xref: /openbmc/linux/net/core/dev.c (revision 400c2a45)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/bpf.h>
95 #include <linux/bpf_trace.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <net/busy_poll.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dsa.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/pkt_cls.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141 #include <linux/crash_dump.h>
142 #include <linux/sctp.h>
143 #include <net/udp_tunnel.h>
144 #include <linux/net_namespace.h>
145 #include <linux/indirect_call_wrapper.h>
146 #include <net/devlink.h>
147 #include <linux/pm_runtime.h>
148 #include <linux/prandom.h>
149 
150 #include "net-sysfs.h"
151 
152 #define MAX_GRO_SKBS 8
153 
154 /* This should be increased if a protocol with a bigger head is added. */
155 #define GRO_MAX_HEAD (MAX_HEADER + 128)
156 
157 static DEFINE_SPINLOCK(ptype_lock);
158 static DEFINE_SPINLOCK(offload_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;	/* Taps */
161 static struct list_head offload_base __read_mostly;
162 
163 static int netif_rx_internal(struct sk_buff *skb);
164 static int call_netdevice_notifiers_info(unsigned long val,
165 					 struct netdev_notifier_info *info);
166 static int call_netdevice_notifiers_extack(unsigned long val,
167 					   struct net_device *dev,
168 					   struct netlink_ext_ack *extack);
169 static struct napi_struct *napi_by_id(unsigned int napi_id);
170 
171 /*
172  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
173  * semaphore.
174  *
175  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
176  *
177  * Writers must hold the rtnl semaphore while they loop through the
178  * dev_base_head list, and hold dev_base_lock for writing when they do the
179  * actual updates.  This allows pure readers to access the list even
180  * while a writer is preparing to update it.
181  *
182  * To put it another way, dev_base_lock is held for writing only to
183  * protect against pure readers; the rtnl semaphore provides the
184  * protection against other writers.
185  *
186  * See, for example usages, register_netdevice() and
187  * unregister_netdevice(), which must be called with the rtnl
188  * semaphore held.
189  */
190 DEFINE_RWLOCK(dev_base_lock);
191 EXPORT_SYMBOL(dev_base_lock);
192 
193 static DEFINE_MUTEX(ifalias_mutex);
194 
195 /* protects napi_hash addition/deletion and napi_gen_id */
196 static DEFINE_SPINLOCK(napi_hash_lock);
197 
198 static unsigned int napi_gen_id = NR_CPUS;
199 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
200 
201 static DECLARE_RWSEM(devnet_rename_sem);
202 
203 static inline void dev_base_seq_inc(struct net *net)
204 {
205 	while (++net->dev_base_seq == 0)
206 		;
207 }
208 
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
212 
213 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215 
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220 
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 	spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227 
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 	spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234 
235 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
236 						       const char *name)
237 {
238 	struct netdev_name_node *name_node;
239 
240 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
241 	if (!name_node)
242 		return NULL;
243 	INIT_HLIST_NODE(&name_node->hlist);
244 	name_node->dev = dev;
245 	name_node->name = name;
246 	return name_node;
247 }
248 
249 static struct netdev_name_node *
250 netdev_name_node_head_alloc(struct net_device *dev)
251 {
252 	struct netdev_name_node *name_node;
253 
254 	name_node = netdev_name_node_alloc(dev, dev->name);
255 	if (!name_node)
256 		return NULL;
257 	INIT_LIST_HEAD(&name_node->list);
258 	return name_node;
259 }
260 
261 static void netdev_name_node_free(struct netdev_name_node *name_node)
262 {
263 	kfree(name_node);
264 }
265 
266 static void netdev_name_node_add(struct net *net,
267 				 struct netdev_name_node *name_node)
268 {
269 	hlist_add_head_rcu(&name_node->hlist,
270 			   dev_name_hash(net, name_node->name));
271 }
272 
273 static void netdev_name_node_del(struct netdev_name_node *name_node)
274 {
275 	hlist_del_rcu(&name_node->hlist);
276 }
277 
278 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
279 							const char *name)
280 {
281 	struct hlist_head *head = dev_name_hash(net, name);
282 	struct netdev_name_node *name_node;
283 
284 	hlist_for_each_entry(name_node, head, hlist)
285 		if (!strcmp(name_node->name, name))
286 			return name_node;
287 	return NULL;
288 }
289 
290 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
291 							    const char *name)
292 {
293 	struct hlist_head *head = dev_name_hash(net, name);
294 	struct netdev_name_node *name_node;
295 
296 	hlist_for_each_entry_rcu(name_node, head, hlist)
297 		if (!strcmp(name_node->name, name))
298 			return name_node;
299 	return NULL;
300 }
301 
302 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
303 {
304 	struct netdev_name_node *name_node;
305 	struct net *net = dev_net(dev);
306 
307 	name_node = netdev_name_node_lookup(net, name);
308 	if (name_node)
309 		return -EEXIST;
310 	name_node = netdev_name_node_alloc(dev, name);
311 	if (!name_node)
312 		return -ENOMEM;
313 	netdev_name_node_add(net, name_node);
314 	/* The node that holds dev->name acts as a head of per-device list. */
315 	list_add_tail(&name_node->list, &dev->name_node->list);
316 
317 	return 0;
318 }
319 EXPORT_SYMBOL(netdev_name_node_alt_create);
320 
321 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
322 {
323 	list_del(&name_node->list);
324 	netdev_name_node_del(name_node);
325 	kfree(name_node->name);
326 	netdev_name_node_free(name_node);
327 }
328 
329 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
330 {
331 	struct netdev_name_node *name_node;
332 	struct net *net = dev_net(dev);
333 
334 	name_node = netdev_name_node_lookup(net, name);
335 	if (!name_node)
336 		return -ENOENT;
337 	/* lookup might have found our primary name or a name belonging
338 	 * to another device.
339 	 */
340 	if (name_node == dev->name_node || name_node->dev != dev)
341 		return -EINVAL;
342 
343 	__netdev_name_node_alt_destroy(name_node);
344 
345 	return 0;
346 }
347 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
348 
349 static void netdev_name_node_alt_flush(struct net_device *dev)
350 {
351 	struct netdev_name_node *name_node, *tmp;
352 
353 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
354 		__netdev_name_node_alt_destroy(name_node);
355 }
356 
357 /* Device list insertion */
358 static void list_netdevice(struct net_device *dev)
359 {
360 	struct net *net = dev_net(dev);
361 
362 	ASSERT_RTNL();
363 
364 	write_lock_bh(&dev_base_lock);
365 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
366 	netdev_name_node_add(net, dev->name_node);
367 	hlist_add_head_rcu(&dev->index_hlist,
368 			   dev_index_hash(net, dev->ifindex));
369 	write_unlock_bh(&dev_base_lock);
370 
371 	dev_base_seq_inc(net);
372 }
373 
374 /* Device list removal
375  * caller must respect a RCU grace period before freeing/reusing dev
376  */
377 static void unlist_netdevice(struct net_device *dev)
378 {
379 	ASSERT_RTNL();
380 
381 	/* Unlink dev from the device chain */
382 	write_lock_bh(&dev_base_lock);
383 	list_del_rcu(&dev->dev_list);
384 	netdev_name_node_del(dev->name_node);
385 	hlist_del_rcu(&dev->index_hlist);
386 	write_unlock_bh(&dev_base_lock);
387 
388 	dev_base_seq_inc(dev_net(dev));
389 }
390 
391 /*
392  *	Our notifier list
393  */
394 
395 static RAW_NOTIFIER_HEAD(netdev_chain);
396 
397 /*
398  *	Device drivers call our routines to queue packets here. We empty the
399  *	queue in the local softnet handler.
400  */
401 
402 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
403 EXPORT_PER_CPU_SYMBOL(softnet_data);
404 
405 #ifdef CONFIG_LOCKDEP
406 /*
407  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
408  * according to dev->type
409  */
410 static const unsigned short netdev_lock_type[] = {
411 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
412 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
413 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
414 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
415 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
416 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
417 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
418 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
419 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
420 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
421 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
422 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
423 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
424 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
425 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
426 
427 static const char *const netdev_lock_name[] = {
428 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
429 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
430 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
431 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
432 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
433 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
434 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
435 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
436 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
437 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
438 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
439 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
440 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
441 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
442 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
443 
444 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
445 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
446 
447 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
448 {
449 	int i;
450 
451 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
452 		if (netdev_lock_type[i] == dev_type)
453 			return i;
454 	/* the last key is used by default */
455 	return ARRAY_SIZE(netdev_lock_type) - 1;
456 }
457 
458 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
459 						 unsigned short dev_type)
460 {
461 	int i;
462 
463 	i = netdev_lock_pos(dev_type);
464 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
465 				   netdev_lock_name[i]);
466 }
467 
468 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
469 {
470 	int i;
471 
472 	i = netdev_lock_pos(dev->type);
473 	lockdep_set_class_and_name(&dev->addr_list_lock,
474 				   &netdev_addr_lock_key[i],
475 				   netdev_lock_name[i]);
476 }
477 #else
478 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
479 						 unsigned short dev_type)
480 {
481 }
482 
483 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
484 {
485 }
486 #endif
487 
488 /*******************************************************************************
489  *
490  *		Protocol management and registration routines
491  *
492  *******************************************************************************/
493 
494 
495 /*
496  *	Add a protocol ID to the list. Now that the input handler is
497  *	smarter we can dispense with all the messy stuff that used to be
498  *	here.
499  *
500  *	BEWARE!!! Protocol handlers, mangling input packets,
501  *	MUST BE last in hash buckets and checking protocol handlers
502  *	MUST start from promiscuous ptype_all chain in net_bh.
503  *	It is true now, do not change it.
504  *	Explanation follows: if protocol handler, mangling packet, will
505  *	be the first on list, it is not able to sense, that packet
506  *	is cloned and should be copied-on-write, so that it will
507  *	change it and subsequent readers will get broken packet.
508  *							--ANK (980803)
509  */
510 
511 static inline struct list_head *ptype_head(const struct packet_type *pt)
512 {
513 	if (pt->type == htons(ETH_P_ALL))
514 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
515 	else
516 		return pt->dev ? &pt->dev->ptype_specific :
517 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
518 }
519 
520 /**
521  *	dev_add_pack - add packet handler
522  *	@pt: packet type declaration
523  *
524  *	Add a protocol handler to the networking stack. The passed &packet_type
525  *	is linked into kernel lists and may not be freed until it has been
526  *	removed from the kernel lists.
527  *
528  *	This call does not sleep therefore it can not
529  *	guarantee all CPU's that are in middle of receiving packets
530  *	will see the new packet type (until the next received packet).
531  */
532 
533 void dev_add_pack(struct packet_type *pt)
534 {
535 	struct list_head *head = ptype_head(pt);
536 
537 	spin_lock(&ptype_lock);
538 	list_add_rcu(&pt->list, head);
539 	spin_unlock(&ptype_lock);
540 }
541 EXPORT_SYMBOL(dev_add_pack);
542 
543 /**
544  *	__dev_remove_pack	 - remove packet handler
545  *	@pt: packet type declaration
546  *
547  *	Remove a protocol handler that was previously added to the kernel
548  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
549  *	from the kernel lists and can be freed or reused once this function
550  *	returns.
551  *
552  *      The packet type might still be in use by receivers
553  *	and must not be freed until after all the CPU's have gone
554  *	through a quiescent state.
555  */
556 void __dev_remove_pack(struct packet_type *pt)
557 {
558 	struct list_head *head = ptype_head(pt);
559 	struct packet_type *pt1;
560 
561 	spin_lock(&ptype_lock);
562 
563 	list_for_each_entry(pt1, head, list) {
564 		if (pt == pt1) {
565 			list_del_rcu(&pt->list);
566 			goto out;
567 		}
568 	}
569 
570 	pr_warn("dev_remove_pack: %p not found\n", pt);
571 out:
572 	spin_unlock(&ptype_lock);
573 }
574 EXPORT_SYMBOL(__dev_remove_pack);
575 
576 /**
577  *	dev_remove_pack	 - remove packet handler
578  *	@pt: packet type declaration
579  *
580  *	Remove a protocol handler that was previously added to the kernel
581  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
582  *	from the kernel lists and can be freed or reused once this function
583  *	returns.
584  *
585  *	This call sleeps to guarantee that no CPU is looking at the packet
586  *	type after return.
587  */
588 void dev_remove_pack(struct packet_type *pt)
589 {
590 	__dev_remove_pack(pt);
591 
592 	synchronize_net();
593 }
594 EXPORT_SYMBOL(dev_remove_pack);
595 
596 
597 /**
598  *	dev_add_offload - register offload handlers
599  *	@po: protocol offload declaration
600  *
601  *	Add protocol offload handlers to the networking stack. The passed
602  *	&proto_offload is linked into kernel lists and may not be freed until
603  *	it has been removed from the kernel lists.
604  *
605  *	This call does not sleep therefore it can not
606  *	guarantee all CPU's that are in middle of receiving packets
607  *	will see the new offload handlers (until the next received packet).
608  */
609 void dev_add_offload(struct packet_offload *po)
610 {
611 	struct packet_offload *elem;
612 
613 	spin_lock(&offload_lock);
614 	list_for_each_entry(elem, &offload_base, list) {
615 		if (po->priority < elem->priority)
616 			break;
617 	}
618 	list_add_rcu(&po->list, elem->list.prev);
619 	spin_unlock(&offload_lock);
620 }
621 EXPORT_SYMBOL(dev_add_offload);
622 
623 /**
624  *	__dev_remove_offload	 - remove offload handler
625  *	@po: packet offload declaration
626  *
627  *	Remove a protocol offload handler that was previously added to the
628  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
629  *	is removed from the kernel lists and can be freed or reused once this
630  *	function returns.
631  *
632  *      The packet type might still be in use by receivers
633  *	and must not be freed until after all the CPU's have gone
634  *	through a quiescent state.
635  */
636 static void __dev_remove_offload(struct packet_offload *po)
637 {
638 	struct list_head *head = &offload_base;
639 	struct packet_offload *po1;
640 
641 	spin_lock(&offload_lock);
642 
643 	list_for_each_entry(po1, head, list) {
644 		if (po == po1) {
645 			list_del_rcu(&po->list);
646 			goto out;
647 		}
648 	}
649 
650 	pr_warn("dev_remove_offload: %p not found\n", po);
651 out:
652 	spin_unlock(&offload_lock);
653 }
654 
655 /**
656  *	dev_remove_offload	 - remove packet offload handler
657  *	@po: packet offload declaration
658  *
659  *	Remove a packet offload handler that was previously added to the kernel
660  *	offload handlers by dev_add_offload(). The passed &offload_type is
661  *	removed from the kernel lists and can be freed or reused once this
662  *	function returns.
663  *
664  *	This call sleeps to guarantee that no CPU is looking at the packet
665  *	type after return.
666  */
667 void dev_remove_offload(struct packet_offload *po)
668 {
669 	__dev_remove_offload(po);
670 
671 	synchronize_net();
672 }
673 EXPORT_SYMBOL(dev_remove_offload);
674 
675 /******************************************************************************
676  *
677  *		      Device Boot-time Settings Routines
678  *
679  ******************************************************************************/
680 
681 /* Boot time configuration table */
682 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
683 
684 /**
685  *	netdev_boot_setup_add	- add new setup entry
686  *	@name: name of the device
687  *	@map: configured settings for the device
688  *
689  *	Adds new setup entry to the dev_boot_setup list.  The function
690  *	returns 0 on error and 1 on success.  This is a generic routine to
691  *	all netdevices.
692  */
693 static int netdev_boot_setup_add(char *name, struct ifmap *map)
694 {
695 	struct netdev_boot_setup *s;
696 	int i;
697 
698 	s = dev_boot_setup;
699 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
700 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
701 			memset(s[i].name, 0, sizeof(s[i].name));
702 			strlcpy(s[i].name, name, IFNAMSIZ);
703 			memcpy(&s[i].map, map, sizeof(s[i].map));
704 			break;
705 		}
706 	}
707 
708 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
709 }
710 
711 /**
712  * netdev_boot_setup_check	- check boot time settings
713  * @dev: the netdevice
714  *
715  * Check boot time settings for the device.
716  * The found settings are set for the device to be used
717  * later in the device probing.
718  * Returns 0 if no settings found, 1 if they are.
719  */
720 int netdev_boot_setup_check(struct net_device *dev)
721 {
722 	struct netdev_boot_setup *s = dev_boot_setup;
723 	int i;
724 
725 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
726 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
727 		    !strcmp(dev->name, s[i].name)) {
728 			dev->irq = s[i].map.irq;
729 			dev->base_addr = s[i].map.base_addr;
730 			dev->mem_start = s[i].map.mem_start;
731 			dev->mem_end = s[i].map.mem_end;
732 			return 1;
733 		}
734 	}
735 	return 0;
736 }
737 EXPORT_SYMBOL(netdev_boot_setup_check);
738 
739 
740 /**
741  * netdev_boot_base	- get address from boot time settings
742  * @prefix: prefix for network device
743  * @unit: id for network device
744  *
745  * Check boot time settings for the base address of device.
746  * The found settings are set for the device to be used
747  * later in the device probing.
748  * Returns 0 if no settings found.
749  */
750 unsigned long netdev_boot_base(const char *prefix, int unit)
751 {
752 	const struct netdev_boot_setup *s = dev_boot_setup;
753 	char name[IFNAMSIZ];
754 	int i;
755 
756 	sprintf(name, "%s%d", prefix, unit);
757 
758 	/*
759 	 * If device already registered then return base of 1
760 	 * to indicate not to probe for this interface
761 	 */
762 	if (__dev_get_by_name(&init_net, name))
763 		return 1;
764 
765 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
766 		if (!strcmp(name, s[i].name))
767 			return s[i].map.base_addr;
768 	return 0;
769 }
770 
771 /*
772  * Saves at boot time configured settings for any netdevice.
773  */
774 int __init netdev_boot_setup(char *str)
775 {
776 	int ints[5];
777 	struct ifmap map;
778 
779 	str = get_options(str, ARRAY_SIZE(ints), ints);
780 	if (!str || !*str)
781 		return 0;
782 
783 	/* Save settings */
784 	memset(&map, 0, sizeof(map));
785 	if (ints[0] > 0)
786 		map.irq = ints[1];
787 	if (ints[0] > 1)
788 		map.base_addr = ints[2];
789 	if (ints[0] > 2)
790 		map.mem_start = ints[3];
791 	if (ints[0] > 3)
792 		map.mem_end = ints[4];
793 
794 	/* Add new entry to the list */
795 	return netdev_boot_setup_add(str, &map);
796 }
797 
798 __setup("netdev=", netdev_boot_setup);
799 
800 /*******************************************************************************
801  *
802  *			    Device Interface Subroutines
803  *
804  *******************************************************************************/
805 
806 /**
807  *	dev_get_iflink	- get 'iflink' value of a interface
808  *	@dev: targeted interface
809  *
810  *	Indicates the ifindex the interface is linked to.
811  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
812  */
813 
814 int dev_get_iflink(const struct net_device *dev)
815 {
816 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
817 		return dev->netdev_ops->ndo_get_iflink(dev);
818 
819 	return dev->ifindex;
820 }
821 EXPORT_SYMBOL(dev_get_iflink);
822 
823 /**
824  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
825  *	@dev: targeted interface
826  *	@skb: The packet.
827  *
828  *	For better visibility of tunnel traffic OVS needs to retrieve
829  *	egress tunnel information for a packet. Following API allows
830  *	user to get this info.
831  */
832 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
833 {
834 	struct ip_tunnel_info *info;
835 
836 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
837 		return -EINVAL;
838 
839 	info = skb_tunnel_info_unclone(skb);
840 	if (!info)
841 		return -ENOMEM;
842 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
843 		return -EINVAL;
844 
845 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
846 }
847 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
848 
849 /**
850  *	__dev_get_by_name	- find a device by its name
851  *	@net: the applicable net namespace
852  *	@name: name to find
853  *
854  *	Find an interface by name. Must be called under RTNL semaphore
855  *	or @dev_base_lock. If the name is found a pointer to the device
856  *	is returned. If the name is not found then %NULL is returned. The
857  *	reference counters are not incremented so the caller must be
858  *	careful with locks.
859  */
860 
861 struct net_device *__dev_get_by_name(struct net *net, const char *name)
862 {
863 	struct netdev_name_node *node_name;
864 
865 	node_name = netdev_name_node_lookup(net, name);
866 	return node_name ? node_name->dev : NULL;
867 }
868 EXPORT_SYMBOL(__dev_get_by_name);
869 
870 /**
871  * dev_get_by_name_rcu	- find a device by its name
872  * @net: the applicable net namespace
873  * @name: name to find
874  *
875  * Find an interface by name.
876  * If the name is found a pointer to the device is returned.
877  * If the name is not found then %NULL is returned.
878  * The reference counters are not incremented so the caller must be
879  * careful with locks. The caller must hold RCU lock.
880  */
881 
882 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
883 {
884 	struct netdev_name_node *node_name;
885 
886 	node_name = netdev_name_node_lookup_rcu(net, name);
887 	return node_name ? node_name->dev : NULL;
888 }
889 EXPORT_SYMBOL(dev_get_by_name_rcu);
890 
891 /**
892  *	dev_get_by_name		- find a device by its name
893  *	@net: the applicable net namespace
894  *	@name: name to find
895  *
896  *	Find an interface by name. This can be called from any
897  *	context and does its own locking. The returned handle has
898  *	the usage count incremented and the caller must use dev_put() to
899  *	release it when it is no longer needed. %NULL is returned if no
900  *	matching device is found.
901  */
902 
903 struct net_device *dev_get_by_name(struct net *net, const char *name)
904 {
905 	struct net_device *dev;
906 
907 	rcu_read_lock();
908 	dev = dev_get_by_name_rcu(net, name);
909 	if (dev)
910 		dev_hold(dev);
911 	rcu_read_unlock();
912 	return dev;
913 }
914 EXPORT_SYMBOL(dev_get_by_name);
915 
916 /**
917  *	__dev_get_by_index - find a device by its ifindex
918  *	@net: the applicable net namespace
919  *	@ifindex: index of device
920  *
921  *	Search for an interface by index. Returns %NULL if the device
922  *	is not found or a pointer to the device. The device has not
923  *	had its reference counter increased so the caller must be careful
924  *	about locking. The caller must hold either the RTNL semaphore
925  *	or @dev_base_lock.
926  */
927 
928 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
929 {
930 	struct net_device *dev;
931 	struct hlist_head *head = dev_index_hash(net, ifindex);
932 
933 	hlist_for_each_entry(dev, head, index_hlist)
934 		if (dev->ifindex == ifindex)
935 			return dev;
936 
937 	return NULL;
938 }
939 EXPORT_SYMBOL(__dev_get_by_index);
940 
941 /**
942  *	dev_get_by_index_rcu - find a device by its ifindex
943  *	@net: the applicable net namespace
944  *	@ifindex: index of device
945  *
946  *	Search for an interface by index. Returns %NULL if the device
947  *	is not found or a pointer to the device. The device has not
948  *	had its reference counter increased so the caller must be careful
949  *	about locking. The caller must hold RCU lock.
950  */
951 
952 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
953 {
954 	struct net_device *dev;
955 	struct hlist_head *head = dev_index_hash(net, ifindex);
956 
957 	hlist_for_each_entry_rcu(dev, head, index_hlist)
958 		if (dev->ifindex == ifindex)
959 			return dev;
960 
961 	return NULL;
962 }
963 EXPORT_SYMBOL(dev_get_by_index_rcu);
964 
965 
966 /**
967  *	dev_get_by_index - find a device by its ifindex
968  *	@net: the applicable net namespace
969  *	@ifindex: index of device
970  *
971  *	Search for an interface by index. Returns NULL if the device
972  *	is not found or a pointer to the device. The device returned has
973  *	had a reference added and the pointer is safe until the user calls
974  *	dev_put to indicate they have finished with it.
975  */
976 
977 struct net_device *dev_get_by_index(struct net *net, int ifindex)
978 {
979 	struct net_device *dev;
980 
981 	rcu_read_lock();
982 	dev = dev_get_by_index_rcu(net, ifindex);
983 	if (dev)
984 		dev_hold(dev);
985 	rcu_read_unlock();
986 	return dev;
987 }
988 EXPORT_SYMBOL(dev_get_by_index);
989 
990 /**
991  *	dev_get_by_napi_id - find a device by napi_id
992  *	@napi_id: ID of the NAPI struct
993  *
994  *	Search for an interface by NAPI ID. Returns %NULL if the device
995  *	is not found or a pointer to the device. The device has not had
996  *	its reference counter increased so the caller must be careful
997  *	about locking. The caller must hold RCU lock.
998  */
999 
1000 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1001 {
1002 	struct napi_struct *napi;
1003 
1004 	WARN_ON_ONCE(!rcu_read_lock_held());
1005 
1006 	if (napi_id < MIN_NAPI_ID)
1007 		return NULL;
1008 
1009 	napi = napi_by_id(napi_id);
1010 
1011 	return napi ? napi->dev : NULL;
1012 }
1013 EXPORT_SYMBOL(dev_get_by_napi_id);
1014 
1015 /**
1016  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1017  *	@net: network namespace
1018  *	@name: a pointer to the buffer where the name will be stored.
1019  *	@ifindex: the ifindex of the interface to get the name from.
1020  */
1021 int netdev_get_name(struct net *net, char *name, int ifindex)
1022 {
1023 	struct net_device *dev;
1024 	int ret;
1025 
1026 	down_read(&devnet_rename_sem);
1027 	rcu_read_lock();
1028 
1029 	dev = dev_get_by_index_rcu(net, ifindex);
1030 	if (!dev) {
1031 		ret = -ENODEV;
1032 		goto out;
1033 	}
1034 
1035 	strcpy(name, dev->name);
1036 
1037 	ret = 0;
1038 out:
1039 	rcu_read_unlock();
1040 	up_read(&devnet_rename_sem);
1041 	return ret;
1042 }
1043 
1044 /**
1045  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1046  *	@net: the applicable net namespace
1047  *	@type: media type of device
1048  *	@ha: hardware address
1049  *
1050  *	Search for an interface by MAC address. Returns NULL if the device
1051  *	is not found or a pointer to the device.
1052  *	The caller must hold RCU or RTNL.
1053  *	The returned device has not had its ref count increased
1054  *	and the caller must therefore be careful about locking
1055  *
1056  */
1057 
1058 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1059 				       const char *ha)
1060 {
1061 	struct net_device *dev;
1062 
1063 	for_each_netdev_rcu(net, dev)
1064 		if (dev->type == type &&
1065 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1066 			return dev;
1067 
1068 	return NULL;
1069 }
1070 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1071 
1072 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1073 {
1074 	struct net_device *dev, *ret = NULL;
1075 
1076 	rcu_read_lock();
1077 	for_each_netdev_rcu(net, dev)
1078 		if (dev->type == type) {
1079 			dev_hold(dev);
1080 			ret = dev;
1081 			break;
1082 		}
1083 	rcu_read_unlock();
1084 	return ret;
1085 }
1086 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1087 
1088 /**
1089  *	__dev_get_by_flags - find any device with given flags
1090  *	@net: the applicable net namespace
1091  *	@if_flags: IFF_* values
1092  *	@mask: bitmask of bits in if_flags to check
1093  *
1094  *	Search for any interface with the given flags. Returns NULL if a device
1095  *	is not found or a pointer to the device. Must be called inside
1096  *	rtnl_lock(), and result refcount is unchanged.
1097  */
1098 
1099 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1100 				      unsigned short mask)
1101 {
1102 	struct net_device *dev, *ret;
1103 
1104 	ASSERT_RTNL();
1105 
1106 	ret = NULL;
1107 	for_each_netdev(net, dev) {
1108 		if (((dev->flags ^ if_flags) & mask) == 0) {
1109 			ret = dev;
1110 			break;
1111 		}
1112 	}
1113 	return ret;
1114 }
1115 EXPORT_SYMBOL(__dev_get_by_flags);
1116 
1117 /**
1118  *	dev_valid_name - check if name is okay for network device
1119  *	@name: name string
1120  *
1121  *	Network device names need to be valid file names to
1122  *	allow sysfs to work.  We also disallow any kind of
1123  *	whitespace.
1124  */
1125 bool dev_valid_name(const char *name)
1126 {
1127 	if (*name == '\0')
1128 		return false;
1129 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1130 		return false;
1131 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1132 		return false;
1133 
1134 	while (*name) {
1135 		if (*name == '/' || *name == ':' || isspace(*name))
1136 			return false;
1137 		name++;
1138 	}
1139 	return true;
1140 }
1141 EXPORT_SYMBOL(dev_valid_name);
1142 
1143 /**
1144  *	__dev_alloc_name - allocate a name for a device
1145  *	@net: network namespace to allocate the device name in
1146  *	@name: name format string
1147  *	@buf:  scratch buffer and result name string
1148  *
1149  *	Passed a format string - eg "lt%d" it will try and find a suitable
1150  *	id. It scans list of devices to build up a free map, then chooses
1151  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1152  *	while allocating the name and adding the device in order to avoid
1153  *	duplicates.
1154  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1155  *	Returns the number of the unit assigned or a negative errno code.
1156  */
1157 
1158 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1159 {
1160 	int i = 0;
1161 	const char *p;
1162 	const int max_netdevices = 8*PAGE_SIZE;
1163 	unsigned long *inuse;
1164 	struct net_device *d;
1165 
1166 	if (!dev_valid_name(name))
1167 		return -EINVAL;
1168 
1169 	p = strchr(name, '%');
1170 	if (p) {
1171 		/*
1172 		 * Verify the string as this thing may have come from
1173 		 * the user.  There must be either one "%d" and no other "%"
1174 		 * characters.
1175 		 */
1176 		if (p[1] != 'd' || strchr(p + 2, '%'))
1177 			return -EINVAL;
1178 
1179 		/* Use one page as a bit array of possible slots */
1180 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1181 		if (!inuse)
1182 			return -ENOMEM;
1183 
1184 		for_each_netdev(net, d) {
1185 			if (!sscanf(d->name, name, &i))
1186 				continue;
1187 			if (i < 0 || i >= max_netdevices)
1188 				continue;
1189 
1190 			/*  avoid cases where sscanf is not exact inverse of printf */
1191 			snprintf(buf, IFNAMSIZ, name, i);
1192 			if (!strncmp(buf, d->name, IFNAMSIZ))
1193 				set_bit(i, inuse);
1194 		}
1195 
1196 		i = find_first_zero_bit(inuse, max_netdevices);
1197 		free_page((unsigned long) inuse);
1198 	}
1199 
1200 	snprintf(buf, IFNAMSIZ, name, i);
1201 	if (!__dev_get_by_name(net, buf))
1202 		return i;
1203 
1204 	/* It is possible to run out of possible slots
1205 	 * when the name is long and there isn't enough space left
1206 	 * for the digits, or if all bits are used.
1207 	 */
1208 	return -ENFILE;
1209 }
1210 
1211 static int dev_alloc_name_ns(struct net *net,
1212 			     struct net_device *dev,
1213 			     const char *name)
1214 {
1215 	char buf[IFNAMSIZ];
1216 	int ret;
1217 
1218 	BUG_ON(!net);
1219 	ret = __dev_alloc_name(net, name, buf);
1220 	if (ret >= 0)
1221 		strlcpy(dev->name, buf, IFNAMSIZ);
1222 	return ret;
1223 }
1224 
1225 /**
1226  *	dev_alloc_name - allocate a name for a device
1227  *	@dev: device
1228  *	@name: name format string
1229  *
1230  *	Passed a format string - eg "lt%d" it will try and find a suitable
1231  *	id. It scans list of devices to build up a free map, then chooses
1232  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1233  *	while allocating the name and adding the device in order to avoid
1234  *	duplicates.
1235  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1236  *	Returns the number of the unit assigned or a negative errno code.
1237  */
1238 
1239 int dev_alloc_name(struct net_device *dev, const char *name)
1240 {
1241 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1242 }
1243 EXPORT_SYMBOL(dev_alloc_name);
1244 
1245 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1246 			      const char *name)
1247 {
1248 	BUG_ON(!net);
1249 
1250 	if (!dev_valid_name(name))
1251 		return -EINVAL;
1252 
1253 	if (strchr(name, '%'))
1254 		return dev_alloc_name_ns(net, dev, name);
1255 	else if (__dev_get_by_name(net, name))
1256 		return -EEXIST;
1257 	else if (dev->name != name)
1258 		strlcpy(dev->name, name, IFNAMSIZ);
1259 
1260 	return 0;
1261 }
1262 
1263 /**
1264  *	dev_change_name - change name of a device
1265  *	@dev: device
1266  *	@newname: name (or format string) must be at least IFNAMSIZ
1267  *
1268  *	Change name of a device, can pass format strings "eth%d".
1269  *	for wildcarding.
1270  */
1271 int dev_change_name(struct net_device *dev, const char *newname)
1272 {
1273 	unsigned char old_assign_type;
1274 	char oldname[IFNAMSIZ];
1275 	int err = 0;
1276 	int ret;
1277 	struct net *net;
1278 
1279 	ASSERT_RTNL();
1280 	BUG_ON(!dev_net(dev));
1281 
1282 	net = dev_net(dev);
1283 
1284 	/* Some auto-enslaved devices e.g. failover slaves are
1285 	 * special, as userspace might rename the device after
1286 	 * the interface had been brought up and running since
1287 	 * the point kernel initiated auto-enslavement. Allow
1288 	 * live name change even when these slave devices are
1289 	 * up and running.
1290 	 *
1291 	 * Typically, users of these auto-enslaving devices
1292 	 * don't actually care about slave name change, as
1293 	 * they are supposed to operate on master interface
1294 	 * directly.
1295 	 */
1296 	if (dev->flags & IFF_UP &&
1297 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1298 		return -EBUSY;
1299 
1300 	down_write(&devnet_rename_sem);
1301 
1302 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1303 		up_write(&devnet_rename_sem);
1304 		return 0;
1305 	}
1306 
1307 	memcpy(oldname, dev->name, IFNAMSIZ);
1308 
1309 	err = dev_get_valid_name(net, dev, newname);
1310 	if (err < 0) {
1311 		up_write(&devnet_rename_sem);
1312 		return err;
1313 	}
1314 
1315 	if (oldname[0] && !strchr(oldname, '%'))
1316 		netdev_info(dev, "renamed from %s\n", oldname);
1317 
1318 	old_assign_type = dev->name_assign_type;
1319 	dev->name_assign_type = NET_NAME_RENAMED;
1320 
1321 rollback:
1322 	ret = device_rename(&dev->dev, dev->name);
1323 	if (ret) {
1324 		memcpy(dev->name, oldname, IFNAMSIZ);
1325 		dev->name_assign_type = old_assign_type;
1326 		up_write(&devnet_rename_sem);
1327 		return ret;
1328 	}
1329 
1330 	up_write(&devnet_rename_sem);
1331 
1332 	netdev_adjacent_rename_links(dev, oldname);
1333 
1334 	write_lock_bh(&dev_base_lock);
1335 	netdev_name_node_del(dev->name_node);
1336 	write_unlock_bh(&dev_base_lock);
1337 
1338 	synchronize_rcu();
1339 
1340 	write_lock_bh(&dev_base_lock);
1341 	netdev_name_node_add(net, dev->name_node);
1342 	write_unlock_bh(&dev_base_lock);
1343 
1344 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1345 	ret = notifier_to_errno(ret);
1346 
1347 	if (ret) {
1348 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1349 		if (err >= 0) {
1350 			err = ret;
1351 			down_write(&devnet_rename_sem);
1352 			memcpy(dev->name, oldname, IFNAMSIZ);
1353 			memcpy(oldname, newname, IFNAMSIZ);
1354 			dev->name_assign_type = old_assign_type;
1355 			old_assign_type = NET_NAME_RENAMED;
1356 			goto rollback;
1357 		} else {
1358 			pr_err("%s: name change rollback failed: %d\n",
1359 			       dev->name, ret);
1360 		}
1361 	}
1362 
1363 	return err;
1364 }
1365 
1366 /**
1367  *	dev_set_alias - change ifalias of a device
1368  *	@dev: device
1369  *	@alias: name up to IFALIASZ
1370  *	@len: limit of bytes to copy from info
1371  *
1372  *	Set ifalias for a device,
1373  */
1374 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1375 {
1376 	struct dev_ifalias *new_alias = NULL;
1377 
1378 	if (len >= IFALIASZ)
1379 		return -EINVAL;
1380 
1381 	if (len) {
1382 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1383 		if (!new_alias)
1384 			return -ENOMEM;
1385 
1386 		memcpy(new_alias->ifalias, alias, len);
1387 		new_alias->ifalias[len] = 0;
1388 	}
1389 
1390 	mutex_lock(&ifalias_mutex);
1391 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1392 					mutex_is_locked(&ifalias_mutex));
1393 	mutex_unlock(&ifalias_mutex);
1394 
1395 	if (new_alias)
1396 		kfree_rcu(new_alias, rcuhead);
1397 
1398 	return len;
1399 }
1400 EXPORT_SYMBOL(dev_set_alias);
1401 
1402 /**
1403  *	dev_get_alias - get ifalias of a device
1404  *	@dev: device
1405  *	@name: buffer to store name of ifalias
1406  *	@len: size of buffer
1407  *
1408  *	get ifalias for a device.  Caller must make sure dev cannot go
1409  *	away,  e.g. rcu read lock or own a reference count to device.
1410  */
1411 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1412 {
1413 	const struct dev_ifalias *alias;
1414 	int ret = 0;
1415 
1416 	rcu_read_lock();
1417 	alias = rcu_dereference(dev->ifalias);
1418 	if (alias)
1419 		ret = snprintf(name, len, "%s", alias->ifalias);
1420 	rcu_read_unlock();
1421 
1422 	return ret;
1423 }
1424 
1425 /**
1426  *	netdev_features_change - device changes features
1427  *	@dev: device to cause notification
1428  *
1429  *	Called to indicate a device has changed features.
1430  */
1431 void netdev_features_change(struct net_device *dev)
1432 {
1433 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1434 }
1435 EXPORT_SYMBOL(netdev_features_change);
1436 
1437 /**
1438  *	netdev_state_change - device changes state
1439  *	@dev: device to cause notification
1440  *
1441  *	Called to indicate a device has changed state. This function calls
1442  *	the notifier chains for netdev_chain and sends a NEWLINK message
1443  *	to the routing socket.
1444  */
1445 void netdev_state_change(struct net_device *dev)
1446 {
1447 	if (dev->flags & IFF_UP) {
1448 		struct netdev_notifier_change_info change_info = {
1449 			.info.dev = dev,
1450 		};
1451 
1452 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1453 					      &change_info.info);
1454 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1455 	}
1456 }
1457 EXPORT_SYMBOL(netdev_state_change);
1458 
1459 /**
1460  * __netdev_notify_peers - notify network peers about existence of @dev,
1461  * to be called when rtnl lock is already held.
1462  * @dev: network device
1463  *
1464  * Generate traffic such that interested network peers are aware of
1465  * @dev, such as by generating a gratuitous ARP. This may be used when
1466  * a device wants to inform the rest of the network about some sort of
1467  * reconfiguration such as a failover event or virtual machine
1468  * migration.
1469  */
1470 void __netdev_notify_peers(struct net_device *dev)
1471 {
1472 	ASSERT_RTNL();
1473 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1474 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1475 }
1476 EXPORT_SYMBOL(__netdev_notify_peers);
1477 
1478 /**
1479  * netdev_notify_peers - notify network peers about existence of @dev
1480  * @dev: network device
1481  *
1482  * Generate traffic such that interested network peers are aware of
1483  * @dev, such as by generating a gratuitous ARP. This may be used when
1484  * a device wants to inform the rest of the network about some sort of
1485  * reconfiguration such as a failover event or virtual machine
1486  * migration.
1487  */
1488 void netdev_notify_peers(struct net_device *dev)
1489 {
1490 	rtnl_lock();
1491 	__netdev_notify_peers(dev);
1492 	rtnl_unlock();
1493 }
1494 EXPORT_SYMBOL(netdev_notify_peers);
1495 
1496 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1497 {
1498 	const struct net_device_ops *ops = dev->netdev_ops;
1499 	int ret;
1500 
1501 	ASSERT_RTNL();
1502 
1503 	if (!netif_device_present(dev)) {
1504 		/* may be detached because parent is runtime-suspended */
1505 		if (dev->dev.parent)
1506 			pm_runtime_resume(dev->dev.parent);
1507 		if (!netif_device_present(dev))
1508 			return -ENODEV;
1509 	}
1510 
1511 	/* Block netpoll from trying to do any rx path servicing.
1512 	 * If we don't do this there is a chance ndo_poll_controller
1513 	 * or ndo_poll may be running while we open the device
1514 	 */
1515 	netpoll_poll_disable(dev);
1516 
1517 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1518 	ret = notifier_to_errno(ret);
1519 	if (ret)
1520 		return ret;
1521 
1522 	set_bit(__LINK_STATE_START, &dev->state);
1523 
1524 	if (ops->ndo_validate_addr)
1525 		ret = ops->ndo_validate_addr(dev);
1526 
1527 	if (!ret && ops->ndo_open)
1528 		ret = ops->ndo_open(dev);
1529 
1530 	netpoll_poll_enable(dev);
1531 
1532 	if (ret)
1533 		clear_bit(__LINK_STATE_START, &dev->state);
1534 	else {
1535 		dev->flags |= IFF_UP;
1536 		dev_set_rx_mode(dev);
1537 		dev_activate(dev);
1538 		add_device_randomness(dev->dev_addr, dev->addr_len);
1539 	}
1540 
1541 	return ret;
1542 }
1543 
1544 /**
1545  *	dev_open	- prepare an interface for use.
1546  *	@dev: device to open
1547  *	@extack: netlink extended ack
1548  *
1549  *	Takes a device from down to up state. The device's private open
1550  *	function is invoked and then the multicast lists are loaded. Finally
1551  *	the device is moved into the up state and a %NETDEV_UP message is
1552  *	sent to the netdev notifier chain.
