1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/sched.h> 83 #include <linux/mutex.h> 84 #include <linux/string.h> 85 #include <linux/mm.h> 86 #include <linux/socket.h> 87 #include <linux/sockios.h> 88 #include <linux/errno.h> 89 #include <linux/interrupt.h> 90 #include <linux/if_ether.h> 91 #include <linux/netdevice.h> 92 #include <linux/etherdevice.h> 93 #include <linux/ethtool.h> 94 #include <linux/notifier.h> 95 #include <linux/skbuff.h> 96 #include <net/net_namespace.h> 97 #include <net/sock.h> 98 #include <linux/rtnetlink.h> 99 #include <linux/proc_fs.h> 100 #include <linux/seq_file.h> 101 #include <linux/stat.h> 102 #include <linux/if_bridge.h> 103 #include <linux/if_macvlan.h> 104 #include <net/dst.h> 105 #include <net/pkt_sched.h> 106 #include <net/checksum.h> 107 #include <linux/highmem.h> 108 #include <linux/init.h> 109 #include <linux/kmod.h> 110 #include <linux/module.h> 111 #include <linux/kallsyms.h> 112 #include <linux/netpoll.h> 113 #include <linux/rcupdate.h> 114 #include <linux/delay.h> 115 #include <net/wext.h> 116 #include <net/iw_handler.h> 117 #include <asm/current.h> 118 #include <linux/audit.h> 119 #include <linux/dmaengine.h> 120 #include <linux/err.h> 121 #include <linux/ctype.h> 122 #include <linux/if_arp.h> 123 #include <linux/if_vlan.h> 124 #include <linux/ip.h> 125 #include <net/ip.h> 126 #include <linux/ipv6.h> 127 #include <linux/in.h> 128 #include <linux/jhash.h> 129 #include <linux/random.h> 130 131 #include "net-sysfs.h" 132 133 /* 134 * The list of packet types we will receive (as opposed to discard) 135 * and the routines to invoke. 136 * 137 * Why 16. Because with 16 the only overlap we get on a hash of the 138 * low nibble of the protocol value is RARP/SNAP/X.25. 139 * 140 * NOTE: That is no longer true with the addition of VLAN tags. Not 141 * sure which should go first, but I bet it won't make much 142 * difference if we are running VLANs. The good news is that 143 * this protocol won't be in the list unless compiled in, so 144 * the average user (w/out VLANs) will not be adversely affected. 145 * --BLG 146 * 147 * 0800 IP 148 * 8100 802.1Q VLAN 149 * 0001 802.3 150 * 0002 AX.25 151 * 0004 802.2 152 * 8035 RARP 153 * 0005 SNAP 154 * 0805 X.25 155 * 0806 ARP 156 * 8137 IPX 157 * 0009 Localtalk 158 * 86DD IPv6 159 */ 160 161 #define PTYPE_HASH_SIZE (16) 162 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 163 164 static DEFINE_SPINLOCK(ptype_lock); 165 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 166 static struct list_head ptype_all __read_mostly; /* Taps */ 167 168 #ifdef CONFIG_NET_DMA 169 struct net_dma { 170 struct dma_client client; 171 spinlock_t lock; 172 cpumask_t channel_mask; 173 struct dma_chan **channels; 174 }; 175 176 static enum dma_state_client 177 netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 178 enum dma_state state); 179 180 static struct net_dma net_dma = { 181 .client = { 182 .event_callback = netdev_dma_event, 183 }, 184 }; 185 #endif 186 187 /* 188 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 189 * semaphore. 190 * 191 * Pure readers hold dev_base_lock for reading. 192 * 193 * Writers must hold the rtnl semaphore while they loop through the 194 * dev_base_head list, and hold dev_base_lock for writing when they do the 195 * actual updates. This allows pure readers to access the list even 196 * while a writer is preparing to update it. 197 * 198 * To put it another way, dev_base_lock is held for writing only to 199 * protect against pure readers; the rtnl semaphore provides the 200 * protection against other writers. 201 * 202 * See, for example usages, register_netdevice() and 203 * unregister_netdevice(), which must be called with the rtnl 204 * semaphore held. 205 */ 206 DEFINE_RWLOCK(dev_base_lock); 207 208 EXPORT_SYMBOL(dev_base_lock); 209 210 #define NETDEV_HASHBITS 8 211 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS) 212 213 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 214 { 215 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 216 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)]; 217 } 218 219 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 220 { 221 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)]; 222 } 223 224 /* Device list insertion */ 225 static int list_netdevice(struct net_device *dev) 226 { 227 struct net *net = dev_net(dev); 228 229 ASSERT_RTNL(); 230 231 write_lock_bh(&dev_base_lock); 232 list_add_tail(&dev->dev_list, &net->dev_base_head); 233 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 234 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex)); 235 write_unlock_bh(&dev_base_lock); 236 return 0; 237 } 238 239 /* Device list removal */ 240 static void unlist_netdevice(struct net_device *dev) 241 { 242 ASSERT_RTNL(); 243 244 /* Unlink dev from the device chain */ 245 write_lock_bh(&dev_base_lock); 246 list_del(&dev->dev_list); 247 hlist_del(&dev->name_hlist); 248 hlist_del(&dev->index_hlist); 249 write_unlock_bh(&dev_base_lock); 250 } 251 252 /* 253 * Our notifier list 254 */ 255 256 static RAW_NOTIFIER_HEAD(netdev_chain); 257 258 /* 259 * Device drivers call our routines to queue packets here. We empty the 260 * queue in the local softnet handler. 261 */ 262 263 DEFINE_PER_CPU(struct softnet_data, softnet_data); 264 265 #ifdef CONFIG_LOCKDEP 266 /* 267 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 268 * according to dev->type 269 */ 270 static const unsigned short netdev_lock_type[] = 271 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 272 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 273 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 274 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 275 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 276 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 277 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 278 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 279 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 280 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 281 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 282 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 283 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 284 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID, 285 ARPHRD_NONE}; 286 287 static const char *netdev_lock_name[] = 288 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 289 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 290 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 291 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 292 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 293 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 294 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 295 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 296 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 297 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 298 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 299 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 300 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 301 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID", 302 "_xmit_NONE"}; 303 304 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 305 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 306 307 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 308 { 309 int i; 310 311 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 312 if (netdev_lock_type[i] == dev_type) 313 return i; 314 /* the last key is used by default */ 315 return ARRAY_SIZE(netdev_lock_type) - 1; 316 } 317 318 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 319 unsigned short dev_type) 320 { 321 int i; 322 323 i = netdev_lock_pos(dev_type); 324 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 325 netdev_lock_name[i]); 326 } 327 328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 329 { 330 int i; 331 332 i = netdev_lock_pos(dev->type); 333 lockdep_set_class_and_name(&dev->addr_list_lock, 334 &netdev_addr_lock_key[i], 335 netdev_lock_name[i]); 336 } 337 #else 338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 339 unsigned short dev_type) 340 { 341 } 342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 343 { 344 } 345 #endif 346 347 /******************************************************************************* 348 349 Protocol management and registration routines 350 351 *******************************************************************************/ 352 353 /* 354 * Add a protocol ID to the list. Now that the input handler is 355 * smarter we can dispense with all the messy stuff that used to be 356 * here. 357 * 358 * BEWARE!!! Protocol handlers, mangling input packets, 359 * MUST BE last in hash buckets and checking protocol handlers 360 * MUST start from promiscuous ptype_all chain in net_bh. 361 * It is true now, do not change it. 362 * Explanation follows: if protocol handler, mangling packet, will 363 * be the first on list, it is not able to sense, that packet 364 * is cloned and should be copied-on-write, so that it will 365 * change it and subsequent readers will get broken packet. 366 * --ANK (980803) 367 */ 368 369 /** 370 * dev_add_pack - add packet handler 371 * @pt: packet type declaration 372 * 373 * Add a protocol handler to the networking stack. The passed &packet_type 374 * is linked into kernel lists and may not be freed until it has been 375 * removed from the kernel lists. 376 * 377 * This call does not sleep therefore it can not 378 * guarantee all CPU's that are in middle of receiving packets 379 * will see the new packet type (until the next received packet). 380 */ 381 382 void dev_add_pack(struct packet_type *pt) 383 { 384 int hash; 385 386 spin_lock_bh(&ptype_lock); 387 if (pt->type == htons(ETH_P_ALL)) 388 list_add_rcu(&pt->list, &ptype_all); 389 else { 390 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 391 list_add_rcu(&pt->list, &ptype_base[hash]); 392 } 393 spin_unlock_bh(&ptype_lock); 394 } 395 396 /** 397 * __dev_remove_pack - remove packet handler 398 * @pt: packet type declaration 399 * 400 * Remove a protocol handler that was previously added to the kernel 401 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 402 * from the kernel lists and can be freed or reused once this function 403 * returns. 404 * 405 * The packet type might still be in use by receivers 406 * and must not be freed until after all the CPU's have gone 407 * through a quiescent state. 408 */ 409 void __dev_remove_pack(struct packet_type *pt) 410 { 411 struct list_head *head; 412 struct packet_type *pt1; 413 414 spin_lock_bh(&ptype_lock); 415 416 if (pt->type == htons(ETH_P_ALL)) 417 head = &ptype_all; 418 else 419 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 420 421 list_for_each_entry(pt1, head, list) { 422 if (pt == pt1) { 423 list_del_rcu(&pt->list); 424 goto out; 425 } 426 } 427 428 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 429 out: 430 spin_unlock_bh(&ptype_lock); 431 } 432 /** 433 * dev_remove_pack - remove packet handler 434 * @pt: packet type declaration 435 * 436 * Remove a protocol handler that was previously added to the kernel 437 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 438 * from the kernel lists and can be freed or reused once this function 439 * returns. 440 * 441 * This call sleeps to guarantee that no CPU is looking at the packet 442 * type after return. 443 */ 444 void dev_remove_pack(struct packet_type *pt) 445 { 446 __dev_remove_pack(pt); 447 448 synchronize_net(); 449 } 450 451 /****************************************************************************** 452 453 Device Boot-time Settings Routines 454 455 *******************************************************************************/ 456 457 /* Boot time configuration table */ 458 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 459 460 /** 461 * netdev_boot_setup_add - add new setup entry 462 * @name: name of the device 463 * @map: configured settings for the device 464 * 465 * Adds new setup entry to the dev_boot_setup list. The function 466 * returns 0 on error and 1 on success. This is a generic routine to 467 * all netdevices. 468 */ 469 static int netdev_boot_setup_add(char *name, struct ifmap *map) 470 { 471 struct netdev_boot_setup *s; 472 int i; 473 474 s = dev_boot_setup; 475 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 476 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 477 memset(s[i].name, 0, sizeof(s[i].name)); 478 strlcpy(s[i].name, name, IFNAMSIZ); 479 memcpy(&s[i].map, map, sizeof(s[i].map)); 480 break; 481 } 482 } 483 484 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 485 } 486 487 /** 488 * netdev_boot_setup_check - check boot time settings 489 * @dev: the netdevice 490 * 491 * Check boot time settings for the device. 492 * The found settings are set for the device to be used 493 * later in the device probing. 494 * Returns 0 if no settings found, 1 if they are. 495 */ 496 int netdev_boot_setup_check(struct net_device *dev) 497 { 498 struct netdev_boot_setup *s = dev_boot_setup; 499 int i; 500 501 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 502 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 503 !strcmp(dev->name, s[i].name)) { 504 dev->irq = s[i].map.irq; 505 dev->base_addr = s[i].map.base_addr; 506 dev->mem_start = s[i].map.mem_start; 507 dev->mem_end = s[i].map.mem_end; 508 return 1; 509 } 510 } 511 return 0; 512 } 513 514 515 /** 516 * netdev_boot_base - get address from boot time settings 517 * @prefix: prefix for network device 518 * @unit: id for network device 519 * 520 * Check boot time settings for the base address of device. 521 * The found settings are set for the device to be used 522 * later in the device probing. 523 * Returns 0 if no settings found. 524 */ 525 unsigned long netdev_boot_base(const char *prefix, int unit) 526 { 527 const struct netdev_boot_setup *s = dev_boot_setup; 528 char name[IFNAMSIZ]; 529 int i; 530 531 sprintf(name, "%s%d", prefix, unit); 532 533 /* 534 * If device already registered then return base of 1 535 * to indicate not to probe for this interface 536 */ 537 if (__dev_get_by_name(&init_net, name)) 538 return 1; 539 540 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 541 if (!strcmp(name, s[i].name)) 542 return s[i].map.base_addr; 543 return 0; 544 } 545 546 /* 547 * Saves at boot time configured settings for any netdevice. 548 */ 549 int __init netdev_boot_setup(char *str) 550 { 551 int ints[5]; 552 struct ifmap map; 553 554 str = get_options(str, ARRAY_SIZE(ints), ints); 555 if (!str || !*str) 556 return 0; 557 558 /* Save settings */ 559 memset(&map, 0, sizeof(map)); 560 if (ints[0] > 0) 561 map.irq = ints[1]; 562 if (ints[0] > 1) 563 map.base_addr = ints[2]; 564 if (ints[0] > 2) 565 map.mem_start = ints[3]; 566 if (ints[0] > 3) 567 map.mem_end = ints[4]; 568 569 /* Add new entry to the list */ 570 return netdev_boot_setup_add(str, &map); 571 } 572 573 __setup("netdev=", netdev_boot_setup); 574 575 /******************************************************************************* 576 577 Device Interface Subroutines 578 579 *******************************************************************************/ 580 581 /** 582 * __dev_get_by_name - find a device by its name 583 * @net: the applicable net namespace 584 * @name: name to find 585 * 586 * Find an interface by name. Must be called under RTNL semaphore 587 * or @dev_base_lock. If the name is found a pointer to the device 588 * is returned. If the name is not found then %NULL is returned. The 589 * reference counters are not incremented so the caller must be 590 * careful with locks. 591 */ 592 593 struct net_device *__dev_get_by_name(struct net *net, const char *name) 594 { 595 struct hlist_node *p; 596 597 hlist_for_each(p, dev_name_hash(net, name)) { 598 struct net_device *dev 599 = hlist_entry(p, struct net_device, name_hlist); 600 if (!strncmp(dev->name, name, IFNAMSIZ)) 601 return dev; 602 } 603 return NULL; 604 } 605 606 /** 607 * dev_get_by_name - find a device by its name 608 * @net: the applicable net namespace 609 * @name: name to find 610 * 611 * Find an interface by name. This can be called from any 612 * context and does its own locking. The returned handle has 613 * the usage count incremented and the caller must use dev_put() to 614 * release it when it is no longer needed. %NULL is returned if no 615 * matching device is found. 