xref: /openbmc/linux/net/core/dev.c (revision 4bacd796)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <linux/pci.h>
132 
133 #include "net-sysfs.h"
134 
135 /* Instead of increasing this, you should create a hash table. */
136 #define MAX_GRO_SKBS 8
137 
138 /* This should be increased if a protocol with a bigger head is added. */
139 #define GRO_MAX_HEAD (MAX_HEADER + 128)
140 
141 /*
142  *	The list of packet types we will receive (as opposed to discard)
143  *	and the routines to invoke.
144  *
145  *	Why 16. Because with 16 the only overlap we get on a hash of the
146  *	low nibble of the protocol value is RARP/SNAP/X.25.
147  *
148  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
149  *             sure which should go first, but I bet it won't make much
150  *             difference if we are running VLANs.  The good news is that
151  *             this protocol won't be in the list unless compiled in, so
152  *             the average user (w/out VLANs) will not be adversely affected.
153  *             --BLG
154  *
155  *		0800	IP
156  *		8100    802.1Q VLAN
157  *		0001	802.3
158  *		0002	AX.25
159  *		0004	802.2
160  *		8035	RARP
161  *		0005	SNAP
162  *		0805	X.25
163  *		0806	ARP
164  *		8137	IPX
165  *		0009	Localtalk
166  *		86DD	IPv6
167  */
168 
169 #define PTYPE_HASH_SIZE	(16)
170 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
171 
172 static DEFINE_SPINLOCK(ptype_lock);
173 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
174 static struct list_head ptype_all __read_mostly;	/* Taps */
175 
176 /*
177  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
178  * semaphore.
179  *
180  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
181  *
182  * Writers must hold the rtnl semaphore while they loop through the
183  * dev_base_head list, and hold dev_base_lock for writing when they do the
184  * actual updates.  This allows pure readers to access the list even
185  * while a writer is preparing to update it.
186  *
187  * To put it another way, dev_base_lock is held for writing only to
188  * protect against pure readers; the rtnl semaphore provides the
189  * protection against other writers.
190  *
191  * See, for example usages, register_netdevice() and
192  * unregister_netdevice(), which must be called with the rtnl
193  * semaphore held.
194  */
195 DEFINE_RWLOCK(dev_base_lock);
196 EXPORT_SYMBOL(dev_base_lock);
197 
198 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
199 {
200 	unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
201 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
202 }
203 
204 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
205 {
206 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
207 }
208 
209 static inline void rps_lock(struct softnet_data *sd)
210 {
211 #ifdef CONFIG_RPS
212 	spin_lock(&sd->input_pkt_queue.lock);
213 #endif
214 }
215 
216 static inline void rps_unlock(struct softnet_data *sd)
217 {
218 #ifdef CONFIG_RPS
219 	spin_unlock(&sd->input_pkt_queue.lock);
220 #endif
221 }
222 
223 /* Device list insertion */
224 static int list_netdevice(struct net_device *dev)
225 {
226 	struct net *net = dev_net(dev);
227 
228 	ASSERT_RTNL();
229 
230 	write_lock_bh(&dev_base_lock);
231 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
232 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
233 	hlist_add_head_rcu(&dev->index_hlist,
234 			   dev_index_hash(net, dev->ifindex));
235 	write_unlock_bh(&dev_base_lock);
236 	return 0;
237 }
238 
239 /* Device list removal
240  * caller must respect a RCU grace period before freeing/reusing dev
241  */
242 static void unlist_netdevice(struct net_device *dev)
243 {
244 	ASSERT_RTNL();
245 
246 	/* Unlink dev from the device chain */
247 	write_lock_bh(&dev_base_lock);
248 	list_del_rcu(&dev->dev_list);
249 	hlist_del_rcu(&dev->name_hlist);
250 	hlist_del_rcu(&dev->index_hlist);
251 	write_unlock_bh(&dev_base_lock);
252 }
253 
254 /*
255  *	Our notifier list
256  */
257 
258 static RAW_NOTIFIER_HEAD(netdev_chain);
259 
260 /*
261  *	Device drivers call our routines to queue packets here. We empty the
262  *	queue in the local softnet handler.
263  */
264 
265 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
266 EXPORT_PER_CPU_SYMBOL(softnet_data);
267 
268 #ifdef CONFIG_LOCKDEP
269 /*
270  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
271  * according to dev->type
272  */
273 static const unsigned short netdev_lock_type[] =
274 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
275 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
276 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
277 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
278 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
279 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
280 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
281 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
282 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
283 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
284 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
285 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
286 	 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
287 	 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
288 	 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
289 	 ARPHRD_VOID, ARPHRD_NONE};
290 
291 static const char *const netdev_lock_name[] =
292 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
293 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
294 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
295 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
296 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
297 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
298 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
299 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
300 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
301 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
302 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
303 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
304 	 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
305 	 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
306 	 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
307 	 "_xmit_VOID", "_xmit_NONE"};
308 
309 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
310 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
311 
312 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
313 {
314 	int i;
315 
316 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
317 		if (netdev_lock_type[i] == dev_type)
318 			return i;
319 	/* the last key is used by default */
320 	return ARRAY_SIZE(netdev_lock_type) - 1;
321 }
322 
323 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
324 						 unsigned short dev_type)
325 {
326 	int i;
327 
328 	i = netdev_lock_pos(dev_type);
329 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
330 				   netdev_lock_name[i]);
331 }
332 
333 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
334 {
335 	int i;
336 
337 	i = netdev_lock_pos(dev->type);
338 	lockdep_set_class_and_name(&dev->addr_list_lock,
339 				   &netdev_addr_lock_key[i],
340 				   netdev_lock_name[i]);
341 }
342 #else
343 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
344 						 unsigned short dev_type)
345 {
346 }
347 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
348 {
349 }
350 #endif
351 
352 /*******************************************************************************
353 
354 		Protocol management and registration routines
355 
356 *******************************************************************************/
357 
358 /*
359  *	Add a protocol ID to the list. Now that the input handler is
360  *	smarter we can dispense with all the messy stuff that used to be
361  *	here.
362  *
363  *	BEWARE!!! Protocol handlers, mangling input packets,
364  *	MUST BE last in hash buckets and checking protocol handlers
365  *	MUST start from promiscuous ptype_all chain in net_bh.
366  *	It is true now, do not change it.
367  *	Explanation follows: if protocol handler, mangling packet, will
368  *	be the first on list, it is not able to sense, that packet
369  *	is cloned and should be copied-on-write, so that it will
370  *	change it and subsequent readers will get broken packet.
371  *							--ANK (980803)
372  */
373 
374 /**
375  *	dev_add_pack - add packet handler
376  *	@pt: packet type declaration
377  *
378  *	Add a protocol handler to the networking stack. The passed &packet_type
379  *	is linked into kernel lists and may not be freed until it has been
380  *	removed from the kernel lists.
381  *
382  *	This call does not sleep therefore it can not
383  *	guarantee all CPU's that are in middle of receiving packets
384  *	will see the new packet type (until the next received packet).
385  */
386 
387 void dev_add_pack(struct packet_type *pt)
388 {
389 	int hash;
390 
391 	spin_lock_bh(&ptype_lock);
392 	if (pt->type == htons(ETH_P_ALL))
393 		list_add_rcu(&pt->list, &ptype_all);
394 	else {
395 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
396 		list_add_rcu(&pt->list, &ptype_base[hash]);
397 	}
398 	spin_unlock_bh(&ptype_lock);
399 }
400 EXPORT_SYMBOL(dev_add_pack);
401 
402 /**
403  *	__dev_remove_pack	 - remove packet handler
404  *	@pt: packet type declaration
405  *
406  *	Remove a protocol handler that was previously added to the kernel
407  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
408  *	from the kernel lists and can be freed or reused once this function
409  *	returns.
410  *
411  *      The packet type might still be in use by receivers
412  *	and must not be freed until after all the CPU's have gone
413  *	through a quiescent state.
414  */
415 void __dev_remove_pack(struct packet_type *pt)
416 {
417 	struct list_head *head;
418 	struct packet_type *pt1;
419 
420 	spin_lock_bh(&ptype_lock);
421 
422 	if (pt->type == htons(ETH_P_ALL))
423 		head = &ptype_all;
424 	else
425 		head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
426 
427 	list_for_each_entry(pt1, head, list) {
428 		if (pt == pt1) {
429 			list_del_rcu(&pt->list);
430 			goto out;
431 		}
432 	}
433 
434 	printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
435 out:
436 	spin_unlock_bh(&ptype_lock);
437 }
438 EXPORT_SYMBOL(__dev_remove_pack);
439 
440 /**
441  *	dev_remove_pack	 - remove packet handler
442  *	@pt: packet type declaration
443  *
444  *	Remove a protocol handler that was previously added to the kernel
445  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
446  *	from the kernel lists and can be freed or reused once this function
447  *	returns.
448  *
449  *	This call sleeps to guarantee that no CPU is looking at the packet
450  *	type after return.
451  */
452 void dev_remove_pack(struct packet_type *pt)
453 {
454 	__dev_remove_pack(pt);
455 
456 	synchronize_net();
457 }
458 EXPORT_SYMBOL(dev_remove_pack);
459 
460 /******************************************************************************
461 
462 		      Device Boot-time Settings Routines
463 
464 *******************************************************************************/
465 
466 /* Boot time configuration table */
467 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
468 
469 /**
470  *	netdev_boot_setup_add	- add new setup entry
471  *	@name: name of the device
472  *	@map: configured settings for the device
473  *
474  *	Adds new setup entry to the dev_boot_setup list.  The function
475  *	returns 0 on error and 1 on success.  This is a generic routine to
476  *	all netdevices.
477  */
478 static int netdev_boot_setup_add(char *name, struct ifmap *map)
479 {
480 	struct netdev_boot_setup *s;
481 	int i;
482 
483 	s = dev_boot_setup;
484 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
485 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
486 			memset(s[i].name, 0, sizeof(s[i].name));
487 			strlcpy(s[i].name, name, IFNAMSIZ);
488 			memcpy(&s[i].map, map, sizeof(s[i].map));
489 			break;
490 		}
491 	}
492 
493 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
494 }
495 
496 /**
497  *	netdev_boot_setup_check	- check boot time settings
498  *	@dev: the netdevice
499  *
500  * 	Check boot time settings for the device.
501  *	The found settings are set for the device to be used
502  *	later in the device probing.
503  *	Returns 0 if no settings found, 1 if they are.
504  */
505 int netdev_boot_setup_check(struct net_device *dev)
506 {
507 	struct netdev_boot_setup *s = dev_boot_setup;
508 	int i;
509 
510 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
511 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
512 		    !strcmp(dev->name, s[i].name)) {
513 			dev->irq 	= s[i].map.irq;
514 			dev->base_addr 	= s[i].map.base_addr;
515 			dev->mem_start 	= s[i].map.mem_start;
516 			dev->mem_end 	= s[i].map.mem_end;
517 			return 1;
518 		}
519 	}
520 	return 0;
521 }
522 EXPORT_SYMBOL(netdev_boot_setup_check);
523 
524 
525 /**
526  *	netdev_boot_base	- get address from boot time settings
527  *	@prefix: prefix for network device
528  *	@unit: id for network device
529  *
530  * 	Check boot time settings for the base address of device.
531  *	The found settings are set for the device to be used
532  *	later in the device probing.
533  *	Returns 0 if no settings found.
534  */
535 unsigned long netdev_boot_base(const char *prefix, int unit)
536 {
537 	const struct netdev_boot_setup *s = dev_boot_setup;
538 	char name[IFNAMSIZ];
539 	int i;
540 
541 	sprintf(name, "%s%d", prefix, unit);
542 
543 	/*
544 	 * If device already registered then return base of 1
545 	 * to indicate not to probe for this interface
546 	 */
547 	if (__dev_get_by_name(&init_net, name))
548 		return 1;
549 
550 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
551 		if (!strcmp(name, s[i].name))
552 			return s[i].map.base_addr;
553 	return 0;
554 }
555 
556 /*
557  * Saves at boot time configured settings for any netdevice.
558  */
559 int __init netdev_boot_setup(char *str)
560 {
561 	int ints[5];
562 	struct ifmap map;
563 
564 	str = get_options(str, ARRAY_SIZE(ints), ints);
565 	if (!str || !*str)
566 		return 0;
567 
568 	/* Save settings */
569 	memset(&map, 0, sizeof(map));
570 	if (ints[0] > 0)
571 		map.irq = ints[1];
572 	if (ints[0] > 1)
573 		map.base_addr = ints[2];
574 	if (ints[0] > 2)
575 		map.mem_start = ints[3];
576 	if (ints[0] > 3)
577 		map.mem_end = ints[4];
578 
579 	/* Add new entry to the list */
580 	return netdev_boot_setup_add(str, &map);
581 }
582 
583 __setup("netdev=", netdev_boot_setup);
584 
585 /*******************************************************************************
586 
587 			    Device Interface Subroutines
588 
589 *******************************************************************************/
590 
591 /**
592  *	__dev_get_by_name	- find a device by its name
593  *	@net: the applicable net namespace
594  *	@name: name to find
595  *
596  *	Find an interface by name. Must be called under RTNL semaphore
597  *	or @dev_base_lock. If the name is found a pointer to the device
598  *	is returned. If the name is not found then %NULL is returned. The
599  *	reference counters are not incremented so the caller must be
600  *	careful with locks.
601  */
602 
603 struct net_device *__dev_get_by_name(struct net *net, const char *name)
604 {
605 	struct hlist_node *p;
606 	struct net_device *dev;
607 	struct hlist_head *head = dev_name_hash(net, name);
608 
609 	hlist_for_each_entry(dev, p, head, name_hlist)
610 		if (!strncmp(dev->name, name, IFNAMSIZ))
611 			return dev;
612 
613 	return NULL;
614 }
615 EXPORT_SYMBOL(__dev_get_by_name);
616 
617 /**
618  *	dev_get_by_name_rcu	- find a device by its name
619  *	@net: the applicable net namespace
620  *	@name: name to find
621  *
622  *	Find an interface by name.
623  *	If the name is found a pointer to the device is returned.
624  * 	If the name is not found then %NULL is returned.
625  *	The reference counters are not incremented so the caller must be
626  *	careful with locks. The caller must hold RCU lock.
627  */
628 
629 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
630 {
631 	struct hlist_node *p;
632 	struct net_device *dev;
633 	struct hlist_head *head = dev_name_hash(net, name);
634 
635 	hlist_for_each_entry_rcu(dev, p, head, name_hlist)
636 		if (!strncmp(dev->name, name, IFNAMSIZ))
637 			return dev;
638 
639 	return NULL;
640 }
641 EXPORT_SYMBOL(dev_get_by_name_rcu);
642 
643 /**
644  *	dev_get_by_name		- find a device by its name
645  *	@net: the applicable net namespace
646  *	@name: name to find
647  *
648  *	Find an interface by name. This can be called from any
649  *	context and does its own locking. The returned handle has
650  *	the usage count incremented and the caller must use dev_put() to
651  *	release it when it is no longer needed. %NULL is returned if no
652  *	matching device is found.
653  */
654 
655 struct net_device *dev_get_by_name(struct net *net, const char *name)
656 {
657 	struct net_device *dev;
658 
659 	rcu_read_lock();
660 	dev = dev_get_by_name_rcu(net, name);
661 	if (dev)
662 		dev_hold(dev);
663 	rcu_read_unlock();
664 	return dev;
665 }
666 EXPORT_SYMBOL(dev_get_by_name);
667 
668 /**
669  *	__dev_get_by_index - find a device by its ifindex
670  *	@net: the applicable net namespace
671  *	@ifindex: index of device
672  *
673  *	Search for an interface by index. Returns %NULL if the device
674  *	is not found or a pointer to the device. The device has not
675  *	had its reference counter increased so the caller must be careful
676  *	about locking. The caller must hold either the RTNL semaphore
677  *	or @dev_base_lock.
678  */
679 
680 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
681 {
682 	struct hlist_node *p;
683 	struct net_device *dev;
684 	struct hlist_head *head = dev_index_hash(net, ifindex);
685 
686 	hlist_for_each_entry(dev, p, head, index_hlist)
687 		if (dev->ifindex == ifindex)
688 			return dev;
689 
690 	return NULL;
691 }
692 EXPORT_SYMBOL(__dev_get_by_index);
693 
694 /**
695  *	dev_get_by_index_rcu - find a device by its ifindex
696  *	@net: the applicable net namespace
697  *	@ifindex: index of device
698  *
699  *	Search for an interface by index. Returns %NULL if the device
700  *	is not found or a pointer to the device. The device has not
701  *	had its reference counter increased so the caller must be careful
702  *	about locking. The caller must hold RCU lock.
703  */
704 
705 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
706 {
707 	struct hlist_node *p;
708 	struct net_device *dev;
709 	struct hlist_head *head = dev_index_hash(net, ifindex);
710 
711 	hlist_for_each_entry_rcu(dev, p, head, index_hlist)
712 		if (dev->ifindex == ifindex)
713 			return dev;
714 
715 	return NULL;
716 }
717 EXPORT_SYMBOL(dev_get_by_index_rcu);
718 
719 
720 /**
721  *	dev_get_by_index - find a device by its ifindex
722  *	@net: the applicable net namespace
723  *	@ifindex: index of device
724  *
725  *	Search for an interface by index. Returns NULL if the device
726  *	is not found or a pointer to the device. The device returned has
727  *	had a reference added and the pointer is safe until the user calls
728  *	dev_put to indicate they have finished with it.
729  */
730 
731 struct net_device *dev_get_by_index(struct net *net, int ifindex)
732 {
733 	struct net_device *dev;
734 
735 	rcu_read_lock();
736 	dev = dev_get_by_index_rcu(net, ifindex);
737 	if (dev)
738 		dev_hold(dev);
739 	rcu_read_unlock();
740 	return dev;
741 }
742 EXPORT_SYMBOL(dev_get_by_index);
743 
744 /**
745  *	dev_getbyhwaddr - find a device by its hardware address
746  *	@net: the applicable net namespace
747  *	@type: media type of device
748  *	@ha: hardware address
749  *
750  *	Search for an interface by MAC address. Returns NULL if the device
751  *	is not found or a pointer to the device. The caller must hold the
752  *	rtnl semaphore. The returned device has not had its ref count increased
753  *	and the caller must therefore be careful about locking
754  *
755  *	BUGS:
756  *	If the API was consistent this would be __dev_get_by_hwaddr
757  */
758 
759 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
760 {
761 	struct net_device *dev;
762 
763 	ASSERT_RTNL();
764 
765 	for_each_netdev(net, dev)
766 		if (dev->type == type &&
767 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
768 			return dev;
769 
770 	return NULL;
771 }
772 EXPORT_SYMBOL(dev_getbyhwaddr);
773 
774 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
775 {
776 	struct net_device *dev;
777 
778 	ASSERT_RTNL();
779 	for_each_netdev(net, dev)
780 		if (dev->type == type)
781 			return dev;
782 
783 	return NULL;
784 }
785 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
786 
787 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
788 {
789 	struct net_device *dev, *ret = NULL;
790 
791 	rcu_read_lock();
792 	for_each_netdev_rcu(net, dev)
793 		if (dev->type == type) {
794 			dev_hold(dev);
795 			ret = dev;
796 			break;
797 		}
798 	rcu_read_unlock();
799 	return ret;
800 }
801 EXPORT_SYMBOL(dev_getfirstbyhwtype);
802 
803 /**
804  *	dev_get_by_flags_rcu - find any device with given flags
805  *	@net: the applicable net namespace
806  *	@if_flags: IFF_* values
807  *	@mask: bitmask of bits in if_flags to check
808  *
809  *	Search for any interface with the given flags. Returns NULL if a device
810  *	is not found or a pointer to the device. Must be called inside
811  *	rcu_read_lock(), and result refcount is unchanged.
812  */
813 
814 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
815 				    unsigned short mask)
816 {
817 	struct net_device *dev, *ret;
818 
819 	ret = NULL;
820 	for_each_netdev_rcu(net, dev) {
821 		if (((dev->flags ^ if_flags) & mask) == 0) {
822 			ret = dev;
823 			break;
824 		}
825 	}
826 	return ret;
827 }
828 EXPORT_SYMBOL(dev_get_by_flags_rcu);
829 
830 /**
831  *	dev_valid_name - check if name is okay for network device
832  *	@name: name string
833  *
834  *	Network device names need to be valid file names to
835  *	to allow sysfs to work.  We also disallow any kind of
836  *	whitespace.
837  */
838 int dev_valid_name(const char *name)
839 {
840 	if (*name == '\0')
841 		return 0;
842 	if (strlen(name) >= IFNAMSIZ)
843 		return 0;
844 	if (!strcmp(name, ".") || !strcmp(name, ".."))
845 		return 0;
846 
847 	while (*name) {
848 		if (*name == '/' || isspace(*name))
849 			return 0;
850 		name++;
851 	}
852 	return 1;
853 }
854 EXPORT_SYMBOL(dev_valid_name);
855 
856 /**
857  *	__dev_alloc_name - allocate a name for a device
858  *	@net: network namespace to allocate the device name in
859  *	@name: name format string
860  *	@buf:  scratch buffer and result name string
861  *
862  *	Passed a format string - eg "lt%d" it will try and find a suitable
863  *	id. It scans list of devices to build up a free map, then chooses
864  *	the first empty slot. The caller must hold the dev_base or rtnl lock
865  *	while allocating the name and adding the device in order to avoid
866  *	duplicates.
867  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
868  *	Returns the number of the unit assigned or a negative errno code.
869  */
870 
871 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
872 {
873 	int i = 0;
874 	const char *p;
875 	const int max_netdevices = 8*PAGE_SIZE;
876 	unsigned long *inuse;
877 	struct net_device *d;
878 
879 	p = strnchr(name, IFNAMSIZ-1, '%');
880 	if (p) {
881 		/*
882 		 * Verify the string as this thing may have come from
883 		 * the user.  There must be either one "%d" and no other "%"
884 		 * characters.
885 		 */
886 		if (p[1] != 'd' || strchr(p + 2, '%'))
887 			return -EINVAL;
888 
889 		/* Use one page as a bit array of possible slots */
890 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
891 		if (!inuse)
892 			return -ENOMEM;
893 
894 		for_each_netdev(net, d) {
895 			if (!sscanf(d->name, name, &i))
896 				continue;
897 			if (i < 0 || i >= max_netdevices)
898 				continue;
899 
900 			/*  avoid cases where sscanf is not exact inverse of printf */
901 			snprintf(buf, IFNAMSIZ, name, i);
902 			if (!strncmp(buf, d->name, IFNAMSIZ))
903 				set_bit(i, inuse);
904 		}
905 
906 		i = find_first_zero_bit(inuse, max_netdevices);
907 		free_page((unsigned long) inuse);
908 	}
909 
910 	if (buf != name)
911 		snprintf(buf, IFNAMSIZ, name, i);
912 	if (!__dev_get_by_name(net, buf))
913 		return i;
914 
915 	/* It is possible to run out of possible slots
916 	 * when the name is long and there isn't enough space left
917 	 * for the digits, or if all bits are used.
918 	 */
919 	return -ENFILE;
920 }
921 
922 /**
923  *	dev_alloc_name - allocate a name for a device
924  *	@dev: device
925  *	@name: name format string
926  *
927  *	Passed a format string - eg "lt%d" it will try and find a suitable
928  *	id. It scans list of devices to build up a free map, then chooses
929  *	the first empty slot. The caller must hold the dev_base or rtnl lock
930  *	while allocating the name and adding the device in order to avoid
931  *	duplicates.
932  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
933  *	Returns the number of the unit assigned or a negative errno code.