1553  *
1554  *	Calling this function on an active interface is a nop. On a failure
1555  *	a negative errno code is returned.
1556  */
1557 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1558 {
1559 	int ret;
1560 
1561 	if (dev->flags & IFF_UP)
1562 		return 0;
1563 
1564 	ret = __dev_open(dev, extack);
1565 	if (ret < 0)
1566 		return ret;
1567 
1568 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1569 	call_netdevice_notifiers(NETDEV_UP, dev);
1570 
1571 	return ret;
1572 }
1573 EXPORT_SYMBOL(dev_open);
1574 
1575 static void __dev_close_many(struct list_head *head)
1576 {
1577 	struct net_device *dev;
1578 
1579 	ASSERT_RTNL();
1580 	might_sleep();
1581 
1582 	list_for_each_entry(dev, head, close_list) {
1583 		/* Temporarily disable netpoll until the interface is down */
1584 		netpoll_poll_disable(dev);
1585 
1586 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1587 
1588 		clear_bit(__LINK_STATE_START, &dev->state);
1589 
1590 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1591 		 * can be even on different cpu. So just clear netif_running().
1592 		 *
1593 		 * dev->stop() will invoke napi_disable() on all of it's
1594 		 * napi_struct instances on this device.
1595 		 */
1596 		smp_mb__after_atomic(); /* Commit netif_running(). */
1597 	}
1598 
1599 	dev_deactivate_many(head);
1600 
1601 	list_for_each_entry(dev, head, close_list) {
1602 		const struct net_device_ops *ops = dev->netdev_ops;
1603 
1604 		/*
1605 		 *	Call the device specific close. This cannot fail.
1606 		 *	Only if device is UP
1607 		 *
1608 		 *	We allow it to be called even after a DETACH hot-plug
1609 		 *	event.
1610 		 */
1611 		if (ops->ndo_stop)
1612 			ops->ndo_stop(dev);
1613 
1614 		dev->flags &= ~IFF_UP;
1615 		netpoll_poll_enable(dev);
1616 	}
1617 }
1618 
1619 static void __dev_close(struct net_device *dev)
1620 {
1621 	LIST_HEAD(single);
1622 
1623 	list_add(&dev->close_list, &single);
1624 	__dev_close_many(&single);
1625 	list_del(&single);
1626 }
1627 
1628 void dev_close_many(struct list_head *head, bool unlink)
1629 {
1630 	struct net_device *dev, *tmp;
1631 
1632 	/* Remove the devices that don't need to be closed */
1633 	list_for_each_entry_safe(dev, tmp, head, close_list)
1634 		if (!(dev->flags & IFF_UP))
1635 			list_del_init(&dev->close_list);
1636 
1637 	__dev_close_many(head);
1638 
1639 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1640 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1641 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1642 		if (unlink)
1643 			list_del_init(&dev->close_list);
1644 	}
1645 }
1646 EXPORT_SYMBOL(dev_close_many);
1647 
1648 /**
1649  *	dev_close - shutdown an interface.
1650  *	@dev: device to shutdown
1651  *
1652  *	This function moves an active device into down state. A
1653  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1654  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1655  *	chain.
1656  */
1657 void dev_close(struct net_device *dev)
1658 {
1659 	if (dev->flags & IFF_UP) {
1660 		LIST_HEAD(single);
1661 
1662 		list_add(&dev->close_list, &single);
1663 		dev_close_many(&single, true);
1664 		list_del(&single);
1665 	}
1666 }
1667 EXPORT_SYMBOL(dev_close);
1668 
1669 
1670 /**
1671  *	dev_disable_lro - disable Large Receive Offload on a device
1672  *	@dev: device
1673  *
1674  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1675  *	called under RTNL.  This is needed if received packets may be
1676  *	forwarded to another interface.
1677  */
1678 void dev_disable_lro(struct net_device *dev)
1679 {
1680 	struct net_device *lower_dev;
1681 	struct list_head *iter;
1682 
1683 	dev->wanted_features &= ~NETIF_F_LRO;
1684 	netdev_update_features(dev);
1685 
1686 	if (unlikely(dev->features & NETIF_F_LRO))
1687 		netdev_WARN(dev, "failed to disable LRO!\n");
1688 
1689 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1690 		dev_disable_lro(lower_dev);
1691 }
1692 EXPORT_SYMBOL(dev_disable_lro);
1693 
1694 /**
1695  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1696  *	@dev: device
1697  *
1698  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1699  *	called under RTNL.  This is needed if Generic XDP is installed on
1700  *	the device.
1701  */
1702 static void dev_disable_gro_hw(struct net_device *dev)
1703 {
1704 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1705 	netdev_update_features(dev);
1706 
1707 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1708 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1709 }
1710 
1711 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1712 {
1713 #define N(val) 						\
1714 	case NETDEV_##val:				\
1715 		return "NETDEV_" __stringify(val);
1716 	switch (cmd) {
1717 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1718 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1719 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1720 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1721 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1722 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1723 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1724 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1725 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1726 	N(PRE_CHANGEADDR)
1727 	}
1728 #undef N
1729 	return "UNKNOWN_NETDEV_EVENT";
1730 }
1731 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1732 
1733 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1734 				   struct net_device *dev)
1735 {
1736 	struct netdev_notifier_info info = {
1737 		.dev = dev,
1738 	};
1739 
1740 	return nb->notifier_call(nb, val, &info);
1741 }
1742 
1743 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1744 					     struct net_device *dev)
1745 {
1746 	int err;
1747 
1748 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1749 	err = notifier_to_errno(err);
1750 	if (err)
1751 		return err;
1752 
1753 	if (!(dev->flags & IFF_UP))
1754 		return 0;
1755 
1756 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1757 	return 0;
1758 }
1759 
1760 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1761 						struct net_device *dev)
1762 {
1763 	if (dev->flags & IFF_UP) {
1764 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1765 					dev);
1766 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1767 	}
1768 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1769 }
1770 
1771 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1772 						 struct net *net)
1773 {
1774 	struct net_device *dev;
1775 	int err;
1776 
1777 	for_each_netdev(net, dev) {
1778 		err = call_netdevice_register_notifiers(nb, dev);
1779 		if (err)
1780 			goto rollback;
1781 	}
1782 	return 0;
1783 
1784 rollback:
1785 	for_each_netdev_continue_reverse(net, dev)
1786 		call_netdevice_unregister_notifiers(nb, dev);
1787 	return err;
1788 }
1789 
1790 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1791 						    struct net *net)
1792 {
1793 	struct net_device *dev;
1794 
1795 	for_each_netdev(net, dev)
1796 		call_netdevice_unregister_notifiers(nb, dev);
1797 }
1798 
1799 static int dev_boot_phase = 1;
1800 
1801 /**
1802  * register_netdevice_notifier - register a network notifier block
1803  * @nb: notifier
1804  *
1805  * Register a notifier to be called when network device events occur.
1806  * The notifier passed is linked into the kernel structures and must
1807  * not be reused until it has been unregistered. A negative errno code
1808  * is returned on a failure.
1809  *
1810  * When registered all registration and up events are replayed
1811  * to the new notifier to allow device to have a race free
1812  * view of the network device list.
1813  */
1814 
1815 int register_netdevice_notifier(struct notifier_block *nb)
1816 {
1817 	struct net *net;
1818 	int err;
1819 
1820 	/* Close race with setup_net() and cleanup_net() */
1821 	down_write(&pernet_ops_rwsem);
1822 	rtnl_lock();
1823 	err = raw_notifier_chain_register(&netdev_chain, nb);
1824 	if (err)
1825 		goto unlock;
1826 	if (dev_boot_phase)
1827 		goto unlock;
1828 	for_each_net(net) {
1829 		err = call_netdevice_register_net_notifiers(nb, net);
1830 		if (err)
1831 			goto rollback;
1832 	}
1833 
1834 unlock:
1835 	rtnl_unlock();
1836 	up_write(&pernet_ops_rwsem);
1837 	return err;
1838 
1839 rollback:
1840 	for_each_net_continue_reverse(net)
1841 		call_netdevice_unregister_net_notifiers(nb, net);
1842 
1843 	raw_notifier_chain_unregister(&netdev_chain, nb);
1844 	goto unlock;
1845 }
1846 EXPORT_SYMBOL(register_netdevice_notifier);
1847 
1848 /**
1849  * unregister_netdevice_notifier - unregister a network notifier block
1850  * @nb: notifier
1851  *
1852  * Unregister a notifier previously registered by
1853  * register_netdevice_notifier(). The notifier is unlinked into the
1854  * kernel structures and may then be reused. A negative errno code
1855  * is returned on a failure.
1856  *
1857  * After unregistering unregister and down device events are synthesized
1858  * for all devices on the device list to the removed notifier to remove
1859  * the need for special case cleanup code.
1860  */
1861 
1862 int unregister_netdevice_notifier(struct notifier_block *nb)
1863 {
1864 	struct net *net;
1865 	int err;
1866 
1867 	/* Close race with setup_net() and cleanup_net() */
1868 	down_write(&pernet_ops_rwsem);
1869 	rtnl_lock();
1870 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1871 	if (err)
1872 		goto unlock;
1873 
1874 	for_each_net(net)
1875 		call_netdevice_unregister_net_notifiers(nb, net);
1876 
1877 unlock:
1878 	rtnl_unlock();
1879 	up_write(&pernet_ops_rwsem);
1880 	return err;
1881 }
1882 EXPORT_SYMBOL(unregister_netdevice_notifier);
1883 
1884 static int __register_netdevice_notifier_net(struct net *net,
1885 					     struct notifier_block *nb,
1886 					     bool ignore_call_fail)
1887 {
1888 	int err;
1889 
1890 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1891 	if (err)
1892 		return err;
1893 	if (dev_boot_phase)
1894 		return 0;
1895 
1896 	err = call_netdevice_register_net_notifiers(nb, net);
1897 	if (err && !ignore_call_fail)
1898 		goto chain_unregister;
1899 
1900 	return 0;
1901 
1902 chain_unregister:
1903 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1904 	return err;
1905 }
1906 
1907 static int __unregister_netdevice_notifier_net(struct net *net,
1908 					       struct notifier_block *nb)
1909 {
1910 	int err;
1911 
1912 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1913 	if (err)
1914 		return err;
1915 
1916 	call_netdevice_unregister_net_notifiers(nb, net);
1917 	return 0;
1918 }
1919 
1920 /**
1921  * register_netdevice_notifier_net - register a per-netns network notifier block
1922  * @net: network namespace
1923  * @nb: notifier
1924  *
1925  * Register a notifier to be called when network device events occur.
1926  * The notifier passed is linked into the kernel structures and must
1927  * not be reused until it has been unregistered. A negative errno code
1928  * is returned on a failure.
1929  *
1930  * When registered all registration and up events are replayed
1931  * to the new notifier to allow device to have a race free
1932  * view of the network device list.
1933  */
1934 
1935 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1936 {
1937 	int err;
1938 
1939 	rtnl_lock();
1940 	err = __register_netdevice_notifier_net(net, nb, false);
1941 	rtnl_unlock();
1942 	return err;
1943 }
1944 EXPORT_SYMBOL(register_netdevice_notifier_net);
1945 
1946 /**
1947  * unregister_netdevice_notifier_net - unregister a per-netns
1948  *                                     network notifier block
1949  * @net: network namespace
1950  * @nb: notifier
1951  *
1952  * Unregister a notifier previously registered by
1953  * register_netdevice_notifier(). The notifier is unlinked into the
1954  * kernel structures and may then be reused. A negative errno code
1955  * is returned on a failure.
1956  *
1957  * After unregistering unregister and down device events are synthesized
1958  * for all devices on the device list to the removed notifier to remove
1959  * the need for special case cleanup code.
1960  */
1961 
1962 int unregister_netdevice_notifier_net(struct net *net,
1963 				      struct notifier_block *nb)
1964 {
1965 	int err;
1966 
1967 	rtnl_lock();
1968 	err = __unregister_netdevice_notifier_net(net, nb);
1969 	rtnl_unlock();
1970 	return err;
1971 }
1972 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1973 
1974 int register_netdevice_notifier_dev_net(struct net_device *dev,
1975 					struct notifier_block *nb,
1976 					struct netdev_net_notifier *nn)
1977 {
1978 	int err;
1979 
1980 	rtnl_lock();
1981 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1982 	if (!err) {
1983 		nn->nb = nb;
1984 		list_add(&nn->list, &dev->net_notifier_list);
1985 	}
1986 	rtnl_unlock();
1987 	return err;
1988 }
1989 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1990 
1991 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1992 					  struct notifier_block *nb,
1993 					  struct netdev_net_notifier *nn)
1994 {
1995 	int err;
1996 
1997 	rtnl_lock();
1998 	list_del(&nn->list);
1999 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2000 	rtnl_unlock();
2001 	return err;
2002 }
2003 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2004 
2005 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2006 					     struct net *net)
2007 {
2008 	struct netdev_net_notifier *nn;
2009 
2010 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
2011 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2012 		__register_netdevice_notifier_net(net, nn->nb, true);
2013 	}
2014 }
2015 
2016 /**
2017  *	call_netdevice_notifiers_info - call all network notifier blocks
2018  *	@val: value passed unmodified to notifier function
2019  *	@info: notifier information data
2020  *
2021  *	Call all network notifier blocks.  Parameters and return value
2022  *	are as for raw_notifier_call_chain().
2023  */
2024 
2025 static int call_netdevice_notifiers_info(unsigned long val,
2026 					 struct netdev_notifier_info *info)
2027 {
2028 	struct net *net = dev_net(info->dev);
2029 	int ret;
2030 
2031 	ASSERT_RTNL();
2032 
2033 	/* Run per-netns notifier block chain first, then run the global one.
2034 	 * Hopefully, one day, the global one is going to be removed after
2035 	 * all notifier block registrators get converted to be per-netns.
2036 	 */
2037 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2038 	if (ret & NOTIFY_STOP_MASK)
2039 		return ret;
2040 	return raw_notifier_call_chain(&netdev_chain, val, info);
2041 }
2042 
2043 static int call_netdevice_notifiers_extack(unsigned long val,
2044 					   struct net_device *dev,
2045 					   struct netlink_ext_ack *extack)
2046 {
2047 	struct netdev_notifier_info info = {
2048 		.dev = dev,
2049 		.extack = extack,
2050 	};
2051 
2052 	return call_netdevice_notifiers_info(val, &info);
2053 }
2054 
2055 /**
2056  *	call_netdevice_notifiers - call all network notifier blocks
2057  *      @val: value passed unmodified to notifier function
2058  *      @dev: net_device pointer passed unmodified to notifier function
2059  *
2060  *	Call all network notifier blocks.  Parameters and return value
2061  *	are as for raw_notifier_call_chain().
2062  */
2063 
2064 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2065 {
2066 	return call_netdevice_notifiers_extack(val, dev, NULL);
2067 }
2068 EXPORT_SYMBOL(call_netdevice_notifiers);
2069 
2070 /**
2071  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2072  *	@val: value passed unmodified to notifier function
2073  *	@dev: net_device pointer passed unmodified to notifier function
2074  *	@arg: additional u32 argument passed to the notifier function
2075  *
2076  *	Call all network notifier blocks.  Parameters and return value
2077  *	are as for raw_notifier_call_chain().
2078  */
2079 static int call_netdevice_notifiers_mtu(unsigned long val,
2080 					struct net_device *dev, u32 arg)
2081 {
2082 	struct netdev_notifier_info_ext info = {
2083 		.info.dev = dev,
2084 		.ext.mtu = arg,
2085 	};
2086 
2087 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2088 
2089 	return call_netdevice_notifiers_info(val, &info.info);
2090 }
2091 
2092 #ifdef CONFIG_NET_INGRESS
2093 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2094 
2095 void net_inc_ingress_queue(void)
2096 {
2097 	static_branch_inc(&ingress_needed_key);
2098 }
2099 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2100 
2101 void net_dec_ingress_queue(void)
2102 {
2103 	static_branch_dec(&ingress_needed_key);
2104 }
2105 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2106 #endif
2107 
2108 #ifdef CONFIG_NET_EGRESS
2109 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2110 
2111 void net_inc_egress_queue(void)
2112 {
2113 	static_branch_inc(&egress_needed_key);
2114 }
2115 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2116 
2117 void net_dec_egress_queue(void)
2118 {
2119 	static_branch_dec(&egress_needed_key);
2120 }
2121 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2122 #endif
2123 
2124 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2125 #ifdef CONFIG_JUMP_LABEL
2126 static atomic_t netstamp_needed_deferred;
2127 static atomic_t netstamp_wanted;
2128 static void netstamp_clear(struct work_struct *work)
2129 {
2130 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2131 	int wanted;
2132 
2133 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2134 	if (wanted > 0)
2135 		static_branch_enable(&netstamp_needed_key);
2136 	else
2137 		static_branch_disable(&netstamp_needed_key);
2138 }
2139 static DECLARE_WORK(netstamp_work, netstamp_clear);
2140 #endif
2141 
2142 void net_enable_timestamp(void)
2143 {
2144 #ifdef CONFIG_JUMP_LABEL
2145 	int wanted;
2146 
2147 	while (1) {
2148 		wanted = atomic_read(&netstamp_wanted);
2149 		if (wanted <= 0)
2150 			break;
2151 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2152 			return;
2153 	}
2154 	atomic_inc(&netstamp_needed_deferred);
2155 	schedule_work(&netstamp_work);
2156 #else
2157 	static_branch_inc(&netstamp_needed_key);
2158 #endif
2159 }
2160 EXPORT_SYMBOL(net_enable_timestamp);
2161 
2162 void net_disable_timestamp(void)
2163 {
2164 #ifdef CONFIG_JUMP_LABEL
2165 	int wanted;
2166 
2167 	while (1) {
2168 		wanted = atomic_read(&netstamp_wanted);
2169 		if (wanted <= 1)
2170 			break;
2171 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2172 			return;
2173 	}
2174 	atomic_dec(&netstamp_needed_deferred);
2175 	schedule_work(&netstamp_work);
2176 #else
2177 	static_branch_dec(&netstamp_needed_key);
2178 #endif
2179 }
2180 EXPORT_SYMBOL(net_disable_timestamp);
2181 
2182 static inline void net_timestamp_set(struct sk_buff *skb)
2183 {
2184 	skb->tstamp = 0;
2185 	if (static_branch_unlikely(&netstamp_needed_key))
2186 		__net_timestamp(skb);
2187 }
2188 
2189 #define net_timestamp_check(COND, SKB)				\
2190 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2191 		if ((COND) && !(SKB)->tstamp)			\
2192 			__net_timestamp(SKB);			\
2193 	}							\
2194 
2195 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2196 {
2197 	unsigned int len;
2198 
2199 	if (!(dev->flags & IFF_UP))
2200 		return false;
2201 
2202 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2203 	if (skb->len <= len)
2204 		return true;
2205 
2206 	/* if TSO is enabled, we don't care about the length as the packet
2207 	 * could be forwarded without being segmented before
2208 	 */
2209 	if (skb_is_gso(skb))
2210 		return true;
2211 
2212 	return false;
2213 }
2214 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2215 
2216 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2217 {
2218 	int ret = ____dev_forward_skb(dev, skb);
2219 
2220 	if (likely(!ret)) {
2221 		skb->protocol = eth_type_trans(skb, dev);
2222 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2223 	}
2224 
2225 	return ret;
2226 }
2227 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2228 
2229 /**
2230  * dev_forward_skb - loopback an skb to another netif
2231  *
2232  * @dev: destination network device
2233  * @skb: buffer to forward
2234  *
2235  * return values:
2236  *	NET_RX_SUCCESS	(no congestion)
2237  *	NET_RX_DROP     (packet was dropped, but freed)
2238  *
2239  * dev_forward_skb can be used for injecting an skb from the
2240  * start_xmit function of one device into the receive queue
2241  * of another device.
2242  *
2243  * The receiving device may be in another namespace, so
2244  * we have to clear all information in the skb that could
2245  * impact namespace isolation.
2246  */
2247 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2248 {
2249 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2250 }
2251 EXPORT_SYMBOL_GPL(dev_forward_skb);
2252 
2253 static inline int deliver_skb(struct sk_buff *skb,
2254 			      struct packet_type *pt_prev,
2255 			      struct net_device *orig_dev)
2256 {
2257 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2258 		return -ENOMEM;
2259 	refcount_inc(&skb->users);
2260 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2261 }
2262 
2263 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2264 					  struct packet_type **pt,
2265 					  struct net_device *orig_dev,
2266 					  __be16 type,
2267 					  struct list_head *ptype_list)
2268 {
2269 	struct packet_type *ptype, *pt_prev = *pt;
2270 
2271 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2272 		if (ptype->type != type)
2273 			continue;
2274 		if (pt_prev)
2275 			deliver_skb(skb, pt_prev, orig_dev);
2276 		pt_prev = ptype;
2277 	}
2278 	*pt = pt_prev;
2279 }
2280 
2281 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2282 {
2283 	if (!ptype->af_packet_priv || !skb->sk)
2284 		return false;
2285 
2286 	if (ptype->id_match)
2287 		return ptype->id_match(ptype, skb->sk);
2288 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2289 		return true;
2290 
2291 	return false;
2292 }
2293 
2294 /**
2295  * dev_nit_active - return true if any network interface taps are in use
2296  *
2297  * @dev: network device to check for the presence of taps
2298  */
2299 bool dev_nit_active(struct net_device *dev)
2300 {
2301 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2302 }
2303 EXPORT_SYMBOL_GPL(dev_nit_active);
2304 
2305 /*
2306  *	Support routine. Sends outgoing frames to any network
2307  *	taps currently in use.
2308  */
2309 
2310 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2311 {
2312 	struct packet_type *ptype;
2313 	struct sk_buff *skb2 = NULL;
2314 	struct packet_type *pt_prev = NULL;
2315 	struct list_head *ptype_list = &ptype_all;
2316 
2317 	rcu_read_lock();
2318 again:
2319 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2320 		if (ptype->ignore_outgoing)
2321 			continue;
2322 
2323 		/* Never send packets back to the socket
2324 		 * they originated from - MvS (miquels@drinkel.ow.org)
2325 		 */
2326 		if (skb_loop_sk(ptype, skb))
2327 			continue;
2328 
2329 		if (pt_prev) {
2330 			deliver_skb(skb2, pt_prev, skb->dev);
2331 			pt_prev = ptype;
2332 			continue;
2333 		}
2334 
2335 		/* need to clone skb, done only once */
2336 		skb2 = skb_clone(skb, GFP_ATOMIC);
2337 		if (!skb2)
2338 			goto out_unlock;
2339 
2340 		net_timestamp_set(skb2);
2341 
2342 		/* skb->nh should be correctly
2343 		 * set by sender, so that the second statement is
2344 		 * just protection against buggy protocols.
2345 		 */
2346 		skb_reset_mac_header(skb2);
2347 
2348 		if (skb_network_header(skb2) < skb2->data ||
2349 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2350 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2351 					     ntohs(skb2->protocol),
2352 					     dev->name);
2353 			skb_reset_network_header(skb2);
2354 		}
2355 
2356 		skb2->transport_header = skb2->network_header;
2357 		skb2->pkt_type = PACKET_OUTGOING;
2358 		pt_prev = ptype;
2359 	}
2360 
2361 	if (ptype_list == &ptype_all) {
2362 		ptype_list = &dev->ptype_all;
2363 		goto again;
2364 	}
2365 out_unlock:
2366 	if (pt_prev) {
2367 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2368 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2369 		else
2370 			kfree_skb(skb2);
2371 	}
2372 	rcu_read_unlock();
2373 }
2374 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2375 
2376 /**
2377  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2378  * @dev: Network device
2379  * @txq: number of queues available
2380  *
2381  * If real_num_tx_queues is changed the tc mappings may no longer be
2382  * valid. To resolve this verify the tc mapping remains valid and if
2383  * not NULL the mapping. With no priorities mapping to this
2384  * offset/count pair it will no longer be used. In the worst case TC0
2385  * is invalid nothing can be done so disable priority mappings. If is
2386  * expected that drivers will fix this mapping if they can before
2387  * calling netif_set_real_num_tx_queues.
2388  */
2389 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2390 {
2391 	int i;
2392 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2393 
2394 	/* If TC0 is invalidated disable TC mapping */
2395 	if (tc->offset + tc->count > txq) {
2396 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2397 		dev->num_tc = 0;
2398 		return;
2399 	}
2400 
2401 	/* Invalidated prio to tc mappings set to TC0 */
2402 	for (i = 1; i < TC_BITMASK + 1; i++) {
2403 		int q = netdev_get_prio_tc_map(dev, i);
2404 
2405 		tc = &dev->tc_to_txq[q];
2406 		if (tc->offset + tc->count > txq) {
2407 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2408 				i, q);
2409 			netdev_set_prio_tc_map(dev, i, 0);
2410 		}
2411 	}
2412 }
2413 
2414 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2415 {
2416 	if (dev->num_tc) {
2417 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2418 		int i;
2419 
2420 		/* walk through the TCs and see if it falls into any of them */
2421 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2422 			if ((txq - tc->offset) < tc->count)
2423 				return i;
2424 		}
2425 
2426 		/* didn't find it, just return -1 to indicate no match */
2427 		return -1;
2428 	}
2429 
2430 	return 0;
2431 }
2432 EXPORT_SYMBOL(netdev_txq_to_tc);
2433 
2434 #ifdef CONFIG_XPS
2435 struct static_key xps_needed __read_mostly;
2436 EXPORT_SYMBOL(xps_needed);
2437 struct static_key xps_rxqs_needed __read_mostly;
2438 EXPORT_SYMBOL(xps_rxqs_needed);
2439 static DEFINE_MUTEX(xps_map_mutex);
2440 #define xmap_dereference(P)		\
2441 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2442 
2443 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2444 			     int tci, u16 index)
2445 {
2446 	struct xps_map *map = NULL;
2447 	int pos;
2448 
2449 	if (dev_maps)
2450 		map = xmap_dereference(dev_maps->attr_map[tci]);
2451 	if (!map)
2452 		return false;
2453 
2454 	for (pos = map->len; pos--;) {
2455 		if (map->queues[pos] != index)
2456 			continue;
2457 
2458 		if (map->len > 1) {
2459 			map->queues[pos] = map->queues[--map->len];
2460 			break;
2461 		}
2462 
2463 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2464 		kfree_rcu(map, rcu);
2465 		return false;
2466 	}
2467 
2468 	return true;
2469 }
2470 
2471 static bool remove_xps_queue_cpu(struct net_device *dev,
2472 				 struct xps_dev_maps *dev_maps,
2473 				 int cpu, u16 offset, u16 count)
2474 {
2475 	int num_tc = dev->num_tc ? : 1;
2476 	bool active = false;
2477 	int tci;
2478 
2479 	for (tci = cpu * num_tc; num_tc--; tci++) {
2480 		int i, j;
2481 
2482 		for (i = count, j = offset; i--; j++) {
2483 			if (!remove_xps_queue(dev_maps, tci, j))
2484 				break;
2485 		}
2486 
2487 		active |= i < 0;
2488 	}
2489 
2490 	return active;
2491 }
2492 
2493 static void reset_xps_maps(struct net_device *dev,
2494 			   struct xps_dev_maps *dev_maps,
2495 			   bool is_rxqs_map)
2496 {
2497 	if (is_rxqs_map) {
2498 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2499 		RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2500 	} else {
2501 		RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2502 	}
2503 	static_key_slow_dec_cpuslocked(&xps_needed);
2504 	kfree_rcu(dev_maps, rcu);
2505 }
2506 
2507 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2508 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2509 			   u16 offset, u16 count, bool is_rxqs_map)
2510 {
2511 	bool active = false;
2512 	int i, j;
2513 
2514 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2515 	     j < nr_ids;)
2516 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2517 					       count);
2518 	if (!active)
2519 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2520 
2521 	if (!is_rxqs_map) {
2522 		for (i = offset + (count - 1); count--; i--) {
2523 			netdev_queue_numa_node_write(
2524 				netdev_get_tx_queue(dev, i),
2525 				NUMA_NO_NODE);
2526 		}
2527 	}
2528 }
2529 
2530 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2531 				   u16 count)
2532 {
2533 	const unsigned long *possible_mask = NULL;
2534 	struct xps_dev_maps *dev_maps;
2535 	unsigned int nr_ids;
2536 
2537 	if (!static_key_false(&xps_needed))
2538 		return;
2539 
2540 	cpus_read_lock();
2541 	mutex_lock(&xps_map_mutex);
2542 
2543 	if (static_key_false(&xps_rxqs_needed)) {
2544 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2545 		if (dev_maps) {
2546 			nr_ids = dev->num_rx_queues;
2547 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2548 				       offset, count, true);
2549 		}
2550 	}
2551 
2552 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2553 	if (!dev_maps)
2554 		goto out_no_maps;
2555 
2556 	if (num_possible_cpus() > 1)
2557 		possible_mask = cpumask_bits(cpu_possible_mask);
2558 	nr_ids = nr_cpu_ids;
2559 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2560 		       false);
2561 
2562 out_no_maps:
2563 	mutex_unlock(&xps_map_mutex);
2564 	cpus_read_unlock();
2565 }
2566 
2567 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2568 {
2569 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2570 }
2571 
2572 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2573 				      u16 index, bool is_rxqs_map)
2574 {
2575 	struct xps_map *new_map;
2576 	int alloc_len = XPS_MIN_MAP_ALLOC;
2577 	int i, pos;
2578 
2579 	for (pos = 0; map && pos < map->len; pos++) {
2580 		if (map->queues[pos] != index)
2581 			continue;
2582 		return map;
2583 	}
2584 
2585 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2586 	if (map) {
2587 		if (pos < map->alloc_len)
2588 			return map;
2589 
2590 		alloc_len = map->alloc_len * 2;
2591 	}
2592 
2593 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2594 	 *  map
2595 	 */
2596 	if (is_rxqs_map)
2597 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2598 	else
2599 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2600 				       cpu_to_node(attr_index));
2601 	if (!new_map)
2602 		return NULL;
2603 
2604 	for (i = 0; i < pos; i++)
2605 		new_map->queues[i] = map->queues[i];
2606 	new_map->alloc_len = alloc_len;
2607 	new_map->len = pos;
2608 
2609 	return new_map;
2610 }
2611 
2612 /* Must be called under cpus_read_lock */
2613 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2614 			  u16 index, bool is_rxqs_map)
2615 {
2616 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2617 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2618 	int i, j, tci, numa_node_id = -2;
2619 	int maps_sz, num_tc = 1, tc = 0;
2620 	struct xps_map *map, *new_map;
2621 	bool active = false;
2622 	unsigned int nr_ids;
2623 
2624 	if (dev->num_tc) {
2625 		/* Do not allow XPS on subordinate device directly */
2626 		num_tc = dev->num_tc;
2627 		if (num_tc < 0)
2628 			return -EINVAL;
2629 
2630 		/* If queue belongs to subordinate dev use its map */
2631 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2632 
2633 		tc = netdev_txq_to_tc(dev, index);
2634 		if (tc < 0)
2635 			return -EINVAL;
2636 	}
2637 
2638 	mutex_lock(&xps_map_mutex);
2639 	if (is_rxqs_map) {
2640 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2641 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2642 		nr_ids = dev->num_rx_queues;
2643 	} else {
2644 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2645 		if (num_possible_cpus() > 1) {
2646 			online_mask = cpumask_bits(cpu_online_mask);
2647 			possible_mask = cpumask_bits(cpu_possible_mask);
2648 		}
2649 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2650 		nr_ids = nr_cpu_ids;
2651 	}
2652 
2653 	if (maps_sz < L1_CACHE_BYTES)
2654 		maps_sz = L1_CACHE_BYTES;
2655 
2656 	/* allocate memory for queue storage */
2657 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2658 	     j < nr_ids;) {
2659 		if (!new_dev_maps)
2660 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2661 		if (!new_dev_maps) {
2662 			mutex_unlock(&xps_map_mutex);
2663 			return -ENOMEM;
2664 		}
2665 
2666 		tci = j * num_tc + tc;
2667 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2668 				 NULL;
2669 
2670 		map = expand_xps_map(map, j, index, is_rxqs_map);
2671 		if (!map)
2672 			goto error;
2673 
2674 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2675 	}
2676 
2677 	if (!new_dev_maps)
2678 		goto out_no_new_maps;
2679 
2680 	if (!dev_maps) {
2681 		/* Increment static keys at most once per type */
2682 		static_key_slow_inc_cpuslocked(&xps_needed);
2683 		if (is_rxqs_map)
2684 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2685 	}
2686 
2687 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2688 	     j < nr_ids;) {
2689 		/* copy maps belonging to foreign traffic classes */
2690 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2691 			/* fill in the new device map from the old device map */
2692 			map = xmap_dereference(dev_maps->attr_map[tci]);
2693 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2694 		}
2695 
2696 		/* We need to explicitly update tci as prevous loop
2697 		 * could break out early if dev_maps is NULL.
2698 		 */
2699 		tci = j * num_tc + tc;
2700 
2701 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2702 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2703 			/* add tx-queue to CPU/rx-queue maps */
2704 			int pos = 0;
2705 
2706 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2707 			while ((pos < map->len) && (map->queues[pos] != index))
2708 				pos++;
2709 
2710 			if (pos == map->len)
2711 				map->queues[map->len++] = index;
2712 #ifdef CONFIG_NUMA
2713 			if (!is_rxqs_map) {
2714 				if (numa_node_id == -2)
2715 					numa_node_id = cpu_to_node(j);
2716 				else if (numa_node_id != cpu_to_node(j))
2717 					numa_node_id = -1;
2718 			}
2719 #endif
2720 		} else if (dev_maps) {
2721 			/* fill in the new device map from the old device map */
2722 			map = xmap_dereference(dev_maps->attr_map[tci]);
2723 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2724 		}
2725 
2726 		/* copy maps belonging to foreign traffic classes */
2727 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2728 			/* fill in the new device map from the old device map */
2729 			map = xmap_dereference(dev_maps->attr_map[tci]);
2730 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2731 		}
2732 	}
2733 
2734 	if (is_rxqs_map)
2735 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2736 	else
2737 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2738 
2739 	/* Cleanup old maps */
2740 	if (!dev_maps)
2741 		goto out_no_old_maps;
2742 
2743 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2744 	     j < nr_ids;) {
2745 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2746 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2747 			map = xmap_dereference(dev_maps->attr_map[tci]);
2748 			if (map && map != new_map)
2749 				kfree_rcu(map, rcu);
2750 		}
2751 	}
2752 
2753 	kfree_rcu(dev_maps, rcu);
2754 
2755 out_no_old_maps:
2756 	dev_maps = new_dev_maps;
2757 	active = true;
2758 
2759 out_no_new_maps:
2760 	if (!is_rxqs_map) {
2761 		/* update Tx queue numa node */
2762 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2763 					     (numa_node_id >= 0) ?
2764 					     numa_node_id : NUMA_NO_NODE);
2765 	}
2766 
2767 	if (!dev_maps)
2768 		goto out_no_maps;
2769 
2770 	/* removes tx-queue from unused CPUs/rx-queues */
2771 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2772 	     j < nr_ids;) {
2773 		for (i = tc, tci = j * num_tc; i--; tci++)
2774 			active |= remove_xps_queue(dev_maps, tci, index);
2775 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2776 		    !netif_attr_test_online(j, online_mask, nr_ids))
2777 			active |= remove_xps_queue(dev_maps, tci, index);
2778 		for (i = num_tc - tc, tci++; --i; tci++)
2779 			active |= remove_xps_queue(dev_maps, tci, index);
2780 	}
2781 
2782 	/* free map if not active */
2783 	if (!active)
2784 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2785 
2786 out_no_maps:
2787 	mutex_unlock(&xps_map_mutex);
2788 
2789 	return 0;
2790 error:
2791 	/* remove any maps that we added */
2792 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2793 	     j < nr_ids;) {
2794 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2795 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2796 			map = dev_maps ?
2797 			      xmap_dereference(dev_maps->attr_map[tci]) :
2798 			      NULL;
2799 			if (new_map && new_map != map)
2800 				kfree(new_map);
2801 		}
2802 	}
2803 
2804 	mutex_unlock(&xps_map_mutex);
2805 
2806 	kfree(new_dev_maps);
2807 	return -ENOMEM;
2808 }
2809 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2810 
2811 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2812 			u16 index)
2813 {
2814 	int ret;
2815 
2816 	cpus_read_lock();
2817 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2818 	cpus_read_unlock();
2819 
2820 	return ret;
2821 }
2822 EXPORT_SYMBOL(netif_set_xps_queue);
2823 
2824 #endif
2825 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2826 {
2827 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2828 
2829 	/* Unbind any subordinate channels */
2830 	while (txq-- != &dev->_tx[0]) {
2831 		if (txq->sb_dev)
2832 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2833 	}
2834 }
2835 
2836 void netdev_reset_tc(struct net_device *dev)
2837 {
2838 #ifdef CONFIG_XPS
2839 	netif_reset_xps_queues_gt(dev, 0);
2840 #endif
2841 	netdev_unbind_all_sb_channels(dev);
2842 
2843 	/* Reset TC configuration of device */
2844 	dev->num_tc = 0;
2845 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2846 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2847 }
2848 EXPORT_SYMBOL(netdev_reset_tc);
2849 
2850 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2851 {
2852 	if (tc >= dev->num_tc)
2853 		return -EINVAL;
2854 
2855 #ifdef CONFIG_XPS
2856 	netif_reset_xps_queues(dev, offset, count);
2857 #endif
2858 	dev->tc_to_txq[tc].count = count;
2859 	dev->tc_to_txq[tc].offset = offset;
2860 	return 0;
2861 }
2862 EXPORT_SYMBOL(netdev_set_tc_queue);
2863 
2864 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2865 {
2866 	if (num_tc > TC_MAX_QUEUE)
2867 		return -EINVAL;
2868 
2869 #ifdef CONFIG_XPS
2870 	netif_reset_xps_queues_gt(dev, 0);
2871 #endif
2872 	netdev_unbind_all_sb_channels(dev);
2873 
2874 	dev->num_tc = num_tc;
2875 	return 0;
2876 }
2877 EXPORT_SYMBOL(netdev_set_num_tc);
2878 
2879 void netdev_unbind_sb_channel(struct net_device *dev,
2880 			      struct net_device *sb_dev)
2881 {
2882 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2883 
2884 #ifdef CONFIG_XPS
2885 	netif_reset_xps_queues_gt(sb_dev, 0);
2886 #endif
2887 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2888 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2889 
2890 	while (txq-- != &dev->_tx[0]) {
2891 		if (txq->sb_dev == sb_dev)
2892 			txq->sb_dev = NULL;
2893 	}
2894 }
2895 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2896 
2897 int netdev_bind_sb_channel_queue(struct net_device *dev,
2898 				 struct net_device *sb_dev,
2899 				 u8 tc, u16 count, u16 offset)
2900 {
2901 	/* Make certain the sb_dev and dev are already configured */
2902 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2903 		return -EINVAL;
2904 
2905 	/* We cannot hand out queues we don't have */
2906 	if ((offset + count) > dev->real_num_tx_queues)
2907 		return -EINVAL;
2908 
2909 	/* Record the mapping */
2910 	sb_dev->tc_to_txq[tc].count = count;
2911 	sb_dev->tc_to_txq[tc].offset = offset;
2912 
2913 	/* Provide a way for Tx queue to find the tc_to_txq map or
2914 	 * XPS map for itself.
2915 	 */
2916 	while (count--)
2917 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2918 
2919 	return 0;
2920 }
2921 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2922 
2923 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2924 {
2925 	/* Do not use a multiqueue device to represent a subordinate channel */
2926 	if (netif_is_multiqueue(dev))
2927 		return -ENODEV;
2928 
2929 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2930 	 * Channel 0 is meant to be "native" mode and used only to represent
2931 	 * the main root device. We allow writing 0 to reset the device back
2932 	 * to normal mode after being used as a subordinate channel.
2933 	 */
2934 	if (channel > S16_MAX)
2935 		return -EINVAL;
2936 
2937 	dev->num_tc = -channel;
2938 
2939 	return 0;
2940 }
2941 EXPORT_SYMBOL(netdev_set_sb_channel);
2942 
2943 /*
2944  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2945  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2946  */
2947 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2948 {
2949 	bool disabling;
2950 	int rc;
2951 
2952 	disabling = txq < dev->real_num_tx_queues;
2953 
2954 	if (txq < 1 || txq > dev->num_tx_queues)
2955 		return -EINVAL;
2956 
2957 	if (dev->reg_state == NETREG_REGISTERED ||
2958 	    dev->reg_state == NETREG_UNREGISTERING) {
2959 		ASSERT_RTNL();
2960 
2961 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2962 						  txq);
2963 		if (rc)
2964 			return rc;
2965 
2966 		if (dev->num_tc)
2967 			netif_setup_tc(dev, txq);
2968 
2969 		dev->real_num_tx_queues = txq;
2970 
2971 		if (disabling) {
2972 			synchronize_net();
2973 			qdisc_reset_all_tx_gt(dev, txq);
2974 #ifdef CONFIG_XPS
2975 			netif_reset_xps_queues_gt(dev, txq);
2976 #endif
2977 		}
2978 	} else {
2979 		dev->real_num_tx_queues = txq;
2980 	}
2981 
2982 	return 0;
2983 }
2984 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2985 
2986 #ifdef CONFIG_SYSFS
2987 /**
2988  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2989  *	@dev: Network device
2990  *	@rxq: Actual number of RX queues
2991  *
2992  *	This must be called either with the rtnl_lock held or before
2993  *	registration of the net device.  Returns 0 on success, or a
2994  *	negative error code.  If called before registration, it always
2995  *	succeeds.
