1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/proc_fs.h> 101 #include <linux/seq_file.h> 102 #include <linux/stat.h> 103 #include <net/dst.h> 104 #include <net/pkt_sched.h> 105 #include <net/checksum.h> 106 #include <net/xfrm.h> 107 #include <linux/highmem.h> 108 #include <linux/init.h> 109 #include <linux/kmod.h> 110 #include <linux/module.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <net/wext.h> 115 #include <net/iw_handler.h> 116 #include <asm/current.h> 117 #include <linux/audit.h> 118 #include <linux/dmaengine.h> 119 #include <linux/err.h> 120 #include <linux/ctype.h> 121 #include <linux/if_arp.h> 122 #include <linux/if_vlan.h> 123 #include <linux/ip.h> 124 #include <net/ip.h> 125 #include <linux/ipv6.h> 126 #include <linux/in.h> 127 #include <linux/jhash.h> 128 #include <linux/random.h> 129 #include <trace/events/napi.h> 130 #include <trace/events/net.h> 131 #include <trace/events/skb.h> 132 #include <linux/pci.h> 133 #include <linux/inetdevice.h> 134 #include <linux/cpu_rmap.h> 135 #include <linux/net_tstamp.h> 136 #include <linux/static_key.h> 137 #include <net/flow_keys.h> 138 139 #include "net-sysfs.h" 140 141 /* Instead of increasing this, you should create a hash table. */ 142 #define MAX_GRO_SKBS 8 143 144 /* This should be increased if a protocol with a bigger head is added. */ 145 #define GRO_MAX_HEAD (MAX_HEADER + 128) 146 147 /* 148 * The list of packet types we will receive (as opposed to discard) 149 * and the routines to invoke. 150 * 151 * Why 16. Because with 16 the only overlap we get on a hash of the 152 * low nibble of the protocol value is RARP/SNAP/X.25. 153 * 154 * NOTE: That is no longer true with the addition of VLAN tags. Not 155 * sure which should go first, but I bet it won't make much 156 * difference if we are running VLANs. The good news is that 157 * this protocol won't be in the list unless compiled in, so 158 * the average user (w/out VLANs) will not be adversely affected. 159 * --BLG 160 * 161 * 0800 IP 162 * 8100 802.1Q VLAN 163 * 0001 802.3 164 * 0002 AX.25 165 * 0004 802.2 166 * 8035 RARP 167 * 0005 SNAP 168 * 0805 X.25 169 * 0806 ARP 170 * 8137 IPX 171 * 0009 Localtalk 172 * 86DD IPv6 173 */ 174 175 #define PTYPE_HASH_SIZE (16) 176 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 177 178 static DEFINE_SPINLOCK(ptype_lock); 179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 180 static struct list_head ptype_all __read_mostly; /* Taps */ 181 182 /* 183 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 184 * semaphore. 185 * 186 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 187 * 188 * Writers must hold the rtnl semaphore while they loop through the 189 * dev_base_head list, and hold dev_base_lock for writing when they do the 190 * actual updates. This allows pure readers to access the list even 191 * while a writer is preparing to update it. 192 * 193 * To put it another way, dev_base_lock is held for writing only to 194 * protect against pure readers; the rtnl semaphore provides the 195 * protection against other writers. 196 * 197 * See, for example usages, register_netdevice() and 198 * unregister_netdevice(), which must be called with the rtnl 199 * semaphore held. 200 */ 201 DEFINE_RWLOCK(dev_base_lock); 202 EXPORT_SYMBOL(dev_base_lock); 203 204 static inline void dev_base_seq_inc(struct net *net) 205 { 206 while (++net->dev_base_seq == 0); 207 } 208 209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 210 { 211 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 212 213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 214 } 215 216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 217 { 218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 219 } 220 221 static inline void rps_lock(struct softnet_data *sd) 222 { 223 #ifdef CONFIG_RPS 224 spin_lock(&sd->input_pkt_queue.lock); 225 #endif 226 } 227 228 static inline void rps_unlock(struct softnet_data *sd) 229 { 230 #ifdef CONFIG_RPS 231 spin_unlock(&sd->input_pkt_queue.lock); 232 #endif 233 } 234 235 /* Device list insertion */ 236 static int list_netdevice(struct net_device *dev) 237 { 238 struct net *net = dev_net(dev); 239 240 ASSERT_RTNL(); 241 242 write_lock_bh(&dev_base_lock); 243 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 244 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 245 hlist_add_head_rcu(&dev->index_hlist, 246 dev_index_hash(net, dev->ifindex)); 247 write_unlock_bh(&dev_base_lock); 248 249 dev_base_seq_inc(net); 250 251 return 0; 252 } 253 254 /* Device list removal 255 * caller must respect a RCU grace period before freeing/reusing dev 256 */ 257 static void unlist_netdevice(struct net_device *dev) 258 { 259 ASSERT_RTNL(); 260 261 /* Unlink dev from the device chain */ 262 write_lock_bh(&dev_base_lock); 263 list_del_rcu(&dev->dev_list); 264 hlist_del_rcu(&dev->name_hlist); 265 hlist_del_rcu(&dev->index_hlist); 266 write_unlock_bh(&dev_base_lock); 267 268 dev_base_seq_inc(dev_net(dev)); 269 } 270 271 /* 272 * Our notifier list 273 */ 274 275 static RAW_NOTIFIER_HEAD(netdev_chain); 276 277 /* 278 * Device drivers call our routines to queue packets here. We empty the 279 * queue in the local softnet handler. 280 */ 281 282 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 283 EXPORT_PER_CPU_SYMBOL(softnet_data); 284 285 #ifdef CONFIG_LOCKDEP 286 /* 287 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 288 * according to dev->type 289 */ 290 static const unsigned short netdev_lock_type[] = 291 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 292 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 293 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 294 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 295 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 296 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 297 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 298 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 299 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 300 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 301 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 302 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 303 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 304 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 305 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 306 307 static const char *const netdev_lock_name[] = 308 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 309 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 310 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 311 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 312 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 313 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 314 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 315 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 316 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 317 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 318 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 319 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 320 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 321 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 322 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 323 324 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 325 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 326 327 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 328 { 329 int i; 330 331 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 332 if (netdev_lock_type[i] == dev_type) 333 return i; 334 /* the last key is used by default */ 335 return ARRAY_SIZE(netdev_lock_type) - 1; 336 } 337 338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 339 unsigned short dev_type) 340 { 341 int i; 342 343 i = netdev_lock_pos(dev_type); 344 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 345 netdev_lock_name[i]); 346 } 347 348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 349 { 350 int i; 351 352 i = netdev_lock_pos(dev->type); 353 lockdep_set_class_and_name(&dev->addr_list_lock, 354 &netdev_addr_lock_key[i], 355 netdev_lock_name[i]); 356 } 357 #else 358 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 359 unsigned short dev_type) 360 { 361 } 362 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 363 { 364 } 365 #endif 366 367 /******************************************************************************* 368 369 Protocol management and registration routines 370 371 *******************************************************************************/ 372 373 /* 374 * Add a protocol ID to the list. Now that the input handler is 375 * smarter we can dispense with all the messy stuff that used to be 376 * here. 377 * 378 * BEWARE!!! Protocol handlers, mangling input packets, 379 * MUST BE last in hash buckets and checking protocol handlers 380 * MUST start from promiscuous ptype_all chain in net_bh. 381 * It is true now, do not change it. 382 * Explanation follows: if protocol handler, mangling packet, will 383 * be the first on list, it is not able to sense, that packet 384 * is cloned and should be copied-on-write, so that it will 385 * change it and subsequent readers will get broken packet. 386 * --ANK (980803) 387 */ 388 389 static inline struct list_head *ptype_head(const struct packet_type *pt) 390 { 391 if (pt->type == htons(ETH_P_ALL)) 392 return &ptype_all; 393 else 394 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 395 } 396 397 /** 398 * dev_add_pack - add packet handler 399 * @pt: packet type declaration 400 * 401 * Add a protocol handler to the networking stack. The passed &packet_type 402 * is linked into kernel lists and may not be freed until it has been 403 * removed from the kernel lists. 404 * 405 * This call does not sleep therefore it can not 406 * guarantee all CPU's that are in middle of receiving packets 407 * will see the new packet type (until the next received packet). 408 */ 409 410 void dev_add_pack(struct packet_type *pt) 411 { 412 struct list_head *head = ptype_head(pt); 413 414 spin_lock(&ptype_lock); 415 list_add_rcu(&pt->list, head); 416 spin_unlock(&ptype_lock); 417 } 418 EXPORT_SYMBOL(dev_add_pack); 419 420 /** 421 * __dev_remove_pack - remove packet handler 422 * @pt: packet type declaration 423 * 424 * Remove a protocol handler that was previously added to the kernel 425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 426 * from the kernel lists and can be freed or reused once this function 427 * returns. 428 * 429 * The packet type might still be in use by receivers 430 * and must not be freed until after all the CPU's have gone 431 * through a quiescent state. 432 */ 433 void __dev_remove_pack(struct packet_type *pt) 434 { 435 struct list_head *head = ptype_head(pt); 436 struct packet_type *pt1; 437 438 spin_lock(&ptype_lock); 439 440 list_for_each_entry(pt1, head, list) { 441 if (pt == pt1) { 442 list_del_rcu(&pt->list); 443 goto out; 444 } 445 } 446 447 pr_warn("dev_remove_pack: %p not found\n", pt); 448 out: 449 spin_unlock(&ptype_lock); 450 } 451 EXPORT_SYMBOL(__dev_remove_pack); 452 453 /** 454 * dev_remove_pack - remove packet handler 455 * @pt: packet type declaration 456 * 457 * Remove a protocol handler that was previously added to the kernel 458 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 459 * from the kernel lists and can be freed or reused once this function 460 * returns. 461 * 462 * This call sleeps to guarantee that no CPU is looking at the packet 463 * type after return. 464 */ 465 void dev_remove_pack(struct packet_type *pt) 466 { 467 __dev_remove_pack(pt); 468 469 synchronize_net(); 470 } 471 EXPORT_SYMBOL(dev_remove_pack); 472 473 /****************************************************************************** 474 475 Device Boot-time Settings Routines 476 477 *******************************************************************************/ 478 479 /* Boot time configuration table */ 480 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 481 482 /** 483 * netdev_boot_setup_add - add new setup entry 484 * @name: name of the device 485 * @map: configured settings for the device 486 * 487 * Adds new setup entry to the dev_boot_setup list. The function 488 * returns 0 on error and 1 on success. This is a generic routine to 489 * all netdevices. 490 */ 491 static int netdev_boot_setup_add(char *name, struct ifmap *map) 492 { 493 struct netdev_boot_setup *s; 494 int i; 495 496 s = dev_boot_setup; 497 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 498 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 499 memset(s[i].name, 0, sizeof(s[i].name)); 500 strlcpy(s[i].name, name, IFNAMSIZ); 501 memcpy(&s[i].map, map, sizeof(s[i].map)); 502 break; 503 } 504 } 505 506 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 507 } 508 509 /** 510 * netdev_boot_setup_check - check boot time settings 511 * @dev: the netdevice 512 * 513 * Check boot time settings for the device. 514 * The found settings are set for the device to be used 515 * later in the device probing. 516 * Returns 0 if no settings found, 1 if they are. 517 */ 518 int netdev_boot_setup_check(struct net_device *dev) 519 { 520 struct netdev_boot_setup *s = dev_boot_setup; 521 int i; 522 523 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 524 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 525 !strcmp(dev->name, s[i].name)) { 526 dev->irq = s[i].map.irq; 527 dev->base_addr = s[i].map.base_addr; 528 dev->mem_start = s[i].map.mem_start; 529 dev->mem_end = s[i].map.mem_end; 530 return 1; 531 } 532 } 533 return 0; 534 } 535 EXPORT_SYMBOL(netdev_boot_setup_check); 536 537 538 /** 539 * netdev_boot_base - get address from boot time settings 540 * @prefix: prefix for network device 541 * @unit: id for network device 542 * 543 * Check boot time settings for the base address of device. 544 * The found settings are set for the device to be used 545 * later in the device probing. 546 * Returns 0 if no settings found. 547 */ 548 unsigned long netdev_boot_base(const char *prefix, int unit) 549 { 550 const struct netdev_boot_setup *s = dev_boot_setup; 551 char name[IFNAMSIZ]; 552 int i; 553 554 sprintf(name, "%s%d", prefix, unit); 555 556 /* 557 * If device already registered then return base of 1 558 * to indicate not to probe for this interface 559 */ 560 if (__dev_get_by_name(&init_net, name)) 561 return 1; 562 563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 564 if (!strcmp(name, s[i].name)) 565 return s[i].map.base_addr; 566 return 0; 567 } 568 569 /* 570 * Saves at boot time configured settings for any netdevice. 571 */ 572 int __init netdev_boot_setup(char *str) 573 { 574 int ints[5]; 575 struct ifmap map; 576 577 str = get_options(str, ARRAY_SIZE(ints), ints); 578 if (!str || !*str) 579 return 0; 580 581 /* Save settings */ 582 memset(&map, 0, sizeof(map)); 583 if (ints[0] > 0) 584 map.irq = ints[1]; 585 if (ints[0] > 1) 586 map.base_addr = ints[2]; 587 if (ints[0] > 2) 588 map.mem_start = ints[3]; 589 if (ints[0] > 3) 590 map.mem_end = ints[4]; 591 592 /* Add new entry to the list */ 593 return netdev_boot_setup_add(str, &map); 594 } 595 596 __setup("netdev=", netdev_boot_setup); 597 598 /******************************************************************************* 599 600 Device Interface Subroutines 601 602 *******************************************************************************/ 603 604 /** 605 * __dev_get_by_name - find a device by its name 606 * @net: the applicable net namespace 607 * @name: name to find 608 * 609 * Find an interface by name. Must be called under RTNL semaphore 610 * or @dev_base_lock. If the name is found a pointer to the device 611 * is returned. If the name is not found then %NULL is returned. The 612 * reference counters are not incremented so the caller must be 613 * careful with locks. 614 */ 615 616 struct net_device *__dev_get_by_name(struct net *net, const char *name) 617 { 618 struct hlist_node *p; 619 struct net_device *dev; 620 struct hlist_head *head = dev_name_hash(net, name); 621 622 hlist_for_each_entry(dev, p, head, name_hlist) 623 if (!strncmp(dev->name, name, IFNAMSIZ)) 624 return dev; 625 626 return NULL; 627 } 628 EXPORT_SYMBOL(__dev_get_by_name); 629 630 /** 631 * dev_get_by_name_rcu - find a device by its name 632 * @net: the applicable net namespace 633 * @name: name to find 634 * 635 * Find an interface by name. 636 * If the name is found a pointer to the device is returned. 637 * If the name is not found then %NULL is returned. 638 * The reference counters are not incremented so the caller must be 639 * careful with locks. The caller must hold RCU lock. 640 */ 641 642 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 643 { 644 struct hlist_node *p; 645 struct net_device *dev; 646 struct hlist_head *head = dev_name_hash(net, name); 647 648 hlist_for_each_entry_rcu(dev, p, head, name_hlist) 649 if (!strncmp(dev->name, name, IFNAMSIZ)) 650 return dev; 651 652 return NULL; 653 } 654 EXPORT_SYMBOL(dev_get_by_name_rcu); 655 656 /** 657 * dev_get_by_name - find a device by its name 658 * @net: the applicable net namespace 659 * @name: name to find 660 * 661 * Find an interface by name. This can be called from any 662 * context and does its own locking. The returned handle has 663 * the usage count incremented and the caller must use dev_put() to 664 * release it when it is no longer needed. %NULL is returned if no 665 * matching device is found. 666 */ 667 668 struct net_device *dev_get_by_name(struct net *net, const char *name) 669 { 670 struct net_device *dev; 671 672 rcu_read_lock(); 673 dev = dev_get_by_name_rcu(net, name); 674 if (dev) 675 dev_hold(dev); 676 rcu_read_unlock(); 677 return dev; 678 } 679 EXPORT_SYMBOL(dev_get_by_name); 680 681 /** 682 * __dev_get_by_index - find a device by its ifindex 683 * @net: the applicable net namespace 684 * @ifindex: index of device 685 * 686 * Search for an interface by index. Returns %NULL if the device 687 * is not found or a pointer to the device. The device has not 688 * had its reference counter increased so the caller must be careful 689 * about locking. The caller must hold either the RTNL semaphore 690 * or @dev_base_lock. 691 */ 692 693 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 694 { 695 struct hlist_node *p; 696 struct net_device *dev; 697 struct hlist_head *head = dev_index_hash(net, ifindex); 698 699 hlist_for_each_entry(dev, p, head, index_hlist) 700 if (dev->ifindex == ifindex) 701 return dev; 702 703 return NULL; 704 } 705 EXPORT_SYMBOL(__dev_get_by_index); 706 707 /** 708 * dev_get_by_index_rcu - find a device by its ifindex 709 * @net: the applicable net namespace 710 * @ifindex: index of device 711 * 712 * Search for an interface by index. Returns %NULL if the device 713 * is not found or a pointer to the device. The device has not 714 * had its reference counter increased so the caller must be careful 715 * about locking. The caller must hold RCU lock. 716 */ 717 718 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 719 { 720 struct hlist_node *p; 721 struct net_device *dev; 722 struct hlist_head *head = dev_index_hash(net, ifindex); 723 724 hlist_for_each_entry_rcu(dev, p, head, index_hlist) 725 if (dev->ifindex == ifindex) 726 return dev; 727 728 return NULL; 729 } 730 EXPORT_SYMBOL(dev_get_by_index_rcu); 731 732 733 /** 734 * dev_get_by_index - find a device by its ifindex 735 * @net: the applicable net namespace 736 * @ifindex: index of device 737 * 738 * Search for an interface by index. Returns NULL if the device 739 * is not found or a pointer to the device. The device returned has 740 * had a reference added and the pointer is safe until the user calls 741 * dev_put to indicate they have finished with it. 742 */ 743 744 struct net_device *dev_get_by_index(struct net *net, int ifindex) 745 { 746 struct net_device *dev; 747 748 rcu_read_lock(); 749 dev = dev_get_by_index_rcu(net, ifindex); 750 if (dev) 751 dev_hold(dev); 752 rcu_read_unlock(); 753 return dev; 754 } 755 EXPORT_SYMBOL(dev_get_by_index); 756 757 /** 758 * dev_getbyhwaddr_rcu - find a device by its hardware address 759 * @net: the applicable net namespace 760 * @type: media type of device 761 * @ha: hardware address 762 * 763 * Search for an interface by MAC address. Returns NULL if the device 764 * is not found or a pointer to the device. 765 * The caller must hold RCU or RTNL. 766 * The returned device has not had its ref count increased 767 * and the caller must therefore be careful about locking 768 * 769 */ 770 771 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 772 const char *ha) 773 { 774 struct net_device *dev; 775 776 for_each_netdev_rcu(net, dev) 777 if (dev->type == type && 778 !memcmp(dev->dev_addr, ha, dev->addr_len)) 779 return dev; 780 781 return NULL; 782 } 783 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 784 785 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 786 { 787 struct net_device *dev; 788 789 ASSERT_RTNL(); 790 for_each_netdev(net, dev) 791 if (dev->type == type) 792 return dev; 793 794 return NULL; 795 } 796 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 797 798 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 799 { 800 struct net_device *dev, *ret = NULL; 801 802 rcu_read_lock(); 803 for_each_netdev_rcu(net, dev) 804 if (dev->type == type) { 805 dev_hold(dev); 806 ret = dev; 807 break; 808 } 809 rcu_read_unlock(); 810 return ret; 811 } 812 EXPORT_SYMBOL(dev_getfirstbyhwtype); 813 814 /** 815 * dev_get_by_flags_rcu - find any device with given flags 816 * @net: the applicable net namespace 817 * @if_flags: IFF_* values 818 * @mask: bitmask of bits in if_flags to check 819 * 820 * Search for any interface with the given flags. Returns NULL if a device 821 * is not found or a pointer to the device. Must be called inside 822 * rcu_read_lock(), and result refcount is unchanged. 823 */ 824 825 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 826 unsigned short mask) 827 { 828 struct net_device *dev, *ret; 829 830 ret = NULL; 831 for_each_netdev_rcu(net, dev) { 832 if (((dev->flags ^ if_flags) & mask) == 0) { 833 ret = dev; 834 break; 835 } 836 } 837 return ret; 838 } 839 EXPORT_SYMBOL(dev_get_by_flags_rcu); 840 841 /** 842 * dev_valid_name - check if name is okay for network device 843 * @name: name string 844 * 845 * Network device names need to be valid file names to 846 * to allow sysfs to work. We also disallow any kind of 847 * whitespace. 848 */ 849 bool dev_valid_name(const char *name) 850 { 851 if (*name == '\0') 852 return false; 853 if (strlen(name) >= IFNAMSIZ) 854 return false; 855 if (!strcmp(name, ".") || !strcmp(name, "..")) 