934  */
935 
936 int dev_alloc_name(struct net_device *dev, const char *name)
937 {
938 	char buf[IFNAMSIZ];
939 	struct net *net;
940 	int ret;
941 
942 	BUG_ON(!dev_net(dev));
943 	net = dev_net(dev);
944 	ret = __dev_alloc_name(net, name, buf);
945 	if (ret >= 0)
946 		strlcpy(dev->name, buf, IFNAMSIZ);
947 	return ret;
948 }
949 EXPORT_SYMBOL(dev_alloc_name);
950 
951 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
952 {
953 	struct net *net;
954 
955 	BUG_ON(!dev_net(dev));
956 	net = dev_net(dev);
957 
958 	if (!dev_valid_name(name))
959 		return -EINVAL;
960 
961 	if (fmt && strchr(name, '%'))
962 		return dev_alloc_name(dev, name);
963 	else if (__dev_get_by_name(net, name))
964 		return -EEXIST;
965 	else if (dev->name != name)
966 		strlcpy(dev->name, name, IFNAMSIZ);
967 
968 	return 0;
969 }
970 
971 /**
972  *	dev_change_name - change name of a device
973  *	@dev: device
974  *	@newname: name (or format string) must be at least IFNAMSIZ
975  *
976  *	Change name of a device, can pass format strings "eth%d".
977  *	for wildcarding.
978  */
979 int dev_change_name(struct net_device *dev, const char *newname)
980 {
981 	char oldname[IFNAMSIZ];
982 	int err = 0;
983 	int ret;
984 	struct net *net;
985 
986 	ASSERT_RTNL();
987 	BUG_ON(!dev_net(dev));
988 
989 	net = dev_net(dev);
990 	if (dev->flags & IFF_UP)
991 		return -EBUSY;
992 
993 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
994 		return 0;
995 
996 	memcpy(oldname, dev->name, IFNAMSIZ);
997 
998 	err = dev_get_valid_name(dev, newname, 1);
999 	if (err < 0)
1000 		return err;
1001 
1002 rollback:
1003 	ret = device_rename(&dev->dev, dev->name);
1004 	if (ret) {
1005 		memcpy(dev->name, oldname, IFNAMSIZ);
1006 		return ret;
1007 	}
1008 
1009 	write_lock_bh(&dev_base_lock);
1010 	hlist_del(&dev->name_hlist);
1011 	write_unlock_bh(&dev_base_lock);
1012 
1013 	synchronize_rcu();
1014 
1015 	write_lock_bh(&dev_base_lock);
1016 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1017 	write_unlock_bh(&dev_base_lock);
1018 
1019 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1020 	ret = notifier_to_errno(ret);
1021 
1022 	if (ret) {
1023 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1024 		if (err >= 0) {
1025 			err = ret;
1026 			memcpy(dev->name, oldname, IFNAMSIZ);
1027 			goto rollback;
1028 		} else {
1029 			printk(KERN_ERR
1030 			       "%s: name change rollback failed: %d.\n",
1031 			       dev->name, ret);
1032 		}
1033 	}
1034 
1035 	return err;
1036 }
1037 
1038 /**
1039  *	dev_set_alias - change ifalias of a device
1040  *	@dev: device
1041  *	@alias: name up to IFALIASZ
1042  *	@len: limit of bytes to copy from info
1043  *
1044  *	Set ifalias for a device,
1045  */
1046 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1047 {
1048 	ASSERT_RTNL();
1049 
1050 	if (len >= IFALIASZ)
1051 		return -EINVAL;
1052 
1053 	if (!len) {
1054 		if (dev->ifalias) {
1055 			kfree(dev->ifalias);
1056 			dev->ifalias = NULL;
1057 		}
1058 		return 0;
1059 	}
1060 
1061 	dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1062 	if (!dev->ifalias)
1063 		return -ENOMEM;
1064 
1065 	strlcpy(dev->ifalias, alias, len+1);
1066 	return len;
1067 }
1068 
1069 
1070 /**
1071  *	netdev_features_change - device changes features
1072  *	@dev: device to cause notification
1073  *
1074  *	Called to indicate a device has changed features.
1075  */
1076 void netdev_features_change(struct net_device *dev)
1077 {
1078 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1079 }
1080 EXPORT_SYMBOL(netdev_features_change);
1081 
1082 /**
1083  *	netdev_state_change - device changes state
1084  *	@dev: device to cause notification
1085  *
1086  *	Called to indicate a device has changed state. This function calls
1087  *	the notifier chains for netdev_chain and sends a NEWLINK message
1088  *	to the routing socket.
1089  */
1090 void netdev_state_change(struct net_device *dev)
1091 {
1092 	if (dev->flags & IFF_UP) {
1093 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1094 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1095 	}
1096 }
1097 EXPORT_SYMBOL(netdev_state_change);
1098 
1099 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1100 {
1101 	return call_netdevice_notifiers(event, dev);
1102 }
1103 EXPORT_SYMBOL(netdev_bonding_change);
1104 
1105 /**
1106  *	dev_load 	- load a network module
1107  *	@net: the applicable net namespace
1108  *	@name: name of interface
1109  *
1110  *	If a network interface is not present and the process has suitable
1111  *	privileges this function loads the module. If module loading is not
1112  *	available in this kernel then it becomes a nop.
1113  */
1114 
1115 void dev_load(struct net *net, const char *name)
1116 {
1117 	struct net_device *dev;
1118 
1119 	rcu_read_lock();
1120 	dev = dev_get_by_name_rcu(net, name);
1121 	rcu_read_unlock();
1122 
1123 	if (!dev && capable(CAP_NET_ADMIN))
1124 		request_module("%s", name);
1125 }
1126 EXPORT_SYMBOL(dev_load);
1127 
1128 static int __dev_open(struct net_device *dev)
1129 {
1130 	const struct net_device_ops *ops = dev->netdev_ops;
1131 	int ret;
1132 
1133 	ASSERT_RTNL();
1134 
1135 	/*
1136 	 *	Is it even present?
1137 	 */
1138 	if (!netif_device_present(dev))
1139 		return -ENODEV;
1140 
1141 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1142 	ret = notifier_to_errno(ret);
1143 	if (ret)
1144 		return ret;
1145 
1146 	/*
1147 	 *	Call device private open method
1148 	 */
1149 	set_bit(__LINK_STATE_START, &dev->state);
1150 
1151 	if (ops->ndo_validate_addr)
1152 		ret = ops->ndo_validate_addr(dev);
1153 
1154 	if (!ret && ops->ndo_open)
1155 		ret = ops->ndo_open(dev);
1156 
1157 	/*
1158 	 *	If it went open OK then:
1159 	 */
1160 
1161 	if (ret)
1162 		clear_bit(__LINK_STATE_START, &dev->state);
1163 	else {
1164 		/*
1165 		 *	Set the flags.
1166 		 */
1167 		dev->flags |= IFF_UP;
1168 
1169 		/*
1170 		 *	Enable NET_DMA
1171 		 */
1172 		net_dmaengine_get();
1173 
1174 		/*
1175 		 *	Initialize multicasting status
1176 		 */
1177 		dev_set_rx_mode(dev);
1178 
1179 		/*
1180 		 *	Wakeup transmit queue engine
1181 		 */
1182 		dev_activate(dev);
1183 	}
1184 
1185 	return ret;
1186 }
1187 
1188 /**
1189  *	dev_open	- prepare an interface for use.
1190  *	@dev:	device to open
1191  *
1192  *	Takes a device from down to up state. The device's private open
1193  *	function is invoked and then the multicast lists are loaded. Finally
1194  *	the device is moved into the up state and a %NETDEV_UP message is
1195  *	sent to the netdev notifier chain.
1196  *
1197  *	Calling this function on an active interface is a nop. On a failure
1198  *	a negative errno code is returned.
1199  */
1200 int dev_open(struct net_device *dev)
1201 {
1202 	int ret;
1203 
1204 	/*
1205 	 *	Is it already up?
1206 	 */
1207 	if (dev->flags & IFF_UP)
1208 		return 0;
1209 
1210 	/*
1211 	 *	Open device
1212 	 */
1213 	ret = __dev_open(dev);
1214 	if (ret < 0)
1215 		return ret;
1216 
1217 	/*
1218 	 *	... and announce new interface.
1219 	 */
1220 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1221 	call_netdevice_notifiers(NETDEV_UP, dev);
1222 
1223 	return ret;
1224 }
1225 EXPORT_SYMBOL(dev_open);
1226 
1227 static int __dev_close(struct net_device *dev)
1228 {
1229 	const struct net_device_ops *ops = dev->netdev_ops;
1230 
1231 	ASSERT_RTNL();
1232 	might_sleep();
1233 
1234 	/*
1235 	 *	Tell people we are going down, so that they can
1236 	 *	prepare to death, when device is still operating.
1237 	 */
1238 	call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1239 
1240 	clear_bit(__LINK_STATE_START, &dev->state);
1241 
1242 	/* Synchronize to scheduled poll. We cannot touch poll list,
1243 	 * it can be even on different cpu. So just clear netif_running().
1244 	 *
1245 	 * dev->stop() will invoke napi_disable() on all of it's
1246 	 * napi_struct instances on this device.
1247 	 */
1248 	smp_mb__after_clear_bit(); /* Commit netif_running(). */
1249 
1250 	dev_deactivate(dev);
1251 
1252 	/*
1253 	 *	Call the device specific close. This cannot fail.
1254 	 *	Only if device is UP
1255 	 *
1256 	 *	We allow it to be called even after a DETACH hot-plug
1257 	 *	event.
1258 	 */
1259 	if (ops->ndo_stop)
1260 		ops->ndo_stop(dev);
1261 
1262 	/*
1263 	 *	Device is now down.
1264 	 */
1265 
1266 	dev->flags &= ~IFF_UP;
1267 
1268 	/*
1269 	 *	Shutdown NET_DMA
1270 	 */
1271 	net_dmaengine_put();
1272 
1273 	return 0;
1274 }
1275 
1276 /**
1277  *	dev_close - shutdown an interface.
1278  *	@dev: device to shutdown
1279  *
1280  *	This function moves an active device into down state. A
1281  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1282  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1283  *	chain.
1284  */
1285 int dev_close(struct net_device *dev)
1286 {
1287 	if (!(dev->flags & IFF_UP))
1288 		return 0;
1289 
1290 	__dev_close(dev);
1291 
1292 	/*
1293 	 * Tell people we are down
1294 	 */
1295 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1296 	call_netdevice_notifiers(NETDEV_DOWN, dev);
1297 
1298 	return 0;
1299 }
1300 EXPORT_SYMBOL(dev_close);
1301 
1302 
1303 /**
1304  *	dev_disable_lro - disable Large Receive Offload on a device
1305  *	@dev: device
1306  *
1307  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1308  *	called under RTNL.  This is needed if received packets may be
1309  *	forwarded to another interface.
1310  */
1311 void dev_disable_lro(struct net_device *dev)
1312 {
1313 	if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1314 	    dev->ethtool_ops->set_flags) {
1315 		u32 flags = dev->ethtool_ops->get_flags(dev);
1316 		if (flags & ETH_FLAG_LRO) {
1317 			flags &= ~ETH_FLAG_LRO;
1318 			dev->ethtool_ops->set_flags(dev, flags);
1319 		}
1320 	}
1321 	WARN_ON(dev->features & NETIF_F_LRO);
1322 }
1323 EXPORT_SYMBOL(dev_disable_lro);
1324 
1325 
1326 static int dev_boot_phase = 1;
1327 
1328 /*
1329  *	Device change register/unregister. These are not inline or static
1330  *	as we export them to the world.
1331  */
1332 
1333 /**
1334  *	register_netdevice_notifier - register a network notifier block
1335  *	@nb: notifier
1336  *
1337  *	Register a notifier to be called when network device events occur.
1338  *	The notifier passed is linked into the kernel structures and must
1339  *	not be reused until it has been unregistered. A negative errno code
1340  *	is returned on a failure.
1341  *
1342  * 	When registered all registration and up events are replayed
1343  *	to the new notifier to allow device to have a race free
1344  *	view of the network device list.
1345  */
1346 
1347 int register_netdevice_notifier(struct notifier_block *nb)
1348 {
1349 	struct net_device *dev;
1350 	struct net_device *last;
1351 	struct net *net;
1352 	int err;
1353 
1354 	rtnl_lock();
1355 	err = raw_notifier_chain_register(&netdev_chain, nb);
1356 	if (err)
1357 		goto unlock;
1358 	if (dev_boot_phase)
1359 		goto unlock;
1360 	for_each_net(net) {
1361 		for_each_netdev(net, dev) {
1362 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1363 			err = notifier_to_errno(err);
1364 			if (err)
1365 				goto rollback;
1366 
1367 			if (!(dev->flags & IFF_UP))
1368 				continue;
1369 
1370 			nb->notifier_call(nb, NETDEV_UP, dev);
1371 		}
1372 	}
1373 
1374 unlock:
1375 	rtnl_unlock();
1376 	return err;
1377 
1378 rollback:
1379 	last = dev;
1380 	for_each_net(net) {
1381 		for_each_netdev(net, dev) {
1382 			if (dev == last)
1383 				break;
1384 
1385 			if (dev->flags & IFF_UP) {
1386 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1387 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1388 			}
1389 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1390 			nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1391 		}
1392 	}
1393 
1394 	raw_notifier_chain_unregister(&netdev_chain, nb);
1395 	goto unlock;
1396 }
1397 EXPORT_SYMBOL(register_netdevice_notifier);
1398 
1399 /**
1400  *	unregister_netdevice_notifier - unregister a network notifier block
1401  *	@nb: notifier
1402  *
1403  *	Unregister a notifier previously registered by
1404  *	register_netdevice_notifier(). The notifier is unlinked into the
1405  *	kernel structures and may then be reused. A negative errno code
1406  *	is returned on a failure.
1407  */
1408 
1409 int unregister_netdevice_notifier(struct notifier_block *nb)
1410 {
1411 	int err;
1412 
1413 	rtnl_lock();
1414 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1415 	rtnl_unlock();
1416 	return err;
1417 }
1418 EXPORT_SYMBOL(unregister_netdevice_notifier);
1419 
1420 /**
1421  *	call_netdevice_notifiers - call all network notifier blocks
1422  *      @val: value passed unmodified to notifier function
1423  *      @dev: net_device pointer passed unmodified to notifier function
1424  *
1425  *	Call all network notifier blocks.  Parameters and return value
1426  *	are as for raw_notifier_call_chain().
1427  */
1428 
1429 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1430 {
1431 	ASSERT_RTNL();
1432 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1433 }
1434 
1435 /* When > 0 there are consumers of rx skb time stamps */
1436 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1437 
1438 void net_enable_timestamp(void)
1439 {
1440 	atomic_inc(&netstamp_needed);
1441 }
1442 EXPORT_SYMBOL(net_enable_timestamp);
1443 
1444 void net_disable_timestamp(void)
1445 {
1446 	atomic_dec(&netstamp_needed);
1447 }
1448 EXPORT_SYMBOL(net_disable_timestamp);
1449 
1450 static inline void net_timestamp_set(struct sk_buff *skb)
1451 {
1452 	if (atomic_read(&netstamp_needed))
1453 		__net_timestamp(skb);
1454 	else
1455 		skb->tstamp.tv64 = 0;
1456 }
1457 
1458 static inline void net_timestamp_check(struct sk_buff *skb)
1459 {
1460 	if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1461 		__net_timestamp(skb);
1462 }
1463 
1464 /**
1465  * dev_forward_skb - loopback an skb to another netif
1466  *
1467  * @dev: destination network device
1468  * @skb: buffer to forward
1469  *
1470  * return values:
1471  *	NET_RX_SUCCESS	(no congestion)
1472  *	NET_RX_DROP     (packet was dropped, but freed)
1473  *
1474  * dev_forward_skb can be used for injecting an skb from the
1475  * start_xmit function of one device into the receive queue
1476  * of another device.
1477  *
1478  * The receiving device may be in another namespace, so
1479  * we have to clear all information in the skb that could
1480  * impact namespace isolation.
1481  */
1482 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1483 {
1484 	skb_orphan(skb);
1485 	nf_reset(skb);
1486 
1487 	if (!(dev->flags & IFF_UP) ||
1488 	    (skb->len > (dev->mtu + dev->hard_header_len))) {
1489 		kfree_skb(skb);
1490 		return NET_RX_DROP;
1491 	}
1492 	skb_set_dev(skb, dev);
1493 	skb->tstamp.tv64 = 0;
1494 	skb->pkt_type = PACKET_HOST;
1495 	skb->protocol = eth_type_trans(skb, dev);
1496 	return netif_rx(skb);
1497 }
1498 EXPORT_SYMBOL_GPL(dev_forward_skb);
1499 
1500 /*
1501  *	Support routine. Sends outgoing frames to any network
1502  *	taps currently in use.
1503  */
1504 
1505 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1506 {
1507 	struct packet_type *ptype;
1508 
1509 #ifdef CONFIG_NET_CLS_ACT
1510 	if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1511 		net_timestamp_set(skb);
1512 #else
1513 	net_timestamp_set(skb);
1514 #endif
1515 
1516 	rcu_read_lock();
1517 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1518 		/* Never send packets back to the socket
1519 		 * they originated from - MvS (miquels@drinkel.ow.org)
1520 		 */
1521 		if ((ptype->dev == dev || !ptype->dev) &&
1522 		    (ptype->af_packet_priv == NULL ||
1523 		     (struct sock *)ptype->af_packet_priv != skb->sk)) {
1524 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1525 			if (!skb2)
1526 				break;
1527 
1528 			/* skb->nh should be correctly
1529 			   set by sender, so that the second statement is
1530 			   just protection against buggy protocols.
1531 			 */
1532 			skb_reset_mac_header(skb2);
1533 
1534 			if (skb_network_header(skb2) < skb2->data ||
1535 			    skb2->network_header > skb2->tail) {
1536 				if (net_ratelimit())
1537 					printk(KERN_CRIT "protocol %04x is "
1538 					       "buggy, dev %s\n",
1539 					       ntohs(skb2->protocol),
1540 					       dev->name);
1541 				skb_reset_network_header(skb2);
1542 			}
1543 
1544 			skb2->transport_header = skb2->network_header;
1545 			skb2->pkt_type = PACKET_OUTGOING;
1546 			ptype->func(skb2, skb->dev, ptype, skb->dev);
1547 		}
1548 	}
1549 	rcu_read_unlock();
1550 }
1551 
1552 /*
1553  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1554  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1555  */
1556 void netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1557 {
1558 	unsigned int real_num = dev->real_num_tx_queues;
1559 
1560 	if (unlikely(txq > dev->num_tx_queues))
1561 		;
1562 	else if (txq > real_num)
1563 		dev->real_num_tx_queues = txq;
1564 	else if (txq < real_num) {
1565 		dev->real_num_tx_queues = txq;
1566 		qdisc_reset_all_tx_gt(dev, txq);
1567 	}
1568 }
1569 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1570 
1571 static inline void __netif_reschedule(struct Qdisc *q)
1572 {
1573 	struct softnet_data *sd;
1574 	unsigned long flags;
1575 
1576 	local_irq_save(flags);
1577 	sd = &__get_cpu_var(softnet_data);
1578 	q->next_sched = NULL;
1579 	*sd->output_queue_tailp = q;
1580 	sd->output_queue_tailp = &q->next_sched;
1581 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
1582 	local_irq_restore(flags);
1583 }
1584 
1585 void __netif_schedule(struct Qdisc *q)
1586 {
1587 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1588 		__netif_reschedule(q);
1589 }
1590 EXPORT_SYMBOL(__netif_schedule);
1591 
1592 void dev_kfree_skb_irq(struct sk_buff *skb)
1593 {
1594 	if (atomic_dec_and_test(&skb->users)) {
1595 		struct softnet_data *sd;
1596 		unsigned long flags;
1597 
1598 		local_irq_save(flags);
1599 		sd = &__get_cpu_var(softnet_data);
1600 		skb->next = sd->completion_queue;
1601 		sd->completion_queue = skb;
1602 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1603 		local_irq_restore(flags);
1604 	}
1605 }
1606 EXPORT_SYMBOL(dev_kfree_skb_irq);
1607 
1608 void dev_kfree_skb_any(struct sk_buff *skb)
1609 {
1610 	if (in_irq() || irqs_disabled())
1611 		dev_kfree_skb_irq(skb);
1612 	else
1613 		dev_kfree_skb(skb);
1614 }
1615 EXPORT_SYMBOL(dev_kfree_skb_any);
1616 
1617 
1618 /**
1619  * netif_device_detach - mark device as removed
1620  * @dev: network device
1621  *
1622  * Mark device as removed from system and therefore no longer available.
1623  */
1624 void netif_device_detach(struct net_device *dev)
1625 {
1626 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1627 	    netif_running(dev)) {
1628 		netif_tx_stop_all_queues(dev);
1629 	}
1630 }
1631 EXPORT_SYMBOL(netif_device_detach);
1632 
1633 /**
1634  * netif_device_attach - mark device as attached
1635  * @dev: network device
1636  *
1637  * Mark device as attached from system and restart if needed.
1638  */
1639 void netif_device_attach(struct net_device *dev)
1640 {
1641 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1642 	    netif_running(dev)) {
1643 		netif_tx_wake_all_queues(dev);
1644 		__netdev_watchdog_up(dev);
1645 	}
1646 }
1647 EXPORT_SYMBOL(netif_device_attach);
1648 
1649 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1650 {
1651 	return ((features & NETIF_F_GEN_CSUM) ||
1652 		((features & NETIF_F_IP_CSUM) &&
1653 		 protocol == htons(ETH_P_IP)) ||
1654 		((features & NETIF_F_IPV6_CSUM) &&
1655 		 protocol == htons(ETH_P_IPV6)) ||
1656 		((features & NETIF_F_FCOE_CRC) &&
1657 		 protocol == htons(ETH_P_FCOE)));
1658 }
1659 
1660 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1661 {
1662 	if (can_checksum_protocol(dev->features, skb->protocol))
1663 		return true;
1664 
1665 	if (skb->protocol == htons(ETH_P_8021Q)) {
1666 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1667 		if (can_checksum_protocol(dev->features & dev->vlan_features,
1668 					  veh->h_vlan_encapsulated_proto))
1669 			return true;
1670 	}
1671 
1672 	return false;
1673 }
1674 
1675 /**
1676  * skb_dev_set -- assign a new device to a buffer
1677  * @skb: buffer for the new device
1678  * @dev: network device
1679  *
1680  * If an skb is owned by a device already, we have to reset
1681  * all data private to the namespace a device belongs to
1682  * before assigning it a new device.
1683  */
1684 #ifdef CONFIG_NET_NS
1685 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1686 {
1687 	skb_dst_drop(skb);
1688 	if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1689 		secpath_reset(skb);
1690 		nf_reset(skb);
1691 		skb_init_secmark(skb);
1692 		skb->mark = 0;
1693 		skb->priority = 0;
1694 		skb->nf_trace = 0;
1695 		skb->ipvs_property = 0;
1696 #ifdef CONFIG_NET_SCHED
1697 		skb->tc_index = 0;
1698 #endif
1699 	}
1700 	skb->dev = dev;
1701 }
1702 EXPORT_SYMBOL(skb_set_dev);
1703 #endif /* CONFIG_NET_NS */
1704 
1705 /*
1706  * Invalidate hardware checksum when packet is to be mangled, and
1707  * complete checksum manually on outgoing path.
