xref: /openbmc/linux/net/core/dev.c (revision 4800cd83)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
135 
136 #include "net-sysfs.h"
137 
138 /* Instead of increasing this, you should create a hash table. */
139 #define MAX_GRO_SKBS 8
140 
141 /* This should be increased if a protocol with a bigger head is added. */
142 #define GRO_MAX_HEAD (MAX_HEADER + 128)
143 
144 /*
145  *	The list of packet types we will receive (as opposed to discard)
146  *	and the routines to invoke.
147  *
148  *	Why 16. Because with 16 the only overlap we get on a hash of the
149  *	low nibble of the protocol value is RARP/SNAP/X.25.
150  *
151  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
152  *             sure which should go first, but I bet it won't make much
153  *             difference if we are running VLANs.  The good news is that
154  *             this protocol won't be in the list unless compiled in, so
155  *             the average user (w/out VLANs) will not be adversely affected.
156  *             --BLG
157  *
158  *		0800	IP
159  *		8100    802.1Q VLAN
160  *		0001	802.3
161  *		0002	AX.25
162  *		0004	802.2
163  *		8035	RARP
164  *		0005	SNAP
165  *		0805	X.25
166  *		0806	ARP
167  *		8137	IPX
168  *		0009	Localtalk
169  *		86DD	IPv6
170  */
171 
172 #define PTYPE_HASH_SIZE	(16)
173 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
174 
175 static DEFINE_SPINLOCK(ptype_lock);
176 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
177 static struct list_head ptype_all __read_mostly;	/* Taps */
178 
179 /*
180  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
181  * semaphore.
182  *
183  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
184  *
185  * Writers must hold the rtnl semaphore while they loop through the
186  * dev_base_head list, and hold dev_base_lock for writing when they do the
187  * actual updates.  This allows pure readers to access the list even
188  * while a writer is preparing to update it.
189  *
190  * To put it another way, dev_base_lock is held for writing only to
191  * protect against pure readers; the rtnl semaphore provides the
192  * protection against other writers.
193  *
194  * See, for example usages, register_netdevice() and
195  * unregister_netdevice(), which must be called with the rtnl
196  * semaphore held.
197  */
198 DEFINE_RWLOCK(dev_base_lock);
199 EXPORT_SYMBOL(dev_base_lock);
200 
201 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
202 {
203 	unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
204 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
205 }
206 
207 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
208 {
209 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
210 }
211 
212 static inline void rps_lock(struct softnet_data *sd)
213 {
214 #ifdef CONFIG_RPS
215 	spin_lock(&sd->input_pkt_queue.lock);
216 #endif
217 }
218 
219 static inline void rps_unlock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 	spin_unlock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225 
226 /* Device list insertion */
227 static int list_netdevice(struct net_device *dev)
228 {
229 	struct net *net = dev_net(dev);
230 
231 	ASSERT_RTNL();
232 
233 	write_lock_bh(&dev_base_lock);
234 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
235 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
236 	hlist_add_head_rcu(&dev->index_hlist,
237 			   dev_index_hash(net, dev->ifindex));
238 	write_unlock_bh(&dev_base_lock);
239 	return 0;
240 }
241 
242 /* Device list removal
243  * caller must respect a RCU grace period before freeing/reusing dev
244  */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247 	ASSERT_RTNL();
248 
249 	/* Unlink dev from the device chain */
250 	write_lock_bh(&dev_base_lock);
251 	list_del_rcu(&dev->dev_list);
252 	hlist_del_rcu(&dev->name_hlist);
253 	hlist_del_rcu(&dev->index_hlist);
254 	write_unlock_bh(&dev_base_lock);
255 }
256 
257 /*
258  *	Our notifier list
259  */
260 
261 static RAW_NOTIFIER_HEAD(netdev_chain);
262 
263 /*
264  *	Device drivers call our routines to queue packets here. We empty the
265  *	queue in the local softnet handler.
266  */
267 
268 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
269 EXPORT_PER_CPU_SYMBOL(softnet_data);
270 
271 #ifdef CONFIG_LOCKDEP
272 /*
273  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
274  * according to dev->type
275  */
276 static const unsigned short netdev_lock_type[] =
277 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
278 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
279 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
280 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
281 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
282 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
283 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
284 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
285 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
286 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
287 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
288 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
289 	 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
290 	 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
291 	 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
292 	 ARPHRD_VOID, ARPHRD_NONE};
293 
294 static const char *const netdev_lock_name[] =
295 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
307 	 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
308 	 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
309 	 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
310 	 "_xmit_VOID", "_xmit_NONE"};
311 
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314 
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 {
317 	int i;
318 
319 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 		if (netdev_lock_type[i] == dev_type)
321 			return i;
322 	/* the last key is used by default */
323 	return ARRAY_SIZE(netdev_lock_type) - 1;
324 }
325 
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 						 unsigned short dev_type)
328 {
329 	int i;
330 
331 	i = netdev_lock_pos(dev_type);
332 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 				   netdev_lock_name[i]);
334 }
335 
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338 	int i;
339 
340 	i = netdev_lock_pos(dev->type);
341 	lockdep_set_class_and_name(&dev->addr_list_lock,
342 				   &netdev_addr_lock_key[i],
343 				   netdev_lock_name[i]);
344 }
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 						 unsigned short dev_type)
348 {
349 }
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 }
353 #endif
354 
355 /*******************************************************************************
356 
357 		Protocol management and registration routines
358 
359 *******************************************************************************/
360 
361 /*
362  *	Add a protocol ID to the list. Now that the input handler is
363  *	smarter we can dispense with all the messy stuff that used to be
364  *	here.
365  *
366  *	BEWARE!!! Protocol handlers, mangling input packets,
367  *	MUST BE last in hash buckets and checking protocol handlers
368  *	MUST start from promiscuous ptype_all chain in net_bh.
369  *	It is true now, do not change it.
370  *	Explanation follows: if protocol handler, mangling packet, will
371  *	be the first on list, it is not able to sense, that packet
372  *	is cloned and should be copied-on-write, so that it will
373  *	change it and subsequent readers will get broken packet.
374  *							--ANK (980803)
375  */
376 
377 static inline struct list_head *ptype_head(const struct packet_type *pt)
378 {
379 	if (pt->type == htons(ETH_P_ALL))
380 		return &ptype_all;
381 	else
382 		return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
383 }
384 
385 /**
386  *	dev_add_pack - add packet handler
387  *	@pt: packet type declaration
388  *
389  *	Add a protocol handler to the networking stack. The passed &packet_type
390  *	is linked into kernel lists and may not be freed until it has been
391  *	removed from the kernel lists.
392  *
393  *	This call does not sleep therefore it can not
394  *	guarantee all CPU's that are in middle of receiving packets
395  *	will see the new packet type (until the next received packet).
396  */
397 
398 void dev_add_pack(struct packet_type *pt)
399 {
400 	struct list_head *head = ptype_head(pt);
401 
402 	spin_lock(&ptype_lock);
403 	list_add_rcu(&pt->list, head);
404 	spin_unlock(&ptype_lock);
405 }
406 EXPORT_SYMBOL(dev_add_pack);
407 
408 /**
409  *	__dev_remove_pack	 - remove packet handler
410  *	@pt: packet type declaration
411  *
412  *	Remove a protocol handler that was previously added to the kernel
413  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
414  *	from the kernel lists and can be freed or reused once this function
415  *	returns.
416  *
417  *      The packet type might still be in use by receivers
418  *	and must not be freed until after all the CPU's have gone
419  *	through a quiescent state.
420  */
421 void __dev_remove_pack(struct packet_type *pt)
422 {
423 	struct list_head *head = ptype_head(pt);
424 	struct packet_type *pt1;
425 
426 	spin_lock(&ptype_lock);
427 
428 	list_for_each_entry(pt1, head, list) {
429 		if (pt == pt1) {
430 			list_del_rcu(&pt->list);
431 			goto out;
432 		}
433 	}
434 
435 	printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
436 out:
437 	spin_unlock(&ptype_lock);
438 }
439 EXPORT_SYMBOL(__dev_remove_pack);
440 
441 /**
442  *	dev_remove_pack	 - remove packet handler
443  *	@pt: packet type declaration
444  *
445  *	Remove a protocol handler that was previously added to the kernel
446  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
447  *	from the kernel lists and can be freed or reused once this function
448  *	returns.
449  *
450  *	This call sleeps to guarantee that no CPU is looking at the packet
451  *	type after return.
452  */
453 void dev_remove_pack(struct packet_type *pt)
454 {
455 	__dev_remove_pack(pt);
456 
457 	synchronize_net();
458 }
459 EXPORT_SYMBOL(dev_remove_pack);
460 
461 /******************************************************************************
462 
463 		      Device Boot-time Settings Routines
464 
465 *******************************************************************************/
466 
467 /* Boot time configuration table */
468 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
469 
470 /**
471  *	netdev_boot_setup_add	- add new setup entry
472  *	@name: name of the device
473  *	@map: configured settings for the device
474  *
475  *	Adds new setup entry to the dev_boot_setup list.  The function
476  *	returns 0 on error and 1 on success.  This is a generic routine to
477  *	all netdevices.
478  */
479 static int netdev_boot_setup_add(char *name, struct ifmap *map)
480 {
481 	struct netdev_boot_setup *s;
482 	int i;
483 
484 	s = dev_boot_setup;
485 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
486 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
487 			memset(s[i].name, 0, sizeof(s[i].name));
488 			strlcpy(s[i].name, name, IFNAMSIZ);
489 			memcpy(&s[i].map, map, sizeof(s[i].map));
490 			break;
491 		}
492 	}
493 
494 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
495 }
496 
497 /**
498  *	netdev_boot_setup_check	- check boot time settings
499  *	@dev: the netdevice
500  *
501  * 	Check boot time settings for the device.
502  *	The found settings are set for the device to be used
503  *	later in the device probing.
504  *	Returns 0 if no settings found, 1 if they are.
505  */
506 int netdev_boot_setup_check(struct net_device *dev)
507 {
508 	struct netdev_boot_setup *s = dev_boot_setup;
509 	int i;
510 
511 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
512 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
513 		    !strcmp(dev->name, s[i].name)) {
514 			dev->irq 	= s[i].map.irq;
515 			dev->base_addr 	= s[i].map.base_addr;
516 			dev->mem_start 	= s[i].map.mem_start;
517 			dev->mem_end 	= s[i].map.mem_end;
518 			return 1;
519 		}
520 	}
521 	return 0;
522 }
523 EXPORT_SYMBOL(netdev_boot_setup_check);
524 
525 
526 /**
527  *	netdev_boot_base	- get address from boot time settings
528  *	@prefix: prefix for network device
529  *	@unit: id for network device
530  *
531  * 	Check boot time settings for the base address of device.
532  *	The found settings are set for the device to be used
533  *	later in the device probing.
534  *	Returns 0 if no settings found.
535  */
536 unsigned long netdev_boot_base(const char *prefix, int unit)
537 {
538 	const struct netdev_boot_setup *s = dev_boot_setup;
539 	char name[IFNAMSIZ];
540 	int i;
541 
542 	sprintf(name, "%s%d", prefix, unit);
543 
544 	/*
545 	 * If device already registered then return base of 1
546 	 * to indicate not to probe for this interface
547 	 */
548 	if (__dev_get_by_name(&init_net, name))
549 		return 1;
550 
551 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
552 		if (!strcmp(name, s[i].name))
553 			return s[i].map.base_addr;
554 	return 0;
555 }
556 
557 /*
558  * Saves at boot time configured settings for any netdevice.
559  */
560 int __init netdev_boot_setup(char *str)
561 {
562 	int ints[5];
563 	struct ifmap map;
564 
565 	str = get_options(str, ARRAY_SIZE(ints), ints);
566 	if (!str || !*str)
567 		return 0;
568 
569 	/* Save settings */
570 	memset(&map, 0, sizeof(map));
571 	if (ints[0] > 0)
572 		map.irq = ints[1];
573 	if (ints[0] > 1)
574 		map.base_addr = ints[2];
575 	if (ints[0] > 2)
576 		map.mem_start = ints[3];
577 	if (ints[0] > 3)
578 		map.mem_end = ints[4];
579 
580 	/* Add new entry to the list */
581 	return netdev_boot_setup_add(str, &map);
582 }
583 
584 __setup("netdev=", netdev_boot_setup);
585 
586 /*******************************************************************************
587 
588 			    Device Interface Subroutines
589 
590 *******************************************************************************/
591 
592 /**
593  *	__dev_get_by_name	- find a device by its name
594  *	@net: the applicable net namespace
595  *	@name: name to find
596  *
597  *	Find an interface by name. Must be called under RTNL semaphore
598  *	or @dev_base_lock. If the name is found a pointer to the device
599  *	is returned. If the name is not found then %NULL is returned. The
600  *	reference counters are not incremented so the caller must be
601  *	careful with locks.
602  */
603 
604 struct net_device *__dev_get_by_name(struct net *net, const char *name)
605 {
606 	struct hlist_node *p;
607 	struct net_device *dev;
608 	struct hlist_head *head = dev_name_hash(net, name);
609 
610 	hlist_for_each_entry(dev, p, head, name_hlist)
611 		if (!strncmp(dev->name, name, IFNAMSIZ))
612 			return dev;
613 
614 	return NULL;
615 }
616 EXPORT_SYMBOL(__dev_get_by_name);
617 
618 /**
619  *	dev_get_by_name_rcu	- find a device by its name
620  *	@net: the applicable net namespace
621  *	@name: name to find
622  *
623  *	Find an interface by name.
624  *	If the name is found a pointer to the device is returned.
625  * 	If the name is not found then %NULL is returned.
626  *	The reference counters are not incremented so the caller must be
627  *	careful with locks. The caller must hold RCU lock.
628  */
629 
630 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
631 {
632 	struct hlist_node *p;
633 	struct net_device *dev;
634 	struct hlist_head *head = dev_name_hash(net, name);
635 
636 	hlist_for_each_entry_rcu(dev, p, head, name_hlist)
637 		if (!strncmp(dev->name, name, IFNAMSIZ))
638 			return dev;
639 
640 	return NULL;
641 }
642 EXPORT_SYMBOL(dev_get_by_name_rcu);
643 
644 /**
645  *	dev_get_by_name		- find a device by its name
646  *	@net: the applicable net namespace
647  *	@name: name to find
648  *
649  *	Find an interface by name. This can be called from any
650  *	context and does its own locking. The returned handle has
651  *	the usage count incremented and the caller must use dev_put() to
652  *	release it when it is no longer needed. %NULL is returned if no
653  *	matching device is found.
654  */
655 
656 struct net_device *dev_get_by_name(struct net *net, const char *name)
657 {
658 	struct net_device *dev;
659 
660 	rcu_read_lock();
661 	dev = dev_get_by_name_rcu(net, name);
662 	if (dev)
663 		dev_hold(dev);
664 	rcu_read_unlock();
665 	return dev;
666 }
667 EXPORT_SYMBOL(dev_get_by_name);
668 
669 /**
670  *	__dev_get_by_index - find a device by its ifindex
671  *	@net: the applicable net namespace
672  *	@ifindex: index of device
673  *
674  *	Search for an interface by index. Returns %NULL if the device
675  *	is not found or a pointer to the device. The device has not
676  *	had its reference counter increased so the caller must be careful
677  *	about locking. The caller must hold either the RTNL semaphore
678  *	or @dev_base_lock.
679  */
680 
681 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
682 {
683 	struct hlist_node *p;
684 	struct net_device *dev;
685 	struct hlist_head *head = dev_index_hash(net, ifindex);
686 
687 	hlist_for_each_entry(dev, p, head, index_hlist)
688 		if (dev->ifindex == ifindex)
689 			return dev;
690 
691 	return NULL;
692 }
693 EXPORT_SYMBOL(__dev_get_by_index);
694 
695 /**
696  *	dev_get_by_index_rcu - find a device by its ifindex
697  *	@net: the applicable net namespace
698  *	@ifindex: index of device
699  *
700  *	Search for an interface by index. Returns %NULL if the device
701  *	is not found or a pointer to the device. The device has not
702  *	had its reference counter increased so the caller must be careful
703  *	about locking. The caller must hold RCU lock.
704  */
705 
706 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
707 {
708 	struct hlist_node *p;
709 	struct net_device *dev;
710 	struct hlist_head *head = dev_index_hash(net, ifindex);
711 
712 	hlist_for_each_entry_rcu(dev, p, head, index_hlist)
713 		if (dev->ifindex == ifindex)
714 			return dev;
715 
716 	return NULL;
717 }
718 EXPORT_SYMBOL(dev_get_by_index_rcu);
719 
720 
721 /**
722  *	dev_get_by_index - find a device by its ifindex
723  *	@net: the applicable net namespace
724  *	@ifindex: index of device
725  *
726  *	Search for an interface by index. Returns NULL if the device
727  *	is not found or a pointer to the device. The device returned has
728  *	had a reference added and the pointer is safe until the user calls
729  *	dev_put to indicate they have finished with it.
730  */
731 
732 struct net_device *dev_get_by_index(struct net *net, int ifindex)
733 {
734 	struct net_device *dev;
735 
736 	rcu_read_lock();
737 	dev = dev_get_by_index_rcu(net, ifindex);
738 	if (dev)
739 		dev_hold(dev);
740 	rcu_read_unlock();
741 	return dev;
742 }
743 EXPORT_SYMBOL(dev_get_by_index);
744 
745 /**
746  *	dev_getbyhwaddr_rcu - find a device by its hardware address
747  *	@net: the applicable net namespace
748  *	@type: media type of device
749  *	@ha: hardware address
750  *
751  *	Search for an interface by MAC address. Returns NULL if the device
752  *	is not found or a pointer to the device.
753  *	The caller must hold RCU or RTNL.
754  *	The returned device has not had its ref count increased
755  *	and the caller must therefore be careful about locking
756  *
757  */
758 
759 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
760 				       const char *ha)
761 {
762 	struct net_device *dev;
763 
764 	for_each_netdev_rcu(net, dev)
765 		if (dev->type == type &&
766 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
767 			return dev;
768 
769 	return NULL;
770 }
771 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
772 
773 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
774 {
775 	struct net_device *dev;
776 
777 	ASSERT_RTNL();
778 	for_each_netdev(net, dev)
779 		if (dev->type == type)
780 			return dev;
781 
782 	return NULL;
783 }
784 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
785 
786 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
787 {
788 	struct net_device *dev, *ret = NULL;
789 
790 	rcu_read_lock();
791 	for_each_netdev_rcu(net, dev)
792 		if (dev->type == type) {
793 			dev_hold(dev);
794 			ret = dev;
795 			break;
796 		}
797 	rcu_read_unlock();
798 	return ret;
799 }
800 EXPORT_SYMBOL(dev_getfirstbyhwtype);
801 
802 /**
803  *	dev_get_by_flags_rcu - find any device with given flags
804  *	@net: the applicable net namespace
805  *	@if_flags: IFF_* values
806  *	@mask: bitmask of bits in if_flags to check
807  *
808  *	Search for any interface with the given flags. Returns NULL if a device
809  *	is not found or a pointer to the device. Must be called inside
810  *	rcu_read_lock(), and result refcount is unchanged.
811  */
812 
813 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
814 				    unsigned short mask)
815 {
816 	struct net_device *dev, *ret;
817 
818 	ret = NULL;
819 	for_each_netdev_rcu(net, dev) {
820 		if (((dev->flags ^ if_flags) & mask) == 0) {
821 			ret = dev;
822 			break;
823 		}
824 	}
825 	return ret;
826 }
827 EXPORT_SYMBOL(dev_get_by_flags_rcu);
828 
829 /**
830  *	dev_valid_name - check if name is okay for network device
831  *	@name: name string
832  *
833  *	Network device names need to be valid file names to
834  *	to allow sysfs to work.  We also disallow any kind of
835  *	whitespace.
836  */
837 int dev_valid_name(const char *name)
838 {
839 	if (*name == '\0')
840 		return 0;
841 	if (strlen(name) >= IFNAMSIZ)
842 		return 0;
843 	if (!strcmp(name, ".") || !strcmp(name, ".."))
844 		return 0;
845 
846 	while (*name) {
847 		if (*name == '/' || isspace(*name))
848 			return 0;
849 		name++;
850 	}
851 	return 1;
852 }
853 EXPORT_SYMBOL(dev_valid_name);
854 
855 /**
856  *	__dev_alloc_name - allocate a name for a device
857  *	@net: network namespace to allocate the device name in
858  *	@name: name format string
859  *	@buf:  scratch buffer and result name string
860  *
861  *	Passed a format string - eg "lt%d" it will try and find a suitable
862  *	id. It scans list of devices to build up a free map, then chooses
863  *	the first empty slot. The caller must hold the dev_base or rtnl lock
864  *	while allocating the name and adding the device in order to avoid
865  *	duplicates.
866  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
867  *	Returns the number of the unit assigned or a negative errno code.
868  */
869 
870 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
871 {
872 	int i = 0;
873 	const char *p;
874 	const int max_netdevices = 8*PAGE_SIZE;
875 	unsigned long *inuse;
876 	struct net_device *d;
877 
878 	p = strnchr(name, IFNAMSIZ-1, '%');
879 	if (p) {
880 		/*
881 		 * Verify the string as this thing may have come from
882 		 * the user.  There must be either one "%d" and no other "%"
883 		 * characters.
884 		 */
885 		if (p[1] != 'd' || strchr(p + 2, '%'))
886 			return -EINVAL;
887 
888 		/* Use one page as a bit array of possible slots */
889 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
890 		if (!inuse)
891 			return -ENOMEM;
892 
893 		for_each_netdev(net, d) {
894 			if (!sscanf(d->name, name, &i))
895 				continue;
896 			if (i < 0 || i >= max_netdevices)
897 				continue;
898 
899 			/*  avoid cases where sscanf is not exact inverse of printf */
900 			snprintf(buf, IFNAMSIZ, name, i);
901 			if (!strncmp(buf, d->name, IFNAMSIZ))
902 				set_bit(i, inuse);
903 		}
904 
905 		i = find_first_zero_bit(inuse, max_netdevices);
906 		free_page((unsigned long) inuse);
907 	}
908 
909 	if (buf != name)
910 		snprintf(buf, IFNAMSIZ, name, i);
911 	if (!__dev_get_by_name(net, buf))
912 		return i;
913 
914 	/* It is possible to run out of possible slots
915 	 * when the name is long and there isn't enough space left
916 	 * for the digits, or if all bits are used.
917 	 */
918 	return -ENFILE;
919 }
920 
921 /**
922  *	dev_alloc_name - allocate a name for a device
923  *	@dev: device
924  *	@name: name format string
925  *
926  *	Passed a format string - eg "lt%d" it will try and find a suitable
927  *	id. It scans list of devices to build up a free map, then chooses
928  *	the first empty slot. The caller must hold the dev_base or rtnl lock
929  *	while allocating the name and adding the device in order to avoid
930  *	duplicates.
931  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
932  *	Returns the number of the unit assigned or a negative errno code.
933  */
934 
935 int dev_alloc_name(struct net_device *dev, const char *name)
936 {
937 	char buf[IFNAMSIZ];
938 	struct net *net;
939 	int ret;
940 
941 	BUG_ON(!dev_net(dev));
942 	net = dev_net(dev);
943 	ret = __dev_alloc_name(net, name, buf);
944 	if (ret >= 0)
945 		strlcpy(dev->name, buf, IFNAMSIZ);
946 	return ret;
947 }
948 EXPORT_SYMBOL(dev_alloc_name);
949 
950 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
951 {
952 	struct net *net;
953 
954 	BUG_ON(!dev_net(dev));
955 	net = dev_net(dev);
956 
957 	if (!dev_valid_name(name))
958 		return -EINVAL;
959 
960 	if (fmt && strchr(name, '%'))
961 		return dev_alloc_name(dev, name);
962 	else if (__dev_get_by_name(net, name))
963 		return -EEXIST;
964 	else if (dev->name != name)
965 		strlcpy(dev->name, name, IFNAMSIZ);
966 
967 	return 0;
968 }
969 
970 /**
971  *	dev_change_name - change name of a device
972  *	@dev: device
973  *	@newname: name (or format string) must be at least IFNAMSIZ
974  *
975  *	Change name of a device, can pass format strings "eth%d".
976  *	for wildcarding.
