xref: /openbmc/linux/net/core/dev.c (revision 35b1b1fd96388d5e3cf179bf36bd8a4153baf4a3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <net/tcx.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <trace/events/qdisc.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_netdev.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
149 #include <linux/indirect_call_wrapper.h>
150 #include <net/devlink.h>
151 #include <linux/pm_runtime.h>
152 #include <linux/prandom.h>
153 #include <linux/once_lite.h>
154 
155 #include "dev.h"
156 #include "net-sysfs.h"
157 
158 static DEFINE_SPINLOCK(ptype_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;	/* Taps */
161 
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_extack(unsigned long val,
164 					   struct net_device *dev,
165 					   struct netlink_ext_ack *extack);
166 static struct napi_struct *napi_by_id(unsigned int napi_id);
167 
168 /*
169  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
170  * semaphore.
171  *
172  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
173  *
174  * Writers must hold the rtnl semaphore while they loop through the
175  * dev_base_head list, and hold dev_base_lock for writing when they do the
176  * actual updates.  This allows pure readers to access the list even
177  * while a writer is preparing to update it.
178  *
179  * To put it another way, dev_base_lock is held for writing only to
180  * protect against pure readers; the rtnl semaphore provides the
181  * protection against other writers.
182  *
183  * See, for example usages, register_netdevice() and
184  * unregister_netdevice(), which must be called with the rtnl
185  * semaphore held.
186  */
187 DEFINE_RWLOCK(dev_base_lock);
188 EXPORT_SYMBOL(dev_base_lock);
189 
190 static DEFINE_MUTEX(ifalias_mutex);
191 
192 /* protects napi_hash addition/deletion and napi_gen_id */
193 static DEFINE_SPINLOCK(napi_hash_lock);
194 
195 static unsigned int napi_gen_id = NR_CPUS;
196 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
197 
198 static DECLARE_RWSEM(devnet_rename_sem);
199 
200 static inline void dev_base_seq_inc(struct net *net)
201 {
202 	while (++net->dev_base_seq == 0)
203 		;
204 }
205 
206 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
207 {
208 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
209 
210 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
211 }
212 
213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214 {
215 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
216 }
217 
218 static inline void rps_lock_irqsave(struct softnet_data *sd,
219 				    unsigned long *flags)
220 {
221 	if (IS_ENABLED(CONFIG_RPS))
222 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
223 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
224 		local_irq_save(*flags);
225 }
226 
227 static inline void rps_lock_irq_disable(struct softnet_data *sd)
228 {
229 	if (IS_ENABLED(CONFIG_RPS))
230 		spin_lock_irq(&sd->input_pkt_queue.lock);
231 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
232 		local_irq_disable();
233 }
234 
235 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
236 					  unsigned long *flags)
237 {
238 	if (IS_ENABLED(CONFIG_RPS))
239 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
240 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
241 		local_irq_restore(*flags);
242 }
243 
244 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
245 {
246 	if (IS_ENABLED(CONFIG_RPS))
247 		spin_unlock_irq(&sd->input_pkt_queue.lock);
248 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
249 		local_irq_enable();
250 }
251 
252 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
253 						       const char *name)
254 {
255 	struct netdev_name_node *name_node;
256 
257 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
258 	if (!name_node)
259 		return NULL;
260 	INIT_HLIST_NODE(&name_node->hlist);
261 	name_node->dev = dev;
262 	name_node->name = name;
263 	return name_node;
264 }
265 
266 static struct netdev_name_node *
267 netdev_name_node_head_alloc(struct net_device *dev)
268 {
269 	struct netdev_name_node *name_node;
270 
271 	name_node = netdev_name_node_alloc(dev, dev->name);
272 	if (!name_node)
273 		return NULL;
274 	INIT_LIST_HEAD(&name_node->list);
275 	return name_node;
276 }
277 
278 static void netdev_name_node_free(struct netdev_name_node *name_node)
279 {
280 	kfree(name_node);
281 }
282 
283 static void netdev_name_node_add(struct net *net,
284 				 struct netdev_name_node *name_node)
285 {
286 	hlist_add_head_rcu(&name_node->hlist,
287 			   dev_name_hash(net, name_node->name));
288 }
289 
290 static void netdev_name_node_del(struct netdev_name_node *name_node)
291 {
292 	hlist_del_rcu(&name_node->hlist);
293 }
294 
295 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
296 							const char *name)
297 {
298 	struct hlist_head *head = dev_name_hash(net, name);
299 	struct netdev_name_node *name_node;
300 
301 	hlist_for_each_entry(name_node, head, hlist)
302 		if (!strcmp(name_node->name, name))
303 			return name_node;
304 	return NULL;
305 }
306 
307 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
308 							    const char *name)
309 {
310 	struct hlist_head *head = dev_name_hash(net, name);
311 	struct netdev_name_node *name_node;
312 
313 	hlist_for_each_entry_rcu(name_node, head, hlist)
314 		if (!strcmp(name_node->name, name))
315 			return name_node;
316 	return NULL;
317 }
318 
319 bool netdev_name_in_use(struct net *net, const char *name)
320 {
321 	return netdev_name_node_lookup(net, name);
322 }
323 EXPORT_SYMBOL(netdev_name_in_use);
324 
325 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
326 {
327 	struct netdev_name_node *name_node;
328 	struct net *net = dev_net(dev);
329 
330 	name_node = netdev_name_node_lookup(net, name);
331 	if (name_node)
332 		return -EEXIST;
333 	name_node = netdev_name_node_alloc(dev, name);
334 	if (!name_node)
335 		return -ENOMEM;
336 	netdev_name_node_add(net, name_node);
337 	/* The node that holds dev->name acts as a head of per-device list. */
338 	list_add_tail(&name_node->list, &dev->name_node->list);
339 
340 	return 0;
341 }
342 
343 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
344 {
345 	list_del(&name_node->list);
346 	netdev_name_node_del(name_node);
347 	kfree(name_node->name);
348 	netdev_name_node_free(name_node);
349 }
350 
351 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
352 {
353 	struct netdev_name_node *name_node;
354 	struct net *net = dev_net(dev);
355 
356 	name_node = netdev_name_node_lookup(net, name);
357 	if (!name_node)
358 		return -ENOENT;
359 	/* lookup might have found our primary name or a name belonging
360 	 * to another device.
361 	 */
362 	if (name_node == dev->name_node || name_node->dev != dev)
363 		return -EINVAL;
364 
365 	__netdev_name_node_alt_destroy(name_node);
366 
367 	return 0;
368 }
369 
370 static void netdev_name_node_alt_flush(struct net_device *dev)
371 {
372 	struct netdev_name_node *name_node, *tmp;
373 
374 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
375 		__netdev_name_node_alt_destroy(name_node);
376 }
377 
378 /* Device list insertion */
379 static void list_netdevice(struct net_device *dev)
380 {
381 	struct net *net = dev_net(dev);
382 
383 	ASSERT_RTNL();
384 
385 	write_lock(&dev_base_lock);
386 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
387 	netdev_name_node_add(net, dev->name_node);
388 	hlist_add_head_rcu(&dev->index_hlist,
389 			   dev_index_hash(net, dev->ifindex));
390 	write_unlock(&dev_base_lock);
391 	/* We reserved the ifindex, this can't fail */
392 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
393 
394 	dev_base_seq_inc(net);
395 }
396 
397 /* Device list removal
398  * caller must respect a RCU grace period before freeing/reusing dev
399  */
400 static void unlist_netdevice(struct net_device *dev, bool lock)
401 {
402 	struct net *net = dev_net(dev);
403 
404 	ASSERT_RTNL();
405 
406 	xa_erase(&net->dev_by_index, dev->ifindex);
407 
408 	/* Unlink dev from the device chain */
409 	if (lock)
410 		write_lock(&dev_base_lock);
411 	list_del_rcu(&dev->dev_list);
412 	netdev_name_node_del(dev->name_node);
413 	hlist_del_rcu(&dev->index_hlist);
414 	if (lock)
415 		write_unlock(&dev_base_lock);
416 
417 	dev_base_seq_inc(dev_net(dev));
418 }
419 
420 /*
421  *	Our notifier list
422  */
423 
424 static RAW_NOTIFIER_HEAD(netdev_chain);
425 
426 /*
427  *	Device drivers call our routines to queue packets here. We empty the
428  *	queue in the local softnet handler.
429  */
430 
431 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
432 EXPORT_PER_CPU_SYMBOL(softnet_data);
433 
434 #ifdef CONFIG_LOCKDEP
435 /*
436  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
437  * according to dev->type
438  */
439 static const unsigned short netdev_lock_type[] = {
440 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
441 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
442 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
443 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
444 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
445 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
446 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
447 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
448 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
449 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
450 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
451 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
452 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
453 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
454 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
455 
456 static const char *const netdev_lock_name[] = {
457 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
458 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
459 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
460 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
461 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
462 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
463 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
464 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
465 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
466 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
467 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
468 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
469 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
470 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
471 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
472 
473 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
474 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
475 
476 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
477 {
478 	int i;
479 
480 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
481 		if (netdev_lock_type[i] == dev_type)
482 			return i;
483 	/* the last key is used by default */
484 	return ARRAY_SIZE(netdev_lock_type) - 1;
485 }
486 
487 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
488 						 unsigned short dev_type)
489 {
490 	int i;
491 
492 	i = netdev_lock_pos(dev_type);
493 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
494 				   netdev_lock_name[i]);
495 }
496 
497 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
498 {
499 	int i;
500 
501 	i = netdev_lock_pos(dev->type);
502 	lockdep_set_class_and_name(&dev->addr_list_lock,
503 				   &netdev_addr_lock_key[i],
504 				   netdev_lock_name[i]);
505 }
506 #else
507 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
508 						 unsigned short dev_type)
509 {
510 }
511 
512 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
513 {
514 }
515 #endif
516 
517 /*******************************************************************************
518  *
519  *		Protocol management and registration routines
520  *
521  *******************************************************************************/
522 
523 
524 /*
525  *	Add a protocol ID to the list. Now that the input handler is
526  *	smarter we can dispense with all the messy stuff that used to be
527  *	here.
528  *
529  *	BEWARE!!! Protocol handlers, mangling input packets,
530  *	MUST BE last in hash buckets and checking protocol handlers
531  *	MUST start from promiscuous ptype_all chain in net_bh.
532  *	It is true now, do not change it.
533  *	Explanation follows: if protocol handler, mangling packet, will
534  *	be the first on list, it is not able to sense, that packet
535  *	is cloned and should be copied-on-write, so that it will
536  *	change it and subsequent readers will get broken packet.
537  *							--ANK (980803)
538  */
539 
540 static inline struct list_head *ptype_head(const struct packet_type *pt)
541 {
542 	if (pt->type == htons(ETH_P_ALL))
543 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
544 	else
545 		return pt->dev ? &pt->dev->ptype_specific :
546 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
547 }
548 
549 /**
550  *	dev_add_pack - add packet handler
551  *	@pt: packet type declaration
552  *
553  *	Add a protocol handler to the networking stack. The passed &packet_type
554  *	is linked into kernel lists and may not be freed until it has been
555  *	removed from the kernel lists.
556  *
557  *	This call does not sleep therefore it can not
558  *	guarantee all CPU's that are in middle of receiving packets
559  *	will see the new packet type (until the next received packet).
560  */
561 
562 void dev_add_pack(struct packet_type *pt)
563 {
564 	struct list_head *head = ptype_head(pt);
565 
566 	spin_lock(&ptype_lock);
567 	list_add_rcu(&pt->list, head);
568 	spin_unlock(&ptype_lock);
569 }
570 EXPORT_SYMBOL(dev_add_pack);
571 
572 /**
573  *	__dev_remove_pack	 - remove packet handler
574  *	@pt: packet type declaration
575  *
576  *	Remove a protocol handler that was previously added to the kernel
577  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
578  *	from the kernel lists and can be freed or reused once this function
579  *	returns.
580  *
581  *      The packet type might still be in use by receivers
582  *	and must not be freed until after all the CPU's have gone
583  *	through a quiescent state.
584  */
585 void __dev_remove_pack(struct packet_type *pt)
586 {
587 	struct list_head *head = ptype_head(pt);
588 	struct packet_type *pt1;
589 
590 	spin_lock(&ptype_lock);
591 
592 	list_for_each_entry(pt1, head, list) {
593 		if (pt == pt1) {
594 			list_del_rcu(&pt->list);
595 			goto out;
596 		}
597 	}
598 
599 	pr_warn("dev_remove_pack: %p not found\n", pt);
600 out:
601 	spin_unlock(&ptype_lock);
602 }
603 EXPORT_SYMBOL(__dev_remove_pack);
604 
605 /**
606  *	dev_remove_pack	 - remove packet handler
607  *	@pt: packet type declaration
608  *
609  *	Remove a protocol handler that was previously added to the kernel
610  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
611  *	from the kernel lists and can be freed or reused once this function
612  *	returns.
613  *
614  *	This call sleeps to guarantee that no CPU is looking at the packet
615  *	type after return.
616  */
617 void dev_remove_pack(struct packet_type *pt)
618 {
619 	__dev_remove_pack(pt);
620 
621 	synchronize_net();
622 }
623 EXPORT_SYMBOL(dev_remove_pack);
624 
625 
626 /*******************************************************************************
627  *
628  *			    Device Interface Subroutines
629  *
630  *******************************************************************************/
631 
632 /**
633  *	dev_get_iflink	- get 'iflink' value of a interface
634  *	@dev: targeted interface
635  *
636  *	Indicates the ifindex the interface is linked to.
637  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
638  */
639 
640 int dev_get_iflink(const struct net_device *dev)
641 {
642 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
643 		return dev->netdev_ops->ndo_get_iflink(dev);
644 
645 	return dev->ifindex;
646 }
647 EXPORT_SYMBOL(dev_get_iflink);
648 
649 /**
650  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
651  *	@dev: targeted interface
652  *	@skb: The packet.
653  *
654  *	For better visibility of tunnel traffic OVS needs to retrieve
655  *	egress tunnel information for a packet. Following API allows
656  *	user to get this info.
657  */
658 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
659 {
660 	struct ip_tunnel_info *info;
661 
662 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
663 		return -EINVAL;
664 
665 	info = skb_tunnel_info_unclone(skb);
666 	if (!info)
667 		return -ENOMEM;
668 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
669 		return -EINVAL;
670 
671 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
672 }
673 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
674 
675 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
676 {
677 	int k = stack->num_paths++;
678 
679 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
680 		return NULL;
681 
682 	return &stack->path[k];
683 }
684 
685 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
686 			  struct net_device_path_stack *stack)
687 {
688 	const struct net_device *last_dev;
689 	struct net_device_path_ctx ctx = {
690 		.dev	= dev,
691 	};
692 	struct net_device_path *path;
693 	int ret = 0;
694 
695 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
696 	stack->num_paths = 0;
697 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
698 		last_dev = ctx.dev;
699 		path = dev_fwd_path(stack);
700 		if (!path)
701 			return -1;
702 
703 		memset(path, 0, sizeof(struct net_device_path));
704 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
705 		if (ret < 0)
706 			return -1;
707 
708 		if (WARN_ON_ONCE(last_dev == ctx.dev))
709 			return -1;
710 	}
711 
712 	if (!ctx.dev)
713 		return ret;
714 
715 	path = dev_fwd_path(stack);
716 	if (!path)
717 		return -1;
718 	path->type = DEV_PATH_ETHERNET;
719 	path->dev = ctx.dev;
720 
721 	return ret;
722 }
723 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
724 
725 /**
726  *	__dev_get_by_name	- find a device by its name
727  *	@net: the applicable net namespace
728  *	@name: name to find
729  *
730  *	Find an interface by name. Must be called under RTNL semaphore
731  *	or @dev_base_lock. If the name is found a pointer to the device
732  *	is returned. If the name is not found then %NULL is returned. The
733  *	reference counters are not incremented so the caller must be
734  *	careful with locks.
735  */
736 
737 struct net_device *__dev_get_by_name(struct net *net, const char *name)
738 {
739 	struct netdev_name_node *node_name;
740 
741 	node_name = netdev_name_node_lookup(net, name);
742 	return node_name ? node_name->dev : NULL;
743 }
744 EXPORT_SYMBOL(__dev_get_by_name);
745 
746 /**
747  * dev_get_by_name_rcu	- find a device by its name
748  * @net: the applicable net namespace
749  * @name: name to find
750  *
751  * Find an interface by name.
752  * If the name is found a pointer to the device is returned.
753  * If the name is not found then %NULL is returned.
754  * The reference counters are not incremented so the caller must be
755  * careful with locks. The caller must hold RCU lock.
756  */
757 
758 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
759 {
760 	struct netdev_name_node *node_name;
761 
762 	node_name = netdev_name_node_lookup_rcu(net, name);
763 	return node_name ? node_name->dev : NULL;
764 }
765 EXPORT_SYMBOL(dev_get_by_name_rcu);
766 
767 /* Deprecated for new users, call netdev_get_by_name() instead */
768 struct net_device *dev_get_by_name(struct net *net, const char *name)
769 {
770 	struct net_device *dev;
771 
772 	rcu_read_lock();
773 	dev = dev_get_by_name_rcu(net, name);
774 	dev_hold(dev);
775 	rcu_read_unlock();
776 	return dev;
777 }
778 EXPORT_SYMBOL(dev_get_by_name);
779 
780 /**
781  *	netdev_get_by_name() - find a device by its name
782  *	@net: the applicable net namespace
783  *	@name: name to find
784  *	@tracker: tracking object for the acquired reference
785  *	@gfp: allocation flags for the tracker
786  *
787  *	Find an interface by name. This can be called from any
788  *	context and does its own locking. The returned handle has
789  *	the usage count incremented and the caller must use netdev_put() to
790  *	release it when it is no longer needed. %NULL is returned if no
791  *	matching device is found.
792  */
793 struct net_device *netdev_get_by_name(struct net *net, const char *name,
794 				      netdevice_tracker *tracker, gfp_t gfp)
795 {
796 	struct net_device *dev;
797 
798 	dev = dev_get_by_name(net, name);
799 	if (dev)
800 		netdev_tracker_alloc(dev, tracker, gfp);
801 	return dev;
802 }
803 EXPORT_SYMBOL(netdev_get_by_name);
804 
805 /**
806  *	__dev_get_by_index - find a device by its ifindex
807  *	@net: the applicable net namespace
808  *	@ifindex: index of device
809  *
810  *	Search for an interface by index. Returns %NULL if the device
811  *	is not found or a pointer to the device. The device has not
812  *	had its reference counter increased so the caller must be careful
813  *	about locking. The caller must hold either the RTNL semaphore
814  *	or @dev_base_lock.
815  */
816 
817 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
818 {
819 	struct net_device *dev;
820 	struct hlist_head *head = dev_index_hash(net, ifindex);
821 
822 	hlist_for_each_entry(dev, head, index_hlist)
823 		if (dev->ifindex == ifindex)
824 			return dev;
825 
826 	return NULL;
827 }
828 EXPORT_SYMBOL(__dev_get_by_index);
829 
830 /**
831  *	dev_get_by_index_rcu - find a device by its ifindex
832  *	@net: the applicable net namespace
833  *	@ifindex: index of device
834  *
835  *	Search for an interface by index. Returns %NULL if the device
836  *	is not found or a pointer to the device. The device has not
837  *	had its reference counter increased so the caller must be careful
838  *	about locking. The caller must hold RCU lock.
839  */
840 
841 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
842 {
843 	struct net_device *dev;
844 	struct hlist_head *head = dev_index_hash(net, ifindex);
845 
846 	hlist_for_each_entry_rcu(dev, head, index_hlist)
847 		if (dev->ifindex == ifindex)
848 			return dev;
849 
850 	return NULL;
851 }
852 EXPORT_SYMBOL(dev_get_by_index_rcu);
853 
854 /* Deprecated for new users, call netdev_get_by_index() instead */
855 struct net_device *dev_get_by_index(struct net *net, int ifindex)
856 {
857 	struct net_device *dev;
858 
859 	rcu_read_lock();
860 	dev = dev_get_by_index_rcu(net, ifindex);
861 	dev_hold(dev);
862 	rcu_read_unlock();
863 	return dev;
864 }
865 EXPORT_SYMBOL(dev_get_by_index);
866 
867 /**
868  *	netdev_get_by_index() - find a device by its ifindex
869  *	@net: the applicable net namespace
870  *	@ifindex: index of device
871  *	@tracker: tracking object for the acquired reference
872  *	@gfp: allocation flags for the tracker
873  *
874  *	Search for an interface by index. Returns NULL if the device
875  *	is not found or a pointer to the device. The device returned has
876  *	had a reference added and the pointer is safe until the user calls
877  *	netdev_put() to indicate they have finished with it.
878  */
879 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
880 				       netdevice_tracker *tracker, gfp_t gfp)
881 {
882 	struct net_device *dev;
883 
884 	dev = dev_get_by_index(net, ifindex);
885 	if (dev)
886 		netdev_tracker_alloc(dev, tracker, gfp);
887 	return dev;
888 }
889 EXPORT_SYMBOL(netdev_get_by_index);
890 
891 /**
892  *	dev_get_by_napi_id - find a device by napi_id
893  *	@napi_id: ID of the NAPI struct
894  *
895  *	Search for an interface by NAPI ID. Returns %NULL if the device
896  *	is not found or a pointer to the device. The device has not had
897  *	its reference counter increased so the caller must be careful
898  *	about locking. The caller must hold RCU lock.
899  */
900 
901 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
902 {
903 	struct napi_struct *napi;
904 
905 	WARN_ON_ONCE(!rcu_read_lock_held());
906 
907 	if (napi_id < MIN_NAPI_ID)
908 		return NULL;
909 
910 	napi = napi_by_id(napi_id);
911 
912 	return napi ? napi->dev : NULL;
913 }
914 EXPORT_SYMBOL(dev_get_by_napi_id);
915 
916 /**
917  *	netdev_get_name - get a netdevice name, knowing its ifindex.
918  *	@net: network namespace
919  *	@name: a pointer to the buffer where the name will be stored.
920  *	@ifindex: the ifindex of the interface to get the name from.
921  */
922 int netdev_get_name(struct net *net, char *name, int ifindex)
923 {
924 	struct net_device *dev;
925 	int ret;
926 
927 	down_read(&devnet_rename_sem);
928 	rcu_read_lock();
929 
930 	dev = dev_get_by_index_rcu(net, ifindex);
931 	if (!dev) {
932 		ret = -ENODEV;
933 		goto out;
934 	}
935 
936 	strcpy(name, dev->name);
937 
938 	ret = 0;
939 out:
940 	rcu_read_unlock();
941 	up_read(&devnet_rename_sem);
942 	return ret;
943 }
944 
945 /**
946  *	dev_getbyhwaddr_rcu - find a device by its hardware address
947  *	@net: the applicable net namespace
948  *	@type: media type of device
949  *	@ha: hardware address
950  *
951  *	Search for an interface by MAC address. Returns NULL if the device
952  *	is not found or a pointer to the device.
953  *	The caller must hold RCU or RTNL.
954  *	The returned device has not had its ref count increased
955  *	and the caller must therefore be careful about locking
956  *
957  */
958 
959 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
960 				       const char *ha)
961 {
962 	struct net_device *dev;
963 
964 	for_each_netdev_rcu(net, dev)
965 		if (dev->type == type &&
966 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
967 			return dev;
968 
969 	return NULL;
970 }
971 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
972 
973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
974 {
975 	struct net_device *dev, *ret = NULL;
976 
977 	rcu_read_lock();
978 	for_each_netdev_rcu(net, dev)
979 		if (dev->type == type) {
980 			dev_hold(dev);
981 			ret = dev;
982 			break;
983 		}
984 	rcu_read_unlock();
985 	return ret;
986 }
987 EXPORT_SYMBOL(dev_getfirstbyhwtype);
988 
989 /**
990  *	__dev_get_by_flags - find any device with given flags
991  *	@net: the applicable net namespace
992  *	@if_flags: IFF_* values
993  *	@mask: bitmask of bits in if_flags to check
994  *
995  *	Search for any interface with the given flags. Returns NULL if a device
996  *	is not found or a pointer to the device. Must be called inside
997  *	rtnl_lock(), and result refcount is unchanged.
998  */
999 
1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001 				      unsigned short mask)
1002 {
1003 	struct net_device *dev, *ret;
1004 
1005 	ASSERT_RTNL();
1006 
1007 	ret = NULL;
1008 	for_each_netdev(net, dev) {
1009 		if (((dev->flags ^ if_flags) & mask) == 0) {
1010 			ret = dev;
1011 			break;
1012 		}
1013 	}
1014 	return ret;
1015 }
1016 EXPORT_SYMBOL(__dev_get_by_flags);
1017 
1018 /**
1019  *	dev_valid_name - check if name is okay for network device
1020  *	@name: name string
1021  *
1022  *	Network device names need to be valid file names to
1023  *	allow sysfs to work.  We also disallow any kind of
1024  *	whitespace.
1025  */
1026 bool dev_valid_name(const char *name)
1027 {
1028 	if (*name == '\0')
1029 		return false;
1030 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1031 		return false;
1032 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1033 		return false;
1034 
1035 	while (*name) {
1036 		if (*name == '/' || *name == ':' || isspace(*name))
1037 			return false;
1038 		name++;
1039 	}
1040 	return true;
1041 }
1042 EXPORT_SYMBOL(dev_valid_name);
1043 
1044 /**
1045  *	__dev_alloc_name - allocate a name for a device
1046  *	@net: network namespace to allocate the device name in
1047  *	@name: name format string
1048  *	@buf:  scratch buffer and result name string
1049  *
1050  *	Passed a format string - eg "lt%d" it will try and find a suitable
1051  *	id. It scans list of devices to build up a free map, then chooses
1052  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1053  *	while allocating the name and adding the device in order to avoid
1054  *	duplicates.
1055  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056  *	Returns the number of the unit assigned or a negative errno code.
1057  */
1058 
1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1060 {
1061 	int i = 0;
1062 	const char *p;
1063 	const int max_netdevices = 8*PAGE_SIZE;
1064 	unsigned long *inuse;
1065 	struct net_device *d;
1066 
1067 	if (!dev_valid_name(name))
1068 		return -EINVAL;
1069 
1070 	p = strchr(name, '%');
1071 	if (p) {
1072 		/*
1073 		 * Verify the string as this thing may have come from
1074 		 * the user.  There must be either one "%d" and no other "%"
1075 		 * characters.
1076 		 */
1077 		if (p[1] != 'd' || strchr(p + 2, '%'))
1078 			return -EINVAL;
1079 
1080 		/* Use one page as a bit array of possible slots */
1081 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1082 		if (!inuse)
1083 			return -ENOMEM;
1084 
1085 		for_each_netdev(net, d) {
1086 			struct netdev_name_node *name_node;
1087 			list_for_each_entry(name_node, &d->name_node->list, list) {
1088 				if (!sscanf(name_node->name, name, &i))
1089 					continue;
1090 				if (i < 0 || i >= max_netdevices)
1091 					continue;
1092 
1093 				/*  avoid cases where sscanf is not exact inverse of printf */
1094 				snprintf(buf, IFNAMSIZ, name, i);
1095 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1096 					__set_bit(i, inuse);
1097 			}
1098 			if (!sscanf(d->name, name, &i))
1099 				continue;
1100 			if (i < 0 || i >= max_netdevices)
1101 				continue;
1102 
1103 			/*  avoid cases where sscanf is not exact inverse of printf */
1104 			snprintf(buf, IFNAMSIZ, name, i);
1105 			if (!strncmp(buf, d->name, IFNAMSIZ))
1106 				__set_bit(i, inuse);
1107 		}
1108 
1109 		i = find_first_zero_bit(inuse, max_netdevices);
1110 		free_page((unsigned long) inuse);
1111 	}
1112 
1113 	snprintf(buf, IFNAMSIZ, name, i);
1114 	if (!netdev_name_in_use(net, buf))
1115 		return i;
1116 
1117 	/* It is possible to run out of possible slots
1118 	 * when the name is long and there isn't enough space left
1119 	 * for the digits, or if all bits are used.
1120 	 */
1121 	return -ENFILE;
1122 }
1123 
1124 static int dev_alloc_name_ns(struct net *net,
1125 			     struct net_device *dev,
1126 			     const char *name)
1127 {
1128 	char buf[IFNAMSIZ];
1129 	int ret;
1130 
1131 	BUG_ON(!net);
1132 	ret = __dev_alloc_name(net, name, buf);
1133 	if (ret >= 0)
1134 		strscpy(dev->name, buf, IFNAMSIZ);
1135 	return ret;
1136 }
1137 
1138 /**
1139  *	dev_alloc_name - allocate a name for a device
1140  *	@dev: device
1141  *	@name: name format string
1142  *
1143  *	Passed a format string - eg "lt%d" it will try and find a suitable
1144  *	id. It scans list of devices to build up a free map, then chooses
1145  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1146  *	while allocating the name and adding the device in order to avoid
1147  *	duplicates.
1148  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1149  *	Returns the number of the unit assigned or a negative errno code.
1150  */
1151 
1152 int dev_alloc_name(struct net_device *dev, const char *name)
1153 {
1154 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1155 }
1156 EXPORT_SYMBOL(dev_alloc_name);
1157 
1158 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1159 			      const char *name)
1160 {
1161 	BUG_ON(!net);
1162 
1163 	if (!dev_valid_name(name))
1164 		return -EINVAL;
1165 
1166 	if (strchr(name, '%'))
1167 		return dev_alloc_name_ns(net, dev, name);
1168 	else if (netdev_name_in_use(net, name))
1169 		return -EEXIST;
1170 	else if (dev->name != name)
1171 		strscpy(dev->name, name, IFNAMSIZ);
1172 
1173 	return 0;
1174 }
1175 
1176 /**
1177  *	dev_change_name - change name of a device
1178  *	@dev: device
1179  *	@newname: name (or format string) must be at least IFNAMSIZ
1180  *
1181  *	Change name of a device, can pass format strings "eth%d".
1182  *	for wildcarding.
1183  */
1184 int dev_change_name(struct net_device *dev, const char *newname)
1185 {
1186 	unsigned char old_assign_type;
1187 	char oldname[IFNAMSIZ];
1188 	int err = 0;
1189 	int ret;
1190 	struct net *net;
1191 
1192 	ASSERT_RTNL();
1193 	BUG_ON(!dev_net(dev));
1194 
1195 	net = dev_net(dev);
1196 
1197 	down_write(&devnet_rename_sem);
1198 
1199 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1200 		up_write(&devnet_rename_sem);
1201 		return 0;
1202 	}
1203 
1204 	memcpy(oldname, dev->name, IFNAMSIZ);
1205 
1206 	err = dev_get_valid_name(net, dev, newname);
1207 	if (err < 0) {
1208 		up_write(&devnet_rename_sem);
1209 		return err;
1210 	}
1211 
1212 	if (oldname[0] && !strchr(oldname, '%'))
1213 		netdev_info(dev, "renamed from %s%s\n", oldname,
1214 			    dev->flags & IFF_UP ? " (while UP)" : "");
1215 
1216 	old_assign_type = dev->name_assign_type;
1217 	dev->name_assign_type = NET_NAME_RENAMED;
1218 
1219 rollback:
1220 	ret = device_rename(&dev->dev, dev->name);
1221 	if (ret) {
1222 		memcpy(dev->name, oldname, IFNAMSIZ);
1223 		dev->name_assign_type = old_assign_type;
1224 		up_write(&devnet_rename_sem);
1225 		return ret;
1226 	}
1227 
1228 	up_write(&devnet_rename_sem);
1229 
1230 	netdev_adjacent_rename_links(dev, oldname);
1231 
1232 	write_lock(&dev_base_lock);
1233 	netdev_name_node_del(dev->name_node);
1234 	write_unlock(&dev_base_lock);
1235 
1236 	synchronize_rcu();
1237 
1238 	write_lock(&dev_base_lock);
1239 	netdev_name_node_add(net, dev->name_node);
1240 	write_unlock(&dev_base_lock);
1241 
1242 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1243 	ret = notifier_to_errno(ret);
1244 
1245 	if (ret) {
1246 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1247 		if (err >= 0) {
1248 			err = ret;
1249 			down_write(&devnet_rename_sem);
1250 			memcpy(dev->name, oldname, IFNAMSIZ);
1251 			memcpy(oldname, newname, IFNAMSIZ);
1252 			dev->name_assign_type = old_assign_type;
1253 			old_assign_type = NET_NAME_RENAMED;
1254 			goto rollback;
1255 		} else {
1256 			netdev_err(dev, "name change rollback failed: %d\n",
1257 				   ret);
1258 		}
1259 	}
1260 
1261 	return err;
1262 }
1263 
1264 /**
1265  *	dev_set_alias - change ifalias of a device
1266  *	@dev: device
1267  *	@alias: name up to IFALIASZ
1268  *	@len: limit of bytes to copy from info
1269  *
1270  *	Set ifalias for a device,
1271  */
1272 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1273 {
1274 	struct dev_ifalias *new_alias = NULL;
1275 
1276 	if (len >= IFALIASZ)
1277 		return -EINVAL;
1278 
1279 	if (len) {
1280 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1281 		if (!new_alias)
1282 			return -ENOMEM;
1283 
1284 		memcpy(new_alias->ifalias, alias, len);
1285 		new_alias->ifalias[len] = 0;
1286 	}
1287 
1288 	mutex_lock(&ifalias_mutex);
1289 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1290 					mutex_is_locked(&ifalias_mutex));
1291 	mutex_unlock(&ifalias_mutex);
1292 
1293 	if (new_alias)
1294 		kfree_rcu(new_alias, rcuhead);
1295 
1296 	return len;
1297 }
1298 EXPORT_SYMBOL(dev_set_alias);
1299 
1300 /**
1301  *	dev_get_alias - get ifalias of a device
1302  *	@dev: device
1303  *	@name: buffer to store name of ifalias
1304  *	@len: size of buffer
1305  *
1306  *	get ifalias for a device.  Caller must make sure dev cannot go
1307  *	away,  e.g. rcu read lock or own a reference count to device.
1308  */
1309 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1310 {
1311 	const struct dev_ifalias *alias;
1312 	int ret = 0;
1313 
1314 	rcu_read_lock();
1315 	alias = rcu_dereference(dev->ifalias);
1316 	if (alias)
1317 		ret = snprintf(name, len, "%s", alias->ifalias);
1318 	rcu_read_unlock();
1319 
1320 	return ret;
1321 }
1322 
1323 /**
1324  *	netdev_features_change - device changes features
1325  *	@dev: device to cause notification
1326  *
1327  *	Called to indicate a device has changed features.
1328  */
1329 void netdev_features_change(struct net_device *dev)
1330 {
1331 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1332 }
1333 EXPORT_SYMBOL(netdev_features_change);
1334 
1335 /**
1336  *	netdev_state_change - device changes state
1337  *	@dev: device to cause notification
1338  *
1339  *	Called to indicate a device has changed state. This function calls
1340  *	the notifier chains for netdev_chain and sends a NEWLINK message
1341  *	to the routing socket.
1342  */
1343 void netdev_state_change(struct net_device *dev)
1344 {
1345 	if (dev->flags & IFF_UP) {
1346 		struct netdev_notifier_change_info change_info = {
1347 			.info.dev = dev,
1348 		};
1349 
1350 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1351 					      &change_info.info);
1352 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1353 	}
1354 }
1355 EXPORT_SYMBOL(netdev_state_change);
1356 
1357 /**
1358  * __netdev_notify_peers - notify network peers about existence of @dev,
1359  * to be called when rtnl lock is already held.
1360  * @dev: network device
1361  *
1362  * Generate traffic such that interested network peers are aware of
1363  * @dev, such as by generating a gratuitous ARP. This may be used when
1364  * a device wants to inform the rest of the network about some sort of
1365  * reconfiguration such as a failover event or virtual machine
1366  * migration.
1367  */
1368 void __netdev_notify_peers(struct net_device *dev)
1369 {
1370 	ASSERT_RTNL();
1371 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1372 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1373 }
1374 EXPORT_SYMBOL(__netdev_notify_peers);
1375 
1376 /**
1377  * netdev_notify_peers - notify network peers about existence of @dev
1378  * @dev: network device
1379  *
1380  * Generate traffic such that interested network peers are aware of
1381  * @dev, such as by generating a gratuitous ARP. This may be used when
1382  * a device wants to inform the rest of the network about some sort of
1383  * reconfiguration such as a failover event or virtual machine
1384  * migration.
1385  */
1386 void netdev_notify_peers(struct net_device *dev)
1387 {
1388 	rtnl_lock();
1389 	__netdev_notify_peers(dev);
1390 	rtnl_unlock();
1391 }
1392 EXPORT_SYMBOL(netdev_notify_peers);
1393 
1394 static int napi_threaded_poll(void *data);
1395 
1396 static int napi_kthread_create(struct napi_struct *n)
1397 {
1398 	int err = 0;
1399 
1400 	/* Create and wake up the kthread once to put it in
1401 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1402 	 * warning and work with loadavg.
1403 	 */
1404 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1405 				n->dev->name, n->napi_id);
1406 	if (IS_ERR(n->thread)) {
1407 		err = PTR_ERR(n->thread);
1408 		pr_err("kthread_run failed with err %d\n", err);
1409 		n->thread = NULL;
1410 	}
1411 
1412 	return err;
1413 }
1414 
1415 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1416 {
1417 	const struct net_device_ops *ops = dev->netdev_ops;
1418 	int ret;
1419 
1420 	ASSERT_RTNL();
1421 	dev_addr_check(dev);
1422 
1423 	if (!netif_device_present(dev)) {
1424 		/* may be detached because parent is runtime-suspended */
1425 		if (dev->dev.parent)
1426 			pm_runtime_resume(dev->dev.parent);
1427 		if (!netif_device_present(dev))
1428 			return -ENODEV;
1429 	}
1430 
1431 	/* Block netpoll from trying to do any rx path servicing.
1432 	 * If we don't do this there is a chance ndo_poll_controller
1433 	 * or ndo_poll may be running while we open the device
1434 	 */
1435 	netpoll_poll_disable(dev);
1436 
1437 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1438 	ret = notifier_to_errno(ret);
1439 	if (ret)
1440 		return ret;
1441 
1442 	set_bit(__LINK_STATE_START, &dev->state);
1443 
1444 	if (ops->ndo_validate_addr)
1445 		ret = ops->ndo_validate_addr(dev);
1446 
1447 	if (!ret && ops->ndo_open)
1448 		ret = ops->ndo_open(dev);
1449 
1450 	netpoll_poll_enable(dev);
1451 
1452 	if (ret)
1453 		clear_bit(__LINK_STATE_START, &dev->state);
1454 	else {
1455 		dev->flags |= IFF_UP;
1456 		dev_set_rx_mode(dev);
1457 		dev_activate(dev);
1458 		add_device_randomness(dev->dev_addr, dev->addr_len);
1459 	}
1460 
1461 	return ret;
1462 }
1463 
1464 /**
1465  *	dev_open	- prepare an interface for use.
1466  *	@dev: device to open
1467  *	@extack: netlink extended ack
1468  *
1469  *	Takes a device from down to up state. The device's private open
1470  *	function is invoked and then the multicast lists are loaded. Finally
1471  *	the device is moved into the up state and a %NETDEV_UP message is
1472  *	sent to the netdev notifier chain.
1473  *
1474  *	Calling this function on an active interface is a nop. On a failure
1475  *	a negative errno code is returned.
1476  */
1477 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1478 {
1479 	int ret;
1480 
1481 	if (dev->flags & IFF_UP)
1482 		return 0;
1483 
1484 	ret = __dev_open(dev, extack);
1485 	if (ret < 0)
1486 		return ret;
1487 
1488 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1489 	call_netdevice_notifiers(NETDEV_UP, dev);
1490 
1491 	return ret;
1492 }
1493 EXPORT_SYMBOL(dev_open);
1494 
1495 static void __dev_close_many(struct list_head *head)
1496 {
1497 	struct net_device *dev;
1498 
1499 	ASSERT_RTNL();
1500 	might_sleep();
1501 
1502 	list_for_each_entry(dev, head, close_list) {
1503 		/* Temporarily disable netpoll until the interface is down */
1504 		netpoll_poll_disable(dev);
1505 
1506 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1507 
1508 		clear_bit(__LINK_STATE_START, &dev->state);
1509 
1510 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1511 		 * can be even on different cpu. So just clear netif_running().
1512 		 *
1513 		 * dev->stop() will invoke napi_disable() on all of it's
1514 		 * napi_struct instances on this device.
1515 		 */
1516 		smp_mb__after_atomic(); /* Commit netif_running(). */
1517 	}
1518 
1519 	dev_deactivate_many(head);
1520 
1521 	list_for_each_entry(dev, head, close_list) {
1522 		const struct net_device_ops *ops = dev->netdev_ops;
1523 
1524 		/*
1525 		 *	Call the device specific close. This cannot fail.
1526 		 *	Only if device is UP
1527 		 *
1528 		 *	We allow it to be called even after a DETACH hot-plug
1529 		 *	event.
1530 		 */
1531 		if (ops->ndo_stop)
1532 			ops->ndo_stop(dev);
1533 
1534 		dev->flags &= ~IFF_UP;
1535 		netpoll_poll_enable(dev);
1536 	}
1537 }
1538 
1539 static void __dev_close(struct net_device *dev)
1540 {
1541 	LIST_HEAD(single);
1542 
1543 	list_add(&dev->close_list, &single);
1544 	__dev_close_many(&single);
1545 	list_del(&single);
1546 }
1547 
1548 void dev_close_many(struct list_head *head, bool unlink)
1549 {
1550 	struct net_device *dev, *tmp;
1551 
1552 	/* Remove the devices that don't need to be closed */
1553 	list_for_each_entry_safe(dev, tmp, head, close_list)
1554 		if (!(dev->flags & IFF_UP))
1555 			list_del_init(&dev->close_list);
1556 
1557 	__dev_close_many(head);
1558 
1559 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1560 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1561 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1562 		if (unlink)
1563 			list_del_init(&dev->close_list);
1564 	}
1565 }
1566 EXPORT_SYMBOL(dev_close_many);
1567 
1568 /**
1569  *	dev_close - shutdown an interface.
1570  *	@dev: device to shutdown
1571  *
1572  *	This function moves an active device into down state. A
1573  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1574  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1575  *	chain.
