 return 0; 3612 } 3613 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3614 3615 /** 3616 * netdev_rx_handler_unregister - unregister receive handler 3617 * @dev: device to unregister a handler from 3618 * 3619 * Unregister a receive handler from a device. 3620 * 3621 * The caller must hold the rtnl_mutex. 3622 */ 3623 void netdev_rx_handler_unregister(struct net_device *dev) 3624 { 3625 3626 ASSERT_RTNL(); 3627 RCU_INIT_POINTER(dev->rx_handler, NULL); 3628 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 3629 * section has a guarantee to see a non NULL rx_handler_data 3630 * as well. 3631 */ 3632 synchronize_net(); 3633 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3634 } 3635 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3636 3637 /* 3638 * Limit the use of PFMEMALLOC reserves to those protocols that implement 3639 * the special handling of PFMEMALLOC skbs. 3640 */ 3641 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 3642 { 3643 switch (skb->protocol) { 3644 case htons(ETH_P_ARP): 3645 case htons(ETH_P_IP): 3646 case htons(ETH_P_IPV6): 3647 case htons(ETH_P_8021Q): 3648 case htons(ETH_P_8021AD): 3649 return true; 3650 default: 3651 return false; 3652 } 3653 } 3654 3655 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 3656 { 3657 struct packet_type *ptype, *pt_prev; 3658 rx_handler_func_t *rx_handler; 3659 struct net_device *orig_dev; 3660 bool deliver_exact = false; 3661 int ret = NET_RX_DROP; 3662 __be16 type; 3663 3664 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3665 3666 trace_netif_receive_skb(skb); 3667 3668 orig_dev = skb->dev; 3669 3670 skb_reset_network_header(skb); 3671 if (!skb_transport_header_was_set(skb)) 3672 skb_reset_transport_header(skb); 3673 skb_reset_mac_len(skb); 3674 3675 pt_prev = NULL; 3676 3677 rcu_read_lock(); 3678 3679 another_round: 3680 skb->skb_iif = skb->dev->ifindex; 3681 3682 __this_cpu_inc(softnet_data.processed); 3683 3684 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 3685 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 3686 skb = skb_vlan_untag(skb); 3687 if (unlikely(!skb)) 3688 goto unlock; 3689 } 3690 3691 #ifdef CONFIG_NET_CLS_ACT 3692 if (skb->tc_verd & TC_NCLS) { 3693 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3694 goto ncls; 3695 } 3696 #endif 3697 3698 if (pfmemalloc) 3699 goto skip_taps; 3700 3701 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3702 if (pt_prev) 3703 ret = deliver_skb(skb, pt_prev, orig_dev); 3704 pt_prev = ptype; 3705 } 3706 3707 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 3708 if (pt_prev) 3709 ret = deliver_skb(skb, pt_prev, orig_dev); 3710 pt_prev = ptype; 3711 } 3712 3713 skip_taps: 3714 #ifdef CONFIG_NET_CLS_ACT 3715 if (static_key_false(&ingress_needed)) { 3716 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3717 if (!skb) 3718 goto unlock; 3719 } 3720 3721 skb->tc_verd = 0; 3722 ncls: 3723 #endif 3724 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 3725 goto drop; 3726 3727 if (skb_vlan_tag_present(skb)) { 3728 if (pt_prev) { 3729 ret = deliver_skb(skb, pt_prev, orig_dev); 3730 pt_prev = NULL; 3731 } 3732 if (vlan_do_receive(&skb)) 3733 goto another_round; 3734 else if (unlikely(!skb)) 3735 goto unlock; 3736 } 3737 3738 rx_handler = rcu_dereference(skb->dev->rx_handler); 3739 if (rx_handler) { 3740 if (pt_prev) { 3741 ret = deliver_skb(skb, pt_prev, orig_dev); 3742 pt_prev = NULL; 3743 } 3744 switch (rx_handler(&skb)) { 3745 case RX_HANDLER_CONSUMED: 3746 ret = NET_RX_SUCCESS; 3747 goto unlock; 3748 case RX_HANDLER_ANOTHER: 3749 goto another_round; 3750 case RX_HANDLER_EXACT: 3751 deliver_exact = true; 3752 case RX_HANDLER_PASS: 3753 break; 3754 default: 3755 BUG(); 3756 } 3757 } 3758 3759 if (unlikely(skb_vlan_tag_present(skb))) { 3760 if (skb_vlan_tag_get_id(skb)) 3761 skb->pkt_type = PACKET_OTHERHOST; 3762 /* Note: we might in the future use prio bits 3763 * and set skb->priority like in vlan_do_receive() 3764 * For the time being, just ignore Priority Code Point 3765 */ 3766 skb->vlan_tci = 0; 3767 } 3768 3769 type = skb->protocol; 3770 3771 /* deliver only exact match when indicated */ 3772 if (likely(!deliver_exact)) { 3773 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 3774 &ptype_base[ntohs(type) & 3775 PTYPE_HASH_MASK]); 3776 } 3777 3778 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 3779 &orig_dev->ptype_specific); 3780 3781 if (unlikely(skb->dev != orig_dev)) { 3782 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 3783 &skb->dev->ptype_specific); 3784 } 3785 3786 if (pt_prev) { 3787 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 3788 goto drop; 3789 else 3790 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3791 } else { 3792 drop: 3793 atomic_long_inc(&skb->dev->rx_dropped); 3794 kfree_skb(skb); 3795 /* Jamal, now you will not able to escape explaining 3796 * me how you were going to use this. :-) 3797 */ 3798 ret = NET_RX_DROP; 3799 } 3800 3801 unlock: 3802 rcu_read_unlock(); 3803 return ret; 3804 } 3805 3806 static int __netif_receive_skb(struct sk_buff *skb) 3807 { 3808 int ret; 3809 3810 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 3811 unsigned long pflags = current->flags; 3812 3813 /* 3814 * PFMEMALLOC skbs are special, they should 3815 * - be delivered to SOCK_MEMALLOC sockets only 3816 * - stay away from userspace 3817 * - have bounded memory usage 3818 * 3819 * Use PF_MEMALLOC as this saves us from propagating the allocation 3820 * context down to all allocation sites. 3821 */ 3822 current->flags |= PF_MEMALLOC; 3823 ret = __netif_receive_skb_core(skb, true); 3824 tsk_restore_flags(current, pflags, PF_MEMALLOC); 3825 } else 3826 ret = __netif_receive_skb_core(skb, false); 3827 3828 return ret; 3829 } 3830 3831 static int netif_receive_skb_internal(struct sk_buff *skb) 3832 { 3833 net_timestamp_check(netdev_tstamp_prequeue, skb); 3834 3835 if (skb_defer_rx_timestamp(skb)) 3836 return NET_RX_SUCCESS; 3837 3838 #ifdef CONFIG_RPS 3839 if (static_key_false(&rps_needed)) { 3840 struct rps_dev_flow voidflow, *rflow = &voidflow; 3841 int cpu, ret; 3842 3843 rcu_read_lock(); 3844 3845 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3846 3847 if (cpu >= 0) { 3848 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3849 rcu_read_unlock(); 3850 return ret; 3851 } 3852 rcu_read_unlock(); 3853 } 3854 #endif 3855 return __netif_receive_skb(skb); 3856 } 3857 3858 /** 3859 * netif_receive_skb - process receive buffer from network 3860 * @skb: buffer to process 3861 * 3862 * netif_receive_skb() is the main receive data processing function. 3863 * It always succeeds. The buffer may be dropped during processing 3864 * for congestion control or by the protocol layers. 3865 * 3866 * This function may only be called from softirq context and interrupts 3867 * should be enabled. 3868 * 3869 * Return values (usually ignored): 3870 * NET_RX_SUCCESS: no congestion 3871 * NET_RX_DROP: packet was dropped 3872 */ 3873 int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb) 3874 { 3875 trace_netif_receive_skb_entry(skb); 3876 3877 return netif_receive_skb_internal(skb); 3878 } 3879 EXPORT_SYMBOL(netif_receive_skb_sk); 3880 3881 /* Network device is going away, flush any packets still pending 3882 * Called with irqs disabled. 3883 */ 3884 static void flush_backlog(void *arg) 3885 { 3886 struct net_device *dev = arg; 3887 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 3888 struct sk_buff *skb, *tmp; 3889 3890 rps_lock(sd); 3891 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3892 if (skb->dev == dev) { 3893 __skb_unlink(skb, &sd->input_pkt_queue); 3894 kfree_skb(skb); 3895 input_queue_head_incr(sd); 3896 } 3897 } 3898 rps_unlock(sd); 3899 3900 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3901 if (skb->dev == dev) { 3902 __skb_unlink(skb, &sd->process_queue); 3903 kfree_skb(skb); 3904 input_queue_head_incr(sd); 3905 } 3906 } 3907 } 3908 3909 static int napi_gro_complete(struct sk_buff *skb) 3910 { 3911 struct packet_offload *ptype; 3912 __be16 type = skb->protocol; 3913 struct list_head *head = &offload_base; 3914 int err = -ENOENT; 3915 3916 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 3917 3918 if (NAPI_GRO_CB(skb)->count == 1) { 3919 skb_shinfo(skb)->gso_size = 0; 3920 goto out; 3921 } 3922 3923 rcu_read_lock(); 3924 list_for_each_entry_rcu(ptype, head, list) { 3925 if (ptype->type != type || !ptype->callbacks.gro_complete) 3926 continue; 3927 3928 err = ptype->callbacks.gro_complete(skb, 0); 3929 break; 3930 } 3931 rcu_read_unlock(); 3932 3933 if (err) { 3934 WARN_ON(&ptype->list == head); 3935 kfree_skb(skb); 3936 return NET_RX_SUCCESS; 3937 } 3938 3939 out: 3940 return netif_receive_skb_internal(skb); 3941 } 3942 3943 /* napi->gro_list contains packets ordered by age. 3944 * youngest packets at the head of it. 3945 * Complete skbs in reverse order to reduce latencies. 3946 */ 3947 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 3948 { 3949 struct sk_buff *skb, *prev = NULL; 3950 3951 /* scan list and build reverse chain */ 3952 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 3953 skb->prev = prev; 3954 prev = skb; 3955 } 3956 3957 for (skb = prev; skb; skb = prev) { 3958 skb->next = NULL; 3959 3960 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 3961 return; 3962 3963 prev = skb->prev; 3964 napi_gro_complete(skb); 3965 napi->gro_count--; 3966 } 3967 3968 napi->gro_list = NULL; 3969 } 3970 EXPORT_SYMBOL(napi_gro_flush); 3971 3972 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 3973 { 3974 struct sk_buff *p; 3975 unsigned int maclen = skb->dev->hard_header_len; 3976 u32 hash = skb_get_hash_raw(skb); 3977 3978 for (p = napi->gro_list; p; p = p->next) { 3979 unsigned long diffs; 3980 3981 NAPI_GRO_CB(p)->flush = 0; 3982 3983 if (hash != skb_get_hash_raw(p)) { 3984 NAPI_GRO_CB(p)->same_flow = 0; 3985 continue; 3986 } 3987 3988 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3989 diffs |= p->vlan_tci ^ skb->vlan_tci; 3990 if (maclen == ETH_HLEN) 3991 diffs |= compare_ether_header(skb_mac_header(p), 3992 skb_mac_header(skb)); 3993 else if (!diffs) 3994 diffs = memcmp(skb_mac_header(p), 3995 skb_mac_header(skb), 3996 maclen); 3997 NAPI_GRO_CB(p)->same_flow = !diffs; 3998 } 3999 } 4000 4001 static void skb_gro_reset_offset(struct sk_buff *skb) 4002 { 4003 const struct skb_shared_info *pinfo = skb_shinfo(skb); 4004 const skb_frag_t *frag0 = &pinfo->frags[0]; 4005 4006 NAPI_GRO_CB(skb)->data_offset = 0; 4007 NAPI_GRO_CB(skb)->frag0 = NULL; 4008 NAPI_GRO_CB(skb)->frag0_len = 0; 4009 4010 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 4011 pinfo->nr_frags && 4012 !PageHighMem(skb_frag_page(frag0))) { 4013 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 4014 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 4015 } 4016 } 4017 4018 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 4019 { 4020 struct skb_shared_info *pinfo = skb_shinfo(skb); 4021 4022 BUG_ON(skb->end - skb->tail < grow); 4023 4024 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 4025 4026 skb->data_len -= grow; 4027 skb->tail += grow; 4028 4029 pinfo->frags[0].page_offset += grow; 4030 skb_frag_size_sub(&pinfo->frags[0], grow); 4031 4032 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 4033 skb_frag_unref(skb, 0); 4034 memmove(pinfo->frags, pinfo->frags + 1, 4035 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 4036 } 4037 } 4038 4039 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4040 { 4041 struct sk_buff **pp = NULL; 4042 struct packet_offload *ptype; 4043 __be16 type = skb->protocol; 4044 struct list_head *head = &offload_base; 4045 int same_flow; 4046 enum gro_result ret; 4047 int grow; 4048 4049 if (!(skb->dev->features & NETIF_F_GRO)) 4050 goto normal; 4051 4052 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad) 4053 goto normal; 4054 4055 gro_list_prepare(napi, skb); 4056 4057 rcu_read_lock(); 4058 list_for_each_entry_rcu(ptype, head, list) { 4059 if (ptype->type != type || !ptype->callbacks.gro_receive) 4060 continue; 4061 4062 skb_set_network_header(skb, skb_gro_offset(skb)); 4063 skb_reset_mac_len(skb); 4064 NAPI_GRO_CB(skb)->same_flow = 0; 4065 NAPI_GRO_CB(skb)->flush = 0; 4066 NAPI_GRO_CB(skb)->free = 0; 4067 NAPI_GRO_CB(skb)->udp_mark = 0; 4068 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 4069 4070 /* Setup for GRO checksum validation */ 4071 switch (skb->ip_summed) { 4072 case CHECKSUM_COMPLETE: 4073 NAPI_GRO_CB(skb)->csum = skb->csum; 4074 NAPI_GRO_CB(skb)->csum_valid = 1; 4075 NAPI_GRO_CB(skb)->csum_cnt = 0; 4076 break; 4077 case CHECKSUM_UNNECESSARY: 4078 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 4079 NAPI_GRO_CB(skb)->csum_valid = 0; 4080 break; 4081 default: 4082 NAPI_GRO_CB(skb)->csum_cnt = 0; 4083 NAPI_GRO_CB(skb)->csum_valid = 0; 4084 } 4085 4086 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4087 break; 4088 } 4089 rcu_read_unlock(); 4090 4091 if (&ptype->list == head) 4092 goto normal; 4093 4094 same_flow = NAPI_GRO_CB(skb)->same_flow; 4095 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 4096 4097 if (pp) { 4098 struct sk_buff *nskb = *pp; 4099 4100 *pp = nskb->next; 4101 nskb->next = NULL; 4102 napi_gro_complete(nskb); 4103 napi->gro_count--; 4104 } 4105 4106 if (same_flow) 4107 goto ok; 4108 4109 if (NAPI_GRO_CB(skb)->flush) 4110 goto normal; 4111 4112 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4113 struct sk_buff *nskb = napi->gro_list; 4114 4115 /* locate the end of the list to select the 'oldest' flow */ 4116 while (nskb->next) { 4117 pp = &nskb->next; 4118 nskb = *pp; 4119 } 4120 *pp = NULL; 4121 nskb->next = NULL; 4122 napi_gro_complete(nskb); 4123 } else { 4124 napi->gro_count++; 4125 } 4126 NAPI_GRO_CB(skb)->count = 1; 4127 NAPI_GRO_CB(skb)->age = jiffies; 4128 NAPI_GRO_CB(skb)->last = skb; 4129 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 4130 skb->next = napi->gro_list; 4131 napi->gro_list = skb; 4132 ret = GRO_HELD; 4133 4134 pull: 4135 grow = skb_gro_offset(skb) - skb_headlen(skb); 4136 if (grow > 0) 4137 gro_pull_from_frag0(skb, grow); 4138 ok: 4139 return ret; 4140 4141 normal: 4142 ret = GRO_NORMAL; 4143 goto pull; 4144 } 4145 4146 struct packet_offload *gro_find_receive_by_type(__be16 type) 4147 { 4148 struct list_head *offload_head = &offload_base; 4149 struct packet_offload *ptype; 4150 4151 list_for_each_entry_rcu(ptype, offload_head, list) { 4152 if (ptype->type != type || !ptype->callbacks.gro_receive) 4153 continue; 4154 return ptype; 4155 } 4156 return NULL; 4157 } 4158 EXPORT_SYMBOL(gro_find_receive_by_type); 4159 4160 struct packet_offload *gro_find_complete_by_type(__be16 type) 4161 { 4162 struct list_head *offload_head = &offload_base; 4163 struct packet_offload *ptype; 4164 4165 list_for_each_entry_rcu(ptype, offload_head, list) { 4166 if (ptype->type != type || !ptype->callbacks.gro_complete) 4167 continue; 4168 return ptype; 4169 } 4170 return NULL; 4171 } 4172 EXPORT_SYMBOL(gro_find_complete_by_type); 4173 4174 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4175 { 4176 switch (ret) { 4177 case GRO_NORMAL: 4178 if (netif_receive_skb_internal(skb)) 4179 ret = GRO_DROP; 4180 break; 4181 4182 case GRO_DROP: 4183 kfree_skb(skb); 4184 break; 4185 4186 case GRO_MERGED_FREE: 4187 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 4188 kmem_cache_free(skbuff_head_cache, skb); 4189 else 4190 __kfree_skb(skb); 4191 break; 4192 4193 case GRO_HELD: 4194 case GRO_MERGED: 4195 break; 4196 } 4197 4198 return ret; 4199 } 4200 4201 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4202 { 4203 trace_napi_gro_receive_entry(skb); 4204 4205 skb_gro_reset_offset(skb); 4206 4207 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 4208 } 4209 EXPORT_SYMBOL(napi_gro_receive); 4210 4211 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 4212 { 4213 if (unlikely(skb->pfmemalloc)) { 4214 consume_skb(skb); 4215 return; 4216 } 4217 __skb_pull(skb, skb_headlen(skb)); 4218 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 4219 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 4220 skb->vlan_tci = 0; 4221 skb->dev = napi->dev; 4222 skb->skb_iif = 0; 4223 skb->encapsulation = 0; 4224 skb_shinfo(skb)->gso_type = 0; 4225 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4226 4227 napi->skb = skb; 4228 } 4229 4230 struct sk_buff *napi_get_frags(struct napi_struct *napi) 4231 { 4232 struct sk_buff *skb = napi->skb; 4233 4234 if (!skb) { 4235 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 4236 napi->skb = skb; 4237 } 4238 return skb; 4239 } 4240 EXPORT_SYMBOL(napi_get_frags); 4241 4242 static gro_result_t napi_frags_finish(struct napi_struct *napi, 4243 struct sk_buff *skb, 4244 gro_result_t ret) 4245 { 4246 switch (ret) { 4247 case GRO_NORMAL: 4248 case GRO_HELD: 4249 __skb_push(skb, ETH_HLEN); 4250 skb->protocol = eth_type_trans(skb, skb->dev); 4251 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 4252 ret = GRO_DROP; 4253 break; 4254 4255 case GRO_DROP: 4256 case GRO_MERGED_FREE: 4257 napi_reuse_skb(napi, skb); 4258 break; 4259 4260 case GRO_MERGED: 4261 break; 4262 } 4263 4264 return ret; 4265 } 4266 4267 /* Upper GRO stack assumes network header starts at gro_offset=0 4268 * Drivers could call both napi_gro_frags() and napi_gro_receive() 4269 * We copy ethernet header into skb->data to have a common layout. 4270 */ 4271 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4272 { 4273 struct sk_buff *skb = napi->skb; 4274 const struct ethhdr *eth; 4275 unsigned int hlen = sizeof(*eth); 4276 4277 napi->skb = NULL; 4278 4279 skb_reset_mac_header(skb); 4280 skb_gro_reset_offset(skb); 4281 4282 eth = skb_gro_header_fast(skb, 0); 4283 if (unlikely(skb_gro_header_hard(skb, hlen))) { 4284 eth = skb_gro_header_slow(skb, hlen, 0); 4285 if (unlikely(!eth)) { 4286 napi_reuse_skb(napi, skb); 4287 return NULL; 4288 } 4289 } else { 4290 gro_pull_from_frag0(skb, hlen); 4291 NAPI_GRO_CB(skb)->frag0 += hlen; 4292 NAPI_GRO_CB(skb)->frag0_len -= hlen; 4293 } 4294 __skb_pull(skb, hlen); 4295 4296 /* 4297 * This works because the only protocols we care about don't require 4298 * special handling. 4299 * We'll fix it up properly in napi_frags_finish() 4300 */ 4301 skb->protocol = eth->h_proto; 4302 4303 return skb; 4304 } 4305 4306 gro_result_t napi_gro_frags(struct napi_struct *napi) 4307 { 4308 struct sk_buff *skb = napi_frags_skb(napi); 4309 4310 if (!skb) 4311 return GRO_DROP; 4312 4313 trace_napi_gro_frags_entry(skb); 4314 4315 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4316 } 4317 EXPORT_SYMBOL(napi_gro_frags); 4318 4319 /* Compute the checksum from gro_offset and return the folded value 4320 * after adding in any pseudo checksum. 4321 */ 4322 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 4323 { 4324 __wsum wsum; 4325 __sum16 sum; 4326 4327 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 4328 4329 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 4330 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 4331 if (likely(!sum)) { 4332 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 4333 !skb->csum_complete_sw) 4334 netdev_rx_csum_fault(skb->dev); 4335 } 4336 4337 NAPI_GRO_CB(skb)->csum = wsum; 4338 NAPI_GRO_CB(skb)->csum_valid = 1; 4339 4340 return sum; 4341 } 4342 EXPORT_SYMBOL(__skb_gro_checksum_complete); 4343 4344 /* 4345 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 4346 * Note: called with local irq disabled, but exits with local irq enabled. 4347 */ 4348 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 4349 { 4350 #ifdef CONFIG_RPS 4351 struct softnet_data *remsd = sd->rps_ipi_list; 4352 4353 if (remsd) { 4354 sd->rps_ipi_list = NULL; 4355 4356 local_irq_enable(); 4357 4358 /* Send pending IPI's to kick RPS processing on remote cpus. */ 4359 while (remsd) { 4360 struct softnet_data *next = remsd->rps_ipi_next; 4361 4362 if (cpu_online(remsd->cpu)) 4363 smp_call_function_single_async(remsd->cpu, 4364 &remsd->csd); 4365 remsd = next; 4366 } 4367 } else 4368 #endif 4369 local_irq_enable(); 4370 } 4371 4372 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 4373 { 4374 #ifdef CONFIG_RPS 4375 return sd->rps_ipi_list != NULL; 4376 #else 4377 return false; 4378 #endif 4379 } 4380 4381 static int process_backlog(struct napi_struct *napi, int quota) 4382 { 4383 int work = 0; 4384 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 4385 4386 /* Check if we have pending ipi, its better to send them now, 4387 * not waiting net_rx_action() end. 4388 */ 4389 if (sd_has_rps_ipi_waiting(sd)) { 4390 local_irq_disable(); 4391 net_rps_action_and_irq_enable(sd); 4392 } 4393 4394 napi->weight = weight_p; 4395 local_irq_disable(); 4396 while (1) { 4397 struct sk_buff *skb; 4398 4399 while ((skb = __skb_dequeue(&sd->process_queue))) { 4400 local_irq_enable(); 4401 __netif_receive_skb(skb); 4402 local_irq_disable(); 4403 input_queue_head_incr(sd); 4404 if (++work >= quota) { 4405 local_irq_enable(); 4406 return work; 4407 } 4408 } 4409 4410 rps_lock(sd); 4411 if (skb_queue_empty(&sd->input_pkt_queue)) { 4412 /* 4413 * Inline a custom version of __napi_complete(). 4414 * only current cpu owns and manipulates this napi, 4415 * and NAPI_STATE_SCHED is the only possible flag set 4416 * on backlog. 4417 * We can use a plain write instead of clear_bit(), 4418 * and we dont need an smp_mb() memory barrier. 4419 */ 4420 napi->state = 0; 4421 rps_unlock(sd); 4422 4423 break; 4424 } 4425 4426 skb_queue_splice_tail_init(&sd->input_pkt_queue, 4427 &sd->process_queue); 4428 rps_unlock(sd); 4429 } 4430 local_irq_enable(); 4431 4432 return work; 4433 } 4434 4435 /** 4436 * __napi_schedule - schedule for receive 4437 * @n: entry to schedule 4438 * 4439 * The entry's receive function will be scheduled to run. 4440 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 4441 */ 4442 void __napi_schedule(struct napi_struct *n) 4443 { 4444 unsigned long flags; 4445 4446 local_irq_save(flags); 4447 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4448 local_irq_restore(flags); 4449 } 4450 EXPORT_SYMBOL(__napi_schedule); 4451 4452 /** 4453 * __napi_schedule_irqoff - schedule for receive 4454 * @n: entry to schedule 4455 * 4456 * Variant of __napi_schedule() assuming hard irqs are masked 4457 */ 4458 void __napi_schedule_irqoff(struct napi_struct *n) 4459 { 4460 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4461 } 4462 EXPORT_SYMBOL(__napi_schedule_irqoff); 4463 4464 void __napi_complete(struct napi_struct *n) 4465 { 4466 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 4467 4468 list_del_init(&n->poll_list); 4469 smp_mb__before_atomic(); 4470 clear_bit(NAPI_STATE_SCHED, &n->state); 4471 } 4472 EXPORT_SYMBOL(__napi_complete); 4473 4474 void napi_complete_done(struct napi_struct *n, int work_done) 4475 { 4476 unsigned long flags; 4477 4478 /* 4479 * don't let napi dequeue from the cpu poll list 4480 * just in case its running on a different cpu 4481 */ 4482 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 4483 return; 4484 4485 if (n->gro_list) { 4486 unsigned long timeout = 0; 4487 4488 if (work_done) 4489 timeout = n->dev->gro_flush_timeout; 4490 4491 if (timeout) 4492 hrtimer_start(&n->timer, ns_to_ktime(timeout), 4493 HRTIMER_MODE_REL_PINNED); 4494 else 4495 napi_gro_flush(n, false); 4496 } 4497 if (likely(list_empty(&n->poll_list))) { 4498 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state)); 4499 } else { 4500 /* If n->poll_list is not empty, we need to mask irqs */ 4501 local_irq_save(flags); 4502 __napi_complete(n); 4503 local_irq_restore(flags); 4504 } 4505 } 4506 EXPORT_SYMBOL(napi_complete_done); 4507 4508 /* must be called under rcu_read_lock(), as we dont take a reference */ 4509 struct napi_struct *napi_by_id(unsigned int napi_id) 4510 { 4511 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 4512 struct napi_struct *napi; 4513 4514 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 4515 if (napi->napi_id == napi_id) 4516 return napi; 4517 4518 return NULL; 4519 } 4520 EXPORT_SYMBOL_GPL(napi_by_id); 4521 4522 void napi_hash_add(struct napi_struct *napi) 4523 { 4524 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) { 4525 4526 spin_lock(&napi_hash_lock); 4527 4528 /* 0 is not a valid id, we also skip an id that is taken 4529 * we expect both events to be extremely rare 4530 */ 4531 napi->napi_id = 0; 4532 while (!napi->napi_id) { 4533 napi->napi_id = ++napi_gen_id; 4534 if (napi_by_id(napi->napi_id)) 4535 napi->napi_id = 0; 4536 } 4537 4538 hlist_add_head_rcu(&napi->napi_hash_node, 4539 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 4540 4541 spin_unlock(&napi_hash_lock); 4542 } 4543 } 4544 EXPORT_SYMBOL_GPL(napi_hash_add); 4545 4546 /* Warning : caller is responsible to make sure rcu grace period 4547 * is respected before freeing memory containing @napi 4548 */ 4549 void napi_hash_del(struct napi_struct *napi) 4550 { 4551 spin_lock(&napi_hash_lock); 4552 4553 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) 4554 hlist_del_rcu(&napi->napi_hash_node); 4555 4556 spin_unlock(&napi_hash_lock); 4557 } 4558 EXPORT_SYMBOL_GPL(napi_hash_del); 4559 4560 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 4561 { 4562 struct napi_struct *napi; 4563 4564 napi = container_of(timer, struct napi_struct, timer); 4565 if (napi->gro_list) 4566 napi_schedule(napi); 4567 4568 return HRTIMER_NORESTART; 4569 } 4570 4571 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 4572 int (*poll)(struct napi_struct *, int), int weight) 4573 { 4574 INIT_LIST_HEAD(&napi->poll_list); 4575 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 4576 napi->timer.function = napi_watchdog; 4577 napi->gro_count = 0; 4578 napi->gro_list = NULL; 4579 napi->skb = NULL; 4580 napi->poll = poll; 4581 if (weight > NAPI_POLL_WEIGHT) 4582 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 4583 weight, dev->name); 4584 napi->weight = weight; 4585 list_add(&napi->dev_list, &dev->napi_list); 4586 napi->dev = dev; 4587 #ifdef CONFIG_NETPOLL 4588 spin_lock_init(&napi->poll_lock); 4589 napi->poll_owner = -1; 4590 #endif 4591 set_bit(NAPI_STATE_SCHED, &napi->state); 4592 } 4593 EXPORT_SYMBOL(netif_napi_add); 4594 4595 void napi_disable(struct napi_struct *n) 4596 { 4597 might_sleep(); 4598 set_bit(NAPI_STATE_DISABLE, &n->state); 4599 4600 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 4601 msleep(1); 4602 4603 hrtimer_cancel(&n->timer); 4604 4605 clear_bit(NAPI_STATE_DISABLE, &n->state); 4606 } 4607 EXPORT_SYMBOL(napi_disable); 4608 4609 void netif_napi_del(struct napi_struct *napi) 4610 { 4611 list_del_init(&napi->dev_list); 4612 napi_free_frags(napi); 4613 4614 kfree_skb_list(napi->gro_list); 4615 napi->gro_list = NULL; 4616 napi->gro_count = 0; 4617 } 4618 EXPORT_SYMBOL(netif_napi_del); 4619 4620 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 4621 { 4622 void *have; 4623 int work, weight; 4624 4625 list_del_init(&n->poll_list); 4626 4627 have = netpoll_poll_lock(n); 4628 4629 weight = n->weight; 4630 4631 /* This NAPI_STATE_SCHED test is for avoiding a race 4632 * with netpoll's poll_napi(). Only the entity which 4633 * obtains the lock and sees NAPI_STATE_SCHED set will 4634 * actually make the ->poll() call. Therefore we avoid 4635 * accidentally calling ->poll() when NAPI is not scheduled. 4636 */ 4637 work = 0; 4638 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 4639 work = n->poll(n, weight); 4640 trace_napi_poll(n); 4641 } 4642 4643 WARN_ON_ONCE(work > weight); 4644 4645 if (likely(work < weight)) 4646 goto out_unlock; 4647 4648 /* Drivers must not modify the NAPI state if they 4649 * consume the entire weight. In such cases this code 4650 * still "owns" the NAPI instance and therefore can 4651 * move the instance around on the list at-will. 4652 */ 4653 if (unlikely(napi_disable_pending(n))) { 4654 napi_complete(n); 4655 goto out_unlock; 4656 } 4657 4658 if (n->gro_list) { 4659 /* flush too old packets 4660 * If HZ < 1000, flush all packets. 