977  */
978 int dev_change_name(struct net_device *dev, const char *newname)
979 {
980 	char oldname[IFNAMSIZ];
981 	int err = 0;
982 	int ret;
983 	struct net *net;
984 
985 	ASSERT_RTNL();
986 	BUG_ON(!dev_net(dev));
987 
988 	net = dev_net(dev);
989 	if (dev->flags & IFF_UP)
990 		return -EBUSY;
991 
992 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
993 		return 0;
994 
995 	memcpy(oldname, dev->name, IFNAMSIZ);
996 
997 	err = dev_get_valid_name(dev, newname, 1);
998 	if (err < 0)
999 		return err;
1000 
1001 rollback:
1002 	ret = device_rename(&dev->dev, dev->name);
1003 	if (ret) {
1004 		memcpy(dev->name, oldname, IFNAMSIZ);
1005 		return ret;
1006 	}
1007 
1008 	write_lock_bh(&dev_base_lock);
1009 	hlist_del(&dev->name_hlist);
1010 	write_unlock_bh(&dev_base_lock);
1011 
1012 	synchronize_rcu();
1013 
1014 	write_lock_bh(&dev_base_lock);
1015 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1016 	write_unlock_bh(&dev_base_lock);
1017 
1018 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1019 	ret = notifier_to_errno(ret);
1020 
1021 	if (ret) {
1022 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1023 		if (err >= 0) {
1024 			err = ret;
1025 			memcpy(dev->name, oldname, IFNAMSIZ);
1026 			goto rollback;
1027 		} else {
1028 			printk(KERN_ERR
1029 			       "%s: name change rollback failed: %d.\n",
1030 			       dev->name, ret);
1031 		}
1032 	}
1033 
1034 	return err;
1035 }
1036 
1037 /**
1038  *	dev_set_alias - change ifalias of a device
1039  *	@dev: device
1040  *	@alias: name up to IFALIASZ
1041  *	@len: limit of bytes to copy from info
1042  *
1043  *	Set ifalias for a device,
1044  */
1045 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1046 {
1047 	ASSERT_RTNL();
1048 
1049 	if (len >= IFALIASZ)
1050 		return -EINVAL;
1051 
1052 	if (!len) {
1053 		if (dev->ifalias) {
1054 			kfree(dev->ifalias);
1055 			dev->ifalias = NULL;
1056 		}
1057 		return 0;
1058 	}
1059 
1060 	dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1061 	if (!dev->ifalias)
1062 		return -ENOMEM;
1063 
1064 	strlcpy(dev->ifalias, alias, len+1);
1065 	return len;
1066 }
1067 
1068 
1069 /**
1070  *	netdev_features_change - device changes features
1071  *	@dev: device to cause notification
1072  *
1073  *	Called to indicate a device has changed features.
1074  */
1075 void netdev_features_change(struct net_device *dev)
1076 {
1077 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1078 }
1079 EXPORT_SYMBOL(netdev_features_change);
1080 
1081 /**
1082  *	netdev_state_change - device changes state
1083  *	@dev: device to cause notification
1084  *
1085  *	Called to indicate a device has changed state. This function calls
1086  *	the notifier chains for netdev_chain and sends a NEWLINK message
1087  *	to the routing socket.
1088  */
1089 void netdev_state_change(struct net_device *dev)
1090 {
1091 	if (dev->flags & IFF_UP) {
1092 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1093 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1094 	}
1095 }
1096 EXPORT_SYMBOL(netdev_state_change);
1097 
1098 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1099 {
1100 	return call_netdevice_notifiers(event, dev);
1101 }
1102 EXPORT_SYMBOL(netdev_bonding_change);
1103 
1104 /**
1105  *	dev_load 	- load a network module
1106  *	@net: the applicable net namespace
1107  *	@name: name of interface
1108  *
1109  *	If a network interface is not present and the process has suitable
1110  *	privileges this function loads the module. If module loading is not
1111  *	available in this kernel then it becomes a nop.
1112  */
1113 
1114 void dev_load(struct net *net, const char *name)
1115 {
1116 	struct net_device *dev;
1117 	int no_module;
1118 
1119 	rcu_read_lock();
1120 	dev = dev_get_by_name_rcu(net, name);
1121 	rcu_read_unlock();
1122 
1123 	no_module = !dev;
1124 	if (no_module && capable(CAP_NET_ADMIN))
1125 		no_module = request_module("netdev-%s", name);
1126 	if (no_module && capable(CAP_SYS_MODULE)) {
1127 		if (!request_module("%s", name))
1128 			pr_err("Loading kernel module for a network device "
1129 "with CAP_SYS_MODULE (deprecated).  Use CAP_NET_ADMIN and alias netdev-%s "
1130 "instead\n", name);
1131 	}
1132 }
1133 EXPORT_SYMBOL(dev_load);
1134 
1135 static int __dev_open(struct net_device *dev)
1136 {
1137 	const struct net_device_ops *ops = dev->netdev_ops;
1138 	int ret;
1139 
1140 	ASSERT_RTNL();
1141 
1142 	/*
1143 	 *	Is it even present?
1144 	 */
1145 	if (!netif_device_present(dev))
1146 		return -ENODEV;
1147 
1148 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1149 	ret = notifier_to_errno(ret);
1150 	if (ret)
1151 		return ret;
1152 
1153 	/*
1154 	 *	Call device private open method
1155 	 */
1156 	set_bit(__LINK_STATE_START, &dev->state);
1157 
1158 	if (ops->ndo_validate_addr)
1159 		ret = ops->ndo_validate_addr(dev);
1160 
1161 	if (!ret && ops->ndo_open)
1162 		ret = ops->ndo_open(dev);
1163 
1164 	/*
1165 	 *	If it went open OK then:
1166 	 */
1167 
1168 	if (ret)
1169 		clear_bit(__LINK_STATE_START, &dev->state);
1170 	else {
1171 		/*
1172 		 *	Set the flags.
1173 		 */
1174 		dev->flags |= IFF_UP;
1175 
1176 		/*
1177 		 *	Enable NET_DMA
1178 		 */
1179 		net_dmaengine_get();
1180 
1181 		/*
1182 		 *	Initialize multicasting status
1183 		 */
1184 		dev_set_rx_mode(dev);
1185 
1186 		/*
1187 		 *	Wakeup transmit queue engine
1188 		 */
1189 		dev_activate(dev);
1190 	}
1191 
1192 	return ret;
1193 }
1194 
1195 /**
1196  *	dev_open	- prepare an interface for use.
1197  *	@dev:	device to open
1198  *
1199  *	Takes a device from down to up state. The device's private open
1200  *	function is invoked and then the multicast lists are loaded. Finally
1201  *	the device is moved into the up state and a %NETDEV_UP message is
1202  *	sent to the netdev notifier chain.
1203  *
1204  *	Calling this function on an active interface is a nop. On a failure
1205  *	a negative errno code is returned.
1206  */
1207 int dev_open(struct net_device *dev)
1208 {
1209 	int ret;
1210 
1211 	/*
1212 	 *	Is it already up?
1213 	 */
1214 	if (dev->flags & IFF_UP)
1215 		return 0;
1216 
1217 	/*
1218 	 *	Open device
1219 	 */
1220 	ret = __dev_open(dev);
1221 	if (ret < 0)
1222 		return ret;
1223 
1224 	/*
1225 	 *	... and announce new interface.
1226 	 */
1227 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1228 	call_netdevice_notifiers(NETDEV_UP, dev);
1229 
1230 	return ret;
1231 }
1232 EXPORT_SYMBOL(dev_open);
1233 
1234 static int __dev_close_many(struct list_head *head)
1235 {
1236 	struct net_device *dev;
1237 
1238 	ASSERT_RTNL();
1239 	might_sleep();
1240 
1241 	list_for_each_entry(dev, head, unreg_list) {
1242 		/*
1243 		 *	Tell people we are going down, so that they can
1244 		 *	prepare to death, when device is still operating.
1245 		 */
1246 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1247 
1248 		clear_bit(__LINK_STATE_START, &dev->state);
1249 
1250 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1251 		 * can be even on different cpu. So just clear netif_running().
1252 		 *
1253 		 * dev->stop() will invoke napi_disable() on all of it's
1254 		 * napi_struct instances on this device.
1255 		 */
1256 		smp_mb__after_clear_bit(); /* Commit netif_running(). */
1257 	}
1258 
1259 	dev_deactivate_many(head);
1260 
1261 	list_for_each_entry(dev, head, unreg_list) {
1262 		const struct net_device_ops *ops = dev->netdev_ops;
1263 
1264 		/*
1265 		 *	Call the device specific close. This cannot fail.
1266 		 *	Only if device is UP
1267 		 *
1268 		 *	We allow it to be called even after a DETACH hot-plug
1269 		 *	event.
1270 		 */
1271 		if (ops->ndo_stop)
1272 			ops->ndo_stop(dev);
1273 
1274 		/*
1275 		 *	Device is now down.
1276 		 */
1277 
1278 		dev->flags &= ~IFF_UP;
1279 
1280 		/*
1281 		 *	Shutdown NET_DMA
1282 		 */
1283 		net_dmaengine_put();
1284 	}
1285 
1286 	return 0;
1287 }
1288 
1289 static int __dev_close(struct net_device *dev)
1290 {
1291 	int retval;
1292 	LIST_HEAD(single);
1293 
1294 	list_add(&dev->unreg_list, &single);
1295 	retval = __dev_close_many(&single);
1296 	list_del(&single);
1297 	return retval;
1298 }
1299 
1300 int dev_close_many(struct list_head *head)
1301 {
1302 	struct net_device *dev, *tmp;
1303 	LIST_HEAD(tmp_list);
1304 
1305 	list_for_each_entry_safe(dev, tmp, head, unreg_list)
1306 		if (!(dev->flags & IFF_UP))
1307 			list_move(&dev->unreg_list, &tmp_list);
1308 
1309 	__dev_close_many(head);
1310 
1311 	/*
1312 	 * Tell people we are down
1313 	 */
1314 	list_for_each_entry(dev, head, unreg_list) {
1315 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1316 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1317 	}
1318 
1319 	/* rollback_registered_many needs the complete original list */
1320 	list_splice(&tmp_list, head);
1321 	return 0;
1322 }
1323 
1324 /**
1325  *	dev_close - shutdown an interface.
1326  *	@dev: device to shutdown
1327  *
1328  *	This function moves an active device into down state. A
1329  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1330  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1331  *	chain.
1332  */
1333 int dev_close(struct net_device *dev)
1334 {
1335 	LIST_HEAD(single);
1336 
1337 	list_add(&dev->unreg_list, &single);
1338 	dev_close_many(&single);
1339 	list_del(&single);
1340 	return 0;
1341 }
1342 EXPORT_SYMBOL(dev_close);
1343 
1344 
1345 /**
1346  *	dev_disable_lro - disable Large Receive Offload on a device
1347  *	@dev: device
1348  *
1349  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1350  *	called under RTNL.  This is needed if received packets may be
1351  *	forwarded to another interface.
1352  */
1353 void dev_disable_lro(struct net_device *dev)
1354 {
1355 	if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1356 	    dev->ethtool_ops->set_flags) {
1357 		u32 flags = dev->ethtool_ops->get_flags(dev);
1358 		if (flags & ETH_FLAG_LRO) {
1359 			flags &= ~ETH_FLAG_LRO;
1360 			dev->ethtool_ops->set_flags(dev, flags);
1361 		}
1362 	}
1363 	WARN_ON(dev->features & NETIF_F_LRO);
1364 }
1365 EXPORT_SYMBOL(dev_disable_lro);
1366 
1367 
1368 static int dev_boot_phase = 1;
1369 
1370 /*
1371  *	Device change register/unregister. These are not inline or static
1372  *	as we export them to the world.
1373  */
1374 
1375 /**
1376  *	register_netdevice_notifier - register a network notifier block
1377  *	@nb: notifier
1378  *
1379  *	Register a notifier to be called when network device events occur.
1380  *	The notifier passed is linked into the kernel structures and must
1381  *	not be reused until it has been unregistered. A negative errno code
1382  *	is returned on a failure.
1383  *
1384  * 	When registered all registration and up events are replayed
1385  *	to the new notifier to allow device to have a race free
1386  *	view of the network device list.
1387  */
1388 
1389 int register_netdevice_notifier(struct notifier_block *nb)
1390 {
1391 	struct net_device *dev;
1392 	struct net_device *last;
1393 	struct net *net;
1394 	int err;
1395 
1396 	rtnl_lock();
1397 	err = raw_notifier_chain_register(&netdev_chain, nb);
1398 	if (err)
1399 		goto unlock;
1400 	if (dev_boot_phase)
1401 		goto unlock;
1402 	for_each_net(net) {
1403 		for_each_netdev(net, dev) {
1404 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1405 			err = notifier_to_errno(err);
1406 			if (err)
1407 				goto rollback;
1408 
1409 			if (!(dev->flags & IFF_UP))
1410 				continue;
1411 
1412 			nb->notifier_call(nb, NETDEV_UP, dev);
1413 		}
1414 	}
1415 
1416 unlock:
1417 	rtnl_unlock();
1418 	return err;
1419 
1420 rollback:
1421 	last = dev;
1422 	for_each_net(net) {
1423 		for_each_netdev(net, dev) {
1424 			if (dev == last)
1425 				break;
1426 
1427 			if (dev->flags & IFF_UP) {
1428 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1429 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1430 			}
1431 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1432 			nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1433 		}
1434 	}
1435 
1436 	raw_notifier_chain_unregister(&netdev_chain, nb);
1437 	goto unlock;
1438 }
1439 EXPORT_SYMBOL(register_netdevice_notifier);
1440 
1441 /**
1442  *	unregister_netdevice_notifier - unregister a network notifier block
1443  *	@nb: notifier
1444  *
1445  *	Unregister a notifier previously registered by
1446  *	register_netdevice_notifier(). The notifier is unlinked into the
1447  *	kernel structures and may then be reused. A negative errno code
1448  *	is returned on a failure.
1449  */
1450 
1451 int unregister_netdevice_notifier(struct notifier_block *nb)
1452 {
1453 	int err;
1454 
1455 	rtnl_lock();
1456 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1457 	rtnl_unlock();
1458 	return err;
1459 }
1460 EXPORT_SYMBOL(unregister_netdevice_notifier);
1461 
1462 /**
1463  *	call_netdevice_notifiers - call all network notifier blocks
1464  *      @val: value passed unmodified to notifier function
1465  *      @dev: net_device pointer passed unmodified to notifier function
1466  *
1467  *	Call all network notifier blocks.  Parameters and return value
1468  *	are as for raw_notifier_call_chain().
1469  */
1470 
1471 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1472 {
1473 	ASSERT_RTNL();
1474 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1475 }
1476 
1477 /* When > 0 there are consumers of rx skb time stamps */
1478 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1479 
1480 void net_enable_timestamp(void)
1481 {
1482 	atomic_inc(&netstamp_needed);
1483 }
1484 EXPORT_SYMBOL(net_enable_timestamp);
1485 
1486 void net_disable_timestamp(void)
1487 {
1488 	atomic_dec(&netstamp_needed);
1489 }
1490 EXPORT_SYMBOL(net_disable_timestamp);
1491 
1492 static inline void net_timestamp_set(struct sk_buff *skb)
1493 {
1494 	if (atomic_read(&netstamp_needed))
1495 		__net_timestamp(skb);
1496 	else
1497 		skb->tstamp.tv64 = 0;
1498 }
1499 
1500 static inline void net_timestamp_check(struct sk_buff *skb)
1501 {
1502 	if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1503 		__net_timestamp(skb);
1504 }
1505 
1506 /**
1507  * dev_forward_skb - loopback an skb to another netif
1508  *
1509  * @dev: destination network device
1510  * @skb: buffer to forward
1511  *
1512  * return values:
1513  *	NET_RX_SUCCESS	(no congestion)
1514  *	NET_RX_DROP     (packet was dropped, but freed)
1515  *
1516  * dev_forward_skb can be used for injecting an skb from the
1517  * start_xmit function of one device into the receive queue
1518  * of another device.
1519  *
1520  * The receiving device may be in another namespace, so
1521  * we have to clear all information in the skb that could
1522  * impact namespace isolation.
1523  */
1524 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1525 {
1526 	skb_orphan(skb);
1527 	nf_reset(skb);
1528 
1529 	if (unlikely(!(dev->flags & IFF_UP) ||
1530 		     (skb->len > (dev->mtu + dev->hard_header_len + VLAN_HLEN)))) {
1531 		atomic_long_inc(&dev->rx_dropped);
1532 		kfree_skb(skb);
1533 		return NET_RX_DROP;
1534 	}
1535 	skb_set_dev(skb, dev);
1536 	skb->tstamp.tv64 = 0;
1537 	skb->pkt_type = PACKET_HOST;
1538 	skb->protocol = eth_type_trans(skb, dev);
1539 	return netif_rx(skb);
1540 }
1541 EXPORT_SYMBOL_GPL(dev_forward_skb);
1542 
1543 static inline int deliver_skb(struct sk_buff *skb,
1544 			      struct packet_type *pt_prev,
1545 			      struct net_device *orig_dev)
1546 {
1547 	atomic_inc(&skb->users);
1548 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1549 }
1550 
1551 /*
1552  *	Support routine. Sends outgoing frames to any network
1553  *	taps currently in use.
1554  */
1555 
1556 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1557 {
1558 	struct packet_type *ptype;
1559 	struct sk_buff *skb2 = NULL;
1560 	struct packet_type *pt_prev = NULL;
1561 
1562 	rcu_read_lock();
1563 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1564 		/* Never send packets back to the socket
1565 		 * they originated from - MvS (miquels@drinkel.ow.org)
1566 		 */
1567 		if ((ptype->dev == dev || !ptype->dev) &&
1568 		    (ptype->af_packet_priv == NULL ||
1569 		     (struct sock *)ptype->af_packet_priv != skb->sk)) {
1570 			if (pt_prev) {
1571 				deliver_skb(skb2, pt_prev, skb->dev);
1572 				pt_prev = ptype;
1573 				continue;
1574 			}
1575 
1576 			skb2 = skb_clone(skb, GFP_ATOMIC);
1577 			if (!skb2)
1578 				break;
1579 
1580 			net_timestamp_set(skb2);
1581 
1582 			/* skb->nh should be correctly
1583 			   set by sender, so that the second statement is
1584 			   just protection against buggy protocols.
1585 			 */
1586 			skb_reset_mac_header(skb2);
1587 
1588 			if (skb_network_header(skb2) < skb2->data ||
1589 			    skb2->network_header > skb2->tail) {
1590 				if (net_ratelimit())
1591 					printk(KERN_CRIT "protocol %04x is "
1592 					       "buggy, dev %s\n",
1593 					       ntohs(skb2->protocol),
1594 					       dev->name);
1595 				skb_reset_network_header(skb2);
1596 			}
1597 
1598 			skb2->transport_header = skb2->network_header;
1599 			skb2->pkt_type = PACKET_OUTGOING;
1600 			pt_prev = ptype;
1601 		}
1602 	}
1603 	if (pt_prev)
1604 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1605 	rcu_read_unlock();
1606 }
1607 
1608 /*
1609  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1610  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1611  */
1612 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1613 {
1614 	int rc;
1615 
1616 	if (txq < 1 || txq > dev->num_tx_queues)
1617 		return -EINVAL;
1618 
1619 	if (dev->reg_state == NETREG_REGISTERED) {
1620 		ASSERT_RTNL();
1621 
1622 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1623 						  txq);
1624 		if (rc)
1625 			return rc;
1626 
1627 		if (txq < dev->real_num_tx_queues)
1628 			qdisc_reset_all_tx_gt(dev, txq);
1629 	}
1630 
1631 	dev->real_num_tx_queues = txq;
1632 	return 0;
1633 }
1634 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1635 
1636 #ifdef CONFIG_RPS
1637 /**
1638  *	netif_set_real_num_rx_queues - set actual number of RX queues used
1639  *	@dev: Network device
1640  *	@rxq: Actual number of RX queues
1641  *
1642  *	This must be called either with the rtnl_lock held or before
1643  *	registration of the net device.  Returns 0 on success, or a
1644  *	negative error code.  If called before registration, it always
1645  *	succeeds.
1646  */
1647 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1648 {
1649 	int rc;
1650 
1651 	if (rxq < 1 || rxq > dev->num_rx_queues)
1652 		return -EINVAL;
1653 
1654 	if (dev->reg_state == NETREG_REGISTERED) {
1655 		ASSERT_RTNL();
1656 
1657 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1658 						  rxq);
1659 		if (rc)
1660 			return rc;
1661 	}
1662 
1663 	dev->real_num_rx_queues = rxq;
1664 	return 0;
1665 }
1666 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1667 #endif
1668 
1669 static inline void __netif_reschedule(struct Qdisc *q)
1670 {
1671 	struct softnet_data *sd;
1672 	unsigned long flags;
1673 
1674 	local_irq_save(flags);
1675 	sd = &__get_cpu_var(softnet_data);
1676 	q->next_sched = NULL;
1677 	*sd->output_queue_tailp = q;
1678 	sd->output_queue_tailp = &q->next_sched;
1679 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
1680 	local_irq_restore(flags);
1681 }
1682 
1683 void __netif_schedule(struct Qdisc *q)
1684 {
1685 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1686 		__netif_reschedule(q);
1687 }
1688 EXPORT_SYMBOL(__netif_schedule);
1689 
1690 void dev_kfree_skb_irq(struct sk_buff *skb)
1691 {
1692 	if (atomic_dec_and_test(&skb->users)) {
1693 		struct softnet_data *sd;
1694 		unsigned long flags;
1695 
1696 		local_irq_save(flags);
1697 		sd = &__get_cpu_var(softnet_data);
1698 		skb->next = sd->completion_queue;
1699 		sd->completion_queue = skb;
1700 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1701 		local_irq_restore(flags);
1702 	}
1703 }
1704 EXPORT_SYMBOL(dev_kfree_skb_irq);
1705 
1706 void dev_kfree_skb_any(struct sk_buff *skb)
1707 {
1708 	if (in_irq() || irqs_disabled())
1709 		dev_kfree_skb_irq(skb);
1710 	else
1711 		dev_kfree_skb(skb);
1712 }
1713 EXPORT_SYMBOL(dev_kfree_skb_any);
1714 
1715 
1716 /**
1717  * netif_device_detach - mark device as removed
1718  * @dev: network device
1719  *
1720  * Mark device as removed from system and therefore no longer available.
1721  */
1722 void netif_device_detach(struct net_device *dev)
1723 {
1724 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1725 	    netif_running(dev)) {
1726 		netif_tx_stop_all_queues(dev);
1727 	}
1728 }
1729 EXPORT_SYMBOL(netif_device_detach);
1730 
1731 /**
1732  * netif_device_attach - mark device as attached
1733  * @dev: network device
1734  *
1735  * Mark device as attached from system and restart if needed.
1736  */
1737 void netif_device_attach(struct net_device *dev)
1738 {
1739 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1740 	    netif_running(dev)) {
1741 		netif_tx_wake_all_queues(dev);
1742 		__netdev_watchdog_up(dev);
1743 	}
1744 }
1745 EXPORT_SYMBOL(netif_device_attach);
1746 
1747 /**
1748  * skb_dev_set -- assign a new device to a buffer
1749  * @skb: buffer for the new device
1750  * @dev: network device
1751  *
1752  * If an skb is owned by a device already, we have to reset
1753  * all data private to the namespace a device belongs to
1754  * before assigning it a new device.
1755  */
1756 #ifdef CONFIG_NET_NS
1757 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1758 {
1759 	skb_dst_drop(skb);
1760 	if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1761 		secpath_reset(skb);
1762 		nf_reset(skb);
1763 		skb_init_secmark(skb);
1764 		skb->mark = 0;
1765 		skb->priority = 0;
1766 		skb->nf_trace = 0;
1767 		skb->ipvs_property = 0;
1768 #ifdef CONFIG_NET_SCHED
1769 		skb->tc_index = 0;
1770 #endif
1771 	}
1772 	skb->dev = dev;
1773 }
1774 EXPORT_SYMBOL(skb_set_dev);
1775 #endif /* CONFIG_NET_NS */
1776 
1777 /*
1778  * Invalidate hardware checksum when packet is to be mangled, and
1779  * complete checksum manually on outgoing path.
