xref: /openbmc/linux/net/core/dev.c (revision 405db98b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_netdev.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153 
154 #include "net-sysfs.h"
155 
156 #define MAX_GRO_SKBS 8
157 
158 /* This should be increased if a protocol with a bigger head is added. */
159 #define GRO_MAX_HEAD (MAX_HEADER + 128)
160 
161 static DEFINE_SPINLOCK(ptype_lock);
162 static DEFINE_SPINLOCK(offload_lock);
163 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
164 struct list_head ptype_all __read_mostly;	/* Taps */
165 static struct list_head offload_base __read_mostly;
166 
167 static int netif_rx_internal(struct sk_buff *skb);
168 static int call_netdevice_notifiers_info(unsigned long val,
169 					 struct netdev_notifier_info *info);
170 static int call_netdevice_notifiers_extack(unsigned long val,
171 					   struct net_device *dev,
172 					   struct netlink_ext_ack *extack);
173 static struct napi_struct *napi_by_id(unsigned int napi_id);
174 
175 /*
176  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
177  * semaphore.
178  *
179  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
180  *
181  * Writers must hold the rtnl semaphore while they loop through the
182  * dev_base_head list, and hold dev_base_lock for writing when they do the
183  * actual updates.  This allows pure readers to access the list even
184  * while a writer is preparing to update it.
185  *
186  * To put it another way, dev_base_lock is held for writing only to
187  * protect against pure readers; the rtnl semaphore provides the
188  * protection against other writers.
189  *
190  * See, for example usages, register_netdevice() and
191  * unregister_netdevice(), which must be called with the rtnl
192  * semaphore held.
193  */
194 DEFINE_RWLOCK(dev_base_lock);
195 EXPORT_SYMBOL(dev_base_lock);
196 
197 static DEFINE_MUTEX(ifalias_mutex);
198 
199 /* protects napi_hash addition/deletion and napi_gen_id */
200 static DEFINE_SPINLOCK(napi_hash_lock);
201 
202 static unsigned int napi_gen_id = NR_CPUS;
203 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
204 
205 static DECLARE_RWSEM(devnet_rename_sem);
206 
207 static inline void dev_base_seq_inc(struct net *net)
208 {
209 	while (++net->dev_base_seq == 0)
210 		;
211 }
212 
213 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
214 {
215 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
216 
217 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
218 }
219 
220 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
221 {
222 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
223 }
224 
225 static inline void rps_lock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228 	spin_lock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231 
232 static inline void rps_unlock(struct softnet_data *sd)
233 {
234 #ifdef CONFIG_RPS
235 	spin_unlock(&sd->input_pkt_queue.lock);
236 #endif
237 }
238 
239 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
240 						       const char *name)
241 {
242 	struct netdev_name_node *name_node;
243 
244 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
245 	if (!name_node)
246 		return NULL;
247 	INIT_HLIST_NODE(&name_node->hlist);
248 	name_node->dev = dev;
249 	name_node->name = name;
250 	return name_node;
251 }
252 
253 static struct netdev_name_node *
254 netdev_name_node_head_alloc(struct net_device *dev)
255 {
256 	struct netdev_name_node *name_node;
257 
258 	name_node = netdev_name_node_alloc(dev, dev->name);
259 	if (!name_node)
260 		return NULL;
261 	INIT_LIST_HEAD(&name_node->list);
262 	return name_node;
263 }
264 
265 static void netdev_name_node_free(struct netdev_name_node *name_node)
266 {
267 	kfree(name_node);
268 }
269 
270 static void netdev_name_node_add(struct net *net,
271 				 struct netdev_name_node *name_node)
272 {
273 	hlist_add_head_rcu(&name_node->hlist,
274 			   dev_name_hash(net, name_node->name));
275 }
276 
277 static void netdev_name_node_del(struct netdev_name_node *name_node)
278 {
279 	hlist_del_rcu(&name_node->hlist);
280 }
281 
282 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
283 							const char *name)
284 {
285 	struct hlist_head *head = dev_name_hash(net, name);
286 	struct netdev_name_node *name_node;
287 
288 	hlist_for_each_entry(name_node, head, hlist)
289 		if (!strcmp(name_node->name, name))
290 			return name_node;
291 	return NULL;
292 }
293 
294 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
295 							    const char *name)
296 {
297 	struct hlist_head *head = dev_name_hash(net, name);
298 	struct netdev_name_node *name_node;
299 
300 	hlist_for_each_entry_rcu(name_node, head, hlist)
301 		if (!strcmp(name_node->name, name))
302 			return name_node;
303 	return NULL;
304 }
305 
306 bool netdev_name_in_use(struct net *net, const char *name)
307 {
308 	return netdev_name_node_lookup(net, name);
309 }
310 EXPORT_SYMBOL(netdev_name_in_use);
311 
312 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
313 {
314 	struct netdev_name_node *name_node;
315 	struct net *net = dev_net(dev);
316 
317 	name_node = netdev_name_node_lookup(net, name);
318 	if (name_node)
319 		return -EEXIST;
320 	name_node = netdev_name_node_alloc(dev, name);
321 	if (!name_node)
322 		return -ENOMEM;
323 	netdev_name_node_add(net, name_node);
324 	/* The node that holds dev->name acts as a head of per-device list. */
325 	list_add_tail(&name_node->list, &dev->name_node->list);
326 
327 	return 0;
328 }
329 EXPORT_SYMBOL(netdev_name_node_alt_create);
330 
331 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
332 {
333 	list_del(&name_node->list);
334 	netdev_name_node_del(name_node);
335 	kfree(name_node->name);
336 	netdev_name_node_free(name_node);
337 }
338 
339 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
340 {
341 	struct netdev_name_node *name_node;
342 	struct net *net = dev_net(dev);
343 
344 	name_node = netdev_name_node_lookup(net, name);
345 	if (!name_node)
346 		return -ENOENT;
347 	/* lookup might have found our primary name or a name belonging
348 	 * to another device.
349 	 */
350 	if (name_node == dev->name_node || name_node->dev != dev)
351 		return -EINVAL;
352 
353 	__netdev_name_node_alt_destroy(name_node);
354 
355 	return 0;
356 }
357 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
358 
359 static void netdev_name_node_alt_flush(struct net_device *dev)
360 {
361 	struct netdev_name_node *name_node, *tmp;
362 
363 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
364 		__netdev_name_node_alt_destroy(name_node);
365 }
366 
367 /* Device list insertion */
368 static void list_netdevice(struct net_device *dev)
369 {
370 	struct net *net = dev_net(dev);
371 
372 	ASSERT_RTNL();
373 
374 	write_lock_bh(&dev_base_lock);
375 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
376 	netdev_name_node_add(net, dev->name_node);
377 	hlist_add_head_rcu(&dev->index_hlist,
378 			   dev_index_hash(net, dev->ifindex));
379 	write_unlock_bh(&dev_base_lock);
380 
381 	dev_base_seq_inc(net);
382 }
383 
384 /* Device list removal
385  * caller must respect a RCU grace period before freeing/reusing dev
386  */
387 static void unlist_netdevice(struct net_device *dev)
388 {
389 	ASSERT_RTNL();
390 
391 	/* Unlink dev from the device chain */
392 	write_lock_bh(&dev_base_lock);
393 	list_del_rcu(&dev->dev_list);
394 	netdev_name_node_del(dev->name_node);
395 	hlist_del_rcu(&dev->index_hlist);
396 	write_unlock_bh(&dev_base_lock);
397 
398 	dev_base_seq_inc(dev_net(dev));
399 }
400 
401 /*
402  *	Our notifier list
403  */
404 
405 static RAW_NOTIFIER_HEAD(netdev_chain);
406 
407 /*
408  *	Device drivers call our routines to queue packets here. We empty the
409  *	queue in the local softnet handler.
410  */
411 
412 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
413 EXPORT_PER_CPU_SYMBOL(softnet_data);
414 
415 #ifdef CONFIG_LOCKDEP
416 /*
417  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
418  * according to dev->type
419  */
420 static const unsigned short netdev_lock_type[] = {
421 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
422 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
423 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
424 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
425 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
426 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
427 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
428 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
429 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
430 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
431 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
432 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
433 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
434 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
435 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
436 
437 static const char *const netdev_lock_name[] = {
438 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
439 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
440 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
441 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
442 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
443 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
444 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
445 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
446 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
447 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
448 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
449 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
450 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
451 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
452 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
453 
454 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
455 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
456 
457 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
458 {
459 	int i;
460 
461 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
462 		if (netdev_lock_type[i] == dev_type)
463 			return i;
464 	/* the last key is used by default */
465 	return ARRAY_SIZE(netdev_lock_type) - 1;
466 }
467 
468 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
469 						 unsigned short dev_type)
470 {
471 	int i;
472 
473 	i = netdev_lock_pos(dev_type);
474 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
475 				   netdev_lock_name[i]);
476 }
477 
478 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
479 {
480 	int i;
481 
482 	i = netdev_lock_pos(dev->type);
483 	lockdep_set_class_and_name(&dev->addr_list_lock,
484 				   &netdev_addr_lock_key[i],
485 				   netdev_lock_name[i]);
486 }
487 #else
488 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
489 						 unsigned short dev_type)
490 {
491 }
492 
493 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
494 {
495 }
496 #endif
497 
498 /*******************************************************************************
499  *
500  *		Protocol management and registration routines
501  *
502  *******************************************************************************/
503 
504 
505 /*
506  *	Add a protocol ID to the list. Now that the input handler is
507  *	smarter we can dispense with all the messy stuff that used to be
508  *	here.
509  *
510  *	BEWARE!!! Protocol handlers, mangling input packets,
511  *	MUST BE last in hash buckets and checking protocol handlers
512  *	MUST start from promiscuous ptype_all chain in net_bh.
513  *	It is true now, do not change it.
514  *	Explanation follows: if protocol handler, mangling packet, will
515  *	be the first on list, it is not able to sense, that packet
516  *	is cloned and should be copied-on-write, so that it will
517  *	change it and subsequent readers will get broken packet.
518  *							--ANK (980803)
519  */
520 
521 static inline struct list_head *ptype_head(const struct packet_type *pt)
522 {
523 	if (pt->type == htons(ETH_P_ALL))
524 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
525 	else
526 		return pt->dev ? &pt->dev->ptype_specific :
527 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
528 }
529 
530 /**
531  *	dev_add_pack - add packet handler
532  *	@pt: packet type declaration
533  *
534  *	Add a protocol handler to the networking stack. The passed &packet_type
535  *	is linked into kernel lists and may not be freed until it has been
536  *	removed from the kernel lists.
537  *
538  *	This call does not sleep therefore it can not
539  *	guarantee all CPU's that are in middle of receiving packets
540  *	will see the new packet type (until the next received packet).
541  */
542 
543 void dev_add_pack(struct packet_type *pt)
544 {
545 	struct list_head *head = ptype_head(pt);
546 
547 	spin_lock(&ptype_lock);
548 	list_add_rcu(&pt->list, head);
549 	spin_unlock(&ptype_lock);
550 }
551 EXPORT_SYMBOL(dev_add_pack);
552 
553 /**
554  *	__dev_remove_pack	 - remove packet handler
555  *	@pt: packet type declaration
556  *
557  *	Remove a protocol handler that was previously added to the kernel
558  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
559  *	from the kernel lists and can be freed or reused once this function
560  *	returns.
561  *
562  *      The packet type might still be in use by receivers
563  *	and must not be freed until after all the CPU's have gone
564  *	through a quiescent state.
565  */
566 void __dev_remove_pack(struct packet_type *pt)
567 {
568 	struct list_head *head = ptype_head(pt);
569 	struct packet_type *pt1;
570 
571 	spin_lock(&ptype_lock);
572 
573 	list_for_each_entry(pt1, head, list) {
574 		if (pt == pt1) {
575 			list_del_rcu(&pt->list);
576 			goto out;
577 		}
578 	}
579 
580 	pr_warn("dev_remove_pack: %p not found\n", pt);
581 out:
582 	spin_unlock(&ptype_lock);
583 }
584 EXPORT_SYMBOL(__dev_remove_pack);
585 
586 /**
587  *	dev_remove_pack	 - remove packet handler
588  *	@pt: packet type declaration
589  *
590  *	Remove a protocol handler that was previously added to the kernel
591  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
592  *	from the kernel lists and can be freed or reused once this function
593  *	returns.
594  *
595  *	This call sleeps to guarantee that no CPU is looking at the packet
596  *	type after return.
597  */
598 void dev_remove_pack(struct packet_type *pt)
599 {
600 	__dev_remove_pack(pt);
601 
602 	synchronize_net();
603 }
604 EXPORT_SYMBOL(dev_remove_pack);
605 
606 
607 /**
608  *	dev_add_offload - register offload handlers
609  *	@po: protocol offload declaration
610  *
611  *	Add protocol offload handlers to the networking stack. The passed
612  *	&proto_offload is linked into kernel lists and may not be freed until
613  *	it has been removed from the kernel lists.
614  *
615  *	This call does not sleep therefore it can not
616  *	guarantee all CPU's that are in middle of receiving packets
617  *	will see the new offload handlers (until the next received packet).
618  */
619 void dev_add_offload(struct packet_offload *po)
620 {
621 	struct packet_offload *elem;
622 
623 	spin_lock(&offload_lock);
624 	list_for_each_entry(elem, &offload_base, list) {
625 		if (po->priority < elem->priority)
626 			break;
627 	}
628 	list_add_rcu(&po->list, elem->list.prev);
629 	spin_unlock(&offload_lock);
630 }
631 EXPORT_SYMBOL(dev_add_offload);
632 
633 /**
634  *	__dev_remove_offload	 - remove offload handler
635  *	@po: packet offload declaration
636  *
637  *	Remove a protocol offload handler that was previously added to the
638  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
639  *	is removed from the kernel lists and can be freed or reused once this
640  *	function returns.
641  *
642  *      The packet type might still be in use by receivers
643  *	and must not be freed until after all the CPU's have gone
644  *	through a quiescent state.
645  */
646 static void __dev_remove_offload(struct packet_offload *po)
647 {
648 	struct list_head *head = &offload_base;
649 	struct packet_offload *po1;
650 
651 	spin_lock(&offload_lock);
652 
653 	list_for_each_entry(po1, head, list) {
654 		if (po == po1) {
655 			list_del_rcu(&po->list);
656 			goto out;
657 		}
658 	}
659 
660 	pr_warn("dev_remove_offload: %p not found\n", po);
661 out:
662 	spin_unlock(&offload_lock);
663 }
664 
665 /**
666  *	dev_remove_offload	 - remove packet offload handler
667  *	@po: packet offload declaration
668  *
669  *	Remove a packet offload handler that was previously added to the kernel
670  *	offload handlers by dev_add_offload(). The passed &offload_type is
671  *	removed from the kernel lists and can be freed or reused once this
672  *	function returns.
673  *
674  *	This call sleeps to guarantee that no CPU is looking at the packet
675  *	type after return.
676  */
677 void dev_remove_offload(struct packet_offload *po)
678 {
679 	__dev_remove_offload(po);
680 
681 	synchronize_net();
682 }
683 EXPORT_SYMBOL(dev_remove_offload);
684 
685 /*******************************************************************************
686  *
687  *			    Device Interface Subroutines
688  *
689  *******************************************************************************/
690 
691 /**
692  *	dev_get_iflink	- get 'iflink' value of a interface
693  *	@dev: targeted interface
694  *
695  *	Indicates the ifindex the interface is linked to.
696  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
697  */
698 
699 int dev_get_iflink(const struct net_device *dev)
700 {
701 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
702 		return dev->netdev_ops->ndo_get_iflink(dev);
703 
704 	return dev->ifindex;
705 }
706 EXPORT_SYMBOL(dev_get_iflink);
707 
708 /**
709  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
710  *	@dev: targeted interface
711  *	@skb: The packet.
712  *
713  *	For better visibility of tunnel traffic OVS needs to retrieve
714  *	egress tunnel information for a packet. Following API allows
715  *	user to get this info.
716  */
717 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
718 {
719 	struct ip_tunnel_info *info;
720 
721 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
722 		return -EINVAL;
723 
724 	info = skb_tunnel_info_unclone(skb);
725 	if (!info)
726 		return -ENOMEM;
727 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
728 		return -EINVAL;
729 
730 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
731 }
732 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
733 
734 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
735 {
736 	int k = stack->num_paths++;
737 
738 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
739 		return NULL;
740 
741 	return &stack->path[k];
742 }
743 
744 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
745 			  struct net_device_path_stack *stack)
746 {
747 	const struct net_device *last_dev;
748 	struct net_device_path_ctx ctx = {
749 		.dev	= dev,
750 		.daddr	= daddr,
751 	};
752 	struct net_device_path *path;
753 	int ret = 0;
754 
755 	stack->num_paths = 0;
756 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
757 		last_dev = ctx.dev;
758 		path = dev_fwd_path(stack);
759 		if (!path)
760 			return -1;
761 
762 		memset(path, 0, sizeof(struct net_device_path));
763 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
764 		if (ret < 0)
765 			return -1;
766 
767 		if (WARN_ON_ONCE(last_dev == ctx.dev))
768 			return -1;
769 	}
770 	path = dev_fwd_path(stack);
771 	if (!path)
772 		return -1;
773 	path->type = DEV_PATH_ETHERNET;
774 	path->dev = ctx.dev;
775 
776 	return ret;
777 }
778 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
779 
780 /**
781  *	__dev_get_by_name	- find a device by its name
782  *	@net: the applicable net namespace
783  *	@name: name to find
784  *
785  *	Find an interface by name. Must be called under RTNL semaphore
786  *	or @dev_base_lock. If the name is found a pointer to the device
787  *	is returned. If the name is not found then %NULL is returned. The
788  *	reference counters are not incremented so the caller must be
789  *	careful with locks.
790  */
791 
792 struct net_device *__dev_get_by_name(struct net *net, const char *name)
793 {
794 	struct netdev_name_node *node_name;
795 
796 	node_name = netdev_name_node_lookup(net, name);
797 	return node_name ? node_name->dev : NULL;
798 }
799 EXPORT_SYMBOL(__dev_get_by_name);
800 
801 /**
802  * dev_get_by_name_rcu	- find a device by its name
803  * @net: the applicable net namespace
804  * @name: name to find
805  *
806  * Find an interface by name.
807  * If the name is found a pointer to the device is returned.
808  * If the name is not found then %NULL is returned.
809  * The reference counters are not incremented so the caller must be
810  * careful with locks. The caller must hold RCU lock.
811  */
812 
813 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
814 {
815 	struct netdev_name_node *node_name;
816 
817 	node_name = netdev_name_node_lookup_rcu(net, name);
818 	return node_name ? node_name->dev : NULL;
819 }
820 EXPORT_SYMBOL(dev_get_by_name_rcu);
821 
822 /**
823  *	dev_get_by_name		- find a device by its name
824  *	@net: the applicable net namespace
825  *	@name: name to find
826  *
827  *	Find an interface by name. This can be called from any
828  *	context and does its own locking. The returned handle has
829  *	the usage count incremented and the caller must use dev_put() to
830  *	release it when it is no longer needed. %NULL is returned if no
831  *	matching device is found.
832  */
833 
834 struct net_device *dev_get_by_name(struct net *net, const char *name)
835 {
836 	struct net_device *dev;
837 
838 	rcu_read_lock();
839 	dev = dev_get_by_name_rcu(net, name);
840 	dev_hold(dev);
841 	rcu_read_unlock();
842 	return dev;
843 }
844 EXPORT_SYMBOL(dev_get_by_name);
845 
846 /**
847  *	__dev_get_by_index - find a device by its ifindex
848  *	@net: the applicable net namespace
849  *	@ifindex: index of device
850  *
851  *	Search for an interface by index. Returns %NULL if the device
852  *	is not found or a pointer to the device. The device has not
853  *	had its reference counter increased so the caller must be careful
854  *	about locking. The caller must hold either the RTNL semaphore
855  *	or @dev_base_lock.
856  */
857 
858 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
859 {
860 	struct net_device *dev;
861 	struct hlist_head *head = dev_index_hash(net, ifindex);
862 
863 	hlist_for_each_entry(dev, head, index_hlist)
864 		if (dev->ifindex == ifindex)
865 			return dev;
866 
867 	return NULL;
868 }
869 EXPORT_SYMBOL(__dev_get_by_index);
870 
871 /**
872  *	dev_get_by_index_rcu - find a device by its ifindex
873  *	@net: the applicable net namespace
874  *	@ifindex: index of device
875  *
876  *	Search for an interface by index. Returns %NULL if the device
877  *	is not found or a pointer to the device. The device has not
878  *	had its reference counter increased so the caller must be careful
879  *	about locking. The caller must hold RCU lock.
880  */
881 
882 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
883 {
884 	struct net_device *dev;
885 	struct hlist_head *head = dev_index_hash(net, ifindex);
886 
887 	hlist_for_each_entry_rcu(dev, head, index_hlist)
888 		if (dev->ifindex == ifindex)
889 			return dev;
890 
891 	return NULL;
892 }
893 EXPORT_SYMBOL(dev_get_by_index_rcu);
894 
895 
896 /**
897  *	dev_get_by_index - find a device by its ifindex
898  *	@net: the applicable net namespace
899  *	@ifindex: index of device
900  *
901  *	Search for an interface by index. Returns NULL if the device
902  *	is not found or a pointer to the device. The device returned has
903  *	had a reference added and the pointer is safe until the user calls
904  *	dev_put to indicate they have finished with it.
905  */
906 
907 struct net_device *dev_get_by_index(struct net *net, int ifindex)
908 {
909 	struct net_device *dev;
910 
911 	rcu_read_lock();
912 	dev = dev_get_by_index_rcu(net, ifindex);
913 	dev_hold(dev);
914 	rcu_read_unlock();
915 	return dev;
916 }
917 EXPORT_SYMBOL(dev_get_by_index);
918 
919 /**
920  *	dev_get_by_napi_id - find a device by napi_id
921  *	@napi_id: ID of the NAPI struct
922  *
923  *	Search for an interface by NAPI ID. Returns %NULL if the device
924  *	is not found or a pointer to the device. The device has not had
925  *	its reference counter increased so the caller must be careful
926  *	about locking. The caller must hold RCU lock.
927  */
928 
929 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
930 {
931 	struct napi_struct *napi;
932 
933 	WARN_ON_ONCE(!rcu_read_lock_held());
934 
935 	if (napi_id < MIN_NAPI_ID)
936 		return NULL;
937 
938 	napi = napi_by_id(napi_id);
939 
940 	return napi ? napi->dev : NULL;
941 }
942 EXPORT_SYMBOL(dev_get_by_napi_id);
943 
944 /**
945  *	netdev_get_name - get a netdevice name, knowing its ifindex.
946  *	@net: network namespace
947  *	@name: a pointer to the buffer where the name will be stored.
948  *	@ifindex: the ifindex of the interface to get the name from.
949  */
950 int netdev_get_name(struct net *net, char *name, int ifindex)
951 {
952 	struct net_device *dev;
953 	int ret;
954 
955 	down_read(&devnet_rename_sem);
956 	rcu_read_lock();
957 
958 	dev = dev_get_by_index_rcu(net, ifindex);
959 	if (!dev) {
960 		ret = -ENODEV;
961 		goto out;
962 	}
963 
964 	strcpy(name, dev->name);
965 
966 	ret = 0;
967 out:
968 	rcu_read_unlock();
969 	up_read(&devnet_rename_sem);
970 	return ret;
971 }
972 
973 /**
974  *	dev_getbyhwaddr_rcu - find a device by its hardware address
975  *	@net: the applicable net namespace
976  *	@type: media type of device
977  *	@ha: hardware address
978  *
979  *	Search for an interface by MAC address. Returns NULL if the device
980  *	is not found or a pointer to the device.
981  *	The caller must hold RCU or RTNL.
982  *	The returned device has not had its ref count increased
983  *	and the caller must therefore be careful about locking
984  *
985  */
986 
987 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
988 				       const char *ha)
989 {
990 	struct net_device *dev;
991 
992 	for_each_netdev_rcu(net, dev)
993 		if (dev->type == type &&
994 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
995 			return dev;
996 
997 	return NULL;
998 }
999 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1000 
1001 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1002 {
1003 	struct net_device *dev, *ret = NULL;
1004 
1005 	rcu_read_lock();
1006 	for_each_netdev_rcu(net, dev)
1007 		if (dev->type == type) {
1008 			dev_hold(dev);
1009 			ret = dev;
1010 			break;
1011 		}
1012 	rcu_read_unlock();
1013 	return ret;
1014 }
1015 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1016 
1017 /**
1018  *	__dev_get_by_flags - find any device with given flags
1019  *	@net: the applicable net namespace
1020  *	@if_flags: IFF_* values
1021  *	@mask: bitmask of bits in if_flags to check
1022  *
1023  *	Search for any interface with the given flags. Returns NULL if a device
1024  *	is not found or a pointer to the device. Must be called inside
1025  *	rtnl_lock(), and result refcount is unchanged.
1026  */
1027 
1028 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1029 				      unsigned short mask)
1030 {
1031 	struct net_device *dev, *ret;
1032 
1033 	ASSERT_RTNL();
1034 
1035 	ret = NULL;
1036 	for_each_netdev(net, dev) {
1037 		if (((dev->flags ^ if_flags) & mask) == 0) {
1038 			ret = dev;
1039 			break;
1040 		}
1041 	}
1042 	return ret;
1043 }
1044 EXPORT_SYMBOL(__dev_get_by_flags);
1045 
1046 /**
1047  *	dev_valid_name - check if name is okay for network device
1048  *	@name: name string
1049  *
1050  *	Network device names need to be valid file names to
1051  *	allow sysfs to work.  We also disallow any kind of
1052  *	whitespace.
1053  */
1054 bool dev_valid_name(const char *name)
1055 {
1056 	if (*name == '\0')
1057 		return false;
1058 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1059 		return false;
1060 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1061 		return false;
1062 
1063 	while (*name) {
1064 		if (*name == '/' || *name == ':' || isspace(*name))
1065 			return false;
1066 		name++;
1067 	}
1068 	return true;
1069 }
1070 EXPORT_SYMBOL(dev_valid_name);
1071 
1072 /**
1073  *	__dev_alloc_name - allocate a name for a device
1074  *	@net: network namespace to allocate the device name in
1075  *	@name: name format string
1076  *	@buf:  scratch buffer and result name string
1077  *
1078  *	Passed a format string - eg "lt%d" it will try and find a suitable
1079  *	id. It scans list of devices to build up a free map, then chooses
1080  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1081  *	while allocating the name and adding the device in order to avoid
1082  *	duplicates.
1083  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1084  *	Returns the number of the unit assigned or a negative errno code.
1085  */
1086 
1087 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1088 {
1089 	int i = 0;
1090 	const char *p;
1091 	const int max_netdevices = 8*PAGE_SIZE;
1092 	unsigned long *inuse;
1093 	struct net_device *d;
1094 
1095 	if (!dev_valid_name(name))
1096 		return -EINVAL;
1097 
1098 	p = strchr(name, '%');
1099 	if (p) {
1100 		/*
1101 		 * Verify the string as this thing may have come from
1102 		 * the user.  There must be either one "%d" and no other "%"
1103 		 * characters.
1104 		 */
1105 		if (p[1] != 'd' || strchr(p + 2, '%'))
1106 			return -EINVAL;
1107 
1108 		/* Use one page as a bit array of possible slots */
1109 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1110 		if (!inuse)
1111 			return -ENOMEM;
1112 
1113 		for_each_netdev(net, d) {
1114 			struct netdev_name_node *name_node;
1115 			list_for_each_entry(name_node, &d->name_node->list, list) {
1116 				if (!sscanf(name_node->name, name, &i))
1117 					continue;
1118 				if (i < 0 || i >= max_netdevices)
1119 					continue;
1120 
1121 				/*  avoid cases where sscanf is not exact inverse of printf */
1122 				snprintf(buf, IFNAMSIZ, name, i);
1123 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1124 					set_bit(i, inuse);
1125 			}
1126 			if (!sscanf(d->name, name, &i))
1127 				continue;
1128 			if (i < 0 || i >= max_netdevices)
1129 				continue;
1130 
1131 			/*  avoid cases where sscanf is not exact inverse of printf */
1132 			snprintf(buf, IFNAMSIZ, name, i);
1133 			if (!strncmp(buf, d->name, IFNAMSIZ))
1134 				set_bit(i, inuse);
1135 		}
1136 
1137 		i = find_first_zero_bit(inuse, max_netdevices);
1138 		free_page((unsigned long) inuse);
1139 	}
1140 
1141 	snprintf(buf, IFNAMSIZ, name, i);
1142 	if (!netdev_name_in_use(net, buf))
1143 		return i;
1144 
1145 	/* It is possible to run out of possible slots
1146 	 * when the name is long and there isn't enough space left
1147 	 * for the digits, or if all bits are used.
1148 	 */
1149 	return -ENFILE;
1150 }
1151 
1152 static int dev_alloc_name_ns(struct net *net,
1153 			     struct net_device *dev,
1154 			     const char *name)
1155 {
1156 	char buf[IFNAMSIZ];
1157 	int ret;
1158 
1159 	BUG_ON(!net);
1160 	ret = __dev_alloc_name(net, name, buf);
1161 	if (ret >= 0)
1162 		strlcpy(dev->name, buf, IFNAMSIZ);
1163 	return ret;
1164 }
1165 
1166 /**
1167  *	dev_alloc_name - allocate a name for a device
1168  *	@dev: device
1169  *	@name: name format string
1170  *
1171  *	Passed a format string - eg "lt%d" it will try and find a suitable
1172  *	id. It scans list of devices to build up a free map, then chooses
1173  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1174  *	while allocating the name and adding the device in order to avoid
1175  *	duplicates.
1176  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1177  *	Returns the number of the unit assigned or a negative errno code.
1178  */
1179 
1180 int dev_alloc_name(struct net_device *dev, const char *name)
1181 {
1182 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1183 }
1184 EXPORT_SYMBOL(dev_alloc_name);
1185 
1186 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1187 			      const char *name)
1188 {
1189 	BUG_ON(!net);
1190 
1191 	if (!dev_valid_name(name))
1192 		return -EINVAL;
1193 
1194 	if (strchr(name, '%'))
1195 		return dev_alloc_name_ns(net, dev, name);
1196 	else if (netdev_name_in_use(net, name))
1197 		return -EEXIST;
1198 	else if (dev->name != name)
1199 		strlcpy(dev->name, name, IFNAMSIZ);
1200 
1201 	return 0;
1202 }
1203 
1204 /**
1205  *	dev_change_name - change name of a device
1206  *	@dev: device
1207  *	@newname: name (or format string) must be at least IFNAMSIZ
1208  *
1209  *	Change name of a device, can pass format strings "eth%d".
1210  *	for wildcarding.
1211  */
1212 int dev_change_name(struct net_device *dev, const char *newname)
1213 {
1214 	unsigned char old_assign_type;
1215 	char oldname[IFNAMSIZ];
1216 	int err = 0;
1217 	int ret;
1218 	struct net *net;
1219 
1220 	ASSERT_RTNL();
1221 	BUG_ON(!dev_net(dev));
1222 
1223 	net = dev_net(dev);
1224 
1225 	/* Some auto-enslaved devices e.g. failover slaves are
1226 	 * special, as userspace might rename the device after
1227 	 * the interface had been brought up and running since
1228 	 * the point kernel initiated auto-enslavement. Allow
1229 	 * live name change even when these slave devices are
1230 	 * up and running.
1231 	 *
1232 	 * Typically, users of these auto-enslaving devices
1233 	 * don't actually care about slave name change, as
1234 	 * they are supposed to operate on master interface
1235 	 * directly.
1236 	 */
1237 	if (dev->flags & IFF_UP &&
1238 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1239 		return -EBUSY;
1240 
1241 	down_write(&devnet_rename_sem);
1242 
1243 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1244 		up_write(&devnet_rename_sem);
1245 		return 0;
1246 	}
1247 
1248 	memcpy(oldname, dev->name, IFNAMSIZ);
1249 
1250 	err = dev_get_valid_name(net, dev, newname);
1251 	if (err < 0) {
1252 		up_write(&devnet_rename_sem);
1253 		return err;
1254 	}
1255 
1256 	if (oldname[0] && !strchr(oldname, '%'))
1257 		netdev_info(dev, "renamed from %s\n", oldname);
1258 
1259 	old_assign_type = dev->name_assign_type;
1260 	dev->name_assign_type = NET_NAME_RENAMED;
1261 
1262 rollback:
1263 	ret = device_rename(&dev->dev, dev->name);
1264 	if (ret) {
1265 		memcpy(dev->name, oldname, IFNAMSIZ);
1266 		dev->name_assign_type = old_assign_type;
1267 		up_write(&devnet_rename_sem);
1268 		return ret;
1269 	}
1270 
1271 	up_write(&devnet_rename_sem);
1272 
1273 	netdev_adjacent_rename_links(dev, oldname);
1274 
1275 	write_lock_bh(&dev_base_lock);
1276 	netdev_name_node_del(dev->name_node);
1277 	write_unlock_bh(&dev_base_lock);
1278 
1279 	synchronize_rcu();
1280 
1281 	write_lock_bh(&dev_base_lock);
1282 	netdev_name_node_add(net, dev->name_node);
1283 	write_unlock_bh(&dev_base_lock);
1284 
1285 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1286 	ret = notifier_to_errno(ret);
1287 
1288 	if (ret) {
1289 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1290 		if (err >= 0) {
1291 			err = ret;
1292 			down_write(&devnet_rename_sem);
1293 			memcpy(dev->name, oldname, IFNAMSIZ);
1294 			memcpy(oldname, newname, IFNAMSIZ);
1295 			dev->name_assign_type = old_assign_type;
1296 			old_assign_type = NET_NAME_RENAMED;
1297 			goto rollback;
1298 		} else {
1299 			netdev_err(dev, "name change rollback failed: %d\n",
1300 				   ret);
1301 		}
1302 	}
1303 
1304 	return err;
1305 }
1306 
1307 /**
1308  *	dev_set_alias - change ifalias of a device
1309  *	@dev: device
1310  *	@alias: name up to IFALIASZ
1311  *	@len: limit of bytes to copy from info
1312  *
1313  *	Set ifalias for a device,
1314  */
1315 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1316 {
1317 	struct dev_ifalias *new_alias = NULL;
1318 
1319 	if (len >= IFALIASZ)
1320 		return -EINVAL;
1321 
1322 	if (len) {
1323 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1324 		if (!new_alias)
1325 			return -ENOMEM;
1326 
1327 		memcpy(new_alias->ifalias, alias, len);
1328 		new_alias->ifalias[len] = 0;
1329 	}
1330 
1331 	mutex_lock(&ifalias_mutex);
1332 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1333 					mutex_is_locked(&ifalias_mutex));
1334 	mutex_unlock(&ifalias_mutex);
1335 
1336 	if (new_alias)
1337 		kfree_rcu(new_alias, rcuhead);
1338 
1339 	return len;
1340 }
1341 EXPORT_SYMBOL(dev_set_alias);
1342 
1343 /**
1344  *	dev_get_alias - get ifalias of a device
1345  *	@dev: device
1346  *	@name: buffer to store name of ifalias
1347  *	@len: size of buffer
1348  *
1349  *	get ifalias for a device.  Caller must make sure dev cannot go
1350  *	away,  e.g. rcu read lock or own a reference count to device.
1351  */
1352 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1353 {
1354 	const struct dev_ifalias *alias;
1355 	int ret = 0;
1356 
1357 	rcu_read_lock();
1358 	alias = rcu_dereference(dev->ifalias);
1359 	if (alias)
1360 		ret = snprintf(name, len, "%s", alias->ifalias);
1361 	rcu_read_unlock();
1362 
1363 	return ret;
1364 }
1365 
1366 /**
1367  *	netdev_features_change - device changes features
1368  *	@dev: device to cause notification
1369  *
1370  *	Called to indicate a device has changed features.
1371  */
1372 void netdev_features_change(struct net_device *dev)
1373 {
1374 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1375 }
1376 EXPORT_SYMBOL(netdev_features_change);
1377 
1378 /**
1379  *	netdev_state_change - device changes state
1380  *	@dev: device to cause notification
1381  *
1382  *	Called to indicate a device has changed state. This function calls
1383  *	the notifier chains for netdev_chain and sends a NEWLINK message
1384  *	to the routing socket.
1385  */
1386 void netdev_state_change(struct net_device *dev)
1387 {
1388 	if (dev->flags & IFF_UP) {
1389 		struct netdev_notifier_change_info change_info = {
1390 			.info.dev = dev,
1391 		};
1392 
1393 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1394 					      &change_info.info);
1395 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1396 	}
1397 }
1398 EXPORT_SYMBOL(netdev_state_change);
1399 
1400 /**
1401  * __netdev_notify_peers - notify network peers about existence of @dev,
1402  * to be called when rtnl lock is already held.
1403  * @dev: network device
1404  *
1405  * Generate traffic such that interested network peers are aware of
1406  * @dev, such as by generating a gratuitous ARP. This may be used when
1407  * a device wants to inform the rest of the network about some sort of
1408  * reconfiguration such as a failover event or virtual machine
1409  * migration.
1410  */
1411 void __netdev_notify_peers(struct net_device *dev)
1412 {
1413 	ASSERT_RTNL();
1414 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1415 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1416 }
1417 EXPORT_SYMBOL(__netdev_notify_peers);
1418 
1419 /**
1420  * netdev_notify_peers - notify network peers about existence of @dev
1421  * @dev: network device
1422  *
1423  * Generate traffic such that interested network peers are aware of
1424  * @dev, such as by generating a gratuitous ARP. This may be used when
1425  * a device wants to inform the rest of the network about some sort of
1426  * reconfiguration such as a failover event or virtual machine
1427  * migration.
1428  */
1429 void netdev_notify_peers(struct net_device *dev)
1430 {
1431 	rtnl_lock();
1432 	__netdev_notify_peers(dev);
1433 	rtnl_unlock();
1434 }
1435 EXPORT_SYMBOL(netdev_notify_peers);
1436 
1437 static int napi_threaded_poll(void *data);
1438 
1439 static int napi_kthread_create(struct napi_struct *n)
1440 {
1441 	int err = 0;
1442 
1443 	/* Create and wake up the kthread once to put it in
1444 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1445 	 * warning and work with loadavg.
1446 	 */
1447 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1448 				n->dev->name, n->napi_id);
1449 	if (IS_ERR(n->thread)) {
1450 		err = PTR_ERR(n->thread);
1451 		pr_err("kthread_run failed with err %d\n", err);
1452 		n->thread = NULL;
1453 	}
1454 
1455 	return err;
1456 }
1457 
1458 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1459 {
1460 	const struct net_device_ops *ops = dev->netdev_ops;
1461 	int ret;
1462 
1463 	ASSERT_RTNL();
1464 
1465 	if (!netif_device_present(dev)) {
1466 		/* may be detached because parent is runtime-suspended */
1467 		if (dev->dev.parent)
1468 			pm_runtime_resume(dev->dev.parent);
1469 		if (!netif_device_present(dev))
1470 			return -ENODEV;
1471 	}
1472 
1473 	/* Block netpoll from trying to do any rx path servicing.
1474 	 * If we don't do this there is a chance ndo_poll_controller
1475 	 * or ndo_poll may be running while we open the device
1476 	 */
1477 	netpoll_poll_disable(dev);
1478 
1479 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1480 	ret = notifier_to_errno(ret);
1481 	if (ret)
1482 		return ret;
1483 
1484 	set_bit(__LINK_STATE_START, &dev->state);
1485 
1486 	if (ops->ndo_validate_addr)
1487 		ret = ops->ndo_validate_addr(dev);
1488 
1489 	if (!ret && ops->ndo_open)
1490 		ret = ops->ndo_open(dev);
1491 
1492 	netpoll_poll_enable(dev);
1493 
1494 	if (ret)
1495 		clear_bit(__LINK_STATE_START, &dev->state);
1496 	else {
1497 		dev->flags |= IFF_UP;
1498 		dev_set_rx_mode(dev);
1499 		dev_activate(dev);
1500 		add_device_randomness(dev->dev_addr, dev->addr_len);
1501 	}
1502 
1503 	return ret;
1504 }
1505 
1506 /**
1507  *	dev_open	- prepare an interface for use.
1508  *	@dev: device to open
1509  *	@extack: netlink extended ack
1510  *
1511  *	Takes a device from down to up state. The device's private open
1512  *	function is invoked and then the multicast lists are loaded. Finally
1513  *	the device is moved into the up state and a %NETDEV_UP message is
1514  *	sent to the netdev notifier chain.
1515  *
1516  *	Calling this function on an active interface is a nop. On a failure
1517  *	a negative errno code is returned.
1518  */
1519 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1520 {
1521 	int ret;
1522 
1523 	if (dev->flags & IFF_UP)
1524 		return 0;
1525 
1526 	ret = __dev_open(dev, extack);
1527 	if (ret < 0)
1528 		return ret;
1529 
1530 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1531 	call_netdevice_notifiers(NETDEV_UP, dev);
1532 
1533 	return ret;
1534 }
1535 EXPORT_SYMBOL(dev_open);
1536 
1537 static void __dev_close_many(struct list_head *head)
1538 {
1539 	struct net_device *dev;
1540 
1541 	ASSERT_RTNL();
1542 	might_sleep();
1543 
1544 	list_for_each_entry(dev, head, close_list) {
1545 		/* Temporarily disable netpoll until the interface is down */
1546 		netpoll_poll_disable(dev);
1547 
1548 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1549 
1550 		clear_bit(__LINK_STATE_START, &dev->state);
1551 
1552 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1553 		 * can be even on different cpu. So just clear netif_running().
1554 		 *
1555 		 * dev->stop() will invoke napi_disable() on all of it's
1556 		 * napi_struct instances on this device.
1557 		 */
1558 		smp_mb__after_atomic(); /* Commit netif_running(). */
1559 	}
1560 
1561 	dev_deactivate_many(head);
1562 
1563 	list_for_each_entry(dev, head, close_list) {
1564 		const struct net_device_ops *ops = dev->netdev_ops;
1565 
1566 		/*
1567 		 *	Call the device specific close. This cannot fail.
1568 		 *	Only if device is UP
1569 		 *
1570 		 *	We allow it to be called even after a DETACH hot-plug
1571 		 *	event.
1572 		 */
1573 		if (ops->ndo_stop)
1574 			ops->ndo_stop(dev);
1575 
1576 		dev->flags &= ~IFF_UP;
1577 		netpoll_poll_enable(dev);
1578 	}
1579 }
1580 
1581 static void __dev_close(struct net_device *dev)
1582 {
1583 	LIST_HEAD(single);
1584 
1585 	list_add(&dev->close_list, &single);
1586 	__dev_close_many(&single);
1587 	list_del(&single);
1588 }
1589 
1590 void dev_close_many(struct list_head *head, bool unlink)
1591 {
1592 	struct net_device *dev, *tmp;
1593 
1594 	/* Remove the devices that don't need to be closed */
1595 	list_for_each_entry_safe(dev, tmp, head, close_list)
1596 		if (!(dev->flags & IFF_UP))
1597 			list_del_init(&dev->close_list);
1598 
1599 	__dev_close_many(head);
1600 
1601 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1602 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1603 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1604 		if (unlink)
1605 			list_del_init(&dev->close_list);
1606 	}
1607 }
1608 EXPORT_SYMBOL(dev_close_many);
1609 
1610 /**
1611  *	dev_close - shutdown an interface.
