1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitops.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/mm.h> 81 #include <linux/mutex.h> 82 #include <linux/rwsem.h> 83 #include <linux/string.h> 84 #include <linux/mm.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/errno.h> 88 #include <linux/interrupt.h> 89 #include <linux/if_ether.h> 90 #include <linux/netdevice.h> 91 #include <linux/etherdevice.h> 92 #include <linux/ethtool.h> 93 #include <linux/skbuff.h> 94 #include <linux/kthread.h> 95 #include <linux/bpf.h> 96 #include <linux/bpf_trace.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <net/busy_poll.h> 100 #include <linux/rtnetlink.h> 101 #include <linux/stat.h> 102 #include <net/dsa.h> 103 #include <net/dst.h> 104 #include <net/dst_metadata.h> 105 #include <net/gro.h> 106 #include <net/pkt_sched.h> 107 #include <net/pkt_cls.h> 108 #include <net/checksum.h> 109 #include <net/xfrm.h> 110 #include <linux/highmem.h> 111 #include <linux/init.h> 112 #include <linux/module.h> 113 #include <linux/netpoll.h> 114 #include <linux/rcupdate.h> 115 #include <linux/delay.h> 116 #include <net/iw_handler.h> 117 #include <asm/current.h> 118 #include <linux/audit.h> 119 #include <linux/dmaengine.h> 120 #include <linux/err.h> 121 #include <linux/ctype.h> 122 #include <linux/if_arp.h> 123 #include <linux/if_vlan.h> 124 #include <linux/ip.h> 125 #include <net/ip.h> 126 #include <net/mpls.h> 127 #include <linux/ipv6.h> 128 #include <linux/in.h> 129 #include <linux/jhash.h> 130 #include <linux/random.h> 131 #include <trace/events/napi.h> 132 #include <trace/events/net.h> 133 #include <trace/events/skb.h> 134 #include <linux/inetdevice.h> 135 #include <linux/cpu_rmap.h> 136 #include <linux/static_key.h> 137 #include <linux/hashtable.h> 138 #include <linux/vmalloc.h> 139 #include <linux/if_macvlan.h> 140 #include <linux/errqueue.h> 141 #include <linux/hrtimer.h> 142 #include <linux/netfilter_ingress.h> 143 #include <linux/crash_dump.h> 144 #include <linux/sctp.h> 145 #include <net/udp_tunnel.h> 146 #include <linux/net_namespace.h> 147 #include <linux/indirect_call_wrapper.h> 148 #include <net/devlink.h> 149 #include <linux/pm_runtime.h> 150 #include <linux/prandom.h> 151 #include <linux/once_lite.h> 152 153 #include "net-sysfs.h" 154 155 #define MAX_GRO_SKBS 8 156 157 /* This should be increased if a protocol with a bigger head is added. */ 158 #define GRO_MAX_HEAD (MAX_HEADER + 128) 159 160 static DEFINE_SPINLOCK(ptype_lock); 161 static DEFINE_SPINLOCK(offload_lock); 162 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 163 struct list_head ptype_all __read_mostly; /* Taps */ 164 static struct list_head offload_base __read_mostly; 165 166 static int netif_rx_internal(struct sk_buff *skb); 167 static int call_netdevice_notifiers_info(unsigned long val, 168 struct netdev_notifier_info *info); 169 static int call_netdevice_notifiers_extack(unsigned long val, 170 struct net_device *dev, 171 struct netlink_ext_ack *extack); 172 static struct napi_struct *napi_by_id(unsigned int napi_id); 173 174 /* 175 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 176 * semaphore. 177 * 178 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 179 * 180 * Writers must hold the rtnl semaphore while they loop through the 181 * dev_base_head list, and hold dev_base_lock for writing when they do the 182 * actual updates. This allows pure readers to access the list even 183 * while a writer is preparing to update it. 184 * 185 * To put it another way, dev_base_lock is held for writing only to 186 * protect against pure readers; the rtnl semaphore provides the 187 * protection against other writers. 188 * 189 * See, for example usages, register_netdevice() and 190 * unregister_netdevice(), which must be called with the rtnl 191 * semaphore held. 192 */ 193 DEFINE_RWLOCK(dev_base_lock); 194 EXPORT_SYMBOL(dev_base_lock); 195 196 static DEFINE_MUTEX(ifalias_mutex); 197 198 /* protects napi_hash addition/deletion and napi_gen_id */ 199 static DEFINE_SPINLOCK(napi_hash_lock); 200 201 static unsigned int napi_gen_id = NR_CPUS; 202 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 203 204 static DECLARE_RWSEM(devnet_rename_sem); 205 206 static inline void dev_base_seq_inc(struct net *net) 207 { 208 while (++net->dev_base_seq == 0) 209 ; 210 } 211 212 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 213 { 214 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 215 216 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 217 } 218 219 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 220 { 221 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 222 } 223 224 static inline void rps_lock(struct softnet_data *sd) 225 { 226 #ifdef CONFIG_RPS 227 spin_lock(&sd->input_pkt_queue.lock); 228 #endif 229 } 230 231 static inline void rps_unlock(struct softnet_data *sd) 232 { 233 #ifdef CONFIG_RPS 234 spin_unlock(&sd->input_pkt_queue.lock); 235 #endif 236 } 237 238 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 239 const char *name) 240 { 241 struct netdev_name_node *name_node; 242 243 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 244 if (!name_node) 245 return NULL; 246 INIT_HLIST_NODE(&name_node->hlist); 247 name_node->dev = dev; 248 name_node->name = name; 249 return name_node; 250 } 251 252 static struct netdev_name_node * 253 netdev_name_node_head_alloc(struct net_device *dev) 254 { 255 struct netdev_name_node *name_node; 256 257 name_node = netdev_name_node_alloc(dev, dev->name); 258 if (!name_node) 259 return NULL; 260 INIT_LIST_HEAD(&name_node->list); 261 return name_node; 262 } 263 264 static void netdev_name_node_free(struct netdev_name_node *name_node) 265 { 266 kfree(name_node); 267 } 268 269 static void netdev_name_node_add(struct net *net, 270 struct netdev_name_node *name_node) 271 { 272 hlist_add_head_rcu(&name_node->hlist, 273 dev_name_hash(net, name_node->name)); 274 } 275 276 static void netdev_name_node_del(struct netdev_name_node *name_node) 277 { 278 hlist_del_rcu(&name_node->hlist); 279 } 280 281 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 282 const char *name) 283 { 284 struct hlist_head *head = dev_name_hash(net, name); 285 struct netdev_name_node *name_node; 286 287 hlist_for_each_entry(name_node, head, hlist) 288 if (!strcmp(name_node->name, name)) 289 return name_node; 290 return NULL; 291 } 292 293 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 294 const char *name) 295 { 296 struct hlist_head *head = dev_name_hash(net, name); 297 struct netdev_name_node *name_node; 298 299 hlist_for_each_entry_rcu(name_node, head, hlist) 300 if (!strcmp(name_node->name, name)) 301 return name_node; 302 return NULL; 303 } 304 305 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 306 { 307 struct netdev_name_node *name_node; 308 struct net *net = dev_net(dev); 309 310 name_node = netdev_name_node_lookup(net, name); 311 if (name_node) 312 return -EEXIST; 313 name_node = netdev_name_node_alloc(dev, name); 314 if (!name_node) 315 return -ENOMEM; 316 netdev_name_node_add(net, name_node); 317 /* The node that holds dev->name acts as a head of per-device list. */ 318 list_add_tail(&name_node->list, &dev->name_node->list); 319 320 return 0; 321 } 322 EXPORT_SYMBOL(netdev_name_node_alt_create); 323 324 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 325 { 326 list_del(&name_node->list); 327 netdev_name_node_del(name_node); 328 kfree(name_node->name); 329 netdev_name_node_free(name_node); 330 } 331 332 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 333 { 334 struct netdev_name_node *name_node; 335 struct net *net = dev_net(dev); 336 337 name_node = netdev_name_node_lookup(net, name); 338 if (!name_node) 339 return -ENOENT; 340 /* lookup might have found our primary name or a name belonging 341 * to another device. 342 */ 343 if (name_node == dev->name_node || name_node->dev != dev) 344 return -EINVAL; 345 346 __netdev_name_node_alt_destroy(name_node); 347 348 return 0; 349 } 350 EXPORT_SYMBOL(netdev_name_node_alt_destroy); 351 352 static void netdev_name_node_alt_flush(struct net_device *dev) 353 { 354 struct netdev_name_node *name_node, *tmp; 355 356 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) 357 __netdev_name_node_alt_destroy(name_node); 358 } 359 360 /* Device list insertion */ 361 static void list_netdevice(struct net_device *dev) 362 { 363 struct net *net = dev_net(dev); 364 365 ASSERT_RTNL(); 366 367 write_lock_bh(&dev_base_lock); 368 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 369 netdev_name_node_add(net, dev->name_node); 370 hlist_add_head_rcu(&dev->index_hlist, 371 dev_index_hash(net, dev->ifindex)); 372 write_unlock_bh(&dev_base_lock); 373 374 dev_base_seq_inc(net); 375 } 376 377 /* Device list removal 378 * caller must respect a RCU grace period before freeing/reusing dev 379 */ 380 static void unlist_netdevice(struct net_device *dev) 381 { 382 ASSERT_RTNL(); 383 384 /* Unlink dev from the device chain */ 385 write_lock_bh(&dev_base_lock); 386 list_del_rcu(&dev->dev_list); 387 netdev_name_node_del(dev->name_node); 388 hlist_del_rcu(&dev->index_hlist); 389 write_unlock_bh(&dev_base_lock); 390 391 dev_base_seq_inc(dev_net(dev)); 392 } 393 394 /* 395 * Our notifier list 396 */ 397 398 static RAW_NOTIFIER_HEAD(netdev_chain); 399 400 /* 401 * Device drivers call our routines to queue packets here. We empty the 402 * queue in the local softnet handler. 403 */ 404 405 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 406 EXPORT_PER_CPU_SYMBOL(softnet_data); 407 408 #ifdef CONFIG_LOCKDEP 409 /* 410 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 411 * according to dev->type 412 */ 413 static const unsigned short netdev_lock_type[] = { 414 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 415 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 416 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 417 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 418 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 419 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 420 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 421 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 422 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 423 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 424 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 425 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 426 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 427 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 428 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 429 430 static const char *const netdev_lock_name[] = { 431 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 432 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 433 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 434 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 435 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 436 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 437 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 438 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 439 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 440 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 441 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 442 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 443 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 444 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 445 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 446 447 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 448 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 449 450 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 451 { 452 int i; 453 454 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 455 if (netdev_lock_type[i] == dev_type) 456 return i; 457 /* the last key is used by default */ 458 return ARRAY_SIZE(netdev_lock_type) - 1; 459 } 460 461 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 462 unsigned short dev_type) 463 { 464 int i; 465 466 i = netdev_lock_pos(dev_type); 467 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 468 netdev_lock_name[i]); 469 } 470 471 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 472 { 473 int i; 474 475 i = netdev_lock_pos(dev->type); 476 lockdep_set_class_and_name(&dev->addr_list_lock, 477 &netdev_addr_lock_key[i], 478 netdev_lock_name[i]); 479 } 480 #else 481 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 482 unsigned short dev_type) 483 { 484 } 485 486 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 487 { 488 } 489 #endif 490 491 /******************************************************************************* 492 * 493 * Protocol management and registration routines 494 * 495 *******************************************************************************/ 496 497 498 /* 499 * Add a protocol ID to the list. Now that the input handler is 500 * smarter we can dispense with all the messy stuff that used to be 501 * here. 502 * 503 * BEWARE!!! Protocol handlers, mangling input packets, 504 * MUST BE last in hash buckets and checking protocol handlers 505 * MUST start from promiscuous ptype_all chain in net_bh. 506 * It is true now, do not change it. 507 * Explanation follows: if protocol handler, mangling packet, will 508 * be the first on list, it is not able to sense, that packet 509 * is cloned and should be copied-on-write, so that it will 510 * change it and subsequent readers will get broken packet. 511 * --ANK (980803) 512 */ 513 514 static inline struct list_head *ptype_head(const struct packet_type *pt) 515 { 516 if (pt->type == htons(ETH_P_ALL)) 517 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 518 else 519 return pt->dev ? &pt->dev->ptype_specific : 520 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 521 } 522 523 /** 524 * dev_add_pack - add packet handler 525 * @pt: packet type declaration 526 * 527 * Add a protocol handler to the networking stack. The passed &packet_type 528 * is linked into kernel lists and may not be freed until it has been 529 * removed from the kernel lists. 530 * 531 * This call does not sleep therefore it can not 532 * guarantee all CPU's that are in middle of receiving packets 533 * will see the new packet type (until the next received packet). 534 */ 535 536 void dev_add_pack(struct packet_type *pt) 537 { 538 struct list_head *head = ptype_head(pt); 539 540 spin_lock(&ptype_lock); 541 list_add_rcu(&pt->list, head); 542 spin_unlock(&ptype_lock); 543 } 544 EXPORT_SYMBOL(dev_add_pack); 545 546 /** 547 * __dev_remove_pack - remove packet handler 548 * @pt: packet type declaration 549 * 550 * Remove a protocol handler that was previously added to the kernel 551 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 552 * from the kernel lists and can be freed or reused once this function 553 * returns. 554 * 555 * The packet type might still be in use by receivers 556 * and must not be freed until after all the CPU's have gone 557 * through a quiescent state. 558 */ 559 void __dev_remove_pack(struct packet_type *pt) 560 { 561 struct list_head *head = ptype_head(pt); 562 struct packet_type *pt1; 563 564 spin_lock(&ptype_lock); 565 566 list_for_each_entry(pt1, head, list) { 567 if (pt == pt1) { 568 list_del_rcu(&pt->list); 569 goto out; 570 } 571 } 572 573 pr_warn("dev_remove_pack: %p not found\n", pt); 574 out: 575 spin_unlock(&ptype_lock); 576 } 577 EXPORT_SYMBOL(__dev_remove_pack); 578 579 /** 580 * dev_remove_pack - remove packet handler 581 * @pt: packet type declaration 582 * 583 * Remove a protocol handler that was previously added to the kernel 584 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 585 * from the kernel lists and can be freed or reused once this function 586 * returns. 587 * 588 * This call sleeps to guarantee that no CPU is looking at the packet 589 * type after return. 590 */ 591 void dev_remove_pack(struct packet_type *pt) 592 { 593 __dev_remove_pack(pt); 594 595 synchronize_net(); 596 } 597 EXPORT_SYMBOL(dev_remove_pack); 598 599 600 /** 601 * dev_add_offload - register offload handlers 602 * @po: protocol offload declaration 603 * 604 * Add protocol offload handlers to the networking stack. The passed 605 * &proto_offload is linked into kernel lists and may not be freed until 606 * it has been removed from the kernel lists. 607 * 608 * This call does not sleep therefore it can not 609 * guarantee all CPU's that are in middle of receiving packets 610 * will see the new offload handlers (until the next received packet). 611 */ 612 void dev_add_offload(struct packet_offload *po) 613 { 614 struct packet_offload *elem; 615 616 spin_lock(&offload_lock); 617 list_for_each_entry(elem, &offload_base, list) { 618 if (po->priority < elem->priority) 619 break; 620 } 621 list_add_rcu(&po->list, elem->list.prev); 622 spin_unlock(&offload_lock); 623 } 624 EXPORT_SYMBOL(dev_add_offload); 625 626 /** 627 * __dev_remove_offload - remove offload handler 628 * @po: packet offload declaration 629 * 630 * Remove a protocol offload handler that was previously added to the 631 * kernel offload handlers by dev_add_offload(). The passed &offload_type 632 * is removed from the kernel lists and can be freed or reused once this 633 * function returns. 634 * 635 * The packet type might still be in use by receivers 636 * and must not be freed until after all the CPU's have gone 637 * through a quiescent state. 638 */ 639 static void __dev_remove_offload(struct packet_offload *po) 640 { 641 struct list_head *head = &offload_base; 642 struct packet_offload *po1; 643 644 spin_lock(&offload_lock); 645 646 list_for_each_entry(po1, head, list) { 647 if (po == po1) { 648 list_del_rcu(&po->list); 649 goto out; 650 } 651 } 652 653 pr_warn("dev_remove_offload: %p not found\n", po); 654 out: 655 spin_unlock(&offload_lock); 656 } 657 658 /** 659 * dev_remove_offload - remove packet offload handler 660 * @po: packet offload declaration 661 * 662 * Remove a packet offload handler that was previously added to the kernel 663 * offload handlers by dev_add_offload(). The passed &offload_type is 664 * removed from the kernel lists and can be freed or reused once this 665 * function returns. 666 * 667 * This call sleeps to guarantee that no CPU is looking at the packet 668 * type after return. 669 */ 670 void dev_remove_offload(struct packet_offload *po) 671 { 672 __dev_remove_offload(po); 673 674 synchronize_net(); 675 } 676 EXPORT_SYMBOL(dev_remove_offload); 677 678 /****************************************************************************** 679 * 680 * Device Boot-time Settings Routines 681 * 682 ******************************************************************************/ 683 684 /* Boot time configuration table */ 685 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 686 687 /** 688 * netdev_boot_setup_add - add new setup entry 689 * @name: name of the device 690 * @map: configured settings for the device 691 * 692 * Adds new setup entry to the dev_boot_setup list. The function 693 * returns 0 on error and 1 on success. This is a generic routine to 694 * all netdevices. 695 */ 696 static int netdev_boot_setup_add(char *name, struct ifmap *map) 697 { 698 struct netdev_boot_setup *s; 699 int i; 700 701 s = dev_boot_setup; 702 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 703 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 704 memset(s[i].name, 0, sizeof(s[i].name)); 705 strlcpy(s[i].name, name, IFNAMSIZ); 706 memcpy(&s[i].map, map, sizeof(s[i].map)); 707 break; 708 } 709 } 710 711 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 712 } 713 714 /** 715 * netdev_boot_setup_check - check boot time settings 716 * @dev: the netdevice 717 * 718 * Check boot time settings for the device. 719 * The found settings are set for the device to be used 720 * later in the device probing. 721 * Returns 0 if no settings found, 1 if they are. 722 */ 723 int netdev_boot_setup_check(struct net_device *dev) 724 { 725 struct netdev_boot_setup *s = dev_boot_setup; 726 int i; 727 728 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 729 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 730 !strcmp(dev->name, s[i].name)) { 731 dev->irq = s[i].map.irq; 732 dev->base_addr = s[i].map.base_addr; 733 dev->mem_start = s[i].map.mem_start; 734 dev->mem_end = s[i].map.mem_end; 735 return 1; 736 } 737 } 738 return 0; 739 } 740 EXPORT_SYMBOL(netdev_boot_setup_check); 741 742 743 /** 744 * netdev_boot_base - get address from boot time settings 745 * @prefix: prefix for network device 746 * @unit: id for network device 747 * 748 * Check boot time settings for the base address of device. 749 * The found settings are set for the device to be used 750 * later in the device probing. 751 * Returns 0 if no settings found. 752 */ 753 unsigned long netdev_boot_base(const char *prefix, int unit) 754 { 755 const struct netdev_boot_setup *s = dev_boot_setup; 756 char name[IFNAMSIZ]; 757 int i; 758 759 sprintf(name, "%s%d", prefix, unit); 760 761 /* 762 * If device already registered then return base of 1 763 * to indicate not to probe for this interface 764 */ 765 if (__dev_get_by_name(&init_net, name)) 766 return 1; 767 768 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 769 if (!strcmp(name, s[i].name)) 770 return s[i].map.base_addr; 771 return 0; 772 } 773 774 /* 775 * Saves at boot time configured settings for any netdevice. 776 */ 777 int __init netdev_boot_setup(char *str) 778 { 779 int ints[5]; 780 struct ifmap map; 781 782 str = get_options(str, ARRAY_SIZE(ints), ints); 783 if (!str || !*str) 784 return 0; 785 786 /* Save settings */ 787 memset(&map, 0, sizeof(map)); 788 if (ints[0] > 0) 789 map.irq = ints[1]; 790 if (ints[0] > 1) 791 map.base_addr = ints[2]; 792 if (ints[0] > 2) 793 map.mem_start = ints[3]; 794 if (ints[0] > 3) 795 map.mem_end = ints[4]; 796 797 /* Add new entry to the list */ 798 return netdev_boot_setup_add(str, &map); 799 } 800 801 __setup("netdev=", netdev_boot_setup); 802 803 /******************************************************************************* 804 * 805 * Device Interface Subroutines 806 * 807 *******************************************************************************/ 808 809 /** 810 * dev_get_iflink - get 'iflink' value of a interface 811 * @dev: targeted interface 812 * 813 * Indicates the ifindex the interface is linked to. 814 * Physical interfaces have the same 'ifindex' and 'iflink' values. 815 */ 816 817 int dev_get_iflink(const struct net_device *dev) 818 { 819 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 820 return dev->netdev_ops->ndo_get_iflink(dev); 821 822 return dev->ifindex; 823 } 824 EXPORT_SYMBOL(dev_get_iflink); 825 826 /** 827 * dev_fill_metadata_dst - Retrieve tunnel egress information. 828 * @dev: targeted interface 829 * @skb: The packet. 830 * 831 * For better visibility of tunnel traffic OVS needs to retrieve 832 * egress tunnel information for a packet. Following API allows 833 * user to get this info. 834 */ 835 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 836 { 837 struct ip_tunnel_info *info; 838 839 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 840 return -EINVAL; 841 842 info = skb_tunnel_info_unclone(skb); 843 if (!info) 844 return -ENOMEM; 845 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 846 return -EINVAL; 847 848 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 849 } 850 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 851 852 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack) 853 { 854 int k = stack->num_paths++; 855 856 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX)) 857 return NULL; 858 859 return &stack->path[k]; 860 } 861 862 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 863 struct net_device_path_stack *stack) 864 { 865 const struct net_device *last_dev; 866 struct net_device_path_ctx ctx = { 867 .dev = dev, 868 .daddr = daddr, 869 }; 870 struct net_device_path *path; 871 int ret = 0; 872 873 stack->num_paths = 0; 874 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) { 875 last_dev = ctx.dev; 876 path = dev_fwd_path(stack); 877 if (!path) 878 return -1; 879 880 memset(path, 0, sizeof(struct net_device_path)); 881 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path); 882 if (ret < 0) 883 return -1; 884 885 if (WARN_ON_ONCE(last_dev == ctx.dev)) 886 return -1; 887 } 888 path = dev_fwd_path(stack); 889 if (!path) 890 return -1; 891 path->type = DEV_PATH_ETHERNET; 892 path->dev = ctx.dev; 893 894 return ret; 895 } 896 EXPORT_SYMBOL_GPL(dev_fill_forward_path); 897 898 /** 899 * __dev_get_by_name - find a device by its name 900 * @net: the applicable net namespace 901 * @name: name to find 902 * 903 * Find an interface by name. Must be called under RTNL semaphore 904 * or @dev_base_lock. If the name is found a pointer to the device 905 * is returned. If the name is not found then %NULL is returned. The 906 * reference counters are not incremented so the caller must be 907 * careful with locks. 908 */ 909 910 struct net_device *__dev_get_by_name(struct net *net, const char *name) 911 { 912 struct netdev_name_node *node_name; 913 914 node_name = netdev_name_node_lookup(net, name); 915 return node_name ? node_name->dev : NULL; 916 } 917 EXPORT_SYMBOL(__dev_get_by_name); 918 919 /** 920 * dev_get_by_name_rcu - find a device by its name 921 * @net: the applicable net namespace 922 * @name: name to find 923 * 924 * Find an interface by name. 925 * If the name is found a pointer to the device is returned. 926 * If the name is not found then %NULL is returned. 927 * The reference counters are not incremented so the caller must be 928 * careful with locks. The caller must hold RCU lock. 929 */ 930 931 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 932 { 933 struct netdev_name_node *node_name; 934 935 node_name = netdev_name_node_lookup_rcu(net, name); 936 return node_name ? node_name->dev : NULL; 937 } 938 EXPORT_SYMBOL(dev_get_by_name_rcu); 939 940 /** 941 * dev_get_by_name - find a device by its name 942 * @net: the applicable net namespace 943 * @name: name to find 944 * 945 * Find an interface by name. This can be called from any 946 * context and does its own locking. The returned handle has 947 * the usage count incremented and the caller must use dev_put() to 948 * release it when it is no longer needed. %NULL is returned if no 949 * matching device is found. 950 */ 951 952 struct net_device *dev_get_by_name(struct net *net, const char *name) 953 { 954 struct net_device *dev; 955 956 rcu_read_lock(); 957 dev = dev_get_by_name_rcu(net, name); 958 if (dev) 959 dev_hold(dev); 960 rcu_read_unlock(); 961 return dev; 962 } 963 EXPORT_SYMBOL(dev_get_by_name); 964 965 /** 966 * __dev_get_by_index - find a device by its ifindex 967 * @net: the applicable net namespace 968 * @ifindex: index of device 969 * 970 * Search for an interface by index. Returns %NULL if the device 971 * is not found or a pointer to the device. The device has not 972 * had its reference counter increased so the caller must be careful 973 * about locking. The caller must hold either the RTNL semaphore 974 * or @dev_base_lock. 975 */ 976 977 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 978 { 979 struct net_device *dev; 980 struct hlist_head *head = dev_index_hash(net, ifindex); 981 982 hlist_for_each_entry(dev, head, index_hlist) 983 if (dev->ifindex == ifindex) 984 return dev; 985 986 return NULL; 987 } 988 EXPORT_SYMBOL(__dev_get_by_index); 989 990 /** 991 * dev_get_by_index_rcu - find a device by its ifindex 992 * @net: the applicable net namespace 993 * @ifindex: index of device 994 * 995 * Search for an interface by index. Returns %NULL if the device 996 * is not found or a pointer to the device. The device has not 997 * had its reference counter increased so the caller must be careful 998 * about locking. The caller must hold RCU lock. 999 */ 1000 1001 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 1002 { 1003 struct net_device *dev; 1004 struct hlist_head *head = dev_index_hash(net, ifindex); 1005 1006 hlist_for_each_entry_rcu(dev, head, index_hlist) 1007 if (dev->ifindex == ifindex) 1008 return dev; 1009 1010 return NULL; 1011 } 1012 EXPORT_SYMBOL(dev_get_by_index_rcu); 1013 1014 1015 /** 1016 * dev_get_by_index - find a device by its ifindex 1017 * @net: the applicable net namespace 1018 * @ifindex: index of device 1019 * 1020 * Search for an interface by index. Returns NULL if the device 1021 * is not found or a pointer to the device. The device returned has 1022 * had a reference added and the pointer is safe until the user calls 1023 * dev_put to indicate they have finished with it. 1024 */ 1025 1026 struct net_device *dev_get_by_index(struct net *net, int ifindex) 1027 { 1028 struct net_device *dev; 1029 1030 rcu_read_lock(); 1031 dev = dev_get_by_index_rcu(net, ifindex); 1032 if (dev) 1033 dev_hold(dev); 1034 rcu_read_unlock(); 1035 return dev; 1036 } 1037 EXPORT_SYMBOL(dev_get_by_index); 1038 1039 /** 1040 * dev_get_by_napi_id - find a device by napi_id 1041 * @napi_id: ID of the NAPI struct 1042 * 1043 * Search for an interface by NAPI ID. Returns %NULL if the device 1044 * is not found or a pointer to the device. The device has not had 1045 * its reference counter increased so the caller must be careful 1046 * about locking. The caller must hold RCU lock. 1047 */ 1048 1049 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 1050 { 1051 struct napi_struct *napi; 1052 1053 WARN_ON_ONCE(!rcu_read_lock_held()); 1054 1055 if (napi_id < MIN_NAPI_ID) 1056 return NULL; 1057 1058 napi = napi_by_id(napi_id); 1059 1060 return napi ? napi->dev : NULL; 1061 } 1062 EXPORT_SYMBOL(dev_get_by_napi_id); 1063 1064 /** 1065 * netdev_get_name - get a netdevice name, knowing its ifindex. 1066 * @net: network namespace 1067 * @name: a pointer to the buffer where the name will be stored. 1068 * @ifindex: the ifindex of the interface to get the name from. 1069 */ 1070 int netdev_get_name(struct net *net, char *name, int ifindex) 1071 { 1072 struct net_device *dev; 1073 int ret; 1074 1075 down_read(&devnet_rename_sem); 1076 rcu_read_lock(); 1077 1078 dev = dev_get_by_index_rcu(net, ifindex); 1079 if (!dev) { 1080 ret = -ENODEV; 1081 goto out; 1082 } 1083 1084 strcpy(name, dev->name); 1085 1086 ret = 0; 1087 out: 1088 rcu_read_unlock(); 1089 up_read(&devnet_rename_sem); 1090 return ret; 1091 } 1092 1093 /** 1094 * dev_getbyhwaddr_rcu - find a device by its hardware address 1095 * @net: the applicable net namespace 1096 * @type: media type of device 1097 * @ha: hardware address 1098 * 1099 * Search for an interface by MAC address. Returns NULL if the device 1100 * is not found or a pointer to the device. 1101 * The caller must hold RCU or RTNL. 1102 * The returned device has not had its ref count increased 1103 * and the caller must therefore be careful about locking 1104 * 1105 */ 1106 1107 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1108 const char *ha) 1109 { 1110 struct net_device *dev; 1111 1112 for_each_netdev_rcu(net, dev) 1113 if (dev->type == type && 1114 !memcmp(dev->dev_addr, ha, dev->addr_len)) 1115 return dev; 1116 1117 return NULL; 1118 } 1119 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 1120 1121 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 1122 { 1123 struct net_device *dev, *ret = NULL; 1124 1125 rcu_read_lock(); 1126 for_each_netdev_rcu(net, dev) 1127 if (dev->type == type) { 1128 dev_hold(dev); 1129 ret = dev; 1130 break; 1131 } 1132 rcu_read_unlock(); 1133 return ret; 1134 } 1135 EXPORT_SYMBOL(dev_getfirstbyhwtype); 1136 1137 /** 1138 * __dev_get_by_flags - find any device with given flags 1139 * @net: the applicable net namespace 1140 * @if_flags: IFF_* values 1141 * @mask: bitmask of bits in if_flags to check 1142 * 1143 * Search for any interface with the given flags. Returns NULL if a device 1144 * is not found or a pointer to the device. Must be called inside 1145 * rtnl_lock(), and result refcount is unchanged. 1146 */ 1147 1148 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1149 unsigned short mask) 1150 { 1151 struct net_device *dev, *ret; 1152 1153 ASSERT_RTNL(); 1154 1155 ret = NULL; 1156 for_each_netdev(net, dev) { 1157 if (((dev->flags ^ if_flags) & mask) == 0) { 1158 ret = dev; 1159 break; 1160 } 1161 } 1162 return ret; 1163 } 1164 EXPORT_SYMBOL(__dev_get_by_flags); 1165 1166 /** 1167 * dev_valid_name - check if name is okay for network device 1168 * @name: name string 1169 * 1170 * Network device names need to be valid file names to 1171 * allow sysfs to work. We also disallow any kind of 1172 * whitespace. 1173 */ 1174 bool dev_valid_name(const char *name) 1175 { 1176 if (*name == '\0') 1177 return false; 1178 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1179 return false; 1180 if (!strcmp(name, ".") || !strcmp(name, "..")) 1181 return false; 1182 1183 while (*name) { 1184 if (*name == '/' || *name == ':' || isspace(*name)) 1185 return false; 1186 name++; 1187 } 1188 return true; 1189 } 1190 EXPORT_SYMBOL(dev_valid_name); 1191 1192 /** 1193 * __dev_alloc_name - allocate a name for a device 1194 * @net: network namespace to allocate the device name in 1195 * @name: name format string 1196 * @buf: scratch buffer and result name string 1197 * 1198 * Passed a format string - eg "lt%d" it will try and find a suitable 1199 * id. It scans list of devices to build up a free map, then chooses 1200 * the first empty slot. The caller must hold the dev_base or rtnl lock 1201 * while allocating the name and adding the device in order to avoid 1202 * duplicates. 1203 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1204 * Returns the number of the unit assigned or a negative errno code. 1205 */ 1206 1207 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1208 { 1209 int i = 0; 1210 const char *p; 1211 const int max_netdevices = 8*PAGE_SIZE; 1212 unsigned long *inuse; 1213 struct net_device *d; 1214 1215 if (!dev_valid_name(name)) 1216 return -EINVAL; 1217 1218 p = strchr(name, '%'); 1219 if (p) { 1220 /* 1221 * Verify the string as this thing may have come from 1222 * the user. There must be either one "%d" and no other "%" 1223 * characters. 1224 */ 1225 if (p[1] != 'd' || strchr(p + 2, '%')) 1226 return -EINVAL; 1227 1228 /* Use one page as a bit array of possible slots */ 1229 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1230 if (!inuse) 1231 return -ENOMEM; 1232 1233 for_each_netdev(net, d) { 1234 struct netdev_name_node *name_node; 1235 list_for_each_entry(name_node, &d->name_node->list, list) { 1236 if (!sscanf(name_node->name, name, &i)) 1237 continue; 1238 if (i < 0 || i >= max_netdevices) 1239 continue; 1240 1241 /* avoid cases where sscanf is not exact inverse of printf */ 1242 snprintf(buf, IFNAMSIZ, name, i); 1243 if (!strncmp(buf, name_node->name, IFNAMSIZ)) 1244 set_bit(i, inuse); 1245 } 1246 if (!sscanf(d->name, name, &i)) 1247 continue; 1248 if (i < 0 || i >= max_netdevices) 1249 continue; 1250 1251 /* avoid cases where sscanf is not exact inverse of printf */ 1252 snprintf(buf, IFNAMSIZ, name, i); 1253 if (!strncmp(buf, d->name, IFNAMSIZ)) 1254 set_bit(i, inuse); 1255 } 1256 1257 i = find_first_zero_bit(inuse, max_netdevices); 1258 free_page((unsigned long) inuse); 1259 } 1260 1261 snprintf(buf, IFNAMSIZ, name, i); 1262 if (!__dev_get_by_name(net, buf)) 1263 return i; 1264 1265 /* It is possible to run out of possible slots 1266 * when the name is long and there isn't enough space left 1267 * for the digits, or if all bits are used. 1268 */ 1269 return -ENFILE; 1270 } 1271 1272 static int dev_alloc_name_ns(struct net *net, 1273 struct net_device *dev, 1274 const char *name) 1275 { 1276 char buf[IFNAMSIZ]; 1277 int ret; 1278 1279 BUG_ON(!net); 1280 ret = __dev_alloc_name(net, name, buf); 1281 if (ret >= 0) 1282 strlcpy(dev->name, buf, IFNAMSIZ); 1283 return ret; 1284 } 1285 1286 /** 1287 * dev_alloc_name - allocate a name for a device 1288 * @dev: device 1289 * @name: name format string 1290 * 1291 * Passed a format string - eg "lt%d" it will try and find a suitable 1292 * id. It scans list of devices to build up a free map, then chooses 1293 * the first empty slot. The caller must hold the dev_base or rtnl lock 1294 * while allocating the name and adding the device in order to avoid 1295 * duplicates. 1296 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1297 * Returns the number of the unit assigned or a negative errno code. 1298 */ 1299 1300 int dev_alloc_name(struct net_device *dev, const char *name) 1301 { 1302 return dev_alloc_name_ns(dev_net(dev), dev, name); 1303 } 1304 EXPORT_SYMBOL(dev_alloc_name); 1305 1306 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1307 const char *name) 1308 { 1309 BUG_ON(!net); 1310 1311 if (!dev_valid_name(name)) 1312 return -EINVAL; 1313 1314 if (strchr(name, '%')) 1315 return dev_alloc_name_ns(net, dev, name); 1316 else if (__dev_get_by_name(net, name)) 1317 return -EEXIST; 1318 else if (dev->name != name) 1319 strlcpy(dev->name, name, IFNAMSIZ); 1320 1321 return 0; 1322 } 1323 1324 /** 1325 * dev_change_name - change name of a device 1326 * @dev: device 1327 * @newname: name (or format string) must be at least IFNAMSIZ 1328 * 1329 * Change name of a device, can pass format strings "eth%d". 1330 * for wildcarding. 1331 */ 1332 int dev_change_name(struct net_device *dev, const char *newname) 1333 { 1334 unsigned char old_assign_type; 1335 char oldname[IFNAMSIZ]; 1336 int err = 0; 1337 int ret; 1338 struct net *net; 1339 1340 ASSERT_RTNL(); 1341 BUG_ON(!dev_net(dev)); 1342 1343 net = dev_net(dev); 1344 1345 /* Some auto-enslaved devices e.g. failover slaves are 1346 * special, as userspace might rename the device after 1347 * the interface had been brought up and running since 1348 * the point kernel initiated auto-enslavement. Allow 1349 * live name change even when these slave devices are 1350 * up and running. 1351 * 1352 * Typically, users of these auto-enslaving devices 1353 * don't actually care about slave name change, as 1354 * they are supposed to operate on master interface 1355 * directly. 1356 */ 1357 if (dev->flags & IFF_UP && 1358 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK))) 1359 return -EBUSY; 1360 1361 down_write(&devnet_rename_sem); 1362 1363 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1364 up_write(&devnet_rename_sem); 1365 return 0; 1366 } 1367 1368 memcpy(oldname, dev->name, IFNAMSIZ); 1369 1370 err = dev_get_valid_name(net, dev, newname); 1371 if (err < 0) { 1372 up_write(&devnet_rename_sem); 1373 return err; 1374 } 1375 1376 if (oldname[0] && !strchr(oldname, '%')) 1377 netdev_info(dev, "renamed from %s\n", oldname); 1378 1379 old_assign_type = dev->name_assign_type; 1380 dev->name_assign_type = NET_NAME_RENAMED; 1381 1382 rollback: 1383 ret = device_rename(&dev->dev, dev->name); 1384 if (ret) { 1385 memcpy(dev->name, oldname, IFNAMSIZ); 1386 dev->name_assign_type = old_assign_type; 1387 up_write(&devnet_rename_sem); 1388 return ret; 1389 } 1390 1391 up_write(&devnet_rename_sem); 1392 1393 netdev_adjacent_rename_links(dev, oldname); 1394 1395 write_lock_bh(&dev_base_lock); 1396 netdev_name_node_del(dev->name_node); 1397 write_unlock_bh(&dev_base_lock); 1398 1399 synchronize_rcu(); 1400 1401 write_lock_bh(&dev_base_lock); 1402 netdev_name_node_add(net, dev->name_node); 1403 write_unlock_bh(&dev_base_lock); 1404 1405 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1406 ret = notifier_to_errno(ret); 1407 1408 if (ret) { 1409 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1410 if (err >= 0) { 1411 err = ret; 1412 down_write(&devnet_rename_sem); 1413 memcpy(dev->name, oldname, IFNAMSIZ); 1414 memcpy(oldname, newname, IFNAMSIZ); 1415 dev->name_assign_type = old_assign_type; 1416 old_assign_type = NET_NAME_RENAMED; 1417 goto rollback; 1418 } else { 1419 pr_err("%s: name change rollback failed: %d\n", 1420 dev->name, ret); 1421 } 1422 } 1423 1424 return err; 1425 } 1426 1427 /** 1428 * dev_set_alias - change ifalias of a device 1429 * @dev: device 1430 * @alias: name up to IFALIASZ 1431 * @len: limit of bytes to copy from info 1432 * 1433 * Set ifalias for a device, 1434 */ 1435 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1436 { 1437 struct dev_ifalias *new_alias = NULL; 1438 1439 if (len >= IFALIASZ) 1440 return -EINVAL; 1441 1442 if (len) { 1443 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1444 if (!new_alias) 1445 return -ENOMEM; 1446 1447 memcpy(new_alias->ifalias, alias, len); 1448 new_alias->ifalias[len] = 0; 1449 } 1450 1451 mutex_lock(&ifalias_mutex); 1452 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1453 mutex_is_locked(&ifalias_mutex)); 1454 mutex_unlock(&ifalias_mutex); 1455 1456 if (new_alias) 1457 kfree_rcu(new_alias, rcuhead); 1458 1459 return len; 1460 } 1461 EXPORT_SYMBOL(dev_set_alias); 1462 1463 /** 1464 * dev_get_alias - get ifalias of a device 1465 * @dev: device 1466 * @name: buffer to store name of ifalias 1467 * @len: size of buffer 1468 * 1469 * get ifalias for a device. Caller must make sure dev cannot go 1470 * away, e.g. rcu read lock or own a reference count to device. 1471 */ 1472 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1473 { 1474 const struct dev_ifalias *alias; 1475 int ret = 0; 1476 1477 rcu_read_lock(); 1478 alias = rcu_dereference(dev->ifalias); 1479 if (alias) 1480 ret = snprintf(name, len, "%s", alias->ifalias); 1481 rcu_read_unlock(); 1482 1483 return ret; 1484 } 1485 1486 /** 1487 * netdev_features_change - device changes features 1488 * @dev: device to cause notification 1489 * 1490 * Called to indicate a device has changed features. 