1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/hash.h> 83 #include <linux/slab.h> 84 #include <linux/sched.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/notifier.h> 97 #include <linux/skbuff.h> 98 #include <net/net_namespace.h> 99 #include <net/sock.h> 100 #include <linux/rtnetlink.h> 101 #include <linux/proc_fs.h> 102 #include <linux/seq_file.h> 103 #include <linux/stat.h> 104 #include <net/dst.h> 105 #include <net/pkt_sched.h> 106 #include <net/checksum.h> 107 #include <net/xfrm.h> 108 #include <linux/highmem.h> 109 #include <linux/init.h> 110 #include <linux/kmod.h> 111 #include <linux/module.h> 112 #include <linux/netpoll.h> 113 #include <linux/rcupdate.h> 114 #include <linux/delay.h> 115 #include <net/wext.h> 116 #include <net/iw_handler.h> 117 #include <asm/current.h> 118 #include <linux/audit.h> 119 #include <linux/dmaengine.h> 120 #include <linux/err.h> 121 #include <linux/ctype.h> 122 #include <linux/if_arp.h> 123 #include <linux/if_vlan.h> 124 #include <linux/ip.h> 125 #include <net/ip.h> 126 #include <linux/ipv6.h> 127 #include <linux/in.h> 128 #include <linux/jhash.h> 129 #include <linux/random.h> 130 #include <trace/events/napi.h> 131 #include <trace/events/net.h> 132 #include <trace/events/skb.h> 133 #include <linux/pci.h> 134 #include <linux/inetdevice.h> 135 136 #include "net-sysfs.h" 137 138 /* Instead of increasing this, you should create a hash table. */ 139 #define MAX_GRO_SKBS 8 140 141 /* This should be increased if a protocol with a bigger head is added. */ 142 #define GRO_MAX_HEAD (MAX_HEADER + 128) 143 144 /* 145 * The list of packet types we will receive (as opposed to discard) 146 * and the routines to invoke. 147 * 148 * Why 16. Because with 16 the only overlap we get on a hash of the 149 * low nibble of the protocol value is RARP/SNAP/X.25. 150 * 151 * NOTE: That is no longer true with the addition of VLAN tags. Not 152 * sure which should go first, but I bet it won't make much 153 * difference if we are running VLANs. The good news is that 154 * this protocol won't be in the list unless compiled in, so 155 * the average user (w/out VLANs) will not be adversely affected. 156 * --BLG 157 * 158 * 0800 IP 159 * 8100 802.1Q VLAN 160 * 0001 802.3 161 * 0002 AX.25 162 * 0004 802.2 163 * 8035 RARP 164 * 0005 SNAP 165 * 0805 X.25 166 * 0806 ARP 167 * 8137 IPX 168 * 0009 Localtalk 169 * 86DD IPv6 170 */ 171 172 #define PTYPE_HASH_SIZE (16) 173 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 174 175 static DEFINE_SPINLOCK(ptype_lock); 176 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 177 static struct list_head ptype_all __read_mostly; /* Taps */ 178 179 /* 180 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 181 * semaphore. 182 * 183 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 184 * 185 * Writers must hold the rtnl semaphore while they loop through the 186 * dev_base_head list, and hold dev_base_lock for writing when they do the 187 * actual updates. This allows pure readers to access the list even 188 * while a writer is preparing to update it. 189 * 190 * To put it another way, dev_base_lock is held for writing only to 191 * protect against pure readers; the rtnl semaphore provides the 192 * protection against other writers. 193 * 194 * See, for example usages, register_netdevice() and 195 * unregister_netdevice(), which must be called with the rtnl 196 * semaphore held. 197 */ 198 DEFINE_RWLOCK(dev_base_lock); 199 EXPORT_SYMBOL(dev_base_lock); 200 201 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 202 { 203 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 204 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 205 } 206 207 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 208 { 209 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 210 } 211 212 static inline void rps_lock(struct softnet_data *sd) 213 { 214 #ifdef CONFIG_RPS 215 spin_lock(&sd->input_pkt_queue.lock); 216 #endif 217 } 218 219 static inline void rps_unlock(struct softnet_data *sd) 220 { 221 #ifdef CONFIG_RPS 222 spin_unlock(&sd->input_pkt_queue.lock); 223 #endif 224 } 225 226 /* Device list insertion */ 227 static int list_netdevice(struct net_device *dev) 228 { 229 struct net *net = dev_net(dev); 230 231 ASSERT_RTNL(); 232 233 write_lock_bh(&dev_base_lock); 234 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 235 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 236 hlist_add_head_rcu(&dev->index_hlist, 237 dev_index_hash(net, dev->ifindex)); 238 write_unlock_bh(&dev_base_lock); 239 return 0; 240 } 241 242 /* Device list removal 243 * caller must respect a RCU grace period before freeing/reusing dev 244 */ 245 static void unlist_netdevice(struct net_device *dev) 246 { 247 ASSERT_RTNL(); 248 249 /* Unlink dev from the device chain */ 250 write_lock_bh(&dev_base_lock); 251 list_del_rcu(&dev->dev_list); 252 hlist_del_rcu(&dev->name_hlist); 253 hlist_del_rcu(&dev->index_hlist); 254 write_unlock_bh(&dev_base_lock); 255 } 256 257 /* 258 * Our notifier list 259 */ 260 261 static RAW_NOTIFIER_HEAD(netdev_chain); 262 263 /* 264 * Device drivers call our routines to queue packets here. We empty the 265 * queue in the local softnet handler. 266 */ 267 268 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 269 EXPORT_PER_CPU_SYMBOL(softnet_data); 270 271 #ifdef CONFIG_LOCKDEP 272 /* 273 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 274 * according to dev->type 275 */ 276 static const unsigned short netdev_lock_type[] = 277 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 278 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 279 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 280 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 281 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 282 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 283 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 284 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 285 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 286 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 287 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 288 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 289 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 290 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, 291 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154, 292 ARPHRD_VOID, ARPHRD_NONE}; 293 294 static const char *const netdev_lock_name[] = 295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 307 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 308 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", 309 "_xmit_PHONET_PIPE", "_xmit_IEEE802154", 310 "_xmit_VOID", "_xmit_NONE"}; 311 312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 314 315 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 316 { 317 int i; 318 319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 320 if (netdev_lock_type[i] == dev_type) 321 return i; 322 /* the last key is used by default */ 323 return ARRAY_SIZE(netdev_lock_type) - 1; 324 } 325 326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 327 unsigned short dev_type) 328 { 329 int i; 330 331 i = netdev_lock_pos(dev_type); 332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 333 netdev_lock_name[i]); 334 } 335 336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 337 { 338 int i; 339 340 i = netdev_lock_pos(dev->type); 341 lockdep_set_class_and_name(&dev->addr_list_lock, 342 &netdev_addr_lock_key[i], 343 netdev_lock_name[i]); 344 } 345 #else 346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 347 unsigned short dev_type) 348 { 349 } 350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 351 { 352 } 353 #endif 354 355 /******************************************************************************* 356 357 Protocol management and registration routines 358 359 *******************************************************************************/ 360 361 /* 362 * Add a protocol ID to the list. Now that the input handler is 363 * smarter we can dispense with all the messy stuff that used to be 364 * here. 365 * 366 * BEWARE!!! Protocol handlers, mangling input packets, 367 * MUST BE last in hash buckets and checking protocol handlers 368 * MUST start from promiscuous ptype_all chain in net_bh. 369 * It is true now, do not change it. 370 * Explanation follows: if protocol handler, mangling packet, will 371 * be the first on list, it is not able to sense, that packet 372 * is cloned and should be copied-on-write, so that it will 373 * change it and subsequent readers will get broken packet. 374 * --ANK (980803) 375 */ 376 377 static inline struct list_head *ptype_head(const struct packet_type *pt) 378 { 379 if (pt->type == htons(ETH_P_ALL)) 380 return &ptype_all; 381 else 382 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 383 } 384 385 /** 386 * dev_add_pack - add packet handler 387 * @pt: packet type declaration 388 * 389 * Add a protocol handler to the networking stack. The passed &packet_type 390 * is linked into kernel lists and may not be freed until it has been 391 * removed from the kernel lists. 392 * 393 * This call does not sleep therefore it can not 394 * guarantee all CPU's that are in middle of receiving packets 395 * will see the new packet type (until the next received packet). 396 */ 397 398 void dev_add_pack(struct packet_type *pt) 399 { 400 struct list_head *head = ptype_head(pt); 401 402 spin_lock(&ptype_lock); 403 list_add_rcu(&pt->list, head); 404 spin_unlock(&ptype_lock); 405 } 406 EXPORT_SYMBOL(dev_add_pack); 407 408 /** 409 * __dev_remove_pack - remove packet handler 410 * @pt: packet type declaration 411 * 412 * Remove a protocol handler that was previously added to the kernel 413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 414 * from the kernel lists and can be freed or reused once this function 415 * returns. 416 * 417 * The packet type might still be in use by receivers 418 * and must not be freed until after all the CPU's have gone 419 * through a quiescent state. 420 */ 421 void __dev_remove_pack(struct packet_type *pt) 422 { 423 struct list_head *head = ptype_head(pt); 424 struct packet_type *pt1; 425 426 spin_lock(&ptype_lock); 427 428 list_for_each_entry(pt1, head, list) { 429 if (pt == pt1) { 430 list_del_rcu(&pt->list); 431 goto out; 432 } 433 } 434 435 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 436 out: 437 spin_unlock(&ptype_lock); 438 } 439 EXPORT_SYMBOL(__dev_remove_pack); 440 441 /** 442 * dev_remove_pack - remove packet handler 443 * @pt: packet type declaration 444 * 445 * Remove a protocol handler that was previously added to the kernel 446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 447 * from the kernel lists and can be freed or reused once this function 448 * returns. 449 * 450 * This call sleeps to guarantee that no CPU is looking at the packet 451 * type after return. 452 */ 453 void dev_remove_pack(struct packet_type *pt) 454 { 455 __dev_remove_pack(pt); 456 457 synchronize_net(); 458 } 459 EXPORT_SYMBOL(dev_remove_pack); 460 461 /****************************************************************************** 462 463 Device Boot-time Settings Routines 464 465 *******************************************************************************/ 466 467 /* Boot time configuration table */ 468 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 469 470 /** 471 * netdev_boot_setup_add - add new setup entry 472 * @name: name of the device 473 * @map: configured settings for the device 474 * 475 * Adds new setup entry to the dev_boot_setup list. The function 476 * returns 0 on error and 1 on success. This is a generic routine to 477 * all netdevices. 478 */ 479 static int netdev_boot_setup_add(char *name, struct ifmap *map) 480 { 481 struct netdev_boot_setup *s; 482 int i; 483 484 s = dev_boot_setup; 485 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 486 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 487 memset(s[i].name, 0, sizeof(s[i].name)); 488 strlcpy(s[i].name, name, IFNAMSIZ); 489 memcpy(&s[i].map, map, sizeof(s[i].map)); 490 break; 491 } 492 } 493 494 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 495 } 496 497 /** 498 * netdev_boot_setup_check - check boot time settings 499 * @dev: the netdevice 500 * 501 * Check boot time settings for the device. 502 * The found settings are set for the device to be used 503 * later in the device probing. 504 * Returns 0 if no settings found, 1 if they are. 505 */ 506 int netdev_boot_setup_check(struct net_device *dev) 507 { 508 struct netdev_boot_setup *s = dev_boot_setup; 509 int i; 510 511 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 512 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 513 !strcmp(dev->name, s[i].name)) { 514 dev->irq = s[i].map.irq; 515 dev->base_addr = s[i].map.base_addr; 516 dev->mem_start = s[i].map.mem_start; 517 dev->mem_end = s[i].map.mem_end; 518 return 1; 519 } 520 } 521 return 0; 522 } 523 EXPORT_SYMBOL(netdev_boot_setup_check); 524 525 526 /** 527 * netdev_boot_base - get address from boot time settings 528 * @prefix: prefix for network device 529 * @unit: id for network device 530 * 531 * Check boot time settings for the base address of device. 532 * The found settings are set for the device to be used 533 * later in the device probing. 534 * Returns 0 if no settings found. 535 */ 536 unsigned long netdev_boot_base(const char *prefix, int unit) 537 { 538 const struct netdev_boot_setup *s = dev_boot_setup; 539 char name[IFNAMSIZ]; 540 int i; 541 542 sprintf(name, "%s%d", prefix, unit); 543 544 /* 545 * If device already registered then return base of 1 546 * to indicate not to probe for this interface 547 */ 548 if (__dev_get_by_name(&init_net, name)) 549 return 1; 550 551 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 552 if (!strcmp(name, s[i].name)) 553 return s[i].map.base_addr; 554 return 0; 555 } 556 557 /* 558 * Saves at boot time configured settings for any netdevice. 559 */ 560 int __init netdev_boot_setup(char *str) 561 { 562 int ints[5]; 563 struct ifmap map; 564 565 str = get_options(str, ARRAY_SIZE(ints), ints); 566 if (!str || !*str) 567 return 0; 568 569 /* Save settings */ 570 memset(&map, 0, sizeof(map)); 571 if (ints[0] > 0) 572 map.irq = ints[1]; 573 if (ints[0] > 1) 574 map.base_addr = ints[2]; 575 if (ints[0] > 2) 576 map.mem_start = ints[3]; 577 if (ints[0] > 3) 578 map.mem_end = ints[4]; 579 580 /* Add new entry to the list */ 581 return netdev_boot_setup_add(str, &map); 582 } 583 584 __setup("netdev=", netdev_boot_setup); 585 586 /******************************************************************************* 587 588 Device Interface Subroutines 589 590 *******************************************************************************/ 591 592 /** 593 * __dev_get_by_name - find a device by its name 594 * @net: the applicable net namespace 595 * @name: name to find 596 * 597 * Find an interface by name. Must be called under RTNL semaphore 598 * or @dev_base_lock. If the name is found a pointer to the device 599 * is returned. If the name is not found then %NULL is returned. The 600 * reference counters are not incremented so the caller must be 601 * careful with locks. 602 */ 603 604 struct net_device *__dev_get_by_name(struct net *net, const char *name) 605 { 606 struct hlist_node *p; 607 struct net_device *dev; 608 struct hlist_head *head = dev_name_hash(net, name); 609 610 hlist_for_each_entry(dev, p, head, name_hlist) 611 if (!strncmp(dev->name, name, IFNAMSIZ)) 612 return dev; 613 614 return NULL; 615 } 616 EXPORT_SYMBOL(__dev_get_by_name); 617 618 /** 619 * dev_get_by_name_rcu - find a device by its name 620 * @net: the applicable net namespace 621 * @name: name to find 622 * 623 * Find an interface by name. 624 * If the name is found a pointer to the device is returned. 625 * If the name is not found then %NULL is returned. 626 * The reference counters are not incremented so the caller must be 627 * careful with locks. The caller must hold RCU lock. 628 */ 629 630 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 631 { 632 struct hlist_node *p; 633 struct net_device *dev; 634 struct hlist_head *head = dev_name_hash(net, name); 635 636 hlist_for_each_entry_rcu(dev, p, head, name_hlist) 637 if (!strncmp(dev->name, name, IFNAMSIZ)) 638 return dev; 639 640 return NULL; 641 } 642 EXPORT_SYMBOL(dev_get_by_name_rcu); 643 644 /** 645 * dev_get_by_name - find a device by its name 646 * @net: the applicable net namespace 647 * @name: name to find 648 * 649 * Find an interface by name. This can be called from any 650 * context and does its own locking. The returned handle has 651 * the usage count incremented and the caller must use dev_put() to 652 * release it when it is no longer needed. %NULL is returned if no 653 * matching device is found. 654 */ 655 656 struct net_device *dev_get_by_name(struct net *net, const char *name) 657 { 658 struct net_device *dev; 659 660 rcu_read_lock(); 661 dev = dev_get_by_name_rcu(net, name); 662 if (dev) 663 dev_hold(dev); 664 rcu_read_unlock(); 665 return dev; 666 } 667 EXPORT_SYMBOL(dev_get_by_name); 668 669 /** 670 * __dev_get_by_index - find a device by its ifindex 671 * @net: the applicable net namespace 672 * @ifindex: index of device 673 * 674 * Search for an interface by index. Returns %NULL if the device 675 * is not found or a pointer to the device. The device has not 676 * had its reference counter increased so the caller must be careful 677 * about locking. The caller must hold either the RTNL semaphore 678 * or @dev_base_lock. 679 */ 680 681 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 682 { 683 struct hlist_node *p; 684 struct net_device *dev; 685 struct hlist_head *head = dev_index_hash(net, ifindex); 686 687 hlist_for_each_entry(dev, p, head, index_hlist) 688 if (dev->ifindex == ifindex) 689 return dev; 690 691 return NULL; 692 } 693 EXPORT_SYMBOL(__dev_get_by_index); 694 695 /** 696 * dev_get_by_index_rcu - find a device by its ifindex 697 * @net: the applicable net namespace 698 * @ifindex: index of device 699 * 700 * Search for an interface by index. Returns %NULL if the device 701 * is not found or a pointer to the device. The device has not 702 * had its reference counter increased so the caller must be careful 703 * about locking. The caller must hold RCU lock. 704 */ 705 706 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 707 { 708 struct hlist_node *p; 709 struct net_device *dev; 710 struct hlist_head *head = dev_index_hash(net, ifindex); 711 712 hlist_for_each_entry_rcu(dev, p, head, index_hlist) 713 if (dev->ifindex == ifindex) 714 return dev; 715 716 return NULL; 717 } 718 EXPORT_SYMBOL(dev_get_by_index_rcu); 719 720 721 /** 722 * dev_get_by_index - find a device by its ifindex 723 * @net: the applicable net namespace 724 * @ifindex: index of device 725 * 726 * Search for an interface by index. Returns NULL if the device 727 * is not found or a pointer to the device. The device returned has 728 * had a reference added and the pointer is safe until the user calls 729 * dev_put to indicate they have finished with it. 730 */ 731 732 struct net_device *dev_get_by_index(struct net *net, int ifindex) 733 { 734 struct net_device *dev; 735 736 rcu_read_lock(); 737 dev = dev_get_by_index_rcu(net, ifindex); 738 if (dev) 739 dev_hold(dev); 740 rcu_read_unlock(); 741 return dev; 742 } 743 EXPORT_SYMBOL(dev_get_by_index); 744 745 /** 746 * dev_getbyhwaddr_rcu - find a device by its hardware address 747 * @net: the applicable net namespace 748 * @type: media type of device 749 * @ha: hardware address 750 * 751 * Search for an interface by MAC address. Returns NULL if the device 752 * is not found or a pointer to the device. 753 * The caller must hold RCU or RTNL. 754 * The returned device has not had its ref count increased 755 * and the caller must therefore be careful about locking 756 * 757 */ 758 759 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 760 const char *ha) 761 { 762 struct net_device *dev; 763 764 for_each_netdev_rcu(net, dev) 765 if (dev->type == type && 766 !memcmp(dev->dev_addr, ha, dev->addr_len)) 767 return dev; 768 769 return NULL; 770 } 771 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 772 773 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 774 { 775 struct net_device *dev; 776 777 ASSERT_RTNL(); 778 for_each_netdev(net, dev) 779 if (dev->type == type) 780 return dev; 781 782 return NULL; 783 } 784 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 785 786 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 787 { 788 struct net_device *dev, *ret = NULL; 789 790 rcu_read_lock(); 791 for_each_netdev_rcu(net, dev) 792 if (dev->type == type) { 793 dev_hold(dev); 794 ret = dev; 795 break; 796 } 797 rcu_read_unlock(); 798 return ret; 799 } 800 EXPORT_SYMBOL(dev_getfirstbyhwtype); 801 802 /** 803 * dev_get_by_flags_rcu - find any device with given flags 804 * @net: the applicable net namespace 805 * @if_flags: IFF_* values 806 * @mask: bitmask of bits in if_flags to check 807 * 808 * Search for any interface with the given flags. Returns NULL if a device 809 * is not found or a pointer to the device. Must be called inside 810 * rcu_read_lock(), and result refcount is unchanged. 