1708  */
1709 int skb_checksum_help(struct sk_buff *skb)
1710 {
1711 	__wsum csum;
1712 	int ret = 0, offset;
1713 
1714 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1715 		goto out_set_summed;
1716 
1717 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1718 		/* Let GSO fix up the checksum. */
1719 		goto out_set_summed;
1720 	}
1721 
1722 	offset = skb->csum_start - skb_headroom(skb);
1723 	BUG_ON(offset >= skb_headlen(skb));
1724 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1725 
1726 	offset += skb->csum_offset;
1727 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1728 
1729 	if (skb_cloned(skb) &&
1730 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1731 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1732 		if (ret)
1733 			goto out;
1734 	}
1735 
1736 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1737 out_set_summed:
1738 	skb->ip_summed = CHECKSUM_NONE;
1739 out:
1740 	return ret;
1741 }
1742 EXPORT_SYMBOL(skb_checksum_help);
1743 
1744 /**
1745  *	skb_gso_segment - Perform segmentation on skb.
1746  *	@skb: buffer to segment
1747  *	@features: features for the output path (see dev->features)
1748  *
1749  *	This function segments the given skb and returns a list of segments.
1750  *
1751  *	It may return NULL if the skb requires no segmentation.  This is
1752  *	only possible when GSO is used for verifying header integrity.
1753  */
1754 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1755 {
1756 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1757 	struct packet_type *ptype;
1758 	__be16 type = skb->protocol;
1759 	int err;
1760 
1761 	skb_reset_mac_header(skb);
1762 	skb->mac_len = skb->network_header - skb->mac_header;
1763 	__skb_pull(skb, skb->mac_len);
1764 
1765 	if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1766 		struct net_device *dev = skb->dev;
1767 		struct ethtool_drvinfo info = {};
1768 
1769 		if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1770 			dev->ethtool_ops->get_drvinfo(dev, &info);
1771 
1772 		WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1773 			"ip_summed=%d",
1774 		     info.driver, dev ? dev->features : 0L,
1775 		     skb->sk ? skb->sk->sk_route_caps : 0L,
1776 		     skb->len, skb->data_len, skb->ip_summed);
1777 
1778 		if (skb_header_cloned(skb) &&
1779 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1780 			return ERR_PTR(err);
1781 	}
1782 
1783 	rcu_read_lock();
1784 	list_for_each_entry_rcu(ptype,
1785 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1786 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1787 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1788 				err = ptype->gso_send_check(skb);
1789 				segs = ERR_PTR(err);
1790 				if (err || skb_gso_ok(skb, features))
1791 					break;
1792 				__skb_push(skb, (skb->data -
1793 						 skb_network_header(skb)));
1794 			}
1795 			segs = ptype->gso_segment(skb, features);
1796 			break;
1797 		}
1798 	}
1799 	rcu_read_unlock();
1800 
1801 	__skb_push(skb, skb->data - skb_mac_header(skb));
1802 
1803 	return segs;
1804 }
1805 EXPORT_SYMBOL(skb_gso_segment);
1806 
1807 /* Take action when hardware reception checksum errors are detected. */
1808 #ifdef CONFIG_BUG
1809 void netdev_rx_csum_fault(struct net_device *dev)
1810 {
1811 	if (net_ratelimit()) {
1812 		printk(KERN_ERR "%s: hw csum failure.\n",
1813 			dev ? dev->name : "<unknown>");
1814 		dump_stack();
1815 	}
1816 }
1817 EXPORT_SYMBOL(netdev_rx_csum_fault);
1818 #endif
1819 
1820 /* Actually, we should eliminate this check as soon as we know, that:
1821  * 1. IOMMU is present and allows to map all the memory.
1822  * 2. No high memory really exists on this machine.
1823  */
1824 
1825 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1826 {
1827 #ifdef CONFIG_HIGHMEM
1828 	int i;
1829 	if (!(dev->features & NETIF_F_HIGHDMA)) {
1830 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1831 			if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1832 				return 1;
1833 	}
1834 
1835 	if (PCI_DMA_BUS_IS_PHYS) {
1836 		struct device *pdev = dev->dev.parent;
1837 
1838 		if (!pdev)
1839 			return 0;
1840 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1841 			dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1842 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1843 				return 1;
1844 		}
1845 	}
1846 #endif
1847 	return 0;
1848 }
1849 
1850 struct dev_gso_cb {
1851 	void (*destructor)(struct sk_buff *skb);
1852 };
1853 
1854 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1855 
1856 static void dev_gso_skb_destructor(struct sk_buff *skb)
1857 {
1858 	struct dev_gso_cb *cb;
1859 
1860 	do {
1861 		struct sk_buff *nskb = skb->next;
1862 
1863 		skb->next = nskb->next;
1864 		nskb->next = NULL;
1865 		kfree_skb(nskb);
1866 	} while (skb->next);
1867 
1868 	cb = DEV_GSO_CB(skb);
1869 	if (cb->destructor)
1870 		cb->destructor(skb);
1871 }
1872 
1873 /**
1874  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
1875  *	@skb: buffer to segment
1876  *
1877  *	This function segments the given skb and stores the list of segments
1878  *	in skb->next.
1879  */
1880 static int dev_gso_segment(struct sk_buff *skb)
1881 {
1882 	struct net_device *dev = skb->dev;
1883 	struct sk_buff *segs;
1884 	int features = dev->features & ~(illegal_highdma(dev, skb) ?
1885 					 NETIF_F_SG : 0);
1886 
1887 	segs = skb_gso_segment(skb, features);
1888 
1889 	/* Verifying header integrity only. */
1890 	if (!segs)
1891 		return 0;
1892 
1893 	if (IS_ERR(segs))
1894 		return PTR_ERR(segs);
1895 
1896 	skb->next = segs;
1897 	DEV_GSO_CB(skb)->destructor = skb->destructor;
1898 	skb->destructor = dev_gso_skb_destructor;
1899 
1900 	return 0;
1901 }
1902 
1903 /*
1904  * Try to orphan skb early, right before transmission by the device.
1905  * We cannot orphan skb if tx timestamp is requested, since
1906  * drivers need to call skb_tstamp_tx() to send the timestamp.
1907  */
1908 static inline void skb_orphan_try(struct sk_buff *skb)
1909 {
1910 	struct sock *sk = skb->sk;
1911 
1912 	if (sk && !skb_tx(skb)->flags) {
1913 		/* skb_tx_hash() wont be able to get sk.
1914 		 * We copy sk_hash into skb->rxhash
1915 		 */
1916 		if (!skb->rxhash)
1917 			skb->rxhash = sk->sk_hash;
1918 		skb_orphan(skb);
1919 	}
1920 }
1921 
1922 /*
1923  * Returns true if either:
1924  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
1925  *	2. skb is fragmented and the device does not support SG, or if
1926  *	   at least one of fragments is in highmem and device does not
1927  *	   support DMA from it.
1928  */
1929 static inline int skb_needs_linearize(struct sk_buff *skb,
1930 				      struct net_device *dev)
1931 {
1932 	return skb_is_nonlinear(skb) &&
1933 	       ((skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
1934 	        (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
1935 					      illegal_highdma(dev, skb))));
1936 }
1937 
1938 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1939 			struct netdev_queue *txq)
1940 {
1941 	const struct net_device_ops *ops = dev->netdev_ops;
1942 	int rc = NETDEV_TX_OK;
1943 
1944 	if (likely(!skb->next)) {
1945 		if (!list_empty(&ptype_all))
1946 			dev_queue_xmit_nit(skb, dev);
1947 
1948 		/*
1949 		 * If device doesnt need skb->dst, release it right now while
1950 		 * its hot in this cpu cache
1951 		 */
1952 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1953 			skb_dst_drop(skb);
1954 
1955 		skb_orphan_try(skb);
1956 
1957 		if (netif_needs_gso(dev, skb)) {
1958 			if (unlikely(dev_gso_segment(skb)))
1959 				goto out_kfree_skb;
1960 			if (skb->next)
1961 				goto gso;
1962 		} else {
1963 			if (skb_needs_linearize(skb, dev) &&
1964 			    __skb_linearize(skb))
1965 				goto out_kfree_skb;
1966 
1967 			/* If packet is not checksummed and device does not
1968 			 * support checksumming for this protocol, complete
1969 			 * checksumming here.
1970 			 */
1971 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
1972 				skb_set_transport_header(skb, skb->csum_start -
1973 					      skb_headroom(skb));
1974 				if (!dev_can_checksum(dev, skb) &&
1975 				     skb_checksum_help(skb))
1976 					goto out_kfree_skb;
1977 			}
1978 		}
1979 
1980 		rc = ops->ndo_start_xmit(skb, dev);
1981 		if (rc == NETDEV_TX_OK)
1982 			txq_trans_update(txq);
1983 		return rc;
1984 	}
1985 
1986 gso:
1987 	do {
1988 		struct sk_buff *nskb = skb->next;
1989 
1990 		skb->next = nskb->next;
1991 		nskb->next = NULL;
1992 
1993 		/*
1994 		 * If device doesnt need nskb->dst, release it right now while
1995 		 * its hot in this cpu cache
1996 		 */
1997 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1998 			skb_dst_drop(nskb);
1999 
2000 		rc = ops->ndo_start_xmit(nskb, dev);
2001 		if (unlikely(rc != NETDEV_TX_OK)) {
2002 			if (rc & ~NETDEV_TX_MASK)
2003 				goto out_kfree_gso_skb;
2004 			nskb->next = skb->next;
2005 			skb->next = nskb;
2006 			return rc;
2007 		}
2008 		txq_trans_update(txq);
2009 		if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2010 			return NETDEV_TX_BUSY;
2011 	} while (skb->next);
2012 
2013 out_kfree_gso_skb:
2014 	if (likely(skb->next == NULL))
2015 		skb->destructor = DEV_GSO_CB(skb)->destructor;
2016 out_kfree_skb:
2017 	kfree_skb(skb);
2018 	return rc;
2019 }
2020 
2021 static u32 hashrnd __read_mostly;
2022 
2023 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
2024 {
2025 	u32 hash;
2026 
2027 	if (skb_rx_queue_recorded(skb)) {
2028 		hash = skb_get_rx_queue(skb);
2029 		while (unlikely(hash >= dev->real_num_tx_queues))
2030 			hash -= dev->real_num_tx_queues;
2031 		return hash;
2032 	}
2033 
2034 	if (skb->sk && skb->sk->sk_hash)
2035 		hash = skb->sk->sk_hash;
2036 	else
2037 		hash = (__force u16) skb->protocol ^ skb->rxhash;
2038 	hash = jhash_1word(hash, hashrnd);
2039 
2040 	return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
2041 }
2042 EXPORT_SYMBOL(skb_tx_hash);
2043 
2044 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2045 {
2046 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2047 		if (net_ratelimit()) {
2048 			pr_warning("%s selects TX queue %d, but "
2049 				"real number of TX queues is %d\n",
2050 				dev->name, queue_index, dev->real_num_tx_queues);
2051 		}
2052 		return 0;
2053 	}
2054 	return queue_index;
2055 }
2056 
2057 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2058 					struct sk_buff *skb)
2059 {
2060 	int queue_index;
2061 	struct sock *sk = skb->sk;
2062 
2063 	queue_index = sk_tx_queue_get(sk);
2064 	if (queue_index < 0) {
2065 		const struct net_device_ops *ops = dev->netdev_ops;
2066 
2067 		if (ops->ndo_select_queue) {
2068 			queue_index = ops->ndo_select_queue(dev, skb);
2069 			queue_index = dev_cap_txqueue(dev, queue_index);
2070 		} else {
2071 			queue_index = 0;
2072 			if (dev->real_num_tx_queues > 1)
2073 				queue_index = skb_tx_hash(dev, skb);
2074 
2075 			if (sk) {
2076 				struct dst_entry *dst = rcu_dereference_check(sk->sk_dst_cache, 1);
2077 
2078 				if (dst && skb_dst(skb) == dst)
2079 					sk_tx_queue_set(sk, queue_index);
2080 			}
2081 		}
2082 	}
2083 
2084 	skb_set_queue_mapping(skb, queue_index);
2085 	return netdev_get_tx_queue(dev, queue_index);
2086 }
2087 
2088 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2089 				 struct net_device *dev,
2090 				 struct netdev_queue *txq)
2091 {
2092 	spinlock_t *root_lock = qdisc_lock(q);
2093 	bool contended = qdisc_is_running(q);
2094 	int rc;
2095 
2096 	/*
2097 	 * Heuristic to force contended enqueues to serialize on a
2098 	 * separate lock before trying to get qdisc main lock.
2099 	 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2100 	 * and dequeue packets faster.
2101 	 */
2102 	if (unlikely(contended))
2103 		spin_lock(&q->busylock);
2104 
2105 	spin_lock(root_lock);
2106 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2107 		kfree_skb(skb);
2108 		rc = NET_XMIT_DROP;
2109 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2110 		   qdisc_run_begin(q)) {
2111 		/*
2112 		 * This is a work-conserving queue; there are no old skbs
2113 		 * waiting to be sent out; and the qdisc is not running -
2114 		 * xmit the skb directly.
2115 		 */
2116 		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2117 			skb_dst_force(skb);
2118 		__qdisc_update_bstats(q, skb->len);
2119 		if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2120 			if (unlikely(contended)) {
2121 				spin_unlock(&q->busylock);
2122 				contended = false;
2123 			}
2124 			__qdisc_run(q);
2125 		} else
2126 			qdisc_run_end(q);
2127 
2128 		rc = NET_XMIT_SUCCESS;
2129 	} else {
2130 		skb_dst_force(skb);
2131 		rc = qdisc_enqueue_root(skb, q);
2132 		if (qdisc_run_begin(q)) {
2133 			if (unlikely(contended)) {
2134 				spin_unlock(&q->busylock);
2135 				contended = false;
2136 			}
2137 			__qdisc_run(q);
2138 		}
2139 	}
2140 	spin_unlock(root_lock);
2141 	if (unlikely(contended))
2142 		spin_unlock(&q->busylock);
2143 	return rc;
2144 }
2145 
2146 /**
2147  *	dev_queue_xmit - transmit a buffer
2148  *	@skb: buffer to transmit
2149  *
2150  *	Queue a buffer for transmission to a network device. The caller must
2151  *	have set the device and priority and built the buffer before calling
2152  *	this function. The function can be called from an interrupt.
2153  *
2154  *	A negative errno code is returned on a failure. A success does not
2155  *	guarantee the frame will be transmitted as it may be dropped due
2156  *	to congestion or traffic shaping.
2157  *
2158  * -----------------------------------------------------------------------------------
2159  *      I notice this method can also return errors from the queue disciplines,
2160  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2161  *      be positive.
2162  *
2163  *      Regardless of the return value, the skb is consumed, so it is currently
2164  *      difficult to retry a send to this method.  (You can bump the ref count
2165  *      before sending to hold a reference for retry if you are careful.)
2166  *
2167  *      When calling this method, interrupts MUST be enabled.  This is because
2168  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2169  *          --BLG
2170  */
2171 int dev_queue_xmit(struct sk_buff *skb)
2172 {
2173 	struct net_device *dev = skb->dev;
2174 	struct netdev_queue *txq;
2175 	struct Qdisc *q;
2176 	int rc = -ENOMEM;
2177 
2178 	/* Disable soft irqs for various locks below. Also
2179 	 * stops preemption for RCU.
2180 	 */
2181 	rcu_read_lock_bh();
2182 
2183 	txq = dev_pick_tx(dev, skb);
2184 	q = rcu_dereference_bh(txq->qdisc);
2185 
2186 #ifdef CONFIG_NET_CLS_ACT
2187 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2188 #endif
2189 	if (q->enqueue) {
2190 		rc = __dev_xmit_skb(skb, q, dev, txq);
2191 		goto out;
2192 	}
2193 
2194 	/* The device has no queue. Common case for software devices:
2195 	   loopback, all the sorts of tunnels...
2196 
2197 	   Really, it is unlikely that netif_tx_lock protection is necessary
2198 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2199 	   counters.)
2200 	   However, it is possible, that they rely on protection
2201 	   made by us here.
2202 
2203 	   Check this and shot the lock. It is not prone from deadlocks.
2204 	   Either shot noqueue qdisc, it is even simpler 8)
2205 	 */
2206 	if (dev->flags & IFF_UP) {
2207 		int cpu = smp_processor_id(); /* ok because BHs are off */
2208 
2209 		if (txq->xmit_lock_owner != cpu) {
2210 
2211 			HARD_TX_LOCK(dev, txq, cpu);
2212 
2213 			if (!netif_tx_queue_stopped(txq)) {
2214 				rc = dev_hard_start_xmit(skb, dev, txq);
2215 				if (dev_xmit_complete(rc)) {
2216 					HARD_TX_UNLOCK(dev, txq);
2217 					goto out;
2218 				}
2219 			}
2220 			HARD_TX_UNLOCK(dev, txq);
2221 			if (net_ratelimit())
2222 				printk(KERN_CRIT "Virtual device %s asks to "
2223 				       "queue packet!\n", dev->name);
2224 		} else {
2225 			/* Recursion is detected! It is possible,
2226 			 * unfortunately */
2227 			if (net_ratelimit())
2228 				printk(KERN_CRIT "Dead loop on virtual device "
2229 				       "%s, fix it urgently!\n", dev->name);
2230 		}
2231 	}
2232 
2233 	rc = -ENETDOWN;
2234 	rcu_read_unlock_bh();
2235 
2236 	kfree_skb(skb);
2237 	return rc;
2238 out:
2239 	rcu_read_unlock_bh();
2240 	return rc;
2241 }
2242 EXPORT_SYMBOL(dev_queue_xmit);
2243 
2244 
2245 /*=======================================================================
2246 			Receiver routines
2247   =======================================================================*/
2248 
2249 int netdev_max_backlog __read_mostly = 1000;
2250 int netdev_tstamp_prequeue __read_mostly = 1;
2251 int netdev_budget __read_mostly = 300;
2252 int weight_p __read_mostly = 64;            /* old backlog weight */
2253 
2254 /* Called with irq disabled */
2255 static inline void ____napi_schedule(struct softnet_data *sd,
2256 				     struct napi_struct *napi)
2257 {
2258 	list_add_tail(&napi->poll_list, &sd->poll_list);
2259 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2260 }
2261 
2262 #ifdef CONFIG_RPS
2263 
2264 /* One global table that all flow-based protocols share. */
2265 struct rps_sock_flow_table *rps_sock_flow_table __read_mostly;
2266 EXPORT_SYMBOL(rps_sock_flow_table);
2267 
2268 /*
2269  * get_rps_cpu is called from netif_receive_skb and returns the target
2270  * CPU from the RPS map of the receiving queue for a given skb.
2271  * rcu_read_lock must be held on entry.
2272  */
2273 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2274 		       struct rps_dev_flow **rflowp)
2275 {
2276 	struct ipv6hdr *ip6;
2277 	struct iphdr *ip;
2278 	struct netdev_rx_queue *rxqueue;
2279 	struct rps_map *map;
2280 	struct rps_dev_flow_table *flow_table;
2281 	struct rps_sock_flow_table *sock_flow_table;
2282 	int cpu = -1;
2283 	u8 ip_proto;
2284 	u16 tcpu;
2285 	u32 addr1, addr2, ihl;
2286 	union {
2287 		u32 v32;
2288 		u16 v16[2];
2289 	} ports;
2290 
2291 	if (skb_rx_queue_recorded(skb)) {
2292 		u16 index = skb_get_rx_queue(skb);
2293 		if (unlikely(index >= dev->num_rx_queues)) {
2294 			WARN_ONCE(dev->num_rx_queues > 1, "%s received packet "
2295 				"on queue %u, but number of RX queues is %u\n",
2296 				dev->name, index, dev->num_rx_queues);
2297 			goto done;
2298 		}
2299 		rxqueue = dev->_rx + index;
2300 	} else
2301 		rxqueue = dev->_rx;
2302 
2303 	if (!rxqueue->rps_map && !rxqueue->rps_flow_table)
2304 		goto done;
2305 
2306 	if (skb->rxhash)
2307 		goto got_hash; /* Skip hash computation on packet header */
2308 
2309 	switch (skb->protocol) {
2310 	case __constant_htons(ETH_P_IP):
2311 		if (!pskb_may_pull(skb, sizeof(*ip)))
2312 			goto done;
2313 
2314 		ip = (struct iphdr *) skb->data;
2315 		ip_proto = ip->protocol;
2316 		addr1 = (__force u32) ip->saddr;
2317 		addr2 = (__force u32) ip->daddr;
2318 		ihl = ip->ihl;
2319 		break;
2320 	case __constant_htons(ETH_P_IPV6):
2321 		if (!pskb_may_pull(skb, sizeof(*ip6)))
2322 			goto done;
2323 
2324 		ip6 = (struct ipv6hdr *) skb->data;
2325 		ip_proto = ip6->nexthdr;
2326 		addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2327 		addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2328 		ihl = (40 >> 2);
2329 		break;
2330 	default:
2331 		goto done;
2332 	}
2333 	switch (ip_proto) {
2334 	case IPPROTO_TCP:
2335 	case IPPROTO_UDP:
2336 	case IPPROTO_DCCP:
2337 	case IPPROTO_ESP:
2338 	case IPPROTO_AH:
2339 	case IPPROTO_SCTP:
2340 	case IPPROTO_UDPLITE:
2341 		if (pskb_may_pull(skb, (ihl * 4) + 4)) {
2342 			ports.v32 = * (__force u32 *) (skb->data + (ihl * 4));
2343 			if (ports.v16[1] < ports.v16[0])
2344 				swap(ports.v16[0], ports.v16[1]);
2345 			break;
2346 		}
2347 	default:
2348 		ports.v32 = 0;
2349 		break;
2350 	}
2351 
2352 	/* get a consistent hash (same value on both flow directions) */
2353 	if (addr2 < addr1)
2354 		swap(addr1, addr2);
2355 	skb->rxhash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2356 	if (!skb->rxhash)
2357 		skb->rxhash = 1;
2358 
2359 got_hash:
2360 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2361 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
2362 	if (flow_table && sock_flow_table) {
2363 		u16 next_cpu;
2364 		struct rps_dev_flow *rflow;
2365 
2366 		rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2367 		tcpu = rflow->cpu;
2368 
2369 		next_cpu = sock_flow_table->ents[skb->rxhash &
2370 		    sock_flow_table->mask];
2371 
2372 		/*
2373 		 * If the desired CPU (where last recvmsg was done) is
2374 		 * different from current CPU (one in the rx-queue flow
2375 		 * table entry), switch if one of the following holds:
2376 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
2377 		 *   - Current CPU is offline.
2378 		 *   - The current CPU's queue tail has advanced beyond the
2379 		 *     last packet that was enqueued using this table entry.
2380 		 *     This guarantees that all previous packets for the flow
2381 		 *     have been dequeued, thus preserving in order delivery.