1491 */ 1492 void netdev_features_change(struct net_device *dev) 1493 { 1494 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1495 } 1496 EXPORT_SYMBOL(netdev_features_change); 1497 1498 /** 1499 * netdev_state_change - device changes state 1500 * @dev: device to cause notification 1501 * 1502 * Called to indicate a device has changed state. This function calls 1503 * the notifier chains for netdev_chain and sends a NEWLINK message 1504 * to the routing socket. 1505 */ 1506 void netdev_state_change(struct net_device *dev) 1507 { 1508 if (dev->flags & IFF_UP) { 1509 struct netdev_notifier_change_info change_info = { 1510 .info.dev = dev, 1511 }; 1512 1513 call_netdevice_notifiers_info(NETDEV_CHANGE, 1514 &change_info.info); 1515 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1516 } 1517 } 1518 EXPORT_SYMBOL(netdev_state_change); 1519 1520 /** 1521 * __netdev_notify_peers - notify network peers about existence of @dev, 1522 * to be called when rtnl lock is already held. 1523 * @dev: network device 1524 * 1525 * Generate traffic such that interested network peers are aware of 1526 * @dev, such as by generating a gratuitous ARP. This may be used when 1527 * a device wants to inform the rest of the network about some sort of 1528 * reconfiguration such as a failover event or virtual machine 1529 * migration. 1530 */ 1531 void __netdev_notify_peers(struct net_device *dev) 1532 { 1533 ASSERT_RTNL(); 1534 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1535 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1536 } 1537 EXPORT_SYMBOL(__netdev_notify_peers); 1538 1539 /** 1540 * netdev_notify_peers - notify network peers about existence of @dev 1541 * @dev: network device 1542 * 1543 * Generate traffic such that interested network peers are aware of 1544 * @dev, such as by generating a gratuitous ARP. This may be used when 1545 * a device wants to inform the rest of the network about some sort of 1546 * reconfiguration such as a failover event or virtual machine 1547 * migration. 1548 */ 1549 void netdev_notify_peers(struct net_device *dev) 1550 { 1551 rtnl_lock(); 1552 __netdev_notify_peers(dev); 1553 rtnl_unlock(); 1554 } 1555 EXPORT_SYMBOL(netdev_notify_peers); 1556 1557 static int napi_threaded_poll(void *data); 1558 1559 static int napi_kthread_create(struct napi_struct *n) 1560 { 1561 int err = 0; 1562 1563 /* Create and wake up the kthread once to put it in 1564 * TASK_INTERRUPTIBLE mode to avoid the blocked task 1565 * warning and work with loadavg. 1566 */ 1567 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d", 1568 n->dev->name, n->napi_id); 1569 if (IS_ERR(n->thread)) { 1570 err = PTR_ERR(n->thread); 1571 pr_err("kthread_run failed with err %d\n", err); 1572 n->thread = NULL; 1573 } 1574 1575 return err; 1576 } 1577 1578 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1579 { 1580 const struct net_device_ops *ops = dev->netdev_ops; 1581 int ret; 1582 1583 ASSERT_RTNL(); 1584 1585 if (!netif_device_present(dev)) { 1586 /* may be detached because parent is runtime-suspended */ 1587 if (dev->dev.parent) 1588 pm_runtime_resume(dev->dev.parent); 1589 if (!netif_device_present(dev)) 1590 return -ENODEV; 1591 } 1592 1593 /* Block netpoll from trying to do any rx path servicing. 1594 * If we don't do this there is a chance ndo_poll_controller 1595 * or ndo_poll may be running while we open the device 1596 */ 1597 netpoll_poll_disable(dev); 1598 1599 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1600 ret = notifier_to_errno(ret); 1601 if (ret) 1602 return ret; 1603 1604 set_bit(__LINK_STATE_START, &dev->state); 1605 1606 if (ops->ndo_validate_addr) 1607 ret = ops->ndo_validate_addr(dev); 1608 1609 if (!ret && ops->ndo_open) 1610 ret = ops->ndo_open(dev); 1611 1612 netpoll_poll_enable(dev); 1613 1614 if (ret) 1615 clear_bit(__LINK_STATE_START, &dev->state); 1616 else { 1617 dev->flags |= IFF_UP; 1618 dev_set_rx_mode(dev); 1619 dev_activate(dev); 1620 add_device_randomness(dev->dev_addr, dev->addr_len); 1621 } 1622 1623 return ret; 1624 } 1625 1626 /** 1627 * dev_open - prepare an interface for use. 1628 * @dev: device to open 1629 * @extack: netlink extended ack 1630 * 1631 * Takes a device from down to up state. The device's private open 1632 * function is invoked and then the multicast lists are loaded. Finally 1633 * the device is moved into the up state and a %NETDEV_UP message is 1634 * sent to the netdev notifier chain. 1635 * 1636 * Calling this function on an active interface is a nop. On a failure 1637 * a negative errno code is returned. 1638 */ 1639 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1640 { 1641 int ret; 1642 1643 if (dev->flags & IFF_UP) 1644 return 0; 1645 1646 ret = __dev_open(dev, extack); 1647 if (ret < 0) 1648 return ret; 1649 1650 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1651 call_netdevice_notifiers(NETDEV_UP, dev); 1652 1653 return ret; 1654 } 1655 EXPORT_SYMBOL(dev_open); 1656 1657 static void __dev_close_many(struct list_head *head) 1658 { 1659 struct net_device *dev; 1660 1661 ASSERT_RTNL(); 1662 might_sleep(); 1663 1664 list_for_each_entry(dev, head, close_list) { 1665 /* Temporarily disable netpoll until the interface is down */ 1666 netpoll_poll_disable(dev); 1667 1668 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1669 1670 clear_bit(__LINK_STATE_START, &dev->state); 1671 1672 /* Synchronize to scheduled poll. We cannot touch poll list, it 1673 * can be even on different cpu. So just clear netif_running(). 1674 * 1675 * dev->stop() will invoke napi_disable() on all of it's 1676 * napi_struct instances on this device. 1677 */ 1678 smp_mb__after_atomic(); /* Commit netif_running(). */ 1679 } 1680 1681 dev_deactivate_many(head); 1682 1683 list_for_each_entry(dev, head, close_list) { 1684 const struct net_device_ops *ops = dev->netdev_ops; 1685 1686 /* 1687 * Call the device specific close. This cannot fail. 1688 * Only if device is UP 1689 * 1690 * We allow it to be called even after a DETACH hot-plug 1691 * event. 1692 */ 1693 if (ops->ndo_stop) 1694 ops->ndo_stop(dev); 1695 1696 dev->flags &= ~IFF_UP; 1697 netpoll_poll_enable(dev); 1698 } 1699 } 1700 1701 static void __dev_close(struct net_device *dev) 1702 { 1703 LIST_HEAD(single); 1704 1705 list_add(&dev->close_list, &single); 1706 __dev_close_many(&single); 1707 list_del(&single); 1708 } 1709 1710 void dev_close_many(struct list_head *head, bool unlink) 1711 { 1712 struct net_device *dev, *tmp; 1713 1714 /* Remove the devices that don't need to be closed */ 1715 list_for_each_entry_safe(dev, tmp, head, close_list) 1716 if (!(dev->flags & IFF_UP)) 1717 list_del_init(&dev->close_list); 1718 1719 __dev_close_many(head); 1720 1721 list_for_each_entry_safe(dev, tmp, head, close_list) { 1722 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1723 call_netdevice_notifiers(NETDEV_DOWN, dev); 1724 if (unlink) 1725 list_del_init(&dev->close_list); 1726 } 1727 } 1728 EXPORT_SYMBOL(dev_close_many); 1729 1730 /** 1731 * dev_close - shutdown an interface. 1732 * @dev: device to shutdown 1733 * 1734 * This function moves an active device into down state. A 1735 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1736 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1737 * chain. 1738 */ 1739 void dev_close(struct net_device *dev) 1740 { 1741 if (dev->flags & IFF_UP) { 1742 LIST_HEAD(single); 1743 1744 list_add(&dev->close_list, &single); 1745 dev_close_many(&single, true); 1746 list_del(&single); 1747 } 1748 } 1749 EXPORT_SYMBOL(dev_close); 1750 1751 1752 /** 1753 * dev_disable_lro - disable Large Receive Offload on a device 1754 * @dev: device 1755 * 1756 * Disable Large Receive Offload (LRO) on a net device. Must be 1757 * called under RTNL. This is needed if received packets may be 1758 * forwarded to another interface. 1759 */ 1760 void dev_disable_lro(struct net_device *dev) 1761 { 1762 struct net_device *lower_dev; 1763 struct list_head *iter; 1764 1765 dev->wanted_features &= ~NETIF_F_LRO; 1766 netdev_update_features(dev); 1767 1768 if (unlikely(dev->features & NETIF_F_LRO)) 1769 netdev_WARN(dev, "failed to disable LRO!\n"); 1770 1771 netdev_for_each_lower_dev(dev, lower_dev, iter) 1772 dev_disable_lro(lower_dev); 1773 } 1774 EXPORT_SYMBOL(dev_disable_lro); 1775 1776 /** 1777 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1778 * @dev: device 1779 * 1780 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1781 * called under RTNL. This is needed if Generic XDP is installed on 1782 * the device. 1783 */ 1784 static void dev_disable_gro_hw(struct net_device *dev) 1785 { 1786 dev->wanted_features &= ~NETIF_F_GRO_HW; 1787 netdev_update_features(dev); 1788 1789 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1790 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1791 } 1792 1793 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1794 { 1795 #define N(val) \ 1796 case NETDEV_##val: \ 1797 return "NETDEV_" __stringify(val); 1798 switch (cmd) { 1799 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1800 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1801 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1802 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1803 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1804 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1805 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1806 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1807 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1808 N(PRE_CHANGEADDR) 1809 } 1810 #undef N 1811 return "UNKNOWN_NETDEV_EVENT"; 1812 } 1813 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1814 1815 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1816 struct net_device *dev) 1817 { 1818 struct netdev_notifier_info info = { 1819 .dev = dev, 1820 }; 1821 1822 return nb->notifier_call(nb, val, &info); 1823 } 1824 1825 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1826 struct net_device *dev) 1827 { 1828 int err; 1829 1830 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1831 err = notifier_to_errno(err); 1832 if (err) 1833 return err; 1834 1835 if (!(dev->flags & IFF_UP)) 1836 return 0; 1837 1838 call_netdevice_notifier(nb, NETDEV_UP, dev); 1839 return 0; 1840 } 1841 1842 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1843 struct net_device *dev) 1844 { 1845 if (dev->flags & IFF_UP) { 1846 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1847 dev); 1848 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1849 } 1850 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1851 } 1852 1853 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1854 struct net *net) 1855 { 1856 struct net_device *dev; 1857 int err; 1858 1859 for_each_netdev(net, dev) { 1860 err = call_netdevice_register_notifiers(nb, dev); 1861 if (err) 1862 goto rollback; 1863 } 1864 return 0; 1865 1866 rollback: 1867 for_each_netdev_continue_reverse(net, dev) 1868 call_netdevice_unregister_notifiers(nb, dev); 1869 return err; 1870 } 1871 1872 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1873 struct net *net) 1874 { 1875 struct net_device *dev; 1876 1877 for_each_netdev(net, dev) 1878 call_netdevice_unregister_notifiers(nb, dev); 1879 } 1880 1881 static int dev_boot_phase = 1; 1882 1883 /** 1884 * register_netdevice_notifier - register a network notifier block 1885 * @nb: notifier 1886 * 1887 * Register a notifier to be called when network device events occur. 1888 * The notifier passed is linked into the kernel structures and must 1889 * not be reused until it has been unregistered. A negative errno code 1890 * is returned on a failure. 1891 * 1892 * When registered all registration and up events are replayed 1893 * to the new notifier to allow device to have a race free 1894 * view of the network device list. 1895 */ 1896 1897 int register_netdevice_notifier(struct notifier_block *nb) 1898 { 1899 struct net *net; 1900 int err; 1901 1902 /* Close race with setup_net() and cleanup_net() */ 1903 down_write(&pernet_ops_rwsem); 1904 rtnl_lock(); 1905 err = raw_notifier_chain_register(&netdev_chain, nb); 1906 if (err) 1907 goto unlock; 1908 if (dev_boot_phase) 1909 goto unlock; 1910 for_each_net(net) { 1911 err = call_netdevice_register_net_notifiers(nb, net); 1912 if (err) 1913 goto rollback; 1914 } 1915 1916 unlock: 1917 rtnl_unlock(); 1918 up_write(&pernet_ops_rwsem); 1919 return err; 1920 1921 rollback: 1922 for_each_net_continue_reverse(net) 1923 call_netdevice_unregister_net_notifiers(nb, net); 1924 1925 raw_notifier_chain_unregister(&netdev_chain, nb); 1926 goto unlock; 1927 } 1928 EXPORT_SYMBOL(register_netdevice_notifier); 1929 1930 /** 1931 * unregister_netdevice_notifier - unregister a network notifier block 1932 * @nb: notifier 1933 * 1934 * Unregister a notifier previously registered by 1935 * register_netdevice_notifier(). The notifier is unlinked into the 1936 * kernel structures and may then be reused. A negative errno code 1937 * is returned on a failure. 1938 * 1939 * After unregistering unregister and down device events are synthesized 1940 * for all devices on the device list to the removed notifier to remove 1941 * the need for special case cleanup code. 1942 */ 1943 1944 int unregister_netdevice_notifier(struct notifier_block *nb) 1945 { 1946 struct net *net; 1947 int err; 1948 1949 /* Close race with setup_net() and cleanup_net() */ 1950 down_write(&pernet_ops_rwsem); 1951 rtnl_lock(); 1952 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1953 if (err) 1954 goto unlock; 1955 1956 for_each_net(net) 1957 call_netdevice_unregister_net_notifiers(nb, net); 1958 1959 unlock: 1960 rtnl_unlock(); 1961 up_write(&pernet_ops_rwsem); 1962 return err; 1963 } 1964 EXPORT_SYMBOL(unregister_netdevice_notifier); 1965 1966 static int __register_netdevice_notifier_net(struct net *net, 1967 struct notifier_block *nb, 1968 bool ignore_call_fail) 1969 { 1970 int err; 1971 1972 err = raw_notifier_chain_register(&net->netdev_chain, nb); 1973 if (err) 1974 return err; 1975 if (dev_boot_phase) 1976 return 0; 1977 1978 err = call_netdevice_register_net_notifiers(nb, net); 1979 if (err && !ignore_call_fail) 1980 goto chain_unregister; 1981 1982 return 0; 1983 1984 chain_unregister: 1985 raw_notifier_chain_unregister(&net->netdev_chain, nb); 1986 return err; 1987 } 1988 1989 static int __unregister_netdevice_notifier_net(struct net *net, 1990 struct notifier_block *nb) 1991 { 1992 int err; 1993 1994 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 1995 if (err) 1996 return err; 1997 1998 call_netdevice_unregister_net_notifiers(nb, net); 1999 return 0; 2000 } 2001 2002 /** 2003 * register_netdevice_notifier_net - register a per-netns network notifier block 2004 * @net: network namespace 2005 * @nb: notifier 2006 * 2007 * Register a notifier to be called when network device events occur. 2008 * The notifier passed is linked into the kernel structures and must 2009 * not be reused until it has been unregistered. A negative errno code 2010 * is returned on a failure. 2011 * 2012 * When registered all registration and up events are replayed 2013 * to the new notifier to allow device to have a race free 2014 * view of the network device list. 2015 */ 2016 2017 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 2018 { 2019 int err; 2020 2021 rtnl_lock(); 2022 err = __register_netdevice_notifier_net(net, nb, false); 2023 rtnl_unlock(); 2024 return err; 2025 } 2026 EXPORT_SYMBOL(register_netdevice_notifier_net); 2027 2028 /** 2029 * unregister_netdevice_notifier_net - unregister a per-netns 2030 * network notifier block 2031 * @net: network namespace 2032 * @nb: notifier 2033 * 2034 * Unregister a notifier previously registered by 2035 * register_netdevice_notifier(). The notifier is unlinked into the 2036 * kernel structures and may then be reused. A negative errno code 2037 * is returned on a failure. 2038 * 2039 * After unregistering unregister and down device events are synthesized 2040 * for all devices on the device list to the removed notifier to remove 2041 * the need for special case cleanup code. 2042 */ 2043 2044 int unregister_netdevice_notifier_net(struct net *net, 2045 struct notifier_block *nb) 2046 { 2047 int err; 2048 2049 rtnl_lock(); 2050 err = __unregister_netdevice_notifier_net(net, nb); 2051 rtnl_unlock(); 2052 return err; 2053 } 2054 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 2055 2056 int register_netdevice_notifier_dev_net(struct net_device *dev, 2057 struct notifier_block *nb, 2058 struct netdev_net_notifier *nn) 2059 { 2060 int err; 2061 2062 rtnl_lock(); 2063 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 2064 if (!err) { 2065 nn->nb = nb; 2066 list_add(&nn->list, &dev->net_notifier_list); 2067 } 2068 rtnl_unlock(); 2069 return err; 2070 } 2071 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 2072 2073 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2074 struct notifier_block *nb, 2075 struct netdev_net_notifier *nn) 2076 { 2077 int err; 2078 2079 rtnl_lock(); 2080 list_del(&nn->list); 2081 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 2082 rtnl_unlock(); 2083 return err; 2084 } 2085 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 2086 2087 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 2088 struct net *net) 2089 { 2090 struct netdev_net_notifier *nn; 2091 2092 list_for_each_entry(nn, &dev->net_notifier_list, list) { 2093 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb); 2094 __register_netdevice_notifier_net(net, nn->nb, true); 2095 } 2096 } 2097 2098 /** 2099 * call_netdevice_notifiers_info - call all network notifier blocks 2100 * @val: value passed unmodified to notifier function 2101 * @info: notifier information data 2102 * 2103 * Call all network notifier blocks. Parameters and return value 2104 * are as for raw_notifier_call_chain(). 2105 */ 2106 2107 static int call_netdevice_notifiers_info(unsigned long val, 2108 struct netdev_notifier_info *info) 2109 { 2110 struct net *net = dev_net(info->dev); 2111 int ret; 2112 2113 ASSERT_RTNL(); 2114 2115 /* Run per-netns notifier block chain first, then run the global one. 2116 * Hopefully, one day, the global one is going to be removed after 2117 * all notifier block registrators get converted to be per-netns. 2118 */ 2119 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 2120 if (ret & NOTIFY_STOP_MASK) 2121 return ret; 2122 return raw_notifier_call_chain(&netdev_chain, val, info); 2123 } 2124 2125 static int call_netdevice_notifiers_extack(unsigned long val, 2126 struct net_device *dev, 2127 struct netlink_ext_ack *extack) 2128 { 2129 struct netdev_notifier_info info = { 2130 .dev = dev, 2131 .extack = extack, 2132 }; 2133 2134 return call_netdevice_notifiers_info(val, &info); 2135 } 2136 2137 /** 2138 * call_netdevice_notifiers - call all network notifier blocks 2139 * @val: value passed unmodified to notifier function 2140 * @dev: net_device pointer passed unmodified to notifier function 2141 * 2142 * Call all network notifier blocks. Parameters and return value 2143 * are as for raw_notifier_call_chain(). 2144 */ 2145 2146 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2147 { 2148 return call_netdevice_notifiers_extack(val, dev, NULL); 2149 } 2150 EXPORT_SYMBOL(call_netdevice_notifiers); 2151 2152 /** 2153 * call_netdevice_notifiers_mtu - call all network notifier blocks 2154 * @val: value passed unmodified to notifier function 2155 * @dev: net_device pointer passed unmodified to notifier function 2156 * @arg: additional u32 argument passed to the notifier function 2157 * 2158 * Call all network notifier blocks. Parameters and return value 2159 * are as for raw_notifier_call_chain(). 2160 */ 2161 static int call_netdevice_notifiers_mtu(unsigned long val, 2162 struct net_device *dev, u32 arg) 2163 { 2164 struct netdev_notifier_info_ext info = { 2165 .info.dev = dev, 2166 .ext.mtu = arg, 2167 }; 2168 2169 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2170 2171 return call_netdevice_notifiers_info(val, &info.info); 2172 } 2173 2174 #ifdef CONFIG_NET_INGRESS 2175 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2176 2177 void net_inc_ingress_queue(void) 2178 { 2179 static_branch_inc(&ingress_needed_key); 2180 } 2181 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2182 2183 void net_dec_ingress_queue(void) 2184 { 2185 static_branch_dec(&ingress_needed_key); 2186 } 2187 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2188 #endif 2189 2190 #ifdef CONFIG_NET_EGRESS 2191 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2192 2193 void net_inc_egress_queue(void) 2194 { 2195 static_branch_inc(&egress_needed_key); 2196 } 2197 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2198 2199 void net_dec_egress_queue(void) 2200 { 2201 static_branch_dec(&egress_needed_key); 2202 } 2203 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2204 #endif 2205 2206 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2207 #ifdef CONFIG_JUMP_LABEL 2208 static atomic_t netstamp_needed_deferred; 2209 static atomic_t netstamp_wanted; 2210 static void netstamp_clear(struct work_struct *work) 2211 { 2212 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2213 int wanted; 2214 2215 wanted = atomic_add_return(deferred, &netstamp_wanted); 2216 if (wanted > 0) 2217 static_branch_enable(&netstamp_needed_key); 2218 else 2219 static_branch_disable(&netstamp_needed_key); 2220 } 2221 static DECLARE_WORK(netstamp_work, netstamp_clear); 2222 #endif 2223 2224 void net_enable_timestamp(void) 2225 { 2226 #ifdef CONFIG_JUMP_LABEL 2227 int wanted; 2228 2229 while (1) { 2230 wanted = atomic_read(&netstamp_wanted); 2231 if (wanted <= 0) 2232 break; 2233 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 2234 return; 2235 } 2236 atomic_inc(&netstamp_needed_deferred); 2237 schedule_work(&netstamp_work); 2238 #else 2239 static_branch_inc(&netstamp_needed_key); 2240 #endif 2241 } 2242 EXPORT_SYMBOL(net_enable_timestamp); 2243 2244 void net_disable_timestamp(void) 2245 { 2246 #ifdef CONFIG_JUMP_LABEL 2247 int wanted; 2248 2249 while (1) { 2250 wanted = atomic_read(&netstamp_wanted); 2251 if (wanted <= 1) 2252 break; 2253 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 2254 return; 2255 } 2256 atomic_dec(&netstamp_needed_deferred); 2257 schedule_work(&netstamp_work); 2258 #else 2259 static_branch_dec(&netstamp_needed_key); 2260 #endif 2261 } 2262 EXPORT_SYMBOL(net_disable_timestamp); 2263 2264 static inline void net_timestamp_set(struct sk_buff *skb) 2265 { 2266 skb->tstamp = 0; 2267 if (static_branch_unlikely(&netstamp_needed_key)) 2268 __net_timestamp(skb); 2269 } 2270 2271 #define net_timestamp_check(COND, SKB) \ 2272 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2273 if ((COND) && !(SKB)->tstamp) \ 2274 __net_timestamp(SKB); \ 2275 } \ 2276 2277 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2278 { 2279 return __is_skb_forwardable(dev, skb, true); 2280 } 2281 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2282 2283 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb, 2284 bool check_mtu) 2285 { 2286 int ret = ____dev_forward_skb(dev, skb, check_mtu); 2287 2288 if (likely(!ret)) { 2289 skb->protocol = eth_type_trans(skb, dev); 2290 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2291 } 2292 2293 return ret; 2294 } 2295 2296 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2297 { 2298 return __dev_forward_skb2(dev, skb, true); 2299 } 2300 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2301 2302 /** 2303 * dev_forward_skb - loopback an skb to another netif 2304 * 2305 * @dev: destination network device 2306 * @skb: buffer to forward 2307 * 2308 * return values: 2309 * NET_RX_SUCCESS (no congestion) 2310 * NET_RX_DROP (packet was dropped, but freed) 2311 * 2312 * dev_forward_skb can be used for injecting an skb from the 2313 * start_xmit function of one device into the receive queue 2314 * of another device. 2315 * 2316 * The receiving device may be in another namespace, so 2317 * we have to clear all information in the skb that could 2318 * impact namespace isolation. 2319 */ 2320 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2321 { 2322 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2323 } 2324 EXPORT_SYMBOL_GPL(dev_forward_skb); 2325 2326 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb) 2327 { 2328 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb); 2329 } 2330 2331 static inline int deliver_skb(struct sk_buff *skb, 2332 struct packet_type *pt_prev, 2333 struct net_device *orig_dev) 2334 { 2335 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2336 return -ENOMEM; 2337 refcount_inc(&skb->users); 2338 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2339 } 2340 2341 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2342 struct packet_type **pt, 2343 struct net_device *orig_dev, 2344 __be16 type, 2345 struct list_head *ptype_list) 2346 { 2347 struct packet_type *ptype, *pt_prev = *pt; 2348 2349 list_for_each_entry_rcu(ptype, ptype_list, list) { 2350 if (ptype->type != type) 2351 continue; 2352 if (pt_prev) 2353 deliver_skb(skb, pt_prev, orig_dev); 2354 pt_prev = ptype; 2355 } 2356 *pt = pt_prev; 2357 } 2358 2359 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2360 { 2361 if (!ptype->af_packet_priv || !skb->sk) 2362 return false; 2363 2364 if (ptype->id_match) 2365 return ptype->id_match(ptype, skb->sk); 2366 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2367 return true; 2368 2369 return false; 2370 } 2371 2372 /** 2373 * dev_nit_active - return true if any network interface taps are in use 2374 * 2375 * @dev: network device to check for the presence of taps 2376 */ 2377 bool dev_nit_active(struct net_device *dev) 2378 { 2379 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 2380 } 2381 EXPORT_SYMBOL_GPL(dev_nit_active); 2382 2383 /* 2384 * Support routine. Sends outgoing frames to any network 2385 * taps currently in use. 2386 */ 2387 2388 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2389 { 2390 struct packet_type *ptype; 2391 struct sk_buff *skb2 = NULL; 2392 struct packet_type *pt_prev = NULL; 2393 struct list_head *ptype_list = &ptype_all; 2394 2395 rcu_read_lock(); 2396 again: 2397 list_for_each_entry_rcu(ptype, ptype_list, list) { 2398 if (ptype->ignore_outgoing) 2399 continue; 2400 2401 /* Never send packets back to the socket 2402 * they originated from - MvS (miquels@drinkel.ow.org) 2403 */ 2404 if (skb_loop_sk(ptype, skb)) 2405 continue; 2406 2407 if (pt_prev) { 2408 deliver_skb(skb2, pt_prev, skb->dev); 2409 pt_prev = ptype; 2410 continue; 2411 } 2412 2413 /* need to clone skb, done only once */ 2414 skb2 = skb_clone(skb, GFP_ATOMIC); 2415 if (!skb2) 2416 goto out_unlock; 2417 2418 net_timestamp_set(skb2); 2419 2420 /* skb->nh should be correctly 2421 * set by sender, so that the second statement is 2422 * just protection against buggy protocols. 2423 */ 2424 skb_reset_mac_header(skb2); 2425 2426 if (skb_network_header(skb2) < skb2->data || 2427 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2428 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2429 ntohs(skb2->protocol), 2430 dev->name); 2431 skb_reset_network_header(skb2); 2432 } 2433 2434 skb2->transport_header = skb2->network_header; 2435 skb2->pkt_type = PACKET_OUTGOING; 2436 pt_prev = ptype; 2437 } 2438 2439 if (ptype_list == &ptype_all) { 2440 ptype_list = &dev->ptype_all; 2441 goto again; 2442 } 2443 out_unlock: 2444 if (pt_prev) { 2445 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2446 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2447 else 2448 kfree_skb(skb2); 2449 } 2450 rcu_read_unlock(); 2451 } 2452 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2453 2454 /** 2455 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2456 * @dev: Network device 2457 * @txq: number of queues available 2458 * 2459 * If real_num_tx_queues is changed the tc mappings may no longer be 2460 * valid. To resolve this verify the tc mapping remains valid and if 2461 * not NULL the mapping. With no priorities mapping to this 2462 * offset/count pair it will no longer be used. In the worst case TC0 2463 * is invalid nothing can be done so disable priority mappings. If is 2464 * expected that drivers will fix this mapping if they can before 2465 * calling netif_set_real_num_tx_queues. 2466 */ 2467 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2468 { 2469 int i; 2470 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2471 2472 /* If TC0 is invalidated disable TC mapping */ 2473 if (tc->offset + tc->count > txq) { 2474 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2475 dev->num_tc = 0; 2476 return; 2477 } 2478 2479 /* Invalidated prio to tc mappings set to TC0 */ 2480 for (i = 1; i < TC_BITMASK + 1; i++) { 2481 int q = netdev_get_prio_tc_map(dev, i); 2482 2483 tc = &dev->tc_to_txq[q]; 2484 if (tc->offset + tc->count > txq) { 2485 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2486 i, q); 2487 netdev_set_prio_tc_map(dev, i, 0); 2488 } 2489 } 2490 } 2491 2492 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2493 { 2494 if (dev->num_tc) { 2495 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2496 int i; 2497 2498 /* walk through the TCs and see if it falls into any of them */ 2499 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2500 if ((txq - tc->offset) < tc->count) 2501 return i; 2502 } 2503 2504 /* didn't find it, just return -1 to indicate no match */ 2505 return -1; 2506 } 2507 2508 return 0; 2509 } 2510 EXPORT_SYMBOL(netdev_txq_to_tc); 2511 2512 #ifdef CONFIG_XPS 2513 static struct static_key xps_needed __read_mostly; 2514 static struct static_key xps_rxqs_needed __read_mostly; 2515 static DEFINE_MUTEX(xps_map_mutex); 2516 #define xmap_dereference(P) \ 2517 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2518 2519 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2520 struct xps_dev_maps *old_maps, int tci, u16 index) 2521 { 2522 struct xps_map *map = NULL; 2523 int pos; 2524 2525 if (dev_maps) 2526 map = xmap_dereference(dev_maps->attr_map[tci]); 2527 if (!map) 2528 return false; 2529 2530 for (pos = map->len; pos--;) { 2531 if (map->queues[pos] != index) 2532 continue; 2533 2534 if (map->len > 1) { 2535 map->queues[pos] = map->queues[--map->len]; 2536 break; 2537 } 2538 2539 if (old_maps) 2540 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL); 2541 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2542 kfree_rcu(map, rcu); 2543 return false; 2544 } 2545 2546 return true; 2547 } 2548 2549 static bool remove_xps_queue_cpu(struct net_device *dev, 2550 struct xps_dev_maps *dev_maps, 2551 int cpu, u16 offset, u16 count) 2552 { 2553 int num_tc = dev_maps->num_tc; 2554 bool active = false; 2555 int tci; 2556 2557 for (tci = cpu * num_tc; num_tc--; tci++) { 2558 int i, j; 2559 2560 for (i = count, j = offset; i--; j++) { 2561 if (!remove_xps_queue(dev_maps, NULL, tci, j)) 2562 break; 2563 } 2564 2565 active |= i < 0; 2566 } 2567 2568 return active; 2569 } 2570 2571 static void reset_xps_maps(struct net_device *dev, 2572 struct xps_dev_maps *dev_maps, 2573 enum xps_map_type type) 2574 { 2575 static_key_slow_dec_cpuslocked(&xps_needed); 2576 if (type == XPS_RXQS) 2577 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2578 2579 RCU_INIT_POINTER(dev->xps_maps[type], NULL); 2580 2581 kfree_rcu(dev_maps, rcu); 2582 } 2583 2584 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type, 2585 u16 offset, u16 count) 2586 { 2587 struct xps_dev_maps *dev_maps; 2588 bool active = false; 2589 int i, j; 2590 2591 dev_maps = xmap_dereference(dev->xps_maps[type]); 2592 if (!dev_maps) 2593 return; 2594 2595 for (j = 0; j < dev_maps->nr_ids; j++) 2596 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count); 2597 if (!active) 2598 reset_xps_maps(dev, dev_maps, type); 2599 2600 if (type == XPS_CPUS) { 2601 for (i = offset + (count - 1); count--; i--) 2602 netdev_queue_numa_node_write( 2603 netdev_get_tx_queue(dev, i), NUMA_NO_NODE); 2604 } 2605 } 2606 2607 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2608 u16 count) 2609 { 2610 if (!static_key_false(&xps_needed)) 2611 return; 2612 2613 cpus_read_lock(); 2614 mutex_lock(&xps_map_mutex); 2615 2616 if (static_key_false(&xps_rxqs_needed)) 2617 clean_xps_maps(dev, XPS_RXQS, offset, count); 2618 2619 clean_xps_maps(dev, XPS_CPUS, offset, count); 2620 2621 mutex_unlock(&xps_map_mutex); 2622 cpus_read_unlock(); 2623 } 2624 2625 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2626 { 2627 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2628 } 2629 2630 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2631 u16 index, bool is_rxqs_map) 2632 { 2633 struct xps_map *new_map; 2634 int alloc_len = XPS_MIN_MAP_ALLOC; 2635 int i, pos; 2636 2637 for (pos = 0; map && pos < map->len; pos++) { 2638 if (map->queues[pos] != index) 2639 continue; 2640 return map; 2641 } 2642 2643 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2644 if (map) { 2645 if (pos < map->alloc_len) 2646 return map; 2647 2648 alloc_len = map->alloc_len * 2; 2649 } 2650 2651 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2652 * map 2653 */ 2654 if (is_rxqs_map) 2655 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2656 else 2657 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2658 cpu_to_node(attr_index)); 2659 if (!new_map) 2660 return NULL; 2661 2662 for (i = 0; i < pos; i++) 2663 new_map->queues[i] = map->queues[i]; 2664 new_map->alloc_len = alloc_len; 2665 new_map->len = pos; 2666 2667 return new_map; 2668 } 2669 2670 /* Copy xps maps at a given index */ 2671 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps, 2672 struct xps_dev_maps *new_dev_maps, int index, 2673 int tc, bool skip_tc) 2674 { 2675 int i, tci = index * dev_maps->num_tc; 2676 struct xps_map *map; 2677 2678 /* copy maps belonging to foreign traffic classes */ 2679 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2680 if (i == tc && skip_tc) 2681 continue; 2682 2683 /* fill in the new device map from the old device map */ 2684 map = xmap_dereference(dev_maps->attr_map[tci]); 2685 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2686 } 2687 } 2688 2689 /* Must be called under cpus_read_lock */ 2690 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2691 u16 index, enum xps_map_type type) 2692 { 2693 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL; 2694 const unsigned long *online_mask = NULL; 2695 bool active = false, copy = false; 2696 int i, j, tci, numa_node_id = -2; 2697 int maps_sz, num_tc = 1, tc = 0; 2698 struct xps_map *map, *new_map; 2699 unsigned int nr_ids; 2700 2701 if (dev->num_tc) { 2702 /* Do not allow XPS on subordinate device directly */ 2703 num_tc = dev->num_tc; 2704 if (num_tc < 0) 2705 return -EINVAL; 2706 2707 /* If queue belongs to subordinate dev use its map */ 2708 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2709 2710 tc = netdev_txq_to_tc(dev, index); 2711 if (tc < 0) 2712 return -EINVAL; 2713 } 2714 2715 mutex_lock(&xps_map_mutex); 2716 2717 dev_maps = xmap_dereference(dev->xps_maps[type]); 2718 if (type == XPS_RXQS) { 2719 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2720 nr_ids = dev->num_rx_queues; 2721 } else { 2722 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2723 if (num_possible_cpus() > 1) 2724 online_mask = cpumask_bits(cpu_online_mask); 2725 nr_ids = nr_cpu_ids; 2726 } 2727 2728 if (maps_sz < L1_CACHE_BYTES) 2729 maps_sz = L1_CACHE_BYTES; 2730 2731 /* The old dev_maps could be larger or smaller than the one we're 2732 * setting up now, as dev->num_tc or nr_ids could have been updated in 2733 * between. We could try to be smart, but let's be safe instead and only 2734 * copy foreign traffic classes if the two map sizes match. 2735 */ 2736 if (dev_maps && 2737 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids) 2738 copy = true; 2739 2740 /* allocate memory for queue storage */ 2741 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2742 j < nr_ids;) { 2743 if (!new_dev_maps) { 2744 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2745 if (!new_dev_maps) { 2746 mutex_unlock(&xps_map_mutex); 2747 return -ENOMEM; 2748 } 2749 2750 new_dev_maps->nr_ids = nr_ids; 2751 new_dev_maps->num_tc = num_tc; 2752 } 2753 2754 tci = j * num_tc + tc; 2755 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL; 2756 2757 map = expand_xps_map(map, j, index, type == XPS_RXQS); 2758 if (!map) 2759 goto error; 2760 2761 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2762 } 2763 2764 if (!new_dev_maps) 2765 goto out_no_new_maps; 2766 2767 if (!dev_maps) { 2768 /* Increment static keys at most once per type */ 2769 static_key_slow_inc_cpuslocked(&xps_needed); 2770 if (type == XPS_RXQS) 2771 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2772 } 2773 2774 for (j = 0; j < nr_ids; j++) { 2775 bool skip_tc = false; 2776 2777 tci = j * num_tc + tc; 2778 if (netif_attr_test_mask(j, mask, nr_ids) && 2779 netif_attr_test_online(j, online_mask, nr_ids)) { 2780 /* add tx-queue to CPU/rx-queue maps */ 2781 int pos = 0; 2782 2783 skip_tc = true; 2784 2785 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2786 while ((pos < map->len) && (map->queues[pos] != index)) 2787 pos++; 2788 2789 if (pos == map->len) 2790 map->queues[map->len++] = index; 2791 #ifdef CONFIG_NUMA 2792 if (type == XPS_CPUS) { 2793 if (numa_node_id == -2) 2794 numa_node_id = cpu_to_node(j); 2795 else if (numa_node_id != cpu_to_node(j)) 2796 numa_node_id = -1; 2797 } 2798 #endif 2799 } 2800 2801 if (copy) 2802 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc, 2803 skip_tc); 2804 } 2805 2806 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps); 2807 2808 /* Cleanup old maps */ 2809 if (!dev_maps) 2810 goto out_no_old_maps; 2811 2812 for (j = 0; j < dev_maps->nr_ids; j++) { 2813 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) { 2814 map = xmap_dereference(dev_maps->attr_map[tci]); 2815 if (!map) 2816 continue; 2817 2818 if (copy) { 2819 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2820 if (map == new_map) 2821 continue; 2822 } 2823 2824 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2825 kfree_rcu(map, rcu); 2826 } 2827 } 2828 2829 old_dev_maps = dev_maps; 2830 2831 out_no_old_maps: 2832 dev_maps = new_dev_maps; 2833 active = true; 2834 2835 out_no_new_maps: 2836 if (type == XPS_CPUS) 2837 /* update Tx queue numa node */ 2838 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2839 (numa_node_id >= 0) ? 2840 numa_node_id : NUMA_NO_NODE); 2841 2842 if (!dev_maps) 2843 goto out_no_maps; 2844 2845 /* removes tx-queue from unused CPUs/rx-queues */ 2846 for (j = 0; j < dev_maps->nr_ids; j++) { 2847 tci = j * dev_maps->num_tc; 2848 2849 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2850 if (i == tc && 2851 netif_attr_test_mask(j, mask, dev_maps->nr_ids) && 2852 netif_attr_test_online(j, online_mask, dev_maps->nr_ids)) 2853 continue; 2854 2855 active |= remove_xps_queue(dev_maps, 2856 copy ? old_dev_maps : NULL, 2857 tci, index); 2858 } 2859 } 2860 2861 if (old_dev_maps) 2862 kfree_rcu(old_dev_maps, rcu); 2863 2864 /* free map if not active */ 2865 if (!active) 2866 reset_xps_maps(dev, dev_maps, type); 2867 2868 out_no_maps: 2869 mutex_unlock(&xps_map_mutex); 2870 2871 return 0; 2872 error: 2873 /* remove any maps that we added */ 2874 for (j = 0; j < nr_ids; j++) { 2875 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2876 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2877 map = copy ? 2878 xmap_dereference(dev_maps->attr_map[tci]) : 2879 NULL; 2880 if (new_map && new_map != map) 2881 kfree(new_map); 2882 } 2883 } 2884 2885 mutex_unlock(&xps_map_mutex); 2886 2887 kfree(new_dev_maps); 2888 return -ENOMEM; 2889 } 2890 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2891 2892 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2893 u16 index) 2894 { 2895 int ret; 2896 2897 cpus_read_lock(); 2898 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS); 2899 cpus_read_unlock(); 2900 2901 return ret; 2902 } 2903 EXPORT_SYMBOL(netif_set_xps_queue); 2904 2905 #endif 2906 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2907 { 2908 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2909 2910 /* Unbind any subordinate channels */ 2911 while (txq-- != &dev->_tx[0]) { 2912 if (txq->sb_dev) 2913 netdev_unbind_sb_channel(dev, txq->sb_dev); 2914 } 2915 } 2916 2917 void netdev_reset_tc(struct net_device *dev) 2918 { 2919 #ifdef CONFIG_XPS 2920 netif_reset_xps_queues_gt(dev, 0); 2921 #endif 2922 netdev_unbind_all_sb_channels(dev); 2923 2924 /* Reset TC configuration of device */ 2925 dev->num_tc = 0; 2926 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2927 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2928 } 2929 EXPORT_SYMBOL(netdev_reset_tc); 2930 2931 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2932 { 2933 if (tc >= dev->num_tc) 2934 return -EINVAL; 2935 2936 #ifdef CONFIG_XPS 2937 netif_reset_xps_queues(dev, offset, count); 2938 #endif 2939 dev->tc_to_txq[tc].count = count; 2940 dev->tc_to_txq[tc].offset = offset; 2941 return 0; 2942 } 2943 EXPORT_SYMBOL(netdev_set_tc_queue); 2944 2945 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2946 { 2947 if (num_tc > TC_MAX_QUEUE) 2948 return -EINVAL; 2949 2950 #ifdef CONFIG_XPS 2951 netif_reset_xps_queues_gt(dev, 0); 2952 #endif 2953 netdev_unbind_all_sb_channels(dev); 2954 2955 dev->num_tc = num_tc; 2956 return 0; 2957 } 2958 EXPORT_SYMBOL(netdev_set_num_tc); 2959 2960 void netdev_unbind_sb_channel(struct net_device *dev, 2961 struct net_device *sb_dev) 2962 { 2963 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2964 2965 #ifdef CONFIG_XPS 2966 netif_reset_xps_queues_gt(sb_dev, 0); 2967 #endif 2968 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2969 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2970 2971 while (txq-- != &dev->_tx[0]) { 2972 if (txq->sb_dev == sb_dev) 2973 txq->sb_dev = NULL; 2974 } 2975 } 2976 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2977 2978 int netdev_bind_sb_channel_queue(struct net_device *dev, 2979 struct net_device *sb_dev, 2980 u8 tc, u16 count, u16 offset) 2981 { 2982 /* Make certain the sb_dev and dev are already configured */ 2983 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2984 return -EINVAL; 2985 2986 /* We cannot hand out queues we don't have */ 2987 if ((offset + count) > dev->real_num_tx_queues) 2988 return -EINVAL; 2989 2990 /* Record the mapping */ 2991 sb_dev->tc_to_txq[tc].count = count; 2992 sb_dev->tc_to_txq[tc].offset = offset; 2993 2994 /* Provide a way for Tx queue to find the tc_to_txq map or 2995 * XPS map for itself. 