1576  */
1577 void dev_close(struct net_device *dev)
1578 {
1579 	if (dev->flags & IFF_UP) {
1580 		LIST_HEAD(single);
1581 
1582 		list_add(&dev->close_list, &single);
1583 		dev_close_many(&single, true);
1584 		list_del(&single);
1585 	}
1586 }
1587 EXPORT_SYMBOL(dev_close);
1588 
1589 
1590 /**
1591  *	dev_disable_lro - disable Large Receive Offload on a device
1592  *	@dev: device
1593  *
1594  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1595  *	called under RTNL.  This is needed if received packets may be
1596  *	forwarded to another interface.
1597  */
1598 void dev_disable_lro(struct net_device *dev)
1599 {
1600 	struct net_device *lower_dev;
1601 	struct list_head *iter;
1602 
1603 	dev->wanted_features &= ~NETIF_F_LRO;
1604 	netdev_update_features(dev);
1605 
1606 	if (unlikely(dev->features & NETIF_F_LRO))
1607 		netdev_WARN(dev, "failed to disable LRO!\n");
1608 
1609 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1610 		dev_disable_lro(lower_dev);
1611 }
1612 EXPORT_SYMBOL(dev_disable_lro);
1613 
1614 /**
1615  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1616  *	@dev: device
1617  *
1618  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1619  *	called under RTNL.  This is needed if Generic XDP is installed on
1620  *	the device.
1621  */
1622 static void dev_disable_gro_hw(struct net_device *dev)
1623 {
1624 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1625 	netdev_update_features(dev);
1626 
1627 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1628 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1629 }
1630 
1631 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1632 {
1633 #define N(val) 						\
1634 	case NETDEV_##val:				\
1635 		return "NETDEV_" __stringify(val);
1636 	switch (cmd) {
1637 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1638 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1639 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1640 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1641 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1642 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1643 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1644 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1645 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1646 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1647 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1648 	N(XDP_FEAT_CHANGE)
1649 	}
1650 #undef N
1651 	return "UNKNOWN_NETDEV_EVENT";
1652 }
1653 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1654 
1655 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1656 				   struct net_device *dev)
1657 {
1658 	struct netdev_notifier_info info = {
1659 		.dev = dev,
1660 	};
1661 
1662 	return nb->notifier_call(nb, val, &info);
1663 }
1664 
1665 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1666 					     struct net_device *dev)
1667 {
1668 	int err;
1669 
1670 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1671 	err = notifier_to_errno(err);
1672 	if (err)
1673 		return err;
1674 
1675 	if (!(dev->flags & IFF_UP))
1676 		return 0;
1677 
1678 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1679 	return 0;
1680 }
1681 
1682 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1683 						struct net_device *dev)
1684 {
1685 	if (dev->flags & IFF_UP) {
1686 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1687 					dev);
1688 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1689 	}
1690 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1691 }
1692 
1693 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1694 						 struct net *net)
1695 {
1696 	struct net_device *dev;
1697 	int err;
1698 
1699 	for_each_netdev(net, dev) {
1700 		err = call_netdevice_register_notifiers(nb, dev);
1701 		if (err)
1702 			goto rollback;
1703 	}
1704 	return 0;
1705 
1706 rollback:
1707 	for_each_netdev_continue_reverse(net, dev)
1708 		call_netdevice_unregister_notifiers(nb, dev);
1709 	return err;
1710 }
1711 
1712 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1713 						    struct net *net)
1714 {
1715 	struct net_device *dev;
1716 
1717 	for_each_netdev(net, dev)
1718 		call_netdevice_unregister_notifiers(nb, dev);
1719 }
1720 
1721 static int dev_boot_phase = 1;
1722 
1723 /**
1724  * register_netdevice_notifier - register a network notifier block
1725  * @nb: notifier
1726  *
1727  * Register a notifier to be called when network device events occur.
1728  * The notifier passed is linked into the kernel structures and must
1729  * not be reused until it has been unregistered. A negative errno code
1730  * is returned on a failure.
1731  *
1732  * When registered all registration and up events are replayed
1733  * to the new notifier to allow device to have a race free
1734  * view of the network device list.
1735  */
1736 
1737 int register_netdevice_notifier(struct notifier_block *nb)
1738 {
1739 	struct net *net;
1740 	int err;
1741 
1742 	/* Close race with setup_net() and cleanup_net() */
1743 	down_write(&pernet_ops_rwsem);
1744 	rtnl_lock();
1745 	err = raw_notifier_chain_register(&netdev_chain, nb);
1746 	if (err)
1747 		goto unlock;
1748 	if (dev_boot_phase)
1749 		goto unlock;
1750 	for_each_net(net) {
1751 		err = call_netdevice_register_net_notifiers(nb, net);
1752 		if (err)
1753 			goto rollback;
1754 	}
1755 
1756 unlock:
1757 	rtnl_unlock();
1758 	up_write(&pernet_ops_rwsem);
1759 	return err;
1760 
1761 rollback:
1762 	for_each_net_continue_reverse(net)
1763 		call_netdevice_unregister_net_notifiers(nb, net);
1764 
1765 	raw_notifier_chain_unregister(&netdev_chain, nb);
1766 	goto unlock;
1767 }
1768 EXPORT_SYMBOL(register_netdevice_notifier);
1769 
1770 /**
1771  * unregister_netdevice_notifier - unregister a network notifier block
1772  * @nb: notifier
1773  *
1774  * Unregister a notifier previously registered by
1775  * register_netdevice_notifier(). The notifier is unlinked into the
1776  * kernel structures and may then be reused. A negative errno code
1777  * is returned on a failure.
1778  *
1779  * After unregistering unregister and down device events are synthesized
1780  * for all devices on the device list to the removed notifier to remove
1781  * the need for special case cleanup code.
1782  */
1783 
1784 int unregister_netdevice_notifier(struct notifier_block *nb)
1785 {
1786 	struct net *net;
1787 	int err;
1788 
1789 	/* Close race with setup_net() and cleanup_net() */
1790 	down_write(&pernet_ops_rwsem);
1791 	rtnl_lock();
1792 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1793 	if (err)
1794 		goto unlock;
1795 
1796 	for_each_net(net)
1797 		call_netdevice_unregister_net_notifiers(nb, net);
1798 
1799 unlock:
1800 	rtnl_unlock();
1801 	up_write(&pernet_ops_rwsem);
1802 	return err;
1803 }
1804 EXPORT_SYMBOL(unregister_netdevice_notifier);
1805 
1806 static int __register_netdevice_notifier_net(struct net *net,
1807 					     struct notifier_block *nb,
1808 					     bool ignore_call_fail)
1809 {
1810 	int err;
1811 
1812 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1813 	if (err)
1814 		return err;
1815 	if (dev_boot_phase)
1816 		return 0;
1817 
1818 	err = call_netdevice_register_net_notifiers(nb, net);
1819 	if (err && !ignore_call_fail)
1820 		goto chain_unregister;
1821 
1822 	return 0;
1823 
1824 chain_unregister:
1825 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1826 	return err;
1827 }
1828 
1829 static int __unregister_netdevice_notifier_net(struct net *net,
1830 					       struct notifier_block *nb)
1831 {
1832 	int err;
1833 
1834 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1835 	if (err)
1836 		return err;
1837 
1838 	call_netdevice_unregister_net_notifiers(nb, net);
1839 	return 0;
1840 }
1841 
1842 /**
1843  * register_netdevice_notifier_net - register a per-netns network notifier block
1844  * @net: network namespace
1845  * @nb: notifier
1846  *
1847  * Register a notifier to be called when network device events occur.
1848  * The notifier passed is linked into the kernel structures and must
1849  * not be reused until it has been unregistered. A negative errno code
1850  * is returned on a failure.
1851  *
1852  * When registered all registration and up events are replayed
1853  * to the new notifier to allow device to have a race free
1854  * view of the network device list.
1855  */
1856 
1857 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1858 {
1859 	int err;
1860 
1861 	rtnl_lock();
1862 	err = __register_netdevice_notifier_net(net, nb, false);
1863 	rtnl_unlock();
1864 	return err;
1865 }
1866 EXPORT_SYMBOL(register_netdevice_notifier_net);
1867 
1868 /**
1869  * unregister_netdevice_notifier_net - unregister a per-netns
1870  *                                     network notifier block
1871  * @net: network namespace
1872  * @nb: notifier
1873  *
1874  * Unregister a notifier previously registered by
1875  * register_netdevice_notifier_net(). The notifier is unlinked from the
1876  * kernel structures and may then be reused. A negative errno code
1877  * is returned on a failure.
1878  *
1879  * After unregistering unregister and down device events are synthesized
1880  * for all devices on the device list to the removed notifier to remove
1881  * the need for special case cleanup code.
1882  */
1883 
1884 int unregister_netdevice_notifier_net(struct net *net,
1885 				      struct notifier_block *nb)
1886 {
1887 	int err;
1888 
1889 	rtnl_lock();
1890 	err = __unregister_netdevice_notifier_net(net, nb);
1891 	rtnl_unlock();
1892 	return err;
1893 }
1894 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1895 
1896 static void __move_netdevice_notifier_net(struct net *src_net,
1897 					  struct net *dst_net,
1898 					  struct notifier_block *nb)
1899 {
1900 	__unregister_netdevice_notifier_net(src_net, nb);
1901 	__register_netdevice_notifier_net(dst_net, nb, true);
1902 }
1903 
1904 int register_netdevice_notifier_dev_net(struct net_device *dev,
1905 					struct notifier_block *nb,
1906 					struct netdev_net_notifier *nn)
1907 {
1908 	int err;
1909 
1910 	rtnl_lock();
1911 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1912 	if (!err) {
1913 		nn->nb = nb;
1914 		list_add(&nn->list, &dev->net_notifier_list);
1915 	}
1916 	rtnl_unlock();
1917 	return err;
1918 }
1919 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1920 
1921 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1922 					  struct notifier_block *nb,
1923 					  struct netdev_net_notifier *nn)
1924 {
1925 	int err;
1926 
1927 	rtnl_lock();
1928 	list_del(&nn->list);
1929 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1930 	rtnl_unlock();
1931 	return err;
1932 }
1933 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1934 
1935 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1936 					     struct net *net)
1937 {
1938 	struct netdev_net_notifier *nn;
1939 
1940 	list_for_each_entry(nn, &dev->net_notifier_list, list)
1941 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1942 }
1943 
1944 /**
1945  *	call_netdevice_notifiers_info - call all network notifier blocks
1946  *	@val: value passed unmodified to notifier function
1947  *	@info: notifier information data
1948  *
1949  *	Call all network notifier blocks.  Parameters and return value
1950  *	are as for raw_notifier_call_chain().
1951  */
1952 
1953 int call_netdevice_notifiers_info(unsigned long val,
1954 				  struct netdev_notifier_info *info)
1955 {
1956 	struct net *net = dev_net(info->dev);
1957 	int ret;
1958 
1959 	ASSERT_RTNL();
1960 
1961 	/* Run per-netns notifier block chain first, then run the global one.
1962 	 * Hopefully, one day, the global one is going to be removed after
1963 	 * all notifier block registrators get converted to be per-netns.
1964 	 */
1965 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1966 	if (ret & NOTIFY_STOP_MASK)
1967 		return ret;
1968 	return raw_notifier_call_chain(&netdev_chain, val, info);
1969 }
1970 
1971 /**
1972  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1973  *	                                       for and rollback on error
1974  *	@val_up: value passed unmodified to notifier function
1975  *	@val_down: value passed unmodified to the notifier function when
1976  *	           recovering from an error on @val_up
1977  *	@info: notifier information data
1978  *
1979  *	Call all per-netns network notifier blocks, but not notifier blocks on
1980  *	the global notifier chain. Parameters and return value are as for
1981  *	raw_notifier_call_chain_robust().
1982  */
1983 
1984 static int
1985 call_netdevice_notifiers_info_robust(unsigned long val_up,
1986 				     unsigned long val_down,
1987 				     struct netdev_notifier_info *info)
1988 {
1989 	struct net *net = dev_net(info->dev);
1990 
1991 	ASSERT_RTNL();
1992 
1993 	return raw_notifier_call_chain_robust(&net->netdev_chain,
1994 					      val_up, val_down, info);
1995 }
1996 
1997 static int call_netdevice_notifiers_extack(unsigned long val,
1998 					   struct net_device *dev,
1999 					   struct netlink_ext_ack *extack)
2000 {
2001 	struct netdev_notifier_info info = {
2002 		.dev = dev,
2003 		.extack = extack,
2004 	};
2005 
2006 	return call_netdevice_notifiers_info(val, &info);
2007 }
2008 
2009 /**
2010  *	call_netdevice_notifiers - call all network notifier blocks
2011  *      @val: value passed unmodified to notifier function
2012  *      @dev: net_device pointer passed unmodified to notifier function
2013  *
2014  *	Call all network notifier blocks.  Parameters and return value
2015  *	are as for raw_notifier_call_chain().
2016  */
2017 
2018 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2019 {
2020 	return call_netdevice_notifiers_extack(val, dev, NULL);
2021 }
2022 EXPORT_SYMBOL(call_netdevice_notifiers);
2023 
2024 /**
2025  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2026  *	@val: value passed unmodified to notifier function
2027  *	@dev: net_device pointer passed unmodified to notifier function
2028  *	@arg: additional u32 argument passed to the notifier function
2029  *
2030  *	Call all network notifier blocks.  Parameters and return value
2031  *	are as for raw_notifier_call_chain().
2032  */
2033 static int call_netdevice_notifiers_mtu(unsigned long val,
2034 					struct net_device *dev, u32 arg)
2035 {
2036 	struct netdev_notifier_info_ext info = {
2037 		.info.dev = dev,
2038 		.ext.mtu = arg,
2039 	};
2040 
2041 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2042 
2043 	return call_netdevice_notifiers_info(val, &info.info);
2044 }
2045 
2046 #ifdef CONFIG_NET_INGRESS
2047 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2048 
2049 void net_inc_ingress_queue(void)
2050 {
2051 	static_branch_inc(&ingress_needed_key);
2052 }
2053 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2054 
2055 void net_dec_ingress_queue(void)
2056 {
2057 	static_branch_dec(&ingress_needed_key);
2058 }
2059 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2060 #endif
2061 
2062 #ifdef CONFIG_NET_EGRESS
2063 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2064 
2065 void net_inc_egress_queue(void)
2066 {
2067 	static_branch_inc(&egress_needed_key);
2068 }
2069 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2070 
2071 void net_dec_egress_queue(void)
2072 {
2073 	static_branch_dec(&egress_needed_key);
2074 }
2075 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2076 #endif
2077 
2078 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2079 EXPORT_SYMBOL(netstamp_needed_key);
2080 #ifdef CONFIG_JUMP_LABEL
2081 static atomic_t netstamp_needed_deferred;
2082 static atomic_t netstamp_wanted;
2083 static void netstamp_clear(struct work_struct *work)
2084 {
2085 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2086 	int wanted;
2087 
2088 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2089 	if (wanted > 0)
2090 		static_branch_enable(&netstamp_needed_key);
2091 	else
2092 		static_branch_disable(&netstamp_needed_key);
2093 }
2094 static DECLARE_WORK(netstamp_work, netstamp_clear);
2095 #endif
2096 
2097 void net_enable_timestamp(void)
2098 {
2099 #ifdef CONFIG_JUMP_LABEL
2100 	int wanted = atomic_read(&netstamp_wanted);
2101 
2102 	while (wanted > 0) {
2103 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2104 			return;
2105 	}
2106 	atomic_inc(&netstamp_needed_deferred);
2107 	schedule_work(&netstamp_work);
2108 #else
2109 	static_branch_inc(&netstamp_needed_key);
2110 #endif
2111 }
2112 EXPORT_SYMBOL(net_enable_timestamp);
2113 
2114 void net_disable_timestamp(void)
2115 {
2116 #ifdef CONFIG_JUMP_LABEL
2117 	int wanted = atomic_read(&netstamp_wanted);
2118 
2119 	while (wanted > 1) {
2120 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2121 			return;
2122 	}
2123 	atomic_dec(&netstamp_needed_deferred);
2124 	schedule_work(&netstamp_work);
2125 #else
2126 	static_branch_dec(&netstamp_needed_key);
2127 #endif
2128 }
2129 EXPORT_SYMBOL(net_disable_timestamp);
2130 
2131 static inline void net_timestamp_set(struct sk_buff *skb)
2132 {
2133 	skb->tstamp = 0;
2134 	skb->mono_delivery_time = 0;
2135 	if (static_branch_unlikely(&netstamp_needed_key))
2136 		skb->tstamp = ktime_get_real();
2137 }
2138 
2139 #define net_timestamp_check(COND, SKB)				\
2140 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2141 		if ((COND) && !(SKB)->tstamp)			\
2142 			(SKB)->tstamp = ktime_get_real();	\
2143 	}							\
2144 
2145 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2146 {
2147 	return __is_skb_forwardable(dev, skb, true);
2148 }
2149 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2150 
2151 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2152 			      bool check_mtu)
2153 {
2154 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2155 
2156 	if (likely(!ret)) {
2157 		skb->protocol = eth_type_trans(skb, dev);
2158 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2159 	}
2160 
2161 	return ret;
2162 }
2163 
2164 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2165 {
2166 	return __dev_forward_skb2(dev, skb, true);
2167 }
2168 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2169 
2170 /**
2171  * dev_forward_skb - loopback an skb to another netif
2172  *
2173  * @dev: destination network device
2174  * @skb: buffer to forward
2175  *
2176  * return values:
2177  *	NET_RX_SUCCESS	(no congestion)
2178  *	NET_RX_DROP     (packet was dropped, but freed)
2179  *
2180  * dev_forward_skb can be used for injecting an skb from the
2181  * start_xmit function of one device into the receive queue
2182  * of another device.
2183  *
2184  * The receiving device may be in another namespace, so
2185  * we have to clear all information in the skb that could
2186  * impact namespace isolation.
2187  */
2188 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2189 {
2190 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2191 }
2192 EXPORT_SYMBOL_GPL(dev_forward_skb);
2193 
2194 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2195 {
2196 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2197 }
2198 
2199 static inline int deliver_skb(struct sk_buff *skb,
2200 			      struct packet_type *pt_prev,
2201 			      struct net_device *orig_dev)
2202 {
2203 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2204 		return -ENOMEM;
2205 	refcount_inc(&skb->users);
2206 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2207 }
2208 
2209 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2210 					  struct packet_type **pt,
2211 					  struct net_device *orig_dev,
2212 					  __be16 type,
2213 					  struct list_head *ptype_list)
2214 {
2215 	struct packet_type *ptype, *pt_prev = *pt;
2216 
2217 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2218 		if (ptype->type != type)
2219 			continue;
2220 		if (pt_prev)
2221 			deliver_skb(skb, pt_prev, orig_dev);
2222 		pt_prev = ptype;
2223 	}
2224 	*pt = pt_prev;
2225 }
2226 
2227 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2228 {
2229 	if (!ptype->af_packet_priv || !skb->sk)
2230 		return false;
2231 
2232 	if (ptype->id_match)
2233 		return ptype->id_match(ptype, skb->sk);
2234 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2235 		return true;
2236 
2237 	return false;
2238 }
2239 
2240 /**
2241  * dev_nit_active - return true if any network interface taps are in use
2242  *
2243  * @dev: network device to check for the presence of taps
2244  */
2245 bool dev_nit_active(struct net_device *dev)
2246 {
2247 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2248 }
2249 EXPORT_SYMBOL_GPL(dev_nit_active);
2250 
2251 /*
2252  *	Support routine. Sends outgoing frames to any network
2253  *	taps currently in use.
2254  */
2255 
2256 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2257 {
2258 	struct packet_type *ptype;
2259 	struct sk_buff *skb2 = NULL;
2260 	struct packet_type *pt_prev = NULL;
2261 	struct list_head *ptype_list = &ptype_all;
2262 
2263 	rcu_read_lock();
2264 again:
2265 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2266 		if (ptype->ignore_outgoing)
2267 			continue;
2268 
2269 		/* Never send packets back to the socket
2270 		 * they originated from - MvS (miquels@drinkel.ow.org)
2271 		 */
2272 		if (skb_loop_sk(ptype, skb))
2273 			continue;
2274 
2275 		if (pt_prev) {
2276 			deliver_skb(skb2, pt_prev, skb->dev);
2277 			pt_prev = ptype;
2278 			continue;
2279 		}
2280 
2281 		/* need to clone skb, done only once */
2282 		skb2 = skb_clone(skb, GFP_ATOMIC);
2283 		if (!skb2)
2284 			goto out_unlock;
2285 
2286 		net_timestamp_set(skb2);
2287 
2288 		/* skb->nh should be correctly
2289 		 * set by sender, so that the second statement is
2290 		 * just protection against buggy protocols.
2291 		 */
2292 		skb_reset_mac_header(skb2);
2293 
2294 		if (skb_network_header(skb2) < skb2->data ||
2295 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2296 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2297 					     ntohs(skb2->protocol),
2298 					     dev->name);
2299 			skb_reset_network_header(skb2);
2300 		}
2301 
2302 		skb2->transport_header = skb2->network_header;
2303 		skb2->pkt_type = PACKET_OUTGOING;
2304 		pt_prev = ptype;
2305 	}
2306 
2307 	if (ptype_list == &ptype_all) {
2308 		ptype_list = &dev->ptype_all;
2309 		goto again;
2310 	}
2311 out_unlock:
2312 	if (pt_prev) {
2313 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2314 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2315 		else
2316 			kfree_skb(skb2);
2317 	}
2318 	rcu_read_unlock();
2319 }
2320 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2321 
2322 /**
2323  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2324  * @dev: Network device
2325  * @txq: number of queues available
2326  *
2327  * If real_num_tx_queues is changed the tc mappings may no longer be
2328  * valid. To resolve this verify the tc mapping remains valid and if
2329  * not NULL the mapping. With no priorities mapping to this
2330  * offset/count pair it will no longer be used. In the worst case TC0
2331  * is invalid nothing can be done so disable priority mappings. If is
2332  * expected that drivers will fix this mapping if they can before
2333  * calling netif_set_real_num_tx_queues.
2334  */
2335 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2336 {
2337 	int i;
2338 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2339 
2340 	/* If TC0 is invalidated disable TC mapping */
2341 	if (tc->offset + tc->count > txq) {
2342 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2343 		dev->num_tc = 0;
2344 		return;
2345 	}
2346 
2347 	/* Invalidated prio to tc mappings set to TC0 */
2348 	for (i = 1; i < TC_BITMASK + 1; i++) {
2349 		int q = netdev_get_prio_tc_map(dev, i);
2350 
2351 		tc = &dev->tc_to_txq[q];
2352 		if (tc->offset + tc->count > txq) {
2353 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2354 				    i, q);
2355 			netdev_set_prio_tc_map(dev, i, 0);
2356 		}
2357 	}
2358 }
2359 
2360 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2361 {
2362 	if (dev->num_tc) {
2363 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2364 		int i;
2365 
2366 		/* walk through the TCs and see if it falls into any of them */
2367 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2368 			if ((txq - tc->offset) < tc->count)
2369 				return i;
2370 		}
2371 
2372 		/* didn't find it, just return -1 to indicate no match */
2373 		return -1;
2374 	}
2375 
2376 	return 0;
2377 }
2378 EXPORT_SYMBOL(netdev_txq_to_tc);
2379 
2380 #ifdef CONFIG_XPS
2381 static struct static_key xps_needed __read_mostly;
2382 static struct static_key xps_rxqs_needed __read_mostly;
2383 static DEFINE_MUTEX(xps_map_mutex);
2384 #define xmap_dereference(P)		\
2385 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2386 
2387 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2388 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2389 {
2390 	struct xps_map *map = NULL;
2391 	int pos;
2392 
2393 	map = xmap_dereference(dev_maps->attr_map[tci]);
2394 	if (!map)
2395 		return false;
2396 
2397 	for (pos = map->len; pos--;) {
2398 		if (map->queues[pos] != index)
2399 			continue;
2400 
2401 		if (map->len > 1) {
2402 			map->queues[pos] = map->queues[--map->len];
2403 			break;
2404 		}
2405 
2406 		if (old_maps)
2407 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2408 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2409 		kfree_rcu(map, rcu);
2410 		return false;
2411 	}
2412 
2413 	return true;
2414 }
2415 
2416 static bool remove_xps_queue_cpu(struct net_device *dev,
2417 				 struct xps_dev_maps *dev_maps,
2418 				 int cpu, u16 offset, u16 count)
2419 {
2420 	int num_tc = dev_maps->num_tc;
2421 	bool active = false;
2422 	int tci;
2423 
2424 	for (tci = cpu * num_tc; num_tc--; tci++) {
2425 		int i, j;
2426 
2427 		for (i = count, j = offset; i--; j++) {
2428 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2429 				break;
2430 		}
2431 
2432 		active |= i < 0;
2433 	}
2434 
2435 	return active;
2436 }
2437 
2438 static void reset_xps_maps(struct net_device *dev,
2439 			   struct xps_dev_maps *dev_maps,
2440 			   enum xps_map_type type)
2441 {
2442 	static_key_slow_dec_cpuslocked(&xps_needed);
2443 	if (type == XPS_RXQS)
2444 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2445 
2446 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2447 
2448 	kfree_rcu(dev_maps, rcu);
2449 }
2450 
2451 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2452 			   u16 offset, u16 count)
2453 {
2454 	struct xps_dev_maps *dev_maps;
2455 	bool active = false;
2456 	int i, j;
2457 
2458 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2459 	if (!dev_maps)
2460 		return;
2461 
2462 	for (j = 0; j < dev_maps->nr_ids; j++)
2463 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2464 	if (!active)
2465 		reset_xps_maps(dev, dev_maps, type);
2466 
2467 	if (type == XPS_CPUS) {
2468 		for (i = offset + (count - 1); count--; i--)
2469 			netdev_queue_numa_node_write(
2470 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2471 	}
2472 }
2473 
2474 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2475 				   u16 count)
2476 {
2477 	if (!static_key_false(&xps_needed))
2478 		return;
2479 
2480 	cpus_read_lock();
2481 	mutex_lock(&xps_map_mutex);
2482 
2483 	if (static_key_false(&xps_rxqs_needed))
2484 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2485 
2486 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2487 
2488 	mutex_unlock(&xps_map_mutex);
2489 	cpus_read_unlock();
2490 }
2491 
2492 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2493 {
2494 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2495 }
2496 
2497 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2498 				      u16 index, bool is_rxqs_map)
2499 {
2500 	struct xps_map *new_map;
2501 	int alloc_len = XPS_MIN_MAP_ALLOC;
2502 	int i, pos;
2503 
2504 	for (pos = 0; map && pos < map->len; pos++) {
2505 		if (map->queues[pos] != index)
2506 			continue;
2507 		return map;
2508 	}
2509 
2510 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2511 	if (map) {
2512 		if (pos < map->alloc_len)
2513 			return map;
2514 
2515 		alloc_len = map->alloc_len * 2;
2516 	}
2517 
2518 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2519 	 *  map
2520 	 */
2521 	if (is_rxqs_map)
2522 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2523 	else
2524 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2525 				       cpu_to_node(attr_index));
2526 	if (!new_map)
2527 		return NULL;
2528 
2529 	for (i = 0; i < pos; i++)
2530 		new_map->queues[i] = map->queues[i];
2531 	new_map->alloc_len = alloc_len;
2532 	new_map->len = pos;
2533 
2534 	return new_map;
2535 }
2536 
2537 /* Copy xps maps at a given index */
2538 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2539 			      struct xps_dev_maps *new_dev_maps, int index,
2540 			      int tc, bool skip_tc)
2541 {
2542 	int i, tci = index * dev_maps->num_tc;
2543 	struct xps_map *map;
2544 
2545 	/* copy maps belonging to foreign traffic classes */
2546 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2547 		if (i == tc && skip_tc)
2548 			continue;
2549 
2550 		/* fill in the new device map from the old device map */
2551 		map = xmap_dereference(dev_maps->attr_map[tci]);
2552 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2553 	}
2554 }
2555 
2556 /* Must be called under cpus_read_lock */
2557 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2558 			  u16 index, enum xps_map_type type)
2559 {
2560 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2561 	const unsigned long *online_mask = NULL;
2562 	bool active = false, copy = false;
2563 	int i, j, tci, numa_node_id = -2;
2564 	int maps_sz, num_tc = 1, tc = 0;
2565 	struct xps_map *map, *new_map;
2566 	unsigned int nr_ids;
2567 
2568 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2569 
2570 	if (dev->num_tc) {
2571 		/* Do not allow XPS on subordinate device directly */
2572 		num_tc = dev->num_tc;
2573 		if (num_tc < 0)
2574 			return -EINVAL;
2575 
2576 		/* If queue belongs to subordinate dev use its map */
2577 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2578 
2579 		tc = netdev_txq_to_tc(dev, index);
2580 		if (tc < 0)
2581 			return -EINVAL;
2582 	}
2583 
2584 	mutex_lock(&xps_map_mutex);
2585 
2586 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2587 	if (type == XPS_RXQS) {
2588 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2589 		nr_ids = dev->num_rx_queues;
2590 	} else {
2591 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2592 		if (num_possible_cpus() > 1)
2593 			online_mask = cpumask_bits(cpu_online_mask);
2594 		nr_ids = nr_cpu_ids;
2595 	}
2596 
2597 	if (maps_sz < L1_CACHE_BYTES)
2598 		maps_sz = L1_CACHE_BYTES;
2599 
2600 	/* The old dev_maps could be larger or smaller than the one we're
2601 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2602 	 * between. We could try to be smart, but let's be safe instead and only
2603 	 * copy foreign traffic classes if the two map sizes match.
2604 	 */
2605 	if (dev_maps &&
2606 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2607 		copy = true;
2608 
2609 	/* allocate memory for queue storage */
2610 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2611 	     j < nr_ids;) {
2612 		if (!new_dev_maps) {
2613 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2614 			if (!new_dev_maps) {
2615 				mutex_unlock(&xps_map_mutex);
2616 				return -ENOMEM;
2617 			}
2618 
2619 			new_dev_maps->nr_ids = nr_ids;
2620 			new_dev_maps->num_tc = num_tc;
2621 		}
2622 
2623 		tci = j * num_tc + tc;
2624 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2625 
2626 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2627 		if (!map)
2628 			goto error;
2629 
2630 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2631 	}
2632 
2633 	if (!new_dev_maps)
2634 		goto out_no_new_maps;
2635 
2636 	if (!dev_maps) {
2637 		/* Increment static keys at most once per type */
2638 		static_key_slow_inc_cpuslocked(&xps_needed);
2639 		if (type == XPS_RXQS)
2640 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2641 	}
2642 
2643 	for (j = 0; j < nr_ids; j++) {
2644 		bool skip_tc = false;
2645 
2646 		tci = j * num_tc + tc;
2647 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2648 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2649 			/* add tx-queue to CPU/rx-queue maps */
2650 			int pos = 0;
2651 
2652 			skip_tc = true;
2653 
2654 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2655 			while ((pos < map->len) && (map->queues[pos] != index))
2656 				pos++;
2657 
2658 			if (pos == map->len)
2659 				map->queues[map->len++] = index;
2660 #ifdef CONFIG_NUMA
2661 			if (type == XPS_CPUS) {
2662 				if (numa_node_id == -2)
2663 					numa_node_id = cpu_to_node(j);
2664 				else if (numa_node_id != cpu_to_node(j))
2665 					numa_node_id = -1;
2666 			}
2667 #endif
2668 		}
2669 
2670 		if (copy)
2671 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2672 					  skip_tc);
2673 	}
2674 
2675 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2676 
2677 	/* Cleanup old maps */
2678 	if (!dev_maps)
2679 		goto out_no_old_maps;
2680 
2681 	for (j = 0; j < dev_maps->nr_ids; j++) {
2682 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2683 			map = xmap_dereference(dev_maps->attr_map[tci]);
2684 			if (!map)
2685 				continue;
2686 
2687 			if (copy) {
2688 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2689 				if (map == new_map)
2690 					continue;
2691 			}
2692 
2693 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2694 			kfree_rcu(map, rcu);
2695 		}
2696 	}
2697 
2698 	old_dev_maps = dev_maps;
2699 
2700 out_no_old_maps:
2701 	dev_maps = new_dev_maps;
2702 	active = true;
2703 
2704 out_no_new_maps:
2705 	if (type == XPS_CPUS)
2706 		/* update Tx queue numa node */
2707 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2708 					     (numa_node_id >= 0) ?
2709 					     numa_node_id : NUMA_NO_NODE);
2710 
2711 	if (!dev_maps)
2712 		goto out_no_maps;
2713 
2714 	/* removes tx-queue from unused CPUs/rx-queues */
2715 	for (j = 0; j < dev_maps->nr_ids; j++) {
2716 		tci = j * dev_maps->num_tc;
2717 
2718 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2719 			if (i == tc &&
2720 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2721 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2722 				continue;
2723 
2724 			active |= remove_xps_queue(dev_maps,
2725 						   copy ? old_dev_maps : NULL,
2726 						   tci, index);
2727 		}
2728 	}
2729 
2730 	if (old_dev_maps)
2731 		kfree_rcu(old_dev_maps, rcu);
2732 
2733 	/* free map if not active */
2734 	if (!active)
2735 		reset_xps_maps(dev, dev_maps, type);
2736 
2737 out_no_maps:
2738 	mutex_unlock(&xps_map_mutex);
2739 
2740 	return 0;
2741 error:
2742 	/* remove any maps that we added */
2743 	for (j = 0; j < nr_ids; j++) {
2744 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2745 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2746 			map = copy ?
2747 			      xmap_dereference(dev_maps->attr_map[tci]) :
2748 			      NULL;
2749 			if (new_map && new_map != map)
2750 				kfree(new_map);
2751 		}
2752 	}
2753 
2754 	mutex_unlock(&xps_map_mutex);
2755 
2756 	kfree(new_dev_maps);
2757 	return -ENOMEM;
2758 }
2759 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2760 
2761 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2762 			u16 index)
2763 {
2764 	int ret;
2765 
2766 	cpus_read_lock();
2767 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2768 	cpus_read_unlock();
2769 
2770 	return ret;
2771 }
2772 EXPORT_SYMBOL(netif_set_xps_queue);
2773 
2774 #endif
2775 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2776 {
2777 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2778 
2779 	/* Unbind any subordinate channels */
2780 	while (txq-- != &dev->_tx[0]) {
2781 		if (txq->sb_dev)
2782 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2783 	}
2784 }
2785 
2786 void netdev_reset_tc(struct net_device *dev)
2787 {
2788 #ifdef CONFIG_XPS
2789 	netif_reset_xps_queues_gt(dev, 0);
2790 #endif
2791 	netdev_unbind_all_sb_channels(dev);
2792 
2793 	/* Reset TC configuration of device */
2794 	dev->num_tc = 0;
2795 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2796 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2797 }
2798 EXPORT_SYMBOL(netdev_reset_tc);
2799 
2800 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2801 {
2802 	if (tc >= dev->num_tc)
2803 		return -EINVAL;
2804 
2805 #ifdef CONFIG_XPS
2806 	netif_reset_xps_queues(dev, offset, count);
2807 #endif
2808 	dev->tc_to_txq[tc].count = count;
2809 	dev->tc_to_txq[tc].offset = offset;
2810 	return 0;
2811 }
2812 EXPORT_SYMBOL(netdev_set_tc_queue);
2813 
2814 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2815 {
2816 	if (num_tc > TC_MAX_QUEUE)
2817 		return -EINVAL;
2818 
2819 #ifdef CONFIG_XPS
2820 	netif_reset_xps_queues_gt(dev, 0);
2821 #endif
2822 	netdev_unbind_all_sb_channels(dev);
2823 
2824 	dev->num_tc = num_tc;
2825 	return 0;
2826 }
2827 EXPORT_SYMBOL(netdev_set_num_tc);
2828 
2829 void netdev_unbind_sb_channel(struct net_device *dev,
2830 			      struct net_device *sb_dev)
2831 {
2832 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2833 
2834 #ifdef CONFIG_XPS
2835 	netif_reset_xps_queues_gt(sb_dev, 0);
2836 #endif
2837 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2838 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2839 
2840 	while (txq-- != &dev->_tx[0]) {
2841 		if (txq->sb_dev == sb_dev)
2842 			txq->sb_dev = NULL;
2843 	}
2844 }
2845 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2846 
2847 int netdev_bind_sb_channel_queue(struct net_device *dev,
2848 				 struct net_device *sb_dev,
2849 				 u8 tc, u16 count, u16 offset)
2850 {
2851 	/* Make certain the sb_dev and dev are already configured */
2852 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2853 		return -EINVAL;
2854 
2855 	/* We cannot hand out queues we don't have */
2856 	if ((offset + count) > dev->real_num_tx_queues)
2857 		return -EINVAL;
2858 
2859 	/* Record the mapping */
2860 	sb_dev->tc_to_txq[tc].count = count;
2861 	sb_dev->tc_to_txq[tc].offset = offset;
2862 
2863 	/* Provide a way for Tx queue to find the tc_to_txq map or
2864 	 * XPS map for itself.
2865 	 */
2866 	while (count--)
2867 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2868 
2869 	return 0;
2870 }
2871 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2872 
2873 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2874 {
2875 	/* Do not use a multiqueue device to represent a subordinate channel */
2876 	if (netif_is_multiqueue(dev))
2877 		return -ENODEV;
2878 
2879 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2880 	 * Channel 0 is meant to be "native" mode and used only to represent
2881 	 * the main root device. We allow writing 0 to reset the device back
2882 	 * to normal mode after being used as a subordinate channel.
2883 	 */
2884 	if (channel > S16_MAX)
2885 		return -EINVAL;
2886 
2887 	dev->num_tc = -channel;
2888 
2889 	return 0;
2890 }
2891 EXPORT_SYMBOL(netdev_set_sb_channel);
2892 
2893 /*
2894  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2895  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2896  */
2897 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2898 {
2899 	bool disabling;
2900 	int rc;
2901 
2902 	disabling = txq < dev->real_num_tx_queues;
2903 
2904 	if (txq < 1 || txq > dev->num_tx_queues)
2905 		return -EINVAL;
2906 
2907 	if (dev->reg_state == NETREG_REGISTERED ||
2908 	    dev->reg_state == NETREG_UNREGISTERING) {
2909 		ASSERT_RTNL();
2910 
2911 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2912 						  txq);
2913 		if (rc)
2914 			return rc;
2915 
2916 		if (dev->num_tc)
2917 			netif_setup_tc(dev, txq);
2918 
2919 		dev_qdisc_change_real_num_tx(dev, txq);
2920 
2921 		dev->real_num_tx_queues = txq;
2922 
2923 		if (disabling) {
2924 			synchronize_net();
2925 			qdisc_reset_all_tx_gt(dev, txq);
2926 #ifdef CONFIG_XPS
2927 			netif_reset_xps_queues_gt(dev, txq);
2928 #endif
2929 		}
2930 	} else {
2931 		dev->real_num_tx_queues = txq;
2932 	}
2933 
2934 	return 0;
2935 }
2936 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2937 
2938 #ifdef CONFIG_SYSFS
2939 /**
2940  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2941  *	@dev: Network device
2942  *	@rxq: Actual number of RX queues
2943  *
2944  *	This must be called either with the rtnl_lock held or before
2945  *	registration of the net device.  Returns 0 on success, or a
2946  *	negative error code.  If called before registration, it always
2947  *	succeeds.
2948  */
2949 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2950 {
2951 	int rc;
2952 
2953 	if (rxq < 1 || rxq > dev->num_rx_queues)
2954 		return -EINVAL;
2955 
2956 	if (dev->reg_state == NETREG_REGISTERED) {
2957 		ASSERT_RTNL();
2958 
2959 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2960 						  rxq);
2961 		if (rc)
2962 			return rc;
2963 	}
2964 
2965 	dev->real_num_rx_queues = rxq;
2966 	return 0;
2967 }
2968 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2969 #endif
2970 
2971 /**
2972  *	netif_set_real_num_queues - set actual number of RX and TX queues used
2973  *	@dev: Network device
2974  *	@txq: Actual number of TX queues
2975  *	@rxq: Actual number of RX queues
2976  *
2977  *	Set the real number of both TX and RX queues.
2978  *	Does nothing if the number of queues is already correct.
2979  */
2980 int netif_set_real_num_queues(struct net_device *dev,
2981 			      unsigned int txq, unsigned int rxq)
2982 {
2983 	unsigned int old_rxq = dev->real_num_rx_queues;
2984 	int err;
2985 
2986 	if (txq < 1 || txq > dev->num_tx_queues ||
2987 	    rxq < 1 || rxq > dev->num_rx_queues)
2988 		return -EINVAL;
2989 
2990 	/* Start from increases, so the error path only does decreases -
2991 	 * decreases can't fail.
2992 	 */
2993 	if (rxq > dev->real_num_rx_queues) {
2994 		err = netif_set_real_num_rx_queues(dev, rxq);
2995 		if (err)
2996 			return err;
2997 	}
2998 	if (txq > dev->real_num_tx_queues) {
2999 		err = netif_set_real_num_tx_queues(dev, txq);
3000 		if (err)
3001 			goto undo_rx;
3002 	}
3003 	if (rxq < dev->real_num_rx_queues)
3004 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3005 	if (txq < dev->real_num_tx_queues)
3006 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3007 
3008 	return 0;
3009 undo_rx:
3010 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3011 	return err;
3012 }
3013 EXPORT_SYMBOL(netif_set_real_num_queues);
3014 
3015 /**
3016  * netif_set_tso_max_size() - set the max size of TSO frames supported
3017  * @dev:	netdev to update
3018  * @size:	max skb->len of a TSO frame
3019  *
3020  * Set the limit on the size of TSO super-frames the device can handle.
3021  * Unless explicitly set the stack will assume the value of
3022  * %GSO_LEGACY_MAX_SIZE.
3023  */
3024 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3025 {
3026 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3027 	if (size < READ_ONCE(dev->gso_max_size))
3028 		netif_set_gso_max_size(dev, size);
3029 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3030 		netif_set_gso_ipv4_max_size(dev, size);
3031 }
3032 EXPORT_SYMBOL(netif_set_tso_max_size);
3033 
3034 /**
3035  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3036  * @dev:	netdev to update
3037  * @segs:	max number of TCP segments
3038  *
3039  * Set the limit on the number of TCP segments the device can generate from
3040  * a single TSO super-frame.
