xref: /openbmc/linux/net/core/dev.c (revision 4bce6fce)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <net/mpls.h>
122 #include <linux/ipv6.h>
123 #include <linux/in.h>
124 #include <linux/jhash.h>
125 #include <linux/random.h>
126 #include <trace/events/napi.h>
127 #include <trace/events/net.h>
128 #include <trace/events/skb.h>
129 #include <linux/pci.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 
139 #include "net-sysfs.h"
140 
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143 
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146 
147 static DEFINE_SPINLOCK(ptype_lock);
148 static DEFINE_SPINLOCK(offload_lock);
149 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
150 struct list_head ptype_all __read_mostly;	/* Taps */
151 static struct list_head offload_base __read_mostly;
152 
153 static int netif_rx_internal(struct sk_buff *skb);
154 static int call_netdevice_notifiers_info(unsigned long val,
155 					 struct net_device *dev,
156 					 struct netdev_notifier_info *info);
157 
158 /*
159  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
160  * semaphore.
161  *
162  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
163  *
164  * Writers must hold the rtnl semaphore while they loop through the
165  * dev_base_head list, and hold dev_base_lock for writing when they do the
166  * actual updates.  This allows pure readers to access the list even
167  * while a writer is preparing to update it.
168  *
169  * To put it another way, dev_base_lock is held for writing only to
170  * protect against pure readers; the rtnl semaphore provides the
171  * protection against other writers.
172  *
173  * See, for example usages, register_netdevice() and
174  * unregister_netdevice(), which must be called with the rtnl
175  * semaphore held.
176  */
177 DEFINE_RWLOCK(dev_base_lock);
178 EXPORT_SYMBOL(dev_base_lock);
179 
180 /* protects napi_hash addition/deletion and napi_gen_id */
181 static DEFINE_SPINLOCK(napi_hash_lock);
182 
183 static unsigned int napi_gen_id;
184 static DEFINE_HASHTABLE(napi_hash, 8);
185 
186 static seqcount_t devnet_rename_seq;
187 
188 static inline void dev_base_seq_inc(struct net *net)
189 {
190 	while (++net->dev_base_seq == 0);
191 }
192 
193 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
194 {
195 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
196 
197 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
198 }
199 
200 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
201 {
202 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
203 }
204 
205 static inline void rps_lock(struct softnet_data *sd)
206 {
207 #ifdef CONFIG_RPS
208 	spin_lock(&sd->input_pkt_queue.lock);
209 #endif
210 }
211 
212 static inline void rps_unlock(struct softnet_data *sd)
213 {
214 #ifdef CONFIG_RPS
215 	spin_unlock(&sd->input_pkt_queue.lock);
216 #endif
217 }
218 
219 /* Device list insertion */
220 static void list_netdevice(struct net_device *dev)
221 {
222 	struct net *net = dev_net(dev);
223 
224 	ASSERT_RTNL();
225 
226 	write_lock_bh(&dev_base_lock);
227 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
228 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
229 	hlist_add_head_rcu(&dev->index_hlist,
230 			   dev_index_hash(net, dev->ifindex));
231 	write_unlock_bh(&dev_base_lock);
232 
233 	dev_base_seq_inc(net);
234 }
235 
236 /* Device list removal
237  * caller must respect a RCU grace period before freeing/reusing dev
238  */
239 static void unlist_netdevice(struct net_device *dev)
240 {
241 	ASSERT_RTNL();
242 
243 	/* Unlink dev from the device chain */
244 	write_lock_bh(&dev_base_lock);
245 	list_del_rcu(&dev->dev_list);
246 	hlist_del_rcu(&dev->name_hlist);
247 	hlist_del_rcu(&dev->index_hlist);
248 	write_unlock_bh(&dev_base_lock);
249 
250 	dev_base_seq_inc(dev_net(dev));
251 }
252 
253 /*
254  *	Our notifier list
255  */
256 
257 static RAW_NOTIFIER_HEAD(netdev_chain);
258 
259 /*
260  *	Device drivers call our routines to queue packets here. We empty the
261  *	queue in the local softnet handler.
262  */
263 
264 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
265 EXPORT_PER_CPU_SYMBOL(softnet_data);
266 
267 #ifdef CONFIG_LOCKDEP
268 /*
269  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
270  * according to dev->type
271  */
272 static const unsigned short netdev_lock_type[] =
273 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
274 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
275 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
276 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
277 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
278 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
279 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
280 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
281 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
282 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
283 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
284 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
285 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
286 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
287 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
288 
289 static const char *const netdev_lock_name[] =
290 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
291 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
292 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
293 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
294 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
295 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
296 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
297 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
298 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
299 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
300 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
301 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
302 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
303 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
304 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
305 
306 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
307 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
308 
309 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
310 {
311 	int i;
312 
313 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
314 		if (netdev_lock_type[i] == dev_type)
315 			return i;
316 	/* the last key is used by default */
317 	return ARRAY_SIZE(netdev_lock_type) - 1;
318 }
319 
320 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
321 						 unsigned short dev_type)
322 {
323 	int i;
324 
325 	i = netdev_lock_pos(dev_type);
326 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
327 				   netdev_lock_name[i]);
328 }
329 
330 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
331 {
332 	int i;
333 
334 	i = netdev_lock_pos(dev->type);
335 	lockdep_set_class_and_name(&dev->addr_list_lock,
336 				   &netdev_addr_lock_key[i],
337 				   netdev_lock_name[i]);
338 }
339 #else
340 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
341 						 unsigned short dev_type)
342 {
343 }
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346 }
347 #endif
348 
349 /*******************************************************************************
350 
351 		Protocol management and registration routines
352 
353 *******************************************************************************/
354 
355 /*
356  *	Add a protocol ID to the list. Now that the input handler is
357  *	smarter we can dispense with all the messy stuff that used to be
358  *	here.
359  *
360  *	BEWARE!!! Protocol handlers, mangling input packets,
361  *	MUST BE last in hash buckets and checking protocol handlers
362  *	MUST start from promiscuous ptype_all chain in net_bh.
363  *	It is true now, do not change it.
364  *	Explanation follows: if protocol handler, mangling packet, will
365  *	be the first on list, it is not able to sense, that packet
366  *	is cloned and should be copied-on-write, so that it will
367  *	change it and subsequent readers will get broken packet.
368  *							--ANK (980803)
369  */
370 
371 static inline struct list_head *ptype_head(const struct packet_type *pt)
372 {
373 	if (pt->type == htons(ETH_P_ALL))
374 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
375 	else
376 		return pt->dev ? &pt->dev->ptype_specific :
377 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
378 }
379 
380 /**
381  *	dev_add_pack - add packet handler
382  *	@pt: packet type declaration
383  *
384  *	Add a protocol handler to the networking stack. The passed &packet_type
385  *	is linked into kernel lists and may not be freed until it has been
386  *	removed from the kernel lists.
387  *
388  *	This call does not sleep therefore it can not
389  *	guarantee all CPU's that are in middle of receiving packets
390  *	will see the new packet type (until the next received packet).
391  */
392 
393 void dev_add_pack(struct packet_type *pt)
394 {
395 	struct list_head *head = ptype_head(pt);
396 
397 	spin_lock(&ptype_lock);
398 	list_add_rcu(&pt->list, head);
399 	spin_unlock(&ptype_lock);
400 }
401 EXPORT_SYMBOL(dev_add_pack);
402 
403 /**
404  *	__dev_remove_pack	 - remove packet handler
405  *	@pt: packet type declaration
406  *
407  *	Remove a protocol handler that was previously added to the kernel
408  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
409  *	from the kernel lists and can be freed or reused once this function
410  *	returns.
411  *
412  *      The packet type might still be in use by receivers
413  *	and must not be freed until after all the CPU's have gone
414  *	through a quiescent state.
415  */
416 void __dev_remove_pack(struct packet_type *pt)
417 {
418 	struct list_head *head = ptype_head(pt);
419 	struct packet_type *pt1;
420 
421 	spin_lock(&ptype_lock);
422 
423 	list_for_each_entry(pt1, head, list) {
424 		if (pt == pt1) {
425 			list_del_rcu(&pt->list);
426 			goto out;
427 		}
428 	}
429 
430 	pr_warn("dev_remove_pack: %p not found\n", pt);
431 out:
432 	spin_unlock(&ptype_lock);
433 }
434 EXPORT_SYMBOL(__dev_remove_pack);
435 
436 /**
437  *	dev_remove_pack	 - remove packet handler
438  *	@pt: packet type declaration
439  *
440  *	Remove a protocol handler that was previously added to the kernel
441  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
442  *	from the kernel lists and can be freed or reused once this function
443  *	returns.
444  *
445  *	This call sleeps to guarantee that no CPU is looking at the packet
446  *	type after return.
447  */
448 void dev_remove_pack(struct packet_type *pt)
449 {
450 	__dev_remove_pack(pt);
451 
452 	synchronize_net();
453 }
454 EXPORT_SYMBOL(dev_remove_pack);
455 
456 
457 /**
458  *	dev_add_offload - register offload handlers
459  *	@po: protocol offload declaration
460  *
461  *	Add protocol offload handlers to the networking stack. The passed
462  *	&proto_offload is linked into kernel lists and may not be freed until
463  *	it has been removed from the kernel lists.
464  *
465  *	This call does not sleep therefore it can not
466  *	guarantee all CPU's that are in middle of receiving packets
467  *	will see the new offload handlers (until the next received packet).
468  */
469 void dev_add_offload(struct packet_offload *po)
470 {
471 	struct list_head *head = &offload_base;
472 
473 	spin_lock(&offload_lock);
474 	list_add_rcu(&po->list, head);
475 	spin_unlock(&offload_lock);
476 }
477 EXPORT_SYMBOL(dev_add_offload);
478 
479 /**
480  *	__dev_remove_offload	 - remove offload handler
481  *	@po: packet offload declaration
482  *
483  *	Remove a protocol offload handler that was previously added to the
484  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
485  *	is removed from the kernel lists and can be freed or reused once this
486  *	function returns.
487  *
488  *      The packet type might still be in use by receivers
489  *	and must not be freed until after all the CPU's have gone
490  *	through a quiescent state.
491  */
492 static void __dev_remove_offload(struct packet_offload *po)
493 {
494 	struct list_head *head = &offload_base;
495 	struct packet_offload *po1;
496 
497 	spin_lock(&offload_lock);
498 
499 	list_for_each_entry(po1, head, list) {
500 		if (po == po1) {
501 			list_del_rcu(&po->list);
502 			goto out;
503 		}
504 	}
505 
506 	pr_warn("dev_remove_offload: %p not found\n", po);
507 out:
508 	spin_unlock(&offload_lock);
509 }
510 
511 /**
512  *	dev_remove_offload	 - remove packet offload handler
513  *	@po: packet offload declaration
514  *
515  *	Remove a packet offload handler that was previously added to the kernel
516  *	offload handlers by dev_add_offload(). The passed &offload_type is
517  *	removed from the kernel lists and can be freed or reused once this
518  *	function returns.
519  *
520  *	This call sleeps to guarantee that no CPU is looking at the packet
521  *	type after return.
522  */
523 void dev_remove_offload(struct packet_offload *po)
524 {
525 	__dev_remove_offload(po);
526 
527 	synchronize_net();
528 }
529 EXPORT_SYMBOL(dev_remove_offload);
530 
531 /******************************************************************************
532 
533 		      Device Boot-time Settings Routines
534 
535 *******************************************************************************/
536 
537 /* Boot time configuration table */
538 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
539 
540 /**
541  *	netdev_boot_setup_add	- add new setup entry
542  *	@name: name of the device
543  *	@map: configured settings for the device
544  *
545  *	Adds new setup entry to the dev_boot_setup list.  The function
546  *	returns 0 on error and 1 on success.  This is a generic routine to
547  *	all netdevices.
548  */
549 static int netdev_boot_setup_add(char *name, struct ifmap *map)
550 {
551 	struct netdev_boot_setup *s;
552 	int i;
553 
554 	s = dev_boot_setup;
555 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
556 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
557 			memset(s[i].name, 0, sizeof(s[i].name));
558 			strlcpy(s[i].name, name, IFNAMSIZ);
559 			memcpy(&s[i].map, map, sizeof(s[i].map));
560 			break;
561 		}
562 	}
563 
564 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
565 }
566 
567 /**
568  *	netdev_boot_setup_check	- check boot time settings
569  *	@dev: the netdevice
570  *
571  * 	Check boot time settings for the device.
572  *	The found settings are set for the device to be used
573  *	later in the device probing.
574  *	Returns 0 if no settings found, 1 if they are.
575  */
576 int netdev_boot_setup_check(struct net_device *dev)
577 {
578 	struct netdev_boot_setup *s = dev_boot_setup;
579 	int i;
580 
581 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
582 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
583 		    !strcmp(dev->name, s[i].name)) {
584 			dev->irq 	= s[i].map.irq;
585 			dev->base_addr 	= s[i].map.base_addr;
586 			dev->mem_start 	= s[i].map.mem_start;
587 			dev->mem_end 	= s[i].map.mem_end;
588 			return 1;
589 		}
590 	}
591 	return 0;
592 }
593 EXPORT_SYMBOL(netdev_boot_setup_check);
594 
595 
596 /**
597  *	netdev_boot_base	- get address from boot time settings
598  *	@prefix: prefix for network device
599  *	@unit: id for network device
600  *
601  * 	Check boot time settings for the base address of device.
602  *	The found settings are set for the device to be used
603  *	later in the device probing.
604  *	Returns 0 if no settings found.
605  */
606 unsigned long netdev_boot_base(const char *prefix, int unit)
607 {
608 	const struct netdev_boot_setup *s = dev_boot_setup;
609 	char name[IFNAMSIZ];
610 	int i;
611 
612 	sprintf(name, "%s%d", prefix, unit);
613 
614 	/*
615 	 * If device already registered then return base of 1
616 	 * to indicate not to probe for this interface
617 	 */
618 	if (__dev_get_by_name(&init_net, name))
619 		return 1;
620 
621 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
622 		if (!strcmp(name, s[i].name))
623 			return s[i].map.base_addr;
624 	return 0;
625 }
626 
627 /*
628  * Saves at boot time configured settings for any netdevice.
629  */
630 int __init netdev_boot_setup(char *str)
631 {
632 	int ints[5];
633 	struct ifmap map;
634 
635 	str = get_options(str, ARRAY_SIZE(ints), ints);
636 	if (!str || !*str)
637 		return 0;
638 
639 	/* Save settings */
640 	memset(&map, 0, sizeof(map));
641 	if (ints[0] > 0)
642 		map.irq = ints[1];
643 	if (ints[0] > 1)
644 		map.base_addr = ints[2];
645 	if (ints[0] > 2)
646 		map.mem_start = ints[3];
647 	if (ints[0] > 3)
648 		map.mem_end = ints[4];
649 
650 	/* Add new entry to the list */
651 	return netdev_boot_setup_add(str, &map);
652 }
653 
654 __setup("netdev=", netdev_boot_setup);
655 
656 /*******************************************************************************
657 
658 			    Device Interface Subroutines
659 
660 *******************************************************************************/
661 
662 /**
663  *	dev_get_iflink	- get 'iflink' value of a interface
664  *	@dev: targeted interface
665  *
666  *	Indicates the ifindex the interface is linked to.
667  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
668  */
669 
670 int dev_get_iflink(const struct net_device *dev)
671 {
672 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
673 		return dev->netdev_ops->ndo_get_iflink(dev);
674 
675 	/* If dev->rtnl_link_ops is set, it's a virtual interface. */
676 	if (dev->rtnl_link_ops)
677 		return 0;
678 
679 	return dev->ifindex;
680 }
681 EXPORT_SYMBOL(dev_get_iflink);
682 
683 /**
684  *	__dev_get_by_name	- find a device by its name
685  *	@net: the applicable net namespace
686  *	@name: name to find
687  *
688  *	Find an interface by name. Must be called under RTNL semaphore
689  *	or @dev_base_lock. If the name is found a pointer to the device
690  *	is returned. If the name is not found then %NULL is returned. The
691  *	reference counters are not incremented so the caller must be
692  *	careful with locks.
693  */
694 
695 struct net_device *__dev_get_by_name(struct net *net, const char *name)
696 {
697 	struct net_device *dev;
698 	struct hlist_head *head = dev_name_hash(net, name);
699 
700 	hlist_for_each_entry(dev, head, name_hlist)
701 		if (!strncmp(dev->name, name, IFNAMSIZ))
702 			return dev;
703 
704 	return NULL;
705 }
706 EXPORT_SYMBOL(__dev_get_by_name);
707 
708 /**
709  *	dev_get_by_name_rcu	- find a device by its name
710  *	@net: the applicable net namespace
711  *	@name: name to find
712  *
713  *	Find an interface by name.
714  *	If the name is found a pointer to the device is returned.
715  * 	If the name is not found then %NULL is returned.
716  *	The reference counters are not incremented so the caller must be
717  *	careful with locks. The caller must hold RCU lock.
718  */
719 
720 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
721 {
722 	struct net_device *dev;
723 	struct hlist_head *head = dev_name_hash(net, name);
724 
725 	hlist_for_each_entry_rcu(dev, head, name_hlist)
726 		if (!strncmp(dev->name, name, IFNAMSIZ))
727 			return dev;
728 
729 	return NULL;
730 }
731 EXPORT_SYMBOL(dev_get_by_name_rcu);
732 
733 /**
734  *	dev_get_by_name		- find a device by its name
735  *	@net: the applicable net namespace
736  *	@name: name to find
737  *
738  *	Find an interface by name. This can be called from any
739  *	context and does its own locking. The returned handle has
740  *	the usage count incremented and the caller must use dev_put() to
741  *	release it when it is no longer needed. %NULL is returned if no
742  *	matching device is found.
743  */
744 
745 struct net_device *dev_get_by_name(struct net *net, const char *name)
746 {
747 	struct net_device *dev;
748 
749 	rcu_read_lock();
750 	dev = dev_get_by_name_rcu(net, name);
751 	if (dev)
752 		dev_hold(dev);
753 	rcu_read_unlock();
754 	return dev;
755 }
756 EXPORT_SYMBOL(dev_get_by_name);
757 
758 /**
759  *	__dev_get_by_index - find a device by its ifindex
760  *	@net: the applicable net namespace
761  *	@ifindex: index of device
762  *
763  *	Search for an interface by index. Returns %NULL if the device
764  *	is not found or a pointer to the device. The device has not
765  *	had its reference counter increased so the caller must be careful
766  *	about locking. The caller must hold either the RTNL semaphore
767  *	or @dev_base_lock.
768  */
769 
770 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
771 {
772 	struct net_device *dev;
773 	struct hlist_head *head = dev_index_hash(net, ifindex);
774 
775 	hlist_for_each_entry(dev, head, index_hlist)
776 		if (dev->ifindex == ifindex)
777 			return dev;
778 
779 	return NULL;
780 }
781 EXPORT_SYMBOL(__dev_get_by_index);
782 
783 /**
784  *	dev_get_by_index_rcu - find a device by its ifindex
785  *	@net: the applicable net namespace
786  *	@ifindex: index of device
787  *
788  *	Search for an interface by index. Returns %NULL if the device
789  *	is not found or a pointer to the device. The device has not
790  *	had its reference counter increased so the caller must be careful
791  *	about locking. The caller must hold RCU lock.
792  */
793 
794 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
795 {
796 	struct net_device *dev;
797 	struct hlist_head *head = dev_index_hash(net, ifindex);
798 
799 	hlist_for_each_entry_rcu(dev, head, index_hlist)
800 		if (dev->ifindex == ifindex)
801 			return dev;
802 
803 	return NULL;
804 }
805 EXPORT_SYMBOL(dev_get_by_index_rcu);
806 
807 
808 /**
809  *	dev_get_by_index - find a device by its ifindex
810  *	@net: the applicable net namespace
811  *	@ifindex: index of device
812  *
813  *	Search for an interface by index. Returns NULL if the device
814  *	is not found or a pointer to the device. The device returned has
815  *	had a reference added and the pointer is safe until the user calls
816  *	dev_put to indicate they have finished with it.
817  */
818 
819 struct net_device *dev_get_by_index(struct net *net, int ifindex)
820 {
821 	struct net_device *dev;
822 
823 	rcu_read_lock();
824 	dev = dev_get_by_index_rcu(net, ifindex);
825 	if (dev)
826 		dev_hold(dev);
827 	rcu_read_unlock();
828 	return dev;
829 }
830 EXPORT_SYMBOL(dev_get_by_index);
831 
832 /**
833  *	netdev_get_name - get a netdevice name, knowing its ifindex.
834  *	@net: network namespace
835  *	@name: a pointer to the buffer where the name will be stored.
836  *	@ifindex: the ifindex of the interface to get the name from.
837  *
838  *	The use of raw_seqcount_begin() and cond_resched() before
839  *	retrying is required as we want to give the writers a chance
840  *	to complete when CONFIG_PREEMPT is not set.
841  */
842 int netdev_get_name(struct net *net, char *name, int ifindex)
843 {
844 	struct net_device *dev;
845 	unsigned int seq;
846 
847 retry:
848 	seq = raw_seqcount_begin(&devnet_rename_seq);
849 	rcu_read_lock();
850 	dev = dev_get_by_index_rcu(net, ifindex);
851 	if (!dev) {
852 		rcu_read_unlock();
853 		return -ENODEV;
854 	}
855 
856 	strcpy(name, dev->name);
857 	rcu_read_unlock();
858 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
859 		cond_resched();
860 		goto retry;
861 	}
862 
863 	return 0;
864 }
865 
866 /**
867  *	dev_getbyhwaddr_rcu - find a device by its hardware address
868  *	@net: the applicable net namespace
869  *	@type: media type of device
870  *	@ha: hardware address
871  *
872  *	Search for an interface by MAC address. Returns NULL if the device
873  *	is not found or a pointer to the device.
874  *	The caller must hold RCU or RTNL.
875  *	The returned device has not had its ref count increased
876  *	and the caller must therefore be careful about locking
877  *
878  */
879 
880 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
881 				       const char *ha)
882 {
883 	struct net_device *dev;
884 
885 	for_each_netdev_rcu(net, dev)
886 		if (dev->type == type &&
887 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
888 			return dev;
889 
890 	return NULL;
891 }
892 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
893 
894 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
895 {
896 	struct net_device *dev;
897 
898 	ASSERT_RTNL();
899 	for_each_netdev(net, dev)
900 		if (dev->type == type)
901 			return dev;
902 
903 	return NULL;
904 }
905 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
906 
907 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
908 {
909 	struct net_device *dev, *ret = NULL;
910 
911 	rcu_read_lock();
912 	for_each_netdev_rcu(net, dev)
913 		if (dev->type == type) {
914 			dev_hold(dev);
915 			ret = dev;
916 			break;
917 		}
918 	rcu_read_unlock();
919 	return ret;
920 }
921 EXPORT_SYMBOL(dev_getfirstbyhwtype);
922 
923 /**
924  *	__dev_get_by_flags - find any device with given flags
925  *	@net: the applicable net namespace
926  *	@if_flags: IFF_* values
927  *	@mask: bitmask of bits in if_flags to check
928  *
929  *	Search for any interface with the given flags. Returns NULL if a device
930  *	is not found or a pointer to the device. Must be called inside
931  *	rtnl_lock(), and result refcount is unchanged.
932  */
933 
934 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
935 				      unsigned short mask)
936 {
937 	struct net_device *dev, *ret;
938 
939 	ASSERT_RTNL();
940 
941 	ret = NULL;
942 	for_each_netdev(net, dev) {
943 		if (((dev->flags ^ if_flags) & mask) == 0) {
944 			ret = dev;
945 			break;
946 		}
947 	}
948 	return ret;
949 }
950 EXPORT_SYMBOL(__dev_get_by_flags);
951 
952 /**
953  *	dev_valid_name - check if name is okay for network device
954  *	@name: name string
955  *
956  *	Network device names need to be valid file names to
957  *	to allow sysfs to work.  We also disallow any kind of
958  *	whitespace.
959  */
960 bool dev_valid_name(const char *name)
961 {
962 	if (*name == '\0')
963 		return false;
964 	if (strlen(name) >= IFNAMSIZ)
965 		return false;
966 	if (!strcmp(name, ".") || !strcmp(name, ".."))
967 		return false;
968 
969 	while (*name) {
970 		if (*name == '/' || *name == ':' || isspace(*name))
971 			return false;
972 		name++;
973 	}
974 	return true;
975 }
976 EXPORT_SYMBOL(dev_valid_name);
977 
978 /**
979  *	__dev_alloc_name - allocate a name for a device
980  *	@net: network namespace to allocate the device name in
981  *	@name: name format string
982  *	@buf:  scratch buffer and result name string
983  *
984  *	Passed a format string - eg "lt%d" it will try and find a suitable
985  *	id. It scans list of devices to build up a free map, then chooses
986  *	the first empty slot. The caller must hold the dev_base or rtnl lock
987  *	while allocating the name and adding the device in order to avoid
988  *	duplicates.
989  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
990  *	Returns the number of the unit assigned or a negative errno code.
991  */
992 
993 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
994 {
995 	int i = 0;
996 	const char *p;
997 	const int max_netdevices = 8*PAGE_SIZE;
998 	unsigned long *inuse;
999 	struct net_device *d;
1000 
1001 	p = strnchr(name, IFNAMSIZ-1, '%');
1002 	if (p) {
1003 		/*
1004 		 * Verify the string as this thing may have come from
1005 		 * the user.  There must be either one "%d" and no other "%"
1006 		 * characters.
1007 		 */
1008 		if (p[1] != 'd' || strchr(p + 2, '%'))
1009 			return -EINVAL;
1010 
1011 		/* Use one page as a bit array of possible slots */
1012 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1013 		if (!inuse)
1014 			return -ENOMEM;
1015 
1016 		for_each_netdev(net, d) {
1017 			if (!sscanf(d->name, name, &i))
1018 				continue;
1019 			if (i < 0 || i >= max_netdevices)
1020 				continue;
1021 
1022 			/*  avoid cases where sscanf is not exact inverse of printf */
1023 			snprintf(buf, IFNAMSIZ, name, i);
1024 			if (!strncmp(buf, d->name, IFNAMSIZ))
1025 				set_bit(i, inuse);
1026 		}
1027 
1028 		i = find_first_zero_bit(inuse, max_netdevices);
1029 		free_page((unsigned long) inuse);
1030 	}
1031 
1032 	if (buf != name)
1033 		snprintf(buf, IFNAMSIZ, name, i);
1034 	if (!__dev_get_by_name(net, buf))
1035 		return i;
1036 
1037 	/* It is possible to run out of possible slots
1038 	 * when the name is long and there isn't enough space left
1039 	 * for the digits, or if all bits are used.
1040 	 */
1041 	return -ENFILE;
1042 }
1043 
1044 /**
1045  *	dev_alloc_name - allocate a name for a device
1046  *	@dev: device
1047  *	@name: name format string
1048  *
1049  *	Passed a format string - eg "lt%d" it will try and find a suitable
1050  *	id. It scans list of devices to build up a free map, then chooses
1051  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1052  *	while allocating the name and adding the device in order to avoid
1053  *	duplicates.
1054  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1055  *	Returns the number of the unit assigned or a negative errno code.
1056  */
1057 
1058 int dev_alloc_name(struct net_device *dev, const char *name)
1059 {
1060 	char buf[IFNAMSIZ];
1061 	struct net *net;
1062 	int ret;
1063 
1064 	BUG_ON(!dev_net(dev));
1065 	net = dev_net(dev);
1066 	ret = __dev_alloc_name(net, name, buf);
1067 	if (ret >= 0)
1068 		strlcpy(dev->name, buf, IFNAMSIZ);
1069 	return ret;
1070 }
1071 EXPORT_SYMBOL(dev_alloc_name);
1072 
1073 static int dev_alloc_name_ns(struct net *net,
1074 			     struct net_device *dev,
1075 			     const char *name)
1076 {
1077 	char buf[IFNAMSIZ];
1078 	int ret;
1079 
1080 	ret = __dev_alloc_name(net, name, buf);
1081 	if (ret >= 0)
1082 		strlcpy(dev->name, buf, IFNAMSIZ);
1083 	return ret;
1084 }
1085 
1086 static int dev_get_valid_name(struct net *net,
1087 			      struct net_device *dev,
1088 			      const char *name)
1089 {
1090 	BUG_ON(!net);
1091 
1092 	if (!dev_valid_name(name))
1093 		return -EINVAL;
1094 
1095 	if (strchr(name, '%'))
1096 		return dev_alloc_name_ns(net, dev, name);
1097 	else if (__dev_get_by_name(net, name))
1098 		return -EEXIST;
1099 	else if (dev->name != name)
1100 		strlcpy(dev->name, name, IFNAMSIZ);
1101 
1102 	return 0;
1103 }
1104 
1105 /**
1106  *	dev_change_name - change name of a device
1107  *	@dev: device
1108  *	@newname: name (or format string) must be at least IFNAMSIZ
1109  *
1110  *	Change name of a device, can pass format strings "eth%d".