1612  *	@dev: device to shutdown
1613  *
1614  *	This function moves an active device into down state. A
1615  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1616  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1617  *	chain.
1618  */
1619 void dev_close(struct net_device *dev)
1620 {
1621 	if (dev->flags & IFF_UP) {
1622 		LIST_HEAD(single);
1623 
1624 		list_add(&dev->close_list, &single);
1625 		dev_close_many(&single, true);
1626 		list_del(&single);
1627 	}
1628 }
1629 EXPORT_SYMBOL(dev_close);
1630 
1631 
1632 /**
1633  *	dev_disable_lro - disable Large Receive Offload on a device
1634  *	@dev: device
1635  *
1636  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1637  *	called under RTNL.  This is needed if received packets may be
1638  *	forwarded to another interface.
1639  */
1640 void dev_disable_lro(struct net_device *dev)
1641 {
1642 	struct net_device *lower_dev;
1643 	struct list_head *iter;
1644 
1645 	dev->wanted_features &= ~NETIF_F_LRO;
1646 	netdev_update_features(dev);
1647 
1648 	if (unlikely(dev->features & NETIF_F_LRO))
1649 		netdev_WARN(dev, "failed to disable LRO!\n");
1650 
1651 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1652 		dev_disable_lro(lower_dev);
1653 }
1654 EXPORT_SYMBOL(dev_disable_lro);
1655 
1656 /**
1657  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1658  *	@dev: device
1659  *
1660  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1661  *	called under RTNL.  This is needed if Generic XDP is installed on
1662  *	the device.
1663  */
1664 static void dev_disable_gro_hw(struct net_device *dev)
1665 {
1666 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1667 	netdev_update_features(dev);
1668 
1669 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1670 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1671 }
1672 
1673 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1674 {
1675 #define N(val) 						\
1676 	case NETDEV_##val:				\
1677 		return "NETDEV_" __stringify(val);
1678 	switch (cmd) {
1679 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1680 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1681 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1682 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1683 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1684 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1685 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1686 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1687 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1688 	N(PRE_CHANGEADDR)
1689 	}
1690 #undef N
1691 	return "UNKNOWN_NETDEV_EVENT";
1692 }
1693 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1694 
1695 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1696 				   struct net_device *dev)
1697 {
1698 	struct netdev_notifier_info info = {
1699 		.dev = dev,
1700 	};
1701 
1702 	return nb->notifier_call(nb, val, &info);
1703 }
1704 
1705 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1706 					     struct net_device *dev)
1707 {
1708 	int err;
1709 
1710 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1711 	err = notifier_to_errno(err);
1712 	if (err)
1713 		return err;
1714 
1715 	if (!(dev->flags & IFF_UP))
1716 		return 0;
1717 
1718 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1719 	return 0;
1720 }
1721 
1722 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1723 						struct net_device *dev)
1724 {
1725 	if (dev->flags & IFF_UP) {
1726 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1727 					dev);
1728 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1729 	}
1730 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1731 }
1732 
1733 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1734 						 struct net *net)
1735 {
1736 	struct net_device *dev;
1737 	int err;
1738 
1739 	for_each_netdev(net, dev) {
1740 		err = call_netdevice_register_notifiers(nb, dev);
1741 		if (err)
1742 			goto rollback;
1743 	}
1744 	return 0;
1745 
1746 rollback:
1747 	for_each_netdev_continue_reverse(net, dev)
1748 		call_netdevice_unregister_notifiers(nb, dev);
1749 	return err;
1750 }
1751 
1752 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1753 						    struct net *net)
1754 {
1755 	struct net_device *dev;
1756 
1757 	for_each_netdev(net, dev)
1758 		call_netdevice_unregister_notifiers(nb, dev);
1759 }
1760 
1761 static int dev_boot_phase = 1;
1762 
1763 /**
1764  * register_netdevice_notifier - register a network notifier block
1765  * @nb: notifier
1766  *
1767  * Register a notifier to be called when network device events occur.
1768  * The notifier passed is linked into the kernel structures and must
1769  * not be reused until it has been unregistered. A negative errno code
1770  * is returned on a failure.
1771  *
1772  * When registered all registration and up events are replayed
1773  * to the new notifier to allow device to have a race free
1774  * view of the network device list.
1775  */
1776 
1777 int register_netdevice_notifier(struct notifier_block *nb)
1778 {
1779 	struct net *net;
1780 	int err;
1781 
1782 	/* Close race with setup_net() and cleanup_net() */
1783 	down_write(&pernet_ops_rwsem);
1784 	rtnl_lock();
1785 	err = raw_notifier_chain_register(&netdev_chain, nb);
1786 	if (err)
1787 		goto unlock;
1788 	if (dev_boot_phase)
1789 		goto unlock;
1790 	for_each_net(net) {
1791 		err = call_netdevice_register_net_notifiers(nb, net);
1792 		if (err)
1793 			goto rollback;
1794 	}
1795 
1796 unlock:
1797 	rtnl_unlock();
1798 	up_write(&pernet_ops_rwsem);
1799 	return err;
1800 
1801 rollback:
1802 	for_each_net_continue_reverse(net)
1803 		call_netdevice_unregister_net_notifiers(nb, net);
1804 
1805 	raw_notifier_chain_unregister(&netdev_chain, nb);
1806 	goto unlock;
1807 }
1808 EXPORT_SYMBOL(register_netdevice_notifier);
1809 
1810 /**
1811  * unregister_netdevice_notifier - unregister a network notifier block
1812  * @nb: notifier
1813  *
1814  * Unregister a notifier previously registered by
1815  * register_netdevice_notifier(). The notifier is unlinked into the
1816  * kernel structures and may then be reused. A negative errno code
1817  * is returned on a failure.
1818  *
1819  * After unregistering unregister and down device events are synthesized
1820  * for all devices on the device list to the removed notifier to remove
1821  * the need for special case cleanup code.
1822  */
1823 
1824 int unregister_netdevice_notifier(struct notifier_block *nb)
1825 {
1826 	struct net *net;
1827 	int err;
1828 
1829 	/* Close race with setup_net() and cleanup_net() */
1830 	down_write(&pernet_ops_rwsem);
1831 	rtnl_lock();
1832 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1833 	if (err)
1834 		goto unlock;
1835 
1836 	for_each_net(net)
1837 		call_netdevice_unregister_net_notifiers(nb, net);
1838 
1839 unlock:
1840 	rtnl_unlock();
1841 	up_write(&pernet_ops_rwsem);
1842 	return err;
1843 }
1844 EXPORT_SYMBOL(unregister_netdevice_notifier);
1845 
1846 static int __register_netdevice_notifier_net(struct net *net,
1847 					     struct notifier_block *nb,
1848 					     bool ignore_call_fail)
1849 {
1850 	int err;
1851 
1852 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1853 	if (err)
1854 		return err;
1855 	if (dev_boot_phase)
1856 		return 0;
1857 
1858 	err = call_netdevice_register_net_notifiers(nb, net);
1859 	if (err && !ignore_call_fail)
1860 		goto chain_unregister;
1861 
1862 	return 0;
1863 
1864 chain_unregister:
1865 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1866 	return err;
1867 }
1868 
1869 static int __unregister_netdevice_notifier_net(struct net *net,
1870 					       struct notifier_block *nb)
1871 {
1872 	int err;
1873 
1874 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1875 	if (err)
1876 		return err;
1877 
1878 	call_netdevice_unregister_net_notifiers(nb, net);
1879 	return 0;
1880 }
1881 
1882 /**
1883  * register_netdevice_notifier_net - register a per-netns network notifier block
1884  * @net: network namespace
1885  * @nb: notifier
1886  *
1887  * Register a notifier to be called when network device events occur.
1888  * The notifier passed is linked into the kernel structures and must
1889  * not be reused until it has been unregistered. A negative errno code
1890  * is returned on a failure.
1891  *
1892  * When registered all registration and up events are replayed
1893  * to the new notifier to allow device to have a race free
1894  * view of the network device list.
1895  */
1896 
1897 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1898 {
1899 	int err;
1900 
1901 	rtnl_lock();
1902 	err = __register_netdevice_notifier_net(net, nb, false);
1903 	rtnl_unlock();
1904 	return err;
1905 }
1906 EXPORT_SYMBOL(register_netdevice_notifier_net);
1907 
1908 /**
1909  * unregister_netdevice_notifier_net - unregister a per-netns
1910  *                                     network notifier block
1911  * @net: network namespace
1912  * @nb: notifier
1913  *
1914  * Unregister a notifier previously registered by
1915  * register_netdevice_notifier(). The notifier is unlinked into the
1916  * kernel structures and may then be reused. A negative errno code
1917  * is returned on a failure.
1918  *
1919  * After unregistering unregister and down device events are synthesized
1920  * for all devices on the device list to the removed notifier to remove
1921  * the need for special case cleanup code.
1922  */
1923 
1924 int unregister_netdevice_notifier_net(struct net *net,
1925 				      struct notifier_block *nb)
1926 {
1927 	int err;
1928 
1929 	rtnl_lock();
1930 	err = __unregister_netdevice_notifier_net(net, nb);
1931 	rtnl_unlock();
1932 	return err;
1933 }
1934 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1935 
1936 int register_netdevice_notifier_dev_net(struct net_device *dev,
1937 					struct notifier_block *nb,
1938 					struct netdev_net_notifier *nn)
1939 {
1940 	int err;
1941 
1942 	rtnl_lock();
1943 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1944 	if (!err) {
1945 		nn->nb = nb;
1946 		list_add(&nn->list, &dev->net_notifier_list);
1947 	}
1948 	rtnl_unlock();
1949 	return err;
1950 }
1951 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1952 
1953 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1954 					  struct notifier_block *nb,
1955 					  struct netdev_net_notifier *nn)
1956 {
1957 	int err;
1958 
1959 	rtnl_lock();
1960 	list_del(&nn->list);
1961 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1962 	rtnl_unlock();
1963 	return err;
1964 }
1965 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1966 
1967 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1968 					     struct net *net)
1969 {
1970 	struct netdev_net_notifier *nn;
1971 
1972 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
1973 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1974 		__register_netdevice_notifier_net(net, nn->nb, true);
1975 	}
1976 }
1977 
1978 /**
1979  *	call_netdevice_notifiers_info - call all network notifier blocks
1980  *	@val: value passed unmodified to notifier function
1981  *	@info: notifier information data
1982  *
1983  *	Call all network notifier blocks.  Parameters and return value
1984  *	are as for raw_notifier_call_chain().
1985  */
1986 
1987 static int call_netdevice_notifiers_info(unsigned long val,
1988 					 struct netdev_notifier_info *info)
1989 {
1990 	struct net *net = dev_net(info->dev);
1991 	int ret;
1992 
1993 	ASSERT_RTNL();
1994 
1995 	/* Run per-netns notifier block chain first, then run the global one.
1996 	 * Hopefully, one day, the global one is going to be removed after
1997 	 * all notifier block registrators get converted to be per-netns.
1998 	 */
1999 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2000 	if (ret & NOTIFY_STOP_MASK)
2001 		return ret;
2002 	return raw_notifier_call_chain(&netdev_chain, val, info);
2003 }
2004 
2005 static int call_netdevice_notifiers_extack(unsigned long val,
2006 					   struct net_device *dev,
2007 					   struct netlink_ext_ack *extack)
2008 {
2009 	struct netdev_notifier_info info = {
2010 		.dev = dev,
2011 		.extack = extack,
2012 	};
2013 
2014 	return call_netdevice_notifiers_info(val, &info);
2015 }
2016 
2017 /**
2018  *	call_netdevice_notifiers - call all network notifier blocks
2019  *      @val: value passed unmodified to notifier function
2020  *      @dev: net_device pointer passed unmodified to notifier function
2021  *
2022  *	Call all network notifier blocks.  Parameters and return value
2023  *	are as for raw_notifier_call_chain().
2024  */
2025 
2026 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2027 {
2028 	return call_netdevice_notifiers_extack(val, dev, NULL);
2029 }
2030 EXPORT_SYMBOL(call_netdevice_notifiers);
2031 
2032 /**
2033  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2034  *	@val: value passed unmodified to notifier function
2035  *	@dev: net_device pointer passed unmodified to notifier function
2036  *	@arg: additional u32 argument passed to the notifier function
2037  *
2038  *	Call all network notifier blocks.  Parameters and return value
2039  *	are as for raw_notifier_call_chain().
2040  */
2041 static int call_netdevice_notifiers_mtu(unsigned long val,
2042 					struct net_device *dev, u32 arg)
2043 {
2044 	struct netdev_notifier_info_ext info = {
2045 		.info.dev = dev,
2046 		.ext.mtu = arg,
2047 	};
2048 
2049 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2050 
2051 	return call_netdevice_notifiers_info(val, &info.info);
2052 }
2053 
2054 #ifdef CONFIG_NET_INGRESS
2055 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2056 
2057 void net_inc_ingress_queue(void)
2058 {
2059 	static_branch_inc(&ingress_needed_key);
2060 }
2061 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2062 
2063 void net_dec_ingress_queue(void)
2064 {
2065 	static_branch_dec(&ingress_needed_key);
2066 }
2067 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2068 #endif
2069 
2070 #ifdef CONFIG_NET_EGRESS
2071 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2072 
2073 void net_inc_egress_queue(void)
2074 {
2075 	static_branch_inc(&egress_needed_key);
2076 }
2077 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2078 
2079 void net_dec_egress_queue(void)
2080 {
2081 	static_branch_dec(&egress_needed_key);
2082 }
2083 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2084 #endif
2085 
2086 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2087 #ifdef CONFIG_JUMP_LABEL
2088 static atomic_t netstamp_needed_deferred;
2089 static atomic_t netstamp_wanted;
2090 static void netstamp_clear(struct work_struct *work)
2091 {
2092 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2093 	int wanted;
2094 
2095 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2096 	if (wanted > 0)
2097 		static_branch_enable(&netstamp_needed_key);
2098 	else
2099 		static_branch_disable(&netstamp_needed_key);
2100 }
2101 static DECLARE_WORK(netstamp_work, netstamp_clear);
2102 #endif
2103 
2104 void net_enable_timestamp(void)
2105 {
2106 #ifdef CONFIG_JUMP_LABEL
2107 	int wanted;
2108 
2109 	while (1) {
2110 		wanted = atomic_read(&netstamp_wanted);
2111 		if (wanted <= 0)
2112 			break;
2113 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2114 			return;
2115 	}
2116 	atomic_inc(&netstamp_needed_deferred);
2117 	schedule_work(&netstamp_work);
2118 #else
2119 	static_branch_inc(&netstamp_needed_key);
2120 #endif
2121 }
2122 EXPORT_SYMBOL(net_enable_timestamp);
2123 
2124 void net_disable_timestamp(void)
2125 {
2126 #ifdef CONFIG_JUMP_LABEL
2127 	int wanted;
2128 
2129 	while (1) {
2130 		wanted = atomic_read(&netstamp_wanted);
2131 		if (wanted <= 1)
2132 			break;
2133 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2134 			return;
2135 	}
2136 	atomic_dec(&netstamp_needed_deferred);
2137 	schedule_work(&netstamp_work);
2138 #else
2139 	static_branch_dec(&netstamp_needed_key);
2140 #endif
2141 }
2142 EXPORT_SYMBOL(net_disable_timestamp);
2143 
2144 static inline void net_timestamp_set(struct sk_buff *skb)
2145 {
2146 	skb->tstamp = 0;
2147 	if (static_branch_unlikely(&netstamp_needed_key))
2148 		__net_timestamp(skb);
2149 }
2150 
2151 #define net_timestamp_check(COND, SKB)				\
2152 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2153 		if ((COND) && !(SKB)->tstamp)			\
2154 			__net_timestamp(SKB);			\
2155 	}							\
2156 
2157 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2158 {
2159 	return __is_skb_forwardable(dev, skb, true);
2160 }
2161 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2162 
2163 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2164 			      bool check_mtu)
2165 {
2166 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2167 
2168 	if (likely(!ret)) {
2169 		skb->protocol = eth_type_trans(skb, dev);
2170 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2171 	}
2172 
2173 	return ret;
2174 }
2175 
2176 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2177 {
2178 	return __dev_forward_skb2(dev, skb, true);
2179 }
2180 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2181 
2182 /**
2183  * dev_forward_skb - loopback an skb to another netif
2184  *
2185  * @dev: destination network device
2186  * @skb: buffer to forward
2187  *
2188  * return values:
2189  *	NET_RX_SUCCESS	(no congestion)
2190  *	NET_RX_DROP     (packet was dropped, but freed)
2191  *
2192  * dev_forward_skb can be used for injecting an skb from the
2193  * start_xmit function of one device into the receive queue
2194  * of another device.
2195  *
2196  * The receiving device may be in another namespace, so
2197  * we have to clear all information in the skb that could
2198  * impact namespace isolation.
2199  */
2200 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2201 {
2202 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2203 }
2204 EXPORT_SYMBOL_GPL(dev_forward_skb);
2205 
2206 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2207 {
2208 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2209 }
2210 
2211 static inline int deliver_skb(struct sk_buff *skb,
2212 			      struct packet_type *pt_prev,
2213 			      struct net_device *orig_dev)
2214 {
2215 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2216 		return -ENOMEM;
2217 	refcount_inc(&skb->users);
2218 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2219 }
2220 
2221 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2222 					  struct packet_type **pt,
2223 					  struct net_device *orig_dev,
2224 					  __be16 type,
2225 					  struct list_head *ptype_list)
2226 {
2227 	struct packet_type *ptype, *pt_prev = *pt;
2228 
2229 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2230 		if (ptype->type != type)
2231 			continue;
2232 		if (pt_prev)
2233 			deliver_skb(skb, pt_prev, orig_dev);
2234 		pt_prev = ptype;
2235 	}
2236 	*pt = pt_prev;
2237 }
2238 
2239 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2240 {
2241 	if (!ptype->af_packet_priv || !skb->sk)
2242 		return false;
2243 
2244 	if (ptype->id_match)
2245 		return ptype->id_match(ptype, skb->sk);
2246 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2247 		return true;
2248 
2249 	return false;
2250 }
2251 
2252 /**
2253  * dev_nit_active - return true if any network interface taps are in use
2254  *
2255  * @dev: network device to check for the presence of taps
2256  */
2257 bool dev_nit_active(struct net_device *dev)
2258 {
2259 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2260 }
2261 EXPORT_SYMBOL_GPL(dev_nit_active);
2262 
2263 /*
2264  *	Support routine. Sends outgoing frames to any network
2265  *	taps currently in use.
2266  */
2267 
2268 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2269 {
2270 	struct packet_type *ptype;
2271 	struct sk_buff *skb2 = NULL;
2272 	struct packet_type *pt_prev = NULL;
2273 	struct list_head *ptype_list = &ptype_all;
2274 
2275 	rcu_read_lock();
2276 again:
2277 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2278 		if (ptype->ignore_outgoing)
2279 			continue;
2280 
2281 		/* Never send packets back to the socket
2282 		 * they originated from - MvS (miquels@drinkel.ow.org)
2283 		 */
2284 		if (skb_loop_sk(ptype, skb))
2285 			continue;
2286 
2287 		if (pt_prev) {
2288 			deliver_skb(skb2, pt_prev, skb->dev);
2289 			pt_prev = ptype;
2290 			continue;
2291 		}
2292 
2293 		/* need to clone skb, done only once */
2294 		skb2 = skb_clone(skb, GFP_ATOMIC);
2295 		if (!skb2)
2296 			goto out_unlock;
2297 
2298 		net_timestamp_set(skb2);
2299 
2300 		/* skb->nh should be correctly
2301 		 * set by sender, so that the second statement is
2302 		 * just protection against buggy protocols.
2303 		 */
2304 		skb_reset_mac_header(skb2);
2305 
2306 		if (skb_network_header(skb2) < skb2->data ||
2307 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2308 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2309 					     ntohs(skb2->protocol),
2310 					     dev->name);
2311 			skb_reset_network_header(skb2);
2312 		}
2313 
2314 		skb2->transport_header = skb2->network_header;
2315 		skb2->pkt_type = PACKET_OUTGOING;
2316 		pt_prev = ptype;
2317 	}
2318 
2319 	if (ptype_list == &ptype_all) {
2320 		ptype_list = &dev->ptype_all;
2321 		goto again;
2322 	}
2323 out_unlock:
2324 	if (pt_prev) {
2325 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2326 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2327 		else
2328 			kfree_skb(skb2);
2329 	}
2330 	rcu_read_unlock();
2331 }
2332 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2333 
2334 /**
2335  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2336  * @dev: Network device
2337  * @txq: number of queues available
2338  *
2339  * If real_num_tx_queues is changed the tc mappings may no longer be
2340  * valid. To resolve this verify the tc mapping remains valid and if
2341  * not NULL the mapping. With no priorities mapping to this
2342  * offset/count pair it will no longer be used. In the worst case TC0
2343  * is invalid nothing can be done so disable priority mappings. If is
2344  * expected that drivers will fix this mapping if they can before
2345  * calling netif_set_real_num_tx_queues.
2346  */
2347 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2348 {
2349 	int i;
2350 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2351 
2352 	/* If TC0 is invalidated disable TC mapping */
2353 	if (tc->offset + tc->count > txq) {
2354 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2355 		dev->num_tc = 0;
2356 		return;
2357 	}
2358 
2359 	/* Invalidated prio to tc mappings set to TC0 */
2360 	for (i = 1; i < TC_BITMASK + 1; i++) {
2361 		int q = netdev_get_prio_tc_map(dev, i);
2362 
2363 		tc = &dev->tc_to_txq[q];
2364 		if (tc->offset + tc->count > txq) {
2365 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2366 				    i, q);
2367 			netdev_set_prio_tc_map(dev, i, 0);
2368 		}
2369 	}
2370 }
2371 
2372 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2373 {
2374 	if (dev->num_tc) {
2375 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2376 		int i;
2377 
2378 		/* walk through the TCs and see if it falls into any of them */
2379 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2380 			if ((txq - tc->offset) < tc->count)
2381 				return i;
2382 		}
2383 
2384 		/* didn't find it, just return -1 to indicate no match */
2385 		return -1;
2386 	}
2387 
2388 	return 0;
2389 }
2390 EXPORT_SYMBOL(netdev_txq_to_tc);
2391 
2392 #ifdef CONFIG_XPS
2393 static struct static_key xps_needed __read_mostly;
2394 static struct static_key xps_rxqs_needed __read_mostly;
2395 static DEFINE_MUTEX(xps_map_mutex);
2396 #define xmap_dereference(P)		\
2397 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2398 
2399 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2400 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2401 {
2402 	struct xps_map *map = NULL;
2403 	int pos;
2404 
2405 	if (dev_maps)
2406 		map = xmap_dereference(dev_maps->attr_map[tci]);
2407 	if (!map)
2408 		return false;
2409 
2410 	for (pos = map->len; pos--;) {
2411 		if (map->queues[pos] != index)
2412 			continue;
2413 
2414 		if (map->len > 1) {
2415 			map->queues[pos] = map->queues[--map->len];
2416 			break;
2417 		}
2418 
2419 		if (old_maps)
2420 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2421 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2422 		kfree_rcu(map, rcu);
2423 		return false;
2424 	}
2425 
2426 	return true;
2427 }
2428 
2429 static bool remove_xps_queue_cpu(struct net_device *dev,
2430 				 struct xps_dev_maps *dev_maps,
2431 				 int cpu, u16 offset, u16 count)
2432 {
2433 	int num_tc = dev_maps->num_tc;
2434 	bool active = false;
2435 	int tci;
2436 
2437 	for (tci = cpu * num_tc; num_tc--; tci++) {
2438 		int i, j;
2439 
2440 		for (i = count, j = offset; i--; j++) {
2441 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2442 				break;
2443 		}
2444 
2445 		active |= i < 0;
2446 	}
2447 
2448 	return active;
2449 }
2450 
2451 static void reset_xps_maps(struct net_device *dev,
2452 			   struct xps_dev_maps *dev_maps,
2453 			   enum xps_map_type type)
2454 {
2455 	static_key_slow_dec_cpuslocked(&xps_needed);
2456 	if (type == XPS_RXQS)
2457 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2458 
2459 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2460 
2461 	kfree_rcu(dev_maps, rcu);
2462 }
2463 
2464 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2465 			   u16 offset, u16 count)
2466 {
2467 	struct xps_dev_maps *dev_maps;
2468 	bool active = false;
2469 	int i, j;
2470 
2471 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2472 	if (!dev_maps)
2473 		return;
2474 
2475 	for (j = 0; j < dev_maps->nr_ids; j++)
2476 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2477 	if (!active)
2478 		reset_xps_maps(dev, dev_maps, type);
2479 
2480 	if (type == XPS_CPUS) {
2481 		for (i = offset + (count - 1); count--; i--)
2482 			netdev_queue_numa_node_write(
2483 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2484 	}
2485 }
2486 
2487 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2488 				   u16 count)
2489 {
2490 	if (!static_key_false(&xps_needed))
2491 		return;
2492 
2493 	cpus_read_lock();
2494 	mutex_lock(&xps_map_mutex);
2495 
2496 	if (static_key_false(&xps_rxqs_needed))
2497 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2498 
2499 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2500 
2501 	mutex_unlock(&xps_map_mutex);
2502 	cpus_read_unlock();
2503 }
2504 
2505 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2506 {
2507 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2508 }
2509 
2510 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2511 				      u16 index, bool is_rxqs_map)
2512 {
2513 	struct xps_map *new_map;
2514 	int alloc_len = XPS_MIN_MAP_ALLOC;
2515 	int i, pos;
2516 
2517 	for (pos = 0; map && pos < map->len; pos++) {
2518 		if (map->queues[pos] != index)
2519 			continue;
2520 		return map;
2521 	}
2522 
2523 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2524 	if (map) {
2525 		if (pos < map->alloc_len)
2526 			return map;
2527 
2528 		alloc_len = map->alloc_len * 2;
2529 	}
2530 
2531 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2532 	 *  map
2533 	 */
2534 	if (is_rxqs_map)
2535 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2536 	else
2537 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2538 				       cpu_to_node(attr_index));
2539 	if (!new_map)
2540 		return NULL;
2541 
2542 	for (i = 0; i < pos; i++)
2543 		new_map->queues[i] = map->queues[i];
2544 	new_map->alloc_len = alloc_len;
2545 	new_map->len = pos;
2546 
2547 	return new_map;
2548 }
2549 
2550 /* Copy xps maps at a given index */
2551 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2552 			      struct xps_dev_maps *new_dev_maps, int index,
2553 			      int tc, bool skip_tc)
2554 {
2555 	int i, tci = index * dev_maps->num_tc;
2556 	struct xps_map *map;
2557 
2558 	/* copy maps belonging to foreign traffic classes */
2559 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2560 		if (i == tc && skip_tc)
2561 			continue;
2562 
2563 		/* fill in the new device map from the old device map */
2564 		map = xmap_dereference(dev_maps->attr_map[tci]);
2565 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2566 	}
2567 }
2568 
2569 /* Must be called under cpus_read_lock */
2570 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2571 			  u16 index, enum xps_map_type type)
2572 {
2573 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2574 	const unsigned long *online_mask = NULL;
2575 	bool active = false, copy = false;
2576 	int i, j, tci, numa_node_id = -2;
2577 	int maps_sz, num_tc = 1, tc = 0;
2578 	struct xps_map *map, *new_map;
2579 	unsigned int nr_ids;
2580 
2581 	if (dev->num_tc) {
2582 		/* Do not allow XPS on subordinate device directly */
2583 		num_tc = dev->num_tc;
2584 		if (num_tc < 0)
2585 			return -EINVAL;
2586 
2587 		/* If queue belongs to subordinate dev use its map */
2588 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2589 
2590 		tc = netdev_txq_to_tc(dev, index);
2591 		if (tc < 0)
2592 			return -EINVAL;
2593 	}
2594 
2595 	mutex_lock(&xps_map_mutex);
2596 
2597 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2598 	if (type == XPS_RXQS) {
2599 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2600 		nr_ids = dev->num_rx_queues;
2601 	} else {
2602 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2603 		if (num_possible_cpus() > 1)
2604 			online_mask = cpumask_bits(cpu_online_mask);
2605 		nr_ids = nr_cpu_ids;
2606 	}
2607 
2608 	if (maps_sz < L1_CACHE_BYTES)
2609 		maps_sz = L1_CACHE_BYTES;
2610 
2611 	/* The old dev_maps could be larger or smaller than the one we're
2612 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2613 	 * between. We could try to be smart, but let's be safe instead and only
2614 	 * copy foreign traffic classes if the two map sizes match.
2615 	 */
2616 	if (dev_maps &&
2617 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2618 		copy = true;
2619 
2620 	/* allocate memory for queue storage */
2621 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2622 	     j < nr_ids;) {
2623 		if (!new_dev_maps) {
2624 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2625 			if (!new_dev_maps) {
2626 				mutex_unlock(&xps_map_mutex);
2627 				return -ENOMEM;
2628 			}
2629 
2630 			new_dev_maps->nr_ids = nr_ids;
2631 			new_dev_maps->num_tc = num_tc;
2632 		}
2633 
2634 		tci = j * num_tc + tc;
2635 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2636 
2637 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2638 		if (!map)
2639 			goto error;
2640 
2641 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2642 	}
2643 
2644 	if (!new_dev_maps)
2645 		goto out_no_new_maps;
2646 
2647 	if (!dev_maps) {
2648 		/* Increment static keys at most once per type */
2649 		static_key_slow_inc_cpuslocked(&xps_needed);
2650 		if (type == XPS_RXQS)
2651 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2652 	}
2653 
2654 	for (j = 0; j < nr_ids; j++) {
2655 		bool skip_tc = false;
2656 
2657 		tci = j * num_tc + tc;
2658 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2659 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2660 			/* add tx-queue to CPU/rx-queue maps */
2661 			int pos = 0;
2662 
2663 			skip_tc = true;
2664 
2665 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2666 			while ((pos < map->len) && (map->queues[pos] != index))
2667 				pos++;
2668 
2669 			if (pos == map->len)
2670 				map->queues[map->len++] = index;
2671 #ifdef CONFIG_NUMA
2672 			if (type == XPS_CPUS) {
2673 				if (numa_node_id == -2)
2674 					numa_node_id = cpu_to_node(j);
2675 				else if (numa_node_id != cpu_to_node(j))
2676 					numa_node_id = -1;
2677 			}
2678 #endif
2679 		}
2680 
2681 		if (copy)
2682 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2683 					  skip_tc);
2684 	}
2685 
2686 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2687 
2688 	/* Cleanup old maps */
2689 	if (!dev_maps)
2690 		goto out_no_old_maps;
2691 
2692 	for (j = 0; j < dev_maps->nr_ids; j++) {
2693 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2694 			map = xmap_dereference(dev_maps->attr_map[tci]);
2695 			if (!map)
2696 				continue;
2697 
2698 			if (copy) {
2699 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2700 				if (map == new_map)
2701 					continue;
2702 			}
2703 
2704 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2705 			kfree_rcu(map, rcu);
2706 		}
2707 	}
2708 
2709 	old_dev_maps = dev_maps;
2710 
2711 out_no_old_maps:
2712 	dev_maps = new_dev_maps;
2713 	active = true;
2714 
2715 out_no_new_maps:
2716 	if (type == XPS_CPUS)
2717 		/* update Tx queue numa node */
2718 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2719 					     (numa_node_id >= 0) ?
2720 					     numa_node_id : NUMA_NO_NODE);
2721 
2722 	if (!dev_maps)
2723 		goto out_no_maps;
2724 
2725 	/* removes tx-queue from unused CPUs/rx-queues */
2726 	for (j = 0; j < dev_maps->nr_ids; j++) {
2727 		tci = j * dev_maps->num_tc;
2728 
2729 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2730 			if (i == tc &&
2731 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2732 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2733 				continue;
2734 
2735 			active |= remove_xps_queue(dev_maps,
2736 						   copy ? old_dev_maps : NULL,
2737 						   tci, index);
2738 		}
2739 	}
2740 
2741 	if (old_dev_maps)
2742 		kfree_rcu(old_dev_maps, rcu);
2743 
2744 	/* free map if not active */
2745 	if (!active)
2746 		reset_xps_maps(dev, dev_maps, type);
2747 
2748 out_no_maps:
2749 	mutex_unlock(&xps_map_mutex);
2750 
2751 	return 0;
2752 error:
2753 	/* remove any maps that we added */
2754 	for (j = 0; j < nr_ids; j++) {
2755 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2756 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2757 			map = copy ?
2758 			      xmap_dereference(dev_maps->attr_map[tci]) :
2759 			      NULL;
2760 			if (new_map && new_map != map)
2761 				kfree(new_map);
2762 		}
2763 	}
2764 
2765 	mutex_unlock(&xps_map_mutex);
2766 
2767 	kfree(new_dev_maps);
2768 	return -ENOMEM;
2769 }
2770 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2771 
2772 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2773 			u16 index)
2774 {
2775 	int ret;
2776 
2777 	cpus_read_lock();
2778 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2779 	cpus_read_unlock();
2780 
2781 	return ret;
2782 }
2783 EXPORT_SYMBOL(netif_set_xps_queue);
2784 
2785 #endif
2786 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2787 {
2788 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2789 
2790 	/* Unbind any subordinate channels */
2791 	while (txq-- != &dev->_tx[0]) {
2792 		if (txq->sb_dev)
2793 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2794 	}
2795 }
2796 
2797 void netdev_reset_tc(struct net_device *dev)
2798 {
2799 #ifdef CONFIG_XPS
2800 	netif_reset_xps_queues_gt(dev, 0);
2801 #endif
2802 	netdev_unbind_all_sb_channels(dev);
2803 
2804 	/* Reset TC configuration of device */
2805 	dev->num_tc = 0;
2806 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2807 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2808 }
2809 EXPORT_SYMBOL(netdev_reset_tc);
2810 
2811 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2812 {
2813 	if (tc >= dev->num_tc)
2814 		return -EINVAL;
2815 
2816 #ifdef CONFIG_XPS
2817 	netif_reset_xps_queues(dev, offset, count);
2818 #endif
2819 	dev->tc_to_txq[tc].count = count;
2820 	dev->tc_to_txq[tc].offset = offset;
2821 	return 0;
2822 }
2823 EXPORT_SYMBOL(netdev_set_tc_queue);
2824 
2825 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2826 {
2827 	if (num_tc > TC_MAX_QUEUE)
2828 		return -EINVAL;
2829 
2830 #ifdef CONFIG_XPS
2831 	netif_reset_xps_queues_gt(dev, 0);
2832 #endif
2833 	netdev_unbind_all_sb_channels(dev);
2834 
2835 	dev->num_tc = num_tc;
2836 	return 0;
2837 }
2838 EXPORT_SYMBOL(netdev_set_num_tc);
2839 
2840 void netdev_unbind_sb_channel(struct net_device *dev,
2841 			      struct net_device *sb_dev)
2842 {
2843 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2844 
2845 #ifdef CONFIG_XPS
2846 	netif_reset_xps_queues_gt(sb_dev, 0);
2847 #endif
2848 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2849 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2850 
2851 	while (txq-- != &dev->_tx[0]) {
2852 		if (txq->sb_dev == sb_dev)
2853 			txq->sb_dev = NULL;
2854 	}
2855 }
2856 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2857 
2858 int netdev_bind_sb_channel_queue(struct net_device *dev,
2859 				 struct net_device *sb_dev,
2860 				 u8 tc, u16 count, u16 offset)
2861 {
2862 	/* Make certain the sb_dev and dev are already configured */
2863 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2864 		return -EINVAL;
2865 
2866 	/* We cannot hand out queues we don't have */
2867 	if ((offset + count) > dev->real_num_tx_queues)
2868 		return -EINVAL;
2869 
2870 	/* Record the mapping */
2871 	sb_dev->tc_to_txq[tc].count = count;
2872 	sb_dev->tc_to_txq[tc].offset = offset;
2873 
2874 	/* Provide a way for Tx queue to find the tc_to_txq map or
2875 	 * XPS map for itself.
2876 	 */
2877 	while (count--)
2878 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2879 
2880 	return 0;
2881 }
2882 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2883 
2884 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2885 {
2886 	/* Do not use a multiqueue device to represent a subordinate channel */
2887 	if (netif_is_multiqueue(dev))
2888 		return -ENODEV;
2889 
2890 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2891 	 * Channel 0 is meant to be "native" mode and used only to represent
2892 	 * the main root device. We allow writing 0 to reset the device back
2893 	 * to normal mode after being used as a subordinate channel.
2894 	 */
2895 	if (channel > S16_MAX)
2896 		return -EINVAL;
2897 
2898 	dev->num_tc = -channel;
2899 
2900 	return 0;
2901 }
2902 EXPORT_SYMBOL(netdev_set_sb_channel);
2903 
2904 /*
2905  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2906  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2907  */
2908 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2909 {
2910 	bool disabling;
2911 	int rc;
2912 
2913 	disabling = txq < dev->real_num_tx_queues;
2914 
2915 	if (txq < 1 || txq > dev->num_tx_queues)
2916 		return -EINVAL;
2917 
2918 	if (dev->reg_state == NETREG_REGISTERED ||
2919 	    dev->reg_state == NETREG_UNREGISTERING) {
2920 		ASSERT_RTNL();
2921 
2922 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2923 						  txq);
2924 		if (rc)
2925 			return rc;
2926 
2927 		if (dev->num_tc)
2928 			netif_setup_tc(dev, txq);
2929 
2930 		dev_qdisc_change_real_num_tx(dev, txq);
2931 
2932 		dev->real_num_tx_queues = txq;
2933 
2934 		if (disabling) {
2935 			synchronize_net();
2936 			qdisc_reset_all_tx_gt(dev, txq);
2937 #ifdef CONFIG_XPS
2938 			netif_reset_xps_queues_gt(dev, txq);
2939 #endif
2940 		}
2941 	} else {
2942 		dev->real_num_tx_queues = txq;
2943 	}
2944 
2945 	return 0;
2946 }
2947 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2948 
2949 #ifdef CONFIG_SYSFS
2950 /**
2951  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2952  *	@dev: Network device
2953  *	@rxq: Actual number of RX queues
2954  *
2955  *	This must be called either with the rtnl_lock held or before
2956  *	registration of the net device.  Returns 0 on success, or a
2957  *	negative error code.  If called before registration, it always
2958  *	succeeds.
2959  */
2960 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2961 {
2962 	int rc;
2963 
2964 	if (rxq < 1 || rxq > dev->num_rx_queues)
2965 		return -EINVAL;
2966 
2967 	if (dev->reg_state == NETREG_REGISTERED) {
2968 		ASSERT_RTNL();
2969 
2970 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2971 						  rxq);
2972 		if (rc)
2973 			return rc;
2974 	}
2975 
2976 	dev->real_num_rx_queues = rxq;
2977 	return 0;
2978 }
2979 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2980 #endif
2981 
2982 /**
2983  *	netif_set_real_num_queues - set actual number of RX and TX queues used
2984  *	@dev: Network device
2985  *	@txq: Actual number of TX queues
2986  *	@rxq: Actual number of RX queues
2987  *
2988  *	Set the real number of both TX and RX queues.
2989  *	Does nothing if the number of queues is already correct.
2990  */
2991 int netif_set_real_num_queues(struct net_device *dev,
2992 			      unsigned int txq, unsigned int rxq)
2993 {
2994 	unsigned int old_rxq = dev->real_num_rx_queues;
2995 	int err;
2996 
2997 	if (txq < 1 || txq > dev->num_tx_queues ||
2998 	    rxq < 1 || rxq > dev->num_rx_queues)
2999 		return -EINVAL;
3000 
3001 	/* Start from increases, so the error path only does decreases -
3002 	 * decreases can't fail.
3003 	 */
3004 	if (rxq > dev->real_num_rx_queues) {
3005 		err = netif_set_real_num_rx_queues(dev, rxq);
3006 		if (err)
3007 			return err;
3008 	}
3009 	if (txq > dev->real_num_tx_queues) {
3010 		err = netif_set_real_num_tx_queues(dev, txq);
3011 		if (err)
3012 			goto undo_rx;
3013 	}
3014 	if (rxq < dev->real_num_rx_queues)
3015 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3016 	if (txq < dev->real_num_tx_queues)
3017 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3018 
3019 	return 0;
3020 undo_rx:
3021 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3022 	return err;
3023 }
3024 EXPORT_SYMBOL(netif_set_real_num_queues);
3025 
3026 /**
3027  * netif_get_num_default_rss_queues - default number of RSS queues
3028  *
3029  * This routine should set an upper limit on the number of RSS queues
3030  * used by default by multiqueue devices.
3031  */
3032 int netif_get_num_default_rss_queues(void)
3033 {
3034 	return is_kdump_kernel() ?
3035 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3036 }
3037 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3038 
3039 static void __netif_reschedule(struct Qdisc *q)
3040 {
3041 	struct softnet_data *sd;
3042 	unsigned long flags;
3043 
3044 	local_irq_save(flags);
3045 	sd = this_cpu_ptr(&softnet_data);
3046 	q->next_sched = NULL;
3047 	*sd->output_queue_tailp = q;
3048 	sd->output_queue_tailp = &q->next_sched;
3049 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3050 	local_irq_restore(flags);
3051 }
3052 
3053 void __netif_schedule(struct Qdisc *q)
3054 {
3055 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3056 		__netif_reschedule(q);
3057 }
3058 EXPORT_SYMBOL(__netif_schedule);
3059 
3060 struct dev_kfree_skb_cb {
3061 	enum skb_free_reason reason;
3062 };
3063 
3064 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3065 {
3066 	return (struct dev_kfree_skb_cb *)skb->cb;
3067 }
3068 
3069 void netif_schedule_queue(struct netdev_queue *txq)
3070 {
3071 	rcu_read_lock();
3072 	if (!netif_xmit_stopped(txq)) {
3073 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3074 
3075 		__netif_schedule(q);
3076 	}
3077 	rcu_read_unlock();
3078 }
3079 EXPORT_SYMBOL(netif_schedule_queue);
3080 
3081 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3082 {
3083 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3084 		struct Qdisc *q;
3085 
3086 		rcu_read_lock();
3087 		q = rcu_dereference(dev_queue->qdisc);
3088 		__netif_schedule(q);
3089 		rcu_read_unlock();
3090 	}
3091 }
3092 EXPORT_SYMBOL(netif_tx_wake_queue);
3093 
3094 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3095 {
3096 	unsigned long flags;
3097 
3098 	if (unlikely(!skb))
3099 		return;
3100 
3101 	if (likely(refcount_read(&skb->users) == 1)) {
3102 		smp_rmb();
3103 		refcount_set(&skb->users, 0);
3104 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3105 		return;
3106 	}
3107 	get_kfree_skb_cb(skb)->reason = reason;
3108 	local_irq_save(flags);
3109 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3110 	__this_cpu_write(softnet_data.completion_queue, skb);
3111 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3112 	local_irq_restore(flags);
3113 }
3114 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3115 
3116 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3117 {
3118 	if (in_hardirq() || irqs_disabled())
3119 		__dev_kfree_skb_irq(skb, reason);
3120 	else
3121 		dev_kfree_skb(skb);
3122 }
3123 EXPORT_SYMBOL(__dev_kfree_skb_any);
3124 
3125 
3126 /**
3127  * netif_device_detach - mark device as removed
3128  * @dev: network device
3129  *
3130  * Mark device as removed from system and therefore no longer available.