3041  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3042  */
3043 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3044 {
3045 	dev->tso_max_segs = segs;
3046 	if (segs < READ_ONCE(dev->gso_max_segs))
3047 		netif_set_gso_max_segs(dev, segs);
3048 }
3049 EXPORT_SYMBOL(netif_set_tso_max_segs);
3050 
3051 /**
3052  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3053  * @to:		netdev to update
3054  * @from:	netdev from which to copy the limits
3055  */
3056 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3057 {
3058 	netif_set_tso_max_size(to, from->tso_max_size);
3059 	netif_set_tso_max_segs(to, from->tso_max_segs);
3060 }
3061 EXPORT_SYMBOL(netif_inherit_tso_max);
3062 
3063 /**
3064  * netif_get_num_default_rss_queues - default number of RSS queues
3065  *
3066  * Default value is the number of physical cores if there are only 1 or 2, or
3067  * divided by 2 if there are more.
3068  */
3069 int netif_get_num_default_rss_queues(void)
3070 {
3071 	cpumask_var_t cpus;
3072 	int cpu, count = 0;
3073 
3074 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3075 		return 1;
3076 
3077 	cpumask_copy(cpus, cpu_online_mask);
3078 	for_each_cpu(cpu, cpus) {
3079 		++count;
3080 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3081 	}
3082 	free_cpumask_var(cpus);
3083 
3084 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3085 }
3086 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3087 
3088 static void __netif_reschedule(struct Qdisc *q)
3089 {
3090 	struct softnet_data *sd;
3091 	unsigned long flags;
3092 
3093 	local_irq_save(flags);
3094 	sd = this_cpu_ptr(&softnet_data);
3095 	q->next_sched = NULL;
3096 	*sd->output_queue_tailp = q;
3097 	sd->output_queue_tailp = &q->next_sched;
3098 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3099 	local_irq_restore(flags);
3100 }
3101 
3102 void __netif_schedule(struct Qdisc *q)
3103 {
3104 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3105 		__netif_reschedule(q);
3106 }
3107 EXPORT_SYMBOL(__netif_schedule);
3108 
3109 struct dev_kfree_skb_cb {
3110 	enum skb_drop_reason reason;
3111 };
3112 
3113 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3114 {
3115 	return (struct dev_kfree_skb_cb *)skb->cb;
3116 }
3117 
3118 void netif_schedule_queue(struct netdev_queue *txq)
3119 {
3120 	rcu_read_lock();
3121 	if (!netif_xmit_stopped(txq)) {
3122 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3123 
3124 		__netif_schedule(q);
3125 	}
3126 	rcu_read_unlock();
3127 }
3128 EXPORT_SYMBOL(netif_schedule_queue);
3129 
3130 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3131 {
3132 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3133 		struct Qdisc *q;
3134 
3135 		rcu_read_lock();
3136 		q = rcu_dereference(dev_queue->qdisc);
3137 		__netif_schedule(q);
3138 		rcu_read_unlock();
3139 	}
3140 }
3141 EXPORT_SYMBOL(netif_tx_wake_queue);
3142 
3143 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3144 {
3145 	unsigned long flags;
3146 
3147 	if (unlikely(!skb))
3148 		return;
3149 
3150 	if (likely(refcount_read(&skb->users) == 1)) {
3151 		smp_rmb();
3152 		refcount_set(&skb->users, 0);
3153 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3154 		return;
3155 	}
3156 	get_kfree_skb_cb(skb)->reason = reason;
3157 	local_irq_save(flags);
3158 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3159 	__this_cpu_write(softnet_data.completion_queue, skb);
3160 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3161 	local_irq_restore(flags);
3162 }
3163 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3164 
3165 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3166 {
3167 	if (in_hardirq() || irqs_disabled())
3168 		dev_kfree_skb_irq_reason(skb, reason);
3169 	else
3170 		kfree_skb_reason(skb, reason);
3171 }
3172 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3173 
3174 
3175 /**
3176  * netif_device_detach - mark device as removed
3177  * @dev: network device
3178  *
3179  * Mark device as removed from system and therefore no longer available.
3180  */
3181 void netif_device_detach(struct net_device *dev)
3182 {
3183 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3184 	    netif_running(dev)) {
3185 		netif_tx_stop_all_queues(dev);
3186 	}
3187 }
3188 EXPORT_SYMBOL(netif_device_detach);
3189 
3190 /**
3191  * netif_device_attach - mark device as attached
3192  * @dev: network device
3193  *
3194  * Mark device as attached from system and restart if needed.
3195  */
3196 void netif_device_attach(struct net_device *dev)
3197 {
3198 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3199 	    netif_running(dev)) {
3200 		netif_tx_wake_all_queues(dev);
3201 		__netdev_watchdog_up(dev);
3202 	}
3203 }
3204 EXPORT_SYMBOL(netif_device_attach);
3205 
3206 /*
3207  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3208  * to be used as a distribution range.
3209  */
3210 static u16 skb_tx_hash(const struct net_device *dev,
3211 		       const struct net_device *sb_dev,
3212 		       struct sk_buff *skb)
3213 {
3214 	u32 hash;
3215 	u16 qoffset = 0;
3216 	u16 qcount = dev->real_num_tx_queues;
3217 
3218 	if (dev->num_tc) {
3219 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3220 
3221 		qoffset = sb_dev->tc_to_txq[tc].offset;
3222 		qcount = sb_dev->tc_to_txq[tc].count;
3223 		if (unlikely(!qcount)) {
3224 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3225 					     sb_dev->name, qoffset, tc);
3226 			qoffset = 0;
3227 			qcount = dev->real_num_tx_queues;
3228 		}
3229 	}
3230 
3231 	if (skb_rx_queue_recorded(skb)) {
3232 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3233 		hash = skb_get_rx_queue(skb);
3234 		if (hash >= qoffset)
3235 			hash -= qoffset;
3236 		while (unlikely(hash >= qcount))
3237 			hash -= qcount;
3238 		return hash + qoffset;
3239 	}
3240 
3241 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3242 }
3243 
3244 void skb_warn_bad_offload(const struct sk_buff *skb)
3245 {
3246 	static const netdev_features_t null_features;
3247 	struct net_device *dev = skb->dev;
3248 	const char *name = "";
3249 
3250 	if (!net_ratelimit())
3251 		return;
3252 
3253 	if (dev) {
3254 		if (dev->dev.parent)
3255 			name = dev_driver_string(dev->dev.parent);
3256 		else
3257 			name = netdev_name(dev);
3258 	}
3259 	skb_dump(KERN_WARNING, skb, false);
3260 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3261 	     name, dev ? &dev->features : &null_features,
3262 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3263 }
3264 
3265 /*
3266  * Invalidate hardware checksum when packet is to be mangled, and
3267  * complete checksum manually on outgoing path.
3268  */
3269 int skb_checksum_help(struct sk_buff *skb)
3270 {
3271 	__wsum csum;
3272 	int ret = 0, offset;
3273 
3274 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3275 		goto out_set_summed;
3276 
3277 	if (unlikely(skb_is_gso(skb))) {
3278 		skb_warn_bad_offload(skb);
3279 		return -EINVAL;
3280 	}
3281 
3282 	/* Before computing a checksum, we should make sure no frag could
3283 	 * be modified by an external entity : checksum could be wrong.
3284 	 */
3285 	if (skb_has_shared_frag(skb)) {
3286 		ret = __skb_linearize(skb);
3287 		if (ret)
3288 			goto out;
3289 	}
3290 
3291 	offset = skb_checksum_start_offset(skb);
3292 	ret = -EINVAL;
3293 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3294 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3295 		goto out;
3296 	}
3297 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3298 
3299 	offset += skb->csum_offset;
3300 	if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb))) {
3301 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3302 		goto out;
3303 	}
3304 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3305 	if (ret)
3306 		goto out;
3307 
3308 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3309 out_set_summed:
3310 	skb->ip_summed = CHECKSUM_NONE;
3311 out:
3312 	return ret;
3313 }
3314 EXPORT_SYMBOL(skb_checksum_help);
3315 
3316 int skb_crc32c_csum_help(struct sk_buff *skb)
3317 {
3318 	__le32 crc32c_csum;
3319 	int ret = 0, offset, start;
3320 
3321 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3322 		goto out;
3323 
3324 	if (unlikely(skb_is_gso(skb)))
3325 		goto out;
3326 
3327 	/* Before computing a checksum, we should make sure no frag could
3328 	 * be modified by an external entity : checksum could be wrong.
3329 	 */
3330 	if (unlikely(skb_has_shared_frag(skb))) {
3331 		ret = __skb_linearize(skb);
3332 		if (ret)
3333 			goto out;
3334 	}
3335 	start = skb_checksum_start_offset(skb);
3336 	offset = start + offsetof(struct sctphdr, checksum);
3337 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3338 		ret = -EINVAL;
3339 		goto out;
3340 	}
3341 
3342 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3343 	if (ret)
3344 		goto out;
3345 
3346 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3347 						  skb->len - start, ~(__u32)0,
3348 						  crc32c_csum_stub));
3349 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3350 	skb_reset_csum_not_inet(skb);
3351 out:
3352 	return ret;
3353 }
3354 
3355 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3356 {
3357 	__be16 type = skb->protocol;
3358 
3359 	/* Tunnel gso handlers can set protocol to ethernet. */
3360 	if (type == htons(ETH_P_TEB)) {
3361 		struct ethhdr *eth;
3362 
3363 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3364 			return 0;
3365 
3366 		eth = (struct ethhdr *)skb->data;
3367 		type = eth->h_proto;
3368 	}
3369 
3370 	return vlan_get_protocol_and_depth(skb, type, depth);
3371 }
3372 
3373 
3374 /* Take action when hardware reception checksum errors are detected. */
3375 #ifdef CONFIG_BUG
3376 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3377 {
3378 	netdev_err(dev, "hw csum failure\n");
3379 	skb_dump(KERN_ERR, skb, true);
3380 	dump_stack();
3381 }
3382 
3383 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3384 {
3385 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3386 }
3387 EXPORT_SYMBOL(netdev_rx_csum_fault);
3388 #endif
3389 
3390 /* XXX: check that highmem exists at all on the given machine. */
3391 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3392 {
3393 #ifdef CONFIG_HIGHMEM
3394 	int i;
3395 
3396 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3397 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3398 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3399 
3400 			if (PageHighMem(skb_frag_page(frag)))
3401 				return 1;
3402 		}
3403 	}
3404 #endif
3405 	return 0;
3406 }
3407 
3408 /* If MPLS offload request, verify we are testing hardware MPLS features
3409  * instead of standard features for the netdev.
3410  */
3411 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3412 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3413 					   netdev_features_t features,
3414 					   __be16 type)
3415 {
3416 	if (eth_p_mpls(type))
3417 		features &= skb->dev->mpls_features;
3418 
3419 	return features;
3420 }
3421 #else
3422 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3423 					   netdev_features_t features,
3424 					   __be16 type)
3425 {
3426 	return features;
3427 }
3428 #endif
3429 
3430 static netdev_features_t harmonize_features(struct sk_buff *skb,
3431 	netdev_features_t features)
3432 {
3433 	__be16 type;
3434 
3435 	type = skb_network_protocol(skb, NULL);
3436 	features = net_mpls_features(skb, features, type);
3437 
3438 	if (skb->ip_summed != CHECKSUM_NONE &&
3439 	    !can_checksum_protocol(features, type)) {
3440 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3441 	}
3442 	if (illegal_highdma(skb->dev, skb))
3443 		features &= ~NETIF_F_SG;
3444 
3445 	return features;
3446 }
3447 
3448 netdev_features_t passthru_features_check(struct sk_buff *skb,
3449 					  struct net_device *dev,
3450 					  netdev_features_t features)
3451 {
3452 	return features;
3453 }
3454 EXPORT_SYMBOL(passthru_features_check);
3455 
3456 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3457 					     struct net_device *dev,
3458 					     netdev_features_t features)
3459 {
3460 	return vlan_features_check(skb, features);
3461 }
3462 
3463 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3464 					    struct net_device *dev,
3465 					    netdev_features_t features)
3466 {
3467 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3468 
3469 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3470 		return features & ~NETIF_F_GSO_MASK;
3471 
3472 	if (!skb_shinfo(skb)->gso_type) {
3473 		skb_warn_bad_offload(skb);
3474 		return features & ~NETIF_F_GSO_MASK;
3475 	}
3476 
3477 	/* Support for GSO partial features requires software
3478 	 * intervention before we can actually process the packets
3479 	 * so we need to strip support for any partial features now
3480 	 * and we can pull them back in after we have partially
3481 	 * segmented the frame.
3482 	 */
3483 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3484 		features &= ~dev->gso_partial_features;
3485 
3486 	/* Make sure to clear the IPv4 ID mangling feature if the
3487 	 * IPv4 header has the potential to be fragmented.
3488 	 */
3489 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3490 		struct iphdr *iph = skb->encapsulation ?
3491 				    inner_ip_hdr(skb) : ip_hdr(skb);
3492 
3493 		if (!(iph->frag_off & htons(IP_DF)))
3494 			features &= ~NETIF_F_TSO_MANGLEID;
3495 	}
3496 
3497 	return features;
3498 }
3499 
3500 netdev_features_t netif_skb_features(struct sk_buff *skb)
3501 {
3502 	struct net_device *dev = skb->dev;
3503 	netdev_features_t features = dev->features;
3504 
3505 	if (skb_is_gso(skb))
3506 		features = gso_features_check(skb, dev, features);
3507 
3508 	/* If encapsulation offload request, verify we are testing
3509 	 * hardware encapsulation features instead of standard
3510 	 * features for the netdev
3511 	 */
3512 	if (skb->encapsulation)
3513 		features &= dev->hw_enc_features;
3514 
3515 	if (skb_vlan_tagged(skb))
3516 		features = netdev_intersect_features(features,
3517 						     dev->vlan_features |
3518 						     NETIF_F_HW_VLAN_CTAG_TX |
3519 						     NETIF_F_HW_VLAN_STAG_TX);
3520 
3521 	if (dev->netdev_ops->ndo_features_check)
3522 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3523 								features);
3524 	else
3525 		features &= dflt_features_check(skb, dev, features);
3526 
3527 	return harmonize_features(skb, features);
3528 }
3529 EXPORT_SYMBOL(netif_skb_features);
3530 
3531 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3532 		    struct netdev_queue *txq, bool more)
3533 {
3534 	unsigned int len;
3535 	int rc;
3536 
3537 	if (dev_nit_active(dev))
3538 		dev_queue_xmit_nit(skb, dev);
3539 
3540 	len = skb->len;
3541 	trace_net_dev_start_xmit(skb, dev);
3542 	rc = netdev_start_xmit(skb, dev, txq, more);
3543 	trace_net_dev_xmit(skb, rc, dev, len);
3544 
3545 	return rc;
3546 }
3547 
3548 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3549 				    struct netdev_queue *txq, int *ret)
3550 {
3551 	struct sk_buff *skb = first;
3552 	int rc = NETDEV_TX_OK;
3553 
3554 	while (skb) {
3555 		struct sk_buff *next = skb->next;
3556 
3557 		skb_mark_not_on_list(skb);
3558 		rc = xmit_one(skb, dev, txq, next != NULL);
3559 		if (unlikely(!dev_xmit_complete(rc))) {
3560 			skb->next = next;
3561 			goto out;
3562 		}
3563 
3564 		skb = next;
3565 		if (netif_tx_queue_stopped(txq) && skb) {
3566 			rc = NETDEV_TX_BUSY;
3567 			break;
3568 		}
3569 	}
3570 
3571 out:
3572 	*ret = rc;
3573 	return skb;
3574 }
3575 
3576 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3577 					  netdev_features_t features)
3578 {
3579 	if (skb_vlan_tag_present(skb) &&
3580 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3581 		skb = __vlan_hwaccel_push_inside(skb);
3582 	return skb;
3583 }
3584 
3585 int skb_csum_hwoffload_help(struct sk_buff *skb,
3586 			    const netdev_features_t features)
3587 {
3588 	if (unlikely(skb_csum_is_sctp(skb)))
3589 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3590 			skb_crc32c_csum_help(skb);
3591 
3592 	if (features & NETIF_F_HW_CSUM)
3593 		return 0;
3594 
3595 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3596 		switch (skb->csum_offset) {
3597 		case offsetof(struct tcphdr, check):
3598 		case offsetof(struct udphdr, check):
3599 			return 0;
3600 		}
3601 	}
3602 
3603 	return skb_checksum_help(skb);
3604 }
3605 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3606 
3607 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3608 {
3609 	netdev_features_t features;
3610 
3611 	features = netif_skb_features(skb);
3612 	skb = validate_xmit_vlan(skb, features);
3613 	if (unlikely(!skb))
3614 		goto out_null;
3615 
3616 	skb = sk_validate_xmit_skb(skb, dev);
3617 	if (unlikely(!skb))
3618 		goto out_null;
3619 
3620 	if (netif_needs_gso(skb, features)) {
3621 		struct sk_buff *segs;
3622 
3623 		segs = skb_gso_segment(skb, features);
3624 		if (IS_ERR(segs)) {
3625 			goto out_kfree_skb;
3626 		} else if (segs) {
3627 			consume_skb(skb);
3628 			skb = segs;
3629 		}
3630 	} else {
3631 		if (skb_needs_linearize(skb, features) &&
3632 		    __skb_linearize(skb))
3633 			goto out_kfree_skb;
3634 
3635 		/* If packet is not checksummed and device does not
3636 		 * support checksumming for this protocol, complete
3637 		 * checksumming here.
3638 		 */
3639 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3640 			if (skb->encapsulation)
3641 				skb_set_inner_transport_header(skb,
3642 							       skb_checksum_start_offset(skb));
3643 			else
3644 				skb_set_transport_header(skb,
3645 							 skb_checksum_start_offset(skb));
3646 			if (skb_csum_hwoffload_help(skb, features))
3647 				goto out_kfree_skb;
3648 		}
3649 	}
3650 
3651 	skb = validate_xmit_xfrm(skb, features, again);
3652 
3653 	return skb;
3654 
3655 out_kfree_skb:
3656 	kfree_skb(skb);
3657 out_null:
3658 	dev_core_stats_tx_dropped_inc(dev);
3659 	return NULL;
3660 }
3661 
3662 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3663 {
3664 	struct sk_buff *next, *head = NULL, *tail;
3665 
3666 	for (; skb != NULL; skb = next) {
3667 		next = skb->next;
3668 		skb_mark_not_on_list(skb);
3669 
3670 		/* in case skb wont be segmented, point to itself */
3671 		skb->prev = skb;
3672 
3673 		skb = validate_xmit_skb(skb, dev, again);
3674 		if (!skb)
3675 			continue;
3676 
3677 		if (!head)
3678 			head = skb;
3679 		else
3680 			tail->next = skb;
3681 		/* If skb was segmented, skb->prev points to
3682 		 * the last segment. If not, it still contains skb.
3683 		 */
3684 		tail = skb->prev;
3685 	}
3686 	return head;
3687 }
3688 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3689 
3690 static void qdisc_pkt_len_init(struct sk_buff *skb)
3691 {
3692 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3693 
3694 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3695 
3696 	/* To get more precise estimation of bytes sent on wire,
3697 	 * we add to pkt_len the headers size of all segments
3698 	 */
3699 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3700 		u16 gso_segs = shinfo->gso_segs;
3701 		unsigned int hdr_len;
3702 
3703 		/* mac layer + network layer */
3704 		hdr_len = skb_transport_offset(skb);
3705 
3706 		/* + transport layer */
3707 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3708 			const struct tcphdr *th;
3709 			struct tcphdr _tcphdr;
3710 
3711 			th = skb_header_pointer(skb, hdr_len,
3712 						sizeof(_tcphdr), &_tcphdr);
3713 			if (likely(th))
3714 				hdr_len += __tcp_hdrlen(th);
3715 		} else {
3716 			struct udphdr _udphdr;
3717 
3718 			if (skb_header_pointer(skb, hdr_len,
3719 					       sizeof(_udphdr), &_udphdr))
3720 				hdr_len += sizeof(struct udphdr);
3721 		}
3722 
3723 		if (shinfo->gso_type & SKB_GSO_DODGY)
3724 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3725 						shinfo->gso_size);
3726 
3727 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3728 	}
3729 }
3730 
3731 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3732 			     struct sk_buff **to_free,
3733 			     struct netdev_queue *txq)
3734 {
3735 	int rc;
3736 
3737 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3738 	if (rc == NET_XMIT_SUCCESS)
3739 		trace_qdisc_enqueue(q, txq, skb);
3740 	return rc;
3741 }
3742 
3743 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3744 				 struct net_device *dev,
3745 				 struct netdev_queue *txq)
3746 {
3747 	spinlock_t *root_lock = qdisc_lock(q);
3748 	struct sk_buff *to_free = NULL;
3749 	bool contended;
3750 	int rc;
3751 
3752 	qdisc_calculate_pkt_len(skb, q);
3753 
3754 	if (q->flags & TCQ_F_NOLOCK) {
3755 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3756 		    qdisc_run_begin(q)) {
3757 			/* Retest nolock_qdisc_is_empty() within the protection
3758 			 * of q->seqlock to protect from racing with requeuing.
3759 			 */
3760 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3761 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3762 				__qdisc_run(q);
3763 				qdisc_run_end(q);
3764 
3765 				goto no_lock_out;
3766 			}
3767 
3768 			qdisc_bstats_cpu_update(q, skb);
3769 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3770 			    !nolock_qdisc_is_empty(q))
3771 				__qdisc_run(q);
3772 
3773 			qdisc_run_end(q);
3774 			return NET_XMIT_SUCCESS;
3775 		}
3776 
3777 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3778 		qdisc_run(q);
3779 
3780 no_lock_out:
3781 		if (unlikely(to_free))
3782 			kfree_skb_list_reason(to_free,
3783 					      SKB_DROP_REASON_QDISC_DROP);
3784 		return rc;
3785 	}
3786 
3787 	/*
3788 	 * Heuristic to force contended enqueues to serialize on a
3789 	 * separate lock before trying to get qdisc main lock.
3790 	 * This permits qdisc->running owner to get the lock more
3791 	 * often and dequeue packets faster.
3792 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3793 	 * and then other tasks will only enqueue packets. The packets will be
3794 	 * sent after the qdisc owner is scheduled again. To prevent this
3795 	 * scenario the task always serialize on the lock.
3796 	 */
3797 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3798 	if (unlikely(contended))
3799 		spin_lock(&q->busylock);
3800 
3801 	spin_lock(root_lock);
3802 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3803 		__qdisc_drop(skb, &to_free);
3804 		rc = NET_XMIT_DROP;
3805 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3806 		   qdisc_run_begin(q)) {
3807 		/*
3808 		 * This is a work-conserving queue; there are no old skbs
3809 		 * waiting to be sent out; and the qdisc is not running -
3810 		 * xmit the skb directly.
3811 		 */
3812 
3813 		qdisc_bstats_update(q, skb);
3814 
3815 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3816 			if (unlikely(contended)) {
3817 				spin_unlock(&q->busylock);
3818 				contended = false;
3819 			}
3820 			__qdisc_run(q);
3821 		}
3822 
3823 		qdisc_run_end(q);
3824 		rc = NET_XMIT_SUCCESS;
3825 	} else {
3826 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3827 		if (qdisc_run_begin(q)) {
3828 			if (unlikely(contended)) {
3829 				spin_unlock(&q->busylock);
3830 				contended = false;
3831 			}
3832 			__qdisc_run(q);
3833 			qdisc_run_end(q);
3834 		}
3835 	}
3836 	spin_unlock(root_lock);
3837 	if (unlikely(to_free))
3838 		kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3839 	if (unlikely(contended))
3840 		spin_unlock(&q->busylock);
3841 	return rc;
3842 }
3843 
3844 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3845 static void skb_update_prio(struct sk_buff *skb)
3846 {
3847 	const struct netprio_map *map;
3848 	const struct sock *sk;
3849 	unsigned int prioidx;
3850 
3851 	if (skb->priority)
3852 		return;
3853 	map = rcu_dereference_bh(skb->dev->priomap);
3854 	if (!map)
3855 		return;
3856 	sk = skb_to_full_sk(skb);
3857 	if (!sk)
3858 		return;
3859 
3860 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3861 
3862 	if (prioidx < map->priomap_len)
3863 		skb->priority = map->priomap[prioidx];
3864 }
3865 #else
3866 #define skb_update_prio(skb)
3867 #endif
3868 
3869 /**
3870  *	dev_loopback_xmit - loop back @skb
3871  *	@net: network namespace this loopback is happening in
3872  *	@sk:  sk needed to be a netfilter okfn
3873  *	@skb: buffer to transmit
3874  */
3875 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3876 {
3877 	skb_reset_mac_header(skb);
3878 	__skb_pull(skb, skb_network_offset(skb));
3879 	skb->pkt_type = PACKET_LOOPBACK;
3880 	if (skb->ip_summed == CHECKSUM_NONE)
3881 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3882 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3883 	skb_dst_force(skb);
3884 	netif_rx(skb);
3885 	return 0;
3886 }
3887 EXPORT_SYMBOL(dev_loopback_xmit);
3888 
3889 #ifdef CONFIG_NET_EGRESS
3890 static struct netdev_queue *
3891 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3892 {
3893 	int qm = skb_get_queue_mapping(skb);
3894 
3895 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3896 }
3897 
3898 static bool netdev_xmit_txqueue_skipped(void)
3899 {
3900 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3901 }
3902 
3903 void netdev_xmit_skip_txqueue(bool skip)
3904 {
3905 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3906 }
3907 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3908 #endif /* CONFIG_NET_EGRESS */
3909 
3910 #ifdef CONFIG_NET_XGRESS
3911 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb)
3912 {
3913 	int ret = TC_ACT_UNSPEC;
3914 #ifdef CONFIG_NET_CLS_ACT
3915 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3916 	struct tcf_result res;
3917 
3918 	if (!miniq)
3919 		return ret;
3920 
3921 	tc_skb_cb(skb)->mru = 0;
3922 	tc_skb_cb(skb)->post_ct = false;
3923 
3924 	mini_qdisc_bstats_cpu_update(miniq, skb);
3925 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3926 	/* Only tcf related quirks below. */
3927 	switch (ret) {
3928 	case TC_ACT_SHOT:
3929 		mini_qdisc_qstats_cpu_drop(miniq);
3930 		break;
3931 	case TC_ACT_OK:
3932 	case TC_ACT_RECLASSIFY:
3933 		skb->tc_index = TC_H_MIN(res.classid);
3934 		break;
3935 	}
3936 #endif /* CONFIG_NET_CLS_ACT */
3937 	return ret;
3938 }
3939 
3940 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3941 
3942 void tcx_inc(void)
3943 {
3944 	static_branch_inc(&tcx_needed_key);
3945 }
3946 
3947 void tcx_dec(void)
3948 {
3949 	static_branch_dec(&tcx_needed_key);
3950 }
3951 
3952 static __always_inline enum tcx_action_base
3953 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3954 	const bool needs_mac)
3955 {
3956 	const struct bpf_mprog_fp *fp;
3957 	const struct bpf_prog *prog;
3958 	int ret = TCX_NEXT;
3959 
3960 	if (needs_mac)
3961 		__skb_push(skb, skb->mac_len);
3962 	bpf_mprog_foreach_prog(entry, fp, prog) {
3963 		bpf_compute_data_pointers(skb);
3964 		ret = bpf_prog_run(prog, skb);
3965 		if (ret != TCX_NEXT)
3966 			break;
3967 	}
3968 	if (needs_mac)
3969 		__skb_pull(skb, skb->mac_len);
3970 	return tcx_action_code(skb, ret);
3971 }
3972 
3973 static __always_inline struct sk_buff *
3974 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3975 		   struct net_device *orig_dev, bool *another)
3976 {
3977 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
3978 	int sch_ret;
3979 
3980 	if (!entry)
3981 		return skb;
3982 	if (*pt_prev) {
3983 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3984 		*pt_prev = NULL;
3985 	}
3986 
3987 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3988 	tcx_set_ingress(skb, true);
3989 
3990 	if (static_branch_unlikely(&tcx_needed_key)) {
3991 		sch_ret = tcx_run(entry, skb, true);
3992 		if (sch_ret != TC_ACT_UNSPEC)
3993 			goto ingress_verdict;
3994 	}
3995 	sch_ret = tc_run(tcx_entry(entry), skb);
3996 ingress_verdict:
3997 	switch (sch_ret) {
3998 	case TC_ACT_REDIRECT:
3999 		/* skb_mac_header check was done by BPF, so we can safely
4000 		 * push the L2 header back before redirecting to another
4001 		 * netdev.
4002 		 */
4003 		__skb_push(skb, skb->mac_len);
4004 		if (skb_do_redirect(skb) == -EAGAIN) {
4005 			__skb_pull(skb, skb->mac_len);
4006 			*another = true;
4007 			break;
4008 		}
4009 		*ret = NET_RX_SUCCESS;
4010 		return NULL;
4011 	case TC_ACT_SHOT:
4012 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
4013 		*ret = NET_RX_DROP;
4014 		return NULL;
4015 	/* used by tc_run */
4016 	case TC_ACT_STOLEN:
4017 	case TC_ACT_QUEUED:
4018 	case TC_ACT_TRAP:
4019 		consume_skb(skb);
4020 		fallthrough;
4021 	case TC_ACT_CONSUMED:
4022 		*ret = NET_RX_SUCCESS;
4023 		return NULL;
4024 	}
4025 
4026 	return skb;
4027 }
4028 
4029 static __always_inline struct sk_buff *
4030 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4031 {
4032 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4033 	int sch_ret;
4034 
4035 	if (!entry)
4036 		return skb;
4037 
4038 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4039 	 * already set by the caller.
4040 	 */
4041 	if (static_branch_unlikely(&tcx_needed_key)) {
4042 		sch_ret = tcx_run(entry, skb, false);
4043 		if (sch_ret != TC_ACT_UNSPEC)
4044 			goto egress_verdict;
4045 	}
4046 	sch_ret = tc_run(tcx_entry(entry), skb);
4047 egress_verdict:
4048 	switch (sch_ret) {
4049 	case TC_ACT_REDIRECT:
4050 		/* No need to push/pop skb's mac_header here on egress! */
4051 		skb_do_redirect(skb);
4052 		*ret = NET_XMIT_SUCCESS;
4053 		return NULL;
4054 	case TC_ACT_SHOT:
4055 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
4056 		*ret = NET_XMIT_DROP;
4057 		return NULL;
4058 	/* used by tc_run */
4059 	case TC_ACT_STOLEN:
4060 	case TC_ACT_QUEUED:
4061 	case TC_ACT_TRAP:
4062 		*ret = NET_XMIT_SUCCESS;
4063 		return NULL;
4064 	}
4065 
4066 	return skb;
4067 }
4068 #else
4069 static __always_inline struct sk_buff *
4070 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4071 		   struct net_device *orig_dev, bool *another)
4072 {
4073 	return skb;
4074 }
4075 
4076 static __always_inline struct sk_buff *
4077 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4078 {
4079 	return skb;
4080 }
4081 #endif /* CONFIG_NET_XGRESS */
4082 
4083 #ifdef CONFIG_XPS
4084 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4085 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4086 {
4087 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4088 	struct xps_map *map;
4089 	int queue_index = -1;
4090 
4091 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4092 		return queue_index;
4093 
4094 	tci *= dev_maps->num_tc;
4095 	tci += tc;
4096 
4097 	map = rcu_dereference(dev_maps->attr_map[tci]);
4098 	if (map) {
4099 		if (map->len == 1)
4100 			queue_index = map->queues[0];
4101 		else
4102 			queue_index = map->queues[reciprocal_scale(
4103 						skb_get_hash(skb), map->len)];
4104 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4105 			queue_index = -1;
4106 	}
4107 	return queue_index;
4108 }
4109 #endif
4110 
4111 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4112 			 struct sk_buff *skb)
4113 {
4114 #ifdef CONFIG_XPS
4115 	struct xps_dev_maps *dev_maps;
4116 	struct sock *sk = skb->sk;
4117 	int queue_index = -1;
4118 
4119 	if (!static_key_false(&xps_needed))
4120 		return -1;
4121 
4122 	rcu_read_lock();
4123 	if (!static_key_false(&xps_rxqs_needed))
4124 		goto get_cpus_map;
4125 
4126 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4127 	if (dev_maps) {
4128 		int tci = sk_rx_queue_get(sk);
4129 
4130 		if (tci >= 0)
4131 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4132 							  tci);
4133 	}
4134 
4135 get_cpus_map:
4136 	if (queue_index < 0) {
4137 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4138 		if (dev_maps) {
4139 			unsigned int tci = skb->sender_cpu - 1;
4140 
4141 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4142 							  tci);
4143 		}
4144 	}
4145 	rcu_read_unlock();
4146 
4147 	return queue_index;
4148 #else
4149 	return -1;
4150 #endif
4151 }
4152 
4153 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4154 		     struct net_device *sb_dev)
4155 {
4156 	return 0;
4157 }
4158 EXPORT_SYMBOL(dev_pick_tx_zero);
4159 
4160 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4161 		       struct net_device *sb_dev)
4162 {
4163 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4164 }
4165 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4166 
4167 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4168 		     struct net_device *sb_dev)
4169 {
4170 	struct sock *sk = skb->sk;
4171 	int queue_index = sk_tx_queue_get(sk);
4172 
4173 	sb_dev = sb_dev ? : dev;
4174 
4175 	if (queue_index < 0 || skb->ooo_okay ||
4176 	    queue_index >= dev->real_num_tx_queues) {
4177 		int new_index = get_xps_queue(dev, sb_dev, skb);
4178 
4179 		if (new_index < 0)
4180 			new_index = skb_tx_hash(dev, sb_dev, skb);
4181 
4182 		if (queue_index != new_index && sk &&
4183 		    sk_fullsock(sk) &&
4184 		    rcu_access_pointer(sk->sk_dst_cache))
4185 			sk_tx_queue_set(sk, new_index);
4186 
4187 		queue_index = new_index;
4188 	}
4189 
4190 	return queue_index;
4191 }
4192 EXPORT_SYMBOL(netdev_pick_tx);
4193 
4194 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4195 					 struct sk_buff *skb,
4196 					 struct net_device *sb_dev)
4197 {
4198 	int queue_index = 0;
4199 
4200 #ifdef CONFIG_XPS
4201 	u32 sender_cpu = skb->sender_cpu - 1;
4202 
4203 	if (sender_cpu >= (u32)NR_CPUS)
4204 		skb->sender_cpu = raw_smp_processor_id() + 1;
4205 #endif
4206 
4207 	if (dev->real_num_tx_queues != 1) {
4208 		const struct net_device_ops *ops = dev->netdev_ops;
4209 
4210 		if (ops->ndo_select_queue)
4211 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4212 		else
4213 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4214 
4215 		queue_index = netdev_cap_txqueue(dev, queue_index);
4216 	}
4217 
4218 	skb_set_queue_mapping(skb, queue_index);
4219 	return netdev_get_tx_queue(dev, queue_index);
4220 }
4221 
4222 /**
4223  * __dev_queue_xmit() - transmit a buffer
4224  * @skb:	buffer to transmit
4225  * @sb_dev:	suboordinate device used for L2 forwarding offload
4226  *
4227  * Queue a buffer for transmission to a network device. The caller must
4228  * have set the device and priority and built the buffer before calling
4229  * this function. The function can be called from an interrupt.
4230  *
4231  * When calling this method, interrupts MUST be enabled. This is because
4232  * the BH enable code must have IRQs enabled so that it will not deadlock.
4233  *
4234  * Regardless of the return value, the skb is consumed, so it is currently
4235  * difficult to retry a send to this method. (You can bump the ref count
4236  * before sending to hold a reference for retry if you are careful.)
4237  *
4238  * Return:
4239  * * 0				- buffer successfully transmitted
4240  * * positive qdisc return code	- NET_XMIT_DROP etc.
4241  * * negative errno		- other errors
4242  */
4243 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4244 {
4245 	struct net_device *dev = skb->dev;
4246 	struct netdev_queue *txq = NULL;
4247 	struct Qdisc *q;
4248 	int rc = -ENOMEM;
4249 	bool again = false;
4250 
4251 	skb_reset_mac_header(skb);
4252 	skb_assert_len(skb);
4253 
4254 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4255 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4256 
4257 	/* Disable soft irqs for various locks below. Also
4258 	 * stops preemption for RCU.
4259 	 */
4260 	rcu_read_lock_bh();
4261 
4262 	skb_update_prio(skb);
4263 
4264 	qdisc_pkt_len_init(skb);
4265 	tcx_set_ingress(skb, false);
4266 #ifdef CONFIG_NET_EGRESS
4267 	if (static_branch_unlikely(&egress_needed_key)) {
4268 		if (nf_hook_egress_active()) {
4269 			skb = nf_hook_egress(skb, &rc, dev);
4270 			if (!skb)
4271 				goto out;
4272 		}
4273 
4274 		netdev_xmit_skip_txqueue(false);
4275 
4276 		nf_skip_egress(skb, true);
4277 		skb = sch_handle_egress(skb, &rc, dev);
4278 		if (!skb)
4279 			goto out;
4280 		nf_skip_egress(skb, false);
4281 
4282 		if (netdev_xmit_txqueue_skipped())
4283 			txq = netdev_tx_queue_mapping(dev, skb);
4284 	}
4285 #endif
4286 	/* If device/qdisc don't need skb->dst, release it right now while
4287 	 * its hot in this cpu cache.
4288 	 */
4289 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4290 		skb_dst_drop(skb);
4291 	else
4292 		skb_dst_force(skb);
4293 
4294 	if (!txq)
4295 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4296 
4297 	q = rcu_dereference_bh(txq->qdisc);
4298 
4299 	trace_net_dev_queue(skb);
4300 	if (q->enqueue) {
4301 		rc = __dev_xmit_skb(skb, q, dev, txq);
4302 		goto out;
4303 	}
4304 
4305 	/* The device has no queue. Common case for software devices:
4306 	 * loopback, all the sorts of tunnels...
4307 
4308 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4309 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4310 	 * counters.)
4311 	 * However, it is possible, that they rely on protection
4312 	 * made by us here.
4313 
4314 	 * Check this and shot the lock. It is not prone from deadlocks.
4315 	 *Either shot noqueue qdisc, it is even simpler 8)
4316 	 */
4317 	if (dev->flags & IFF_UP) {
4318 		int cpu = smp_processor_id(); /* ok because BHs are off */
4319 
4320 		/* Other cpus might concurrently change txq->xmit_lock_owner
4321 		 * to -1 or to their cpu id, but not to our id.
4322 		 */
4323 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4324 			if (dev_xmit_recursion())
4325 				goto recursion_alert;
4326 
4327 			skb = validate_xmit_skb(skb, dev, &again);
4328 			if (!skb)
4329 				goto out;
4330 
4331 			HARD_TX_LOCK(dev, txq, cpu);
4332 
4333 			if (!netif_xmit_stopped(txq)) {
4334 				dev_xmit_recursion_inc();
4335 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4336 				dev_xmit_recursion_dec();
4337 				if (dev_xmit_complete(rc)) {
4338 					HARD_TX_UNLOCK(dev, txq);
4339 					goto out;
4340 				}
4341 			}
4342 			HARD_TX_UNLOCK(dev, txq);
4343 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4344 					     dev->name);
4345 		} else {
4346 			/* Recursion is detected! It is possible,
4347 			 * unfortunately
4348 			 */
4349 recursion_alert:
4350 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4351 					     dev->name);
4352 		}
4353 	}
4354 
4355 	rc = -ENETDOWN;
4356 	rcu_read_unlock_bh();
4357 
4358 	dev_core_stats_tx_dropped_inc(dev);
4359 	kfree_skb_list(skb);
4360 	return rc;
4361 out:
4362 	rcu_read_unlock_bh();
4363 	return rc;
4364 }
4365 EXPORT_SYMBOL(__dev_queue_xmit);
4366 
4367 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4368 {
4369 	struct net_device *dev = skb->dev;
4370 	struct sk_buff *orig_skb = skb;
4371 	struct netdev_queue *txq;
4372 	int ret = NETDEV_TX_BUSY;
4373 	bool again = false;
4374 
4375 	if (unlikely(!netif_running(dev) ||
4376 		     !netif_carrier_ok(dev)))
4377 		goto drop;
4378 
4379 	skb = validate_xmit_skb_list(skb, dev, &again);
4380 	if (skb != orig_skb)
4381 		goto drop;
4382 
4383 	skb_set_queue_mapping(skb, queue_id);
4384 	txq = skb_get_tx_queue(dev, skb);
4385 
4386 	local_bh_disable();
4387 
4388 	dev_xmit_recursion_inc();
4389 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4390 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4391 		ret = netdev_start_xmit(skb, dev, txq, false);
4392 	HARD_TX_UNLOCK(dev, txq);
4393 	dev_xmit_recursion_dec();
4394 
4395 	local_bh_enable();
4396 	return ret;
4397 drop:
4398 	dev_core_stats_tx_dropped_inc(dev);
4399 	kfree_skb_list(skb);
4400 	return NET_XMIT_DROP;
4401 }
4402 EXPORT_SYMBOL(__dev_direct_xmit);
4403 
4404 /*************************************************************************
4405  *			Receiver routines
4406  *************************************************************************/
4407 
4408 int netdev_max_backlog __read_mostly = 1000;
4409 EXPORT_SYMBOL(netdev_max_backlog);
4410 
4411 int netdev_tstamp_prequeue __read_mostly = 1;
4412 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4413 int netdev_budget __read_mostly = 300;
4414 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4415 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4416 int weight_p __read_mostly = 64;           /* old backlog weight */
4417 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4418 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4419 int dev_rx_weight __read_mostly = 64;
4420 int dev_tx_weight __read_mostly = 64;
4421 
4422 /* Called with irq disabled */
4423 static inline void ____napi_schedule(struct softnet_data *sd,
4424 				     struct napi_struct *napi)
4425 {
4426 	struct task_struct *thread;
4427 
4428 	lockdep_assert_irqs_disabled();
4429 
4430 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4431 		/* Paired with smp_mb__before_atomic() in
4432 		 * napi_enable()/dev_set_threaded().
4433 		 * Use READ_ONCE() to guarantee a complete
4434 		 * read on napi->thread. Only call
4435 		 * wake_up_process() when it's not NULL.
4436 		 */
4437 		thread = READ_ONCE(napi->thread);
4438 		if (thread) {
4439 			/* Avoid doing set_bit() if the thread is in
4440 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4441 			 * makes sure to proceed with napi polling
4442 			 * if the thread is explicitly woken from here.
4443 			 */
4444 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4445 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4446 			wake_up_process(thread);
4447 			return;
4448 		}
4449 	}
4450 
4451 	list_add_tail(&napi->poll_list, &sd->poll_list);
4452 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4453 	/* If not called from net_rx_action()
4454 	 * we have to raise NET_RX_SOFTIRQ.