1111  *	for wildcarding.
1112  */
1113 int dev_change_name(struct net_device *dev, const char *newname)
1114 {
1115 	unsigned char old_assign_type;
1116 	char oldname[IFNAMSIZ];
1117 	int err = 0;
1118 	int ret;
1119 	struct net *net;
1120 
1121 	ASSERT_RTNL();
1122 	BUG_ON(!dev_net(dev));
1123 
1124 	net = dev_net(dev);
1125 	if (dev->flags & IFF_UP)
1126 		return -EBUSY;
1127 
1128 	write_seqcount_begin(&devnet_rename_seq);
1129 
1130 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1131 		write_seqcount_end(&devnet_rename_seq);
1132 		return 0;
1133 	}
1134 
1135 	memcpy(oldname, dev->name, IFNAMSIZ);
1136 
1137 	err = dev_get_valid_name(net, dev, newname);
1138 	if (err < 0) {
1139 		write_seqcount_end(&devnet_rename_seq);
1140 		return err;
1141 	}
1142 
1143 	if (oldname[0] && !strchr(oldname, '%'))
1144 		netdev_info(dev, "renamed from %s\n", oldname);
1145 
1146 	old_assign_type = dev->name_assign_type;
1147 	dev->name_assign_type = NET_NAME_RENAMED;
1148 
1149 rollback:
1150 	ret = device_rename(&dev->dev, dev->name);
1151 	if (ret) {
1152 		memcpy(dev->name, oldname, IFNAMSIZ);
1153 		dev->name_assign_type = old_assign_type;
1154 		write_seqcount_end(&devnet_rename_seq);
1155 		return ret;
1156 	}
1157 
1158 	write_seqcount_end(&devnet_rename_seq);
1159 
1160 	netdev_adjacent_rename_links(dev, oldname);
1161 
1162 	write_lock_bh(&dev_base_lock);
1163 	hlist_del_rcu(&dev->name_hlist);
1164 	write_unlock_bh(&dev_base_lock);
1165 
1166 	synchronize_rcu();
1167 
1168 	write_lock_bh(&dev_base_lock);
1169 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1170 	write_unlock_bh(&dev_base_lock);
1171 
1172 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1173 	ret = notifier_to_errno(ret);
1174 
1175 	if (ret) {
1176 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1177 		if (err >= 0) {
1178 			err = ret;
1179 			write_seqcount_begin(&devnet_rename_seq);
1180 			memcpy(dev->name, oldname, IFNAMSIZ);
1181 			memcpy(oldname, newname, IFNAMSIZ);
1182 			dev->name_assign_type = old_assign_type;
1183 			old_assign_type = NET_NAME_RENAMED;
1184 			goto rollback;
1185 		} else {
1186 			pr_err("%s: name change rollback failed: %d\n",
1187 			       dev->name, ret);
1188 		}
1189 	}
1190 
1191 	return err;
1192 }
1193 
1194 /**
1195  *	dev_set_alias - change ifalias of a device
1196  *	@dev: device
1197  *	@alias: name up to IFALIASZ
1198  *	@len: limit of bytes to copy from info
1199  *
1200  *	Set ifalias for a device,
1201  */
1202 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1203 {
1204 	char *new_ifalias;
1205 
1206 	ASSERT_RTNL();
1207 
1208 	if (len >= IFALIASZ)
1209 		return -EINVAL;
1210 
1211 	if (!len) {
1212 		kfree(dev->ifalias);
1213 		dev->ifalias = NULL;
1214 		return 0;
1215 	}
1216 
1217 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1218 	if (!new_ifalias)
1219 		return -ENOMEM;
1220 	dev->ifalias = new_ifalias;
1221 
1222 	strlcpy(dev->ifalias, alias, len+1);
1223 	return len;
1224 }
1225 
1226 
1227 /**
1228  *	netdev_features_change - device changes features
1229  *	@dev: device to cause notification
1230  *
1231  *	Called to indicate a device has changed features.
1232  */
1233 void netdev_features_change(struct net_device *dev)
1234 {
1235 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1236 }
1237 EXPORT_SYMBOL(netdev_features_change);
1238 
1239 /**
1240  *	netdev_state_change - device changes state
1241  *	@dev: device to cause notification
1242  *
1243  *	Called to indicate a device has changed state. This function calls
1244  *	the notifier chains for netdev_chain and sends a NEWLINK message
1245  *	to the routing socket.
1246  */
1247 void netdev_state_change(struct net_device *dev)
1248 {
1249 	if (dev->flags & IFF_UP) {
1250 		struct netdev_notifier_change_info change_info;
1251 
1252 		change_info.flags_changed = 0;
1253 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1254 					      &change_info.info);
1255 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1256 	}
1257 }
1258 EXPORT_SYMBOL(netdev_state_change);
1259 
1260 /**
1261  * 	netdev_notify_peers - notify network peers about existence of @dev
1262  * 	@dev: network device
1263  *
1264  * Generate traffic such that interested network peers are aware of
1265  * @dev, such as by generating a gratuitous ARP. This may be used when
1266  * a device wants to inform the rest of the network about some sort of
1267  * reconfiguration such as a failover event or virtual machine
1268  * migration.
1269  */
1270 void netdev_notify_peers(struct net_device *dev)
1271 {
1272 	rtnl_lock();
1273 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1274 	rtnl_unlock();
1275 }
1276 EXPORT_SYMBOL(netdev_notify_peers);
1277 
1278 static int __dev_open(struct net_device *dev)
1279 {
1280 	const struct net_device_ops *ops = dev->netdev_ops;
1281 	int ret;
1282 
1283 	ASSERT_RTNL();
1284 
1285 	if (!netif_device_present(dev))
1286 		return -ENODEV;
1287 
1288 	/* Block netpoll from trying to do any rx path servicing.
1289 	 * If we don't do this there is a chance ndo_poll_controller
1290 	 * or ndo_poll may be running while we open the device
1291 	 */
1292 	netpoll_poll_disable(dev);
1293 
1294 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1295 	ret = notifier_to_errno(ret);
1296 	if (ret)
1297 		return ret;
1298 
1299 	set_bit(__LINK_STATE_START, &dev->state);
1300 
1301 	if (ops->ndo_validate_addr)
1302 		ret = ops->ndo_validate_addr(dev);
1303 
1304 	if (!ret && ops->ndo_open)
1305 		ret = ops->ndo_open(dev);
1306 
1307 	netpoll_poll_enable(dev);
1308 
1309 	if (ret)
1310 		clear_bit(__LINK_STATE_START, &dev->state);
1311 	else {
1312 		dev->flags |= IFF_UP;
1313 		dev_set_rx_mode(dev);
1314 		dev_activate(dev);
1315 		add_device_randomness(dev->dev_addr, dev->addr_len);
1316 	}
1317 
1318 	return ret;
1319 }
1320 
1321 /**
1322  *	dev_open	- prepare an interface for use.
1323  *	@dev:	device to open
1324  *
1325  *	Takes a device from down to up state. The device's private open
1326  *	function is invoked and then the multicast lists are loaded. Finally
1327  *	the device is moved into the up state and a %NETDEV_UP message is
1328  *	sent to the netdev notifier chain.
1329  *
1330  *	Calling this function on an active interface is a nop. On a failure
1331  *	a negative errno code is returned.
1332  */
1333 int dev_open(struct net_device *dev)
1334 {
1335 	int ret;
1336 
1337 	if (dev->flags & IFF_UP)
1338 		return 0;
1339 
1340 	ret = __dev_open(dev);
1341 	if (ret < 0)
1342 		return ret;
1343 
1344 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1345 	call_netdevice_notifiers(NETDEV_UP, dev);
1346 
1347 	return ret;
1348 }
1349 EXPORT_SYMBOL(dev_open);
1350 
1351 static int __dev_close_many(struct list_head *head)
1352 {
1353 	struct net_device *dev;
1354 
1355 	ASSERT_RTNL();
1356 	might_sleep();
1357 
1358 	list_for_each_entry(dev, head, close_list) {
1359 		/* Temporarily disable netpoll until the interface is down */
1360 		netpoll_poll_disable(dev);
1361 
1362 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1363 
1364 		clear_bit(__LINK_STATE_START, &dev->state);
1365 
1366 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1367 		 * can be even on different cpu. So just clear netif_running().
1368 		 *
1369 		 * dev->stop() will invoke napi_disable() on all of it's
1370 		 * napi_struct instances on this device.
1371 		 */
1372 		smp_mb__after_atomic(); /* Commit netif_running(). */
1373 	}
1374 
1375 	dev_deactivate_many(head);
1376 
1377 	list_for_each_entry(dev, head, close_list) {
1378 		const struct net_device_ops *ops = dev->netdev_ops;
1379 
1380 		/*
1381 		 *	Call the device specific close. This cannot fail.
1382 		 *	Only if device is UP
1383 		 *
1384 		 *	We allow it to be called even after a DETACH hot-plug
1385 		 *	event.
1386 		 */
1387 		if (ops->ndo_stop)
1388 			ops->ndo_stop(dev);
1389 
1390 		dev->flags &= ~IFF_UP;
1391 		netpoll_poll_enable(dev);
1392 	}
1393 
1394 	return 0;
1395 }
1396 
1397 static int __dev_close(struct net_device *dev)
1398 {
1399 	int retval;
1400 	LIST_HEAD(single);
1401 
1402 	list_add(&dev->close_list, &single);
1403 	retval = __dev_close_many(&single);
1404 	list_del(&single);
1405 
1406 	return retval;
1407 }
1408 
1409 int dev_close_many(struct list_head *head, bool unlink)
1410 {
1411 	struct net_device *dev, *tmp;
1412 
1413 	/* Remove the devices that don't need to be closed */
1414 	list_for_each_entry_safe(dev, tmp, head, close_list)
1415 		if (!(dev->flags & IFF_UP))
1416 			list_del_init(&dev->close_list);
1417 
1418 	__dev_close_many(head);
1419 
1420 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1421 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1422 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1423 		if (unlink)
1424 			list_del_init(&dev->close_list);
1425 	}
1426 
1427 	return 0;
1428 }
1429 EXPORT_SYMBOL(dev_close_many);
1430 
1431 /**
1432  *	dev_close - shutdown an interface.
1433  *	@dev: device to shutdown
1434  *
1435  *	This function moves an active device into down state. A
1436  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1437  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1438  *	chain.
1439  */
1440 int dev_close(struct net_device *dev)
1441 {
1442 	if (dev->flags & IFF_UP) {
1443 		LIST_HEAD(single);
1444 
1445 		list_add(&dev->close_list, &single);
1446 		dev_close_many(&single, true);
1447 		list_del(&single);
1448 	}
1449 	return 0;
1450 }
1451 EXPORT_SYMBOL(dev_close);
1452 
1453 
1454 /**
1455  *	dev_disable_lro - disable Large Receive Offload on a device
1456  *	@dev: device
1457  *
1458  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1459  *	called under RTNL.  This is needed if received packets may be
1460  *	forwarded to another interface.
1461  */
1462 void dev_disable_lro(struct net_device *dev)
1463 {
1464 	struct net_device *lower_dev;
1465 	struct list_head *iter;
1466 
1467 	dev->wanted_features &= ~NETIF_F_LRO;
1468 	netdev_update_features(dev);
1469 
1470 	if (unlikely(dev->features & NETIF_F_LRO))
1471 		netdev_WARN(dev, "failed to disable LRO!\n");
1472 
1473 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1474 		dev_disable_lro(lower_dev);
1475 }
1476 EXPORT_SYMBOL(dev_disable_lro);
1477 
1478 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1479 				   struct net_device *dev)
1480 {
1481 	struct netdev_notifier_info info;
1482 
1483 	netdev_notifier_info_init(&info, dev);
1484 	return nb->notifier_call(nb, val, &info);
1485 }
1486 
1487 static int dev_boot_phase = 1;
1488 
1489 /**
1490  *	register_netdevice_notifier - register a network notifier block
1491  *	@nb: notifier
1492  *
1493  *	Register a notifier to be called when network device events occur.
1494  *	The notifier passed is linked into the kernel structures and must
1495  *	not be reused until it has been unregistered. A negative errno code
1496  *	is returned on a failure.
1497  *
1498  * 	When registered all registration and up events are replayed
1499  *	to the new notifier to allow device to have a race free
1500  *	view of the network device list.
1501  */
1502 
1503 int register_netdevice_notifier(struct notifier_block *nb)
1504 {
1505 	struct net_device *dev;
1506 	struct net_device *last;
1507 	struct net *net;
1508 	int err;
1509 
1510 	rtnl_lock();
1511 	err = raw_notifier_chain_register(&netdev_chain, nb);
1512 	if (err)
1513 		goto unlock;
1514 	if (dev_boot_phase)
1515 		goto unlock;
1516 	for_each_net(net) {
1517 		for_each_netdev(net, dev) {
1518 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1519 			err = notifier_to_errno(err);
1520 			if (err)
1521 				goto rollback;
1522 
1523 			if (!(dev->flags & IFF_UP))
1524 				continue;
1525 
1526 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1527 		}
1528 	}
1529 
1530 unlock:
1531 	rtnl_unlock();
1532 	return err;
1533 
1534 rollback:
1535 	last = dev;
1536 	for_each_net(net) {
1537 		for_each_netdev(net, dev) {
1538 			if (dev == last)
1539 				goto outroll;
1540 
1541 			if (dev->flags & IFF_UP) {
1542 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1543 							dev);
1544 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1545 			}
1546 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1547 		}
1548 	}
1549 
1550 outroll:
1551 	raw_notifier_chain_unregister(&netdev_chain, nb);
1552 	goto unlock;
1553 }
1554 EXPORT_SYMBOL(register_netdevice_notifier);
1555 
1556 /**
1557  *	unregister_netdevice_notifier - unregister a network notifier block
1558  *	@nb: notifier
1559  *
1560  *	Unregister a notifier previously registered by
1561  *	register_netdevice_notifier(). The notifier is unlinked into the
1562  *	kernel structures and may then be reused. A negative errno code
1563  *	is returned on a failure.
1564  *
1565  * 	After unregistering unregister and down device events are synthesized
1566  *	for all devices on the device list to the removed notifier to remove
1567  *	the need for special case cleanup code.
1568  */
1569 
1570 int unregister_netdevice_notifier(struct notifier_block *nb)
1571 {
1572 	struct net_device *dev;
1573 	struct net *net;
1574 	int err;
1575 
1576 	rtnl_lock();
1577 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1578 	if (err)
1579 		goto unlock;
1580 
1581 	for_each_net(net) {
1582 		for_each_netdev(net, dev) {
1583 			if (dev->flags & IFF_UP) {
1584 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1585 							dev);
1586 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1587 			}
1588 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1589 		}
1590 	}
1591 unlock:
1592 	rtnl_unlock();
1593 	return err;
1594 }
1595 EXPORT_SYMBOL(unregister_netdevice_notifier);
1596 
1597 /**
1598  *	call_netdevice_notifiers_info - call all network notifier blocks
1599  *	@val: value passed unmodified to notifier function
1600  *	@dev: net_device pointer passed unmodified to notifier function
1601  *	@info: notifier information data
1602  *
1603  *	Call all network notifier blocks.  Parameters and return value
1604  *	are as for raw_notifier_call_chain().
1605  */
1606 
1607 static int call_netdevice_notifiers_info(unsigned long val,
1608 					 struct net_device *dev,
1609 					 struct netdev_notifier_info *info)
1610 {
1611 	ASSERT_RTNL();
1612 	netdev_notifier_info_init(info, dev);
1613 	return raw_notifier_call_chain(&netdev_chain, val, info);
1614 }
1615 
1616 /**
1617  *	call_netdevice_notifiers - call all network notifier blocks
1618  *      @val: value passed unmodified to notifier function
1619  *      @dev: net_device pointer passed unmodified to notifier function
1620  *
1621  *	Call all network notifier blocks.  Parameters and return value
1622  *	are as for raw_notifier_call_chain().
1623  */
1624 
1625 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1626 {
1627 	struct netdev_notifier_info info;
1628 
1629 	return call_netdevice_notifiers_info(val, dev, &info);
1630 }
1631 EXPORT_SYMBOL(call_netdevice_notifiers);
1632 
1633 #ifdef CONFIG_NET_CLS_ACT
1634 static struct static_key ingress_needed __read_mostly;
1635 
1636 void net_inc_ingress_queue(void)
1637 {
1638 	static_key_slow_inc(&ingress_needed);
1639 }
1640 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1641 
1642 void net_dec_ingress_queue(void)
1643 {
1644 	static_key_slow_dec(&ingress_needed);
1645 }
1646 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1647 #endif
1648 
1649 static struct static_key netstamp_needed __read_mostly;
1650 #ifdef HAVE_JUMP_LABEL
1651 /* We are not allowed to call static_key_slow_dec() from irq context
1652  * If net_disable_timestamp() is called from irq context, defer the
1653  * static_key_slow_dec() calls.
1654  */
1655 static atomic_t netstamp_needed_deferred;
1656 #endif
1657 
1658 void net_enable_timestamp(void)
1659 {
1660 #ifdef HAVE_JUMP_LABEL
1661 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1662 
1663 	if (deferred) {
1664 		while (--deferred)
1665 			static_key_slow_dec(&netstamp_needed);
1666 		return;
1667 	}
1668 #endif
1669 	static_key_slow_inc(&netstamp_needed);
1670 }
1671 EXPORT_SYMBOL(net_enable_timestamp);
1672 
1673 void net_disable_timestamp(void)
1674 {
1675 #ifdef HAVE_JUMP_LABEL
1676 	if (in_interrupt()) {
1677 		atomic_inc(&netstamp_needed_deferred);
1678 		return;
1679 	}
1680 #endif
1681 	static_key_slow_dec(&netstamp_needed);
1682 }
1683 EXPORT_SYMBOL(net_disable_timestamp);
1684 
1685 static inline void net_timestamp_set(struct sk_buff *skb)
1686 {
1687 	skb->tstamp.tv64 = 0;
1688 	if (static_key_false(&netstamp_needed))
1689 		__net_timestamp(skb);
1690 }
1691 
1692 #define net_timestamp_check(COND, SKB)			\
1693 	if (static_key_false(&netstamp_needed)) {		\
1694 		if ((COND) && !(SKB)->tstamp.tv64)	\
1695 			__net_timestamp(SKB);		\
1696 	}						\
1697 
1698 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1699 {
1700 	unsigned int len;
1701 
1702 	if (!(dev->flags & IFF_UP))
1703 		return false;
1704 
1705 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1706 	if (skb->len <= len)
1707 		return true;
1708 
1709 	/* if TSO is enabled, we don't care about the length as the packet
1710 	 * could be forwarded without being segmented before
1711 	 */
1712 	if (skb_is_gso(skb))
1713 		return true;
1714 
1715 	return false;
1716 }
1717 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1718 
1719 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1720 {
1721 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1722 		if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1723 			atomic_long_inc(&dev->rx_dropped);
1724 			kfree_skb(skb);
1725 			return NET_RX_DROP;
1726 		}
1727 	}
1728 
1729 	if (unlikely(!is_skb_forwardable(dev, skb))) {
1730 		atomic_long_inc(&dev->rx_dropped);
1731 		kfree_skb(skb);
1732 		return NET_RX_DROP;
1733 	}
1734 
1735 	skb_scrub_packet(skb, true);
1736 	skb->priority = 0;
1737 	skb->protocol = eth_type_trans(skb, dev);
1738 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1739 
1740 	return 0;
1741 }
1742 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1743 
1744 /**
1745  * dev_forward_skb - loopback an skb to another netif
1746  *
1747  * @dev: destination network device
1748  * @skb: buffer to forward
1749  *
1750  * return values:
1751  *	NET_RX_SUCCESS	(no congestion)
1752  *	NET_RX_DROP     (packet was dropped, but freed)
1753  *
1754  * dev_forward_skb can be used for injecting an skb from the
1755  * start_xmit function of one device into the receive queue
1756  * of another device.
1757  *
1758  * The receiving device may be in another namespace, so
1759  * we have to clear all information in the skb that could
1760  * impact namespace isolation.
1761  */
1762 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1763 {
1764 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1765 }
1766 EXPORT_SYMBOL_GPL(dev_forward_skb);
1767 
1768 static inline int deliver_skb(struct sk_buff *skb,
1769 			      struct packet_type *pt_prev,
1770 			      struct net_device *orig_dev)
1771 {
1772 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1773 		return -ENOMEM;
1774 	atomic_inc(&skb->users);
1775 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1776 }
1777 
1778 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1779 					  struct packet_type **pt,
1780 					  struct net_device *orig_dev,
1781 					  __be16 type,
1782 					  struct list_head *ptype_list)
1783 {
1784 	struct packet_type *ptype, *pt_prev = *pt;
1785 
1786 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1787 		if (ptype->type != type)
1788 			continue;
1789 		if (pt_prev)
1790 			deliver_skb(skb, pt_prev, orig_dev);
1791 		pt_prev = ptype;
1792 	}
1793 	*pt = pt_prev;
1794 }
1795 
1796 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1797 {
1798 	if (!ptype->af_packet_priv || !skb->sk)
1799 		return false;
1800 
1801 	if (ptype->id_match)
1802 		return ptype->id_match(ptype, skb->sk);
1803 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1804 		return true;
1805 
1806 	return false;
1807 }
1808 
1809 /*
1810  *	Support routine. Sends outgoing frames to any network
1811  *	taps currently in use.
1812  */
1813 
1814 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1815 {
1816 	struct packet_type *ptype;
1817 	struct sk_buff *skb2 = NULL;
1818 	struct packet_type *pt_prev = NULL;
1819 	struct list_head *ptype_list = &ptype_all;
1820 
1821 	rcu_read_lock();
1822 again:
1823 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1824 		/* Never send packets back to the socket
1825 		 * they originated from - MvS (miquels@drinkel.ow.org)
1826 		 */
1827 		if (skb_loop_sk(ptype, skb))
1828 			continue;
1829 
1830 		if (pt_prev) {
1831 			deliver_skb(skb2, pt_prev, skb->dev);
1832 			pt_prev = ptype;
1833 			continue;
1834 		}
1835 
1836 		/* need to clone skb, done only once */
1837 		skb2 = skb_clone(skb, GFP_ATOMIC);
1838 		if (!skb2)
1839 			goto out_unlock;
1840 
1841 		net_timestamp_set(skb2);
1842 
1843 		/* skb->nh should be correctly
1844 		 * set by sender, so that the second statement is
1845 		 * just protection against buggy protocols.
1846 		 */
1847 		skb_reset_mac_header(skb2);
1848 
1849 		if (skb_network_header(skb2) < skb2->data ||
1850 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1851 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1852 					     ntohs(skb2->protocol),
1853 					     dev->name);
1854 			skb_reset_network_header(skb2);
1855 		}
1856 
1857 		skb2->transport_header = skb2->network_header;
1858 		skb2->pkt_type = PACKET_OUTGOING;
1859 		pt_prev = ptype;
1860 	}
1861 
1862 	if (ptype_list == &ptype_all) {
1863 		ptype_list = &dev->ptype_all;
1864 		goto again;
1865 	}
1866 out_unlock:
1867 	if (pt_prev)
1868 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1869 	rcu_read_unlock();
1870 }
1871 
1872 /**
1873  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1874  * @dev: Network device
1875  * @txq: number of queues available
1876  *
1877  * If real_num_tx_queues is changed the tc mappings may no longer be
1878  * valid. To resolve this verify the tc mapping remains valid and if
1879  * not NULL the mapping. With no priorities mapping to this
1880  * offset/count pair it will no longer be used. In the worst case TC0
1881  * is invalid nothing can be done so disable priority mappings. If is
1882  * expected that drivers will fix this mapping if they can before
1883  * calling netif_set_real_num_tx_queues.