811 */ 812 813 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 814 unsigned short mask) 815 { 816 struct net_device *dev, *ret; 817 818 ret = NULL; 819 for_each_netdev_rcu(net, dev) { 820 if (((dev->flags ^ if_flags) & mask) == 0) { 821 ret = dev; 822 break; 823 } 824 } 825 return ret; 826 } 827 EXPORT_SYMBOL(dev_get_by_flags_rcu); 828 829 /** 830 * dev_valid_name - check if name is okay for network device 831 * @name: name string 832 * 833 * Network device names need to be valid file names to 834 * to allow sysfs to work. We also disallow any kind of 835 * whitespace. 836 */ 837 int dev_valid_name(const char *name) 838 { 839 if (*name == '\0') 840 return 0; 841 if (strlen(name) >= IFNAMSIZ) 842 return 0; 843 if (!strcmp(name, ".") || !strcmp(name, "..")) 844 return 0; 845 846 while (*name) { 847 if (*name == '/' || isspace(*name)) 848 return 0; 849 name++; 850 } 851 return 1; 852 } 853 EXPORT_SYMBOL(dev_valid_name); 854 855 /** 856 * __dev_alloc_name - allocate a name for a device 857 * @net: network namespace to allocate the device name in 858 * @name: name format string 859 * @buf: scratch buffer and result name string 860 * 861 * Passed a format string - eg "lt%d" it will try and find a suitable 862 * id. It scans list of devices to build up a free map, then chooses 863 * the first empty slot. The caller must hold the dev_base or rtnl lock 864 * while allocating the name and adding the device in order to avoid 865 * duplicates. 866 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 867 * Returns the number of the unit assigned or a negative errno code. 868 */ 869 870 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 871 { 872 int i = 0; 873 const char *p; 874 const int max_netdevices = 8*PAGE_SIZE; 875 unsigned long *inuse; 876 struct net_device *d; 877 878 p = strnchr(name, IFNAMSIZ-1, '%'); 879 if (p) { 880 /* 881 * Verify the string as this thing may have come from 882 * the user. There must be either one "%d" and no other "%" 883 * characters. 884 */ 885 if (p[1] != 'd' || strchr(p + 2, '%')) 886 return -EINVAL; 887 888 /* Use one page as a bit array of possible slots */ 889 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 890 if (!inuse) 891 return -ENOMEM; 892 893 for_each_netdev(net, d) { 894 if (!sscanf(d->name, name, &i)) 895 continue; 896 if (i < 0 || i >= max_netdevices) 897 continue; 898 899 /* avoid cases where sscanf is not exact inverse of printf */ 900 snprintf(buf, IFNAMSIZ, name, i); 901 if (!strncmp(buf, d->name, IFNAMSIZ)) 902 set_bit(i, inuse); 903 } 904 905 i = find_first_zero_bit(inuse, max_netdevices); 906 free_page((unsigned long) inuse); 907 } 908 909 if (buf != name) 910 snprintf(buf, IFNAMSIZ, name, i); 911 if (!__dev_get_by_name(net, buf)) 912 return i; 913 914 /* It is possible to run out of possible slots 915 * when the name is long and there isn't enough space left 916 * for the digits, or if all bits are used. 917 */ 918 return -ENFILE; 919 } 920 921 /** 922 * dev_alloc_name - allocate a name for a device 923 * @dev: device 924 * @name: name format string 925 * 926 * Passed a format string - eg "lt%d" it will try and find a suitable 927 * id. It scans list of devices to build up a free map, then chooses 928 * the first empty slot. The caller must hold the dev_base or rtnl lock 929 * while allocating the name and adding the device in order to avoid 930 * duplicates. 931 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 932 * Returns the number of the unit assigned or a negative errno code. 933 */ 934 935 int dev_alloc_name(struct net_device *dev, const char *name) 936 { 937 char buf[IFNAMSIZ]; 938 struct net *net; 939 int ret; 940 941 BUG_ON(!dev_net(dev)); 942 net = dev_net(dev); 943 ret = __dev_alloc_name(net, name, buf); 944 if (ret >= 0) 945 strlcpy(dev->name, buf, IFNAMSIZ); 946 return ret; 947 } 948 EXPORT_SYMBOL(dev_alloc_name); 949 950 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt) 951 { 952 struct net *net; 953 954 BUG_ON(!dev_net(dev)); 955 net = dev_net(dev); 956 957 if (!dev_valid_name(name)) 958 return -EINVAL; 959 960 if (fmt && strchr(name, '%')) 961 return dev_alloc_name(dev, name); 962 else if (__dev_get_by_name(net, name)) 963 return -EEXIST; 964 else if (dev->name != name) 965 strlcpy(dev->name, name, IFNAMSIZ); 966 967 return 0; 968 } 969 970 /** 971 * dev_change_name - change name of a device 972 * @dev: device 973 * @newname: name (or format string) must be at least IFNAMSIZ 974 * 975 * Change name of a device, can pass format strings "eth%d". 976 * for wildcarding. 977 */ 978 int dev_change_name(struct net_device *dev, const char *newname) 979 { 980 char oldname[IFNAMSIZ]; 981 int err = 0; 982 int ret; 983 struct net *net; 984 985 ASSERT_RTNL(); 986 BUG_ON(!dev_net(dev)); 987 988 net = dev_net(dev); 989 if (dev->flags & IFF_UP) 990 return -EBUSY; 991 992 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 993 return 0; 994 995 memcpy(oldname, dev->name, IFNAMSIZ); 996 997 err = dev_get_valid_name(dev, newname, 1); 998 if (err < 0) 999 return err; 1000 1001 rollback: 1002 ret = device_rename(&dev->dev, dev->name); 1003 if (ret) { 1004 memcpy(dev->name, oldname, IFNAMSIZ); 1005 return ret; 1006 } 1007 1008 write_lock_bh(&dev_base_lock); 1009 hlist_del(&dev->name_hlist); 1010 write_unlock_bh(&dev_base_lock); 1011 1012 synchronize_rcu(); 1013 1014 write_lock_bh(&dev_base_lock); 1015 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1016 write_unlock_bh(&dev_base_lock); 1017 1018 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1019 ret = notifier_to_errno(ret); 1020 1021 if (ret) { 1022 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1023 if (err >= 0) { 1024 err = ret; 1025 memcpy(dev->name, oldname, IFNAMSIZ); 1026 goto rollback; 1027 } else { 1028 printk(KERN_ERR 1029 "%s: name change rollback failed: %d.\n", 1030 dev->name, ret); 1031 } 1032 } 1033 1034 return err; 1035 } 1036 1037 /** 1038 * dev_set_alias - change ifalias of a device 1039 * @dev: device 1040 * @alias: name up to IFALIASZ 1041 * @len: limit of bytes to copy from info 1042 * 1043 * Set ifalias for a device, 1044 */ 1045 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1046 { 1047 ASSERT_RTNL(); 1048 1049 if (len >= IFALIASZ) 1050 return -EINVAL; 1051 1052 if (!len) { 1053 if (dev->ifalias) { 1054 kfree(dev->ifalias); 1055 dev->ifalias = NULL; 1056 } 1057 return 0; 1058 } 1059 1060 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1061 if (!dev->ifalias) 1062 return -ENOMEM; 1063 1064 strlcpy(dev->ifalias, alias, len+1); 1065 return len; 1066 } 1067 1068 1069 /** 1070 * netdev_features_change - device changes features 1071 * @dev: device to cause notification 1072 * 1073 * Called to indicate a device has changed features. 1074 */ 1075 void netdev_features_change(struct net_device *dev) 1076 { 1077 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1078 } 1079 EXPORT_SYMBOL(netdev_features_change); 1080 1081 /** 1082 * netdev_state_change - device changes state 1083 * @dev: device to cause notification 1084 * 1085 * Called to indicate a device has changed state. This function calls 1086 * the notifier chains for netdev_chain and sends a NEWLINK message 1087 * to the routing socket. 1088 */ 1089 void netdev_state_change(struct net_device *dev) 1090 { 1091 if (dev->flags & IFF_UP) { 1092 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1093 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1094 } 1095 } 1096 EXPORT_SYMBOL(netdev_state_change); 1097 1098 int netdev_bonding_change(struct net_device *dev, unsigned long event) 1099 { 1100 return call_netdevice_notifiers(event, dev); 1101 } 1102 EXPORT_SYMBOL(netdev_bonding_change); 1103 1104 /** 1105 * dev_load - load a network module 1106 * @net: the applicable net namespace 1107 * @name: name of interface 1108 * 1109 * If a network interface is not present and the process has suitable 1110 * privileges this function loads the module. If module loading is not 1111 * available in this kernel then it becomes a nop. 1112 */ 1113 1114 void dev_load(struct net *net, const char *name) 1115 { 1116 struct net_device *dev; 1117 int no_module; 1118 1119 rcu_read_lock(); 1120 dev = dev_get_by_name_rcu(net, name); 1121 rcu_read_unlock(); 1122 1123 no_module = !dev; 1124 if (no_module && capable(CAP_NET_ADMIN)) 1125 no_module = request_module("netdev-%s", name); 1126 if (no_module && capable(CAP_SYS_MODULE)) { 1127 if (!request_module("%s", name)) 1128 pr_err("Loading kernel module for a network device " 1129 "with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s " 1130 "instead\n", name); 1131 } 1132 } 1133 EXPORT_SYMBOL(dev_load); 1134 1135 static int __dev_open(struct net_device *dev) 1136 { 1137 const struct net_device_ops *ops = dev->netdev_ops; 1138 int ret; 1139 1140 ASSERT_RTNL(); 1141 1142 /* 1143 * Is it even present? 1144 */ 1145 if (!netif_device_present(dev)) 1146 return -ENODEV; 1147 1148 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1149 ret = notifier_to_errno(ret); 1150 if (ret) 1151 return ret; 1152 1153 /* 1154 * Call device private open method 1155 */ 1156 set_bit(__LINK_STATE_START, &dev->state); 1157 1158 if (ops->ndo_validate_addr) 1159 ret = ops->ndo_validate_addr(dev); 1160 1161 if (!ret && ops->ndo_open) 1162 ret = ops->ndo_open(dev); 1163 1164 /* 1165 * If it went open OK then: 1166 */ 1167 1168 if (ret) 1169 clear_bit(__LINK_STATE_START, &dev->state); 1170 else { 1171 /* 1172 * Set the flags. 1173 */ 1174 dev->flags |= IFF_UP; 1175 1176 /* 1177 * Enable NET_DMA 1178 */ 1179 net_dmaengine_get(); 1180 1181 /* 1182 * Initialize multicasting status 1183 */ 1184 dev_set_rx_mode(dev); 1185 1186 /* 1187 * Wakeup transmit queue engine 1188 */ 1189 dev_activate(dev); 1190 } 1191 1192 return ret; 1193 } 1194 1195 /** 1196 * dev_open - prepare an interface for use. 1197 * @dev: device to open 1198 * 1199 * Takes a device from down to up state. The device's private open 1200 * function is invoked and then the multicast lists are loaded. Finally 1201 * the device is moved into the up state and a %NETDEV_UP message is 1202 * sent to the netdev notifier chain. 1203 * 1204 * Calling this function on an active interface is a nop. On a failure 1205 * a negative errno code is returned. 1206 */ 1207 int dev_open(struct net_device *dev) 1208 { 1209 int ret; 1210 1211 /* 1212 * Is it already up? 1213 */ 1214 if (dev->flags & IFF_UP) 1215 return 0; 1216 1217 /* 1218 * Open device 1219 */ 1220 ret = __dev_open(dev); 1221 if (ret < 0) 1222 return ret; 1223 1224 /* 1225 * ... and announce new interface. 1226 */ 1227 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1228 call_netdevice_notifiers(NETDEV_UP, dev); 1229 1230 return ret; 1231 } 1232 EXPORT_SYMBOL(dev_open); 1233 1234 static int __dev_close_many(struct list_head *head) 1235 { 1236 struct net_device *dev; 1237 1238 ASSERT_RTNL(); 1239 might_sleep(); 1240 1241 list_for_each_entry(dev, head, unreg_list) { 1242 /* 1243 * Tell people we are going down, so that they can 1244 * prepare to death, when device is still operating. 1245 */ 1246 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1247 1248 clear_bit(__LINK_STATE_START, &dev->state); 1249 1250 /* Synchronize to scheduled poll. We cannot touch poll list, it 1251 * can be even on different cpu. So just clear netif_running(). 1252 * 1253 * dev->stop() will invoke napi_disable() on all of it's 1254 * napi_struct instances on this device. 1255 */ 1256 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1257 } 1258 1259 dev_deactivate_many(head); 1260 1261 list_for_each_entry(dev, head, unreg_list) { 1262 const struct net_device_ops *ops = dev->netdev_ops; 1263 1264 /* 1265 * Call the device specific close. This cannot fail. 1266 * Only if device is UP 1267 * 1268 * We allow it to be called even after a DETACH hot-plug 1269 * event. 1270 */ 1271 if (ops->ndo_stop) 1272 ops->ndo_stop(dev); 1273 1274 /* 1275 * Device is now down. 1276 */ 1277 1278 dev->flags &= ~IFF_UP; 1279 1280 /* 1281 * Shutdown NET_DMA 1282 */ 1283 net_dmaengine_put(); 1284 } 1285 1286 return 0; 1287 } 1288 1289 static int __dev_close(struct net_device *dev) 1290 { 1291 int retval; 1292 LIST_HEAD(single); 1293 1294 list_add(&dev->unreg_list, &single); 1295 retval = __dev_close_many(&single); 1296 list_del(&single); 1297 return retval; 1298 } 1299 1300 int dev_close_many(struct list_head *head) 1301 { 1302 struct net_device *dev, *tmp; 1303 LIST_HEAD(tmp_list); 1304 1305 list_for_each_entry_safe(dev, tmp, head, unreg_list) 1306 if (!(dev->flags & IFF_UP)) 1307 list_move(&dev->unreg_list, &tmp_list); 1308 1309 __dev_close_many(head); 1310 1311 /* 1312 * Tell people we are down 1313 */ 1314 list_for_each_entry(dev, head, unreg_list) { 1315 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1316 call_netdevice_notifiers(NETDEV_DOWN, dev); 1317 } 1318 1319 /* rollback_registered_many needs the complete original list */ 1320 list_splice(&tmp_list, head); 1321 return 0; 1322 } 1323 1324 /** 1325 * dev_close - shutdown an interface. 1326 * @dev: device to shutdown 1327 * 1328 * This function moves an active device into down state. A 1329 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1330 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1331 * chain. 1332 */ 1333 int dev_close(struct net_device *dev) 1334 { 1335 LIST_HEAD(single); 1336 1337 list_add(&dev->unreg_list, &single); 1338 dev_close_many(&single); 1339 list_del(&single); 1340 return 0; 1341 } 1342 EXPORT_SYMBOL(dev_close); 1343 1344 1345 /** 1346 * dev_disable_lro - disable Large Receive Offload on a device 1347 * @dev: device 1348 * 1349 * Disable Large Receive Offload (LRO) on a net device. Must be 1350 * called under RTNL. This is needed if received packets may be 1351 * forwarded to another interface. 1352 */ 1353 void dev_disable_lro(struct net_device *dev) 1354 { 1355 if (dev->ethtool_ops && dev->ethtool_ops->get_flags && 1356 dev->ethtool_ops->set_flags) { 1357 u32 flags = dev->ethtool_ops->get_flags(dev); 1358 if (flags & ETH_FLAG_LRO) { 1359 flags &= ~ETH_FLAG_LRO; 1360 dev->ethtool_ops->set_flags(dev, flags); 1361 } 1362 } 1363 WARN_ON(dev->features & NETIF_F_LRO); 1364 } 1365 EXPORT_SYMBOL(dev_disable_lro); 1366 1367 1368 static int dev_boot_phase = 1; 1369 1370 /* 1371 * Device change register/unregister. These are not inline or static 1372 * as we export them to the world. 1373 */ 1374 1375 /** 1376 * register_netdevice_notifier - register a network notifier block 1377 * @nb: notifier 1378 * 1379 * Register a notifier to be called when network device events occur. 1380 * The notifier passed is linked into the kernel structures and must 1381 * not be reused until it has been unregistered. A negative errno code 1382 * is returned on a failure. 1383 * 1384 * When registered all registration and up events are replayed 1385 * to the new notifier to allow device to have a race free 1386 * view of the network device list. 1387 */ 1388 1389 int register_netdevice_notifier(struct notifier_block *nb) 1390 { 1391 struct net_device *dev; 1392 struct net_device *last; 1393 struct net *net; 1394 int err; 1395 1396 rtnl_lock(); 1397 err = raw_notifier_chain_register(&netdev_chain, nb); 1398 if (err) 1399 goto unlock; 1400 if (dev_boot_phase) 1401 goto unlock; 1402 for_each_net(net) { 1403 for_each_netdev(net, dev) { 1404 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1405 err = notifier_to_errno(err); 1406 if (err) 1407 goto rollback; 1408 1409 if (!(dev->flags & IFF_UP)) 1410 continue; 1411 1412 nb->notifier_call(nb, NETDEV_UP, dev); 1413 } 1414 } 1415 1416 unlock: 1417 rtnl_unlock(); 1418 return err; 1419 1420 rollback: 1421 last = dev; 1422 for_each_net(net) { 1423 for_each_netdev(net, dev) { 1424 if (dev == last) 1425 break; 1426 1427 if (dev->flags & IFF_UP) { 1428 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1429 nb->notifier_call(nb, NETDEV_DOWN, dev); 1430 } 1431 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1432 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1433 } 1434 } 1435 1436 raw_notifier_chain_unregister(&netdev_chain, nb); 1437 goto unlock; 1438 } 1439 EXPORT_SYMBOL(register_netdevice_notifier); 1440 1441 /** 1442 * unregister_netdevice_notifier - unregister a network notifier block 1443 * @nb: notifier 1444 * 1445 * Unregister a notifier previously registered by 1446 * register_netdevice_notifier(). The notifier is unlinked into the 1447 * kernel structures and may then be reused. A negative errno code 1448 * is returned on a failure. 1449 */ 1450 1451 int unregister_netdevice_notifier(struct notifier_block *nb) 1452 { 1453 int err; 1454 1455 rtnl_lock(); 1456 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1457 rtnl_unlock(); 1458 return err; 1459 } 1460 EXPORT_SYMBOL(unregister_netdevice_notifier); 1461 1462 /** 1463 * call_netdevice_notifiers - call all network notifier blocks 1464 * @val: value passed unmodified to notifier function 1465 * @dev: net_device pointer passed unmodified to notifier function 1466 * 1467 * Call all network notifier blocks. Parameters and return value 1468 * are as for raw_notifier_call_chain(). 1469 */ 1470 1471 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1472 { 1473 ASSERT_RTNL(); 1474 return raw_notifier_call_chain(&netdev_chain, val, dev); 1475 } 1476 1477 /* When > 0 there are consumers of rx skb time stamps */ 1478 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1479 1480 void net_enable_timestamp(void) 1481 { 1482 atomic_inc(&netstamp_needed); 1483 } 1484 EXPORT_SYMBOL(net_enable_timestamp); 1485 1486 void net_disable_timestamp(void) 1487 { 1488 atomic_dec(&netstamp_needed); 1489 } 1490 EXPORT_SYMBOL(net_disable_timestamp); 1491 1492 static inline void net_timestamp_set(struct sk_buff *skb) 1493 { 1494 if (atomic_read(&netstamp_needed)) 1495 __net_timestamp(skb); 1496 else 1497 skb->tstamp.tv64 = 0; 1498 } 1499 1500 static inline void net_timestamp_check(struct sk_buff *skb) 1501 { 1502 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed)) 1503 __net_timestamp(skb); 1504 } 1505 1506 /** 1507 * dev_forward_skb - loopback an skb to another netif 1508 * 1509 * @dev: destination network device 1510 * @skb: buffer to forward 1511 * 1512 * return values: 1513 * NET_RX_SUCCESS (no congestion) 1514 * NET_RX_DROP (packet was dropped, but freed) 1515 * 1516 * dev_forward_skb can be used for injecting an skb from the 1517 * start_xmit function of one device into the receive queue 1518 * of another device. 1519 * 1520 * The receiving device may be in another namespace, so 1521 * we have to clear all information in the skb that could 1522 * impact namespace isolation. 1523 */ 1524 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1525 { 1526 skb_orphan(skb); 1527 nf_reset(skb); 1528 1529 if (unlikely(!(dev->flags & IFF_UP) || 1530 (skb->len > (dev->mtu + dev->hard_header_len + VLAN_HLEN)))) { 1531 atomic_long_inc(&dev->rx_dropped); 1532 kfree_skb(skb); 1533 return NET_RX_DROP; 1534 } 1535 skb_set_dev(skb, dev); 1536 skb->tstamp.tv64 = 0; 1537 skb->pkt_type = PACKET_HOST; 1538 skb->protocol = eth_type_trans(skb, dev); 1539 return netif_rx(skb); 1540 } 1541 EXPORT_SYMBOL_GPL(dev_forward_skb); 1542 1543 static inline int deliver_skb(struct sk_buff *skb, 1544 struct packet_type *pt_prev, 1545 struct net_device *orig_dev) 1546 { 1547 atomic_inc(&skb->users); 1548 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1549 } 1550 1551 /* 1552 * Support routine. Sends outgoing frames to any network 1553 * taps currently in use. 1554 */ 1555 1556 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1557 { 1558 struct packet_type *ptype; 1559 struct sk_buff *skb2 = NULL; 1560 struct packet_type *pt_prev = NULL; 1561 1562 rcu_read_lock(); 1563 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1564 /* Never send packets back to the socket 1565 * they originated from - MvS (miquels@drinkel.ow.org) 1566 */ 1567 if ((ptype->dev == dev || !ptype->dev) && 1568 (ptype->af_packet_priv == NULL || 1569 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1570 if (pt_prev) { 1571 deliver_skb(skb2, pt_prev, skb->dev); 1572 pt_prev = ptype; 1573 continue; 1574 } 1575 1576 skb2 = skb_clone(skb, GFP_ATOMIC); 1577 if (!skb2) 1578 break; 1579 1580 net_timestamp_set(skb2); 1581 1582 /* skb->nh should be correctly 1583 set by sender, so that the second statement is 1584 just protection against buggy protocols. 1585 */ 1586 skb_reset_mac_header(skb2); 1587 1588 if (skb_network_header(skb2) < skb2->data || 1589 skb2->network_header > skb2->tail) { 1590 if (net_ratelimit()) 1591 printk(KERN_CRIT "protocol %04x is " 1592 "buggy, dev %s\n", 1593 ntohs(skb2->protocol), 1594 dev->name); 1595 skb_reset_network_header(skb2); 1596 } 1597 1598 skb2->transport_header = skb2->network_header; 1599 skb2->pkt_type = PACKET_OUTGOING; 1600 pt_prev = ptype; 1601 } 1602 } 1603 if (pt_prev) 1604 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1605 rcu_read_unlock(); 1606 } 1607 1608 /* 1609 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 1610 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 1611 */ 1612 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 1613 { 1614 int rc; 1615 1616 if (txq < 1 || txq > dev->num_tx_queues) 1617 return -EINVAL; 1618 1619 if (dev->reg_state == NETREG_REGISTERED) { 1620 ASSERT_RTNL(); 1621 1622 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 1623 txq); 1624 if (rc) 1625 return rc; 1626 1627 if (txq < dev->real_num_tx_queues) 1628 qdisc_reset_all_tx_gt(dev, txq); 1629 } 1630 1631 dev->real_num_tx_queues = txq; 1632 return 0; 1633 } 1634 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 1635 1636 #ifdef CONFIG_RPS 1637 /** 1638 * netif_set_real_num_rx_queues - set actual number of RX queues used 1639 * @dev: Network device 1640 * @rxq: Actual number of RX queues 1641 * 1642 * This must be called either with the rtnl_lock held or before 1643 * registration of the net device. Returns 0 on success, or a 1644 * negative error code. If called before registration, it always 1645 * succeeds. 