xref: /openbmc/linux/net/core/dev.c (revision 384740dc)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/kallsyms.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 
131 #include "net-sysfs.h"
132 
133 /*
134  *	The list of packet types we will receive (as opposed to discard)
135  *	and the routines to invoke.
136  *
137  *	Why 16. Because with 16 the only overlap we get on a hash of the
138  *	low nibble of the protocol value is RARP/SNAP/X.25.
139  *
140  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
141  *             sure which should go first, but I bet it won't make much
142  *             difference if we are running VLANs.  The good news is that
143  *             this protocol won't be in the list unless compiled in, so
144  *             the average user (w/out VLANs) will not be adversely affected.
145  *             --BLG
146  *
147  *		0800	IP
148  *		8100    802.1Q VLAN
149  *		0001	802.3
150  *		0002	AX.25
151  *		0004	802.2
152  *		8035	RARP
153  *		0005	SNAP
154  *		0805	X.25
155  *		0806	ARP
156  *		8137	IPX
157  *		0009	Localtalk
158  *		86DD	IPv6
159  */
160 
161 #define PTYPE_HASH_SIZE	(16)
162 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
163 
164 static DEFINE_SPINLOCK(ptype_lock);
165 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
166 static struct list_head ptype_all __read_mostly;	/* Taps */
167 
168 #ifdef CONFIG_NET_DMA
169 struct net_dma {
170 	struct dma_client client;
171 	spinlock_t lock;
172 	cpumask_t channel_mask;
173 	struct dma_chan **channels;
174 };
175 
176 static enum dma_state_client
177 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
178 	enum dma_state state);
179 
180 static struct net_dma net_dma = {
181 	.client = {
182 		.event_callback = netdev_dma_event,
183 	},
184 };
185 #endif
186 
187 /*
188  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
189  * semaphore.
190  *
191  * Pure readers hold dev_base_lock for reading.
192  *
193  * Writers must hold the rtnl semaphore while they loop through the
194  * dev_base_head list, and hold dev_base_lock for writing when they do the
195  * actual updates.  This allows pure readers to access the list even
196  * while a writer is preparing to update it.
197  *
198  * To put it another way, dev_base_lock is held for writing only to
199  * protect against pure readers; the rtnl semaphore provides the
200  * protection against other writers.
201  *
202  * See, for example usages, register_netdevice() and
203  * unregister_netdevice(), which must be called with the rtnl
204  * semaphore held.
205  */
206 DEFINE_RWLOCK(dev_base_lock);
207 
208 EXPORT_SYMBOL(dev_base_lock);
209 
210 #define NETDEV_HASHBITS	8
211 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
212 
213 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
214 {
215 	unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
216 	return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
217 }
218 
219 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
220 {
221 	return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
222 }
223 
224 /* Device list insertion */
225 static int list_netdevice(struct net_device *dev)
226 {
227 	struct net *net = dev_net(dev);
228 
229 	ASSERT_RTNL();
230 
231 	write_lock_bh(&dev_base_lock);
232 	list_add_tail(&dev->dev_list, &net->dev_base_head);
233 	hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
234 	hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
235 	write_unlock_bh(&dev_base_lock);
236 	return 0;
237 }
238 
239 /* Device list removal */
240 static void unlist_netdevice(struct net_device *dev)
241 {
242 	ASSERT_RTNL();
243 
244 	/* Unlink dev from the device chain */
245 	write_lock_bh(&dev_base_lock);
246 	list_del(&dev->dev_list);
247 	hlist_del(&dev->name_hlist);
248 	hlist_del(&dev->index_hlist);
249 	write_unlock_bh(&dev_base_lock);
250 }
251 
252 /*
253  *	Our notifier list
254  */
255 
256 static RAW_NOTIFIER_HEAD(netdev_chain);
257 
258 /*
259  *	Device drivers call our routines to queue packets here. We empty the
260  *	queue in the local softnet handler.
261  */
262 
263 DEFINE_PER_CPU(struct softnet_data, softnet_data);
264 
265 #ifdef CONFIG_LOCKDEP
266 /*
267  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
268  * according to dev->type
269  */
270 static const unsigned short netdev_lock_type[] =
271 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
272 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
273 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
274 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
275 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
276 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
277 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
278 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
279 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
280 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
281 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
282 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
283 	 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
284 	 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
285 	 ARPHRD_NONE};
286 
287 static const char *netdev_lock_name[] =
288 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
289 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
290 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
291 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
292 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
293 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
294 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
295 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
296 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
297 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
298 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
299 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
300 	 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
301 	 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
302 	 "_xmit_NONE"};
303 
304 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
305 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
306 
307 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
308 {
309 	int i;
310 
311 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
312 		if (netdev_lock_type[i] == dev_type)
313 			return i;
314 	/* the last key is used by default */
315 	return ARRAY_SIZE(netdev_lock_type) - 1;
316 }
317 
318 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
319 						 unsigned short dev_type)
320 {
321 	int i;
322 
323 	i = netdev_lock_pos(dev_type);
324 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
325 				   netdev_lock_name[i]);
326 }
327 
328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
329 {
330 	int i;
331 
332 	i = netdev_lock_pos(dev->type);
333 	lockdep_set_class_and_name(&dev->addr_list_lock,
334 				   &netdev_addr_lock_key[i],
335 				   netdev_lock_name[i]);
336 }
337 #else
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 						 unsigned short dev_type)
340 {
341 }
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344 }
345 #endif
346 
347 /*******************************************************************************
348 
349 		Protocol management and registration routines
350 
351 *******************************************************************************/
352 
353 /*
354  *	Add a protocol ID to the list. Now that the input handler is
355  *	smarter we can dispense with all the messy stuff that used to be
356  *	here.
357  *
358  *	BEWARE!!! Protocol handlers, mangling input packets,
359  *	MUST BE last in hash buckets and checking protocol handlers
360  *	MUST start from promiscuous ptype_all chain in net_bh.
361  *	It is true now, do not change it.
362  *	Explanation follows: if protocol handler, mangling packet, will
363  *	be the first on list, it is not able to sense, that packet
364  *	is cloned and should be copied-on-write, so that it will
365  *	change it and subsequent readers will get broken packet.
366  *							--ANK (980803)
367  */
368 
369 /**
370  *	dev_add_pack - add packet handler
371  *	@pt: packet type declaration
372  *
373  *	Add a protocol handler to the networking stack. The passed &packet_type
374  *	is linked into kernel lists and may not be freed until it has been
375  *	removed from the kernel lists.
376  *
377  *	This call does not sleep therefore it can not
378  *	guarantee all CPU's that are in middle of receiving packets
379  *	will see the new packet type (until the next received packet).
380  */
381 
382 void dev_add_pack(struct packet_type *pt)
383 {
384 	int hash;
385 
386 	spin_lock_bh(&ptype_lock);
387 	if (pt->type == htons(ETH_P_ALL))
388 		list_add_rcu(&pt->list, &ptype_all);
389 	else {
390 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
391 		list_add_rcu(&pt->list, &ptype_base[hash]);
392 	}
393 	spin_unlock_bh(&ptype_lock);
394 }
395 
396 /**
397  *	__dev_remove_pack	 - remove packet handler
398  *	@pt: packet type declaration
399  *
400  *	Remove a protocol handler that was previously added to the kernel
401  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
402  *	from the kernel lists and can be freed or reused once this function
403  *	returns.
404  *
405  *      The packet type might still be in use by receivers
406  *	and must not be freed until after all the CPU's have gone
407  *	through a quiescent state.
408  */
409 void __dev_remove_pack(struct packet_type *pt)
410 {
411 	struct list_head *head;
412 	struct packet_type *pt1;
413 
414 	spin_lock_bh(&ptype_lock);
415 
416 	if (pt->type == htons(ETH_P_ALL))
417 		head = &ptype_all;
418 	else
419 		head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
420 
421 	list_for_each_entry(pt1, head, list) {
422 		if (pt == pt1) {
423 			list_del_rcu(&pt->list);
424 			goto out;
425 		}
426 	}
427 
428 	printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
429 out:
430 	spin_unlock_bh(&ptype_lock);
431 }
432 /**
433  *	dev_remove_pack	 - remove packet handler
434  *	@pt: packet type declaration
435  *
436  *	Remove a protocol handler that was previously added to the kernel
437  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
438  *	from the kernel lists and can be freed or reused once this function
439  *	returns.
440  *
441  *	This call sleeps to guarantee that no CPU is looking at the packet
442  *	type after return.
443  */
444 void dev_remove_pack(struct packet_type *pt)
445 {
446 	__dev_remove_pack(pt);
447 
448 	synchronize_net();
449 }
450 
451 /******************************************************************************
452 
453 		      Device Boot-time Settings Routines
454 
455 *******************************************************************************/
456 
457 /* Boot time configuration table */
458 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
459 
460 /**
461  *	netdev_boot_setup_add	- add new setup entry
462  *	@name: name of the device
463  *	@map: configured settings for the device
464  *
465  *	Adds new setup entry to the dev_boot_setup list.  The function
466  *	returns 0 on error and 1 on success.  This is a generic routine to
467  *	all netdevices.
468  */
469 static int netdev_boot_setup_add(char *name, struct ifmap *map)
470 {
471 	struct netdev_boot_setup *s;
472 	int i;
473 
474 	s = dev_boot_setup;
475 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
476 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
477 			memset(s[i].name, 0, sizeof(s[i].name));
478 			strlcpy(s[i].name, name, IFNAMSIZ);
479 			memcpy(&s[i].map, map, sizeof(s[i].map));
480 			break;
481 		}
482 	}
483 
484 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
485 }
486 
487 /**
488  *	netdev_boot_setup_check	- check boot time settings
489  *	@dev: the netdevice
490  *
491  * 	Check boot time settings for the device.
492  *	The found settings are set for the device to be used
493  *	later in the device probing.
494  *	Returns 0 if no settings found, 1 if they are.
495  */
496 int netdev_boot_setup_check(struct net_device *dev)
497 {
498 	struct netdev_boot_setup *s = dev_boot_setup;
499 	int i;
500 
501 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
502 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
503 		    !strcmp(dev->name, s[i].name)) {
504 			dev->irq 	= s[i].map.irq;
505 			dev->base_addr 	= s[i].map.base_addr;
506 			dev->mem_start 	= s[i].map.mem_start;
507 			dev->mem_end 	= s[i].map.mem_end;
508 			return 1;
509 		}
510 	}
511 	return 0;
512 }
513 
514 
515 /**
516  *	netdev_boot_base	- get address from boot time settings
517  *	@prefix: prefix for network device
518  *	@unit: id for network device
519  *
520  * 	Check boot time settings for the base address of device.
521  *	The found settings are set for the device to be used
522  *	later in the device probing.
523  *	Returns 0 if no settings found.
524  */
525 unsigned long netdev_boot_base(const char *prefix, int unit)
526 {
527 	const struct netdev_boot_setup *s = dev_boot_setup;
528 	char name[IFNAMSIZ];
529 	int i;
530 
531 	sprintf(name, "%s%d", prefix, unit);
532 
533 	/*
534 	 * If device already registered then return base of 1
535 	 * to indicate not to probe for this interface
536 	 */
537 	if (__dev_get_by_name(&init_net, name))
538 		return 1;
539 
540 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
541 		if (!strcmp(name, s[i].name))
542 			return s[i].map.base_addr;
543 	return 0;
544 }
545 
546 /*
547  * Saves at boot time configured settings for any netdevice.
548  */
549 int __init netdev_boot_setup(char *str)
550 {
551 	int ints[5];
552 	struct ifmap map;
553 
554 	str = get_options(str, ARRAY_SIZE(ints), ints);
555 	if (!str || !*str)
556 		return 0;
557 
558 	/* Save settings */
559 	memset(&map, 0, sizeof(map));
560 	if (ints[0] > 0)
561 		map.irq = ints[1];
562 	if (ints[0] > 1)
563 		map.base_addr = ints[2];
564 	if (ints[0] > 2)
565 		map.mem_start = ints[3];
566 	if (ints[0] > 3)
567 		map.mem_end = ints[4];
568 
569 	/* Add new entry to the list */
570 	return netdev_boot_setup_add(str, &map);
571 }
572 
573 __setup("netdev=", netdev_boot_setup);
574 
575 /*******************************************************************************
576 
577 			    Device Interface Subroutines
578 
579 *******************************************************************************/
580 
581 /**
582  *	__dev_get_by_name	- find a device by its name
583  *	@net: the applicable net namespace
584  *	@name: name to find
585  *
586  *	Find an interface by name. Must be called under RTNL semaphore
587  *	or @dev_base_lock. If the name is found a pointer to the device
588  *	is returned. If the name is not found then %NULL is returned. The
589  *	reference counters are not incremented so the caller must be
590  *	careful with locks.
591  */
592 
593 struct net_device *__dev_get_by_name(struct net *net, const char *name)
594 {
595 	struct hlist_node *p;
596 
597 	hlist_for_each(p, dev_name_hash(net, name)) {
598 		struct net_device *dev
599 			= hlist_entry(p, struct net_device, name_hlist);
600 		if (!strncmp(dev->name, name, IFNAMSIZ))
601 			return dev;
602 	}
603 	return NULL;
604 }
605 
606 /**
607  *	dev_get_by_name		- find a device by its name
608  *	@net: the applicable net namespace
609  *	@name: name to find
610  *
611  *	Find an interface by name. This can be called from any
612  *	context and does its own locking. The returned handle has
613  *	the usage count incremented and the caller must use dev_put() to
614  *	release it when it is no longer needed. %NULL is returned if no
615  *	matching device is found.
616  */
617 
618 struct net_device *dev_get_by_name(struct net *net, const char *name)
619 {
620 	struct net_device *dev;
621 
622 	read_lock(&dev_base_lock);
623 	dev = __dev_get_by_name(net, name);
624 	if (dev)
625 		dev_hold(dev);
626 	read_unlock(&dev_base_lock);
627 	return dev;
628 }
629 
630 /**
631  *	__dev_get_by_index - find a device by its ifindex
632  *	@net: the applicable net namespace
633  *	@ifindex: index of device
634  *
635  *	Search for an interface by index. Returns %NULL if the device
636  *	is not found or a pointer to the device. The device has not
637  *	had its reference counter increased so the caller must be careful
638  *	about locking. The caller must hold either the RTNL semaphore
639  *	or @dev_base_lock.
640  */
641 
642 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
643 {
644 	struct hlist_node *p;
645 
646 	hlist_for_each(p, dev_index_hash(net, ifindex)) {
647 		struct net_device *dev
648 			= hlist_entry(p, struct net_device, index_hlist);
649 		if (dev->ifindex == ifindex)
650 			return dev;
651 	}
652 	return NULL;
653 }
654 
655 
656 /**
657  *	dev_get_by_index - find a device by its ifindex
658  *	@net: the applicable net namespace
659  *	@ifindex: index of device
660  *
661  *	Search for an interface by index. Returns NULL if the device
662  *	is not found or a pointer to the device. The device returned has
663  *	had a reference added and the pointer is safe until the user calls
664  *	dev_put to indicate they have finished with it.
665  */
666 
667 struct net_device *dev_get_by_index(struct net *net, int ifindex)
668 {
669 	struct net_device *dev;
670 
671 	read_lock(&dev_base_lock);
672 	dev = __dev_get_by_index(net, ifindex);
673 	if (dev)
674 		dev_hold(dev);
675 	read_unlock(&dev_base_lock);
676 	return dev;
677 }
678 
679 /**
680  *	dev_getbyhwaddr - find a device by its hardware address
681  *	@net: the applicable net namespace
682  *	@type: media type of device
683  *	@ha: hardware address
684  *
685  *	Search for an interface by MAC address. Returns NULL if the device
686  *	is not found or a pointer to the device. The caller must hold the
687  *	rtnl semaphore. The returned device has not had its ref count increased
688  *	and the caller must therefore be careful about locking
689  *
690  *	BUGS:
691  *	If the API was consistent this would be __dev_get_by_hwaddr
692  */
693 
694 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
695 {
696 	struct net_device *dev;
697 
698 	ASSERT_RTNL();
699 
700 	for_each_netdev(net, dev)
701 		if (dev->type == type &&
702 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
703 			return dev;
704 
705 	return NULL;
706 }
707 
708 EXPORT_SYMBOL(dev_getbyhwaddr);
709 
710 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
711 {
712 	struct net_device *dev;
713 
714 	ASSERT_RTNL();
715 	for_each_netdev(net, dev)
716 		if (dev->type == type)
717 			return dev;
718 
719 	return NULL;
720 }
721 
722 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
723 
724 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
725 {
726 	struct net_device *dev;
727 
728 	rtnl_lock();
729 	dev = __dev_getfirstbyhwtype(net, type);
730 	if (dev)
731 		dev_hold(dev);
732 	rtnl_unlock();
733 	return dev;
734 }
735 
736 EXPORT_SYMBOL(dev_getfirstbyhwtype);
737 
738 /**
739  *	dev_get_by_flags - find any device with given flags
740  *	@net: the applicable net namespace
741  *	@if_flags: IFF_* values
742  *	@mask: bitmask of bits in if_flags to check
743  *
744  *	Search for any interface with the given flags. Returns NULL if a device
745  *	is not found or a pointer to the device. The device returned has
746  *	had a reference added and the pointer is safe until the user calls
747  *	dev_put to indicate they have finished with it.
748  */
749 
750 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
751 {
752 	struct net_device *dev, *ret;
753 
754 	ret = NULL;
755 	read_lock(&dev_base_lock);
756 	for_each_netdev(net, dev) {
757 		if (((dev->flags ^ if_flags) & mask) == 0) {
758 			dev_hold(dev);
759 			ret = dev;
760 			break;
761 		}
762 	}
763 	read_unlock(&dev_base_lock);
764 	return ret;
765 }
766 
767 /**
768  *	dev_valid_name - check if name is okay for network device
769  *	@name: name string
770  *
771  *	Network device names need to be valid file names to
772  *	to allow sysfs to work.  We also disallow any kind of
773  *	whitespace.
774  */
775 int dev_valid_name(const char *name)
776 {
777 	if (*name == '\0')
778 		return 0;
779 	if (strlen(name) >= IFNAMSIZ)
780 		return 0;
781 	if (!strcmp(name, ".") || !strcmp(name, ".."))
782 		return 0;
783 
784 	while (*name) {
785 		if (*name == '/' || isspace(*name))
786 			return 0;
787 		name++;
788 	}
789 	return 1;
790 }
791 
792 /**
793  *	__dev_alloc_name - allocate a name for a device
794  *	@net: network namespace to allocate the device name in
795  *	@name: name format string
796  *	@buf:  scratch buffer and result name string
797  *
798  *	Passed a format string - eg "lt%d" it will try and find a suitable
799  *	id. It scans list of devices to build up a free map, then chooses
800  *	the first empty slot. The caller must hold the dev_base or rtnl lock
801  *	while allocating the name and adding the device in order to avoid
802  *	duplicates.