4455 	 */
4456 	if (!sd->in_net_rx_action)
4457 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4458 }
4459 
4460 #ifdef CONFIG_RPS
4461 
4462 /* One global table that all flow-based protocols share. */
4463 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4464 EXPORT_SYMBOL(rps_sock_flow_table);
4465 u32 rps_cpu_mask __read_mostly;
4466 EXPORT_SYMBOL(rps_cpu_mask);
4467 
4468 struct static_key_false rps_needed __read_mostly;
4469 EXPORT_SYMBOL(rps_needed);
4470 struct static_key_false rfs_needed __read_mostly;
4471 EXPORT_SYMBOL(rfs_needed);
4472 
4473 static struct rps_dev_flow *
4474 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4475 	    struct rps_dev_flow *rflow, u16 next_cpu)
4476 {
4477 	if (next_cpu < nr_cpu_ids) {
4478 #ifdef CONFIG_RFS_ACCEL
4479 		struct netdev_rx_queue *rxqueue;
4480 		struct rps_dev_flow_table *flow_table;
4481 		struct rps_dev_flow *old_rflow;
4482 		u32 flow_id;
4483 		u16 rxq_index;
4484 		int rc;
4485 
4486 		/* Should we steer this flow to a different hardware queue? */
4487 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4488 		    !(dev->features & NETIF_F_NTUPLE))
4489 			goto out;
4490 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4491 		if (rxq_index == skb_get_rx_queue(skb))
4492 			goto out;
4493 
4494 		rxqueue = dev->_rx + rxq_index;
4495 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4496 		if (!flow_table)
4497 			goto out;
4498 		flow_id = skb_get_hash(skb) & flow_table->mask;
4499 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4500 							rxq_index, flow_id);
4501 		if (rc < 0)
4502 			goto out;
4503 		old_rflow = rflow;
4504 		rflow = &flow_table->flows[flow_id];
4505 		rflow->filter = rc;
4506 		if (old_rflow->filter == rflow->filter)
4507 			old_rflow->filter = RPS_NO_FILTER;
4508 	out:
4509 #endif
4510 		rflow->last_qtail =
4511 			per_cpu(softnet_data, next_cpu).input_queue_head;
4512 	}
4513 
4514 	rflow->cpu = next_cpu;
4515 	return rflow;
4516 }
4517 
4518 /*
4519  * get_rps_cpu is called from netif_receive_skb and returns the target
4520  * CPU from the RPS map of the receiving queue for a given skb.
4521  * rcu_read_lock must be held on entry.
4522  */
4523 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4524 		       struct rps_dev_flow **rflowp)
4525 {
4526 	const struct rps_sock_flow_table *sock_flow_table;
4527 	struct netdev_rx_queue *rxqueue = dev->_rx;
4528 	struct rps_dev_flow_table *flow_table;
4529 	struct rps_map *map;
4530 	int cpu = -1;
4531 	u32 tcpu;
4532 	u32 hash;
4533 
4534 	if (skb_rx_queue_recorded(skb)) {
4535 		u16 index = skb_get_rx_queue(skb);
4536 
4537 		if (unlikely(index >= dev->real_num_rx_queues)) {
4538 			WARN_ONCE(dev->real_num_rx_queues > 1,
4539 				  "%s received packet on queue %u, but number "
4540 				  "of RX queues is %u\n",
4541 				  dev->name, index, dev->real_num_rx_queues);
4542 			goto done;
4543 		}
4544 		rxqueue += index;
4545 	}
4546 
4547 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4548 
4549 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4550 	map = rcu_dereference(rxqueue->rps_map);
4551 	if (!flow_table && !map)
4552 		goto done;
4553 
4554 	skb_reset_network_header(skb);
4555 	hash = skb_get_hash(skb);
4556 	if (!hash)
4557 		goto done;
4558 
4559 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4560 	if (flow_table && sock_flow_table) {
4561 		struct rps_dev_flow *rflow;
4562 		u32 next_cpu;
4563 		u32 ident;
4564 
4565 		/* First check into global flow table if there is a match.
4566 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4567 		 */
4568 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4569 		if ((ident ^ hash) & ~rps_cpu_mask)
4570 			goto try_rps;
4571 
4572 		next_cpu = ident & rps_cpu_mask;
4573 
4574 		/* OK, now we know there is a match,
4575 		 * we can look at the local (per receive queue) flow table
4576 		 */
4577 		rflow = &flow_table->flows[hash & flow_table->mask];
4578 		tcpu = rflow->cpu;
4579 
4580 		/*
4581 		 * If the desired CPU (where last recvmsg was done) is
4582 		 * different from current CPU (one in the rx-queue flow
4583 		 * table entry), switch if one of the following holds:
4584 		 *   - Current CPU is unset (>= nr_cpu_ids).
4585 		 *   - Current CPU is offline.
4586 		 *   - The current CPU's queue tail has advanced beyond the
4587 		 *     last packet that was enqueued using this table entry.
4588 		 *     This guarantees that all previous packets for the flow
4589 		 *     have been dequeued, thus preserving in order delivery.
4590 		 */
4591 		if (unlikely(tcpu != next_cpu) &&
4592 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4593 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4594 		      rflow->last_qtail)) >= 0)) {
4595 			tcpu = next_cpu;
4596 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4597 		}
4598 
4599 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4600 			*rflowp = rflow;
4601 			cpu = tcpu;
4602 			goto done;
4603 		}
4604 	}
4605 
4606 try_rps:
4607 
4608 	if (map) {
4609 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4610 		if (cpu_online(tcpu)) {
4611 			cpu = tcpu;
4612 			goto done;
4613 		}
4614 	}
4615 
4616 done:
4617 	return cpu;
4618 }
4619 
4620 #ifdef CONFIG_RFS_ACCEL
4621 
4622 /**
4623  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4624  * @dev: Device on which the filter was set
4625  * @rxq_index: RX queue index
4626  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4627  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4628  *
4629  * Drivers that implement ndo_rx_flow_steer() should periodically call
4630  * this function for each installed filter and remove the filters for
4631  * which it returns %true.
4632  */
4633 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4634 			 u32 flow_id, u16 filter_id)
4635 {
4636 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4637 	struct rps_dev_flow_table *flow_table;
4638 	struct rps_dev_flow *rflow;
4639 	bool expire = true;
4640 	unsigned int cpu;
4641 
4642 	rcu_read_lock();
4643 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4644 	if (flow_table && flow_id <= flow_table->mask) {
4645 		rflow = &flow_table->flows[flow_id];
4646 		cpu = READ_ONCE(rflow->cpu);
4647 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4648 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4649 			   rflow->last_qtail) <
4650 		     (int)(10 * flow_table->mask)))
4651 			expire = false;
4652 	}
4653 	rcu_read_unlock();
4654 	return expire;
4655 }
4656 EXPORT_SYMBOL(rps_may_expire_flow);
4657 
4658 #endif /* CONFIG_RFS_ACCEL */
4659 
4660 /* Called from hardirq (IPI) context */
4661 static void rps_trigger_softirq(void *data)
4662 {
4663 	struct softnet_data *sd = data;
4664 
4665 	____napi_schedule(sd, &sd->backlog);
4666 	sd->received_rps++;
4667 }
4668 
4669 #endif /* CONFIG_RPS */
4670 
4671 /* Called from hardirq (IPI) context */
4672 static void trigger_rx_softirq(void *data)
4673 {
4674 	struct softnet_data *sd = data;
4675 
4676 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4677 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4678 }
4679 
4680 /*
4681  * After we queued a packet into sd->input_pkt_queue,
4682  * we need to make sure this queue is serviced soon.
4683  *
4684  * - If this is another cpu queue, link it to our rps_ipi_list,
4685  *   and make sure we will process rps_ipi_list from net_rx_action().
4686  *
4687  * - If this is our own queue, NAPI schedule our backlog.
4688  *   Note that this also raises NET_RX_SOFTIRQ.
4689  */
4690 static void napi_schedule_rps(struct softnet_data *sd)
4691 {
4692 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4693 
4694 #ifdef CONFIG_RPS
4695 	if (sd != mysd) {
4696 		sd->rps_ipi_next = mysd->rps_ipi_list;
4697 		mysd->rps_ipi_list = sd;
4698 
4699 		/* If not called from net_rx_action() or napi_threaded_poll()
4700 		 * we have to raise NET_RX_SOFTIRQ.
4701 		 */
4702 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4703 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4704 		return;
4705 	}
4706 #endif /* CONFIG_RPS */
4707 	__napi_schedule_irqoff(&mysd->backlog);
4708 }
4709 
4710 #ifdef CONFIG_NET_FLOW_LIMIT
4711 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4712 #endif
4713 
4714 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4715 {
4716 #ifdef CONFIG_NET_FLOW_LIMIT
4717 	struct sd_flow_limit *fl;
4718 	struct softnet_data *sd;
4719 	unsigned int old_flow, new_flow;
4720 
4721 	if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4722 		return false;
4723 
4724 	sd = this_cpu_ptr(&softnet_data);
4725 
4726 	rcu_read_lock();
4727 	fl = rcu_dereference(sd->flow_limit);
4728 	if (fl) {
4729 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4730 		old_flow = fl->history[fl->history_head];
4731 		fl->history[fl->history_head] = new_flow;
4732 
4733 		fl->history_head++;
4734 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4735 
4736 		if (likely(fl->buckets[old_flow]))
4737 			fl->buckets[old_flow]--;
4738 
4739 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4740 			fl->count++;
4741 			rcu_read_unlock();
4742 			return true;
4743 		}
4744 	}
4745 	rcu_read_unlock();
4746 #endif
4747 	return false;
4748 }
4749 
4750 /*
4751  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4752  * queue (may be a remote CPU queue).
4753  */
4754 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4755 			      unsigned int *qtail)
4756 {
4757 	enum skb_drop_reason reason;
4758 	struct softnet_data *sd;
4759 	unsigned long flags;
4760 	unsigned int qlen;
4761 
4762 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
4763 	sd = &per_cpu(softnet_data, cpu);
4764 
4765 	rps_lock_irqsave(sd, &flags);
4766 	if (!netif_running(skb->dev))
4767 		goto drop;
4768 	qlen = skb_queue_len(&sd->input_pkt_queue);
4769 	if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4770 		if (qlen) {
4771 enqueue:
4772 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4773 			input_queue_tail_incr_save(sd, qtail);
4774 			rps_unlock_irq_restore(sd, &flags);
4775 			return NET_RX_SUCCESS;
4776 		}
4777 
4778 		/* Schedule NAPI for backlog device
4779 		 * We can use non atomic operation since we own the queue lock
4780 		 */
4781 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4782 			napi_schedule_rps(sd);
4783 		goto enqueue;
4784 	}
4785 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4786 
4787 drop:
4788 	sd->dropped++;
4789 	rps_unlock_irq_restore(sd, &flags);
4790 
4791 	dev_core_stats_rx_dropped_inc(skb->dev);
4792 	kfree_skb_reason(skb, reason);
4793 	return NET_RX_DROP;
4794 }
4795 
4796 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4797 {
4798 	struct net_device *dev = skb->dev;
4799 	struct netdev_rx_queue *rxqueue;
4800 
4801 	rxqueue = dev->_rx;
4802 
4803 	if (skb_rx_queue_recorded(skb)) {
4804 		u16 index = skb_get_rx_queue(skb);
4805 
4806 		if (unlikely(index >= dev->real_num_rx_queues)) {
4807 			WARN_ONCE(dev->real_num_rx_queues > 1,
4808 				  "%s received packet on queue %u, but number "
4809 				  "of RX queues is %u\n",
4810 				  dev->name, index, dev->real_num_rx_queues);
4811 
4812 			return rxqueue; /* Return first rxqueue */
4813 		}
4814 		rxqueue += index;
4815 	}
4816 	return rxqueue;
4817 }
4818 
4819 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4820 			     struct bpf_prog *xdp_prog)
4821 {
4822 	void *orig_data, *orig_data_end, *hard_start;
4823 	struct netdev_rx_queue *rxqueue;
4824 	bool orig_bcast, orig_host;
4825 	u32 mac_len, frame_sz;
4826 	__be16 orig_eth_type;
4827 	struct ethhdr *eth;
4828 	u32 metalen, act;
4829 	int off;
4830 
4831 	/* The XDP program wants to see the packet starting at the MAC
4832 	 * header.
4833 	 */
4834 	mac_len = skb->data - skb_mac_header(skb);
4835 	hard_start = skb->data - skb_headroom(skb);
4836 
4837 	/* SKB "head" area always have tailroom for skb_shared_info */
4838 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4839 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4840 
4841 	rxqueue = netif_get_rxqueue(skb);
4842 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4843 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4844 			 skb_headlen(skb) + mac_len, true);
4845 
4846 	orig_data_end = xdp->data_end;
4847 	orig_data = xdp->data;
4848 	eth = (struct ethhdr *)xdp->data;
4849 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4850 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4851 	orig_eth_type = eth->h_proto;
4852 
4853 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4854 
4855 	/* check if bpf_xdp_adjust_head was used */
4856 	off = xdp->data - orig_data;
4857 	if (off) {
4858 		if (off > 0)
4859 			__skb_pull(skb, off);
4860 		else if (off < 0)
4861 			__skb_push(skb, -off);
4862 
4863 		skb->mac_header += off;
4864 		skb_reset_network_header(skb);
4865 	}
4866 
4867 	/* check if bpf_xdp_adjust_tail was used */
4868 	off = xdp->data_end - orig_data_end;
4869 	if (off != 0) {
4870 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4871 		skb->len += off; /* positive on grow, negative on shrink */
4872 	}
4873 
4874 	/* check if XDP changed eth hdr such SKB needs update */
4875 	eth = (struct ethhdr *)xdp->data;
4876 	if ((orig_eth_type != eth->h_proto) ||
4877 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4878 						  skb->dev->dev_addr)) ||
4879 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4880 		__skb_push(skb, ETH_HLEN);
4881 		skb->pkt_type = PACKET_HOST;
4882 		skb->protocol = eth_type_trans(skb, skb->dev);
4883 	}
4884 
4885 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4886 	 * before calling us again on redirect path. We do not call do_redirect
4887 	 * as we leave that up to the caller.
4888 	 *
4889 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4890 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4891 	 */
4892 	switch (act) {
4893 	case XDP_REDIRECT:
4894 	case XDP_TX:
4895 		__skb_push(skb, mac_len);
4896 		break;
4897 	case XDP_PASS:
4898 		metalen = xdp->data - xdp->data_meta;
4899 		if (metalen)
4900 			skb_metadata_set(skb, metalen);
4901 		break;
4902 	}
4903 
4904 	return act;
4905 }
4906 
4907 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4908 				     struct xdp_buff *xdp,
4909 				     struct bpf_prog *xdp_prog)
4910 {
4911 	u32 act = XDP_DROP;
4912 
4913 	/* Reinjected packets coming from act_mirred or similar should
4914 	 * not get XDP generic processing.
4915 	 */
4916 	if (skb_is_redirected(skb))
4917 		return XDP_PASS;
4918 
4919 	/* XDP packets must be linear and must have sufficient headroom
4920 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4921 	 * native XDP provides, thus we need to do it here as well.
4922 	 */
4923 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4924 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4925 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4926 		int troom = skb->tail + skb->data_len - skb->end;
4927 
4928 		/* In case we have to go down the path and also linearize,
4929 		 * then lets do the pskb_expand_head() work just once here.
4930 		 */
4931 		if (pskb_expand_head(skb,
4932 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4933 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4934 			goto do_drop;
4935 		if (skb_linearize(skb))
4936 			goto do_drop;
4937 	}
4938 
4939 	act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4940 	switch (act) {
4941 	case XDP_REDIRECT:
4942 	case XDP_TX:
4943 	case XDP_PASS:
4944 		break;
4945 	default:
4946 		bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4947 		fallthrough;
4948 	case XDP_ABORTED:
4949 		trace_xdp_exception(skb->dev, xdp_prog, act);
4950 		fallthrough;
4951 	case XDP_DROP:
4952 	do_drop:
4953 		kfree_skb(skb);
4954 		break;
4955 	}
4956 
4957 	return act;
4958 }
4959 
4960 /* When doing generic XDP we have to bypass the qdisc layer and the
4961  * network taps in order to match in-driver-XDP behavior. This also means
4962  * that XDP packets are able to starve other packets going through a qdisc,
4963  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4964  * queues, so they do not have this starvation issue.
4965  */
4966 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4967 {
4968 	struct net_device *dev = skb->dev;
4969 	struct netdev_queue *txq;
4970 	bool free_skb = true;
4971 	int cpu, rc;
4972 
4973 	txq = netdev_core_pick_tx(dev, skb, NULL);
4974 	cpu = smp_processor_id();
4975 	HARD_TX_LOCK(dev, txq, cpu);
4976 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4977 		rc = netdev_start_xmit(skb, dev, txq, 0);
4978 		if (dev_xmit_complete(rc))
4979 			free_skb = false;
4980 	}
4981 	HARD_TX_UNLOCK(dev, txq);
4982 	if (free_skb) {
4983 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4984 		dev_core_stats_tx_dropped_inc(dev);
4985 		kfree_skb(skb);
4986 	}
4987 }
4988 
4989 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4990 
4991 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4992 {
4993 	if (xdp_prog) {
4994 		struct xdp_buff xdp;
4995 		u32 act;
4996 		int err;
4997 
4998 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4999 		if (act != XDP_PASS) {
5000 			switch (act) {
5001 			case XDP_REDIRECT:
5002 				err = xdp_do_generic_redirect(skb->dev, skb,
5003 							      &xdp, xdp_prog);
5004 				if (err)
5005 					goto out_redir;
5006 				break;
5007 			case XDP_TX:
5008 				generic_xdp_tx(skb, xdp_prog);
5009 				break;
5010 			}
5011 			return XDP_DROP;
5012 		}
5013 	}
5014 	return XDP_PASS;
5015 out_redir:
5016 	kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
5017 	return XDP_DROP;
5018 }
5019 EXPORT_SYMBOL_GPL(do_xdp_generic);
5020 
5021 static int netif_rx_internal(struct sk_buff *skb)
5022 {
5023 	int ret;
5024 
5025 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5026 
5027 	trace_netif_rx(skb);
5028 
5029 #ifdef CONFIG_RPS
5030 	if (static_branch_unlikely(&rps_needed)) {
5031 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5032 		int cpu;
5033 
5034 		rcu_read_lock();
5035 
5036 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5037 		if (cpu < 0)
5038 			cpu = smp_processor_id();
5039 
5040 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5041 
5042 		rcu_read_unlock();
5043 	} else
5044 #endif
5045 	{
5046 		unsigned int qtail;
5047 
5048 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5049 	}
5050 	return ret;
5051 }
5052 
5053 /**
5054  *	__netif_rx	-	Slightly optimized version of netif_rx
5055  *	@skb: buffer to post
5056  *
5057  *	This behaves as netif_rx except that it does not disable bottom halves.
5058  *	As a result this function may only be invoked from the interrupt context
5059  *	(either hard or soft interrupt).
5060  */
5061 int __netif_rx(struct sk_buff *skb)
5062 {
5063 	int ret;
5064 
5065 	lockdep_assert_once(hardirq_count() | softirq_count());
5066 
5067 	trace_netif_rx_entry(skb);
5068 	ret = netif_rx_internal(skb);
5069 	trace_netif_rx_exit(ret);
5070 	return ret;
5071 }
5072 EXPORT_SYMBOL(__netif_rx);
5073 
5074 /**
5075  *	netif_rx	-	post buffer to the network code
5076  *	@skb: buffer to post
5077  *
5078  *	This function receives a packet from a device driver and queues it for
5079  *	the upper (protocol) levels to process via the backlog NAPI device. It
5080  *	always succeeds. The buffer may be dropped during processing for
5081  *	congestion control or by the protocol layers.
5082  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5083  *	driver should use NAPI and GRO.
5084  *	This function can used from interrupt and from process context. The
5085  *	caller from process context must not disable interrupts before invoking
5086  *	this function.
5087  *
5088  *	return values:
5089  *	NET_RX_SUCCESS	(no congestion)
5090  *	NET_RX_DROP     (packet was dropped)
5091  *
5092  */
5093 int netif_rx(struct sk_buff *skb)
5094 {
5095 	bool need_bh_off = !(hardirq_count() | softirq_count());
5096 	int ret;
5097 
5098 	if (need_bh_off)
5099 		local_bh_disable();
5100 	trace_netif_rx_entry(skb);
5101 	ret = netif_rx_internal(skb);
5102 	trace_netif_rx_exit(ret);
5103 	if (need_bh_off)
5104 		local_bh_enable();
5105 	return ret;
5106 }
5107 EXPORT_SYMBOL(netif_rx);
5108 
5109 static __latent_entropy void net_tx_action(struct softirq_action *h)
5110 {
5111 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5112 
5113 	if (sd->completion_queue) {
5114 		struct sk_buff *clist;
5115 
5116 		local_irq_disable();
5117 		clist = sd->completion_queue;
5118 		sd->completion_queue = NULL;
5119 		local_irq_enable();
5120 
5121 		while (clist) {
5122 			struct sk_buff *skb = clist;
5123 
5124 			clist = clist->next;
5125 
5126 			WARN_ON(refcount_read(&skb->users));
5127 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5128 				trace_consume_skb(skb, net_tx_action);
5129 			else
5130 				trace_kfree_skb(skb, net_tx_action,
5131 						get_kfree_skb_cb(skb)->reason);
5132 
5133 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5134 				__kfree_skb(skb);
5135 			else
5136 				__napi_kfree_skb(skb,
5137 						 get_kfree_skb_cb(skb)->reason);
5138 		}
5139 	}
5140 
5141 	if (sd->output_queue) {
5142 		struct Qdisc *head;
5143 
5144 		local_irq_disable();
5145 		head = sd->output_queue;
5146 		sd->output_queue = NULL;
5147 		sd->output_queue_tailp = &sd->output_queue;
5148 		local_irq_enable();
5149 
5150 		rcu_read_lock();
5151 
5152 		while (head) {
5153 			struct Qdisc *q = head;
5154 			spinlock_t *root_lock = NULL;
5155 
5156 			head = head->next_sched;
5157 
5158 			/* We need to make sure head->next_sched is read
5159 			 * before clearing __QDISC_STATE_SCHED
5160 			 */
5161 			smp_mb__before_atomic();
5162 
5163 			if (!(q->flags & TCQ_F_NOLOCK)) {
5164 				root_lock = qdisc_lock(q);
5165 				spin_lock(root_lock);
5166 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5167 						     &q->state))) {
5168 				/* There is a synchronize_net() between
5169 				 * STATE_DEACTIVATED flag being set and
5170 				 * qdisc_reset()/some_qdisc_is_busy() in
5171 				 * dev_deactivate(), so we can safely bail out
5172 				 * early here to avoid data race between
5173 				 * qdisc_deactivate() and some_qdisc_is_busy()
5174 				 * for lockless qdisc.
5175 				 */
5176 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5177 				continue;
5178 			}
5179 
5180 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5181 			qdisc_run(q);
5182 			if (root_lock)
5183 				spin_unlock(root_lock);
5184 		}
5185 
5186 		rcu_read_unlock();
5187 	}
5188 
5189 	xfrm_dev_backlog(sd);
5190 }
5191 
5192 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5193 /* This hook is defined here for ATM LANE */
5194 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5195 			     unsigned char *addr) __read_mostly;
5196 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5197 #endif
5198 
5199 /**
5200  *	netdev_is_rx_handler_busy - check if receive handler is registered
5201  *	@dev: device to check
5202  *
5203  *	Check if a receive handler is already registered for a given device.
5204  *	Return true if there one.
5205  *
5206  *	The caller must hold the rtnl_mutex.
5207  */
5208 bool netdev_is_rx_handler_busy(struct net_device *dev)
5209 {
5210 	ASSERT_RTNL();
5211 	return dev && rtnl_dereference(dev->rx_handler);
5212 }
5213 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5214 
5215 /**
5216  *	netdev_rx_handler_register - register receive handler
5217  *	@dev: device to register a handler for
5218  *	@rx_handler: receive handler to register
5219  *	@rx_handler_data: data pointer that is used by rx handler
5220  *
5221  *	Register a receive handler for a device. This handler will then be
5222  *	called from __netif_receive_skb. A negative errno code is returned
5223  *	on a failure.
5224  *
5225  *	The caller must hold the rtnl_mutex.
5226  *
5227  *	For a general description of rx_handler, see enum rx_handler_result.
5228  */
5229 int netdev_rx_handler_register(struct net_device *dev,
5230 			       rx_handler_func_t *rx_handler,
5231 			       void *rx_handler_data)
5232 {
5233 	if (netdev_is_rx_handler_busy(dev))
5234 		return -EBUSY;
5235 
5236 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5237 		return -EINVAL;
5238 
5239 	/* Note: rx_handler_data must be set before rx_handler */
5240 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5241 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5242 
5243 	return 0;
5244 }
5245 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5246 
5247 /**
5248  *	netdev_rx_handler_unregister - unregister receive handler
5249  *	@dev: device to unregister a handler from
5250  *
5251  *	Unregister a receive handler from a device.
5252  *
5253  *	The caller must hold the rtnl_mutex.
5254  */
5255 void netdev_rx_handler_unregister(struct net_device *dev)
5256 {
5257 
5258 	ASSERT_RTNL();
5259 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5260 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5261 	 * section has a guarantee to see a non NULL rx_handler_data
5262 	 * as well.
5263 	 */
5264 	synchronize_net();
5265 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5266 }
5267 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5268 
5269 /*
5270  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5271  * the special handling of PFMEMALLOC skbs.
5272  */
5273 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5274 {
5275 	switch (skb->protocol) {
5276 	case htons(ETH_P_ARP):
5277 	case htons(ETH_P_IP):
5278 	case htons(ETH_P_IPV6):
5279 	case htons(ETH_P_8021Q):
5280 	case htons(ETH_P_8021AD):
5281 		return true;
5282 	default:
5283 		return false;
5284 	}
5285 }
5286 
5287 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5288 			     int *ret, struct net_device *orig_dev)
5289 {
5290 	if (nf_hook_ingress_active(skb)) {
5291 		int ingress_retval;
5292 
5293 		if (*pt_prev) {
5294 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5295 			*pt_prev = NULL;
5296 		}
5297 
5298 		rcu_read_lock();
5299 		ingress_retval = nf_hook_ingress(skb);
5300 		rcu_read_unlock();
5301 		return ingress_retval;
5302 	}
5303 	return 0;
5304 }
5305 
5306 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5307 				    struct packet_type **ppt_prev)
5308 {
5309 	struct packet_type *ptype, *pt_prev;
5310 	rx_handler_func_t *rx_handler;
5311 	struct sk_buff *skb = *pskb;
5312 	struct net_device *orig_dev;
5313 	bool deliver_exact = false;
5314 	int ret = NET_RX_DROP;
5315 	__be16 type;
5316 
5317 	net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5318 
5319 	trace_netif_receive_skb(skb);
5320 
5321 	orig_dev = skb->dev;
5322 
5323 	skb_reset_network_header(skb);
5324 	if (!skb_transport_header_was_set(skb))
5325 		skb_reset_transport_header(skb);
5326 	skb_reset_mac_len(skb);
5327 
5328 	pt_prev = NULL;
5329 
5330 another_round:
5331 	skb->skb_iif = skb->dev->ifindex;
5332 
5333 	__this_cpu_inc(softnet_data.processed);
5334 
5335 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5336 		int ret2;
5337 
5338 		migrate_disable();
5339 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5340 		migrate_enable();
5341 
5342 		if (ret2 != XDP_PASS) {
5343 			ret = NET_RX_DROP;
5344 			goto out;
5345 		}
5346 	}
5347 
5348 	if (eth_type_vlan(skb->protocol)) {
5349 		skb = skb_vlan_untag(skb);
5350 		if (unlikely(!skb))
5351 			goto out;
5352 	}
5353 
5354 	if (skb_skip_tc_classify(skb))
5355 		goto skip_classify;
5356 
5357 	if (pfmemalloc)
5358 		goto skip_taps;
5359 
5360 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5361 		if (pt_prev)
5362 			ret = deliver_skb(skb, pt_prev, orig_dev);
5363 		pt_prev = ptype;
5364 	}
5365 
5366 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5367 		if (pt_prev)
5368 			ret = deliver_skb(skb, pt_prev, orig_dev);
5369 		pt_prev = ptype;
5370 	}
5371 
5372 skip_taps:
5373 #ifdef CONFIG_NET_INGRESS
5374 	if (static_branch_unlikely(&ingress_needed_key)) {
5375 		bool another = false;
5376 
5377 		nf_skip_egress(skb, true);
5378 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5379 					 &another);
5380 		if (another)
5381 			goto another_round;
5382 		if (!skb)
5383 			goto out;
5384 
5385 		nf_skip_egress(skb, false);
5386 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5387 			goto out;
5388 	}
5389 #endif
5390 	skb_reset_redirect(skb);
5391 skip_classify:
5392 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5393 		goto drop;
5394 
5395 	if (skb_vlan_tag_present(skb)) {
5396 		if (pt_prev) {
5397 			ret = deliver_skb(skb, pt_prev, orig_dev);
5398 			pt_prev = NULL;
5399 		}
5400 		if (vlan_do_receive(&skb))
5401 			goto another_round;
5402 		else if (unlikely(!skb))
5403 			goto out;
5404 	}
5405 
5406 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5407 	if (rx_handler) {
5408 		if (pt_prev) {
5409 			ret = deliver_skb(skb, pt_prev, orig_dev);
5410 			pt_prev = NULL;
5411 		}
5412 		switch (rx_handler(&skb)) {
5413 		case RX_HANDLER_CONSUMED:
5414 			ret = NET_RX_SUCCESS;
5415 			goto out;
5416 		case RX_HANDLER_ANOTHER:
5417 			goto another_round;
5418 		case RX_HANDLER_EXACT:
5419 			deliver_exact = true;
5420 			break;
5421 		case RX_HANDLER_PASS:
5422 			break;
5423 		default:
5424 			BUG();
5425 		}
5426 	}
5427 
5428 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5429 check_vlan_id:
5430 		if (skb_vlan_tag_get_id(skb)) {
5431 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5432 			 * find vlan device.
5433 			 */
5434 			skb->pkt_type = PACKET_OTHERHOST;
5435 		} else if (eth_type_vlan(skb->protocol)) {
5436 			/* Outer header is 802.1P with vlan 0, inner header is
5437 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5438 			 * not find vlan dev for vlan id 0.
5439 			 */
5440 			__vlan_hwaccel_clear_tag(skb);
5441 			skb = skb_vlan_untag(skb);
5442 			if (unlikely(!skb))
5443 				goto out;
5444 			if (vlan_do_receive(&skb))
5445 				/* After stripping off 802.1P header with vlan 0
5446 				 * vlan dev is found for inner header.
5447 				 */
5448 				goto another_round;
5449 			else if (unlikely(!skb))
5450 				goto out;
5451 			else
5452 				/* We have stripped outer 802.1P vlan 0 header.
5453 				 * But could not find vlan dev.
5454 				 * check again for vlan id to set OTHERHOST.
5455 				 */
5456 				goto check_vlan_id;
5457 		}
5458 		/* Note: we might in the future use prio bits
5459 		 * and set skb->priority like in vlan_do_receive()
5460 		 * For the time being, just ignore Priority Code Point
5461 		 */
5462 		__vlan_hwaccel_clear_tag(skb);
5463 	}
5464 
5465 	type = skb->protocol;
5466 
5467 	/* deliver only exact match when indicated */
5468 	if (likely(!deliver_exact)) {
5469 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5470 				       &ptype_base[ntohs(type) &
5471 						   PTYPE_HASH_MASK]);
5472 	}
5473 
5474 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5475 			       &orig_dev->ptype_specific);
5476 
5477 	if (unlikely(skb->dev != orig_dev)) {
5478 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5479 				       &skb->dev->ptype_specific);
5480 	}
5481 
5482 	if (pt_prev) {
5483 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5484 			goto drop;
5485 		*ppt_prev = pt_prev;
5486 	} else {
5487 drop:
5488 		if (!deliver_exact)
5489 			dev_core_stats_rx_dropped_inc(skb->dev);
5490 		else
5491 			dev_core_stats_rx_nohandler_inc(skb->dev);
5492 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5493 		/* Jamal, now you will not able to escape explaining
5494 		 * me how you were going to use this. :-)
5495 		 */
5496 		ret = NET_RX_DROP;
5497 	}
5498 
5499 out:
5500 	/* The invariant here is that if *ppt_prev is not NULL
5501 	 * then skb should also be non-NULL.
5502 	 *
5503 	 * Apparently *ppt_prev assignment above holds this invariant due to
5504 	 * skb dereferencing near it.
5505 	 */
5506 	*pskb = skb;
5507 	return ret;
5508 }
5509 
5510 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5511 {
5512 	struct net_device *orig_dev = skb->dev;
5513 	struct packet_type *pt_prev = NULL;
5514 	int ret;
5515 
5516 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5517 	if (pt_prev)
5518 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5519 					 skb->dev, pt_prev, orig_dev);
5520 	return ret;
5521 }
5522 
5523 /**
5524  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5525  *	@skb: buffer to process
5526  *
5527  *	More direct receive version of netif_receive_skb().  It should
5528  *	only be used by callers that have a need to skip RPS and Generic XDP.
5529  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5530  *
5531  *	This function may only be called from softirq context and interrupts
5532  *	should be enabled.
5533  *
5534  *	Return values (usually ignored):
5535  *	NET_RX_SUCCESS: no congestion
5536  *	NET_RX_DROP: packet was dropped
5537  */
5538 int netif_receive_skb_core(struct sk_buff *skb)
5539 {
5540 	int ret;
5541 
5542 	rcu_read_lock();
5543 	ret = __netif_receive_skb_one_core(skb, false);
5544 	rcu_read_unlock();
5545 
5546 	return ret;
5547 }
5548 EXPORT_SYMBOL(netif_receive_skb_core);
5549 
5550 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5551 						  struct packet_type *pt_prev,
5552 						  struct net_device *orig_dev)
5553 {
5554 	struct sk_buff *skb, *next;
5555 
5556 	if (!pt_prev)
5557 		return;
5558 	if (list_empty(head))
5559 		return;
5560 	if (pt_prev->list_func != NULL)
5561 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5562 				   ip_list_rcv, head, pt_prev, orig_dev);
5563 	else
5564 		list_for_each_entry_safe(skb, next, head, list) {
5565 			skb_list_del_init(skb);
5566 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5567 		}
5568 }
5569 
5570 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5571 {
5572 	/* Fast-path assumptions:
5573 	 * - There is no RX handler.
5574 	 * - Only one packet_type matches.
5575 	 * If either of these fails, we will end up doing some per-packet
5576 	 * processing in-line, then handling the 'last ptype' for the whole
5577 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5578 	 * because the 'last ptype' must be constant across the sublist, and all
5579 	 * other ptypes are handled per-packet.
5580 	 */
5581 	/* Current (common) ptype of sublist */
5582 	struct packet_type *pt_curr = NULL;
5583 	/* Current (common) orig_dev of sublist */
5584 	struct net_device *od_curr = NULL;
5585 	struct list_head sublist;
5586 	struct sk_buff *skb, *next;
5587 
5588 	INIT_LIST_HEAD(&sublist);
5589 	list_for_each_entry_safe(skb, next, head, list) {
5590 		struct net_device *orig_dev = skb->dev;
5591 		struct packet_type *pt_prev = NULL;
5592 
5593 		skb_list_del_init(skb);
5594 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5595 		if (!pt_prev)
5596 			continue;
5597 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5598 			/* dispatch old sublist */
5599 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5600 			/* start new sublist */
5601 			INIT_LIST_HEAD(&sublist);
5602 			pt_curr = pt_prev;
5603 			od_curr = orig_dev;
5604 		}
5605 		list_add_tail(&skb->list, &sublist);
5606 	}
5607 
5608 	/* dispatch final sublist */
5609 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5610 }
5611 
5612 static int __netif_receive_skb(struct sk_buff *skb)
5613 {
5614 	int ret;
5615 
5616 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5617 		unsigned int noreclaim_flag;
5618 
5619 		/*
5620 		 * PFMEMALLOC skbs are special, they should
5621 		 * - be delivered to SOCK_MEMALLOC sockets only
5622 		 * - stay away from userspace
5623 		 * - have bounded memory usage
5624 		 *
5625 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5626 		 * context down to all allocation sites.
5627 		 */
5628 		noreclaim_flag = memalloc_noreclaim_save();
5629 		ret = __netif_receive_skb_one_core(skb, true);
5630 		memalloc_noreclaim_restore(noreclaim_flag);
5631 	} else
5632 		ret = __netif_receive_skb_one_core(skb, false);
5633 
5634 	return ret;
5635 }
5636 
5637 static void __netif_receive_skb_list(struct list_head *head)
5638 {
5639 	unsigned long noreclaim_flag = 0;
5640 	struct sk_buff *skb, *next;
5641 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5642 
5643 	list_for_each_entry_safe(skb, next, head, list) {
5644 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5645 			struct list_head sublist;
5646 
5647 			/* Handle the previous sublist */
5648 			list_cut_before(&sublist, head, &skb->list);
5649 			if (!list_empty(&sublist))
5650 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5651 			pfmemalloc = !pfmemalloc;
5652 			/* See comments in __netif_receive_skb */
5653 			if (pfmemalloc)
5654 				noreclaim_flag = memalloc_noreclaim_save();
5655 			else
5656 				memalloc_noreclaim_restore(noreclaim_flag);
5657 		}
5658 	}
5659 	/* Handle the remaining sublist */
5660 	if (!list_empty(head))
5661 		__netif_receive_skb_list_core(head, pfmemalloc);
5662 	/* Restore pflags */
5663 	if (pfmemalloc)
5664 		memalloc_noreclaim_restore(noreclaim_flag);
5665 }
5666 
5667 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5668 {
5669 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5670 	struct bpf_prog *new = xdp->prog;
5671 	int ret = 0;
5672 
5673 	switch (xdp->command) {
5674 	case XDP_SETUP_PROG:
5675 		rcu_assign_pointer(dev->xdp_prog, new);
5676 		if (old)
5677 			bpf_prog_put(old);
5678 
5679 		if (old && !new) {
5680 			static_branch_dec(&generic_xdp_needed_key);
5681 		} else if (new && !old) {
5682 			static_branch_inc(&generic_xdp_needed_key);
5683 			dev_disable_lro(dev);
5684 			dev_disable_gro_hw(dev);
5685 		}
5686 		break;
5687 
5688 	default:
5689 		ret = -EINVAL;
5690 		break;
5691 	}
5692 
5693 	return ret;
5694 }
5695 
5696 static int netif_receive_skb_internal(struct sk_buff *skb)
5697 {
5698 	int ret;
5699 
5700 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5701 
5702 	if (skb_defer_rx_timestamp(skb))
5703 		return NET_RX_SUCCESS;
5704 
5705 	rcu_read_lock();
5706 #ifdef CONFIG_RPS
5707 	if (static_branch_unlikely(&rps_needed)) {
5708 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5709 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5710 
5711 		if (cpu >= 0) {
5712 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5713 			rcu_read_unlock();
5714 			return ret;
5715 		}
5716 	}
5717 #endif
5718 	ret = __netif_receive_skb(skb);
5719 	rcu_read_unlock();
5720 	return ret;
5721 }
5722 
5723 void netif_receive_skb_list_internal(struct list_head *head)
5724 {
5725 	struct sk_buff *skb, *next;
5726 	struct list_head sublist;
5727 
5728 	INIT_LIST_HEAD(&sublist);
5729 	list_for_each_entry_safe(skb, next, head, list) {
5730 		net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5731 		skb_list_del_init(skb);
5732 		if (!skb_defer_rx_timestamp(skb))
5733 			list_add_tail(&skb->list, &sublist);
5734 	}
5735 	list_splice_init(&sublist, head);
5736 
5737 	rcu_read_lock();
5738 #ifdef CONFIG_RPS
5739 	if (static_branch_unlikely(&rps_needed)) {
5740 		list_for_each_entry_safe(skb, next, head, list) {
5741 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5742 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5743 
5744 			if (cpu >= 0) {
5745 				/* Will be handled, remove from list */
5746 				skb_list_del_init(skb);
5747 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5748 			}
5749 		}
5750 	}
5751 #endif
5752 	__netif_receive_skb_list(head);
5753 	rcu_read_unlock();
5754 }
5755 
5756 /**
5757  *	netif_receive_skb - process receive buffer from network
5758  *	@skb: buffer to process
5759  *
5760  *	netif_receive_skb() is the main receive data processing function.
5761  *	It always succeeds. The buffer may be dropped during processing
5762  *	for congestion control or by the protocol layers.
5763  *
5764  *	This function may only be called from softirq context and interrupts
5765  *	should be enabled.
5766  *
5767  *	Return values (usually ignored):
5768  *	NET_RX_SUCCESS: no congestion
5769  *	NET_RX_DROP: packet was dropped
5770  */
5771 int netif_receive_skb(struct sk_buff *skb)
5772 {
5773 	int ret;
5774 
5775 	trace_netif_receive_skb_entry(skb);
5776 
5777 	ret = netif_receive_skb_internal(skb);
5778 	trace_netif_receive_skb_exit(ret);
5779 
5780 	return ret;
5781 }
5782 EXPORT_SYMBOL(netif_receive_skb);
5783 
5784 /**
5785  *	netif_receive_skb_list - process many receive buffers from network
5786  *	@head: list of skbs to process.
5787  *
5788  *	Since return value of netif_receive_skb() is normally ignored, and
5789  *	wouldn't be meaningful for a list, this function returns void.
5790  *
5791  *	This function may only be called from softirq context and interrupts
5792  *	should be enabled.
