1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/sched.h> 83 #include <linux/mutex.h> 84 #include <linux/string.h> 85 #include <linux/mm.h> 86 #include <linux/socket.h> 87 #include <linux/sockios.h> 88 #include <linux/errno.h> 89 #include <linux/interrupt.h> 90 #include <linux/if_ether.h> 91 #include <linux/netdevice.h> 92 #include <linux/etherdevice.h> 93 #include <linux/ethtool.h> 94 #include <linux/notifier.h> 95 #include <linux/skbuff.h> 96 #include <net/net_namespace.h> 97 #include <net/sock.h> 98 #include <linux/rtnetlink.h> 99 #include <linux/proc_fs.h> 100 #include <linux/seq_file.h> 101 #include <linux/stat.h> 102 #include <linux/if_bridge.h> 103 #include <linux/if_macvlan.h> 104 #include <net/dst.h> 105 #include <net/pkt_sched.h> 106 #include <net/checksum.h> 107 #include <linux/highmem.h> 108 #include <linux/init.h> 109 #include <linux/kmod.h> 110 #include <linux/module.h> 111 #include <linux/kallsyms.h> 112 #include <linux/netpoll.h> 113 #include <linux/rcupdate.h> 114 #include <linux/delay.h> 115 #include <net/wext.h> 116 #include <net/iw_handler.h> 117 #include <asm/current.h> 118 #include <linux/audit.h> 119 #include <linux/dmaengine.h> 120 #include <linux/err.h> 121 #include <linux/ctype.h> 122 #include <linux/if_arp.h> 123 #include <linux/if_vlan.h> 124 #include <linux/ip.h> 125 #include <net/ip.h> 126 #include <linux/ipv6.h> 127 #include <linux/in.h> 128 #include <linux/jhash.h> 129 #include <linux/random.h> 130 131 #include "net-sysfs.h" 132 133 /* 134 * The list of packet types we will receive (as opposed to discard) 135 * and the routines to invoke. 136 * 137 * Why 16. Because with 16 the only overlap we get on a hash of the 138 * low nibble of the protocol value is RARP/SNAP/X.25. 139 * 140 * NOTE: That is no longer true with the addition of VLAN tags. Not 141 * sure which should go first, but I bet it won't make much 142 * difference if we are running VLANs. The good news is that 143 * this protocol won't be in the list unless compiled in, so 144 * the average user (w/out VLANs) will not be adversely affected. 145 * --BLG 146 * 147 * 0800 IP 148 * 8100 802.1Q VLAN 149 * 0001 802.3 150 * 0002 AX.25 151 * 0004 802.2 152 * 8035 RARP 153 * 0005 SNAP 154 * 0805 X.25 155 * 0806 ARP 156 * 8137 IPX 157 * 0009 Localtalk 158 * 86DD IPv6 159 */ 160 161 #define PTYPE_HASH_SIZE (16) 162 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 163 164 static DEFINE_SPINLOCK(ptype_lock); 165 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 166 static struct list_head ptype_all __read_mostly; /* Taps */ 167 168 #ifdef CONFIG_NET_DMA 169 struct net_dma { 170 struct dma_client client; 171 spinlock_t lock; 172 cpumask_t channel_mask; 173 struct dma_chan **channels; 174 }; 175 176 static enum dma_state_client 177 netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 178 enum dma_state state); 179 180 static struct net_dma net_dma = { 181 .client = { 182 .event_callback = netdev_dma_event, 183 }, 184 }; 185 #endif 186 187 /* 188 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 189 * semaphore. 190 * 191 * Pure readers hold dev_base_lock for reading. 192 * 193 * Writers must hold the rtnl semaphore while they loop through the 194 * dev_base_head list, and hold dev_base_lock for writing when they do the 195 * actual updates. This allows pure readers to access the list even 196 * while a writer is preparing to update it. 197 * 198 * To put it another way, dev_base_lock is held for writing only to 199 * protect against pure readers; the rtnl semaphore provides the 200 * protection against other writers. 201 * 202 * See, for example usages, register_netdevice() and 203 * unregister_netdevice(), which must be called with the rtnl 204 * semaphore held. 205 */ 206 DEFINE_RWLOCK(dev_base_lock); 207 208 EXPORT_SYMBOL(dev_base_lock); 209 210 #define NETDEV_HASHBITS 8 211 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS) 212 213 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 214 { 215 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 216 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)]; 217 } 218 219 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 220 { 221 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)]; 222 } 223 224 /* Device list insertion */ 225 static int list_netdevice(struct net_device *dev) 226 { 227 struct net *net = dev_net(dev); 228 229 ASSERT_RTNL(); 230 231 write_lock_bh(&dev_base_lock); 232 list_add_tail(&dev->dev_list, &net->dev_base_head); 233 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 234 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex)); 235 write_unlock_bh(&dev_base_lock); 236 return 0; 237 } 238 239 /* Device list removal */ 240 static void unlist_netdevice(struct net_device *dev) 241 { 242 ASSERT_RTNL(); 243 244 /* Unlink dev from the device chain */ 245 write_lock_bh(&dev_base_lock); 246 list_del(&dev->dev_list); 247 hlist_del(&dev->name_hlist); 248 hlist_del(&dev->index_hlist); 249 write_unlock_bh(&dev_base_lock); 250 } 251 252 /* 253 * Our notifier list 254 */ 255 256 static RAW_NOTIFIER_HEAD(netdev_chain); 257 258 /* 259 * Device drivers call our routines to queue packets here. We empty the 260 * queue in the local softnet handler. 261 */ 262 263 DEFINE_PER_CPU(struct softnet_data, softnet_data); 264 265 #ifdef CONFIG_LOCKDEP 266 /* 267 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 268 * according to dev->type 269 */ 270 static const unsigned short netdev_lock_type[] = 271 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 272 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 273 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 274 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 275 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 276 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 277 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 278 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 279 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 280 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 281 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 282 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 283 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 284 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID, 285 ARPHRD_NONE}; 286 287 static const char *netdev_lock_name[] = 288 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 289 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 290 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 291 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 292 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 293 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 294 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 295 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 296 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 297 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 298 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 299 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 300 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 301 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID", 302 "_xmit_NONE"}; 303 304 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 305 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 306 307 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 308 { 309 int i; 310 311 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 312 if (netdev_lock_type[i] == dev_type) 313 return i; 314 /* the last key is used by default */ 315 return ARRAY_SIZE(netdev_lock_type) - 1; 316 } 317 318 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 319 unsigned short dev_type) 320 { 321 int i; 322 323 i = netdev_lock_pos(dev_type); 324 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 325 netdev_lock_name[i]); 326 } 327 328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 329 { 330 int i; 331 332 i = netdev_lock_pos(dev->type); 333 lockdep_set_class_and_name(&dev->addr_list_lock, 334 &netdev_addr_lock_key[i], 335 netdev_lock_name[i]); 336 } 337 #else 338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 339 unsigned short dev_type) 340 { 341 } 342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 343 { 344 } 345 #endif 346 347 /******************************************************************************* 348 349 Protocol management and registration routines 350 351 *******************************************************************************/ 352 353 /* 354 * Add a protocol ID to the list. Now that the input handler is 355 * smarter we can dispense with all the messy stuff that used to be 356 * here. 357 * 358 * BEWARE!!! Protocol handlers, mangling input packets, 359 * MUST BE last in hash buckets and checking protocol handlers 360 * MUST start from promiscuous ptype_all chain in net_bh. 361 * It is true now, do not change it. 362 * Explanation follows: if protocol handler, mangling packet, will 363 * be the first on list, it is not able to sense, that packet 364 * is cloned and should be copied-on-write, so that it will 365 * change it and subsequent readers will get broken packet. 366 * --ANK (980803) 367 */ 368 369 /** 370 * dev_add_pack - add packet handler 371 * @pt: packet type declaration 372 * 373 * Add a protocol handler to the networking stack. The passed &packet_type 374 * is linked into kernel lists and may not be freed until it has been 375 * removed from the kernel lists. 376 * 377 * This call does not sleep therefore it can not 378 * guarantee all CPU's that are in middle of receiving packets 379 * will see the new packet type (until the next received packet). 380 */ 381 382 void dev_add_pack(struct packet_type *pt) 383 { 384 int hash; 385 386 spin_lock_bh(&ptype_lock); 387 if (pt->type == htons(ETH_P_ALL)) 388 list_add_rcu(&pt->list, &ptype_all); 389 else { 390 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 391 list_add_rcu(&pt->list, &ptype_base[hash]); 392 } 393 spin_unlock_bh(&ptype_lock); 394 } 395 396 /** 397 * __dev_remove_pack - remove packet handler 398 * @pt: packet type declaration 399 * 400 * Remove a protocol handler that was previously added to the kernel 401 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 402 * from the kernel lists and can be freed or reused once this function 403 * returns. 404 * 405 * The packet type might still be in use by receivers 406 * and must not be freed until after all the CPU's have gone 407 * through a quiescent state. 408 */ 409 void __dev_remove_pack(struct packet_type *pt) 410 { 411 struct list_head *head; 412 struct packet_type *pt1; 413 414 spin_lock_bh(&ptype_lock); 415 416 if (pt->type == htons(ETH_P_ALL)) 417 head = &ptype_all; 418 else 419 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 420 421 list_for_each_entry(pt1, head, list) { 422 if (pt == pt1) { 423 list_del_rcu(&pt->list); 424 goto out; 425 } 426 } 427 428 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 429 out: 430 spin_unlock_bh(&ptype_lock); 431 } 432 /** 433 * dev_remove_pack - remove packet handler 434 * @pt: packet type declaration 435 * 436 * Remove a protocol handler that was previously added to the kernel 437 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 438 * from the kernel lists and can be freed or reused once this function 439 * returns. 440 * 441 * This call sleeps to guarantee that no CPU is looking at the packet 442 * type after return. 443 */ 444 void dev_remove_pack(struct packet_type *pt) 445 { 446 __dev_remove_pack(pt); 447 448 synchronize_net(); 449 } 450 451 /****************************************************************************** 452 453 Device Boot-time Settings Routines 454 455 *******************************************************************************/ 456 457 /* Boot time configuration table */ 458 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 459 460 /** 461 * netdev_boot_setup_add - add new setup entry 462 * @name: name of the device 463 * @map: configured settings for the device 464 * 465 * Adds new setup entry to the dev_boot_setup list. The function 466 * returns 0 on error and 1 on success. This is a generic routine to 467 * all netdevices. 468 */ 469 static int netdev_boot_setup_add(char *name, struct ifmap *map) 470 { 471 struct netdev_boot_setup *s; 472 int i; 473 474 s = dev_boot_setup; 475 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 476 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 477 memset(s[i].name, 0, sizeof(s[i].name)); 478 strlcpy(s[i].name, name, IFNAMSIZ); 479 memcpy(&s[i].map, map, sizeof(s[i].map)); 480 break; 481 } 482 } 483 484 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 485 } 486 487 /** 488 * netdev_boot_setup_check - check boot time settings 489 * @dev: the netdevice 490 * 491 * Check boot time settings for the device. 492 * The found settings are set for the device to be used 493 * later in the device probing. 494 * Returns 0 if no settings found, 1 if they are. 495 */ 496 int netdev_boot_setup_check(struct net_device *dev) 497 { 498 struct netdev_boot_setup *s = dev_boot_setup; 499 int i; 500 501 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 502 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 503 !strcmp(dev->name, s[i].name)) { 504 dev->irq = s[i].map.irq; 505 dev->base_addr = s[i].map.base_addr; 506 dev->mem_start = s[i].map.mem_start; 507 dev->mem_end = s[i].map.mem_end; 508 return 1; 509 } 510 } 511 return 0; 512 } 513 514 515 /** 516 * netdev_boot_base - get address from boot time settings 517 * @prefix: prefix for network device 518 * @unit: id for network device 519 * 520 * Check boot time settings for the base address of device. 521 * The found settings are set for the device to be used 522 * later in the device probing. 523 * Returns 0 if no settings found. 524 */ 525 unsigned long netdev_boot_base(const char *prefix, int unit) 526 { 527 const struct netdev_boot_setup *s = dev_boot_setup; 528 char name[IFNAMSIZ]; 529 int i; 530 531 sprintf(name, "%s%d", prefix, unit); 532 533 /* 534 * If device already registered then return base of 1 535 * to indicate not to probe for this interface 536 */ 537 if (__dev_get_by_name(&init_net, name)) 538 return 1; 539 540 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 541 if (!strcmp(name, s[i].name)) 542 return s[i].map.base_addr; 543 return 0; 544 } 545 546 /* 547 * Saves at boot time configured settings for any netdevice. 548 */ 549 int __init netdev_boot_setup(char *str) 550 { 551 int ints[5]; 552 struct ifmap map; 553 554 str = get_options(str, ARRAY_SIZE(ints), ints); 555 if (!str || !*str) 556 return 0; 557 558 /* Save settings */ 559 memset(&map, 0, sizeof(map)); 560 if (ints[0] > 0) 561 map.irq = ints[1]; 562 if (ints[0] > 1) 563 map.base_addr = ints[2]; 564 if (ints[0] > 2) 565 map.mem_start = ints[3]; 566 if (ints[0] > 3) 567 map.mem_end = ints[4]; 568 569 /* Add new entry to the list */ 570 return netdev_boot_setup_add(str, &map); 571 } 572 573 __setup("netdev=", netdev_boot_setup); 574 575 /******************************************************************************* 576 577 Device Interface Subroutines 578 579 *******************************************************************************/ 580 581 /** 582 * __dev_get_by_name - find a device by its name 583 * @net: the applicable net namespace 584 * @name: name to find 585 * 586 * Find an interface by name. Must be called under RTNL semaphore 587 * or @dev_base_lock. If the name is found a pointer to the device 588 * is returned. If the name is not found then %NULL is returned. The 589 * reference counters are not incremented so the caller must be 590 * careful with locks. 591 */ 592 593 struct net_device *__dev_get_by_name(struct net *net, const char *name) 594 { 595 struct hlist_node *p; 596 597 hlist_for_each(p, dev_name_hash(net, name)) { 598 struct net_device *dev 599 = hlist_entry(p, struct net_device, name_hlist); 600 if (!strncmp(dev->name, name, IFNAMSIZ)) 601 return dev; 602 } 603 return NULL; 604 } 605 606 /** 607 * dev_get_by_name - find a device by its name 608 * @net: the applicable net namespace 609 * @name: name to find 610 * 611 * Find an interface by name. This can be called from any 612 * context and does its own locking. The returned handle has 613 * the usage count incremented and the caller must use dev_put() to 614 * release it when it is no longer needed. %NULL is returned if no 615 * matching device is found. 