856 return false; 857 858 while (*name) { 859 if (*name == '/' || isspace(*name)) 860 return false; 861 name++; 862 } 863 return true; 864 } 865 EXPORT_SYMBOL(dev_valid_name); 866 867 /** 868 * __dev_alloc_name - allocate a name for a device 869 * @net: network namespace to allocate the device name in 870 * @name: name format string 871 * @buf: scratch buffer and result name string 872 * 873 * Passed a format string - eg "lt%d" it will try and find a suitable 874 * id. It scans list of devices to build up a free map, then chooses 875 * the first empty slot. The caller must hold the dev_base or rtnl lock 876 * while allocating the name and adding the device in order to avoid 877 * duplicates. 878 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 879 * Returns the number of the unit assigned or a negative errno code. 880 */ 881 882 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 883 { 884 int i = 0; 885 const char *p; 886 const int max_netdevices = 8*PAGE_SIZE; 887 unsigned long *inuse; 888 struct net_device *d; 889 890 p = strnchr(name, IFNAMSIZ-1, '%'); 891 if (p) { 892 /* 893 * Verify the string as this thing may have come from 894 * the user. There must be either one "%d" and no other "%" 895 * characters. 896 */ 897 if (p[1] != 'd' || strchr(p + 2, '%')) 898 return -EINVAL; 899 900 /* Use one page as a bit array of possible slots */ 901 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 902 if (!inuse) 903 return -ENOMEM; 904 905 for_each_netdev(net, d) { 906 if (!sscanf(d->name, name, &i)) 907 continue; 908 if (i < 0 || i >= max_netdevices) 909 continue; 910 911 /* avoid cases where sscanf is not exact inverse of printf */ 912 snprintf(buf, IFNAMSIZ, name, i); 913 if (!strncmp(buf, d->name, IFNAMSIZ)) 914 set_bit(i, inuse); 915 } 916 917 i = find_first_zero_bit(inuse, max_netdevices); 918 free_page((unsigned long) inuse); 919 } 920 921 if (buf != name) 922 snprintf(buf, IFNAMSIZ, name, i); 923 if (!__dev_get_by_name(net, buf)) 924 return i; 925 926 /* It is possible to run out of possible slots 927 * when the name is long and there isn't enough space left 928 * for the digits, or if all bits are used. 929 */ 930 return -ENFILE; 931 } 932 933 /** 934 * dev_alloc_name - allocate a name for a device 935 * @dev: device 936 * @name: name format string 937 * 938 * Passed a format string - eg "lt%d" it will try and find a suitable 939 * id. It scans list of devices to build up a free map, then chooses 940 * the first empty slot. The caller must hold the dev_base or rtnl lock 941 * while allocating the name and adding the device in order to avoid 942 * duplicates. 943 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 944 * Returns the number of the unit assigned or a negative errno code. 945 */ 946 947 int dev_alloc_name(struct net_device *dev, const char *name) 948 { 949 char buf[IFNAMSIZ]; 950 struct net *net; 951 int ret; 952 953 BUG_ON(!dev_net(dev)); 954 net = dev_net(dev); 955 ret = __dev_alloc_name(net, name, buf); 956 if (ret >= 0) 957 strlcpy(dev->name, buf, IFNAMSIZ); 958 return ret; 959 } 960 EXPORT_SYMBOL(dev_alloc_name); 961 962 static int dev_get_valid_name(struct net_device *dev, const char *name) 963 { 964 struct net *net; 965 966 BUG_ON(!dev_net(dev)); 967 net = dev_net(dev); 968 969 if (!dev_valid_name(name)) 970 return -EINVAL; 971 972 if (strchr(name, '%')) 973 return dev_alloc_name(dev, name); 974 else if (__dev_get_by_name(net, name)) 975 return -EEXIST; 976 else if (dev->name != name) 977 strlcpy(dev->name, name, IFNAMSIZ); 978 979 return 0; 980 } 981 982 /** 983 * dev_change_name - change name of a device 984 * @dev: device 985 * @newname: name (or format string) must be at least IFNAMSIZ 986 * 987 * Change name of a device, can pass format strings "eth%d". 988 * for wildcarding. 989 */ 990 int dev_change_name(struct net_device *dev, const char *newname) 991 { 992 char oldname[IFNAMSIZ]; 993 int err = 0; 994 int ret; 995 struct net *net; 996 997 ASSERT_RTNL(); 998 BUG_ON(!dev_net(dev)); 999 1000 net = dev_net(dev); 1001 if (dev->flags & IFF_UP) 1002 return -EBUSY; 1003 1004 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 1005 return 0; 1006 1007 memcpy(oldname, dev->name, IFNAMSIZ); 1008 1009 err = dev_get_valid_name(dev, newname); 1010 if (err < 0) 1011 return err; 1012 1013 rollback: 1014 ret = device_rename(&dev->dev, dev->name); 1015 if (ret) { 1016 memcpy(dev->name, oldname, IFNAMSIZ); 1017 return ret; 1018 } 1019 1020 write_lock_bh(&dev_base_lock); 1021 hlist_del_rcu(&dev->name_hlist); 1022 write_unlock_bh(&dev_base_lock); 1023 1024 synchronize_rcu(); 1025 1026 write_lock_bh(&dev_base_lock); 1027 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1028 write_unlock_bh(&dev_base_lock); 1029 1030 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1031 ret = notifier_to_errno(ret); 1032 1033 if (ret) { 1034 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1035 if (err >= 0) { 1036 err = ret; 1037 memcpy(dev->name, oldname, IFNAMSIZ); 1038 goto rollback; 1039 } else { 1040 pr_err("%s: name change rollback failed: %d\n", 1041 dev->name, ret); 1042 } 1043 } 1044 1045 return err; 1046 } 1047 1048 /** 1049 * dev_set_alias - change ifalias of a device 1050 * @dev: device 1051 * @alias: name up to IFALIASZ 1052 * @len: limit of bytes to copy from info 1053 * 1054 * Set ifalias for a device, 1055 */ 1056 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1057 { 1058 char *new_ifalias; 1059 1060 ASSERT_RTNL(); 1061 1062 if (len >= IFALIASZ) 1063 return -EINVAL; 1064 1065 if (!len) { 1066 if (dev->ifalias) { 1067 kfree(dev->ifalias); 1068 dev->ifalias = NULL; 1069 } 1070 return 0; 1071 } 1072 1073 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1074 if (!new_ifalias) 1075 return -ENOMEM; 1076 dev->ifalias = new_ifalias; 1077 1078 strlcpy(dev->ifalias, alias, len+1); 1079 return len; 1080 } 1081 1082 1083 /** 1084 * netdev_features_change - device changes features 1085 * @dev: device to cause notification 1086 * 1087 * Called to indicate a device has changed features. 1088 */ 1089 void netdev_features_change(struct net_device *dev) 1090 { 1091 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1092 } 1093 EXPORT_SYMBOL(netdev_features_change); 1094 1095 /** 1096 * netdev_state_change - device changes state 1097 * @dev: device to cause notification 1098 * 1099 * Called to indicate a device has changed state. This function calls 1100 * the notifier chains for netdev_chain and sends a NEWLINK message 1101 * to the routing socket. 1102 */ 1103 void netdev_state_change(struct net_device *dev) 1104 { 1105 if (dev->flags & IFF_UP) { 1106 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1107 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1108 } 1109 } 1110 EXPORT_SYMBOL(netdev_state_change); 1111 1112 int netdev_bonding_change(struct net_device *dev, unsigned long event) 1113 { 1114 return call_netdevice_notifiers(event, dev); 1115 } 1116 EXPORT_SYMBOL(netdev_bonding_change); 1117 1118 /** 1119 * dev_load - load a network module 1120 * @net: the applicable net namespace 1121 * @name: name of interface 1122 * 1123 * If a network interface is not present and the process has suitable 1124 * privileges this function loads the module. If module loading is not 1125 * available in this kernel then it becomes a nop. 1126 */ 1127 1128 void dev_load(struct net *net, const char *name) 1129 { 1130 struct net_device *dev; 1131 int no_module; 1132 1133 rcu_read_lock(); 1134 dev = dev_get_by_name_rcu(net, name); 1135 rcu_read_unlock(); 1136 1137 no_module = !dev; 1138 if (no_module && capable(CAP_NET_ADMIN)) 1139 no_module = request_module("netdev-%s", name); 1140 if (no_module && capable(CAP_SYS_MODULE)) { 1141 if (!request_module("%s", name)) 1142 pr_warn("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s instead.\n", 1143 name); 1144 } 1145 } 1146 EXPORT_SYMBOL(dev_load); 1147 1148 static int __dev_open(struct net_device *dev) 1149 { 1150 const struct net_device_ops *ops = dev->netdev_ops; 1151 int ret; 1152 1153 ASSERT_RTNL(); 1154 1155 if (!netif_device_present(dev)) 1156 return -ENODEV; 1157 1158 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1159 ret = notifier_to_errno(ret); 1160 if (ret) 1161 return ret; 1162 1163 set_bit(__LINK_STATE_START, &dev->state); 1164 1165 if (ops->ndo_validate_addr) 1166 ret = ops->ndo_validate_addr(dev); 1167 1168 if (!ret && ops->ndo_open) 1169 ret = ops->ndo_open(dev); 1170 1171 if (ret) 1172 clear_bit(__LINK_STATE_START, &dev->state); 1173 else { 1174 dev->flags |= IFF_UP; 1175 net_dmaengine_get(); 1176 dev_set_rx_mode(dev); 1177 dev_activate(dev); 1178 add_device_randomness(dev->dev_addr, dev->addr_len); 1179 } 1180 1181 return ret; 1182 } 1183 1184 /** 1185 * dev_open - prepare an interface for use. 1186 * @dev: device to open 1187 * 1188 * Takes a device from down to up state. The device's private open 1189 * function is invoked and then the multicast lists are loaded. Finally 1190 * the device is moved into the up state and a %NETDEV_UP message is 1191 * sent to the netdev notifier chain. 1192 * 1193 * Calling this function on an active interface is a nop. On a failure 1194 * a negative errno code is returned. 1195 */ 1196 int dev_open(struct net_device *dev) 1197 { 1198 int ret; 1199 1200 if (dev->flags & IFF_UP) 1201 return 0; 1202 1203 ret = __dev_open(dev); 1204 if (ret < 0) 1205 return ret; 1206 1207 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1208 call_netdevice_notifiers(NETDEV_UP, dev); 1209 1210 return ret; 1211 } 1212 EXPORT_SYMBOL(dev_open); 1213 1214 static int __dev_close_many(struct list_head *head) 1215 { 1216 struct net_device *dev; 1217 1218 ASSERT_RTNL(); 1219 might_sleep(); 1220 1221 list_for_each_entry(dev, head, unreg_list) { 1222 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1223 1224 clear_bit(__LINK_STATE_START, &dev->state); 1225 1226 /* Synchronize to scheduled poll. We cannot touch poll list, it 1227 * can be even on different cpu. So just clear netif_running(). 1228 * 1229 * dev->stop() will invoke napi_disable() on all of it's 1230 * napi_struct instances on this device. 1231 */ 1232 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1233 } 1234 1235 dev_deactivate_many(head); 1236 1237 list_for_each_entry(dev, head, unreg_list) { 1238 const struct net_device_ops *ops = dev->netdev_ops; 1239 1240 /* 1241 * Call the device specific close. This cannot fail. 1242 * Only if device is UP 1243 * 1244 * We allow it to be called even after a DETACH hot-plug 1245 * event. 1246 */ 1247 if (ops->ndo_stop) 1248 ops->ndo_stop(dev); 1249 1250 dev->flags &= ~IFF_UP; 1251 net_dmaengine_put(); 1252 } 1253 1254 return 0; 1255 } 1256 1257 static int __dev_close(struct net_device *dev) 1258 { 1259 int retval; 1260 LIST_HEAD(single); 1261 1262 list_add(&dev->unreg_list, &single); 1263 retval = __dev_close_many(&single); 1264 list_del(&single); 1265 return retval; 1266 } 1267 1268 static int dev_close_many(struct list_head *head) 1269 { 1270 struct net_device *dev, *tmp; 1271 LIST_HEAD(tmp_list); 1272 1273 list_for_each_entry_safe(dev, tmp, head, unreg_list) 1274 if (!(dev->flags & IFF_UP)) 1275 list_move(&dev->unreg_list, &tmp_list); 1276 1277 __dev_close_many(head); 1278 1279 list_for_each_entry(dev, head, unreg_list) { 1280 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1281 call_netdevice_notifiers(NETDEV_DOWN, dev); 1282 } 1283 1284 /* rollback_registered_many needs the complete original list */ 1285 list_splice(&tmp_list, head); 1286 return 0; 1287 } 1288 1289 /** 1290 * dev_close - shutdown an interface. 1291 * @dev: device to shutdown 1292 * 1293 * This function moves an active device into down state. A 1294 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1295 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1296 * chain. 1297 */ 1298 int dev_close(struct net_device *dev) 1299 { 1300 if (dev->flags & IFF_UP) { 1301 LIST_HEAD(single); 1302 1303 list_add(&dev->unreg_list, &single); 1304 dev_close_many(&single); 1305 list_del(&single); 1306 } 1307 return 0; 1308 } 1309 EXPORT_SYMBOL(dev_close); 1310 1311 1312 /** 1313 * dev_disable_lro - disable Large Receive Offload on a device 1314 * @dev: device 1315 * 1316 * Disable Large Receive Offload (LRO) on a net device. Must be 1317 * called under RTNL. This is needed if received packets may be 1318 * forwarded to another interface. 1319 */ 1320 void dev_disable_lro(struct net_device *dev) 1321 { 1322 /* 1323 * If we're trying to disable lro on a vlan device 1324 * use the underlying physical device instead 1325 */ 1326 if (is_vlan_dev(dev)) 1327 dev = vlan_dev_real_dev(dev); 1328 1329 dev->wanted_features &= ~NETIF_F_LRO; 1330 netdev_update_features(dev); 1331 1332 if (unlikely(dev->features & NETIF_F_LRO)) 1333 netdev_WARN(dev, "failed to disable LRO!\n"); 1334 } 1335 EXPORT_SYMBOL(dev_disable_lro); 1336 1337 1338 static int dev_boot_phase = 1; 1339 1340 /** 1341 * register_netdevice_notifier - register a network notifier block 1342 * @nb: notifier 1343 * 1344 * Register a notifier to be called when network device events occur. 1345 * The notifier passed is linked into the kernel structures and must 1346 * not be reused until it has been unregistered. A negative errno code 1347 * is returned on a failure. 1348 * 1349 * When registered all registration and up events are replayed 1350 * to the new notifier to allow device to have a race free 1351 * view of the network device list. 1352 */ 1353 1354 int register_netdevice_notifier(struct notifier_block *nb) 1355 { 1356 struct net_device *dev; 1357 struct net_device *last; 1358 struct net *net; 1359 int err; 1360 1361 rtnl_lock(); 1362 err = raw_notifier_chain_register(&netdev_chain, nb); 1363 if (err) 1364 goto unlock; 1365 if (dev_boot_phase) 1366 goto unlock; 1367 for_each_net(net) { 1368 for_each_netdev(net, dev) { 1369 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1370 err = notifier_to_errno(err); 1371 if (err) 1372 goto rollback; 1373 1374 if (!(dev->flags & IFF_UP)) 1375 continue; 1376 1377 nb->notifier_call(nb, NETDEV_UP, dev); 1378 } 1379 } 1380 1381 unlock: 1382 rtnl_unlock(); 1383 return err; 1384 1385 rollback: 1386 last = dev; 1387 for_each_net(net) { 1388 for_each_netdev(net, dev) { 1389 if (dev == last) 1390 goto outroll; 1391 1392 if (dev->flags & IFF_UP) { 1393 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1394 nb->notifier_call(nb, NETDEV_DOWN, dev); 1395 } 1396 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1397 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1398 } 1399 } 1400 1401 outroll: 1402 raw_notifier_chain_unregister(&netdev_chain, nb); 1403 goto unlock; 1404 } 1405 EXPORT_SYMBOL(register_netdevice_notifier); 1406 1407 /** 1408 * unregister_netdevice_notifier - unregister a network notifier block 1409 * @nb: notifier 1410 * 1411 * Unregister a notifier previously registered by 1412 * register_netdevice_notifier(). The notifier is unlinked into the 1413 * kernel structures and may then be reused. A negative errno code 1414 * is returned on a failure. 1415 * 1416 * After unregistering unregister and down device events are synthesized 1417 * for all devices on the device list to the removed notifier to remove 1418 * the need for special case cleanup code. 1419 */ 1420 1421 int unregister_netdevice_notifier(struct notifier_block *nb) 1422 { 1423 struct net_device *dev; 1424 struct net *net; 1425 int err; 1426 1427 rtnl_lock(); 1428 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1429 if (err) 1430 goto unlock; 1431 1432 for_each_net(net) { 1433 for_each_netdev(net, dev) { 1434 if (dev->flags & IFF_UP) { 1435 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1436 nb->notifier_call(nb, NETDEV_DOWN, dev); 1437 } 1438 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1439 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1440 } 1441 } 1442 unlock: 1443 rtnl_unlock(); 1444 return err; 1445 } 1446 EXPORT_SYMBOL(unregister_netdevice_notifier); 1447 1448 /** 1449 * call_netdevice_notifiers - call all network notifier blocks 1450 * @val: value passed unmodified to notifier function 1451 * @dev: net_device pointer passed unmodified to notifier function 1452 * 1453 * Call all network notifier blocks. Parameters and return value 1454 * are as for raw_notifier_call_chain(). 1455 */ 1456 1457 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1458 { 1459 ASSERT_RTNL(); 1460 return raw_notifier_call_chain(&netdev_chain, val, dev); 1461 } 1462 EXPORT_SYMBOL(call_netdevice_notifiers); 1463 1464 static struct static_key netstamp_needed __read_mostly; 1465 #ifdef HAVE_JUMP_LABEL 1466 /* We are not allowed to call static_key_slow_dec() from irq context 1467 * If net_disable_timestamp() is called from irq context, defer the 1468 * static_key_slow_dec() calls. 1469 */ 1470 static atomic_t netstamp_needed_deferred; 1471 #endif 1472 1473 void net_enable_timestamp(void) 1474 { 1475 #ifdef HAVE_JUMP_LABEL 1476 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1477 1478 if (deferred) { 1479 while (--deferred) 1480 static_key_slow_dec(&netstamp_needed); 1481 return; 1482 } 1483 #endif 1484 WARN_ON(in_interrupt()); 1485 static_key_slow_inc(&netstamp_needed); 1486 } 1487 EXPORT_SYMBOL(net_enable_timestamp); 1488 1489 void net_disable_timestamp(void) 1490 { 1491 #ifdef HAVE_JUMP_LABEL 1492 if (in_interrupt()) { 1493 atomic_inc(&netstamp_needed_deferred); 1494 return; 1495 } 1496 #endif 1497 static_key_slow_dec(&netstamp_needed); 1498 } 1499 EXPORT_SYMBOL(net_disable_timestamp); 1500 1501 static inline void net_timestamp_set(struct sk_buff *skb) 1502 { 1503 skb->tstamp.tv64 = 0; 1504 if (static_key_false(&netstamp_needed)) 1505 __net_timestamp(skb); 1506 } 1507 1508 #define net_timestamp_check(COND, SKB) \ 1509 if (static_key_false(&netstamp_needed)) { \ 1510 if ((COND) && !(SKB)->tstamp.tv64) \ 1511 __net_timestamp(SKB); \ 1512 } \ 1513 1514 static int net_hwtstamp_validate(struct ifreq *ifr) 1515 { 1516 struct hwtstamp_config cfg; 1517 enum hwtstamp_tx_types tx_type; 1518 enum hwtstamp_rx_filters rx_filter; 1519 int tx_type_valid = 0; 1520 int rx_filter_valid = 0; 1521 1522 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1523 return -EFAULT; 1524 1525 if (cfg.flags) /* reserved for future extensions */ 1526 return -EINVAL; 1527 1528 tx_type = cfg.tx_type; 1529 rx_filter = cfg.rx_filter; 1530 1531 switch (tx_type) { 1532 case HWTSTAMP_TX_OFF: 1533 case HWTSTAMP_TX_ON: 1534 case HWTSTAMP_TX_ONESTEP_SYNC: 1535 tx_type_valid = 1; 1536 break; 1537 } 1538 1539 switch (rx_filter) { 1540 case HWTSTAMP_FILTER_NONE: 1541 case HWTSTAMP_FILTER_ALL: 1542 case HWTSTAMP_FILTER_SOME: 1543 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1544 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1545 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1546 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1547 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1548 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1549 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1550 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1551 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1552 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1553 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1554 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1555 rx_filter_valid = 1; 1556 break; 1557 } 1558 1559 if (!tx_type_valid || !rx_filter_valid) 1560 return -ERANGE; 1561 1562 return 0; 1563 } 1564 1565 static inline bool is_skb_forwardable(struct net_device *dev, 1566 struct sk_buff *skb) 1567 { 1568 unsigned int len; 1569 1570 if (!(dev->flags & IFF_UP)) 1571 return false; 1572 1573 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1574 if (skb->len <= len) 1575 return true; 1576 1577 /* if TSO is enabled, we don't care about the length as the packet 1578 * could be forwarded without being segmented before 1579 */ 1580 if (skb_is_gso(skb)) 1581 return true; 1582 1583 return false; 1584 } 1585 1586 /** 1587 * dev_forward_skb - loopback an skb to another netif 1588 * 1589 * @dev: destination network device 1590 * @skb: buffer to forward 1591 * 1592 * return values: 1593 * NET_RX_SUCCESS (no congestion) 1594 * NET_RX_DROP (packet was dropped, but freed) 1595 * 1596 * dev_forward_skb can be used for injecting an skb from the 1597 * start_xmit function of one device into the receive queue 1598 * of another device. 1599 * 1600 * The receiving device may be in another namespace, so 1601 * we have to clear all information in the skb that could 1602 * impact namespace isolation. 1603 */ 1604 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1605 { 1606 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1607 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1608 atomic_long_inc(&dev->rx_dropped); 1609 kfree_skb(skb); 1610 return NET_RX_DROP; 1611 } 1612 } 1613 1614 skb_orphan(skb); 1615 nf_reset(skb); 1616 1617 if (unlikely(!is_skb_forwardable(dev, skb))) { 1618 atomic_long_inc(&dev->rx_dropped); 1619 kfree_skb(skb); 1620 return NET_RX_DROP; 1621 } 1622 skb->skb_iif = 0; 1623 skb->dev = dev; 1624 skb_dst_drop(skb); 1625 skb->tstamp.tv64 = 0; 1626 skb->pkt_type = PACKET_HOST; 1627 skb->protocol = eth_type_trans(skb, dev); 1628 skb->mark = 0; 1629 secpath_reset(skb); 1630 nf_reset(skb); 1631 return netif_rx(skb); 1632 } 1633 EXPORT_SYMBOL_GPL(dev_forward_skb); 1634 1635 static inline int deliver_skb(struct sk_buff *skb, 1636 struct packet_type *pt_prev, 1637 struct net_device *orig_dev) 1638 { 1639 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1640 return -ENOMEM; 1641 atomic_inc(&skb->users); 1642 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1643 } 1644 1645 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1646 { 1647 if (ptype->af_packet_priv == NULL) 1648 return false; 1649 1650 if (ptype->id_match) 1651 return ptype->id_match(ptype, skb->sk); 1652 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1653 return true; 1654 1655 return false; 1656 } 1657 1658 /* 1659 * Support routine. Sends outgoing frames to any network 1660 * taps currently in use. 1661 */ 1662 1663 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1664 { 1665 struct packet_type *ptype; 1666 struct sk_buff *skb2 = NULL; 1667 struct packet_type *pt_prev = NULL; 1668 1669 rcu_read_lock(); 1670 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1671 /* Never send packets back to the socket 1672 * they originated from - MvS (miquels@drinkel.ow.org) 1673 */ 1674 if ((ptype->dev == dev || !ptype->dev) && 1675 (!skb_loop_sk(ptype, skb))) { 1676 if (pt_prev) { 1677 deliver_skb(skb2, pt_prev, skb->dev); 1678 pt_prev = ptype; 1679 continue; 1680 } 1681 1682 skb2 = skb_clone(skb, GFP_ATOMIC); 1683 if (!skb2) 1684 break; 1685 1686 net_timestamp_set(skb2); 1687 1688 /* skb->nh should be correctly 1689 set by sender, so that the second statement is 1690 just protection against buggy protocols. 