3131  */
3132 void netif_device_detach(struct net_device *dev)
3133 {
3134 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3135 	    netif_running(dev)) {
3136 		netif_tx_stop_all_queues(dev);
3137 	}
3138 }
3139 EXPORT_SYMBOL(netif_device_detach);
3140 
3141 /**
3142  * netif_device_attach - mark device as attached
3143  * @dev: network device
3144  *
3145  * Mark device as attached from system and restart if needed.
3146  */
3147 void netif_device_attach(struct net_device *dev)
3148 {
3149 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3150 	    netif_running(dev)) {
3151 		netif_tx_wake_all_queues(dev);
3152 		__netdev_watchdog_up(dev);
3153 	}
3154 }
3155 EXPORT_SYMBOL(netif_device_attach);
3156 
3157 /*
3158  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3159  * to be used as a distribution range.
3160  */
3161 static u16 skb_tx_hash(const struct net_device *dev,
3162 		       const struct net_device *sb_dev,
3163 		       struct sk_buff *skb)
3164 {
3165 	u32 hash;
3166 	u16 qoffset = 0;
3167 	u16 qcount = dev->real_num_tx_queues;
3168 
3169 	if (dev->num_tc) {
3170 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3171 
3172 		qoffset = sb_dev->tc_to_txq[tc].offset;
3173 		qcount = sb_dev->tc_to_txq[tc].count;
3174 		if (unlikely(!qcount)) {
3175 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3176 					     sb_dev->name, qoffset, tc);
3177 			qoffset = 0;
3178 			qcount = dev->real_num_tx_queues;
3179 		}
3180 	}
3181 
3182 	if (skb_rx_queue_recorded(skb)) {
3183 		hash = skb_get_rx_queue(skb);
3184 		if (hash >= qoffset)
3185 			hash -= qoffset;
3186 		while (unlikely(hash >= qcount))
3187 			hash -= qcount;
3188 		return hash + qoffset;
3189 	}
3190 
3191 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3192 }
3193 
3194 static void skb_warn_bad_offload(const struct sk_buff *skb)
3195 {
3196 	static const netdev_features_t null_features;
3197 	struct net_device *dev = skb->dev;
3198 	const char *name = "";
3199 
3200 	if (!net_ratelimit())
3201 		return;
3202 
3203 	if (dev) {
3204 		if (dev->dev.parent)
3205 			name = dev_driver_string(dev->dev.parent);
3206 		else
3207 			name = netdev_name(dev);
3208 	}
3209 	skb_dump(KERN_WARNING, skb, false);
3210 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3211 	     name, dev ? &dev->features : &null_features,
3212 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3213 }
3214 
3215 /*
3216  * Invalidate hardware checksum when packet is to be mangled, and
3217  * complete checksum manually on outgoing path.
3218  */
3219 int skb_checksum_help(struct sk_buff *skb)
3220 {
3221 	__wsum csum;
3222 	int ret = 0, offset;
3223 
3224 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3225 		goto out_set_summed;
3226 
3227 	if (unlikely(skb_is_gso(skb))) {
3228 		skb_warn_bad_offload(skb);
3229 		return -EINVAL;
3230 	}
3231 
3232 	/* Before computing a checksum, we should make sure no frag could
3233 	 * be modified by an external entity : checksum could be wrong.
3234 	 */
3235 	if (skb_has_shared_frag(skb)) {
3236 		ret = __skb_linearize(skb);
3237 		if (ret)
3238 			goto out;
3239 	}
3240 
3241 	offset = skb_checksum_start_offset(skb);
3242 	BUG_ON(offset >= skb_headlen(skb));
3243 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3244 
3245 	offset += skb->csum_offset;
3246 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3247 
3248 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3249 	if (ret)
3250 		goto out;
3251 
3252 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3253 out_set_summed:
3254 	skb->ip_summed = CHECKSUM_NONE;
3255 out:
3256 	return ret;
3257 }
3258 EXPORT_SYMBOL(skb_checksum_help);
3259 
3260 int skb_crc32c_csum_help(struct sk_buff *skb)
3261 {
3262 	__le32 crc32c_csum;
3263 	int ret = 0, offset, start;
3264 
3265 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3266 		goto out;
3267 
3268 	if (unlikely(skb_is_gso(skb)))
3269 		goto out;
3270 
3271 	/* Before computing a checksum, we should make sure no frag could
3272 	 * be modified by an external entity : checksum could be wrong.
3273 	 */
3274 	if (unlikely(skb_has_shared_frag(skb))) {
3275 		ret = __skb_linearize(skb);
3276 		if (ret)
3277 			goto out;
3278 	}
3279 	start = skb_checksum_start_offset(skb);
3280 	offset = start + offsetof(struct sctphdr, checksum);
3281 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3282 		ret = -EINVAL;
3283 		goto out;
3284 	}
3285 
3286 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3287 	if (ret)
3288 		goto out;
3289 
3290 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3291 						  skb->len - start, ~(__u32)0,
3292 						  crc32c_csum_stub));
3293 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3294 	skb->ip_summed = CHECKSUM_NONE;
3295 	skb->csum_not_inet = 0;
3296 out:
3297 	return ret;
3298 }
3299 
3300 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3301 {
3302 	__be16 type = skb->protocol;
3303 
3304 	/* Tunnel gso handlers can set protocol to ethernet. */
3305 	if (type == htons(ETH_P_TEB)) {
3306 		struct ethhdr *eth;
3307 
3308 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3309 			return 0;
3310 
3311 		eth = (struct ethhdr *)skb->data;
3312 		type = eth->h_proto;
3313 	}
3314 
3315 	return __vlan_get_protocol(skb, type, depth);
3316 }
3317 
3318 /**
3319  *	skb_mac_gso_segment - mac layer segmentation handler.
3320  *	@skb: buffer to segment
3321  *	@features: features for the output path (see dev->features)
3322  */
3323 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3324 				    netdev_features_t features)
3325 {
3326 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3327 	struct packet_offload *ptype;
3328 	int vlan_depth = skb->mac_len;
3329 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3330 
3331 	if (unlikely(!type))
3332 		return ERR_PTR(-EINVAL);
3333 
3334 	__skb_pull(skb, vlan_depth);
3335 
3336 	rcu_read_lock();
3337 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3338 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3339 			segs = ptype->callbacks.gso_segment(skb, features);
3340 			break;
3341 		}
3342 	}
3343 	rcu_read_unlock();
3344 
3345 	__skb_push(skb, skb->data - skb_mac_header(skb));
3346 
3347 	return segs;
3348 }
3349 EXPORT_SYMBOL(skb_mac_gso_segment);
3350 
3351 
3352 /* openvswitch calls this on rx path, so we need a different check.
3353  */
3354 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3355 {
3356 	if (tx_path)
3357 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3358 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3359 
3360 	return skb->ip_summed == CHECKSUM_NONE;
3361 }
3362 
3363 /**
3364  *	__skb_gso_segment - Perform segmentation on skb.
3365  *	@skb: buffer to segment
3366  *	@features: features for the output path (see dev->features)
3367  *	@tx_path: whether it is called in TX path
3368  *
3369  *	This function segments the given skb and returns a list of segments.
3370  *
3371  *	It may return NULL if the skb requires no segmentation.  This is
3372  *	only possible when GSO is used for verifying header integrity.
3373  *
3374  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3375  */
3376 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3377 				  netdev_features_t features, bool tx_path)
3378 {
3379 	struct sk_buff *segs;
3380 
3381 	if (unlikely(skb_needs_check(skb, tx_path))) {
3382 		int err;
3383 
3384 		/* We're going to init ->check field in TCP or UDP header */
3385 		err = skb_cow_head(skb, 0);
3386 		if (err < 0)
3387 			return ERR_PTR(err);
3388 	}
3389 
3390 	/* Only report GSO partial support if it will enable us to
3391 	 * support segmentation on this frame without needing additional
3392 	 * work.
3393 	 */
3394 	if (features & NETIF_F_GSO_PARTIAL) {
3395 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3396 		struct net_device *dev = skb->dev;
3397 
3398 		partial_features |= dev->features & dev->gso_partial_features;
3399 		if (!skb_gso_ok(skb, features | partial_features))
3400 			features &= ~NETIF_F_GSO_PARTIAL;
3401 	}
3402 
3403 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3404 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3405 
3406 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3407 	SKB_GSO_CB(skb)->encap_level = 0;
3408 
3409 	skb_reset_mac_header(skb);
3410 	skb_reset_mac_len(skb);
3411 
3412 	segs = skb_mac_gso_segment(skb, features);
3413 
3414 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3415 		skb_warn_bad_offload(skb);
3416 
3417 	return segs;
3418 }
3419 EXPORT_SYMBOL(__skb_gso_segment);
3420 
3421 /* Take action when hardware reception checksum errors are detected. */
3422 #ifdef CONFIG_BUG
3423 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3424 {
3425 	netdev_err(dev, "hw csum failure\n");
3426 	skb_dump(KERN_ERR, skb, true);
3427 	dump_stack();
3428 }
3429 
3430 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3431 {
3432 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3433 }
3434 EXPORT_SYMBOL(netdev_rx_csum_fault);
3435 #endif
3436 
3437 /* XXX: check that highmem exists at all on the given machine. */
3438 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3439 {
3440 #ifdef CONFIG_HIGHMEM
3441 	int i;
3442 
3443 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3444 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3445 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3446 
3447 			if (PageHighMem(skb_frag_page(frag)))
3448 				return 1;
3449 		}
3450 	}
3451 #endif
3452 	return 0;
3453 }
3454 
3455 /* If MPLS offload request, verify we are testing hardware MPLS features
3456  * instead of standard features for the netdev.
3457  */
3458 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3459 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3460 					   netdev_features_t features,
3461 					   __be16 type)
3462 {
3463 	if (eth_p_mpls(type))
3464 		features &= skb->dev->mpls_features;
3465 
3466 	return features;
3467 }
3468 #else
3469 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3470 					   netdev_features_t features,
3471 					   __be16 type)
3472 {
3473 	return features;
3474 }
3475 #endif
3476 
3477 static netdev_features_t harmonize_features(struct sk_buff *skb,
3478 	netdev_features_t features)
3479 {
3480 	__be16 type;
3481 
3482 	type = skb_network_protocol(skb, NULL);
3483 	features = net_mpls_features(skb, features, type);
3484 
3485 	if (skb->ip_summed != CHECKSUM_NONE &&
3486 	    !can_checksum_protocol(features, type)) {
3487 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3488 	}
3489 	if (illegal_highdma(skb->dev, skb))
3490 		features &= ~NETIF_F_SG;
3491 
3492 	return features;
3493 }
3494 
3495 netdev_features_t passthru_features_check(struct sk_buff *skb,
3496 					  struct net_device *dev,
3497 					  netdev_features_t features)
3498 {
3499 	return features;
3500 }
3501 EXPORT_SYMBOL(passthru_features_check);
3502 
3503 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3504 					     struct net_device *dev,
3505 					     netdev_features_t features)
3506 {
3507 	return vlan_features_check(skb, features);
3508 }
3509 
3510 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3511 					    struct net_device *dev,
3512 					    netdev_features_t features)
3513 {
3514 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3515 
3516 	if (gso_segs > dev->gso_max_segs)
3517 		return features & ~NETIF_F_GSO_MASK;
3518 
3519 	if (!skb_shinfo(skb)->gso_type) {
3520 		skb_warn_bad_offload(skb);
3521 		return features & ~NETIF_F_GSO_MASK;
3522 	}
3523 
3524 	/* Support for GSO partial features requires software
3525 	 * intervention before we can actually process the packets
3526 	 * so we need to strip support for any partial features now
3527 	 * and we can pull them back in after we have partially
3528 	 * segmented the frame.
3529 	 */
3530 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3531 		features &= ~dev->gso_partial_features;
3532 
3533 	/* Make sure to clear the IPv4 ID mangling feature if the
3534 	 * IPv4 header has the potential to be fragmented.
3535 	 */
3536 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3537 		struct iphdr *iph = skb->encapsulation ?
3538 				    inner_ip_hdr(skb) : ip_hdr(skb);
3539 
3540 		if (!(iph->frag_off & htons(IP_DF)))
3541 			features &= ~NETIF_F_TSO_MANGLEID;
3542 	}
3543 
3544 	return features;
3545 }
3546 
3547 netdev_features_t netif_skb_features(struct sk_buff *skb)
3548 {
3549 	struct net_device *dev = skb->dev;
3550 	netdev_features_t features = dev->features;
3551 
3552 	if (skb_is_gso(skb))
3553 		features = gso_features_check(skb, dev, features);
3554 
3555 	/* If encapsulation offload request, verify we are testing
3556 	 * hardware encapsulation features instead of standard
3557 	 * features for the netdev
3558 	 */
3559 	if (skb->encapsulation)
3560 		features &= dev->hw_enc_features;
3561 
3562 	if (skb_vlan_tagged(skb))
3563 		features = netdev_intersect_features(features,
3564 						     dev->vlan_features |
3565 						     NETIF_F_HW_VLAN_CTAG_TX |
3566 						     NETIF_F_HW_VLAN_STAG_TX);
3567 
3568 	if (dev->netdev_ops->ndo_features_check)
3569 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3570 								features);
3571 	else
3572 		features &= dflt_features_check(skb, dev, features);
3573 
3574 	return harmonize_features(skb, features);
3575 }
3576 EXPORT_SYMBOL(netif_skb_features);
3577 
3578 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3579 		    struct netdev_queue *txq, bool more)
3580 {
3581 	unsigned int len;
3582 	int rc;
3583 
3584 	if (dev_nit_active(dev))
3585 		dev_queue_xmit_nit(skb, dev);
3586 
3587 	len = skb->len;
3588 	PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3589 	trace_net_dev_start_xmit(skb, dev);
3590 	rc = netdev_start_xmit(skb, dev, txq, more);
3591 	trace_net_dev_xmit(skb, rc, dev, len);
3592 
3593 	return rc;
3594 }
3595 
3596 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3597 				    struct netdev_queue *txq, int *ret)
3598 {
3599 	struct sk_buff *skb = first;
3600 	int rc = NETDEV_TX_OK;
3601 
3602 	while (skb) {
3603 		struct sk_buff *next = skb->next;
3604 
3605 		skb_mark_not_on_list(skb);
3606 		rc = xmit_one(skb, dev, txq, next != NULL);
3607 		if (unlikely(!dev_xmit_complete(rc))) {
3608 			skb->next = next;
3609 			goto out;
3610 		}
3611 
3612 		skb = next;
3613 		if (netif_tx_queue_stopped(txq) && skb) {
3614 			rc = NETDEV_TX_BUSY;
3615 			break;
3616 		}
3617 	}
3618 
3619 out:
3620 	*ret = rc;
3621 	return skb;
3622 }
3623 
3624 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3625 					  netdev_features_t features)
3626 {
3627 	if (skb_vlan_tag_present(skb) &&
3628 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3629 		skb = __vlan_hwaccel_push_inside(skb);
3630 	return skb;
3631 }
3632 
3633 int skb_csum_hwoffload_help(struct sk_buff *skb,
3634 			    const netdev_features_t features)
3635 {
3636 	if (unlikely(skb_csum_is_sctp(skb)))
3637 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3638 			skb_crc32c_csum_help(skb);
3639 
3640 	if (features & NETIF_F_HW_CSUM)
3641 		return 0;
3642 
3643 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3644 		switch (skb->csum_offset) {
3645 		case offsetof(struct tcphdr, check):
3646 		case offsetof(struct udphdr, check):
3647 			return 0;
3648 		}
3649 	}
3650 
3651 	return skb_checksum_help(skb);
3652 }
3653 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3654 
3655 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3656 {
3657 	netdev_features_t features;
3658 
3659 	features = netif_skb_features(skb);
3660 	skb = validate_xmit_vlan(skb, features);
3661 	if (unlikely(!skb))
3662 		goto out_null;
3663 
3664 	skb = sk_validate_xmit_skb(skb, dev);
3665 	if (unlikely(!skb))
3666 		goto out_null;
3667 
3668 	if (netif_needs_gso(skb, features)) {
3669 		struct sk_buff *segs;
3670 
3671 		segs = skb_gso_segment(skb, features);
3672 		if (IS_ERR(segs)) {
3673 			goto out_kfree_skb;
3674 		} else if (segs) {
3675 			consume_skb(skb);
3676 			skb = segs;
3677 		}
3678 	} else {
3679 		if (skb_needs_linearize(skb, features) &&
3680 		    __skb_linearize(skb))
3681 			goto out_kfree_skb;
3682 
3683 		/* If packet is not checksummed and device does not
3684 		 * support checksumming for this protocol, complete
3685 		 * checksumming here.
3686 		 */
3687 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3688 			if (skb->encapsulation)
3689 				skb_set_inner_transport_header(skb,
3690 							       skb_checksum_start_offset(skb));
3691 			else
3692 				skb_set_transport_header(skb,
3693 							 skb_checksum_start_offset(skb));
3694 			if (skb_csum_hwoffload_help(skb, features))
3695 				goto out_kfree_skb;
3696 		}
3697 	}
3698 
3699 	skb = validate_xmit_xfrm(skb, features, again);
3700 
3701 	return skb;
3702 
3703 out_kfree_skb:
3704 	kfree_skb(skb);
3705 out_null:
3706 	atomic_long_inc(&dev->tx_dropped);
3707 	return NULL;
3708 }
3709 
3710 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3711 {
3712 	struct sk_buff *next, *head = NULL, *tail;
3713 
3714 	for (; skb != NULL; skb = next) {
3715 		next = skb->next;
3716 		skb_mark_not_on_list(skb);
3717 
3718 		/* in case skb wont be segmented, point to itself */
3719 		skb->prev = skb;
3720 
3721 		skb = validate_xmit_skb(skb, dev, again);
3722 		if (!skb)
3723 			continue;
3724 
3725 		if (!head)
3726 			head = skb;
3727 		else
3728 			tail->next = skb;
3729 		/* If skb was segmented, skb->prev points to
3730 		 * the last segment. If not, it still contains skb.
3731 		 */
3732 		tail = skb->prev;
3733 	}
3734 	return head;
3735 }
3736 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3737 
3738 static void qdisc_pkt_len_init(struct sk_buff *skb)
3739 {
3740 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3741 
3742 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3743 
3744 	/* To get more precise estimation of bytes sent on wire,
3745 	 * we add to pkt_len the headers size of all segments
3746 	 */
3747 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3748 		unsigned int hdr_len;
3749 		u16 gso_segs = shinfo->gso_segs;
3750 
3751 		/* mac layer + network layer */
3752 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3753 
3754 		/* + transport layer */
3755 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3756 			const struct tcphdr *th;
3757 			struct tcphdr _tcphdr;
3758 
3759 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3760 						sizeof(_tcphdr), &_tcphdr);
3761 			if (likely(th))
3762 				hdr_len += __tcp_hdrlen(th);
3763 		} else {
3764 			struct udphdr _udphdr;
3765 
3766 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3767 					       sizeof(_udphdr), &_udphdr))
3768 				hdr_len += sizeof(struct udphdr);
3769 		}
3770 
3771 		if (shinfo->gso_type & SKB_GSO_DODGY)
3772 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3773 						shinfo->gso_size);
3774 
3775 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3776 	}
3777 }
3778 
3779 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3780 			     struct sk_buff **to_free,
3781 			     struct netdev_queue *txq)
3782 {
3783 	int rc;
3784 
3785 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3786 	if (rc == NET_XMIT_SUCCESS)
3787 		trace_qdisc_enqueue(q, txq, skb);
3788 	return rc;
3789 }
3790 
3791 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3792 				 struct net_device *dev,
3793 				 struct netdev_queue *txq)
3794 {
3795 	spinlock_t *root_lock = qdisc_lock(q);
3796 	struct sk_buff *to_free = NULL;
3797 	bool contended;
3798 	int rc;
3799 
3800 	qdisc_calculate_pkt_len(skb, q);
3801 
3802 	if (q->flags & TCQ_F_NOLOCK) {
3803 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3804 		    qdisc_run_begin(q)) {
3805 			/* Retest nolock_qdisc_is_empty() within the protection
3806 			 * of q->seqlock to protect from racing with requeuing.
3807 			 */
3808 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3809 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3810 				__qdisc_run(q);
3811 				qdisc_run_end(q);
3812 
3813 				goto no_lock_out;
3814 			}
3815 
3816 			qdisc_bstats_cpu_update(q, skb);
3817 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3818 			    !nolock_qdisc_is_empty(q))
3819 				__qdisc_run(q);
3820 
3821 			qdisc_run_end(q);
3822 			return NET_XMIT_SUCCESS;
3823 		}
3824 
3825 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3826 		qdisc_run(q);
3827 
3828 no_lock_out:
3829 		if (unlikely(to_free))
3830 			kfree_skb_list(to_free);
3831 		return rc;
3832 	}
3833 
3834 	/*
3835 	 * Heuristic to force contended enqueues to serialize on a
3836 	 * separate lock before trying to get qdisc main lock.
3837 	 * This permits qdisc->running owner to get the lock more
3838 	 * often and dequeue packets faster.
3839 	 */
3840 	contended = qdisc_is_running(q);
3841 	if (unlikely(contended))
3842 		spin_lock(&q->busylock);
3843 
3844 	spin_lock(root_lock);
3845 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3846 		__qdisc_drop(skb, &to_free);
3847 		rc = NET_XMIT_DROP;
3848 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3849 		   qdisc_run_begin(q)) {
3850 		/*
3851 		 * This is a work-conserving queue; there are no old skbs
3852 		 * waiting to be sent out; and the qdisc is not running -
3853 		 * xmit the skb directly.
3854 		 */
3855 
3856 		qdisc_bstats_update(q, skb);
3857 
3858 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3859 			if (unlikely(contended)) {
3860 				spin_unlock(&q->busylock);
3861 				contended = false;
3862 			}
3863 			__qdisc_run(q);
3864 		}
3865 
3866 		qdisc_run_end(q);
3867 		rc = NET_XMIT_SUCCESS;
3868 	} else {
3869 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3870 		if (qdisc_run_begin(q)) {
3871 			if (unlikely(contended)) {
3872 				spin_unlock(&q->busylock);
3873 				contended = false;
3874 			}
3875 			__qdisc_run(q);
3876 			qdisc_run_end(q);
3877 		}
3878 	}
3879 	spin_unlock(root_lock);
3880 	if (unlikely(to_free))
3881 		kfree_skb_list(to_free);
3882 	if (unlikely(contended))
3883 		spin_unlock(&q->busylock);
3884 	return rc;
3885 }
3886 
3887 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3888 static void skb_update_prio(struct sk_buff *skb)
3889 {
3890 	const struct netprio_map *map;
3891 	const struct sock *sk;
3892 	unsigned int prioidx;
3893 
3894 	if (skb->priority)
3895 		return;
3896 	map = rcu_dereference_bh(skb->dev->priomap);
3897 	if (!map)
3898 		return;
3899 	sk = skb_to_full_sk(skb);
3900 	if (!sk)
3901 		return;
3902 
3903 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3904 
3905 	if (prioidx < map->priomap_len)
3906 		skb->priority = map->priomap[prioidx];
3907 }
3908 #else
3909 #define skb_update_prio(skb)
3910 #endif
3911 
3912 /**
3913  *	dev_loopback_xmit - loop back @skb
3914  *	@net: network namespace this loopback is happening in
3915  *	@sk:  sk needed to be a netfilter okfn
3916  *	@skb: buffer to transmit
3917  */
3918 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3919 {
3920 	skb_reset_mac_header(skb);
3921 	__skb_pull(skb, skb_network_offset(skb));
3922 	skb->pkt_type = PACKET_LOOPBACK;
3923 	if (skb->ip_summed == CHECKSUM_NONE)
3924 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3925 	WARN_ON(!skb_dst(skb));
3926 	skb_dst_force(skb);
3927 	netif_rx_ni(skb);
3928 	return 0;
3929 }
3930 EXPORT_SYMBOL(dev_loopback_xmit);
3931 
3932 #ifdef CONFIG_NET_EGRESS
3933 static struct sk_buff *
3934 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3935 {
3936 #ifdef CONFIG_NET_CLS_ACT
3937 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3938 	struct tcf_result cl_res;
3939 
3940 	if (!miniq)
3941 		return skb;
3942 
3943 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3944 	qdisc_skb_cb(skb)->mru = 0;
3945 	qdisc_skb_cb(skb)->post_ct = false;
3946 	mini_qdisc_bstats_cpu_update(miniq, skb);
3947 
3948 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3949 	case TC_ACT_OK:
3950 	case TC_ACT_RECLASSIFY:
3951 		skb->tc_index = TC_H_MIN(cl_res.classid);
3952 		break;
3953 	case TC_ACT_SHOT:
3954 		mini_qdisc_qstats_cpu_drop(miniq);
3955 		*ret = NET_XMIT_DROP;
3956 		kfree_skb(skb);
3957 		return NULL;
3958 	case TC_ACT_STOLEN:
3959 	case TC_ACT_QUEUED:
3960 	case TC_ACT_TRAP:
3961 		*ret = NET_XMIT_SUCCESS;
3962 		consume_skb(skb);
3963 		return NULL;
3964 	case TC_ACT_REDIRECT:
3965 		/* No need to push/pop skb's mac_header here on egress! */
3966 		skb_do_redirect(skb);
3967 		*ret = NET_XMIT_SUCCESS;
3968 		return NULL;
3969 	default:
3970 		break;
3971 	}
3972 #endif /* CONFIG_NET_CLS_ACT */
3973 
3974 	return skb;
3975 }
3976 #endif /* CONFIG_NET_EGRESS */
3977 
3978 #ifdef CONFIG_XPS
3979 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3980 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3981 {
3982 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
3983 	struct xps_map *map;
3984 	int queue_index = -1;
3985 
3986 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
3987 		return queue_index;
3988 
3989 	tci *= dev_maps->num_tc;
3990 	tci += tc;
3991 
3992 	map = rcu_dereference(dev_maps->attr_map[tci]);
3993 	if (map) {
3994 		if (map->len == 1)
3995 			queue_index = map->queues[0];
3996 		else
3997 			queue_index = map->queues[reciprocal_scale(
3998 						skb_get_hash(skb), map->len)];
3999 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4000 			queue_index = -1;
4001 	}
4002 	return queue_index;
4003 }
4004 #endif
4005 
4006 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4007 			 struct sk_buff *skb)
4008 {
4009 #ifdef CONFIG_XPS
4010 	struct xps_dev_maps *dev_maps;
4011 	struct sock *sk = skb->sk;
4012 	int queue_index = -1;
4013 
4014 	if (!static_key_false(&xps_needed))
4015 		return -1;
4016 
4017 	rcu_read_lock();
4018 	if (!static_key_false(&xps_rxqs_needed))
4019 		goto get_cpus_map;
4020 
4021 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4022 	if (dev_maps) {
4023 		int tci = sk_rx_queue_get(sk);
4024 
4025 		if (tci >= 0)
4026 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4027 							  tci);
4028 	}
4029 
4030 get_cpus_map:
4031 	if (queue_index < 0) {
4032 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4033 		if (dev_maps) {
4034 			unsigned int tci = skb->sender_cpu - 1;
4035 
4036 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4037 							  tci);
4038 		}
4039 	}
4040 	rcu_read_unlock();
4041 
4042 	return queue_index;
4043 #else
4044 	return -1;
4045 #endif
4046 }
4047 
4048 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4049 		     struct net_device *sb_dev)
4050 {
4051 	return 0;
4052 }
4053 EXPORT_SYMBOL(dev_pick_tx_zero);
4054 
4055 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4056 		       struct net_device *sb_dev)
4057 {
4058 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4059 }
4060 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4061 
4062 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4063 		     struct net_device *sb_dev)
4064 {
4065 	struct sock *sk = skb->sk;
4066 	int queue_index = sk_tx_queue_get(sk);
4067 
4068 	sb_dev = sb_dev ? : dev;
4069 
4070 	if (queue_index < 0 || skb->ooo_okay ||
4071 	    queue_index >= dev->real_num_tx_queues) {
4072 		int new_index = get_xps_queue(dev, sb_dev, skb);
4073 
4074 		if (new_index < 0)
4075 			new_index = skb_tx_hash(dev, sb_dev, skb);
4076 
4077 		if (queue_index != new_index && sk &&
4078 		    sk_fullsock(sk) &&
4079 		    rcu_access_pointer(sk->sk_dst_cache))
4080 			sk_tx_queue_set(sk, new_index);
4081 
4082 		queue_index = new_index;
4083 	}
4084 
4085 	return queue_index;
4086 }
4087 EXPORT_SYMBOL(netdev_pick_tx);
4088 
4089 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4090 					 struct sk_buff *skb,
4091 					 struct net_device *sb_dev)
4092 {
4093 	int queue_index = 0;
4094 
4095 #ifdef CONFIG_XPS
4096 	u32 sender_cpu = skb->sender_cpu - 1;
4097 
4098 	if (sender_cpu >= (u32)NR_CPUS)
4099 		skb->sender_cpu = raw_smp_processor_id() + 1;
4100 #endif
4101 
4102 	if (dev->real_num_tx_queues != 1) {
4103 		const struct net_device_ops *ops = dev->netdev_ops;
4104 
4105 		if (ops->ndo_select_queue)
4106 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4107 		else
4108 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4109 
4110 		queue_index = netdev_cap_txqueue(dev, queue_index);
4111 	}
4112 
4113 	skb_set_queue_mapping(skb, queue_index);
4114 	return netdev_get_tx_queue(dev, queue_index);
4115 }
4116 
4117 /**
4118  *	__dev_queue_xmit - transmit a buffer
4119  *	@skb: buffer to transmit
4120  *	@sb_dev: suboordinate device used for L2 forwarding offload
4121  *
4122  *	Queue a buffer for transmission to a network device. The caller must
4123  *	have set the device and priority and built the buffer before calling
4124  *	this function. The function can be called from an interrupt.
4125  *
4126  *	A negative errno code is returned on a failure. A success does not
4127  *	guarantee the frame will be transmitted as it may be dropped due
4128  *	to congestion or traffic shaping.
4129  *
4130  * -----------------------------------------------------------------------------------
4131  *      I notice this method can also return errors from the queue disciplines,
4132  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4133  *      be positive.
4134  *
4135  *      Regardless of the return value, the skb is consumed, so it is currently
4136  *      difficult to retry a send to this method.  (You can bump the ref count
4137  *      before sending to hold a reference for retry if you are careful.)
4138  *
4139  *      When calling this method, interrupts MUST be enabled.  This is because
4140  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4141  *          --BLG
4142  */
4143 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4144 {
4145 	struct net_device *dev = skb->dev;
4146 	struct netdev_queue *txq;
4147 	struct Qdisc *q;
4148 	int rc = -ENOMEM;
4149 	bool again = false;
4150 
4151 	skb_reset_mac_header(skb);
4152 
4153 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4154 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4155 
4156 	/* Disable soft irqs for various locks below. Also
4157 	 * stops preemption for RCU.
4158 	 */
4159 	rcu_read_lock_bh();
4160 
4161 	skb_update_prio(skb);
4162 
4163 	qdisc_pkt_len_init(skb);
4164 #ifdef CONFIG_NET_CLS_ACT
4165 	skb->tc_at_ingress = 0;
4166 #endif
4167 #ifdef CONFIG_NET_EGRESS
4168 	if (static_branch_unlikely(&egress_needed_key)) {
4169 		if (nf_hook_egress_active()) {
4170 			skb = nf_hook_egress(skb, &rc, dev);
4171 			if (!skb)
4172 				goto out;
4173 		}
4174 		nf_skip_egress(skb, true);
4175 		skb = sch_handle_egress(skb, &rc, dev);
4176 		if (!skb)
4177 			goto out;
4178 		nf_skip_egress(skb, false);
4179 	}
4180 #endif
4181 	/* If device/qdisc don't need skb->dst, release it right now while
4182 	 * its hot in this cpu cache.
4183 	 */
4184 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4185 		skb_dst_drop(skb);
4186 	else
4187 		skb_dst_force(skb);
4188 
4189 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4190 	q = rcu_dereference_bh(txq->qdisc);
4191 
4192 	trace_net_dev_queue(skb);
4193 	if (q->enqueue) {
4194 		rc = __dev_xmit_skb(skb, q, dev, txq);
4195 		goto out;
4196 	}
4197 
4198 	/* The device has no queue. Common case for software devices:
4199 	 * loopback, all the sorts of tunnels...
4200 
4201 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4202 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4203 	 * counters.)
4204 	 * However, it is possible, that they rely on protection
4205 	 * made by us here.
4206 
4207 	 * Check this and shot the lock. It is not prone from deadlocks.
4208 	 *Either shot noqueue qdisc, it is even simpler 8)
4209 	 */
4210 	if (dev->flags & IFF_UP) {
4211 		int cpu = smp_processor_id(); /* ok because BHs are off */
4212 
4213 		if (txq->xmit_lock_owner != cpu) {
4214 			if (dev_xmit_recursion())
4215 				goto recursion_alert;
4216 
4217 			skb = validate_xmit_skb(skb, dev, &again);
4218 			if (!skb)
4219 				goto out;
4220 
4221 			PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4222 			HARD_TX_LOCK(dev, txq, cpu);
4223 
4224 			if (!netif_xmit_stopped(txq)) {
4225 				dev_xmit_recursion_inc();
4226 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4227 				dev_xmit_recursion_dec();
4228 				if (dev_xmit_complete(rc)) {
4229 					HARD_TX_UNLOCK(dev, txq);
4230 					goto out;
4231 				}
4232 			}
4233 			HARD_TX_UNLOCK(dev, txq);
4234 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4235 					     dev->name);
4236 		} else {
4237 			/* Recursion is detected! It is possible,
4238 			 * unfortunately
4239 			 */
4240 recursion_alert:
4241 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4242 					     dev->name);
4243 		}
4244 	}
4245 
4246 	rc = -ENETDOWN;
4247 	rcu_read_unlock_bh();
4248 
4249 	atomic_long_inc(&dev->tx_dropped);
4250 	kfree_skb_list(skb);
4251 	return rc;
4252 out:
4253 	rcu_read_unlock_bh();
4254 	return rc;
4255 }
4256 
4257 int dev_queue_xmit(struct sk_buff *skb)
4258 {
4259 	return __dev_queue_xmit(skb, NULL);
4260 }
4261 EXPORT_SYMBOL(dev_queue_xmit);
4262 
4263 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4264 {
4265 	return __dev_queue_xmit(skb, sb_dev);
4266 }
4267 EXPORT_SYMBOL(dev_queue_xmit_accel);
4268 
4269 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4270 {
4271 	struct net_device *dev = skb->dev;
4272 	struct sk_buff *orig_skb = skb;
4273 	struct netdev_queue *txq;
4274 	int ret = NETDEV_TX_BUSY;
4275 	bool again = false;
4276 
4277 	if (unlikely(!netif_running(dev) ||
4278 		     !netif_carrier_ok(dev)))
4279 		goto drop;
4280 
4281 	skb = validate_xmit_skb_list(skb, dev, &again);
4282 	if (skb != orig_skb)
4283 		goto drop;
4284 
4285 	skb_set_queue_mapping(skb, queue_id);
4286 	txq = skb_get_tx_queue(dev, skb);
4287 	PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4288 
4289 	local_bh_disable();
4290 
4291 	dev_xmit_recursion_inc();
4292 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4293 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4294 		ret = netdev_start_xmit(skb, dev, txq, false);
4295 	HARD_TX_UNLOCK(dev, txq);
4296 	dev_xmit_recursion_dec();
4297 
4298 	local_bh_enable();
4299 	return ret;
4300 drop:
4301 	atomic_long_inc(&dev->tx_dropped);
4302 	kfree_skb_list(skb);
4303 	return NET_XMIT_DROP;
4304 }
4305 EXPORT_SYMBOL(__dev_direct_xmit);
4306 
4307 /*************************************************************************
4308  *			Receiver routines
4309  *************************************************************************/
4310 
4311 int netdev_max_backlog __read_mostly = 1000;
4312 EXPORT_SYMBOL(netdev_max_backlog);
4313 
4314 int netdev_tstamp_prequeue __read_mostly = 1;
4315 int netdev_budget __read_mostly = 300;
4316 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4317 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4318 int weight_p __read_mostly = 64;           /* old backlog weight */
4319 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4320 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4321 int dev_rx_weight __read_mostly = 64;
4322 int dev_tx_weight __read_mostly = 64;
4323 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4324 int gro_normal_batch __read_mostly = 8;
4325 
4326 /* Called with irq disabled */
4327 static inline void ____napi_schedule(struct softnet_data *sd,
4328 				     struct napi_struct *napi)
4329 {
4330 	struct task_struct *thread;
4331 
4332 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4333 		/* Paired with smp_mb__before_atomic() in
4334 		 * napi_enable()/dev_set_threaded().
4335 		 * Use READ_ONCE() to guarantee a complete
4336 		 * read on napi->thread. Only call
4337 		 * wake_up_process() when it's not NULL.
4338 		 */
4339 		thread = READ_ONCE(napi->thread);
4340 		if (thread) {
4341 			/* Avoid doing set_bit() if the thread is in
4342 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4343 			 * makes sure to proceed with napi polling
4344 			 * if the thread is explicitly woken from here.
4345 			 */
4346 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4347 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4348 			wake_up_process(thread);
4349 			return;
4350 		}
4351 	}
4352 
4353 	list_add_tail(&napi->poll_list, &sd->poll_list);
4354 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4355 }
4356 
4357 #ifdef CONFIG_RPS
4358 
4359 /* One global table that all flow-based protocols share. */
4360 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4361 EXPORT_SYMBOL(rps_sock_flow_table);
4362 u32 rps_cpu_mask __read_mostly;
4363 EXPORT_SYMBOL(rps_cpu_mask);
4364 
4365 struct static_key_false rps_needed __read_mostly;
4366 EXPORT_SYMBOL(rps_needed);
4367 struct static_key_false rfs_needed __read_mostly;
4368 EXPORT_SYMBOL(rfs_needed);
4369 
4370 static struct rps_dev_flow *
4371 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4372 	    struct rps_dev_flow *rflow, u16 next_cpu)
4373 {
4374 	if (next_cpu < nr_cpu_ids) {
4375 #ifdef CONFIG_RFS_ACCEL
4376 		struct netdev_rx_queue *rxqueue;
4377 		struct rps_dev_flow_table *flow_table;
4378 		struct rps_dev_flow *old_rflow;
4379 		u32 flow_id;
4380 		u16 rxq_index;
4381 		int rc;
4382 
4383 		/* Should we steer this flow to a different hardware queue? */
4384 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4385 		    !(dev->features & NETIF_F_NTUPLE))
4386 			goto out;
4387 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4388 		if (rxq_index == skb_get_rx_queue(skb))
4389 			goto out;
4390 
4391 		rxqueue = dev->_rx + rxq_index;
4392 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4393 		if (!flow_table)
4394 			goto out;
4395 		flow_id = skb_get_hash(skb) & flow_table->mask;
4396 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4397 							rxq_index, flow_id);
4398 		if (rc < 0)
4399 			goto out;
4400 		old_rflow = rflow;
4401 		rflow = &flow_table->flows[flow_id];
4402 		rflow->filter = rc;
4403 		if (old_rflow->filter == rflow->filter)
4404 			old_rflow->filter = RPS_NO_FILTER;
4405 	out:
4406 #endif
4407 		rflow->last_qtail =
4408 			per_cpu(softnet_data, next_cpu).input_queue_head;
4409 	}
4410 
4411 	rflow->cpu = next_cpu;
4412 	return rflow;
4413 }
4414 
4415 /*
4416  * get_rps_cpu is called from netif_receive_skb and returns the target
4417  * CPU from the RPS map of the receiving queue for a given skb.
4418  * rcu_read_lock must be held on entry.
4419  */
4420 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4421 		       struct rps_dev_flow **rflowp)
4422 {
4423 	const struct rps_sock_flow_table *sock_flow_table;
4424 	struct netdev_rx_queue *rxqueue = dev->_rx;
4425 	struct rps_dev_flow_table *flow_table;
4426 	struct rps_map *map;
4427 	int cpu = -1;
4428 	u32 tcpu;
4429 	u32 hash;
4430 
4431 	if (skb_rx_queue_recorded(skb)) {
4432 		u16 index = skb_get_rx_queue(skb);
4433 
4434 		if (unlikely(index >= dev->real_num_rx_queues)) {
4435 			WARN_ONCE(dev->real_num_rx_queues > 1,
4436 				  "%s received packet on queue %u, but number "
4437 				  "of RX queues is %u\n",
4438 				  dev->name, index, dev->real_num_rx_queues);
4439 			goto done;
4440 		}
4441 		rxqueue += index;
4442 	}
4443 
4444 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4445 
4446 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4447 	map = rcu_dereference(rxqueue->rps_map);
4448 	if (!flow_table && !map)
4449 		goto done;
4450 
4451 	skb_reset_network_header(skb);
4452 	hash = skb_get_hash(skb);
4453 	if (!hash)
4454 		goto done;
4455 
4456 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4457 	if (flow_table && sock_flow_table) {
4458 		struct rps_dev_flow *rflow;
4459 		u32 next_cpu;
4460 		u32 ident;
4461 
4462 		/* First check into global flow table if there is a match */
4463 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4464 		if ((ident ^ hash) & ~rps_cpu_mask)
4465 			goto try_rps;
4466 
4467 		next_cpu = ident & rps_cpu_mask;
4468 
4469 		/* OK, now we know there is a match,
4470 		 * we can look at the local (per receive queue) flow table
4471 		 */
4472 		rflow = &flow_table->flows[hash & flow_table->mask];
4473 		tcpu = rflow->cpu;
4474 
4475 		/*
4476 		 * If the desired CPU (where last recvmsg was done) is
4477 		 * different from current CPU (one in the rx-queue flow
4478 		 * table entry), switch if one of the following holds:
4479 		 *   - Current CPU is unset (>= nr_cpu_ids).
4480 		 *   - Current CPU is offline.
4481 		 *   - The current CPU's queue tail has advanced beyond the
4482 		 *     last packet that was enqueued using this table entry.
4483 		 *     This guarantees that all previous packets for the flow
4484 		 *     have been dequeued, thus preserving in order delivery.
4485 		 */
4486 		if (unlikely(tcpu != next_cpu) &&
4487 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4488 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4489 		      rflow->last_qtail)) >= 0)) {
4490 			tcpu = next_cpu;
4491 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4492 		}
4493 
4494 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4495 			*rflowp = rflow;
4496 			cpu = tcpu;
4497 			goto done;
4498 		}
4499 	}
4500 
4501 try_rps:
4502 
4503 	if (map) {
4504 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4505 		if (cpu_online(tcpu)) {
4506 			cpu = tcpu;
4507 			goto done;
4508 		}
4509 	}
4510 
4511 done:
4512 	return cpu;
4513 }
4514 
4515 #ifdef CONFIG_RFS_ACCEL
4516 
4517 /**
4518  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4519  * @dev: Device on which the filter was set
4520  * @rxq_index: RX queue index
4521  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4522  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4523  *
4524  * Drivers that implement ndo_rx_flow_steer() should periodically call
4525  * this function for each installed filter and remove the filters for
4526  * which it returns %true.