616 */ 617 618 struct net_device *dev_get_by_name(struct net *net, const char *name) 619 { 620 struct net_device *dev; 621 622 read_lock(&dev_base_lock); 623 dev = __dev_get_by_name(net, name); 624 if (dev) 625 dev_hold(dev); 626 read_unlock(&dev_base_lock); 627 return dev; 628 } 629 630 /** 631 * __dev_get_by_index - find a device by its ifindex 632 * @net: the applicable net namespace 633 * @ifindex: index of device 634 * 635 * Search for an interface by index. Returns %NULL if the device 636 * is not found or a pointer to the device. The device has not 637 * had its reference counter increased so the caller must be careful 638 * about locking. The caller must hold either the RTNL semaphore 639 * or @dev_base_lock. 640 */ 641 642 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 643 { 644 struct hlist_node *p; 645 646 hlist_for_each(p, dev_index_hash(net, ifindex)) { 647 struct net_device *dev 648 = hlist_entry(p, struct net_device, index_hlist); 649 if (dev->ifindex == ifindex) 650 return dev; 651 } 652 return NULL; 653 } 654 655 656 /** 657 * dev_get_by_index - find a device by its ifindex 658 * @net: the applicable net namespace 659 * @ifindex: index of device 660 * 661 * Search for an interface by index. Returns NULL if the device 662 * is not found or a pointer to the device. The device returned has 663 * had a reference added and the pointer is safe until the user calls 664 * dev_put to indicate they have finished with it. 665 */ 666 667 struct net_device *dev_get_by_index(struct net *net, int ifindex) 668 { 669 struct net_device *dev; 670 671 read_lock(&dev_base_lock); 672 dev = __dev_get_by_index(net, ifindex); 673 if (dev) 674 dev_hold(dev); 675 read_unlock(&dev_base_lock); 676 return dev; 677 } 678 679 /** 680 * dev_getbyhwaddr - find a device by its hardware address 681 * @net: the applicable net namespace 682 * @type: media type of device 683 * @ha: hardware address 684 * 685 * Search for an interface by MAC address. Returns NULL if the device 686 * is not found or a pointer to the device. The caller must hold the 687 * rtnl semaphore. The returned device has not had its ref count increased 688 * and the caller must therefore be careful about locking 689 * 690 * BUGS: 691 * If the API was consistent this would be __dev_get_by_hwaddr 692 */ 693 694 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha) 695 { 696 struct net_device *dev; 697 698 ASSERT_RTNL(); 699 700 for_each_netdev(net, dev) 701 if (dev->type == type && 702 !memcmp(dev->dev_addr, ha, dev->addr_len)) 703 return dev; 704 705 return NULL; 706 } 707 708 EXPORT_SYMBOL(dev_getbyhwaddr); 709 710 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 711 { 712 struct net_device *dev; 713 714 ASSERT_RTNL(); 715 for_each_netdev(net, dev) 716 if (dev->type == type) 717 return dev; 718 719 return NULL; 720 } 721 722 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 723 724 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 725 { 726 struct net_device *dev; 727 728 rtnl_lock(); 729 dev = __dev_getfirstbyhwtype(net, type); 730 if (dev) 731 dev_hold(dev); 732 rtnl_unlock(); 733 return dev; 734 } 735 736 EXPORT_SYMBOL(dev_getfirstbyhwtype); 737 738 /** 739 * dev_get_by_flags - find any device with given flags 740 * @net: the applicable net namespace 741 * @if_flags: IFF_* values 742 * @mask: bitmask of bits in if_flags to check 743 * 744 * Search for any interface with the given flags. Returns NULL if a device 745 * is not found or a pointer to the device. The device returned has 746 * had a reference added and the pointer is safe until the user calls 747 * dev_put to indicate they have finished with it. 748 */ 749 750 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask) 751 { 752 struct net_device *dev, *ret; 753 754 ret = NULL; 755 read_lock(&dev_base_lock); 756 for_each_netdev(net, dev) { 757 if (((dev->flags ^ if_flags) & mask) == 0) { 758 dev_hold(dev); 759 ret = dev; 760 break; 761 } 762 } 763 read_unlock(&dev_base_lock); 764 return ret; 765 } 766 767 /** 768 * dev_valid_name - check if name is okay for network device 769 * @name: name string 770 * 771 * Network device names need to be valid file names to 772 * to allow sysfs to work. We also disallow any kind of 773 * whitespace. 774 */ 775 int dev_valid_name(const char *name) 776 { 777 if (*name == '\0') 778 return 0; 779 if (strlen(name) >= IFNAMSIZ) 780 return 0; 781 if (!strcmp(name, ".") || !strcmp(name, "..")) 782 return 0; 783 784 while (*name) { 785 if (*name == '/' || isspace(*name)) 786 return 0; 787 name++; 788 } 789 return 1; 790 } 791 792 /** 793 * __dev_alloc_name - allocate a name for a device 794 * @net: network namespace to allocate the device name in 795 * @name: name format string 796 * @buf: scratch buffer and result name string 797 * 798 * Passed a format string - eg "lt%d" it will try and find a suitable 799 * id. It scans list of devices to build up a free map, then chooses 800 * the first empty slot. The caller must hold the dev_base or rtnl lock 801 * while allocating the name and adding the device in order to avoid 802 * duplicates. 803 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 804 * Returns the number of the unit assigned or a negative errno code. 805 */ 806 807 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 808 { 809 int i = 0; 810 const char *p; 811 const int max_netdevices = 8*PAGE_SIZE; 812 unsigned long *inuse; 813 struct net_device *d; 814 815 p = strnchr(name, IFNAMSIZ-1, '%'); 816 if (p) { 817 /* 818 * Verify the string as this thing may have come from 819 * the user. There must be either one "%d" and no other "%" 820 * characters. 821 */ 822 if (p[1] != 'd' || strchr(p + 2, '%')) 823 return -EINVAL; 824 825 /* Use one page as a bit array of possible slots */ 826 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 827 if (!inuse) 828 return -ENOMEM; 829 830 for_each_netdev(net, d) { 831 if (!sscanf(d->name, name, &i)) 832 continue; 833 if (i < 0 || i >= max_netdevices) 834 continue; 835 836 /* avoid cases where sscanf is not exact inverse of printf */ 837 snprintf(buf, IFNAMSIZ, name, i); 838 if (!strncmp(buf, d->name, IFNAMSIZ)) 839 set_bit(i, inuse); 840 } 841 842 i = find_first_zero_bit(inuse, max_netdevices); 843 free_page((unsigned long) inuse); 844 } 845 846 snprintf(buf, IFNAMSIZ, name, i); 847 if (!__dev_get_by_name(net, buf)) 848 return i; 849 850 /* It is possible to run out of possible slots 851 * when the name is long and there isn't enough space left 852 * for the digits, or if all bits are used. 853 */ 854 return -ENFILE; 855 } 856 857 /** 858 * dev_alloc_name - allocate a name for a device 859 * @dev: device 860 * @name: name format string 861 * 862 * Passed a format string - eg "lt%d" it will try and find a suitable 863 * id. It scans list of devices to build up a free map, then chooses 864 * the first empty slot. The caller must hold the dev_base or rtnl lock 865 * while allocating the name and adding the device in order to avoid 866 * duplicates. 867 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 868 * Returns the number of the unit assigned or a negative errno code. 869 */ 870 871 int dev_alloc_name(struct net_device *dev, const char *name) 872 { 873 char buf[IFNAMSIZ]; 874 struct net *net; 875 int ret; 876 877 BUG_ON(!dev_net(dev)); 878 net = dev_net(dev); 879 ret = __dev_alloc_name(net, name, buf); 880 if (ret >= 0) 881 strlcpy(dev->name, buf, IFNAMSIZ); 882 return ret; 883 } 884 885 886 /** 887 * dev_change_name - change name of a device 888 * @dev: device 889 * @newname: name (or format string) must be at least IFNAMSIZ 890 * 891 * Change name of a device, can pass format strings "eth%d". 892 * for wildcarding. 893 */ 894 int dev_change_name(struct net_device *dev, const char *newname) 895 { 896 char oldname[IFNAMSIZ]; 897 int err = 0; 898 int ret; 899 struct net *net; 900 901 ASSERT_RTNL(); 902 BUG_ON(!dev_net(dev)); 903 904 net = dev_net(dev); 905 if (dev->flags & IFF_UP) 906 return -EBUSY; 907 908 if (!dev_valid_name(newname)) 909 return -EINVAL; 910 911 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 912 return 0; 913 914 memcpy(oldname, dev->name, IFNAMSIZ); 915 916 if (strchr(newname, '%')) { 917 err = dev_alloc_name(dev, newname); 918 if (err < 0) 919 return err; 920 } 921 else if (__dev_get_by_name(net, newname)) 922 return -EEXIST; 923 else 924 strlcpy(dev->name, newname, IFNAMSIZ); 925 926 rollback: 927 ret = device_rename(&dev->dev, dev->name); 928 if (ret) { 929 memcpy(dev->name, oldname, IFNAMSIZ); 930 return ret; 931 } 932 933 write_lock_bh(&dev_base_lock); 934 hlist_del(&dev->name_hlist); 935 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 936 write_unlock_bh(&dev_base_lock); 937 938 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 939 ret = notifier_to_errno(ret); 940 941 if (ret) { 942 if (err) { 943 printk(KERN_ERR 944 "%s: name change rollback failed: %d.\n", 945 dev->name, ret); 946 } else { 947 err = ret; 948 memcpy(dev->name, oldname, IFNAMSIZ); 949 goto rollback; 950 } 951 } 952 953 return err; 954 } 955 956 /** 957 * dev_set_alias - change ifalias of a device 958 * @dev: device 959 * @alias: name up to IFALIASZ 960 * @len: limit of bytes to copy from info 961 * 962 * Set ifalias for a device, 963 */ 964 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 965 { 966 ASSERT_RTNL(); 967 968 if (len >= IFALIASZ) 969 return -EINVAL; 970 971 if (!len) { 972 if (dev->ifalias) { 973 kfree(dev->ifalias); 974 dev->ifalias = NULL; 975 } 976 return 0; 977 } 978 979 dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL); 980 if (!dev->ifalias) 981 return -ENOMEM; 982 983 strlcpy(dev->ifalias, alias, len+1); 984 return len; 985 } 986 987 988 /** 989 * netdev_features_change - device changes features 990 * @dev: device to cause notification 991 * 992 * Called to indicate a device has changed features. 993 */ 994 void netdev_features_change(struct net_device *dev) 995 { 996 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 997 } 998 EXPORT_SYMBOL(netdev_features_change); 999 1000 /** 1001 * netdev_state_change - device changes state 1002 * @dev: device to cause notification 1003 * 1004 * Called to indicate a device has changed state. This function calls 1005 * the notifier chains for netdev_chain and sends a NEWLINK message 1006 * to the routing socket. 1007 */ 1008 void netdev_state_change(struct net_device *dev) 1009 { 1010 if (dev->flags & IFF_UP) { 1011 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1012 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1013 } 1014 } 1015 1016 void netdev_bonding_change(struct net_device *dev) 1017 { 1018 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev); 1019 } 1020 EXPORT_SYMBOL(netdev_bonding_change); 1021 1022 /** 1023 * dev_load - load a network module 1024 * @net: the applicable net namespace 1025 * @name: name of interface 1026 * 1027 * If a network interface is not present and the process has suitable 1028 * privileges this function loads the module. If module loading is not 1029 * available in this kernel then it becomes a nop. 1030 */ 1031 1032 void dev_load(struct net *net, const char *name) 1033 { 1034 struct net_device *dev; 1035 1036 read_lock(&dev_base_lock); 1037 dev = __dev_get_by_name(net, name); 1038 read_unlock(&dev_base_lock); 1039 1040 if (!dev && capable(CAP_SYS_MODULE)) 1041 request_module("%s", name); 1042 } 1043 1044 /** 1045 * dev_open - prepare an interface for use. 1046 * @dev: device to open 1047 * 1048 * Takes a device from down to up state. The device's private open 1049 * function is invoked and then the multicast lists are loaded. Finally 1050 * the device is moved into the up state and a %NETDEV_UP message is 1051 * sent to the netdev notifier chain. 1052 * 1053 * Calling this function on an active interface is a nop. On a failure 1054 * a negative errno code is returned. 1055 */ 1056 int dev_open(struct net_device *dev) 1057 { 1058 int ret = 0; 1059 1060 ASSERT_RTNL(); 1061 1062 /* 1063 * Is it already up? 1064 */ 1065 1066 if (dev->flags & IFF_UP) 1067 return 0; 1068 1069 /* 1070 * Is it even present? 1071 */ 1072 if (!netif_device_present(dev)) 1073 return -ENODEV; 1074 1075 /* 1076 * Call device private open method 1077 */ 1078 set_bit(__LINK_STATE_START, &dev->state); 1079 1080 if (dev->validate_addr) 1081 ret = dev->validate_addr(dev); 1082 1083 if (!ret && dev->open) 1084 ret = dev->open(dev); 1085 1086 /* 1087 * If it went open OK then: 1088 */ 1089 1090 if (ret) 1091 clear_bit(__LINK_STATE_START, &dev->state); 1092 else { 1093 /* 1094 * Set the flags. 1095 */ 1096 dev->flags |= IFF_UP; 1097 1098 /* 1099 * Initialize multicasting status 1100 */ 1101 dev_set_rx_mode(dev); 1102 1103 /* 1104 * Wakeup transmit queue engine 1105 */ 1106 dev_activate(dev); 1107 1108 /* 1109 * ... and announce new interface. 1110 */ 1111 call_netdevice_notifiers(NETDEV_UP, dev); 1112 } 1113 1114 return ret; 1115 } 1116 1117 /** 1118 * dev_close - shutdown an interface. 1119 * @dev: device to shutdown 1120 * 1121 * This function moves an active device into down state. A 1122 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1123 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1124 * chain. 1125 */ 1126 int dev_close(struct net_device *dev) 1127 { 1128 ASSERT_RTNL(); 1129 1130 might_sleep(); 1131 1132 if (!(dev->flags & IFF_UP)) 1133 return 0; 1134 1135 /* 1136 * Tell people we are going down, so that they can 1137 * prepare to death, when device is still operating. 1138 */ 1139 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1140 1141 clear_bit(__LINK_STATE_START, &dev->state); 1142 1143 /* Synchronize to scheduled poll. We cannot touch poll list, 1144 * it can be even on different cpu. So just clear netif_running(). 1145 * 1146 * dev->stop() will invoke napi_disable() on all of it's 1147 * napi_struct instances on this device. 1148 */ 1149 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1150 1151 dev_deactivate(dev); 1152 1153 /* 1154 * Call the device specific close. This cannot fail. 1155 * Only if device is UP 1156 * 1157 * We allow it to be called even after a DETACH hot-plug 1158 * event. 1159 */ 1160 if (dev->stop) 1161 dev->stop(dev); 1162 1163 /* 1164 * Device is now down. 1165 */ 1166 1167 dev->flags &= ~IFF_UP; 1168 1169 /* 1170 * Tell people we are down 1171 */ 1172 call_netdevice_notifiers(NETDEV_DOWN, dev); 1173 1174 return 0; 1175 } 1176 1177 1178 /** 1179 * dev_disable_lro - disable Large Receive Offload on a device 1180 * @dev: device 1181 * 1182 * Disable Large Receive Offload (LRO) on a net device. Must be 1183 * called under RTNL. This is needed if received packets may be 1184 * forwarded to another interface. 1185 */ 1186 void dev_disable_lro(struct net_device *dev) 1187 { 1188 if (dev->ethtool_ops && dev->ethtool_ops->get_flags && 1189 dev->ethtool_ops->set_flags) { 1190 u32 flags = dev->ethtool_ops->get_flags(dev); 1191 if (flags & ETH_FLAG_LRO) { 1192 flags &= ~ETH_FLAG_LRO; 1193 dev->ethtool_ops->set_flags(dev, flags); 1194 } 1195 } 1196 WARN_ON(dev->features & NETIF_F_LRO); 1197 } 1198 EXPORT_SYMBOL(dev_disable_lro); 1199 1200 1201 static int dev_boot_phase = 1; 1202 1203 /* 1204 * Device change register/unregister. These are not inline or static 1205 * as we export them to the world. 1206 */ 1207 1208 /** 1209 * register_netdevice_notifier - register a network notifier block 1210 * @nb: notifier 1211 * 1212 * Register a notifier to be called when network device events occur. 1213 * The notifier passed is linked into the kernel structures and must 1214 * not be reused until it has been unregistered. A negative errno code 1215 * is returned on a failure. 1216 * 1217 * When registered all registration and up events are replayed 1218 * to the new notifier to allow device to have a race free 1219 * view of the network device list. 1220 */ 1221 1222 int register_netdevice_notifier(struct notifier_block *nb) 1223 { 1224 struct net_device *dev; 1225 struct net_device *last; 1226 struct net *net; 1227 int err; 1228 1229 rtnl_lock(); 1230 err = raw_notifier_chain_register(&netdev_chain, nb); 1231 if (err) 1232 goto unlock; 1233 if (dev_boot_phase) 1234 goto unlock; 1235 for_each_net(net) { 1236 for_each_netdev(net, dev) { 1237 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1238 err = notifier_to_errno(err); 1239 if (err) 1240 goto rollback; 1241 1242 if (!(dev->flags & IFF_UP)) 1243 continue; 1244 1245 nb->notifier_call(nb, NETDEV_UP, dev); 1246 } 1247 } 1248 1249 unlock: 1250 rtnl_unlock(); 1251 return err; 1252 1253 rollback: 1254 last = dev; 1255 for_each_net(net) { 1256 for_each_netdev(net, dev) { 1257 if (dev == last) 1258 break; 1259 1260 if (dev->flags & IFF_UP) { 1261 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1262 nb->notifier_call(nb, NETDEV_DOWN, dev); 1263 } 1264 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1265 } 1266 } 1267 1268 raw_notifier_chain_unregister(&netdev_chain, nb); 1269 goto unlock; 1270 } 1271 1272 /** 1273 * unregister_netdevice_notifier - unregister a network notifier block 1274 * @nb: notifier 1275 * 1276 * Unregister a notifier previously registered by 1277 * register_netdevice_notifier(). The notifier is unlinked into the 1278 * kernel structures and may then be reused. A negative errno code 1279 * is returned on a failure. 