1884  */
1885 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1886 {
1887 	int i;
1888 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1889 
1890 	/* If TC0 is invalidated disable TC mapping */
1891 	if (tc->offset + tc->count > txq) {
1892 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1893 		dev->num_tc = 0;
1894 		return;
1895 	}
1896 
1897 	/* Invalidated prio to tc mappings set to TC0 */
1898 	for (i = 1; i < TC_BITMASK + 1; i++) {
1899 		int q = netdev_get_prio_tc_map(dev, i);
1900 
1901 		tc = &dev->tc_to_txq[q];
1902 		if (tc->offset + tc->count > txq) {
1903 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1904 				i, q);
1905 			netdev_set_prio_tc_map(dev, i, 0);
1906 		}
1907 	}
1908 }
1909 
1910 #ifdef CONFIG_XPS
1911 static DEFINE_MUTEX(xps_map_mutex);
1912 #define xmap_dereference(P)		\
1913 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1914 
1915 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1916 					int cpu, u16 index)
1917 {
1918 	struct xps_map *map = NULL;
1919 	int pos;
1920 
1921 	if (dev_maps)
1922 		map = xmap_dereference(dev_maps->cpu_map[cpu]);
1923 
1924 	for (pos = 0; map && pos < map->len; pos++) {
1925 		if (map->queues[pos] == index) {
1926 			if (map->len > 1) {
1927 				map->queues[pos] = map->queues[--map->len];
1928 			} else {
1929 				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1930 				kfree_rcu(map, rcu);
1931 				map = NULL;
1932 			}
1933 			break;
1934 		}
1935 	}
1936 
1937 	return map;
1938 }
1939 
1940 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1941 {
1942 	struct xps_dev_maps *dev_maps;
1943 	int cpu, i;
1944 	bool active = false;
1945 
1946 	mutex_lock(&xps_map_mutex);
1947 	dev_maps = xmap_dereference(dev->xps_maps);
1948 
1949 	if (!dev_maps)
1950 		goto out_no_maps;
1951 
1952 	for_each_possible_cpu(cpu) {
1953 		for (i = index; i < dev->num_tx_queues; i++) {
1954 			if (!remove_xps_queue(dev_maps, cpu, i))
1955 				break;
1956 		}
1957 		if (i == dev->num_tx_queues)
1958 			active = true;
1959 	}
1960 
1961 	if (!active) {
1962 		RCU_INIT_POINTER(dev->xps_maps, NULL);
1963 		kfree_rcu(dev_maps, rcu);
1964 	}
1965 
1966 	for (i = index; i < dev->num_tx_queues; i++)
1967 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1968 					     NUMA_NO_NODE);
1969 
1970 out_no_maps:
1971 	mutex_unlock(&xps_map_mutex);
1972 }
1973 
1974 static struct xps_map *expand_xps_map(struct xps_map *map,
1975 				      int cpu, u16 index)
1976 {
1977 	struct xps_map *new_map;
1978 	int alloc_len = XPS_MIN_MAP_ALLOC;
1979 	int i, pos;
1980 
1981 	for (pos = 0; map && pos < map->len; pos++) {
1982 		if (map->queues[pos] != index)
1983 			continue;
1984 		return map;
1985 	}
1986 
1987 	/* Need to add queue to this CPU's existing map */
1988 	if (map) {
1989 		if (pos < map->alloc_len)
1990 			return map;
1991 
1992 		alloc_len = map->alloc_len * 2;
1993 	}
1994 
1995 	/* Need to allocate new map to store queue on this CPU's map */
1996 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1997 			       cpu_to_node(cpu));
1998 	if (!new_map)
1999 		return NULL;
2000 
2001 	for (i = 0; i < pos; i++)
2002 		new_map->queues[i] = map->queues[i];
2003 	new_map->alloc_len = alloc_len;
2004 	new_map->len = pos;
2005 
2006 	return new_map;
2007 }
2008 
2009 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2010 			u16 index)
2011 {
2012 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2013 	struct xps_map *map, *new_map;
2014 	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2015 	int cpu, numa_node_id = -2;
2016 	bool active = false;
2017 
2018 	mutex_lock(&xps_map_mutex);
2019 
2020 	dev_maps = xmap_dereference(dev->xps_maps);
2021 
2022 	/* allocate memory for queue storage */
2023 	for_each_online_cpu(cpu) {
2024 		if (!cpumask_test_cpu(cpu, mask))
2025 			continue;
2026 
2027 		if (!new_dev_maps)
2028 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2029 		if (!new_dev_maps) {
2030 			mutex_unlock(&xps_map_mutex);
2031 			return -ENOMEM;
2032 		}
2033 
2034 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2035 				 NULL;
2036 
2037 		map = expand_xps_map(map, cpu, index);
2038 		if (!map)
2039 			goto error;
2040 
2041 		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2042 	}
2043 
2044 	if (!new_dev_maps)
2045 		goto out_no_new_maps;
2046 
2047 	for_each_possible_cpu(cpu) {
2048 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2049 			/* add queue to CPU maps */
2050 			int pos = 0;
2051 
2052 			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2053 			while ((pos < map->len) && (map->queues[pos] != index))
2054 				pos++;
2055 
2056 			if (pos == map->len)
2057 				map->queues[map->len++] = index;
2058 #ifdef CONFIG_NUMA
2059 			if (numa_node_id == -2)
2060 				numa_node_id = cpu_to_node(cpu);
2061 			else if (numa_node_id != cpu_to_node(cpu))
2062 				numa_node_id = -1;
2063 #endif
2064 		} else if (dev_maps) {
2065 			/* fill in the new device map from the old device map */
2066 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2067 			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2068 		}
2069 
2070 	}
2071 
2072 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2073 
2074 	/* Cleanup old maps */
2075 	if (dev_maps) {
2076 		for_each_possible_cpu(cpu) {
2077 			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2078 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2079 			if (map && map != new_map)
2080 				kfree_rcu(map, rcu);
2081 		}
2082 
2083 		kfree_rcu(dev_maps, rcu);
2084 	}
2085 
2086 	dev_maps = new_dev_maps;
2087 	active = true;
2088 
2089 out_no_new_maps:
2090 	/* update Tx queue numa node */
2091 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2092 				     (numa_node_id >= 0) ? numa_node_id :
2093 				     NUMA_NO_NODE);
2094 
2095 	if (!dev_maps)
2096 		goto out_no_maps;
2097 
2098 	/* removes queue from unused CPUs */
2099 	for_each_possible_cpu(cpu) {
2100 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2101 			continue;
2102 
2103 		if (remove_xps_queue(dev_maps, cpu, index))
2104 			active = true;
2105 	}
2106 
2107 	/* free map if not active */
2108 	if (!active) {
2109 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2110 		kfree_rcu(dev_maps, rcu);
2111 	}
2112 
2113 out_no_maps:
2114 	mutex_unlock(&xps_map_mutex);
2115 
2116 	return 0;
2117 error:
2118 	/* remove any maps that we added */
2119 	for_each_possible_cpu(cpu) {
2120 		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2121 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2122 				 NULL;
2123 		if (new_map && new_map != map)
2124 			kfree(new_map);
2125 	}
2126 
2127 	mutex_unlock(&xps_map_mutex);
2128 
2129 	kfree(new_dev_maps);
2130 	return -ENOMEM;
2131 }
2132 EXPORT_SYMBOL(netif_set_xps_queue);
2133 
2134 #endif
2135 /*
2136  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2137  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2138  */
2139 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2140 {
2141 	int rc;
2142 
2143 	if (txq < 1 || txq > dev->num_tx_queues)
2144 		return -EINVAL;
2145 
2146 	if (dev->reg_state == NETREG_REGISTERED ||
2147 	    dev->reg_state == NETREG_UNREGISTERING) {
2148 		ASSERT_RTNL();
2149 
2150 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2151 						  txq);
2152 		if (rc)
2153 			return rc;
2154 
2155 		if (dev->num_tc)
2156 			netif_setup_tc(dev, txq);
2157 
2158 		if (txq < dev->real_num_tx_queues) {
2159 			qdisc_reset_all_tx_gt(dev, txq);
2160 #ifdef CONFIG_XPS
2161 			netif_reset_xps_queues_gt(dev, txq);
2162 #endif
2163 		}
2164 	}
2165 
2166 	dev->real_num_tx_queues = txq;
2167 	return 0;
2168 }
2169 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2170 
2171 #ifdef CONFIG_SYSFS
2172 /**
2173  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2174  *	@dev: Network device
2175  *	@rxq: Actual number of RX queues
2176  *
2177  *	This must be called either with the rtnl_lock held or before
2178  *	registration of the net device.  Returns 0 on success, or a
2179  *	negative error code.  If called before registration, it always
2180  *	succeeds.
2181  */
2182 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2183 {
2184 	int rc;
2185 
2186 	if (rxq < 1 || rxq > dev->num_rx_queues)
2187 		return -EINVAL;
2188 
2189 	if (dev->reg_state == NETREG_REGISTERED) {
2190 		ASSERT_RTNL();
2191 
2192 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2193 						  rxq);
2194 		if (rc)
2195 			return rc;
2196 	}
2197 
2198 	dev->real_num_rx_queues = rxq;
2199 	return 0;
2200 }
2201 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2202 #endif
2203 
2204 /**
2205  * netif_get_num_default_rss_queues - default number of RSS queues
2206  *
2207  * This routine should set an upper limit on the number of RSS queues
2208  * used by default by multiqueue devices.
2209  */
2210 int netif_get_num_default_rss_queues(void)
2211 {
2212 	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2213 }
2214 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2215 
2216 static inline void __netif_reschedule(struct Qdisc *q)
2217 {
2218 	struct softnet_data *sd;
2219 	unsigned long flags;
2220 
2221 	local_irq_save(flags);
2222 	sd = this_cpu_ptr(&softnet_data);
2223 	q->next_sched = NULL;
2224 	*sd->output_queue_tailp = q;
2225 	sd->output_queue_tailp = &q->next_sched;
2226 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2227 	local_irq_restore(flags);
2228 }
2229 
2230 void __netif_schedule(struct Qdisc *q)
2231 {
2232 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2233 		__netif_reschedule(q);
2234 }
2235 EXPORT_SYMBOL(__netif_schedule);
2236 
2237 struct dev_kfree_skb_cb {
2238 	enum skb_free_reason reason;
2239 };
2240 
2241 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2242 {
2243 	return (struct dev_kfree_skb_cb *)skb->cb;
2244 }
2245 
2246 void netif_schedule_queue(struct netdev_queue *txq)
2247 {
2248 	rcu_read_lock();
2249 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2250 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2251 
2252 		__netif_schedule(q);
2253 	}
2254 	rcu_read_unlock();
2255 }
2256 EXPORT_SYMBOL(netif_schedule_queue);
2257 
2258 /**
2259  *	netif_wake_subqueue - allow sending packets on subqueue
2260  *	@dev: network device
2261  *	@queue_index: sub queue index
2262  *
2263  * Resume individual transmit queue of a device with multiple transmit queues.
2264  */
2265 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2266 {
2267 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2268 
2269 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2270 		struct Qdisc *q;
2271 
2272 		rcu_read_lock();
2273 		q = rcu_dereference(txq->qdisc);
2274 		__netif_schedule(q);
2275 		rcu_read_unlock();
2276 	}
2277 }
2278 EXPORT_SYMBOL(netif_wake_subqueue);
2279 
2280 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2281 {
2282 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2283 		struct Qdisc *q;
2284 
2285 		rcu_read_lock();
2286 		q = rcu_dereference(dev_queue->qdisc);
2287 		__netif_schedule(q);
2288 		rcu_read_unlock();
2289 	}
2290 }
2291 EXPORT_SYMBOL(netif_tx_wake_queue);
2292 
2293 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2294 {
2295 	unsigned long flags;
2296 
2297 	if (likely(atomic_read(&skb->users) == 1)) {
2298 		smp_rmb();
2299 		atomic_set(&skb->users, 0);
2300 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2301 		return;
2302 	}
2303 	get_kfree_skb_cb(skb)->reason = reason;
2304 	local_irq_save(flags);
2305 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2306 	__this_cpu_write(softnet_data.completion_queue, skb);
2307 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2308 	local_irq_restore(flags);
2309 }
2310 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2311 
2312 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2313 {
2314 	if (in_irq() || irqs_disabled())
2315 		__dev_kfree_skb_irq(skb, reason);
2316 	else
2317 		dev_kfree_skb(skb);
2318 }
2319 EXPORT_SYMBOL(__dev_kfree_skb_any);
2320 
2321 
2322 /**
2323  * netif_device_detach - mark device as removed
2324  * @dev: network device
2325  *
2326  * Mark device as removed from system and therefore no longer available.
2327  */
2328 void netif_device_detach(struct net_device *dev)
2329 {
2330 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2331 	    netif_running(dev)) {
2332 		netif_tx_stop_all_queues(dev);
2333 	}
2334 }
2335 EXPORT_SYMBOL(netif_device_detach);
2336 
2337 /**
2338  * netif_device_attach - mark device as attached
2339  * @dev: network device
2340  *
2341  * Mark device as attached from system and restart if needed.
2342  */
2343 void netif_device_attach(struct net_device *dev)
2344 {
2345 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2346 	    netif_running(dev)) {
2347 		netif_tx_wake_all_queues(dev);
2348 		__netdev_watchdog_up(dev);
2349 	}
2350 }
2351 EXPORT_SYMBOL(netif_device_attach);
2352 
2353 static void skb_warn_bad_offload(const struct sk_buff *skb)
2354 {
2355 	static const netdev_features_t null_features = 0;
2356 	struct net_device *dev = skb->dev;
2357 	const char *driver = "";
2358 
2359 	if (!net_ratelimit())
2360 		return;
2361 
2362 	if (dev && dev->dev.parent)
2363 		driver = dev_driver_string(dev->dev.parent);
2364 
2365 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2366 	     "gso_type=%d ip_summed=%d\n",
2367 	     driver, dev ? &dev->features : &null_features,
2368 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2369 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2370 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2371 }
2372 
2373 /*
2374  * Invalidate hardware checksum when packet is to be mangled, and
2375  * complete checksum manually on outgoing path.
2376  */
2377 int skb_checksum_help(struct sk_buff *skb)
2378 {
2379 	__wsum csum;
2380 	int ret = 0, offset;
2381 
2382 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2383 		goto out_set_summed;
2384 
2385 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2386 		skb_warn_bad_offload(skb);
2387 		return -EINVAL;
2388 	}
2389 
2390 	/* Before computing a checksum, we should make sure no frag could
2391 	 * be modified by an external entity : checksum could be wrong.
2392 	 */
2393 	if (skb_has_shared_frag(skb)) {
2394 		ret = __skb_linearize(skb);
2395 		if (ret)
2396 			goto out;
2397 	}
2398 
2399 	offset = skb_checksum_start_offset(skb);
2400 	BUG_ON(offset >= skb_headlen(skb));
2401 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2402 
2403 	offset += skb->csum_offset;
2404 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2405 
2406 	if (skb_cloned(skb) &&
2407 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2408 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2409 		if (ret)
2410 			goto out;
2411 	}
2412 
2413 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2414 out_set_summed:
2415 	skb->ip_summed = CHECKSUM_NONE;
2416 out:
2417 	return ret;
2418 }
2419 EXPORT_SYMBOL(skb_checksum_help);
2420 
2421 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2422 {
2423 	__be16 type = skb->protocol;
2424 
2425 	/* Tunnel gso handlers can set protocol to ethernet. */
2426 	if (type == htons(ETH_P_TEB)) {
2427 		struct ethhdr *eth;
2428 
2429 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2430 			return 0;
2431 
2432 		eth = (struct ethhdr *)skb_mac_header(skb);
2433 		type = eth->h_proto;
2434 	}
2435 
2436 	return __vlan_get_protocol(skb, type, depth);
2437 }
2438 
2439 /**
2440  *	skb_mac_gso_segment - mac layer segmentation handler.
2441  *	@skb: buffer to segment
2442  *	@features: features for the output path (see dev->features)
2443  */
2444 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2445 				    netdev_features_t features)
2446 {
2447 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2448 	struct packet_offload *ptype;
2449 	int vlan_depth = skb->mac_len;
2450 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2451 
2452 	if (unlikely(!type))
2453 		return ERR_PTR(-EINVAL);
2454 
2455 	__skb_pull(skb, vlan_depth);
2456 
2457 	rcu_read_lock();
2458 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2459 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2460 			segs = ptype->callbacks.gso_segment(skb, features);
2461 			break;
2462 		}
2463 	}
2464 	rcu_read_unlock();
2465 
2466 	__skb_push(skb, skb->data - skb_mac_header(skb));
2467 
2468 	return segs;
2469 }
2470 EXPORT_SYMBOL(skb_mac_gso_segment);
2471 
2472 
2473 /* openvswitch calls this on rx path, so we need a different check.
2474  */
2475 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2476 {
2477 	if (tx_path)
2478 		return skb->ip_summed != CHECKSUM_PARTIAL;
2479 	else
2480 		return skb->ip_summed == CHECKSUM_NONE;
2481 }
2482 
2483 /**
2484  *	__skb_gso_segment - Perform segmentation on skb.
2485  *	@skb: buffer to segment
2486  *	@features: features for the output path (see dev->features)
2487  *	@tx_path: whether it is called in TX path
2488  *
2489  *	This function segments the given skb and returns a list of segments.
2490  *
2491  *	It may return NULL if the skb requires no segmentation.  This is
2492  *	only possible when GSO is used for verifying header integrity.
2493  */
2494 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2495 				  netdev_features_t features, bool tx_path)
2496 {
2497 	if (unlikely(skb_needs_check(skb, tx_path))) {
2498 		int err;
2499 
2500 		skb_warn_bad_offload(skb);
2501 
2502 		err = skb_cow_head(skb, 0);
2503 		if (err < 0)
2504 			return ERR_PTR(err);
2505 	}
2506 
2507 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2508 	SKB_GSO_CB(skb)->encap_level = 0;
2509 
2510 	skb_reset_mac_header(skb);
2511 	skb_reset_mac_len(skb);
2512 
2513 	return skb_mac_gso_segment(skb, features);
2514 }
2515 EXPORT_SYMBOL(__skb_gso_segment);
2516 
2517 /* Take action when hardware reception checksum errors are detected. */
2518 #ifdef CONFIG_BUG
2519 void netdev_rx_csum_fault(struct net_device *dev)
2520 {
2521 	if (net_ratelimit()) {
2522 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2523 		dump_stack();
2524 	}
2525 }
2526 EXPORT_SYMBOL(netdev_rx_csum_fault);
2527 #endif
2528 
2529 /* Actually, we should eliminate this check as soon as we know, that:
2530  * 1. IOMMU is present and allows to map all the memory.
2531  * 2. No high memory really exists on this machine.
2532  */
2533 
2534 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2535 {
2536 #ifdef CONFIG_HIGHMEM
2537 	int i;
2538 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2539 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2540 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2541 			if (PageHighMem(skb_frag_page(frag)))
2542 				return 1;
2543 		}
2544 	}
2545 
2546 	if (PCI_DMA_BUS_IS_PHYS) {
2547 		struct device *pdev = dev->dev.parent;
2548 
2549 		if (!pdev)
2550 			return 0;
2551 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2552 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2553 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2554 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2555 				return 1;
2556 		}
2557 	}
2558 #endif
2559 	return 0;
2560 }
2561 
2562 /* If MPLS offload request, verify we are testing hardware MPLS features
2563  * instead of standard features for the netdev.
2564  */
2565 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2566 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2567 					   netdev_features_t features,
2568 					   __be16 type)
2569 {
2570 	if (eth_p_mpls(type))
2571 		features &= skb->dev->mpls_features;
2572 
2573 	return features;
2574 }
2575 #else
2576 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2577 					   netdev_features_t features,
2578 					   __be16 type)
2579 {
2580 	return features;
2581 }
2582 #endif
2583 
2584 static netdev_features_t harmonize_features(struct sk_buff *skb,
2585 	netdev_features_t features)
2586 {
2587 	int tmp;
2588 	__be16 type;
2589 
2590 	type = skb_network_protocol(skb, &tmp);
2591 	features = net_mpls_features(skb, features, type);
2592 
2593 	if (skb->ip_summed != CHECKSUM_NONE &&
2594 	    !can_checksum_protocol(features, type)) {
2595 		features &= ~NETIF_F_ALL_CSUM;
2596 	} else if (illegal_highdma(skb->dev, skb)) {
2597 		features &= ~NETIF_F_SG;
2598 	}
2599 
2600 	return features;
2601 }
2602 
2603 netdev_features_t passthru_features_check(struct sk_buff *skb,
2604 					  struct net_device *dev,
2605 					  netdev_features_t features)
2606 {
2607 	return features;
2608 }
2609 EXPORT_SYMBOL(passthru_features_check);
2610 
2611 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2612 					     struct net_device *dev,
2613 					     netdev_features_t features)
2614 {
2615 	return vlan_features_check(skb, features);
2616 }
2617 
2618 netdev_features_t netif_skb_features(struct sk_buff *skb)
2619 {
2620 	struct net_device *dev = skb->dev;
2621 	netdev_features_t features = dev->features;
2622 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2623 
2624 	if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2625 		features &= ~NETIF_F_GSO_MASK;
2626 
2627 	/* If encapsulation offload request, verify we are testing
2628 	 * hardware encapsulation features instead of standard
2629 	 * features for the netdev
2630 	 */
2631 	if (skb->encapsulation)
2632 		features &= dev->hw_enc_features;
2633 
2634 	if (skb_vlan_tagged(skb))
2635 		features = netdev_intersect_features(features,
2636 						     dev->vlan_features |
2637 						     NETIF_F_HW_VLAN_CTAG_TX |
2638 						     NETIF_F_HW_VLAN_STAG_TX);
2639 
2640 	if (dev->netdev_ops->ndo_features_check)
2641 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2642 								features);
2643 	else
2644 		features &= dflt_features_check(skb, dev, features);
2645 
2646 	return harmonize_features(skb, features);
2647 }
2648 EXPORT_SYMBOL(netif_skb_features);
2649 
2650 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2651 		    struct netdev_queue *txq, bool more)
2652 {
2653 	unsigned int len;
2654 	int rc;
2655 
2656 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2657 		dev_queue_xmit_nit(skb, dev);
2658 
2659 	len = skb->len;
2660 	trace_net_dev_start_xmit(skb, dev);
2661 	rc = netdev_start_xmit(skb, dev, txq, more);
2662 	trace_net_dev_xmit(skb, rc, dev, len);
2663 
2664 	return rc;
2665 }
2666 
2667 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2668 				    struct netdev_queue *txq, int *ret)
2669 {
2670 	struct sk_buff *skb = first;
2671 	int rc = NETDEV_TX_OK;
2672 
2673 	while (skb) {
2674 		struct sk_buff *next = skb->next;
2675 
2676 		skb->next = NULL;
2677 		rc = xmit_one(skb, dev, txq, next != NULL);
2678 		if (unlikely(!dev_xmit_complete(rc))) {
2679 			skb->next = next;
2680 			goto out;
2681 		}
2682 
2683 		skb = next;
2684 		if (netif_xmit_stopped(txq) && skb) {
2685 			rc = NETDEV_TX_BUSY;
2686 			break;
2687 		}
2688 	}
2689 
2690 out:
2691 	*ret = rc;
2692 	return skb;
2693 }
2694 
2695 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2696 					  netdev_features_t features)
2697 {
2698 	if (skb_vlan_tag_present(skb) &&
2699 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
2700 		skb = __vlan_hwaccel_push_inside(skb);
2701 	return skb;
2702 }
2703 
2704 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2705 {
2706 	netdev_features_t features;
2707 
2708 	if (skb->next)
2709 		return skb;
2710 
2711 	features = netif_skb_features(skb);
2712 	skb = validate_xmit_vlan(skb, features);
2713 	if (unlikely(!skb))
2714 		goto out_null;
2715 
2716 	if (netif_needs_gso(skb, features)) {
2717 		struct sk_buff *segs;
2718 
2719 		segs = skb_gso_segment(skb, features);
2720 		if (IS_ERR(segs)) {
2721 			goto out_kfree_skb;
2722 		} else if (segs) {
2723 			consume_skb(skb);
2724 			skb = segs;
2725 		}
2726 	} else {
2727 		if (skb_needs_linearize(skb, features) &&
2728 		    __skb_linearize(skb))
2729 			goto out_kfree_skb;
2730 
2731 		/* If packet is not checksummed and device does not
2732 		 * support checksumming for this protocol, complete
2733 		 * checksumming here.
2734 		 */
2735 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2736 			if (skb->encapsulation)
2737 				skb_set_inner_transport_header(skb,
2738 							       skb_checksum_start_offset(skb));
2739 			else
2740 				skb_set_transport_header(skb,
2741 							 skb_checksum_start_offset(skb));
2742 			if (!(features & NETIF_F_ALL_CSUM) &&
2743 			    skb_checksum_help(skb))
2744 				goto out_kfree_skb;
2745 		}
2746 	}
2747 
2748 	return skb;
2749 
2750 out_kfree_skb:
2751 	kfree_skb(skb);
2752 out_null:
2753 	return NULL;
2754 }
2755 
2756 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2757 {
2758 	struct sk_buff *next, *head = NULL, *tail;
2759 
2760 	for (; skb != NULL; skb = next) {
2761 		next = skb->next;
2762 		skb->next = NULL;
2763 
2764 		/* in case skb wont be segmented, point to itself */
2765 		skb->prev = skb;
2766 
2767 		skb = validate_xmit_skb(skb, dev);
2768 		if (!skb)
2769 			continue;
2770 
2771 		if (!head)
2772 			head = skb;
2773 		else
2774 			tail->next = skb;
2775 		/* If skb was segmented, skb->prev points to
2776 		 * the last segment. If not, it still contains skb.
2777 		 */
2778 		tail = skb->prev;
2779 	}
2780 	return head;
2781 }
2782 
2783 static void qdisc_pkt_len_init(struct sk_buff *skb)
2784 {
2785 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2786 
2787 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2788 
2789 	/* To get more precise estimation of bytes sent on wire,
2790 	 * we add to pkt_len the headers size of all segments
2791 	 */
2792 	if (shinfo->gso_size)  {
2793 		unsigned int hdr_len;
2794 		u16 gso_segs = shinfo->gso_segs;
2795 
2796 		/* mac layer + network layer */
2797 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2798 
2799 		/* + transport layer */
2800 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2801 			hdr_len += tcp_hdrlen(skb);
2802 		else
2803 			hdr_len += sizeof(struct udphdr);
2804 
2805 		if (shinfo->gso_type & SKB_GSO_DODGY)
2806 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2807 						shinfo->gso_size);
2808 
2809 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2810 	}
2811 }
2812 
2813 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2814 				 struct net_device *dev,
2815 				 struct netdev_queue *txq)
2816 {
2817 	spinlock_t *root_lock = qdisc_lock(q);
2818 	bool contended;
2819 	int rc;
2820 
2821 	qdisc_pkt_len_init(skb);
2822 	qdisc_calculate_pkt_len(skb, q);
2823 	/*
2824 	 * Heuristic to force contended enqueues to serialize on a
2825 	 * separate lock before trying to get qdisc main lock.
2826 	 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2827 	 * often and dequeue packets faster.
2828 	 */
2829 	contended = qdisc_is_running(q);
2830 	if (unlikely(contended))
2831 		spin_lock(&q->busylock);
2832 
2833 	spin_lock(root_lock);
2834 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2835 		kfree_skb(skb);
2836 		rc = NET_XMIT_DROP;
2837 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2838 		   qdisc_run_begin(q)) {
2839 		/*
2840 		 * This is a work-conserving queue; there are no old skbs
2841 		 * waiting to be sent out; and the qdisc is not running -
2842 		 * xmit the skb directly.
2843 		 */
2844 
2845 		qdisc_bstats_update(q, skb);
2846 
2847 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2848 			if (unlikely(contended)) {
2849 				spin_unlock(&q->busylock);
2850 				contended = false;
2851 			}
2852 			__qdisc_run(q);
2853 		} else
2854 			qdisc_run_end(q);
2855 
2856 		rc = NET_XMIT_SUCCESS;
2857 	} else {
2858 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2859 		if (qdisc_run_begin(q)) {
2860 			if (unlikely(contended)) {
2861 				spin_unlock(&q->busylock);
2862 				contended = false;
2863 			}
2864 			__qdisc_run(q);
2865 		}
2866 	}
2867 	spin_unlock(root_lock);
2868 	if (unlikely(contended))
2869 		spin_unlock(&q->busylock);
2870 	return rc;
2871 }
2872 
2873 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2874 static void skb_update_prio(struct sk_buff *skb)
2875 {
2876 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2877 
2878 	if (!skb->priority && skb->sk && map) {
2879 		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2880 
2881 		if (prioidx < map->priomap_len)
2882 			skb->priority = map->priomap[prioidx];
2883 	}
2884 }
2885 #else
2886 #define skb_update_prio(skb)
2887 #endif
2888 
2889 DEFINE_PER_CPU(int, xmit_recursion);
2890 EXPORT_SYMBOL(xmit_recursion);
2891 
2892 #define RECURSION_LIMIT 10
2893 
2894 /**
2895  *	dev_loopback_xmit - loop back @skb
2896  *	@skb: buffer to transmit
2897  */
2898 int dev_loopback_xmit(struct sock *sk, struct sk_buff *skb)
2899 {
2900 	skb_reset_mac_header(skb);
2901 	__skb_pull(skb, skb_network_offset(skb));
2902 	skb->pkt_type = PACKET_LOOPBACK;
2903 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2904 	WARN_ON(!skb_dst(skb));
2905 	skb_dst_force(skb);
2906 	netif_rx_ni(skb);
2907 	return 0;
2908 }
2909 EXPORT_SYMBOL(dev_loopback_xmit);
2910 
2911 /**
2912  *	__dev_queue_xmit - transmit a buffer
2913  *	@skb: buffer to transmit
2914  *	@accel_priv: private data used for L2 forwarding offload
2915  *
2916  *	Queue a buffer for transmission to a network device. The caller must
2917  *	have set the device and priority and built the buffer before calling
2918  *	this function. The function can be called from an interrupt.
2919  *
2920  *	A negative errno code is returned on a failure. A success does not
2921  *	guarantee the frame will be transmitted as it may be dropped due
2922  *	to congestion or traffic shaping.
2923  *
2924  * -----------------------------------------------------------------------------------
2925  *      I notice this method can also return errors from the queue disciplines,
2926  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2927  *      be positive.
2928  *
2929  *      Regardless of the return value, the skb is consumed, so it is currently
2930  *      difficult to retry a send to this method.  (You can bump the ref count
2931  *      before sending to hold a reference for retry if you are careful.)
2932  *
2933  *      When calling this method, interrupts MUST be enabled.  This is because
2934  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2935  *          --BLG
2936  */
2937 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2938 {
2939 	struct net_device *dev = skb->dev;
2940 	struct netdev_queue *txq;
2941 	struct Qdisc *q;
2942 	int rc = -ENOMEM;
2943 
2944 	skb_reset_mac_header(skb);
2945 
2946 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2947 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2948 
2949 	/* Disable soft irqs for various locks below. Also
2950 	 * stops preemption for RCU.
2951 	 */
2952 	rcu_read_lock_bh();
2953 
2954 	skb_update_prio(skb);
2955 
2956 	/* If device/qdisc don't need skb->dst, release it right now while
2957 	 * its hot in this cpu cache.