1646 */ 1647 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 1648 { 1649 int rc; 1650 1651 if (rxq < 1 || rxq > dev->num_rx_queues) 1652 return -EINVAL; 1653 1654 if (dev->reg_state == NETREG_REGISTERED) { 1655 ASSERT_RTNL(); 1656 1657 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 1658 rxq); 1659 if (rc) 1660 return rc; 1661 } 1662 1663 dev->real_num_rx_queues = rxq; 1664 return 0; 1665 } 1666 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 1667 #endif 1668 1669 static inline void __netif_reschedule(struct Qdisc *q) 1670 { 1671 struct softnet_data *sd; 1672 unsigned long flags; 1673 1674 local_irq_save(flags); 1675 sd = &__get_cpu_var(softnet_data); 1676 q->next_sched = NULL; 1677 *sd->output_queue_tailp = q; 1678 sd->output_queue_tailp = &q->next_sched; 1679 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1680 local_irq_restore(flags); 1681 } 1682 1683 void __netif_schedule(struct Qdisc *q) 1684 { 1685 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1686 __netif_reschedule(q); 1687 } 1688 EXPORT_SYMBOL(__netif_schedule); 1689 1690 void dev_kfree_skb_irq(struct sk_buff *skb) 1691 { 1692 if (atomic_dec_and_test(&skb->users)) { 1693 struct softnet_data *sd; 1694 unsigned long flags; 1695 1696 local_irq_save(flags); 1697 sd = &__get_cpu_var(softnet_data); 1698 skb->next = sd->completion_queue; 1699 sd->completion_queue = skb; 1700 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1701 local_irq_restore(flags); 1702 } 1703 } 1704 EXPORT_SYMBOL(dev_kfree_skb_irq); 1705 1706 void dev_kfree_skb_any(struct sk_buff *skb) 1707 { 1708 if (in_irq() || irqs_disabled()) 1709 dev_kfree_skb_irq(skb); 1710 else 1711 dev_kfree_skb(skb); 1712 } 1713 EXPORT_SYMBOL(dev_kfree_skb_any); 1714 1715 1716 /** 1717 * netif_device_detach - mark device as removed 1718 * @dev: network device 1719 * 1720 * Mark device as removed from system and therefore no longer available. 1721 */ 1722 void netif_device_detach(struct net_device *dev) 1723 { 1724 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1725 netif_running(dev)) { 1726 netif_tx_stop_all_queues(dev); 1727 } 1728 } 1729 EXPORT_SYMBOL(netif_device_detach); 1730 1731 /** 1732 * netif_device_attach - mark device as attached 1733 * @dev: network device 1734 * 1735 * Mark device as attached from system and restart if needed. 1736 */ 1737 void netif_device_attach(struct net_device *dev) 1738 { 1739 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1740 netif_running(dev)) { 1741 netif_tx_wake_all_queues(dev); 1742 __netdev_watchdog_up(dev); 1743 } 1744 } 1745 EXPORT_SYMBOL(netif_device_attach); 1746 1747 /** 1748 * skb_dev_set -- assign a new device to a buffer 1749 * @skb: buffer for the new device 1750 * @dev: network device 1751 * 1752 * If an skb is owned by a device already, we have to reset 1753 * all data private to the namespace a device belongs to 1754 * before assigning it a new device. 1755 */ 1756 #ifdef CONFIG_NET_NS 1757 void skb_set_dev(struct sk_buff *skb, struct net_device *dev) 1758 { 1759 skb_dst_drop(skb); 1760 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) { 1761 secpath_reset(skb); 1762 nf_reset(skb); 1763 skb_init_secmark(skb); 1764 skb->mark = 0; 1765 skb->priority = 0; 1766 skb->nf_trace = 0; 1767 skb->ipvs_property = 0; 1768 #ifdef CONFIG_NET_SCHED 1769 skb->tc_index = 0; 1770 #endif 1771 } 1772 skb->dev = dev; 1773 } 1774 EXPORT_SYMBOL(skb_set_dev); 1775 #endif /* CONFIG_NET_NS */ 1776 1777 /* 1778 * Invalidate hardware checksum when packet is to be mangled, and 1779 * complete checksum manually on outgoing path. 1780 */ 1781 int skb_checksum_help(struct sk_buff *skb) 1782 { 1783 __wsum csum; 1784 int ret = 0, offset; 1785 1786 if (skb->ip_summed == CHECKSUM_COMPLETE) 1787 goto out_set_summed; 1788 1789 if (unlikely(skb_shinfo(skb)->gso_size)) { 1790 /* Let GSO fix up the checksum. */ 1791 goto out_set_summed; 1792 } 1793 1794 offset = skb_checksum_start_offset(skb); 1795 BUG_ON(offset >= skb_headlen(skb)); 1796 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1797 1798 offset += skb->csum_offset; 1799 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1800 1801 if (skb_cloned(skb) && 1802 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1803 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1804 if (ret) 1805 goto out; 1806 } 1807 1808 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1809 out_set_summed: 1810 skb->ip_summed = CHECKSUM_NONE; 1811 out: 1812 return ret; 1813 } 1814 EXPORT_SYMBOL(skb_checksum_help); 1815 1816 /** 1817 * skb_gso_segment - Perform segmentation on skb. 1818 * @skb: buffer to segment 1819 * @features: features for the output path (see dev->features) 1820 * 1821 * This function segments the given skb and returns a list of segments. 1822 * 1823 * It may return NULL if the skb requires no segmentation. This is 1824 * only possible when GSO is used for verifying header integrity. 1825 */ 1826 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1827 { 1828 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1829 struct packet_type *ptype; 1830 __be16 type = skb->protocol; 1831 int vlan_depth = ETH_HLEN; 1832 int err; 1833 1834 while (type == htons(ETH_P_8021Q)) { 1835 struct vlan_hdr *vh; 1836 1837 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 1838 return ERR_PTR(-EINVAL); 1839 1840 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 1841 type = vh->h_vlan_encapsulated_proto; 1842 vlan_depth += VLAN_HLEN; 1843 } 1844 1845 skb_reset_mac_header(skb); 1846 skb->mac_len = skb->network_header - skb->mac_header; 1847 __skb_pull(skb, skb->mac_len); 1848 1849 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1850 struct net_device *dev = skb->dev; 1851 struct ethtool_drvinfo info = {}; 1852 1853 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo) 1854 dev->ethtool_ops->get_drvinfo(dev, &info); 1855 1856 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n", 1857 info.driver, dev ? dev->features : 0L, 1858 skb->sk ? skb->sk->sk_route_caps : 0L, 1859 skb->len, skb->data_len, skb->ip_summed); 1860 1861 if (skb_header_cloned(skb) && 1862 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1863 return ERR_PTR(err); 1864 } 1865 1866 rcu_read_lock(); 1867 list_for_each_entry_rcu(ptype, 1868 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1869 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1870 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1871 err = ptype->gso_send_check(skb); 1872 segs = ERR_PTR(err); 1873 if (err || skb_gso_ok(skb, features)) 1874 break; 1875 __skb_push(skb, (skb->data - 1876 skb_network_header(skb))); 1877 } 1878 segs = ptype->gso_segment(skb, features); 1879 break; 1880 } 1881 } 1882 rcu_read_unlock(); 1883 1884 __skb_push(skb, skb->data - skb_mac_header(skb)); 1885 1886 return segs; 1887 } 1888 EXPORT_SYMBOL(skb_gso_segment); 1889 1890 /* Take action when hardware reception checksum errors are detected. */ 1891 #ifdef CONFIG_BUG 1892 void netdev_rx_csum_fault(struct net_device *dev) 1893 { 1894 if (net_ratelimit()) { 1895 printk(KERN_ERR "%s: hw csum failure.\n", 1896 dev ? dev->name : "<unknown>"); 1897 dump_stack(); 1898 } 1899 } 1900 EXPORT_SYMBOL(netdev_rx_csum_fault); 1901 #endif 1902 1903 /* Actually, we should eliminate this check as soon as we know, that: 1904 * 1. IOMMU is present and allows to map all the memory. 1905 * 2. No high memory really exists on this machine. 1906 */ 1907 1908 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1909 { 1910 #ifdef CONFIG_HIGHMEM 1911 int i; 1912 if (!(dev->features & NETIF_F_HIGHDMA)) { 1913 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1914 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1915 return 1; 1916 } 1917 1918 if (PCI_DMA_BUS_IS_PHYS) { 1919 struct device *pdev = dev->dev.parent; 1920 1921 if (!pdev) 1922 return 0; 1923 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1924 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page); 1925 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 1926 return 1; 1927 } 1928 } 1929 #endif 1930 return 0; 1931 } 1932 1933 struct dev_gso_cb { 1934 void (*destructor)(struct sk_buff *skb); 1935 }; 1936 1937 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1938 1939 static void dev_gso_skb_destructor(struct sk_buff *skb) 1940 { 1941 struct dev_gso_cb *cb; 1942 1943 do { 1944 struct sk_buff *nskb = skb->next; 1945 1946 skb->next = nskb->next; 1947 nskb->next = NULL; 1948 kfree_skb(nskb); 1949 } while (skb->next); 1950 1951 cb = DEV_GSO_CB(skb); 1952 if (cb->destructor) 1953 cb->destructor(skb); 1954 } 1955 1956 /** 1957 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1958 * @skb: buffer to segment 1959 * @features: device features as applicable to this skb 1960 * 1961 * This function segments the given skb and stores the list of segments 1962 * in skb->next. 1963 */ 1964 static int dev_gso_segment(struct sk_buff *skb, int features) 1965 { 1966 struct sk_buff *segs; 1967 1968 segs = skb_gso_segment(skb, features); 1969 1970 /* Verifying header integrity only. */ 1971 if (!segs) 1972 return 0; 1973 1974 if (IS_ERR(segs)) 1975 return PTR_ERR(segs); 1976 1977 skb->next = segs; 1978 DEV_GSO_CB(skb)->destructor = skb->destructor; 1979 skb->destructor = dev_gso_skb_destructor; 1980 1981 return 0; 1982 } 1983 1984 /* 1985 * Try to orphan skb early, right before transmission by the device. 1986 * We cannot orphan skb if tx timestamp is requested or the sk-reference 1987 * is needed on driver level for other reasons, e.g. see net/can/raw.c 1988 */ 1989 static inline void skb_orphan_try(struct sk_buff *skb) 1990 { 1991 struct sock *sk = skb->sk; 1992 1993 if (sk && !skb_shinfo(skb)->tx_flags) { 1994 /* skb_tx_hash() wont be able to get sk. 1995 * We copy sk_hash into skb->rxhash 1996 */ 1997 if (!skb->rxhash) 1998 skb->rxhash = sk->sk_hash; 1999 skb_orphan(skb); 2000 } 2001 } 2002 2003 static bool can_checksum_protocol(unsigned long features, __be16 protocol) 2004 { 2005 return ((features & NETIF_F_GEN_CSUM) || 2006 ((features & NETIF_F_V4_CSUM) && 2007 protocol == htons(ETH_P_IP)) || 2008 ((features & NETIF_F_V6_CSUM) && 2009 protocol == htons(ETH_P_IPV6)) || 2010 ((features & NETIF_F_FCOE_CRC) && 2011 protocol == htons(ETH_P_FCOE))); 2012 } 2013 2014 static int harmonize_features(struct sk_buff *skb, __be16 protocol, int features) 2015 { 2016 if (!can_checksum_protocol(features, protocol)) { 2017 features &= ~NETIF_F_ALL_CSUM; 2018 features &= ~NETIF_F_SG; 2019 } else if (illegal_highdma(skb->dev, skb)) { 2020 features &= ~NETIF_F_SG; 2021 } 2022 2023 return features; 2024 } 2025 2026 int netif_skb_features(struct sk_buff *skb) 2027 { 2028 __be16 protocol = skb->protocol; 2029 int features = skb->dev->features; 2030 2031 if (protocol == htons(ETH_P_8021Q)) { 2032 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2033 protocol = veh->h_vlan_encapsulated_proto; 2034 } else if (!vlan_tx_tag_present(skb)) { 2035 return harmonize_features(skb, protocol, features); 2036 } 2037 2038 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX); 2039 2040 if (protocol != htons(ETH_P_8021Q)) { 2041 return harmonize_features(skb, protocol, features); 2042 } else { 2043 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2044 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX; 2045 return harmonize_features(skb, protocol, features); 2046 } 2047 } 2048 EXPORT_SYMBOL(netif_skb_features); 2049 2050 /* 2051 * Returns true if either: 2052 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2053 * 2. skb is fragmented and the device does not support SG, or if 2054 * at least one of fragments is in highmem and device does not 2055 * support DMA from it. 2056 */ 2057 static inline int skb_needs_linearize(struct sk_buff *skb, 2058 int features) 2059 { 2060 return skb_is_nonlinear(skb) && 2061 ((skb_has_frag_list(skb) && 2062 !(features & NETIF_F_FRAGLIST)) || 2063 (skb_shinfo(skb)->nr_frags && 2064 !(features & NETIF_F_SG))); 2065 } 2066 2067 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2068 struct netdev_queue *txq) 2069 { 2070 const struct net_device_ops *ops = dev->netdev_ops; 2071 int rc = NETDEV_TX_OK; 2072 2073 if (likely(!skb->next)) { 2074 int features; 2075 2076 /* 2077 * If device doesnt need skb->dst, release it right now while 2078 * its hot in this cpu cache 2079 */ 2080 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2081 skb_dst_drop(skb); 2082 2083 if (!list_empty(&ptype_all)) 2084 dev_queue_xmit_nit(skb, dev); 2085 2086 skb_orphan_try(skb); 2087 2088 features = netif_skb_features(skb); 2089 2090 if (vlan_tx_tag_present(skb) && 2091 !(features & NETIF_F_HW_VLAN_TX)) { 2092 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb)); 2093 if (unlikely(!skb)) 2094 goto out; 2095 2096 skb->vlan_tci = 0; 2097 } 2098 2099 if (netif_needs_gso(skb, features)) { 2100 if (unlikely(dev_gso_segment(skb, features))) 2101 goto out_kfree_skb; 2102 if (skb->next) 2103 goto gso; 2104 } else { 2105 if (skb_needs_linearize(skb, features) && 2106 __skb_linearize(skb)) 2107 goto out_kfree_skb; 2108 2109 /* If packet is not checksummed and device does not 2110 * support checksumming for this protocol, complete 2111 * checksumming here. 2112 */ 2113 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2114 skb_set_transport_header(skb, 2115 skb_checksum_start_offset(skb)); 2116 if (!(features & NETIF_F_ALL_CSUM) && 2117 skb_checksum_help(skb)) 2118 goto out_kfree_skb; 2119 } 2120 } 2121 2122 rc = ops->ndo_start_xmit(skb, dev); 2123 trace_net_dev_xmit(skb, rc); 2124 if (rc == NETDEV_TX_OK) 2125 txq_trans_update(txq); 2126 return rc; 2127 } 2128 2129 gso: 2130 do { 2131 struct sk_buff *nskb = skb->next; 2132 2133 skb->next = nskb->next; 2134 nskb->next = NULL; 2135 2136 /* 2137 * If device doesnt need nskb->dst, release it right now while 2138 * its hot in this cpu cache 2139 */ 2140 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2141 skb_dst_drop(nskb); 2142 2143 rc = ops->ndo_start_xmit(nskb, dev); 2144 trace_net_dev_xmit(nskb, rc); 2145 if (unlikely(rc != NETDEV_TX_OK)) { 2146 if (rc & ~NETDEV_TX_MASK) 2147 goto out_kfree_gso_skb; 2148 nskb->next = skb->next; 2149 skb->next = nskb; 2150 return rc; 2151 } 2152 txq_trans_update(txq); 2153 if (unlikely(netif_tx_queue_stopped(txq) && skb->next)) 2154 return NETDEV_TX_BUSY; 2155 } while (skb->next); 2156 2157 out_kfree_gso_skb: 2158 if (likely(skb->next == NULL)) 2159 skb->destructor = DEV_GSO_CB(skb)->destructor; 2160 out_kfree_skb: 2161 kfree_skb(skb); 2162 out: 2163 return rc; 2164 } 2165 2166 static u32 hashrnd __read_mostly; 2167 2168 /* 2169 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2170 * to be used as a distribution range. 2171 */ 2172 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb, 2173 unsigned int num_tx_queues) 2174 { 2175 u32 hash; 2176 2177 if (skb_rx_queue_recorded(skb)) { 2178 hash = skb_get_rx_queue(skb); 2179 while (unlikely(hash >= num_tx_queues)) 2180 hash -= num_tx_queues; 2181 return hash; 2182 } 2183 2184 if (skb->sk && skb->sk->sk_hash) 2185 hash = skb->sk->sk_hash; 2186 else 2187 hash = (__force u16) skb->protocol ^ skb->rxhash; 2188 hash = jhash_1word(hash, hashrnd); 2189 2190 return (u16) (((u64) hash * num_tx_queues) >> 32); 2191 } 2192 EXPORT_SYMBOL(__skb_tx_hash); 2193 2194 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index) 2195 { 2196 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2197 if (net_ratelimit()) { 2198 pr_warning("%s selects TX queue %d, but " 2199 "real number of TX queues is %d\n", 2200 dev->name, queue_index, dev->real_num_tx_queues); 2201 } 2202 return 0; 2203 } 2204 return queue_index; 2205 } 2206 2207 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 2208 { 2209 #ifdef CONFIG_XPS 2210 struct xps_dev_maps *dev_maps; 2211 struct xps_map *map; 2212 int queue_index = -1; 2213 2214 rcu_read_lock(); 2215 dev_maps = rcu_dereference(dev->xps_maps); 2216 if (dev_maps) { 2217 map = rcu_dereference( 2218 dev_maps->cpu_map[raw_smp_processor_id()]); 2219 if (map) { 2220 if (map->len == 1) 2221 queue_index = map->queues[0]; 2222 else { 2223 u32 hash; 2224 if (skb->sk && skb->sk->sk_hash) 2225 hash = skb->sk->sk_hash; 2226 else 2227 hash = (__force u16) skb->protocol ^ 2228 skb->rxhash; 2229 hash = jhash_1word(hash, hashrnd); 2230 queue_index = map->queues[ 2231 ((u64)hash * map->len) >> 32]; 2232 } 2233 if (unlikely(queue_index >= dev->real_num_tx_queues)) 2234 queue_index = -1; 2235 } 2236 } 2237 rcu_read_unlock(); 2238 2239 return queue_index; 2240 #else 2241 return -1; 2242 #endif 2243 } 2244 2245 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 2246 struct sk_buff *skb) 2247 { 2248 int queue_index; 2249 const struct net_device_ops *ops = dev->netdev_ops; 2250 2251 if (dev->real_num_tx_queues == 1) 2252 queue_index = 0; 2253 else if (ops->ndo_select_queue) { 2254 queue_index = ops->ndo_select_queue(dev, skb); 2255 queue_index = dev_cap_txqueue(dev, queue_index); 2256 } else { 2257 struct sock *sk = skb->sk; 2258 queue_index = sk_tx_queue_get(sk); 2259 2260 if (queue_index < 0 || skb->ooo_okay || 2261 queue_index >= dev->real_num_tx_queues) { 2262 int old_index = queue_index; 2263 2264 queue_index = get_xps_queue(dev, skb); 2265 if (queue_index < 0) 2266 queue_index = skb_tx_hash(dev, skb); 2267 2268 if (queue_index != old_index && sk) { 2269 struct dst_entry *dst = 2270 rcu_dereference_check(sk->sk_dst_cache, 1); 2271 2272 if (dst && skb_dst(skb) == dst) 2273 sk_tx_queue_set(sk, queue_index); 2274 } 2275 } 2276 } 2277 2278 skb_set_queue_mapping(skb, queue_index); 2279 return netdev_get_tx_queue(dev, queue_index); 2280 } 2281 2282 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2283 struct net_device *dev, 2284 struct netdev_queue *txq) 2285 { 2286 spinlock_t *root_lock = qdisc_lock(q); 2287 bool contended = qdisc_is_running(q); 2288 int rc; 2289 2290 /* 2291 * Heuristic to force contended enqueues to serialize on a 2292 * separate lock before trying to get qdisc main lock. 2293 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2294 * and dequeue packets faster. 2295 */ 2296 if (unlikely(contended)) 2297 spin_lock(&q->busylock); 2298 2299 spin_lock(root_lock); 2300 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2301 kfree_skb(skb); 2302 rc = NET_XMIT_DROP; 2303 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2304 qdisc_run_begin(q)) { 2305 /* 2306 * This is a work-conserving queue; there are no old skbs 2307 * waiting to be sent out; and the qdisc is not running - 2308 * xmit the skb directly. 2309 */ 2310 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2311 skb_dst_force(skb); 2312 2313 qdisc_skb_cb(skb)->pkt_len = skb->len; 2314 qdisc_bstats_update(q, skb); 2315 2316 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2317 if (unlikely(contended)) { 2318 spin_unlock(&q->busylock); 2319 contended = false; 2320 } 2321 __qdisc_run(q); 2322 } else 2323 qdisc_run_end(q); 2324 2325 rc = NET_XMIT_SUCCESS; 2326 } else { 2327 skb_dst_force(skb); 2328 rc = qdisc_enqueue_root(skb, q); 2329 if (qdisc_run_begin(q)) { 2330 if (unlikely(contended)) { 2331 spin_unlock(&q->busylock); 2332 contended = false; 2333 } 2334 __qdisc_run(q); 2335 } 2336 } 2337 spin_unlock(root_lock); 2338 if (unlikely(contended)) 2339 spin_unlock(&q->busylock); 2340 return rc; 2341 } 2342 2343 static DEFINE_PER_CPU(int, xmit_recursion); 2344 #define RECURSION_LIMIT 10 2345 2346 /** 2347 * dev_queue_xmit - transmit a buffer 2348 * @skb: buffer to transmit 2349 * 2350 * Queue a buffer for transmission to a network device. The caller must 2351 * have set the device and priority and built the buffer before calling 2352 * this function. The function can be called from an interrupt. 2353 * 2354 * A negative errno code is returned on a failure. A success does not 2355 * guarantee the frame will be transmitted as it may be dropped due 2356 * to congestion or traffic shaping. 2357 * 2358 * ----------------------------------------------------------------------------------- 2359 * I notice this method can also return errors from the queue disciplines, 2360 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2361 * be positive. 2362 * 2363 * Regardless of the return value, the skb is consumed, so it is currently 2364 * difficult to retry a send to this method. (You can bump the ref count 2365 * before sending to hold a reference for retry if you are careful.) 2366 * 2367 * When calling this method, interrupts MUST be enabled. This is because 2368 * the BH enable code must have IRQs enabled so that it will not deadlock. 2369 * --BLG 2370 */ 2371 int dev_queue_xmit(struct sk_buff *skb) 2372 { 2373 struct net_device *dev = skb->dev; 2374 struct netdev_queue *txq; 2375 struct Qdisc *q; 2376 int rc = -ENOMEM; 2377 2378 /* Disable soft irqs for various locks below. Also 2379 * stops preemption for RCU. 2380 */ 2381 rcu_read_lock_bh(); 2382 2383 txq = dev_pick_tx(dev, skb); 2384 q = rcu_dereference_bh(txq->qdisc); 2385 2386 #ifdef CONFIG_NET_CLS_ACT 2387 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2388 #endif 2389 trace_net_dev_queue(skb); 2390 if (q->enqueue) { 2391 rc = __dev_xmit_skb(skb, q, dev, txq); 2392 goto out; 2393 } 2394 2395 /* The device has no queue. Common case for software devices: 2396 loopback, all the sorts of tunnels... 