4661 */ 4662 napi_gro_flush(n, HZ >= 1000); 4663 } 4664 4665 /* Some drivers may have called napi_schedule 4666 * prior to exhausting their budget. 4667 */ 4668 if (unlikely(!list_empty(&n->poll_list))) { 4669 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 4670 n->dev ? n->dev->name : "backlog"); 4671 goto out_unlock; 4672 } 4673 4674 list_add_tail(&n->poll_list, repoll); 4675 4676 out_unlock: 4677 netpoll_poll_unlock(have); 4678 4679 return work; 4680 } 4681 4682 static void net_rx_action(struct softirq_action *h) 4683 { 4684 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4685 unsigned long time_limit = jiffies + 2; 4686 int budget = netdev_budget; 4687 LIST_HEAD(list); 4688 LIST_HEAD(repoll); 4689 4690 local_irq_disable(); 4691 list_splice_init(&sd->poll_list, &list); 4692 local_irq_enable(); 4693 4694 for (;;) { 4695 struct napi_struct *n; 4696 4697 if (list_empty(&list)) { 4698 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 4699 return; 4700 break; 4701 } 4702 4703 n = list_first_entry(&list, struct napi_struct, poll_list); 4704 budget -= napi_poll(n, &repoll); 4705 4706 /* If softirq window is exhausted then punt. 4707 * Allow this to run for 2 jiffies since which will allow 4708 * an average latency of 1.5/HZ. 4709 */ 4710 if (unlikely(budget <= 0 || 4711 time_after_eq(jiffies, time_limit))) { 4712 sd->time_squeeze++; 4713 break; 4714 } 4715 } 4716 4717 local_irq_disable(); 4718 4719 list_splice_tail_init(&sd->poll_list, &list); 4720 list_splice_tail(&repoll, &list); 4721 list_splice(&list, &sd->poll_list); 4722 if (!list_empty(&sd->poll_list)) 4723 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4724 4725 net_rps_action_and_irq_enable(sd); 4726 } 4727 4728 struct netdev_adjacent { 4729 struct net_device *dev; 4730 4731 /* upper master flag, there can only be one master device per list */ 4732 bool master; 4733 4734 /* counter for the number of times this device was added to us */ 4735 u16 ref_nr; 4736 4737 /* private field for the users */ 4738 void *private; 4739 4740 struct list_head list; 4741 struct rcu_head rcu; 4742 }; 4743 4744 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev, 4745 struct net_device *adj_dev, 4746 struct list_head *adj_list) 4747 { 4748 struct netdev_adjacent *adj; 4749 4750 list_for_each_entry(adj, adj_list, list) { 4751 if (adj->dev == adj_dev) 4752 return adj; 4753 } 4754 return NULL; 4755 } 4756 4757 /** 4758 * netdev_has_upper_dev - Check if device is linked to an upper device 4759 * @dev: device 4760 * @upper_dev: upper device to check 4761 * 4762 * Find out if a device is linked to specified upper device and return true 4763 * in case it is. Note that this checks only immediate upper device, 4764 * not through a complete stack of devices. The caller must hold the RTNL lock. 4765 */ 4766 bool netdev_has_upper_dev(struct net_device *dev, 4767 struct net_device *upper_dev) 4768 { 4769 ASSERT_RTNL(); 4770 4771 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper); 4772 } 4773 EXPORT_SYMBOL(netdev_has_upper_dev); 4774 4775 /** 4776 * netdev_has_any_upper_dev - Check if device is linked to some device 4777 * @dev: device 4778 * 4779 * Find out if a device is linked to an upper device and return true in case 4780 * it is. The caller must hold the RTNL lock. 4781 */ 4782 static bool netdev_has_any_upper_dev(struct net_device *dev) 4783 { 4784 ASSERT_RTNL(); 4785 4786 return !list_empty(&dev->all_adj_list.upper); 4787 } 4788 4789 /** 4790 * netdev_master_upper_dev_get - Get master upper device 4791 * @dev: device 4792 * 4793 * Find a master upper device and return pointer to it or NULL in case 4794 * it's not there. The caller must hold the RTNL lock. 4795 */ 4796 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 4797 { 4798 struct netdev_adjacent *upper; 4799 4800 ASSERT_RTNL(); 4801 4802 if (list_empty(&dev->adj_list.upper)) 4803 return NULL; 4804 4805 upper = list_first_entry(&dev->adj_list.upper, 4806 struct netdev_adjacent, list); 4807 if (likely(upper->master)) 4808 return upper->dev; 4809 return NULL; 4810 } 4811 EXPORT_SYMBOL(netdev_master_upper_dev_get); 4812 4813 void *netdev_adjacent_get_private(struct list_head *adj_list) 4814 { 4815 struct netdev_adjacent *adj; 4816 4817 adj = list_entry(adj_list, struct netdev_adjacent, list); 4818 4819 return adj->private; 4820 } 4821 EXPORT_SYMBOL(netdev_adjacent_get_private); 4822 4823 /** 4824 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 4825 * @dev: device 4826 * @iter: list_head ** of the current position 4827 * 4828 * Gets the next device from the dev's upper list, starting from iter 4829 * position. The caller must hold RCU read lock. 4830 */ 4831 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4832 struct list_head **iter) 4833 { 4834 struct netdev_adjacent *upper; 4835 4836 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 4837 4838 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4839 4840 if (&upper->list == &dev->adj_list.upper) 4841 return NULL; 4842 4843 *iter = &upper->list; 4844 4845 return upper->dev; 4846 } 4847 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 4848 4849 /** 4850 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list 4851 * @dev: device 4852 * @iter: list_head ** of the current position 4853 * 4854 * Gets the next device from the dev's upper list, starting from iter 4855 * position. The caller must hold RCU read lock. 4856 */ 4857 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4858 struct list_head **iter) 4859 { 4860 struct netdev_adjacent *upper; 4861 4862 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 4863 4864 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4865 4866 if (&upper->list == &dev->all_adj_list.upper) 4867 return NULL; 4868 4869 *iter = &upper->list; 4870 4871 return upper->dev; 4872 } 4873 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu); 4874 4875 /** 4876 * netdev_lower_get_next_private - Get the next ->private from the 4877 * lower neighbour list 4878 * @dev: device 4879 * @iter: list_head ** of the current position 4880 * 4881 * Gets the next netdev_adjacent->private from the dev's lower neighbour 4882 * list, starting from iter position. The caller must hold either hold the 4883 * RTNL lock or its own locking that guarantees that the neighbour lower 4884 * list will remain unchainged. 4885 */ 4886 void *netdev_lower_get_next_private(struct net_device *dev, 4887 struct list_head **iter) 4888 { 4889 struct netdev_adjacent *lower; 4890 4891 lower = list_entry(*iter, struct netdev_adjacent, list); 4892 4893 if (&lower->list == &dev->adj_list.lower) 4894 return NULL; 4895 4896 *iter = lower->list.next; 4897 4898 return lower->private; 4899 } 4900 EXPORT_SYMBOL(netdev_lower_get_next_private); 4901 4902 /** 4903 * netdev_lower_get_next_private_rcu - Get the next ->private from the 4904 * lower neighbour list, RCU 4905 * variant 4906 * @dev: device 4907 * @iter: list_head ** of the current position 4908 * 4909 * Gets the next netdev_adjacent->private from the dev's lower neighbour 4910 * list, starting from iter position. The caller must hold RCU read lock. 4911 */ 4912 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4913 struct list_head **iter) 4914 { 4915 struct netdev_adjacent *lower; 4916 4917 WARN_ON_ONCE(!rcu_read_lock_held()); 4918 4919 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4920 4921 if (&lower->list == &dev->adj_list.lower) 4922 return NULL; 4923 4924 *iter = &lower->list; 4925 4926 return lower->private; 4927 } 4928 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 4929 4930 /** 4931 * netdev_lower_get_next - Get the next device from the lower neighbour 4932 * list 4933 * @dev: device 4934 * @iter: list_head ** of the current position 4935 * 4936 * Gets the next netdev_adjacent from the dev's lower neighbour 4937 * list, starting from iter position. The caller must hold RTNL lock or 4938 * its own locking that guarantees that the neighbour lower 4939 * list will remain unchainged. 4940 */ 4941 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 4942 { 4943 struct netdev_adjacent *lower; 4944 4945 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 4946 4947 if (&lower->list == &dev->adj_list.lower) 4948 return NULL; 4949 4950 *iter = &lower->list; 4951 4952 return lower->dev; 4953 } 4954 EXPORT_SYMBOL(netdev_lower_get_next); 4955 4956 /** 4957 * netdev_lower_get_first_private_rcu - Get the first ->private from the 4958 * lower neighbour list, RCU 4959 * variant 4960 * @dev: device 4961 * 4962 * Gets the first netdev_adjacent->private from the dev's lower neighbour 4963 * list. The caller must hold RCU read lock. 4964 */ 4965 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 4966 { 4967 struct netdev_adjacent *lower; 4968 4969 lower = list_first_or_null_rcu(&dev->adj_list.lower, 4970 struct netdev_adjacent, list); 4971 if (lower) 4972 return lower->private; 4973 return NULL; 4974 } 4975 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 4976 4977 /** 4978 * netdev_master_upper_dev_get_rcu - Get master upper device 4979 * @dev: device 4980 * 4981 * Find a master upper device and return pointer to it or NULL in case 4982 * it's not there. The caller must hold the RCU read lock. 4983 */ 4984 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 4985 { 4986 struct netdev_adjacent *upper; 4987 4988 upper = list_first_or_null_rcu(&dev->adj_list.upper, 4989 struct netdev_adjacent, list); 4990 if (upper && likely(upper->master)) 4991 return upper->dev; 4992 return NULL; 4993 } 4994 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 4995 4996 static int netdev_adjacent_sysfs_add(struct net_device *dev, 4997 struct net_device *adj_dev, 4998 struct list_head *dev_list) 4999 { 5000 char linkname[IFNAMSIZ+7]; 5001 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5002 "upper_%s" : "lower_%s", adj_dev->name); 5003 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 5004 linkname); 5005 } 5006 static void netdev_adjacent_sysfs_del(struct net_device *dev, 5007 char *name, 5008 struct list_head *dev_list) 5009 { 5010 char linkname[IFNAMSIZ+7]; 5011 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5012 "upper_%s" : "lower_%s", name); 5013 sysfs_remove_link(&(dev->dev.kobj), linkname); 5014 } 5015 5016 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 5017 struct net_device *adj_dev, 5018 struct list_head *dev_list) 5019 { 5020 return (dev_list == &dev->adj_list.upper || 5021 dev_list == &dev->adj_list.lower) && 5022 net_eq(dev_net(dev), dev_net(adj_dev)); 5023 } 5024 5025 static int __netdev_adjacent_dev_insert(struct net_device *dev, 5026 struct net_device *adj_dev, 5027 struct list_head *dev_list, 5028 void *private, bool master) 5029 { 5030 struct netdev_adjacent *adj; 5031 int ret; 5032 5033 adj = __netdev_find_adj(dev, adj_dev, dev_list); 5034 5035 if (adj) { 5036 adj->ref_nr++; 5037 return 0; 5038 } 5039 5040 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 5041 if (!adj) 5042 return -ENOMEM; 5043 5044 adj->dev = adj_dev; 5045 adj->master = master; 5046 adj->ref_nr = 1; 5047 adj->private = private; 5048 dev_hold(adj_dev); 5049 5050 pr_debug("dev_hold for %s, because of link added from %s to %s\n", 5051 adj_dev->name, dev->name, adj_dev->name); 5052 5053 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 5054 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 5055 if (ret) 5056 goto free_adj; 5057 } 5058 5059 /* Ensure that master link is always the first item in list. */ 5060 if (master) { 5061 ret = sysfs_create_link(&(dev->dev.kobj), 5062 &(adj_dev->dev.kobj), "master"); 5063 if (ret) 5064 goto remove_symlinks; 5065 5066 list_add_rcu(&adj->list, dev_list); 5067 } else { 5068 list_add_tail_rcu(&adj->list, dev_list); 5069 } 5070 5071 return 0; 5072 5073 remove_symlinks: 5074 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5075 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5076 free_adj: 5077 kfree(adj); 5078 dev_put(adj_dev); 5079 5080 return ret; 5081 } 5082 5083 static void __netdev_adjacent_dev_remove(struct net_device *dev, 5084 struct net_device *adj_dev, 5085 struct list_head *dev_list) 5086 { 5087 struct netdev_adjacent *adj; 5088 5089 adj = __netdev_find_adj(dev, adj_dev, dev_list); 5090 5091 if (!adj) { 5092 pr_err("tried to remove device %s from %s\n", 5093 dev->name, adj_dev->name); 5094 BUG(); 5095 } 5096 5097 if (adj->ref_nr > 1) { 5098 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name, 5099 adj->ref_nr-1); 5100 adj->ref_nr--; 5101 return; 5102 } 5103 5104 if (adj->master) 5105 sysfs_remove_link(&(dev->dev.kobj), "master"); 5106 5107 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5108 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5109 5110 list_del_rcu(&adj->list); 5111 pr_debug("dev_put for %s, because link removed from %s to %s\n", 5112 adj_dev->name, dev->name, adj_dev->name); 5113 dev_put(adj_dev); 5114 kfree_rcu(adj, rcu); 5115 } 5116 5117 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 5118 struct net_device *upper_dev, 5119 struct list_head *up_list, 5120 struct list_head *down_list, 5121 void *private, bool master) 5122 { 5123 int ret; 5124 5125 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private, 5126 master); 5127 if (ret) 5128 return ret; 5129 5130 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private, 5131 false); 5132 if (ret) { 5133 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 5134 return ret; 5135 } 5136 5137 return 0; 5138 } 5139 5140 static int __netdev_adjacent_dev_link(struct net_device *dev, 5141 struct net_device *upper_dev) 5142 { 5143 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 5144 &dev->all_adj_list.upper, 5145 &upper_dev->all_adj_list.lower, 5146 NULL, false); 