616 */ 617 618 struct net_device *dev_get_by_name(struct net *net, const char *name) 619 { 620 struct net_device *dev; 621 622 read_lock(&dev_base_lock); 623 dev = __dev_get_by_name(net, name); 624 if (dev) 625 dev_hold(dev); 626 read_unlock(&dev_base_lock); 627 return dev; 628 } 629 630 /** 631 * __dev_get_by_index - find a device by its ifindex 632 * @net: the applicable net namespace 633 * @ifindex: index of device 634 * 635 * Search for an interface by index. Returns %NULL if the device 636 * is not found or a pointer to the device. The device has not 637 * had its reference counter increased so the caller must be careful 638 * about locking. The caller must hold either the RTNL semaphore 639 * or @dev_base_lock. 640 */ 641 642 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 643 { 644 struct hlist_node *p; 645 646 hlist_for_each(p, dev_index_hash(net, ifindex)) { 647 struct net_device *dev 648 = hlist_entry(p, struct net_device, index_hlist); 649 if (dev->ifindex == ifindex) 650 return dev; 651 } 652 return NULL; 653 } 654 655 656 /** 657 * dev_get_by_index - find a device by its ifindex 658 * @net: the applicable net namespace 659 * @ifindex: index of device 660 * 661 * Search for an interface by index. Returns NULL if the device 662 * is not found or a pointer to the device. The device returned has 663 * had a reference added and the pointer is safe until the user calls 664 * dev_put to indicate they have finished with it. 665 */ 666 667 struct net_device *dev_get_by_index(struct net *net, int ifindex) 668 { 669 struct net_device *dev; 670 671 read_lock(&dev_base_lock); 672 dev = __dev_get_by_index(net, ifindex); 673 if (dev) 674 dev_hold(dev); 675 read_unlock(&dev_base_lock); 676 return dev; 677 } 678 679 /** 680 * dev_getbyhwaddr - find a device by its hardware address 681 * @net: the applicable net namespace 682 * @type: media type of device 683 * @ha: hardware address 684 * 685 * Search for an interface by MAC address. Returns NULL if the device 686 * is not found or a pointer to the device. The caller must hold the 687 * rtnl semaphore. The returned device has not had its ref count increased 688 * and the caller must therefore be careful about locking 689 * 690 * BUGS: 691 * If the API was consistent this would be __dev_get_by_hwaddr 692 */ 693 694 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha) 695 { 696 struct net_device *dev; 697 698 ASSERT_RTNL(); 699 700 for_each_netdev(net, dev) 701 if (dev->type == type && 702 !memcmp(dev->dev_addr, ha, dev->addr_len)) 703 return dev; 704 705 return NULL; 706 } 707 708 EXPORT_SYMBOL(dev_getbyhwaddr); 709 710 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 711 { 712 struct net_device *dev; 713 714 ASSERT_RTNL(); 715 for_each_netdev(net, dev) 716 if (dev->type == type) 717 return dev; 718 719 return NULL; 720 } 721 722 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 723 724 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 725 { 726 struct net_device *dev; 727 728 rtnl_lock(); 729 dev = __dev_getfirstbyhwtype(net, type); 730 if (dev) 731 dev_hold(dev); 732 rtnl_unlock(); 733 return dev; 734 } 735 736 EXPORT_SYMBOL(dev_getfirstbyhwtype); 737 738 /** 739 * dev_get_by_flags - find any device with given flags 740 * @net: the applicable net namespace 741 * @if_flags: IFF_* values 742 * @mask: bitmask of bits in if_flags to check 743 * 744 * Search for any interface with the given flags. Returns NULL if a device 745 * is not found or a pointer to the device. The device returned has 746 * had a reference added and the pointer is safe until the user calls 747 * dev_put to indicate they have finished with it. 748 */ 749 750 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask) 751 { 752 struct net_device *dev, *ret; 753 754 ret = NULL; 755 read_lock(&dev_base_lock); 756 for_each_netdev(net, dev) { 757 if (((dev->flags ^ if_flags) & mask) == 0) { 758 dev_hold(dev); 759 ret = dev; 760 break; 761 } 762 } 763 read_unlock(&dev_base_lock); 764 return ret; 765 } 766 767 /** 768 * dev_valid_name - check if name is okay for network device 769 * @name: name string 770 * 771 * Network device names need to be valid file names to 772 * to allow sysfs to work. We also disallow any kind of 773 * whitespace. 774 */ 775 int dev_valid_name(const char *name) 776 { 777 if (*name == '\0') 778 return 0; 779 if (strlen(name) >= IFNAMSIZ) 780 return 0; 781 if (!strcmp(name, ".") || !strcmp(name, "..")) 782 return 0; 783 784 while (*name) { 785 if (*name == '/' || isspace(*name)) 786 return 0; 787 name++; 788 } 789 return 1; 790 } 791 792 /** 793 * __dev_alloc_name - allocate a name for a device 794 * @net: network namespace to allocate the device name in 795 * @name: name format string 796 * @buf: scratch buffer and result name string 797 * 798 * Passed a format string - eg "lt%d" it will try and find a suitable 799 * id. It scans list of devices to build up a free map, then chooses 800 * the first empty slot. The caller must hold the dev_base or rtnl lock 801 * while allocating the name and adding the device in order to avoid 802 * duplicates. 803 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 804 * Returns the number of the unit assigned or a negative errno code. 805 */ 806 807 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 808 { 809 int i = 0; 810 const char *p; 811 const int max_netdevices = 8*PAGE_SIZE; 812 unsigned long *inuse; 813 struct net_device *d; 814 815 p = strnchr(name, IFNAMSIZ-1, '%'); 816 if (p) { 817 /* 818 * Verify the string as this thing may have come from 819 * the user. There must be either one "%d" and no other "%" 820 * characters. 821 */ 822 if (p[1] != 'd' || strchr(p + 2, '%')) 823 return -EINVAL; 824 825 /* Use one page as a bit array of possible slots */ 826 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 827 if (!inuse) 828 return -ENOMEM; 829 830 for_each_netdev(net, d) { 831 if (!sscanf(d->name, name, &i)) 832 continue; 833 if (i < 0 || i >= max_netdevices) 834 continue; 835 836 /* avoid cases where sscanf is not exact inverse of printf */ 837 snprintf(buf, IFNAMSIZ, name, i); 838 if (!strncmp(buf, d->name, IFNAMSIZ)) 839 set_bit(i, inuse); 840 } 841 842 i = find_first_zero_bit(inuse, max_netdevices); 843 free_page((unsigned long) inuse); 844 } 845 846 snprintf(buf, IFNAMSIZ, name, i); 847 if (!__dev_get_by_name(net, buf)) 848 return i; 849 850 /* It is possible to run out of possible slots 851 * when the name is long and there isn't enough space left 852 * for the digits, or if all bits are used. 853 */ 854 return -ENFILE; 855 } 856 857 /** 858 * dev_alloc_name - allocate a name for a device 859 * @dev: device 860 * @name: name format string 861 * 862 * Passed a format string - eg "lt%d" it will try and find a suitable 863 * id. It scans list of devices to build up a free map, then chooses 864 * the first empty slot. The caller must hold the dev_base or rtnl lock 865 * while allocating the name and adding the device in order to avoid 866 * duplicates. 867 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 868 * Returns the number of the unit assigned or a negative errno code. 869 */ 870 871 int dev_alloc_name(struct net_device *dev, const char *name) 872 { 873 char buf[IFNAMSIZ]; 874 struct net *net; 875 int ret; 876 877 BUG_ON(!dev_net(dev)); 878 net = dev_net(dev); 879 ret = __dev_alloc_name(net, name, buf); 880 if (ret >= 0) 881 strlcpy(dev->name, buf, IFNAMSIZ); 882 return ret; 883 } 884 885 886 /** 887 * dev_change_name - change name of a device 888 * @dev: device 889 * @newname: name (or format string) must be at least IFNAMSIZ 890 * 891 * Change name of a device, can pass format strings "eth%d". 892 * for wildcarding. 893 */ 894 int dev_change_name(struct net_device *dev, char *newname) 895 { 896 char oldname[IFNAMSIZ]; 897 int err = 0; 898 int ret; 899 struct net *net; 900 901 ASSERT_RTNL(); 902 BUG_ON(!dev_net(dev)); 903 904 net = dev_net(dev); 905 if (dev->flags & IFF_UP) 906 return -EBUSY; 907 908 if (!dev_valid_name(newname)) 909 return -EINVAL; 910 911 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 912 return 0; 913 914 memcpy(oldname, dev->name, IFNAMSIZ); 915 916 if (strchr(newname, '%')) { 917 err = dev_alloc_name(dev, newname); 918 if (err < 0) 919 return err; 920 strcpy(newname, dev->name); 921 } 922 else if (__dev_get_by_name(net, newname)) 923 return -EEXIST; 924 else 925 strlcpy(dev->name, newname, IFNAMSIZ); 926 927 rollback: 928 err = device_rename(&dev->dev, dev->name); 929 if (err) { 930 memcpy(dev->name, oldname, IFNAMSIZ); 931 return err; 932 } 933 934 write_lock_bh(&dev_base_lock); 935 hlist_del(&dev->name_hlist); 936 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 937 write_unlock_bh(&dev_base_lock); 938 939 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 940 ret = notifier_to_errno(ret); 941 942 if (ret) { 943 if (err) { 944 printk(KERN_ERR 945 "%s: name change rollback failed: %d.\n", 946 dev->name, ret); 947 } else { 948 err = ret; 949 memcpy(dev->name, oldname, IFNAMSIZ); 950 goto rollback; 951 } 952 } 953 954 return err; 955 } 956 957 /** 958 * netdev_features_change - device changes features 959 * @dev: device to cause notification 960 * 961 * Called to indicate a device has changed features. 962 */ 963 void netdev_features_change(struct net_device *dev) 964 { 965 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 966 } 967 EXPORT_SYMBOL(netdev_features_change); 968 969 /** 970 * netdev_state_change - device changes state 971 * @dev: device to cause notification 972 * 973 * Called to indicate a device has changed state. This function calls 974 * the notifier chains for netdev_chain and sends a NEWLINK message 975 * to the routing socket. 976 */ 977 void netdev_state_change(struct net_device *dev) 978 { 979 if (dev->flags & IFF_UP) { 980 call_netdevice_notifiers(NETDEV_CHANGE, dev); 981 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 982 } 983 } 984 985 void netdev_bonding_change(struct net_device *dev) 986 { 987 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev); 988 } 989 EXPORT_SYMBOL(netdev_bonding_change); 990 991 /** 992 * dev_load - load a network module 993 * @net: the applicable net namespace 994 * @name: name of interface 995 * 996 * If a network interface is not present and the process has suitable 997 * privileges this function loads the module. If module loading is not 998 * available in this kernel then it becomes a nop. 999 */ 1000 1001 void dev_load(struct net *net, const char *name) 1002 { 1003 struct net_device *dev; 1004 1005 read_lock(&dev_base_lock); 1006 dev = __dev_get_by_name(net, name); 1007 read_unlock(&dev_base_lock); 1008 1009 if (!dev && capable(CAP_SYS_MODULE)) 1010 request_module("%s", name); 1011 } 1012 1013 /** 1014 * dev_open - prepare an interface for use. 1015 * @dev: device to open 1016 * 1017 * Takes a device from down to up state. The device's private open 1018 * function is invoked and then the multicast lists are loaded. Finally 1019 * the device is moved into the up state and a %NETDEV_UP message is 1020 * sent to the netdev notifier chain. 1021 * 1022 * Calling this function on an active interface is a nop. On a failure 1023 * a negative errno code is returned. 1024 */ 1025 int dev_open(struct net_device *dev) 1026 { 1027 int ret = 0; 1028 1029 ASSERT_RTNL(); 1030 1031 /* 1032 * Is it already up? 1033 */ 1034 1035 if (dev->flags & IFF_UP) 1036 return 0; 1037 1038 /* 1039 * Is it even present? 1040 */ 1041 if (!netif_device_present(dev)) 1042 return -ENODEV; 1043 1044 /* 1045 * Call device private open method 1046 */ 1047 set_bit(__LINK_STATE_START, &dev->state); 1048 1049 if (dev->validate_addr) 1050 ret = dev->validate_addr(dev); 1051 1052 if (!ret && dev->open) 1053 ret = dev->open(dev); 1054 1055 /* 1056 * If it went open OK then: 1057 */ 1058 1059 if (ret) 1060 clear_bit(__LINK_STATE_START, &dev->state); 1061 else { 1062 /* 1063 * Set the flags. 1064 */ 1065 dev->flags |= IFF_UP; 1066 1067 /* 1068 * Initialize multicasting status 1069 */ 1070 dev_set_rx_mode(dev); 1071 1072 /* 1073 * Wakeup transmit queue engine 1074 */ 1075 dev_activate(dev); 1076 1077 /* 1078 * ... and announce new interface. 1079 */ 1080 call_netdevice_notifiers(NETDEV_UP, dev); 1081 } 1082 1083 return ret; 1084 } 1085 1086 /** 1087 * dev_close - shutdown an interface. 1088 * @dev: device to shutdown 1089 * 1090 * This function moves an active device into down state. A 1091 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1092 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1093 * chain. 1094 */ 1095 int dev_close(struct net_device *dev) 1096 { 1097 ASSERT_RTNL(); 1098 1099 might_sleep(); 1100 1101 if (!(dev->flags & IFF_UP)) 1102 return 0; 1103 1104 /* 1105 * Tell people we are going down, so that they can 1106 * prepare to death, when device is still operating. 1107 */ 1108 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1109 1110 clear_bit(__LINK_STATE_START, &dev->state); 1111 1112 /* Synchronize to scheduled poll. We cannot touch poll list, 1113 * it can be even on different cpu. So just clear netif_running(). 1114 * 1115 * dev->stop() will invoke napi_disable() on all of it's 1116 * napi_struct instances on this device. 1117 */ 1118 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1119 1120 dev_deactivate(dev); 1121 1122 /* 1123 * Call the device specific close. This cannot fail. 1124 * Only if device is UP 1125 * 1126 * We allow it to be called even after a DETACH hot-plug 1127 * event. 1128 */ 1129 if (dev->stop) 1130 dev->stop(dev); 1131 1132 /* 1133 * Device is now down. 1134 */ 1135 1136 dev->flags &= ~IFF_UP; 1137 1138 /* 1139 * Tell people we are down 1140 */ 1141 call_netdevice_notifiers(NETDEV_DOWN, dev); 1142 1143 return 0; 1144 } 1145 1146 1147 /** 1148 * dev_disable_lro - disable Large Receive Offload on a device 1149 * @dev: device 1150 * 1151 * Disable Large Receive Offload (LRO) on a net device. Must be 1152 * called under RTNL. This is needed if received packets may be 1153 * forwarded to another interface. 1154 */ 1155 void dev_disable_lro(struct net_device *dev) 1156 { 1157 if (dev->ethtool_ops && dev->ethtool_ops->get_flags && 1158 dev->ethtool_ops->set_flags) { 1159 u32 flags = dev->ethtool_ops->get_flags(dev); 1160 if (flags & ETH_FLAG_LRO) { 1161 flags &= ~ETH_FLAG_LRO; 1162 dev->ethtool_ops->set_flags(dev, flags); 1163 } 1164 } 1165 WARN_ON(dev->features & NETIF_F_LRO); 1166 } 1167 EXPORT_SYMBOL(dev_disable_lro); 1168 1169 1170 static int dev_boot_phase = 1; 1171 1172 /* 1173 * Device change register/unregister. These are not inline or static 1174 * as we export them to the world. 1175 */ 1176 1177 /** 1178 * register_netdevice_notifier - register a network notifier block 1179 * @nb: notifier 1180 * 1181 * Register a notifier to be called when network device events occur. 1182 * The notifier passed is linked into the kernel structures and must 1183 * not be reused until it has been unregistered. A negative errno code 1184 * is returned on a failure. 1185 * 1186 * When registered all registration and up events are replayed 1187 * to the new notifier to allow device to have a race free 1188 * view of the network device list. 1189 */ 1190 1191 int register_netdevice_notifier(struct notifier_block *nb) 1192 { 1193 struct net_device *dev; 1194 struct net_device *last; 1195 struct net *net; 1196 int err; 1197 1198 rtnl_lock(); 1199 err = raw_notifier_chain_register(&netdev_chain, nb); 1200 if (err) 1201 goto unlock; 1202 if (dev_boot_phase) 1203 goto unlock; 1204 for_each_net(net) { 1205 for_each_netdev(net, dev) { 1206 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1207 err = notifier_to_errno(err); 1208 if (err) 1209 goto rollback; 1210 1211 if (!(dev->flags & IFF_UP)) 1212 continue; 1213 1214 nb->notifier_call(nb, NETDEV_UP, dev); 1215 } 1216 } 1217 1218 unlock: 1219 rtnl_unlock(); 1220 return err; 1221 1222 rollback: 1223 last = dev; 1224 for_each_net(net) { 1225 for_each_netdev(net, dev) { 1226 if (dev == last) 1227 break; 1228 1229 if (dev->flags & IFF_UP) { 1230 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1231 nb->notifier_call(nb, NETDEV_DOWN, dev); 1232 } 1233 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1234 } 1235 } 1236 1237 raw_notifier_chain_unregister(&netdev_chain, nb); 1238 goto unlock; 1239 } 1240 1241 /** 1242 * unregister_netdevice_notifier - unregister a network notifier block 1243 * @nb: notifier 1244 * 1245 * Unregister a notifier previously registered by 1246 * register_netdevice_notifier(). The notifier is unlinked into the 1247 * kernel structures and may then be reused. A negative errno code 1248 * is returned on a failure. 