1280 */ 1281 1282 int unregister_netdevice_notifier(struct notifier_block *nb) 1283 { 1284 int err; 1285 1286 rtnl_lock(); 1287 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1288 rtnl_unlock(); 1289 return err; 1290 } 1291 1292 /** 1293 * call_netdevice_notifiers - call all network notifier blocks 1294 * @val: value passed unmodified to notifier function 1295 * @dev: net_device pointer passed unmodified to notifier function 1296 * 1297 * Call all network notifier blocks. Parameters and return value 1298 * are as for raw_notifier_call_chain(). 1299 */ 1300 1301 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1302 { 1303 return raw_notifier_call_chain(&netdev_chain, val, dev); 1304 } 1305 1306 /* When > 0 there are consumers of rx skb time stamps */ 1307 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1308 1309 void net_enable_timestamp(void) 1310 { 1311 atomic_inc(&netstamp_needed); 1312 } 1313 1314 void net_disable_timestamp(void) 1315 { 1316 atomic_dec(&netstamp_needed); 1317 } 1318 1319 static inline void net_timestamp(struct sk_buff *skb) 1320 { 1321 if (atomic_read(&netstamp_needed)) 1322 __net_timestamp(skb); 1323 else 1324 skb->tstamp.tv64 = 0; 1325 } 1326 1327 /* 1328 * Support routine. Sends outgoing frames to any network 1329 * taps currently in use. 1330 */ 1331 1332 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1333 { 1334 struct packet_type *ptype; 1335 1336 net_timestamp(skb); 1337 1338 rcu_read_lock(); 1339 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1340 /* Never send packets back to the socket 1341 * they originated from - MvS (miquels@drinkel.ow.org) 1342 */ 1343 if ((ptype->dev == dev || !ptype->dev) && 1344 (ptype->af_packet_priv == NULL || 1345 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1346 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC); 1347 if (!skb2) 1348 break; 1349 1350 /* skb->nh should be correctly 1351 set by sender, so that the second statement is 1352 just protection against buggy protocols. 1353 */ 1354 skb_reset_mac_header(skb2); 1355 1356 if (skb_network_header(skb2) < skb2->data || 1357 skb2->network_header > skb2->tail) { 1358 if (net_ratelimit()) 1359 printk(KERN_CRIT "protocol %04x is " 1360 "buggy, dev %s\n", 1361 skb2->protocol, dev->name); 1362 skb_reset_network_header(skb2); 1363 } 1364 1365 skb2->transport_header = skb2->network_header; 1366 skb2->pkt_type = PACKET_OUTGOING; 1367 ptype->func(skb2, skb->dev, ptype, skb->dev); 1368 } 1369 } 1370 rcu_read_unlock(); 1371 } 1372 1373 1374 static inline void __netif_reschedule(struct Qdisc *q) 1375 { 1376 struct softnet_data *sd; 1377 unsigned long flags; 1378 1379 local_irq_save(flags); 1380 sd = &__get_cpu_var(softnet_data); 1381 q->next_sched = sd->output_queue; 1382 sd->output_queue = q; 1383 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1384 local_irq_restore(flags); 1385 } 1386 1387 void __netif_schedule(struct Qdisc *q) 1388 { 1389 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1390 __netif_reschedule(q); 1391 } 1392 EXPORT_SYMBOL(__netif_schedule); 1393 1394 void dev_kfree_skb_irq(struct sk_buff *skb) 1395 { 1396 if (atomic_dec_and_test(&skb->users)) { 1397 struct softnet_data *sd; 1398 unsigned long flags; 1399 1400 local_irq_save(flags); 1401 sd = &__get_cpu_var(softnet_data); 1402 skb->next = sd->completion_queue; 1403 sd->completion_queue = skb; 1404 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1405 local_irq_restore(flags); 1406 } 1407 } 1408 EXPORT_SYMBOL(dev_kfree_skb_irq); 1409 1410 void dev_kfree_skb_any(struct sk_buff *skb) 1411 { 1412 if (in_irq() || irqs_disabled()) 1413 dev_kfree_skb_irq(skb); 1414 else 1415 dev_kfree_skb(skb); 1416 } 1417 EXPORT_SYMBOL(dev_kfree_skb_any); 1418 1419 1420 /** 1421 * netif_device_detach - mark device as removed 1422 * @dev: network device 1423 * 1424 * Mark device as removed from system and therefore no longer available. 1425 */ 1426 void netif_device_detach(struct net_device *dev) 1427 { 1428 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1429 netif_running(dev)) { 1430 netif_stop_queue(dev); 1431 } 1432 } 1433 EXPORT_SYMBOL(netif_device_detach); 1434 1435 /** 1436 * netif_device_attach - mark device as attached 1437 * @dev: network device 1438 * 1439 * Mark device as attached from system and restart if needed. 1440 */ 1441 void netif_device_attach(struct net_device *dev) 1442 { 1443 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1444 netif_running(dev)) { 1445 netif_wake_queue(dev); 1446 __netdev_watchdog_up(dev); 1447 } 1448 } 1449 EXPORT_SYMBOL(netif_device_attach); 1450 1451 static bool can_checksum_protocol(unsigned long features, __be16 protocol) 1452 { 1453 return ((features & NETIF_F_GEN_CSUM) || 1454 ((features & NETIF_F_IP_CSUM) && 1455 protocol == htons(ETH_P_IP)) || 1456 ((features & NETIF_F_IPV6_CSUM) && 1457 protocol == htons(ETH_P_IPV6))); 1458 } 1459 1460 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb) 1461 { 1462 if (can_checksum_protocol(dev->features, skb->protocol)) 1463 return true; 1464 1465 if (skb->protocol == htons(ETH_P_8021Q)) { 1466 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 1467 if (can_checksum_protocol(dev->features & dev->vlan_features, 1468 veh->h_vlan_encapsulated_proto)) 1469 return true; 1470 } 1471 1472 return false; 1473 } 1474 1475 /* 1476 * Invalidate hardware checksum when packet is to be mangled, and 1477 * complete checksum manually on outgoing path. 1478 */ 1479 int skb_checksum_help(struct sk_buff *skb) 1480 { 1481 __wsum csum; 1482 int ret = 0, offset; 1483 1484 if (skb->ip_summed == CHECKSUM_COMPLETE) 1485 goto out_set_summed; 1486 1487 if (unlikely(skb_shinfo(skb)->gso_size)) { 1488 /* Let GSO fix up the checksum. */ 1489 goto out_set_summed; 1490 } 1491 1492 offset = skb->csum_start - skb_headroom(skb); 1493 BUG_ON(offset >= skb_headlen(skb)); 1494 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1495 1496 offset += skb->csum_offset; 1497 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1498 1499 if (skb_cloned(skb) && 1500 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1501 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1502 if (ret) 1503 goto out; 1504 } 1505 1506 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1507 out_set_summed: 1508 skb->ip_summed = CHECKSUM_NONE; 1509 out: 1510 return ret; 1511 } 1512 1513 /** 1514 * skb_gso_segment - Perform segmentation on skb. 1515 * @skb: buffer to segment 1516 * @features: features for the output path (see dev->features) 1517 * 1518 * This function segments the given skb and returns a list of segments. 1519 * 1520 * It may return NULL if the skb requires no segmentation. This is 1521 * only possible when GSO is used for verifying header integrity. 1522 */ 1523 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1524 { 1525 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1526 struct packet_type *ptype; 1527 __be16 type = skb->protocol; 1528 int err; 1529 1530 BUG_ON(skb_shinfo(skb)->frag_list); 1531 1532 skb_reset_mac_header(skb); 1533 skb->mac_len = skb->network_header - skb->mac_header; 1534 __skb_pull(skb, skb->mac_len); 1535 1536 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) { 1537 if (skb_header_cloned(skb) && 1538 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1539 return ERR_PTR(err); 1540 } 1541 1542 rcu_read_lock(); 1543 list_for_each_entry_rcu(ptype, 1544 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1545 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1546 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1547 err = ptype->gso_send_check(skb); 1548 segs = ERR_PTR(err); 1549 if (err || skb_gso_ok(skb, features)) 1550 break; 1551 __skb_push(skb, (skb->data - 1552 skb_network_header(skb))); 1553 } 1554 segs = ptype->gso_segment(skb, features); 1555 break; 1556 } 1557 } 1558 rcu_read_unlock(); 1559 1560 __skb_push(skb, skb->data - skb_mac_header(skb)); 1561 1562 return segs; 1563 } 1564 1565 EXPORT_SYMBOL(skb_gso_segment); 1566 1567 /* Take action when hardware reception checksum errors are detected. */ 1568 #ifdef CONFIG_BUG 1569 void netdev_rx_csum_fault(struct net_device *dev) 1570 { 1571 if (net_ratelimit()) { 1572 printk(KERN_ERR "%s: hw csum failure.\n", 1573 dev ? dev->name : "<unknown>"); 1574 dump_stack(); 1575 } 1576 } 1577 EXPORT_SYMBOL(netdev_rx_csum_fault); 1578 #endif 1579 1580 /* Actually, we should eliminate this check as soon as we know, that: 1581 * 1. IOMMU is present and allows to map all the memory. 1582 * 2. No high memory really exists on this machine. 1583 */ 1584 1585 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1586 { 1587 #ifdef CONFIG_HIGHMEM 1588 int i; 1589 1590 if (dev->features & NETIF_F_HIGHDMA) 1591 return 0; 1592 1593 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1594 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1595 return 1; 1596 1597 #endif 1598 return 0; 1599 } 1600 1601 struct dev_gso_cb { 1602 void (*destructor)(struct sk_buff *skb); 1603 }; 1604 1605 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1606 1607 static void dev_gso_skb_destructor(struct sk_buff *skb) 1608 { 1609 struct dev_gso_cb *cb; 1610 1611 do { 1612 struct sk_buff *nskb = skb->next; 1613 1614 skb->next = nskb->next; 1615 nskb->next = NULL; 1616 kfree_skb(nskb); 1617 } while (skb->next); 1618 1619 cb = DEV_GSO_CB(skb); 1620 if (cb->destructor) 1621 cb->destructor(skb); 1622 } 1623 1624 /** 1625 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1626 * @skb: buffer to segment 1627 * 1628 * This function segments the given skb and stores the list of segments 1629 * in skb->next. 1630 */ 1631 static int dev_gso_segment(struct sk_buff *skb) 1632 { 1633 struct net_device *dev = skb->dev; 1634 struct sk_buff *segs; 1635 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1636 NETIF_F_SG : 0); 1637 1638 segs = skb_gso_segment(skb, features); 1639 1640 /* Verifying header integrity only. */ 1641 if (!segs) 1642 return 0; 1643 1644 if (IS_ERR(segs)) 1645 return PTR_ERR(segs); 1646 1647 skb->next = segs; 1648 DEV_GSO_CB(skb)->destructor = skb->destructor; 1649 skb->destructor = dev_gso_skb_destructor; 1650 1651 return 0; 1652 } 1653 1654 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 1655 struct netdev_queue *txq) 1656 { 1657 if (likely(!skb->next)) { 1658 if (!list_empty(&ptype_all)) 1659 dev_queue_xmit_nit(skb, dev); 1660 1661 if (netif_needs_gso(dev, skb)) { 1662 if (unlikely(dev_gso_segment(skb))) 1663 goto out_kfree_skb; 1664 if (skb->next) 1665 goto gso; 1666 } 1667 1668 return dev->hard_start_xmit(skb, dev); 1669 } 1670 1671 gso: 1672 do { 1673 struct sk_buff *nskb = skb->next; 1674 int rc; 1675 1676 skb->next = nskb->next; 1677 nskb->next = NULL; 1678 rc = dev->hard_start_xmit(nskb, dev); 1679 if (unlikely(rc)) { 1680 nskb->next = skb->next; 1681 skb->next = nskb; 1682 return rc; 1683 } 1684 if (unlikely(netif_tx_queue_stopped(txq) && skb->next)) 1685 return NETDEV_TX_BUSY; 1686 } while (skb->next); 1687 1688 skb->destructor = DEV_GSO_CB(skb)->destructor; 1689 1690 out_kfree_skb: 1691 kfree_skb(skb); 1692 return 0; 1693 } 1694 1695 static u32 simple_tx_hashrnd; 1696 static int simple_tx_hashrnd_initialized = 0; 1697 1698 static u16 simple_tx_hash(struct net_device *dev, struct sk_buff *skb) 1699 { 1700 u32 addr1, addr2, ports; 1701 u32 hash, ihl; 1702 u8 ip_proto = 0; 1703 1704 if (unlikely(!simple_tx_hashrnd_initialized)) { 1705 get_random_bytes(&simple_tx_hashrnd, 4); 1706 simple_tx_hashrnd_initialized = 1; 1707 } 1708 1709 switch (skb->protocol) { 1710 case htons(ETH_P_IP): 1711 if (!(ip_hdr(skb)->frag_off & htons(IP_MF | IP_OFFSET))) 1712 ip_proto = ip_hdr(skb)->protocol; 1713 addr1 = ip_hdr(skb)->saddr; 1714 addr2 = ip_hdr(skb)->daddr; 1715 ihl = ip_hdr(skb)->ihl; 1716 break; 1717 case htons(ETH_P_IPV6): 1718 ip_proto = ipv6_hdr(skb)->nexthdr; 1719 addr1 = ipv6_hdr(skb)->saddr.s6_addr32[3]; 1720 addr2 = ipv6_hdr(skb)->daddr.s6_addr32[3]; 1721 ihl = (40 >> 2); 1722 break; 1723 default: 1724 return 0; 1725 } 1726 1727 1728 switch (ip_proto) { 1729 case IPPROTO_TCP: 1730 case IPPROTO_UDP: 1731 case IPPROTO_DCCP: 1732 case IPPROTO_ESP: 1733 case IPPROTO_AH: 1734 case IPPROTO_SCTP: 1735 case IPPROTO_UDPLITE: 1736 ports = *((u32 *) (skb_network_header(skb) + (ihl * 4))); 1737 break; 1738 1739 default: 1740 ports = 0; 1741 break; 1742 } 1743 1744 hash = jhash_3words(addr1, addr2, ports, simple_tx_hashrnd); 1745 1746 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32); 1747 } 1748 1749 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 1750 struct sk_buff *skb) 1751 { 1752 u16 queue_index = 0; 1753 1754 if (dev->select_queue) 1755 queue_index = dev->select_queue(dev, skb); 1756 else if (dev->real_num_tx_queues > 1) 1757 queue_index = simple_tx_hash(dev, skb); 1758 1759 skb_set_queue_mapping(skb, queue_index); 1760 return netdev_get_tx_queue(dev, queue_index); 1761 } 1762 1763 /** 1764 * dev_queue_xmit - transmit a buffer 1765 * @skb: buffer to transmit 1766 * 1767 * Queue a buffer for transmission to a network device. The caller must 1768 * have set the device and priority and built the buffer before calling 1769 * this function. The function can be called from an interrupt. 1770 * 1771 * A negative errno code is returned on a failure. A success does not 1772 * guarantee the frame will be transmitted as it may be dropped due 1773 * to congestion or traffic shaping. 1774 * 1775 * ----------------------------------------------------------------------------------- 1776 * I notice this method can also return errors from the queue disciplines, 1777 * including NET_XMIT_DROP, which is a positive value. So, errors can also 1778 * be positive. 1779 * 1780 * Regardless of the return value, the skb is consumed, so it is currently 1781 * difficult to retry a send to this method. (You can bump the ref count 1782 * before sending to hold a reference for retry if you are careful.) 1783 * 1784 * When calling this method, interrupts MUST be enabled. This is because 1785 * the BH enable code must have IRQs enabled so that it will not deadlock. 1786 * --BLG 1787 */ 1788 int dev_queue_xmit(struct sk_buff *skb) 1789 { 1790 struct net_device *dev = skb->dev; 1791 struct netdev_queue *txq; 1792 struct Qdisc *q; 1793 int rc = -ENOMEM; 1794 1795 /* GSO will handle the following emulations directly. */ 1796 if (netif_needs_gso(dev, skb)) 1797 goto gso; 1798 1799 if (skb_shinfo(skb)->frag_list && 1800 !(dev->features & NETIF_F_FRAGLIST) && 1801 __skb_linearize(skb)) 1802 goto out_kfree_skb; 1803 1804 /* Fragmented skb is linearized if device does not support SG, 1805 * or if at least one of fragments is in highmem and device 1806 * does not support DMA from it. 1807 */ 1808 if (skb_shinfo(skb)->nr_frags && 1809 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) && 1810 __skb_linearize(skb)) 1811 goto out_kfree_skb; 1812 1813 /* If packet is not checksummed and device does not support 1814 * checksumming for this protocol, complete checksumming here. 1815 */ 1816 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1817 skb_set_transport_header(skb, skb->csum_start - 1818 skb_headroom(skb)); 1819 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb)) 1820 goto out_kfree_skb; 1821 } 1822 1823 gso: 1824 /* Disable soft irqs for various locks below. Also 1825 * stops preemption for RCU. 1826 */ 1827 rcu_read_lock_bh(); 1828 1829 txq = dev_pick_tx(dev, skb); 1830 q = rcu_dereference(txq->qdisc); 1831 1832 #ifdef CONFIG_NET_CLS_ACT 1833 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS); 1834 #endif 1835 if (q->enqueue) { 1836 spinlock_t *root_lock = qdisc_lock(q); 1837 1838 spin_lock(root_lock); 1839 1840 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 1841 kfree_skb(skb); 1842 rc = NET_XMIT_DROP; 1843 } else { 1844 rc = qdisc_enqueue_root(skb, q); 1845 qdisc_run(q); 1846 } 1847 spin_unlock(root_lock); 1848 1849 goto out; 1850 } 1851 1852 /* The device has no queue. Common case for software devices: 1853 loopback, all the sorts of tunnels... 1854 1855 Really, it is unlikely that netif_tx_lock protection is necessary 1856 here. (f.e. loopback and IP tunnels are clean ignoring statistics 1857 counters.) 1858 However, it is possible, that they rely on protection 1859 made by us here. 1860 1861 Check this and shot the lock. It is not prone from deadlocks. 