5147 } 5148 5149 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 5150 struct net_device *upper_dev, 5151 struct list_head *up_list, 5152 struct list_head *down_list) 5153 { 5154 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 5155 __netdev_adjacent_dev_remove(upper_dev, dev, down_list); 5156 } 5157 5158 static void __netdev_adjacent_dev_unlink(struct net_device *dev, 5159 struct net_device *upper_dev) 5160 { 5161 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 5162 &dev->all_adj_list.upper, 5163 &upper_dev->all_adj_list.lower); 5164 } 5165 5166 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 5167 struct net_device *upper_dev, 5168 void *private, bool master) 5169 { 5170 int ret = __netdev_adjacent_dev_link(dev, upper_dev); 5171 5172 if (ret) 5173 return ret; 5174 5175 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 5176 &dev->adj_list.upper, 5177 &upper_dev->adj_list.lower, 5178 private, master); 5179 if (ret) { 5180 __netdev_adjacent_dev_unlink(dev, upper_dev); 5181 return ret; 5182 } 5183 5184 return 0; 5185 } 5186 5187 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 5188 struct net_device *upper_dev) 5189 { 5190 __netdev_adjacent_dev_unlink(dev, upper_dev); 5191 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 5192 &dev->adj_list.upper, 5193 &upper_dev->adj_list.lower); 5194 } 5195 5196 static int __netdev_upper_dev_link(struct net_device *dev, 5197 struct net_device *upper_dev, bool master, 5198 void *private) 5199 { 5200 struct netdev_adjacent *i, *j, *to_i, *to_j; 5201 int ret = 0; 5202 5203 ASSERT_RTNL(); 5204 5205 if (dev == upper_dev) 5206 return -EBUSY; 5207 5208 /* To prevent loops, check if dev is not upper device to upper_dev. */ 5209 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper)) 5210 return -EBUSY; 5211 5212 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper)) 5213 return -EEXIST; 5214 5215 if (master && netdev_master_upper_dev_get(dev)) 5216 return -EBUSY; 5217 5218 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private, 5219 master); 5220 if (ret) 5221 return ret; 5222 5223 /* Now that we linked these devs, make all the upper_dev's 5224 * all_adj_list.upper visible to every dev's all_adj_list.lower an 5225 * versa, and don't forget the devices itself. All of these 5226 * links are non-neighbours. 5227 */ 5228 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5229 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5230 pr_debug("Interlinking %s with %s, non-neighbour\n", 5231 i->dev->name, j->dev->name); 5232 ret = __netdev_adjacent_dev_link(i->dev, j->dev); 5233 if (ret) 5234 goto rollback_mesh; 5235 } 5236 } 5237 5238 /* add dev to every upper_dev's upper device */ 5239 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 5240 pr_debug("linking %s's upper device %s with %s\n", 5241 upper_dev->name, i->dev->name, dev->name); 5242 ret = __netdev_adjacent_dev_link(dev, i->dev); 5243 if (ret) 5244 goto rollback_upper_mesh; 5245 } 5246 5247 /* add upper_dev to every dev's lower device */ 5248 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5249 pr_debug("linking %s's lower device %s with %s\n", dev->name, 5250 i->dev->name, upper_dev->name); 5251 ret = __netdev_adjacent_dev_link(i->dev, upper_dev); 5252 if (ret) 5253 goto rollback_lower_mesh; 5254 } 5255 5256 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 5257 return 0; 5258 5259 rollback_lower_mesh: 5260 to_i = i; 5261 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5262 if (i == to_i) 5263 break; 5264 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5265 } 5266 5267 i = NULL; 5268 5269 rollback_upper_mesh: 5270 to_i = i; 5271 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 5272 if (i == to_i) 5273 break; 5274 __netdev_adjacent_dev_unlink(dev, i->dev); 5275 } 5276 5277 i = j = NULL; 5278 5279 rollback_mesh: 5280 to_i = i; 5281 to_j = j; 5282 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5283 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5284 if (i == to_i && j == to_j) 5285 break; 5286 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5287 } 5288 if (i == to_i) 5289 break; 5290 } 5291 5292 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5293 5294 return ret; 5295 } 5296 5297 /** 5298 * netdev_upper_dev_link - Add a link to the upper device 5299 * @dev: device 5300 * @upper_dev: new upper device 5301 * 5302 * Adds a link to device which is upper to this one. The caller must hold 5303 * the RTNL lock. On a failure a negative errno code is returned. 5304 * On success the reference counts are adjusted and the function 5305 * returns zero. 5306 */ 5307 int netdev_upper_dev_link(struct net_device *dev, 5308 struct net_device *upper_dev) 5309 { 5310 return __netdev_upper_dev_link(dev, upper_dev, false, NULL); 5311 } 5312 EXPORT_SYMBOL(netdev_upper_dev_link); 5313 5314 /** 5315 * netdev_master_upper_dev_link - Add a master link to the upper device 5316 * @dev: device 5317 * @upper_dev: new upper device 5318 * 5319 * Adds a link to device which is upper to this one. In this case, only 5320 * one master upper device can be linked, although other non-master devices 5321 * might be linked as well. The caller must hold the RTNL lock. 5322 * On a failure a negative errno code is returned. On success the reference 5323 * counts are adjusted and the function returns zero. 5324 */ 5325 int netdev_master_upper_dev_link(struct net_device *dev, 5326 struct net_device *upper_dev) 5327 { 5328 return __netdev_upper_dev_link(dev, upper_dev, true, NULL); 5329 } 5330 EXPORT_SYMBOL(netdev_master_upper_dev_link); 5331 5332 int netdev_master_upper_dev_link_private(struct net_device *dev, 5333 struct net_device *upper_dev, 5334 void *private) 5335 { 5336 return __netdev_upper_dev_link(dev, upper_dev, true, private); 5337 } 5338 EXPORT_SYMBOL(netdev_master_upper_dev_link_private); 5339 5340 /** 5341 * netdev_upper_dev_unlink - Removes a link to upper device 5342 * @dev: device 5343 * @upper_dev: new upper device 5344 * 5345 * Removes a link to device which is upper to this one. The caller must hold 5346 * the RTNL lock. 5347 */ 5348 void netdev_upper_dev_unlink(struct net_device *dev, 5349 struct net_device *upper_dev) 5350 { 5351 struct netdev_adjacent *i, *j; 5352 ASSERT_RTNL(); 5353 5354 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5355 5356 /* Here is the tricky part. We must remove all dev's lower 5357 * devices from all upper_dev's upper devices and vice 5358 * versa, to maintain the graph relationship. 5359 */ 5360 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5361 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) 5362 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5363 5364 /* remove also the devices itself from lower/upper device 5365 * list 5366 */ 5367 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5368 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5369 5370 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) 5371 __netdev_adjacent_dev_unlink(dev, i->dev); 5372 5373 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 5374 } 5375 EXPORT_SYMBOL(netdev_upper_dev_unlink); 5376 5377 /** 5378 * netdev_bonding_info_change - Dispatch event about slave change 5379 * @dev: device 5380 * @bonding_info: info to dispatch 5381 * 5382 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 5383 * The caller must hold the RTNL lock. 5384 */ 5385 void netdev_bonding_info_change(struct net_device *dev, 5386 struct netdev_bonding_info *bonding_info) 5387 { 5388 struct netdev_notifier_bonding_info info; 5389 5390 memcpy(&info.bonding_info, bonding_info, 5391 sizeof(struct netdev_bonding_info)); 5392 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev, 5393 &info.info); 5394 } 5395 EXPORT_SYMBOL(netdev_bonding_info_change); 5396 5397 static void netdev_adjacent_add_links(struct net_device *dev) 5398 { 5399 struct netdev_adjacent *iter; 5400 5401 struct net *net = dev_net(dev); 5402 5403 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5404 if (!net_eq(net,dev_net(iter->dev))) 5405 continue; 5406 netdev_adjacent_sysfs_add(iter->dev, dev, 5407 &iter->dev->adj_list.lower); 5408 netdev_adjacent_sysfs_add(dev, iter->dev, 5409 &dev->adj_list.upper); 5410 } 5411 5412 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5413 if (!net_eq(net,dev_net(iter->dev))) 5414 continue; 5415 netdev_adjacent_sysfs_add(iter->dev, dev, 5416 &iter->dev->adj_list.upper); 5417 netdev_adjacent_sysfs_add(dev, iter->dev, 5418 &dev->adj_list.lower); 5419 } 5420 } 5421 5422 static void netdev_adjacent_del_links(struct net_device *dev) 5423 { 5424 struct netdev_adjacent *iter; 5425 5426 struct net *net = dev_net(dev); 5427 5428 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5429 if (!net_eq(net,dev_net(iter->dev))) 5430 continue; 5431 netdev_adjacent_sysfs_del(iter->dev, dev->name, 5432 &iter->dev->adj_list.lower); 5433 netdev_adjacent_sysfs_del(dev, iter->dev->name, 5434 &dev->adj_list.upper); 5435 } 5436 5437 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5438 if (!net_eq(net,dev_net(iter->dev))) 5439 continue; 5440 netdev_adjacent_sysfs_del(iter->dev, dev->name, 5441 &iter->dev->adj_list.upper); 5442 netdev_adjacent_sysfs_del(dev, iter->dev->name, 5443 &dev->adj_list.lower); 5444 } 5445 } 5446 5447 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 5448 { 5449 struct netdev_adjacent *iter; 5450 5451 struct net *net = dev_net(dev); 5452 5453 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5454 if (!net_eq(net,dev_net(iter->dev))) 5455 continue; 5456 netdev_adjacent_sysfs_del(iter->dev, oldname, 5457 &iter->dev->adj_list.lower); 5458 netdev_adjacent_sysfs_add(iter->dev, dev, 5459 &iter->dev->adj_list.lower); 5460 } 5461 5462 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5463 if (!net_eq(net,dev_net(iter->dev))) 5464 continue; 5465 netdev_adjacent_sysfs_del(iter->dev, oldname, 5466 &iter->dev->adj_list.upper); 5467 netdev_adjacent_sysfs_add(iter->dev, dev, 5468 &iter->dev->adj_list.upper); 5469 } 5470 } 5471 5472 void *netdev_lower_dev_get_private(struct net_device *dev, 5473 struct net_device *lower_dev) 5474 { 5475 struct netdev_adjacent *lower; 5476 5477 if (!lower_dev) 5478 return NULL; 5479 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower); 5480 if (!lower) 5481 return NULL; 5482 5483 return lower->private; 5484 } 5485 EXPORT_SYMBOL(netdev_lower_dev_get_private); 5486 5487 5488 int dev_get_nest_level(struct net_device *dev, 5489 bool (*type_check)(struct net_device *dev)) 5490 { 5491 struct net_device *lower = NULL; 5492 struct list_head *iter; 5493 int max_nest = -1; 5494 int nest; 5495 5496 ASSERT_RTNL(); 5497 5498 netdev_for_each_lower_dev(dev, lower, iter) { 5499 nest = dev_get_nest_level(lower, type_check); 5500 if (max_nest < nest) 5501 max_nest = nest; 5502 } 5503 5504 if (type_check(dev)) 5505 max_nest++; 5506 5507 return max_nest; 5508 } 5509 EXPORT_SYMBOL(dev_get_nest_level); 5510 5511 static void dev_change_rx_flags(struct net_device *dev, int flags) 5512 { 5513 const struct net_device_ops *ops = dev->netdev_ops; 5514 5515 if (ops->ndo_change_rx_flags) 5516 ops->ndo_change_rx_flags(dev, flags); 5517 } 5518 5519 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 5520 { 5521 unsigned int old_flags = dev->flags; 5522 kuid_t uid; 5523 kgid_t gid; 5524 5525 ASSERT_RTNL(); 5526 5527 dev->flags |= IFF_PROMISC; 5528 dev->promiscuity += inc; 5529 if (dev->promiscuity == 0) { 5530 /* 5531 * Avoid overflow. 5532 * If inc causes overflow, untouch promisc and return error. 5533 */ 5534 if (inc < 0) 5535 dev->flags &= ~IFF_PROMISC; 5536 else { 5537 dev->promiscuity -= inc; 5538 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 5539 dev->name); 5540 return -EOVERFLOW; 5541 } 5542 } 5543 if (dev->flags != old_flags) { 5544 pr_info("device %s %s promiscuous mode\n", 5545 dev->name, 5546 dev->flags & IFF_PROMISC ? "entered" : "left"); 5547 if (audit_enabled) { 5548 current_uid_gid(&uid, &gid); 5549 audit_log(current->audit_context, GFP_ATOMIC, 5550 AUDIT_ANOM_PROMISCUOUS, 5551 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 5552 dev->name, (dev->flags & IFF_PROMISC), 5553 (old_flags & IFF_PROMISC), 5554 from_kuid(&init_user_ns, audit_get_loginuid(current)), 5555 from_kuid(&init_user_ns, uid), 5556 from_kgid(&init_user_ns, gid), 5557 audit_get_sessionid(current)); 5558 } 5559 5560 dev_change_rx_flags(dev, IFF_PROMISC); 5561 } 5562 if (notify) 5563 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 5564 return 0; 5565 } 5566 5567 /** 5568 * dev_set_promiscuity - update promiscuity count on a device 5569 * @dev: device 5570 * @inc: modifier 5571 * 5572 * Add or remove promiscuity from a device. While the count in the device 5573 * remains above zero the interface remains promiscuous. Once it hits zero 5574 * the device reverts back to normal filtering operation. A negative inc 5575 * value is used to drop promiscuity on the device. 5576 * Return 0 if successful or a negative errno code on error. 5577 */ 5578 int dev_set_promiscuity(struct net_device *dev, int inc) 5579 { 5580 unsigned int old_flags = dev->flags; 5581 int err; 5582 5583 err = __dev_set_promiscuity(dev, inc, true); 5584 if (err < 0) 5585 return err; 5586 if (dev->flags != old_flags) 5587 dev_set_rx_mode(dev); 5588 return err; 5589 } 5590 EXPORT_SYMBOL(dev_set_promiscuity); 5591 5592 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 5593 { 5594 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 5595 5596 ASSERT_RTNL(); 5597 5598 dev->flags |= IFF_ALLMULTI; 5599 dev->allmulti += inc; 5600 if (dev->allmulti == 0) { 5601 /* 5602 * Avoid overflow. 5603 * If inc causes overflow, untouch allmulti and return error. 