2397 2398 Really, it is unlikely that netif_tx_lock protection is necessary 2399 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2400 counters.) 2401 However, it is possible, that they rely on protection 2402 made by us here. 2403 2404 Check this and shot the lock. It is not prone from deadlocks. 2405 Either shot noqueue qdisc, it is even simpler 8) 2406 */ 2407 if (dev->flags & IFF_UP) { 2408 int cpu = smp_processor_id(); /* ok because BHs are off */ 2409 2410 if (txq->xmit_lock_owner != cpu) { 2411 2412 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2413 goto recursion_alert; 2414 2415 HARD_TX_LOCK(dev, txq, cpu); 2416 2417 if (!netif_tx_queue_stopped(txq)) { 2418 __this_cpu_inc(xmit_recursion); 2419 rc = dev_hard_start_xmit(skb, dev, txq); 2420 __this_cpu_dec(xmit_recursion); 2421 if (dev_xmit_complete(rc)) { 2422 HARD_TX_UNLOCK(dev, txq); 2423 goto out; 2424 } 2425 } 2426 HARD_TX_UNLOCK(dev, txq); 2427 if (net_ratelimit()) 2428 printk(KERN_CRIT "Virtual device %s asks to " 2429 "queue packet!\n", dev->name); 2430 } else { 2431 /* Recursion is detected! It is possible, 2432 * unfortunately 2433 */ 2434 recursion_alert: 2435 if (net_ratelimit()) 2436 printk(KERN_CRIT "Dead loop on virtual device " 2437 "%s, fix it urgently!\n", dev->name); 2438 } 2439 } 2440 2441 rc = -ENETDOWN; 2442 rcu_read_unlock_bh(); 2443 2444 kfree_skb(skb); 2445 return rc; 2446 out: 2447 rcu_read_unlock_bh(); 2448 return rc; 2449 } 2450 EXPORT_SYMBOL(dev_queue_xmit); 2451 2452 2453 /*======================================================================= 2454 Receiver routines 2455 =======================================================================*/ 2456 2457 int netdev_max_backlog __read_mostly = 1000; 2458 int netdev_tstamp_prequeue __read_mostly = 1; 2459 int netdev_budget __read_mostly = 300; 2460 int weight_p __read_mostly = 64; /* old backlog weight */ 2461 2462 /* Called with irq disabled */ 2463 static inline void ____napi_schedule(struct softnet_data *sd, 2464 struct napi_struct *napi) 2465 { 2466 list_add_tail(&napi->poll_list, &sd->poll_list); 2467 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2468 } 2469 2470 /* 2471 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses 2472 * and src/dst port numbers. Returns a non-zero hash number on success 2473 * and 0 on failure. 2474 */ 2475 __u32 __skb_get_rxhash(struct sk_buff *skb) 2476 { 2477 int nhoff, hash = 0, poff; 2478 struct ipv6hdr *ip6; 2479 struct iphdr *ip; 2480 u8 ip_proto; 2481 u32 addr1, addr2, ihl; 2482 union { 2483 u32 v32; 2484 u16 v16[2]; 2485 } ports; 2486 2487 nhoff = skb_network_offset(skb); 2488 2489 switch (skb->protocol) { 2490 case __constant_htons(ETH_P_IP): 2491 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff)) 2492 goto done; 2493 2494 ip = (struct iphdr *) (skb->data + nhoff); 2495 if (ip->frag_off & htons(IP_MF | IP_OFFSET)) 2496 ip_proto = 0; 2497 else 2498 ip_proto = ip->protocol; 2499 addr1 = (__force u32) ip->saddr; 2500 addr2 = (__force u32) ip->daddr; 2501 ihl = ip->ihl; 2502 break; 2503 case __constant_htons(ETH_P_IPV6): 2504 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff)) 2505 goto done; 2506 2507 ip6 = (struct ipv6hdr *) (skb->data + nhoff); 2508 ip_proto = ip6->nexthdr; 2509 addr1 = (__force u32) ip6->saddr.s6_addr32[3]; 2510 addr2 = (__force u32) ip6->daddr.s6_addr32[3]; 2511 ihl = (40 >> 2); 2512 break; 2513 default: 2514 goto done; 2515 } 2516 2517 ports.v32 = 0; 2518 poff = proto_ports_offset(ip_proto); 2519 if (poff >= 0) { 2520 nhoff += ihl * 4 + poff; 2521 if (pskb_may_pull(skb, nhoff + 4)) { 2522 ports.v32 = * (__force u32 *) (skb->data + nhoff); 2523 if (ports.v16[1] < ports.v16[0]) 2524 swap(ports.v16[0], ports.v16[1]); 2525 } 2526 } 2527 2528 /* get a consistent hash (same value on both flow directions) */ 2529 if (addr2 < addr1) 2530 swap(addr1, addr2); 2531 2532 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd); 2533 if (!hash) 2534 hash = 1; 2535 2536 done: 2537 return hash; 2538 } 2539 EXPORT_SYMBOL(__skb_get_rxhash); 2540 2541 #ifdef CONFIG_RPS 2542 2543 /* One global table that all flow-based protocols share. */ 2544 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2545 EXPORT_SYMBOL(rps_sock_flow_table); 2546 2547 /* 2548 * get_rps_cpu is called from netif_receive_skb and returns the target 2549 * CPU from the RPS map of the receiving queue for a given skb. 2550 * rcu_read_lock must be held on entry. 2551 */ 2552 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2553 struct rps_dev_flow **rflowp) 2554 { 2555 struct netdev_rx_queue *rxqueue; 2556 struct rps_map *map; 2557 struct rps_dev_flow_table *flow_table; 2558 struct rps_sock_flow_table *sock_flow_table; 2559 int cpu = -1; 2560 u16 tcpu; 2561 2562 if (skb_rx_queue_recorded(skb)) { 2563 u16 index = skb_get_rx_queue(skb); 2564 if (unlikely(index >= dev->real_num_rx_queues)) { 2565 WARN_ONCE(dev->real_num_rx_queues > 1, 2566 "%s received packet on queue %u, but number " 2567 "of RX queues is %u\n", 2568 dev->name, index, dev->real_num_rx_queues); 2569 goto done; 2570 } 2571 rxqueue = dev->_rx + index; 2572 } else 2573 rxqueue = dev->_rx; 2574 2575 map = rcu_dereference(rxqueue->rps_map); 2576 if (map) { 2577 if (map->len == 1 && 2578 !rcu_dereference_raw(rxqueue->rps_flow_table)) { 2579 tcpu = map->cpus[0]; 2580 if (cpu_online(tcpu)) 2581 cpu = tcpu; 2582 goto done; 2583 } 2584 } else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) { 2585 goto done; 2586 } 2587 2588 skb_reset_network_header(skb); 2589 if (!skb_get_rxhash(skb)) 2590 goto done; 2591 2592 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2593 sock_flow_table = rcu_dereference(rps_sock_flow_table); 2594 if (flow_table && sock_flow_table) { 2595 u16 next_cpu; 2596 struct rps_dev_flow *rflow; 2597 2598 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 2599 tcpu = rflow->cpu; 2600 2601 next_cpu = sock_flow_table->ents[skb->rxhash & 2602 sock_flow_table->mask]; 2603 2604 /* 2605 * If the desired CPU (where last recvmsg was done) is 2606 * different from current CPU (one in the rx-queue flow 2607 * table entry), switch if one of the following holds: 2608 * - Current CPU is unset (equal to RPS_NO_CPU). 2609 * - Current CPU is offline. 2610 * - The current CPU's queue tail has advanced beyond the 2611 * last packet that was enqueued using this table entry. 2612 * This guarantees that all previous packets for the flow 2613 * have been dequeued, thus preserving in order delivery. 2614 */ 2615 if (unlikely(tcpu != next_cpu) && 2616 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 2617 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 2618 rflow->last_qtail)) >= 0)) { 2619 tcpu = rflow->cpu = next_cpu; 2620 if (tcpu != RPS_NO_CPU) 2621 rflow->last_qtail = per_cpu(softnet_data, 2622 tcpu).input_queue_head; 2623 } 2624 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 2625 *rflowp = rflow; 2626 cpu = tcpu; 2627 goto done; 2628 } 2629 } 2630 2631 if (map) { 2632 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 2633 2634 if (cpu_online(tcpu)) { 2635 cpu = tcpu; 2636 goto done; 2637 } 2638 } 2639 2640 done: 2641 return cpu; 2642 } 2643 2644 /* Called from hardirq (IPI) context */ 2645 static void rps_trigger_softirq(void *data) 2646 { 2647 struct softnet_data *sd = data; 2648 2649 ____napi_schedule(sd, &sd->backlog); 2650 sd->received_rps++; 2651 } 2652 2653 #endif /* CONFIG_RPS */ 2654 2655 /* 2656 * Check if this softnet_data structure is another cpu one 2657 * If yes, queue it to our IPI list and return 1 2658 * If no, return 0 2659 */ 2660 static int rps_ipi_queued(struct softnet_data *sd) 2661 { 2662 #ifdef CONFIG_RPS 2663 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 2664 2665 if (sd != mysd) { 2666 sd->rps_ipi_next = mysd->rps_ipi_list; 2667 mysd->rps_ipi_list = sd; 2668 2669 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2670 return 1; 2671 } 2672 #endif /* CONFIG_RPS */ 2673 return 0; 2674 } 2675 2676 /* 2677 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 2678 * queue (may be a remote CPU queue). 2679 */ 2680 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 2681 unsigned int *qtail) 2682 { 2683 struct softnet_data *sd; 2684 unsigned long flags; 2685 2686 sd = &per_cpu(softnet_data, cpu); 2687 2688 local_irq_save(flags); 2689 2690 rps_lock(sd); 2691 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) { 2692 if (skb_queue_len(&sd->input_pkt_queue)) { 2693 enqueue: 2694 __skb_queue_tail(&sd->input_pkt_queue, skb); 2695 input_queue_tail_incr_save(sd, qtail); 2696 rps_unlock(sd); 2697 local_irq_restore(flags); 2698 return NET_RX_SUCCESS; 2699 } 2700 2701 /* Schedule NAPI for backlog device 2702 * We can use non atomic operation since we own the queue lock 2703 */ 2704 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 2705 if (!rps_ipi_queued(sd)) 2706 ____napi_schedule(sd, &sd->backlog); 2707 } 2708 goto enqueue; 2709 } 2710 2711 sd->dropped++; 2712 rps_unlock(sd); 2713 2714 local_irq_restore(flags); 2715 2716 atomic_long_inc(&skb->dev->rx_dropped); 2717 kfree_skb(skb); 2718 return NET_RX_DROP; 2719 } 2720 2721 /** 2722 * netif_rx - post buffer to the network code 2723 * @skb: buffer to post 2724 * 2725 * This function receives a packet from a device driver and queues it for 2726 * the upper (protocol) levels to process. It always succeeds. The buffer 2727 * may be dropped during processing for congestion control or by the 2728 * protocol layers. 2729 * 2730 * return values: 2731 * NET_RX_SUCCESS (no congestion) 2732 * NET_RX_DROP (packet was dropped) 2733 * 2734 */ 2735 2736 int netif_rx(struct sk_buff *skb) 2737 { 2738 int ret; 2739 2740 /* if netpoll wants it, pretend we never saw it */ 2741 if (netpoll_rx(skb)) 2742 return NET_RX_DROP; 2743 2744 if (netdev_tstamp_prequeue) 2745 net_timestamp_check(skb); 2746 2747 trace_netif_rx(skb); 2748 #ifdef CONFIG_RPS 2749 { 2750 struct rps_dev_flow voidflow, *rflow = &voidflow; 2751 int cpu; 2752 2753 preempt_disable(); 2754 rcu_read_lock(); 2755 2756 cpu = get_rps_cpu(skb->dev, skb, &rflow); 2757 if (cpu < 0) 2758 cpu = smp_processor_id(); 2759 2760 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 2761 2762 rcu_read_unlock(); 2763 preempt_enable(); 2764 } 2765 #else 2766 { 2767 unsigned int qtail; 2768 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 2769 put_cpu(); 2770 } 2771 #endif 2772 return ret; 2773 } 2774 EXPORT_SYMBOL(netif_rx); 2775 2776 int netif_rx_ni(struct sk_buff *skb) 2777 { 2778 int err; 2779 2780 preempt_disable(); 2781 err = netif_rx(skb); 2782 if (local_softirq_pending()) 2783 do_softirq(); 2784 preempt_enable(); 2785 2786 return err; 2787 } 2788 EXPORT_SYMBOL(netif_rx_ni); 2789 2790 static void net_tx_action(struct softirq_action *h) 2791 { 2792 struct softnet_data *sd = &__get_cpu_var(softnet_data); 2793 2794 if (sd->completion_queue) { 2795 struct sk_buff *clist; 2796 2797 local_irq_disable(); 2798 clist = sd->completion_queue; 2799 sd->completion_queue = NULL; 2800 local_irq_enable(); 2801 2802 while (clist) { 2803 struct sk_buff *skb = clist; 2804 clist = clist->next; 2805 2806 WARN_ON(atomic_read(&skb->users)); 2807 trace_kfree_skb(skb, net_tx_action); 2808 __kfree_skb(skb); 2809 } 2810 } 2811 2812 if (sd->output_queue) { 2813 struct Qdisc *head; 2814 2815 local_irq_disable(); 2816 head = sd->output_queue; 2817 sd->output_queue = NULL; 2818 sd->output_queue_tailp = &sd->output_queue; 2819 local_irq_enable(); 2820 2821 while (head) { 2822 struct Qdisc *q = head; 2823 spinlock_t *root_lock; 2824 2825 head = head->next_sched; 2826 2827 root_lock = qdisc_lock(q); 2828 if (spin_trylock(root_lock)) { 2829 smp_mb__before_clear_bit(); 2830 clear_bit(__QDISC_STATE_SCHED, 2831 &q->state); 2832 qdisc_run(q); 2833 spin_unlock(root_lock); 2834 } else { 2835 if (!test_bit(__QDISC_STATE_DEACTIVATED, 2836 &q->state)) { 2837 __netif_reschedule(q); 2838 } else { 2839 smp_mb__before_clear_bit(); 2840 clear_bit(__QDISC_STATE_SCHED, 2841 &q->state); 2842 } 2843 } 2844 } 2845 } 2846 } 2847 2848 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 2849 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 2850 /* This hook is defined here for ATM LANE */ 2851 int (*br_fdb_test_addr_hook)(struct net_device *dev, 2852 unsigned char *addr) __read_mostly; 2853 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 2854 #endif 2855 2856 #ifdef CONFIG_NET_CLS_ACT 2857 /* TODO: Maybe we should just force sch_ingress to be compiled in 2858 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 2859 * a compare and 2 stores extra right now if we dont have it on 2860 * but have CONFIG_NET_CLS_ACT 2861 * NOTE: This doesnt stop any functionality; if you dont have 2862 * the ingress scheduler, you just cant add policies on ingress. 2863 * 2864 */ 2865 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 2866 { 2867 struct net_device *dev = skb->dev; 2868 u32 ttl = G_TC_RTTL(skb->tc_verd); 2869 int result = TC_ACT_OK; 2870 struct Qdisc *q; 2871 2872 if (unlikely(MAX_RED_LOOP < ttl++)) { 2873 if (net_ratelimit()) 2874 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n", 2875 skb->skb_iif, dev->ifindex); 2876 return TC_ACT_SHOT; 2877 } 2878 2879 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 2880 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 2881 2882 q = rxq->qdisc; 2883 if (q != &noop_qdisc) { 2884 spin_lock(qdisc_lock(q)); 2885 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 2886 result = qdisc_enqueue_root(skb, q); 2887 spin_unlock(qdisc_lock(q)); 2888 } 2889 2890 return result; 2891 } 2892 2893 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 2894 struct packet_type **pt_prev, 2895 int *ret, struct net_device *orig_dev) 2896 { 2897 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 2898 2899 if (!rxq || rxq->qdisc == &noop_qdisc) 2900 goto out; 2901 2902 if (*pt_prev) { 2903 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2904 *pt_prev = NULL; 2905 } 2906 2907 switch (ing_filter(skb, rxq)) { 2908 case TC_ACT_SHOT: 2909 case TC_ACT_STOLEN: 2910 kfree_skb(skb); 2911 return NULL; 2912 } 2913 2914 out: 2915 skb->tc_verd = 0; 2916 return skb; 2917 } 2918 #endif 2919 2920 /** 2921 * netdev_rx_handler_register - register receive handler 2922 * @dev: device to register a handler for 2923 * @rx_handler: receive handler to register 2924 * @rx_handler_data: data pointer that is used by rx handler 2925 * 2926 * Register a receive hander for a device. This handler will then be 2927 * called from __netif_receive_skb. A negative errno code is returned 2928 * on a failure. 2929 * 2930 * The caller must hold the rtnl_mutex. 2931 */ 2932 int netdev_rx_handler_register(struct net_device *dev, 2933 rx_handler_func_t *rx_handler, 2934 void *rx_handler_data) 2935 { 2936 ASSERT_RTNL(); 2937 2938 if (dev->rx_handler) 2939 return -EBUSY; 2940 2941 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 2942 rcu_assign_pointer(dev->rx_handler, rx_handler); 2943 2944 return 0; 2945 } 2946 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 2947 2948 /** 2949 * netdev_rx_handler_unregister - unregister receive handler 2950 * @dev: device to unregister a handler from 2951 * 2952 * Unregister a receive hander from a device. 2953 * 2954 * The caller must hold the rtnl_mutex. 2955 */ 2956 void netdev_rx_handler_unregister(struct net_device *dev) 2957 { 2958 2959 ASSERT_RTNL(); 2960 rcu_assign_pointer(dev->rx_handler, NULL); 2961 rcu_assign_pointer(dev->rx_handler_data, NULL); 2962 } 2963 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 2964 2965 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb, 2966 struct net_device *master) 2967 { 2968 if (skb->pkt_type == PACKET_HOST) { 2969 u16 *dest = (u16 *) eth_hdr(skb)->h_dest; 2970 2971 memcpy(dest, master->dev_addr, ETH_ALEN); 2972 } 2973 } 2974 2975 /* On bonding slaves other than the currently active slave, suppress 2976 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and 2977 * ARP on active-backup slaves with arp_validate enabled. 2978 */ 2979 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master) 2980 { 2981 struct net_device *dev = skb->dev; 2982 2983 if (master->priv_flags & IFF_MASTER_ARPMON) 2984 dev->last_rx = jiffies; 2985 2986 if ((master->priv_flags & IFF_MASTER_ALB) && 2987 (master->priv_flags & IFF_BRIDGE_PORT)) { 2988 /* Do address unmangle. The local destination address 2989 * will be always the one master has. Provides the right 2990 * functionality in a bridge. 2991 */ 2992 skb_bond_set_mac_by_master(skb, master); 2993 } 2994 2995 if (dev->priv_flags & IFF_SLAVE_INACTIVE) { 2996 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) && 2997 skb->protocol == __cpu_to_be16(ETH_P_ARP)) 2998 return 0; 2999 3000 if (master->priv_flags & IFF_MASTER_ALB) { 3001 if (skb->pkt_type != PACKET_BROADCAST && 3002 skb->pkt_type != PACKET_MULTICAST) 3003 return 0; 3004 } 3005 if (master->priv_flags & IFF_MASTER_8023AD && 3006 skb->protocol == __cpu_to_be16(ETH_P_SLOW)) 3007 return 0; 3008 3009 return 1; 3010 } 3011 return 0; 3012 } 3013 EXPORT_SYMBOL(__skb_bond_should_drop); 3014 3015 static int __netif_receive_skb(struct sk_buff *skb) 3016 { 3017 struct packet_type *ptype, *pt_prev; 3018 rx_handler_func_t *rx_handler; 3019 struct net_device *orig_dev; 3020 struct net_device *master; 3021 struct net_device *null_or_orig; 3022 struct net_device *orig_or_bond; 3023 int ret = NET_RX_DROP; 3024 __be16 type; 3025 3026 if (!netdev_tstamp_prequeue) 3027 net_timestamp_check(skb); 3028 3029 trace_netif_receive_skb(skb); 3030 3031 /* if we've gotten here through NAPI, check netpoll */ 3032 if (netpoll_receive_skb(skb)) 3033 return NET_RX_DROP; 3034 3035 if (!skb->skb_iif) 3036 skb->skb_iif = skb->dev->ifindex; 3037 3038 /* 3039 * bonding note: skbs received on inactive slaves should only 3040 * be delivered to pkt handlers that are exact matches. Also 3041 * the deliver_no_wcard flag will be set. If packet handlers 3042 * are sensitive to duplicate packets these skbs will need to 3043 * be dropped at the handler. 3044 */ 3045 null_or_orig = NULL; 3046 orig_dev = skb->dev; 3047 master = ACCESS_ONCE(orig_dev->master); 3048 if (skb->deliver_no_wcard) 3049 null_or_orig = orig_dev; 3050 else if (master) { 3051 if (skb_bond_should_drop(skb, master)) { 3052 skb->deliver_no_wcard = 1; 3053 null_or_orig = orig_dev; /* deliver only exact match */ 3054 } else 3055 skb->dev = master; 3056 } 3057 3058 __this_cpu_inc(softnet_data.processed); 3059 skb_reset_network_header(skb); 3060 skb_reset_transport_header(skb); 3061 skb->mac_len = skb->network_header - skb->mac_header; 3062 3063 pt_prev = NULL; 3064 3065 rcu_read_lock(); 3066 3067 #ifdef CONFIG_NET_CLS_ACT 3068 if (skb->tc_verd & TC_NCLS) { 3069 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3070 goto ncls; 3071 } 3072 #endif 3073 3074 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3075 if (ptype->dev == null_or_orig || ptype->dev == skb->dev || 3076 ptype->dev == orig_dev) { 3077 if (pt_prev) 3078 ret = deliver_skb(skb, pt_prev, orig_dev); 3079 pt_prev = ptype; 3080 } 3081 } 3082 3083 #ifdef CONFIG_NET_CLS_ACT 3084 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3085 if (!skb) 3086 goto out; 3087 ncls: 3088 #endif 3089 3090 /* Handle special case of bridge or macvlan */ 3091 rx_handler = rcu_dereference(skb->dev->rx_handler); 3092 if (rx_handler) { 3093 if (pt_prev) { 3094 ret = deliver_skb(skb, pt_prev, orig_dev); 3095 pt_prev = NULL; 3096 } 3097 skb = rx_handler(skb); 3098 if (!skb) 3099 goto out; 3100 } 3101 3102 if (vlan_tx_tag_present(skb)) { 3103 if (pt_prev) { 3104 ret = deliver_skb(skb, pt_prev, orig_dev); 3105 pt_prev = NULL; 3106 } 3107 if (vlan_hwaccel_do_receive(&skb)) { 3108 ret = __netif_receive_skb(skb); 3109 goto out; 3110 } else if (unlikely(!skb)) 3111 goto out; 3112 } 3113 3114 /* 3115 * Make sure frames received on VLAN interfaces stacked on 3116 * bonding interfaces still make their way to any base bonding 3117 * device that may have registered for a specific ptype. The 3118 * handler may have to adjust skb->dev and orig_dev. 3119 */ 3120 orig_or_bond = orig_dev; 3121 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) && 3122 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) { 3123 orig_or_bond = vlan_dev_real_dev(skb->dev); 3124 } 3125 3126 type = skb->protocol; 3127 list_for_each_entry_rcu(ptype, 3128 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3129 if (ptype->type == type && (ptype->dev == null_or_orig || 3130 ptype->dev == skb->dev || ptype->dev == orig_dev || 3131 ptype->dev == orig_or_bond)) { 3132 if (pt_prev) 3133 ret = deliver_skb(skb, pt_prev, orig_dev); 3134 pt_prev = ptype; 3135 } 3136 } 3137 3138 if (pt_prev) { 3139 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3140 } else { 3141 atomic_long_inc(&skb->dev->rx_dropped); 3142 kfree_skb(skb); 3143 /* Jamal, now you will not able to escape explaining 3144 * me how you were going to use this. :-) 3145 */ 3146 ret = NET_RX_DROP; 3147 } 3148 3149 out: 3150 rcu_read_unlock(); 3151 return ret; 3152 } 3153 3154 /** 3155 * netif_receive_skb - process receive buffer from network 3156 * @skb: buffer to process 3157 * 3158 * netif_receive_skb() is the main receive data processing function. 3159 * It always succeeds. The buffer may be dropped during processing 3160 * for congestion control or by the protocol layers. 3161 * 3162 * This function may only be called from softirq context and interrupts 3163 * should be enabled. 