1862 Either shot noqueue qdisc, it is even simpler 8) 1863 */ 1864 if (dev->flags & IFF_UP) { 1865 int cpu = smp_processor_id(); /* ok because BHs are off */ 1866 1867 if (txq->xmit_lock_owner != cpu) { 1868 1869 HARD_TX_LOCK(dev, txq, cpu); 1870 1871 if (!netif_tx_queue_stopped(txq)) { 1872 rc = 0; 1873 if (!dev_hard_start_xmit(skb, dev, txq)) { 1874 HARD_TX_UNLOCK(dev, txq); 1875 goto out; 1876 } 1877 } 1878 HARD_TX_UNLOCK(dev, txq); 1879 if (net_ratelimit()) 1880 printk(KERN_CRIT "Virtual device %s asks to " 1881 "queue packet!\n", dev->name); 1882 } else { 1883 /* Recursion is detected! It is possible, 1884 * unfortunately */ 1885 if (net_ratelimit()) 1886 printk(KERN_CRIT "Dead loop on virtual device " 1887 "%s, fix it urgently!\n", dev->name); 1888 } 1889 } 1890 1891 rc = -ENETDOWN; 1892 rcu_read_unlock_bh(); 1893 1894 out_kfree_skb: 1895 kfree_skb(skb); 1896 return rc; 1897 out: 1898 rcu_read_unlock_bh(); 1899 return rc; 1900 } 1901 1902 1903 /*======================================================================= 1904 Receiver routines 1905 =======================================================================*/ 1906 1907 int netdev_max_backlog __read_mostly = 1000; 1908 int netdev_budget __read_mostly = 300; 1909 int weight_p __read_mostly = 64; /* old backlog weight */ 1910 1911 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 1912 1913 1914 /** 1915 * netif_rx - post buffer to the network code 1916 * @skb: buffer to post 1917 * 1918 * This function receives a packet from a device driver and queues it for 1919 * the upper (protocol) levels to process. It always succeeds. The buffer 1920 * may be dropped during processing for congestion control or by the 1921 * protocol layers. 1922 * 1923 * return values: 1924 * NET_RX_SUCCESS (no congestion) 1925 * NET_RX_DROP (packet was dropped) 1926 * 1927 */ 1928 1929 int netif_rx(struct sk_buff *skb) 1930 { 1931 struct softnet_data *queue; 1932 unsigned long flags; 1933 1934 /* if netpoll wants it, pretend we never saw it */ 1935 if (netpoll_rx(skb)) 1936 return NET_RX_DROP; 1937 1938 if (!skb->tstamp.tv64) 1939 net_timestamp(skb); 1940 1941 /* 1942 * The code is rearranged so that the path is the most 1943 * short when CPU is congested, but is still operating. 1944 */ 1945 local_irq_save(flags); 1946 queue = &__get_cpu_var(softnet_data); 1947 1948 __get_cpu_var(netdev_rx_stat).total++; 1949 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 1950 if (queue->input_pkt_queue.qlen) { 1951 enqueue: 1952 __skb_queue_tail(&queue->input_pkt_queue, skb); 1953 local_irq_restore(flags); 1954 return NET_RX_SUCCESS; 1955 } 1956 1957 napi_schedule(&queue->backlog); 1958 goto enqueue; 1959 } 1960 1961 __get_cpu_var(netdev_rx_stat).dropped++; 1962 local_irq_restore(flags); 1963 1964 kfree_skb(skb); 1965 return NET_RX_DROP; 1966 } 1967 1968 int netif_rx_ni(struct sk_buff *skb) 1969 { 1970 int err; 1971 1972 preempt_disable(); 1973 err = netif_rx(skb); 1974 if (local_softirq_pending()) 1975 do_softirq(); 1976 preempt_enable(); 1977 1978 return err; 1979 } 1980 1981 EXPORT_SYMBOL(netif_rx_ni); 1982 1983 static void net_tx_action(struct softirq_action *h) 1984 { 1985 struct softnet_data *sd = &__get_cpu_var(softnet_data); 1986 1987 if (sd->completion_queue) { 1988 struct sk_buff *clist; 1989 1990 local_irq_disable(); 1991 clist = sd->completion_queue; 1992 sd->completion_queue = NULL; 1993 local_irq_enable(); 1994 1995 while (clist) { 1996 struct sk_buff *skb = clist; 1997 clist = clist->next; 1998 1999 WARN_ON(atomic_read(&skb->users)); 2000 __kfree_skb(skb); 2001 } 2002 } 2003 2004 if (sd->output_queue) { 2005 struct Qdisc *head; 2006 2007 local_irq_disable(); 2008 head = sd->output_queue; 2009 sd->output_queue = NULL; 2010 local_irq_enable(); 2011 2012 while (head) { 2013 struct Qdisc *q = head; 2014 spinlock_t *root_lock; 2015 2016 head = head->next_sched; 2017 2018 root_lock = qdisc_lock(q); 2019 if (spin_trylock(root_lock)) { 2020 smp_mb__before_clear_bit(); 2021 clear_bit(__QDISC_STATE_SCHED, 2022 &q->state); 2023 qdisc_run(q); 2024 spin_unlock(root_lock); 2025 } else { 2026 if (!test_bit(__QDISC_STATE_DEACTIVATED, 2027 &q->state)) { 2028 __netif_reschedule(q); 2029 } else { 2030 smp_mb__before_clear_bit(); 2031 clear_bit(__QDISC_STATE_SCHED, 2032 &q->state); 2033 } 2034 } 2035 } 2036 } 2037 } 2038 2039 static inline int deliver_skb(struct sk_buff *skb, 2040 struct packet_type *pt_prev, 2041 struct net_device *orig_dev) 2042 { 2043 atomic_inc(&skb->users); 2044 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2045 } 2046 2047 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 2048 /* These hooks defined here for ATM */ 2049 struct net_bridge; 2050 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br, 2051 unsigned char *addr); 2052 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly; 2053 2054 /* 2055 * If bridge module is loaded call bridging hook. 2056 * returns NULL if packet was consumed. 2057 */ 2058 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p, 2059 struct sk_buff *skb) __read_mostly; 2060 static inline struct sk_buff *handle_bridge(struct sk_buff *skb, 2061 struct packet_type **pt_prev, int *ret, 2062 struct net_device *orig_dev) 2063 { 2064 struct net_bridge_port *port; 2065 2066 if (skb->pkt_type == PACKET_LOOPBACK || 2067 (port = rcu_dereference(skb->dev->br_port)) == NULL) 2068 return skb; 2069 2070 if (*pt_prev) { 2071 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2072 *pt_prev = NULL; 2073 } 2074 2075 return br_handle_frame_hook(port, skb); 2076 } 2077 #else 2078 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb) 2079 #endif 2080 2081 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE) 2082 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly; 2083 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook); 2084 2085 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb, 2086 struct packet_type **pt_prev, 2087 int *ret, 2088 struct net_device *orig_dev) 2089 { 2090 if (skb->dev->macvlan_port == NULL) 2091 return skb; 2092 2093 if (*pt_prev) { 2094 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2095 *pt_prev = NULL; 2096 } 2097 return macvlan_handle_frame_hook(skb); 2098 } 2099 #else 2100 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb) 2101 #endif 2102 2103 #ifdef CONFIG_NET_CLS_ACT 2104 /* TODO: Maybe we should just force sch_ingress to be compiled in 2105 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 2106 * a compare and 2 stores extra right now if we dont have it on 2107 * but have CONFIG_NET_CLS_ACT 2108 * NOTE: This doesnt stop any functionality; if you dont have 2109 * the ingress scheduler, you just cant add policies on ingress. 2110 * 2111 */ 2112 static int ing_filter(struct sk_buff *skb) 2113 { 2114 struct net_device *dev = skb->dev; 2115 u32 ttl = G_TC_RTTL(skb->tc_verd); 2116 struct netdev_queue *rxq; 2117 int result = TC_ACT_OK; 2118 struct Qdisc *q; 2119 2120 if (MAX_RED_LOOP < ttl++) { 2121 printk(KERN_WARNING 2122 "Redir loop detected Dropping packet (%d->%d)\n", 2123 skb->iif, dev->ifindex); 2124 return TC_ACT_SHOT; 2125 } 2126 2127 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 2128 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 2129 2130 rxq = &dev->rx_queue; 2131 2132 q = rxq->qdisc; 2133 if (q != &noop_qdisc) { 2134 spin_lock(qdisc_lock(q)); 2135 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 2136 result = qdisc_enqueue_root(skb, q); 2137 spin_unlock(qdisc_lock(q)); 2138 } 2139 2140 return result; 2141 } 2142 2143 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 2144 struct packet_type **pt_prev, 2145 int *ret, struct net_device *orig_dev) 2146 { 2147 if (skb->dev->rx_queue.qdisc == &noop_qdisc) 2148 goto out; 2149 2150 if (*pt_prev) { 2151 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2152 *pt_prev = NULL; 2153 } else { 2154 /* Huh? Why does turning on AF_PACKET affect this? */ 2155 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 2156 } 2157 2158 switch (ing_filter(skb)) { 2159 case TC_ACT_SHOT: 2160 case TC_ACT_STOLEN: 2161 kfree_skb(skb); 2162 return NULL; 2163 } 2164 2165 out: 2166 skb->tc_verd = 0; 2167 return skb; 2168 } 2169 #endif 2170 2171 /* 2172 * netif_nit_deliver - deliver received packets to network taps 2173 * @skb: buffer 2174 * 2175 * This function is used to deliver incoming packets to network 2176 * taps. It should be used when the normal netif_receive_skb path 2177 * is bypassed, for example because of VLAN acceleration. 2178 */ 2179 void netif_nit_deliver(struct sk_buff *skb) 2180 { 2181 struct packet_type *ptype; 2182 2183 if (list_empty(&ptype_all)) 2184 return; 2185 2186 skb_reset_network_header(skb); 2187 skb_reset_transport_header(skb); 2188 skb->mac_len = skb->network_header - skb->mac_header; 2189 2190 rcu_read_lock(); 2191 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2192 if (!ptype->dev || ptype->dev == skb->dev) 2193 deliver_skb(skb, ptype, skb->dev); 2194 } 2195 rcu_read_unlock(); 2196 } 2197 2198 /** 2199 * netif_receive_skb - process receive buffer from network 2200 * @skb: buffer to process 2201 * 2202 * netif_receive_skb() is the main receive data processing function. 2203 * It always succeeds. The buffer may be dropped during processing 2204 * for congestion control or by the protocol layers. 2205 * 2206 * This function may only be called from softirq context and interrupts 2207 * should be enabled. 2208 * 2209 * Return values (usually ignored): 2210 * NET_RX_SUCCESS: no congestion 2211 * NET_RX_DROP: packet was dropped 2212 */ 2213 int netif_receive_skb(struct sk_buff *skb) 2214 { 2215 struct packet_type *ptype, *pt_prev; 2216 struct net_device *orig_dev; 2217 struct net_device *null_or_orig; 2218 int ret = NET_RX_DROP; 2219 __be16 type; 2220 2221 /* if we've gotten here through NAPI, check netpoll */ 2222 if (netpoll_receive_skb(skb)) 2223 return NET_RX_DROP; 2224 2225 if (!skb->tstamp.tv64) 2226 net_timestamp(skb); 2227 2228 if (!skb->iif) 2229 skb->iif = skb->dev->ifindex; 2230 2231 null_or_orig = NULL; 2232 orig_dev = skb->dev; 2233 if (orig_dev->master) { 2234 if (skb_bond_should_drop(skb)) 2235 null_or_orig = orig_dev; /* deliver only exact match */ 2236 else 2237 skb->dev = orig_dev->master; 2238 } 2239 2240 __get_cpu_var(netdev_rx_stat).total++; 2241 2242 skb_reset_network_header(skb); 2243 skb_reset_transport_header(skb); 2244 skb->mac_len = skb->network_header - skb->mac_header; 2245 2246 pt_prev = NULL; 2247 2248 rcu_read_lock(); 2249 2250 /* Don't receive packets in an exiting network namespace */ 2251 if (!net_alive(dev_net(skb->dev))) 2252 goto out; 2253 2254 #ifdef CONFIG_NET_CLS_ACT 2255 if (skb->tc_verd & TC_NCLS) { 2256 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 2257 goto ncls; 2258 } 2259 #endif 2260 2261 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2262 if (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2263 ptype->dev == orig_dev) { 2264 if (pt_prev) 2265 ret = deliver_skb(skb, pt_prev, orig_dev); 2266 pt_prev = ptype; 2267 } 2268 } 2269 2270 #ifdef CONFIG_NET_CLS_ACT 2271 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 2272 if (!skb) 2273 goto out; 2274 ncls: 2275 #endif 2276 2277 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 2278 if (!skb) 2279 goto out; 2280 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev); 2281 if (!skb) 2282 goto out; 2283 2284 type = skb->protocol; 2285 list_for_each_entry_rcu(ptype, 2286 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 2287 if (ptype->type == type && 2288 (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2289 ptype->dev == orig_dev)) { 2290 if (pt_prev) 2291 ret = deliver_skb(skb, pt_prev, orig_dev); 2292 pt_prev = ptype; 2293 } 2294 } 2295 2296 if (pt_prev) { 2297 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2298 } else { 2299 kfree_skb(skb); 2300 /* Jamal, now you will not able to escape explaining 2301 * me how you were going to use this. :-) 2302 */ 2303 ret = NET_RX_DROP; 2304 } 2305 2306 out: 2307 rcu_read_unlock(); 2308 return ret; 2309 } 2310 2311 /* Network device is going away, flush any packets still pending */ 2312 static void flush_backlog(void *arg) 2313 { 2314 struct net_device *dev = arg; 2315 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2316 struct sk_buff *skb, *tmp; 2317 2318 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp) 2319 if (skb->dev == dev) { 2320 __skb_unlink(skb, &queue->input_pkt_queue); 2321 kfree_skb(skb); 2322 } 2323 } 2324 2325 static int process_backlog(struct napi_struct *napi, int quota) 2326 { 2327 int work = 0; 2328 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2329 unsigned long start_time = jiffies; 2330 2331 napi->weight = weight_p; 2332 do { 2333 struct sk_buff *skb; 2334 2335 local_irq_disable(); 2336 skb = __skb_dequeue(&queue->input_pkt_queue); 2337 if (!skb) { 2338 __napi_complete(napi); 2339 local_irq_enable(); 2340 break; 2341 } 2342 local_irq_enable(); 2343 2344 netif_receive_skb(skb); 2345 } while (++work < quota && jiffies == start_time); 2346 2347 return work; 2348 } 2349 2350 /** 2351 * __napi_schedule - schedule for receive 2352 * @n: entry to schedule 2353 * 2354 * The entry's receive function will be scheduled to run 2355 */ 2356 void __napi_schedule(struct napi_struct *n) 2357 { 2358 unsigned long flags; 2359 2360 local_irq_save(flags); 2361 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list); 2362 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2363 local_irq_restore(flags); 2364 } 2365 EXPORT_SYMBOL(__napi_schedule); 2366 2367 2368 static void net_rx_action(struct softirq_action *h) 2369 { 2370 struct list_head *list = &__get_cpu_var(softnet_data).poll_list; 2371 unsigned long start_time = jiffies; 2372 int budget = netdev_budget; 2373 void *have; 2374 2375 local_irq_disable(); 2376 2377 while (!list_empty(list)) { 2378 struct napi_struct *n; 2379 int work, weight; 2380 2381 /* If softirq window is exhuasted then punt. 2382 * 2383 * Note that this is a slight policy change from the 2384 * previous NAPI code, which would allow up to 2 2385 * jiffies to pass before breaking out. The test 2386 * used to be "jiffies - start_time > 1". 2387 */ 2388 if (unlikely(budget <= 0 || jiffies != start_time)) 2389 goto softnet_break; 2390 2391 local_irq_enable(); 2392 2393 /* Even though interrupts have been re-enabled, this 2394 * access is safe because interrupts can only add new 2395 * entries to the tail of this list, and only ->poll() 2396 * calls can remove this head entry from the list. 2397 */ 2398 n = list_entry(list->next, struct napi_struct, poll_list); 2399 2400 have = netpoll_poll_lock(n); 2401 2402 weight = n->weight; 2403 2404 /* This NAPI_STATE_SCHED test is for avoiding a race 2405 * with netpoll's poll_napi(). Only the entity which 2406 * obtains the lock and sees NAPI_STATE_SCHED set will 2407 * actually make the ->poll() call. Therefore we avoid 2408 * accidently calling ->poll() when NAPI is not scheduled. 2409 */ 2410 work = 0; 2411 if (test_bit(NAPI_STATE_SCHED, &n->state)) 2412 work = n->poll(n, weight); 2413 2414 WARN_ON_ONCE(work > weight); 2415 2416 budget -= work; 2417 2418 local_irq_disable(); 2419 2420 /* Drivers must not modify the NAPI state if they 2421 * consume the entire weight. In such cases this code 2422 * still "owns" the NAPI instance and therefore can 2423 * move the instance around on the list at-will. 2424 */ 2425 if (unlikely(work == weight)) { 2426 if (unlikely(napi_disable_pending(n))) 2427 __napi_complete(n); 2428 else 2429 list_move_tail(&n->poll_list, list); 2430 } 2431 2432 netpoll_poll_unlock(have); 2433 } 2434 out: 2435 local_irq_enable(); 2436 2437 #ifdef CONFIG_NET_DMA 2438 /* 2439 * There may not be any more sk_buffs coming right now, so push 2440 * any pending DMA copies to hardware 2441 */ 2442 if (!cpus_empty(net_dma.channel_mask)) { 2443 int chan_idx; 2444 for_each_cpu_mask_nr(chan_idx, net_dma.channel_mask) { 2445 struct dma_chan *chan = net_dma.channels[chan_idx]; 2446 if (chan) 2447 dma_async_memcpy_issue_pending(chan); 2448 } 2449 } 2450 #endif 2451 2452 return; 2453 2454 softnet_break: 2455 __get_cpu_var(netdev_rx_stat).time_squeeze++; 2456 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2457 goto out; 2458 } 2459 2460 static gifconf_func_t * gifconf_list [NPROTO]; 2461 2462 /** 2463 * register_gifconf - register a SIOCGIF handler 2464 * @family: Address family 2465 * @gifconf: Function handler 2466 * 2467 * Register protocol dependent address dumping routines. The handler 2468 * that is passed must not be freed or reused until it has been replaced 2469 * by another handler. 2470 */ 2471 int register_gifconf(unsigned int family, gifconf_func_t * gifconf) 2472 { 2473 if (family >= NPROTO) 2474 return -EINVAL; 2475 gifconf_list[family] = gifconf; 2476 return 0; 2477 } 2478 2479 2480 /* 2481 * Map an interface index to its name (SIOCGIFNAME) 2482 */ 2483 2484 /* 2485 * We need this ioctl for efficient implementation of the 2486 * if_indextoname() function required by the IPv6 API. Without 2487 * it, we would have to search all the interfaces to find a 2488 * match. --pb 2489 */ 2490 2491 static int dev_ifname(struct net *net, struct ifreq __user *arg) 2492 { 2493 struct net_device *dev; 2494 struct ifreq ifr; 2495 2496 /* 2497 * Fetch the caller's info block. 