4527  */
4528 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4529 			 u32 flow_id, u16 filter_id)
4530 {
4531 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4532 	struct rps_dev_flow_table *flow_table;
4533 	struct rps_dev_flow *rflow;
4534 	bool expire = true;
4535 	unsigned int cpu;
4536 
4537 	rcu_read_lock();
4538 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4539 	if (flow_table && flow_id <= flow_table->mask) {
4540 		rflow = &flow_table->flows[flow_id];
4541 		cpu = READ_ONCE(rflow->cpu);
4542 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4543 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4544 			   rflow->last_qtail) <
4545 		     (int)(10 * flow_table->mask)))
4546 			expire = false;
4547 	}
4548 	rcu_read_unlock();
4549 	return expire;
4550 }
4551 EXPORT_SYMBOL(rps_may_expire_flow);
4552 
4553 #endif /* CONFIG_RFS_ACCEL */
4554 
4555 /* Called from hardirq (IPI) context */
4556 static void rps_trigger_softirq(void *data)
4557 {
4558 	struct softnet_data *sd = data;
4559 
4560 	____napi_schedule(sd, &sd->backlog);
4561 	sd->received_rps++;
4562 }
4563 
4564 #endif /* CONFIG_RPS */
4565 
4566 /*
4567  * Check if this softnet_data structure is another cpu one
4568  * If yes, queue it to our IPI list and return 1
4569  * If no, return 0
4570  */
4571 static int rps_ipi_queued(struct softnet_data *sd)
4572 {
4573 #ifdef CONFIG_RPS
4574 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4575 
4576 	if (sd != mysd) {
4577 		sd->rps_ipi_next = mysd->rps_ipi_list;
4578 		mysd->rps_ipi_list = sd;
4579 
4580 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4581 		return 1;
4582 	}
4583 #endif /* CONFIG_RPS */
4584 	return 0;
4585 }
4586 
4587 #ifdef CONFIG_NET_FLOW_LIMIT
4588 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4589 #endif
4590 
4591 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4592 {
4593 #ifdef CONFIG_NET_FLOW_LIMIT
4594 	struct sd_flow_limit *fl;
4595 	struct softnet_data *sd;
4596 	unsigned int old_flow, new_flow;
4597 
4598 	if (qlen < (netdev_max_backlog >> 1))
4599 		return false;
4600 
4601 	sd = this_cpu_ptr(&softnet_data);
4602 
4603 	rcu_read_lock();
4604 	fl = rcu_dereference(sd->flow_limit);
4605 	if (fl) {
4606 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4607 		old_flow = fl->history[fl->history_head];
4608 		fl->history[fl->history_head] = new_flow;
4609 
4610 		fl->history_head++;
4611 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4612 
4613 		if (likely(fl->buckets[old_flow]))
4614 			fl->buckets[old_flow]--;
4615 
4616 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4617 			fl->count++;
4618 			rcu_read_unlock();
4619 			return true;
4620 		}
4621 	}
4622 	rcu_read_unlock();
4623 #endif
4624 	return false;
4625 }
4626 
4627 /*
4628  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4629  * queue (may be a remote CPU queue).
4630  */
4631 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4632 			      unsigned int *qtail)
4633 {
4634 	struct softnet_data *sd;
4635 	unsigned long flags;
4636 	unsigned int qlen;
4637 
4638 	sd = &per_cpu(softnet_data, cpu);
4639 
4640 	local_irq_save(flags);
4641 
4642 	rps_lock(sd);
4643 	if (!netif_running(skb->dev))
4644 		goto drop;
4645 	qlen = skb_queue_len(&sd->input_pkt_queue);
4646 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4647 		if (qlen) {
4648 enqueue:
4649 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4650 			input_queue_tail_incr_save(sd, qtail);
4651 			rps_unlock(sd);
4652 			local_irq_restore(flags);
4653 			return NET_RX_SUCCESS;
4654 		}
4655 
4656 		/* Schedule NAPI for backlog device
4657 		 * We can use non atomic operation since we own the queue lock
4658 		 */
4659 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4660 			if (!rps_ipi_queued(sd))
4661 				____napi_schedule(sd, &sd->backlog);
4662 		}
4663 		goto enqueue;
4664 	}
4665 
4666 drop:
4667 	sd->dropped++;
4668 	rps_unlock(sd);
4669 
4670 	local_irq_restore(flags);
4671 
4672 	atomic_long_inc(&skb->dev->rx_dropped);
4673 	kfree_skb(skb);
4674 	return NET_RX_DROP;
4675 }
4676 
4677 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4678 {
4679 	struct net_device *dev = skb->dev;
4680 	struct netdev_rx_queue *rxqueue;
4681 
4682 	rxqueue = dev->_rx;
4683 
4684 	if (skb_rx_queue_recorded(skb)) {
4685 		u16 index = skb_get_rx_queue(skb);
4686 
4687 		if (unlikely(index >= dev->real_num_rx_queues)) {
4688 			WARN_ONCE(dev->real_num_rx_queues > 1,
4689 				  "%s received packet on queue %u, but number "
4690 				  "of RX queues is %u\n",
4691 				  dev->name, index, dev->real_num_rx_queues);
4692 
4693 			return rxqueue; /* Return first rxqueue */
4694 		}
4695 		rxqueue += index;
4696 	}
4697 	return rxqueue;
4698 }
4699 
4700 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4701 			     struct bpf_prog *xdp_prog)
4702 {
4703 	void *orig_data, *orig_data_end, *hard_start;
4704 	struct netdev_rx_queue *rxqueue;
4705 	bool orig_bcast, orig_host;
4706 	u32 mac_len, frame_sz;
4707 	__be16 orig_eth_type;
4708 	struct ethhdr *eth;
4709 	u32 metalen, act;
4710 	int off;
4711 
4712 	/* The XDP program wants to see the packet starting at the MAC
4713 	 * header.
4714 	 */
4715 	mac_len = skb->data - skb_mac_header(skb);
4716 	hard_start = skb->data - skb_headroom(skb);
4717 
4718 	/* SKB "head" area always have tailroom for skb_shared_info */
4719 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4720 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4721 
4722 	rxqueue = netif_get_rxqueue(skb);
4723 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4724 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4725 			 skb_headlen(skb) + mac_len, true);
4726 
4727 	orig_data_end = xdp->data_end;
4728 	orig_data = xdp->data;
4729 	eth = (struct ethhdr *)xdp->data;
4730 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4731 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4732 	orig_eth_type = eth->h_proto;
4733 
4734 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4735 
4736 	/* check if bpf_xdp_adjust_head was used */
4737 	off = xdp->data - orig_data;
4738 	if (off) {
4739 		if (off > 0)
4740 			__skb_pull(skb, off);
4741 		else if (off < 0)
4742 			__skb_push(skb, -off);
4743 
4744 		skb->mac_header += off;
4745 		skb_reset_network_header(skb);
4746 	}
4747 
4748 	/* check if bpf_xdp_adjust_tail was used */
4749 	off = xdp->data_end - orig_data_end;
4750 	if (off != 0) {
4751 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4752 		skb->len += off; /* positive on grow, negative on shrink */
4753 	}
4754 
4755 	/* check if XDP changed eth hdr such SKB needs update */
4756 	eth = (struct ethhdr *)xdp->data;
4757 	if ((orig_eth_type != eth->h_proto) ||
4758 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4759 						  skb->dev->dev_addr)) ||
4760 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4761 		__skb_push(skb, ETH_HLEN);
4762 		skb->pkt_type = PACKET_HOST;
4763 		skb->protocol = eth_type_trans(skb, skb->dev);
4764 	}
4765 
4766 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4767 	 * before calling us again on redirect path. We do not call do_redirect
4768 	 * as we leave that up to the caller.
4769 	 *
4770 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4771 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4772 	 */
4773 	switch (act) {
4774 	case XDP_REDIRECT:
4775 	case XDP_TX:
4776 		__skb_push(skb, mac_len);
4777 		break;
4778 	case XDP_PASS:
4779 		metalen = xdp->data - xdp->data_meta;
4780 		if (metalen)
4781 			skb_metadata_set(skb, metalen);
4782 		break;
4783 	}
4784 
4785 	return act;
4786 }
4787 
4788 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4789 				     struct xdp_buff *xdp,
4790 				     struct bpf_prog *xdp_prog)
4791 {
4792 	u32 act = XDP_DROP;
4793 
4794 	/* Reinjected packets coming from act_mirred or similar should
4795 	 * not get XDP generic processing.
4796 	 */
4797 	if (skb_is_redirected(skb))
4798 		return XDP_PASS;
4799 
4800 	/* XDP packets must be linear and must have sufficient headroom
4801 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4802 	 * native XDP provides, thus we need to do it here as well.
4803 	 */
4804 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4805 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4806 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4807 		int troom = skb->tail + skb->data_len - skb->end;
4808 
4809 		/* In case we have to go down the path and also linearize,
4810 		 * then lets do the pskb_expand_head() work just once here.
4811 		 */
4812 		if (pskb_expand_head(skb,
4813 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4814 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4815 			goto do_drop;
4816 		if (skb_linearize(skb))
4817 			goto do_drop;
4818 	}
4819 
4820 	act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4821 	switch (act) {
4822 	case XDP_REDIRECT:
4823 	case XDP_TX:
4824 	case XDP_PASS:
4825 		break;
4826 	default:
4827 		bpf_warn_invalid_xdp_action(act);
4828 		fallthrough;
4829 	case XDP_ABORTED:
4830 		trace_xdp_exception(skb->dev, xdp_prog, act);
4831 		fallthrough;
4832 	case XDP_DROP:
4833 	do_drop:
4834 		kfree_skb(skb);
4835 		break;
4836 	}
4837 
4838 	return act;
4839 }
4840 
4841 /* When doing generic XDP we have to bypass the qdisc layer and the
4842  * network taps in order to match in-driver-XDP behavior.
4843  */
4844 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4845 {
4846 	struct net_device *dev = skb->dev;
4847 	struct netdev_queue *txq;
4848 	bool free_skb = true;
4849 	int cpu, rc;
4850 
4851 	txq = netdev_core_pick_tx(dev, skb, NULL);
4852 	cpu = smp_processor_id();
4853 	HARD_TX_LOCK(dev, txq, cpu);
4854 	if (!netif_xmit_stopped(txq)) {
4855 		rc = netdev_start_xmit(skb, dev, txq, 0);
4856 		if (dev_xmit_complete(rc))
4857 			free_skb = false;
4858 	}
4859 	HARD_TX_UNLOCK(dev, txq);
4860 	if (free_skb) {
4861 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4862 		kfree_skb(skb);
4863 	}
4864 }
4865 
4866 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4867 
4868 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4869 {
4870 	if (xdp_prog) {
4871 		struct xdp_buff xdp;
4872 		u32 act;
4873 		int err;
4874 
4875 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4876 		if (act != XDP_PASS) {
4877 			switch (act) {
4878 			case XDP_REDIRECT:
4879 				err = xdp_do_generic_redirect(skb->dev, skb,
4880 							      &xdp, xdp_prog);
4881 				if (err)
4882 					goto out_redir;
4883 				break;
4884 			case XDP_TX:
4885 				generic_xdp_tx(skb, xdp_prog);
4886 				break;
4887 			}
4888 			return XDP_DROP;
4889 		}
4890 	}
4891 	return XDP_PASS;
4892 out_redir:
4893 	kfree_skb(skb);
4894 	return XDP_DROP;
4895 }
4896 EXPORT_SYMBOL_GPL(do_xdp_generic);
4897 
4898 static int netif_rx_internal(struct sk_buff *skb)
4899 {
4900 	int ret;
4901 
4902 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4903 
4904 	trace_netif_rx(skb);
4905 
4906 #ifdef CONFIG_RPS
4907 	if (static_branch_unlikely(&rps_needed)) {
4908 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4909 		int cpu;
4910 
4911 		preempt_disable();
4912 		rcu_read_lock();
4913 
4914 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4915 		if (cpu < 0)
4916 			cpu = smp_processor_id();
4917 
4918 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4919 
4920 		rcu_read_unlock();
4921 		preempt_enable();
4922 	} else
4923 #endif
4924 	{
4925 		unsigned int qtail;
4926 
4927 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4928 		put_cpu();
4929 	}
4930 	return ret;
4931 }
4932 
4933 /**
4934  *	netif_rx	-	post buffer to the network code
4935  *	@skb: buffer to post
4936  *
4937  *	This function receives a packet from a device driver and queues it for
4938  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4939  *	may be dropped during processing for congestion control or by the
4940  *	protocol layers.
4941  *
4942  *	return values:
4943  *	NET_RX_SUCCESS	(no congestion)
4944  *	NET_RX_DROP     (packet was dropped)
4945  *
4946  */
4947 
4948 int netif_rx(struct sk_buff *skb)
4949 {
4950 	int ret;
4951 
4952 	trace_netif_rx_entry(skb);
4953 
4954 	ret = netif_rx_internal(skb);
4955 	trace_netif_rx_exit(ret);
4956 
4957 	return ret;
4958 }
4959 EXPORT_SYMBOL(netif_rx);
4960 
4961 int netif_rx_ni(struct sk_buff *skb)
4962 {
4963 	int err;
4964 
4965 	trace_netif_rx_ni_entry(skb);
4966 
4967 	preempt_disable();
4968 	err = netif_rx_internal(skb);
4969 	if (local_softirq_pending())
4970 		do_softirq();
4971 	preempt_enable();
4972 	trace_netif_rx_ni_exit(err);
4973 
4974 	return err;
4975 }
4976 EXPORT_SYMBOL(netif_rx_ni);
4977 
4978 int netif_rx_any_context(struct sk_buff *skb)
4979 {
4980 	/*
4981 	 * If invoked from contexts which do not invoke bottom half
4982 	 * processing either at return from interrupt or when softrqs are
4983 	 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4984 	 * directly.
4985 	 */
4986 	if (in_interrupt())
4987 		return netif_rx(skb);
4988 	else
4989 		return netif_rx_ni(skb);
4990 }
4991 EXPORT_SYMBOL(netif_rx_any_context);
4992 
4993 static __latent_entropy void net_tx_action(struct softirq_action *h)
4994 {
4995 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4996 
4997 	if (sd->completion_queue) {
4998 		struct sk_buff *clist;
4999 
5000 		local_irq_disable();
5001 		clist = sd->completion_queue;
5002 		sd->completion_queue = NULL;
5003 		local_irq_enable();
5004 
5005 		while (clist) {
5006 			struct sk_buff *skb = clist;
5007 
5008 			clist = clist->next;
5009 
5010 			WARN_ON(refcount_read(&skb->users));
5011 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5012 				trace_consume_skb(skb);
5013 			else
5014 				trace_kfree_skb(skb, net_tx_action);
5015 
5016 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5017 				__kfree_skb(skb);
5018 			else
5019 				__kfree_skb_defer(skb);
5020 		}
5021 	}
5022 
5023 	if (sd->output_queue) {
5024 		struct Qdisc *head;
5025 
5026 		local_irq_disable();
5027 		head = sd->output_queue;
5028 		sd->output_queue = NULL;
5029 		sd->output_queue_tailp = &sd->output_queue;
5030 		local_irq_enable();
5031 
5032 		rcu_read_lock();
5033 
5034 		while (head) {
5035 			struct Qdisc *q = head;
5036 			spinlock_t *root_lock = NULL;
5037 
5038 			head = head->next_sched;
5039 
5040 			/* We need to make sure head->next_sched is read
5041 			 * before clearing __QDISC_STATE_SCHED
5042 			 */
5043 			smp_mb__before_atomic();
5044 
5045 			if (!(q->flags & TCQ_F_NOLOCK)) {
5046 				root_lock = qdisc_lock(q);
5047 				spin_lock(root_lock);
5048 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5049 						     &q->state))) {
5050 				/* There is a synchronize_net() between
5051 				 * STATE_DEACTIVATED flag being set and
5052 				 * qdisc_reset()/some_qdisc_is_busy() in
5053 				 * dev_deactivate(), so we can safely bail out
5054 				 * early here to avoid data race between
5055 				 * qdisc_deactivate() and some_qdisc_is_busy()
5056 				 * for lockless qdisc.
5057 				 */
5058 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5059 				continue;
5060 			}
5061 
5062 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5063 			qdisc_run(q);
5064 			if (root_lock)
5065 				spin_unlock(root_lock);
5066 		}
5067 
5068 		rcu_read_unlock();
5069 	}
5070 
5071 	xfrm_dev_backlog(sd);
5072 }
5073 
5074 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5075 /* This hook is defined here for ATM LANE */
5076 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5077 			     unsigned char *addr) __read_mostly;
5078 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5079 #endif
5080 
5081 static inline struct sk_buff *
5082 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5083 		   struct net_device *orig_dev, bool *another)
5084 {
5085 #ifdef CONFIG_NET_CLS_ACT
5086 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5087 	struct tcf_result cl_res;
5088 
5089 	/* If there's at least one ingress present somewhere (so
5090 	 * we get here via enabled static key), remaining devices
5091 	 * that are not configured with an ingress qdisc will bail
5092 	 * out here.
5093 	 */
5094 	if (!miniq)
5095 		return skb;
5096 
5097 	if (*pt_prev) {
5098 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
5099 		*pt_prev = NULL;
5100 	}
5101 
5102 	qdisc_skb_cb(skb)->pkt_len = skb->len;
5103 	qdisc_skb_cb(skb)->mru = 0;
5104 	qdisc_skb_cb(skb)->post_ct = false;
5105 	skb->tc_at_ingress = 1;
5106 	mini_qdisc_bstats_cpu_update(miniq, skb);
5107 
5108 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5109 	case TC_ACT_OK:
5110 	case TC_ACT_RECLASSIFY:
5111 		skb->tc_index = TC_H_MIN(cl_res.classid);
5112 		break;
5113 	case TC_ACT_SHOT:
5114 		mini_qdisc_qstats_cpu_drop(miniq);
5115 		kfree_skb(skb);
5116 		return NULL;
5117 	case TC_ACT_STOLEN:
5118 	case TC_ACT_QUEUED:
5119 	case TC_ACT_TRAP:
5120 		consume_skb(skb);
5121 		return NULL;
5122 	case TC_ACT_REDIRECT:
5123 		/* skb_mac_header check was done by cls/act_bpf, so
5124 		 * we can safely push the L2 header back before
5125 		 * redirecting to another netdev
5126 		 */
5127 		__skb_push(skb, skb->mac_len);
5128 		if (skb_do_redirect(skb) == -EAGAIN) {
5129 			__skb_pull(skb, skb->mac_len);
5130 			*another = true;
5131 			break;
5132 		}
5133 		return NULL;
5134 	case TC_ACT_CONSUMED:
5135 		return NULL;
5136 	default:
5137 		break;
5138 	}
5139 #endif /* CONFIG_NET_CLS_ACT */
5140 	return skb;
5141 }
5142 
5143 /**
5144  *	netdev_is_rx_handler_busy - check if receive handler is registered
5145  *	@dev: device to check
5146  *
5147  *	Check if a receive handler is already registered for a given device.
5148  *	Return true if there one.
5149  *
5150  *	The caller must hold the rtnl_mutex.
5151  */
5152 bool netdev_is_rx_handler_busy(struct net_device *dev)
5153 {
5154 	ASSERT_RTNL();
5155 	return dev && rtnl_dereference(dev->rx_handler);
5156 }
5157 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5158 
5159 /**
5160  *	netdev_rx_handler_register - register receive handler
5161  *	@dev: device to register a handler for
5162  *	@rx_handler: receive handler to register
5163  *	@rx_handler_data: data pointer that is used by rx handler
5164  *
5165  *	Register a receive handler for a device. This handler will then be
5166  *	called from __netif_receive_skb. A negative errno code is returned
5167  *	on a failure.
5168  *
5169  *	The caller must hold the rtnl_mutex.
5170  *
5171  *	For a general description of rx_handler, see enum rx_handler_result.
5172  */
5173 int netdev_rx_handler_register(struct net_device *dev,
5174 			       rx_handler_func_t *rx_handler,
5175 			       void *rx_handler_data)
5176 {
5177 	if (netdev_is_rx_handler_busy(dev))
5178 		return -EBUSY;
5179 
5180 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5181 		return -EINVAL;
5182 
5183 	/* Note: rx_handler_data must be set before rx_handler */
5184 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5185 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5186 
5187 	return 0;
5188 }
5189 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5190 
5191 /**
5192  *	netdev_rx_handler_unregister - unregister receive handler
5193  *	@dev: device to unregister a handler from
5194  *
5195  *	Unregister a receive handler from a device.
5196  *
5197  *	The caller must hold the rtnl_mutex.
5198  */
5199 void netdev_rx_handler_unregister(struct net_device *dev)
5200 {
5201 
5202 	ASSERT_RTNL();
5203 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5204 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5205 	 * section has a guarantee to see a non NULL rx_handler_data
5206 	 * as well.
5207 	 */
5208 	synchronize_net();
5209 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5210 }
5211 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5212 
5213 /*
5214  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5215  * the special handling of PFMEMALLOC skbs.
5216  */
5217 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5218 {
5219 	switch (skb->protocol) {
5220 	case htons(ETH_P_ARP):
5221 	case htons(ETH_P_IP):
5222 	case htons(ETH_P_IPV6):
5223 	case htons(ETH_P_8021Q):
5224 	case htons(ETH_P_8021AD):
5225 		return true;
5226 	default:
5227 		return false;
5228 	}
5229 }
5230 
5231 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5232 			     int *ret, struct net_device *orig_dev)
5233 {
5234 	if (nf_hook_ingress_active(skb)) {
5235 		int ingress_retval;
5236 
5237 		if (*pt_prev) {
5238 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5239 			*pt_prev = NULL;
5240 		}
5241 
5242 		rcu_read_lock();
5243 		ingress_retval = nf_hook_ingress(skb);
5244 		rcu_read_unlock();
5245 		return ingress_retval;
5246 	}
5247 	return 0;
5248 }
5249 
5250 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5251 				    struct packet_type **ppt_prev)
5252 {
5253 	struct packet_type *ptype, *pt_prev;
5254 	rx_handler_func_t *rx_handler;
5255 	struct sk_buff *skb = *pskb;
5256 	struct net_device *orig_dev;
5257 	bool deliver_exact = false;
5258 	int ret = NET_RX_DROP;
5259 	__be16 type;
5260 
5261 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5262 
5263 	trace_netif_receive_skb(skb);
5264 
5265 	orig_dev = skb->dev;
5266 
5267 	skb_reset_network_header(skb);
5268 	if (!skb_transport_header_was_set(skb))
5269 		skb_reset_transport_header(skb);
5270 	skb_reset_mac_len(skb);
5271 
5272 	pt_prev = NULL;
5273 
5274 another_round:
5275 	skb->skb_iif = skb->dev->ifindex;
5276 
5277 	__this_cpu_inc(softnet_data.processed);
5278 
5279 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5280 		int ret2;
5281 
5282 		migrate_disable();
5283 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5284 		migrate_enable();
5285 
5286 		if (ret2 != XDP_PASS) {
5287 			ret = NET_RX_DROP;
5288 			goto out;
5289 		}
5290 	}
5291 
5292 	if (eth_type_vlan(skb->protocol)) {
5293 		skb = skb_vlan_untag(skb);
5294 		if (unlikely(!skb))
5295 			goto out;
5296 	}
5297 
5298 	if (skb_skip_tc_classify(skb))
5299 		goto skip_classify;
5300 
5301 	if (pfmemalloc)
5302 		goto skip_taps;
5303 
5304 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5305 		if (pt_prev)
5306 			ret = deliver_skb(skb, pt_prev, orig_dev);
5307 		pt_prev = ptype;
5308 	}
5309 
5310 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5311 		if (pt_prev)
5312 			ret = deliver_skb(skb, pt_prev, orig_dev);
5313 		pt_prev = ptype;
5314 	}
5315 
5316 skip_taps:
5317 #ifdef CONFIG_NET_INGRESS
5318 	if (static_branch_unlikely(&ingress_needed_key)) {
5319 		bool another = false;
5320 
5321 		nf_skip_egress(skb, true);
5322 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5323 					 &another);
5324 		if (another)
5325 			goto another_round;
5326 		if (!skb)
5327 			goto out;
5328 
5329 		nf_skip_egress(skb, false);
5330 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5331 			goto out;
5332 	}
5333 #endif
5334 	skb_reset_redirect(skb);
5335 skip_classify:
5336 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5337 		goto drop;
5338 
5339 	if (skb_vlan_tag_present(skb)) {
5340 		if (pt_prev) {
5341 			ret = deliver_skb(skb, pt_prev, orig_dev);
5342 			pt_prev = NULL;
5343 		}
5344 		if (vlan_do_receive(&skb))
5345 			goto another_round;
5346 		else if (unlikely(!skb))
5347 			goto out;
5348 	}
5349 
5350 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5351 	if (rx_handler) {
5352 		if (pt_prev) {
5353 			ret = deliver_skb(skb, pt_prev, orig_dev);
5354 			pt_prev = NULL;
5355 		}
5356 		switch (rx_handler(&skb)) {
5357 		case RX_HANDLER_CONSUMED:
5358 			ret = NET_RX_SUCCESS;
5359 			goto out;
5360 		case RX_HANDLER_ANOTHER:
5361 			goto another_round;
5362 		case RX_HANDLER_EXACT:
5363 			deliver_exact = true;
5364 			break;
5365 		case RX_HANDLER_PASS:
5366 			break;
5367 		default:
5368 			BUG();
5369 		}
5370 	}
5371 
5372 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5373 check_vlan_id:
5374 		if (skb_vlan_tag_get_id(skb)) {
5375 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5376 			 * find vlan device.
5377 			 */
5378 			skb->pkt_type = PACKET_OTHERHOST;
5379 		} else if (eth_type_vlan(skb->protocol)) {
5380 			/* Outer header is 802.1P with vlan 0, inner header is
5381 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5382 			 * not find vlan dev for vlan id 0.
5383 			 */
5384 			__vlan_hwaccel_clear_tag(skb);
5385 			skb = skb_vlan_untag(skb);
5386 			if (unlikely(!skb))
5387 				goto out;
5388 			if (vlan_do_receive(&skb))
5389 				/* After stripping off 802.1P header with vlan 0
5390 				 * vlan dev is found for inner header.
5391 				 */
5392 				goto another_round;
5393 			else if (unlikely(!skb))
5394 				goto out;
5395 			else
5396 				/* We have stripped outer 802.1P vlan 0 header.
5397 				 * But could not find vlan dev.
5398 				 * check again for vlan id to set OTHERHOST.
5399 				 */
5400 				goto check_vlan_id;
5401 		}
5402 		/* Note: we might in the future use prio bits
5403 		 * and set skb->priority like in vlan_do_receive()
5404 		 * For the time being, just ignore Priority Code Point
5405 		 */
5406 		__vlan_hwaccel_clear_tag(skb);
5407 	}
5408 
5409 	type = skb->protocol;
5410 
5411 	/* deliver only exact match when indicated */
5412 	if (likely(!deliver_exact)) {
5413 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5414 				       &ptype_base[ntohs(type) &
5415 						   PTYPE_HASH_MASK]);
5416 	}
5417 
5418 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5419 			       &orig_dev->ptype_specific);
5420 
5421 	if (unlikely(skb->dev != orig_dev)) {
5422 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5423 				       &skb->dev->ptype_specific);
5424 	}
5425 
5426 	if (pt_prev) {
5427 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5428 			goto drop;
5429 		*ppt_prev = pt_prev;
5430 	} else {
5431 drop:
5432 		if (!deliver_exact)
5433 			atomic_long_inc(&skb->dev->rx_dropped);
5434 		else
5435 			atomic_long_inc(&skb->dev->rx_nohandler);
5436 		kfree_skb(skb);
5437 		/* Jamal, now you will not able to escape explaining
5438 		 * me how you were going to use this. :-)
5439 		 */
5440 		ret = NET_RX_DROP;
5441 	}
5442 
5443 out:
5444 	/* The invariant here is that if *ppt_prev is not NULL
5445 	 * then skb should also be non-NULL.
5446 	 *
5447 	 * Apparently *ppt_prev assignment above holds this invariant due to
5448 	 * skb dereferencing near it.
5449 	 */
5450 	*pskb = skb;
5451 	return ret;
5452 }
5453 
5454 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5455 {
5456 	struct net_device *orig_dev = skb->dev;
5457 	struct packet_type *pt_prev = NULL;
5458 	int ret;
5459 
5460 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5461 	if (pt_prev)
5462 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5463 					 skb->dev, pt_prev, orig_dev);
5464 	return ret;
5465 }
5466 
5467 /**
5468  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5469  *	@skb: buffer to process
5470  *
5471  *	More direct receive version of netif_receive_skb().  It should
5472  *	only be used by callers that have a need to skip RPS and Generic XDP.
5473  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5474  *
5475  *	This function may only be called from softirq context and interrupts
5476  *	should be enabled.
5477  *
5478  *	Return values (usually ignored):
5479  *	NET_RX_SUCCESS: no congestion
5480  *	NET_RX_DROP: packet was dropped
5481  */
5482 int netif_receive_skb_core(struct sk_buff *skb)
5483 {
5484 	int ret;
5485 
5486 	rcu_read_lock();
5487 	ret = __netif_receive_skb_one_core(skb, false);
5488 	rcu_read_unlock();
5489 
5490 	return ret;
5491 }
5492 EXPORT_SYMBOL(netif_receive_skb_core);
5493 
5494 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5495 						  struct packet_type *pt_prev,
5496 						  struct net_device *orig_dev)
5497 {
5498 	struct sk_buff *skb, *next;
5499 
5500 	if (!pt_prev)
5501 		return;
5502 	if (list_empty(head))
5503 		return;
5504 	if (pt_prev->list_func != NULL)
5505 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5506 				   ip_list_rcv, head, pt_prev, orig_dev);
5507 	else
5508 		list_for_each_entry_safe(skb, next, head, list) {
5509 			skb_list_del_init(skb);
5510 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5511 		}
5512 }
5513 
5514 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5515 {
5516 	/* Fast-path assumptions:
5517 	 * - There is no RX handler.
5518 	 * - Only one packet_type matches.
5519 	 * If either of these fails, we will end up doing some per-packet
5520 	 * processing in-line, then handling the 'last ptype' for the whole
5521 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5522 	 * because the 'last ptype' must be constant across the sublist, and all
5523 	 * other ptypes are handled per-packet.
5524 	 */
5525 	/* Current (common) ptype of sublist */
5526 	struct packet_type *pt_curr = NULL;
5527 	/* Current (common) orig_dev of sublist */
5528 	struct net_device *od_curr = NULL;
5529 	struct list_head sublist;
5530 	struct sk_buff *skb, *next;
5531 
5532 	INIT_LIST_HEAD(&sublist);
5533 	list_for_each_entry_safe(skb, next, head, list) {
5534 		struct net_device *orig_dev = skb->dev;
5535 		struct packet_type *pt_prev = NULL;
5536 
5537 		skb_list_del_init(skb);
5538 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5539 		if (!pt_prev)
5540 			continue;
5541 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5542 			/* dispatch old sublist */
5543 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5544 			/* start new sublist */
5545 			INIT_LIST_HEAD(&sublist);
5546 			pt_curr = pt_prev;
5547 			od_curr = orig_dev;
5548 		}
5549 		list_add_tail(&skb->list, &sublist);
5550 	}
5551 
5552 	/* dispatch final sublist */
5553 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5554 }
5555 
5556 static int __netif_receive_skb(struct sk_buff *skb)
5557 {
5558 	int ret;
5559 
5560 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5561 		unsigned int noreclaim_flag;
5562 
5563 		/*
5564 		 * PFMEMALLOC skbs are special, they should
5565 		 * - be delivered to SOCK_MEMALLOC sockets only
5566 		 * - stay away from userspace
5567 		 * - have bounded memory usage
5568 		 *
5569 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5570 		 * context down to all allocation sites.
5571 		 */
5572 		noreclaim_flag = memalloc_noreclaim_save();
5573 		ret = __netif_receive_skb_one_core(skb, true);
5574 		memalloc_noreclaim_restore(noreclaim_flag);
5575 	} else
5576 		ret = __netif_receive_skb_one_core(skb, false);
5577 
5578 	return ret;
5579 }
5580 
5581 static void __netif_receive_skb_list(struct list_head *head)
5582 {
5583 	unsigned long noreclaim_flag = 0;
5584 	struct sk_buff *skb, *next;
5585 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5586 
5587 	list_for_each_entry_safe(skb, next, head, list) {
5588 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5589 			struct list_head sublist;
5590 
5591 			/* Handle the previous sublist */
5592 			list_cut_before(&sublist, head, &skb->list);
5593 			if (!list_empty(&sublist))
5594 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5595 			pfmemalloc = !pfmemalloc;
5596 			/* See comments in __netif_receive_skb */
5597 			if (pfmemalloc)
5598 				noreclaim_flag = memalloc_noreclaim_save();
5599 			else
5600 				memalloc_noreclaim_restore(noreclaim_flag);
5601 		}
5602 	}
5603 	/* Handle the remaining sublist */
5604 	if (!list_empty(head))
5605 		__netif_receive_skb_list_core(head, pfmemalloc);
5606 	/* Restore pflags */
5607 	if (pfmemalloc)
5608 		memalloc_noreclaim_restore(noreclaim_flag);
5609 }
5610 
5611 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5612 {
5613 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5614 	struct bpf_prog *new = xdp->prog;
5615 	int ret = 0;
5616 
5617 	switch (xdp->command) {
5618 	case XDP_SETUP_PROG:
5619 		rcu_assign_pointer(dev->xdp_prog, new);
5620 		if (old)
5621 			bpf_prog_put(old);
5622 
5623 		if (old && !new) {
5624 			static_branch_dec(&generic_xdp_needed_key);
5625 		} else if (new && !old) {
5626 			static_branch_inc(&generic_xdp_needed_key);
5627 			dev_disable_lro(dev);
5628 			dev_disable_gro_hw(dev);
5629 		}
5630 		break;
5631 
5632 	default:
5633 		ret = -EINVAL;
5634 		break;
5635 	}
5636 
5637 	return ret;
5638 }
5639 
5640 static int netif_receive_skb_internal(struct sk_buff *skb)
5641 {
5642 	int ret;
5643 
5644 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5645 
5646 	if (skb_defer_rx_timestamp(skb))
5647 		return NET_RX_SUCCESS;
5648 
5649 	rcu_read_lock();
5650 #ifdef CONFIG_RPS
5651 	if (static_branch_unlikely(&rps_needed)) {
5652 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5653 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5654 
5655 		if (cpu >= 0) {
5656 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5657 			rcu_read_unlock();
5658 			return ret;
5659 		}
5660 	}
5661 #endif
5662 	ret = __netif_receive_skb(skb);
5663 	rcu_read_unlock();
5664 	return ret;
5665 }
5666 
5667 static void netif_receive_skb_list_internal(struct list_head *head)
5668 {
5669 	struct sk_buff *skb, *next;
5670 	struct list_head sublist;
5671 
5672 	INIT_LIST_HEAD(&sublist);
5673 	list_for_each_entry_safe(skb, next, head, list) {
5674 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5675 		skb_list_del_init(skb);
5676 		if (!skb_defer_rx_timestamp(skb))
5677 			list_add_tail(&skb->list, &sublist);
5678 	}
5679 	list_splice_init(&sublist, head);
5680 
5681 	rcu_read_lock();
5682 #ifdef CONFIG_RPS
5683 	if (static_branch_unlikely(&rps_needed)) {
5684 		list_for_each_entry_safe(skb, next, head, list) {
5685 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5686 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5687 
5688 			if (cpu >= 0) {
5689 				/* Will be handled, remove from list */
5690 				skb_list_del_init(skb);
5691 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5692 			}
5693 		}
5694 	}
5695 #endif
5696 	__netif_receive_skb_list(head);
5697 	rcu_read_unlock();
5698 }
5699 
5700 /**
5701  *	netif_receive_skb - process receive buffer from network
5702  *	@skb: buffer to process
5703  *
5704  *	netif_receive_skb() is the main receive data processing function.
5705  *	It always succeeds. The buffer may be dropped during processing
5706  *	for congestion control or by the protocol layers.
5707  *
5708  *	This function may only be called from softirq context and interrupts
5709  *	should be enabled.
5710  *
5711  *	Return values (usually ignored):
5712  *	NET_RX_SUCCESS: no congestion
5713  *	NET_RX_DROP: packet was dropped
5714  */
5715 int netif_receive_skb(struct sk_buff *skb)
5716 {
5717 	int ret;
5718 
5719 	trace_netif_receive_skb_entry(skb);
5720 
5721 	ret = netif_receive_skb_internal(skb);
5722 	trace_netif_receive_skb_exit(ret);
5723 
5724 	return ret;
5725 }
5726 EXPORT_SYMBOL(netif_receive_skb);
5727 
5728 /**
5729  *	netif_receive_skb_list - process many receive buffers from network
5730  *	@head: list of skbs to process.
5731  *
5732  *	Since return value of netif_receive_skb() is normally ignored, and
5733  *	wouldn't be meaningful for a list, this function returns void.
5734  *
5735  *	This function may only be called from softirq context and interrupts
5736  *	should be enabled.
5737  */
5738 void netif_receive_skb_list(struct list_head *head)
5739 {
5740 	struct sk_buff *skb;
5741 
5742 	if (list_empty(head))
5743 		return;
5744 	if (trace_netif_receive_skb_list_entry_enabled()) {
5745 		list_for_each_entry(skb, head, list)
5746 			trace_netif_receive_skb_list_entry(skb);
5747 	}
5748 	netif_receive_skb_list_internal(head);
5749 	trace_netif_receive_skb_list_exit(0);
5750 }
5751 EXPORT_SYMBOL(netif_receive_skb_list);
5752 
5753 static DEFINE_PER_CPU(struct work_struct, flush_works);
5754 
5755 /* Network device is going away, flush any packets still pending */
5756 static void flush_backlog(struct work_struct *work)
5757 {
5758 	struct sk_buff *skb, *tmp;
5759 	struct softnet_data *sd;
5760 
5761 	local_bh_disable();
5762 	sd = this_cpu_ptr(&softnet_data);
5763 
5764 	local_irq_disable();
5765 	rps_lock(sd);
5766 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5767 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5768 			__skb_unlink(skb, &sd->input_pkt_queue);
5769 			dev_kfree_skb_irq(skb);
5770 			input_queue_head_incr(sd);
5771 		}
5772 	}
5773 	rps_unlock(sd);
5774 	local_irq_enable();
5775 
5776 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5777 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5778 			__skb_unlink(skb, &sd->process_queue);
5779 			kfree_skb(skb);
5780 			input_queue_head_incr(sd);
5781 		}
5782 	}
5783 	local_bh_enable();
5784 }
5785 
5786 static bool flush_required(int cpu)
5787 {
5788 #if IS_ENABLED(CONFIG_RPS)
5789 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5790 	bool do_flush;
5791 
5792 	local_irq_disable();
5793 	rps_lock(sd);
5794 
5795 	/* as insertion into process_queue happens with the rps lock held,
5796 	 * process_queue access may race only with dequeue
5797 	 */
5798 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5799 		   !skb_queue_empty_lockless(&sd->process_queue);
5800 	rps_unlock(sd);
5801 	local_irq_enable();
5802 
5803 	return do_flush;
5804 #endif
5805 	/* without RPS we can't safely check input_pkt_queue: during a
5806 	 * concurrent remote skb_queue_splice() we can detect as empty both
5807 	 * input_pkt_queue and process_queue even if the latter could end-up
5808 	 * containing a lot of packets.
5809 	 */
5810 	return true;
5811 }
5812 
5813 static void flush_all_backlogs(void)
5814 {
5815 	static cpumask_t flush_cpus;
5816 	unsigned int cpu;
5817 
5818 	/* since we are under rtnl lock protection we can use static data
5819 	 * for the cpumask and avoid allocating on stack the possibly
5820 	 * large mask
5821 	 */
5822 	ASSERT_RTNL();
5823 
5824 	cpus_read_lock();
5825 
5826 	cpumask_clear(&flush_cpus);
5827 	for_each_online_cpu(cpu) {
5828 		if (flush_required(cpu)) {
5829 			queue_work_on(cpu, system_highpri_wq,
5830 				      per_cpu_ptr(&flush_works, cpu));
5831 			cpumask_set_cpu(cpu, &flush_cpus);
5832 		}
5833 	}
5834 
5835 	/* we can have in flight packet[s] on the cpus we are not flushing,
5836 	 * synchronize_net() in unregister_netdevice_many() will take care of
5837 	 * them
5838 	 */
5839 	for_each_cpu(cpu, &flush_cpus)
5840 		flush_work(per_cpu_ptr(&flush_works, cpu));
5841 
5842 	cpus_read_unlock();
5843 }
5844 
5845 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5846 static void gro_normal_list(struct napi_struct *napi)
5847 {
5848 	if (!napi->rx_count)
5849 		return;
5850 	netif_receive_skb_list_internal(&napi->rx_list);
5851 	INIT_LIST_HEAD(&napi->rx_list);
5852 	napi->rx_count = 0;
5853 }
5854 
5855 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5856  * pass the whole batch up to the stack.
5857  */
5858 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5859 {
5860 	list_add_tail(&skb->list, &napi->rx_list);
5861 	napi->rx_count += segs;
5862 	if (napi->rx_count >= gro_normal_batch)
5863 		gro_normal_list(napi);
5864 }
5865 
5866 static void napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5867 {
5868 	struct packet_offload *ptype;
5869 	__be16 type = skb->protocol;
5870 	struct list_head *head = &offload_base;
5871 	int err = -ENOENT;
5872 
5873 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5874 
5875 	if (NAPI_GRO_CB(skb)->count == 1) {
5876 		skb_shinfo(skb)->gso_size = 0;
5877 		goto out;
5878 	}
5879 
5880 	rcu_read_lock();
5881 	list_for_each_entry_rcu(ptype, head, list) {
5882 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5883 			continue;
5884 
5885 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5886 					 ipv6_gro_complete, inet_gro_complete,
5887 					 skb, 0);
5888 		break;
5889 	}
5890 	rcu_read_unlock();
5891 
5892 	if (err) {
5893 		WARN_ON(&ptype->list == head);
5894 		kfree_skb(skb);
5895 		return;
5896 	}
5897 
5898 out:
5899 	gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5900 }
5901 
5902 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5903 				   bool flush_old)
5904 {
5905 	struct list_head *head = &napi->gro_hash[index].list;
5906 	struct sk_buff *skb, *p;
5907 
5908 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5909 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5910 			return;
5911 		skb_list_del_init(skb);
5912 		napi_gro_complete(napi, skb);
5913 		napi->gro_hash[index].count--;
5914 	}
5915 
5916 	if (!napi->gro_hash[index].count)
5917 		__clear_bit(index, &napi->gro_bitmask);
5918 }
5919 
5920 /* napi->gro_hash[].list contains packets ordered by age.
5921  * youngest packets at the head of it.
5922  * Complete skbs in reverse order to reduce latencies.