1780  */
1781 int skb_checksum_help(struct sk_buff *skb)
1782 {
1783 	__wsum csum;
1784 	int ret = 0, offset;
1785 
1786 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1787 		goto out_set_summed;
1788 
1789 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1790 		/* Let GSO fix up the checksum. */
1791 		goto out_set_summed;
1792 	}
1793 
1794 	offset = skb_checksum_start_offset(skb);
1795 	BUG_ON(offset >= skb_headlen(skb));
1796 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1797 
1798 	offset += skb->csum_offset;
1799 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1800 
1801 	if (skb_cloned(skb) &&
1802 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1803 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1804 		if (ret)
1805 			goto out;
1806 	}
1807 
1808 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1809 out_set_summed:
1810 	skb->ip_summed = CHECKSUM_NONE;
1811 out:
1812 	return ret;
1813 }
1814 EXPORT_SYMBOL(skb_checksum_help);
1815 
1816 /**
1817  *	skb_gso_segment - Perform segmentation on skb.
1818  *	@skb: buffer to segment
1819  *	@features: features for the output path (see dev->features)
1820  *
1821  *	This function segments the given skb and returns a list of segments.
1822  *
1823  *	It may return NULL if the skb requires no segmentation.  This is
1824  *	only possible when GSO is used for verifying header integrity.
1825  */
1826 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1827 {
1828 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1829 	struct packet_type *ptype;
1830 	__be16 type = skb->protocol;
1831 	int vlan_depth = ETH_HLEN;
1832 	int err;
1833 
1834 	while (type == htons(ETH_P_8021Q)) {
1835 		struct vlan_hdr *vh;
1836 
1837 		if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1838 			return ERR_PTR(-EINVAL);
1839 
1840 		vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1841 		type = vh->h_vlan_encapsulated_proto;
1842 		vlan_depth += VLAN_HLEN;
1843 	}
1844 
1845 	skb_reset_mac_header(skb);
1846 	skb->mac_len = skb->network_header - skb->mac_header;
1847 	__skb_pull(skb, skb->mac_len);
1848 
1849 	if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1850 		struct net_device *dev = skb->dev;
1851 		struct ethtool_drvinfo info = {};
1852 
1853 		if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1854 			dev->ethtool_ops->get_drvinfo(dev, &info);
1855 
1856 		WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n",
1857 		     info.driver, dev ? dev->features : 0L,
1858 		     skb->sk ? skb->sk->sk_route_caps : 0L,
1859 		     skb->len, skb->data_len, skb->ip_summed);
1860 
1861 		if (skb_header_cloned(skb) &&
1862 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1863 			return ERR_PTR(err);
1864 	}
1865 
1866 	rcu_read_lock();
1867 	list_for_each_entry_rcu(ptype,
1868 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1869 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1870 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1871 				err = ptype->gso_send_check(skb);
1872 				segs = ERR_PTR(err);
1873 				if (err || skb_gso_ok(skb, features))
1874 					break;
1875 				__skb_push(skb, (skb->data -
1876 						 skb_network_header(skb)));
1877 			}
1878 			segs = ptype->gso_segment(skb, features);
1879 			break;
1880 		}
1881 	}
1882 	rcu_read_unlock();
1883 
1884 	__skb_push(skb, skb->data - skb_mac_header(skb));
1885 
1886 	return segs;
1887 }
1888 EXPORT_SYMBOL(skb_gso_segment);
1889 
1890 /* Take action when hardware reception checksum errors are detected. */
1891 #ifdef CONFIG_BUG
1892 void netdev_rx_csum_fault(struct net_device *dev)
1893 {
1894 	if (net_ratelimit()) {
1895 		printk(KERN_ERR "%s: hw csum failure.\n",
1896 			dev ? dev->name : "<unknown>");
1897 		dump_stack();
1898 	}
1899 }
1900 EXPORT_SYMBOL(netdev_rx_csum_fault);
1901 #endif
1902 
1903 /* Actually, we should eliminate this check as soon as we know, that:
1904  * 1. IOMMU is present and allows to map all the memory.
1905  * 2. No high memory really exists on this machine.
1906  */
1907 
1908 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1909 {
1910 #ifdef CONFIG_HIGHMEM
1911 	int i;
1912 	if (!(dev->features & NETIF_F_HIGHDMA)) {
1913 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1914 			if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1915 				return 1;
1916 	}
1917 
1918 	if (PCI_DMA_BUS_IS_PHYS) {
1919 		struct device *pdev = dev->dev.parent;
1920 
1921 		if (!pdev)
1922 			return 0;
1923 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1924 			dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1925 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1926 				return 1;
1927 		}
1928 	}
1929 #endif
1930 	return 0;
1931 }
1932 
1933 struct dev_gso_cb {
1934 	void (*destructor)(struct sk_buff *skb);
1935 };
1936 
1937 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1938 
1939 static void dev_gso_skb_destructor(struct sk_buff *skb)
1940 {
1941 	struct dev_gso_cb *cb;
1942 
1943 	do {
1944 		struct sk_buff *nskb = skb->next;
1945 
1946 		skb->next = nskb->next;
1947 		nskb->next = NULL;
1948 		kfree_skb(nskb);
1949 	} while (skb->next);
1950 
1951 	cb = DEV_GSO_CB(skb);
1952 	if (cb->destructor)
1953 		cb->destructor(skb);
1954 }
1955 
1956 /**
1957  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
1958  *	@skb: buffer to segment
1959  *	@features: device features as applicable to this skb
1960  *
1961  *	This function segments the given skb and stores the list of segments
1962  *	in skb->next.
1963  */
1964 static int dev_gso_segment(struct sk_buff *skb, int features)
1965 {
1966 	struct sk_buff *segs;
1967 
1968 	segs = skb_gso_segment(skb, features);
1969 
1970 	/* Verifying header integrity only. */
1971 	if (!segs)
1972 		return 0;
1973 
1974 	if (IS_ERR(segs))
1975 		return PTR_ERR(segs);
1976 
1977 	skb->next = segs;
1978 	DEV_GSO_CB(skb)->destructor = skb->destructor;
1979 	skb->destructor = dev_gso_skb_destructor;
1980 
1981 	return 0;
1982 }
1983 
1984 /*
1985  * Try to orphan skb early, right before transmission by the device.
1986  * We cannot orphan skb if tx timestamp is requested or the sk-reference
1987  * is needed on driver level for other reasons, e.g. see net/can/raw.c
1988  */
1989 static inline void skb_orphan_try(struct sk_buff *skb)
1990 {
1991 	struct sock *sk = skb->sk;
1992 
1993 	if (sk && !skb_shinfo(skb)->tx_flags) {
1994 		/* skb_tx_hash() wont be able to get sk.
1995 		 * We copy sk_hash into skb->rxhash
1996 		 */
1997 		if (!skb->rxhash)
1998 			skb->rxhash = sk->sk_hash;
1999 		skb_orphan(skb);
2000 	}
2001 }
2002 
2003 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
2004 {
2005 	return ((features & NETIF_F_GEN_CSUM) ||
2006 		((features & NETIF_F_V4_CSUM) &&
2007 		 protocol == htons(ETH_P_IP)) ||
2008 		((features & NETIF_F_V6_CSUM) &&
2009 		 protocol == htons(ETH_P_IPV6)) ||
2010 		((features & NETIF_F_FCOE_CRC) &&
2011 		 protocol == htons(ETH_P_FCOE)));
2012 }
2013 
2014 static int harmonize_features(struct sk_buff *skb, __be16 protocol, int features)
2015 {
2016 	if (!can_checksum_protocol(features, protocol)) {
2017 		features &= ~NETIF_F_ALL_CSUM;
2018 		features &= ~NETIF_F_SG;
2019 	} else if (illegal_highdma(skb->dev, skb)) {
2020 		features &= ~NETIF_F_SG;
2021 	}
2022 
2023 	return features;
2024 }
2025 
2026 int netif_skb_features(struct sk_buff *skb)
2027 {
2028 	__be16 protocol = skb->protocol;
2029 	int features = skb->dev->features;
2030 
2031 	if (protocol == htons(ETH_P_8021Q)) {
2032 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2033 		protocol = veh->h_vlan_encapsulated_proto;
2034 	} else if (!vlan_tx_tag_present(skb)) {
2035 		return harmonize_features(skb, protocol, features);
2036 	}
2037 
2038 	features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2039 
2040 	if (protocol != htons(ETH_P_8021Q)) {
2041 		return harmonize_features(skb, protocol, features);
2042 	} else {
2043 		features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2044 				NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2045 		return harmonize_features(skb, protocol, features);
2046 	}
2047 }
2048 EXPORT_SYMBOL(netif_skb_features);
2049 
2050 /*
2051  * Returns true if either:
2052  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
2053  *	2. skb is fragmented and the device does not support SG, or if
2054  *	   at least one of fragments is in highmem and device does not
2055  *	   support DMA from it.
2056  */
2057 static inline int skb_needs_linearize(struct sk_buff *skb,
2058 				      int features)
2059 {
2060 	return skb_is_nonlinear(skb) &&
2061 			((skb_has_frag_list(skb) &&
2062 				!(features & NETIF_F_FRAGLIST)) ||
2063 			(skb_shinfo(skb)->nr_frags &&
2064 				!(features & NETIF_F_SG)));
2065 }
2066 
2067 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2068 			struct netdev_queue *txq)
2069 {
2070 	const struct net_device_ops *ops = dev->netdev_ops;
2071 	int rc = NETDEV_TX_OK;
2072 
2073 	if (likely(!skb->next)) {
2074 		int features;
2075 
2076 		/*
2077 		 * If device doesnt need skb->dst, release it right now while
2078 		 * its hot in this cpu cache
2079 		 */
2080 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2081 			skb_dst_drop(skb);
2082 
2083 		if (!list_empty(&ptype_all))
2084 			dev_queue_xmit_nit(skb, dev);
2085 
2086 		skb_orphan_try(skb);
2087 
2088 		features = netif_skb_features(skb);
2089 
2090 		if (vlan_tx_tag_present(skb) &&
2091 		    !(features & NETIF_F_HW_VLAN_TX)) {
2092 			skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2093 			if (unlikely(!skb))
2094 				goto out;
2095 
2096 			skb->vlan_tci = 0;
2097 		}
2098 
2099 		if (netif_needs_gso(skb, features)) {
2100 			if (unlikely(dev_gso_segment(skb, features)))
2101 				goto out_kfree_skb;
2102 			if (skb->next)
2103 				goto gso;
2104 		} else {
2105 			if (skb_needs_linearize(skb, features) &&
2106 			    __skb_linearize(skb))
2107 				goto out_kfree_skb;
2108 
2109 			/* If packet is not checksummed and device does not
2110 			 * support checksumming for this protocol, complete
2111 			 * checksumming here.
2112 			 */
2113 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
2114 				skb_set_transport_header(skb,
2115 					skb_checksum_start_offset(skb));
2116 				if (!(features & NETIF_F_ALL_CSUM) &&
2117 				     skb_checksum_help(skb))
2118 					goto out_kfree_skb;
2119 			}
2120 		}
2121 
2122 		rc = ops->ndo_start_xmit(skb, dev);
2123 		trace_net_dev_xmit(skb, rc);
2124 		if (rc == NETDEV_TX_OK)
2125 			txq_trans_update(txq);
2126 		return rc;
2127 	}
2128 
2129 gso:
2130 	do {
2131 		struct sk_buff *nskb = skb->next;
2132 
2133 		skb->next = nskb->next;
2134 		nskb->next = NULL;
2135 
2136 		/*
2137 		 * If device doesnt need nskb->dst, release it right now while
2138 		 * its hot in this cpu cache
2139 		 */
2140 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2141 			skb_dst_drop(nskb);
2142 
2143 		rc = ops->ndo_start_xmit(nskb, dev);
2144 		trace_net_dev_xmit(nskb, rc);
2145 		if (unlikely(rc != NETDEV_TX_OK)) {
2146 			if (rc & ~NETDEV_TX_MASK)
2147 				goto out_kfree_gso_skb;
2148 			nskb->next = skb->next;
2149 			skb->next = nskb;
2150 			return rc;
2151 		}
2152 		txq_trans_update(txq);
2153 		if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2154 			return NETDEV_TX_BUSY;
2155 	} while (skb->next);
2156 
2157 out_kfree_gso_skb:
2158 	if (likely(skb->next == NULL))
2159 		skb->destructor = DEV_GSO_CB(skb)->destructor;
2160 out_kfree_skb:
2161 	kfree_skb(skb);
2162 out:
2163 	return rc;
2164 }
2165 
2166 static u32 hashrnd __read_mostly;
2167 
2168 /*
2169  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2170  * to be used as a distribution range.
2171  */
2172 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2173 		  unsigned int num_tx_queues)
2174 {
2175 	u32 hash;
2176 
2177 	if (skb_rx_queue_recorded(skb)) {
2178 		hash = skb_get_rx_queue(skb);
2179 		while (unlikely(hash >= num_tx_queues))
2180 			hash -= num_tx_queues;
2181 		return hash;
2182 	}
2183 
2184 	if (skb->sk && skb->sk->sk_hash)
2185 		hash = skb->sk->sk_hash;
2186 	else
2187 		hash = (__force u16) skb->protocol ^ skb->rxhash;
2188 	hash = jhash_1word(hash, hashrnd);
2189 
2190 	return (u16) (((u64) hash * num_tx_queues) >> 32);
2191 }
2192 EXPORT_SYMBOL(__skb_tx_hash);
2193 
2194 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2195 {
2196 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2197 		if (net_ratelimit()) {
2198 			pr_warning("%s selects TX queue %d, but "
2199 				"real number of TX queues is %d\n",
2200 				dev->name, queue_index, dev->real_num_tx_queues);
2201 		}
2202 		return 0;
2203 	}
2204 	return queue_index;
2205 }
2206 
2207 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2208 {
2209 #ifdef CONFIG_XPS
2210 	struct xps_dev_maps *dev_maps;
2211 	struct xps_map *map;
2212 	int queue_index = -1;
2213 
2214 	rcu_read_lock();
2215 	dev_maps = rcu_dereference(dev->xps_maps);
2216 	if (dev_maps) {
2217 		map = rcu_dereference(
2218 		    dev_maps->cpu_map[raw_smp_processor_id()]);
2219 		if (map) {
2220 			if (map->len == 1)
2221 				queue_index = map->queues[0];
2222 			else {
2223 				u32 hash;
2224 				if (skb->sk && skb->sk->sk_hash)
2225 					hash = skb->sk->sk_hash;
2226 				else
2227 					hash = (__force u16) skb->protocol ^
2228 					    skb->rxhash;
2229 				hash = jhash_1word(hash, hashrnd);
2230 				queue_index = map->queues[
2231 				    ((u64)hash * map->len) >> 32];
2232 			}
2233 			if (unlikely(queue_index >= dev->real_num_tx_queues))
2234 				queue_index = -1;
2235 		}
2236 	}
2237 	rcu_read_unlock();
2238 
2239 	return queue_index;
2240 #else
2241 	return -1;
2242 #endif
2243 }
2244 
2245 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2246 					struct sk_buff *skb)
2247 {
2248 	int queue_index;
2249 	const struct net_device_ops *ops = dev->netdev_ops;
2250 
2251 	if (dev->real_num_tx_queues == 1)
2252 		queue_index = 0;
2253 	else if (ops->ndo_select_queue) {
2254 		queue_index = ops->ndo_select_queue(dev, skb);
2255 		queue_index = dev_cap_txqueue(dev, queue_index);
2256 	} else {
2257 		struct sock *sk = skb->sk;
2258 		queue_index = sk_tx_queue_get(sk);
2259 
2260 		if (queue_index < 0 || skb->ooo_okay ||
2261 		    queue_index >= dev->real_num_tx_queues) {
2262 			int old_index = queue_index;
2263 
2264 			queue_index = get_xps_queue(dev, skb);
2265 			if (queue_index < 0)
2266 				queue_index = skb_tx_hash(dev, skb);
2267 
2268 			if (queue_index != old_index && sk) {
2269 				struct dst_entry *dst =
2270 				    rcu_dereference_check(sk->sk_dst_cache, 1);
2271 
2272 				if (dst && skb_dst(skb) == dst)
2273 					sk_tx_queue_set(sk, queue_index);
2274 			}
2275 		}
2276 	}
2277 
2278 	skb_set_queue_mapping(skb, queue_index);
2279 	return netdev_get_tx_queue(dev, queue_index);
2280 }
2281 
2282 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2283 				 struct net_device *dev,
2284 				 struct netdev_queue *txq)
2285 {
2286 	spinlock_t *root_lock = qdisc_lock(q);
2287 	bool contended = qdisc_is_running(q);
2288 	int rc;
2289 
2290 	/*
2291 	 * Heuristic to force contended enqueues to serialize on a
2292 	 * separate lock before trying to get qdisc main lock.
2293 	 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2294 	 * and dequeue packets faster.
2295 	 */
2296 	if (unlikely(contended))
2297 		spin_lock(&q->busylock);
2298 
2299 	spin_lock(root_lock);
2300 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2301 		kfree_skb(skb);
2302 		rc = NET_XMIT_DROP;
2303 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2304 		   qdisc_run_begin(q)) {
2305 		/*
2306 		 * This is a work-conserving queue; there are no old skbs
2307 		 * waiting to be sent out; and the qdisc is not running -
2308 		 * xmit the skb directly.
2309 		 */
2310 		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2311 			skb_dst_force(skb);
2312 
2313 		qdisc_skb_cb(skb)->pkt_len = skb->len;
2314 		qdisc_bstats_update(q, skb);
2315 
2316 		if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2317 			if (unlikely(contended)) {
2318 				spin_unlock(&q->busylock);
2319 				contended = false;
2320 			}
2321 			__qdisc_run(q);
2322 		} else
2323 			qdisc_run_end(q);
2324 
2325 		rc = NET_XMIT_SUCCESS;
2326 	} else {
2327 		skb_dst_force(skb);
2328 		rc = qdisc_enqueue_root(skb, q);
2329 		if (qdisc_run_begin(q)) {
2330 			if (unlikely(contended)) {
2331 				spin_unlock(&q->busylock);
2332 				contended = false;
2333 			}
2334 			__qdisc_run(q);
2335 		}
2336 	}
2337 	spin_unlock(root_lock);
2338 	if (unlikely(contended))
2339 		spin_unlock(&q->busylock);
2340 	return rc;
2341 }
2342 
2343 static DEFINE_PER_CPU(int, xmit_recursion);
2344 #define RECURSION_LIMIT 10
2345 
2346 /**
2347  *	dev_queue_xmit - transmit a buffer
2348  *	@skb: buffer to transmit
2349  *
2350  *	Queue a buffer for transmission to a network device. The caller must
2351  *	have set the device and priority and built the buffer before calling
2352  *	this function. The function can be called from an interrupt.
2353  *
2354  *	A negative errno code is returned on a failure. A success does not
2355  *	guarantee the frame will be transmitted as it may be dropped due
2356  *	to congestion or traffic shaping.
2357  *
2358  * -----------------------------------------------------------------------------------
2359  *      I notice this method can also return errors from the queue disciplines,
2360  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2361  *      be positive.
2362  *
2363  *      Regardless of the return value, the skb is consumed, so it is currently
2364  *      difficult to retry a send to this method.  (You can bump the ref count
2365  *      before sending to hold a reference for retry if you are careful.)
2366  *
2367  *      When calling this method, interrupts MUST be enabled.  This is because
2368  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2369  *          --BLG
2370  */
2371 int dev_queue_xmit(struct sk_buff *skb)
2372 {
2373 	struct net_device *dev = skb->dev;
2374 	struct netdev_queue *txq;
2375 	struct Qdisc *q;
2376 	int rc = -ENOMEM;
2377 
2378 	/* Disable soft irqs for various locks below. Also
2379 	 * stops preemption for RCU.
2380 	 */
2381 	rcu_read_lock_bh();
2382 
2383 	txq = dev_pick_tx(dev, skb);
2384 	q = rcu_dereference_bh(txq->qdisc);
2385 
2386 #ifdef CONFIG_NET_CLS_ACT
2387 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2388 #endif
2389 	trace_net_dev_queue(skb);
2390 	if (q->enqueue) {
2391 		rc = __dev_xmit_skb(skb, q, dev, txq);
2392 		goto out;
2393 	}
2394 
2395 	/* The device has no queue. Common case for software devices:
2396 	   loopback, all the sorts of tunnels...
2397 
2398 	   Really, it is unlikely that netif_tx_lock protection is necessary
2399 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2400 	   counters.)
2401 	   However, it is possible, that they rely on protection
2402 	   made by us here.
2403 
2404 	   Check this and shot the lock. It is not prone from deadlocks.
2405 	   Either shot noqueue qdisc, it is even simpler 8)
2406 	 */
2407 	if (dev->flags & IFF_UP) {
2408 		int cpu = smp_processor_id(); /* ok because BHs are off */
2409 
2410 		if (txq->xmit_lock_owner != cpu) {
2411 
2412 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2413 				goto recursion_alert;
2414 
2415 			HARD_TX_LOCK(dev, txq, cpu);
2416 
2417 			if (!netif_tx_queue_stopped(txq)) {
2418 				__this_cpu_inc(xmit_recursion);
2419 				rc = dev_hard_start_xmit(skb, dev, txq);
2420 				__this_cpu_dec(xmit_recursion);
2421 				if (dev_xmit_complete(rc)) {
2422 					HARD_TX_UNLOCK(dev, txq);
2423 					goto out;
2424 				}
2425 			}
2426 			HARD_TX_UNLOCK(dev, txq);
2427 			if (net_ratelimit())
2428 				printk(KERN_CRIT "Virtual device %s asks to "
2429 				       "queue packet!\n", dev->name);
2430 		} else {
2431 			/* Recursion is detected! It is possible,
2432 			 * unfortunately
2433 			 */
2434 recursion_alert:
2435 			if (net_ratelimit())
2436 				printk(KERN_CRIT "Dead loop on virtual device "
2437 				       "%s, fix it urgently!\n", dev->name);
2438 		}
2439 	}
2440 
2441 	rc = -ENETDOWN;
2442 	rcu_read_unlock_bh();
2443 
2444 	kfree_skb(skb);
2445 	return rc;
2446 out:
2447 	rcu_read_unlock_bh();
2448 	return rc;
2449 }
2450 EXPORT_SYMBOL(dev_queue_xmit);
2451 
2452 
2453 /*=======================================================================
2454 			Receiver routines
2455   =======================================================================*/
2456 
2457 int netdev_max_backlog __read_mostly = 1000;
2458 int netdev_tstamp_prequeue __read_mostly = 1;
2459 int netdev_budget __read_mostly = 300;
2460 int weight_p __read_mostly = 64;            /* old backlog weight */
2461 
2462 /* Called with irq disabled */
2463 static inline void ____napi_schedule(struct softnet_data *sd,
2464 				     struct napi_struct *napi)
2465 {
2466 	list_add_tail(&napi->poll_list, &sd->poll_list);
2467 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2468 }
2469 
2470 /*
2471  * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2472  * and src/dst port numbers. Returns a non-zero hash number on success
2473  * and 0 on failure.
2474  */
2475 __u32 __skb_get_rxhash(struct sk_buff *skb)
2476 {
2477 	int nhoff, hash = 0, poff;
2478 	struct ipv6hdr *ip6;
2479 	struct iphdr *ip;
2480 	u8 ip_proto;
2481 	u32 addr1, addr2, ihl;
2482 	union {
2483 		u32 v32;
2484 		u16 v16[2];
2485 	} ports;
2486 
2487 	nhoff = skb_network_offset(skb);
2488 
2489 	switch (skb->protocol) {
2490 	case __constant_htons(ETH_P_IP):
2491 		if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2492 			goto done;
2493 
2494 		ip = (struct iphdr *) (skb->data + nhoff);
2495 		if (ip->frag_off & htons(IP_MF | IP_OFFSET))
2496 			ip_proto = 0;
2497 		else
2498 			ip_proto = ip->protocol;
2499 		addr1 = (__force u32) ip->saddr;
2500 		addr2 = (__force u32) ip->daddr;
2501 		ihl = ip->ihl;
2502 		break;
2503 	case __constant_htons(ETH_P_IPV6):
2504 		if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2505 			goto done;
2506 
2507 		ip6 = (struct ipv6hdr *) (skb->data + nhoff);
2508 		ip_proto = ip6->nexthdr;
2509 		addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2510 		addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2511 		ihl = (40 >> 2);
2512 		break;
2513 	default:
2514 		goto done;
2515 	}
2516 
2517 	ports.v32 = 0;
2518 	poff = proto_ports_offset(ip_proto);
2519 	if (poff >= 0) {
2520 		nhoff += ihl * 4 + poff;
2521 		if (pskb_may_pull(skb, nhoff + 4)) {
2522 			ports.v32 = * (__force u32 *) (skb->data + nhoff);
2523 			if (ports.v16[1] < ports.v16[0])
2524 				swap(ports.v16[0], ports.v16[1]);
2525 		}
2526 	}
2527 
2528 	/* get a consistent hash (same value on both flow directions) */
2529 	if (addr2 < addr1)
2530 		swap(addr1, addr2);
2531 
2532 	hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2533 	if (!hash)
2534 		hash = 1;
2535 
2536 done:
2537 	return hash;
2538 }
2539 EXPORT_SYMBOL(__skb_get_rxhash);
2540 
2541 #ifdef CONFIG_RPS
2542 
2543 /* One global table that all flow-based protocols share. */
2544 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2545 EXPORT_SYMBOL(rps_sock_flow_table);
2546 
2547 /*
2548  * get_rps_cpu is called from netif_receive_skb and returns the target
2549  * CPU from the RPS map of the receiving queue for a given skb.