2498 */ 2499 2500 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2501 return -EFAULT; 2502 2503 read_lock(&dev_base_lock); 2504 dev = __dev_get_by_index(net, ifr.ifr_ifindex); 2505 if (!dev) { 2506 read_unlock(&dev_base_lock); 2507 return -ENODEV; 2508 } 2509 2510 strcpy(ifr.ifr_name, dev->name); 2511 read_unlock(&dev_base_lock); 2512 2513 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 2514 return -EFAULT; 2515 return 0; 2516 } 2517 2518 /* 2519 * Perform a SIOCGIFCONF call. This structure will change 2520 * size eventually, and there is nothing I can do about it. 2521 * Thus we will need a 'compatibility mode'. 2522 */ 2523 2524 static int dev_ifconf(struct net *net, char __user *arg) 2525 { 2526 struct ifconf ifc; 2527 struct net_device *dev; 2528 char __user *pos; 2529 int len; 2530 int total; 2531 int i; 2532 2533 /* 2534 * Fetch the caller's info block. 2535 */ 2536 2537 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 2538 return -EFAULT; 2539 2540 pos = ifc.ifc_buf; 2541 len = ifc.ifc_len; 2542 2543 /* 2544 * Loop over the interfaces, and write an info block for each. 2545 */ 2546 2547 total = 0; 2548 for_each_netdev(net, dev) { 2549 for (i = 0; i < NPROTO; i++) { 2550 if (gifconf_list[i]) { 2551 int done; 2552 if (!pos) 2553 done = gifconf_list[i](dev, NULL, 0); 2554 else 2555 done = gifconf_list[i](dev, pos + total, 2556 len - total); 2557 if (done < 0) 2558 return -EFAULT; 2559 total += done; 2560 } 2561 } 2562 } 2563 2564 /* 2565 * All done. Write the updated control block back to the caller. 2566 */ 2567 ifc.ifc_len = total; 2568 2569 /* 2570 * Both BSD and Solaris return 0 here, so we do too. 2571 */ 2572 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 2573 } 2574 2575 #ifdef CONFIG_PROC_FS 2576 /* 2577 * This is invoked by the /proc filesystem handler to display a device 2578 * in detail. 2579 */ 2580 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 2581 __acquires(dev_base_lock) 2582 { 2583 struct net *net = seq_file_net(seq); 2584 loff_t off; 2585 struct net_device *dev; 2586 2587 read_lock(&dev_base_lock); 2588 if (!*pos) 2589 return SEQ_START_TOKEN; 2590 2591 off = 1; 2592 for_each_netdev(net, dev) 2593 if (off++ == *pos) 2594 return dev; 2595 2596 return NULL; 2597 } 2598 2599 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2600 { 2601 struct net *net = seq_file_net(seq); 2602 ++*pos; 2603 return v == SEQ_START_TOKEN ? 2604 first_net_device(net) : next_net_device((struct net_device *)v); 2605 } 2606 2607 void dev_seq_stop(struct seq_file *seq, void *v) 2608 __releases(dev_base_lock) 2609 { 2610 read_unlock(&dev_base_lock); 2611 } 2612 2613 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 2614 { 2615 struct net_device_stats *stats = dev->get_stats(dev); 2616 2617 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 2618 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 2619 dev->name, stats->rx_bytes, stats->rx_packets, 2620 stats->rx_errors, 2621 stats->rx_dropped + stats->rx_missed_errors, 2622 stats->rx_fifo_errors, 2623 stats->rx_length_errors + stats->rx_over_errors + 2624 stats->rx_crc_errors + stats->rx_frame_errors, 2625 stats->rx_compressed, stats->multicast, 2626 stats->tx_bytes, stats->tx_packets, 2627 stats->tx_errors, stats->tx_dropped, 2628 stats->tx_fifo_errors, stats->collisions, 2629 stats->tx_carrier_errors + 2630 stats->tx_aborted_errors + 2631 stats->tx_window_errors + 2632 stats->tx_heartbeat_errors, 2633 stats->tx_compressed); 2634 } 2635 2636 /* 2637 * Called from the PROCfs module. This now uses the new arbitrary sized 2638 * /proc/net interface to create /proc/net/dev 2639 */ 2640 static int dev_seq_show(struct seq_file *seq, void *v) 2641 { 2642 if (v == SEQ_START_TOKEN) 2643 seq_puts(seq, "Inter-| Receive " 2644 " | Transmit\n" 2645 " face |bytes packets errs drop fifo frame " 2646 "compressed multicast|bytes packets errs " 2647 "drop fifo colls carrier compressed\n"); 2648 else 2649 dev_seq_printf_stats(seq, v); 2650 return 0; 2651 } 2652 2653 static struct netif_rx_stats *softnet_get_online(loff_t *pos) 2654 { 2655 struct netif_rx_stats *rc = NULL; 2656 2657 while (*pos < nr_cpu_ids) 2658 if (cpu_online(*pos)) { 2659 rc = &per_cpu(netdev_rx_stat, *pos); 2660 break; 2661 } else 2662 ++*pos; 2663 return rc; 2664 } 2665 2666 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 2667 { 2668 return softnet_get_online(pos); 2669 } 2670 2671 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2672 { 2673 ++*pos; 2674 return softnet_get_online(pos); 2675 } 2676 2677 static void softnet_seq_stop(struct seq_file *seq, void *v) 2678 { 2679 } 2680 2681 static int softnet_seq_show(struct seq_file *seq, void *v) 2682 { 2683 struct netif_rx_stats *s = v; 2684 2685 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 2686 s->total, s->dropped, s->time_squeeze, 0, 2687 0, 0, 0, 0, /* was fastroute */ 2688 s->cpu_collision ); 2689 return 0; 2690 } 2691 2692 static const struct seq_operations dev_seq_ops = { 2693 .start = dev_seq_start, 2694 .next = dev_seq_next, 2695 .stop = dev_seq_stop, 2696 .show = dev_seq_show, 2697 }; 2698 2699 static int dev_seq_open(struct inode *inode, struct file *file) 2700 { 2701 return seq_open_net(inode, file, &dev_seq_ops, 2702 sizeof(struct seq_net_private)); 2703 } 2704 2705 static const struct file_operations dev_seq_fops = { 2706 .owner = THIS_MODULE, 2707 .open = dev_seq_open, 2708 .read = seq_read, 2709 .llseek = seq_lseek, 2710 .release = seq_release_net, 2711 }; 2712 2713 static const struct seq_operations softnet_seq_ops = { 2714 .start = softnet_seq_start, 2715 .next = softnet_seq_next, 2716 .stop = softnet_seq_stop, 2717 .show = softnet_seq_show, 2718 }; 2719 2720 static int softnet_seq_open(struct inode *inode, struct file *file) 2721 { 2722 return seq_open(file, &softnet_seq_ops); 2723 } 2724 2725 static const struct file_operations softnet_seq_fops = { 2726 .owner = THIS_MODULE, 2727 .open = softnet_seq_open, 2728 .read = seq_read, 2729 .llseek = seq_lseek, 2730 .release = seq_release, 2731 }; 2732 2733 static void *ptype_get_idx(loff_t pos) 2734 { 2735 struct packet_type *pt = NULL; 2736 loff_t i = 0; 2737 int t; 2738 2739 list_for_each_entry_rcu(pt, &ptype_all, list) { 2740 if (i == pos) 2741 return pt; 2742 ++i; 2743 } 2744 2745 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 2746 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 2747 if (i == pos) 2748 return pt; 2749 ++i; 2750 } 2751 } 2752 return NULL; 2753 } 2754 2755 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 2756 __acquires(RCU) 2757 { 2758 rcu_read_lock(); 2759 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 2760 } 2761 2762 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2763 { 2764 struct packet_type *pt; 2765 struct list_head *nxt; 2766 int hash; 2767 2768 ++*pos; 2769 if (v == SEQ_START_TOKEN) 2770 return ptype_get_idx(0); 2771 2772 pt = v; 2773 nxt = pt->list.next; 2774 if (pt->type == htons(ETH_P_ALL)) { 2775 if (nxt != &ptype_all) 2776 goto found; 2777 hash = 0; 2778 nxt = ptype_base[0].next; 2779 } else 2780 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 2781 2782 while (nxt == &ptype_base[hash]) { 2783 if (++hash >= PTYPE_HASH_SIZE) 2784 return NULL; 2785 nxt = ptype_base[hash].next; 2786 } 2787 found: 2788 return list_entry(nxt, struct packet_type, list); 2789 } 2790 2791 static void ptype_seq_stop(struct seq_file *seq, void *v) 2792 __releases(RCU) 2793 { 2794 rcu_read_unlock(); 2795 } 2796 2797 static void ptype_seq_decode(struct seq_file *seq, void *sym) 2798 { 2799 #ifdef CONFIG_KALLSYMS 2800 unsigned long offset = 0, symsize; 2801 const char *symname; 2802 char *modname; 2803 char namebuf[128]; 2804 2805 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset, 2806 &modname, namebuf); 2807 2808 if (symname) { 2809 char *delim = ":"; 2810 2811 if (!modname) 2812 modname = delim = ""; 2813 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim, 2814 symname, offset); 2815 return; 2816 } 2817 #endif 2818 2819 seq_printf(seq, "[%p]", sym); 2820 } 2821 2822 static int ptype_seq_show(struct seq_file *seq, void *v) 2823 { 2824 struct packet_type *pt = v; 2825 2826 if (v == SEQ_START_TOKEN) 2827 seq_puts(seq, "Type Device Function\n"); 2828 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 2829 if (pt->type == htons(ETH_P_ALL)) 2830 seq_puts(seq, "ALL "); 2831 else 2832 seq_printf(seq, "%04x", ntohs(pt->type)); 2833 2834 seq_printf(seq, " %-8s ", 2835 pt->dev ? pt->dev->name : ""); 2836 ptype_seq_decode(seq, pt->func); 2837 seq_putc(seq, '\n'); 2838 } 2839 2840 return 0; 2841 } 2842 2843 static const struct seq_operations ptype_seq_ops = { 2844 .start = ptype_seq_start, 2845 .next = ptype_seq_next, 2846 .stop = ptype_seq_stop, 2847 .show = ptype_seq_show, 2848 }; 2849 2850 static int ptype_seq_open(struct inode *inode, struct file *file) 2851 { 2852 return seq_open_net(inode, file, &ptype_seq_ops, 2853 sizeof(struct seq_net_private)); 2854 } 2855 2856 static const struct file_operations ptype_seq_fops = { 2857 .owner = THIS_MODULE, 2858 .open = ptype_seq_open, 2859 .read = seq_read, 2860 .llseek = seq_lseek, 2861 .release = seq_release_net, 2862 }; 2863 2864 2865 static int __net_init dev_proc_net_init(struct net *net) 2866 { 2867 int rc = -ENOMEM; 2868 2869 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 2870 goto out; 2871 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 2872 goto out_dev; 2873 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 2874 goto out_softnet; 2875 2876 if (wext_proc_init(net)) 2877 goto out_ptype; 2878 rc = 0; 2879 out: 2880 return rc; 2881 out_ptype: 2882 proc_net_remove(net, "ptype"); 2883 out_softnet: 2884 proc_net_remove(net, "softnet_stat"); 2885 out_dev: 2886 proc_net_remove(net, "dev"); 2887 goto out; 2888 } 2889 2890 static void __net_exit dev_proc_net_exit(struct net *net) 2891 { 2892 wext_proc_exit(net); 2893 2894 proc_net_remove(net, "ptype"); 2895 proc_net_remove(net, "softnet_stat"); 2896 proc_net_remove(net, "dev"); 2897 } 2898 2899 static struct pernet_operations __net_initdata dev_proc_ops = { 2900 .init = dev_proc_net_init, 2901 .exit = dev_proc_net_exit, 2902 }; 2903 2904 static int __init dev_proc_init(void) 2905 { 2906 return register_pernet_subsys(&dev_proc_ops); 2907 } 2908 #else 2909 #define dev_proc_init() 0 2910 #endif /* CONFIG_PROC_FS */ 2911 2912 2913 /** 2914 * netdev_set_master - set up master/slave pair 2915 * @slave: slave device 2916 * @master: new master device 2917 * 2918 * Changes the master device of the slave. Pass %NULL to break the 2919 * bonding. The caller must hold the RTNL semaphore. On a failure 2920 * a negative errno code is returned. On success the reference counts 2921 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 2922 * function returns zero. 2923 */ 2924 int netdev_set_master(struct net_device *slave, struct net_device *master) 2925 { 2926 struct net_device *old = slave->master; 2927 2928 ASSERT_RTNL(); 2929 2930 if (master) { 2931 if (old) 2932 return -EBUSY; 2933 dev_hold(master); 2934 } 2935 2936 slave->master = master; 2937 2938 synchronize_net(); 2939 2940 if (old) 2941 dev_put(old); 2942 2943 if (master) 2944 slave->flags |= IFF_SLAVE; 2945 else 2946 slave->flags &= ~IFF_SLAVE; 2947 2948 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 2949 return 0; 2950 } 2951 2952 static void dev_change_rx_flags(struct net_device *dev, int flags) 2953 { 2954 if (dev->flags & IFF_UP && dev->change_rx_flags) 2955 dev->change_rx_flags(dev, flags); 2956 } 2957 2958 static int __dev_set_promiscuity(struct net_device *dev, int inc) 2959 { 2960 unsigned short old_flags = dev->flags; 2961 2962 ASSERT_RTNL(); 2963 2964 dev->flags |= IFF_PROMISC; 2965 dev->promiscuity += inc; 2966 if (dev->promiscuity == 0) { 2967 /* 2968 * Avoid overflow. 2969 * If inc causes overflow, untouch promisc and return error. 2970 */ 2971 if (inc < 0) 2972 dev->flags &= ~IFF_PROMISC; 2973 else { 2974 dev->promiscuity -= inc; 2975 printk(KERN_WARNING "%s: promiscuity touches roof, " 2976 "set promiscuity failed, promiscuity feature " 2977 "of device might be broken.\n", dev->name); 2978 return -EOVERFLOW; 2979 } 2980 } 2981 if (dev->flags != old_flags) { 2982 printk(KERN_INFO "device %s %s promiscuous mode\n", 2983 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 2984 "left"); 2985 if (audit_enabled) 2986 audit_log(current->audit_context, GFP_ATOMIC, 2987 AUDIT_ANOM_PROMISCUOUS, 2988 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 2989 dev->name, (dev->flags & IFF_PROMISC), 2990 (old_flags & IFF_PROMISC), 2991 audit_get_loginuid(current), 2992 current->uid, current->gid, 2993 audit_get_sessionid(current)); 2994 2995 dev_change_rx_flags(dev, IFF_PROMISC); 2996 } 2997 return 0; 2998 } 2999 3000 /** 3001 * dev_set_promiscuity - update promiscuity count on a device 3002 * @dev: device 3003 * @inc: modifier 3004 * 3005 * Add or remove promiscuity from a device. While the count in the device 3006 * remains above zero the interface remains promiscuous. Once it hits zero 3007 * the device reverts back to normal filtering operation. A negative inc 3008 * value is used to drop promiscuity on the device. 3009 * Return 0 if successful or a negative errno code on error. 3010 */ 3011 int dev_set_promiscuity(struct net_device *dev, int inc) 3012 { 3013 unsigned short old_flags = dev->flags; 3014 int err; 3015 3016 err = __dev_set_promiscuity(dev, inc); 3017 if (err < 0) 3018 return err; 3019 if (dev->flags != old_flags) 3020 dev_set_rx_mode(dev); 3021 return err; 3022 } 3023 3024 /** 3025 * dev_set_allmulti - update allmulti count on a device 3026 * @dev: device 3027 * @inc: modifier 3028 * 3029 * Add or remove reception of all multicast frames to a device. While the 3030 * count in the device remains above zero the interface remains listening 3031 * to all interfaces. Once it hits zero the device reverts back to normal 3032 * filtering operation. A negative @inc value is used to drop the counter 3033 * when releasing a resource needing all multicasts. 3034 * Return 0 if successful or a negative errno code on error. 3035 */ 3036 3037 int dev_set_allmulti(struct net_device *dev, int inc) 3038 { 3039 unsigned short old_flags = dev->flags; 3040 3041 ASSERT_RTNL(); 3042 3043 dev->flags |= IFF_ALLMULTI; 3044 dev->allmulti += inc; 3045 if (dev->allmulti == 0) { 3046 /* 3047 * Avoid overflow. 3048 * If inc causes overflow, untouch allmulti and return error. 3049 */ 3050 if (inc < 0) 3051 dev->flags &= ~IFF_ALLMULTI; 3052 else { 3053 dev->allmulti -= inc; 3054 printk(KERN_WARNING "%s: allmulti touches roof, " 3055 "set allmulti failed, allmulti feature of " 3056 "device might be broken.\n", dev->name); 3057 return -EOVERFLOW; 3058 } 3059 } 3060 if (dev->flags ^ old_flags) { 3061 dev_change_rx_flags(dev, IFF_ALLMULTI); 3062 dev_set_rx_mode(dev); 3063 } 3064 return 0; 3065 } 3066 3067 /* 3068 * Upload unicast and multicast address lists to device and 3069 * configure RX filtering. When the device doesn't support unicast 3070 * filtering it is put in promiscuous mode while unicast addresses 3071 * are present. 3072 */ 3073 void __dev_set_rx_mode(struct net_device *dev) 3074 { 3075 /* dev_open will call this function so the list will stay sane. */ 3076 if (!(dev->flags&IFF_UP)) 3077 return; 3078 3079 if (!netif_device_present(dev)) 3080 return; 3081 3082 if (dev->set_rx_mode) 3083 dev->set_rx_mode(dev); 3084 else { 3085 /* Unicast addresses changes may only happen under the rtnl, 3086 * therefore calling __dev_set_promiscuity here is safe. 3087 */ 3088 if (dev->uc_count > 0 && !dev->uc_promisc) { 3089 __dev_set_promiscuity(dev, 1); 3090 dev->uc_promisc = 1; 3091 } else if (dev->uc_count == 0 && dev->uc_promisc) { 3092 __dev_set_promiscuity(dev, -1); 3093 dev->uc_promisc = 0; 3094 } 3095 3096 if (dev->set_multicast_list) 3097 dev->set_multicast_list(dev); 3098 } 3099 } 3100 3101 void dev_set_rx_mode(struct net_device *dev) 3102 { 3103 netif_addr_lock_bh(dev); 3104 __dev_set_rx_mode(dev); 3105 netif_addr_unlock_bh(dev); 3106 } 3107 3108 int __dev_addr_delete(struct dev_addr_list **list, int *count, 3109 void *addr, int alen, int glbl) 3110 { 3111 struct dev_addr_list *da; 3112 3113 for (; (da = *list) != NULL; list = &da->next) { 3114 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 3115 alen == da->da_addrlen) { 3116 if (glbl) { 3117 int old_glbl = da->da_gusers; 3118 da->da_gusers = 0; 3119 if (old_glbl == 0) 3120 break; 3121 } 3122 if (--da->da_users) 3123 return 0; 3124 3125 *list = da->next; 3126 kfree(da); 3127 (*count)--; 3128 return 0; 3129 } 3130 } 3131 return -ENOENT; 3132 } 3133 3134 int __dev_addr_add(struct dev_addr_list **list, int *count, 3135 void *addr, int alen, int glbl) 3136 { 3137 struct dev_addr_list *da; 3138 3139 for (da = *list; da != NULL; da = da->next) { 3140 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 3141 da->da_addrlen == alen) { 3142 if (glbl) { 3143 int old_glbl = da->da_gusers; 3144 da->da_gusers = 1; 3145 if (old_glbl) 3146 return 0; 3147 } 3148 da->da_users++; 3149 return 0; 3150 } 3151 } 3152 3153 da = kzalloc(sizeof(*da), GFP_ATOMIC); 3154 if (da == NULL) 3155 return -ENOMEM; 3156 memcpy(da->da_addr, addr, alen); 3157 da->da_addrlen = alen; 3158 da->da_users = 1; 3159 da->da_gusers = glbl ? 