3164 * 3165 * Return values (usually ignored): 3166 * NET_RX_SUCCESS: no congestion 3167 * NET_RX_DROP: packet was dropped 3168 */ 3169 int netif_receive_skb(struct sk_buff *skb) 3170 { 3171 if (netdev_tstamp_prequeue) 3172 net_timestamp_check(skb); 3173 3174 if (skb_defer_rx_timestamp(skb)) 3175 return NET_RX_SUCCESS; 3176 3177 #ifdef CONFIG_RPS 3178 { 3179 struct rps_dev_flow voidflow, *rflow = &voidflow; 3180 int cpu, ret; 3181 3182 rcu_read_lock(); 3183 3184 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3185 3186 if (cpu >= 0) { 3187 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3188 rcu_read_unlock(); 3189 } else { 3190 rcu_read_unlock(); 3191 ret = __netif_receive_skb(skb); 3192 } 3193 3194 return ret; 3195 } 3196 #else 3197 return __netif_receive_skb(skb); 3198 #endif 3199 } 3200 EXPORT_SYMBOL(netif_receive_skb); 3201 3202 /* Network device is going away, flush any packets still pending 3203 * Called with irqs disabled. 3204 */ 3205 static void flush_backlog(void *arg) 3206 { 3207 struct net_device *dev = arg; 3208 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3209 struct sk_buff *skb, *tmp; 3210 3211 rps_lock(sd); 3212 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3213 if (skb->dev == dev) { 3214 __skb_unlink(skb, &sd->input_pkt_queue); 3215 kfree_skb(skb); 3216 input_queue_head_incr(sd); 3217 } 3218 } 3219 rps_unlock(sd); 3220 3221 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3222 if (skb->dev == dev) { 3223 __skb_unlink(skb, &sd->process_queue); 3224 kfree_skb(skb); 3225 input_queue_head_incr(sd); 3226 } 3227 } 3228 } 3229 3230 static int napi_gro_complete(struct sk_buff *skb) 3231 { 3232 struct packet_type *ptype; 3233 __be16 type = skb->protocol; 3234 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3235 int err = -ENOENT; 3236 3237 if (NAPI_GRO_CB(skb)->count == 1) { 3238 skb_shinfo(skb)->gso_size = 0; 3239 goto out; 3240 } 3241 3242 rcu_read_lock(); 3243 list_for_each_entry_rcu(ptype, head, list) { 3244 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 3245 continue; 3246 3247 err = ptype->gro_complete(skb); 3248 break; 3249 } 3250 rcu_read_unlock(); 3251 3252 if (err) { 3253 WARN_ON(&ptype->list == head); 3254 kfree_skb(skb); 3255 return NET_RX_SUCCESS; 3256 } 3257 3258 out: 3259 return netif_receive_skb(skb); 3260 } 3261 3262 inline void napi_gro_flush(struct napi_struct *napi) 3263 { 3264 struct sk_buff *skb, *next; 3265 3266 for (skb = napi->gro_list; skb; skb = next) { 3267 next = skb->next; 3268 skb->next = NULL; 3269 napi_gro_complete(skb); 3270 } 3271 3272 napi->gro_count = 0; 3273 napi->gro_list = NULL; 3274 } 3275 EXPORT_SYMBOL(napi_gro_flush); 3276 3277 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3278 { 3279 struct sk_buff **pp = NULL; 3280 struct packet_type *ptype; 3281 __be16 type = skb->protocol; 3282 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3283 int same_flow; 3284 int mac_len; 3285 enum gro_result ret; 3286 3287 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3288 goto normal; 3289 3290 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3291 goto normal; 3292 3293 rcu_read_lock(); 3294 list_for_each_entry_rcu(ptype, head, list) { 3295 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 3296 continue; 3297 3298 skb_set_network_header(skb, skb_gro_offset(skb)); 3299 mac_len = skb->network_header - skb->mac_header; 3300 skb->mac_len = mac_len; 3301 NAPI_GRO_CB(skb)->same_flow = 0; 3302 NAPI_GRO_CB(skb)->flush = 0; 3303 NAPI_GRO_CB(skb)->free = 0; 3304 3305 pp = ptype->gro_receive(&napi->gro_list, skb); 3306 break; 3307 } 3308 rcu_read_unlock(); 3309 3310 if (&ptype->list == head) 3311 goto normal; 3312 3313 same_flow = NAPI_GRO_CB(skb)->same_flow; 3314 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3315 3316 if (pp) { 3317 struct sk_buff *nskb = *pp; 3318 3319 *pp = nskb->next; 3320 nskb->next = NULL; 3321 napi_gro_complete(nskb); 3322 napi->gro_count--; 3323 } 3324 3325 if (same_flow) 3326 goto ok; 3327 3328 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3329 goto normal; 3330 3331 napi->gro_count++; 3332 NAPI_GRO_CB(skb)->count = 1; 3333 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3334 skb->next = napi->gro_list; 3335 napi->gro_list = skb; 3336 ret = GRO_HELD; 3337 3338 pull: 3339 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3340 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3341 3342 BUG_ON(skb->end - skb->tail < grow); 3343 3344 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3345 3346 skb->tail += grow; 3347 skb->data_len -= grow; 3348 3349 skb_shinfo(skb)->frags[0].page_offset += grow; 3350 skb_shinfo(skb)->frags[0].size -= grow; 3351 3352 if (unlikely(!skb_shinfo(skb)->frags[0].size)) { 3353 put_page(skb_shinfo(skb)->frags[0].page); 3354 memmove(skb_shinfo(skb)->frags, 3355 skb_shinfo(skb)->frags + 1, 3356 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3357 } 3358 } 3359 3360 ok: 3361 return ret; 3362 3363 normal: 3364 ret = GRO_NORMAL; 3365 goto pull; 3366 } 3367 EXPORT_SYMBOL(dev_gro_receive); 3368 3369 static inline gro_result_t 3370 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3371 { 3372 struct sk_buff *p; 3373 3374 for (p = napi->gro_list; p; p = p->next) { 3375 unsigned long diffs; 3376 3377 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3378 diffs |= p->vlan_tci ^ skb->vlan_tci; 3379 diffs |= compare_ether_header(skb_mac_header(p), 3380 skb_gro_mac_header(skb)); 3381 NAPI_GRO_CB(p)->same_flow = !diffs; 3382 NAPI_GRO_CB(p)->flush = 0; 3383 } 3384 3385 return dev_gro_receive(napi, skb); 3386 } 3387 3388 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3389 { 3390 switch (ret) { 3391 case GRO_NORMAL: 3392 if (netif_receive_skb(skb)) 3393 ret = GRO_DROP; 3394 break; 3395 3396 case GRO_DROP: 3397 case GRO_MERGED_FREE: 3398 kfree_skb(skb); 3399 break; 3400 3401 case GRO_HELD: 3402 case GRO_MERGED: 3403 break; 3404 } 3405 3406 return ret; 3407 } 3408 EXPORT_SYMBOL(napi_skb_finish); 3409 3410 void skb_gro_reset_offset(struct sk_buff *skb) 3411 { 3412 NAPI_GRO_CB(skb)->data_offset = 0; 3413 NAPI_GRO_CB(skb)->frag0 = NULL; 3414 NAPI_GRO_CB(skb)->frag0_len = 0; 3415 3416 if (skb->mac_header == skb->tail && 3417 !PageHighMem(skb_shinfo(skb)->frags[0].page)) { 3418 NAPI_GRO_CB(skb)->frag0 = 3419 page_address(skb_shinfo(skb)->frags[0].page) + 3420 skb_shinfo(skb)->frags[0].page_offset; 3421 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size; 3422 } 3423 } 3424 EXPORT_SYMBOL(skb_gro_reset_offset); 3425 3426 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3427 { 3428 skb_gro_reset_offset(skb); 3429 3430 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 3431 } 3432 EXPORT_SYMBOL(napi_gro_receive); 3433 3434 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3435 { 3436 __skb_pull(skb, skb_headlen(skb)); 3437 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb)); 3438 skb->vlan_tci = 0; 3439 skb->dev = napi->dev; 3440 skb->skb_iif = 0; 3441 3442 napi->skb = skb; 3443 } 3444 3445 struct sk_buff *napi_get_frags(struct napi_struct *napi) 3446 { 3447 struct sk_buff *skb = napi->skb; 3448 3449 if (!skb) { 3450 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3451 if (skb) 3452 napi->skb = skb; 3453 } 3454 return skb; 3455 } 3456 EXPORT_SYMBOL(napi_get_frags); 3457 3458 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3459 gro_result_t ret) 3460 { 3461 switch (ret) { 3462 case GRO_NORMAL: 3463 case GRO_HELD: 3464 skb->protocol = eth_type_trans(skb, skb->dev); 3465 3466 if (ret == GRO_HELD) 3467 skb_gro_pull(skb, -ETH_HLEN); 3468 else if (netif_receive_skb(skb)) 3469 ret = GRO_DROP; 3470 break; 3471 3472 case GRO_DROP: 3473 case GRO_MERGED_FREE: 3474 napi_reuse_skb(napi, skb); 3475 break; 3476 3477 case GRO_MERGED: 3478 break; 3479 } 3480 3481 return ret; 3482 } 3483 EXPORT_SYMBOL(napi_frags_finish); 3484 3485 struct sk_buff *napi_frags_skb(struct napi_struct *napi) 3486 { 3487 struct sk_buff *skb = napi->skb; 3488 struct ethhdr *eth; 3489 unsigned int hlen; 3490 unsigned int off; 3491 3492 napi->skb = NULL; 3493 3494 skb_reset_mac_header(skb); 3495 skb_gro_reset_offset(skb); 3496 3497 off = skb_gro_offset(skb); 3498 hlen = off + sizeof(*eth); 3499 eth = skb_gro_header_fast(skb, off); 3500 if (skb_gro_header_hard(skb, hlen)) { 3501 eth = skb_gro_header_slow(skb, hlen, off); 3502 if (unlikely(!eth)) { 3503 napi_reuse_skb(napi, skb); 3504 skb = NULL; 3505 goto out; 3506 } 3507 } 3508 3509 skb_gro_pull(skb, sizeof(*eth)); 3510 3511 /* 3512 * This works because the only protocols we care about don't require 3513 * special handling. We'll fix it up properly at the end. 3514 */ 3515 skb->protocol = eth->h_proto; 3516 3517 out: 3518 return skb; 3519 } 3520 EXPORT_SYMBOL(napi_frags_skb); 3521 3522 gro_result_t napi_gro_frags(struct napi_struct *napi) 3523 { 3524 struct sk_buff *skb = napi_frags_skb(napi); 3525 3526 if (!skb) 3527 return GRO_DROP; 3528 3529 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 3530 } 3531 EXPORT_SYMBOL(napi_gro_frags); 3532 3533 /* 3534 * net_rps_action sends any pending IPI's for rps. 3535 * Note: called with local irq disabled, but exits with local irq enabled. 3536 */ 3537 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 3538 { 3539 #ifdef CONFIG_RPS 3540 struct softnet_data *remsd = sd->rps_ipi_list; 3541 3542 if (remsd) { 3543 sd->rps_ipi_list = NULL; 3544 3545 local_irq_enable(); 3546 3547 /* Send pending IPI's to kick RPS processing on remote cpus. */ 3548 while (remsd) { 3549 struct softnet_data *next = remsd->rps_ipi_next; 3550 3551 if (cpu_online(remsd->cpu)) 3552 __smp_call_function_single(remsd->cpu, 3553 &remsd->csd, 0); 3554 remsd = next; 3555 } 3556 } else 3557 #endif 3558 local_irq_enable(); 3559 } 3560 3561 static int process_backlog(struct napi_struct *napi, int quota) 3562 { 3563 int work = 0; 3564 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 3565 3566 #ifdef CONFIG_RPS 3567 /* Check if we have pending ipi, its better to send them now, 3568 * not waiting net_rx_action() end. 3569 */ 3570 if (sd->rps_ipi_list) { 3571 local_irq_disable(); 3572 net_rps_action_and_irq_enable(sd); 3573 } 3574 #endif 3575 napi->weight = weight_p; 3576 local_irq_disable(); 3577 while (work < quota) { 3578 struct sk_buff *skb; 3579 unsigned int qlen; 3580 3581 while ((skb = __skb_dequeue(&sd->process_queue))) { 3582 local_irq_enable(); 3583 __netif_receive_skb(skb); 3584 local_irq_disable(); 3585 input_queue_head_incr(sd); 3586 if (++work >= quota) { 3587 local_irq_enable(); 3588 return work; 3589 } 3590 } 3591 3592 rps_lock(sd); 3593 qlen = skb_queue_len(&sd->input_pkt_queue); 3594 if (qlen) 3595 skb_queue_splice_tail_init(&sd->input_pkt_queue, 3596 &sd->process_queue); 3597 3598 if (qlen < quota - work) { 3599 /* 3600 * Inline a custom version of __napi_complete(). 3601 * only current cpu owns and manipulates this napi, 3602 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 3603 * we can use a plain write instead of clear_bit(), 3604 * and we dont need an smp_mb() memory barrier. 3605 */ 3606 list_del(&napi->poll_list); 3607 napi->state = 0; 3608 3609 quota = work + qlen; 3610 } 3611 rps_unlock(sd); 3612 } 3613 local_irq_enable(); 3614 3615 return work; 3616 } 3617 3618 /** 3619 * __napi_schedule - schedule for receive 3620 * @n: entry to schedule 3621 * 3622 * The entry's receive function will be scheduled to run 3623 */ 3624 void __napi_schedule(struct napi_struct *n) 3625 { 3626 unsigned long flags; 3627 3628 local_irq_save(flags); 3629 ____napi_schedule(&__get_cpu_var(softnet_data), n); 3630 local_irq_restore(flags); 3631 } 3632 EXPORT_SYMBOL(__napi_schedule); 3633 3634 void __napi_complete(struct napi_struct *n) 3635 { 3636 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 3637 BUG_ON(n->gro_list); 3638 3639 list_del(&n->poll_list); 3640 smp_mb__before_clear_bit(); 3641 clear_bit(NAPI_STATE_SCHED, &n->state); 3642 } 3643 EXPORT_SYMBOL(__napi_complete); 3644 3645 void napi_complete(struct napi_struct *n) 3646 { 3647 unsigned long flags; 3648 3649 /* 3650 * don't let napi dequeue from the cpu poll list 3651 * just in case its running on a different cpu 3652 */ 3653 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 3654 return; 3655 3656 napi_gro_flush(n); 3657 local_irq_save(flags); 3658 __napi_complete(n); 3659 local_irq_restore(flags); 3660 } 3661 EXPORT_SYMBOL(napi_complete); 3662 3663 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 3664 int (*poll)(struct napi_struct *, int), int weight) 3665 { 3666 INIT_LIST_HEAD(&napi->poll_list); 3667 napi->gro_count = 0; 3668 napi->gro_list = NULL; 3669 napi->skb = NULL; 3670 napi->poll = poll; 3671 napi->weight = weight; 3672 list_add(&napi->dev_list, &dev->napi_list); 3673 napi->dev = dev; 3674 #ifdef CONFIG_NETPOLL 3675 spin_lock_init(&napi->poll_lock); 3676 napi->poll_owner = -1; 3677 #endif 3678 set_bit(NAPI_STATE_SCHED, &napi->state); 3679 } 3680 EXPORT_SYMBOL(netif_napi_add); 3681 3682 void netif_napi_del(struct napi_struct *napi) 3683 { 3684 struct sk_buff *skb, *next; 3685 3686 list_del_init(&napi->dev_list); 3687 napi_free_frags(napi); 3688 3689 for (skb = napi->gro_list; skb; skb = next) { 3690 next = skb->next; 3691 skb->next = NULL; 3692 kfree_skb(skb); 3693 } 3694 3695 napi->gro_list = NULL; 3696 napi->gro_count = 0; 3697 } 3698 EXPORT_SYMBOL(netif_napi_del); 3699 3700 static void net_rx_action(struct softirq_action *h) 3701 { 3702 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3703 unsigned long time_limit = jiffies + 2; 3704 int budget = netdev_budget; 3705 void *have; 3706 3707 local_irq_disable(); 3708 3709 while (!list_empty(&sd->poll_list)) { 3710 struct napi_struct *n; 3711 int work, weight; 3712 3713 /* If softirq window is exhuasted then punt. 3714 * Allow this to run for 2 jiffies since which will allow 3715 * an average latency of 1.5/HZ. 3716 */ 3717 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 3718 goto softnet_break; 3719 3720 local_irq_enable(); 3721 3722 /* Even though interrupts have been re-enabled, this 3723 * access is safe because interrupts can only add new 3724 * entries to the tail of this list, and only ->poll() 3725 * calls can remove this head entry from the list. 3726 */ 3727 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 3728 3729 have = netpoll_poll_lock(n); 3730 3731 weight = n->weight; 3732 3733 /* This NAPI_STATE_SCHED test is for avoiding a race 3734 * with netpoll's poll_napi(). Only the entity which 3735 * obtains the lock and sees NAPI_STATE_SCHED set will 3736 * actually make the ->poll() call. Therefore we avoid 3737 * accidently calling ->poll() when NAPI is not scheduled. 3738 */ 3739 work = 0; 3740 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 3741 work = n->poll(n, weight); 3742 trace_napi_poll(n); 3743 } 3744 3745 WARN_ON_ONCE(work > weight); 3746 3747 budget -= work; 3748 3749 local_irq_disable(); 3750 3751 /* Drivers must not modify the NAPI state if they 3752 * consume the entire weight. In such cases this code 3753 * still "owns" the NAPI instance and therefore can 3754 * move the instance around on the list at-will. 3755 */ 3756 if (unlikely(work == weight)) { 3757 if (unlikely(napi_disable_pending(n))) { 3758 local_irq_enable(); 3759 napi_complete(n); 3760 local_irq_disable(); 3761 } else 3762 list_move_tail(&n->poll_list, &sd->poll_list); 3763 } 3764 3765 netpoll_poll_unlock(have); 3766 } 3767 out: 3768 net_rps_action_and_irq_enable(sd); 3769 3770 #ifdef CONFIG_NET_DMA 3771 /* 3772 * There may not be any more sk_buffs coming right now, so push 3773 * any pending DMA copies to hardware 3774 */ 3775 dma_issue_pending_all(); 3776 #endif 3777 3778 return; 3779 3780 softnet_break: 3781 sd->time_squeeze++; 3782 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3783 goto out; 3784 } 3785 3786 static gifconf_func_t *gifconf_list[NPROTO]; 3787 3788 /** 3789 * register_gifconf - register a SIOCGIF handler 3790 * @family: Address family 3791 * @gifconf: Function handler 3792 * 3793 * Register protocol dependent address dumping routines. The handler 3794 * that is passed must not be freed or reused until it has been replaced 3795 * by another handler. 3796 */ 3797 int register_gifconf(unsigned int family, gifconf_func_t *gifconf) 3798 { 3799 if (family >= NPROTO) 3800 return -EINVAL; 3801 gifconf_list[family] = gifconf; 3802 return 0; 3803 } 3804 EXPORT_SYMBOL(register_gifconf); 3805 3806 3807 /* 3808 * Map an interface index to its name (SIOCGIFNAME) 3809 */ 3810 3811 /* 3812 * We need this ioctl for efficient implementation of the 3813 * if_indextoname() function required by the IPv6 API. Without 3814 * it, we would have to search all the interfaces to find a 3815 * match. --pb 3816 */ 3817 3818 static int dev_ifname(struct net *net, struct ifreq __user *arg) 3819 { 3820 struct net_device *dev; 3821 struct ifreq ifr; 3822 3823 /* 3824 * Fetch the caller's info block. 3825 */ 3826 3827 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3828 return -EFAULT; 3829 3830 rcu_read_lock(); 3831 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex); 3832 if (!dev) { 3833 rcu_read_unlock(); 3834 return -ENODEV; 3835 } 3836 3837 strcpy(ifr.ifr_name, dev->name); 3838 rcu_read_unlock(); 3839 3840 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 3841 return -EFAULT; 3842 return 0; 3843 } 3844 3845 /* 3846 * Perform a SIOCGIFCONF call. This structure will change 3847 * size eventually, and there is nothing I can do about it. 3848 * Thus we will need a 'compatibility mode'. 3849 */ 3850 3851 static int dev_ifconf(struct net *net, char __user *arg) 3852 { 3853 struct ifconf ifc; 3854 struct net_device *dev; 3855 char __user *pos; 3856 int len; 3857 int total; 3858 int i; 3859 3860 /* 3861 * Fetch the caller's info block. 3862 */ 3863 3864 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 3865 return -EFAULT; 3866 3867 pos = ifc.ifc_buf; 3868 len = ifc.ifc_len; 3869 3870 /* 3871 * Loop over the interfaces, and write an info block for each. 3872 */ 3873 3874 total = 0; 3875 for_each_netdev(net, dev) { 3876 for (i = 0; i < NPROTO; i++) { 3877 if (gifconf_list[i]) { 3878 int done; 3879 if (!pos) 3880 done = gifconf_list[i](dev, NULL, 0); 3881 else 3882 done = gifconf_list[i](dev, pos + total, 3883 len - total); 3884 if (done < 0) 3885 return -EFAULT; 3886 total += done; 3887 } 3888 } 3889 } 3890 3891 /* 3892 * All done. Write the updated control block back to the caller. 3893 */ 3894 ifc.ifc_len = total; 3895 3896 /* 3897 * Both BSD and Solaris return 0 here, so we do too. 3898 */ 3899 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 3900 } 3901 3902 #ifdef CONFIG_PROC_FS 3903 /* 3904 * This is invoked by the /proc filesystem handler to display a device 3905 * in detail. 3906 */ 3907 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 3908 __acquires(RCU) 3909 { 3910 struct net *net = seq_file_net(seq); 3911 loff_t off; 3912 struct net_device *dev; 3913 3914 rcu_read_lock(); 3915 if (!*pos) 3916 return SEQ_START_TOKEN; 3917 3918 off = 1; 3919 for_each_netdev_rcu(net, dev) 3920 if (off++ == *pos) 3921 return dev; 3922 3923 return NULL; 3924 } 3925 3926 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3927 { 3928 struct net_device *dev = (v == SEQ_START_TOKEN) ? 