5793  */
5794 void netif_receive_skb_list(struct list_head *head)
5795 {
5796 	struct sk_buff *skb;
5797 
5798 	if (list_empty(head))
5799 		return;
5800 	if (trace_netif_receive_skb_list_entry_enabled()) {
5801 		list_for_each_entry(skb, head, list)
5802 			trace_netif_receive_skb_list_entry(skb);
5803 	}
5804 	netif_receive_skb_list_internal(head);
5805 	trace_netif_receive_skb_list_exit(0);
5806 }
5807 EXPORT_SYMBOL(netif_receive_skb_list);
5808 
5809 static DEFINE_PER_CPU(struct work_struct, flush_works);
5810 
5811 /* Network device is going away, flush any packets still pending */
5812 static void flush_backlog(struct work_struct *work)
5813 {
5814 	struct sk_buff *skb, *tmp;
5815 	struct softnet_data *sd;
5816 
5817 	local_bh_disable();
5818 	sd = this_cpu_ptr(&softnet_data);
5819 
5820 	rps_lock_irq_disable(sd);
5821 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5822 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5823 			__skb_unlink(skb, &sd->input_pkt_queue);
5824 			dev_kfree_skb_irq(skb);
5825 			input_queue_head_incr(sd);
5826 		}
5827 	}
5828 	rps_unlock_irq_enable(sd);
5829 
5830 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5831 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5832 			__skb_unlink(skb, &sd->process_queue);
5833 			kfree_skb(skb);
5834 			input_queue_head_incr(sd);
5835 		}
5836 	}
5837 	local_bh_enable();
5838 }
5839 
5840 static bool flush_required(int cpu)
5841 {
5842 #if IS_ENABLED(CONFIG_RPS)
5843 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5844 	bool do_flush;
5845 
5846 	rps_lock_irq_disable(sd);
5847 
5848 	/* as insertion into process_queue happens with the rps lock held,
5849 	 * process_queue access may race only with dequeue
5850 	 */
5851 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5852 		   !skb_queue_empty_lockless(&sd->process_queue);
5853 	rps_unlock_irq_enable(sd);
5854 
5855 	return do_flush;
5856 #endif
5857 	/* without RPS we can't safely check input_pkt_queue: during a
5858 	 * concurrent remote skb_queue_splice() we can detect as empty both
5859 	 * input_pkt_queue and process_queue even if the latter could end-up
5860 	 * containing a lot of packets.
5861 	 */
5862 	return true;
5863 }
5864 
5865 static void flush_all_backlogs(void)
5866 {
5867 	static cpumask_t flush_cpus;
5868 	unsigned int cpu;
5869 
5870 	/* since we are under rtnl lock protection we can use static data
5871 	 * for the cpumask and avoid allocating on stack the possibly
5872 	 * large mask
5873 	 */
5874 	ASSERT_RTNL();
5875 
5876 	cpus_read_lock();
5877 
5878 	cpumask_clear(&flush_cpus);
5879 	for_each_online_cpu(cpu) {
5880 		if (flush_required(cpu)) {
5881 			queue_work_on(cpu, system_highpri_wq,
5882 				      per_cpu_ptr(&flush_works, cpu));
5883 			cpumask_set_cpu(cpu, &flush_cpus);
5884 		}
5885 	}
5886 
5887 	/* we can have in flight packet[s] on the cpus we are not flushing,
5888 	 * synchronize_net() in unregister_netdevice_many() will take care of
5889 	 * them
5890 	 */
5891 	for_each_cpu(cpu, &flush_cpus)
5892 		flush_work(per_cpu_ptr(&flush_works, cpu));
5893 
5894 	cpus_read_unlock();
5895 }
5896 
5897 static void net_rps_send_ipi(struct softnet_data *remsd)
5898 {
5899 #ifdef CONFIG_RPS
5900 	while (remsd) {
5901 		struct softnet_data *next = remsd->rps_ipi_next;
5902 
5903 		if (cpu_online(remsd->cpu))
5904 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5905 		remsd = next;
5906 	}
5907 #endif
5908 }
5909 
5910 /*
5911  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5912  * Note: called with local irq disabled, but exits with local irq enabled.
5913  */
5914 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5915 {
5916 #ifdef CONFIG_RPS
5917 	struct softnet_data *remsd = sd->rps_ipi_list;
5918 
5919 	if (remsd) {
5920 		sd->rps_ipi_list = NULL;
5921 
5922 		local_irq_enable();
5923 
5924 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5925 		net_rps_send_ipi(remsd);
5926 	} else
5927 #endif
5928 		local_irq_enable();
5929 }
5930 
5931 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5932 {
5933 #ifdef CONFIG_RPS
5934 	return sd->rps_ipi_list != NULL;
5935 #else
5936 	return false;
5937 #endif
5938 }
5939 
5940 static int process_backlog(struct napi_struct *napi, int quota)
5941 {
5942 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5943 	bool again = true;
5944 	int work = 0;
5945 
5946 	/* Check if we have pending ipi, its better to send them now,
5947 	 * not waiting net_rx_action() end.
5948 	 */
5949 	if (sd_has_rps_ipi_waiting(sd)) {
5950 		local_irq_disable();
5951 		net_rps_action_and_irq_enable(sd);
5952 	}
5953 
5954 	napi->weight = READ_ONCE(dev_rx_weight);
5955 	while (again) {
5956 		struct sk_buff *skb;
5957 
5958 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5959 			rcu_read_lock();
5960 			__netif_receive_skb(skb);
5961 			rcu_read_unlock();
5962 			input_queue_head_incr(sd);
5963 			if (++work >= quota)
5964 				return work;
5965 
5966 		}
5967 
5968 		rps_lock_irq_disable(sd);
5969 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5970 			/*
5971 			 * Inline a custom version of __napi_complete().
5972 			 * only current cpu owns and manipulates this napi,
5973 			 * and NAPI_STATE_SCHED is the only possible flag set
5974 			 * on backlog.
5975 			 * We can use a plain write instead of clear_bit(),
5976 			 * and we dont need an smp_mb() memory barrier.
5977 			 */
5978 			napi->state = 0;
5979 			again = false;
5980 		} else {
5981 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5982 						   &sd->process_queue);
5983 		}
5984 		rps_unlock_irq_enable(sd);
5985 	}
5986 
5987 	return work;
5988 }
5989 
5990 /**
5991  * __napi_schedule - schedule for receive
5992  * @n: entry to schedule
5993  *
5994  * The entry's receive function will be scheduled to run.
5995  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5996  */
5997 void __napi_schedule(struct napi_struct *n)
5998 {
5999 	unsigned long flags;
6000 
6001 	local_irq_save(flags);
6002 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6003 	local_irq_restore(flags);
6004 }
6005 EXPORT_SYMBOL(__napi_schedule);
6006 
6007 /**
6008  *	napi_schedule_prep - check if napi can be scheduled
6009  *	@n: napi context
6010  *
6011  * Test if NAPI routine is already running, and if not mark
6012  * it as running.  This is used as a condition variable to
6013  * insure only one NAPI poll instance runs.  We also make
6014  * sure there is no pending NAPI disable.
6015  */
6016 bool napi_schedule_prep(struct napi_struct *n)
6017 {
6018 	unsigned long new, val = READ_ONCE(n->state);
6019 
6020 	do {
6021 		if (unlikely(val & NAPIF_STATE_DISABLE))
6022 			return false;
6023 		new = val | NAPIF_STATE_SCHED;
6024 
6025 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6026 		 * This was suggested by Alexander Duyck, as compiler
6027 		 * emits better code than :
6028 		 * if (val & NAPIF_STATE_SCHED)
6029 		 *     new |= NAPIF_STATE_MISSED;
6030 		 */
6031 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6032 						   NAPIF_STATE_MISSED;
6033 	} while (!try_cmpxchg(&n->state, &val, new));
6034 
6035 	return !(val & NAPIF_STATE_SCHED);
6036 }
6037 EXPORT_SYMBOL(napi_schedule_prep);
6038 
6039 /**
6040  * __napi_schedule_irqoff - schedule for receive
6041  * @n: entry to schedule
6042  *
6043  * Variant of __napi_schedule() assuming hard irqs are masked.
6044  *
6045  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6046  * because the interrupt disabled assumption might not be true
6047  * due to force-threaded interrupts and spinlock substitution.
6048  */
6049 void __napi_schedule_irqoff(struct napi_struct *n)
6050 {
6051 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6052 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6053 	else
6054 		__napi_schedule(n);
6055 }
6056 EXPORT_SYMBOL(__napi_schedule_irqoff);
6057 
6058 bool napi_complete_done(struct napi_struct *n, int work_done)
6059 {
6060 	unsigned long flags, val, new, timeout = 0;
6061 	bool ret = true;
6062 
6063 	/*
6064 	 * 1) Don't let napi dequeue from the cpu poll list
6065 	 *    just in case its running on a different cpu.
6066 	 * 2) If we are busy polling, do nothing here, we have
6067 	 *    the guarantee we will be called later.
6068 	 */
6069 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6070 				 NAPIF_STATE_IN_BUSY_POLL)))
6071 		return false;
6072 
6073 	if (work_done) {
6074 		if (n->gro_bitmask)
6075 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6076 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6077 	}
6078 	if (n->defer_hard_irqs_count > 0) {
6079 		n->defer_hard_irqs_count--;
6080 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6081 		if (timeout)
6082 			ret = false;
6083 	}
6084 	if (n->gro_bitmask) {
6085 		/* When the NAPI instance uses a timeout and keeps postponing
6086 		 * it, we need to bound somehow the time packets are kept in
6087 		 * the GRO layer
6088 		 */
6089 		napi_gro_flush(n, !!timeout);
6090 	}
6091 
6092 	gro_normal_list(n);
6093 
6094 	if (unlikely(!list_empty(&n->poll_list))) {
6095 		/* If n->poll_list is not empty, we need to mask irqs */
6096 		local_irq_save(flags);
6097 		list_del_init(&n->poll_list);
6098 		local_irq_restore(flags);
6099 	}
6100 	WRITE_ONCE(n->list_owner, -1);
6101 
6102 	val = READ_ONCE(n->state);
6103 	do {
6104 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6105 
6106 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6107 			      NAPIF_STATE_SCHED_THREADED |
6108 			      NAPIF_STATE_PREFER_BUSY_POLL);
6109 
6110 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6111 		 * because we will call napi->poll() one more time.
6112 		 * This C code was suggested by Alexander Duyck to help gcc.
6113 		 */
6114 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6115 						    NAPIF_STATE_SCHED;
6116 	} while (!try_cmpxchg(&n->state, &val, new));
6117 
6118 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6119 		__napi_schedule(n);
6120 		return false;
6121 	}
6122 
6123 	if (timeout)
6124 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6125 			      HRTIMER_MODE_REL_PINNED);
6126 	return ret;
6127 }
6128 EXPORT_SYMBOL(napi_complete_done);
6129 
6130 /* must be called under rcu_read_lock(), as we dont take a reference */
6131 static struct napi_struct *napi_by_id(unsigned int napi_id)
6132 {
6133 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6134 	struct napi_struct *napi;
6135 
6136 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6137 		if (napi->napi_id == napi_id)
6138 			return napi;
6139 
6140 	return NULL;
6141 }
6142 
6143 #if defined(CONFIG_NET_RX_BUSY_POLL)
6144 
6145 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6146 {
6147 	if (!skip_schedule) {
6148 		gro_normal_list(napi);
6149 		__napi_schedule(napi);
6150 		return;
6151 	}
6152 
6153 	if (napi->gro_bitmask) {
6154 		/* flush too old packets
6155 		 * If HZ < 1000, flush all packets.
6156 		 */
6157 		napi_gro_flush(napi, HZ >= 1000);
6158 	}
6159 
6160 	gro_normal_list(napi);
6161 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6162 }
6163 
6164 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6165 			   u16 budget)
6166 {
6167 	bool skip_schedule = false;
6168 	unsigned long timeout;
6169 	int rc;
6170 
6171 	/* Busy polling means there is a high chance device driver hard irq
6172 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6173 	 * set in napi_schedule_prep().
6174 	 * Since we are about to call napi->poll() once more, we can safely
6175 	 * clear NAPI_STATE_MISSED.
6176 	 *
6177 	 * Note: x86 could use a single "lock and ..." instruction
6178 	 * to perform these two clear_bit()
6179 	 */
6180 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6181 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6182 
6183 	local_bh_disable();
6184 
6185 	if (prefer_busy_poll) {
6186 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6187 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6188 		if (napi->defer_hard_irqs_count && timeout) {
6189 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6190 			skip_schedule = true;
6191 		}
6192 	}
6193 
6194 	/* All we really want here is to re-enable device interrupts.
6195 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6196 	 */
6197 	rc = napi->poll(napi, budget);
6198 	/* We can't gro_normal_list() here, because napi->poll() might have
6199 	 * rearmed the napi (napi_complete_done()) in which case it could
6200 	 * already be running on another CPU.
6201 	 */
6202 	trace_napi_poll(napi, rc, budget);
6203 	netpoll_poll_unlock(have_poll_lock);
6204 	if (rc == budget)
6205 		__busy_poll_stop(napi, skip_schedule);
6206 	local_bh_enable();
6207 }
6208 
6209 void napi_busy_loop(unsigned int napi_id,
6210 		    bool (*loop_end)(void *, unsigned long),
6211 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6212 {
6213 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6214 	int (*napi_poll)(struct napi_struct *napi, int budget);
6215 	void *have_poll_lock = NULL;
6216 	struct napi_struct *napi;
6217 
6218 restart:
6219 	napi_poll = NULL;
6220 
6221 	rcu_read_lock();
6222 
6223 	napi = napi_by_id(napi_id);
6224 	if (!napi)
6225 		goto out;
6226 
6227 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6228 		preempt_disable();
6229 	for (;;) {
6230 		int work = 0;
6231 
6232 		local_bh_disable();
6233 		if (!napi_poll) {
6234 			unsigned long val = READ_ONCE(napi->state);
6235 
6236 			/* If multiple threads are competing for this napi,
6237 			 * we avoid dirtying napi->state as much as we can.
6238 			 */
6239 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6240 				   NAPIF_STATE_IN_BUSY_POLL)) {
6241 				if (prefer_busy_poll)
6242 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6243 				goto count;
6244 			}
6245 			if (cmpxchg(&napi->state, val,
6246 				    val | NAPIF_STATE_IN_BUSY_POLL |
6247 					  NAPIF_STATE_SCHED) != val) {
6248 				if (prefer_busy_poll)
6249 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6250 				goto count;
6251 			}
6252 			have_poll_lock = netpoll_poll_lock(napi);
6253 			napi_poll = napi->poll;
6254 		}
6255 		work = napi_poll(napi, budget);
6256 		trace_napi_poll(napi, work, budget);
6257 		gro_normal_list(napi);
6258 count:
6259 		if (work > 0)
6260 			__NET_ADD_STATS(dev_net(napi->dev),
6261 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6262 		local_bh_enable();
6263 
6264 		if (!loop_end || loop_end(loop_end_arg, start_time))
6265 			break;
6266 
6267 		if (unlikely(need_resched())) {
6268 			if (napi_poll)
6269 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6270 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6271 				preempt_enable();
6272 			rcu_read_unlock();
6273 			cond_resched();
6274 			if (loop_end(loop_end_arg, start_time))
6275 				return;
6276 			goto restart;
6277 		}
6278 		cpu_relax();
6279 	}
6280 	if (napi_poll)
6281 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6282 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6283 		preempt_enable();
6284 out:
6285 	rcu_read_unlock();
6286 }
6287 EXPORT_SYMBOL(napi_busy_loop);
6288 
6289 #endif /* CONFIG_NET_RX_BUSY_POLL */
6290 
6291 static void napi_hash_add(struct napi_struct *napi)
6292 {
6293 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6294 		return;
6295 
6296 	spin_lock(&napi_hash_lock);
6297 
6298 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6299 	do {
6300 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6301 			napi_gen_id = MIN_NAPI_ID;
6302 	} while (napi_by_id(napi_gen_id));
6303 	napi->napi_id = napi_gen_id;
6304 
6305 	hlist_add_head_rcu(&napi->napi_hash_node,
6306 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6307 
6308 	spin_unlock(&napi_hash_lock);
6309 }
6310 
6311 /* Warning : caller is responsible to make sure rcu grace period
6312  * is respected before freeing memory containing @napi
6313  */
6314 static void napi_hash_del(struct napi_struct *napi)
6315 {
6316 	spin_lock(&napi_hash_lock);
6317 
6318 	hlist_del_init_rcu(&napi->napi_hash_node);
6319 
6320 	spin_unlock(&napi_hash_lock);
6321 }
6322 
6323 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6324 {
6325 	struct napi_struct *napi;
6326 
6327 	napi = container_of(timer, struct napi_struct, timer);
6328 
6329 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6330 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6331 	 */
6332 	if (!napi_disable_pending(napi) &&
6333 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6334 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6335 		__napi_schedule_irqoff(napi);
6336 	}
6337 
6338 	return HRTIMER_NORESTART;
6339 }
6340 
6341 static void init_gro_hash(struct napi_struct *napi)
6342 {
6343 	int i;
6344 
6345 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6346 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6347 		napi->gro_hash[i].count = 0;
6348 	}
6349 	napi->gro_bitmask = 0;
6350 }
6351 
6352 int dev_set_threaded(struct net_device *dev, bool threaded)
6353 {
6354 	struct napi_struct *napi;
6355 	int err = 0;
6356 
6357 	if (dev->threaded == threaded)
6358 		return 0;
6359 
6360 	if (threaded) {
6361 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6362 			if (!napi->thread) {
6363 				err = napi_kthread_create(napi);
6364 				if (err) {
6365 					threaded = false;
6366 					break;
6367 				}
6368 			}
6369 		}
6370 	}
6371 
6372 	dev->threaded = threaded;
6373 
6374 	/* Make sure kthread is created before THREADED bit
6375 	 * is set.
6376 	 */
6377 	smp_mb__before_atomic();
6378 
6379 	/* Setting/unsetting threaded mode on a napi might not immediately
6380 	 * take effect, if the current napi instance is actively being
6381 	 * polled. In this case, the switch between threaded mode and
6382 	 * softirq mode will happen in the next round of napi_schedule().
6383 	 * This should not cause hiccups/stalls to the live traffic.
6384 	 */
6385 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6386 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6387 
6388 	return err;
6389 }
6390 EXPORT_SYMBOL(dev_set_threaded);
6391 
6392 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6393 			   int (*poll)(struct napi_struct *, int), int weight)
6394 {
6395 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6396 		return;
6397 
6398 	INIT_LIST_HEAD(&napi->poll_list);
6399 	INIT_HLIST_NODE(&napi->napi_hash_node);
6400 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6401 	napi->timer.function = napi_watchdog;
6402 	init_gro_hash(napi);
6403 	napi->skb = NULL;
6404 	INIT_LIST_HEAD(&napi->rx_list);
6405 	napi->rx_count = 0;
6406 	napi->poll = poll;
6407 	if (weight > NAPI_POLL_WEIGHT)
6408 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6409 				weight);
6410 	napi->weight = weight;
6411 	napi->dev = dev;
6412 #ifdef CONFIG_NETPOLL
6413 	napi->poll_owner = -1;
6414 #endif
6415 	napi->list_owner = -1;
6416 	set_bit(NAPI_STATE_SCHED, &napi->state);
6417 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6418 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6419 	napi_hash_add(napi);
6420 	napi_get_frags_check(napi);
6421 	/* Create kthread for this napi if dev->threaded is set.
6422 	 * Clear dev->threaded if kthread creation failed so that
6423 	 * threaded mode will not be enabled in napi_enable().
6424 	 */
6425 	if (dev->threaded && napi_kthread_create(napi))
6426 		dev->threaded = 0;
6427 }
6428 EXPORT_SYMBOL(netif_napi_add_weight);
6429 
6430 void napi_disable(struct napi_struct *n)
6431 {
6432 	unsigned long val, new;
6433 
6434 	might_sleep();
6435 	set_bit(NAPI_STATE_DISABLE, &n->state);
6436 
6437 	val = READ_ONCE(n->state);
6438 	do {
6439 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6440 			usleep_range(20, 200);
6441 			val = READ_ONCE(n->state);
6442 		}
6443 
6444 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6445 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6446 	} while (!try_cmpxchg(&n->state, &val, new));
6447 
6448 	hrtimer_cancel(&n->timer);
6449 
6450 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6451 }
6452 EXPORT_SYMBOL(napi_disable);
6453 
6454 /**
6455  *	napi_enable - enable NAPI scheduling
6456  *	@n: NAPI context
6457  *
6458  * Resume NAPI from being scheduled on this context.
6459  * Must be paired with napi_disable.
6460  */
6461 void napi_enable(struct napi_struct *n)
6462 {
6463 	unsigned long new, val = READ_ONCE(n->state);
6464 
6465 	do {
6466 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6467 
6468 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6469 		if (n->dev->threaded && n->thread)
6470 			new |= NAPIF_STATE_THREADED;
6471 	} while (!try_cmpxchg(&n->state, &val, new));
6472 }
6473 EXPORT_SYMBOL(napi_enable);
6474 
6475 static void flush_gro_hash(struct napi_struct *napi)
6476 {
6477 	int i;
6478 
6479 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6480 		struct sk_buff *skb, *n;
6481 
6482 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6483 			kfree_skb(skb);
6484 		napi->gro_hash[i].count = 0;
6485 	}
6486 }
6487 
6488 /* Must be called in process context */
6489 void __netif_napi_del(struct napi_struct *napi)
6490 {
6491 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6492 		return;
6493 
6494 	napi_hash_del(napi);
6495 	list_del_rcu(&napi->dev_list);
6496 	napi_free_frags(napi);
6497 
6498 	flush_gro_hash(napi);
6499 	napi->gro_bitmask = 0;
6500 
6501 	if (napi->thread) {
6502 		kthread_stop(napi->thread);
6503 		napi->thread = NULL;
6504 	}
6505 }
6506 EXPORT_SYMBOL(__netif_napi_del);
6507 
6508 static int __napi_poll(struct napi_struct *n, bool *repoll)
6509 {
6510 	int work, weight;
6511 
6512 	weight = n->weight;
6513 
6514 	/* This NAPI_STATE_SCHED test is for avoiding a race
6515 	 * with netpoll's poll_napi().  Only the entity which
6516 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6517 	 * actually make the ->poll() call.  Therefore we avoid
6518 	 * accidentally calling ->poll() when NAPI is not scheduled.
6519 	 */
6520 	work = 0;
6521 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6522 		work = n->poll(n, weight);
6523 		trace_napi_poll(n, work, weight);
6524 	}
6525 
6526 	if (unlikely(work > weight))
6527 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6528 				n->poll, work, weight);
6529 
6530 	if (likely(work < weight))
6531 		return work;
6532 
6533 	/* Drivers must not modify the NAPI state if they
6534 	 * consume the entire weight.  In such cases this code
6535 	 * still "owns" the NAPI instance and therefore can
6536 	 * move the instance around on the list at-will.
6537 	 */
6538 	if (unlikely(napi_disable_pending(n))) {
6539 		napi_complete(n);
6540 		return work;
6541 	}
6542 
6543 	/* The NAPI context has more processing work, but busy-polling
6544 	 * is preferred. Exit early.
6545 	 */
6546 	if (napi_prefer_busy_poll(n)) {
6547 		if (napi_complete_done(n, work)) {
6548 			/* If timeout is not set, we need to make sure
6549 			 * that the NAPI is re-scheduled.
6550 			 */
6551 			napi_schedule(n);
6552 		}
6553 		return work;
6554 	}
6555 
6556 	if (n->gro_bitmask) {
6557 		/* flush too old packets
6558 		 * If HZ < 1000, flush all packets.
6559 		 */
6560 		napi_gro_flush(n, HZ >= 1000);
6561 	}
6562 
6563 	gro_normal_list(n);
6564 
6565 	/* Some drivers may have called napi_schedule
6566 	 * prior to exhausting their budget.
6567 	 */
6568 	if (unlikely(!list_empty(&n->poll_list))) {
6569 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6570 			     n->dev ? n->dev->name : "backlog");
6571 		return work;
6572 	}
6573 
6574 	*repoll = true;
6575 
6576 	return work;
6577 }
6578 
6579 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6580 {
6581 	bool do_repoll = false;
6582 	void *have;
6583 	int work;
6584 
6585 	list_del_init(&n->poll_list);
6586 
6587 	have = netpoll_poll_lock(n);
6588 
6589 	work = __napi_poll(n, &do_repoll);
6590 
6591 	if (do_repoll)
6592 		list_add_tail(&n->poll_list, repoll);
6593 
6594 	netpoll_poll_unlock(have);
6595 
6596 	return work;
6597 }
6598 
6599 static int napi_thread_wait(struct napi_struct *napi)
6600 {
6601 	bool woken = false;
6602 
6603 	set_current_state(TASK_INTERRUPTIBLE);
6604 
6605 	while (!kthread_should_stop()) {
6606 		/* Testing SCHED_THREADED bit here to make sure the current
6607 		 * kthread owns this napi and could poll on this napi.
6608 		 * Testing SCHED bit is not enough because SCHED bit might be
6609 		 * set by some other busy poll thread or by napi_disable().
6610 		 */
6611 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6612 			WARN_ON(!list_empty(&napi->poll_list));
6613 			__set_current_state(TASK_RUNNING);
6614 			return 0;
6615 		}
6616 
6617 		schedule();
6618 		/* woken being true indicates this thread owns this napi. */
6619 		woken = true;
6620 		set_current_state(TASK_INTERRUPTIBLE);
6621 	}
6622 	__set_current_state(TASK_RUNNING);
6623 
6624 	return -1;
6625 }
6626 
6627 static void skb_defer_free_flush(struct softnet_data *sd)
6628 {
6629 	struct sk_buff *skb, *next;
6630 
6631 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6632 	if (!READ_ONCE(sd->defer_list))
6633 		return;
6634 
6635 	spin_lock(&sd->defer_lock);
6636 	skb = sd->defer_list;
6637 	sd->defer_list = NULL;
6638 	sd->defer_count = 0;
6639 	spin_unlock(&sd->defer_lock);
6640 
6641 	while (skb != NULL) {
6642 		next = skb->next;
6643 		napi_consume_skb(skb, 1);
6644 		skb = next;
6645 	}
6646 }
6647 
6648 static int napi_threaded_poll(void *data)
6649 {
6650 	struct napi_struct *napi = data;
6651 	struct softnet_data *sd;
6652 	void *have;
6653 
6654 	while (!napi_thread_wait(napi)) {
6655 		for (;;) {
6656 			bool repoll = false;
6657 
6658 			local_bh_disable();
6659 			sd = this_cpu_ptr(&softnet_data);
6660 			sd->in_napi_threaded_poll = true;
6661 
6662 			have = netpoll_poll_lock(napi);
6663 			__napi_poll(napi, &repoll);
6664 			netpoll_poll_unlock(have);
6665 
6666 			sd->in_napi_threaded_poll = false;
6667 			barrier();
6668 
6669 			if (sd_has_rps_ipi_waiting(sd)) {
6670 				local_irq_disable();
6671 				net_rps_action_and_irq_enable(sd);
6672 			}
6673 			skb_defer_free_flush(sd);
6674 			local_bh_enable();
6675 
6676 			if (!repoll)
6677 				break;
6678 
6679 			cond_resched();
6680 		}
6681 	}
6682 	return 0;
6683 }
6684 
6685 static __latent_entropy void net_rx_action(struct softirq_action *h)
6686 {
6687 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6688 	unsigned long time_limit = jiffies +
6689 		usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6690 	int budget = READ_ONCE(netdev_budget);
6691 	LIST_HEAD(list);
6692 	LIST_HEAD(repoll);
6693 
6694 start:
6695 	sd->in_net_rx_action = true;
6696 	local_irq_disable();
6697 	list_splice_init(&sd->poll_list, &list);
6698 	local_irq_enable();
6699 
6700 	for (;;) {
6701 		struct napi_struct *n;
6702 
6703 		skb_defer_free_flush(sd);
6704 
6705 		if (list_empty(&list)) {
6706 			if (list_empty(&repoll)) {
6707 				sd->in_net_rx_action = false;
6708 				barrier();
6709 				/* We need to check if ____napi_schedule()
6710 				 * had refilled poll_list while
6711 				 * sd->in_net_rx_action was true.
6712 				 */
6713 				if (!list_empty(&sd->poll_list))
6714 					goto start;
6715 				if (!sd_has_rps_ipi_waiting(sd))
6716 					goto end;
6717 			}
6718 			break;
6719 		}
6720 
6721 		n = list_first_entry(&list, struct napi_struct, poll_list);
6722 		budget -= napi_poll(n, &repoll);
6723 
6724 		/* If softirq window is exhausted then punt.
6725 		 * Allow this to run for 2 jiffies since which will allow
6726 		 * an average latency of 1.5/HZ.
6727 		 */
6728 		if (unlikely(budget <= 0 ||
6729 			     time_after_eq(jiffies, time_limit))) {
6730 			sd->time_squeeze++;
6731 			break;
6732 		}
6733 	}
6734 
6735 	local_irq_disable();
6736 
6737 	list_splice_tail_init(&sd->poll_list, &list);
6738 	list_splice_tail(&repoll, &list);
6739 	list_splice(&list, &sd->poll_list);
6740 	if (!list_empty(&sd->poll_list))
6741 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6742 	else
6743 		sd->in_net_rx_action = false;
6744 
6745 	net_rps_action_and_irq_enable(sd);
6746 end:;
6747 }
6748 
6749 struct netdev_adjacent {
6750 	struct net_device *dev;
6751 	netdevice_tracker dev_tracker;
6752 
6753 	/* upper master flag, there can only be one master device per list */
6754 	bool master;
6755 
6756 	/* lookup ignore flag */
6757 	bool ignore;
6758 
6759 	/* counter for the number of times this device was added to us */
6760 	u16 ref_nr;
6761 
6762 	/* private field for the users */
6763 	void *private;
6764 
6765 	struct list_head list;
6766 	struct rcu_head rcu;
6767 };
6768 
6769 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6770 						 struct list_head *adj_list)
6771 {
6772 	struct netdev_adjacent *adj;
6773 
6774 	list_for_each_entry(adj, adj_list, list) {
6775 		if (adj->dev == adj_dev)
6776 			return adj;
6777 	}
6778 	return NULL;
6779 }
6780 
6781 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6782 				    struct netdev_nested_priv *priv)
6783 {
6784 	struct net_device *dev = (struct net_device *)priv->data;
6785 
6786 	return upper_dev == dev;
6787 }
6788 
6789 /**
6790  * netdev_has_upper_dev - Check if device is linked to an upper device
6791  * @dev: device
6792  * @upper_dev: upper device to check
6793  *
6794  * Find out if a device is linked to specified upper device and return true
6795  * in case it is. Note that this checks only immediate upper device,
6796  * not through a complete stack of devices. The caller must hold the RTNL lock.
6797  */
6798 bool netdev_has_upper_dev(struct net_device *dev,
6799 			  struct net_device *upper_dev)
6800 {
6801 	struct netdev_nested_priv priv = {
6802 		.data = (void *)upper_dev,
6803 	};
6804 
6805 	ASSERT_RTNL();
6806 
6807 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6808 					     &priv);
6809 }
6810 EXPORT_SYMBOL(netdev_has_upper_dev);
6811 
6812 /**
6813  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6814  * @dev: device
6815  * @upper_dev: upper device to check
6816  *
6817  * Find out if a device is linked to specified upper device and return true
6818  * in case it is. Note that this checks the entire upper device chain.
6819  * The caller must hold rcu lock.
6820  */
6821 
6822 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6823 				  struct net_device *upper_dev)
6824 {
6825 	struct netdev_nested_priv priv = {
6826 		.data = (void *)upper_dev,
6827 	};
6828 
6829 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6830 					       &priv);
6831 }
6832 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6833 
6834 /**
6835  * netdev_has_any_upper_dev - Check if device is linked to some device
6836  * @dev: device
6837  *
6838  * Find out if a device is linked to an upper device and return true in case
6839  * it is. The caller must hold the RTNL lock.
6840  */
6841 bool netdev_has_any_upper_dev(struct net_device *dev)
6842 {
6843 	ASSERT_RTNL();
6844 
6845 	return !list_empty(&dev->adj_list.upper);
6846 }
6847 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6848 
6849 /**
6850  * netdev_master_upper_dev_get - Get master upper device
6851  * @dev: device
6852  *
6853  * Find a master upper device and return pointer to it or NULL in case
6854  * it's not there. The caller must hold the RTNL lock.
6855  */
6856 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6857 {
6858 	struct netdev_adjacent *upper;
6859 
6860 	ASSERT_RTNL();
6861 
6862 	if (list_empty(&dev->adj_list.upper))
6863 		return NULL;
6864 
6865 	upper = list_first_entry(&dev->adj_list.upper,
6866 				 struct netdev_adjacent, list);
6867 	if (likely(upper->master))
6868 		return upper->dev;
6869 	return NULL;
6870 }
6871 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6872 
6873 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6874 {
6875 	struct netdev_adjacent *upper;
6876 
6877 	ASSERT_RTNL();
6878 
6879 	if (list_empty(&dev->adj_list.upper))
6880 		return NULL;
6881 
6882 	upper = list_first_entry(&dev->adj_list.upper,
6883 				 struct netdev_adjacent, list);
6884 	if (likely(upper->master) && !upper->ignore)
6885 		return upper->dev;
6886 	return NULL;
6887 }
6888 
6889 /**
6890  * netdev_has_any_lower_dev - Check if device is linked to some device
6891  * @dev: device
6892  *
6893  * Find out if a device is linked to a lower device and return true in case
6894  * it is. The caller must hold the RTNL lock.
6895  */
6896 static bool netdev_has_any_lower_dev(struct net_device *dev)
6897 {
6898 	ASSERT_RTNL();
6899 
6900 	return !list_empty(&dev->adj_list.lower);
6901 }
6902 
6903 void *netdev_adjacent_get_private(struct list_head *adj_list)
6904 {
6905 	struct netdev_adjacent *adj;
6906 
6907 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6908 
6909 	return adj->private;
6910 }
6911 EXPORT_SYMBOL(netdev_adjacent_get_private);
6912 
6913 /**
6914  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6915  * @dev: device
6916  * @iter: list_head ** of the current position
6917  *
6918  * Gets the next device from the dev's upper list, starting from iter
6919  * position. The caller must hold RCU read lock.
6920  */
6921 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6922 						 struct list_head **iter)
6923 {
6924 	struct netdev_adjacent *upper;
6925 
6926 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6927 
6928 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6929 
6930 	if (&upper->list == &dev->adj_list.upper)
6931 		return NULL;
6932 
6933 	*iter = &upper->list;
6934 
6935 	return upper->dev;
6936 }
6937 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6938 
6939 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6940 						  struct list_head **iter,
6941 						  bool *ignore)
6942 {
6943 	struct netdev_adjacent *upper;
6944 
6945 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6946 
6947 	if (&upper->list == &dev->adj_list.upper)
6948 		return NULL;
6949 
6950 	*iter = &upper->list;
6951 	*ignore = upper->ignore;
6952 
6953 	return upper->dev;
6954 }
6955 
6956 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6957 						    struct list_head **iter)
6958 {
6959 	struct netdev_adjacent *upper;
6960 
6961 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6962 
6963 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6964 
6965 	if (&upper->list == &dev->adj_list.upper)
6966 		return NULL;
6967 
6968 	*iter = &upper->list;
6969 
6970 	return upper->dev;
6971 }
6972 
6973 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6974 				       int (*fn)(struct net_device *dev,
6975 					 struct netdev_nested_priv *priv),
6976 				       struct netdev_nested_priv *priv)
6977 {
6978 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6979 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6980 	int ret, cur = 0;
6981 	bool ignore;
6982 
6983 	now = dev;
6984 	iter = &dev->adj_list.upper;
6985 
6986 	while (1) {
6987 		if (now != dev) {
6988 			ret = fn(now, priv);
6989 			if (ret)
6990 				return ret;
6991 		}
6992 
6993 		next = NULL;
6994 		while (1) {
6995 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
6996 			if (!udev)
6997 				break;
6998 			if (ignore)
6999 				continue;
7000 
7001 			next = udev;
7002 			niter = &udev->adj_list.upper;
7003 			dev_stack[cur] = now;
7004 			iter_stack[cur++] = iter;
7005 			break;
7006 		}
7007 
7008 		if (!next) {
7009 			if (!cur)
7010 				return 0;
7011 			next = dev_stack[--cur];
7012 			niter = iter_stack[cur];
7013 		}
7014 
7015 		now = next;
7016 		iter = niter;
7017 	}
7018 
7019 	return 0;
7020 }
7021 
7022 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7023 				  int (*fn)(struct net_device *dev,
7024 					    struct netdev_nested_priv *priv),
7025 				  struct netdev_nested_priv *priv)
7026 {
7027 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7028 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7029 	int ret, cur = 0;
7030 
7031 	now = dev;
7032 	iter = &dev->adj_list.upper;
7033 
7034 	while (1) {
7035 		if (now != dev) {
7036 			ret = fn(now, priv);
7037 			if (ret)
7038 				return ret;
7039 		}
7040 
7041 		next = NULL;
7042 		while (1) {
7043 			udev = netdev_next_upper_dev_rcu(now, &iter);
7044 			if (!udev)
7045 				break;
7046 
7047 			next = udev;
7048 			niter = &udev->adj_list.upper;
7049 			dev_stack[cur] = now;
7050 			iter_stack[cur++] = iter;
7051 			break;
7052 		}
7053 
7054 		if (!next) {
7055 			if (!cur)
7056 				return 0;
7057 			next = dev_stack[--cur];
7058 			niter = iter_stack[cur];
7059 		}
7060 
7061 		now = next;
7062 		iter = niter;
7063 	}
7064 
7065 	return 0;
7066 }
7067 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7068 
7069 static bool __netdev_has_upper_dev(struct net_device *dev,
7070 				   struct net_device *upper_dev)
7071 {
7072 	struct netdev_nested_priv priv = {
7073 		.flags = 0,
7074 		.data = (void *)upper_dev,
7075 	};
7076 
7077 	ASSERT_RTNL();
7078 
7079 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7080 					   &priv);
7081 }
7082 
7083 /**
7084  * netdev_lower_get_next_private - Get the next ->private from the
7085  *				   lower neighbour list
7086  * @dev: device
7087  * @iter: list_head ** of the current position
7088  *
7089  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7090  * list, starting from iter position. The caller must hold either hold the
7091  * RTNL lock or its own locking that guarantees that the neighbour lower
7092  * list will remain unchanged.
7093  */
7094 void *netdev_lower_get_next_private(struct net_device *dev,
7095 				    struct list_head **iter)
7096 {
7097 	struct netdev_adjacent *lower;
7098 
7099 	lower = list_entry(*iter, struct netdev_adjacent, list);
7100 
7101 	if (&lower->list == &dev->adj_list.lower)
7102 		return NULL;
7103 
7104 	*iter = lower->list.next;
7105 
7106 	return lower->private;
7107 }
7108 EXPORT_SYMBOL(netdev_lower_get_next_private);
7109 
7110 /**
7111  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7112  *				       lower neighbour list, RCU
7113  *				       variant
7114  * @dev: device
7115  * @iter: list_head ** of the current position
7116  *
7117  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7118  * list, starting from iter position. The caller must hold RCU read lock.
7119  */
7120 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7121 					struct list_head **iter)
7122 {
7123 	struct netdev_adjacent *lower;
7124 
7125 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7126 
7127 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7128 
7129 	if (&lower->list == &dev->adj_list.lower)
7130 		return NULL;
7131 
7132 	*iter = &lower->list;
7133 
7134 	return lower->private;
7135 }
7136 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7137 
7138 /**
7139  * netdev_lower_get_next - Get the next device from the lower neighbour
7140  *                         list
7141  * @dev: device
7142  * @iter: list_head ** of the current position
7143  *
7144  * Gets the next netdev_adjacent from the dev's lower neighbour
7145  * list, starting from iter position. The caller must hold RTNL lock or
7146  * its own locking that guarantees that the neighbour lower
7147  * list will remain unchanged.
