xref: /openbmc/linux/net/core/dev.c (revision 2f5dc00f7a3ea669fd387ce79ffca92bff361550)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136 #include <linux/static_key.h>
137 #include <linux/hashtable.h>
138 #include <linux/vmalloc.h>
139 #include <linux/if_macvlan.h>
140 #include <linux/errqueue.h>
141 #include <linux/hrtimer.h>
142 #include <linux/netfilter_ingress.h>
143 #include <linux/crash_dump.h>
144 #include <linux/sctp.h>
145 #include <net/udp_tunnel.h>
146 #include <linux/net_namespace.h>
147 #include <linux/indirect_call_wrapper.h>
148 #include <net/devlink.h>
149 #include <linux/pm_runtime.h>
150 #include <linux/prandom.h>
151 #include <linux/once_lite.h>
152 
153 #include "net-sysfs.h"
154 
155 #define MAX_GRO_SKBS 8
156 
157 /* This should be increased if a protocol with a bigger head is added. */
158 #define GRO_MAX_HEAD (MAX_HEADER + 128)
159 
160 static DEFINE_SPINLOCK(ptype_lock);
161 static DEFINE_SPINLOCK(offload_lock);
162 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
163 struct list_head ptype_all __read_mostly;	/* Taps */
164 static struct list_head offload_base __read_mostly;
165 
166 static int netif_rx_internal(struct sk_buff *skb);
167 static int call_netdevice_notifiers_info(unsigned long val,
168 					 struct netdev_notifier_info *info);
169 static int call_netdevice_notifiers_extack(unsigned long val,
170 					   struct net_device *dev,
171 					   struct netlink_ext_ack *extack);
172 static struct napi_struct *napi_by_id(unsigned int napi_id);
173 
174 /*
175  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
176  * semaphore.
177  *
178  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
179  *
180  * Writers must hold the rtnl semaphore while they loop through the
181  * dev_base_head list, and hold dev_base_lock for writing when they do the
182  * actual updates.  This allows pure readers to access the list even
183  * while a writer is preparing to update it.
184  *
185  * To put it another way, dev_base_lock is held for writing only to
186  * protect against pure readers; the rtnl semaphore provides the
187  * protection against other writers.
188  *
189  * See, for example usages, register_netdevice() and
190  * unregister_netdevice(), which must be called with the rtnl
191  * semaphore held.
192  */
193 DEFINE_RWLOCK(dev_base_lock);
194 EXPORT_SYMBOL(dev_base_lock);
195 
196 static DEFINE_MUTEX(ifalias_mutex);
197 
198 /* protects napi_hash addition/deletion and napi_gen_id */
199 static DEFINE_SPINLOCK(napi_hash_lock);
200 
201 static unsigned int napi_gen_id = NR_CPUS;
202 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
203 
204 static DECLARE_RWSEM(devnet_rename_sem);
205 
206 static inline void dev_base_seq_inc(struct net *net)
207 {
208 	while (++net->dev_base_seq == 0)
209 		;
210 }
211 
212 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
213 {
214 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
215 
216 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
217 }
218 
219 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
220 {
221 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
222 }
223 
224 static inline void rps_lock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227 	spin_lock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230 
231 static inline void rps_unlock(struct softnet_data *sd)
232 {
233 #ifdef CONFIG_RPS
234 	spin_unlock(&sd->input_pkt_queue.lock);
235 #endif
236 }
237 
238 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
239 						       const char *name)
240 {
241 	struct netdev_name_node *name_node;
242 
243 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
244 	if (!name_node)
245 		return NULL;
246 	INIT_HLIST_NODE(&name_node->hlist);
247 	name_node->dev = dev;
248 	name_node->name = name;
249 	return name_node;
250 }
251 
252 static struct netdev_name_node *
253 netdev_name_node_head_alloc(struct net_device *dev)
254 {
255 	struct netdev_name_node *name_node;
256 
257 	name_node = netdev_name_node_alloc(dev, dev->name);
258 	if (!name_node)