2996 */ 2997 while (count--) 2998 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2999 3000 return 0; 3001 } 3002 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 3003 3004 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 3005 { 3006 /* Do not use a multiqueue device to represent a subordinate channel */ 3007 if (netif_is_multiqueue(dev)) 3008 return -ENODEV; 3009 3010 /* We allow channels 1 - 32767 to be used for subordinate channels. 3011 * Channel 0 is meant to be "native" mode and used only to represent 3012 * the main root device. We allow writing 0 to reset the device back 3013 * to normal mode after being used as a subordinate channel. 3014 */ 3015 if (channel > S16_MAX) 3016 return -EINVAL; 3017 3018 dev->num_tc = -channel; 3019 3020 return 0; 3021 } 3022 EXPORT_SYMBOL(netdev_set_sb_channel); 3023 3024 /* 3025 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 3026 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 3027 */ 3028 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 3029 { 3030 bool disabling; 3031 int rc; 3032 3033 disabling = txq < dev->real_num_tx_queues; 3034 3035 if (txq < 1 || txq > dev->num_tx_queues) 3036 return -EINVAL; 3037 3038 if (dev->reg_state == NETREG_REGISTERED || 3039 dev->reg_state == NETREG_UNREGISTERING) { 3040 ASSERT_RTNL(); 3041 3042 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 3043 txq); 3044 if (rc) 3045 return rc; 3046 3047 if (dev->num_tc) 3048 netif_setup_tc(dev, txq); 3049 3050 dev->real_num_tx_queues = txq; 3051 3052 if (disabling) { 3053 synchronize_net(); 3054 qdisc_reset_all_tx_gt(dev, txq); 3055 #ifdef CONFIG_XPS 3056 netif_reset_xps_queues_gt(dev, txq); 3057 #endif 3058 } 3059 } else { 3060 dev->real_num_tx_queues = txq; 3061 } 3062 3063 return 0; 3064 } 3065 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 3066 3067 #ifdef CONFIG_SYSFS 3068 /** 3069 * netif_set_real_num_rx_queues - set actual number of RX queues used 3070 * @dev: Network device 3071 * @rxq: Actual number of RX queues 3072 * 3073 * This must be called either with the rtnl_lock held or before 3074 * registration of the net device. Returns 0 on success, or a 3075 * negative error code. If called before registration, it always 3076 * succeeds. 3077 */ 3078 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 3079 { 3080 int rc; 3081 3082 if (rxq < 1 || rxq > dev->num_rx_queues) 3083 return -EINVAL; 3084 3085 if (dev->reg_state == NETREG_REGISTERED) { 3086 ASSERT_RTNL(); 3087 3088 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 3089 rxq); 3090 if (rc) 3091 return rc; 3092 } 3093 3094 dev->real_num_rx_queues = rxq; 3095 return 0; 3096 } 3097 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 3098 #endif 3099 3100 /** 3101 * netif_get_num_default_rss_queues - default number of RSS queues 3102 * 3103 * This routine should set an upper limit on the number of RSS queues 3104 * used by default by multiqueue devices. 3105 */ 3106 int netif_get_num_default_rss_queues(void) 3107 { 3108 return is_kdump_kernel() ? 3109 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 3110 } 3111 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3112 3113 static void __netif_reschedule(struct Qdisc *q) 3114 { 3115 struct softnet_data *sd; 3116 unsigned long flags; 3117 3118 local_irq_save(flags); 3119 sd = this_cpu_ptr(&softnet_data); 3120 q->next_sched = NULL; 3121 *sd->output_queue_tailp = q; 3122 sd->output_queue_tailp = &q->next_sched; 3123 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3124 local_irq_restore(flags); 3125 } 3126 3127 void __netif_schedule(struct Qdisc *q) 3128 { 3129 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3130 __netif_reschedule(q); 3131 } 3132 EXPORT_SYMBOL(__netif_schedule); 3133 3134 struct dev_kfree_skb_cb { 3135 enum skb_free_reason reason; 3136 }; 3137 3138 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3139 { 3140 return (struct dev_kfree_skb_cb *)skb->cb; 3141 } 3142 3143 void netif_schedule_queue(struct netdev_queue *txq) 3144 { 3145 rcu_read_lock(); 3146 if (!netif_xmit_stopped(txq)) { 3147 struct Qdisc *q = rcu_dereference(txq->qdisc); 3148 3149 __netif_schedule(q); 3150 } 3151 rcu_read_unlock(); 3152 } 3153 EXPORT_SYMBOL(netif_schedule_queue); 3154 3155 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3156 { 3157 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3158 struct Qdisc *q; 3159 3160 rcu_read_lock(); 3161 q = rcu_dereference(dev_queue->qdisc); 3162 __netif_schedule(q); 3163 rcu_read_unlock(); 3164 } 3165 } 3166 EXPORT_SYMBOL(netif_tx_wake_queue); 3167 3168 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 3169 { 3170 unsigned long flags; 3171 3172 if (unlikely(!skb)) 3173 return; 3174 3175 if (likely(refcount_read(&skb->users) == 1)) { 3176 smp_rmb(); 3177 refcount_set(&skb->users, 0); 3178 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3179 return; 3180 } 3181 get_kfree_skb_cb(skb)->reason = reason; 3182 local_irq_save(flags); 3183 skb->next = __this_cpu_read(softnet_data.completion_queue); 3184 __this_cpu_write(softnet_data.completion_queue, skb); 3185 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3186 local_irq_restore(flags); 3187 } 3188 EXPORT_SYMBOL(__dev_kfree_skb_irq); 3189 3190 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 3191 { 3192 if (in_irq() || irqs_disabled()) 3193 __dev_kfree_skb_irq(skb, reason); 3194 else 3195 dev_kfree_skb(skb); 3196 } 3197 EXPORT_SYMBOL(__dev_kfree_skb_any); 3198 3199 3200 /** 3201 * netif_device_detach - mark device as removed 3202 * @dev: network device 3203 * 3204 * Mark device as removed from system and therefore no longer available. 3205 */ 3206 void netif_device_detach(struct net_device *dev) 3207 { 3208 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3209 netif_running(dev)) { 3210 netif_tx_stop_all_queues(dev); 3211 } 3212 } 3213 EXPORT_SYMBOL(netif_device_detach); 3214 3215 /** 3216 * netif_device_attach - mark device as attached 3217 * @dev: network device 3218 * 3219 * Mark device as attached from system and restart if needed. 3220 */ 3221 void netif_device_attach(struct net_device *dev) 3222 { 3223 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3224 netif_running(dev)) { 3225 netif_tx_wake_all_queues(dev); 3226 __netdev_watchdog_up(dev); 3227 } 3228 } 3229 EXPORT_SYMBOL(netif_device_attach); 3230 3231 /* 3232 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3233 * to be used as a distribution range. 3234 */ 3235 static u16 skb_tx_hash(const struct net_device *dev, 3236 const struct net_device *sb_dev, 3237 struct sk_buff *skb) 3238 { 3239 u32 hash; 3240 u16 qoffset = 0; 3241 u16 qcount = dev->real_num_tx_queues; 3242 3243 if (dev->num_tc) { 3244 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3245 3246 qoffset = sb_dev->tc_to_txq[tc].offset; 3247 qcount = sb_dev->tc_to_txq[tc].count; 3248 } 3249 3250 if (skb_rx_queue_recorded(skb)) { 3251 hash = skb_get_rx_queue(skb); 3252 if (hash >= qoffset) 3253 hash -= qoffset; 3254 while (unlikely(hash >= qcount)) 3255 hash -= qcount; 3256 return hash + qoffset; 3257 } 3258 3259 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3260 } 3261 3262 static void skb_warn_bad_offload(const struct sk_buff *skb) 3263 { 3264 static const netdev_features_t null_features; 3265 struct net_device *dev = skb->dev; 3266 const char *name = ""; 3267 3268 if (!net_ratelimit()) 3269 return; 3270 3271 if (dev) { 3272 if (dev->dev.parent) 3273 name = dev_driver_string(dev->dev.parent); 3274 else 3275 name = netdev_name(dev); 3276 } 3277 skb_dump(KERN_WARNING, skb, false); 3278 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3279 name, dev ? &dev->features : &null_features, 3280 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3281 } 3282 3283 /* 3284 * Invalidate hardware checksum when packet is to be mangled, and 3285 * complete checksum manually on outgoing path. 3286 */ 3287 int skb_checksum_help(struct sk_buff *skb) 3288 { 3289 __wsum csum; 3290 int ret = 0, offset; 3291 3292 if (skb->ip_summed == CHECKSUM_COMPLETE) 3293 goto out_set_summed; 3294 3295 if (unlikely(skb_is_gso(skb))) { 3296 skb_warn_bad_offload(skb); 3297 return -EINVAL; 3298 } 3299 3300 /* Before computing a checksum, we should make sure no frag could 3301 * be modified by an external entity : checksum could be wrong. 3302 */ 3303 if (skb_has_shared_frag(skb)) { 3304 ret = __skb_linearize(skb); 3305 if (ret) 3306 goto out; 3307 } 3308 3309 offset = skb_checksum_start_offset(skb); 3310 BUG_ON(offset >= skb_headlen(skb)); 3311 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3312 3313 offset += skb->csum_offset; 3314 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 3315 3316 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3317 if (ret) 3318 goto out; 3319 3320 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3321 out_set_summed: 3322 skb->ip_summed = CHECKSUM_NONE; 3323 out: 3324 return ret; 3325 } 3326 EXPORT_SYMBOL(skb_checksum_help); 3327 3328 int skb_crc32c_csum_help(struct sk_buff *skb) 3329 { 3330 __le32 crc32c_csum; 3331 int ret = 0, offset, start; 3332 3333 if (skb->ip_summed != CHECKSUM_PARTIAL) 3334 goto out; 3335 3336 if (unlikely(skb_is_gso(skb))) 3337 goto out; 3338 3339 /* Before computing a checksum, we should make sure no frag could 3340 * be modified by an external entity : checksum could be wrong. 3341 */ 3342 if (unlikely(skb_has_shared_frag(skb))) { 3343 ret = __skb_linearize(skb); 3344 if (ret) 3345 goto out; 3346 } 3347 start = skb_checksum_start_offset(skb); 3348 offset = start + offsetof(struct sctphdr, checksum); 3349 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3350 ret = -EINVAL; 3351 goto out; 3352 } 3353 3354 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3355 if (ret) 3356 goto out; 3357 3358 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 3359 skb->len - start, ~(__u32)0, 3360 crc32c_csum_stub)); 3361 *(__le32 *)(skb->data + offset) = crc32c_csum; 3362 skb->ip_summed = CHECKSUM_NONE; 3363 skb->csum_not_inet = 0; 3364 out: 3365 return ret; 3366 } 3367 3368 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3369 { 3370 __be16 type = skb->protocol; 3371 3372 /* Tunnel gso handlers can set protocol to ethernet. */ 3373 if (type == htons(ETH_P_TEB)) { 3374 struct ethhdr *eth; 3375 3376 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3377 return 0; 3378 3379 eth = (struct ethhdr *)skb->data; 3380 type = eth->h_proto; 3381 } 3382 3383 return __vlan_get_protocol(skb, type, depth); 3384 } 3385 3386 /** 3387 * skb_mac_gso_segment - mac layer segmentation handler. 3388 * @skb: buffer to segment 3389 * @features: features for the output path (see dev->features) 3390 */ 3391 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3392 netdev_features_t features) 3393 { 3394 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 3395 struct packet_offload *ptype; 3396 int vlan_depth = skb->mac_len; 3397 __be16 type = skb_network_protocol(skb, &vlan_depth); 3398 3399 if (unlikely(!type)) 3400 return ERR_PTR(-EINVAL); 3401 3402 __skb_pull(skb, vlan_depth); 3403 3404 rcu_read_lock(); 3405 list_for_each_entry_rcu(ptype, &offload_base, list) { 3406 if (ptype->type == type && ptype->callbacks.gso_segment) { 3407 segs = ptype->callbacks.gso_segment(skb, features); 3408 break; 3409 } 3410 } 3411 rcu_read_unlock(); 3412 3413 __skb_push(skb, skb->data - skb_mac_header(skb)); 3414 3415 return segs; 3416 } 3417 EXPORT_SYMBOL(skb_mac_gso_segment); 3418 3419 3420 /* openvswitch calls this on rx path, so we need a different check. 3421 */ 3422 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 3423 { 3424 if (tx_path) 3425 return skb->ip_summed != CHECKSUM_PARTIAL && 3426 skb->ip_summed != CHECKSUM_UNNECESSARY; 3427 3428 return skb->ip_summed == CHECKSUM_NONE; 3429 } 3430 3431 /** 3432 * __skb_gso_segment - Perform segmentation on skb. 3433 * @skb: buffer to segment 3434 * @features: features for the output path (see dev->features) 3435 * @tx_path: whether it is called in TX path 3436 * 3437 * This function segments the given skb and returns a list of segments. 3438 * 3439 * It may return NULL if the skb requires no segmentation. This is 3440 * only possible when GSO is used for verifying header integrity. 3441 * 3442 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb. 3443 */ 3444 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3445 netdev_features_t features, bool tx_path) 3446 { 3447 struct sk_buff *segs; 3448 3449 if (unlikely(skb_needs_check(skb, tx_path))) { 3450 int err; 3451 3452 /* We're going to init ->check field in TCP or UDP header */ 3453 err = skb_cow_head(skb, 0); 3454 if (err < 0) 3455 return ERR_PTR(err); 3456 } 3457 3458 /* Only report GSO partial support if it will enable us to 3459 * support segmentation on this frame without needing additional 3460 * work. 3461 */ 3462 if (features & NETIF_F_GSO_PARTIAL) { 3463 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 3464 struct net_device *dev = skb->dev; 3465 3466 partial_features |= dev->features & dev->gso_partial_features; 3467 if (!skb_gso_ok(skb, features | partial_features)) 3468 features &= ~NETIF_F_GSO_PARTIAL; 3469 } 3470 3471 BUILD_BUG_ON(SKB_GSO_CB_OFFSET + 3472 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 3473 3474 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 3475 SKB_GSO_CB(skb)->encap_level = 0; 3476 3477 skb_reset_mac_header(skb); 3478 skb_reset_mac_len(skb); 3479 3480 segs = skb_mac_gso_segment(skb, features); 3481 3482 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 3483 skb_warn_bad_offload(skb); 3484 3485 return segs; 3486 } 3487 EXPORT_SYMBOL(__skb_gso_segment); 3488 3489 /* Take action when hardware reception checksum errors are detected. */ 3490 #ifdef CONFIG_BUG 3491 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3492 { 3493 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 3494 skb_dump(KERN_ERR, skb, true); 3495 dump_stack(); 3496 } 3497 3498 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3499 { 3500 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb); 3501 } 3502 EXPORT_SYMBOL(netdev_rx_csum_fault); 3503 #endif 3504 3505 /* XXX: check that highmem exists at all on the given machine. */ 3506 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3507 { 3508 #ifdef CONFIG_HIGHMEM 3509 int i; 3510 3511 if (!(dev->features & NETIF_F_HIGHDMA)) { 3512 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3513 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3514 3515 if (PageHighMem(skb_frag_page(frag))) 3516 return 1; 3517 } 3518 } 3519 #endif 3520 return 0; 3521 } 3522 3523 /* If MPLS offload request, verify we are testing hardware MPLS features 3524 * instead of standard features for the netdev. 3525 */ 3526 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3527 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3528 netdev_features_t features, 3529 __be16 type) 3530 { 3531 if (eth_p_mpls(type)) 3532 features &= skb->dev->mpls_features; 3533 3534 return features; 3535 } 3536 #else 3537 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3538 netdev_features_t features, 3539 __be16 type) 3540 { 3541 return features; 3542 } 3543 #endif 3544 3545 static netdev_features_t harmonize_features(struct sk_buff *skb, 3546 netdev_features_t features) 3547 { 3548 __be16 type; 3549 3550 type = skb_network_protocol(skb, NULL); 3551 features = net_mpls_features(skb, features, type); 3552 3553 if (skb->ip_summed != CHECKSUM_NONE && 3554 !can_checksum_protocol(features, type)) { 3555 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3556 } 3557 if (illegal_highdma(skb->dev, skb)) 3558 features &= ~NETIF_F_SG; 3559 3560 return features; 3561 } 3562 3563 netdev_features_t passthru_features_check(struct sk_buff *skb, 3564 struct net_device *dev, 3565 netdev_features_t features) 3566 { 3567 return features; 3568 } 3569 EXPORT_SYMBOL(passthru_features_check); 3570 3571 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3572 struct net_device *dev, 3573 netdev_features_t features) 3574 { 3575 return vlan_features_check(skb, features); 3576 } 3577 3578 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3579 struct net_device *dev, 3580 netdev_features_t features) 3581 { 3582 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3583 3584 if (gso_segs > dev->gso_max_segs) 3585 return features & ~NETIF_F_GSO_MASK; 3586 3587 if (!skb_shinfo(skb)->gso_type) { 3588 skb_warn_bad_offload(skb); 3589 return features & ~NETIF_F_GSO_MASK; 3590 } 3591 3592 /* Support for GSO partial features requires software 3593 * intervention before we can actually process the packets 3594 * so we need to strip support for any partial features now 3595 * and we can pull them back in after we have partially 3596 * segmented the frame. 3597 */ 3598 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3599 features &= ~dev->gso_partial_features; 3600 3601 /* Make sure to clear the IPv4 ID mangling feature if the 3602 * IPv4 header has the potential to be fragmented. 3603 */ 3604 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3605 struct iphdr *iph = skb->encapsulation ? 3606 inner_ip_hdr(skb) : ip_hdr(skb); 3607 3608 if (!(iph->frag_off & htons(IP_DF))) 3609 features &= ~NETIF_F_TSO_MANGLEID; 3610 } 3611 3612 return features; 3613 } 3614 3615 netdev_features_t netif_skb_features(struct sk_buff *skb) 3616 { 3617 struct net_device *dev = skb->dev; 3618 netdev_features_t features = dev->features; 3619 3620 if (skb_is_gso(skb)) 3621 features = gso_features_check(skb, dev, features); 3622 3623 /* If encapsulation offload request, verify we are testing 3624 * hardware encapsulation features instead of standard 3625 * features for the netdev 3626 */ 3627 if (skb->encapsulation) 3628 features &= dev->hw_enc_features; 3629 3630 if (skb_vlan_tagged(skb)) 3631 features = netdev_intersect_features(features, 3632 dev->vlan_features | 3633 NETIF_F_HW_VLAN_CTAG_TX | 3634 NETIF_F_HW_VLAN_STAG_TX); 3635 3636 if (dev->netdev_ops->ndo_features_check) 3637 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3638 features); 3639 else 3640 features &= dflt_features_check(skb, dev, features); 3641 3642 return harmonize_features(skb, features); 3643 } 3644 EXPORT_SYMBOL(netif_skb_features); 3645 3646 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3647 struct netdev_queue *txq, bool more) 3648 { 3649 unsigned int len; 3650 int rc; 3651 3652 if (dev_nit_active(dev)) 3653 dev_queue_xmit_nit(skb, dev); 3654 3655 len = skb->len; 3656 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies); 3657 trace_net_dev_start_xmit(skb, dev); 3658 rc = netdev_start_xmit(skb, dev, txq, more); 3659 trace_net_dev_xmit(skb, rc, dev, len); 3660 3661 return rc; 3662 } 3663 3664 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3665 struct netdev_queue *txq, int *ret) 3666 { 3667 struct sk_buff *skb = first; 3668 int rc = NETDEV_TX_OK; 3669 3670 while (skb) { 3671 struct sk_buff *next = skb->next; 3672 3673 skb_mark_not_on_list(skb); 3674 rc = xmit_one(skb, dev, txq, next != NULL); 3675 if (unlikely(!dev_xmit_complete(rc))) { 3676 skb->next = next; 3677 goto out; 3678 } 3679 3680 skb = next; 3681 if (netif_tx_queue_stopped(txq) && skb) { 3682 rc = NETDEV_TX_BUSY; 3683 break; 3684 } 3685 } 3686 3687 out: 3688 *ret = rc; 3689 return skb; 3690 } 3691 3692 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3693 netdev_features_t features) 3694 { 3695 if (skb_vlan_tag_present(skb) && 3696 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3697 skb = __vlan_hwaccel_push_inside(skb); 3698 return skb; 3699 } 3700 3701 int skb_csum_hwoffload_help(struct sk_buff *skb, 3702 const netdev_features_t features) 3703 { 3704 if (unlikely(skb_csum_is_sctp(skb))) 3705 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3706 skb_crc32c_csum_help(skb); 3707 3708 if (features & NETIF_F_HW_CSUM) 3709 return 0; 3710 3711 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3712 switch (skb->csum_offset) { 3713 case offsetof(struct tcphdr, check): 3714 case offsetof(struct udphdr, check): 3715 return 0; 3716 } 3717 } 3718 3719 return skb_checksum_help(skb); 3720 } 3721 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3722 3723 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3724 { 3725 netdev_features_t features; 3726 3727 features = netif_skb_features(skb); 3728 skb = validate_xmit_vlan(skb, features); 3729 if (unlikely(!skb)) 3730 goto out_null; 3731 3732 skb = sk_validate_xmit_skb(skb, dev); 3733 if (unlikely(!skb)) 3734 goto out_null; 3735 3736 if (netif_needs_gso(skb, features)) { 3737 struct sk_buff *segs; 3738 3739 segs = skb_gso_segment(skb, features); 3740 if (IS_ERR(segs)) { 3741 goto out_kfree_skb; 3742 } else if (segs) { 3743 consume_skb(skb); 3744 skb = segs; 3745 } 3746 } else { 3747 if (skb_needs_linearize(skb, features) && 3748 __skb_linearize(skb)) 3749 goto out_kfree_skb; 3750 3751 /* If packet is not checksummed and device does not 3752 * support checksumming for this protocol, complete 3753 * checksumming here. 3754 */ 3755 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3756 if (skb->encapsulation) 3757 skb_set_inner_transport_header(skb, 3758 skb_checksum_start_offset(skb)); 3759 else 3760 skb_set_transport_header(skb, 3761 skb_checksum_start_offset(skb)); 3762 if (skb_csum_hwoffload_help(skb, features)) 3763 goto out_kfree_skb; 3764 } 3765 } 3766 3767 skb = validate_xmit_xfrm(skb, features, again); 3768 3769 return skb; 3770 3771 out_kfree_skb: 3772 kfree_skb(skb); 3773 out_null: 3774 atomic_long_inc(&dev->tx_dropped); 3775 return NULL; 3776 } 3777 3778 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3779 { 3780 struct sk_buff *next, *head = NULL, *tail; 3781 3782 for (; skb != NULL; skb = next) { 3783 next = skb->next; 3784 skb_mark_not_on_list(skb); 3785 3786 /* in case skb wont be segmented, point to itself */ 3787 skb->prev = skb; 3788 3789 skb = validate_xmit_skb(skb, dev, again); 3790 if (!skb) 3791 continue; 3792 3793 if (!head) 3794 head = skb; 3795 else 3796 tail->next = skb; 3797 /* If skb was segmented, skb->prev points to 3798 * the last segment. If not, it still contains skb. 3799 */ 3800 tail = skb->prev; 3801 } 3802 return head; 3803 } 3804 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3805 3806 static void qdisc_pkt_len_init(struct sk_buff *skb) 3807 { 3808 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3809 3810 qdisc_skb_cb(skb)->pkt_len = skb->len; 3811 3812 /* To get more precise estimation of bytes sent on wire, 3813 * we add to pkt_len the headers size of all segments 3814 */ 3815 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3816 unsigned int hdr_len; 3817 u16 gso_segs = shinfo->gso_segs; 3818 3819 /* mac layer + network layer */ 3820 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3821 3822 /* + transport layer */ 3823 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3824 const struct tcphdr *th; 3825 struct tcphdr _tcphdr; 3826 3827 th = skb_header_pointer(skb, skb_transport_offset(skb), 3828 sizeof(_tcphdr), &_tcphdr); 3829 if (likely(th)) 3830 hdr_len += __tcp_hdrlen(th); 3831 } else { 3832 struct udphdr _udphdr; 3833 3834 if (skb_header_pointer(skb, skb_transport_offset(skb), 3835 sizeof(_udphdr), &_udphdr)) 3836 hdr_len += sizeof(struct udphdr); 3837 } 3838 3839 if (shinfo->gso_type & SKB_GSO_DODGY) 3840 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3841 shinfo->gso_size); 3842 3843 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3844 } 3845 } 3846 3847 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3848 struct net_device *dev, 3849 struct netdev_queue *txq) 3850 { 3851 spinlock_t *root_lock = qdisc_lock(q); 3852 struct sk_buff *to_free = NULL; 3853 bool contended; 3854 int rc; 3855 3856 qdisc_calculate_pkt_len(skb, q); 3857 3858 if (q->flags & TCQ_F_NOLOCK) { 3859 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) && 3860 qdisc_run_begin(q)) { 3861 /* Retest nolock_qdisc_is_empty() within the protection 3862 * of q->seqlock to protect from racing with requeuing. 3863 */ 3864 if (unlikely(!nolock_qdisc_is_empty(q))) { 3865 rc = q->enqueue(skb, q, &to_free) & 3866 NET_XMIT_MASK; 3867 __qdisc_run(q); 3868 qdisc_run_end(q); 3869 3870 goto no_lock_out; 3871 } 3872 3873 qdisc_bstats_cpu_update(q, skb); 3874 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) && 3875 !nolock_qdisc_is_empty(q)) 3876 __qdisc_run(q); 3877 3878 qdisc_run_end(q); 3879 return NET_XMIT_SUCCESS; 3880 } 3881 3882 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3883 qdisc_run(q); 3884 3885 no_lock_out: 3886 if (unlikely(to_free)) 3887 kfree_skb_list(to_free); 3888 return rc; 3889 } 3890 3891 /* 3892 * Heuristic to force contended enqueues to serialize on a 3893 * separate lock before trying to get qdisc main lock. 3894 * This permits qdisc->running owner to get the lock more 3895 * often and dequeue packets faster. 3896 */ 3897 contended = qdisc_is_running(q); 3898 if (unlikely(contended)) 3899 spin_lock(&q->busylock); 3900 3901 spin_lock(root_lock); 3902 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3903 __qdisc_drop(skb, &to_free); 3904 rc = NET_XMIT_DROP; 3905 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3906 qdisc_run_begin(q)) { 3907 /* 3908 * This is a work-conserving queue; there are no old skbs 3909 * waiting to be sent out; and the qdisc is not running - 3910 * xmit the skb directly. 3911 */ 3912 3913 qdisc_bstats_update(q, skb); 3914 3915 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3916 if (unlikely(contended)) { 3917 spin_unlock(&q->busylock); 3918 contended = false; 3919 } 3920 __qdisc_run(q); 3921 } 3922 3923 qdisc_run_end(q); 3924 rc = NET_XMIT_SUCCESS; 3925 } else { 3926 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3927 if (qdisc_run_begin(q)) { 3928 if (unlikely(contended)) { 3929 spin_unlock(&q->busylock); 3930 contended = false; 3931 } 3932 __qdisc_run(q); 3933 qdisc_run_end(q); 3934 } 3935 } 3936 spin_unlock(root_lock); 3937 if (unlikely(to_free)) 3938 kfree_skb_list(to_free); 3939 if (unlikely(contended)) 3940 spin_unlock(&q->busylock); 3941 return rc; 3942 } 3943 3944 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3945 static void skb_update_prio(struct sk_buff *skb) 3946 { 3947 const struct netprio_map *map; 3948 const struct sock *sk; 3949 unsigned int prioidx; 3950 3951 if (skb->priority) 3952 return; 3953 map = rcu_dereference_bh(skb->dev->priomap); 3954 if (!map) 3955 return; 3956 sk = skb_to_full_sk(skb); 3957 if (!sk) 3958 return; 3959 3960 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3961 3962 if (prioidx < map->priomap_len) 3963 skb->priority = map->priomap[prioidx]; 3964 } 3965 #else 3966 #define skb_update_prio(skb) 3967 #endif 3968 3969 /** 3970 * dev_loopback_xmit - loop back @skb 3971 * @net: network namespace this loopback is happening in 3972 * @sk: sk needed to be a netfilter okfn 3973 * @skb: buffer to transmit 3974 */ 3975 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3976 { 3977 skb_reset_mac_header(skb); 3978 __skb_pull(skb, skb_network_offset(skb)); 3979 skb->pkt_type = PACKET_LOOPBACK; 3980 skb->ip_summed = CHECKSUM_UNNECESSARY; 3981 WARN_ON(!skb_dst(skb)); 3982 skb_dst_force(skb); 3983 netif_rx_ni(skb); 3984 return 0; 3985 } 3986 EXPORT_SYMBOL(dev_loopback_xmit); 3987 3988 #ifdef CONFIG_NET_EGRESS 3989 static struct sk_buff * 3990 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3991 { 3992 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3993 struct tcf_result cl_res; 3994 3995 if (!miniq) 3996 return skb; 3997 3998 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3999 qdisc_skb_cb(skb)->mru = 0; 4000 qdisc_skb_cb(skb)->post_ct = false; 4001 mini_qdisc_bstats_cpu_update(miniq, skb); 4002 4003 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 4004 case TC_ACT_OK: 4005 case TC_ACT_RECLASSIFY: 4006 skb->tc_index = TC_H_MIN(cl_res.classid); 4007 break; 4008 case TC_ACT_SHOT: 4009 mini_qdisc_qstats_cpu_drop(miniq); 4010 *ret = NET_XMIT_DROP; 4011 kfree_skb(skb); 4012 return NULL; 4013 case TC_ACT_STOLEN: 4014 case TC_ACT_QUEUED: 4015 case TC_ACT_TRAP: 4016 *ret = NET_XMIT_SUCCESS; 4017 consume_skb(skb); 4018 return NULL; 4019 case TC_ACT_REDIRECT: 4020 /* No need to push/pop skb's mac_header here on egress! */ 4021 skb_do_redirect(skb); 4022 *ret = NET_XMIT_SUCCESS; 4023 return NULL; 4024 default: 4025 break; 4026 } 4027 4028 return skb; 4029 } 4030 #endif /* CONFIG_NET_EGRESS */ 4031 4032 #ifdef CONFIG_XPS 4033 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 4034 struct xps_dev_maps *dev_maps, unsigned int tci) 4035 { 4036 int tc = netdev_get_prio_tc_map(dev, skb->priority); 4037 struct xps_map *map; 4038 int queue_index = -1; 4039 4040 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids) 4041 return queue_index; 4042 4043 tci *= dev_maps->num_tc; 4044 tci += tc; 4045 4046 map = rcu_dereference(dev_maps->attr_map[tci]); 4047 if (map) { 4048 if (map->len == 1) 4049 queue_index = map->queues[0]; 4050 else 4051 queue_index = map->queues[reciprocal_scale( 4052 skb_get_hash(skb), map->len)]; 4053 if (unlikely(queue_index >= dev->real_num_tx_queues)) 4054 queue_index = -1; 4055 } 4056 return queue_index; 4057 } 4058 #endif 4059 4060 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 4061 struct sk_buff *skb) 4062 { 4063 #ifdef CONFIG_XPS 4064 struct xps_dev_maps *dev_maps; 4065 struct sock *sk = skb->sk; 4066 int queue_index = -1; 4067 4068 if (!static_key_false(&xps_needed)) 4069 return -1; 4070 4071 rcu_read_lock(); 4072 if (!static_key_false(&xps_rxqs_needed)) 4073 goto get_cpus_map; 4074 4075 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]); 4076 if (dev_maps) { 4077 int tci = sk_rx_queue_get(sk); 4078 4079 if (tci >= 0) 4080 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4081 tci); 4082 } 4083 4084 get_cpus_map: 4085 if (queue_index < 0) { 4086 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]); 4087 if (dev_maps) { 4088 unsigned int tci = skb->sender_cpu - 1; 4089 4090 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4091 tci); 4092 } 4093 } 4094 rcu_read_unlock(); 4095 4096 return queue_index; 4097 #else 4098 return -1; 4099 #endif 4100 } 4101 4102 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 4103 struct net_device *sb_dev) 4104 { 4105 return 0; 4106 } 4107 EXPORT_SYMBOL(dev_pick_tx_zero); 4108 4109 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 4110 struct net_device *sb_dev) 4111 { 4112 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 4113 } 4114 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 4115 4116 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 4117 struct net_device *sb_dev) 4118 { 4119 struct sock *sk = skb->sk; 4120 int queue_index = sk_tx_queue_get(sk); 4121 4122 sb_dev = sb_dev ? : dev; 4123 4124 if (queue_index < 0 || skb->ooo_okay || 4125 queue_index >= dev->real_num_tx_queues) { 4126 int new_index = get_xps_queue(dev, sb_dev, skb); 4127 4128 if (new_index < 0) 4129 new_index = skb_tx_hash(dev, sb_dev, skb); 4130 4131 if (queue_index != new_index && sk && 4132 sk_fullsock(sk) && 4133 rcu_access_pointer(sk->sk_dst_cache)) 4134 sk_tx_queue_set(sk, new_index); 4135 4136 queue_index = new_index; 4137 } 4138 4139 return queue_index; 4140 } 4141 EXPORT_SYMBOL(netdev_pick_tx); 4142 4143 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4144 struct sk_buff *skb, 4145 struct net_device *sb_dev) 4146 { 4147 int queue_index = 0; 4148 4149 #ifdef CONFIG_XPS 4150 u32 sender_cpu = skb->sender_cpu - 1; 4151 4152 if (sender_cpu >= (u32)NR_CPUS) 4153 skb->sender_cpu = raw_smp_processor_id() + 1; 4154 #endif 4155 4156 if (dev->real_num_tx_queues != 1) { 4157 const struct net_device_ops *ops = dev->netdev_ops; 4158 4159 if (ops->ndo_select_queue) 4160 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4161 else 4162 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4163 4164 queue_index = netdev_cap_txqueue(dev, queue_index); 4165 } 4166 4167 skb_set_queue_mapping(skb, queue_index); 4168 return netdev_get_tx_queue(dev, queue_index); 4169 } 4170 4171 /** 4172 * __dev_queue_xmit - transmit a buffer 4173 * @skb: buffer to transmit 4174 * @sb_dev: suboordinate device used for L2 forwarding offload 4175 * 4176 * Queue a buffer for transmission to a network device. The caller must 4177 * have set the device and priority and built the buffer before calling 4178 * this function. The function can be called from an interrupt. 4179 * 4180 * A negative errno code is returned on a failure. A success does not 4181 * guarantee the frame will be transmitted as it may be dropped due 4182 * to congestion or traffic shaping. 4183 * 4184 * ----------------------------------------------------------------------------------- 4185 * I notice this method can also return errors from the queue disciplines, 4186 * including NET_XMIT_DROP, which is a positive value. So, errors can also 4187 * be positive. 4188 * 4189 * Regardless of the return value, the skb is consumed, so it is currently 4190 * difficult to retry a send to this method. (You can bump the ref count 4191 * before sending to hold a reference for retry if you are careful.) 4192 * 4193 * When calling this method, interrupts MUST be enabled. This is because 4194 * the BH enable code must have IRQs enabled so that it will not deadlock. 4195 * --BLG 4196 */ 4197 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4198 { 4199 struct net_device *dev = skb->dev; 4200 struct netdev_queue *txq; 4201 struct Qdisc *q; 4202 int rc = -ENOMEM; 4203 bool again = false; 4204 4205 skb_reset_mac_header(skb); 4206 4207 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 4208 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED); 4209 4210 /* Disable soft irqs for various locks below. Also 4211 * stops preemption for RCU. 4212 */ 4213 rcu_read_lock_bh(); 4214 4215 skb_update_prio(skb); 4216 4217 qdisc_pkt_len_init(skb); 4218 #ifdef CONFIG_NET_CLS_ACT 4219 skb->tc_at_ingress = 0; 4220 # ifdef CONFIG_NET_EGRESS 4221 if (static_branch_unlikely(&egress_needed_key)) { 4222 skb = sch_handle_egress(skb, &rc, dev); 4223 if (!skb) 4224 goto out; 4225 } 4226 # endif 4227 #endif 4228 /* If device/qdisc don't need skb->dst, release it right now while 4229 * its hot in this cpu cache. 4230 */ 4231 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4232 skb_dst_drop(skb); 4233 else 4234 skb_dst_force(skb); 4235 4236 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4237 q = rcu_dereference_bh(txq->qdisc); 4238 4239 trace_net_dev_queue(skb); 4240 if (q->enqueue) { 4241 rc = __dev_xmit_skb(skb, q, dev, txq); 4242 goto out; 4243 } 4244 4245 /* The device has no queue. Common case for software devices: 4246 * loopback, all the sorts of tunnels... 4247 4248 * Really, it is unlikely that netif_tx_lock protection is necessary 4249 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4250 * counters.) 4251 * However, it is possible, that they rely on protection 4252 * made by us here. 4253 4254 * Check this and shot the lock. It is not prone from deadlocks. 4255 *Either shot noqueue qdisc, it is even simpler 8) 4256 */ 4257 if (dev->flags & IFF_UP) { 4258 int cpu = smp_processor_id(); /* ok because BHs are off */ 4259 4260 if (txq->xmit_lock_owner != cpu) { 4261 if (dev_xmit_recursion()) 4262 goto recursion_alert; 4263 4264 skb = validate_xmit_skb(skb, dev, &again); 4265 if (!skb) 4266 goto out; 4267 4268 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies); 4269 HARD_TX_LOCK(dev, txq, cpu); 4270 4271 if (!netif_xmit_stopped(txq)) { 4272 dev_xmit_recursion_inc(); 4273 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4274 dev_xmit_recursion_dec(); 4275 if (dev_xmit_complete(rc)) { 4276 HARD_TX_UNLOCK(dev, txq); 4277 goto out; 4278 } 4279 } 4280 HARD_TX_UNLOCK(dev, txq); 4281 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4282 dev->name); 4283 } else { 4284 /* Recursion is detected! It is possible, 4285 * unfortunately 4286 */ 4287 recursion_alert: 4288 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4289 dev->name); 4290 } 4291 } 4292 4293 rc = -ENETDOWN; 4294 rcu_read_unlock_bh(); 4295 4296 atomic_long_inc(&dev->tx_dropped); 4297 kfree_skb_list(skb); 4298 return rc; 4299 out: 4300 rcu_read_unlock_bh(); 4301 return rc; 4302 } 4303 4304 int dev_queue_xmit(struct sk_buff *skb) 4305 { 4306 return __dev_queue_xmit(skb, NULL); 4307 } 4308 EXPORT_SYMBOL(dev_queue_xmit); 4309 4310 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev) 4311 { 4312 return __dev_queue_xmit(skb, sb_dev); 4313 } 4314 EXPORT_SYMBOL(dev_queue_xmit_accel); 4315 4316 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4317 { 4318 struct net_device *dev = skb->dev; 4319 struct sk_buff *orig_skb = skb; 4320 struct netdev_queue *txq; 4321 int ret = NETDEV_TX_BUSY; 4322 bool again = false; 4323 4324 if (unlikely(!netif_running(dev) || 4325 !netif_carrier_ok(dev))) 4326 goto drop; 4327 4328 skb = validate_xmit_skb_list(skb, dev, &again); 4329 if (skb != orig_skb) 4330 goto drop; 4331 4332 skb_set_queue_mapping(skb, queue_id); 4333 txq = skb_get_tx_queue(dev, skb); 4334 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies); 4335 4336 local_bh_disable(); 4337 4338 dev_xmit_recursion_inc(); 4339 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4340 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4341 ret = netdev_start_xmit(skb, dev, txq, false); 4342 HARD_TX_UNLOCK(dev, txq); 4343 dev_xmit_recursion_dec(); 4344 4345 local_bh_enable(); 4346 return ret; 4347 drop: 4348 atomic_long_inc(&dev->tx_dropped); 4349 kfree_skb_list(skb); 4350 return NET_XMIT_DROP; 4351 } 4352 EXPORT_SYMBOL(__dev_direct_xmit); 4353 4354 /************************************************************************* 4355 * Receiver routines 4356 *************************************************************************/ 4357 4358 int netdev_max_backlog __read_mostly = 1000; 4359 EXPORT_SYMBOL(netdev_max_backlog); 4360 4361 int netdev_tstamp_prequeue __read_mostly = 1; 4362 int netdev_budget __read_mostly = 300; 4363 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */ 4364 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ; 4365 int weight_p __read_mostly = 64; /* old backlog weight */ 4366 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4367 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4368 int dev_rx_weight __read_mostly = 64; 4369 int dev_tx_weight __read_mostly = 64; 4370 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */ 4371 int gro_normal_batch __read_mostly = 8; 4372 4373 /* Called with irq disabled */ 4374 static inline void ____napi_schedule(struct softnet_data *sd, 4375 struct napi_struct *napi) 4376 { 4377 struct task_struct *thread; 4378 4379 if (test_bit(NAPI_STATE_THREADED, &napi->state)) { 4380 /* Paired with smp_mb__before_atomic() in 4381 * napi_enable()/dev_set_threaded(). 4382 * Use READ_ONCE() to guarantee a complete 4383 * read on napi->thread. Only call 4384 * wake_up_process() when it's not NULL. 4385 */ 4386 thread = READ_ONCE(napi->thread); 4387 if (thread) { 4388 /* Avoid doing set_bit() if the thread is in 4389 * INTERRUPTIBLE state, cause napi_thread_wait() 4390 * makes sure to proceed with napi polling 4391 * if the thread is explicitly woken from here. 4392 */ 4393 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE) 4394 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 4395 wake_up_process(thread); 4396 return; 4397 } 4398 } 4399 4400 list_add_tail(&napi->poll_list, &sd->poll_list); 4401 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4402 } 4403 4404 #ifdef CONFIG_RPS 4405 4406 /* One global table that all flow-based protocols share. */ 4407 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 4408 EXPORT_SYMBOL(rps_sock_flow_table); 4409 u32 rps_cpu_mask __read_mostly; 4410 EXPORT_SYMBOL(rps_cpu_mask); 4411 4412 struct static_key_false rps_needed __read_mostly; 4413 EXPORT_SYMBOL(rps_needed); 4414 struct static_key_false rfs_needed __read_mostly; 4415 EXPORT_SYMBOL(rfs_needed); 4416 4417 static struct rps_dev_flow * 4418 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4419 struct rps_dev_flow *rflow, u16 next_cpu) 4420 { 4421 if (next_cpu < nr_cpu_ids) { 4422 #ifdef CONFIG_RFS_ACCEL 4423 struct netdev_rx_queue *rxqueue; 4424 struct rps_dev_flow_table *flow_table; 4425 struct rps_dev_flow *old_rflow; 4426 u32 flow_id; 4427 u16 rxq_index; 4428 int rc; 4429 4430 /* Should we steer this flow to a different hardware queue? */ 4431 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4432 !