803  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
804  *	Returns the number of the unit assigned or a negative errno code.
805  */
806 
807 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
808 {
809 	int i = 0;
810 	const char *p;
811 	const int max_netdevices = 8*PAGE_SIZE;
812 	unsigned long *inuse;
813 	struct net_device *d;
814 
815 	p = strnchr(name, IFNAMSIZ-1, '%');
816 	if (p) {
817 		/*
818 		 * Verify the string as this thing may have come from
819 		 * the user.  There must be either one "%d" and no other "%"
820 		 * characters.
821 		 */
822 		if (p[1] != 'd' || strchr(p + 2, '%'))
823 			return -EINVAL;
824 
825 		/* Use one page as a bit array of possible slots */
826 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
827 		if (!inuse)
828 			return -ENOMEM;
829 
830 		for_each_netdev(net, d) {
831 			if (!sscanf(d->name, name, &i))
832 				continue;
833 			if (i < 0 || i >= max_netdevices)
834 				continue;
835 
836 			/*  avoid cases where sscanf is not exact inverse of printf */
837 			snprintf(buf, IFNAMSIZ, name, i);
838 			if (!strncmp(buf, d->name, IFNAMSIZ))
839 				set_bit(i, inuse);
840 		}
841 
842 		i = find_first_zero_bit(inuse, max_netdevices);
843 		free_page((unsigned long) inuse);
844 	}
845 
846 	snprintf(buf, IFNAMSIZ, name, i);
847 	if (!__dev_get_by_name(net, buf))
848 		return i;
849 
850 	/* It is possible to run out of possible slots
851 	 * when the name is long and there isn't enough space left
852 	 * for the digits, or if all bits are used.
853 	 */
854 	return -ENFILE;
855 }
856 
857 /**
858  *	dev_alloc_name - allocate a name for a device
859  *	@dev: device
860  *	@name: name format string
861  *
862  *	Passed a format string - eg "lt%d" it will try and find a suitable
863  *	id. It scans list of devices to build up a free map, then chooses
864  *	the first empty slot. The caller must hold the dev_base or rtnl lock
865  *	while allocating the name and adding the device in order to avoid
866  *	duplicates.
867  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
868  *	Returns the number of the unit assigned or a negative errno code.
869  */
870 
871 int dev_alloc_name(struct net_device *dev, const char *name)
872 {
873 	char buf[IFNAMSIZ];
874 	struct net *net;
875 	int ret;
876 
877 	BUG_ON(!dev_net(dev));
878 	net = dev_net(dev);
879 	ret = __dev_alloc_name(net, name, buf);
880 	if (ret >= 0)
881 		strlcpy(dev->name, buf, IFNAMSIZ);
882 	return ret;
883 }
884 
885 
886 /**
887  *	dev_change_name - change name of a device
888  *	@dev: device
889  *	@newname: name (or format string) must be at least IFNAMSIZ
890  *
891  *	Change name of a device, can pass format strings "eth%d".
892  *	for wildcarding.
893  */
894 int dev_change_name(struct net_device *dev, char *newname)
895 {
896 	char oldname[IFNAMSIZ];
897 	int err = 0;
898 	int ret;
899 	struct net *net;
900 
901 	ASSERT_RTNL();
902 	BUG_ON(!dev_net(dev));
903 
904 	net = dev_net(dev);
905 	if (dev->flags & IFF_UP)
906 		return -EBUSY;
907 
908 	if (!dev_valid_name(newname))
909 		return -EINVAL;
910 
911 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
912 		return 0;
913 
914 	memcpy(oldname, dev->name, IFNAMSIZ);
915 
916 	if (strchr(newname, '%')) {
917 		err = dev_alloc_name(dev, newname);
918 		if (err < 0)
919 			return err;
920 		strcpy(newname, dev->name);
921 	}
922 	else if (__dev_get_by_name(net, newname))
923 		return -EEXIST;
924 	else
925 		strlcpy(dev->name, newname, IFNAMSIZ);
926 
927 rollback:
928 	err = device_rename(&dev->dev, dev->name);
929 	if (err) {
930 		memcpy(dev->name, oldname, IFNAMSIZ);
931 		return err;
932 	}
933 
934 	write_lock_bh(&dev_base_lock);
935 	hlist_del(&dev->name_hlist);
936 	hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
937 	write_unlock_bh(&dev_base_lock);
938 
939 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
940 	ret = notifier_to_errno(ret);
941 
942 	if (ret) {
943 		if (err) {
944 			printk(KERN_ERR
945 			       "%s: name change rollback failed: %d.\n",
946 			       dev->name, ret);
947 		} else {
948 			err = ret;
949 			memcpy(dev->name, oldname, IFNAMSIZ);
950 			goto rollback;
951 		}
952 	}
953 
954 	return err;
955 }
956 
957 /**
958  *	netdev_features_change - device changes features
959  *	@dev: device to cause notification
960  *
961  *	Called to indicate a device has changed features.
962  */
963 void netdev_features_change(struct net_device *dev)
964 {
965 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
966 }
967 EXPORT_SYMBOL(netdev_features_change);
968 
969 /**
970  *	netdev_state_change - device changes state
971  *	@dev: device to cause notification
972  *
973  *	Called to indicate a device has changed state. This function calls
974  *	the notifier chains for netdev_chain and sends a NEWLINK message
975  *	to the routing socket.
976  */
977 void netdev_state_change(struct net_device *dev)
978 {
979 	if (dev->flags & IFF_UP) {
980 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
981 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
982 	}
983 }
984 
985 void netdev_bonding_change(struct net_device *dev)
986 {
987 	call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
988 }
989 EXPORT_SYMBOL(netdev_bonding_change);
990 
991 /**
992  *	dev_load 	- load a network module
993  *	@net: the applicable net namespace
994  *	@name: name of interface
995  *
996  *	If a network interface is not present and the process has suitable
997  *	privileges this function loads the module. If module loading is not
998  *	available in this kernel then it becomes a nop.
999  */
1000 
1001 void dev_load(struct net *net, const char *name)
1002 {
1003 	struct net_device *dev;
1004 
1005 	read_lock(&dev_base_lock);
1006 	dev = __dev_get_by_name(net, name);
1007 	read_unlock(&dev_base_lock);
1008 
1009 	if (!dev && capable(CAP_SYS_MODULE))
1010 		request_module("%s", name);
1011 }
1012 
1013 /**
1014  *	dev_open	- prepare an interface for use.
1015  *	@dev:	device to open
1016  *
1017  *	Takes a device from down to up state. The device's private open
1018  *	function is invoked and then the multicast lists are loaded. Finally
1019  *	the device is moved into the up state and a %NETDEV_UP message is
1020  *	sent to the netdev notifier chain.
1021  *
1022  *	Calling this function on an active interface is a nop. On a failure
1023  *	a negative errno code is returned.
1024  */
1025 int dev_open(struct net_device *dev)
1026 {
1027 	int ret = 0;
1028 
1029 	ASSERT_RTNL();
1030 
1031 	/*
1032 	 *	Is it already up?
1033 	 */
1034 
1035 	if (dev->flags & IFF_UP)
1036 		return 0;
1037 
1038 	/*
1039 	 *	Is it even present?
1040 	 */
1041 	if (!netif_device_present(dev))
1042 		return -ENODEV;
1043 
1044 	/*
1045 	 *	Call device private open method
1046 	 */
1047 	set_bit(__LINK_STATE_START, &dev->state);
1048 
1049 	if (dev->validate_addr)
1050 		ret = dev->validate_addr(dev);
1051 
1052 	if (!ret && dev->open)
1053 		ret = dev->open(dev);
1054 
1055 	/*
1056 	 *	If it went open OK then:
1057 	 */
1058 
1059 	if (ret)
1060 		clear_bit(__LINK_STATE_START, &dev->state);
1061 	else {
1062 		/*
1063 		 *	Set the flags.
1064 		 */
1065 		dev->flags |= IFF_UP;
1066 
1067 		/*
1068 		 *	Initialize multicasting status
1069 		 */
1070 		dev_set_rx_mode(dev);
1071 
1072 		/*
1073 		 *	Wakeup transmit queue engine
1074 		 */
1075 		dev_activate(dev);
1076 
1077 		/*
1078 		 *	... and announce new interface.
1079 		 */
1080 		call_netdevice_notifiers(NETDEV_UP, dev);
1081 	}
1082 
1083 	return ret;
1084 }
1085 
1086 /**
1087  *	dev_close - shutdown an interface.
1088  *	@dev: device to shutdown
1089  *
1090  *	This function moves an active device into down state. A
1091  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1092  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1093  *	chain.
1094  */
1095 int dev_close(struct net_device *dev)
1096 {
1097 	ASSERT_RTNL();
1098 
1099 	might_sleep();
1100 
1101 	if (!(dev->flags & IFF_UP))
1102 		return 0;
1103 
1104 	/*
1105 	 *	Tell people we are going down, so that they can
1106 	 *	prepare to death, when device is still operating.
1107 	 */
1108 	call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1109 
1110 	clear_bit(__LINK_STATE_START, &dev->state);
1111 
1112 	/* Synchronize to scheduled poll. We cannot touch poll list,
1113 	 * it can be even on different cpu. So just clear netif_running().
1114 	 *
1115 	 * dev->stop() will invoke napi_disable() on all of it's
1116 	 * napi_struct instances on this device.
1117 	 */
1118 	smp_mb__after_clear_bit(); /* Commit netif_running(). */
1119 
1120 	dev_deactivate(dev);
1121 
1122 	/*
1123 	 *	Call the device specific close. This cannot fail.
1124 	 *	Only if device is UP
1125 	 *
1126 	 *	We allow it to be called even after a DETACH hot-plug
1127 	 *	event.
1128 	 */
1129 	if (dev->stop)
1130 		dev->stop(dev);
1131 
1132 	/*
1133 	 *	Device is now down.
1134 	 */
1135 
1136 	dev->flags &= ~IFF_UP;
1137 
1138 	/*
1139 	 * Tell people we are down
1140 	 */
1141 	call_netdevice_notifiers(NETDEV_DOWN, dev);
1142 
1143 	return 0;
1144 }
1145 
1146 
1147 /**
1148  *	dev_disable_lro - disable Large Receive Offload on a device
1149  *	@dev: device
1150  *
1151  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1152  *	called under RTNL.  This is needed if received packets may be
1153  *	forwarded to another interface.
1154  */
1155 void dev_disable_lro(struct net_device *dev)
1156 {
1157 	if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1158 	    dev->ethtool_ops->set_flags) {
1159 		u32 flags = dev->ethtool_ops->get_flags(dev);
1160 		if (flags & ETH_FLAG_LRO) {
1161 			flags &= ~ETH_FLAG_LRO;
1162 			dev->ethtool_ops->set_flags(dev, flags);
1163 		}
1164 	}
1165 	WARN_ON(dev->features & NETIF_F_LRO);
1166 }
1167 EXPORT_SYMBOL(dev_disable_lro);
1168 
1169 
1170 static int dev_boot_phase = 1;
1171 
1172 /*
1173  *	Device change register/unregister. These are not inline or static
1174  *	as we export them to the world.
1175  */
1176 
1177 /**
1178  *	register_netdevice_notifier - register a network notifier block
1179  *	@nb: notifier
1180  *
1181  *	Register a notifier to be called when network device events occur.
1182  *	The notifier passed is linked into the kernel structures and must
1183  *	not be reused until it has been unregistered. A negative errno code
1184  *	is returned on a failure.
1185  *
1186  * 	When registered all registration and up events are replayed
1187  *	to the new notifier to allow device to have a race free
1188  *	view of the network device list.
1189  */
1190 
1191 int register_netdevice_notifier(struct notifier_block *nb)
1192 {
1193 	struct net_device *dev;
1194 	struct net_device *last;
1195 	struct net *net;
1196 	int err;
1197 
1198 	rtnl_lock();
1199 	err = raw_notifier_chain_register(&netdev_chain, nb);
1200 	if (err)
1201 		goto unlock;
1202 	if (dev_boot_phase)
1203 		goto unlock;
1204 	for_each_net(net) {
1205 		for_each_netdev(net, dev) {
1206 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1207 			err = notifier_to_errno(err);
1208 			if (err)
1209 				goto rollback;
1210 
1211 			if (!(dev->flags & IFF_UP))
1212 				continue;
1213 
1214 			nb->notifier_call(nb, NETDEV_UP, dev);
1215 		}
1216 	}
1217 
1218 unlock:
1219 	rtnl_unlock();
1220 	return err;
1221 
1222 rollback:
1223 	last = dev;
1224 	for_each_net(net) {
1225 		for_each_netdev(net, dev) {
1226 			if (dev == last)
1227 				break;
1228 
1229 			if (dev->flags & IFF_UP) {
1230 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1231 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1232 			}
1233 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1234 		}
1235 	}
1236 
1237 	raw_notifier_chain_unregister(&netdev_chain, nb);
1238 	goto unlock;
1239 }
1240 
1241 /**
1242  *	unregister_netdevice_notifier - unregister a network notifier block
1243  *	@nb: notifier
1244  *
1245  *	Unregister a notifier previously registered by
1246  *	register_netdevice_notifier(). The notifier is unlinked into the
1247  *	kernel structures and may then be reused. A negative errno code
1248  *	is returned on a failure.
1249  */
1250 
1251 int unregister_netdevice_notifier(struct notifier_block *nb)
1252 {
1253 	int err;
1254 
1255 	rtnl_lock();
1256 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1257 	rtnl_unlock();
1258 	return err;
1259 }
1260 
1261 /**
1262  *	call_netdevice_notifiers - call all network notifier blocks
1263  *      @val: value passed unmodified to notifier function
1264  *      @dev: net_device pointer passed unmodified to notifier function
1265  *
1266  *	Call all network notifier blocks.  Parameters and return value
1267  *	are as for raw_notifier_call_chain().
1268  */
1269 
1270 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1271 {
1272 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1273 }
1274 
1275 /* When > 0 there are consumers of rx skb time stamps */
1276 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1277 
1278 void net_enable_timestamp(void)
1279 {
1280 	atomic_inc(&netstamp_needed);
1281 }
1282 
1283 void net_disable_timestamp(void)
1284 {
1285 	atomic_dec(&netstamp_needed);
1286 }
1287 
1288 static inline void net_timestamp(struct sk_buff *skb)
1289 {
1290 	if (atomic_read(&netstamp_needed))
1291 		__net_timestamp(skb);
1292 	else
1293 		skb->tstamp.tv64 = 0;
1294 }
1295 
1296 /*
1297  *	Support routine. Sends outgoing frames to any network
1298  *	taps currently in use.
1299  */
1300 
1301 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1302 {
1303 	struct packet_type *ptype;
1304 
1305 	net_timestamp(skb);
1306 
1307 	rcu_read_lock();
1308 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1309 		/* Never send packets back to the socket
1310 		 * they originated from - MvS (miquels@drinkel.ow.org)
1311 		 */
1312 		if ((ptype->dev == dev || !ptype->dev) &&
1313 		    (ptype->af_packet_priv == NULL ||
1314 		     (struct sock *)ptype->af_packet_priv != skb->sk)) {
1315 			struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1316 			if (!skb2)
1317 				break;
1318 
1319 			/* skb->nh should be correctly
1320 			   set by sender, so that the second statement is
1321 			   just protection against buggy protocols.
1322 			 */
1323 			skb_reset_mac_header(skb2);
1324 
1325 			if (skb_network_header(skb2) < skb2->data ||
1326 			    skb2->network_header > skb2->tail) {
1327 				if (net_ratelimit())
1328 					printk(KERN_CRIT "protocol %04x is "
1329 					       "buggy, dev %s\n",
1330 					       skb2->protocol, dev->name);
1331 				skb_reset_network_header(skb2);
1332 			}
1333 
1334 			skb2->transport_header = skb2->network_header;
1335 			skb2->pkt_type = PACKET_OUTGOING;
1336 			ptype->func(skb2, skb->dev, ptype, skb->dev);
1337 		}
1338 	}
1339 	rcu_read_unlock();
1340 }
1341 
1342 
1343 static inline void __netif_reschedule(struct Qdisc *q)
1344 {
1345 	struct softnet_data *sd;
1346 	unsigned long flags;
1347 
1348 	local_irq_save(flags);
1349 	sd = &__get_cpu_var(softnet_data);
1350 	q->next_sched = sd->output_queue;
1351 	sd->output_queue = q;
1352 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
1353 	local_irq_restore(flags);
1354 }
1355 
1356 void __netif_schedule(struct Qdisc *q)
1357 {
1358 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1359 		__netif_reschedule(q);
1360 }
1361 EXPORT_SYMBOL(__netif_schedule);
1362 
1363 void dev_kfree_skb_irq(struct sk_buff *skb)
1364 {
1365 	if (atomic_dec_and_test(&skb->users)) {
1366 		struct softnet_data *sd;
1367 		unsigned long flags;
1368 
1369 		local_irq_save(flags);
1370 		sd = &__get_cpu_var(softnet_data);
1371 		skb->next = sd->completion_queue;
1372 		sd->completion_queue = skb;
1373 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1374 		local_irq_restore(flags);
1375 	}
1376 }
1377 EXPORT_SYMBOL(dev_kfree_skb_irq);
1378 
1379 void dev_kfree_skb_any(struct sk_buff *skb)
1380 {
1381 	if (in_irq() || irqs_disabled())
1382 		dev_kfree_skb_irq(skb);
1383 	else
1384 		dev_kfree_skb(skb);
1385 }
1386 EXPORT_SYMBOL(dev_kfree_skb_any);
1387 
1388 
1389 /**
1390  * netif_device_detach - mark device as removed
1391  * @dev: network device
1392  *
1393  * Mark device as removed from system and therefore no longer available.
1394  */
1395 void netif_device_detach(struct net_device *dev)
1396 {
1397 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1398 	    netif_running(dev)) {
1399 		netif_stop_queue(dev);
1400 	}
1401 }
1402 EXPORT_SYMBOL(netif_device_detach);
1403 
1404 /**
1405  * netif_device_attach - mark device as attached
1406  * @dev: network device
1407  *
1408  * Mark device as attached from system and restart if needed.