5604 */ 5605 if (inc < 0) 5606 dev->flags &= ~IFF_ALLMULTI; 5607 else { 5608 dev->allmulti -= inc; 5609 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 5610 dev->name); 5611 return -EOVERFLOW; 5612 } 5613 } 5614 if (dev->flags ^ old_flags) { 5615 dev_change_rx_flags(dev, IFF_ALLMULTI); 5616 dev_set_rx_mode(dev); 5617 if (notify) 5618 __dev_notify_flags(dev, old_flags, 5619 dev->gflags ^ old_gflags); 5620 } 5621 return 0; 5622 } 5623 5624 /** 5625 * dev_set_allmulti - update allmulti count on a device 5626 * @dev: device 5627 * @inc: modifier 5628 * 5629 * Add or remove reception of all multicast frames to a device. While the 5630 * count in the device remains above zero the interface remains listening 5631 * to all interfaces. Once it hits zero the device reverts back to normal 5632 * filtering operation. A negative @inc value is used to drop the counter 5633 * when releasing a resource needing all multicasts. 5634 * Return 0 if successful or a negative errno code on error. 5635 */ 5636 5637 int dev_set_allmulti(struct net_device *dev, int inc) 5638 { 5639 return __dev_set_allmulti(dev, inc, true); 5640 } 5641 EXPORT_SYMBOL(dev_set_allmulti); 5642 5643 /* 5644 * Upload unicast and multicast address lists to device and 5645 * configure RX filtering. When the device doesn't support unicast 5646 * filtering it is put in promiscuous mode while unicast addresses 5647 * are present. 5648 */ 5649 void __dev_set_rx_mode(struct net_device *dev) 5650 { 5651 const struct net_device_ops *ops = dev->netdev_ops; 5652 5653 /* dev_open will call this function so the list will stay sane. */ 5654 if (!(dev->flags&IFF_UP)) 5655 return; 5656 5657 if (!netif_device_present(dev)) 5658 return; 5659 5660 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 5661 /* Unicast addresses changes may only happen under the rtnl, 5662 * therefore calling __dev_set_promiscuity here is safe. 5663 */ 5664 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 5665 __dev_set_promiscuity(dev, 1, false); 5666 dev->uc_promisc = true; 5667 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 5668 __dev_set_promiscuity(dev, -1, false); 5669 dev->uc_promisc = false; 5670 } 5671 } 5672 5673 if (ops->ndo_set_rx_mode) 5674 ops->ndo_set_rx_mode(dev); 5675 } 5676 5677 void dev_set_rx_mode(struct net_device *dev) 5678 { 5679 netif_addr_lock_bh(dev); 5680 __dev_set_rx_mode(dev); 5681 netif_addr_unlock_bh(dev); 5682 } 5683 5684 /** 5685 * dev_get_flags - get flags reported to userspace 5686 * @dev: device 5687 * 5688 * Get the combination of flag bits exported through APIs to userspace. 5689 */ 5690 unsigned int dev_get_flags(const struct net_device *dev) 5691 { 5692 unsigned int flags; 5693 5694 flags = (dev->flags & ~(IFF_PROMISC | 5695 IFF_ALLMULTI | 5696 IFF_RUNNING | 5697 IFF_LOWER_UP | 5698 IFF_DORMANT)) | 5699 (dev->gflags & (IFF_PROMISC | 5700 IFF_ALLMULTI)); 5701 5702 if (netif_running(dev)) { 5703 if (netif_oper_up(dev)) 5704 flags |= IFF_RUNNING; 5705 if (netif_carrier_ok(dev)) 5706 flags |= IFF_LOWER_UP; 5707 if (netif_dormant(dev)) 5708 flags |= IFF_DORMANT; 5709 } 5710 5711 return flags; 5712 } 5713 EXPORT_SYMBOL(dev_get_flags); 5714 5715 int __dev_change_flags(struct net_device *dev, unsigned int flags) 5716 { 5717 unsigned int old_flags = dev->flags; 5718 int ret; 5719 5720 ASSERT_RTNL(); 5721 5722 /* 5723 * Set the flags on our device. 5724 */ 5725 5726 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 5727 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 5728 IFF_AUTOMEDIA)) | 5729 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 5730 IFF_ALLMULTI)); 5731 5732 /* 5733 * Load in the correct multicast list now the flags have changed. 5734 */ 5735 5736 if ((old_flags ^ flags) & IFF_MULTICAST) 5737 dev_change_rx_flags(dev, IFF_MULTICAST); 5738 5739 dev_set_rx_mode(dev); 5740 5741 /* 5742 * Have we downed the interface. We handle IFF_UP ourselves 5743 * according to user attempts to set it, rather than blindly 5744 * setting it. 5745 */ 5746 5747 ret = 0; 5748 if ((old_flags ^ flags) & IFF_UP) 5749 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 5750 5751 if ((flags ^ dev->gflags) & IFF_PROMISC) { 5752 int inc = (flags & IFF_PROMISC) ? 1 : -1; 5753 unsigned int old_flags = dev->flags; 5754 5755 dev->gflags ^= IFF_PROMISC; 5756 5757 if (__dev_set_promiscuity(dev, inc, false) >= 0) 5758 if (dev->flags != old_flags) 5759 dev_set_rx_mode(dev); 5760 } 5761 5762 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 5763 is important. Some (broken) drivers set IFF_PROMISC, when 5764 IFF_ALLMULTI is requested not asking us and not reporting. 5765 */ 5766 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 5767 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 5768 5769 dev->gflags ^= IFF_ALLMULTI; 5770 __dev_set_allmulti(dev, inc, false); 5771 } 5772 5773 return ret; 5774 } 5775 5776 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 5777 unsigned int gchanges) 5778 { 5779 unsigned int changes = dev->flags ^ old_flags; 5780 5781 if (gchanges) 5782 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 5783 5784 if (changes & IFF_UP) { 5785 if (dev->flags & IFF_UP) 5786 call_netdevice_notifiers(NETDEV_UP, dev); 5787 else 5788 call_netdevice_notifiers(NETDEV_DOWN, dev); 5789 } 5790 5791 if (dev->flags & IFF_UP && 5792 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 5793 struct netdev_notifier_change_info change_info; 5794 5795 change_info.flags_changed = changes; 5796 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 5797 &change_info.info); 5798 } 5799 } 5800 5801 /** 5802 * dev_change_flags - change device settings 5803 * @dev: device 5804 * @flags: device state flags 5805 * 5806 * Change settings on device based state flags. The flags are 5807 * in the userspace exported format. 5808 */ 5809 int dev_change_flags(struct net_device *dev, unsigned int flags) 5810 { 5811 int ret; 5812 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 5813 5814 ret = __dev_change_flags(dev, flags); 5815 if (ret < 0) 5816 return ret; 5817 5818 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 5819 __dev_notify_flags(dev, old_flags, changes); 5820 return ret; 5821 } 5822 EXPORT_SYMBOL(dev_change_flags); 5823 5824 static int __dev_set_mtu(struct net_device *dev, int new_mtu) 5825 { 5826 const struct net_device_ops *ops = dev->netdev_ops; 5827 5828 if (ops->ndo_change_mtu) 5829 return ops->ndo_change_mtu(dev, new_mtu); 5830 5831 dev->mtu = new_mtu; 5832 return 0; 5833 } 5834 5835 /** 5836 * dev_set_mtu - Change maximum transfer unit 5837 * @dev: device 5838 * @new_mtu: new transfer unit 5839 * 5840 * Change the maximum transfer size of the network device. 5841 */ 5842 int dev_set_mtu(struct net_device *dev, int new_mtu) 5843 { 5844 int err, orig_mtu; 5845 5846 if (new_mtu == dev->mtu) 5847 return 0; 5848 5849 /* MTU must be positive. */ 5850 if (new_mtu < 0) 5851 return -EINVAL; 5852 5853 if (!netif_device_present(dev)) 5854 return -ENODEV; 5855 5856 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 5857 err = notifier_to_errno(err); 5858 if (err) 5859 return err; 5860 5861 orig_mtu = dev->mtu; 5862 err = __dev_set_mtu(dev, new_mtu); 5863 5864 if (!err) { 5865 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 5866 err = notifier_to_errno(err); 5867 if (err) { 5868 /* setting mtu back and notifying everyone again, 5869 * so that they have a chance to revert changes. 5870 */ 5871 __dev_set_mtu(dev, orig_mtu); 5872 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 5873 } 5874 } 5875 return err; 5876 } 5877 EXPORT_SYMBOL(dev_set_mtu); 5878 5879 /** 5880 * dev_set_group - Change group this device belongs to 5881 * @dev: device 5882 * @new_group: group this device should belong to 5883 */ 5884 void dev_set_group(struct net_device *dev, int new_group) 5885 { 5886 dev->group = new_group; 5887 } 5888 EXPORT_SYMBOL(dev_set_group); 5889 5890 /** 5891 * dev_set_mac_address - Change Media Access Control Address 5892 * @dev: device 5893 * @sa: new address 5894 * 5895 * Change the hardware (MAC) address of the device 5896 */ 5897 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 5898 { 5899 const struct net_device_ops *ops = dev->netdev_ops; 5900 int err; 5901 5902 if (!ops->ndo_set_mac_address) 5903 return -EOPNOTSUPP; 5904 if (sa->sa_family != dev->type) 5905 return -EINVAL; 5906 if (!netif_device_present(dev)) 5907 return -ENODEV; 5908 err = ops->ndo_set_mac_address(dev, sa); 5909 if (err) 5910 return err; 5911 dev->addr_assign_type = NET_ADDR_SET; 5912 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 5913 add_device_randomness(dev->dev_addr, dev->addr_len); 5914 return 0; 5915 } 5916 EXPORT_SYMBOL(dev_set_mac_address); 5917 5918 /** 5919 * dev_change_carrier - Change device carrier 5920 * @dev: device 5921 * @new_carrier: new value 5922 * 5923 * Change device carrier 5924 */ 5925 int dev_change_carrier(struct net_device *dev, bool new_carrier) 5926 { 5927 const struct net_device_ops *ops = dev->netdev_ops; 5928 5929 if (!ops->ndo_change_carrier) 5930 return -EOPNOTSUPP; 5931 if (!netif_device_present(dev)) 5932 return -ENODEV; 5933 return ops->ndo_change_carrier(dev, new_carrier); 5934 } 5935 EXPORT_SYMBOL(dev_change_carrier); 5936 5937 /** 5938 * dev_get_phys_port_id - Get device physical port ID 5939 * @dev: device 5940 * @ppid: port ID 5941 * 5942 * Get device physical port ID 5943 */ 5944 int dev_get_phys_port_id(struct net_device *dev, 5945 struct netdev_phys_item_id *ppid) 5946 { 5947 const struct net_device_ops *ops = dev->netdev_ops; 5948 5949 if (!ops->ndo_get_phys_port_id) 5950 return -EOPNOTSUPP; 5951 return ops->ndo_get_phys_port_id(dev, ppid); 5952 } 5953 EXPORT_SYMBOL(dev_get_phys_port_id); 5954 5955 /** 5956 * dev_get_phys_port_name - Get device physical port name 5957 * @dev: device 5958 * @name: port name 5959 * 5960 * Get device physical port name 5961 */ 5962 int dev_get_phys_port_name(struct net_device *dev, 5963 char *name, size_t len) 5964 { 5965 const struct net_device_ops *ops = dev->netdev_ops; 5966 5967 if (!ops->ndo_get_phys_port_name) 5968 return -EOPNOTSUPP; 5969 return ops->ndo_get_phys_port_name(dev, name, len); 5970 } 5971 EXPORT_SYMBOL(dev_get_phys_port_name); 5972 5973 /** 5974 * dev_new_index - allocate an ifindex 5975 * @net: the applicable net namespace 5976 * 5977 * Returns a suitable unique value for a new device interface 5978 * number. The caller must hold the rtnl semaphore or the 5979 * dev_base_lock to be sure it remains unique. 5980 */ 5981 static int dev_new_index(struct net *net) 5982 { 5983 int ifindex = net->ifindex; 5984 for (;;) { 5985 if (++ifindex <= 0) 5986 ifindex = 1; 5987 if (!__dev_get_by_index(net, ifindex)) 5988 return net->ifindex = ifindex; 5989 } 5990 } 5991 5992 /* Delayed registration/unregisteration */ 5993 static LIST_HEAD(net_todo_list); 5994 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 5995 5996 static void net_set_todo(struct net_device *dev) 5997 { 5998 list_add_tail(&dev->todo_list, &net_todo_list); 5999 dev_net(dev)->dev_unreg_count++; 6000 } 6001 6002 static void rollback_registered_many(struct list_head *head) 6003 { 6004 struct net_device *dev, *tmp; 6005 LIST_HEAD(close_head); 6006 6007 BUG_ON(dev_boot_phase); 6008 ASSERT_RTNL(); 6009 6010 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 6011 /* Some devices call without registering 6012 * for initialization unwind. Remove those 6013 * devices and proceed with the remaining. 6014 */ 6015 if (dev->reg_state == NETREG_UNINITIALIZED) { 6016 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 6017 dev->name, dev); 6018 6019 WARN_ON(1); 6020 list_del(&dev->unreg_list); 6021 continue; 6022 } 6023 dev->dismantle = true; 6024 BUG_ON(dev->reg_state != NETREG_REGISTERED); 6025 } 6026 6027 /* If device is running, close it first. */ 6028 list_for_each_entry(dev, head, unreg_list) 6029 list_add_tail(&dev->close_list, &close_head); 6030 dev_close_many(&close_head, true); 6031 6032 list_for_each_entry(dev, head, unreg_list) { 6033 /* And unlink it from device chain. */ 6034 unlist_netdevice(dev); 6035 6036 dev->reg_state = NETREG_UNREGISTERING; 6037 } 6038 6039 synchronize_net(); 6040 6041 list_for_each_entry(dev, head, unreg_list) { 6042 struct sk_buff *skb = NULL; 6043 6044 /* Shutdown queueing discipline. */ 6045 dev_shutdown(dev); 6046 6047 6048 /* Notify protocols, that we are about to destroy 6049 this device. They should clean all the things. 6050 */ 6051 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6052 6053 if (!dev->rtnl_link_ops || 6054 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 6055 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 6056 GFP_KERNEL); 6057 6058 /* 6059 * Flush the unicast and multicast chains 6060 */ 6061 dev_uc_flush(dev); 6062 dev_mc_flush(dev); 6063 6064 if (dev->netdev_ops->ndo_uninit) 6065 dev->netdev_ops->ndo_uninit(dev); 6066 6067 if (skb) 6068 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 6069 6070 /* Notifier chain MUST detach us all upper devices. */ 6071 WARN_ON(netdev_has_any_upper_dev(dev)); 6072 6073 /* Remove entries from kobject tree */ 6074 netdev_unregister_kobject(dev); 6075 #ifdef CONFIG_XPS 6076 /* Remove XPS queueing entries */ 6077 netif_reset_xps_queues_gt(dev, 0); 6078 #endif 6079 } 6080 6081 synchronize_net(); 6082 6083 list_for_each_entry(dev, head, unreg_list) 6084 dev_put(dev); 6085 } 6086 6087 static void rollback_registered(struct net_device *dev) 6088 { 6089 LIST_HEAD(single); 6090 6091 list_add(&dev->unreg_list, &single); 6092 rollback_registered_many(&single); 6093 list_del(&single); 6094 } 6095 6096 static netdev_features_t netdev_fix_features(struct net_device *dev, 6097 netdev_features_t features) 6098 { 6099 /* Fix illegal checksum combinations */ 6100 if ((features & NETIF_F_HW_CSUM) && 6101 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 6102 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 6103 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 6104 } 6105 6106 /* TSO requires that SG is present as well. */ 6107 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 6108 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 6109 features &= ~NETIF_F_ALL_TSO; 6110 } 6111 6112 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 6113 !