1249 */ 1250 1251 int unregister_netdevice_notifier(struct notifier_block *nb) 1252 { 1253 int err; 1254 1255 rtnl_lock(); 1256 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1257 rtnl_unlock(); 1258 return err; 1259 } 1260 1261 /** 1262 * call_netdevice_notifiers - call all network notifier blocks 1263 * @val: value passed unmodified to notifier function 1264 * @dev: net_device pointer passed unmodified to notifier function 1265 * 1266 * Call all network notifier blocks. Parameters and return value 1267 * are as for raw_notifier_call_chain(). 1268 */ 1269 1270 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1271 { 1272 return raw_notifier_call_chain(&netdev_chain, val, dev); 1273 } 1274 1275 /* When > 0 there are consumers of rx skb time stamps */ 1276 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1277 1278 void net_enable_timestamp(void) 1279 { 1280 atomic_inc(&netstamp_needed); 1281 } 1282 1283 void net_disable_timestamp(void) 1284 { 1285 atomic_dec(&netstamp_needed); 1286 } 1287 1288 static inline void net_timestamp(struct sk_buff *skb) 1289 { 1290 if (atomic_read(&netstamp_needed)) 1291 __net_timestamp(skb); 1292 else 1293 skb->tstamp.tv64 = 0; 1294 } 1295 1296 /* 1297 * Support routine. Sends outgoing frames to any network 1298 * taps currently in use. 1299 */ 1300 1301 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1302 { 1303 struct packet_type *ptype; 1304 1305 net_timestamp(skb); 1306 1307 rcu_read_lock(); 1308 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1309 /* Never send packets back to the socket 1310 * they originated from - MvS (miquels@drinkel.ow.org) 1311 */ 1312 if ((ptype->dev == dev || !ptype->dev) && 1313 (ptype->af_packet_priv == NULL || 1314 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1315 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC); 1316 if (!skb2) 1317 break; 1318 1319 /* skb->nh should be correctly 1320 set by sender, so that the second statement is 1321 just protection against buggy protocols. 1322 */ 1323 skb_reset_mac_header(skb2); 1324 1325 if (skb_network_header(skb2) < skb2->data || 1326 skb2->network_header > skb2->tail) { 1327 if (net_ratelimit()) 1328 printk(KERN_CRIT "protocol %04x is " 1329 "buggy, dev %s\n", 1330 skb2->protocol, dev->name); 1331 skb_reset_network_header(skb2); 1332 } 1333 1334 skb2->transport_header = skb2->network_header; 1335 skb2->pkt_type = PACKET_OUTGOING; 1336 ptype->func(skb2, skb->dev, ptype, skb->dev); 1337 } 1338 } 1339 rcu_read_unlock(); 1340 } 1341 1342 1343 static inline void __netif_reschedule(struct Qdisc *q) 1344 { 1345 struct softnet_data *sd; 1346 unsigned long flags; 1347 1348 local_irq_save(flags); 1349 sd = &__get_cpu_var(softnet_data); 1350 q->next_sched = sd->output_queue; 1351 sd->output_queue = q; 1352 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1353 local_irq_restore(flags); 1354 } 1355 1356 void __netif_schedule(struct Qdisc *q) 1357 { 1358 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1359 __netif_reschedule(q); 1360 } 1361 EXPORT_SYMBOL(__netif_schedule); 1362 1363 void dev_kfree_skb_irq(struct sk_buff *skb) 1364 { 1365 if (atomic_dec_and_test(&skb->users)) { 1366 struct softnet_data *sd; 1367 unsigned long flags; 1368 1369 local_irq_save(flags); 1370 sd = &__get_cpu_var(softnet_data); 1371 skb->next = sd->completion_queue; 1372 sd->completion_queue = skb; 1373 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1374 local_irq_restore(flags); 1375 } 1376 } 1377 EXPORT_SYMBOL(dev_kfree_skb_irq); 1378 1379 void dev_kfree_skb_any(struct sk_buff *skb) 1380 { 1381 if (in_irq() || irqs_disabled()) 1382 dev_kfree_skb_irq(skb); 1383 else 1384 dev_kfree_skb(skb); 1385 } 1386 EXPORT_SYMBOL(dev_kfree_skb_any); 1387 1388 1389 /** 1390 * netif_device_detach - mark device as removed 1391 * @dev: network device 1392 * 1393 * Mark device as removed from system and therefore no longer available. 1394 */ 1395 void netif_device_detach(struct net_device *dev) 1396 { 1397 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1398 netif_running(dev)) { 1399 netif_stop_queue(dev); 1400 } 1401 } 1402 EXPORT_SYMBOL(netif_device_detach); 1403 1404 /** 1405 * netif_device_attach - mark device as attached 1406 * @dev: network device 1407 * 1408 * Mark device as attached from system and restart if needed. 1409 */ 1410 void netif_device_attach(struct net_device *dev) 1411 { 1412 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1413 netif_running(dev)) { 1414 netif_wake_queue(dev); 1415 __netdev_watchdog_up(dev); 1416 } 1417 } 1418 EXPORT_SYMBOL(netif_device_attach); 1419 1420 static bool can_checksum_protocol(unsigned long features, __be16 protocol) 1421 { 1422 return ((features & NETIF_F_GEN_CSUM) || 1423 ((features & NETIF_F_IP_CSUM) && 1424 protocol == htons(ETH_P_IP)) || 1425 ((features & NETIF_F_IPV6_CSUM) && 1426 protocol == htons(ETH_P_IPV6))); 1427 } 1428 1429 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb) 1430 { 1431 if (can_checksum_protocol(dev->features, skb->protocol)) 1432 return true; 1433 1434 if (skb->protocol == htons(ETH_P_8021Q)) { 1435 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 1436 if (can_checksum_protocol(dev->features & dev->vlan_features, 1437 veh->h_vlan_encapsulated_proto)) 1438 return true; 1439 } 1440 1441 return false; 1442 } 1443 1444 /* 1445 * Invalidate hardware checksum when packet is to be mangled, and 1446 * complete checksum manually on outgoing path. 1447 */ 1448 int skb_checksum_help(struct sk_buff *skb) 1449 { 1450 __wsum csum; 1451 int ret = 0, offset; 1452 1453 if (skb->ip_summed == CHECKSUM_COMPLETE) 1454 goto out_set_summed; 1455 1456 if (unlikely(skb_shinfo(skb)->gso_size)) { 1457 /* Let GSO fix up the checksum. */ 1458 goto out_set_summed; 1459 } 1460 1461 offset = skb->csum_start - skb_headroom(skb); 1462 BUG_ON(offset >= skb_headlen(skb)); 1463 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1464 1465 offset += skb->csum_offset; 1466 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1467 1468 if (skb_cloned(skb) && 1469 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1470 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1471 if (ret) 1472 goto out; 1473 } 1474 1475 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1476 out_set_summed: 1477 skb->ip_summed = CHECKSUM_NONE; 1478 out: 1479 return ret; 1480 } 1481 1482 /** 1483 * skb_gso_segment - Perform segmentation on skb. 1484 * @skb: buffer to segment 1485 * @features: features for the output path (see dev->features) 1486 * 1487 * This function segments the given skb and returns a list of segments. 1488 * 1489 * It may return NULL if the skb requires no segmentation. This is 1490 * only possible when GSO is used for verifying header integrity. 1491 */ 1492 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1493 { 1494 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1495 struct packet_type *ptype; 1496 __be16 type = skb->protocol; 1497 int err; 1498 1499 BUG_ON(skb_shinfo(skb)->frag_list); 1500 1501 skb_reset_mac_header(skb); 1502 skb->mac_len = skb->network_header - skb->mac_header; 1503 __skb_pull(skb, skb->mac_len); 1504 1505 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) { 1506 if (skb_header_cloned(skb) && 1507 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1508 return ERR_PTR(err); 1509 } 1510 1511 rcu_read_lock(); 1512 list_for_each_entry_rcu(ptype, 1513 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1514 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1515 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1516 err = ptype->gso_send_check(skb); 1517 segs = ERR_PTR(err); 1518 if (err || skb_gso_ok(skb, features)) 1519 break; 1520 __skb_push(skb, (skb->data - 1521 skb_network_header(skb))); 1522 } 1523 segs = ptype->gso_segment(skb, features); 1524 break; 1525 } 1526 } 1527 rcu_read_unlock(); 1528 1529 __skb_push(skb, skb->data - skb_mac_header(skb)); 1530 1531 return segs; 1532 } 1533 1534 EXPORT_SYMBOL(skb_gso_segment); 1535 1536 /* Take action when hardware reception checksum errors are detected. */ 1537 #ifdef CONFIG_BUG 1538 void netdev_rx_csum_fault(struct net_device *dev) 1539 { 1540 if (net_ratelimit()) { 1541 printk(KERN_ERR "%s: hw csum failure.\n", 1542 dev ? dev->name : "<unknown>"); 1543 dump_stack(); 1544 } 1545 } 1546 EXPORT_SYMBOL(netdev_rx_csum_fault); 1547 #endif 1548 1549 /* Actually, we should eliminate this check as soon as we know, that: 1550 * 1. IOMMU is present and allows to map all the memory. 1551 * 2. No high memory really exists on this machine. 1552 */ 1553 1554 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1555 { 1556 #ifdef CONFIG_HIGHMEM 1557 int i; 1558 1559 if (dev->features & NETIF_F_HIGHDMA) 1560 return 0; 1561 1562 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1563 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1564 return 1; 1565 1566 #endif 1567 return 0; 1568 } 1569 1570 struct dev_gso_cb { 1571 void (*destructor)(struct sk_buff *skb); 1572 }; 1573 1574 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1575 1576 static void dev_gso_skb_destructor(struct sk_buff *skb) 1577 { 1578 struct dev_gso_cb *cb; 1579 1580 do { 1581 struct sk_buff *nskb = skb->next; 1582 1583 skb->next = nskb->next; 1584 nskb->next = NULL; 1585 kfree_skb(nskb); 1586 } while (skb->next); 1587 1588 cb = DEV_GSO_CB(skb); 1589 if (cb->destructor) 1590 cb->destructor(skb); 1591 } 1592 1593 /** 1594 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1595 * @skb: buffer to segment 1596 * 1597 * This function segments the given skb and stores the list of segments 1598 * in skb->next. 1599 */ 1600 static int dev_gso_segment(struct sk_buff *skb) 1601 { 1602 struct net_device *dev = skb->dev; 1603 struct sk_buff *segs; 1604 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1605 NETIF_F_SG : 0); 1606 1607 segs = skb_gso_segment(skb, features); 1608 1609 /* Verifying header integrity only. */ 1610 if (!segs) 1611 return 0; 1612 1613 if (IS_ERR(segs)) 1614 return PTR_ERR(segs); 1615 1616 skb->next = segs; 1617 DEV_GSO_CB(skb)->destructor = skb->destructor; 1618 skb->destructor = dev_gso_skb_destructor; 1619 1620 return 0; 1621 } 1622 1623 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 1624 struct netdev_queue *txq) 1625 { 1626 if (likely(!skb->next)) { 1627 if (!list_empty(&ptype_all)) 1628 dev_queue_xmit_nit(skb, dev); 1629 1630 if (netif_needs_gso(dev, skb)) { 1631 if (unlikely(dev_gso_segment(skb))) 1632 goto out_kfree_skb; 1633 if (skb->next) 1634 goto gso; 1635 } 1636 1637 return dev->hard_start_xmit(skb, dev); 1638 } 1639 1640 gso: 1641 do { 1642 struct sk_buff *nskb = skb->next; 1643 int rc; 1644 1645 skb->next = nskb->next; 1646 nskb->next = NULL; 1647 rc = dev->hard_start_xmit(nskb, dev); 1648 if (unlikely(rc)) { 1649 nskb->next = skb->next; 1650 skb->next = nskb; 1651 return rc; 1652 } 1653 if (unlikely(netif_tx_queue_stopped(txq) && skb->next)) 1654 return NETDEV_TX_BUSY; 1655 } while (skb->next); 1656 1657 skb->destructor = DEV_GSO_CB(skb)->destructor; 1658 1659 out_kfree_skb: 1660 kfree_skb(skb); 1661 return 0; 1662 } 1663 1664 static u32 simple_tx_hashrnd; 1665 static int simple_tx_hashrnd_initialized = 0; 1666 1667 static u16 simple_tx_hash(struct net_device *dev, struct sk_buff *skb) 1668 { 1669 u32 addr1, addr2, ports; 1670 u32 hash, ihl; 1671 u8 ip_proto = 0; 1672 1673 if (unlikely(!simple_tx_hashrnd_initialized)) { 1674 get_random_bytes(&simple_tx_hashrnd, 4); 1675 simple_tx_hashrnd_initialized = 1; 1676 } 1677 1678 switch (skb->protocol) { 1679 case __constant_htons(ETH_P_IP): 1680 if (!(ip_hdr(skb)->frag_off & htons(IP_MF | IP_OFFSET))) 1681 ip_proto = ip_hdr(skb)->protocol; 1682 addr1 = ip_hdr(skb)->saddr; 1683 addr2 = ip_hdr(skb)->daddr; 1684 ihl = ip_hdr(skb)->ihl; 1685 break; 1686 case __constant_htons(ETH_P_IPV6): 1687 ip_proto = ipv6_hdr(skb)->nexthdr; 1688 addr1 = ipv6_hdr(skb)->saddr.s6_addr32[3]; 1689 addr2 = ipv6_hdr(skb)->daddr.s6_addr32[3]; 1690 ihl = (40 >> 2); 1691 break; 1692 default: 1693 return 0; 1694 } 1695 1696 1697 switch (ip_proto) { 1698 case IPPROTO_TCP: 1699 case IPPROTO_UDP: 1700 case IPPROTO_DCCP: 1701 case IPPROTO_ESP: 1702 case IPPROTO_AH: 1703 case IPPROTO_SCTP: 1704 case IPPROTO_UDPLITE: 1705 ports = *((u32 *) (skb_network_header(skb) + (ihl * 4))); 1706 break; 1707 1708 default: 1709 ports = 0; 1710 break; 1711 } 1712 1713 hash = jhash_3words(addr1, addr2, ports, simple_tx_hashrnd); 1714 1715 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32); 1716 } 1717 1718 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 1719 struct sk_buff *skb) 1720 { 1721 u16 queue_index = 0; 1722 1723 if (dev->select_queue) 1724 queue_index = dev->select_queue(dev, skb); 1725 else if (dev->real_num_tx_queues > 1) 1726 queue_index = simple_tx_hash(dev, skb); 1727 1728 skb_set_queue_mapping(skb, queue_index); 1729 return netdev_get_tx_queue(dev, queue_index); 1730 } 1731 1732 /** 1733 * dev_queue_xmit - transmit a buffer 1734 * @skb: buffer to transmit 1735 * 1736 * Queue a buffer for transmission to a network device. The caller must 1737 * have set the device and priority and built the buffer before calling 1738 * this function. The function can be called from an interrupt. 1739 * 1740 * A negative errno code is returned on a failure. A success does not 1741 * guarantee the frame will be transmitted as it may be dropped due 1742 * to congestion or traffic shaping. 1743 * 1744 * ----------------------------------------------------------------------------------- 1745 * I notice this method can also return errors from the queue disciplines, 1746 * including NET_XMIT_DROP, which is a positive value. So, errors can also 1747 * be positive. 1748 * 1749 * Regardless of the return value, the skb is consumed, so it is currently 1750 * difficult to retry a send to this method. (You can bump the ref count 1751 * before sending to hold a reference for retry if you are careful.) 1752 * 1753 * When calling this method, interrupts MUST be enabled. This is because 1754 * the BH enable code must have IRQs enabled so that it will not deadlock. 1755 * --BLG 1756 */ 1757 int dev_queue_xmit(struct sk_buff *skb) 1758 { 1759 struct net_device *dev = skb->dev; 1760 struct netdev_queue *txq; 1761 struct Qdisc *q; 1762 int rc = -ENOMEM; 1763 1764 /* GSO will handle the following emulations directly. */ 1765 if (netif_needs_gso(dev, skb)) 1766 goto gso; 1767 1768 if (skb_shinfo(skb)->frag_list && 1769 !(dev->features & NETIF_F_FRAGLIST) && 1770 __skb_linearize(skb)) 1771 goto out_kfree_skb; 1772 1773 /* Fragmented skb is linearized if device does not support SG, 1774 * or if at least one of fragments is in highmem and device 1775 * does not support DMA from it. 1776 */ 1777 if (skb_shinfo(skb)->nr_frags && 1778 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) && 1779 __skb_linearize(skb)) 1780 goto out_kfree_skb; 1781 1782 /* If packet is not checksummed and device does not support 1783 * checksumming for this protocol, complete checksumming here. 1784 */ 1785 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1786 skb_set_transport_header(skb, skb->csum_start - 1787 skb_headroom(skb)); 1788 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb)) 1789 goto out_kfree_skb; 1790 } 1791 1792 gso: 1793 /* Disable soft irqs for various locks below. Also 1794 * stops preemption for RCU. 1795 */ 1796 rcu_read_lock_bh(); 1797 1798 txq = dev_pick_tx(dev, skb); 1799 q = rcu_dereference(txq->qdisc); 1800 1801 #ifdef CONFIG_NET_CLS_ACT 1802 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS); 1803 #endif 1804 if (q->enqueue) { 1805 spinlock_t *root_lock = qdisc_lock(q); 1806 1807 spin_lock(root_lock); 1808 1809 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 1810 kfree_skb(skb); 1811 rc = NET_XMIT_DROP; 1812 } else { 1813 rc = qdisc_enqueue_root(skb, q); 1814 qdisc_run(q); 1815 } 1816 spin_unlock(root_lock); 1817 1818 goto out; 1819 } 1820 1821 /* The device has no queue. Common case for software devices: 1822 loopback, all the sorts of tunnels... 1823 1824 Really, it is unlikely that netif_tx_lock protection is necessary 1825 here. (f.e. loopback and IP tunnels are clean ignoring statistics 1826 counters.) 1827 However, it is possible, that they rely on protection 1828 made by us here. 1829 1830 Check this and shot the lock. It is not prone from deadlocks. 