1409  */
1410 void netif_device_attach(struct net_device *dev)
1411 {
1412 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1413 	    netif_running(dev)) {
1414 		netif_wake_queue(dev);
1415 		__netdev_watchdog_up(dev);
1416 	}
1417 }
1418 EXPORT_SYMBOL(netif_device_attach);
1419 
1420 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1421 {
1422 	return ((features & NETIF_F_GEN_CSUM) ||
1423 		((features & NETIF_F_IP_CSUM) &&
1424 		 protocol == htons(ETH_P_IP)) ||
1425 		((features & NETIF_F_IPV6_CSUM) &&
1426 		 protocol == htons(ETH_P_IPV6)));
1427 }
1428 
1429 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1430 {
1431 	if (can_checksum_protocol(dev->features, skb->protocol))
1432 		return true;
1433 
1434 	if (skb->protocol == htons(ETH_P_8021Q)) {
1435 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1436 		if (can_checksum_protocol(dev->features & dev->vlan_features,
1437 					  veh->h_vlan_encapsulated_proto))
1438 			return true;
1439 	}
1440 
1441 	return false;
1442 }
1443 
1444 /*
1445  * Invalidate hardware checksum when packet is to be mangled, and
1446  * complete checksum manually on outgoing path.
1447  */
1448 int skb_checksum_help(struct sk_buff *skb)
1449 {
1450 	__wsum csum;
1451 	int ret = 0, offset;
1452 
1453 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1454 		goto out_set_summed;
1455 
1456 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1457 		/* Let GSO fix up the checksum. */
1458 		goto out_set_summed;
1459 	}
1460 
1461 	offset = skb->csum_start - skb_headroom(skb);
1462 	BUG_ON(offset >= skb_headlen(skb));
1463 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1464 
1465 	offset += skb->csum_offset;
1466 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1467 
1468 	if (skb_cloned(skb) &&
1469 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1470 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1471 		if (ret)
1472 			goto out;
1473 	}
1474 
1475 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1476 out_set_summed:
1477 	skb->ip_summed = CHECKSUM_NONE;
1478 out:
1479 	return ret;
1480 }
1481 
1482 /**
1483  *	skb_gso_segment - Perform segmentation on skb.
1484  *	@skb: buffer to segment
1485  *	@features: features for the output path (see dev->features)
1486  *
1487  *	This function segments the given skb and returns a list of segments.
1488  *
1489  *	It may return NULL if the skb requires no segmentation.  This is
1490  *	only possible when GSO is used for verifying header integrity.
1491  */
1492 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1493 {
1494 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1495 	struct packet_type *ptype;
1496 	__be16 type = skb->protocol;
1497 	int err;
1498 
1499 	BUG_ON(skb_shinfo(skb)->frag_list);
1500 
1501 	skb_reset_mac_header(skb);
1502 	skb->mac_len = skb->network_header - skb->mac_header;
1503 	__skb_pull(skb, skb->mac_len);
1504 
1505 	if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1506 		if (skb_header_cloned(skb) &&
1507 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1508 			return ERR_PTR(err);
1509 	}
1510 
1511 	rcu_read_lock();
1512 	list_for_each_entry_rcu(ptype,
1513 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1514 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1515 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1516 				err = ptype->gso_send_check(skb);
1517 				segs = ERR_PTR(err);
1518 				if (err || skb_gso_ok(skb, features))
1519 					break;
1520 				__skb_push(skb, (skb->data -
1521 						 skb_network_header(skb)));
1522 			}
1523 			segs = ptype->gso_segment(skb, features);
1524 			break;
1525 		}
1526 	}
1527 	rcu_read_unlock();
1528 
1529 	__skb_push(skb, skb->data - skb_mac_header(skb));
1530 
1531 	return segs;
1532 }
1533 
1534 EXPORT_SYMBOL(skb_gso_segment);
1535 
1536 /* Take action when hardware reception checksum errors are detected. */
1537 #ifdef CONFIG_BUG
1538 void netdev_rx_csum_fault(struct net_device *dev)
1539 {
1540 	if (net_ratelimit()) {
1541 		printk(KERN_ERR "%s: hw csum failure.\n",
1542 			dev ? dev->name : "<unknown>");
1543 		dump_stack();
1544 	}
1545 }
1546 EXPORT_SYMBOL(netdev_rx_csum_fault);
1547 #endif
1548 
1549 /* Actually, we should eliminate this check as soon as we know, that:
1550  * 1. IOMMU is present and allows to map all the memory.
1551  * 2. No high memory really exists on this machine.
1552  */
1553 
1554 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1555 {
1556 #ifdef CONFIG_HIGHMEM
1557 	int i;
1558 
1559 	if (dev->features & NETIF_F_HIGHDMA)
1560 		return 0;
1561 
1562 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1563 		if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1564 			return 1;
1565 
1566 #endif
1567 	return 0;
1568 }
1569 
1570 struct dev_gso_cb {
1571 	void (*destructor)(struct sk_buff *skb);
1572 };
1573 
1574 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1575 
1576 static void dev_gso_skb_destructor(struct sk_buff *skb)
1577 {
1578 	struct dev_gso_cb *cb;
1579 
1580 	do {
1581 		struct sk_buff *nskb = skb->next;
1582 
1583 		skb->next = nskb->next;
1584 		nskb->next = NULL;
1585 		kfree_skb(nskb);
1586 	} while (skb->next);
1587 
1588 	cb = DEV_GSO_CB(skb);
1589 	if (cb->destructor)
1590 		cb->destructor(skb);
1591 }
1592 
1593 /**
1594  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
1595  *	@skb: buffer to segment
1596  *
1597  *	This function segments the given skb and stores the list of segments
1598  *	in skb->next.
1599  */
1600 static int dev_gso_segment(struct sk_buff *skb)
1601 {
1602 	struct net_device *dev = skb->dev;
1603 	struct sk_buff *segs;
1604 	int features = dev->features & ~(illegal_highdma(dev, skb) ?
1605 					 NETIF_F_SG : 0);
1606 
1607 	segs = skb_gso_segment(skb, features);
1608 
1609 	/* Verifying header integrity only. */
1610 	if (!segs)
1611 		return 0;
1612 
1613 	if (IS_ERR(segs))
1614 		return PTR_ERR(segs);
1615 
1616 	skb->next = segs;
1617 	DEV_GSO_CB(skb)->destructor = skb->destructor;
1618 	skb->destructor = dev_gso_skb_destructor;
1619 
1620 	return 0;
1621 }
1622 
1623 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1624 			struct netdev_queue *txq)
1625 {
1626 	if (likely(!skb->next)) {
1627 		if (!list_empty(&ptype_all))
1628 			dev_queue_xmit_nit(skb, dev);
1629 
1630 		if (netif_needs_gso(dev, skb)) {
1631 			if (unlikely(dev_gso_segment(skb)))
1632 				goto out_kfree_skb;
1633 			if (skb->next)
1634 				goto gso;
1635 		}
1636 
1637 		return dev->hard_start_xmit(skb, dev);
1638 	}
1639 
1640 gso:
1641 	do {
1642 		struct sk_buff *nskb = skb->next;
1643 		int rc;
1644 
1645 		skb->next = nskb->next;
1646 		nskb->next = NULL;
1647 		rc = dev->hard_start_xmit(nskb, dev);
1648 		if (unlikely(rc)) {
1649 			nskb->next = skb->next;
1650 			skb->next = nskb;
1651 			return rc;
1652 		}
1653 		if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1654 			return NETDEV_TX_BUSY;
1655 	} while (skb->next);
1656 
1657 	skb->destructor = DEV_GSO_CB(skb)->destructor;
1658 
1659 out_kfree_skb:
1660 	kfree_skb(skb);
1661 	return 0;
1662 }
1663 
1664 static u32 simple_tx_hashrnd;
1665 static int simple_tx_hashrnd_initialized = 0;
1666 
1667 static u16 simple_tx_hash(struct net_device *dev, struct sk_buff *skb)
1668 {
1669 	u32 addr1, addr2, ports;
1670 	u32 hash, ihl;
1671 	u8 ip_proto = 0;
1672 
1673 	if (unlikely(!simple_tx_hashrnd_initialized)) {
1674 		get_random_bytes(&simple_tx_hashrnd, 4);
1675 		simple_tx_hashrnd_initialized = 1;
1676 	}
1677 
1678 	switch (skb->protocol) {
1679 	case __constant_htons(ETH_P_IP):
1680 		if (!(ip_hdr(skb)->frag_off & htons(IP_MF | IP_OFFSET)))
1681 			ip_proto = ip_hdr(skb)->protocol;
1682 		addr1 = ip_hdr(skb)->saddr;
1683 		addr2 = ip_hdr(skb)->daddr;
1684 		ihl = ip_hdr(skb)->ihl;
1685 		break;
1686 	case __constant_htons(ETH_P_IPV6):
1687 		ip_proto = ipv6_hdr(skb)->nexthdr;
1688 		addr1 = ipv6_hdr(skb)->saddr.s6_addr32[3];
1689 		addr2 = ipv6_hdr(skb)->daddr.s6_addr32[3];
1690 		ihl = (40 >> 2);
1691 		break;
1692 	default:
1693 		return 0;
1694 	}
1695 
1696 
1697 	switch (ip_proto) {
1698 	case IPPROTO_TCP:
1699 	case IPPROTO_UDP:
1700 	case IPPROTO_DCCP:
1701 	case IPPROTO_ESP:
1702 	case IPPROTO_AH:
1703 	case IPPROTO_SCTP:
1704 	case IPPROTO_UDPLITE:
1705 		ports = *((u32 *) (skb_network_header(skb) + (ihl * 4)));
1706 		break;
1707 
1708 	default:
1709 		ports = 0;
1710 		break;
1711 	}
1712 
1713 	hash = jhash_3words(addr1, addr2, ports, simple_tx_hashrnd);
1714 
1715 	return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1716 }
1717 
1718 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1719 					struct sk_buff *skb)
1720 {
1721 	u16 queue_index = 0;
1722 
1723 	if (dev->select_queue)
1724 		queue_index = dev->select_queue(dev, skb);
1725 	else if (dev->real_num_tx_queues > 1)
1726 		queue_index = simple_tx_hash(dev, skb);
1727 
1728 	skb_set_queue_mapping(skb, queue_index);
1729 	return netdev_get_tx_queue(dev, queue_index);
1730 }
1731 
1732 /**
1733  *	dev_queue_xmit - transmit a buffer
1734  *	@skb: buffer to transmit
1735  *
1736  *	Queue a buffer for transmission to a network device. The caller must
1737  *	have set the device and priority and built the buffer before calling
1738  *	this function. The function can be called from an interrupt.
1739  *
1740  *	A negative errno code is returned on a failure. A success does not
1741  *	guarantee the frame will be transmitted as it may be dropped due
1742  *	to congestion or traffic shaping.
1743  *
1744  * -----------------------------------------------------------------------------------
1745  *      I notice this method can also return errors from the queue disciplines,
1746  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
1747  *      be positive.
1748  *
1749  *      Regardless of the return value, the skb is consumed, so it is currently
1750  *      difficult to retry a send to this method.  (You can bump the ref count
1751  *      before sending to hold a reference for retry if you are careful.)
1752  *
1753  *      When calling this method, interrupts MUST be enabled.  This is because
1754  *      the BH enable code must have IRQs enabled so that it will not deadlock.
1755  *          --BLG
1756  */
1757 int dev_queue_xmit(struct sk_buff *skb)
1758 {
1759 	struct net_device *dev = skb->dev;
1760 	struct netdev_queue *txq;
1761 	struct Qdisc *q;
1762 	int rc = -ENOMEM;
1763 
1764 	/* GSO will handle the following emulations directly. */
1765 	if (netif_needs_gso(dev, skb))
1766 		goto gso;
1767 
1768 	if (skb_shinfo(skb)->frag_list &&
1769 	    !(dev->features & NETIF_F_FRAGLIST) &&
1770 	    __skb_linearize(skb))
1771 		goto out_kfree_skb;
1772 
1773 	/* Fragmented skb is linearized if device does not support SG,
1774 	 * or if at least one of fragments is in highmem and device
1775 	 * does not support DMA from it.
1776 	 */
1777 	if (skb_shinfo(skb)->nr_frags &&
1778 	    (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1779 	    __skb_linearize(skb))
1780 		goto out_kfree_skb;
1781 
1782 	/* If packet is not checksummed and device does not support
1783 	 * checksumming for this protocol, complete checksumming here.
1784 	 */
1785 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1786 		skb_set_transport_header(skb, skb->csum_start -
1787 					      skb_headroom(skb));
1788 		if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1789 			goto out_kfree_skb;
1790 	}
1791 
1792 gso:
1793 	/* Disable soft irqs for various locks below. Also
1794 	 * stops preemption for RCU.
1795 	 */
1796 	rcu_read_lock_bh();
1797 
1798 	txq = dev_pick_tx(dev, skb);
1799 	q = rcu_dereference(txq->qdisc);
1800 
1801 #ifdef CONFIG_NET_CLS_ACT
1802 	skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1803 #endif
1804 	if (q->enqueue) {
1805 		spinlock_t *root_lock = qdisc_lock(q);
1806 
1807 		spin_lock(root_lock);
1808 
1809 		if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1810 			kfree_skb(skb);
1811 			rc = NET_XMIT_DROP;
1812 		} else {
1813 			rc = qdisc_enqueue_root(skb, q);
1814 			qdisc_run(q);
1815 		}
1816 		spin_unlock(root_lock);
1817 
1818 		goto out;
1819 	}
1820 
1821 	/* The device has no queue. Common case for software devices:
1822 	   loopback, all the sorts of tunnels...
1823 
1824 	   Really, it is unlikely that netif_tx_lock protection is necessary
1825 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
1826 	   counters.)
1827 	   However, it is possible, that they rely on protection
1828 	   made by us here.
1829 
1830 	   Check this and shot the lock. It is not prone from deadlocks.
1831 	   Either shot noqueue qdisc, it is even simpler 8)
1832 	 */
1833 	if (dev->flags & IFF_UP) {
1834 		int cpu = smp_processor_id(); /* ok because BHs are off */
1835 
1836 		if (txq->xmit_lock_owner != cpu) {
1837 
1838 			HARD_TX_LOCK(dev, txq, cpu);
1839 
1840 			if (!netif_tx_queue_stopped(txq)) {
1841 				rc = 0;
1842 				if (!dev_hard_start_xmit(skb, dev, txq)) {
1843 					HARD_TX_UNLOCK(dev, txq);
1844 					goto out;
1845 				}
1846 			}
1847 			HARD_TX_UNLOCK(dev, txq);
1848 			if (net_ratelimit())
1849 				printk(KERN_CRIT "Virtual device %s asks to "
1850 				       "queue packet!\n", dev->name);
1851 		} else {
1852 			/* Recursion is detected! It is possible,
1853 			 * unfortunately */
1854 			if (net_ratelimit())
1855 				printk(KERN_CRIT "Dead loop on virtual device "
1856 				       "%s, fix it urgently!\n", dev->name);
1857 		}
1858 	}
1859 
1860 	rc = -ENETDOWN;
1861 	rcu_read_unlock_bh();
1862 
1863 out_kfree_skb:
1864 	kfree_skb(skb);
1865 	return rc;
1866 out:
1867 	rcu_read_unlock_bh();
1868 	return rc;
1869 }
1870 
1871 
1872 /*=======================================================================
1873 			Receiver routines
1874   =======================================================================*/
1875 
1876 int netdev_max_backlog __read_mostly = 1000;
1877 int netdev_budget __read_mostly = 300;
1878 int weight_p __read_mostly = 64;            /* old backlog weight */
1879 
1880 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1881 
1882 
1883 /**
1884  *	netif_rx	-	post buffer to the network code
1885  *	@skb: buffer to post
1886  *
1887  *	This function receives a packet from a device driver and queues it for
1888  *	the upper (protocol) levels to process.  It always succeeds. The buffer
1889  *	may be dropped during processing for congestion control or by the
1890  *	protocol layers.
1891  *
1892  *	return values:
1893  *	NET_RX_SUCCESS	(no congestion)
1894  *	NET_RX_DROP     (packet was dropped)
1895  *
1896  */
1897 
1898 int netif_rx(struct sk_buff *skb)
1899 {
1900 	struct softnet_data *queue;
1901 	unsigned long flags;
1902 
1903 	/* if netpoll wants it, pretend we never saw it */
1904 	if (netpoll_rx(skb))
1905 		return NET_RX_DROP;
1906 
1907 	if (!skb->tstamp.tv64)
1908 		net_timestamp(skb);
1909 
1910 	/*
1911 	 * The code is rearranged so that the path is the most
1912 	 * short when CPU is congested, but is still operating.
1913 	 */
1914 	local_irq_save(flags);
1915 	queue = &__get_cpu_var(softnet_data);
1916 
1917 	__get_cpu_var(netdev_rx_stat).total++;
1918 	if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1919 		if (queue->input_pkt_queue.qlen) {
1920 enqueue:
1921 			__skb_queue_tail(&queue->input_pkt_queue, skb);
1922 			local_irq_restore(flags);
1923 			return NET_RX_SUCCESS;
1924 		}
1925 
1926 		napi_schedule(&queue->backlog);
1927 		goto enqueue;
1928 	}
1929 
1930 	__get_cpu_var(netdev_rx_stat).dropped++;
1931 	local_irq_restore(flags);
1932 
1933 	kfree_skb(skb);
1934 	return NET_RX_DROP;
1935 }
1936 
1937 int netif_rx_ni(struct sk_buff *skb)
1938 {
1939 	int err;
1940 
1941 	preempt_disable();
1942 	err = netif_rx(skb);
1943 	if (local_softirq_pending())
1944 		do_softirq();
1945 	preempt_enable();
1946 
1947 	return err;
1948 }
1949 
1950 EXPORT_SYMBOL(netif_rx_ni);
1951 
1952 static void net_tx_action(struct softirq_action *h)
1953 {
1954 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
1955 
1956 	if (sd->completion_queue) {
1957 		struct sk_buff *clist;
1958 
1959 		local_irq_disable();
1960 		clist = sd->completion_queue;
1961 		sd->completion_queue = NULL;
1962 		local_irq_enable();
1963 
1964 		while (clist) {
1965 			struct sk_buff *skb = clist;
1966 			clist = clist->next;
1967 
1968 			WARN_ON(atomic_read(&skb->users));
1969 			__kfree_skb(skb);
1970 		}
1971 	}
1972 
1973 	if (sd->output_queue) {
1974 		struct Qdisc *head;
1975 
1976 		local_irq_disable();
1977 		head = sd->output_queue;
1978 		sd->output_queue = NULL;
1979 		local_irq_enable();
1980 
1981 		while (head) {
1982 			struct Qdisc *q = head;
1983 			spinlock_t *root_lock;
1984 
1985 			head = head->next_sched;
1986 
1987 			root_lock = qdisc_lock(q);
1988 			if (spin_trylock(root_lock)) {
1989 				smp_mb__before_clear_bit();
1990 				clear_bit(__QDISC_STATE_SCHED,
1991 					  &q->state);
1992 				qdisc_run(q);
1993 				spin_unlock(root_lock);
1994 			} else {
1995 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
1996 					      &q->state)) {
1997 					__netif_reschedule(q);
1998 				} else {
1999 					smp_mb__before_clear_bit();
2000 					clear_bit(__QDISC_STATE_SCHED,
2001 						  &q->state);
2002 				}
2003 			}
2004 		}
2005 	}
2006 }
2007 
2008 static inline int deliver_skb(struct sk_buff *skb,
2009 			      struct packet_type *pt_prev,
2010 			      struct net_device *orig_dev)
2011 {
2012 	atomic_inc(&skb->users);
2013 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2014 }
2015 
2016 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2017 /* These hooks defined here for ATM */
2018 struct net_bridge;
2019 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2020 						unsigned char *addr);
2021 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
2022 
2023 /*
2024  * If bridge module is loaded call bridging hook.