2382 		 */
2383 		if (unlikely(tcpu != next_cpu) &&
2384 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2385 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2386 		      rflow->last_qtail)) >= 0)) {
2387 			tcpu = rflow->cpu = next_cpu;
2388 			if (tcpu != RPS_NO_CPU)
2389 				rflow->last_qtail = per_cpu(softnet_data,
2390 				    tcpu).input_queue_head;
2391 		}
2392 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2393 			*rflowp = rflow;
2394 			cpu = tcpu;
2395 			goto done;
2396 		}
2397 	}
2398 
2399 	map = rcu_dereference(rxqueue->rps_map);
2400 	if (map) {
2401 		tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2402 
2403 		if (cpu_online(tcpu)) {
2404 			cpu = tcpu;
2405 			goto done;
2406 		}
2407 	}
2408 
2409 done:
2410 	return cpu;
2411 }
2412 
2413 /* Called from hardirq (IPI) context */
2414 static void rps_trigger_softirq(void *data)
2415 {
2416 	struct softnet_data *sd = data;
2417 
2418 	____napi_schedule(sd, &sd->backlog);
2419 	sd->received_rps++;
2420 }
2421 
2422 #endif /* CONFIG_RPS */
2423 
2424 /*
2425  * Check if this softnet_data structure is another cpu one
2426  * If yes, queue it to our IPI list and return 1
2427  * If no, return 0
2428  */
2429 static int rps_ipi_queued(struct softnet_data *sd)
2430 {
2431 #ifdef CONFIG_RPS
2432 	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2433 
2434 	if (sd != mysd) {
2435 		sd->rps_ipi_next = mysd->rps_ipi_list;
2436 		mysd->rps_ipi_list = sd;
2437 
2438 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2439 		return 1;
2440 	}
2441 #endif /* CONFIG_RPS */
2442 	return 0;
2443 }
2444 
2445 /*
2446  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2447  * queue (may be a remote CPU queue).
2448  */
2449 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2450 			      unsigned int *qtail)
2451 {
2452 	struct softnet_data *sd;
2453 	unsigned long flags;
2454 
2455 	sd = &per_cpu(softnet_data, cpu);
2456 
2457 	local_irq_save(flags);
2458 
2459 	rps_lock(sd);
2460 	if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2461 		if (skb_queue_len(&sd->input_pkt_queue)) {
2462 enqueue:
2463 			__skb_queue_tail(&sd->input_pkt_queue, skb);
2464 			input_queue_tail_incr_save(sd, qtail);
2465 			rps_unlock(sd);
2466 			local_irq_restore(flags);
2467 			return NET_RX_SUCCESS;
2468 		}
2469 
2470 		/* Schedule NAPI for backlog device
2471 		 * We can use non atomic operation since we own the queue lock
2472 		 */
2473 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2474 			if (!rps_ipi_queued(sd))
2475 				____napi_schedule(sd, &sd->backlog);
2476 		}
2477 		goto enqueue;
2478 	}
2479 
2480 	sd->dropped++;
2481 	rps_unlock(sd);
2482 
2483 	local_irq_restore(flags);
2484 
2485 	kfree_skb(skb);
2486 	return NET_RX_DROP;
2487 }
2488 
2489 /**
2490  *	netif_rx	-	post buffer to the network code
2491  *	@skb: buffer to post
2492  *
2493  *	This function receives a packet from a device driver and queues it for
2494  *	the upper (protocol) levels to process.  It always succeeds. The buffer
2495  *	may be dropped during processing for congestion control or by the
2496  *	protocol layers.
2497  *
2498  *	return values:
2499  *	NET_RX_SUCCESS	(no congestion)
2500  *	NET_RX_DROP     (packet was dropped)
2501  *
2502  */
2503 
2504 int netif_rx(struct sk_buff *skb)
2505 {
2506 	int ret;
2507 
2508 	/* if netpoll wants it, pretend we never saw it */
2509 	if (netpoll_rx(skb))
2510 		return NET_RX_DROP;
2511 
2512 	if (netdev_tstamp_prequeue)
2513 		net_timestamp_check(skb);
2514 
2515 #ifdef CONFIG_RPS
2516 	{
2517 		struct rps_dev_flow voidflow, *rflow = &voidflow;
2518 		int cpu;
2519 
2520 		preempt_disable();
2521 		rcu_read_lock();
2522 
2523 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
2524 		if (cpu < 0)
2525 			cpu = smp_processor_id();
2526 
2527 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2528 
2529 		rcu_read_unlock();
2530 		preempt_enable();
2531 	}
2532 #else
2533 	{
2534 		unsigned int qtail;
2535 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2536 		put_cpu();
2537 	}
2538 #endif
2539 	return ret;
2540 }
2541 EXPORT_SYMBOL(netif_rx);
2542 
2543 int netif_rx_ni(struct sk_buff *skb)
2544 {
2545 	int err;
2546 
2547 	preempt_disable();
2548 	err = netif_rx(skb);
2549 	if (local_softirq_pending())
2550 		do_softirq();
2551 	preempt_enable();
2552 
2553 	return err;
2554 }
2555 EXPORT_SYMBOL(netif_rx_ni);
2556 
2557 static void net_tx_action(struct softirq_action *h)
2558 {
2559 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
2560 
2561 	if (sd->completion_queue) {
2562 		struct sk_buff *clist;
2563 
2564 		local_irq_disable();
2565 		clist = sd->completion_queue;
2566 		sd->completion_queue = NULL;
2567 		local_irq_enable();
2568 
2569 		while (clist) {
2570 			struct sk_buff *skb = clist;
2571 			clist = clist->next;
2572 
2573 			WARN_ON(atomic_read(&skb->users));
2574 			__kfree_skb(skb);
2575 		}
2576 	}
2577 
2578 	if (sd->output_queue) {
2579 		struct Qdisc *head;
2580 
2581 		local_irq_disable();
2582 		head = sd->output_queue;
2583 		sd->output_queue = NULL;
2584 		sd->output_queue_tailp = &sd->output_queue;
2585 		local_irq_enable();
2586 
2587 		while (head) {
2588 			struct Qdisc *q = head;
2589 			spinlock_t *root_lock;
2590 
2591 			head = head->next_sched;
2592 
2593 			root_lock = qdisc_lock(q);
2594 			if (spin_trylock(root_lock)) {
2595 				smp_mb__before_clear_bit();
2596 				clear_bit(__QDISC_STATE_SCHED,
2597 					  &q->state);
2598 				qdisc_run(q);
2599 				spin_unlock(root_lock);
2600 			} else {
2601 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
2602 					      &q->state)) {
2603 					__netif_reschedule(q);
2604 				} else {
2605 					smp_mb__before_clear_bit();
2606 					clear_bit(__QDISC_STATE_SCHED,
2607 						  &q->state);
2608 				}
2609 			}
2610 		}
2611 	}
2612 }
2613 
2614 static inline int deliver_skb(struct sk_buff *skb,
2615 			      struct packet_type *pt_prev,
2616 			      struct net_device *orig_dev)
2617 {
2618 	atomic_inc(&skb->users);
2619 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2620 }
2621 
2622 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2623     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2624 /* This hook is defined here for ATM LANE */
2625 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2626 			     unsigned char *addr) __read_mostly;
2627 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2628 #endif
2629 
2630 #ifdef CONFIG_NET_CLS_ACT
2631 /* TODO: Maybe we should just force sch_ingress to be compiled in
2632  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2633  * a compare and 2 stores extra right now if we dont have it on
2634  * but have CONFIG_NET_CLS_ACT
2635  * NOTE: This doesnt stop any functionality; if you dont have
2636  * the ingress scheduler, you just cant add policies on ingress.
2637  *
2638  */
2639 static int ing_filter(struct sk_buff *skb)
2640 {
2641 	struct net_device *dev = skb->dev;
2642 	u32 ttl = G_TC_RTTL(skb->tc_verd);
2643 	struct netdev_queue *rxq;
2644 	int result = TC_ACT_OK;
2645 	struct Qdisc *q;
2646 
2647 	if (unlikely(MAX_RED_LOOP < ttl++)) {
2648 		if (net_ratelimit())
2649 			pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
2650 			       skb->skb_iif, dev->ifindex);
2651 		return TC_ACT_SHOT;
2652 	}
2653 
2654 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2655 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2656 
2657 	rxq = &dev->rx_queue;
2658 
2659 	q = rxq->qdisc;
2660 	if (q != &noop_qdisc) {
2661 		spin_lock(qdisc_lock(q));
2662 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2663 			result = qdisc_enqueue_root(skb, q);
2664 		spin_unlock(qdisc_lock(q));
2665 	}
2666 
2667 	return result;
2668 }
2669 
2670 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2671 					 struct packet_type **pt_prev,
2672 					 int *ret, struct net_device *orig_dev)
2673 {
2674 	if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2675 		goto out;
2676 
2677 	if (*pt_prev) {
2678 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2679 		*pt_prev = NULL;
2680 	}
2681 
2682 	switch (ing_filter(skb)) {
2683 	case TC_ACT_SHOT:
2684 	case TC_ACT_STOLEN:
2685 		kfree_skb(skb);
2686 		return NULL;
2687 	}
2688 
2689 out:
2690 	skb->tc_verd = 0;
2691 	return skb;
2692 }
2693 #endif
2694 
2695 /*
2696  * 	netif_nit_deliver - deliver received packets to network taps
2697  * 	@skb: buffer
2698  *
2699  * 	This function is used to deliver incoming packets to network
2700  * 	taps. It should be used when the normal netif_receive_skb path
2701  * 	is bypassed, for example because of VLAN acceleration.
2702  */
2703 void netif_nit_deliver(struct sk_buff *skb)
2704 {
2705 	struct packet_type *ptype;
2706 
2707 	if (list_empty(&ptype_all))
2708 		return;
2709 
2710 	skb_reset_network_header(skb);
2711 	skb_reset_transport_header(skb);
2712 	skb->mac_len = skb->network_header - skb->mac_header;
2713 
2714 	rcu_read_lock();
2715 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
2716 		if (!ptype->dev || ptype->dev == skb->dev)
2717 			deliver_skb(skb, ptype, skb->dev);
2718 	}
2719 	rcu_read_unlock();
2720 }
2721 
2722 /**
2723  *	netdev_rx_handler_register - register receive handler
2724  *	@dev: device to register a handler for
2725  *	@rx_handler: receive handler to register
2726  *	@rx_handler_data: data pointer that is used by rx handler
2727  *
2728  *	Register a receive hander for a device. This handler will then be
2729  *	called from __netif_receive_skb. A negative errno code is returned
2730  *	on a failure.
2731  *
2732  *	The caller must hold the rtnl_mutex.
2733  */
2734 int netdev_rx_handler_register(struct net_device *dev,
2735 			       rx_handler_func_t *rx_handler,
2736 			       void *rx_handler_data)
2737 {
2738 	ASSERT_RTNL();
2739 
2740 	if (dev->rx_handler)
2741 		return -EBUSY;
2742 
2743 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
2744 	rcu_assign_pointer(dev->rx_handler, rx_handler);
2745 
2746 	return 0;
2747 }
2748 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
2749 
2750 /**
2751  *	netdev_rx_handler_unregister - unregister receive handler
2752  *	@dev: device to unregister a handler from
2753  *
2754  *	Unregister a receive hander from a device.
2755  *
2756  *	The caller must hold the rtnl_mutex.
2757  */
2758 void netdev_rx_handler_unregister(struct net_device *dev)
2759 {
2760 
2761 	ASSERT_RTNL();
2762 	rcu_assign_pointer(dev->rx_handler, NULL);
2763 	rcu_assign_pointer(dev->rx_handler_data, NULL);
2764 }
2765 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
2766 
2767 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2768 					      struct net_device *master)
2769 {
2770 	if (skb->pkt_type == PACKET_HOST) {
2771 		u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2772 
2773 		memcpy(dest, master->dev_addr, ETH_ALEN);
2774 	}
2775 }
2776 
2777 /* On bonding slaves other than the currently active slave, suppress
2778  * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2779  * ARP on active-backup slaves with arp_validate enabled.
2780  */
2781 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2782 {
2783 	struct net_device *dev = skb->dev;
2784 
2785 	if (master->priv_flags & IFF_MASTER_ARPMON)
2786 		dev->last_rx = jiffies;
2787 
2788 	if ((master->priv_flags & IFF_MASTER_ALB) &&
2789 	    (master->priv_flags & IFF_BRIDGE_PORT)) {
2790 		/* Do address unmangle. The local destination address
2791 		 * will be always the one master has. Provides the right
2792 		 * functionality in a bridge.
2793 		 */
2794 		skb_bond_set_mac_by_master(skb, master);
2795 	}
2796 
2797 	if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2798 		if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2799 		    skb->protocol == __cpu_to_be16(ETH_P_ARP))
2800 			return 0;
2801 
2802 		if (master->priv_flags & IFF_MASTER_ALB) {
2803 			if (skb->pkt_type != PACKET_BROADCAST &&
2804 			    skb->pkt_type != PACKET_MULTICAST)
2805 				return 0;
2806 		}
2807 		if (master->priv_flags & IFF_MASTER_8023AD &&
2808 		    skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2809 			return 0;
2810 
2811 		return 1;
2812 	}
2813 	return 0;
2814 }
2815 EXPORT_SYMBOL(__skb_bond_should_drop);
2816 
2817 static int __netif_receive_skb(struct sk_buff *skb)
2818 {
2819 	struct packet_type *ptype, *pt_prev;
2820 	rx_handler_func_t *rx_handler;
2821 	struct net_device *orig_dev;
2822 	struct net_device *master;
2823 	struct net_device *null_or_orig;
2824 	struct net_device *orig_or_bond;
2825 	int ret = NET_RX_DROP;
2826 	__be16 type;
2827 
2828 	if (!netdev_tstamp_prequeue)
2829 		net_timestamp_check(skb);
2830 
2831 	if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2832 		return NET_RX_SUCCESS;
2833 
2834 	/* if we've gotten here through NAPI, check netpoll */
2835 	if (netpoll_receive_skb(skb))
2836 		return NET_RX_DROP;
2837 
2838 	if (!skb->skb_iif)
2839 		skb->skb_iif = skb->dev->ifindex;
2840 
2841 	/*
2842 	 * bonding note: skbs received on inactive slaves should only
2843 	 * be delivered to pkt handlers that are exact matches.  Also
2844 	 * the deliver_no_wcard flag will be set.  If packet handlers
2845 	 * are sensitive to duplicate packets these skbs will need to
2846 	 * be dropped at the handler.  The vlan accel path may have
2847 	 * already set the deliver_no_wcard flag.
2848 	 */
2849 	null_or_orig = NULL;
2850 	orig_dev = skb->dev;
2851 	master = ACCESS_ONCE(orig_dev->master);
2852 	if (skb->deliver_no_wcard)
2853 		null_or_orig = orig_dev;
2854 	else if (master) {
2855 		if (skb_bond_should_drop(skb, master)) {
2856 			skb->deliver_no_wcard = 1;
2857 			null_or_orig = orig_dev; /* deliver only exact match */
2858 		} else
2859 			skb->dev = master;
2860 	}
2861 
2862 	__this_cpu_inc(softnet_data.processed);
2863 	skb_reset_network_header(skb);
2864 	skb_reset_transport_header(skb);
2865 	skb->mac_len = skb->network_header - skb->mac_header;
2866 
2867 	pt_prev = NULL;
2868 
2869 	rcu_read_lock();
2870 
2871 #ifdef CONFIG_NET_CLS_ACT
2872 	if (skb->tc_verd & TC_NCLS) {
2873 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2874 		goto ncls;
2875 	}
2876 #endif
2877 
2878 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
2879 		if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2880 		    ptype->dev == orig_dev) {
2881 			if (pt_prev)
2882 				ret = deliver_skb(skb, pt_prev, orig_dev);
2883 			pt_prev = ptype;
2884 		}
2885 	}
2886 
2887 #ifdef CONFIG_NET_CLS_ACT
2888 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2889 	if (!skb)
2890 		goto out;
2891 ncls:
2892 #endif
2893 
2894 	/* Handle special case of bridge or macvlan */
2895 	rx_handler = rcu_dereference(skb->dev->rx_handler);
2896 	if (rx_handler) {
2897 		if (pt_prev) {
2898 			ret = deliver_skb(skb, pt_prev, orig_dev);
2899 			pt_prev = NULL;
2900 		}
2901 		skb = rx_handler(skb);
2902 		if (!skb)
2903 			goto out;
2904 	}
2905 
2906 	/*
2907 	 * Make sure frames received on VLAN interfaces stacked on
2908 	 * bonding interfaces still make their way to any base bonding
2909 	 * device that may have registered for a specific ptype.  The
2910 	 * handler may have to adjust skb->dev and orig_dev.
2911 	 */
2912 	orig_or_bond = orig_dev;
2913 	if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2914 	    (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2915 		orig_or_bond = vlan_dev_real_dev(skb->dev);
2916 	}
2917 
2918 	type = skb->protocol;
2919 	list_for_each_entry_rcu(ptype,
2920 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2921 		if (ptype->type == type && (ptype->dev == null_or_orig ||
2922 		     ptype->dev == skb->dev || ptype->dev == orig_dev ||
2923 		     ptype->dev == orig_or_bond)) {
2924 			if (pt_prev)
2925 				ret = deliver_skb(skb, pt_prev, orig_dev);
2926 			pt_prev = ptype;
2927 		}
2928 	}
2929 
2930 	if (pt_prev) {
2931 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2932 	} else {
2933 		kfree_skb(skb);
2934 		/* Jamal, now you will not able to escape explaining
2935 		 * me how you were going to use this. :-)
2936 		 */
2937 		ret = NET_RX_DROP;
2938 	}
2939 
2940 out:
2941 	rcu_read_unlock();
2942 	return ret;
2943 }
2944 
2945 /**
2946  *	netif_receive_skb - process receive buffer from network
2947  *	@skb: buffer to process
2948  *
2949  *	netif_receive_skb() is the main receive data processing function.
2950  *	It always succeeds. The buffer may be dropped during processing
2951  *	for congestion control or by the protocol layers.
2952  *
2953  *	This function may only be called from softirq context and interrupts
2954  *	should be enabled.
2955  *
2956  *	Return values (usually ignored):
2957  *	NET_RX_SUCCESS: no congestion
2958  *	NET_RX_DROP: packet was dropped
2959  */
2960 int netif_receive_skb(struct sk_buff *skb)
2961 {
2962 	if (netdev_tstamp_prequeue)
2963 		net_timestamp_check(skb);
2964 
2965 	if (skb_defer_rx_timestamp(skb))
2966 		return NET_RX_SUCCESS;
2967 
2968 #ifdef CONFIG_RPS
2969 	{
2970 		struct rps_dev_flow voidflow, *rflow = &voidflow;
2971 		int cpu, ret;
2972 
2973 		rcu_read_lock();
2974 
2975 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
2976 
2977 		if (cpu >= 0) {
2978 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2979 			rcu_read_unlock();
2980 		} else {
2981 			rcu_read_unlock();
2982 			ret = __netif_receive_skb(skb);
2983 		}
2984 
2985 		return ret;
2986 	}
2987 #else
2988 	return __netif_receive_skb(skb);
2989 #endif
2990 }
2991 EXPORT_SYMBOL(netif_receive_skb);
2992 
2993 /* Network device is going away, flush any packets still pending
2994  * Called with irqs disabled.
2995  */
2996 static void flush_backlog(void *arg)
2997 {
2998 	struct net_device *dev = arg;
2999 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3000 	struct sk_buff *skb, *tmp;
3001 
3002 	rps_lock(sd);
3003 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3004 		if (skb->dev == dev) {
3005 			__skb_unlink(skb, &sd->input_pkt_queue);
3006 			kfree_skb(skb);
3007 			input_queue_head_incr(sd);
3008 		}
3009 	}
3010 	rps_unlock(sd);
3011 
3012 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3013 		if (skb->dev == dev) {
3014 			__skb_unlink(skb, &sd->process_queue);
3015 			kfree_skb(skb);
3016 			input_queue_head_incr(sd);
3017 		}
3018 	}
3019 }
3020 
3021 static int napi_gro_complete(struct sk_buff *skb)
3022 {
3023 	struct packet_type *ptype;
3024 	__be16 type = skb->protocol;
3025 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3026 	int err = -ENOENT;
3027 
3028 	if (NAPI_GRO_CB(skb)->count == 1) {
3029 		skb_shinfo(skb)->gso_size = 0;
3030 		goto out;
3031 	}
3032 
3033 	rcu_read_lock();
3034 	list_for_each_entry_rcu(ptype, head, list) {
3035 		if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3036 			continue;
3037 
3038 		err = ptype->gro_complete(skb);
3039 		break;
3040 	}
3041 	rcu_read_unlock();
3042 
3043 	if (err) {
3044 		WARN_ON(&ptype->list == head);
3045 		kfree_skb(skb);
3046 		return NET_RX_SUCCESS;
3047 	}
3048 
3049 out:
3050 	return netif_receive_skb(skb);
3051 }
3052 
3053 static void napi_gro_flush(struct napi_struct *napi)
3054 {
3055 	struct sk_buff *skb, *next;
3056 
3057 	for (skb = napi->gro_list; skb; skb = next) {
3058 		next = skb->next;
3059 		skb->next = NULL;
3060 		napi_gro_complete(skb);
3061 	}
3062 
3063 	napi->gro_count = 0;
3064 	napi->gro_list = NULL;
3065 }
3066 
3067 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3068 {
3069 	struct sk_buff **pp = NULL;
3070 	struct packet_type *ptype;
3071 	__be16 type = skb->protocol;
3072 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3073 	int same_flow;
3074 	int mac_len;
3075 	enum gro_result ret;
3076 
3077 	if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3078 		goto normal;
3079 
3080 	if (skb_is_gso(skb) || skb_has_frags(skb))
3081 		goto normal;
3082 
3083 	rcu_read_lock();
3084 	list_for_each_entry_rcu(ptype, head, list) {
3085 		if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3086 			continue;
3087 
3088 		skb_set_network_header(skb, skb_gro_offset(skb));
3089 		mac_len = skb->network_header - skb->mac_header;
3090 		skb->mac_len = mac_len;
3091 		NAPI_GRO_CB(skb)->same_flow = 0;
3092 		NAPI_GRO_CB(skb)->flush = 0;
3093 		NAPI_GRO_CB(skb)->free = 0;
3094 
3095 		pp = ptype->gro_receive(&napi->gro_list, skb);
3096 		break;
3097 	}
3098 	rcu_read_unlock();
3099 
3100 	if (&ptype->list == head)
3101 		goto normal;
3102 
3103 	same_flow = NAPI_GRO_CB(skb)->same_flow;
3104 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3105 
3106 	if (pp) {
3107 		struct sk_buff *nskb = *pp;
3108 
3109 		*pp = nskb->next;
3110 		nskb->next = NULL;
3111 		napi_gro_complete(nskb);
3112 		napi->gro_count--;
3113 	}
3114 
3115 	if (same_flow)
3116 		goto ok;
3117 
3118 	if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3119 		goto normal;
3120 
3121 	napi->gro_count++;
3122 	NAPI_GRO_CB(skb)->count = 1;
3123 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3124 	skb->next = napi->gro_list;
3125 	napi->gro_list = skb;
3126 	ret = GRO_HELD;
3127 
3128 pull:
3129 	if (skb_headlen(skb) < skb_gro_offset(skb)) {
3130 		int grow = skb_gro_offset(skb) - skb_headlen(skb);
3131 
3132 		BUG_ON(skb->end - skb->tail < grow);
3133 
3134 		memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3135 
3136 		skb->tail += grow;
3137 		skb->data_len -= grow;
3138 
3139 		skb_shinfo(skb)->frags[0].page_offset += grow;
3140 		skb_shinfo(skb)->frags[0].size -= grow;
3141 
3142 		if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3143 			put_page(skb_shinfo(skb)->frags[0].page);
3144 			memmove(skb_shinfo(skb)->frags,
3145 				skb_shinfo(skb)->frags + 1,
3146 				--skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3147 		}
3148 	}
3149 
3150 ok:
3151 	return ret;
3152 
3153 normal:
3154 	ret = GRO_NORMAL;
3155 	goto pull;
3156 }
3157 EXPORT_SYMBOL(dev_gro_receive);
3158 
3159 static gro_result_t
3160 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3161 {
3162 	struct sk_buff *p;
3163 
3164 	for (p = napi->gro_list; p; p = p->next) {
3165 		NAPI_GRO_CB(p)->same_flow =
3166 			(p->dev == skb->dev) &&
3167 			!compare_ether_header(skb_mac_header(p),
3168 					      skb_gro_mac_header(skb));
3169 		NAPI_GRO_CB(p)->flush = 0;
3170 	}
3171 
3172 	return dev_gro_receive(napi, skb);
3173 }
3174 
3175 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3176 {
3177 	switch (ret) {
3178 	case GRO_NORMAL:
3179 		if (netif_receive_skb(skb))
3180 			ret = GRO_DROP;
3181 		break;
3182 
3183 	case GRO_DROP:
3184 	case GRO_MERGED_FREE:
3185 		kfree_skb(skb);
3186 		break;
3187 
3188 	case GRO_HELD:
3189 	case GRO_MERGED:
3190 		break;
3191 	}
3192 
3193 	return ret;
3194 }
3195 EXPORT_SYMBOL(napi_skb_finish);
3196 
3197 void skb_gro_reset_offset(struct sk_buff *skb)
3198 {
3199 	NAPI_GRO_CB(skb)->data_offset = 0;
3200 	NAPI_GRO_CB(skb)->frag0 = NULL;
3201 	NAPI_GRO_CB(skb)->frag0_len = 0;
3202 
3203 	if (skb->mac_header == skb->tail &&
3204 	    !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3205 		NAPI_GRO_CB(skb)->frag0 =
3206 			page_address(skb_shinfo(skb)->frags[0].page) +
3207 			skb_shinfo(skb)->frags[0].page_offset;
3208 		NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3209 	}
3210 }
3211 EXPORT_SYMBOL(skb_gro_reset_offset);
3212 
3213 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3214 {
3215 	skb_gro_reset_offset(skb);
3216 
3217 	return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3218 }
3219 EXPORT_SYMBOL(napi_gro_receive);
3220 
3221 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3222 {
3223 	__skb_pull(skb, skb_headlen(skb));
3224 	skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3225 
3226 	napi->skb = skb;
3227 }
3228 EXPORT_SYMBOL(napi_reuse_skb);
3229 
3230 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3231 {
3232 	struct sk_buff *skb = napi->skb;
3233 
3234 	if (!skb) {
3235 		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3236 		if (skb)
3237 			napi->skb = skb;
3238 	}
3239 	return skb;
3240 }
3241 EXPORT_SYMBOL(napi_get_frags);
3242 
3243 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3244 			       gro_result_t ret)
3245 {
3246 	switch (ret) {
3247 	case GRO_NORMAL:
3248 	case GRO_HELD:
3249 		skb->protocol = eth_type_trans(skb, skb->dev);
3250 
3251 		if (ret == GRO_HELD)
3252 			skb_gro_pull(skb, -ETH_HLEN);
3253 		else if (netif_receive_skb(skb))
3254 			ret = GRO_DROP;
3255 		break;
3256 
3257 	case GRO_DROP:
3258 	case GRO_MERGED_FREE:
3259 		napi_reuse_skb(napi, skb);
3260 		break;
3261 
3262 	case GRO_MERGED:
3263 		break;
3264 	}
3265 
3266 	return ret;
3267 }
3268 EXPORT_SYMBOL(napi_frags_finish);
3269 
3270 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3271 {
3272 	struct sk_buff *skb = napi->skb;
3273 	struct ethhdr *eth;
3274 	unsigned int hlen;
3275 	unsigned int off;
3276 
3277 	napi->skb = NULL;
3278 
3279 	skb_reset_mac_header(skb);
3280 	skb_gro_reset_offset(skb);
3281 
3282 	off = skb_gro_offset(skb);
3283 	hlen = off + sizeof(*eth);
3284 	eth = skb_gro_header_fast(skb, off);
3285 	if (skb_gro_header_hard(skb, hlen)) {
3286 		eth = skb_gro_header_slow(skb, hlen, off);
3287 		if (unlikely(!eth)) {
3288 			napi_reuse_skb(napi, skb);
3289 			skb = NULL;
3290 			goto out;
3291 		}
3292 	}
3293 
3294 	skb_gro_pull(skb, sizeof(*eth));
3295 
3296 	/*
3297 	 * This works because the only protocols we care about don't require
3298 	 * special handling.  We'll fix it up properly at the end.