7148  */
7149 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7150 {
7151 	struct netdev_adjacent *lower;
7152 
7153 	lower = list_entry(*iter, struct netdev_adjacent, list);
7154 
7155 	if (&lower->list == &dev->adj_list.lower)
7156 		return NULL;
7157 
7158 	*iter = lower->list.next;
7159 
7160 	return lower->dev;
7161 }
7162 EXPORT_SYMBOL(netdev_lower_get_next);
7163 
7164 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7165 						struct list_head **iter)
7166 {
7167 	struct netdev_adjacent *lower;
7168 
7169 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7170 
7171 	if (&lower->list == &dev->adj_list.lower)
7172 		return NULL;
7173 
7174 	*iter = &lower->list;
7175 
7176 	return lower->dev;
7177 }
7178 
7179 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7180 						  struct list_head **iter,
7181 						  bool *ignore)
7182 {
7183 	struct netdev_adjacent *lower;
7184 
7185 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7186 
7187 	if (&lower->list == &dev->adj_list.lower)
7188 		return NULL;
7189 
7190 	*iter = &lower->list;
7191 	*ignore = lower->ignore;
7192 
7193 	return lower->dev;
7194 }
7195 
7196 int netdev_walk_all_lower_dev(struct net_device *dev,
7197 			      int (*fn)(struct net_device *dev,
7198 					struct netdev_nested_priv *priv),
7199 			      struct netdev_nested_priv *priv)
7200 {
7201 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7202 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7203 	int ret, cur = 0;
7204 
7205 	now = dev;
7206 	iter = &dev->adj_list.lower;
7207 
7208 	while (1) {
7209 		if (now != dev) {
7210 			ret = fn(now, priv);
7211 			if (ret)
7212 				return ret;
7213 		}
7214 
7215 		next = NULL;
7216 		while (1) {
7217 			ldev = netdev_next_lower_dev(now, &iter);
7218 			if (!ldev)
7219 				break;
7220 
7221 			next = ldev;
7222 			niter = &ldev->adj_list.lower;
7223 			dev_stack[cur] = now;
7224 			iter_stack[cur++] = iter;
7225 			break;
7226 		}
7227 
7228 		if (!next) {
7229 			if (!cur)
7230 				return 0;
7231 			next = dev_stack[--cur];
7232 			niter = iter_stack[cur];
7233 		}
7234 
7235 		now = next;
7236 		iter = niter;
7237 	}
7238 
7239 	return 0;
7240 }
7241 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7242 
7243 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7244 				       int (*fn)(struct net_device *dev,
7245 					 struct netdev_nested_priv *priv),
7246 				       struct netdev_nested_priv *priv)
7247 {
7248 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7249 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7250 	int ret, cur = 0;
7251 	bool ignore;
7252 
7253 	now = dev;
7254 	iter = &dev->adj_list.lower;
7255 
7256 	while (1) {
7257 		if (now != dev) {
7258 			ret = fn(now, priv);
7259 			if (ret)
7260 				return ret;
7261 		}
7262 
7263 		next = NULL;
7264 		while (1) {
7265 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7266 			if (!ldev)
7267 				break;
7268 			if (ignore)
7269 				continue;
7270 
7271 			next = ldev;
7272 			niter = &ldev->adj_list.lower;
7273 			dev_stack[cur] = now;
7274 			iter_stack[cur++] = iter;
7275 			break;
7276 		}
7277 
7278 		if (!next) {
7279 			if (!cur)
7280 				return 0;
7281 			next = dev_stack[--cur];
7282 			niter = iter_stack[cur];
7283 		}
7284 
7285 		now = next;
7286 		iter = niter;
7287 	}
7288 
7289 	return 0;
7290 }
7291 
7292 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7293 					     struct list_head **iter)
7294 {
7295 	struct netdev_adjacent *lower;
7296 
7297 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7298 	if (&lower->list == &dev->adj_list.lower)
7299 		return NULL;
7300 
7301 	*iter = &lower->list;
7302 
7303 	return lower->dev;
7304 }
7305 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7306 
7307 static u8 __netdev_upper_depth(struct net_device *dev)
7308 {
7309 	struct net_device *udev;
7310 	struct list_head *iter;
7311 	u8 max_depth = 0;
7312 	bool ignore;
7313 
7314 	for (iter = &dev->adj_list.upper,
7315 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7316 	     udev;
7317 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7318 		if (ignore)
7319 			continue;
7320 		if (max_depth < udev->upper_level)
7321 			max_depth = udev->upper_level;
7322 	}
7323 
7324 	return max_depth;
7325 }
7326 
7327 static u8 __netdev_lower_depth(struct net_device *dev)
7328 {
7329 	struct net_device *ldev;
7330 	struct list_head *iter;
7331 	u8 max_depth = 0;
7332 	bool ignore;
7333 
7334 	for (iter = &dev->adj_list.lower,
7335 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7336 	     ldev;
7337 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7338 		if (ignore)
7339 			continue;
7340 		if (max_depth < ldev->lower_level)
7341 			max_depth = ldev->lower_level;
7342 	}
7343 
7344 	return max_depth;
7345 }
7346 
7347 static int __netdev_update_upper_level(struct net_device *dev,
7348 				       struct netdev_nested_priv *__unused)
7349 {
7350 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7351 	return 0;
7352 }
7353 
7354 #ifdef CONFIG_LOCKDEP
7355 static LIST_HEAD(net_unlink_list);
7356 
7357 static void net_unlink_todo(struct net_device *dev)
7358 {
7359 	if (list_empty(&dev->unlink_list))
7360 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7361 }
7362 #endif
7363 
7364 static int __netdev_update_lower_level(struct net_device *dev,
7365 				       struct netdev_nested_priv *priv)
7366 {
7367 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7368 
7369 #ifdef CONFIG_LOCKDEP
7370 	if (!priv)
7371 		return 0;
7372 
7373 	if (priv->flags & NESTED_SYNC_IMM)
7374 		dev->nested_level = dev->lower_level - 1;
7375 	if (priv->flags & NESTED_SYNC_TODO)
7376 		net_unlink_todo(dev);
7377 #endif
7378 	return 0;
7379 }
7380 
7381 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7382 				  int (*fn)(struct net_device *dev,
7383 					    struct netdev_nested_priv *priv),
7384 				  struct netdev_nested_priv *priv)
7385 {
7386 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7387 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7388 	int ret, cur = 0;
7389 
7390 	now = dev;
7391 	iter = &dev->adj_list.lower;
7392 
7393 	while (1) {
7394 		if (now != dev) {
7395 			ret = fn(now, priv);
7396 			if (ret)
7397 				return ret;
7398 		}
7399 
7400 		next = NULL;
7401 		while (1) {
7402 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7403 			if (!ldev)
7404 				break;
7405 
7406 			next = ldev;
7407 			niter = &ldev->adj_list.lower;
7408 			dev_stack[cur] = now;
7409 			iter_stack[cur++] = iter;
7410 			break;
7411 		}
7412 
7413 		if (!next) {
7414 			if (!cur)
7415 				return 0;
7416 			next = dev_stack[--cur];
7417 			niter = iter_stack[cur];
7418 		}
7419 
7420 		now = next;
7421 		iter = niter;
7422 	}
7423 
7424 	return 0;
7425 }
7426 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7427 
7428 /**
7429  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7430  *				       lower neighbour list, RCU
7431  *				       variant
7432  * @dev: device
7433  *
7434  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7435  * list. The caller must hold RCU read lock.
7436  */
7437 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7438 {
7439 	struct netdev_adjacent *lower;
7440 
7441 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7442 			struct netdev_adjacent, list);
7443 	if (lower)
7444 		return lower->private;
7445 	return NULL;
7446 }
7447 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7448 
7449 /**
7450  * netdev_master_upper_dev_get_rcu - Get master upper device
7451  * @dev: device
7452  *
7453  * Find a master upper device and return pointer to it or NULL in case
7454  * it's not there. The caller must hold the RCU read lock.
7455  */
7456 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7457 {
7458 	struct netdev_adjacent *upper;
7459 
7460 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7461 				       struct netdev_adjacent, list);
7462 	if (upper && likely(upper->master))
7463 		return upper->dev;
7464 	return NULL;
7465 }
7466 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7467 
7468 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7469 			      struct net_device *adj_dev,
7470 			      struct list_head *dev_list)
7471 {
7472 	char linkname[IFNAMSIZ+7];
7473 
7474 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7475 		"upper_%s" : "lower_%s", adj_dev->name);
7476 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7477 				 linkname);
7478 }
7479 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7480 			       char *name,
7481 			       struct list_head *dev_list)
7482 {
7483 	char linkname[IFNAMSIZ+7];
7484 
7485 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7486 		"upper_%s" : "lower_%s", name);
7487 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7488 }
7489 
7490 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7491 						 struct net_device *adj_dev,
7492 						 struct list_head *dev_list)
7493 {
7494 	return (dev_list == &dev->adj_list.upper ||
7495 		dev_list == &dev->adj_list.lower) &&
7496 		net_eq(dev_net(dev), dev_net(adj_dev));
7497 }
7498 
7499 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7500 					struct net_device *adj_dev,
7501 					struct list_head *dev_list,
7502 					void *private, bool master)
7503 {
7504 	struct netdev_adjacent *adj;
7505 	int ret;
7506 
7507 	adj = __netdev_find_adj(adj_dev, dev_list);
7508 
7509 	if (adj) {
7510 		adj->ref_nr += 1;
7511 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7512 			 dev->name, adj_dev->name, adj->ref_nr);
7513 
7514 		return 0;
7515 	}
7516 
7517 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7518 	if (!adj)
7519 		return -ENOMEM;
7520 
7521 	adj->dev = adj_dev;
7522 	adj->master = master;
7523 	adj->ref_nr = 1;
7524 	adj->private = private;
7525 	adj->ignore = false;
7526 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7527 
7528 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7529 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7530 
7531 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7532 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7533 		if (ret)
7534 			goto free_adj;
7535 	}
7536 
7537 	/* Ensure that master link is always the first item in list. */
7538 	if (master) {
7539 		ret = sysfs_create_link(&(dev->dev.kobj),
7540 					&(adj_dev->dev.kobj), "master");
7541 		if (ret)
7542 			goto remove_symlinks;
7543 
7544 		list_add_rcu(&adj->list, dev_list);
7545 	} else {
7546 		list_add_tail_rcu(&adj->list, dev_list);
7547 	}
7548 
7549 	return 0;
7550 
7551 remove_symlinks:
7552 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7553 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7554 free_adj:
7555 	netdev_put(adj_dev, &adj->dev_tracker);
7556 	kfree(adj);
7557 
7558 	return ret;
7559 }
7560 
7561 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7562 					 struct net_device *adj_dev,
7563 					 u16 ref_nr,
7564 					 struct list_head *dev_list)
7565 {
7566 	struct netdev_adjacent *adj;
7567 
7568 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7569 		 dev->name, adj_dev->name, ref_nr);
7570 
7571 	adj = __netdev_find_adj(adj_dev, dev_list);
7572 
7573 	if (!adj) {
7574 		pr_err("Adjacency does not exist for device %s from %s\n",
7575 		       dev->name, adj_dev->name);
7576 		WARN_ON(1);
7577 		return;
7578 	}
7579 
7580 	if (adj->ref_nr > ref_nr) {
7581 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7582 			 dev->name, adj_dev->name, ref_nr,
7583 			 adj->ref_nr - ref_nr);
7584 		adj->ref_nr -= ref_nr;
7585 		return;
7586 	}
7587 
7588 	if (adj->master)
7589 		sysfs_remove_link(&(dev->dev.kobj), "master");
7590 
7591 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7592 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7593 
7594 	list_del_rcu(&adj->list);
7595 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7596 		 adj_dev->name, dev->name, adj_dev->name);
7597 	netdev_put(adj_dev, &adj->dev_tracker);
7598 	kfree_rcu(adj, rcu);
7599 }
7600 
7601 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7602 					    struct net_device *upper_dev,
7603 					    struct list_head *up_list,
7604 					    struct list_head *down_list,
7605 					    void *private, bool master)
7606 {
7607 	int ret;
7608 
7609 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7610 					   private, master);
7611 	if (ret)
7612 		return ret;
7613 
7614 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7615 					   private, false);
7616 	if (ret) {
7617 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7618 		return ret;
7619 	}
7620 
7621 	return 0;
7622 }
7623 
7624 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7625 					       struct net_device *upper_dev,
7626 					       u16 ref_nr,
7627 					       struct list_head *up_list,
7628 					       struct list_head *down_list)
7629 {
7630 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7631 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7632 }
7633 
7634 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7635 						struct net_device *upper_dev,
7636 						void *private, bool master)
7637 {
7638 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7639 						&dev->adj_list.upper,
7640 						&upper_dev->adj_list.lower,
7641 						private, master);
7642 }
7643 
7644 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7645 						   struct net_device *upper_dev)
7646 {
7647 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7648 					   &dev->adj_list.upper,
7649 					   &upper_dev->adj_list.lower);
7650 }
7651 
7652 static int __netdev_upper_dev_link(struct net_device *dev,
7653 				   struct net_device *upper_dev, bool master,
7654 				   void *upper_priv, void *upper_info,
7655 				   struct netdev_nested_priv *priv,
7656 				   struct netlink_ext_ack *extack)
7657 {
7658 	struct netdev_notifier_changeupper_info changeupper_info = {
7659 		.info = {
7660 			.dev = dev,
7661 			.extack = extack,
7662 		},
7663 		.upper_dev = upper_dev,
7664 		.master = master,
7665 		.linking = true,
7666 		.upper_info = upper_info,
7667 	};
7668 	struct net_device *master_dev;
7669 	int ret = 0;
7670 
7671 	ASSERT_RTNL();
7672 
7673 	if (dev == upper_dev)
7674 		return -EBUSY;
7675 
7676 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7677 	if (__netdev_has_upper_dev(upper_dev, dev))
7678 		return -EBUSY;
7679 
7680 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7681 		return -EMLINK;
7682 
7683 	if (!master) {
7684 		if (__netdev_has_upper_dev(dev, upper_dev))
7685 			return -EEXIST;
7686 	} else {
7687 		master_dev = __netdev_master_upper_dev_get(dev);
7688 		if (master_dev)
7689 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7690 	}
7691 
7692 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7693 					    &changeupper_info.info);
7694 	ret = notifier_to_errno(ret);
7695 	if (ret)
7696 		return ret;
7697 
7698 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7699 						   master);
7700 	if (ret)
7701 		return ret;
7702 
7703 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7704 					    &changeupper_info.info);
7705 	ret = notifier_to_errno(ret);
7706 	if (ret)
7707 		goto rollback;
7708 
7709 	__netdev_update_upper_level(dev, NULL);
7710 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7711 
7712 	__netdev_update_lower_level(upper_dev, priv);
7713 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7714 				    priv);
7715 
7716 	return 0;
7717 
7718 rollback:
7719 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7720 
7721 	return ret;
7722 }
7723 
7724 /**
7725  * netdev_upper_dev_link - Add a link to the upper device
7726  * @dev: device
7727  * @upper_dev: new upper device
7728  * @extack: netlink extended ack
7729  *
7730  * Adds a link to device which is upper to this one. The caller must hold
7731  * the RTNL lock. On a failure a negative errno code is returned.
7732  * On success the reference counts are adjusted and the function
7733  * returns zero.
7734  */
7735 int netdev_upper_dev_link(struct net_device *dev,
7736 			  struct net_device *upper_dev,
7737 			  struct netlink_ext_ack *extack)
7738 {
7739 	struct netdev_nested_priv priv = {
7740 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7741 		.data = NULL,
7742 	};
7743 
7744 	return __netdev_upper_dev_link(dev, upper_dev, false,
7745 				       NULL, NULL, &priv, extack);
7746 }
7747 EXPORT_SYMBOL(netdev_upper_dev_link);
7748 
7749 /**
7750  * netdev_master_upper_dev_link - Add a master link to the upper device
7751  * @dev: device
7752  * @upper_dev: new upper device
7753  * @upper_priv: upper device private
7754  * @upper_info: upper info to be passed down via notifier
7755  * @extack: netlink extended ack
7756  *
7757  * Adds a link to device which is upper to this one. In this case, only
7758  * one master upper device can be linked, although other non-master devices
7759  * might be linked as well. The caller must hold the RTNL lock.
7760  * On a failure a negative errno code is returned. On success the reference
7761  * counts are adjusted and the function returns zero.
7762  */
7763 int netdev_master_upper_dev_link(struct net_device *dev,
7764 				 struct net_device *upper_dev,
7765 				 void *upper_priv, void *upper_info,
7766 				 struct netlink_ext_ack *extack)
7767 {
7768 	struct netdev_nested_priv priv = {
7769 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7770 		.data = NULL,
7771 	};
7772 
7773 	return __netdev_upper_dev_link(dev, upper_dev, true,
7774 				       upper_priv, upper_info, &priv, extack);
7775 }
7776 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7777 
7778 static void __netdev_upper_dev_unlink(struct net_device *dev,
7779 				      struct net_device *upper_dev,
7780 				      struct netdev_nested_priv *priv)
7781 {
7782 	struct netdev_notifier_changeupper_info changeupper_info = {
7783 		.info = {
7784 			.dev = dev,
7785 		},
7786 		.upper_dev = upper_dev,
7787 		.linking = false,
7788 	};
7789 
7790 	ASSERT_RTNL();
7791 
7792 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7793 
7794 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7795 				      &changeupper_info.info);
7796 
7797 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7798 
7799 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7800 				      &changeupper_info.info);
7801 
7802 	__netdev_update_upper_level(dev, NULL);
7803 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7804 
7805 	__netdev_update_lower_level(upper_dev, priv);
7806 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7807 				    priv);
7808 }
7809 
7810 /**
7811  * netdev_upper_dev_unlink - Removes a link to upper device
7812  * @dev: device
7813  * @upper_dev: new upper device
7814  *
7815  * Removes a link to device which is upper to this one. The caller must hold
7816  * the RTNL lock.
7817  */
7818 void netdev_upper_dev_unlink(struct net_device *dev,
7819 			     struct net_device *upper_dev)
7820 {
7821 	struct netdev_nested_priv priv = {
7822 		.flags = NESTED_SYNC_TODO,
7823 		.data = NULL,
7824 	};
7825 
7826 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7827 }
7828 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7829 
7830 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7831 				      struct net_device *lower_dev,
7832 				      bool val)
7833 {
7834 	struct netdev_adjacent *adj;
7835 
7836 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7837 	if (adj)
7838 		adj->ignore = val;
7839 
7840 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7841 	if (adj)
7842 		adj->ignore = val;
7843 }
7844 
7845 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7846 					struct net_device *lower_dev)
7847 {
7848 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7849 }
7850 
7851 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7852 				       struct net_device *lower_dev)
7853 {
7854 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7855 }
7856 
7857 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7858 				   struct net_device *new_dev,
7859 				   struct net_device *dev,
7860 				   struct netlink_ext_ack *extack)
7861 {
7862 	struct netdev_nested_priv priv = {
7863 		.flags = 0,
7864 		.data = NULL,
7865 	};
7866 	int err;
7867 
7868 	if (!new_dev)
7869 		return 0;
7870 
7871 	if (old_dev && new_dev != old_dev)
7872 		netdev_adjacent_dev_disable(dev, old_dev);
7873 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7874 				      extack);
7875 	if (err) {
7876 		if (old_dev && new_dev != old_dev)
7877 			netdev_adjacent_dev_enable(dev, old_dev);
7878 		return err;
7879 	}
7880 
7881 	return 0;
7882 }
7883 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7884 
7885 void netdev_adjacent_change_commit(struct net_device *old_dev,
7886 				   struct net_device *new_dev,
7887 				   struct net_device *dev)
7888 {
7889 	struct netdev_nested_priv priv = {
7890 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7891 		.data = NULL,
7892 	};
7893 
7894 	if (!new_dev || !old_dev)
7895 		return;
7896 
7897 	if (new_dev == old_dev)
7898 		return;
7899 
7900 	netdev_adjacent_dev_enable(dev, old_dev);
7901 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
7902 }
7903 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7904 
7905 void netdev_adjacent_change_abort(struct net_device *old_dev,
7906 				  struct net_device *new_dev,
7907 				  struct net_device *dev)
7908 {
7909 	struct netdev_nested_priv priv = {
7910 		.flags = 0,
7911 		.data = NULL,
7912 	};
7913 
7914 	if (!new_dev)
7915 		return;
7916 
7917 	if (old_dev && new_dev != old_dev)
7918 		netdev_adjacent_dev_enable(dev, old_dev);
7919 
7920 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
7921 }
7922 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7923 
7924 /**
7925  * netdev_bonding_info_change - Dispatch event about slave change
7926  * @dev: device
7927  * @bonding_info: info to dispatch
7928  *
7929  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7930  * The caller must hold the RTNL lock.
7931  */
7932 void netdev_bonding_info_change(struct net_device *dev,
7933 				struct netdev_bonding_info *bonding_info)
7934 {
7935 	struct netdev_notifier_bonding_info info = {
7936 		.info.dev = dev,
7937 	};
7938 
7939 	memcpy(&info.bonding_info, bonding_info,
7940 	       sizeof(struct netdev_bonding_info));
7941 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7942 				      &info.info);
7943 }
7944 EXPORT_SYMBOL(netdev_bonding_info_change);
7945 
7946 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7947 					   struct netlink_ext_ack *extack)
7948 {
7949 	struct netdev_notifier_offload_xstats_info info = {
7950 		.info.dev = dev,
7951 		.info.extack = extack,
7952 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7953 	};
7954 	int err;
7955 	int rc;
7956 
7957 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7958 					 GFP_KERNEL);
7959 	if (!dev->offload_xstats_l3)
7960 		return -ENOMEM;
7961 
7962 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7963 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
7964 						  &info.info);
7965 	err = notifier_to_errno(rc);
7966 	if (err)
7967 		goto free_stats;
7968 
7969 	return 0;
7970 
7971 free_stats:
7972 	kfree(dev->offload_xstats_l3);
7973 	dev->offload_xstats_l3 = NULL;
7974 	return err;
7975 }
7976 
7977 int netdev_offload_xstats_enable(struct net_device *dev,
7978 				 enum netdev_offload_xstats_type type,
7979 				 struct netlink_ext_ack *extack)
7980 {
7981 	ASSERT_RTNL();
7982 
7983 	if (netdev_offload_xstats_enabled(dev, type))
7984 		return -EALREADY;
7985 
7986 	switch (type) {
7987 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7988 		return netdev_offload_xstats_enable_l3(dev, extack);
7989 	}
7990 
7991 	WARN_ON(1);
7992 	return -EINVAL;
7993 }
7994 EXPORT_SYMBOL(netdev_offload_xstats_enable);
7995 
7996 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7997 {
7998 	struct netdev_notifier_offload_xstats_info info = {
7999 		.info.dev = dev,
8000 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8001 	};
8002 
8003 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8004 				      &info.info);
8005 	kfree(dev->offload_xstats_l3);
8006 	dev->offload_xstats_l3 = NULL;
8007 }
8008 
8009 int netdev_offload_xstats_disable(struct net_device *dev,
8010 				  enum netdev_offload_xstats_type type)
8011 {
8012 	ASSERT_RTNL();
8013 
8014 	if (!netdev_offload_xstats_enabled(dev, type))
8015 		return -EALREADY;
8016 
8017 	switch (type) {
8018 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8019 		netdev_offload_xstats_disable_l3(dev);
8020 		return 0;
8021 	}
8022 
8023 	WARN_ON(1);
8024 	return -EINVAL;
8025 }
8026 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8027 
8028 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8029 {
8030 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8031 }
8032 
8033 static struct rtnl_hw_stats64 *
8034 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8035 			      enum netdev_offload_xstats_type type)
8036 {
8037 	switch (type) {
8038 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8039 		return dev->offload_xstats_l3;
8040 	}
8041 
8042 	WARN_ON(1);
8043 	return NULL;
8044 }
8045 
8046 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8047 				   enum netdev_offload_xstats_type type)
8048 {
8049 	ASSERT_RTNL();
8050 
8051 	return netdev_offload_xstats_get_ptr(dev, type);
8052 }
8053 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8054 
8055 struct netdev_notifier_offload_xstats_ru {
8056 	bool used;
8057 };
8058 
8059 struct netdev_notifier_offload_xstats_rd {
8060 	struct rtnl_hw_stats64 stats;
8061 	bool used;
8062 };
8063 
8064 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8065 				  const struct rtnl_hw_stats64 *src)
8066 {
8067 	dest->rx_packets	  += src->rx_packets;
8068 	dest->tx_packets	  += src->tx_packets;
8069 	dest->rx_bytes		  += src->rx_bytes;
8070 	dest->tx_bytes		  += src->tx_bytes;
8071 	dest->rx_errors		  += src->rx_errors;
8072 	dest->tx_errors		  += src->tx_errors;
8073 	dest->rx_dropped	  += src->rx_dropped;
8074 	dest->tx_dropped	  += src->tx_dropped;
8075 	dest->multicast		  += src->multicast;
8076 }
8077 
8078 static int netdev_offload_xstats_get_used(struct net_device *dev,
8079 					  enum netdev_offload_xstats_type type,
8080 					  bool *p_used,
8081 					  struct netlink_ext_ack *extack)
8082 {
8083 	struct netdev_notifier_offload_xstats_ru report_used = {};
8084 	struct netdev_notifier_offload_xstats_info info = {
8085 		.info.dev = dev,
8086 		.info.extack = extack,
8087 		.type = type,
8088 		.report_used = &report_used,
8089 	};
8090 	int rc;
8091 
8092 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8093 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8094 					   &info.info);
8095 	*p_used = report_used.used;
8096 	return notifier_to_errno(rc);
8097 }
8098 
8099 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8100 					   enum netdev_offload_xstats_type type,
8101 					   struct rtnl_hw_stats64 *p_stats,
8102 					   bool *p_used,
8103 					   struct netlink_ext_ack *extack)
8104 {
8105 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8106 	struct netdev_notifier_offload_xstats_info info = {
8107 		.info.dev = dev,
8108 		.info.extack = extack,
8109 		.type = type,
8110 		.report_delta = &report_delta,
8111 	};
8112 	struct rtnl_hw_stats64 *stats;
8113 	int rc;
8114 
8115 	stats = netdev_offload_xstats_get_ptr(dev, type);
8116 	if (WARN_ON(!stats))
8117 		return -EINVAL;
8118 
8119 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8120 					   &info.info);
8121 
8122 	/* Cache whatever we got, even if there was an error, otherwise the
8123 	 * successful stats retrievals would get lost.
8124 	 */
8125 	netdev_hw_stats64_add(stats, &report_delta.stats);
8126 
8127 	if (p_stats)
8128 		*p_stats = *stats;
8129 	*p_used = report_delta.used;
8130 
8131 	return notifier_to_errno(rc);
8132 }
8133 
8134 int netdev_offload_xstats_get(struct net_device *dev,
8135 			      enum netdev_offload_xstats_type type,
8136 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8137 			      struct netlink_ext_ack *extack)
8138 {
8139 	ASSERT_RTNL();
8140 
8141 	if (p_stats)
8142 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8143 						       p_used, extack);
8144 	else
8145 		return netdev_offload_xstats_get_used(dev, type, p_used,
8146 						      extack);
8147 }
8148 EXPORT_SYMBOL(netdev_offload_xstats_get);
8149 
8150 void
8151 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8152 				   const struct rtnl_hw_stats64 *stats)
8153 {
8154 	report_delta->used = true;
8155 	netdev_hw_stats64_add(&report_delta->stats, stats);
8156 }
8157 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8158 
8159 void
8160 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8161 {
8162 	report_used->used = true;
8163 }
8164 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8165 
8166 void netdev_offload_xstats_push_delta(struct net_device *dev,
8167 				      enum netdev_offload_xstats_type type,
8168 				      const struct rtnl_hw_stats64 *p_stats)
8169 {
8170 	struct rtnl_hw_stats64 *stats;
8171 
8172 	ASSERT_RTNL();
8173 
8174 	stats = netdev_offload_xstats_get_ptr(dev, type);
8175 	if (WARN_ON(!stats))
8176 		return;
8177 
8178 	netdev_hw_stats64_add(stats, p_stats);
8179 }
8180 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8181 
8182 /**
8183  * netdev_get_xmit_slave - Get the xmit slave of master device
8184  * @dev: device
8185  * @skb: The packet
8186  * @all_slaves: assume all the slaves are active
8187  *
8188  * The reference counters are not incremented so the caller must be
8189  * careful with locks. The caller must hold RCU lock.
8190  * %NULL is returned if no slave is found.
8191  */
8192 
8193 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8194 					 struct sk_buff *skb,
8195 					 bool all_slaves)
8196 {
8197 	const struct net_device_ops *ops = dev->netdev_ops;
8198 
8199 	if (!ops->ndo_get_xmit_slave)
8200 		return NULL;
8201 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8202 }
8203 EXPORT_SYMBOL(netdev_get_xmit_slave);
8204 
8205 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8206 						  struct sock *sk)
8207 {
8208 	const struct net_device_ops *ops = dev->netdev_ops;
8209 
8210 	if (!ops->ndo_sk_get_lower_dev)
8211 		return NULL;
8212 	return ops->ndo_sk_get_lower_dev(dev, sk);
8213 }
8214 
8215 /**
8216  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8217  * @dev: device
8218  * @sk: the socket
8219  *
8220  * %NULL is returned if no lower device is found.
8221  */
8222 
8223 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8224 					    struct sock *sk)
8225 {
8226 	struct net_device *lower;
8227 
8228 	lower = netdev_sk_get_lower_dev(dev, sk);
8229 	while (lower) {
8230 		dev = lower;
8231 		lower = netdev_sk_get_lower_dev(dev, sk);
8232 	}
8233 
8234 	return dev;
8235 }
8236 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8237 
8238 static void netdev_adjacent_add_links(struct net_device *dev)
8239 {
8240 	struct netdev_adjacent *iter;
8241 
8242 	struct net *net = dev_net(dev);
8243 
8244 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8245 		if (!net_eq(net, dev_net(iter->dev)))
8246 			continue;
8247 		netdev_adjacent_sysfs_add(iter->dev, dev,
8248 					  &iter->dev->adj_list.lower);
8249 		netdev_adjacent_sysfs_add(dev, iter->dev,
8250 					  &dev->adj_list.upper);
8251 	}
8252 
8253 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8254 		if (!net_eq(net, dev_net(iter->dev)))
8255 			continue;
8256 		netdev_adjacent_sysfs_add(iter->dev, dev,
8257 					  &iter->dev->adj_list.upper);
8258 		netdev_adjacent_sysfs_add(dev, iter->dev,
8259 					  &dev->adj_list.lower);
8260 	}
8261 }
8262 
8263 static void netdev_adjacent_del_links(struct net_device *dev)
8264 {
8265 	struct netdev_adjacent *iter;
8266 
8267 	struct net *net = dev_net(dev);
8268 
8269 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8270 		if (!net_eq(net, dev_net(iter->dev)))
8271 			continue;
8272 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8273 					  &iter->dev->adj_list.lower);
8274 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8275 					  &dev->adj_list.upper);
8276 	}
8277 
8278 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8279 		if (!net_eq(net, dev_net(iter->dev)))
8280 			continue;
8281 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8282 					  &iter->dev->adj_list.upper);
8283 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8284 					  &dev->adj_list.lower);
8285 	}
8286 }
8287 
8288 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8289 {
8290 	struct netdev_adjacent *iter;
8291 
8292 	struct net *net = dev_net(dev);
8293 
8294 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8295 		if (!net_eq(net, dev_net(iter->dev)))
8296 			continue;
8297 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8298 					  &iter->dev->adj_list.lower);
8299 		netdev_adjacent_sysfs_add(iter->dev, dev,
8300 					  &iter->dev->adj_list.lower);
8301 	}
8302 
8303 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8304 		if (!net_eq(net, dev_net(iter->dev)))
8305 			continue;
8306 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8307 					  &iter->dev->adj_list.upper);
8308 		netdev_adjacent_sysfs_add(iter->dev, dev,
8309 					  &iter->dev->adj_list.upper);
8310 	}
8311 }
8312 
8313 void *netdev_lower_dev_get_private(struct net_device *dev,
8314 				   struct net_device *lower_dev)
8315 {
8316 	struct netdev_adjacent *lower;
8317 
8318 	if (!lower_dev)
8319 		return NULL;
8320 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8321 	if (!lower)
8322 		return NULL;
8323 
8324 	return lower->private;
8325 }
8326 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8327 
8328 
8329 /**
8330  * netdev_lower_state_changed - Dispatch event about lower device state change
8331  * @lower_dev: device
8332  * @lower_state_info: state to dispatch
8333  *
8334  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8335  * The caller must hold the RTNL lock.
8336  */
8337 void netdev_lower_state_changed(struct net_device *lower_dev,
8338 				void *lower_state_info)
8339 {
8340 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8341 		.info.dev = lower_dev,
8342 	};
8343 
8344 	ASSERT_RTNL();
8345 	changelowerstate_info.lower_state_info = lower_state_info;
8346 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8347 				      &changelowerstate_info.info);
8348 }
8349 EXPORT_SYMBOL(netdev_lower_state_changed);
8350 
8351 static void dev_change_rx_flags(struct net_device *dev, int flags)
8352 {
8353 	const struct net_device_ops *ops = dev->netdev_ops;
8354 
8355 	if (ops->ndo_change_rx_flags)
8356 		ops->ndo_change_rx_flags(dev, flags);
8357 }
8358 
8359 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8360 {
8361 	unsigned int old_flags = dev->flags;
8362 	kuid_t uid;
8363 	kgid_t gid;
8364 
8365 	ASSERT_RTNL();
8366 
8367 	dev->flags |= IFF_PROMISC;
8368 	dev->promiscuity += inc;
8369 	if (dev->promiscuity == 0) {
8370 		/*
8371 		 * Avoid overflow.
8372 		 * If inc causes overflow, untouch promisc and return error.
8373 		 */
8374 		if (inc < 0)
8375 			dev->flags &= ~IFF_PROMISC;
8376 		else {
8377 			dev->promiscuity -= inc;
8378 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8379 			return -EOVERFLOW;
8380 		}
8381 	}
8382 	if (dev->flags != old_flags) {
8383 		netdev_info(dev, "%s promiscuous mode\n",
8384 			    dev->flags & IFF_PROMISC ? "entered" : "left");
8385 		if (audit_enabled) {
8386 			current_uid_gid(&uid, &gid);
8387 			audit_log(audit_context(), GFP_ATOMIC,
8388 				  AUDIT_ANOM_PROMISCUOUS,
8389 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8390 				  dev->name, (dev->flags & IFF_PROMISC),
8391 				  (old_flags & IFF_PROMISC),
8392 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8393 				  from_kuid(&init_user_ns, uid),
8394 				  from_kgid(&init_user_ns, gid),
8395 				  audit_get_sessionid(current));
8396 		}
8397 
8398 		dev_change_rx_flags(dev, IFF_PROMISC);
8399 	}
8400 	if (notify)
8401 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8402 	return 0;
8403 }
8404 
8405 /**
8406  *	dev_set_promiscuity	- update promiscuity count on a device
8407  *	@dev: device
8408  *	@inc: modifier
8409  *
8410  *	Add or remove promiscuity from a device. While the count in the device
8411  *	remains above zero the interface remains promiscuous. Once it hits zero
8412  *	the device reverts back to normal filtering operation. A negative inc
8413  *	value is used to drop promiscuity on the device.
8414  *	Return 0 if successful or a negative errno code on error.
8415  */
8416 int dev_set_promiscuity(struct net_device *dev, int inc)
8417 {
8418 	unsigned int old_flags = dev->flags;
8419 	int err;
8420 
8421 	err = __dev_set_promiscuity(dev, inc, true);
8422 	if (err < 0)
8423 		return err;
8424 	if (dev->flags != old_flags)
8425 		dev_set_rx_mode(dev);
8426 	return err;
8427 }
8428 EXPORT_SYMBOL(dev_set_promiscuity);
8429 
8430 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8431 {
8432 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8433 
8434 	ASSERT_RTNL();
8435 
8436 	dev->flags |= IFF_ALLMULTI;
8437 	dev->allmulti += inc;
8438 	if (dev->allmulti == 0) {
8439 		/*
8440 		 * Avoid overflow.
8441 		 * If inc causes overflow, untouch allmulti and return error.
8442 		 */
8443 		if (inc < 0)
8444 			dev->flags &= ~IFF_ALLMULTI;
8445 		else {
8446 			dev->allmulti -= inc;
8447 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8448 			return -EOVERFLOW;
8449 		}
8450 	}
8451 	if (dev->flags ^ old_flags) {
8452 		netdev_info(dev, "%s allmulticast mode\n",
8453 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
8454 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8455 		dev_set_rx_mode(dev);
8456 		if (notify)
8457 			__dev_notify_flags(dev, old_flags,
8458 					   dev->gflags ^ old_gflags, 0, NULL);
8459 	}
8460 	return 0;
8461 }
8462 
8463 /**
8464  *	dev_set_allmulti	- update allmulti count on a device
8465  *	@dev: device
8466  *	@inc: modifier
8467  *
8468  *	Add or remove reception of all multicast frames to a device. While the
8469  *	count in the device remains above zero the interface remains listening
8470  *	to all interfaces. Once it hits zero the device reverts back to normal
8471  *	filtering operation. A negative @inc value is used to drop the counter
8472  *	when releasing a resource needing all multicasts.
8473  *	Return 0 if successful or a negative errno code on error.
8474  */
8475 
8476 int dev_set_allmulti(struct net_device *dev, int inc)
8477 {
8478 	return __dev_set_allmulti(dev, inc, true);
8479 }
8480 EXPORT_SYMBOL(dev_set_allmulti);
8481 
8482 /*
8483  *	Upload unicast and multicast address lists to device and
8484  *	configure RX filtering. When the device doesn't support unicast
8485  *	filtering it is put in promiscuous mode while unicast addresses
8486  *	are present.
8487  */
8488 void __dev_set_rx_mode(struct net_device *dev)
8489 {
8490 	const struct net_device_ops *ops = dev->netdev_ops;
8491 
8492 	/* dev_open will call this function so the list will stay sane. */
8493 	if (!(dev->flags&IFF_UP))
8494 		return;
8495 
8496 	if (!netif_device_present(dev))
8497 		return;
8498 
8499 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8500 		/* Unicast addresses changes may only happen under the rtnl,
8501 		 * therefore calling __dev_set_promiscuity here is safe.
8502 		 */
8503 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8504 			__dev_set_promiscuity(dev, 1, false);
8505 			dev->uc_promisc = true;
8506 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8507 			__dev_set_promiscuity(dev, -1, false);
8508 			dev->uc_promisc = false;
8509 		}
8510 	}
8511 
8512 	if (ops->ndo_set_rx_mode)
8513 		ops->ndo_set_rx_mode(dev);
8514 }
8515 
8516 void dev_set_rx_mode(struct net_device *dev)
8517 {
8518 	netif_addr_lock_bh(dev);
8519 	__dev_set_rx_mode(dev);
8520 	netif_addr_unlock_bh(dev);
8521 }
8522 
8523 /**
8524  *	dev_get_flags - get flags reported to userspace
8525  *	@dev: device
8526  *
8527  *	Get the combination of flag bits exported through APIs to userspace.
8528  */
8529 unsigned int dev_get_flags(const struct net_device *dev)
8530 {
8531 	unsigned int flags;
8532 
8533 	flags = (dev->flags & ~(IFF_PROMISC |
8534 				IFF_ALLMULTI |
8535 				IFF_RUNNING |
8536 				IFF_LOWER_UP |
8537 				IFF_DORMANT)) |
8538 		(dev->gflags & (IFF_PROMISC |
8539 				IFF_ALLMULTI));
8540 
8541 	if (netif_running(dev)) {
8542 		if (netif_oper_up(dev))
8543 			flags |= IFF_RUNNING;
8544 		if (netif_carrier_ok(dev))
8545 			flags |= IFF_LOWER_UP;
8546 		if (netif_dormant(dev))
8547 			flags |= IFF_DORMANT;
8548 	}
8549 
8550 	return flags;
8551 }
8552 EXPORT_SYMBOL(dev_get_flags);
8553 
8554 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8555 		       struct netlink_ext_ack *extack)
8556 {
8557 	unsigned int old_flags = dev->flags;
8558 	int ret;
8559 
8560 	ASSERT_RTNL();
8561 
8562 	/*
8563 	 *	Set the flags on our device.
8564 	 */
8565 
8566 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8567 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8568 			       IFF_AUTOMEDIA)) |
8569 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8570 				    IFF_ALLMULTI));
8571 
8572 	/*
8573 	 *	Load in the correct multicast list now the flags have changed.
8574 	 */
8575 
8576 	if ((old_flags ^ flags) & IFF_MULTICAST)
8577 		dev_change_rx_flags(dev, IFF_MULTICAST);
8578 
8579 	dev_set_rx_mode(dev);
8580 
8581 	/*
8582 	 *	Have we downed the interface. We handle IFF_UP ourselves
8583 	 *	according to user attempts to set it, rather than blindly
8584 	 *	setting it.
8585 	 */
8586 
8587 	ret = 0;
8588 	if ((old_flags ^ flags) & IFF_UP) {
8589 		if (old_flags & IFF_UP)
8590 			__dev_close(dev);
8591 		else
8592 			ret = __dev_open(dev, extack);
8593 	}
8594 
8595 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8596 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8597 		unsigned int old_flags = dev->flags;
8598 
8599 		dev->gflags ^= IFF_PROMISC;
8600 
8601 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8602 			if (dev->flags != old_flags)
8603 				dev_set_rx_mode(dev);
8604 	}
8605 
8606 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8607 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8608 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8609 	 */
8610 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8611 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8612 
8613 		dev->gflags ^= IFF_ALLMULTI;
8614 		__dev_set_allmulti(dev, inc, false);
8615 	}
8616 
8617 	return ret;
8618 }
8619 
8620 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8621 			unsigned int gchanges, u32 portid,
8622 			const struct nlmsghdr *nlh)
8623 {
8624 	unsigned int changes = dev->flags ^ old_flags;
8625 
8626 	if (gchanges)
8627 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8628 
8629 	if (changes & IFF_UP) {
8630 		if (dev->flags & IFF_UP)
8631 			call_netdevice_notifiers(NETDEV_UP, dev);
8632 		else
8633 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8634 	}
8635 
8636 	if (dev->flags & IFF_UP &&
8637 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8638 		struct netdev_notifier_change_info change_info = {
8639 			.info = {
8640 				.dev = dev,
8641 			},
8642 			.flags_changed = changes,
8643 		};
8644 
8645 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8646 	}
8647 }
8648 
8649 /**
8650  *	dev_change_flags - change device settings
8651  *	@dev: device
8652  *	@flags: device state flags
8653  *	@extack: netlink extended ack
8654  *
8655  *	Change settings on device based state flags. The flags are
8656  *	in the userspace exported format.
8657  */
8658 int dev_change_flags(struct net_device *dev, unsigned int flags,
8659 		     struct netlink_ext_ack *extack)
8660 {
8661 	int ret;
8662 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8663 
8664 	ret = __dev_change_flags(dev, flags, extack);
8665 	if (ret < 0)
8666 		return ret;
8667 
8668 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8669 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
8670 	return ret;
8671 }
8672 EXPORT_SYMBOL(dev_change_flags);
8673 
8674 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8675 {
8676 	const struct net_device_ops *ops = dev->netdev_ops;
8677 
8678 	if (ops->ndo_change_mtu)
8679 		return ops->ndo_change_mtu(dev, new_mtu);
8680 
8681 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8682 	WRITE_ONCE(dev->mtu, new_mtu);
8683 	return 0;
8684 }
8685 EXPORT_SYMBOL(__dev_set_mtu);
8686 
8687 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8688 		     struct netlink_ext_ack *extack)
8689 {
8690 	/* MTU must be positive, and in range */
8691 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8692 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8693 		return -EINVAL;
8694 	}
8695 
8696 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8697 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8698 		return -EINVAL;
8699 	}
8700 	return 0;
8701 }
8702 
8703 /**
8704  *	dev_set_mtu_ext - Change maximum transfer unit
8705  *	@dev: device
8706  *	@new_mtu: new transfer unit
8707  *	@extack: netlink extended ack
8708  *
8709  *	Change the maximum transfer size of the network device.
8710  */
8711 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8712 		    struct netlink_ext_ack *extack)
8713 {
8714 	int err, orig_mtu;
8715 
8716 	if (new_mtu == dev->mtu)
8717 		return 0;
8718 
8719 	err = dev_validate_mtu(dev, new_mtu, extack);
8720 	if (err)
8721 		return err;
8722 
8723 	if (!netif_device_present(dev))
8724 		return -ENODEV;
8725 
8726 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8727 	err = notifier_to_errno(err);
8728 	if (err)
8729 		return err;
8730 
8731 	orig_mtu = dev->mtu;
8732 	err = __dev_set_mtu(dev, new_mtu);
8733 
8734 	if (!err) {
8735 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8736 						   orig_mtu);
8737 		err = notifier_to_errno(err);
8738 		if (err) {
8739 			/* setting mtu back and notifying everyone again,
8740 			 * so that they have a chance to revert changes.