2025  *  returns NULL if packet was consumed.
2026  */
2027 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2028 					struct sk_buff *skb) __read_mostly;
2029 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2030 					    struct packet_type **pt_prev, int *ret,
2031 					    struct net_device *orig_dev)
2032 {
2033 	struct net_bridge_port *port;
2034 
2035 	if (skb->pkt_type == PACKET_LOOPBACK ||
2036 	    (port = rcu_dereference(skb->dev->br_port)) == NULL)
2037 		return skb;
2038 
2039 	if (*pt_prev) {
2040 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2041 		*pt_prev = NULL;
2042 	}
2043 
2044 	return br_handle_frame_hook(port, skb);
2045 }
2046 #else
2047 #define handle_bridge(skb, pt_prev, ret, orig_dev)	(skb)
2048 #endif
2049 
2050 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2051 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2052 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2053 
2054 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2055 					     struct packet_type **pt_prev,
2056 					     int *ret,
2057 					     struct net_device *orig_dev)
2058 {
2059 	if (skb->dev->macvlan_port == NULL)
2060 		return skb;
2061 
2062 	if (*pt_prev) {
2063 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2064 		*pt_prev = NULL;
2065 	}
2066 	return macvlan_handle_frame_hook(skb);
2067 }
2068 #else
2069 #define handle_macvlan(skb, pt_prev, ret, orig_dev)	(skb)
2070 #endif
2071 
2072 #ifdef CONFIG_NET_CLS_ACT
2073 /* TODO: Maybe we should just force sch_ingress to be compiled in
2074  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2075  * a compare and 2 stores extra right now if we dont have it on
2076  * but have CONFIG_NET_CLS_ACT
2077  * NOTE: This doesnt stop any functionality; if you dont have
2078  * the ingress scheduler, you just cant add policies on ingress.
2079  *
2080  */
2081 static int ing_filter(struct sk_buff *skb)
2082 {
2083 	struct net_device *dev = skb->dev;
2084 	u32 ttl = G_TC_RTTL(skb->tc_verd);
2085 	struct netdev_queue *rxq;
2086 	int result = TC_ACT_OK;
2087 	struct Qdisc *q;
2088 
2089 	if (MAX_RED_LOOP < ttl++) {
2090 		printk(KERN_WARNING
2091 		       "Redir loop detected Dropping packet (%d->%d)\n",
2092 		       skb->iif, dev->ifindex);
2093 		return TC_ACT_SHOT;
2094 	}
2095 
2096 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2097 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2098 
2099 	rxq = &dev->rx_queue;
2100 
2101 	q = rxq->qdisc;
2102 	if (q != &noop_qdisc) {
2103 		spin_lock(qdisc_lock(q));
2104 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2105 			result = qdisc_enqueue_root(skb, q);
2106 		spin_unlock(qdisc_lock(q));
2107 	}
2108 
2109 	return result;
2110 }
2111 
2112 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2113 					 struct packet_type **pt_prev,
2114 					 int *ret, struct net_device *orig_dev)
2115 {
2116 	if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2117 		goto out;
2118 
2119 	if (*pt_prev) {
2120 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2121 		*pt_prev = NULL;
2122 	} else {
2123 		/* Huh? Why does turning on AF_PACKET affect this? */
2124 		skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2125 	}
2126 
2127 	switch (ing_filter(skb)) {
2128 	case TC_ACT_SHOT:
2129 	case TC_ACT_STOLEN:
2130 		kfree_skb(skb);
2131 		return NULL;
2132 	}
2133 
2134 out:
2135 	skb->tc_verd = 0;
2136 	return skb;
2137 }
2138 #endif
2139 
2140 /*
2141  * 	netif_nit_deliver - deliver received packets to network taps
2142  * 	@skb: buffer
2143  *
2144  * 	This function is used to deliver incoming packets to network
2145  * 	taps. It should be used when the normal netif_receive_skb path
2146  * 	is bypassed, for example because of VLAN acceleration.
2147  */
2148 void netif_nit_deliver(struct sk_buff *skb)
2149 {
2150 	struct packet_type *ptype;
2151 
2152 	if (list_empty(&ptype_all))
2153 		return;
2154 
2155 	skb_reset_network_header(skb);
2156 	skb_reset_transport_header(skb);
2157 	skb->mac_len = skb->network_header - skb->mac_header;
2158 
2159 	rcu_read_lock();
2160 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
2161 		if (!ptype->dev || ptype->dev == skb->dev)
2162 			deliver_skb(skb, ptype, skb->dev);
2163 	}
2164 	rcu_read_unlock();
2165 }
2166 
2167 /**
2168  *	netif_receive_skb - process receive buffer from network
2169  *	@skb: buffer to process
2170  *
2171  *	netif_receive_skb() is the main receive data processing function.
2172  *	It always succeeds. The buffer may be dropped during processing
2173  *	for congestion control or by the protocol layers.
2174  *
2175  *	This function may only be called from softirq context and interrupts
2176  *	should be enabled.
2177  *
2178  *	Return values (usually ignored):
2179  *	NET_RX_SUCCESS: no congestion
2180  *	NET_RX_DROP: packet was dropped
2181  */
2182 int netif_receive_skb(struct sk_buff *skb)
2183 {
2184 	struct packet_type *ptype, *pt_prev;
2185 	struct net_device *orig_dev;
2186 	struct net_device *null_or_orig;
2187 	int ret = NET_RX_DROP;
2188 	__be16 type;
2189 
2190 	/* if we've gotten here through NAPI, check netpoll */
2191 	if (netpoll_receive_skb(skb))
2192 		return NET_RX_DROP;
2193 
2194 	if (!skb->tstamp.tv64)
2195 		net_timestamp(skb);
2196 
2197 	if (!skb->iif)
2198 		skb->iif = skb->dev->ifindex;
2199 
2200 	null_or_orig = NULL;
2201 	orig_dev = skb->dev;
2202 	if (orig_dev->master) {
2203 		if (skb_bond_should_drop(skb))
2204 			null_or_orig = orig_dev; /* deliver only exact match */
2205 		else
2206 			skb->dev = orig_dev->master;
2207 	}
2208 
2209 	__get_cpu_var(netdev_rx_stat).total++;
2210 
2211 	skb_reset_network_header(skb);
2212 	skb_reset_transport_header(skb);
2213 	skb->mac_len = skb->network_header - skb->mac_header;
2214 
2215 	pt_prev = NULL;
2216 
2217 	rcu_read_lock();
2218 
2219 	/* Don't receive packets in an exiting network namespace */
2220 	if (!net_alive(dev_net(skb->dev)))
2221 		goto out;
2222 
2223 #ifdef CONFIG_NET_CLS_ACT
2224 	if (skb->tc_verd & TC_NCLS) {
2225 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2226 		goto ncls;
2227 	}
2228 #endif
2229 
2230 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
2231 		if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2232 		    ptype->dev == orig_dev) {
2233 			if (pt_prev)
2234 				ret = deliver_skb(skb, pt_prev, orig_dev);
2235 			pt_prev = ptype;
2236 		}
2237 	}
2238 
2239 #ifdef CONFIG_NET_CLS_ACT
2240 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2241 	if (!skb)
2242 		goto out;
2243 ncls:
2244 #endif
2245 
2246 	skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2247 	if (!skb)
2248 		goto out;
2249 	skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2250 	if (!skb)
2251 		goto out;
2252 
2253 	type = skb->protocol;
2254 	list_for_each_entry_rcu(ptype,
2255 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2256 		if (ptype->type == type &&
2257 		    (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2258 		     ptype->dev == orig_dev)) {
2259 			if (pt_prev)
2260 				ret = deliver_skb(skb, pt_prev, orig_dev);
2261 			pt_prev = ptype;
2262 		}
2263 	}
2264 
2265 	if (pt_prev) {
2266 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2267 	} else {
2268 		kfree_skb(skb);
2269 		/* Jamal, now you will not able to escape explaining
2270 		 * me how you were going to use this. :-)
2271 		 */
2272 		ret = NET_RX_DROP;
2273 	}
2274 
2275 out:
2276 	rcu_read_unlock();
2277 	return ret;
2278 }
2279 
2280 /* Network device is going away, flush any packets still pending  */
2281 static void flush_backlog(void *arg)
2282 {
2283 	struct net_device *dev = arg;
2284 	struct softnet_data *queue = &__get_cpu_var(softnet_data);
2285 	struct sk_buff *skb, *tmp;
2286 
2287 	skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2288 		if (skb->dev == dev) {
2289 			__skb_unlink(skb, &queue->input_pkt_queue);
2290 			kfree_skb(skb);
2291 		}
2292 }
2293 
2294 static int process_backlog(struct napi_struct *napi, int quota)
2295 {
2296 	int work = 0;
2297 	struct softnet_data *queue = &__get_cpu_var(softnet_data);
2298 	unsigned long start_time = jiffies;
2299 
2300 	napi->weight = weight_p;
2301 	do {
2302 		struct sk_buff *skb;
2303 
2304 		local_irq_disable();
2305 		skb = __skb_dequeue(&queue->input_pkt_queue);
2306 		if (!skb) {
2307 			__napi_complete(napi);
2308 			local_irq_enable();
2309 			break;
2310 		}
2311 		local_irq_enable();
2312 
2313 		netif_receive_skb(skb);
2314 	} while (++work < quota && jiffies == start_time);
2315 
2316 	return work;
2317 }
2318 
2319 /**
2320  * __napi_schedule - schedule for receive
2321  * @n: entry to schedule
2322  *
2323  * The entry's receive function will be scheduled to run
2324  */
2325 void __napi_schedule(struct napi_struct *n)
2326 {
2327 	unsigned long flags;
2328 
2329 	local_irq_save(flags);
2330 	list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2331 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2332 	local_irq_restore(flags);
2333 }
2334 EXPORT_SYMBOL(__napi_schedule);
2335 
2336 
2337 static void net_rx_action(struct softirq_action *h)
2338 {
2339 	struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2340 	unsigned long start_time = jiffies;
2341 	int budget = netdev_budget;
2342 	void *have;
2343 
2344 	local_irq_disable();
2345 
2346 	while (!list_empty(list)) {
2347 		struct napi_struct *n;
2348 		int work, weight;
2349 
2350 		/* If softirq window is exhuasted then punt.
2351 		 *
2352 		 * Note that this is a slight policy change from the
2353 		 * previous NAPI code, which would allow up to 2
2354 		 * jiffies to pass before breaking out.  The test
2355 		 * used to be "jiffies - start_time > 1".
2356 		 */
2357 		if (unlikely(budget <= 0 || jiffies != start_time))
2358 			goto softnet_break;
2359 
2360 		local_irq_enable();
2361 
2362 		/* Even though interrupts have been re-enabled, this
2363 		 * access is safe because interrupts can only add new
2364 		 * entries to the tail of this list, and only ->poll()
2365 		 * calls can remove this head entry from the list.
2366 		 */
2367 		n = list_entry(list->next, struct napi_struct, poll_list);
2368 
2369 		have = netpoll_poll_lock(n);
2370 
2371 		weight = n->weight;
2372 
2373 		/* This NAPI_STATE_SCHED test is for avoiding a race
2374 		 * with netpoll's poll_napi().  Only the entity which
2375 		 * obtains the lock and sees NAPI_STATE_SCHED set will
2376 		 * actually make the ->poll() call.  Therefore we avoid
2377 		 * accidently calling ->poll() when NAPI is not scheduled.
2378 		 */
2379 		work = 0;
2380 		if (test_bit(NAPI_STATE_SCHED, &n->state))
2381 			work = n->poll(n, weight);
2382 
2383 		WARN_ON_ONCE(work > weight);
2384 
2385 		budget -= work;
2386 
2387 		local_irq_disable();
2388 
2389 		/* Drivers must not modify the NAPI state if they
2390 		 * consume the entire weight.  In such cases this code
2391 		 * still "owns" the NAPI instance and therefore can
2392 		 * move the instance around on the list at-will.
2393 		 */
2394 		if (unlikely(work == weight)) {
2395 			if (unlikely(napi_disable_pending(n)))
2396 				__napi_complete(n);
2397 			else
2398 				list_move_tail(&n->poll_list, list);
2399 		}
2400 
2401 		netpoll_poll_unlock(have);
2402 	}
2403 out:
2404 	local_irq_enable();
2405 
2406 #ifdef CONFIG_NET_DMA
2407 	/*
2408 	 * There may not be any more sk_buffs coming right now, so push
2409 	 * any pending DMA copies to hardware
2410 	 */
2411 	if (!cpus_empty(net_dma.channel_mask)) {
2412 		int chan_idx;
2413 		for_each_cpu_mask_nr(chan_idx, net_dma.channel_mask) {
2414 			struct dma_chan *chan = net_dma.channels[chan_idx];
2415 			if (chan)
2416 				dma_async_memcpy_issue_pending(chan);
2417 		}
2418 	}
2419 #endif
2420 
2421 	return;
2422 
2423 softnet_break:
2424 	__get_cpu_var(netdev_rx_stat).time_squeeze++;
2425 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2426 	goto out;
2427 }
2428 
2429 static gifconf_func_t * gifconf_list [NPROTO];
2430 
2431 /**
2432  *	register_gifconf	-	register a SIOCGIF handler
2433  *	@family: Address family
2434  *	@gifconf: Function handler
2435  *
2436  *	Register protocol dependent address dumping routines. The handler
2437  *	that is passed must not be freed or reused until it has been replaced
2438  *	by another handler.
2439  */
2440 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2441 {
2442 	if (family >= NPROTO)
2443 		return -EINVAL;
2444 	gifconf_list[family] = gifconf;
2445 	return 0;
2446 }
2447 
2448 
2449 /*
2450  *	Map an interface index to its name (SIOCGIFNAME)
2451  */
2452 
2453 /*
2454  *	We need this ioctl for efficient implementation of the
2455  *	if_indextoname() function required by the IPv6 API.  Without
2456  *	it, we would have to search all the interfaces to find a
2457  *	match.  --pb
2458  */
2459 
2460 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2461 {
2462 	struct net_device *dev;
2463 	struct ifreq ifr;
2464 
2465 	/*
2466 	 *	Fetch the caller's info block.
2467 	 */
2468 
2469 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2470 		return -EFAULT;
2471 
2472 	read_lock(&dev_base_lock);
2473 	dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2474 	if (!dev) {
2475 		read_unlock(&dev_base_lock);
2476 		return -ENODEV;
2477 	}
2478 
2479 	strcpy(ifr.ifr_name, dev->name);
2480 	read_unlock(&dev_base_lock);
2481 
2482 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2483 		return -EFAULT;
2484 	return 0;
2485 }
2486 
2487 /*
2488  *	Perform a SIOCGIFCONF call. This structure will change
2489  *	size eventually, and there is nothing I can do about it.
2490  *	Thus we will need a 'compatibility mode'.
2491  */
2492 
2493 static int dev_ifconf(struct net *net, char __user *arg)
2494 {
2495 	struct ifconf ifc;
2496 	struct net_device *dev;
2497 	char __user *pos;
2498 	int len;
2499 	int total;
2500 	int i;
2501 
2502 	/*
2503 	 *	Fetch the caller's info block.
2504 	 */
2505 
2506 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2507 		return -EFAULT;
2508 
2509 	pos = ifc.ifc_buf;
2510 	len = ifc.ifc_len;
2511 
2512 	/*
2513 	 *	Loop over the interfaces, and write an info block for each.
2514 	 */
2515 
2516 	total = 0;
2517 	for_each_netdev(net, dev) {
2518 		for (i = 0; i < NPROTO; i++) {
2519 			if (gifconf_list[i]) {
2520 				int done;
2521 				if (!pos)
2522 					done = gifconf_list[i](dev, NULL, 0);
2523 				else
2524 					done = gifconf_list[i](dev, pos + total,
2525 							       len - total);
2526 				if (done < 0)
2527 					return -EFAULT;
2528 				total += done;
2529 			}
2530 		}
2531 	}
2532 
2533 	/*
2534 	 *	All done.  Write the updated control block back to the caller.
2535 	 */
2536 	ifc.ifc_len = total;
2537 
2538 	/*
2539 	 * 	Both BSD and Solaris return 0 here, so we do too.
2540 	 */
2541 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2542 }
2543 
2544 #ifdef CONFIG_PROC_FS
2545 /*
2546  *	This is invoked by the /proc filesystem handler to display a device
2547  *	in detail.
2548  */
2549 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2550 	__acquires(dev_base_lock)
2551 {
2552 	struct net *net = seq_file_net(seq);
2553 	loff_t off;
2554 	struct net_device *dev;
2555 
2556 	read_lock(&dev_base_lock);
2557 	if (!*pos)
2558 		return SEQ_START_TOKEN;
2559 
2560 	off = 1;
2561 	for_each_netdev(net, dev)
2562 		if (off++ == *pos)
2563 			return dev;
2564 
2565 	return NULL;
2566 }
2567 
2568 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2569 {
2570 	struct net *net = seq_file_net(seq);
2571 	++*pos;
2572 	return v == SEQ_START_TOKEN ?