2550  * rcu_read_lock must be held on entry.
2551  */
2552 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2553 		       struct rps_dev_flow **rflowp)
2554 {
2555 	struct netdev_rx_queue *rxqueue;
2556 	struct rps_map *map;
2557 	struct rps_dev_flow_table *flow_table;
2558 	struct rps_sock_flow_table *sock_flow_table;
2559 	int cpu = -1;
2560 	u16 tcpu;
2561 
2562 	if (skb_rx_queue_recorded(skb)) {
2563 		u16 index = skb_get_rx_queue(skb);
2564 		if (unlikely(index >= dev->real_num_rx_queues)) {
2565 			WARN_ONCE(dev->real_num_rx_queues > 1,
2566 				  "%s received packet on queue %u, but number "
2567 				  "of RX queues is %u\n",
2568 				  dev->name, index, dev->real_num_rx_queues);
2569 			goto done;
2570 		}
2571 		rxqueue = dev->_rx + index;
2572 	} else
2573 		rxqueue = dev->_rx;
2574 
2575 	map = rcu_dereference(rxqueue->rps_map);
2576 	if (map) {
2577 		if (map->len == 1 &&
2578 		    !rcu_dereference_raw(rxqueue->rps_flow_table)) {
2579 			tcpu = map->cpus[0];
2580 			if (cpu_online(tcpu))
2581 				cpu = tcpu;
2582 			goto done;
2583 		}
2584 	} else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) {
2585 		goto done;
2586 	}
2587 
2588 	skb_reset_network_header(skb);
2589 	if (!skb_get_rxhash(skb))
2590 		goto done;
2591 
2592 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2593 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
2594 	if (flow_table && sock_flow_table) {
2595 		u16 next_cpu;
2596 		struct rps_dev_flow *rflow;
2597 
2598 		rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2599 		tcpu = rflow->cpu;
2600 
2601 		next_cpu = sock_flow_table->ents[skb->rxhash &
2602 		    sock_flow_table->mask];
2603 
2604 		/*
2605 		 * If the desired CPU (where last recvmsg was done) is
2606 		 * different from current CPU (one in the rx-queue flow
2607 		 * table entry), switch if one of the following holds:
2608 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
2609 		 *   - Current CPU is offline.
2610 		 *   - The current CPU's queue tail has advanced beyond the
2611 		 *     last packet that was enqueued using this table entry.
2612 		 *     This guarantees that all previous packets for the flow
2613 		 *     have been dequeued, thus preserving in order delivery.
2614 		 */
2615 		if (unlikely(tcpu != next_cpu) &&
2616 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2617 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2618 		      rflow->last_qtail)) >= 0)) {
2619 			tcpu = rflow->cpu = next_cpu;
2620 			if (tcpu != RPS_NO_CPU)
2621 				rflow->last_qtail = per_cpu(softnet_data,
2622 				    tcpu).input_queue_head;
2623 		}
2624 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2625 			*rflowp = rflow;
2626 			cpu = tcpu;
2627 			goto done;
2628 		}
2629 	}
2630 
2631 	if (map) {
2632 		tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2633 
2634 		if (cpu_online(tcpu)) {
2635 			cpu = tcpu;
2636 			goto done;
2637 		}
2638 	}
2639 
2640 done:
2641 	return cpu;
2642 }
2643 
2644 /* Called from hardirq (IPI) context */
2645 static void rps_trigger_softirq(void *data)
2646 {
2647 	struct softnet_data *sd = data;
2648 
2649 	____napi_schedule(sd, &sd->backlog);
2650 	sd->received_rps++;
2651 }
2652 
2653 #endif /* CONFIG_RPS */
2654 
2655 /*
2656  * Check if this softnet_data structure is another cpu one
2657  * If yes, queue it to our IPI list and return 1
2658  * If no, return 0
2659  */
2660 static int rps_ipi_queued(struct softnet_data *sd)
2661 {
2662 #ifdef CONFIG_RPS
2663 	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2664 
2665 	if (sd != mysd) {
2666 		sd->rps_ipi_next = mysd->rps_ipi_list;
2667 		mysd->rps_ipi_list = sd;
2668 
2669 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2670 		return 1;
2671 	}
2672 #endif /* CONFIG_RPS */
2673 	return 0;
2674 }
2675 
2676 /*
2677  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2678  * queue (may be a remote CPU queue).
2679  */
2680 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2681 			      unsigned int *qtail)
2682 {
2683 	struct softnet_data *sd;
2684 	unsigned long flags;
2685 
2686 	sd = &per_cpu(softnet_data, cpu);
2687 
2688 	local_irq_save(flags);
2689 
2690 	rps_lock(sd);
2691 	if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2692 		if (skb_queue_len(&sd->input_pkt_queue)) {
2693 enqueue:
2694 			__skb_queue_tail(&sd->input_pkt_queue, skb);
2695 			input_queue_tail_incr_save(sd, qtail);
2696 			rps_unlock(sd);
2697 			local_irq_restore(flags);
2698 			return NET_RX_SUCCESS;
2699 		}
2700 
2701 		/* Schedule NAPI for backlog device
2702 		 * We can use non atomic operation since we own the queue lock
2703 		 */
2704 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2705 			if (!rps_ipi_queued(sd))
2706 				____napi_schedule(sd, &sd->backlog);
2707 		}
2708 		goto enqueue;
2709 	}
2710 
2711 	sd->dropped++;
2712 	rps_unlock(sd);
2713 
2714 	local_irq_restore(flags);
2715 
2716 	atomic_long_inc(&skb->dev->rx_dropped);
2717 	kfree_skb(skb);
2718 	return NET_RX_DROP;
2719 }
2720 
2721 /**
2722  *	netif_rx	-	post buffer to the network code
2723  *	@skb: buffer to post
2724  *
2725  *	This function receives a packet from a device driver and queues it for
2726  *	the upper (protocol) levels to process.  It always succeeds. The buffer
2727  *	may be dropped during processing for congestion control or by the
2728  *	protocol layers.
2729  *
2730  *	return values:
2731  *	NET_RX_SUCCESS	(no congestion)
2732  *	NET_RX_DROP     (packet was dropped)
2733  *
2734  */
2735 
2736 int netif_rx(struct sk_buff *skb)
2737 {
2738 	int ret;
2739 
2740 	/* if netpoll wants it, pretend we never saw it */
2741 	if (netpoll_rx(skb))
2742 		return NET_RX_DROP;
2743 
2744 	if (netdev_tstamp_prequeue)
2745 		net_timestamp_check(skb);
2746 
2747 	trace_netif_rx(skb);
2748 #ifdef CONFIG_RPS
2749 	{
2750 		struct rps_dev_flow voidflow, *rflow = &voidflow;
2751 		int cpu;
2752 
2753 		preempt_disable();
2754 		rcu_read_lock();
2755 
2756 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
2757 		if (cpu < 0)
2758 			cpu = smp_processor_id();
2759 
2760 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2761 
2762 		rcu_read_unlock();
2763 		preempt_enable();
2764 	}
2765 #else
2766 	{
2767 		unsigned int qtail;
2768 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2769 		put_cpu();
2770 	}
2771 #endif
2772 	return ret;
2773 }
2774 EXPORT_SYMBOL(netif_rx);
2775 
2776 int netif_rx_ni(struct sk_buff *skb)
2777 {
2778 	int err;
2779 
2780 	preempt_disable();
2781 	err = netif_rx(skb);
2782 	if (local_softirq_pending())
2783 		do_softirq();
2784 	preempt_enable();
2785 
2786 	return err;
2787 }
2788 EXPORT_SYMBOL(netif_rx_ni);
2789 
2790 static void net_tx_action(struct softirq_action *h)
2791 {
2792 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
2793 
2794 	if (sd->completion_queue) {
2795 		struct sk_buff *clist;
2796 
2797 		local_irq_disable();
2798 		clist = sd->completion_queue;
2799 		sd->completion_queue = NULL;
2800 		local_irq_enable();
2801 
2802 		while (clist) {
2803 			struct sk_buff *skb = clist;
2804 			clist = clist->next;
2805 
2806 			WARN_ON(atomic_read(&skb->users));
2807 			trace_kfree_skb(skb, net_tx_action);
2808 			__kfree_skb(skb);
2809 		}
2810 	}
2811 
2812 	if (sd->output_queue) {
2813 		struct Qdisc *head;
2814 
2815 		local_irq_disable();
2816 		head = sd->output_queue;
2817 		sd->output_queue = NULL;
2818 		sd->output_queue_tailp = &sd->output_queue;
2819 		local_irq_enable();
2820 
2821 		while (head) {
2822 			struct Qdisc *q = head;
2823 			spinlock_t *root_lock;
2824 
2825 			head = head->next_sched;
2826 
2827 			root_lock = qdisc_lock(q);
2828 			if (spin_trylock(root_lock)) {
2829 				smp_mb__before_clear_bit();
2830 				clear_bit(__QDISC_STATE_SCHED,
2831 					  &q->state);
2832 				qdisc_run(q);
2833 				spin_unlock(root_lock);
2834 			} else {
2835 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
2836 					      &q->state)) {
2837 					__netif_reschedule(q);
2838 				} else {
2839 					smp_mb__before_clear_bit();
2840 					clear_bit(__QDISC_STATE_SCHED,
2841 						  &q->state);
2842 				}
2843 			}
2844 		}
2845 	}
2846 }
2847 
2848 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2849     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2850 /* This hook is defined here for ATM LANE */
2851 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2852 			     unsigned char *addr) __read_mostly;
2853 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2854 #endif
2855 
2856 #ifdef CONFIG_NET_CLS_ACT
2857 /* TODO: Maybe we should just force sch_ingress to be compiled in
2858  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2859  * a compare and 2 stores extra right now if we dont have it on
2860  * but have CONFIG_NET_CLS_ACT
2861  * NOTE: This doesnt stop any functionality; if you dont have
2862  * the ingress scheduler, you just cant add policies on ingress.
2863  *
2864  */
2865 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
2866 {
2867 	struct net_device *dev = skb->dev;
2868 	u32 ttl = G_TC_RTTL(skb->tc_verd);
2869 	int result = TC_ACT_OK;
2870 	struct Qdisc *q;
2871 
2872 	if (unlikely(MAX_RED_LOOP < ttl++)) {
2873 		if (net_ratelimit())
2874 			pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
2875 			       skb->skb_iif, dev->ifindex);
2876 		return TC_ACT_SHOT;
2877 	}
2878 
2879 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2880 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2881 
2882 	q = rxq->qdisc;
2883 	if (q != &noop_qdisc) {
2884 		spin_lock(qdisc_lock(q));
2885 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2886 			result = qdisc_enqueue_root(skb, q);
2887 		spin_unlock(qdisc_lock(q));
2888 	}
2889 
2890 	return result;
2891 }
2892 
2893 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2894 					 struct packet_type **pt_prev,
2895 					 int *ret, struct net_device *orig_dev)
2896 {
2897 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
2898 
2899 	if (!rxq || rxq->qdisc == &noop_qdisc)
2900 		goto out;
2901 
2902 	if (*pt_prev) {
2903 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2904 		*pt_prev = NULL;
2905 	}
2906 
2907 	switch (ing_filter(skb, rxq)) {
2908 	case TC_ACT_SHOT:
2909 	case TC_ACT_STOLEN:
2910 		kfree_skb(skb);
2911 		return NULL;
2912 	}
2913 
2914 out:
2915 	skb->tc_verd = 0;
2916 	return skb;
2917 }
2918 #endif
2919 
2920 /**
2921  *	netdev_rx_handler_register - register receive handler
2922  *	@dev: device to register a handler for
2923  *	@rx_handler: receive handler to register
2924  *	@rx_handler_data: data pointer that is used by rx handler
2925  *
2926  *	Register a receive hander for a device. This handler will then be
2927  *	called from __netif_receive_skb. A negative errno code is returned
2928  *	on a failure.
2929  *
2930  *	The caller must hold the rtnl_mutex.
2931  */
2932 int netdev_rx_handler_register(struct net_device *dev,
2933 			       rx_handler_func_t *rx_handler,
2934 			       void *rx_handler_data)
2935 {
2936 	ASSERT_RTNL();
2937 
2938 	if (dev->rx_handler)
2939 		return -EBUSY;
2940 
2941 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
2942 	rcu_assign_pointer(dev->rx_handler, rx_handler);
2943 
2944 	return 0;
2945 }
2946 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
2947 
2948 /**
2949  *	netdev_rx_handler_unregister - unregister receive handler
2950  *	@dev: device to unregister a handler from
2951  *
2952  *	Unregister a receive hander from a device.
2953  *
2954  *	The caller must hold the rtnl_mutex.
2955  */
2956 void netdev_rx_handler_unregister(struct net_device *dev)
2957 {
2958 
2959 	ASSERT_RTNL();
2960 	rcu_assign_pointer(dev->rx_handler, NULL);
2961 	rcu_assign_pointer(dev->rx_handler_data, NULL);
2962 }
2963 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
2964 
2965 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2966 					      struct net_device *master)
2967 {
2968 	if (skb->pkt_type == PACKET_HOST) {
2969 		u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2970 
2971 		memcpy(dest, master->dev_addr, ETH_ALEN);
2972 	}
2973 }
2974 
2975 /* On bonding slaves other than the currently active slave, suppress
2976  * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2977  * ARP on active-backup slaves with arp_validate enabled.
2978  */
2979 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2980 {
2981 	struct net_device *dev = skb->dev;
2982 
2983 	if (master->priv_flags & IFF_MASTER_ARPMON)
2984 		dev->last_rx = jiffies;
2985 
2986 	if ((master->priv_flags & IFF_MASTER_ALB) &&
2987 	    (master->priv_flags & IFF_BRIDGE_PORT)) {
2988 		/* Do address unmangle. The local destination address
2989 		 * will be always the one master has. Provides the right
2990 		 * functionality in a bridge.
2991 		 */
2992 		skb_bond_set_mac_by_master(skb, master);
2993 	}
2994 
2995 	if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2996 		if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2997 		    skb->protocol == __cpu_to_be16(ETH_P_ARP))
2998 			return 0;
2999 
3000 		if (master->priv_flags & IFF_MASTER_ALB) {
3001 			if (skb->pkt_type != PACKET_BROADCAST &&
3002 			    skb->pkt_type != PACKET_MULTICAST)
3003 				return 0;
3004 		}
3005 		if (master->priv_flags & IFF_MASTER_8023AD &&
3006 		    skb->protocol == __cpu_to_be16(ETH_P_SLOW))
3007 			return 0;
3008 
3009 		return 1;
3010 	}
3011 	return 0;
3012 }
3013 EXPORT_SYMBOL(__skb_bond_should_drop);
3014 
3015 static int __netif_receive_skb(struct sk_buff *skb)
3016 {
3017 	struct packet_type *ptype, *pt_prev;
3018 	rx_handler_func_t *rx_handler;
3019 	struct net_device *orig_dev;
3020 	struct net_device *master;
3021 	struct net_device *null_or_orig;
3022 	struct net_device *orig_or_bond;
3023 	int ret = NET_RX_DROP;
3024 	__be16 type;
3025 
3026 	if (!netdev_tstamp_prequeue)
3027 		net_timestamp_check(skb);
3028 
3029 	trace_netif_receive_skb(skb);
3030 
3031 	/* if we've gotten here through NAPI, check netpoll */
3032 	if (netpoll_receive_skb(skb))
3033 		return NET_RX_DROP;
3034 
3035 	if (!skb->skb_iif)
3036 		skb->skb_iif = skb->dev->ifindex;
3037 
3038 	/*
3039 	 * bonding note: skbs received on inactive slaves should only
3040 	 * be delivered to pkt handlers that are exact matches.  Also
3041 	 * the deliver_no_wcard flag will be set.  If packet handlers
3042 	 * are sensitive to duplicate packets these skbs will need to
3043 	 * be dropped at the handler.
3044 	 */
3045 	null_or_orig = NULL;
3046 	orig_dev = skb->dev;
3047 	master = ACCESS_ONCE(orig_dev->master);
3048 	if (skb->deliver_no_wcard)
3049 		null_or_orig = orig_dev;
3050 	else if (master) {
3051 		if (skb_bond_should_drop(skb, master)) {
3052 			skb->deliver_no_wcard = 1;
3053 			null_or_orig = orig_dev; /* deliver only exact match */
3054 		} else
3055 			skb->dev = master;
3056 	}
3057 
3058 	__this_cpu_inc(softnet_data.processed);
3059 	skb_reset_network_header(skb);
3060 	skb_reset_transport_header(skb);
3061 	skb->mac_len = skb->network_header - skb->mac_header;
3062 
3063 	pt_prev = NULL;
3064 
3065 	rcu_read_lock();
3066 
3067 #ifdef CONFIG_NET_CLS_ACT
3068 	if (skb->tc_verd & TC_NCLS) {
3069 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3070 		goto ncls;
3071 	}
3072 #endif
3073 
3074 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3075 		if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
3076 		    ptype->dev == orig_dev) {
3077 			if (pt_prev)
3078 				ret = deliver_skb(skb, pt_prev, orig_dev);
3079 			pt_prev = ptype;
3080 		}
3081 	}
3082 
3083 #ifdef CONFIG_NET_CLS_ACT
3084 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3085 	if (!skb)
3086 		goto out;
3087 ncls:
3088 #endif
3089 
3090 	/* Handle special case of bridge or macvlan */
3091 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3092 	if (rx_handler) {
3093 		if (pt_prev) {
3094 			ret = deliver_skb(skb, pt_prev, orig_dev);
3095 			pt_prev = NULL;
3096 		}
3097 		skb = rx_handler(skb);
3098 		if (!skb)
3099 			goto out;
3100 	}
3101 
3102 	if (vlan_tx_tag_present(skb)) {
3103 		if (pt_prev) {
3104 			ret = deliver_skb(skb, pt_prev, orig_dev);
3105 			pt_prev = NULL;
3106 		}
3107 		if (vlan_hwaccel_do_receive(&skb)) {
3108 			ret = __netif_receive_skb(skb);
3109 			goto out;
3110 		} else if (unlikely(!skb))
3111 			goto out;
3112 	}
3113 
3114 	/*
3115 	 * Make sure frames received on VLAN interfaces stacked on
3116 	 * bonding interfaces still make their way to any base bonding
3117 	 * device that may have registered for a specific ptype.  The
3118 	 * handler may have to adjust skb->dev and orig_dev.
3119 	 */
3120 	orig_or_bond = orig_dev;
3121 	if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
3122 	    (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
3123 		orig_or_bond = vlan_dev_real_dev(skb->dev);
3124 	}
3125 
3126 	type = skb->protocol;
3127 	list_for_each_entry_rcu(ptype,
3128 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3129 		if (ptype->type == type && (ptype->dev == null_or_orig ||
3130 		     ptype->dev == skb->dev || ptype->dev == orig_dev ||
3131 		     ptype->dev == orig_or_bond)) {
3132 			if (pt_prev)
3133 				ret = deliver_skb(skb, pt_prev, orig_dev);
3134 			pt_prev = ptype;
3135 		}
3136 	}
3137 
3138 	if (pt_prev) {
3139 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3140 	} else {
3141 		atomic_long_inc(&skb->dev->rx_dropped);
3142 		kfree_skb(skb);
3143 		/* Jamal, now you will not able to escape explaining
3144 		 * me how you were going to use this. :-)
3145 		 */
3146 		ret = NET_RX_DROP;
3147 	}
3148 
3149 out:
3150 	rcu_read_unlock();
3151 	return ret;
3152 }
3153 
3154 /**
3155  *	netif_receive_skb - process receive buffer from network
3156  *	@skb: buffer to process
3157  *
3158  *	netif_receive_skb() is the main receive data processing function.
3159  *	It always succeeds. The buffer may be dropped during processing
3160  *	for congestion control or by the protocol layers.
3161  *
3162  *	This function may only be called from softirq context and interrupts
3163  *	should be enabled.
3164  *
3165  *	Return values (usually ignored):
3166  *	NET_RX_SUCCESS: no congestion
3167  *	NET_RX_DROP: packet was dropped
3168  */
3169 int netif_receive_skb(struct sk_buff *skb)
3170 {
3171 	if (netdev_tstamp_prequeue)
3172 		net_timestamp_check(skb);
3173 
3174 	if (skb_defer_rx_timestamp(skb))
3175 		return NET_RX_SUCCESS;
3176 
3177 #ifdef CONFIG_RPS
3178 	{
3179 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3180 		int cpu, ret;
3181 
3182 		rcu_read_lock();
3183 
3184 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3185 
3186 		if (cpu >= 0) {
3187 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3188 			rcu_read_unlock();
3189 		} else {
3190 			rcu_read_unlock();
3191 			ret = __netif_receive_skb(skb);
3192 		}
3193 
3194 		return ret;
3195 	}
3196 #else
3197 	return __netif_receive_skb(skb);
3198 #endif
3199 }
3200 EXPORT_SYMBOL(netif_receive_skb);
3201 
3202 /* Network device is going away, flush any packets still pending
3203  * Called with irqs disabled.