1691 */ 1692 skb_reset_mac_header(skb2); 1693 1694 if (skb_network_header(skb2) < skb2->data || 1695 skb2->network_header > skb2->tail) { 1696 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1697 ntohs(skb2->protocol), 1698 dev->name); 1699 skb_reset_network_header(skb2); 1700 } 1701 1702 skb2->transport_header = skb2->network_header; 1703 skb2->pkt_type = PACKET_OUTGOING; 1704 pt_prev = ptype; 1705 } 1706 } 1707 if (pt_prev) 1708 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1709 rcu_read_unlock(); 1710 } 1711 1712 /** 1713 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1714 * @dev: Network device 1715 * @txq: number of queues available 1716 * 1717 * If real_num_tx_queues is changed the tc mappings may no longer be 1718 * valid. To resolve this verify the tc mapping remains valid and if 1719 * not NULL the mapping. With no priorities mapping to this 1720 * offset/count pair it will no longer be used. In the worst case TC0 1721 * is invalid nothing can be done so disable priority mappings. If is 1722 * expected that drivers will fix this mapping if they can before 1723 * calling netif_set_real_num_tx_queues. 1724 */ 1725 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1726 { 1727 int i; 1728 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1729 1730 /* If TC0 is invalidated disable TC mapping */ 1731 if (tc->offset + tc->count > txq) { 1732 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1733 dev->num_tc = 0; 1734 return; 1735 } 1736 1737 /* Invalidated prio to tc mappings set to TC0 */ 1738 for (i = 1; i < TC_BITMASK + 1; i++) { 1739 int q = netdev_get_prio_tc_map(dev, i); 1740 1741 tc = &dev->tc_to_txq[q]; 1742 if (tc->offset + tc->count > txq) { 1743 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1744 i, q); 1745 netdev_set_prio_tc_map(dev, i, 0); 1746 } 1747 } 1748 } 1749 1750 /* 1751 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 1752 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 1753 */ 1754 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 1755 { 1756 int rc; 1757 1758 if (txq < 1 || txq > dev->num_tx_queues) 1759 return -EINVAL; 1760 1761 if (dev->reg_state == NETREG_REGISTERED || 1762 dev->reg_state == NETREG_UNREGISTERING) { 1763 ASSERT_RTNL(); 1764 1765 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 1766 txq); 1767 if (rc) 1768 return rc; 1769 1770 if (dev->num_tc) 1771 netif_setup_tc(dev, txq); 1772 1773 if (txq < dev->real_num_tx_queues) 1774 qdisc_reset_all_tx_gt(dev, txq); 1775 } 1776 1777 dev->real_num_tx_queues = txq; 1778 return 0; 1779 } 1780 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 1781 1782 #ifdef CONFIG_RPS 1783 /** 1784 * netif_set_real_num_rx_queues - set actual number of RX queues used 1785 * @dev: Network device 1786 * @rxq: Actual number of RX queues 1787 * 1788 * This must be called either with the rtnl_lock held or before 1789 * registration of the net device. Returns 0 on success, or a 1790 * negative error code. If called before registration, it always 1791 * succeeds. 1792 */ 1793 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 1794 { 1795 int rc; 1796 1797 if (rxq < 1 || rxq > dev->num_rx_queues) 1798 return -EINVAL; 1799 1800 if (dev->reg_state == NETREG_REGISTERED) { 1801 ASSERT_RTNL(); 1802 1803 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 1804 rxq); 1805 if (rc) 1806 return rc; 1807 } 1808 1809 dev->real_num_rx_queues = rxq; 1810 return 0; 1811 } 1812 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 1813 #endif 1814 1815 /** 1816 * netif_get_num_default_rss_queues - default number of RSS queues 1817 * 1818 * This routine should set an upper limit on the number of RSS queues 1819 * used by default by multiqueue devices. 1820 */ 1821 int netif_get_num_default_rss_queues(void) 1822 { 1823 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 1824 } 1825 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 1826 1827 static inline void __netif_reschedule(struct Qdisc *q) 1828 { 1829 struct softnet_data *sd; 1830 unsigned long flags; 1831 1832 local_irq_save(flags); 1833 sd = &__get_cpu_var(softnet_data); 1834 q->next_sched = NULL; 1835 *sd->output_queue_tailp = q; 1836 sd->output_queue_tailp = &q->next_sched; 1837 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1838 local_irq_restore(flags); 1839 } 1840 1841 void __netif_schedule(struct Qdisc *q) 1842 { 1843 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1844 __netif_reschedule(q); 1845 } 1846 EXPORT_SYMBOL(__netif_schedule); 1847 1848 void dev_kfree_skb_irq(struct sk_buff *skb) 1849 { 1850 if (atomic_dec_and_test(&skb->users)) { 1851 struct softnet_data *sd; 1852 unsigned long flags; 1853 1854 local_irq_save(flags); 1855 sd = &__get_cpu_var(softnet_data); 1856 skb->next = sd->completion_queue; 1857 sd->completion_queue = skb; 1858 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1859 local_irq_restore(flags); 1860 } 1861 } 1862 EXPORT_SYMBOL(dev_kfree_skb_irq); 1863 1864 void dev_kfree_skb_any(struct sk_buff *skb) 1865 { 1866 if (in_irq() || irqs_disabled()) 1867 dev_kfree_skb_irq(skb); 1868 else 1869 dev_kfree_skb(skb); 1870 } 1871 EXPORT_SYMBOL(dev_kfree_skb_any); 1872 1873 1874 /** 1875 * netif_device_detach - mark device as removed 1876 * @dev: network device 1877 * 1878 * Mark device as removed from system and therefore no longer available. 1879 */ 1880 void netif_device_detach(struct net_device *dev) 1881 { 1882 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1883 netif_running(dev)) { 1884 netif_tx_stop_all_queues(dev); 1885 } 1886 } 1887 EXPORT_SYMBOL(netif_device_detach); 1888 1889 /** 1890 * netif_device_attach - mark device as attached 1891 * @dev: network device 1892 * 1893 * Mark device as attached from system and restart if needed. 1894 */ 1895 void netif_device_attach(struct net_device *dev) 1896 { 1897 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1898 netif_running(dev)) { 1899 netif_tx_wake_all_queues(dev); 1900 __netdev_watchdog_up(dev); 1901 } 1902 } 1903 EXPORT_SYMBOL(netif_device_attach); 1904 1905 static void skb_warn_bad_offload(const struct sk_buff *skb) 1906 { 1907 static const netdev_features_t null_features = 0; 1908 struct net_device *dev = skb->dev; 1909 const char *driver = ""; 1910 1911 if (dev && dev->dev.parent) 1912 driver = dev_driver_string(dev->dev.parent); 1913 1914 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 1915 "gso_type=%d ip_summed=%d\n", 1916 driver, dev ? &dev->features : &null_features, 1917 skb->sk ? &skb->sk->sk_route_caps : &null_features, 1918 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 1919 skb_shinfo(skb)->gso_type, skb->ip_summed); 1920 } 1921 1922 /* 1923 * Invalidate hardware checksum when packet is to be mangled, and 1924 * complete checksum manually on outgoing path. 1925 */ 1926 int skb_checksum_help(struct sk_buff *skb) 1927 { 1928 __wsum csum; 1929 int ret = 0, offset; 1930 1931 if (skb->ip_summed == CHECKSUM_COMPLETE) 1932 goto out_set_summed; 1933 1934 if (unlikely(skb_shinfo(skb)->gso_size)) { 1935 skb_warn_bad_offload(skb); 1936 return -EINVAL; 1937 } 1938 1939 offset = skb_checksum_start_offset(skb); 1940 BUG_ON(offset >= skb_headlen(skb)); 1941 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1942 1943 offset += skb->csum_offset; 1944 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1945 1946 if (skb_cloned(skb) && 1947 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1948 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1949 if (ret) 1950 goto out; 1951 } 1952 1953 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1954 out_set_summed: 1955 skb->ip_summed = CHECKSUM_NONE; 1956 out: 1957 return ret; 1958 } 1959 EXPORT_SYMBOL(skb_checksum_help); 1960 1961 /** 1962 * skb_gso_segment - Perform segmentation on skb. 1963 * @skb: buffer to segment 1964 * @features: features for the output path (see dev->features) 1965 * 1966 * This function segments the given skb and returns a list of segments. 1967 * 1968 * It may return NULL if the skb requires no segmentation. This is 1969 * only possible when GSO is used for verifying header integrity. 1970 */ 1971 struct sk_buff *skb_gso_segment(struct sk_buff *skb, 1972 netdev_features_t features) 1973 { 1974 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1975 struct packet_type *ptype; 1976 __be16 type = skb->protocol; 1977 int vlan_depth = ETH_HLEN; 1978 int err; 1979 1980 while (type == htons(ETH_P_8021Q)) { 1981 struct vlan_hdr *vh; 1982 1983 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 1984 return ERR_PTR(-EINVAL); 1985 1986 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 1987 type = vh->h_vlan_encapsulated_proto; 1988 vlan_depth += VLAN_HLEN; 1989 } 1990 1991 skb_reset_mac_header(skb); 1992 skb->mac_len = skb->network_header - skb->mac_header; 1993 __skb_pull(skb, skb->mac_len); 1994 1995 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1996 skb_warn_bad_offload(skb); 1997 1998 if (skb_header_cloned(skb) && 1999 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 2000 return ERR_PTR(err); 2001 } 2002 2003 rcu_read_lock(); 2004 list_for_each_entry_rcu(ptype, 2005 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 2006 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 2007 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 2008 err = ptype->gso_send_check(skb); 2009 segs = ERR_PTR(err); 2010 if (err || skb_gso_ok(skb, features)) 2011 break; 2012 __skb_push(skb, (skb->data - 2013 skb_network_header(skb))); 2014 } 2015 segs = ptype->gso_segment(skb, features); 2016 break; 2017 } 2018 } 2019 rcu_read_unlock(); 2020 2021 __skb_push(skb, skb->data - skb_mac_header(skb)); 2022 2023 return segs; 2024 } 2025 EXPORT_SYMBOL(skb_gso_segment); 2026 2027 /* Take action when hardware reception checksum errors are detected. */ 2028 #ifdef CONFIG_BUG 2029 void netdev_rx_csum_fault(struct net_device *dev) 2030 { 2031 if (net_ratelimit()) { 2032 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2033 dump_stack(); 2034 } 2035 } 2036 EXPORT_SYMBOL(netdev_rx_csum_fault); 2037 #endif 2038 2039 /* Actually, we should eliminate this check as soon as we know, that: 2040 * 1. IOMMU is present and allows to map all the memory. 2041 * 2. No high memory really exists on this machine. 2042 */ 2043 2044 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2045 { 2046 #ifdef CONFIG_HIGHMEM 2047 int i; 2048 if (!(dev->features & NETIF_F_HIGHDMA)) { 2049 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2050 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2051 if (PageHighMem(skb_frag_page(frag))) 2052 return 1; 2053 } 2054 } 2055 2056 if (PCI_DMA_BUS_IS_PHYS) { 2057 struct device *pdev = dev->dev.parent; 2058 2059 if (!pdev) 2060 return 0; 2061 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2062 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2063 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2064 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2065 return 1; 2066 } 2067 } 2068 #endif 2069 return 0; 2070 } 2071 2072 struct dev_gso_cb { 2073 void (*destructor)(struct sk_buff *skb); 2074 }; 2075 2076 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 2077 2078 static void dev_gso_skb_destructor(struct sk_buff *skb) 2079 { 2080 struct dev_gso_cb *cb; 2081 2082 do { 2083 struct sk_buff *nskb = skb->next; 2084 2085 skb->next = nskb->next; 2086 nskb->next = NULL; 2087 kfree_skb(nskb); 2088 } while (skb->next); 2089 2090 cb = DEV_GSO_CB(skb); 2091 if (cb->destructor) 2092 cb->destructor(skb); 2093 } 2094 2095 /** 2096 * dev_gso_segment - Perform emulated hardware segmentation on skb. 2097 * @skb: buffer to segment 2098 * @features: device features as applicable to this skb 2099 * 2100 * This function segments the given skb and stores the list of segments 2101 * in skb->next. 2102 */ 2103 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features) 2104 { 2105 struct sk_buff *segs; 2106 2107 segs = skb_gso_segment(skb, features); 2108 2109 /* Verifying header integrity only. */ 2110 if (!segs) 2111 return 0; 2112 2113 if (IS_ERR(segs)) 2114 return PTR_ERR(segs); 2115 2116 skb->next = segs; 2117 DEV_GSO_CB(skb)->destructor = skb->destructor; 2118 skb->destructor = dev_gso_skb_destructor; 2119 2120 return 0; 2121 } 2122 2123 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol) 2124 { 2125 return ((features & NETIF_F_GEN_CSUM) || 2126 ((features & NETIF_F_V4_CSUM) && 2127 protocol == htons(ETH_P_IP)) || 2128 ((features & NETIF_F_V6_CSUM) && 2129 protocol == htons(ETH_P_IPV6)) || 2130 ((features & NETIF_F_FCOE_CRC) && 2131 protocol == htons(ETH_P_FCOE))); 2132 } 2133 2134 static netdev_features_t harmonize_features(struct sk_buff *skb, 2135 __be16 protocol, netdev_features_t features) 2136 { 2137 if (skb->ip_summed != CHECKSUM_NONE && 2138 !can_checksum_protocol(features, protocol)) { 2139 features &= ~NETIF_F_ALL_CSUM; 2140 features &= ~NETIF_F_SG; 2141 } else if (illegal_highdma(skb->dev, skb)) { 2142 features &= ~NETIF_F_SG; 2143 } 2144 2145 return features; 2146 } 2147 2148 netdev_features_t netif_skb_features(struct sk_buff *skb) 2149 { 2150 __be16 protocol = skb->protocol; 2151 netdev_features_t features = skb->dev->features; 2152 2153 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs) 2154 features &= ~NETIF_F_GSO_MASK; 2155 2156 if (protocol == htons(ETH_P_8021Q)) { 2157 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2158 protocol = veh->h_vlan_encapsulated_proto; 2159 } else if (!vlan_tx_tag_present(skb)) { 2160 return harmonize_features(skb, protocol, features); 2161 } 2162 2163 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX); 2164 2165 if (protocol != htons(ETH_P_8021Q)) { 2166 return harmonize_features(skb, protocol, features); 2167 } else { 2168 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2169 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX; 2170 return harmonize_features(skb, protocol, features); 2171 } 2172 } 2173 EXPORT_SYMBOL(netif_skb_features); 2174 2175 /* 2176 * Returns true if either: 2177 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2178 * 2. skb is fragmented and the device does not support SG, or if 2179 * at least one of fragments is in highmem and device does not 2180 * support DMA from it. 2181 */ 2182 static inline int skb_needs_linearize(struct sk_buff *skb, 2183 int features) 2184 { 2185 return skb_is_nonlinear(skb) && 2186 ((skb_has_frag_list(skb) && 2187 !(features & NETIF_F_FRAGLIST)) || 2188 (skb_shinfo(skb)->nr_frags && 2189 !(features & NETIF_F_SG))); 2190 } 2191 2192 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2193 struct netdev_queue *txq) 2194 { 2195 const struct net_device_ops *ops = dev->netdev_ops; 2196 int rc = NETDEV_TX_OK; 2197 unsigned int skb_len; 2198 2199 if (likely(!skb->next)) { 2200 netdev_features_t features; 2201 2202 /* 2203 * If device doesn't need skb->dst, release it right now while 2204 * its hot in this cpu cache 2205 */ 2206 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2207 skb_dst_drop(skb); 2208 2209 if (!list_empty(&ptype_all)) 2210 dev_queue_xmit_nit(skb, dev); 2211 2212 features = netif_skb_features(skb); 2213 2214 if (vlan_tx_tag_present(skb) && 2215 !(features & NETIF_F_HW_VLAN_TX)) { 2216 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb)); 2217 if (unlikely(!skb)) 2218 goto out; 2219 2220 skb->vlan_tci = 0; 2221 } 2222 2223 if (netif_needs_gso(skb, features)) { 2224 if (unlikely(dev_gso_segment(skb, features))) 2225 goto out_kfree_skb; 2226 if (skb->next) 2227 goto gso; 2228 } else { 2229 if (skb_needs_linearize(skb, features) && 2230 __skb_linearize(skb)) 2231 goto out_kfree_skb; 2232 2233 /* If packet is not checksummed and device does not 2234 * support checksumming for this protocol, complete 2235 * checksumming here. 2236 */ 2237 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2238 skb_set_transport_header(skb, 2239 skb_checksum_start_offset(skb)); 2240 if (!(features & NETIF_F_ALL_CSUM) && 2241 skb_checksum_help(skb)) 2242 goto out_kfree_skb; 2243 } 2244 } 2245 2246 skb_len = skb->len; 2247 rc = ops->ndo_start_xmit(skb, dev); 2248 trace_net_dev_xmit(skb, rc, dev, skb_len); 2249 if (rc == NETDEV_TX_OK) 2250 txq_trans_update(txq); 2251 return rc; 2252 } 2253 2254 gso: 2255 do { 2256 struct sk_buff *nskb = skb->next; 2257 2258 skb->next = nskb->next; 2259 nskb->next = NULL; 2260 2261 /* 2262 * If device doesn't need nskb->dst, release it right now while 2263 * its hot in this cpu cache 2264 */ 2265 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2266 skb_dst_drop(nskb); 2267 2268 skb_len = nskb->len; 2269 rc = ops->ndo_start_xmit(nskb, dev); 2270 trace_net_dev_xmit(nskb, rc, dev, skb_len); 2271 if (unlikely(rc != NETDEV_TX_OK)) { 2272 if (rc & ~NETDEV_TX_MASK) 2273 goto out_kfree_gso_skb; 2274 nskb->next = skb->next; 2275 skb->next = nskb; 2276 return rc; 2277 } 2278 txq_trans_update(txq); 2279 if (unlikely(netif_xmit_stopped(txq) && skb->next)) 2280 return NETDEV_TX_BUSY; 2281 } while (skb->next); 2282 2283 out_kfree_gso_skb: 2284 if (likely(skb->next == NULL)) 2285 skb->destructor = DEV_GSO_CB(skb)->destructor; 2286 out_kfree_skb: 2287 kfree_skb(skb); 2288 out: 2289 return rc; 2290 } 2291 2292 static u32 hashrnd __read_mostly; 2293 2294 /* 2295 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2296 * to be used as a distribution range. 2297 */ 2298 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb, 2299 unsigned int num_tx_queues) 2300 { 2301 u32 hash; 2302 u16 qoffset = 0; 2303 u16 qcount = num_tx_queues; 2304 2305 if (skb_rx_queue_recorded(skb)) { 2306 hash = skb_get_rx_queue(skb); 2307 while (unlikely(hash >= num_tx_queues)) 2308 hash -= num_tx_queues; 2309 return hash; 2310 } 2311 2312 if (dev->num_tc) { 2313 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2314 qoffset = dev->tc_to_txq[tc].offset; 2315 qcount = dev->tc_to_txq[tc].count; 2316 } 2317 2318 if (skb->sk && skb->sk->sk_hash) 2319 hash = skb->sk->sk_hash; 2320 else 2321 hash = (__force u16) skb->protocol; 2322 hash = jhash_1word(hash, hashrnd); 2323 2324 return (u16) (((u64) hash * qcount) >> 32) + qoffset; 2325 } 2326 EXPORT_SYMBOL(__skb_tx_hash); 2327 2328 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index) 2329 { 2330 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2331 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 2332 dev->name, queue_index, 2333 dev->real_num_tx_queues); 2334 return 0; 2335 } 2336 return queue_index; 2337 } 2338 2339 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 2340 { 2341 #ifdef CONFIG_XPS 2342 struct xps_dev_maps *dev_maps; 2343 struct xps_map *map; 2344 int queue_index = -1; 2345 2346 rcu_read_lock(); 2347 dev_maps = rcu_dereference(dev->xps_maps); 2348 if (dev_maps) { 2349 map = rcu_dereference( 2350 dev_maps->cpu_map[raw_smp_processor_id()]); 2351 if (map) { 2352 if (map->len == 1) 2353 queue_index = map->queues[0]; 2354 else { 2355 u32 hash; 2356 if (skb->sk && skb->sk->sk_hash) 2357 hash = skb->sk->sk_hash; 2358 else 2359 hash = (__force u16) skb->protocol ^ 2360 skb->rxhash; 2361 hash = jhash_1word(hash, hashrnd); 2362 queue_index = map->queues[ 2363 ((u64)hash * map->len) >> 32]; 2364 } 2365 if (unlikely(queue_index >= dev->real_num_tx_queues)) 2366 queue_index = -1; 2367 } 2368 } 2369 rcu_read_unlock(); 2370 2371 return queue_index; 2372 #else 2373 return -1; 2374 #endif 2375 } 2376 2377 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 2378 struct sk_buff *skb) 2379 { 2380 int queue_index; 2381 const struct net_device_ops *ops = dev->netdev_ops; 2382 2383 if (dev->real_num_tx_queues == 1) 2384 queue_index = 0; 2385 else if (ops->ndo_select_queue) { 2386 queue_index = ops->ndo_select_queue(dev, skb); 2387 queue_index = dev_cap_txqueue(dev, queue_index); 2388 } else { 2389 struct sock *sk = skb->sk; 2390 queue_index = sk_tx_queue_get(sk); 2391 2392 if (queue_index < 0 || skb->ooo_okay || 2393 queue_index >= dev->real_num_tx_queues) { 2394 int old_index = queue_index; 2395 2396 queue_index = get_xps_queue(dev, skb); 2397 if (queue_index < 0) 2398 queue_index = skb_tx_hash(dev, skb); 2399 2400 if (queue_index != old_index && sk) { 2401 struct dst_entry *dst = 2402 rcu_dereference_check(sk->sk_dst_cache, 1); 2403 2404 if (dst && skb_dst(skb) == dst) 2405 sk_tx_queue_set(sk, queue_index); 2406 } 2407 } 2408 } 2409 2410 skb_set_queue_mapping(skb, queue_index); 2411 return netdev_get_tx_queue(dev, queue_index); 2412 } 2413 2414 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2415 struct net_device *dev, 2416 struct netdev_queue *txq) 2417 { 2418 spinlock_t *root_lock = qdisc_lock(q); 2419 bool contended; 2420 int rc; 2421 2422 qdisc_skb_cb(skb)->pkt_len = skb->len; 2423 qdisc_calculate_pkt_len(skb, q); 2424 /* 2425 * Heuristic to force contended enqueues to serialize on a 2426 * separate lock before trying to get qdisc main lock. 2427 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2428 * and dequeue packets faster. 2429 */ 2430 contended = qdisc_is_running(q); 2431 if (unlikely(contended)) 2432 spin_lock(&q->busylock); 2433 2434 spin_lock(root_lock); 2435 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2436 kfree_skb(skb); 2437 rc = NET_XMIT_DROP; 2438 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2439 qdisc_run_begin(q)) { 2440 /* 2441 * This is a work-conserving queue; there are no old skbs 2442 * waiting to be sent out; and the qdisc is not running - 2443 * xmit the skb directly. 2444 */ 2445 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2446 skb_dst_force(skb); 2447 2448 qdisc_bstats_update(q, skb); 2449 2450 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2451 if (unlikely(contended)) { 2452 spin_unlock(&q->busylock); 2453 contended = false; 2454 } 2455 __qdisc_run(q); 2456 } else 2457 qdisc_run_end(q); 2458 2459 rc = NET_XMIT_SUCCESS; 2460 } else { 2461 skb_dst_force(skb); 2462 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2463 if (qdisc_run_begin(q)) { 2464 if (unlikely(contended)) { 2465 spin_unlock(&q->busylock); 2466 contended = false; 2467 } 2468 __qdisc_run(q); 2469 } 2470 } 2471 spin_unlock(root_lock); 2472 if (unlikely(contended)) 2473 spin_unlock(&q->busylock); 2474 return rc; 2475 } 2476 2477 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 2478 static void skb_update_prio(struct sk_buff *skb) 2479 { 2480 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2481 2482 if (!skb->priority && skb->sk && map) { 2483 unsigned int prioidx = skb->sk->sk_cgrp_prioidx; 2484 2485 if (prioidx < map->priomap_len) 2486 skb->priority = map->priomap[prioidx]; 2487 } 2488 } 2489 #else 2490 #define skb_update_prio(skb) 2491 #endif 2492 2493 static DEFINE_PER_CPU(int, xmit_recursion); 2494 #define RECURSION_LIMIT 10 2495 2496 /** 2497 * dev_loopback_xmit - loop back @skb 2498 * @skb: buffer to transmit 2499 */ 2500 int dev_loopback_xmit(struct sk_buff *skb) 2501 { 2502 skb_reset_mac_header(skb); 2503 __skb_pull(skb, skb_network_offset(skb)); 2504 skb->pkt_type = PACKET_LOOPBACK; 2505 skb->ip_summed = CHECKSUM_UNNECESSARY; 2506 WARN_ON(!skb_dst(skb)); 2507 skb_dst_force(skb); 2508 netif_rx_ni(skb); 2509 return 0; 2510 } 2511 EXPORT_SYMBOL(dev_loopback_xmit); 2512 2513 /** 2514 * dev_queue_xmit - transmit a buffer 2515 * @skb: buffer to transmit 2516 * 2517 * Queue a buffer for transmission to a network device. The caller must 2518 * have set the device and priority and built the buffer before calling 2519 * this function. The function can be called from an interrupt. 