(dev->features & NETIF_F_NTUPLE)) 4433 goto out; 4434 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4435 if (rxq_index == skb_get_rx_queue(skb)) 4436 goto out; 4437 4438 rxqueue = dev->_rx + rxq_index; 4439 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4440 if (!flow_table) 4441 goto out; 4442 flow_id = skb_get_hash(skb) & flow_table->mask; 4443 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4444 rxq_index, flow_id); 4445 if (rc < 0) 4446 goto out; 4447 old_rflow = rflow; 4448 rflow = &flow_table->flows[flow_id]; 4449 rflow->filter = rc; 4450 if (old_rflow->filter == rflow->filter) 4451 old_rflow->filter = RPS_NO_FILTER; 4452 out: 4453 #endif 4454 rflow->last_qtail = 4455 per_cpu(softnet_data, next_cpu).input_queue_head; 4456 } 4457 4458 rflow->cpu = next_cpu; 4459 return rflow; 4460 } 4461 4462 /* 4463 * get_rps_cpu is called from netif_receive_skb and returns the target 4464 * CPU from the RPS map of the receiving queue for a given skb. 4465 * rcu_read_lock must be held on entry. 4466 */ 4467 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4468 struct rps_dev_flow **rflowp) 4469 { 4470 const struct rps_sock_flow_table *sock_flow_table; 4471 struct netdev_rx_queue *rxqueue = dev->_rx; 4472 struct rps_dev_flow_table *flow_table; 4473 struct rps_map *map; 4474 int cpu = -1; 4475 u32 tcpu; 4476 u32 hash; 4477 4478 if (skb_rx_queue_recorded(skb)) { 4479 u16 index = skb_get_rx_queue(skb); 4480 4481 if (unlikely(index >= dev->real_num_rx_queues)) { 4482 WARN_ONCE(dev->real_num_rx_queues > 1, 4483 "%s received packet on queue %u, but number " 4484 "of RX queues is %u\n", 4485 dev->name, index, dev->real_num_rx_queues); 4486 goto done; 4487 } 4488 rxqueue += index; 4489 } 4490 4491 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4492 4493 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4494 map = rcu_dereference(rxqueue->rps_map); 4495 if (!flow_table && !map) 4496 goto done; 4497 4498 skb_reset_network_header(skb); 4499 hash = skb_get_hash(skb); 4500 if (!hash) 4501 goto done; 4502 4503 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4504 if (flow_table && sock_flow_table) { 4505 struct rps_dev_flow *rflow; 4506 u32 next_cpu; 4507 u32 ident; 4508 4509 /* First check into global flow table if there is a match */ 4510 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 4511 if ((ident ^ hash) & ~rps_cpu_mask) 4512 goto try_rps; 4513 4514 next_cpu = ident & rps_cpu_mask; 4515 4516 /* OK, now we know there is a match, 4517 * we can look at the local (per receive queue) flow table 4518 */ 4519 rflow = &flow_table->flows[hash & flow_table->mask]; 4520 tcpu = rflow->cpu; 4521 4522 /* 4523 * If the desired CPU (where last recvmsg was done) is 4524 * different from current CPU (one in the rx-queue flow 4525 * table entry), switch if one of the following holds: 4526 * - Current CPU is unset (>= nr_cpu_ids). 4527 * - Current CPU is offline. 4528 * - The current CPU's queue tail has advanced beyond the 4529 * last packet that was enqueued using this table entry. 4530 * This guarantees that all previous packets for the flow 4531 * have been dequeued, thus preserving in order delivery. 4532 */ 4533 if (unlikely(tcpu != next_cpu) && 4534 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4535 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4536 rflow->last_qtail)) >= 0)) { 4537 tcpu = next_cpu; 4538 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4539 } 4540 4541 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4542 *rflowp = rflow; 4543 cpu = tcpu; 4544 goto done; 4545 } 4546 } 4547 4548 try_rps: 4549 4550 if (map) { 4551 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4552 if (cpu_online(tcpu)) { 4553 cpu = tcpu; 4554 goto done; 4555 } 4556 } 4557 4558 done: 4559 return cpu; 4560 } 4561 4562 #ifdef CONFIG_RFS_ACCEL 4563 4564 /** 4565 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4566 * @dev: Device on which the filter was set 4567 * @rxq_index: RX queue index 4568 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4569 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4570 * 4571 * Drivers that implement ndo_rx_flow_steer() should periodically call 4572 * this function for each installed filter and remove the filters for 4573 * which it returns %true. 4574 */ 4575 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4576 u32 flow_id, u16 filter_id) 4577 { 4578 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4579 struct rps_dev_flow_table *flow_table; 4580 struct rps_dev_flow *rflow; 4581 bool expire = true; 4582 unsigned int cpu; 4583 4584 rcu_read_lock(); 4585 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4586 if (flow_table && flow_id <= flow_table->mask) { 4587 rflow = &flow_table->flows[flow_id]; 4588 cpu = READ_ONCE(rflow->cpu); 4589 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4590 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4591 rflow->last_qtail) < 4592 (int)(10 * flow_table->mask))) 4593 expire = false; 4594 } 4595 rcu_read_unlock(); 4596 return expire; 4597 } 4598 EXPORT_SYMBOL(rps_may_expire_flow); 4599 4600 #endif /* CONFIG_RFS_ACCEL */ 4601 4602 /* Called from hardirq (IPI) context */ 4603 static void rps_trigger_softirq(void *data) 4604 { 4605 struct softnet_data *sd = data; 4606 4607 ____napi_schedule(sd, &sd->backlog); 4608 sd->received_rps++; 4609 } 4610 4611 #endif /* CONFIG_RPS */ 4612 4613 /* 4614 * Check if this softnet_data structure is another cpu one 4615 * If yes, queue it to our IPI list and return 1 4616 * If no, return 0 4617 */ 4618 static int rps_ipi_queued(struct softnet_data *sd) 4619 { 4620 #ifdef CONFIG_RPS 4621 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4622 4623 if (sd != mysd) { 4624 sd->rps_ipi_next = mysd->rps_ipi_list; 4625 mysd->rps_ipi_list = sd; 4626 4627 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4628 return 1; 4629 } 4630 #endif /* CONFIG_RPS */ 4631 return 0; 4632 } 4633 4634 #ifdef CONFIG_NET_FLOW_LIMIT 4635 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4636 #endif 4637 4638 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4639 { 4640 #ifdef CONFIG_NET_FLOW_LIMIT 4641 struct sd_flow_limit *fl; 4642 struct softnet_data *sd; 4643 unsigned int old_flow, new_flow; 4644 4645 if (qlen < (netdev_max_backlog >> 1)) 4646 return false; 4647 4648 sd = this_cpu_ptr(&softnet_data); 4649 4650 rcu_read_lock(); 4651 fl = rcu_dereference(sd->flow_limit); 4652 if (fl) { 4653 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4654 old_flow = fl->history[fl->history_head]; 4655 fl->history[fl->history_head] = new_flow; 4656 4657 fl->history_head++; 4658 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4659 4660 if (likely(fl->buckets[old_flow])) 4661 fl->buckets[old_flow]--; 4662 4663 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4664 fl->count++; 4665 rcu_read_unlock(); 4666 return true; 4667 } 4668 } 4669 rcu_read_unlock(); 4670 #endif 4671 return false; 4672 } 4673 4674 /* 4675 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4676 * queue (may be a remote CPU queue). 4677 */ 4678 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4679 unsigned int *qtail) 4680 { 4681 struct softnet_data *sd; 4682 unsigned long flags; 4683 unsigned int qlen; 4684 4685 sd = &per_cpu(softnet_data, cpu); 4686 4687 local_irq_save(flags); 4688 4689 rps_lock(sd); 4690 if (!netif_running(skb->dev)) 4691 goto drop; 4692 qlen = skb_queue_len(&sd->input_pkt_queue); 4693 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 4694 if (qlen) { 4695 enqueue: 4696 __skb_queue_tail(&sd->input_pkt_queue, skb); 4697 input_queue_tail_incr_save(sd, qtail); 4698 rps_unlock(sd); 4699 local_irq_restore(flags); 4700 return NET_RX_SUCCESS; 4701 } 4702 4703 /* Schedule NAPI for backlog device 4704 * We can use non atomic operation since we own the queue lock 4705 */ 4706 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 4707 if (!rps_ipi_queued(sd)) 4708 ____napi_schedule(sd, &sd->backlog); 4709 } 4710 goto enqueue; 4711 } 4712 4713 drop: 4714 sd->dropped++; 4715 rps_unlock(sd); 4716 4717 local_irq_restore(flags); 4718 4719 atomic_long_inc(&skb->dev->rx_dropped); 4720 kfree_skb(skb); 4721 return NET_RX_DROP; 4722 } 4723 4724 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4725 { 4726 struct net_device *dev = skb->dev; 4727 struct netdev_rx_queue *rxqueue; 4728 4729 rxqueue = dev->_rx; 4730 4731 if (skb_rx_queue_recorded(skb)) { 4732 u16 index = skb_get_rx_queue(skb); 4733 4734 if (unlikely(index >= dev->real_num_rx_queues)) { 4735 WARN_ONCE(dev->real_num_rx_queues > 1, 4736 "%s received packet on queue %u, but number " 4737 "of RX queues is %u\n", 4738 dev->name, index, dev->real_num_rx_queues); 4739 4740 return rxqueue; /* Return first rxqueue */ 4741 } 4742 rxqueue += index; 4743 } 4744 return rxqueue; 4745 } 4746 4747 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 4748 struct bpf_prog *xdp_prog) 4749 { 4750 void *orig_data, *orig_data_end, *hard_start; 4751 struct netdev_rx_queue *rxqueue; 4752 bool orig_bcast, orig_host; 4753 u32 mac_len, frame_sz; 4754 __be16 orig_eth_type; 4755 struct ethhdr *eth; 4756 u32 metalen, act; 4757 int off; 4758 4759 /* The XDP program wants to see the packet starting at the MAC 4760 * header. 4761 */ 4762 mac_len = skb->data - skb_mac_header(skb); 4763 hard_start = skb->data - skb_headroom(skb); 4764 4765 /* SKB "head" area always have tailroom for skb_shared_info */ 4766 frame_sz = (void *)skb_end_pointer(skb) - hard_start; 4767 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4768 4769 rxqueue = netif_get_rxqueue(skb); 4770 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq); 4771 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len, 4772 skb_headlen(skb) + mac_len, true); 4773 4774 orig_data_end = xdp->data_end; 4775 orig_data = xdp->data; 4776 eth = (struct ethhdr *)xdp->data; 4777 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr); 4778 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4779 orig_eth_type = eth->h_proto; 4780 4781 act = bpf_prog_run_xdp(xdp_prog, xdp); 4782 4783 /* check if bpf_xdp_adjust_head was used */ 4784 off = xdp->data - orig_data; 4785 if (off) { 4786 if (off > 0) 4787 __skb_pull(skb, off); 4788 else if (off < 0) 4789 __skb_push(skb, -off); 4790 4791 skb->mac_header += off; 4792 skb_reset_network_header(skb); 4793 } 4794 4795 /* check if bpf_xdp_adjust_tail was used */ 4796 off = xdp->data_end - orig_data_end; 4797 if (off != 0) { 4798 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4799 skb->len += off; /* positive on grow, negative on shrink */ 4800 } 4801 4802 /* check if XDP changed eth hdr such SKB needs update */ 4803 eth = (struct ethhdr *)xdp->data; 4804 if ((orig_eth_type != eth->h_proto) || 4805 (orig_host != ether_addr_equal_64bits(eth->h_dest, 4806 skb->dev->dev_addr)) || 4807 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4808 __skb_push(skb, ETH_HLEN); 4809 skb->pkt_type = PACKET_HOST; 4810 skb->protocol = eth_type_trans(skb, skb->dev); 4811 } 4812 4813 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull 4814 * before calling us again on redirect path. We do not call do_redirect 4815 * as we leave that up to the caller. 4816 * 4817 * Caller is responsible for managing lifetime of skb (i.e. calling 4818 * kfree_skb in response to actions it cannot handle/XDP_DROP). 4819 */ 4820 switch (act) { 4821 case XDP_REDIRECT: 4822 case XDP_TX: 4823 __skb_push(skb, mac_len); 4824 break; 4825 case XDP_PASS: 4826 metalen = xdp->data - xdp->data_meta; 4827 if (metalen) 4828 skb_metadata_set(skb, metalen); 4829 break; 4830 } 4831 4832 return act; 4833 } 4834 4835 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4836 struct xdp_buff *xdp, 4837 struct bpf_prog *xdp_prog) 4838 { 4839 u32 act = XDP_DROP; 4840 4841 /* Reinjected packets coming from act_mirred or similar should 4842 * not get XDP generic processing. 4843 */ 4844 if (skb_is_redirected(skb)) 4845 return XDP_PASS; 4846 4847 /* XDP packets must be linear and must have sufficient headroom 4848 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4849 * native XDP provides, thus we need to do it here as well. 4850 */ 4851 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 4852 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4853 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4854 int troom = skb->tail + skb->data_len - skb->end; 4855 4856 /* In case we have to go down the path and also linearize, 4857 * then lets do the pskb_expand_head() work just once here. 4858 */ 4859 if (pskb_expand_head(skb, 4860 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4861 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4862 goto do_drop; 4863 if (skb_linearize(skb)) 4864 goto do_drop; 4865 } 4866 4867 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog); 4868 switch (act) { 4869 case XDP_REDIRECT: 4870 case XDP_TX: 4871 case XDP_PASS: 4872 break; 4873 default: 4874 bpf_warn_invalid_xdp_action(act); 4875 fallthrough; 4876 case XDP_ABORTED: 4877 trace_xdp_exception(skb->dev, xdp_prog, act); 4878 fallthrough; 4879 case XDP_DROP: 4880 do_drop: 4881 kfree_skb(skb); 4882 break; 4883 } 4884 4885 return act; 4886 } 4887 4888 /* When doing generic XDP we have to bypass the qdisc layer and the 4889 * network taps in order to match in-driver-XDP behavior. 4890 */ 4891 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4892 { 4893 struct net_device *dev = skb->dev; 4894 struct netdev_queue *txq; 4895 bool free_skb = true; 4896 int cpu, rc; 4897 4898 txq = netdev_core_pick_tx(dev, skb, NULL); 4899 cpu = smp_processor_id(); 4900 HARD_TX_LOCK(dev, txq, cpu); 4901 if (!netif_xmit_stopped(txq)) { 4902 rc = netdev_start_xmit(skb, dev, txq, 0); 4903 if (dev_xmit_complete(rc)) 4904 free_skb = false; 4905 } 4906 HARD_TX_UNLOCK(dev, txq); 4907 if (free_skb) { 4908 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4909 kfree_skb(skb); 4910 } 4911 } 4912 4913 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4914 4915 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4916 { 4917 if (xdp_prog) { 4918 struct xdp_buff xdp; 4919 u32 act; 4920 int err; 4921 4922 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4923 if (act != XDP_PASS) { 4924 switch (act) { 4925 case XDP_REDIRECT: 4926 err = xdp_do_generic_redirect(skb->dev, skb, 4927 &xdp, xdp_prog); 4928 if (err) 4929 goto out_redir; 4930 break; 4931 case XDP_TX: 4932 generic_xdp_tx(skb, xdp_prog); 4933 break; 4934 } 4935 return XDP_DROP; 4936 } 4937 } 4938 return XDP_PASS; 4939 out_redir: 4940 kfree_skb(skb); 4941 return XDP_DROP; 4942 } 4943 EXPORT_SYMBOL_GPL(do_xdp_generic); 4944 4945 static int netif_rx_internal(struct sk_buff *skb) 4946 { 4947 int ret; 4948 4949 net_timestamp_check(netdev_tstamp_prequeue, skb); 4950 4951 trace_netif_rx(skb); 4952 4953 #ifdef CONFIG_RPS 4954 if (static_branch_unlikely(&rps_needed)) { 4955 struct rps_dev_flow voidflow, *rflow = &voidflow; 4956 int cpu; 4957 4958 preempt_disable(); 4959 rcu_read_lock(); 4960 4961 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4962 if (cpu < 0) 4963 cpu = smp_processor_id(); 4964 4965 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4966 4967 rcu_read_unlock(); 4968 preempt_enable(); 4969 } else 4970 #endif 4971 { 4972 unsigned int qtail; 4973 4974 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4975 put_cpu(); 4976 } 4977 return ret; 4978 } 4979 4980 /** 4981 * netif_rx - post buffer to the network code 4982 * @skb: buffer to post 4983 * 4984 * This function receives a packet from a device driver and queues it for 4985 * the upper (protocol) levels to process. It always succeeds. The buffer 4986 * may be dropped during processing for congestion control or by the 4987 * protocol layers. 4988 * 4989 * return values: 4990 * NET_RX_SUCCESS (no congestion) 4991 * NET_RX_DROP (packet was dropped) 4992 * 4993 */ 4994 4995 int netif_rx(struct sk_buff *skb) 4996 { 4997 int ret; 4998 4999 trace_netif_rx_entry(skb); 5000 5001 ret = netif_rx_internal(skb); 5002 trace_netif_rx_exit(ret); 5003 5004 return ret; 5005 } 5006 EXPORT_SYMBOL(netif_rx); 5007 5008 int netif_rx_ni(struct sk_buff *skb) 5009 { 5010 int err; 5011 5012 trace_netif_rx_ni_entry(skb); 5013 5014 preempt_disable(); 5015 err = netif_rx_internal(skb); 5016 if (local_softirq_pending()) 5017 do_softirq(); 5018 preempt_enable(); 5019 trace_netif_rx_ni_exit(err); 5020 5021 return err; 5022 } 5023 EXPORT_SYMBOL(netif_rx_ni); 5024 5025 int netif_rx_any_context(struct sk_buff *skb) 5026 { 5027 /* 5028 * If invoked from contexts which do not invoke bottom half 5029 * processing either at return from interrupt or when softrqs are 5030 * reenabled, use netif_rx_ni() which invokes bottomhalf processing 5031 * directly. 5032 */ 5033 if (in_interrupt()) 5034 return netif_rx(skb); 5035 else 5036 return netif_rx_ni(skb); 5037 } 5038 EXPORT_SYMBOL(netif_rx_any_context); 5039 5040 static __latent_entropy void net_tx_action(struct softirq_action *h) 5041 { 5042 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5043 5044 if (sd->completion_queue) { 5045 struct sk_buff *clist; 5046 5047 local_irq_disable(); 5048 clist = sd->completion_queue; 5049 sd->completion_queue = NULL; 5050 local_irq_enable(); 5051 5052 while (clist) { 5053 struct sk_buff *skb = clist; 5054 5055 clist = clist->next; 5056 5057 WARN_ON(refcount_read(&skb->users)); 5058 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 5059 trace_consume_skb(skb); 5060 else 5061 trace_kfree_skb(skb, net_tx_action); 5062 5063 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 5064 __kfree_skb(skb); 5065 else 5066 __kfree_skb_defer(skb); 5067 } 5068 } 5069 5070 if (sd->output_queue) { 5071 struct Qdisc *head; 5072 5073 local_irq_disable(); 5074 head = sd->output_queue; 5075 sd->output_queue = NULL; 5076 sd->output_queue_tailp = &sd->output_queue; 5077 local_irq_enable(); 5078 5079 rcu_read_lock(); 5080 5081 while (head) { 5082 struct Qdisc *q = head; 5083 spinlock_t *root_lock = NULL; 5084 5085 head = head->next_sched; 5086 5087 /* We need to make sure head->next_sched is read 5088 * before clearing __QDISC_STATE_SCHED 5089 */ 5090 smp_mb__before_atomic(); 5091 5092 if (!(q->flags & TCQ_F_NOLOCK)) { 5093 root_lock = qdisc_lock(q); 5094 spin_lock(root_lock); 5095 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 5096 &q->state))) { 5097 /* There is a synchronize_net() between 5098 * STATE_DEACTIVATED flag being set and 5099 * qdisc_reset()/some_qdisc_is_busy() in 5100 * dev_deactivate(), so we can safely bail out 5101 * early here to avoid data race between 5102 * qdisc_deactivate() and some_qdisc_is_busy() 5103 * for lockless qdisc. 5104 */ 5105 clear_bit(__QDISC_STATE_SCHED, &q->state); 5106 continue; 5107 } 5108 5109 clear_bit(__QDISC_STATE_SCHED, &q->state); 5110 qdisc_run(q); 5111 if (root_lock) 5112 spin_unlock(root_lock); 5113 } 5114 5115 rcu_read_unlock(); 5116 } 5117 5118 xfrm_dev_backlog(sd); 5119 } 5120 5121 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 5122 /* This hook is defined here for ATM LANE */ 5123 int (*br_fdb_test_addr_hook)(struct net_device *dev, 5124 unsigned char *addr) __read_mostly; 5125 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 5126 #endif 5127 5128 static inline struct sk_buff * 5129 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 5130 struct net_device *orig_dev, bool *another) 5131 { 5132 #ifdef CONFIG_NET_CLS_ACT 5133 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 5134 struct tcf_result cl_res; 5135 5136 /* If there's at least one ingress present somewhere (so 5137 * we get here via enabled static key), remaining devices 5138 * that are not configured with an ingress qdisc will bail 5139 * out here. 5140 */ 5141 if (!miniq) 5142 return skb; 5143 5144 if (*pt_prev) { 5145 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5146 *pt_prev = NULL; 5147 } 5148 5149 qdisc_skb_cb(skb)->pkt_len = skb->len; 5150 qdisc_skb_cb(skb)->mru = 0; 5151 qdisc_skb_cb(skb)->post_ct = false; 5152 skb->tc_at_ingress = 1; 5153 mini_qdisc_bstats_cpu_update(miniq, skb); 5154 5155 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list, 5156 &cl_res, false)) { 5157 case TC_ACT_OK: 5158 case TC_ACT_RECLASSIFY: 5159 skb->tc_index = TC_H_MIN(cl_res.classid); 5160 break; 5161 case TC_ACT_SHOT: 5162 mini_qdisc_qstats_cpu_drop(miniq); 5163 kfree_skb(skb); 5164 return NULL; 5165 case TC_ACT_STOLEN: 5166 case TC_ACT_QUEUED: 5167 case TC_ACT_TRAP: 5168 consume_skb(skb); 5169 return NULL; 5170 case TC_ACT_REDIRECT: 5171 /* skb_mac_header check was done by cls/act_bpf, so 5172 * we can safely push the L2 header back before 5173 * redirecting to another netdev 5174 */ 5175 __skb_push(skb, skb->mac_len); 5176 if (skb_do_redirect(skb) == -EAGAIN) { 5177 __skb_pull(skb, skb->mac_len); 5178 *another = true; 5179 break; 5180 } 5181 return NULL; 5182 case TC_ACT_CONSUMED: 5183 return NULL; 5184 default: 5185 break; 5186 } 5187 #endif /* CONFIG_NET_CLS_ACT */ 5188 return skb; 5189 } 5190 5191 /** 5192 * netdev_is_rx_handler_busy - check if receive handler is registered 5193 * @dev: device to check 5194 * 5195 * Check if a receive handler is already registered for a given device. 5196 * Return true if there one. 5197 * 5198 * The caller must hold the rtnl_mutex. 5199 */ 5200 bool netdev_is_rx_handler_busy(struct net_device *dev) 5201 { 5202 ASSERT_RTNL(); 5203 return dev && rtnl_dereference(dev->rx_handler); 5204 } 5205 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5206 5207 /** 5208 * netdev_rx_handler_register - register receive handler 5209 * @dev: device to register a handler for 5210 * @rx_handler: receive handler to register 5211 * @rx_handler_data: data pointer that is used by rx handler 5212 * 5213 * Register a receive handler for a device. This handler will then be 5214 * called from __netif_receive_skb. A negative errno code is returned 5215 * on a failure. 5216 * 5217 * The caller must hold the rtnl_mutex. 5218 * 5219 * For a general description of rx_handler, see enum rx_handler_result. 5220 */ 5221 int netdev_rx_handler_register(struct net_device *dev, 5222 rx_handler_func_t *rx_handler, 5223 void *rx_handler_data) 5224 { 5225 if (netdev_is_rx_handler_busy(dev)) 5226 return -EBUSY; 5227 5228 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5229 return -EINVAL; 5230 5231 /* Note: rx_handler_data must be set before rx_handler */ 5232 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5233 rcu_assign_pointer(dev->rx_handler, rx_handler); 5234 5235 return 0; 5236 } 5237 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5238 5239 /** 5240 * netdev_rx_handler_unregister - unregister receive handler 5241 * @dev: device to unregister a handler from 5242 * 5243 * Unregister a receive handler from a device. 5244 * 5245 * The caller must hold the rtnl_mutex. 5246 */ 5247 void netdev_rx_handler_unregister(struct net_device *dev) 5248 { 5249 5250 ASSERT_RTNL(); 5251 RCU_INIT_POINTER(dev->rx_handler, NULL); 5252 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5253 * section has a guarantee to see a non NULL rx_handler_data 5254 * as well. 5255 */ 5256 synchronize_net(); 5257 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5258 } 5259 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5260 5261 /* 5262 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5263 * the special handling of PFMEMALLOC skbs. 5264 */ 5265 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5266 { 5267 switch (skb->protocol) { 5268 case htons(ETH_P_ARP): 5269 case htons(ETH_P_IP): 5270 case htons(ETH_P_IPV6): 5271 case htons(ETH_P_8021Q): 5272 case htons(ETH_P_8021AD): 5273 return true; 5274 default: 5275 return false; 5276 } 5277 } 5278 5279 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5280 int *ret, struct net_device *orig_dev) 5281 { 5282 if (nf_hook_ingress_active(skb)) { 5283 int ingress_retval; 5284 5285 if (*pt_prev) { 5286 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5287 *pt_prev = NULL; 5288 } 5289 5290 rcu_read_lock(); 5291 ingress_retval = nf_hook_ingress(skb); 5292 rcu_read_unlock(); 5293 return ingress_retval; 5294 } 5295 return 0; 5296 } 5297 5298 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5299 struct packet_type **ppt_prev) 5300 { 5301 struct packet_type *ptype, *pt_prev; 5302 rx_handler_func_t *rx_handler; 5303 struct sk_buff *skb = *pskb; 5304 struct net_device *orig_dev; 5305 bool deliver_exact = false; 5306 int ret = NET_RX_DROP; 5307 __be16 type; 5308 5309 net_timestamp_check(!netdev_tstamp_prequeue, skb); 5310 5311 trace_netif_receive_skb(skb); 5312 5313 orig_dev = skb->dev; 5314 5315 skb_reset_network_header(skb); 5316 if (!skb_transport_header_was_set(skb)) 5317 skb_reset_transport_header(skb); 5318 skb_reset_mac_len(skb); 5319 5320 pt_prev = NULL; 5321 5322 another_round: 5323 skb->skb_iif = skb->dev->ifindex; 5324 5325 __this_cpu_inc(softnet_data.processed); 5326 5327 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5328 int ret2; 5329 5330 migrate_disable(); 5331 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 5332 migrate_enable(); 5333 5334 if (ret2 != XDP_PASS) { 5335 ret = NET_RX_DROP; 5336 goto out; 5337 } 5338 } 5339 5340 if (eth_type_vlan(skb->protocol)) { 5341 skb = skb_vlan_untag(skb); 5342 if (unlikely(!skb)) 5343 goto out; 5344 } 5345 5346 if (skb_skip_tc_classify(skb)) 5347 goto skip_classify; 5348 5349 if (pfmemalloc) 5350 goto skip_taps; 5351 5352 list_for_each_entry_rcu(ptype, &ptype_all, list) { 5353 if (pt_prev) 5354 ret = deliver_skb(skb, pt_prev, orig_dev); 5355 pt_prev = ptype; 5356 } 5357 5358 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5359 if (pt_prev) 5360 ret = deliver_skb(skb, pt_prev, orig_dev); 5361 pt_prev = ptype; 5362 } 5363 5364 skip_taps: 5365 #ifdef CONFIG_NET_INGRESS 5366 if (static_branch_unlikely(&ingress_needed_key)) { 5367 bool another = false; 5368 5369 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 5370 &another); 5371 if (another) 5372 goto another_round; 5373 if (!skb) 5374 goto out; 5375 5376 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5377 goto out; 5378 } 5379 #endif 5380 skb_reset_redirect(skb); 5381 skip_classify: 5382 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5383 goto drop; 5384 5385 if (skb_vlan_tag_present(skb)) { 5386 if (pt_prev) { 5387 ret = deliver_skb(skb, pt_prev, orig_dev); 5388 pt_prev = NULL; 5389 } 5390 if (vlan_do_receive(&skb)) 5391 goto another_round; 5392 else if (unlikely(!skb)) 5393 goto out; 5394 } 5395 5396 rx_handler = rcu_dereference(skb->dev->rx_handler); 5397 if (rx_handler) { 5398 if (pt_prev) { 5399 ret = deliver_skb(skb, pt_prev, orig_dev); 5400 pt_prev = NULL; 5401 } 5402 switch (rx_handler(&skb)) { 5403 case RX_HANDLER_CONSUMED: 5404 ret = NET_RX_SUCCESS; 5405 goto out; 5406 case RX_HANDLER_ANOTHER: 5407 goto another_round; 5408 case RX_HANDLER_EXACT: 5409 deliver_exact = true; 5410 break; 5411 case RX_HANDLER_PASS: 5412 break; 5413 default: 5414 BUG(); 5415 } 5416 } 5417 5418 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 5419 check_vlan_id: 5420 if (skb_vlan_tag_get_id(skb)) { 5421 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5422 * find vlan device. 5423 */ 5424 skb->pkt_type = PACKET_OTHERHOST; 5425 } else if (eth_type_vlan(skb->protocol)) { 5426 /* Outer header is 802.1P with vlan 0, inner header is 5427 * 802.1Q or 802.1AD and vlan_do_receive() above could 5428 * not find vlan dev for vlan id 0. 5429 */ 5430 __vlan_hwaccel_clear_tag(skb); 5431 skb = skb_vlan_untag(skb); 5432 if (unlikely(!skb)) 5433 goto out; 5434 if (vlan_do_receive(&skb)) 5435 /* After stripping off 802.1P header with vlan 0 5436 * vlan dev is found for inner header. 5437 */ 5438 goto another_round; 5439 else if (unlikely(!skb)) 5440 goto out; 5441 else 5442 /* We have stripped outer 802.1P vlan 0 header. 5443 * But could not find vlan dev. 5444 * check again for vlan id to set OTHERHOST. 5445 */ 5446 goto check_vlan_id; 5447 } 5448 /* Note: we might in the future use prio bits 5449 * and set skb->priority like in vlan_do_receive() 5450 * For the time being, just ignore Priority Code Point 5451 */ 5452 __vlan_hwaccel_clear_tag(skb); 5453 } 5454 5455 type = skb->protocol; 5456 5457 /* deliver only exact match when indicated */ 5458 if (likely(!deliver_exact)) { 5459 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5460 &ptype_base[ntohs(type) & 5461 PTYPE_HASH_MASK]); 5462 } 5463 5464 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5465 &orig_dev->ptype_specific); 5466 5467 if (unlikely(skb->dev != orig_dev)) { 5468 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5469 &skb->dev->ptype_specific); 5470 } 5471 5472 if (pt_prev) { 5473 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 5474 goto drop; 5475 *ppt_prev = pt_prev; 5476 } else { 5477 drop: 5478 if (!deliver_exact) 5479 atomic_long_inc(&skb->dev->rx_dropped); 5480 else 5481 atomic_long_inc(&skb->dev->rx_nohandler); 5482 kfree_skb(skb); 5483 /* Jamal, now you will not able to escape explaining 5484 * me how you were going to use this. :-) 5485 */ 5486 ret = NET_RX_DROP; 5487 } 5488 5489 out: 5490 /* The invariant here is that if *ppt_prev is not NULL 5491 * then skb should also be non-NULL. 5492 * 5493 * Apparently *ppt_prev assignment above holds this invariant due to 5494 * skb dereferencing near it. 5495 */ 5496 *pskb = skb; 5497 return ret; 5498 } 5499 5500 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5501 { 5502 struct net_device *orig_dev = skb->dev; 5503 struct packet_type *pt_prev = NULL; 5504 int ret; 5505 5506 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5507 if (pt_prev) 5508 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5509 skb->dev, pt_prev, orig_dev); 5510 return ret; 5511 } 5512 5513 /** 5514 * netif_receive_skb_core - special purpose version of netif_receive_skb 5515 * @skb: buffer to process 5516 * 5517 * More direct receive version of netif_receive_skb(). It should 5518 * only be used by callers that have a need to skip RPS and Generic XDP. 5519 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 5520 * 5521 * This function may only be called from softirq context and interrupts 5522 * should be enabled. 5523 * 5524 * Return values (usually ignored): 5525 * NET_RX_SUCCESS: no congestion 5526 * NET_RX_DROP: packet was dropped 5527 */ 5528 int netif_receive_skb_core(struct sk_buff *skb) 5529 { 5530 int ret; 5531 5532 rcu_read_lock(); 5533 ret = __netif_receive_skb_one_core(skb, false); 5534 rcu_read_unlock(); 5535 5536 return ret; 5537 } 5538 EXPORT_SYMBOL(netif_receive_skb_core); 5539 5540 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5541 struct packet_type *pt_prev, 5542 struct net_device *orig_dev) 5543 { 5544 struct sk_buff *skb, *next; 5545 5546 if (!pt_prev) 5547 return; 5548 if (list_empty(head)) 5549 return; 5550 if (pt_prev->list_func != NULL) 5551 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 5552 ip_list_rcv, head, pt_prev, orig_dev); 5553 else 5554 list_for_each_entry_safe(skb, next, head, list) { 5555 skb_list_del_init(skb); 5556 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5557 } 5558 } 5559 5560 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5561 { 5562 /* Fast-path assumptions: 5563 * - There is no RX handler. 5564 * - Only one packet_type matches. 5565 * If either of these fails, we will end up doing some per-packet 5566 * processing in-line, then handling the 'last ptype' for the whole 5567 * sublist. This can't cause out-of-order delivery to any single ptype, 5568 * because the 'last ptype' must be constant across the sublist, and all 5569 * other ptypes are handled per-packet. 5570 */ 5571 /* Current (common) ptype of sublist */ 5572 struct packet_type *pt_curr = NULL; 5573 /* Current (common) orig_dev of sublist */ 5574 struct net_device *od_curr = NULL; 5575 struct list_head sublist; 5576 struct sk_buff *skb, *next; 5577 5578 INIT_LIST_HEAD(&sublist); 5579 list_for_each_entry_safe(skb, next, head, list) { 5580 struct net_device *orig_dev = skb->dev; 5581 struct packet_type *pt_prev = NULL; 5582 5583 skb_list_del_init(skb); 5584 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5585 if (!pt_prev) 5586 continue; 5587 if (pt_curr != pt_prev || od_curr != orig_dev) { 5588 /* dispatch old sublist */ 5589 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5590 /* start new sublist */ 5591 INIT_LIST_HEAD(&sublist); 5592 pt_curr = pt_prev; 5593 od_curr = orig_dev; 5594 } 5595 list_add_tail(&skb->list, &sublist); 5596 } 5597 5598 /* dispatch final sublist */ 5599 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5600 } 5601 5602 static int __netif_receive_skb(struct sk_buff *skb) 5603 { 5604 int ret; 5605 5606 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5607 unsigned int noreclaim_flag; 5608 5609 /* 5610 * PFMEMALLOC skbs are special, they should 5611 * - be delivered to SOCK_MEMALLOC sockets only 5612 * - stay away from userspace 5613 * - have bounded memory usage 5614 * 5615 * Use PF_MEMALLOC as this saves us from propagating the allocation 5616 * context down to all allocation sites. 5617 */ 5618 noreclaim_flag = memalloc_noreclaim_save(); 5619 ret = __netif_receive_skb_one_core(skb, true); 5620 memalloc_noreclaim_restore(noreclaim_flag); 5621 } else 5622 ret = __netif_receive_skb_one_core(skb, false); 5623 5624 return ret; 5625 } 5626 5627 static void __netif_receive_skb_list(struct list_head *head) 5628 { 5629 unsigned long noreclaim_flag = 0; 5630 struct sk_buff *skb, *next; 5631 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5632 5633 list_for_each_entry_safe(skb, next, head, list) { 5634 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5635 struct list_head sublist; 5636 5637 /* Handle the previous sublist */ 5638 list_cut_before(&sublist, head, &skb->list); 5639 if (!list_empty(&sublist)) 5640 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5641 pfmemalloc = !pfmemalloc; 5642 /* See comments in __netif_receive_skb */ 5643 if (pfmemalloc) 5644 noreclaim_flag = memalloc_noreclaim_save(); 5645 else 5646 memalloc_noreclaim_restore(noreclaim_flag); 5647 } 5648 } 5649 /* Handle the remaining sublist */ 5650 if (!list_empty(head)) 5651 __netif_receive_skb_list_core(head, pfmemalloc); 5652 /* Restore pflags */ 5653 if (pfmemalloc) 5654 memalloc_noreclaim_restore(noreclaim_flag); 5655 } 5656 5657 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5658 { 5659 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5660 struct bpf_prog *new = xdp->prog; 5661 int ret = 0; 5662 5663 switch (xdp->command) { 5664 case XDP_SETUP_PROG: 5665 rcu_assign_pointer(dev->xdp_prog, new); 5666 if (old) 5667 bpf_prog_put(old); 5668 5669 if (old && !new) { 5670 static_branch_dec(&generic_xdp_needed_key); 5671 } else if (new && !old) { 5672 static_branch_inc(&generic_xdp_needed_key); 5673 dev_disable_lro(dev); 5674 dev_disable_gro_hw(dev); 5675 } 5676 break; 5677 5678 default: 5679 ret = -EINVAL; 5680 break; 5681 } 5682 5683 return ret; 5684 } 5685 5686 static int netif_receive_skb_internal(struct sk_buff *skb) 5687 { 5688 int ret; 5689 5690 net_timestamp_check(netdev_tstamp_prequeue, skb); 5691 5692 if (skb_defer_rx_timestamp(skb)) 5693 return NET_RX_SUCCESS; 5694 5695 rcu_read_lock(); 5696 #ifdef CONFIG_RPS 5697 if (static_branch_unlikely(&rps_needed)) { 5698 struct rps_dev_flow voidflow, *rflow = &voidflow; 5699 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5700 5701 if (cpu >= 0) { 5702 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5703 rcu_read_unlock(); 5704 return ret; 5705 } 5706 } 5707 #endif 5708 ret = __netif_receive_skb(skb); 5709 rcu_read_unlock(); 5710 return ret; 5711 } 5712 5713 static void netif_receive_skb_list_internal(struct list_head *head) 5714 { 5715 struct sk_buff *skb, *next; 5716 struct list_head sublist; 5717 5718 INIT_LIST_HEAD(&sublist); 5719 list_for_each_entry_safe(skb, next, head, list) { 5720 net_timestamp_check(netdev_tstamp_prequeue, skb); 5721 skb_list_del_init(skb); 5722 if (!skb_defer_rx_timestamp(skb)) 5723 list_add_tail(&skb->list, &sublist); 5724 } 5725 list_splice_init(&sublist, head); 5726 5727 rcu_read_lock(); 5728 #ifdef CONFIG_RPS 5729 if (static_branch_unlikely(&rps_needed)) { 5730 list_for_each_entry_safe(skb, next, head, list) { 5731 struct rps_dev_flow voidflow, *rflow = &voidflow; 5732 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5733 5734 if (cpu >= 0) { 5735 /* Will be handled, remove from list */ 5736 skb_list_del_init(skb); 5737 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5738 } 5739 } 5740 } 5741 #endif 5742 __netif_receive_skb_list(head); 5743 rcu_read_unlock(); 5744 } 5745 5746 /** 5747 * netif_receive_skb - process receive buffer from network 5748 * @skb: buffer to process 5749 * 5750 * netif_receive_skb() is the main receive data processing function. 5751 * It always succeeds. The buffer may be dropped during processing 5752 * for congestion control or by the protocol layers. 5753 * 5754 * This function may only be called from softirq context and interrupts 5755 * should be enabled. 5756 * 5757 * Return values (usually ignored): 5758 * NET_RX_SUCCESS: no congestion 5759 * NET_RX_DROP: packet was dropped 5760 */ 5761 int netif_receive_skb(struct sk_buff *skb) 5762 { 5763 int ret; 5764 5765 trace_netif_receive_skb_entry(skb); 5766 5767 ret = netif_receive_skb_internal(skb); 5768 trace_netif_receive_skb_exit(ret); 5769 5770 return ret; 5771 } 5772 EXPORT_SYMBOL(netif_receive_skb); 5773 5774 /** 5775 * netif_receive_skb_list - process many receive buffers from network 5776 * @head: list of skbs to process. 5777 * 5778 * Since return value of netif_receive_skb() is normally ignored, and 5779 * wouldn't be meaningful for a list, this function returns void. 5780 * 5781 * This function may only be called from softirq context and interrupts 5782 * should be enabled. 5783 */ 5784 void netif_receive_skb_list(struct list_head *head) 5785 { 5786 struct sk_buff *skb; 5787 5788 if (list_empty(head)) 5789 return; 5790 if (trace_netif_receive_skb_list_entry_enabled()) { 5791 list_for_each_entry(skb, head, list) 5792 trace_netif_receive_skb_list_entry(skb); 5793 } 5794 netif_receive_skb_list_internal(head); 5795 trace_netif_receive_skb_list_exit(0); 5796 } 5797 EXPORT_SYMBOL(netif_receive_skb_list); 5798 5799 static DEFINE_PER_CPU(struct work_struct, flush_works); 5800 5801 /* Network device is going away, flush any packets still pending */ 5802 static void flush_backlog(struct work_struct *work) 5803 { 5804 struct sk_buff *skb, *tmp; 5805 struct softnet_data *sd; 5806 5807 local_bh_disable(); 5808 sd = this_cpu_ptr(&softnet_data); 5809 5810 local_irq_disable(); 5811 rps_lock(sd); 5812 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5813 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5814 __skb_unlink(skb, &sd->input_pkt_queue); 5815 dev_kfree_skb_irq(skb); 5816 input_queue_head_incr(sd); 5817 } 5818 } 5819 rps_unlock(sd); 5820 local_irq_enable(); 5821 5822 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5823 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5824 __skb_unlink(skb, &sd->process_queue); 5825 kfree_skb(skb); 5826 input_queue_head_incr(sd); 5827 } 5828 } 5829 local_bh_enable(); 5830 } 5831 5832 static bool flush_required(int cpu) 5833 { 5834 #if IS_ENABLED(CONFIG_RPS) 5835 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 5836 bool do_flush; 5837 5838 local_irq_disable(); 5839 rps_lock(sd); 5840 5841 /* as insertion into process_queue happens with the rps lock held, 5842 * process_queue access may race only with dequeue 5843 */ 5844 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 5845 !skb_queue_empty_lockless(&sd->process_queue); 5846 rps_unlock(sd); 5847 local_irq_enable(); 5848 5849 return do_flush; 5850 #endif 5851 /* without RPS we can't safely check input_pkt_queue: during a 5852 * concurrent remote skb_queue_splice() we can detect as empty both 5853 * input_pkt_queue and process_queue even if the latter could end-up 5854 * containing a lot of packets. 5855 */ 5856 return true; 5857 } 5858 5859 static void flush_all_backlogs(void) 5860 { 5861 static cpumask_t flush_cpus; 5862 unsigned int cpu; 5863 5864 /* since we are under rtnl lock protection we can use static data 5865 * for the cpumask and avoid allocating on stack the possibly 5866 * large mask 5867 */ 5868 ASSERT_RTNL(); 5869 5870 get_online_cpus(); 5871 5872 cpumask_clear(&flush_cpus); 5873 for_each_online_cpu(cpu) { 5874 if (flush_required(cpu)) { 5875 queue_work_on(cpu, system_highpri_wq, 5876 per_cpu_ptr(&flush_works, cpu)); 5877 cpumask_set_cpu(cpu, &flush_cpus); 5878 } 5879 } 5880 5881 /* we can have in flight packet[s] on the cpus we are not flushing, 5882 * synchronize_net() in unregister_netdevice_many() will take care of 5883 * them 5884 */ 5885 for_each_cpu(cpu, &flush_cpus) 5886 flush_work(per_cpu_ptr(&flush_works, cpu)); 5887 5888 put_online_cpus(); 5889 } 5890 5891 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */ 5892 static void gro_normal_list(struct napi_struct *napi) 5893 { 5894 if (!napi->rx_count) 5895 return; 5896 netif_receive_skb_list_internal(&napi->rx_list); 5897 INIT_LIST_HEAD(&napi->rx_list); 5898 napi->rx_count = 0; 5899 } 5900 5901 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded, 5902 * pass the whole batch up to the stack. 