259 		return NULL;
260 	INIT_LIST_HEAD(&name_node->list);
261 	return name_node;
262 }
263 
264 static void netdev_name_node_free(struct netdev_name_node *name_node)
265 {
266 	kfree(name_node);
267 }
268 
269 static void netdev_name_node_add(struct net *net,
270 				 struct netdev_name_node *name_node)
271 {
272 	hlist_add_head_rcu(&name_node->hlist,
273 			   dev_name_hash(net, name_node->name));
274 }
275 
276 static void netdev_name_node_del(struct netdev_name_node *name_node)
277 {
278 	hlist_del_rcu(&name_node->hlist);
279 }
280 
281 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
282 							const char *name)
283 {
284 	struct hlist_head *head = dev_name_hash(net, name);
285 	struct netdev_name_node *name_node;
286 
287 	hlist_for_each_entry(name_node, head, hlist)
288 		if (!strcmp(name_node->name, name))
289 			return name_node;
290 	return NULL;
291 }
292 
293 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
294 							    const char *name)
295 {
296 	struct hlist_head *head = dev_name_hash(net, name);
297 	struct netdev_name_node *name_node;
298 
299 	hlist_for_each_entry_rcu(name_node, head, hlist)
300 		if (!strcmp(name_node->name, name))
301 			return name_node;
302 	return NULL;
303 }
304 
305 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
306 {
307 	struct netdev_name_node *name_node;
308 	struct net *net = dev_net(dev);
309 
310 	name_node = netdev_name_node_lookup(net, name);
311 	if (name_node)
312 		return -EEXIST;
313 	name_node = netdev_name_node_alloc(dev, name);
314 	if (!name_node)
315 		return -ENOMEM;
316 	netdev_name_node_add(net, name_node);
317 	/* The node that holds dev->name acts as a head of per-device list. */
318 	list_add_tail(&name_node->list, &dev->name_node->list);
319 
320 	return 0;
321 }
322 EXPORT_SYMBOL(netdev_name_node_alt_create);
323 
324 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
325 {
326 	list_del(&name_node->list);
327 	netdev_name_node_del(name_node);
328 	kfree(name_node->name);
329 	netdev_name_node_free(name_node);
330 }
331 
332 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
333 {
334 	struct netdev_name_node *name_node;
335 	struct net *net = dev_net(dev);
336 
337 	name_node = netdev_name_node_lookup(net, name);
338 	if (!name_node)
339 		return -ENOENT;
340 	/* lookup might have found our primary name or a name belonging
341 	 * to another device.
342 	 */
343 	if (name_node == dev->name_node || name_node->dev != dev)
344 		return -EINVAL;
345 
346 	__netdev_name_node_alt_destroy(name_node);
347 
348 	return 0;
349 }
350 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
351 
352 static void netdev_name_node_alt_flush(struct net_device *dev)
353 {
354 	struct netdev_name_node *name_node, *tmp;
355 
356 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
357 		__netdev_name_node_alt_destroy(name_node);
358 }
359 
360 /* Device list insertion */
361 static void list_netdevice(struct net_device *dev)
362 {
363 	struct net *net = dev_net(dev);
364 
365 	ASSERT_RTNL();
366 
367 	write_lock_bh(&dev_base_lock);
368 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
369 	netdev_name_node_add(net, dev->name_node);
370 	hlist_add_head_rcu(&dev->index_hlist,
371 			   dev_index_hash(net, dev->ifindex));
372 	write_unlock_bh(&dev_base_lock);
373 
374 	dev_base_seq_inc(net);
375 }
376 
377 /* Device list removal
378  * caller must respect a RCU grace period before freeing/reusing dev
379  */
380 static void unlist_netdevice(struct net_device *dev)
381 {
382 	ASSERT_RTNL();
383 
384 	/* Unlink dev from the device chain */
385 	write_lock_bh(&dev_base_lock);
386 	list_del_rcu(&dev->dev_list);
387 	netdev_name_node_del(dev->name_node);
388 	hlist_del_rcu(&dev->index_hlist);
389 	write_unlock_bh(&dev_base_lock);
390 
391 	dev_base_seq_inc(dev_net(dev));
392 }
393 
394 /*
395  *	Our notifier list
396  */
397 
398 static RAW_NOTIFIER_HEAD(netdev_chain);
399 
400 /*
401  *	Device drivers call our routines to queue packets here. We empty the
402  *	queue in the local softnet handler.