2520 * 2521 * A negative errno code is returned on a failure. A success does not 2522 * guarantee the frame will be transmitted as it may be dropped due 2523 * to congestion or traffic shaping. 2524 * 2525 * ----------------------------------------------------------------------------------- 2526 * I notice this method can also return errors from the queue disciplines, 2527 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2528 * be positive. 2529 * 2530 * Regardless of the return value, the skb is consumed, so it is currently 2531 * difficult to retry a send to this method. (You can bump the ref count 2532 * before sending to hold a reference for retry if you are careful.) 2533 * 2534 * When calling this method, interrupts MUST be enabled. This is because 2535 * the BH enable code must have IRQs enabled so that it will not deadlock. 2536 * --BLG 2537 */ 2538 int dev_queue_xmit(struct sk_buff *skb) 2539 { 2540 struct net_device *dev = skb->dev; 2541 struct netdev_queue *txq; 2542 struct Qdisc *q; 2543 int rc = -ENOMEM; 2544 2545 /* Disable soft irqs for various locks below. Also 2546 * stops preemption for RCU. 2547 */ 2548 rcu_read_lock_bh(); 2549 2550 skb_update_prio(skb); 2551 2552 txq = dev_pick_tx(dev, skb); 2553 q = rcu_dereference_bh(txq->qdisc); 2554 2555 #ifdef CONFIG_NET_CLS_ACT 2556 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2557 #endif 2558 trace_net_dev_queue(skb); 2559 if (q->enqueue) { 2560 rc = __dev_xmit_skb(skb, q, dev, txq); 2561 goto out; 2562 } 2563 2564 /* The device has no queue. Common case for software devices: 2565 loopback, all the sorts of tunnels... 2566 2567 Really, it is unlikely that netif_tx_lock protection is necessary 2568 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2569 counters.) 2570 However, it is possible, that they rely on protection 2571 made by us here. 2572 2573 Check this and shot the lock. It is not prone from deadlocks. 2574 Either shot noqueue qdisc, it is even simpler 8) 2575 */ 2576 if (dev->flags & IFF_UP) { 2577 int cpu = smp_processor_id(); /* ok because BHs are off */ 2578 2579 if (txq->xmit_lock_owner != cpu) { 2580 2581 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2582 goto recursion_alert; 2583 2584 HARD_TX_LOCK(dev, txq, cpu); 2585 2586 if (!netif_xmit_stopped(txq)) { 2587 __this_cpu_inc(xmit_recursion); 2588 rc = dev_hard_start_xmit(skb, dev, txq); 2589 __this_cpu_dec(xmit_recursion); 2590 if (dev_xmit_complete(rc)) { 2591 HARD_TX_UNLOCK(dev, txq); 2592 goto out; 2593 } 2594 } 2595 HARD_TX_UNLOCK(dev, txq); 2596 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 2597 dev->name); 2598 } else { 2599 /* Recursion is detected! It is possible, 2600 * unfortunately 2601 */ 2602 recursion_alert: 2603 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 2604 dev->name); 2605 } 2606 } 2607 2608 rc = -ENETDOWN; 2609 rcu_read_unlock_bh(); 2610 2611 kfree_skb(skb); 2612 return rc; 2613 out: 2614 rcu_read_unlock_bh(); 2615 return rc; 2616 } 2617 EXPORT_SYMBOL(dev_queue_xmit); 2618 2619 2620 /*======================================================================= 2621 Receiver routines 2622 =======================================================================*/ 2623 2624 int netdev_max_backlog __read_mostly = 1000; 2625 int netdev_tstamp_prequeue __read_mostly = 1; 2626 int netdev_budget __read_mostly = 300; 2627 int weight_p __read_mostly = 64; /* old backlog weight */ 2628 2629 /* Called with irq disabled */ 2630 static inline void ____napi_schedule(struct softnet_data *sd, 2631 struct napi_struct *napi) 2632 { 2633 list_add_tail(&napi->poll_list, &sd->poll_list); 2634 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2635 } 2636 2637 /* 2638 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses 2639 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value 2640 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb 2641 * if hash is a canonical 4-tuple hash over transport ports. 2642 */ 2643 void __skb_get_rxhash(struct sk_buff *skb) 2644 { 2645 struct flow_keys keys; 2646 u32 hash; 2647 2648 if (!skb_flow_dissect(skb, &keys)) 2649 return; 2650 2651 if (keys.ports) 2652 skb->l4_rxhash = 1; 2653 2654 /* get a consistent hash (same value on both flow directions) */ 2655 if (((__force u32)keys.dst < (__force u32)keys.src) || 2656 (((__force u32)keys.dst == (__force u32)keys.src) && 2657 ((__force u16)keys.port16[1] < (__force u16)keys.port16[0]))) { 2658 swap(keys.dst, keys.src); 2659 swap(keys.port16[0], keys.port16[1]); 2660 } 2661 2662 hash = jhash_3words((__force u32)keys.dst, 2663 (__force u32)keys.src, 2664 (__force u32)keys.ports, hashrnd); 2665 if (!hash) 2666 hash = 1; 2667 2668 skb->rxhash = hash; 2669 } 2670 EXPORT_SYMBOL(__skb_get_rxhash); 2671 2672 #ifdef CONFIG_RPS 2673 2674 /* One global table that all flow-based protocols share. */ 2675 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2676 EXPORT_SYMBOL(rps_sock_flow_table); 2677 2678 struct static_key rps_needed __read_mostly; 2679 2680 static struct rps_dev_flow * 2681 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2682 struct rps_dev_flow *rflow, u16 next_cpu) 2683 { 2684 if (next_cpu != RPS_NO_CPU) { 2685 #ifdef CONFIG_RFS_ACCEL 2686 struct netdev_rx_queue *rxqueue; 2687 struct rps_dev_flow_table *flow_table; 2688 struct rps_dev_flow *old_rflow; 2689 u32 flow_id; 2690 u16 rxq_index; 2691 int rc; 2692 2693 /* Should we steer this flow to a different hardware queue? */ 2694 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 2695 !(dev->features & NETIF_F_NTUPLE)) 2696 goto out; 2697 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 2698 if (rxq_index == skb_get_rx_queue(skb)) 2699 goto out; 2700 2701 rxqueue = dev->_rx + rxq_index; 2702 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2703 if (!flow_table) 2704 goto out; 2705 flow_id = skb->rxhash & flow_table->mask; 2706 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 2707 rxq_index, flow_id); 2708 if (rc < 0) 2709 goto out; 2710 old_rflow = rflow; 2711 rflow = &flow_table->flows[flow_id]; 2712 rflow->filter = rc; 2713 if (old_rflow->filter == rflow->filter) 2714 old_rflow->filter = RPS_NO_FILTER; 2715 out: 2716 #endif 2717 rflow->last_qtail = 2718 per_cpu(softnet_data, next_cpu).input_queue_head; 2719 } 2720 2721 rflow->cpu = next_cpu; 2722 return rflow; 2723 } 2724 2725 /* 2726 * get_rps_cpu is called from netif_receive_skb and returns the target 2727 * CPU from the RPS map of the receiving queue for a given skb. 2728 * rcu_read_lock must be held on entry. 2729 */ 2730 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2731 struct rps_dev_flow **rflowp) 2732 { 2733 struct netdev_rx_queue *rxqueue; 2734 struct rps_map *map; 2735 struct rps_dev_flow_table *flow_table; 2736 struct rps_sock_flow_table *sock_flow_table; 2737 int cpu = -1; 2738 u16 tcpu; 2739 2740 if (skb_rx_queue_recorded(skb)) { 2741 u16 index = skb_get_rx_queue(skb); 2742 if (unlikely(index >= dev->real_num_rx_queues)) { 2743 WARN_ONCE(dev->real_num_rx_queues > 1, 2744 "%s received packet on queue %u, but number " 2745 "of RX queues is %u\n", 2746 dev->name, index, dev->real_num_rx_queues); 2747 goto done; 2748 } 2749 rxqueue = dev->_rx + index; 2750 } else 2751 rxqueue = dev->_rx; 2752 2753 map = rcu_dereference(rxqueue->rps_map); 2754 if (map) { 2755 if (map->len == 1 && 2756 !rcu_access_pointer(rxqueue->rps_flow_table)) { 2757 tcpu = map->cpus[0]; 2758 if (cpu_online(tcpu)) 2759 cpu = tcpu; 2760 goto done; 2761 } 2762 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) { 2763 goto done; 2764 } 2765 2766 skb_reset_network_header(skb); 2767 if (!skb_get_rxhash(skb)) 2768 goto done; 2769 2770 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2771 sock_flow_table = rcu_dereference(rps_sock_flow_table); 2772 if (flow_table && sock_flow_table) { 2773 u16 next_cpu; 2774 struct rps_dev_flow *rflow; 2775 2776 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 2777 tcpu = rflow->cpu; 2778 2779 next_cpu = sock_flow_table->ents[skb->rxhash & 2780 sock_flow_table->mask]; 2781 2782 /* 2783 * If the desired CPU (where last recvmsg was done) is 2784 * different from current CPU (one in the rx-queue flow 2785 * table entry), switch if one of the following holds: 2786 * - Current CPU is unset (equal to RPS_NO_CPU). 2787 * - Current CPU is offline. 2788 * - The current CPU's queue tail has advanced beyond the 2789 * last packet that was enqueued using this table entry. 2790 * This guarantees that all previous packets for the flow 2791 * have been dequeued, thus preserving in order delivery. 2792 */ 2793 if (unlikely(tcpu != next_cpu) && 2794 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 2795 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 2796 rflow->last_qtail)) >= 0)) 2797 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 2798 2799 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 2800 *rflowp = rflow; 2801 cpu = tcpu; 2802 goto done; 2803 } 2804 } 2805 2806 if (map) { 2807 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 2808 2809 if (cpu_online(tcpu)) { 2810 cpu = tcpu; 2811 goto done; 2812 } 2813 } 2814 2815 done: 2816 return cpu; 2817 } 2818 2819 #ifdef CONFIG_RFS_ACCEL 2820 2821 /** 2822 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 2823 * @dev: Device on which the filter was set 2824 * @rxq_index: RX queue index 2825 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 2826 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 2827 * 2828 * Drivers that implement ndo_rx_flow_steer() should periodically call 2829 * this function for each installed filter and remove the filters for 2830 * which it returns %true. 2831 */ 2832 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 2833 u32 flow_id, u16 filter_id) 2834 { 2835 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 2836 struct rps_dev_flow_table *flow_table; 2837 struct rps_dev_flow *rflow; 2838 bool expire = true; 2839 int cpu; 2840 2841 rcu_read_lock(); 2842 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2843 if (flow_table && flow_id <= flow_table->mask) { 2844 rflow = &flow_table->flows[flow_id]; 2845 cpu = ACCESS_ONCE(rflow->cpu); 2846 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 2847 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 2848 rflow->last_qtail) < 2849 (int)(10 * flow_table->mask))) 2850 expire = false; 2851 } 2852 rcu_read_unlock(); 2853 return expire; 2854 } 2855 EXPORT_SYMBOL(rps_may_expire_flow); 2856 2857 #endif /* CONFIG_RFS_ACCEL */ 2858 2859 /* Called from hardirq (IPI) context */ 2860 static void rps_trigger_softirq(void *data) 2861 { 2862 struct softnet_data *sd = data; 2863 2864 ____napi_schedule(sd, &sd->backlog); 2865 sd->received_rps++; 2866 } 2867 2868 #endif /* CONFIG_RPS */ 2869 2870 /* 2871 * Check if this softnet_data structure is another cpu one 2872 * If yes, queue it to our IPI list and return 1 2873 * If no, return 0 2874 */ 2875 static int rps_ipi_queued(struct softnet_data *sd) 2876 { 2877 #ifdef CONFIG_RPS 2878 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 2879 2880 if (sd != mysd) { 2881 sd->rps_ipi_next = mysd->rps_ipi_list; 2882 mysd->rps_ipi_list = sd; 2883 2884 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2885 return 1; 2886 } 2887 #endif /* CONFIG_RPS */ 2888 return 0; 2889 } 2890 2891 /* 2892 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 2893 * queue (may be a remote CPU queue). 2894 */ 2895 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 2896 unsigned int *qtail) 2897 { 2898 struct softnet_data *sd; 2899 unsigned long flags; 2900 2901 sd = &per_cpu(softnet_data, cpu); 2902 2903 local_irq_save(flags); 2904 2905 rps_lock(sd); 2906 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) { 2907 if (skb_queue_len(&sd->input_pkt_queue)) { 2908 enqueue: 2909 __skb_queue_tail(&sd->input_pkt_queue, skb); 2910 input_queue_tail_incr_save(sd, qtail); 2911 rps_unlock(sd); 2912 local_irq_restore(flags); 2913 return NET_RX_SUCCESS; 2914 } 2915 2916 /* Schedule NAPI for backlog device 2917 * We can use non atomic operation since we own the queue lock 2918 */ 2919 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 2920 if (!rps_ipi_queued(sd)) 2921 ____napi_schedule(sd, &sd->backlog); 2922 } 2923 goto enqueue; 2924 } 2925 2926 sd->dropped++; 2927 rps_unlock(sd); 2928 2929 local_irq_restore(flags); 2930 2931 atomic_long_inc(&skb->dev->rx_dropped); 2932 kfree_skb(skb); 2933 return NET_RX_DROP; 2934 } 2935 2936 /** 2937 * netif_rx - post buffer to the network code 2938 * @skb: buffer to post 2939 * 2940 * This function receives a packet from a device driver and queues it for 2941 * the upper (protocol) levels to process. It always succeeds. The buffer 2942 * may be dropped during processing for congestion control or by the 2943 * protocol layers. 2944 * 2945 * return values: 2946 * NET_RX_SUCCESS (no congestion) 2947 * NET_RX_DROP (packet was dropped) 2948 * 2949 */ 2950 2951 int netif_rx(struct sk_buff *skb) 2952 { 2953 int ret; 2954 2955 /* if netpoll wants it, pretend we never saw it */ 2956 if (netpoll_rx(skb)) 2957 return NET_RX_DROP; 2958 2959 net_timestamp_check(netdev_tstamp_prequeue, skb); 2960 2961 trace_netif_rx(skb); 2962 #ifdef CONFIG_RPS 2963 if (static_key_false(&rps_needed)) { 2964 struct rps_dev_flow voidflow, *rflow = &voidflow; 2965 int cpu; 2966 2967 preempt_disable(); 2968 rcu_read_lock(); 2969 2970 cpu = get_rps_cpu(skb->dev, skb, &rflow); 2971 if (cpu < 0) 2972 cpu = smp_processor_id(); 2973 2974 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 2975 2976 rcu_read_unlock(); 2977 preempt_enable(); 2978 } else 2979 #endif 2980 { 2981 unsigned int qtail; 2982 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 2983 put_cpu(); 2984 } 2985 return ret; 2986 } 2987 EXPORT_SYMBOL(netif_rx); 2988 2989 int netif_rx_ni(struct sk_buff *skb) 2990 { 2991 int err; 2992 2993 preempt_disable(); 2994 err = netif_rx(skb); 2995 if (local_softirq_pending()) 2996 do_softirq(); 2997 preempt_enable(); 2998 2999 return err; 3000 } 3001 EXPORT_SYMBOL(netif_rx_ni); 3002 3003 static void net_tx_action(struct softirq_action *h) 3004 { 3005 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3006 3007 if (sd->completion_queue) { 3008 struct sk_buff *clist; 3009 3010 local_irq_disable(); 3011 clist = sd->completion_queue; 3012 sd->completion_queue = NULL; 3013 local_irq_enable(); 3014 3015 while (clist) { 3016 struct sk_buff *skb = clist; 3017 clist = clist->next; 3018 3019 WARN_ON(atomic_read(&skb->users)); 3020 trace_kfree_skb(skb, net_tx_action); 3021 __kfree_skb(skb); 3022 } 3023 } 3024 3025 if (sd->output_queue) { 3026 struct Qdisc *head; 3027 3028 local_irq_disable(); 3029 head = sd->output_queue; 3030 sd->output_queue = NULL; 3031 sd->output_queue_tailp = &sd->output_queue; 3032 local_irq_enable(); 3033 3034 while (head) { 3035 struct Qdisc *q = head; 3036 spinlock_t *root_lock; 3037 3038 head = head->next_sched; 3039 3040 root_lock = qdisc_lock(q); 3041 if (spin_trylock(root_lock)) { 3042 smp_mb__before_clear_bit(); 3043 clear_bit(__QDISC_STATE_SCHED, 3044 &q->state); 3045 qdisc_run(q); 3046 spin_unlock(root_lock); 3047 } else { 3048 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3049 &q->state)) { 3050 __netif_reschedule(q); 3051 } else { 3052 smp_mb__before_clear_bit(); 3053 clear_bit(__QDISC_STATE_SCHED, 3054 &q->state); 3055 } 3056 } 3057 } 3058 } 3059 } 3060 3061 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3062 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3063 /* This hook is defined here for ATM LANE */ 3064 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3065 unsigned char *addr) __read_mostly; 3066 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3067 #endif 3068 3069 #ifdef CONFIG_NET_CLS_ACT 3070 /* TODO: Maybe we should just force sch_ingress to be compiled in 3071 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3072 * a compare and 2 stores extra right now if we dont have it on 3073 * but have CONFIG_NET_CLS_ACT 3074 * NOTE: This doesn't stop any functionality; if you dont have 3075 * the ingress scheduler, you just can't add policies on ingress. 3076 * 3077 */ 3078 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3079 { 3080 struct net_device *dev = skb->dev; 3081 u32 ttl = G_TC_RTTL(skb->tc_verd); 3082 int result = TC_ACT_OK; 3083 struct Qdisc *q; 3084 3085 if (unlikely(MAX_RED_LOOP < ttl++)) { 3086 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n", 3087 skb->skb_iif, dev->ifindex); 3088 return TC_ACT_SHOT; 3089 } 3090 3091 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3092 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3093 3094 q = rxq->qdisc; 3095 if (q != &noop_qdisc) { 3096 spin_lock(qdisc_lock(q)); 3097 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3098 result = qdisc_enqueue_root(skb, q); 3099 spin_unlock(qdisc_lock(q)); 3100 } 3101 3102 return result; 3103 } 3104 3105 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3106 struct packet_type **pt_prev, 3107 int *ret, struct net_device *orig_dev) 3108 { 3109 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3110 3111 if (!rxq || rxq->qdisc == &noop_qdisc) 3112 goto out; 3113 3114 if (*pt_prev) { 3115 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3116 *pt_prev = NULL; 3117 } 3118 3119 switch (ing_filter(skb, rxq)) { 3120 case TC_ACT_SHOT: 3121 case TC_ACT_STOLEN: 3122 kfree_skb(skb); 3123 return NULL; 3124 } 3125 3126 out: 3127 skb->tc_verd = 0; 3128 return skb; 3129 } 3130 #endif 3131 3132 /** 3133 * netdev_rx_handler_register - register receive handler 3134 * @dev: device to register a handler for 3135 * @rx_handler: receive handler to register 3136 * @rx_handler_data: data pointer that is used by rx handler 3137 * 3138 * Register a receive hander for a device. This handler will then be 3139 * called from __netif_receive_skb. A negative errno code is returned 3140 * on a failure. 3141 * 3142 * The caller must hold the rtnl_mutex. 3143 * 3144 * For a general description of rx_handler, see enum rx_handler_result. 3145 */ 3146 int netdev_rx_handler_register(struct net_device *dev, 3147 rx_handler_func_t *rx_handler, 3148 void *rx_handler_data) 3149 { 3150 ASSERT_RTNL(); 3151 3152 if (dev->rx_handler) 3153 return -EBUSY; 3154 3155 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3156 rcu_assign_pointer(dev->rx_handler, rx_handler); 3157 3158 return 0; 3159 } 3160 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3161 3162 /** 3163 * netdev_rx_handler_unregister - unregister receive handler 3164 * @dev: device to unregister a handler from 3165 * 3166 * Unregister a receive hander from a device. 3167 * 3168 * The caller must hold the rtnl_mutex. 3169 */ 3170 void netdev_rx_handler_unregister(struct net_device *dev) 3171 { 3172 3173 ASSERT_RTNL(); 3174 RCU_INIT_POINTER(dev->rx_handler, NULL); 3175 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3176 } 3177 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3178 3179 /* 3180 * Limit the use of PFMEMALLOC reserves to those protocols that implement 3181 * the special handling of PFMEMALLOC skbs. 3182 */ 3183 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 3184 { 3185 switch (skb->protocol) { 3186 case __constant_htons(ETH_P_ARP): 3187 case __constant_htons(ETH_P_IP): 3188 case __constant_htons(ETH_P_IPV6): 3189 case __constant_htons(ETH_P_8021Q): 3190 return true; 3191 default: 3192 return false; 3193 } 3194 } 3195 3196 static int __netif_receive_skb(struct sk_buff *skb) 3197 { 3198 struct packet_type *ptype, *pt_prev; 3199 rx_handler_func_t *rx_handler; 3200 struct net_device *orig_dev; 3201 struct net_device *null_or_dev; 3202 bool deliver_exact = false; 3203 int ret = NET_RX_DROP; 3204 __be16 type; 3205 unsigned long pflags = current->flags; 3206 3207 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3208 3209 trace_netif_receive_skb(skb); 3210 3211 /* 3212 * PFMEMALLOC skbs are special, they should 3213 * - be delivered to SOCK_MEMALLOC sockets only 3214 * - stay away from userspace 3215 * - have bounded memory usage 3216 * 3217 * Use PF_MEMALLOC as this saves us from propagating the allocation 3218 * context down to all allocation sites. 3219 */ 3220 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 3221 current->flags |= PF_MEMALLOC; 3222 3223 /* if we've gotten here through NAPI, check netpoll */ 3224 if (netpoll_receive_skb(skb)) 3225 goto out; 3226 3227 orig_dev = skb->dev; 3228 3229 skb_reset_network_header(skb); 3230 skb_reset_transport_header(skb); 3231 skb_reset_mac_len(skb); 3232 3233 pt_prev = NULL; 3234 3235 rcu_read_lock(); 3236 3237 another_round: 3238 skb->skb_iif = skb->dev->ifindex; 3239 3240 __this_cpu_inc(softnet_data.processed); 3241 3242 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) { 3243 skb = vlan_untag(skb); 3244 if (unlikely(!skb)) 3245 goto unlock; 3246 } 3247 3248 #ifdef CONFIG_NET_CLS_ACT 3249 if (skb->tc_verd & TC_NCLS) { 3250 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3251 goto ncls; 3252 } 3253 #endif 3254 3255 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 3256 goto skip_taps; 3257 3258 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3259 if (!ptype->dev || ptype->dev == skb->dev) { 3260 if (pt_prev) 3261 ret = deliver_skb(skb, pt_prev, orig_dev); 3262 pt_prev = ptype; 3263 } 3264 } 3265 3266 skip_taps: 3267 #ifdef CONFIG_NET_CLS_ACT 3268 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3269 if (!skb) 3270 goto unlock; 3271 ncls: 3272 #endif 3273 3274 if (sk_memalloc_socks() && skb_pfmemalloc(skb) 3275 && !skb_pfmemalloc_protocol(skb)) 3276 goto drop; 3277 3278 rx_handler = rcu_dereference(skb->dev->rx_handler); 3279 if (vlan_tx_tag_present(skb)) { 3280 if (pt_prev) { 3281 ret = deliver_skb(skb, pt_prev, orig_dev); 3282 pt_prev = NULL; 3283 } 3284 if (vlan_do_receive(&skb, !rx_handler)) 3285 goto another_round; 3286 else if (unlikely(!skb)) 3287 goto unlock; 3288 } 3289 3290 if (rx_handler) { 3291 if (pt_prev) { 3292 ret = deliver_skb(skb, pt_prev, orig_dev); 3293 pt_prev = NULL; 3294 } 3295 switch (rx_handler(&skb)) { 3296 case RX_HANDLER_CONSUMED: 3297 goto unlock; 3298 case RX_HANDLER_ANOTHER: 3299 goto another_round; 3300 case RX_HANDLER_EXACT: 3301 deliver_exact = true; 3302 case RX_HANDLER_PASS: 3303 break; 3304 default: 3305 BUG(); 3306 } 3307 } 3308 3309 /* deliver only exact match when indicated */ 3310 null_or_dev = deliver_exact ? skb->dev : NULL; 3311 3312 type = skb->protocol; 3313 list_for_each_entry_rcu(ptype, 3314 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3315 if (ptype->type == type && 3316 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3317 ptype->dev == orig_dev)) { 3318 if (pt_prev) 3319 ret = deliver_skb(skb, pt_prev, orig_dev); 3320 pt_prev = ptype; 3321 } 3322 } 3323 3324 if (pt_prev) { 3325 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 3326 goto drop; 3327 else 3328 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3329 } else { 3330 drop: 3331 atomic_long_inc(&skb->dev->rx_dropped); 3332 kfree_skb(skb); 3333 /* Jamal, now you will not able to escape explaining 3334 * me how you were going to use this. :-) 3335 */ 3336 ret = NET_RX_DROP; 3337 } 3338 3339 unlock: 3340 rcu_read_unlock(); 3341 out: 3342 tsk_restore_flags(current, pflags, PF_MEMALLOC); 3343 return ret; 3344 } 3345 3346 /** 3347 * netif_receive_skb - process receive buffer from network 3348 * @skb: buffer to process 3349 * 3350 * netif_receive_skb() is the main receive data processing function. 