8741 			 */
8742 			__dev_set_mtu(dev, orig_mtu);
8743 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8744 						     new_mtu);
8745 		}
8746 	}
8747 	return err;
8748 }
8749 
8750 int dev_set_mtu(struct net_device *dev, int new_mtu)
8751 {
8752 	struct netlink_ext_ack extack;
8753 	int err;
8754 
8755 	memset(&extack, 0, sizeof(extack));
8756 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8757 	if (err && extack._msg)
8758 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8759 	return err;
8760 }
8761 EXPORT_SYMBOL(dev_set_mtu);
8762 
8763 /**
8764  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8765  *	@dev: device
8766  *	@new_len: new tx queue length
8767  */
8768 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8769 {
8770 	unsigned int orig_len = dev->tx_queue_len;
8771 	int res;
8772 
8773 	if (new_len != (unsigned int)new_len)
8774 		return -ERANGE;
8775 
8776 	if (new_len != orig_len) {
8777 		dev->tx_queue_len = new_len;
8778 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8779 		res = notifier_to_errno(res);
8780 		if (res)
8781 			goto err_rollback;
8782 		res = dev_qdisc_change_tx_queue_len(dev);
8783 		if (res)
8784 			goto err_rollback;
8785 	}
8786 
8787 	return 0;
8788 
8789 err_rollback:
8790 	netdev_err(dev, "refused to change device tx_queue_len\n");
8791 	dev->tx_queue_len = orig_len;
8792 	return res;
8793 }
8794 
8795 /**
8796  *	dev_set_group - Change group this device belongs to
8797  *	@dev: device
8798  *	@new_group: group this device should belong to
8799  */
8800 void dev_set_group(struct net_device *dev, int new_group)
8801 {
8802 	dev->group = new_group;
8803 }
8804 
8805 /**
8806  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8807  *	@dev: device
8808  *	@addr: new address
8809  *	@extack: netlink extended ack
8810  */
8811 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8812 			      struct netlink_ext_ack *extack)
8813 {
8814 	struct netdev_notifier_pre_changeaddr_info info = {
8815 		.info.dev = dev,
8816 		.info.extack = extack,
8817 		.dev_addr = addr,
8818 	};
8819 	int rc;
8820 
8821 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8822 	return notifier_to_errno(rc);
8823 }
8824 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8825 
8826 /**
8827  *	dev_set_mac_address - Change Media Access Control Address
8828  *	@dev: device
8829  *	@sa: new address
8830  *	@extack: netlink extended ack
8831  *
8832  *	Change the hardware (MAC) address of the device
8833  */
8834 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8835 			struct netlink_ext_ack *extack)
8836 {
8837 	const struct net_device_ops *ops = dev->netdev_ops;
8838 	int err;
8839 
8840 	if (!ops->ndo_set_mac_address)
8841 		return -EOPNOTSUPP;
8842 	if (sa->sa_family != dev->type)
8843 		return -EINVAL;
8844 	if (!netif_device_present(dev))
8845 		return -ENODEV;
8846 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8847 	if (err)
8848 		return err;
8849 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8850 		err = ops->ndo_set_mac_address(dev, sa);
8851 		if (err)
8852 			return err;
8853 	}
8854 	dev->addr_assign_type = NET_ADDR_SET;
8855 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8856 	add_device_randomness(dev->dev_addr, dev->addr_len);
8857 	return 0;
8858 }
8859 EXPORT_SYMBOL(dev_set_mac_address);
8860 
8861 static DECLARE_RWSEM(dev_addr_sem);
8862 
8863 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8864 			     struct netlink_ext_ack *extack)
8865 {
8866 	int ret;
8867 
8868 	down_write(&dev_addr_sem);
8869 	ret = dev_set_mac_address(dev, sa, extack);
8870 	up_write(&dev_addr_sem);
8871 	return ret;
8872 }
8873 EXPORT_SYMBOL(dev_set_mac_address_user);
8874 
8875 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8876 {
8877 	size_t size = sizeof(sa->sa_data_min);
8878 	struct net_device *dev;
8879 	int ret = 0;
8880 
8881 	down_read(&dev_addr_sem);
8882 	rcu_read_lock();
8883 
8884 	dev = dev_get_by_name_rcu(net, dev_name);
8885 	if (!dev) {
8886 		ret = -ENODEV;
8887 		goto unlock;
8888 	}
8889 	if (!dev->addr_len)
8890 		memset(sa->sa_data, 0, size);
8891 	else
8892 		memcpy(sa->sa_data, dev->dev_addr,
8893 		       min_t(size_t, size, dev->addr_len));
8894 	sa->sa_family = dev->type;
8895 
8896 unlock:
8897 	rcu_read_unlock();
8898 	up_read(&dev_addr_sem);
8899 	return ret;
8900 }
8901 EXPORT_SYMBOL(dev_get_mac_address);
8902 
8903 /**
8904  *	dev_change_carrier - Change device carrier
8905  *	@dev: device
8906  *	@new_carrier: new value
8907  *
8908  *	Change device carrier
8909  */
8910 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8911 {
8912 	const struct net_device_ops *ops = dev->netdev_ops;
8913 
8914 	if (!ops->ndo_change_carrier)
8915 		return -EOPNOTSUPP;
8916 	if (!netif_device_present(dev))
8917 		return -ENODEV;
8918 	return ops->ndo_change_carrier(dev, new_carrier);
8919 }
8920 
8921 /**
8922  *	dev_get_phys_port_id - Get device physical port ID
8923  *	@dev: device
8924  *	@ppid: port ID
8925  *
8926  *	Get device physical port ID
8927  */
8928 int dev_get_phys_port_id(struct net_device *dev,
8929 			 struct netdev_phys_item_id *ppid)
8930 {
8931 	const struct net_device_ops *ops = dev->netdev_ops;
8932 
8933 	if (!ops->ndo_get_phys_port_id)
8934 		return -EOPNOTSUPP;
8935 	return ops->ndo_get_phys_port_id(dev, ppid);
8936 }
8937 
8938 /**
8939  *	dev_get_phys_port_name - Get device physical port name
8940  *	@dev: device
8941  *	@name: port name
8942  *	@len: limit of bytes to copy to name
8943  *
8944  *	Get device physical port name
8945  */
8946 int dev_get_phys_port_name(struct net_device *dev,
8947 			   char *name, size_t len)
8948 {
8949 	const struct net_device_ops *ops = dev->netdev_ops;
8950 	int err;
8951 
8952 	if (ops->ndo_get_phys_port_name) {
8953 		err = ops->ndo_get_phys_port_name(dev, name, len);
8954 		if (err != -EOPNOTSUPP)
8955 			return err;
8956 	}
8957 	return devlink_compat_phys_port_name_get(dev, name, len);
8958 }
8959 
8960 /**
8961  *	dev_get_port_parent_id - Get the device's port parent identifier
8962  *	@dev: network device
8963  *	@ppid: pointer to a storage for the port's parent identifier
8964  *	@recurse: allow/disallow recursion to lower devices
8965  *
8966  *	Get the devices's port parent identifier
8967  */
8968 int dev_get_port_parent_id(struct net_device *dev,
8969 			   struct netdev_phys_item_id *ppid,
8970 			   bool recurse)
8971 {
8972 	const struct net_device_ops *ops = dev->netdev_ops;
8973 	struct netdev_phys_item_id first = { };
8974 	struct net_device *lower_dev;
8975 	struct list_head *iter;
8976 	int err;
8977 
8978 	if (ops->ndo_get_port_parent_id) {
8979 		err = ops->ndo_get_port_parent_id(dev, ppid);
8980 		if (err != -EOPNOTSUPP)
8981 			return err;
8982 	}
8983 
8984 	err = devlink_compat_switch_id_get(dev, ppid);
8985 	if (!recurse || err != -EOPNOTSUPP)
8986 		return err;
8987 
8988 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8989 		err = dev_get_port_parent_id(lower_dev, ppid, true);
8990 		if (err)
8991 			break;
8992 		if (!first.id_len)
8993 			first = *ppid;
8994 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8995 			return -EOPNOTSUPP;
8996 	}
8997 
8998 	return err;
8999 }
9000 EXPORT_SYMBOL(dev_get_port_parent_id);
9001 
9002 /**
9003  *	netdev_port_same_parent_id - Indicate if two network devices have
9004  *	the same port parent identifier
9005  *	@a: first network device
9006  *	@b: second network device
9007  */
9008 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9009 {
9010 	struct netdev_phys_item_id a_id = { };
9011 	struct netdev_phys_item_id b_id = { };
9012 
9013 	if (dev_get_port_parent_id(a, &a_id, true) ||
9014 	    dev_get_port_parent_id(b, &b_id, true))
9015 		return false;
9016 
9017 	return netdev_phys_item_id_same(&a_id, &b_id);
9018 }
9019 EXPORT_SYMBOL(netdev_port_same_parent_id);
9020 
9021 /**
9022  *	dev_change_proto_down - set carrier according to proto_down.
9023  *
9024  *	@dev: device
9025  *	@proto_down: new value
9026  */
9027 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9028 {
9029 	if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9030 		return -EOPNOTSUPP;
9031 	if (!netif_device_present(dev))
9032 		return -ENODEV;
9033 	if (proto_down)
9034 		netif_carrier_off(dev);
9035 	else
9036 		netif_carrier_on(dev);
9037 	dev->proto_down = proto_down;
9038 	return 0;
9039 }
9040 
9041 /**
9042  *	dev_change_proto_down_reason - proto down reason
9043  *
9044  *	@dev: device
9045  *	@mask: proto down mask
9046  *	@value: proto down value
9047  */
9048 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9049 				  u32 value)
9050 {
9051 	int b;
9052 
9053 	if (!mask) {
9054 		dev->proto_down_reason = value;
9055 	} else {
9056 		for_each_set_bit(b, &mask, 32) {
9057 			if (value & (1 << b))
9058 				dev->proto_down_reason |= BIT(b);
9059 			else
9060 				dev->proto_down_reason &= ~BIT(b);
9061 		}
9062 	}
9063 }
9064 
9065 struct bpf_xdp_link {
9066 	struct bpf_link link;
9067 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9068 	int flags;
9069 };
9070 
9071 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9072 {
9073 	if (flags & XDP_FLAGS_HW_MODE)
9074 		return XDP_MODE_HW;
9075 	if (flags & XDP_FLAGS_DRV_MODE)
9076 		return XDP_MODE_DRV;
9077 	if (flags & XDP_FLAGS_SKB_MODE)
9078 		return XDP_MODE_SKB;
9079 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9080 }
9081 
9082 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9083 {
9084 	switch (mode) {
9085 	case XDP_MODE_SKB:
9086 		return generic_xdp_install;
9087 	case XDP_MODE_DRV:
9088 	case XDP_MODE_HW:
9089 		return dev->netdev_ops->ndo_bpf;
9090 	default:
9091 		return NULL;
9092 	}
9093 }
9094 
9095 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9096 					 enum bpf_xdp_mode mode)
9097 {
9098 	return dev->xdp_state[mode].link;
9099 }
9100 
9101 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9102 				     enum bpf_xdp_mode mode)
9103 {
9104 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9105 
9106 	if (link)
9107 		return link->link.prog;
9108 	return dev->xdp_state[mode].prog;
9109 }
9110 
9111 u8 dev_xdp_prog_count(struct net_device *dev)
9112 {
9113 	u8 count = 0;
9114 	int i;
9115 
9116 	for (i = 0; i < __MAX_XDP_MODE; i++)
9117 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9118 			count++;
9119 	return count;
9120 }
9121 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9122 
9123 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9124 {
9125 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9126 
9127 	return prog ? prog->aux->id : 0;
9128 }
9129 
9130 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9131 			     struct bpf_xdp_link *link)
9132 {
9133 	dev->xdp_state[mode].link = link;
9134 	dev->xdp_state[mode].prog = NULL;
9135 }
9136 
9137 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9138 			     struct bpf_prog *prog)
9139 {
9140 	dev->xdp_state[mode].link = NULL;
9141 	dev->xdp_state[mode].prog = prog;
9142 }
9143 
9144 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9145 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9146 			   u32 flags, struct bpf_prog *prog)
9147 {
9148 	struct netdev_bpf xdp;
9149 	int err;
9150 
9151 	memset(&xdp, 0, sizeof(xdp));
9152 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9153 	xdp.extack = extack;
9154 	xdp.flags = flags;
9155 	xdp.prog = prog;
9156 
9157 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9158 	 * "moved" into driver), so they don't increment it on their own, but
9159 	 * they do decrement refcnt when program is detached or replaced.
9160 	 * Given net_device also owns link/prog, we need to bump refcnt here
9161 	 * to prevent drivers from underflowing it.
9162 	 */
9163 	if (prog)
9164 		bpf_prog_inc(prog);
9165 	err = bpf_op(dev, &xdp);
9166 	if (err) {
9167 		if (prog)
9168 			bpf_prog_put(prog);
9169 		return err;
9170 	}
9171 
9172 	if (mode != XDP_MODE_HW)
9173 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9174 
9175 	return 0;
9176 }
9177 
9178 static void dev_xdp_uninstall(struct net_device *dev)
9179 {
9180 	struct bpf_xdp_link *link;
9181 	struct bpf_prog *prog;
9182 	enum bpf_xdp_mode mode;
9183 	bpf_op_t bpf_op;
9184 
9185 	ASSERT_RTNL();
9186 
9187 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9188 		prog = dev_xdp_prog(dev, mode);
9189 		if (!prog)
9190 			continue;
9191 
9192 		bpf_op = dev_xdp_bpf_op(dev, mode);
9193 		if (!bpf_op)
9194 			continue;
9195 
9196 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9197 
9198 		/* auto-detach link from net device */
9199 		link = dev_xdp_link(dev, mode);
9200 		if (link)
9201 			link->dev = NULL;
9202 		else
9203 			bpf_prog_put(prog);
9204 
9205 		dev_xdp_set_link(dev, mode, NULL);
9206 	}
9207 }
9208 
9209 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9210 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9211 			  struct bpf_prog *old_prog, u32 flags)
9212 {
9213 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9214 	struct bpf_prog *cur_prog;
9215 	struct net_device *upper;
9216 	struct list_head *iter;
9217 	enum bpf_xdp_mode mode;
9218 	bpf_op_t bpf_op;
9219 	int err;
9220 
9221 	ASSERT_RTNL();
9222 
9223 	/* either link or prog attachment, never both */
9224 	if (link && (new_prog || old_prog))
9225 		return -EINVAL;
9226 	/* link supports only XDP mode flags */
9227 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9228 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9229 		return -EINVAL;
9230 	}
9231 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9232 	if (num_modes > 1) {
9233 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9234 		return -EINVAL;
9235 	}
9236 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9237 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9238 		NL_SET_ERR_MSG(extack,
9239 			       "More than one program loaded, unset mode is ambiguous");
9240 		return -EINVAL;
9241 	}
9242 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9243 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9244 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9245 		return -EINVAL;
9246 	}
9247 
9248 	mode = dev_xdp_mode(dev, flags);
9249 	/* can't replace attached link */
9250 	if (dev_xdp_link(dev, mode)) {
9251 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9252 		return -EBUSY;
9253 	}
9254 
9255 	/* don't allow if an upper device already has a program */
9256 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9257 		if (dev_xdp_prog_count(upper) > 0) {
9258 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9259 			return -EEXIST;
9260 		}
9261 	}
9262 
9263 	cur_prog = dev_xdp_prog(dev, mode);
9264 	/* can't replace attached prog with link */
9265 	if (link && cur_prog) {
9266 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9267 		return -EBUSY;
9268 	}
9269 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9270 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9271 		return -EEXIST;
9272 	}
9273 
9274 	/* put effective new program into new_prog */
9275 	if (link)
9276 		new_prog = link->link.prog;
9277 
9278 	if (new_prog) {
9279 		bool offload = mode == XDP_MODE_HW;
9280 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9281 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9282 
9283 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9284 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9285 			return -EBUSY;
9286 		}
9287 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9288 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9289 			return -EEXIST;
9290 		}
9291 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9292 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9293 			return -EINVAL;
9294 		}
9295 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9296 			NL_SET_ERR_MSG(extack, "Program bound to different device");
9297 			return -EINVAL;
9298 		}
9299 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9300 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9301 			return -EINVAL;
9302 		}
9303 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9304 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9305 			return -EINVAL;
9306 		}
9307 	}
9308 
9309 	/* don't call drivers if the effective program didn't change */
9310 	if (new_prog != cur_prog) {
9311 		bpf_op = dev_xdp_bpf_op(dev, mode);
9312 		if (!bpf_op) {
9313 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9314 			return -EOPNOTSUPP;
9315 		}
9316 
9317 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9318 		if (err)
9319 			return err;
9320 	}
9321 
9322 	if (link)
9323 		dev_xdp_set_link(dev, mode, link);
9324 	else
9325 		dev_xdp_set_prog(dev, mode, new_prog);
9326 	if (cur_prog)
9327 		bpf_prog_put(cur_prog);
9328 
9329 	return 0;
9330 }
9331 
9332 static int dev_xdp_attach_link(struct net_device *dev,
9333 			       struct netlink_ext_ack *extack,
9334 			       struct bpf_xdp_link *link)
9335 {
9336 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9337 }
9338 
9339 static int dev_xdp_detach_link(struct net_device *dev,
9340 			       struct netlink_ext_ack *extack,
9341 			       struct bpf_xdp_link *link)
9342 {
9343 	enum bpf_xdp_mode mode;
9344 	bpf_op_t bpf_op;
9345 
9346 	ASSERT_RTNL();
9347 
9348 	mode = dev_xdp_mode(dev, link->flags);
9349 	if (dev_xdp_link(dev, mode) != link)
9350 		return -EINVAL;
9351 
9352 	bpf_op = dev_xdp_bpf_op(dev, mode);
9353 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9354 	dev_xdp_set_link(dev, mode, NULL);
9355 	return 0;
9356 }
9357 
9358 static void bpf_xdp_link_release(struct bpf_link *link)
9359 {
9360 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9361 
9362 	rtnl_lock();
9363 
9364 	/* if racing with net_device's tear down, xdp_link->dev might be
9365 	 * already NULL, in which case link was already auto-detached
9366 	 */
9367 	if (xdp_link->dev) {
9368 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9369 		xdp_link->dev = NULL;
9370 	}
9371 
9372 	rtnl_unlock();
9373 }
9374 
9375 static int bpf_xdp_link_detach(struct bpf_link *link)
9376 {
9377 	bpf_xdp_link_release(link);
9378 	return 0;
9379 }
9380 
9381 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9382 {
9383 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9384 
9385 	kfree(xdp_link);
9386 }
9387 
9388 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9389 				     struct seq_file *seq)
9390 {
9391 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9392 	u32 ifindex = 0;
9393 
9394 	rtnl_lock();
9395 	if (xdp_link->dev)
9396 		ifindex = xdp_link->dev->ifindex;
9397 	rtnl_unlock();
9398 
9399 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9400 }
9401 
9402 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9403 				       struct bpf_link_info *info)
9404 {
9405 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9406 	u32 ifindex = 0;
9407 
9408 	rtnl_lock();
9409 	if (xdp_link->dev)
9410 		ifindex = xdp_link->dev->ifindex;
9411 	rtnl_unlock();
9412 
9413 	info->xdp.ifindex = ifindex;
9414 	return 0;
9415 }
9416 
9417 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9418 			       struct bpf_prog *old_prog)
9419 {
9420 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9421 	enum bpf_xdp_mode mode;
9422 	bpf_op_t bpf_op;
9423 	int err = 0;
9424 
9425 	rtnl_lock();
9426 
9427 	/* link might have been auto-released already, so fail */
9428 	if (!xdp_link->dev) {
9429 		err = -ENOLINK;
9430 		goto out_unlock;
9431 	}
9432 
9433 	if (old_prog && link->prog != old_prog) {
9434 		err = -EPERM;
9435 		goto out_unlock;
9436 	}
9437 	old_prog = link->prog;
9438 	if (old_prog->type != new_prog->type ||
9439 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9440 		err = -EINVAL;
9441 		goto out_unlock;
9442 	}
9443 
9444 	if (old_prog == new_prog) {
9445 		/* no-op, don't disturb drivers */
9446 		bpf_prog_put(new_prog);
9447 		goto out_unlock;
9448 	}
9449 
9450 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9451 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9452 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9453 			      xdp_link->flags, new_prog);
9454 	if (err)
9455 		goto out_unlock;
9456 
9457 	old_prog = xchg(&link->prog, new_prog);
9458 	bpf_prog_put(old_prog);
9459 
9460 out_unlock:
9461 	rtnl_unlock();
9462 	return err;
9463 }
9464 
9465 static const struct bpf_link_ops bpf_xdp_link_lops = {
9466 	.release = bpf_xdp_link_release,
9467 	.dealloc = bpf_xdp_link_dealloc,
9468 	.detach = bpf_xdp_link_detach,
9469 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9470 	.fill_link_info = bpf_xdp_link_fill_link_info,
9471 	.update_prog = bpf_xdp_link_update,
9472 };
9473 
9474 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9475 {
9476 	struct net *net = current->nsproxy->net_ns;
9477 	struct bpf_link_primer link_primer;
9478 	struct bpf_xdp_link *link;
9479 	struct net_device *dev;
9480 	int err, fd;
9481 
9482 	rtnl_lock();
9483 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9484 	if (!dev) {
9485 		rtnl_unlock();
9486 		return -EINVAL;
9487 	}
9488 
9489 	link = kzalloc(sizeof(*link), GFP_USER);
9490 	if (!link) {
9491 		err = -ENOMEM;
9492 		goto unlock;
9493 	}
9494 
9495 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9496 	link->dev = dev;
9497 	link->flags = attr->link_create.flags;
9498 
9499 	err = bpf_link_prime(&link->link, &link_primer);
9500 	if (err) {
9501 		kfree(link);
9502 		goto unlock;
9503 	}
9504 
9505 	err = dev_xdp_attach_link(dev, NULL, link);
9506 	rtnl_unlock();
9507 
9508 	if (err) {
9509 		link->dev = NULL;
9510 		bpf_link_cleanup(&link_primer);
9511 		goto out_put_dev;
9512 	}
9513 
9514 	fd = bpf_link_settle(&link_primer);
9515 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9516 	dev_put(dev);
9517 	return fd;
9518 
9519 unlock:
9520 	rtnl_unlock();
9521 
9522 out_put_dev:
9523 	dev_put(dev);
9524 	return err;
9525 }
9526 
9527 /**
9528  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9529  *	@dev: device
9530  *	@extack: netlink extended ack
9531  *	@fd: new program fd or negative value to clear
9532  *	@expected_fd: old program fd that userspace expects to replace or clear
9533  *	@flags: xdp-related flags
9534  *
9535  *	Set or clear a bpf program for a device
9536  */
9537 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9538 		      int fd, int expected_fd, u32 flags)
9539 {
9540 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9541 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9542 	int err;
9543 
9544 	ASSERT_RTNL();
9545 
9546 	if (fd >= 0) {
9547 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9548 						 mode != XDP_MODE_SKB);
9549 		if (IS_ERR(new_prog))
9550 			return PTR_ERR(new_prog);
9551 	}
9552 
9553 	if (expected_fd >= 0) {
9554 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9555 						 mode != XDP_MODE_SKB);
9556 		if (IS_ERR(old_prog)) {
9557 			err = PTR_ERR(old_prog);
9558 			old_prog = NULL;
9559 			goto err_out;
9560 		}
9561 	}
9562 
9563 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9564 
9565 err_out:
9566 	if (err && new_prog)
9567 		bpf_prog_put(new_prog);
9568 	if (old_prog)
9569 		bpf_prog_put(old_prog);
9570 	return err;
9571 }
9572 
9573 /**
9574  * dev_index_reserve() - allocate an ifindex in a namespace
9575  * @net: the applicable net namespace
9576  * @ifindex: requested ifindex, pass %0 to get one allocated
9577  *
9578  * Allocate a ifindex for a new device. Caller must either use the ifindex
9579  * to store the device (via list_netdevice()) or call dev_index_release()
9580  * to give the index up.
9581  *
9582  * Return: a suitable unique value for a new device interface number or -errno.
9583  */
9584 static int dev_index_reserve(struct net *net, u32 ifindex)
9585 {
9586 	int err;
9587 
9588 	if (!ifindex)
9589 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9590 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
9591 	else
9592 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9593 	if (err < 0)
9594 		return err;
9595 
9596 	return ifindex;
9597 }
9598 
9599 static void dev_index_release(struct net *net, int ifindex)
9600 {
9601 	/* Expect only unused indexes, unlist_netdevice() removes the used */
9602 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9603 }
9604 
9605 /* Delayed registration/unregisteration */
9606 LIST_HEAD(net_todo_list);
9607 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9608 
9609 static void net_set_todo(struct net_device *dev)
9610 {
9611 	list_add_tail(&dev->todo_list, &net_todo_list);
9612 	atomic_inc(&dev_net(dev)->dev_unreg_count);
9613 }
9614 
9615 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9616 	struct net_device *upper, netdev_features_t features)
9617 {
9618 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9619 	netdev_features_t feature;
9620 	int feature_bit;
9621 
9622 	for_each_netdev_feature(upper_disables, feature_bit) {
9623 		feature = __NETIF_F_BIT(feature_bit);
9624 		if (!(upper->wanted_features & feature)
9625 		    && (features & feature)) {
9626 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9627 				   &feature, upper->name);
9628 			features &= ~feature;
9629 		}
9630 	}
9631 
9632 	return features;
9633 }
9634 
9635 static void netdev_sync_lower_features(struct net_device *upper,
9636 	struct net_device *lower, netdev_features_t features)
9637 {
9638 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9639 	netdev_features_t feature;
9640 	int feature_bit;
9641 
9642 	for_each_netdev_feature(upper_disables, feature_bit) {
9643 		feature = __NETIF_F_BIT(feature_bit);
9644 		if (!(features & feature) && (lower->features & feature)) {
9645 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9646 				   &feature, lower->name);
9647 			lower->wanted_features &= ~feature;
9648 			__netdev_update_features(lower);
9649 
9650 			if (unlikely(lower->features & feature))
9651 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9652 					    &feature, lower->name);
9653 			else
9654 				netdev_features_change(lower);
9655 		}
9656 	}
9657 }
9658 
9659 static netdev_features_t netdev_fix_features(struct net_device *dev,
9660 	netdev_features_t features)
9661 {
9662 	/* Fix illegal checksum combinations */
9663 	if ((features & NETIF_F_HW_CSUM) &&
9664 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9665 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9666 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9667 	}
9668 
9669 	/* TSO requires that SG is present as well. */
9670 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9671 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9672 		features &= ~NETIF_F_ALL_TSO;
9673 	}
9674 
9675 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9676 					!(features & NETIF_F_IP_CSUM)) {
9677 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9678 		features &= ~NETIF_F_TSO;
9679 		features &= ~NETIF_F_TSO_ECN;
9680 	}
9681 
9682 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9683 					 !(features & NETIF_F_IPV6_CSUM)) {
9684 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9685 		features &= ~NETIF_F_TSO6;
9686 	}
9687 
9688 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9689 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9690 		features &= ~NETIF_F_TSO_MANGLEID;
9691 
9692 	/* TSO ECN requires that TSO is present as well. */
9693 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9694 		features &= ~NETIF_F_TSO_ECN;
9695 
9696 	/* Software GSO depends on SG. */
9697 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9698 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9699 		features &= ~NETIF_F_GSO;
9700 	}
9701 
9702 	/* GSO partial features require GSO partial be set */
9703 	if ((features & dev->gso_partial_features) &&
9704 	    !(features & NETIF_F_GSO_PARTIAL)) {
9705 		netdev_dbg(dev,
9706 			   "Dropping partially supported GSO features since no GSO partial.\n");
9707 		features &= ~dev->gso_partial_features;
9708 	}
9709 
9710 	if (!(features & NETIF_F_RXCSUM)) {
9711 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9712 		 * successfully merged by hardware must also have the
9713 		 * checksum verified by hardware.  If the user does not
9714 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9715 		 */
9716 		if (features & NETIF_F_GRO_HW) {
9717 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9718 			features &= ~NETIF_F_GRO_HW;
9719 		}
9720 	}
9721 
9722 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9723 	if (features & NETIF_F_RXFCS) {
9724 		if (features & NETIF_F_LRO) {
9725 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9726 			features &= ~NETIF_F_LRO;
9727 		}
9728 
9729 		if (features & NETIF_F_GRO_HW) {
9730 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9731 			features &= ~NETIF_F_GRO_HW;
9732 		}
9733 	}
9734 
9735 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9736 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9737 		features &= ~NETIF_F_LRO;
9738 	}
9739 
9740 	if (features & NETIF_F_HW_TLS_TX) {
9741 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9742 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9743 		bool hw_csum = features & NETIF_F_HW_CSUM;
9744 
9745 		if (!ip_csum && !hw_csum) {
9746 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9747 			features &= ~NETIF_F_HW_TLS_TX;
9748 		}
9749 	}
9750 
9751 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9752 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9753 		features &= ~NETIF_F_HW_TLS_RX;
9754 	}
9755 
9756 	return features;
9757 }
9758 
9759 int __netdev_update_features(struct net_device *dev)
9760 {
9761 	struct net_device *upper, *lower;
9762 	netdev_features_t features;
9763 	struct list_head *iter;
9764 	int err = -1;
9765 
9766 	ASSERT_RTNL();
9767 
9768 	features = netdev_get_wanted_features(dev);
9769 
9770 	if (dev->netdev_ops->ndo_fix_features)
9771 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9772 
9773 	/* driver might be less strict about feature dependencies */
9774 	features = netdev_fix_features(dev, features);
9775 
9776 	/* some features can't be enabled if they're off on an upper device */
9777 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9778 		features = netdev_sync_upper_features(dev, upper, features);
9779 
9780 	if (dev->features == features)
9781 		goto sync_lower;
9782 
9783 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9784 		&dev->features, &features);
9785 
9786 	if (dev->netdev_ops->ndo_set_features)
9787 		err = dev->netdev_ops->ndo_set_features(dev, features);
9788 	else
9789 		err = 0;
9790 
9791 	if (unlikely(err < 0)) {
9792 		netdev_err(dev,
9793 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9794 			err, &features, &dev->features);
9795 		/* return non-0 since some features might have changed and
9796 		 * it's better to fire a spurious notification than miss it
9797 		 */
9798 		return -1;
9799 	}
9800 
9801 sync_lower:
9802 	/* some features must be disabled on lower devices when disabled
9803 	 * on an upper device (think: bonding master or bridge)
9804 	 */
9805 	netdev_for_each_lower_dev(dev, lower, iter)
9806 		netdev_sync_lower_features(dev, lower, features);
9807 
9808 	if (!err) {
9809 		netdev_features_t diff = features ^ dev->features;
9810 
9811 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9812 			/* udp_tunnel_{get,drop}_rx_info both need
9813 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9814 			 * device, or they won't do anything.
9815 			 * Thus we need to update dev->features
9816 			 * *before* calling udp_tunnel_get_rx_info,
9817 			 * but *after* calling udp_tunnel_drop_rx_info.
9818 			 */
9819 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9820 				dev->features = features;
9821 				udp_tunnel_get_rx_info(dev);
9822 			} else {
9823 				udp_tunnel_drop_rx_info(dev);
9824 			}
9825 		}
9826 
9827 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9828 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9829 				dev->features = features;
9830 				err |= vlan_get_rx_ctag_filter_info(dev);
9831 			} else {
9832 				vlan_drop_rx_ctag_filter_info(dev);
9833 			}
9834 		}
9835 
9836 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9837 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9838 				dev->features = features;
9839 				err |= vlan_get_rx_stag_filter_info(dev);
9840 			} else {
9841 				vlan_drop_rx_stag_filter_info(dev);
9842 			}
9843 		}
9844 
9845 		dev->features = features;
9846 	}
9847 
9848 	return err < 0 ? 0 : 1;
9849 }
9850 
9851 /**
9852  *	netdev_update_features - recalculate device features
9853  *	@dev: the device to check
9854  *
9855  *	Recalculate dev->features set and send notifications if it
9856  *	has changed. Should be called after driver or hardware dependent
9857  *	conditions might have changed that influence the features.
9858  */
9859 void netdev_update_features(struct net_device *dev)
9860 {
9861 	if (__netdev_update_features(dev))
9862 		netdev_features_change(dev);
9863 }
9864 EXPORT_SYMBOL(netdev_update_features);
9865 
9866 /**
9867  *	netdev_change_features - recalculate device features
9868  *	@dev: the device to check
9869  *
9870  *	Recalculate dev->features set and send notifications even
9871  *	if they have not changed. Should be called instead of
9872  *	netdev_update_features() if also dev->vlan_features might
9873  *	have changed to allow the changes to be propagated to stacked
9874  *	VLAN devices.
9875  */
9876 void netdev_change_features(struct net_device *dev)
9877 {
9878 	__netdev_update_features(dev);
9879 	netdev_features_change(dev);
9880 }
9881 EXPORT_SYMBOL(netdev_change_features);
9882 
9883 /**
9884  *	netif_stacked_transfer_operstate -	transfer operstate
9885  *	@rootdev: the root or lower level device to transfer state from
9886  *	@dev: the device to transfer operstate to
9887  *
9888  *	Transfer operational state from root to device. This is normally
9889  *	called when a stacking relationship exists between the root
9890  *	device and the device(a leaf device).
9891  */
9892 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9893 					struct net_device *dev)
9894 {
9895 	if (rootdev->operstate == IF_OPER_DORMANT)
9896 		netif_dormant_on(dev);
9897 	else
9898 		netif_dormant_off(dev);
9899 
9900 	if (rootdev->operstate == IF_OPER_TESTING)
9901 		netif_testing_on(dev);
9902 	else
9903 		netif_testing_off(dev);
9904 
9905 	if (netif_carrier_ok(rootdev))
9906 		netif_carrier_on(dev);
9907 	else
9908 		netif_carrier_off(dev);
9909 }
9910 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9911 
9912 static int netif_alloc_rx_queues(struct net_device *dev)
9913 {
9914 	unsigned int i, count = dev->num_rx_queues;
9915 	struct netdev_rx_queue *rx;
9916 	size_t sz = count * sizeof(*rx);
9917 	int err = 0;
9918 
9919 	BUG_ON(count < 1);
9920 
9921 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9922 	if (!rx)
9923 		return -ENOMEM;
9924 
9925 	dev->_rx = rx;
9926 
9927 	for (i = 0; i < count; i++) {
9928 		rx[i].dev = dev;
9929 
9930 		/* XDP RX-queue setup */
9931 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9932 		if (err < 0)
9933 			goto err_rxq_info;
9934 	}
9935 	return 0;
9936 
9937 err_rxq_info:
9938 	/* Rollback successful reg's and free other resources */
9939 	while (i--)
9940 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9941 	kvfree(dev->_rx);
9942 	dev->_rx = NULL;
9943 	return err;
9944 }
9945 
9946 static void netif_free_rx_queues(struct net_device *dev)
9947 {
9948 	unsigned int i, count = dev->num_rx_queues;
9949 
9950 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9951 	if (!dev->_rx)
9952 		return;
9953 
9954 	for (i = 0; i < count; i++)
9955 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9956 
9957 	kvfree(dev->_rx);
9958 }
9959 
9960 static void netdev_init_one_queue(struct net_device *dev,
9961 				  struct netdev_queue *queue, void *_unused)
9962 {
9963 	/* Initialize queue lock */
9964 	spin_lock_init(&queue->_xmit_lock);
9965 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9966 	queue->xmit_lock_owner = -1;
9967 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9968 	queue->dev = dev;
9969 #ifdef CONFIG_BQL
9970 	dql_init(&queue->dql, HZ);
9971 #endif
9972 }
9973 
9974 static void netif_free_tx_queues(struct net_device *dev)
9975 {
9976 	kvfree(dev->_tx);
9977 }
9978 
9979 static int netif_alloc_netdev_queues(struct net_device *dev)
9980 {
9981 	unsigned int count = dev->num_tx_queues;
9982 	struct netdev_queue *tx;
9983 	size_t sz = count * sizeof(*tx);
9984 
9985 	if (count < 1 || count > 0xffff)
9986 		return -EINVAL;
9987 
9988 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9989 	if (!tx)
9990 		return -ENOMEM;
9991 
9992 	dev->_tx = tx;
9993 
9994 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9995 	spin_lock_init(&dev->tx_global_lock);
9996 
9997 	return 0;
9998 }
9999 
10000 void netif_tx_stop_all_queues(struct net_device *dev)
10001 {
10002 	unsigned int i;
10003 
10004 	for (i = 0; i < dev->num_tx_queues; i++) {
10005 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10006 
10007 		netif_tx_stop_queue(txq);
10008 	}
10009 }
10010 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10011 
10012 /**
10013  * register_netdevice() - register a network device
10014  * @dev: device to register
10015  *
10016  * Take a prepared network device structure and make it externally accessible.
10017  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10018  * Callers must hold the rtnl lock - you may want register_netdev()
10019  * instead of this.
10020  */
10021 int register_netdevice(struct net_device *dev)
10022 {
10023 	int ret;
10024 	struct net *net = dev_net(dev);
10025 
10026 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10027 		     NETDEV_FEATURE_COUNT);
10028 	BUG_ON(dev_boot_phase);
10029 	ASSERT_RTNL();
10030 
10031 	might_sleep();
10032 
10033 	/* When net_device's are persistent, this will be fatal. */
10034 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10035 	BUG_ON(!net);
10036 
10037 	ret = ethtool_check_ops(dev->ethtool_ops);
10038 	if (ret)
10039 		return ret;
10040 
10041 	spin_lock_init(&dev->addr_list_lock);
10042 	netdev_set_addr_lockdep_class(dev);
10043 
10044 	ret = dev_get_valid_name(net, dev, dev->name);
10045 	if (ret < 0)
10046 		goto out;
10047 
10048 	ret = -ENOMEM;
10049 	dev->name_node = netdev_name_node_head_alloc(dev);
10050 	if (!dev->name_node)
10051 		goto out;
10052 
10053 	/* Init, if this function is available */
10054 	if (dev->netdev_ops->ndo_init) {
10055 		ret = dev->netdev_ops->ndo_init(dev);
10056 		if (ret) {
10057 			if (ret > 0)
10058 				ret = -EIO;
10059 			goto err_free_name;
10060 		}
10061 	}
10062 
10063 	if (((dev->hw_features | dev->features) &
10064 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10065 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10066 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10067 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10068 		ret = -EINVAL;
10069 		goto err_uninit;
10070 	}
10071 
10072 	ret = dev_index_reserve(net, dev->ifindex);
10073 	if (ret < 0)
10074 		goto err_uninit;
10075 	dev->ifindex = ret;
10076 
10077 	/* Transfer changeable features to wanted_features and enable
10078 	 * software offloads (GSO and GRO).
10079 	 */
10080 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10081 	dev->features |= NETIF_F_SOFT_FEATURES;
10082 
10083 	if (dev->udp_tunnel_nic_info) {
10084 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10085 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10086 	}
10087 
10088 	dev->wanted_features = dev->features & dev->hw_features;
10089 
10090 	if (!(dev->flags & IFF_LOOPBACK))
10091 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10092 
10093 	/* If IPv4 TCP segmentation offload is supported we should also
10094 	 * allow the device to enable segmenting the frame with the option
10095 	 * of ignoring a static IP ID value.  This doesn't enable the
10096 	 * feature itself but allows the user to enable it later.
10097 	 */
10098 	if (dev->hw_features & NETIF_F_TSO)
10099 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10100 	if (dev->vlan_features & NETIF_F_TSO)
10101 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10102 	if (dev->mpls_features & NETIF_F_TSO)
10103 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10104 	if (dev->hw_enc_features & NETIF_F_TSO)
10105 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10106 
10107 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10108 	 */
10109 	dev->vlan_features |= NETIF_F_HIGHDMA;
10110 
10111 	/* Make NETIF_F_SG inheritable to tunnel devices.
10112 	 */
10113 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10114 
10115 	/* Make NETIF_F_SG inheritable to MPLS.
10116 	 */
10117 	dev->mpls_features |= NETIF_F_SG;
10118 
10119 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10120 	ret = notifier_to_errno(ret);
10121 	if (ret)
10122 		goto err_ifindex_release;
10123 
10124 	ret = netdev_register_kobject(dev);
10125 	write_lock(&dev_base_lock);
10126 	dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10127 	write_unlock(&dev_base_lock);
10128 	if (ret)
10129 		goto err_uninit_notify;
10130 
10131 	__netdev_update_features(dev);
10132 
10133 	/*
10134 	 *	Default initial state at registry is that the
10135 	 *	device is present.
10136 	 */
10137 
10138 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10139 
10140 	linkwatch_init_dev(dev);
10141 
10142 	dev_init_scheduler(dev);
10143 
10144 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10145 	list_netdevice(dev);
10146 
10147 	add_device_randomness(dev->dev_addr, dev->addr_len);
10148 
10149 	/* If the device has permanent device address, driver should
10150 	 * set dev_addr and also addr_assign_type should be set to
10151 	 * NET_ADDR_PERM (default value).
10152 	 */
10153 	if (dev->addr_assign_type == NET_ADDR_PERM)
10154 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10155 
10156 	/* Notify protocols, that a new device appeared. */
10157 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10158 	ret = notifier_to_errno(ret);
10159 	if (ret) {
10160 		/* Expect explicit free_netdev() on failure */
10161 		dev->needs_free_netdev = false;
10162 		unregister_netdevice_queue(dev, NULL);
10163 		goto out;
10164 	}
10165 	/*
10166 	 *	Prevent userspace races by waiting until the network
10167 	 *	device is fully setup before sending notifications.
10168 	 */
10169 	if (!dev->rtnl_link_ops ||
10170 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10171 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10172 
10173 out:
10174 	return ret;
10175 
10176 err_uninit_notify:
10177 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10178 err_ifindex_release:
10179 	dev_index_release(net, dev->ifindex);
10180 err_uninit:
10181 	if (dev->netdev_ops->ndo_uninit)
10182 		dev->netdev_ops->ndo_uninit(dev);
10183 	if (dev->priv_destructor)
10184 		dev->priv_destructor(dev);
10185 err_free_name:
10186 	netdev_name_node_free(dev->name_node);
10187 	goto out;
10188 }
10189 EXPORT_SYMBOL(register_netdevice);
10190 
10191 /**
10192  *	init_dummy_netdev	- init a dummy network device for NAPI
10193  *	@dev: device to init
10194  *
10195  *	This takes a network device structure and initialize the minimum
10196  *	amount of fields so it can be used to schedule NAPI polls without
10197  *	registering a full blown interface. This is to be used by drivers
10198  *	that need to tie several hardware interfaces to a single NAPI
10199  *	poll scheduler due to HW limitations.