2996  */
2997 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2998 {
2999 	int rc;
3000 
3001 	if (rxq < 1 || rxq > dev->num_rx_queues)
3002 		return -EINVAL;
3003 
3004 	if (dev->reg_state == NETREG_REGISTERED) {
3005 		ASSERT_RTNL();
3006 
3007 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3008 						  rxq);
3009 		if (rc)
3010 			return rc;
3011 	}
3012 
3013 	dev->real_num_rx_queues = rxq;
3014 	return 0;
3015 }
3016 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3017 #endif
3018 
3019 /**
3020  * netif_get_num_default_rss_queues - default number of RSS queues
3021  *
3022  * This routine should set an upper limit on the number of RSS queues
3023  * used by default by multiqueue devices.
3024  */
3025 int netif_get_num_default_rss_queues(void)
3026 {
3027 	return is_kdump_kernel() ?
3028 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3029 }
3030 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3031 
3032 static void __netif_reschedule(struct Qdisc *q)
3033 {
3034 	struct softnet_data *sd;
3035 	unsigned long flags;
3036 
3037 	local_irq_save(flags);
3038 	sd = this_cpu_ptr(&softnet_data);
3039 	q->next_sched = NULL;
3040 	*sd->output_queue_tailp = q;
3041 	sd->output_queue_tailp = &q->next_sched;
3042 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3043 	local_irq_restore(flags);
3044 }
3045 
3046 void __netif_schedule(struct Qdisc *q)
3047 {
3048 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3049 		__netif_reschedule(q);
3050 }
3051 EXPORT_SYMBOL(__netif_schedule);
3052 
3053 struct dev_kfree_skb_cb {
3054 	enum skb_free_reason reason;
3055 };
3056 
3057 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3058 {
3059 	return (struct dev_kfree_skb_cb *)skb->cb;
3060 }
3061 
3062 void netif_schedule_queue(struct netdev_queue *txq)
3063 {
3064 	rcu_read_lock();
3065 	if (!netif_xmit_stopped(txq)) {
3066 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3067 
3068 		__netif_schedule(q);
3069 	}
3070 	rcu_read_unlock();
3071 }
3072 EXPORT_SYMBOL(netif_schedule_queue);
3073 
3074 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3075 {
3076 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3077 		struct Qdisc *q;
3078 
3079 		rcu_read_lock();
3080 		q = rcu_dereference(dev_queue->qdisc);
3081 		__netif_schedule(q);
3082 		rcu_read_unlock();
3083 	}
3084 }
3085 EXPORT_SYMBOL(netif_tx_wake_queue);
3086 
3087 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3088 {
3089 	unsigned long flags;
3090 
3091 	if (unlikely(!skb))
3092 		return;
3093 
3094 	if (likely(refcount_read(&skb->users) == 1)) {
3095 		smp_rmb();
3096 		refcount_set(&skb->users, 0);
3097 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3098 		return;
3099 	}
3100 	get_kfree_skb_cb(skb)->reason = reason;
3101 	local_irq_save(flags);
3102 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3103 	__this_cpu_write(softnet_data.completion_queue, skb);
3104 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3105 	local_irq_restore(flags);
3106 }
3107 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3108 
3109 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3110 {
3111 	if (in_irq() || irqs_disabled())
3112 		__dev_kfree_skb_irq(skb, reason);
3113 	else
3114 		dev_kfree_skb(skb);
3115 }
3116 EXPORT_SYMBOL(__dev_kfree_skb_any);
3117 
3118 
3119 /**
3120  * netif_device_detach - mark device as removed
3121  * @dev: network device
3122  *
3123  * Mark device as removed from system and therefore no longer available.
3124  */
3125 void netif_device_detach(struct net_device *dev)
3126 {
3127 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3128 	    netif_running(dev)) {
3129 		netif_tx_stop_all_queues(dev);
3130 	}
3131 }
3132 EXPORT_SYMBOL(netif_device_detach);
3133 
3134 /**
3135  * netif_device_attach - mark device as attached
3136  * @dev: network device
3137  *
3138  * Mark device as attached from system and restart if needed.
3139  */
3140 void netif_device_attach(struct net_device *dev)
3141 {
3142 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3143 	    netif_running(dev)) {
3144 		netif_tx_wake_all_queues(dev);
3145 		__netdev_watchdog_up(dev);
3146 	}
3147 }
3148 EXPORT_SYMBOL(netif_device_attach);
3149 
3150 /*
3151  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3152  * to be used as a distribution range.
3153  */
3154 static u16 skb_tx_hash(const struct net_device *dev,
3155 		       const struct net_device *sb_dev,
3156 		       struct sk_buff *skb)
3157 {
3158 	u32 hash;
3159 	u16 qoffset = 0;
3160 	u16 qcount = dev->real_num_tx_queues;
3161 
3162 	if (dev->num_tc) {
3163 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3164 
3165 		qoffset = sb_dev->tc_to_txq[tc].offset;
3166 		qcount = sb_dev->tc_to_txq[tc].count;
3167 	}
3168 
3169 	if (skb_rx_queue_recorded(skb)) {
3170 		hash = skb_get_rx_queue(skb);
3171 		if (hash >= qoffset)
3172 			hash -= qoffset;
3173 		while (unlikely(hash >= qcount))
3174 			hash -= qcount;
3175 		return hash + qoffset;
3176 	}
3177 
3178 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3179 }
3180 
3181 static void skb_warn_bad_offload(const struct sk_buff *skb)
3182 {
3183 	static const netdev_features_t null_features;
3184 	struct net_device *dev = skb->dev;
3185 	const char *name = "";
3186 
3187 	if (!net_ratelimit())
3188 		return;
3189 
3190 	if (dev) {
3191 		if (dev->dev.parent)
3192 			name = dev_driver_string(dev->dev.parent);
3193 		else
3194 			name = netdev_name(dev);
3195 	}
3196 	skb_dump(KERN_WARNING, skb, false);
3197 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3198 	     name, dev ? &dev->features : &null_features,
3199 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3200 }
3201 
3202 /*
3203  * Invalidate hardware checksum when packet is to be mangled, and
3204  * complete checksum manually on outgoing path.
3205  */
3206 int skb_checksum_help(struct sk_buff *skb)
3207 {
3208 	__wsum csum;
3209 	int ret = 0, offset;
3210 
3211 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3212 		goto out_set_summed;
3213 
3214 	if (unlikely(skb_is_gso(skb))) {
3215 		skb_warn_bad_offload(skb);
3216 		return -EINVAL;
3217 	}
3218 
3219 	/* Before computing a checksum, we should make sure no frag could
3220 	 * be modified by an external entity : checksum could be wrong.
3221 	 */
3222 	if (skb_has_shared_frag(skb)) {
3223 		ret = __skb_linearize(skb);
3224 		if (ret)
3225 			goto out;
3226 	}
3227 
3228 	offset = skb_checksum_start_offset(skb);
3229 	BUG_ON(offset >= skb_headlen(skb));
3230 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3231 
3232 	offset += skb->csum_offset;
3233 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3234 
3235 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3236 	if (ret)
3237 		goto out;
3238 
3239 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3240 out_set_summed:
3241 	skb->ip_summed = CHECKSUM_NONE;
3242 out:
3243 	return ret;
3244 }
3245 EXPORT_SYMBOL(skb_checksum_help);
3246 
3247 int skb_crc32c_csum_help(struct sk_buff *skb)
3248 {
3249 	__le32 crc32c_csum;
3250 	int ret = 0, offset, start;
3251 
3252 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3253 		goto out;
3254 
3255 	if (unlikely(skb_is_gso(skb)))
3256 		goto out;
3257 
3258 	/* Before computing a checksum, we should make sure no frag could
3259 	 * be modified by an external entity : checksum could be wrong.
3260 	 */
3261 	if (unlikely(skb_has_shared_frag(skb))) {
3262 		ret = __skb_linearize(skb);
3263 		if (ret)
3264 			goto out;
3265 	}
3266 	start = skb_checksum_start_offset(skb);
3267 	offset = start + offsetof(struct sctphdr, checksum);
3268 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3269 		ret = -EINVAL;
3270 		goto out;
3271 	}
3272 
3273 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3274 	if (ret)
3275 		goto out;
3276 
3277 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3278 						  skb->len - start, ~(__u32)0,
3279 						  crc32c_csum_stub));
3280 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3281 	skb->ip_summed = CHECKSUM_NONE;
3282 	skb->csum_not_inet = 0;
3283 out:
3284 	return ret;
3285 }
3286 
3287 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3288 {
3289 	__be16 type = skb->protocol;
3290 
3291 	/* Tunnel gso handlers can set protocol to ethernet. */
3292 	if (type == htons(ETH_P_TEB)) {
3293 		struct ethhdr *eth;
3294 
3295 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3296 			return 0;
3297 
3298 		eth = (struct ethhdr *)skb->data;
3299 		type = eth->h_proto;
3300 	}
3301 
3302 	return __vlan_get_protocol(skb, type, depth);
3303 }
3304 
3305 /**
3306  *	skb_mac_gso_segment - mac layer segmentation handler.
3307  *	@skb: buffer to segment
3308  *	@features: features for the output path (see dev->features)
3309  */
3310 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3311 				    netdev_features_t features)
3312 {
3313 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3314 	struct packet_offload *ptype;
3315 	int vlan_depth = skb->mac_len;
3316 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3317 
3318 	if (unlikely(!type))
3319 		return ERR_PTR(-EINVAL);
3320 
3321 	__skb_pull(skb, vlan_depth);
3322 
3323 	rcu_read_lock();
3324 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3325 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3326 			segs = ptype->callbacks.gso_segment(skb, features);
3327 			break;
3328 		}
3329 	}
3330 	rcu_read_unlock();
3331 
3332 	__skb_push(skb, skb->data - skb_mac_header(skb));
3333 
3334 	return segs;
3335 }
3336 EXPORT_SYMBOL(skb_mac_gso_segment);
3337 
3338 
3339 /* openvswitch calls this on rx path, so we need a different check.
3340  */
3341 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3342 {
3343 	if (tx_path)
3344 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3345 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3346 
3347 	return skb->ip_summed == CHECKSUM_NONE;
3348 }
3349 
3350 /**
3351  *	__skb_gso_segment - Perform segmentation on skb.
3352  *	@skb: buffer to segment
3353  *	@features: features for the output path (see dev->features)
3354  *	@tx_path: whether it is called in TX path
3355  *
3356  *	This function segments the given skb and returns a list of segments.
3357  *
3358  *	It may return NULL if the skb requires no segmentation.  This is
3359  *	only possible when GSO is used for verifying header integrity.
3360  *
3361  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3362  */
3363 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3364 				  netdev_features_t features, bool tx_path)
3365 {
3366 	struct sk_buff *segs;
3367 
3368 	if (unlikely(skb_needs_check(skb, tx_path))) {
3369 		int err;
3370 
3371 		/* We're going to init ->check field in TCP or UDP header */
3372 		err = skb_cow_head(skb, 0);
3373 		if (err < 0)
3374 			return ERR_PTR(err);
3375 	}
3376 
3377 	/* Only report GSO partial support if it will enable us to
3378 	 * support segmentation on this frame without needing additional
3379 	 * work.
3380 	 */
3381 	if (features & NETIF_F_GSO_PARTIAL) {
3382 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3383 		struct net_device *dev = skb->dev;
3384 
3385 		partial_features |= dev->features & dev->gso_partial_features;
3386 		if (!skb_gso_ok(skb, features | partial_features))
3387 			features &= ~NETIF_F_GSO_PARTIAL;
3388 	}
3389 
3390 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3391 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3392 
3393 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3394 	SKB_GSO_CB(skb)->encap_level = 0;
3395 
3396 	skb_reset_mac_header(skb);
3397 	skb_reset_mac_len(skb);
3398 
3399 	segs = skb_mac_gso_segment(skb, features);
3400 
3401 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3402 		skb_warn_bad_offload(skb);
3403 
3404 	return segs;
3405 }
3406 EXPORT_SYMBOL(__skb_gso_segment);
3407 
3408 /* Take action when hardware reception checksum errors are detected. */
3409 #ifdef CONFIG_BUG
3410 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3411 {
3412 	if (net_ratelimit()) {
3413 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3414 		skb_dump(KERN_ERR, skb, true);
3415 		dump_stack();
3416 	}
3417 }
3418 EXPORT_SYMBOL(netdev_rx_csum_fault);
3419 #endif
3420 
3421 /* XXX: check that highmem exists at all on the given machine. */
3422 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3423 {
3424 #ifdef CONFIG_HIGHMEM
3425 	int i;
3426 
3427 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3428 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3429 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3430 
3431 			if (PageHighMem(skb_frag_page(frag)))
3432 				return 1;
3433 		}
3434 	}
3435 #endif
3436 	return 0;
3437 }
3438 
3439 /* If MPLS offload request, verify we are testing hardware MPLS features
3440  * instead of standard features for the netdev.
3441  */
3442 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3443 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3444 					   netdev_features_t features,
3445 					   __be16 type)
3446 {
3447 	if (eth_p_mpls(type))
3448 		features &= skb->dev->mpls_features;
3449 
3450 	return features;
3451 }
3452 #else
3453 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3454 					   netdev_features_t features,
3455 					   __be16 type)
3456 {
3457 	return features;
3458 }
3459 #endif
3460 
3461 static netdev_features_t harmonize_features(struct sk_buff *skb,
3462 	netdev_features_t features)
3463 {
3464 	__be16 type;
3465 
3466 	type = skb_network_protocol(skb, NULL);
3467 	features = net_mpls_features(skb, features, type);
3468 
3469 	if (skb->ip_summed != CHECKSUM_NONE &&
3470 	    !can_checksum_protocol(features, type)) {
3471 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3472 	}
3473 	if (illegal_highdma(skb->dev, skb))
3474 		features &= ~NETIF_F_SG;
3475 
3476 	return features;
3477 }
3478 
3479 netdev_features_t passthru_features_check(struct sk_buff *skb,
3480 					  struct net_device *dev,
3481 					  netdev_features_t features)
3482 {
3483 	return features;
3484 }
3485 EXPORT_SYMBOL(passthru_features_check);
3486 
3487 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3488 					     struct net_device *dev,
3489 					     netdev_features_t features)
3490 {
3491 	return vlan_features_check(skb, features);
3492 }
3493 
3494 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3495 					    struct net_device *dev,
3496 					    netdev_features_t features)
3497 {
3498 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3499 
3500 	if (gso_segs > dev->gso_max_segs)
3501 		return features & ~NETIF_F_GSO_MASK;
3502 
3503 	if (!skb_shinfo(skb)->gso_type) {
3504 		skb_warn_bad_offload(skb);
3505 		return features & ~NETIF_F_GSO_MASK;
3506 	}
3507 
3508 	/* Support for GSO partial features requires software
3509 	 * intervention before we can actually process the packets
3510 	 * so we need to strip support for any partial features now
3511 	 * and we can pull them back in after we have partially
3512 	 * segmented the frame.
3513 	 */
3514 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3515 		features &= ~dev->gso_partial_features;
3516 
3517 	/* Make sure to clear the IPv4 ID mangling feature if the
3518 	 * IPv4 header has the potential to be fragmented.
3519 	 */
3520 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3521 		struct iphdr *iph = skb->encapsulation ?
3522 				    inner_ip_hdr(skb) : ip_hdr(skb);
3523 
3524 		if (!(iph->frag_off & htons(IP_DF)))
3525 			features &= ~NETIF_F_TSO_MANGLEID;
3526 	}
3527 
3528 	return features;
3529 }
3530 
3531 netdev_features_t netif_skb_features(struct sk_buff *skb)
3532 {
3533 	struct net_device *dev = skb->dev;
3534 	netdev_features_t features = dev->features;
3535 
3536 	if (skb_is_gso(skb))
3537 		features = gso_features_check(skb, dev, features);
3538 
3539 	/* If encapsulation offload request, verify we are testing
3540 	 * hardware encapsulation features instead of standard
3541 	 * features for the netdev
3542 	 */
3543 	if (skb->encapsulation)
3544 		features &= dev->hw_enc_features;
3545 
3546 	if (skb_vlan_tagged(skb))
3547 		features = netdev_intersect_features(features,
3548 						     dev->vlan_features |
3549 						     NETIF_F_HW_VLAN_CTAG_TX |
3550 						     NETIF_F_HW_VLAN_STAG_TX);
3551 
3552 	if (dev->netdev_ops->ndo_features_check)
3553 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3554 								features);
3555 	else
3556 		features &= dflt_features_check(skb, dev, features);
3557 
3558 	return harmonize_features(skb, features);
3559 }
3560 EXPORT_SYMBOL(netif_skb_features);
3561 
3562 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3563 		    struct netdev_queue *txq, bool more)
3564 {
3565 	unsigned int len;
3566 	int rc;
3567 
3568 	if (dev_nit_active(dev))
3569 		dev_queue_xmit_nit(skb, dev);
3570 
3571 	len = skb->len;
3572 	PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3573 	trace_net_dev_start_xmit(skb, dev);
3574 	rc = netdev_start_xmit(skb, dev, txq, more);
3575 	trace_net_dev_xmit(skb, rc, dev, len);
3576 
3577 	return rc;
3578 }
3579 
3580 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3581 				    struct netdev_queue *txq, int *ret)
3582 {
3583 	struct sk_buff *skb = first;
3584 	int rc = NETDEV_TX_OK;
3585 
3586 	while (skb) {
3587 		struct sk_buff *next = skb->next;
3588 
3589 		skb_mark_not_on_list(skb);
3590 		rc = xmit_one(skb, dev, txq, next != NULL);
3591 		if (unlikely(!dev_xmit_complete(rc))) {
3592 			skb->next = next;
3593 			goto out;
3594 		}
3595 
3596 		skb = next;
3597 		if (netif_tx_queue_stopped(txq) && skb) {
3598 			rc = NETDEV_TX_BUSY;
3599 			break;
3600 		}
3601 	}
3602 
3603 out:
3604 	*ret = rc;
3605 	return skb;
3606 }
3607 
3608 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3609 					  netdev_features_t features)
3610 {
3611 	if (skb_vlan_tag_present(skb) &&
3612 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3613 		skb = __vlan_hwaccel_push_inside(skb);
3614 	return skb;
3615 }
3616 
3617 int skb_csum_hwoffload_help(struct sk_buff *skb,
3618 			    const netdev_features_t features)
3619 {
3620 	if (unlikely(skb->csum_not_inet))
3621 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3622 			skb_crc32c_csum_help(skb);
3623 
3624 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3625 }
3626 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3627 
3628 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3629 {
3630 	netdev_features_t features;
3631 
3632 	features = netif_skb_features(skb);
3633 	skb = validate_xmit_vlan(skb, features);
3634 	if (unlikely(!skb))
3635 		goto out_null;
3636 
3637 	skb = sk_validate_xmit_skb(skb, dev);
3638 	if (unlikely(!skb))
3639 		goto out_null;
3640 
3641 	if (netif_needs_gso(skb, features)) {
3642 		struct sk_buff *segs;
3643 
3644 		segs = skb_gso_segment(skb, features);
3645 		if (IS_ERR(segs)) {
3646 			goto out_kfree_skb;
3647 		} else if (segs) {
3648 			consume_skb(skb);
3649 			skb = segs;
3650 		}
3651 	} else {
3652 		if (skb_needs_linearize(skb, features) &&
3653 		    __skb_linearize(skb))
3654 			goto out_kfree_skb;
3655 
3656 		/* If packet is not checksummed and device does not
3657 		 * support checksumming for this protocol, complete
3658 		 * checksumming here.
3659 		 */
3660 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3661 			if (skb->encapsulation)
3662 				skb_set_inner_transport_header(skb,
3663 							       skb_checksum_start_offset(skb));
3664 			else
3665 				skb_set_transport_header(skb,
3666 							 skb_checksum_start_offset(skb));
3667 			if (skb_csum_hwoffload_help(skb, features))
3668 				goto out_kfree_skb;
3669 		}
3670 	}
3671 
3672 	skb = validate_xmit_xfrm(skb, features, again);
3673 
3674 	return skb;
3675 
3676 out_kfree_skb:
3677 	kfree_skb(skb);
3678 out_null:
3679 	atomic_long_inc(&dev->tx_dropped);
3680 	return NULL;
3681 }
3682 
3683 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3684 {
3685 	struct sk_buff *next, *head = NULL, *tail;
3686 
3687 	for (; skb != NULL; skb = next) {
3688 		next = skb->next;
3689 		skb_mark_not_on_list(skb);
3690 
3691 		/* in case skb wont be segmented, point to itself */
3692 		skb->prev = skb;
3693 
3694 		skb = validate_xmit_skb(skb, dev, again);
3695 		if (!skb)
3696 			continue;
3697 
3698 		if (!head)
3699 			head = skb;
3700 		else
3701 			tail->next = skb;
3702 		/* If skb was segmented, skb->prev points to
3703 		 * the last segment. If not, it still contains skb.
3704 		 */
3705 		tail = skb->prev;
3706 	}
3707 	return head;
3708 }
3709 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3710 
3711 static void qdisc_pkt_len_init(struct sk_buff *skb)
3712 {
3713 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3714 
3715 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3716 
3717 	/* To get more precise estimation of bytes sent on wire,
3718 	 * we add to pkt_len the headers size of all segments
3719 	 */
3720 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3721 		unsigned int hdr_len;
3722 		u16 gso_segs = shinfo->gso_segs;
3723 
3724 		/* mac layer + network layer */
3725 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3726 
3727 		/* + transport layer */
3728 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3729 			const struct tcphdr *th;
3730 			struct tcphdr _tcphdr;
3731 
3732 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3733 						sizeof(_tcphdr), &_tcphdr);
3734 			if (likely(th))
3735 				hdr_len += __tcp_hdrlen(th);
3736 		} else {
3737 			struct udphdr _udphdr;
3738 
3739 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3740 					       sizeof(_udphdr), &_udphdr))
3741 				hdr_len += sizeof(struct udphdr);
3742 		}
3743 
3744 		if (shinfo->gso_type & SKB_GSO_DODGY)
3745 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3746 						shinfo->gso_size);
3747 
3748 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3749 	}
3750 }
3751 
3752 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3753 				 struct net_device *dev,
3754 				 struct netdev_queue *txq)
3755 {
3756 	spinlock_t *root_lock = qdisc_lock(q);
3757 	struct sk_buff *to_free = NULL;
3758 	bool contended;
3759 	int rc;
3760 
3761 	qdisc_calculate_pkt_len(skb, q);
3762 
3763 	if (q->flags & TCQ_F_NOLOCK) {
3764 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3765 		qdisc_run(q);
3766 
3767 		if (unlikely(to_free))
3768 			kfree_skb_list(to_free);
3769 		return rc;
3770 	}
3771 
3772 	/*
3773 	 * Heuristic to force contended enqueues to serialize on a
3774 	 * separate lock before trying to get qdisc main lock.
3775 	 * This permits qdisc->running owner to get the lock more
3776 	 * often and dequeue packets faster.
3777 	 */
3778 	contended = qdisc_is_running(q);
3779 	if (unlikely(contended))
3780 		spin_lock(&q->busylock);
3781 
3782 	spin_lock(root_lock);
3783 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3784 		__qdisc_drop(skb, &to_free);
3785 		rc = NET_XMIT_DROP;
3786 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3787 		   qdisc_run_begin(q)) {
3788 		/*
3789 		 * This is a work-conserving queue; there are no old skbs
3790 		 * waiting to be sent out; and the qdisc is not running -
3791 		 * xmit the skb directly.
3792 		 */
3793 
3794 		qdisc_bstats_update(q, skb);
3795 
3796 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3797 			if (unlikely(contended)) {
3798 				spin_unlock(&q->busylock);
3799 				contended = false;
3800 			}
3801 			__qdisc_run(q);
3802 		}
3803 
3804 		qdisc_run_end(q);
3805 		rc = NET_XMIT_SUCCESS;
3806 	} else {
3807 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3808 		if (qdisc_run_begin(q)) {
3809 			if (unlikely(contended)) {
3810 				spin_unlock(&q->busylock);
3811 				contended = false;
3812 			}
3813 			__qdisc_run(q);
3814 			qdisc_run_end(q);
3815 		}
3816 	}
3817 	spin_unlock(root_lock);
3818 	if (unlikely(to_free))
3819 		kfree_skb_list(to_free);
3820 	if (unlikely(contended))
3821 		spin_unlock(&q->busylock);
3822 	return rc;
3823 }
3824 
3825 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3826 static void skb_update_prio(struct sk_buff *skb)
3827 {
3828 	const struct netprio_map *map;
3829 	const struct sock *sk;
3830 	unsigned int prioidx;
3831 
3832 	if (skb->priority)
3833 		return;
3834 	map = rcu_dereference_bh(skb->dev->priomap);
3835 	if (!map)
3836 		return;
3837 	sk = skb_to_full_sk(skb);
3838 	if (!sk)
3839 		return;
3840 
3841 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3842 
3843 	if (prioidx < map->priomap_len)
3844 		skb->priority = map->priomap[prioidx];
3845 }
3846 #else
3847 #define skb_update_prio(skb)
3848 #endif
3849 
3850 /**
3851  *	dev_loopback_xmit - loop back @skb
3852  *	@net: network namespace this loopback is happening in
3853  *	@sk:  sk needed to be a netfilter okfn
3854  *	@skb: buffer to transmit
3855  */
3856 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3857 {
3858 	skb_reset_mac_header(skb);
3859 	__skb_pull(skb, skb_network_offset(skb));
3860 	skb->pkt_type = PACKET_LOOPBACK;
3861 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3862 	WARN_ON(!skb_dst(skb));
3863 	skb_dst_force(skb);
3864 	netif_rx_ni(skb);
3865 	return 0;
3866 }
3867 EXPORT_SYMBOL(dev_loopback_xmit);
3868 
3869 #ifdef CONFIG_NET_EGRESS
3870 static struct sk_buff *
3871 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3872 {
3873 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3874 	struct tcf_result cl_res;
3875 
3876 	if (!miniq)
3877 		return skb;
3878 
3879 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3880 	qdisc_skb_cb(skb)->mru = 0;
3881 	mini_qdisc_bstats_cpu_update(miniq, skb);
3882 
3883 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3884 	case TC_ACT_OK:
3885 	case TC_ACT_RECLASSIFY:
3886 		skb->tc_index = TC_H_MIN(cl_res.classid);
3887 		break;
3888 	case TC_ACT_SHOT:
3889 		mini_qdisc_qstats_cpu_drop(miniq);
3890 		*ret = NET_XMIT_DROP;
3891 		kfree_skb(skb);
3892 		return NULL;
3893 	case TC_ACT_STOLEN:
3894 	case TC_ACT_QUEUED:
3895 	case TC_ACT_TRAP:
3896 		*ret = NET_XMIT_SUCCESS;
3897 		consume_skb(skb);
3898 		return NULL;
3899 	case TC_ACT_REDIRECT:
3900 		/* No need to push/pop skb's mac_header here on egress! */
3901 		skb_do_redirect(skb);
3902 		*ret = NET_XMIT_SUCCESS;
3903 		return NULL;
3904 	default:
3905 		break;
3906 	}
3907 
3908 	return skb;
3909 }
3910 #endif /* CONFIG_NET_EGRESS */
3911 
3912 #ifdef CONFIG_XPS
3913 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3914 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3915 {
3916 	struct xps_map *map;
3917 	int queue_index = -1;
3918 
3919 	if (dev->num_tc) {
3920 		tci *= dev->num_tc;
3921 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3922 	}
3923 
3924 	map = rcu_dereference(dev_maps->attr_map[tci]);
3925 	if (map) {
3926 		if (map->len == 1)
3927 			queue_index = map->queues[0];
3928 		else
3929 			queue_index = map->queues[reciprocal_scale(
3930 						skb_get_hash(skb), map->len)];
3931 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3932 			queue_index = -1;
3933 	}
3934 	return queue_index;
3935 }
3936 #endif
3937 
3938 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3939 			 struct sk_buff *skb)
3940 {
3941 #ifdef CONFIG_XPS
3942 	struct xps_dev_maps *dev_maps;
3943 	struct sock *sk = skb->sk;
3944 	int queue_index = -1;
3945 
3946 	if (!static_key_false(&xps_needed))
3947 		return -1;
3948 
3949 	rcu_read_lock();
3950 	if (!static_key_false(&xps_rxqs_needed))
3951 		goto get_cpus_map;
3952 
3953 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3954 	if (dev_maps) {
3955 		int tci = sk_rx_queue_get(sk);
3956 
3957 		if (tci >= 0 && tci < dev->num_rx_queues)
3958 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3959 							  tci);
3960 	}
3961 
3962 get_cpus_map:
3963 	if (queue_index < 0) {
3964 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3965 		if (dev_maps) {
3966 			unsigned int tci = skb->sender_cpu - 1;
3967 
3968 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3969 							  tci);
3970 		}
3971 	}
3972 	rcu_read_unlock();
3973 
3974 	return queue_index;
3975 #else
3976 	return -1;
3977 #endif
3978 }
3979 
3980 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3981 		     struct net_device *sb_dev)
3982 {
3983 	return 0;
3984 }
3985 EXPORT_SYMBOL(dev_pick_tx_zero);
3986 
3987 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3988 		       struct net_device *sb_dev)
3989 {
3990 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3991 }
3992 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3993 
3994 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3995 		     struct net_device *sb_dev)
3996 {
3997 	struct sock *sk = skb->sk;
3998 	int queue_index = sk_tx_queue_get(sk);
3999 
4000 	sb_dev = sb_dev ? : dev;
4001 
4002 	if (queue_index < 0 || skb->ooo_okay ||
4003 	    queue_index >= dev->real_num_tx_queues) {
4004 		int new_index = get_xps_queue(dev, sb_dev, skb);
4005 
4006 		if (new_index < 0)
4007 			new_index = skb_tx_hash(dev, sb_dev, skb);
4008 
4009 		if (queue_index != new_index && sk &&
4010 		    sk_fullsock(sk) &&
4011 		    rcu_access_pointer(sk->sk_dst_cache))
4012 			sk_tx_queue_set(sk, new_index);
4013 
4014 		queue_index = new_index;
4015 	}
4016 
4017 	return queue_index;
4018 }
4019 EXPORT_SYMBOL(netdev_pick_tx);
4020 
4021 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4022 					 struct sk_buff *skb,
4023 					 struct net_device *sb_dev)
4024 {
4025 	int queue_index = 0;
4026 
4027 #ifdef CONFIG_XPS
4028 	u32 sender_cpu = skb->sender_cpu - 1;
4029 
4030 	if (sender_cpu >= (u32)NR_CPUS)
4031 		skb->sender_cpu = raw_smp_processor_id() + 1;
4032 #endif
4033 
4034 	if (dev->real_num_tx_queues != 1) {
4035 		const struct net_device_ops *ops = dev->netdev_ops;
4036 
4037 		if (ops->ndo_select_queue)
4038 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4039 		else
4040 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4041 
4042 		queue_index = netdev_cap_txqueue(dev, queue_index);
4043 	}
4044 
4045 	skb_set_queue_mapping(skb, queue_index);
4046 	return netdev_get_tx_queue(dev, queue_index);
4047 }
4048 
4049 /**
4050  *	__dev_queue_xmit - transmit a buffer
4051  *	@skb: buffer to transmit
4052  *	@sb_dev: suboordinate device used for L2 forwarding offload
4053  *
4054  *	Queue a buffer for transmission to a network device. The caller must
4055  *	have set the device and priority and built the buffer before calling
4056  *	this function. The function can be called from an interrupt.
4057  *
4058  *	A negative errno code is returned on a failure. A success does not
4059  *	guarantee the frame will be transmitted as it may be dropped due
4060  *	to congestion or traffic shaping.
4061  *
4062  * -----------------------------------------------------------------------------------
4063  *      I notice this method can also return errors from the queue disciplines,
4064  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4065  *      be positive.
4066  *
4067  *      Regardless of the return value, the skb is consumed, so it is currently
4068  *      difficult to retry a send to this method.  (You can bump the ref count
4069  *      before sending to hold a reference for retry if you are careful.)
4070  *
4071  *      When calling this method, interrupts MUST be enabled.  This is because
4072  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4073  *          --BLG
4074  */
4075 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4076 {
4077 	struct net_device *dev = skb->dev;
4078 	struct netdev_queue *txq;
4079 	struct Qdisc *q;
4080 	int rc = -ENOMEM;
4081 	bool again = false;
4082 
4083 	skb_reset_mac_header(skb);
4084 
4085 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4086 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4087 
4088 	/* Disable soft irqs for various locks below. Also
4089 	 * stops preemption for RCU.
4090 	 */
4091 	rcu_read_lock_bh();
4092 
4093 	skb_update_prio(skb);
4094 
4095 	qdisc_pkt_len_init(skb);
4096 #ifdef CONFIG_NET_CLS_ACT
4097 	skb->tc_at_ingress = 0;
4098 # ifdef CONFIG_NET_EGRESS
4099 	if (static_branch_unlikely(&egress_needed_key)) {
4100 		skb = sch_handle_egress(skb, &rc, dev);
4101 		if (!skb)
4102 			goto out;
4103 	}
4104 # endif
4105 #endif
4106 	/* If device/qdisc don't need skb->dst, release it right now while
4107 	 * its hot in this cpu cache.
4108 	 */
4109 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4110 		skb_dst_drop(skb);
4111 	else
4112 		skb_dst_force(skb);
4113 
4114 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4115 	q = rcu_dereference_bh(txq->qdisc);
4116 
4117 	trace_net_dev_queue(skb);
4118 	if (q->enqueue) {
4119 		rc = __dev_xmit_skb(skb, q, dev, txq);
4120 		goto out;
4121 	}
4122 
4123 	/* The device has no queue. Common case for software devices:
4124 	 * loopback, all the sorts of tunnels...
4125 
4126 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4127 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4128 	 * counters.)
4129 	 * However, it is possible, that they rely on protection
4130 	 * made by us here.
4131 
4132 	 * Check this and shot the lock. It is not prone from deadlocks.
4133 	 *Either shot noqueue qdisc, it is even simpler 8)
4134 	 */
4135 	if (dev->flags & IFF_UP) {
4136 		int cpu = smp_processor_id(); /* ok because BHs are off */
4137 
4138 		if (txq->xmit_lock_owner != cpu) {
4139 			if (dev_xmit_recursion())
4140 				goto recursion_alert;
4141 
4142 			skb = validate_xmit_skb(skb, dev, &again);
4143 			if (!skb)
4144 				goto out;
4145 
4146 			PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4147 			HARD_TX_LOCK(dev, txq, cpu);
4148 
4149 			if (!netif_xmit_stopped(txq)) {
4150 				dev_xmit_recursion_inc();
4151 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4152 				dev_xmit_recursion_dec();
4153 				if (dev_xmit_complete(rc)) {
4154 					HARD_TX_UNLOCK(dev, txq);
4155 					goto out;
4156 				}
4157 			}
4158 			HARD_TX_UNLOCK(dev, txq);
4159 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4160 					     dev->name);
4161 		} else {
4162 			/* Recursion is detected! It is possible,
4163 			 * unfortunately
4164 			 */
4165 recursion_alert:
4166 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4167 					     dev->name);
4168 		}
4169 	}
4170 
4171 	rc = -ENETDOWN;
4172 	rcu_read_unlock_bh();
4173 
4174 	atomic_long_inc(&dev->tx_dropped);
4175 	kfree_skb_list(skb);
4176 	return rc;
4177 out:
4178 	rcu_read_unlock_bh();
4179 	return rc;
4180 }
4181 
4182 int dev_queue_xmit(struct sk_buff *skb)
4183 {
4184 	return __dev_queue_xmit(skb, NULL);
4185 }
4186 EXPORT_SYMBOL(dev_queue_xmit);
4187 
4188 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4189 {
4190 	return __dev_queue_xmit(skb, sb_dev);
4191 }
4192 EXPORT_SYMBOL(dev_queue_xmit_accel);
4193 
4194 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4195 {
4196 	struct net_device *dev = skb->dev;
4197 	struct sk_buff *orig_skb = skb;
4198 	struct netdev_queue *txq;
4199 	int ret = NETDEV_TX_BUSY;
4200 	bool again = false;
4201 
4202 	if (unlikely(!netif_running(dev) ||
4203 		     !netif_carrier_ok(dev)))
4204 		goto drop;
4205 
4206 	skb = validate_xmit_skb_list(skb, dev, &again);
4207 	if (skb != orig_skb)
4208 		goto drop;
4209 
4210 	skb_set_queue_mapping(skb, queue_id);
4211 	txq = skb_get_tx_queue(dev, skb);
4212 	PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4213 
4214 	local_bh_disable();
4215 
4216 	dev_xmit_recursion_inc();
4217 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4218 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4219 		ret = netdev_start_xmit(skb, dev, txq, false);
4220 	HARD_TX_UNLOCK(dev, txq);
4221 	dev_xmit_recursion_dec();
4222 
4223 	local_bh_enable();
4224 	return ret;
4225 drop:
4226 	atomic_long_inc(&dev->tx_dropped);
4227 	kfree_skb_list(skb);
4228 	return NET_XMIT_DROP;
4229 }
4230 EXPORT_SYMBOL(__dev_direct_xmit);
4231 
4232 /*************************************************************************
4233  *			Receiver routines
4234  *************************************************************************/
4235 
4236 int netdev_max_backlog __read_mostly = 1000;
4237 EXPORT_SYMBOL(netdev_max_backlog);
4238 
4239 int netdev_tstamp_prequeue __read_mostly = 1;
4240 int netdev_budget __read_mostly = 300;
4241 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4242 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4243 int weight_p __read_mostly = 64;           /* old backlog weight */
4244 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4245 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4246 int dev_rx_weight __read_mostly = 64;
4247 int dev_tx_weight __read_mostly = 64;
4248 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4249 int gro_normal_batch __read_mostly = 8;
4250 
4251 /* Called with irq disabled */
4252 static inline void ____napi_schedule(struct softnet_data *sd,
4253 				     struct napi_struct *napi)
4254 {
4255 	list_add_tail(&napi->poll_list, &sd->poll_list);
4256 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4257 }
4258 
4259 #ifdef CONFIG_RPS
4260 
4261 /* One global table that all flow-based protocols share. */
4262 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4263 EXPORT_SYMBOL(rps_sock_flow_table);
4264 u32 rps_cpu_mask __read_mostly;
4265 EXPORT_SYMBOL(rps_cpu_mask);
4266 
4267 struct static_key_false rps_needed __read_mostly;
4268 EXPORT_SYMBOL(rps_needed);
4269 struct static_key_false rfs_needed __read_mostly;
4270 EXPORT_SYMBOL(rfs_needed);
4271 
4272 static struct rps_dev_flow *
4273 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4274 	    struct rps_dev_flow *rflow, u16 next_cpu)
4275 {
4276 	if (next_cpu < nr_cpu_ids) {
4277 #ifdef CONFIG_RFS_ACCEL
4278 		struct netdev_rx_queue *rxqueue;
4279 		struct rps_dev_flow_table *flow_table;
4280 		struct rps_dev_flow *old_rflow;
4281 		u32 flow_id;
4282 		u16 rxq_index;
4283 		int rc;
4284 
4285 		/* Should we steer this flow to a different hardware queue? */
4286 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4287 		    !(dev->features & NETIF_F_NTUPLE))
4288 			goto out;
4289 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4290 		if (rxq_index == skb_get_rx_queue(skb))
4291 			goto out;
4292 
4293 		rxqueue = dev->_rx + rxq_index;
4294 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4295 		if (!flow_table)
4296 			goto out;
4297 		flow_id = skb_get_hash(skb) & flow_table->mask;
4298 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4299 							rxq_index, flow_id);
4300 		if (rc < 0)
4301 			goto out;
4302 		old_rflow = rflow;
4303 		rflow = &flow_table->flows[flow_id];
4304 		rflow->filter = rc;
4305 		if (old_rflow->filter == rflow->filter)
4306 			old_rflow->filter = RPS_NO_FILTER;
4307 	out:
4308 #endif
4309 		rflow->last_qtail =
4310 			per_cpu(softnet_data, next_cpu).input_queue_head;
4311 	}
4312 
4313 	rflow->cpu = next_cpu;
4314 	return rflow;
4315 }
4316 
4317 /*
4318  * get_rps_cpu is called from netif_receive_skb and returns the target
4319  * CPU from the RPS map of the receiving queue for a given skb.
4320  * rcu_read_lock must be held on entry.
4321  */
4322 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4323 		       struct rps_dev_flow **rflowp)
4324 {
4325 	const struct rps_sock_flow_table *sock_flow_table;
4326 	struct netdev_rx_queue *rxqueue = dev->_rx;
4327 	struct rps_dev_flow_table *flow_table;
4328 	struct rps_map *map;
4329 	int cpu = -1;
4330 	u32 tcpu;
4331 	u32 hash;
4332 
4333 	if (skb_rx_queue_recorded(skb)) {
4334 		u16 index = skb_get_rx_queue(skb);
4335 
4336 		if (unlikely(index >= dev->real_num_rx_queues)) {
4337 			WARN_ONCE(dev->real_num_rx_queues > 1,
4338 				  "%s received packet on queue %u, but number "
4339 				  "of RX queues is %u\n",
4340 				  dev->name, index, dev->real_num_rx_queues);
4341 			goto done;
4342 		}
4343 		rxqueue += index;
4344 	}
4345 
4346 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4347 
4348 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4349 	map = rcu_dereference(rxqueue->rps_map);
4350 	if (!flow_table && !map)
4351 		goto done;
4352 
4353 	skb_reset_network_header(skb);
4354 	hash = skb_get_hash(skb);
4355 	if (!hash)
4356 		goto done;
4357 
4358 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4359 	if (flow_table && sock_flow_table) {
4360 		struct rps_dev_flow *rflow;
4361 		u32 next_cpu;
4362 		u32 ident;
4363 
4364 		/* First check into global flow table if there is a match */
4365 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4366 		if ((ident ^ hash) & ~rps_cpu_mask)
4367 			goto try_rps;
4368 
4369 		next_cpu = ident & rps_cpu_mask;
4370 
4371 		/* OK, now we know there is a match,
4372 		 * we can look at the local (per receive queue) flow table
4373 		 */
4374 		rflow = &flow_table->flows[hash & flow_table->mask];
4375 		tcpu = rflow->cpu;
4376 
4377 		/*
4378 		 * If the desired CPU (where last recvmsg was done) is
4379 		 * different from current CPU (one in the rx-queue flow
4380 		 * table entry), switch if one of the following holds:
4381 		 *   - Current CPU is unset (>= nr_cpu_ids).