403  */
404 
405 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
406 EXPORT_PER_CPU_SYMBOL(softnet_data);
407 
408 #ifdef CONFIG_LOCKDEP
409 /*
410  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
411  * according to dev->type
412  */
413 static const unsigned short netdev_lock_type[] = {
414 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
415 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
416 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
417 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
418 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
419 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
420 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
421 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
422 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
423 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
424 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
425 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
426 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
427 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
428 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
429 
430 static const char *const netdev_lock_name[] = {
431 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
432 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
433 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
434 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
435 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
436 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
437 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
438 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
439 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
440 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
441 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
442 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
443 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
444 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
445 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
446 
447 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
448 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
449 
450 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
451 {
452 	int i;
453 
454 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
455 		if (netdev_lock_type[i] == dev_type)
456 			return i;
457 	/* the last key is used by default */
458 	return ARRAY_SIZE(netdev_lock_type) - 1;
459 }
460 
461 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
462 						 unsigned short dev_type)
463 {
464 	int i;
465 
466 	i = netdev_lock_pos(dev_type);
467 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
468 				   netdev_lock_name[i]);
469 }
470 
471 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
472 {
473 	int i;
474 
475 	i = netdev_lock_pos(dev->type);
476 	lockdep_set_class_and_name(&dev->addr_list_lock,
477 				   &netdev_addr_lock_key[i],
478 				   netdev_lock_name[i]);
479 }
480 #else
481 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
482 						 unsigned short dev_type)
483 {
484 }
485 
486 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
487 {
488 }
489 #endif
490 
491 /*******************************************************************************
492  *
493  *		Protocol management and registration routines
494  *
495  *******************************************************************************/
496 
497 
498 /*
499  *	Add a protocol ID to the list. Now that the input handler is
500  *	smarter we can dispense with all the messy stuff that used to be
501  *	here.
502  *
503  *	BEWARE!!! Protocol handlers, mangling input packets,
504  *	MUST BE last in hash buckets and checking protocol handlers
505  *	MUST start from promiscuous ptype_all chain in net_bh.
506  *	It is true now, do not change it.
507  *	Explanation follows: if protocol handler, mangling packet, will
508  *	be the first on list, it is not able to sense, that packet
509  *	is cloned and should be copied-on-write, so that it will
510  *	change it and subsequent readers will get broken packet.
511  *							--ANK (980803)
512  */
513 
514 static inline struct list_head *ptype_head(const struct packet_type *pt)
515 {
516 	if (pt->type == htons(ETH_P_ALL))
517 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
518 	else
519 		return pt->dev ? &pt->dev->ptype_specific :
520 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
521 }
522 
523 /**
524  *	dev_add_pack - add packet handler
525  *	@pt: packet type declaration
526  *
527  *	Add a protocol handler to the networking stack. The passed &packet_type
528  *	is linked into kernel lists and may not be freed until it has been
529  *	removed from the kernel lists.
530  *
531  *	This call does not sleep therefore it can not
532  *	guarantee all CPU's that are in middle of receiving packets
533  *	will see the new packet type (until the next received packet).
534  */
535 
536 void dev_add_pack(struct packet_type *pt)
537 {
538 	struct list_head *head = ptype_head(pt);
539 
540 	spin_lock(&ptype_lock);
541 	list_add_rcu(&pt->list, head);
542 	spin_unlock(&ptype_lock);
543 }
544 EXPORT_SYMBOL(dev_add_pack);
545 
546 /**
547  *	__dev_remove_pack	 - remove packet handler
548  *	@pt: packet type declaration
549  *
550  *	Remove a protocol handler that was previously added to the kernel
551  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
552  *	from the kernel lists and can be freed or reused once this function
553  *	returns.
554  *
555  *      The packet type might still be in use by receivers
556  *	and must not be freed until after all the CPU's have gone
557  *	through a quiescent state.
558  */
559 void __dev_remove_pack(struct packet_type *pt)
560 {
561 	struct list_head *head = ptype_head(pt);
562 	struct packet_type *pt1;
563 
564 	spin_lock(&ptype_lock);
565 
566 	list_for_each_entry(pt1, head, list) {
567 		if (pt == pt1) {
568 			list_del_rcu(&pt->list);
569 			goto out;
570 		}
571 	}
572 
573 	pr_warn("dev_remove_pack: %p not found\n", pt);
574 out:
575 	spin_unlock(&ptype_lock);
576 }
577 EXPORT_SYMBOL(__dev_remove_pack);
578 
579 /**
580  *	dev_remove_pack	 - remove packet handler
581  *	@pt: packet type declaration
582  *
583  *	Remove a protocol handler that was previously added to the kernel
584  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
585  *	from the kernel lists and can be freed or reused once this function
586  *	returns.