5923  */
5924 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5925 {
5926 	unsigned long bitmask = napi->gro_bitmask;
5927 	unsigned int i, base = ~0U;
5928 
5929 	while ((i = ffs(bitmask)) != 0) {
5930 		bitmask >>= i;
5931 		base += i;
5932 		__napi_gro_flush_chain(napi, base, flush_old);
5933 	}
5934 }
5935 EXPORT_SYMBOL(napi_gro_flush);
5936 
5937 static void gro_list_prepare(const struct list_head *head,
5938 			     const struct sk_buff *skb)
5939 {
5940 	unsigned int maclen = skb->dev->hard_header_len;
5941 	u32 hash = skb_get_hash_raw(skb);
5942 	struct sk_buff *p;
5943 
5944 	list_for_each_entry(p, head, list) {
5945 		unsigned long diffs;
5946 
5947 		NAPI_GRO_CB(p)->flush = 0;
5948 
5949 		if (hash != skb_get_hash_raw(p)) {
5950 			NAPI_GRO_CB(p)->same_flow = 0;
5951 			continue;
5952 		}
5953 
5954 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5955 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5956 		if (skb_vlan_tag_present(p))
5957 			diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5958 		diffs |= skb_metadata_differs(p, skb);
5959 		if (maclen == ETH_HLEN)
5960 			diffs |= compare_ether_header(skb_mac_header(p),
5961 						      skb_mac_header(skb));
5962 		else if (!diffs)
5963 			diffs = memcmp(skb_mac_header(p),
5964 				       skb_mac_header(skb),
5965 				       maclen);
5966 
5967 		/* in most common scenarions 'slow_gro' is 0
5968 		 * otherwise we are already on some slower paths
5969 		 * either skip all the infrequent tests altogether or
5970 		 * avoid trying too hard to skip each of them individually
5971 		 */
5972 		if (!diffs && unlikely(skb->slow_gro | p->slow_gro)) {
5973 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5974 			struct tc_skb_ext *skb_ext;
5975 			struct tc_skb_ext *p_ext;
5976 #endif
5977 
5978 			diffs |= p->sk != skb->sk;
5979 			diffs |= skb_metadata_dst_cmp(p, skb);
5980 			diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb);
5981 
5982 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5983 			skb_ext = skb_ext_find(skb, TC_SKB_EXT);
5984 			p_ext = skb_ext_find(p, TC_SKB_EXT);
5985 
5986 			diffs |= (!!p_ext) ^ (!!skb_ext);
5987 			if (!diffs && unlikely(skb_ext))
5988 				diffs |= p_ext->chain ^ skb_ext->chain;
5989 #endif
5990 		}
5991 
5992 		NAPI_GRO_CB(p)->same_flow = !diffs;
5993 	}
5994 }
5995 
5996 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
5997 {
5998 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5999 	const skb_frag_t *frag0 = &pinfo->frags[0];
6000 
6001 	NAPI_GRO_CB(skb)->data_offset = 0;
6002 	NAPI_GRO_CB(skb)->frag0 = NULL;
6003 	NAPI_GRO_CB(skb)->frag0_len = 0;
6004 
6005 	if (!skb_headlen(skb) && pinfo->nr_frags &&
6006 	    !PageHighMem(skb_frag_page(frag0)) &&
6007 	    (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
6008 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
6009 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
6010 						    skb_frag_size(frag0),
6011 						    skb->end - skb->tail);
6012 	}
6013 }
6014 
6015 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
6016 {
6017 	struct skb_shared_info *pinfo = skb_shinfo(skb);
6018 
6019 	BUG_ON(skb->end - skb->tail < grow);
6020 
6021 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
6022 
6023 	skb->data_len -= grow;
6024 	skb->tail += grow;
6025 
6026 	skb_frag_off_add(&pinfo->frags[0], grow);
6027 	skb_frag_size_sub(&pinfo->frags[0], grow);
6028 
6029 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6030 		skb_frag_unref(skb, 0);
6031 		memmove(pinfo->frags, pinfo->frags + 1,
6032 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
6033 	}
6034 }
6035 
6036 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6037 {
6038 	struct sk_buff *oldest;
6039 
6040 	oldest = list_last_entry(head, struct sk_buff, list);
6041 
6042 	/* We are called with head length >= MAX_GRO_SKBS, so this is
6043 	 * impossible.
6044 	 */
6045 	if (WARN_ON_ONCE(!oldest))
6046 		return;
6047 
6048 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
6049 	 * SKB to the chain.
6050 	 */
6051 	skb_list_del_init(oldest);
6052 	napi_gro_complete(napi, oldest);
6053 }
6054 
6055 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6056 {
6057 	u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6058 	struct gro_list *gro_list = &napi->gro_hash[bucket];
6059 	struct list_head *head = &offload_base;
6060 	struct packet_offload *ptype;
6061 	__be16 type = skb->protocol;
6062 	struct sk_buff *pp = NULL;
6063 	enum gro_result ret;
6064 	int same_flow;
6065 	int grow;
6066 
6067 	if (netif_elide_gro(skb->dev))
6068 		goto normal;
6069 
6070 	gro_list_prepare(&gro_list->list, skb);
6071 
6072 	rcu_read_lock();
6073 	list_for_each_entry_rcu(ptype, head, list) {
6074 		if (ptype->type != type || !ptype->callbacks.gro_receive)
6075 			continue;
6076 
6077 		skb_set_network_header(skb, skb_gro_offset(skb));
6078 		skb_reset_mac_len(skb);
6079 		NAPI_GRO_CB(skb)->same_flow = 0;
6080 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6081 		NAPI_GRO_CB(skb)->free = 0;
6082 		NAPI_GRO_CB(skb)->encap_mark = 0;
6083 		NAPI_GRO_CB(skb)->recursion_counter = 0;
6084 		NAPI_GRO_CB(skb)->is_fou = 0;
6085 		NAPI_GRO_CB(skb)->is_atomic = 1;
6086 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6087 
6088 		/* Setup for GRO checksum validation */
6089 		switch (skb->ip_summed) {
6090 		case CHECKSUM_COMPLETE:
6091 			NAPI_GRO_CB(skb)->csum = skb->csum;
6092 			NAPI_GRO_CB(skb)->csum_valid = 1;
6093 			NAPI_GRO_CB(skb)->csum_cnt = 0;
6094 			break;
6095 		case CHECKSUM_UNNECESSARY:
6096 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6097 			NAPI_GRO_CB(skb)->csum_valid = 0;
6098 			break;
6099 		default:
6100 			NAPI_GRO_CB(skb)->csum_cnt = 0;
6101 			NAPI_GRO_CB(skb)->csum_valid = 0;
6102 		}
6103 
6104 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6105 					ipv6_gro_receive, inet_gro_receive,
6106 					&gro_list->list, skb);
6107 		break;
6108 	}
6109 	rcu_read_unlock();
6110 
6111 	if (&ptype->list == head)
6112 		goto normal;
6113 
6114 	if (PTR_ERR(pp) == -EINPROGRESS) {
6115 		ret = GRO_CONSUMED;
6116 		goto ok;
6117 	}
6118 
6119 	same_flow = NAPI_GRO_CB(skb)->same_flow;
6120 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6121 
6122 	if (pp) {
6123 		skb_list_del_init(pp);
6124 		napi_gro_complete(napi, pp);
6125 		gro_list->count--;
6126 	}
6127 
6128 	if (same_flow)
6129 		goto ok;
6130 
6131 	if (NAPI_GRO_CB(skb)->flush)
6132 		goto normal;
6133 
6134 	if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6135 		gro_flush_oldest(napi, &gro_list->list);
6136 	else
6137 		gro_list->count++;
6138 
6139 	NAPI_GRO_CB(skb)->count = 1;
6140 	NAPI_GRO_CB(skb)->age = jiffies;
6141 	NAPI_GRO_CB(skb)->last = skb;
6142 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6143 	list_add(&skb->list, &gro_list->list);
6144 	ret = GRO_HELD;
6145 
6146 pull:
6147 	grow = skb_gro_offset(skb) - skb_headlen(skb);
6148 	if (grow > 0)
6149 		gro_pull_from_frag0(skb, grow);
6150 ok:
6151 	if (gro_list->count) {
6152 		if (!test_bit(bucket, &napi->gro_bitmask))
6153 			__set_bit(bucket, &napi->gro_bitmask);
6154 	} else if (test_bit(bucket, &napi->gro_bitmask)) {
6155 		__clear_bit(bucket, &napi->gro_bitmask);
6156 	}
6157 
6158 	return ret;
6159 
6160 normal:
6161 	ret = GRO_NORMAL;
6162 	goto pull;
6163 }
6164 
6165 struct packet_offload *gro_find_receive_by_type(__be16 type)
6166 {
6167 	struct list_head *offload_head = &offload_base;
6168 	struct packet_offload *ptype;
6169 
6170 	list_for_each_entry_rcu(ptype, offload_head, list) {
6171 		if (ptype->type != type || !ptype->callbacks.gro_receive)
6172 			continue;
6173 		return ptype;
6174 	}
6175 	return NULL;
6176 }
6177 EXPORT_SYMBOL(gro_find_receive_by_type);
6178 
6179 struct packet_offload *gro_find_complete_by_type(__be16 type)
6180 {
6181 	struct list_head *offload_head = &offload_base;
6182 	struct packet_offload *ptype;
6183 
6184 	list_for_each_entry_rcu(ptype, offload_head, list) {
6185 		if (ptype->type != type || !ptype->callbacks.gro_complete)
6186 			continue;
6187 		return ptype;
6188 	}
6189 	return NULL;
6190 }
6191 EXPORT_SYMBOL(gro_find_complete_by_type);
6192 
6193 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6194 				    struct sk_buff *skb,
6195 				    gro_result_t ret)
6196 {
6197 	switch (ret) {
6198 	case GRO_NORMAL:
6199 		gro_normal_one(napi, skb, 1);
6200 		break;
6201 
6202 	case GRO_MERGED_FREE:
6203 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6204 			napi_skb_free_stolen_head(skb);
6205 		else if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
6206 			__kfree_skb(skb);
6207 		else
6208 			__kfree_skb_defer(skb);
6209 		break;
6210 
6211 	case GRO_HELD:
6212 	case GRO_MERGED:
6213 	case GRO_CONSUMED:
6214 		break;
6215 	}
6216 
6217 	return ret;
6218 }
6219 
6220 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6221 {
6222 	gro_result_t ret;
6223 
6224 	skb_mark_napi_id(skb, napi);
6225 	trace_napi_gro_receive_entry(skb);
6226 
6227 	skb_gro_reset_offset(skb, 0);
6228 
6229 	ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6230 	trace_napi_gro_receive_exit(ret);
6231 
6232 	return ret;
6233 }
6234 EXPORT_SYMBOL(napi_gro_receive);
6235 
6236 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6237 {
6238 	if (unlikely(skb->pfmemalloc)) {
6239 		consume_skb(skb);
6240 		return;
6241 	}
6242 	__skb_pull(skb, skb_headlen(skb));
6243 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
6244 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6245 	__vlan_hwaccel_clear_tag(skb);
6246 	skb->dev = napi->dev;
6247 	skb->skb_iif = 0;
6248 
6249 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
6250 	skb->pkt_type = PACKET_HOST;
6251 
6252 	skb->encapsulation = 0;
6253 	skb_shinfo(skb)->gso_type = 0;
6254 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6255 	if (unlikely(skb->slow_gro)) {
6256 		skb_orphan(skb);
6257 		skb_ext_reset(skb);
6258 		nf_reset_ct(skb);
6259 		skb->slow_gro = 0;
6260 	}
6261 
6262 	napi->skb = skb;
6263 }
6264 
6265 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6266 {
6267 	struct sk_buff *skb = napi->skb;
6268 
6269 	if (!skb) {
6270 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6271 		if (skb) {
6272 			napi->skb = skb;
6273 			skb_mark_napi_id(skb, napi);
6274 		}
6275 	}
6276 	return skb;
6277 }
6278 EXPORT_SYMBOL(napi_get_frags);
6279 
6280 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6281 				      struct sk_buff *skb,
6282 				      gro_result_t ret)
6283 {
6284 	switch (ret) {
6285 	case GRO_NORMAL:
6286 	case GRO_HELD:
6287 		__skb_push(skb, ETH_HLEN);
6288 		skb->protocol = eth_type_trans(skb, skb->dev);
6289 		if (ret == GRO_NORMAL)
6290 			gro_normal_one(napi, skb, 1);
6291 		break;
6292 
6293 	case GRO_MERGED_FREE:
6294 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6295 			napi_skb_free_stolen_head(skb);
6296 		else
6297 			napi_reuse_skb(napi, skb);
6298 		break;
6299 
6300 	case GRO_MERGED:
6301 	case GRO_CONSUMED:
6302 		break;
6303 	}
6304 
6305 	return ret;
6306 }
6307 
6308 /* Upper GRO stack assumes network header starts at gro_offset=0
6309  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6310  * We copy ethernet header into skb->data to have a common layout.
6311  */
6312 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6313 {
6314 	struct sk_buff *skb = napi->skb;
6315 	const struct ethhdr *eth;
6316 	unsigned int hlen = sizeof(*eth);
6317 
6318 	napi->skb = NULL;
6319 
6320 	skb_reset_mac_header(skb);
6321 	skb_gro_reset_offset(skb, hlen);
6322 
6323 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
6324 		eth = skb_gro_header_slow(skb, hlen, 0);
6325 		if (unlikely(!eth)) {
6326 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6327 					     __func__, napi->dev->name);
6328 			napi_reuse_skb(napi, skb);
6329 			return NULL;
6330 		}
6331 	} else {
6332 		eth = (const struct ethhdr *)skb->data;
6333 		gro_pull_from_frag0(skb, hlen);
6334 		NAPI_GRO_CB(skb)->frag0 += hlen;
6335 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
6336 	}
6337 	__skb_pull(skb, hlen);
6338 
6339 	/*
6340 	 * This works because the only protocols we care about don't require
6341 	 * special handling.
6342 	 * We'll fix it up properly in napi_frags_finish()
6343 	 */
6344 	skb->protocol = eth->h_proto;
6345 
6346 	return skb;
6347 }
6348 
6349 gro_result_t napi_gro_frags(struct napi_struct *napi)
6350 {
6351 	gro_result_t ret;
6352 	struct sk_buff *skb = napi_frags_skb(napi);
6353 
6354 	trace_napi_gro_frags_entry(skb);
6355 
6356 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6357 	trace_napi_gro_frags_exit(ret);
6358 
6359 	return ret;
6360 }
6361 EXPORT_SYMBOL(napi_gro_frags);
6362 
6363 /* Compute the checksum from gro_offset and return the folded value
6364  * after adding in any pseudo checksum.
6365  */
6366 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6367 {
6368 	__wsum wsum;
6369 	__sum16 sum;
6370 
6371 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6372 
6373 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6374 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6375 	/* See comments in __skb_checksum_complete(). */
6376 	if (likely(!sum)) {
6377 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6378 		    !skb->csum_complete_sw)
6379 			netdev_rx_csum_fault(skb->dev, skb);
6380 	}
6381 
6382 	NAPI_GRO_CB(skb)->csum = wsum;
6383 	NAPI_GRO_CB(skb)->csum_valid = 1;
6384 
6385 	return sum;
6386 }
6387 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6388 
6389 static void net_rps_send_ipi(struct softnet_data *remsd)
6390 {
6391 #ifdef CONFIG_RPS
6392 	while (remsd) {
6393 		struct softnet_data *next = remsd->rps_ipi_next;
6394 
6395 		if (cpu_online(remsd->cpu))
6396 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6397 		remsd = next;
6398 	}
6399 #endif
6400 }
6401 
6402 /*
6403  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6404  * Note: called with local irq disabled, but exits with local irq enabled.
6405  */
6406 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6407 {
6408 #ifdef CONFIG_RPS
6409 	struct softnet_data *remsd = sd->rps_ipi_list;
6410 
6411 	if (remsd) {
6412 		sd->rps_ipi_list = NULL;
6413 
6414 		local_irq_enable();
6415 
6416 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6417 		net_rps_send_ipi(remsd);
6418 	} else
6419 #endif
6420 		local_irq_enable();
6421 }
6422 
6423 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6424 {
6425 #ifdef CONFIG_RPS
6426 	return sd->rps_ipi_list != NULL;
6427 #else
6428 	return false;
6429 #endif
6430 }
6431 
6432 static int process_backlog(struct napi_struct *napi, int quota)
6433 {
6434 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6435 	bool again = true;
6436 	int work = 0;
6437 
6438 	/* Check if we have pending ipi, its better to send them now,
6439 	 * not waiting net_rx_action() end.
6440 	 */
6441 	if (sd_has_rps_ipi_waiting(sd)) {
6442 		local_irq_disable();
6443 		net_rps_action_and_irq_enable(sd);
6444 	}
6445 
6446 	napi->weight = dev_rx_weight;
6447 	while (again) {
6448 		struct sk_buff *skb;
6449 
6450 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6451 			rcu_read_lock();
6452 			__netif_receive_skb(skb);
6453 			rcu_read_unlock();
6454 			input_queue_head_incr(sd);
6455 			if (++work >= quota)
6456 				return work;
6457 
6458 		}
6459 
6460 		local_irq_disable();
6461 		rps_lock(sd);
6462 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6463 			/*
6464 			 * Inline a custom version of __napi_complete().
6465 			 * only current cpu owns and manipulates this napi,
6466 			 * and NAPI_STATE_SCHED is the only possible flag set
6467 			 * on backlog.
6468 			 * We can use a plain write instead of clear_bit(),
6469 			 * and we dont need an smp_mb() memory barrier.
6470 			 */
6471 			napi->state = 0;
6472 			again = false;
6473 		} else {
6474 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6475 						   &sd->process_queue);
6476 		}
6477 		rps_unlock(sd);
6478 		local_irq_enable();
6479 	}
6480 
6481 	return work;
6482 }
6483 
6484 /**
6485  * __napi_schedule - schedule for receive
6486  * @n: entry to schedule
6487  *
6488  * The entry's receive function will be scheduled to run.
6489  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6490  */
6491 void __napi_schedule(struct napi_struct *n)
6492 {
6493 	unsigned long flags;
6494 
6495 	local_irq_save(flags);
6496 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6497 	local_irq_restore(flags);
6498 }
6499 EXPORT_SYMBOL(__napi_schedule);
6500 
6501 /**
6502  *	napi_schedule_prep - check if napi can be scheduled
6503  *	@n: napi context
6504  *
6505  * Test if NAPI routine is already running, and if not mark
6506  * it as running.  This is used as a condition variable to
6507  * insure only one NAPI poll instance runs.  We also make
6508  * sure there is no pending NAPI disable.
6509  */
6510 bool napi_schedule_prep(struct napi_struct *n)
6511 {
6512 	unsigned long val, new;
6513 
6514 	do {
6515 		val = READ_ONCE(n->state);
6516 		if (unlikely(val & NAPIF_STATE_DISABLE))
6517 			return false;
6518 		new = val | NAPIF_STATE_SCHED;
6519 
6520 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6521 		 * This was suggested by Alexander Duyck, as compiler
6522 		 * emits better code than :
6523 		 * if (val & NAPIF_STATE_SCHED)
6524 		 *     new |= NAPIF_STATE_MISSED;
6525 		 */
6526 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6527 						   NAPIF_STATE_MISSED;
6528 	} while (cmpxchg(&n->state, val, new) != val);
6529 
6530 	return !(val & NAPIF_STATE_SCHED);
6531 }
6532 EXPORT_SYMBOL(napi_schedule_prep);
6533 
6534 /**
6535  * __napi_schedule_irqoff - schedule for receive
6536  * @n: entry to schedule
6537  *
6538  * Variant of __napi_schedule() assuming hard irqs are masked.
6539  *
6540  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6541  * because the interrupt disabled assumption might not be true
6542  * due to force-threaded interrupts and spinlock substitution.
6543  */
6544 void __napi_schedule_irqoff(struct napi_struct *n)
6545 {
6546 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6547 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6548 	else
6549 		__napi_schedule(n);
6550 }
6551 EXPORT_SYMBOL(__napi_schedule_irqoff);
6552 
6553 bool napi_complete_done(struct napi_struct *n, int work_done)
6554 {
6555 	unsigned long flags, val, new, timeout = 0;
6556 	bool ret = true;
6557 
6558 	/*
6559 	 * 1) Don't let napi dequeue from the cpu poll list
6560 	 *    just in case its running on a different cpu.
6561 	 * 2) If we are busy polling, do nothing here, we have
6562 	 *    the guarantee we will be called later.
6563 	 */
6564 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6565 				 NAPIF_STATE_IN_BUSY_POLL)))
6566 		return false;
6567 
6568 	if (work_done) {
6569 		if (n->gro_bitmask)
6570 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6571 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6572 	}
6573 	if (n->defer_hard_irqs_count > 0) {
6574 		n->defer_hard_irqs_count--;
6575 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6576 		if (timeout)
6577 			ret = false;
6578 	}
6579 	if (n->gro_bitmask) {
6580 		/* When the NAPI instance uses a timeout and keeps postponing
6581 		 * it, we need to bound somehow the time packets are kept in
6582 		 * the GRO layer
6583 		 */
6584 		napi_gro_flush(n, !!timeout);
6585 	}
6586 
6587 	gro_normal_list(n);
6588 
6589 	if (unlikely(!list_empty(&n->poll_list))) {
6590 		/* If n->poll_list is not empty, we need to mask irqs */
6591 		local_irq_save(flags);
6592 		list_del_init(&n->poll_list);
6593 		local_irq_restore(flags);
6594 	}
6595 
6596 	do {
6597 		val = READ_ONCE(n->state);
6598 
6599 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6600 
6601 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6602 			      NAPIF_STATE_SCHED_THREADED |
6603 			      NAPIF_STATE_PREFER_BUSY_POLL);
6604 
6605 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6606 		 * because we will call napi->poll() one more time.
6607 		 * This C code was suggested by Alexander Duyck to help gcc.
6608 		 */
6609 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6610 						    NAPIF_STATE_SCHED;
6611 	} while (cmpxchg(&n->state, val, new) != val);
6612 
6613 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6614 		__napi_schedule(n);
6615 		return false;
6616 	}
6617 
6618 	if (timeout)
6619 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6620 			      HRTIMER_MODE_REL_PINNED);
6621 	return ret;
6622 }
6623 EXPORT_SYMBOL(napi_complete_done);
6624 
6625 /* must be called under rcu_read_lock(), as we dont take a reference */
6626 static struct napi_struct *napi_by_id(unsigned int napi_id)
6627 {
6628 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6629 	struct napi_struct *napi;
6630 
6631 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6632 		if (napi->napi_id == napi_id)
6633 			return napi;
6634 
6635 	return NULL;
6636 }
6637 
6638 #if defined(CONFIG_NET_RX_BUSY_POLL)
6639 
6640 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6641 {
6642 	if (!skip_schedule) {
6643 		gro_normal_list(napi);
6644 		__napi_schedule(napi);
6645 		return;
6646 	}
6647 
6648 	if (napi->gro_bitmask) {
6649 		/* flush too old packets
6650 		 * If HZ < 1000, flush all packets.
6651 		 */
6652 		napi_gro_flush(napi, HZ >= 1000);
6653 	}
6654 
6655 	gro_normal_list(napi);
6656 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6657 }
6658 
6659 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6660 			   u16 budget)
6661 {
6662 	bool skip_schedule = false;
6663 	unsigned long timeout;
6664 	int rc;
6665 
6666 	/* Busy polling means there is a high chance device driver hard irq
6667 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6668 	 * set in napi_schedule_prep().
6669 	 * Since we are about to call napi->poll() once more, we can safely
6670 	 * clear NAPI_STATE_MISSED.
6671 	 *
6672 	 * Note: x86 could use a single "lock and ..." instruction
6673 	 * to perform these two clear_bit()
6674 	 */
6675 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6676 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6677 
6678 	local_bh_disable();
6679 
6680 	if (prefer_busy_poll) {
6681 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6682 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6683 		if (napi->defer_hard_irqs_count && timeout) {
6684 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6685 			skip_schedule = true;
6686 		}
6687 	}
6688 
6689 	/* All we really want here is to re-enable device interrupts.
6690 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6691 	 */
6692 	rc = napi->poll(napi, budget);
6693 	/* We can't gro_normal_list() here, because napi->poll() might have
6694 	 * rearmed the napi (napi_complete_done()) in which case it could
6695 	 * already be running on another CPU.
6696 	 */
6697 	trace_napi_poll(napi, rc, budget);
6698 	netpoll_poll_unlock(have_poll_lock);
6699 	if (rc == budget)
6700 		__busy_poll_stop(napi, skip_schedule);
6701 	local_bh_enable();
6702 }
6703 
6704 void napi_busy_loop(unsigned int napi_id,
6705 		    bool (*loop_end)(void *, unsigned long),
6706 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6707 {
6708 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6709 	int (*napi_poll)(struct napi_struct *napi, int budget);
6710 	void *have_poll_lock = NULL;
6711 	struct napi_struct *napi;
6712 
6713 restart:
6714 	napi_poll = NULL;
6715 
6716 	rcu_read_lock();
6717 
6718 	napi = napi_by_id(napi_id);
6719 	if (!napi)
6720 		goto out;
6721 
6722 	preempt_disable();
6723 	for (;;) {
6724 		int work = 0;
6725 
6726 		local_bh_disable();
6727 		if (!napi_poll) {
6728 			unsigned long val = READ_ONCE(napi->state);
6729 
6730 			/* If multiple threads are competing for this napi,
6731 			 * we avoid dirtying napi->state as much as we can.
6732 			 */
6733 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6734 				   NAPIF_STATE_IN_BUSY_POLL)) {
6735 				if (prefer_busy_poll)
6736 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6737 				goto count;
6738 			}
6739 			if (cmpxchg(&napi->state, val,
6740 				    val | NAPIF_STATE_IN_BUSY_POLL |
6741 					  NAPIF_STATE_SCHED) != val) {
6742 				if (prefer_busy_poll)
6743 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6744 				goto count;
6745 			}
6746 			have_poll_lock = netpoll_poll_lock(napi);
6747 			napi_poll = napi->poll;
6748 		}
6749 		work = napi_poll(napi, budget);
6750 		trace_napi_poll(napi, work, budget);
6751 		gro_normal_list(napi);
6752 count:
6753 		if (work > 0)
6754 			__NET_ADD_STATS(dev_net(napi->dev),
6755 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6756 		local_bh_enable();
6757 
6758 		if (!loop_end || loop_end(loop_end_arg, start_time))
6759 			break;
6760 
6761 		if (unlikely(need_resched())) {
6762 			if (napi_poll)
6763 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6764 			preempt_enable();
6765 			rcu_read_unlock();
6766 			cond_resched();
6767 			if (loop_end(loop_end_arg, start_time))
6768 				return;
6769 			goto restart;
6770 		}
6771 		cpu_relax();
6772 	}
6773 	if (napi_poll)
6774 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6775 	preempt_enable();
6776 out:
6777 	rcu_read_unlock();
6778 }
6779 EXPORT_SYMBOL(napi_busy_loop);
6780 
6781 #endif /* CONFIG_NET_RX_BUSY_POLL */
6782 
6783 static void napi_hash_add(struct napi_struct *napi)
6784 {
6785 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6786 		return;
6787 
6788 	spin_lock(&napi_hash_lock);
6789 
6790 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6791 	do {
6792 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6793 			napi_gen_id = MIN_NAPI_ID;
6794 	} while (napi_by_id(napi_gen_id));
6795 	napi->napi_id = napi_gen_id;
6796 
6797 	hlist_add_head_rcu(&napi->napi_hash_node,
6798 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6799 
6800 	spin_unlock(&napi_hash_lock);
6801 }
6802 
6803 /* Warning : caller is responsible to make sure rcu grace period
6804  * is respected before freeing memory containing @napi
6805  */
6806 static void napi_hash_del(struct napi_struct *napi)
6807 {
6808 	spin_lock(&napi_hash_lock);
6809 
6810 	hlist_del_init_rcu(&napi->napi_hash_node);
6811 
6812 	spin_unlock(&napi_hash_lock);
6813 }
6814 
6815 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6816 {
6817 	struct napi_struct *napi;
6818 
6819 	napi = container_of(timer, struct napi_struct, timer);
6820 
6821 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6822 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6823 	 */
6824 	if (!napi_disable_pending(napi) &&
6825 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6826 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6827 		__napi_schedule_irqoff(napi);
6828 	}
6829 
6830 	return HRTIMER_NORESTART;
6831 }
6832 
6833 static void init_gro_hash(struct napi_struct *napi)
6834 {
6835 	int i;
6836 
6837 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6838 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6839 		napi->gro_hash[i].count = 0;
6840 	}
6841 	napi->gro_bitmask = 0;
6842 }
6843 
6844 int dev_set_threaded(struct net_device *dev, bool threaded)
6845 {
6846 	struct napi_struct *napi;
6847 	int err = 0;
6848 
6849 	if (dev->threaded == threaded)
6850 		return 0;
6851 
6852 	if (threaded) {
6853 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6854 			if (!napi->thread) {
6855 				err = napi_kthread_create(napi);
6856 				if (err) {
6857 					threaded = false;
6858 					break;
6859 				}
6860 			}
6861 		}
6862 	}
6863 
6864 	dev->threaded = threaded;
6865 
6866 	/* Make sure kthread is created before THREADED bit
6867 	 * is set.
6868 	 */
6869 	smp_mb__before_atomic();
6870 
6871 	/* Setting/unsetting threaded mode on a napi might not immediately
6872 	 * take effect, if the current napi instance is actively being
6873 	 * polled. In this case, the switch between threaded mode and
6874 	 * softirq mode will happen in the next round of napi_schedule().
6875 	 * This should not cause hiccups/stalls to the live traffic.
6876 	 */
6877 	list_for_each_entry(napi, &dev->napi_list, dev_list) {
6878 		if (threaded)
6879 			set_bit(NAPI_STATE_THREADED, &napi->state);
6880 		else
6881 			clear_bit(NAPI_STATE_THREADED, &napi->state);
6882 	}
6883 
6884 	return err;
6885 }
6886 EXPORT_SYMBOL(dev_set_threaded);
6887 
6888 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6889 		    int (*poll)(struct napi_struct *, int), int weight)
6890 {
6891 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6892 		return;
6893 
6894 	INIT_LIST_HEAD(&napi->poll_list);
6895 	INIT_HLIST_NODE(&napi->napi_hash_node);
6896 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6897 	napi->timer.function = napi_watchdog;
6898 	init_gro_hash(napi);
6899 	napi->skb = NULL;
6900 	INIT_LIST_HEAD(&napi->rx_list);
6901 	napi->rx_count = 0;
6902 	napi->poll = poll;
6903 	if (weight > NAPI_POLL_WEIGHT)
6904 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6905 				weight);
6906 	napi->weight = weight;
6907 	napi->dev = dev;
6908 #ifdef CONFIG_NETPOLL
6909 	napi->poll_owner = -1;
6910 #endif
6911 	set_bit(NAPI_STATE_SCHED, &napi->state);
6912 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6913 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6914 	napi_hash_add(napi);
6915 	/* Create kthread for this napi if dev->threaded is set.
6916 	 * Clear dev->threaded if kthread creation failed so that
6917 	 * threaded mode will not be enabled in napi_enable().
6918 	 */
6919 	if (dev->threaded && napi_kthread_create(napi))
6920 		dev->threaded = 0;
6921 }
6922 EXPORT_SYMBOL(netif_napi_add);
6923 
6924 void napi_disable(struct napi_struct *n)
6925 {
6926 	unsigned long val, new;
6927 
6928 	might_sleep();
6929 	set_bit(NAPI_STATE_DISABLE, &n->state);
6930 
6931 	for ( ; ; ) {
6932 		val = READ_ONCE(n->state);
6933 		if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6934 			usleep_range(20, 200);
6935 			continue;
6936 		}
6937 
6938 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6939 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6940 
6941 		if (cmpxchg(&n->state, val, new) == val)
6942 			break;
6943 	}
6944 
6945 	hrtimer_cancel(&n->timer);
6946 
6947 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6948 }
6949 EXPORT_SYMBOL(napi_disable);
6950 
6951 /**
6952  *	napi_enable - enable NAPI scheduling
6953  *	@n: NAPI context
6954  *
6955  * Resume NAPI from being scheduled on this context.
6956  * Must be paired with napi_disable.
6957  */
6958 void napi_enable(struct napi_struct *n)
6959 {
6960 	unsigned long val, new;
6961 
6962 	do {
6963 		val = READ_ONCE(n->state);
6964 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6965 
6966 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6967 		if (n->dev->threaded && n->thread)
6968 			new |= NAPIF_STATE_THREADED;
6969 	} while (cmpxchg(&n->state, val, new) != val);
6970 }
6971 EXPORT_SYMBOL(napi_enable);
6972 
6973 static void flush_gro_hash(struct napi_struct *napi)
6974 {
6975 	int i;
6976 
6977 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6978 		struct sk_buff *skb, *n;
6979 
6980 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6981 			kfree_skb(skb);
6982 		napi->gro_hash[i].count = 0;
6983 	}
6984 }
6985 
6986 /* Must be called in process context */
6987 void __netif_napi_del(struct napi_struct *napi)
6988 {
6989 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6990 		return;
6991 
6992 	napi_hash_del(napi);
6993 	list_del_rcu(&napi->dev_list);
6994 	napi_free_frags(napi);
6995 
6996 	flush_gro_hash(napi);
6997 	napi->gro_bitmask = 0;
6998 
6999 	if (napi->thread) {
7000 		kthread_stop(napi->thread);
7001 		napi->thread = NULL;
7002 	}
7003 }
7004 EXPORT_SYMBOL(__netif_napi_del);
7005 
7006 static int __napi_poll(struct napi_struct *n, bool *repoll)
7007 {
7008 	int work, weight;
7009 
7010 	weight = n->weight;
7011 
7012 	/* This NAPI_STATE_SCHED test is for avoiding a race
7013 	 * with netpoll's poll_napi().  Only the entity which
7014 	 * obtains the lock and sees NAPI_STATE_SCHED set will
7015 	 * actually make the ->poll() call.  Therefore we avoid
7016 	 * accidentally calling ->poll() when NAPI is not scheduled.
7017 	 */
7018 	work = 0;
7019 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
7020 		work = n->poll(n, weight);
7021 		trace_napi_poll(n, work, weight);
7022 	}
7023 
7024 	if (unlikely(work > weight))
7025 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7026 				n->poll, work, weight);
7027 
7028 	if (likely(work < weight))
7029 		return work;
7030 
7031 	/* Drivers must not modify the NAPI state if they
7032 	 * consume the entire weight.  In such cases this code
7033 	 * still "owns" the NAPI instance and therefore can
7034 	 * move the instance around on the list at-will.
7035 	 */
7036 	if (unlikely(napi_disable_pending(n))) {
7037 		napi_complete(n);
7038 		return work;
7039 	}
7040 
7041 	/* The NAPI context has more processing work, but busy-polling
7042 	 * is preferred. Exit early.
7043 	 */
7044 	if (napi_prefer_busy_poll(n)) {
7045 		if (napi_complete_done(n, work)) {
7046 			/* If timeout is not set, we need to make sure
7047 			 * that the NAPI is re-scheduled.
7048 			 */
7049 			napi_schedule(n);
7050 		}
7051 		return work;
7052 	}
7053 
7054 	if (n->gro_bitmask) {
7055 		/* flush too old packets
7056 		 * If HZ < 1000, flush all packets.
7057 		 */
7058 		napi_gro_flush(n, HZ >= 1000);
7059 	}
7060 
7061 	gro_normal_list(n);
7062 
7063 	/* Some drivers may have called napi_schedule
7064 	 * prior to exhausting their budget.
7065 	 */
7066 	if (unlikely(!list_empty(&n->poll_list))) {
7067 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7068 			     n->dev ? n->dev->name : "backlog");
7069 		return work;
7070 	}
7071 
7072 	*repoll = true;
7073 
7074 	return work;
7075 }
7076 
7077 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7078 {
7079 	bool do_repoll = false;
7080 	void *have;
7081 	int work;
7082 
7083 	list_del_init(&n->poll_list);
7084 
7085 	have = netpoll_poll_lock(n);
7086 
7087 	work = __napi_poll(n, &do_repoll);
7088 
7089 	if (do_repoll)
7090 		list_add_tail(&n->poll_list, repoll);
7091 
7092 	netpoll_poll_unlock(have);
7093 
7094 	return work;
7095 }
7096 
7097 static int napi_thread_wait(struct napi_struct *napi)
7098 {
7099 	bool woken = false;
7100 
7101 	set_current_state(TASK_INTERRUPTIBLE);
7102 
7103 	while (!kthread_should_stop()) {
7104 		/* Testing SCHED_THREADED bit here to make sure the current
7105 		 * kthread owns this napi and could poll on this napi.
7106 		 * Testing SCHED bit is not enough because SCHED bit might be
7107 		 * set by some other busy poll thread or by napi_disable().
7108 		 */
7109 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7110 			WARN_ON(!list_empty(&napi->poll_list));
7111 			__set_current_state(TASK_RUNNING);
7112 			return 0;
7113 		}
7114 
7115 		schedule();
7116 		/* woken being true indicates this thread owns this napi. */
7117 		woken = true;
7118 		set_current_state(TASK_INTERRUPTIBLE);
7119 	}
7120 	__set_current_state(TASK_RUNNING);
7121 
7122 	return -1;
7123 }
7124 
7125 static int napi_threaded_poll(void *data)
7126 {
7127 	struct napi_struct *napi = data;
7128 	void *have;
7129 
7130 	while (!napi_thread_wait(napi)) {
7131 		for (;;) {
7132 			bool repoll = false;
7133 
7134 			local_bh_disable();
7135 
7136 			have = netpoll_poll_lock(napi);
7137 			__napi_poll(napi, &repoll);
7138 			netpoll_poll_unlock(have);
7139 
7140 			local_bh_enable();
7141 
7142 			if (!repoll)
7143 				break;
7144 
7145 			cond_resched();
7146 		}
7147 	}
7148 	return 0;
7149 }
7150 
7151 static __latent_entropy void net_rx_action(struct softirq_action *h)
7152 {
7153 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7154 	unsigned long time_limit = jiffies +
7155 		usecs_to_jiffies(netdev_budget_usecs);
7156 	int budget = netdev_budget;
7157 	LIST_HEAD(list);
7158 	LIST_HEAD(repoll);
7159 
7160 	local_irq_disable();
7161 	list_splice_init(&sd->poll_list, &list);
7162 	local_irq_enable();
7163 
7164 	for (;;) {
7165 		struct napi_struct *n;
7166 
7167 		if (list_empty(&list)) {
7168 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7169 				return;
7170 			break;
7171 		}
7172 
7173 		n = list_first_entry(&list, struct napi_struct, poll_list);
7174 		budget -= napi_poll(n, &repoll);
7175 
7176 		/* If softirq window is exhausted then punt.
7177 		 * Allow this to run for 2 jiffies since which will allow
7178 		 * an average latency of 1.5/HZ.
7179 		 */
7180 		if (unlikely(budget <= 0 ||
7181 			     time_after_eq(jiffies, time_limit))) {
7182 			sd->time_squeeze++;
7183 			break;
7184 		}
7185 	}
7186 
7187 	local_irq_disable();
7188 
7189 	list_splice_tail_init(&sd->poll_list, &list);
7190 	list_splice_tail(&repoll, &list);
7191 	list_splice(&list, &sd->poll_list);
7192 	if (!list_empty(&sd->poll_list))
7193 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7194 
7195 	net_rps_action_and_irq_enable(sd);
7196 }
7197 
7198 struct netdev_adjacent {
7199 	struct net_device *dev;
7200 
7201 	/* upper master flag, there can only be one master device per list */
7202 	bool master;
7203 
7204 	/* lookup ignore flag */
7205 	bool ignore;
7206 
7207 	/* counter for the number of times this device was added to us */
7208 	u16 ref_nr;
7209 
7210 	/* private field for the users */
7211 	void *private;
7212 
7213 	struct list_head list;
7214 	struct rcu_head rcu;
7215 };
7216 
7217 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7218 						 struct list_head *adj_list)
7219 {
7220 	struct netdev_adjacent *adj;
7221 
7222 	list_for_each_entry(adj, adj_list, list) {
7223 		if (adj->dev == adj_dev)
7224 			return adj;
7225 	}
7226 	return NULL;
7227 }
7228 
7229 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7230 				    struct netdev_nested_priv *priv)
7231 {
7232 	struct net_device *dev = (struct net_device *)priv->data;
7233 
7234 	return upper_dev == dev;
7235 }
7236 
7237 /**
7238  * netdev_has_upper_dev - Check if device is linked to an upper device
7239  * @dev: device
7240  * @upper_dev: upper device to check
7241  *
7242  * Find out if a device is linked to specified upper device and return true
7243  * in case it is. Note that this checks only immediate upper device,
7244  * not through a complete stack of devices. The caller must hold the RTNL lock.
7245  */
7246 bool netdev_has_upper_dev(struct net_device *dev,
7247 			  struct net_device *upper_dev)
7248 {
7249 	struct netdev_nested_priv priv = {
7250 		.data = (void *)upper_dev,
7251 	};
7252 
7253 	ASSERT_RTNL();
7254 
7255 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7256 					     &priv);
7257 }
7258 EXPORT_SYMBOL(netdev_has_upper_dev);
7259 
7260 /**
7261  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7262  * @dev: device
7263  * @upper_dev: upper device to check
7264  *
7265  * Find out if a device is linked to specified upper device and return true
7266  * in case it is. Note that this checks the entire upper device chain.
7267  * The caller must hold rcu lock.
7268  */
7269 
7270 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7271 				  struct net_device *upper_dev)
7272 {
7273 	struct netdev_nested_priv priv = {
7274 		.data = (void *)upper_dev,
7275 	};
7276 
7277 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7278 					       &priv);
7279 }
7280 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7281 
7282 /**
7283  * netdev_has_any_upper_dev - Check if device is linked to some device
7284  * @dev: device
7285  *
7286  * Find out if a device is linked to an upper device and return true in case
7287  * it is. The caller must hold the RTNL lock.
7288  */
7289 bool netdev_has_any_upper_dev(struct net_device *dev)
7290 {
7291 	ASSERT_RTNL();
7292 
7293 	return !list_empty(&dev->adj_list.upper);
7294 }
7295 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7296 
7297 /**
7298  * netdev_master_upper_dev_get - Get master upper device
7299  * @dev: device
7300  *
7301  * Find a master upper device and return pointer to it or NULL in case
7302  * it's not there. The caller must hold the RTNL lock.
7303  */
7304 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7305 {
7306 	struct netdev_adjacent *upper;
7307 
7308 	ASSERT_RTNL();
7309 
7310 	if (list_empty(&dev->adj_list.upper))
7311 		return NULL;
7312 
7313 	upper = list_first_entry(&dev->adj_list.upper,
7314 				 struct netdev_adjacent, list);
7315 	if (likely(upper->master))
7316 		return upper->dev;
7317 	return NULL;
7318 }
7319 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7320 
7321 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7322 {
7323 	struct netdev_adjacent *upper;
7324 
7325 	ASSERT_RTNL();
7326 
7327 	if (list_empty(&dev->adj_list.upper))
7328 		return NULL;
7329 
7330 	upper = list_first_entry(&dev->adj_list.upper,
7331 				 struct netdev_adjacent, list);
7332 	if (likely(upper->master) && !upper->ignore)
7333 		return upper->dev;
7334 	return NULL;
7335 }
7336 
7337 /**
7338  * netdev_has_any_lower_dev - Check if device is linked to some device
7339  * @dev: device
7340  *
7341  * Find out if a device is linked to a lower device and return true in case
7342  * it is. The caller must hold the RTNL lock.