1831 Either shot noqueue qdisc, it is even simpler 8) 1832 */ 1833 if (dev->flags & IFF_UP) { 1834 int cpu = smp_processor_id(); /* ok because BHs are off */ 1835 1836 if (txq->xmit_lock_owner != cpu) { 1837 1838 HARD_TX_LOCK(dev, txq, cpu); 1839 1840 if (!netif_tx_queue_stopped(txq)) { 1841 rc = 0; 1842 if (!dev_hard_start_xmit(skb, dev, txq)) { 1843 HARD_TX_UNLOCK(dev, txq); 1844 goto out; 1845 } 1846 } 1847 HARD_TX_UNLOCK(dev, txq); 1848 if (net_ratelimit()) 1849 printk(KERN_CRIT "Virtual device %s asks to " 1850 "queue packet!\n", dev->name); 1851 } else { 1852 /* Recursion is detected! It is possible, 1853 * unfortunately */ 1854 if (net_ratelimit()) 1855 printk(KERN_CRIT "Dead loop on virtual device " 1856 "%s, fix it urgently!\n", dev->name); 1857 } 1858 } 1859 1860 rc = -ENETDOWN; 1861 rcu_read_unlock_bh(); 1862 1863 out_kfree_skb: 1864 kfree_skb(skb); 1865 return rc; 1866 out: 1867 rcu_read_unlock_bh(); 1868 return rc; 1869 } 1870 1871 1872 /*======================================================================= 1873 Receiver routines 1874 =======================================================================*/ 1875 1876 int netdev_max_backlog __read_mostly = 1000; 1877 int netdev_budget __read_mostly = 300; 1878 int weight_p __read_mostly = 64; /* old backlog weight */ 1879 1880 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 1881 1882 1883 /** 1884 * netif_rx - post buffer to the network code 1885 * @skb: buffer to post 1886 * 1887 * This function receives a packet from a device driver and queues it for 1888 * the upper (protocol) levels to process. It always succeeds. The buffer 1889 * may be dropped during processing for congestion control or by the 1890 * protocol layers. 1891 * 1892 * return values: 1893 * NET_RX_SUCCESS (no congestion) 1894 * NET_RX_DROP (packet was dropped) 1895 * 1896 */ 1897 1898 int netif_rx(struct sk_buff *skb) 1899 { 1900 struct softnet_data *queue; 1901 unsigned long flags; 1902 1903 /* if netpoll wants it, pretend we never saw it */ 1904 if (netpoll_rx(skb)) 1905 return NET_RX_DROP; 1906 1907 if (!skb->tstamp.tv64) 1908 net_timestamp(skb); 1909 1910 /* 1911 * The code is rearranged so that the path is the most 1912 * short when CPU is congested, but is still operating. 1913 */ 1914 local_irq_save(flags); 1915 queue = &__get_cpu_var(softnet_data); 1916 1917 __get_cpu_var(netdev_rx_stat).total++; 1918 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 1919 if (queue->input_pkt_queue.qlen) { 1920 enqueue: 1921 __skb_queue_tail(&queue->input_pkt_queue, skb); 1922 local_irq_restore(flags); 1923 return NET_RX_SUCCESS; 1924 } 1925 1926 napi_schedule(&queue->backlog); 1927 goto enqueue; 1928 } 1929 1930 __get_cpu_var(netdev_rx_stat).dropped++; 1931 local_irq_restore(flags); 1932 1933 kfree_skb(skb); 1934 return NET_RX_DROP; 1935 } 1936 1937 int netif_rx_ni(struct sk_buff *skb) 1938 { 1939 int err; 1940 1941 preempt_disable(); 1942 err = netif_rx(skb); 1943 if (local_softirq_pending()) 1944 do_softirq(); 1945 preempt_enable(); 1946 1947 return err; 1948 } 1949 1950 EXPORT_SYMBOL(netif_rx_ni); 1951 1952 static void net_tx_action(struct softirq_action *h) 1953 { 1954 struct softnet_data *sd = &__get_cpu_var(softnet_data); 1955 1956 if (sd->completion_queue) { 1957 struct sk_buff *clist; 1958 1959 local_irq_disable(); 1960 clist = sd->completion_queue; 1961 sd->completion_queue = NULL; 1962 local_irq_enable(); 1963 1964 while (clist) { 1965 struct sk_buff *skb = clist; 1966 clist = clist->next; 1967 1968 WARN_ON(atomic_read(&skb->users)); 1969 __kfree_skb(skb); 1970 } 1971 } 1972 1973 if (sd->output_queue) { 1974 struct Qdisc *head; 1975 1976 local_irq_disable(); 1977 head = sd->output_queue; 1978 sd->output_queue = NULL; 1979 local_irq_enable(); 1980 1981 while (head) { 1982 struct Qdisc *q = head; 1983 spinlock_t *root_lock; 1984 1985 head = head->next_sched; 1986 1987 root_lock = qdisc_lock(q); 1988 if (spin_trylock(root_lock)) { 1989 smp_mb__before_clear_bit(); 1990 clear_bit(__QDISC_STATE_SCHED, 1991 &q->state); 1992 qdisc_run(q); 1993 spin_unlock(root_lock); 1994 } else { 1995 if (!test_bit(__QDISC_STATE_DEACTIVATED, 1996 &q->state)) { 1997 __netif_reschedule(q); 1998 } else { 1999 smp_mb__before_clear_bit(); 2000 clear_bit(__QDISC_STATE_SCHED, 2001 &q->state); 2002 } 2003 } 2004 } 2005 } 2006 } 2007 2008 static inline int deliver_skb(struct sk_buff *skb, 2009 struct packet_type *pt_prev, 2010 struct net_device *orig_dev) 2011 { 2012 atomic_inc(&skb->users); 2013 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2014 } 2015 2016 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 2017 /* These hooks defined here for ATM */ 2018 struct net_bridge; 2019 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br, 2020 unsigned char *addr); 2021 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly; 2022 2023 /* 2024 * If bridge module is loaded call bridging hook. 2025 * returns NULL if packet was consumed. 2026 */ 2027 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p, 2028 struct sk_buff *skb) __read_mostly; 2029 static inline struct sk_buff *handle_bridge(struct sk_buff *skb, 2030 struct packet_type **pt_prev, int *ret, 2031 struct net_device *orig_dev) 2032 { 2033 struct net_bridge_port *port; 2034 2035 if (skb->pkt_type == PACKET_LOOPBACK || 2036 (port = rcu_dereference(skb->dev->br_port)) == NULL) 2037 return skb; 2038 2039 if (*pt_prev) { 2040 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2041 *pt_prev = NULL; 2042 } 2043 2044 return br_handle_frame_hook(port, skb); 2045 } 2046 #else 2047 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb) 2048 #endif 2049 2050 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE) 2051 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly; 2052 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook); 2053 2054 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb, 2055 struct packet_type **pt_prev, 2056 int *ret, 2057 struct net_device *orig_dev) 2058 { 2059 if (skb->dev->macvlan_port == NULL) 2060 return skb; 2061 2062 if (*pt_prev) { 2063 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2064 *pt_prev = NULL; 2065 } 2066 return macvlan_handle_frame_hook(skb); 2067 } 2068 #else 2069 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb) 2070 #endif 2071 2072 #ifdef CONFIG_NET_CLS_ACT 2073 /* TODO: Maybe we should just force sch_ingress to be compiled in 2074 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 2075 * a compare and 2 stores extra right now if we dont have it on 2076 * but have CONFIG_NET_CLS_ACT 2077 * NOTE: This doesnt stop any functionality; if you dont have 2078 * the ingress scheduler, you just cant add policies on ingress. 2079 * 2080 */ 2081 static int ing_filter(struct sk_buff *skb) 2082 { 2083 struct net_device *dev = skb->dev; 2084 u32 ttl = G_TC_RTTL(skb->tc_verd); 2085 struct netdev_queue *rxq; 2086 int result = TC_ACT_OK; 2087 struct Qdisc *q; 2088 2089 if (MAX_RED_LOOP < ttl++) { 2090 printk(KERN_WARNING 2091 "Redir loop detected Dropping packet (%d->%d)\n", 2092 skb->iif, dev->ifindex); 2093 return TC_ACT_SHOT; 2094 } 2095 2096 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 2097 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 2098 2099 rxq = &dev->rx_queue; 2100 2101 q = rxq->qdisc; 2102 if (q != &noop_qdisc) { 2103 spin_lock(qdisc_lock(q)); 2104 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 2105 result = qdisc_enqueue_root(skb, q); 2106 spin_unlock(qdisc_lock(q)); 2107 } 2108 2109 return result; 2110 } 2111 2112 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 2113 struct packet_type **pt_prev, 2114 int *ret, struct net_device *orig_dev) 2115 { 2116 if (skb->dev->rx_queue.qdisc == &noop_qdisc) 2117 goto out; 2118 2119 if (*pt_prev) { 2120 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2121 *pt_prev = NULL; 2122 } else { 2123 /* Huh? Why does turning on AF_PACKET affect this? */ 2124 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 2125 } 2126 2127 switch (ing_filter(skb)) { 2128 case TC_ACT_SHOT: 2129 case TC_ACT_STOLEN: 2130 kfree_skb(skb); 2131 return NULL; 2132 } 2133 2134 out: 2135 skb->tc_verd = 0; 2136 return skb; 2137 } 2138 #endif 2139 2140 /* 2141 * netif_nit_deliver - deliver received packets to network taps 2142 * @skb: buffer 2143 * 2144 * This function is used to deliver incoming packets to network 2145 * taps. It should be used when the normal netif_receive_skb path 2146 * is bypassed, for example because of VLAN acceleration. 2147 */ 2148 void netif_nit_deliver(struct sk_buff *skb) 2149 { 2150 struct packet_type *ptype; 2151 2152 if (list_empty(&ptype_all)) 2153 return; 2154 2155 skb_reset_network_header(skb); 2156 skb_reset_transport_header(skb); 2157 skb->mac_len = skb->network_header - skb->mac_header; 2158 2159 rcu_read_lock(); 2160 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2161 if (!ptype->dev || ptype->dev == skb->dev) 2162 deliver_skb(skb, ptype, skb->dev); 2163 } 2164 rcu_read_unlock(); 2165 } 2166 2167 /** 2168 * netif_receive_skb - process receive buffer from network 2169 * @skb: buffer to process 2170 * 2171 * netif_receive_skb() is the main receive data processing function. 2172 * It always succeeds. The buffer may be dropped during processing 2173 * for congestion control or by the protocol layers. 2174 * 2175 * This function may only be called from softirq context and interrupts 2176 * should be enabled. 2177 * 2178 * Return values (usually ignored): 2179 * NET_RX_SUCCESS: no congestion 2180 * NET_RX_DROP: packet was dropped 2181 */ 2182 int netif_receive_skb(struct sk_buff *skb) 2183 { 2184 struct packet_type *ptype, *pt_prev; 2185 struct net_device *orig_dev; 2186 struct net_device *null_or_orig; 2187 int ret = NET_RX_DROP; 2188 __be16 type; 2189 2190 /* if we've gotten here through NAPI, check netpoll */ 2191 if (netpoll_receive_skb(skb)) 2192 return NET_RX_DROP; 2193 2194 if (!skb->tstamp.tv64) 2195 net_timestamp(skb); 2196 2197 if (!skb->iif) 2198 skb->iif = skb->dev->ifindex; 2199 2200 null_or_orig = NULL; 2201 orig_dev = skb->dev; 2202 if (orig_dev->master) { 2203 if (skb_bond_should_drop(skb)) 2204 null_or_orig = orig_dev; /* deliver only exact match */ 2205 else 2206 skb->dev = orig_dev->master; 2207 } 2208 2209 __get_cpu_var(netdev_rx_stat).total++; 2210 2211 skb_reset_network_header(skb); 2212 skb_reset_transport_header(skb); 2213 skb->mac_len = skb->network_header - skb->mac_header; 2214 2215 pt_prev = NULL; 2216 2217 rcu_read_lock(); 2218 2219 /* Don't receive packets in an exiting network namespace */ 2220 if (!net_alive(dev_net(skb->dev))) 2221 goto out; 2222 2223 #ifdef CONFIG_NET_CLS_ACT 2224 if (skb->tc_verd & TC_NCLS) { 2225 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 2226 goto ncls; 2227 } 2228 #endif 2229 2230 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2231 if (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2232 ptype->dev == orig_dev) { 2233 if (pt_prev) 2234 ret = deliver_skb(skb, pt_prev, orig_dev); 2235 pt_prev = ptype; 2236 } 2237 } 2238 2239 #ifdef CONFIG_NET_CLS_ACT 2240 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 2241 if (!skb) 2242 goto out; 2243 ncls: 2244 #endif 2245 2246 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 2247 if (!skb) 2248 goto out; 2249 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev); 2250 if (!skb) 2251 goto out; 2252 2253 type = skb->protocol; 2254 list_for_each_entry_rcu(ptype, 2255 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 2256 if (ptype->type == type && 2257 (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2258 ptype->dev == orig_dev)) { 2259 if (pt_prev) 2260 ret = deliver_skb(skb, pt_prev, orig_dev); 2261 pt_prev = ptype; 2262 } 2263 } 2264 2265 if (pt_prev) { 2266 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2267 } else { 2268 kfree_skb(skb); 2269 /* Jamal, now you will not able to escape explaining 2270 * me how you were going to use this. :-) 2271 */ 2272 ret = NET_RX_DROP; 2273 } 2274 2275 out: 2276 rcu_read_unlock(); 2277 return ret; 2278 } 2279 2280 /* Network device is going away, flush any packets still pending */ 2281 static void flush_backlog(void *arg) 2282 { 2283 struct net_device *dev = arg; 2284 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2285 struct sk_buff *skb, *tmp; 2286 2287 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp) 2288 if (skb->dev == dev) { 2289 __skb_unlink(skb, &queue->input_pkt_queue); 2290 kfree_skb(skb); 2291 } 2292 } 2293 2294 static int process_backlog(struct napi_struct *napi, int quota) 2295 { 2296 int work = 0; 2297 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2298 unsigned long start_time = jiffies; 2299 2300 napi->weight = weight_p; 2301 do { 2302 struct sk_buff *skb; 2303 2304 local_irq_disable(); 2305 skb = __skb_dequeue(&queue->input_pkt_queue); 2306 if (!skb) { 2307 __napi_complete(napi); 2308 local_irq_enable(); 2309 break; 2310 } 2311 local_irq_enable(); 2312 2313 netif_receive_skb(skb); 2314 } while (++work < quota && jiffies == start_time); 2315 2316 return work; 2317 } 2318 2319 /** 2320 * __napi_schedule - schedule for receive 2321 * @n: entry to schedule 2322 * 2323 * The entry's receive function will be scheduled to run 2324 */ 2325 void __napi_schedule(struct napi_struct *n) 2326 { 2327 unsigned long flags; 2328 2329 local_irq_save(flags); 2330 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list); 2331 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2332 local_irq_restore(flags); 2333 } 2334 EXPORT_SYMBOL(__napi_schedule); 2335 2336 2337 static void net_rx_action(struct softirq_action *h) 2338 { 2339 struct list_head *list = &__get_cpu_var(softnet_data).poll_list; 2340 unsigned long start_time = jiffies; 2341 int budget = netdev_budget; 2342 void *have; 2343 2344 local_irq_disable(); 2345 2346 while (!list_empty(list)) { 2347 struct napi_struct *n; 2348 int work, weight; 2349 2350 /* If softirq window is exhuasted then punt. 2351 * 2352 * Note that this is a slight policy change from the 2353 * previous NAPI code, which would allow up to 2 2354 * jiffies to pass before breaking out. The test 2355 * used to be "jiffies - start_time > 1". 2356 */ 2357 if (unlikely(budget <= 0 || jiffies != start_time)) 2358 goto softnet_break; 2359 2360 local_irq_enable(); 2361 2362 /* Even though interrupts have been re-enabled, this 2363 * access is safe because interrupts can only add new 2364 * entries to the tail of this list, and only ->poll() 2365 * calls can remove this head entry from the list. 2366 */ 2367 n = list_entry(list->next, struct napi_struct, poll_list); 2368 2369 have = netpoll_poll_lock(n); 2370 2371 weight = n->weight; 2372 2373 /* This NAPI_STATE_SCHED test is for avoiding a race 2374 * with netpoll's poll_napi(). Only the entity which 2375 * obtains the lock and sees NAPI_STATE_SCHED set will 2376 * actually make the ->poll() call. Therefore we avoid 2377 * accidently calling ->poll() when NAPI is not scheduled. 2378 */ 2379 work = 0; 2380 if (test_bit(NAPI_STATE_SCHED, &n->state)) 2381 work = n->poll(n, weight); 2382 2383 WARN_ON_ONCE(work > weight); 2384 2385 budget -= work; 2386 2387 local_irq_disable(); 2388 2389 /* Drivers must not modify the NAPI state if they 2390 * consume the entire weight. In such cases this code 2391 * still "owns" the NAPI instance and therefore can 2392 * move the instance around on the list at-will. 2393 */ 2394 if (unlikely(work == weight)) { 2395 if (unlikely(napi_disable_pending(n))) 2396 __napi_complete(n); 2397 else 2398 list_move_tail(&n->poll_list, list); 2399 } 2400 2401 netpoll_poll_unlock(have); 2402 } 2403 out: 2404 local_irq_enable(); 2405 2406 #ifdef CONFIG_NET_DMA 2407 /* 2408 * There may not be any more sk_buffs coming right now, so push 2409 * any pending DMA copies to hardware 2410 */ 2411 if (!cpus_empty(net_dma.channel_mask)) { 2412 int chan_idx; 2413 for_each_cpu_mask_nr(chan_idx, net_dma.channel_mask) { 2414 struct dma_chan *chan = net_dma.channels[chan_idx]; 2415 if (chan) 2416 dma_async_memcpy_issue_pending(chan); 2417 } 2418 } 2419 #endif 2420 2421 return; 2422 2423 softnet_break: 2424 __get_cpu_var(netdev_rx_stat).time_squeeze++; 2425 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2426 goto out; 2427 } 2428 2429 static gifconf_func_t * gifconf_list [NPROTO]; 2430 2431 /** 2432 * register_gifconf - register a SIOCGIF handler 2433 * @family: Address family 2434 * @gifconf: Function handler 2435 * 2436 * Register protocol dependent address dumping routines. The handler 2437 * that is passed must not be freed or reused until it has been replaced 2438 * by another handler. 