3299 	 */
3300 	skb->protocol = eth->h_proto;
3301 
3302 out:
3303 	return skb;
3304 }
3305 EXPORT_SYMBOL(napi_frags_skb);
3306 
3307 gro_result_t napi_gro_frags(struct napi_struct *napi)
3308 {
3309 	struct sk_buff *skb = napi_frags_skb(napi);
3310 
3311 	if (!skb)
3312 		return GRO_DROP;
3313 
3314 	return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3315 }
3316 EXPORT_SYMBOL(napi_gro_frags);
3317 
3318 /*
3319  * net_rps_action sends any pending IPI's for rps.
3320  * Note: called with local irq disabled, but exits with local irq enabled.
3321  */
3322 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3323 {
3324 #ifdef CONFIG_RPS
3325 	struct softnet_data *remsd = sd->rps_ipi_list;
3326 
3327 	if (remsd) {
3328 		sd->rps_ipi_list = NULL;
3329 
3330 		local_irq_enable();
3331 
3332 		/* Send pending IPI's to kick RPS processing on remote cpus. */
3333 		while (remsd) {
3334 			struct softnet_data *next = remsd->rps_ipi_next;
3335 
3336 			if (cpu_online(remsd->cpu))
3337 				__smp_call_function_single(remsd->cpu,
3338 							   &remsd->csd, 0);
3339 			remsd = next;
3340 		}
3341 	} else
3342 #endif
3343 		local_irq_enable();
3344 }
3345 
3346 static int process_backlog(struct napi_struct *napi, int quota)
3347 {
3348 	int work = 0;
3349 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3350 
3351 #ifdef CONFIG_RPS
3352 	/* Check if we have pending ipi, its better to send them now,
3353 	 * not waiting net_rx_action() end.
3354 	 */
3355 	if (sd->rps_ipi_list) {
3356 		local_irq_disable();
3357 		net_rps_action_and_irq_enable(sd);
3358 	}
3359 #endif
3360 	napi->weight = weight_p;
3361 	local_irq_disable();
3362 	while (work < quota) {
3363 		struct sk_buff *skb;
3364 		unsigned int qlen;
3365 
3366 		while ((skb = __skb_dequeue(&sd->process_queue))) {
3367 			local_irq_enable();
3368 			__netif_receive_skb(skb);
3369 			local_irq_disable();
3370 			input_queue_head_incr(sd);
3371 			if (++work >= quota) {
3372 				local_irq_enable();
3373 				return work;
3374 			}
3375 		}
3376 
3377 		rps_lock(sd);
3378 		qlen = skb_queue_len(&sd->input_pkt_queue);
3379 		if (qlen)
3380 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
3381 						   &sd->process_queue);
3382 
3383 		if (qlen < quota - work) {
3384 			/*
3385 			 * Inline a custom version of __napi_complete().
3386 			 * only current cpu owns and manipulates this napi,
3387 			 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3388 			 * we can use a plain write instead of clear_bit(),
3389 			 * and we dont need an smp_mb() memory barrier.
3390 			 */
3391 			list_del(&napi->poll_list);
3392 			napi->state = 0;
3393 
3394 			quota = work + qlen;
3395 		}
3396 		rps_unlock(sd);
3397 	}
3398 	local_irq_enable();
3399 
3400 	return work;
3401 }
3402 
3403 /**
3404  * __napi_schedule - schedule for receive
3405  * @n: entry to schedule
3406  *
3407  * The entry's receive function will be scheduled to run
3408  */
3409 void __napi_schedule(struct napi_struct *n)
3410 {
3411 	unsigned long flags;
3412 
3413 	local_irq_save(flags);
3414 	____napi_schedule(&__get_cpu_var(softnet_data), n);
3415 	local_irq_restore(flags);
3416 }
3417 EXPORT_SYMBOL(__napi_schedule);
3418 
3419 void __napi_complete(struct napi_struct *n)
3420 {
3421 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3422 	BUG_ON(n->gro_list);
3423 
3424 	list_del(&n->poll_list);
3425 	smp_mb__before_clear_bit();
3426 	clear_bit(NAPI_STATE_SCHED, &n->state);
3427 }
3428 EXPORT_SYMBOL(__napi_complete);
3429 
3430 void napi_complete(struct napi_struct *n)
3431 {
3432 	unsigned long flags;
3433 
3434 	/*
3435 	 * don't let napi dequeue from the cpu poll list
3436 	 * just in case its running on a different cpu
3437 	 */
3438 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3439 		return;
3440 
3441 	napi_gro_flush(n);
3442 	local_irq_save(flags);
3443 	__napi_complete(n);
3444 	local_irq_restore(flags);
3445 }
3446 EXPORT_SYMBOL(napi_complete);
3447 
3448 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3449 		    int (*poll)(struct napi_struct *, int), int weight)
3450 {
3451 	INIT_LIST_HEAD(&napi->poll_list);
3452 	napi->gro_count = 0;
3453 	napi->gro_list = NULL;
3454 	napi->skb = NULL;
3455 	napi->poll = poll;
3456 	napi->weight = weight;
3457 	list_add(&napi->dev_list, &dev->napi_list);
3458 	napi->dev = dev;
3459 #ifdef CONFIG_NETPOLL
3460 	spin_lock_init(&napi->poll_lock);
3461 	napi->poll_owner = -1;
3462 #endif
3463 	set_bit(NAPI_STATE_SCHED, &napi->state);
3464 }
3465 EXPORT_SYMBOL(netif_napi_add);
3466 
3467 void netif_napi_del(struct napi_struct *napi)
3468 {
3469 	struct sk_buff *skb, *next;
3470 
3471 	list_del_init(&napi->dev_list);
3472 	napi_free_frags(napi);
3473 
3474 	for (skb = napi->gro_list; skb; skb = next) {
3475 		next = skb->next;
3476 		skb->next = NULL;
3477 		kfree_skb(skb);
3478 	}
3479 
3480 	napi->gro_list = NULL;
3481 	napi->gro_count = 0;
3482 }
3483 EXPORT_SYMBOL(netif_napi_del);
3484 
3485 static void net_rx_action(struct softirq_action *h)
3486 {
3487 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3488 	unsigned long time_limit = jiffies + 2;
3489 	int budget = netdev_budget;
3490 	void *have;
3491 
3492 	local_irq_disable();
3493 
3494 	while (!list_empty(&sd->poll_list)) {
3495 		struct napi_struct *n;
3496 		int work, weight;
3497 
3498 		/* If softirq window is exhuasted then punt.
3499 		 * Allow this to run for 2 jiffies since which will allow
3500 		 * an average latency of 1.5/HZ.
3501 		 */
3502 		if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3503 			goto softnet_break;
3504 
3505 		local_irq_enable();
3506 
3507 		/* Even though interrupts have been re-enabled, this
3508 		 * access is safe because interrupts can only add new
3509 		 * entries to the tail of this list, and only ->poll()
3510 		 * calls can remove this head entry from the list.
3511 		 */
3512 		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3513 
3514 		have = netpoll_poll_lock(n);
3515 
3516 		weight = n->weight;
3517 
3518 		/* This NAPI_STATE_SCHED test is for avoiding a race
3519 		 * with netpoll's poll_napi().  Only the entity which
3520 		 * obtains the lock and sees NAPI_STATE_SCHED set will
3521 		 * actually make the ->poll() call.  Therefore we avoid
3522 		 * accidently calling ->poll() when NAPI is not scheduled.
3523 		 */
3524 		work = 0;
3525 		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3526 			work = n->poll(n, weight);
3527 			trace_napi_poll(n);
3528 		}
3529 
3530 		WARN_ON_ONCE(work > weight);
3531 
3532 		budget -= work;
3533 
3534 		local_irq_disable();
3535 
3536 		/* Drivers must not modify the NAPI state if they
3537 		 * consume the entire weight.  In such cases this code
3538 		 * still "owns" the NAPI instance and therefore can
3539 		 * move the instance around on the list at-will.
3540 		 */
3541 		if (unlikely(work == weight)) {
3542 			if (unlikely(napi_disable_pending(n))) {
3543 				local_irq_enable();
3544 				napi_complete(n);
3545 				local_irq_disable();
3546 			} else
3547 				list_move_tail(&n->poll_list, &sd->poll_list);
3548 		}
3549 
3550 		netpoll_poll_unlock(have);
3551 	}
3552 out:
3553 	net_rps_action_and_irq_enable(sd);
3554 
3555 #ifdef CONFIG_NET_DMA
3556 	/*
3557 	 * There may not be any more sk_buffs coming right now, so push
3558 	 * any pending DMA copies to hardware
3559 	 */
3560 	dma_issue_pending_all();
3561 #endif
3562 
3563 	return;
3564 
3565 softnet_break:
3566 	sd->time_squeeze++;
3567 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3568 	goto out;
3569 }
3570 
3571 static gifconf_func_t *gifconf_list[NPROTO];
3572 
3573 /**
3574  *	register_gifconf	-	register a SIOCGIF handler
3575  *	@family: Address family
3576  *	@gifconf: Function handler
3577  *
3578  *	Register protocol dependent address dumping routines. The handler
3579  *	that is passed must not be freed or reused until it has been replaced
3580  *	by another handler.
3581  */
3582 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3583 {
3584 	if (family >= NPROTO)
3585 		return -EINVAL;
3586 	gifconf_list[family] = gifconf;
3587 	return 0;
3588 }
3589 EXPORT_SYMBOL(register_gifconf);
3590 
3591 
3592 /*
3593  *	Map an interface index to its name (SIOCGIFNAME)
3594  */
3595 
3596 /*
3597  *	We need this ioctl for efficient implementation of the
3598  *	if_indextoname() function required by the IPv6 API.  Without
3599  *	it, we would have to search all the interfaces to find a
3600  *	match.  --pb
3601  */
3602 
3603 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3604 {
3605 	struct net_device *dev;
3606 	struct ifreq ifr;
3607 
3608 	/*
3609 	 *	Fetch the caller's info block.
3610 	 */
3611 
3612 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3613 		return -EFAULT;
3614 
3615 	rcu_read_lock();
3616 	dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3617 	if (!dev) {
3618 		rcu_read_unlock();
3619 		return -ENODEV;
3620 	}
3621 
3622 	strcpy(ifr.ifr_name, dev->name);
3623 	rcu_read_unlock();
3624 
3625 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3626 		return -EFAULT;
3627 	return 0;
3628 }
3629 
3630 /*
3631  *	Perform a SIOCGIFCONF call. This structure will change
3632  *	size eventually, and there is nothing I can do about it.
3633  *	Thus we will need a 'compatibility mode'.
3634  */
3635 
3636 static int dev_ifconf(struct net *net, char __user *arg)
3637 {
3638 	struct ifconf ifc;
3639 	struct net_device *dev;
3640 	char __user *pos;
3641 	int len;
3642 	int total;
3643 	int i;
3644 
3645 	/*
3646 	 *	Fetch the caller's info block.
3647 	 */
3648 
3649 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3650 		return -EFAULT;
3651 
3652 	pos = ifc.ifc_buf;
3653 	len = ifc.ifc_len;
3654 
3655 	/*
3656 	 *	Loop over the interfaces, and write an info block for each.
3657 	 */
3658 
3659 	total = 0;
3660 	for_each_netdev(net, dev) {
3661 		for (i = 0; i < NPROTO; i++) {
3662 			if (gifconf_list[i]) {
3663 				int done;
3664 				if (!pos)
3665 					done = gifconf_list[i](dev, NULL, 0);
3666 				else
3667 					done = gifconf_list[i](dev, pos + total,
3668 							       len - total);
3669 				if (done < 0)
3670 					return -EFAULT;
3671 				total += done;
3672 			}
3673 		}
3674 	}
3675 
3676 	/*
3677 	 *	All done.  Write the updated control block back to the caller.
3678 	 */
3679 	ifc.ifc_len = total;
3680 
3681 	/*
3682 	 * 	Both BSD and Solaris return 0 here, so we do too.
3683 	 */
3684 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3685 }
3686 
3687 #ifdef CONFIG_PROC_FS
3688 /*
3689  *	This is invoked by the /proc filesystem handler to display a device
3690  *	in detail.
3691  */
3692 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3693 	__acquires(RCU)
3694 {
3695 	struct net *net = seq_file_net(seq);
3696 	loff_t off;
3697 	struct net_device *dev;
3698 
3699 	rcu_read_lock();
3700 	if (!*pos)
3701 		return SEQ_START_TOKEN;
3702 
3703 	off = 1;
3704 	for_each_netdev_rcu(net, dev)
3705 		if (off++ == *pos)
3706 			return dev;
3707 
3708 	return NULL;
3709 }
3710 
3711 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3712 {
3713 	struct net_device *dev = (v == SEQ_START_TOKEN) ?
3714 				  first_net_device(seq_file_net(seq)) :
3715 				  next_net_device((struct net_device *)v);
3716 
3717 	++*pos;
3718 	return rcu_dereference(dev);
3719 }
3720 
3721 void dev_seq_stop(struct seq_file *seq, void *v)
3722 	__releases(RCU)
3723 {
3724 	rcu_read_unlock();
3725 }
3726 
3727 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3728 {
3729 	struct rtnl_link_stats64 temp;
3730 	const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
3731 
3732 	seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
3733 		   "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
3734 		   dev->name, stats->rx_bytes, stats->rx_packets,
3735 		   stats->rx_errors,
3736 		   stats->rx_dropped + stats->rx_missed_errors,
3737 		   stats->rx_fifo_errors,
3738 		   stats->rx_length_errors + stats->rx_over_errors +
3739 		    stats->rx_crc_errors + stats->rx_frame_errors,
3740 		   stats->rx_compressed, stats->multicast,
3741 		   stats->tx_bytes, stats->tx_packets,
3742 		   stats->tx_errors, stats->tx_dropped,
3743 		   stats->tx_fifo_errors, stats->collisions,
3744 		   stats->tx_carrier_errors +
3745 		    stats->tx_aborted_errors +
3746 		    stats->tx_window_errors +
3747 		    stats->tx_heartbeat_errors,
3748 		   stats->tx_compressed);
3749 }
3750 
3751 /*
3752  *	Called from the PROCfs module. This now uses the new arbitrary sized
3753  *	/proc/net interface to create /proc/net/dev
3754  */
3755 static int dev_seq_show(struct seq_file *seq, void *v)
3756 {
3757 	if (v == SEQ_START_TOKEN)
3758 		seq_puts(seq, "Inter-|   Receive                            "
3759 			      "                    |  Transmit\n"
3760 			      " face |bytes    packets errs drop fifo frame "
3761 			      "compressed multicast|bytes    packets errs "
3762 			      "drop fifo colls carrier compressed\n");
3763 	else
3764 		dev_seq_printf_stats(seq, v);
3765 	return 0;
3766 }
3767 
3768 static struct softnet_data *softnet_get_online(loff_t *pos)
3769 {
3770 	struct softnet_data *sd = NULL;
3771 
3772 	while (*pos < nr_cpu_ids)
3773 		if (cpu_online(*pos)) {
3774 			sd = &per_cpu(softnet_data, *pos);
3775 			break;
3776 		} else
3777 			++*pos;
3778 	return sd;
3779 }
3780 
3781 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3782 {
3783 	return softnet_get_online(pos);
3784 }
3785 
3786 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3787 {
3788 	++*pos;
3789 	return softnet_get_online(pos);
3790 }
3791 
3792 static void softnet_seq_stop(struct seq_file *seq, void *v)
3793 {
3794 }
3795 
3796 static int softnet_seq_show(struct seq_file *seq, void *v)
3797 {
3798 	struct softnet_data *sd = v;
3799 
3800 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3801 		   sd->processed, sd->dropped, sd->time_squeeze, 0,
3802 		   0, 0, 0, 0, /* was fastroute */
3803 		   sd->cpu_collision, sd->received_rps);
3804 	return 0;
3805 }
3806 
3807 static const struct seq_operations dev_seq_ops = {
3808 	.start = dev_seq_start,
3809 	.next  = dev_seq_next,
3810 	.stop  = dev_seq_stop,
3811 	.show  = dev_seq_show,
3812 };
3813 
3814 static int dev_seq_open(struct inode *inode, struct file *file)
3815 {
3816 	return seq_open_net(inode, file, &dev_seq_ops,
3817 			    sizeof(struct seq_net_private));
3818 }
3819 
3820 static const struct file_operations dev_seq_fops = {
3821 	.owner	 = THIS_MODULE,
3822 	.open    = dev_seq_open,
3823 	.read    = seq_read,
3824 	.llseek  = seq_lseek,
3825 	.release = seq_release_net,
3826 };
3827 
3828 static const struct seq_operations softnet_seq_ops = {
3829 	.start = softnet_seq_start,
3830 	.next  = softnet_seq_next,
3831 	.stop  = softnet_seq_stop,
3832 	.show  = softnet_seq_show,
3833 };
3834 
3835 static int softnet_seq_open(struct inode *inode, struct file *file)
3836 {
3837 	return seq_open(file, &softnet_seq_ops);
3838 }
3839 
3840 static const struct file_operations softnet_seq_fops = {
3841 	.owner	 = THIS_MODULE,
3842 	.open    = softnet_seq_open,
3843 	.read    = seq_read,
3844 	.llseek  = seq_lseek,
3845 	.release = seq_release,
3846 };
3847 
3848 static void *ptype_get_idx(loff_t pos)
3849 {
3850 	struct packet_type *pt = NULL;
3851 	loff_t i = 0;
3852 	int t;
3853 
3854 	list_for_each_entry_rcu(pt, &ptype_all, list) {
3855 		if (i == pos)
3856 			return pt;
3857 		++i;
3858 	}
3859 
3860 	for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3861 		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3862 			if (i == pos)
3863 				return pt;
3864 			++i;
3865 		}
3866 	}
3867 	return NULL;
3868 }
3869 
3870 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3871 	__acquires(RCU)
3872 {
3873 	rcu_read_lock();
3874 	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3875 }
3876 
3877 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3878 {
3879 	struct packet_type *pt;
3880 	struct list_head *nxt;
3881 	int hash;
3882 
3883 	++*pos;
3884 	if (v == SEQ_START_TOKEN)
3885 		return ptype_get_idx(0);
3886 
3887 	pt = v;
3888 	nxt = pt->list.next;
3889 	if (pt->type == htons(ETH_P_ALL)) {
3890 		if (nxt != &ptype_all)
3891 			goto found;
3892 		hash = 0;
3893 		nxt = ptype_base[0].next;
3894 	} else
3895 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3896 
3897 	while (nxt == &ptype_base[hash]) {
3898 		if (++hash >= PTYPE_HASH_SIZE)
3899 			return NULL;
3900 		nxt = ptype_base[hash].next;
3901 	}
3902 found:
3903 	return list_entry(nxt, struct packet_type, list);
3904 }
3905 
3906 static void ptype_seq_stop(struct seq_file *seq, void *v)
3907 	__releases(RCU)
3908 {
3909 	rcu_read_unlock();
3910 }
3911 
3912 static int ptype_seq_show(struct seq_file *seq, void *v)
3913 {
3914 	struct packet_type *pt = v;
3915 
3916 	if (v == SEQ_START_TOKEN)
3917 		seq_puts(seq, "Type Device      Function\n");
3918 	else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3919 		if (pt->type == htons(ETH_P_ALL))
3920 			seq_puts(seq, "ALL ");
3921 		else
3922 			seq_printf(seq, "%04x", ntohs(pt->type));
3923 
3924 		seq_printf(seq, " %-8s %pF\n",
3925 			   pt->dev ? pt->dev->name : "", pt->func);
3926 	}
3927 
3928 	return 0;
3929 }
3930 
3931 static const struct seq_operations ptype_seq_ops = {
3932 	.start = ptype_seq_start,
3933 	.next  = ptype_seq_next,
3934 	.stop  = ptype_seq_stop,
3935 	.show  = ptype_seq_show,
3936 };
3937 
3938 static int ptype_seq_open(struct inode *inode, struct file *file)
3939 {
3940 	return seq_open_net(inode, file, &ptype_seq_ops,
3941 			sizeof(struct seq_net_private));
3942 }
3943 
3944 static const struct file_operations ptype_seq_fops = {
3945 	.owner	 = THIS_MODULE,
3946 	.open    = ptype_seq_open,
3947 	.read    = seq_read,
3948 	.llseek  = seq_lseek,
3949 	.release = seq_release_net,
3950 };
3951 
3952 
3953 static int __net_init dev_proc_net_init(struct net *net)
3954 {
3955 	int rc = -ENOMEM;
3956 
3957 	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3958 		goto out;
3959 	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3960 		goto out_dev;
3961 	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3962 		goto out_softnet;
3963 
3964 	if (wext_proc_init(net))
3965 		goto out_ptype;
3966 	rc = 0;
3967 out:
3968 	return rc;
3969 out_ptype:
3970 	proc_net_remove(net, "ptype");
3971 out_softnet:
3972 	proc_net_remove(net, "softnet_stat");
3973 out_dev:
3974 	proc_net_remove(net, "dev");
3975 	goto out;
3976 }
3977 
3978 static void __net_exit dev_proc_net_exit(struct net *net)
3979 {
3980 	wext_proc_exit(net);
3981 
3982 	proc_net_remove(net, "ptype");
3983 	proc_net_remove(net, "softnet_stat");
3984 	proc_net_remove(net, "dev");
3985 }
3986 
3987 static struct pernet_operations __net_initdata dev_proc_ops = {
3988 	.init = dev_proc_net_init,
3989 	.exit = dev_proc_net_exit,
3990 };
3991 
3992 static int __init dev_proc_init(void)
3993 {
3994 	return register_pernet_subsys(&dev_proc_ops);
3995 }
3996 #else
3997 #define dev_proc_init() 0
3998 #endif	/* CONFIG_PROC_FS */
3999 
4000 
4001 /**
4002  *	netdev_set_master	-	set up master/slave pair
4003  *	@slave: slave device
4004  *	@master: new master device
4005  *
4006  *	Changes the master device of the slave. Pass %NULL to break the
4007  *	bonding. The caller must hold the RTNL semaphore. On a failure
4008  *	a negative errno code is returned. On success the reference counts
4009  *	are adjusted, %RTM_NEWLINK is sent to the routing socket and the
4010  *	function returns zero.