3204  */
3205 static void flush_backlog(void *arg)
3206 {
3207 	struct net_device *dev = arg;
3208 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3209 	struct sk_buff *skb, *tmp;
3210 
3211 	rps_lock(sd);
3212 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3213 		if (skb->dev == dev) {
3214 			__skb_unlink(skb, &sd->input_pkt_queue);
3215 			kfree_skb(skb);
3216 			input_queue_head_incr(sd);
3217 		}
3218 	}
3219 	rps_unlock(sd);
3220 
3221 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3222 		if (skb->dev == dev) {
3223 			__skb_unlink(skb, &sd->process_queue);
3224 			kfree_skb(skb);
3225 			input_queue_head_incr(sd);
3226 		}
3227 	}
3228 }
3229 
3230 static int napi_gro_complete(struct sk_buff *skb)
3231 {
3232 	struct packet_type *ptype;
3233 	__be16 type = skb->protocol;
3234 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3235 	int err = -ENOENT;
3236 
3237 	if (NAPI_GRO_CB(skb)->count == 1) {
3238 		skb_shinfo(skb)->gso_size = 0;
3239 		goto out;
3240 	}
3241 
3242 	rcu_read_lock();
3243 	list_for_each_entry_rcu(ptype, head, list) {
3244 		if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3245 			continue;
3246 
3247 		err = ptype->gro_complete(skb);
3248 		break;
3249 	}
3250 	rcu_read_unlock();
3251 
3252 	if (err) {
3253 		WARN_ON(&ptype->list == head);
3254 		kfree_skb(skb);
3255 		return NET_RX_SUCCESS;
3256 	}
3257 
3258 out:
3259 	return netif_receive_skb(skb);
3260 }
3261 
3262 inline void napi_gro_flush(struct napi_struct *napi)
3263 {
3264 	struct sk_buff *skb, *next;
3265 
3266 	for (skb = napi->gro_list; skb; skb = next) {
3267 		next = skb->next;
3268 		skb->next = NULL;
3269 		napi_gro_complete(skb);
3270 	}
3271 
3272 	napi->gro_count = 0;
3273 	napi->gro_list = NULL;
3274 }
3275 EXPORT_SYMBOL(napi_gro_flush);
3276 
3277 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3278 {
3279 	struct sk_buff **pp = NULL;
3280 	struct packet_type *ptype;
3281 	__be16 type = skb->protocol;
3282 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3283 	int same_flow;
3284 	int mac_len;
3285 	enum gro_result ret;
3286 
3287 	if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3288 		goto normal;
3289 
3290 	if (skb_is_gso(skb) || skb_has_frag_list(skb))
3291 		goto normal;
3292 
3293 	rcu_read_lock();
3294 	list_for_each_entry_rcu(ptype, head, list) {
3295 		if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3296 			continue;
3297 
3298 		skb_set_network_header(skb, skb_gro_offset(skb));
3299 		mac_len = skb->network_header - skb->mac_header;
3300 		skb->mac_len = mac_len;
3301 		NAPI_GRO_CB(skb)->same_flow = 0;
3302 		NAPI_GRO_CB(skb)->flush = 0;
3303 		NAPI_GRO_CB(skb)->free = 0;
3304 
3305 		pp = ptype->gro_receive(&napi->gro_list, skb);
3306 		break;
3307 	}
3308 	rcu_read_unlock();
3309 
3310 	if (&ptype->list == head)
3311 		goto normal;
3312 
3313 	same_flow = NAPI_GRO_CB(skb)->same_flow;
3314 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3315 
3316 	if (pp) {
3317 		struct sk_buff *nskb = *pp;
3318 
3319 		*pp = nskb->next;
3320 		nskb->next = NULL;
3321 		napi_gro_complete(nskb);
3322 		napi->gro_count--;
3323 	}
3324 
3325 	if (same_flow)
3326 		goto ok;
3327 
3328 	if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3329 		goto normal;
3330 
3331 	napi->gro_count++;
3332 	NAPI_GRO_CB(skb)->count = 1;
3333 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3334 	skb->next = napi->gro_list;
3335 	napi->gro_list = skb;
3336 	ret = GRO_HELD;
3337 
3338 pull:
3339 	if (skb_headlen(skb) < skb_gro_offset(skb)) {
3340 		int grow = skb_gro_offset(skb) - skb_headlen(skb);
3341 
3342 		BUG_ON(skb->end - skb->tail < grow);
3343 
3344 		memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3345 
3346 		skb->tail += grow;
3347 		skb->data_len -= grow;
3348 
3349 		skb_shinfo(skb)->frags[0].page_offset += grow;
3350 		skb_shinfo(skb)->frags[0].size -= grow;
3351 
3352 		if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3353 			put_page(skb_shinfo(skb)->frags[0].page);
3354 			memmove(skb_shinfo(skb)->frags,
3355 				skb_shinfo(skb)->frags + 1,
3356 				--skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3357 		}
3358 	}
3359 
3360 ok:
3361 	return ret;
3362 
3363 normal:
3364 	ret = GRO_NORMAL;
3365 	goto pull;
3366 }
3367 EXPORT_SYMBOL(dev_gro_receive);
3368 
3369 static inline gro_result_t
3370 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3371 {
3372 	struct sk_buff *p;
3373 
3374 	for (p = napi->gro_list; p; p = p->next) {
3375 		unsigned long diffs;
3376 
3377 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3378 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3379 		diffs |= compare_ether_header(skb_mac_header(p),
3380 					      skb_gro_mac_header(skb));
3381 		NAPI_GRO_CB(p)->same_flow = !diffs;
3382 		NAPI_GRO_CB(p)->flush = 0;
3383 	}
3384 
3385 	return dev_gro_receive(napi, skb);
3386 }
3387 
3388 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3389 {
3390 	switch (ret) {
3391 	case GRO_NORMAL:
3392 		if (netif_receive_skb(skb))
3393 			ret = GRO_DROP;
3394 		break;
3395 
3396 	case GRO_DROP:
3397 	case GRO_MERGED_FREE:
3398 		kfree_skb(skb);
3399 		break;
3400 
3401 	case GRO_HELD:
3402 	case GRO_MERGED:
3403 		break;
3404 	}
3405 
3406 	return ret;
3407 }
3408 EXPORT_SYMBOL(napi_skb_finish);
3409 
3410 void skb_gro_reset_offset(struct sk_buff *skb)
3411 {
3412 	NAPI_GRO_CB(skb)->data_offset = 0;
3413 	NAPI_GRO_CB(skb)->frag0 = NULL;
3414 	NAPI_GRO_CB(skb)->frag0_len = 0;
3415 
3416 	if (skb->mac_header == skb->tail &&
3417 	    !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3418 		NAPI_GRO_CB(skb)->frag0 =
3419 			page_address(skb_shinfo(skb)->frags[0].page) +
3420 			skb_shinfo(skb)->frags[0].page_offset;
3421 		NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3422 	}
3423 }
3424 EXPORT_SYMBOL(skb_gro_reset_offset);
3425 
3426 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3427 {
3428 	skb_gro_reset_offset(skb);
3429 
3430 	return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3431 }
3432 EXPORT_SYMBOL(napi_gro_receive);
3433 
3434 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3435 {
3436 	__skb_pull(skb, skb_headlen(skb));
3437 	skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3438 	skb->vlan_tci = 0;
3439 	skb->dev = napi->dev;
3440 	skb->skb_iif = 0;
3441 
3442 	napi->skb = skb;
3443 }
3444 
3445 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3446 {
3447 	struct sk_buff *skb = napi->skb;
3448 
3449 	if (!skb) {
3450 		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3451 		if (skb)
3452 			napi->skb = skb;
3453 	}
3454 	return skb;
3455 }
3456 EXPORT_SYMBOL(napi_get_frags);
3457 
3458 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3459 			       gro_result_t ret)
3460 {
3461 	switch (ret) {
3462 	case GRO_NORMAL:
3463 	case GRO_HELD:
3464 		skb->protocol = eth_type_trans(skb, skb->dev);
3465 
3466 		if (ret == GRO_HELD)
3467 			skb_gro_pull(skb, -ETH_HLEN);
3468 		else if (netif_receive_skb(skb))
3469 			ret = GRO_DROP;
3470 		break;
3471 
3472 	case GRO_DROP:
3473 	case GRO_MERGED_FREE:
3474 		napi_reuse_skb(napi, skb);
3475 		break;
3476 
3477 	case GRO_MERGED:
3478 		break;
3479 	}
3480 
3481 	return ret;
3482 }
3483 EXPORT_SYMBOL(napi_frags_finish);
3484 
3485 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3486 {
3487 	struct sk_buff *skb = napi->skb;
3488 	struct ethhdr *eth;
3489 	unsigned int hlen;
3490 	unsigned int off;
3491 
3492 	napi->skb = NULL;
3493 
3494 	skb_reset_mac_header(skb);
3495 	skb_gro_reset_offset(skb);
3496 
3497 	off = skb_gro_offset(skb);
3498 	hlen = off + sizeof(*eth);
3499 	eth = skb_gro_header_fast(skb, off);
3500 	if (skb_gro_header_hard(skb, hlen)) {
3501 		eth = skb_gro_header_slow(skb, hlen, off);
3502 		if (unlikely(!eth)) {
3503 			napi_reuse_skb(napi, skb);
3504 			skb = NULL;
3505 			goto out;
3506 		}
3507 	}
3508 
3509 	skb_gro_pull(skb, sizeof(*eth));
3510 
3511 	/*
3512 	 * This works because the only protocols we care about don't require
3513 	 * special handling.  We'll fix it up properly at the end.
3514 	 */
3515 	skb->protocol = eth->h_proto;
3516 
3517 out:
3518 	return skb;
3519 }
3520 EXPORT_SYMBOL(napi_frags_skb);
3521 
3522 gro_result_t napi_gro_frags(struct napi_struct *napi)
3523 {
3524 	struct sk_buff *skb = napi_frags_skb(napi);
3525 
3526 	if (!skb)
3527 		return GRO_DROP;
3528 
3529 	return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3530 }
3531 EXPORT_SYMBOL(napi_gro_frags);
3532 
3533 /*
3534  * net_rps_action sends any pending IPI's for rps.
3535  * Note: called with local irq disabled, but exits with local irq enabled.
3536  */
3537 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3538 {
3539 #ifdef CONFIG_RPS
3540 	struct softnet_data *remsd = sd->rps_ipi_list;
3541 
3542 	if (remsd) {
3543 		sd->rps_ipi_list = NULL;
3544 
3545 		local_irq_enable();
3546 
3547 		/* Send pending IPI's to kick RPS processing on remote cpus. */
3548 		while (remsd) {
3549 			struct softnet_data *next = remsd->rps_ipi_next;
3550 
3551 			if (cpu_online(remsd->cpu))
3552 				__smp_call_function_single(remsd->cpu,
3553 							   &remsd->csd, 0);
3554 			remsd = next;
3555 		}
3556 	} else
3557 #endif
3558 		local_irq_enable();
3559 }
3560 
3561 static int process_backlog(struct napi_struct *napi, int quota)
3562 {
3563 	int work = 0;
3564 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3565 
3566 #ifdef CONFIG_RPS
3567 	/* Check if we have pending ipi, its better to send them now,
3568 	 * not waiting net_rx_action() end.
3569 	 */
3570 	if (sd->rps_ipi_list) {
3571 		local_irq_disable();
3572 		net_rps_action_and_irq_enable(sd);
3573 	}
3574 #endif
3575 	napi->weight = weight_p;
3576 	local_irq_disable();
3577 	while (work < quota) {
3578 		struct sk_buff *skb;
3579 		unsigned int qlen;
3580 
3581 		while ((skb = __skb_dequeue(&sd->process_queue))) {
3582 			local_irq_enable();
3583 			__netif_receive_skb(skb);
3584 			local_irq_disable();
3585 			input_queue_head_incr(sd);
3586 			if (++work >= quota) {
3587 				local_irq_enable();
3588 				return work;
3589 			}
3590 		}
3591 
3592 		rps_lock(sd);
3593 		qlen = skb_queue_len(&sd->input_pkt_queue);
3594 		if (qlen)
3595 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
3596 						   &sd->process_queue);
3597 
3598 		if (qlen < quota - work) {
3599 			/*
3600 			 * Inline a custom version of __napi_complete().
3601 			 * only current cpu owns and manipulates this napi,
3602 			 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3603 			 * we can use a plain write instead of clear_bit(),
3604 			 * and we dont need an smp_mb() memory barrier.
3605 			 */
3606 			list_del(&napi->poll_list);
3607 			napi->state = 0;
3608 
3609 			quota = work + qlen;
3610 		}
3611 		rps_unlock(sd);
3612 	}
3613 	local_irq_enable();
3614 
3615 	return work;
3616 }
3617 
3618 /**
3619  * __napi_schedule - schedule for receive
3620  * @n: entry to schedule
3621  *
3622  * The entry's receive function will be scheduled to run
3623  */
3624 void __napi_schedule(struct napi_struct *n)
3625 {
3626 	unsigned long flags;
3627 
3628 	local_irq_save(flags);
3629 	____napi_schedule(&__get_cpu_var(softnet_data), n);
3630 	local_irq_restore(flags);
3631 }
3632 EXPORT_SYMBOL(__napi_schedule);
3633 
3634 void __napi_complete(struct napi_struct *n)
3635 {
3636 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3637 	BUG_ON(n->gro_list);
3638 
3639 	list_del(&n->poll_list);
3640 	smp_mb__before_clear_bit();
3641 	clear_bit(NAPI_STATE_SCHED, &n->state);
3642 }
3643 EXPORT_SYMBOL(__napi_complete);
3644 
3645 void napi_complete(struct napi_struct *n)
3646 {
3647 	unsigned long flags;
3648 
3649 	/*
3650 	 * don't let napi dequeue from the cpu poll list
3651 	 * just in case its running on a different cpu
3652 	 */
3653 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3654 		return;
3655 
3656 	napi_gro_flush(n);
3657 	local_irq_save(flags);
3658 	__napi_complete(n);
3659 	local_irq_restore(flags);
3660 }
3661 EXPORT_SYMBOL(napi_complete);
3662 
3663 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3664 		    int (*poll)(struct napi_struct *, int), int weight)
3665 {
3666 	INIT_LIST_HEAD(&napi->poll_list);
3667 	napi->gro_count = 0;
3668 	napi->gro_list = NULL;
3669 	napi->skb = NULL;
3670 	napi->poll = poll;
3671 	napi->weight = weight;
3672 	list_add(&napi->dev_list, &dev->napi_list);
3673 	napi->dev = dev;
3674 #ifdef CONFIG_NETPOLL
3675 	spin_lock_init(&napi->poll_lock);
3676 	napi->poll_owner = -1;
3677 #endif
3678 	set_bit(NAPI_STATE_SCHED, &napi->state);
3679 }
3680 EXPORT_SYMBOL(netif_napi_add);
3681 
3682 void netif_napi_del(struct napi_struct *napi)
3683 {
3684 	struct sk_buff *skb, *next;
3685 
3686 	list_del_init(&napi->dev_list);
3687 	napi_free_frags(napi);
3688 
3689 	for (skb = napi->gro_list; skb; skb = next) {
3690 		next = skb->next;
3691 		skb->next = NULL;
3692 		kfree_skb(skb);
3693 	}
3694 
3695 	napi->gro_list = NULL;
3696 	napi->gro_count = 0;
3697 }
3698 EXPORT_SYMBOL(netif_napi_del);
3699 
3700 static void net_rx_action(struct softirq_action *h)
3701 {
3702 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3703 	unsigned long time_limit = jiffies + 2;
3704 	int budget = netdev_budget;
3705 	void *have;
3706 
3707 	local_irq_disable();
3708 
3709 	while (!list_empty(&sd->poll_list)) {
3710 		struct napi_struct *n;
3711 		int work, weight;
3712 
3713 		/* If softirq window is exhuasted then punt.
3714 		 * Allow this to run for 2 jiffies since which will allow
3715 		 * an average latency of 1.5/HZ.
3716 		 */
3717 		if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3718 			goto softnet_break;
3719 
3720 		local_irq_enable();
3721 
3722 		/* Even though interrupts have been re-enabled, this
3723 		 * access is safe because interrupts can only add new
3724 		 * entries to the tail of this list, and only ->poll()
3725 		 * calls can remove this head entry from the list.
3726 		 */
3727 		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3728 
3729 		have = netpoll_poll_lock(n);
3730 
3731 		weight = n->weight;
3732 
3733 		/* This NAPI_STATE_SCHED test is for avoiding a race
3734 		 * with netpoll's poll_napi().  Only the entity which
3735 		 * obtains the lock and sees NAPI_STATE_SCHED set will
3736 		 * actually make the ->poll() call.  Therefore we avoid
3737 		 * accidently calling ->poll() when NAPI is not scheduled.
3738 		 */
3739 		work = 0;
3740 		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3741 			work = n->poll(n, weight);
3742 			trace_napi_poll(n);
3743 		}
3744 
3745 		WARN_ON_ONCE(work > weight);
3746 
3747 		budget -= work;
3748 
3749 		local_irq_disable();
3750 
3751 		/* Drivers must not modify the NAPI state if they
3752 		 * consume the entire weight.  In such cases this code
3753 		 * still "owns" the NAPI instance and therefore can
3754 		 * move the instance around on the list at-will.
3755 		 */
3756 		if (unlikely(work == weight)) {
3757 			if (unlikely(napi_disable_pending(n))) {
3758 				local_irq_enable();
3759 				napi_complete(n);
3760 				local_irq_disable();
3761 			} else
3762 				list_move_tail(&n->poll_list, &sd->poll_list);
3763 		}
3764 
3765 		netpoll_poll_unlock(have);
3766 	}
3767 out:
3768 	net_rps_action_and_irq_enable(sd);
3769 
3770 #ifdef CONFIG_NET_DMA
3771 	/*
3772 	 * There may not be any more sk_buffs coming right now, so push
3773 	 * any pending DMA copies to hardware
3774 	 */
3775 	dma_issue_pending_all();
3776 #endif
3777 
3778 	return;
3779 
3780 softnet_break:
3781 	sd->time_squeeze++;
3782 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3783 	goto out;
3784 }
3785 
3786 static gifconf_func_t *gifconf_list[NPROTO];
3787 
3788 /**
3789  *	register_gifconf	-	register a SIOCGIF handler
3790  *	@family: Address family
3791  *	@gifconf: Function handler
3792  *
3793  *	Register protocol dependent address dumping routines. The handler
3794  *	that is passed must not be freed or reused until it has been replaced
3795  *	by another handler.
3796  */
3797 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3798 {
3799 	if (family >= NPROTO)
3800 		return -EINVAL;
3801 	gifconf_list[family] = gifconf;
3802 	return 0;
3803 }
3804 EXPORT_SYMBOL(register_gifconf);
3805 
3806 
3807 /*
3808  *	Map an interface index to its name (SIOCGIFNAME)
3809  */
3810 
3811 /*
3812  *	We need this ioctl for efficient implementation of the
3813  *	if_indextoname() function required by the IPv6 API.  Without
3814  *	it, we would have to search all the interfaces to find a
3815  *	match.  --pb
3816  */
3817 
3818 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3819 {
3820 	struct net_device *dev;
3821 	struct ifreq ifr;
3822 
3823 	/*
3824 	 *	Fetch the caller's info block.
3825 	 */
3826 
3827 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3828 		return -EFAULT;
3829 
3830 	rcu_read_lock();
3831 	dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3832 	if (!dev) {
3833 		rcu_read_unlock();
3834 		return -ENODEV;
3835 	}
3836 
3837 	strcpy(ifr.ifr_name, dev->name);
3838 	rcu_read_unlock();
3839 
3840 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3841 		return -EFAULT;
3842 	return 0;
3843 }
3844 
3845 /*
3846  *	Perform a SIOCGIFCONF call. This structure will change
3847  *	size eventually, and there is nothing I can do about it.
3848  *	Thus we will need a 'compatibility mode'.
3849  */
3850 
3851 static int dev_ifconf(struct net *net, char __user *arg)
3852 {
3853 	struct ifconf ifc;
3854 	struct net_device *dev;
3855 	char __user *pos;
3856 	int len;
3857 	int total;
3858 	int i;
3859 
3860 	/*
3861 	 *	Fetch the caller's info block.
3862 	 */
3863 
3864 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3865 		return -EFAULT;
3866 
3867 	pos = ifc.ifc_buf;
3868 	len = ifc.ifc_len;
3869 
3870 	/*
3871 	 *	Loop over the interfaces, and write an info block for each.
3872 	 */
3873 
3874 	total = 0;
3875 	for_each_netdev(net, dev) {
3876 		for (i = 0; i < NPROTO; i++) {
3877 			if (gifconf_list[i]) {
3878 				int done;
3879 				if (!pos)
3880 					done = gifconf_list[i](dev, NULL, 0);
3881 				else
3882 					done = gifconf_list[i](dev, pos + total,
3883 							       len - total);
3884 				if (done < 0)
3885 					return -EFAULT;
3886 				total += done;
3887 			}
3888 		}
3889 	}
3890 
3891 	/*
3892 	 *	All done.  Write the updated control block back to the caller.
3893 	 */
3894 	ifc.ifc_len = total;
3895 
3896 	/*
3897 	 * 	Both BSD and Solaris return 0 here, so we do too.
3898 	 */
3899 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3900 }
3901 
3902 #ifdef CONFIG_PROC_FS
3903 /*
3904  *	This is invoked by the /proc filesystem handler to display a device
3905  *	in detail.
3906  */
3907 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3908 	__acquires(RCU)
3909 {
3910 	struct net *net = seq_file_net(seq);
3911 	loff_t off;
3912 	struct net_device *dev;
3913 
3914 	rcu_read_lock();
3915 	if (!*pos)
3916 		return SEQ_START_TOKEN;
3917 
3918 	off = 1;
3919 	for_each_netdev_rcu(net, dev)
3920 		if (off++ == *pos)
3921 			return dev;
3922 
3923 	return NULL;
3924 }
3925 
3926 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3927 {
3928 	struct net_device *dev = (v == SEQ_START_TOKEN) ?
3929 				  first_net_device(seq_file_net(seq)) :
3930 				  next_net_device((struct net_device *)v);
3931 
3932 	++*pos;
3933 	return rcu_dereference(dev);
3934 }
3935 
3936 void dev_seq_stop(struct seq_file *seq, void *v)
3937 	__releases(RCU)
3938 {
3939 	rcu_read_unlock();
3940 }
3941 
3942 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3943 {
3944 	struct rtnl_link_stats64 temp;
3945 	const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
3946 
3947 	seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
3948 		   "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
3949 		   dev->name, stats->rx_bytes, stats->rx_packets,
3950 		   stats->rx_errors,
3951 		   stats->rx_dropped + stats->rx_missed_errors,
3952 		   stats->rx_fifo_errors,
3953 		   stats->rx_length_errors + stats->rx_over_errors +
3954 		    stats->rx_crc_errors + stats->rx_frame_errors,
3955 		   stats->rx_compressed, stats->multicast,
3956 		   stats->tx_bytes, stats->tx_packets,
3957 		   stats->tx_errors, stats->tx_dropped,
3958 		   stats->tx_fifo_errors, stats->collisions,
3959 		   stats->tx_carrier_errors +
3960 		    stats->tx_aborted_errors +
3961 		    stats->tx_window_errors +
3962 		    stats->tx_heartbeat_errors,
3963 		   stats->tx_compressed);
3964 }
3965 
3966 /*
3967  *	Called from the PROCfs module. This now uses the new arbitrary sized
3968  *	/proc/net interface to create /proc/net/dev
3969  */
3970 static int dev_seq_show(struct seq_file *seq, void *v)
3971 {
3972 	if (v == SEQ_START_TOKEN)
3973 		seq_puts(seq, "Inter-|   Receive                            "
3974 			      "                    |  Transmit\n"
3975 			      " face |bytes    packets errs drop fifo frame "
3976 			      "compressed multicast|bytes    packets errs "
3977 			      "drop fifo colls carrier compressed\n");
3978 	else
3979 		dev_seq_printf_stats(seq, v);
3980 	return 0;
3981 }
3982 
3983 static struct softnet_data *softnet_get_online(loff_t *pos)
3984 {
3985 	struct softnet_data *sd = NULL;
3986 
3987 	while (*pos < nr_cpu_ids)
3988 		if (cpu_online(*pos)) {
3989 			sd = &per_cpu(softnet_data, *pos);
3990 			break;
3991 		} else
3992 			++*pos;
3993 	return sd;
3994 }
3995 
3996 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3997 {
3998 	return softnet_get_online(pos);
3999 }
4000 
4001 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4002 {
4003 	++*pos;
4004 	return softnet_get_online(pos);
4005 }
4006 
4007 static void softnet_seq_stop(struct seq_file *seq, void *v)
4008 {
4009 }
4010 
4011 static int softnet_seq_show(struct seq_file *seq, void *v)
4012 {
4013 	struct softnet_data *sd = v;
4014 
4015 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4016 		   sd->processed, sd->dropped, sd->time_squeeze, 0,
4017 		   0, 0, 0, 0, /* was fastroute */
4018 		   sd->cpu_collision, sd->received_rps);
4019 	return 0;
4020 }
4021 
4022 static const struct seq_operations dev_seq_ops = {
4023 	.start = dev_seq_start,
4024 	.next  = dev_seq_next,
4025 	.stop  = dev_seq_stop,
4026 	.show  = dev_seq_show,
4027 };
4028 
4029 static int dev_seq_open(struct inode *inode, struct file *file)
4030 {
4031 	return seq_open_net(inode, file, &dev_seq_ops,
4032 			    sizeof(struct seq_net_private));
4033 }
4034 
4035 static const struct file_operations dev_seq_fops = {
4036 	.owner	 = THIS_MODULE,
4037 	.open    = dev_seq_open,
4038 	.read    = seq_read,
4039 	.llseek  = seq_lseek,
4040 	.release = seq_release_net,
4041 };
4042 
4043 static const struct seq_operations softnet_seq_ops = {
4044 	.start = softnet_seq_start,
4045 	.next  = softnet_seq_next,
4046 	.stop  = softnet_seq_stop,
4047 	.show  = softnet_seq_show,
4048 };
4049 
4050 static int softnet_seq_open(struct inode *inode, struct file *file)
4051 {
4052 	return seq_open(file, &softnet_seq_ops);
4053 }
4054 
4055 static const struct file_operations softnet_seq_fops = {
4056 	.owner	 = THIS_MODULE,
4057 	.open    = softnet_seq_open,
4058 	.read    = seq_read,
4059 	.llseek  = seq_lseek,
4060 	.release = seq_release,
4061 };
4062 
4063 static void *ptype_get_idx(loff_t pos)
4064 {
4065 	struct packet_type *pt = NULL;
4066 	loff_t i = 0;
4067 	int t;
4068 
4069 	list_for_each_entry_rcu(pt, &ptype_all, list) {
4070 		if (i == pos)
4071 			return pt;
4072 		++i;
4073 	}
4074 
4075 	for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4076 		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4077 			if (i == pos)
4078 				return pt;
4079 			++i;
4080 		}
4081 	}
4082 	return NULL;
4083 }
4084 
4085 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4086 	__acquires(RCU)
4087 {
4088 	rcu_read_lock();
4089 	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4090 }
4091 
4092 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4093 {
4094 	struct packet_type *pt;
4095 	struct list_head *nxt;
4096 	int hash;
4097 
4098 	++*pos;
4099 	if (v == SEQ_START_TOKEN)
4100 		return ptype_get_idx(0);
4101 
4102 	pt = v;
4103 	nxt = pt->list.next;
4104 	if (pt->type == htons(ETH_P_ALL)) {
4105 		if (nxt != &ptype_all)
4106 			goto found;
4107 		hash = 0;
4108 		nxt = ptype_base[0].next;
4109 	} else
4110 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4111 
4112 	while (nxt == &ptype_base[hash]) {
4113 		if (++hash >= PTYPE_HASH_SIZE)
4114 			return NULL;
4115 		nxt = ptype_base[hash].next;
4116 	}
4117 found:
4118 	return list_entry(nxt, struct packet_type, list);
4119 }
4120 
4121 static void ptype_seq_stop(struct seq_file *seq, void *v)
4122 	__releases(RCU)
4123 {
4124 	rcu_read_unlock();
4125 }
4126 
4127 static int ptype_seq_show(struct seq_file *seq, void *v)
4128 {
4129 	struct packet_type *pt = v;
4130 
4131 	if (v == SEQ_START_TOKEN)
4132 		seq_puts(seq, "Type Device      Function\n");
4133 	else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4134 		if (pt->type == htons(ETH_P_ALL))
4135 			seq_puts(seq, "ALL ");
4136 		else
4137 			seq_printf(seq, "%04x", ntohs(pt->type));
4138 
4139 		seq_printf(seq, " %-8s %pF\n",
4140 			   pt->dev ? pt->dev->name : "", pt->func);
4141 	}
4142 
4143 	return 0;
4144 }
4145 
4146 static const struct seq_operations ptype_seq_ops = {
4147 	.start = ptype_seq_start,
4148 	.next  = ptype_seq_next,
4149 	.stop  = ptype_seq_stop,
4150 	.show  = ptype_seq_show,
4151 };
4152 
4153 static int ptype_seq_open(struct inode *inode, struct file *file)
4154 {
4155 	return seq_open_net(inode, file, &ptype_seq_ops,
4156 			sizeof(struct seq_net_private));
4157 }
4158 
4159 static const struct file_operations ptype_seq_fops = {
4160 	.owner	 = THIS_MODULE,
4161 	.open    = ptype_seq_open,
4162 	.read    = seq_read,
4163 	.llseek  = seq_lseek,
4164 	.release = seq_release_net,
4165 };
4166 
4167 
4168 static int __net_init dev_proc_net_init(struct net *net)
4169 {
4170 	int rc = -ENOMEM;
4171 
4172 	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4173 		goto out;
4174 	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4175 		goto out_dev;
4176 	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4177 		goto out_softnet;
4178 
4179 	if (wext_proc_init(net))
4180 		goto out_ptype;
4181 	rc = 0;
4182 out:
4183 	return rc;
4184 out_ptype:
4185 	proc_net_remove(net, "ptype");
4186 out_softnet:
4187 	proc_net_remove(net, "softnet_stat");
4188 out_dev:
4189 	proc_net_remove(net, "dev");
4190 	goto out;
4191 }
4192 
4193 static void __net_exit dev_proc_net_exit(struct net *net)
4194 {
4195 	wext_proc_exit(net);
4196 
4197 	proc_net_remove(net, "ptype");
4198 	proc_net_remove(net, "softnet_stat");
4199 	proc_net_remove(net, "dev");
4200 }
4201 
4202 static struct pernet_operations __net_initdata dev_proc_ops = {
4203 	.init = dev_proc_net_init,
4204 	.exit = dev_proc_net_exit,
4205 };
4206 
4207 static int __init dev_proc_init(void)
4208 {
4209 	return register_pernet_subsys(&dev_proc_ops);
4210 }
4211 #else
4212 #define dev_proc_init() 0
4213 #endif	/* CONFIG_PROC_FS */
4214 
4215 
4216 /**
4217  *	netdev_set_master	-	set up master/slave pair
4218  *	@slave: slave device
4219  *	@master: new master device
4220  *
4221  *	Changes the master device of the slave. Pass %NULL to break the
4222  *	bonding. The caller must hold the RTNL semaphore. On a failure
4223  *	a negative errno code is returned. On success the reference counts
4224  *	are adjusted, %RTM_NEWLINK is sent to the routing socket and the
4225  *	function returns zero.