587  *
588  *	This call sleeps to guarantee that no CPU is looking at the packet
589  *	type after return.
590  */
591 void dev_remove_pack(struct packet_type *pt)
592 {
593 	__dev_remove_pack(pt);
594 
595 	synchronize_net();
596 }
597 EXPORT_SYMBOL(dev_remove_pack);
598 
599 
600 /**
601  *	dev_add_offload - register offload handlers
602  *	@po: protocol offload declaration
603  *
604  *	Add protocol offload handlers to the networking stack. The passed
605  *	&proto_offload is linked into kernel lists and may not be freed until
606  *	it has been removed from the kernel lists.
607  *
608  *	This call does not sleep therefore it can not
609  *	guarantee all CPU's that are in middle of receiving packets
610  *	will see the new offload handlers (until the next received packet).
611  */
612 void dev_add_offload(struct packet_offload *po)
613 {
614 	struct packet_offload *elem;
615 
616 	spin_lock(&offload_lock);
617 	list_for_each_entry(elem, &offload_base, list) {
618 		if (po->priority < elem->priority)
619 			break;
620 	}
621 	list_add_rcu(&po->list, elem->list.prev);
622 	spin_unlock(&offload_lock);
623 }
624 EXPORT_SYMBOL(dev_add_offload);
625 
626 /**
627  *	__dev_remove_offload	 - remove offload handler
628  *	@po: packet offload declaration
629  *
630  *	Remove a protocol offload handler that was previously added to the
631  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
632  *	is removed from the kernel lists and can be freed or reused once this
633  *	function returns.
634  *
635  *      The packet type might still be in use by receivers
636  *	and must not be freed until after all the CPU's have gone
637  *	through a quiescent state.
638  */
639 static void __dev_remove_offload(struct packet_offload *po)
640 {
641 	struct list_head *head = &offload_base;
642 	struct packet_offload *po1;
643 
644 	spin_lock(&offload_lock);
645 
646 	list_for_each_entry(po1, head, list) {
647 		if (po == po1) {
648 			list_del_rcu(&po->list);
649 			goto out;
650 		}
651 	}
652 
653 	pr_warn("dev_remove_offload: %p not found\n", po);
654 out:
655 	spin_unlock(&offload_lock);
656 }
657 
658 /**
659  *	dev_remove_offload	 - remove packet offload handler
660  *	@po: packet offload declaration
661  *
662  *	Remove a packet offload handler that was previously added to the kernel
663  *	offload handlers by dev_add_offload(). The passed &offload_type is
664  *	removed from the kernel lists and can be freed or reused once this
665  *	function returns.
666  *
667  *	This call sleeps to guarantee that no CPU is looking at the packet
668  *	type after return.
669  */
670 void dev_remove_offload(struct packet_offload *po)
671 {
672 	__dev_remove_offload(po);
673 
674 	synchronize_net();
675 }
676 EXPORT_SYMBOL(dev_remove_offload);
677 
678 /******************************************************************************
679  *
680  *		      Device Boot-time Settings Routines
681  *
682  ******************************************************************************/
683 
684 /* Boot time configuration table */
685 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
686 
687 /**
688  *	netdev_boot_setup_add	- add new setup entry
689  *	@name: name of the device
690  *	@map: configured settings for the device
691  *
692  *	Adds new setup entry to the dev_boot_setup list.  The function
693  *	returns 0 on error and 1 on success.  This is a generic routine to
694  *	all netdevices.
695  */
696 static int netdev_boot_setup_add(char *name, struct ifmap *map)
697 {
698 	struct netdev_boot_setup *s;
699 	int i;
700 
701 	s = dev_boot_setup;
702 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
703 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
704 			memset(s[i].name, 0, sizeof(s[i].name));
705 			strlcpy(s[i].name, name, IFNAMSIZ);
706 			memcpy(&s[i].map, map, sizeof(s[i].map));
707 			break;
708 		}
709 	}
710 
711 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
712 }
713 
714 /**
715  * netdev_boot_setup_check	- check boot time settings
716  * @dev: the netdevice
717  *
718  * Check boot time settings for the device.