3929 first_net_device(seq_file_net(seq)) : 3930 next_net_device((struct net_device *)v); 3931 3932 ++*pos; 3933 return rcu_dereference(dev); 3934 } 3935 3936 void dev_seq_stop(struct seq_file *seq, void *v) 3937 __releases(RCU) 3938 { 3939 rcu_read_unlock(); 3940 } 3941 3942 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 3943 { 3944 struct rtnl_link_stats64 temp; 3945 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 3946 3947 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu " 3948 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n", 3949 dev->name, stats->rx_bytes, stats->rx_packets, 3950 stats->rx_errors, 3951 stats->rx_dropped + stats->rx_missed_errors, 3952 stats->rx_fifo_errors, 3953 stats->rx_length_errors + stats->rx_over_errors + 3954 stats->rx_crc_errors + stats->rx_frame_errors, 3955 stats->rx_compressed, stats->multicast, 3956 stats->tx_bytes, stats->tx_packets, 3957 stats->tx_errors, stats->tx_dropped, 3958 stats->tx_fifo_errors, stats->collisions, 3959 stats->tx_carrier_errors + 3960 stats->tx_aborted_errors + 3961 stats->tx_window_errors + 3962 stats->tx_heartbeat_errors, 3963 stats->tx_compressed); 3964 } 3965 3966 /* 3967 * Called from the PROCfs module. This now uses the new arbitrary sized 3968 * /proc/net interface to create /proc/net/dev 3969 */ 3970 static int dev_seq_show(struct seq_file *seq, void *v) 3971 { 3972 if (v == SEQ_START_TOKEN) 3973 seq_puts(seq, "Inter-| Receive " 3974 " | Transmit\n" 3975 " face |bytes packets errs drop fifo frame " 3976 "compressed multicast|bytes packets errs " 3977 "drop fifo colls carrier compressed\n"); 3978 else 3979 dev_seq_printf_stats(seq, v); 3980 return 0; 3981 } 3982 3983 static struct softnet_data *softnet_get_online(loff_t *pos) 3984 { 3985 struct softnet_data *sd = NULL; 3986 3987 while (*pos < nr_cpu_ids) 3988 if (cpu_online(*pos)) { 3989 sd = &per_cpu(softnet_data, *pos); 3990 break; 3991 } else 3992 ++*pos; 3993 return sd; 3994 } 3995 3996 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 3997 { 3998 return softnet_get_online(pos); 3999 } 4000 4001 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4002 { 4003 ++*pos; 4004 return softnet_get_online(pos); 4005 } 4006 4007 static void softnet_seq_stop(struct seq_file *seq, void *v) 4008 { 4009 } 4010 4011 static int softnet_seq_show(struct seq_file *seq, void *v) 4012 { 4013 struct softnet_data *sd = v; 4014 4015 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 4016 sd->processed, sd->dropped, sd->time_squeeze, 0, 4017 0, 0, 0, 0, /* was fastroute */ 4018 sd->cpu_collision, sd->received_rps); 4019 return 0; 4020 } 4021 4022 static const struct seq_operations dev_seq_ops = { 4023 .start = dev_seq_start, 4024 .next = dev_seq_next, 4025 .stop = dev_seq_stop, 4026 .show = dev_seq_show, 4027 }; 4028 4029 static int dev_seq_open(struct inode *inode, struct file *file) 4030 { 4031 return seq_open_net(inode, file, &dev_seq_ops, 4032 sizeof(struct seq_net_private)); 4033 } 4034 4035 static const struct file_operations dev_seq_fops = { 4036 .owner = THIS_MODULE, 4037 .open = dev_seq_open, 4038 .read = seq_read, 4039 .llseek = seq_lseek, 4040 .release = seq_release_net, 4041 }; 4042 4043 static const struct seq_operations softnet_seq_ops = { 4044 .start = softnet_seq_start, 4045 .next = softnet_seq_next, 4046 .stop = softnet_seq_stop, 4047 .show = softnet_seq_show, 4048 }; 4049 4050 static int softnet_seq_open(struct inode *inode, struct file *file) 4051 { 4052 return seq_open(file, &softnet_seq_ops); 4053 } 4054 4055 static const struct file_operations softnet_seq_fops = { 4056 .owner = THIS_MODULE, 4057 .open = softnet_seq_open, 4058 .read = seq_read, 4059 .llseek = seq_lseek, 4060 .release = seq_release, 4061 }; 4062 4063 static void *ptype_get_idx(loff_t pos) 4064 { 4065 struct packet_type *pt = NULL; 4066 loff_t i = 0; 4067 int t; 4068 4069 list_for_each_entry_rcu(pt, &ptype_all, list) { 4070 if (i == pos) 4071 return pt; 4072 ++i; 4073 } 4074 4075 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 4076 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 4077 if (i == pos) 4078 return pt; 4079 ++i; 4080 } 4081 } 4082 return NULL; 4083 } 4084 4085 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 4086 __acquires(RCU) 4087 { 4088 rcu_read_lock(); 4089 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 4090 } 4091 4092 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4093 { 4094 struct packet_type *pt; 4095 struct list_head *nxt; 4096 int hash; 4097 4098 ++*pos; 4099 if (v == SEQ_START_TOKEN) 4100 return ptype_get_idx(0); 4101 4102 pt = v; 4103 nxt = pt->list.next; 4104 if (pt->type == htons(ETH_P_ALL)) { 4105 if (nxt != &ptype_all) 4106 goto found; 4107 hash = 0; 4108 nxt = ptype_base[0].next; 4109 } else 4110 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 4111 4112 while (nxt == &ptype_base[hash]) { 4113 if (++hash >= PTYPE_HASH_SIZE) 4114 return NULL; 4115 nxt = ptype_base[hash].next; 4116 } 4117 found: 4118 return list_entry(nxt, struct packet_type, list); 4119 } 4120 4121 static void ptype_seq_stop(struct seq_file *seq, void *v) 4122 __releases(RCU) 4123 { 4124 rcu_read_unlock(); 4125 } 4126 4127 static int ptype_seq_show(struct seq_file *seq, void *v) 4128 { 4129 struct packet_type *pt = v; 4130 4131 if (v == SEQ_START_TOKEN) 4132 seq_puts(seq, "Type Device Function\n"); 4133 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 4134 if (pt->type == htons(ETH_P_ALL)) 4135 seq_puts(seq, "ALL "); 4136 else 4137 seq_printf(seq, "%04x", ntohs(pt->type)); 4138 4139 seq_printf(seq, " %-8s %pF\n", 4140 pt->dev ? pt->dev->name : "", pt->func); 4141 } 4142 4143 return 0; 4144 } 4145 4146 static const struct seq_operations ptype_seq_ops = { 4147 .start = ptype_seq_start, 4148 .next = ptype_seq_next, 4149 .stop = ptype_seq_stop, 4150 .show = ptype_seq_show, 4151 }; 4152 4153 static int ptype_seq_open(struct inode *inode, struct file *file) 4154 { 4155 return seq_open_net(inode, file, &ptype_seq_ops, 4156 sizeof(struct seq_net_private)); 4157 } 4158 4159 static const struct file_operations ptype_seq_fops = { 4160 .owner = THIS_MODULE, 4161 .open = ptype_seq_open, 4162 .read = seq_read, 4163 .llseek = seq_lseek, 4164 .release = seq_release_net, 4165 }; 4166 4167 4168 static int __net_init dev_proc_net_init(struct net *net) 4169 { 4170 int rc = -ENOMEM; 4171 4172 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 4173 goto out; 4174 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 4175 goto out_dev; 4176 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 4177 goto out_softnet; 4178 4179 if (wext_proc_init(net)) 4180 goto out_ptype; 4181 rc = 0; 4182 out: 4183 return rc; 4184 out_ptype: 4185 proc_net_remove(net, "ptype"); 4186 out_softnet: 4187 proc_net_remove(net, "softnet_stat"); 4188 out_dev: 4189 proc_net_remove(net, "dev"); 4190 goto out; 4191 } 4192 4193 static void __net_exit dev_proc_net_exit(struct net *net) 4194 { 4195 wext_proc_exit(net); 4196 4197 proc_net_remove(net, "ptype"); 4198 proc_net_remove(net, "softnet_stat"); 4199 proc_net_remove(net, "dev"); 4200 } 4201 4202 static struct pernet_operations __net_initdata dev_proc_ops = { 4203 .init = dev_proc_net_init, 4204 .exit = dev_proc_net_exit, 4205 }; 4206 4207 static int __init dev_proc_init(void) 4208 { 4209 return register_pernet_subsys(&dev_proc_ops); 4210 } 4211 #else 4212 #define dev_proc_init() 0 4213 #endif /* CONFIG_PROC_FS */ 4214 4215 4216 /** 4217 * netdev_set_master - set up master/slave pair 4218 * @slave: slave device 4219 * @master: new master device 4220 * 4221 * Changes the master device of the slave. Pass %NULL to break the 4222 * bonding. The caller must hold the RTNL semaphore. On a failure 4223 * a negative errno code is returned. On success the reference counts 4224 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 4225 * function returns zero. 4226 */ 4227 int netdev_set_master(struct net_device *slave, struct net_device *master) 4228 { 4229 struct net_device *old = slave->master; 4230 4231 ASSERT_RTNL(); 4232 4233 if (master) { 4234 if (old) 4235 return -EBUSY; 4236 dev_hold(master); 4237 } 4238 4239 slave->master = master; 4240 4241 if (old) { 4242 synchronize_net(); 4243 dev_put(old); 4244 } 4245 if (master) 4246 slave->flags |= IFF_SLAVE; 4247 else 4248 slave->flags &= ~IFF_SLAVE; 4249 4250 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 4251 return 0; 4252 } 4253 EXPORT_SYMBOL(netdev_set_master); 4254 4255 static void dev_change_rx_flags(struct net_device *dev, int flags) 4256 { 4257 const struct net_device_ops *ops = dev->netdev_ops; 4258 4259 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4260 ops->ndo_change_rx_flags(dev, flags); 4261 } 4262 4263 static int __dev_set_promiscuity(struct net_device *dev, int inc) 4264 { 4265 unsigned short old_flags = dev->flags; 4266 uid_t uid; 4267 gid_t gid; 4268 4269 ASSERT_RTNL(); 4270 4271 dev->flags |= IFF_PROMISC; 4272 dev->promiscuity += inc; 4273 if (dev->promiscuity == 0) { 4274 /* 4275 * Avoid overflow. 4276 * If inc causes overflow, untouch promisc and return error. 4277 */ 4278 if (inc < 0) 4279 dev->flags &= ~IFF_PROMISC; 4280 else { 4281 dev->promiscuity -= inc; 4282 printk(KERN_WARNING "%s: promiscuity touches roof, " 4283 "set promiscuity failed, promiscuity feature " 4284 "of device might be broken.\n", dev->name); 4285 return -EOVERFLOW; 4286 } 4287 } 4288 if (dev->flags != old_flags) { 4289 printk(KERN_INFO "device %s %s promiscuous mode\n", 4290 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 4291 "left"); 4292 if (audit_enabled) { 4293 current_uid_gid(&uid, &gid); 4294 audit_log(current->audit_context, GFP_ATOMIC, 4295 AUDIT_ANOM_PROMISCUOUS, 4296 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4297 dev->name, (dev->flags & IFF_PROMISC), 4298 (old_flags & IFF_PROMISC), 4299 audit_get_loginuid(current), 4300 uid, gid, 4301 audit_get_sessionid(current)); 4302 } 4303 4304 dev_change_rx_flags(dev, IFF_PROMISC); 4305 } 4306 return 0; 4307 } 4308 4309 /** 4310 * dev_set_promiscuity - update promiscuity count on a device 4311 * @dev: device 4312 * @inc: modifier 4313 * 4314 * Add or remove promiscuity from a device. While the count in the device 4315 * remains above zero the interface remains promiscuous. Once it hits zero 4316 * the device reverts back to normal filtering operation. A negative inc 4317 * value is used to drop promiscuity on the device. 4318 * Return 0 if successful or a negative errno code on error. 4319 */ 4320 int dev_set_promiscuity(struct net_device *dev, int inc) 4321 { 4322 unsigned short old_flags = dev->flags; 4323 int err; 4324 4325 err = __dev_set_promiscuity(dev, inc); 4326 if (err < 0) 4327 return err; 4328 if (dev->flags != old_flags) 4329 dev_set_rx_mode(dev); 4330 return err; 4331 } 4332 EXPORT_SYMBOL(dev_set_promiscuity); 4333 4334 /** 4335 * dev_set_allmulti - update allmulti count on a device 4336 * @dev: device 4337 * @inc: modifier 4338 * 4339 * Add or remove reception of all multicast frames to a device. While the 4340 * count in the device remains above zero the interface remains listening 4341 * to all interfaces. Once it hits zero the device reverts back to normal 4342 * filtering operation. A negative @inc value is used to drop the counter 4343 * when releasing a resource needing all multicasts. 4344 * Return 0 if successful or a negative errno code on error. 4345 */ 4346 4347 int dev_set_allmulti(struct net_device *dev, int inc) 4348 { 4349 unsigned short old_flags = dev->flags; 4350 4351 ASSERT_RTNL(); 4352 4353 dev->flags |= IFF_ALLMULTI; 4354 dev->allmulti += inc; 4355 if (dev->allmulti == 0) { 4356 /* 4357 * Avoid overflow. 4358 * If inc causes overflow, untouch allmulti and return error. 4359 */ 4360 if (inc < 0) 4361 dev->flags &= ~IFF_ALLMULTI; 4362 else { 4363 dev->allmulti -= inc; 4364 printk(KERN_WARNING "%s: allmulti touches roof, " 4365 "set allmulti failed, allmulti feature of " 4366 "device might be broken.\n", dev->name); 4367 return -EOVERFLOW; 4368 } 4369 } 4370 if (dev->flags ^ old_flags) { 4371 dev_change_rx_flags(dev, IFF_ALLMULTI); 4372 dev_set_rx_mode(dev); 4373 } 4374 return 0; 4375 } 4376 EXPORT_SYMBOL(dev_set_allmulti); 4377 4378 /* 4379 * Upload unicast and multicast address lists to device and 4380 * configure RX filtering. When the device doesn't support unicast 4381 * filtering it is put in promiscuous mode while unicast addresses 4382 * are present. 4383 */ 4384 void __dev_set_rx_mode(struct net_device *dev) 4385 { 4386 const struct net_device_ops *ops = dev->netdev_ops; 4387 4388 /* dev_open will call this function so the list will stay sane. */ 4389 if (!(dev->flags&IFF_UP)) 4390 return; 4391 4392 if (!netif_device_present(dev)) 4393 return; 4394 4395 if (ops->ndo_set_rx_mode) 4396 ops->ndo_set_rx_mode(dev); 4397 else { 4398 /* Unicast addresses changes may only happen under the rtnl, 4399 * therefore calling __dev_set_promiscuity here is safe. 4400 */ 4401 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4402 __dev_set_promiscuity(dev, 1); 4403 dev->uc_promisc = 1; 4404 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4405 __dev_set_promiscuity(dev, -1); 4406 dev->uc_promisc = 0; 4407 } 4408 4409 if (ops->ndo_set_multicast_list) 4410 ops->ndo_set_multicast_list(dev); 4411 } 4412 } 4413 4414 void dev_set_rx_mode(struct net_device *dev) 4415 { 4416 netif_addr_lock_bh(dev); 4417 __dev_set_rx_mode(dev); 4418 netif_addr_unlock_bh(dev); 4419 } 4420 4421 /** 4422 * dev_get_flags - get flags reported to userspace 4423 * @dev: device 4424 * 4425 * Get the combination of flag bits exported through APIs to userspace. 4426 */ 4427 unsigned dev_get_flags(const struct net_device *dev) 4428 { 4429 unsigned flags; 4430 4431 flags = (dev->flags & ~(IFF_PROMISC | 4432 IFF_ALLMULTI | 4433 IFF_RUNNING | 4434 IFF_LOWER_UP | 4435 IFF_DORMANT)) | 4436 (dev->gflags & (IFF_PROMISC | 4437 IFF_ALLMULTI)); 4438 4439 if (netif_running(dev)) { 4440 if (netif_oper_up(dev)) 4441 flags |= IFF_RUNNING; 4442 if (netif_carrier_ok(dev)) 4443 flags |= IFF_LOWER_UP; 4444 if (netif_dormant(dev)) 4445 flags |= IFF_DORMANT; 4446 } 4447 4448 return flags; 4449 } 4450 EXPORT_SYMBOL(dev_get_flags); 4451 4452 int __dev_change_flags(struct net_device *dev, unsigned int flags) 4453 { 4454 int old_flags = dev->flags; 4455 int ret; 4456 4457 ASSERT_RTNL(); 4458 4459 /* 4460 * Set the flags on our device. 4461 */ 4462 4463 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4464 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4465 IFF_AUTOMEDIA)) | 4466 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4467 IFF_ALLMULTI)); 4468 4469 /* 4470 * Load in the correct multicast list now the flags have changed. 4471 */ 4472 4473 if ((old_flags ^ flags) & IFF_MULTICAST) 4474 dev_change_rx_flags(dev, IFF_MULTICAST); 4475 4476 dev_set_rx_mode(dev); 4477 4478 /* 4479 * Have we downed the interface. We handle IFF_UP ourselves 4480 * according to user attempts to set it, rather than blindly 4481 * setting it. 4482 */ 4483 4484 ret = 0; 4485 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4486 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4487 4488 if (!ret) 4489 dev_set_rx_mode(dev); 4490 } 4491 4492 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4493 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4494 4495 dev->gflags ^= IFF_PROMISC; 4496 dev_set_promiscuity(dev, inc); 4497 } 4498 4499 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4500 is important. Some (broken) drivers set IFF_PROMISC, when 4501 IFF_ALLMULTI is requested not asking us and not reporting. 4502 */ 4503 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4504 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4505 4506 dev->gflags ^= IFF_ALLMULTI; 4507 dev_set_allmulti(dev, inc); 4508 } 4509 4510 return ret; 4511 } 4512 4513 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4514 { 4515 unsigned int changes = dev->flags ^ old_flags; 4516 4517 if (changes & IFF_UP) { 4518 if (dev->flags & IFF_UP) 4519 call_netdevice_notifiers(NETDEV_UP, dev); 4520 else 4521 call_netdevice_notifiers(NETDEV_DOWN, dev); 4522 } 4523 4524 if (dev->flags & IFF_UP && 4525 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) 4526 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4527 } 4528 4529 /** 4530 * dev_change_flags - change device settings 4531 * @dev: device 4532 * @flags: device state flags 4533 * 4534 * Change settings on device based state flags. The flags are 4535 * in the userspace exported format. 4536 */ 4537 int dev_change_flags(struct net_device *dev, unsigned flags) 4538 { 4539 int ret, changes; 4540 int old_flags = dev->flags; 4541 4542 ret = __dev_change_flags(dev, flags); 4543 if (ret < 0) 4544 return ret; 4545 4546 changes = old_flags ^ dev->flags; 4547 if (changes) 4548 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4549 4550 __dev_notify_flags(dev, old_flags); 4551 return ret; 4552 } 4553 EXPORT_SYMBOL(dev_change_flags); 4554 4555 /** 4556 * dev_set_mtu - Change maximum transfer unit 4557 * @dev: device 4558 * @new_mtu: new transfer unit 4559 * 4560 * Change the maximum transfer size of the network device. 4561 */ 4562 int dev_set_mtu(struct net_device *dev, int new_mtu) 4563 { 4564 const struct net_device_ops *ops = dev->netdev_ops; 4565 int err; 4566 4567 if (new_mtu == dev->mtu) 4568 return 0; 4569 4570 /* MTU must be positive. */ 4571 if (new_mtu < 0) 4572 return -EINVAL; 4573 4574 if (!netif_device_present(dev)) 4575 return -ENODEV; 4576 4577 err = 0; 4578 if (ops->ndo_change_mtu) 4579 err = ops->ndo_change_mtu(dev, new_mtu); 4580 else 4581 dev->mtu = new_mtu; 4582 4583 if (!err && dev->flags & IFF_UP) 4584 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4585 return err; 4586 } 4587 EXPORT_SYMBOL(dev_set_mtu); 4588 4589 /** 4590 * dev_set_mac_address - Change Media Access Control Address 4591 * @dev: device 4592 * @sa: new address 4593 * 4594 * Change the hardware (MAC) address of the device 4595 */ 4596 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4597 { 4598 const struct net_device_ops *ops = dev->netdev_ops; 4599 int err; 4600 4601 if (!ops->ndo_set_mac_address) 4602 return -EOPNOTSUPP; 4603 if (sa->sa_family != dev->type) 4604 return -EINVAL; 4605 if (!netif_device_present(dev)) 4606 return -ENODEV; 4607 err = ops->ndo_set_mac_address(dev, sa); 4608 if (!err) 4609 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4610 return err; 4611 } 4612 EXPORT_SYMBOL(dev_set_mac_address); 4613 4614 /* 4615 * Perform the SIOCxIFxxx calls, inside rcu_read_lock() 4616 */ 4617 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 4618 { 4619 int err; 4620 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name); 4621 4622 if (!dev) 4623 return -ENODEV; 4624 4625 switch (cmd) { 4626 case SIOCGIFFLAGS: /* Get interface flags */ 4627 ifr->ifr_flags = (short) dev_get_flags(dev); 4628 return 0; 4629 4630 case SIOCGIFMETRIC: /* Get the metric on the interface 4631 (currently unused) */ 4632 ifr->ifr_metric = 0; 4633 return 0; 4634 4635 case SIOCGIFMTU: /* Get the MTU of a device */ 4636 ifr->ifr_mtu = dev->mtu; 4637 return 0; 4638 4639 case SIOCGIFHWADDR: 4640 if (!dev->addr_len) 4641 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 4642 else 4643 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 4644 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4645 ifr->ifr_hwaddr.sa_family = dev->type; 4646 return 0; 4647 4648 case SIOCGIFSLAVE: 4649 err = -EINVAL; 4650 break; 4651 4652 case SIOCGIFMAP: 4653 ifr->ifr_map.mem_start = dev->mem_start; 4654 ifr->ifr_map.mem_end = dev->mem_end; 4655 ifr->ifr_map.base_addr = dev->base_addr; 4656 ifr->ifr_map.irq = dev->irq; 4657 ifr->ifr_map.dma = dev->dma; 4658 ifr->ifr_map.port = dev->if_port; 4659 return 0; 4660 4661 case SIOCGIFINDEX: 4662 ifr->ifr_ifindex = dev->ifindex; 4663 return 0; 4664 4665 case SIOCGIFTXQLEN: 4666 ifr->ifr_qlen = dev->tx_queue_len; 4667 return 0; 4668 4669 default: 4670 /* dev_ioctl() should ensure this case 4671 * is never reached 4672 */ 4673 WARN_ON(1); 4674 err = -EINVAL; 4675 break; 4676 4677 } 4678 return err; 4679 } 4680 4681 /* 4682 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 4683 */ 4684 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 4685 { 4686 int err; 4687 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4688 const struct net_device_ops *ops; 4689 4690 if (!dev) 4691 return -ENODEV; 4692 4693 ops = dev->netdev_ops; 4694 4695 switch (cmd) { 4696 case SIOCSIFFLAGS: /* Set interface flags */ 4697 return dev_change_flags(dev, ifr->ifr_flags); 4698 4699 case SIOCSIFMETRIC: /* Set the metric on the interface 4700 (currently unused) */ 4701 return -EOPNOTSUPP; 4702 4703 case SIOCSIFMTU: /* Set the MTU of a device */ 4704 return dev_set_mtu(dev, ifr->ifr_mtu); 4705 4706 case SIOCSIFHWADDR: 4707 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 4708 4709 case SIOCSIFHWBROADCAST: 4710 if (ifr->ifr_hwaddr.sa_family != dev->type) 4711 return -EINVAL; 4712 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 4713 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4714 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4715 return 0; 4716 4717 case SIOCSIFMAP: 4718 if (ops->ndo_set_config) { 4719 if (!netif_device_present(dev)) 4720 return -ENODEV; 4721 return ops->ndo_set_config(dev, &ifr->ifr_map); 4722 } 4723 return -EOPNOTSUPP; 4724 4725 case SIOCADDMULTI: 4726 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4727 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4728 return -EINVAL; 4729 if (!netif_device_present(dev)) 4730 return -ENODEV; 4731 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data); 4732 4733 case SIOCDELMULTI: 4734 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4735 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4736 return -EINVAL; 4737 if (!netif_device_present(dev)) 4738 return -ENODEV; 4739 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data); 4740 4741 case SIOCSIFTXQLEN: 4742 if (ifr->ifr_qlen < 0) 4743 return -EINVAL; 4744 dev->tx_queue_len = ifr->ifr_qlen; 4745 return 0; 4746 4747 case SIOCSIFNAME: 4748 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 4749 return dev_change_name(dev, ifr->ifr_newname); 4750 4751 /* 4752 * Unknown or private ioctl 4753 */ 4754 default: 4755 if ((cmd >= SIOCDEVPRIVATE && 4756 cmd <= SIOCDEVPRIVATE + 15) || 4757 cmd == SIOCBONDENSLAVE || 4758 cmd == SIOCBONDRELEASE || 4759 cmd == SIOCBONDSETHWADDR || 4760 cmd == SIOCBONDSLAVEINFOQUERY || 4761 cmd == SIOCBONDINFOQUERY || 4762 cmd == SIOCBONDCHANGEACTIVE || 4763 cmd == SIOCGMIIPHY || 4764 cmd == SIOCGMIIREG || 4765 cmd == SIOCSMIIREG || 4766 cmd == SIOCBRADDIF || 4767 cmd == SIOCBRDELIF || 4768 cmd == SIOCSHWTSTAMP || 4769 cmd == SIOCWANDEV) { 4770 err = -EOPNOTSUPP; 4771 if (ops->ndo_do_ioctl) { 4772 if (netif_device_present(dev)) 4773 err = ops->ndo_do_ioctl(dev, ifr, cmd); 4774 else 4775 err = -ENODEV; 4776 } 4777 } else 4778 err = -EINVAL; 4779 4780 } 4781 return err; 4782 } 4783 4784 /* 4785 * This function handles all "interface"-type I/O control requests. The actual 4786 * 'doing' part of this is dev_ifsioc above. 4787 */ 4788 4789 /** 4790 * dev_ioctl - network device ioctl 4791 * @net: the applicable net namespace 4792 * @cmd: command to issue 4793 * @arg: pointer to a struct ifreq in user space 4794 * 4795 * Issue ioctl functions to devices. This is normally called by the 4796 * user space syscall interfaces but can sometimes be useful for 4797 * other purposes. The return value is the return from the syscall if 4798 * positive or a negative errno code on error. 