4226  */
4227 int netdev_set_master(struct net_device *slave, struct net_device *master)
4228 {
4229 	struct net_device *old = slave->master;
4230 
4231 	ASSERT_RTNL();
4232 
4233 	if (master) {
4234 		if (old)
4235 			return -EBUSY;
4236 		dev_hold(master);
4237 	}
4238 
4239 	slave->master = master;
4240 
4241 	if (old) {
4242 		synchronize_net();
4243 		dev_put(old);
4244 	}
4245 	if (master)
4246 		slave->flags |= IFF_SLAVE;
4247 	else
4248 		slave->flags &= ~IFF_SLAVE;
4249 
4250 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4251 	return 0;
4252 }
4253 EXPORT_SYMBOL(netdev_set_master);
4254 
4255 static void dev_change_rx_flags(struct net_device *dev, int flags)
4256 {
4257 	const struct net_device_ops *ops = dev->netdev_ops;
4258 
4259 	if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4260 		ops->ndo_change_rx_flags(dev, flags);
4261 }
4262 
4263 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4264 {
4265 	unsigned short old_flags = dev->flags;
4266 	uid_t uid;
4267 	gid_t gid;
4268 
4269 	ASSERT_RTNL();
4270 
4271 	dev->flags |= IFF_PROMISC;
4272 	dev->promiscuity += inc;
4273 	if (dev->promiscuity == 0) {
4274 		/*
4275 		 * Avoid overflow.
4276 		 * If inc causes overflow, untouch promisc and return error.
4277 		 */
4278 		if (inc < 0)
4279 			dev->flags &= ~IFF_PROMISC;
4280 		else {
4281 			dev->promiscuity -= inc;
4282 			printk(KERN_WARNING "%s: promiscuity touches roof, "
4283 				"set promiscuity failed, promiscuity feature "
4284 				"of device might be broken.\n", dev->name);
4285 			return -EOVERFLOW;
4286 		}
4287 	}
4288 	if (dev->flags != old_flags) {
4289 		printk(KERN_INFO "device %s %s promiscuous mode\n",
4290 		       dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4291 							       "left");
4292 		if (audit_enabled) {
4293 			current_uid_gid(&uid, &gid);
4294 			audit_log(current->audit_context, GFP_ATOMIC,
4295 				AUDIT_ANOM_PROMISCUOUS,
4296 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4297 				dev->name, (dev->flags & IFF_PROMISC),
4298 				(old_flags & IFF_PROMISC),
4299 				audit_get_loginuid(current),
4300 				uid, gid,
4301 				audit_get_sessionid(current));
4302 		}
4303 
4304 		dev_change_rx_flags(dev, IFF_PROMISC);
4305 	}
4306 	return 0;
4307 }
4308 
4309 /**
4310  *	dev_set_promiscuity	- update promiscuity count on a device
4311  *	@dev: device
4312  *	@inc: modifier
4313  *
4314  *	Add or remove promiscuity from a device. While the count in the device
4315  *	remains above zero the interface remains promiscuous. Once it hits zero
4316  *	the device reverts back to normal filtering operation. A negative inc
4317  *	value is used to drop promiscuity on the device.
4318  *	Return 0 if successful or a negative errno code on error.
4319  */
4320 int dev_set_promiscuity(struct net_device *dev, int inc)
4321 {
4322 	unsigned short old_flags = dev->flags;
4323 	int err;
4324 
4325 	err = __dev_set_promiscuity(dev, inc);
4326 	if (err < 0)
4327 		return err;
4328 	if (dev->flags != old_flags)
4329 		dev_set_rx_mode(dev);
4330 	return err;
4331 }
4332 EXPORT_SYMBOL(dev_set_promiscuity);
4333 
4334 /**
4335  *	dev_set_allmulti	- update allmulti count on a device
4336  *	@dev: device
4337  *	@inc: modifier
4338  *
4339  *	Add or remove reception of all multicast frames to a device. While the
4340  *	count in the device remains above zero the interface remains listening
4341  *	to all interfaces. Once it hits zero the device reverts back to normal
4342  *	filtering operation. A negative @inc value is used to drop the counter
4343  *	when releasing a resource needing all multicasts.
4344  *	Return 0 if successful or a negative errno code on error.
4345  */
4346 
4347 int dev_set_allmulti(struct net_device *dev, int inc)
4348 {
4349 	unsigned short old_flags = dev->flags;
4350 
4351 	ASSERT_RTNL();
4352 
4353 	dev->flags |= IFF_ALLMULTI;
4354 	dev->allmulti += inc;
4355 	if (dev->allmulti == 0) {
4356 		/*
4357 		 * Avoid overflow.
4358 		 * If inc causes overflow, untouch allmulti and return error.
4359 		 */
4360 		if (inc < 0)
4361 			dev->flags &= ~IFF_ALLMULTI;
4362 		else {
4363 			dev->allmulti -= inc;
4364 			printk(KERN_WARNING "%s: allmulti touches roof, "
4365 				"set allmulti failed, allmulti feature of "
4366 				"device might be broken.\n", dev->name);
4367 			return -EOVERFLOW;
4368 		}
4369 	}
4370 	if (dev->flags ^ old_flags) {
4371 		dev_change_rx_flags(dev, IFF_ALLMULTI);
4372 		dev_set_rx_mode(dev);
4373 	}
4374 	return 0;
4375 }
4376 EXPORT_SYMBOL(dev_set_allmulti);
4377 
4378 /*
4379  *	Upload unicast and multicast address lists to device and
4380  *	configure RX filtering. When the device doesn't support unicast
4381  *	filtering it is put in promiscuous mode while unicast addresses
4382  *	are present.
4383  */
4384 void __dev_set_rx_mode(struct net_device *dev)
4385 {
4386 	const struct net_device_ops *ops = dev->netdev_ops;
4387 
4388 	/* dev_open will call this function so the list will stay sane. */
4389 	if (!(dev->flags&IFF_UP))
4390 		return;
4391 
4392 	if (!netif_device_present(dev))
4393 		return;
4394 
4395 	if (ops->ndo_set_rx_mode)
4396 		ops->ndo_set_rx_mode(dev);
4397 	else {
4398 		/* Unicast addresses changes may only happen under the rtnl,
4399 		 * therefore calling __dev_set_promiscuity here is safe.
4400 		 */
4401 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4402 			__dev_set_promiscuity(dev, 1);
4403 			dev->uc_promisc = 1;
4404 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4405 			__dev_set_promiscuity(dev, -1);
4406 			dev->uc_promisc = 0;
4407 		}
4408 
4409 		if (ops->ndo_set_multicast_list)
4410 			ops->ndo_set_multicast_list(dev);
4411 	}
4412 }
4413 
4414 void dev_set_rx_mode(struct net_device *dev)
4415 {
4416 	netif_addr_lock_bh(dev);
4417 	__dev_set_rx_mode(dev);
4418 	netif_addr_unlock_bh(dev);
4419 }
4420 
4421 /**
4422  *	dev_get_flags - get flags reported to userspace
4423  *	@dev: device
4424  *
4425  *	Get the combination of flag bits exported through APIs to userspace.
4426  */
4427 unsigned dev_get_flags(const struct net_device *dev)
4428 {
4429 	unsigned flags;
4430 
4431 	flags = (dev->flags & ~(IFF_PROMISC |
4432 				IFF_ALLMULTI |
4433 				IFF_RUNNING |
4434 				IFF_LOWER_UP |
4435 				IFF_DORMANT)) |
4436 		(dev->gflags & (IFF_PROMISC |
4437 				IFF_ALLMULTI));
4438 
4439 	if (netif_running(dev)) {
4440 		if (netif_oper_up(dev))
4441 			flags |= IFF_RUNNING;
4442 		if (netif_carrier_ok(dev))
4443 			flags |= IFF_LOWER_UP;
4444 		if (netif_dormant(dev))
4445 			flags |= IFF_DORMANT;
4446 	}
4447 
4448 	return flags;
4449 }
4450 EXPORT_SYMBOL(dev_get_flags);
4451 
4452 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4453 {
4454 	int old_flags = dev->flags;
4455 	int ret;
4456 
4457 	ASSERT_RTNL();
4458 
4459 	/*
4460 	 *	Set the flags on our device.
4461 	 */
4462 
4463 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4464 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4465 			       IFF_AUTOMEDIA)) |
4466 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4467 				    IFF_ALLMULTI));
4468 
4469 	/*
4470 	 *	Load in the correct multicast list now the flags have changed.
4471 	 */
4472 
4473 	if ((old_flags ^ flags) & IFF_MULTICAST)
4474 		dev_change_rx_flags(dev, IFF_MULTICAST);
4475 
4476 	dev_set_rx_mode(dev);
4477 
4478 	/*
4479 	 *	Have we downed the interface. We handle IFF_UP ourselves
4480 	 *	according to user attempts to set it, rather than blindly
4481 	 *	setting it.
4482 	 */
4483 
4484 	ret = 0;
4485 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
4486 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4487 
4488 		if (!ret)
4489 			dev_set_rx_mode(dev);
4490 	}
4491 
4492 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
4493 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
4494 
4495 		dev->gflags ^= IFF_PROMISC;
4496 		dev_set_promiscuity(dev, inc);
4497 	}
4498 
4499 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4500 	   is important. Some (broken) drivers set IFF_PROMISC, when
4501 	   IFF_ALLMULTI is requested not asking us and not reporting.
4502 	 */
4503 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4504 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4505 
4506 		dev->gflags ^= IFF_ALLMULTI;
4507 		dev_set_allmulti(dev, inc);
4508 	}
4509 
4510 	return ret;
4511 }
4512 
4513 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4514 {
4515 	unsigned int changes = dev->flags ^ old_flags;
4516 
4517 	if (changes & IFF_UP) {
4518 		if (dev->flags & IFF_UP)
4519 			call_netdevice_notifiers(NETDEV_UP, dev);
4520 		else
4521 			call_netdevice_notifiers(NETDEV_DOWN, dev);
4522 	}
4523 
4524 	if (dev->flags & IFF_UP &&
4525 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4526 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
4527 }
4528 
4529 /**
4530  *	dev_change_flags - change device settings
4531  *	@dev: device
4532  *	@flags: device state flags
4533  *
4534  *	Change settings on device based state flags. The flags are
4535  *	in the userspace exported format.
4536  */
4537 int dev_change_flags(struct net_device *dev, unsigned flags)
4538 {
4539 	int ret, changes;
4540 	int old_flags = dev->flags;
4541 
4542 	ret = __dev_change_flags(dev, flags);
4543 	if (ret < 0)
4544 		return ret;
4545 
4546 	changes = old_flags ^ dev->flags;
4547 	if (changes)
4548 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4549 
4550 	__dev_notify_flags(dev, old_flags);
4551 	return ret;
4552 }
4553 EXPORT_SYMBOL(dev_change_flags);
4554 
4555 /**
4556  *	dev_set_mtu - Change maximum transfer unit
4557  *	@dev: device
4558  *	@new_mtu: new transfer unit
4559  *
4560  *	Change the maximum transfer size of the network device.
4561  */
4562 int dev_set_mtu(struct net_device *dev, int new_mtu)
4563 {
4564 	const struct net_device_ops *ops = dev->netdev_ops;
4565 	int err;
4566 
4567 	if (new_mtu == dev->mtu)
4568 		return 0;
4569 
4570 	/*	MTU must be positive.	 */
4571 	if (new_mtu < 0)
4572 		return -EINVAL;
4573 
4574 	if (!netif_device_present(dev))
4575 		return -ENODEV;
4576 
4577 	err = 0;
4578 	if (ops->ndo_change_mtu)
4579 		err = ops->ndo_change_mtu(dev, new_mtu);
4580 	else
4581 		dev->mtu = new_mtu;
4582 
4583 	if (!err && dev->flags & IFF_UP)
4584 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4585 	return err;
4586 }
4587 EXPORT_SYMBOL(dev_set_mtu);
4588 
4589 /**
4590  *	dev_set_mac_address - Change Media Access Control Address
4591  *	@dev: device
4592  *	@sa: new address
4593  *
4594  *	Change the hardware (MAC) address of the device
4595  */
4596 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4597 {
4598 	const struct net_device_ops *ops = dev->netdev_ops;
4599 	int err;
4600 
4601 	if (!ops->ndo_set_mac_address)
4602 		return -EOPNOTSUPP;
4603 	if (sa->sa_family != dev->type)
4604 		return -EINVAL;
4605 	if (!netif_device_present(dev))
4606 		return -ENODEV;
4607 	err = ops->ndo_set_mac_address(dev, sa);
4608 	if (!err)
4609 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4610 	return err;
4611 }
4612 EXPORT_SYMBOL(dev_set_mac_address);
4613 
4614 /*
4615  *	Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4616  */
4617 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4618 {
4619 	int err;
4620 	struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4621 
4622 	if (!dev)
4623 		return -ENODEV;
4624 
4625 	switch (cmd) {
4626 	case SIOCGIFFLAGS:	/* Get interface flags */
4627 		ifr->ifr_flags = (short) dev_get_flags(dev);
4628 		return 0;
4629 
4630 	case SIOCGIFMETRIC:	/* Get the metric on the interface
4631 				   (currently unused) */
4632 		ifr->ifr_metric = 0;
4633 		return 0;
4634 
4635 	case SIOCGIFMTU:	/* Get the MTU of a device */
4636 		ifr->ifr_mtu = dev->mtu;
4637 		return 0;
4638 
4639 	case SIOCGIFHWADDR:
4640 		if (!dev->addr_len)
4641 			memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4642 		else
4643 			memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4644 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4645 		ifr->ifr_hwaddr.sa_family = dev->type;
4646 		return 0;
4647 
4648 	case SIOCGIFSLAVE:
4649 		err = -EINVAL;
4650 		break;
4651 
4652 	case SIOCGIFMAP:
4653 		ifr->ifr_map.mem_start = dev->mem_start;
4654 		ifr->ifr_map.mem_end   = dev->mem_end;
4655 		ifr->ifr_map.base_addr = dev->base_addr;
4656 		ifr->ifr_map.irq       = dev->irq;
4657 		ifr->ifr_map.dma       = dev->dma;
4658 		ifr->ifr_map.port      = dev->if_port;
4659 		return 0;
4660 
4661 	case SIOCGIFINDEX:
4662 		ifr->ifr_ifindex = dev->ifindex;
4663 		return 0;
4664 
4665 	case SIOCGIFTXQLEN:
4666 		ifr->ifr_qlen = dev->tx_queue_len;
4667 		return 0;
4668 
4669 	default:
4670 		/* dev_ioctl() should ensure this case
4671 		 * is never reached
4672 		 */
4673 		WARN_ON(1);
4674 		err = -EINVAL;
4675 		break;
4676 
4677 	}
4678 	return err;
4679 }
4680 
4681 /*
4682  *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
4683  */
4684 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4685 {
4686 	int err;
4687 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4688 	const struct net_device_ops *ops;
4689 
4690 	if (!dev)
4691 		return -ENODEV;
4692 
4693 	ops = dev->netdev_ops;
4694 
4695 	switch (cmd) {
4696 	case SIOCSIFFLAGS:	/* Set interface flags */
4697 		return dev_change_flags(dev, ifr->ifr_flags);
4698 
4699 	case SIOCSIFMETRIC:	/* Set the metric on the interface
4700 				   (currently unused) */
4701 		return -EOPNOTSUPP;
4702 
4703 	case SIOCSIFMTU:	/* Set the MTU of a device */
4704 		return dev_set_mtu(dev, ifr->ifr_mtu);
4705 
4706 	case SIOCSIFHWADDR:
4707 		return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4708 
4709 	case SIOCSIFHWBROADCAST:
4710 		if (ifr->ifr_hwaddr.sa_family != dev->type)
4711 			return -EINVAL;
4712 		memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4713 		       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4714 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4715 		return 0;
4716 
4717 	case SIOCSIFMAP:
4718 		if (ops->ndo_set_config) {
4719 			if (!netif_device_present(dev))
4720 				return -ENODEV;
4721 			return ops->ndo_set_config(dev, &ifr->ifr_map);
4722 		}
4723 		return -EOPNOTSUPP;
4724 
4725 	case SIOCADDMULTI:
4726 		if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4727 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4728 			return -EINVAL;
4729 		if (!netif_device_present(dev))
4730 			return -ENODEV;
4731 		return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4732 
4733 	case SIOCDELMULTI:
4734 		if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4735 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4736 			return -EINVAL;
4737 		if (!netif_device_present(dev))
4738 			return -ENODEV;
4739 		return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4740 
4741 	case SIOCSIFTXQLEN:
4742 		if (ifr->ifr_qlen < 0)
4743 			return -EINVAL;
4744 		dev->tx_queue_len = ifr->ifr_qlen;
4745 		return 0;
4746 
4747 	case SIOCSIFNAME:
4748 		ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4749 		return dev_change_name(dev, ifr->ifr_newname);
4750 
4751 	/*
4752 	 *	Unknown or private ioctl
4753 	 */
4754 	default:
4755 		if ((cmd >= SIOCDEVPRIVATE &&
4756 		    cmd <= SIOCDEVPRIVATE + 15) ||
4757 		    cmd == SIOCBONDENSLAVE ||
4758 		    cmd == SIOCBONDRELEASE ||
4759 		    cmd == SIOCBONDSETHWADDR ||
4760 		    cmd == SIOCBONDSLAVEINFOQUERY ||
4761 		    cmd == SIOCBONDINFOQUERY ||
4762 		    cmd == SIOCBONDCHANGEACTIVE ||
4763 		    cmd == SIOCGMIIPHY ||
4764 		    cmd == SIOCGMIIREG ||
4765 		    cmd == SIOCSMIIREG ||
4766 		    cmd == SIOCBRADDIF ||
4767 		    cmd == SIOCBRDELIF ||
4768 		    cmd == SIOCSHWTSTAMP ||
4769 		    cmd == SIOCWANDEV) {
4770 			err = -EOPNOTSUPP;
4771 			if (ops->ndo_do_ioctl) {
4772 				if (netif_device_present(dev))
4773 					err = ops->ndo_do_ioctl(dev, ifr, cmd);
4774 				else
4775 					err = -ENODEV;
4776 			}
4777 		} else
4778 			err = -EINVAL;
4779 
4780 	}
4781 	return err;
4782 }
4783 
4784 /*
4785  *	This function handles all "interface"-type I/O control requests. The actual
4786  *	'doing' part of this is dev_ifsioc above.
4787  */
4788 
4789 /**
4790  *	dev_ioctl	-	network device ioctl
4791  *	@net: the applicable net namespace
4792  *	@cmd: command to issue
4793  *	@arg: pointer to a struct ifreq in user space
4794  *
4795  *	Issue ioctl functions to devices. This is normally called by the
4796  *	user space syscall interfaces but can sometimes be useful for
4797  *	other purposes. The return value is the return from the syscall if
4798  *	positive or a negative errno code on error.
4799  */
4800 
4801 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4802 {
4803 	struct ifreq ifr;
4804 	int ret;
4805 	char *colon;
4806 
4807 	/* One special case: SIOCGIFCONF takes ifconf argument
4808 	   and requires shared lock, because it sleeps writing
4809 	   to user space.
4810 	 */
4811 
4812 	if (cmd == SIOCGIFCONF) {
4813 		rtnl_lock();
4814 		ret = dev_ifconf(net, (char __user *) arg);
4815 		rtnl_unlock();
4816 		return ret;
4817 	}
4818 	if (cmd == SIOCGIFNAME)
4819 		return dev_ifname(net, (struct ifreq __user *)arg);
4820 
4821 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4822 		return -EFAULT;
4823 
4824 	ifr.ifr_name[IFNAMSIZ-1] = 0;
4825 
4826 	colon = strchr(ifr.ifr_name, ':');
4827 	if (colon)
4828 		*colon = 0;
4829 
4830 	/*
4831 	 *	See which interface the caller is talking about.