5903 */ 5904 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs) 5905 { 5906 list_add_tail(&skb->list, &napi->rx_list); 5907 napi->rx_count += segs; 5908 if (napi->rx_count >= gro_normal_batch) 5909 gro_normal_list(napi); 5910 } 5911 5912 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb) 5913 { 5914 struct packet_offload *ptype; 5915 __be16 type = skb->protocol; 5916 struct list_head *head = &offload_base; 5917 int err = -ENOENT; 5918 5919 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 5920 5921 if (NAPI_GRO_CB(skb)->count == 1) { 5922 skb_shinfo(skb)->gso_size = 0; 5923 goto out; 5924 } 5925 5926 rcu_read_lock(); 5927 list_for_each_entry_rcu(ptype, head, list) { 5928 if (ptype->type != type || !ptype->callbacks.gro_complete) 5929 continue; 5930 5931 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete, 5932 ipv6_gro_complete, inet_gro_complete, 5933 skb, 0); 5934 break; 5935 } 5936 rcu_read_unlock(); 5937 5938 if (err) { 5939 WARN_ON(&ptype->list == head); 5940 kfree_skb(skb); 5941 return NET_RX_SUCCESS; 5942 } 5943 5944 out: 5945 gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count); 5946 return NET_RX_SUCCESS; 5947 } 5948 5949 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index, 5950 bool flush_old) 5951 { 5952 struct list_head *head = &napi->gro_hash[index].list; 5953 struct sk_buff *skb, *p; 5954 5955 list_for_each_entry_safe_reverse(skb, p, head, list) { 5956 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 5957 return; 5958 skb_list_del_init(skb); 5959 napi_gro_complete(napi, skb); 5960 napi->gro_hash[index].count--; 5961 } 5962 5963 if (!napi->gro_hash[index].count) 5964 __clear_bit(index, &napi->gro_bitmask); 5965 } 5966 5967 /* napi->gro_hash[].list contains packets ordered by age. 5968 * youngest packets at the head of it. 5969 * Complete skbs in reverse order to reduce latencies. 5970 */ 5971 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 5972 { 5973 unsigned long bitmask = napi->gro_bitmask; 5974 unsigned int i, base = ~0U; 5975 5976 while ((i = ffs(bitmask)) != 0) { 5977 bitmask >>= i; 5978 base += i; 5979 __napi_gro_flush_chain(napi, base, flush_old); 5980 } 5981 } 5982 EXPORT_SYMBOL(napi_gro_flush); 5983 5984 static void gro_list_prepare(const struct list_head *head, 5985 const struct sk_buff *skb) 5986 { 5987 unsigned int maclen = skb->dev->hard_header_len; 5988 u32 hash = skb_get_hash_raw(skb); 5989 struct sk_buff *p; 5990 5991 list_for_each_entry(p, head, list) { 5992 unsigned long diffs; 5993 5994 NAPI_GRO_CB(p)->flush = 0; 5995 5996 if (hash != skb_get_hash_raw(p)) { 5997 NAPI_GRO_CB(p)->same_flow = 0; 5998 continue; 5999 } 6000 6001 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 6002 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb); 6003 if (skb_vlan_tag_present(p)) 6004 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb); 6005 diffs |= skb_metadata_dst_cmp(p, skb); 6006 diffs |= skb_metadata_differs(p, skb); 6007 if (maclen == ETH_HLEN) 6008 diffs |= compare_ether_header(skb_mac_header(p), 6009 skb_mac_header(skb)); 6010 else if (!diffs) 6011 diffs = memcmp(skb_mac_header(p), 6012 skb_mac_header(skb), 6013 maclen); 6014 6015 diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb); 6016 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 6017 if (!diffs) { 6018 struct tc_skb_ext *skb_ext = skb_ext_find(skb, TC_SKB_EXT); 6019 struct tc_skb_ext *p_ext = skb_ext_find(p, TC_SKB_EXT); 6020 6021 diffs |= (!!p_ext) ^ (!!skb_ext); 6022 if (!diffs && unlikely(skb_ext)) 6023 diffs |= p_ext->chain ^ skb_ext->chain; 6024 } 6025 #endif 6026 6027 NAPI_GRO_CB(p)->same_flow = !diffs; 6028 } 6029 } 6030 6031 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff) 6032 { 6033 const struct skb_shared_info *pinfo = skb_shinfo(skb); 6034 const skb_frag_t *frag0 = &pinfo->frags[0]; 6035 6036 NAPI_GRO_CB(skb)->data_offset = 0; 6037 NAPI_GRO_CB(skb)->frag0 = NULL; 6038 NAPI_GRO_CB(skb)->frag0_len = 0; 6039 6040 if (!skb_headlen(skb) && pinfo->nr_frags && 6041 !PageHighMem(skb_frag_page(frag0)) && 6042 (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) { 6043 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 6044 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 6045 skb_frag_size(frag0), 6046 skb->end - skb->tail); 6047 } 6048 } 6049 6050 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 6051 { 6052 struct skb_shared_info *pinfo = skb_shinfo(skb); 6053 6054 BUG_ON(skb->end - skb->tail < grow); 6055 6056 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 6057 6058 skb->data_len -= grow; 6059 skb->tail += grow; 6060 6061 skb_frag_off_add(&pinfo->frags[0], grow); 6062 skb_frag_size_sub(&pinfo->frags[0], grow); 6063 6064 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 6065 skb_frag_unref(skb, 0); 6066 memmove(pinfo->frags, pinfo->frags + 1, 6067 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 6068 } 6069 } 6070 6071 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head) 6072 { 6073 struct sk_buff *oldest; 6074 6075 oldest = list_last_entry(head, struct sk_buff, list); 6076 6077 /* We are called with head length >= MAX_GRO_SKBS, so this is 6078 * impossible. 6079 */ 6080 if (WARN_ON_ONCE(!oldest)) 6081 return; 6082 6083 /* Do not adjust napi->gro_hash[].count, caller is adding a new 6084 * SKB to the chain. 6085 */ 6086 skb_list_del_init(oldest); 6087 napi_gro_complete(napi, oldest); 6088 } 6089 6090 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 6091 { 6092 u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1); 6093 struct gro_list *gro_list = &napi->gro_hash[bucket]; 6094 struct list_head *head = &offload_base; 6095 struct packet_offload *ptype; 6096 __be16 type = skb->protocol; 6097 struct sk_buff *pp = NULL; 6098 enum gro_result ret; 6099 int same_flow; 6100 int grow; 6101 6102 if (netif_elide_gro(skb->dev)) 6103 goto normal; 6104 6105 gro_list_prepare(&gro_list->list, skb); 6106 6107 rcu_read_lock(); 6108 list_for_each_entry_rcu(ptype, head, list) { 6109 if (ptype->type != type || !ptype->callbacks.gro_receive) 6110 continue; 6111 6112 skb_set_network_header(skb, skb_gro_offset(skb)); 6113 skb_reset_mac_len(skb); 6114 NAPI_GRO_CB(skb)->same_flow = 0; 6115 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 6116 NAPI_GRO_CB(skb)->free = 0; 6117 NAPI_GRO_CB(skb)->encap_mark = 0; 6118 NAPI_GRO_CB(skb)->recursion_counter = 0; 6119 NAPI_GRO_CB(skb)->is_fou = 0; 6120 NAPI_GRO_CB(skb)->is_atomic = 1; 6121 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 6122 6123 /* Setup for GRO checksum validation */ 6124 switch (skb->ip_summed) { 6125 case CHECKSUM_COMPLETE: 6126 NAPI_GRO_CB(skb)->csum = skb->csum; 6127 NAPI_GRO_CB(skb)->csum_valid = 1; 6128 NAPI_GRO_CB(skb)->csum_cnt = 0; 6129 break; 6130 case CHECKSUM_UNNECESSARY: 6131 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 6132 NAPI_GRO_CB(skb)->csum_valid = 0; 6133 break; 6134 default: 6135 NAPI_GRO_CB(skb)->csum_cnt = 0; 6136 NAPI_GRO_CB(skb)->csum_valid = 0; 6137 } 6138 6139 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive, 6140 ipv6_gro_receive, inet_gro_receive, 6141 &gro_list->list, skb); 6142 break; 6143 } 6144 rcu_read_unlock(); 6145 6146 if (&ptype->list == head) 6147 goto normal; 6148 6149 if (PTR_ERR(pp) == -EINPROGRESS) { 6150 ret = GRO_CONSUMED; 6151 goto ok; 6152 } 6153 6154 same_flow = NAPI_GRO_CB(skb)->same_flow; 6155 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 6156 6157 if (pp) { 6158 skb_list_del_init(pp); 6159 napi_gro_complete(napi, pp); 6160 gro_list->count--; 6161 } 6162 6163 if (same_flow) 6164 goto ok; 6165 6166 if (NAPI_GRO_CB(skb)->flush) 6167 goto normal; 6168 6169 if (unlikely(gro_list->count >= MAX_GRO_SKBS)) 6170 gro_flush_oldest(napi, &gro_list->list); 6171 else 6172 gro_list->count++; 6173 6174 NAPI_GRO_CB(skb)->count = 1; 6175 NAPI_GRO_CB(skb)->age = jiffies; 6176 NAPI_GRO_CB(skb)->last = skb; 6177 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 6178 list_add(&skb->list, &gro_list->list); 6179 ret = GRO_HELD; 6180 6181 pull: 6182 grow = skb_gro_offset(skb) - skb_headlen(skb); 6183 if (grow > 0) 6184 gro_pull_from_frag0(skb, grow); 6185 ok: 6186 if (gro_list->count) { 6187 if (!test_bit(bucket, &napi->gro_bitmask)) 6188 __set_bit(bucket, &napi->gro_bitmask); 6189 } else if (test_bit(bucket, &napi->gro_bitmask)) { 6190 __clear_bit(bucket, &napi->gro_bitmask); 6191 } 6192 6193 return ret; 6194 6195 normal: 6196 ret = GRO_NORMAL; 6197 goto pull; 6198 } 6199 6200 struct packet_offload *gro_find_receive_by_type(__be16 type) 6201 { 6202 struct list_head *offload_head = &offload_base; 6203 struct packet_offload *ptype; 6204 6205 list_for_each_entry_rcu(ptype, offload_head, list) { 6206 if (ptype->type != type || !ptype->callbacks.gro_receive) 6207 continue; 6208 return ptype; 6209 } 6210 return NULL; 6211 } 6212 EXPORT_SYMBOL(gro_find_receive_by_type); 6213 6214 struct packet_offload *gro_find_complete_by_type(__be16 type) 6215 { 6216 struct list_head *offload_head = &offload_base; 6217 struct packet_offload *ptype; 6218 6219 list_for_each_entry_rcu(ptype, offload_head, list) { 6220 if (ptype->type != type || !ptype->callbacks.gro_complete) 6221 continue; 6222 return ptype; 6223 } 6224 return NULL; 6225 } 6226 EXPORT_SYMBOL(gro_find_complete_by_type); 6227 6228 static gro_result_t napi_skb_finish(struct napi_struct *napi, 6229 struct sk_buff *skb, 6230 gro_result_t ret) 6231 { 6232 switch (ret) { 6233 case GRO_NORMAL: 6234 gro_normal_one(napi, skb, 1); 6235 break; 6236 6237 case GRO_MERGED_FREE: 6238 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 6239 napi_skb_free_stolen_head(skb); 6240 else if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 6241 __kfree_skb(skb); 6242 else 6243 __kfree_skb_defer(skb); 6244 break; 6245 6246 case GRO_HELD: 6247 case GRO_MERGED: 6248 case GRO_CONSUMED: 6249 break; 6250 } 6251 6252 return ret; 6253 } 6254 6255 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 6256 { 6257 gro_result_t ret; 6258 6259 skb_mark_napi_id(skb, napi); 6260 trace_napi_gro_receive_entry(skb); 6261 6262 skb_gro_reset_offset(skb, 0); 6263 6264 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb)); 6265 trace_napi_gro_receive_exit(ret); 6266 6267 return ret; 6268 } 6269 EXPORT_SYMBOL(napi_gro_receive); 6270 6271 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 6272 { 6273 if (unlikely(skb->pfmemalloc)) { 6274 consume_skb(skb); 6275 return; 6276 } 6277 __skb_pull(skb, skb_headlen(skb)); 6278 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 6279 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 6280 __vlan_hwaccel_clear_tag(skb); 6281 skb->dev = napi->dev; 6282 skb->skb_iif = 0; 6283 6284 /* eth_type_trans() assumes pkt_type is PACKET_HOST */ 6285 skb->pkt_type = PACKET_HOST; 6286 6287 skb->encapsulation = 0; 6288 skb_shinfo(skb)->gso_type = 0; 6289 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6290 skb_ext_reset(skb); 6291 nf_reset_ct(skb); 6292 6293 napi->skb = skb; 6294 } 6295 6296 struct sk_buff *napi_get_frags(struct napi_struct *napi) 6297 { 6298 struct sk_buff *skb = napi->skb; 6299 6300 if (!skb) { 6301 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 6302 if (skb) { 6303 napi->skb = skb; 6304 skb_mark_napi_id(skb, napi); 6305 } 6306 } 6307 return skb; 6308 } 6309 EXPORT_SYMBOL(napi_get_frags); 6310 6311 static gro_result_t napi_frags_finish(struct napi_struct *napi, 6312 struct sk_buff *skb, 6313 gro_result_t ret) 6314 { 6315 switch (ret) { 6316 case GRO_NORMAL: 6317 case GRO_HELD: 6318 __skb_push(skb, ETH_HLEN); 6319 skb->protocol = eth_type_trans(skb, skb->dev); 6320 if (ret == GRO_NORMAL) 6321 gro_normal_one(napi, skb, 1); 6322 break; 6323 6324 case GRO_MERGED_FREE: 6325 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 6326 napi_skb_free_stolen_head(skb); 6327 else 6328 napi_reuse_skb(napi, skb); 6329 break; 6330 6331 case GRO_MERGED: 6332 case GRO_CONSUMED: 6333 break; 6334 } 6335 6336 return ret; 6337 } 6338 6339 /* Upper GRO stack assumes network header starts at gro_offset=0 6340 * Drivers could call both napi_gro_frags() and napi_gro_receive() 6341 * We copy ethernet header into skb->data to have a common layout. 6342 */ 6343 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 6344 { 6345 struct sk_buff *skb = napi->skb; 6346 const struct ethhdr *eth; 6347 unsigned int hlen = sizeof(*eth); 6348 6349 napi->skb = NULL; 6350 6351 skb_reset_mac_header(skb); 6352 skb_gro_reset_offset(skb, hlen); 6353 6354 if (unlikely(skb_gro_header_hard(skb, hlen))) { 6355 eth = skb_gro_header_slow(skb, hlen, 0); 6356 if (unlikely(!eth)) { 6357 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 6358 __func__, napi->dev->name); 6359 napi_reuse_skb(napi, skb); 6360 return NULL; 6361 } 6362 } else { 6363 eth = (const struct ethhdr *)skb->data; 6364 gro_pull_from_frag0(skb, hlen); 6365 NAPI_GRO_CB(skb)->frag0 += hlen; 6366 NAPI_GRO_CB(skb)->frag0_len -= hlen; 6367 } 6368 __skb_pull(skb, hlen); 6369 6370 /* 6371 * This works because the only protocols we care about don't require 6372 * special handling. 6373 * We'll fix it up properly in napi_frags_finish() 6374 */ 6375 skb->protocol = eth->h_proto; 6376 6377 return skb; 6378 } 6379 6380 gro_result_t napi_gro_frags(struct napi_struct *napi) 6381 { 6382 gro_result_t ret; 6383 struct sk_buff *skb = napi_frags_skb(napi); 6384 6385 trace_napi_gro_frags_entry(skb); 6386 6387 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 6388 trace_napi_gro_frags_exit(ret); 6389 6390 return ret; 6391 } 6392 EXPORT_SYMBOL(napi_gro_frags); 6393 6394 /* Compute the checksum from gro_offset and return the folded value 6395 * after adding in any pseudo checksum. 6396 */ 6397 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 6398 { 6399 __wsum wsum; 6400 __sum16 sum; 6401 6402 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 6403 6404 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 6405 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 6406 /* See comments in __skb_checksum_complete(). */ 6407 if (likely(!sum)) { 6408 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 6409 !skb->csum_complete_sw) 6410 netdev_rx_csum_fault(skb->dev, skb); 6411 } 6412 6413 NAPI_GRO_CB(skb)->csum = wsum; 6414 NAPI_GRO_CB(skb)->csum_valid = 1; 6415 6416 return sum; 6417 } 6418 EXPORT_SYMBOL(__skb_gro_checksum_complete); 6419 6420 static void net_rps_send_ipi(struct softnet_data *remsd) 6421 { 6422 #ifdef CONFIG_RPS 6423 while (remsd) { 6424 struct softnet_data *next = remsd->rps_ipi_next; 6425 6426 if (cpu_online(remsd->cpu)) 6427 smp_call_function_single_async(remsd->cpu, &remsd->csd); 6428 remsd = next; 6429 } 6430 #endif 6431 } 6432 6433 /* 6434 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 6435 * Note: called with local irq disabled, but exits with local irq enabled. 6436 */ 6437 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 6438 { 6439 #ifdef CONFIG_RPS 6440 struct softnet_data *remsd = sd->rps_ipi_list; 6441 6442 if (remsd) { 6443 sd->rps_ipi_list = NULL; 6444 6445 local_irq_enable(); 6446 6447 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6448 net_rps_send_ipi(remsd); 6449 } else 6450 #endif 6451 local_irq_enable(); 6452 } 6453 6454 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6455 { 6456 #ifdef CONFIG_RPS 6457 return sd->rps_ipi_list != NULL; 6458 #else 6459 return false; 6460 #endif 6461 } 6462 6463 static int process_backlog(struct napi_struct *napi, int quota) 6464 { 6465 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6466 bool again = true; 6467 int work = 0; 6468 6469 /* Check if we have pending ipi, its better to send them now, 6470 * not waiting net_rx_action() end. 6471 */ 6472 if (sd_has_rps_ipi_waiting(sd)) { 6473 local_irq_disable(); 6474 net_rps_action_and_irq_enable(sd); 6475 } 6476 6477 napi->weight = dev_rx_weight; 6478 while (again) { 6479 struct sk_buff *skb; 6480 6481 while ((skb = __skb_dequeue(&sd->process_queue))) { 6482 rcu_read_lock(); 6483 __netif_receive_skb(skb); 6484 rcu_read_unlock(); 6485 input_queue_head_incr(sd); 6486 if (++work >= quota) 6487 return work; 6488 6489 } 6490 6491 local_irq_disable(); 6492 rps_lock(sd); 6493 if (skb_queue_empty(&sd->input_pkt_queue)) { 6494 /* 6495 * Inline a custom version of __napi_complete(). 6496 * only current cpu owns and manipulates this napi, 6497 * and NAPI_STATE_SCHED is the only possible flag set 6498 * on backlog. 6499 * We can use a plain write instead of clear_bit(), 6500 * and we dont need an smp_mb() memory barrier. 6501 */ 6502 napi->state = 0; 6503 again = false; 6504 } else { 6505 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6506 &sd->process_queue); 6507 } 6508 rps_unlock(sd); 6509 local_irq_enable(); 6510 } 6511 6512 return work; 6513 } 6514 6515 /** 6516 * __napi_schedule - schedule for receive 6517 * @n: entry to schedule 6518 * 6519 * The entry's receive function will be scheduled to run. 6520 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6521 */ 6522 void __napi_schedule(struct napi_struct *n) 6523 { 6524 unsigned long flags; 6525 6526 local_irq_save(flags); 6527 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6528 local_irq_restore(flags); 6529 } 6530 EXPORT_SYMBOL(__napi_schedule); 6531 6532 /** 6533 * napi_schedule_prep - check if napi can be scheduled 6534 * @n: napi context 6535 * 6536 * Test if NAPI routine is already running, and if not mark 6537 * it as running. This is used as a condition variable to 6538 * insure only one NAPI poll instance runs. We also make 6539 * sure there is no pending NAPI disable. 6540 */ 6541 bool napi_schedule_prep(struct napi_struct *n) 6542 { 6543 unsigned long val, new; 6544 6545 do { 6546 val = READ_ONCE(n->state); 6547 if (unlikely(val & NAPIF_STATE_DISABLE)) 6548 return false; 6549 new = val | NAPIF_STATE_SCHED; 6550 6551 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6552 * This was suggested by Alexander Duyck, as compiler 6553 * emits better code than : 6554 * if (val & NAPIF_STATE_SCHED) 6555 * new |= NAPIF_STATE_MISSED; 6556 */ 6557 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6558 NAPIF_STATE_MISSED; 6559 } while (cmpxchg(&n->state, val, new) != val); 6560 6561 return !(val & NAPIF_STATE_SCHED); 6562 } 6563 EXPORT_SYMBOL(napi_schedule_prep); 6564 6565 /** 6566 * __napi_schedule_irqoff - schedule for receive 6567 * @n: entry to schedule 6568 * 6569 * Variant of __napi_schedule() assuming hard irqs are masked. 6570 * 6571 * On PREEMPT_RT enabled kernels this maps to __napi_schedule() 6572 * because the interrupt disabled assumption might not be true 6573 * due to force-threaded interrupts and spinlock substitution. 6574 */ 6575 void __napi_schedule_irqoff(struct napi_struct *n) 6576 { 6577 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6578 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6579 else 6580 __napi_schedule(n); 6581 } 6582 EXPORT_SYMBOL(__napi_schedule_irqoff); 6583 6584 bool napi_complete_done(struct napi_struct *n, int work_done) 6585 { 6586 unsigned long flags, val, new, timeout = 0; 6587 bool ret = true; 6588 6589 /* 6590 * 1) Don't let napi dequeue from the cpu poll list 6591 * just in case its running on a different cpu. 6592 * 2) If we are busy polling, do nothing here, we have 6593 * the guarantee we will be called later. 6594 */ 6595 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6596 NAPIF_STATE_IN_BUSY_POLL))) 6597 return false; 6598 6599 if (work_done) { 6600 if (n->gro_bitmask) 6601 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6602 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs); 6603 } 6604 if (n->defer_hard_irqs_count > 0) { 6605 n->defer_hard_irqs_count--; 6606 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6607 if (timeout) 6608 ret = false; 6609 } 6610 if (n->gro_bitmask) { 6611 /* When the NAPI instance uses a timeout and keeps postponing 6612 * it, we need to bound somehow the time packets are kept in 6613 * the GRO layer 6614 */ 6615 napi_gro_flush(n, !!timeout); 6616 } 6617 6618 gro_normal_list(n); 6619 6620 if (unlikely(!list_empty(&n->poll_list))) { 6621 /* If n->poll_list is not empty, we need to mask irqs */ 6622 local_irq_save(flags); 6623 list_del_init(&n->poll_list); 6624 local_irq_restore(flags); 6625 } 6626 6627 do { 6628 val = READ_ONCE(n->state); 6629 6630 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6631 6632 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | 6633 NAPIF_STATE_SCHED_THREADED | 6634 NAPIF_STATE_PREFER_BUSY_POLL); 6635 6636 /* If STATE_MISSED was set, leave STATE_SCHED set, 6637 * because we will call napi->poll() one more time. 6638 * This C code was suggested by Alexander Duyck to help gcc. 6639 */ 6640 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6641 NAPIF_STATE_SCHED; 6642 } while (cmpxchg(&n->state, val, new) != val); 6643 6644 if (unlikely(val & NAPIF_STATE_MISSED)) { 6645 __napi_schedule(n); 6646 return false; 6647 } 6648 6649 if (timeout) 6650 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6651 HRTIMER_MODE_REL_PINNED); 6652 return ret; 6653 } 6654 EXPORT_SYMBOL(napi_complete_done); 6655 6656 /* must be called under rcu_read_lock(), as we dont take a reference */ 6657 static struct napi_struct *napi_by_id(unsigned int napi_id) 6658 { 6659 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6660 struct napi_struct *napi; 6661 6662 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6663 if (napi->napi_id == napi_id) 6664 return napi; 6665 6666 return NULL; 6667 } 6668 6669 #if defined(CONFIG_NET_RX_BUSY_POLL) 6670 6671 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) 6672 { 6673 if (!skip_schedule) { 6674 gro_normal_list(napi); 6675 __napi_schedule(napi); 6676 return; 6677 } 6678 6679 if (napi->gro_bitmask) { 6680 /* flush too old packets 6681 * If HZ < 1000, flush all packets. 6682 */ 6683 napi_gro_flush(napi, HZ >= 1000); 6684 } 6685 6686 gro_normal_list(napi); 6687 clear_bit(NAPI_STATE_SCHED, &napi->state); 6688 } 6689 6690 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll, 6691 u16 budget) 6692 { 6693 bool skip_schedule = false; 6694 unsigned long timeout; 6695 int rc; 6696 6697 /* Busy polling means there is a high chance device driver hard irq 6698 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6699 * set in napi_schedule_prep(). 6700 * Since we are about to call napi->poll() once more, we can safely 6701 * clear NAPI_STATE_MISSED. 6702 * 6703 * Note: x86 could use a single "lock and ..." instruction 6704 * to perform these two clear_bit() 6705 */ 6706 clear_bit(NAPI_STATE_MISSED, &napi->state); 6707 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6708 6709 local_bh_disable(); 6710 6711 if (prefer_busy_poll) { 6712 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs); 6713 timeout = READ_ONCE(napi->dev->gro_flush_timeout); 6714 if (napi->defer_hard_irqs_count && timeout) { 6715 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED); 6716 skip_schedule = true; 6717 } 6718 } 6719 6720 /* All we really want here is to re-enable device interrupts. 6721 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6722 */ 6723 rc = napi->poll(napi, budget); 6724 /* We can't gro_normal_list() here, because napi->poll() might have 6725 * rearmed the napi (napi_complete_done()) in which case it could 6726 * already be running on another CPU. 6727 */ 6728 trace_napi_poll(napi, rc, budget); 6729 netpoll_poll_unlock(have_poll_lock); 6730 if (rc == budget) 6731 __busy_poll_stop(napi, skip_schedule); 6732 local_bh_enable(); 6733 } 6734 6735 void napi_busy_loop(unsigned int napi_id, 6736 bool (*loop_end)(void *, unsigned long), 6737 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6738 { 6739 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6740 int (*napi_poll)(struct napi_struct *napi, int budget); 6741 void *have_poll_lock = NULL; 6742 struct napi_struct *napi; 6743 6744 restart: 6745 napi_poll = NULL; 6746 6747 rcu_read_lock(); 6748 6749 napi = napi_by_id(napi_id); 6750 if (!napi) 6751 goto out; 6752 6753 preempt_disable(); 6754 for (;;) { 6755 int work = 0; 6756 6757 local_bh_disable(); 6758 if (!napi_poll) { 6759 unsigned long val = READ_ONCE(napi->state); 6760 6761 /* If multiple threads are competing for this napi, 6762 * we avoid dirtying napi->state as much as we can. 6763 */ 6764 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6765 NAPIF_STATE_IN_BUSY_POLL)) { 6766 if (prefer_busy_poll) 6767 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6768 goto count; 6769 } 6770 if (cmpxchg(&napi->state, val, 6771 val | NAPIF_STATE_IN_BUSY_POLL | 6772 NAPIF_STATE_SCHED) != val) { 6773 if (prefer_busy_poll) 6774 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6775 goto count; 6776 } 6777 have_poll_lock = netpoll_poll_lock(napi); 6778 napi_poll = napi->poll; 6779 } 6780 work = napi_poll(napi, budget); 6781 trace_napi_poll(napi, work, budget); 6782 gro_normal_list(napi); 6783 count: 6784 if (work > 0) 6785 __NET_ADD_STATS(dev_net(napi->dev), 6786 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6787 local_bh_enable(); 6788 6789 if (!loop_end || loop_end(loop_end_arg, start_time)) 6790 break; 6791 6792 if (unlikely(need_resched())) { 6793 if (napi_poll) 6794 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget); 6795 preempt_enable(); 6796 rcu_read_unlock(); 6797 cond_resched(); 6798 if (loop_end(loop_end_arg, start_time)) 6799 return; 6800 goto restart; 6801 } 6802 cpu_relax(); 6803 } 6804 if (napi_poll) 6805 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget); 6806 preempt_enable(); 6807 out: 6808 rcu_read_unlock(); 6809 } 6810 EXPORT_SYMBOL(napi_busy_loop); 6811 6812 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6813 6814 static void napi_hash_add(struct napi_struct *napi) 6815 { 6816 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 6817 return; 6818 6819 spin_lock(&napi_hash_lock); 6820 6821 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6822 do { 6823 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6824 napi_gen_id = MIN_NAPI_ID; 6825 } while (napi_by_id(napi_gen_id)); 6826 napi->napi_id = napi_gen_id; 6827 6828 hlist_add_head_rcu(&napi->napi_hash_node, 6829 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6830 6831 spin_unlock(&napi_hash_lock); 6832 } 6833 6834 /* Warning : caller is responsible to make sure rcu grace period 6835 * is respected before freeing memory containing @napi 6836 */ 6837 static void napi_hash_del(struct napi_struct *napi) 6838 { 6839 spin_lock(&napi_hash_lock); 6840 6841 hlist_del_init_rcu(&napi->napi_hash_node); 6842 6843 spin_unlock(&napi_hash_lock); 6844 } 6845 6846 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6847 { 6848 struct napi_struct *napi; 6849 6850 napi = container_of(timer, struct napi_struct, timer); 6851 6852 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6853 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6854 */ 6855 if (!napi_disable_pending(napi) && 6856 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) { 6857 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6858 __napi_schedule_irqoff(napi); 6859 } 6860 6861 return HRTIMER_NORESTART; 6862 } 6863 6864 static void init_gro_hash(struct napi_struct *napi) 6865 { 6866 int i; 6867 6868 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6869 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6870 napi->gro_hash[i].count = 0; 6871 } 6872 napi->gro_bitmask = 0; 6873 } 6874 6875 int dev_set_threaded(struct net_device *dev, bool threaded) 6876 { 6877 struct napi_struct *napi; 6878 int err = 0; 6879 6880 if (dev->threaded == threaded) 6881 return 0; 6882 6883 if (threaded) { 6884 list_for_each_entry(napi, &dev->napi_list, dev_list) { 6885 if (!napi->thread) { 6886 err = napi_kthread_create(napi); 6887 if (err) { 6888 threaded = false; 6889 break; 6890 } 6891 } 6892 } 6893 } 6894 6895 dev->threaded = threaded; 6896 6897 /* Make sure kthread is created before THREADED bit 6898 * is set. 6899 */ 6900 smp_mb__before_atomic(); 6901 6902 /* Setting/unsetting threaded mode on a napi might not immediately 6903 * take effect, if the current napi instance is actively being 6904 * polled. In this case, the switch between threaded mode and 6905 * softirq mode will happen in the next round of napi_schedule(). 6906 * This should not cause hiccups/stalls to the live traffic. 6907 */ 6908 list_for_each_entry(napi, &dev->napi_list, dev_list) { 6909 if (threaded) 6910 set_bit(NAPI_STATE_THREADED, &napi->state); 6911 else 6912 clear_bit(NAPI_STATE_THREADED, &napi->state); 6913 } 6914 6915 return err; 6916 } 6917 EXPORT_SYMBOL(dev_set_threaded); 6918 6919 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 6920 int (*poll)(struct napi_struct *, int), int weight) 6921 { 6922 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 6923 return; 6924 6925 INIT_LIST_HEAD(&napi->poll_list); 6926 INIT_HLIST_NODE(&napi->napi_hash_node); 6927 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6928 napi->timer.function = napi_watchdog; 6929 init_gro_hash(napi); 6930 napi->skb = NULL; 6931 INIT_LIST_HEAD(&napi->rx_list); 6932 napi->rx_count = 0; 6933 napi->poll = poll; 6934 if (weight > NAPI_POLL_WEIGHT) 6935 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6936 weight); 6937 napi->weight = weight; 6938 napi->dev = dev; 6939 #ifdef CONFIG_NETPOLL 6940 napi->poll_owner = -1; 6941 #endif 6942 set_bit(NAPI_STATE_SCHED, &napi->state); 6943 set_bit(NAPI_STATE_NPSVC, &napi->state); 6944 list_add_rcu(&napi->dev_list, &dev->napi_list); 6945 napi_hash_add(napi); 6946 /* Create kthread for this napi if dev->threaded is set. 6947 * Clear dev->threaded if kthread creation failed so that 6948 * threaded mode will not be enabled in napi_enable(). 6949 */ 6950 if (dev->threaded && napi_kthread_create(napi)) 6951 dev->threaded = 0; 6952 } 6953 EXPORT_SYMBOL(netif_napi_add); 6954 6955 void napi_disable(struct napi_struct *n) 6956 { 6957 might_sleep(); 6958 set_bit(NAPI_STATE_DISABLE, &n->state); 6959 6960 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 6961 msleep(1); 6962 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 6963 msleep(1); 6964 6965 hrtimer_cancel(&n->timer); 6966 6967 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state); 6968 clear_bit(NAPI_STATE_DISABLE, &n->state); 6969 clear_bit(NAPI_STATE_THREADED, &n->state); 6970 } 6971 EXPORT_SYMBOL(napi_disable); 6972 6973 /** 6974 * napi_enable - enable NAPI scheduling 6975 * @n: NAPI context 6976 * 6977 * Resume NAPI from being scheduled on this context. 6978 * Must be paired with napi_disable. 6979 */ 6980 void napi_enable(struct napi_struct *n) 6981 { 6982 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 6983 smp_mb__before_atomic(); 6984 clear_bit(NAPI_STATE_SCHED, &n->state); 6985 clear_bit(NAPI_STATE_NPSVC, &n->state); 6986 if (n->dev->threaded && n->thread) 6987 set_bit(NAPI_STATE_THREADED, &n->state); 6988 } 6989 EXPORT_SYMBOL(napi_enable); 6990 6991 static void flush_gro_hash(struct napi_struct *napi) 6992 { 6993 int i; 6994 6995 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6996 struct sk_buff *skb, *n; 6997 6998 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6999 kfree_skb(skb); 7000 napi->gro_hash[i].count = 0; 7001 } 7002 } 7003 7004 /* Must be called in process context */ 7005 void __netif_napi_del(struct napi_struct *napi) 7006 { 7007 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 7008 return; 7009 7010 napi_hash_del(napi); 7011 list_del_rcu(&napi->dev_list); 7012 napi_free_frags(napi); 7013 7014 flush_gro_hash(napi); 7015 napi->gro_bitmask = 0; 7016 7017 if (napi->thread) { 7018 kthread_stop(napi->thread); 7019 napi->thread = NULL; 7020 } 7021 } 7022 EXPORT_SYMBOL(__netif_napi_del); 7023 7024 static int __napi_poll(struct napi_struct *n, bool *repoll) 7025 { 7026 int work, weight; 7027 7028 weight = n->weight; 7029 7030 /* This NAPI_STATE_SCHED test is for avoiding a race 7031 * with netpoll's poll_napi(). Only the entity which 7032 * obtains the lock and sees NAPI_STATE_SCHED set will 7033 * actually make the ->poll() call. Therefore we avoid 7034 * accidentally calling ->poll() when NAPI is not scheduled. 7035 */ 7036 work = 0; 7037 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 7038 work = n->poll(n, weight); 7039 trace_napi_poll(n, work, weight); 7040 } 7041 7042 if (unlikely(work > weight)) 7043 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 7044 n->poll, work, weight); 7045 7046 if (likely(work < weight)) 7047 return work; 7048 7049 /* Drivers must not modify the NAPI state if they 7050 * consume the entire weight. In such cases this code 7051 * still "owns" the NAPI instance and therefore can 7052 * move the instance around on the list at-will. 7053 */ 7054 if (unlikely(napi_disable_pending(n))) { 7055 napi_complete(n); 7056 return work; 7057 } 7058 7059 /* The NAPI context has more processing work, but busy-polling 7060 * is preferred. Exit early. 7061 */ 7062 if (napi_prefer_busy_poll(n)) { 7063 if (napi_complete_done(n, work)) { 7064 /* If timeout is not set, we need to make sure 7065 * that the NAPI is re-scheduled. 7066 */ 7067 napi_schedule(n); 7068 } 7069 return work; 7070 } 7071 7072 if (n->gro_bitmask) { 7073 /* flush too old packets 7074 * If HZ < 1000, flush all packets. 7075 */ 7076 napi_gro_flush(n, HZ >= 1000); 7077 } 7078 7079 gro_normal_list(n); 7080 7081 /* Some drivers may have called napi_schedule 7082 * prior to exhausting their budget. 7083 */ 7084 if (unlikely(!list_empty(&n->poll_list))) { 7085 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 7086 n->dev ? n->dev->name : "backlog"); 7087 return work; 7088 } 7089 7090 *repoll = true; 7091 7092 return work; 7093 } 7094 7095 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 7096 { 7097 bool do_repoll = false; 7098 void *have; 7099 int work; 7100 7101 list_del_init(&n->poll_list); 7102 7103 have = netpoll_poll_lock(n); 7104 7105 work = __napi_poll(n, &do_repoll); 7106 7107 if (do_repoll) 7108 list_add_tail(&n->poll_list, repoll); 7109 7110 netpoll_poll_unlock(have); 7111 7112 return work; 7113 } 7114 7115 static int napi_thread_wait(struct napi_struct *napi) 7116 { 7117 bool woken = false; 7118 7119 set_current_state(TASK_INTERRUPTIBLE); 7120 7121 while (!kthread_should_stop()) { 7122 /* Testing SCHED_THREADED bit here to make sure the current 7123 * kthread owns this napi and could poll on this napi. 7124 * Testing SCHED bit is not enough because SCHED bit might be 7125 * set by some other busy poll thread or by napi_disable(). 7126 */ 7127 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) { 7128 WARN_ON(!list_empty(&napi->poll_list)); 7129 __set_current_state(TASK_RUNNING); 7130 return 0; 7131 } 7132 7133 schedule(); 7134 /* woken being true indicates this thread owns this napi. */ 7135 woken = true; 7136 set_current_state(TASK_INTERRUPTIBLE); 7137 } 7138 __set_current_state(TASK_RUNNING); 7139 7140 return -1; 7141 } 7142 7143 static int napi_threaded_poll(void *data) 7144 { 7145 struct napi_struct *napi = data; 7146 void *have; 7147 7148 while (!napi_thread_wait(napi)) { 7149 for (;;) { 7150 bool repoll = false; 7151 7152 local_bh_disable(); 7153 7154 have = netpoll_poll_lock(napi); 7155 __napi_poll(napi, &repoll); 7156 netpoll_poll_unlock(have); 7157 7158 local_bh_enable(); 7159 7160 if (!repoll) 7161 break; 7162 7163 cond_resched(); 7164 } 7165 } 7166 return 0; 7167 } 7168 7169 static __latent_entropy void net_rx_action(struct softirq_action *h) 7170 { 7171 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 7172 unsigned long time_limit = jiffies + 7173 usecs_to_jiffies(netdev_budget_usecs); 7174 int budget = netdev_budget; 7175 LIST_HEAD(list); 7176 LIST_HEAD(repoll); 7177 7178 local_irq_disable(); 7179 list_splice_init(&sd->poll_list, &list); 7180 local_irq_enable(); 7181 7182 for (;;) { 7183 struct napi_struct *n; 7184 7185 if (list_empty(&list)) { 7186 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 7187 return; 7188 break; 7189 } 7190 7191 n = list_first_entry(&list, struct napi_struct, poll_list); 7192 budget -= napi_poll(n, &repoll); 7193 7194 /* If softirq window is exhausted then punt. 7195 * Allow this to run for 2 jiffies since which will allow 7196 * an average latency of 1.5/HZ. 7197 */ 7198 if (unlikely(budget <= 0 || 7199 time_after_eq(jiffies, time_limit))) { 7200 sd->time_squeeze++; 7201 break; 7202 } 7203 } 7204 7205 local_irq_disable(); 7206 7207 list_splice_tail_init(&sd->poll_list, &list); 7208 list_splice_tail(&repoll, &list); 7209 list_splice(&list, &sd->poll_list); 7210 if (!list_empty(&sd->poll_list)) 7211 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 7212 7213 net_rps_action_and_irq_enable(sd); 7214 } 7215 7216 struct netdev_adjacent { 7217 struct net_device *dev; 7218 7219 /* upper master flag, there can only be one master device per list */ 7220 bool master; 7221 7222 /* lookup ignore flag */ 7223 bool ignore; 7224 7225 /* counter for the number of times this device was added to us */ 7226 u16 ref_nr; 7227 7228 /* private field for the users */ 7229 void *private; 7230 7231 struct list_head list; 7232 struct rcu_head rcu; 7233 }; 7234 7235 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 7236 struct list_head *adj_list) 7237 { 7238 struct netdev_adjacent *adj; 7239 7240 list_for_each_entry(adj, adj_list, list) { 7241 if (adj->dev == adj_dev) 7242 return adj; 7243 } 7244 return NULL; 7245 } 7246 7247 static int ____netdev_has_upper_dev(struct net_device *upper_dev, 7248 struct netdev_nested_priv *priv) 7249 { 7250 struct net_device *dev = (struct net_device *)priv->data; 7251 7252 return upper_dev == dev; 7253 } 7254 7255 /** 7256 * netdev_has_upper_dev - Check if device is linked to an upper device 7257 * @dev: device 7258 * @upper_dev: upper device to check 7259 * 7260 * Find out if a device is linked to specified upper device and return true 7261 * in case it is. Note that this checks only immediate upper device, 7262 * not through a complete stack of devices. The caller must hold the RTNL lock. 7263 */ 7264 bool netdev_has_upper_dev(struct net_device *dev, 7265 struct net_device *upper_dev) 7266 { 7267 struct netdev_nested_priv priv = { 7268 .data = (void *)upper_dev, 7269 }; 7270 7271 ASSERT_RTNL(); 7272 7273 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7274 &priv); 7275 } 7276 EXPORT_SYMBOL(netdev_has_upper_dev); 7277 7278 /** 7279 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device 7280 * @dev: device 7281 * @upper_dev: upper device to check 7282 * 7283 * Find out if a device is linked to specified upper device and return true 7284 * in case it is. Note that this checks the entire upper device chain. 