2958 	 */
2959 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2960 		skb_dst_drop(skb);
2961 	else
2962 		skb_dst_force(skb);
2963 
2964 	txq = netdev_pick_tx(dev, skb, accel_priv);
2965 	q = rcu_dereference_bh(txq->qdisc);
2966 
2967 #ifdef CONFIG_NET_CLS_ACT
2968 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2969 #endif
2970 	trace_net_dev_queue(skb);
2971 	if (q->enqueue) {
2972 		rc = __dev_xmit_skb(skb, q, dev, txq);
2973 		goto out;
2974 	}
2975 
2976 	/* The device has no queue. Common case for software devices:
2977 	   loopback, all the sorts of tunnels...
2978 
2979 	   Really, it is unlikely that netif_tx_lock protection is necessary
2980 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2981 	   counters.)
2982 	   However, it is possible, that they rely on protection
2983 	   made by us here.
2984 
2985 	   Check this and shot the lock. It is not prone from deadlocks.
2986 	   Either shot noqueue qdisc, it is even simpler 8)
2987 	 */
2988 	if (dev->flags & IFF_UP) {
2989 		int cpu = smp_processor_id(); /* ok because BHs are off */
2990 
2991 		if (txq->xmit_lock_owner != cpu) {
2992 
2993 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2994 				goto recursion_alert;
2995 
2996 			skb = validate_xmit_skb(skb, dev);
2997 			if (!skb)
2998 				goto drop;
2999 
3000 			HARD_TX_LOCK(dev, txq, cpu);
3001 
3002 			if (!netif_xmit_stopped(txq)) {
3003 				__this_cpu_inc(xmit_recursion);
3004 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3005 				__this_cpu_dec(xmit_recursion);
3006 				if (dev_xmit_complete(rc)) {
3007 					HARD_TX_UNLOCK(dev, txq);
3008 					goto out;
3009 				}
3010 			}
3011 			HARD_TX_UNLOCK(dev, txq);
3012 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3013 					     dev->name);
3014 		} else {
3015 			/* Recursion is detected! It is possible,
3016 			 * unfortunately
3017 			 */
3018 recursion_alert:
3019 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3020 					     dev->name);
3021 		}
3022 	}
3023 
3024 	rc = -ENETDOWN;
3025 drop:
3026 	rcu_read_unlock_bh();
3027 
3028 	atomic_long_inc(&dev->tx_dropped);
3029 	kfree_skb_list(skb);
3030 	return rc;
3031 out:
3032 	rcu_read_unlock_bh();
3033 	return rc;
3034 }
3035 
3036 int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb)
3037 {
3038 	return __dev_queue_xmit(skb, NULL);
3039 }
3040 EXPORT_SYMBOL(dev_queue_xmit_sk);
3041 
3042 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3043 {
3044 	return __dev_queue_xmit(skb, accel_priv);
3045 }
3046 EXPORT_SYMBOL(dev_queue_xmit_accel);
3047 
3048 
3049 /*=======================================================================
3050 			Receiver routines
3051   =======================================================================*/
3052 
3053 int netdev_max_backlog __read_mostly = 1000;
3054 EXPORT_SYMBOL(netdev_max_backlog);
3055 
3056 int netdev_tstamp_prequeue __read_mostly = 1;
3057 int netdev_budget __read_mostly = 300;
3058 int weight_p __read_mostly = 64;            /* old backlog weight */
3059 
3060 /* Called with irq disabled */
3061 static inline void ____napi_schedule(struct softnet_data *sd,
3062 				     struct napi_struct *napi)
3063 {
3064 	list_add_tail(&napi->poll_list, &sd->poll_list);
3065 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3066 }
3067 
3068 #ifdef CONFIG_RPS
3069 
3070 /* One global table that all flow-based protocols share. */
3071 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3072 EXPORT_SYMBOL(rps_sock_flow_table);
3073 u32 rps_cpu_mask __read_mostly;
3074 EXPORT_SYMBOL(rps_cpu_mask);
3075 
3076 struct static_key rps_needed __read_mostly;
3077 
3078 static struct rps_dev_flow *
3079 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3080 	    struct rps_dev_flow *rflow, u16 next_cpu)
3081 {
3082 	if (next_cpu != RPS_NO_CPU) {
3083 #ifdef CONFIG_RFS_ACCEL
3084 		struct netdev_rx_queue *rxqueue;
3085 		struct rps_dev_flow_table *flow_table;
3086 		struct rps_dev_flow *old_rflow;
3087 		u32 flow_id;
3088 		u16 rxq_index;
3089 		int rc;
3090 
3091 		/* Should we steer this flow to a different hardware queue? */
3092 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3093 		    !(dev->features & NETIF_F_NTUPLE))
3094 			goto out;
3095 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3096 		if (rxq_index == skb_get_rx_queue(skb))
3097 			goto out;
3098 
3099 		rxqueue = dev->_rx + rxq_index;
3100 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3101 		if (!flow_table)
3102 			goto out;
3103 		flow_id = skb_get_hash(skb) & flow_table->mask;
3104 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3105 							rxq_index, flow_id);
3106 		if (rc < 0)
3107 			goto out;
3108 		old_rflow = rflow;
3109 		rflow = &flow_table->flows[flow_id];
3110 		rflow->filter = rc;
3111 		if (old_rflow->filter == rflow->filter)
3112 			old_rflow->filter = RPS_NO_FILTER;
3113 	out:
3114 #endif
3115 		rflow->last_qtail =
3116 			per_cpu(softnet_data, next_cpu).input_queue_head;
3117 	}
3118 
3119 	rflow->cpu = next_cpu;
3120 	return rflow;
3121 }
3122 
3123 /*
3124  * get_rps_cpu is called from netif_receive_skb and returns the target
3125  * CPU from the RPS map of the receiving queue for a given skb.
3126  * rcu_read_lock must be held on entry.
3127  */
3128 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3129 		       struct rps_dev_flow **rflowp)
3130 {
3131 	const struct rps_sock_flow_table *sock_flow_table;
3132 	struct netdev_rx_queue *rxqueue = dev->_rx;
3133 	struct rps_dev_flow_table *flow_table;
3134 	struct rps_map *map;
3135 	int cpu = -1;
3136 	u32 tcpu;
3137 	u32 hash;
3138 
3139 	if (skb_rx_queue_recorded(skb)) {
3140 		u16 index = skb_get_rx_queue(skb);
3141 
3142 		if (unlikely(index >= dev->real_num_rx_queues)) {
3143 			WARN_ONCE(dev->real_num_rx_queues > 1,
3144 				  "%s received packet on queue %u, but number "
3145 				  "of RX queues is %u\n",
3146 				  dev->name, index, dev->real_num_rx_queues);
3147 			goto done;
3148 		}
3149 		rxqueue += index;
3150 	}
3151 
3152 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3153 
3154 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3155 	map = rcu_dereference(rxqueue->rps_map);
3156 	if (!flow_table && !map)
3157 		goto done;
3158 
3159 	skb_reset_network_header(skb);
3160 	hash = skb_get_hash(skb);
3161 	if (!hash)
3162 		goto done;
3163 
3164 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3165 	if (flow_table && sock_flow_table) {
3166 		struct rps_dev_flow *rflow;
3167 		u32 next_cpu;
3168 		u32 ident;
3169 
3170 		/* First check into global flow table if there is a match */
3171 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3172 		if ((ident ^ hash) & ~rps_cpu_mask)
3173 			goto try_rps;
3174 
3175 		next_cpu = ident & rps_cpu_mask;
3176 
3177 		/* OK, now we know there is a match,
3178 		 * we can look at the local (per receive queue) flow table
3179 		 */
3180 		rflow = &flow_table->flows[hash & flow_table->mask];
3181 		tcpu = rflow->cpu;
3182 
3183 		/*
3184 		 * If the desired CPU (where last recvmsg was done) is
3185 		 * different from current CPU (one in the rx-queue flow
3186 		 * table entry), switch if one of the following holds:
3187 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
3188 		 *   - Current CPU is offline.
3189 		 *   - The current CPU's queue tail has advanced beyond the
3190 		 *     last packet that was enqueued using this table entry.
3191 		 *     This guarantees that all previous packets for the flow
3192 		 *     have been dequeued, thus preserving in order delivery.
3193 		 */
3194 		if (unlikely(tcpu != next_cpu) &&
3195 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3196 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3197 		      rflow->last_qtail)) >= 0)) {
3198 			tcpu = next_cpu;
3199 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3200 		}
3201 
3202 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3203 			*rflowp = rflow;
3204 			cpu = tcpu;
3205 			goto done;
3206 		}
3207 	}
3208 
3209 try_rps:
3210 
3211 	if (map) {
3212 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3213 		if (cpu_online(tcpu)) {
3214 			cpu = tcpu;
3215 			goto done;
3216 		}
3217 	}
3218 
3219 done:
3220 	return cpu;
3221 }
3222 
3223 #ifdef CONFIG_RFS_ACCEL
3224 
3225 /**
3226  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3227  * @dev: Device on which the filter was set
3228  * @rxq_index: RX queue index
3229  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3230  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3231  *
3232  * Drivers that implement ndo_rx_flow_steer() should periodically call
3233  * this function for each installed filter and remove the filters for
3234  * which it returns %true.
3235  */
3236 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3237 			 u32 flow_id, u16 filter_id)
3238 {
3239 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3240 	struct rps_dev_flow_table *flow_table;
3241 	struct rps_dev_flow *rflow;
3242 	bool expire = true;
3243 	int cpu;
3244 
3245 	rcu_read_lock();
3246 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3247 	if (flow_table && flow_id <= flow_table->mask) {
3248 		rflow = &flow_table->flows[flow_id];
3249 		cpu = ACCESS_ONCE(rflow->cpu);
3250 		if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3251 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3252 			   rflow->last_qtail) <
3253 		     (int)(10 * flow_table->mask)))
3254 			expire = false;
3255 	}
3256 	rcu_read_unlock();
3257 	return expire;
3258 }
3259 EXPORT_SYMBOL(rps_may_expire_flow);
3260 
3261 #endif /* CONFIG_RFS_ACCEL */
3262 
3263 /* Called from hardirq (IPI) context */
3264 static void rps_trigger_softirq(void *data)
3265 {
3266 	struct softnet_data *sd = data;
3267 
3268 	____napi_schedule(sd, &sd->backlog);
3269 	sd->received_rps++;
3270 }
3271 
3272 #endif /* CONFIG_RPS */
3273 
3274 /*
3275  * Check if this softnet_data structure is another cpu one
3276  * If yes, queue it to our IPI list and return 1
3277  * If no, return 0
3278  */
3279 static int rps_ipi_queued(struct softnet_data *sd)
3280 {
3281 #ifdef CONFIG_RPS
3282 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3283 
3284 	if (sd != mysd) {
3285 		sd->rps_ipi_next = mysd->rps_ipi_list;
3286 		mysd->rps_ipi_list = sd;
3287 
3288 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3289 		return 1;
3290 	}
3291 #endif /* CONFIG_RPS */
3292 	return 0;
3293 }
3294 
3295 #ifdef CONFIG_NET_FLOW_LIMIT
3296 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3297 #endif
3298 
3299 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3300 {
3301 #ifdef CONFIG_NET_FLOW_LIMIT
3302 	struct sd_flow_limit *fl;
3303 	struct softnet_data *sd;
3304 	unsigned int old_flow, new_flow;
3305 
3306 	if (qlen < (netdev_max_backlog >> 1))
3307 		return false;
3308 
3309 	sd = this_cpu_ptr(&softnet_data);
3310 
3311 	rcu_read_lock();
3312 	fl = rcu_dereference(sd->flow_limit);
3313 	if (fl) {
3314 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3315 		old_flow = fl->history[fl->history_head];
3316 		fl->history[fl->history_head] = new_flow;
3317 
3318 		fl->history_head++;
3319 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3320 
3321 		if (likely(fl->buckets[old_flow]))
3322 			fl->buckets[old_flow]--;
3323 
3324 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3325 			fl->count++;
3326 			rcu_read_unlock();
3327 			return true;
3328 		}
3329 	}
3330 	rcu_read_unlock();
3331 #endif
3332 	return false;
3333 }
3334 
3335 /*
3336  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3337  * queue (may be a remote CPU queue).
3338  */
3339 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3340 			      unsigned int *qtail)
3341 {
3342 	struct softnet_data *sd;
3343 	unsigned long flags;
3344 	unsigned int qlen;
3345 
3346 	sd = &per_cpu(softnet_data, cpu);
3347 
3348 	local_irq_save(flags);
3349 
3350 	rps_lock(sd);
3351 	qlen = skb_queue_len(&sd->input_pkt_queue);
3352 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3353 		if (qlen) {
3354 enqueue:
3355 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3356 			input_queue_tail_incr_save(sd, qtail);
3357 			rps_unlock(sd);
3358 			local_irq_restore(flags);
3359 			return NET_RX_SUCCESS;
3360 		}
3361 
3362 		/* Schedule NAPI for backlog device
3363 		 * We can use non atomic operation since we own the queue lock
3364 		 */
3365 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3366 			if (!rps_ipi_queued(sd))
3367 				____napi_schedule(sd, &sd->backlog);
3368 		}
3369 		goto enqueue;
3370 	}
3371 
3372 	sd->dropped++;
3373 	rps_unlock(sd);
3374 
3375 	local_irq_restore(flags);
3376 
3377 	atomic_long_inc(&skb->dev->rx_dropped);
3378 	kfree_skb(skb);
3379 	return NET_RX_DROP;
3380 }
3381 
3382 static int netif_rx_internal(struct sk_buff *skb)
3383 {
3384 	int ret;
3385 
3386 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3387 
3388 	trace_netif_rx(skb);
3389 #ifdef CONFIG_RPS
3390 	if (static_key_false(&rps_needed)) {
3391 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3392 		int cpu;
3393 
3394 		preempt_disable();
3395 		rcu_read_lock();
3396 
3397 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3398 		if (cpu < 0)
3399 			cpu = smp_processor_id();
3400 
3401 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3402 
3403 		rcu_read_unlock();
3404 		preempt_enable();
3405 	} else
3406 #endif
3407 	{
3408 		unsigned int qtail;
3409 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3410 		put_cpu();
3411 	}
3412 	return ret;
3413 }
3414 
3415 /**
3416  *	netif_rx	-	post buffer to the network code
3417  *	@skb: buffer to post
3418  *
3419  *	This function receives a packet from a device driver and queues it for
3420  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3421  *	may be dropped during processing for congestion control or by the
3422  *	protocol layers.
3423  *
3424  *	return values:
3425  *	NET_RX_SUCCESS	(no congestion)
3426  *	NET_RX_DROP     (packet was dropped)
3427  *
3428  */
3429 
3430 int netif_rx(struct sk_buff *skb)
3431 {
3432 	trace_netif_rx_entry(skb);
3433 
3434 	return netif_rx_internal(skb);
3435 }
3436 EXPORT_SYMBOL(netif_rx);
3437 
3438 int netif_rx_ni(struct sk_buff *skb)
3439 {
3440 	int err;
3441 
3442 	trace_netif_rx_ni_entry(skb);
3443 
3444 	preempt_disable();
3445 	err = netif_rx_internal(skb);
3446 	if (local_softirq_pending())
3447 		do_softirq();
3448 	preempt_enable();
3449 
3450 	return err;
3451 }
3452 EXPORT_SYMBOL(netif_rx_ni);
3453 
3454 static void net_tx_action(struct softirq_action *h)
3455 {
3456 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3457 
3458 	if (sd->completion_queue) {
3459 		struct sk_buff *clist;
3460 
3461 		local_irq_disable();
3462 		clist = sd->completion_queue;
3463 		sd->completion_queue = NULL;
3464 		local_irq_enable();
3465 
3466 		while (clist) {
3467 			struct sk_buff *skb = clist;
3468 			clist = clist->next;
3469 
3470 			WARN_ON(atomic_read(&skb->users));
3471 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3472 				trace_consume_skb(skb);
3473 			else
3474 				trace_kfree_skb(skb, net_tx_action);
3475 			__kfree_skb(skb);
3476 		}
3477 	}
3478 
3479 	if (sd->output_queue) {
3480 		struct Qdisc *head;
3481 
3482 		local_irq_disable();
3483 		head = sd->output_queue;
3484 		sd->output_queue = NULL;
3485 		sd->output_queue_tailp = &sd->output_queue;
3486 		local_irq_enable();
3487 
3488 		while (head) {
3489 			struct Qdisc *q = head;
3490 			spinlock_t *root_lock;
3491 
3492 			head = head->next_sched;
3493 
3494 			root_lock = qdisc_lock(q);
3495 			if (spin_trylock(root_lock)) {
3496 				smp_mb__before_atomic();
3497 				clear_bit(__QDISC_STATE_SCHED,
3498 					  &q->state);
3499 				qdisc_run(q);
3500 				spin_unlock(root_lock);
3501 			} else {
3502 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3503 					      &q->state)) {
3504 					__netif_reschedule(q);
3505 				} else {
3506 					smp_mb__before_atomic();
3507 					clear_bit(__QDISC_STATE_SCHED,
3508 						  &q->state);
3509 				}
3510 			}
3511 		}
3512 	}
3513 }
3514 
3515 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3516     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3517 /* This hook is defined here for ATM LANE */
3518 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3519 			     unsigned char *addr) __read_mostly;
3520 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3521 #endif
3522 
3523 #ifdef CONFIG_NET_CLS_ACT
3524 /* TODO: Maybe we should just force sch_ingress to be compiled in
3525  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3526  * a compare and 2 stores extra right now if we dont have it on
3527  * but have CONFIG_NET_CLS_ACT
3528  * NOTE: This doesn't stop any functionality; if you dont have
3529  * the ingress scheduler, you just can't add policies on ingress.
3530  *
3531  */
3532 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3533 {
3534 	struct net_device *dev = skb->dev;
3535 	u32 ttl = G_TC_RTTL(skb->tc_verd);
3536 	int result = TC_ACT_OK;
3537 	struct Qdisc *q;
3538 
3539 	if (unlikely(MAX_RED_LOOP < ttl++)) {
3540 		net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3541 				     skb->skb_iif, dev->ifindex);
3542 		return TC_ACT_SHOT;
3543 	}
3544 
3545 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3546 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3547 
3548 	q = rcu_dereference(rxq->qdisc);
3549 	if (q != &noop_qdisc) {
3550 		spin_lock(qdisc_lock(q));
3551 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3552 			result = qdisc_enqueue_root(skb, q);
3553 		spin_unlock(qdisc_lock(q));
3554 	}
3555 
3556 	return result;
3557 }
3558 
3559 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3560 					 struct packet_type **pt_prev,
3561 					 int *ret, struct net_device *orig_dev)
3562 {
3563 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3564 
3565 	if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc)
3566 		return skb;
3567 
3568 	if (*pt_prev) {
3569 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3570 		*pt_prev = NULL;
3571 	}
3572 
3573 	switch (ing_filter(skb, rxq)) {
3574 	case TC_ACT_SHOT:
3575 	case TC_ACT_STOLEN:
3576 		kfree_skb(skb);
3577 		return NULL;
3578 	}
3579 
3580 	return skb;
3581 }
3582 #endif
3583 
3584 /**
3585  *	netdev_rx_handler_register - register receive handler
3586  *	@dev: device to register a handler for
3587  *	@rx_handler: receive handler to register
3588  *	@rx_handler_data: data pointer that is used by rx handler
3589  *
3590  *	Register a receive handler for a device. This handler will then be
3591  *	called from __netif_receive_skb. A negative errno code is returned
3592  *	on a failure.
3593  *
3594  *	The caller must hold the rtnl_mutex.
3595  *
3596  *	For a general description of rx_handler, see enum rx_handler_result.
3597  */
3598 int netdev_rx_handler_register(struct net_device *dev,
3599 			       rx_handler_func_t *rx_handler,
3600 			       void *rx_handler_data)
3601 {
3602 	ASSERT_RTNL();
3603 
3604 	if (dev->rx_handler)
3605 		return -EBUSY;
3606 
3607 	/* Note: rx_handler_data must be set before rx_handler */
3608 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3609 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3610 
3611 	return 0;
3612 }
3613 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3614 
3615 /**
3616  *	netdev_rx_handler_unregister - unregister receive handler
3617  *	@dev: device to unregister a handler from
3618  *
3619  *	Unregister a receive handler from a device.
3620  *
3621  *	The caller must hold the rtnl_mutex.
3622  */
3623 void netdev_rx_handler_unregister(struct net_device *dev)
3624 {
3625 
3626 	ASSERT_RTNL();
3627 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3628 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3629 	 * section has a guarantee to see a non NULL rx_handler_data
3630 	 * as well.
3631 	 */
3632 	synchronize_net();
3633 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3634 }
3635 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3636 
3637 /*
3638  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3639  * the special handling of PFMEMALLOC skbs.
3640  */
3641 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3642 {
3643 	switch (skb->protocol) {
3644 	case htons(ETH_P_ARP):
3645 	case htons(ETH_P_IP):
3646 	case htons(ETH_P_IPV6):
3647 	case htons(ETH_P_8021Q):
3648 	case htons(ETH_P_8021AD):
3649 		return true;
3650 	default:
3651 		return false;
3652 	}
3653 }
3654 
3655 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3656 {
3657 	struct packet_type *ptype, *pt_prev;
3658 	rx_handler_func_t *rx_handler;
3659 	struct net_device *orig_dev;
3660 	bool deliver_exact = false;
3661 	int ret = NET_RX_DROP;
3662 	__be16 type;
3663 
3664 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3665 
3666 	trace_netif_receive_skb(skb);
3667 
3668 	orig_dev = skb->dev;
3669 
3670 	skb_reset_network_header(skb);
3671 	if (!skb_transport_header_was_set(skb))
3672 		skb_reset_transport_header(skb);
3673 	skb_reset_mac_len(skb);
3674 
3675 	pt_prev = NULL;
3676 
3677 	rcu_read_lock();
3678 
3679 another_round:
3680 	skb->skb_iif = skb->dev->ifindex;
3681 
3682 	__this_cpu_inc(softnet_data.processed);
3683 
3684 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3685 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3686 		skb = skb_vlan_untag(skb);
3687 		if (unlikely(!skb))
3688 			goto unlock;
3689 	}
3690 
3691 #ifdef CONFIG_NET_CLS_ACT
3692 	if (skb->tc_verd & TC_NCLS) {
3693 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3694 		goto ncls;
3695 	}
3696 #endif
3697 
3698 	if (pfmemalloc)
3699 		goto skip_taps;
3700 
3701 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3702 		if (pt_prev)
3703 			ret = deliver_skb(skb, pt_prev, orig_dev);
3704 		pt_prev = ptype;
3705 	}
3706 
3707 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3708 		if (pt_prev)
3709 			ret = deliver_skb(skb, pt_prev, orig_dev);
3710 		pt_prev = ptype;
3711 	}
3712 
3713 skip_taps:
3714 #ifdef CONFIG_NET_CLS_ACT
3715 	if (static_key_false(&ingress_needed)) {
3716 		skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3717 		if (!skb)
3718 			goto unlock;
3719 	}
3720 
3721 	skb->tc_verd = 0;
3722 ncls:
3723 #endif
3724 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3725 		goto drop;
3726 
3727 	if (skb_vlan_tag_present(skb)) {
3728 		if (pt_prev) {
3729 			ret = deliver_skb(skb, pt_prev, orig_dev);
3730 			pt_prev = NULL;
3731 		}
3732 		if (vlan_do_receive(&skb))
3733 			goto another_round;
3734 		else if (unlikely(!skb))
3735 			goto unlock;
3736 	}
3737 
3738 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3739 	if (rx_handler) {
3740 		if (pt_prev) {
3741 			ret = deliver_skb(skb, pt_prev, orig_dev);
3742 			pt_prev = NULL;
3743 		}
3744 		switch (rx_handler(&skb)) {
3745 		case RX_HANDLER_CONSUMED:
3746 			ret = NET_RX_SUCCESS;
3747 			goto unlock;
3748 		case RX_HANDLER_ANOTHER:
3749 			goto another_round;
3750 		case RX_HANDLER_EXACT:
3751 			deliver_exact = true;
3752 		case RX_HANDLER_PASS:
3753 			break;
3754 		default:
3755 			BUG();
3756 		}
3757 	}
3758 
3759 	if (unlikely(skb_vlan_tag_present(skb))) {
3760 		if (skb_vlan_tag_get_id(skb))
3761 			skb->pkt_type = PACKET_OTHERHOST;
3762 		/* Note: we might in the future use prio bits
3763 		 * and set skb->priority like in vlan_do_receive()
3764 		 * For the time being, just ignore Priority Code Point
3765 		 */
3766 		skb->vlan_tci = 0;
3767 	}
3768 
3769 	type = skb->protocol;
3770 
3771 	/* deliver only exact match when indicated */
3772 	if (likely(!deliver_exact)) {
3773 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3774 				       &ptype_base[ntohs(type) &
3775 						   PTYPE_HASH_MASK]);
3776 	}
3777 
3778 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3779 			       &orig_dev->ptype_specific);
3780 
3781 	if (unlikely(skb->dev != orig_dev)) {
3782 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3783 				       &skb->dev->ptype_specific);
3784 	}
3785 
3786 	if (pt_prev) {
3787 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3788 			goto drop;
3789 		else
3790 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3791 	} else {
3792 drop:
3793 		atomic_long_inc(&skb->dev->rx_dropped);
3794 		kfree_skb(skb);
3795 		/* Jamal, now you will not able to escape explaining
3796 		 * me how you were going to use this. :-)
3797 		 */
3798 		ret = NET_RX_DROP;
3799 	}
3800 
3801 unlock:
3802 	rcu_read_unlock();
3803 	return ret;
3804 }
3805 
3806 static int __netif_receive_skb(struct sk_buff *skb)
3807 {
3808 	int ret;
3809 
3810 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3811 		unsigned long pflags = current->flags;
3812 
3813 		/*
3814 		 * PFMEMALLOC skbs are special, they should
3815 		 * - be delivered to SOCK_MEMALLOC sockets only
3816 		 * - stay away from userspace
3817 		 * - have bounded memory usage
3818 		 *
3819 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
3820 		 * context down to all allocation sites.
3821 		 */
3822 		current->flags |= PF_MEMALLOC;
3823 		ret = __netif_receive_skb_core(skb, true);
3824 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
3825 	} else
3826 		ret = __netif_receive_skb_core(skb, false);
3827 
3828 	return ret;
3829 }
3830 
3831 static int netif_receive_skb_internal(struct sk_buff *skb)
3832 {
3833 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3834 
3835 	if (skb_defer_rx_timestamp(skb))
3836 		return NET_RX_SUCCESS;
3837 
3838 #ifdef CONFIG_RPS
3839 	if (static_key_false(&rps_needed)) {
3840 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3841 		int cpu, ret;
3842 
3843 		rcu_read_lock();
3844 
3845 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3846 
3847 		if (cpu >= 0) {
3848 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3849 			rcu_read_unlock();
3850 			return ret;
3851 		}
3852 		rcu_read_unlock();
3853 	}
3854 #endif
3855 	return __netif_receive_skb(skb);
3856 }
3857 
3858 /**
3859  *	netif_receive_skb - process receive buffer from network
3860  *	@skb: buffer to process
3861  *
3862  *	netif_receive_skb() is the main receive data processing function.
3863  *	It always succeeds. The buffer may be dropped during processing
3864  *	for congestion control or by the protocol layers.
3865  *
3866  *	This function may only be called from softirq context and interrupts
3867  *	should be enabled.
3868  *
3869  *	Return values (usually ignored):
3870  *	NET_RX_SUCCESS: no congestion
3871  *	NET_RX_DROP: packet was dropped
3872  */
3873 int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb)
3874 {
3875 	trace_netif_receive_skb_entry(skb);
3876 
3877 	return netif_receive_skb_internal(skb);
3878 }
3879 EXPORT_SYMBOL(netif_receive_skb_sk);
3880 
3881 /* Network device is going away, flush any packets still pending
3882  * Called with irqs disabled.