3351 * It always succeeds. The buffer may be dropped during processing 3352 * for congestion control or by the protocol layers. 3353 * 3354 * This function may only be called from softirq context and interrupts 3355 * should be enabled. 3356 * 3357 * Return values (usually ignored): 3358 * NET_RX_SUCCESS: no congestion 3359 * NET_RX_DROP: packet was dropped 3360 */ 3361 int netif_receive_skb(struct sk_buff *skb) 3362 { 3363 net_timestamp_check(netdev_tstamp_prequeue, skb); 3364 3365 if (skb_defer_rx_timestamp(skb)) 3366 return NET_RX_SUCCESS; 3367 3368 #ifdef CONFIG_RPS 3369 if (static_key_false(&rps_needed)) { 3370 struct rps_dev_flow voidflow, *rflow = &voidflow; 3371 int cpu, ret; 3372 3373 rcu_read_lock(); 3374 3375 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3376 3377 if (cpu >= 0) { 3378 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3379 rcu_read_unlock(); 3380 return ret; 3381 } 3382 rcu_read_unlock(); 3383 } 3384 #endif 3385 return __netif_receive_skb(skb); 3386 } 3387 EXPORT_SYMBOL(netif_receive_skb); 3388 3389 /* Network device is going away, flush any packets still pending 3390 * Called with irqs disabled. 3391 */ 3392 static void flush_backlog(void *arg) 3393 { 3394 struct net_device *dev = arg; 3395 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3396 struct sk_buff *skb, *tmp; 3397 3398 rps_lock(sd); 3399 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3400 if (skb->dev == dev) { 3401 __skb_unlink(skb, &sd->input_pkt_queue); 3402 kfree_skb(skb); 3403 input_queue_head_incr(sd); 3404 } 3405 } 3406 rps_unlock(sd); 3407 3408 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3409 if (skb->dev == dev) { 3410 __skb_unlink(skb, &sd->process_queue); 3411 kfree_skb(skb); 3412 input_queue_head_incr(sd); 3413 } 3414 } 3415 } 3416 3417 static int napi_gro_complete(struct sk_buff *skb) 3418 { 3419 struct packet_type *ptype; 3420 __be16 type = skb->protocol; 3421 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3422 int err = -ENOENT; 3423 3424 if (NAPI_GRO_CB(skb)->count == 1) { 3425 skb_shinfo(skb)->gso_size = 0; 3426 goto out; 3427 } 3428 3429 rcu_read_lock(); 3430 list_for_each_entry_rcu(ptype, head, list) { 3431 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 3432 continue; 3433 3434 err = ptype->gro_complete(skb); 3435 break; 3436 } 3437 rcu_read_unlock(); 3438 3439 if (err) { 3440 WARN_ON(&ptype->list == head); 3441 kfree_skb(skb); 3442 return NET_RX_SUCCESS; 3443 } 3444 3445 out: 3446 return netif_receive_skb(skb); 3447 } 3448 3449 inline void napi_gro_flush(struct napi_struct *napi) 3450 { 3451 struct sk_buff *skb, *next; 3452 3453 for (skb = napi->gro_list; skb; skb = next) { 3454 next = skb->next; 3455 skb->next = NULL; 3456 napi_gro_complete(skb); 3457 } 3458 3459 napi->gro_count = 0; 3460 napi->gro_list = NULL; 3461 } 3462 EXPORT_SYMBOL(napi_gro_flush); 3463 3464 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3465 { 3466 struct sk_buff **pp = NULL; 3467 struct packet_type *ptype; 3468 __be16 type = skb->protocol; 3469 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3470 int same_flow; 3471 int mac_len; 3472 enum gro_result ret; 3473 3474 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3475 goto normal; 3476 3477 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3478 goto normal; 3479 3480 rcu_read_lock(); 3481 list_for_each_entry_rcu(ptype, head, list) { 3482 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 3483 continue; 3484 3485 skb_set_network_header(skb, skb_gro_offset(skb)); 3486 mac_len = skb->network_header - skb->mac_header; 3487 skb->mac_len = mac_len; 3488 NAPI_GRO_CB(skb)->same_flow = 0; 3489 NAPI_GRO_CB(skb)->flush = 0; 3490 NAPI_GRO_CB(skb)->free = 0; 3491 3492 pp = ptype->gro_receive(&napi->gro_list, skb); 3493 break; 3494 } 3495 rcu_read_unlock(); 3496 3497 if (&ptype->list == head) 3498 goto normal; 3499 3500 same_flow = NAPI_GRO_CB(skb)->same_flow; 3501 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3502 3503 if (pp) { 3504 struct sk_buff *nskb = *pp; 3505 3506 *pp = nskb->next; 3507 nskb->next = NULL; 3508 napi_gro_complete(nskb); 3509 napi->gro_count--; 3510 } 3511 3512 if (same_flow) 3513 goto ok; 3514 3515 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3516 goto normal; 3517 3518 napi->gro_count++; 3519 NAPI_GRO_CB(skb)->count = 1; 3520 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3521 skb->next = napi->gro_list; 3522 napi->gro_list = skb; 3523 ret = GRO_HELD; 3524 3525 pull: 3526 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3527 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3528 3529 BUG_ON(skb->end - skb->tail < grow); 3530 3531 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3532 3533 skb->tail += grow; 3534 skb->data_len -= grow; 3535 3536 skb_shinfo(skb)->frags[0].page_offset += grow; 3537 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow); 3538 3539 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) { 3540 skb_frag_unref(skb, 0); 3541 memmove(skb_shinfo(skb)->frags, 3542 skb_shinfo(skb)->frags + 1, 3543 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3544 } 3545 } 3546 3547 ok: 3548 return ret; 3549 3550 normal: 3551 ret = GRO_NORMAL; 3552 goto pull; 3553 } 3554 EXPORT_SYMBOL(dev_gro_receive); 3555 3556 static inline gro_result_t 3557 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3558 { 3559 struct sk_buff *p; 3560 unsigned int maclen = skb->dev->hard_header_len; 3561 3562 for (p = napi->gro_list; p; p = p->next) { 3563 unsigned long diffs; 3564 3565 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3566 diffs |= p->vlan_tci ^ skb->vlan_tci; 3567 if (maclen == ETH_HLEN) 3568 diffs |= compare_ether_header(skb_mac_header(p), 3569 skb_gro_mac_header(skb)); 3570 else if (!diffs) 3571 diffs = memcmp(skb_mac_header(p), 3572 skb_gro_mac_header(skb), 3573 maclen); 3574 NAPI_GRO_CB(p)->same_flow = !diffs; 3575 NAPI_GRO_CB(p)->flush = 0; 3576 } 3577 3578 return dev_gro_receive(napi, skb); 3579 } 3580 3581 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3582 { 3583 switch (ret) { 3584 case GRO_NORMAL: 3585 if (netif_receive_skb(skb)) 3586 ret = GRO_DROP; 3587 break; 3588 3589 case GRO_DROP: 3590 kfree_skb(skb); 3591 break; 3592 3593 case GRO_MERGED_FREE: 3594 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 3595 kmem_cache_free(skbuff_head_cache, skb); 3596 else 3597 __kfree_skb(skb); 3598 break; 3599 3600 case GRO_HELD: 3601 case GRO_MERGED: 3602 break; 3603 } 3604 3605 return ret; 3606 } 3607 EXPORT_SYMBOL(napi_skb_finish); 3608 3609 void skb_gro_reset_offset(struct sk_buff *skb) 3610 { 3611 NAPI_GRO_CB(skb)->data_offset = 0; 3612 NAPI_GRO_CB(skb)->frag0 = NULL; 3613 NAPI_GRO_CB(skb)->frag0_len = 0; 3614 3615 if (skb->mac_header == skb->tail && 3616 !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) { 3617 NAPI_GRO_CB(skb)->frag0 = 3618 skb_frag_address(&skb_shinfo(skb)->frags[0]); 3619 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]); 3620 } 3621 } 3622 EXPORT_SYMBOL(skb_gro_reset_offset); 3623 3624 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3625 { 3626 skb_gro_reset_offset(skb); 3627 3628 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 3629 } 3630 EXPORT_SYMBOL(napi_gro_receive); 3631 3632 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3633 { 3634 __skb_pull(skb, skb_headlen(skb)); 3635 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 3636 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 3637 skb->vlan_tci = 0; 3638 skb->dev = napi->dev; 3639 skb->skb_iif = 0; 3640 3641 napi->skb = skb; 3642 } 3643 3644 struct sk_buff *napi_get_frags(struct napi_struct *napi) 3645 { 3646 struct sk_buff *skb = napi->skb; 3647 3648 if (!skb) { 3649 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3650 if (skb) 3651 napi->skb = skb; 3652 } 3653 return skb; 3654 } 3655 EXPORT_SYMBOL(napi_get_frags); 3656 3657 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3658 gro_result_t ret) 3659 { 3660 switch (ret) { 3661 case GRO_NORMAL: 3662 case GRO_HELD: 3663 skb->protocol = eth_type_trans(skb, skb->dev); 3664 3665 if (ret == GRO_HELD) 3666 skb_gro_pull(skb, -ETH_HLEN); 3667 else if (netif_receive_skb(skb)) 3668 ret = GRO_DROP; 3669 break; 3670 3671 case GRO_DROP: 3672 case GRO_MERGED_FREE: 3673 napi_reuse_skb(napi, skb); 3674 break; 3675 3676 case GRO_MERGED: 3677 break; 3678 } 3679 3680 return ret; 3681 } 3682 EXPORT_SYMBOL(napi_frags_finish); 3683 3684 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 3685 { 3686 struct sk_buff *skb = napi->skb; 3687 struct ethhdr *eth; 3688 unsigned int hlen; 3689 unsigned int off; 3690 3691 napi->skb = NULL; 3692 3693 skb_reset_mac_header(skb); 3694 skb_gro_reset_offset(skb); 3695 3696 off = skb_gro_offset(skb); 3697 hlen = off + sizeof(*eth); 3698 eth = skb_gro_header_fast(skb, off); 3699 if (skb_gro_header_hard(skb, hlen)) { 3700 eth = skb_gro_header_slow(skb, hlen, off); 3701 if (unlikely(!eth)) { 3702 napi_reuse_skb(napi, skb); 3703 skb = NULL; 3704 goto out; 3705 } 3706 } 3707 3708 skb_gro_pull(skb, sizeof(*eth)); 3709 3710 /* 3711 * This works because the only protocols we care about don't require 3712 * special handling. We'll fix it up properly at the end. 3713 */ 3714 skb->protocol = eth->h_proto; 3715 3716 out: 3717 return skb; 3718 } 3719 3720 gro_result_t napi_gro_frags(struct napi_struct *napi) 3721 { 3722 struct sk_buff *skb = napi_frags_skb(napi); 3723 3724 if (!skb) 3725 return GRO_DROP; 3726 3727 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 3728 } 3729 EXPORT_SYMBOL(napi_gro_frags); 3730 3731 /* 3732 * net_rps_action sends any pending IPI's for rps. 3733 * Note: called with local irq disabled, but exits with local irq enabled. 3734 */ 3735 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 3736 { 3737 #ifdef CONFIG_RPS 3738 struct softnet_data *remsd = sd->rps_ipi_list; 3739 3740 if (remsd) { 3741 sd->rps_ipi_list = NULL; 3742 3743 local_irq_enable(); 3744 3745 /* Send pending IPI's to kick RPS processing on remote cpus. */ 3746 while (remsd) { 3747 struct softnet_data *next = remsd->rps_ipi_next; 3748 3749 if (cpu_online(remsd->cpu)) 3750 __smp_call_function_single(remsd->cpu, 3751 &remsd->csd, 0); 3752 remsd = next; 3753 } 3754 } else 3755 #endif 3756 local_irq_enable(); 3757 } 3758 3759 static int process_backlog(struct napi_struct *napi, int quota) 3760 { 3761 int work = 0; 3762 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 3763 3764 #ifdef CONFIG_RPS 3765 /* Check if we have pending ipi, its better to send them now, 3766 * not waiting net_rx_action() end. 3767 */ 3768 if (sd->rps_ipi_list) { 3769 local_irq_disable(); 3770 net_rps_action_and_irq_enable(sd); 3771 } 3772 #endif 3773 napi->weight = weight_p; 3774 local_irq_disable(); 3775 while (work < quota) { 3776 struct sk_buff *skb; 3777 unsigned int qlen; 3778 3779 while ((skb = __skb_dequeue(&sd->process_queue))) { 3780 local_irq_enable(); 3781 __netif_receive_skb(skb); 3782 local_irq_disable(); 3783 input_queue_head_incr(sd); 3784 if (++work >= quota) { 3785 local_irq_enable(); 3786 return work; 3787 } 3788 } 3789 3790 rps_lock(sd); 3791 qlen = skb_queue_len(&sd->input_pkt_queue); 3792 if (qlen) 3793 skb_queue_splice_tail_init(&sd->input_pkt_queue, 3794 &sd->process_queue); 3795 3796 if (qlen < quota - work) { 3797 /* 3798 * Inline a custom version of __napi_complete(). 3799 * only current cpu owns and manipulates this napi, 3800 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 3801 * we can use a plain write instead of clear_bit(), 3802 * and we dont need an smp_mb() memory barrier. 3803 */ 3804 list_del(&napi->poll_list); 3805 napi->state = 0; 3806 3807 quota = work + qlen; 3808 } 3809 rps_unlock(sd); 3810 } 3811 local_irq_enable(); 3812 3813 return work; 3814 } 3815 3816 /** 3817 * __napi_schedule - schedule for receive 3818 * @n: entry to schedule 3819 * 3820 * The entry's receive function will be scheduled to run 3821 */ 3822 void __napi_schedule(struct napi_struct *n) 3823 { 3824 unsigned long flags; 3825 3826 local_irq_save(flags); 3827 ____napi_schedule(&__get_cpu_var(softnet_data), n); 3828 local_irq_restore(flags); 3829 } 3830 EXPORT_SYMBOL(__napi_schedule); 3831 3832 void __napi_complete(struct napi_struct *n) 3833 { 3834 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 3835 BUG_ON(n->gro_list); 3836 3837 list_del(&n->poll_list); 3838 smp_mb__before_clear_bit(); 3839 clear_bit(NAPI_STATE_SCHED, &n->state); 3840 } 3841 EXPORT_SYMBOL(__napi_complete); 3842 3843 void napi_complete(struct napi_struct *n) 3844 { 3845 unsigned long flags; 3846 3847 /* 3848 * don't let napi dequeue from the cpu poll list 3849 * just in case its running on a different cpu 3850 */ 3851 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 3852 return; 3853 3854 napi_gro_flush(n); 3855 local_irq_save(flags); 3856 __napi_complete(n); 3857 local_irq_restore(flags); 3858 } 3859 EXPORT_SYMBOL(napi_complete); 3860 3861 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 3862 int (*poll)(struct napi_struct *, int), int weight) 3863 { 3864 INIT_LIST_HEAD(&napi->poll_list); 3865 napi->gro_count = 0; 3866 napi->gro_list = NULL; 3867 napi->skb = NULL; 3868 napi->poll = poll; 3869 napi->weight = weight; 3870 list_add(&napi->dev_list, &dev->napi_list); 3871 napi->dev = dev; 3872 #ifdef CONFIG_NETPOLL 3873 spin_lock_init(&napi->poll_lock); 3874 napi->poll_owner = -1; 3875 #endif 3876 set_bit(NAPI_STATE_SCHED, &napi->state); 3877 } 3878 EXPORT_SYMBOL(netif_napi_add); 3879 3880 void netif_napi_del(struct napi_struct *napi) 3881 { 3882 struct sk_buff *skb, *next; 3883 3884 list_del_init(&napi->dev_list); 3885 napi_free_frags(napi); 3886 3887 for (skb = napi->gro_list; skb; skb = next) { 3888 next = skb->next; 3889 skb->next = NULL; 3890 kfree_skb(skb); 3891 } 3892 3893 napi->gro_list = NULL; 3894 napi->gro_count = 0; 3895 } 3896 EXPORT_SYMBOL(netif_napi_del); 3897 3898 static void net_rx_action(struct softirq_action *h) 3899 { 3900 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3901 unsigned long time_limit = jiffies + 2; 3902 int budget = netdev_budget; 3903 void *have; 3904 3905 local_irq_disable(); 3906 3907 while (!list_empty(&sd->poll_list)) { 3908 struct napi_struct *n; 3909 int work, weight; 3910 3911 /* If softirq window is exhuasted then punt. 3912 * Allow this to run for 2 jiffies since which will allow 3913 * an average latency of 1.5/HZ. 3914 */ 3915 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 3916 goto softnet_break; 3917 3918 local_irq_enable(); 3919 3920 /* Even though interrupts have been re-enabled, this 3921 * access is safe because interrupts can only add new 3922 * entries to the tail of this list, and only ->poll() 3923 * calls can remove this head entry from the list. 3924 */ 3925 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 3926 3927 have = netpoll_poll_lock(n); 3928 3929 weight = n->weight; 3930 3931 /* This NAPI_STATE_SCHED test is for avoiding a race 3932 * with netpoll's poll_napi(). Only the entity which 3933 * obtains the lock and sees NAPI_STATE_SCHED set will 3934 * actually make the ->poll() call. Therefore we avoid 3935 * accidentally calling ->poll() when NAPI is not scheduled. 3936 */ 3937 work = 0; 3938 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 3939 work = n->poll(n, weight); 3940 trace_napi_poll(n); 3941 } 3942 3943 WARN_ON_ONCE(work > weight); 3944 3945 budget -= work; 3946 3947 local_irq_disable(); 3948 3949 /* Drivers must not modify the NAPI state if they 3950 * consume the entire weight. In such cases this code 3951 * still "owns" the NAPI instance and therefore can 3952 * move the instance around on the list at-will. 3953 */ 3954 if (unlikely(work == weight)) { 3955 if (unlikely(napi_disable_pending(n))) { 3956 local_irq_enable(); 3957 napi_complete(n); 3958 local_irq_disable(); 3959 } else 3960 list_move_tail(&n->poll_list, &sd->poll_list); 3961 } 3962 3963 netpoll_poll_unlock(have); 3964 } 3965 out: 3966 net_rps_action_and_irq_enable(sd); 3967 3968 #ifdef CONFIG_NET_DMA 3969 /* 3970 * There may not be any more sk_buffs coming right now, so push 3971 * any pending DMA copies to hardware 3972 */ 3973 dma_issue_pending_all(); 3974 #endif 3975 3976 return; 3977 3978 softnet_break: 3979 sd->time_squeeze++; 3980 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3981 goto out; 3982 } 3983 3984 static gifconf_func_t *gifconf_list[NPROTO]; 3985 3986 /** 3987 * register_gifconf - register a SIOCGIF handler 3988 * @family: Address family 3989 * @gifconf: Function handler 3990 * 3991 * Register protocol dependent address dumping routines. The handler 3992 * that is passed must not be freed or reused until it has been replaced 3993 * by another handler. 3994 */ 3995 int register_gifconf(unsigned int family, gifconf_func_t *gifconf) 3996 { 3997 if (family >= NPROTO) 3998 return -EINVAL; 3999 gifconf_list[family] = gifconf; 4000 return 0; 4001 } 4002 EXPORT_SYMBOL(register_gifconf); 4003 4004 4005 /* 4006 * Map an interface index to its name (SIOCGIFNAME) 4007 */ 4008 4009 /* 4010 * We need this ioctl for efficient implementation of the 4011 * if_indextoname() function required by the IPv6 API. Without 4012 * it, we would have to search all the interfaces to find a 4013 * match. --pb 4014 */ 4015 4016 static int dev_ifname(struct net *net, struct ifreq __user *arg) 4017 { 4018 struct net_device *dev; 4019 struct ifreq ifr; 4020 4021 /* 4022 * Fetch the caller's info block. 4023 */ 4024 4025 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 4026 return -EFAULT; 4027 4028 rcu_read_lock(); 4029 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex); 4030 if (!dev) { 4031 rcu_read_unlock(); 4032 return -ENODEV; 4033 } 4034 4035 strcpy(ifr.ifr_name, dev->name); 4036 rcu_read_unlock(); 4037 4038 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 4039 return -EFAULT; 4040 return 0; 4041 } 4042 4043 /* 4044 * Perform a SIOCGIFCONF call. This structure will change 4045 * size eventually, and there is nothing I can do about it. 4046 * Thus we will need a 'compatibility mode'. 4047 */ 4048 4049 static int dev_ifconf(struct net *net, char __user *arg) 4050 { 4051 struct ifconf ifc; 4052 struct net_device *dev; 4053 char __user *pos; 4054 int len; 4055 int total; 4056 int i; 4057 4058 /* 4059 * Fetch the caller's info block. 4060 */ 4061 4062 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 4063 return -EFAULT; 4064 4065 pos = ifc.ifc_buf; 4066 len = ifc.ifc_len; 4067 4068 /* 4069 * Loop over the interfaces, and write an info block for each. 4070 */ 4071 4072 total = 0; 4073 for_each_netdev(net, dev) { 4074 for (i = 0; i < NPROTO; i++) { 4075 if (gifconf_list[i]) { 4076 int done; 4077 if (!pos) 4078 done = gifconf_list[i](dev, NULL, 0); 4079 else 4080 done = gifconf_list[i](dev, pos + total, 4081 len - total); 4082 if (done < 0) 4083 return -EFAULT; 4084 total += done; 4085 } 4086 } 4087 } 4088 4089 /* 4090 * All done. Write the updated control block back to the caller. 4091 */ 4092 ifc.ifc_len = total; 4093 4094 /* 4095 * Both BSD and Solaris return 0 here, so we do too. 4096 */ 4097 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 4098 } 4099 4100 #ifdef CONFIG_PROC_FS 4101 4102 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1) 4103 4104 #define get_bucket(x) ((x) >> BUCKET_SPACE) 4105 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1)) 4106 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o)) 4107 4108 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos) 4109 { 4110 struct net *net = seq_file_net(seq); 4111 struct net_device *dev; 4112 struct hlist_node *p; 4113 struct hlist_head *h; 4114 unsigned int count = 0, offset = get_offset(*pos); 4115 4116 h = &net->dev_name_head[get_bucket(*pos)]; 4117 hlist_for_each_entry_rcu(dev, p, h, name_hlist) { 4118 if (++count == offset) 4119 return dev; 4120 } 4121 4122 return NULL; 4123 } 4124 4125 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos) 4126 { 4127 struct net_device *dev; 4128 unsigned int bucket; 4129 4130 do { 4131 dev = dev_from_same_bucket(seq, pos); 4132 if (dev) 4133 return dev; 4134 4135 bucket = get_bucket(*pos) + 1; 4136 *pos = set_bucket_offset(bucket, 1); 4137 } while (bucket < NETDEV_HASHENTRIES); 4138 4139 return NULL; 4140 } 4141 4142 /* 4143 * This is invoked by the /proc filesystem handler to display a device 4144 * in detail. 4145 */ 4146 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 4147 __acquires(RCU) 4148 { 4149 rcu_read_lock(); 4150 if (!