4382 		 *   - Current CPU is offline.
4383 		 *   - The current CPU's queue tail has advanced beyond the
4384 		 *     last packet that was enqueued using this table entry.
4385 		 *     This guarantees that all previous packets for the flow
4386 		 *     have been dequeued, thus preserving in order delivery.
4387 		 */
4388 		if (unlikely(tcpu != next_cpu) &&
4389 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4390 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4391 		      rflow->last_qtail)) >= 0)) {
4392 			tcpu = next_cpu;
4393 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4394 		}
4395 
4396 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4397 			*rflowp = rflow;
4398 			cpu = tcpu;
4399 			goto done;
4400 		}
4401 	}
4402 
4403 try_rps:
4404 
4405 	if (map) {
4406 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4407 		if (cpu_online(tcpu)) {
4408 			cpu = tcpu;
4409 			goto done;
4410 		}
4411 	}
4412 
4413 done:
4414 	return cpu;
4415 }
4416 
4417 #ifdef CONFIG_RFS_ACCEL
4418 
4419 /**
4420  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4421  * @dev: Device on which the filter was set
4422  * @rxq_index: RX queue index
4423  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4424  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4425  *
4426  * Drivers that implement ndo_rx_flow_steer() should periodically call
4427  * this function for each installed filter and remove the filters for
4428  * which it returns %true.
4429  */
4430 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4431 			 u32 flow_id, u16 filter_id)
4432 {
4433 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4434 	struct rps_dev_flow_table *flow_table;
4435 	struct rps_dev_flow *rflow;
4436 	bool expire = true;
4437 	unsigned int cpu;
4438 
4439 	rcu_read_lock();
4440 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4441 	if (flow_table && flow_id <= flow_table->mask) {
4442 		rflow = &flow_table->flows[flow_id];
4443 		cpu = READ_ONCE(rflow->cpu);
4444 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4445 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4446 			   rflow->last_qtail) <
4447 		     (int)(10 * flow_table->mask)))
4448 			expire = false;
4449 	}
4450 	rcu_read_unlock();
4451 	return expire;
4452 }
4453 EXPORT_SYMBOL(rps_may_expire_flow);
4454 
4455 #endif /* CONFIG_RFS_ACCEL */
4456 
4457 /* Called from hardirq (IPI) context */
4458 static void rps_trigger_softirq(void *data)
4459 {
4460 	struct softnet_data *sd = data;
4461 
4462 	____napi_schedule(sd, &sd->backlog);
4463 	sd->received_rps++;
4464 }
4465 
4466 #endif /* CONFIG_RPS */
4467 
4468 /*
4469  * Check if this softnet_data structure is another cpu one
4470  * If yes, queue it to our IPI list and return 1
4471  * If no, return 0
4472  */
4473 static int rps_ipi_queued(struct softnet_data *sd)
4474 {
4475 #ifdef CONFIG_RPS
4476 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4477 
4478 	if (sd != mysd) {
4479 		sd->rps_ipi_next = mysd->rps_ipi_list;
4480 		mysd->rps_ipi_list = sd;
4481 
4482 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4483 		return 1;
4484 	}
4485 #endif /* CONFIG_RPS */
4486 	return 0;
4487 }
4488 
4489 #ifdef CONFIG_NET_FLOW_LIMIT
4490 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4491 #endif
4492 
4493 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4494 {
4495 #ifdef CONFIG_NET_FLOW_LIMIT
4496 	struct sd_flow_limit *fl;
4497 	struct softnet_data *sd;
4498 	unsigned int old_flow, new_flow;
4499 
4500 	if (qlen < (netdev_max_backlog >> 1))
4501 		return false;
4502 
4503 	sd = this_cpu_ptr(&softnet_data);
4504 
4505 	rcu_read_lock();
4506 	fl = rcu_dereference(sd->flow_limit);
4507 	if (fl) {
4508 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4509 		old_flow = fl->history[fl->history_head];
4510 		fl->history[fl->history_head] = new_flow;
4511 
4512 		fl->history_head++;
4513 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4514 
4515 		if (likely(fl->buckets[old_flow]))
4516 			fl->buckets[old_flow]--;
4517 
4518 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4519 			fl->count++;
4520 			rcu_read_unlock();
4521 			return true;
4522 		}
4523 	}
4524 	rcu_read_unlock();
4525 #endif
4526 	return false;
4527 }
4528 
4529 /*
4530  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4531  * queue (may be a remote CPU queue).
4532  */
4533 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4534 			      unsigned int *qtail)
4535 {
4536 	struct softnet_data *sd;
4537 	unsigned long flags;
4538 	unsigned int qlen;
4539 
4540 	sd = &per_cpu(softnet_data, cpu);
4541 
4542 	local_irq_save(flags);
4543 
4544 	rps_lock(sd);
4545 	if (!netif_running(skb->dev))
4546 		goto drop;
4547 	qlen = skb_queue_len(&sd->input_pkt_queue);
4548 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4549 		if (qlen) {
4550 enqueue:
4551 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4552 			input_queue_tail_incr_save(sd, qtail);
4553 			rps_unlock(sd);
4554 			local_irq_restore(flags);
4555 			return NET_RX_SUCCESS;
4556 		}
4557 
4558 		/* Schedule NAPI for backlog device
4559 		 * We can use non atomic operation since we own the queue lock
4560 		 */
4561 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4562 			if (!rps_ipi_queued(sd))
4563 				____napi_schedule(sd, &sd->backlog);
4564 		}
4565 		goto enqueue;
4566 	}
4567 
4568 drop:
4569 	sd->dropped++;
4570 	rps_unlock(sd);
4571 
4572 	local_irq_restore(flags);
4573 
4574 	atomic_long_inc(&skb->dev->rx_dropped);
4575 	kfree_skb(skb);
4576 	return NET_RX_DROP;
4577 }
4578 
4579 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4580 {
4581 	struct net_device *dev = skb->dev;
4582 	struct netdev_rx_queue *rxqueue;
4583 
4584 	rxqueue = dev->_rx;
4585 
4586 	if (skb_rx_queue_recorded(skb)) {
4587 		u16 index = skb_get_rx_queue(skb);
4588 
4589 		if (unlikely(index >= dev->real_num_rx_queues)) {
4590 			WARN_ONCE(dev->real_num_rx_queues > 1,
4591 				  "%s received packet on queue %u, but number "
4592 				  "of RX queues is %u\n",
4593 				  dev->name, index, dev->real_num_rx_queues);
4594 
4595 			return rxqueue; /* Return first rxqueue */
4596 		}
4597 		rxqueue += index;
4598 	}
4599 	return rxqueue;
4600 }
4601 
4602 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4603 				     struct xdp_buff *xdp,
4604 				     struct bpf_prog *xdp_prog)
4605 {
4606 	struct netdev_rx_queue *rxqueue;
4607 	void *orig_data, *orig_data_end;
4608 	u32 metalen, act = XDP_DROP;
4609 	__be16 orig_eth_type;
4610 	struct ethhdr *eth;
4611 	bool orig_bcast;
4612 	int hlen, off;
4613 	u32 mac_len;
4614 
4615 	/* Reinjected packets coming from act_mirred or similar should
4616 	 * not get XDP generic processing.
4617 	 */
4618 	if (skb_is_redirected(skb))
4619 		return XDP_PASS;
4620 
4621 	/* XDP packets must be linear and must have sufficient headroom
4622 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4623 	 * native XDP provides, thus we need to do it here as well.
4624 	 */
4625 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4626 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4627 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4628 		int troom = skb->tail + skb->data_len - skb->end;
4629 
4630 		/* In case we have to go down the path and also linearize,
4631 		 * then lets do the pskb_expand_head() work just once here.
4632 		 */
4633 		if (pskb_expand_head(skb,
4634 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4635 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4636 			goto do_drop;
4637 		if (skb_linearize(skb))
4638 			goto do_drop;
4639 	}
4640 
4641 	/* The XDP program wants to see the packet starting at the MAC
4642 	 * header.
4643 	 */
4644 	mac_len = skb->data - skb_mac_header(skb);
4645 	hlen = skb_headlen(skb) + mac_len;
4646 	xdp->data = skb->data - mac_len;
4647 	xdp->data_meta = xdp->data;
4648 	xdp->data_end = xdp->data + hlen;
4649 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4650 
4651 	/* SKB "head" area always have tailroom for skb_shared_info */
4652 	xdp->frame_sz  = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4653 	xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4654 
4655 	orig_data_end = xdp->data_end;
4656 	orig_data = xdp->data;
4657 	eth = (struct ethhdr *)xdp->data;
4658 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4659 	orig_eth_type = eth->h_proto;
4660 
4661 	rxqueue = netif_get_rxqueue(skb);
4662 	xdp->rxq = &rxqueue->xdp_rxq;
4663 
4664 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4665 
4666 	/* check if bpf_xdp_adjust_head was used */
4667 	off = xdp->data - orig_data;
4668 	if (off) {
4669 		if (off > 0)
4670 			__skb_pull(skb, off);
4671 		else if (off < 0)
4672 			__skb_push(skb, -off);
4673 
4674 		skb->mac_header += off;
4675 		skb_reset_network_header(skb);
4676 	}
4677 
4678 	/* check if bpf_xdp_adjust_tail was used */
4679 	off = xdp->data_end - orig_data_end;
4680 	if (off != 0) {
4681 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4682 		skb->len += off; /* positive on grow, negative on shrink */
4683 	}
4684 
4685 	/* check if XDP changed eth hdr such SKB needs update */
4686 	eth = (struct ethhdr *)xdp->data;
4687 	if ((orig_eth_type != eth->h_proto) ||
4688 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4689 		__skb_push(skb, ETH_HLEN);
4690 		skb->protocol = eth_type_trans(skb, skb->dev);
4691 	}
4692 
4693 	switch (act) {
4694 	case XDP_REDIRECT:
4695 	case XDP_TX:
4696 		__skb_push(skb, mac_len);
4697 		break;
4698 	case XDP_PASS:
4699 		metalen = xdp->data - xdp->data_meta;
4700 		if (metalen)
4701 			skb_metadata_set(skb, metalen);
4702 		break;
4703 	default:
4704 		bpf_warn_invalid_xdp_action(act);
4705 		fallthrough;
4706 	case XDP_ABORTED:
4707 		trace_xdp_exception(skb->dev, xdp_prog, act);
4708 		fallthrough;
4709 	case XDP_DROP:
4710 	do_drop:
4711 		kfree_skb(skb);
4712 		break;
4713 	}
4714 
4715 	return act;
4716 }
4717 
4718 /* When doing generic XDP we have to bypass the qdisc layer and the
4719  * network taps in order to match in-driver-XDP behavior.
4720  */
4721 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4722 {
4723 	struct net_device *dev = skb->dev;
4724 	struct netdev_queue *txq;
4725 	bool free_skb = true;
4726 	int cpu, rc;
4727 
4728 	txq = netdev_core_pick_tx(dev, skb, NULL);
4729 	cpu = smp_processor_id();
4730 	HARD_TX_LOCK(dev, txq, cpu);
4731 	if (!netif_xmit_stopped(txq)) {
4732 		rc = netdev_start_xmit(skb, dev, txq, 0);
4733 		if (dev_xmit_complete(rc))
4734 			free_skb = false;
4735 	}
4736 	HARD_TX_UNLOCK(dev, txq);
4737 	if (free_skb) {
4738 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4739 		kfree_skb(skb);
4740 	}
4741 }
4742 
4743 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4744 
4745 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4746 {
4747 	if (xdp_prog) {
4748 		struct xdp_buff xdp;
4749 		u32 act;
4750 		int err;
4751 
4752 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4753 		if (act != XDP_PASS) {
4754 			switch (act) {
4755 			case XDP_REDIRECT:
4756 				err = xdp_do_generic_redirect(skb->dev, skb,
4757 							      &xdp, xdp_prog);
4758 				if (err)
4759 					goto out_redir;
4760 				break;
4761 			case XDP_TX:
4762 				generic_xdp_tx(skb, xdp_prog);
4763 				break;
4764 			}
4765 			return XDP_DROP;
4766 		}
4767 	}
4768 	return XDP_PASS;
4769 out_redir:
4770 	kfree_skb(skb);
4771 	return XDP_DROP;
4772 }
4773 EXPORT_SYMBOL_GPL(do_xdp_generic);
4774 
4775 static int netif_rx_internal(struct sk_buff *skb)
4776 {
4777 	int ret;
4778 
4779 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4780 
4781 	trace_netif_rx(skb);
4782 
4783 #ifdef CONFIG_RPS
4784 	if (static_branch_unlikely(&rps_needed)) {
4785 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4786 		int cpu;
4787 
4788 		preempt_disable();
4789 		rcu_read_lock();
4790 
4791 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4792 		if (cpu < 0)
4793 			cpu = smp_processor_id();
4794 
4795 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4796 
4797 		rcu_read_unlock();
4798 		preempt_enable();
4799 	} else
4800 #endif
4801 	{
4802 		unsigned int qtail;
4803 
4804 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4805 		put_cpu();
4806 	}
4807 	return ret;
4808 }
4809 
4810 /**
4811  *	netif_rx	-	post buffer to the network code
4812  *	@skb: buffer to post
4813  *
4814  *	This function receives a packet from a device driver and queues it for
4815  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4816  *	may be dropped during processing for congestion control or by the
4817  *	protocol layers.
4818  *
4819  *	return values:
4820  *	NET_RX_SUCCESS	(no congestion)
4821  *	NET_RX_DROP     (packet was dropped)
4822  *
4823  */
4824 
4825 int netif_rx(struct sk_buff *skb)
4826 {
4827 	int ret;
4828 
4829 	trace_netif_rx_entry(skb);
4830 
4831 	ret = netif_rx_internal(skb);
4832 	trace_netif_rx_exit(ret);
4833 
4834 	return ret;
4835 }
4836 EXPORT_SYMBOL(netif_rx);
4837 
4838 int netif_rx_ni(struct sk_buff *skb)
4839 {
4840 	int err;
4841 
4842 	trace_netif_rx_ni_entry(skb);
4843 
4844 	preempt_disable();
4845 	err = netif_rx_internal(skb);
4846 	if (local_softirq_pending())
4847 		do_softirq();
4848 	preempt_enable();
4849 	trace_netif_rx_ni_exit(err);
4850 
4851 	return err;
4852 }
4853 EXPORT_SYMBOL(netif_rx_ni);
4854 
4855 int netif_rx_any_context(struct sk_buff *skb)
4856 {
4857 	/*
4858 	 * If invoked from contexts which do not invoke bottom half
4859 	 * processing either at return from interrupt or when softrqs are
4860 	 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4861 	 * directly.
4862 	 */
4863 	if (in_interrupt())
4864 		return netif_rx(skb);
4865 	else
4866 		return netif_rx_ni(skb);
4867 }
4868 EXPORT_SYMBOL(netif_rx_any_context);
4869 
4870 static __latent_entropy void net_tx_action(struct softirq_action *h)
4871 {
4872 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4873 
4874 	if (sd->completion_queue) {
4875 		struct sk_buff *clist;
4876 
4877 		local_irq_disable();
4878 		clist = sd->completion_queue;
4879 		sd->completion_queue = NULL;
4880 		local_irq_enable();
4881 
4882 		while (clist) {
4883 			struct sk_buff *skb = clist;
4884 
4885 			clist = clist->next;
4886 
4887 			WARN_ON(refcount_read(&skb->users));
4888 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4889 				trace_consume_skb(skb);
4890 			else
4891 				trace_kfree_skb(skb, net_tx_action);
4892 
4893 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4894 				__kfree_skb(skb);
4895 			else
4896 				__kfree_skb_defer(skb);
4897 		}
4898 
4899 		__kfree_skb_flush();
4900 	}
4901 
4902 	if (sd->output_queue) {
4903 		struct Qdisc *head;
4904 
4905 		local_irq_disable();
4906 		head = sd->output_queue;
4907 		sd->output_queue = NULL;
4908 		sd->output_queue_tailp = &sd->output_queue;
4909 		local_irq_enable();
4910 
4911 		while (head) {
4912 			struct Qdisc *q = head;
4913 			spinlock_t *root_lock = NULL;
4914 
4915 			head = head->next_sched;
4916 
4917 			if (!(q->flags & TCQ_F_NOLOCK)) {
4918 				root_lock = qdisc_lock(q);
4919 				spin_lock(root_lock);
4920 			}
4921 			/* We need to make sure head->next_sched is read
4922 			 * before clearing __QDISC_STATE_SCHED
4923 			 */
4924 			smp_mb__before_atomic();
4925 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4926 			qdisc_run(q);
4927 			if (root_lock)
4928 				spin_unlock(root_lock);
4929 		}
4930 	}
4931 
4932 	xfrm_dev_backlog(sd);
4933 }
4934 
4935 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4936 /* This hook is defined here for ATM LANE */
4937 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4938 			     unsigned char *addr) __read_mostly;
4939 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4940 #endif
4941 
4942 static inline struct sk_buff *
4943 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4944 		   struct net_device *orig_dev, bool *another)
4945 {
4946 #ifdef CONFIG_NET_CLS_ACT
4947 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4948 	struct tcf_result cl_res;
4949 
4950 	/* If there's at least one ingress present somewhere (so
4951 	 * we get here via enabled static key), remaining devices
4952 	 * that are not configured with an ingress qdisc will bail
4953 	 * out here.
4954 	 */
4955 	if (!miniq)
4956 		return skb;
4957 
4958 	if (*pt_prev) {
4959 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4960 		*pt_prev = NULL;
4961 	}
4962 
4963 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4964 	qdisc_skb_cb(skb)->mru = 0;
4965 	skb->tc_at_ingress = 1;
4966 	mini_qdisc_bstats_cpu_update(miniq, skb);
4967 
4968 	switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4969 				     &cl_res, false)) {
4970 	case TC_ACT_OK:
4971 	case TC_ACT_RECLASSIFY:
4972 		skb->tc_index = TC_H_MIN(cl_res.classid);
4973 		break;
4974 	case TC_ACT_SHOT:
4975 		mini_qdisc_qstats_cpu_drop(miniq);
4976 		kfree_skb(skb);
4977 		return NULL;
4978 	case TC_ACT_STOLEN:
4979 	case TC_ACT_QUEUED:
4980 	case TC_ACT_TRAP:
4981 		consume_skb(skb);
4982 		return NULL;
4983 	case TC_ACT_REDIRECT:
4984 		/* skb_mac_header check was done by cls/act_bpf, so
4985 		 * we can safely push the L2 header back before
4986 		 * redirecting to another netdev
4987 		 */
4988 		__skb_push(skb, skb->mac_len);
4989 		if (skb_do_redirect(skb) == -EAGAIN) {
4990 			__skb_pull(skb, skb->mac_len);
4991 			*another = true;
4992 			break;
4993 		}
4994 		return NULL;
4995 	case TC_ACT_CONSUMED:
4996 		return NULL;
4997 	default:
4998 		break;
4999 	}
5000 #endif /* CONFIG_NET_CLS_ACT */
5001 	return skb;
5002 }
5003 
5004 /**
5005  *	netdev_is_rx_handler_busy - check if receive handler is registered
5006  *	@dev: device to check
5007  *
5008  *	Check if a receive handler is already registered for a given device.
5009  *	Return true if there one.
5010  *
5011  *	The caller must hold the rtnl_mutex.
5012  */
5013 bool netdev_is_rx_handler_busy(struct net_device *dev)
5014 {
5015 	ASSERT_RTNL();
5016 	return dev && rtnl_dereference(dev->rx_handler);
5017 }
5018 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5019 
5020 /**
5021  *	netdev_rx_handler_register - register receive handler
5022  *	@dev: device to register a handler for
5023  *	@rx_handler: receive handler to register
5024  *	@rx_handler_data: data pointer that is used by rx handler
5025  *
5026  *	Register a receive handler for a device. This handler will then be
5027  *	called from __netif_receive_skb. A negative errno code is returned
5028  *	on a failure.
5029  *
5030  *	The caller must hold the rtnl_mutex.
5031  *
5032  *	For a general description of rx_handler, see enum rx_handler_result.
5033  */
5034 int netdev_rx_handler_register(struct net_device *dev,
5035 			       rx_handler_func_t *rx_handler,
5036 			       void *rx_handler_data)
5037 {
5038 	if (netdev_is_rx_handler_busy(dev))
5039 		return -EBUSY;
5040 
5041 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5042 		return -EINVAL;
5043 
5044 	/* Note: rx_handler_data must be set before rx_handler */
5045 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5046 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5047 
5048 	return 0;
5049 }
5050 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5051 
5052 /**
5053  *	netdev_rx_handler_unregister - unregister receive handler
5054  *	@dev: device to unregister a handler from
5055  *
5056  *	Unregister a receive handler from a device.
5057  *
5058  *	The caller must hold the rtnl_mutex.
5059  */
5060 void netdev_rx_handler_unregister(struct net_device *dev)
5061 {
5062 
5063 	ASSERT_RTNL();
5064 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5065 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5066 	 * section has a guarantee to see a non NULL rx_handler_data
5067 	 * as well.
5068 	 */
5069 	synchronize_net();
5070 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5071 }
5072 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5073 
5074 /*
5075  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5076  * the special handling of PFMEMALLOC skbs.
5077  */
5078 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5079 {
5080 	switch (skb->protocol) {
5081 	case htons(ETH_P_ARP):
5082 	case htons(ETH_P_IP):
5083 	case htons(ETH_P_IPV6):
5084 	case htons(ETH_P_8021Q):
5085 	case htons(ETH_P_8021AD):
5086 		return true;
5087 	default:
5088 		return false;
5089 	}
5090 }
5091 
5092 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5093 			     int *ret, struct net_device *orig_dev)
5094 {
5095 	if (nf_hook_ingress_active(skb)) {
5096 		int ingress_retval;
5097 
5098 		if (*pt_prev) {
5099 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5100 			*pt_prev = NULL;
5101 		}
5102 
5103 		rcu_read_lock();
5104 		ingress_retval = nf_hook_ingress(skb);
5105 		rcu_read_unlock();
5106 		return ingress_retval;
5107 	}
5108 	return 0;
5109 }
5110 
5111 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5112 				    struct packet_type **ppt_prev)
5113 {
5114 	struct packet_type *ptype, *pt_prev;
5115 	rx_handler_func_t *rx_handler;
5116 	struct sk_buff *skb = *pskb;
5117 	struct net_device *orig_dev;
5118 	bool deliver_exact = false;
5119 	int ret = NET_RX_DROP;
5120 	__be16 type;
5121 
5122 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5123 
5124 	trace_netif_receive_skb(skb);
5125 
5126 	orig_dev = skb->dev;
5127 
5128 	skb_reset_network_header(skb);
5129 	if (!skb_transport_header_was_set(skb))
5130 		skb_reset_transport_header(skb);
5131 	skb_reset_mac_len(skb);
5132 
5133 	pt_prev = NULL;
5134 
5135 another_round:
5136 	skb->skb_iif = skb->dev->ifindex;
5137 
5138 	__this_cpu_inc(softnet_data.processed);
5139 
5140 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5141 		int ret2;
5142 
5143 		preempt_disable();
5144 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5145 		preempt_enable();
5146 
5147 		if (ret2 != XDP_PASS) {
5148 			ret = NET_RX_DROP;
5149 			goto out;
5150 		}
5151 		skb_reset_mac_len(skb);
5152 	}
5153 
5154 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5155 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5156 		skb = skb_vlan_untag(skb);
5157 		if (unlikely(!skb))
5158 			goto out;
5159 	}
5160 
5161 	if (skb_skip_tc_classify(skb))
5162 		goto skip_classify;
5163 
5164 	if (pfmemalloc)
5165 		goto skip_taps;
5166 
5167 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5168 		if (pt_prev)
5169 			ret = deliver_skb(skb, pt_prev, orig_dev);
5170 		pt_prev = ptype;
5171 	}
5172 
5173 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5174 		if (pt_prev)
5175 			ret = deliver_skb(skb, pt_prev, orig_dev);
5176 		pt_prev = ptype;
5177 	}
5178 
5179 skip_taps:
5180 #ifdef CONFIG_NET_INGRESS
5181 	if (static_branch_unlikely(&ingress_needed_key)) {
5182 		bool another = false;
5183 
5184 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5185 					 &another);
5186 		if (another)
5187 			goto another_round;
5188 		if (!skb)
5189 			goto out;
5190 
5191 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5192 			goto out;
5193 	}
5194 #endif
5195 	skb_reset_redirect(skb);
5196 skip_classify:
5197 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5198 		goto drop;
5199 
5200 	if (skb_vlan_tag_present(skb)) {
5201 		if (pt_prev) {
5202 			ret = deliver_skb(skb, pt_prev, orig_dev);
5203 			pt_prev = NULL;
5204 		}
5205 		if (vlan_do_receive(&skb))
5206 			goto another_round;
5207 		else if (unlikely(!skb))
5208 			goto out;
5209 	}
5210 
5211 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5212 	if (rx_handler) {
5213 		if (pt_prev) {
5214 			ret = deliver_skb(skb, pt_prev, orig_dev);
5215 			pt_prev = NULL;
5216 		}
5217 		switch (rx_handler(&skb)) {
5218 		case RX_HANDLER_CONSUMED:
5219 			ret = NET_RX_SUCCESS;
5220 			goto out;
5221 		case RX_HANDLER_ANOTHER:
5222 			goto another_round;
5223 		case RX_HANDLER_EXACT:
5224 			deliver_exact = true;
5225 		case RX_HANDLER_PASS:
5226 			break;
5227 		default:
5228 			BUG();
5229 		}
5230 	}
5231 
5232 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5233 check_vlan_id:
5234 		if (skb_vlan_tag_get_id(skb)) {
5235 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5236 			 * find vlan device.
5237 			 */
5238 			skb->pkt_type = PACKET_OTHERHOST;
5239 		} else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5240 			   skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5241 			/* Outer header is 802.1P with vlan 0, inner header is
5242 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5243 			 * not find vlan dev for vlan id 0.
5244 			 */
5245 			__vlan_hwaccel_clear_tag(skb);
5246 			skb = skb_vlan_untag(skb);
5247 			if (unlikely(!skb))
5248 				goto out;
5249 			if (vlan_do_receive(&skb))
5250 				/* After stripping off 802.1P header with vlan 0
5251 				 * vlan dev is found for inner header.
5252 				 */
5253 				goto another_round;
5254 			else if (unlikely(!skb))
5255 				goto out;
5256 			else
5257 				/* We have stripped outer 802.1P vlan 0 header.
5258 				 * But could not find vlan dev.
5259 				 * check again for vlan id to set OTHERHOST.
5260 				 */
5261 				goto check_vlan_id;
5262 		}
5263 		/* Note: we might in the future use prio bits
5264 		 * and set skb->priority like in vlan_do_receive()
5265 		 * For the time being, just ignore Priority Code Point
5266 		 */
5267 		__vlan_hwaccel_clear_tag(skb);
5268 	}
5269 
5270 	type = skb->protocol;
5271 
5272 	/* deliver only exact match when indicated */
5273 	if (likely(!deliver_exact)) {
5274 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5275 				       &ptype_base[ntohs(type) &
5276 						   PTYPE_HASH_MASK]);
5277 	}
5278 
5279 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5280 			       &orig_dev->ptype_specific);
5281 
5282 	if (unlikely(skb->dev != orig_dev)) {
5283 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5284 				       &skb->dev->ptype_specific);
5285 	}
5286 
5287 	if (pt_prev) {
5288 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5289 			goto drop;
5290 		*ppt_prev = pt_prev;
5291 	} else {
5292 drop:
5293 		if (!deliver_exact)
5294 			atomic_long_inc(&skb->dev->rx_dropped);
5295 		else
5296 			atomic_long_inc(&skb->dev->rx_nohandler);
5297 		kfree_skb(skb);
5298 		/* Jamal, now you will not able to escape explaining
5299 		 * me how you were going to use this. :-)
5300 		 */
5301 		ret = NET_RX_DROP;
5302 	}
5303 
5304 out:
5305 	/* The invariant here is that if *ppt_prev is not NULL
5306 	 * then skb should also be non-NULL.
5307 	 *
5308 	 * Apparently *ppt_prev assignment above holds this invariant due to
5309 	 * skb dereferencing near it.
5310 	 */
5311 	*pskb = skb;
5312 	return ret;
5313 }
5314 
5315 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5316 {
5317 	struct net_device *orig_dev = skb->dev;
5318 	struct packet_type *pt_prev = NULL;
5319 	int ret;
5320 
5321 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5322 	if (pt_prev)
5323 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5324 					 skb->dev, pt_prev, orig_dev);
5325 	return ret;
5326 }
5327 
5328 /**
5329  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5330  *	@skb: buffer to process
5331  *
5332  *	More direct receive version of netif_receive_skb().  It should
5333  *	only be used by callers that have a need to skip RPS and Generic XDP.
5334  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5335  *
5336  *	This function may only be called from softirq context and interrupts
5337  *	should be enabled.
5338  *
5339  *	Return values (usually ignored):
5340  *	NET_RX_SUCCESS: no congestion
5341  *	NET_RX_DROP: packet was dropped
5342  */
5343 int netif_receive_skb_core(struct sk_buff *skb)
5344 {
5345 	int ret;
5346 
5347 	rcu_read_lock();
5348 	ret = __netif_receive_skb_one_core(skb, false);
5349 	rcu_read_unlock();
5350 
5351 	return ret;
5352 }
5353 EXPORT_SYMBOL(netif_receive_skb_core);
5354 
5355 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5356 						  struct packet_type *pt_prev,
5357 						  struct net_device *orig_dev)
5358 {
5359 	struct sk_buff *skb, *next;
5360 
5361 	if (!pt_prev)
5362 		return;
5363 	if (list_empty(head))
5364 		return;
5365 	if (pt_prev->list_func != NULL)
5366 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5367 				   ip_list_rcv, head, pt_prev, orig_dev);
5368 	else
5369 		list_for_each_entry_safe(skb, next, head, list) {
5370 			skb_list_del_init(skb);
5371 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5372 		}
5373 }
5374 
5375 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5376 {
5377 	/* Fast-path assumptions:
5378 	 * - There is no RX handler.
5379 	 * - Only one packet_type matches.
5380 	 * If either of these fails, we will end up doing some per-packet
5381 	 * processing in-line, then handling the 'last ptype' for the whole
5382 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5383 	 * because the 'last ptype' must be constant across the sublist, and all
5384 	 * other ptypes are handled per-packet.
5385 	 */
5386 	/* Current (common) ptype of sublist */
5387 	struct packet_type *pt_curr = NULL;
5388 	/* Current (common) orig_dev of sublist */
5389 	struct net_device *od_curr = NULL;
5390 	struct list_head sublist;
5391 	struct sk_buff *skb, *next;
5392 
5393 	INIT_LIST_HEAD(&sublist);
5394 	list_for_each_entry_safe(skb, next, head, list) {
5395 		struct net_device *orig_dev = skb->dev;
5396 		struct packet_type *pt_prev = NULL;
5397 
5398 		skb_list_del_init(skb);
5399 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5400 		if (!pt_prev)
5401 			continue;
5402 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5403 			/* dispatch old sublist */
5404 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5405 			/* start new sublist */
5406 			INIT_LIST_HEAD(&sublist);
5407 			pt_curr = pt_prev;
5408 			od_curr = orig_dev;
5409 		}
5410 		list_add_tail(&skb->list, &sublist);
5411 	}
5412 
5413 	/* dispatch final sublist */
5414 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5415 }
5416 
5417 static int __netif_receive_skb(struct sk_buff *skb)
5418 {
5419 	int ret;
5420 
5421 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5422 		unsigned int noreclaim_flag;
5423 
5424 		/*
5425 		 * PFMEMALLOC skbs are special, they should
5426 		 * - be delivered to SOCK_MEMALLOC sockets only
5427 		 * - stay away from userspace
5428 		 * - have bounded memory usage
5429 		 *
5430 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5431 		 * context down to all allocation sites.
5432 		 */
5433 		noreclaim_flag = memalloc_noreclaim_save();
5434 		ret = __netif_receive_skb_one_core(skb, true);
5435 		memalloc_noreclaim_restore(noreclaim_flag);
5436 	} else
5437 		ret = __netif_receive_skb_one_core(skb, false);
5438 
5439 	return ret;
5440 }
5441 
5442 static void __netif_receive_skb_list(struct list_head *head)
5443 {
5444 	unsigned long noreclaim_flag = 0;
5445 	struct sk_buff *skb, *next;
5446 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5447 
5448 	list_for_each_entry_safe(skb, next, head, list) {
5449 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5450 			struct list_head sublist;
5451 
5452 			/* Handle the previous sublist */
5453 			list_cut_before(&sublist, head, &skb->list);
5454 			if (!list_empty(&sublist))
5455 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5456 			pfmemalloc = !pfmemalloc;
5457 			/* See comments in __netif_receive_skb */
5458 			if (pfmemalloc)
5459 				noreclaim_flag = memalloc_noreclaim_save();
5460 			else
5461 				memalloc_noreclaim_restore(noreclaim_flag);
5462 		}
5463 	}
5464 	/* Handle the remaining sublist */
5465 	if (!list_empty(head))
5466 		__netif_receive_skb_list_core(head, pfmemalloc);
5467 	/* Restore pflags */
5468 	if (pfmemalloc)
5469 		memalloc_noreclaim_restore(noreclaim_flag);
5470 }
5471 
5472 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5473 {
5474 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5475 	struct bpf_prog *new = xdp->prog;
5476 	int ret = 0;
5477 
5478 	if (new) {
5479 		u32 i;
5480 
5481 		mutex_lock(&new->aux->used_maps_mutex);
5482 
5483 		/* generic XDP does not work with DEVMAPs that can
5484 		 * have a bpf_prog installed on an entry
5485 		 */
5486 		for (i = 0; i < new->aux->used_map_cnt; i++) {
5487 			if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5488 			    cpu_map_prog_allowed(new->aux->used_maps[i])) {
5489 				mutex_unlock(&new->aux->used_maps_mutex);
5490 				return -EINVAL;
5491 			}
5492 		}
5493 
5494 		mutex_unlock(&new->aux->used_maps_mutex);
5495 	}
5496 
5497 	switch (xdp->command) {
5498 	case XDP_SETUP_PROG:
5499 		rcu_assign_pointer(dev->xdp_prog, new);
5500 		if (old)
5501 			bpf_prog_put(old);
5502 
5503 		if (old && !new) {
5504 			static_branch_dec(&generic_xdp_needed_key);
5505 		} else if (new && !old) {
5506 			static_branch_inc(&generic_xdp_needed_key);
5507 			dev_disable_lro(dev);
5508 			dev_disable_gro_hw(dev);
5509 		}
5510 		break;
5511 
5512 	default:
5513 		ret = -EINVAL;
5514 		break;
5515 	}
5516 
5517 	return ret;
5518 }
5519 
5520 static int netif_receive_skb_internal(struct sk_buff *skb)
5521 {
5522 	int ret;
5523 
5524 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5525 
5526 	if (skb_defer_rx_timestamp(skb))
5527 		return NET_RX_SUCCESS;
5528 
5529 	rcu_read_lock();
5530 #ifdef CONFIG_RPS
5531 	if (static_branch_unlikely(&rps_needed)) {
5532 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5533 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5534 
5535 		if (cpu >= 0) {
5536 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5537 			rcu_read_unlock();
5538 			return ret;
5539 		}
5540 	}
5541 #endif
5542 	ret = __netif_receive_skb(skb);
5543 	rcu_read_unlock();
5544 	return ret;
5545 }
5546 
5547 static void netif_receive_skb_list_internal(struct list_head *head)
5548 {
5549 	struct sk_buff *skb, *next;
5550 	struct list_head sublist;
5551 
5552 	INIT_LIST_HEAD(&sublist);
5553 	list_for_each_entry_safe(skb, next, head, list) {
5554 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5555 		skb_list_del_init(skb);
5556 		if (!skb_defer_rx_timestamp(skb))
5557 			list_add_tail(&skb->list, &sublist);
5558 	}
5559 	list_splice_init(&sublist, head);
5560 
5561 	rcu_read_lock();
5562 #ifdef CONFIG_RPS
5563 	if (static_branch_unlikely(&rps_needed)) {
5564 		list_for_each_entry_safe(skb, next, head, list) {
5565 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5566 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5567 
5568 			if (cpu >= 0) {
5569 				/* Will be handled, remove from list */
5570 				skb_list_del_init(skb);
5571 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5572 			}
5573 		}
5574 	}
5575 #endif
5576 	__netif_receive_skb_list(head);
5577 	rcu_read_unlock();
5578 }
5579 
5580 /**
5581  *	netif_receive_skb - process receive buffer from network
5582  *	@skb: buffer to process
5583  *
5584  *	netif_receive_skb() is the main receive data processing function.
5585  *	It always succeeds. The buffer may be dropped during processing
5586  *	for congestion control or by the protocol layers.
5587  *
5588  *	This function may only be called from softirq context and interrupts
5589  *	should be enabled.
5590  *
5591  *	Return values (usually ignored):
5592  *	NET_RX_SUCCESS: no congestion
5593  *	NET_RX_DROP: packet was dropped
5594  */
5595 int netif_receive_skb(struct sk_buff *skb)
5596 {
5597 	int ret;
5598 
5599 	trace_netif_receive_skb_entry(skb);
5600 
5601 	ret = netif_receive_skb_internal(skb);
5602 	trace_netif_receive_skb_exit(ret);
5603 
5604 	return ret;
5605 }
5606 EXPORT_SYMBOL(netif_receive_skb);
5607 
5608 /**
5609  *	netif_receive_skb_list - process many receive buffers from network
5610  *	@head: list of skbs to process.
5611  *
5612  *	Since return value of netif_receive_skb() is normally ignored, and
5613  *	wouldn't be meaningful for a list, this function returns void.
5614  *
5615  *	This function may only be called from softirq context and interrupts
5616  *	should be enabled.
5617  */
5618 void netif_receive_skb_list(struct list_head *head)
5619 {
5620 	struct sk_buff *skb;
5621 
5622 	if (list_empty(head))
5623 		return;
5624 	if (trace_netif_receive_skb_list_entry_enabled()) {
5625 		list_for_each_entry(skb, head, list)
5626 			trace_netif_receive_skb_list_entry(skb);
5627 	}
5628 	netif_receive_skb_list_internal(head);
5629 	trace_netif_receive_skb_list_exit(0);
5630 }
5631 EXPORT_SYMBOL(netif_receive_skb_list);
5632 
5633 static DEFINE_PER_CPU(struct work_struct, flush_works);
5634 
5635 /* Network device is going away, flush any packets still pending */
5636 static void flush_backlog(struct work_struct *work)
5637 {
5638 	struct sk_buff *skb, *tmp;
5639 	struct softnet_data *sd;
5640 
5641 	local_bh_disable();
5642 	sd = this_cpu_ptr(&softnet_data);
5643 
5644 	local_irq_disable();
5645 	rps_lock(sd);
5646 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5647 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5648 			__skb_unlink(skb, &sd->input_pkt_queue);
5649 			dev_kfree_skb_irq(skb);
5650 			input_queue_head_incr(sd);
5651 		}
5652 	}
5653 	rps_unlock(sd);
5654 	local_irq_enable();
5655 
5656 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5657 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5658 			__skb_unlink(skb, &sd->process_queue);
5659 			kfree_skb(skb);
5660 			input_queue_head_incr(sd);
5661 		}
5662 	}
5663 	local_bh_enable();
5664 }
5665 
5666 static bool flush_required(int cpu)
5667 {
5668 #if IS_ENABLED(CONFIG_RPS)
5669 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5670 	bool do_flush;
5671 
5672 	local_irq_disable();
5673 	rps_lock(sd);
5674 
5675 	/* as insertion into process_queue happens with the rps lock held,
5676 	 * process_queue access may race only with dequeue
5677 	 */
5678 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5679 		   !skb_queue_empty_lockless(&sd->process_queue);
5680 	rps_unlock(sd);
5681 	local_irq_enable();
5682 
5683 	return do_flush;
5684 #endif
5685 	/* without RPS we can't safely check input_pkt_queue: during a
5686 	 * concurrent remote skb_queue_splice() we can detect as empty both
5687 	 * input_pkt_queue and process_queue even if the latter could end-up
5688 	 * containing a lot of packets.
5689 	 */
5690 	return true;
5691 }
5692 
5693 static void flush_all_backlogs(void)
5694 {
5695 	static cpumask_t flush_cpus;
5696 	unsigned int cpu;
5697 
5698 	/* since we are under rtnl lock protection we can use static data
5699 	 * for the cpumask and avoid allocating on stack the possibly
5700 	 * large mask
5701 	 */
5702 	ASSERT_RTNL();
5703 
5704 	get_online_cpus();
5705 
5706 	cpumask_clear(&flush_cpus);
5707 	for_each_online_cpu(cpu) {
5708 		if (flush_required(cpu)) {
5709 			queue_work_on(cpu, system_highpri_wq,
5710 				      per_cpu_ptr(&flush_works, cpu));
5711 			cpumask_set_cpu(cpu, &flush_cpus);
5712 		}
5713 	}
5714 
5715 	/* we can have in flight packet[s] on the cpus we are not flushing,
5716 	 * synchronize_net() in rollback_registered_many() will take care of
5717 	 * them
5718 	 */
5719 	for_each_cpu(cpu, &flush_cpus)
5720 		flush_work(per_cpu_ptr(&flush_works, cpu));
5721 
5722 	put_online_cpus();
5723 }
5724 
5725 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5726 static void gro_normal_list(struct napi_struct *napi)
5727 {
5728 	if (!napi->rx_count)
5729 		return;
5730 	netif_receive_skb_list_internal(&napi->rx_list);
5731 	INIT_LIST_HEAD(&napi->rx_list);
5732 	napi->rx_count = 0;
5733 }
5734 
5735 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5736  * pass the whole batch up to the stack.