(features & NETIF_F_IP_CSUM)) { 6114 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 6115 features &= ~NETIF_F_TSO; 6116 features &= ~NETIF_F_TSO_ECN; 6117 } 6118 6119 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 6120 !(features & NETIF_F_IPV6_CSUM)) { 6121 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 6122 features &= ~NETIF_F_TSO6; 6123 } 6124 6125 /* TSO ECN requires that TSO is present as well. */ 6126 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 6127 features &= ~NETIF_F_TSO_ECN; 6128 6129 /* Software GSO depends on SG. */ 6130 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 6131 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 6132 features &= ~NETIF_F_GSO; 6133 } 6134 6135 /* UFO needs SG and checksumming */ 6136 if (features & NETIF_F_UFO) { 6137 /* maybe split UFO into V4 and V6? */ 6138 if (!((features & NETIF_F_GEN_CSUM) || 6139 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 6140 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 6141 netdev_dbg(dev, 6142 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 6143 features &= ~NETIF_F_UFO; 6144 } 6145 6146 if (!(features & NETIF_F_SG)) { 6147 netdev_dbg(dev, 6148 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 6149 features &= ~NETIF_F_UFO; 6150 } 6151 } 6152 6153 #ifdef CONFIG_NET_RX_BUSY_POLL 6154 if (dev->netdev_ops->ndo_busy_poll) 6155 features |= NETIF_F_BUSY_POLL; 6156 else 6157 #endif 6158 features &= ~NETIF_F_BUSY_POLL; 6159 6160 return features; 6161 } 6162 6163 int __netdev_update_features(struct net_device *dev) 6164 { 6165 netdev_features_t features; 6166 int err = 0; 6167 6168 ASSERT_RTNL(); 6169 6170 features = netdev_get_wanted_features(dev); 6171 6172 if (dev->netdev_ops->ndo_fix_features) 6173 features = dev->netdev_ops->ndo_fix_features(dev, features); 6174 6175 /* driver might be less strict about feature dependencies */ 6176 features = netdev_fix_features(dev, features); 6177 6178 if (dev->features == features) 6179 return 0; 6180 6181 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 6182 &dev->features, &features); 6183 6184 if (dev->netdev_ops->ndo_set_features) 6185 err = dev->netdev_ops->ndo_set_features(dev, features); 6186 6187 if (unlikely(err < 0)) { 6188 netdev_err(dev, 6189 "set_features() failed (%d); wanted %pNF, left %pNF\n", 6190 err, &features, &dev->features); 6191 return -1; 6192 } 6193 6194 if (!err) 6195 dev->features = features; 6196 6197 return 1; 6198 } 6199 6200 /** 6201 * netdev_update_features - recalculate device features 6202 * @dev: the device to check 6203 * 6204 * Recalculate dev->features set and send notifications if it 6205 * has changed. Should be called after driver or hardware dependent 6206 * conditions might have changed that influence the features. 6207 */ 6208 void netdev_update_features(struct net_device *dev) 6209 { 6210 if (__netdev_update_features(dev)) 6211 netdev_features_change(dev); 6212 } 6213 EXPORT_SYMBOL(netdev_update_features); 6214 6215 /** 6216 * netdev_change_features - recalculate device features 6217 * @dev: the device to check 6218 * 6219 * Recalculate dev->features set and send notifications even 6220 * if they have not changed. Should be called instead of 6221 * netdev_update_features() if also dev->vlan_features might 6222 * have changed to allow the changes to be propagated to stacked 6223 * VLAN devices. 6224 */ 6225 void netdev_change_features(struct net_device *dev) 6226 { 6227 __netdev_update_features(dev); 6228 netdev_features_change(dev); 6229 } 6230 EXPORT_SYMBOL(netdev_change_features); 6231 6232 /** 6233 * netif_stacked_transfer_operstate - transfer operstate 6234 * @rootdev: the root or lower level device to transfer state from 6235 * @dev: the device to transfer operstate to 6236 * 6237 * Transfer operational state from root to device. This is normally 6238 * called when a stacking relationship exists between the root 6239 * device and the device(a leaf device). 6240 */ 6241 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 6242 struct net_device *dev) 6243 { 6244 if (rootdev->operstate == IF_OPER_DORMANT) 6245 netif_dormant_on(dev); 6246 else 6247 netif_dormant_off(dev); 6248 6249 if (netif_carrier_ok(rootdev)) { 6250 if (!netif_carrier_ok(dev)) 6251 netif_carrier_on(dev); 6252 } else { 6253 if (netif_carrier_ok(dev)) 6254 netif_carrier_off(dev); 6255 } 6256 } 6257 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 6258 6259 #ifdef CONFIG_SYSFS 6260 static int netif_alloc_rx_queues(struct net_device *dev) 6261 { 6262 unsigned int i, count = dev->num_rx_queues; 6263 struct netdev_rx_queue *rx; 6264 size_t sz = count * sizeof(*rx); 6265 6266 BUG_ON(count < 1); 6267 6268 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6269 if (!rx) { 6270 rx = vzalloc(sz); 6271 if (!rx) 6272 return -ENOMEM; 6273 } 6274 dev->_rx = rx; 6275 6276 for (i = 0; i < count; i++) 6277 rx[i].dev = dev; 6278 return 0; 6279 } 6280 #endif 6281 6282 static void netdev_init_one_queue(struct net_device *dev, 6283 struct netdev_queue *queue, void *_unused) 6284 { 6285 /* Initialize queue lock */ 6286 spin_lock_init(&queue->_xmit_lock); 6287 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 6288 queue->xmit_lock_owner = -1; 6289 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 6290 queue->dev = dev; 6291 #ifdef CONFIG_BQL 6292 dql_init(&queue->dql, HZ); 6293 #endif 6294 } 6295 6296 static void netif_free_tx_queues(struct net_device *dev) 6297 { 6298 kvfree(dev->_tx); 6299 } 6300 6301 static int netif_alloc_netdev_queues(struct net_device *dev) 6302 { 6303 unsigned int count = dev->num_tx_queues; 6304 struct netdev_queue *tx; 6305 size_t sz = count * sizeof(*tx); 6306 6307 BUG_ON(count < 1 || count > 0xffff); 6308 6309 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6310 if (!tx) { 6311 tx = vzalloc(sz); 6312 if (!tx) 6313 return -ENOMEM; 6314 } 6315 dev->_tx = tx; 6316 6317 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 6318 spin_lock_init(&dev->tx_global_lock); 6319 6320 return 0; 6321 } 6322 6323 /** 6324 * register_netdevice - register a network device 6325 * @dev: device to register 6326 * 6327 * Take a completed network device structure and add it to the kernel 6328 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 6329 * chain. 0 is returned on success. A negative errno code is returned 6330 * on a failure to set up the device, or if the name is a duplicate. 6331 * 6332 * Callers must hold the rtnl semaphore. You may want 6333 * register_netdev() instead of this. 6334 * 6335 * BUGS: 6336 * The locking appears insufficient to guarantee two parallel registers 6337 * will not get the same name. 6338 */ 6339 6340 int register_netdevice(struct net_device *dev) 6341 { 6342 int ret; 6343 struct net *net = dev_net(dev); 6344 6345 BUG_ON(dev_boot_phase); 6346 ASSERT_RTNL(); 6347 6348 might_sleep(); 6349 6350 /* When net_device's are persistent, this will be fatal. */ 6351 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 6352 BUG_ON(!net); 6353 6354 spin_lock_init(&dev->addr_list_lock); 6355 netdev_set_addr_lockdep_class(dev); 6356 6357 ret = dev_get_valid_name(net, dev, dev->name); 6358 if (ret < 0) 6359 goto out; 6360 6361 /* Init, if this function is available */ 6362 if (dev->netdev_ops->ndo_init) { 6363 ret = dev->netdev_ops->ndo_init(dev); 6364 if (ret) { 6365 if (ret > 0) 6366 ret = -EIO; 6367 goto out; 6368 } 6369 } 6370 6371 if (((dev->hw_features | dev->features) & 6372 NETIF_F_HW_VLAN_CTAG_FILTER) && 6373 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 6374 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 6375 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 6376 ret = -EINVAL; 6377 goto err_uninit; 6378 } 6379 6380 ret = -EBUSY; 6381 if (!dev->ifindex) 6382 dev->ifindex = dev_new_index(net); 6383 else if (__dev_get_by_index(net, dev->ifindex)) 6384 goto err_uninit; 6385 6386 /* Transfer changeable features to wanted_features and enable 6387 * software offloads (GSO and GRO). 6388 */ 6389 dev->hw_features |= NETIF_F_SOFT_FEATURES; 6390 dev->features |= NETIF_F_SOFT_FEATURES; 6391 dev->wanted_features = dev->features & dev->hw_features; 6392 6393 if (!(dev->flags & IFF_LOOPBACK)) { 6394 dev->hw_features |= NETIF_F_NOCACHE_COPY; 6395 } 6396 6397 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 6398 */ 6399 dev->vlan_features |= NETIF_F_HIGHDMA; 6400 6401 /* Make NETIF_F_SG inheritable to tunnel devices. 6402 */ 6403 dev->hw_enc_features |= NETIF_F_SG; 6404 6405 /* Make NETIF_F_SG inheritable to MPLS. 6406 */ 6407 dev->mpls_features |= NETIF_F_SG; 6408 6409 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 6410 ret = notifier_to_errno(ret); 6411 if (ret) 6412 goto err_uninit; 6413 6414 ret = netdev_register_kobject(dev); 6415 if (ret) 6416 goto err_uninit; 6417 dev->reg_state = NETREG_REGISTERED; 6418 6419 __netdev_update_features(dev); 6420 6421 /* 6422 * Default initial state at registry is that the 6423 * device is present. 6424 */ 6425 6426 set_bit(__LINK_STATE_PRESENT, &dev->state); 6427 6428 linkwatch_init_dev(dev); 6429 6430 dev_init_scheduler(dev); 6431 dev_hold(dev); 6432 list_netdevice(dev); 6433 add_device_randomness(dev->dev_addr, dev->addr_len); 6434 6435 /* If the device has permanent device address, driver should 6436 * set dev_addr and also addr_assign_type should be set to 6437 * NET_ADDR_PERM (default value). 6438 */ 6439 if (dev->addr_assign_type == NET_ADDR_PERM) 6440 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 6441 6442 /* Notify protocols, that a new device appeared. */ 6443 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 6444 ret = notifier_to_errno(ret); 6445 if (ret) { 6446 rollback_registered(dev); 6447 dev->reg_state = NETREG_UNREGISTERED; 6448 } 6449 /* 6450 * Prevent userspace races by waiting until the network 6451 * device is fully setup before sending notifications. 6452 */ 6453 if (!dev->rtnl_link_ops || 6454 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 6455 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 6456 6457 out: 6458 return ret; 6459 6460 err_uninit: 6461 if (dev->netdev_ops->ndo_uninit) 6462 dev->netdev_ops->ndo_uninit(dev); 6463 goto out; 6464 } 6465 EXPORT_SYMBOL(register_netdevice); 6466 6467 /** 6468 * init_dummy_netdev - init a dummy network device for NAPI 6469 * @dev: device to init 6470 * 6471 * This takes a network device structure and initialize the minimum 6472 * amount of fields so it can be used to schedule NAPI polls without 6473 * registering a full blown interface. This is to be used by drivers 6474 * that need to tie several hardware interfaces to a single NAPI 6475 * poll scheduler due to HW limitations. 6476 */ 6477 int init_dummy_netdev(struct net_device *dev) 6478 { 6479 /* Clear everything. Note we don't initialize spinlocks 6480 * are they aren't supposed to be taken by any of the 6481 * NAPI code and this dummy netdev is supposed to be 6482 * only ever used for NAPI polls 6483 */ 6484 memset(dev, 0, sizeof(struct net_device)); 6485 6486 /* make sure we BUG if trying to hit standard 6487 * register/unregister code path 6488 */ 6489 dev->reg_state = NETREG_DUMMY; 6490 6491 /* NAPI wants this */ 6492 INIT_LIST_HEAD(&dev->napi_list); 6493 6494 /* a dummy interface is started by default */ 6495 set_bit(__LINK_STATE_PRESENT, &dev->state); 6496 set_bit(__LINK_STATE_START, &dev->state); 6497 6498 /* Note : We dont allocate pcpu_refcnt for dummy devices, 6499 * because users of this 'device' dont need to change 6500 * its refcount. 6501 */ 6502 6503 return 0; 6504 } 6505 EXPORT_SYMBOL_GPL(init_dummy_netdev); 6506 6507 6508 /** 6509 * register_netdev - register a network device 6510 * @dev: device to register 6511 * 6512 * Take a completed network device structure and add it to the kernel 6513 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 6514 * chain. 0 is returned on success. A negative errno code is returned 6515 * on a failure to set up the device, or if the name is a duplicate. 6516 * 6517 * This is a wrapper around register_netdevice that takes the rtnl semaphore 6518 * and expands the device name if you passed a format string to 6519 * alloc_netdev. 6520 */ 6521 int register_netdev(struct net_device *dev) 6522 { 6523 int err; 6524 6525 rtnl_lock(); 6526 err = register_netdevice(dev); 6527 rtnl_unlock(); 6528 return err; 6529 } 6530 EXPORT_SYMBOL(register_netdev); 6531 6532 int netdev_refcnt_read(const struct net_device *dev) 6533 { 6534 int i, refcnt = 0; 6535 6536 for_each_possible_cpu(i) 6537 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 6538 return refcnt; 6539 } 6540 EXPORT_SYMBOL(netdev_refcnt_read); 6541 6542 /** 6543 * netdev_wait_allrefs - wait until all references are gone. 6544 * @dev: target net_device 6545 * 6546 * This is called when unregistering network devices. 6547 * 6548 * Any protocol or device that holds a reference should register 6549 * for netdevice notification, and cleanup and put back the 6550 * reference if they receive an UNREGISTER event. 6551 * We can get stuck here if buggy protocols don't correctly 6552 * call dev_put. 6553 */ 6554 static void netdev_wait_allrefs(struct net_device *dev) 6555 { 6556 unsigned long rebroadcast_time, warning_time; 6557 int refcnt; 6558 6559 linkwatch_forget_dev(dev); 6560 6561 rebroadcast_time = warning_time = jiffies; 6562 refcnt = netdev_refcnt_read(dev); 6563 6564 while (refcnt != 0) { 6565 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 6566 rtnl_lock(); 6567 6568 /* Rebroadcast unregister notification */ 6569 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6570 6571 __rtnl_unlock(); 6572 rcu_barrier(); 6573 rtnl_lock(); 6574 6575 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6576 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 6577 &dev->state)) { 6578 /* We must not have linkwatch events 6579 * pending on unregister. If this 6580 * happens, we simply run the queue 6581 * unscheduled, resulting in a noop 6582 * for this device. 