2573 		first_net_device(net) : next_net_device((struct net_device *)v);
2574 }
2575 
2576 void dev_seq_stop(struct seq_file *seq, void *v)
2577 	__releases(dev_base_lock)
2578 {
2579 	read_unlock(&dev_base_lock);
2580 }
2581 
2582 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2583 {
2584 	struct net_device_stats *stats = dev->get_stats(dev);
2585 
2586 	seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2587 		   "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2588 		   dev->name, stats->rx_bytes, stats->rx_packets,
2589 		   stats->rx_errors,
2590 		   stats->rx_dropped + stats->rx_missed_errors,
2591 		   stats->rx_fifo_errors,
2592 		   stats->rx_length_errors + stats->rx_over_errors +
2593 		    stats->rx_crc_errors + stats->rx_frame_errors,
2594 		   stats->rx_compressed, stats->multicast,
2595 		   stats->tx_bytes, stats->tx_packets,
2596 		   stats->tx_errors, stats->tx_dropped,
2597 		   stats->tx_fifo_errors, stats->collisions,
2598 		   stats->tx_carrier_errors +
2599 		    stats->tx_aborted_errors +
2600 		    stats->tx_window_errors +
2601 		    stats->tx_heartbeat_errors,
2602 		   stats->tx_compressed);
2603 }
2604 
2605 /*
2606  *	Called from the PROCfs module. This now uses the new arbitrary sized
2607  *	/proc/net interface to create /proc/net/dev
2608  */
2609 static int dev_seq_show(struct seq_file *seq, void *v)
2610 {
2611 	if (v == SEQ_START_TOKEN)
2612 		seq_puts(seq, "Inter-|   Receive                            "
2613 			      "                    |  Transmit\n"
2614 			      " face |bytes    packets errs drop fifo frame "
2615 			      "compressed multicast|bytes    packets errs "
2616 			      "drop fifo colls carrier compressed\n");
2617 	else
2618 		dev_seq_printf_stats(seq, v);
2619 	return 0;
2620 }
2621 
2622 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2623 {
2624 	struct netif_rx_stats *rc = NULL;
2625 
2626 	while (*pos < nr_cpu_ids)
2627 		if (cpu_online(*pos)) {
2628 			rc = &per_cpu(netdev_rx_stat, *pos);
2629 			break;
2630 		} else
2631 			++*pos;
2632 	return rc;
2633 }
2634 
2635 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2636 {
2637 	return softnet_get_online(pos);
2638 }
2639 
2640 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2641 {
2642 	++*pos;
2643 	return softnet_get_online(pos);
2644 }
2645 
2646 static void softnet_seq_stop(struct seq_file *seq, void *v)
2647 {
2648 }
2649 
2650 static int softnet_seq_show(struct seq_file *seq, void *v)
2651 {
2652 	struct netif_rx_stats *s = v;
2653 
2654 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2655 		   s->total, s->dropped, s->time_squeeze, 0,
2656 		   0, 0, 0, 0, /* was fastroute */
2657 		   s->cpu_collision );
2658 	return 0;
2659 }
2660 
2661 static const struct seq_operations dev_seq_ops = {
2662 	.start = dev_seq_start,
2663 	.next  = dev_seq_next,
2664 	.stop  = dev_seq_stop,
2665 	.show  = dev_seq_show,
2666 };
2667 
2668 static int dev_seq_open(struct inode *inode, struct file *file)
2669 {
2670 	return seq_open_net(inode, file, &dev_seq_ops,
2671 			    sizeof(struct seq_net_private));
2672 }
2673 
2674 static const struct file_operations dev_seq_fops = {
2675 	.owner	 = THIS_MODULE,
2676 	.open    = dev_seq_open,
2677 	.read    = seq_read,
2678 	.llseek  = seq_lseek,
2679 	.release = seq_release_net,
2680 };
2681 
2682 static const struct seq_operations softnet_seq_ops = {
2683 	.start = softnet_seq_start,
2684 	.next  = softnet_seq_next,
2685 	.stop  = softnet_seq_stop,
2686 	.show  = softnet_seq_show,
2687 };
2688 
2689 static int softnet_seq_open(struct inode *inode, struct file *file)
2690 {
2691 	return seq_open(file, &softnet_seq_ops);
2692 }
2693 
2694 static const struct file_operations softnet_seq_fops = {
2695 	.owner	 = THIS_MODULE,
2696 	.open    = softnet_seq_open,
2697 	.read    = seq_read,
2698 	.llseek  = seq_lseek,
2699 	.release = seq_release,
2700 };
2701 
2702 static void *ptype_get_idx(loff_t pos)
2703 {
2704 	struct packet_type *pt = NULL;
2705 	loff_t i = 0;
2706 	int t;
2707 
2708 	list_for_each_entry_rcu(pt, &ptype_all, list) {
2709 		if (i == pos)
2710 			return pt;
2711 		++i;
2712 	}
2713 
2714 	for (t = 0; t < PTYPE_HASH_SIZE; t++) {
2715 		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2716 			if (i == pos)
2717 				return pt;
2718 			++i;
2719 		}
2720 	}
2721 	return NULL;
2722 }
2723 
2724 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2725 	__acquires(RCU)
2726 {
2727 	rcu_read_lock();
2728 	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2729 }
2730 
2731 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2732 {
2733 	struct packet_type *pt;
2734 	struct list_head *nxt;
2735 	int hash;
2736 
2737 	++*pos;
2738 	if (v == SEQ_START_TOKEN)
2739 		return ptype_get_idx(0);
2740 
2741 	pt = v;
2742 	nxt = pt->list.next;
2743 	if (pt->type == htons(ETH_P_ALL)) {
2744 		if (nxt != &ptype_all)
2745 			goto found;
2746 		hash = 0;
2747 		nxt = ptype_base[0].next;
2748 	} else
2749 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
2750 
2751 	while (nxt == &ptype_base[hash]) {
2752 		if (++hash >= PTYPE_HASH_SIZE)
2753 			return NULL;
2754 		nxt = ptype_base[hash].next;
2755 	}
2756 found:
2757 	return list_entry(nxt, struct packet_type, list);
2758 }
2759 
2760 static void ptype_seq_stop(struct seq_file *seq, void *v)
2761 	__releases(RCU)
2762 {
2763 	rcu_read_unlock();
2764 }
2765 
2766 static void ptype_seq_decode(struct seq_file *seq, void *sym)
2767 {
2768 #ifdef CONFIG_KALLSYMS
2769 	unsigned long offset = 0, symsize;
2770 	const char *symname;
2771 	char *modname;
2772 	char namebuf[128];
2773 
2774 	symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2775 				  &modname, namebuf);
2776 
2777 	if (symname) {
2778 		char *delim = ":";
2779 
2780 		if (!modname)
2781 			modname = delim = "";
2782 		seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2783 			   symname, offset);
2784 		return;
2785 	}
2786 #endif
2787 
2788 	seq_printf(seq, "[%p]", sym);
2789 }
2790 
2791 static int ptype_seq_show(struct seq_file *seq, void *v)
2792 {
2793 	struct packet_type *pt = v;
2794 
2795 	if (v == SEQ_START_TOKEN)
2796 		seq_puts(seq, "Type Device      Function\n");
2797 	else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
2798 		if (pt->type == htons(ETH_P_ALL))
2799 			seq_puts(seq, "ALL ");
2800 		else
2801 			seq_printf(seq, "%04x", ntohs(pt->type));
2802 
2803 		seq_printf(seq, " %-8s ",
2804 			   pt->dev ? pt->dev->name : "");
2805 		ptype_seq_decode(seq,  pt->func);
2806 		seq_putc(seq, '\n');
2807 	}
2808 
2809 	return 0;
2810 }
2811 
2812 static const struct seq_operations ptype_seq_ops = {
2813 	.start = ptype_seq_start,
2814 	.next  = ptype_seq_next,
2815 	.stop  = ptype_seq_stop,
2816 	.show  = ptype_seq_show,
2817 };
2818 
2819 static int ptype_seq_open(struct inode *inode, struct file *file)
2820 {
2821 	return seq_open_net(inode, file, &ptype_seq_ops,
2822 			sizeof(struct seq_net_private));
2823 }
2824 
2825 static const struct file_operations ptype_seq_fops = {
2826 	.owner	 = THIS_MODULE,
2827 	.open    = ptype_seq_open,
2828 	.read    = seq_read,
2829 	.llseek  = seq_lseek,
2830 	.release = seq_release_net,
2831 };
2832 
2833 
2834 static int __net_init dev_proc_net_init(struct net *net)
2835 {
2836 	int rc = -ENOMEM;
2837 
2838 	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
2839 		goto out;
2840 	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
2841 		goto out_dev;
2842 	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
2843 		goto out_softnet;
2844 
2845 	if (wext_proc_init(net))
2846 		goto out_ptype;
2847 	rc = 0;
2848 out:
2849 	return rc;
2850 out_ptype:
2851 	proc_net_remove(net, "ptype");
2852 out_softnet:
2853 	proc_net_remove(net, "softnet_stat");
2854 out_dev:
2855 	proc_net_remove(net, "dev");
2856 	goto out;
2857 }
2858 
2859 static void __net_exit dev_proc_net_exit(struct net *net)
2860 {
2861 	wext_proc_exit(net);
2862 
2863 	proc_net_remove(net, "ptype");
2864 	proc_net_remove(net, "softnet_stat");
2865 	proc_net_remove(net, "dev");
2866 }
2867 
2868 static struct pernet_operations __net_initdata dev_proc_ops = {
2869 	.init = dev_proc_net_init,
2870 	.exit = dev_proc_net_exit,
2871 };
2872 
2873 static int __init dev_proc_init(void)
2874 {
2875 	return register_pernet_subsys(&dev_proc_ops);
2876 }
2877 #else
2878 #define dev_proc_init() 0
2879 #endif	/* CONFIG_PROC_FS */
2880 
2881 
2882 /**
2883  *	netdev_set_master	-	set up master/slave pair
2884  *	@slave: slave device
2885  *	@master: new master device
2886  *
2887  *	Changes the master device of the slave. Pass %NULL to break the
2888  *	bonding. The caller must hold the RTNL semaphore. On a failure
2889  *	a negative errno code is returned. On success the reference counts
2890  *	are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2891  *	function returns zero.
2892  */
2893 int netdev_set_master(struct net_device *slave, struct net_device *master)
2894 {
2895 	struct net_device *old = slave->master;
2896 
2897 	ASSERT_RTNL();
2898 
2899 	if (master) {
2900 		if (old)
2901 			return -EBUSY;
2902 		dev_hold(master);
2903 	}
2904 
2905 	slave->master = master;
2906 
2907 	synchronize_net();
2908 
2909 	if (old)
2910 		dev_put(old);
2911 
2912 	if (master)
2913 		slave->flags |= IFF_SLAVE;
2914 	else
2915 		slave->flags &= ~IFF_SLAVE;
2916 
2917 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2918 	return 0;
2919 }
2920 
2921 static void dev_change_rx_flags(struct net_device *dev, int flags)
2922 {
2923 	if (dev->flags & IFF_UP && dev->change_rx_flags)
2924 		dev->change_rx_flags(dev, flags);
2925 }
2926 
2927 static int __dev_set_promiscuity(struct net_device *dev, int inc)
2928 {
2929 	unsigned short old_flags = dev->flags;
2930 
2931 	ASSERT_RTNL();
2932 
2933 	dev->flags |= IFF_PROMISC;
2934 	dev->promiscuity += inc;
2935 	if (dev->promiscuity == 0) {
2936 		/*
2937 		 * Avoid overflow.
2938 		 * If inc causes overflow, untouch promisc and return error.
2939 		 */
2940 		if (inc < 0)
2941 			dev->flags &= ~IFF_PROMISC;
2942 		else {
2943 			dev->promiscuity -= inc;
2944 			printk(KERN_WARNING "%s: promiscuity touches roof, "
2945 				"set promiscuity failed, promiscuity feature "
2946 				"of device might be broken.\n", dev->name);
2947 			return -EOVERFLOW;
2948 		}
2949 	}
2950 	if (dev->flags != old_flags) {
2951 		printk(KERN_INFO "device %s %s promiscuous mode\n",
2952 		       dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2953 							       "left");
2954 		if (audit_enabled)
2955 			audit_log(current->audit_context, GFP_ATOMIC,
2956 				AUDIT_ANOM_PROMISCUOUS,
2957 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
2958 				dev->name, (dev->flags & IFF_PROMISC),
2959 				(old_flags & IFF_PROMISC),
2960 				audit_get_loginuid(current),
2961 				current->uid, current->gid,
2962 				audit_get_sessionid(current));
2963 
2964 		dev_change_rx_flags(dev, IFF_PROMISC);
2965 	}
2966 	return 0;
2967 }
2968 
2969 /**
2970  *	dev_set_promiscuity	- update promiscuity count on a device
2971  *	@dev: device
2972  *	@inc: modifier
2973  *
2974  *	Add or remove promiscuity from a device. While the count in the device
2975  *	remains above zero the interface remains promiscuous. Once it hits zero
2976  *	the device reverts back to normal filtering operation. A negative inc
2977  *	value is used to drop promiscuity on the device.
2978  *	Return 0 if successful or a negative errno code on error.
2979  */
2980 int dev_set_promiscuity(struct net_device *dev, int inc)
2981 {
2982 	unsigned short old_flags = dev->flags;
2983 	int err;
2984 
2985 	err = __dev_set_promiscuity(dev, inc);
2986 	if (err < 0)
2987 		return err;
2988 	if (dev->flags != old_flags)
2989 		dev_set_rx_mode(dev);
2990 	return err;
2991 }
2992 
2993 /**
2994  *	dev_set_allmulti	- update allmulti count on a device
2995  *	@dev: device
2996  *	@inc: modifier
2997  *
2998  *	Add or remove reception of all multicast frames to a device. While the
2999  *	count in the device remains above zero the interface remains listening
3000  *	to all interfaces. Once it hits zero the device reverts back to normal
3001  *	filtering operation. A negative @inc value is used to drop the counter
3002  *	when releasing a resource needing all multicasts.
3003  *	Return 0 if successful or a negative errno code on error.
3004  */
3005 
3006 int dev_set_allmulti(struct net_device *dev, int inc)
3007 {
3008 	unsigned short old_flags = dev->flags;
3009 
3010 	ASSERT_RTNL();
3011 
3012 	dev->flags |= IFF_ALLMULTI;
3013 	dev->allmulti += inc;
3014 	if (dev->allmulti == 0) {
3015 		/*
3016 		 * Avoid overflow.
3017 		 * If inc causes overflow, untouch allmulti and return error.
3018 		 */
3019 		if (inc < 0)
3020 			dev->flags &= ~IFF_ALLMULTI;
3021 		else {
3022 			dev->allmulti -= inc;
3023 			printk(KERN_WARNING "%s: allmulti touches roof, "
3024 				"set allmulti failed, allmulti feature of "
3025 				"device might be broken.\n", dev->name);
3026 			return -EOVERFLOW;
3027 		}
3028 	}
3029 	if (dev->flags ^ old_flags) {
3030 		dev_change_rx_flags(dev, IFF_ALLMULTI);
3031 		dev_set_rx_mode(dev);
3032 	}
3033 	return 0;
3034 }
3035 
3036 /*
3037  *	Upload unicast and multicast address lists to device and
3038  *	configure RX filtering. When the device doesn't support unicast
3039  *	filtering it is put in promiscuous mode while unicast addresses
3040  *	are present.
3041  */
3042 void __dev_set_rx_mode(struct net_device *dev)
3043 {
3044 	/* dev_open will call this function so the list will stay sane. */
3045 	if (!(dev->flags&IFF_UP))
3046 		return;
3047 
3048 	if (!netif_device_present(dev))
3049 		return;
3050 
3051 	if (dev->set_rx_mode)
3052 		dev->set_rx_mode(dev);
3053 	else {
3054 		/* Unicast addresses changes may only happen under the rtnl,
3055 		 * therefore calling __dev_set_promiscuity here is safe.
3056 		 */
3057 		if (dev->uc_count > 0 && !dev->uc_promisc) {
3058 			__dev_set_promiscuity(dev, 1);
3059 			dev->uc_promisc = 1;
3060 		} else if (dev->uc_count == 0 && dev->uc_promisc) {
3061 			__dev_set_promiscuity(dev, -1);
3062 			dev->uc_promisc = 0;
3063 		}
3064 
3065 		if (dev->set_multicast_list)
3066 			dev->set_multicast_list(dev);
3067 	}
3068 }
3069 
3070 void dev_set_rx_mode(struct net_device *dev)
3071 {
3072 	netif_addr_lock_bh(dev);
3073 	__dev_set_rx_mode(dev);
3074 	netif_addr_unlock_bh(dev);
3075 }
3076 
3077 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3078 		      void *addr, int alen, int glbl)
3079 {
3080 	struct dev_addr_list *da;
3081 
3082 	for (; (da = *list) != NULL; list = &da->next) {
3083 		if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3084 		    alen == da->da_addrlen) {
3085 			if (glbl) {
3086 				int old_glbl = da->da_gusers;
3087 				da->da_gusers = 0;
3088 				if (old_glbl == 0)
3089 					break;
3090 			}
3091 			if (--da->da_users)
3092 				return 0;
3093 
3094 			*list = da->next;
3095 			kfree(da);
3096 			(*count)--;
3097 			return 0;
3098 		}
3099 	}
3100 	return -ENOENT;
3101 }
3102 
3103 int __dev_addr_add(struct dev_addr_list **list, int *count,
3104 		   void *addr, int alen, int glbl)
3105 {
3106 	struct dev_addr_list *da;
3107 
3108 	for (da = *list; da != NULL; da = da->next) {
3109 		if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3110 		    da->da_addrlen == alen) {
3111 			if (glbl) {
3112 				int old_glbl = da->da_gusers;
3113 				da->da_gusers = 1;
3114 				if (old_glbl)
3115 					return 0;
3116 			}
3117 			da->da_users++;
3118 			return 0;
3119 		}
3120 	}
3121 
3122 	da = kzalloc(sizeof(*da), GFP_ATOMIC);
3123 	if (da == NULL)
3124 		return -ENOMEM;
3125 	memcpy(da->da_addr, addr, alen);
3126 	da->da_addrlen = alen;
3127 	da->da_users = 1;
3128 	da->da_gusers = glbl ? 1 : 0;
3129 	da->next = *list;
3130 	*list = da;
3131 	(*count)++;
3132 	return 0;
3133 }
3134 
3135 /**
3136  *	dev_unicast_delete	- Release secondary unicast address.
3137  *	@dev: device
3138  *	@addr: address to delete
3139  *	@alen: length of @addr
3140  *
3141  *	Release reference to a secondary unicast address and remove it
3142  *	from the device if the reference count drops to zero.
3143  *
3144  * 	The caller must hold the rtnl_mutex.
3145  */
3146 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3147 {
3148 	int err;
3149 
3150 	ASSERT_RTNL();
3151 
3152 	netif_addr_lock_bh(dev);
3153 	err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3154 	if (!err)
3155 		__dev_set_rx_mode(dev);
3156 	netif_addr_unlock_bh(dev);
3157 	return err;
3158 }
3159 EXPORT_SYMBOL(dev_unicast_delete);
3160 
3161 /**
3162  *	dev_unicast_add		- add a secondary unicast address
3163  *	@dev: device
3164  *	@addr: address to add
3165  *	@alen: length of @addr
3166  *
3167  *	Add a secondary unicast address to the device or increase
3168  *	the reference count if it already exists.
3169  *
3170  *	The caller must hold the rtnl_mutex.