5737  */
5738 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5739 {
5740 	list_add_tail(&skb->list, &napi->rx_list);
5741 	if (++napi->rx_count >= gro_normal_batch)
5742 		gro_normal_list(napi);
5743 }
5744 
5745 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5746 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5747 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5748 {
5749 	struct packet_offload *ptype;
5750 	__be16 type = skb->protocol;
5751 	struct list_head *head = &offload_base;
5752 	int err = -ENOENT;
5753 
5754 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5755 
5756 	if (NAPI_GRO_CB(skb)->count == 1) {
5757 		skb_shinfo(skb)->gso_size = 0;
5758 		goto out;
5759 	}
5760 
5761 	rcu_read_lock();
5762 	list_for_each_entry_rcu(ptype, head, list) {
5763 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5764 			continue;
5765 
5766 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5767 					 ipv6_gro_complete, inet_gro_complete,
5768 					 skb, 0);
5769 		break;
5770 	}
5771 	rcu_read_unlock();
5772 
5773 	if (err) {
5774 		WARN_ON(&ptype->list == head);
5775 		kfree_skb(skb);
5776 		return NET_RX_SUCCESS;
5777 	}
5778 
5779 out:
5780 	gro_normal_one(napi, skb);
5781 	return NET_RX_SUCCESS;
5782 }
5783 
5784 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5785 				   bool flush_old)
5786 {
5787 	struct list_head *head = &napi->gro_hash[index].list;
5788 	struct sk_buff *skb, *p;
5789 
5790 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5791 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5792 			return;
5793 		skb_list_del_init(skb);
5794 		napi_gro_complete(napi, skb);
5795 		napi->gro_hash[index].count--;
5796 	}
5797 
5798 	if (!napi->gro_hash[index].count)
5799 		__clear_bit(index, &napi->gro_bitmask);
5800 }
5801 
5802 /* napi->gro_hash[].list contains packets ordered by age.
5803  * youngest packets at the head of it.
5804  * Complete skbs in reverse order to reduce latencies.
5805  */
5806 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5807 {
5808 	unsigned long bitmask = napi->gro_bitmask;
5809 	unsigned int i, base = ~0U;
5810 
5811 	while ((i = ffs(bitmask)) != 0) {
5812 		bitmask >>= i;
5813 		base += i;
5814 		__napi_gro_flush_chain(napi, base, flush_old);
5815 	}
5816 }
5817 EXPORT_SYMBOL(napi_gro_flush);
5818 
5819 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5820 					  struct sk_buff *skb)
5821 {
5822 	unsigned int maclen = skb->dev->hard_header_len;
5823 	u32 hash = skb_get_hash_raw(skb);
5824 	struct list_head *head;
5825 	struct sk_buff *p;
5826 
5827 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5828 	list_for_each_entry(p, head, list) {
5829 		unsigned long diffs;
5830 
5831 		NAPI_GRO_CB(p)->flush = 0;
5832 
5833 		if (hash != skb_get_hash_raw(p)) {
5834 			NAPI_GRO_CB(p)->same_flow = 0;
5835 			continue;
5836 		}
5837 
5838 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5839 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5840 		if (skb_vlan_tag_present(p))
5841 			diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5842 		diffs |= skb_metadata_dst_cmp(p, skb);
5843 		diffs |= skb_metadata_differs(p, skb);
5844 		if (maclen == ETH_HLEN)
5845 			diffs |= compare_ether_header(skb_mac_header(p),
5846 						      skb_mac_header(skb));
5847 		else if (!diffs)
5848 			diffs = memcmp(skb_mac_header(p),
5849 				       skb_mac_header(skb),
5850 				       maclen);
5851 		NAPI_GRO_CB(p)->same_flow = !diffs;
5852 	}
5853 
5854 	return head;
5855 }
5856 
5857 static void skb_gro_reset_offset(struct sk_buff *skb)
5858 {
5859 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5860 	const skb_frag_t *frag0 = &pinfo->frags[0];
5861 
5862 	NAPI_GRO_CB(skb)->data_offset = 0;
5863 	NAPI_GRO_CB(skb)->frag0 = NULL;
5864 	NAPI_GRO_CB(skb)->frag0_len = 0;
5865 
5866 	if (!skb_headlen(skb) && pinfo->nr_frags &&
5867 	    !PageHighMem(skb_frag_page(frag0))) {
5868 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5869 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5870 						    skb_frag_size(frag0),
5871 						    skb->end - skb->tail);
5872 	}
5873 }
5874 
5875 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5876 {
5877 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5878 
5879 	BUG_ON(skb->end - skb->tail < grow);
5880 
5881 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5882 
5883 	skb->data_len -= grow;
5884 	skb->tail += grow;
5885 
5886 	skb_frag_off_add(&pinfo->frags[0], grow);
5887 	skb_frag_size_sub(&pinfo->frags[0], grow);
5888 
5889 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5890 		skb_frag_unref(skb, 0);
5891 		memmove(pinfo->frags, pinfo->frags + 1,
5892 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5893 	}
5894 }
5895 
5896 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5897 {
5898 	struct sk_buff *oldest;
5899 
5900 	oldest = list_last_entry(head, struct sk_buff, list);
5901 
5902 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5903 	 * impossible.
5904 	 */
5905 	if (WARN_ON_ONCE(!oldest))
5906 		return;
5907 
5908 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5909 	 * SKB to the chain.
5910 	 */
5911 	skb_list_del_init(oldest);
5912 	napi_gro_complete(napi, oldest);
5913 }
5914 
5915 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5916 							   struct sk_buff *));
5917 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5918 							   struct sk_buff *));
5919 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5920 {
5921 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5922 	struct list_head *head = &offload_base;
5923 	struct packet_offload *ptype;
5924 	__be16 type = skb->protocol;
5925 	struct list_head *gro_head;
5926 	struct sk_buff *pp = NULL;
5927 	enum gro_result ret;
5928 	int same_flow;
5929 	int grow;
5930 
5931 	if (netif_elide_gro(skb->dev))
5932 		goto normal;
5933 
5934 	gro_head = gro_list_prepare(napi, skb);
5935 
5936 	rcu_read_lock();
5937 	list_for_each_entry_rcu(ptype, head, list) {
5938 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5939 			continue;
5940 
5941 		skb_set_network_header(skb, skb_gro_offset(skb));
5942 		skb_reset_mac_len(skb);
5943 		NAPI_GRO_CB(skb)->same_flow = 0;
5944 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5945 		NAPI_GRO_CB(skb)->free = 0;
5946 		NAPI_GRO_CB(skb)->encap_mark = 0;
5947 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5948 		NAPI_GRO_CB(skb)->is_fou = 0;
5949 		NAPI_GRO_CB(skb)->is_atomic = 1;
5950 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5951 
5952 		/* Setup for GRO checksum validation */
5953 		switch (skb->ip_summed) {
5954 		case CHECKSUM_COMPLETE:
5955 			NAPI_GRO_CB(skb)->csum = skb->csum;
5956 			NAPI_GRO_CB(skb)->csum_valid = 1;
5957 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5958 			break;
5959 		case CHECKSUM_UNNECESSARY:
5960 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5961 			NAPI_GRO_CB(skb)->csum_valid = 0;
5962 			break;
5963 		default:
5964 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5965 			NAPI_GRO_CB(skb)->csum_valid = 0;
5966 		}
5967 
5968 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5969 					ipv6_gro_receive, inet_gro_receive,
5970 					gro_head, skb);
5971 		break;
5972 	}
5973 	rcu_read_unlock();
5974 
5975 	if (&ptype->list == head)
5976 		goto normal;
5977 
5978 	if (PTR_ERR(pp) == -EINPROGRESS) {
5979 		ret = GRO_CONSUMED;
5980 		goto ok;
5981 	}
5982 
5983 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5984 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5985 
5986 	if (pp) {
5987 		skb_list_del_init(pp);
5988 		napi_gro_complete(napi, pp);
5989 		napi->gro_hash[hash].count--;
5990 	}
5991 
5992 	if (same_flow)
5993 		goto ok;
5994 
5995 	if (NAPI_GRO_CB(skb)->flush)
5996 		goto normal;
5997 
5998 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5999 		gro_flush_oldest(napi, gro_head);
6000 	} else {
6001 		napi->gro_hash[hash].count++;
6002 	}
6003 	NAPI_GRO_CB(skb)->count = 1;
6004 	NAPI_GRO_CB(skb)->age = jiffies;
6005 	NAPI_GRO_CB(skb)->last = skb;
6006 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6007 	list_add(&skb->list, gro_head);
6008 	ret = GRO_HELD;
6009 
6010 pull:
6011 	grow = skb_gro_offset(skb) - skb_headlen(skb);
6012 	if (grow > 0)
6013 		gro_pull_from_frag0(skb, grow);
6014 ok:
6015 	if (napi->gro_hash[hash].count) {
6016 		if (!test_bit(hash, &napi->gro_bitmask))
6017 			__set_bit(hash, &napi->gro_bitmask);
6018 	} else if (test_bit(hash, &napi->gro_bitmask)) {
6019 		__clear_bit(hash, &napi->gro_bitmask);
6020 	}
6021 
6022 	return ret;
6023 
6024 normal:
6025 	ret = GRO_NORMAL;
6026 	goto pull;
6027 }
6028 
6029 struct packet_offload *gro_find_receive_by_type(__be16 type)
6030 {
6031 	struct list_head *offload_head = &offload_base;
6032 	struct packet_offload *ptype;
6033 
6034 	list_for_each_entry_rcu(ptype, offload_head, list) {
6035 		if (ptype->type != type || !ptype->callbacks.gro_receive)
6036 			continue;
6037 		return ptype;
6038 	}
6039 	return NULL;
6040 }
6041 EXPORT_SYMBOL(gro_find_receive_by_type);
6042 
6043 struct packet_offload *gro_find_complete_by_type(__be16 type)
6044 {
6045 	struct list_head *offload_head = &offload_base;
6046 	struct packet_offload *ptype;
6047 
6048 	list_for_each_entry_rcu(ptype, offload_head, list) {
6049 		if (ptype->type != type || !ptype->callbacks.gro_complete)
6050 			continue;
6051 		return ptype;
6052 	}
6053 	return NULL;
6054 }
6055 EXPORT_SYMBOL(gro_find_complete_by_type);
6056 
6057 static void napi_skb_free_stolen_head(struct sk_buff *skb)
6058 {
6059 	skb_dst_drop(skb);
6060 	skb_ext_put(skb);
6061 	kmem_cache_free(skbuff_head_cache, skb);
6062 }
6063 
6064 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6065 				    struct sk_buff *skb,
6066 				    gro_result_t ret)
6067 {
6068 	switch (ret) {
6069 	case GRO_NORMAL:
6070 		gro_normal_one(napi, skb);
6071 		break;
6072 
6073 	case GRO_DROP:
6074 		kfree_skb(skb);
6075 		break;
6076 
6077 	case GRO_MERGED_FREE:
6078 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6079 			napi_skb_free_stolen_head(skb);
6080 		else
6081 			__kfree_skb(skb);
6082 		break;
6083 
6084 	case GRO_HELD:
6085 	case GRO_MERGED:
6086 	case GRO_CONSUMED:
6087 		break;
6088 	}
6089 
6090 	return ret;
6091 }
6092 
6093 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6094 {
6095 	gro_result_t ret;
6096 
6097 	skb_mark_napi_id(skb, napi);
6098 	trace_napi_gro_receive_entry(skb);
6099 
6100 	skb_gro_reset_offset(skb);
6101 
6102 	ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6103 	trace_napi_gro_receive_exit(ret);
6104 
6105 	return ret;
6106 }
6107 EXPORT_SYMBOL(napi_gro_receive);
6108 
6109 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6110 {
6111 	if (unlikely(skb->pfmemalloc)) {
6112 		consume_skb(skb);
6113 		return;
6114 	}
6115 	__skb_pull(skb, skb_headlen(skb));
6116 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
6117 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6118 	__vlan_hwaccel_clear_tag(skb);
6119 	skb->dev = napi->dev;
6120 	skb->skb_iif = 0;
6121 
6122 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
6123 	skb->pkt_type = PACKET_HOST;
6124 
6125 	skb->encapsulation = 0;
6126 	skb_shinfo(skb)->gso_type = 0;
6127 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6128 	skb_ext_reset(skb);
6129 
6130 	napi->skb = skb;
6131 }
6132 
6133 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6134 {
6135 	struct sk_buff *skb = napi->skb;
6136 
6137 	if (!skb) {
6138 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6139 		if (skb) {
6140 			napi->skb = skb;
6141 			skb_mark_napi_id(skb, napi);
6142 		}
6143 	}
6144 	return skb;
6145 }
6146 EXPORT_SYMBOL(napi_get_frags);
6147 
6148 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6149 				      struct sk_buff *skb,
6150 				      gro_result_t ret)
6151 {
6152 	switch (ret) {
6153 	case GRO_NORMAL:
6154 	case GRO_HELD:
6155 		__skb_push(skb, ETH_HLEN);
6156 		skb->protocol = eth_type_trans(skb, skb->dev);
6157 		if (ret == GRO_NORMAL)
6158 			gro_normal_one(napi, skb);
6159 		break;
6160 
6161 	case GRO_DROP:
6162 		napi_reuse_skb(napi, skb);
6163 		break;
6164 
6165 	case GRO_MERGED_FREE:
6166 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6167 			napi_skb_free_stolen_head(skb);
6168 		else
6169 			napi_reuse_skb(napi, skb);
6170 		break;
6171 
6172 	case GRO_MERGED:
6173 	case GRO_CONSUMED:
6174 		break;
6175 	}
6176 
6177 	return ret;
6178 }
6179 
6180 /* Upper GRO stack assumes network header starts at gro_offset=0
6181  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6182  * We copy ethernet header into skb->data to have a common layout.
6183  */
6184 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6185 {
6186 	struct sk_buff *skb = napi->skb;
6187 	const struct ethhdr *eth;
6188 	unsigned int hlen = sizeof(*eth);
6189 
6190 	napi->skb = NULL;
6191 
6192 	skb_reset_mac_header(skb);
6193 	skb_gro_reset_offset(skb);
6194 
6195 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
6196 		eth = skb_gro_header_slow(skb, hlen, 0);
6197 		if (unlikely(!eth)) {
6198 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6199 					     __func__, napi->dev->name);
6200 			napi_reuse_skb(napi, skb);
6201 			return NULL;
6202 		}
6203 	} else {
6204 		eth = (const struct ethhdr *)skb->data;
6205 		gro_pull_from_frag0(skb, hlen);
6206 		NAPI_GRO_CB(skb)->frag0 += hlen;
6207 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
6208 	}
6209 	__skb_pull(skb, hlen);
6210 
6211 	/*
6212 	 * This works because the only protocols we care about don't require
6213 	 * special handling.
6214 	 * We'll fix it up properly in napi_frags_finish()
6215 	 */
6216 	skb->protocol = eth->h_proto;
6217 
6218 	return skb;
6219 }
6220 
6221 gro_result_t napi_gro_frags(struct napi_struct *napi)
6222 {
6223 	gro_result_t ret;
6224 	struct sk_buff *skb = napi_frags_skb(napi);
6225 
6226 	if (!skb)
6227 		return GRO_DROP;
6228 
6229 	trace_napi_gro_frags_entry(skb);
6230 
6231 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6232 	trace_napi_gro_frags_exit(ret);
6233 
6234 	return ret;
6235 }
6236 EXPORT_SYMBOL(napi_gro_frags);
6237 
6238 /* Compute the checksum from gro_offset and return the folded value
6239  * after adding in any pseudo checksum.
6240  */
6241 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6242 {
6243 	__wsum wsum;
6244 	__sum16 sum;
6245 
6246 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6247 
6248 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6249 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6250 	/* See comments in __skb_checksum_complete(). */
6251 	if (likely(!sum)) {
6252 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6253 		    !skb->csum_complete_sw)
6254 			netdev_rx_csum_fault(skb->dev, skb);
6255 	}
6256 
6257 	NAPI_GRO_CB(skb)->csum = wsum;
6258 	NAPI_GRO_CB(skb)->csum_valid = 1;
6259 
6260 	return sum;
6261 }
6262 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6263 
6264 static void net_rps_send_ipi(struct softnet_data *remsd)
6265 {
6266 #ifdef CONFIG_RPS
6267 	while (remsd) {
6268 		struct softnet_data *next = remsd->rps_ipi_next;
6269 
6270 		if (cpu_online(remsd->cpu))
6271 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6272 		remsd = next;
6273 	}
6274 #endif
6275 }
6276 
6277 /*
6278  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6279  * Note: called with local irq disabled, but exits with local irq enabled.
6280  */
6281 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6282 {
6283 #ifdef CONFIG_RPS
6284 	struct softnet_data *remsd = sd->rps_ipi_list;
6285 
6286 	if (remsd) {
6287 		sd->rps_ipi_list = NULL;
6288 
6289 		local_irq_enable();
6290 
6291 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6292 		net_rps_send_ipi(remsd);
6293 	} else
6294 #endif
6295 		local_irq_enable();
6296 }
6297 
6298 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6299 {
6300 #ifdef CONFIG_RPS
6301 	return sd->rps_ipi_list != NULL;
6302 #else
6303 	return false;
6304 #endif
6305 }
6306 
6307 static int process_backlog(struct napi_struct *napi, int quota)
6308 {
6309 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6310 	bool again = true;
6311 	int work = 0;
6312 
6313 	/* Check if we have pending ipi, its better to send them now,
6314 	 * not waiting net_rx_action() end.
6315 	 */
6316 	if (sd_has_rps_ipi_waiting(sd)) {
6317 		local_irq_disable();
6318 		net_rps_action_and_irq_enable(sd);
6319 	}
6320 
6321 	napi->weight = dev_rx_weight;
6322 	while (again) {
6323 		struct sk_buff *skb;
6324 
6325 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6326 			rcu_read_lock();
6327 			__netif_receive_skb(skb);
6328 			rcu_read_unlock();
6329 			input_queue_head_incr(sd);
6330 			if (++work >= quota)
6331 				return work;
6332 
6333 		}
6334 
6335 		local_irq_disable();
6336 		rps_lock(sd);
6337 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6338 			/*
6339 			 * Inline a custom version of __napi_complete().
6340 			 * only current cpu owns and manipulates this napi,
6341 			 * and NAPI_STATE_SCHED is the only possible flag set
6342 			 * on backlog.
6343 			 * We can use a plain write instead of clear_bit(),
6344 			 * and we dont need an smp_mb() memory barrier.
6345 			 */
6346 			napi->state = 0;
6347 			again = false;
6348 		} else {
6349 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6350 						   &sd->process_queue);
6351 		}
6352 		rps_unlock(sd);
6353 		local_irq_enable();
6354 	}
6355 
6356 	return work;
6357 }
6358 
6359 /**
6360  * __napi_schedule - schedule for receive
6361  * @n: entry to schedule
6362  *
6363  * The entry's receive function will be scheduled to run.
6364  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6365  */
6366 void __napi_schedule(struct napi_struct *n)
6367 {
6368 	unsigned long flags;
6369 
6370 	local_irq_save(flags);
6371 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6372 	local_irq_restore(flags);
6373 }
6374 EXPORT_SYMBOL(__napi_schedule);
6375 
6376 /**
6377  *	napi_schedule_prep - check if napi can be scheduled
6378  *	@n: napi context
6379  *
6380  * Test if NAPI routine is already running, and if not mark
6381  * it as running.  This is used as a condition variable to
6382  * insure only one NAPI poll instance runs.  We also make
6383  * sure there is no pending NAPI disable.
6384  */
6385 bool napi_schedule_prep(struct napi_struct *n)
6386 {
6387 	unsigned long val, new;
6388 
6389 	do {
6390 		val = READ_ONCE(n->state);
6391 		if (unlikely(val & NAPIF_STATE_DISABLE))
6392 			return false;
6393 		new = val | NAPIF_STATE_SCHED;
6394 
6395 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6396 		 * This was suggested by Alexander Duyck, as compiler
6397 		 * emits better code than :
6398 		 * if (val & NAPIF_STATE_SCHED)
6399 		 *     new |= NAPIF_STATE_MISSED;
6400 		 */
6401 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6402 						   NAPIF_STATE_MISSED;
6403 	} while (cmpxchg(&n->state, val, new) != val);
6404 
6405 	return !(val & NAPIF_STATE_SCHED);
6406 }
6407 EXPORT_SYMBOL(napi_schedule_prep);
6408 
6409 /**
6410  * __napi_schedule_irqoff - schedule for receive
6411  * @n: entry to schedule
6412  *
6413  * Variant of __napi_schedule() assuming hard irqs are masked
6414  */
6415 void __napi_schedule_irqoff(struct napi_struct *n)
6416 {
6417 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6418 }
6419 EXPORT_SYMBOL(__napi_schedule_irqoff);
6420 
6421 bool napi_complete_done(struct napi_struct *n, int work_done)
6422 {
6423 	unsigned long flags, val, new, timeout = 0;
6424 	bool ret = true;
6425 
6426 	/*
6427 	 * 1) Don't let napi dequeue from the cpu poll list
6428 	 *    just in case its running on a different cpu.
6429 	 * 2) If we are busy polling, do nothing here, we have
6430 	 *    the guarantee we will be called later.
6431 	 */
6432 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6433 				 NAPIF_STATE_IN_BUSY_POLL)))
6434 		return false;
6435 
6436 	if (work_done) {
6437 		if (n->gro_bitmask)
6438 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6439 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6440 	}
6441 	if (n->defer_hard_irqs_count > 0) {
6442 		n->defer_hard_irqs_count--;
6443 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6444 		if (timeout)
6445 			ret = false;
6446 	}
6447 	if (n->gro_bitmask) {
6448 		/* When the NAPI instance uses a timeout and keeps postponing
6449 		 * it, we need to bound somehow the time packets are kept in
6450 		 * the GRO layer
6451 		 */
6452 		napi_gro_flush(n, !!timeout);
6453 	}
6454 
6455 	gro_normal_list(n);
6456 
6457 	if (unlikely(!list_empty(&n->poll_list))) {
6458 		/* If n->poll_list is not empty, we need to mask irqs */
6459 		local_irq_save(flags);
6460 		list_del_init(&n->poll_list);
6461 		local_irq_restore(flags);
6462 	}
6463 
6464 	do {
6465 		val = READ_ONCE(n->state);
6466 
6467 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6468 
6469 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6470 			      NAPIF_STATE_PREFER_BUSY_POLL);
6471 
6472 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6473 		 * because we will call napi->poll() one more time.
6474 		 * This C code was suggested by Alexander Duyck to help gcc.
6475 		 */
6476 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6477 						    NAPIF_STATE_SCHED;
6478 	} while (cmpxchg(&n->state, val, new) != val);
6479 
6480 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6481 		__napi_schedule(n);
6482 		return false;
6483 	}
6484 
6485 	if (timeout)
6486 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6487 			      HRTIMER_MODE_REL_PINNED);
6488 	return ret;
6489 }
6490 EXPORT_SYMBOL(napi_complete_done);
6491 
6492 /* must be called under rcu_read_lock(), as we dont take a reference */
6493 static struct napi_struct *napi_by_id(unsigned int napi_id)
6494 {
6495 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6496 	struct napi_struct *napi;
6497 
6498 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6499 		if (napi->napi_id == napi_id)
6500 			return napi;
6501 
6502 	return NULL;
6503 }
6504 
6505 #if defined(CONFIG_NET_RX_BUSY_POLL)
6506 
6507 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6508 {
6509 	if (!skip_schedule) {
6510 		gro_normal_list(napi);
6511 		__napi_schedule(napi);
6512 		return;
6513 	}
6514 
6515 	if (napi->gro_bitmask) {
6516 		/* flush too old packets
6517 		 * If HZ < 1000, flush all packets.
6518 		 */
6519 		napi_gro_flush(napi, HZ >= 1000);
6520 	}
6521 
6522 	gro_normal_list(napi);
6523 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6524 }
6525 
6526 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6527 			   u16 budget)
6528 {
6529 	bool skip_schedule = false;
6530 	unsigned long timeout;
6531 	int rc;
6532 
6533 	/* Busy polling means there is a high chance device driver hard irq
6534 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6535 	 * set in napi_schedule_prep().
6536 	 * Since we are about to call napi->poll() once more, we can safely
6537 	 * clear NAPI_STATE_MISSED.
6538 	 *
6539 	 * Note: x86 could use a single "lock and ..." instruction
6540 	 * to perform these two clear_bit()
6541 	 */
6542 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6543 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6544 
6545 	local_bh_disable();
6546 
6547 	if (prefer_busy_poll) {
6548 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6549 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6550 		if (napi->defer_hard_irqs_count && timeout) {
6551 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6552 			skip_schedule = true;
6553 		}
6554 	}
6555 
6556 	/* All we really want here is to re-enable device interrupts.
6557 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6558 	 */
6559 	rc = napi->poll(napi, budget);
6560 	/* We can't gro_normal_list() here, because napi->poll() might have
6561 	 * rearmed the napi (napi_complete_done()) in which case it could
6562 	 * already be running on another CPU.
6563 	 */
6564 	trace_napi_poll(napi, rc, budget);
6565 	netpoll_poll_unlock(have_poll_lock);
6566 	if (rc == budget)
6567 		__busy_poll_stop(napi, skip_schedule);
6568 	local_bh_enable();
6569 }
6570 
6571 void napi_busy_loop(unsigned int napi_id,
6572 		    bool (*loop_end)(void *, unsigned long),
6573 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6574 {
6575 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6576 	int (*napi_poll)(struct napi_struct *napi, int budget);
6577 	void *have_poll_lock = NULL;
6578 	struct napi_struct *napi;
6579 
6580 restart:
6581 	napi_poll = NULL;
6582 
6583 	rcu_read_lock();
6584 
6585 	napi = napi_by_id(napi_id);
6586 	if (!napi)
6587 		goto out;
6588 
6589 	preempt_disable();
6590 	for (;;) {
6591 		int work = 0;
6592 
6593 		local_bh_disable();
6594 		if (!napi_poll) {
6595 			unsigned long val = READ_ONCE(napi->state);
6596 
6597 			/* If multiple threads are competing for this napi,
6598 			 * we avoid dirtying napi->state as much as we can.
6599 			 */
6600 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6601 				   NAPIF_STATE_IN_BUSY_POLL)) {
6602 				if (prefer_busy_poll)
6603 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6604 				goto count;
6605 			}
6606 			if (cmpxchg(&napi->state, val,
6607 				    val | NAPIF_STATE_IN_BUSY_POLL |
6608 					  NAPIF_STATE_SCHED) != val) {
6609 				if (prefer_busy_poll)
6610 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6611 				goto count;
6612 			}
6613 			have_poll_lock = netpoll_poll_lock(napi);
6614 			napi_poll = napi->poll;
6615 		}
6616 		work = napi_poll(napi, budget);
6617 		trace_napi_poll(napi, work, budget);
6618 		gro_normal_list(napi);
6619 count:
6620 		if (work > 0)
6621 			__NET_ADD_STATS(dev_net(napi->dev),
6622 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6623 		local_bh_enable();
6624 
6625 		if (!loop_end || loop_end(loop_end_arg, start_time))
6626 			break;
6627 
6628 		if (unlikely(need_resched())) {
6629 			if (napi_poll)
6630 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6631 			preempt_enable();
6632 			rcu_read_unlock();
6633 			cond_resched();
6634 			if (loop_end(loop_end_arg, start_time))
6635 				return;
6636 			goto restart;
6637 		}
6638 		cpu_relax();
6639 	}
6640 	if (napi_poll)
6641 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6642 	preempt_enable();
6643 out:
6644 	rcu_read_unlock();
6645 }
6646 EXPORT_SYMBOL(napi_busy_loop);
6647 
6648 #endif /* CONFIG_NET_RX_BUSY_POLL */
6649 
6650 static void napi_hash_add(struct napi_struct *napi)
6651 {
6652 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6653 		return;
6654 
6655 	spin_lock(&napi_hash_lock);
6656 
6657 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6658 	do {
6659 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6660 			napi_gen_id = MIN_NAPI_ID;
6661 	} while (napi_by_id(napi_gen_id));
6662 	napi->napi_id = napi_gen_id;
6663 
6664 	hlist_add_head_rcu(&napi->napi_hash_node,
6665 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6666 
6667 	spin_unlock(&napi_hash_lock);
6668 }
6669 
6670 /* Warning : caller is responsible to make sure rcu grace period
6671  * is respected before freeing memory containing @napi
6672  */
6673 static void napi_hash_del(struct napi_struct *napi)
6674 {
6675 	spin_lock(&napi_hash_lock);
6676 
6677 	hlist_del_init_rcu(&napi->napi_hash_node);
6678 
6679 	spin_unlock(&napi_hash_lock);
6680 }
6681 
6682 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6683 {
6684 	struct napi_struct *napi;
6685 
6686 	napi = container_of(timer, struct napi_struct, timer);
6687 
6688 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6689 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6690 	 */
6691 	if (!napi_disable_pending(napi) &&
6692 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6693 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6694 		__napi_schedule_irqoff(napi);
6695 	}
6696 
6697 	return HRTIMER_NORESTART;
6698 }
6699 
6700 static void init_gro_hash(struct napi_struct *napi)
6701 {
6702 	int i;
6703 
6704 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6705 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6706 		napi->gro_hash[i].count = 0;
6707 	}
6708 	napi->gro_bitmask = 0;
6709 }
6710 
6711 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6712 		    int (*poll)(struct napi_struct *, int), int weight)
6713 {
6714 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6715 		return;
6716 
6717 	INIT_LIST_HEAD(&napi->poll_list);
6718 	INIT_HLIST_NODE(&napi->napi_hash_node);
6719 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6720 	napi->timer.function = napi_watchdog;
6721 	init_gro_hash(napi);
6722 	napi->skb = NULL;
6723 	INIT_LIST_HEAD(&napi->rx_list);
6724 	napi->rx_count = 0;
6725 	napi->poll = poll;
6726 	if (weight > NAPI_POLL_WEIGHT)
6727 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6728 				weight);
6729 	napi->weight = weight;
6730 	napi->dev = dev;
6731 #ifdef CONFIG_NETPOLL
6732 	napi->poll_owner = -1;
6733 #endif
6734 	set_bit(NAPI_STATE_SCHED, &napi->state);
6735 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6736 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6737 	napi_hash_add(napi);
6738 }
6739 EXPORT_SYMBOL(netif_napi_add);
6740 
6741 void napi_disable(struct napi_struct *n)
6742 {
6743 	might_sleep();
6744 	set_bit(NAPI_STATE_DISABLE, &n->state);
6745 
6746 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6747 		msleep(1);
6748 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6749 		msleep(1);
6750 
6751 	hrtimer_cancel(&n->timer);
6752 
6753 	clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6754 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6755 }
6756 EXPORT_SYMBOL(napi_disable);
6757 
6758 static void flush_gro_hash(struct napi_struct *napi)
6759 {
6760 	int i;
6761 
6762 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6763 		struct sk_buff *skb, *n;
6764 
6765 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6766 			kfree_skb(skb);
6767 		napi->gro_hash[i].count = 0;
6768 	}
6769 }
6770 
6771 /* Must be called in process context */
6772 void __netif_napi_del(struct napi_struct *napi)
6773 {
6774 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6775 		return;
6776 
6777 	napi_hash_del(napi);
6778 	list_del_rcu(&napi->dev_list);
6779 	napi_free_frags(napi);
6780 
6781 	flush_gro_hash(napi);
6782 	napi->gro_bitmask = 0;
6783 }
6784 EXPORT_SYMBOL(__netif_napi_del);
6785 
6786 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6787 {
6788 	void *have;
6789 	int work, weight;
6790 
6791 	list_del_init(&n->poll_list);
6792 
6793 	have = netpoll_poll_lock(n);
6794 
6795 	weight = n->weight;
6796 
6797 	/* This NAPI_STATE_SCHED test is for avoiding a race
6798 	 * with netpoll's poll_napi().  Only the entity which
6799 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6800 	 * actually make the ->poll() call.  Therefore we avoid
6801 	 * accidentally calling ->poll() when NAPI is not scheduled.
6802 	 */
6803 	work = 0;
6804 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6805 		work = n->poll(n, weight);
6806 		trace_napi_poll(n, work, weight);
6807 	}
6808 
6809 	if (unlikely(work > weight))
6810 		pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6811 			    n->poll, work, weight);
6812 
6813 	if (likely(work < weight))
6814 		goto out_unlock;
6815 
6816 	/* Drivers must not modify the NAPI state if they
6817 	 * consume the entire weight.  In such cases this code
6818 	 * still "owns" the NAPI instance and therefore can
6819 	 * move the instance around on the list at-will.
6820 	 */
6821 	if (unlikely(napi_disable_pending(n))) {
6822 		napi_complete(n);
6823 		goto out_unlock;
6824 	}
6825 
6826 	/* The NAPI context has more processing work, but busy-polling
6827 	 * is preferred. Exit early.
6828 	 */
6829 	if (napi_prefer_busy_poll(n)) {
6830 		if (napi_complete_done(n, work)) {
6831 			/* If timeout is not set, we need to make sure
6832 			 * that the NAPI is re-scheduled.
6833 			 */
6834 			napi_schedule(n);
6835 		}
6836 		goto out_unlock;
6837 	}
6838 
6839 	if (n->gro_bitmask) {
6840 		/* flush too old packets
6841 		 * If HZ < 1000, flush all packets.
6842 		 */
6843 		napi_gro_flush(n, HZ >= 1000);
6844 	}
6845 
6846 	gro_normal_list(n);
6847 
6848 	/* Some drivers may have called napi_schedule
6849 	 * prior to exhausting their budget.
6850 	 */
6851 	if (unlikely(!list_empty(&n->poll_list))) {
6852 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6853 			     n->dev ? n->dev->name : "backlog");
6854 		goto out_unlock;
6855 	}
6856 
6857 	list_add_tail(&n->poll_list, repoll);
6858 
6859 out_unlock:
6860 	netpoll_poll_unlock(have);
6861 
6862 	return work;
6863 }
6864 
6865 static __latent_entropy void net_rx_action(struct softirq_action *h)
6866 {
6867 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6868 	unsigned long time_limit = jiffies +
6869 		usecs_to_jiffies(netdev_budget_usecs);
6870 	int budget = netdev_budget;
6871 	LIST_HEAD(list);
6872 	LIST_HEAD(repoll);
6873 
6874 	local_irq_disable();
6875 	list_splice_init(&sd->poll_list, &list);
6876 	local_irq_enable();
6877 
6878 	for (;;) {
6879 		struct napi_struct *n;
6880 
6881 		if (list_empty(&list)) {
6882 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6883 				goto out;
6884 			break;
6885 		}
6886 
6887 		n = list_first_entry(&list, struct napi_struct, poll_list);
6888 		budget -= napi_poll(n, &repoll);
6889 
6890 		/* If softirq window is exhausted then punt.
6891 		 * Allow this to run for 2 jiffies since which will allow
6892 		 * an average latency of 1.5/HZ.
6893 		 */
6894 		if (unlikely(budget <= 0 ||
6895 			     time_after_eq(jiffies, time_limit))) {
6896 			sd->time_squeeze++;
6897 			break;
6898 		}
6899 	}
6900 
6901 	local_irq_disable();
6902 
6903 	list_splice_tail_init(&sd->poll_list, &list);
6904 	list_splice_tail(&repoll, &list);
6905 	list_splice(&list, &sd->poll_list);
6906 	if (!list_empty(&sd->poll_list))
6907 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6908 
6909 	net_rps_action_and_irq_enable(sd);
6910 out:
6911 	__kfree_skb_flush();
6912 }
6913 
6914 struct netdev_adjacent {
6915 	struct net_device *dev;
6916 
6917 	/* upper master flag, there can only be one master device per list */
6918 	bool master;
6919 
6920 	/* lookup ignore flag */
6921 	bool ignore;
6922 
6923 	/* counter for the number of times this device was added to us */
6924 	u16 ref_nr;
6925 
6926 	/* private field for the users */
6927 	void *private;
6928 
6929 	struct list_head list;
6930 	struct rcu_head rcu;
6931 };
6932 
6933 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6934 						 struct list_head *adj_list)
6935 {
6936 	struct netdev_adjacent *adj;
6937 
6938 	list_for_each_entry(adj, adj_list, list) {
6939 		if (adj->dev == adj_dev)
6940 			return adj;
6941 	}
6942 	return NULL;
6943 }
6944 
6945 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6946 				    struct netdev_nested_priv *priv)
6947 {
6948 	struct net_device *dev = (struct net_device *)priv->data;
6949 
6950 	return upper_dev == dev;
6951 }
6952 
6953 /**
6954  * netdev_has_upper_dev - Check if device is linked to an upper device
6955  * @dev: device
6956  * @upper_dev: upper device to check
6957  *
6958  * Find out if a device is linked to specified upper device and return true
6959  * in case it is. Note that this checks only immediate upper device,
6960  * not through a complete stack of devices. The caller must hold the RTNL lock.
6961  */
6962 bool netdev_has_upper_dev(struct net_device *dev,
6963 			  struct net_device *upper_dev)
6964 {
6965 	struct netdev_nested_priv priv = {
6966 		.data = (void *)upper_dev,
6967 	};
6968 
6969 	ASSERT_RTNL();
6970 
6971 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6972 					     &priv);
6973 }
6974 EXPORT_SYMBOL(netdev_has_upper_dev);
6975 
6976 /**
6977  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6978  * @dev: device
6979  * @upper_dev: upper device to check
6980  *
6981  * Find out if a device is linked to specified upper device and return true
6982  * in case it is. Note that this checks the entire upper device chain.
6983  * The caller must hold rcu lock.
6984  */
6985 
6986 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6987 				  struct net_device *upper_dev)
6988 {
6989 	struct netdev_nested_priv priv = {
6990 		.data = (void *)upper_dev,
6991 	};
6992 
6993 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6994 					       &priv);
6995 }
6996 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6997 
6998 /**
6999  * netdev_has_any_upper_dev - Check if device is linked to some device
7000  * @dev: device
7001  *
7002  * Find out if a device is linked to an upper device and return true in case
7003  * it is. The caller must hold the RTNL lock.
7004  */
7005 bool netdev_has_any_upper_dev(struct net_device *dev)
7006 {
7007 	ASSERT_RTNL();
7008 
7009 	return !list_empty(&dev->adj_list.upper);
7010 }
7011 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7012 
7013 /**
7014  * netdev_master_upper_dev_get - Get master upper device
7015  * @dev: device
7016  *
7017  * Find a master upper device and return pointer to it or NULL in case
7018  * it's not there. The caller must hold the RTNL lock.
7019  */
7020 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7021 {
7022 	struct netdev_adjacent *upper;
7023 
7024 	ASSERT_RTNL();
7025 
7026 	if (list_empty(&dev->adj_list.upper))
7027 		return NULL;
7028 
7029 	upper = list_first_entry(&dev->adj_list.upper,
7030 				 struct netdev_adjacent, list);
7031 	if (likely(upper->master))
7032 		return upper->dev;
7033 	return NULL;
7034 }
7035 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7036 
7037 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7038 {
7039 	struct netdev_adjacent *upper;
7040 
7041 	ASSERT_RTNL();
7042 
7043 	if (list_empty(&dev->adj_list.upper))
7044 		return NULL;
7045 
7046 	upper = list_first_entry(&dev->adj_list.upper,
7047 				 struct netdev_adjacent, list);
7048 	if (likely(upper->master) && !upper->ignore)
7049 		return upper->dev;
7050 	return NULL;
7051 }
7052 
7053 /**
7054  * netdev_has_any_lower_dev - Check if device is linked to some device
7055  * @dev: device
7056  *
7057  * Find out if a device is linked to a lower device and return true in case
7058  * it is. The caller must hold the RTNL lock.
7059  */
7060 static bool netdev_has_any_lower_dev(struct net_device *dev)
7061 {
7062 	ASSERT_RTNL();
7063 
7064 	return !list_empty(&dev->adj_list.lower);
7065 }
7066 
7067 void *netdev_adjacent_get_private(struct list_head *adj_list)
7068 {
7069 	struct netdev_adjacent *adj;
7070 
7071 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7072 
7073 	return adj->private;
7074 }
7075 EXPORT_SYMBOL(netdev_adjacent_get_private);
7076 
7077 /**
7078  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7079  * @dev: device
7080  * @iter: list_head ** of the current position
7081  *
7082  * Gets the next device from the dev's upper list, starting from iter
7083  * position. The caller must hold RCU read lock.