7285 * The caller must hold rcu lock. 7286 */ 7287 7288 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 7289 struct net_device *upper_dev) 7290 { 7291 struct netdev_nested_priv priv = { 7292 .data = (void *)upper_dev, 7293 }; 7294 7295 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7296 &priv); 7297 } 7298 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 7299 7300 /** 7301 * netdev_has_any_upper_dev - Check if device is linked to some device 7302 * @dev: device 7303 * 7304 * Find out if a device is linked to an upper device and return true in case 7305 * it is. The caller must hold the RTNL lock. 7306 */ 7307 bool netdev_has_any_upper_dev(struct net_device *dev) 7308 { 7309 ASSERT_RTNL(); 7310 7311 return !list_empty(&dev->adj_list.upper); 7312 } 7313 EXPORT_SYMBOL(netdev_has_any_upper_dev); 7314 7315 /** 7316 * netdev_master_upper_dev_get - Get master upper device 7317 * @dev: device 7318 * 7319 * Find a master upper device and return pointer to it or NULL in case 7320 * it's not there. The caller must hold the RTNL lock. 7321 */ 7322 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 7323 { 7324 struct netdev_adjacent *upper; 7325 7326 ASSERT_RTNL(); 7327 7328 if (list_empty(&dev->adj_list.upper)) 7329 return NULL; 7330 7331 upper = list_first_entry(&dev->adj_list.upper, 7332 struct netdev_adjacent, list); 7333 if (likely(upper->master)) 7334 return upper->dev; 7335 return NULL; 7336 } 7337 EXPORT_SYMBOL(netdev_master_upper_dev_get); 7338 7339 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 7340 { 7341 struct netdev_adjacent *upper; 7342 7343 ASSERT_RTNL(); 7344 7345 if (list_empty(&dev->adj_list.upper)) 7346 return NULL; 7347 7348 upper = list_first_entry(&dev->adj_list.upper, 7349 struct netdev_adjacent, list); 7350 if (likely(upper->master) && !upper->ignore) 7351 return upper->dev; 7352 return NULL; 7353 } 7354 7355 /** 7356 * netdev_has_any_lower_dev - Check if device is linked to some device 7357 * @dev: device 7358 * 7359 * Find out if a device is linked to a lower device and return true in case 7360 * it is. The caller must hold the RTNL lock. 7361 */ 7362 static bool netdev_has_any_lower_dev(struct net_device *dev) 7363 { 7364 ASSERT_RTNL(); 7365 7366 return !list_empty(&dev->adj_list.lower); 7367 } 7368 7369 void *netdev_adjacent_get_private(struct list_head *adj_list) 7370 { 7371 struct netdev_adjacent *adj; 7372 7373 adj = list_entry(adj_list, struct netdev_adjacent, list); 7374 7375 return adj->private; 7376 } 7377 EXPORT_SYMBOL(netdev_adjacent_get_private); 7378 7379 /** 7380 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 7381 * @dev: device 7382 * @iter: list_head ** of the current position 7383 * 7384 * Gets the next device from the dev's upper list, starting from iter 7385 * position. The caller must hold RCU read lock. 7386 */ 7387 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 7388 struct list_head **iter) 7389 { 7390 struct netdev_adjacent *upper; 7391 7392 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7393 7394 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7395 7396 if (&upper->list == &dev->adj_list.upper) 7397 return NULL; 7398 7399 *iter = &upper->list; 7400 7401 return upper->dev; 7402 } 7403 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 7404 7405 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 7406 struct list_head **iter, 7407 bool *ignore) 7408 { 7409 struct netdev_adjacent *upper; 7410 7411 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 7412 7413 if (&upper->list == &dev->adj_list.upper) 7414 return NULL; 7415 7416 *iter = &upper->list; 7417 *ignore = upper->ignore; 7418 7419 return upper->dev; 7420 } 7421 7422 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 7423 struct list_head **iter) 7424 { 7425 struct netdev_adjacent *upper; 7426 7427 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7428 7429 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7430 7431 if (&upper->list == &dev->adj_list.upper) 7432 return NULL; 7433 7434 *iter = &upper->list; 7435 7436 return upper->dev; 7437 } 7438 7439 static int __netdev_walk_all_upper_dev(struct net_device *dev, 7440 int (*fn)(struct net_device *dev, 7441 struct netdev_nested_priv *priv), 7442 struct netdev_nested_priv *priv) 7443 { 7444 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7445 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7446 int ret, cur = 0; 7447 bool ignore; 7448 7449 now = dev; 7450 iter = &dev->adj_list.upper; 7451 7452 while (1) { 7453 if (now != dev) { 7454 ret = fn(now, priv); 7455 if (ret) 7456 return ret; 7457 } 7458 7459 next = NULL; 7460 while (1) { 7461 udev = __netdev_next_upper_dev(now, &iter, &ignore); 7462 if (!udev) 7463 break; 7464 if (ignore) 7465 continue; 7466 7467 next = udev; 7468 niter = &udev->adj_list.upper; 7469 dev_stack[cur] = now; 7470 iter_stack[cur++] = iter; 7471 break; 7472 } 7473 7474 if (!next) { 7475 if (!cur) 7476 return 0; 7477 next = dev_stack[--cur]; 7478 niter = iter_stack[cur]; 7479 } 7480 7481 now = next; 7482 iter = niter; 7483 } 7484 7485 return 0; 7486 } 7487 7488 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 7489 int (*fn)(struct net_device *dev, 7490 struct netdev_nested_priv *priv), 7491 struct netdev_nested_priv *priv) 7492 { 7493 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7494 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7495 int ret, cur = 0; 7496 7497 now = dev; 7498 iter = &dev->adj_list.upper; 7499 7500 while (1) { 7501 if (now != dev) { 7502 ret = fn(now, priv); 7503 if (ret) 7504 return ret; 7505 } 7506 7507 next = NULL; 7508 while (1) { 7509 udev = netdev_next_upper_dev_rcu(now, &iter); 7510 if (!udev) 7511 break; 7512 7513 next = udev; 7514 niter = &udev->adj_list.upper; 7515 dev_stack[cur] = now; 7516 iter_stack[cur++] = iter; 7517 break; 7518 } 7519 7520 if (!next) { 7521 if (!cur) 7522 return 0; 7523 next = dev_stack[--cur]; 7524 niter = iter_stack[cur]; 7525 } 7526 7527 now = next; 7528 iter = niter; 7529 } 7530 7531 return 0; 7532 } 7533 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 7534 7535 static bool __netdev_has_upper_dev(struct net_device *dev, 7536 struct net_device *upper_dev) 7537 { 7538 struct netdev_nested_priv priv = { 7539 .flags = 0, 7540 .data = (void *)upper_dev, 7541 }; 7542 7543 ASSERT_RTNL(); 7544 7545 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 7546 &priv); 7547 } 7548 7549 /** 7550 * netdev_lower_get_next_private - Get the next ->private from the 7551 * lower neighbour list 7552 * @dev: device 7553 * @iter: list_head ** of the current position 7554 * 7555 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7556 * list, starting from iter position. The caller must hold either hold the 7557 * RTNL lock or its own locking that guarantees that the neighbour lower 7558 * list will remain unchanged. 7559 */ 7560 void *netdev_lower_get_next_private(struct net_device *dev, 7561 struct list_head **iter) 7562 { 7563 struct netdev_adjacent *lower; 7564 7565 lower = list_entry(*iter, struct netdev_adjacent, list); 7566 7567 if (&lower->list == &dev->adj_list.lower) 7568 return NULL; 7569 7570 *iter = lower->list.next; 7571 7572 return lower->private; 7573 } 7574 EXPORT_SYMBOL(netdev_lower_get_next_private); 7575 7576 /** 7577 * netdev_lower_get_next_private_rcu - Get the next ->private from the 7578 * lower neighbour list, RCU 7579 * variant 7580 * @dev: device 7581 * @iter: list_head ** of the current position 7582 * 7583 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7584 * list, starting from iter position. The caller must hold RCU read lock. 7585 */ 7586 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 7587 struct list_head **iter) 7588 { 7589 struct netdev_adjacent *lower; 7590 7591 WARN_ON_ONCE(!rcu_read_lock_held()); 7592 7593 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7594 7595 if (&lower->list == &dev->adj_list.lower) 7596 return NULL; 7597 7598 *iter = &lower->list; 7599 7600 return lower->private; 7601 } 7602 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 7603 7604 /** 7605 * netdev_lower_get_next - Get the next device from the lower neighbour 7606 * list 7607 * @dev: device 7608 * @iter: list_head ** of the current position 7609 * 7610 * Gets the next netdev_adjacent from the dev's lower neighbour 7611 * list, starting from iter position. The caller must hold RTNL lock or 7612 * its own locking that guarantees that the neighbour lower 7613 * list will remain unchanged. 7614 */ 7615 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 7616 { 7617 struct netdev_adjacent *lower; 7618 7619 lower = list_entry(*iter, struct netdev_adjacent, list); 7620 7621 if (&lower->list == &dev->adj_list.lower) 7622 return NULL; 7623 7624 *iter = lower->list.next; 7625 7626 return lower->dev; 7627 } 7628 EXPORT_SYMBOL(netdev_lower_get_next); 7629 7630 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 7631 struct list_head **iter) 7632 { 7633 struct netdev_adjacent *lower; 7634 7635 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7636 7637 if (&lower->list == &dev->adj_list.lower) 7638 return NULL; 7639 7640 *iter = &lower->list; 7641 7642 return lower->dev; 7643 } 7644 7645 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 7646 struct list_head **iter, 7647 bool *ignore) 7648 { 7649 struct netdev_adjacent *lower; 7650 7651 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7652 7653 if (&lower->list == &dev->adj_list.lower) 7654 return NULL; 7655 7656 *iter = &lower->list; 7657 *ignore = lower->ignore; 7658 7659 return lower->dev; 7660 } 7661 7662 int netdev_walk_all_lower_dev(struct net_device *dev, 7663 int (*fn)(struct net_device *dev, 7664 struct netdev_nested_priv *priv), 7665 struct netdev_nested_priv *priv) 7666 { 7667 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7668 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7669 int ret, cur = 0; 7670 7671 now = dev; 7672 iter = &dev->adj_list.lower; 7673 7674 while (1) { 7675 if (now != dev) { 7676 ret = fn(now, priv); 7677 if (ret) 7678 return ret; 7679 } 7680 7681 next = NULL; 7682 while (1) { 7683 ldev = netdev_next_lower_dev(now, &iter); 7684 if (!ldev) 7685 break; 7686 7687 next = ldev; 7688 niter = &ldev->adj_list.lower; 7689 dev_stack[cur] = now; 7690 iter_stack[cur++] = iter; 7691 break; 7692 } 7693 7694 if (!next) { 7695 if (!cur) 7696 return 0; 7697 next = dev_stack[--cur]; 7698 niter = iter_stack[cur]; 7699 } 7700 7701 now = next; 7702 iter = niter; 7703 } 7704 7705 return 0; 7706 } 7707 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 7708 7709 static int __netdev_walk_all_lower_dev(struct net_device *dev, 7710 int (*fn)(struct net_device *dev, 7711 struct netdev_nested_priv *priv), 7712 struct netdev_nested_priv *priv) 7713 { 7714 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7715 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7716 int ret, cur = 0; 7717 bool ignore; 7718 7719 now = dev; 7720 iter = &dev->adj_list.lower; 7721 7722 while (1) { 7723 if (now != dev) { 7724 ret = fn(now, priv); 7725 if (ret) 7726 return ret; 7727 } 7728 7729 next = NULL; 7730 while (1) { 7731 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 7732 if (!ldev) 7733 break; 7734 if (ignore) 7735 continue; 7736 7737 next = ldev; 7738 niter = &ldev->adj_list.lower; 7739 dev_stack[cur] = now; 7740 iter_stack[cur++] = iter; 7741 break; 7742 } 7743 7744 if (!next) { 7745 if (!cur) 7746 return 0; 7747 next = dev_stack[--cur]; 7748 niter = iter_stack[cur]; 7749 } 7750 7751 now = next; 7752 iter = niter; 7753 } 7754 7755 return 0; 7756 } 7757 7758 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 7759 struct list_head **iter) 7760 { 7761 struct netdev_adjacent *lower; 7762 7763 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7764 if (&lower->list == &dev->adj_list.lower) 7765 return NULL; 7766 7767 *iter = &lower->list; 7768 7769 return lower->dev; 7770 } 7771 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 7772 7773 static u8 __netdev_upper_depth(struct net_device *dev) 7774 { 7775 struct net_device *udev; 7776 struct list_head *iter; 7777 u8 max_depth = 0; 7778 bool ignore; 7779 7780 for (iter = &dev->adj_list.upper, 7781 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 7782 udev; 7783 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 7784 if (ignore) 7785 continue; 7786 if (max_depth < udev->upper_level) 7787 max_depth = udev->upper_level; 7788 } 7789 7790 return max_depth; 7791 } 7792 7793 static u8 __netdev_lower_depth(struct net_device *dev) 7794 { 7795 struct net_device *ldev; 7796 struct list_head *iter; 7797 u8 max_depth = 0; 7798 bool ignore; 7799 7800 for (iter = &dev->adj_list.lower, 7801 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 7802 ldev; 7803 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 7804 if (ignore) 7805 continue; 7806 if (max_depth < ldev->lower_level) 7807 max_depth = ldev->lower_level; 7808 } 7809 7810 return max_depth; 7811 } 7812 7813 static int __netdev_update_upper_level(struct net_device *dev, 7814 struct netdev_nested_priv *__unused) 7815 { 7816 dev->upper_level = __netdev_upper_depth(dev) + 1; 7817 return 0; 7818 } 7819 7820 static int __netdev_update_lower_level(struct net_device *dev, 7821 struct netdev_nested_priv *priv) 7822 { 7823 dev->lower_level = __netdev_lower_depth(dev) + 1; 7824 7825 #ifdef CONFIG_LOCKDEP 7826 if (!priv) 7827 return 0; 7828 7829 if (priv->flags & NESTED_SYNC_IMM) 7830 dev->nested_level = dev->lower_level - 1; 7831 if (priv->flags & NESTED_SYNC_TODO) 7832 net_unlink_todo(dev); 7833 #endif 7834 return 0; 7835 } 7836 7837 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 7838 int (*fn)(struct net_device *dev, 7839 struct netdev_nested_priv *priv), 7840 struct netdev_nested_priv *priv) 7841 { 7842 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7843 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7844 int ret, cur = 0; 7845 7846 now = dev; 7847 iter = &dev->adj_list.lower; 7848 7849 while (1) { 7850 if (now != dev) { 7851 ret = fn(now, priv); 7852 if (ret) 7853 return ret; 7854 } 7855 7856 next = NULL; 7857 while (1) { 7858 ldev = netdev_next_lower_dev_rcu(now, &iter); 7859 if (!ldev) 7860 break; 7861 7862 next = ldev; 7863 niter = &ldev->adj_list.lower; 7864 dev_stack[cur] = now; 7865 iter_stack[cur++] = iter; 7866 break; 7867 } 7868 7869 if (!next) { 7870 if (!cur) 7871 return 0; 7872 next = dev_stack[--cur]; 7873 niter = iter_stack[cur]; 7874 } 7875 7876 now = next; 7877 iter = niter; 7878 } 7879 7880 return 0; 7881 } 7882 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 7883 7884 /** 7885 * netdev_lower_get_first_private_rcu - Get the first ->private from the 7886 * lower neighbour list, RCU 7887 * variant 7888 * @dev: device 7889 * 7890 * Gets the first netdev_adjacent->private from the dev's lower neighbour 7891 * list. The caller must hold RCU read lock. 7892 */ 7893 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 7894 { 7895 struct netdev_adjacent *lower; 7896 7897 lower = list_first_or_null_rcu(&dev->adj_list.lower, 7898 struct netdev_adjacent, list); 7899 if (lower) 7900 return lower->private; 7901 return NULL; 7902 } 7903 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 7904 7905 /** 7906 * netdev_master_upper_dev_get_rcu - Get master upper device 7907 * @dev: device 7908 * 7909 * Find a master upper device and return pointer to it or NULL in case 7910 * it's not there. The caller must hold the RCU read lock. 7911 */ 7912 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 7913 { 7914 struct netdev_adjacent *upper; 7915 7916 upper = list_first_or_null_rcu(&dev->adj_list.upper, 7917 struct netdev_adjacent, list); 7918 if (upper && likely(upper->master)) 7919 return upper->dev; 7920 return NULL; 7921 } 7922 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 7923 7924 static int netdev_adjacent_sysfs_add(struct net_device *dev, 7925 struct net_device *adj_dev, 7926 struct list_head *dev_list) 7927 { 7928 char linkname[IFNAMSIZ+7]; 7929 7930 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7931 "upper_%s" : "lower_%s", adj_dev->name); 7932 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 7933 linkname); 7934 } 7935 static void netdev_adjacent_sysfs_del(struct net_device *dev, 7936 char *name, 7937 struct list_head *dev_list) 7938 { 7939 char linkname[IFNAMSIZ+7]; 7940 7941 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7942 "upper_%s" : "lower_%s", name); 7943 sysfs_remove_link(&(dev->dev.kobj), linkname); 7944 } 7945 7946 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 7947 struct net_device *adj_dev, 7948 struct list_head *dev_list) 7949 { 7950 return (dev_list == &dev->adj_list.upper || 7951 dev_list == &dev->adj_list.lower) && 7952 net_eq(dev_net(dev), dev_net(adj_dev)); 7953 } 7954 7955 static int __netdev_adjacent_dev_insert(struct net_device *dev, 7956 struct net_device *adj_dev, 7957 struct list_head *dev_list, 7958 void *private, bool master) 7959 { 7960 struct netdev_adjacent *adj; 7961 int ret; 7962 7963 adj = __netdev_find_adj(adj_dev, dev_list); 7964 7965 if (adj) { 7966 adj->ref_nr += 1; 7967 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 7968 dev->name, adj_dev->name, adj->ref_nr); 7969 7970 return 0; 7971 } 7972 7973 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 7974 if (!adj) 7975 return -ENOMEM; 7976 7977 adj->dev = adj_dev; 7978 adj->master = master; 7979 adj->ref_nr = 1; 7980 adj->private = private; 7981 adj->ignore = false; 7982 dev_hold(adj_dev); 7983 7984 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 7985 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 7986 7987 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 7988 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 7989 if (ret) 7990 goto free_adj; 7991 } 7992 7993 /* Ensure that master link is always the first item in list. */ 7994 if (master) { 7995 ret = sysfs_create_link(&(dev->dev.kobj), 7996 &(adj_dev->dev.kobj), "master"); 7997 if (ret) 7998 goto remove_symlinks; 7999 8000 list_add_rcu(&adj->list, dev_list); 8001 } else { 8002 list_add_tail_rcu(&adj->list, dev_list); 8003 } 8004 8005 return 0; 8006 8007 remove_symlinks: 8008 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 8009 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 8010 free_adj: 8011 kfree(adj); 8012 dev_put(adj_dev); 8013 8014 return ret; 8015 } 8016 8017 static void __netdev_adjacent_dev_remove(struct net_device *dev, 8018 struct net_device *adj_dev, 8019 u16 ref_nr, 8020 struct list_head *dev_list) 8021 { 8022 struct netdev_adjacent *adj; 8023 8024 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 8025 dev->name, adj_dev->name, ref_nr); 8026 8027 adj = __netdev_find_adj(adj_dev, dev_list); 8028 8029 if (!adj) { 8030 pr_err("Adjacency does not exist for device %s from %s\n", 8031 dev->name, adj_dev->name); 8032 WARN_ON(1); 8033 return; 8034 } 8035 8036 if (adj->ref_nr > ref_nr) { 8037 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 8038 dev->name, adj_dev->name, ref_nr, 8039 adj->ref_nr - ref_nr); 8040 adj->ref_nr -= ref_nr; 8041 return; 8042 } 8043 8044 if (adj->master) 8045 sysfs_remove_link(&(dev->dev.kobj), "master"); 8046 8047 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 8048 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 8049 8050 list_del_rcu(&adj->list); 8051 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 8052 adj_dev->name, dev->name, adj_dev->name); 8053 dev_put(adj_dev); 8054 kfree_rcu(adj, rcu); 8055 } 8056 8057 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 8058 struct net_device *upper_dev, 8059 struct list_head *up_list, 8060 struct list_head *down_list, 8061 void *private, bool master) 8062 { 8063 int ret; 8064 8065 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 8066 private, master); 8067 if (ret) 8068 return ret; 8069 8070 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 8071 private, false); 8072 if (ret) { 8073 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 8074 return ret; 8075 } 8076 8077 return 0; 8078 } 8079 8080 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 8081 struct net_device *upper_dev, 8082 u16 ref_nr, 8083 struct list_head *up_list, 8084 struct list_head *down_list) 8085 { 8086 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 8087 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 8088 } 8089 8090 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 8091 struct net_device *upper_dev, 8092 void *private, bool master) 8093 { 8094 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 8095 &dev->adj_list.upper, 8096 &upper_dev->adj_list.lower, 8097 private, master); 8098 } 8099 8100 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 8101 struct net_device *upper_dev) 8102 { 8103 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 8104 &dev->adj_list.upper, 8105 &upper_dev->adj_list.lower); 8106 } 8107 8108 static int __netdev_upper_dev_link(struct net_device *dev, 8109 struct net_device *upper_dev, bool master, 8110 void *upper_priv, void *upper_info, 8111 struct netdev_nested_priv *priv, 8112 struct netlink_ext_ack *extack) 8113 { 8114 struct netdev_notifier_changeupper_info changeupper_info = { 8115 .info = { 8116 .dev = dev, 8117 .extack = extack, 8118 }, 8119 .upper_dev = upper_dev, 8120 .master = master, 8121 .linking = true, 8122 .upper_info = upper_info, 8123 }; 8124 struct net_device *master_dev; 8125 int ret = 0; 8126 8127 ASSERT_RTNL(); 8128 8129 if (dev == upper_dev) 8130 return -EBUSY; 8131 8132 /* To prevent loops, check if dev is not upper device to upper_dev. */ 8133 if (__netdev_has_upper_dev(upper_dev, dev)) 8134 return -EBUSY; 8135 8136 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 8137 return -EMLINK; 8138 8139 if (!master) { 8140 if (__netdev_has_upper_dev(dev, upper_dev)) 8141 return -EEXIST; 8142 } else { 8143 master_dev = __netdev_master_upper_dev_get(dev); 8144 if (master_dev) 8145 return master_dev == upper_dev ? -EEXIST : -EBUSY; 8146 } 8147 8148 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8149 &changeupper_info.info); 8150 ret = notifier_to_errno(ret); 8151 if (ret) 8152 return ret; 8153 8154 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 8155 master); 8156 if (ret) 8157 return ret; 8158 8159 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8160 &changeupper_info.info); 8161 ret = notifier_to_errno(ret); 8162 if (ret) 8163 goto rollback; 8164 8165 __netdev_update_upper_level(dev, NULL); 8166 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8167 8168 __netdev_update_lower_level(upper_dev, priv); 8169 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8170 priv); 8171 8172 return 0; 8173 8174 rollback: 8175 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8176 8177 return ret; 8178 } 8179 8180 /** 8181 * netdev_upper_dev_link - Add a link to the upper device 8182 * @dev: device 8183 * @upper_dev: new upper device 8184 * @extack: netlink extended ack 8185 * 8186 * Adds a link to device which is upper to this one. The caller must hold 8187 * the RTNL lock. On a failure a negative errno code is returned. 8188 * On success the reference counts are adjusted and the function 8189 * returns zero. 8190 */ 8191 int netdev_upper_dev_link(struct net_device *dev, 8192 struct net_device *upper_dev, 8193 struct netlink_ext_ack *extack) 8194 { 8195 struct netdev_nested_priv priv = { 8196 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8197 .data = NULL, 8198 }; 8199 8200 return __netdev_upper_dev_link(dev, upper_dev, false, 8201 NULL, NULL, &priv, extack); 8202 } 8203 EXPORT_SYMBOL(netdev_upper_dev_link); 8204 8205 /** 8206 * netdev_master_upper_dev_link - Add a master link to the upper device 8207 * @dev: device 8208 * @upper_dev: new upper device 8209 * @upper_priv: upper device private 8210 * @upper_info: upper info to be passed down via notifier 8211 * @extack: netlink extended ack 8212 * 8213 * Adds a link to device which is upper to this one. In this case, only 8214 * one master upper device can be linked, although other non-master devices 8215 * might be linked as well. The caller must hold the RTNL lock. 8216 * On a failure a negative errno code is returned. On success the reference 8217 * counts are adjusted and the function returns zero. 8218 */ 8219 int netdev_master_upper_dev_link(struct net_device *dev, 8220 struct net_device *upper_dev, 8221 void *upper_priv, void *upper_info, 8222 struct netlink_ext_ack *extack) 8223 { 8224 struct netdev_nested_priv priv = { 8225 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8226 .data = NULL, 8227 }; 8228 8229 return __netdev_upper_dev_link(dev, upper_dev, true, 8230 upper_priv, upper_info, &priv, extack); 8231 } 8232 EXPORT_SYMBOL(netdev_master_upper_dev_link); 8233 8234 static void __netdev_upper_dev_unlink(struct net_device *dev, 8235 struct net_device *upper_dev, 8236 struct netdev_nested_priv *priv) 8237 { 8238 struct netdev_notifier_changeupper_info changeupper_info = { 8239 .info = { 8240 .dev = dev, 8241 }, 8242 .upper_dev = upper_dev, 8243 .linking = false, 8244 }; 8245 8246 ASSERT_RTNL(); 8247 8248 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 8249 8250 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8251 &changeupper_info.info); 8252 8253 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8254 8255 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8256 &changeupper_info.info); 8257 8258 __netdev_update_upper_level(dev, NULL); 8259 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8260 8261 __netdev_update_lower_level(upper_dev, priv); 8262 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8263 priv); 8264 } 8265 8266 /** 8267 * netdev_upper_dev_unlink - Removes a link to upper device 8268 * @dev: device 8269 * @upper_dev: new upper device 8270 * 8271 * Removes a link to device which is upper to this one. The caller must hold 8272 * the RTNL lock. 8273 */ 8274 void netdev_upper_dev_unlink(struct net_device *dev, 8275 struct net_device *upper_dev) 8276 { 8277 struct netdev_nested_priv priv = { 8278 .flags = NESTED_SYNC_TODO, 8279 .data = NULL, 8280 }; 8281 8282 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 8283 } 8284 EXPORT_SYMBOL(netdev_upper_dev_unlink); 8285 8286 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 8287 struct net_device *lower_dev, 8288 bool val) 8289 { 8290 struct netdev_adjacent *adj; 8291 8292 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 8293 if (adj) 8294 adj->ignore = val; 8295 8296 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 8297 if (adj) 8298 adj->ignore = val; 8299 } 8300 8301 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 8302 struct net_device *lower_dev) 8303 { 8304 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 8305 } 8306 8307 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 8308 struct net_device *lower_dev) 8309 { 8310 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 8311 } 8312 8313 int netdev_adjacent_change_prepare(struct net_device *old_dev, 8314 struct net_device *new_dev, 8315 struct net_device *dev, 8316 struct netlink_ext_ack *extack) 8317 { 8318 struct netdev_nested_priv priv = { 8319 .flags = 0, 8320 .data = NULL, 8321 }; 8322 int err; 8323 8324 if (!new_dev) 8325 return 0; 8326 8327 if (old_dev && new_dev != old_dev) 8328 netdev_adjacent_dev_disable(dev, old_dev); 8329 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 8330 extack); 8331 if (err) { 8332 if (old_dev && new_dev != old_dev) 8333 netdev_adjacent_dev_enable(dev, old_dev); 8334 return err; 8335 } 8336 8337 return 0; 8338 } 8339 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 8340 8341 void netdev_adjacent_change_commit(struct net_device *old_dev, 8342 struct net_device *new_dev, 8343 struct net_device *dev) 8344 { 8345 struct netdev_nested_priv priv = { 8346 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8347 .data = NULL, 8348 }; 8349 8350 if (!new_dev || !old_dev) 8351 return; 8352 8353 if (new_dev == old_dev) 8354 return; 8355 8356 netdev_adjacent_dev_enable(dev, old_dev); 8357 __netdev_upper_dev_unlink(old_dev, dev, &priv); 8358 } 8359 EXPORT_SYMBOL(netdev_adjacent_change_commit); 8360 8361 void netdev_adjacent_change_abort(struct net_device *old_dev, 8362 struct net_device *new_dev, 8363 struct net_device *dev) 8364 { 8365 struct netdev_nested_priv priv = { 8366 .flags = 0, 8367 .data = NULL, 8368 }; 8369 8370 if (!new_dev) 8371 return; 8372 8373 if (old_dev && new_dev != old_dev) 8374 netdev_adjacent_dev_enable(dev, old_dev); 8375 8376 __netdev_upper_dev_unlink(new_dev, dev, &priv); 8377 } 8378 EXPORT_SYMBOL(netdev_adjacent_change_abort); 8379 8380 /** 8381 * netdev_bonding_info_change - Dispatch event about slave change 8382 * @dev: device 8383 * @bonding_info: info to dispatch 8384 * 8385 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 8386 * The caller must hold the RTNL lock. 8387 */ 8388 void netdev_bonding_info_change(struct net_device *dev, 8389 struct netdev_bonding_info *bonding_info) 8390 { 8391 struct netdev_notifier_bonding_info info = { 8392 .info.dev = dev, 8393 }; 8394 8395 memcpy(&info.bonding_info, bonding_info, 8396 sizeof(struct netdev_bonding_info)); 8397 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 8398 &info.info); 8399 } 8400 EXPORT_SYMBOL(netdev_bonding_info_change); 8401 8402 /** 8403 * netdev_get_xmit_slave - Get the xmit slave of master device 8404 * @dev: device 8405 * @skb: The packet 8406 * @all_slaves: assume all the slaves are active 8407 * 8408 * The reference counters are not incremented so the caller must be 8409 * careful with locks. The caller must hold RCU lock. 8410 * %NULL is returned if no slave is found. 8411 */ 8412 8413 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 8414 struct sk_buff *skb, 8415 bool all_slaves) 8416 { 8417 const struct net_device_ops *ops = dev->netdev_ops; 8418 8419 if (!ops->ndo_get_xmit_slave) 8420 return NULL; 8421 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 8422 } 8423 EXPORT_SYMBOL(netdev_get_xmit_slave); 8424 8425 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, 8426 struct sock *sk) 8427 { 8428 const struct net_device_ops *ops = dev->netdev_ops; 8429 8430 if (!ops->ndo_sk_get_lower_dev) 8431 return NULL; 8432 return ops->ndo_sk_get_lower_dev(dev, sk); 8433 } 8434 8435 /** 8436 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket 8437 * @dev: device 8438 * @sk: the socket 8439 * 8440 * %NULL is returned if no lower device is found. 8441 */ 8442 8443 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 8444 struct sock *sk) 8445 { 8446 struct net_device *lower; 8447 8448 lower = netdev_sk_get_lower_dev(dev, sk); 8449 while (lower) { 8450 dev = lower; 8451 lower = netdev_sk_get_lower_dev(dev, sk); 8452 } 8453 8454 return dev; 8455 } 8456 EXPORT_SYMBOL(netdev_sk_get_lowest_dev); 8457 8458 static void netdev_adjacent_add_links(struct net_device *dev) 8459 { 8460 struct netdev_adjacent *iter; 8461 8462 struct net *net = dev_net(dev); 8463 8464 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8465 if (!net_eq(net, dev_net(iter->dev))) 8466 continue; 8467 netdev_adjacent_sysfs_add(iter->dev, dev, 8468 &iter->dev->adj_list.lower); 8469 netdev_adjacent_sysfs_add(dev, iter->dev, 8470 &dev->adj_list.upper); 8471 } 8472 8473 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8474 if (!net_eq(net, dev_net(iter->dev))) 8475 continue; 8476 netdev_adjacent_sysfs_add(iter->dev, dev, 8477 &iter->dev->adj_list.upper); 8478 netdev_adjacent_sysfs_add(dev, iter->dev, 8479 &dev->adj_list.lower); 8480 } 8481 } 8482 8483 static void netdev_adjacent_del_links(struct net_device *dev) 8484 { 8485 struct netdev_adjacent *iter; 8486 8487 struct net *net = dev_net(dev); 8488 8489 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8490 if (!net_eq(net, dev_net(iter->dev))) 8491 continue; 8492 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8493 &iter->dev->adj_list.lower); 8494 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8495 &dev->adj_list.upper); 8496 } 8497 8498 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8499 if (!net_eq(net, dev_net(iter->dev))) 8500 continue; 8501 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8502 &iter->dev->adj_list.upper); 8503 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8504 &dev->adj_list.lower); 8505 } 8506 } 8507 8508 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 8509 { 8510 struct netdev_adjacent *iter; 8511 8512 struct net *net = dev_net(dev); 8513 8514 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8515 if (!net_eq(net, dev_net(iter->dev))) 8516 continue; 8517 netdev_adjacent_sysfs_del(iter->dev, oldname, 8518 &iter->dev->adj_list.lower); 8519 netdev_adjacent_sysfs_add(iter->dev, dev, 8520 &iter->dev->adj_list.lower); 8521 } 8522 8523 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8524 if (!net_eq(net, dev_net(iter->dev))) 8525 continue; 8526 netdev_adjacent_sysfs_del(iter->dev, oldname, 8527 &iter->dev->adj_list.upper); 8528 netdev_adjacent_sysfs_add(iter->dev, dev, 8529 &iter->dev->adj_list.upper); 8530 } 8531 } 8532 8533 void *netdev_lower_dev_get_private(struct net_device *dev, 8534 struct net_device *lower_dev) 8535 { 8536 struct netdev_adjacent *lower; 8537 8538 if (!lower_dev) 8539 return NULL; 8540 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 8541 if (!lower) 8542 return NULL; 8543 8544 return lower->private; 8545 } 8546 EXPORT_SYMBOL(netdev_lower_dev_get_private); 8547 8548 8549 /** 8550 * netdev_lower_state_changed - Dispatch event about lower device state change 8551 * @lower_dev: device 8552 * @lower_state_info: state to dispatch 8553 * 8554 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 8555 * The caller must hold the RTNL lock. 8556 */ 8557 void netdev_lower_state_changed(struct net_device *lower_dev, 8558 void *lower_state_info) 8559 { 8560 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 8561 .info.dev = lower_dev, 8562 }; 8563 8564 ASSERT_RTNL(); 8565 changelowerstate_info.lower_state_info = lower_state_info; 8566 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 8567 &changelowerstate_info.info); 8568 } 8569 EXPORT_SYMBOL(netdev_lower_state_changed); 8570 8571 static void dev_change_rx_flags(struct net_device *dev, int flags) 8572 { 8573 const struct net_device_ops *ops = dev->netdev_ops; 8574 8575 if (ops->ndo_change_rx_flags) 8576 ops->ndo_change_rx_flags(dev, flags); 8577 } 8578 8579 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 8580 { 8581 unsigned int old_flags = dev->flags; 8582 kuid_t uid; 8583 kgid_t gid; 8584 8585 ASSERT_RTNL(); 8586 8587 dev->flags |= IFF_PROMISC; 8588 dev->promiscuity += inc; 8589 if (dev->promiscuity == 0) { 8590 /* 8591 * Avoid overflow. 8592 * If inc causes overflow, untouch promisc and return error. 8593 */ 8594 if (inc < 0) 8595 dev->flags &= ~IFF_PROMISC; 8596 else { 8597 dev->promiscuity -= inc; 8598 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 8599 dev->name); 8600 return -EOVERFLOW; 8601 } 8602 } 8603 if (dev->flags != old_flags) { 8604 pr_info("device %s %s promiscuous mode\n", 8605 dev->name, 8606 dev->flags & IFF_PROMISC ? "entered" : "left"); 8607 if (audit_enabled) { 8608 current_uid_gid(&uid, &gid); 8609 audit_log(audit_context(), GFP_ATOMIC, 8610 AUDIT_ANOM_PROMISCUOUS, 8611 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 8612 dev->name, (dev->flags & IFF_PROMISC), 8613 (old_flags & IFF_PROMISC), 8614 from_kuid(&init_user_ns, audit_get_loginuid(current)), 8615 from_kuid(&init_user_ns, uid), 8616 from_kgid(&init_user_ns, gid), 8617 audit_get_sessionid(current)); 8618 } 8619 8620 dev_change_rx_flags(dev, IFF_PROMISC); 8621 } 8622 if (notify) 8623 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 8624 return 0; 8625 } 8626 8627 /** 8628 * dev_set_promiscuity - update promiscuity count on a device 8629 * @dev: device 8630 * @inc: modifier 8631 * 8632 * Add or remove promiscuity from a device. While the count in the device 8633 * remains above zero the interface remains promiscuous. Once it hits zero 8634 * the device reverts back to normal filtering operation. A negative inc 8635 * value is used to drop promiscuity on the device. 8636 * Return 0 if successful or a negative errno code on error. 8637 */ 8638 int dev_set_promiscuity(struct net_device *dev, int inc) 8639 { 8640 unsigned int old_flags = dev->flags; 8641 int err; 8642 8643 err = __dev_set_promiscuity(dev, inc, true); 8644 if (err < 0) 8645 return err; 8646 if (dev->flags != old_flags) 8647 dev_set_rx_mode(dev); 8648 return err; 8649 } 8650 EXPORT_SYMBOL(dev_set_promiscuity); 8651 8652 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 8653 { 8654 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 8655 8656 ASSERT_RTNL(); 8657 8658 dev->flags |= IFF_ALLMULTI; 8659 dev->allmulti += inc; 8660 if (dev->allmulti == 0) { 8661 /* 8662 * Avoid overflow. 8663 * If inc causes overflow, untouch allmulti and return error. 8664 */ 8665 if (inc < 0) 8666 dev->flags &= ~IFF_ALLMULTI; 8667 else { 8668 dev->allmulti -= inc; 8669 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 8670 dev->name); 8671 return -EOVERFLOW; 8672 } 8673 } 8674 if (dev->flags ^ old_flags) { 8675 dev_change_rx_flags(dev, IFF_ALLMULTI); 8676 dev_set_rx_mode(dev); 8677 if (notify) 8678 __dev_notify_flags(dev, old_flags, 8679 dev->gflags ^ old_gflags); 8680 } 8681 return 0; 8682 } 8683 8684 /** 8685 * dev_set_allmulti - update allmulti count on a device 8686 * @dev: device 8687 * @inc: modifier 8688 * 8689 * Add or remove reception of all multicast frames to a device. While the 8690 * count in the device remains above zero the interface remains listening 8691 * to all interfaces. Once it hits zero the device reverts back to normal 8692 * filtering operation. A negative @inc value is used to drop the counter 8693 * when releasing a resource needing all multicasts. 8694 * Return 0 if successful or a negative errno code on error. 8695 */ 8696 8697 int dev_set_allmulti(struct net_device *dev, int inc) 8698 { 8699 return __dev_set_allmulti(dev, inc, true); 8700 } 8701 EXPORT_SYMBOL(dev_set_allmulti); 8702 8703 /* 8704 * Upload unicast and multicast address lists to device and 8705 * configure RX filtering. When the device doesn't support unicast 8706 * filtering it is put in promiscuous mode while unicast addresses 8707 * are present. 8708 */ 8709 void __dev_set_rx_mode(struct net_device *dev) 8710 { 8711 const struct net_device_ops *ops = dev->netdev_ops; 8712 8713 /* dev_open will call this function so the list will stay sane. */ 8714 if (!(dev->flags&IFF_UP)) 8715 return; 8716 8717 if (!netif_device_present(dev)) 8718 return; 8719 8720 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 8721 /* Unicast addresses changes may only happen under the rtnl, 8722 * therefore calling __dev_set_promiscuity here is safe. 8723 */ 8724 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 8725 __dev_set_promiscuity(dev, 1, false); 8726 dev->uc_promisc = true; 8727 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 8728 __dev_set_promiscuity(dev, -1, false); 8729 dev->uc_promisc = false; 8730 } 8731 } 8732 8733 if (ops->ndo_set_rx_mode) 8734 ops->ndo_set_rx_mode(dev); 8735 } 8736 8737 void dev_set_rx_mode(struct net_device *dev) 8738 { 8739 netif_addr_lock_bh(dev); 8740 __dev_set_rx_mode(dev); 8741 netif_addr_unlock_bh(dev); 8742 } 8743 8744 /** 8745 * dev_get_flags - get flags reported to userspace 8746 * @dev: device 8747 * 8748 * Get the combination of flag bits exported through APIs to userspace. 8749 */ 8750 unsigned int dev_get_flags(const struct net_device *dev) 8751 { 8752 unsigned int flags; 8753 8754 flags = (dev->flags & ~(IFF_PROMISC | 8755 IFF_ALLMULTI | 8756 IFF_RUNNING | 8757 IFF_LOWER_UP | 8758 IFF_DORMANT)) | 8759 (dev->gflags & (IFF_PROMISC | 8760 IFF_ALLMULTI)); 8761 8762 if (netif_running(dev)) { 8763 if (netif_oper_up(dev)) 8764 flags |= IFF_RUNNING; 8765 if (netif_carrier_ok(dev)) 8766 flags |= IFF_LOWER_UP; 8767 if (netif_dormant(dev)) 8768 flags |= IFF_DORMANT; 8769 } 8770 8771 return flags; 8772 } 8773 EXPORT_SYMBOL(dev_get_flags); 8774 8775 int __dev_change_flags(struct net_device *dev, unsigned int flags, 8776 struct netlink_ext_ack *extack) 8777 { 8778 unsigned int old_flags = dev->flags; 8779 int ret; 8780 8781 ASSERT_RTNL(); 8782 8783 /* 8784 * Set the flags on our device. 8785 */ 8786 8787 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 8788 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 8789 IFF_AUTOMEDIA)) | 8790 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 8791 IFF_ALLMULTI)); 8792 8793 /* 8794 * Load in the correct multicast list now the flags have changed. 8795 */ 8796 8797 if ((old_flags ^ flags) & IFF_MULTICAST) 8798 dev_change_rx_flags(dev, IFF_MULTICAST); 8799 8800 dev_set_rx_mode(dev); 8801 8802 /* 8803 * Have we downed the interface. We handle IFF_UP ourselves 8804 * according to user attempts to set it, rather than blindly 8805 * setting it. 8806 */ 8807 8808 ret = 0; 8809 if ((old_flags ^ flags) & IFF_UP) { 8810 if (old_flags & IFF_UP) 8811 __dev_close(dev); 8812 else 8813 ret = __dev_open(dev, extack); 8814 } 8815 8816 if ((flags ^ dev->gflags) & IFF_PROMISC) { 8817 int inc = (flags & IFF_PROMISC) ? 1 : -1; 8818 unsigned int old_flags = dev->flags; 8819 8820 dev->gflags ^= IFF_PROMISC; 8821 8822 if (__dev_set_promiscuity(dev, inc, false) >= 0) 8823 if (dev->flags != old_flags) 8824 dev_set_rx_mode(dev); 8825 } 8826 8827 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 8828 * is important. Some (broken) drivers set IFF_PROMISC, when 8829 * IFF_ALLMULTI is requested not asking us and not reporting. 8830 */ 8831 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 8832 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 8833 8834 dev->gflags ^= IFF_ALLMULTI; 8835 __dev_set_allmulti(dev, inc, false); 8836 } 8837 8838 return ret; 8839 } 8840 8841 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 8842 unsigned int gchanges) 8843 { 8844 unsigned int changes = dev->flags ^ old_flags; 8845 8846 if (gchanges) 8847 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 8848 8849 if (changes & IFF_UP) { 8850 if (dev->flags & IFF_UP) 8851 call_netdevice_notifiers(NETDEV_UP, dev); 8852 else 8853 call_netdevice_notifiers(NETDEV_DOWN, dev); 8854 } 8855 8856 if (dev->flags & IFF_UP && 8857 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 8858 struct netdev_notifier_change_info change_info = { 8859 .info = { 8860 .dev = dev, 8861 }, 8862 .flags_changed = changes, 8863 }; 8864 8865 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 8866 } 8867 } 8868 8869 /** 8870 * dev_change_flags - change device settings 8871 * @dev: device 8872 * @flags: device state flags 8873 * @extack: netlink extended ack 8874 * 8875 * Change settings on device based state flags. The flags are 8876 * in the userspace exported format. 8877 */ 8878 int dev_change_flags(struct net_device *dev, unsigned int flags, 8879 struct netlink_ext_ack *extack) 8880 { 8881 int ret; 8882 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 8883 8884 ret = __dev_change_flags(dev, flags, extack); 8885 if (ret < 0) 8886 return ret; 8887 8888 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 8889 __dev_notify_flags(dev, old_flags, changes); 8890 return ret; 8891 } 8892 EXPORT_SYMBOL(dev_change_flags); 8893 8894 int __dev_set_mtu(struct net_device *dev, int new_mtu) 8895 { 8896 const struct net_device_ops *ops = dev->netdev_ops; 8897 8898 if (ops->ndo_change_mtu) 8899 return ops->ndo_change_mtu(dev, new_mtu); 8900 8901 /* Pairs with all the lockless reads of dev->mtu in the stack */ 8902 WRITE_ONCE(dev->mtu, new_mtu); 8903 return 0; 8904 } 8905 EXPORT_SYMBOL(__dev_set_mtu); 8906 8907 int dev_validate_mtu(struct net_device *dev, int new_mtu, 8908 struct netlink_ext_ack *extack) 8909 { 8910 /* MTU must be positive, and in range */ 8911 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 8912 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 8913 return -EINVAL; 8914 } 8915 8916 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 8917 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 8918 return -EINVAL; 8919 } 8920 return 0; 8921 } 8922 8923 /** 8924 * dev_set_mtu_ext - Change maximum transfer unit 8925 * @dev: device 8926 * @new_mtu: new transfer unit 8927 * @extack: netlink extended ack 8928 * 8929 * Change the maximum transfer size of the network device. 