3171  */
3172 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3173 {
3174 	int err;
3175 
3176 	ASSERT_RTNL();
3177 
3178 	netif_addr_lock_bh(dev);
3179 	err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3180 	if (!err)
3181 		__dev_set_rx_mode(dev);
3182 	netif_addr_unlock_bh(dev);
3183 	return err;
3184 }
3185 EXPORT_SYMBOL(dev_unicast_add);
3186 
3187 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3188 		    struct dev_addr_list **from, int *from_count)
3189 {
3190 	struct dev_addr_list *da, *next;
3191 	int err = 0;
3192 
3193 	da = *from;
3194 	while (da != NULL) {
3195 		next = da->next;
3196 		if (!da->da_synced) {
3197 			err = __dev_addr_add(to, to_count,
3198 					     da->da_addr, da->da_addrlen, 0);
3199 			if (err < 0)
3200 				break;
3201 			da->da_synced = 1;
3202 			da->da_users++;
3203 		} else if (da->da_users == 1) {
3204 			__dev_addr_delete(to, to_count,
3205 					  da->da_addr, da->da_addrlen, 0);
3206 			__dev_addr_delete(from, from_count,
3207 					  da->da_addr, da->da_addrlen, 0);
3208 		}
3209 		da = next;
3210 	}
3211 	return err;
3212 }
3213 
3214 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3215 		       struct dev_addr_list **from, int *from_count)
3216 {
3217 	struct dev_addr_list *da, *next;
3218 
3219 	da = *from;
3220 	while (da != NULL) {
3221 		next = da->next;
3222 		if (da->da_synced) {
3223 			__dev_addr_delete(to, to_count,
3224 					  da->da_addr, da->da_addrlen, 0);
3225 			da->da_synced = 0;
3226 			__dev_addr_delete(from, from_count,
3227 					  da->da_addr, da->da_addrlen, 0);
3228 		}
3229 		da = next;
3230 	}
3231 }
3232 
3233 /**
3234  *	dev_unicast_sync - Synchronize device's unicast list to another device
3235  *	@to: destination device
3236  *	@from: source device
3237  *
3238  *	Add newly added addresses to the destination device and release
3239  *	addresses that have no users left. The source device must be
3240  *	locked by netif_tx_lock_bh.
3241  *
3242  *	This function is intended to be called from the dev->set_rx_mode
3243  *	function of layered software devices.
3244  */
3245 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3246 {
3247 	int err = 0;
3248 
3249 	netif_addr_lock_bh(to);
3250 	err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3251 			      &from->uc_list, &from->uc_count);
3252 	if (!err)
3253 		__dev_set_rx_mode(to);
3254 	netif_addr_unlock_bh(to);
3255 	return err;
3256 }
3257 EXPORT_SYMBOL(dev_unicast_sync);
3258 
3259 /**
3260  *	dev_unicast_unsync - Remove synchronized addresses from the destination device
3261  *	@to: destination device
3262  *	@from: source device
3263  *
3264  *	Remove all addresses that were added to the destination device by
3265  *	dev_unicast_sync(). This function is intended to be called from the
3266  *	dev->stop function of layered software devices.
3267  */
3268 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3269 {
3270 	netif_addr_lock_bh(from);
3271 	netif_addr_lock(to);
3272 
3273 	__dev_addr_unsync(&to->uc_list, &to->uc_count,
3274 			  &from->uc_list, &from->uc_count);
3275 	__dev_set_rx_mode(to);
3276 
3277 	netif_addr_unlock(to);
3278 	netif_addr_unlock_bh(from);
3279 }
3280 EXPORT_SYMBOL(dev_unicast_unsync);
3281 
3282 static void __dev_addr_discard(struct dev_addr_list **list)
3283 {
3284 	struct dev_addr_list *tmp;
3285 
3286 	while (*list != NULL) {
3287 		tmp = *list;
3288 		*list = tmp->next;
3289 		if (tmp->da_users > tmp->da_gusers)
3290 			printk("__dev_addr_discard: address leakage! "
3291 			       "da_users=%d\n", tmp->da_users);
3292 		kfree(tmp);
3293 	}
3294 }
3295 
3296 static void dev_addr_discard(struct net_device *dev)
3297 {
3298 	netif_addr_lock_bh(dev);
3299 
3300 	__dev_addr_discard(&dev->uc_list);
3301 	dev->uc_count = 0;
3302 
3303 	__dev_addr_discard(&dev->mc_list);
3304 	dev->mc_count = 0;
3305 
3306 	netif_addr_unlock_bh(dev);
3307 }
3308 
3309 unsigned dev_get_flags(const struct net_device *dev)
3310 {
3311 	unsigned flags;
3312 
3313 	flags = (dev->flags & ~(IFF_PROMISC |
3314 				IFF_ALLMULTI |
3315 				IFF_RUNNING |
3316 				IFF_LOWER_UP |
3317 				IFF_DORMANT)) |
3318 		(dev->gflags & (IFF_PROMISC |
3319 				IFF_ALLMULTI));
3320 
3321 	if (netif_running(dev)) {
3322 		if (netif_oper_up(dev))
3323 			flags |= IFF_RUNNING;
3324 		if (netif_carrier_ok(dev))
3325 			flags |= IFF_LOWER_UP;
3326 		if (netif_dormant(dev))
3327 			flags |= IFF_DORMANT;
3328 	}
3329 
3330 	return flags;
3331 }
3332 
3333 int dev_change_flags(struct net_device *dev, unsigned flags)
3334 {
3335 	int ret, changes;
3336 	int old_flags = dev->flags;
3337 
3338 	ASSERT_RTNL();
3339 
3340 	/*
3341 	 *	Set the flags on our device.
3342 	 */
3343 
3344 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3345 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3346 			       IFF_AUTOMEDIA)) |
3347 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3348 				    IFF_ALLMULTI));
3349 
3350 	/*
3351 	 *	Load in the correct multicast list now the flags have changed.
3352 	 */
3353 
3354 	if ((old_flags ^ flags) & IFF_MULTICAST)
3355 		dev_change_rx_flags(dev, IFF_MULTICAST);
3356 
3357 	dev_set_rx_mode(dev);
3358 
3359 	/*
3360 	 *	Have we downed the interface. We handle IFF_UP ourselves
3361 	 *	according to user attempts to set it, rather than blindly
3362 	 *	setting it.
3363 	 */
3364 
3365 	ret = 0;
3366 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
3367 		ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3368 
3369 		if (!ret)
3370 			dev_set_rx_mode(dev);
3371 	}
3372 
3373 	if (dev->flags & IFF_UP &&
3374 	    ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3375 					  IFF_VOLATILE)))
3376 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
3377 
3378 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
3379 		int inc = (flags & IFF_PROMISC) ? +1 : -1;
3380 		dev->gflags ^= IFF_PROMISC;
3381 		dev_set_promiscuity(dev, inc);
3382 	}
3383 
3384 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3385 	   is important. Some (broken) drivers set IFF_PROMISC, when
3386 	   IFF_ALLMULTI is requested not asking us and not reporting.
3387 	 */
3388 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3389 		int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3390 		dev->gflags ^= IFF_ALLMULTI;
3391 		dev_set_allmulti(dev, inc);
3392 	}
3393 
3394 	/* Exclude state transition flags, already notified */
3395 	changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3396 	if (changes)
3397 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3398 
3399 	return ret;
3400 }
3401 
3402 int dev_set_mtu(struct net_device *dev, int new_mtu)
3403 {
3404 	int err;
3405 
3406 	if (new_mtu == dev->mtu)
3407 		return 0;
3408 
3409 	/*	MTU must be positive.	 */
3410 	if (new_mtu < 0)
3411 		return -EINVAL;
3412 
3413 	if (!netif_device_present(dev))
3414 		return -ENODEV;
3415 
3416 	err = 0;
3417 	if (dev->change_mtu)
3418 		err = dev->change_mtu(dev, new_mtu);
3419 	else
3420 		dev->mtu = new_mtu;
3421 	if (!err && dev->flags & IFF_UP)
3422 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3423 	return err;
3424 }
3425 
3426 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3427 {
3428 	int err;
3429 
3430 	if (!dev->set_mac_address)
3431 		return -EOPNOTSUPP;
3432 	if (sa->sa_family != dev->type)
3433 		return -EINVAL;
3434 	if (!netif_device_present(dev))
3435 		return -ENODEV;
3436 	err = dev->set_mac_address(dev, sa);
3437 	if (!err)
3438 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3439 	return err;
3440 }
3441 
3442 /*
3443  *	Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3444  */
3445 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3446 {
3447 	int err;
3448 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3449 
3450 	if (!dev)
3451 		return -ENODEV;
3452 
3453 	switch (cmd) {
3454 		case SIOCGIFFLAGS:	/* Get interface flags */
3455 			ifr->ifr_flags = dev_get_flags(dev);
3456 			return 0;
3457 
3458 		case SIOCGIFMETRIC:	/* Get the metric on the interface
3459 					   (currently unused) */
3460 			ifr->ifr_metric = 0;
3461 			return 0;
3462 
3463 		case SIOCGIFMTU:	/* Get the MTU of a device */
3464 			ifr->ifr_mtu = dev->mtu;
3465 			return 0;
3466 
3467 		case SIOCGIFHWADDR:
3468 			if (!dev->addr_len)
3469 				memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3470 			else
3471 				memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3472 				       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3473 			ifr->ifr_hwaddr.sa_family = dev->type;
3474 			return 0;
3475 
3476 		case SIOCGIFSLAVE:
3477 			err = -EINVAL;
3478 			break;
3479 
3480 		case SIOCGIFMAP:
3481 			ifr->ifr_map.mem_start = dev->mem_start;
3482 			ifr->ifr_map.mem_end   = dev->mem_end;
3483 			ifr->ifr_map.base_addr = dev->base_addr;
3484 			ifr->ifr_map.irq       = dev->irq;
3485 			ifr->ifr_map.dma       = dev->dma;
3486 			ifr->ifr_map.port      = dev->if_port;
3487 			return 0;
3488 
3489 		case SIOCGIFINDEX:
3490 			ifr->ifr_ifindex = dev->ifindex;
3491 			return 0;
3492 
3493 		case SIOCGIFTXQLEN:
3494 			ifr->ifr_qlen = dev->tx_queue_len;
3495 			return 0;
3496 
3497 		default:
3498 			/* dev_ioctl() should ensure this case
3499 			 * is never reached
3500 			 */
3501 			WARN_ON(1);
3502 			err = -EINVAL;
3503 			break;
3504 
3505 	}
3506 	return err;
3507 }
3508 
3509 /*
3510  *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
3511  */
3512 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3513 {
3514 	int err;
3515 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3516 
3517 	if (!dev)
3518 		return -ENODEV;
3519 
3520 	switch (cmd) {
3521 		case SIOCSIFFLAGS:	/* Set interface flags */
3522 			return dev_change_flags(dev, ifr->ifr_flags);
3523 
3524 		case SIOCSIFMETRIC:	/* Set the metric on the interface
3525 					   (currently unused) */
3526 			return -EOPNOTSUPP;
3527 
3528 		case SIOCSIFMTU:	/* Set the MTU of a device */
3529 			return dev_set_mtu(dev, ifr->ifr_mtu);
3530 
3531 		case SIOCSIFHWADDR:
3532 			return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3533 
3534 		case SIOCSIFHWBROADCAST:
3535 			if (ifr->ifr_hwaddr.sa_family != dev->type)
3536 				return -EINVAL;
3537 			memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3538 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3539 			call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3540 			return 0;
3541 
3542 		case SIOCSIFMAP:
3543 			if (dev->set_config) {
3544 				if (!netif_device_present(dev))
3545 					return -ENODEV;
3546 				return dev->set_config(dev, &ifr->ifr_map);
3547 			}
3548 			return -EOPNOTSUPP;
3549 
3550 		case SIOCADDMULTI:
3551 			if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3552 			    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3553 				return -EINVAL;
3554 			if (!netif_device_present(dev))
3555 				return -ENODEV;
3556 			return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3557 					  dev->addr_len, 1);
3558 
3559 		case SIOCDELMULTI:
3560 			if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3561 			    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3562 				return -EINVAL;
3563 			if (!netif_device_present(dev))
3564 				return -ENODEV;
3565 			return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3566 					     dev->addr_len, 1);
3567 
3568 		case SIOCSIFTXQLEN:
3569 			if (ifr->ifr_qlen < 0)
3570 				return -EINVAL;
3571 			dev->tx_queue_len = ifr->ifr_qlen;
3572 			return 0;
3573 
3574 		case SIOCSIFNAME:
3575 			ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3576 			return dev_change_name(dev, ifr->ifr_newname);
3577 
3578 		/*
3579 		 *	Unknown or private ioctl
3580 		 */
3581 
3582 		default:
3583 			if ((cmd >= SIOCDEVPRIVATE &&
3584 			    cmd <= SIOCDEVPRIVATE + 15) ||
3585 			    cmd == SIOCBONDENSLAVE ||
3586 			    cmd == SIOCBONDRELEASE ||
3587 			    cmd == SIOCBONDSETHWADDR ||
3588 			    cmd == SIOCBONDSLAVEINFOQUERY ||
3589 			    cmd == SIOCBONDINFOQUERY ||
3590 			    cmd == SIOCBONDCHANGEACTIVE ||
3591 			    cmd == SIOCGMIIPHY ||
3592 			    cmd == SIOCGMIIREG ||
3593 			    cmd == SIOCSMIIREG ||
3594 			    cmd == SIOCBRADDIF ||
3595 			    cmd == SIOCBRDELIF ||
3596 			    cmd == SIOCWANDEV) {
3597 				err = -EOPNOTSUPP;
3598 				if (dev->do_ioctl) {
3599 					if (netif_device_present(dev))
3600 						err = dev->do_ioctl(dev, ifr,
3601 								    cmd);
3602 					else
3603 						err = -ENODEV;
3604 				}
3605 			} else
3606 				err = -EINVAL;
3607 
3608 	}
3609 	return err;
3610 }
3611 
3612 /*
3613  *	This function handles all "interface"-type I/O control requests. The actual
3614  *	'doing' part of this is dev_ifsioc above.
3615  */
3616 
3617 /**
3618  *	dev_ioctl	-	network device ioctl
3619  *	@net: the applicable net namespace
3620  *	@cmd: command to issue
3621  *	@arg: pointer to a struct ifreq in user space
3622  *
3623  *	Issue ioctl functions to devices. This is normally called by the
3624  *	user space syscall interfaces but can sometimes be useful for
3625  *	other purposes. The return value is the return from the syscall if
3626  *	positive or a negative errno code on error.
3627  */
3628 
3629 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3630 {
3631 	struct ifreq ifr;
3632 	int ret;
3633 	char *colon;
3634 
3635 	/* One special case: SIOCGIFCONF takes ifconf argument
3636 	   and requires shared lock, because it sleeps writing
3637 	   to user space.
3638 	 */
3639 
3640 	if (cmd == SIOCGIFCONF) {
3641 		rtnl_lock();
3642 		ret = dev_ifconf(net, (char __user *) arg);
3643 		rtnl_unlock();
3644 		return ret;
3645 	}
3646 	if (cmd == SIOCGIFNAME)
3647 		return dev_ifname(net, (struct ifreq __user *)arg);
3648 
3649 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3650 		return -EFAULT;
3651 
3652 	ifr.ifr_name[IFNAMSIZ-1] = 0;
3653 
3654 	colon = strchr(ifr.ifr_name, ':');
3655 	if (colon)
3656 		*colon = 0;
3657 
3658 	/*
3659 	 *	See which interface the caller is talking about.
3660 	 */
3661 
3662 	switch (cmd) {
3663 		/*
3664 		 *	These ioctl calls:
3665 		 *	- can be done by all.
3666 		 *	- atomic and do not require locking.
3667 		 *	- return a value
3668 		 */
3669 		case SIOCGIFFLAGS:
3670 		case SIOCGIFMETRIC:
3671 		case SIOCGIFMTU:
3672 		case SIOCGIFHWADDR:
3673 		case SIOCGIFSLAVE:
3674 		case SIOCGIFMAP:
3675 		case SIOCGIFINDEX:
3676 		case SIOCGIFTXQLEN:
3677 			dev_load(net, ifr.ifr_name);
3678 			read_lock(&dev_base_lock);
3679 			ret = dev_ifsioc_locked(net, &ifr, cmd);
3680 			read_unlock(&dev_base_lock);
3681 			if (!ret) {
3682 				if (colon)
3683 					*colon = ':';
3684 				if (copy_to_user(arg, &ifr,
3685 						 sizeof(struct ifreq)))
3686 					ret = -EFAULT;
3687 			}
3688 			return ret;
3689 
3690 		case SIOCETHTOOL:
3691 			dev_load(net, ifr.ifr_name);
3692 			rtnl_lock();
3693 			ret = dev_ethtool(net, &ifr);
3694 			rtnl_unlock();
3695 			if (!ret) {
3696 				if (colon)
3697 					*colon = ':';
3698 				if (copy_to_user(arg, &ifr,
3699 						 sizeof(struct ifreq)))
3700 					ret = -EFAULT;
3701 			}
3702 			return ret;
3703 
3704 		/*
3705 		 *	These ioctl calls:
3706 		 *	- require superuser power.
3707 		 *	- require strict serialization.
3708 		 *	- return a value
3709 		 */
3710 		case SIOCGMIIPHY:
3711 		case SIOCGMIIREG:
3712 		case SIOCSIFNAME:
3713 			if (!capable(CAP_NET_ADMIN))
3714 				return -EPERM;
3715 			dev_load(net, ifr.ifr_name);
3716 			rtnl_lock();
3717 			ret = dev_ifsioc(net, &ifr, cmd);
3718 			rtnl_unlock();
3719 			if (!ret) {
3720 				if (colon)
3721 					*colon = ':';
3722 				if (copy_to_user(arg, &ifr,
3723 						 sizeof(struct ifreq)))
3724 					ret = -EFAULT;
3725 			}
3726 			return ret;
3727 
3728 		/*
3729 		 *	These ioctl calls:
3730 		 *	- require superuser power.
3731 		 *	- require strict serialization.
3732 		 *	- do not return a value
3733 		 */
3734 		case SIOCSIFFLAGS:
3735 		case SIOCSIFMETRIC:
3736 		case SIOCSIFMTU:
3737 		case SIOCSIFMAP:
3738 		case SIOCSIFHWADDR:
3739 		case SIOCSIFSLAVE:
3740 		case SIOCADDMULTI:
3741 		case SIOCDELMULTI:
3742 		case SIOCSIFHWBROADCAST:
3743 		case SIOCSIFTXQLEN:
3744 		case SIOCSMIIREG:
3745 		case SIOCBONDENSLAVE:
3746 		case SIOCBONDRELEASE:
3747 		case SIOCBONDSETHWADDR:
3748 		case SIOCBONDCHANGEACTIVE:
3749 		case SIOCBRADDIF:
3750 		case SIOCBRDELIF:
3751 			if (!capable(CAP_NET_ADMIN))
3752 				return -EPERM;
3753 			/* fall through */
3754 		case SIOCBONDSLAVEINFOQUERY:
3755 		case SIOCBONDINFOQUERY:
3756 			dev_load(net, ifr.ifr_name);
3757 			rtnl_lock();
3758 			ret = dev_ifsioc(net, &ifr, cmd);
3759 			rtnl_unlock();
3760 			return ret;
3761 
3762 		case SIOCGIFMEM:
3763 			/* Get the per device memory space. We can add this but
3764 			 * currently do not support it */
3765 		case SIOCSIFMEM:
3766 			/* Set the per device memory buffer space.