*pos) 4151 return SEQ_START_TOKEN; 4152 4153 if (get_bucket(*pos) >= NETDEV_HASHENTRIES) 4154 return NULL; 4155 4156 return dev_from_bucket(seq, pos); 4157 } 4158 4159 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4160 { 4161 ++*pos; 4162 return dev_from_bucket(seq, pos); 4163 } 4164 4165 void dev_seq_stop(struct seq_file *seq, void *v) 4166 __releases(RCU) 4167 { 4168 rcu_read_unlock(); 4169 } 4170 4171 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 4172 { 4173 struct rtnl_link_stats64 temp; 4174 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 4175 4176 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu " 4177 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n", 4178 dev->name, stats->rx_bytes, stats->rx_packets, 4179 stats->rx_errors, 4180 stats->rx_dropped + stats->rx_missed_errors, 4181 stats->rx_fifo_errors, 4182 stats->rx_length_errors + stats->rx_over_errors + 4183 stats->rx_crc_errors + stats->rx_frame_errors, 4184 stats->rx_compressed, stats->multicast, 4185 stats->tx_bytes, stats->tx_packets, 4186 stats->tx_errors, stats->tx_dropped, 4187 stats->tx_fifo_errors, stats->collisions, 4188 stats->tx_carrier_errors + 4189 stats->tx_aborted_errors + 4190 stats->tx_window_errors + 4191 stats->tx_heartbeat_errors, 4192 stats->tx_compressed); 4193 } 4194 4195 /* 4196 * Called from the PROCfs module. This now uses the new arbitrary sized 4197 * /proc/net interface to create /proc/net/dev 4198 */ 4199 static int dev_seq_show(struct seq_file *seq, void *v) 4200 { 4201 if (v == SEQ_START_TOKEN) 4202 seq_puts(seq, "Inter-| Receive " 4203 " | Transmit\n" 4204 " face |bytes packets errs drop fifo frame " 4205 "compressed multicast|bytes packets errs " 4206 "drop fifo colls carrier compressed\n"); 4207 else 4208 dev_seq_printf_stats(seq, v); 4209 return 0; 4210 } 4211 4212 static struct softnet_data *softnet_get_online(loff_t *pos) 4213 { 4214 struct softnet_data *sd = NULL; 4215 4216 while (*pos < nr_cpu_ids) 4217 if (cpu_online(*pos)) { 4218 sd = &per_cpu(softnet_data, *pos); 4219 break; 4220 } else 4221 ++*pos; 4222 return sd; 4223 } 4224 4225 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 4226 { 4227 return softnet_get_online(pos); 4228 } 4229 4230 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4231 { 4232 ++*pos; 4233 return softnet_get_online(pos); 4234 } 4235 4236 static void softnet_seq_stop(struct seq_file *seq, void *v) 4237 { 4238 } 4239 4240 static int softnet_seq_show(struct seq_file *seq, void *v) 4241 { 4242 struct softnet_data *sd = v; 4243 4244 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 4245 sd->processed, sd->dropped, sd->time_squeeze, 0, 4246 0, 0, 0, 0, /* was fastroute */ 4247 sd->cpu_collision, sd->received_rps); 4248 return 0; 4249 } 4250 4251 static const struct seq_operations dev_seq_ops = { 4252 .start = dev_seq_start, 4253 .next = dev_seq_next, 4254 .stop = dev_seq_stop, 4255 .show = dev_seq_show, 4256 }; 4257 4258 static int dev_seq_open(struct inode *inode, struct file *file) 4259 { 4260 return seq_open_net(inode, file, &dev_seq_ops, 4261 sizeof(struct seq_net_private)); 4262 } 4263 4264 static const struct file_operations dev_seq_fops = { 4265 .owner = THIS_MODULE, 4266 .open = dev_seq_open, 4267 .read = seq_read, 4268 .llseek = seq_lseek, 4269 .release = seq_release_net, 4270 }; 4271 4272 static const struct seq_operations softnet_seq_ops = { 4273 .start = softnet_seq_start, 4274 .next = softnet_seq_next, 4275 .stop = softnet_seq_stop, 4276 .show = softnet_seq_show, 4277 }; 4278 4279 static int softnet_seq_open(struct inode *inode, struct file *file) 4280 { 4281 return seq_open(file, &softnet_seq_ops); 4282 } 4283 4284 static const struct file_operations softnet_seq_fops = { 4285 .owner = THIS_MODULE, 4286 .open = softnet_seq_open, 4287 .read = seq_read, 4288 .llseek = seq_lseek, 4289 .release = seq_release, 4290 }; 4291 4292 static void *ptype_get_idx(loff_t pos) 4293 { 4294 struct packet_type *pt = NULL; 4295 loff_t i = 0; 4296 int t; 4297 4298 list_for_each_entry_rcu(pt, &ptype_all, list) { 4299 if (i == pos) 4300 return pt; 4301 ++i; 4302 } 4303 4304 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 4305 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 4306 if (i == pos) 4307 return pt; 4308 ++i; 4309 } 4310 } 4311 return NULL; 4312 } 4313 4314 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 4315 __acquires(RCU) 4316 { 4317 rcu_read_lock(); 4318 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 4319 } 4320 4321 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4322 { 4323 struct packet_type *pt; 4324 struct list_head *nxt; 4325 int hash; 4326 4327 ++*pos; 4328 if (v == SEQ_START_TOKEN) 4329 return ptype_get_idx(0); 4330 4331 pt = v; 4332 nxt = pt->list.next; 4333 if (pt->type == htons(ETH_P_ALL)) { 4334 if (nxt != &ptype_all) 4335 goto found; 4336 hash = 0; 4337 nxt = ptype_base[0].next; 4338 } else 4339 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 4340 4341 while (nxt == &ptype_base[hash]) { 4342 if (++hash >= PTYPE_HASH_SIZE) 4343 return NULL; 4344 nxt = ptype_base[hash].next; 4345 } 4346 found: 4347 return list_entry(nxt, struct packet_type, list); 4348 } 4349 4350 static void ptype_seq_stop(struct seq_file *seq, void *v) 4351 __releases(RCU) 4352 { 4353 rcu_read_unlock(); 4354 } 4355 4356 static int ptype_seq_show(struct seq_file *seq, void *v) 4357 { 4358 struct packet_type *pt = v; 4359 4360 if (v == SEQ_START_TOKEN) 4361 seq_puts(seq, "Type Device Function\n"); 4362 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 4363 if (pt->type == htons(ETH_P_ALL)) 4364 seq_puts(seq, "ALL "); 4365 else 4366 seq_printf(seq, "%04x", ntohs(pt->type)); 4367 4368 seq_printf(seq, " %-8s %pF\n", 4369 pt->dev ? pt->dev->name : "", pt->func); 4370 } 4371 4372 return 0; 4373 } 4374 4375 static const struct seq_operations ptype_seq_ops = { 4376 .start = ptype_seq_start, 4377 .next = ptype_seq_next, 4378 .stop = ptype_seq_stop, 4379 .show = ptype_seq_show, 4380 }; 4381 4382 static int ptype_seq_open(struct inode *inode, struct file *file) 4383 { 4384 return seq_open_net(inode, file, &ptype_seq_ops, 4385 sizeof(struct seq_net_private)); 4386 } 4387 4388 static const struct file_operations ptype_seq_fops = { 4389 .owner = THIS_MODULE, 4390 .open = ptype_seq_open, 4391 .read = seq_read, 4392 .llseek = seq_lseek, 4393 .release = seq_release_net, 4394 }; 4395 4396 4397 static int __net_init dev_proc_net_init(struct net *net) 4398 { 4399 int rc = -ENOMEM; 4400 4401 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 4402 goto out; 4403 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 4404 goto out_dev; 4405 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 4406 goto out_softnet; 4407 4408 if (wext_proc_init(net)) 4409 goto out_ptype; 4410 rc = 0; 4411 out: 4412 return rc; 4413 out_ptype: 4414 proc_net_remove(net, "ptype"); 4415 out_softnet: 4416 proc_net_remove(net, "softnet_stat"); 4417 out_dev: 4418 proc_net_remove(net, "dev"); 4419 goto out; 4420 } 4421 4422 static void __net_exit dev_proc_net_exit(struct net *net) 4423 { 4424 wext_proc_exit(net); 4425 4426 proc_net_remove(net, "ptype"); 4427 proc_net_remove(net, "softnet_stat"); 4428 proc_net_remove(net, "dev"); 4429 } 4430 4431 static struct pernet_operations __net_initdata dev_proc_ops = { 4432 .init = dev_proc_net_init, 4433 .exit = dev_proc_net_exit, 4434 }; 4435 4436 static int __init dev_proc_init(void) 4437 { 4438 return register_pernet_subsys(&dev_proc_ops); 4439 } 4440 #else 4441 #define dev_proc_init() 0 4442 #endif /* CONFIG_PROC_FS */ 4443 4444 4445 /** 4446 * netdev_set_master - set up master pointer 4447 * @slave: slave device 4448 * @master: new master device 4449 * 4450 * Changes the master device of the slave. Pass %NULL to break the 4451 * bonding. The caller must hold the RTNL semaphore. On a failure 4452 * a negative errno code is returned. On success the reference counts 4453 * are adjusted and the function returns zero. 4454 */ 4455 int netdev_set_master(struct net_device *slave, struct net_device *master) 4456 { 4457 struct net_device *old = slave->master; 4458 4459 ASSERT_RTNL(); 4460 4461 if (master) { 4462 if (old) 4463 return -EBUSY; 4464 dev_hold(master); 4465 } 4466 4467 slave->master = master; 4468 4469 if (old) 4470 dev_put(old); 4471 return 0; 4472 } 4473 EXPORT_SYMBOL(netdev_set_master); 4474 4475 /** 4476 * netdev_set_bond_master - set up bonding master/slave pair 4477 * @slave: slave device 4478 * @master: new master device 4479 * 4480 * Changes the master device of the slave. Pass %NULL to break the 4481 * bonding. The caller must hold the RTNL semaphore. On a failure 4482 * a negative errno code is returned. On success %RTM_NEWLINK is sent 4483 * to the routing socket and the function returns zero. 4484 */ 4485 int netdev_set_bond_master(struct net_device *slave, struct net_device *master) 4486 { 4487 int err; 4488 4489 ASSERT_RTNL(); 4490 4491 err = netdev_set_master(slave, master); 4492 if (err) 4493 return err; 4494 if (master) 4495 slave->flags |= IFF_SLAVE; 4496 else 4497 slave->flags &= ~IFF_SLAVE; 4498 4499 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 4500 return 0; 4501 } 4502 EXPORT_SYMBOL(netdev_set_bond_master); 4503 4504 static void dev_change_rx_flags(struct net_device *dev, int flags) 4505 { 4506 const struct net_device_ops *ops = dev->netdev_ops; 4507 4508 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4509 ops->ndo_change_rx_flags(dev, flags); 4510 } 4511 4512 static int __dev_set_promiscuity(struct net_device *dev, int inc) 4513 { 4514 unsigned int old_flags = dev->flags; 4515 uid_t uid; 4516 gid_t gid; 4517 4518 ASSERT_RTNL(); 4519 4520 dev->flags |= IFF_PROMISC; 4521 dev->promiscuity += inc; 4522 if (dev->promiscuity == 0) { 4523 /* 4524 * Avoid overflow. 4525 * If inc causes overflow, untouch promisc and return error. 4526 */ 4527 if (inc < 0) 4528 dev->flags &= ~IFF_PROMISC; 4529 else { 4530 dev->promiscuity -= inc; 4531 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 4532 dev->name); 4533 return -EOVERFLOW; 4534 } 4535 } 4536 if (dev->flags != old_flags) { 4537 pr_info("device %s %s promiscuous mode\n", 4538 dev->name, 4539 dev->flags & IFF_PROMISC ? "entered" : "left"); 4540 if (audit_enabled) { 4541 current_uid_gid(&uid, &gid); 4542 audit_log(current->audit_context, GFP_ATOMIC, 4543 AUDIT_ANOM_PROMISCUOUS, 4544 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4545 dev->name, (dev->flags & IFF_PROMISC), 4546 (old_flags & IFF_PROMISC), 4547 audit_get_loginuid(current), 4548 uid, gid, 4549 audit_get_sessionid(current)); 4550 } 4551 4552 dev_change_rx_flags(dev, IFF_PROMISC); 4553 } 4554 return 0; 4555 } 4556 4557 /** 4558 * dev_set_promiscuity - update promiscuity count on a device 4559 * @dev: device 4560 * @inc: modifier 4561 * 4562 * Add or remove promiscuity from a device. While the count in the device 4563 * remains above zero the interface remains promiscuous. Once it hits zero 4564 * the device reverts back to normal filtering operation. A negative inc 4565 * value is used to drop promiscuity on the device. 4566 * Return 0 if successful or a negative errno code on error. 4567 */ 4568 int dev_set_promiscuity(struct net_device *dev, int inc) 4569 { 4570 unsigned int old_flags = dev->flags; 4571 int err; 4572 4573 err = __dev_set_promiscuity(dev, inc); 4574 if (err < 0) 4575 return err; 4576 if (dev->flags != old_flags) 4577 dev_set_rx_mode(dev); 4578 return err; 4579 } 4580 EXPORT_SYMBOL(dev_set_promiscuity); 4581 4582 /** 4583 * dev_set_allmulti - update allmulti count on a device 4584 * @dev: device 4585 * @inc: modifier 4586 * 4587 * Add or remove reception of all multicast frames to a device. While the 4588 * count in the device remains above zero the interface remains listening 4589 * to all interfaces. Once it hits zero the device reverts back to normal 4590 * filtering operation. A negative @inc value is used to drop the counter 4591 * when releasing a resource needing all multicasts. 4592 * Return 0 if successful or a negative errno code on error. 4593 */ 4594 4595 int dev_set_allmulti(struct net_device *dev, int inc) 4596 { 4597 unsigned int old_flags = dev->flags; 4598 4599 ASSERT_RTNL(); 4600 4601 dev->flags |= IFF_ALLMULTI; 4602 dev->allmulti += inc; 4603 if (dev->allmulti == 0) { 4604 /* 4605 * Avoid overflow. 4606 * If inc causes overflow, untouch allmulti and return error. 4607 */ 4608 if (inc < 0) 4609 dev->flags &= ~IFF_ALLMULTI; 4610 else { 4611 dev->allmulti -= inc; 4612 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 4613 dev->name); 4614 return -EOVERFLOW; 4615 } 4616 } 4617 if (dev->flags ^ old_flags) { 4618 dev_change_rx_flags(dev, IFF_ALLMULTI); 4619 dev_set_rx_mode(dev); 4620 } 4621 return 0; 4622 } 4623 EXPORT_SYMBOL(dev_set_allmulti); 4624 4625 /* 4626 * Upload unicast and multicast address lists to device and 4627 * configure RX filtering. When the device doesn't support unicast 4628 * filtering it is put in promiscuous mode while unicast addresses 4629 * are present. 4630 */ 4631 void __dev_set_rx_mode(struct net_device *dev) 4632 { 4633 const struct net_device_ops *ops = dev->netdev_ops; 4634 4635 /* dev_open will call this function so the list will stay sane. */ 4636 if (!(dev->flags&IFF_UP)) 4637 return; 4638 4639 if (!netif_device_present(dev)) 4640 return; 4641 4642 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 4643 /* Unicast addresses changes may only happen under the rtnl, 4644 * therefore calling __dev_set_promiscuity here is safe. 4645 */ 4646 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4647 __dev_set_promiscuity(dev, 1); 4648 dev->uc_promisc = true; 4649 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4650 __dev_set_promiscuity(dev, -1); 4651 dev->uc_promisc = false; 4652 } 4653 } 4654 4655 if (ops->ndo_set_rx_mode) 4656 ops->ndo_set_rx_mode(dev); 4657 } 4658 4659 void dev_set_rx_mode(struct net_device *dev) 4660 { 4661 netif_addr_lock_bh(dev); 4662 __dev_set_rx_mode(dev); 4663 netif_addr_unlock_bh(dev); 4664 } 4665 4666 /** 4667 * dev_get_flags - get flags reported to userspace 4668 * @dev: device 4669 * 4670 * Get the combination of flag bits exported through APIs to userspace. 4671 */ 4672 unsigned int dev_get_flags(const struct net_device *dev) 4673 { 4674 unsigned int flags; 4675 4676 flags = (dev->flags & ~(IFF_PROMISC | 4677 IFF_ALLMULTI | 4678 IFF_RUNNING | 4679 IFF_LOWER_UP | 4680 IFF_DORMANT)) | 4681 (dev->gflags & (IFF_PROMISC | 4682 IFF_ALLMULTI)); 4683 4684 if (netif_running(dev)) { 4685 if (netif_oper_up(dev)) 4686 flags |= IFF_RUNNING; 4687 if (netif_carrier_ok(dev)) 4688 flags |= IFF_LOWER_UP; 4689 if (netif_dormant(dev)) 4690 flags |= IFF_DORMANT; 4691 } 4692 4693 return flags; 4694 } 4695 EXPORT_SYMBOL(dev_get_flags); 4696 4697 int __dev_change_flags(struct net_device *dev, unsigned int flags) 4698 { 4699 unsigned int old_flags = dev->flags; 4700 int ret; 4701 4702 ASSERT_RTNL(); 4703 4704 /* 4705 * Set the flags on our device. 4706 */ 4707 4708 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4709 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4710 IFF_AUTOMEDIA)) | 4711 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4712 IFF_ALLMULTI)); 4713 4714 /* 4715 * Load in the correct multicast list now the flags have changed. 4716 */ 4717 4718 if ((old_flags ^ flags) & IFF_MULTICAST) 4719 dev_change_rx_flags(dev, IFF_MULTICAST); 4720 4721 dev_set_rx_mode(dev); 4722 4723 /* 4724 * Have we downed the interface. We handle IFF_UP ourselves 4725 * according to user attempts to set it, rather than blindly 4726 * setting it. 4727 */ 4728 4729 ret = 0; 4730 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4731 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4732 4733 if (!ret) 4734 dev_set_rx_mode(dev); 4735 } 4736 4737 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4738 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4739 4740 dev->gflags ^= IFF_PROMISC; 4741 dev_set_promiscuity(dev, inc); 4742 } 4743 4744 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4745 is important. Some (broken) drivers set IFF_PROMISC, when 4746 IFF_ALLMULTI is requested not asking us and not reporting. 4747 */ 4748 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4749 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4750 4751 dev->gflags ^= IFF_ALLMULTI; 4752 dev_set_allmulti(dev, inc); 4753 } 4754 4755 return ret; 4756 } 4757 4758 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4759 { 4760 unsigned int changes = dev->flags ^ old_flags; 4761 4762 if (changes & IFF_UP) { 4763 if (dev->flags & IFF_UP) 4764 call_netdevice_notifiers(NETDEV_UP, dev); 4765 else 4766 call_netdevice_notifiers(NETDEV_DOWN, dev); 4767 } 4768 4769 if (dev->flags & IFF_UP && 4770 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) 4771 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4772 } 4773 4774 /** 4775 * dev_change_flags - change device settings 4776 * @dev: device 4777 * @flags: device state flags 4778 * 4779 * Change settings on device based state flags. The flags are 4780 * in the userspace exported format. 4781 */ 4782 int dev_change_flags(struct net_device *dev, unsigned int flags) 4783 { 4784 int ret; 4785 unsigned int changes, old_flags = dev->flags; 4786 4787 ret = __dev_change_flags(dev, flags); 4788 if (ret < 0) 4789 return ret; 4790 4791 changes = old_flags ^ dev->flags; 4792 if (changes) 4793 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4794 4795 __dev_notify_flags(dev, old_flags); 4796 return ret; 4797 } 4798 EXPORT_SYMBOL(dev_change_flags); 4799 4800 /** 4801 * dev_set_mtu - Change maximum transfer unit 4802 * @dev: device 4803 * @new_mtu: new transfer unit 4804 * 4805 * Change the maximum transfer size of the network device. 4806 */ 4807 int dev_set_mtu(struct net_device *dev, int new_mtu) 4808 { 4809 const struct net_device_ops *ops = dev->netdev_ops; 4810 int err; 4811 4812 if (new_mtu == dev->mtu) 4813 return 0; 4814 4815 /* MTU must be positive. */ 4816 if (new_mtu < 0) 4817 return -EINVAL; 4818 4819 if (!netif_device_present(dev)) 4820 return -ENODEV; 4821 4822 err = 0; 4823 if (ops->ndo_change_mtu) 4824 err = ops->ndo_change_mtu(dev, new_mtu); 4825 else 4826 dev->mtu = new_mtu; 4827 4828 if (!err && dev->flags & IFF_UP) 4829 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4830 return err; 4831 } 4832 EXPORT_SYMBOL(dev_set_mtu); 4833 4834 /** 4835 * dev_set_group - Change group this device belongs to 4836 * @dev: device 4837 * @new_group: group this device should belong to 4838 */ 4839 void dev_set_group(struct net_device *dev, int new_group) 4840 { 4841 dev->group = new_group; 4842 } 4843 EXPORT_SYMBOL(dev_set_group); 4844 4845 /** 4846 * dev_set_mac_address - Change Media Access Control Address 4847 * @dev: device 4848 * @sa: new address 4849 * 4850 * Change the hardware (MAC) address of the device 4851 */ 4852 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4853 { 4854 const struct net_device_ops *ops = dev->netdev_ops; 4855 int err; 4856 4857 if (!ops->ndo_set_mac_address) 4858 return -EOPNOTSUPP; 4859 if (sa->sa_family != dev->type) 4860 return -EINVAL; 4861 if (!netif_device_present(dev)) 4862 return -ENODEV; 4863 err = ops->ndo_set_mac_address(dev, sa); 4864 if (!err) 4865 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4866 add_device_randomness(dev->dev_addr, dev->addr_len); 4867 return err; 4868 } 4869 EXPORT_SYMBOL(dev_set_mac_address); 4870 4871 /* 4872 * Perform the SIOCxIFxxx calls, inside rcu_read_lock() 4873 */ 4874 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 4875 { 4876 int err; 4877 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name); 4878 4879 if (!dev) 4880 return -ENODEV; 4881 4882 switch (cmd) { 4883 case SIOCGIFFLAGS: /* Get interface flags */ 4884 ifr->ifr_flags = (short) dev_get_flags(dev); 4885 return 0; 4886 4887 case SIOCGIFMETRIC: /* Get the metric on the interface 4888 (currently unused) */ 4889 ifr->ifr_metric = 0; 4890 return 0; 4891 4892 case SIOCGIFMTU: /* Get the MTU of a device */ 4893 ifr->ifr_mtu = dev->mtu; 4894 return 0; 4895 4896 case SIOCGIFHWADDR: 4897 if (!dev->addr_len) 4898 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 4899 else 4900 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 4901 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4902 ifr->ifr_hwaddr.sa_family = dev->type; 4903 return 0; 4904 4905 case SIOCGIFSLAVE: 4906 err = -EINVAL; 4907 break; 4908 4909 case SIOCGIFMAP: 4910 ifr->ifr_map.mem_start = dev->mem_start; 4911 ifr->ifr_map.mem_end = dev->mem_end; 4912 ifr->ifr_map.base_addr = dev->base_addr; 4913 ifr->ifr_map.irq = dev->irq; 4914 ifr->ifr_map.dma = dev->dma; 4915 ifr->ifr_map.port = dev->if_port; 4916 return 0; 4917 4918 case SIOCGIFINDEX: 4919 ifr->ifr_ifindex = dev->ifindex; 4920 return 0; 4921 4922 case SIOCGIFTXQLEN: 4923 ifr->ifr_qlen = dev->tx_queue_len; 4924 return 0; 4925 4926 default: 4927 /* dev_ioctl() should ensure this case 4928 * is never reached 4929 */ 4930 WARN_ON(1); 4931 err = -ENOTTY; 4932 break; 4933 4934 } 4935 return err; 4936 } 4937 4938 /* 4939 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 4940 */ 4941 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 4942 { 4943 int err; 4944 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4945 const struct net_device_ops *ops; 4946 4947 if (!dev) 4948 return -ENODEV; 4949 4950 ops = dev->netdev_ops; 4951 4952 switch (cmd) { 4953 case SIOCSIFFLAGS: /* Set interface flags */ 4954 return dev_change_flags(dev, ifr->ifr_flags); 4955 4956 case SIOCSIFMETRIC: /* Set the metric on the interface 4957 (currently unused) */ 4958 return -EOPNOTSUPP; 4959 4960 case SIOCSIFMTU: /* Set the MTU of a device */ 4961 return dev_set_mtu(dev, ifr->ifr_mtu); 4962 4963 case SIOCSIFHWADDR: 4964 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 4965 4966 case SIOCSIFHWBROADCAST: 4967 if (ifr->ifr_hwaddr.sa_family != dev->type) 4968 return -EINVAL; 4969 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 4970 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4971 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4972 return 0; 4973 4974 case SIOCSIFMAP: 4975 if (ops->ndo_set_config) { 4976 if (!netif_device_present(dev)) 4977 return -ENODEV; 4978 return ops->ndo_set_config(dev, &ifr->ifr_map); 4979 } 4980 return -EOPNOTSUPP; 4981 4982 case SIOCADDMULTI: 4983 if (!ops->ndo_set_rx_mode || 4984 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4985 return -EINVAL; 4986 if (!netif_device_present(dev)) 4987 return -ENODEV; 4988 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data); 4989 4990 case SIOCDELMULTI: 4991 if (!ops->ndo_set_rx_mode || 4992 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4993 return -EINVAL; 4994 if (!netif_device_present(dev)) 4995 return -ENODEV; 4996 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data); 4997 4998 case SIOCSIFTXQLEN: 4999 if (ifr->ifr_qlen < 0) 5000 return -EINVAL; 5001 dev->tx_queue_len = ifr->ifr_qlen; 5002 return 0; 5003 5004 case SIOCSIFNAME: 5005 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 5006 return dev_change_name(dev, ifr->ifr_newname); 5007 5008 case SIOCSHWTSTAMP: 5009 err = net_hwtstamp_validate(ifr); 5010 if (err) 5011 return err; 5012 /* fall through */ 5013 5014 /* 5015 * Unknown or private ioctl 5016 */ 5017 default: 5018 if ((cmd >= SIOCDEVPRIVATE && 5019 cmd <= SIOCDEVPRIVATE + 15) || 5020 cmd == SIOCBONDENSLAVE || 5021 cmd == SIOCBONDRELEASE || 5022 cmd == SIOCBONDSETHWADDR || 5023 cmd == SIOCBONDSLAVEINFOQUERY || 5024 cmd == SIOCBONDINFOQUERY || 5025 cmd == SIOCBONDCHANGEACTIVE || 5026 cmd == SIOCGMIIPHY || 5027 cmd == SIOCGMIIREG || 5028 cmd == SIOCSMIIREG || 5029 cmd == SIOCBRADDIF || 5030 cmd == SIOCBRDELIF || 5031 cmd == SIOCSHWTSTAMP || 5032 cmd == SIOCWANDEV) { 5033 err = -EOPNOTSUPP; 5034 if (ops->ndo_do_ioctl) { 5035 if (netif_device_present(dev)) 5036 err = ops->ndo_do_ioctl(dev, ifr, cmd); 5037 else 5038 err = -ENODEV; 5039 } 5040 } else 5041 err = -EINVAL; 5042 5043 } 5044 return err; 5045 } 5046 5047 /* 5048 * This function handles all "interface"-type I/O control requests. The actual 5049 * 'doing' part of this is dev_ifsioc above. 