6583 */ 6584 linkwatch_run_queue(); 6585 } 6586 6587 __rtnl_unlock(); 6588 6589 rebroadcast_time = jiffies; 6590 } 6591 6592 msleep(250); 6593 6594 refcnt = netdev_refcnt_read(dev); 6595 6596 if (time_after(jiffies, warning_time + 10 * HZ)) { 6597 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 6598 dev->name, refcnt); 6599 warning_time = jiffies; 6600 } 6601 } 6602 } 6603 6604 /* The sequence is: 6605 * 6606 * rtnl_lock(); 6607 * ... 6608 * register_netdevice(x1); 6609 * register_netdevice(x2); 6610 * ... 6611 * unregister_netdevice(y1); 6612 * unregister_netdevice(y2); 6613 * ... 6614 * rtnl_unlock(); 6615 * free_netdev(y1); 6616 * free_netdev(y2); 6617 * 6618 * We are invoked by rtnl_unlock(). 6619 * This allows us to deal with problems: 6620 * 1) We can delete sysfs objects which invoke hotplug 6621 * without deadlocking with linkwatch via keventd. 6622 * 2) Since we run with the RTNL semaphore not held, we can sleep 6623 * safely in order to wait for the netdev refcnt to drop to zero. 6624 * 6625 * We must not return until all unregister events added during 6626 * the interval the lock was held have been completed. 6627 */ 6628 void netdev_run_todo(void) 6629 { 6630 struct list_head list; 6631 6632 /* Snapshot list, allow later requests */ 6633 list_replace_init(&net_todo_list, &list); 6634 6635 __rtnl_unlock(); 6636 6637 6638 /* Wait for rcu callbacks to finish before next phase */ 6639 if (!list_empty(&list)) 6640 rcu_barrier(); 6641 6642 while (!list_empty(&list)) { 6643 struct net_device *dev 6644 = list_first_entry(&list, struct net_device, todo_list); 6645 list_del(&dev->todo_list); 6646 6647 rtnl_lock(); 6648 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6649 __rtnl_unlock(); 6650 6651 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 6652 pr_err("network todo '%s' but state %d\n", 6653 dev->name, dev->reg_state); 6654 dump_stack(); 6655 continue; 6656 } 6657 6658 dev->reg_state = NETREG_UNREGISTERED; 6659 6660 on_each_cpu(flush_backlog, dev, 1); 6661 6662 netdev_wait_allrefs(dev); 6663 6664 /* paranoia */ 6665 BUG_ON(netdev_refcnt_read(dev)); 6666 BUG_ON(!list_empty(&dev->ptype_all)); 6667 BUG_ON(!list_empty(&dev->ptype_specific)); 6668 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 6669 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 6670 WARN_ON(dev->dn_ptr); 6671 6672 if (dev->destructor) 6673 dev->destructor(dev); 6674 6675 /* Report a network device has been unregistered */ 6676 rtnl_lock(); 6677 dev_net(dev)->dev_unreg_count--; 6678 __rtnl_unlock(); 6679 wake_up(&netdev_unregistering_wq); 6680 6681 /* Free network device */ 6682 kobject_put(&dev->dev.kobj); 6683 } 6684 } 6685 6686 /* Convert net_device_stats to rtnl_link_stats64. They have the same 6687 * fields in the same order, with only the type differing. 6688 */ 6689 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 6690 const struct net_device_stats *netdev_stats) 6691 { 6692 #if BITS_PER_LONG == 64 6693 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 6694 memcpy(stats64, netdev_stats, sizeof(*stats64)); 6695 #else 6696 size_t i, n = sizeof(*stats64) / sizeof(u64); 6697 const unsigned long *src = (const unsigned long *)netdev_stats; 6698 u64 *dst = (u64 *)stats64; 6699 6700 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 6701 sizeof(*stats64) / sizeof(u64)); 6702 for (i = 0; i < n; i++) 6703 dst[i] = src[i]; 6704 #endif 6705 } 6706 EXPORT_SYMBOL(netdev_stats_to_stats64); 6707 6708 /** 6709 * dev_get_stats - get network device statistics 6710 * @dev: device to get statistics from 6711 * @storage: place to store stats 6712 * 6713 * Get network statistics from device. Return @storage. 6714 * The device driver may provide its own method by setting 6715 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 6716 * otherwise the internal statistics structure is used. 6717 */ 6718 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 6719 struct rtnl_link_stats64 *storage) 6720 { 6721 const struct net_device_ops *ops = dev->netdev_ops; 6722 6723 if (ops->ndo_get_stats64) { 6724 memset(storage, 0, sizeof(*storage)); 6725 ops->ndo_get_stats64(dev, storage); 6726 } else if (ops->ndo_get_stats) { 6727 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 6728 } else { 6729 netdev_stats_to_stats64(storage, &dev->stats); 6730 } 6731 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 6732 storage->tx_dropped += atomic_long_read(&dev->tx_dropped); 6733 return storage; 6734 } 6735 EXPORT_SYMBOL(dev_get_stats); 6736 6737 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 6738 { 6739 struct netdev_queue *queue = dev_ingress_queue(dev); 6740 6741 #ifdef CONFIG_NET_CLS_ACT 6742 if (queue) 6743 return queue; 6744 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 6745 if (!queue) 6746 return NULL; 6747 netdev_init_one_queue(dev, queue, NULL); 6748 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 6749 queue->qdisc_sleeping = &noop_qdisc; 6750 rcu_assign_pointer(dev->ingress_queue, queue); 6751 #endif 6752 return queue; 6753 } 6754 6755 static const struct ethtool_ops default_ethtool_ops; 6756 6757 void netdev_set_default_ethtool_ops(struct net_device *dev, 6758 const struct ethtool_ops *ops) 6759 { 6760 if (dev->ethtool_ops == &default_ethtool_ops) 6761 dev->ethtool_ops = ops; 6762 } 6763 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 6764 6765 void netdev_freemem(struct net_device *dev) 6766 { 6767 char *addr = (char *)dev - dev->padded; 6768 6769 kvfree(addr); 6770 } 6771 6772 /** 6773 * alloc_netdev_mqs - allocate network device 6774 * @sizeof_priv: size of private data to allocate space for 6775 * @name: device name format string 6776 * @name_assign_type: origin of device name 6777 * @setup: callback to initialize device 6778 * @txqs: the number of TX subqueues to allocate 6779 * @rxqs: the number of RX subqueues to allocate 6780 * 6781 * Allocates a struct net_device with private data area for driver use 6782 * and performs basic initialization. Also allocates subqueue structs 6783 * for each queue on the device. 6784 */ 6785 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 6786 unsigned char name_assign_type, 6787 void (*setup)(struct net_device *), 6788 unsigned int txqs, unsigned int rxqs) 6789 { 6790 struct net_device *dev; 6791 size_t alloc_size; 6792 struct net_device *p; 6793 6794 BUG_ON(strlen(name) >= sizeof(dev->name)); 6795 6796 if (txqs < 1) { 6797 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 6798 return NULL; 6799 } 6800 6801 #ifdef CONFIG_SYSFS 6802 if (rxqs < 1) { 6803 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 6804 return NULL; 6805 } 6806 #endif 6807 6808 alloc_size = sizeof(struct net_device); 6809 if (sizeof_priv) { 6810 /* ensure 32-byte alignment of private area */ 6811 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 6812 alloc_size += sizeof_priv; 6813 } 6814 /* ensure 32-byte alignment of whole construct */ 6815 alloc_size += NETDEV_ALIGN - 1; 6816 6817 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6818 if (!p) 6819 p = vzalloc(alloc_size); 6820 if (!p) 6821 return NULL; 6822 6823 dev = PTR_ALIGN(p, NETDEV_ALIGN); 6824 dev->padded = (char *)dev - (char *)p; 6825 6826 dev->pcpu_refcnt = alloc_percpu(int); 6827 if (!dev->pcpu_refcnt) 6828 goto free_dev; 6829 6830 if (dev_addr_init(dev)) 6831 goto free_pcpu; 6832 6833 dev_mc_init(dev); 6834 dev_uc_init(dev); 6835 6836 dev_net_set(dev, &init_net); 6837 6838 dev->gso_max_size = GSO_MAX_SIZE; 6839 dev->gso_max_segs = GSO_MAX_SEGS; 6840 dev->gso_min_segs = 0; 6841 6842 INIT_LIST_HEAD(&dev->napi_list); 6843 INIT_LIST_HEAD(&dev->unreg_list); 6844 INIT_LIST_HEAD(&dev->close_list); 6845 INIT_LIST_HEAD(&dev->link_watch_list); 6846 INIT_LIST_HEAD(&dev->adj_list.upper); 6847 INIT_LIST_HEAD(&dev->adj_list.lower); 6848 INIT_LIST_HEAD(&dev->all_adj_list.upper); 6849 INIT_LIST_HEAD(&dev->all_adj_list.lower); 6850 INIT_LIST_HEAD(&dev->ptype_all); 6851 INIT_LIST_HEAD(&dev->ptype_specific); 6852 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 6853 setup(dev); 6854 6855 dev->num_tx_queues = txqs; 6856 dev->real_num_tx_queues = txqs; 6857 if (netif_alloc_netdev_queues(dev)) 6858 goto free_all; 6859 6860 #ifdef CONFIG_SYSFS 6861 dev->num_rx_queues = rxqs; 6862 dev->real_num_rx_queues = rxqs; 6863 if (netif_alloc_rx_queues(dev)) 6864 goto free_all; 6865 #endif 6866 6867 strcpy(dev->name, name); 6868 dev->name_assign_type = name_assign_type; 6869 dev->group = INIT_NETDEV_GROUP; 6870 if (!dev->ethtool_ops) 6871 dev->ethtool_ops = &default_ethtool_ops; 6872 return dev; 6873 6874 free_all: 6875 free_netdev(dev); 6876 return NULL; 6877 6878 free_pcpu: 6879 free_percpu(dev->pcpu_refcnt); 6880 free_dev: 6881 netdev_freemem(dev); 6882 return NULL; 6883 } 6884 EXPORT_SYMBOL(alloc_netdev_mqs); 6885 6886 /** 6887 * free_netdev - free network device 6888 * @dev: device 6889 * 6890 * This function does the last stage of destroying an allocated device 6891 * interface. The reference to the device object is released. 6892 * If this is the last reference then it will be freed. 6893 */ 6894 void free_netdev(struct net_device *dev) 6895 { 6896 struct napi_struct *p, *n; 6897 6898 netif_free_tx_queues(dev); 6899 #ifdef CONFIG_SYSFS 6900 kvfree(dev->_rx); 6901 #endif 6902 6903 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 6904 6905 /* Flush device addresses */ 6906 dev_addr_flush(dev); 6907 6908 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 6909 netif_napi_del(p); 6910 6911 free_percpu(dev->pcpu_refcnt); 6912 dev->pcpu_refcnt = NULL; 6913 6914 /* Compatibility with error handling in drivers */ 6915 if (dev->reg_state == NETREG_UNINITIALIZED) { 6916 netdev_freemem(dev); 6917 return; 6918 } 6919 6920 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 6921 dev->reg_state = NETREG_RELEASED; 6922 6923 /* will free via device release */ 6924 put_device(&dev->dev); 6925 } 6926 EXPORT_SYMBOL(free_netdev); 6927 6928 /** 6929 * synchronize_net - Synchronize with packet receive processing 6930 * 6931 * Wait for packets currently being received to be done. 6932 * Does not block later packets from starting. 6933 */ 6934 void synchronize_net(void) 6935 { 6936 might_sleep(); 6937 if (rtnl_is_locked()) 6938 synchronize_rcu_expedited(); 6939 else 6940 synchronize_rcu(); 6941 } 6942 EXPORT_SYMBOL(synchronize_net); 6943 6944 /** 6945 * unregister_netdevice_queue - remove device from the kernel 6946 * @dev: device 6947 * @head: list 6948 * 6949 * This function shuts down a device interface and removes it 6950 * from the kernel tables. 6951 * If head not NULL, device is queued to be unregistered later. 6952 * 6953 * Callers must hold the rtnl semaphore. You may want 6954 * unregister_netdev() instead of this. 6955 */ 6956 6957 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 6958 { 6959 ASSERT_RTNL(); 6960 6961 if (head) { 6962 list_move_tail(&dev->unreg_list, head); 6963 } else { 6964 rollback_registered(dev); 6965 /* Finish processing unregister after unlock */ 6966 net_set_todo(dev); 6967 } 6968 } 6969 EXPORT_SYMBOL(unregister_netdevice_queue); 6970 6971 /** 6972 * unregister_netdevice_many - unregister many devices 6973 * @head: list of devices 6974 * 6975 * Note: As most callers use a stack allocated list_head, 6976 * we force a list_del() to make sure stack wont be corrupted later. 6977 */ 6978 void unregister_netdevice_many(struct list_head *head) 6979 { 6980 struct net_device *dev; 6981 6982 if (!list_empty(head)) { 6983 rollback_registered_many(head); 6984 list_for_each_entry(dev, head, unreg_list) 6985 net_set_todo(dev); 6986 list_del(head); 6987 } 6988 } 6989 EXPORT_SYMBOL(unregister_netdevice_many); 6990 6991 /** 6992 * unregister_netdev - remove device from the kernel 6993 * @dev: device 6994 * 6995 * This function shuts down a device interface and removes it 6996 * from the kernel tables. 6997 * 6998 * This is just a wrapper for unregister_netdevice that takes 6999 * the rtnl semaphore. In general you want to use this and not 7000 * unregister_netdevice. 7001 */ 7002 void unregister_netdev(struct net_device *dev) 7003 { 7004 rtnl_lock(); 7005 unregister_netdevice(dev); 7006 rtnl_unlock(); 7007 } 7008 EXPORT_SYMBOL(unregister_netdev); 7009 7010 /** 7011 * dev_change_net_namespace - move device to different nethost namespace 7012 * @dev: device 7013 * @net: network namespace 7014 * @pat: If not NULL name pattern to try if the current device name 7015 * is already taken in the destination network namespace. 7016 * 7017 * This function shuts down a device interface and moves it 7018 * to a new network namespace. On success 0 is returned, on 7019 * a failure a netagive errno code is returned. 7020 * 7021 * Callers must hold the rtnl semaphore. 7022 */ 7023 7024 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 7025 { 7026 int err; 7027 7028 ASSERT_RTNL(); 7029 7030 /* Don't allow namespace local devices to be moved. */ 7031 err = -EINVAL; 7032 if (dev->features & NETIF_F_NETNS_LOCAL) 7033 goto out; 7034 7035 /* Ensure the device has been registrered */ 7036 if (dev->reg_state != NETREG_REGISTERED) 7037 goto out; 7038 7039 /* Get out if there is nothing todo */ 7040 err = 0; 7041 if (net_eq(dev_net(dev), net)) 7042 goto out; 7043 7044 /* Pick the destination device name, and ensure 7045 * we can use it in the destination network namespace. 7046 */ 7047 err = -EEXIST; 7048 if (__dev_get_by_name(net, dev->name)) { 7049 /* We get here if we can't use the current device name */ 7050 if (!pat) 7051 goto out; 7052 if (dev_get_valid_name(net, dev, pat) < 0) 7053 goto out; 7054 } 7055 7056 /* 7057 * And now a mini version of register_netdevice unregister_netdevice. 