3767 			 * Not applicable in our case */
3768 		case SIOCSIFLINK:
3769 			return -EINVAL;
3770 
3771 		/*
3772 		 *	Unknown or private ioctl.
3773 		 */
3774 		default:
3775 			if (cmd == SIOCWANDEV ||
3776 			    (cmd >= SIOCDEVPRIVATE &&
3777 			     cmd <= SIOCDEVPRIVATE + 15)) {
3778 				dev_load(net, ifr.ifr_name);
3779 				rtnl_lock();
3780 				ret = dev_ifsioc(net, &ifr, cmd);
3781 				rtnl_unlock();
3782 				if (!ret && copy_to_user(arg, &ifr,
3783 							 sizeof(struct ifreq)))
3784 					ret = -EFAULT;
3785 				return ret;
3786 			}
3787 			/* Take care of Wireless Extensions */
3788 			if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3789 				return wext_handle_ioctl(net, &ifr, cmd, arg);
3790 			return -EINVAL;
3791 	}
3792 }
3793 
3794 
3795 /**
3796  *	dev_new_index	-	allocate an ifindex
3797  *	@net: the applicable net namespace
3798  *
3799  *	Returns a suitable unique value for a new device interface
3800  *	number.  The caller must hold the rtnl semaphore or the
3801  *	dev_base_lock to be sure it remains unique.
3802  */
3803 static int dev_new_index(struct net *net)
3804 {
3805 	static int ifindex;
3806 	for (;;) {
3807 		if (++ifindex <= 0)
3808 			ifindex = 1;
3809 		if (!__dev_get_by_index(net, ifindex))
3810 			return ifindex;
3811 	}
3812 }
3813 
3814 /* Delayed registration/unregisteration */
3815 static LIST_HEAD(net_todo_list);
3816 
3817 static void net_set_todo(struct net_device *dev)
3818 {
3819 	list_add_tail(&dev->todo_list, &net_todo_list);
3820 }
3821 
3822 static void rollback_registered(struct net_device *dev)
3823 {
3824 	BUG_ON(dev_boot_phase);
3825 	ASSERT_RTNL();
3826 
3827 	/* Some devices call without registering for initialization unwind. */
3828 	if (dev->reg_state == NETREG_UNINITIALIZED) {
3829 		printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3830 				  "was registered\n", dev->name, dev);
3831 
3832 		WARN_ON(1);
3833 		return;
3834 	}
3835 
3836 	BUG_ON(dev->reg_state != NETREG_REGISTERED);
3837 
3838 	/* If device is running, close it first. */
3839 	dev_close(dev);
3840 
3841 	/* And unlink it from device chain. */
3842 	unlist_netdevice(dev);
3843 
3844 	dev->reg_state = NETREG_UNREGISTERING;
3845 
3846 	synchronize_net();
3847 
3848 	/* Shutdown queueing discipline. */
3849 	dev_shutdown(dev);
3850 
3851 
3852 	/* Notify protocols, that we are about to destroy
3853 	   this device. They should clean all the things.
3854 	*/
3855 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3856 
3857 	/*
3858 	 *	Flush the unicast and multicast chains
3859 	 */
3860 	dev_addr_discard(dev);
3861 
3862 	if (dev->uninit)
3863 		dev->uninit(dev);
3864 
3865 	/* Notifier chain MUST detach us from master device. */
3866 	WARN_ON(dev->master);
3867 
3868 	/* Remove entries from kobject tree */
3869 	netdev_unregister_kobject(dev);
3870 
3871 	synchronize_net();
3872 
3873 	dev_put(dev);
3874 }
3875 
3876 static void __netdev_init_queue_locks_one(struct net_device *dev,
3877 					  struct netdev_queue *dev_queue,
3878 					  void *_unused)
3879 {
3880 	spin_lock_init(&dev_queue->_xmit_lock);
3881 	netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
3882 	dev_queue->xmit_lock_owner = -1;
3883 }
3884 
3885 static void netdev_init_queue_locks(struct net_device *dev)
3886 {
3887 	netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
3888 	__netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
3889 }
3890 
3891 /**
3892  *	register_netdevice	- register a network device
3893  *	@dev: device to register
3894  *
3895  *	Take a completed network device structure and add it to the kernel
3896  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3897  *	chain. 0 is returned on success. A negative errno code is returned
3898  *	on a failure to set up the device, or if the name is a duplicate.
3899  *
3900  *	Callers must hold the rtnl semaphore. You may want
3901  *	register_netdev() instead of this.
3902  *
3903  *	BUGS:
3904  *	The locking appears insufficient to guarantee two parallel registers
3905  *	will not get the same name.
3906  */
3907 
3908 int register_netdevice(struct net_device *dev)
3909 {
3910 	struct hlist_head *head;
3911 	struct hlist_node *p;
3912 	int ret;
3913 	struct net *net;
3914 
3915 	BUG_ON(dev_boot_phase);
3916 	ASSERT_RTNL();
3917 
3918 	might_sleep();
3919 
3920 	/* When net_device's are persistent, this will be fatal. */
3921 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
3922 	BUG_ON(!dev_net(dev));
3923 	net = dev_net(dev);
3924 
3925 	spin_lock_init(&dev->addr_list_lock);
3926 	netdev_set_addr_lockdep_class(dev);
3927 	netdev_init_queue_locks(dev);
3928 
3929 	dev->iflink = -1;
3930 
3931 	/* Init, if this function is available */
3932 	if (dev->init) {
3933 		ret = dev->init(dev);
3934 		if (ret) {
3935 			if (ret > 0)
3936 				ret = -EIO;
3937 			goto out;
3938 		}
3939 	}
3940 
3941 	if (!dev_valid_name(dev->name)) {
3942 		ret = -EINVAL;
3943 		goto err_uninit;
3944 	}
3945 
3946 	dev->ifindex = dev_new_index(net);
3947 	if (dev->iflink == -1)
3948 		dev->iflink = dev->ifindex;
3949 
3950 	/* Check for existence of name */
3951 	head = dev_name_hash(net, dev->name);
3952 	hlist_for_each(p, head) {
3953 		struct net_device *d
3954 			= hlist_entry(p, struct net_device, name_hlist);
3955 		if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3956 			ret = -EEXIST;
3957 			goto err_uninit;
3958 		}
3959 	}
3960 
3961 	/* Fix illegal checksum combinations */
3962 	if ((dev->features & NETIF_F_HW_CSUM) &&
3963 	    (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3964 		printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3965 		       dev->name);
3966 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3967 	}
3968 
3969 	if ((dev->features & NETIF_F_NO_CSUM) &&
3970 	    (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3971 		printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3972 		       dev->name);
3973 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3974 	}
3975 
3976 
3977 	/* Fix illegal SG+CSUM combinations. */
3978 	if ((dev->features & NETIF_F_SG) &&
3979 	    !(dev->features & NETIF_F_ALL_CSUM)) {
3980 		printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
3981 		       dev->name);
3982 		dev->features &= ~NETIF_F_SG;
3983 	}
3984 
3985 	/* TSO requires that SG is present as well. */
3986 	if ((dev->features & NETIF_F_TSO) &&
3987 	    !(dev->features & NETIF_F_SG)) {
3988 		printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
3989 		       dev->name);
3990 		dev->features &= ~NETIF_F_TSO;
3991 	}
3992 	if (dev->features & NETIF_F_UFO) {
3993 		if (!(dev->features & NETIF_F_HW_CSUM)) {
3994 			printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3995 					"NETIF_F_HW_CSUM feature.\n",
3996 							dev->name);
3997 			dev->features &= ~NETIF_F_UFO;
3998 		}
3999 		if (!(dev->features & NETIF_F_SG)) {
4000 			printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
4001 					"NETIF_F_SG feature.\n",
4002 					dev->name);
4003 			dev->features &= ~NETIF_F_UFO;
4004 		}
4005 	}
4006 
4007 	/* Enable software GSO if SG is supported. */
4008 	if (dev->features & NETIF_F_SG)
4009 		dev->features |= NETIF_F_GSO;
4010 
4011 	netdev_initialize_kobject(dev);
4012 	ret = netdev_register_kobject(dev);
4013 	if (ret)
4014 		goto err_uninit;
4015 	dev->reg_state = NETREG_REGISTERED;
4016 
4017 	/*
4018 	 *	Default initial state at registry is that the
4019 	 *	device is present.
4020 	 */
4021 
4022 	set_bit(__LINK_STATE_PRESENT, &dev->state);
4023 
4024 	dev_init_scheduler(dev);
4025 	dev_hold(dev);
4026 	list_netdevice(dev);
4027 
4028 	/* Notify protocols, that a new device appeared. */
4029 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4030 	ret = notifier_to_errno(ret);
4031 	if (ret) {
4032 		rollback_registered(dev);
4033 		dev->reg_state = NETREG_UNREGISTERED;
4034 	}
4035 
4036 out:
4037 	return ret;
4038 
4039 err_uninit:
4040 	if (dev->uninit)
4041 		dev->uninit(dev);
4042 	goto out;
4043 }
4044 
4045 /**
4046  *	register_netdev	- register a network device
4047  *	@dev: device to register
4048  *
4049  *	Take a completed network device structure and add it to the kernel
4050  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4051  *	chain. 0 is returned on success. A negative errno code is returned
4052  *	on a failure to set up the device, or if the name is a duplicate.
4053  *
4054  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
4055  *	and expands the device name if you passed a format string to
4056  *	alloc_netdev.
4057  */
4058 int register_netdev(struct net_device *dev)
4059 {
4060 	int err;
4061 
4062 	rtnl_lock();
4063 
4064 	/*
4065 	 * If the name is a format string the caller wants us to do a
4066 	 * name allocation.
4067 	 */
4068 	if (strchr(dev->name, '%')) {
4069 		err = dev_alloc_name(dev, dev->name);
4070 		if (err < 0)
4071 			goto out;
4072 	}
4073 
4074 	err = register_netdevice(dev);
4075 out:
4076 	rtnl_unlock();
4077 	return err;
4078 }
4079 EXPORT_SYMBOL(register_netdev);
4080 
4081 /*
4082  * netdev_wait_allrefs - wait until all references are gone.
4083  *
4084  * This is called when unregistering network devices.
4085  *
4086  * Any protocol or device that holds a reference should register
4087  * for netdevice notification, and cleanup and put back the
4088  * reference if they receive an UNREGISTER event.
4089  * We can get stuck here if buggy protocols don't correctly
4090  * call dev_put.
4091  */
4092 static void netdev_wait_allrefs(struct net_device *dev)
4093 {
4094 	unsigned long rebroadcast_time, warning_time;
4095 
4096 	rebroadcast_time = warning_time = jiffies;
4097 	while (atomic_read(&dev->refcnt) != 0) {
4098 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4099 			rtnl_lock();
4100 
4101 			/* Rebroadcast unregister notification */
4102 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4103 
4104 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4105 				     &dev->state)) {
4106 				/* We must not have linkwatch events
4107 				 * pending on unregister. If this
4108 				 * happens, we simply run the queue
4109 				 * unscheduled, resulting in a noop
4110 				 * for this device.
4111 				 */
4112 				linkwatch_run_queue();
4113 			}
4114 
4115 			__rtnl_unlock();
4116 
4117 			rebroadcast_time = jiffies;
4118 		}
4119 
4120 		msleep(250);
4121 
4122 		if (time_after(jiffies, warning_time + 10 * HZ)) {
4123 			printk(KERN_EMERG "unregister_netdevice: "
4124 			       "waiting for %s to become free. Usage "
4125 			       "count = %d\n",
4126 			       dev->name, atomic_read(&dev->refcnt));
4127 			warning_time = jiffies;
4128 		}
4129 	}
4130 }
4131 
4132 /* The sequence is:
4133  *
4134  *	rtnl_lock();
4135  *	...
4136  *	register_netdevice(x1);
4137  *	register_netdevice(x2);
4138  *	...
4139  *	unregister_netdevice(y1);
4140  *	unregister_netdevice(y2);
4141  *      ...
4142  *	rtnl_unlock();
4143  *	free_netdev(y1);
4144  *	free_netdev(y2);
4145  *
4146  * We are invoked by rtnl_unlock().
4147  * This allows us to deal with problems:
4148  * 1) We can delete sysfs objects which invoke hotplug
4149  *    without deadlocking with linkwatch via keventd.
4150  * 2) Since we run with the RTNL semaphore not held, we can sleep
4151  *    safely in order to wait for the netdev refcnt to drop to zero.
4152  *
4153  * We must not return until all unregister events added during
4154  * the interval the lock was held have been completed.
4155  */
4156 void netdev_run_todo(void)
4157 {
4158 	struct list_head list;
4159 
4160 	/* Snapshot list, allow later requests */
4161 	list_replace_init(&net_todo_list, &list);
4162 
4163 	__rtnl_unlock();
4164 
4165 	while (!list_empty(&list)) {
4166 		struct net_device *dev
4167 			= list_entry(list.next, struct net_device, todo_list);
4168 		list_del(&dev->todo_list);
4169 
4170 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4171 			printk(KERN_ERR "network todo '%s' but state %d\n",
4172 			       dev->name, dev->reg_state);
4173 			dump_stack();
4174 			continue;
4175 		}
4176 
4177 		dev->reg_state = NETREG_UNREGISTERED;
4178 
4179 		on_each_cpu(flush_backlog, dev, 1);
4180 
4181 		netdev_wait_allrefs(dev);
4182 
4183 		/* paranoia */
4184 		BUG_ON(atomic_read(&dev->refcnt));
4185 		WARN_ON(dev->ip_ptr);
4186 		WARN_ON(dev->ip6_ptr);
4187 		WARN_ON(dev->dn_ptr);
4188 
4189 		if (dev->destructor)
4190 			dev->destructor(dev);
4191 
4192 		/* Free network device */
4193 		kobject_put(&dev->dev.kobj);
4194 	}
4195 }
4196 
4197 static struct net_device_stats *internal_stats(struct net_device *dev)
4198 {
4199 	return &dev->stats;
4200 }
4201 
4202 static void netdev_init_one_queue(struct net_device *dev,
4203 				  struct netdev_queue *queue,
4204 				  void *_unused)
4205 {
4206 	queue->dev = dev;
4207 }
4208 
4209 static void netdev_init_queues(struct net_device *dev)
4210 {
4211 	netdev_init_one_queue(dev, &dev->rx_queue, NULL);
4212 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
4213 	spin_lock_init(&dev->tx_global_lock);
4214 }
4215 
4216 /**
4217  *	alloc_netdev_mq - allocate network device
4218  *	@sizeof_priv:	size of private data to allocate space for
4219  *	@name:		device name format string
4220  *	@setup:		callback to initialize device
4221  *	@queue_count:	the number of subqueues to allocate
4222  *
4223  *	Allocates a struct net_device with private data area for driver use
4224  *	and performs basic initialization.  Also allocates subquue structs
4225  *	for each queue on the device at the end of the netdevice.
4226  */
4227 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4228 		void (*setup)(struct net_device *), unsigned int queue_count)
4229 {
4230 	struct netdev_queue *tx;
4231 	struct net_device *dev;
4232 	size_t alloc_size;
4233 	void *p;
4234 
4235 	BUG_ON(strlen(name) >= sizeof(dev->name));
4236 
4237 	alloc_size = sizeof(struct net_device);
4238 	if (sizeof_priv) {
4239 		/* ensure 32-byte alignment of private area */
4240 		alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4241 		alloc_size += sizeof_priv;
4242 	}
4243 	/* ensure 32-byte alignment of whole construct */
4244 	alloc_size += NETDEV_ALIGN_CONST;
4245 
4246 	p = kzalloc(alloc_size, GFP_KERNEL);
4247 	if (!p) {
4248 		printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4249 		return NULL;
4250 	}
4251 
4252 	tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
4253 	if (!tx) {
4254 		printk(KERN_ERR "alloc_netdev: Unable to allocate "
4255 		       "tx qdiscs.\n");
4256 		kfree(p);
4257 		return NULL;
4258 	}
4259 
4260 	dev = (struct net_device *)
4261 		(((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4262 	dev->padded = (char *)dev - (char *)p;
4263 	dev_net_set(dev, &init_net);
4264 
4265 	dev->_tx = tx;
4266 	dev->num_tx_queues = queue_count;
4267 	dev->real_num_tx_queues = queue_count;
4268 
4269 	if (sizeof_priv) {
4270 		dev->priv = ((char *)dev +
4271 			     ((sizeof(struct net_device) + NETDEV_ALIGN_CONST)
4272 			      & ~NETDEV_ALIGN_CONST));
4273 	}
4274 
4275 	dev->gso_max_size = GSO_MAX_SIZE;
4276 
4277 	netdev_init_queues(dev);
4278 
4279 	dev->get_stats = internal_stats;
4280 	netpoll_netdev_init(dev);
4281 	setup(dev);
4282 	strcpy(dev->name, name);
4283 	return dev;
4284 }
4285 EXPORT_SYMBOL(alloc_netdev_mq);
4286 
4287 /**
4288  *	free_netdev - free network device
4289  *	@dev: device
4290  *
4291  *	This function does the last stage of destroying an allocated device
4292  * 	interface. The reference to the device object is released.
4293  *	If this is the last reference then it will be freed.
4294  */
4295 void free_netdev(struct net_device *dev)
4296 {
4297 	release_net(dev_net(dev));
4298 
4299 	kfree(dev->_tx);
4300 
4301 	/*  Compatibility with error handling in drivers */
4302 	if (dev->reg_state == NETREG_UNINITIALIZED) {
4303 		kfree((char *)dev - dev->padded);
4304 		return;
4305 	}
4306 
4307 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4308 	dev->reg_state = NETREG_RELEASED;
4309 
4310 	/* will free via device release */
4311 	put_device(&dev->dev);
4312 }
4313 
4314 /* Synchronize with packet receive processing. */
4315 void synchronize_net(void)
4316 {
4317 	might_sleep();
4318 	synchronize_rcu();
4319 }
4320 
4321 /**
4322  *	unregister_netdevice - remove device from the kernel
4323  *	@dev: device
4324  *
4325  *	This function shuts down a device interface and removes it
4326  *	from the kernel tables.
4327  *
4328  *	Callers must hold the rtnl semaphore.  You may want
4329  *	unregister_netdev() instead of this.