4799 */ 4800 4801 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 4802 { 4803 struct ifreq ifr; 4804 int ret; 4805 char *colon; 4806 4807 /* One special case: SIOCGIFCONF takes ifconf argument 4808 and requires shared lock, because it sleeps writing 4809 to user space. 4810 */ 4811 4812 if (cmd == SIOCGIFCONF) { 4813 rtnl_lock(); 4814 ret = dev_ifconf(net, (char __user *) arg); 4815 rtnl_unlock(); 4816 return ret; 4817 } 4818 if (cmd == SIOCGIFNAME) 4819 return dev_ifname(net, (struct ifreq __user *)arg); 4820 4821 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 4822 return -EFAULT; 4823 4824 ifr.ifr_name[IFNAMSIZ-1] = 0; 4825 4826 colon = strchr(ifr.ifr_name, ':'); 4827 if (colon) 4828 *colon = 0; 4829 4830 /* 4831 * See which interface the caller is talking about. 4832 */ 4833 4834 switch (cmd) { 4835 /* 4836 * These ioctl calls: 4837 * - can be done by all. 4838 * - atomic and do not require locking. 4839 * - return a value 4840 */ 4841 case SIOCGIFFLAGS: 4842 case SIOCGIFMETRIC: 4843 case SIOCGIFMTU: 4844 case SIOCGIFHWADDR: 4845 case SIOCGIFSLAVE: 4846 case SIOCGIFMAP: 4847 case SIOCGIFINDEX: 4848 case SIOCGIFTXQLEN: 4849 dev_load(net, ifr.ifr_name); 4850 rcu_read_lock(); 4851 ret = dev_ifsioc_locked(net, &ifr, cmd); 4852 rcu_read_unlock(); 4853 if (!ret) { 4854 if (colon) 4855 *colon = ':'; 4856 if (copy_to_user(arg, &ifr, 4857 sizeof(struct ifreq))) 4858 ret = -EFAULT; 4859 } 4860 return ret; 4861 4862 case SIOCETHTOOL: 4863 dev_load(net, ifr.ifr_name); 4864 rtnl_lock(); 4865 ret = dev_ethtool(net, &ifr); 4866 rtnl_unlock(); 4867 if (!ret) { 4868 if (colon) 4869 *colon = ':'; 4870 if (copy_to_user(arg, &ifr, 4871 sizeof(struct ifreq))) 4872 ret = -EFAULT; 4873 } 4874 return ret; 4875 4876 /* 4877 * These ioctl calls: 4878 * - require superuser power. 4879 * - require strict serialization. 4880 * - return a value 4881 */ 4882 case SIOCGMIIPHY: 4883 case SIOCGMIIREG: 4884 case SIOCSIFNAME: 4885 if (!capable(CAP_NET_ADMIN)) 4886 return -EPERM; 4887 dev_load(net, ifr.ifr_name); 4888 rtnl_lock(); 4889 ret = dev_ifsioc(net, &ifr, cmd); 4890 rtnl_unlock(); 4891 if (!ret) { 4892 if (colon) 4893 *colon = ':'; 4894 if (copy_to_user(arg, &ifr, 4895 sizeof(struct ifreq))) 4896 ret = -EFAULT; 4897 } 4898 return ret; 4899 4900 /* 4901 * These ioctl calls: 4902 * - require superuser power. 4903 * - require strict serialization. 4904 * - do not return a value 4905 */ 4906 case SIOCSIFFLAGS: 4907 case SIOCSIFMETRIC: 4908 case SIOCSIFMTU: 4909 case SIOCSIFMAP: 4910 case SIOCSIFHWADDR: 4911 case SIOCSIFSLAVE: 4912 case SIOCADDMULTI: 4913 case SIOCDELMULTI: 4914 case SIOCSIFHWBROADCAST: 4915 case SIOCSIFTXQLEN: 4916 case SIOCSMIIREG: 4917 case SIOCBONDENSLAVE: 4918 case SIOCBONDRELEASE: 4919 case SIOCBONDSETHWADDR: 4920 case SIOCBONDCHANGEACTIVE: 4921 case SIOCBRADDIF: 4922 case SIOCBRDELIF: 4923 case SIOCSHWTSTAMP: 4924 if (!capable(CAP_NET_ADMIN)) 4925 return -EPERM; 4926 /* fall through */ 4927 case SIOCBONDSLAVEINFOQUERY: 4928 case SIOCBONDINFOQUERY: 4929 dev_load(net, ifr.ifr_name); 4930 rtnl_lock(); 4931 ret = dev_ifsioc(net, &ifr, cmd); 4932 rtnl_unlock(); 4933 return ret; 4934 4935 case SIOCGIFMEM: 4936 /* Get the per device memory space. We can add this but 4937 * currently do not support it */ 4938 case SIOCSIFMEM: 4939 /* Set the per device memory buffer space. 4940 * Not applicable in our case */ 4941 case SIOCSIFLINK: 4942 return -EINVAL; 4943 4944 /* 4945 * Unknown or private ioctl. 4946 */ 4947 default: 4948 if (cmd == SIOCWANDEV || 4949 (cmd >= SIOCDEVPRIVATE && 4950 cmd <= SIOCDEVPRIVATE + 15)) { 4951 dev_load(net, ifr.ifr_name); 4952 rtnl_lock(); 4953 ret = dev_ifsioc(net, &ifr, cmd); 4954 rtnl_unlock(); 4955 if (!ret && copy_to_user(arg, &ifr, 4956 sizeof(struct ifreq))) 4957 ret = -EFAULT; 4958 return ret; 4959 } 4960 /* Take care of Wireless Extensions */ 4961 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 4962 return wext_handle_ioctl(net, &ifr, cmd, arg); 4963 return -EINVAL; 4964 } 4965 } 4966 4967 4968 /** 4969 * dev_new_index - allocate an ifindex 4970 * @net: the applicable net namespace 4971 * 4972 * Returns a suitable unique value for a new device interface 4973 * number. The caller must hold the rtnl semaphore or the 4974 * dev_base_lock to be sure it remains unique. 4975 */ 4976 static int dev_new_index(struct net *net) 4977 { 4978 static int ifindex; 4979 for (;;) { 4980 if (++ifindex <= 0) 4981 ifindex = 1; 4982 if (!__dev_get_by_index(net, ifindex)) 4983 return ifindex; 4984 } 4985 } 4986 4987 /* Delayed registration/unregisteration */ 4988 static LIST_HEAD(net_todo_list); 4989 4990 static void net_set_todo(struct net_device *dev) 4991 { 4992 list_add_tail(&dev->todo_list, &net_todo_list); 4993 } 4994 4995 static void rollback_registered_many(struct list_head *head) 4996 { 4997 struct net_device *dev, *tmp; 4998 4999 BUG_ON(dev_boot_phase); 5000 ASSERT_RTNL(); 5001 5002 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5003 /* Some devices call without registering 5004 * for initialization unwind. Remove those 5005 * devices and proceed with the remaining. 5006 */ 5007 if (dev->reg_state == NETREG_UNINITIALIZED) { 5008 pr_debug("unregister_netdevice: device %s/%p never " 5009 "was registered\n", dev->name, dev); 5010 5011 WARN_ON(1); 5012 list_del(&dev->unreg_list); 5013 continue; 5014 } 5015 5016 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5017 } 5018 5019 /* If device is running, close it first. */ 5020 dev_close_many(head); 5021 5022 list_for_each_entry(dev, head, unreg_list) { 5023 /* And unlink it from device chain. */ 5024 unlist_netdevice(dev); 5025 5026 dev->reg_state = NETREG_UNREGISTERING; 5027 } 5028 5029 synchronize_net(); 5030 5031 list_for_each_entry(dev, head, unreg_list) { 5032 /* Shutdown queueing discipline. */ 5033 dev_shutdown(dev); 5034 5035 5036 /* Notify protocols, that we are about to destroy 5037 this device. They should clean all the things. 5038 */ 5039 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5040 5041 if (!dev->rtnl_link_ops || 5042 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5043 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 5044 5045 /* 5046 * Flush the unicast and multicast chains 5047 */ 5048 dev_uc_flush(dev); 5049 dev_mc_flush(dev); 5050 5051 if (dev->netdev_ops->ndo_uninit) 5052 dev->netdev_ops->ndo_uninit(dev); 5053 5054 /* Notifier chain MUST detach us from master device. */ 5055 WARN_ON(dev->master); 5056 5057 /* Remove entries from kobject tree */ 5058 netdev_unregister_kobject(dev); 5059 } 5060 5061 /* Process any work delayed until the end of the batch */ 5062 dev = list_first_entry(head, struct net_device, unreg_list); 5063 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 5064 5065 rcu_barrier(); 5066 5067 list_for_each_entry(dev, head, unreg_list) 5068 dev_put(dev); 5069 } 5070 5071 static void rollback_registered(struct net_device *dev) 5072 { 5073 LIST_HEAD(single); 5074 5075 list_add(&dev->unreg_list, &single); 5076 rollback_registered_many(&single); 5077 list_del(&single); 5078 } 5079 5080 unsigned long netdev_fix_features(unsigned long features, const char *name) 5081 { 5082 /* Fix illegal SG+CSUM combinations. */ 5083 if ((features & NETIF_F_SG) && 5084 !(features & NETIF_F_ALL_CSUM)) { 5085 if (name) 5086 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no " 5087 "checksum feature.\n", name); 5088 features &= ~NETIF_F_SG; 5089 } 5090 5091 /* TSO requires that SG is present as well. */ 5092 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) { 5093 if (name) 5094 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no " 5095 "SG feature.\n", name); 5096 features &= ~NETIF_F_TSO; 5097 } 5098 5099 if (features & NETIF_F_UFO) { 5100 /* maybe split UFO into V4 and V6? */ 5101 if (!((features & NETIF_F_GEN_CSUM) || 5102 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5103 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5104 if (name) 5105 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 5106 "since no checksum offload features.\n", 5107 name); 5108 features &= ~NETIF_F_UFO; 5109 } 5110 5111 if (!(features & NETIF_F_SG)) { 5112 if (name) 5113 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 5114 "since no NETIF_F_SG feature.\n", name); 5115 features &= ~NETIF_F_UFO; 5116 } 5117 } 5118 5119 return features; 5120 } 5121 EXPORT_SYMBOL(netdev_fix_features); 5122 5123 /** 5124 * netif_stacked_transfer_operstate - transfer operstate 5125 * @rootdev: the root or lower level device to transfer state from 5126 * @dev: the device to transfer operstate to 5127 * 5128 * Transfer operational state from root to device. This is normally 5129 * called when a stacking relationship exists between the root 5130 * device and the device(a leaf device). 5131 */ 5132 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5133 struct net_device *dev) 5134 { 5135 if (rootdev->operstate == IF_OPER_DORMANT) 5136 netif_dormant_on(dev); 5137 else 5138 netif_dormant_off(dev); 5139 5140 if (netif_carrier_ok(rootdev)) { 5141 if (!netif_carrier_ok(dev)) 5142 netif_carrier_on(dev); 5143 } else { 5144 if (netif_carrier_ok(dev)) 5145 netif_carrier_off(dev); 5146 } 5147 } 5148 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5149 5150 #ifdef CONFIG_RPS 5151 static int netif_alloc_rx_queues(struct net_device *dev) 5152 { 5153 unsigned int i, count = dev->num_rx_queues; 5154 struct netdev_rx_queue *rx; 5155 5156 BUG_ON(count < 1); 5157 5158 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5159 if (!rx) { 5160 pr_err("netdev: Unable to allocate %u rx queues.\n", count); 5161 return -ENOMEM; 5162 } 5163 dev->_rx = rx; 5164 5165 for (i = 0; i < count; i++) 5166 rx[i].dev = dev; 5167 return 0; 5168 } 5169 #endif 5170 5171 static void netdev_init_one_queue(struct net_device *dev, 5172 struct netdev_queue *queue, void *_unused) 5173 { 5174 /* Initialize queue lock */ 5175 spin_lock_init(&queue->_xmit_lock); 5176 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5177 queue->xmit_lock_owner = -1; 5178 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5179 queue->dev = dev; 5180 } 5181 5182 static int netif_alloc_netdev_queues(struct net_device *dev) 5183 { 5184 unsigned int count = dev->num_tx_queues; 5185 struct netdev_queue *tx; 5186 5187 BUG_ON(count < 1); 5188 5189 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL); 5190 if (!tx) { 5191 pr_err("netdev: Unable to allocate %u tx queues.\n", 5192 count); 5193 return -ENOMEM; 5194 } 5195 dev->_tx = tx; 5196 5197 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5198 spin_lock_init(&dev->tx_global_lock); 5199 5200 return 0; 5201 } 5202 5203 /** 5204 * register_netdevice - register a network device 5205 * @dev: device to register 5206 * 5207 * Take a completed network device structure and add it to the kernel 5208 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5209 * chain. 0 is returned on success. A negative errno code is returned 5210 * on a failure to set up the device, or if the name is a duplicate. 5211 * 5212 * Callers must hold the rtnl semaphore. You may want 5213 * register_netdev() instead of this. 5214 * 5215 * BUGS: 5216 * The locking appears insufficient to guarantee two parallel registers 5217 * will not get the same name. 5218 */ 5219 5220 int register_netdevice(struct net_device *dev) 5221 { 5222 int ret; 5223 struct net *net = dev_net(dev); 5224 5225 BUG_ON(dev_boot_phase); 5226 ASSERT_RTNL(); 5227 5228 might_sleep(); 5229 5230 /* When net_device's are persistent, this will be fatal. */ 5231 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5232 BUG_ON(!net); 5233 5234 spin_lock_init(&dev->addr_list_lock); 5235 netdev_set_addr_lockdep_class(dev); 5236 5237 dev->iflink = -1; 5238 5239 /* Init, if this function is available */ 5240 if (dev->netdev_ops->ndo_init) { 5241 ret = dev->netdev_ops->ndo_init(dev); 5242 if (ret) { 5243 if (ret > 0) 5244 ret = -EIO; 5245 goto out; 5246 } 5247 } 5248 5249 ret = dev_get_valid_name(dev, dev->name, 0); 5250 if (ret) 5251 goto err_uninit; 5252 5253 dev->ifindex = dev_new_index(net); 5254 if (dev->iflink == -1) 5255 dev->iflink = dev->ifindex; 5256 5257 /* Fix illegal checksum combinations */ 5258 if ((dev->features & NETIF_F_HW_CSUM) && 5259 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5260 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 5261 dev->name); 5262 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5263 } 5264 5265 if ((dev->features & NETIF_F_NO_CSUM) && 5266 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5267 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 5268 dev->name); 5269 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 5270 } 5271 5272 dev->features = netdev_fix_features(dev->features, dev->name); 5273 5274 /* Enable software GSO if SG is supported. */ 5275 if (dev->features & NETIF_F_SG) 5276 dev->features |= NETIF_F_GSO; 5277 5278 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default, 5279 * vlan_dev_init() will do the dev->features check, so these features 5280 * are enabled only if supported by underlying device. 5281 */ 5282 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA); 5283 5284 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5285 ret = notifier_to_errno(ret); 5286 if (ret) 5287 goto err_uninit; 5288 5289 ret = netdev_register_kobject(dev); 5290 if (ret) 5291 goto err_uninit; 5292 dev->reg_state = NETREG_REGISTERED; 5293 5294 /* 5295 * Default initial state at registry is that the 5296 * device is present. 5297 */ 5298 5299 set_bit(__LINK_STATE_PRESENT, &dev->state); 5300 5301 dev_init_scheduler(dev); 5302 dev_hold(dev); 5303 list_netdevice(dev); 5304 5305 /* Notify protocols, that a new device appeared. */ 5306 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5307 ret = notifier_to_errno(ret); 5308 if (ret) { 5309 rollback_registered(dev); 5310 dev->reg_state = NETREG_UNREGISTERED; 5311 } 5312 /* 5313 * Prevent userspace races by waiting until the network 5314 * device is fully setup before sending notifications. 5315 */ 5316 if (!dev->rtnl_link_ops || 5317 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5318 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5319 5320 out: 5321 return ret; 5322 5323 err_uninit: 5324 if (dev->netdev_ops->ndo_uninit) 5325 dev->netdev_ops->ndo_uninit(dev); 5326 goto out; 5327 } 5328 EXPORT_SYMBOL(register_netdevice); 5329 5330 /** 5331 * init_dummy_netdev - init a dummy network device for NAPI 5332 * @dev: device to init 5333 * 5334 * This takes a network device structure and initialize the minimum 5335 * amount of fields so it can be used to schedule NAPI polls without 5336 * registering a full blown interface. This is to be used by drivers 5337 * that need to tie several hardware interfaces to a single NAPI 5338 * poll scheduler due to HW limitations. 5339 */ 5340 int init_dummy_netdev(struct net_device *dev) 5341 { 5342 /* Clear everything. Note we don't initialize spinlocks 5343 * are they aren't supposed to be taken by any of the 5344 * NAPI code and this dummy netdev is supposed to be 5345 * only ever used for NAPI polls 5346 */ 5347 memset(dev, 0, sizeof(struct net_device)); 5348 5349 /* make sure we BUG if trying to hit standard 5350 * register/unregister code path 5351 */ 5352 dev->reg_state = NETREG_DUMMY; 5353 5354 /* NAPI wants this */ 5355 INIT_LIST_HEAD(&dev->napi_list); 5356 5357 /* a dummy interface is started by default */ 5358 set_bit(__LINK_STATE_PRESENT, &dev->state); 5359 set_bit(__LINK_STATE_START, &dev->state); 5360 5361 /* Note : We dont allocate pcpu_refcnt for dummy devices, 5362 * because users of this 'device' dont need to change 5363 * its refcount. 5364 */ 5365 5366 return 0; 5367 } 5368 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5369 5370 5371 /** 5372 * register_netdev - register a network device 5373 * @dev: device to register 5374 * 5375 * Take a completed network device structure and add it to the kernel 5376 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5377 * chain. 0 is returned on success. A negative errno code is returned 5378 * on a failure to set up the device, or if the name is a duplicate. 5379 * 5380 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5381 * and expands the device name if you passed a format string to 5382 * alloc_netdev. 5383 */ 5384 int register_netdev(struct net_device *dev) 5385 { 5386 int err; 5387 5388 rtnl_lock(); 5389 5390 /* 5391 * If the name is a format string the caller wants us to do a 5392 * name allocation. 5393 */ 5394 if (strchr(dev->name, '%')) { 5395 err = dev_alloc_name(dev, dev->name); 5396 if (err < 0) 5397 goto out; 5398 } 5399 5400 err = register_netdevice(dev); 5401 out: 5402 rtnl_unlock(); 5403 return err; 5404 } 5405 EXPORT_SYMBOL(register_netdev); 5406 5407 int netdev_refcnt_read(const struct net_device *dev) 5408 { 5409 int i, refcnt = 0; 5410 5411 for_each_possible_cpu(i) 5412 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 5413 return refcnt; 5414 } 5415 EXPORT_SYMBOL(netdev_refcnt_read); 5416 5417 /* 5418 * netdev_wait_allrefs - wait until all references are gone. 5419 * 5420 * This is called when unregistering network devices. 5421 * 5422 * Any protocol or device that holds a reference should register 5423 * for netdevice notification, and cleanup and put back the 5424 * reference if they receive an UNREGISTER event. 5425 * We can get stuck here if buggy protocols don't correctly 5426 * call dev_put. 5427 */ 5428 static void netdev_wait_allrefs(struct net_device *dev) 5429 { 5430 unsigned long rebroadcast_time, warning_time; 5431 int refcnt; 5432 5433 linkwatch_forget_dev(dev); 5434 5435 rebroadcast_time = warning_time = jiffies; 5436 refcnt = netdev_refcnt_read(dev); 5437 5438 while (refcnt != 0) { 5439 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5440 rtnl_lock(); 5441 5442 /* Rebroadcast unregister notification */ 5443 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5444 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users 5445 * should have already handle it the first time */ 5446 5447 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5448 &dev->state)) { 5449 /* We must not have linkwatch events 5450 * pending on unregister. If this 5451 * happens, we simply run the queue 5452 * unscheduled, resulting in a noop 5453 * for this device. 5454 */ 5455 linkwatch_run_queue(); 5456 } 5457 5458 __rtnl_unlock(); 5459 5460 rebroadcast_time = jiffies; 5461 } 5462 5463 msleep(250); 5464 5465 refcnt = netdev_refcnt_read(dev); 5466 5467 if (time_after(jiffies, warning_time + 10 * HZ)) { 5468 printk(KERN_EMERG "unregister_netdevice: " 5469 "waiting for %s to become free. Usage " 5470 "count = %d\n", 5471 dev->name, refcnt); 5472 warning_time = jiffies; 5473 } 5474 } 5475 } 5476 5477 /* The sequence is: 5478 * 5479 * rtnl_lock(); 5480 * ... 5481 * register_netdevice(x1); 5482 * register_netdevice(x2); 5483 * ... 5484 * unregister_netdevice(y1); 5485 * unregister_netdevice(y2); 5486 * ... 5487 * rtnl_unlock(); 5488 * free_netdev(y1); 5489 * free_netdev(y2); 5490 * 5491 * We are invoked by rtnl_unlock(). 5492 * This allows us to deal with problems: 5493 * 1) We can delete sysfs objects which invoke hotplug 5494 * without deadlocking with linkwatch via keventd. 5495 * 2) Since we run with the RTNL semaphore not held, we can sleep 5496 * safely in order to wait for the netdev refcnt to drop to zero. 5497 * 5498 * We must not return until all unregister events added during 5499 * the interval the lock was held have been completed. 5500 */ 5501 void netdev_run_todo(void) 5502 { 5503 struct list_head list; 5504 5505 /* Snapshot list, allow later requests */ 5506 list_replace_init(&net_todo_list, &list); 5507 5508 __rtnl_unlock(); 5509 5510 while (!list_empty(&list)) { 5511 struct net_device *dev 5512 = list_first_entry(&list, struct net_device, todo_list); 5513 list_del(&dev->todo_list); 5514 5515 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5516 printk(KERN_ERR "network todo '%s' but state %d\n", 5517 dev->name, dev->reg_state); 5518 dump_stack(); 5519 continue; 5520 } 5521 5522 dev->reg_state = NETREG_UNREGISTERED; 5523 5524 on_each_cpu(flush_backlog, dev, 1); 5525 5526 netdev_wait_allrefs(dev); 5527 5528 /* paranoia */ 5529 BUG_ON(netdev_refcnt_read(dev)); 5530 WARN_ON(rcu_dereference_raw(dev->ip_ptr)); 5531 WARN_ON(rcu_dereference_raw(dev->ip6_ptr)); 5532 WARN_ON(dev->dn_ptr); 5533 5534 if (dev->destructor) 5535 dev->destructor(dev); 5536 5537 /* Free network device */ 5538 kobject_put(&dev->dev.kobj); 5539 } 5540 } 5541 5542 /* Convert net_device_stats to rtnl_link_stats64. They have the same 5543 * fields in the same order, with only the type differing. 5544 */ 5545 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 5546 const struct net_device_stats *netdev_stats) 5547 { 5548 #if BITS_PER_LONG == 64 5549 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 5550 memcpy(stats64, netdev_stats, sizeof(*stats64)); 5551 #else 5552 size_t i, n = sizeof(*stats64) / sizeof(u64); 5553 const unsigned long *src = (const unsigned long *)netdev_stats; 5554 u64 *dst = (u64 *)stats64; 5555 5556 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 5557 sizeof(*stats64) / sizeof(u64)); 5558 for (i = 0; i < n; i++) 5559 dst[i] = src[i]; 5560 #endif 5561 } 5562 5563 /** 5564 * dev_get_stats - get network device statistics 5565 * @dev: device to get statistics from 5566 * @storage: place to store stats 5567 * 5568 * Get network statistics from device. Return @storage. 