4832 	 */
4833 
4834 	switch (cmd) {
4835 	/*
4836 	 *	These ioctl calls:
4837 	 *	- can be done by all.
4838 	 *	- atomic and do not require locking.
4839 	 *	- return a value
4840 	 */
4841 	case SIOCGIFFLAGS:
4842 	case SIOCGIFMETRIC:
4843 	case SIOCGIFMTU:
4844 	case SIOCGIFHWADDR:
4845 	case SIOCGIFSLAVE:
4846 	case SIOCGIFMAP:
4847 	case SIOCGIFINDEX:
4848 	case SIOCGIFTXQLEN:
4849 		dev_load(net, ifr.ifr_name);
4850 		rcu_read_lock();
4851 		ret = dev_ifsioc_locked(net, &ifr, cmd);
4852 		rcu_read_unlock();
4853 		if (!ret) {
4854 			if (colon)
4855 				*colon = ':';
4856 			if (copy_to_user(arg, &ifr,
4857 					 sizeof(struct ifreq)))
4858 				ret = -EFAULT;
4859 		}
4860 		return ret;
4861 
4862 	case SIOCETHTOOL:
4863 		dev_load(net, ifr.ifr_name);
4864 		rtnl_lock();
4865 		ret = dev_ethtool(net, &ifr);
4866 		rtnl_unlock();
4867 		if (!ret) {
4868 			if (colon)
4869 				*colon = ':';
4870 			if (copy_to_user(arg, &ifr,
4871 					 sizeof(struct ifreq)))
4872 				ret = -EFAULT;
4873 		}
4874 		return ret;
4875 
4876 	/*
4877 	 *	These ioctl calls:
4878 	 *	- require superuser power.
4879 	 *	- require strict serialization.
4880 	 *	- return a value
4881 	 */
4882 	case SIOCGMIIPHY:
4883 	case SIOCGMIIREG:
4884 	case SIOCSIFNAME:
4885 		if (!capable(CAP_NET_ADMIN))
4886 			return -EPERM;
4887 		dev_load(net, ifr.ifr_name);
4888 		rtnl_lock();
4889 		ret = dev_ifsioc(net, &ifr, cmd);
4890 		rtnl_unlock();
4891 		if (!ret) {
4892 			if (colon)
4893 				*colon = ':';
4894 			if (copy_to_user(arg, &ifr,
4895 					 sizeof(struct ifreq)))
4896 				ret = -EFAULT;
4897 		}
4898 		return ret;
4899 
4900 	/*
4901 	 *	These ioctl calls:
4902 	 *	- require superuser power.
4903 	 *	- require strict serialization.
4904 	 *	- do not return a value
4905 	 */
4906 	case SIOCSIFFLAGS:
4907 	case SIOCSIFMETRIC:
4908 	case SIOCSIFMTU:
4909 	case SIOCSIFMAP:
4910 	case SIOCSIFHWADDR:
4911 	case SIOCSIFSLAVE:
4912 	case SIOCADDMULTI:
4913 	case SIOCDELMULTI:
4914 	case SIOCSIFHWBROADCAST:
4915 	case SIOCSIFTXQLEN:
4916 	case SIOCSMIIREG:
4917 	case SIOCBONDENSLAVE:
4918 	case SIOCBONDRELEASE:
4919 	case SIOCBONDSETHWADDR:
4920 	case SIOCBONDCHANGEACTIVE:
4921 	case SIOCBRADDIF:
4922 	case SIOCBRDELIF:
4923 	case SIOCSHWTSTAMP:
4924 		if (!capable(CAP_NET_ADMIN))
4925 			return -EPERM;
4926 		/* fall through */
4927 	case SIOCBONDSLAVEINFOQUERY:
4928 	case SIOCBONDINFOQUERY:
4929 		dev_load(net, ifr.ifr_name);
4930 		rtnl_lock();
4931 		ret = dev_ifsioc(net, &ifr, cmd);
4932 		rtnl_unlock();
4933 		return ret;
4934 
4935 	case SIOCGIFMEM:
4936 		/* Get the per device memory space. We can add this but
4937 		 * currently do not support it */
4938 	case SIOCSIFMEM:
4939 		/* Set the per device memory buffer space.
4940 		 * Not applicable in our case */
4941 	case SIOCSIFLINK:
4942 		return -EINVAL;
4943 
4944 	/*
4945 	 *	Unknown or private ioctl.
4946 	 */
4947 	default:
4948 		if (cmd == SIOCWANDEV ||
4949 		    (cmd >= SIOCDEVPRIVATE &&
4950 		     cmd <= SIOCDEVPRIVATE + 15)) {
4951 			dev_load(net, ifr.ifr_name);
4952 			rtnl_lock();
4953 			ret = dev_ifsioc(net, &ifr, cmd);
4954 			rtnl_unlock();
4955 			if (!ret && copy_to_user(arg, &ifr,
4956 						 sizeof(struct ifreq)))
4957 				ret = -EFAULT;
4958 			return ret;
4959 		}
4960 		/* Take care of Wireless Extensions */
4961 		if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4962 			return wext_handle_ioctl(net, &ifr, cmd, arg);
4963 		return -EINVAL;
4964 	}
4965 }
4966 
4967 
4968 /**
4969  *	dev_new_index	-	allocate an ifindex
4970  *	@net: the applicable net namespace
4971  *
4972  *	Returns a suitable unique value for a new device interface
4973  *	number.  The caller must hold the rtnl semaphore or the
4974  *	dev_base_lock to be sure it remains unique.
4975  */
4976 static int dev_new_index(struct net *net)
4977 {
4978 	static int ifindex;
4979 	for (;;) {
4980 		if (++ifindex <= 0)
4981 			ifindex = 1;
4982 		if (!__dev_get_by_index(net, ifindex))
4983 			return ifindex;
4984 	}
4985 }
4986 
4987 /* Delayed registration/unregisteration */
4988 static LIST_HEAD(net_todo_list);
4989 
4990 static void net_set_todo(struct net_device *dev)
4991 {
4992 	list_add_tail(&dev->todo_list, &net_todo_list);
4993 }
4994 
4995 static void rollback_registered_many(struct list_head *head)
4996 {
4997 	struct net_device *dev, *tmp;
4998 
4999 	BUG_ON(dev_boot_phase);
5000 	ASSERT_RTNL();
5001 
5002 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5003 		/* Some devices call without registering
5004 		 * for initialization unwind. Remove those
5005 		 * devices and proceed with the remaining.
5006 		 */
5007 		if (dev->reg_state == NETREG_UNINITIALIZED) {
5008 			pr_debug("unregister_netdevice: device %s/%p never "
5009 				 "was registered\n", dev->name, dev);
5010 
5011 			WARN_ON(1);
5012 			list_del(&dev->unreg_list);
5013 			continue;
5014 		}
5015 
5016 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
5017 	}
5018 
5019 	/* If device is running, close it first. */
5020 	dev_close_many(head);
5021 
5022 	list_for_each_entry(dev, head, unreg_list) {
5023 		/* And unlink it from device chain. */
5024 		unlist_netdevice(dev);
5025 
5026 		dev->reg_state = NETREG_UNREGISTERING;
5027 	}
5028 
5029 	synchronize_net();
5030 
5031 	list_for_each_entry(dev, head, unreg_list) {
5032 		/* Shutdown queueing discipline. */
5033 		dev_shutdown(dev);
5034 
5035 
5036 		/* Notify protocols, that we are about to destroy
5037 		   this device. They should clean all the things.
5038 		*/
5039 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5040 
5041 		if (!dev->rtnl_link_ops ||
5042 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5043 			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5044 
5045 		/*
5046 		 *	Flush the unicast and multicast chains
5047 		 */
5048 		dev_uc_flush(dev);
5049 		dev_mc_flush(dev);
5050 
5051 		if (dev->netdev_ops->ndo_uninit)
5052 			dev->netdev_ops->ndo_uninit(dev);
5053 
5054 		/* Notifier chain MUST detach us from master device. */
5055 		WARN_ON(dev->master);
5056 
5057 		/* Remove entries from kobject tree */
5058 		netdev_unregister_kobject(dev);
5059 	}
5060 
5061 	/* Process any work delayed until the end of the batch */
5062 	dev = list_first_entry(head, struct net_device, unreg_list);
5063 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5064 
5065 	rcu_barrier();
5066 
5067 	list_for_each_entry(dev, head, unreg_list)
5068 		dev_put(dev);
5069 }
5070 
5071 static void rollback_registered(struct net_device *dev)
5072 {
5073 	LIST_HEAD(single);
5074 
5075 	list_add(&dev->unreg_list, &single);
5076 	rollback_registered_many(&single);
5077 	list_del(&single);
5078 }
5079 
5080 unsigned long netdev_fix_features(unsigned long features, const char *name)
5081 {
5082 	/* Fix illegal SG+CSUM combinations. */
5083 	if ((features & NETIF_F_SG) &&
5084 	    !(features & NETIF_F_ALL_CSUM)) {
5085 		if (name)
5086 			printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
5087 			       "checksum feature.\n", name);
5088 		features &= ~NETIF_F_SG;
5089 	}
5090 
5091 	/* TSO requires that SG is present as well. */
5092 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
5093 		if (name)
5094 			printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
5095 			       "SG feature.\n", name);
5096 		features &= ~NETIF_F_TSO;
5097 	}
5098 
5099 	if (features & NETIF_F_UFO) {
5100 		/* maybe split UFO into V4 and V6? */
5101 		if (!((features & NETIF_F_GEN_CSUM) ||
5102 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5103 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5104 			if (name)
5105 				printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5106 				       "since no checksum offload features.\n",
5107 				       name);
5108 			features &= ~NETIF_F_UFO;
5109 		}
5110 
5111 		if (!(features & NETIF_F_SG)) {
5112 			if (name)
5113 				printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5114 				       "since no NETIF_F_SG feature.\n", name);
5115 			features &= ~NETIF_F_UFO;
5116 		}
5117 	}
5118 
5119 	return features;
5120 }
5121 EXPORT_SYMBOL(netdev_fix_features);
5122 
5123 /**
5124  *	netif_stacked_transfer_operstate -	transfer operstate
5125  *	@rootdev: the root or lower level device to transfer state from
5126  *	@dev: the device to transfer operstate to
5127  *
5128  *	Transfer operational state from root to device. This is normally
5129  *	called when a stacking relationship exists between the root
5130  *	device and the device(a leaf device).
5131  */
5132 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5133 					struct net_device *dev)
5134 {
5135 	if (rootdev->operstate == IF_OPER_DORMANT)
5136 		netif_dormant_on(dev);
5137 	else
5138 		netif_dormant_off(dev);
5139 
5140 	if (netif_carrier_ok(rootdev)) {
5141 		if (!netif_carrier_ok(dev))
5142 			netif_carrier_on(dev);
5143 	} else {
5144 		if (netif_carrier_ok(dev))
5145 			netif_carrier_off(dev);
5146 	}
5147 }
5148 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5149 
5150 #ifdef CONFIG_RPS
5151 static int netif_alloc_rx_queues(struct net_device *dev)
5152 {
5153 	unsigned int i, count = dev->num_rx_queues;
5154 	struct netdev_rx_queue *rx;
5155 
5156 	BUG_ON(count < 1);
5157 
5158 	rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5159 	if (!rx) {
5160 		pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5161 		return -ENOMEM;
5162 	}
5163 	dev->_rx = rx;
5164 
5165 	for (i = 0; i < count; i++)
5166 		rx[i].dev = dev;
5167 	return 0;
5168 }
5169 #endif
5170 
5171 static void netdev_init_one_queue(struct net_device *dev,
5172 				  struct netdev_queue *queue, void *_unused)
5173 {
5174 	/* Initialize queue lock */
5175 	spin_lock_init(&queue->_xmit_lock);
5176 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5177 	queue->xmit_lock_owner = -1;
5178 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5179 	queue->dev = dev;
5180 }
5181 
5182 static int netif_alloc_netdev_queues(struct net_device *dev)
5183 {
5184 	unsigned int count = dev->num_tx_queues;
5185 	struct netdev_queue *tx;
5186 
5187 	BUG_ON(count < 1);
5188 
5189 	tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5190 	if (!tx) {
5191 		pr_err("netdev: Unable to allocate %u tx queues.\n",
5192 		       count);
5193 		return -ENOMEM;
5194 	}
5195 	dev->_tx = tx;
5196 
5197 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5198 	spin_lock_init(&dev->tx_global_lock);
5199 
5200 	return 0;
5201 }
5202 
5203 /**
5204  *	register_netdevice	- register a network device
5205  *	@dev: device to register
5206  *
5207  *	Take a completed network device structure and add it to the kernel
5208  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5209  *	chain. 0 is returned on success. A negative errno code is returned
5210  *	on a failure to set up the device, or if the name is a duplicate.
5211  *
5212  *	Callers must hold the rtnl semaphore. You may want
5213  *	register_netdev() instead of this.
5214  *
5215  *	BUGS:
5216  *	The locking appears insufficient to guarantee two parallel registers
5217  *	will not get the same name.
5218  */
5219 
5220 int register_netdevice(struct net_device *dev)
5221 {
5222 	int ret;
5223 	struct net *net = dev_net(dev);
5224 
5225 	BUG_ON(dev_boot_phase);
5226 	ASSERT_RTNL();
5227 
5228 	might_sleep();
5229 
5230 	/* When net_device's are persistent, this will be fatal. */
5231 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5232 	BUG_ON(!net);
5233 
5234 	spin_lock_init(&dev->addr_list_lock);
5235 	netdev_set_addr_lockdep_class(dev);
5236 
5237 	dev->iflink = -1;
5238 
5239 	/* Init, if this function is available */
5240 	if (dev->netdev_ops->ndo_init) {
5241 		ret = dev->netdev_ops->ndo_init(dev);
5242 		if (ret) {
5243 			if (ret > 0)
5244 				ret = -EIO;
5245 			goto out;
5246 		}
5247 	}
5248 
5249 	ret = dev_get_valid_name(dev, dev->name, 0);
5250 	if (ret)
5251 		goto err_uninit;
5252 
5253 	dev->ifindex = dev_new_index(net);
5254 	if (dev->iflink == -1)
5255 		dev->iflink = dev->ifindex;
5256 
5257 	/* Fix illegal checksum combinations */
5258 	if ((dev->features & NETIF_F_HW_CSUM) &&
5259 	    (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5260 		printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5261 		       dev->name);
5262 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5263 	}
5264 
5265 	if ((dev->features & NETIF_F_NO_CSUM) &&
5266 	    (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5267 		printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5268 		       dev->name);
5269 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5270 	}
5271 
5272 	dev->features = netdev_fix_features(dev->features, dev->name);
5273 
5274 	/* Enable software GSO if SG is supported. */
5275 	if (dev->features & NETIF_F_SG)
5276 		dev->features |= NETIF_F_GSO;
5277 
5278 	/* Enable GRO and NETIF_F_HIGHDMA for vlans by default,
5279 	 * vlan_dev_init() will do the dev->features check, so these features
5280 	 * are enabled only if supported by underlying device.
5281 	 */
5282 	dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA);
5283 
5284 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5285 	ret = notifier_to_errno(ret);
5286 	if (ret)
5287 		goto err_uninit;
5288 
5289 	ret = netdev_register_kobject(dev);
5290 	if (ret)
5291 		goto err_uninit;
5292 	dev->reg_state = NETREG_REGISTERED;
5293 
5294 	/*
5295 	 *	Default initial state at registry is that the
5296 	 *	device is present.
5297 	 */
5298 
5299 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5300 
5301 	dev_init_scheduler(dev);
5302 	dev_hold(dev);
5303 	list_netdevice(dev);
5304 
5305 	/* Notify protocols, that a new device appeared. */
5306 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5307 	ret = notifier_to_errno(ret);
5308 	if (ret) {
5309 		rollback_registered(dev);
5310 		dev->reg_state = NETREG_UNREGISTERED;
5311 	}
5312 	/*
5313 	 *	Prevent userspace races by waiting until the network
5314 	 *	device is fully setup before sending notifications.
5315 	 */
5316 	if (!dev->rtnl_link_ops ||
5317 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5318 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5319 
5320 out:
5321 	return ret;
5322 
5323 err_uninit:
5324 	if (dev->netdev_ops->ndo_uninit)
5325 		dev->netdev_ops->ndo_uninit(dev);
5326 	goto out;
5327 }
5328 EXPORT_SYMBOL(register_netdevice);
5329 
5330 /**
5331  *	init_dummy_netdev	- init a dummy network device for NAPI
5332  *	@dev: device to init
5333  *
5334  *	This takes a network device structure and initialize the minimum
5335  *	amount of fields so it can be used to schedule NAPI polls without
5336  *	registering a full blown interface. This is to be used by drivers
5337  *	that need to tie several hardware interfaces to a single NAPI
5338  *	poll scheduler due to HW limitations.
5339  */
5340 int init_dummy_netdev(struct net_device *dev)
5341 {
5342 	/* Clear everything. Note we don't initialize spinlocks
5343 	 * are they aren't supposed to be taken by any of the
5344 	 * NAPI code and this dummy netdev is supposed to be
5345 	 * only ever used for NAPI polls
5346 	 */
5347 	memset(dev, 0, sizeof(struct net_device));
5348 
5349 	/* make sure we BUG if trying to hit standard
5350 	 * register/unregister code path
5351 	 */
5352 	dev->reg_state = NETREG_DUMMY;
5353 
5354 	/* NAPI wants this */
5355 	INIT_LIST_HEAD(&dev->napi_list);
5356 
5357 	/* a dummy interface is started by default */
5358 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5359 	set_bit(__LINK_STATE_START, &dev->state);
5360 
5361 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
5362 	 * because users of this 'device' dont need to change
5363 	 * its refcount.
5364 	 */
5365 
5366 	return 0;
5367 }
5368 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5369 
5370 
5371 /**
5372  *	register_netdev	- register a network device
5373  *	@dev: device to register
5374  *
5375  *	Take a completed network device structure and add it to the kernel
5376  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5377  *	chain. 0 is returned on success. A negative errno code is returned
5378  *	on a failure to set up the device, or if the name is a duplicate.
5379  *
5380  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
5381  *	and expands the device name if you passed a format string to
5382  *	alloc_netdev.
5383  */
5384 int register_netdev(struct net_device *dev)
5385 {
5386 	int err;
5387 
5388 	rtnl_lock();
5389 
5390 	/*
5391 	 * If the name is a format string the caller wants us to do a
5392 	 * name allocation.
5393 	 */
5394 	if (strchr(dev->name, '%')) {
5395 		err = dev_alloc_name(dev, dev->name);
5396 		if (err < 0)
5397 			goto out;
5398 	}
5399 
5400 	err = register_netdevice(dev);
5401 out:
5402 	rtnl_unlock();
5403 	return err;
5404 }
5405 EXPORT_SYMBOL(register_netdev);
5406 
5407 int netdev_refcnt_read(const struct net_device *dev)
5408 {
5409 	int i, refcnt = 0;
5410 
5411 	for_each_possible_cpu(i)
5412 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5413 	return refcnt;
5414 }
5415 EXPORT_SYMBOL(netdev_refcnt_read);
5416 
5417 /*
5418  * netdev_wait_allrefs - wait until all references are gone.
5419  *
5420  * This is called when unregistering network devices.
5421  *
5422  * Any protocol or device that holds a reference should register
5423  * for netdevice notification, and cleanup and put back the
5424  * reference if they receive an UNREGISTER event.
5425  * We can get stuck here if buggy protocols don't correctly
5426  * call dev_put.
5427  */
5428 static void netdev_wait_allrefs(struct net_device *dev)
5429 {
5430 	unsigned long rebroadcast_time, warning_time;
5431 	int refcnt;
5432 
5433 	linkwatch_forget_dev(dev);
5434 
5435 	rebroadcast_time = warning_time = jiffies;
5436 	refcnt = netdev_refcnt_read(dev);
5437 
5438 	while (refcnt != 0) {
5439 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5440 			rtnl_lock();
5441 
5442 			/* Rebroadcast unregister notification */
5443 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5444 			/* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5445 			 * should have already handle it the first time */
5446 
5447 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5448 				     &dev->state)) {
5449 				/* We must not have linkwatch events
5450 				 * pending on unregister. If this
5451 				 * happens, we simply run the queue
5452 				 * unscheduled, resulting in a noop
5453 				 * for this device.
5454 				 */
5455 				linkwatch_run_queue();
5456 			}
5457 
5458 			__rtnl_unlock();
5459 
5460 			rebroadcast_time = jiffies;
5461 		}
5462 
5463 		msleep(250);
5464 
5465 		refcnt = netdev_refcnt_read(dev);
5466 
5467 		if (time_after(jiffies, warning_time + 10 * HZ)) {
5468 			printk(KERN_EMERG "unregister_netdevice: "
5469 			       "waiting for %s to become free. Usage "
5470 			       "count = %d\n",
5471 			       dev->name, refcnt);
5472 			warning_time = jiffies;
5473 		}
5474 	}
5475 }
5476 
5477 /* The sequence is:
5478  *
5479  *	rtnl_lock();
5480  *	...
5481  *	register_netdevice(x1);
5482  *	register_netdevice(x2);
5483  *	...
5484  *	unregister_netdevice(y1);
5485  *	unregister_netdevice(y2);
5486  *      ...
5487  *	rtnl_unlock();
5488  *	free_netdev(y1);
5489  *	free_netdev(y2);
5490  *
5491  * We are invoked by rtnl_unlock().
5492  * This allows us to deal with problems:
5493  * 1) We can delete sysfs objects which invoke hotplug
5494  *    without deadlocking with linkwatch via keventd.
5495  * 2) Since we run with the RTNL semaphore not held, we can sleep
5496  *    safely in order to wait for the netdev refcnt to drop to zero.
5497  *
5498  * We must not return until all unregister events added during
5499  * the interval the lock was held have been completed.
5500  */
5501 void netdev_run_todo(void)
5502 {
5503 	struct list_head list;
5504 
5505 	/* Snapshot list, allow later requests */
5506 	list_replace_init(&net_todo_list, &list);
5507 
5508 	__rtnl_unlock();
5509 
5510 	while (!list_empty(&list)) {
5511 		struct net_device *dev
5512 			= list_first_entry(&list, struct net_device, todo_list);
5513 		list_del(&dev->todo_list);
5514 
5515 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5516 			printk(KERN_ERR "network todo '%s' but state %d\n",
5517 			       dev->name, dev->reg_state);
5518 			dump_stack();
5519 			continue;
5520 		}
5521 
5522 		dev->reg_state = NETREG_UNREGISTERED;
5523 
5524 		on_each_cpu(flush_backlog, dev, 1);
5525 
5526 		netdev_wait_allrefs(dev);
5527 
5528 		/* paranoia */
5529 		BUG_ON(netdev_refcnt_read(dev));
5530 		WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5531 		WARN_ON(rcu_dereference_raw(dev->ip6_ptr));
5532 		WARN_ON(dev->dn_ptr);
5533 
5534 		if (dev->destructor)
5535 			dev->destructor(dev);
5536 
5537 		/* Free network device */
5538 		kobject_put(&dev->dev.kobj);
5539 	}
5540 }
5541 
5542 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
5543  * fields in the same order, with only the type differing.
5544  */
5545 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5546 				    const struct net_device_stats *netdev_stats)
5547 {
5548 #if BITS_PER_LONG == 64
5549         BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5550         memcpy(stats64, netdev_stats, sizeof(*stats64));
5551 #else
5552 	size_t i, n = sizeof(*stats64) / sizeof(u64);
5553 	const unsigned long *src = (const unsigned long *)netdev_stats;
5554 	u64 *dst = (u64 *)stats64;
5555 
5556 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5557 		     sizeof(*stats64) / sizeof(u64));
5558 	for (i = 0; i < n; i++)
5559 		dst[i] = src[i];
5560 #endif
5561 }
5562 
5563 /**
5564  *	dev_get_stats	- get network device statistics
5565  *	@dev: device to get statistics from
5566  *	@storage: place to store stats
5567  *
5568  *	Get network statistics from device. Return @storage.
5569  *	The device driver may provide its own method by setting
5570  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5571  *	otherwise the internal statistics structure is used.