4011  */
4012 int netdev_set_master(struct net_device *slave, struct net_device *master)
4013 {
4014 	struct net_device *old = slave->master;
4015 
4016 	ASSERT_RTNL();
4017 
4018 	if (master) {
4019 		if (old)
4020 			return -EBUSY;
4021 		dev_hold(master);
4022 	}
4023 
4024 	slave->master = master;
4025 
4026 	if (old) {
4027 		synchronize_net();
4028 		dev_put(old);
4029 	}
4030 	if (master)
4031 		slave->flags |= IFF_SLAVE;
4032 	else
4033 		slave->flags &= ~IFF_SLAVE;
4034 
4035 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4036 	return 0;
4037 }
4038 EXPORT_SYMBOL(netdev_set_master);
4039 
4040 static void dev_change_rx_flags(struct net_device *dev, int flags)
4041 {
4042 	const struct net_device_ops *ops = dev->netdev_ops;
4043 
4044 	if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4045 		ops->ndo_change_rx_flags(dev, flags);
4046 }
4047 
4048 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4049 {
4050 	unsigned short old_flags = dev->flags;
4051 	uid_t uid;
4052 	gid_t gid;
4053 
4054 	ASSERT_RTNL();
4055 
4056 	dev->flags |= IFF_PROMISC;
4057 	dev->promiscuity += inc;
4058 	if (dev->promiscuity == 0) {
4059 		/*
4060 		 * Avoid overflow.
4061 		 * If inc causes overflow, untouch promisc and return error.
4062 		 */
4063 		if (inc < 0)
4064 			dev->flags &= ~IFF_PROMISC;
4065 		else {
4066 			dev->promiscuity -= inc;
4067 			printk(KERN_WARNING "%s: promiscuity touches roof, "
4068 				"set promiscuity failed, promiscuity feature "
4069 				"of device might be broken.\n", dev->name);
4070 			return -EOVERFLOW;
4071 		}
4072 	}
4073 	if (dev->flags != old_flags) {
4074 		printk(KERN_INFO "device %s %s promiscuous mode\n",
4075 		       dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4076 							       "left");
4077 		if (audit_enabled) {
4078 			current_uid_gid(&uid, &gid);
4079 			audit_log(current->audit_context, GFP_ATOMIC,
4080 				AUDIT_ANOM_PROMISCUOUS,
4081 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4082 				dev->name, (dev->flags & IFF_PROMISC),
4083 				(old_flags & IFF_PROMISC),
4084 				audit_get_loginuid(current),
4085 				uid, gid,
4086 				audit_get_sessionid(current));
4087 		}
4088 
4089 		dev_change_rx_flags(dev, IFF_PROMISC);
4090 	}
4091 	return 0;
4092 }
4093 
4094 /**
4095  *	dev_set_promiscuity	- update promiscuity count on a device
4096  *	@dev: device
4097  *	@inc: modifier
4098  *
4099  *	Add or remove promiscuity from a device. While the count in the device
4100  *	remains above zero the interface remains promiscuous. Once it hits zero
4101  *	the device reverts back to normal filtering operation. A negative inc
4102  *	value is used to drop promiscuity on the device.
4103  *	Return 0 if successful or a negative errno code on error.
4104  */
4105 int dev_set_promiscuity(struct net_device *dev, int inc)
4106 {
4107 	unsigned short old_flags = dev->flags;
4108 	int err;
4109 
4110 	err = __dev_set_promiscuity(dev, inc);
4111 	if (err < 0)
4112 		return err;
4113 	if (dev->flags != old_flags)
4114 		dev_set_rx_mode(dev);
4115 	return err;
4116 }
4117 EXPORT_SYMBOL(dev_set_promiscuity);
4118 
4119 /**
4120  *	dev_set_allmulti	- update allmulti count on a device
4121  *	@dev: device
4122  *	@inc: modifier
4123  *
4124  *	Add or remove reception of all multicast frames to a device. While the
4125  *	count in the device remains above zero the interface remains listening
4126  *	to all interfaces. Once it hits zero the device reverts back to normal
4127  *	filtering operation. A negative @inc value is used to drop the counter
4128  *	when releasing a resource needing all multicasts.
4129  *	Return 0 if successful or a negative errno code on error.
4130  */
4131 
4132 int dev_set_allmulti(struct net_device *dev, int inc)
4133 {
4134 	unsigned short old_flags = dev->flags;
4135 
4136 	ASSERT_RTNL();
4137 
4138 	dev->flags |= IFF_ALLMULTI;
4139 	dev->allmulti += inc;
4140 	if (dev->allmulti == 0) {
4141 		/*
4142 		 * Avoid overflow.
4143 		 * If inc causes overflow, untouch allmulti and return error.
4144 		 */
4145 		if (inc < 0)
4146 			dev->flags &= ~IFF_ALLMULTI;
4147 		else {
4148 			dev->allmulti -= inc;
4149 			printk(KERN_WARNING "%s: allmulti touches roof, "
4150 				"set allmulti failed, allmulti feature of "
4151 				"device might be broken.\n", dev->name);
4152 			return -EOVERFLOW;
4153 		}
4154 	}
4155 	if (dev->flags ^ old_flags) {
4156 		dev_change_rx_flags(dev, IFF_ALLMULTI);
4157 		dev_set_rx_mode(dev);
4158 	}
4159 	return 0;
4160 }
4161 EXPORT_SYMBOL(dev_set_allmulti);
4162 
4163 /*
4164  *	Upload unicast and multicast address lists to device and
4165  *	configure RX filtering. When the device doesn't support unicast
4166  *	filtering it is put in promiscuous mode while unicast addresses
4167  *	are present.
4168  */
4169 void __dev_set_rx_mode(struct net_device *dev)
4170 {
4171 	const struct net_device_ops *ops = dev->netdev_ops;
4172 
4173 	/* dev_open will call this function so the list will stay sane. */
4174 	if (!(dev->flags&IFF_UP))
4175 		return;
4176 
4177 	if (!netif_device_present(dev))
4178 		return;
4179 
4180 	if (ops->ndo_set_rx_mode)
4181 		ops->ndo_set_rx_mode(dev);
4182 	else {
4183 		/* Unicast addresses changes may only happen under the rtnl,
4184 		 * therefore calling __dev_set_promiscuity here is safe.
4185 		 */
4186 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4187 			__dev_set_promiscuity(dev, 1);
4188 			dev->uc_promisc = 1;
4189 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4190 			__dev_set_promiscuity(dev, -1);
4191 			dev->uc_promisc = 0;
4192 		}
4193 
4194 		if (ops->ndo_set_multicast_list)
4195 			ops->ndo_set_multicast_list(dev);
4196 	}
4197 }
4198 
4199 void dev_set_rx_mode(struct net_device *dev)
4200 {
4201 	netif_addr_lock_bh(dev);
4202 	__dev_set_rx_mode(dev);
4203 	netif_addr_unlock_bh(dev);
4204 }
4205 
4206 /**
4207  *	dev_get_flags - get flags reported to userspace
4208  *	@dev: device
4209  *
4210  *	Get the combination of flag bits exported through APIs to userspace.
4211  */
4212 unsigned dev_get_flags(const struct net_device *dev)
4213 {
4214 	unsigned flags;
4215 
4216 	flags = (dev->flags & ~(IFF_PROMISC |
4217 				IFF_ALLMULTI |
4218 				IFF_RUNNING |
4219 				IFF_LOWER_UP |
4220 				IFF_DORMANT)) |
4221 		(dev->gflags & (IFF_PROMISC |
4222 				IFF_ALLMULTI));
4223 
4224 	if (netif_running(dev)) {
4225 		if (netif_oper_up(dev))
4226 			flags |= IFF_RUNNING;
4227 		if (netif_carrier_ok(dev))
4228 			flags |= IFF_LOWER_UP;
4229 		if (netif_dormant(dev))
4230 			flags |= IFF_DORMANT;
4231 	}
4232 
4233 	return flags;
4234 }
4235 EXPORT_SYMBOL(dev_get_flags);
4236 
4237 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4238 {
4239 	int old_flags = dev->flags;
4240 	int ret;
4241 
4242 	ASSERT_RTNL();
4243 
4244 	/*
4245 	 *	Set the flags on our device.
4246 	 */
4247 
4248 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4249 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4250 			       IFF_AUTOMEDIA)) |
4251 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4252 				    IFF_ALLMULTI));
4253 
4254 	/*
4255 	 *	Load in the correct multicast list now the flags have changed.
4256 	 */
4257 
4258 	if ((old_flags ^ flags) & IFF_MULTICAST)
4259 		dev_change_rx_flags(dev, IFF_MULTICAST);
4260 
4261 	dev_set_rx_mode(dev);
4262 
4263 	/*
4264 	 *	Have we downed the interface. We handle IFF_UP ourselves
4265 	 *	according to user attempts to set it, rather than blindly
4266 	 *	setting it.
4267 	 */
4268 
4269 	ret = 0;
4270 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
4271 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4272 
4273 		if (!ret)
4274 			dev_set_rx_mode(dev);
4275 	}
4276 
4277 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
4278 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
4279 
4280 		dev->gflags ^= IFF_PROMISC;
4281 		dev_set_promiscuity(dev, inc);
4282 	}
4283 
4284 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4285 	   is important. Some (broken) drivers set IFF_PROMISC, when
4286 	   IFF_ALLMULTI is requested not asking us and not reporting.
4287 	 */
4288 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4289 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4290 
4291 		dev->gflags ^= IFF_ALLMULTI;
4292 		dev_set_allmulti(dev, inc);
4293 	}
4294 
4295 	return ret;
4296 }
4297 
4298 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4299 {
4300 	unsigned int changes = dev->flags ^ old_flags;
4301 
4302 	if (changes & IFF_UP) {
4303 		if (dev->flags & IFF_UP)
4304 			call_netdevice_notifiers(NETDEV_UP, dev);
4305 		else
4306 			call_netdevice_notifiers(NETDEV_DOWN, dev);
4307 	}
4308 
4309 	if (dev->flags & IFF_UP &&
4310 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4311 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
4312 }
4313 
4314 /**
4315  *	dev_change_flags - change device settings
4316  *	@dev: device
4317  *	@flags: device state flags
4318  *
4319  *	Change settings on device based state flags. The flags are
4320  *	in the userspace exported format.
4321  */
4322 int dev_change_flags(struct net_device *dev, unsigned flags)
4323 {
4324 	int ret, changes;
4325 	int old_flags = dev->flags;
4326 
4327 	ret = __dev_change_flags(dev, flags);
4328 	if (ret < 0)
4329 		return ret;
4330 
4331 	changes = old_flags ^ dev->flags;
4332 	if (changes)
4333 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4334 
4335 	__dev_notify_flags(dev, old_flags);
4336 	return ret;
4337 }
4338 EXPORT_SYMBOL(dev_change_flags);
4339 
4340 /**
4341  *	dev_set_mtu - Change maximum transfer unit
4342  *	@dev: device
4343  *	@new_mtu: new transfer unit
4344  *
4345  *	Change the maximum transfer size of the network device.
4346  */
4347 int dev_set_mtu(struct net_device *dev, int new_mtu)
4348 {
4349 	const struct net_device_ops *ops = dev->netdev_ops;
4350 	int err;
4351 
4352 	if (new_mtu == dev->mtu)
4353 		return 0;
4354 
4355 	/*	MTU must be positive.	 */
4356 	if (new_mtu < 0)
4357 		return -EINVAL;
4358 
4359 	if (!netif_device_present(dev))
4360 		return -ENODEV;
4361 
4362 	err = 0;
4363 	if (ops->ndo_change_mtu)
4364 		err = ops->ndo_change_mtu(dev, new_mtu);
4365 	else
4366 		dev->mtu = new_mtu;
4367 
4368 	if (!err && dev->flags & IFF_UP)
4369 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4370 	return err;
4371 }
4372 EXPORT_SYMBOL(dev_set_mtu);
4373 
4374 /**
4375  *	dev_set_mac_address - Change Media Access Control Address
4376  *	@dev: device
4377  *	@sa: new address
4378  *
4379  *	Change the hardware (MAC) address of the device
4380  */
4381 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4382 {
4383 	const struct net_device_ops *ops = dev->netdev_ops;
4384 	int err;
4385 
4386 	if (!ops->ndo_set_mac_address)
4387 		return -EOPNOTSUPP;
4388 	if (sa->sa_family != dev->type)
4389 		return -EINVAL;
4390 	if (!netif_device_present(dev))
4391 		return -ENODEV;
4392 	err = ops->ndo_set_mac_address(dev, sa);
4393 	if (!err)
4394 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4395 	return err;
4396 }
4397 EXPORT_SYMBOL(dev_set_mac_address);
4398 
4399 /*
4400  *	Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4401  */
4402 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4403 {
4404 	int err;
4405 	struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4406 
4407 	if (!dev)
4408 		return -ENODEV;
4409 
4410 	switch (cmd) {
4411 	case SIOCGIFFLAGS:	/* Get interface flags */
4412 		ifr->ifr_flags = (short) dev_get_flags(dev);
4413 		return 0;
4414 
4415 	case SIOCGIFMETRIC:	/* Get the metric on the interface
4416 				   (currently unused) */
4417 		ifr->ifr_metric = 0;
4418 		return 0;
4419 
4420 	case SIOCGIFMTU:	/* Get the MTU of a device */
4421 		ifr->ifr_mtu = dev->mtu;
4422 		return 0;
4423 
4424 	case SIOCGIFHWADDR:
4425 		if (!dev->addr_len)
4426 			memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4427 		else
4428 			memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4429 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4430 		ifr->ifr_hwaddr.sa_family = dev->type;
4431 		return 0;
4432 
4433 	case SIOCGIFSLAVE:
4434 		err = -EINVAL;
4435 		break;
4436 
4437 	case SIOCGIFMAP:
4438 		ifr->ifr_map.mem_start = dev->mem_start;
4439 		ifr->ifr_map.mem_end   = dev->mem_end;
4440 		ifr->ifr_map.base_addr = dev->base_addr;
4441 		ifr->ifr_map.irq       = dev->irq;
4442 		ifr->ifr_map.dma       = dev->dma;
4443 		ifr->ifr_map.port      = dev->if_port;
4444 		return 0;
4445 
4446 	case SIOCGIFINDEX:
4447 		ifr->ifr_ifindex = dev->ifindex;
4448 		return 0;
4449 
4450 	case SIOCGIFTXQLEN:
4451 		ifr->ifr_qlen = dev->tx_queue_len;
4452 		return 0;
4453 
4454 	default:
4455 		/* dev_ioctl() should ensure this case
4456 		 * is never reached
4457 		 */
4458 		WARN_ON(1);
4459 		err = -EINVAL;
4460 		break;
4461 
4462 	}
4463 	return err;
4464 }
4465 
4466 /*
4467  *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
4468  */
4469 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4470 {
4471 	int err;
4472 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4473 	const struct net_device_ops *ops;
4474 
4475 	if (!dev)
4476 		return -ENODEV;
4477 
4478 	ops = dev->netdev_ops;
4479 
4480 	switch (cmd) {
4481 	case SIOCSIFFLAGS:	/* Set interface flags */
4482 		return dev_change_flags(dev, ifr->ifr_flags);
4483 
4484 	case SIOCSIFMETRIC:	/* Set the metric on the interface
4485 				   (currently unused) */
4486 		return -EOPNOTSUPP;
4487 
4488 	case SIOCSIFMTU:	/* Set the MTU of a device */
4489 		return dev_set_mtu(dev, ifr->ifr_mtu);
4490 
4491 	case SIOCSIFHWADDR:
4492 		return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4493 
4494 	case SIOCSIFHWBROADCAST:
4495 		if (ifr->ifr_hwaddr.sa_family != dev->type)
4496 			return -EINVAL;
4497 		memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4498 		       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4499 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4500 		return 0;
4501 
4502 	case SIOCSIFMAP:
4503 		if (ops->ndo_set_config) {
4504 			if (!netif_device_present(dev))
4505 				return -ENODEV;
4506 			return ops->ndo_set_config(dev, &ifr->ifr_map);
4507 		}
4508 		return -EOPNOTSUPP;
4509 
4510 	case SIOCADDMULTI:
4511 		if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4512 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4513 			return -EINVAL;
4514 		if (!netif_device_present(dev))
4515 			return -ENODEV;
4516 		return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4517 
4518 	case SIOCDELMULTI:
4519 		if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4520 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4521 			return -EINVAL;
4522 		if (!netif_device_present(dev))
4523 			return -ENODEV;
4524 		return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4525 
4526 	case SIOCSIFTXQLEN:
4527 		if (ifr->ifr_qlen < 0)
4528 			return -EINVAL;
4529 		dev->tx_queue_len = ifr->ifr_qlen;
4530 		return 0;
4531 
4532 	case SIOCSIFNAME:
4533 		ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4534 		return dev_change_name(dev, ifr->ifr_newname);
4535 
4536 	/*
4537 	 *	Unknown or private ioctl
4538 	 */
4539 	default:
4540 		if ((cmd >= SIOCDEVPRIVATE &&
4541 		    cmd <= SIOCDEVPRIVATE + 15) ||
4542 		    cmd == SIOCBONDENSLAVE ||
4543 		    cmd == SIOCBONDRELEASE ||
4544 		    cmd == SIOCBONDSETHWADDR ||
4545 		    cmd == SIOCBONDSLAVEINFOQUERY ||
4546 		    cmd == SIOCBONDINFOQUERY ||
4547 		    cmd == SIOCBONDCHANGEACTIVE ||
4548 		    cmd == SIOCGMIIPHY ||
4549 		    cmd == SIOCGMIIREG ||
4550 		    cmd == SIOCSMIIREG ||
4551 		    cmd == SIOCBRADDIF ||
4552 		    cmd == SIOCBRDELIF ||
4553 		    cmd == SIOCSHWTSTAMP ||
4554 		    cmd == SIOCWANDEV) {
4555 			err = -EOPNOTSUPP;
4556 			if (ops->ndo_do_ioctl) {
4557 				if (netif_device_present(dev))
4558 					err = ops->ndo_do_ioctl(dev, ifr, cmd);
4559 				else
4560 					err = -ENODEV;
4561 			}
4562 		} else
4563 			err = -EINVAL;
4564 
4565 	}
4566 	return err;
4567 }
4568 
4569 /*
4570  *	This function handles all "interface"-type I/O control requests. The actual
4571  *	'doing' part of this is dev_ifsioc above.
4572  */
4573 
4574 /**
4575  *	dev_ioctl	-	network device ioctl
4576  *	@net: the applicable net namespace
4577  *	@cmd: command to issue
4578  *	@arg: pointer to a struct ifreq in user space
4579  *
4580  *	Issue ioctl functions to devices. This is normally called by the
4581  *	user space syscall interfaces but can sometimes be useful for
4582  *	other purposes. The return value is the return from the syscall if
4583  *	positive or a negative errno code on error.
4584  */
4585 
4586 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4587 {
4588 	struct ifreq ifr;
4589 	int ret;
4590 	char *colon;
4591 
4592 	/* One special case: SIOCGIFCONF takes ifconf argument
4593 	   and requires shared lock, because it sleeps writing
4594 	   to user space.
4595 	 */
4596 
4597 	if (cmd == SIOCGIFCONF) {
4598 		rtnl_lock();
4599 		ret = dev_ifconf(net, (char __user *) arg);
4600 		rtnl_unlock();
4601 		return ret;
4602 	}
4603 	if (cmd == SIOCGIFNAME)
4604 		return dev_ifname(net, (struct ifreq __user *)arg);
4605 
4606 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4607 		return -EFAULT;
4608 
4609 	ifr.ifr_name[IFNAMSIZ-1] = 0;
4610 
4611 	colon = strchr(ifr.ifr_name, ':');
4612 	if (colon)
4613 		*colon = 0;
4614 
4615 	/*
4616 	 *	See which interface the caller is talking about.
4617 	 */
4618 
4619 	switch (cmd) {
4620 	/*
4621 	 *	These ioctl calls:
4622 	 *	- can be done by all.
4623 	 *	- atomic and do not require locking.
4624 	 *	- return a value
4625 	 */
4626 	case SIOCGIFFLAGS:
4627 	case SIOCGIFMETRIC:
4628 	case SIOCGIFMTU:
4629 	case SIOCGIFHWADDR:
4630 	case SIOCGIFSLAVE:
4631 	case SIOCGIFMAP:
4632 	case SIOCGIFINDEX:
4633 	case SIOCGIFTXQLEN:
4634 		dev_load(net, ifr.ifr_name);
4635 		rcu_read_lock();
4636 		ret = dev_ifsioc_locked(net, &ifr, cmd);
4637 		rcu_read_unlock();
4638 		if (!ret) {
4639 			if (colon)
4640 				*colon = ':';
4641 			if (copy_to_user(arg, &ifr,
4642 					 sizeof(struct ifreq)))
4643 				ret = -EFAULT;
4644 		}
4645 		return ret;
4646 
4647 	case SIOCETHTOOL:
4648 		dev_load(net, ifr.ifr_name);
4649 		rtnl_lock();
4650 		ret = dev_ethtool(net, &ifr);
4651 		rtnl_unlock();
4652 		if (!ret) {
4653 			if (colon)
4654 				*colon = ':';
4655 			if (copy_to_user(arg, &ifr,
4656 					 sizeof(struct ifreq)))
4657 				ret = -EFAULT;
4658 		}
4659 		return ret;
4660 
4661 	/*
4662 	 *	These ioctl calls:
4663 	 *	- require superuser power.