3883  */
3884 static void flush_backlog(void *arg)
3885 {
3886 	struct net_device *dev = arg;
3887 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3888 	struct sk_buff *skb, *tmp;
3889 
3890 	rps_lock(sd);
3891 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3892 		if (skb->dev == dev) {
3893 			__skb_unlink(skb, &sd->input_pkt_queue);
3894 			kfree_skb(skb);
3895 			input_queue_head_incr(sd);
3896 		}
3897 	}
3898 	rps_unlock(sd);
3899 
3900 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3901 		if (skb->dev == dev) {
3902 			__skb_unlink(skb, &sd->process_queue);
3903 			kfree_skb(skb);
3904 			input_queue_head_incr(sd);
3905 		}
3906 	}
3907 }
3908 
3909 static int napi_gro_complete(struct sk_buff *skb)
3910 {
3911 	struct packet_offload *ptype;
3912 	__be16 type = skb->protocol;
3913 	struct list_head *head = &offload_base;
3914 	int err = -ENOENT;
3915 
3916 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3917 
3918 	if (NAPI_GRO_CB(skb)->count == 1) {
3919 		skb_shinfo(skb)->gso_size = 0;
3920 		goto out;
3921 	}
3922 
3923 	rcu_read_lock();
3924 	list_for_each_entry_rcu(ptype, head, list) {
3925 		if (ptype->type != type || !ptype->callbacks.gro_complete)
3926 			continue;
3927 
3928 		err = ptype->callbacks.gro_complete(skb, 0);
3929 		break;
3930 	}
3931 	rcu_read_unlock();
3932 
3933 	if (err) {
3934 		WARN_ON(&ptype->list == head);
3935 		kfree_skb(skb);
3936 		return NET_RX_SUCCESS;
3937 	}
3938 
3939 out:
3940 	return netif_receive_skb_internal(skb);
3941 }
3942 
3943 /* napi->gro_list contains packets ordered by age.
3944  * youngest packets at the head of it.
3945  * Complete skbs in reverse order to reduce latencies.
3946  */
3947 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3948 {
3949 	struct sk_buff *skb, *prev = NULL;
3950 
3951 	/* scan list and build reverse chain */
3952 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3953 		skb->prev = prev;
3954 		prev = skb;
3955 	}
3956 
3957 	for (skb = prev; skb; skb = prev) {
3958 		skb->next = NULL;
3959 
3960 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3961 			return;
3962 
3963 		prev = skb->prev;
3964 		napi_gro_complete(skb);
3965 		napi->gro_count--;
3966 	}
3967 
3968 	napi->gro_list = NULL;
3969 }
3970 EXPORT_SYMBOL(napi_gro_flush);
3971 
3972 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3973 {
3974 	struct sk_buff *p;
3975 	unsigned int maclen = skb->dev->hard_header_len;
3976 	u32 hash = skb_get_hash_raw(skb);
3977 
3978 	for (p = napi->gro_list; p; p = p->next) {
3979 		unsigned long diffs;
3980 
3981 		NAPI_GRO_CB(p)->flush = 0;
3982 
3983 		if (hash != skb_get_hash_raw(p)) {
3984 			NAPI_GRO_CB(p)->same_flow = 0;
3985 			continue;
3986 		}
3987 
3988 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3989 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3990 		if (maclen == ETH_HLEN)
3991 			diffs |= compare_ether_header(skb_mac_header(p),
3992 						      skb_mac_header(skb));
3993 		else if (!diffs)
3994 			diffs = memcmp(skb_mac_header(p),
3995 				       skb_mac_header(skb),
3996 				       maclen);
3997 		NAPI_GRO_CB(p)->same_flow = !diffs;
3998 	}
3999 }
4000 
4001 static void skb_gro_reset_offset(struct sk_buff *skb)
4002 {
4003 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4004 	const skb_frag_t *frag0 = &pinfo->frags[0];
4005 
4006 	NAPI_GRO_CB(skb)->data_offset = 0;
4007 	NAPI_GRO_CB(skb)->frag0 = NULL;
4008 	NAPI_GRO_CB(skb)->frag0_len = 0;
4009 
4010 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4011 	    pinfo->nr_frags &&
4012 	    !PageHighMem(skb_frag_page(frag0))) {
4013 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4014 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4015 	}
4016 }
4017 
4018 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4019 {
4020 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4021 
4022 	BUG_ON(skb->end - skb->tail < grow);
4023 
4024 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4025 
4026 	skb->data_len -= grow;
4027 	skb->tail += grow;
4028 
4029 	pinfo->frags[0].page_offset += grow;
4030 	skb_frag_size_sub(&pinfo->frags[0], grow);
4031 
4032 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4033 		skb_frag_unref(skb, 0);
4034 		memmove(pinfo->frags, pinfo->frags + 1,
4035 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4036 	}
4037 }
4038 
4039 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4040 {
4041 	struct sk_buff **pp = NULL;
4042 	struct packet_offload *ptype;
4043 	__be16 type = skb->protocol;
4044 	struct list_head *head = &offload_base;
4045 	int same_flow;
4046 	enum gro_result ret;
4047 	int grow;
4048 
4049 	if (!(skb->dev->features & NETIF_F_GRO))
4050 		goto normal;
4051 
4052 	if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4053 		goto normal;
4054 
4055 	gro_list_prepare(napi, skb);
4056 
4057 	rcu_read_lock();
4058 	list_for_each_entry_rcu(ptype, head, list) {
4059 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4060 			continue;
4061 
4062 		skb_set_network_header(skb, skb_gro_offset(skb));
4063 		skb_reset_mac_len(skb);
4064 		NAPI_GRO_CB(skb)->same_flow = 0;
4065 		NAPI_GRO_CB(skb)->flush = 0;
4066 		NAPI_GRO_CB(skb)->free = 0;
4067 		NAPI_GRO_CB(skb)->udp_mark = 0;
4068 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4069 
4070 		/* Setup for GRO checksum validation */
4071 		switch (skb->ip_summed) {
4072 		case CHECKSUM_COMPLETE:
4073 			NAPI_GRO_CB(skb)->csum = skb->csum;
4074 			NAPI_GRO_CB(skb)->csum_valid = 1;
4075 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4076 			break;
4077 		case CHECKSUM_UNNECESSARY:
4078 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4079 			NAPI_GRO_CB(skb)->csum_valid = 0;
4080 			break;
4081 		default:
4082 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4083 			NAPI_GRO_CB(skb)->csum_valid = 0;
4084 		}
4085 
4086 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4087 		break;
4088 	}
4089 	rcu_read_unlock();
4090 
4091 	if (&ptype->list == head)
4092 		goto normal;
4093 
4094 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4095 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4096 
4097 	if (pp) {
4098 		struct sk_buff *nskb = *pp;
4099 
4100 		*pp = nskb->next;
4101 		nskb->next = NULL;
4102 		napi_gro_complete(nskb);
4103 		napi->gro_count--;
4104 	}
4105 
4106 	if (same_flow)
4107 		goto ok;
4108 
4109 	if (NAPI_GRO_CB(skb)->flush)
4110 		goto normal;
4111 
4112 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4113 		struct sk_buff *nskb = napi->gro_list;
4114 
4115 		/* locate the end of the list to select the 'oldest' flow */
4116 		while (nskb->next) {
4117 			pp = &nskb->next;
4118 			nskb = *pp;
4119 		}
4120 		*pp = NULL;
4121 		nskb->next = NULL;
4122 		napi_gro_complete(nskb);
4123 	} else {
4124 		napi->gro_count++;
4125 	}
4126 	NAPI_GRO_CB(skb)->count = 1;
4127 	NAPI_GRO_CB(skb)->age = jiffies;
4128 	NAPI_GRO_CB(skb)->last = skb;
4129 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4130 	skb->next = napi->gro_list;
4131 	napi->gro_list = skb;
4132 	ret = GRO_HELD;
4133 
4134 pull:
4135 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4136 	if (grow > 0)
4137 		gro_pull_from_frag0(skb, grow);
4138 ok:
4139 	return ret;
4140 
4141 normal:
4142 	ret = GRO_NORMAL;
4143 	goto pull;
4144 }
4145 
4146 struct packet_offload *gro_find_receive_by_type(__be16 type)
4147 {
4148 	struct list_head *offload_head = &offload_base;
4149 	struct packet_offload *ptype;
4150 
4151 	list_for_each_entry_rcu(ptype, offload_head, list) {
4152 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4153 			continue;
4154 		return ptype;
4155 	}
4156 	return NULL;
4157 }
4158 EXPORT_SYMBOL(gro_find_receive_by_type);
4159 
4160 struct packet_offload *gro_find_complete_by_type(__be16 type)
4161 {
4162 	struct list_head *offload_head = &offload_base;
4163 	struct packet_offload *ptype;
4164 
4165 	list_for_each_entry_rcu(ptype, offload_head, list) {
4166 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4167 			continue;
4168 		return ptype;
4169 	}
4170 	return NULL;
4171 }
4172 EXPORT_SYMBOL(gro_find_complete_by_type);
4173 
4174 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4175 {
4176 	switch (ret) {
4177 	case GRO_NORMAL:
4178 		if (netif_receive_skb_internal(skb))
4179 			ret = GRO_DROP;
4180 		break;
4181 
4182 	case GRO_DROP:
4183 		kfree_skb(skb);
4184 		break;
4185 
4186 	case GRO_MERGED_FREE:
4187 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4188 			kmem_cache_free(skbuff_head_cache, skb);
4189 		else
4190 			__kfree_skb(skb);
4191 		break;
4192 
4193 	case GRO_HELD:
4194 	case GRO_MERGED:
4195 		break;
4196 	}
4197 
4198 	return ret;
4199 }
4200 
4201 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4202 {
4203 	trace_napi_gro_receive_entry(skb);
4204 
4205 	skb_gro_reset_offset(skb);
4206 
4207 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4208 }
4209 EXPORT_SYMBOL(napi_gro_receive);
4210 
4211 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4212 {
4213 	if (unlikely(skb->pfmemalloc)) {
4214 		consume_skb(skb);
4215 		return;
4216 	}
4217 	__skb_pull(skb, skb_headlen(skb));
4218 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4219 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4220 	skb->vlan_tci = 0;
4221 	skb->dev = napi->dev;
4222 	skb->skb_iif = 0;
4223 	skb->encapsulation = 0;
4224 	skb_shinfo(skb)->gso_type = 0;
4225 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4226 
4227 	napi->skb = skb;
4228 }
4229 
4230 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4231 {
4232 	struct sk_buff *skb = napi->skb;
4233 
4234 	if (!skb) {
4235 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4236 		napi->skb = skb;
4237 	}
4238 	return skb;
4239 }
4240 EXPORT_SYMBOL(napi_get_frags);
4241 
4242 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4243 				      struct sk_buff *skb,
4244 				      gro_result_t ret)
4245 {
4246 	switch (ret) {
4247 	case GRO_NORMAL:
4248 	case GRO_HELD:
4249 		__skb_push(skb, ETH_HLEN);
4250 		skb->protocol = eth_type_trans(skb, skb->dev);
4251 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4252 			ret = GRO_DROP;
4253 		break;
4254 
4255 	case GRO_DROP:
4256 	case GRO_MERGED_FREE:
4257 		napi_reuse_skb(napi, skb);
4258 		break;
4259 
4260 	case GRO_MERGED:
4261 		break;
4262 	}
4263 
4264 	return ret;
4265 }
4266 
4267 /* Upper GRO stack assumes network header starts at gro_offset=0
4268  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4269  * We copy ethernet header into skb->data to have a common layout.
4270  */
4271 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4272 {
4273 	struct sk_buff *skb = napi->skb;
4274 	const struct ethhdr *eth;
4275 	unsigned int hlen = sizeof(*eth);
4276 
4277 	napi->skb = NULL;
4278 
4279 	skb_reset_mac_header(skb);
4280 	skb_gro_reset_offset(skb);
4281 
4282 	eth = skb_gro_header_fast(skb, 0);
4283 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4284 		eth = skb_gro_header_slow(skb, hlen, 0);
4285 		if (unlikely(!eth)) {
4286 			napi_reuse_skb(napi, skb);
4287 			return NULL;
4288 		}
4289 	} else {
4290 		gro_pull_from_frag0(skb, hlen);
4291 		NAPI_GRO_CB(skb)->frag0 += hlen;
4292 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4293 	}
4294 	__skb_pull(skb, hlen);
4295 
4296 	/*
4297 	 * This works because the only protocols we care about don't require
4298 	 * special handling.
4299 	 * We'll fix it up properly in napi_frags_finish()
4300 	 */
4301 	skb->protocol = eth->h_proto;
4302 
4303 	return skb;
4304 }
4305 
4306 gro_result_t napi_gro_frags(struct napi_struct *napi)
4307 {
4308 	struct sk_buff *skb = napi_frags_skb(napi);
4309 
4310 	if (!skb)
4311 		return GRO_DROP;
4312 
4313 	trace_napi_gro_frags_entry(skb);
4314 
4315 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4316 }
4317 EXPORT_SYMBOL(napi_gro_frags);
4318 
4319 /* Compute the checksum from gro_offset and return the folded value
4320  * after adding in any pseudo checksum.
4321  */
4322 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4323 {
4324 	__wsum wsum;
4325 	__sum16 sum;
4326 
4327 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4328 
4329 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4330 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4331 	if (likely(!sum)) {
4332 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4333 		    !skb->csum_complete_sw)
4334 			netdev_rx_csum_fault(skb->dev);
4335 	}
4336 
4337 	NAPI_GRO_CB(skb)->csum = wsum;
4338 	NAPI_GRO_CB(skb)->csum_valid = 1;
4339 
4340 	return sum;
4341 }
4342 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4343 
4344 /*
4345  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4346  * Note: called with local irq disabled, but exits with local irq enabled.
4347  */
4348 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4349 {
4350 #ifdef CONFIG_RPS
4351 	struct softnet_data *remsd = sd->rps_ipi_list;
4352 
4353 	if (remsd) {
4354 		sd->rps_ipi_list = NULL;
4355 
4356 		local_irq_enable();
4357 
4358 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4359 		while (remsd) {
4360 			struct softnet_data *next = remsd->rps_ipi_next;
4361 
4362 			if (cpu_online(remsd->cpu))
4363 				smp_call_function_single_async(remsd->cpu,
4364 							   &remsd->csd);
4365 			remsd = next;
4366 		}
4367 	} else
4368 #endif
4369 		local_irq_enable();
4370 }
4371 
4372 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4373 {
4374 #ifdef CONFIG_RPS
4375 	return sd->rps_ipi_list != NULL;
4376 #else
4377 	return false;
4378 #endif
4379 }
4380 
4381 static int process_backlog(struct napi_struct *napi, int quota)
4382 {
4383 	int work = 0;
4384 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4385 
4386 	/* Check if we have pending ipi, its better to send them now,
4387 	 * not waiting net_rx_action() end.
4388 	 */
4389 	if (sd_has_rps_ipi_waiting(sd)) {
4390 		local_irq_disable();
4391 		net_rps_action_and_irq_enable(sd);
4392 	}
4393 
4394 	napi->weight = weight_p;
4395 	local_irq_disable();
4396 	while (1) {
4397 		struct sk_buff *skb;
4398 
4399 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4400 			local_irq_enable();
4401 			__netif_receive_skb(skb);
4402 			local_irq_disable();
4403 			input_queue_head_incr(sd);
4404 			if (++work >= quota) {
4405 				local_irq_enable();
4406 				return work;
4407 			}
4408 		}
4409 
4410 		rps_lock(sd);
4411 		if (skb_queue_empty(&sd->input_pkt_queue)) {
4412 			/*
4413 			 * Inline a custom version of __napi_complete().
4414 			 * only current cpu owns and manipulates this napi,
4415 			 * and NAPI_STATE_SCHED is the only possible flag set
4416 			 * on backlog.
4417 			 * We can use a plain write instead of clear_bit(),
4418 			 * and we dont need an smp_mb() memory barrier.
4419 			 */
4420 			napi->state = 0;
4421 			rps_unlock(sd);
4422 
4423 			break;
4424 		}
4425 
4426 		skb_queue_splice_tail_init(&sd->input_pkt_queue,
4427 					   &sd->process_queue);
4428 		rps_unlock(sd);
4429 	}
4430 	local_irq_enable();
4431 
4432 	return work;
4433 }
4434 
4435 /**
4436  * __napi_schedule - schedule for receive
4437  * @n: entry to schedule
4438  *
4439  * The entry's receive function will be scheduled to run.
4440  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4441  */
4442 void __napi_schedule(struct napi_struct *n)
4443 {
4444 	unsigned long flags;
4445 
4446 	local_irq_save(flags);
4447 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4448 	local_irq_restore(flags);
4449 }
4450 EXPORT_SYMBOL(__napi_schedule);
4451 
4452 /**
4453  * __napi_schedule_irqoff - schedule for receive
4454  * @n: entry to schedule
4455  *
4456  * Variant of __napi_schedule() assuming hard irqs are masked
4457  */
4458 void __napi_schedule_irqoff(struct napi_struct *n)
4459 {
4460 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4461 }
4462 EXPORT_SYMBOL(__napi_schedule_irqoff);
4463 
4464 void __napi_complete(struct napi_struct *n)
4465 {
4466 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4467 
4468 	list_del_init(&n->poll_list);
4469 	smp_mb__before_atomic();
4470 	clear_bit(NAPI_STATE_SCHED, &n->state);
4471 }
4472 EXPORT_SYMBOL(__napi_complete);
4473 
4474 void napi_complete_done(struct napi_struct *n, int work_done)
4475 {
4476 	unsigned long flags;
4477 
4478 	/*
4479 	 * don't let napi dequeue from the cpu poll list
4480 	 * just in case its running on a different cpu
4481 	 */
4482 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4483 		return;
4484 
4485 	if (n->gro_list) {
4486 		unsigned long timeout = 0;
4487 
4488 		if (work_done)
4489 			timeout = n->dev->gro_flush_timeout;
4490 
4491 		if (timeout)
4492 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
4493 				      HRTIMER_MODE_REL_PINNED);
4494 		else
4495 			napi_gro_flush(n, false);
4496 	}
4497 	if (likely(list_empty(&n->poll_list))) {
4498 		WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4499 	} else {
4500 		/* If n->poll_list is not empty, we need to mask irqs */
4501 		local_irq_save(flags);
4502 		__napi_complete(n);
4503 		local_irq_restore(flags);
4504 	}
4505 }
4506 EXPORT_SYMBOL(napi_complete_done);
4507 
4508 /* must be called under rcu_read_lock(), as we dont take a reference */
4509 struct napi_struct *napi_by_id(unsigned int napi_id)
4510 {
4511 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4512 	struct napi_struct *napi;
4513 
4514 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4515 		if (napi->napi_id == napi_id)
4516 			return napi;
4517 
4518 	return NULL;
4519 }
4520 EXPORT_SYMBOL_GPL(napi_by_id);
4521 
4522 void napi_hash_add(struct napi_struct *napi)
4523 {
4524 	if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4525 
4526 		spin_lock(&napi_hash_lock);
4527 
4528 		/* 0 is not a valid id, we also skip an id that is taken
4529 		 * we expect both events to be extremely rare
4530 		 */
4531 		napi->napi_id = 0;
4532 		while (!napi->napi_id) {
4533 			napi->napi_id = ++napi_gen_id;
4534 			if (napi_by_id(napi->napi_id))
4535 				napi->napi_id = 0;
4536 		}
4537 
4538 		hlist_add_head_rcu(&napi->napi_hash_node,
4539 			&napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4540 
4541 		spin_unlock(&napi_hash_lock);
4542 	}
4543 }
4544 EXPORT_SYMBOL_GPL(napi_hash_add);
4545 
4546 /* Warning : caller is responsible to make sure rcu grace period
4547  * is respected before freeing memory containing @napi
4548  */
4549 void napi_hash_del(struct napi_struct *napi)
4550 {
4551 	spin_lock(&napi_hash_lock);
4552 
4553 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4554 		hlist_del_rcu(&napi->napi_hash_node);
4555 
4556 	spin_unlock(&napi_hash_lock);
4557 }
4558 EXPORT_SYMBOL_GPL(napi_hash_del);
4559 
4560 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4561 {
4562 	struct napi_struct *napi;
4563 
4564 	napi = container_of(timer, struct napi_struct, timer);
4565 	if (napi->gro_list)
4566 		napi_schedule(napi);
4567 
4568 	return HRTIMER_NORESTART;
4569 }
4570 
4571 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4572 		    int (*poll)(struct napi_struct *, int), int weight)
4573 {
4574 	INIT_LIST_HEAD(&napi->poll_list);
4575 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4576 	napi->timer.function = napi_watchdog;
4577 	napi->gro_count = 0;
4578 	napi->gro_list = NULL;
4579 	napi->skb = NULL;
4580 	napi->poll = poll;
4581 	if (weight > NAPI_POLL_WEIGHT)
4582 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4583 			    weight, dev->name);
4584 	napi->weight = weight;
4585 	list_add(&napi->dev_list, &dev->napi_list);
4586 	napi->dev = dev;
4587 #ifdef CONFIG_NETPOLL
4588 	spin_lock_init(&napi->poll_lock);
4589 	napi->poll_owner = -1;
4590 #endif
4591 	set_bit(NAPI_STATE_SCHED, &napi->state);
4592 }
4593 EXPORT_SYMBOL(netif_napi_add);
4594 
4595 void napi_disable(struct napi_struct *n)
4596 {
4597 	might_sleep();
4598 	set_bit(NAPI_STATE_DISABLE, &n->state);
4599 
4600 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4601 		msleep(1);
4602 
4603 	hrtimer_cancel(&n->timer);
4604 
4605 	clear_bit(NAPI_STATE_DISABLE, &n->state);
4606 }
4607 EXPORT_SYMBOL(napi_disable);
4608 
4609 void netif_napi_del(struct napi_struct *napi)
4610 {
4611 	list_del_init(&napi->dev_list);
4612 	napi_free_frags(napi);
4613 
4614 	kfree_skb_list(napi->gro_list);
4615 	napi->gro_list = NULL;
4616 	napi->gro_count = 0;
4617 }
4618 EXPORT_SYMBOL(netif_napi_del);
4619 
4620 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4621 {
4622 	void *have;
4623 	int work, weight;
4624 
4625 	list_del_init(&n->poll_list);
4626 
4627 	have = netpoll_poll_lock(n);
4628 
4629 	weight = n->weight;
4630 
4631 	/* This NAPI_STATE_SCHED test is for avoiding a race
4632 	 * with netpoll's poll_napi().  Only the entity which
4633 	 * obtains the lock and sees NAPI_STATE_SCHED set will
4634 	 * actually make the ->poll() call.  Therefore we avoid
4635 	 * accidentally calling ->poll() when NAPI is not scheduled.
4636 	 */
4637 	work = 0;
4638 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4639 		work = n->poll(n, weight);
4640 		trace_napi_poll(n);
4641 	}
4642 
4643 	WARN_ON_ONCE(work > weight);
4644 
4645 	if (likely(work < weight))
4646 		goto out_unlock;
4647 
4648 	/* Drivers must not modify the NAPI state if they
4649 	 * consume the entire weight.  In such cases this code
4650 	 * still "owns" the NAPI instance and therefore can
4651 	 * move the instance around on the list at-will.
4652 	 */
4653 	if (unlikely(napi_disable_pending(n))) {
4654 		napi_complete(n);
4655 		goto out_unlock;
4656 	}
4657 
4658 	if (n->gro_list) {
4659 		/* flush too old packets
4660 		 * If HZ < 1000, flush all packets.
4661 		 */
4662 		napi_gro_flush(n, HZ >= 1000);
4663 	}
4664 
4665 	/* Some drivers may have called napi_schedule
4666 	 * prior to exhausting their budget.
4667 	 */
4668 	if (unlikely(!list_empty(&n->poll_list))) {
4669 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4670 			     n->dev ? n->dev->name : "backlog");
4671 		goto out_unlock;
4672 	}
4673 
4674 	list_add_tail(&n->poll_list, repoll);
4675 
4676 out_unlock:
4677 	netpoll_poll_unlock(have);
4678 
4679 	return work;
4680 }
4681 
4682 static void net_rx_action(struct softirq_action *h)
4683 {
4684 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4685 	unsigned long time_limit = jiffies + 2;
4686 	int budget = netdev_budget;
4687 	LIST_HEAD(list);
4688 	LIST_HEAD(repoll);
4689 
4690 	local_irq_disable();
4691 	list_splice_init(&sd->poll_list, &list);
4692 	local_irq_enable();
4693 
4694 	for (;;) {
4695 		struct napi_struct *n;
4696 
4697 		if (list_empty(&list)) {
4698 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4699 				return;
4700 			break;
4701 		}
4702 
4703 		n = list_first_entry(&list, struct napi_struct, poll_list);
4704 		budget -= napi_poll(n, &repoll);
4705 
4706 		/* If softirq window is exhausted then punt.
4707 		 * Allow this to run for 2 jiffies since which will allow
4708 		 * an average latency of 1.5/HZ.
4709 		 */
4710 		if (unlikely(budget <= 0 ||
4711 			     time_after_eq(jiffies, time_limit))) {
4712 			sd->time_squeeze++;
4713 			break;
4714 		}
4715 	}
4716 
4717 	local_irq_disable();
4718 
4719 	list_splice_tail_init(&sd->poll_list, &list);
4720 	list_splice_tail(&repoll, &list);
4721 	list_splice(&list, &sd->poll_list);
4722 	if (!list_empty(&sd->poll_list))
4723 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4724 
4725 	net_rps_action_and_irq_enable(sd);
4726 }
4727 
4728 struct netdev_adjacent {
4729 	struct net_device *dev;
4730 
4731 	/* upper master flag, there can only be one master device per list */
4732 	bool master;
4733 
4734 	/* counter for the number of times this device was added to us */
4735 	u16 ref_nr;
4736 
4737 	/* private field for the users */
4738 	void *private;
4739 
4740 	struct list_head list;
4741 	struct rcu_head rcu;
4742 };
4743 
4744 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4745 						 struct net_device *adj_dev,
4746 						 struct list_head *adj_list)
4747 {
4748 	struct netdev_adjacent *adj;
4749 
4750 	list_for_each_entry(adj, adj_list, list) {
4751 		if (adj->dev == adj_dev)
4752 			return adj;
4753 	}
4754 	return NULL;
4755 }
4756 
4757 /**
4758  * netdev_has_upper_dev - Check if device is linked to an upper device
4759  * @dev: device
4760  * @upper_dev: upper device to check
4761  *
4762  * Find out if a device is linked to specified upper device and return true
4763  * in case it is. Note that this checks only immediate upper device,
4764  * not through a complete stack of devices. The caller must hold the RTNL lock.
4765  */
4766 bool netdev_has_upper_dev(struct net_device *dev,
4767 			  struct net_device *upper_dev)
4768 {
4769 	ASSERT_RTNL();
4770 
4771 	return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4772 }
4773 EXPORT_SYMBOL(netdev_has_upper_dev);
4774 
4775 /**
4776  * netdev_has_any_upper_dev - Check if device is linked to some device
4777  * @dev: device
4778  *
4779  * Find out if a device is linked to an upper device and return true in case
4780  * it is. The caller must hold the RTNL lock.
4781  */
4782 static bool netdev_has_any_upper_dev(struct net_device *dev)
4783 {
4784 	ASSERT_RTNL();
4785 
4786 	return !list_empty(&dev->all_adj_list.upper);
4787 }
4788 
4789 /**
4790  * netdev_master_upper_dev_get - Get master upper device
4791  * @dev: device
4792  *
4793  * Find a master upper device and return pointer to it or NULL in case
4794  * it's not there. The caller must hold the RTNL lock.
4795  */
4796 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4797 {
4798 	struct netdev_adjacent *upper;
4799 
4800 	ASSERT_RTNL();
4801 
4802 	if (list_empty(&dev->adj_list.upper))
4803 		return NULL;
4804 
4805 	upper = list_first_entry(&dev->adj_list.upper,
4806 				 struct netdev_adjacent, list);
4807 	if (likely(upper->master))
4808 		return upper->dev;
4809 	return NULL;
4810 }
4811 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4812 
4813 void *netdev_adjacent_get_private(struct list_head *adj_list)
4814 {
4815 	struct netdev_adjacent *adj;
4816 
4817 	adj = list_entry(adj_list, struct netdev_adjacent, list);
4818 
4819 	return adj->private;
4820 }
4821 EXPORT_SYMBOL(netdev_adjacent_get_private);
4822 
4823 /**
4824  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4825  * @dev: device
4826  * @iter: list_head ** of the current position
4827  *
4828  * Gets the next device from the dev's upper list, starting from iter
4829  * position. The caller must hold RCU read lock.