8930 */ 8931 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 8932 struct netlink_ext_ack *extack) 8933 { 8934 int err, orig_mtu; 8935 8936 if (new_mtu == dev->mtu) 8937 return 0; 8938 8939 err = dev_validate_mtu(dev, new_mtu, extack); 8940 if (err) 8941 return err; 8942 8943 if (!netif_device_present(dev)) 8944 return -ENODEV; 8945 8946 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 8947 err = notifier_to_errno(err); 8948 if (err) 8949 return err; 8950 8951 orig_mtu = dev->mtu; 8952 err = __dev_set_mtu(dev, new_mtu); 8953 8954 if (!err) { 8955 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8956 orig_mtu); 8957 err = notifier_to_errno(err); 8958 if (err) { 8959 /* setting mtu back and notifying everyone again, 8960 * so that they have a chance to revert changes. 8961 */ 8962 __dev_set_mtu(dev, orig_mtu); 8963 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8964 new_mtu); 8965 } 8966 } 8967 return err; 8968 } 8969 8970 int dev_set_mtu(struct net_device *dev, int new_mtu) 8971 { 8972 struct netlink_ext_ack extack; 8973 int err; 8974 8975 memset(&extack, 0, sizeof(extack)); 8976 err = dev_set_mtu_ext(dev, new_mtu, &extack); 8977 if (err && extack._msg) 8978 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 8979 return err; 8980 } 8981 EXPORT_SYMBOL(dev_set_mtu); 8982 8983 /** 8984 * dev_change_tx_queue_len - Change TX queue length of a netdevice 8985 * @dev: device 8986 * @new_len: new tx queue length 8987 */ 8988 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 8989 { 8990 unsigned int orig_len = dev->tx_queue_len; 8991 int res; 8992 8993 if (new_len != (unsigned int)new_len) 8994 return -ERANGE; 8995 8996 if (new_len != orig_len) { 8997 dev->tx_queue_len = new_len; 8998 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 8999 res = notifier_to_errno(res); 9000 if (res) 9001 goto err_rollback; 9002 res = dev_qdisc_change_tx_queue_len(dev); 9003 if (res) 9004 goto err_rollback; 9005 } 9006 9007 return 0; 9008 9009 err_rollback: 9010 netdev_err(dev, "refused to change device tx_queue_len\n"); 9011 dev->tx_queue_len = orig_len; 9012 return res; 9013 } 9014 9015 /** 9016 * dev_set_group - Change group this device belongs to 9017 * @dev: device 9018 * @new_group: group this device should belong to 9019 */ 9020 void dev_set_group(struct net_device *dev, int new_group) 9021 { 9022 dev->group = new_group; 9023 } 9024 EXPORT_SYMBOL(dev_set_group); 9025 9026 /** 9027 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 9028 * @dev: device 9029 * @addr: new address 9030 * @extack: netlink extended ack 9031 */ 9032 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 9033 struct netlink_ext_ack *extack) 9034 { 9035 struct netdev_notifier_pre_changeaddr_info info = { 9036 .info.dev = dev, 9037 .info.extack = extack, 9038 .dev_addr = addr, 9039 }; 9040 int rc; 9041 9042 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 9043 return notifier_to_errno(rc); 9044 } 9045 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 9046 9047 /** 9048 * dev_set_mac_address - Change Media Access Control Address 9049 * @dev: device 9050 * @sa: new address 9051 * @extack: netlink extended ack 9052 * 9053 * Change the hardware (MAC) address of the device 9054 */ 9055 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 9056 struct netlink_ext_ack *extack) 9057 { 9058 const struct net_device_ops *ops = dev->netdev_ops; 9059 int err; 9060 9061 if (!ops->ndo_set_mac_address) 9062 return -EOPNOTSUPP; 9063 if (sa->sa_family != dev->type) 9064 return -EINVAL; 9065 if (!netif_device_present(dev)) 9066 return -ENODEV; 9067 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 9068 if (err) 9069 return err; 9070 err = ops->ndo_set_mac_address(dev, sa); 9071 if (err) 9072 return err; 9073 dev->addr_assign_type = NET_ADDR_SET; 9074 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 9075 add_device_randomness(dev->dev_addr, dev->addr_len); 9076 return 0; 9077 } 9078 EXPORT_SYMBOL(dev_set_mac_address); 9079 9080 static DECLARE_RWSEM(dev_addr_sem); 9081 9082 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 9083 struct netlink_ext_ack *extack) 9084 { 9085 int ret; 9086 9087 down_write(&dev_addr_sem); 9088 ret = dev_set_mac_address(dev, sa, extack); 9089 up_write(&dev_addr_sem); 9090 return ret; 9091 } 9092 EXPORT_SYMBOL(dev_set_mac_address_user); 9093 9094 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) 9095 { 9096 size_t size = sizeof(sa->sa_data); 9097 struct net_device *dev; 9098 int ret = 0; 9099 9100 down_read(&dev_addr_sem); 9101 rcu_read_lock(); 9102 9103 dev = dev_get_by_name_rcu(net, dev_name); 9104 if (!dev) { 9105 ret = -ENODEV; 9106 goto unlock; 9107 } 9108 if (!dev->addr_len) 9109 memset(sa->sa_data, 0, size); 9110 else 9111 memcpy(sa->sa_data, dev->dev_addr, 9112 min_t(size_t, size, dev->addr_len)); 9113 sa->sa_family = dev->type; 9114 9115 unlock: 9116 rcu_read_unlock(); 9117 up_read(&dev_addr_sem); 9118 return ret; 9119 } 9120 EXPORT_SYMBOL(dev_get_mac_address); 9121 9122 /** 9123 * dev_change_carrier - Change device carrier 9124 * @dev: device 9125 * @new_carrier: new value 9126 * 9127 * Change device carrier 9128 */ 9129 int dev_change_carrier(struct net_device *dev, bool new_carrier) 9130 { 9131 const struct net_device_ops *ops = dev->netdev_ops; 9132 9133 if (!ops->ndo_change_carrier) 9134 return -EOPNOTSUPP; 9135 if (!netif_device_present(dev)) 9136 return -ENODEV; 9137 return ops->ndo_change_carrier(dev, new_carrier); 9138 } 9139 EXPORT_SYMBOL(dev_change_carrier); 9140 9141 /** 9142 * dev_get_phys_port_id - Get device physical port ID 9143 * @dev: device 9144 * @ppid: port ID 9145 * 9146 * Get device physical port ID 9147 */ 9148 int dev_get_phys_port_id(struct net_device *dev, 9149 struct netdev_phys_item_id *ppid) 9150 { 9151 const struct net_device_ops *ops = dev->netdev_ops; 9152 9153 if (!ops->ndo_get_phys_port_id) 9154 return -EOPNOTSUPP; 9155 return ops->ndo_get_phys_port_id(dev, ppid); 9156 } 9157 EXPORT_SYMBOL(dev_get_phys_port_id); 9158 9159 /** 9160 * dev_get_phys_port_name - Get device physical port name 9161 * @dev: device 9162 * @name: port name 9163 * @len: limit of bytes to copy to name 9164 * 9165 * Get device physical port name 9166 */ 9167 int dev_get_phys_port_name(struct net_device *dev, 9168 char *name, size_t len) 9169 { 9170 const struct net_device_ops *ops = dev->netdev_ops; 9171 int err; 9172 9173 if (ops->ndo_get_phys_port_name) { 9174 err = ops->ndo_get_phys_port_name(dev, name, len); 9175 if (err != -EOPNOTSUPP) 9176 return err; 9177 } 9178 return devlink_compat_phys_port_name_get(dev, name, len); 9179 } 9180 EXPORT_SYMBOL(dev_get_phys_port_name); 9181 9182 /** 9183 * dev_get_port_parent_id - Get the device's port parent identifier 9184 * @dev: network device 9185 * @ppid: pointer to a storage for the port's parent identifier 9186 * @recurse: allow/disallow recursion to lower devices 9187 * 9188 * Get the devices's port parent identifier 9189 */ 9190 int dev_get_port_parent_id(struct net_device *dev, 9191 struct netdev_phys_item_id *ppid, 9192 bool recurse) 9193 { 9194 const struct net_device_ops *ops = dev->netdev_ops; 9195 struct netdev_phys_item_id first = { }; 9196 struct net_device *lower_dev; 9197 struct list_head *iter; 9198 int err; 9199 9200 if (ops->ndo_get_port_parent_id) { 9201 err = ops->ndo_get_port_parent_id(dev, ppid); 9202 if (err != -EOPNOTSUPP) 9203 return err; 9204 } 9205 9206 err = devlink_compat_switch_id_get(dev, ppid); 9207 if (!err || err != -EOPNOTSUPP) 9208 return err; 9209 9210 if (!recurse) 9211 return -EOPNOTSUPP; 9212 9213 netdev_for_each_lower_dev(dev, lower_dev, iter) { 9214 err = dev_get_port_parent_id(lower_dev, ppid, recurse); 9215 if (err) 9216 break; 9217 if (!first.id_len) 9218 first = *ppid; 9219 else if (memcmp(&first, ppid, sizeof(*ppid))) 9220 return -EOPNOTSUPP; 9221 } 9222 9223 return err; 9224 } 9225 EXPORT_SYMBOL(dev_get_port_parent_id); 9226 9227 /** 9228 * netdev_port_same_parent_id - Indicate if two network devices have 9229 * the same port parent identifier 9230 * @a: first network device 9231 * @b: second network device 9232 */ 9233 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 9234 { 9235 struct netdev_phys_item_id a_id = { }; 9236 struct netdev_phys_item_id b_id = { }; 9237 9238 if (dev_get_port_parent_id(a, &a_id, true) || 9239 dev_get_port_parent_id(b, &b_id, true)) 9240 return false; 9241 9242 return netdev_phys_item_id_same(&a_id, &b_id); 9243 } 9244 EXPORT_SYMBOL(netdev_port_same_parent_id); 9245 9246 /** 9247 * dev_change_proto_down - update protocol port state information 9248 * @dev: device 9249 * @proto_down: new value 9250 * 9251 * This info can be used by switch drivers to set the phys state of the 9252 * port. 9253 */ 9254 int dev_change_proto_down(struct net_device *dev, bool proto_down) 9255 { 9256 const struct net_device_ops *ops = dev->netdev_ops; 9257 9258 if (!ops->ndo_change_proto_down) 9259 return -EOPNOTSUPP; 9260 if (!netif_device_present(dev)) 9261 return -ENODEV; 9262 return ops->ndo_change_proto_down(dev, proto_down); 9263 } 9264 EXPORT_SYMBOL(dev_change_proto_down); 9265 9266 /** 9267 * dev_change_proto_down_generic - generic implementation for 9268 * ndo_change_proto_down that sets carrier according to 9269 * proto_down. 9270 * 9271 * @dev: device 9272 * @proto_down: new value 9273 */ 9274 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down) 9275 { 9276 if (proto_down) 9277 netif_carrier_off(dev); 9278 else 9279 netif_carrier_on(dev); 9280 dev->proto_down = proto_down; 9281 return 0; 9282 } 9283 EXPORT_SYMBOL(dev_change_proto_down_generic); 9284 9285 /** 9286 * dev_change_proto_down_reason - proto down reason 9287 * 9288 * @dev: device 9289 * @mask: proto down mask 9290 * @value: proto down value 9291 */ 9292 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask, 9293 u32 value) 9294 { 9295 int b; 9296 9297 if (!mask) { 9298 dev->proto_down_reason = value; 9299 } else { 9300 for_each_set_bit(b, &mask, 32) { 9301 if (value & (1 << b)) 9302 dev->proto_down_reason |= BIT(b); 9303 else 9304 dev->proto_down_reason &= ~BIT(b); 9305 } 9306 } 9307 } 9308 EXPORT_SYMBOL(dev_change_proto_down_reason); 9309 9310 struct bpf_xdp_link { 9311 struct bpf_link link; 9312 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 9313 int flags; 9314 }; 9315 9316 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 9317 { 9318 if (flags & XDP_FLAGS_HW_MODE) 9319 return XDP_MODE_HW; 9320 if (flags & XDP_FLAGS_DRV_MODE) 9321 return XDP_MODE_DRV; 9322 if (flags & XDP_FLAGS_SKB_MODE) 9323 return XDP_MODE_SKB; 9324 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 9325 } 9326 9327 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 9328 { 9329 switch (mode) { 9330 case XDP_MODE_SKB: 9331 return generic_xdp_install; 9332 case XDP_MODE_DRV: 9333 case XDP_MODE_HW: 9334 return dev->netdev_ops->ndo_bpf; 9335 default: 9336 return NULL; 9337 } 9338 } 9339 9340 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 9341 enum bpf_xdp_mode mode) 9342 { 9343 return dev->xdp_state[mode].link; 9344 } 9345 9346 static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 9347 enum bpf_xdp_mode mode) 9348 { 9349 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 9350 9351 if (link) 9352 return link->link.prog; 9353 return dev->xdp_state[mode].prog; 9354 } 9355 9356 static u8 dev_xdp_prog_count(struct net_device *dev) 9357 { 9358 u8 count = 0; 9359 int i; 9360 9361 for (i = 0; i < __MAX_XDP_MODE; i++) 9362 if (dev->xdp_state[i].prog || dev->xdp_state[i].link) 9363 count++; 9364 return count; 9365 } 9366 9367 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 9368 { 9369 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 9370 9371 return prog ? prog->aux->id : 0; 9372 } 9373 9374 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 9375 struct bpf_xdp_link *link) 9376 { 9377 dev->xdp_state[mode].link = link; 9378 dev->xdp_state[mode].prog = NULL; 9379 } 9380 9381 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 9382 struct bpf_prog *prog) 9383 { 9384 dev->xdp_state[mode].link = NULL; 9385 dev->xdp_state[mode].prog = prog; 9386 } 9387 9388 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 9389 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 9390 u32 flags, struct bpf_prog *prog) 9391 { 9392 struct netdev_bpf xdp; 9393 int err; 9394 9395 memset(&xdp, 0, sizeof(xdp)); 9396 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 9397 xdp.extack = extack; 9398 xdp.flags = flags; 9399 xdp.prog = prog; 9400 9401 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 9402 * "moved" into driver), so they don't increment it on their own, but 9403 * they do decrement refcnt when program is detached or replaced. 9404 * Given net_device also owns link/prog, we need to bump refcnt here 9405 * to prevent drivers from underflowing it. 9406 */ 9407 if (prog) 9408 bpf_prog_inc(prog); 9409 err = bpf_op(dev, &xdp); 9410 if (err) { 9411 if (prog) 9412 bpf_prog_put(prog); 9413 return err; 9414 } 9415 9416 if (mode != XDP_MODE_HW) 9417 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 9418 9419 return 0; 9420 } 9421 9422 static void dev_xdp_uninstall(struct net_device *dev) 9423 { 9424 struct bpf_xdp_link *link; 9425 struct bpf_prog *prog; 9426 enum bpf_xdp_mode mode; 9427 bpf_op_t bpf_op; 9428 9429 ASSERT_RTNL(); 9430 9431 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 9432 prog = dev_xdp_prog(dev, mode); 9433 if (!prog) 9434 continue; 9435 9436 bpf_op = dev_xdp_bpf_op(dev, mode); 9437 if (!bpf_op) 9438 continue; 9439 9440 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9441 9442 /* auto-detach link from net device */ 9443 link = dev_xdp_link(dev, mode); 9444 if (link) 9445 link->dev = NULL; 9446 else 9447 bpf_prog_put(prog); 9448 9449 dev_xdp_set_link(dev, mode, NULL); 9450 } 9451 } 9452 9453 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 9454 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 9455 struct bpf_prog *old_prog, u32 flags) 9456 { 9457 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); 9458 struct bpf_prog *cur_prog; 9459 enum bpf_xdp_mode mode; 9460 bpf_op_t bpf_op; 9461 int err; 9462 9463 ASSERT_RTNL(); 9464 9465 /* either link or prog attachment, never both */ 9466 if (link && (new_prog || old_prog)) 9467 return -EINVAL; 9468 /* link supports only XDP mode flags */ 9469 if (link && (flags & ~XDP_FLAGS_MODES)) { 9470 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 9471 return -EINVAL; 9472 } 9473 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ 9474 if (num_modes > 1) { 9475 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 9476 return -EINVAL; 9477 } 9478 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ 9479 if (!num_modes && dev_xdp_prog_count(dev) > 1) { 9480 NL_SET_ERR_MSG(extack, 9481 "More than one program loaded, unset mode is ambiguous"); 9482 return -EINVAL; 9483 } 9484 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 9485 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 9486 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 9487 return -EINVAL; 9488 } 9489 9490 mode = dev_xdp_mode(dev, flags); 9491 /* can't replace attached link */ 9492 if (dev_xdp_link(dev, mode)) { 9493 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 9494 return -EBUSY; 9495 } 9496 9497 cur_prog = dev_xdp_prog(dev, mode); 9498 /* can't replace attached prog with link */ 9499 if (link && cur_prog) { 9500 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 9501 return -EBUSY; 9502 } 9503 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 9504 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 9505 return -EEXIST; 9506 } 9507 9508 /* put effective new program into new_prog */ 9509 if (link) 9510 new_prog = link->link.prog; 9511 9512 if (new_prog) { 9513 bool offload = mode == XDP_MODE_HW; 9514 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 9515 ? XDP_MODE_DRV : XDP_MODE_SKB; 9516 9517 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 9518 NL_SET_ERR_MSG(extack, "XDP program already attached"); 9519 return -EBUSY; 9520 } 9521 if (!offload && dev_xdp_prog(dev, other_mode)) { 9522 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 9523 return -EEXIST; 9524 } 9525 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) { 9526 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported"); 9527 return -EINVAL; 9528 } 9529 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 9530 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 9531 return -EINVAL; 9532 } 9533 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 9534 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 9535 return -EINVAL; 9536 } 9537 } 9538 9539 /* don't call drivers if the effective program didn't change */ 9540 if (new_prog != cur_prog) { 9541 bpf_op = dev_xdp_bpf_op(dev, mode); 9542 if (!bpf_op) { 9543 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 9544 return -EOPNOTSUPP; 9545 } 9546 9547 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 9548 if (err) 9549 return err; 9550 } 9551 9552 if (link) 9553 dev_xdp_set_link(dev, mode, link); 9554 else 9555 dev_xdp_set_prog(dev, mode, new_prog); 9556 if (cur_prog) 9557 bpf_prog_put(cur_prog); 9558 9559 return 0; 9560 } 9561 9562 static int dev_xdp_attach_link(struct net_device *dev, 9563 struct netlink_ext_ack *extack, 9564 struct bpf_xdp_link *link) 9565 { 9566 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 9567 } 9568 9569 static int dev_xdp_detach_link(struct net_device *dev, 9570 struct netlink_ext_ack *extack, 9571 struct bpf_xdp_link *link) 9572 { 9573 enum bpf_xdp_mode mode; 9574 bpf_op_t bpf_op; 9575 9576 ASSERT_RTNL(); 9577 9578 mode = dev_xdp_mode(dev, link->flags); 9579 if (dev_xdp_link(dev, mode) != link) 9580 return -EINVAL; 9581 9582 bpf_op = dev_xdp_bpf_op(dev, mode); 9583 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9584 dev_xdp_set_link(dev, mode, NULL); 9585 return 0; 9586 } 9587 9588 static void bpf_xdp_link_release(struct bpf_link *link) 9589 { 9590 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9591 9592 rtnl_lock(); 9593 9594 /* if racing with net_device's tear down, xdp_link->dev might be 9595 * already NULL, in which case link was already auto-detached 9596 */ 9597 if (xdp_link->dev) { 9598 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 9599 xdp_link->dev = NULL; 9600 } 9601 9602 rtnl_unlock(); 9603 } 9604 9605 static int bpf_xdp_link_detach(struct bpf_link *link) 9606 { 9607 bpf_xdp_link_release(link); 9608 return 0; 9609 } 9610 9611 static void bpf_xdp_link_dealloc(struct bpf_link *link) 9612 { 9613 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9614 9615 kfree(xdp_link); 9616 } 9617 9618 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 9619 struct seq_file *seq) 9620 { 9621 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9622 u32 ifindex = 0; 9623 9624 rtnl_lock(); 9625 if (xdp_link->dev) 9626 ifindex = xdp_link->dev->ifindex; 9627 rtnl_unlock(); 9628 9629 seq_printf(seq, "ifindex:\t%u\n", ifindex); 9630 } 9631 9632 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 9633 struct bpf_link_info *info) 9634 { 9635 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9636 u32 ifindex = 0; 9637 9638 rtnl_lock(); 9639 if (xdp_link->dev) 9640 ifindex = xdp_link->dev->ifindex; 9641 rtnl_unlock(); 9642 9643 info->xdp.ifindex = ifindex; 9644 return 0; 9645 } 9646 9647 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 9648 struct bpf_prog *old_prog) 9649 { 9650 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9651 enum bpf_xdp_mode mode; 9652 bpf_op_t bpf_op; 9653 int err = 0; 9654 9655 rtnl_lock(); 9656 9657 /* link might have been auto-released already, so fail */ 9658 if (!xdp_link->dev) { 9659 err = -ENOLINK; 9660 goto out_unlock; 9661 } 9662 9663 if (old_prog && link->prog != old_prog) { 9664 err = -EPERM; 9665 goto out_unlock; 9666 } 9667 old_prog = link->prog; 9668 if (old_prog == new_prog) { 9669 /* no-op, don't disturb drivers */ 9670 bpf_prog_put(new_prog); 9671 goto out_unlock; 9672 } 9673 9674 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 9675 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 9676 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 9677 xdp_link->flags, new_prog); 9678 if (err) 9679 goto out_unlock; 9680 9681 old_prog = xchg(&link->prog, new_prog); 9682 bpf_prog_put(old_prog); 9683 9684 out_unlock: 9685 rtnl_unlock(); 9686 return err; 9687 } 9688 9689 static const struct bpf_link_ops bpf_xdp_link_lops = { 9690 .release = bpf_xdp_link_release, 9691 .dealloc = bpf_xdp_link_dealloc, 9692 .detach = bpf_xdp_link_detach, 9693 .show_fdinfo = bpf_xdp_link_show_fdinfo, 9694 .fill_link_info = bpf_xdp_link_fill_link_info, 9695 .update_prog = bpf_xdp_link_update, 9696 }; 9697 9698 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 9699 { 9700 struct net *net = current->nsproxy->net_ns; 9701 struct bpf_link_primer link_primer; 9702 struct bpf_xdp_link *link; 9703 struct net_device *dev; 9704 int err, fd; 9705 9706 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 9707 if (!dev) 9708 return -EINVAL; 9709 9710 link = kzalloc(sizeof(*link), GFP_USER); 9711 if (!link) { 9712 err = -ENOMEM; 9713 goto out_put_dev; 9714 } 9715 9716 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog); 9717 link->dev = dev; 9718 link->flags = attr->link_create.flags; 9719 9720 err = bpf_link_prime(&link->link, &link_primer); 9721 if (err) { 9722 kfree(link); 9723 goto out_put_dev; 9724 } 9725 9726 rtnl_lock(); 9727 err = dev_xdp_attach_link(dev, NULL, link); 9728 rtnl_unlock(); 9729 9730 if (err) { 9731 bpf_link_cleanup(&link_primer); 9732 goto out_put_dev; 9733 } 9734 9735 fd = bpf_link_settle(&link_primer); 9736 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 9737 dev_put(dev); 9738 return fd; 9739 9740 out_put_dev: 9741 dev_put(dev); 9742 return err; 9743 } 9744 9745 /** 9746 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 9747 * @dev: device 9748 * @extack: netlink extended ack 9749 * @fd: new program fd or negative value to clear 9750 * @expected_fd: old program fd that userspace expects to replace or clear 9751 * @flags: xdp-related flags 9752 * 9753 * Set or clear a bpf program for a device 9754 */ 9755 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 9756 int fd, int expected_fd, u32 flags) 9757 { 9758 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 9759 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 9760 int err; 9761 9762 ASSERT_RTNL(); 9763 9764 if (fd >= 0) { 9765 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 9766 mode != XDP_MODE_SKB); 9767 if (IS_ERR(new_prog)) 9768 return PTR_ERR(new_prog); 9769 } 9770 9771 if (expected_fd >= 0) { 9772 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 9773 mode != XDP_MODE_SKB); 9774 if (IS_ERR(old_prog)) { 9775 err = PTR_ERR(old_prog); 9776 old_prog = NULL; 9777 goto err_out; 9778 } 9779 } 9780 9781 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 9782 9783 err_out: 9784 if (err && new_prog) 9785 bpf_prog_put(new_prog); 9786 if (old_prog) 9787 bpf_prog_put(old_prog); 9788 return err; 9789 } 9790 9791 /** 9792 * dev_new_index - allocate an ifindex 9793 * @net: the applicable net namespace 9794 * 9795 * Returns a suitable unique value for a new device interface 9796 * number. The caller must hold the rtnl semaphore or the 9797 * dev_base_lock to be sure it remains unique. 9798 */ 9799 static int dev_new_index(struct net *net) 9800 { 9801 int ifindex = net->ifindex; 9802 9803 for (;;) { 9804 if (++ifindex <= 0) 9805 ifindex = 1; 9806 if (!__dev_get_by_index(net, ifindex)) 9807 return net->ifindex = ifindex; 9808 } 9809 } 9810 9811 /* Delayed registration/unregisteration */ 9812 static LIST_HEAD(net_todo_list); 9813 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 9814 9815 static void net_set_todo(struct net_device *dev) 9816 { 9817 list_add_tail(&dev->todo_list, &net_todo_list); 9818 dev_net(dev)->dev_unreg_count++; 9819 } 9820 9821 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 9822 struct net_device *upper, netdev_features_t features) 9823 { 9824 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9825 netdev_features_t feature; 9826 int feature_bit; 9827 9828 for_each_netdev_feature(upper_disables, feature_bit) { 9829 feature = __NETIF_F_BIT(feature_bit); 9830 if (!(upper->wanted_features & feature) 9831 && (features & feature)) { 9832 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 9833 &feature, upper->name); 9834 features &= ~feature; 9835 } 9836 } 9837 9838 return features; 9839 } 9840 9841 static void netdev_sync_lower_features(struct net_device *upper, 9842 struct net_device *lower, netdev_features_t features) 9843 { 9844 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9845 netdev_features_t feature; 9846 int feature_bit; 9847 9848 for_each_netdev_feature(upper_disables, feature_bit) { 9849 feature = __NETIF_F_BIT(feature_bit); 9850 if (!(features & feature) && (lower->features & feature)) { 9851 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 9852 &feature, lower->name); 9853 lower->wanted_features &= ~feature; 9854 __netdev_update_features(lower); 9855 9856 if (unlikely(lower->features & feature)) 9857 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 9858 &feature, lower->name); 9859 else 9860 netdev_features_change(lower); 9861 } 9862 } 9863 } 9864 9865 static netdev_features_t netdev_fix_features(struct net_device *dev, 9866 netdev_features_t features) 9867 { 9868 /* Fix illegal checksum combinations */ 9869 if ((features & NETIF_F_HW_CSUM) && 9870 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 9871 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 9872 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 9873 } 9874 9875 /* TSO requires that SG is present as well. */ 9876 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 9877 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 9878 features &= ~NETIF_F_ALL_TSO; 9879 } 9880 9881 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 9882 !(features & NETIF_F_IP_CSUM)) { 9883 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 9884 features &= ~NETIF_F_TSO; 9885 features &= ~NETIF_F_TSO_ECN; 9886 } 9887 9888 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 9889 !(features & NETIF_F_IPV6_CSUM)) { 9890 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 9891 features &= ~NETIF_F_TSO6; 9892 } 9893 9894 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 9895 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 9896 features &= ~NETIF_F_TSO_MANGLEID; 9897 9898 /* TSO ECN requires that TSO is present as well. */ 9899 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 9900 features &= ~NETIF_F_TSO_ECN; 9901 9902 /* Software GSO depends on SG. */ 9903 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 9904 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 9905 features &= ~NETIF_F_GSO; 9906 } 9907 9908 /* GSO partial features require GSO partial be set */ 9909 if ((features & dev->gso_partial_features) && 9910 !(features & NETIF_F_GSO_PARTIAL)) { 9911 netdev_dbg(dev, 9912 "Dropping partially supported GSO features since no GSO partial.\n"); 9913 features &= ~dev->gso_partial_features; 9914 } 9915 9916 if (!(features & NETIF_F_RXCSUM)) { 9917 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 9918 * successfully merged by hardware must also have the 9919 * checksum verified by hardware. If the user does not 9920 * want to enable RXCSUM, logically, we should disable GRO_HW. 9921 */ 9922 if (features & NETIF_F_GRO_HW) { 9923 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 9924 features &= ~NETIF_F_GRO_HW; 9925 } 9926 } 9927 9928 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 9929 if (features & NETIF_F_RXFCS) { 9930 if (features & NETIF_F_LRO) { 9931 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 9932 features &= ~NETIF_F_LRO; 9933 } 9934 9935 if (features & NETIF_F_GRO_HW) { 9936 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 9937 features &= ~NETIF_F_GRO_HW; 9938 } 9939 } 9940 9941 if (features & NETIF_F_HW_TLS_TX) { 9942 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) == 9943 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 9944 bool hw_csum = features & NETIF_F_HW_CSUM; 9945 9946 if (!ip_csum && !hw_csum) { 9947 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n"); 9948 features &= ~NETIF_F_HW_TLS_TX; 9949 } 9950 } 9951 9952 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { 9953 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n"); 9954 features &= ~NETIF_F_HW_TLS_RX; 9955 } 9956 9957 return features; 9958 } 9959 9960 int __netdev_update_features(struct net_device *dev) 9961 { 9962 struct net_device *upper, *lower; 9963 netdev_features_t features; 9964 struct list_head *iter; 9965 int err = -1; 9966 9967 ASSERT_RTNL(); 9968 9969 features = netdev_get_wanted_features(dev); 9970 9971 if (dev->netdev_ops->ndo_fix_features) 9972 features = dev->netdev_ops->ndo_fix_features(dev, features); 9973 9974 /* driver might be less strict about feature dependencies */ 9975 features = netdev_fix_features(dev, features); 9976 9977 /* some features can't be enabled if they're off on an upper device */ 9978 netdev_for_each_upper_dev_rcu(dev, upper, iter) 9979 features = netdev_sync_upper_features(dev, upper, features); 9980 9981 if (dev->features == features) 9982 goto sync_lower; 9983 9984 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 9985 &dev->features, &features); 9986 9987 if (dev->netdev_ops->ndo_set_features) 9988 err = dev->netdev_ops->ndo_set_features(dev, features); 9989 else 9990 err = 0; 9991 9992 if (unlikely(err < 0)) { 9993 netdev_err(dev, 9994 "set_features() failed (%d); wanted %pNF, left %pNF\n", 9995 err, &features, &dev->features); 9996 /* return non-0 since some features might have changed and 9997 * it's better to fire a spurious notification than miss it 9998 */ 9999 return -1; 10000 } 10001 10002 sync_lower: 10003 /* some features must be disabled on lower devices when disabled 10004 * on an upper device (think: bonding master or bridge) 10005 */ 10006 netdev_for_each_lower_dev(dev, lower, iter) 10007 netdev_sync_lower_features(dev, lower, features); 10008 10009 if (!err) { 10010 netdev_features_t diff = features ^ dev->features; 10011 10012 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 10013 /* udp_tunnel_{get,drop}_rx_info both need 10014 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 10015 * device, or they won't do anything. 10016 * Thus we need to update dev->features 10017 * *before* calling udp_tunnel_get_rx_info, 10018 * but *after* calling udp_tunnel_drop_rx_info. 10019 */ 10020 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 10021 dev->features = features; 10022 udp_tunnel_get_rx_info(dev); 10023 } else { 10024 udp_tunnel_drop_rx_info(dev); 10025 } 10026 } 10027 10028 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 10029 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 10030 dev->features = features; 10031 err |= vlan_get_rx_ctag_filter_info(dev); 10032 } else { 10033 vlan_drop_rx_ctag_filter_info(dev); 10034 } 10035 } 10036 10037 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 10038 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 10039 dev->features = features; 10040 err |= vlan_get_rx_stag_filter_info(dev); 10041 } else { 10042 vlan_drop_rx_stag_filter_info(dev); 10043 } 10044 } 10045 10046 dev->features = features; 10047 } 10048 10049 return err < 0 ? 0 : 1; 10050 } 10051 10052 /** 10053 * netdev_update_features - recalculate device features 10054 * @dev: the device to check 10055 * 10056 * Recalculate dev->features set and send notifications if it 10057 * has changed. Should be called after driver or hardware dependent 10058 * conditions might have changed that influence the features. 10059 */ 10060 void netdev_update_features(struct net_device *dev) 10061 { 10062 if (__netdev_update_features(dev)) 10063 netdev_features_change(dev); 10064 } 10065 EXPORT_SYMBOL(netdev_update_features); 10066 10067 /** 10068 * netdev_change_features - recalculate device features 10069 * @dev: the device to check 10070 * 10071 * Recalculate dev->features set and send notifications even 10072 * if they have not changed. Should be called instead of 10073 * netdev_update_features() if also dev->vlan_features might 10074 * have changed to allow the changes to be propagated to stacked 10075 * VLAN devices. 10076 */ 10077 void netdev_change_features(struct net_device *dev) 10078 { 10079 __netdev_update_features(dev); 10080 netdev_features_change(dev); 10081 } 10082 EXPORT_SYMBOL(netdev_change_features); 10083 10084 /** 10085 * netif_stacked_transfer_operstate - transfer operstate 10086 * @rootdev: the root or lower level device to transfer state from 10087 * @dev: the device to transfer operstate to 10088 * 10089 * Transfer operational state from root to device. This is normally 10090 * called when a stacking relationship exists between the root 10091 * device and the device(a leaf device). 10092 */ 10093 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 10094 struct net_device *dev) 10095 { 10096 if (rootdev->operstate == IF_OPER_DORMANT) 10097 netif_dormant_on(dev); 10098 else 10099 netif_dormant_off(dev); 10100 10101 if (rootdev->operstate == IF_OPER_TESTING) 10102 netif_testing_on(dev); 10103 else 10104 netif_testing_off(dev); 10105 10106 if (netif_carrier_ok(rootdev)) 10107 netif_carrier_on(dev); 10108 else 10109 netif_carrier_off(dev); 10110 } 10111 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 10112 10113 static int netif_alloc_rx_queues(struct net_device *dev) 10114 { 10115 unsigned int i, count = dev->num_rx_queues; 10116 struct netdev_rx_queue *rx; 10117 size_t sz = count * sizeof(*rx); 10118 int err = 0; 10119 10120 BUG_ON(count < 1); 10121 10122 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10123 if (!rx) 10124 return -ENOMEM; 10125 10126 dev->_rx = rx; 10127 10128 for (i = 0; i < count; i++) { 10129 rx[i].dev = dev; 10130 10131 /* XDP RX-queue setup */ 10132 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0); 10133 if (err < 0) 10134 goto err_rxq_info; 10135 } 10136 return 0; 10137 10138 err_rxq_info: 10139 /* Rollback successful reg's and free other resources */ 10140 while (i--) 10141 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 10142 kvfree(dev->_rx); 10143 dev->_rx = NULL; 10144 return err; 10145 } 10146 10147 static void netif_free_rx_queues(struct net_device *dev) 10148 { 10149 unsigned int i, count = dev->num_rx_queues; 10150 10151 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 10152 if (!dev->_rx) 10153 return; 10154 10155 for (i = 0; i < count; i++) 10156 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 10157 10158 kvfree(dev->_rx); 10159 } 10160 10161 static void netdev_init_one_queue(struct net_device *dev, 10162 struct netdev_queue *queue, void *_unused) 10163 { 10164 /* Initialize queue lock */ 10165 spin_lock_init(&queue->_xmit_lock); 10166 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 10167 queue->xmit_lock_owner = -1; 10168 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 10169 queue->dev = dev; 10170 #ifdef CONFIG_BQL 10171 dql_init(&queue->dql, HZ); 10172 #endif 10173 } 10174 10175 static void netif_free_tx_queues(struct net_device *dev) 10176 { 10177 kvfree(dev->_tx); 10178 } 10179 10180 static int netif_alloc_netdev_queues(struct net_device *dev) 10181 { 10182 unsigned int count = dev->num_tx_queues; 10183 struct netdev_queue *tx; 10184 size_t sz = count * sizeof(*tx); 10185 10186 if (count < 1 || count > 0xffff) 10187 return -EINVAL; 10188 10189 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10190 if (!tx) 10191 return -ENOMEM; 10192 10193 dev->_tx = tx; 10194 10195 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 10196 spin_lock_init(&dev->tx_global_lock); 10197 10198 return 0; 10199 } 10200 10201 void netif_tx_stop_all_queues(struct net_device *dev) 10202 { 10203 unsigned int i; 10204 10205 for (i = 0; i < dev->num_tx_queues; i++) { 10206 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 10207 10208 netif_tx_stop_queue(txq); 10209 } 10210 } 10211 EXPORT_SYMBOL(netif_tx_stop_all_queues); 10212 10213 /** 10214 * register_netdevice - register a network device 10215 * @dev: device to register 10216 * 10217 * Take a completed network device structure and add it to the kernel 10218 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 10219 * chain. 0 is returned on success. A negative errno code is returned 10220 * on a failure to set up the device, or if the name is a duplicate. 10221 * 10222 * Callers must hold the rtnl semaphore. You may want 10223 * register_netdev() instead of this. 10224 * 10225 * BUGS: 10226 * The locking appears insufficient to guarantee two parallel registers 10227 * will not get the same name. 10228 */ 10229 10230 int register_netdevice(struct net_device *dev) 10231 { 10232 int ret; 10233 struct net *net = dev_net(dev); 10234 10235 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 10236 NETDEV_FEATURE_COUNT); 10237 BUG_ON(dev_boot_phase); 10238 ASSERT_RTNL(); 10239 10240 might_sleep(); 10241 10242 /* When net_device's are persistent, this will be fatal. */ 10243 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 10244 BUG_ON(!net); 10245 10246 ret = ethtool_check_ops(dev->ethtool_ops); 10247 if (ret) 10248 return ret; 10249 10250 spin_lock_init(&dev->addr_list_lock); 10251 netdev_set_addr_lockdep_class(dev); 10252 10253 ret = dev_get_valid_name(net, dev, dev->name); 10254 if (ret < 0) 10255 goto out; 10256 10257 ret = -ENOMEM; 10258 dev->name_node = netdev_name_node_head_alloc(dev); 10259 if (!dev->name_node) 10260 goto out; 10261 10262 /* Init, if this function is available */ 10263 if (dev->netdev_ops->ndo_init) { 10264 ret = dev->netdev_ops->ndo_init(dev); 10265 if (ret) { 10266 if (ret > 0) 10267 ret = -EIO; 10268 goto err_free_name; 10269 } 10270 } 10271 10272 if (((dev->hw_features | dev->features) & 10273 NETIF_F_HW_VLAN_CTAG_FILTER) && 10274 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 10275 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 10276 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 10277 ret = -EINVAL; 10278 goto err_uninit; 10279 } 10280 10281 ret = -EBUSY; 10282 if (!dev->ifindex) 10283 dev->ifindex = dev_new_index(net); 10284 else if (__dev_get_by_index(net, dev->ifindex)) 10285 goto err_uninit; 10286 10287 /* Transfer changeable features to wanted_features and enable 10288 * software offloads (GSO and GRO). 10289 */ 10290 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 10291 dev->features |= NETIF_F_SOFT_FEATURES; 10292 10293 if (dev->udp_tunnel_nic_info) { 10294 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10295 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10296 } 10297 10298 dev->wanted_features = dev->features & dev->hw_features; 10299 10300 if (!(dev->flags & IFF_LOOPBACK)) 10301 dev->hw_features |= NETIF_F_NOCACHE_COPY; 10302 10303 /* If IPv4 TCP segmentation offload is supported we should also 10304 * allow the device to enable segmenting the frame with the option 10305 * of ignoring a static IP ID value. This doesn't enable the 10306 * feature itself but allows the user to enable it later. 10307 */ 10308 if (dev->hw_features & NETIF_F_TSO) 10309 dev->hw_features |= NETIF_F_TSO_MANGLEID; 10310 if (dev->vlan_features & NETIF_F_TSO) 10311 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 10312 if (dev->mpls_features & NETIF_F_TSO) 10313 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 10314 if (dev->hw_enc_features & NETIF_F_TSO) 10315 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 10316 10317 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 10318 */ 10319 dev->vlan_features |= NETIF_F_HIGHDMA; 10320 10321 /* Make NETIF_F_SG inheritable to tunnel devices. 10322 */ 10323 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 10324 10325 /* Make NETIF_F_SG inheritable to MPLS. 10326 */ 10327 dev->mpls_features |= NETIF_F_SG; 10328 10329 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 10330 ret = notifier_to_errno(ret); 10331 if (ret) 10332 goto err_uninit; 10333 10334 ret = netdev_register_kobject(dev); 10335 if (ret) { 10336 dev->reg_state = NETREG_UNREGISTERED; 10337 goto err_uninit; 10338 } 10339 dev->reg_state = NETREG_REGISTERED; 10340 10341 __netdev_update_features(dev); 10342 10343 /* 10344 * Default initial state at registry is that the 10345 * device is present. 10346 */ 10347 10348 set_bit(__LINK_STATE_PRESENT, &dev->state); 10349 10350 linkwatch_init_dev(dev); 10351 10352 dev_init_scheduler(dev); 10353 dev_hold(dev); 10354 list_netdevice(dev); 10355 add_device_randomness(dev->dev_addr, dev->addr_len); 10356 10357 /* If the device has permanent device address, driver should 10358 * set dev_addr and also addr_assign_type should be set to 10359 * NET_ADDR_PERM (default value). 