4664 	 *	- require strict serialization.
4665 	 *	- return a value
4666 	 */
4667 	case SIOCGMIIPHY:
4668 	case SIOCGMIIREG:
4669 	case SIOCSIFNAME:
4670 		if (!capable(CAP_NET_ADMIN))
4671 			return -EPERM;
4672 		dev_load(net, ifr.ifr_name);
4673 		rtnl_lock();
4674 		ret = dev_ifsioc(net, &ifr, cmd);
4675 		rtnl_unlock();
4676 		if (!ret) {
4677 			if (colon)
4678 				*colon = ':';
4679 			if (copy_to_user(arg, &ifr,
4680 					 sizeof(struct ifreq)))
4681 				ret = -EFAULT;
4682 		}
4683 		return ret;
4684 
4685 	/*
4686 	 *	These ioctl calls:
4687 	 *	- require superuser power.
4688 	 *	- require strict serialization.
4689 	 *	- do not return a value
4690 	 */
4691 	case SIOCSIFFLAGS:
4692 	case SIOCSIFMETRIC:
4693 	case SIOCSIFMTU:
4694 	case SIOCSIFMAP:
4695 	case SIOCSIFHWADDR:
4696 	case SIOCSIFSLAVE:
4697 	case SIOCADDMULTI:
4698 	case SIOCDELMULTI:
4699 	case SIOCSIFHWBROADCAST:
4700 	case SIOCSIFTXQLEN:
4701 	case SIOCSMIIREG:
4702 	case SIOCBONDENSLAVE:
4703 	case SIOCBONDRELEASE:
4704 	case SIOCBONDSETHWADDR:
4705 	case SIOCBONDCHANGEACTIVE:
4706 	case SIOCBRADDIF:
4707 	case SIOCBRDELIF:
4708 	case SIOCSHWTSTAMP:
4709 		if (!capable(CAP_NET_ADMIN))
4710 			return -EPERM;
4711 		/* fall through */
4712 	case SIOCBONDSLAVEINFOQUERY:
4713 	case SIOCBONDINFOQUERY:
4714 		dev_load(net, ifr.ifr_name);
4715 		rtnl_lock();
4716 		ret = dev_ifsioc(net, &ifr, cmd);
4717 		rtnl_unlock();
4718 		return ret;
4719 
4720 	case SIOCGIFMEM:
4721 		/* Get the per device memory space. We can add this but
4722 		 * currently do not support it */
4723 	case SIOCSIFMEM:
4724 		/* Set the per device memory buffer space.
4725 		 * Not applicable in our case */
4726 	case SIOCSIFLINK:
4727 		return -EINVAL;
4728 
4729 	/*
4730 	 *	Unknown or private ioctl.
4731 	 */
4732 	default:
4733 		if (cmd == SIOCWANDEV ||
4734 		    (cmd >= SIOCDEVPRIVATE &&
4735 		     cmd <= SIOCDEVPRIVATE + 15)) {
4736 			dev_load(net, ifr.ifr_name);
4737 			rtnl_lock();
4738 			ret = dev_ifsioc(net, &ifr, cmd);
4739 			rtnl_unlock();
4740 			if (!ret && copy_to_user(arg, &ifr,
4741 						 sizeof(struct ifreq)))
4742 				ret = -EFAULT;
4743 			return ret;
4744 		}
4745 		/* Take care of Wireless Extensions */
4746 		if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4747 			return wext_handle_ioctl(net, &ifr, cmd, arg);
4748 		return -EINVAL;
4749 	}
4750 }
4751 
4752 
4753 /**
4754  *	dev_new_index	-	allocate an ifindex
4755  *	@net: the applicable net namespace
4756  *
4757  *	Returns a suitable unique value for a new device interface
4758  *	number.  The caller must hold the rtnl semaphore or the
4759  *	dev_base_lock to be sure it remains unique.
4760  */
4761 static int dev_new_index(struct net *net)
4762 {
4763 	static int ifindex;
4764 	for (;;) {
4765 		if (++ifindex <= 0)
4766 			ifindex = 1;
4767 		if (!__dev_get_by_index(net, ifindex))
4768 			return ifindex;
4769 	}
4770 }
4771 
4772 /* Delayed registration/unregisteration */
4773 static LIST_HEAD(net_todo_list);
4774 
4775 static void net_set_todo(struct net_device *dev)
4776 {
4777 	list_add_tail(&dev->todo_list, &net_todo_list);
4778 }
4779 
4780 static void rollback_registered_many(struct list_head *head)
4781 {
4782 	struct net_device *dev, *tmp;
4783 
4784 	BUG_ON(dev_boot_phase);
4785 	ASSERT_RTNL();
4786 
4787 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4788 		/* Some devices call without registering
4789 		 * for initialization unwind. Remove those
4790 		 * devices and proceed with the remaining.
4791 		 */
4792 		if (dev->reg_state == NETREG_UNINITIALIZED) {
4793 			pr_debug("unregister_netdevice: device %s/%p never "
4794 				 "was registered\n", dev->name, dev);
4795 
4796 			WARN_ON(1);
4797 			list_del(&dev->unreg_list);
4798 			continue;
4799 		}
4800 
4801 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
4802 
4803 		/* If device is running, close it first. */
4804 		dev_close(dev);
4805 
4806 		/* And unlink it from device chain. */
4807 		unlist_netdevice(dev);
4808 
4809 		dev->reg_state = NETREG_UNREGISTERING;
4810 	}
4811 
4812 	synchronize_net();
4813 
4814 	list_for_each_entry(dev, head, unreg_list) {
4815 		/* Shutdown queueing discipline. */
4816 		dev_shutdown(dev);
4817 
4818 
4819 		/* Notify protocols, that we are about to destroy
4820 		   this device. They should clean all the things.
4821 		*/
4822 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4823 
4824 		if (!dev->rtnl_link_ops ||
4825 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4826 			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4827 
4828 		/*
4829 		 *	Flush the unicast and multicast chains
4830 		 */
4831 		dev_uc_flush(dev);
4832 		dev_mc_flush(dev);
4833 
4834 		if (dev->netdev_ops->ndo_uninit)
4835 			dev->netdev_ops->ndo_uninit(dev);
4836 
4837 		/* Notifier chain MUST detach us from master device. */
4838 		WARN_ON(dev->master);
4839 
4840 		/* Remove entries from kobject tree */
4841 		netdev_unregister_kobject(dev);
4842 	}
4843 
4844 	/* Process any work delayed until the end of the batch */
4845 	dev = list_first_entry(head, struct net_device, unreg_list);
4846 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4847 
4848 	synchronize_net();
4849 
4850 	list_for_each_entry(dev, head, unreg_list)
4851 		dev_put(dev);
4852 }
4853 
4854 static void rollback_registered(struct net_device *dev)
4855 {
4856 	LIST_HEAD(single);
4857 
4858 	list_add(&dev->unreg_list, &single);
4859 	rollback_registered_many(&single);
4860 }
4861 
4862 static void __netdev_init_queue_locks_one(struct net_device *dev,
4863 					  struct netdev_queue *dev_queue,
4864 					  void *_unused)
4865 {
4866 	spin_lock_init(&dev_queue->_xmit_lock);
4867 	netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4868 	dev_queue->xmit_lock_owner = -1;
4869 }
4870 
4871 static void netdev_init_queue_locks(struct net_device *dev)
4872 {
4873 	netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4874 	__netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4875 }
4876 
4877 unsigned long netdev_fix_features(unsigned long features, const char *name)
4878 {
4879 	/* Fix illegal SG+CSUM combinations. */
4880 	if ((features & NETIF_F_SG) &&
4881 	    !(features & NETIF_F_ALL_CSUM)) {
4882 		if (name)
4883 			printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4884 			       "checksum feature.\n", name);
4885 		features &= ~NETIF_F_SG;
4886 	}
4887 
4888 	/* TSO requires that SG is present as well. */
4889 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4890 		if (name)
4891 			printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4892 			       "SG feature.\n", name);
4893 		features &= ~NETIF_F_TSO;
4894 	}
4895 
4896 	if (features & NETIF_F_UFO) {
4897 		if (!(features & NETIF_F_GEN_CSUM)) {
4898 			if (name)
4899 				printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4900 				       "since no NETIF_F_HW_CSUM feature.\n",
4901 				       name);
4902 			features &= ~NETIF_F_UFO;
4903 		}
4904 
4905 		if (!(features & NETIF_F_SG)) {
4906 			if (name)
4907 				printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4908 				       "since no NETIF_F_SG feature.\n", name);
4909 			features &= ~NETIF_F_UFO;
4910 		}
4911 	}
4912 
4913 	return features;
4914 }
4915 EXPORT_SYMBOL(netdev_fix_features);
4916 
4917 /**
4918  *	netif_stacked_transfer_operstate -	transfer operstate
4919  *	@rootdev: the root or lower level device to transfer state from
4920  *	@dev: the device to transfer operstate to
4921  *
4922  *	Transfer operational state from root to device. This is normally
4923  *	called when a stacking relationship exists between the root
4924  *	device and the device(a leaf device).
4925  */
4926 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4927 					struct net_device *dev)
4928 {
4929 	if (rootdev->operstate == IF_OPER_DORMANT)
4930 		netif_dormant_on(dev);
4931 	else
4932 		netif_dormant_off(dev);
4933 
4934 	if (netif_carrier_ok(rootdev)) {
4935 		if (!netif_carrier_ok(dev))
4936 			netif_carrier_on(dev);
4937 	} else {
4938 		if (netif_carrier_ok(dev))
4939 			netif_carrier_off(dev);
4940 	}
4941 }
4942 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
4943 
4944 /**
4945  *	register_netdevice	- register a network device
4946  *	@dev: device to register
4947  *
4948  *	Take a completed network device structure and add it to the kernel
4949  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4950  *	chain. 0 is returned on success. A negative errno code is returned
4951  *	on a failure to set up the device, or if the name is a duplicate.
4952  *
4953  *	Callers must hold the rtnl semaphore. You may want
4954  *	register_netdev() instead of this.
4955  *
4956  *	BUGS:
4957  *	The locking appears insufficient to guarantee two parallel registers
4958  *	will not get the same name.
4959  */
4960 
4961 int register_netdevice(struct net_device *dev)
4962 {
4963 	int ret;
4964 	struct net *net = dev_net(dev);
4965 
4966 	BUG_ON(dev_boot_phase);
4967 	ASSERT_RTNL();
4968 
4969 	might_sleep();
4970 
4971 	/* When net_device's are persistent, this will be fatal. */
4972 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4973 	BUG_ON(!net);
4974 
4975 	spin_lock_init(&dev->addr_list_lock);
4976 	netdev_set_addr_lockdep_class(dev);
4977 	netdev_init_queue_locks(dev);
4978 
4979 	dev->iflink = -1;
4980 
4981 #ifdef CONFIG_RPS
4982 	if (!dev->num_rx_queues) {
4983 		/*
4984 		 * Allocate a single RX queue if driver never called
4985 		 * alloc_netdev_mq
4986 		 */
4987 
4988 		dev->_rx = kzalloc(sizeof(struct netdev_rx_queue), GFP_KERNEL);
4989 		if (!dev->_rx) {
4990 			ret = -ENOMEM;
4991 			goto out;
4992 		}
4993 
4994 		dev->_rx->first = dev->_rx;
4995 		atomic_set(&dev->_rx->count, 1);
4996 		dev->num_rx_queues = 1;
4997 	}
4998 #endif
4999 	/* Init, if this function is available */
5000 	if (dev->netdev_ops->ndo_init) {
5001 		ret = dev->netdev_ops->ndo_init(dev);
5002 		if (ret) {
5003 			if (ret > 0)
5004 				ret = -EIO;
5005 			goto out;
5006 		}
5007 	}
5008 
5009 	ret = dev_get_valid_name(dev, dev->name, 0);
5010 	if (ret)
5011 		goto err_uninit;
5012 
5013 	dev->ifindex = dev_new_index(net);
5014 	if (dev->iflink == -1)
5015 		dev->iflink = dev->ifindex;
5016 
5017 	/* Fix illegal checksum combinations */
5018 	if ((dev->features & NETIF_F_HW_CSUM) &&
5019 	    (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5020 		printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5021 		       dev->name);
5022 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5023 	}
5024 
5025 	if ((dev->features & NETIF_F_NO_CSUM) &&
5026 	    (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5027 		printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5028 		       dev->name);
5029 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5030 	}
5031 
5032 	dev->features = netdev_fix_features(dev->features, dev->name);
5033 
5034 	/* Enable software GSO if SG is supported. */
5035 	if (dev->features & NETIF_F_SG)
5036 		dev->features |= NETIF_F_GSO;
5037 
5038 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5039 	ret = notifier_to_errno(ret);
5040 	if (ret)
5041 		goto err_uninit;
5042 
5043 	ret = netdev_register_kobject(dev);
5044 	if (ret)
5045 		goto err_uninit;
5046 	dev->reg_state = NETREG_REGISTERED;
5047 
5048 	/*
5049 	 *	Default initial state at registry is that the
5050 	 *	device is present.
5051 	 */
5052 
5053 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5054 
5055 	dev_init_scheduler(dev);
5056 	dev_hold(dev);
5057 	list_netdevice(dev);
5058 
5059 	/* Notify protocols, that a new device appeared. */
5060 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5061 	ret = notifier_to_errno(ret);
5062 	if (ret) {
5063 		rollback_registered(dev);
5064 		dev->reg_state = NETREG_UNREGISTERED;
5065 	}
5066 	/*
5067 	 *	Prevent userspace races by waiting until the network
5068 	 *	device is fully setup before sending notifications.
5069 	 */
5070 	if (!dev->rtnl_link_ops ||
5071 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5072 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5073 
5074 out:
5075 	return ret;
5076 
5077 err_uninit:
5078 	if (dev->netdev_ops->ndo_uninit)
5079 		dev->netdev_ops->ndo_uninit(dev);
5080 	goto out;
5081 }
5082 EXPORT_SYMBOL(register_netdevice);
5083 
5084 /**
5085  *	init_dummy_netdev	- init a dummy network device for NAPI
5086  *	@dev: device to init
5087  *
5088  *	This takes a network device structure and initialize the minimum
5089  *	amount of fields so it can be used to schedule NAPI polls without
5090  *	registering a full blown interface. This is to be used by drivers
5091  *	that need to tie several hardware interfaces to a single NAPI
5092  *	poll scheduler due to HW limitations.
5093  */
5094 int init_dummy_netdev(struct net_device *dev)
5095 {
5096 	/* Clear everything. Note we don't initialize spinlocks
5097 	 * are they aren't supposed to be taken by any of the
5098 	 * NAPI code and this dummy netdev is supposed to be
5099 	 * only ever used for NAPI polls
5100 	 */
5101 	memset(dev, 0, sizeof(struct net_device));
5102 
5103 	/* make sure we BUG if trying to hit standard
5104 	 * register/unregister code path
5105 	 */
5106 	dev->reg_state = NETREG_DUMMY;
5107 
5108 	/* initialize the ref count */
5109 	atomic_set(&dev->refcnt, 1);
5110 
5111 	/* NAPI wants this */
5112 	INIT_LIST_HEAD(&dev->napi_list);
5113 
5114 	/* a dummy interface is started by default */
5115 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5116 	set_bit(__LINK_STATE_START, &dev->state);
5117 
5118 	return 0;
5119 }
5120 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5121 
5122 
5123 /**
5124  *	register_netdev	- register a network device
5125  *	@dev: device to register
5126  *
5127  *	Take a completed network device structure and add it to the kernel
5128  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5129  *	chain. 0 is returned on success. A negative errno code is returned
5130  *	on a failure to set up the device, or if the name is a duplicate.
5131  *
5132  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
5133  *	and expands the device name if you passed a format string to
5134  *	alloc_netdev.
5135  */
5136 int register_netdev(struct net_device *dev)
5137 {
5138 	int err;
5139 
5140 	rtnl_lock();
5141 
5142 	/*
5143 	 * If the name is a format string the caller wants us to do a
5144 	 * name allocation.
5145 	 */
5146 	if (strchr(dev->name, '%')) {
5147 		err = dev_alloc_name(dev, dev->name);
5148 		if (err < 0)
5149 			goto out;
5150 	}
5151 
5152 	err = register_netdevice(dev);
5153 out:
5154 	rtnl_unlock();
5155 	return err;
5156 }
5157 EXPORT_SYMBOL(register_netdev);
5158 
5159 /*
5160  * netdev_wait_allrefs - wait until all references are gone.
5161  *
5162  * This is called when unregistering network devices.
5163  *
5164  * Any protocol or device that holds a reference should register
5165  * for netdevice notification, and cleanup and put back the
5166  * reference if they receive an UNREGISTER event.
5167  * We can get stuck here if buggy protocols don't correctly
5168  * call dev_put.
5169  */
5170 static void netdev_wait_allrefs(struct net_device *dev)
5171 {
5172 	unsigned long rebroadcast_time, warning_time;
5173 
5174 	linkwatch_forget_dev(dev);
5175 
5176 	rebroadcast_time = warning_time = jiffies;
5177 	while (atomic_read(&dev->refcnt) != 0) {
5178 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5179 			rtnl_lock();
5180 
5181 			/* Rebroadcast unregister notification */
5182 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5183 			/* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5184 			 * should have already handle it the first time */
5185 
5186 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5187 				     &dev->state)) {
5188 				/* We must not have linkwatch events
5189 				 * pending on unregister. If this
5190 				 * happens, we simply run the queue
5191 				 * unscheduled, resulting in a noop
5192 				 * for this device.
5193 				 */
5194 				linkwatch_run_queue();
5195 			}
5196 
5197 			__rtnl_unlock();
5198 
5199 			rebroadcast_time = jiffies;
5200 		}
5201 
5202 		msleep(250);
5203 
5204 		if (time_after(jiffies, warning_time + 10 * HZ)) {
5205 			printk(KERN_EMERG "unregister_netdevice: "
5206 			       "waiting for %s to become free. Usage "
5207 			       "count = %d\n",
5208 			       dev->name, atomic_read(&dev->refcnt));
5209 			warning_time = jiffies;
5210 		}
5211 	}
5212 }
5213 
5214 /* The sequence is:
5215  *
5216  *	rtnl_lock();
5217  *	...
5218  *	register_netdevice(x1);
5219  *	register_netdevice(x2);
5220  *	...
5221  *	unregister_netdevice(y1);
5222  *	unregister_netdevice(y2);
5223  *      ...
5224  *	rtnl_unlock();
5225  *	free_netdev(y1);
5226  *	free_netdev(y2);
5227  *
5228  * We are invoked by rtnl_unlock().
5229  * This allows us to deal with problems:
5230  * 1) We can delete sysfs objects which invoke hotplug
5231  *    without deadlocking with linkwatch via keventd.
5232  * 2) Since we run with the RTNL semaphore not held, we can sleep
5233  *    safely in order to wait for the netdev refcnt to drop to zero.
5234  *
5235  * We must not return until all unregister events added during
5236  * the interval the lock was held have been completed.
5237  */
5238 void netdev_run_todo(void)
5239 {
5240 	struct list_head list;
5241 
5242 	/* Snapshot list, allow later requests */
5243 	list_replace_init(&net_todo_list, &list);
5244 
5245 	__rtnl_unlock();
5246 
5247 	while (!list_empty(&list)) {
5248 		struct net_device *dev
5249 			= list_first_entry(&list, struct net_device, todo_list);
5250 		list_del(&dev->todo_list);
5251 
5252 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5253 			printk(KERN_ERR "network todo '%s' but state %d\n",
5254 			       dev->name, dev->reg_state);
5255 			dump_stack();
5256 			continue;
5257 		}
5258 
5259 		dev->reg_state = NETREG_UNREGISTERED;
5260 
5261 		on_each_cpu(flush_backlog, dev, 1);
5262 
5263 		netdev_wait_allrefs(dev);
5264 
5265 		/* paranoia */
5266 		BUG_ON(atomic_read(&dev->refcnt));
5267 		WARN_ON(dev->ip_ptr);
5268 		WARN_ON(dev->ip6_ptr);
5269 		WARN_ON(dev->dn_ptr);
5270 
5271 		if (dev->destructor)
5272 			dev->destructor(dev);
5273 
5274 		/* Free network device */
5275 		kobject_put(&dev->dev.kobj);
5276 	}
5277 }
5278 
5279 /**
5280  *	dev_txq_stats_fold - fold tx_queues stats
5281  *	@dev: device to get statistics from
5282  *	@stats: struct rtnl_link_stats64 to hold results
5283  */
5284 void dev_txq_stats_fold(const struct net_device *dev,
5285 			struct rtnl_link_stats64 *stats)
5286 {
5287 	u64 tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5288 	unsigned int i;
5289 	struct netdev_queue *txq;
5290 
5291 	for (i = 0; i < dev->num_tx_queues; i++) {
5292 		txq = netdev_get_tx_queue(dev, i);
5293 		spin_lock_bh(&txq->_xmit_lock);
5294 		tx_bytes   += txq->tx_bytes;
5295 		tx_packets += txq->tx_packets;
5296 		tx_dropped += txq->tx_dropped;
5297 		spin_unlock_bh(&txq->_xmit_lock);
5298 	}
5299 	if (tx_bytes || tx_packets || tx_dropped) {
5300 		stats->tx_bytes   = tx_bytes;
5301 		stats->tx_packets = tx_packets;
5302 		stats->tx_dropped = tx_dropped;
5303 	}
5304 }
5305 EXPORT_SYMBOL(dev_txq_stats_fold);
5306 
5307 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
5308  * fields in the same order, with only the type differing.
5309  */
5310 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5311 				    const struct net_device_stats *netdev_stats)
5312 {
5313 #if BITS_PER_LONG == 64
5314         BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5315         memcpy(stats64, netdev_stats, sizeof(*stats64));
5316 #else
5317 	size_t i, n = sizeof(*stats64) / sizeof(u64);
5318 	const unsigned long *src = (const unsigned long *)netdev_stats;
5319 	u64 *dst = (u64 *)stats64;
5320 
5321 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5322 		     sizeof(*stats64) / sizeof(u64));
5323 	for (i = 0; i < n; i++)
5324 		dst[i] = src[i];
5325 #endif
5326 }
5327 
5328 /**
5329  *	dev_get_stats	- get network device statistics
5330  *	@dev: device to get statistics from
5331  *	@storage: place to store stats
5332  *
5333  *	Get network statistics from device. Return @storage.
5334  *	The device driver may provide its own method by setting
5335  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5336  *	otherwise the internal statistics structure is used.