7084  */
7085 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7086 						 struct list_head **iter)
7087 {
7088 	struct netdev_adjacent *upper;
7089 
7090 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7091 
7092 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7093 
7094 	if (&upper->list == &dev->adj_list.upper)
7095 		return NULL;
7096 
7097 	*iter = &upper->list;
7098 
7099 	return upper->dev;
7100 }
7101 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7102 
7103 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7104 						  struct list_head **iter,
7105 						  bool *ignore)
7106 {
7107 	struct netdev_adjacent *upper;
7108 
7109 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7110 
7111 	if (&upper->list == &dev->adj_list.upper)
7112 		return NULL;
7113 
7114 	*iter = &upper->list;
7115 	*ignore = upper->ignore;
7116 
7117 	return upper->dev;
7118 }
7119 
7120 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7121 						    struct list_head **iter)
7122 {
7123 	struct netdev_adjacent *upper;
7124 
7125 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7126 
7127 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7128 
7129 	if (&upper->list == &dev->adj_list.upper)
7130 		return NULL;
7131 
7132 	*iter = &upper->list;
7133 
7134 	return upper->dev;
7135 }
7136 
7137 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7138 				       int (*fn)(struct net_device *dev,
7139 					 struct netdev_nested_priv *priv),
7140 				       struct netdev_nested_priv *priv)
7141 {
7142 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7143 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7144 	int ret, cur = 0;
7145 	bool ignore;
7146 
7147 	now = dev;
7148 	iter = &dev->adj_list.upper;
7149 
7150 	while (1) {
7151 		if (now != dev) {
7152 			ret = fn(now, priv);
7153 			if (ret)
7154 				return ret;
7155 		}
7156 
7157 		next = NULL;
7158 		while (1) {
7159 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7160 			if (!udev)
7161 				break;
7162 			if (ignore)
7163 				continue;
7164 
7165 			next = udev;
7166 			niter = &udev->adj_list.upper;
7167 			dev_stack[cur] = now;
7168 			iter_stack[cur++] = iter;
7169 			break;
7170 		}
7171 
7172 		if (!next) {
7173 			if (!cur)
7174 				return 0;
7175 			next = dev_stack[--cur];
7176 			niter = iter_stack[cur];
7177 		}
7178 
7179 		now = next;
7180 		iter = niter;
7181 	}
7182 
7183 	return 0;
7184 }
7185 
7186 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7187 				  int (*fn)(struct net_device *dev,
7188 					    struct netdev_nested_priv *priv),
7189 				  struct netdev_nested_priv *priv)
7190 {
7191 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7192 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7193 	int ret, cur = 0;
7194 
7195 	now = dev;
7196 	iter = &dev->adj_list.upper;
7197 
7198 	while (1) {
7199 		if (now != dev) {
7200 			ret = fn(now, priv);
7201 			if (ret)
7202 				return ret;
7203 		}
7204 
7205 		next = NULL;
7206 		while (1) {
7207 			udev = netdev_next_upper_dev_rcu(now, &iter);
7208 			if (!udev)
7209 				break;
7210 
7211 			next = udev;
7212 			niter = &udev->adj_list.upper;
7213 			dev_stack[cur] = now;
7214 			iter_stack[cur++] = iter;
7215 			break;
7216 		}
7217 
7218 		if (!next) {
7219 			if (!cur)
7220 				return 0;
7221 			next = dev_stack[--cur];
7222 			niter = iter_stack[cur];
7223 		}
7224 
7225 		now = next;
7226 		iter = niter;
7227 	}
7228 
7229 	return 0;
7230 }
7231 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7232 
7233 static bool __netdev_has_upper_dev(struct net_device *dev,
7234 				   struct net_device *upper_dev)
7235 {
7236 	struct netdev_nested_priv priv = {
7237 		.flags = 0,
7238 		.data = (void *)upper_dev,
7239 	};
7240 
7241 	ASSERT_RTNL();
7242 
7243 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7244 					   &priv);
7245 }
7246 
7247 /**
7248  * netdev_lower_get_next_private - Get the next ->private from the
7249  *				   lower neighbour list
7250  * @dev: device
7251  * @iter: list_head ** of the current position
7252  *
7253  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7254  * list, starting from iter position. The caller must hold either hold the
7255  * RTNL lock or its own locking that guarantees that the neighbour lower
7256  * list will remain unchanged.
7257  */
7258 void *netdev_lower_get_next_private(struct net_device *dev,
7259 				    struct list_head **iter)
7260 {
7261 	struct netdev_adjacent *lower;
7262 
7263 	lower = list_entry(*iter, struct netdev_adjacent, list);
7264 
7265 	if (&lower->list == &dev->adj_list.lower)
7266 		return NULL;
7267 
7268 	*iter = lower->list.next;
7269 
7270 	return lower->private;
7271 }
7272 EXPORT_SYMBOL(netdev_lower_get_next_private);
7273 
7274 /**
7275  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7276  *				       lower neighbour list, RCU
7277  *				       variant
7278  * @dev: device
7279  * @iter: list_head ** of the current position
7280  *
7281  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7282  * list, starting from iter position. The caller must hold RCU read lock.
7283  */
7284 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7285 					struct list_head **iter)
7286 {
7287 	struct netdev_adjacent *lower;
7288 
7289 	WARN_ON_ONCE(!rcu_read_lock_held());
7290 
7291 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7292 
7293 	if (&lower->list == &dev->adj_list.lower)
7294 		return NULL;
7295 
7296 	*iter = &lower->list;
7297 
7298 	return lower->private;
7299 }
7300 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7301 
7302 /**
7303  * netdev_lower_get_next - Get the next device from the lower neighbour
7304  *                         list
7305  * @dev: device
7306  * @iter: list_head ** of the current position
7307  *
7308  * Gets the next netdev_adjacent from the dev's lower neighbour
7309  * list, starting from iter position. The caller must hold RTNL lock or
7310  * its own locking that guarantees that the neighbour lower
7311  * list will remain unchanged.
7312  */
7313 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7314 {
7315 	struct netdev_adjacent *lower;
7316 
7317 	lower = list_entry(*iter, struct netdev_adjacent, list);
7318 
7319 	if (&lower->list == &dev->adj_list.lower)
7320 		return NULL;
7321 
7322 	*iter = lower->list.next;
7323 
7324 	return lower->dev;
7325 }
7326 EXPORT_SYMBOL(netdev_lower_get_next);
7327 
7328 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7329 						struct list_head **iter)
7330 {
7331 	struct netdev_adjacent *lower;
7332 
7333 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7334 
7335 	if (&lower->list == &dev->adj_list.lower)
7336 		return NULL;
7337 
7338 	*iter = &lower->list;
7339 
7340 	return lower->dev;
7341 }
7342 
7343 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7344 						  struct list_head **iter,
7345 						  bool *ignore)
7346 {
7347 	struct netdev_adjacent *lower;
7348 
7349 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7350 
7351 	if (&lower->list == &dev->adj_list.lower)
7352 		return NULL;
7353 
7354 	*iter = &lower->list;
7355 	*ignore = lower->ignore;
7356 
7357 	return lower->dev;
7358 }
7359 
7360 int netdev_walk_all_lower_dev(struct net_device *dev,
7361 			      int (*fn)(struct net_device *dev,
7362 					struct netdev_nested_priv *priv),
7363 			      struct netdev_nested_priv *priv)
7364 {
7365 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7366 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7367 	int ret, cur = 0;
7368 
7369 	now = dev;
7370 	iter = &dev->adj_list.lower;
7371 
7372 	while (1) {
7373 		if (now != dev) {
7374 			ret = fn(now, priv);
7375 			if (ret)
7376 				return ret;
7377 		}
7378 
7379 		next = NULL;
7380 		while (1) {
7381 			ldev = netdev_next_lower_dev(now, &iter);
7382 			if (!ldev)
7383 				break;
7384 
7385 			next = ldev;
7386 			niter = &ldev->adj_list.lower;
7387 			dev_stack[cur] = now;
7388 			iter_stack[cur++] = iter;
7389 			break;
7390 		}
7391 
7392 		if (!next) {
7393 			if (!cur)
7394 				return 0;
7395 			next = dev_stack[--cur];
7396 			niter = iter_stack[cur];
7397 		}
7398 
7399 		now = next;
7400 		iter = niter;
7401 	}
7402 
7403 	return 0;
7404 }
7405 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7406 
7407 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7408 				       int (*fn)(struct net_device *dev,
7409 					 struct netdev_nested_priv *priv),
7410 				       struct netdev_nested_priv *priv)
7411 {
7412 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7413 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7414 	int ret, cur = 0;
7415 	bool ignore;
7416 
7417 	now = dev;
7418 	iter = &dev->adj_list.lower;
7419 
7420 	while (1) {
7421 		if (now != dev) {
7422 			ret = fn(now, priv);
7423 			if (ret)
7424 				return ret;
7425 		}
7426 
7427 		next = NULL;
7428 		while (1) {
7429 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7430 			if (!ldev)
7431 				break;
7432 			if (ignore)
7433 				continue;
7434 
7435 			next = ldev;
7436 			niter = &ldev->adj_list.lower;
7437 			dev_stack[cur] = now;
7438 			iter_stack[cur++] = iter;
7439 			break;
7440 		}
7441 
7442 		if (!next) {
7443 			if (!cur)
7444 				return 0;
7445 			next = dev_stack[--cur];
7446 			niter = iter_stack[cur];
7447 		}
7448 
7449 		now = next;
7450 		iter = niter;
7451 	}
7452 
7453 	return 0;
7454 }
7455 
7456 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7457 					     struct list_head **iter)
7458 {
7459 	struct netdev_adjacent *lower;
7460 
7461 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7462 	if (&lower->list == &dev->adj_list.lower)
7463 		return NULL;
7464 
7465 	*iter = &lower->list;
7466 
7467 	return lower->dev;
7468 }
7469 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7470 
7471 static u8 __netdev_upper_depth(struct net_device *dev)
7472 {
7473 	struct net_device *udev;
7474 	struct list_head *iter;
7475 	u8 max_depth = 0;
7476 	bool ignore;
7477 
7478 	for (iter = &dev->adj_list.upper,
7479 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7480 	     udev;
7481 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7482 		if (ignore)
7483 			continue;
7484 		if (max_depth < udev->upper_level)
7485 			max_depth = udev->upper_level;
7486 	}
7487 
7488 	return max_depth;
7489 }
7490 
7491 static u8 __netdev_lower_depth(struct net_device *dev)
7492 {
7493 	struct net_device *ldev;
7494 	struct list_head *iter;
7495 	u8 max_depth = 0;
7496 	bool ignore;
7497 
7498 	for (iter = &dev->adj_list.lower,
7499 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7500 	     ldev;
7501 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7502 		if (ignore)
7503 			continue;
7504 		if (max_depth < ldev->lower_level)
7505 			max_depth = ldev->lower_level;
7506 	}
7507 
7508 	return max_depth;
7509 }
7510 
7511 static int __netdev_update_upper_level(struct net_device *dev,
7512 				       struct netdev_nested_priv *__unused)
7513 {
7514 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7515 	return 0;
7516 }
7517 
7518 static int __netdev_update_lower_level(struct net_device *dev,
7519 				       struct netdev_nested_priv *priv)
7520 {
7521 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7522 
7523 #ifdef CONFIG_LOCKDEP
7524 	if (!priv)
7525 		return 0;
7526 
7527 	if (priv->flags & NESTED_SYNC_IMM)
7528 		dev->nested_level = dev->lower_level - 1;
7529 	if (priv->flags & NESTED_SYNC_TODO)
7530 		net_unlink_todo(dev);
7531 #endif
7532 	return 0;
7533 }
7534 
7535 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7536 				  int (*fn)(struct net_device *dev,
7537 					    struct netdev_nested_priv *priv),
7538 				  struct netdev_nested_priv *priv)
7539 {
7540 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7541 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7542 	int ret, cur = 0;
7543 
7544 	now = dev;
7545 	iter = &dev->adj_list.lower;
7546 
7547 	while (1) {
7548 		if (now != dev) {
7549 			ret = fn(now, priv);
7550 			if (ret)
7551 				return ret;
7552 		}
7553 
7554 		next = NULL;
7555 		while (1) {
7556 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7557 			if (!ldev)
7558 				break;
7559 
7560 			next = ldev;
7561 			niter = &ldev->adj_list.lower;
7562 			dev_stack[cur] = now;
7563 			iter_stack[cur++] = iter;
7564 			break;
7565 		}
7566 
7567 		if (!next) {
7568 			if (!cur)
7569 				return 0;
7570 			next = dev_stack[--cur];
7571 			niter = iter_stack[cur];
7572 		}
7573 
7574 		now = next;
7575 		iter = niter;
7576 	}
7577 
7578 	return 0;
7579 }
7580 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7581 
7582 /**
7583  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7584  *				       lower neighbour list, RCU
7585  *				       variant
7586  * @dev: device
7587  *
7588  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7589  * list. The caller must hold RCU read lock.
7590  */
7591 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7592 {
7593 	struct netdev_adjacent *lower;
7594 
7595 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7596 			struct netdev_adjacent, list);
7597 	if (lower)
7598 		return lower->private;
7599 	return NULL;
7600 }
7601 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7602 
7603 /**
7604  * netdev_master_upper_dev_get_rcu - Get master upper device
7605  * @dev: device
7606  *
7607  * Find a master upper device and return pointer to it or NULL in case
7608  * it's not there. The caller must hold the RCU read lock.
7609  */
7610 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7611 {
7612 	struct netdev_adjacent *upper;
7613 
7614 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7615 				       struct netdev_adjacent, list);
7616 	if (upper && likely(upper->master))
7617 		return upper->dev;
7618 	return NULL;
7619 }
7620 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7621 
7622 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7623 			      struct net_device *adj_dev,
7624 			      struct list_head *dev_list)
7625 {
7626 	char linkname[IFNAMSIZ+7];
7627 
7628 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7629 		"upper_%s" : "lower_%s", adj_dev->name);
7630 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7631 				 linkname);
7632 }
7633 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7634 			       char *name,
7635 			       struct list_head *dev_list)
7636 {
7637 	char linkname[IFNAMSIZ+7];
7638 
7639 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7640 		"upper_%s" : "lower_%s", name);
7641 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7642 }
7643 
7644 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7645 						 struct net_device *adj_dev,
7646 						 struct list_head *dev_list)
7647 {
7648 	return (dev_list == &dev->adj_list.upper ||
7649 		dev_list == &dev->adj_list.lower) &&
7650 		net_eq(dev_net(dev), dev_net(adj_dev));
7651 }
7652 
7653 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7654 					struct net_device *adj_dev,
7655 					struct list_head *dev_list,
7656 					void *private, bool master)
7657 {
7658 	struct netdev_adjacent *adj;
7659 	int ret;
7660 
7661 	adj = __netdev_find_adj(adj_dev, dev_list);
7662 
7663 	if (adj) {
7664 		adj->ref_nr += 1;
7665 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7666 			 dev->name, adj_dev->name, adj->ref_nr);
7667 
7668 		return 0;
7669 	}
7670 
7671 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7672 	if (!adj)
7673 		return -ENOMEM;
7674 
7675 	adj->dev = adj_dev;
7676 	adj->master = master;
7677 	adj->ref_nr = 1;
7678 	adj->private = private;
7679 	adj->ignore = false;
7680 	dev_hold(adj_dev);
7681 
7682 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7683 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7684 
7685 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7686 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7687 		if (ret)
7688 			goto free_adj;
7689 	}
7690 
7691 	/* Ensure that master link is always the first item in list. */
7692 	if (master) {
7693 		ret = sysfs_create_link(&(dev->dev.kobj),
7694 					&(adj_dev->dev.kobj), "master");
7695 		if (ret)
7696 			goto remove_symlinks;
7697 
7698 		list_add_rcu(&adj->list, dev_list);
7699 	} else {
7700 		list_add_tail_rcu(&adj->list, dev_list);
7701 	}
7702 
7703 	return 0;
7704 
7705 remove_symlinks:
7706 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7707 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7708 free_adj:
7709 	kfree(adj);
7710 	dev_put(adj_dev);
7711 
7712 	return ret;
7713 }
7714 
7715 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7716 					 struct net_device *adj_dev,
7717 					 u16 ref_nr,
7718 					 struct list_head *dev_list)
7719 {
7720 	struct netdev_adjacent *adj;
7721 
7722 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7723 		 dev->name, adj_dev->name, ref_nr);
7724 
7725 	adj = __netdev_find_adj(adj_dev, dev_list);
7726 
7727 	if (!adj) {
7728 		pr_err("Adjacency does not exist for device %s from %s\n",
7729 		       dev->name, adj_dev->name);
7730 		WARN_ON(1);
7731 		return;
7732 	}
7733 
7734 	if (adj->ref_nr > ref_nr) {
7735 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7736 			 dev->name, adj_dev->name, ref_nr,
7737 			 adj->ref_nr - ref_nr);
7738 		adj->ref_nr -= ref_nr;
7739 		return;
7740 	}
7741 
7742 	if (adj->master)
7743 		sysfs_remove_link(&(dev->dev.kobj), "master");
7744 
7745 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7746 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7747 
7748 	list_del_rcu(&adj->list);
7749 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7750 		 adj_dev->name, dev->name, adj_dev->name);
7751 	dev_put(adj_dev);
7752 	kfree_rcu(adj, rcu);
7753 }
7754 
7755 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7756 					    struct net_device *upper_dev,
7757 					    struct list_head *up_list,
7758 					    struct list_head *down_list,
7759 					    void *private, bool master)
7760 {
7761 	int ret;
7762 
7763 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7764 					   private, master);
7765 	if (ret)
7766 		return ret;
7767 
7768 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7769 					   private, false);
7770 	if (ret) {
7771 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7772 		return ret;
7773 	}
7774 
7775 	return 0;
7776 }
7777 
7778 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7779 					       struct net_device *upper_dev,
7780 					       u16 ref_nr,
7781 					       struct list_head *up_list,
7782 					       struct list_head *down_list)
7783 {
7784 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7785 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7786 }
7787 
7788 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7789 						struct net_device *upper_dev,
7790 						void *private, bool master)
7791 {
7792 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7793 						&dev->adj_list.upper,
7794 						&upper_dev->adj_list.lower,
7795 						private, master);
7796 }
7797 
7798 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7799 						   struct net_device *upper_dev)
7800 {
7801 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7802 					   &dev->adj_list.upper,
7803 					   &upper_dev->adj_list.lower);
7804 }
7805 
7806 static int __netdev_upper_dev_link(struct net_device *dev,
7807 				   struct net_device *upper_dev, bool master,
7808 				   void *upper_priv, void *upper_info,
7809 				   struct netdev_nested_priv *priv,
7810 				   struct netlink_ext_ack *extack)
7811 {
7812 	struct netdev_notifier_changeupper_info changeupper_info = {
7813 		.info = {
7814 			.dev = dev,
7815 			.extack = extack,
7816 		},
7817 		.upper_dev = upper_dev,
7818 		.master = master,
7819 		.linking = true,
7820 		.upper_info = upper_info,
7821 	};
7822 	struct net_device *master_dev;
7823 	int ret = 0;
7824 
7825 	ASSERT_RTNL();
7826 
7827 	if (dev == upper_dev)
7828 		return -EBUSY;
7829 
7830 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7831 	if (__netdev_has_upper_dev(upper_dev, dev))
7832 		return -EBUSY;
7833 
7834 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7835 		return -EMLINK;
7836 
7837 	if (!master) {
7838 		if (__netdev_has_upper_dev(dev, upper_dev))
7839 			return -EEXIST;
7840 	} else {
7841 		master_dev = __netdev_master_upper_dev_get(dev);
7842 		if (master_dev)
7843 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7844 	}
7845 
7846 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7847 					    &changeupper_info.info);
7848 	ret = notifier_to_errno(ret);
7849 	if (ret)
7850 		return ret;
7851 
7852 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7853 						   master);
7854 	if (ret)
7855 		return ret;
7856 
7857 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7858 					    &changeupper_info.info);
7859 	ret = notifier_to_errno(ret);
7860 	if (ret)
7861 		goto rollback;
7862 
7863 	__netdev_update_upper_level(dev, NULL);
7864 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7865 
7866 	__netdev_update_lower_level(upper_dev, priv);
7867 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7868 				    priv);
7869 
7870 	return 0;
7871 
7872 rollback:
7873 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7874 
7875 	return ret;
7876 }
7877 
7878 /**
7879  * netdev_upper_dev_link - Add a link to the upper device
7880  * @dev: device
7881  * @upper_dev: new upper device
7882  * @extack: netlink extended ack
7883  *
7884  * Adds a link to device which is upper to this one. The caller must hold
7885  * the RTNL lock. On a failure a negative errno code is returned.
7886  * On success the reference counts are adjusted and the function
7887  * returns zero.
7888  */
7889 int netdev_upper_dev_link(struct net_device *dev,
7890 			  struct net_device *upper_dev,
7891 			  struct netlink_ext_ack *extack)
7892 {
7893 	struct netdev_nested_priv priv = {
7894 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7895 		.data = NULL,
7896 	};
7897 
7898 	return __netdev_upper_dev_link(dev, upper_dev, false,
7899 				       NULL, NULL, &priv, extack);
7900 }
7901 EXPORT_SYMBOL(netdev_upper_dev_link);
7902 
7903 /**
7904  * netdev_master_upper_dev_link - Add a master link to the upper device
7905  * @dev: device
7906  * @upper_dev: new upper device
7907  * @upper_priv: upper device private
7908  * @upper_info: upper info to be passed down via notifier
7909  * @extack: netlink extended ack
7910  *
7911  * Adds a link to device which is upper to this one. In this case, only
7912  * one master upper device can be linked, although other non-master devices
7913  * might be linked as well. The caller must hold the RTNL lock.
7914  * On a failure a negative errno code is returned. On success the reference
7915  * counts are adjusted and the function returns zero.
7916  */
7917 int netdev_master_upper_dev_link(struct net_device *dev,
7918 				 struct net_device *upper_dev,
7919 				 void *upper_priv, void *upper_info,
7920 				 struct netlink_ext_ack *extack)
7921 {
7922 	struct netdev_nested_priv priv = {
7923 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7924 		.data = NULL,
7925 	};
7926 
7927 	return __netdev_upper_dev_link(dev, upper_dev, true,
7928 				       upper_priv, upper_info, &priv, extack);
7929 }
7930 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7931 
7932 static void __netdev_upper_dev_unlink(struct net_device *dev,
7933 				      struct net_device *upper_dev,
7934 				      struct netdev_nested_priv *priv)
7935 {
7936 	struct netdev_notifier_changeupper_info changeupper_info = {
7937 		.info = {
7938 			.dev = dev,
7939 		},
7940 		.upper_dev = upper_dev,
7941 		.linking = false,
7942 	};
7943 
7944 	ASSERT_RTNL();
7945 
7946 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7947 
7948 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7949 				      &changeupper_info.info);
7950 
7951 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7952 
7953 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7954 				      &changeupper_info.info);
7955 
7956 	__netdev_update_upper_level(dev, NULL);
7957 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7958 
7959 	__netdev_update_lower_level(upper_dev, priv);
7960 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7961 				    priv);
7962 }
7963 
7964 /**
7965  * netdev_upper_dev_unlink - Removes a link to upper device
7966  * @dev: device
7967  * @upper_dev: new upper device
7968  *
7969  * Removes a link to device which is upper to this one. The caller must hold
7970  * the RTNL lock.
7971  */
7972 void netdev_upper_dev_unlink(struct net_device *dev,
7973 			     struct net_device *upper_dev)
7974 {
7975 	struct netdev_nested_priv priv = {
7976 		.flags = NESTED_SYNC_TODO,
7977 		.data = NULL,
7978 	};
7979 
7980 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7981 }
7982 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7983 
7984 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7985 				      struct net_device *lower_dev,
7986 				      bool val)
7987 {
7988 	struct netdev_adjacent *adj;
7989 
7990 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7991 	if (adj)
7992 		adj->ignore = val;
7993 
7994 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7995 	if (adj)
7996 		adj->ignore = val;
7997 }
7998 
7999 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8000 					struct net_device *lower_dev)
8001 {
8002 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8003 }
8004 
8005 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8006 				       struct net_device *lower_dev)
8007 {
8008 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8009 }
8010 
8011 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8012 				   struct net_device *new_dev,
8013 				   struct net_device *dev,
8014 				   struct netlink_ext_ack *extack)
8015 {
8016 	struct netdev_nested_priv priv = {
8017 		.flags = 0,
8018 		.data = NULL,
8019 	};
8020 	int err;
8021 
8022 	if (!new_dev)
8023 		return 0;
8024 
8025 	if (old_dev && new_dev != old_dev)
8026 		netdev_adjacent_dev_disable(dev, old_dev);
8027 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8028 				      extack);
8029 	if (err) {
8030 		if (old_dev && new_dev != old_dev)
8031 			netdev_adjacent_dev_enable(dev, old_dev);
8032 		return err;
8033 	}
8034 
8035 	return 0;
8036 }
8037 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8038 
8039 void netdev_adjacent_change_commit(struct net_device *old_dev,
8040 				   struct net_device *new_dev,
8041 				   struct net_device *dev)
8042 {
8043 	struct netdev_nested_priv priv = {
8044 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8045 		.data = NULL,
8046 	};
8047 
8048 	if (!new_dev || !old_dev)
8049 		return;
8050 
8051 	if (new_dev == old_dev)
8052 		return;
8053 
8054 	netdev_adjacent_dev_enable(dev, old_dev);
8055 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8056 }
8057 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8058 
8059 void netdev_adjacent_change_abort(struct net_device *old_dev,
8060 				  struct net_device *new_dev,
8061 				  struct net_device *dev)
8062 {
8063 	struct netdev_nested_priv priv = {
8064 		.flags = 0,
8065 		.data = NULL,
8066 	};
8067 
8068 	if (!new_dev)
8069 		return;
8070 
8071 	if (old_dev && new_dev != old_dev)
8072 		netdev_adjacent_dev_enable(dev, old_dev);
8073 
8074 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8075 }
8076 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8077 
8078 /**
8079  * netdev_bonding_info_change - Dispatch event about slave change
8080  * @dev: device
8081  * @bonding_info: info to dispatch
8082  *
8083  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8084  * The caller must hold the RTNL lock.
8085  */
8086 void netdev_bonding_info_change(struct net_device *dev,
8087 				struct netdev_bonding_info *bonding_info)
8088 {
8089 	struct netdev_notifier_bonding_info info = {
8090 		.info.dev = dev,
8091 	};
8092 
8093 	memcpy(&info.bonding_info, bonding_info,
8094 	       sizeof(struct netdev_bonding_info));
8095 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8096 				      &info.info);
8097 }
8098 EXPORT_SYMBOL(netdev_bonding_info_change);
8099 
8100 /**
8101  * netdev_get_xmit_slave - Get the xmit slave of master device
8102  * @dev: device
8103  * @skb: The packet
8104  * @all_slaves: assume all the slaves are active
8105  *
8106  * The reference counters are not incremented so the caller must be
8107  * careful with locks. The caller must hold RCU lock.
8108  * %NULL is returned if no slave is found.
8109  */
8110 
8111 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8112 					 struct sk_buff *skb,
8113 					 bool all_slaves)
8114 {
8115 	const struct net_device_ops *ops = dev->netdev_ops;
8116 
8117 	if (!ops->ndo_get_xmit_slave)
8118 		return NULL;
8119 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8120 }
8121 EXPORT_SYMBOL(netdev_get_xmit_slave);
8122 
8123 static void netdev_adjacent_add_links(struct net_device *dev)
8124 {
8125 	struct netdev_adjacent *iter;
8126 
8127 	struct net *net = dev_net(dev);
8128 
8129 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8130 		if (!net_eq(net, dev_net(iter->dev)))
8131 			continue;
8132 		netdev_adjacent_sysfs_add(iter->dev, dev,
8133 					  &iter->dev->adj_list.lower);
8134 		netdev_adjacent_sysfs_add(dev, iter->dev,
8135 					  &dev->adj_list.upper);
8136 	}
8137 
8138 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8139 		if (!net_eq(net, dev_net(iter->dev)))
8140 			continue;
8141 		netdev_adjacent_sysfs_add(iter->dev, dev,
8142 					  &iter->dev->adj_list.upper);
8143 		netdev_adjacent_sysfs_add(dev, iter->dev,
8144 					  &dev->adj_list.lower);
8145 	}
8146 }
8147 
8148 static void netdev_adjacent_del_links(struct net_device *dev)
8149 {
8150 	struct netdev_adjacent *iter;
8151 
8152 	struct net *net = dev_net(dev);
8153 
8154 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8155 		if (!net_eq(net, dev_net(iter->dev)))
8156 			continue;
8157 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8158 					  &iter->dev->adj_list.lower);
8159 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8160 					  &dev->adj_list.upper);
8161 	}
8162 
8163 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8164 		if (!net_eq(net, dev_net(iter->dev)))
8165 			continue;
8166 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8167 					  &iter->dev->adj_list.upper);
8168 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8169 					  &dev->adj_list.lower);
8170 	}
8171 }
8172 
8173 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8174 {
8175 	struct netdev_adjacent *iter;
8176 
8177 	struct net *net = dev_net(dev);
8178 
8179 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8180 		if (!net_eq(net, dev_net(iter->dev)))
8181 			continue;
8182 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8183 					  &iter->dev->adj_list.lower);
8184 		netdev_adjacent_sysfs_add(iter->dev, dev,
8185 					  &iter->dev->adj_list.lower);
8186 	}
8187 
8188 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8189 		if (!net_eq(net, dev_net(iter->dev)))
8190 			continue;
8191 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8192 					  &iter->dev->adj_list.upper);
8193 		netdev_adjacent_sysfs_add(iter->dev, dev,
8194 					  &iter->dev->adj_list.upper);
8195 	}
8196 }
8197 
8198 void *netdev_lower_dev_get_private(struct net_device *dev,
8199 				   struct net_device *lower_dev)
8200 {
8201 	struct netdev_adjacent *lower;
8202 
8203 	if (!lower_dev)
8204 		return NULL;
8205 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8206 	if (!lower)
8207 		return NULL;
8208 
8209 	return lower->private;
8210 }
8211 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8212 
8213 
8214 /**
8215  * netdev_lower_state_changed - Dispatch event about lower device state change
8216  * @lower_dev: device
8217  * @lower_state_info: state to dispatch
8218  *
8219  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8220  * The caller must hold the RTNL lock.
8221  */
8222 void netdev_lower_state_changed(struct net_device *lower_dev,
8223 				void *lower_state_info)
8224 {
8225 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8226 		.info.dev = lower_dev,
8227 	};
8228 
8229 	ASSERT_RTNL();
8230 	changelowerstate_info.lower_state_info = lower_state_info;
8231 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8232 				      &changelowerstate_info.info);
8233 }
8234 EXPORT_SYMBOL(netdev_lower_state_changed);
8235 
8236 static void dev_change_rx_flags(struct net_device *dev, int flags)
8237 {
8238 	const struct net_device_ops *ops = dev->netdev_ops;
8239 
8240 	if (ops->ndo_change_rx_flags)
8241 		ops->ndo_change_rx_flags(dev, flags);
8242 }
8243 
8244 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8245 {
8246 	unsigned int old_flags = dev->flags;
8247 	kuid_t uid;
8248 	kgid_t gid;
8249 
8250 	ASSERT_RTNL();
8251 
8252 	dev->flags |= IFF_PROMISC;
8253 	dev->promiscuity += inc;
8254 	if (dev->promiscuity == 0) {
8255 		/*
8256 		 * Avoid overflow.
8257 		 * If inc causes overflow, untouch promisc and return error.
8258 		 */
8259 		if (inc < 0)
8260 			dev->flags &= ~IFF_PROMISC;
8261 		else {
8262 			dev->promiscuity -= inc;
8263 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8264 				dev->name);
8265 			return -EOVERFLOW;
8266 		}
8267 	}
8268 	if (dev->flags != old_flags) {
8269 		pr_info("device %s %s promiscuous mode\n",
8270 			dev->name,
8271 			dev->flags & IFF_PROMISC ? "entered" : "left");
8272 		if (audit_enabled) {
8273 			current_uid_gid(&uid, &gid);
8274 			audit_log(audit_context(), GFP_ATOMIC,
8275 				  AUDIT_ANOM_PROMISCUOUS,
8276 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8277 				  dev->name, (dev->flags & IFF_PROMISC),
8278 				  (old_flags & IFF_PROMISC),
8279 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8280 				  from_kuid(&init_user_ns, uid),
8281 				  from_kgid(&init_user_ns, gid),
8282 				  audit_get_sessionid(current));
8283 		}
8284 
8285 		dev_change_rx_flags(dev, IFF_PROMISC);
8286 	}
8287 	if (notify)
8288 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8289 	return 0;
8290 }
8291 
8292 /**
8293  *	dev_set_promiscuity	- update promiscuity count on a device
8294  *	@dev: device
8295  *	@inc: modifier
8296  *
8297  *	Add or remove promiscuity from a device. While the count in the device
8298  *	remains above zero the interface remains promiscuous. Once it hits zero
8299  *	the device reverts back to normal filtering operation. A negative inc
8300  *	value is used to drop promiscuity on the device.
8301  *	Return 0 if successful or a negative errno code on error.
8302  */
8303 int dev_set_promiscuity(struct net_device *dev, int inc)
8304 {
8305 	unsigned int old_flags = dev->flags;
8306 	int err;
8307 
8308 	err = __dev_set_promiscuity(dev, inc, true);
8309 	if (err < 0)
8310 		return err;
8311 	if (dev->flags != old_flags)
8312 		dev_set_rx_mode(dev);
8313 	return err;
8314 }
8315 EXPORT_SYMBOL(dev_set_promiscuity);
8316 
8317 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8318 {
8319 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8320 
8321 	ASSERT_RTNL();
8322 
8323 	dev->flags |= IFF_ALLMULTI;
8324 	dev->allmulti += inc;
8325 	if (dev->allmulti == 0) {
8326 		/*
8327 		 * Avoid overflow.
8328 		 * If inc causes overflow, untouch allmulti and return error.
8329 		 */
8330 		if (inc < 0)
8331 			dev->flags &= ~IFF_ALLMULTI;
8332 		else {
8333 			dev->allmulti -= inc;
8334 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8335 				dev->name);
8336 			return -EOVERFLOW;
8337 		}
8338 	}
8339 	if (dev->flags ^ old_flags) {
8340 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8341 		dev_set_rx_mode(dev);
8342 		if (notify)
8343 			__dev_notify_flags(dev, old_flags,
8344 					   dev->gflags ^ old_gflags);
8345 	}
8346 	return 0;
8347 }
8348 
8349 /**
8350  *	dev_set_allmulti	- update allmulti count on a device
8351  *	@dev: device
8352  *	@inc: modifier
8353  *
8354  *	Add or remove reception of all multicast frames to a device. While the
8355  *	count in the device remains above zero the interface remains listening
8356  *	to all interfaces. Once it hits zero the device reverts back to normal
8357  *	filtering operation. A negative @inc value is used to drop the counter
8358  *	when releasing a resource needing all multicasts.
8359  *	Return 0 if successful or a negative errno code on error.
8360  */
8361 
8362 int dev_set_allmulti(struct net_device *dev, int inc)
8363 {
8364 	return __dev_set_allmulti(dev, inc, true);
8365 }
8366 EXPORT_SYMBOL(dev_set_allmulti);
8367 
8368 /*
8369  *	Upload unicast and multicast address lists to device and
8370  *	configure RX filtering. When the device doesn't support unicast
8371  *	filtering it is put in promiscuous mode while unicast addresses
8372  *	are present.
8373  */
8374 void __dev_set_rx_mode(struct net_device *dev)
8375 {
8376 	const struct net_device_ops *ops = dev->netdev_ops;
8377 
8378 	/* dev_open will call this function so the list will stay sane. */
8379 	if (!(dev->flags&IFF_UP))
8380 		return;
8381 
8382 	if (!netif_device_present(dev))
8383 		return;
8384 
8385 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8386 		/* Unicast addresses changes may only happen under the rtnl,
8387 		 * therefore calling __dev_set_promiscuity here is safe.
8388 		 */
8389 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8390 			__dev_set_promiscuity(dev, 1, false);
8391 			dev->uc_promisc = true;
8392 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8393 			__dev_set_promiscuity(dev, -1, false);
8394 			dev->uc_promisc = false;
8395 		}
8396 	}
8397 
8398 	if (ops->ndo_set_rx_mode)
8399 		ops->ndo_set_rx_mode(dev);
8400 }
8401 
8402 void dev_set_rx_mode(struct net_device *dev)
8403 {
8404 	netif_addr_lock_bh(dev);
8405 	__dev_set_rx_mode(dev);
8406 	netif_addr_unlock_bh(dev);
8407 }
8408 
8409 /**
8410  *	dev_get_flags - get flags reported to userspace
8411  *	@dev: device
8412  *
8413  *	Get the combination of flag bits exported through APIs to userspace.
8414  */
8415 unsigned int dev_get_flags(const struct net_device *dev)
8416 {
8417 	unsigned int flags;
8418 
8419 	flags = (dev->flags & ~(IFF_PROMISC |
8420 				IFF_ALLMULTI |
8421 				IFF_RUNNING |
8422 				IFF_LOWER_UP |
8423 				IFF_DORMANT)) |
8424 		(dev->gflags & (IFF_PROMISC |
8425 				IFF_ALLMULTI));
8426 
8427 	if (netif_running(dev)) {
8428 		if (netif_oper_up(dev))
8429 			flags |= IFF_RUNNING;
8430 		if (netif_carrier_ok(dev))
8431 			flags |= IFF_LOWER_UP;
8432 		if (netif_dormant(dev))
8433 			flags |= IFF_DORMANT;
8434 	}
8435 
8436 	return flags;
8437 }
8438 EXPORT_SYMBOL(dev_get_flags);
8439 
8440 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8441 		       struct netlink_ext_ack *extack)
8442 {
8443 	unsigned int old_flags = dev->flags;
8444 	int ret;
8445 
8446 	ASSERT_RTNL();
8447 
8448 	/*
8449 	 *	Set the flags on our device.
8450 	 */
8451 
8452 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8453 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8454 			       IFF_AUTOMEDIA)) |
8455 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8456 				    IFF_ALLMULTI));
8457 
8458 	/*
8459 	 *	Load in the correct multicast list now the flags have changed.
8460 	 */
8461 
8462 	if ((old_flags ^ flags) & IFF_MULTICAST)
8463 		dev_change_rx_flags(dev, IFF_MULTICAST);
8464 
8465 	dev_set_rx_mode(dev);
8466 
8467 	/*
8468 	 *	Have we downed the interface. We handle IFF_UP ourselves
8469 	 *	according to user attempts to set it, rather than blindly
8470 	 *	setting it.
8471 	 */
8472 
8473 	ret = 0;
8474 	if ((old_flags ^ flags) & IFF_UP) {
8475 		if (old_flags & IFF_UP)
8476 			__dev_close(dev);
8477 		else
8478 			ret = __dev_open(dev, extack);
8479 	}
8480 
8481 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8482 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8483 		unsigned int old_flags = dev->flags;
8484 
8485 		dev->gflags ^= IFF_PROMISC;
8486 
8487 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8488 			if (dev->flags != old_flags)
8489 				dev_set_rx_mode(dev);
8490 	}
8491 
8492 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8493 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8494 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8495 	 */
8496 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8497 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8498 
8499 		dev->gflags ^= IFF_ALLMULTI;
8500 		__dev_set_allmulti(dev, inc, false);
8501 	}
8502 
8503 	return ret;
8504 }
8505 
8506 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8507 			unsigned int gchanges)
8508 {
8509 	unsigned int changes = dev->flags ^ old_flags;
8510 
8511 	if (gchanges)
8512 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8513 
8514 	if (changes & IFF_UP) {
8515 		if (dev->flags & IFF_UP)
8516 			call_netdevice_notifiers(NETDEV_UP, dev);
8517 		else
8518 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8519 	}
8520 
8521 	if (dev->flags & IFF_UP &&
8522 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8523 		struct netdev_notifier_change_info change_info = {
8524 			.info = {
8525 				.dev = dev,
8526 			},
8527 			.flags_changed = changes,
8528 		};
8529 
8530 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8531 	}
8532 }
8533 
8534 /**
8535  *	dev_change_flags - change device settings
8536  *	@dev: device
8537  *	@flags: device state flags
8538  *	@extack: netlink extended ack
8539  *
8540  *	Change settings on device based state flags. The flags are
8541  *	in the userspace exported format.
8542  */
8543 int dev_change_flags(struct net_device *dev, unsigned int flags,
8544 		     struct netlink_ext_ack *extack)
8545 {
8546 	int ret;
8547 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8548 
8549 	ret = __dev_change_flags(dev, flags, extack);
8550 	if (ret < 0)
8551 		return ret;
8552 
8553 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8554 	__dev_notify_flags(dev, old_flags, changes);
8555 	return ret;
8556 }
8557 EXPORT_SYMBOL(dev_change_flags);
8558 
8559 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8560 {
8561 	const struct net_device_ops *ops = dev->netdev_ops;
8562 
8563 	if (ops->ndo_change_mtu)
8564 		return ops->ndo_change_mtu(dev, new_mtu);
8565 
8566 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8567 	WRITE_ONCE(dev->mtu, new_mtu);
8568 	return 0;
8569 }
8570 EXPORT_SYMBOL(__dev_set_mtu);
8571 
8572 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8573 		     struct netlink_ext_ack *extack)
8574 {
8575 	/* MTU must be positive, and in range */
8576 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8577 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8578 		return -EINVAL;
8579 	}
8580 
8581 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8582 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8583 		return -EINVAL;
8584 	}
8585 	return 0;
8586 }
8587 
8588 /**
8589  *	dev_set_mtu_ext - Change maximum transfer unit
8590  *	@dev: device
8591  *	@new_mtu: new transfer unit
8592  *	@extack: netlink extended ack
8593  *
8594  *	Change the maximum transfer size of the network device.
8595  */
8596 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8597 		    struct netlink_ext_ack *extack)
8598 {
8599 	int err, orig_mtu;
8600 
8601 	if (new_mtu == dev->mtu)
8602 		return 0;
8603 
8604 	err = dev_validate_mtu(dev, new_mtu, extack);
8605 	if (err)
8606 		return err;
8607 
8608 	if (!netif_device_present(dev))
8609 		return -ENODEV;
8610 
8611 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8612 	err = notifier_to_errno(err);
8613 	if (err)
8614 		return err;
8615 
8616 	orig_mtu = dev->mtu;
8617 	err = __dev_set_mtu(dev, new_mtu);
8618 
8619 	if (!err) {
8620 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8621 						   orig_mtu);
8622 		err = notifier_to_errno(err);
8623 		if (err) {
8624 			/* setting mtu back and notifying everyone again,
8625 			 * so that they have a chance to revert changes.