719  * The found settings are set for the device to be used
720  * later in the device probing.
721  * Returns 0 if no settings found, 1 if they are.
722  */
723 int netdev_boot_setup_check(struct net_device *dev)
724 {
725 	struct netdev_boot_setup *s = dev_boot_setup;
726 	int i;
727 
728 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
729 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
730 		    !strcmp(dev->name, s[i].name)) {
731 			dev->irq = s[i].map.irq;
732 			dev->base_addr = s[i].map.base_addr;
733 			dev->mem_start = s[i].map.mem_start;
734 			dev->mem_end = s[i].map.mem_end;
735 			return 1;
736 		}
737 	}
738 	return 0;
739 }
740 EXPORT_SYMBOL(netdev_boot_setup_check);
741 
742 
743 /**
744  * netdev_boot_base	- get address from boot time settings
745  * @prefix: prefix for network device
746  * @unit: id for network device
747  *
748  * Check boot time settings for the base address of device.
749  * The found settings are set for the device to be used
750  * later in the device probing.
751  * Returns 0 if no settings found.
752  */
753 unsigned long netdev_boot_base(const char *prefix, int unit)
754 {
755 	const struct netdev_boot_setup *s = dev_boot_setup;
756 	char name[IFNAMSIZ];
757 	int i;
758 
759 	sprintf(name, "%s%d", prefix, unit);
760 
761 	/*
762 	 * If device already registered then return base of 1
763 	 * to indicate not to probe for this interface
764 	 */
765 	if (__dev_get_by_name(&init_net, name))
766 		return 1;
767 
768 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
769 		if (!strcmp(name, s[i].name))
770 			return s[i].map.base_addr;
771 	return 0;
772 }
773 
774 /*
775  * Saves at boot time configured settings for any netdevice.
776  */
777 int __init netdev_boot_setup(char *str)
778 {
779 	int ints[5];
780 	struct ifmap map;
781 
782 	str = get_options(str, ARRAY_SIZE(ints), ints);
783 	if (!str || !*str)
784 		return 0;
785 
786 	/* Save settings */
787 	memset(&map, 0, sizeof(map));
788 	if (ints[0] > 0)
789 		map.irq = ints[1];
790 	if (ints[0] > 1)
791 		map.base_addr = ints[2];
792 	if (ints[0] > 2)
793 		map.mem_start = ints[3];
794 	if (ints[0] > 3)
795 		map.mem_end = ints[4];
796 
797 	/* Add new entry to the list */
798 	return netdev_boot_setup_add(str, &map);
799 }
800 
801 __setup("netdev=", netdev_boot_setup);
802 
803 /*******************************************************************************
804  *
805  *			    Device Interface Subroutines
806  *
807  *******************************************************************************/
808 
809 /**
810  *	dev_get_iflink	- get 'iflink' value of a interface
811  *	@dev: targeted interface
812  *
813  *	Indicates the ifindex the interface is linked to.
814  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
815  */
816 
817 int dev_get_iflink(const struct net_device *dev)
818 {
819 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
820 		return dev->netdev_ops->ndo_get_iflink(dev);
821 
822 	return dev->ifindex;
823 }
824 EXPORT_SYMBOL(dev_get_iflink);
825 
826 /**
827  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
828  *	@dev: targeted interface
829  *	@skb: The packet.
830  *
831  *	For better visibility of tunnel traffic OVS needs to retrieve
832  *	egress tunnel information for a packet. Following API allows
833  *	user to get this info.