2439 */ 2440 int register_gifconf(unsigned int family, gifconf_func_t * gifconf) 2441 { 2442 if (family >= NPROTO) 2443 return -EINVAL; 2444 gifconf_list[family] = gifconf; 2445 return 0; 2446 } 2447 2448 2449 /* 2450 * Map an interface index to its name (SIOCGIFNAME) 2451 */ 2452 2453 /* 2454 * We need this ioctl for efficient implementation of the 2455 * if_indextoname() function required by the IPv6 API. Without 2456 * it, we would have to search all the interfaces to find a 2457 * match. --pb 2458 */ 2459 2460 static int dev_ifname(struct net *net, struct ifreq __user *arg) 2461 { 2462 struct net_device *dev; 2463 struct ifreq ifr; 2464 2465 /* 2466 * Fetch the caller's info block. 2467 */ 2468 2469 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2470 return -EFAULT; 2471 2472 read_lock(&dev_base_lock); 2473 dev = __dev_get_by_index(net, ifr.ifr_ifindex); 2474 if (!dev) { 2475 read_unlock(&dev_base_lock); 2476 return -ENODEV; 2477 } 2478 2479 strcpy(ifr.ifr_name, dev->name); 2480 read_unlock(&dev_base_lock); 2481 2482 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 2483 return -EFAULT; 2484 return 0; 2485 } 2486 2487 /* 2488 * Perform a SIOCGIFCONF call. This structure will change 2489 * size eventually, and there is nothing I can do about it. 2490 * Thus we will need a 'compatibility mode'. 2491 */ 2492 2493 static int dev_ifconf(struct net *net, char __user *arg) 2494 { 2495 struct ifconf ifc; 2496 struct net_device *dev; 2497 char __user *pos; 2498 int len; 2499 int total; 2500 int i; 2501 2502 /* 2503 * Fetch the caller's info block. 2504 */ 2505 2506 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 2507 return -EFAULT; 2508 2509 pos = ifc.ifc_buf; 2510 len = ifc.ifc_len; 2511 2512 /* 2513 * Loop over the interfaces, and write an info block for each. 2514 */ 2515 2516 total = 0; 2517 for_each_netdev(net, dev) { 2518 for (i = 0; i < NPROTO; i++) { 2519 if (gifconf_list[i]) { 2520 int done; 2521 if (!pos) 2522 done = gifconf_list[i](dev, NULL, 0); 2523 else 2524 done = gifconf_list[i](dev, pos + total, 2525 len - total); 2526 if (done < 0) 2527 return -EFAULT; 2528 total += done; 2529 } 2530 } 2531 } 2532 2533 /* 2534 * All done. Write the updated control block back to the caller. 2535 */ 2536 ifc.ifc_len = total; 2537 2538 /* 2539 * Both BSD and Solaris return 0 here, so we do too. 2540 */ 2541 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 2542 } 2543 2544 #ifdef CONFIG_PROC_FS 2545 /* 2546 * This is invoked by the /proc filesystem handler to display a device 2547 * in detail. 2548 */ 2549 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 2550 __acquires(dev_base_lock) 2551 { 2552 struct net *net = seq_file_net(seq); 2553 loff_t off; 2554 struct net_device *dev; 2555 2556 read_lock(&dev_base_lock); 2557 if (!*pos) 2558 return SEQ_START_TOKEN; 2559 2560 off = 1; 2561 for_each_netdev(net, dev) 2562 if (off++ == *pos) 2563 return dev; 2564 2565 return NULL; 2566 } 2567 2568 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2569 { 2570 struct net *net = seq_file_net(seq); 2571 ++*pos; 2572 return v == SEQ_START_TOKEN ? 2573 first_net_device(net) : next_net_device((struct net_device *)v); 2574 } 2575 2576 void dev_seq_stop(struct seq_file *seq, void *v) 2577 __releases(dev_base_lock) 2578 { 2579 read_unlock(&dev_base_lock); 2580 } 2581 2582 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 2583 { 2584 struct net_device_stats *stats = dev->get_stats(dev); 2585 2586 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 2587 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 2588 dev->name, stats->rx_bytes, stats->rx_packets, 2589 stats->rx_errors, 2590 stats->rx_dropped + stats->rx_missed_errors, 2591 stats->rx_fifo_errors, 2592 stats->rx_length_errors + stats->rx_over_errors + 2593 stats->rx_crc_errors + stats->rx_frame_errors, 2594 stats->rx_compressed, stats->multicast, 2595 stats->tx_bytes, stats->tx_packets, 2596 stats->tx_errors, stats->tx_dropped, 2597 stats->tx_fifo_errors, stats->collisions, 2598 stats->tx_carrier_errors + 2599 stats->tx_aborted_errors + 2600 stats->tx_window_errors + 2601 stats->tx_heartbeat_errors, 2602 stats->tx_compressed); 2603 } 2604 2605 /* 2606 * Called from the PROCfs module. This now uses the new arbitrary sized 2607 * /proc/net interface to create /proc/net/dev 2608 */ 2609 static int dev_seq_show(struct seq_file *seq, void *v) 2610 { 2611 if (v == SEQ_START_TOKEN) 2612 seq_puts(seq, "Inter-| Receive " 2613 " | Transmit\n" 2614 " face |bytes packets errs drop fifo frame " 2615 "compressed multicast|bytes packets errs " 2616 "drop fifo colls carrier compressed\n"); 2617 else 2618 dev_seq_printf_stats(seq, v); 2619 return 0; 2620 } 2621 2622 static struct netif_rx_stats *softnet_get_online(loff_t *pos) 2623 { 2624 struct netif_rx_stats *rc = NULL; 2625 2626 while (*pos < nr_cpu_ids) 2627 if (cpu_online(*pos)) { 2628 rc = &per_cpu(netdev_rx_stat, *pos); 2629 break; 2630 } else 2631 ++*pos; 2632 return rc; 2633 } 2634 2635 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 2636 { 2637 return softnet_get_online(pos); 2638 } 2639 2640 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2641 { 2642 ++*pos; 2643 return softnet_get_online(pos); 2644 } 2645 2646 static void softnet_seq_stop(struct seq_file *seq, void *v) 2647 { 2648 } 2649 2650 static int softnet_seq_show(struct seq_file *seq, void *v) 2651 { 2652 struct netif_rx_stats *s = v; 2653 2654 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 2655 s->total, s->dropped, s->time_squeeze, 0, 2656 0, 0, 0, 0, /* was fastroute */ 2657 s->cpu_collision ); 2658 return 0; 2659 } 2660 2661 static const struct seq_operations dev_seq_ops = { 2662 .start = dev_seq_start, 2663 .next = dev_seq_next, 2664 .stop = dev_seq_stop, 2665 .show = dev_seq_show, 2666 }; 2667 2668 static int dev_seq_open(struct inode *inode, struct file *file) 2669 { 2670 return seq_open_net(inode, file, &dev_seq_ops, 2671 sizeof(struct seq_net_private)); 2672 } 2673 2674 static const struct file_operations dev_seq_fops = { 2675 .owner = THIS_MODULE, 2676 .open = dev_seq_open, 2677 .read = seq_read, 2678 .llseek = seq_lseek, 2679 .release = seq_release_net, 2680 }; 2681 2682 static const struct seq_operations softnet_seq_ops = { 2683 .start = softnet_seq_start, 2684 .next = softnet_seq_next, 2685 .stop = softnet_seq_stop, 2686 .show = softnet_seq_show, 2687 }; 2688 2689 static int softnet_seq_open(struct inode *inode, struct file *file) 2690 { 2691 return seq_open(file, &softnet_seq_ops); 2692 } 2693 2694 static const struct file_operations softnet_seq_fops = { 2695 .owner = THIS_MODULE, 2696 .open = softnet_seq_open, 2697 .read = seq_read, 2698 .llseek = seq_lseek, 2699 .release = seq_release, 2700 }; 2701 2702 static void *ptype_get_idx(loff_t pos) 2703 { 2704 struct packet_type *pt = NULL; 2705 loff_t i = 0; 2706 int t; 2707 2708 list_for_each_entry_rcu(pt, &ptype_all, list) { 2709 if (i == pos) 2710 return pt; 2711 ++i; 2712 } 2713 2714 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 2715 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 2716 if (i == pos) 2717 return pt; 2718 ++i; 2719 } 2720 } 2721 return NULL; 2722 } 2723 2724 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 2725 __acquires(RCU) 2726 { 2727 rcu_read_lock(); 2728 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 2729 } 2730 2731 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2732 { 2733 struct packet_type *pt; 2734 struct list_head *nxt; 2735 int hash; 2736 2737 ++*pos; 2738 if (v == SEQ_START_TOKEN) 2739 return ptype_get_idx(0); 2740 2741 pt = v; 2742 nxt = pt->list.next; 2743 if (pt->type == htons(ETH_P_ALL)) { 2744 if (nxt != &ptype_all) 2745 goto found; 2746 hash = 0; 2747 nxt = ptype_base[0].next; 2748 } else 2749 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 2750 2751 while (nxt == &ptype_base[hash]) { 2752 if (++hash >= PTYPE_HASH_SIZE) 2753 return NULL; 2754 nxt = ptype_base[hash].next; 2755 } 2756 found: 2757 return list_entry(nxt, struct packet_type, list); 2758 } 2759 2760 static void ptype_seq_stop(struct seq_file *seq, void *v) 2761 __releases(RCU) 2762 { 2763 rcu_read_unlock(); 2764 } 2765 2766 static void ptype_seq_decode(struct seq_file *seq, void *sym) 2767 { 2768 #ifdef CONFIG_KALLSYMS 2769 unsigned long offset = 0, symsize; 2770 const char *symname; 2771 char *modname; 2772 char namebuf[128]; 2773 2774 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset, 2775 &modname, namebuf); 2776 2777 if (symname) { 2778 char *delim = ":"; 2779 2780 if (!modname) 2781 modname = delim = ""; 2782 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim, 2783 symname, offset); 2784 return; 2785 } 2786 #endif 2787 2788 seq_printf(seq, "[%p]", sym); 2789 } 2790 2791 static int ptype_seq_show(struct seq_file *seq, void *v) 2792 { 2793 struct packet_type *pt = v; 2794 2795 if (v == SEQ_START_TOKEN) 2796 seq_puts(seq, "Type Device Function\n"); 2797 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 2798 if (pt->type == htons(ETH_P_ALL)) 2799 seq_puts(seq, "ALL "); 2800 else 2801 seq_printf(seq, "%04x", ntohs(pt->type)); 2802 2803 seq_printf(seq, " %-8s ", 2804 pt->dev ? pt->dev->name : ""); 2805 ptype_seq_decode(seq, pt->func); 2806 seq_putc(seq, '\n'); 2807 } 2808 2809 return 0; 2810 } 2811 2812 static const struct seq_operations ptype_seq_ops = { 2813 .start = ptype_seq_start, 2814 .next = ptype_seq_next, 2815 .stop = ptype_seq_stop, 2816 .show = ptype_seq_show, 2817 }; 2818 2819 static int ptype_seq_open(struct inode *inode, struct file *file) 2820 { 2821 return seq_open_net(inode, file, &ptype_seq_ops, 2822 sizeof(struct seq_net_private)); 2823 } 2824 2825 static const struct file_operations ptype_seq_fops = { 2826 .owner = THIS_MODULE, 2827 .open = ptype_seq_open, 2828 .read = seq_read, 2829 .llseek = seq_lseek, 2830 .release = seq_release_net, 2831 }; 2832 2833 2834 static int __net_init dev_proc_net_init(struct net *net) 2835 { 2836 int rc = -ENOMEM; 2837 2838 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 2839 goto out; 2840 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 2841 goto out_dev; 2842 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 2843 goto out_softnet; 2844 2845 if (wext_proc_init(net)) 2846 goto out_ptype; 2847 rc = 0; 2848 out: 2849 return rc; 2850 out_ptype: 2851 proc_net_remove(net, "ptype"); 2852 out_softnet: 2853 proc_net_remove(net, "softnet_stat"); 2854 out_dev: 2855 proc_net_remove(net, "dev"); 2856 goto out; 2857 } 2858 2859 static void __net_exit dev_proc_net_exit(struct net *net) 2860 { 2861 wext_proc_exit(net); 2862 2863 proc_net_remove(net, "ptype"); 2864 proc_net_remove(net, "softnet_stat"); 2865 proc_net_remove(net, "dev"); 2866 } 2867 2868 static struct pernet_operations __net_initdata dev_proc_ops = { 2869 .init = dev_proc_net_init, 2870 .exit = dev_proc_net_exit, 2871 }; 2872 2873 static int __init dev_proc_init(void) 2874 { 2875 return register_pernet_subsys(&dev_proc_ops); 2876 } 2877 #else 2878 #define dev_proc_init() 0 2879 #endif /* CONFIG_PROC_FS */ 2880 2881 2882 /** 2883 * netdev_set_master - set up master/slave pair 2884 * @slave: slave device 2885 * @master: new master device 2886 * 2887 * Changes the master device of the slave. Pass %NULL to break the 2888 * bonding. The caller must hold the RTNL semaphore. On a failure 2889 * a negative errno code is returned. On success the reference counts 2890 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 2891 * function returns zero. 2892 */ 2893 int netdev_set_master(struct net_device *slave, struct net_device *master) 2894 { 2895 struct net_device *old = slave->master; 2896 2897 ASSERT_RTNL(); 2898 2899 if (master) { 2900 if (old) 2901 return -EBUSY; 2902 dev_hold(master); 2903 } 2904 2905 slave->master = master; 2906 2907 synchronize_net(); 2908 2909 if (old) 2910 dev_put(old); 2911 2912 if (master) 2913 slave->flags |= IFF_SLAVE; 2914 else 2915 slave->flags &= ~IFF_SLAVE; 2916 2917 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 2918 return 0; 2919 } 2920 2921 static void dev_change_rx_flags(struct net_device *dev, int flags) 2922 { 2923 if (dev->flags & IFF_UP && dev->change_rx_flags) 2924 dev->change_rx_flags(dev, flags); 2925 } 2926 2927 static int __dev_set_promiscuity(struct net_device *dev, int inc) 2928 { 2929 unsigned short old_flags = dev->flags; 2930 2931 ASSERT_RTNL(); 2932 2933 dev->flags |= IFF_PROMISC; 2934 dev->promiscuity += inc; 2935 if (dev->promiscuity == 0) { 2936 /* 2937 * Avoid overflow. 2938 * If inc causes overflow, untouch promisc and return error. 2939 */ 2940 if (inc < 0) 2941 dev->flags &= ~IFF_PROMISC; 2942 else { 2943 dev->promiscuity -= inc; 2944 printk(KERN_WARNING "%s: promiscuity touches roof, " 2945 "set promiscuity failed, promiscuity feature " 2946 "of device might be broken.\n", dev->name); 2947 return -EOVERFLOW; 2948 } 2949 } 2950 if (dev->flags != old_flags) { 2951 printk(KERN_INFO "device %s %s promiscuous mode\n", 2952 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 2953 "left"); 2954 if (audit_enabled) 2955 audit_log(current->audit_context, GFP_ATOMIC, 2956 AUDIT_ANOM_PROMISCUOUS, 2957 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 2958 dev->name, (dev->flags & IFF_PROMISC), 2959 (old_flags & IFF_PROMISC), 2960 audit_get_loginuid(current), 2961 current->uid, current->gid, 2962 audit_get_sessionid(current)); 2963 2964 dev_change_rx_flags(dev, IFF_PROMISC); 2965 } 2966 return 0; 2967 } 2968 2969 /** 2970 * dev_set_promiscuity - update promiscuity count on a device 2971 * @dev: device 2972 * @inc: modifier 2973 * 2974 * Add or remove promiscuity from a device. While the count in the device 2975 * remains above zero the interface remains promiscuous. Once it hits zero 2976 * the device reverts back to normal filtering operation. A negative inc 2977 * value is used to drop promiscuity on the device. 2978 * Return 0 if successful or a negative errno code on error. 2979 */ 2980 int dev_set_promiscuity(struct net_device *dev, int inc) 2981 { 2982 unsigned short old_flags = dev->flags; 2983 int err; 2984 2985 err = __dev_set_promiscuity(dev, inc); 2986 if (err < 0) 2987 return err; 2988 if (dev->flags != old_flags) 2989 dev_set_rx_mode(dev); 2990 return err; 2991 } 2992 2993 /** 2994 * dev_set_allmulti - update allmulti count on a device 2995 * @dev: device 2996 * @inc: modifier 2997 * 2998 * Add or remove reception of all multicast frames to a device. While the 2999 * count in the device remains above zero the interface remains listening 3000 * to all interfaces. Once it hits zero the device reverts back to normal 3001 * filtering operation. A negative @inc value is used to drop the counter 3002 * when releasing a resource needing all multicasts. 3003 * Return 0 if successful or a negative errno code on error. 3004 */ 3005 3006 int dev_set_allmulti(struct net_device *dev, int inc) 3007 { 3008 unsigned short old_flags = dev->flags; 3009 3010 ASSERT_RTNL(); 3011 3012 dev->flags |= IFF_ALLMULTI; 3013 dev->allmulti += inc; 3014 if (dev->allmulti == 0) { 3015 /* 3016 * Avoid overflow. 3017 * If inc causes overflow, untouch allmulti and return error. 3018 */ 3019 if (inc < 0) 3020 dev->flags &= ~IFF_ALLMULTI; 3021 else { 3022 dev->allmulti -= inc; 3023 printk(KERN_WARNING "%s: allmulti touches roof, " 3024 "set allmulti failed, allmulti feature of " 3025 "device might be broken.\n", dev->name); 3026 return -EOVERFLOW; 3027 } 3028 } 3029 if (dev->flags ^ old_flags) { 3030 dev_change_rx_flags(dev, IFF_ALLMULTI); 3031 dev_set_rx_mode(dev); 3032 } 3033 return 0; 3034 } 3035 3036 /* 3037 * Upload unicast and multicast address lists to device and 3038 * configure RX filtering. When the device doesn't support unicast 3039 * filtering it is put in promiscuous mode while unicast addresses 3040 * are present. 3041 */ 3042 void __dev_set_rx_mode(struct net_device *dev) 3043 { 3044 /* dev_open will call this function so the list will stay sane. */ 3045 if (!