7343  */
7344 static bool netdev_has_any_lower_dev(struct net_device *dev)
7345 {
7346 	ASSERT_RTNL();
7347 
7348 	return !list_empty(&dev->adj_list.lower);
7349 }
7350 
7351 void *netdev_adjacent_get_private(struct list_head *adj_list)
7352 {
7353 	struct netdev_adjacent *adj;
7354 
7355 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7356 
7357 	return adj->private;
7358 }
7359 EXPORT_SYMBOL(netdev_adjacent_get_private);
7360 
7361 /**
7362  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7363  * @dev: device
7364  * @iter: list_head ** of the current position
7365  *
7366  * Gets the next device from the dev's upper list, starting from iter
7367  * position. The caller must hold RCU read lock.
7368  */
7369 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7370 						 struct list_head **iter)
7371 {
7372 	struct netdev_adjacent *upper;
7373 
7374 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7375 
7376 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7377 
7378 	if (&upper->list == &dev->adj_list.upper)
7379 		return NULL;
7380 
7381 	*iter = &upper->list;
7382 
7383 	return upper->dev;
7384 }
7385 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7386 
7387 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7388 						  struct list_head **iter,
7389 						  bool *ignore)
7390 {
7391 	struct netdev_adjacent *upper;
7392 
7393 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7394 
7395 	if (&upper->list == &dev->adj_list.upper)
7396 		return NULL;
7397 
7398 	*iter = &upper->list;
7399 	*ignore = upper->ignore;
7400 
7401 	return upper->dev;
7402 }
7403 
7404 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7405 						    struct list_head **iter)
7406 {
7407 	struct netdev_adjacent *upper;
7408 
7409 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7410 
7411 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7412 
7413 	if (&upper->list == &dev->adj_list.upper)
7414 		return NULL;
7415 
7416 	*iter = &upper->list;
7417 
7418 	return upper->dev;
7419 }
7420 
7421 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7422 				       int (*fn)(struct net_device *dev,
7423 					 struct netdev_nested_priv *priv),
7424 				       struct netdev_nested_priv *priv)
7425 {
7426 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7427 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7428 	int ret, cur = 0;
7429 	bool ignore;
7430 
7431 	now = dev;
7432 	iter = &dev->adj_list.upper;
7433 
7434 	while (1) {
7435 		if (now != dev) {
7436 			ret = fn(now, priv);
7437 			if (ret)
7438 				return ret;
7439 		}
7440 
7441 		next = NULL;
7442 		while (1) {
7443 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7444 			if (!udev)
7445 				break;
7446 			if (ignore)
7447 				continue;
7448 
7449 			next = udev;
7450 			niter = &udev->adj_list.upper;
7451 			dev_stack[cur] = now;
7452 			iter_stack[cur++] = iter;
7453 			break;
7454 		}
7455 
7456 		if (!next) {
7457 			if (!cur)
7458 				return 0;
7459 			next = dev_stack[--cur];
7460 			niter = iter_stack[cur];
7461 		}
7462 
7463 		now = next;
7464 		iter = niter;
7465 	}
7466 
7467 	return 0;
7468 }
7469 
7470 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7471 				  int (*fn)(struct net_device *dev,
7472 					    struct netdev_nested_priv *priv),
7473 				  struct netdev_nested_priv *priv)
7474 {
7475 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7476 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7477 	int ret, cur = 0;
7478 
7479 	now = dev;
7480 	iter = &dev->adj_list.upper;
7481 
7482 	while (1) {
7483 		if (now != dev) {
7484 			ret = fn(now, priv);
7485 			if (ret)
7486 				return ret;
7487 		}
7488 
7489 		next = NULL;
7490 		while (1) {
7491 			udev = netdev_next_upper_dev_rcu(now, &iter);
7492 			if (!udev)
7493 				break;
7494 
7495 			next = udev;
7496 			niter = &udev->adj_list.upper;
7497 			dev_stack[cur] = now;
7498 			iter_stack[cur++] = iter;
7499 			break;
7500 		}
7501 
7502 		if (!next) {
7503 			if (!cur)
7504 				return 0;
7505 			next = dev_stack[--cur];
7506 			niter = iter_stack[cur];
7507 		}
7508 
7509 		now = next;
7510 		iter = niter;
7511 	}
7512 
7513 	return 0;
7514 }
7515 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7516 
7517 static bool __netdev_has_upper_dev(struct net_device *dev,
7518 				   struct net_device *upper_dev)
7519 {
7520 	struct netdev_nested_priv priv = {
7521 		.flags = 0,
7522 		.data = (void *)upper_dev,
7523 	};
7524 
7525 	ASSERT_RTNL();
7526 
7527 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7528 					   &priv);
7529 }
7530 
7531 /**
7532  * netdev_lower_get_next_private - Get the next ->private from the
7533  *				   lower neighbour list
7534  * @dev: device
7535  * @iter: list_head ** of the current position
7536  *
7537  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7538  * list, starting from iter position. The caller must hold either hold the
7539  * RTNL lock or its own locking that guarantees that the neighbour lower
7540  * list will remain unchanged.
7541  */
7542 void *netdev_lower_get_next_private(struct net_device *dev,
7543 				    struct list_head **iter)
7544 {
7545 	struct netdev_adjacent *lower;
7546 
7547 	lower = list_entry(*iter, struct netdev_adjacent, list);
7548 
7549 	if (&lower->list == &dev->adj_list.lower)
7550 		return NULL;
7551 
7552 	*iter = lower->list.next;
7553 
7554 	return lower->private;
7555 }
7556 EXPORT_SYMBOL(netdev_lower_get_next_private);
7557 
7558 /**
7559  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7560  *				       lower neighbour list, RCU
7561  *				       variant
7562  * @dev: device
7563  * @iter: list_head ** of the current position
7564  *
7565  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7566  * list, starting from iter position. The caller must hold RCU read lock.
7567  */
7568 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7569 					struct list_head **iter)
7570 {
7571 	struct netdev_adjacent *lower;
7572 
7573 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7574 
7575 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7576 
7577 	if (&lower->list == &dev->adj_list.lower)
7578 		return NULL;
7579 
7580 	*iter = &lower->list;
7581 
7582 	return lower->private;
7583 }
7584 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7585 
7586 /**
7587  * netdev_lower_get_next - Get the next device from the lower neighbour
7588  *                         list
7589  * @dev: device
7590  * @iter: list_head ** of the current position
7591  *
7592  * Gets the next netdev_adjacent from the dev's lower neighbour
7593  * list, starting from iter position. The caller must hold RTNL lock or
7594  * its own locking that guarantees that the neighbour lower
7595  * list will remain unchanged.
7596  */
7597 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7598 {
7599 	struct netdev_adjacent *lower;
7600 
7601 	lower = list_entry(*iter, struct netdev_adjacent, list);
7602 
7603 	if (&lower->list == &dev->adj_list.lower)
7604 		return NULL;
7605 
7606 	*iter = lower->list.next;
7607 
7608 	return lower->dev;
7609 }
7610 EXPORT_SYMBOL(netdev_lower_get_next);
7611 
7612 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7613 						struct list_head **iter)
7614 {
7615 	struct netdev_adjacent *lower;
7616 
7617 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7618 
7619 	if (&lower->list == &dev->adj_list.lower)
7620 		return NULL;
7621 
7622 	*iter = &lower->list;
7623 
7624 	return lower->dev;
7625 }
7626 
7627 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7628 						  struct list_head **iter,
7629 						  bool *ignore)
7630 {
7631 	struct netdev_adjacent *lower;
7632 
7633 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7634 
7635 	if (&lower->list == &dev->adj_list.lower)
7636 		return NULL;
7637 
7638 	*iter = &lower->list;
7639 	*ignore = lower->ignore;
7640 
7641 	return lower->dev;
7642 }
7643 
7644 int netdev_walk_all_lower_dev(struct net_device *dev,
7645 			      int (*fn)(struct net_device *dev,
7646 					struct netdev_nested_priv *priv),
7647 			      struct netdev_nested_priv *priv)
7648 {
7649 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7650 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7651 	int ret, cur = 0;
7652 
7653 	now = dev;
7654 	iter = &dev->adj_list.lower;
7655 
7656 	while (1) {
7657 		if (now != dev) {
7658 			ret = fn(now, priv);
7659 			if (ret)
7660 				return ret;
7661 		}
7662 
7663 		next = NULL;
7664 		while (1) {
7665 			ldev = netdev_next_lower_dev(now, &iter);
7666 			if (!ldev)
7667 				break;
7668 
7669 			next = ldev;
7670 			niter = &ldev->adj_list.lower;
7671 			dev_stack[cur] = now;
7672 			iter_stack[cur++] = iter;
7673 			break;
7674 		}
7675 
7676 		if (!next) {
7677 			if (!cur)
7678 				return 0;
7679 			next = dev_stack[--cur];
7680 			niter = iter_stack[cur];
7681 		}
7682 
7683 		now = next;
7684 		iter = niter;
7685 	}
7686 
7687 	return 0;
7688 }
7689 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7690 
7691 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7692 				       int (*fn)(struct net_device *dev,
7693 					 struct netdev_nested_priv *priv),
7694 				       struct netdev_nested_priv *priv)
7695 {
7696 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7697 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7698 	int ret, cur = 0;
7699 	bool ignore;
7700 
7701 	now = dev;
7702 	iter = &dev->adj_list.lower;
7703 
7704 	while (1) {
7705 		if (now != dev) {
7706 			ret = fn(now, priv);
7707 			if (ret)
7708 				return ret;
7709 		}
7710 
7711 		next = NULL;
7712 		while (1) {
7713 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7714 			if (!ldev)
7715 				break;
7716 			if (ignore)
7717 				continue;
7718 
7719 			next = ldev;
7720 			niter = &ldev->adj_list.lower;
7721 			dev_stack[cur] = now;
7722 			iter_stack[cur++] = iter;
7723 			break;
7724 		}
7725 
7726 		if (!next) {
7727 			if (!cur)
7728 				return 0;
7729 			next = dev_stack[--cur];
7730 			niter = iter_stack[cur];
7731 		}
7732 
7733 		now = next;
7734 		iter = niter;
7735 	}
7736 
7737 	return 0;
7738 }
7739 
7740 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7741 					     struct list_head **iter)
7742 {
7743 	struct netdev_adjacent *lower;
7744 
7745 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7746 	if (&lower->list == &dev->adj_list.lower)
7747 		return NULL;
7748 
7749 	*iter = &lower->list;
7750 
7751 	return lower->dev;
7752 }
7753 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7754 
7755 static u8 __netdev_upper_depth(struct net_device *dev)
7756 {
7757 	struct net_device *udev;
7758 	struct list_head *iter;
7759 	u8 max_depth = 0;
7760 	bool ignore;
7761 
7762 	for (iter = &dev->adj_list.upper,
7763 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7764 	     udev;
7765 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7766 		if (ignore)
7767 			continue;
7768 		if (max_depth < udev->upper_level)
7769 			max_depth = udev->upper_level;
7770 	}
7771 
7772 	return max_depth;
7773 }
7774 
7775 static u8 __netdev_lower_depth(struct net_device *dev)
7776 {
7777 	struct net_device *ldev;
7778 	struct list_head *iter;
7779 	u8 max_depth = 0;
7780 	bool ignore;
7781 
7782 	for (iter = &dev->adj_list.lower,
7783 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7784 	     ldev;
7785 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7786 		if (ignore)
7787 			continue;
7788 		if (max_depth < ldev->lower_level)
7789 			max_depth = ldev->lower_level;
7790 	}
7791 
7792 	return max_depth;
7793 }
7794 
7795 static int __netdev_update_upper_level(struct net_device *dev,
7796 				       struct netdev_nested_priv *__unused)
7797 {
7798 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7799 	return 0;
7800 }
7801 
7802 static int __netdev_update_lower_level(struct net_device *dev,
7803 				       struct netdev_nested_priv *priv)
7804 {
7805 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7806 
7807 #ifdef CONFIG_LOCKDEP
7808 	if (!priv)
7809 		return 0;
7810 
7811 	if (priv->flags & NESTED_SYNC_IMM)
7812 		dev->nested_level = dev->lower_level - 1;
7813 	if (priv->flags & NESTED_SYNC_TODO)
7814 		net_unlink_todo(dev);
7815 #endif
7816 	return 0;
7817 }
7818 
7819 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7820 				  int (*fn)(struct net_device *dev,
7821 					    struct netdev_nested_priv *priv),
7822 				  struct netdev_nested_priv *priv)
7823 {
7824 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7825 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7826 	int ret, cur = 0;
7827 
7828 	now = dev;
7829 	iter = &dev->adj_list.lower;
7830 
7831 	while (1) {
7832 		if (now != dev) {
7833 			ret = fn(now, priv);
7834 			if (ret)
7835 				return ret;
7836 		}
7837 
7838 		next = NULL;
7839 		while (1) {
7840 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7841 			if (!ldev)
7842 				break;
7843 
7844 			next = ldev;
7845 			niter = &ldev->adj_list.lower;
7846 			dev_stack[cur] = now;
7847 			iter_stack[cur++] = iter;
7848 			break;
7849 		}
7850 
7851 		if (!next) {
7852 			if (!cur)
7853 				return 0;
7854 			next = dev_stack[--cur];
7855 			niter = iter_stack[cur];
7856 		}
7857 
7858 		now = next;
7859 		iter = niter;
7860 	}
7861 
7862 	return 0;
7863 }
7864 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7865 
7866 /**
7867  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7868  *				       lower neighbour list, RCU
7869  *				       variant
7870  * @dev: device
7871  *
7872  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7873  * list. The caller must hold RCU read lock.
7874  */
7875 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7876 {
7877 	struct netdev_adjacent *lower;
7878 
7879 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7880 			struct netdev_adjacent, list);
7881 	if (lower)
7882 		return lower->private;
7883 	return NULL;
7884 }
7885 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7886 
7887 /**
7888  * netdev_master_upper_dev_get_rcu - Get master upper device
7889  * @dev: device
7890  *
7891  * Find a master upper device and return pointer to it or NULL in case
7892  * it's not there. The caller must hold the RCU read lock.
7893  */
7894 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7895 {
7896 	struct netdev_adjacent *upper;
7897 
7898 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7899 				       struct netdev_adjacent, list);
7900 	if (upper && likely(upper->master))
7901 		return upper->dev;
7902 	return NULL;
7903 }
7904 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7905 
7906 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7907 			      struct net_device *adj_dev,
7908 			      struct list_head *dev_list)
7909 {
7910 	char linkname[IFNAMSIZ+7];
7911 
7912 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7913 		"upper_%s" : "lower_%s", adj_dev->name);
7914 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7915 				 linkname);
7916 }
7917 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7918 			       char *name,
7919 			       struct list_head *dev_list)
7920 {
7921 	char linkname[IFNAMSIZ+7];
7922 
7923 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7924 		"upper_%s" : "lower_%s", name);
7925 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7926 }
7927 
7928 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7929 						 struct net_device *adj_dev,
7930 						 struct list_head *dev_list)
7931 {
7932 	return (dev_list == &dev->adj_list.upper ||
7933 		dev_list == &dev->adj_list.lower) &&
7934 		net_eq(dev_net(dev), dev_net(adj_dev));
7935 }
7936 
7937 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7938 					struct net_device *adj_dev,
7939 					struct list_head *dev_list,
7940 					void *private, bool master)
7941 {
7942 	struct netdev_adjacent *adj;
7943 	int ret;
7944 
7945 	adj = __netdev_find_adj(adj_dev, dev_list);
7946 
7947 	if (adj) {
7948 		adj->ref_nr += 1;
7949 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7950 			 dev->name, adj_dev->name, adj->ref_nr);
7951 
7952 		return 0;
7953 	}
7954 
7955 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7956 	if (!adj)
7957 		return -ENOMEM;
7958 
7959 	adj->dev = adj_dev;
7960 	adj->master = master;
7961 	adj->ref_nr = 1;
7962 	adj->private = private;
7963 	adj->ignore = false;
7964 	dev_hold(adj_dev);
7965 
7966 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7967 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7968 
7969 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7970 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7971 		if (ret)
7972 			goto free_adj;
7973 	}
7974 
7975 	/* Ensure that master link is always the first item in list. */
7976 	if (master) {
7977 		ret = sysfs_create_link(&(dev->dev.kobj),
7978 					&(adj_dev->dev.kobj), "master");
7979 		if (ret)
7980 			goto remove_symlinks;
7981 
7982 		list_add_rcu(&adj->list, dev_list);
7983 	} else {
7984 		list_add_tail_rcu(&adj->list, dev_list);
7985 	}
7986 
7987 	return 0;
7988 
7989 remove_symlinks:
7990 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7991 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7992 free_adj:
7993 	kfree(adj);
7994 	dev_put(adj_dev);
7995 
7996 	return ret;
7997 }
7998 
7999 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8000 					 struct net_device *adj_dev,
8001 					 u16 ref_nr,
8002 					 struct list_head *dev_list)
8003 {
8004 	struct netdev_adjacent *adj;
8005 
8006 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8007 		 dev->name, adj_dev->name, ref_nr);
8008 
8009 	adj = __netdev_find_adj(adj_dev, dev_list);
8010 
8011 	if (!adj) {
8012 		pr_err("Adjacency does not exist for device %s from %s\n",
8013 		       dev->name, adj_dev->name);
8014 		WARN_ON(1);
8015 		return;
8016 	}
8017 
8018 	if (adj->ref_nr > ref_nr) {
8019 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8020 			 dev->name, adj_dev->name, ref_nr,
8021 			 adj->ref_nr - ref_nr);
8022 		adj->ref_nr -= ref_nr;
8023 		return;
8024 	}
8025 
8026 	if (adj->master)
8027 		sysfs_remove_link(&(dev->dev.kobj), "master");
8028 
8029 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8030 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8031 
8032 	list_del_rcu(&adj->list);
8033 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8034 		 adj_dev->name, dev->name, adj_dev->name);
8035 	dev_put(adj_dev);
8036 	kfree_rcu(adj, rcu);
8037 }
8038 
8039 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8040 					    struct net_device *upper_dev,
8041 					    struct list_head *up_list,
8042 					    struct list_head *down_list,
8043 					    void *private, bool master)
8044 {
8045 	int ret;
8046 
8047 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8048 					   private, master);
8049 	if (ret)
8050 		return ret;
8051 
8052 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8053 					   private, false);
8054 	if (ret) {
8055 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8056 		return ret;
8057 	}
8058 
8059 	return 0;
8060 }
8061 
8062 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8063 					       struct net_device *upper_dev,
8064 					       u16 ref_nr,
8065 					       struct list_head *up_list,
8066 					       struct list_head *down_list)
8067 {
8068 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8069 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8070 }
8071 
8072 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8073 						struct net_device *upper_dev,
8074 						void *private, bool master)
8075 {
8076 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8077 						&dev->adj_list.upper,
8078 						&upper_dev->adj_list.lower,
8079 						private, master);
8080 }
8081 
8082 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8083 						   struct net_device *upper_dev)
8084 {
8085 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8086 					   &dev->adj_list.upper,
8087 					   &upper_dev->adj_list.lower);
8088 }
8089 
8090 static int __netdev_upper_dev_link(struct net_device *dev,
8091 				   struct net_device *upper_dev, bool master,
8092 				   void *upper_priv, void *upper_info,
8093 				   struct netdev_nested_priv *priv,
8094 				   struct netlink_ext_ack *extack)
8095 {
8096 	struct netdev_notifier_changeupper_info changeupper_info = {
8097 		.info = {
8098 			.dev = dev,
8099 			.extack = extack,
8100 		},
8101 		.upper_dev = upper_dev,
8102 		.master = master,
8103 		.linking = true,
8104 		.upper_info = upper_info,
8105 	};
8106 	struct net_device *master_dev;
8107 	int ret = 0;
8108 
8109 	ASSERT_RTNL();
8110 
8111 	if (dev == upper_dev)
8112 		return -EBUSY;
8113 
8114 	/* To prevent loops, check if dev is not upper device to upper_dev. */
8115 	if (__netdev_has_upper_dev(upper_dev, dev))
8116 		return -EBUSY;
8117 
8118 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8119 		return -EMLINK;
8120 
8121 	if (!master) {
8122 		if (__netdev_has_upper_dev(dev, upper_dev))
8123 			return -EEXIST;
8124 	} else {
8125 		master_dev = __netdev_master_upper_dev_get(dev);
8126 		if (master_dev)
8127 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8128 	}
8129 
8130 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8131 					    &changeupper_info.info);
8132 	ret = notifier_to_errno(ret);
8133 	if (ret)
8134 		return ret;
8135 
8136 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8137 						   master);
8138 	if (ret)
8139 		return ret;
8140 
8141 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8142 					    &changeupper_info.info);
8143 	ret = notifier_to_errno(ret);
8144 	if (ret)
8145 		goto rollback;
8146 
8147 	__netdev_update_upper_level(dev, NULL);
8148 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8149 
8150 	__netdev_update_lower_level(upper_dev, priv);
8151 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8152 				    priv);
8153 
8154 	return 0;
8155 
8156 rollback:
8157 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8158 
8159 	return ret;
8160 }
8161 
8162 /**
8163  * netdev_upper_dev_link - Add a link to the upper device
8164  * @dev: device
8165  * @upper_dev: new upper device
8166  * @extack: netlink extended ack
8167  *
8168  * Adds a link to device which is upper to this one. The caller must hold
8169  * the RTNL lock. On a failure a negative errno code is returned.
8170  * On success the reference counts are adjusted and the function
8171  * returns zero.
8172  */
8173 int netdev_upper_dev_link(struct net_device *dev,
8174 			  struct net_device *upper_dev,
8175 			  struct netlink_ext_ack *extack)
8176 {
8177 	struct netdev_nested_priv priv = {
8178 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8179 		.data = NULL,
8180 	};
8181 
8182 	return __netdev_upper_dev_link(dev, upper_dev, false,
8183 				       NULL, NULL, &priv, extack);
8184 }
8185 EXPORT_SYMBOL(netdev_upper_dev_link);
8186 
8187 /**
8188  * netdev_master_upper_dev_link - Add a master link to the upper device
8189  * @dev: device
8190  * @upper_dev: new upper device
8191  * @upper_priv: upper device private
8192  * @upper_info: upper info to be passed down via notifier
8193  * @extack: netlink extended ack
8194  *
8195  * Adds a link to device which is upper to this one. In this case, only
8196  * one master upper device can be linked, although other non-master devices
8197  * might be linked as well. The caller must hold the RTNL lock.
8198  * On a failure a negative errno code is returned. On success the reference
8199  * counts are adjusted and the function returns zero.
8200  */
8201 int netdev_master_upper_dev_link(struct net_device *dev,
8202 				 struct net_device *upper_dev,
8203 				 void *upper_priv, void *upper_info,
8204 				 struct netlink_ext_ack *extack)
8205 {
8206 	struct netdev_nested_priv priv = {
8207 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8208 		.data = NULL,
8209 	};
8210 
8211 	return __netdev_upper_dev_link(dev, upper_dev, true,
8212 				       upper_priv, upper_info, &priv, extack);
8213 }
8214 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8215 
8216 static void __netdev_upper_dev_unlink(struct net_device *dev,
8217 				      struct net_device *upper_dev,
8218 				      struct netdev_nested_priv *priv)
8219 {
8220 	struct netdev_notifier_changeupper_info changeupper_info = {
8221 		.info = {
8222 			.dev = dev,
8223 		},
8224 		.upper_dev = upper_dev,
8225 		.linking = false,
8226 	};
8227 
8228 	ASSERT_RTNL();
8229 
8230 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8231 
8232 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8233 				      &changeupper_info.info);
8234 
8235 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8236 
8237 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8238 				      &changeupper_info.info);
8239 
8240 	__netdev_update_upper_level(dev, NULL);
8241 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8242 
8243 	__netdev_update_lower_level(upper_dev, priv);
8244 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8245 				    priv);
8246 }
8247 
8248 /**
8249  * netdev_upper_dev_unlink - Removes a link to upper device
8250  * @dev: device
8251  * @upper_dev: new upper device
8252  *
8253  * Removes a link to device which is upper to this one. The caller must hold
8254  * the RTNL lock.
8255  */
8256 void netdev_upper_dev_unlink(struct net_device *dev,
8257 			     struct net_device *upper_dev)
8258 {
8259 	struct netdev_nested_priv priv = {
8260 		.flags = NESTED_SYNC_TODO,
8261 		.data = NULL,
8262 	};
8263 
8264 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8265 }
8266 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8267 
8268 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8269 				      struct net_device *lower_dev,
8270 				      bool val)
8271 {
8272 	struct netdev_adjacent *adj;
8273 
8274 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8275 	if (adj)
8276 		adj->ignore = val;
8277 
8278 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8279 	if (adj)
8280 		adj->ignore = val;
8281 }
8282 
8283 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8284 					struct net_device *lower_dev)
8285 {
8286 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8287 }
8288 
8289 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8290 				       struct net_device *lower_dev)
8291 {
8292 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8293 }
8294 
8295 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8296 				   struct net_device *new_dev,
8297 				   struct net_device *dev,
8298 				   struct netlink_ext_ack *extack)
8299 {
8300 	struct netdev_nested_priv priv = {
8301 		.flags = 0,
8302 		.data = NULL,
8303 	};
8304 	int err;
8305 
8306 	if (!new_dev)
8307 		return 0;
8308 
8309 	if (old_dev && new_dev != old_dev)
8310 		netdev_adjacent_dev_disable(dev, old_dev);
8311 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8312 				      extack);
8313 	if (err) {
8314 		if (old_dev && new_dev != old_dev)
8315 			netdev_adjacent_dev_enable(dev, old_dev);
8316 		return err;
8317 	}
8318 
8319 	return 0;
8320 }
8321 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8322 
8323 void netdev_adjacent_change_commit(struct net_device *old_dev,
8324 				   struct net_device *new_dev,
8325 				   struct net_device *dev)
8326 {
8327 	struct netdev_nested_priv priv = {
8328 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8329 		.data = NULL,
8330 	};
8331 
8332 	if (!new_dev || !old_dev)
8333 		return;
8334 
8335 	if (new_dev == old_dev)
8336 		return;
8337 
8338 	netdev_adjacent_dev_enable(dev, old_dev);
8339 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8340 }
8341 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8342 
8343 void netdev_adjacent_change_abort(struct net_device *old_dev,
8344 				  struct net_device *new_dev,
8345 				  struct net_device *dev)
8346 {
8347 	struct netdev_nested_priv priv = {
8348 		.flags = 0,
8349 		.data = NULL,
8350 	};
8351 
8352 	if (!new_dev)
8353 		return;
8354 
8355 	if (old_dev && new_dev != old_dev)
8356 		netdev_adjacent_dev_enable(dev, old_dev);
8357 
8358 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8359 }
8360 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8361 
8362 /**
8363  * netdev_bonding_info_change - Dispatch event about slave change
8364  * @dev: device
8365  * @bonding_info: info to dispatch
8366  *
8367  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8368  * The caller must hold the RTNL lock.
8369  */
8370 void netdev_bonding_info_change(struct net_device *dev,
8371 				struct netdev_bonding_info *bonding_info)
8372 {
8373 	struct netdev_notifier_bonding_info info = {
8374 		.info.dev = dev,
8375 	};
8376 
8377 	memcpy(&info.bonding_info, bonding_info,
8378 	       sizeof(struct netdev_bonding_info));
8379 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8380 				      &info.info);
8381 }
8382 EXPORT_SYMBOL(netdev_bonding_info_change);
8383 
8384 /**
8385  * netdev_get_xmit_slave - Get the xmit slave of master device
8386  * @dev: device
8387  * @skb: The packet
8388  * @all_slaves: assume all the slaves are active
8389  *
8390  * The reference counters are not incremented so the caller must be
8391  * careful with locks. The caller must hold RCU lock.
8392  * %NULL is returned if no slave is found.
8393  */
8394 
8395 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8396 					 struct sk_buff *skb,
8397 					 bool all_slaves)
8398 {
8399 	const struct net_device_ops *ops = dev->netdev_ops;
8400 
8401 	if (!ops->ndo_get_xmit_slave)
8402 		return NULL;
8403 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8404 }
8405 EXPORT_SYMBOL(netdev_get_xmit_slave);
8406 
8407 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8408 						  struct sock *sk)
8409 {
8410 	const struct net_device_ops *ops = dev->netdev_ops;
8411 
8412 	if (!ops->ndo_sk_get_lower_dev)
8413 		return NULL;
8414 	return ops->ndo_sk_get_lower_dev(dev, sk);
8415 }
8416 
8417 /**
8418  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8419  * @dev: device
8420  * @sk: the socket
8421  *
8422  * %NULL is returned if no lower device is found.
8423  */
8424 
8425 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8426 					    struct sock *sk)
8427 {
8428 	struct net_device *lower;
8429 
8430 	lower = netdev_sk_get_lower_dev(dev, sk);
8431 	while (lower) {
8432 		dev = lower;
8433 		lower = netdev_sk_get_lower_dev(dev, sk);
8434 	}
8435 
8436 	return dev;
8437 }
8438 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8439 
8440 static void netdev_adjacent_add_links(struct net_device *dev)
8441 {
8442 	struct netdev_adjacent *iter;
8443 
8444 	struct net *net = dev_net(dev);
8445 
8446 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8447 		if (!net_eq(net, dev_net(iter->dev)))
8448 			continue;
8449 		netdev_adjacent_sysfs_add(iter->dev, dev,
8450 					  &iter->dev->adj_list.lower);
8451 		netdev_adjacent_sysfs_add(dev, iter->dev,
8452 					  &dev->adj_list.upper);
8453 	}
8454 
8455 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8456 		if (!net_eq(net, dev_net(iter->dev)))
8457 			continue;
8458 		netdev_adjacent_sysfs_add(iter->dev, dev,
8459 					  &iter->dev->adj_list.upper);
8460 		netdev_adjacent_sysfs_add(dev, iter->dev,
8461 					  &dev->adj_list.lower);
8462 	}
8463 }
8464 
8465 static void netdev_adjacent_del_links(struct net_device *dev)
8466 {
8467 	struct netdev_adjacent *iter;
8468 
8469 	struct net *net = dev_net(dev);
8470 
8471 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8472 		if (!net_eq(net, dev_net(iter->dev)))
8473 			continue;
8474 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8475 					  &iter->dev->adj_list.lower);
8476 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8477 					  &dev->adj_list.upper);
8478 	}
8479 
8480 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8481 		if (!net_eq(net, dev_net(iter->dev)))
8482 			continue;
8483 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8484 					  &iter->dev->adj_list.upper);
8485 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8486 					  &dev->adj_list.lower);
8487 	}
8488 }
8489 
8490 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8491 {
8492 	struct netdev_adjacent *iter;
8493 
8494 	struct net *net = dev_net(dev);
8495 
8496 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8497 		if (!net_eq(net, dev_net(iter->dev)))
8498 			continue;
8499 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8500 					  &iter->dev->adj_list.lower);
8501 		netdev_adjacent_sysfs_add(iter->dev, dev,
8502 					  &iter->dev->adj_list.lower);
8503 	}
8504 
8505 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8506 		if (!net_eq(net, dev_net(iter->dev)))
8507 			continue;
8508 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8509 					  &iter->dev->adj_list.upper);
8510 		netdev_adjacent_sysfs_add(iter->dev, dev,
8511 					  &iter->dev->adj_list.upper);
8512 	}
8513 }
8514 
8515 void *netdev_lower_dev_get_private(struct net_device *dev,
8516 				   struct net_device *lower_dev)
8517 {
8518 	struct netdev_adjacent *lower;
8519 
8520 	if (!lower_dev)
8521 		return NULL;
8522 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8523 	if (!lower)
8524 		return NULL;
8525 
8526 	return lower->private;
8527 }
8528 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8529 
8530 
8531 /**
8532  * netdev_lower_state_changed - Dispatch event about lower device state change
8533  * @lower_dev: device
8534  * @lower_state_info: state to dispatch
8535  *
8536  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8537  * The caller must hold the RTNL lock.
8538  */
8539 void netdev_lower_state_changed(struct net_device *lower_dev,
8540 				void *lower_state_info)
8541 {
8542 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8543 		.info.dev = lower_dev,
8544 	};
8545 
8546 	ASSERT_RTNL();
8547 	changelowerstate_info.lower_state_info = lower_state_info;
8548 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8549 				      &changelowerstate_info.info);
8550 }
8551 EXPORT_SYMBOL(netdev_lower_state_changed);
8552 
8553 static void dev_change_rx_flags(struct net_device *dev, int flags)
8554 {
8555 	const struct net_device_ops *ops = dev->netdev_ops;
8556 
8557 	if (ops->ndo_change_rx_flags)
8558 		ops->ndo_change_rx_flags(dev, flags);
8559 }
8560 
8561 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8562 {
8563 	unsigned int old_flags = dev->flags;
8564 	kuid_t uid;
8565 	kgid_t gid;
8566 
8567 	ASSERT_RTNL();
8568 
8569 	dev->flags |= IFF_PROMISC;
8570 	dev->promiscuity += inc;
8571 	if (dev->promiscuity == 0) {
8572 		/*
8573 		 * Avoid overflow.
8574 		 * If inc causes overflow, untouch promisc and return error.
8575 		 */
8576 		if (inc < 0)
8577 			dev->flags &= ~IFF_PROMISC;
8578 		else {
8579 			dev->promiscuity -= inc;
8580 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8581 			return -EOVERFLOW;
8582 		}
8583 	}
8584 	if (dev->flags != old_flags) {
8585 		pr_info("device %s %s promiscuous mode\n",
8586 			dev->name,
8587 			dev->flags & IFF_PROMISC ? "entered" : "left");
8588 		if (audit_enabled) {
8589 			current_uid_gid(&uid, &gid);
8590 			audit_log(audit_context(), GFP_ATOMIC,
8591 				  AUDIT_ANOM_PROMISCUOUS,
8592 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8593 				  dev->name, (dev->flags & IFF_PROMISC),
8594 				  (old_flags & IFF_PROMISC),
8595 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8596 				  from_kuid(&init_user_ns, uid),
8597 				  from_kgid(&init_user_ns, gid),
8598 				  audit_get_sessionid(current));
8599 		}
8600 
8601 		dev_change_rx_flags(dev, IFF_PROMISC);
8602 	}
8603 	if (notify)
8604 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8605 	return 0;
8606 }
8607 
8608 /**
8609  *	dev_set_promiscuity	- update promiscuity count on a device
8610  *	@dev: device
8611  *	@inc: modifier
8612  *
8613  *	Add or remove promiscuity from a device. While the count in the device
8614  *	remains above zero the interface remains promiscuous. Once it hits zero
8615  *	the device reverts back to normal filtering operation. A negative inc
8616  *	value is used to drop promiscuity on the device.
8617  *	Return 0 if successful or a negative errno code on error.
8618  */
8619 int dev_set_promiscuity(struct net_device *dev, int inc)
8620 {
8621 	unsigned int old_flags = dev->flags;
8622 	int err;
8623 
8624 	err = __dev_set_promiscuity(dev, inc, true);
8625 	if (err < 0)
8626 		return err;
8627 	if (dev->flags != old_flags)
8628 		dev_set_rx_mode(dev);
8629 	return err;
8630 }
8631 EXPORT_SYMBOL(dev_set_promiscuity);
8632 
8633 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8634 {
8635 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8636 
8637 	ASSERT_RTNL();
8638 
8639 	dev->flags |= IFF_ALLMULTI;
8640 	dev->allmulti += inc;
8641 	if (dev->allmulti == 0) {
8642 		/*
8643 		 * Avoid overflow.
8644 		 * If inc causes overflow, untouch allmulti and return error.
8645 		 */
8646 		if (inc < 0)
8647 			dev->flags &= ~IFF_ALLMULTI;
8648 		else {
8649 			dev->allmulti -= inc;
8650 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8651 			return -EOVERFLOW;
8652 		}
8653 	}
8654 	if (dev->flags ^ old_flags) {
8655 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8656 		dev_set_rx_mode(dev);
8657 		if (notify)
8658 			__dev_notify_flags(dev, old_flags,
8659 					   dev->gflags ^ old_gflags);
8660 	}
8661 	return 0;
8662 }
8663 
8664 /**
8665  *	dev_set_allmulti	- update allmulti count on a device
8666  *	@dev: device
8667  *	@inc: modifier
8668  *
8669  *	Add or remove reception of all multicast frames to a device. While the
8670  *	count in the device remains above zero the interface remains listening
8671  *	to all interfaces. Once it hits zero the device reverts back to normal
8672  *	filtering operation. A negative @inc value is used to drop the counter
8673  *	when releasing a resource needing all multicasts.
8674  *	Return 0 if successful or a negative errno code on error.
8675  */
8676 
8677 int dev_set_allmulti(struct net_device *dev, int inc)
8678 {
8679 	return __dev_set_allmulti(dev, inc, true);
8680 }
8681 EXPORT_SYMBOL(dev_set_allmulti);
8682 
8683 /*
8684  *	Upload unicast and multicast address lists to device and
8685  *	configure RX filtering. When the device doesn't support unicast
8686  *	filtering it is put in promiscuous mode while unicast addresses
8687  *	are present.
8688  */
8689 void __dev_set_rx_mode(struct net_device *dev)
8690 {
8691 	const struct net_device_ops *ops = dev->netdev_ops;
8692 
8693 	/* dev_open will call this function so the list will stay sane. */
8694 	if (!(dev->flags&IFF_UP))
8695 		return;
8696 
8697 	if (!netif_device_present(dev))
8698 		return;
8699 
8700 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8701 		/* Unicast addresses changes may only happen under the rtnl,
8702 		 * therefore calling __dev_set_promiscuity here is safe.
8703 		 */
8704 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8705 			__dev_set_promiscuity(dev, 1, false);
8706 			dev->uc_promisc = true;
8707 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8708 			__dev_set_promiscuity(dev, -1, false);
8709 			dev->uc_promisc = false;
8710 		}
8711 	}
8712 
8713 	if (ops->ndo_set_rx_mode)
8714 		ops->ndo_set_rx_mode(dev);
8715 }
8716 
8717 void dev_set_rx_mode(struct net_device *dev)
8718 {
8719 	netif_addr_lock_bh(dev);
8720 	__dev_set_rx_mode(dev);
8721 	netif_addr_unlock_bh(dev);
8722 }
8723 
8724 /**
8725  *	dev_get_flags - get flags reported to userspace
8726  *	@dev: device
8727  *
8728  *	Get the combination of flag bits exported through APIs to userspace.
8729  */
8730 unsigned int dev_get_flags(const struct net_device *dev)
8731 {
8732 	unsigned int flags;
8733 
8734 	flags = (dev->flags & ~(IFF_PROMISC |
8735 				IFF_ALLMULTI |
8736 				IFF_RUNNING |
8737 				IFF_LOWER_UP |
8738 				IFF_DORMANT)) |
8739 		(dev->gflags & (IFF_PROMISC |
8740 				IFF_ALLMULTI));
8741 
8742 	if (netif_running(dev)) {
8743 		if (netif_oper_up(dev))
8744 			flags |= IFF_RUNNING;
8745 		if (netif_carrier_ok(dev))
8746 			flags |= IFF_LOWER_UP;
8747 		if (netif_dormant(dev))
8748 			flags |= IFF_DORMANT;
8749 	}
8750 
8751 	return flags;
8752 }
8753 EXPORT_SYMBOL(dev_get_flags);
8754 
8755 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8756 		       struct netlink_ext_ack *extack)
8757 {
8758 	unsigned int old_flags = dev->flags;
8759 	int ret;
8760 
8761 	ASSERT_RTNL();
8762 
8763 	/*
8764 	 *	Set the flags on our device.
8765 	 */
8766 
8767 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8768 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8769 			       IFF_AUTOMEDIA)) |
8770 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8771 				    IFF_ALLMULTI));
8772 
8773 	/*
8774 	 *	Load in the correct multicast list now the flags have changed.
8775 	 */
8776 
8777 	if ((old_flags ^ flags) & IFF_MULTICAST)
8778 		dev_change_rx_flags(dev, IFF_MULTICAST);
8779 
8780 	dev_set_rx_mode(dev);
8781 
8782 	/*
8783 	 *	Have we downed the interface. We handle IFF_UP ourselves
8784 	 *	according to user attempts to set it, rather than blindly
8785 	 *	setting it.
8786 	 */
8787 
8788 	ret = 0;
8789 	if ((old_flags ^ flags) & IFF_UP) {
8790 		if (old_flags & IFF_UP)
8791 			__dev_close(dev);
8792 		else
8793 			ret = __dev_open(dev, extack);
8794 	}
8795 
8796 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8797 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8798 		unsigned int old_flags = dev->flags;
8799 
8800 		dev->gflags ^= IFF_PROMISC;
8801 
8802 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8803 			if (dev->flags != old_flags)
8804 				dev_set_rx_mode(dev);
8805 	}
8806 
8807 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8808 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8809 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8810 	 */
8811 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8812 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8813 
8814 		dev->gflags ^= IFF_ALLMULTI;
8815 		__dev_set_allmulti(dev, inc, false);
8816 	}
8817 
8818 	return ret;
8819 }
8820 
8821 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8822 			unsigned int gchanges)
8823 {
8824 	unsigned int changes = dev->flags ^ old_flags;
8825 
8826 	if (gchanges)
8827 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8828 
8829 	if (changes & IFF_UP) {
8830 		if (dev->flags & IFF_UP)
8831 			call_netdevice_notifiers(NETDEV_UP, dev);
8832 		else
8833 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8834 	}
8835 
8836 	if (dev->flags & IFF_UP &&
8837 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8838 		struct netdev_notifier_change_info change_info = {
8839 			.info = {
8840 				.dev = dev,
8841 			},
8842 			.flags_changed = changes,
8843 		};
8844 
8845 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8846 	}
8847 }
8848 
8849 /**
8850  *	dev_change_flags - change device settings
8851  *	@dev: device
8852  *	@flags: device state flags
8853  *	@extack: netlink extended ack
8854  *
8855  *	Change settings on device based state flags. The flags are
8856  *	in the userspace exported format.
8857  */
8858 int dev_change_flags(struct net_device *dev, unsigned int flags,
8859 		     struct netlink_ext_ack *extack)
8860 {
8861 	int ret;
8862 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8863 
8864 	ret = __dev_change_flags(dev, flags, extack);
8865 	if (ret < 0)
8866 		return ret;
8867 
8868 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8869 	__dev_notify_flags(dev, old_flags, changes);
8870 	return ret;
8871 }
8872 EXPORT_SYMBOL(dev_change_flags);
8873 
8874 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8875 {
8876 	const struct net_device_ops *ops = dev->netdev_ops;
8877 
8878 	if (ops->ndo_change_mtu)
8879 		return ops->ndo_change_mtu(dev, new_mtu);
8880 
8881 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8882 	WRITE_ONCE(dev->mtu, new_mtu);
8883 	return 0;
8884 }
8885 EXPORT_SYMBOL(__dev_set_mtu);
8886 
8887 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8888 		     struct netlink_ext_ack *extack)
8889 {
8890 	/* MTU must be positive, and in range */
8891 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8892 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8893 		return -EINVAL;
8894 	}
8895 
8896 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8897 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8898 		return -EINVAL;
8899 	}
8900 	return 0;
8901 }
8902 
8903 /**
8904  *	dev_set_mtu_ext - Change maximum transfer unit
8905  *	@dev: device
8906  *	@new_mtu: new transfer unit
8907  *	@extack: netlink extended ack
8908  *
8909  *	Change the maximum transfer size of the network device.