5050 */ 5051 5052 /** 5053 * dev_ioctl - network device ioctl 5054 * @net: the applicable net namespace 5055 * @cmd: command to issue 5056 * @arg: pointer to a struct ifreq in user space 5057 * 5058 * Issue ioctl functions to devices. This is normally called by the 5059 * user space syscall interfaces but can sometimes be useful for 5060 * other purposes. The return value is the return from the syscall if 5061 * positive or a negative errno code on error. 5062 */ 5063 5064 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 5065 { 5066 struct ifreq ifr; 5067 int ret; 5068 char *colon; 5069 5070 /* One special case: SIOCGIFCONF takes ifconf argument 5071 and requires shared lock, because it sleeps writing 5072 to user space. 5073 */ 5074 5075 if (cmd == SIOCGIFCONF) { 5076 rtnl_lock(); 5077 ret = dev_ifconf(net, (char __user *) arg); 5078 rtnl_unlock(); 5079 return ret; 5080 } 5081 if (cmd == SIOCGIFNAME) 5082 return dev_ifname(net, (struct ifreq __user *)arg); 5083 5084 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 5085 return -EFAULT; 5086 5087 ifr.ifr_name[IFNAMSIZ-1] = 0; 5088 5089 colon = strchr(ifr.ifr_name, ':'); 5090 if (colon) 5091 *colon = 0; 5092 5093 /* 5094 * See which interface the caller is talking about. 5095 */ 5096 5097 switch (cmd) { 5098 /* 5099 * These ioctl calls: 5100 * - can be done by all. 5101 * - atomic and do not require locking. 5102 * - return a value 5103 */ 5104 case SIOCGIFFLAGS: 5105 case SIOCGIFMETRIC: 5106 case SIOCGIFMTU: 5107 case SIOCGIFHWADDR: 5108 case SIOCGIFSLAVE: 5109 case SIOCGIFMAP: 5110 case SIOCGIFINDEX: 5111 case SIOCGIFTXQLEN: 5112 dev_load(net, ifr.ifr_name); 5113 rcu_read_lock(); 5114 ret = dev_ifsioc_locked(net, &ifr, cmd); 5115 rcu_read_unlock(); 5116 if (!ret) { 5117 if (colon) 5118 *colon = ':'; 5119 if (copy_to_user(arg, &ifr, 5120 sizeof(struct ifreq))) 5121 ret = -EFAULT; 5122 } 5123 return ret; 5124 5125 case SIOCETHTOOL: 5126 dev_load(net, ifr.ifr_name); 5127 rtnl_lock(); 5128 ret = dev_ethtool(net, &ifr); 5129 rtnl_unlock(); 5130 if (!ret) { 5131 if (colon) 5132 *colon = ':'; 5133 if (copy_to_user(arg, &ifr, 5134 sizeof(struct ifreq))) 5135 ret = -EFAULT; 5136 } 5137 return ret; 5138 5139 /* 5140 * These ioctl calls: 5141 * - require superuser power. 5142 * - require strict serialization. 5143 * - return a value 5144 */ 5145 case SIOCGMIIPHY: 5146 case SIOCGMIIREG: 5147 case SIOCSIFNAME: 5148 if (!capable(CAP_NET_ADMIN)) 5149 return -EPERM; 5150 dev_load(net, ifr.ifr_name); 5151 rtnl_lock(); 5152 ret = dev_ifsioc(net, &ifr, cmd); 5153 rtnl_unlock(); 5154 if (!ret) { 5155 if (colon) 5156 *colon = ':'; 5157 if (copy_to_user(arg, &ifr, 5158 sizeof(struct ifreq))) 5159 ret = -EFAULT; 5160 } 5161 return ret; 5162 5163 /* 5164 * These ioctl calls: 5165 * - require superuser power. 5166 * - require strict serialization. 5167 * - do not return a value 5168 */ 5169 case SIOCSIFFLAGS: 5170 case SIOCSIFMETRIC: 5171 case SIOCSIFMTU: 5172 case SIOCSIFMAP: 5173 case SIOCSIFHWADDR: 5174 case SIOCSIFSLAVE: 5175 case SIOCADDMULTI: 5176 case SIOCDELMULTI: 5177 case SIOCSIFHWBROADCAST: 5178 case SIOCSIFTXQLEN: 5179 case SIOCSMIIREG: 5180 case SIOCBONDENSLAVE: 5181 case SIOCBONDRELEASE: 5182 case SIOCBONDSETHWADDR: 5183 case SIOCBONDCHANGEACTIVE: 5184 case SIOCBRADDIF: 5185 case SIOCBRDELIF: 5186 case SIOCSHWTSTAMP: 5187 if (!capable(CAP_NET_ADMIN)) 5188 return -EPERM; 5189 /* fall through */ 5190 case SIOCBONDSLAVEINFOQUERY: 5191 case SIOCBONDINFOQUERY: 5192 dev_load(net, ifr.ifr_name); 5193 rtnl_lock(); 5194 ret = dev_ifsioc(net, &ifr, cmd); 5195 rtnl_unlock(); 5196 return ret; 5197 5198 case SIOCGIFMEM: 5199 /* Get the per device memory space. We can add this but 5200 * currently do not support it */ 5201 case SIOCSIFMEM: 5202 /* Set the per device memory buffer space. 5203 * Not applicable in our case */ 5204 case SIOCSIFLINK: 5205 return -ENOTTY; 5206 5207 /* 5208 * Unknown or private ioctl. 5209 */ 5210 default: 5211 if (cmd == SIOCWANDEV || 5212 (cmd >= SIOCDEVPRIVATE && 5213 cmd <= SIOCDEVPRIVATE + 15)) { 5214 dev_load(net, ifr.ifr_name); 5215 rtnl_lock(); 5216 ret = dev_ifsioc(net, &ifr, cmd); 5217 rtnl_unlock(); 5218 if (!ret && copy_to_user(arg, &ifr, 5219 sizeof(struct ifreq))) 5220 ret = -EFAULT; 5221 return ret; 5222 } 5223 /* Take care of Wireless Extensions */ 5224 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 5225 return wext_handle_ioctl(net, &ifr, cmd, arg); 5226 return -ENOTTY; 5227 } 5228 } 5229 5230 5231 /** 5232 * dev_new_index - allocate an ifindex 5233 * @net: the applicable net namespace 5234 * 5235 * Returns a suitable unique value for a new device interface 5236 * number. The caller must hold the rtnl semaphore or the 5237 * dev_base_lock to be sure it remains unique. 5238 */ 5239 static int dev_new_index(struct net *net) 5240 { 5241 static int ifindex; 5242 for (;;) { 5243 if (++ifindex <= 0) 5244 ifindex = 1; 5245 if (!__dev_get_by_index(net, ifindex)) 5246 return ifindex; 5247 } 5248 } 5249 5250 /* Delayed registration/unregisteration */ 5251 static LIST_HEAD(net_todo_list); 5252 5253 static void net_set_todo(struct net_device *dev) 5254 { 5255 list_add_tail(&dev->todo_list, &net_todo_list); 5256 } 5257 5258 static void rollback_registered_many(struct list_head *head) 5259 { 5260 struct net_device *dev, *tmp; 5261 5262 BUG_ON(dev_boot_phase); 5263 ASSERT_RTNL(); 5264 5265 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5266 /* Some devices call without registering 5267 * for initialization unwind. Remove those 5268 * devices and proceed with the remaining. 5269 */ 5270 if (dev->reg_state == NETREG_UNINITIALIZED) { 5271 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 5272 dev->name, dev); 5273 5274 WARN_ON(1); 5275 list_del(&dev->unreg_list); 5276 continue; 5277 } 5278 dev->dismantle = true; 5279 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5280 } 5281 5282 /* If device is running, close it first. */ 5283 dev_close_many(head); 5284 5285 list_for_each_entry(dev, head, unreg_list) { 5286 /* And unlink it from device chain. */ 5287 unlist_netdevice(dev); 5288 5289 dev->reg_state = NETREG_UNREGISTERING; 5290 } 5291 5292 synchronize_net(); 5293 5294 list_for_each_entry(dev, head, unreg_list) { 5295 /* Shutdown queueing discipline. */ 5296 dev_shutdown(dev); 5297 5298 5299 /* Notify protocols, that we are about to destroy 5300 this device. They should clean all the things. 5301 */ 5302 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5303 5304 if (!dev->rtnl_link_ops || 5305 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5306 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 5307 5308 /* 5309 * Flush the unicast and multicast chains 5310 */ 5311 dev_uc_flush(dev); 5312 dev_mc_flush(dev); 5313 5314 if (dev->netdev_ops->ndo_uninit) 5315 dev->netdev_ops->ndo_uninit(dev); 5316 5317 /* Notifier chain MUST detach us from master device. */ 5318 WARN_ON(dev->master); 5319 5320 /* Remove entries from kobject tree */ 5321 netdev_unregister_kobject(dev); 5322 } 5323 5324 /* Process any work delayed until the end of the batch */ 5325 dev = list_first_entry(head, struct net_device, unreg_list); 5326 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 5327 5328 synchronize_net(); 5329 5330 list_for_each_entry(dev, head, unreg_list) 5331 dev_put(dev); 5332 } 5333 5334 static void rollback_registered(struct net_device *dev) 5335 { 5336 LIST_HEAD(single); 5337 5338 list_add(&dev->unreg_list, &single); 5339 rollback_registered_many(&single); 5340 list_del(&single); 5341 } 5342 5343 static netdev_features_t netdev_fix_features(struct net_device *dev, 5344 netdev_features_t features) 5345 { 5346 /* Fix illegal checksum combinations */ 5347 if ((features & NETIF_F_HW_CSUM) && 5348 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5349 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 5350 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5351 } 5352 5353 /* Fix illegal SG+CSUM combinations. */ 5354 if ((features & NETIF_F_SG) && 5355 !(features & NETIF_F_ALL_CSUM)) { 5356 netdev_dbg(dev, 5357 "Dropping NETIF_F_SG since no checksum feature.\n"); 5358 features &= ~NETIF_F_SG; 5359 } 5360 5361 /* TSO requires that SG is present as well. */ 5362 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 5363 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 5364 features &= ~NETIF_F_ALL_TSO; 5365 } 5366 5367 /* TSO ECN requires that TSO is present as well. */ 5368 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 5369 features &= ~NETIF_F_TSO_ECN; 5370 5371 /* Software GSO depends on SG. */ 5372 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 5373 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 5374 features &= ~NETIF_F_GSO; 5375 } 5376 5377 /* UFO needs SG and checksumming */ 5378 if (features & NETIF_F_UFO) { 5379 /* maybe split UFO into V4 and V6? */ 5380 if (!((features & NETIF_F_GEN_CSUM) || 5381 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5382 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5383 netdev_dbg(dev, 5384 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 5385 features &= ~NETIF_F_UFO; 5386 } 5387 5388 if (!(features & NETIF_F_SG)) { 5389 netdev_dbg(dev, 5390 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 5391 features &= ~NETIF_F_UFO; 5392 } 5393 } 5394 5395 return features; 5396 } 5397 5398 int __netdev_update_features(struct net_device *dev) 5399 { 5400 netdev_features_t features; 5401 int err = 0; 5402 5403 ASSERT_RTNL(); 5404 5405 features = netdev_get_wanted_features(dev); 5406 5407 if (dev->netdev_ops->ndo_fix_features) 5408 features = dev->netdev_ops->ndo_fix_features(dev, features); 5409 5410 /* driver might be less strict about feature dependencies */ 5411 features = netdev_fix_features(dev, features); 5412 5413 if (dev->features == features) 5414 return 0; 5415 5416 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 5417 &dev->features, &features); 5418 5419 if (dev->netdev_ops->ndo_set_features) 5420 err = dev->netdev_ops->ndo_set_features(dev, features); 5421 5422 if (unlikely(err < 0)) { 5423 netdev_err(dev, 5424 "set_features() failed (%d); wanted %pNF, left %pNF\n", 5425 err, &features, &dev->features); 5426 return -1; 5427 } 5428 5429 if (!err) 5430 dev->features = features; 5431 5432 return 1; 5433 } 5434 5435 /** 5436 * netdev_update_features - recalculate device features 5437 * @dev: the device to check 5438 * 5439 * Recalculate dev->features set and send notifications if it 5440 * has changed. Should be called after driver or hardware dependent 5441 * conditions might have changed that influence the features. 5442 */ 5443 void netdev_update_features(struct net_device *dev) 5444 { 5445 if (__netdev_update_features(dev)) 5446 netdev_features_change(dev); 5447 } 5448 EXPORT_SYMBOL(netdev_update_features); 5449 5450 /** 5451 * netdev_change_features - recalculate device features 5452 * @dev: the device to check 5453 * 5454 * Recalculate dev->features set and send notifications even 5455 * if they have not changed. Should be called instead of 5456 * netdev_update_features() if also dev->vlan_features might 5457 * have changed to allow the changes to be propagated to stacked 5458 * VLAN devices. 5459 */ 5460 void netdev_change_features(struct net_device *dev) 5461 { 5462 __netdev_update_features(dev); 5463 netdev_features_change(dev); 5464 } 5465 EXPORT_SYMBOL(netdev_change_features); 5466 5467 /** 5468 * netif_stacked_transfer_operstate - transfer operstate 5469 * @rootdev: the root or lower level device to transfer state from 5470 * @dev: the device to transfer operstate to 5471 * 5472 * Transfer operational state from root to device. This is normally 5473 * called when a stacking relationship exists between the root 5474 * device and the device(a leaf device). 5475 */ 5476 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5477 struct net_device *dev) 5478 { 5479 if (rootdev->operstate == IF_OPER_DORMANT) 5480 netif_dormant_on(dev); 5481 else 5482 netif_dormant_off(dev); 5483 5484 if (netif_carrier_ok(rootdev)) { 5485 if (!netif_carrier_ok(dev)) 5486 netif_carrier_on(dev); 5487 } else { 5488 if (netif_carrier_ok(dev)) 5489 netif_carrier_off(dev); 5490 } 5491 } 5492 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5493 5494 #ifdef CONFIG_RPS 5495 static int netif_alloc_rx_queues(struct net_device *dev) 5496 { 5497 unsigned int i, count = dev->num_rx_queues; 5498 struct netdev_rx_queue *rx; 5499 5500 BUG_ON(count < 1); 5501 5502 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5503 if (!rx) { 5504 pr_err("netdev: Unable to allocate %u rx queues\n", count); 5505 return -ENOMEM; 5506 } 5507 dev->_rx = rx; 5508 5509 for (i = 0; i < count; i++) 5510 rx[i].dev = dev; 5511 return 0; 5512 } 5513 #endif 5514 5515 static void netdev_init_one_queue(struct net_device *dev, 5516 struct netdev_queue *queue, void *_unused) 5517 { 5518 /* Initialize queue lock */ 5519 spin_lock_init(&queue->_xmit_lock); 5520 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5521 queue->xmit_lock_owner = -1; 5522 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5523 queue->dev = dev; 5524 #ifdef CONFIG_BQL 5525 dql_init(&queue->dql, HZ); 5526 #endif 5527 } 5528 5529 static int netif_alloc_netdev_queues(struct net_device *dev) 5530 { 5531 unsigned int count = dev->num_tx_queues; 5532 struct netdev_queue *tx; 5533 5534 BUG_ON(count < 1); 5535 5536 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL); 5537 if (!tx) { 5538 pr_err("netdev: Unable to allocate %u tx queues\n", count); 5539 return -ENOMEM; 5540 } 5541 dev->_tx = tx; 5542 5543 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5544 spin_lock_init(&dev->tx_global_lock); 5545 5546 return 0; 5547 } 5548 5549 /** 5550 * register_netdevice - register a network device 5551 * @dev: device to register 5552 * 5553 * Take a completed network device structure and add it to the kernel 5554 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5555 * chain. 0 is returned on success. A negative errno code is returned 5556 * on a failure to set up the device, or if the name is a duplicate. 5557 * 5558 * Callers must hold the rtnl semaphore. You may want 5559 * register_netdev() instead of this. 5560 * 5561 * BUGS: 5562 * The locking appears insufficient to guarantee two parallel registers 5563 * will not get the same name. 5564 */ 5565 5566 int register_netdevice(struct net_device *dev) 5567 { 5568 int ret; 5569 struct net *net = dev_net(dev); 5570 5571 BUG_ON(dev_boot_phase); 5572 ASSERT_RTNL(); 5573 5574 might_sleep(); 5575 5576 /* When net_device's are persistent, this will be fatal. */ 5577 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5578 BUG_ON(!net); 5579 5580 spin_lock_init(&dev->addr_list_lock); 5581 netdev_set_addr_lockdep_class(dev); 5582 5583 dev->iflink = -1; 5584 5585 ret = dev_get_valid_name(dev, dev->name); 5586 if (ret < 0) 5587 goto out; 5588 5589 /* Init, if this function is available */ 5590 if (dev->netdev_ops->ndo_init) { 5591 ret = dev->netdev_ops->ndo_init(dev); 5592 if (ret) { 5593 if (ret > 0) 5594 ret = -EIO; 5595 goto out; 5596 } 5597 } 5598 5599 dev->ifindex = dev_new_index(net); 5600 if (dev->iflink == -1) 5601 dev->iflink = dev->ifindex; 5602 5603 /* Transfer changeable features to wanted_features and enable 5604 * software offloads (GSO and GRO). 5605 */ 5606 dev->hw_features |= NETIF_F_SOFT_FEATURES; 5607 dev->features |= NETIF_F_SOFT_FEATURES; 5608 dev->wanted_features = dev->features & dev->hw_features; 5609 5610 /* Turn on no cache copy if HW is doing checksum */ 5611 if (!(dev->flags & IFF_LOOPBACK)) { 5612 dev->hw_features |= NETIF_F_NOCACHE_COPY; 5613 if (dev->features & NETIF_F_ALL_CSUM) { 5614 dev->wanted_features |= NETIF_F_NOCACHE_COPY; 5615 dev->features |= NETIF_F_NOCACHE_COPY; 5616 } 5617 } 5618 5619 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 5620 */ 5621 dev->vlan_features |= NETIF_F_HIGHDMA; 5622 5623 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5624 ret = notifier_to_errno(ret); 5625 if (ret) 5626 goto err_uninit; 5627 5628 ret = netdev_register_kobject(dev); 5629 if (ret) 5630 goto err_uninit; 5631 dev->reg_state = NETREG_REGISTERED; 5632 5633 __netdev_update_features(dev); 5634 5635 /* 5636 * Default initial state at registry is that the 5637 * device is present. 5638 */ 5639 5640 set_bit(__LINK_STATE_PRESENT, &dev->state); 5641 5642 dev_init_scheduler(dev); 5643 dev_hold(dev); 5644 list_netdevice(dev); 5645 add_device_randomness(dev->dev_addr, dev->addr_len); 5646 5647 /* Notify protocols, that a new device appeared. */ 5648 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5649 ret = notifier_to_errno(ret); 5650 if (ret) { 5651 rollback_registered(dev); 5652 dev->reg_state = NETREG_UNREGISTERED; 5653 } 5654 /* 5655 * Prevent userspace races by waiting until the network 5656 * device is fully setup before sending notifications. 5657 */ 5658 if (!dev->rtnl_link_ops || 5659 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5660 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5661 5662 out: 5663 return ret; 5664 5665 err_uninit: 5666 if (dev->netdev_ops->ndo_uninit) 5667 dev->netdev_ops->ndo_uninit(dev); 5668 goto out; 5669 } 5670 EXPORT_SYMBOL(register_netdevice); 5671 5672 /** 5673 * init_dummy_netdev - init a dummy network device for NAPI 5674 * @dev: device to init 5675 * 5676 * This takes a network device structure and initialize the minimum 5677 * amount of fields so it can be used to schedule NAPI polls without 5678 * registering a full blown interface. This is to be used by drivers 5679 * that need to tie several hardware interfaces to a single NAPI 5680 * poll scheduler due to HW limitations. 5681 */ 5682 int init_dummy_netdev(struct net_device *dev) 5683 { 5684 /* Clear everything. Note we don't initialize spinlocks 5685 * are they aren't supposed to be taken by any of the 5686 * NAPI code and this dummy netdev is supposed to be 5687 * only ever used for NAPI polls 5688 */ 5689 memset(dev, 0, sizeof(struct net_device)); 5690 5691 /* make sure we BUG if trying to hit standard 5692 * register/unregister code path 5693 */ 5694 dev->reg_state = NETREG_DUMMY; 5695 5696 /* NAPI wants this */ 5697 INIT_LIST_HEAD(&dev->napi_list); 5698 5699 /* a dummy interface is started by default */ 5700 set_bit(__LINK_STATE_PRESENT, &dev->state); 5701 set_bit(__LINK_STATE_START, &dev->state); 5702 5703 /* Note : We dont allocate pcpu_refcnt for dummy devices, 5704 * because users of this 'device' dont need to change 5705 * its refcount. 5706 */ 5707 5708 return 0; 5709 } 5710 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5711 5712 5713 /** 5714 * register_netdev - register a network device 5715 * @dev: device to register 5716 * 5717 * Take a completed network device structure and add it to the kernel 5718 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5719 * chain. 0 is returned on success. A negative errno code is returned 5720 * on a failure to set up the device, or if the name is a duplicate. 5721 * 5722 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5723 * and expands the device name if you passed a format string to 5724 * alloc_netdev. 5725 */ 5726 int register_netdev(struct net_device *dev) 5727 { 5728 int err; 5729 5730 rtnl_lock(); 5731 err = register_netdevice(dev); 5732 rtnl_unlock(); 5733 return err; 5734 } 5735 EXPORT_SYMBOL(register_netdev); 5736 5737 int netdev_refcnt_read(const struct net_device *dev) 5738 { 5739 int i, refcnt = 0; 5740 5741 for_each_possible_cpu(i) 5742 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 5743 return refcnt; 5744 } 5745 EXPORT_SYMBOL(netdev_refcnt_read); 5746 5747 /** 5748 * netdev_wait_allrefs - wait until all references are gone. 5749 * @dev: target net_device 5750 * 5751 * This is called when unregistering network devices. 5752 * 5753 * Any protocol or device that holds a reference should register 5754 * for netdevice notification, and cleanup and put back the 5755 * reference if they receive an UNREGISTER event. 5756 * We can get stuck here if buggy protocols don't correctly 5757 * call dev_put. 5758 */ 5759 static void netdev_wait_allrefs(struct net_device *dev) 5760 { 5761 unsigned long rebroadcast_time, warning_time; 5762 int refcnt; 5763 5764 linkwatch_forget_dev(dev); 5765 5766 rebroadcast_time = warning_time = jiffies; 5767 refcnt = netdev_refcnt_read(dev); 5768 5769 while (refcnt != 0) { 5770 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5771 rtnl_lock(); 5772 5773 /* Rebroadcast unregister notification */ 5774 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5775 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users 5776 * should have already handle it the first time */ 5777 5778 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5779 &dev->state)) { 5780 /* We must not have linkwatch events 5781 * pending on unregister. If this 5782 * happens, we simply run the queue 5783 * unscheduled, resulting in a noop 5784 * for this device. 5785 */ 5786 linkwatch_run_queue(); 5787 } 5788 5789 __rtnl_unlock(); 5790 5791 rebroadcast_time = jiffies; 5792 } 5793 5794 msleep(250); 5795 5796 refcnt = netdev_refcnt_read(dev); 5797 5798 if (time_after(jiffies, warning_time + 10 * HZ)) { 5799 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 5800 dev->name, refcnt); 5801 warning_time = jiffies; 5802 } 5803 } 5804 } 5805 5806 /* The sequence is: 5807 * 5808 * rtnl_lock(); 5809 * ... 5810 * register_netdevice(x1); 5811 * register_netdevice(x2); 5812 * ... 5813 * unregister_netdevice(y1); 5814 * unregister_netdevice(y2); 5815 * ... 5816 * rtnl_unlock(); 5817 * free_netdev(y1); 5818 * free_netdev(y2); 5819 * 5820 * We are invoked by rtnl_unlock(). 5821 * This allows us to deal with problems: 5822 * 1) We can delete sysfs objects which invoke hotplug 5823 * without deadlocking with linkwatch via keventd. 5824 * 2) Since we run with the RTNL semaphore not held, we can sleep 5825 * safely in order to wait for the netdev refcnt to drop to zero. 5826 * 5827 * We must not return until all unregister events added during 5828 * the interval the lock was held have been completed. 