(dev->flags&IFF_UP)) 3046 return; 3047 3048 if (!netif_device_present(dev)) 3049 return; 3050 3051 if (dev->set_rx_mode) 3052 dev->set_rx_mode(dev); 3053 else { 3054 /* Unicast addresses changes may only happen under the rtnl, 3055 * therefore calling __dev_set_promiscuity here is safe. 3056 */ 3057 if (dev->uc_count > 0 && !dev->uc_promisc) { 3058 __dev_set_promiscuity(dev, 1); 3059 dev->uc_promisc = 1; 3060 } else if (dev->uc_count == 0 && dev->uc_promisc) { 3061 __dev_set_promiscuity(dev, -1); 3062 dev->uc_promisc = 0; 3063 } 3064 3065 if (dev->set_multicast_list) 3066 dev->set_multicast_list(dev); 3067 } 3068 } 3069 3070 void dev_set_rx_mode(struct net_device *dev) 3071 { 3072 netif_addr_lock_bh(dev); 3073 __dev_set_rx_mode(dev); 3074 netif_addr_unlock_bh(dev); 3075 } 3076 3077 int __dev_addr_delete(struct dev_addr_list **list, int *count, 3078 void *addr, int alen, int glbl) 3079 { 3080 struct dev_addr_list *da; 3081 3082 for (; (da = *list) != NULL; list = &da->next) { 3083 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 3084 alen == da->da_addrlen) { 3085 if (glbl) { 3086 int old_glbl = da->da_gusers; 3087 da->da_gusers = 0; 3088 if (old_glbl == 0) 3089 break; 3090 } 3091 if (--da->da_users) 3092 return 0; 3093 3094 *list = da->next; 3095 kfree(da); 3096 (*count)--; 3097 return 0; 3098 } 3099 } 3100 return -ENOENT; 3101 } 3102 3103 int __dev_addr_add(struct dev_addr_list **list, int *count, 3104 void *addr, int alen, int glbl) 3105 { 3106 struct dev_addr_list *da; 3107 3108 for (da = *list; da != NULL; da = da->next) { 3109 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 3110 da->da_addrlen == alen) { 3111 if (glbl) { 3112 int old_glbl = da->da_gusers; 3113 da->da_gusers = 1; 3114 if (old_glbl) 3115 return 0; 3116 } 3117 da->da_users++; 3118 return 0; 3119 } 3120 } 3121 3122 da = kzalloc(sizeof(*da), GFP_ATOMIC); 3123 if (da == NULL) 3124 return -ENOMEM; 3125 memcpy(da->da_addr, addr, alen); 3126 da->da_addrlen = alen; 3127 da->da_users = 1; 3128 da->da_gusers = glbl ? 1 : 0; 3129 da->next = *list; 3130 *list = da; 3131 (*count)++; 3132 return 0; 3133 } 3134 3135 /** 3136 * dev_unicast_delete - Release secondary unicast address. 3137 * @dev: device 3138 * @addr: address to delete 3139 * @alen: length of @addr 3140 * 3141 * Release reference to a secondary unicast address and remove it 3142 * from the device if the reference count drops to zero. 3143 * 3144 * The caller must hold the rtnl_mutex. 3145 */ 3146 int dev_unicast_delete(struct net_device *dev, void *addr, int alen) 3147 { 3148 int err; 3149 3150 ASSERT_RTNL(); 3151 3152 netif_addr_lock_bh(dev); 3153 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0); 3154 if (!err) 3155 __dev_set_rx_mode(dev); 3156 netif_addr_unlock_bh(dev); 3157 return err; 3158 } 3159 EXPORT_SYMBOL(dev_unicast_delete); 3160 3161 /** 3162 * dev_unicast_add - add a secondary unicast address 3163 * @dev: device 3164 * @addr: address to add 3165 * @alen: length of @addr 3166 * 3167 * Add a secondary unicast address to the device or increase 3168 * the reference count if it already exists. 3169 * 3170 * The caller must hold the rtnl_mutex. 3171 */ 3172 int dev_unicast_add(struct net_device *dev, void *addr, int alen) 3173 { 3174 int err; 3175 3176 ASSERT_RTNL(); 3177 3178 netif_addr_lock_bh(dev); 3179 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0); 3180 if (!err) 3181 __dev_set_rx_mode(dev); 3182 netif_addr_unlock_bh(dev); 3183 return err; 3184 } 3185 EXPORT_SYMBOL(dev_unicast_add); 3186 3187 int __dev_addr_sync(struct dev_addr_list **to, int *to_count, 3188 struct dev_addr_list **from, int *from_count) 3189 { 3190 struct dev_addr_list *da, *next; 3191 int err = 0; 3192 3193 da = *from; 3194 while (da != NULL) { 3195 next = da->next; 3196 if (!da->da_synced) { 3197 err = __dev_addr_add(to, to_count, 3198 da->da_addr, da->da_addrlen, 0); 3199 if (err < 0) 3200 break; 3201 da->da_synced = 1; 3202 da->da_users++; 3203 } else if (da->da_users == 1) { 3204 __dev_addr_delete(to, to_count, 3205 da->da_addr, da->da_addrlen, 0); 3206 __dev_addr_delete(from, from_count, 3207 da->da_addr, da->da_addrlen, 0); 3208 } 3209 da = next; 3210 } 3211 return err; 3212 } 3213 3214 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count, 3215 struct dev_addr_list **from, int *from_count) 3216 { 3217 struct dev_addr_list *da, *next; 3218 3219 da = *from; 3220 while (da != NULL) { 3221 next = da->next; 3222 if (da->da_synced) { 3223 __dev_addr_delete(to, to_count, 3224 da->da_addr, da->da_addrlen, 0); 3225 da->da_synced = 0; 3226 __dev_addr_delete(from, from_count, 3227 da->da_addr, da->da_addrlen, 0); 3228 } 3229 da = next; 3230 } 3231 } 3232 3233 /** 3234 * dev_unicast_sync - Synchronize device's unicast list to another device 3235 * @to: destination device 3236 * @from: source device 3237 * 3238 * Add newly added addresses to the destination device and release 3239 * addresses that have no users left. The source device must be 3240 * locked by netif_tx_lock_bh. 3241 * 3242 * This function is intended to be called from the dev->set_rx_mode 3243 * function of layered software devices. 3244 */ 3245 int dev_unicast_sync(struct net_device *to, struct net_device *from) 3246 { 3247 int err = 0; 3248 3249 netif_addr_lock_bh(to); 3250 err = __dev_addr_sync(&to->uc_list, &to->uc_count, 3251 &from->uc_list, &from->uc_count); 3252 if (!err) 3253 __dev_set_rx_mode(to); 3254 netif_addr_unlock_bh(to); 3255 return err; 3256 } 3257 EXPORT_SYMBOL(dev_unicast_sync); 3258 3259 /** 3260 * dev_unicast_unsync - Remove synchronized addresses from the destination device 3261 * @to: destination device 3262 * @from: source device 3263 * 3264 * Remove all addresses that were added to the destination device by 3265 * dev_unicast_sync(). This function is intended to be called from the 3266 * dev->stop function of layered software devices. 3267 */ 3268 void dev_unicast_unsync(struct net_device *to, struct net_device *from) 3269 { 3270 netif_addr_lock_bh(from); 3271 netif_addr_lock(to); 3272 3273 __dev_addr_unsync(&to->uc_list, &to->uc_count, 3274 &from->uc_list, &from->uc_count); 3275 __dev_set_rx_mode(to); 3276 3277 netif_addr_unlock(to); 3278 netif_addr_unlock_bh(from); 3279 } 3280 EXPORT_SYMBOL(dev_unicast_unsync); 3281 3282 static void __dev_addr_discard(struct dev_addr_list **list) 3283 { 3284 struct dev_addr_list *tmp; 3285 3286 while (*list != NULL) { 3287 tmp = *list; 3288 *list = tmp->next; 3289 if (tmp->da_users > tmp->da_gusers) 3290 printk("__dev_addr_discard: address leakage! " 3291 "da_users=%d\n", tmp->da_users); 3292 kfree(tmp); 3293 } 3294 } 3295 3296 static void dev_addr_discard(struct net_device *dev) 3297 { 3298 netif_addr_lock_bh(dev); 3299 3300 __dev_addr_discard(&dev->uc_list); 3301 dev->uc_count = 0; 3302 3303 __dev_addr_discard(&dev->mc_list); 3304 dev->mc_count = 0; 3305 3306 netif_addr_unlock_bh(dev); 3307 } 3308 3309 unsigned dev_get_flags(const struct net_device *dev) 3310 { 3311 unsigned flags; 3312 3313 flags = (dev->flags & ~(IFF_PROMISC | 3314 IFF_ALLMULTI | 3315 IFF_RUNNING | 3316 IFF_LOWER_UP | 3317 IFF_DORMANT)) | 3318 (dev->gflags & (IFF_PROMISC | 3319 IFF_ALLMULTI)); 3320 3321 if (netif_running(dev)) { 3322 if (netif_oper_up(dev)) 3323 flags |= IFF_RUNNING; 3324 if (netif_carrier_ok(dev)) 3325 flags |= IFF_LOWER_UP; 3326 if (netif_dormant(dev)) 3327 flags |= IFF_DORMANT; 3328 } 3329 3330 return flags; 3331 } 3332 3333 int dev_change_flags(struct net_device *dev, unsigned flags) 3334 { 3335 int ret, changes; 3336 int old_flags = dev->flags; 3337 3338 ASSERT_RTNL(); 3339 3340 /* 3341 * Set the flags on our device. 3342 */ 3343 3344 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 3345 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 3346 IFF_AUTOMEDIA)) | 3347 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 3348 IFF_ALLMULTI)); 3349 3350 /* 3351 * Load in the correct multicast list now the flags have changed. 3352 */ 3353 3354 if ((old_flags ^ flags) & IFF_MULTICAST) 3355 dev_change_rx_flags(dev, IFF_MULTICAST); 3356 3357 dev_set_rx_mode(dev); 3358 3359 /* 3360 * Have we downed the interface. We handle IFF_UP ourselves 3361 * according to user attempts to set it, rather than blindly 3362 * setting it. 3363 */ 3364 3365 ret = 0; 3366 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 3367 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev); 3368 3369 if (!ret) 3370 dev_set_rx_mode(dev); 3371 } 3372 3373 if (dev->flags & IFF_UP && 3374 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI | 3375 IFF_VOLATILE))) 3376 call_netdevice_notifiers(NETDEV_CHANGE, dev); 3377 3378 if ((flags ^ dev->gflags) & IFF_PROMISC) { 3379 int inc = (flags & IFF_PROMISC) ? +1 : -1; 3380 dev->gflags ^= IFF_PROMISC; 3381 dev_set_promiscuity(dev, inc); 3382 } 3383 3384 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 3385 is important. Some (broken) drivers set IFF_PROMISC, when 3386 IFF_ALLMULTI is requested not asking us and not reporting. 3387 */ 3388 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 3389 int inc = (flags & IFF_ALLMULTI) ? +1 : -1; 3390 dev->gflags ^= IFF_ALLMULTI; 3391 dev_set_allmulti(dev, inc); 3392 } 3393 3394 /* Exclude state transition flags, already notified */ 3395 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING); 3396 if (changes) 3397 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 3398 3399 return ret; 3400 } 3401 3402 int dev_set_mtu(struct net_device *dev, int new_mtu) 3403 { 3404 int err; 3405 3406 if (new_mtu == dev->mtu) 3407 return 0; 3408 3409 /* MTU must be positive. */ 3410 if (new_mtu < 0) 3411 return -EINVAL; 3412 3413 if (!netif_device_present(dev)) 3414 return -ENODEV; 3415 3416 err = 0; 3417 if (dev->change_mtu) 3418 err = dev->change_mtu(dev, new_mtu); 3419 else 3420 dev->mtu = new_mtu; 3421 if (!err && dev->flags & IFF_UP) 3422 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 3423 return err; 3424 } 3425 3426 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 3427 { 3428 int err; 3429 3430 if (!dev->set_mac_address) 3431 return -EOPNOTSUPP; 3432 if (sa->sa_family != dev->type) 3433 return -EINVAL; 3434 if (!netif_device_present(dev)) 3435 return -ENODEV; 3436 err = dev->set_mac_address(dev, sa); 3437 if (!err) 3438 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3439 return err; 3440 } 3441 3442 /* 3443 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock) 3444 */ 3445 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 3446 { 3447 int err; 3448 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3449 3450 if (!dev) 3451 return -ENODEV; 3452 3453 switch (cmd) { 3454 case SIOCGIFFLAGS: /* Get interface flags */ 3455 ifr->ifr_flags = dev_get_flags(dev); 3456 return 0; 3457 3458 case SIOCGIFMETRIC: /* Get the metric on the interface 3459 (currently unused) */ 3460 ifr->ifr_metric = 0; 3461 return 0; 3462 3463 case SIOCGIFMTU: /* Get the MTU of a device */ 3464 ifr->ifr_mtu = dev->mtu; 3465 return 0; 3466 3467 case SIOCGIFHWADDR: 3468 if (!dev->addr_len) 3469 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 3470 else 3471 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 3472 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3473 ifr->ifr_hwaddr.sa_family = dev->type; 3474 return 0; 3475 3476 case SIOCGIFSLAVE: 3477 err = -EINVAL; 3478 break; 3479 3480 case SIOCGIFMAP: 3481 ifr->ifr_map.mem_start = dev->mem_start; 3482 ifr->ifr_map.mem_end = dev->mem_end; 3483 ifr->ifr_map.base_addr = dev->base_addr; 3484 ifr->ifr_map.irq = dev->irq; 3485 ifr->ifr_map.dma = dev->dma; 3486 ifr->ifr_map.port = dev->if_port; 3487 return 0; 3488 3489 case SIOCGIFINDEX: 3490 ifr->ifr_ifindex = dev->ifindex; 3491 return 0; 3492 3493 case SIOCGIFTXQLEN: 3494 ifr->ifr_qlen = dev->tx_queue_len; 3495 return 0; 3496 3497 default: 3498 /* dev_ioctl() should ensure this case 3499 * is never reached 3500 */ 3501 WARN_ON(1); 3502 err = -EINVAL; 3503 break; 3504 3505 } 3506 return err; 3507 } 3508 3509 /* 3510 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 3511 */ 3512 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 3513 { 3514 int err; 3515 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3516 3517 if (!dev) 3518 return -ENODEV; 3519 3520 switch (cmd) { 3521 case SIOCSIFFLAGS: /* Set interface flags */ 3522 return dev_change_flags(dev, ifr->ifr_flags); 3523 3524 case SIOCSIFMETRIC: /* Set the metric on the interface 3525 (currently unused) */ 3526 return -EOPNOTSUPP; 3527 3528 case SIOCSIFMTU: /* Set the MTU of a device */ 3529 return dev_set_mtu(dev, ifr->ifr_mtu); 3530 3531 case SIOCSIFHWADDR: 3532 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 3533 3534 case SIOCSIFHWBROADCAST: 3535 if (ifr->ifr_hwaddr.sa_family != dev->type) 3536 return -EINVAL; 3537 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 3538 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3539 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3540 return 0; 3541 3542 case SIOCSIFMAP: 3543 if (dev->set_config) { 3544 if (!netif_device_present(dev)) 3545 return -ENODEV; 3546 return dev->set_config(dev, &ifr->ifr_map); 3547 } 3548 return -EOPNOTSUPP; 3549 3550 case SIOCADDMULTI: 3551 if ((!dev->set_multicast_list && !dev->set_rx_mode) || 3552 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3553 return -EINVAL; 3554 if (!netif_device_present(dev)) 3555 return -ENODEV; 3556 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 3557 dev->addr_len, 1); 3558 3559 case SIOCDELMULTI: 3560 if ((!dev->set_multicast_list && !dev->set_rx_mode) || 3561 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3562 return -EINVAL; 3563 if (!netif_device_present(dev)) 3564 return -ENODEV; 3565 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 3566 dev->addr_len, 1); 3567 3568 case SIOCSIFTXQLEN: 3569 if (ifr->ifr_qlen < 0) 3570 return -EINVAL; 3571 dev->tx_queue_len = ifr->ifr_qlen; 3572 return 0; 3573 3574 case SIOCSIFNAME: 3575 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 3576 return dev_change_name(dev, ifr->ifr_newname); 3577 3578 /* 3579 * Unknown or private ioctl 3580 */ 3581 3582 default: 3583 if ((cmd >= SIOCDEVPRIVATE && 3584 cmd <= SIOCDEVPRIVATE + 15) || 3585 cmd == SIOCBONDENSLAVE || 3586 cmd == SIOCBONDRELEASE || 3587 cmd == SIOCBONDSETHWADDR || 3588 cmd == SIOCBONDSLAVEINFOQUERY || 3589 cmd == SIOCBONDINFOQUERY || 3590 cmd == SIOCBONDCHANGEACTIVE || 3591 cmd == SIOCGMIIPHY || 3592 cmd == SIOCGMIIREG || 3593 cmd == SIOCSMIIREG || 3594 cmd == SIOCBRADDIF || 3595 cmd == SIOCBRDELIF || 3596 cmd == SIOCWANDEV) { 3597 err = -EOPNOTSUPP; 3598 if (dev->do_ioctl) { 3599 if (netif_device_present(dev)) 3600 err = dev->do_ioctl(dev, ifr, 3601 cmd); 3602 else 3603 err = -ENODEV; 3604 } 3605 } else 3606 err = -EINVAL; 3607 3608 } 3609 return err; 3610 } 3611 3612 /* 3613 * This function handles all "interface"-type I/O control requests. The actual 3614 * 'doing' part of this is dev_ifsioc above. 3615 */ 3616 3617 /** 3618 * dev_ioctl - network device ioctl 3619 * @net: the applicable net namespace 3620 * @cmd: command to issue 3621 * @arg: pointer to a struct ifreq in user space 3622 * 3623 * Issue ioctl functions to devices. This is normally called by the 3624 * user space syscall interfaces but can sometimes be useful for 3625 * other purposes. The return value is the return from the syscall if 3626 * positive or a negative errno code on error. 3627 */ 3628 3629 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 3630 { 3631 struct ifreq ifr; 3632 int ret; 3633 char *colon; 3634 3635 /* One special case: SIOCGIFCONF takes ifconf argument 3636 and requires shared lock, because it sleeps writing 3637 to user space. 3638 */ 3639 3640 if (cmd == SIOCGIFCONF) { 3641 rtnl_lock(); 3642 ret = dev_ifconf(net, (char __user *) arg); 3643 rtnl_unlock(); 3644 return ret; 3645 } 3646 if (cmd == SIOCGIFNAME) 3647 return dev_ifname(net, (struct ifreq __user *)arg); 3648 3649 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3650 return -EFAULT; 3651 3652 ifr.ifr_name[IFNAMSIZ-1] = 0; 3653 3654 colon = strchr(ifr.ifr_name, ':'); 3655 if (colon) 3656 *colon = 0; 3657 3658 /* 3659 * See which interface the caller is talking about. 3660 */ 3661 3662 switch (cmd) { 3663 /* 3664 * These ioctl calls: 3665 * - can be done by all. 3666 * - atomic and do not require locking. 3667 * - return a value 3668 */ 3669 case SIOCGIFFLAGS: 3670 case SIOCGIFMETRIC: 3671 case SIOCGIFMTU: 3672 case SIOCGIFHWADDR: 3673 case SIOCGIFSLAVE: 3674 case SIOCGIFMAP: 3675 case SIOCGIFINDEX: 3676 case SIOCGIFTXQLEN: 3677 dev_load(net, ifr.ifr_name); 3678 read_lock(&dev_base_lock); 3679 ret = dev_ifsioc_locked(net, &ifr, cmd); 3680 read_unlock(&dev_base_lock); 3681 if (!ret) { 3682 if (colon) 3683 *colon = ':'; 3684 if (copy_to_user(arg, &ifr, 3685 sizeof(struct ifreq))) 3686 ret = -EFAULT; 3687 } 3688 return ret; 3689 3690 case SIOCETHTOOL: 3691 dev_load(net, ifr.ifr_name); 3692 rtnl_lock(); 3693 ret = dev_ethtool(net, &ifr); 3694 rtnl_unlock(); 3695 if (!ret) { 3696 if (colon) 3697 *colon = ':'; 3698 if (copy_to_user(arg, &ifr, 3699 sizeof(struct ifreq))) 3700 ret = -EFAULT; 3701 } 3702 return ret; 3703 3704 /* 3705 * These ioctl calls: 3706 * - require superuser power. 