8910  */
8911 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8912 		    struct netlink_ext_ack *extack)
8913 {
8914 	int err, orig_mtu;
8915 
8916 	if (new_mtu == dev->mtu)
8917 		return 0;
8918 
8919 	err = dev_validate_mtu(dev, new_mtu, extack);
8920 	if (err)
8921 		return err;
8922 
8923 	if (!netif_device_present(dev))
8924 		return -ENODEV;
8925 
8926 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8927 	err = notifier_to_errno(err);
8928 	if (err)
8929 		return err;
8930 
8931 	orig_mtu = dev->mtu;
8932 	err = __dev_set_mtu(dev, new_mtu);
8933 
8934 	if (!err) {
8935 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8936 						   orig_mtu);
8937 		err = notifier_to_errno(err);
8938 		if (err) {
8939 			/* setting mtu back and notifying everyone again,
8940 			 * so that they have a chance to revert changes.
8941 			 */
8942 			__dev_set_mtu(dev, orig_mtu);
8943 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8944 						     new_mtu);
8945 		}
8946 	}
8947 	return err;
8948 }
8949 
8950 int dev_set_mtu(struct net_device *dev, int new_mtu)
8951 {
8952 	struct netlink_ext_ack extack;
8953 	int err;
8954 
8955 	memset(&extack, 0, sizeof(extack));
8956 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8957 	if (err && extack._msg)
8958 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8959 	return err;
8960 }
8961 EXPORT_SYMBOL(dev_set_mtu);
8962 
8963 /**
8964  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8965  *	@dev: device
8966  *	@new_len: new tx queue length
8967  */
8968 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8969 {
8970 	unsigned int orig_len = dev->tx_queue_len;
8971 	int res;
8972 
8973 	if (new_len != (unsigned int)new_len)
8974 		return -ERANGE;
8975 
8976 	if (new_len != orig_len) {
8977 		dev->tx_queue_len = new_len;
8978 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8979 		res = notifier_to_errno(res);
8980 		if (res)
8981 			goto err_rollback;
8982 		res = dev_qdisc_change_tx_queue_len(dev);
8983 		if (res)
8984 			goto err_rollback;
8985 	}
8986 
8987 	return 0;
8988 
8989 err_rollback:
8990 	netdev_err(dev, "refused to change device tx_queue_len\n");
8991 	dev->tx_queue_len = orig_len;
8992 	return res;
8993 }
8994 
8995 /**
8996  *	dev_set_group - Change group this device belongs to
8997  *	@dev: device
8998  *	@new_group: group this device should belong to
8999  */
9000 void dev_set_group(struct net_device *dev, int new_group)
9001 {
9002 	dev->group = new_group;
9003 }
9004 EXPORT_SYMBOL(dev_set_group);
9005 
9006 /**
9007  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9008  *	@dev: device
9009  *	@addr: new address
9010  *	@extack: netlink extended ack
9011  */
9012 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9013 			      struct netlink_ext_ack *extack)
9014 {
9015 	struct netdev_notifier_pre_changeaddr_info info = {
9016 		.info.dev = dev,
9017 		.info.extack = extack,
9018 		.dev_addr = addr,
9019 	};
9020 	int rc;
9021 
9022 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9023 	return notifier_to_errno(rc);
9024 }
9025 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9026 
9027 /**
9028  *	dev_set_mac_address - Change Media Access Control Address
9029  *	@dev: device
9030  *	@sa: new address
9031  *	@extack: netlink extended ack
9032  *
9033  *	Change the hardware (MAC) address of the device
9034  */
9035 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9036 			struct netlink_ext_ack *extack)
9037 {
9038 	const struct net_device_ops *ops = dev->netdev_ops;
9039 	int err;
9040 
9041 	if (!ops->ndo_set_mac_address)
9042 		return -EOPNOTSUPP;
9043 	if (sa->sa_family != dev->type)
9044 		return -EINVAL;
9045 	if (!netif_device_present(dev))
9046 		return -ENODEV;
9047 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9048 	if (err)
9049 		return err;
9050 	err = ops->ndo_set_mac_address(dev, sa);
9051 	if (err)
9052 		return err;
9053 	dev->addr_assign_type = NET_ADDR_SET;
9054 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9055 	add_device_randomness(dev->dev_addr, dev->addr_len);
9056 	return 0;
9057 }
9058 EXPORT_SYMBOL(dev_set_mac_address);
9059 
9060 static DECLARE_RWSEM(dev_addr_sem);
9061 
9062 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9063 			     struct netlink_ext_ack *extack)
9064 {
9065 	int ret;
9066 
9067 	down_write(&dev_addr_sem);
9068 	ret = dev_set_mac_address(dev, sa, extack);
9069 	up_write(&dev_addr_sem);
9070 	return ret;
9071 }
9072 EXPORT_SYMBOL(dev_set_mac_address_user);
9073 
9074 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9075 {
9076 	size_t size = sizeof(sa->sa_data);
9077 	struct net_device *dev;
9078 	int ret = 0;
9079 
9080 	down_read(&dev_addr_sem);
9081 	rcu_read_lock();
9082 
9083 	dev = dev_get_by_name_rcu(net, dev_name);
9084 	if (!dev) {
9085 		ret = -ENODEV;
9086 		goto unlock;
9087 	}
9088 	if (!dev->addr_len)
9089 		memset(sa->sa_data, 0, size);
9090 	else
9091 		memcpy(sa->sa_data, dev->dev_addr,
9092 		       min_t(size_t, size, dev->addr_len));
9093 	sa->sa_family = dev->type;
9094 
9095 unlock:
9096 	rcu_read_unlock();
9097 	up_read(&dev_addr_sem);
9098 	return ret;
9099 }
9100 EXPORT_SYMBOL(dev_get_mac_address);
9101 
9102 /**
9103  *	dev_change_carrier - Change device carrier
9104  *	@dev: device
9105  *	@new_carrier: new value
9106  *
9107  *	Change device carrier
9108  */
9109 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9110 {
9111 	const struct net_device_ops *ops = dev->netdev_ops;
9112 
9113 	if (!ops->ndo_change_carrier)
9114 		return -EOPNOTSUPP;
9115 	if (!netif_device_present(dev))
9116 		return -ENODEV;
9117 	return ops->ndo_change_carrier(dev, new_carrier);
9118 }
9119 EXPORT_SYMBOL(dev_change_carrier);
9120 
9121 /**
9122  *	dev_get_phys_port_id - Get device physical port ID
9123  *	@dev: device
9124  *	@ppid: port ID
9125  *
9126  *	Get device physical port ID
9127  */
9128 int dev_get_phys_port_id(struct net_device *dev,
9129 			 struct netdev_phys_item_id *ppid)
9130 {
9131 	const struct net_device_ops *ops = dev->netdev_ops;
9132 
9133 	if (!ops->ndo_get_phys_port_id)
9134 		return -EOPNOTSUPP;
9135 	return ops->ndo_get_phys_port_id(dev, ppid);
9136 }
9137 EXPORT_SYMBOL(dev_get_phys_port_id);
9138 
9139 /**
9140  *	dev_get_phys_port_name - Get device physical port name
9141  *	@dev: device
9142  *	@name: port name
9143  *	@len: limit of bytes to copy to name
9144  *
9145  *	Get device physical port name
9146  */
9147 int dev_get_phys_port_name(struct net_device *dev,
9148 			   char *name, size_t len)
9149 {
9150 	const struct net_device_ops *ops = dev->netdev_ops;
9151 	int err;
9152 
9153 	if (ops->ndo_get_phys_port_name) {
9154 		err = ops->ndo_get_phys_port_name(dev, name, len);
9155 		if (err != -EOPNOTSUPP)
9156 			return err;
9157 	}
9158 	return devlink_compat_phys_port_name_get(dev, name, len);
9159 }
9160 EXPORT_SYMBOL(dev_get_phys_port_name);
9161 
9162 /**
9163  *	dev_get_port_parent_id - Get the device's port parent identifier
9164  *	@dev: network device
9165  *	@ppid: pointer to a storage for the port's parent identifier
9166  *	@recurse: allow/disallow recursion to lower devices
9167  *
9168  *	Get the devices's port parent identifier
9169  */
9170 int dev_get_port_parent_id(struct net_device *dev,
9171 			   struct netdev_phys_item_id *ppid,
9172 			   bool recurse)
9173 {
9174 	const struct net_device_ops *ops = dev->netdev_ops;
9175 	struct netdev_phys_item_id first = { };
9176 	struct net_device *lower_dev;
9177 	struct list_head *iter;
9178 	int err;
9179 
9180 	if (ops->ndo_get_port_parent_id) {
9181 		err = ops->ndo_get_port_parent_id(dev, ppid);
9182 		if (err != -EOPNOTSUPP)
9183 			return err;
9184 	}
9185 
9186 	err = devlink_compat_switch_id_get(dev, ppid);
9187 	if (!recurse || err != -EOPNOTSUPP)
9188 		return err;
9189 
9190 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9191 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9192 		if (err)
9193 			break;
9194 		if (!first.id_len)
9195 			first = *ppid;
9196 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9197 			return -EOPNOTSUPP;
9198 	}
9199 
9200 	return err;
9201 }
9202 EXPORT_SYMBOL(dev_get_port_parent_id);
9203 
9204 /**
9205  *	netdev_port_same_parent_id - Indicate if two network devices have
9206  *	the same port parent identifier
9207  *	@a: first network device
9208  *	@b: second network device
9209  */
9210 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9211 {
9212 	struct netdev_phys_item_id a_id = { };
9213 	struct netdev_phys_item_id b_id = { };
9214 
9215 	if (dev_get_port_parent_id(a, &a_id, true) ||
9216 	    dev_get_port_parent_id(b, &b_id, true))
9217 		return false;
9218 
9219 	return netdev_phys_item_id_same(&a_id, &b_id);
9220 }
9221 EXPORT_SYMBOL(netdev_port_same_parent_id);
9222 
9223 /**
9224  *	dev_change_proto_down - update protocol port state information
9225  *	@dev: device
9226  *	@proto_down: new value
9227  *
9228  *	This info can be used by switch drivers to set the phys state of the
9229  *	port.
9230  */
9231 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9232 {
9233 	const struct net_device_ops *ops = dev->netdev_ops;
9234 
9235 	if (!ops->ndo_change_proto_down)
9236 		return -EOPNOTSUPP;
9237 	if (!netif_device_present(dev))
9238 		return -ENODEV;
9239 	return ops->ndo_change_proto_down(dev, proto_down);
9240 }
9241 EXPORT_SYMBOL(dev_change_proto_down);
9242 
9243 /**
9244  *	dev_change_proto_down_generic - generic implementation for
9245  * 	ndo_change_proto_down that sets carrier according to
9246  * 	proto_down.
9247  *
9248  *	@dev: device
9249  *	@proto_down: new value
9250  */
9251 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9252 {
9253 	if (proto_down)
9254 		netif_carrier_off(dev);
9255 	else
9256 		netif_carrier_on(dev);
9257 	dev->proto_down = proto_down;
9258 	return 0;
9259 }
9260 EXPORT_SYMBOL(dev_change_proto_down_generic);
9261 
9262 /**
9263  *	dev_change_proto_down_reason - proto down reason
9264  *
9265  *	@dev: device
9266  *	@mask: proto down mask
9267  *	@value: proto down value
9268  */
9269 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9270 				  u32 value)
9271 {
9272 	int b;
9273 
9274 	if (!mask) {
9275 		dev->proto_down_reason = value;
9276 	} else {
9277 		for_each_set_bit(b, &mask, 32) {
9278 			if (value & (1 << b))
9279 				dev->proto_down_reason |= BIT(b);
9280 			else
9281 				dev->proto_down_reason &= ~BIT(b);
9282 		}
9283 	}
9284 }
9285 EXPORT_SYMBOL(dev_change_proto_down_reason);
9286 
9287 struct bpf_xdp_link {
9288 	struct bpf_link link;
9289 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9290 	int flags;
9291 };
9292 
9293 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9294 {
9295 	if (flags & XDP_FLAGS_HW_MODE)
9296 		return XDP_MODE_HW;
9297 	if (flags & XDP_FLAGS_DRV_MODE)
9298 		return XDP_MODE_DRV;
9299 	if (flags & XDP_FLAGS_SKB_MODE)
9300 		return XDP_MODE_SKB;
9301 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9302 }
9303 
9304 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9305 {
9306 	switch (mode) {
9307 	case XDP_MODE_SKB:
9308 		return generic_xdp_install;
9309 	case XDP_MODE_DRV:
9310 	case XDP_MODE_HW:
9311 		return dev->netdev_ops->ndo_bpf;
9312 	default:
9313 		return NULL;
9314 	}
9315 }
9316 
9317 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9318 					 enum bpf_xdp_mode mode)
9319 {
9320 	return dev->xdp_state[mode].link;
9321 }
9322 
9323 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9324 				     enum bpf_xdp_mode mode)
9325 {
9326 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9327 
9328 	if (link)
9329 		return link->link.prog;
9330 	return dev->xdp_state[mode].prog;
9331 }
9332 
9333 u8 dev_xdp_prog_count(struct net_device *dev)
9334 {
9335 	u8 count = 0;
9336 	int i;
9337 
9338 	for (i = 0; i < __MAX_XDP_MODE; i++)
9339 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9340 			count++;
9341 	return count;
9342 }
9343 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9344 
9345 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9346 {
9347 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9348 
9349 	return prog ? prog->aux->id : 0;
9350 }
9351 
9352 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9353 			     struct bpf_xdp_link *link)
9354 {
9355 	dev->xdp_state[mode].link = link;
9356 	dev->xdp_state[mode].prog = NULL;
9357 }
9358 
9359 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9360 			     struct bpf_prog *prog)
9361 {
9362 	dev->xdp_state[mode].link = NULL;
9363 	dev->xdp_state[mode].prog = prog;
9364 }
9365 
9366 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9367 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9368 			   u32 flags, struct bpf_prog *prog)
9369 {
9370 	struct netdev_bpf xdp;
9371 	int err;
9372 
9373 	memset(&xdp, 0, sizeof(xdp));
9374 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9375 	xdp.extack = extack;
9376 	xdp.flags = flags;
9377 	xdp.prog = prog;
9378 
9379 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9380 	 * "moved" into driver), so they don't increment it on their own, but
9381 	 * they do decrement refcnt when program is detached or replaced.
9382 	 * Given net_device also owns link/prog, we need to bump refcnt here
9383 	 * to prevent drivers from underflowing it.
9384 	 */
9385 	if (prog)
9386 		bpf_prog_inc(prog);
9387 	err = bpf_op(dev, &xdp);
9388 	if (err) {
9389 		if (prog)
9390 			bpf_prog_put(prog);
9391 		return err;
9392 	}
9393 
9394 	if (mode != XDP_MODE_HW)
9395 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9396 
9397 	return 0;
9398 }
9399 
9400 static void dev_xdp_uninstall(struct net_device *dev)
9401 {
9402 	struct bpf_xdp_link *link;
9403 	struct bpf_prog *prog;
9404 	enum bpf_xdp_mode mode;
9405 	bpf_op_t bpf_op;
9406 
9407 	ASSERT_RTNL();
9408 
9409 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9410 		prog = dev_xdp_prog(dev, mode);
9411 		if (!prog)
9412 			continue;
9413 
9414 		bpf_op = dev_xdp_bpf_op(dev, mode);
9415 		if (!bpf_op)
9416 			continue;
9417 
9418 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9419 
9420 		/* auto-detach link from net device */
9421 		link = dev_xdp_link(dev, mode);
9422 		if (link)
9423 			link->dev = NULL;
9424 		else
9425 			bpf_prog_put(prog);
9426 
9427 		dev_xdp_set_link(dev, mode, NULL);
9428 	}
9429 }
9430 
9431 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9432 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9433 			  struct bpf_prog *old_prog, u32 flags)
9434 {
9435 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9436 	struct bpf_prog *cur_prog;
9437 	struct net_device *upper;
9438 	struct list_head *iter;
9439 	enum bpf_xdp_mode mode;
9440 	bpf_op_t bpf_op;
9441 	int err;
9442 
9443 	ASSERT_RTNL();
9444 
9445 	/* either link or prog attachment, never both */
9446 	if (link && (new_prog || old_prog))
9447 		return -EINVAL;
9448 	/* link supports only XDP mode flags */
9449 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9450 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9451 		return -EINVAL;
9452 	}
9453 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9454 	if (num_modes > 1) {
9455 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9456 		return -EINVAL;
9457 	}
9458 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9459 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9460 		NL_SET_ERR_MSG(extack,
9461 			       "More than one program loaded, unset mode is ambiguous");
9462 		return -EINVAL;
9463 	}
9464 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9465 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9466 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9467 		return -EINVAL;
9468 	}
9469 
9470 	mode = dev_xdp_mode(dev, flags);
9471 	/* can't replace attached link */
9472 	if (dev_xdp_link(dev, mode)) {
9473 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9474 		return -EBUSY;
9475 	}
9476 
9477 	/* don't allow if an upper device already has a program */
9478 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9479 		if (dev_xdp_prog_count(upper) > 0) {
9480 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9481 			return -EEXIST;
9482 		}
9483 	}
9484 
9485 	cur_prog = dev_xdp_prog(dev, mode);
9486 	/* can't replace attached prog with link */
9487 	if (link && cur_prog) {
9488 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9489 		return -EBUSY;
9490 	}
9491 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9492 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9493 		return -EEXIST;
9494 	}
9495 
9496 	/* put effective new program into new_prog */
9497 	if (link)
9498 		new_prog = link->link.prog;
9499 
9500 	if (new_prog) {
9501 		bool offload = mode == XDP_MODE_HW;
9502 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9503 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9504 
9505 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9506 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9507 			return -EBUSY;
9508 		}
9509 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9510 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9511 			return -EEXIST;
9512 		}
9513 		if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9514 			NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9515 			return -EINVAL;
9516 		}
9517 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9518 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9519 			return -EINVAL;
9520 		}
9521 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9522 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9523 			return -EINVAL;
9524 		}
9525 	}
9526 
9527 	/* don't call drivers if the effective program didn't change */
9528 	if (new_prog != cur_prog) {
9529 		bpf_op = dev_xdp_bpf_op(dev, mode);
9530 		if (!bpf_op) {
9531 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9532 			return -EOPNOTSUPP;
9533 		}
9534 
9535 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9536 		if (err)
9537 			return err;
9538 	}
9539 
9540 	if (link)
9541 		dev_xdp_set_link(dev, mode, link);
9542 	else
9543 		dev_xdp_set_prog(dev, mode, new_prog);
9544 	if (cur_prog)
9545 		bpf_prog_put(cur_prog);
9546 
9547 	return 0;
9548 }
9549 
9550 static int dev_xdp_attach_link(struct net_device *dev,
9551 			       struct netlink_ext_ack *extack,
9552 			       struct bpf_xdp_link *link)
9553 {
9554 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9555 }
9556 
9557 static int dev_xdp_detach_link(struct net_device *dev,
9558 			       struct netlink_ext_ack *extack,
9559 			       struct bpf_xdp_link *link)
9560 {
9561 	enum bpf_xdp_mode mode;
9562 	bpf_op_t bpf_op;
9563 
9564 	ASSERT_RTNL();
9565 
9566 	mode = dev_xdp_mode(dev, link->flags);
9567 	if (dev_xdp_link(dev, mode) != link)
9568 		return -EINVAL;
9569 
9570 	bpf_op = dev_xdp_bpf_op(dev, mode);
9571 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9572 	dev_xdp_set_link(dev, mode, NULL);
9573 	return 0;
9574 }
9575 
9576 static void bpf_xdp_link_release(struct bpf_link *link)
9577 {
9578 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9579 
9580 	rtnl_lock();
9581 
9582 	/* if racing with net_device's tear down, xdp_link->dev might be
9583 	 * already NULL, in which case link was already auto-detached
9584 	 */
9585 	if (xdp_link->dev) {
9586 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9587 		xdp_link->dev = NULL;
9588 	}
9589 
9590 	rtnl_unlock();
9591 }
9592 
9593 static int bpf_xdp_link_detach(struct bpf_link *link)
9594 {
9595 	bpf_xdp_link_release(link);
9596 	return 0;
9597 }
9598 
9599 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9600 {
9601 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9602 
9603 	kfree(xdp_link);
9604 }
9605 
9606 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9607 				     struct seq_file *seq)
9608 {
9609 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9610 	u32 ifindex = 0;
9611 
9612 	rtnl_lock();
9613 	if (xdp_link->dev)
9614 		ifindex = xdp_link->dev->ifindex;
9615 	rtnl_unlock();
9616 
9617 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9618 }
9619 
9620 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9621 				       struct bpf_link_info *info)
9622 {
9623 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9624 	u32 ifindex = 0;
9625 
9626 	rtnl_lock();
9627 	if (xdp_link->dev)
9628 		ifindex = xdp_link->dev->ifindex;
9629 	rtnl_unlock();
9630 
9631 	info->xdp.ifindex = ifindex;
9632 	return 0;
9633 }
9634 
9635 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9636 			       struct bpf_prog *old_prog)
9637 {
9638 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9639 	enum bpf_xdp_mode mode;
9640 	bpf_op_t bpf_op;
9641 	int err = 0;
9642 
9643 	rtnl_lock();
9644 
9645 	/* link might have been auto-released already, so fail */
9646 	if (!xdp_link->dev) {
9647 		err = -ENOLINK;
9648 		goto out_unlock;
9649 	}
9650 
9651 	if (old_prog && link->prog != old_prog) {
9652 		err = -EPERM;
9653 		goto out_unlock;
9654 	}
9655 	old_prog = link->prog;
9656 	if (old_prog == new_prog) {
9657 		/* no-op, don't disturb drivers */
9658 		bpf_prog_put(new_prog);
9659 		goto out_unlock;
9660 	}
9661 
9662 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9663 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9664 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9665 			      xdp_link->flags, new_prog);
9666 	if (err)
9667 		goto out_unlock;
9668 
9669 	old_prog = xchg(&link->prog, new_prog);
9670 	bpf_prog_put(old_prog);
9671 
9672 out_unlock:
9673 	rtnl_unlock();
9674 	return err;
9675 }
9676 
9677 static const struct bpf_link_ops bpf_xdp_link_lops = {
9678 	.release = bpf_xdp_link_release,
9679 	.dealloc = bpf_xdp_link_dealloc,
9680 	.detach = bpf_xdp_link_detach,
9681 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9682 	.fill_link_info = bpf_xdp_link_fill_link_info,
9683 	.update_prog = bpf_xdp_link_update,
9684 };
9685 
9686 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9687 {
9688 	struct net *net = current->nsproxy->net_ns;
9689 	struct bpf_link_primer link_primer;
9690 	struct bpf_xdp_link *link;
9691 	struct net_device *dev;
9692 	int err, fd;
9693 
9694 	rtnl_lock();
9695 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9696 	if (!dev) {
9697 		rtnl_unlock();
9698 		return -EINVAL;
9699 	}
9700 
9701 	link = kzalloc(sizeof(*link), GFP_USER);
9702 	if (!link) {
9703 		err = -ENOMEM;
9704 		goto unlock;
9705 	}
9706 
9707 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9708 	link->dev = dev;
9709 	link->flags = attr->link_create.flags;
9710 
9711 	err = bpf_link_prime(&link->link, &link_primer);
9712 	if (err) {
9713 		kfree(link);
9714 		goto unlock;
9715 	}
9716 
9717 	err = dev_xdp_attach_link(dev, NULL, link);
9718 	rtnl_unlock();
9719 
9720 	if (err) {
9721 		link->dev = NULL;
9722 		bpf_link_cleanup(&link_primer);
9723 		goto out_put_dev;
9724 	}
9725 
9726 	fd = bpf_link_settle(&link_primer);
9727 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9728 	dev_put(dev);
9729 	return fd;
9730 
9731 unlock:
9732 	rtnl_unlock();
9733 
9734 out_put_dev:
9735 	dev_put(dev);
9736 	return err;
9737 }
9738 
9739 /**
9740  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9741  *	@dev: device
9742  *	@extack: netlink extended ack
9743  *	@fd: new program fd or negative value to clear
9744  *	@expected_fd: old program fd that userspace expects to replace or clear
9745  *	@flags: xdp-related flags
9746  *
9747  *	Set or clear a bpf program for a device
9748  */
9749 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9750 		      int fd, int expected_fd, u32 flags)
9751 {
9752 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9753 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9754 	int err;
9755 
9756 	ASSERT_RTNL();
9757 
9758 	if (fd >= 0) {
9759 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9760 						 mode != XDP_MODE_SKB);
9761 		if (IS_ERR(new_prog))
9762 			return PTR_ERR(new_prog);
9763 	}
9764 
9765 	if (expected_fd >= 0) {
9766 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9767 						 mode != XDP_MODE_SKB);
9768 		if (IS_ERR(old_prog)) {
9769 			err = PTR_ERR(old_prog);
9770 			old_prog = NULL;
9771 			goto err_out;
9772 		}
9773 	}
9774 
9775 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9776 
9777 err_out:
9778 	if (err && new_prog)
9779 		bpf_prog_put(new_prog);
9780 	if (old_prog)
9781 		bpf_prog_put(old_prog);
9782 	return err;
9783 }
9784 
9785 /**
9786  *	dev_new_index	-	allocate an ifindex
9787  *	@net: the applicable net namespace
9788  *
9789  *	Returns a suitable unique value for a new device interface
9790  *	number.  The caller must hold the rtnl semaphore or the
9791  *	dev_base_lock to be sure it remains unique.
9792  */
9793 static int dev_new_index(struct net *net)
9794 {
9795 	int ifindex = net->ifindex;
9796 
9797 	for (;;) {
9798 		if (++ifindex <= 0)
9799 			ifindex = 1;
9800 		if (!__dev_get_by_index(net, ifindex))
9801 			return net->ifindex = ifindex;
9802 	}
9803 }
9804 
9805 /* Delayed registration/unregisteration */
9806 static LIST_HEAD(net_todo_list);
9807 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9808 
9809 static void net_set_todo(struct net_device *dev)
9810 {
9811 	list_add_tail(&dev->todo_list, &net_todo_list);
9812 	dev_net(dev)->dev_unreg_count++;
9813 }
9814 
9815 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9816 	struct net_device *upper, netdev_features_t features)
9817 {
9818 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9819 	netdev_features_t feature;
9820 	int feature_bit;
9821 
9822 	for_each_netdev_feature(upper_disables, feature_bit) {
9823 		feature = __NETIF_F_BIT(feature_bit);
9824 		if (!(upper->wanted_features & feature)
9825 		    && (features & feature)) {
9826 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9827 				   &feature, upper->name);
9828 			features &= ~feature;
9829 		}
9830 	}
9831 
9832 	return features;
9833 }
9834 
9835 static void netdev_sync_lower_features(struct net_device *upper,
9836 	struct net_device *lower, netdev_features_t features)
9837 {
9838 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9839 	netdev_features_t feature;
9840 	int feature_bit;
9841 
9842 	for_each_netdev_feature(upper_disables, feature_bit) {
9843 		feature = __NETIF_F_BIT(feature_bit);
9844 		if (!(features & feature) && (lower->features & feature)) {
9845 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9846 				   &feature, lower->name);
9847 			lower->wanted_features &= ~feature;
9848 			__netdev_update_features(lower);
9849 
9850 			if (unlikely(lower->features & feature))
9851 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9852 					    &feature, lower->name);
9853 			else
9854 				netdev_features_change(lower);
9855 		}
9856 	}
9857 }
9858 
9859 static netdev_features_t netdev_fix_features(struct net_device *dev,
9860 	netdev_features_t features)
9861 {
9862 	/* Fix illegal checksum combinations */
9863 	if ((features & NETIF_F_HW_CSUM) &&
9864 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9865 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9866 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9867 	}
9868 
9869 	/* TSO requires that SG is present as well. */
9870 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9871 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9872 		features &= ~NETIF_F_ALL_TSO;
9873 	}
9874 
9875 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9876 					!(features & NETIF_F_IP_CSUM)) {
9877 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9878 		features &= ~NETIF_F_TSO;
9879 		features &= ~NETIF_F_TSO_ECN;
9880 	}
9881 
9882 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9883 					 !(features & NETIF_F_IPV6_CSUM)) {
9884 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9885 		features &= ~NETIF_F_TSO6;
9886 	}
9887 
9888 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9889 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9890 		features &= ~NETIF_F_TSO_MANGLEID;
9891 
9892 	/* TSO ECN requires that TSO is present as well. */
9893 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9894 		features &= ~NETIF_F_TSO_ECN;
9895 
9896 	/* Software GSO depends on SG. */
9897 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9898 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9899 		features &= ~NETIF_F_GSO;
9900 	}
9901 
9902 	/* GSO partial features require GSO partial be set */
9903 	if ((features & dev->gso_partial_features) &&
9904 	    !(features & NETIF_F_GSO_PARTIAL)) {
9905 		netdev_dbg(dev,
9906 			   "Dropping partially supported GSO features since no GSO partial.\n");
9907 		features &= ~dev->gso_partial_features;
9908 	}
9909 
9910 	if (!(features & NETIF_F_RXCSUM)) {
9911 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9912 		 * successfully merged by hardware must also have the
9913 		 * checksum verified by hardware.  If the user does not
9914 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9915 		 */
9916 		if (features & NETIF_F_GRO_HW) {
9917 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9918 			features &= ~NETIF_F_GRO_HW;
9919 		}
9920 	}
9921 
9922 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9923 	if (features & NETIF_F_RXFCS) {
9924 		if (features & NETIF_F_LRO) {
9925 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9926 			features &= ~NETIF_F_LRO;
9927 		}
9928 
9929 		if (features & NETIF_F_GRO_HW) {
9930 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9931 			features &= ~NETIF_F_GRO_HW;
9932 		}
9933 	}
9934 
9935 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9936 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9937 		features &= ~NETIF_F_LRO;
9938 	}
9939 
9940 	if (features & NETIF_F_HW_TLS_TX) {
9941 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9942 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9943 		bool hw_csum = features & NETIF_F_HW_CSUM;
9944 
9945 		if (!ip_csum && !hw_csum) {
9946 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9947 			features &= ~NETIF_F_HW_TLS_TX;
9948 		}
9949 	}
9950 
9951 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9952 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9953 		features &= ~NETIF_F_HW_TLS_RX;
9954 	}
9955 
9956 	return features;
9957 }
9958 
9959 int __netdev_update_features(struct net_device *dev)
9960 {
9961 	struct net_device *upper, *lower;
9962 	netdev_features_t features;
9963 	struct list_head *iter;
9964 	int err = -1;
9965 
9966 	ASSERT_RTNL();
9967 
9968 	features = netdev_get_wanted_features(dev);
9969 
9970 	if (dev->netdev_ops->ndo_fix_features)
9971 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9972 
9973 	/* driver might be less strict about feature dependencies */
9974 	features = netdev_fix_features(dev, features);
9975 
9976 	/* some features can't be enabled if they're off on an upper device */
9977 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9978 		features = netdev_sync_upper_features(dev, upper, features);
9979 
9980 	if (dev->features == features)
9981 		goto sync_lower;
9982 
9983 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9984 		&dev->features, &features);
9985 
9986 	if (dev->netdev_ops->ndo_set_features)
9987 		err = dev->netdev_ops->ndo_set_features(dev, features);
9988 	else
9989 		err = 0;
9990 
9991 	if (unlikely(err < 0)) {
9992 		netdev_err(dev,
9993 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9994 			err, &features, &dev->features);
9995 		/* return non-0 since some features might have changed and
9996 		 * it's better to fire a spurious notification than miss it
9997 		 */
9998 		return -1;
9999 	}
10000 
10001 sync_lower:
10002 	/* some features must be disabled on lower devices when disabled
10003 	 * on an upper device (think: bonding master or bridge)
10004 	 */
10005 	netdev_for_each_lower_dev(dev, lower, iter)
10006 		netdev_sync_lower_features(dev, lower, features);
10007 
10008 	if (!err) {
10009 		netdev_features_t diff = features ^ dev->features;
10010 
10011 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10012 			/* udp_tunnel_{get,drop}_rx_info both need
10013 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10014 			 * device, or they won't do anything.
10015 			 * Thus we need to update dev->features
10016 			 * *before* calling udp_tunnel_get_rx_info,
10017 			 * but *after* calling udp_tunnel_drop_rx_info.
10018 			 */
10019 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10020 				dev->features = features;
10021 				udp_tunnel_get_rx_info(dev);
10022 			} else {
10023 				udp_tunnel_drop_rx_info(dev);
10024 			}
10025 		}
10026 
10027 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10028 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10029 				dev->features = features;
10030 				err |= vlan_get_rx_ctag_filter_info(dev);
10031 			} else {
10032 				vlan_drop_rx_ctag_filter_info(dev);
10033 			}
10034 		}
10035 
10036 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10037 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10038 				dev->features = features;
10039 				err |= vlan_get_rx_stag_filter_info(dev);
10040 			} else {
10041 				vlan_drop_rx_stag_filter_info(dev);
10042 			}
10043 		}
10044 
10045 		dev->features = features;
10046 	}
10047 
10048 	return err < 0 ? 0 : 1;
10049 }
10050 
10051 /**
10052  *	netdev_update_features - recalculate device features
10053  *	@dev: the device to check
10054  *
10055  *	Recalculate dev->features set and send notifications if it
10056  *	has changed. Should be called after driver or hardware dependent
10057  *	conditions might have changed that influence the features.
10058  */
10059 void netdev_update_features(struct net_device *dev)
10060 {
10061 	if (__netdev_update_features(dev))
10062 		netdev_features_change(dev);
10063 }
10064 EXPORT_SYMBOL(netdev_update_features);
10065 
10066 /**
10067  *	netdev_change_features - recalculate device features
10068  *	@dev: the device to check
10069  *
10070  *	Recalculate dev->features set and send notifications even
10071  *	if they have not changed. Should be called instead of
10072  *	netdev_update_features() if also dev->vlan_features might
10073  *	have changed to allow the changes to be propagated to stacked
10074  *	VLAN devices.
10075  */
10076 void netdev_change_features(struct net_device *dev)
10077 {
10078 	__netdev_update_features(dev);
10079 	netdev_features_change(dev);
10080 }
10081 EXPORT_SYMBOL(netdev_change_features);
10082 
10083 /**
10084  *	netif_stacked_transfer_operstate -	transfer operstate
10085  *	@rootdev: the root or lower level device to transfer state from
10086  *	@dev: the device to transfer operstate to
10087  *
10088  *	Transfer operational state from root to device. This is normally
10089  *	called when a stacking relationship exists between the root
10090  *	device and the device(a leaf device).
10091  */
10092 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10093 					struct net_device *dev)
10094 {
10095 	if (rootdev->operstate == IF_OPER_DORMANT)
10096 		netif_dormant_on(dev);
10097 	else
10098 		netif_dormant_off(dev);
10099 
10100 	if (rootdev->operstate == IF_OPER_TESTING)
10101 		netif_testing_on(dev);
10102 	else
10103 		netif_testing_off(dev);
10104 
10105 	if (netif_carrier_ok(rootdev))
10106 		netif_carrier_on(dev);
10107 	else
10108 		netif_carrier_off(dev);
10109 }
10110 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10111 
10112 static int netif_alloc_rx_queues(struct net_device *dev)
10113 {
10114 	unsigned int i, count = dev->num_rx_queues;
10115 	struct netdev_rx_queue *rx;
10116 	size_t sz = count * sizeof(*rx);
10117 	int err = 0;
10118 
10119 	BUG_ON(count < 1);
10120 
10121 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10122 	if (!rx)
10123 		return -ENOMEM;
10124 
10125 	dev->_rx = rx;
10126 
10127 	for (i = 0; i < count; i++) {
10128 		rx[i].dev = dev;
10129 
10130 		/* XDP RX-queue setup */
10131 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10132 		if (err < 0)
10133 			goto err_rxq_info;
10134 	}
10135 	return 0;
10136 
10137 err_rxq_info:
10138 	/* Rollback successful reg's and free other resources */
10139 	while (i--)
10140 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10141 	kvfree(dev->_rx);
10142 	dev->_rx = NULL;
10143 	return err;
10144 }
10145 
10146 static void netif_free_rx_queues(struct net_device *dev)
10147 {
10148 	unsigned int i, count = dev->num_rx_queues;
10149 
10150 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10151 	if (!dev->_rx)
10152 		return;
10153 
10154 	for (i = 0; i < count; i++)
10155 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10156 
10157 	kvfree(dev->_rx);
10158 }
10159 
10160 static void netdev_init_one_queue(struct net_device *dev,
10161 				  struct netdev_queue *queue, void *_unused)
10162 {
10163 	/* Initialize queue lock */
10164 	spin_lock_init(&queue->_xmit_lock);
10165 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10166 	queue->xmit_lock_owner = -1;
10167 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10168 	queue->dev = dev;
10169 #ifdef CONFIG_BQL
10170 	dql_init(&queue->dql, HZ);
10171 #endif
10172 }
10173 
10174 static void netif_free_tx_queues(struct net_device *dev)
10175 {
10176 	kvfree(dev->_tx);
10177 }
10178 
10179 static int netif_alloc_netdev_queues(struct net_device *dev)
10180 {
10181 	unsigned int count = dev->num_tx_queues;
10182 	struct netdev_queue *tx;
10183 	size_t sz = count * sizeof(*tx);
10184 
10185 	if (count < 1 || count > 0xffff)
10186 		return -EINVAL;
10187 
10188 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10189 	if (!tx)
10190 		return -ENOMEM;
10191 
10192 	dev->_tx = tx;
10193 
10194 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10195 	spin_lock_init(&dev->tx_global_lock);
10196 
10197 	return 0;
10198 }
10199 
10200 void netif_tx_stop_all_queues(struct net_device *dev)
10201 {
10202 	unsigned int i;
10203 
10204 	for (i = 0; i < dev->num_tx_queues; i++) {
10205 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10206 
10207 		netif_tx_stop_queue(txq);
10208 	}
10209 }
10210 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10211 
10212 /**
10213  *	register_netdevice	- register a network device
10214  *	@dev: device to register
10215  *
10216  *	Take a completed network device structure and add it to the kernel
10217  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10218  *	chain. 0 is returned on success. A negative errno code is returned
10219  *	on a failure to set up the device, or if the name is a duplicate.
10220  *
10221  *	Callers must hold the rtnl semaphore. You may want
10222  *	register_netdev() instead of this.
10223  *
10224  *	BUGS:
10225  *	The locking appears insufficient to guarantee two parallel registers
10226  *	will not get the same name.
10227  */
10228 
10229 int register_netdevice(struct net_device *dev)
10230 {
10231 	int ret;
10232 	struct net *net = dev_net(dev);
10233 
10234 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10235 		     NETDEV_FEATURE_COUNT);
10236 	BUG_ON(dev_boot_phase);
10237 	ASSERT_RTNL();
10238 
10239 	might_sleep();
10240 
10241 	/* When net_device's are persistent, this will be fatal. */
10242 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10243 	BUG_ON(!net);
10244 
10245 	ret = ethtool_check_ops(dev->ethtool_ops);
10246 	if (ret)
10247 		return ret;
10248 
10249 	spin_lock_init(&dev->addr_list_lock);
10250 	netdev_set_addr_lockdep_class(dev);
10251 
10252 	ret = dev_get_valid_name(net, dev, dev->name);
10253 	if (ret < 0)
10254 		goto out;
10255 
10256 	ret = -ENOMEM;
10257 	dev->name_node = netdev_name_node_head_alloc(dev);
10258 	if (!dev->name_node)
10259 		goto out;
10260 
10261 	/* Init, if this function is available */
10262 	if (dev->netdev_ops->ndo_init) {
10263 		ret = dev->netdev_ops->ndo_init(dev);
10264 		if (ret) {
10265 			if (ret > 0)
10266 				ret = -EIO;
10267 			goto err_free_name;
10268 		}
10269 	}
10270 
10271 	if (((dev->hw_features | dev->features) &
10272 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10273 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10274 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10275 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10276 		ret = -EINVAL;
10277 		goto err_uninit;
10278 	}
10279 
10280 	ret = -EBUSY;
10281 	if (!dev->ifindex)
10282 		dev->ifindex = dev_new_index(net);
10283 	else if (__dev_get_by_index(net, dev->ifindex))
10284 		goto err_uninit;
10285 
10286 	/* Transfer changeable features to wanted_features and enable
10287 	 * software offloads (GSO and GRO).
10288 	 */
10289 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10290 	dev->features |= NETIF_F_SOFT_FEATURES;
10291 
10292 	if (dev->udp_tunnel_nic_info) {
10293 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10294 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10295 	}
10296 
10297 	dev->wanted_features = dev->features & dev->hw_features;
10298 
10299 	if (!(dev->flags & IFF_LOOPBACK))
10300 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10301 
10302 	/* If IPv4 TCP segmentation offload is supported we should also
10303 	 * allow the device to enable segmenting the frame with the option
10304 	 * of ignoring a static IP ID value.  This doesn't enable the
10305 	 * feature itself but allows the user to enable it later.
10306 	 */
10307 	if (dev->hw_features & NETIF_F_TSO)
10308 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10309 	if (dev->vlan_features & NETIF_F_TSO)
10310 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10311 	if (dev->mpls_features & NETIF_F_TSO)
10312 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10313 	if (dev->hw_enc_features & NETIF_F_TSO)
10314 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10315 
10316 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10317 	 */
10318 	dev->vlan_features |= NETIF_F_HIGHDMA;
10319 
10320 	/* Make NETIF_F_SG inheritable to tunnel devices.
10321 	 */
10322 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10323 
10324 	/* Make NETIF_F_SG inheritable to MPLS.
10325 	 */
10326 	dev->mpls_features |= NETIF_F_SG;
10327 
10328 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10329 	ret = notifier_to_errno(ret);
10330 	if (ret)
10331 		goto err_uninit;
10332 
10333 	ret = netdev_register_kobject(dev);
10334 	if (ret) {
10335 		dev->reg_state = NETREG_UNREGISTERED;
10336 		goto err_uninit;
10337 	}
10338 	dev->reg_state = NETREG_REGISTERED;
10339 
10340 	__netdev_update_features(dev);
10341 
10342 	/*
10343 	 *	Default initial state at registry is that the
10344 	 *	device is present.
10345 	 */
10346 
10347 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10348 
10349 	linkwatch_init_dev(dev);
10350 
10351 	dev_init_scheduler(dev);
10352 	dev_hold(dev);
10353 	list_netdevice(dev);
10354 	add_device_randomness(dev->dev_addr, dev->addr_len);
10355 
10356 	/* If the device has permanent device address, driver should
10357 	 * set dev_addr and also addr_assign_type should be set to
10358 	 * NET_ADDR_PERM (default value).
10359 	 */
10360 	if (dev->addr_assign_type == NET_ADDR_PERM)
10361 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10362 
10363 	/* Notify protocols, that a new device appeared. */
10364 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10365 	ret = notifier_to_errno(ret);
10366 	if (ret) {
10367 		/* Expect explicit free_netdev() on failure */
10368 		dev->needs_free_netdev = false;
10369 		unregister_netdevice_queue(dev, NULL);
10370 		goto out;
10371 	}
10372 	/*
10373 	 *	Prevent userspace races by waiting until the network
10374 	 *	device is fully setup before sending notifications.