8626 			 */
8627 			__dev_set_mtu(dev, orig_mtu);
8628 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8629 						     new_mtu);
8630 		}
8631 	}
8632 	return err;
8633 }
8634 
8635 int dev_set_mtu(struct net_device *dev, int new_mtu)
8636 {
8637 	struct netlink_ext_ack extack;
8638 	int err;
8639 
8640 	memset(&extack, 0, sizeof(extack));
8641 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8642 	if (err && extack._msg)
8643 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8644 	return err;
8645 }
8646 EXPORT_SYMBOL(dev_set_mtu);
8647 
8648 /**
8649  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8650  *	@dev: device
8651  *	@new_len: new tx queue length
8652  */
8653 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8654 {
8655 	unsigned int orig_len = dev->tx_queue_len;
8656 	int res;
8657 
8658 	if (new_len != (unsigned int)new_len)
8659 		return -ERANGE;
8660 
8661 	if (new_len != orig_len) {
8662 		dev->tx_queue_len = new_len;
8663 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8664 		res = notifier_to_errno(res);
8665 		if (res)
8666 			goto err_rollback;
8667 		res = dev_qdisc_change_tx_queue_len(dev);
8668 		if (res)
8669 			goto err_rollback;
8670 	}
8671 
8672 	return 0;
8673 
8674 err_rollback:
8675 	netdev_err(dev, "refused to change device tx_queue_len\n");
8676 	dev->tx_queue_len = orig_len;
8677 	return res;
8678 }
8679 
8680 /**
8681  *	dev_set_group - Change group this device belongs to
8682  *	@dev: device
8683  *	@new_group: group this device should belong to
8684  */
8685 void dev_set_group(struct net_device *dev, int new_group)
8686 {
8687 	dev->group = new_group;
8688 }
8689 EXPORT_SYMBOL(dev_set_group);
8690 
8691 /**
8692  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8693  *	@dev: device
8694  *	@addr: new address
8695  *	@extack: netlink extended ack
8696  */
8697 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8698 			      struct netlink_ext_ack *extack)
8699 {
8700 	struct netdev_notifier_pre_changeaddr_info info = {
8701 		.info.dev = dev,
8702 		.info.extack = extack,
8703 		.dev_addr = addr,
8704 	};
8705 	int rc;
8706 
8707 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8708 	return notifier_to_errno(rc);
8709 }
8710 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8711 
8712 /**
8713  *	dev_set_mac_address - Change Media Access Control Address
8714  *	@dev: device
8715  *	@sa: new address
8716  *	@extack: netlink extended ack
8717  *
8718  *	Change the hardware (MAC) address of the device
8719  */
8720 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8721 			struct netlink_ext_ack *extack)
8722 {
8723 	const struct net_device_ops *ops = dev->netdev_ops;
8724 	int err;
8725 
8726 	if (!ops->ndo_set_mac_address)
8727 		return -EOPNOTSUPP;
8728 	if (sa->sa_family != dev->type)
8729 		return -EINVAL;
8730 	if (!netif_device_present(dev))
8731 		return -ENODEV;
8732 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8733 	if (err)
8734 		return err;
8735 	err = ops->ndo_set_mac_address(dev, sa);
8736 	if (err)
8737 		return err;
8738 	dev->addr_assign_type = NET_ADDR_SET;
8739 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8740 	add_device_randomness(dev->dev_addr, dev->addr_len);
8741 	return 0;
8742 }
8743 EXPORT_SYMBOL(dev_set_mac_address);
8744 
8745 /**
8746  *	dev_change_carrier - Change device carrier
8747  *	@dev: device
8748  *	@new_carrier: new value
8749  *
8750  *	Change device carrier
8751  */
8752 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8753 {
8754 	const struct net_device_ops *ops = dev->netdev_ops;
8755 
8756 	if (!ops->ndo_change_carrier)
8757 		return -EOPNOTSUPP;
8758 	if (!netif_device_present(dev))
8759 		return -ENODEV;
8760 	return ops->ndo_change_carrier(dev, new_carrier);
8761 }
8762 EXPORT_SYMBOL(dev_change_carrier);
8763 
8764 /**
8765  *	dev_get_phys_port_id - Get device physical port ID
8766  *	@dev: device
8767  *	@ppid: port ID
8768  *
8769  *	Get device physical port ID
8770  */
8771 int dev_get_phys_port_id(struct net_device *dev,
8772 			 struct netdev_phys_item_id *ppid)
8773 {
8774 	const struct net_device_ops *ops = dev->netdev_ops;
8775 
8776 	if (!ops->ndo_get_phys_port_id)
8777 		return -EOPNOTSUPP;
8778 	return ops->ndo_get_phys_port_id(dev, ppid);
8779 }
8780 EXPORT_SYMBOL(dev_get_phys_port_id);
8781 
8782 /**
8783  *	dev_get_phys_port_name - Get device physical port name
8784  *	@dev: device
8785  *	@name: port name
8786  *	@len: limit of bytes to copy to name
8787  *
8788  *	Get device physical port name
8789  */
8790 int dev_get_phys_port_name(struct net_device *dev,
8791 			   char *name, size_t len)
8792 {
8793 	const struct net_device_ops *ops = dev->netdev_ops;
8794 	int err;
8795 
8796 	if (ops->ndo_get_phys_port_name) {
8797 		err = ops->ndo_get_phys_port_name(dev, name, len);
8798 		if (err != -EOPNOTSUPP)
8799 			return err;
8800 	}
8801 	return devlink_compat_phys_port_name_get(dev, name, len);
8802 }
8803 EXPORT_SYMBOL(dev_get_phys_port_name);
8804 
8805 /**
8806  *	dev_get_port_parent_id - Get the device's port parent identifier
8807  *	@dev: network device
8808  *	@ppid: pointer to a storage for the port's parent identifier
8809  *	@recurse: allow/disallow recursion to lower devices
8810  *
8811  *	Get the devices's port parent identifier
8812  */
8813 int dev_get_port_parent_id(struct net_device *dev,
8814 			   struct netdev_phys_item_id *ppid,
8815 			   bool recurse)
8816 {
8817 	const struct net_device_ops *ops = dev->netdev_ops;
8818 	struct netdev_phys_item_id first = { };
8819 	struct net_device *lower_dev;
8820 	struct list_head *iter;
8821 	int err;
8822 
8823 	if (ops->ndo_get_port_parent_id) {
8824 		err = ops->ndo_get_port_parent_id(dev, ppid);
8825 		if (err != -EOPNOTSUPP)
8826 			return err;
8827 	}
8828 
8829 	err = devlink_compat_switch_id_get(dev, ppid);
8830 	if (!err || err != -EOPNOTSUPP)
8831 		return err;
8832 
8833 	if (!recurse)
8834 		return -EOPNOTSUPP;
8835 
8836 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8837 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8838 		if (err)
8839 			break;
8840 		if (!first.id_len)
8841 			first = *ppid;
8842 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8843 			return -EOPNOTSUPP;
8844 	}
8845 
8846 	return err;
8847 }
8848 EXPORT_SYMBOL(dev_get_port_parent_id);
8849 
8850 /**
8851  *	netdev_port_same_parent_id - Indicate if two network devices have
8852  *	the same port parent identifier
8853  *	@a: first network device
8854  *	@b: second network device
8855  */
8856 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8857 {
8858 	struct netdev_phys_item_id a_id = { };
8859 	struct netdev_phys_item_id b_id = { };
8860 
8861 	if (dev_get_port_parent_id(a, &a_id, true) ||
8862 	    dev_get_port_parent_id(b, &b_id, true))
8863 		return false;
8864 
8865 	return netdev_phys_item_id_same(&a_id, &b_id);
8866 }
8867 EXPORT_SYMBOL(netdev_port_same_parent_id);
8868 
8869 /**
8870  *	dev_change_proto_down - update protocol port state information
8871  *	@dev: device
8872  *	@proto_down: new value
8873  *
8874  *	This info can be used by switch drivers to set the phys state of the
8875  *	port.
8876  */
8877 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8878 {
8879 	const struct net_device_ops *ops = dev->netdev_ops;
8880 
8881 	if (!ops->ndo_change_proto_down)
8882 		return -EOPNOTSUPP;
8883 	if (!netif_device_present(dev))
8884 		return -ENODEV;
8885 	return ops->ndo_change_proto_down(dev, proto_down);
8886 }
8887 EXPORT_SYMBOL(dev_change_proto_down);
8888 
8889 /**
8890  *	dev_change_proto_down_generic - generic implementation for
8891  * 	ndo_change_proto_down that sets carrier according to
8892  * 	proto_down.
8893  *
8894  *	@dev: device
8895  *	@proto_down: new value
8896  */
8897 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8898 {
8899 	if (proto_down)
8900 		netif_carrier_off(dev);
8901 	else
8902 		netif_carrier_on(dev);
8903 	dev->proto_down = proto_down;
8904 	return 0;
8905 }
8906 EXPORT_SYMBOL(dev_change_proto_down_generic);
8907 
8908 /**
8909  *	dev_change_proto_down_reason - proto down reason
8910  *
8911  *	@dev: device
8912  *	@mask: proto down mask
8913  *	@value: proto down value
8914  */
8915 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8916 				  u32 value)
8917 {
8918 	int b;
8919 
8920 	if (!mask) {
8921 		dev->proto_down_reason = value;
8922 	} else {
8923 		for_each_set_bit(b, &mask, 32) {
8924 			if (value & (1 << b))
8925 				dev->proto_down_reason |= BIT(b);
8926 			else
8927 				dev->proto_down_reason &= ~BIT(b);
8928 		}
8929 	}
8930 }
8931 EXPORT_SYMBOL(dev_change_proto_down_reason);
8932 
8933 struct bpf_xdp_link {
8934 	struct bpf_link link;
8935 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8936 	int flags;
8937 };
8938 
8939 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
8940 {
8941 	if (flags & XDP_FLAGS_HW_MODE)
8942 		return XDP_MODE_HW;
8943 	if (flags & XDP_FLAGS_DRV_MODE)
8944 		return XDP_MODE_DRV;
8945 	if (flags & XDP_FLAGS_SKB_MODE)
8946 		return XDP_MODE_SKB;
8947 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
8948 }
8949 
8950 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8951 {
8952 	switch (mode) {
8953 	case XDP_MODE_SKB:
8954 		return generic_xdp_install;
8955 	case XDP_MODE_DRV:
8956 	case XDP_MODE_HW:
8957 		return dev->netdev_ops->ndo_bpf;
8958 	default:
8959 		return NULL;
8960 	}
8961 }
8962 
8963 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
8964 					 enum bpf_xdp_mode mode)
8965 {
8966 	return dev->xdp_state[mode].link;
8967 }
8968 
8969 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
8970 				     enum bpf_xdp_mode mode)
8971 {
8972 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
8973 
8974 	if (link)
8975 		return link->link.prog;
8976 	return dev->xdp_state[mode].prog;
8977 }
8978 
8979 static u8 dev_xdp_prog_count(struct net_device *dev)
8980 {
8981 	u8 count = 0;
8982 	int i;
8983 
8984 	for (i = 0; i < __MAX_XDP_MODE; i++)
8985 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
8986 			count++;
8987 	return count;
8988 }
8989 
8990 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
8991 {
8992 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
8993 
8994 	return prog ? prog->aux->id : 0;
8995 }
8996 
8997 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
8998 			     struct bpf_xdp_link *link)
8999 {
9000 	dev->xdp_state[mode].link = link;
9001 	dev->xdp_state[mode].prog = NULL;
9002 }
9003 
9004 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9005 			     struct bpf_prog *prog)
9006 {
9007 	dev->xdp_state[mode].link = NULL;
9008 	dev->xdp_state[mode].prog = prog;
9009 }
9010 
9011 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9012 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9013 			   u32 flags, struct bpf_prog *prog)
9014 {
9015 	struct netdev_bpf xdp;
9016 	int err;
9017 
9018 	memset(&xdp, 0, sizeof(xdp));
9019 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9020 	xdp.extack = extack;
9021 	xdp.flags = flags;
9022 	xdp.prog = prog;
9023 
9024 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9025 	 * "moved" into driver), so they don't increment it on their own, but
9026 	 * they do decrement refcnt when program is detached or replaced.
9027 	 * Given net_device also owns link/prog, we need to bump refcnt here
9028 	 * to prevent drivers from underflowing it.
9029 	 */
9030 	if (prog)
9031 		bpf_prog_inc(prog);
9032 	err = bpf_op(dev, &xdp);
9033 	if (err) {
9034 		if (prog)
9035 			bpf_prog_put(prog);
9036 		return err;
9037 	}
9038 
9039 	if (mode != XDP_MODE_HW)
9040 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9041 
9042 	return 0;
9043 }
9044 
9045 static void dev_xdp_uninstall(struct net_device *dev)
9046 {
9047 	struct bpf_xdp_link *link;
9048 	struct bpf_prog *prog;
9049 	enum bpf_xdp_mode mode;
9050 	bpf_op_t bpf_op;
9051 
9052 	ASSERT_RTNL();
9053 
9054 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9055 		prog = dev_xdp_prog(dev, mode);
9056 		if (!prog)
9057 			continue;
9058 
9059 		bpf_op = dev_xdp_bpf_op(dev, mode);
9060 		if (!bpf_op)
9061 			continue;
9062 
9063 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9064 
9065 		/* auto-detach link from net device */
9066 		link = dev_xdp_link(dev, mode);
9067 		if (link)
9068 			link->dev = NULL;
9069 		else
9070 			bpf_prog_put(prog);
9071 
9072 		dev_xdp_set_link(dev, mode, NULL);
9073 	}
9074 }
9075 
9076 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9077 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9078 			  struct bpf_prog *old_prog, u32 flags)
9079 {
9080 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9081 	struct bpf_prog *cur_prog;
9082 	enum bpf_xdp_mode mode;
9083 	bpf_op_t bpf_op;
9084 	int err;
9085 
9086 	ASSERT_RTNL();
9087 
9088 	/* either link or prog attachment, never both */
9089 	if (link && (new_prog || old_prog))
9090 		return -EINVAL;
9091 	/* link supports only XDP mode flags */
9092 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9093 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9094 		return -EINVAL;
9095 	}
9096 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9097 	if (num_modes > 1) {
9098 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9099 		return -EINVAL;
9100 	}
9101 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9102 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9103 		NL_SET_ERR_MSG(extack,
9104 			       "More than one program loaded, unset mode is ambiguous");
9105 		return -EINVAL;
9106 	}
9107 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9108 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9109 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9110 		return -EINVAL;
9111 	}
9112 
9113 	mode = dev_xdp_mode(dev, flags);
9114 	/* can't replace attached link */
9115 	if (dev_xdp_link(dev, mode)) {
9116 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9117 		return -EBUSY;
9118 	}
9119 
9120 	cur_prog = dev_xdp_prog(dev, mode);
9121 	/* can't replace attached prog with link */
9122 	if (link && cur_prog) {
9123 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9124 		return -EBUSY;
9125 	}
9126 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9127 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9128 		return -EEXIST;
9129 	}
9130 
9131 	/* put effective new program into new_prog */
9132 	if (link)
9133 		new_prog = link->link.prog;
9134 
9135 	if (new_prog) {
9136 		bool offload = mode == XDP_MODE_HW;
9137 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9138 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9139 
9140 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9141 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9142 			return -EBUSY;
9143 		}
9144 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9145 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9146 			return -EEXIST;
9147 		}
9148 		if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9149 			NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9150 			return -EINVAL;
9151 		}
9152 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9153 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9154 			return -EINVAL;
9155 		}
9156 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9157 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9158 			return -EINVAL;
9159 		}
9160 	}
9161 
9162 	/* don't call drivers if the effective program didn't change */
9163 	if (new_prog != cur_prog) {
9164 		bpf_op = dev_xdp_bpf_op(dev, mode);
9165 		if (!bpf_op) {
9166 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9167 			return -EOPNOTSUPP;
9168 		}
9169 
9170 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9171 		if (err)
9172 			return err;
9173 	}
9174 
9175 	if (link)
9176 		dev_xdp_set_link(dev, mode, link);
9177 	else
9178 		dev_xdp_set_prog(dev, mode, new_prog);
9179 	if (cur_prog)
9180 		bpf_prog_put(cur_prog);
9181 
9182 	return 0;
9183 }
9184 
9185 static int dev_xdp_attach_link(struct net_device *dev,
9186 			       struct netlink_ext_ack *extack,
9187 			       struct bpf_xdp_link *link)
9188 {
9189 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9190 }
9191 
9192 static int dev_xdp_detach_link(struct net_device *dev,
9193 			       struct netlink_ext_ack *extack,
9194 			       struct bpf_xdp_link *link)
9195 {
9196 	enum bpf_xdp_mode mode;
9197 	bpf_op_t bpf_op;
9198 
9199 	ASSERT_RTNL();
9200 
9201 	mode = dev_xdp_mode(dev, link->flags);
9202 	if (dev_xdp_link(dev, mode) != link)
9203 		return -EINVAL;
9204 
9205 	bpf_op = dev_xdp_bpf_op(dev, mode);
9206 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9207 	dev_xdp_set_link(dev, mode, NULL);
9208 	return 0;
9209 }
9210 
9211 static void bpf_xdp_link_release(struct bpf_link *link)
9212 {
9213 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9214 
9215 	rtnl_lock();
9216 
9217 	/* if racing with net_device's tear down, xdp_link->dev might be
9218 	 * already NULL, in which case link was already auto-detached
9219 	 */
9220 	if (xdp_link->dev) {
9221 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9222 		xdp_link->dev = NULL;
9223 	}
9224 
9225 	rtnl_unlock();
9226 }
9227 
9228 static int bpf_xdp_link_detach(struct bpf_link *link)
9229 {
9230 	bpf_xdp_link_release(link);
9231 	return 0;
9232 }
9233 
9234 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9235 {
9236 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9237 
9238 	kfree(xdp_link);
9239 }
9240 
9241 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9242 				     struct seq_file *seq)
9243 {
9244 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9245 	u32 ifindex = 0;
9246 
9247 	rtnl_lock();
9248 	if (xdp_link->dev)
9249 		ifindex = xdp_link->dev->ifindex;
9250 	rtnl_unlock();
9251 
9252 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9253 }
9254 
9255 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9256 				       struct bpf_link_info *info)
9257 {
9258 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9259 	u32 ifindex = 0;
9260 
9261 	rtnl_lock();
9262 	if (xdp_link->dev)
9263 		ifindex = xdp_link->dev->ifindex;
9264 	rtnl_unlock();
9265 
9266 	info->xdp.ifindex = ifindex;
9267 	return 0;
9268 }
9269 
9270 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9271 			       struct bpf_prog *old_prog)
9272 {
9273 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9274 	enum bpf_xdp_mode mode;
9275 	bpf_op_t bpf_op;
9276 	int err = 0;
9277 
9278 	rtnl_lock();
9279 
9280 	/* link might have been auto-released already, so fail */
9281 	if (!xdp_link->dev) {
9282 		err = -ENOLINK;
9283 		goto out_unlock;
9284 	}
9285 
9286 	if (old_prog && link->prog != old_prog) {
9287 		err = -EPERM;
9288 		goto out_unlock;
9289 	}
9290 	old_prog = link->prog;
9291 	if (old_prog == new_prog) {
9292 		/* no-op, don't disturb drivers */
9293 		bpf_prog_put(new_prog);
9294 		goto out_unlock;
9295 	}
9296 
9297 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9298 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9299 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9300 			      xdp_link->flags, new_prog);
9301 	if (err)
9302 		goto out_unlock;
9303 
9304 	old_prog = xchg(&link->prog, new_prog);
9305 	bpf_prog_put(old_prog);
9306 
9307 out_unlock:
9308 	rtnl_unlock();
9309 	return err;
9310 }
9311 
9312 static const struct bpf_link_ops bpf_xdp_link_lops = {
9313 	.release = bpf_xdp_link_release,
9314 	.dealloc = bpf_xdp_link_dealloc,
9315 	.detach = bpf_xdp_link_detach,
9316 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9317 	.fill_link_info = bpf_xdp_link_fill_link_info,
9318 	.update_prog = bpf_xdp_link_update,
9319 };
9320 
9321 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9322 {
9323 	struct net *net = current->nsproxy->net_ns;
9324 	struct bpf_link_primer link_primer;
9325 	struct bpf_xdp_link *link;
9326 	struct net_device *dev;
9327 	int err, fd;
9328 
9329 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9330 	if (!dev)
9331 		return -EINVAL;
9332 
9333 	link = kzalloc(sizeof(*link), GFP_USER);
9334 	if (!link) {
9335 		err = -ENOMEM;
9336 		goto out_put_dev;
9337 	}
9338 
9339 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9340 	link->dev = dev;
9341 	link->flags = attr->link_create.flags;
9342 
9343 	err = bpf_link_prime(&link->link, &link_primer);
9344 	if (err) {
9345 		kfree(link);
9346 		goto out_put_dev;
9347 	}
9348 
9349 	rtnl_lock();
9350 	err = dev_xdp_attach_link(dev, NULL, link);
9351 	rtnl_unlock();
9352 
9353 	if (err) {
9354 		bpf_link_cleanup(&link_primer);
9355 		goto out_put_dev;
9356 	}
9357 
9358 	fd = bpf_link_settle(&link_primer);
9359 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9360 	dev_put(dev);
9361 	return fd;
9362 
9363 out_put_dev:
9364 	dev_put(dev);
9365 	return err;
9366 }
9367 
9368 /**
9369  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9370  *	@dev: device
9371  *	@extack: netlink extended ack
9372  *	@fd: new program fd or negative value to clear
9373  *	@expected_fd: old program fd that userspace expects to replace or clear
9374  *	@flags: xdp-related flags
9375  *
9376  *	Set or clear a bpf program for a device
9377  */
9378 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9379 		      int fd, int expected_fd, u32 flags)
9380 {
9381 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9382 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9383 	int err;
9384 
9385 	ASSERT_RTNL();
9386 
9387 	if (fd >= 0) {
9388 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9389 						 mode != XDP_MODE_SKB);
9390 		if (IS_ERR(new_prog))
9391 			return PTR_ERR(new_prog);
9392 	}
9393 
9394 	if (expected_fd >= 0) {
9395 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9396 						 mode != XDP_MODE_SKB);
9397 		if (IS_ERR(old_prog)) {
9398 			err = PTR_ERR(old_prog);
9399 			old_prog = NULL;
9400 			goto err_out;
9401 		}
9402 	}
9403 
9404 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9405 
9406 err_out:
9407 	if (err && new_prog)
9408 		bpf_prog_put(new_prog);
9409 	if (old_prog)
9410 		bpf_prog_put(old_prog);
9411 	return err;
9412 }
9413 
9414 /**
9415  *	dev_new_index	-	allocate an ifindex
9416  *	@net: the applicable net namespace
9417  *
9418  *	Returns a suitable unique value for a new device interface
9419  *	number.  The caller must hold the rtnl semaphore or the
9420  *	dev_base_lock to be sure it remains unique.
9421  */
9422 static int dev_new_index(struct net *net)
9423 {
9424 	int ifindex = net->ifindex;
9425 
9426 	for (;;) {
9427 		if (++ifindex <= 0)
9428 			ifindex = 1;
9429 		if (!__dev_get_by_index(net, ifindex))
9430 			return net->ifindex = ifindex;
9431 	}
9432 }
9433 
9434 /* Delayed registration/unregisteration */
9435 static LIST_HEAD(net_todo_list);
9436 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9437 
9438 static void net_set_todo(struct net_device *dev)
9439 {
9440 	list_add_tail(&dev->todo_list, &net_todo_list);
9441 	dev_net(dev)->dev_unreg_count++;
9442 }
9443 
9444 static void rollback_registered_many(struct list_head *head)
9445 {
9446 	struct net_device *dev, *tmp;
9447 	LIST_HEAD(close_head);
9448 
9449 	BUG_ON(dev_boot_phase);
9450 	ASSERT_RTNL();
9451 
9452 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9453 		/* Some devices call without registering
9454 		 * for initialization unwind. Remove those
9455 		 * devices and proceed with the remaining.
9456 		 */
9457 		if (dev->reg_state == NETREG_UNINITIALIZED) {
9458 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
9459 				 dev->name, dev);
9460 
9461 			WARN_ON(1);
9462 			list_del(&dev->unreg_list);
9463 			continue;
9464 		}
9465 		dev->dismantle = true;
9466 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
9467 	}
9468 
9469 	/* If device is running, close it first. */
9470 	list_for_each_entry(dev, head, unreg_list)
9471 		list_add_tail(&dev->close_list, &close_head);
9472 	dev_close_many(&close_head, true);
9473 
9474 	list_for_each_entry(dev, head, unreg_list) {
9475 		/* And unlink it from device chain. */
9476 		unlist_netdevice(dev);
9477 
9478 		dev->reg_state = NETREG_UNREGISTERING;
9479 	}
9480 	flush_all_backlogs();
9481 
9482 	synchronize_net();
9483 
9484 	list_for_each_entry(dev, head, unreg_list) {
9485 		struct sk_buff *skb = NULL;
9486 
9487 		/* Shutdown queueing discipline. */
9488 		dev_shutdown(dev);
9489 
9490 		dev_xdp_uninstall(dev);
9491 
9492 		/* Notify protocols, that we are about to destroy
9493 		 * this device. They should clean all the things.
9494 		 */
9495 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9496 
9497 		if (!dev->rtnl_link_ops ||
9498 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9499 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
9500 						     GFP_KERNEL, NULL, 0);
9501 
9502 		/*
9503 		 *	Flush the unicast and multicast chains
9504 		 */
9505 		dev_uc_flush(dev);
9506 		dev_mc_flush(dev);
9507 
9508 		netdev_name_node_alt_flush(dev);
9509 		netdev_name_node_free(dev->name_node);
9510 
9511 		if (dev->netdev_ops->ndo_uninit)
9512 			dev->netdev_ops->ndo_uninit(dev);
9513 
9514 		if (skb)
9515 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
9516 
9517 		/* Notifier chain MUST detach us all upper devices. */
9518 		WARN_ON(netdev_has_any_upper_dev(dev));
9519 		WARN_ON(netdev_has_any_lower_dev(dev));
9520 
9521 		/* Remove entries from kobject tree */
9522 		netdev_unregister_kobject(dev);
9523 #ifdef CONFIG_XPS
9524 		/* Remove XPS queueing entries */
9525 		netif_reset_xps_queues_gt(dev, 0);
9526 #endif
9527 	}
9528 
9529 	synchronize_net();
9530 
9531 	list_for_each_entry(dev, head, unreg_list)
9532 		dev_put(dev);
9533 }
9534 
9535 static void rollback_registered(struct net_device *dev)
9536 {
9537 	LIST_HEAD(single);
9538 
9539 	list_add(&dev->unreg_list, &single);
9540 	rollback_registered_many(&single);
9541 	list_del(&single);
9542 }
9543 
9544 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9545 	struct net_device *upper, netdev_features_t features)
9546 {
9547 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9548 	netdev_features_t feature;
9549 	int feature_bit;
9550 
9551 	for_each_netdev_feature(upper_disables, feature_bit) {
9552 		feature = __NETIF_F_BIT(feature_bit);
9553 		if (!(upper->wanted_features & feature)
9554 		    && (features & feature)) {
9555 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9556 				   &feature, upper->name);
9557 			features &= ~feature;
9558 		}
9559 	}
9560 
9561 	return features;
9562 }
9563 
9564 static void netdev_sync_lower_features(struct net_device *upper,
9565 	struct net_device *lower, netdev_features_t features)
9566 {
9567 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9568 	netdev_features_t feature;
9569 	int feature_bit;
9570 
9571 	for_each_netdev_feature(upper_disables, feature_bit) {
9572 		feature = __NETIF_F_BIT(feature_bit);
9573 		if (!(features & feature) && (lower->features & feature)) {
9574 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9575 				   &feature, lower->name);
9576 			lower->wanted_features &= ~feature;
9577 			__netdev_update_features(lower);
9578 
9579 			if (unlikely(lower->features & feature))
9580 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9581 					    &feature, lower->name);
9582 			else
9583 				netdev_features_change(lower);
9584 		}
9585 	}
9586 }
9587 
9588 static netdev_features_t netdev_fix_features(struct net_device *dev,
9589 	netdev_features_t features)
9590 {
9591 	/* Fix illegal checksum combinations */
9592 	if ((features & NETIF_F_HW_CSUM) &&
9593 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9594 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9595 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9596 	}
9597 
9598 	/* TSO requires that SG is present as well. */
9599 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9600 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9601 		features &= ~NETIF_F_ALL_TSO;
9602 	}
9603 
9604 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9605 					!(features & NETIF_F_IP_CSUM)) {
9606 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9607 		features &= ~NETIF_F_TSO;
9608 		features &= ~NETIF_F_TSO_ECN;
9609 	}
9610 
9611 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9612 					 !(features & NETIF_F_IPV6_CSUM)) {
9613 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9614 		features &= ~NETIF_F_TSO6;
9615 	}
9616 
9617 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9618 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9619 		features &= ~NETIF_F_TSO_MANGLEID;
9620 
9621 	/* TSO ECN requires that TSO is present as well. */
9622 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9623 		features &= ~NETIF_F_TSO_ECN;
9624 
9625 	/* Software GSO depends on SG. */
9626 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9627 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9628 		features &= ~NETIF_F_GSO;
9629 	}
9630 
9631 	/* GSO partial features require GSO partial be set */
9632 	if ((features & dev->gso_partial_features) &&
9633 	    !(features & NETIF_F_GSO_PARTIAL)) {
9634 		netdev_dbg(dev,
9635 			   "Dropping partially supported GSO features since no GSO partial.\n");
9636 		features &= ~dev->gso_partial_features;
9637 	}
9638 
9639 	if (!(features & NETIF_F_RXCSUM)) {
9640 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9641 		 * successfully merged by hardware must also have the
9642 		 * checksum verified by hardware.  If the user does not
9643 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9644 		 */
9645 		if (features & NETIF_F_GRO_HW) {
9646 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9647 			features &= ~NETIF_F_GRO_HW;
9648 		}
9649 	}
9650 
9651 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9652 	if (features & NETIF_F_RXFCS) {
9653 		if (features & NETIF_F_LRO) {
9654 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9655 			features &= ~NETIF_F_LRO;
9656 		}
9657 
9658 		if (features & NETIF_F_GRO_HW) {
9659 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9660 			features &= ~NETIF_F_GRO_HW;
9661 		}
9662 	}
9663 
9664 	if (features & NETIF_F_HW_TLS_TX) {
9665 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9666 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9667 		bool hw_csum = features & NETIF_F_HW_CSUM;
9668 
9669 		if (!ip_csum && !hw_csum) {
9670 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9671 			features &= ~NETIF_F_HW_TLS_TX;
9672 		}
9673 	}
9674 
9675 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9676 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9677 		features &= ~NETIF_F_HW_TLS_RX;
9678 	}
9679 
9680 	return features;
9681 }
9682 
9683 int __netdev_update_features(struct net_device *dev)
9684 {
9685 	struct net_device *upper, *lower;
9686 	netdev_features_t features;
9687 	struct list_head *iter;
9688 	int err = -1;
9689 
9690 	ASSERT_RTNL();
9691 
9692 	features = netdev_get_wanted_features(dev);
9693 
9694 	if (dev->netdev_ops->ndo_fix_features)
9695 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9696 
9697 	/* driver might be less strict about feature dependencies */
9698 	features = netdev_fix_features(dev, features);
9699 
9700 	/* some features can't be enabled if they're off on an upper device */
9701 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9702 		features = netdev_sync_upper_features(dev, upper, features);
9703 
9704 	if (dev->features == features)
9705 		goto sync_lower;
9706 
9707 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9708 		&dev->features, &features);
9709 
9710 	if (dev->netdev_ops->ndo_set_features)
9711 		err = dev->netdev_ops->ndo_set_features(dev, features);
9712 	else
9713 		err = 0;
9714 
9715 	if (unlikely(err < 0)) {
9716 		netdev_err(dev,
9717 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9718 			err, &features, &dev->features);
9719 		/* return non-0 since some features might have changed and
9720 		 * it's better to fire a spurious notification than miss it
9721 		 */
9722 		return -1;
9723 	}
9724 
9725 sync_lower:
9726 	/* some features must be disabled on lower devices when disabled
9727 	 * on an upper device (think: bonding master or bridge)
9728 	 */
9729 	netdev_for_each_lower_dev(dev, lower, iter)
9730 		netdev_sync_lower_features(dev, lower, features);
9731 
9732 	if (!err) {
9733 		netdev_features_t diff = features ^ dev->features;
9734 
9735 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9736 			/* udp_tunnel_{get,drop}_rx_info both need
9737 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9738 			 * device, or they won't do anything.
9739 			 * Thus we need to update dev->features
9740 			 * *before* calling udp_tunnel_get_rx_info,
9741 			 * but *after* calling udp_tunnel_drop_rx_info.
9742 			 */
9743 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9744 				dev->features = features;
9745 				udp_tunnel_get_rx_info(dev);
9746 			} else {
9747 				udp_tunnel_drop_rx_info(dev);
9748 			}
9749 		}
9750 
9751 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9752 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9753 				dev->features = features;
9754 				err |= vlan_get_rx_ctag_filter_info(dev);
9755 			} else {
9756 				vlan_drop_rx_ctag_filter_info(dev);
9757 			}
9758 		}
9759 
9760 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9761 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9762 				dev->features = features;
9763 				err |= vlan_get_rx_stag_filter_info(dev);
9764 			} else {
9765 				vlan_drop_rx_stag_filter_info(dev);
9766 			}
9767 		}
9768 
9769 		dev->features = features;
9770 	}
9771 
9772 	return err < 0 ? 0 : 1;
9773 }
9774 
9775 /**
9776  *	netdev_update_features - recalculate device features
9777  *	@dev: the device to check
9778  *
9779  *	Recalculate dev->features set and send notifications if it
9780  *	has changed. Should be called after driver or hardware dependent
9781  *	conditions might have changed that influence the features.
9782  */
9783 void netdev_update_features(struct net_device *dev)
9784 {
9785 	if (__netdev_update_features(dev))
9786 		netdev_features_change(dev);
9787 }
9788 EXPORT_SYMBOL(netdev_update_features);
9789 
9790 /**
9791  *	netdev_change_features - recalculate device features
9792  *	@dev: the device to check
9793  *
9794  *	Recalculate dev->features set and send notifications even
9795  *	if they have not changed. Should be called instead of
9796  *	netdev_update_features() if also dev->vlan_features might
9797  *	have changed to allow the changes to be propagated to stacked
9798  *	VLAN devices.
9799  */
9800 void netdev_change_features(struct net_device *dev)
9801 {
9802 	__netdev_update_features(dev);
9803 	netdev_features_change(dev);
9804 }
9805 EXPORT_SYMBOL(netdev_change_features);
9806 
9807 /**
9808  *	netif_stacked_transfer_operstate -	transfer operstate
9809  *	@rootdev: the root or lower level device to transfer state from
9810  *	@dev: the device to transfer operstate to
9811  *
9812  *	Transfer operational state from root to device. This is normally
9813  *	called when a stacking relationship exists between the root
9814  *	device and the device(a leaf device).
9815  */
9816 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9817 					struct net_device *dev)
9818 {
9819 	if (rootdev->operstate == IF_OPER_DORMANT)
9820 		netif_dormant_on(dev);
9821 	else
9822 		netif_dormant_off(dev);
9823 
9824 	if (rootdev->operstate == IF_OPER_TESTING)
9825 		netif_testing_on(dev);
9826 	else
9827 		netif_testing_off(dev);
9828 
9829 	if (netif_carrier_ok(rootdev))
9830 		netif_carrier_on(dev);
9831 	else
9832 		netif_carrier_off(dev);
9833 }
9834 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9835 
9836 static int netif_alloc_rx_queues(struct net_device *dev)
9837 {
9838 	unsigned int i, count = dev->num_rx_queues;
9839 	struct netdev_rx_queue *rx;
9840 	size_t sz = count * sizeof(*rx);
9841 	int err = 0;
9842 
9843 	BUG_ON(count < 1);
9844 
9845 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9846 	if (!rx)
9847 		return -ENOMEM;
9848 
9849 	dev->_rx = rx;
9850 
9851 	for (i = 0; i < count; i++) {
9852 		rx[i].dev = dev;
9853 
9854 		/* XDP RX-queue setup */
9855 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9856 		if (err < 0)
9857 			goto err_rxq_info;
9858 	}
9859 	return 0;
9860 
9861 err_rxq_info:
9862 	/* Rollback successful reg's and free other resources */
9863 	while (i--)
9864 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9865 	kvfree(dev->_rx);
9866 	dev->_rx = NULL;
9867 	return err;
9868 }
9869 
9870 static void netif_free_rx_queues(struct net_device *dev)
9871 {
9872 	unsigned int i, count = dev->num_rx_queues;
9873 
9874 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9875 	if (!dev->_rx)
9876 		return;
9877 
9878 	for (i = 0; i < count; i++)
9879 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9880 
9881 	kvfree(dev->_rx);
9882 }
9883 
9884 static void netdev_init_one_queue(struct net_device *dev,
9885 				  struct netdev_queue *queue, void *_unused)
9886 {
9887 	/* Initialize queue lock */
9888 	spin_lock_init(&queue->_xmit_lock);
9889 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9890 	queue->xmit_lock_owner = -1;
9891 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9892 	queue->dev = dev;
9893 #ifdef CONFIG_BQL
9894 	dql_init(&queue->dql, HZ);
9895 #endif
9896 }
9897 
9898 static void netif_free_tx_queues(struct net_device *dev)
9899 {
9900 	kvfree(dev->_tx);
9901 }
9902 
9903 static int netif_alloc_netdev_queues(struct net_device *dev)
9904 {
9905 	unsigned int count = dev->num_tx_queues;
9906 	struct netdev_queue *tx;
9907 	size_t sz = count * sizeof(*tx);
9908 
9909 	if (count < 1 || count > 0xffff)
9910 		return -EINVAL;
9911 
9912 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9913 	if (!tx)
9914 		return -ENOMEM;
9915 
9916 	dev->_tx = tx;
9917 
9918 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9919 	spin_lock_init(&dev->tx_global_lock);
9920 
9921 	return 0;
9922 }
9923 
9924 void netif_tx_stop_all_queues(struct net_device *dev)
9925 {
9926 	unsigned int i;
9927 
9928 	for (i = 0; i < dev->num_tx_queues; i++) {
9929 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9930 
9931 		netif_tx_stop_queue(txq);
9932 	}
9933 }
9934 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9935 
9936 /**
9937  *	register_netdevice	- register a network device
9938  *	@dev: device to register
9939  *
9940  *	Take a completed network device structure and add it to the kernel
9941  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9942  *	chain. 0 is returned on success. A negative errno code is returned
9943  *	on a failure to set up the device, or if the name is a duplicate.
9944  *
9945  *	Callers must hold the rtnl semaphore. You may want
9946  *	register_netdev() instead of this.
9947  *
9948  *	BUGS:
9949  *	The locking appears insufficient to guarantee two parallel registers
9950  *	will not get the same name.
9951  */
9952 
9953 int register_netdevice(struct net_device *dev)
9954 {
9955 	int ret;
9956 	struct net *net = dev_net(dev);
9957 
9958 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9959 		     NETDEV_FEATURE_COUNT);
9960 	BUG_ON(dev_boot_phase);
9961 	ASSERT_RTNL();
9962 
9963 	might_sleep();
9964 
9965 	/* When net_device's are persistent, this will be fatal. */
9966 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9967 	BUG_ON(!net);
9968 
9969 	ret = ethtool_check_ops(dev->ethtool_ops);
9970 	if (ret)
9971 		return ret;
9972 
9973 	spin_lock_init(&dev->addr_list_lock);
9974 	netdev_set_addr_lockdep_class(dev);
9975 
9976 	ret = dev_get_valid_name(net, dev, dev->name);
9977 	if (ret < 0)
9978 		goto out;
9979 
9980 	ret = -ENOMEM;
9981 	dev->name_node = netdev_name_node_head_alloc(dev);
9982 	if (!dev->name_node)
9983 		goto out;
9984 
9985 	/* Init, if this function is available */
9986 	if (dev->netdev_ops->ndo_init) {
9987 		ret = dev->netdev_ops->ndo_init(dev);
9988 		if (ret) {
9989 			if (ret > 0)
9990 				ret = -EIO;
9991 			goto err_free_name;
9992 		}
9993 	}
9994 
9995 	if (((dev->hw_features | dev->features) &
9996 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
9997 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9998 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9999 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10000 		ret = -EINVAL;
10001 		goto err_uninit;
10002 	}
10003 
10004 	ret = -EBUSY;
10005 	if (!dev->ifindex)
10006 		dev->ifindex = dev_new_index(net);
10007 	else if (__dev_get_by_index(net, dev->ifindex))
10008 		goto err_uninit;
10009 
10010 	/* Transfer changeable features to wanted_features and enable
10011 	 * software offloads (GSO and GRO).
10012 	 */
10013 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10014 	dev->features |= NETIF_F_SOFT_FEATURES;
10015 
10016 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
10017 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10018 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10019 	}
10020 
10021 	dev->wanted_features = dev->features & dev->hw_features;
10022 
10023 	if (!(dev->flags & IFF_LOOPBACK))
10024 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10025 
10026 	/* If IPv4 TCP segmentation offload is supported we should also
10027 	 * allow the device to enable segmenting the frame with the option
10028 	 * of ignoring a static IP ID value.  This doesn't enable the
10029 	 * feature itself but allows the user to enable it later.