10360 */ 10361 if (dev->addr_assign_type == NET_ADDR_PERM) 10362 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 10363 10364 /* Notify protocols, that a new device appeared. */ 10365 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 10366 ret = notifier_to_errno(ret); 10367 if (ret) { 10368 /* Expect explicit free_netdev() on failure */ 10369 dev->needs_free_netdev = false; 10370 unregister_netdevice_queue(dev, NULL); 10371 goto out; 10372 } 10373 /* 10374 * Prevent userspace races by waiting until the network 10375 * device is fully setup before sending notifications. 10376 */ 10377 if (!dev->rtnl_link_ops || 10378 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 10379 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 10380 10381 out: 10382 return ret; 10383 10384 err_uninit: 10385 if (dev->netdev_ops->ndo_uninit) 10386 dev->netdev_ops->ndo_uninit(dev); 10387 if (dev->priv_destructor) 10388 dev->priv_destructor(dev); 10389 err_free_name: 10390 netdev_name_node_free(dev->name_node); 10391 goto out; 10392 } 10393 EXPORT_SYMBOL(register_netdevice); 10394 10395 /** 10396 * init_dummy_netdev - init a dummy network device for NAPI 10397 * @dev: device to init 10398 * 10399 * This takes a network device structure and initialize the minimum 10400 * amount of fields so it can be used to schedule NAPI polls without 10401 * registering a full blown interface. This is to be used by drivers 10402 * that need to tie several hardware interfaces to a single NAPI 10403 * poll scheduler due to HW limitations. 10404 */ 10405 int init_dummy_netdev(struct net_device *dev) 10406 { 10407 /* Clear everything. Note we don't initialize spinlocks 10408 * are they aren't supposed to be taken by any of the 10409 * NAPI code and this dummy netdev is supposed to be 10410 * only ever used for NAPI polls 10411 */ 10412 memset(dev, 0, sizeof(struct net_device)); 10413 10414 /* make sure we BUG if trying to hit standard 10415 * register/unregister code path 10416 */ 10417 dev->reg_state = NETREG_DUMMY; 10418 10419 /* NAPI wants this */ 10420 INIT_LIST_HEAD(&dev->napi_list); 10421 10422 /* a dummy interface is started by default */ 10423 set_bit(__LINK_STATE_PRESENT, &dev->state); 10424 set_bit(__LINK_STATE_START, &dev->state); 10425 10426 /* napi_busy_loop stats accounting wants this */ 10427 dev_net_set(dev, &init_net); 10428 10429 /* Note : We dont allocate pcpu_refcnt for dummy devices, 10430 * because users of this 'device' dont need to change 10431 * its refcount. 10432 */ 10433 10434 return 0; 10435 } 10436 EXPORT_SYMBOL_GPL(init_dummy_netdev); 10437 10438 10439 /** 10440 * register_netdev - register a network device 10441 * @dev: device to register 10442 * 10443 * Take a completed network device structure and add it to the kernel 10444 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 10445 * chain. 0 is returned on success. A negative errno code is returned 10446 * on a failure to set up the device, or if the name is a duplicate. 10447 * 10448 * This is a wrapper around register_netdevice that takes the rtnl semaphore 10449 * and expands the device name if you passed a format string to 10450 * alloc_netdev. 10451 */ 10452 int register_netdev(struct net_device *dev) 10453 { 10454 int err; 10455 10456 if (rtnl_lock_killable()) 10457 return -EINTR; 10458 err = register_netdevice(dev); 10459 rtnl_unlock(); 10460 return err; 10461 } 10462 EXPORT_SYMBOL(register_netdev); 10463 10464 int netdev_refcnt_read(const struct net_device *dev) 10465 { 10466 #ifdef CONFIG_PCPU_DEV_REFCNT 10467 int i, refcnt = 0; 10468 10469 for_each_possible_cpu(i) 10470 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 10471 return refcnt; 10472 #else 10473 return refcount_read(&dev->dev_refcnt); 10474 #endif 10475 } 10476 EXPORT_SYMBOL(netdev_refcnt_read); 10477 10478 int netdev_unregister_timeout_secs __read_mostly = 10; 10479 10480 #define WAIT_REFS_MIN_MSECS 1 10481 #define WAIT_REFS_MAX_MSECS 250 10482 /** 10483 * netdev_wait_allrefs - wait until all references are gone. 10484 * @dev: target net_device 10485 * 10486 * This is called when unregistering network devices. 10487 * 10488 * Any protocol or device that holds a reference should register 10489 * for netdevice notification, and cleanup and put back the 10490 * reference if they receive an UNREGISTER event. 10491 * We can get stuck here if buggy protocols don't correctly 10492 * call dev_put. 10493 */ 10494 static void netdev_wait_allrefs(struct net_device *dev) 10495 { 10496 unsigned long rebroadcast_time, warning_time; 10497 int wait = 0, refcnt; 10498 10499 linkwatch_forget_dev(dev); 10500 10501 rebroadcast_time = warning_time = jiffies; 10502 refcnt = netdev_refcnt_read(dev); 10503 10504 while (refcnt != 1) { 10505 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 10506 rtnl_lock(); 10507 10508 /* Rebroadcast unregister notification */ 10509 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10510 10511 __rtnl_unlock(); 10512 rcu_barrier(); 10513 rtnl_lock(); 10514 10515 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 10516 &dev->state)) { 10517 /* We must not have linkwatch events 10518 * pending on unregister. If this 10519 * happens, we simply run the queue 10520 * unscheduled, resulting in a noop 10521 * for this device. 10522 */ 10523 linkwatch_run_queue(); 10524 } 10525 10526 __rtnl_unlock(); 10527 10528 rebroadcast_time = jiffies; 10529 } 10530 10531 if (!wait) { 10532 rcu_barrier(); 10533 wait = WAIT_REFS_MIN_MSECS; 10534 } else { 10535 msleep(wait); 10536 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 10537 } 10538 10539 refcnt = netdev_refcnt_read(dev); 10540 10541 if (refcnt != 1 && 10542 time_after(jiffies, warning_time + 10543 netdev_unregister_timeout_secs * HZ)) { 10544 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 10545 dev->name, refcnt); 10546 warning_time = jiffies; 10547 } 10548 } 10549 } 10550 10551 /* The sequence is: 10552 * 10553 * rtnl_lock(); 10554 * ... 10555 * register_netdevice(x1); 10556 * register_netdevice(x2); 10557 * ... 10558 * unregister_netdevice(y1); 10559 * unregister_netdevice(y2); 10560 * ... 10561 * rtnl_unlock(); 10562 * free_netdev(y1); 10563 * free_netdev(y2); 10564 * 10565 * We are invoked by rtnl_unlock(). 10566 * This allows us to deal with problems: 10567 * 1) We can delete sysfs objects which invoke hotplug 10568 * without deadlocking with linkwatch via keventd. 10569 * 2) Since we run with the RTNL semaphore not held, we can sleep 10570 * safely in order to wait for the netdev refcnt to drop to zero. 10571 * 10572 * We must not return until all unregister events added during 10573 * the interval the lock was held have been completed. 10574 */ 10575 void netdev_run_todo(void) 10576 { 10577 struct list_head list; 10578 #ifdef CONFIG_LOCKDEP 10579 struct list_head unlink_list; 10580 10581 list_replace_init(&net_unlink_list, &unlink_list); 10582 10583 while (!list_empty(&unlink_list)) { 10584 struct net_device *dev = list_first_entry(&unlink_list, 10585 struct net_device, 10586 unlink_list); 10587 list_del_init(&dev->unlink_list); 10588 dev->nested_level = dev->lower_level - 1; 10589 } 10590 #endif 10591 10592 /* Snapshot list, allow later requests */ 10593 list_replace_init(&net_todo_list, &list); 10594 10595 __rtnl_unlock(); 10596 10597 10598 /* Wait for rcu callbacks to finish before next phase */ 10599 if (!list_empty(&list)) 10600 rcu_barrier(); 10601 10602 while (!list_empty(&list)) { 10603 struct net_device *dev 10604 = list_first_entry(&list, struct net_device, todo_list); 10605 list_del(&dev->todo_list); 10606 10607 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 10608 pr_err("network todo '%s' but state %d\n", 10609 dev->name, dev->reg_state); 10610 dump_stack(); 10611 continue; 10612 } 10613 10614 dev->reg_state = NETREG_UNREGISTERED; 10615 10616 netdev_wait_allrefs(dev); 10617 10618 /* paranoia */ 10619 BUG_ON(netdev_refcnt_read(dev) != 1); 10620 BUG_ON(!list_empty(&dev->ptype_all)); 10621 BUG_ON(!list_empty(&dev->ptype_specific)); 10622 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 10623 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 10624 #if IS_ENABLED(CONFIG_DECNET) 10625 WARN_ON(dev->dn_ptr); 10626 #endif 10627 if (dev->priv_destructor) 10628 dev->priv_destructor(dev); 10629 if (dev->needs_free_netdev) 10630 free_netdev(dev); 10631 10632 /* Report a network device has been unregistered */ 10633 rtnl_lock(); 10634 dev_net(dev)->dev_unreg_count--; 10635 __rtnl_unlock(); 10636 wake_up(&netdev_unregistering_wq); 10637 10638 /* Free network device */ 10639 kobject_put(&dev->dev.kobj); 10640 } 10641 } 10642 10643 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 10644 * all the same fields in the same order as net_device_stats, with only 10645 * the type differing, but rtnl_link_stats64 may have additional fields 10646 * at the end for newer counters. 10647 */ 10648 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 10649 const struct net_device_stats *netdev_stats) 10650 { 10651 #if BITS_PER_LONG == 64 10652 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 10653 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 10654 /* zero out counters that only exist in rtnl_link_stats64 */ 10655 memset((char *)stats64 + sizeof(*netdev_stats), 0, 10656 sizeof(*stats64) - sizeof(*netdev_stats)); 10657 #else 10658 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 10659 const unsigned long *src = (const unsigned long *)netdev_stats; 10660 u64 *dst = (u64 *)stats64; 10661 10662 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 10663 for (i = 0; i < n; i++) 10664 dst[i] = src[i]; 10665 /* zero out counters that only exist in rtnl_link_stats64 */ 10666 memset((char *)stats64 + n * sizeof(u64), 0, 10667 sizeof(*stats64) - n * sizeof(u64)); 10668 #endif 10669 } 10670 EXPORT_SYMBOL(netdev_stats_to_stats64); 10671 10672 /** 10673 * dev_get_stats - get network device statistics 10674 * @dev: device to get statistics from 10675 * @storage: place to store stats 10676 * 10677 * Get network statistics from device. Return @storage. 10678 * The device driver may provide its own method by setting 10679 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 10680 * otherwise the internal statistics structure is used. 10681 */ 10682 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 10683 struct rtnl_link_stats64 *storage) 10684 { 10685 const struct net_device_ops *ops = dev->netdev_ops; 10686 10687 if (ops->ndo_get_stats64) { 10688 memset(storage, 0, sizeof(*storage)); 10689 ops->ndo_get_stats64(dev, storage); 10690 } else if (ops->ndo_get_stats) { 10691 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 10692 } else { 10693 netdev_stats_to_stats64(storage, &dev->stats); 10694 } 10695 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 10696 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 10697 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 10698 return storage; 10699 } 10700 EXPORT_SYMBOL(dev_get_stats); 10701 10702 /** 10703 * dev_fetch_sw_netstats - get per-cpu network device statistics 10704 * @s: place to store stats 10705 * @netstats: per-cpu network stats to read from 10706 * 10707 * Read per-cpu network statistics and populate the related fields in @s. 10708 */ 10709 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 10710 const struct pcpu_sw_netstats __percpu *netstats) 10711 { 10712 int cpu; 10713 10714 for_each_possible_cpu(cpu) { 10715 const struct pcpu_sw_netstats *stats; 10716 struct pcpu_sw_netstats tmp; 10717 unsigned int start; 10718 10719 stats = per_cpu_ptr(netstats, cpu); 10720 do { 10721 start = u64_stats_fetch_begin_irq(&stats->syncp); 10722 tmp.rx_packets = stats->rx_packets; 10723 tmp.rx_bytes = stats->rx_bytes; 10724 tmp.tx_packets = stats->tx_packets; 10725 tmp.tx_bytes = stats->tx_bytes; 10726 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 10727 10728 s->rx_packets += tmp.rx_packets; 10729 s->rx_bytes += tmp.rx_bytes; 10730 s->tx_packets += tmp.tx_packets; 10731 s->tx_bytes += tmp.tx_bytes; 10732 } 10733 } 10734 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 10735 10736 /** 10737 * dev_get_tstats64 - ndo_get_stats64 implementation 10738 * @dev: device to get statistics from 10739 * @s: place to store stats 10740 * 10741 * Populate @s from dev->stats and dev->tstats. Can be used as 10742 * ndo_get_stats64() callback. 10743 */ 10744 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) 10745 { 10746 netdev_stats_to_stats64(s, &dev->stats); 10747 dev_fetch_sw_netstats(s, dev->tstats); 10748 } 10749 EXPORT_SYMBOL_GPL(dev_get_tstats64); 10750 10751 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 10752 { 10753 struct netdev_queue *queue = dev_ingress_queue(dev); 10754 10755 #ifdef CONFIG_NET_CLS_ACT 10756 if (queue) 10757 return queue; 10758 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 10759 if (!queue) 10760 return NULL; 10761 netdev_init_one_queue(dev, queue, NULL); 10762 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 10763 queue->qdisc_sleeping = &noop_qdisc; 10764 rcu_assign_pointer(dev->ingress_queue, queue); 10765 #endif 10766 return queue; 10767 } 10768 10769 static const struct ethtool_ops default_ethtool_ops; 10770 10771 void netdev_set_default_ethtool_ops(struct net_device *dev, 10772 const struct ethtool_ops *ops) 10773 { 10774 if (dev->ethtool_ops == &default_ethtool_ops) 10775 dev->ethtool_ops = ops; 10776 } 10777 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 10778 10779 void netdev_freemem(struct net_device *dev) 10780 { 10781 char *addr = (char *)dev - dev->padded; 10782 10783 kvfree(addr); 10784 } 10785 10786 /** 10787 * alloc_netdev_mqs - allocate network device 10788 * @sizeof_priv: size of private data to allocate space for 10789 * @name: device name format string 10790 * @name_assign_type: origin of device name 10791 * @setup: callback to initialize device 10792 * @txqs: the number of TX subqueues to allocate 10793 * @rxqs: the number of RX subqueues to allocate 10794 * 10795 * Allocates a struct net_device with private data area for driver use 10796 * and performs basic initialization. Also allocates subqueue structs 10797 * for each queue on the device. 10798 */ 10799 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 10800 unsigned char name_assign_type, 10801 void (*setup)(struct net_device *), 10802 unsigned int txqs, unsigned int rxqs) 10803 { 10804 struct net_device *dev; 10805 unsigned int alloc_size; 10806 struct net_device *p; 10807 10808 BUG_ON(strlen(name) >= sizeof(dev->name)); 10809 10810 if (txqs < 1) { 10811 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 10812 return NULL; 10813 } 10814 10815 if (rxqs < 1) { 10816 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 10817 return NULL; 10818 } 10819 10820 alloc_size = sizeof(struct net_device); 10821 if (sizeof_priv) { 10822 /* ensure 32-byte alignment of private area */ 10823 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 10824 alloc_size += sizeof_priv; 10825 } 10826 /* ensure 32-byte alignment of whole construct */ 10827 alloc_size += NETDEV_ALIGN - 1; 10828 10829 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10830 if (!p) 10831 return NULL; 10832 10833 dev = PTR_ALIGN(p, NETDEV_ALIGN); 10834 dev->padded = (char *)dev - (char *)p; 10835 10836 #ifdef CONFIG_PCPU_DEV_REFCNT 10837 dev->pcpu_refcnt = alloc_percpu(int); 10838 if (!dev->pcpu_refcnt) 10839 goto free_dev; 10840 dev_hold(dev); 10841 #else 10842 refcount_set(&dev->dev_refcnt, 1); 10843 #endif 10844 10845 if (dev_addr_init(dev)) 10846 goto free_pcpu; 10847 10848 dev_mc_init(dev); 10849 dev_uc_init(dev); 10850 10851 dev_net_set(dev, &init_net); 10852 10853 dev->gso_max_size = GSO_MAX_SIZE; 10854 dev->gso_max_segs = GSO_MAX_SEGS; 10855 dev->upper_level = 1; 10856 dev->lower_level = 1; 10857 #ifdef CONFIG_LOCKDEP 10858 dev->nested_level = 0; 10859 INIT_LIST_HEAD(&dev->unlink_list); 10860 #endif 10861 10862 INIT_LIST_HEAD(&dev->napi_list); 10863 INIT_LIST_HEAD(&dev->unreg_list); 10864 INIT_LIST_HEAD(&dev->close_list); 10865 INIT_LIST_HEAD(&dev->link_watch_list); 10866 INIT_LIST_HEAD(&dev->adj_list.upper); 10867 INIT_LIST_HEAD(&dev->adj_list.lower); 10868 INIT_LIST_HEAD(&dev->ptype_all); 10869 INIT_LIST_HEAD(&dev->ptype_specific); 10870 INIT_LIST_HEAD(&dev->net_notifier_list); 10871 #ifdef CONFIG_NET_SCHED 10872 hash_init(dev->qdisc_hash); 10873 #endif 10874 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 10875 setup(dev); 10876 10877 if (!dev->tx_queue_len) { 10878 dev->priv_flags |= IFF_NO_QUEUE; 10879 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 10880 } 10881 10882 dev->num_tx_queues = txqs; 10883 dev->real_num_tx_queues = txqs; 10884 if (netif_alloc_netdev_queues(dev)) 10885 goto free_all; 10886 10887 dev->num_rx_queues = rxqs; 10888 dev->real_num_rx_queues = rxqs; 10889 if (netif_alloc_rx_queues(dev)) 10890 goto free_all; 10891 10892 strcpy(dev->name, name); 10893 dev->name_assign_type = name_assign_type; 10894 dev->group = INIT_NETDEV_GROUP; 10895 if (!dev->ethtool_ops) 10896 dev->ethtool_ops = &default_ethtool_ops; 10897 10898 nf_hook_ingress_init(dev); 10899 10900 return dev; 10901 10902 free_all: 10903 free_netdev(dev); 10904 return NULL; 10905 10906 free_pcpu: 10907 #ifdef CONFIG_PCPU_DEV_REFCNT 10908 free_percpu(dev->pcpu_refcnt); 10909 free_dev: 10910 #endif 10911 netdev_freemem(dev); 10912 return NULL; 10913 } 10914 EXPORT_SYMBOL(alloc_netdev_mqs); 10915 10916 /** 10917 * free_netdev - free network device 10918 * @dev: device 10919 * 10920 * This function does the last stage of destroying an allocated device 10921 * interface. The reference to the device object is released. If this 10922 * is the last reference then it will be freed.Must be called in process 10923 * context. 10924 */ 10925 void free_netdev(struct net_device *dev) 10926 { 10927 struct napi_struct *p, *n; 10928 10929 might_sleep(); 10930 10931 /* When called immediately after register_netdevice() failed the unwind 10932 * handling may still be dismantling the device. Handle that case by 10933 * deferring the free. 10934 */ 10935 if (dev->reg_state == NETREG_UNREGISTERING) { 10936 ASSERT_RTNL(); 10937 dev->needs_free_netdev = true; 10938 return; 10939 } 10940 10941 netif_free_tx_queues(dev); 10942 netif_free_rx_queues(dev); 10943 10944 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 10945 10946 /* Flush device addresses */ 10947 dev_addr_flush(dev); 10948 10949 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 10950 netif_napi_del(p); 10951 10952 #ifdef CONFIG_PCPU_DEV_REFCNT 10953 free_percpu(dev->pcpu_refcnt); 10954 dev->pcpu_refcnt = NULL; 10955 #endif 10956 free_percpu(dev->xdp_bulkq); 10957 dev->xdp_bulkq = NULL; 10958 10959 /* Compatibility with error handling in drivers */ 10960 if (dev->reg_state == NETREG_UNINITIALIZED) { 10961 netdev_freemem(dev); 10962 return; 10963 } 10964 10965 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 10966 dev->reg_state = NETREG_RELEASED; 10967 10968 /* will free via device release */ 10969 put_device(&dev->dev); 10970 } 10971 EXPORT_SYMBOL(free_netdev); 10972 10973 /** 10974 * synchronize_net - Synchronize with packet receive processing 10975 * 10976 * Wait for packets currently being received to be done. 10977 * Does not block later packets from starting. 10978 */ 10979 void synchronize_net(void) 10980 { 10981 might_sleep(); 10982 if (rtnl_is_locked()) 10983 synchronize_rcu_expedited(); 10984 else 10985 synchronize_rcu(); 10986 } 10987 EXPORT_SYMBOL(synchronize_net); 10988 10989 /** 10990 * unregister_netdevice_queue - remove device from the kernel 10991 * @dev: device 10992 * @head: list 10993 * 10994 * This function shuts down a device interface and removes it 10995 * from the kernel tables. 10996 * If head not NULL, device is queued to be unregistered later. 10997 * 10998 * Callers must hold the rtnl semaphore. You may want 10999 * unregister_netdev() instead of this. 11000 */ 11001 11002 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 11003 { 11004 ASSERT_RTNL(); 11005 11006 if (head) { 11007 list_move_tail(&dev->unreg_list, head); 11008 } else { 11009 LIST_HEAD(single); 11010 11011 list_add(&dev->unreg_list, &single); 11012 unregister_netdevice_many(&single); 11013 } 11014 } 11015 EXPORT_SYMBOL(unregister_netdevice_queue); 11016 11017 /** 11018 * unregister_netdevice_many - unregister many devices 11019 * @head: list of devices 11020 * 11021 * Note: As most callers use a stack allocated list_head, 11022 * we force a list_del() to make sure stack wont be corrupted later. 11023 */ 11024 void unregister_netdevice_many(struct list_head *head) 11025 { 11026 struct net_device *dev, *tmp; 11027 LIST_HEAD(close_head); 11028 11029 BUG_ON(dev_boot_phase); 11030 ASSERT_RTNL(); 11031 11032 if (list_empty(head)) 11033 return; 11034 11035 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 11036 /* Some devices call without registering 11037 * for initialization unwind. Remove those 11038 * devices and proceed with the remaining. 11039 */ 11040 if (dev->reg_state == NETREG_UNINITIALIZED) { 11041 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 11042 dev->name, dev); 11043 11044 WARN_ON(1); 11045 list_del(&dev->unreg_list); 11046 continue; 11047 } 11048 dev->dismantle = true; 11049 BUG_ON(dev->reg_state != NETREG_REGISTERED); 11050 } 11051 11052 /* If device is running, close it first. */ 11053 list_for_each_entry(dev, head, unreg_list) 11054 list_add_tail(&dev->close_list, &close_head); 11055 dev_close_many(&close_head, true); 11056 11057 list_for_each_entry(dev, head, unreg_list) { 11058 /* And unlink it from device chain. */ 11059 unlist_netdevice(dev); 11060 11061 dev->reg_state = NETREG_UNREGISTERING; 11062 } 11063 flush_all_backlogs(); 11064 11065 synchronize_net(); 11066 11067 list_for_each_entry(dev, head, unreg_list) { 11068 struct sk_buff *skb = NULL; 11069 11070 /* Shutdown queueing discipline. */ 11071 dev_shutdown(dev); 11072 11073 dev_xdp_uninstall(dev); 11074 11075 /* Notify protocols, that we are about to destroy 11076 * this device. They should clean all the things. 11077 */ 11078 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11079 11080 if (!dev->rtnl_link_ops || 11081 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 11082 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 11083 GFP_KERNEL, NULL, 0); 11084 11085 /* 11086 * Flush the unicast and multicast chains 11087 */ 11088 dev_uc_flush(dev); 11089 dev_mc_flush(dev); 11090 11091 netdev_name_node_alt_flush(dev); 11092 netdev_name_node_free(dev->name_node); 11093 11094 if (dev->netdev_ops->ndo_uninit) 11095 dev->netdev_ops->ndo_uninit(dev); 11096 11097 if (skb) 11098 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 11099 11100 /* Notifier chain MUST detach us all upper devices. */ 11101 WARN_ON(netdev_has_any_upper_dev(dev)); 11102 WARN_ON(netdev_has_any_lower_dev(dev)); 11103 11104 /* Remove entries from kobject tree */ 11105 netdev_unregister_kobject(dev); 11106 #ifdef CONFIG_XPS 11107 /* Remove XPS queueing entries */ 11108 netif_reset_xps_queues_gt(dev, 0); 11109 #endif 11110 } 11111 11112 synchronize_net(); 11113 11114 list_for_each_entry(dev, head, unreg_list) { 11115 dev_put(dev); 11116 net_set_todo(dev); 11117 } 11118 11119 list_del(head); 11120 } 11121 EXPORT_SYMBOL(unregister_netdevice_many); 11122 11123 /** 11124 * unregister_netdev - remove device from the kernel 11125 * @dev: device 11126 * 11127 * This function shuts down a device interface and removes it 11128 * from the kernel tables. 11129 * 11130 * This is just a wrapper for unregister_netdevice that takes 11131 * the rtnl semaphore. In general you want to use this and not 11132 * unregister_netdevice. 11133 */ 11134 void unregister_netdev(struct net_device *dev) 11135 { 11136 rtnl_lock(); 11137 unregister_netdevice(dev); 11138 rtnl_unlock(); 11139 } 11140 EXPORT_SYMBOL(unregister_netdev); 11141 11142 /** 11143 * __dev_change_net_namespace - move device to different nethost namespace 11144 * @dev: device 11145 * @net: network namespace 11146 * @pat: If not NULL name pattern to try if the current device name 11147 * is already taken in the destination network namespace. 11148 * @new_ifindex: If not zero, specifies device index in the target 11149 * namespace. 11150 * 11151 * This function shuts down a device interface and moves it 11152 * to a new network namespace. On success 0 is returned, on 11153 * a failure a netagive errno code is returned. 11154 * 11155 * Callers must hold the rtnl semaphore. 11156 */ 11157 11158 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 11159 const char *pat, int new_ifindex) 11160 { 11161 struct net *net_old = dev_net(dev); 11162 int err, new_nsid; 11163 11164 ASSERT_RTNL(); 11165 11166 /* Don't allow namespace local devices to be moved. */ 11167 err = -EINVAL; 11168 if (dev->features & NETIF_F_NETNS_LOCAL) 11169 goto out; 11170 11171 /* Ensure the device has been registrered */ 11172 if (dev->reg_state != NETREG_REGISTERED) 11173 goto out; 11174 11175 /* Get out if there is nothing todo */ 11176 err = 0; 11177 if (net_eq(net_old, net)) 11178 goto out; 11179 11180 /* Pick the destination device name, and ensure 11181 * we can use it in the destination network namespace. 11182 */ 11183 err = -EEXIST; 11184 if (__dev_get_by_name(net, dev->name)) { 11185 /* We get here if we can't use the current device name */ 11186 if (!pat) 11187 goto out; 11188 err = dev_get_valid_name(net, dev, pat); 11189 if (err < 0) 11190 goto out; 11191 } 11192 11193 /* Check that new_ifindex isn't used yet. */ 11194 err = -EBUSY; 11195 if (new_ifindex && __dev_get_by_index(net, new_ifindex)) 11196 goto out; 11197 11198 /* 11199 * And now a mini version of register_netdevice unregister_netdevice. 11200 */ 11201 11202 /* If device is running close it first. */ 11203 dev_close(dev); 11204 11205 /* And unlink it from device chain */ 11206 unlist_netdevice(dev); 11207 11208 synchronize_net(); 11209 11210 /* Shutdown queueing discipline. */ 11211 dev_shutdown(dev); 11212 11213 /* Notify protocols, that we are about to destroy 11214 * this device. They should clean all the things. 11215 * 11216 * Note that dev->reg_state stays at NETREG_REGISTERED. 11217 * This is wanted because this way 8021q and macvlan know 11218 * the device is just moving and can keep their slaves up. 11219 */ 11220 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11221 rcu_barrier(); 11222 11223 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 11224 /* If there is an ifindex conflict assign a new one */ 11225 if (!new_ifindex) { 11226 if (__dev_get_by_index(net, dev->ifindex)) 11227 new_ifindex = dev_new_index(net); 11228 else 11229 new_ifindex = dev->ifindex; 11230 } 11231 11232 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 11233 new_ifindex); 11234 11235 /* 11236 * Flush the unicast and multicast chains 11237 */ 11238 dev_uc_flush(dev); 11239 dev_mc_flush(dev); 11240 11241 /* Send a netdev-removed uevent to the old namespace */ 11242 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 11243 netdev_adjacent_del_links(dev); 11244 11245 /* Move per-net netdevice notifiers that are following the netdevice */ 11246 move_netdevice_notifiers_dev_net(dev, net); 11247 11248 /* Actually switch the network namespace */ 11249 dev_net_set(dev, net); 11250 dev->ifindex = new_ifindex; 11251 11252 /* Send a netdev-add uevent to the new namespace */ 11253 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 11254 netdev_adjacent_add_links(dev); 11255 11256 /* Fixup kobjects */ 11257 err = device_rename(&dev->dev, dev->name); 11258 WARN_ON(err); 11259 11260 /* Adapt owner in case owning user namespace of target network 11261 * namespace is different from the original one. 11262 */ 11263 err = netdev_change_owner(dev, net_old, net); 11264 WARN_ON(err); 11265 11266 /* Add the device back in the hashes */ 11267 list_netdevice(dev); 11268 11269 /* Notify protocols, that a new device appeared. */ 11270 call_netdevice_notifiers(NETDEV_REGISTER, dev); 11271 11272 /* 11273 * Prevent userspace races by waiting until the network 11274 * device is fully setup before sending notifications. 11275 */ 11276 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 11277 11278 synchronize_net(); 11279 err = 0; 11280 out: 11281 return err; 11282 } 11283 EXPORT_SYMBOL_GPL(__dev_change_net_namespace); 11284 11285 static int dev_cpu_dead(unsigned int oldcpu) 11286 { 11287 struct sk_buff **list_skb; 11288 struct sk_buff *skb; 11289 unsigned int cpu; 11290 struct softnet_data *sd, *oldsd, *remsd = NULL; 11291 11292 local_irq_disable(); 11293 cpu = smp_processor_id(); 11294 sd = &per_cpu(softnet_data, cpu); 11295 oldsd = &per_cpu(softnet_data, oldcpu); 11296 11297 /* Find end of our completion_queue. */ 11298 list_skb = &sd->completion_queue; 11299 while (*list_skb) 11300 list_skb = &(*list_skb)->next; 11301 /* Append completion queue from offline CPU. */ 11302 *list_skb = oldsd->completion_queue; 11303 oldsd->completion_queue = NULL; 11304 11305 /* Append output queue from offline CPU. */ 11306 if (oldsd->output_queue) { 11307 *sd->output_queue_tailp = oldsd->output_queue; 11308 sd->output_queue_tailp = oldsd->output_queue_tailp; 11309 oldsd->output_queue = NULL; 11310 oldsd->output_queue_tailp = &oldsd->output_queue; 11311 } 11312 /* Append NAPI poll list from offline CPU, with one exception : 11313 * process_backlog() must be called by cpu owning percpu backlog. 11314 * We properly handle process_queue & input_pkt_queue later. 11315 */ 11316 while (!list_empty(&oldsd->poll_list)) { 11317 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 11318 struct napi_struct, 11319 poll_list); 11320 11321 list_del_init(&napi->poll_list); 11322 if (napi->poll == process_backlog) 11323 napi->state = 0; 11324 else 11325 ____napi_schedule(sd, napi); 11326 } 11327 11328 raise_softirq_irqoff(NET_TX_SOFTIRQ); 11329 local_irq_enable(); 11330 11331 #ifdef CONFIG_RPS 11332 remsd = oldsd->rps_ipi_list; 11333 oldsd->rps_ipi_list = NULL; 11334 #endif 11335 /* send out pending IPI's on offline CPU */ 11336 net_rps_send_ipi(remsd); 11337 11338 /* Process offline CPU's input_pkt_queue */ 11339 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 11340 netif_rx_ni(skb); 11341 input_queue_head_incr(oldsd); 11342 } 11343 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 11344 netif_rx_ni(skb); 11345 input_queue_head_incr(oldsd); 11346 } 11347 11348 return 0; 11349 } 11350 11351 /** 11352 * netdev_increment_features - increment feature set by one 11353 * @all: current feature set 11354 * @one: new feature set 11355 * @mask: mask feature set 11356 * 11357 * Computes a new feature set after adding a device with feature set 11358 * @one to the master device with current feature set @all. Will not 11359 * enable anything that is off in @mask. Returns the new feature set. 11360 */ 11361 netdev_features_t netdev_increment_features(netdev_features_t all, 11362 netdev_features_t one, netdev_features_t mask) 11363 { 11364 if (mask & NETIF_F_HW_CSUM) 11365 mask |= NETIF_F_CSUM_MASK; 11366 mask |= NETIF_F_VLAN_CHALLENGED; 11367 11368 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 11369 all &= one | ~NETIF_F_ALL_FOR_ALL; 11370 11371 /* If one device supports hw checksumming, set for all. */ 11372 if (all & NETIF_F_HW_CSUM) 11373 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 11374 11375 return all; 11376 } 11377 EXPORT_SYMBOL(netdev_increment_features); 11378 11379 static struct hlist_head * __net_init netdev_create_hash(void) 11380 { 11381 int i; 11382 struct hlist_head *hash; 11383 11384 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 11385 if (hash != NULL) 11386 for (i = 0; i < NETDEV_HASHENTRIES; i++) 11387 INIT_HLIST_HEAD(&hash[i]); 11388 11389 return hash; 11390 } 11391 11392 /* Initialize per network namespace state */ 11393 static int __net_init netdev_init(struct net *net) 11394 { 11395 BUILD_BUG_ON(GRO_HASH_BUCKETS > 11396 8 * sizeof_field(struct napi_struct, gro_bitmask)); 11397 11398 if (net != &init_net) 11399 INIT_LIST_HEAD(&net->dev_base_head); 11400 11401 net->dev_name_head = netdev_create_hash(); 11402 if (net->dev_name_head == NULL) 11403 goto err_name; 11404 11405 net->dev_index_head = netdev_create_hash(); 11406 if (net->dev_index_head == NULL) 11407 goto err_idx; 11408 11409 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 11410 11411 return 0; 11412 11413 err_idx: 11414 kfree(net->dev_name_head); 11415 err_name: 11416 return -ENOMEM; 11417 } 11418 11419 /** 11420 * netdev_drivername - network driver for the device 11421 * @dev: network device 11422 * 11423 * Determine network driver for device. 11424 */ 11425 const char *netdev_drivername(const struct net_device *dev) 11426 { 11427 const struct device_driver *driver; 11428 const struct device *parent; 11429 const char *empty = ""; 11430 11431 parent = dev->dev.parent; 11432 if (!parent) 11433 return empty; 11434 11435 driver = parent->driver; 11436 if (driver && driver->name) 11437 return driver->name; 11438 return empty; 11439 } 11440 11441 static void __netdev_printk(const char *level, const struct net_device *dev, 11442 struct va_format *vaf) 11443 { 11444 if (dev && dev->dev.parent) { 11445 dev_printk_emit(level[1] - '0', 11446 dev->dev.parent, 11447 "%s %s %s%s: %pV", 11448 dev_driver_string(dev->dev.parent), 11449 dev_name(dev->dev.parent), 11450 netdev_name(dev), netdev_reg_state(dev), 11451 vaf); 11452 } else if (dev) { 11453 printk("%s%s%s: %pV", 11454 level, netdev_name(dev), netdev_reg_state(dev), vaf); 11455 } else { 11456 printk("%s(NULL net_device): %pV", level, vaf); 11457 } 11458 } 11459 11460 void netdev_printk(const char *level, const struct net_device *dev, 11461 const char *format, ...) 11462 { 11463 struct va_format vaf; 11464 va_list args; 11465 11466 va_start(args, format); 11467 11468 vaf.fmt = format; 11469 vaf.va = &args; 11470 11471 __netdev_printk(level, dev, &vaf); 11472 11473 va_end(args); 11474 } 11475 EXPORT_SYMBOL(netdev_printk); 11476 11477 #define define_netdev_printk_level(func, level) \ 11478 void func(const struct net_device *dev, const char *fmt, ...) \ 11479 { \ 11480 struct va_format vaf; \ 11481 va_list args; \ 11482 \ 11483 va_start(args, fmt); \ 11484 \ 11485 vaf.fmt = fmt; \ 11486 vaf.va = &args; \ 11487 \ 11488 __netdev_printk(level, dev, &vaf); \ 11489 \ 11490 va_end(args); \ 11491 } \ 11492 EXPORT_SYMBOL(func); 11493 11494 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 11495 define_netdev_printk_level(netdev_alert, KERN_ALERT); 11496 define_netdev_printk_level(netdev_crit, KERN_CRIT); 11497 define_netdev_printk_level(netdev_err, KERN_ERR); 11498 define_netdev_printk_level(netdev_warn, KERN_WARNING); 11499 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 11500 define_netdev_printk_level(netdev_info, KERN_INFO); 11501 11502 static void __net_exit netdev_exit(struct net *net) 11503 { 11504 kfree(net->dev_name_head); 11505 kfree(net->dev_index_head); 11506 if (net != &init_net) 11507 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 11508 } 11509 11510 static struct pernet_operations __net_initdata netdev_net_ops = { 11511 .init = netdev_init, 11512 .exit = netdev_exit, 11513 }; 11514 11515 static void __net_exit default_device_exit(struct net *net) 11516 { 11517 struct net_device *dev, *aux; 11518 /* 11519 * Push all migratable network devices back to the 11520 * initial network namespace 11521 */ 11522 rtnl_lock(); 11523 for_each_netdev_safe(net, dev, aux) { 11524 int err; 11525 char fb_name[IFNAMSIZ]; 11526 11527 /* Ignore unmoveable devices (i.e. loopback) */ 11528 if (dev->features & NETIF_F_NETNS_LOCAL) 11529 continue; 11530 11531 /* Leave virtual devices for the generic cleanup */ 11532 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) 11533 continue; 11534 11535 /* Push remaining network devices to init_net */ 11536 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 11537 if (__dev_get_by_name(&init_net, fb_name)) 11538 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 11539 err = dev_change_net_namespace(dev, &init_net, fb_name); 11540 if (err) { 11541 pr_emerg("%s: failed to move %s to init_net: %d\n", 11542 __func__, dev->name, err); 11543 BUG(); 11544 } 11545 } 11546 rtnl_unlock(); 11547 } 11548 11549 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 11550 { 11551 /* Return with the rtnl_lock held when there are no network 11552 * devices unregistering in any network namespace in net_list. 11553 */ 11554 struct net *net; 11555 bool unregistering; 11556 DEFINE_WAIT_FUNC(wait, woken_wake_function); 11557 11558 add_wait_queue(&netdev_unregistering_wq, &wait); 11559 for (;;) { 11560 unregistering = false; 11561 rtnl_lock(); 11562 list_for_each_entry(net, net_list, exit_list) { 11563 if (net->dev_unreg_count > 0) { 11564 unregistering = true; 11565 break; 11566 } 11567 } 11568 if (!unregistering) 11569 break; 11570 __rtnl_unlock(); 11571 11572 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 11573 } 11574 remove_wait_queue(&netdev_unregistering_wq, &wait); 11575 } 11576 11577 static void __net_exit default_device_exit_batch(struct list_head *net_list) 11578 { 11579 /* At exit all network devices most be removed from a network 11580 * namespace. Do this in the reverse order of registration. 11581 * Do this across as many network namespaces as possible to 11582 * improve batching efficiency. 11583 */ 11584 struct net_device *dev; 11585 struct net *net; 11586 LIST_HEAD(dev_kill_list); 11587 11588 /* To prevent network device cleanup code from dereferencing 11589 * loopback devices or network devices that have been freed 11590 * wait here for all pending unregistrations to complete, 11591 * before unregistring the loopback device and allowing the 11592 * network namespace be freed. 11593 * 11594 * The netdev todo list containing all network devices 11595 * unregistrations that happen in default_device_exit_batch 11596 * will run in the rtnl_unlock() at the end of 11597 * default_device_exit_batch. 11598 */ 11599 rtnl_lock_unregistering(net_list); 11600 list_for_each_entry(net, net_list, exit_list) { 11601 for_each_netdev_reverse(net, dev) { 11602 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 11603 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 11604 else 11605 unregister_netdevice_queue(dev, &dev_kill_list); 11606 } 11607 } 11608 unregister_netdevice_many(&dev_kill_list); 11609 rtnl_unlock(); 11610 } 11611 11612 static struct pernet_operations __net_initdata default_device_ops = { 11613 .exit = default_device_exit, 11614 .exit_batch = default_device_exit_batch, 11615 }; 11616 11617 /* 11618 * Initialize the DEV module. At boot time this walks the device list and 11619 * unhooks any devices that fail to initialise (normally hardware not 11620 * present) and leaves us with a valid list of present and active devices. 11621 * 11622 */ 11623 11624 /* 11625 * This is called single threaded during boot, so no need 11626 * to take the rtnl semaphore. 11627 */ 11628 static int __init net_dev_init(void) 11629 { 11630 int i, rc = -ENOMEM; 11631 11632 BUG_ON(!dev_boot_phase); 11633 11634 if (dev_proc_init()) 11635 goto out; 11636 11637 if (netdev_kobject_init()) 11638 goto out; 11639 11640 INIT_LIST_HEAD(&ptype_all); 11641 for (i = 0; i < PTYPE_HASH_SIZE; i++) 11642 INIT_LIST_HEAD(&ptype_base[i]); 11643 11644 INIT_LIST_HEAD(&offload_base); 11645 11646 if (register_pernet_subsys(&netdev_net_ops)) 11647 goto out; 11648 11649 /* 11650 * Initialise the packet receive queues. 11651 */ 11652 11653 for_each_possible_cpu(i) { 11654 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 11655 struct softnet_data *sd = &per_cpu(softnet_data, i); 11656 11657 INIT_WORK(flush, flush_backlog); 11658 11659 skb_queue_head_init(&sd->input_pkt_queue); 11660 skb_queue_head_init(&sd->process_queue); 11661 #ifdef CONFIG_XFRM_OFFLOAD 11662 skb_queue_head_init(&sd->xfrm_backlog); 11663 #endif 11664 INIT_LIST_HEAD(&sd->poll_list); 11665 sd->output_queue_tailp = &sd->output_queue; 11666 #ifdef CONFIG_RPS 11667 INIT_CSD(&sd->csd, rps_trigger_softirq, sd); 11668 sd->cpu = i; 11669 #endif 11670 11671 init_gro_hash(&sd->backlog); 11672 sd->backlog.poll = process_backlog; 11673 sd->backlog.weight = weight_p; 11674 } 11675 11676 dev_boot_phase = 0; 11677 11678 /* The loopback device is special if any other network devices 11679 * is present in a network namespace the loopback device must 11680 * be present. Since we now dynamically allocate and free the 11681 * loopback device ensure this invariant is maintained by 11682 * keeping the loopback device as the first device on the 11683 * list of network devices. Ensuring the loopback devices 11684 * is the first device that appears and the last network device 11685 * that disappears. 11686 */ 11687 if (register_pernet_device(&loopback_net_ops)) 11688 goto out; 11689 11690 if (register_pernet_device(&default_device_ops)) 11691 goto out; 11692 11693 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 11694 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 11695 11696 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 11697 NULL, dev_cpu_dead); 11698 WARN_ON(rc < 0); 11699 rc = 0; 11700 out: 11701 return rc; 11702 } 11703 11704 subsys_initcall(net_dev_init); 11705