5829 */ 5830 void netdev_run_todo(void) 5831 { 5832 struct list_head list; 5833 5834 /* Snapshot list, allow later requests */ 5835 list_replace_init(&net_todo_list, &list); 5836 5837 __rtnl_unlock(); 5838 5839 /* Wait for rcu callbacks to finish before attempting to drain 5840 * the device list. This usually avoids a 250ms wait. 5841 */ 5842 if (!list_empty(&list)) 5843 rcu_barrier(); 5844 5845 while (!list_empty(&list)) { 5846 struct net_device *dev 5847 = list_first_entry(&list, struct net_device, todo_list); 5848 list_del(&dev->todo_list); 5849 5850 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5851 pr_err("network todo '%s' but state %d\n", 5852 dev->name, dev->reg_state); 5853 dump_stack(); 5854 continue; 5855 } 5856 5857 dev->reg_state = NETREG_UNREGISTERED; 5858 5859 on_each_cpu(flush_backlog, dev, 1); 5860 5861 netdev_wait_allrefs(dev); 5862 5863 /* paranoia */ 5864 BUG_ON(netdev_refcnt_read(dev)); 5865 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 5866 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 5867 WARN_ON(dev->dn_ptr); 5868 5869 if (dev->destructor) 5870 dev->destructor(dev); 5871 5872 /* Free network device */ 5873 kobject_put(&dev->dev.kobj); 5874 } 5875 } 5876 5877 /* Convert net_device_stats to rtnl_link_stats64. They have the same 5878 * fields in the same order, with only the type differing. 5879 */ 5880 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 5881 const struct net_device_stats *netdev_stats) 5882 { 5883 #if BITS_PER_LONG == 64 5884 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 5885 memcpy(stats64, netdev_stats, sizeof(*stats64)); 5886 #else 5887 size_t i, n = sizeof(*stats64) / sizeof(u64); 5888 const unsigned long *src = (const unsigned long *)netdev_stats; 5889 u64 *dst = (u64 *)stats64; 5890 5891 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 5892 sizeof(*stats64) / sizeof(u64)); 5893 for (i = 0; i < n; i++) 5894 dst[i] = src[i]; 5895 #endif 5896 } 5897 EXPORT_SYMBOL(netdev_stats_to_stats64); 5898 5899 /** 5900 * dev_get_stats - get network device statistics 5901 * @dev: device to get statistics from 5902 * @storage: place to store stats 5903 * 5904 * Get network statistics from device. Return @storage. 5905 * The device driver may provide its own method by setting 5906 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 5907 * otherwise the internal statistics structure is used. 5908 */ 5909 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 5910 struct rtnl_link_stats64 *storage) 5911 { 5912 const struct net_device_ops *ops = dev->netdev_ops; 5913 5914 if (ops->ndo_get_stats64) { 5915 memset(storage, 0, sizeof(*storage)); 5916 ops->ndo_get_stats64(dev, storage); 5917 } else if (ops->ndo_get_stats) { 5918 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 5919 } else { 5920 netdev_stats_to_stats64(storage, &dev->stats); 5921 } 5922 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 5923 return storage; 5924 } 5925 EXPORT_SYMBOL(dev_get_stats); 5926 5927 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 5928 { 5929 struct netdev_queue *queue = dev_ingress_queue(dev); 5930 5931 #ifdef CONFIG_NET_CLS_ACT 5932 if (queue) 5933 return queue; 5934 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 5935 if (!queue) 5936 return NULL; 5937 netdev_init_one_queue(dev, queue, NULL); 5938 queue->qdisc = &noop_qdisc; 5939 queue->qdisc_sleeping = &noop_qdisc; 5940 rcu_assign_pointer(dev->ingress_queue, queue); 5941 #endif 5942 return queue; 5943 } 5944 5945 /** 5946 * alloc_netdev_mqs - allocate network device 5947 * @sizeof_priv: size of private data to allocate space for 5948 * @name: device name format string 5949 * @setup: callback to initialize device 5950 * @txqs: the number of TX subqueues to allocate 5951 * @rxqs: the number of RX subqueues to allocate 5952 * 5953 * Allocates a struct net_device with private data area for driver use 5954 * and performs basic initialization. Also allocates subquue structs 5955 * for each queue on the device. 5956 */ 5957 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 5958 void (*setup)(struct net_device *), 5959 unsigned int txqs, unsigned int rxqs) 5960 { 5961 struct net_device *dev; 5962 size_t alloc_size; 5963 struct net_device *p; 5964 5965 BUG_ON(strlen(name) >= sizeof(dev->name)); 5966 5967 if (txqs < 1) { 5968 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 5969 return NULL; 5970 } 5971 5972 #ifdef CONFIG_RPS 5973 if (rxqs < 1) { 5974 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 5975 return NULL; 5976 } 5977 #endif 5978 5979 alloc_size = sizeof(struct net_device); 5980 if (sizeof_priv) { 5981 /* ensure 32-byte alignment of private area */ 5982 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5983 alloc_size += sizeof_priv; 5984 } 5985 /* ensure 32-byte alignment of whole construct */ 5986 alloc_size += NETDEV_ALIGN - 1; 5987 5988 p = kzalloc(alloc_size, GFP_KERNEL); 5989 if (!p) { 5990 pr_err("alloc_netdev: Unable to allocate device\n"); 5991 return NULL; 5992 } 5993 5994 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5995 dev->padded = (char *)dev - (char *)p; 5996 5997 dev->pcpu_refcnt = alloc_percpu(int); 5998 if (!dev->pcpu_refcnt) 5999 goto free_p; 6000 6001 if (dev_addr_init(dev)) 6002 goto free_pcpu; 6003 6004 dev_mc_init(dev); 6005 dev_uc_init(dev); 6006 6007 dev_net_set(dev, &init_net); 6008 6009 dev->gso_max_size = GSO_MAX_SIZE; 6010 dev->gso_max_segs = GSO_MAX_SEGS; 6011 6012 INIT_LIST_HEAD(&dev->napi_list); 6013 INIT_LIST_HEAD(&dev->unreg_list); 6014 INIT_LIST_HEAD(&dev->link_watch_list); 6015 dev->priv_flags = IFF_XMIT_DST_RELEASE; 6016 setup(dev); 6017 6018 dev->num_tx_queues = txqs; 6019 dev->real_num_tx_queues = txqs; 6020 if (netif_alloc_netdev_queues(dev)) 6021 goto free_all; 6022 6023 #ifdef CONFIG_RPS 6024 dev->num_rx_queues = rxqs; 6025 dev->real_num_rx_queues = rxqs; 6026 if (netif_alloc_rx_queues(dev)) 6027 goto free_all; 6028 #endif 6029 6030 strcpy(dev->name, name); 6031 dev->group = INIT_NETDEV_GROUP; 6032 return dev; 6033 6034 free_all: 6035 free_netdev(dev); 6036 return NULL; 6037 6038 free_pcpu: 6039 free_percpu(dev->pcpu_refcnt); 6040 kfree(dev->_tx); 6041 #ifdef CONFIG_RPS 6042 kfree(dev->_rx); 6043 #endif 6044 6045 free_p: 6046 kfree(p); 6047 return NULL; 6048 } 6049 EXPORT_SYMBOL(alloc_netdev_mqs); 6050 6051 /** 6052 * free_netdev - free network device 6053 * @dev: device 6054 * 6055 * This function does the last stage of destroying an allocated device 6056 * interface. The reference to the device object is released. 6057 * If this is the last reference then it will be freed. 6058 */ 6059 void free_netdev(struct net_device *dev) 6060 { 6061 struct napi_struct *p, *n; 6062 6063 release_net(dev_net(dev)); 6064 6065 kfree(dev->_tx); 6066 #ifdef CONFIG_RPS 6067 kfree(dev->_rx); 6068 #endif 6069 6070 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 6071 6072 /* Flush device addresses */ 6073 dev_addr_flush(dev); 6074 6075 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 6076 netif_napi_del(p); 6077 6078 free_percpu(dev->pcpu_refcnt); 6079 dev->pcpu_refcnt = NULL; 6080 6081 /* Compatibility with error handling in drivers */ 6082 if (dev->reg_state == NETREG_UNINITIALIZED) { 6083 kfree((char *)dev - dev->padded); 6084 return; 6085 } 6086 6087 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 6088 dev->reg_state = NETREG_RELEASED; 6089 6090 /* will free via device release */ 6091 put_device(&dev->dev); 6092 } 6093 EXPORT_SYMBOL(free_netdev); 6094 6095 /** 6096 * synchronize_net - Synchronize with packet receive processing 6097 * 6098 * Wait for packets currently being received to be done. 6099 * Does not block later packets from starting. 6100 */ 6101 void synchronize_net(void) 6102 { 6103 might_sleep(); 6104 if (rtnl_is_locked()) 6105 synchronize_rcu_expedited(); 6106 else 6107 synchronize_rcu(); 6108 } 6109 EXPORT_SYMBOL(synchronize_net); 6110 6111 /** 6112 * unregister_netdevice_queue - remove device from the kernel 6113 * @dev: device 6114 * @head: list 6115 * 6116 * This function shuts down a device interface and removes it 6117 * from the kernel tables. 6118 * If head not NULL, device is queued to be unregistered later. 6119 * 6120 * Callers must hold the rtnl semaphore. You may want 6121 * unregister_netdev() instead of this. 6122 */ 6123 6124 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 6125 { 6126 ASSERT_RTNL(); 6127 6128 if (head) { 6129 list_move_tail(&dev->unreg_list, head); 6130 } else { 6131 rollback_registered(dev); 6132 /* Finish processing unregister after unlock */ 6133 net_set_todo(dev); 6134 } 6135 } 6136 EXPORT_SYMBOL(unregister_netdevice_queue); 6137 6138 /** 6139 * unregister_netdevice_many - unregister many devices 6140 * @head: list of devices 6141 */ 6142 void unregister_netdevice_many(struct list_head *head) 6143 { 6144 struct net_device *dev; 6145 6146 if (!list_empty(head)) { 6147 rollback_registered_many(head); 6148 list_for_each_entry(dev, head, unreg_list) 6149 net_set_todo(dev); 6150 } 6151 } 6152 EXPORT_SYMBOL(unregister_netdevice_many); 6153 6154 /** 6155 * unregister_netdev - remove device from the kernel 6156 * @dev: device 6157 * 6158 * This function shuts down a device interface and removes it 6159 * from the kernel tables. 6160 * 6161 * This is just a wrapper for unregister_netdevice that takes 6162 * the rtnl semaphore. In general you want to use this and not 6163 * unregister_netdevice. 6164 */ 6165 void unregister_netdev(struct net_device *dev) 6166 { 6167 rtnl_lock(); 6168 unregister_netdevice(dev); 6169 rtnl_unlock(); 6170 } 6171 EXPORT_SYMBOL(unregister_netdev); 6172 6173 /** 6174 * dev_change_net_namespace - move device to different nethost namespace 6175 * @dev: device 6176 * @net: network namespace 6177 * @pat: If not NULL name pattern to try if the current device name 6178 * is already taken in the destination network namespace. 6179 * 6180 * This function shuts down a device interface and moves it 6181 * to a new network namespace. On success 0 is returned, on 6182 * a failure a netagive errno code is returned. 6183 * 6184 * Callers must hold the rtnl semaphore. 6185 */ 6186 6187 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6188 { 6189 int err; 6190 6191 ASSERT_RTNL(); 6192 6193 /* Don't allow namespace local devices to be moved. */ 6194 err = -EINVAL; 6195 if (dev->features & NETIF_F_NETNS_LOCAL) 6196 goto out; 6197 6198 /* Ensure the device has been registrered */ 6199 err = -EINVAL; 6200 if (dev->reg_state != NETREG_REGISTERED) 6201 goto out; 6202 6203 /* Get out if there is nothing todo */ 6204 err = 0; 6205 if (net_eq(dev_net(dev), net)) 6206 goto out; 6207 6208 /* Pick the destination device name, and ensure 6209 * we can use it in the destination network namespace. 6210 */ 6211 err = -EEXIST; 6212 if (__dev_get_by_name(net, dev->name)) { 6213 /* We get here if we can't use the current device name */ 6214 if (!pat) 6215 goto out; 6216 if (dev_get_valid_name(dev, pat) < 0) 6217 goto out; 6218 } 6219 6220 /* 6221 * And now a mini version of register_netdevice unregister_netdevice. 6222 */ 6223 6224 /* If device is running close it first. */ 6225 dev_close(dev); 6226 6227 /* And unlink it from device chain */ 6228 err = -ENODEV; 6229 unlist_netdevice(dev); 6230 6231 synchronize_net(); 6232 6233 /* Shutdown queueing discipline. */ 6234 dev_shutdown(dev); 6235 6236 /* Notify protocols, that we are about to destroy 6237 this device. They should clean all the things. 6238 6239 Note that dev->reg_state stays at NETREG_REGISTERED. 6240 This is wanted because this way 8021q and macvlan know 6241 the device is just moving and can keep their slaves up. 6242 */ 6243 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6244 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 6245 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 6246 6247 /* 6248 * Flush the unicast and multicast chains 6249 */ 6250 dev_uc_flush(dev); 6251 dev_mc_flush(dev); 6252 6253 /* Actually switch the network namespace */ 6254 dev_net_set(dev, net); 6255 6256 /* If there is an ifindex conflict assign a new one */ 6257 if (__dev_get_by_index(net, dev->ifindex)) { 6258 int iflink = (dev->iflink == dev->ifindex); 6259 dev->ifindex = dev_new_index(net); 6260 if (iflink) 6261 dev->iflink = dev->ifindex; 6262 } 6263 6264 /* Fixup kobjects */ 6265 err = device_rename(&dev->dev, dev->name); 6266 WARN_ON(err); 6267 6268 /* Add the device back in the hashes */ 6269 list_netdevice(dev); 6270 6271 /* Notify protocols, that a new device appeared. */ 6272 call_netdevice_notifiers(NETDEV_REGISTER, dev); 6273 6274 /* 6275 * Prevent userspace races by waiting until the network 6276 * device is fully setup before sending notifications. 6277 */ 6278 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 6279 6280 synchronize_net(); 6281 err = 0; 6282 out: 6283 return err; 6284 } 6285 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 6286 6287 static int dev_cpu_callback(struct notifier_block *nfb, 6288 unsigned long action, 6289 void *ocpu) 6290 { 6291 struct sk_buff **list_skb; 6292 struct sk_buff *skb; 6293 unsigned int cpu, oldcpu = (unsigned long)ocpu; 6294 struct softnet_data *sd, *oldsd; 6295 6296 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 6297 return NOTIFY_OK; 6298 6299 local_irq_disable(); 6300 cpu = smp_processor_id(); 6301 sd = &per_cpu(softnet_data, cpu); 6302 oldsd = &per_cpu(softnet_data, oldcpu); 6303 6304 /* Find end of our completion_queue. */ 6305 list_skb = &sd->completion_queue; 6306 while (*list_skb) 6307 list_skb = &(*list_skb)->next; 6308 /* Append completion queue from offline CPU. */ 6309 *list_skb = oldsd->completion_queue; 6310 oldsd->completion_queue = NULL; 6311 6312 /* Append output queue from offline CPU. */ 6313 if (oldsd->output_queue) { 6314 *sd->output_queue_tailp = oldsd->output_queue; 6315 sd->output_queue_tailp = oldsd->output_queue_tailp; 6316 oldsd->output_queue = NULL; 6317 oldsd->output_queue_tailp = &oldsd->output_queue; 6318 } 6319 /* Append NAPI poll list from offline CPU. */ 6320 if (!list_empty(&oldsd->poll_list)) { 6321 list_splice_init(&oldsd->poll_list, &sd->poll_list); 6322 raise_softirq_irqoff(NET_RX_SOFTIRQ); 6323 } 6324 6325 raise_softirq_irqoff(NET_TX_SOFTIRQ); 6326 local_irq_enable(); 6327 6328 /* Process offline CPU's input_pkt_queue */ 6329 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 6330 netif_rx(skb); 6331 input_queue_head_incr(oldsd); 6332 } 6333 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 6334 netif_rx(skb); 6335 input_queue_head_incr(oldsd); 6336 } 6337 6338 return NOTIFY_OK; 6339 } 6340 6341 6342 /** 6343 * netdev_increment_features - increment feature set by one 6344 * @all: current feature set 6345 * @one: new feature set 6346 * @mask: mask feature set 6347 * 6348 * Computes a new feature set after adding a device with feature set 6349 * @one to the master device with current feature set @all. Will not 6350 * enable anything that is off in @mask. Returns the new feature set. 6351 */ 6352 netdev_features_t netdev_increment_features(netdev_features_t all, 6353 netdev_features_t one, netdev_features_t mask) 6354 { 6355 if (mask & NETIF_F_GEN_CSUM) 6356 mask |= NETIF_F_ALL_CSUM; 6357 mask |= NETIF_F_VLAN_CHALLENGED; 6358 6359 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 6360 all &= one | ~NETIF_F_ALL_FOR_ALL; 6361 6362 /* If one device supports hw checksumming, set for all. */ 6363 if (all & NETIF_F_GEN_CSUM) 6364 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 6365 6366 return all; 6367 } 6368 EXPORT_SYMBOL(netdev_increment_features); 6369 6370 static struct hlist_head *netdev_create_hash(void) 6371 { 6372 int i; 6373 struct hlist_head *hash; 6374 6375 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6376 if (hash != NULL) 6377 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6378 INIT_HLIST_HEAD(&hash[i]); 6379 6380 return hash; 6381 } 6382 6383 /* Initialize per network namespace state */ 6384 static int __net_init netdev_init(struct net *net) 6385 { 6386 if (net != &init_net) 6387 INIT_LIST_HEAD(&net->dev_base_head); 6388 6389 net->dev_name_head = netdev_create_hash(); 6390 if (net->dev_name_head == NULL) 6391 goto err_name; 6392 6393 net->dev_index_head = netdev_create_hash(); 6394 if (net->dev_index_head == NULL) 6395 goto err_idx; 6396 6397 return 0; 6398 6399 err_idx: 6400 kfree(net->dev_name_head); 6401 err_name: 6402 return -ENOMEM; 6403 } 6404 6405 /** 6406 * netdev_drivername - network driver for the device 6407 * @dev: network device 6408 * 6409 * Determine network driver for device. 6410 */ 6411 const char *netdev_drivername(const struct net_device *dev) 6412 { 6413 const struct device_driver *driver; 6414 const struct device *parent; 6415 const char *empty = ""; 6416 6417 parent = dev->dev.parent; 6418 if (!parent) 6419 return empty; 6420 6421 driver = parent->driver; 6422 if (driver && driver->name) 6423 return driver->name; 6424 return empty; 6425 } 6426 6427 int __netdev_printk(const char *level, const struct net_device *dev, 6428 struct va_format *vaf) 6429 { 6430 int r; 6431 6432 if (dev && dev->dev.parent) 6433 r = dev_printk(level, dev->dev.parent, "%s: %pV", 6434 netdev_name(dev), vaf); 6435 else if (dev) 6436 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6437 else 6438 r = printk("%s(NULL net_device): %pV", level, vaf); 6439 6440 return r; 6441 } 6442 EXPORT_SYMBOL(__netdev_printk); 6443 6444 int netdev_printk(const char *level, const struct net_device *dev, 6445 const char *format, ...) 6446 { 6447 struct va_format vaf; 6448 va_list args; 6449 int r; 6450 6451 va_start(args, format); 6452 6453 vaf.fmt = format; 6454 vaf.va = &args; 6455 6456 r = __netdev_printk(level, dev, &vaf); 6457 va_end(args); 6458 6459 return r; 6460 } 6461 EXPORT_SYMBOL(netdev_printk); 6462 6463 #define define_netdev_printk_level(func, level) \ 6464 int func(const struct net_device *dev, const char *fmt, ...) \ 6465 { \ 6466 int r; \ 6467 struct va_format vaf; \ 6468 va_list args; \ 6469 \ 6470 va_start(args, fmt); \ 6471 \ 6472 vaf.fmt = fmt; \ 6473 vaf.va = &args; \ 6474 \ 6475 r = __netdev_printk(level, dev, &vaf); \ 6476 va_end(args); \ 6477 \ 6478 return r; \ 6479 } \ 6480 EXPORT_SYMBOL(func); 6481 6482 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6483 define_netdev_printk_level(netdev_alert, KERN_ALERT); 6484 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6485 define_netdev_printk_level(netdev_err, KERN_ERR); 6486 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6487 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6488 define_netdev_printk_level(netdev_info, KERN_INFO); 6489 6490 static void __net_exit netdev_exit(struct net *net) 6491 { 6492 kfree(net->dev_name_head); 6493 kfree(net->dev_index_head); 6494 } 6495 6496 static struct pernet_operations __net_initdata netdev_net_ops = { 6497 .init = netdev_init, 6498 .exit = netdev_exit, 6499 }; 6500 6501 static void __net_exit default_device_exit(struct net *net) 6502 { 6503 struct net_device *dev, *aux; 6504 /* 6505 * Push all migratable network devices back to the 6506 * initial network namespace 6507 */ 6508 rtnl_lock(); 6509 for_each_netdev_safe(net, dev, aux) { 6510 int err; 6511 char fb_name[IFNAMSIZ]; 6512 6513 /* Ignore unmoveable devices (i.e. loopback) */ 6514 if (dev->features & NETIF_F_NETNS_LOCAL) 6515 continue; 6516 6517 /* Leave virtual devices for the generic cleanup */ 6518 if (dev->rtnl_link_ops) 6519 continue; 6520 6521 /* Push remaining network devices to init_net */ 6522 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6523 err = dev_change_net_namespace(dev, &init_net, fb_name); 6524 if (err) { 6525 pr_emerg("%s: failed to move %s to init_net: %d\n", 6526 __func__, dev->name, err); 6527 BUG(); 6528 } 6529 } 6530 rtnl_unlock(); 6531 } 6532 6533 static void __net_exit default_device_exit_batch(struct list_head *net_list) 6534 { 6535 /* At exit all network devices most be removed from a network 6536 * namespace. Do this in the reverse order of registration. 6537 * Do this across as many network namespaces as possible to 6538 * improve batching efficiency. 6539 */ 6540 struct net_device *dev; 6541 struct net *net; 6542 LIST_HEAD(dev_kill_list); 6543 6544 rtnl_lock(); 6545 list_for_each_entry(net, net_list, exit_list) { 6546 for_each_netdev_reverse(net, dev) { 6547 if (dev->rtnl_link_ops) 6548 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6549 else 6550 unregister_netdevice_queue(dev, &dev_kill_list); 6551 } 6552 } 6553 unregister_netdevice_many(&dev_kill_list); 6554 list_del(&dev_kill_list); 6555 rtnl_unlock(); 6556 } 6557 6558 static struct pernet_operations __net_initdata default_device_ops = { 6559 .exit = default_device_exit, 6560 .exit_batch = default_device_exit_batch, 6561 }; 6562 6563 /* 6564 * Initialize the DEV module. At boot time this walks the device list and 6565 * unhooks any devices that fail to initialise (normally hardware not 6566 * present) and leaves us with a valid list of present and active devices. 6567 * 6568 */ 6569 6570 /* 6571 * This is called single threaded during boot, so no need 6572 * to take the rtnl semaphore. 6573 */ 6574 static int __init net_dev_init(void) 6575 { 6576 int i, rc = -ENOMEM; 6577 6578 BUG_ON(!dev_boot_phase); 6579 6580 if (dev_proc_init()) 6581 goto out; 6582 6583 if (netdev_kobject_init()) 6584 goto out; 6585 6586 INIT_LIST_HEAD(&ptype_all); 6587 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6588 INIT_LIST_HEAD(&ptype_base[i]); 6589 6590 if (register_pernet_subsys(&netdev_net_ops)) 6591 goto out; 6592 6593 /* 6594 * Initialise the packet receive queues. 6595 */ 6596 6597 for_each_possible_cpu(i) { 6598 struct softnet_data *sd = &per_cpu(softnet_data, i); 6599 6600 memset(sd, 0, sizeof(*sd)); 6601 skb_queue_head_init(&sd->input_pkt_queue); 6602 skb_queue_head_init(&sd->process_queue); 6603 sd->completion_queue = NULL; 6604 INIT_LIST_HEAD(&sd->poll_list); 6605 sd->output_queue = NULL; 6606 sd->output_queue_tailp = &sd->output_queue; 6607 #ifdef CONFIG_RPS 6608 sd->csd.func = rps_trigger_softirq; 6609 sd->csd.info = sd; 6610 sd->csd.flags = 0; 6611 sd->cpu = i; 6612 #endif 6613 6614 sd->backlog.poll = process_backlog; 6615 sd->backlog.weight = weight_p; 6616 sd->backlog.gro_list = NULL; 6617 sd->backlog.gro_count = 0; 6618 } 6619 6620 dev_boot_phase = 0; 6621 6622 /* The loopback device is special if any other network devices 6623 * is present in a network namespace the loopback device must 6624 * be present. Since we now dynamically allocate and free the 6625 * loopback device ensure this invariant is maintained by 6626 * keeping the loopback device as the first device on the 6627 * list of network devices. Ensuring the loopback devices 6628 * is the first device that appears and the last network device 6629 * that disappears. 6630 */ 6631 if (register_pernet_device(&loopback_net_ops)) 6632 goto out; 6633 6634 if (register_pernet_device(&default_device_ops)) 6635 goto out; 6636 6637 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6638 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6639 6640 hotcpu_notifier(dev_cpu_callback, 0); 6641 dst_init(); 6642 dev_mcast_init(); 6643 rc = 0; 6644 out: 6645 return rc; 6646 } 6647 6648 subsys_initcall(net_dev_init); 6649 6650 static int __init initialize_hashrnd(void) 6651 { 6652 get_random_bytes(&hashrnd, sizeof(hashrnd)); 6653 return 0; 6654 } 6655 6656 late_initcall_sync(initialize_hashrnd); 6657 6658