4830  */
4831 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4832 						 struct list_head **iter)
4833 {
4834 	struct netdev_adjacent *upper;
4835 
4836 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4837 
4838 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4839 
4840 	if (&upper->list == &dev->adj_list.upper)
4841 		return NULL;
4842 
4843 	*iter = &upper->list;
4844 
4845 	return upper->dev;
4846 }
4847 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4848 
4849 /**
4850  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4851  * @dev: device
4852  * @iter: list_head ** of the current position
4853  *
4854  * Gets the next device from the dev's upper list, starting from iter
4855  * position. The caller must hold RCU read lock.
4856  */
4857 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4858 						     struct list_head **iter)
4859 {
4860 	struct netdev_adjacent *upper;
4861 
4862 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4863 
4864 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4865 
4866 	if (&upper->list == &dev->all_adj_list.upper)
4867 		return NULL;
4868 
4869 	*iter = &upper->list;
4870 
4871 	return upper->dev;
4872 }
4873 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4874 
4875 /**
4876  * netdev_lower_get_next_private - Get the next ->private from the
4877  *				   lower neighbour list
4878  * @dev: device
4879  * @iter: list_head ** of the current position
4880  *
4881  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4882  * list, starting from iter position. The caller must hold either hold the
4883  * RTNL lock or its own locking that guarantees that the neighbour lower
4884  * list will remain unchainged.
4885  */
4886 void *netdev_lower_get_next_private(struct net_device *dev,
4887 				    struct list_head **iter)
4888 {
4889 	struct netdev_adjacent *lower;
4890 
4891 	lower = list_entry(*iter, struct netdev_adjacent, list);
4892 
4893 	if (&lower->list == &dev->adj_list.lower)
4894 		return NULL;
4895 
4896 	*iter = lower->list.next;
4897 
4898 	return lower->private;
4899 }
4900 EXPORT_SYMBOL(netdev_lower_get_next_private);
4901 
4902 /**
4903  * netdev_lower_get_next_private_rcu - Get the next ->private from the
4904  *				       lower neighbour list, RCU
4905  *				       variant
4906  * @dev: device
4907  * @iter: list_head ** of the current position
4908  *
4909  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4910  * list, starting from iter position. The caller must hold RCU read lock.
4911  */
4912 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4913 					struct list_head **iter)
4914 {
4915 	struct netdev_adjacent *lower;
4916 
4917 	WARN_ON_ONCE(!rcu_read_lock_held());
4918 
4919 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4920 
4921 	if (&lower->list == &dev->adj_list.lower)
4922 		return NULL;
4923 
4924 	*iter = &lower->list;
4925 
4926 	return lower->private;
4927 }
4928 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4929 
4930 /**
4931  * netdev_lower_get_next - Get the next device from the lower neighbour
4932  *                         list
4933  * @dev: device
4934  * @iter: list_head ** of the current position
4935  *
4936  * Gets the next netdev_adjacent from the dev's lower neighbour
4937  * list, starting from iter position. The caller must hold RTNL lock or
4938  * its own locking that guarantees that the neighbour lower
4939  * list will remain unchainged.
4940  */
4941 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4942 {
4943 	struct netdev_adjacent *lower;
4944 
4945 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4946 
4947 	if (&lower->list == &dev->adj_list.lower)
4948 		return NULL;
4949 
4950 	*iter = &lower->list;
4951 
4952 	return lower->dev;
4953 }
4954 EXPORT_SYMBOL(netdev_lower_get_next);
4955 
4956 /**
4957  * netdev_lower_get_first_private_rcu - Get the first ->private from the
4958  *				       lower neighbour list, RCU
4959  *				       variant
4960  * @dev: device
4961  *
4962  * Gets the first netdev_adjacent->private from the dev's lower neighbour
4963  * list. The caller must hold RCU read lock.
4964  */
4965 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4966 {
4967 	struct netdev_adjacent *lower;
4968 
4969 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
4970 			struct netdev_adjacent, list);
4971 	if (lower)
4972 		return lower->private;
4973 	return NULL;
4974 }
4975 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4976 
4977 /**
4978  * netdev_master_upper_dev_get_rcu - Get master upper device
4979  * @dev: device
4980  *
4981  * Find a master upper device and return pointer to it or NULL in case
4982  * it's not there. The caller must hold the RCU read lock.
4983  */
4984 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4985 {
4986 	struct netdev_adjacent *upper;
4987 
4988 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
4989 				       struct netdev_adjacent, list);
4990 	if (upper && likely(upper->master))
4991 		return upper->dev;
4992 	return NULL;
4993 }
4994 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4995 
4996 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4997 			      struct net_device *adj_dev,
4998 			      struct list_head *dev_list)
4999 {
5000 	char linkname[IFNAMSIZ+7];
5001 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5002 		"upper_%s" : "lower_%s", adj_dev->name);
5003 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5004 				 linkname);
5005 }
5006 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5007 			       char *name,
5008 			       struct list_head *dev_list)
5009 {
5010 	char linkname[IFNAMSIZ+7];
5011 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5012 		"upper_%s" : "lower_%s", name);
5013 	sysfs_remove_link(&(dev->dev.kobj), linkname);
5014 }
5015 
5016 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5017 						 struct net_device *adj_dev,
5018 						 struct list_head *dev_list)
5019 {
5020 	return (dev_list == &dev->adj_list.upper ||
5021 		dev_list == &dev->adj_list.lower) &&
5022 		net_eq(dev_net(dev), dev_net(adj_dev));
5023 }
5024 
5025 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5026 					struct net_device *adj_dev,
5027 					struct list_head *dev_list,
5028 					void *private, bool master)
5029 {
5030 	struct netdev_adjacent *adj;
5031 	int ret;
5032 
5033 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
5034 
5035 	if (adj) {
5036 		adj->ref_nr++;
5037 		return 0;
5038 	}
5039 
5040 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5041 	if (!adj)
5042 		return -ENOMEM;
5043 
5044 	adj->dev = adj_dev;
5045 	adj->master = master;
5046 	adj->ref_nr = 1;
5047 	adj->private = private;
5048 	dev_hold(adj_dev);
5049 
5050 	pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5051 		 adj_dev->name, dev->name, adj_dev->name);
5052 
5053 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5054 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5055 		if (ret)
5056 			goto free_adj;
5057 	}
5058 
5059 	/* Ensure that master link is always the first item in list. */
5060 	if (master) {
5061 		ret = sysfs_create_link(&(dev->dev.kobj),
5062 					&(adj_dev->dev.kobj), "master");
5063 		if (ret)
5064 			goto remove_symlinks;
5065 
5066 		list_add_rcu(&adj->list, dev_list);
5067 	} else {
5068 		list_add_tail_rcu(&adj->list, dev_list);
5069 	}
5070 
5071 	return 0;
5072 
5073 remove_symlinks:
5074 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5075 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5076 free_adj:
5077 	kfree(adj);
5078 	dev_put(adj_dev);
5079 
5080 	return ret;
5081 }
5082 
5083 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5084 					 struct net_device *adj_dev,
5085 					 struct list_head *dev_list)
5086 {
5087 	struct netdev_adjacent *adj;
5088 
5089 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
5090 
5091 	if (!adj) {
5092 		pr_err("tried to remove device %s from %s\n",
5093 		       dev->name, adj_dev->name);
5094 		BUG();
5095 	}
5096 
5097 	if (adj->ref_nr > 1) {
5098 		pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5099 			 adj->ref_nr-1);
5100 		adj->ref_nr--;
5101 		return;
5102 	}
5103 
5104 	if (adj->master)
5105 		sysfs_remove_link(&(dev->dev.kobj), "master");
5106 
5107 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5108 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5109 
5110 	list_del_rcu(&adj->list);
5111 	pr_debug("dev_put for %s, because link removed from %s to %s\n",
5112 		 adj_dev->name, dev->name, adj_dev->name);
5113 	dev_put(adj_dev);
5114 	kfree_rcu(adj, rcu);
5115 }
5116 
5117 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5118 					    struct net_device *upper_dev,
5119 					    struct list_head *up_list,
5120 					    struct list_head *down_list,
5121 					    void *private, bool master)
5122 {
5123 	int ret;
5124 
5125 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5126 					   master);
5127 	if (ret)
5128 		return ret;
5129 
5130 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5131 					   false);
5132 	if (ret) {
5133 		__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5134 		return ret;
5135 	}
5136 
5137 	return 0;
5138 }
5139 
5140 static int __netdev_adjacent_dev_link(struct net_device *dev,
5141 				      struct net_device *upper_dev)
5142 {
5143 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5144 						&dev->all_adj_list.upper,
5145 						&upper_dev->all_adj_list.lower,
5146 						NULL, false);
5147 }
5148 
5149 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5150 					       struct net_device *upper_dev,
5151 					       struct list_head *up_list,
5152 					       struct list_head *down_list)
5153 {
5154 	__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5155 	__netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5156 }
5157 
5158 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5159 					 struct net_device *upper_dev)
5160 {
5161 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5162 					   &dev->all_adj_list.upper,
5163 					   &upper_dev->all_adj_list.lower);
5164 }
5165 
5166 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5167 						struct net_device *upper_dev,
5168 						void *private, bool master)
5169 {
5170 	int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5171 
5172 	if (ret)
5173 		return ret;
5174 
5175 	ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5176 					       &dev->adj_list.upper,
5177 					       &upper_dev->adj_list.lower,
5178 					       private, master);
5179 	if (ret) {
5180 		__netdev_adjacent_dev_unlink(dev, upper_dev);
5181 		return ret;
5182 	}
5183 
5184 	return 0;
5185 }
5186 
5187 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5188 						   struct net_device *upper_dev)
5189 {
5190 	__netdev_adjacent_dev_unlink(dev, upper_dev);
5191 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5192 					   &dev->adj_list.upper,
5193 					   &upper_dev->adj_list.lower);
5194 }
5195 
5196 static int __netdev_upper_dev_link(struct net_device *dev,
5197 				   struct net_device *upper_dev, bool master,
5198 				   void *private)
5199 {
5200 	struct netdev_adjacent *i, *j, *to_i, *to_j;
5201 	int ret = 0;
5202 
5203 	ASSERT_RTNL();
5204 
5205 	if (dev == upper_dev)
5206 		return -EBUSY;
5207 
5208 	/* To prevent loops, check if dev is not upper device to upper_dev. */
5209 	if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5210 		return -EBUSY;
5211 
5212 	if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
5213 		return -EEXIST;
5214 
5215 	if (master && netdev_master_upper_dev_get(dev))
5216 		return -EBUSY;
5217 
5218 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5219 						   master);
5220 	if (ret)
5221 		return ret;
5222 
5223 	/* Now that we linked these devs, make all the upper_dev's
5224 	 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5225 	 * versa, and don't forget the devices itself. All of these
5226 	 * links are non-neighbours.
5227 	 */
5228 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5229 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5230 			pr_debug("Interlinking %s with %s, non-neighbour\n",
5231 				 i->dev->name, j->dev->name);
5232 			ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5233 			if (ret)
5234 				goto rollback_mesh;
5235 		}
5236 	}
5237 
5238 	/* add dev to every upper_dev's upper device */
5239 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5240 		pr_debug("linking %s's upper device %s with %s\n",
5241 			 upper_dev->name, i->dev->name, dev->name);
5242 		ret = __netdev_adjacent_dev_link(dev, i->dev);
5243 		if (ret)
5244 			goto rollback_upper_mesh;
5245 	}
5246 
5247 	/* add upper_dev to every dev's lower device */
5248 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5249 		pr_debug("linking %s's lower device %s with %s\n", dev->name,
5250 			 i->dev->name, upper_dev->name);
5251 		ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5252 		if (ret)
5253 			goto rollback_lower_mesh;
5254 	}
5255 
5256 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5257 	return 0;
5258 
5259 rollback_lower_mesh:
5260 	to_i = i;
5261 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5262 		if (i == to_i)
5263 			break;
5264 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5265 	}
5266 
5267 	i = NULL;
5268 
5269 rollback_upper_mesh:
5270 	to_i = i;
5271 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5272 		if (i == to_i)
5273 			break;
5274 		__netdev_adjacent_dev_unlink(dev, i->dev);
5275 	}
5276 
5277 	i = j = NULL;
5278 
5279 rollback_mesh:
5280 	to_i = i;
5281 	to_j = j;
5282 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5283 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5284 			if (i == to_i && j == to_j)
5285 				break;
5286 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5287 		}
5288 		if (i == to_i)
5289 			break;
5290 	}
5291 
5292 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5293 
5294 	return ret;
5295 }
5296 
5297 /**
5298  * netdev_upper_dev_link - Add a link to the upper device
5299  * @dev: device
5300  * @upper_dev: new upper device
5301  *
5302  * Adds a link to device which is upper to this one. The caller must hold
5303  * the RTNL lock. On a failure a negative errno code is returned.
5304  * On success the reference counts are adjusted and the function
5305  * returns zero.
5306  */
5307 int netdev_upper_dev_link(struct net_device *dev,
5308 			  struct net_device *upper_dev)
5309 {
5310 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5311 }
5312 EXPORT_SYMBOL(netdev_upper_dev_link);
5313 
5314 /**
5315  * netdev_master_upper_dev_link - Add a master link to the upper device
5316  * @dev: device
5317  * @upper_dev: new upper device
5318  *
5319  * Adds a link to device which is upper to this one. In this case, only
5320  * one master upper device can be linked, although other non-master devices
5321  * might be linked as well. The caller must hold the RTNL lock.
5322  * On a failure a negative errno code is returned. On success the reference
5323  * counts are adjusted and the function returns zero.
5324  */
5325 int netdev_master_upper_dev_link(struct net_device *dev,
5326 				 struct net_device *upper_dev)
5327 {
5328 	return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5329 }
5330 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5331 
5332 int netdev_master_upper_dev_link_private(struct net_device *dev,
5333 					 struct net_device *upper_dev,
5334 					 void *private)
5335 {
5336 	return __netdev_upper_dev_link(dev, upper_dev, true, private);
5337 }
5338 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5339 
5340 /**
5341  * netdev_upper_dev_unlink - Removes a link to upper device
5342  * @dev: device
5343  * @upper_dev: new upper device
5344  *
5345  * Removes a link to device which is upper to this one. The caller must hold
5346  * the RTNL lock.
5347  */
5348 void netdev_upper_dev_unlink(struct net_device *dev,
5349 			     struct net_device *upper_dev)
5350 {
5351 	struct netdev_adjacent *i, *j;
5352 	ASSERT_RTNL();
5353 
5354 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5355 
5356 	/* Here is the tricky part. We must remove all dev's lower
5357 	 * devices from all upper_dev's upper devices and vice
5358 	 * versa, to maintain the graph relationship.
5359 	 */
5360 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5361 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5362 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5363 
5364 	/* remove also the devices itself from lower/upper device
5365 	 * list
5366 	 */
5367 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5368 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5369 
5370 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5371 		__netdev_adjacent_dev_unlink(dev, i->dev);
5372 
5373 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5374 }
5375 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5376 
5377 /**
5378  * netdev_bonding_info_change - Dispatch event about slave change
5379  * @dev: device
5380  * @bonding_info: info to dispatch
5381  *
5382  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5383  * The caller must hold the RTNL lock.
5384  */
5385 void netdev_bonding_info_change(struct net_device *dev,
5386 				struct netdev_bonding_info *bonding_info)
5387 {
5388 	struct netdev_notifier_bonding_info	info;
5389 
5390 	memcpy(&info.bonding_info, bonding_info,
5391 	       sizeof(struct netdev_bonding_info));
5392 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5393 				      &info.info);
5394 }
5395 EXPORT_SYMBOL(netdev_bonding_info_change);
5396 
5397 static void netdev_adjacent_add_links(struct net_device *dev)
5398 {
5399 	struct netdev_adjacent *iter;
5400 
5401 	struct net *net = dev_net(dev);
5402 
5403 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5404 		if (!net_eq(net,dev_net(iter->dev)))
5405 			continue;
5406 		netdev_adjacent_sysfs_add(iter->dev, dev,
5407 					  &iter->dev->adj_list.lower);
5408 		netdev_adjacent_sysfs_add(dev, iter->dev,
5409 					  &dev->adj_list.upper);
5410 	}
5411 
5412 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5413 		if (!net_eq(net,dev_net(iter->dev)))
5414 			continue;
5415 		netdev_adjacent_sysfs_add(iter->dev, dev,
5416 					  &iter->dev->adj_list.upper);
5417 		netdev_adjacent_sysfs_add(dev, iter->dev,
5418 					  &dev->adj_list.lower);
5419 	}
5420 }
5421 
5422 static void netdev_adjacent_del_links(struct net_device *dev)
5423 {
5424 	struct netdev_adjacent *iter;
5425 
5426 	struct net *net = dev_net(dev);
5427 
5428 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5429 		if (!net_eq(net,dev_net(iter->dev)))
5430 			continue;
5431 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5432 					  &iter->dev->adj_list.lower);
5433 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5434 					  &dev->adj_list.upper);
5435 	}
5436 
5437 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5438 		if (!net_eq(net,dev_net(iter->dev)))
5439 			continue;
5440 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5441 					  &iter->dev->adj_list.upper);
5442 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5443 					  &dev->adj_list.lower);
5444 	}
5445 }
5446 
5447 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5448 {
5449 	struct netdev_adjacent *iter;
5450 
5451 	struct net *net = dev_net(dev);
5452 
5453 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5454 		if (!net_eq(net,dev_net(iter->dev)))
5455 			continue;
5456 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5457 					  &iter->dev->adj_list.lower);
5458 		netdev_adjacent_sysfs_add(iter->dev, dev,
5459 					  &iter->dev->adj_list.lower);
5460 	}
5461 
5462 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5463 		if (!net_eq(net,dev_net(iter->dev)))
5464 			continue;
5465 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5466 					  &iter->dev->adj_list.upper);
5467 		netdev_adjacent_sysfs_add(iter->dev, dev,
5468 					  &iter->dev->adj_list.upper);
5469 	}
5470 }
5471 
5472 void *netdev_lower_dev_get_private(struct net_device *dev,
5473 				   struct net_device *lower_dev)
5474 {
5475 	struct netdev_adjacent *lower;
5476 
5477 	if (!lower_dev)
5478 		return NULL;
5479 	lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5480 	if (!lower)
5481 		return NULL;
5482 
5483 	return lower->private;
5484 }
5485 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5486 
5487 
5488 int dev_get_nest_level(struct net_device *dev,
5489 		       bool (*type_check)(struct net_device *dev))
5490 {
5491 	struct net_device *lower = NULL;
5492 	struct list_head *iter;
5493 	int max_nest = -1;
5494 	int nest;
5495 
5496 	ASSERT_RTNL();
5497 
5498 	netdev_for_each_lower_dev(dev, lower, iter) {
5499 		nest = dev_get_nest_level(lower, type_check);
5500 		if (max_nest < nest)
5501 			max_nest = nest;
5502 	}
5503 
5504 	if (type_check(dev))
5505 		max_nest++;
5506 
5507 	return max_nest;
5508 }
5509 EXPORT_SYMBOL(dev_get_nest_level);
5510 
5511 static void dev_change_rx_flags(struct net_device *dev, int flags)
5512 {
5513 	const struct net_device_ops *ops = dev->netdev_ops;
5514 
5515 	if (ops->ndo_change_rx_flags)
5516 		ops->ndo_change_rx_flags(dev, flags);
5517 }
5518 
5519 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5520 {
5521 	unsigned int old_flags = dev->flags;
5522 	kuid_t uid;
5523 	kgid_t gid;
5524 
5525 	ASSERT_RTNL();
5526 
5527 	dev->flags |= IFF_PROMISC;
5528 	dev->promiscuity += inc;
5529 	if (dev->promiscuity == 0) {
5530 		/*
5531 		 * Avoid overflow.
5532 		 * If inc causes overflow, untouch promisc and return error.
5533 		 */
5534 		if (inc < 0)
5535 			dev->flags &= ~IFF_PROMISC;
5536 		else {
5537 			dev->promiscuity -= inc;
5538 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5539 				dev->name);
5540 			return -EOVERFLOW;
5541 		}
5542 	}
5543 	if (dev->flags != old_flags) {
5544 		pr_info("device %s %s promiscuous mode\n",
5545 			dev->name,
5546 			dev->flags & IFF_PROMISC ? "entered" : "left");
5547 		if (audit_enabled) {
5548 			current_uid_gid(&uid, &gid);
5549 			audit_log(current->audit_context, GFP_ATOMIC,
5550 				AUDIT_ANOM_PROMISCUOUS,
5551 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5552 				dev->name, (dev->flags & IFF_PROMISC),
5553 				(old_flags & IFF_PROMISC),
5554 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
5555 				from_kuid(&init_user_ns, uid),
5556 				from_kgid(&init_user_ns, gid),
5557 				audit_get_sessionid(current));
5558 		}
5559 
5560 		dev_change_rx_flags(dev, IFF_PROMISC);
5561 	}
5562 	if (notify)
5563 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
5564 	return 0;
5565 }
5566 
5567 /**
5568  *	dev_set_promiscuity	- update promiscuity count on a device
5569  *	@dev: device
5570  *	@inc: modifier
5571  *
5572  *	Add or remove promiscuity from a device. While the count in the device
5573  *	remains above zero the interface remains promiscuous. Once it hits zero
5574  *	the device reverts back to normal filtering operation. A negative inc
5575  *	value is used to drop promiscuity on the device.
5576  *	Return 0 if successful or a negative errno code on error.
5577  */
5578 int dev_set_promiscuity(struct net_device *dev, int inc)
5579 {
5580 	unsigned int old_flags = dev->flags;
5581 	int err;
5582 
5583 	err = __dev_set_promiscuity(dev, inc, true);
5584 	if (err < 0)
5585 		return err;
5586 	if (dev->flags != old_flags)
5587 		dev_set_rx_mode(dev);
5588 	return err;
5589 }
5590 EXPORT_SYMBOL(dev_set_promiscuity);
5591 
5592 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5593 {
5594 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5595 
5596 	ASSERT_RTNL();
5597 
5598 	dev->flags |= IFF_ALLMULTI;
5599 	dev->allmulti += inc;
5600 	if (dev->allmulti == 0) {
5601 		/*
5602 		 * Avoid overflow.
5603 		 * If inc causes overflow, untouch allmulti and return error.
5604 		 */
5605 		if (inc < 0)
5606 			dev->flags &= ~IFF_ALLMULTI;
5607 		else {
5608 			dev->allmulti -= inc;
5609 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5610 				dev->name);
5611 			return -EOVERFLOW;
5612 		}
5613 	}
5614 	if (dev->flags ^ old_flags) {
5615 		dev_change_rx_flags(dev, IFF_ALLMULTI);
5616 		dev_set_rx_mode(dev);
5617 		if (notify)
5618 			__dev_notify_flags(dev, old_flags,
5619 					   dev->gflags ^ old_gflags);
5620 	}
5621 	return 0;
5622 }
5623 
5624 /**
5625  *	dev_set_allmulti	- update allmulti count on a device
5626  *	@dev: device
5627  *	@inc: modifier
5628  *
5629  *	Add or remove reception of all multicast frames to a device. While the
5630  *	count in the device remains above zero the interface remains listening
5631  *	to all interfaces. Once it hits zero the device reverts back to normal
5632  *	filtering operation. A negative @inc value is used to drop the counter
5633  *	when releasing a resource needing all multicasts.
5634  *	Return 0 if successful or a negative errno code on error.
5635  */
5636 
5637 int dev_set_allmulti(struct net_device *dev, int inc)
5638 {
5639 	return __dev_set_allmulti(dev, inc, true);
5640 }
5641 EXPORT_SYMBOL(dev_set_allmulti);
5642 
5643 /*
5644  *	Upload unicast and multicast address lists to device and
5645  *	configure RX filtering. When the device doesn't support unicast
5646  *	filtering it is put in promiscuous mode while unicast addresses
5647  *	are present.
5648  */
5649 void __dev_set_rx_mode(struct net_device *dev)
5650 {
5651 	const struct net_device_ops *ops = dev->netdev_ops;
5652 
5653 	/* dev_open will call this function so the list will stay sane. */
5654 	if (!(dev->flags&IFF_UP))
5655 		return;
5656 
5657 	if (!netif_device_present(dev))
5658 		return;
5659 
5660 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5661 		/* Unicast addresses changes may only happen under the rtnl,
5662 		 * therefore calling __dev_set_promiscuity here is safe.
5663 		 */
5664 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5665 			__dev_set_promiscuity(dev, 1, false);
5666 			dev->uc_promisc = true;
5667 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5668 			__dev_set_promiscuity(dev, -1, false);
5669 			dev->uc_promisc = false;
5670 		}
5671 	}
5672 
5673 	if (ops->ndo_set_rx_mode)
5674 		ops->ndo_set_rx_mode(dev);
5675 }
5676 
5677 void dev_set_rx_mode(struct net_device *dev)
5678 {
5679 	netif_addr_lock_bh(dev);
5680 	__dev_set_rx_mode(dev);
5681 	netif_addr_unlock_bh(dev);
5682 }
5683 
5684 /**
5685  *	dev_get_flags - get flags reported to userspace
5686  *	@dev: device
5687  *
5688  *	Get the combination of flag bits exported through APIs to userspace.
5689  */
5690 unsigned int dev_get_flags(const struct net_device *dev)
5691 {
5692 	unsigned int flags;
5693 
5694 	flags = (dev->flags & ~(IFF_PROMISC |
5695 				IFF_ALLMULTI |
5696 				IFF_RUNNING |
5697 				IFF_LOWER_UP |
5698 				IFF_DORMANT)) |
5699 		(dev->gflags & (IFF_PROMISC |
5700 				IFF_ALLMULTI));
5701 
5702 	if (netif_running(dev)) {
5703 		if (netif_oper_up(dev))
5704 			flags |= IFF_RUNNING;
5705 		if (netif_carrier_ok(dev))
5706 			flags |= IFF_LOWER_UP;
5707 		if (netif_dormant(dev))
5708 			flags |= IFF_DORMANT;
5709 	}
5710 
5711 	return flags;
5712 }
5713 EXPORT_SYMBOL(dev_get_flags);
5714 
5715 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5716 {
5717 	unsigned int old_flags = dev->flags;
5718 	int ret;
5719 
5720 	ASSERT_RTNL();
5721 
5722 	/*
5723 	 *	Set the flags on our device.
5724 	 */
5725 
5726 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5727 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5728 			       IFF_AUTOMEDIA)) |
5729 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5730 				    IFF_ALLMULTI));
5731 
5732 	/*
5733 	 *	Load in the correct multicast list now the flags have changed.
5734 	 */
5735 
5736 	if ((old_flags ^ flags) & IFF_MULTICAST)
5737 		dev_change_rx_flags(dev, IFF_MULTICAST);
5738 
5739 	dev_set_rx_mode(dev);
5740 
5741 	/*
5742 	 *	Have we downed the interface. We handle IFF_UP ourselves
5743 	 *	according to user attempts to set it, rather than blindly
5744 	 *	setting it.
5745 	 */
5746 
5747 	ret = 0;
5748 	if ((old_flags ^ flags) & IFF_UP)
5749 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5750 
5751 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
5752 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
5753 		unsigned int old_flags = dev->flags;
5754 
5755 		dev->gflags ^= IFF_PROMISC;
5756 
5757 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
5758 			if (dev->flags != old_flags)
5759 				dev_set_rx_mode(dev);
5760 	}
5761 
5762 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5763 	   is important. Some (broken) drivers set IFF_PROMISC, when
5764 	   IFF_ALLMULTI is requested not asking us and not reporting.
5765 	 */
5766 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5767 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5768 
5769 		dev->gflags ^= IFF_ALLMULTI;
5770 		__dev_set_allmulti(dev, inc, false);
5771 	}
5772 
5773 	return ret;
5774 }
5775 
5776 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5777 			unsigned int gchanges)
5778 {
5779 	unsigned int changes = dev->flags ^ old_flags;
5780 
5781 	if (gchanges)
5782 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5783 
5784 	if (changes & IFF_UP) {
5785 		if (dev->flags & IFF_UP)
5786 			call_netdevice_notifiers(NETDEV_UP, dev);
5787 		else
5788 			call_netdevice_notifiers(NETDEV_DOWN, dev);
5789 	}
5790 
5791 	if (dev->flags & IFF_UP &&
5792 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5793 		struct netdev_notifier_change_info change_info;
5794 
5795 		change_info.flags_changed = changes;
5796 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5797 					      &change_info.info);
5798 	}
5799 }
5800 
5801 /**
5802  *	dev_change_flags - change device settings
5803  *	@dev: device
5804  *	@flags: device state flags
5805  *
5806  *	Change settings on device based state flags. The flags are
5807  *	in the userspace exported format.