10375 	 */
10376 	if (!dev->rtnl_link_ops ||
10377 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10378 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10379 
10380 out:
10381 	return ret;
10382 
10383 err_uninit:
10384 	if (dev->netdev_ops->ndo_uninit)
10385 		dev->netdev_ops->ndo_uninit(dev);
10386 	if (dev->priv_destructor)
10387 		dev->priv_destructor(dev);
10388 err_free_name:
10389 	netdev_name_node_free(dev->name_node);
10390 	goto out;
10391 }
10392 EXPORT_SYMBOL(register_netdevice);
10393 
10394 /**
10395  *	init_dummy_netdev	- init a dummy network device for NAPI
10396  *	@dev: device to init
10397  *
10398  *	This takes a network device structure and initialize the minimum
10399  *	amount of fields so it can be used to schedule NAPI polls without
10400  *	registering a full blown interface. This is to be used by drivers
10401  *	that need to tie several hardware interfaces to a single NAPI
10402  *	poll scheduler due to HW limitations.
10403  */
10404 int init_dummy_netdev(struct net_device *dev)
10405 {
10406 	/* Clear everything. Note we don't initialize spinlocks
10407 	 * are they aren't supposed to be taken by any of the
10408 	 * NAPI code and this dummy netdev is supposed to be
10409 	 * only ever used for NAPI polls
10410 	 */
10411 	memset(dev, 0, sizeof(struct net_device));
10412 
10413 	/* make sure we BUG if trying to hit standard
10414 	 * register/unregister code path
10415 	 */
10416 	dev->reg_state = NETREG_DUMMY;
10417 
10418 	/* NAPI wants this */
10419 	INIT_LIST_HEAD(&dev->napi_list);
10420 
10421 	/* a dummy interface is started by default */
10422 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10423 	set_bit(__LINK_STATE_START, &dev->state);
10424 
10425 	/* napi_busy_loop stats accounting wants this */
10426 	dev_net_set(dev, &init_net);
10427 
10428 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10429 	 * because users of this 'device' dont need to change
10430 	 * its refcount.
10431 	 */
10432 
10433 	return 0;
10434 }
10435 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10436 
10437 
10438 /**
10439  *	register_netdev	- register a network device
10440  *	@dev: device to register
10441  *
10442  *	Take a completed network device structure and add it to the kernel
10443  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10444  *	chain. 0 is returned on success. A negative errno code is returned
10445  *	on a failure to set up the device, or if the name is a duplicate.
10446  *
10447  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10448  *	and expands the device name if you passed a format string to
10449  *	alloc_netdev.
10450  */
10451 int register_netdev(struct net_device *dev)
10452 {
10453 	int err;
10454 
10455 	if (rtnl_lock_killable())
10456 		return -EINTR;
10457 	err = register_netdevice(dev);
10458 	rtnl_unlock();
10459 	return err;
10460 }
10461 EXPORT_SYMBOL(register_netdev);
10462 
10463 int netdev_refcnt_read(const struct net_device *dev)
10464 {
10465 #ifdef CONFIG_PCPU_DEV_REFCNT
10466 	int i, refcnt = 0;
10467 
10468 	for_each_possible_cpu(i)
10469 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10470 	return refcnt;
10471 #else
10472 	return refcount_read(&dev->dev_refcnt);
10473 #endif
10474 }
10475 EXPORT_SYMBOL(netdev_refcnt_read);
10476 
10477 int netdev_unregister_timeout_secs __read_mostly = 10;
10478 
10479 #define WAIT_REFS_MIN_MSECS 1
10480 #define WAIT_REFS_MAX_MSECS 250
10481 /**
10482  * netdev_wait_allrefs - wait until all references are gone.
10483  * @dev: target net_device
10484  *
10485  * This is called when unregistering network devices.
10486  *
10487  * Any protocol or device that holds a reference should register
10488  * for netdevice notification, and cleanup and put back the
10489  * reference if they receive an UNREGISTER event.
10490  * We can get stuck here if buggy protocols don't correctly
10491  * call dev_put.
10492  */
10493 static void netdev_wait_allrefs(struct net_device *dev)
10494 {
10495 	unsigned long rebroadcast_time, warning_time;
10496 	int wait = 0, refcnt;
10497 
10498 	linkwatch_forget_dev(dev);
10499 
10500 	rebroadcast_time = warning_time = jiffies;
10501 	refcnt = netdev_refcnt_read(dev);
10502 
10503 	while (refcnt != 1) {
10504 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10505 			rtnl_lock();
10506 
10507 			/* Rebroadcast unregister notification */
10508 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10509 
10510 			__rtnl_unlock();
10511 			rcu_barrier();
10512 			rtnl_lock();
10513 
10514 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10515 				     &dev->state)) {
10516 				/* We must not have linkwatch events
10517 				 * pending on unregister. If this
10518 				 * happens, we simply run the queue
10519 				 * unscheduled, resulting in a noop
10520 				 * for this device.
10521 				 */
10522 				linkwatch_run_queue();
10523 			}
10524 
10525 			__rtnl_unlock();
10526 
10527 			rebroadcast_time = jiffies;
10528 		}
10529 
10530 		if (!wait) {
10531 			rcu_barrier();
10532 			wait = WAIT_REFS_MIN_MSECS;
10533 		} else {
10534 			msleep(wait);
10535 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10536 		}
10537 
10538 		refcnt = netdev_refcnt_read(dev);
10539 
10540 		if (refcnt != 1 &&
10541 		    time_after(jiffies, warning_time +
10542 			       netdev_unregister_timeout_secs * HZ)) {
10543 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10544 				 dev->name, refcnt);
10545 			warning_time = jiffies;
10546 		}
10547 	}
10548 }
10549 
10550 /* The sequence is:
10551  *
10552  *	rtnl_lock();
10553  *	...
10554  *	register_netdevice(x1);
10555  *	register_netdevice(x2);
10556  *	...
10557  *	unregister_netdevice(y1);
10558  *	unregister_netdevice(y2);
10559  *      ...
10560  *	rtnl_unlock();
10561  *	free_netdev(y1);
10562  *	free_netdev(y2);
10563  *
10564  * We are invoked by rtnl_unlock().
10565  * This allows us to deal with problems:
10566  * 1) We can delete sysfs objects which invoke hotplug
10567  *    without deadlocking with linkwatch via keventd.
10568  * 2) Since we run with the RTNL semaphore not held, we can sleep
10569  *    safely in order to wait for the netdev refcnt to drop to zero.
10570  *
10571  * We must not return until all unregister events added during
10572  * the interval the lock was held have been completed.
10573  */
10574 void netdev_run_todo(void)
10575 {
10576 	struct list_head list;
10577 #ifdef CONFIG_LOCKDEP
10578 	struct list_head unlink_list;
10579 
10580 	list_replace_init(&net_unlink_list, &unlink_list);
10581 
10582 	while (!list_empty(&unlink_list)) {
10583 		struct net_device *dev = list_first_entry(&unlink_list,
10584 							  struct net_device,
10585 							  unlink_list);
10586 		list_del_init(&dev->unlink_list);
10587 		dev->nested_level = dev->lower_level - 1;
10588 	}
10589 #endif
10590 
10591 	/* Snapshot list, allow later requests */
10592 	list_replace_init(&net_todo_list, &list);
10593 
10594 	__rtnl_unlock();
10595 
10596 
10597 	/* Wait for rcu callbacks to finish before next phase */
10598 	if (!list_empty(&list))
10599 		rcu_barrier();
10600 
10601 	while (!list_empty(&list)) {
10602 		struct net_device *dev
10603 			= list_first_entry(&list, struct net_device, todo_list);
10604 		list_del(&dev->todo_list);
10605 
10606 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10607 			pr_err("network todo '%s' but state %d\n",
10608 			       dev->name, dev->reg_state);
10609 			dump_stack();
10610 			continue;
10611 		}
10612 
10613 		dev->reg_state = NETREG_UNREGISTERED;
10614 
10615 		netdev_wait_allrefs(dev);
10616 
10617 		/* paranoia */
10618 		BUG_ON(netdev_refcnt_read(dev) != 1);
10619 		BUG_ON(!list_empty(&dev->ptype_all));
10620 		BUG_ON(!list_empty(&dev->ptype_specific));
10621 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10622 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10623 #if IS_ENABLED(CONFIG_DECNET)
10624 		WARN_ON(dev->dn_ptr);
10625 #endif
10626 		if (dev->priv_destructor)
10627 			dev->priv_destructor(dev);
10628 		if (dev->needs_free_netdev)
10629 			free_netdev(dev);
10630 
10631 		/* Report a network device has been unregistered */
10632 		rtnl_lock();
10633 		dev_net(dev)->dev_unreg_count--;
10634 		__rtnl_unlock();
10635 		wake_up(&netdev_unregistering_wq);
10636 
10637 		/* Free network device */
10638 		kobject_put(&dev->dev.kobj);
10639 	}
10640 }
10641 
10642 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10643  * all the same fields in the same order as net_device_stats, with only
10644  * the type differing, but rtnl_link_stats64 may have additional fields
10645  * at the end for newer counters.
10646  */
10647 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10648 			     const struct net_device_stats *netdev_stats)
10649 {
10650 #if BITS_PER_LONG == 64
10651 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10652 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10653 	/* zero out counters that only exist in rtnl_link_stats64 */
10654 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
10655 	       sizeof(*stats64) - sizeof(*netdev_stats));
10656 #else
10657 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10658 	const unsigned long *src = (const unsigned long *)netdev_stats;
10659 	u64 *dst = (u64 *)stats64;
10660 
10661 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10662 	for (i = 0; i < n; i++)
10663 		dst[i] = src[i];
10664 	/* zero out counters that only exist in rtnl_link_stats64 */
10665 	memset((char *)stats64 + n * sizeof(u64), 0,
10666 	       sizeof(*stats64) - n * sizeof(u64));
10667 #endif
10668 }
10669 EXPORT_SYMBOL(netdev_stats_to_stats64);
10670 
10671 /**
10672  *	dev_get_stats	- get network device statistics
10673  *	@dev: device to get statistics from
10674  *	@storage: place to store stats
10675  *
10676  *	Get network statistics from device. Return @storage.
10677  *	The device driver may provide its own method by setting
10678  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10679  *	otherwise the internal statistics structure is used.
10680  */
10681 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10682 					struct rtnl_link_stats64 *storage)
10683 {
10684 	const struct net_device_ops *ops = dev->netdev_ops;
10685 
10686 	if (ops->ndo_get_stats64) {
10687 		memset(storage, 0, sizeof(*storage));
10688 		ops->ndo_get_stats64(dev, storage);
10689 	} else if (ops->ndo_get_stats) {
10690 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10691 	} else {
10692 		netdev_stats_to_stats64(storage, &dev->stats);
10693 	}
10694 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10695 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10696 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10697 	return storage;
10698 }
10699 EXPORT_SYMBOL(dev_get_stats);
10700 
10701 /**
10702  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10703  *	@s: place to store stats
10704  *	@netstats: per-cpu network stats to read from
10705  *
10706  *	Read per-cpu network statistics and populate the related fields in @s.
10707  */
10708 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10709 			   const struct pcpu_sw_netstats __percpu *netstats)
10710 {
10711 	int cpu;
10712 
10713 	for_each_possible_cpu(cpu) {
10714 		const struct pcpu_sw_netstats *stats;
10715 		struct pcpu_sw_netstats tmp;
10716 		unsigned int start;
10717 
10718 		stats = per_cpu_ptr(netstats, cpu);
10719 		do {
10720 			start = u64_stats_fetch_begin_irq(&stats->syncp);
10721 			tmp.rx_packets = stats->rx_packets;
10722 			tmp.rx_bytes   = stats->rx_bytes;
10723 			tmp.tx_packets = stats->tx_packets;
10724 			tmp.tx_bytes   = stats->tx_bytes;
10725 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10726 
10727 		s->rx_packets += tmp.rx_packets;
10728 		s->rx_bytes   += tmp.rx_bytes;
10729 		s->tx_packets += tmp.tx_packets;
10730 		s->tx_bytes   += tmp.tx_bytes;
10731 	}
10732 }
10733 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10734 
10735 /**
10736  *	dev_get_tstats64 - ndo_get_stats64 implementation
10737  *	@dev: device to get statistics from
10738  *	@s: place to store stats
10739  *
10740  *	Populate @s from dev->stats and dev->tstats. Can be used as
10741  *	ndo_get_stats64() callback.
10742  */
10743 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10744 {
10745 	netdev_stats_to_stats64(s, &dev->stats);
10746 	dev_fetch_sw_netstats(s, dev->tstats);
10747 }
10748 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10749 
10750 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10751 {
10752 	struct netdev_queue *queue = dev_ingress_queue(dev);
10753 
10754 #ifdef CONFIG_NET_CLS_ACT
10755 	if (queue)
10756 		return queue;
10757 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10758 	if (!queue)
10759 		return NULL;
10760 	netdev_init_one_queue(dev, queue, NULL);
10761 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10762 	queue->qdisc_sleeping = &noop_qdisc;
10763 	rcu_assign_pointer(dev->ingress_queue, queue);
10764 #endif
10765 	return queue;
10766 }
10767 
10768 static const struct ethtool_ops default_ethtool_ops;
10769 
10770 void netdev_set_default_ethtool_ops(struct net_device *dev,
10771 				    const struct ethtool_ops *ops)
10772 {
10773 	if (dev->ethtool_ops == &default_ethtool_ops)
10774 		dev->ethtool_ops = ops;
10775 }
10776 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10777 
10778 void netdev_freemem(struct net_device *dev)
10779 {
10780 	char *addr = (char *)dev - dev->padded;
10781 
10782 	kvfree(addr);
10783 }
10784 
10785 /**
10786  * alloc_netdev_mqs - allocate network device
10787  * @sizeof_priv: size of private data to allocate space for
10788  * @name: device name format string
10789  * @name_assign_type: origin of device name
10790  * @setup: callback to initialize device
10791  * @txqs: the number of TX subqueues to allocate
10792  * @rxqs: the number of RX subqueues to allocate
10793  *
10794  * Allocates a struct net_device with private data area for driver use
10795  * and performs basic initialization.  Also allocates subqueue structs
10796  * for each queue on the device.
10797  */
10798 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10799 		unsigned char name_assign_type,
10800 		void (*setup)(struct net_device *),
10801 		unsigned int txqs, unsigned int rxqs)
10802 {
10803 	struct net_device *dev;
10804 	unsigned int alloc_size;
10805 	struct net_device *p;
10806 
10807 	BUG_ON(strlen(name) >= sizeof(dev->name));
10808 
10809 	if (txqs < 1) {
10810 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10811 		return NULL;
10812 	}
10813 
10814 	if (rxqs < 1) {
10815 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10816 		return NULL;
10817 	}
10818 
10819 	alloc_size = sizeof(struct net_device);
10820 	if (sizeof_priv) {
10821 		/* ensure 32-byte alignment of private area */
10822 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10823 		alloc_size += sizeof_priv;
10824 	}
10825 	/* ensure 32-byte alignment of whole construct */
10826 	alloc_size += NETDEV_ALIGN - 1;
10827 
10828 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10829 	if (!p)
10830 		return NULL;
10831 
10832 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10833 	dev->padded = (char *)dev - (char *)p;
10834 
10835 #ifdef CONFIG_PCPU_DEV_REFCNT
10836 	dev->pcpu_refcnt = alloc_percpu(int);
10837 	if (!dev->pcpu_refcnt)
10838 		goto free_dev;
10839 	dev_hold(dev);
10840 #else
10841 	refcount_set(&dev->dev_refcnt, 1);
10842 #endif
10843 
10844 	if (dev_addr_init(dev))
10845 		goto free_pcpu;
10846 
10847 	dev_mc_init(dev);
10848 	dev_uc_init(dev);
10849 
10850 	dev_net_set(dev, &init_net);
10851 
10852 	dev->gso_max_size = GSO_MAX_SIZE;
10853 	dev->gso_max_segs = GSO_MAX_SEGS;
10854 	dev->upper_level = 1;
10855 	dev->lower_level = 1;
10856 #ifdef CONFIG_LOCKDEP
10857 	dev->nested_level = 0;
10858 	INIT_LIST_HEAD(&dev->unlink_list);
10859 #endif
10860 
10861 	INIT_LIST_HEAD(&dev->napi_list);
10862 	INIT_LIST_HEAD(&dev->unreg_list);
10863 	INIT_LIST_HEAD(&dev->close_list);
10864 	INIT_LIST_HEAD(&dev->link_watch_list);
10865 	INIT_LIST_HEAD(&dev->adj_list.upper);
10866 	INIT_LIST_HEAD(&dev->adj_list.lower);
10867 	INIT_LIST_HEAD(&dev->ptype_all);
10868 	INIT_LIST_HEAD(&dev->ptype_specific);
10869 	INIT_LIST_HEAD(&dev->net_notifier_list);
10870 #ifdef CONFIG_NET_SCHED
10871 	hash_init(dev->qdisc_hash);
10872 #endif
10873 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10874 	setup(dev);
10875 
10876 	if (!dev->tx_queue_len) {
10877 		dev->priv_flags |= IFF_NO_QUEUE;
10878 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10879 	}
10880 
10881 	dev->num_tx_queues = txqs;
10882 	dev->real_num_tx_queues = txqs;
10883 	if (netif_alloc_netdev_queues(dev))
10884 		goto free_all;
10885 
10886 	dev->num_rx_queues = rxqs;
10887 	dev->real_num_rx_queues = rxqs;
10888 	if (netif_alloc_rx_queues(dev))
10889 		goto free_all;
10890 
10891 	strcpy(dev->name, name);
10892 	dev->name_assign_type = name_assign_type;
10893 	dev->group = INIT_NETDEV_GROUP;
10894 	if (!dev->ethtool_ops)
10895 		dev->ethtool_ops = &default_ethtool_ops;
10896 
10897 	nf_hook_netdev_init(dev);
10898 
10899 	return dev;
10900 
10901 free_all:
10902 	free_netdev(dev);
10903 	return NULL;
10904 
10905 free_pcpu:
10906 #ifdef CONFIG_PCPU_DEV_REFCNT
10907 	free_percpu(dev->pcpu_refcnt);
10908 free_dev:
10909 #endif
10910 	netdev_freemem(dev);
10911 	return NULL;
10912 }
10913 EXPORT_SYMBOL(alloc_netdev_mqs);
10914 
10915 /**
10916  * free_netdev - free network device
10917  * @dev: device
10918  *
10919  * This function does the last stage of destroying an allocated device
10920  * interface. The reference to the device object is released. If this
10921  * is the last reference then it will be freed.Must be called in process
10922  * context.
10923  */
10924 void free_netdev(struct net_device *dev)
10925 {
10926 	struct napi_struct *p, *n;
10927 
10928 	might_sleep();
10929 
10930 	/* When called immediately after register_netdevice() failed the unwind
10931 	 * handling may still be dismantling the device. Handle that case by
10932 	 * deferring the free.
10933 	 */
10934 	if (dev->reg_state == NETREG_UNREGISTERING) {
10935 		ASSERT_RTNL();
10936 		dev->needs_free_netdev = true;
10937 		return;
10938 	}
10939 
10940 	netif_free_tx_queues(dev);
10941 	netif_free_rx_queues(dev);
10942 
10943 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10944 
10945 	/* Flush device addresses */
10946 	dev_addr_flush(dev);
10947 
10948 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10949 		netif_napi_del(p);
10950 
10951 #ifdef CONFIG_PCPU_DEV_REFCNT
10952 	free_percpu(dev->pcpu_refcnt);
10953 	dev->pcpu_refcnt = NULL;
10954 #endif
10955 	free_percpu(dev->xdp_bulkq);
10956 	dev->xdp_bulkq = NULL;
10957 
10958 	/*  Compatibility with error handling in drivers */
10959 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10960 		netdev_freemem(dev);
10961 		return;
10962 	}
10963 
10964 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10965 	dev->reg_state = NETREG_RELEASED;
10966 
10967 	/* will free via device release */
10968 	put_device(&dev->dev);
10969 }
10970 EXPORT_SYMBOL(free_netdev);
10971 
10972 /**
10973  *	synchronize_net -  Synchronize with packet receive processing
10974  *
10975  *	Wait for packets currently being received to be done.
10976  *	Does not block later packets from starting.
10977  */
10978 void synchronize_net(void)
10979 {
10980 	might_sleep();
10981 	if (rtnl_is_locked())
10982 		synchronize_rcu_expedited();
10983 	else
10984 		synchronize_rcu();
10985 }
10986 EXPORT_SYMBOL(synchronize_net);
10987 
10988 /**
10989  *	unregister_netdevice_queue - remove device from the kernel
10990  *	@dev: device
10991  *	@head: list
10992  *
10993  *	This function shuts down a device interface and removes it
10994  *	from the kernel tables.
10995  *	If head not NULL, device is queued to be unregistered later.
10996  *
10997  *	Callers must hold the rtnl semaphore.  You may want
10998  *	unregister_netdev() instead of this.
10999  */
11000 
11001 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11002 {
11003 	ASSERT_RTNL();
11004 
11005 	if (head) {
11006 		list_move_tail(&dev->unreg_list, head);
11007 	} else {
11008 		LIST_HEAD(single);
11009 
11010 		list_add(&dev->unreg_list, &single);
11011 		unregister_netdevice_many(&single);
11012 	}
11013 }
11014 EXPORT_SYMBOL(unregister_netdevice_queue);
11015 
11016 /**
11017  *	unregister_netdevice_many - unregister many devices
11018  *	@head: list of devices
11019  *
11020  *  Note: As most callers use a stack allocated list_head,
11021  *  we force a list_del() to make sure stack wont be corrupted later.
11022  */
11023 void unregister_netdevice_many(struct list_head *head)
11024 {
11025 	struct net_device *dev, *tmp;
11026 	LIST_HEAD(close_head);
11027 
11028 	BUG_ON(dev_boot_phase);
11029 	ASSERT_RTNL();
11030 
11031 	if (list_empty(head))
11032 		return;
11033 
11034 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11035 		/* Some devices call without registering
11036 		 * for initialization unwind. Remove those
11037 		 * devices and proceed with the remaining.
11038 		 */
11039 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11040 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11041 				 dev->name, dev);
11042 
11043 			WARN_ON(1);
11044 			list_del(&dev->unreg_list);
11045 			continue;
11046 		}
11047 		dev->dismantle = true;
11048 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11049 	}
11050 
11051 	/* If device is running, close it first. */
11052 	list_for_each_entry(dev, head, unreg_list)
11053 		list_add_tail(&dev->close_list, &close_head);
11054 	dev_close_many(&close_head, true);
11055 
11056 	list_for_each_entry(dev, head, unreg_list) {
11057 		/* And unlink it from device chain. */
11058 		unlist_netdevice(dev);
11059 
11060 		dev->reg_state = NETREG_UNREGISTERING;
11061 	}
11062 	flush_all_backlogs();
11063 
11064 	synchronize_net();
11065 
11066 	list_for_each_entry(dev, head, unreg_list) {
11067 		struct sk_buff *skb = NULL;
11068 
11069 		/* Shutdown queueing discipline. */
11070 		dev_shutdown(dev);
11071 
11072 		dev_xdp_uninstall(dev);
11073 
11074 		/* Notify protocols, that we are about to destroy
11075 		 * this device. They should clean all the things.
11076 		 */
11077 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11078 
11079 		if (!dev->rtnl_link_ops ||
11080 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11081 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11082 						     GFP_KERNEL, NULL, 0);
11083 
11084 		/*
11085 		 *	Flush the unicast and multicast chains
11086 		 */
11087 		dev_uc_flush(dev);
11088 		dev_mc_flush(dev);
11089 
11090 		netdev_name_node_alt_flush(dev);
11091 		netdev_name_node_free(dev->name_node);
11092 
11093 		if (dev->netdev_ops->ndo_uninit)
11094 			dev->netdev_ops->ndo_uninit(dev);
11095 
11096 		if (skb)
11097 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11098 
11099 		/* Notifier chain MUST detach us all upper devices. */
11100 		WARN_ON(netdev_has_any_upper_dev(dev));
11101 		WARN_ON(netdev_has_any_lower_dev(dev));
11102 
11103 		/* Remove entries from kobject tree */
11104 		netdev_unregister_kobject(dev);
11105 #ifdef CONFIG_XPS
11106 		/* Remove XPS queueing entries */
11107 		netif_reset_xps_queues_gt(dev, 0);
11108 #endif
11109 	}
11110 
11111 	synchronize_net();
11112 
11113 	list_for_each_entry(dev, head, unreg_list) {
11114 		dev_put(dev);
11115 		net_set_todo(dev);
11116 	}
11117 
11118 	list_del(head);
11119 }
11120 EXPORT_SYMBOL(unregister_netdevice_many);
11121 
11122 /**
11123  *	unregister_netdev - remove device from the kernel
11124  *	@dev: device
11125  *
11126  *	This function shuts down a device interface and removes it
11127  *	from the kernel tables.
11128  *
11129  *	This is just a wrapper for unregister_netdevice that takes
11130  *	the rtnl semaphore.  In general you want to use this and not
11131  *	unregister_netdevice.
11132  */
11133 void unregister_netdev(struct net_device *dev)
11134 {
11135 	rtnl_lock();
11136 	unregister_netdevice(dev);
11137 	rtnl_unlock();
11138 }
11139 EXPORT_SYMBOL(unregister_netdev);
11140 
11141 /**
11142  *	__dev_change_net_namespace - move device to different nethost namespace
11143  *	@dev: device
11144  *	@net: network namespace
11145  *	@pat: If not NULL name pattern to try if the current device name
11146  *	      is already taken in the destination network namespace.
11147  *	@new_ifindex: If not zero, specifies device index in the target
11148  *	              namespace.
11149  *
11150  *	This function shuts down a device interface and moves it
11151  *	to a new network namespace. On success 0 is returned, on
11152  *	a failure a netagive errno code is returned.
11153  *
11154  *	Callers must hold the rtnl semaphore.
11155  */
11156 
11157 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11158 			       const char *pat, int new_ifindex)
11159 {
11160 	struct net *net_old = dev_net(dev);
11161 	int err, new_nsid;
11162 
11163 	ASSERT_RTNL();
11164 
11165 	/* Don't allow namespace local devices to be moved. */
11166 	err = -EINVAL;
11167 	if (dev->features & NETIF_F_NETNS_LOCAL)
11168 		goto out;
11169 
11170 	/* Ensure the device has been registrered */
11171 	if (dev->reg_state != NETREG_REGISTERED)
11172 		goto out;
11173 
11174 	/* Get out if there is nothing todo */
11175 	err = 0;
11176 	if (net_eq(net_old, net))
11177 		goto out;
11178 
11179 	/* Pick the destination device name, and ensure
11180 	 * we can use it in the destination network namespace.
11181 	 */
11182 	err = -EEXIST;
11183 	if (netdev_name_in_use(net, dev->name)) {
11184 		/* We get here if we can't use the current device name */
11185 		if (!pat)
11186 			goto out;
11187 		err = dev_get_valid_name(net, dev, pat);
11188 		if (err < 0)
11189 			goto out;
11190 	}
11191 
11192 	/* Check that new_ifindex isn't used yet. */
11193 	err = -EBUSY;
11194 	if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11195 		goto out;
11196 
11197 	/*
11198 	 * And now a mini version of register_netdevice unregister_netdevice.
11199 	 */
11200 
11201 	/* If device is running close it first. */
11202 	dev_close(dev);
11203 
11204 	/* And unlink it from device chain */
11205 	unlist_netdevice(dev);
11206 
11207 	synchronize_net();
11208 
11209 	/* Shutdown queueing discipline. */
11210 	dev_shutdown(dev);
11211 
11212 	/* Notify protocols, that we are about to destroy
11213 	 * this device. They should clean all the things.
11214 	 *
11215 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11216 	 * This is wanted because this way 8021q and macvlan know
11217 	 * the device is just moving and can keep their slaves up.
11218 	 */
11219 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11220 	rcu_barrier();
11221 
11222 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11223 	/* If there is an ifindex conflict assign a new one */
11224 	if (!new_ifindex) {
11225 		if (__dev_get_by_index(net, dev->ifindex))
11226 			new_ifindex = dev_new_index(net);
11227 		else
11228 			new_ifindex = dev->ifindex;
11229 	}
11230 
11231 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11232 			    new_ifindex);
11233 
11234 	/*
11235 	 *	Flush the unicast and multicast chains
11236 	 */
11237 	dev_uc_flush(dev);
11238 	dev_mc_flush(dev);
11239 
11240 	/* Send a netdev-removed uevent to the old namespace */
11241 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11242 	netdev_adjacent_del_links(dev);
11243 
11244 	/* Move per-net netdevice notifiers that are following the netdevice */
11245 	move_netdevice_notifiers_dev_net(dev, net);
11246 
11247 	/* Actually switch the network namespace */
11248 	dev_net_set(dev, net);
11249 	dev->ifindex = new_ifindex;
11250 
11251 	/* Send a netdev-add uevent to the new namespace */
11252 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11253 	netdev_adjacent_add_links(dev);
11254 
11255 	/* Fixup kobjects */
11256 	err = device_rename(&dev->dev, dev->name);
11257 	WARN_ON(err);
11258 
11259 	/* Adapt owner in case owning user namespace of target network
11260 	 * namespace is different from the original one.
11261 	 */
11262 	err = netdev_change_owner(dev, net_old, net);
11263 	WARN_ON(err);
11264 
11265 	/* Add the device back in the hashes */
11266 	list_netdevice(dev);
11267 
11268 	/* Notify protocols, that a new device appeared. */
11269 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11270 
11271 	/*
11272 	 *	Prevent userspace races by waiting until the network
11273 	 *	device is fully setup before sending notifications.
11274 	 */
11275 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11276 
11277 	synchronize_net();
11278 	err = 0;
11279 out:
11280 	return err;
11281 }
11282 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11283 
11284 static int dev_cpu_dead(unsigned int oldcpu)
11285 {
11286 	struct sk_buff **list_skb;
11287 	struct sk_buff *skb;
11288 	unsigned int cpu;
11289 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11290 
11291 	local_irq_disable();
11292 	cpu = smp_processor_id();
11293 	sd = &per_cpu(softnet_data, cpu);
11294 	oldsd = &per_cpu(softnet_data, oldcpu);
11295 
11296 	/* Find end of our completion_queue. */
11297 	list_skb = &sd->completion_queue;
11298 	while (*list_skb)
11299 		list_skb = &(*list_skb)->next;
11300 	/* Append completion queue from offline CPU. */
11301 	*list_skb = oldsd->completion_queue;
11302 	oldsd->completion_queue = NULL;
11303 
11304 	/* Append output queue from offline CPU. */
11305 	if (oldsd->output_queue) {
11306 		*sd->output_queue_tailp = oldsd->output_queue;
11307 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11308 		oldsd->output_queue = NULL;
11309 		oldsd->output_queue_tailp = &oldsd->output_queue;
11310 	}
11311 	/* Append NAPI poll list from offline CPU, with one exception :
11312 	 * process_backlog() must be called by cpu owning percpu backlog.
11313 	 * We properly handle process_queue & input_pkt_queue later.
11314 	 */
11315 	while (!list_empty(&oldsd->poll_list)) {
11316 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11317 							    struct napi_struct,
11318 							    poll_list);
11319 
11320 		list_del_init(&napi->poll_list);
11321 		if (napi->poll == process_backlog)
11322 			napi->state = 0;
11323 		else
11324 			____napi_schedule(sd, napi);
11325 	}
11326 
11327 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11328 	local_irq_enable();
11329 
11330 #ifdef CONFIG_RPS
11331 	remsd = oldsd->rps_ipi_list;
11332 	oldsd->rps_ipi_list = NULL;
11333 #endif
11334 	/* send out pending IPI's on offline CPU */
11335 	net_rps_send_ipi(remsd);
11336 
11337 	/* Process offline CPU's input_pkt_queue */
11338 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11339 		netif_rx_ni(skb);
11340 		input_queue_head_incr(oldsd);
11341 	}
11342 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11343 		netif_rx_ni(skb);
11344 		input_queue_head_incr(oldsd);
11345 	}
11346 
11347 	return 0;
11348 }
11349 
11350 /**
11351  *	netdev_increment_features - increment feature set by one
11352  *	@all: current feature set
11353  *	@one: new feature set
11354  *	@mask: mask feature set
11355  *
11356  *	Computes a new feature set after adding a device with feature set
11357  *	@one to the master device with current feature set @all.  Will not
11358  *	enable anything that is off in @mask. Returns the new feature set.
11359  */
11360 netdev_features_t netdev_increment_features(netdev_features_t all,
11361 	netdev_features_t one, netdev_features_t mask)
11362 {
11363 	if (mask & NETIF_F_HW_CSUM)
11364 		mask |= NETIF_F_CSUM_MASK;
11365 	mask |= NETIF_F_VLAN_CHALLENGED;
11366 
11367 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11368 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11369 
11370 	/* If one device supports hw checksumming, set for all. */
11371 	if (all & NETIF_F_HW_CSUM)
11372 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11373 
11374 	return all;
11375 }
11376 EXPORT_SYMBOL(netdev_increment_features);
11377 
11378 static struct hlist_head * __net_init netdev_create_hash(void)
11379 {
11380 	int i;
11381 	struct hlist_head *hash;
11382 
11383 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11384 	if (hash != NULL)
11385 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11386 			INIT_HLIST_HEAD(&hash[i]);
11387 
11388 	return hash;
11389 }
11390 
11391 /* Initialize per network namespace state */
11392 static int __net_init netdev_init(struct net *net)
11393 {
11394 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11395 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11396 
11397 	if (net != &init_net)
11398 		INIT_LIST_HEAD(&net->dev_base_head);
11399 
11400 	net->dev_name_head = netdev_create_hash();
11401 	if (net->dev_name_head == NULL)
11402 		goto err_name;
11403 
11404 	net->dev_index_head = netdev_create_hash();
11405 	if (net->dev_index_head == NULL)
11406 		goto err_idx;
11407 
11408 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11409 
11410 	return 0;
11411 
11412 err_idx:
11413 	kfree(net->dev_name_head);
11414 err_name:
11415 	return -ENOMEM;
11416 }
11417 
11418 /**
11419  *	netdev_drivername - network driver for the device
11420  *	@dev: network device
11421  *
11422  *	Determine network driver for device.
11423  */
11424 const char *netdev_drivername(const struct net_device *dev)
11425 {
11426 	const struct device_driver *driver;
11427 	const struct device *parent;
11428 	const char *empty = "";
11429 
11430 	parent = dev->dev.parent;
11431 	if (!parent)
11432 		return empty;
11433 
11434 	driver = parent->driver;
11435 	if (driver && driver->name)
11436 		return driver->name;
11437 	return empty;
11438 }
11439 
11440 static void __netdev_printk(const char *level, const struct net_device *dev,
11441 			    struct va_format *vaf)
11442 {
11443 	if (dev && dev->dev.parent) {
11444 		dev_printk_emit(level[1] - '0',
11445 				dev->dev.parent,
11446 				"%s %s %s%s: %pV",
11447 				dev_driver_string(dev->dev.parent),
11448 				dev_name(dev->dev.parent),
11449 				netdev_name(dev), netdev_reg_state(dev),
11450 				vaf);
11451 	} else if (dev) {
11452 		printk("%s%s%s: %pV",
11453 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11454 	} else {
11455 		printk("%s(NULL net_device): %pV", level, vaf);
11456 	}
11457 }
11458 
11459 void netdev_printk(const char *level, const struct net_device *dev,
11460 		   const char *format, ...)
11461 {
11462 	struct va_format vaf;
11463 	va_list args;
11464 
11465 	va_start(args, format);
11466 
11467 	vaf.fmt = format;
11468 	vaf.va = &args;
11469 
11470 	__netdev_printk(level, dev, &vaf);
11471 
11472 	va_end(args);
11473 }
11474 EXPORT_SYMBOL(netdev_printk);
11475 
11476 #define define_netdev_printk_level(func, level)			\
11477 void func(const struct net_device *dev, const char *fmt, ...)	\
11478 {								\
11479 	struct va_format vaf;					\
11480 	va_list args;						\
11481 								\
11482 	va_start(args, fmt);					\
11483 								\
11484 	vaf.fmt = fmt;						\
11485 	vaf.va = &args;						\
11486 								\
11487 	__netdev_printk(level, dev, &vaf);			\
11488 								\
11489 	va_end(args);						\
11490 }								\
11491 EXPORT_SYMBOL(func);
11492 
11493 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11494 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11495 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11496 define_netdev_printk_level(netdev_err, KERN_ERR);
11497 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11498 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11499 define_netdev_printk_level(netdev_info, KERN_INFO);
11500 
11501 static void __net_exit netdev_exit(struct net *net)
11502 {
11503 	kfree(net->dev_name_head);
11504 	kfree(net->dev_index_head);
11505 	if (net != &init_net)
11506 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11507 }
11508 
11509 static struct pernet_operations __net_initdata netdev_net_ops = {
11510 	.init = netdev_init,
11511 	.exit = netdev_exit,
11512 };
11513 
11514 static void __net_exit default_device_exit(struct net *net)
11515 {
11516 	struct net_device *dev, *aux;
11517 	/*
11518 	 * Push all migratable network devices back to the
11519 	 * initial network namespace
11520 	 */
11521 	rtnl_lock();
11522 	for_each_netdev_safe(net, dev, aux) {
11523 		int err;
11524 		char fb_name[IFNAMSIZ];
11525 
11526 		/* Ignore unmoveable devices (i.e. loopback) */
11527 		if (dev->features & NETIF_F_NETNS_LOCAL)
11528 			continue;
11529 
11530 		/* Leave virtual devices for the generic cleanup */
11531 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11532 			continue;
11533 
11534 		/* Push remaining network devices to init_net */
11535 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11536 		if (netdev_name_in_use(&init_net, fb_name))
11537 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11538 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11539 		if (err) {
11540 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11541 				 __func__, dev->name, err);
11542 			BUG();
11543 		}
11544 	}
11545 	rtnl_unlock();
11546 }
11547 
11548 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11549 {
11550 	/* Return with the rtnl_lock held when there are no network
11551 	 * devices unregistering in any network namespace in net_list.
11552 	 */
11553 	struct net *net;
11554 	bool unregistering;
11555 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
11556 
11557 	add_wait_queue(&netdev_unregistering_wq, &wait);
11558 	for (;;) {
11559 		unregistering = false;
11560 		rtnl_lock();
11561 		list_for_each_entry(net, net_list, exit_list) {
11562 			if (net->dev_unreg_count > 0) {
11563 				unregistering = true;
11564 				break;
11565 			}
11566 		}
11567 		if (!unregistering)
11568 			break;
11569 		__rtnl_unlock();
11570 
11571 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11572 	}
11573 	remove_wait_queue(&netdev_unregistering_wq, &wait);
11574 }
11575 
11576 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11577 {
11578 	/* At exit all network devices most be removed from a network
11579 	 * namespace.  Do this in the reverse order of registration.
11580 	 * Do this across as many network namespaces as possible to
11581 	 * improve batching efficiency.
11582 	 */
11583 	struct net_device *dev;
11584 	struct net *net;
11585 	LIST_HEAD(dev_kill_list);
11586 
11587 	/* To prevent network device cleanup code from dereferencing
11588 	 * loopback devices or network devices that have been freed
11589 	 * wait here for all pending unregistrations to complete,
11590 	 * before unregistring the loopback device and allowing the
11591 	 * network namespace be freed.
11592 	 *
11593 	 * The netdev todo list containing all network devices
11594 	 * unregistrations that happen in default_device_exit_batch
11595 	 * will run in the rtnl_unlock() at the end of
11596 	 * default_device_exit_batch.
11597 	 */
11598 	rtnl_lock_unregistering(net_list);
11599 	list_for_each_entry(net, net_list, exit_list) {
11600 		for_each_netdev_reverse(net, dev) {
11601 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11602 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11603 			else
11604 				unregister_netdevice_queue(dev, &dev_kill_list);
11605 		}
11606 	}
11607 	unregister_netdevice_many(&dev_kill_list);
11608 	rtnl_unlock();
11609 }
11610 
11611 static struct pernet_operations __net_initdata default_device_ops = {
11612 	.exit = default_device_exit,
11613 	.exit_batch = default_device_exit_batch,
11614 };
11615 
11616 /*
11617  *	Initialize the DEV module. At boot time this walks the device list and
11618  *	unhooks any devices that fail to initialise (normally hardware not
11619  *	present) and leaves us with a valid list of present and active devices.
11620  *
11621  */
11622 
11623 /*
11624  *       This is called single threaded during boot, so no need
11625  *       to take the rtnl semaphore.
11626  */
11627 static int __init net_dev_init(void)
11628 {
11629 	int i, rc = -ENOMEM;
11630 
11631 	BUG_ON(!dev_boot_phase);
11632 
11633 	if (dev_proc_init())
11634 		goto out;
11635 
11636 	if (netdev_kobject_init())
11637 		goto out;
11638 
11639 	INIT_LIST_HEAD(&ptype_all);
11640 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11641 		INIT_LIST_HEAD(&ptype_base[i]);
11642 
11643 	INIT_LIST_HEAD(&offload_base);
11644 
11645 	if (register_pernet_subsys(&netdev_net_ops))
11646 		goto out;
11647 
11648 	/*
11649 	 *	Initialise the packet receive queues.
11650 	 */
11651 
11652 	for_each_possible_cpu(i) {
11653 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11654 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11655 
11656 		INIT_WORK(flush, flush_backlog);
11657 
11658 		skb_queue_head_init(&sd->input_pkt_queue);
11659 		skb_queue_head_init(&sd->process_queue);
11660 #ifdef CONFIG_XFRM_OFFLOAD
11661 		skb_queue_head_init(&sd->xfrm_backlog);
11662 #endif
11663 		INIT_LIST_HEAD(&sd->poll_list);
11664 		sd->output_queue_tailp = &sd->output_queue;
11665 #ifdef CONFIG_RPS
11666 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11667 		sd->cpu = i;
11668 #endif
11669 
11670 		init_gro_hash(&sd->backlog);
11671 		sd->backlog.poll = process_backlog;
11672 		sd->backlog.weight = weight_p;
11673 	}
11674 
11675 	dev_boot_phase = 0;
11676 
11677 	/* The loopback device is special if any other network devices
11678 	 * is present in a network namespace the loopback device must
11679 	 * be present. Since we now dynamically allocate and free the
11680 	 * loopback device ensure this invariant is maintained by
11681 	 * keeping the loopback device as the first device on the
11682 	 * list of network devices.  Ensuring the loopback devices
11683 	 * is the first device that appears and the last network device
11684 	 * that disappears.
11685 	 */
11686 	if (register_pernet_device(&loopback_net_ops))
11687 		goto out;
11688 
11689 	if (register_pernet_device(&default_device_ops))
11690 		goto out;
11691 
11692 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11693 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11694 
11695 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11696 				       NULL, dev_cpu_dead);
11697 	WARN_ON(rc < 0);
11698 	rc = 0;
11699 out:
11700 	return rc;
11701 }
11702 
11703 subsys_initcall(net_dev_init);
11704