5337  */
5338 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5339 					struct rtnl_link_stats64 *storage)
5340 {
5341 	const struct net_device_ops *ops = dev->netdev_ops;
5342 
5343 	if (ops->ndo_get_stats64) {
5344 		memset(storage, 0, sizeof(*storage));
5345 		return ops->ndo_get_stats64(dev, storage);
5346 	}
5347 	if (ops->ndo_get_stats) {
5348 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5349 		return storage;
5350 	}
5351 	netdev_stats_to_stats64(storage, &dev->stats);
5352 	dev_txq_stats_fold(dev, storage);
5353 	return storage;
5354 }
5355 EXPORT_SYMBOL(dev_get_stats);
5356 
5357 static void netdev_init_one_queue(struct net_device *dev,
5358 				  struct netdev_queue *queue,
5359 				  void *_unused)
5360 {
5361 	queue->dev = dev;
5362 }
5363 
5364 static void netdev_init_queues(struct net_device *dev)
5365 {
5366 	netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5367 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5368 	spin_lock_init(&dev->tx_global_lock);
5369 }
5370 
5371 /**
5372  *	alloc_netdev_mq - allocate network device
5373  *	@sizeof_priv:	size of private data to allocate space for
5374  *	@name:		device name format string
5375  *	@setup:		callback to initialize device
5376  *	@queue_count:	the number of subqueues to allocate
5377  *
5378  *	Allocates a struct net_device with private data area for driver use
5379  *	and performs basic initialization.  Also allocates subquue structs
5380  *	for each queue on the device at the end of the netdevice.
5381  */
5382 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5383 		void (*setup)(struct net_device *), unsigned int queue_count)
5384 {
5385 	struct netdev_queue *tx;
5386 	struct net_device *dev;
5387 	size_t alloc_size;
5388 	struct net_device *p;
5389 #ifdef CONFIG_RPS
5390 	struct netdev_rx_queue *rx;
5391 	int i;
5392 #endif
5393 
5394 	BUG_ON(strlen(name) >= sizeof(dev->name));
5395 
5396 	alloc_size = sizeof(struct net_device);
5397 	if (sizeof_priv) {
5398 		/* ensure 32-byte alignment of private area */
5399 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5400 		alloc_size += sizeof_priv;
5401 	}
5402 	/* ensure 32-byte alignment of whole construct */
5403 	alloc_size += NETDEV_ALIGN - 1;
5404 
5405 	p = kzalloc(alloc_size, GFP_KERNEL);
5406 	if (!p) {
5407 		printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5408 		return NULL;
5409 	}
5410 
5411 	tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5412 	if (!tx) {
5413 		printk(KERN_ERR "alloc_netdev: Unable to allocate "
5414 		       "tx qdiscs.\n");
5415 		goto free_p;
5416 	}
5417 
5418 #ifdef CONFIG_RPS
5419 	rx = kcalloc(queue_count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5420 	if (!rx) {
5421 		printk(KERN_ERR "alloc_netdev: Unable to allocate "
5422 		       "rx queues.\n");
5423 		goto free_tx;
5424 	}
5425 
5426 	atomic_set(&rx->count, queue_count);
5427 
5428 	/*
5429 	 * Set a pointer to first element in the array which holds the
5430 	 * reference count.
5431 	 */
5432 	for (i = 0; i < queue_count; i++)
5433 		rx[i].first = rx;
5434 #endif
5435 
5436 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
5437 	dev->padded = (char *)dev - (char *)p;
5438 
5439 	if (dev_addr_init(dev))
5440 		goto free_rx;
5441 
5442 	dev_mc_init(dev);
5443 	dev_uc_init(dev);
5444 
5445 	dev_net_set(dev, &init_net);
5446 
5447 	dev->_tx = tx;
5448 	dev->num_tx_queues = queue_count;
5449 	dev->real_num_tx_queues = queue_count;
5450 
5451 #ifdef CONFIG_RPS
5452 	dev->_rx = rx;
5453 	dev->num_rx_queues = queue_count;
5454 #endif
5455 
5456 	dev->gso_max_size = GSO_MAX_SIZE;
5457 
5458 	netdev_init_queues(dev);
5459 
5460 	INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5461 	dev->ethtool_ntuple_list.count = 0;
5462 	INIT_LIST_HEAD(&dev->napi_list);
5463 	INIT_LIST_HEAD(&dev->unreg_list);
5464 	INIT_LIST_HEAD(&dev->link_watch_list);
5465 	dev->priv_flags = IFF_XMIT_DST_RELEASE;
5466 	setup(dev);
5467 	strcpy(dev->name, name);
5468 	return dev;
5469 
5470 free_rx:
5471 #ifdef CONFIG_RPS
5472 	kfree(rx);
5473 free_tx:
5474 #endif
5475 	kfree(tx);
5476 free_p:
5477 	kfree(p);
5478 	return NULL;
5479 }
5480 EXPORT_SYMBOL(alloc_netdev_mq);
5481 
5482 /**
5483  *	free_netdev - free network device
5484  *	@dev: device
5485  *
5486  *	This function does the last stage of destroying an allocated device
5487  * 	interface. The reference to the device object is released.
5488  *	If this is the last reference then it will be freed.
5489  */
5490 void free_netdev(struct net_device *dev)
5491 {
5492 	struct napi_struct *p, *n;
5493 
5494 	release_net(dev_net(dev));
5495 
5496 	kfree(dev->_tx);
5497 
5498 	/* Flush device addresses */
5499 	dev_addr_flush(dev);
5500 
5501 	/* Clear ethtool n-tuple list */
5502 	ethtool_ntuple_flush(dev);
5503 
5504 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5505 		netif_napi_del(p);
5506 
5507 	/*  Compatibility with error handling in drivers */
5508 	if (dev->reg_state == NETREG_UNINITIALIZED) {
5509 		kfree((char *)dev - dev->padded);
5510 		return;
5511 	}
5512 
5513 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5514 	dev->reg_state = NETREG_RELEASED;
5515 
5516 	/* will free via device release */
5517 	put_device(&dev->dev);
5518 }
5519 EXPORT_SYMBOL(free_netdev);
5520 
5521 /**
5522  *	synchronize_net -  Synchronize with packet receive processing
5523  *
5524  *	Wait for packets currently being received to be done.
5525  *	Does not block later packets from starting.
5526  */
5527 void synchronize_net(void)
5528 {
5529 	might_sleep();
5530 	synchronize_rcu();
5531 }
5532 EXPORT_SYMBOL(synchronize_net);
5533 
5534 /**
5535  *	unregister_netdevice_queue - remove device from the kernel
5536  *	@dev: device
5537  *	@head: list
5538  *
5539  *	This function shuts down a device interface and removes it
5540  *	from the kernel tables.
5541  *	If head not NULL, device is queued to be unregistered later.
5542  *
5543  *	Callers must hold the rtnl semaphore.  You may want
5544  *	unregister_netdev() instead of this.
5545  */
5546 
5547 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5548 {
5549 	ASSERT_RTNL();
5550 
5551 	if (head) {
5552 		list_move_tail(&dev->unreg_list, head);
5553 	} else {
5554 		rollback_registered(dev);
5555 		/* Finish processing unregister after unlock */
5556 		net_set_todo(dev);
5557 	}
5558 }
5559 EXPORT_SYMBOL(unregister_netdevice_queue);
5560 
5561 /**
5562  *	unregister_netdevice_many - unregister many devices
5563  *	@head: list of devices
5564  */
5565 void unregister_netdevice_many(struct list_head *head)
5566 {
5567 	struct net_device *dev;
5568 
5569 	if (!list_empty(head)) {
5570 		rollback_registered_many(head);
5571 		list_for_each_entry(dev, head, unreg_list)
5572 			net_set_todo(dev);
5573 	}
5574 }
5575 EXPORT_SYMBOL(unregister_netdevice_many);
5576 
5577 /**
5578  *	unregister_netdev - remove device from the kernel
5579  *	@dev: device
5580  *
5581  *	This function shuts down a device interface and removes it
5582  *	from the kernel tables.
5583  *
5584  *	This is just a wrapper for unregister_netdevice that takes
5585  *	the rtnl semaphore.  In general you want to use this and not
5586  *	unregister_netdevice.
5587  */
5588 void unregister_netdev(struct net_device *dev)
5589 {
5590 	rtnl_lock();
5591 	unregister_netdevice(dev);
5592 	rtnl_unlock();
5593 }
5594 EXPORT_SYMBOL(unregister_netdev);
5595 
5596 /**
5597  *	dev_change_net_namespace - move device to different nethost namespace
5598  *	@dev: device
5599  *	@net: network namespace
5600  *	@pat: If not NULL name pattern to try if the current device name
5601  *	      is already taken in the destination network namespace.
5602  *
5603  *	This function shuts down a device interface and moves it
5604  *	to a new network namespace. On success 0 is returned, on
5605  *	a failure a netagive errno code is returned.
5606  *
5607  *	Callers must hold the rtnl semaphore.
5608  */
5609 
5610 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5611 {
5612 	int err;
5613 
5614 	ASSERT_RTNL();
5615 
5616 	/* Don't allow namespace local devices to be moved. */
5617 	err = -EINVAL;
5618 	if (dev->features & NETIF_F_NETNS_LOCAL)
5619 		goto out;
5620 
5621 	/* Ensure the device has been registrered */
5622 	err = -EINVAL;
5623 	if (dev->reg_state != NETREG_REGISTERED)
5624 		goto out;
5625 
5626 	/* Get out if there is nothing todo */
5627 	err = 0;
5628 	if (net_eq(dev_net(dev), net))
5629 		goto out;
5630 
5631 	/* Pick the destination device name, and ensure
5632 	 * we can use it in the destination network namespace.
5633 	 */
5634 	err = -EEXIST;
5635 	if (__dev_get_by_name(net, dev->name)) {
5636 		/* We get here if we can't use the current device name */
5637 		if (!pat)
5638 			goto out;
5639 		if (dev_get_valid_name(dev, pat, 1))
5640 			goto out;
5641 	}
5642 
5643 	/*
5644 	 * And now a mini version of register_netdevice unregister_netdevice.
5645 	 */
5646 
5647 	/* If device is running close it first. */
5648 	dev_close(dev);
5649 
5650 	/* And unlink it from device chain */
5651 	err = -ENODEV;
5652 	unlist_netdevice(dev);
5653 
5654 	synchronize_net();
5655 
5656 	/* Shutdown queueing discipline. */
5657 	dev_shutdown(dev);
5658 
5659 	/* Notify protocols, that we are about to destroy
5660 	   this device. They should clean all the things.
5661 	*/
5662 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5663 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5664 
5665 	/*
5666 	 *	Flush the unicast and multicast chains
5667 	 */
5668 	dev_uc_flush(dev);
5669 	dev_mc_flush(dev);
5670 
5671 	/* Actually switch the network namespace */
5672 	dev_net_set(dev, net);
5673 
5674 	/* If there is an ifindex conflict assign a new one */
5675 	if (__dev_get_by_index(net, dev->ifindex)) {
5676 		int iflink = (dev->iflink == dev->ifindex);
5677 		dev->ifindex = dev_new_index(net);
5678 		if (iflink)
5679 			dev->iflink = dev->ifindex;
5680 	}
5681 
5682 	/* Fixup kobjects */
5683 	err = device_rename(&dev->dev, dev->name);
5684 	WARN_ON(err);
5685 
5686 	/* Add the device back in the hashes */
5687 	list_netdevice(dev);
5688 
5689 	/* Notify protocols, that a new device appeared. */
5690 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
5691 
5692 	/*
5693 	 *	Prevent userspace races by waiting until the network
5694 	 *	device is fully setup before sending notifications.
5695 	 */
5696 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5697 
5698 	synchronize_net();
5699 	err = 0;
5700 out:
5701 	return err;
5702 }
5703 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5704 
5705 static int dev_cpu_callback(struct notifier_block *nfb,
5706 			    unsigned long action,
5707 			    void *ocpu)
5708 {
5709 	struct sk_buff **list_skb;
5710 	struct sk_buff *skb;
5711 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
5712 	struct softnet_data *sd, *oldsd;
5713 
5714 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5715 		return NOTIFY_OK;
5716 
5717 	local_irq_disable();
5718 	cpu = smp_processor_id();
5719 	sd = &per_cpu(softnet_data, cpu);
5720 	oldsd = &per_cpu(softnet_data, oldcpu);
5721 
5722 	/* Find end of our completion_queue. */
5723 	list_skb = &sd->completion_queue;
5724 	while (*list_skb)
5725 		list_skb = &(*list_skb)->next;
5726 	/* Append completion queue from offline CPU. */
5727 	*list_skb = oldsd->completion_queue;
5728 	oldsd->completion_queue = NULL;
5729 
5730 	/* Append output queue from offline CPU. */
5731 	if (oldsd->output_queue) {
5732 		*sd->output_queue_tailp = oldsd->output_queue;
5733 		sd->output_queue_tailp = oldsd->output_queue_tailp;
5734 		oldsd->output_queue = NULL;
5735 		oldsd->output_queue_tailp = &oldsd->output_queue;
5736 	}
5737 
5738 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
5739 	local_irq_enable();
5740 
5741 	/* Process offline CPU's input_pkt_queue */
5742 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5743 		netif_rx(skb);
5744 		input_queue_head_incr(oldsd);
5745 	}
5746 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5747 		netif_rx(skb);
5748 		input_queue_head_incr(oldsd);
5749 	}
5750 
5751 	return NOTIFY_OK;
5752 }
5753 
5754 
5755 /**
5756  *	netdev_increment_features - increment feature set by one
5757  *	@all: current feature set
5758  *	@one: new feature set
5759  *	@mask: mask feature set
5760  *
5761  *	Computes a new feature set after adding a device with feature set
5762  *	@one to the master device with current feature set @all.  Will not
5763  *	enable anything that is off in @mask. Returns the new feature set.
5764  */
5765 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5766 					unsigned long mask)
5767 {
5768 	/* If device needs checksumming, downgrade to it. */
5769 	if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5770 		all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5771 	else if (mask & NETIF_F_ALL_CSUM) {
5772 		/* If one device supports v4/v6 checksumming, set for all. */
5773 		if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5774 		    !(all & NETIF_F_GEN_CSUM)) {
5775 			all &= ~NETIF_F_ALL_CSUM;
5776 			all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5777 		}
5778 
5779 		/* If one device supports hw checksumming, set for all. */
5780 		if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5781 			all &= ~NETIF_F_ALL_CSUM;
5782 			all |= NETIF_F_HW_CSUM;
5783 		}
5784 	}
5785 
5786 	one |= NETIF_F_ALL_CSUM;
5787 
5788 	one |= all & NETIF_F_ONE_FOR_ALL;
5789 	all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5790 	all |= one & mask & NETIF_F_ONE_FOR_ALL;
5791 
5792 	return all;
5793 }
5794 EXPORT_SYMBOL(netdev_increment_features);
5795 
5796 static struct hlist_head *netdev_create_hash(void)
5797 {
5798 	int i;
5799 	struct hlist_head *hash;
5800 
5801 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5802 	if (hash != NULL)
5803 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
5804 			INIT_HLIST_HEAD(&hash[i]);
5805 
5806 	return hash;
5807 }
5808 
5809 /* Initialize per network namespace state */
5810 static int __net_init netdev_init(struct net *net)
5811 {
5812 	INIT_LIST_HEAD(&net->dev_base_head);
5813 
5814 	net->dev_name_head = netdev_create_hash();
5815 	if (net->dev_name_head == NULL)
5816 		goto err_name;
5817 
5818 	net->dev_index_head = netdev_create_hash();
5819 	if (net->dev_index_head == NULL)
5820 		goto err_idx;
5821 
5822 	return 0;
5823 
5824 err_idx:
5825 	kfree(net->dev_name_head);
5826 err_name:
5827 	return -ENOMEM;
5828 }
5829 
5830 /**
5831  *	netdev_drivername - network driver for the device
5832  *	@dev: network device
5833  *	@buffer: buffer for resulting name
5834  *	@len: size of buffer
5835  *
5836  *	Determine network driver for device.
5837  */
5838 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5839 {
5840 	const struct device_driver *driver;
5841 	const struct device *parent;
5842 
5843 	if (len <= 0 || !buffer)
5844 		return buffer;
5845 	buffer[0] = 0;
5846 
5847 	parent = dev->dev.parent;
5848 
5849 	if (!parent)
5850 		return buffer;
5851 
5852 	driver = parent->driver;
5853 	if (driver && driver->name)
5854 		strlcpy(buffer, driver->name, len);
5855 	return buffer;
5856 }
5857 
5858 static int __netdev_printk(const char *level, const struct net_device *dev,
5859 			   struct va_format *vaf)
5860 {
5861 	int r;
5862 
5863 	if (dev && dev->dev.parent)
5864 		r = dev_printk(level, dev->dev.parent, "%s: %pV",
5865 			       netdev_name(dev), vaf);
5866 	else if (dev)
5867 		r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
5868 	else
5869 		r = printk("%s(NULL net_device): %pV", level, vaf);
5870 
5871 	return r;
5872 }
5873 
5874 int netdev_printk(const char *level, const struct net_device *dev,
5875 		  const char *format, ...)
5876 {
5877 	struct va_format vaf;
5878 	va_list args;
5879 	int r;
5880 
5881 	va_start(args, format);
5882 
5883 	vaf.fmt = format;
5884 	vaf.va = &args;
5885 
5886 	r = __netdev_printk(level, dev, &vaf);
5887 	va_end(args);
5888 
5889 	return r;
5890 }
5891 EXPORT_SYMBOL(netdev_printk);
5892 
5893 #define define_netdev_printk_level(func, level)			\
5894 int func(const struct net_device *dev, const char *fmt, ...)	\
5895 {								\
5896 	int r;							\
5897 	struct va_format vaf;					\
5898 	va_list args;						\
5899 								\
5900 	va_start(args, fmt);					\
5901 								\
5902 	vaf.fmt = fmt;						\
5903 	vaf.va = &args;						\
5904 								\
5905 	r = __netdev_printk(level, dev, &vaf);			\
5906 	va_end(args);						\
5907 								\
5908 	return r;						\
5909 }								\
5910 EXPORT_SYMBOL(func);
5911 
5912 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
5913 define_netdev_printk_level(netdev_alert, KERN_ALERT);
5914 define_netdev_printk_level(netdev_crit, KERN_CRIT);
5915 define_netdev_printk_level(netdev_err, KERN_ERR);
5916 define_netdev_printk_level(netdev_warn, KERN_WARNING);
5917 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
5918 define_netdev_printk_level(netdev_info, KERN_INFO);
5919 
5920 static void __net_exit netdev_exit(struct net *net)
5921 {
5922 	kfree(net->dev_name_head);
5923 	kfree(net->dev_index_head);
5924 }
5925 
5926 static struct pernet_operations __net_initdata netdev_net_ops = {
5927 	.init = netdev_init,
5928 	.exit = netdev_exit,
5929 };
5930 
5931 static void __net_exit default_device_exit(struct net *net)
5932 {
5933 	struct net_device *dev, *aux;
5934 	/*
5935 	 * Push all migratable network devices back to the
5936 	 * initial network namespace
5937 	 */
5938 	rtnl_lock();
5939 	for_each_netdev_safe(net, dev, aux) {
5940 		int err;
5941 		char fb_name[IFNAMSIZ];
5942 
5943 		/* Ignore unmoveable devices (i.e. loopback) */
5944 		if (dev->features & NETIF_F_NETNS_LOCAL)
5945 			continue;
5946 
5947 		/* Leave virtual devices for the generic cleanup */
5948 		if (dev->rtnl_link_ops)
5949 			continue;
5950 
5951 		/* Push remaing network devices to init_net */
5952 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5953 		err = dev_change_net_namespace(dev, &init_net, fb_name);
5954 		if (err) {
5955 			printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5956 				__func__, dev->name, err);
5957 			BUG();
5958 		}
5959 	}
5960 	rtnl_unlock();
5961 }
5962 
5963 static void __net_exit default_device_exit_batch(struct list_head *net_list)
5964 {
5965 	/* At exit all network devices most be removed from a network
5966 	 * namespace.  Do this in the reverse order of registeration.
5967 	 * Do this across as many network namespaces as possible to
5968 	 * improve batching efficiency.
5969 	 */
5970 	struct net_device *dev;
5971 	struct net *net;
5972 	LIST_HEAD(dev_kill_list);
5973 
5974 	rtnl_lock();
5975 	list_for_each_entry(net, net_list, exit_list) {
5976 		for_each_netdev_reverse(net, dev) {
5977 			if (dev->rtnl_link_ops)
5978 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
5979 			else
5980 				unregister_netdevice_queue(dev, &dev_kill_list);
5981 		}
5982 	}
5983 	unregister_netdevice_many(&dev_kill_list);
5984 	rtnl_unlock();
5985 }
5986 
5987 static struct pernet_operations __net_initdata default_device_ops = {
5988 	.exit = default_device_exit,
5989 	.exit_batch = default_device_exit_batch,
5990 };
5991 
5992 /*
5993  *	Initialize the DEV module. At boot time this walks the device list and
5994  *	unhooks any devices that fail to initialise (normally hardware not
5995  *	present) and leaves us with a valid list of present and active devices.
5996  *
5997  */
5998 
5999 /*
6000  *       This is called single threaded during boot, so no need
6001  *       to take the rtnl semaphore.
6002  */
6003 static int __init net_dev_init(void)
6004 {
6005 	int i, rc = -ENOMEM;
6006 
6007 	BUG_ON(!dev_boot_phase);
6008 
6009 	if (dev_proc_init())
6010 		goto out;
6011 
6012 	if (netdev_kobject_init())
6013 		goto out;
6014 
6015 	INIT_LIST_HEAD(&ptype_all);
6016 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
6017 		INIT_LIST_HEAD(&ptype_base[i]);
6018 
6019 	if (register_pernet_subsys(&netdev_net_ops))
6020 		goto out;
6021 
6022 	/*
6023 	 *	Initialise the packet receive queues.
6024 	 */
6025 
6026 	for_each_possible_cpu(i) {
6027 		struct softnet_data *sd = &per_cpu(softnet_data, i);
6028 
6029 		memset(sd, 0, sizeof(*sd));
6030 		skb_queue_head_init(&sd->input_pkt_queue);
6031 		skb_queue_head_init(&sd->process_queue);
6032 		sd->completion_queue = NULL;
6033 		INIT_LIST_HEAD(&sd->poll_list);
6034 		sd->output_queue = NULL;
6035 		sd->output_queue_tailp = &sd->output_queue;
6036 #ifdef CONFIG_RPS
6037 		sd->csd.func = rps_trigger_softirq;
6038 		sd->csd.info = sd;
6039 		sd->csd.flags = 0;
6040 		sd->cpu = i;
6041 #endif
6042 
6043 		sd->backlog.poll = process_backlog;
6044 		sd->backlog.weight = weight_p;
6045 		sd->backlog.gro_list = NULL;
6046 		sd->backlog.gro_count = 0;
6047 	}
6048 
6049 	dev_boot_phase = 0;
6050 
6051 	/* The loopback device is special if any other network devices
6052 	 * is present in a network namespace the loopback device must
6053 	 * be present. Since we now dynamically allocate and free the
6054 	 * loopback device ensure this invariant is maintained by
6055 	 * keeping the loopback device as the first device on the
6056 	 * list of network devices.  Ensuring the loopback devices
6057 	 * is the first device that appears and the last network device
6058 	 * that disappears.
6059 	 */
6060 	if (register_pernet_device(&loopback_net_ops))
6061 		goto out;
6062 
6063 	if (register_pernet_device(&default_device_ops))
6064 		goto out;
6065 
6066 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6067 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6068 
6069 	hotcpu_notifier(dev_cpu_callback, 0);
6070 	dst_init();
6071 	dev_mcast_init();
6072 	rc = 0;
6073 out:
6074 	return rc;
6075 }
6076 
6077 subsys_initcall(net_dev_init);
6078 
6079 static int __init initialize_hashrnd(void)
6080 {
6081 	get_random_bytes(&hashrnd, sizeof(hashrnd));
6082 	return 0;
6083 }
6084 
6085 late_initcall_sync(initialize_hashrnd);
6086 
6087