834  */
835 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
836 {
837 	struct ip_tunnel_info *info;
838 
839 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
840 		return -EINVAL;
841 
842 	info = skb_tunnel_info_unclone(skb);
843 	if (!info)
844 		return -ENOMEM;
845 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
846 		return -EINVAL;
847 
848 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
849 }
850 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
851 
852 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
853 {
854 	int k = stack->num_paths++;
855 
856 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
857 		return NULL;
858 
859 	return &stack->path[k];
860 }
861 
862 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
863 			  struct net_device_path_stack *stack)
864 {
865 	const struct net_device *last_dev;
866 	struct net_device_path_ctx ctx = {
867 		.dev	= dev,
868 		.daddr	= daddr,
869 	};
870 	struct net_device_path *path;
871 	int ret = 0;
872 
873 	stack->num_paths = 0;
874 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
875 		last_dev = ctx.dev;
876 		path = dev_fwd_path(stack);
877 		if (!path)
878 			return -1;
879 
880 		memset(path, 0, sizeof(struct net_device_path));
881 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
882 		if (ret < 0)
883 			return -1;
884 
885 		if (WARN_ON_ONCE(last_dev == ctx.dev))
886 			return -1;
887 	}
888 	path = dev_fwd_path(stack);
889 	if (!path)
890 		return -1;
891 	path->type = DEV_PATH_ETHERNET;
892 	path->dev = ctx.dev;
893 
894 	return ret;
895 }
896 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
897 
898 /**
899  *	__dev_get_by_name	- find a device by its name
900  *	@net: the applicable net namespace
901  *	@name: name to find
902  *
903  *	Find an interface by name. Must be called under RTNL semaphore
904  *	or @dev_base_lock. If the name is found a pointer to the device
905  *	is returned. If the name is not found then %NULL is returned. The
906  *	reference counters are not incremented so the caller must be
907  *	careful with locks.
908  */
909 
910 struct net_device *__dev_get_by_name(struct net *net, const char *name)
911 {
912 	struct netdev_name_node *node_name;
913 
914 	node_name = netdev_name_node_lookup(net, name);
915 	return node_name ? node_name->dev : NULL;
916 }
917 EXPORT_SYMBOL(__dev_get_by_name);
918 
919 /**
920  * dev_get_by_name_rcu	- find a device by its name
921  * @net: the applicable net namespace
922  * @name: name to find
923  *
924  * Find an interface by name.
925  * If the name is found a pointer to the device is returned.
926  * If the name is not found then %NULL is returned.
927  * The reference counters are not incremented so the caller must be
928  * careful with locks. The caller must hold RCU lock.
929  */
930 
931 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
932 {
933 	struct netdev_name_node *node_name;
934 
935 	node_name = netdev_name_node_lookup_rcu(net, name);
936 	return node_name ? node_name->dev : NULL;
937 }
938 EXPORT_SYMBOL(dev_get_by_name_rcu);
939 
940 /**
941  *	dev_get_by_name		- find a device by its name
942  *	@net: the applicable net namespace
943  *	@name: name to find
944  *
945  *	Find an interface by name. This can be called from any
946  *	context and does its own locking. The returned handle has
947  *	the usage count incremented and the caller must use dev_put() to
948  *	release it when it is no longer needed. %NULL is returned if no
949  *	matching device is found.
950  */
951 
952 struct net_device *dev_get_by_name(struct net *net, const char *name)
953 {
954 	struct net_device *dev;
955 
956 	rcu_read_lock();
957 	dev = dev_get_by_name_rcu(net, name);
958 	if (dev)
959 		dev_hold(dev);
960 	rcu_read_unlock();
961 	return dev;
962 }
963 EXPORT_SYMBOL(dev_get_by_name);
964 
965 /**
966  *	__dev_get_by_index - find a device by its ifindex
967  *	@net: the applicable net namespace
968  *	@ifindex: index of device
969  *
970  *	Search for an interface by index. Returns %NULL if the device
971  *	is not found or a pointer to the device. The device has not
972  *	had its reference counter increased so the caller must be careful
973  *	about locking. The caller must hold either the RTNL semaphore
974  *	or @dev_base_lock.
975  */
976 
977 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
978 {
979 	struct net_device *dev;
980 	struct hlist_head *head = dev_index_hash(net, ifindex);
981 
982 	hlist_for_each_entry(dev, head, index_hlist)
983 		if (dev->ifindex == ifindex)
984 			return dev;
985 
986 	return NULL;
987 }
988 EXPORT_SYMBOL(__dev_get_by_index);
989 
990 /**
991  *	dev_get_by_index_rcu - find a device by its ifindex
992  *	@net: the applicable net namespace
993  *	@ifindex: index of device
994  *
995  *	Search for an interface by index. Returns %NULL if the device
996  *	is not found or a pointer to the device. The device has not
997  *	had its reference counter increased so the caller must be careful
998  *	about locking. The caller must hold RCU lock.