5808  */
5809 int dev_change_flags(struct net_device *dev, unsigned int flags)
5810 {
5811 	int ret;
5812 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5813 
5814 	ret = __dev_change_flags(dev, flags);
5815 	if (ret < 0)
5816 		return ret;
5817 
5818 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5819 	__dev_notify_flags(dev, old_flags, changes);
5820 	return ret;
5821 }
5822 EXPORT_SYMBOL(dev_change_flags);
5823 
5824 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5825 {
5826 	const struct net_device_ops *ops = dev->netdev_ops;
5827 
5828 	if (ops->ndo_change_mtu)
5829 		return ops->ndo_change_mtu(dev, new_mtu);
5830 
5831 	dev->mtu = new_mtu;
5832 	return 0;
5833 }
5834 
5835 /**
5836  *	dev_set_mtu - Change maximum transfer unit
5837  *	@dev: device
5838  *	@new_mtu: new transfer unit
5839  *
5840  *	Change the maximum transfer size of the network device.
5841  */
5842 int dev_set_mtu(struct net_device *dev, int new_mtu)
5843 {
5844 	int err, orig_mtu;
5845 
5846 	if (new_mtu == dev->mtu)
5847 		return 0;
5848 
5849 	/*	MTU must be positive.	 */
5850 	if (new_mtu < 0)
5851 		return -EINVAL;
5852 
5853 	if (!netif_device_present(dev))
5854 		return -ENODEV;
5855 
5856 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5857 	err = notifier_to_errno(err);
5858 	if (err)
5859 		return err;
5860 
5861 	orig_mtu = dev->mtu;
5862 	err = __dev_set_mtu(dev, new_mtu);
5863 
5864 	if (!err) {
5865 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5866 		err = notifier_to_errno(err);
5867 		if (err) {
5868 			/* setting mtu back and notifying everyone again,
5869 			 * so that they have a chance to revert changes.
5870 			 */
5871 			__dev_set_mtu(dev, orig_mtu);
5872 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5873 		}
5874 	}
5875 	return err;
5876 }
5877 EXPORT_SYMBOL(dev_set_mtu);
5878 
5879 /**
5880  *	dev_set_group - Change group this device belongs to
5881  *	@dev: device
5882  *	@new_group: group this device should belong to
5883  */
5884 void dev_set_group(struct net_device *dev, int new_group)
5885 {
5886 	dev->group = new_group;
5887 }
5888 EXPORT_SYMBOL(dev_set_group);
5889 
5890 /**
5891  *	dev_set_mac_address - Change Media Access Control Address
5892  *	@dev: device
5893  *	@sa: new address
5894  *
5895  *	Change the hardware (MAC) address of the device
5896  */
5897 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5898 {
5899 	const struct net_device_ops *ops = dev->netdev_ops;
5900 	int err;
5901 
5902 	if (!ops->ndo_set_mac_address)
5903 		return -EOPNOTSUPP;
5904 	if (sa->sa_family != dev->type)
5905 		return -EINVAL;
5906 	if (!netif_device_present(dev))
5907 		return -ENODEV;
5908 	err = ops->ndo_set_mac_address(dev, sa);
5909 	if (err)
5910 		return err;
5911 	dev->addr_assign_type = NET_ADDR_SET;
5912 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5913 	add_device_randomness(dev->dev_addr, dev->addr_len);
5914 	return 0;
5915 }
5916 EXPORT_SYMBOL(dev_set_mac_address);
5917 
5918 /**
5919  *	dev_change_carrier - Change device carrier
5920  *	@dev: device
5921  *	@new_carrier: new value
5922  *
5923  *	Change device carrier
5924  */
5925 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5926 {
5927 	const struct net_device_ops *ops = dev->netdev_ops;
5928 
5929 	if (!ops->ndo_change_carrier)
5930 		return -EOPNOTSUPP;
5931 	if (!netif_device_present(dev))
5932 		return -ENODEV;
5933 	return ops->ndo_change_carrier(dev, new_carrier);
5934 }
5935 EXPORT_SYMBOL(dev_change_carrier);
5936 
5937 /**
5938  *	dev_get_phys_port_id - Get device physical port ID
5939  *	@dev: device
5940  *	@ppid: port ID
5941  *
5942  *	Get device physical port ID
5943  */
5944 int dev_get_phys_port_id(struct net_device *dev,
5945 			 struct netdev_phys_item_id *ppid)
5946 {
5947 	const struct net_device_ops *ops = dev->netdev_ops;
5948 
5949 	if (!ops->ndo_get_phys_port_id)
5950 		return -EOPNOTSUPP;
5951 	return ops->ndo_get_phys_port_id(dev, ppid);
5952 }
5953 EXPORT_SYMBOL(dev_get_phys_port_id);
5954 
5955 /**
5956  *	dev_get_phys_port_name - Get device physical port name
5957  *	@dev: device
5958  *	@name: port name
5959  *
5960  *	Get device physical port name
5961  */
5962 int dev_get_phys_port_name(struct net_device *dev,
5963 			   char *name, size_t len)
5964 {
5965 	const struct net_device_ops *ops = dev->netdev_ops;
5966 
5967 	if (!ops->ndo_get_phys_port_name)
5968 		return -EOPNOTSUPP;
5969 	return ops->ndo_get_phys_port_name(dev, name, len);
5970 }
5971 EXPORT_SYMBOL(dev_get_phys_port_name);
5972 
5973 /**
5974  *	dev_new_index	-	allocate an ifindex
5975  *	@net: the applicable net namespace
5976  *
5977  *	Returns a suitable unique value for a new device interface
5978  *	number.  The caller must hold the rtnl semaphore or the
5979  *	dev_base_lock to be sure it remains unique.
5980  */
5981 static int dev_new_index(struct net *net)
5982 {
5983 	int ifindex = net->ifindex;
5984 	for (;;) {
5985 		if (++ifindex <= 0)
5986 			ifindex = 1;
5987 		if (!__dev_get_by_index(net, ifindex))
5988 			return net->ifindex = ifindex;
5989 	}
5990 }
5991 
5992 /* Delayed registration/unregisteration */
5993 static LIST_HEAD(net_todo_list);
5994 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5995 
5996 static void net_set_todo(struct net_device *dev)
5997 {
5998 	list_add_tail(&dev->todo_list, &net_todo_list);
5999 	dev_net(dev)->dev_unreg_count++;
6000 }
6001 
6002 static void rollback_registered_many(struct list_head *head)
6003 {
6004 	struct net_device *dev, *tmp;
6005 	LIST_HEAD(close_head);
6006 
6007 	BUG_ON(dev_boot_phase);
6008 	ASSERT_RTNL();
6009 
6010 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6011 		/* Some devices call without registering
6012 		 * for initialization unwind. Remove those
6013 		 * devices and proceed with the remaining.
6014 		 */
6015 		if (dev->reg_state == NETREG_UNINITIALIZED) {
6016 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6017 				 dev->name, dev);
6018 
6019 			WARN_ON(1);
6020 			list_del(&dev->unreg_list);
6021 			continue;
6022 		}
6023 		dev->dismantle = true;
6024 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
6025 	}
6026 
6027 	/* If device is running, close it first. */
6028 	list_for_each_entry(dev, head, unreg_list)
6029 		list_add_tail(&dev->close_list, &close_head);
6030 	dev_close_many(&close_head, true);
6031 
6032 	list_for_each_entry(dev, head, unreg_list) {
6033 		/* And unlink it from device chain. */
6034 		unlist_netdevice(dev);
6035 
6036 		dev->reg_state = NETREG_UNREGISTERING;
6037 	}
6038 
6039 	synchronize_net();
6040 
6041 	list_for_each_entry(dev, head, unreg_list) {
6042 		struct sk_buff *skb = NULL;
6043 
6044 		/* Shutdown queueing discipline. */
6045 		dev_shutdown(dev);
6046 
6047 
6048 		/* Notify protocols, that we are about to destroy
6049 		   this device. They should clean all the things.
6050 		*/
6051 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6052 
6053 		if (!dev->rtnl_link_ops ||
6054 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6055 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6056 						     GFP_KERNEL);
6057 
6058 		/*
6059 		 *	Flush the unicast and multicast chains
6060 		 */
6061 		dev_uc_flush(dev);
6062 		dev_mc_flush(dev);
6063 
6064 		if (dev->netdev_ops->ndo_uninit)
6065 			dev->netdev_ops->ndo_uninit(dev);
6066 
6067 		if (skb)
6068 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6069 
6070 		/* Notifier chain MUST detach us all upper devices. */
6071 		WARN_ON(netdev_has_any_upper_dev(dev));
6072 
6073 		/* Remove entries from kobject tree */
6074 		netdev_unregister_kobject(dev);
6075 #ifdef CONFIG_XPS
6076 		/* Remove XPS queueing entries */
6077 		netif_reset_xps_queues_gt(dev, 0);
6078 #endif
6079 	}
6080 
6081 	synchronize_net();
6082 
6083 	list_for_each_entry(dev, head, unreg_list)
6084 		dev_put(dev);
6085 }
6086 
6087 static void rollback_registered(struct net_device *dev)
6088 {
6089 	LIST_HEAD(single);
6090 
6091 	list_add(&dev->unreg_list, &single);
6092 	rollback_registered_many(&single);
6093 	list_del(&single);
6094 }
6095 
6096 static netdev_features_t netdev_fix_features(struct net_device *dev,
6097 	netdev_features_t features)
6098 {
6099 	/* Fix illegal checksum combinations */
6100 	if ((features & NETIF_F_HW_CSUM) &&
6101 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6102 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6103 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6104 	}
6105 
6106 	/* TSO requires that SG is present as well. */
6107 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6108 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6109 		features &= ~NETIF_F_ALL_TSO;
6110 	}
6111 
6112 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6113 					!(features & NETIF_F_IP_CSUM)) {
6114 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6115 		features &= ~NETIF_F_TSO;
6116 		features &= ~NETIF_F_TSO_ECN;
6117 	}
6118 
6119 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6120 					 !(features & NETIF_F_IPV6_CSUM)) {
6121 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6122 		features &= ~NETIF_F_TSO6;
6123 	}
6124 
6125 	/* TSO ECN requires that TSO is present as well. */
6126 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6127 		features &= ~NETIF_F_TSO_ECN;
6128 
6129 	/* Software GSO depends on SG. */
6130 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6131 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6132 		features &= ~NETIF_F_GSO;
6133 	}
6134 
6135 	/* UFO needs SG and checksumming */
6136 	if (features & NETIF_F_UFO) {
6137 		/* maybe split UFO into V4 and V6? */
6138 		if (!((features & NETIF_F_GEN_CSUM) ||
6139 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6140 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6141 			netdev_dbg(dev,
6142 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
6143 			features &= ~NETIF_F_UFO;
6144 		}
6145 
6146 		if (!(features & NETIF_F_SG)) {
6147 			netdev_dbg(dev,
6148 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6149 			features &= ~NETIF_F_UFO;
6150 		}
6151 	}
6152 
6153 #ifdef CONFIG_NET_RX_BUSY_POLL
6154 	if (dev->netdev_ops->ndo_busy_poll)
6155 		features |= NETIF_F_BUSY_POLL;
6156 	else
6157 #endif
6158 		features &= ~NETIF_F_BUSY_POLL;
6159 
6160 	return features;
6161 }
6162 
6163 int __netdev_update_features(struct net_device *dev)
6164 {
6165 	netdev_features_t features;
6166 	int err = 0;
6167 
6168 	ASSERT_RTNL();
6169 
6170 	features = netdev_get_wanted_features(dev);
6171 
6172 	if (dev->netdev_ops->ndo_fix_features)
6173 		features = dev->netdev_ops->ndo_fix_features(dev, features);
6174 
6175 	/* driver might be less strict about feature dependencies */
6176 	features = netdev_fix_features(dev, features);
6177 
6178 	if (dev->features == features)
6179 		return 0;
6180 
6181 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6182 		&dev->features, &features);
6183 
6184 	if (dev->netdev_ops->ndo_set_features)
6185 		err = dev->netdev_ops->ndo_set_features(dev, features);
6186 
6187 	if (unlikely(err < 0)) {
6188 		netdev_err(dev,
6189 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
6190 			err, &features, &dev->features);
6191 		return -1;
6192 	}
6193 
6194 	if (!err)
6195 		dev->features = features;
6196 
6197 	return 1;
6198 }
6199 
6200 /**
6201  *	netdev_update_features - recalculate device features
6202  *	@dev: the device to check
6203  *
6204  *	Recalculate dev->features set and send notifications if it
6205  *	has changed. Should be called after driver or hardware dependent
6206  *	conditions might have changed that influence the features.
6207  */
6208 void netdev_update_features(struct net_device *dev)
6209 {
6210 	if (__netdev_update_features(dev))
6211 		netdev_features_change(dev);
6212 }
6213 EXPORT_SYMBOL(netdev_update_features);
6214 
6215 /**
6216  *	netdev_change_features - recalculate device features
6217  *	@dev: the device to check
6218  *
6219  *	Recalculate dev->features set and send notifications even
6220  *	if they have not changed. Should be called instead of
6221  *	netdev_update_features() if also dev->vlan_features might
6222  *	have changed to allow the changes to be propagated to stacked
6223  *	VLAN devices.
6224  */
6225 void netdev_change_features(struct net_device *dev)
6226 {
6227 	__netdev_update_features(dev);
6228 	netdev_features_change(dev);
6229 }
6230 EXPORT_SYMBOL(netdev_change_features);
6231 
6232 /**
6233  *	netif_stacked_transfer_operstate -	transfer operstate
6234  *	@rootdev: the root or lower level device to transfer state from
6235  *	@dev: the device to transfer operstate to
6236  *
6237  *	Transfer operational state from root to device. This is normally
6238  *	called when a stacking relationship exists between the root
6239  *	device and the device(a leaf device).
6240  */
6241 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6242 					struct net_device *dev)
6243 {
6244 	if (rootdev->operstate == IF_OPER_DORMANT)
6245 		netif_dormant_on(dev);
6246 	else
6247 		netif_dormant_off(dev);
6248 
6249 	if (netif_carrier_ok(rootdev)) {
6250 		if (!netif_carrier_ok(dev))
6251 			netif_carrier_on(dev);
6252 	} else {
6253 		if (netif_carrier_ok(dev))
6254 			netif_carrier_off(dev);
6255 	}
6256 }
6257 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6258 
6259 #ifdef CONFIG_SYSFS
6260 static int netif_alloc_rx_queues(struct net_device *dev)
6261 {
6262 	unsigned int i, count = dev->num_rx_queues;
6263 	struct netdev_rx_queue *rx;
6264 	size_t sz = count * sizeof(*rx);
6265 
6266 	BUG_ON(count < 1);
6267 
6268 	rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6269 	if (!rx) {
6270 		rx = vzalloc(sz);
6271 		if (!rx)
6272 			return -ENOMEM;
6273 	}
6274 	dev->_rx = rx;
6275 
6276 	for (i = 0; i < count; i++)
6277 		rx[i].dev = dev;
6278 	return 0;
6279 }
6280 #endif
6281 
6282 static void netdev_init_one_queue(struct net_device *dev,
6283 				  struct netdev_queue *queue, void *_unused)
6284 {
6285 	/* Initialize queue lock */
6286 	spin_lock_init(&queue->_xmit_lock);
6287 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6288 	queue->xmit_lock_owner = -1;
6289 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6290 	queue->dev = dev;
6291 #ifdef CONFIG_BQL
6292 	dql_init(&queue->dql, HZ);
6293 #endif
6294 }
6295 
6296 static void netif_free_tx_queues(struct net_device *dev)
6297 {
6298 	kvfree(dev->_tx);
6299 }
6300 
6301 static int netif_alloc_netdev_queues(struct net_device *dev)
6302 {
6303 	unsigned int count = dev->num_tx_queues;
6304 	struct netdev_queue *tx;
6305 	size_t sz = count * sizeof(*tx);
6306 
6307 	BUG_ON(count < 1 || count > 0xffff);
6308 
6309 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6310 	if (!tx) {
6311 		tx = vzalloc(sz);
6312 		if (!tx)
6313 			return -ENOMEM;
6314 	}
6315 	dev->_tx = tx;
6316 
6317 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6318 	spin_lock_init(&dev->tx_global_lock);
6319 
6320 	return 0;
6321 }
6322 
6323 /**
6324  *	register_netdevice	- register a network device
6325  *	@dev: device to register
6326  *
6327  *	Take a completed network device structure and add it to the kernel
6328  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6329  *	chain. 0 is returned on success. A negative errno code is returned
6330  *	on a failure to set up the device, or if the name is a duplicate.
6331  *
6332  *	Callers must hold the rtnl semaphore. You may want
6333  *	register_netdev() instead of this.
6334  *
6335  *	BUGS:
6336  *	The locking appears insufficient to guarantee two parallel registers
6337  *	will not get the same name.
6338  */
6339 
6340 int register_netdevice(struct net_device *dev)
6341 {
6342 	int ret;
6343 	struct net *net = dev_net(dev);
6344 
6345 	BUG_ON(dev_boot_phase);
6346 	ASSERT_RTNL();
6347 
6348 	might_sleep();
6349 
6350 	/* When net_device's are persistent, this will be fatal. */
6351 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6352 	BUG_ON(!net);
6353 
6354 	spin_lock_init(&dev->addr_list_lock);
6355 	netdev_set_addr_lockdep_class(dev);
6356 
6357 	ret = dev_get_valid_name(net, dev, dev->name);
6358 	if (ret < 0)
6359 		goto out;
6360 
6361 	/* Init, if this function is available */
6362 	if (dev->netdev_ops->ndo_init) {
6363 		ret = dev->netdev_ops->ndo_init(dev);
6364 		if (ret) {
6365 			if (ret > 0)
6366 				ret = -EIO;
6367 			goto out;
6368 		}
6369 	}
6370 
6371 	if (((dev->hw_features | dev->features) &
6372 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
6373 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6374 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6375 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6376 		ret = -EINVAL;
6377 		goto err_uninit;
6378 	}
6379 
6380 	ret = -EBUSY;
6381 	if (!dev->ifindex)
6382 		dev->ifindex = dev_new_index(net);
6383 	else if (__dev_get_by_index(net, dev->ifindex))
6384 		goto err_uninit;
6385 
6386 	/* Transfer changeable features to wanted_features and enable
6387 	 * software offloads (GSO and GRO).
6388 	 */
6389 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
6390 	dev->features |= NETIF_F_SOFT_FEATURES;
6391 	dev->wanted_features = dev->features & dev->hw_features;
6392 
6393 	if (!(dev->flags & IFF_LOOPBACK)) {
6394 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
6395 	}
6396 
6397 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6398 	 */
6399 	dev->vlan_features |= NETIF_F_HIGHDMA;
6400 
6401 	/* Make NETIF_F_SG inheritable to tunnel devices.
6402 	 */
6403 	dev->hw_enc_features |= NETIF_F_SG;
6404 
6405 	/* Make NETIF_F_SG inheritable to MPLS.
6406 	 */
6407 	dev->mpls_features |= NETIF_F_SG;
6408 
6409 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6410 	ret = notifier_to_errno(ret);
6411 	if (ret)
6412 		goto err_uninit;
6413 
6414 	ret = netdev_register_kobject(dev);
6415 	if (ret)
6416 		goto err_uninit;
6417 	dev->reg_state = NETREG_REGISTERED;
6418 
6419 	__netdev_update_features(dev);
6420 
6421 	/*
6422 	 *	Default initial state at registry is that the
6423 	 *	device is present.
6424 	 */
6425 
6426 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6427 
6428 	linkwatch_init_dev(dev);
6429 
6430 	dev_init_scheduler(dev);
6431 	dev_hold(dev);
6432 	list_netdevice(dev);
6433 	add_device_randomness(dev->dev_addr, dev->addr_len);
6434 
6435 	/* If the device has permanent device address, driver should
6436 	 * set dev_addr and also addr_assign_type should be set to
6437 	 * NET_ADDR_PERM (default value).
6438 	 */
6439 	if (dev->addr_assign_type == NET_ADDR_PERM)
6440 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6441 
6442 	/* Notify protocols, that a new device appeared. */
6443 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6444 	ret = notifier_to_errno(ret);
6445 	if (ret) {
6446 		rollback_registered(dev);
6447 		dev->reg_state = NETREG_UNREGISTERED;
6448 	}
6449 	/*
6450 	 *	Prevent userspace races by waiting until the network
6451 	 *	device is fully setup before sending notifications.
6452 	 */
6453 	if (!dev->rtnl_link_ops ||
6454 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6455 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6456 
6457 out:
6458 	return ret;
6459 
6460 err_uninit:
6461 	if (dev->netdev_ops->ndo_uninit)
6462 		dev->netdev_ops->ndo_uninit(dev);
6463 	goto out;
6464 }
6465 EXPORT_SYMBOL(register_netdevice);
6466 
6467 /**
6468  *	init_dummy_netdev	- init a dummy network device for NAPI
6469  *	@dev: device to init
6470  *
6471  *	This takes a network device structure and initialize the minimum
6472  *	amount of fields so it can be used to schedule NAPI polls without
6473  *	registering a full blown interface. This is to be used by drivers
6474  *	that need to tie several hardware interfaces to a single NAPI
6475  *	poll scheduler due to HW limitations.
6476  */
6477 int init_dummy_netdev(struct net_device *dev)
6478 {
6479 	/* Clear everything. Note we don't initialize spinlocks
6480 	 * are they aren't supposed to be taken by any of the
6481 	 * NAPI code and this dummy netdev is supposed to be
6482 	 * only ever used for NAPI polls
6483 	 */
6484 	memset(dev, 0, sizeof(struct net_device));
6485 
6486 	/* make sure we BUG if trying to hit standard
6487 	 * register/unregister code path
6488 	 */
6489 	dev->reg_state = NETREG_DUMMY;
6490 
6491 	/* NAPI wants this */
6492 	INIT_LIST_HEAD(&dev->napi_list);
6493 
6494 	/* a dummy interface is started by default */
6495 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6496 	set_bit(__LINK_STATE_START, &dev->state);
6497 
6498 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
6499 	 * because users of this 'device' dont need to change
6500 	 * its refcount.
6501 	 */
6502 
6503 	return 0;
6504 }
6505 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6506 
6507 
6508 /**
6509  *	register_netdev	- register a network device
6510  *	@dev: device to register
6511  *
6512  *	Take a completed network device structure and add it to the kernel
6513  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6514  *	chain. 0 is returned on success. A negative errno code is returned
6515  *	on a failure to set up the device, or if the name is a duplicate.
6516  *
6517  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
6518  *	and expands the device name if you passed a format string to
6519  *	alloc_netdev.
6520  */
6521 int register_netdev(struct net_device *dev)
6522 {
6523 	int err;
6524 
6525 	rtnl_lock();
6526 	err = register_netdevice(dev);
6527 	rtnl_unlock();
6528 	return err;
6529 }
6530 EXPORT_SYMBOL(register_netdev);
6531 
6532 int netdev_refcnt_read(const struct net_device *dev)
6533 {
6534 	int i, refcnt = 0;
6535 
6536 	for_each_possible_cpu(i)
6537 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6538 	return refcnt;
6539 }
6540 EXPORT_SYMBOL(netdev_refcnt_read);
6541 
6542 /**
6543  * netdev_wait_allrefs - wait until all references are gone.
6544  * @dev: target net_device
6545  *
6546  * This is called when unregistering network devices.
6547  *
6548  * Any protocol or device that holds a reference should register
6549  * for netdevice notification, and cleanup and put back the
6550  * reference if they receive an UNREGISTER event.
6551  * We can get stuck here if buggy protocols don't correctly
6552  * call dev_put.
6553  */
6554 static void netdev_wait_allrefs(struct net_device *dev)
6555 {
6556 	unsigned long rebroadcast_time, warning_time;
6557 	int refcnt;
6558 
6559 	linkwatch_forget_dev(dev);
6560 
6561 	rebroadcast_time = warning_time = jiffies;
6562 	refcnt = netdev_refcnt_read(dev);
6563 
6564 	while (refcnt != 0) {
6565 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6566 			rtnl_lock();
6567 
6568 			/* Rebroadcast unregister notification */
6569 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6570 
6571 			__rtnl_unlock();
6572 			rcu_barrier();
6573 			rtnl_lock();
6574 
6575 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6576 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6577 				     &dev->state)) {
6578 				/* We must not have linkwatch events
6579 				 * pending on unregister. If this
6580 				 * happens, we simply run the queue
6581 				 * unscheduled, resulting in a noop
6582 				 * for this device.
6583 				 */
6584 				linkwatch_run_queue();
6585 			}
6586 
6587 			__rtnl_unlock();
6588 
6589 			rebroadcast_time = jiffies;
6590 		}
6591 
6592 		msleep(250);
6593 
6594 		refcnt = netdev_refcnt_read(dev);
6595 
6596 		if (time_after(jiffies, warning_time + 10 * HZ)) {
6597 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6598 				 dev->name, refcnt);
6599 			warning_time = jiffies;
6600 		}
6601 	}
6602 }
6603 
6604 /* The sequence is:
6605  *
6606  *	rtnl_lock();
6607  *	...
6608  *	register_netdevice(x1);
6609  *	register_netdevice(x2);
6610  *	...
6611  *	unregister_netdevice(y1);
6612  *	unregister_netdevice(y2);
6613  *      ...
6614  *	rtnl_unlock();
6615  *	free_netdev(y1);
6616  *	free_netdev(y2);
6617  *
6618  * We are invoked by rtnl_unlock().
6619  * This allows us to deal with problems:
6620  * 1) We can delete sysfs objects which invoke hotplug
6621  *    without deadlocking with linkwatch via keventd.
6622  * 2) Since we run with the RTNL semaphore not held, we can sleep
6623  *    safely in order to wait for the netdev refcnt to drop to zero.
6624  *
6625  * We must not return until all unregister events added during
6626  * the interval the lock was held have been completed.
6627  */
6628 void netdev_run_todo(void)
6629 {
6630 	struct list_head list;
6631 
6632 	/* Snapshot list, allow later requests */
6633 	list_replace_init(&net_todo_list, &list);
6634 
6635 	__rtnl_unlock();
6636 
6637 
6638 	/* Wait for rcu callbacks to finish before next phase */
6639 	if (!list_empty(&list))
6640 		rcu_barrier();
6641 
6642 	while (!list_empty(&list)) {
6643 		struct net_device *dev
6644 			= list_first_entry(&list, struct net_device, todo_list);
6645 		list_del(&dev->todo_list);
6646 
6647 		rtnl_lock();
6648 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6649 		__rtnl_unlock();
6650 
6651 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6652 			pr_err("network todo '%s' but state %d\n",
6653 			       dev->name, dev->reg_state);
6654 			dump_stack();
6655 			continue;
6656 		}
6657 
6658 		dev->reg_state = NETREG_UNREGISTERED;
6659 
6660 		on_each_cpu(flush_backlog, dev, 1);
6661 
6662 		netdev_wait_allrefs(dev);
6663 
6664 		/* paranoia */
6665 		BUG_ON(netdev_refcnt_read(dev));
6666 		BUG_ON(!list_empty(&dev->ptype_all));
6667 		BUG_ON(!list_empty(&dev->ptype_specific));
6668 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
6669 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6670 		WARN_ON(dev->dn_ptr);
6671 
6672 		if (dev->destructor)
6673 			dev->destructor(dev);
6674 
6675 		/* Report a network device has been unregistered */
6676 		rtnl_lock();
6677 		dev_net(dev)->dev_unreg_count--;
6678 		__rtnl_unlock();
6679 		wake_up(&netdev_unregistering_wq);
6680 
6681 		/* Free network device */
6682 		kobject_put(&dev->dev.kobj);
6683 	}
6684 }
6685 
6686 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6687  * fields in the same order, with only the type differing.