3707 * - require strict serialization. 3708 * - return a value 3709 */ 3710 case SIOCGMIIPHY: 3711 case SIOCGMIIREG: 3712 case SIOCSIFNAME: 3713 if (!capable(CAP_NET_ADMIN)) 3714 return -EPERM; 3715 dev_load(net, ifr.ifr_name); 3716 rtnl_lock(); 3717 ret = dev_ifsioc(net, &ifr, cmd); 3718 rtnl_unlock(); 3719 if (!ret) { 3720 if (colon) 3721 *colon = ':'; 3722 if (copy_to_user(arg, &ifr, 3723 sizeof(struct ifreq))) 3724 ret = -EFAULT; 3725 } 3726 return ret; 3727 3728 /* 3729 * These ioctl calls: 3730 * - require superuser power. 3731 * - require strict serialization. 3732 * - do not return a value 3733 */ 3734 case SIOCSIFFLAGS: 3735 case SIOCSIFMETRIC: 3736 case SIOCSIFMTU: 3737 case SIOCSIFMAP: 3738 case SIOCSIFHWADDR: 3739 case SIOCSIFSLAVE: 3740 case SIOCADDMULTI: 3741 case SIOCDELMULTI: 3742 case SIOCSIFHWBROADCAST: 3743 case SIOCSIFTXQLEN: 3744 case SIOCSMIIREG: 3745 case SIOCBONDENSLAVE: 3746 case SIOCBONDRELEASE: 3747 case SIOCBONDSETHWADDR: 3748 case SIOCBONDCHANGEACTIVE: 3749 case SIOCBRADDIF: 3750 case SIOCBRDELIF: 3751 if (!capable(CAP_NET_ADMIN)) 3752 return -EPERM; 3753 /* fall through */ 3754 case SIOCBONDSLAVEINFOQUERY: 3755 case SIOCBONDINFOQUERY: 3756 dev_load(net, ifr.ifr_name); 3757 rtnl_lock(); 3758 ret = dev_ifsioc(net, &ifr, cmd); 3759 rtnl_unlock(); 3760 return ret; 3761 3762 case SIOCGIFMEM: 3763 /* Get the per device memory space. We can add this but 3764 * currently do not support it */ 3765 case SIOCSIFMEM: 3766 /* Set the per device memory buffer space. 3767 * Not applicable in our case */ 3768 case SIOCSIFLINK: 3769 return -EINVAL; 3770 3771 /* 3772 * Unknown or private ioctl. 3773 */ 3774 default: 3775 if (cmd == SIOCWANDEV || 3776 (cmd >= SIOCDEVPRIVATE && 3777 cmd <= SIOCDEVPRIVATE + 15)) { 3778 dev_load(net, ifr.ifr_name); 3779 rtnl_lock(); 3780 ret = dev_ifsioc(net, &ifr, cmd); 3781 rtnl_unlock(); 3782 if (!ret && copy_to_user(arg, &ifr, 3783 sizeof(struct ifreq))) 3784 ret = -EFAULT; 3785 return ret; 3786 } 3787 /* Take care of Wireless Extensions */ 3788 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 3789 return wext_handle_ioctl(net, &ifr, cmd, arg); 3790 return -EINVAL; 3791 } 3792 } 3793 3794 3795 /** 3796 * dev_new_index - allocate an ifindex 3797 * @net: the applicable net namespace 3798 * 3799 * Returns a suitable unique value for a new device interface 3800 * number. The caller must hold the rtnl semaphore or the 3801 * dev_base_lock to be sure it remains unique. 3802 */ 3803 static int dev_new_index(struct net *net) 3804 { 3805 static int ifindex; 3806 for (;;) { 3807 if (++ifindex <= 0) 3808 ifindex = 1; 3809 if (!__dev_get_by_index(net, ifindex)) 3810 return ifindex; 3811 } 3812 } 3813 3814 /* Delayed registration/unregisteration */ 3815 static LIST_HEAD(net_todo_list); 3816 3817 static void net_set_todo(struct net_device *dev) 3818 { 3819 list_add_tail(&dev->todo_list, &net_todo_list); 3820 } 3821 3822 static void rollback_registered(struct net_device *dev) 3823 { 3824 BUG_ON(dev_boot_phase); 3825 ASSERT_RTNL(); 3826 3827 /* Some devices call without registering for initialization unwind. */ 3828 if (dev->reg_state == NETREG_UNINITIALIZED) { 3829 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never " 3830 "was registered\n", dev->name, dev); 3831 3832 WARN_ON(1); 3833 return; 3834 } 3835 3836 BUG_ON(dev->reg_state != NETREG_REGISTERED); 3837 3838 /* If device is running, close it first. */ 3839 dev_close(dev); 3840 3841 /* And unlink it from device chain. */ 3842 unlist_netdevice(dev); 3843 3844 dev->reg_state = NETREG_UNREGISTERING; 3845 3846 synchronize_net(); 3847 3848 /* Shutdown queueing discipline. */ 3849 dev_shutdown(dev); 3850 3851 3852 /* Notify protocols, that we are about to destroy 3853 this device. They should clean all the things. 3854 */ 3855 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 3856 3857 /* 3858 * Flush the unicast and multicast chains 3859 */ 3860 dev_addr_discard(dev); 3861 3862 if (dev->uninit) 3863 dev->uninit(dev); 3864 3865 /* Notifier chain MUST detach us from master device. */ 3866 WARN_ON(dev->master); 3867 3868 /* Remove entries from kobject tree */ 3869 netdev_unregister_kobject(dev); 3870 3871 synchronize_net(); 3872 3873 dev_put(dev); 3874 } 3875 3876 static void __netdev_init_queue_locks_one(struct net_device *dev, 3877 struct netdev_queue *dev_queue, 3878 void *_unused) 3879 { 3880 spin_lock_init(&dev_queue->_xmit_lock); 3881 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type); 3882 dev_queue->xmit_lock_owner = -1; 3883 } 3884 3885 static void netdev_init_queue_locks(struct net_device *dev) 3886 { 3887 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL); 3888 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL); 3889 } 3890 3891 /** 3892 * register_netdevice - register a network device 3893 * @dev: device to register 3894 * 3895 * Take a completed network device structure and add it to the kernel 3896 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 3897 * chain. 0 is returned on success. A negative errno code is returned 3898 * on a failure to set up the device, or if the name is a duplicate. 3899 * 3900 * Callers must hold the rtnl semaphore. You may want 3901 * register_netdev() instead of this. 3902 * 3903 * BUGS: 3904 * The locking appears insufficient to guarantee two parallel registers 3905 * will not get the same name. 3906 */ 3907 3908 int register_netdevice(struct net_device *dev) 3909 { 3910 struct hlist_head *head; 3911 struct hlist_node *p; 3912 int ret; 3913 struct net *net; 3914 3915 BUG_ON(dev_boot_phase); 3916 ASSERT_RTNL(); 3917 3918 might_sleep(); 3919 3920 /* When net_device's are persistent, this will be fatal. */ 3921 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 3922 BUG_ON(!dev_net(dev)); 3923 net = dev_net(dev); 3924 3925 spin_lock_init(&dev->addr_list_lock); 3926 netdev_set_addr_lockdep_class(dev); 3927 netdev_init_queue_locks(dev); 3928 3929 dev->iflink = -1; 3930 3931 /* Init, if this function is available */ 3932 if (dev->init) { 3933 ret = dev->init(dev); 3934 if (ret) { 3935 if (ret > 0) 3936 ret = -EIO; 3937 goto out; 3938 } 3939 } 3940 3941 if (!dev_valid_name(dev->name)) { 3942 ret = -EINVAL; 3943 goto err_uninit; 3944 } 3945 3946 dev->ifindex = dev_new_index(net); 3947 if (dev->iflink == -1) 3948 dev->iflink = dev->ifindex; 3949 3950 /* Check for existence of name */ 3951 head = dev_name_hash(net, dev->name); 3952 hlist_for_each(p, head) { 3953 struct net_device *d 3954 = hlist_entry(p, struct net_device, name_hlist); 3955 if (!strncmp(d->name, dev->name, IFNAMSIZ)) { 3956 ret = -EEXIST; 3957 goto err_uninit; 3958 } 3959 } 3960 3961 /* Fix illegal checksum combinations */ 3962 if ((dev->features & NETIF_F_HW_CSUM) && 3963 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 3964 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 3965 dev->name); 3966 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 3967 } 3968 3969 if ((dev->features & NETIF_F_NO_CSUM) && 3970 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 3971 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 3972 dev->name); 3973 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 3974 } 3975 3976 3977 /* Fix illegal SG+CSUM combinations. */ 3978 if ((dev->features & NETIF_F_SG) && 3979 !(dev->features & NETIF_F_ALL_CSUM)) { 3980 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n", 3981 dev->name); 3982 dev->features &= ~NETIF_F_SG; 3983 } 3984 3985 /* TSO requires that SG is present as well. */ 3986 if ((dev->features & NETIF_F_TSO) && 3987 !(dev->features & NETIF_F_SG)) { 3988 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n", 3989 dev->name); 3990 dev->features &= ~NETIF_F_TSO; 3991 } 3992 if (dev->features & NETIF_F_UFO) { 3993 if (!(dev->features & NETIF_F_HW_CSUM)) { 3994 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 3995 "NETIF_F_HW_CSUM feature.\n", 3996 dev->name); 3997 dev->features &= ~NETIF_F_UFO; 3998 } 3999 if (!(dev->features & NETIF_F_SG)) { 4000 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 4001 "NETIF_F_SG feature.\n", 4002 dev->name); 4003 dev->features &= ~NETIF_F_UFO; 4004 } 4005 } 4006 4007 /* Enable software GSO if SG is supported. */ 4008 if (dev->features & NETIF_F_SG) 4009 dev->features |= NETIF_F_GSO; 4010 4011 netdev_initialize_kobject(dev); 4012 ret = netdev_register_kobject(dev); 4013 if (ret) 4014 goto err_uninit; 4015 dev->reg_state = NETREG_REGISTERED; 4016 4017 /* 4018 * Default initial state at registry is that the 4019 * device is present. 4020 */ 4021 4022 set_bit(__LINK_STATE_PRESENT, &dev->state); 4023 4024 dev_init_scheduler(dev); 4025 dev_hold(dev); 4026 list_netdevice(dev); 4027 4028 /* Notify protocols, that a new device appeared. */ 4029 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 4030 ret = notifier_to_errno(ret); 4031 if (ret) { 4032 rollback_registered(dev); 4033 dev->reg_state = NETREG_UNREGISTERED; 4034 } 4035 4036 out: 4037 return ret; 4038 4039 err_uninit: 4040 if (dev->uninit) 4041 dev->uninit(dev); 4042 goto out; 4043 } 4044 4045 /** 4046 * register_netdev - register a network device 4047 * @dev: device to register 4048 * 4049 * Take a completed network device structure and add it to the kernel 4050 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 4051 * chain. 0 is returned on success. A negative errno code is returned 4052 * on a failure to set up the device, or if the name is a duplicate. 4053 * 4054 * This is a wrapper around register_netdevice that takes the rtnl semaphore 4055 * and expands the device name if you passed a format string to 4056 * alloc_netdev. 4057 */ 4058 int register_netdev(struct net_device *dev) 4059 { 4060 int err; 4061 4062 rtnl_lock(); 4063 4064 /* 4065 * If the name is a format string the caller wants us to do a 4066 * name allocation. 4067 */ 4068 if (strchr(dev->name, '%')) { 4069 err = dev_alloc_name(dev, dev->name); 4070 if (err < 0) 4071 goto out; 4072 } 4073 4074 err = register_netdevice(dev); 4075 out: 4076 rtnl_unlock(); 4077 return err; 4078 } 4079 EXPORT_SYMBOL(register_netdev); 4080 4081 /* 4082 * netdev_wait_allrefs - wait until all references are gone. 4083 * 4084 * This is called when unregistering network devices. 4085 * 4086 * Any protocol or device that holds a reference should register 4087 * for netdevice notification, and cleanup and put back the 4088 * reference if they receive an UNREGISTER event. 4089 * We can get stuck here if buggy protocols don't correctly 4090 * call dev_put. 4091 */ 4092 static void netdev_wait_allrefs(struct net_device *dev) 4093 { 4094 unsigned long rebroadcast_time, warning_time; 4095 4096 rebroadcast_time = warning_time = jiffies; 4097 while (atomic_read(&dev->refcnt) != 0) { 4098 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 4099 rtnl_lock(); 4100 4101 /* Rebroadcast unregister notification */ 4102 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4103 4104 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 4105 &dev->state)) { 4106 /* We must not have linkwatch events 4107 * pending on unregister. If this 4108 * happens, we simply run the queue 4109 * unscheduled, resulting in a noop 4110 * for this device. 4111 */ 4112 linkwatch_run_queue(); 4113 } 4114 4115 __rtnl_unlock(); 4116 4117 rebroadcast_time = jiffies; 4118 } 4119 4120 msleep(250); 4121 4122 if (time_after(jiffies, warning_time + 10 * HZ)) { 4123 printk(KERN_EMERG "unregister_netdevice: " 4124 "waiting for %s to become free. Usage " 4125 "count = %d\n", 4126 dev->name, atomic_read(&dev->refcnt)); 4127 warning_time = jiffies; 4128 } 4129 } 4130 } 4131 4132 /* The sequence is: 4133 * 4134 * rtnl_lock(); 4135 * ... 4136 * register_netdevice(x1); 4137 * register_netdevice(x2); 4138 * ... 4139 * unregister_netdevice(y1); 4140 * unregister_netdevice(y2); 4141 * ... 4142 * rtnl_unlock(); 4143 * free_netdev(y1); 4144 * free_netdev(y2); 4145 * 4146 * We are invoked by rtnl_unlock(). 4147 * This allows us to deal with problems: 4148 * 1) We can delete sysfs objects which invoke hotplug 4149 * without deadlocking with linkwatch via keventd. 4150 * 2) Since we run with the RTNL semaphore not held, we can sleep 4151 * safely in order to wait for the netdev refcnt to drop to zero. 4152 * 4153 * We must not return until all unregister events added during 4154 * the interval the lock was held have been completed. 4155 */ 4156 void netdev_run_todo(void) 4157 { 4158 struct list_head list; 4159 4160 /* Snapshot list, allow later requests */ 4161 list_replace_init(&net_todo_list, &list); 4162 4163 __rtnl_unlock(); 4164 4165 while (!list_empty(&list)) { 4166 struct net_device *dev 4167 = list_entry(list.next, struct net_device, todo_list); 4168 list_del(&dev->todo_list); 4169 4170 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 4171 printk(KERN_ERR "network todo '%s' but state %d\n", 4172 dev->name, dev->reg_state); 4173 dump_stack(); 4174 continue; 4175 } 4176 4177 dev->reg_state = NETREG_UNREGISTERED; 4178 4179 on_each_cpu(flush_backlog, dev, 1); 4180 4181 netdev_wait_allrefs(dev); 4182 4183 /* paranoia */ 4184 BUG_ON(atomic_read(&dev->refcnt)); 4185 WARN_ON(dev->ip_ptr); 4186 WARN_ON(dev->ip6_ptr); 4187 WARN_ON(dev->dn_ptr); 4188 4189 if (dev->destructor) 4190 dev->destructor(dev); 4191 4192 /* Free network device */ 4193 kobject_put(&dev->dev.kobj); 4194 } 4195 } 4196 4197 static struct net_device_stats *internal_stats(struct net_device *dev) 4198 { 4199 return &dev->stats; 4200 } 4201 4202 static void netdev_init_one_queue(struct net_device *dev, 4203 struct netdev_queue *queue, 4204 void *_unused) 4205 { 4206 queue->dev = dev; 4207 } 4208 4209 static void netdev_init_queues(struct net_device *dev) 4210 { 4211 netdev_init_one_queue(dev, &dev->rx_queue, NULL); 4212 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 4213 spin_lock_init(&dev->tx_global_lock); 4214 } 4215 4216 /** 4217 * alloc_netdev_mq - allocate network device 4218 * @sizeof_priv: size of private data to allocate space for 4219 * @name: device name format string 4220 * @setup: callback to initialize device 4221 * @queue_count: the number of subqueues to allocate 4222 * 4223 * Allocates a struct net_device with private data area for driver use 4224 * and performs basic initialization. Also allocates subquue structs 4225 * for each queue on the device at the end of the netdevice. 4226 */ 4227 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 4228 void (*setup)(struct net_device *), unsigned int queue_count) 4229 { 4230 struct netdev_queue *tx; 4231 struct net_device *dev; 4232 size_t alloc_size; 4233 void *p; 4234 4235 BUG_ON(strlen(name) >= sizeof(dev->name)); 4236 4237 alloc_size = sizeof(struct net_device); 4238 if (sizeof_priv) { 4239 /* ensure 32-byte alignment of private area */ 4240 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST; 4241 alloc_size += sizeof_priv; 4242 } 4243 /* ensure 32-byte alignment of whole construct */ 4244 alloc_size += NETDEV_ALIGN_CONST; 4245 4246 p = kzalloc(alloc_size, GFP_KERNEL); 4247 if (!p) { 4248 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 4249 return NULL; 4250 } 4251 4252 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL); 4253 if (!tx) { 4254 printk(KERN_ERR "alloc_netdev: Unable to allocate " 4255 "tx qdiscs.\n"); 4256 kfree(p); 4257 return NULL; 4258 } 4259 4260 dev = (struct net_device *) 4261 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST); 4262 dev->padded = (char *)dev - (char *)p; 4263 dev_net_set(dev, &init_net); 4264 4265 dev->_tx = tx; 4266 dev->num_tx_queues = queue_count; 4267 dev->real_num_tx_queues = queue_count; 4268 4269 if (sizeof_priv) { 4270 dev->priv = ((char *)dev + 4271 ((sizeof(struct net_device) + NETDEV_ALIGN_CONST) 4272 & ~NETDEV_ALIGN_CONST)); 4273 } 4274 4275 dev->gso_max_size = GSO_MAX_SIZE; 4276 4277 netdev_init_queues(dev); 4278 4279 dev->get_stats = internal_stats; 4280 netpoll_netdev_init(dev); 4281 setup(dev); 4282 strcpy(dev->name, name); 4283 return dev; 4284 } 4285 EXPORT_SYMBOL(alloc_netdev_mq); 4286 4287 /** 4288 * free_netdev - free network device 4289 * @dev: device 4290 * 4291 * This function does the last stage of destroying an allocated device 4292 * interface. The reference to the device object is released. 