5572  */
5573 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5574 					struct rtnl_link_stats64 *storage)
5575 {
5576 	const struct net_device_ops *ops = dev->netdev_ops;
5577 
5578 	if (ops->ndo_get_stats64) {
5579 		memset(storage, 0, sizeof(*storage));
5580 		ops->ndo_get_stats64(dev, storage);
5581 	} else if (ops->ndo_get_stats) {
5582 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5583 	} else {
5584 		netdev_stats_to_stats64(storage, &dev->stats);
5585 	}
5586 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5587 	return storage;
5588 }
5589 EXPORT_SYMBOL(dev_get_stats);
5590 
5591 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5592 {
5593 	struct netdev_queue *queue = dev_ingress_queue(dev);
5594 
5595 #ifdef CONFIG_NET_CLS_ACT
5596 	if (queue)
5597 		return queue;
5598 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5599 	if (!queue)
5600 		return NULL;
5601 	netdev_init_one_queue(dev, queue, NULL);
5602 	queue->qdisc = &noop_qdisc;
5603 	queue->qdisc_sleeping = &noop_qdisc;
5604 	rcu_assign_pointer(dev->ingress_queue, queue);
5605 #endif
5606 	return queue;
5607 }
5608 
5609 /**
5610  *	alloc_netdev_mqs - allocate network device
5611  *	@sizeof_priv:	size of private data to allocate space for
5612  *	@name:		device name format string
5613  *	@setup:		callback to initialize device
5614  *	@txqs:		the number of TX subqueues to allocate
5615  *	@rxqs:		the number of RX subqueues to allocate
5616  *
5617  *	Allocates a struct net_device with private data area for driver use
5618  *	and performs basic initialization.  Also allocates subquue structs
5619  *	for each queue on the device.
5620  */
5621 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5622 		void (*setup)(struct net_device *),
5623 		unsigned int txqs, unsigned int rxqs)
5624 {
5625 	struct net_device *dev;
5626 	size_t alloc_size;
5627 	struct net_device *p;
5628 
5629 	BUG_ON(strlen(name) >= sizeof(dev->name));
5630 
5631 	if (txqs < 1) {
5632 		pr_err("alloc_netdev: Unable to allocate device "
5633 		       "with zero queues.\n");
5634 		return NULL;
5635 	}
5636 
5637 #ifdef CONFIG_RPS
5638 	if (rxqs < 1) {
5639 		pr_err("alloc_netdev: Unable to allocate device "
5640 		       "with zero RX queues.\n");
5641 		return NULL;
5642 	}
5643 #endif
5644 
5645 	alloc_size = sizeof(struct net_device);
5646 	if (sizeof_priv) {
5647 		/* ensure 32-byte alignment of private area */
5648 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5649 		alloc_size += sizeof_priv;
5650 	}
5651 	/* ensure 32-byte alignment of whole construct */
5652 	alloc_size += NETDEV_ALIGN - 1;
5653 
5654 	p = kzalloc(alloc_size, GFP_KERNEL);
5655 	if (!p) {
5656 		printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5657 		return NULL;
5658 	}
5659 
5660 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
5661 	dev->padded = (char *)dev - (char *)p;
5662 
5663 	dev->pcpu_refcnt = alloc_percpu(int);
5664 	if (!dev->pcpu_refcnt)
5665 		goto free_p;
5666 
5667 	if (dev_addr_init(dev))
5668 		goto free_pcpu;
5669 
5670 	dev_mc_init(dev);
5671 	dev_uc_init(dev);
5672 
5673 	dev_net_set(dev, &init_net);
5674 
5675 	dev->gso_max_size = GSO_MAX_SIZE;
5676 
5677 	INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5678 	dev->ethtool_ntuple_list.count = 0;
5679 	INIT_LIST_HEAD(&dev->napi_list);
5680 	INIT_LIST_HEAD(&dev->unreg_list);
5681 	INIT_LIST_HEAD(&dev->link_watch_list);
5682 	dev->priv_flags = IFF_XMIT_DST_RELEASE;
5683 	setup(dev);
5684 
5685 	dev->num_tx_queues = txqs;
5686 	dev->real_num_tx_queues = txqs;
5687 	if (netif_alloc_netdev_queues(dev))
5688 		goto free_all;
5689 
5690 #ifdef CONFIG_RPS
5691 	dev->num_rx_queues = rxqs;
5692 	dev->real_num_rx_queues = rxqs;
5693 	if (netif_alloc_rx_queues(dev))
5694 		goto free_all;
5695 #endif
5696 
5697 	strcpy(dev->name, name);
5698 	return dev;
5699 
5700 free_all:
5701 	free_netdev(dev);
5702 	return NULL;
5703 
5704 free_pcpu:
5705 	free_percpu(dev->pcpu_refcnt);
5706 	kfree(dev->_tx);
5707 #ifdef CONFIG_RPS
5708 	kfree(dev->_rx);
5709 #endif
5710 
5711 free_p:
5712 	kfree(p);
5713 	return NULL;
5714 }
5715 EXPORT_SYMBOL(alloc_netdev_mqs);
5716 
5717 /**
5718  *	free_netdev - free network device
5719  *	@dev: device
5720  *
5721  *	This function does the last stage of destroying an allocated device
5722  * 	interface. The reference to the device object is released.
5723  *	If this is the last reference then it will be freed.
5724  */
5725 void free_netdev(struct net_device *dev)
5726 {
5727 	struct napi_struct *p, *n;
5728 
5729 	release_net(dev_net(dev));
5730 
5731 	kfree(dev->_tx);
5732 #ifdef CONFIG_RPS
5733 	kfree(dev->_rx);
5734 #endif
5735 
5736 	kfree(rcu_dereference_raw(dev->ingress_queue));
5737 
5738 	/* Flush device addresses */
5739 	dev_addr_flush(dev);
5740 
5741 	/* Clear ethtool n-tuple list */
5742 	ethtool_ntuple_flush(dev);
5743 
5744 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5745 		netif_napi_del(p);
5746 
5747 	free_percpu(dev->pcpu_refcnt);
5748 	dev->pcpu_refcnt = NULL;
5749 
5750 	/*  Compatibility with error handling in drivers */
5751 	if (dev->reg_state == NETREG_UNINITIALIZED) {
5752 		kfree((char *)dev - dev->padded);
5753 		return;
5754 	}
5755 
5756 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5757 	dev->reg_state = NETREG_RELEASED;
5758 
5759 	/* will free via device release */
5760 	put_device(&dev->dev);
5761 }
5762 EXPORT_SYMBOL(free_netdev);
5763 
5764 /**
5765  *	synchronize_net -  Synchronize with packet receive processing
5766  *
5767  *	Wait for packets currently being received to be done.
5768  *	Does not block later packets from starting.
5769  */
5770 void synchronize_net(void)
5771 {
5772 	might_sleep();
5773 	synchronize_rcu();
5774 }
5775 EXPORT_SYMBOL(synchronize_net);
5776 
5777 /**
5778  *	unregister_netdevice_queue - remove device from the kernel
5779  *	@dev: device
5780  *	@head: list
5781  *
5782  *	This function shuts down a device interface and removes it
5783  *	from the kernel tables.
5784  *	If head not NULL, device is queued to be unregistered later.
5785  *
5786  *	Callers must hold the rtnl semaphore.  You may want
5787  *	unregister_netdev() instead of this.
5788  */
5789 
5790 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5791 {
5792 	ASSERT_RTNL();
5793 
5794 	if (head) {
5795 		list_move_tail(&dev->unreg_list, head);
5796 	} else {
5797 		rollback_registered(dev);
5798 		/* Finish processing unregister after unlock */
5799 		net_set_todo(dev);
5800 	}
5801 }
5802 EXPORT_SYMBOL(unregister_netdevice_queue);
5803 
5804 /**
5805  *	unregister_netdevice_many - unregister many devices
5806  *	@head: list of devices
5807  */
5808 void unregister_netdevice_many(struct list_head *head)
5809 {
5810 	struct net_device *dev;
5811 
5812 	if (!list_empty(head)) {
5813 		rollback_registered_many(head);
5814 		list_for_each_entry(dev, head, unreg_list)
5815 			net_set_todo(dev);
5816 	}
5817 }
5818 EXPORT_SYMBOL(unregister_netdevice_many);
5819 
5820 /**
5821  *	unregister_netdev - remove device from the kernel
5822  *	@dev: device
5823  *
5824  *	This function shuts down a device interface and removes it
5825  *	from the kernel tables.
5826  *
5827  *	This is just a wrapper for unregister_netdevice that takes
5828  *	the rtnl semaphore.  In general you want to use this and not
5829  *	unregister_netdevice.
5830  */
5831 void unregister_netdev(struct net_device *dev)
5832 {
5833 	rtnl_lock();
5834 	unregister_netdevice(dev);
5835 	rtnl_unlock();
5836 }
5837 EXPORT_SYMBOL(unregister_netdev);
5838 
5839 /**
5840  *	dev_change_net_namespace - move device to different nethost namespace
5841  *	@dev: device
5842  *	@net: network namespace
5843  *	@pat: If not NULL name pattern to try if the current device name
5844  *	      is already taken in the destination network namespace.
5845  *
5846  *	This function shuts down a device interface and moves it
5847  *	to a new network namespace. On success 0 is returned, on
5848  *	a failure a netagive errno code is returned.
5849  *
5850  *	Callers must hold the rtnl semaphore.
5851  */
5852 
5853 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5854 {
5855 	int err;
5856 
5857 	ASSERT_RTNL();
5858 
5859 	/* Don't allow namespace local devices to be moved. */
5860 	err = -EINVAL;
5861 	if (dev->features & NETIF_F_NETNS_LOCAL)
5862 		goto out;
5863 
5864 	/* Ensure the device has been registrered */
5865 	err = -EINVAL;
5866 	if (dev->reg_state != NETREG_REGISTERED)
5867 		goto out;
5868 
5869 	/* Get out if there is nothing todo */
5870 	err = 0;
5871 	if (net_eq(dev_net(dev), net))
5872 		goto out;
5873 
5874 	/* Pick the destination device name, and ensure
5875 	 * we can use it in the destination network namespace.
5876 	 */
5877 	err = -EEXIST;
5878 	if (__dev_get_by_name(net, dev->name)) {
5879 		/* We get here if we can't use the current device name */
5880 		if (!pat)
5881 			goto out;
5882 		if (dev_get_valid_name(dev, pat, 1))
5883 			goto out;
5884 	}
5885 
5886 	/*
5887 	 * And now a mini version of register_netdevice unregister_netdevice.
5888 	 */
5889 
5890 	/* If device is running close it first. */
5891 	dev_close(dev);
5892 
5893 	/* And unlink it from device chain */
5894 	err = -ENODEV;
5895 	unlist_netdevice(dev);
5896 
5897 	synchronize_net();
5898 
5899 	/* Shutdown queueing discipline. */
5900 	dev_shutdown(dev);
5901 
5902 	/* Notify protocols, that we are about to destroy
5903 	   this device. They should clean all the things.
5904 
5905 	   Note that dev->reg_state stays at NETREG_REGISTERED.
5906 	   This is wanted because this way 8021q and macvlan know
5907 	   the device is just moving and can keep their slaves up.
5908 	*/
5909 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5910 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5911 
5912 	/*
5913 	 *	Flush the unicast and multicast chains
5914 	 */
5915 	dev_uc_flush(dev);
5916 	dev_mc_flush(dev);
5917 
5918 	/* Actually switch the network namespace */
5919 	dev_net_set(dev, net);
5920 
5921 	/* If there is an ifindex conflict assign a new one */
5922 	if (__dev_get_by_index(net, dev->ifindex)) {
5923 		int iflink = (dev->iflink == dev->ifindex);
5924 		dev->ifindex = dev_new_index(net);
5925 		if (iflink)
5926 			dev->iflink = dev->ifindex;
5927 	}
5928 
5929 	/* Fixup kobjects */
5930 	err = device_rename(&dev->dev, dev->name);
5931 	WARN_ON(err);
5932 
5933 	/* Add the device back in the hashes */
5934 	list_netdevice(dev);
5935 
5936 	/* Notify protocols, that a new device appeared. */
5937 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
5938 
5939 	/*
5940 	 *	Prevent userspace races by waiting until the network
5941 	 *	device is fully setup before sending notifications.
5942 	 */
5943 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5944 
5945 	synchronize_net();
5946 	err = 0;
5947 out:
5948 	return err;
5949 }
5950 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5951 
5952 static int dev_cpu_callback(struct notifier_block *nfb,
5953 			    unsigned long action,
5954 			    void *ocpu)
5955 {
5956 	struct sk_buff **list_skb;
5957 	struct sk_buff *skb;
5958 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
5959 	struct softnet_data *sd, *oldsd;
5960 
5961 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5962 		return NOTIFY_OK;
5963 
5964 	local_irq_disable();
5965 	cpu = smp_processor_id();
5966 	sd = &per_cpu(softnet_data, cpu);
5967 	oldsd = &per_cpu(softnet_data, oldcpu);
5968 
5969 	/* Find end of our completion_queue. */
5970 	list_skb = &sd->completion_queue;
5971 	while (*list_skb)
5972 		list_skb = &(*list_skb)->next;
5973 	/* Append completion queue from offline CPU. */
5974 	*list_skb = oldsd->completion_queue;
5975 	oldsd->completion_queue = NULL;
5976 
5977 	/* Append output queue from offline CPU. */
5978 	if (oldsd->output_queue) {
5979 		*sd->output_queue_tailp = oldsd->output_queue;
5980 		sd->output_queue_tailp = oldsd->output_queue_tailp;
5981 		oldsd->output_queue = NULL;
5982 		oldsd->output_queue_tailp = &oldsd->output_queue;
5983 	}
5984 
5985 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
5986 	local_irq_enable();
5987 
5988 	/* Process offline CPU's input_pkt_queue */
5989 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5990 		netif_rx(skb);
5991 		input_queue_head_incr(oldsd);
5992 	}
5993 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5994 		netif_rx(skb);
5995 		input_queue_head_incr(oldsd);
5996 	}
5997 
5998 	return NOTIFY_OK;
5999 }
6000 
6001 
6002 /**
6003  *	netdev_increment_features - increment feature set by one
6004  *	@all: current feature set
6005  *	@one: new feature set
6006  *	@mask: mask feature set
6007  *
6008  *	Computes a new feature set after adding a device with feature set
6009  *	@one to the master device with current feature set @all.  Will not
6010  *	enable anything that is off in @mask. Returns the new feature set.
6011  */
6012 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
6013 					unsigned long mask)
6014 {
6015 	/* If device needs checksumming, downgrade to it. */
6016 	if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
6017 		all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
6018 	else if (mask & NETIF_F_ALL_CSUM) {
6019 		/* If one device supports v4/v6 checksumming, set for all. */
6020 		if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
6021 		    !(all & NETIF_F_GEN_CSUM)) {
6022 			all &= ~NETIF_F_ALL_CSUM;
6023 			all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
6024 		}
6025 
6026 		/* If one device supports hw checksumming, set for all. */
6027 		if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
6028 			all &= ~NETIF_F_ALL_CSUM;
6029 			all |= NETIF_F_HW_CSUM;
6030 		}
6031 	}
6032 
6033 	one |= NETIF_F_ALL_CSUM;
6034 
6035 	one |= all & NETIF_F_ONE_FOR_ALL;
6036 	all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
6037 	all |= one & mask & NETIF_F_ONE_FOR_ALL;
6038 
6039 	return all;
6040 }
6041 EXPORT_SYMBOL(netdev_increment_features);
6042 
6043 static struct hlist_head *netdev_create_hash(void)
6044 {
6045 	int i;
6046 	struct hlist_head *hash;
6047 
6048 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6049 	if (hash != NULL)
6050 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
6051 			INIT_HLIST_HEAD(&hash[i]);
6052 
6053 	return hash;
6054 }
6055 
6056 /* Initialize per network namespace state */
6057 static int __net_init netdev_init(struct net *net)
6058 {
6059 	INIT_LIST_HEAD(&net->dev_base_head);
6060 
6061 	net->dev_name_head = netdev_create_hash();
6062 	if (net->dev_name_head == NULL)
6063 		goto err_name;
6064 
6065 	net->dev_index_head = netdev_create_hash();
6066 	if (net->dev_index_head == NULL)
6067 		goto err_idx;
6068 
6069 	return 0;
6070 
6071 err_idx:
6072 	kfree(net->dev_name_head);
6073 err_name:
6074 	return -ENOMEM;
6075 }
6076 
6077 /**
6078  *	netdev_drivername - network driver for the device
6079  *	@dev: network device
6080  *	@buffer: buffer for resulting name
6081  *	@len: size of buffer
6082  *
6083  *	Determine network driver for device.
6084  */
6085 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
6086 {
6087 	const struct device_driver *driver;
6088 	const struct device *parent;
6089 
6090 	if (len <= 0 || !buffer)
6091 		return buffer;
6092 	buffer[0] = 0;
6093 
6094 	parent = dev->dev.parent;
6095 
6096 	if (!parent)
6097 		return buffer;
6098 
6099 	driver = parent->driver;
6100 	if (driver && driver->name)
6101 		strlcpy(buffer, driver->name, len);
6102 	return buffer;
6103 }
6104 
6105 static int __netdev_printk(const char *level, const struct net_device *dev,
6106 			   struct va_format *vaf)
6107 {
6108 	int r;
6109 
6110 	if (dev && dev->dev.parent)
6111 		r = dev_printk(level, dev->dev.parent, "%s: %pV",
6112 			       netdev_name(dev), vaf);
6113 	else if (dev)
6114 		r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6115 	else
6116 		r = printk("%s(NULL net_device): %pV", level, vaf);
6117 
6118 	return r;
6119 }
6120 
6121 int netdev_printk(const char *level, const struct net_device *dev,
6122 		  const char *format, ...)
6123 {
6124 	struct va_format vaf;
6125 	va_list args;
6126 	int r;
6127 
6128 	va_start(args, format);
6129 
6130 	vaf.fmt = format;
6131 	vaf.va = &args;
6132 
6133 	r = __netdev_printk(level, dev, &vaf);
6134 	va_end(args);
6135 
6136 	return r;
6137 }
6138 EXPORT_SYMBOL(netdev_printk);
6139 
6140 #define define_netdev_printk_level(func, level)			\
6141 int func(const struct net_device *dev, const char *fmt, ...)	\
6142 {								\
6143 	int r;							\
6144 	struct va_format vaf;					\
6145 	va_list args;						\
6146 								\
6147 	va_start(args, fmt);					\
6148 								\
6149 	vaf.fmt = fmt;						\
6150 	vaf.va = &args;						\
6151 								\
6152 	r = __netdev_printk(level, dev, &vaf);			\
6153 	va_end(args);						\
6154 								\
6155 	return r;						\
6156 }								\
6157 EXPORT_SYMBOL(func);
6158 
6159 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6160 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6161 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6162 define_netdev_printk_level(netdev_err, KERN_ERR);
6163 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6164 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6165 define_netdev_printk_level(netdev_info, KERN_INFO);
6166 
6167 static void __net_exit netdev_exit(struct net *net)
6168 {
6169 	kfree(net->dev_name_head);
6170 	kfree(net->dev_index_head);
6171 }
6172 
6173 static struct pernet_operations __net_initdata netdev_net_ops = {
6174 	.init = netdev_init,
6175 	.exit = netdev_exit,
6176 };
6177 
6178 static void __net_exit default_device_exit(struct net *net)
6179 {
6180 	struct net_device *dev, *aux;
6181 	/*
6182 	 * Push all migratable network devices back to the
6183 	 * initial network namespace
6184 	 */
6185 	rtnl_lock();
6186 	for_each_netdev_safe(net, dev, aux) {
6187 		int err;
6188 		char fb_name[IFNAMSIZ];
6189 
6190 		/* Ignore unmoveable devices (i.e. loopback) */
6191 		if (dev->features & NETIF_F_NETNS_LOCAL)
6192 			continue;
6193 
6194 		/* Leave virtual devices for the generic cleanup */
6195 		if (dev->rtnl_link_ops)
6196 			continue;
6197 
6198 		/* Push remaing network devices to init_net */
6199 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6200 		err = dev_change_net_namespace(dev, &init_net, fb_name);
6201 		if (err) {
6202 			printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6203 				__func__, dev->name, err);
6204 			BUG();
6205 		}
6206 	}
6207 	rtnl_unlock();
6208 }
6209 
6210 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6211 {
6212 	/* At exit all network devices most be removed from a network
6213 	 * namespace.  Do this in the reverse order of registration.
6214 	 * Do this across as many network namespaces as possible to
6215 	 * improve batching efficiency.
6216 	 */
6217 	struct net_device *dev;
6218 	struct net *net;
6219 	LIST_HEAD(dev_kill_list);
6220 
6221 	rtnl_lock();
6222 	list_for_each_entry(net, net_list, exit_list) {
6223 		for_each_netdev_reverse(net, dev) {
6224 			if (dev->rtnl_link_ops)
6225 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6226 			else
6227 				unregister_netdevice_queue(dev, &dev_kill_list);
6228 		}
6229 	}
6230 	unregister_netdevice_many(&dev_kill_list);
6231 	list_del(&dev_kill_list);
6232 	rtnl_unlock();
6233 }
6234 
6235 static struct pernet_operations __net_initdata default_device_ops = {
6236 	.exit = default_device_exit,
6237 	.exit_batch = default_device_exit_batch,
6238 };
6239 
6240 /*
6241  *	Initialize the DEV module. At boot time this walks the device list and
6242  *	unhooks any devices that fail to initialise (normally hardware not
6243  *	present) and leaves us with a valid list of present and active devices.
6244  *
6245  */
6246 
6247 /*
6248  *       This is called single threaded during boot, so no need
6249  *       to take the rtnl semaphore.
6250  */
6251 static int __init net_dev_init(void)
6252 {
6253 	int i, rc = -ENOMEM;
6254 
6255 	BUG_ON(!dev_boot_phase);
6256 
6257 	if (dev_proc_init())
6258 		goto out;
6259 
6260 	if (netdev_kobject_init())
6261 		goto out;
6262 
6263 	INIT_LIST_HEAD(&ptype_all);
6264 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
6265 		INIT_LIST_HEAD(&ptype_base[i]);
6266 
6267 	if (register_pernet_subsys(&netdev_net_ops))
6268 		goto out;
6269 
6270 	/*
6271 	 *	Initialise the packet receive queues.
6272 	 */
6273 
6274 	for_each_possible_cpu(i) {
6275 		struct softnet_data *sd = &per_cpu(softnet_data, i);
6276 
6277 		memset(sd, 0, sizeof(*sd));
6278 		skb_queue_head_init(&sd->input_pkt_queue);
6279 		skb_queue_head_init(&sd->process_queue);
6280 		sd->completion_queue = NULL;
6281 		INIT_LIST_HEAD(&sd->poll_list);
6282 		sd->output_queue = NULL;
6283 		sd->output_queue_tailp = &sd->output_queue;
6284 #ifdef CONFIG_RPS
6285 		sd->csd.func = rps_trigger_softirq;
6286 		sd->csd.info = sd;
6287 		sd->csd.flags = 0;
6288 		sd->cpu = i;
6289 #endif
6290 
6291 		sd->backlog.poll = process_backlog;
6292 		sd->backlog.weight = weight_p;
6293 		sd->backlog.gro_list = NULL;
6294 		sd->backlog.gro_count = 0;
6295 	}
6296 
6297 	dev_boot_phase = 0;
6298 
6299 	/* The loopback device is special if any other network devices
6300 	 * is present in a network namespace the loopback device must
6301 	 * be present. Since we now dynamically allocate and free the
6302 	 * loopback device ensure this invariant is maintained by
6303 	 * keeping the loopback device as the first device on the
6304 	 * list of network devices.  Ensuring the loopback devices
6305 	 * is the first device that appears and the last network device
6306 	 * that disappears.
6307 	 */
6308 	if (register_pernet_device(&loopback_net_ops))
6309 		goto out;
6310 
6311 	if (register_pernet_device(&default_device_ops))
6312 		goto out;
6313 
6314 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6315 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6316 
6317 	hotcpu_notifier(dev_cpu_callback, 0);
6318 	dst_init();
6319 	dev_mcast_init();
6320 	rc = 0;
6321 out:
6322 	return rc;
6323 }
6324 
6325 subsys_initcall(net_dev_init);
6326 
6327 static int __init initialize_hashrnd(void)
6328 {
6329 	get_random_bytes(&hashrnd, sizeof(hashrnd));
6330 	return 0;
6331 }
6332 
6333 late_initcall_sync(initialize_hashrnd);
6334 
6335