1 : 0; 3160 da->next = *list; 3161 *list = da; 3162 (*count)++; 3163 return 0; 3164 } 3165 3166 /** 3167 * dev_unicast_delete - Release secondary unicast address. 3168 * @dev: device 3169 * @addr: address to delete 3170 * @alen: length of @addr 3171 * 3172 * Release reference to a secondary unicast address and remove it 3173 * from the device if the reference count drops to zero. 3174 * 3175 * The caller must hold the rtnl_mutex. 3176 */ 3177 int dev_unicast_delete(struct net_device *dev, void *addr, int alen) 3178 { 3179 int err; 3180 3181 ASSERT_RTNL(); 3182 3183 netif_addr_lock_bh(dev); 3184 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0); 3185 if (!err) 3186 __dev_set_rx_mode(dev); 3187 netif_addr_unlock_bh(dev); 3188 return err; 3189 } 3190 EXPORT_SYMBOL(dev_unicast_delete); 3191 3192 /** 3193 * dev_unicast_add - add a secondary unicast address 3194 * @dev: device 3195 * @addr: address to add 3196 * @alen: length of @addr 3197 * 3198 * Add a secondary unicast address to the device or increase 3199 * the reference count if it already exists. 3200 * 3201 * The caller must hold the rtnl_mutex. 3202 */ 3203 int dev_unicast_add(struct net_device *dev, void *addr, int alen) 3204 { 3205 int err; 3206 3207 ASSERT_RTNL(); 3208 3209 netif_addr_lock_bh(dev); 3210 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0); 3211 if (!err) 3212 __dev_set_rx_mode(dev); 3213 netif_addr_unlock_bh(dev); 3214 return err; 3215 } 3216 EXPORT_SYMBOL(dev_unicast_add); 3217 3218 int __dev_addr_sync(struct dev_addr_list **to, int *to_count, 3219 struct dev_addr_list **from, int *from_count) 3220 { 3221 struct dev_addr_list *da, *next; 3222 int err = 0; 3223 3224 da = *from; 3225 while (da != NULL) { 3226 next = da->next; 3227 if (!da->da_synced) { 3228 err = __dev_addr_add(to, to_count, 3229 da->da_addr, da->da_addrlen, 0); 3230 if (err < 0) 3231 break; 3232 da->da_synced = 1; 3233 da->da_users++; 3234 } else if (da->da_users == 1) { 3235 __dev_addr_delete(to, to_count, 3236 da->da_addr, da->da_addrlen, 0); 3237 __dev_addr_delete(from, from_count, 3238 da->da_addr, da->da_addrlen, 0); 3239 } 3240 da = next; 3241 } 3242 return err; 3243 } 3244 3245 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count, 3246 struct dev_addr_list **from, int *from_count) 3247 { 3248 struct dev_addr_list *da, *next; 3249 3250 da = *from; 3251 while (da != NULL) { 3252 next = da->next; 3253 if (da->da_synced) { 3254 __dev_addr_delete(to, to_count, 3255 da->da_addr, da->da_addrlen, 0); 3256 da->da_synced = 0; 3257 __dev_addr_delete(from, from_count, 3258 da->da_addr, da->da_addrlen, 0); 3259 } 3260 da = next; 3261 } 3262 } 3263 3264 /** 3265 * dev_unicast_sync - Synchronize device's unicast list to another device 3266 * @to: destination device 3267 * @from: source device 3268 * 3269 * Add newly added addresses to the destination device and release 3270 * addresses that have no users left. The source device must be 3271 * locked by netif_tx_lock_bh. 3272 * 3273 * This function is intended to be called from the dev->set_rx_mode 3274 * function of layered software devices. 3275 */ 3276 int dev_unicast_sync(struct net_device *to, struct net_device *from) 3277 { 3278 int err = 0; 3279 3280 netif_addr_lock_bh(to); 3281 err = __dev_addr_sync(&to->uc_list, &to->uc_count, 3282 &from->uc_list, &from->uc_count); 3283 if (!err) 3284 __dev_set_rx_mode(to); 3285 netif_addr_unlock_bh(to); 3286 return err; 3287 } 3288 EXPORT_SYMBOL(dev_unicast_sync); 3289 3290 /** 3291 * dev_unicast_unsync - Remove synchronized addresses from the destination device 3292 * @to: destination device 3293 * @from: source device 3294 * 3295 * Remove all addresses that were added to the destination device by 3296 * dev_unicast_sync(). This function is intended to be called from the 3297 * dev->stop function of layered software devices. 3298 */ 3299 void dev_unicast_unsync(struct net_device *to, struct net_device *from) 3300 { 3301 netif_addr_lock_bh(from); 3302 netif_addr_lock(to); 3303 3304 __dev_addr_unsync(&to->uc_list, &to->uc_count, 3305 &from->uc_list, &from->uc_count); 3306 __dev_set_rx_mode(to); 3307 3308 netif_addr_unlock(to); 3309 netif_addr_unlock_bh(from); 3310 } 3311 EXPORT_SYMBOL(dev_unicast_unsync); 3312 3313 static void __dev_addr_discard(struct dev_addr_list **list) 3314 { 3315 struct dev_addr_list *tmp; 3316 3317 while (*list != NULL) { 3318 tmp = *list; 3319 *list = tmp->next; 3320 if (tmp->da_users > tmp->da_gusers) 3321 printk("__dev_addr_discard: address leakage! " 3322 "da_users=%d\n", tmp->da_users); 3323 kfree(tmp); 3324 } 3325 } 3326 3327 static void dev_addr_discard(struct net_device *dev) 3328 { 3329 netif_addr_lock_bh(dev); 3330 3331 __dev_addr_discard(&dev->uc_list); 3332 dev->uc_count = 0; 3333 3334 __dev_addr_discard(&dev->mc_list); 3335 dev->mc_count = 0; 3336 3337 netif_addr_unlock_bh(dev); 3338 } 3339 3340 /** 3341 * dev_get_flags - get flags reported to userspace 3342 * @dev: device 3343 * 3344 * Get the combination of flag bits exported through APIs to userspace. 3345 */ 3346 unsigned dev_get_flags(const struct net_device *dev) 3347 { 3348 unsigned flags; 3349 3350 flags = (dev->flags & ~(IFF_PROMISC | 3351 IFF_ALLMULTI | 3352 IFF_RUNNING | 3353 IFF_LOWER_UP | 3354 IFF_DORMANT)) | 3355 (dev->gflags & (IFF_PROMISC | 3356 IFF_ALLMULTI)); 3357 3358 if (netif_running(dev)) { 3359 if (netif_oper_up(dev)) 3360 flags |= IFF_RUNNING; 3361 if (netif_carrier_ok(dev)) 3362 flags |= IFF_LOWER_UP; 3363 if (netif_dormant(dev)) 3364 flags |= IFF_DORMANT; 3365 } 3366 3367 return flags; 3368 } 3369 3370 /** 3371 * dev_change_flags - change device settings 3372 * @dev: device 3373 * @flags: device state flags 3374 * 3375 * Change settings on device based state flags. The flags are 3376 * in the userspace exported format. 3377 */ 3378 int dev_change_flags(struct net_device *dev, unsigned flags) 3379 { 3380 int ret, changes; 3381 int old_flags = dev->flags; 3382 3383 ASSERT_RTNL(); 3384 3385 /* 3386 * Set the flags on our device. 3387 */ 3388 3389 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 3390 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 3391 IFF_AUTOMEDIA)) | 3392 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 3393 IFF_ALLMULTI)); 3394 3395 /* 3396 * Load in the correct multicast list now the flags have changed. 3397 */ 3398 3399 if ((old_flags ^ flags) & IFF_MULTICAST) 3400 dev_change_rx_flags(dev, IFF_MULTICAST); 3401 3402 dev_set_rx_mode(dev); 3403 3404 /* 3405 * Have we downed the interface. We handle IFF_UP ourselves 3406 * according to user attempts to set it, rather than blindly 3407 * setting it. 3408 */ 3409 3410 ret = 0; 3411 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 3412 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev); 3413 3414 if (!ret) 3415 dev_set_rx_mode(dev); 3416 } 3417 3418 if (dev->flags & IFF_UP && 3419 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI | 3420 IFF_VOLATILE))) 3421 call_netdevice_notifiers(NETDEV_CHANGE, dev); 3422 3423 if ((flags ^ dev->gflags) & IFF_PROMISC) { 3424 int inc = (flags & IFF_PROMISC) ? +1 : -1; 3425 dev->gflags ^= IFF_PROMISC; 3426 dev_set_promiscuity(dev, inc); 3427 } 3428 3429 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 3430 is important. Some (broken) drivers set IFF_PROMISC, when 3431 IFF_ALLMULTI is requested not asking us and not reporting. 3432 */ 3433 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 3434 int inc = (flags & IFF_ALLMULTI) ? +1 : -1; 3435 dev->gflags ^= IFF_ALLMULTI; 3436 dev_set_allmulti(dev, inc); 3437 } 3438 3439 /* Exclude state transition flags, already notified */ 3440 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING); 3441 if (changes) 3442 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 3443 3444 return ret; 3445 } 3446 3447 /** 3448 * dev_set_mtu - Change maximum transfer unit 3449 * @dev: device 3450 * @new_mtu: new transfer unit 3451 * 3452 * Change the maximum transfer size of the network device. 3453 */ 3454 int dev_set_mtu(struct net_device *dev, int new_mtu) 3455 { 3456 int err; 3457 3458 if (new_mtu == dev->mtu) 3459 return 0; 3460 3461 /* MTU must be positive. */ 3462 if (new_mtu < 0) 3463 return -EINVAL; 3464 3465 if (!netif_device_present(dev)) 3466 return -ENODEV; 3467 3468 err = 0; 3469 if (dev->change_mtu) 3470 err = dev->change_mtu(dev, new_mtu); 3471 else 3472 dev->mtu = new_mtu; 3473 if (!err && dev->flags & IFF_UP) 3474 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 3475 return err; 3476 } 3477 3478 /** 3479 * dev_set_mac_address - Change Media Access Control Address 3480 * @dev: device 3481 * @sa: new address 3482 * 3483 * Change the hardware (MAC) address of the device 3484 */ 3485 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 3486 { 3487 int err; 3488 3489 if (!dev->set_mac_address) 3490 return -EOPNOTSUPP; 3491 if (sa->sa_family != dev->type) 3492 return -EINVAL; 3493 if (!netif_device_present(dev)) 3494 return -ENODEV; 3495 err = dev->set_mac_address(dev, sa); 3496 if (!err) 3497 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3498 return err; 3499 } 3500 3501 /* 3502 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock) 3503 */ 3504 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 3505 { 3506 int err; 3507 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3508 3509 if (!dev) 3510 return -ENODEV; 3511 3512 switch (cmd) { 3513 case SIOCGIFFLAGS: /* Get interface flags */ 3514 ifr->ifr_flags = dev_get_flags(dev); 3515 return 0; 3516 3517 case SIOCGIFMETRIC: /* Get the metric on the interface 3518 (currently unused) */ 3519 ifr->ifr_metric = 0; 3520 return 0; 3521 3522 case SIOCGIFMTU: /* Get the MTU of a device */ 3523 ifr->ifr_mtu = dev->mtu; 3524 return 0; 3525 3526 case SIOCGIFHWADDR: 3527 if (!dev->addr_len) 3528 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 3529 else 3530 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 3531 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3532 ifr->ifr_hwaddr.sa_family = dev->type; 3533 return 0; 3534 3535 case SIOCGIFSLAVE: 3536 err = -EINVAL; 3537 break; 3538 3539 case SIOCGIFMAP: 3540 ifr->ifr_map.mem_start = dev->mem_start; 3541 ifr->ifr_map.mem_end = dev->mem_end; 3542 ifr->ifr_map.base_addr = dev->base_addr; 3543 ifr->ifr_map.irq = dev->irq; 3544 ifr->ifr_map.dma = dev->dma; 3545 ifr->ifr_map.port = dev->if_port; 3546 return 0; 3547 3548 case SIOCGIFINDEX: 3549 ifr->ifr_ifindex = dev->ifindex; 3550 return 0; 3551 3552 case SIOCGIFTXQLEN: 3553 ifr->ifr_qlen = dev->tx_queue_len; 3554 return 0; 3555 3556 default: 3557 /* dev_ioctl() should ensure this case 3558 * is never reached 3559 */ 3560 WARN_ON(1); 3561 err = -EINVAL; 3562 break; 3563 3564 } 3565 return err; 3566 } 3567 3568 /* 3569 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 3570 */ 3571 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 3572 { 3573 int err; 3574 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3575 3576 if (!dev) 3577 return -ENODEV; 3578 3579 switch (cmd) { 3580 case SIOCSIFFLAGS: /* Set interface flags */ 3581 return dev_change_flags(dev, ifr->ifr_flags); 3582 3583 case SIOCSIFMETRIC: /* Set the metric on the interface 3584 (currently unused) */ 3585 return -EOPNOTSUPP; 3586 3587 case SIOCSIFMTU: /* Set the MTU of a device */ 3588 return dev_set_mtu(dev, ifr->ifr_mtu); 3589 3590 case SIOCSIFHWADDR: 3591 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 3592 3593 case SIOCSIFHWBROADCAST: 3594 if (ifr->ifr_hwaddr.sa_family != dev->type) 3595 return -EINVAL; 3596 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 3597 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3598 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3599 return 0; 3600 3601 case SIOCSIFMAP: 3602 if (dev->set_config) { 3603 if (!netif_device_present(dev)) 3604 return -ENODEV; 3605 return dev->set_config(dev, &ifr->ifr_map); 3606 } 3607 return -EOPNOTSUPP; 3608 3609 case SIOCADDMULTI: 3610 if ((!dev->set_multicast_list && !dev->set_rx_mode) || 3611 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3612 return -EINVAL; 3613 if (!netif_device_present(dev)) 3614 return -ENODEV; 3615 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 3616 dev->addr_len, 1); 3617 3618 case SIOCDELMULTI: 3619 if ((!dev->set_multicast_list && !dev->set_rx_mode) || 3620 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3621 return -EINVAL; 3622 if (!netif_device_present(dev)) 3623 return -ENODEV; 3624 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 3625 dev->addr_len, 1); 3626 3627 case SIOCSIFTXQLEN: 3628 if (ifr->ifr_qlen < 0) 3629 return -EINVAL; 3630 dev->tx_queue_len = ifr->ifr_qlen; 3631 return 0; 3632 3633 case SIOCSIFNAME: 3634 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 3635 return dev_change_name(dev, ifr->ifr_newname); 3636 3637 /* 3638 * Unknown or private ioctl 3639 */ 3640 3641 default: 3642 if ((cmd >= SIOCDEVPRIVATE && 3643 cmd <= SIOCDEVPRIVATE + 15) || 3644 cmd == SIOCBONDENSLAVE || 3645 cmd == SIOCBONDRELEASE || 3646 cmd == SIOCBONDSETHWADDR || 3647 cmd == SIOCBONDSLAVEINFOQUERY || 3648 cmd == SIOCBONDINFOQUERY || 3649 cmd == SIOCBONDCHANGEACTIVE || 3650 cmd == SIOCGMIIPHY || 3651 cmd == SIOCGMIIREG || 3652 cmd == SIOCSMIIREG || 3653 cmd == SIOCBRADDIF || 3654 cmd == SIOCBRDELIF || 3655 cmd == SIOCWANDEV) { 3656 err = -EOPNOTSUPP; 3657 if (dev->do_ioctl) { 3658 if (netif_device_present(dev)) 3659 err = dev->do_ioctl(dev, ifr, 3660 cmd); 3661 else 3662 err = -ENODEV; 3663 } 3664 } else 3665 err = -EINVAL; 3666 3667 } 3668 return err; 3669 } 3670 3671 /* 3672 * This function handles all "interface"-type I/O control requests. The actual 3673 * 'doing' part of this is dev_ifsioc above. 3674 */ 3675 3676 /** 3677 * dev_ioctl - network device ioctl 3678 * @net: the applicable net namespace 3679 * @cmd: command to issue 3680 * @arg: pointer to a struct ifreq in user space 3681 * 3682 * Issue ioctl functions to devices. This is normally called by the 3683 * user space syscall interfaces but can sometimes be useful for 3684 * other purposes. The return value is the return from the syscall if 3685 * positive or a negative errno code on error. 3686 */ 3687 3688 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 3689 { 3690 struct ifreq ifr; 3691 int ret; 3692 char *colon; 3693 3694 /* One special case: SIOCGIFCONF takes ifconf argument 3695 and requires shared lock, because it sleeps writing 3696 to user space. 3697 */ 3698 3699 if (cmd == SIOCGIFCONF) { 3700 rtnl_lock(); 3701 ret = dev_ifconf(net, (char __user *) arg); 3702 rtnl_unlock(); 3703 return ret; 3704 } 3705 if (cmd == SIOCGIFNAME) 3706 return dev_ifname(net, (struct ifreq __user *)arg); 3707 3708 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3709 return -EFAULT; 3710 3711 ifr.ifr_name[IFNAMSIZ-1] = 0; 3712 3713 colon = strchr(ifr.ifr_name, ':'); 3714 if (colon) 3715 *colon = 0; 3716 3717 /* 3718 * See which interface the caller is talking about. 3719 */ 3720 3721 switch (cmd) { 3722 /* 3723 * These ioctl calls: 3724 * - can be done by all. 3725 * - atomic and do not require locking. 3726 * - return a value 3727 */ 3728 case SIOCGIFFLAGS: 3729 case SIOCGIFMETRIC: 3730 case SIOCGIFMTU: 3731 case SIOCGIFHWADDR: 3732 case SIOCGIFSLAVE: 3733 case SIOCGIFMAP: 3734 case SIOCGIFINDEX: 3735 case SIOCGIFTXQLEN: 3736 dev_load(net, ifr.ifr_name); 3737 read_lock(&dev_base_lock); 3738 ret = dev_ifsioc_locked(net, &ifr, cmd); 3739 read_unlock(&dev_base_lock); 3740 if (!ret) { 3741 if (colon) 3742 *colon = ':'; 3743 if (copy_to_user(arg, &ifr, 3744 sizeof(struct ifreq))) 3745 ret = -EFAULT; 3746 } 3747 return ret; 3748 3749 case SIOCETHTOOL: 3750 dev_load(net, ifr.ifr_name); 3751 rtnl_lock(); 3752 ret = dev_ethtool(net, &ifr); 3753 rtnl_unlock(); 3754 if (!ret) { 3755 if (colon) 3756 *colon = ':'; 3757 if (copy_to_user(arg, &ifr, 3758 sizeof(struct ifreq))) 3759 ret = -EFAULT; 3760 } 3761 return ret; 3762 3763 /* 3764 * These ioctl calls: 3765 * - require superuser power. 