4330  */
4331 
4332 void unregister_netdevice(struct net_device *dev)
4333 {
4334 	ASSERT_RTNL();
4335 
4336 	rollback_registered(dev);
4337 	/* Finish processing unregister after unlock */
4338 	net_set_todo(dev);
4339 }
4340 
4341 /**
4342  *	unregister_netdev - remove device from the kernel
4343  *	@dev: device
4344  *
4345  *	This function shuts down a device interface and removes it
4346  *	from the kernel tables.
4347  *
4348  *	This is just a wrapper for unregister_netdevice that takes
4349  *	the rtnl semaphore.  In general you want to use this and not
4350  *	unregister_netdevice.
4351  */
4352 void unregister_netdev(struct net_device *dev)
4353 {
4354 	rtnl_lock();
4355 	unregister_netdevice(dev);
4356 	rtnl_unlock();
4357 }
4358 
4359 EXPORT_SYMBOL(unregister_netdev);
4360 
4361 /**
4362  *	dev_change_net_namespace - move device to different nethost namespace
4363  *	@dev: device
4364  *	@net: network namespace
4365  *	@pat: If not NULL name pattern to try if the current device name
4366  *	      is already taken in the destination network namespace.
4367  *
4368  *	This function shuts down a device interface and moves it
4369  *	to a new network namespace. On success 0 is returned, on
4370  *	a failure a netagive errno code is returned.
4371  *
4372  *	Callers must hold the rtnl semaphore.
4373  */
4374 
4375 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4376 {
4377 	char buf[IFNAMSIZ];
4378 	const char *destname;
4379 	int err;
4380 
4381 	ASSERT_RTNL();
4382 
4383 	/* Don't allow namespace local devices to be moved. */
4384 	err = -EINVAL;
4385 	if (dev->features & NETIF_F_NETNS_LOCAL)
4386 		goto out;
4387 
4388 	/* Ensure the device has been registrered */
4389 	err = -EINVAL;
4390 	if (dev->reg_state != NETREG_REGISTERED)
4391 		goto out;
4392 
4393 	/* Get out if there is nothing todo */
4394 	err = 0;
4395 	if (net_eq(dev_net(dev), net))
4396 		goto out;
4397 
4398 	/* Pick the destination device name, and ensure
4399 	 * we can use it in the destination network namespace.
4400 	 */
4401 	err = -EEXIST;
4402 	destname = dev->name;
4403 	if (__dev_get_by_name(net, destname)) {
4404 		/* We get here if we can't use the current device name */
4405 		if (!pat)
4406 			goto out;
4407 		if (!dev_valid_name(pat))
4408 			goto out;
4409 		if (strchr(pat, '%')) {
4410 			if (__dev_alloc_name(net, pat, buf) < 0)
4411 				goto out;
4412 			destname = buf;
4413 		} else
4414 			destname = pat;
4415 		if (__dev_get_by_name(net, destname))
4416 			goto out;
4417 	}
4418 
4419 	/*
4420 	 * And now a mini version of register_netdevice unregister_netdevice.
4421 	 */
4422 
4423 	/* If device is running close it first. */
4424 	dev_close(dev);
4425 
4426 	/* And unlink it from device chain */
4427 	err = -ENODEV;
4428 	unlist_netdevice(dev);
4429 
4430 	synchronize_net();
4431 
4432 	/* Shutdown queueing discipline. */
4433 	dev_shutdown(dev);
4434 
4435 	/* Notify protocols, that we are about to destroy
4436 	   this device. They should clean all the things.
4437 	*/
4438 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4439 
4440 	/*
4441 	 *	Flush the unicast and multicast chains
4442 	 */
4443 	dev_addr_discard(dev);
4444 
4445 	/* Actually switch the network namespace */
4446 	dev_net_set(dev, net);
4447 
4448 	/* Assign the new device name */
4449 	if (destname != dev->name)
4450 		strcpy(dev->name, destname);
4451 
4452 	/* If there is an ifindex conflict assign a new one */
4453 	if (__dev_get_by_index(net, dev->ifindex)) {
4454 		int iflink = (dev->iflink == dev->ifindex);
4455 		dev->ifindex = dev_new_index(net);
4456 		if (iflink)
4457 			dev->iflink = dev->ifindex;
4458 	}
4459 
4460 	/* Fixup kobjects */
4461 	netdev_unregister_kobject(dev);
4462 	err = netdev_register_kobject(dev);
4463 	WARN_ON(err);
4464 
4465 	/* Add the device back in the hashes */
4466 	list_netdevice(dev);
4467 
4468 	/* Notify protocols, that a new device appeared. */
4469 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
4470 
4471 	synchronize_net();
4472 	err = 0;
4473 out:
4474 	return err;
4475 }
4476 
4477 static int dev_cpu_callback(struct notifier_block *nfb,
4478 			    unsigned long action,
4479 			    void *ocpu)
4480 {
4481 	struct sk_buff **list_skb;
4482 	struct Qdisc **list_net;
4483 	struct sk_buff *skb;
4484 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
4485 	struct softnet_data *sd, *oldsd;
4486 
4487 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4488 		return NOTIFY_OK;
4489 
4490 	local_irq_disable();
4491 	cpu = smp_processor_id();
4492 	sd = &per_cpu(softnet_data, cpu);
4493 	oldsd = &per_cpu(softnet_data, oldcpu);
4494 
4495 	/* Find end of our completion_queue. */
4496 	list_skb = &sd->completion_queue;
4497 	while (*list_skb)
4498 		list_skb = &(*list_skb)->next;
4499 	/* Append completion queue from offline CPU. */
4500 	*list_skb = oldsd->completion_queue;
4501 	oldsd->completion_queue = NULL;
4502 
4503 	/* Find end of our output_queue. */
4504 	list_net = &sd->output_queue;
4505 	while (*list_net)
4506 		list_net = &(*list_net)->next_sched;
4507 	/* Append output queue from offline CPU. */
4508 	*list_net = oldsd->output_queue;
4509 	oldsd->output_queue = NULL;
4510 
4511 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
4512 	local_irq_enable();
4513 
4514 	/* Process offline CPU's input_pkt_queue */
4515 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4516 		netif_rx(skb);
4517 
4518 	return NOTIFY_OK;
4519 }
4520 
4521 #ifdef CONFIG_NET_DMA
4522 /**
4523  * net_dma_rebalance - try to maintain one DMA channel per CPU
4524  * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4525  *
4526  * This is called when the number of channels allocated to the net_dma client
4527  * changes.  The net_dma client tries to have one DMA channel per CPU.
4528  */
4529 
4530 static void net_dma_rebalance(struct net_dma *net_dma)
4531 {
4532 	unsigned int cpu, i, n, chan_idx;
4533 	struct dma_chan *chan;
4534 
4535 	if (cpus_empty(net_dma->channel_mask)) {
4536 		for_each_online_cpu(cpu)
4537 			rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4538 		return;
4539 	}
4540 
4541 	i = 0;
4542 	cpu = first_cpu(cpu_online_map);
4543 
4544 	for_each_cpu_mask_nr(chan_idx, net_dma->channel_mask) {
4545 		chan = net_dma->channels[chan_idx];
4546 
4547 		n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4548 		   + (i < (num_online_cpus() %
4549 			cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4550 
4551 		while(n) {
4552 			per_cpu(softnet_data, cpu).net_dma = chan;
4553 			cpu = next_cpu(cpu, cpu_online_map);
4554 			n--;
4555 		}
4556 		i++;
4557 	}
4558 }
4559 
4560 /**
4561  * netdev_dma_event - event callback for the net_dma_client
4562  * @client: should always be net_dma_client
4563  * @chan: DMA channel for the event
4564  * @state: DMA state to be handled
4565  */
4566 static enum dma_state_client
4567 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4568 	enum dma_state state)
4569 {
4570 	int i, found = 0, pos = -1;
4571 	struct net_dma *net_dma =
4572 		container_of(client, struct net_dma, client);
4573 	enum dma_state_client ack = DMA_DUP; /* default: take no action */
4574 
4575 	spin_lock(&net_dma->lock);
4576 	switch (state) {
4577 	case DMA_RESOURCE_AVAILABLE:
4578 		for (i = 0; i < nr_cpu_ids; i++)
4579 			if (net_dma->channels[i] == chan) {
4580 				found = 1;
4581 				break;
4582 			} else if (net_dma->channels[i] == NULL && pos < 0)
4583 				pos = i;
4584 
4585 		if (!found && pos >= 0) {
4586 			ack = DMA_ACK;
4587 			net_dma->channels[pos] = chan;
4588 			cpu_set(pos, net_dma->channel_mask);
4589 			net_dma_rebalance(net_dma);
4590 		}
4591 		break;
4592 	case DMA_RESOURCE_REMOVED:
4593 		for (i = 0; i < nr_cpu_ids; i++)
4594 			if (net_dma->channels[i] == chan) {
4595 				found = 1;
4596 				pos = i;
4597 				break;
4598 			}
4599 
4600 		if (found) {
4601 			ack = DMA_ACK;
4602 			cpu_clear(pos, net_dma->channel_mask);
4603 			net_dma->channels[i] = NULL;
4604 			net_dma_rebalance(net_dma);
4605 		}
4606 		break;
4607 	default:
4608 		break;
4609 	}
4610 	spin_unlock(&net_dma->lock);
4611 
4612 	return ack;
4613 }
4614 
4615 /**
4616  * netdev_dma_regiser - register the networking subsystem as a DMA client
4617  */
4618 static int __init netdev_dma_register(void)
4619 {
4620 	net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma),
4621 								GFP_KERNEL);
4622 	if (unlikely(!net_dma.channels)) {
4623 		printk(KERN_NOTICE
4624 				"netdev_dma: no memory for net_dma.channels\n");
4625 		return -ENOMEM;
4626 	}
4627 	spin_lock_init(&net_dma.lock);
4628 	dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4629 	dma_async_client_register(&net_dma.client);
4630 	dma_async_client_chan_request(&net_dma.client);
4631 	return 0;
4632 }
4633 
4634 #else
4635 static int __init netdev_dma_register(void) { return -ENODEV; }
4636 #endif /* CONFIG_NET_DMA */
4637 
4638 /**
4639  *	netdev_compute_feature - compute conjunction of two feature sets
4640  *	@all: first feature set
4641  *	@one: second feature set
4642  *
4643  *	Computes a new feature set after adding a device with feature set
4644  *	@one to the master device with current feature set @all.  Returns
4645  *	the new feature set.
4646  */
4647 int netdev_compute_features(unsigned long all, unsigned long one)
4648 {
4649 	/* if device needs checksumming, downgrade to hw checksumming */
4650 	if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4651 		all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM;
4652 
4653 	/* if device can't do all checksum, downgrade to ipv4/ipv6 */
4654 	if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM))
4655 		all ^= NETIF_F_HW_CSUM
4656 			| NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4657 
4658 	if (one & NETIF_F_GSO)
4659 		one |= NETIF_F_GSO_SOFTWARE;
4660 	one |= NETIF_F_GSO;
4661 
4662 	/* If even one device supports robust GSO, enable it for all. */
4663 	if (one & NETIF_F_GSO_ROBUST)
4664 		all |= NETIF_F_GSO_ROBUST;
4665 
4666 	all &= one | NETIF_F_LLTX;
4667 
4668 	if (!(all & NETIF_F_ALL_CSUM))
4669 		all &= ~NETIF_F_SG;
4670 	if (!(all & NETIF_F_SG))
4671 		all &= ~NETIF_F_GSO_MASK;
4672 
4673 	return all;
4674 }
4675 EXPORT_SYMBOL(netdev_compute_features);
4676 
4677 static struct hlist_head *netdev_create_hash(void)
4678 {
4679 	int i;
4680 	struct hlist_head *hash;
4681 
4682 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4683 	if (hash != NULL)
4684 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
4685 			INIT_HLIST_HEAD(&hash[i]);
4686 
4687 	return hash;
4688 }
4689 
4690 /* Initialize per network namespace state */
4691 static int __net_init netdev_init(struct net *net)
4692 {
4693 	INIT_LIST_HEAD(&net->dev_base_head);
4694 
4695 	net->dev_name_head = netdev_create_hash();
4696 	if (net->dev_name_head == NULL)
4697 		goto err_name;
4698 
4699 	net->dev_index_head = netdev_create_hash();
4700 	if (net->dev_index_head == NULL)
4701 		goto err_idx;
4702 
4703 	return 0;
4704 
4705 err_idx:
4706 	kfree(net->dev_name_head);
4707 err_name:
4708 	return -ENOMEM;
4709 }
4710 
4711 char *netdev_drivername(struct net_device *dev, char *buffer, int len)
4712 {
4713 	struct device_driver *driver;
4714 	struct device *parent;
4715 
4716 	if (len <= 0 || !buffer)
4717 		return buffer;
4718 	buffer[0] = 0;
4719 
4720 	parent = dev->dev.parent;
4721 
4722 	if (!parent)
4723 		return buffer;
4724 
4725 	driver = parent->driver;
4726 	if (driver && driver->name)
4727 		strlcpy(buffer, driver->name, len);
4728 	return buffer;
4729 }
4730 
4731 static void __net_exit netdev_exit(struct net *net)
4732 {
4733 	kfree(net->dev_name_head);
4734 	kfree(net->dev_index_head);
4735 }
4736 
4737 static struct pernet_operations __net_initdata netdev_net_ops = {
4738 	.init = netdev_init,
4739 	.exit = netdev_exit,
4740 };
4741 
4742 static void __net_exit default_device_exit(struct net *net)
4743 {
4744 	struct net_device *dev, *next;
4745 	/*
4746 	 * Push all migratable of the network devices back to the
4747 	 * initial network namespace
4748 	 */
4749 	rtnl_lock();
4750 	for_each_netdev_safe(net, dev, next) {
4751 		int err;
4752 		char fb_name[IFNAMSIZ];
4753 
4754 		/* Ignore unmoveable devices (i.e. loopback) */
4755 		if (dev->features & NETIF_F_NETNS_LOCAL)
4756 			continue;
4757 
4758 		/* Push remaing network devices to init_net */
4759 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
4760 		err = dev_change_net_namespace(dev, &init_net, fb_name);
4761 		if (err) {
4762 			printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
4763 				__func__, dev->name, err);
4764 			BUG();
4765 		}
4766 	}
4767 	rtnl_unlock();
4768 }
4769 
4770 static struct pernet_operations __net_initdata default_device_ops = {
4771 	.exit = default_device_exit,
4772 };
4773 
4774 /*
4775  *	Initialize the DEV module. At boot time this walks the device list and
4776  *	unhooks any devices that fail to initialise (normally hardware not
4777  *	present) and leaves us with a valid list of present and active devices.
4778  *
4779  */
4780 
4781 /*
4782  *       This is called single threaded during boot, so no need
4783  *       to take the rtnl semaphore.
4784  */
4785 static int __init net_dev_init(void)
4786 {
4787 	int i, rc = -ENOMEM;
4788 
4789 	BUG_ON(!dev_boot_phase);
4790 
4791 	if (dev_proc_init())
4792 		goto out;
4793 
4794 	if (netdev_kobject_init())
4795 		goto out;
4796 
4797 	INIT_LIST_HEAD(&ptype_all);
4798 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
4799 		INIT_LIST_HEAD(&ptype_base[i]);
4800 
4801 	if (register_pernet_subsys(&netdev_net_ops))
4802 		goto out;
4803 
4804 	if (register_pernet_device(&default_device_ops))
4805 		goto out;
4806 
4807 	/*
4808 	 *	Initialise the packet receive queues.
4809 	 */
4810 
4811 	for_each_possible_cpu(i) {
4812 		struct softnet_data *queue;
4813 
4814 		queue = &per_cpu(softnet_data, i);
4815 		skb_queue_head_init(&queue->input_pkt_queue);
4816 		queue->completion_queue = NULL;
4817 		INIT_LIST_HEAD(&queue->poll_list);
4818 
4819 		queue->backlog.poll = process_backlog;
4820 		queue->backlog.weight = weight_p;
4821 	}
4822 
4823 	netdev_dma_register();
4824 
4825 	dev_boot_phase = 0;
4826 
4827 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
4828 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
4829 
4830 	hotcpu_notifier(dev_cpu_callback, 0);
4831 	dst_init();
4832 	dev_mcast_init();
4833 	rc = 0;
4834 out:
4835 	return rc;
4836 }
4837 
4838 subsys_initcall(net_dev_init);
4839 
4840 EXPORT_SYMBOL(__dev_get_by_index);
4841 EXPORT_SYMBOL(__dev_get_by_name);
4842 EXPORT_SYMBOL(__dev_remove_pack);
4843 EXPORT_SYMBOL(dev_valid_name);
4844 EXPORT_SYMBOL(dev_add_pack);
4845 EXPORT_SYMBOL(dev_alloc_name);
4846 EXPORT_SYMBOL(dev_close);
4847 EXPORT_SYMBOL(dev_get_by_flags);
4848 EXPORT_SYMBOL(dev_get_by_index);
4849 EXPORT_SYMBOL(dev_get_by_name);
4850 EXPORT_SYMBOL(dev_open);
4851 EXPORT_SYMBOL(dev_queue_xmit);
4852 EXPORT_SYMBOL(dev_remove_pack);
4853 EXPORT_SYMBOL(dev_set_allmulti);
4854 EXPORT_SYMBOL(dev_set_promiscuity);
4855 EXPORT_SYMBOL(dev_change_flags);
4856 EXPORT_SYMBOL(dev_set_mtu);
4857 EXPORT_SYMBOL(dev_set_mac_address);
4858 EXPORT_SYMBOL(free_netdev);
4859 EXPORT_SYMBOL(netdev_boot_setup_check);
4860 EXPORT_SYMBOL(netdev_set_master);
4861 EXPORT_SYMBOL(netdev_state_change);
4862 EXPORT_SYMBOL(netif_receive_skb);
4863 EXPORT_SYMBOL(netif_rx);
4864 EXPORT_SYMBOL(register_gifconf);
4865 EXPORT_SYMBOL(register_netdevice);
4866 EXPORT_SYMBOL(register_netdevice_notifier);
4867 EXPORT_SYMBOL(skb_checksum_help);
4868 EXPORT_SYMBOL(synchronize_net);
4869 EXPORT_SYMBOL(unregister_netdevice);
4870 EXPORT_SYMBOL(unregister_netdevice_notifier);
4871 EXPORT_SYMBOL(net_enable_timestamp);
4872 EXPORT_SYMBOL(net_disable_timestamp);
4873 EXPORT_SYMBOL(dev_get_flags);
4874 
4875 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4876 EXPORT_SYMBOL(br_handle_frame_hook);
4877 EXPORT_SYMBOL(br_fdb_get_hook);
4878 EXPORT_SYMBOL(br_fdb_put_hook);
4879 #endif
4880 
4881 #ifdef CONFIG_KMOD
4882 EXPORT_SYMBOL(dev_load);
4883 #endif
4884 
4885 EXPORT_PER_CPU_SYMBOL(softnet_data);
4886