7058 */ 7059 7060 /* If device is running close it first. */ 7061 dev_close(dev); 7062 7063 /* And unlink it from device chain */ 7064 err = -ENODEV; 7065 unlist_netdevice(dev); 7066 7067 synchronize_net(); 7068 7069 /* Shutdown queueing discipline. */ 7070 dev_shutdown(dev); 7071 7072 /* Notify protocols, that we are about to destroy 7073 this device. They should clean all the things. 7074 7075 Note that dev->reg_state stays at NETREG_REGISTERED. 7076 This is wanted because this way 8021q and macvlan know 7077 the device is just moving and can keep their slaves up. 7078 */ 7079 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7080 rcu_barrier(); 7081 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7082 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 7083 7084 /* 7085 * Flush the unicast and multicast chains 7086 */ 7087 dev_uc_flush(dev); 7088 dev_mc_flush(dev); 7089 7090 /* Send a netdev-removed uevent to the old namespace */ 7091 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 7092 netdev_adjacent_del_links(dev); 7093 7094 /* Actually switch the network namespace */ 7095 dev_net_set(dev, net); 7096 7097 /* If there is an ifindex conflict assign a new one */ 7098 if (__dev_get_by_index(net, dev->ifindex)) 7099 dev->ifindex = dev_new_index(net); 7100 7101 /* Send a netdev-add uevent to the new namespace */ 7102 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 7103 netdev_adjacent_add_links(dev); 7104 7105 /* Fixup kobjects */ 7106 err = device_rename(&dev->dev, dev->name); 7107 WARN_ON(err); 7108 7109 /* Add the device back in the hashes */ 7110 list_netdevice(dev); 7111 7112 /* Notify protocols, that a new device appeared. */ 7113 call_netdevice_notifiers(NETDEV_REGISTER, dev); 7114 7115 /* 7116 * Prevent userspace races by waiting until the network 7117 * device is fully setup before sending notifications. 7118 */ 7119 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7120 7121 synchronize_net(); 7122 err = 0; 7123 out: 7124 return err; 7125 } 7126 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 7127 7128 static int dev_cpu_callback(struct notifier_block *nfb, 7129 unsigned long action, 7130 void *ocpu) 7131 { 7132 struct sk_buff **list_skb; 7133 struct sk_buff *skb; 7134 unsigned int cpu, oldcpu = (unsigned long)ocpu; 7135 struct softnet_data *sd, *oldsd; 7136 7137 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 7138 return NOTIFY_OK; 7139 7140 local_irq_disable(); 7141 cpu = smp_processor_id(); 7142 sd = &per_cpu(softnet_data, cpu); 7143 oldsd = &per_cpu(softnet_data, oldcpu); 7144 7145 /* Find end of our completion_queue. */ 7146 list_skb = &sd->completion_queue; 7147 while (*list_skb) 7148 list_skb = &(*list_skb)->next; 7149 /* Append completion queue from offline CPU. */ 7150 *list_skb = oldsd->completion_queue; 7151 oldsd->completion_queue = NULL; 7152 7153 /* Append output queue from offline CPU. */ 7154 if (oldsd->output_queue) { 7155 *sd->output_queue_tailp = oldsd->output_queue; 7156 sd->output_queue_tailp = oldsd->output_queue_tailp; 7157 oldsd->output_queue = NULL; 7158 oldsd->output_queue_tailp = &oldsd->output_queue; 7159 } 7160 /* Append NAPI poll list from offline CPU, with one exception : 7161 * process_backlog() must be called by cpu owning percpu backlog. 7162 * We properly handle process_queue & input_pkt_queue later. 7163 */ 7164 while (!list_empty(&oldsd->poll_list)) { 7165 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 7166 struct napi_struct, 7167 poll_list); 7168 7169 list_del_init(&napi->poll_list); 7170 if (napi->poll == process_backlog) 7171 napi->state = 0; 7172 else 7173 ____napi_schedule(sd, napi); 7174 } 7175 7176 raise_softirq_irqoff(NET_TX_SOFTIRQ); 7177 local_irq_enable(); 7178 7179 /* Process offline CPU's input_pkt_queue */ 7180 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 7181 netif_rx_ni(skb); 7182 input_queue_head_incr(oldsd); 7183 } 7184 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 7185 netif_rx_ni(skb); 7186 input_queue_head_incr(oldsd); 7187 } 7188 7189 return NOTIFY_OK; 7190 } 7191 7192 7193 /** 7194 * netdev_increment_features - increment feature set by one 7195 * @all: current feature set 7196 * @one: new feature set 7197 * @mask: mask feature set 7198 * 7199 * Computes a new feature set after adding a device with feature set 7200 * @one to the master device with current feature set @all. Will not 7201 * enable anything that is off in @mask. Returns the new feature set. 7202 */ 7203 netdev_features_t netdev_increment_features(netdev_features_t all, 7204 netdev_features_t one, netdev_features_t mask) 7205 { 7206 if (mask & NETIF_F_GEN_CSUM) 7207 mask |= NETIF_F_ALL_CSUM; 7208 mask |= NETIF_F_VLAN_CHALLENGED; 7209 7210 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 7211 all &= one | ~NETIF_F_ALL_FOR_ALL; 7212 7213 /* If one device supports hw checksumming, set for all. */ 7214 if (all & NETIF_F_GEN_CSUM) 7215 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 7216 7217 return all; 7218 } 7219 EXPORT_SYMBOL(netdev_increment_features); 7220 7221 static struct hlist_head * __net_init netdev_create_hash(void) 7222 { 7223 int i; 7224 struct hlist_head *hash; 7225 7226 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 7227 if (hash != NULL) 7228 for (i = 0; i < NETDEV_HASHENTRIES; i++) 7229 INIT_HLIST_HEAD(&hash[i]); 7230 7231 return hash; 7232 } 7233 7234 /* Initialize per network namespace state */ 7235 static int __net_init netdev_init(struct net *net) 7236 { 7237 if (net != &init_net) 7238 INIT_LIST_HEAD(&net->dev_base_head); 7239 7240 net->dev_name_head = netdev_create_hash(); 7241 if (net->dev_name_head == NULL) 7242 goto err_name; 7243 7244 net->dev_index_head = netdev_create_hash(); 7245 if (net->dev_index_head == NULL) 7246 goto err_idx; 7247 7248 return 0; 7249 7250 err_idx: 7251 kfree(net->dev_name_head); 7252 err_name: 7253 return -ENOMEM; 7254 } 7255 7256 /** 7257 * netdev_drivername - network driver for the device 7258 * @dev: network device 7259 * 7260 * Determine network driver for device. 7261 */ 7262 const char *netdev_drivername(const struct net_device *dev) 7263 { 7264 const struct device_driver *driver; 7265 const struct device *parent; 7266 const char *empty = ""; 7267 7268 parent = dev->dev.parent; 7269 if (!parent) 7270 return empty; 7271 7272 driver = parent->driver; 7273 if (driver && driver->name) 7274 return driver->name; 7275 return empty; 7276 } 7277 7278 static void __netdev_printk(const char *level, const struct net_device *dev, 7279 struct va_format *vaf) 7280 { 7281 if (dev && dev->dev.parent) { 7282 dev_printk_emit(level[1] - '0', 7283 dev->dev.parent, 7284 "%s %s %s%s: %pV", 7285 dev_driver_string(dev->dev.parent), 7286 dev_name(dev->dev.parent), 7287 netdev_name(dev), netdev_reg_state(dev), 7288 vaf); 7289 } else if (dev) { 7290 printk("%s%s%s: %pV", 7291 level, netdev_name(dev), netdev_reg_state(dev), vaf); 7292 } else { 7293 printk("%s(NULL net_device): %pV", level, vaf); 7294 } 7295 } 7296 7297 void netdev_printk(const char *level, const struct net_device *dev, 7298 const char *format, ...) 7299 { 7300 struct va_format vaf; 7301 va_list args; 7302 7303 va_start(args, format); 7304 7305 vaf.fmt = format; 7306 vaf.va = &args; 7307 7308 __netdev_printk(level, dev, &vaf); 7309 7310 va_end(args); 7311 } 7312 EXPORT_SYMBOL(netdev_printk); 7313 7314 #define define_netdev_printk_level(func, level) \ 7315 void func(const struct net_device *dev, const char *fmt, ...) \ 7316 { \ 7317 struct va_format vaf; \ 7318 va_list args; \ 7319 \ 7320 va_start(args, fmt); \ 7321 \ 7322 vaf.fmt = fmt; \ 7323 vaf.va = &args; \ 7324 \ 7325 __netdev_printk(level, dev, &vaf); \ 7326 \ 7327 va_end(args); \ 7328 } \ 7329 EXPORT_SYMBOL(func); 7330 7331 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 7332 define_netdev_printk_level(netdev_alert, KERN_ALERT); 7333 define_netdev_printk_level(netdev_crit, KERN_CRIT); 7334 define_netdev_printk_level(netdev_err, KERN_ERR); 7335 define_netdev_printk_level(netdev_warn, KERN_WARNING); 7336 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 7337 define_netdev_printk_level(netdev_info, KERN_INFO); 7338 7339 static void __net_exit netdev_exit(struct net *net) 7340 { 7341 kfree(net->dev_name_head); 7342 kfree(net->dev_index_head); 7343 } 7344 7345 static struct pernet_operations __net_initdata netdev_net_ops = { 7346 .init = netdev_init, 7347 .exit = netdev_exit, 7348 }; 7349 7350 static void __net_exit default_device_exit(struct net *net) 7351 { 7352 struct net_device *dev, *aux; 7353 /* 7354 * Push all migratable network devices back to the 7355 * initial network namespace 7356 */ 7357 rtnl_lock(); 7358 for_each_netdev_safe(net, dev, aux) { 7359 int err; 7360 char fb_name[IFNAMSIZ]; 7361 7362 /* Ignore unmoveable devices (i.e. loopback) */ 7363 if (dev->features & NETIF_F_NETNS_LOCAL) 7364 continue; 7365 7366 /* Leave virtual devices for the generic cleanup */ 7367 if (dev->rtnl_link_ops) 7368 continue; 7369 7370 /* Push remaining network devices to init_net */ 7371 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 7372 err = dev_change_net_namespace(dev, &init_net, fb_name); 7373 if (err) { 7374 pr_emerg("%s: failed to move %s to init_net: %d\n", 7375 __func__, dev->name, err); 7376 BUG(); 7377 } 7378 } 7379 rtnl_unlock(); 7380 } 7381 7382 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 7383 { 7384 /* Return with the rtnl_lock held when there are no network 7385 * devices unregistering in any network namespace in net_list. 7386 */ 7387 struct net *net; 7388 bool unregistering; 7389 DEFINE_WAIT_FUNC(wait, woken_wake_function); 7390 7391 add_wait_queue(&netdev_unregistering_wq, &wait); 7392 for (;;) { 7393 unregistering = false; 7394 rtnl_lock(); 7395 list_for_each_entry(net, net_list, exit_list) { 7396 if (net->dev_unreg_count > 0) { 7397 unregistering = true; 7398 break; 7399 } 7400 } 7401 if (!unregistering) 7402 break; 7403 __rtnl_unlock(); 7404 7405 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 7406 } 7407 remove_wait_queue(&netdev_unregistering_wq, &wait); 7408 } 7409 7410 static void __net_exit default_device_exit_batch(struct list_head *net_list) 7411 { 7412 /* At exit all network devices most be removed from a network 7413 * namespace. Do this in the reverse order of registration. 7414 * Do this across as many network namespaces as possible to 7415 * improve batching efficiency. 7416 */ 7417 struct net_device *dev; 7418 struct net *net; 7419 LIST_HEAD(dev_kill_list); 7420 7421 /* To prevent network device cleanup code from dereferencing 7422 * loopback devices or network devices that have been freed 7423 * wait here for all pending unregistrations to complete, 7424 * before unregistring the loopback device and allowing the 7425 * network namespace be freed. 7426 * 7427 * The netdev todo list containing all network devices 7428 * unregistrations that happen in default_device_exit_batch 7429 * will run in the rtnl_unlock() at the end of 7430 * default_device_exit_batch. 7431 */ 7432 rtnl_lock_unregistering(net_list); 7433 list_for_each_entry(net, net_list, exit_list) { 7434 for_each_netdev_reverse(net, dev) { 7435 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 7436 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 7437 else 7438 unregister_netdevice_queue(dev, &dev_kill_list); 7439 } 7440 } 7441 unregister_netdevice_many(&dev_kill_list); 7442 rtnl_unlock(); 7443 } 7444 7445 static struct pernet_operations __net_initdata default_device_ops = { 7446 .exit = default_device_exit, 7447 .exit_batch = default_device_exit_batch, 7448 }; 7449 7450 /* 7451 * Initialize the DEV module. At boot time this walks the device list and 7452 * unhooks any devices that fail to initialise (normally hardware not 7453 * present) and leaves us with a valid list of present and active devices. 7454 * 7455 */ 7456 7457 /* 7458 * This is called single threaded during boot, so no need 7459 * to take the rtnl semaphore. 7460 */ 7461 static int __init net_dev_init(void) 7462 { 7463 int i, rc = -ENOMEM; 7464 7465 BUG_ON(!dev_boot_phase); 7466 7467 if (dev_proc_init()) 7468 goto out; 7469 7470 if (netdev_kobject_init()) 7471 goto out; 7472 7473 INIT_LIST_HEAD(&ptype_all); 7474 for (i = 0; i < PTYPE_HASH_SIZE; i++) 7475 INIT_LIST_HEAD(&ptype_base[i]); 7476 7477 INIT_LIST_HEAD(&offload_base); 7478 7479 if (register_pernet_subsys(&netdev_net_ops)) 7480 goto out; 7481 7482 /* 7483 * Initialise the packet receive queues. 7484 */ 7485 7486 for_each_possible_cpu(i) { 7487 struct softnet_data *sd = &per_cpu(softnet_data, i); 7488 7489 skb_queue_head_init(&sd->input_pkt_queue); 7490 skb_queue_head_init(&sd->process_queue); 7491 INIT_LIST_HEAD(&sd->poll_list); 7492 sd->output_queue_tailp = &sd->output_queue; 7493 #ifdef CONFIG_RPS 7494 sd->csd.func = rps_trigger_softirq; 7495 sd->csd.info = sd; 7496 sd->cpu = i; 7497 #endif 7498 7499 sd->backlog.poll = process_backlog; 7500 sd->backlog.weight = weight_p; 7501 } 7502 7503 dev_boot_phase = 0; 7504 7505 /* The loopback device is special if any other network devices 7506 * is present in a network namespace the loopback device must 7507 * be present. Since we now dynamically allocate and free the 7508 * loopback device ensure this invariant is maintained by 7509 * keeping the loopback device as the first device on the 7510 * list of network devices. Ensuring the loopback devices 7511 * is the first device that appears and the last network device 7512 * that disappears. 7513 */ 7514 if (register_pernet_device(&loopback_net_ops)) 7515 goto out; 7516 7517 if (register_pernet_device(&default_device_ops)) 7518 goto out; 7519 7520 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 7521 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 7522 7523 hotcpu_notifier(dev_cpu_callback, 0); 7524 dst_init(); 7525 rc = 0; 7526 out: 7527 return rc; 7528 } 7529 7530 subsys_initcall(net_dev_init); 7531