3766 * - require strict serialization. 3767 * - return a value 3768 */ 3769 case SIOCGMIIPHY: 3770 case SIOCGMIIREG: 3771 case SIOCSIFNAME: 3772 if (!capable(CAP_NET_ADMIN)) 3773 return -EPERM; 3774 dev_load(net, ifr.ifr_name); 3775 rtnl_lock(); 3776 ret = dev_ifsioc(net, &ifr, cmd); 3777 rtnl_unlock(); 3778 if (!ret) { 3779 if (colon) 3780 *colon = ':'; 3781 if (copy_to_user(arg, &ifr, 3782 sizeof(struct ifreq))) 3783 ret = -EFAULT; 3784 } 3785 return ret; 3786 3787 /* 3788 * These ioctl calls: 3789 * - require superuser power. 3790 * - require strict serialization. 3791 * - do not return a value 3792 */ 3793 case SIOCSIFFLAGS: 3794 case SIOCSIFMETRIC: 3795 case SIOCSIFMTU: 3796 case SIOCSIFMAP: 3797 case SIOCSIFHWADDR: 3798 case SIOCSIFSLAVE: 3799 case SIOCADDMULTI: 3800 case SIOCDELMULTI: 3801 case SIOCSIFHWBROADCAST: 3802 case SIOCSIFTXQLEN: 3803 case SIOCSMIIREG: 3804 case SIOCBONDENSLAVE: 3805 case SIOCBONDRELEASE: 3806 case SIOCBONDSETHWADDR: 3807 case SIOCBONDCHANGEACTIVE: 3808 case SIOCBRADDIF: 3809 case SIOCBRDELIF: 3810 if (!capable(CAP_NET_ADMIN)) 3811 return -EPERM; 3812 /* fall through */ 3813 case SIOCBONDSLAVEINFOQUERY: 3814 case SIOCBONDINFOQUERY: 3815 dev_load(net, ifr.ifr_name); 3816 rtnl_lock(); 3817 ret = dev_ifsioc(net, &ifr, cmd); 3818 rtnl_unlock(); 3819 return ret; 3820 3821 case SIOCGIFMEM: 3822 /* Get the per device memory space. We can add this but 3823 * currently do not support it */ 3824 case SIOCSIFMEM: 3825 /* Set the per device memory buffer space. 3826 * Not applicable in our case */ 3827 case SIOCSIFLINK: 3828 return -EINVAL; 3829 3830 /* 3831 * Unknown or private ioctl. 3832 */ 3833 default: 3834 if (cmd == SIOCWANDEV || 3835 (cmd >= SIOCDEVPRIVATE && 3836 cmd <= SIOCDEVPRIVATE + 15)) { 3837 dev_load(net, ifr.ifr_name); 3838 rtnl_lock(); 3839 ret = dev_ifsioc(net, &ifr, cmd); 3840 rtnl_unlock(); 3841 if (!ret && copy_to_user(arg, &ifr, 3842 sizeof(struct ifreq))) 3843 ret = -EFAULT; 3844 return ret; 3845 } 3846 /* Take care of Wireless Extensions */ 3847 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 3848 return wext_handle_ioctl(net, &ifr, cmd, arg); 3849 return -EINVAL; 3850 } 3851 } 3852 3853 3854 /** 3855 * dev_new_index - allocate an ifindex 3856 * @net: the applicable net namespace 3857 * 3858 * Returns a suitable unique value for a new device interface 3859 * number. The caller must hold the rtnl semaphore or the 3860 * dev_base_lock to be sure it remains unique. 3861 */ 3862 static int dev_new_index(struct net *net) 3863 { 3864 static int ifindex; 3865 for (;;) { 3866 if (++ifindex <= 0) 3867 ifindex = 1; 3868 if (!__dev_get_by_index(net, ifindex)) 3869 return ifindex; 3870 } 3871 } 3872 3873 /* Delayed registration/unregisteration */ 3874 static LIST_HEAD(net_todo_list); 3875 3876 static void net_set_todo(struct net_device *dev) 3877 { 3878 list_add_tail(&dev->todo_list, &net_todo_list); 3879 } 3880 3881 static void rollback_registered(struct net_device *dev) 3882 { 3883 BUG_ON(dev_boot_phase); 3884 ASSERT_RTNL(); 3885 3886 /* Some devices call without registering for initialization unwind. */ 3887 if (dev->reg_state == NETREG_UNINITIALIZED) { 3888 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never " 3889 "was registered\n", dev->name, dev); 3890 3891 WARN_ON(1); 3892 return; 3893 } 3894 3895 BUG_ON(dev->reg_state != NETREG_REGISTERED); 3896 3897 /* If device is running, close it first. */ 3898 dev_close(dev); 3899 3900 /* And unlink it from device chain. */ 3901 unlist_netdevice(dev); 3902 3903 dev->reg_state = NETREG_UNREGISTERING; 3904 3905 synchronize_net(); 3906 3907 /* Shutdown queueing discipline. */ 3908 dev_shutdown(dev); 3909 3910 3911 /* Notify protocols, that we are about to destroy 3912 this device. They should clean all the things. 3913 */ 3914 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 3915 3916 /* 3917 * Flush the unicast and multicast chains 3918 */ 3919 dev_addr_discard(dev); 3920 3921 if (dev->uninit) 3922 dev->uninit(dev); 3923 3924 /* Notifier chain MUST detach us from master device. */ 3925 WARN_ON(dev->master); 3926 3927 /* Remove entries from kobject tree */ 3928 netdev_unregister_kobject(dev); 3929 3930 synchronize_net(); 3931 3932 dev_put(dev); 3933 } 3934 3935 static void __netdev_init_queue_locks_one(struct net_device *dev, 3936 struct netdev_queue *dev_queue, 3937 void *_unused) 3938 { 3939 spin_lock_init(&dev_queue->_xmit_lock); 3940 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type); 3941 dev_queue->xmit_lock_owner = -1; 3942 } 3943 3944 static void netdev_init_queue_locks(struct net_device *dev) 3945 { 3946 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL); 3947 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL); 3948 } 3949 3950 unsigned long netdev_fix_features(unsigned long features, const char *name) 3951 { 3952 /* Fix illegal SG+CSUM combinations. */ 3953 if ((features & NETIF_F_SG) && 3954 !(features & NETIF_F_ALL_CSUM)) { 3955 if (name) 3956 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no " 3957 "checksum feature.\n", name); 3958 features &= ~NETIF_F_SG; 3959 } 3960 3961 /* TSO requires that SG is present as well. */ 3962 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) { 3963 if (name) 3964 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no " 3965 "SG feature.\n", name); 3966 features &= ~NETIF_F_TSO; 3967 } 3968 3969 if (features & NETIF_F_UFO) { 3970 if (!(features & NETIF_F_GEN_CSUM)) { 3971 if (name) 3972 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 3973 "since no NETIF_F_HW_CSUM feature.\n", 3974 name); 3975 features &= ~NETIF_F_UFO; 3976 } 3977 3978 if (!(features & NETIF_F_SG)) { 3979 if (name) 3980 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 3981 "since no NETIF_F_SG feature.\n", name); 3982 features &= ~NETIF_F_UFO; 3983 } 3984 } 3985 3986 return features; 3987 } 3988 EXPORT_SYMBOL(netdev_fix_features); 3989 3990 /** 3991 * register_netdevice - register a network device 3992 * @dev: device to register 3993 * 3994 * Take a completed network device structure and add it to the kernel 3995 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 3996 * chain. 0 is returned on success. A negative errno code is returned 3997 * on a failure to set up the device, or if the name is a duplicate. 3998 * 3999 * Callers must hold the rtnl semaphore. You may want 4000 * register_netdev() instead of this. 4001 * 4002 * BUGS: 4003 * The locking appears insufficient to guarantee two parallel registers 4004 * will not get the same name. 4005 */ 4006 4007 int register_netdevice(struct net_device *dev) 4008 { 4009 struct hlist_head *head; 4010 struct hlist_node *p; 4011 int ret; 4012 struct net *net; 4013 4014 BUG_ON(dev_boot_phase); 4015 ASSERT_RTNL(); 4016 4017 might_sleep(); 4018 4019 /* When net_device's are persistent, this will be fatal. */ 4020 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 4021 BUG_ON(!dev_net(dev)); 4022 net = dev_net(dev); 4023 4024 spin_lock_init(&dev->addr_list_lock); 4025 netdev_set_addr_lockdep_class(dev); 4026 netdev_init_queue_locks(dev); 4027 4028 dev->iflink = -1; 4029 4030 /* Init, if this function is available */ 4031 if (dev->init) { 4032 ret = dev->init(dev); 4033 if (ret) { 4034 if (ret > 0) 4035 ret = -EIO; 4036 goto out; 4037 } 4038 } 4039 4040 if (!dev_valid_name(dev->name)) { 4041 ret = -EINVAL; 4042 goto err_uninit; 4043 } 4044 4045 dev->ifindex = dev_new_index(net); 4046 if (dev->iflink == -1) 4047 dev->iflink = dev->ifindex; 4048 4049 /* Check for existence of name */ 4050 head = dev_name_hash(net, dev->name); 4051 hlist_for_each(p, head) { 4052 struct net_device *d 4053 = hlist_entry(p, struct net_device, name_hlist); 4054 if (!strncmp(d->name, dev->name, IFNAMSIZ)) { 4055 ret = -EEXIST; 4056 goto err_uninit; 4057 } 4058 } 4059 4060 /* Fix illegal checksum combinations */ 4061 if ((dev->features & NETIF_F_HW_CSUM) && 4062 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 4063 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 4064 dev->name); 4065 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4066 } 4067 4068 if ((dev->features & NETIF_F_NO_CSUM) && 4069 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 4070 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 4071 dev->name); 4072 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 4073 } 4074 4075 dev->features = netdev_fix_features(dev->features, dev->name); 4076 4077 /* Enable software GSO if SG is supported. */ 4078 if (dev->features & NETIF_F_SG) 4079 dev->features |= NETIF_F_GSO; 4080 4081 netdev_initialize_kobject(dev); 4082 ret = netdev_register_kobject(dev); 4083 if (ret) 4084 goto err_uninit; 4085 dev->reg_state = NETREG_REGISTERED; 4086 4087 /* 4088 * Default initial state at registry is that the 4089 * device is present. 4090 */ 4091 4092 set_bit(__LINK_STATE_PRESENT, &dev->state); 4093 4094 dev_init_scheduler(dev); 4095 dev_hold(dev); 4096 list_netdevice(dev); 4097 4098 /* Notify protocols, that a new device appeared. */ 4099 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 4100 ret = notifier_to_errno(ret); 4101 if (ret) { 4102 rollback_registered(dev); 4103 dev->reg_state = NETREG_UNREGISTERED; 4104 } 4105 4106 out: 4107 return ret; 4108 4109 err_uninit: 4110 if (dev->uninit) 4111 dev->uninit(dev); 4112 goto out; 4113 } 4114 4115 /** 4116 * register_netdev - register a network device 4117 * @dev: device to register 4118 * 4119 * Take a completed network device structure and add it to the kernel 4120 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 4121 * chain. 0 is returned on success. A negative errno code is returned 4122 * on a failure to set up the device, or if the name is a duplicate. 4123 * 4124 * This is a wrapper around register_netdevice that takes the rtnl semaphore 4125 * and expands the device name if you passed a format string to 4126 * alloc_netdev. 4127 */ 4128 int register_netdev(struct net_device *dev) 4129 { 4130 int err; 4131 4132 rtnl_lock(); 4133 4134 /* 4135 * If the name is a format string the caller wants us to do a 4136 * name allocation. 4137 */ 4138 if (strchr(dev->name, '%')) { 4139 err = dev_alloc_name(dev, dev->name); 4140 if (err < 0) 4141 goto out; 4142 } 4143 4144 err = register_netdevice(dev); 4145 out: 4146 rtnl_unlock(); 4147 return err; 4148 } 4149 EXPORT_SYMBOL(register_netdev); 4150 4151 /* 4152 * netdev_wait_allrefs - wait until all references are gone. 4153 * 4154 * This is called when unregistering network devices. 4155 * 4156 * Any protocol or device that holds a reference should register 4157 * for netdevice notification, and cleanup and put back the 4158 * reference if they receive an UNREGISTER event. 4159 * We can get stuck here if buggy protocols don't correctly 4160 * call dev_put. 4161 */ 4162 static void netdev_wait_allrefs(struct net_device *dev) 4163 { 4164 unsigned long rebroadcast_time, warning_time; 4165 4166 rebroadcast_time = warning_time = jiffies; 4167 while (atomic_read(&dev->refcnt) != 0) { 4168 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 4169 rtnl_lock(); 4170 4171 /* Rebroadcast unregister notification */ 4172 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4173 4174 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 4175 &dev->state)) { 4176 /* We must not have linkwatch events 4177 * pending on unregister. If this 4178 * happens, we simply run the queue 4179 * unscheduled, resulting in a noop 4180 * for this device. 4181 */ 4182 linkwatch_run_queue(); 4183 } 4184 4185 __rtnl_unlock(); 4186 4187 rebroadcast_time = jiffies; 4188 } 4189 4190 msleep(250); 4191 4192 if (time_after(jiffies, warning_time + 10 * HZ)) { 4193 printk(KERN_EMERG "unregister_netdevice: " 4194 "waiting for %s to become free. Usage " 4195 "count = %d\n", 4196 dev->name, atomic_read(&dev->refcnt)); 4197 warning_time = jiffies; 4198 } 4199 } 4200 } 4201 4202 /* The sequence is: 4203 * 4204 * rtnl_lock(); 4205 * ... 4206 * register_netdevice(x1); 4207 * register_netdevice(x2); 4208 * ... 4209 * unregister_netdevice(y1); 4210 * unregister_netdevice(y2); 4211 * ... 4212 * rtnl_unlock(); 4213 * free_netdev(y1); 4214 * free_netdev(y2); 4215 * 4216 * We are invoked by rtnl_unlock(). 4217 * This allows us to deal with problems: 4218 * 1) We can delete sysfs objects which invoke hotplug 4219 * without deadlocking with linkwatch via keventd. 4220 * 2) Since we run with the RTNL semaphore not held, we can sleep 4221 * safely in order to wait for the netdev refcnt to drop to zero. 4222 * 4223 * We must not return until all unregister events added during 4224 * the interval the lock was held have been completed. 4225 */ 4226 void netdev_run_todo(void) 4227 { 4228 struct list_head list; 4229 4230 /* Snapshot list, allow later requests */ 4231 list_replace_init(&net_todo_list, &list); 4232 4233 __rtnl_unlock(); 4234 4235 while (!list_empty(&list)) { 4236 struct net_device *dev 4237 = list_entry(list.next, struct net_device, todo_list); 4238 list_del(&dev->todo_list); 4239 4240 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 4241 printk(KERN_ERR "network todo '%s' but state %d\n", 4242 dev->name, dev->reg_state); 4243 dump_stack(); 4244 continue; 4245 } 4246 4247 dev->reg_state = NETREG_UNREGISTERED; 4248 4249 on_each_cpu(flush_backlog, dev, 1); 4250 4251 netdev_wait_allrefs(dev); 4252 4253 /* paranoia */ 4254 BUG_ON(atomic_read(&dev->refcnt)); 4255 WARN_ON(dev->ip_ptr); 4256 WARN_ON(dev->ip6_ptr); 4257 WARN_ON(dev->dn_ptr); 4258 4259 if (dev->destructor) 4260 dev->destructor(dev); 4261 4262 /* Free network device */ 4263 kobject_put(&dev->dev.kobj); 4264 } 4265 } 4266 4267 static struct net_device_stats *internal_stats(struct net_device *dev) 4268 { 4269 return &dev->stats; 4270 } 4271 4272 static void netdev_init_one_queue(struct net_device *dev, 4273 struct netdev_queue *queue, 4274 void *_unused) 4275 { 4276 queue->dev = dev; 4277 } 4278 4279 static void netdev_init_queues(struct net_device *dev) 4280 { 4281 netdev_init_one_queue(dev, &dev->rx_queue, NULL); 4282 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 4283 spin_lock_init(&dev->tx_global_lock); 4284 } 4285 4286 /** 4287 * alloc_netdev_mq - allocate network device 4288 * @sizeof_priv: size of private data to allocate space for 4289 * @name: device name format string 4290 * @setup: callback to initialize device 4291 * @queue_count: the number of subqueues to allocate 4292 * 4293 * Allocates a struct net_device with private data area for driver use 4294 * and performs basic initialization. Also allocates subquue structs 4295 * for each queue on the device at the end of the netdevice. 4296 */ 4297 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 4298 void (*setup)(struct net_device *), unsigned int queue_count) 4299 { 4300 struct netdev_queue *tx; 4301 struct net_device *dev; 4302 size_t alloc_size; 4303 void *p; 4304 4305 BUG_ON(strlen(name) >= sizeof(dev->name)); 4306 4307 alloc_size = sizeof(struct net_device); 4308 if (sizeof_priv) { 4309 /* ensure 32-byte alignment of private area */ 4310 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST; 4311 alloc_size += sizeof_priv; 4312 } 4313 /* ensure 32-byte alignment of whole construct */ 4314 alloc_size += NETDEV_ALIGN_CONST; 4315 4316 p = kzalloc(alloc_size, GFP_KERNEL); 4317 if (!p) { 4318 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 4319 return NULL; 4320 } 4321 4322 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL); 4323 if (!tx) { 4324 printk(KERN_ERR "alloc_netdev: Unable to allocate " 4325 "tx qdiscs.\n"); 4326 kfree(p); 4327 return NULL; 4328 } 4329 4330 dev = (struct net_device *) 4331 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST); 4332 dev->padded = (char *)dev - (char *)p; 4333 dev_net_set(dev, &init_net); 4334 4335 dev->_tx = tx; 4336 dev->num_tx_queues = queue_count; 4337 dev->real_num_tx_queues = queue_count; 4338 4339 if (sizeof_priv) { 4340 dev->priv = ((char *)dev + 4341 ((sizeof(struct net_device) + NETDEV_ALIGN_CONST) 4342 & ~NETDEV_ALIGN_CONST)); 4343 } 4344 4345 dev->gso_max_size = GSO_MAX_SIZE; 4346 4347 netdev_init_queues(dev); 4348 4349 dev->get_stats = internal_stats; 4350 netpoll_netdev_init(dev); 4351 setup(dev); 4352 strcpy(dev->name, name); 4353 return dev; 4354 } 4355 EXPORT_SYMBOL(alloc_netdev_mq); 4356 4357 /** 4358 * free_netdev - free network device 4359 * @dev: device 4360 * 4361 * This function does the last stage of destroying an allocated device 4362 * interface. The reference to the device object is released. 4363 * If this is the last reference then it will be freed. 