5569 * The device driver may provide its own method by setting 5570 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 5571 * otherwise the internal statistics structure is used. 5572 */ 5573 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 5574 struct rtnl_link_stats64 *storage) 5575 { 5576 const struct net_device_ops *ops = dev->netdev_ops; 5577 5578 if (ops->ndo_get_stats64) { 5579 memset(storage, 0, sizeof(*storage)); 5580 ops->ndo_get_stats64(dev, storage); 5581 } else if (ops->ndo_get_stats) { 5582 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 5583 } else { 5584 netdev_stats_to_stats64(storage, &dev->stats); 5585 } 5586 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 5587 return storage; 5588 } 5589 EXPORT_SYMBOL(dev_get_stats); 5590 5591 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 5592 { 5593 struct netdev_queue *queue = dev_ingress_queue(dev); 5594 5595 #ifdef CONFIG_NET_CLS_ACT 5596 if (queue) 5597 return queue; 5598 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 5599 if (!queue) 5600 return NULL; 5601 netdev_init_one_queue(dev, queue, NULL); 5602 queue->qdisc = &noop_qdisc; 5603 queue->qdisc_sleeping = &noop_qdisc; 5604 rcu_assign_pointer(dev->ingress_queue, queue); 5605 #endif 5606 return queue; 5607 } 5608 5609 /** 5610 * alloc_netdev_mqs - allocate network device 5611 * @sizeof_priv: size of private data to allocate space for 5612 * @name: device name format string 5613 * @setup: callback to initialize device 5614 * @txqs: the number of TX subqueues to allocate 5615 * @rxqs: the number of RX subqueues to allocate 5616 * 5617 * Allocates a struct net_device with private data area for driver use 5618 * and performs basic initialization. Also allocates subquue structs 5619 * for each queue on the device. 5620 */ 5621 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 5622 void (*setup)(struct net_device *), 5623 unsigned int txqs, unsigned int rxqs) 5624 { 5625 struct net_device *dev; 5626 size_t alloc_size; 5627 struct net_device *p; 5628 5629 BUG_ON(strlen(name) >= sizeof(dev->name)); 5630 5631 if (txqs < 1) { 5632 pr_err("alloc_netdev: Unable to allocate device " 5633 "with zero queues.\n"); 5634 return NULL; 5635 } 5636 5637 #ifdef CONFIG_RPS 5638 if (rxqs < 1) { 5639 pr_err("alloc_netdev: Unable to allocate device " 5640 "with zero RX queues.\n"); 5641 return NULL; 5642 } 5643 #endif 5644 5645 alloc_size = sizeof(struct net_device); 5646 if (sizeof_priv) { 5647 /* ensure 32-byte alignment of private area */ 5648 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5649 alloc_size += sizeof_priv; 5650 } 5651 /* ensure 32-byte alignment of whole construct */ 5652 alloc_size += NETDEV_ALIGN - 1; 5653 5654 p = kzalloc(alloc_size, GFP_KERNEL); 5655 if (!p) { 5656 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 5657 return NULL; 5658 } 5659 5660 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5661 dev->padded = (char *)dev - (char *)p; 5662 5663 dev->pcpu_refcnt = alloc_percpu(int); 5664 if (!dev->pcpu_refcnt) 5665 goto free_p; 5666 5667 if (dev_addr_init(dev)) 5668 goto free_pcpu; 5669 5670 dev_mc_init(dev); 5671 dev_uc_init(dev); 5672 5673 dev_net_set(dev, &init_net); 5674 5675 dev->gso_max_size = GSO_MAX_SIZE; 5676 5677 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list); 5678 dev->ethtool_ntuple_list.count = 0; 5679 INIT_LIST_HEAD(&dev->napi_list); 5680 INIT_LIST_HEAD(&dev->unreg_list); 5681 INIT_LIST_HEAD(&dev->link_watch_list); 5682 dev->priv_flags = IFF_XMIT_DST_RELEASE; 5683 setup(dev); 5684 5685 dev->num_tx_queues = txqs; 5686 dev->real_num_tx_queues = txqs; 5687 if (netif_alloc_netdev_queues(dev)) 5688 goto free_all; 5689 5690 #ifdef CONFIG_RPS 5691 dev->num_rx_queues = rxqs; 5692 dev->real_num_rx_queues = rxqs; 5693 if (netif_alloc_rx_queues(dev)) 5694 goto free_all; 5695 #endif 5696 5697 strcpy(dev->name, name); 5698 return dev; 5699 5700 free_all: 5701 free_netdev(dev); 5702 return NULL; 5703 5704 free_pcpu: 5705 free_percpu(dev->pcpu_refcnt); 5706 kfree(dev->_tx); 5707 #ifdef CONFIG_RPS 5708 kfree(dev->_rx); 5709 #endif 5710 5711 free_p: 5712 kfree(p); 5713 return NULL; 5714 } 5715 EXPORT_SYMBOL(alloc_netdev_mqs); 5716 5717 /** 5718 * free_netdev - free network device 5719 * @dev: device 5720 * 5721 * This function does the last stage of destroying an allocated device 5722 * interface. The reference to the device object is released. 5723 * If this is the last reference then it will be freed. 5724 */ 5725 void free_netdev(struct net_device *dev) 5726 { 5727 struct napi_struct *p, *n; 5728 5729 release_net(dev_net(dev)); 5730 5731 kfree(dev->_tx); 5732 #ifdef CONFIG_RPS 5733 kfree(dev->_rx); 5734 #endif 5735 5736 kfree(rcu_dereference_raw(dev->ingress_queue)); 5737 5738 /* Flush device addresses */ 5739 dev_addr_flush(dev); 5740 5741 /* Clear ethtool n-tuple list */ 5742 ethtool_ntuple_flush(dev); 5743 5744 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 5745 netif_napi_del(p); 5746 5747 free_percpu(dev->pcpu_refcnt); 5748 dev->pcpu_refcnt = NULL; 5749 5750 /* Compatibility with error handling in drivers */ 5751 if (dev->reg_state == NETREG_UNINITIALIZED) { 5752 kfree((char *)dev - dev->padded); 5753 return; 5754 } 5755 5756 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 5757 dev->reg_state = NETREG_RELEASED; 5758 5759 /* will free via device release */ 5760 put_device(&dev->dev); 5761 } 5762 EXPORT_SYMBOL(free_netdev); 5763 5764 /** 5765 * synchronize_net - Synchronize with packet receive processing 5766 * 5767 * Wait for packets currently being received to be done. 5768 * Does not block later packets from starting. 5769 */ 5770 void synchronize_net(void) 5771 { 5772 might_sleep(); 5773 synchronize_rcu(); 5774 } 5775 EXPORT_SYMBOL(synchronize_net); 5776 5777 /** 5778 * unregister_netdevice_queue - remove device from the kernel 5779 * @dev: device 5780 * @head: list 5781 * 5782 * This function shuts down a device interface and removes it 5783 * from the kernel tables. 5784 * If head not NULL, device is queued to be unregistered later. 5785 * 5786 * Callers must hold the rtnl semaphore. You may want 5787 * unregister_netdev() instead of this. 5788 */ 5789 5790 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 5791 { 5792 ASSERT_RTNL(); 5793 5794 if (head) { 5795 list_move_tail(&dev->unreg_list, head); 5796 } else { 5797 rollback_registered(dev); 5798 /* Finish processing unregister after unlock */ 5799 net_set_todo(dev); 5800 } 5801 } 5802 EXPORT_SYMBOL(unregister_netdevice_queue); 5803 5804 /** 5805 * unregister_netdevice_many - unregister many devices 5806 * @head: list of devices 5807 */ 5808 void unregister_netdevice_many(struct list_head *head) 5809 { 5810 struct net_device *dev; 5811 5812 if (!list_empty(head)) { 5813 rollback_registered_many(head); 5814 list_for_each_entry(dev, head, unreg_list) 5815 net_set_todo(dev); 5816 } 5817 } 5818 EXPORT_SYMBOL(unregister_netdevice_many); 5819 5820 /** 5821 * unregister_netdev - remove device from the kernel 5822 * @dev: device 5823 * 5824 * This function shuts down a device interface and removes it 5825 * from the kernel tables. 5826 * 5827 * This is just a wrapper for unregister_netdevice that takes 5828 * the rtnl semaphore. In general you want to use this and not 5829 * unregister_netdevice. 5830 */ 5831 void unregister_netdev(struct net_device *dev) 5832 { 5833 rtnl_lock(); 5834 unregister_netdevice(dev); 5835 rtnl_unlock(); 5836 } 5837 EXPORT_SYMBOL(unregister_netdev); 5838 5839 /** 5840 * dev_change_net_namespace - move device to different nethost namespace 5841 * @dev: device 5842 * @net: network namespace 5843 * @pat: If not NULL name pattern to try if the current device name 5844 * is already taken in the destination network namespace. 5845 * 5846 * This function shuts down a device interface and moves it 5847 * to a new network namespace. On success 0 is returned, on 5848 * a failure a netagive errno code is returned. 5849 * 5850 * Callers must hold the rtnl semaphore. 5851 */ 5852 5853 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 5854 { 5855 int err; 5856 5857 ASSERT_RTNL(); 5858 5859 /* Don't allow namespace local devices to be moved. */ 5860 err = -EINVAL; 5861 if (dev->features & NETIF_F_NETNS_LOCAL) 5862 goto out; 5863 5864 /* Ensure the device has been registrered */ 5865 err = -EINVAL; 5866 if (dev->reg_state != NETREG_REGISTERED) 5867 goto out; 5868 5869 /* Get out if there is nothing todo */ 5870 err = 0; 5871 if (net_eq(dev_net(dev), net)) 5872 goto out; 5873 5874 /* Pick the destination device name, and ensure 5875 * we can use it in the destination network namespace. 5876 */ 5877 err = -EEXIST; 5878 if (__dev_get_by_name(net, dev->name)) { 5879 /* We get here if we can't use the current device name */ 5880 if (!pat) 5881 goto out; 5882 if (dev_get_valid_name(dev, pat, 1)) 5883 goto out; 5884 } 5885 5886 /* 5887 * And now a mini version of register_netdevice unregister_netdevice. 5888 */ 5889 5890 /* If device is running close it first. */ 5891 dev_close(dev); 5892 5893 /* And unlink it from device chain */ 5894 err = -ENODEV; 5895 unlist_netdevice(dev); 5896 5897 synchronize_net(); 5898 5899 /* Shutdown queueing discipline. */ 5900 dev_shutdown(dev); 5901 5902 /* Notify protocols, that we are about to destroy 5903 this device. They should clean all the things. 5904 5905 Note that dev->reg_state stays at NETREG_REGISTERED. 5906 This is wanted because this way 8021q and macvlan know 5907 the device is just moving and can keep their slaves up. 5908 */ 5909 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5910 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 5911 5912 /* 5913 * Flush the unicast and multicast chains 5914 */ 5915 dev_uc_flush(dev); 5916 dev_mc_flush(dev); 5917 5918 /* Actually switch the network namespace */ 5919 dev_net_set(dev, net); 5920 5921 /* If there is an ifindex conflict assign a new one */ 5922 if (__dev_get_by_index(net, dev->ifindex)) { 5923 int iflink = (dev->iflink == dev->ifindex); 5924 dev->ifindex = dev_new_index(net); 5925 if (iflink) 5926 dev->iflink = dev->ifindex; 5927 } 5928 5929 /* Fixup kobjects */ 5930 err = device_rename(&dev->dev, dev->name); 5931 WARN_ON(err); 5932 5933 /* Add the device back in the hashes */ 5934 list_netdevice(dev); 5935 5936 /* Notify protocols, that a new device appeared. */ 5937 call_netdevice_notifiers(NETDEV_REGISTER, dev); 5938 5939 /* 5940 * Prevent userspace races by waiting until the network 5941 * device is fully setup before sending notifications. 5942 */ 5943 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5944 5945 synchronize_net(); 5946 err = 0; 5947 out: 5948 return err; 5949 } 5950 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 5951 5952 static int dev_cpu_callback(struct notifier_block *nfb, 5953 unsigned long action, 5954 void *ocpu) 5955 { 5956 struct sk_buff **list_skb; 5957 struct sk_buff *skb; 5958 unsigned int cpu, oldcpu = (unsigned long)ocpu; 5959 struct softnet_data *sd, *oldsd; 5960 5961 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 5962 return NOTIFY_OK; 5963 5964 local_irq_disable(); 5965 cpu = smp_processor_id(); 5966 sd = &per_cpu(softnet_data, cpu); 5967 oldsd = &per_cpu(softnet_data, oldcpu); 5968 5969 /* Find end of our completion_queue. */ 5970 list_skb = &sd->completion_queue; 5971 while (*list_skb) 5972 list_skb = &(*list_skb)->next; 5973 /* Append completion queue from offline CPU. */ 5974 *list_skb = oldsd->completion_queue; 5975 oldsd->completion_queue = NULL; 5976 5977 /* Append output queue from offline CPU. */ 5978 if (oldsd->output_queue) { 5979 *sd->output_queue_tailp = oldsd->output_queue; 5980 sd->output_queue_tailp = oldsd->output_queue_tailp; 5981 oldsd->output_queue = NULL; 5982 oldsd->output_queue_tailp = &oldsd->output_queue; 5983 } 5984 5985 raise_softirq_irqoff(NET_TX_SOFTIRQ); 5986 local_irq_enable(); 5987 5988 /* Process offline CPU's input_pkt_queue */ 5989 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 5990 netif_rx(skb); 5991 input_queue_head_incr(oldsd); 5992 } 5993 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 5994 netif_rx(skb); 5995 input_queue_head_incr(oldsd); 5996 } 5997 5998 return NOTIFY_OK; 5999 } 6000 6001 6002 /** 6003 * netdev_increment_features - increment feature set by one 6004 * @all: current feature set 6005 * @one: new feature set 6006 * @mask: mask feature set 6007 * 6008 * Computes a new feature set after adding a device with feature set 6009 * @one to the master device with current feature set @all. Will not 6010 * enable anything that is off in @mask. Returns the new feature set. 6011 */ 6012 unsigned long netdev_increment_features(unsigned long all, unsigned long one, 6013 unsigned long mask) 6014 { 6015 /* If device needs checksumming, downgrade to it. */ 6016 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 6017 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM); 6018 else if (mask & NETIF_F_ALL_CSUM) { 6019 /* If one device supports v4/v6 checksumming, set for all. */ 6020 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) && 6021 !(all & NETIF_F_GEN_CSUM)) { 6022 all &= ~NETIF_F_ALL_CSUM; 6023 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 6024 } 6025 6026 /* If one device supports hw checksumming, set for all. */ 6027 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) { 6028 all &= ~NETIF_F_ALL_CSUM; 6029 all |= NETIF_F_HW_CSUM; 6030 } 6031 } 6032 6033 one |= NETIF_F_ALL_CSUM; 6034 6035 one |= all & NETIF_F_ONE_FOR_ALL; 6036 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO; 6037 all |= one & mask & NETIF_F_ONE_FOR_ALL; 6038 6039 return all; 6040 } 6041 EXPORT_SYMBOL(netdev_increment_features); 6042 6043 static struct hlist_head *netdev_create_hash(void) 6044 { 6045 int i; 6046 struct hlist_head *hash; 6047 6048 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6049 if (hash != NULL) 6050 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6051 INIT_HLIST_HEAD(&hash[i]); 6052 6053 return hash; 6054 } 6055 6056 /* Initialize per network namespace state */ 6057 static int __net_init netdev_init(struct net *net) 6058 { 6059 INIT_LIST_HEAD(&net->dev_base_head); 6060 6061 net->dev_name_head = netdev_create_hash(); 6062 if (net->dev_name_head == NULL) 6063 goto err_name; 6064 6065 net->dev_index_head = netdev_create_hash(); 6066 if (net->dev_index_head == NULL) 6067 goto err_idx; 6068 6069 return 0; 6070 6071 err_idx: 6072 kfree(net->dev_name_head); 6073 err_name: 6074 return -ENOMEM; 6075 } 6076 6077 /** 6078 * netdev_drivername - network driver for the device 6079 * @dev: network device 6080 * @buffer: buffer for resulting name 6081 * @len: size of buffer 6082 * 6083 * Determine network driver for device. 6084 */ 6085 char *netdev_drivername(const struct net_device *dev, char *buffer, int len) 6086 { 6087 const struct device_driver *driver; 6088 const struct device *parent; 6089 6090 if (len <= 0 || !buffer) 6091 return buffer; 6092 buffer[0] = 0; 6093 6094 parent = dev->dev.parent; 6095 6096 if (!parent) 6097 return buffer; 6098 6099 driver = parent->driver; 6100 if (driver && driver->name) 6101 strlcpy(buffer, driver->name, len); 6102 return buffer; 6103 } 6104 6105 static int __netdev_printk(const char *level, const struct net_device *dev, 6106 struct va_format *vaf) 6107 { 6108 int r; 6109 6110 if (dev && dev->dev.parent) 6111 r = dev_printk(level, dev->dev.parent, "%s: %pV", 6112 netdev_name(dev), vaf); 6113 else if (dev) 6114 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6115 else 6116 r = printk("%s(NULL net_device): %pV", level, vaf); 6117 6118 return r; 6119 } 6120 6121 int netdev_printk(const char *level, const struct net_device *dev, 6122 const char *format, ...) 6123 { 6124 struct va_format vaf; 6125 va_list args; 6126 int r; 6127 6128 va_start(args, format); 6129 6130 vaf.fmt = format; 6131 vaf.va = &args; 6132 6133 r = __netdev_printk(level, dev, &vaf); 6134 va_end(args); 6135 6136 return r; 6137 } 6138 EXPORT_SYMBOL(netdev_printk); 6139 6140 #define define_netdev_printk_level(func, level) \ 6141 int func(const struct net_device *dev, const char *fmt, ...) \ 6142 { \ 6143 int r; \ 6144 struct va_format vaf; \ 6145 va_list args; \ 6146 \ 6147 va_start(args, fmt); \ 6148 \ 6149 vaf.fmt = fmt; \ 6150 vaf.va = &args; \ 6151 \ 6152 r = __netdev_printk(level, dev, &vaf); \ 6153 va_end(args); \ 6154 \ 6155 return r; \ 6156 } \ 6157 EXPORT_SYMBOL(func); 6158 6159 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6160 define_netdev_printk_level(netdev_alert, KERN_ALERT); 6161 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6162 define_netdev_printk_level(netdev_err, KERN_ERR); 6163 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6164 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6165 define_netdev_printk_level(netdev_info, KERN_INFO); 6166 6167 static void __net_exit netdev_exit(struct net *net) 6168 { 6169 kfree(net->dev_name_head); 6170 kfree(net->dev_index_head); 6171 } 6172 6173 static struct pernet_operations __net_initdata netdev_net_ops = { 6174 .init = netdev_init, 6175 .exit = netdev_exit, 6176 }; 6177 6178 static void __net_exit default_device_exit(struct net *net) 6179 { 6180 struct net_device *dev, *aux; 6181 /* 6182 * Push all migratable network devices back to the 6183 * initial network namespace 6184 */ 6185 rtnl_lock(); 6186 for_each_netdev_safe(net, dev, aux) { 6187 int err; 6188 char fb_name[IFNAMSIZ]; 6189 6190 /* Ignore unmoveable devices (i.e. loopback) */ 6191 if (dev->features & NETIF_F_NETNS_LOCAL) 6192 continue; 6193 6194 /* Leave virtual devices for the generic cleanup */ 6195 if (dev->rtnl_link_ops) 6196 continue; 6197 6198 /* Push remaing network devices to init_net */ 6199 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6200 err = dev_change_net_namespace(dev, &init_net, fb_name); 6201 if (err) { 6202 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 6203 __func__, dev->name, err); 6204 BUG(); 6205 } 6206 } 6207 rtnl_unlock(); 6208 } 6209 6210 static void __net_exit default_device_exit_batch(struct list_head *net_list) 6211 { 6212 /* At exit all network devices most be removed from a network 6213 * namespace. Do this in the reverse order of registration. 6214 * Do this across as many network namespaces as possible to 6215 * improve batching efficiency. 6216 */ 6217 struct net_device *dev; 6218 struct net *net; 6219 LIST_HEAD(dev_kill_list); 6220 6221 rtnl_lock(); 6222 list_for_each_entry(net, net_list, exit_list) { 6223 for_each_netdev_reverse(net, dev) { 6224 if (dev->rtnl_link_ops) 6225 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6226 else 6227 unregister_netdevice_queue(dev, &dev_kill_list); 6228 } 6229 } 6230 unregister_netdevice_many(&dev_kill_list); 6231 list_del(&dev_kill_list); 6232 rtnl_unlock(); 6233 } 6234 6235 static struct pernet_operations __net_initdata default_device_ops = { 6236 .exit = default_device_exit, 6237 .exit_batch = default_device_exit_batch, 6238 }; 6239 6240 /* 6241 * Initialize the DEV module. At boot time this walks the device list and 6242 * unhooks any devices that fail to initialise (normally hardware not 6243 * present) and leaves us with a valid list of present and active devices. 6244 * 6245 */ 6246 6247 /* 6248 * This is called single threaded during boot, so no need 6249 * to take the rtnl semaphore. 6250 */ 6251 static int __init net_dev_init(void) 6252 { 6253 int i, rc = -ENOMEM; 6254 6255 BUG_ON(!dev_boot_phase); 6256 6257 if (dev_proc_init()) 6258 goto out; 6259 6260 if (netdev_kobject_init()) 6261 goto out; 6262 6263 INIT_LIST_HEAD(&ptype_all); 6264 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6265 INIT_LIST_HEAD(&ptype_base[i]); 6266 6267 if (register_pernet_subsys(&netdev_net_ops)) 6268 goto out; 6269 6270 /* 6271 * Initialise the packet receive queues. 6272 */ 6273 6274 for_each_possible_cpu(i) { 6275 struct softnet_data *sd = &per_cpu(softnet_data, i); 6276 6277 memset(sd, 0, sizeof(*sd)); 6278 skb_queue_head_init(&sd->input_pkt_queue); 6279 skb_queue_head_init(&sd->process_queue); 6280 sd->completion_queue = NULL; 6281 INIT_LIST_HEAD(&sd->poll_list); 6282 sd->output_queue = NULL; 6283 sd->output_queue_tailp = &sd->output_queue; 6284 #ifdef CONFIG_RPS 6285 sd->csd.func = rps_trigger_softirq; 6286 sd->csd.info = sd; 6287 sd->csd.flags = 0; 6288 sd->cpu = i; 6289 #endif 6290 6291 sd->backlog.poll = process_backlog; 6292 sd->backlog.weight = weight_p; 6293 sd->backlog.gro_list = NULL; 6294 sd->backlog.gro_count = 0; 6295 } 6296 6297 dev_boot_phase = 0; 6298 6299 /* The loopback device is special if any other network devices 6300 * is present in a network namespace the loopback device must 6301 * be present. Since we now dynamically allocate and free the 6302 * loopback device ensure this invariant is maintained by 6303 * keeping the loopback device as the first device on the 6304 * list of network devices. Ensuring the loopback devices 6305 * is the first device that appears and the last network device 6306 * that disappears. 6307 */ 6308 if (register_pernet_device(&loopback_net_ops)) 6309 goto out; 6310 6311 if (register_pernet_device(&default_device_ops)) 6312 goto out; 6313 6314 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6315 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6316 6317 hotcpu_notifier(dev_cpu_callback, 0); 6318 dst_init(); 6319 dev_mcast_init(); 6320 rc = 0; 6321 out: 6322 return rc; 6323 } 6324 6325 subsys_initcall(net_dev_init); 6326 6327 static int __init initialize_hashrnd(void) 6328 { 6329 get_random_bytes(&hashrnd, sizeof(hashrnd)); 6330 return 0; 6331 } 6332 6333 late_initcall_sync(initialize_hashrnd); 6334 6335