10030 	 */
10031 	if (dev->hw_features & NETIF_F_TSO)
10032 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10033 	if (dev->vlan_features & NETIF_F_TSO)
10034 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10035 	if (dev->mpls_features & NETIF_F_TSO)
10036 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10037 	if (dev->hw_enc_features & NETIF_F_TSO)
10038 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10039 
10040 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10041 	 */
10042 	dev->vlan_features |= NETIF_F_HIGHDMA;
10043 
10044 	/* Make NETIF_F_SG inheritable to tunnel devices.
10045 	 */
10046 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10047 
10048 	/* Make NETIF_F_SG inheritable to MPLS.
10049 	 */
10050 	dev->mpls_features |= NETIF_F_SG;
10051 
10052 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10053 	ret = notifier_to_errno(ret);
10054 	if (ret)
10055 		goto err_uninit;
10056 
10057 	ret = netdev_register_kobject(dev);
10058 	if (ret) {
10059 		dev->reg_state = NETREG_UNREGISTERED;
10060 		goto err_uninit;
10061 	}
10062 	dev->reg_state = NETREG_REGISTERED;
10063 
10064 	__netdev_update_features(dev);
10065 
10066 	/*
10067 	 *	Default initial state at registry is that the
10068 	 *	device is present.
10069 	 */
10070 
10071 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10072 
10073 	linkwatch_init_dev(dev);
10074 
10075 	dev_init_scheduler(dev);
10076 	dev_hold(dev);
10077 	list_netdevice(dev);
10078 	add_device_randomness(dev->dev_addr, dev->addr_len);
10079 
10080 	/* If the device has permanent device address, driver should
10081 	 * set dev_addr and also addr_assign_type should be set to
10082 	 * NET_ADDR_PERM (default value).
10083 	 */
10084 	if (dev->addr_assign_type == NET_ADDR_PERM)
10085 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10086 
10087 	/* Notify protocols, that a new device appeared. */
10088 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10089 	ret = notifier_to_errno(ret);
10090 	if (ret) {
10091 		/* Expect explicit free_netdev() on failure */
10092 		dev->needs_free_netdev = false;
10093 		rollback_registered(dev);
10094 		net_set_todo(dev);
10095 		goto out;
10096 	}
10097 	/*
10098 	 *	Prevent userspace races by waiting until the network
10099 	 *	device is fully setup before sending notifications.
10100 	 */
10101 	if (!dev->rtnl_link_ops ||
10102 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10103 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10104 
10105 out:
10106 	return ret;
10107 
10108 err_uninit:
10109 	if (dev->netdev_ops->ndo_uninit)
10110 		dev->netdev_ops->ndo_uninit(dev);
10111 	if (dev->priv_destructor)
10112 		dev->priv_destructor(dev);
10113 err_free_name:
10114 	netdev_name_node_free(dev->name_node);
10115 	goto out;
10116 }
10117 EXPORT_SYMBOL(register_netdevice);
10118 
10119 /**
10120  *	init_dummy_netdev	- init a dummy network device for NAPI
10121  *	@dev: device to init
10122  *
10123  *	This takes a network device structure and initialize the minimum
10124  *	amount of fields so it can be used to schedule NAPI polls without
10125  *	registering a full blown interface. This is to be used by drivers
10126  *	that need to tie several hardware interfaces to a single NAPI
10127  *	poll scheduler due to HW limitations.
10128  */
10129 int init_dummy_netdev(struct net_device *dev)
10130 {
10131 	/* Clear everything. Note we don't initialize spinlocks
10132 	 * are they aren't supposed to be taken by any of the
10133 	 * NAPI code and this dummy netdev is supposed to be
10134 	 * only ever used for NAPI polls
10135 	 */
10136 	memset(dev, 0, sizeof(struct net_device));
10137 
10138 	/* make sure we BUG if trying to hit standard
10139 	 * register/unregister code path
10140 	 */
10141 	dev->reg_state = NETREG_DUMMY;
10142 
10143 	/* NAPI wants this */
10144 	INIT_LIST_HEAD(&dev->napi_list);
10145 
10146 	/* a dummy interface is started by default */
10147 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10148 	set_bit(__LINK_STATE_START, &dev->state);
10149 
10150 	/* napi_busy_loop stats accounting wants this */
10151 	dev_net_set(dev, &init_net);
10152 
10153 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10154 	 * because users of this 'device' dont need to change
10155 	 * its refcount.
10156 	 */
10157 
10158 	return 0;
10159 }
10160 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10161 
10162 
10163 /**
10164  *	register_netdev	- register a network device
10165  *	@dev: device to register
10166  *
10167  *	Take a completed network device structure and add it to the kernel
10168  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10169  *	chain. 0 is returned on success. A negative errno code is returned
10170  *	on a failure to set up the device, or if the name is a duplicate.
10171  *
10172  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10173  *	and expands the device name if you passed a format string to
10174  *	alloc_netdev.
10175  */
10176 int register_netdev(struct net_device *dev)
10177 {
10178 	int err;
10179 
10180 	if (rtnl_lock_killable())
10181 		return -EINTR;
10182 	err = register_netdevice(dev);
10183 	rtnl_unlock();
10184 	return err;
10185 }
10186 EXPORT_SYMBOL(register_netdev);
10187 
10188 int netdev_refcnt_read(const struct net_device *dev)
10189 {
10190 	int i, refcnt = 0;
10191 
10192 	for_each_possible_cpu(i)
10193 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10194 	return refcnt;
10195 }
10196 EXPORT_SYMBOL(netdev_refcnt_read);
10197 
10198 #define WAIT_REFS_MIN_MSECS 1
10199 #define WAIT_REFS_MAX_MSECS 250
10200 /**
10201  * netdev_wait_allrefs - wait until all references are gone.
10202  * @dev: target net_device
10203  *
10204  * This is called when unregistering network devices.
10205  *
10206  * Any protocol or device that holds a reference should register
10207  * for netdevice notification, and cleanup and put back the
10208  * reference if they receive an UNREGISTER event.
10209  * We can get stuck here if buggy protocols don't correctly
10210  * call dev_put.
10211  */
10212 static void netdev_wait_allrefs(struct net_device *dev)
10213 {
10214 	unsigned long rebroadcast_time, warning_time;
10215 	int wait = 0, refcnt;
10216 
10217 	linkwatch_forget_dev(dev);
10218 
10219 	rebroadcast_time = warning_time = jiffies;
10220 	refcnt = netdev_refcnt_read(dev);
10221 
10222 	while (refcnt != 0) {
10223 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10224 			rtnl_lock();
10225 
10226 			/* Rebroadcast unregister notification */
10227 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10228 
10229 			__rtnl_unlock();
10230 			rcu_barrier();
10231 			rtnl_lock();
10232 
10233 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10234 				     &dev->state)) {
10235 				/* We must not have linkwatch events
10236 				 * pending on unregister. If this
10237 				 * happens, we simply run the queue
10238 				 * unscheduled, resulting in a noop
10239 				 * for this device.
10240 				 */
10241 				linkwatch_run_queue();
10242 			}
10243 
10244 			__rtnl_unlock();
10245 
10246 			rebroadcast_time = jiffies;
10247 		}
10248 
10249 		if (!wait) {
10250 			rcu_barrier();
10251 			wait = WAIT_REFS_MIN_MSECS;
10252 		} else {
10253 			msleep(wait);
10254 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10255 		}
10256 
10257 		refcnt = netdev_refcnt_read(dev);
10258 
10259 		if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
10260 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10261 				 dev->name, refcnt);
10262 			warning_time = jiffies;
10263 		}
10264 	}
10265 }
10266 
10267 /* The sequence is:
10268  *
10269  *	rtnl_lock();
10270  *	...
10271  *	register_netdevice(x1);
10272  *	register_netdevice(x2);
10273  *	...
10274  *	unregister_netdevice(y1);
10275  *	unregister_netdevice(y2);
10276  *      ...
10277  *	rtnl_unlock();
10278  *	free_netdev(y1);
10279  *	free_netdev(y2);
10280  *
10281  * We are invoked by rtnl_unlock().
10282  * This allows us to deal with problems:
10283  * 1) We can delete sysfs objects which invoke hotplug
10284  *    without deadlocking with linkwatch via keventd.
10285  * 2) Since we run with the RTNL semaphore not held, we can sleep
10286  *    safely in order to wait for the netdev refcnt to drop to zero.
10287  *
10288  * We must not return until all unregister events added during
10289  * the interval the lock was held have been completed.
10290  */
10291 void netdev_run_todo(void)
10292 {
10293 	struct list_head list;
10294 #ifdef CONFIG_LOCKDEP
10295 	struct list_head unlink_list;
10296 
10297 	list_replace_init(&net_unlink_list, &unlink_list);
10298 
10299 	while (!list_empty(&unlink_list)) {
10300 		struct net_device *dev = list_first_entry(&unlink_list,
10301 							  struct net_device,
10302 							  unlink_list);
10303 		list_del_init(&dev->unlink_list);
10304 		dev->nested_level = dev->lower_level - 1;
10305 	}
10306 #endif
10307 
10308 	/* Snapshot list, allow later requests */
10309 	list_replace_init(&net_todo_list, &list);
10310 
10311 	__rtnl_unlock();
10312 
10313 
10314 	/* Wait for rcu callbacks to finish before next phase */
10315 	if (!list_empty(&list))
10316 		rcu_barrier();
10317 
10318 	while (!list_empty(&list)) {
10319 		struct net_device *dev
10320 			= list_first_entry(&list, struct net_device, todo_list);
10321 		list_del(&dev->todo_list);
10322 
10323 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10324 			pr_err("network todo '%s' but state %d\n",
10325 			       dev->name, dev->reg_state);
10326 			dump_stack();
10327 			continue;
10328 		}
10329 
10330 		dev->reg_state = NETREG_UNREGISTERED;
10331 
10332 		netdev_wait_allrefs(dev);
10333 
10334 		/* paranoia */
10335 		BUG_ON(netdev_refcnt_read(dev));
10336 		BUG_ON(!list_empty(&dev->ptype_all));
10337 		BUG_ON(!list_empty(&dev->ptype_specific));
10338 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10339 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10340 #if IS_ENABLED(CONFIG_DECNET)
10341 		WARN_ON(dev->dn_ptr);
10342 #endif
10343 		if (dev->priv_destructor)
10344 			dev->priv_destructor(dev);
10345 		if (dev->needs_free_netdev)
10346 			free_netdev(dev);
10347 
10348 		/* Report a network device has been unregistered */
10349 		rtnl_lock();
10350 		dev_net(dev)->dev_unreg_count--;
10351 		__rtnl_unlock();
10352 		wake_up(&netdev_unregistering_wq);
10353 
10354 		/* Free network device */
10355 		kobject_put(&dev->dev.kobj);
10356 	}
10357 }
10358 
10359 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10360  * all the same fields in the same order as net_device_stats, with only
10361  * the type differing, but rtnl_link_stats64 may have additional fields
10362  * at the end for newer counters.
10363  */
10364 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10365 			     const struct net_device_stats *netdev_stats)
10366 {
10367 #if BITS_PER_LONG == 64
10368 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10369 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10370 	/* zero out counters that only exist in rtnl_link_stats64 */
10371 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
10372 	       sizeof(*stats64) - sizeof(*netdev_stats));
10373 #else
10374 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10375 	const unsigned long *src = (const unsigned long *)netdev_stats;
10376 	u64 *dst = (u64 *)stats64;
10377 
10378 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10379 	for (i = 0; i < n; i++)
10380 		dst[i] = src[i];
10381 	/* zero out counters that only exist in rtnl_link_stats64 */
10382 	memset((char *)stats64 + n * sizeof(u64), 0,
10383 	       sizeof(*stats64) - n * sizeof(u64));
10384 #endif
10385 }
10386 EXPORT_SYMBOL(netdev_stats_to_stats64);
10387 
10388 /**
10389  *	dev_get_stats	- get network device statistics
10390  *	@dev: device to get statistics from
10391  *	@storage: place to store stats
10392  *
10393  *	Get network statistics from device. Return @storage.
10394  *	The device driver may provide its own method by setting
10395  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10396  *	otherwise the internal statistics structure is used.
10397  */
10398 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10399 					struct rtnl_link_stats64 *storage)
10400 {
10401 	const struct net_device_ops *ops = dev->netdev_ops;
10402 
10403 	if (ops->ndo_get_stats64) {
10404 		memset(storage, 0, sizeof(*storage));
10405 		ops->ndo_get_stats64(dev, storage);
10406 	} else if (ops->ndo_get_stats) {
10407 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10408 	} else {
10409 		netdev_stats_to_stats64(storage, &dev->stats);
10410 	}
10411 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10412 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10413 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10414 	return storage;
10415 }
10416 EXPORT_SYMBOL(dev_get_stats);
10417 
10418 /**
10419  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10420  *	@s: place to store stats
10421  *	@netstats: per-cpu network stats to read from
10422  *
10423  *	Read per-cpu network statistics and populate the related fields in @s.
10424  */
10425 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10426 			   const struct pcpu_sw_netstats __percpu *netstats)
10427 {
10428 	int cpu;
10429 
10430 	for_each_possible_cpu(cpu) {
10431 		const struct pcpu_sw_netstats *stats;
10432 		struct pcpu_sw_netstats tmp;
10433 		unsigned int start;
10434 
10435 		stats = per_cpu_ptr(netstats, cpu);
10436 		do {
10437 			start = u64_stats_fetch_begin_irq(&stats->syncp);
10438 			tmp.rx_packets = stats->rx_packets;
10439 			tmp.rx_bytes   = stats->rx_bytes;
10440 			tmp.tx_packets = stats->tx_packets;
10441 			tmp.tx_bytes   = stats->tx_bytes;
10442 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10443 
10444 		s->rx_packets += tmp.rx_packets;
10445 		s->rx_bytes   += tmp.rx_bytes;
10446 		s->tx_packets += tmp.tx_packets;
10447 		s->tx_bytes   += tmp.tx_bytes;
10448 	}
10449 }
10450 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10451 
10452 /**
10453  *	dev_get_tstats64 - ndo_get_stats64 implementation
10454  *	@dev: device to get statistics from
10455  *	@s: place to store stats
10456  *
10457  *	Populate @s from dev->stats and dev->tstats. Can be used as
10458  *	ndo_get_stats64() callback.
10459  */
10460 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10461 {
10462 	netdev_stats_to_stats64(s, &dev->stats);
10463 	dev_fetch_sw_netstats(s, dev->tstats);
10464 }
10465 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10466 
10467 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10468 {
10469 	struct netdev_queue *queue = dev_ingress_queue(dev);
10470 
10471 #ifdef CONFIG_NET_CLS_ACT
10472 	if (queue)
10473 		return queue;
10474 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10475 	if (!queue)
10476 		return NULL;
10477 	netdev_init_one_queue(dev, queue, NULL);
10478 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10479 	queue->qdisc_sleeping = &noop_qdisc;
10480 	rcu_assign_pointer(dev->ingress_queue, queue);
10481 #endif
10482 	return queue;
10483 }
10484 
10485 static const struct ethtool_ops default_ethtool_ops;
10486 
10487 void netdev_set_default_ethtool_ops(struct net_device *dev,
10488 				    const struct ethtool_ops *ops)
10489 {
10490 	if (dev->ethtool_ops == &default_ethtool_ops)
10491 		dev->ethtool_ops = ops;
10492 }
10493 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10494 
10495 void netdev_freemem(struct net_device *dev)
10496 {
10497 	char *addr = (char *)dev - dev->padded;
10498 
10499 	kvfree(addr);
10500 }
10501 
10502 /**
10503  * alloc_netdev_mqs - allocate network device
10504  * @sizeof_priv: size of private data to allocate space for
10505  * @name: device name format string
10506  * @name_assign_type: origin of device name
10507  * @setup: callback to initialize device
10508  * @txqs: the number of TX subqueues to allocate
10509  * @rxqs: the number of RX subqueues to allocate
10510  *
10511  * Allocates a struct net_device with private data area for driver use
10512  * and performs basic initialization.  Also allocates subqueue structs
10513  * for each queue on the device.
10514  */
10515 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10516 		unsigned char name_assign_type,
10517 		void (*setup)(struct net_device *),
10518 		unsigned int txqs, unsigned int rxqs)
10519 {
10520 	struct net_device *dev;
10521 	unsigned int alloc_size;
10522 	struct net_device *p;
10523 
10524 	BUG_ON(strlen(name) >= sizeof(dev->name));
10525 
10526 	if (txqs < 1) {
10527 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10528 		return NULL;
10529 	}
10530 
10531 	if (rxqs < 1) {
10532 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10533 		return NULL;
10534 	}
10535 
10536 	alloc_size = sizeof(struct net_device);
10537 	if (sizeof_priv) {
10538 		/* ensure 32-byte alignment of private area */
10539 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10540 		alloc_size += sizeof_priv;
10541 	}
10542 	/* ensure 32-byte alignment of whole construct */
10543 	alloc_size += NETDEV_ALIGN - 1;
10544 
10545 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10546 	if (!p)
10547 		return NULL;
10548 
10549 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10550 	dev->padded = (char *)dev - (char *)p;
10551 
10552 	dev->pcpu_refcnt = alloc_percpu(int);
10553 	if (!dev->pcpu_refcnt)
10554 		goto free_dev;
10555 
10556 	if (dev_addr_init(dev))
10557 		goto free_pcpu;
10558 
10559 	dev_mc_init(dev);
10560 	dev_uc_init(dev);
10561 
10562 	dev_net_set(dev, &init_net);
10563 
10564 	dev->gso_max_size = GSO_MAX_SIZE;
10565 	dev->gso_max_segs = GSO_MAX_SEGS;
10566 	dev->upper_level = 1;
10567 	dev->lower_level = 1;
10568 #ifdef CONFIG_LOCKDEP
10569 	dev->nested_level = 0;
10570 	INIT_LIST_HEAD(&dev->unlink_list);
10571 #endif
10572 
10573 	INIT_LIST_HEAD(&dev->napi_list);
10574 	INIT_LIST_HEAD(&dev->unreg_list);
10575 	INIT_LIST_HEAD(&dev->close_list);
10576 	INIT_LIST_HEAD(&dev->link_watch_list);
10577 	INIT_LIST_HEAD(&dev->adj_list.upper);
10578 	INIT_LIST_HEAD(&dev->adj_list.lower);
10579 	INIT_LIST_HEAD(&dev->ptype_all);
10580 	INIT_LIST_HEAD(&dev->ptype_specific);
10581 	INIT_LIST_HEAD(&dev->net_notifier_list);
10582 #ifdef CONFIG_NET_SCHED
10583 	hash_init(dev->qdisc_hash);
10584 #endif
10585 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10586 	setup(dev);
10587 
10588 	if (!dev->tx_queue_len) {
10589 		dev->priv_flags |= IFF_NO_QUEUE;
10590 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10591 	}
10592 
10593 	dev->num_tx_queues = txqs;
10594 	dev->real_num_tx_queues = txqs;
10595 	if (netif_alloc_netdev_queues(dev))
10596 		goto free_all;
10597 
10598 	dev->num_rx_queues = rxqs;
10599 	dev->real_num_rx_queues = rxqs;
10600 	if (netif_alloc_rx_queues(dev))
10601 		goto free_all;
10602 
10603 	strcpy(dev->name, name);
10604 	dev->name_assign_type = name_assign_type;
10605 	dev->group = INIT_NETDEV_GROUP;
10606 	if (!dev->ethtool_ops)
10607 		dev->ethtool_ops = &default_ethtool_ops;
10608 
10609 	nf_hook_ingress_init(dev);
10610 
10611 	return dev;
10612 
10613 free_all:
10614 	free_netdev(dev);
10615 	return NULL;
10616 
10617 free_pcpu:
10618 	free_percpu(dev->pcpu_refcnt);
10619 free_dev:
10620 	netdev_freemem(dev);
10621 	return NULL;
10622 }
10623 EXPORT_SYMBOL(alloc_netdev_mqs);
10624 
10625 /**
10626  * free_netdev - free network device
10627  * @dev: device
10628  *
10629  * This function does the last stage of destroying an allocated device
10630  * interface. The reference to the device object is released. If this
10631  * is the last reference then it will be freed.Must be called in process
10632  * context.
10633  */
10634 void free_netdev(struct net_device *dev)
10635 {
10636 	struct napi_struct *p, *n;
10637 
10638 	might_sleep();
10639 
10640 	/* When called immediately after register_netdevice() failed the unwind
10641 	 * handling may still be dismantling the device. Handle that case by
10642 	 * deferring the free.
10643 	 */
10644 	if (dev->reg_state == NETREG_UNREGISTERING) {
10645 		ASSERT_RTNL();
10646 		dev->needs_free_netdev = true;
10647 		return;
10648 	}
10649 
10650 	netif_free_tx_queues(dev);
10651 	netif_free_rx_queues(dev);
10652 
10653 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10654 
10655 	/* Flush device addresses */
10656 	dev_addr_flush(dev);
10657 
10658 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10659 		netif_napi_del(p);
10660 
10661 	free_percpu(dev->pcpu_refcnt);
10662 	dev->pcpu_refcnt = NULL;
10663 	free_percpu(dev->xdp_bulkq);
10664 	dev->xdp_bulkq = NULL;
10665 
10666 	/*  Compatibility with error handling in drivers */
10667 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10668 		netdev_freemem(dev);
10669 		return;
10670 	}
10671 
10672 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10673 	dev->reg_state = NETREG_RELEASED;
10674 
10675 	/* will free via device release */
10676 	put_device(&dev->dev);
10677 }
10678 EXPORT_SYMBOL(free_netdev);
10679 
10680 /**
10681  *	synchronize_net -  Synchronize with packet receive processing
10682  *
10683  *	Wait for packets currently being received to be done.
10684  *	Does not block later packets from starting.
10685  */
10686 void synchronize_net(void)
10687 {
10688 	might_sleep();
10689 	if (rtnl_is_locked())
10690 		synchronize_rcu_expedited();
10691 	else
10692 		synchronize_rcu();
10693 }
10694 EXPORT_SYMBOL(synchronize_net);
10695 
10696 /**
10697  *	unregister_netdevice_queue - remove device from the kernel
10698  *	@dev: device
10699  *	@head: list
10700  *
10701  *	This function shuts down a device interface and removes it
10702  *	from the kernel tables.
10703  *	If head not NULL, device is queued to be unregistered later.
10704  *
10705  *	Callers must hold the rtnl semaphore.  You may want
10706  *	unregister_netdev() instead of this.
10707  */
10708 
10709 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10710 {
10711 	ASSERT_RTNL();
10712 
10713 	if (head) {
10714 		list_move_tail(&dev->unreg_list, head);
10715 	} else {
10716 		rollback_registered(dev);
10717 		/* Finish processing unregister after unlock */
10718 		net_set_todo(dev);
10719 	}
10720 }
10721 EXPORT_SYMBOL(unregister_netdevice_queue);
10722 
10723 /**
10724  *	unregister_netdevice_many - unregister many devices
10725  *	@head: list of devices
10726  *
10727  *  Note: As most callers use a stack allocated list_head,
10728  *  we force a list_del() to make sure stack wont be corrupted later.
10729  */
10730 void unregister_netdevice_many(struct list_head *head)
10731 {
10732 	struct net_device *dev;
10733 
10734 	if (!list_empty(head)) {
10735 		rollback_registered_many(head);
10736 		list_for_each_entry(dev, head, unreg_list)
10737 			net_set_todo(dev);
10738 		list_del(head);
10739 	}
10740 }
10741 EXPORT_SYMBOL(unregister_netdevice_many);
10742 
10743 /**
10744  *	unregister_netdev - remove device from the kernel
10745  *	@dev: device
10746  *
10747  *	This function shuts down a device interface and removes it
10748  *	from the kernel tables.
10749  *
10750  *	This is just a wrapper for unregister_netdevice that takes
10751  *	the rtnl semaphore.  In general you want to use this and not
10752  *	unregister_netdevice.
10753  */
10754 void unregister_netdev(struct net_device *dev)
10755 {
10756 	rtnl_lock();
10757 	unregister_netdevice(dev);
10758 	rtnl_unlock();
10759 }
10760 EXPORT_SYMBOL(unregister_netdev);
10761 
10762 /**
10763  *	dev_change_net_namespace - move device to different nethost namespace
10764  *	@dev: device
10765  *	@net: network namespace
10766  *	@pat: If not NULL name pattern to try if the current device name
10767  *	      is already taken in the destination network namespace.
10768  *
10769  *	This function shuts down a device interface and moves it
10770  *	to a new network namespace. On success 0 is returned, on
10771  *	a failure a netagive errno code is returned.
10772  *
10773  *	Callers must hold the rtnl semaphore.
10774  */
10775 
10776 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10777 {
10778 	struct net *net_old = dev_net(dev);
10779 	int err, new_nsid, new_ifindex;
10780 
10781 	ASSERT_RTNL();
10782 
10783 	/* Don't allow namespace local devices to be moved. */
10784 	err = -EINVAL;
10785 	if (dev->features & NETIF_F_NETNS_LOCAL)
10786 		goto out;
10787 
10788 	/* Ensure the device has been registrered */
10789 	if (dev->reg_state != NETREG_REGISTERED)
10790 		goto out;
10791 
10792 	/* Get out if there is nothing todo */
10793 	err = 0;
10794 	if (net_eq(net_old, net))
10795 		goto out;
10796 
10797 	/* Pick the destination device name, and ensure
10798 	 * we can use it in the destination network namespace.
10799 	 */
10800 	err = -EEXIST;
10801 	if (__dev_get_by_name(net, dev->name)) {
10802 		/* We get here if we can't use the current device name */
10803 		if (!pat)
10804 			goto out;
10805 		err = dev_get_valid_name(net, dev, pat);
10806 		if (err < 0)
10807 			goto out;
10808 	}
10809 
10810 	/*
10811 	 * And now a mini version of register_netdevice unregister_netdevice.
10812 	 */
10813 
10814 	/* If device is running close it first. */
10815 	dev_close(dev);
10816 
10817 	/* And unlink it from device chain */
10818 	unlist_netdevice(dev);
10819 
10820 	synchronize_net();
10821 
10822 	/* Shutdown queueing discipline. */
10823 	dev_shutdown(dev);
10824 
10825 	/* Notify protocols, that we are about to destroy
10826 	 * this device. They should clean all the things.
10827 	 *
10828 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
10829 	 * This is wanted because this way 8021q and macvlan know
10830 	 * the device is just moving and can keep their slaves up.
10831 	 */
10832 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10833 	rcu_barrier();
10834 
10835 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10836 	/* If there is an ifindex conflict assign a new one */
10837 	if (__dev_get_by_index(net, dev->ifindex))
10838 		new_ifindex = dev_new_index(net);
10839 	else
10840 		new_ifindex = dev->ifindex;
10841 
10842 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10843 			    new_ifindex);
10844 
10845 	/*
10846 	 *	Flush the unicast and multicast chains
10847 	 */
10848 	dev_uc_flush(dev);
10849 	dev_mc_flush(dev);
10850 
10851 	/* Send a netdev-removed uevent to the old namespace */
10852 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10853 	netdev_adjacent_del_links(dev);
10854 
10855 	/* Move per-net netdevice notifiers that are following the netdevice */
10856 	move_netdevice_notifiers_dev_net(dev, net);
10857 
10858 	/* Actually switch the network namespace */
10859 	dev_net_set(dev, net);
10860 	dev->ifindex = new_ifindex;
10861 
10862 	/* Send a netdev-add uevent to the new namespace */
10863 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10864 	netdev_adjacent_add_links(dev);
10865 
10866 	/* Fixup kobjects */
10867 	err = device_rename(&dev->dev, dev->name);
10868 	WARN_ON(err);
10869 
10870 	/* Adapt owner in case owning user namespace of target network
10871 	 * namespace is different from the original one.
10872 	 */
10873 	err = netdev_change_owner(dev, net_old, net);
10874 	WARN_ON(err);
10875 
10876 	/* Add the device back in the hashes */
10877 	list_netdevice(dev);
10878 
10879 	/* Notify protocols, that a new device appeared. */
10880 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
10881 
10882 	/*
10883 	 *	Prevent userspace races by waiting until the network
10884 	 *	device is fully setup before sending notifications.
10885 	 */
10886 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10887 
10888 	synchronize_net();
10889 	err = 0;
10890 out:
10891 	return err;
10892 }
10893 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10894 
10895 static int dev_cpu_dead(unsigned int oldcpu)
10896 {
10897 	struct sk_buff **list_skb;
10898 	struct sk_buff *skb;
10899 	unsigned int cpu;
10900 	struct softnet_data *sd, *oldsd, *remsd = NULL;
10901 
10902 	local_irq_disable();
10903 	cpu = smp_processor_id();
10904 	sd = &per_cpu(softnet_data, cpu);
10905 	oldsd = &per_cpu(softnet_data, oldcpu);
10906 
10907 	/* Find end of our completion_queue. */
10908 	list_skb = &sd->completion_queue;
10909 	while (*list_skb)
10910 		list_skb = &(*list_skb)->next;
10911 	/* Append completion queue from offline CPU. */
10912 	*list_skb = oldsd->completion_queue;
10913 	oldsd->completion_queue = NULL;
10914 
10915 	/* Append output queue from offline CPU. */
10916 	if (oldsd->output_queue) {
10917 		*sd->output_queue_tailp = oldsd->output_queue;
10918 		sd->output_queue_tailp = oldsd->output_queue_tailp;
10919 		oldsd->output_queue = NULL;
10920 		oldsd->output_queue_tailp = &oldsd->output_queue;
10921 	}
10922 	/* Append NAPI poll list from offline CPU, with one exception :
10923 	 * process_backlog() must be called by cpu owning percpu backlog.
10924 	 * We properly handle process_queue & input_pkt_queue later.
10925 	 */
10926 	while (!list_empty(&oldsd->poll_list)) {
10927 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10928 							    struct napi_struct,
10929 							    poll_list);
10930 
10931 		list_del_init(&napi->poll_list);
10932 		if (napi->poll == process_backlog)
10933 			napi->state = 0;
10934 		else
10935 			____napi_schedule(sd, napi);
10936 	}
10937 
10938 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
10939 	local_irq_enable();
10940 
10941 #ifdef CONFIG_RPS
10942 	remsd = oldsd->rps_ipi_list;
10943 	oldsd->rps_ipi_list = NULL;
10944 #endif
10945 	/* send out pending IPI's on offline CPU */
10946 	net_rps_send_ipi(remsd);
10947 
10948 	/* Process offline CPU's input_pkt_queue */
10949 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10950 		netif_rx_ni(skb);
10951 		input_queue_head_incr(oldsd);
10952 	}
10953 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10954 		netif_rx_ni(skb);
10955 		input_queue_head_incr(oldsd);
10956 	}
10957 
10958 	return 0;
10959 }
10960 
10961 /**
10962  *	netdev_increment_features - increment feature set by one
10963  *	@all: current feature set
10964  *	@one: new feature set
10965  *	@mask: mask feature set
10966  *
10967  *	Computes a new feature set after adding a device with feature set
10968  *	@one to the master device with current feature set @all.  Will not
10969  *	enable anything that is off in @mask. Returns the new feature set.
10970  */
10971 netdev_features_t netdev_increment_features(netdev_features_t all,
10972 	netdev_features_t one, netdev_features_t mask)
10973 {
10974 	if (mask & NETIF_F_HW_CSUM)
10975 		mask |= NETIF_F_CSUM_MASK;
10976 	mask |= NETIF_F_VLAN_CHALLENGED;
10977 
10978 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10979 	all &= one | ~NETIF_F_ALL_FOR_ALL;
10980 
10981 	/* If one device supports hw checksumming, set for all. */
10982 	if (all & NETIF_F_HW_CSUM)
10983 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10984 
10985 	return all;
10986 }
10987 EXPORT_SYMBOL(netdev_increment_features);
10988 
10989 static struct hlist_head * __net_init netdev_create_hash(void)
10990 {
10991 	int i;
10992 	struct hlist_head *hash;
10993 
10994 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10995 	if (hash != NULL)
10996 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
10997 			INIT_HLIST_HEAD(&hash[i]);
10998 
10999 	return hash;
11000 }
11001 
11002 /* Initialize per network namespace state */
11003 static int __net_init netdev_init(struct net *net)
11004 {
11005 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11006 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11007 
11008 	if (net != &init_net)
11009 		INIT_LIST_HEAD(&net->dev_base_head);
11010 
11011 	net->dev_name_head = netdev_create_hash();
11012 	if (net->dev_name_head == NULL)
11013 		goto err_name;
11014 
11015 	net->dev_index_head = netdev_create_hash();
11016 	if (net->dev_index_head == NULL)
11017 		goto err_idx;
11018 
11019 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11020 
11021 	return 0;
11022 
11023 err_idx:
11024 	kfree(net->dev_name_head);
11025 err_name:
11026 	return -ENOMEM;
11027 }
11028 
11029 /**
11030  *	netdev_drivername - network driver for the device
11031  *	@dev: network device
11032  *
11033  *	Determine network driver for device.
11034  */
11035 const char *netdev_drivername(const struct net_device *dev)
11036 {
11037 	const struct device_driver *driver;
11038 	const struct device *parent;
11039 	const char *empty = "";
11040 
11041 	parent = dev->dev.parent;
11042 	if (!parent)
11043 		return empty;
11044 
11045 	driver = parent->driver;
11046 	if (driver && driver->name)
11047 		return driver->name;
11048 	return empty;
11049 }
11050 
11051 static void __netdev_printk(const char *level, const struct net_device *dev,
11052 			    struct va_format *vaf)
11053 {
11054 	if (dev && dev->dev.parent) {
11055 		dev_printk_emit(level[1] - '0',
11056 				dev->dev.parent,
11057 				"%s %s %s%s: %pV",
11058 				dev_driver_string(dev->dev.parent),
11059 				dev_name(dev->dev.parent),
11060 				netdev_name(dev), netdev_reg_state(dev),
11061 				vaf);
11062 	} else if (dev) {
11063 		printk("%s%s%s: %pV",
11064 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11065 	} else {
11066 		printk("%s(NULL net_device): %pV", level, vaf);
11067 	}
11068 }
11069 
11070 void netdev_printk(const char *level, const struct net_device *dev,
11071 		   const char *format, ...)
11072 {
11073 	struct va_format vaf;
11074 	va_list args;
11075 
11076 	va_start(args, format);
11077 
11078 	vaf.fmt = format;
11079 	vaf.va = &args;
11080 
11081 	__netdev_printk(level, dev, &vaf);
11082 
11083 	va_end(args);
11084 }
11085 EXPORT_SYMBOL(netdev_printk);
11086 
11087 #define define_netdev_printk_level(func, level)			\
11088 void func(const struct net_device *dev, const char *fmt, ...)	\
11089 {								\
11090 	struct va_format vaf;					\
11091 	va_list args;						\
11092 								\
11093 	va_start(args, fmt);					\
11094 								\
11095 	vaf.fmt = fmt;						\
11096 	vaf.va = &args;						\
11097 								\
11098 	__netdev_printk(level, dev, &vaf);			\
11099 								\
11100 	va_end(args);						\
11101 }								\
11102 EXPORT_SYMBOL(func);
11103 
11104 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11105 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11106 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11107 define_netdev_printk_level(netdev_err, KERN_ERR);
11108 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11109 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11110 define_netdev_printk_level(netdev_info, KERN_INFO);
11111 
11112 static void __net_exit netdev_exit(struct net *net)
11113 {
11114 	kfree(net->dev_name_head);
11115 	kfree(net->dev_index_head);
11116 	if (net != &init_net)
11117 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11118 }
11119 
11120 static struct pernet_operations __net_initdata netdev_net_ops = {
11121 	.init = netdev_init,
11122 	.exit = netdev_exit,
11123 };
11124 
11125 static void __net_exit default_device_exit(struct net *net)
11126 {
11127 	struct net_device *dev, *aux;
11128 	/*
11129 	 * Push all migratable network devices back to the
11130 	 * initial network namespace
11131 	 */
11132 	rtnl_lock();
11133 	for_each_netdev_safe(net, dev, aux) {
11134 		int err;
11135 		char fb_name[IFNAMSIZ];
11136 
11137 		/* Ignore unmoveable devices (i.e. loopback) */
11138 		if (dev->features & NETIF_F_NETNS_LOCAL)
11139 			continue;
11140 
11141 		/* Leave virtual devices for the generic cleanup */
11142 		if (dev->rtnl_link_ops)
11143 			continue;
11144 
11145 		/* Push remaining network devices to init_net */
11146 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11147 		if (__dev_get_by_name(&init_net, fb_name))
11148 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11149 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11150 		if (err) {
11151 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11152 				 __func__, dev->name, err);
11153 			BUG();
11154 		}
11155 	}
11156 	rtnl_unlock();
11157 }
11158 
11159 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11160 {
11161 	/* Return with the rtnl_lock held when there are no network
11162 	 * devices unregistering in any network namespace in net_list.
11163 	 */
11164 	struct net *net;
11165 	bool unregistering;
11166 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
11167 
11168 	add_wait_queue(&netdev_unregistering_wq, &wait);
11169 	for (;;) {
11170 		unregistering = false;
11171 		rtnl_lock();
11172 		list_for_each_entry(net, net_list, exit_list) {
11173 			if (net->dev_unreg_count > 0) {
11174 				unregistering = true;
11175 				break;
11176 			}
11177 		}
11178 		if (!unregistering)
11179 			break;
11180 		__rtnl_unlock();
11181 
11182 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11183 	}
11184 	remove_wait_queue(&netdev_unregistering_wq, &wait);
11185 }
11186 
11187 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11188 {
11189 	/* At exit all network devices most be removed from a network
11190 	 * namespace.  Do this in the reverse order of registration.
11191 	 * Do this across as many network namespaces as possible to
11192 	 * improve batching efficiency.
11193 	 */
11194 	struct net_device *dev;
11195 	struct net *net;
11196 	LIST_HEAD(dev_kill_list);
11197 
11198 	/* To prevent network device cleanup code from dereferencing
11199 	 * loopback devices or network devices that have been freed
11200 	 * wait here for all pending unregistrations to complete,
11201 	 * before unregistring the loopback device and allowing the
11202 	 * network namespace be freed.
11203 	 *
11204 	 * The netdev todo list containing all network devices
11205 	 * unregistrations that happen in default_device_exit_batch
11206 	 * will run in the rtnl_unlock() at the end of
11207 	 * default_device_exit_batch.
11208 	 */
11209 	rtnl_lock_unregistering(net_list);
11210 	list_for_each_entry(net, net_list, exit_list) {
11211 		for_each_netdev_reverse(net, dev) {
11212 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11213 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11214 			else
11215 				unregister_netdevice_queue(dev, &dev_kill_list);
11216 		}
11217 	}
11218 	unregister_netdevice_many(&dev_kill_list);
11219 	rtnl_unlock();
11220 }
11221 
11222 static struct pernet_operations __net_initdata default_device_ops = {
11223 	.exit = default_device_exit,
11224 	.exit_batch = default_device_exit_batch,
11225 };
11226 
11227 /*
11228  *	Initialize the DEV module. At boot time this walks the device list and
11229  *	unhooks any devices that fail to initialise (normally hardware not
11230  *	present) and leaves us with a valid list of present and active devices.
11231  *
11232  */
11233 
11234 /*
11235  *       This is called single threaded during boot, so no need
11236  *       to take the rtnl semaphore.
11237  */
11238 static int __init net_dev_init(void)
11239 {
11240 	int i, rc = -ENOMEM;
11241 
11242 	BUG_ON(!dev_boot_phase);
11243 
11244 	if (dev_proc_init())
11245 		goto out;
11246 
11247 	if (netdev_kobject_init())
11248 		goto out;
11249 
11250 	INIT_LIST_HEAD(&ptype_all);
11251 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11252 		INIT_LIST_HEAD(&ptype_base[i]);
11253 
11254 	INIT_LIST_HEAD(&offload_base);
11255 
11256 	if (register_pernet_subsys(&netdev_net_ops))
11257 		goto out;
11258 
11259 	/*
11260 	 *	Initialise the packet receive queues.
11261 	 */
11262 
11263 	for_each_possible_cpu(i) {
11264 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11265 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11266 
11267 		INIT_WORK(flush, flush_backlog);
11268 
11269 		skb_queue_head_init(&sd->input_pkt_queue);
11270 		skb_queue_head_init(&sd->process_queue);
11271 #ifdef CONFIG_XFRM_OFFLOAD
11272 		skb_queue_head_init(&sd->xfrm_backlog);
11273 #endif
11274 		INIT_LIST_HEAD(&sd->poll_list);
11275 		sd->output_queue_tailp = &sd->output_queue;
11276 #ifdef CONFIG_RPS
11277 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11278 		sd->cpu = i;
11279 #endif
11280 
11281 		init_gro_hash(&sd->backlog);
11282 		sd->backlog.poll = process_backlog;
11283 		sd->backlog.weight = weight_p;
11284 	}
11285 
11286 	dev_boot_phase = 0;
11287 
11288 	/* The loopback device is special if any other network devices
11289 	 * is present in a network namespace the loopback device must
11290 	 * be present. Since we now dynamically allocate and free the
11291 	 * loopback device ensure this invariant is maintained by
11292 	 * keeping the loopback device as the first device on the
11293 	 * list of network devices.  Ensuring the loopback devices
11294 	 * is the first device that appears and the last network device
11295 	 * that disappears.
11296 	 */
11297 	if (register_pernet_device(&loopback_net_ops))
11298 		goto out;
11299 
11300 	if (register_pernet_device(&default_device_ops))
11301 		goto out;
11302 
11303 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11304 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11305 
11306 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11307 				       NULL, dev_cpu_dead);
11308 	WARN_ON(rc < 0);
11309 	rc = 0;
11310 out:
11311 	return rc;
11312 }
11313 
11314 subsys_initcall(net_dev_init);
11315