6688  */
6689 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6690 			     const struct net_device_stats *netdev_stats)
6691 {
6692 #if BITS_PER_LONG == 64
6693 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6694 	memcpy(stats64, netdev_stats, sizeof(*stats64));
6695 #else
6696 	size_t i, n = sizeof(*stats64) / sizeof(u64);
6697 	const unsigned long *src = (const unsigned long *)netdev_stats;
6698 	u64 *dst = (u64 *)stats64;
6699 
6700 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6701 		     sizeof(*stats64) / sizeof(u64));
6702 	for (i = 0; i < n; i++)
6703 		dst[i] = src[i];
6704 #endif
6705 }
6706 EXPORT_SYMBOL(netdev_stats_to_stats64);
6707 
6708 /**
6709  *	dev_get_stats	- get network device statistics
6710  *	@dev: device to get statistics from
6711  *	@storage: place to store stats
6712  *
6713  *	Get network statistics from device. Return @storage.
6714  *	The device driver may provide its own method by setting
6715  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6716  *	otherwise the internal statistics structure is used.
6717  */
6718 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6719 					struct rtnl_link_stats64 *storage)
6720 {
6721 	const struct net_device_ops *ops = dev->netdev_ops;
6722 
6723 	if (ops->ndo_get_stats64) {
6724 		memset(storage, 0, sizeof(*storage));
6725 		ops->ndo_get_stats64(dev, storage);
6726 	} else if (ops->ndo_get_stats) {
6727 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6728 	} else {
6729 		netdev_stats_to_stats64(storage, &dev->stats);
6730 	}
6731 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6732 	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6733 	return storage;
6734 }
6735 EXPORT_SYMBOL(dev_get_stats);
6736 
6737 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6738 {
6739 	struct netdev_queue *queue = dev_ingress_queue(dev);
6740 
6741 #ifdef CONFIG_NET_CLS_ACT
6742 	if (queue)
6743 		return queue;
6744 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6745 	if (!queue)
6746 		return NULL;
6747 	netdev_init_one_queue(dev, queue, NULL);
6748 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
6749 	queue->qdisc_sleeping = &noop_qdisc;
6750 	rcu_assign_pointer(dev->ingress_queue, queue);
6751 #endif
6752 	return queue;
6753 }
6754 
6755 static const struct ethtool_ops default_ethtool_ops;
6756 
6757 void netdev_set_default_ethtool_ops(struct net_device *dev,
6758 				    const struct ethtool_ops *ops)
6759 {
6760 	if (dev->ethtool_ops == &default_ethtool_ops)
6761 		dev->ethtool_ops = ops;
6762 }
6763 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6764 
6765 void netdev_freemem(struct net_device *dev)
6766 {
6767 	char *addr = (char *)dev - dev->padded;
6768 
6769 	kvfree(addr);
6770 }
6771 
6772 /**
6773  *	alloc_netdev_mqs - allocate network device
6774  *	@sizeof_priv:		size of private data to allocate space for
6775  *	@name:			device name format string
6776  *	@name_assign_type: 	origin of device name
6777  *	@setup:			callback to initialize device
6778  *	@txqs:			the number of TX subqueues to allocate
6779  *	@rxqs:			the number of RX subqueues to allocate
6780  *
6781  *	Allocates a struct net_device with private data area for driver use
6782  *	and performs basic initialization.  Also allocates subqueue structs
6783  *	for each queue on the device.
6784  */
6785 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6786 		unsigned char name_assign_type,
6787 		void (*setup)(struct net_device *),
6788 		unsigned int txqs, unsigned int rxqs)
6789 {
6790 	struct net_device *dev;
6791 	size_t alloc_size;
6792 	struct net_device *p;
6793 
6794 	BUG_ON(strlen(name) >= sizeof(dev->name));
6795 
6796 	if (txqs < 1) {
6797 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6798 		return NULL;
6799 	}
6800 
6801 #ifdef CONFIG_SYSFS
6802 	if (rxqs < 1) {
6803 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6804 		return NULL;
6805 	}
6806 #endif
6807 
6808 	alloc_size = sizeof(struct net_device);
6809 	if (sizeof_priv) {
6810 		/* ensure 32-byte alignment of private area */
6811 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6812 		alloc_size += sizeof_priv;
6813 	}
6814 	/* ensure 32-byte alignment of whole construct */
6815 	alloc_size += NETDEV_ALIGN - 1;
6816 
6817 	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6818 	if (!p)
6819 		p = vzalloc(alloc_size);
6820 	if (!p)
6821 		return NULL;
6822 
6823 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
6824 	dev->padded = (char *)dev - (char *)p;
6825 
6826 	dev->pcpu_refcnt = alloc_percpu(int);
6827 	if (!dev->pcpu_refcnt)
6828 		goto free_dev;
6829 
6830 	if (dev_addr_init(dev))
6831 		goto free_pcpu;
6832 
6833 	dev_mc_init(dev);
6834 	dev_uc_init(dev);
6835 
6836 	dev_net_set(dev, &init_net);
6837 
6838 	dev->gso_max_size = GSO_MAX_SIZE;
6839 	dev->gso_max_segs = GSO_MAX_SEGS;
6840 	dev->gso_min_segs = 0;
6841 
6842 	INIT_LIST_HEAD(&dev->napi_list);
6843 	INIT_LIST_HEAD(&dev->unreg_list);
6844 	INIT_LIST_HEAD(&dev->close_list);
6845 	INIT_LIST_HEAD(&dev->link_watch_list);
6846 	INIT_LIST_HEAD(&dev->adj_list.upper);
6847 	INIT_LIST_HEAD(&dev->adj_list.lower);
6848 	INIT_LIST_HEAD(&dev->all_adj_list.upper);
6849 	INIT_LIST_HEAD(&dev->all_adj_list.lower);
6850 	INIT_LIST_HEAD(&dev->ptype_all);
6851 	INIT_LIST_HEAD(&dev->ptype_specific);
6852 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
6853 	setup(dev);
6854 
6855 	dev->num_tx_queues = txqs;
6856 	dev->real_num_tx_queues = txqs;
6857 	if (netif_alloc_netdev_queues(dev))
6858 		goto free_all;
6859 
6860 #ifdef CONFIG_SYSFS
6861 	dev->num_rx_queues = rxqs;
6862 	dev->real_num_rx_queues = rxqs;
6863 	if (netif_alloc_rx_queues(dev))
6864 		goto free_all;
6865 #endif
6866 
6867 	strcpy(dev->name, name);
6868 	dev->name_assign_type = name_assign_type;
6869 	dev->group = INIT_NETDEV_GROUP;
6870 	if (!dev->ethtool_ops)
6871 		dev->ethtool_ops = &default_ethtool_ops;
6872 	return dev;
6873 
6874 free_all:
6875 	free_netdev(dev);
6876 	return NULL;
6877 
6878 free_pcpu:
6879 	free_percpu(dev->pcpu_refcnt);
6880 free_dev:
6881 	netdev_freemem(dev);
6882 	return NULL;
6883 }
6884 EXPORT_SYMBOL(alloc_netdev_mqs);
6885 
6886 /**
6887  *	free_netdev - free network device
6888  *	@dev: device
6889  *
6890  *	This function does the last stage of destroying an allocated device
6891  * 	interface. The reference to the device object is released.
6892  *	If this is the last reference then it will be freed.
6893  */
6894 void free_netdev(struct net_device *dev)
6895 {
6896 	struct napi_struct *p, *n;
6897 
6898 	netif_free_tx_queues(dev);
6899 #ifdef CONFIG_SYSFS
6900 	kvfree(dev->_rx);
6901 #endif
6902 
6903 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6904 
6905 	/* Flush device addresses */
6906 	dev_addr_flush(dev);
6907 
6908 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6909 		netif_napi_del(p);
6910 
6911 	free_percpu(dev->pcpu_refcnt);
6912 	dev->pcpu_refcnt = NULL;
6913 
6914 	/*  Compatibility with error handling in drivers */
6915 	if (dev->reg_state == NETREG_UNINITIALIZED) {
6916 		netdev_freemem(dev);
6917 		return;
6918 	}
6919 
6920 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6921 	dev->reg_state = NETREG_RELEASED;
6922 
6923 	/* will free via device release */
6924 	put_device(&dev->dev);
6925 }
6926 EXPORT_SYMBOL(free_netdev);
6927 
6928 /**
6929  *	synchronize_net -  Synchronize with packet receive processing
6930  *
6931  *	Wait for packets currently being received to be done.
6932  *	Does not block later packets from starting.
6933  */
6934 void synchronize_net(void)
6935 {
6936 	might_sleep();
6937 	if (rtnl_is_locked())
6938 		synchronize_rcu_expedited();
6939 	else
6940 		synchronize_rcu();
6941 }
6942 EXPORT_SYMBOL(synchronize_net);
6943 
6944 /**
6945  *	unregister_netdevice_queue - remove device from the kernel
6946  *	@dev: device
6947  *	@head: list
6948  *
6949  *	This function shuts down a device interface and removes it
6950  *	from the kernel tables.
6951  *	If head not NULL, device is queued to be unregistered later.
6952  *
6953  *	Callers must hold the rtnl semaphore.  You may want
6954  *	unregister_netdev() instead of this.
6955  */
6956 
6957 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6958 {
6959 	ASSERT_RTNL();
6960 
6961 	if (head) {
6962 		list_move_tail(&dev->unreg_list, head);
6963 	} else {
6964 		rollback_registered(dev);
6965 		/* Finish processing unregister after unlock */
6966 		net_set_todo(dev);
6967 	}
6968 }
6969 EXPORT_SYMBOL(unregister_netdevice_queue);
6970 
6971 /**
6972  *	unregister_netdevice_many - unregister many devices
6973  *	@head: list of devices
6974  *
6975  *  Note: As most callers use a stack allocated list_head,
6976  *  we force a list_del() to make sure stack wont be corrupted later.
6977  */
6978 void unregister_netdevice_many(struct list_head *head)
6979 {
6980 	struct net_device *dev;
6981 
6982 	if (!list_empty(head)) {
6983 		rollback_registered_many(head);
6984 		list_for_each_entry(dev, head, unreg_list)
6985 			net_set_todo(dev);
6986 		list_del(head);
6987 	}
6988 }
6989 EXPORT_SYMBOL(unregister_netdevice_many);
6990 
6991 /**
6992  *	unregister_netdev - remove device from the kernel
6993  *	@dev: device
6994  *
6995  *	This function shuts down a device interface and removes it
6996  *	from the kernel tables.
6997  *
6998  *	This is just a wrapper for unregister_netdevice that takes
6999  *	the rtnl semaphore.  In general you want to use this and not
7000  *	unregister_netdevice.
7001  */
7002 void unregister_netdev(struct net_device *dev)
7003 {
7004 	rtnl_lock();
7005 	unregister_netdevice(dev);
7006 	rtnl_unlock();
7007 }
7008 EXPORT_SYMBOL(unregister_netdev);
7009 
7010 /**
7011  *	dev_change_net_namespace - move device to different nethost namespace
7012  *	@dev: device
7013  *	@net: network namespace
7014  *	@pat: If not NULL name pattern to try if the current device name
7015  *	      is already taken in the destination network namespace.
7016  *
7017  *	This function shuts down a device interface and moves it
7018  *	to a new network namespace. On success 0 is returned, on
7019  *	a failure a netagive errno code is returned.
7020  *
7021  *	Callers must hold the rtnl semaphore.
7022  */
7023 
7024 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7025 {
7026 	int err;
7027 
7028 	ASSERT_RTNL();
7029 
7030 	/* Don't allow namespace local devices to be moved. */
7031 	err = -EINVAL;
7032 	if (dev->features & NETIF_F_NETNS_LOCAL)
7033 		goto out;
7034 
7035 	/* Ensure the device has been registrered */
7036 	if (dev->reg_state != NETREG_REGISTERED)
7037 		goto out;
7038 
7039 	/* Get out if there is nothing todo */
7040 	err = 0;
7041 	if (net_eq(dev_net(dev), net))
7042 		goto out;
7043 
7044 	/* Pick the destination device name, and ensure
7045 	 * we can use it in the destination network namespace.
7046 	 */
7047 	err = -EEXIST;
7048 	if (__dev_get_by_name(net, dev->name)) {
7049 		/* We get here if we can't use the current device name */
7050 		if (!pat)
7051 			goto out;
7052 		if (dev_get_valid_name(net, dev, pat) < 0)
7053 			goto out;
7054 	}
7055 
7056 	/*
7057 	 * And now a mini version of register_netdevice unregister_netdevice.
7058 	 */
7059 
7060 	/* If device is running close it first. */
7061 	dev_close(dev);
7062 
7063 	/* And unlink it from device chain */
7064 	err = -ENODEV;
7065 	unlist_netdevice(dev);
7066 
7067 	synchronize_net();
7068 
7069 	/* Shutdown queueing discipline. */
7070 	dev_shutdown(dev);
7071 
7072 	/* Notify protocols, that we are about to destroy
7073 	   this device. They should clean all the things.
7074 
7075 	   Note that dev->reg_state stays at NETREG_REGISTERED.
7076 	   This is wanted because this way 8021q and macvlan know
7077 	   the device is just moving and can keep their slaves up.
7078 	*/
7079 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7080 	rcu_barrier();
7081 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7082 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7083 
7084 	/*
7085 	 *	Flush the unicast and multicast chains
7086 	 */
7087 	dev_uc_flush(dev);
7088 	dev_mc_flush(dev);
7089 
7090 	/* Send a netdev-removed uevent to the old namespace */
7091 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7092 	netdev_adjacent_del_links(dev);
7093 
7094 	/* Actually switch the network namespace */
7095 	dev_net_set(dev, net);
7096 
7097 	/* If there is an ifindex conflict assign a new one */
7098 	if (__dev_get_by_index(net, dev->ifindex))
7099 		dev->ifindex = dev_new_index(net);
7100 
7101 	/* Send a netdev-add uevent to the new namespace */
7102 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7103 	netdev_adjacent_add_links(dev);
7104 
7105 	/* Fixup kobjects */
7106 	err = device_rename(&dev->dev, dev->name);
7107 	WARN_ON(err);
7108 
7109 	/* Add the device back in the hashes */
7110 	list_netdevice(dev);
7111 
7112 	/* Notify protocols, that a new device appeared. */
7113 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
7114 
7115 	/*
7116 	 *	Prevent userspace races by waiting until the network
7117 	 *	device is fully setup before sending notifications.
7118 	 */
7119 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7120 
7121 	synchronize_net();
7122 	err = 0;
7123 out:
7124 	return err;
7125 }
7126 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7127 
7128 static int dev_cpu_callback(struct notifier_block *nfb,
7129 			    unsigned long action,
7130 			    void *ocpu)
7131 {
7132 	struct sk_buff **list_skb;
7133 	struct sk_buff *skb;
7134 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
7135 	struct softnet_data *sd, *oldsd;
7136 
7137 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7138 		return NOTIFY_OK;
7139 
7140 	local_irq_disable();
7141 	cpu = smp_processor_id();
7142 	sd = &per_cpu(softnet_data, cpu);
7143 	oldsd = &per_cpu(softnet_data, oldcpu);
7144 
7145 	/* Find end of our completion_queue. */
7146 	list_skb = &sd->completion_queue;
7147 	while (*list_skb)
7148 		list_skb = &(*list_skb)->next;
7149 	/* Append completion queue from offline CPU. */
7150 	*list_skb = oldsd->completion_queue;
7151 	oldsd->completion_queue = NULL;
7152 
7153 	/* Append output queue from offline CPU. */
7154 	if (oldsd->output_queue) {
7155 		*sd->output_queue_tailp = oldsd->output_queue;
7156 		sd->output_queue_tailp = oldsd->output_queue_tailp;
7157 		oldsd->output_queue = NULL;
7158 		oldsd->output_queue_tailp = &oldsd->output_queue;
7159 	}
7160 	/* Append NAPI poll list from offline CPU, with one exception :
7161 	 * process_backlog() must be called by cpu owning percpu backlog.
7162 	 * We properly handle process_queue & input_pkt_queue later.
7163 	 */
7164 	while (!list_empty(&oldsd->poll_list)) {
7165 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7166 							    struct napi_struct,
7167 							    poll_list);
7168 
7169 		list_del_init(&napi->poll_list);
7170 		if (napi->poll == process_backlog)
7171 			napi->state = 0;
7172 		else
7173 			____napi_schedule(sd, napi);
7174 	}
7175 
7176 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
7177 	local_irq_enable();
7178 
7179 	/* Process offline CPU's input_pkt_queue */
7180 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7181 		netif_rx_ni(skb);
7182 		input_queue_head_incr(oldsd);
7183 	}
7184 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7185 		netif_rx_ni(skb);
7186 		input_queue_head_incr(oldsd);
7187 	}
7188 
7189 	return NOTIFY_OK;
7190 }
7191 
7192 
7193 /**
7194  *	netdev_increment_features - increment feature set by one
7195  *	@all: current feature set
7196  *	@one: new feature set
7197  *	@mask: mask feature set
7198  *
7199  *	Computes a new feature set after adding a device with feature set
7200  *	@one to the master device with current feature set @all.  Will not
7201  *	enable anything that is off in @mask. Returns the new feature set.
7202  */
7203 netdev_features_t netdev_increment_features(netdev_features_t all,
7204 	netdev_features_t one, netdev_features_t mask)
7205 {
7206 	if (mask & NETIF_F_GEN_CSUM)
7207 		mask |= NETIF_F_ALL_CSUM;
7208 	mask |= NETIF_F_VLAN_CHALLENGED;
7209 
7210 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7211 	all &= one | ~NETIF_F_ALL_FOR_ALL;
7212 
7213 	/* If one device supports hw checksumming, set for all. */
7214 	if (all & NETIF_F_GEN_CSUM)
7215 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7216 
7217 	return all;
7218 }
7219 EXPORT_SYMBOL(netdev_increment_features);
7220 
7221 static struct hlist_head * __net_init netdev_create_hash(void)
7222 {
7223 	int i;
7224 	struct hlist_head *hash;
7225 
7226 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7227 	if (hash != NULL)
7228 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
7229 			INIT_HLIST_HEAD(&hash[i]);
7230 
7231 	return hash;
7232 }
7233 
7234 /* Initialize per network namespace state */
7235 static int __net_init netdev_init(struct net *net)
7236 {
7237 	if (net != &init_net)
7238 		INIT_LIST_HEAD(&net->dev_base_head);
7239 
7240 	net->dev_name_head = netdev_create_hash();
7241 	if (net->dev_name_head == NULL)
7242 		goto err_name;
7243 
7244 	net->dev_index_head = netdev_create_hash();
7245 	if (net->dev_index_head == NULL)
7246 		goto err_idx;
7247 
7248 	return 0;
7249 
7250 err_idx:
7251 	kfree(net->dev_name_head);
7252 err_name:
7253 	return -ENOMEM;
7254 }
7255 
7256 /**
7257  *	netdev_drivername - network driver for the device
7258  *	@dev: network device
7259  *
7260  *	Determine network driver for device.
7261  */
7262 const char *netdev_drivername(const struct net_device *dev)
7263 {
7264 	const struct device_driver *driver;
7265 	const struct device *parent;
7266 	const char *empty = "";
7267 
7268 	parent = dev->dev.parent;
7269 	if (!parent)
7270 		return empty;
7271 
7272 	driver = parent->driver;
7273 	if (driver && driver->name)
7274 		return driver->name;
7275 	return empty;
7276 }
7277 
7278 static void __netdev_printk(const char *level, const struct net_device *dev,
7279 			    struct va_format *vaf)
7280 {
7281 	if (dev && dev->dev.parent) {
7282 		dev_printk_emit(level[1] - '0',
7283 				dev->dev.parent,
7284 				"%s %s %s%s: %pV",
7285 				dev_driver_string(dev->dev.parent),
7286 				dev_name(dev->dev.parent),
7287 				netdev_name(dev), netdev_reg_state(dev),
7288 				vaf);
7289 	} else if (dev) {
7290 		printk("%s%s%s: %pV",
7291 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
7292 	} else {
7293 		printk("%s(NULL net_device): %pV", level, vaf);
7294 	}
7295 }
7296 
7297 void netdev_printk(const char *level, const struct net_device *dev,
7298 		   const char *format, ...)
7299 {
7300 	struct va_format vaf;
7301 	va_list args;
7302 
7303 	va_start(args, format);
7304 
7305 	vaf.fmt = format;
7306 	vaf.va = &args;
7307 
7308 	__netdev_printk(level, dev, &vaf);
7309 
7310 	va_end(args);
7311 }
7312 EXPORT_SYMBOL(netdev_printk);
7313 
7314 #define define_netdev_printk_level(func, level)			\
7315 void func(const struct net_device *dev, const char *fmt, ...)	\
7316 {								\
7317 	struct va_format vaf;					\
7318 	va_list args;						\
7319 								\
7320 	va_start(args, fmt);					\
7321 								\
7322 	vaf.fmt = fmt;						\
7323 	vaf.va = &args;						\
7324 								\
7325 	__netdev_printk(level, dev, &vaf);			\
7326 								\
7327 	va_end(args);						\
7328 }								\
7329 EXPORT_SYMBOL(func);
7330 
7331 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7332 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7333 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7334 define_netdev_printk_level(netdev_err, KERN_ERR);
7335 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7336 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7337 define_netdev_printk_level(netdev_info, KERN_INFO);
7338 
7339 static void __net_exit netdev_exit(struct net *net)
7340 {
7341 	kfree(net->dev_name_head);
7342 	kfree(net->dev_index_head);
7343 }
7344 
7345 static struct pernet_operations __net_initdata netdev_net_ops = {
7346 	.init = netdev_init,
7347 	.exit = netdev_exit,
7348 };
7349 
7350 static void __net_exit default_device_exit(struct net *net)
7351 {
7352 	struct net_device *dev, *aux;
7353 	/*
7354 	 * Push all migratable network devices back to the
7355 	 * initial network namespace
7356 	 */
7357 	rtnl_lock();
7358 	for_each_netdev_safe(net, dev, aux) {
7359 		int err;
7360 		char fb_name[IFNAMSIZ];
7361 
7362 		/* Ignore unmoveable devices (i.e. loopback) */
7363 		if (dev->features & NETIF_F_NETNS_LOCAL)
7364 			continue;
7365 
7366 		/* Leave virtual devices for the generic cleanup */
7367 		if (dev->rtnl_link_ops)
7368 			continue;
7369 
7370 		/* Push remaining network devices to init_net */
7371 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7372 		err = dev_change_net_namespace(dev, &init_net, fb_name);
7373 		if (err) {
7374 			pr_emerg("%s: failed to move %s to init_net: %d\n",
7375 				 __func__, dev->name, err);
7376 			BUG();
7377 		}
7378 	}
7379 	rtnl_unlock();
7380 }
7381 
7382 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7383 {
7384 	/* Return with the rtnl_lock held when there are no network
7385 	 * devices unregistering in any network namespace in net_list.
7386 	 */
7387 	struct net *net;
7388 	bool unregistering;
7389 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
7390 
7391 	add_wait_queue(&netdev_unregistering_wq, &wait);
7392 	for (;;) {
7393 		unregistering = false;
7394 		rtnl_lock();
7395 		list_for_each_entry(net, net_list, exit_list) {
7396 			if (net->dev_unreg_count > 0) {
7397 				unregistering = true;
7398 				break;
7399 			}
7400 		}
7401 		if (!unregistering)
7402 			break;
7403 		__rtnl_unlock();
7404 
7405 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7406 	}
7407 	remove_wait_queue(&netdev_unregistering_wq, &wait);
7408 }
7409 
7410 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7411 {
7412 	/* At exit all network devices most be removed from a network
7413 	 * namespace.  Do this in the reverse order of registration.
7414 	 * Do this across as many network namespaces as possible to
7415 	 * improve batching efficiency.
7416 	 */
7417 	struct net_device *dev;
7418 	struct net *net;
7419 	LIST_HEAD(dev_kill_list);
7420 
7421 	/* To prevent network device cleanup code from dereferencing
7422 	 * loopback devices or network devices that have been freed
7423 	 * wait here for all pending unregistrations to complete,
7424 	 * before unregistring the loopback device and allowing the
7425 	 * network namespace be freed.
7426 	 *
7427 	 * The netdev todo list containing all network devices
7428 	 * unregistrations that happen in default_device_exit_batch
7429 	 * will run in the rtnl_unlock() at the end of
7430 	 * default_device_exit_batch.
7431 	 */
7432 	rtnl_lock_unregistering(net_list);
7433 	list_for_each_entry(net, net_list, exit_list) {
7434 		for_each_netdev_reverse(net, dev) {
7435 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7436 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7437 			else
7438 				unregister_netdevice_queue(dev, &dev_kill_list);
7439 		}
7440 	}
7441 	unregister_netdevice_many(&dev_kill_list);
7442 	rtnl_unlock();
7443 }
7444 
7445 static struct pernet_operations __net_initdata default_device_ops = {
7446 	.exit = default_device_exit,
7447 	.exit_batch = default_device_exit_batch,
7448 };
7449 
7450 /*
7451  *	Initialize the DEV module. At boot time this walks the device list and
7452  *	unhooks any devices that fail to initialise (normally hardware not
7453  *	present) and leaves us with a valid list of present and active devices.
7454  *
7455  */
7456 
7457 /*
7458  *       This is called single threaded during boot, so no need
7459  *       to take the rtnl semaphore.
7460  */
7461 static int __init net_dev_init(void)
7462 {
7463 	int i, rc = -ENOMEM;
7464 
7465 	BUG_ON(!dev_boot_phase);
7466 
7467 	if (dev_proc_init())
7468 		goto out;
7469 
7470 	if (netdev_kobject_init())
7471 		goto out;
7472 
7473 	INIT_LIST_HEAD(&ptype_all);
7474 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
7475 		INIT_LIST_HEAD(&ptype_base[i]);
7476 
7477 	INIT_LIST_HEAD(&offload_base);
7478 
7479 	if (register_pernet_subsys(&netdev_net_ops))
7480 		goto out;
7481 
7482 	/*
7483 	 *	Initialise the packet receive queues.
7484 	 */
7485 
7486 	for_each_possible_cpu(i) {
7487 		struct softnet_data *sd = &per_cpu(softnet_data, i);
7488 
7489 		skb_queue_head_init(&sd->input_pkt_queue);
7490 		skb_queue_head_init(&sd->process_queue);
7491 		INIT_LIST_HEAD(&sd->poll_list);
7492 		sd->output_queue_tailp = &sd->output_queue;
7493 #ifdef CONFIG_RPS
7494 		sd->csd.func = rps_trigger_softirq;
7495 		sd->csd.info = sd;
7496 		sd->cpu = i;
7497 #endif
7498 
7499 		sd->backlog.poll = process_backlog;
7500 		sd->backlog.weight = weight_p;
7501 	}
7502 
7503 	dev_boot_phase = 0;
7504 
7505 	/* The loopback device is special if any other network devices
7506 	 * is present in a network namespace the loopback device must
7507 	 * be present. Since we now dynamically allocate and free the
7508 	 * loopback device ensure this invariant is maintained by
7509 	 * keeping the loopback device as the first device on the
7510 	 * list of network devices.  Ensuring the loopback devices
7511 	 * is the first device that appears and the last network device
7512 	 * that disappears.
7513 	 */
7514 	if (register_pernet_device(&loopback_net_ops))
7515 		goto out;
7516 
7517 	if (register_pernet_device(&default_device_ops))
7518 		goto out;
7519 
7520 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7521 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7522 
7523 	hotcpu_notifier(dev_cpu_callback, 0);
7524 	dst_init();
7525 	rc = 0;
7526 out:
7527 	return rc;
7528 }
7529 
7530 subsys_initcall(net_dev_init);
7531