10200  */
10201 int init_dummy_netdev(struct net_device *dev)
10202 {
10203 	/* Clear everything. Note we don't initialize spinlocks
10204 	 * are they aren't supposed to be taken by any of the
10205 	 * NAPI code and this dummy netdev is supposed to be
10206 	 * only ever used for NAPI polls
10207 	 */
10208 	memset(dev, 0, sizeof(struct net_device));
10209 
10210 	/* make sure we BUG if trying to hit standard
10211 	 * register/unregister code path
10212 	 */
10213 	dev->reg_state = NETREG_DUMMY;
10214 
10215 	/* NAPI wants this */
10216 	INIT_LIST_HEAD(&dev->napi_list);
10217 
10218 	/* a dummy interface is started by default */
10219 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10220 	set_bit(__LINK_STATE_START, &dev->state);
10221 
10222 	/* napi_busy_loop stats accounting wants this */
10223 	dev_net_set(dev, &init_net);
10224 
10225 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10226 	 * because users of this 'device' dont need to change
10227 	 * its refcount.
10228 	 */
10229 
10230 	return 0;
10231 }
10232 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10233 
10234 
10235 /**
10236  *	register_netdev	- register a network device
10237  *	@dev: device to register
10238  *
10239  *	Take a completed network device structure and add it to the kernel
10240  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10241  *	chain. 0 is returned on success. A negative errno code is returned
10242  *	on a failure to set up the device, or if the name is a duplicate.
10243  *
10244  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10245  *	and expands the device name if you passed a format string to
10246  *	alloc_netdev.
10247  */
10248 int register_netdev(struct net_device *dev)
10249 {
10250 	int err;
10251 
10252 	if (rtnl_lock_killable())
10253 		return -EINTR;
10254 	err = register_netdevice(dev);
10255 	rtnl_unlock();
10256 	return err;
10257 }
10258 EXPORT_SYMBOL(register_netdev);
10259 
10260 int netdev_refcnt_read(const struct net_device *dev)
10261 {
10262 #ifdef CONFIG_PCPU_DEV_REFCNT
10263 	int i, refcnt = 0;
10264 
10265 	for_each_possible_cpu(i)
10266 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10267 	return refcnt;
10268 #else
10269 	return refcount_read(&dev->dev_refcnt);
10270 #endif
10271 }
10272 EXPORT_SYMBOL(netdev_refcnt_read);
10273 
10274 int netdev_unregister_timeout_secs __read_mostly = 10;
10275 
10276 #define WAIT_REFS_MIN_MSECS 1
10277 #define WAIT_REFS_MAX_MSECS 250
10278 /**
10279  * netdev_wait_allrefs_any - wait until all references are gone.
10280  * @list: list of net_devices to wait on
10281  *
10282  * This is called when unregistering network devices.
10283  *
10284  * Any protocol or device that holds a reference should register
10285  * for netdevice notification, and cleanup and put back the
10286  * reference if they receive an UNREGISTER event.
10287  * We can get stuck here if buggy protocols don't correctly
10288  * call dev_put.
10289  */
10290 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10291 {
10292 	unsigned long rebroadcast_time, warning_time;
10293 	struct net_device *dev;
10294 	int wait = 0;
10295 
10296 	rebroadcast_time = warning_time = jiffies;
10297 
10298 	list_for_each_entry(dev, list, todo_list)
10299 		if (netdev_refcnt_read(dev) == 1)
10300 			return dev;
10301 
10302 	while (true) {
10303 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10304 			rtnl_lock();
10305 
10306 			/* Rebroadcast unregister notification */
10307 			list_for_each_entry(dev, list, todo_list)
10308 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10309 
10310 			__rtnl_unlock();
10311 			rcu_barrier();
10312 			rtnl_lock();
10313 
10314 			list_for_each_entry(dev, list, todo_list)
10315 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10316 					     &dev->state)) {
10317 					/* We must not have linkwatch events
10318 					 * pending on unregister. If this
10319 					 * happens, we simply run the queue
10320 					 * unscheduled, resulting in a noop
10321 					 * for this device.
10322 					 */
10323 					linkwatch_run_queue();
10324 					break;
10325 				}
10326 
10327 			__rtnl_unlock();
10328 
10329 			rebroadcast_time = jiffies;
10330 		}
10331 
10332 		if (!wait) {
10333 			rcu_barrier();
10334 			wait = WAIT_REFS_MIN_MSECS;
10335 		} else {
10336 			msleep(wait);
10337 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10338 		}
10339 
10340 		list_for_each_entry(dev, list, todo_list)
10341 			if (netdev_refcnt_read(dev) == 1)
10342 				return dev;
10343 
10344 		if (time_after(jiffies, warning_time +
10345 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10346 			list_for_each_entry(dev, list, todo_list) {
10347 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10348 					 dev->name, netdev_refcnt_read(dev));
10349 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10350 			}
10351 
10352 			warning_time = jiffies;
10353 		}
10354 	}
10355 }
10356 
10357 /* The sequence is:
10358  *
10359  *	rtnl_lock();
10360  *	...
10361  *	register_netdevice(x1);
10362  *	register_netdevice(x2);
10363  *	...
10364  *	unregister_netdevice(y1);
10365  *	unregister_netdevice(y2);
10366  *      ...
10367  *	rtnl_unlock();
10368  *	free_netdev(y1);
10369  *	free_netdev(y2);
10370  *
10371  * We are invoked by rtnl_unlock().
10372  * This allows us to deal with problems:
10373  * 1) We can delete sysfs objects which invoke hotplug
10374  *    without deadlocking with linkwatch via keventd.
10375  * 2) Since we run with the RTNL semaphore not held, we can sleep
10376  *    safely in order to wait for the netdev refcnt to drop to zero.
10377  *
10378  * We must not return until all unregister events added during
10379  * the interval the lock was held have been completed.
10380  */
10381 void netdev_run_todo(void)
10382 {
10383 	struct net_device *dev, *tmp;
10384 	struct list_head list;
10385 #ifdef CONFIG_LOCKDEP
10386 	struct list_head unlink_list;
10387 
10388 	list_replace_init(&net_unlink_list, &unlink_list);
10389 
10390 	while (!list_empty(&unlink_list)) {
10391 		struct net_device *dev = list_first_entry(&unlink_list,
10392 							  struct net_device,
10393 							  unlink_list);
10394 		list_del_init(&dev->unlink_list);
10395 		dev->nested_level = dev->lower_level - 1;
10396 	}
10397 #endif
10398 
10399 	/* Snapshot list, allow later requests */
10400 	list_replace_init(&net_todo_list, &list);
10401 
10402 	__rtnl_unlock();
10403 
10404 	/* Wait for rcu callbacks to finish before next phase */
10405 	if (!list_empty(&list))
10406 		rcu_barrier();
10407 
10408 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10409 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10410 			netdev_WARN(dev, "run_todo but not unregistering\n");
10411 			list_del(&dev->todo_list);
10412 			continue;
10413 		}
10414 
10415 		write_lock(&dev_base_lock);
10416 		dev->reg_state = NETREG_UNREGISTERED;
10417 		write_unlock(&dev_base_lock);
10418 		linkwatch_forget_dev(dev);
10419 	}
10420 
10421 	while (!list_empty(&list)) {
10422 		dev = netdev_wait_allrefs_any(&list);
10423 		list_del(&dev->todo_list);
10424 
10425 		/* paranoia */
10426 		BUG_ON(netdev_refcnt_read(dev) != 1);
10427 		BUG_ON(!list_empty(&dev->ptype_all));
10428 		BUG_ON(!list_empty(&dev->ptype_specific));
10429 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10430 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10431 
10432 		if (dev->priv_destructor)
10433 			dev->priv_destructor(dev);
10434 		if (dev->needs_free_netdev)
10435 			free_netdev(dev);
10436 
10437 		if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10438 			wake_up(&netdev_unregistering_wq);
10439 
10440 		/* Free network device */
10441 		kobject_put(&dev->dev.kobj);
10442 	}
10443 }
10444 
10445 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10446  * all the same fields in the same order as net_device_stats, with only
10447  * the type differing, but rtnl_link_stats64 may have additional fields
10448  * at the end for newer counters.
10449  */
10450 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10451 			     const struct net_device_stats *netdev_stats)
10452 {
10453 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10454 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10455 	u64 *dst = (u64 *)stats64;
10456 
10457 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10458 	for (i = 0; i < n; i++)
10459 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
10460 	/* zero out counters that only exist in rtnl_link_stats64 */
10461 	memset((char *)stats64 + n * sizeof(u64), 0,
10462 	       sizeof(*stats64) - n * sizeof(u64));
10463 }
10464 EXPORT_SYMBOL(netdev_stats_to_stats64);
10465 
10466 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10467 {
10468 	struct net_device_core_stats __percpu *p;
10469 
10470 	p = alloc_percpu_gfp(struct net_device_core_stats,
10471 			     GFP_ATOMIC | __GFP_NOWARN);
10472 
10473 	if (p && cmpxchg(&dev->core_stats, NULL, p))
10474 		free_percpu(p);
10475 
10476 	/* This READ_ONCE() pairs with the cmpxchg() above */
10477 	return READ_ONCE(dev->core_stats);
10478 }
10479 EXPORT_SYMBOL(netdev_core_stats_alloc);
10480 
10481 /**
10482  *	dev_get_stats	- get network device statistics
10483  *	@dev: device to get statistics from
10484  *	@storage: place to store stats
10485  *
10486  *	Get network statistics from device. Return @storage.
10487  *	The device driver may provide its own method by setting
10488  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10489  *	otherwise the internal statistics structure is used.
10490  */
10491 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10492 					struct rtnl_link_stats64 *storage)
10493 {
10494 	const struct net_device_ops *ops = dev->netdev_ops;
10495 	const struct net_device_core_stats __percpu *p;
10496 
10497 	if (ops->ndo_get_stats64) {
10498 		memset(storage, 0, sizeof(*storage));
10499 		ops->ndo_get_stats64(dev, storage);
10500 	} else if (ops->ndo_get_stats) {
10501 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10502 	} else {
10503 		netdev_stats_to_stats64(storage, &dev->stats);
10504 	}
10505 
10506 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10507 	p = READ_ONCE(dev->core_stats);
10508 	if (p) {
10509 		const struct net_device_core_stats *core_stats;
10510 		int i;
10511 
10512 		for_each_possible_cpu(i) {
10513 			core_stats = per_cpu_ptr(p, i);
10514 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10515 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10516 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10517 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10518 		}
10519 	}
10520 	return storage;
10521 }
10522 EXPORT_SYMBOL(dev_get_stats);
10523 
10524 /**
10525  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10526  *	@s: place to store stats
10527  *	@netstats: per-cpu network stats to read from
10528  *
10529  *	Read per-cpu network statistics and populate the related fields in @s.
10530  */
10531 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10532 			   const struct pcpu_sw_netstats __percpu *netstats)
10533 {
10534 	int cpu;
10535 
10536 	for_each_possible_cpu(cpu) {
10537 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10538 		const struct pcpu_sw_netstats *stats;
10539 		unsigned int start;
10540 
10541 		stats = per_cpu_ptr(netstats, cpu);
10542 		do {
10543 			start = u64_stats_fetch_begin(&stats->syncp);
10544 			rx_packets = u64_stats_read(&stats->rx_packets);
10545 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10546 			tx_packets = u64_stats_read(&stats->tx_packets);
10547 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10548 		} while (u64_stats_fetch_retry(&stats->syncp, start));
10549 
10550 		s->rx_packets += rx_packets;
10551 		s->rx_bytes   += rx_bytes;
10552 		s->tx_packets += tx_packets;
10553 		s->tx_bytes   += tx_bytes;
10554 	}
10555 }
10556 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10557 
10558 /**
10559  *	dev_get_tstats64 - ndo_get_stats64 implementation
10560  *	@dev: device to get statistics from
10561  *	@s: place to store stats
10562  *
10563  *	Populate @s from dev->stats and dev->tstats. Can be used as
10564  *	ndo_get_stats64() callback.
10565  */
10566 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10567 {
10568 	netdev_stats_to_stats64(s, &dev->stats);
10569 	dev_fetch_sw_netstats(s, dev->tstats);
10570 }
10571 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10572 
10573 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10574 {
10575 	struct netdev_queue *queue = dev_ingress_queue(dev);
10576 
10577 #ifdef CONFIG_NET_CLS_ACT
10578 	if (queue)
10579 		return queue;
10580 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10581 	if (!queue)
10582 		return NULL;
10583 	netdev_init_one_queue(dev, queue, NULL);
10584 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10585 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10586 	rcu_assign_pointer(dev->ingress_queue, queue);
10587 #endif
10588 	return queue;
10589 }
10590 
10591 static const struct ethtool_ops default_ethtool_ops;
10592 
10593 void netdev_set_default_ethtool_ops(struct net_device *dev,
10594 				    const struct ethtool_ops *ops)
10595 {
10596 	if (dev->ethtool_ops == &default_ethtool_ops)
10597 		dev->ethtool_ops = ops;
10598 }
10599 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10600 
10601 /**
10602  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10603  * @dev: netdev to enable the IRQ coalescing on
10604  *
10605  * Sets a conservative default for SW IRQ coalescing. Users can use
10606  * sysfs attributes to override the default values.
10607  */
10608 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10609 {
10610 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
10611 
10612 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10613 		dev->gro_flush_timeout = 20000;
10614 		dev->napi_defer_hard_irqs = 1;
10615 	}
10616 }
10617 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10618 
10619 void netdev_freemem(struct net_device *dev)
10620 {
10621 	char *addr = (char *)dev - dev->padded;
10622 
10623 	kvfree(addr);
10624 }
10625 
10626 /**
10627  * alloc_netdev_mqs - allocate network device
10628  * @sizeof_priv: size of private data to allocate space for
10629  * @name: device name format string
10630  * @name_assign_type: origin of device name
10631  * @setup: callback to initialize device
10632  * @txqs: the number of TX subqueues to allocate
10633  * @rxqs: the number of RX subqueues to allocate
10634  *
10635  * Allocates a struct net_device with private data area for driver use
10636  * and performs basic initialization.  Also allocates subqueue structs
10637  * for each queue on the device.
10638  */
10639 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10640 		unsigned char name_assign_type,
10641 		void (*setup)(struct net_device *),
10642 		unsigned int txqs, unsigned int rxqs)
10643 {
10644 	struct net_device *dev;
10645 	unsigned int alloc_size;
10646 	struct net_device *p;
10647 
10648 	BUG_ON(strlen(name) >= sizeof(dev->name));
10649 
10650 	if (txqs < 1) {
10651 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10652 		return NULL;
10653 	}
10654 
10655 	if (rxqs < 1) {
10656 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10657 		return NULL;
10658 	}
10659 
10660 	alloc_size = sizeof(struct net_device);
10661 	if (sizeof_priv) {
10662 		/* ensure 32-byte alignment of private area */
10663 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10664 		alloc_size += sizeof_priv;
10665 	}
10666 	/* ensure 32-byte alignment of whole construct */
10667 	alloc_size += NETDEV_ALIGN - 1;
10668 
10669 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10670 	if (!p)
10671 		return NULL;
10672 
10673 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10674 	dev->padded = (char *)dev - (char *)p;
10675 
10676 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10677 #ifdef CONFIG_PCPU_DEV_REFCNT
10678 	dev->pcpu_refcnt = alloc_percpu(int);
10679 	if (!dev->pcpu_refcnt)
10680 		goto free_dev;
10681 	__dev_hold(dev);
10682 #else
10683 	refcount_set(&dev->dev_refcnt, 1);
10684 #endif
10685 
10686 	if (dev_addr_init(dev))
10687 		goto free_pcpu;
10688 
10689 	dev_mc_init(dev);
10690 	dev_uc_init(dev);
10691 
10692 	dev_net_set(dev, &init_net);
10693 
10694 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10695 	dev->xdp_zc_max_segs = 1;
10696 	dev->gso_max_segs = GSO_MAX_SEGS;
10697 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10698 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10699 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10700 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10701 	dev->tso_max_segs = TSO_MAX_SEGS;
10702 	dev->upper_level = 1;
10703 	dev->lower_level = 1;
10704 #ifdef CONFIG_LOCKDEP
10705 	dev->nested_level = 0;
10706 	INIT_LIST_HEAD(&dev->unlink_list);
10707 #endif
10708 
10709 	INIT_LIST_HEAD(&dev->napi_list);
10710 	INIT_LIST_HEAD(&dev->unreg_list);
10711 	INIT_LIST_HEAD(&dev->close_list);
10712 	INIT_LIST_HEAD(&dev->link_watch_list);
10713 	INIT_LIST_HEAD(&dev->adj_list.upper);
10714 	INIT_LIST_HEAD(&dev->adj_list.lower);
10715 	INIT_LIST_HEAD(&dev->ptype_all);
10716 	INIT_LIST_HEAD(&dev->ptype_specific);
10717 	INIT_LIST_HEAD(&dev->net_notifier_list);
10718 #ifdef CONFIG_NET_SCHED
10719 	hash_init(dev->qdisc_hash);
10720 #endif
10721 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10722 	setup(dev);
10723 
10724 	if (!dev->tx_queue_len) {
10725 		dev->priv_flags |= IFF_NO_QUEUE;
10726 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10727 	}
10728 
10729 	dev->num_tx_queues = txqs;
10730 	dev->real_num_tx_queues = txqs;
10731 	if (netif_alloc_netdev_queues(dev))
10732 		goto free_all;
10733 
10734 	dev->num_rx_queues = rxqs;
10735 	dev->real_num_rx_queues = rxqs;
10736 	if (netif_alloc_rx_queues(dev))
10737 		goto free_all;
10738 
10739 	strcpy(dev->name, name);
10740 	dev->name_assign_type = name_assign_type;
10741 	dev->group = INIT_NETDEV_GROUP;
10742 	if (!dev->ethtool_ops)
10743 		dev->ethtool_ops = &default_ethtool_ops;
10744 
10745 	nf_hook_netdev_init(dev);
10746 
10747 	return dev;
10748 
10749 free_all:
10750 	free_netdev(dev);
10751 	return NULL;
10752 
10753 free_pcpu:
10754 #ifdef CONFIG_PCPU_DEV_REFCNT
10755 	free_percpu(dev->pcpu_refcnt);
10756 free_dev:
10757 #endif
10758 	netdev_freemem(dev);
10759 	return NULL;
10760 }
10761 EXPORT_SYMBOL(alloc_netdev_mqs);
10762 
10763 /**
10764  * free_netdev - free network device
10765  * @dev: device
10766  *
10767  * This function does the last stage of destroying an allocated device
10768  * interface. The reference to the device object is released. If this
10769  * is the last reference then it will be freed.Must be called in process
10770  * context.
10771  */
10772 void free_netdev(struct net_device *dev)
10773 {
10774 	struct napi_struct *p, *n;
10775 
10776 	might_sleep();
10777 
10778 	/* When called immediately after register_netdevice() failed the unwind
10779 	 * handling may still be dismantling the device. Handle that case by
10780 	 * deferring the free.
10781 	 */
10782 	if (dev->reg_state == NETREG_UNREGISTERING) {
10783 		ASSERT_RTNL();
10784 		dev->needs_free_netdev = true;
10785 		return;
10786 	}
10787 
10788 	netif_free_tx_queues(dev);
10789 	netif_free_rx_queues(dev);
10790 
10791 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10792 
10793 	/* Flush device addresses */
10794 	dev_addr_flush(dev);
10795 
10796 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10797 		netif_napi_del(p);
10798 
10799 	ref_tracker_dir_exit(&dev->refcnt_tracker);
10800 #ifdef CONFIG_PCPU_DEV_REFCNT
10801 	free_percpu(dev->pcpu_refcnt);
10802 	dev->pcpu_refcnt = NULL;
10803 #endif
10804 	free_percpu(dev->core_stats);
10805 	dev->core_stats = NULL;
10806 	free_percpu(dev->xdp_bulkq);
10807 	dev->xdp_bulkq = NULL;
10808 
10809 	/*  Compatibility with error handling in drivers */
10810 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10811 		netdev_freemem(dev);
10812 		return;
10813 	}
10814 
10815 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10816 	dev->reg_state = NETREG_RELEASED;
10817 
10818 	/* will free via device release */
10819 	put_device(&dev->dev);
10820 }
10821 EXPORT_SYMBOL(free_netdev);
10822 
10823 /**
10824  *	synchronize_net -  Synchronize with packet receive processing
10825  *
10826  *	Wait for packets currently being received to be done.
10827  *	Does not block later packets from starting.
10828  */
10829 void synchronize_net(void)
10830 {
10831 	might_sleep();
10832 	if (rtnl_is_locked())
10833 		synchronize_rcu_expedited();
10834 	else
10835 		synchronize_rcu();
10836 }
10837 EXPORT_SYMBOL(synchronize_net);
10838 
10839 /**
10840  *	unregister_netdevice_queue - remove device from the kernel
10841  *	@dev: device
10842  *	@head: list
10843  *
10844  *	This function shuts down a device interface and removes it
10845  *	from the kernel tables.
10846  *	If head not NULL, device is queued to be unregistered later.
10847  *
10848  *	Callers must hold the rtnl semaphore.  You may want
10849  *	unregister_netdev() instead of this.
10850  */
10851 
10852 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10853 {
10854 	ASSERT_RTNL();
10855 
10856 	if (head) {
10857 		list_move_tail(&dev->unreg_list, head);
10858 	} else {
10859 		LIST_HEAD(single);
10860 
10861 		list_add(&dev->unreg_list, &single);
10862 		unregister_netdevice_many(&single);
10863 	}
10864 }
10865 EXPORT_SYMBOL(unregister_netdevice_queue);
10866 
10867 void unregister_netdevice_many_notify(struct list_head *head,
10868 				      u32 portid, const struct nlmsghdr *nlh)
10869 {
10870 	struct net_device *dev, *tmp;
10871 	LIST_HEAD(close_head);
10872 
10873 	BUG_ON(dev_boot_phase);
10874 	ASSERT_RTNL();
10875 
10876 	if (list_empty(head))
10877 		return;
10878 
10879 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10880 		/* Some devices call without registering
10881 		 * for initialization unwind. Remove those
10882 		 * devices and proceed with the remaining.
10883 		 */
10884 		if (dev->reg_state == NETREG_UNINITIALIZED) {
10885 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10886 				 dev->name, dev);
10887 
10888 			WARN_ON(1);
10889 			list_del(&dev->unreg_list);
10890 			continue;
10891 		}
10892 		dev->dismantle = true;
10893 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
10894 	}
10895 
10896 	/* If device is running, close it first. */
10897 	list_for_each_entry(dev, head, unreg_list)
10898 		list_add_tail(&dev->close_list, &close_head);
10899 	dev_close_many(&close_head, true);
10900 
10901 	list_for_each_entry(dev, head, unreg_list) {
10902 		/* And unlink it from device chain. */
10903 		write_lock(&dev_base_lock);
10904 		unlist_netdevice(dev, false);
10905 		dev->reg_state = NETREG_UNREGISTERING;
10906 		write_unlock(&dev_base_lock);
10907 	}
10908 	flush_all_backlogs();
10909 
10910 	synchronize_net();
10911 
10912 	list_for_each_entry(dev, head, unreg_list) {
10913 		struct sk_buff *skb = NULL;
10914 
10915 		/* Shutdown queueing discipline. */
10916 		dev_shutdown(dev);
10917 		dev_tcx_uninstall(dev);
10918 		dev_xdp_uninstall(dev);
10919 		bpf_dev_bound_netdev_unregister(dev);
10920 
10921 		netdev_offload_xstats_disable_all(dev);
10922 
10923 		/* Notify protocols, that we are about to destroy
10924 		 * this device. They should clean all the things.
10925 		 */
10926 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10927 
10928 		if (!dev->rtnl_link_ops ||
10929 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10930 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10931 						     GFP_KERNEL, NULL, 0,
10932 						     portid, nlh);
10933 
10934 		/*
10935 		 *	Flush the unicast and multicast chains
10936 		 */
10937 		dev_uc_flush(dev);
10938 		dev_mc_flush(dev);
10939 
10940 		netdev_name_node_alt_flush(dev);
10941 		netdev_name_node_free(dev->name_node);
10942 
10943 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10944 
10945 		if (dev->netdev_ops->ndo_uninit)
10946 			dev->netdev_ops->ndo_uninit(dev);
10947 
10948 		if (skb)
10949 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
10950 
10951 		/* Notifier chain MUST detach us all upper devices. */
10952 		WARN_ON(netdev_has_any_upper_dev(dev));
10953 		WARN_ON(netdev_has_any_lower_dev(dev));
10954 
10955 		/* Remove entries from kobject tree */
10956 		netdev_unregister_kobject(dev);
10957 #ifdef CONFIG_XPS
10958 		/* Remove XPS queueing entries */
10959 		netif_reset_xps_queues_gt(dev, 0);
10960 #endif
10961 	}
10962 
10963 	synchronize_net();
10964 
10965 	list_for_each_entry(dev, head, unreg_list) {
10966 		netdev_put(dev, &dev->dev_registered_tracker);
10967 		net_set_todo(dev);
10968 	}
10969 
10970 	list_del(head);
10971 }
10972 
10973 /**
10974  *	unregister_netdevice_many - unregister many devices
10975  *	@head: list of devices
10976  *
10977  *  Note: As most callers use a stack allocated list_head,
10978  *  we force a list_del() to make sure stack wont be corrupted later.
10979  */
10980 void unregister_netdevice_many(struct list_head *head)
10981 {
10982 	unregister_netdevice_many_notify(head, 0, NULL);
10983 }
10984 EXPORT_SYMBOL(unregister_netdevice_many);
10985 
10986 /**
10987  *	unregister_netdev - remove device from the kernel
10988  *	@dev: device
10989  *
10990  *	This function shuts down a device interface and removes it
10991  *	from the kernel tables.
10992  *
10993  *	This is just a wrapper for unregister_netdevice that takes
10994  *	the rtnl semaphore.  In general you want to use this and not
10995  *	unregister_netdevice.
10996  */
10997 void unregister_netdev(struct net_device *dev)
10998 {
10999 	rtnl_lock();
11000 	unregister_netdevice(dev);
11001 	rtnl_unlock();
11002 }
11003 EXPORT_SYMBOL(unregister_netdev);
11004 
11005 /**
11006  *	__dev_change_net_namespace - move device to different nethost namespace
11007  *	@dev: device
11008  *	@net: network namespace
11009  *	@pat: If not NULL name pattern to try if the current device name
11010  *	      is already taken in the destination network namespace.
11011  *	@new_ifindex: If not zero, specifies device index in the target
11012  *	              namespace.
11013  *
11014  *	This function shuts down a device interface and moves it
11015  *	to a new network namespace. On success 0 is returned, on
11016  *	a failure a netagive errno code is returned.
11017  *
11018  *	Callers must hold the rtnl semaphore.
11019  */
11020 
11021 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11022 			       const char *pat, int new_ifindex)
11023 {
11024 	struct net *net_old = dev_net(dev);
11025 	int err, new_nsid;
11026 
11027 	ASSERT_RTNL();
11028 
11029 	/* Don't allow namespace local devices to be moved. */
11030 	err = -EINVAL;
11031 	if (dev->features & NETIF_F_NETNS_LOCAL)
11032 		goto out;
11033 
11034 	/* Ensure the device has been registrered */
11035 	if (dev->reg_state != NETREG_REGISTERED)
11036 		goto out;
11037 
11038 	/* Get out if there is nothing todo */
11039 	err = 0;
11040 	if (net_eq(net_old, net))
11041 		goto out;
11042 
11043 	/* Pick the destination device name, and ensure
11044 	 * we can use it in the destination network namespace.
11045 	 */
11046 	err = -EEXIST;
11047 	if (netdev_name_in_use(net, dev->name)) {
11048 		/* We get here if we can't use the current device name */
11049 		if (!pat)
11050 			goto out;
11051 		err = dev_get_valid_name(net, dev, pat);
11052 		if (err < 0)
11053 			goto out;
11054 	}
11055 
11056 	/* Check that new_ifindex isn't used yet. */
11057 	if (new_ifindex) {
11058 		err = dev_index_reserve(net, new_ifindex);
11059 		if (err < 0)
11060 			goto out;
11061 	} else {
11062 		/* If there is an ifindex conflict assign a new one */
11063 		err = dev_index_reserve(net, dev->ifindex);
11064 		if (err == -EBUSY)
11065 			err = dev_index_reserve(net, 0);
11066 		if (err < 0)
11067 			goto out;
11068 		new_ifindex = err;
11069 	}
11070 
11071 	/*
11072 	 * And now a mini version of register_netdevice unregister_netdevice.
11073 	 */
11074 
11075 	/* If device is running close it first. */
11076 	dev_close(dev);
11077 
11078 	/* And unlink it from device chain */
11079 	unlist_netdevice(dev, true);
11080 
11081 	synchronize_net();
11082 
11083 	/* Shutdown queueing discipline. */
11084 	dev_shutdown(dev);
11085 
11086 	/* Notify protocols, that we are about to destroy
11087 	 * this device. They should clean all the things.
11088 	 *
11089 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11090 	 * This is wanted because this way 8021q and macvlan know
11091 	 * the device is just moving and can keep their slaves up.
11092 	 */
11093 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11094 	rcu_barrier();
11095 
11096 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11097 
11098 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11099 			    new_ifindex);
11100 
11101 	/*
11102 	 *	Flush the unicast and multicast chains
11103 	 */
11104 	dev_uc_flush(dev);
11105 	dev_mc_flush(dev);
11106 
11107 	/* Send a netdev-removed uevent to the old namespace */
11108 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11109 	netdev_adjacent_del_links(dev);
11110 
11111 	/* Move per-net netdevice notifiers that are following the netdevice */
11112 	move_netdevice_notifiers_dev_net(dev, net);
11113 
11114 	/* Actually switch the network namespace */
11115 	dev_net_set(dev, net);
11116 	dev->ifindex = new_ifindex;
11117 
11118 	/* Send a netdev-add uevent to the new namespace */
11119 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11120 	netdev_adjacent_add_links(dev);
11121 
11122 	/* Fixup kobjects */
11123 	err = device_rename(&dev->dev, dev->name);
11124 	WARN_ON(err);
11125 
11126 	/* Adapt owner in case owning user namespace of target network
11127 	 * namespace is different from the original one.
11128 	 */
11129 	err = netdev_change_owner(dev, net_old, net);
11130 	WARN_ON(err);
11131 
11132 	/* Add the device back in the hashes */
11133 	list_netdevice(dev);
11134 
11135 	/* Notify protocols, that a new device appeared. */
11136 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11137 
11138 	/*
11139 	 *	Prevent userspace races by waiting until the network
11140 	 *	device is fully setup before sending notifications.
11141 	 */
11142 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11143 
11144 	synchronize_net();
11145 	err = 0;
11146 out:
11147 	return err;
11148 }
11149 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11150 
11151 static int dev_cpu_dead(unsigned int oldcpu)
11152 {
11153 	struct sk_buff **list_skb;
11154 	struct sk_buff *skb;
11155 	unsigned int cpu;
11156 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11157 
11158 	local_irq_disable();
11159 	cpu = smp_processor_id();
11160 	sd = &per_cpu(softnet_data, cpu);
11161 	oldsd = &per_cpu(softnet_data, oldcpu);
11162 
11163 	/* Find end of our completion_queue. */
11164 	list_skb = &sd->completion_queue;
11165 	while (*list_skb)
11166 		list_skb = &(*list_skb)->next;
11167 	/* Append completion queue from offline CPU. */
11168 	*list_skb = oldsd->completion_queue;
11169 	oldsd->completion_queue = NULL;
11170 
11171 	/* Append output queue from offline CPU. */
11172 	if (oldsd->output_queue) {
11173 		*sd->output_queue_tailp = oldsd->output_queue;
11174 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11175 		oldsd->output_queue = NULL;
11176 		oldsd->output_queue_tailp = &oldsd->output_queue;
11177 	}
11178 	/* Append NAPI poll list from offline CPU, with one exception :
11179 	 * process_backlog() must be called by cpu owning percpu backlog.
11180 	 * We properly handle process_queue & input_pkt_queue later.
11181 	 */
11182 	while (!list_empty(&oldsd->poll_list)) {
11183 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11184 							    struct napi_struct,
11185 							    poll_list);
11186 
11187 		list_del_init(&napi->poll_list);
11188 		if (napi->poll == process_backlog)
11189 			napi->state = 0;
11190 		else
11191 			____napi_schedule(sd, napi);
11192 	}
11193 
11194 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11195 	local_irq_enable();
11196 
11197 #ifdef CONFIG_RPS
11198 	remsd = oldsd->rps_ipi_list;
11199 	oldsd->rps_ipi_list = NULL;
11200 #endif
11201 	/* send out pending IPI's on offline CPU */
11202 	net_rps_send_ipi(remsd);
11203 
11204 	/* Process offline CPU's input_pkt_queue */
11205 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11206 		netif_rx(skb);
11207 		input_queue_head_incr(oldsd);
11208 	}
11209 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11210 		netif_rx(skb);
11211 		input_queue_head_incr(oldsd);
11212 	}
11213 
11214 	return 0;
11215 }
11216 
11217 /**
11218  *	netdev_increment_features - increment feature set by one
11219  *	@all: current feature set
11220  *	@one: new feature set
11221  *	@mask: mask feature set
11222  *
11223  *	Computes a new feature set after adding a device with feature set
11224  *	@one to the master device with current feature set @all.  Will not
11225  *	enable anything that is off in @mask. Returns the new feature set.
11226  */
11227 netdev_features_t netdev_increment_features(netdev_features_t all,
11228 	netdev_features_t one, netdev_features_t mask)
11229 {
11230 	if (mask & NETIF_F_HW_CSUM)
11231 		mask |= NETIF_F_CSUM_MASK;
11232 	mask |= NETIF_F_VLAN_CHALLENGED;
11233 
11234 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11235 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11236 
11237 	/* If one device supports hw checksumming, set for all. */
11238 	if (all & NETIF_F_HW_CSUM)
11239 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11240 
11241 	return all;
11242 }
11243 EXPORT_SYMBOL(netdev_increment_features);
11244 
11245 static struct hlist_head * __net_init netdev_create_hash(void)
11246 {
11247 	int i;
11248 	struct hlist_head *hash;
11249 
11250 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11251 	if (hash != NULL)
11252 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11253 			INIT_HLIST_HEAD(&hash[i]);
11254 
11255 	return hash;
11256 }
11257 
11258 /* Initialize per network namespace state */
11259 static int __net_init netdev_init(struct net *net)
11260 {
11261 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11262 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11263 
11264 	INIT_LIST_HEAD(&net->dev_base_head);
11265 
11266 	net->dev_name_head = netdev_create_hash();
11267 	if (net->dev_name_head == NULL)
11268 		goto err_name;
11269 
11270 	net->dev_index_head = netdev_create_hash();
11271 	if (net->dev_index_head == NULL)
11272 		goto err_idx;
11273 
11274 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11275 
11276 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11277 
11278 	return 0;
11279 
11280 err_idx:
11281 	kfree(net->dev_name_head);
11282 err_name:
11283 	return -ENOMEM;
11284 }
11285 
11286 /**
11287  *	netdev_drivername - network driver for the device
11288  *	@dev: network device
11289  *
11290  *	Determine network driver for device.
11291  */
11292 const char *netdev_drivername(const struct net_device *dev)
11293 {
11294 	const struct device_driver *driver;
11295 	const struct device *parent;
11296 	const char *empty = "";
11297 
11298 	parent = dev->dev.parent;
11299 	if (!parent)
11300 		return empty;
11301 
11302 	driver = parent->driver;
11303 	if (driver && driver->name)
11304 		return driver->name;
11305 	return empty;
11306 }
11307 
11308 static void __netdev_printk(const char *level, const struct net_device *dev,
11309 			    struct va_format *vaf)
11310 {
11311 	if (dev && dev->dev.parent) {
11312 		dev_printk_emit(level[1] - '0',
11313 				dev->dev.parent,
11314 				"%s %s %s%s: %pV",
11315 				dev_driver_string(dev->dev.parent),
11316 				dev_name(dev->dev.parent),
11317 				netdev_name(dev), netdev_reg_state(dev),
11318 				vaf);
11319 	} else if (dev) {
11320 		printk("%s%s%s: %pV",
11321 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11322 	} else {
11323 		printk("%s(NULL net_device): %pV", level, vaf);
11324 	}
11325 }
11326 
11327 void netdev_printk(const char *level, const struct net_device *dev,
11328 		   const char *format, ...)
11329 {
11330 	struct va_format vaf;
11331 	va_list args;
11332 
11333 	va_start(args, format);
11334 
11335 	vaf.fmt = format;
11336 	vaf.va = &args;
11337 
11338 	__netdev_printk(level, dev, &vaf);
11339 
11340 	va_end(args);
11341 }
11342 EXPORT_SYMBOL(netdev_printk);
11343 
11344 #define define_netdev_printk_level(func, level)			\
11345 void func(const struct net_device *dev, const char *fmt, ...)	\
11346 {								\
11347 	struct va_format vaf;					\
11348 	va_list args;						\
11349 								\
11350 	va_start(args, fmt);					\
11351 								\
11352 	vaf.fmt = fmt;						\
11353 	vaf.va = &args;						\
11354 								\
11355 	__netdev_printk(level, dev, &vaf);			\
11356 								\
11357 	va_end(args);						\
11358 }								\
11359 EXPORT_SYMBOL(func);
11360 
11361 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11362 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11363 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11364 define_netdev_printk_level(netdev_err, KERN_ERR);
11365 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11366 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11367 define_netdev_printk_level(netdev_info, KERN_INFO);
11368 
11369 static void __net_exit netdev_exit(struct net *net)
11370 {
11371 	kfree(net->dev_name_head);
11372 	kfree(net->dev_index_head);
11373 	xa_destroy(&net->dev_by_index);
11374 	if (net != &init_net)
11375 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11376 }
11377 
11378 static struct pernet_operations __net_initdata netdev_net_ops = {
11379 	.init = netdev_init,
11380 	.exit = netdev_exit,
11381 };
11382 
11383 static void __net_exit default_device_exit_net(struct net *net)
11384 {
11385 	struct net_device *dev, *aux;
11386 	/*
11387 	 * Push all migratable network devices back to the
11388 	 * initial network namespace
11389 	 */
11390 	ASSERT_RTNL();
11391 	for_each_netdev_safe(net, dev, aux) {
11392 		int err;
11393 		char fb_name[IFNAMSIZ];
11394 
11395 		/* Ignore unmoveable devices (i.e. loopback) */
11396 		if (dev->features & NETIF_F_NETNS_LOCAL)
11397 			continue;
11398 
11399 		/* Leave virtual devices for the generic cleanup */
11400 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11401 			continue;
11402 
11403 		/* Push remaining network devices to init_net */
11404 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11405 		if (netdev_name_in_use(&init_net, fb_name))
11406 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11407 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11408 		if (err) {
11409 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11410 				 __func__, dev->name, err);
11411 			BUG();
11412 		}
11413 	}
11414 }
11415 
11416 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11417 {
11418 	/* At exit all network devices most be removed from a network
11419 	 * namespace.  Do this in the reverse order of registration.
11420 	 * Do this across as many network namespaces as possible to
11421 	 * improve batching efficiency.
11422 	 */
11423 	struct net_device *dev;
11424 	struct net *net;
11425 	LIST_HEAD(dev_kill_list);
11426 
11427 	rtnl_lock();
11428 	list_for_each_entry(net, net_list, exit_list) {
11429 		default_device_exit_net(net);
11430 		cond_resched();
11431 	}
11432 
11433 	list_for_each_entry(net, net_list, exit_list) {
11434 		for_each_netdev_reverse(net, dev) {
11435 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11436 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11437 			else
11438 				unregister_netdevice_queue(dev, &dev_kill_list);
11439 		}
11440 	}
11441 	unregister_netdevice_many(&dev_kill_list);
11442 	rtnl_unlock();
11443 }
11444 
11445 static struct pernet_operations __net_initdata default_device_ops = {
11446 	.exit_batch = default_device_exit_batch,
11447 };
11448 
11449 /*
11450  *	Initialize the DEV module. At boot time this walks the device list and
11451  *	unhooks any devices that fail to initialise (normally hardware not
11452  *	present) and leaves us with a valid list of present and active devices.
11453  *
11454  */
11455 
11456 /*
11457  *       This is called single threaded during boot, so no need
11458  *       to take the rtnl semaphore.
11459  */
11460 static int __init net_dev_init(void)
11461 {
11462 	int i, rc = -ENOMEM;
11463 
11464 	BUG_ON(!dev_boot_phase);
11465 
11466 	if (dev_proc_init())
11467 		goto out;
11468 
11469 	if (netdev_kobject_init())
11470 		goto out;
11471 
11472 	INIT_LIST_HEAD(&ptype_all);
11473 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11474 		INIT_LIST_HEAD(&ptype_base[i]);
11475 
11476 	if (register_pernet_subsys(&netdev_net_ops))
11477 		goto out;
11478 
11479 	/*
11480 	 *	Initialise the packet receive queues.
11481 	 */
11482 
11483 	for_each_possible_cpu(i) {
11484 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11485 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11486 
11487 		INIT_WORK(flush, flush_backlog);
11488 
11489 		skb_queue_head_init(&sd->input_pkt_queue);
11490 		skb_queue_head_init(&sd->process_queue);
11491 #ifdef CONFIG_XFRM_OFFLOAD
11492 		skb_queue_head_init(&sd->xfrm_backlog);
11493 #endif
11494 		INIT_LIST_HEAD(&sd->poll_list);
11495 		sd->output_queue_tailp = &sd->output_queue;
11496 #ifdef CONFIG_RPS
11497 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11498 		sd->cpu = i;
11499 #endif
11500 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11501 		spin_lock_init(&sd->defer_lock);
11502 
11503 		init_gro_hash(&sd->backlog);
11504 		sd->backlog.poll = process_backlog;
11505 		sd->backlog.weight = weight_p;
11506 	}
11507 
11508 	dev_boot_phase = 0;
11509 
11510 	/* The loopback device is special if any other network devices
11511 	 * is present in a network namespace the loopback device must
11512 	 * be present. Since we now dynamically allocate and free the
11513 	 * loopback device ensure this invariant is maintained by
11514 	 * keeping the loopback device as the first device on the
11515 	 * list of network devices.  Ensuring the loopback devices
11516 	 * is the first device that appears and the last network device
11517 	 * that disappears.
11518 	 */
11519 	if (register_pernet_device(&loopback_net_ops))
11520 		goto out;
11521 
11522 	if (register_pernet_device(&default_device_ops))
11523 		goto out;
11524 
11525 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11526 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11527 
11528 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11529 				       NULL, dev_cpu_dead);
11530 	WARN_ON(rc < 0);
11531 	rc = 0;
11532 out:
11533 	return rc;
11534 }
11535 
11536 subsys_initcall(net_dev_init);
11537