4293 * If this is the last reference then it will be freed. 4294 */ 4295 void free_netdev(struct net_device *dev) 4296 { 4297 release_net(dev_net(dev)); 4298 4299 kfree(dev->_tx); 4300 4301 /* Compatibility with error handling in drivers */ 4302 if (dev->reg_state == NETREG_UNINITIALIZED) { 4303 kfree((char *)dev - dev->padded); 4304 return; 4305 } 4306 4307 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 4308 dev->reg_state = NETREG_RELEASED; 4309 4310 /* will free via device release */ 4311 put_device(&dev->dev); 4312 } 4313 4314 /* Synchronize with packet receive processing. */ 4315 void synchronize_net(void) 4316 { 4317 might_sleep(); 4318 synchronize_rcu(); 4319 } 4320 4321 /** 4322 * unregister_netdevice - remove device from the kernel 4323 * @dev: device 4324 * 4325 * This function shuts down a device interface and removes it 4326 * from the kernel tables. 4327 * 4328 * Callers must hold the rtnl semaphore. You may want 4329 * unregister_netdev() instead of this. 4330 */ 4331 4332 void unregister_netdevice(struct net_device *dev) 4333 { 4334 ASSERT_RTNL(); 4335 4336 rollback_registered(dev); 4337 /* Finish processing unregister after unlock */ 4338 net_set_todo(dev); 4339 } 4340 4341 /** 4342 * unregister_netdev - remove device from the kernel 4343 * @dev: device 4344 * 4345 * This function shuts down a device interface and removes it 4346 * from the kernel tables. 4347 * 4348 * This is just a wrapper for unregister_netdevice that takes 4349 * the rtnl semaphore. In general you want to use this and not 4350 * unregister_netdevice. 4351 */ 4352 void unregister_netdev(struct net_device *dev) 4353 { 4354 rtnl_lock(); 4355 unregister_netdevice(dev); 4356 rtnl_unlock(); 4357 } 4358 4359 EXPORT_SYMBOL(unregister_netdev); 4360 4361 /** 4362 * dev_change_net_namespace - move device to different nethost namespace 4363 * @dev: device 4364 * @net: network namespace 4365 * @pat: If not NULL name pattern to try if the current device name 4366 * is already taken in the destination network namespace. 4367 * 4368 * This function shuts down a device interface and moves it 4369 * to a new network namespace. On success 0 is returned, on 4370 * a failure a netagive errno code is returned. 4371 * 4372 * Callers must hold the rtnl semaphore. 4373 */ 4374 4375 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 4376 { 4377 char buf[IFNAMSIZ]; 4378 const char *destname; 4379 int err; 4380 4381 ASSERT_RTNL(); 4382 4383 /* Don't allow namespace local devices to be moved. */ 4384 err = -EINVAL; 4385 if (dev->features & NETIF_F_NETNS_LOCAL) 4386 goto out; 4387 4388 /* Ensure the device has been registrered */ 4389 err = -EINVAL; 4390 if (dev->reg_state != NETREG_REGISTERED) 4391 goto out; 4392 4393 /* Get out if there is nothing todo */ 4394 err = 0; 4395 if (net_eq(dev_net(dev), net)) 4396 goto out; 4397 4398 /* Pick the destination device name, and ensure 4399 * we can use it in the destination network namespace. 4400 */ 4401 err = -EEXIST; 4402 destname = dev->name; 4403 if (__dev_get_by_name(net, destname)) { 4404 /* We get here if we can't use the current device name */ 4405 if (!pat) 4406 goto out; 4407 if (!dev_valid_name(pat)) 4408 goto out; 4409 if (strchr(pat, '%')) { 4410 if (__dev_alloc_name(net, pat, buf) < 0) 4411 goto out; 4412 destname = buf; 4413 } else 4414 destname = pat; 4415 if (__dev_get_by_name(net, destname)) 4416 goto out; 4417 } 4418 4419 /* 4420 * And now a mini version of register_netdevice unregister_netdevice. 4421 */ 4422 4423 /* If device is running close it first. */ 4424 dev_close(dev); 4425 4426 /* And unlink it from device chain */ 4427 err = -ENODEV; 4428 unlist_netdevice(dev); 4429 4430 synchronize_net(); 4431 4432 /* Shutdown queueing discipline. */ 4433 dev_shutdown(dev); 4434 4435 /* Notify protocols, that we are about to destroy 4436 this device. They should clean all the things. 4437 */ 4438 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4439 4440 /* 4441 * Flush the unicast and multicast chains 4442 */ 4443 dev_addr_discard(dev); 4444 4445 /* Actually switch the network namespace */ 4446 dev_net_set(dev, net); 4447 4448 /* Assign the new device name */ 4449 if (destname != dev->name) 4450 strcpy(dev->name, destname); 4451 4452 /* If there is an ifindex conflict assign a new one */ 4453 if (__dev_get_by_index(net, dev->ifindex)) { 4454 int iflink = (dev->iflink == dev->ifindex); 4455 dev->ifindex = dev_new_index(net); 4456 if (iflink) 4457 dev->iflink = dev->ifindex; 4458 } 4459 4460 /* Fixup kobjects */ 4461 netdev_unregister_kobject(dev); 4462 err = netdev_register_kobject(dev); 4463 WARN_ON(err); 4464 4465 /* Add the device back in the hashes */ 4466 list_netdevice(dev); 4467 4468 /* Notify protocols, that a new device appeared. */ 4469 call_netdevice_notifiers(NETDEV_REGISTER, dev); 4470 4471 synchronize_net(); 4472 err = 0; 4473 out: 4474 return err; 4475 } 4476 4477 static int dev_cpu_callback(struct notifier_block *nfb, 4478 unsigned long action, 4479 void *ocpu) 4480 { 4481 struct sk_buff **list_skb; 4482 struct Qdisc **list_net; 4483 struct sk_buff *skb; 4484 unsigned int cpu, oldcpu = (unsigned long)ocpu; 4485 struct softnet_data *sd, *oldsd; 4486 4487 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 4488 return NOTIFY_OK; 4489 4490 local_irq_disable(); 4491 cpu = smp_processor_id(); 4492 sd = &per_cpu(softnet_data, cpu); 4493 oldsd = &per_cpu(softnet_data, oldcpu); 4494 4495 /* Find end of our completion_queue. */ 4496 list_skb = &sd->completion_queue; 4497 while (*list_skb) 4498 list_skb = &(*list_skb)->next; 4499 /* Append completion queue from offline CPU. */ 4500 *list_skb = oldsd->completion_queue; 4501 oldsd->completion_queue = NULL; 4502 4503 /* Find end of our output_queue. */ 4504 list_net = &sd->output_queue; 4505 while (*list_net) 4506 list_net = &(*list_net)->next_sched; 4507 /* Append output queue from offline CPU. */ 4508 *list_net = oldsd->output_queue; 4509 oldsd->output_queue = NULL; 4510 4511 raise_softirq_irqoff(NET_TX_SOFTIRQ); 4512 local_irq_enable(); 4513 4514 /* Process offline CPU's input_pkt_queue */ 4515 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 4516 netif_rx(skb); 4517 4518 return NOTIFY_OK; 4519 } 4520 4521 #ifdef CONFIG_NET_DMA 4522 /** 4523 * net_dma_rebalance - try to maintain one DMA channel per CPU 4524 * @net_dma: DMA client and associated data (lock, channels, channel_mask) 4525 * 4526 * This is called when the number of channels allocated to the net_dma client 4527 * changes. The net_dma client tries to have one DMA channel per CPU. 4528 */ 4529 4530 static void net_dma_rebalance(struct net_dma *net_dma) 4531 { 4532 unsigned int cpu, i, n, chan_idx; 4533 struct dma_chan *chan; 4534 4535 if (cpus_empty(net_dma->channel_mask)) { 4536 for_each_online_cpu(cpu) 4537 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL); 4538 return; 4539 } 4540 4541 i = 0; 4542 cpu = first_cpu(cpu_online_map); 4543 4544 for_each_cpu_mask_nr(chan_idx, net_dma->channel_mask) { 4545 chan = net_dma->channels[chan_idx]; 4546 4547 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask)) 4548 + (i < (num_online_cpus() % 4549 cpus_weight(net_dma->channel_mask)) ? 1 : 0)); 4550 4551 while(n) { 4552 per_cpu(softnet_data, cpu).net_dma = chan; 4553 cpu = next_cpu(cpu, cpu_online_map); 4554 n--; 4555 } 4556 i++; 4557 } 4558 } 4559 4560 /** 4561 * netdev_dma_event - event callback for the net_dma_client 4562 * @client: should always be net_dma_client 4563 * @chan: DMA channel for the event 4564 * @state: DMA state to be handled 4565 */ 4566 static enum dma_state_client 4567 netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 4568 enum dma_state state) 4569 { 4570 int i, found = 0, pos = -1; 4571 struct net_dma *net_dma = 4572 container_of(client, struct net_dma, client); 4573 enum dma_state_client ack = DMA_DUP; /* default: take no action */ 4574 4575 spin_lock(&net_dma->lock); 4576 switch (state) { 4577 case DMA_RESOURCE_AVAILABLE: 4578 for (i = 0; i < nr_cpu_ids; i++) 4579 if (net_dma->channels[i] == chan) { 4580 found = 1; 4581 break; 4582 } else if (net_dma->channels[i] == NULL && pos < 0) 4583 pos = i; 4584 4585 if (!found && pos >= 0) { 4586 ack = DMA_ACK; 4587 net_dma->channels[pos] = chan; 4588 cpu_set(pos, net_dma->channel_mask); 4589 net_dma_rebalance(net_dma); 4590 } 4591 break; 4592 case DMA_RESOURCE_REMOVED: 4593 for (i = 0; i < nr_cpu_ids; i++) 4594 if (net_dma->channels[i] == chan) { 4595 found = 1; 4596 pos = i; 4597 break; 4598 } 4599 4600 if (found) { 4601 ack = DMA_ACK; 4602 cpu_clear(pos, net_dma->channel_mask); 4603 net_dma->channels[i] = NULL; 4604 net_dma_rebalance(net_dma); 4605 } 4606 break; 4607 default: 4608 break; 4609 } 4610 spin_unlock(&net_dma->lock); 4611 4612 return ack; 4613 } 4614 4615 /** 4616 * netdev_dma_regiser - register the networking subsystem as a DMA client 4617 */ 4618 static int __init netdev_dma_register(void) 4619 { 4620 net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma), 4621 GFP_KERNEL); 4622 if (unlikely(!net_dma.channels)) { 4623 printk(KERN_NOTICE 4624 "netdev_dma: no memory for net_dma.channels\n"); 4625 return -ENOMEM; 4626 } 4627 spin_lock_init(&net_dma.lock); 4628 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask); 4629 dma_async_client_register(&net_dma.client); 4630 dma_async_client_chan_request(&net_dma.client); 4631 return 0; 4632 } 4633 4634 #else 4635 static int __init netdev_dma_register(void) { return -ENODEV; } 4636 #endif /* CONFIG_NET_DMA */ 4637 4638 /** 4639 * netdev_compute_feature - compute conjunction of two feature sets 4640 * @all: first feature set 4641 * @one: second feature set 4642 * 4643 * Computes a new feature set after adding a device with feature set 4644 * @one to the master device with current feature set @all. Returns 4645 * the new feature set. 4646 */ 4647 int netdev_compute_features(unsigned long all, unsigned long one) 4648 { 4649 /* if device needs checksumming, downgrade to hw checksumming */ 4650 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 4651 all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM; 4652 4653 /* if device can't do all checksum, downgrade to ipv4/ipv6 */ 4654 if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM)) 4655 all ^= NETIF_F_HW_CSUM 4656 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 4657 4658 if (one & NETIF_F_GSO) 4659 one |= NETIF_F_GSO_SOFTWARE; 4660 one |= NETIF_F_GSO; 4661 4662 /* If even one device supports robust GSO, enable it for all. */ 4663 if (one & NETIF_F_GSO_ROBUST) 4664 all |= NETIF_F_GSO_ROBUST; 4665 4666 all &= one | NETIF_F_LLTX; 4667 4668 if (!(all & NETIF_F_ALL_CSUM)) 4669 all &= ~NETIF_F_SG; 4670 if (!(all & NETIF_F_SG)) 4671 all &= ~NETIF_F_GSO_MASK; 4672 4673 return all; 4674 } 4675 EXPORT_SYMBOL(netdev_compute_features); 4676 4677 static struct hlist_head *netdev_create_hash(void) 4678 { 4679 int i; 4680 struct hlist_head *hash; 4681 4682 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 4683 if (hash != NULL) 4684 for (i = 0; i < NETDEV_HASHENTRIES; i++) 4685 INIT_HLIST_HEAD(&hash[i]); 4686 4687 return hash; 4688 } 4689 4690 /* Initialize per network namespace state */ 4691 static int __net_init netdev_init(struct net *net) 4692 { 4693 INIT_LIST_HEAD(&net->dev_base_head); 4694 4695 net->dev_name_head = netdev_create_hash(); 4696 if (net->dev_name_head == NULL) 4697 goto err_name; 4698 4699 net->dev_index_head = netdev_create_hash(); 4700 if (net->dev_index_head == NULL) 4701 goto err_idx; 4702 4703 return 0; 4704 4705 err_idx: 4706 kfree(net->dev_name_head); 4707 err_name: 4708 return -ENOMEM; 4709 } 4710 4711 char *netdev_drivername(struct net_device *dev, char *buffer, int len) 4712 { 4713 struct device_driver *driver; 4714 struct device *parent; 4715 4716 if (len <= 0 || !buffer) 4717 return buffer; 4718 buffer[0] = 0; 4719 4720 parent = dev->dev.parent; 4721 4722 if (!parent) 4723 return buffer; 4724 4725 driver = parent->driver; 4726 if (driver && driver->name) 4727 strlcpy(buffer, driver->name, len); 4728 return buffer; 4729 } 4730 4731 static void __net_exit netdev_exit(struct net *net) 4732 { 4733 kfree(net->dev_name_head); 4734 kfree(net->dev_index_head); 4735 } 4736 4737 static struct pernet_operations __net_initdata netdev_net_ops = { 4738 .init = netdev_init, 4739 .exit = netdev_exit, 4740 }; 4741 4742 static void __net_exit default_device_exit(struct net *net) 4743 { 4744 struct net_device *dev, *next; 4745 /* 4746 * Push all migratable of the network devices back to the 4747 * initial network namespace 4748 */ 4749 rtnl_lock(); 4750 for_each_netdev_safe(net, dev, next) { 4751 int err; 4752 char fb_name[IFNAMSIZ]; 4753 4754 /* Ignore unmoveable devices (i.e. loopback) */ 4755 if (dev->features & NETIF_F_NETNS_LOCAL) 4756 continue; 4757 4758 /* Push remaing network devices to init_net */ 4759 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 4760 err = dev_change_net_namespace(dev, &init_net, fb_name); 4761 if (err) { 4762 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 4763 __func__, dev->name, err); 4764 BUG(); 4765 } 4766 } 4767 rtnl_unlock(); 4768 } 4769 4770 static struct pernet_operations __net_initdata default_device_ops = { 4771 .exit = default_device_exit, 4772 }; 4773 4774 /* 4775 * Initialize the DEV module. At boot time this walks the device list and 4776 * unhooks any devices that fail to initialise (normally hardware not 4777 * present) and leaves us with a valid list of present and active devices. 4778 * 4779 */ 4780 4781 /* 4782 * This is called single threaded during boot, so no need 4783 * to take the rtnl semaphore. 4784 */ 4785 static int __init net_dev_init(void) 4786 { 4787 int i, rc = -ENOMEM; 4788 4789 BUG_ON(!dev_boot_phase); 4790 4791 if (dev_proc_init()) 4792 goto out; 4793 4794 if (netdev_kobject_init()) 4795 goto out; 4796 4797 INIT_LIST_HEAD(&ptype_all); 4798 for (i = 0; i < PTYPE_HASH_SIZE; i++) 4799 INIT_LIST_HEAD(&ptype_base[i]); 4800 4801 if (register_pernet_subsys(&netdev_net_ops)) 4802 goto out; 4803 4804 if (register_pernet_device(&default_device_ops)) 4805 goto out; 4806 4807 /* 4808 * Initialise the packet receive queues. 4809 */ 4810 4811 for_each_possible_cpu(i) { 4812 struct softnet_data *queue; 4813 4814 queue = &per_cpu(softnet_data, i); 4815 skb_queue_head_init(&queue->input_pkt_queue); 4816 queue->completion_queue = NULL; 4817 INIT_LIST_HEAD(&queue->poll_list); 4818 4819 queue->backlog.poll = process_backlog; 4820 queue->backlog.weight = weight_p; 4821 } 4822 4823 netdev_dma_register(); 4824 4825 dev_boot_phase = 0; 4826 4827 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 4828 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 4829 4830 hotcpu_notifier(dev_cpu_callback, 0); 4831 dst_init(); 4832 dev_mcast_init(); 4833 rc = 0; 4834 out: 4835 return rc; 4836 } 4837 4838 subsys_initcall(net_dev_init); 4839 4840 EXPORT_SYMBOL(__dev_get_by_index); 4841 EXPORT_SYMBOL(__dev_get_by_name); 4842 EXPORT_SYMBOL(__dev_remove_pack); 4843 EXPORT_SYMBOL(dev_valid_name); 4844 EXPORT_SYMBOL(dev_add_pack); 4845 EXPORT_SYMBOL(dev_alloc_name); 4846 EXPORT_SYMBOL(dev_close); 4847 EXPORT_SYMBOL(dev_get_by_flags); 4848 EXPORT_SYMBOL(dev_get_by_index); 4849 EXPORT_SYMBOL(dev_get_by_name); 4850 EXPORT_SYMBOL(dev_open); 4851 EXPORT_SYMBOL(dev_queue_xmit); 4852 EXPORT_SYMBOL(dev_remove_pack); 4853 EXPORT_SYMBOL(dev_set_allmulti); 4854 EXPORT_SYMBOL(dev_set_promiscuity); 4855 EXPORT_SYMBOL(dev_change_flags); 4856 EXPORT_SYMBOL(dev_set_mtu); 4857 EXPORT_SYMBOL(dev_set_mac_address); 4858 EXPORT_SYMBOL(free_netdev); 4859 EXPORT_SYMBOL(netdev_boot_setup_check); 4860 EXPORT_SYMBOL(netdev_set_master); 4861 EXPORT_SYMBOL(netdev_state_change); 4862 EXPORT_SYMBOL(netif_receive_skb); 4863 EXPORT_SYMBOL(netif_rx); 4864 EXPORT_SYMBOL(register_gifconf); 4865 EXPORT_SYMBOL(register_netdevice); 4866 EXPORT_SYMBOL(register_netdevice_notifier); 4867 EXPORT_SYMBOL(skb_checksum_help); 4868 EXPORT_SYMBOL(synchronize_net); 4869 EXPORT_SYMBOL(unregister_netdevice); 4870 EXPORT_SYMBOL(unregister_netdevice_notifier); 4871 EXPORT_SYMBOL(net_enable_timestamp); 4872 EXPORT_SYMBOL(net_disable_timestamp); 4873 EXPORT_SYMBOL(dev_get_flags); 4874 4875 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) 4876 EXPORT_SYMBOL(br_handle_frame_hook); 4877 EXPORT_SYMBOL(br_fdb_get_hook); 4878 EXPORT_SYMBOL(br_fdb_put_hook); 4879 #endif 4880 4881 #ifdef CONFIG_KMOD 4882 EXPORT_SYMBOL(dev_load); 4883 #endif 4884 4885 EXPORT_PER_CPU_SYMBOL(softnet_data); 4886