4364 */ 4365 void free_netdev(struct net_device *dev) 4366 { 4367 release_net(dev_net(dev)); 4368 4369 kfree(dev->_tx); 4370 4371 /* Compatibility with error handling in drivers */ 4372 if (dev->reg_state == NETREG_UNINITIALIZED) { 4373 kfree((char *)dev - dev->padded); 4374 return; 4375 } 4376 4377 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 4378 dev->reg_state = NETREG_RELEASED; 4379 4380 /* will free via device release */ 4381 put_device(&dev->dev); 4382 } 4383 4384 /** 4385 * synchronize_net - Synchronize with packet receive processing 4386 * 4387 * Wait for packets currently being received to be done. 4388 * Does not block later packets from starting. 4389 */ 4390 void synchronize_net(void) 4391 { 4392 might_sleep(); 4393 synchronize_rcu(); 4394 } 4395 4396 /** 4397 * unregister_netdevice - remove device from the kernel 4398 * @dev: device 4399 * 4400 * This function shuts down a device interface and removes it 4401 * from the kernel tables. 4402 * 4403 * Callers must hold the rtnl semaphore. You may want 4404 * unregister_netdev() instead of this. 4405 */ 4406 4407 void unregister_netdevice(struct net_device *dev) 4408 { 4409 ASSERT_RTNL(); 4410 4411 rollback_registered(dev); 4412 /* Finish processing unregister after unlock */ 4413 net_set_todo(dev); 4414 } 4415 4416 /** 4417 * unregister_netdev - remove device from the kernel 4418 * @dev: device 4419 * 4420 * This function shuts down a device interface and removes it 4421 * from the kernel tables. 4422 * 4423 * This is just a wrapper for unregister_netdevice that takes 4424 * the rtnl semaphore. In general you want to use this and not 4425 * unregister_netdevice. 4426 */ 4427 void unregister_netdev(struct net_device *dev) 4428 { 4429 rtnl_lock(); 4430 unregister_netdevice(dev); 4431 rtnl_unlock(); 4432 } 4433 4434 EXPORT_SYMBOL(unregister_netdev); 4435 4436 /** 4437 * dev_change_net_namespace - move device to different nethost namespace 4438 * @dev: device 4439 * @net: network namespace 4440 * @pat: If not NULL name pattern to try if the current device name 4441 * is already taken in the destination network namespace. 4442 * 4443 * This function shuts down a device interface and moves it 4444 * to a new network namespace. On success 0 is returned, on 4445 * a failure a netagive errno code is returned. 4446 * 4447 * Callers must hold the rtnl semaphore. 4448 */ 4449 4450 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 4451 { 4452 char buf[IFNAMSIZ]; 4453 const char *destname; 4454 int err; 4455 4456 ASSERT_RTNL(); 4457 4458 /* Don't allow namespace local devices to be moved. */ 4459 err = -EINVAL; 4460 if (dev->features & NETIF_F_NETNS_LOCAL) 4461 goto out; 4462 4463 /* Ensure the device has been registrered */ 4464 err = -EINVAL; 4465 if (dev->reg_state != NETREG_REGISTERED) 4466 goto out; 4467 4468 /* Get out if there is nothing todo */ 4469 err = 0; 4470 if (net_eq(dev_net(dev), net)) 4471 goto out; 4472 4473 /* Pick the destination device name, and ensure 4474 * we can use it in the destination network namespace. 4475 */ 4476 err = -EEXIST; 4477 destname = dev->name; 4478 if (__dev_get_by_name(net, destname)) { 4479 /* We get here if we can't use the current device name */ 4480 if (!pat) 4481 goto out; 4482 if (!dev_valid_name(pat)) 4483 goto out; 4484 if (strchr(pat, '%')) { 4485 if (__dev_alloc_name(net, pat, buf) < 0) 4486 goto out; 4487 destname = buf; 4488 } else 4489 destname = pat; 4490 if (__dev_get_by_name(net, destname)) 4491 goto out; 4492 } 4493 4494 /* 4495 * And now a mini version of register_netdevice unregister_netdevice. 4496 */ 4497 4498 /* If device is running close it first. */ 4499 dev_close(dev); 4500 4501 /* And unlink it from device chain */ 4502 err = -ENODEV; 4503 unlist_netdevice(dev); 4504 4505 synchronize_net(); 4506 4507 /* Shutdown queueing discipline. */ 4508 dev_shutdown(dev); 4509 4510 /* Notify protocols, that we are about to destroy 4511 this device. They should clean all the things. 4512 */ 4513 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4514 4515 /* 4516 * Flush the unicast and multicast chains 4517 */ 4518 dev_addr_discard(dev); 4519 4520 /* Actually switch the network namespace */ 4521 dev_net_set(dev, net); 4522 4523 /* Assign the new device name */ 4524 if (destname != dev->name) 4525 strcpy(dev->name, destname); 4526 4527 /* If there is an ifindex conflict assign a new one */ 4528 if (__dev_get_by_index(net, dev->ifindex)) { 4529 int iflink = (dev->iflink == dev->ifindex); 4530 dev->ifindex = dev_new_index(net); 4531 if (iflink) 4532 dev->iflink = dev->ifindex; 4533 } 4534 4535 /* Fixup kobjects */ 4536 netdev_unregister_kobject(dev); 4537 err = netdev_register_kobject(dev); 4538 WARN_ON(err); 4539 4540 /* Add the device back in the hashes */ 4541 list_netdevice(dev); 4542 4543 /* Notify protocols, that a new device appeared. */ 4544 call_netdevice_notifiers(NETDEV_REGISTER, dev); 4545 4546 synchronize_net(); 4547 err = 0; 4548 out: 4549 return err; 4550 } 4551 4552 static int dev_cpu_callback(struct notifier_block *nfb, 4553 unsigned long action, 4554 void *ocpu) 4555 { 4556 struct sk_buff **list_skb; 4557 struct Qdisc **list_net; 4558 struct sk_buff *skb; 4559 unsigned int cpu, oldcpu = (unsigned long)ocpu; 4560 struct softnet_data *sd, *oldsd; 4561 4562 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 4563 return NOTIFY_OK; 4564 4565 local_irq_disable(); 4566 cpu = smp_processor_id(); 4567 sd = &per_cpu(softnet_data, cpu); 4568 oldsd = &per_cpu(softnet_data, oldcpu); 4569 4570 /* Find end of our completion_queue. */ 4571 list_skb = &sd->completion_queue; 4572 while (*list_skb) 4573 list_skb = &(*list_skb)->next; 4574 /* Append completion queue from offline CPU. */ 4575 *list_skb = oldsd->completion_queue; 4576 oldsd->completion_queue = NULL; 4577 4578 /* Find end of our output_queue. */ 4579 list_net = &sd->output_queue; 4580 while (*list_net) 4581 list_net = &(*list_net)->next_sched; 4582 /* Append output queue from offline CPU. */ 4583 *list_net = oldsd->output_queue; 4584 oldsd->output_queue = NULL; 4585 4586 raise_softirq_irqoff(NET_TX_SOFTIRQ); 4587 local_irq_enable(); 4588 4589 /* Process offline CPU's input_pkt_queue */ 4590 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 4591 netif_rx(skb); 4592 4593 return NOTIFY_OK; 4594 } 4595 4596 #ifdef CONFIG_NET_DMA 4597 /** 4598 * net_dma_rebalance - try to maintain one DMA channel per CPU 4599 * @net_dma: DMA client and associated data (lock, channels, channel_mask) 4600 * 4601 * This is called when the number of channels allocated to the net_dma client 4602 * changes. The net_dma client tries to have one DMA channel per CPU. 4603 */ 4604 4605 static void net_dma_rebalance(struct net_dma *net_dma) 4606 { 4607 unsigned int cpu, i, n, chan_idx; 4608 struct dma_chan *chan; 4609 4610 if (cpus_empty(net_dma->channel_mask)) { 4611 for_each_online_cpu(cpu) 4612 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL); 4613 return; 4614 } 4615 4616 i = 0; 4617 cpu = first_cpu(cpu_online_map); 4618 4619 for_each_cpu_mask_nr(chan_idx, net_dma->channel_mask) { 4620 chan = net_dma->channels[chan_idx]; 4621 4622 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask)) 4623 + (i < (num_online_cpus() % 4624 cpus_weight(net_dma->channel_mask)) ? 1 : 0)); 4625 4626 while(n) { 4627 per_cpu(softnet_data, cpu).net_dma = chan; 4628 cpu = next_cpu(cpu, cpu_online_map); 4629 n--; 4630 } 4631 i++; 4632 } 4633 } 4634 4635 /** 4636 * netdev_dma_event - event callback for the net_dma_client 4637 * @client: should always be net_dma_client 4638 * @chan: DMA channel for the event 4639 * @state: DMA state to be handled 4640 */ 4641 static enum dma_state_client 4642 netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 4643 enum dma_state state) 4644 { 4645 int i, found = 0, pos = -1; 4646 struct net_dma *net_dma = 4647 container_of(client, struct net_dma, client); 4648 enum dma_state_client ack = DMA_DUP; /* default: take no action */ 4649 4650 spin_lock(&net_dma->lock); 4651 switch (state) { 4652 case DMA_RESOURCE_AVAILABLE: 4653 for (i = 0; i < nr_cpu_ids; i++) 4654 if (net_dma->channels[i] == chan) { 4655 found = 1; 4656 break; 4657 } else if (net_dma->channels[i] == NULL && pos < 0) 4658 pos = i; 4659 4660 if (!found && pos >= 0) { 4661 ack = DMA_ACK; 4662 net_dma->channels[pos] = chan; 4663 cpu_set(pos, net_dma->channel_mask); 4664 net_dma_rebalance(net_dma); 4665 } 4666 break; 4667 case DMA_RESOURCE_REMOVED: 4668 for (i = 0; i < nr_cpu_ids; i++) 4669 if (net_dma->channels[i] == chan) { 4670 found = 1; 4671 pos = i; 4672 break; 4673 } 4674 4675 if (found) { 4676 ack = DMA_ACK; 4677 cpu_clear(pos, net_dma->channel_mask); 4678 net_dma->channels[i] = NULL; 4679 net_dma_rebalance(net_dma); 4680 } 4681 break; 4682 default: 4683 break; 4684 } 4685 spin_unlock(&net_dma->lock); 4686 4687 return ack; 4688 } 4689 4690 /** 4691 * netdev_dma_register - register the networking subsystem as a DMA client 4692 */ 4693 static int __init netdev_dma_register(void) 4694 { 4695 net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma), 4696 GFP_KERNEL); 4697 if (unlikely(!net_dma.channels)) { 4698 printk(KERN_NOTICE 4699 "netdev_dma: no memory for net_dma.channels\n"); 4700 return -ENOMEM; 4701 } 4702 spin_lock_init(&net_dma.lock); 4703 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask); 4704 dma_async_client_register(&net_dma.client); 4705 dma_async_client_chan_request(&net_dma.client); 4706 return 0; 4707 } 4708 4709 #else 4710 static int __init netdev_dma_register(void) { return -ENODEV; } 4711 #endif /* CONFIG_NET_DMA */ 4712 4713 /** 4714 * netdev_increment_features - increment feature set by one 4715 * @all: current feature set 4716 * @one: new feature set 4717 * @mask: mask feature set 4718 * 4719 * Computes a new feature set after adding a device with feature set 4720 * @one to the master device with current feature set @all. Will not 4721 * enable anything that is off in @mask. Returns the new feature set. 4722 */ 4723 unsigned long netdev_increment_features(unsigned long all, unsigned long one, 4724 unsigned long mask) 4725 { 4726 /* If device needs checksumming, downgrade to it. */ 4727 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 4728 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM); 4729 else if (mask & NETIF_F_ALL_CSUM) { 4730 /* If one device supports v4/v6 checksumming, set for all. */ 4731 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) && 4732 !(all & NETIF_F_GEN_CSUM)) { 4733 all &= ~NETIF_F_ALL_CSUM; 4734 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 4735 } 4736 4737 /* If one device supports hw checksumming, set for all. */ 4738 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) { 4739 all &= ~NETIF_F_ALL_CSUM; 4740 all |= NETIF_F_HW_CSUM; 4741 } 4742 } 4743 4744 one |= NETIF_F_ALL_CSUM; 4745 4746 one |= all & NETIF_F_ONE_FOR_ALL; 4747 all &= one | NETIF_F_LLTX | NETIF_F_GSO; 4748 all |= one & mask & NETIF_F_ONE_FOR_ALL; 4749 4750 return all; 4751 } 4752 EXPORT_SYMBOL(netdev_increment_features); 4753 4754 static struct hlist_head *netdev_create_hash(void) 4755 { 4756 int i; 4757 struct hlist_head *hash; 4758 4759 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 4760 if (hash != NULL) 4761 for (i = 0; i < NETDEV_HASHENTRIES; i++) 4762 INIT_HLIST_HEAD(&hash[i]); 4763 4764 return hash; 4765 } 4766 4767 /* Initialize per network namespace state */ 4768 static int __net_init netdev_init(struct net *net) 4769 { 4770 INIT_LIST_HEAD(&net->dev_base_head); 4771 4772 net->dev_name_head = netdev_create_hash(); 4773 if (net->dev_name_head == NULL) 4774 goto err_name; 4775 4776 net->dev_index_head = netdev_create_hash(); 4777 if (net->dev_index_head == NULL) 4778 goto err_idx; 4779 4780 return 0; 4781 4782 err_idx: 4783 kfree(net->dev_name_head); 4784 err_name: 4785 return -ENOMEM; 4786 } 4787 4788 /** 4789 * netdev_drivername - network driver for the device 4790 * @dev: network device 4791 * @buffer: buffer for resulting name 4792 * @len: size of buffer 4793 * 4794 * Determine network driver for device. 4795 */ 4796 char *netdev_drivername(const struct net_device *dev, char *buffer, int len) 4797 { 4798 const struct device_driver *driver; 4799 const struct device *parent; 4800 4801 if (len <= 0 || !buffer) 4802 return buffer; 4803 buffer[0] = 0; 4804 4805 parent = dev->dev.parent; 4806 4807 if (!parent) 4808 return buffer; 4809 4810 driver = parent->driver; 4811 if (driver && driver->name) 4812 strlcpy(buffer, driver->name, len); 4813 return buffer; 4814 } 4815 4816 static void __net_exit netdev_exit(struct net *net) 4817 { 4818 kfree(net->dev_name_head); 4819 kfree(net->dev_index_head); 4820 } 4821 4822 static struct pernet_operations __net_initdata netdev_net_ops = { 4823 .init = netdev_init, 4824 .exit = netdev_exit, 4825 }; 4826 4827 static void __net_exit default_device_exit(struct net *net) 4828 { 4829 struct net_device *dev, *next; 4830 /* 4831 * Push all migratable of the network devices back to the 4832 * initial network namespace 4833 */ 4834 rtnl_lock(); 4835 for_each_netdev_safe(net, dev, next) { 4836 int err; 4837 char fb_name[IFNAMSIZ]; 4838 4839 /* Ignore unmoveable devices (i.e. loopback) */ 4840 if (dev->features & NETIF_F_NETNS_LOCAL) 4841 continue; 4842 4843 /* Push remaing network devices to init_net */ 4844 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 4845 err = dev_change_net_namespace(dev, &init_net, fb_name); 4846 if (err) { 4847 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 4848 __func__, dev->name, err); 4849 BUG(); 4850 } 4851 } 4852 rtnl_unlock(); 4853 } 4854 4855 static struct pernet_operations __net_initdata default_device_ops = { 4856 .exit = default_device_exit, 4857 }; 4858 4859 /* 4860 * Initialize the DEV module. At boot time this walks the device list and 4861 * unhooks any devices that fail to initialise (normally hardware not 4862 * present) and leaves us with a valid list of present and active devices. 4863 * 4864 */ 4865 4866 /* 4867 * This is called single threaded during boot, so no need 4868 * to take the rtnl semaphore. 4869 */ 4870 static int __init net_dev_init(void) 4871 { 4872 int i, rc = -ENOMEM; 4873 4874 BUG_ON(!dev_boot_phase); 4875 4876 if (dev_proc_init()) 4877 goto out; 4878 4879 if (netdev_kobject_init()) 4880 goto out; 4881 4882 INIT_LIST_HEAD(&ptype_all); 4883 for (i = 0; i < PTYPE_HASH_SIZE; i++) 4884 INIT_LIST_HEAD(&ptype_base[i]); 4885 4886 if (register_pernet_subsys(&netdev_net_ops)) 4887 goto out; 4888 4889 if (register_pernet_device(&default_device_ops)) 4890 goto out; 4891 4892 /* 4893 * Initialise the packet receive queues. 4894 */ 4895 4896 for_each_possible_cpu(i) { 4897 struct softnet_data *queue; 4898 4899 queue = &per_cpu(softnet_data, i); 4900 skb_queue_head_init(&queue->input_pkt_queue); 4901 queue->completion_queue = NULL; 4902 INIT_LIST_HEAD(&queue->poll_list); 4903 4904 queue->backlog.poll = process_backlog; 4905 queue->backlog.weight = weight_p; 4906 } 4907 4908 netdev_dma_register(); 4909 4910 dev_boot_phase = 0; 4911 4912 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 4913 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 4914 4915 hotcpu_notifier(dev_cpu_callback, 0); 4916 dst_init(); 4917 dev_mcast_init(); 4918 rc = 0; 4919 out: 4920 return rc; 4921 } 4922 4923 subsys_initcall(net_dev_init); 4924 4925 EXPORT_SYMBOL(__dev_get_by_index); 4926 EXPORT_SYMBOL(__dev_get_by_name); 4927 EXPORT_SYMBOL(__dev_remove_pack); 4928 EXPORT_SYMBOL(dev_valid_name); 4929 EXPORT_SYMBOL(dev_add_pack); 4930 EXPORT_SYMBOL(dev_alloc_name); 4931 EXPORT_SYMBOL(dev_close); 4932 EXPORT_SYMBOL(dev_get_by_flags); 4933 EXPORT_SYMBOL(dev_get_by_index); 4934 EXPORT_SYMBOL(dev_get_by_name); 4935 EXPORT_SYMBOL(dev_open); 4936 EXPORT_SYMBOL(dev_queue_xmit); 4937 EXPORT_SYMBOL(dev_remove_pack); 4938 EXPORT_SYMBOL(dev_set_allmulti); 4939 EXPORT_SYMBOL(dev_set_promiscuity); 4940 EXPORT_SYMBOL(dev_change_flags); 4941 EXPORT_SYMBOL(dev_set_mtu); 4942 EXPORT_SYMBOL(dev_set_mac_address); 4943 EXPORT_SYMBOL(free_netdev); 4944 EXPORT_SYMBOL(netdev_boot_setup_check); 4945 EXPORT_SYMBOL(netdev_set_master); 4946 EXPORT_SYMBOL(netdev_state_change); 4947 EXPORT_SYMBOL(netif_receive_skb); 4948 EXPORT_SYMBOL(netif_rx); 4949 EXPORT_SYMBOL(register_gifconf); 4950 EXPORT_SYMBOL(register_netdevice); 4951 EXPORT_SYMBOL(register_netdevice_notifier); 4952 EXPORT_SYMBOL(skb_checksum_help); 4953 EXPORT_SYMBOL(synchronize_net); 4954 EXPORT_SYMBOL(unregister_netdevice); 4955 EXPORT_SYMBOL(unregister_netdevice_notifier); 4956 EXPORT_SYMBOL(net_enable_timestamp); 4957 EXPORT_SYMBOL(net_disable_timestamp); 4958 EXPORT_SYMBOL(dev_get_flags); 4959 4960 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) 4961 EXPORT_SYMBOL(br_handle_frame_hook); 4962 EXPORT_SYMBOL(br_fdb_get_hook); 4963 EXPORT_SYMBOL(br_fdb_put_hook); 4964 #endif 4965 4966 EXPORT_SYMBOL(dev_load); 4967 4968 EXPORT_PER_CPU_SYMBOL(softnet_data); 4969