999  */
1000 
1001 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
1002 {
1003 	struct net_device *dev;
1004 	struct hlist_head *head = dev_index_hash(net, ifindex);
1005 
1006 	hlist_for_each_entry_rcu(dev, head, index_hlist)
1007 		if (dev->ifindex == ifindex)
1008 			return dev;
1009 
1010 	return NULL;
1011 }
1012 EXPORT_SYMBOL(dev_get_by_index_rcu);
1013 
1014 
1015 /**
1016  *	dev_get_by_index - find a device by its ifindex
1017  *	@net: the applicable net namespace
1018  *	@ifindex: index of device
1019  *
1020  *	Search for an interface by index. Returns NULL if the device
1021  *	is not found or a pointer to the device. The device returned has
1022  *	had a reference added and the pointer is safe until the user calls
1023  *	dev_put to indicate they have finished with it.
1024  */
1025 
1026 struct net_device *dev_get_by_index(struct net *net, int ifindex)
1027 {
1028 	struct net_device *dev;
1029 
1030 	rcu_read_lock();
1031 	dev = dev_get_by_index_rcu(net, ifindex);
1032 	if (dev)
1033 		dev_hold(dev);
1034 	rcu_read_unlock();
1035 	return dev;
1036 }
1037 EXPORT_SYMBOL(dev_get_by_index);
1038 
1039 /**
1040  *	dev_get_by_napi_id - find a device by napi_id
1041  *	@napi_id: ID of the NAPI struct
1042  *
1043  *	Search for an interface by NAPI ID. Returns %NULL if the device
1044  *	is not found or a pointer to the device. The device has not had
1045  *	its reference counter increased so the caller must be careful
1046  *	about locking. The caller must hold RCU lock.
1047  */
1048 
1049 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1050 {
1051 	struct napi_struct *napi;
1052 
1053 	WARN_ON_ONCE(!rcu_read_lock_held());
1054 
1055 	if (napi_id < MIN_NAPI_ID)
1056 		return NULL;
1057 
1058 	napi = napi_by_id(napi_id);
1059 
1060 	return napi ? napi->dev : NULL;
1061 }
1062 EXPORT_SYMBOL(dev_get_by_napi_id);
1063 
1064 /**
1065  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1066  *	@net: network namespace
1067  *	@name: a pointer to the buffer where the name will be stored.
1068  *	@ifindex: the ifindex of the interface to get the name from.
1069  */
1070 int netdev_get_name(struct net *net, char *name, int ifindex)
1071 {
1072 	struct net_device *dev;
1073 	int ret;
1074 
1075 	down_read(&devnet_rename_sem);
1076 	rcu_read_lock();
1077 
1078 	dev = dev_get_by_index_rcu(net, ifindex);
1079 	if (!dev) {
1080 		ret = -ENODEV;
1081 		goto out;
1082 	}
1083 
1084 	strcpy(name, dev->name);
1085 
1086 	ret = 0;
1087 out:
1088 	rcu_read_unlock();
1089 	up_read(&devnet_rename_sem);
1090 	return ret;
1091 }
1092 
1093 /**
1094  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1095  *	@net: the applicable net namespace
1096  *	@type: media type of device
1097  *	@ha: hardware address
1098  *
1099  *	Search for an interface by MAC address. Returns NULL if the device
1100  *	is not found or a pointer to the device.
1101  *	The caller must hold RCU or RTNL.
1102  *	The returned device has not had its ref count increased
1103  *	and the caller must therefore be careful about locking
1104  *
1105  */
1106 
1107 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1108 				       const char *ha)
1109 {
1110 	struct net_device *dev;
1111 
1112 	for_each_netdev_rcu(net, dev)
1113 		if (dev->type == type &&
1114 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1115 			return dev;
1116 
1117 	return NULL;
1118 }
1119 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1120 
1121 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1122 {
1123 	struct net_device *dev, *ret = NULL;
1124 
1125 	rcu_read_lock();
1126 	for_each_netdev_rcu(net, dev)
1127 		if (dev->type == type) {
1128 			dev_hold(dev);
1129 			ret = dev;
1130 			break;
1131 		}
1132 	rcu_read_unlock();
1133 	return ret;
1134 }
1135 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1136 
1137 /**
1138  *	__dev_get_by_flags - find any device with given flags
1139  *	@net: the applicable net namespace
1140  *	@if_flags: IFF_* values
1141  *	@mask: bitmask of bits in if_flags to check
1142  *
1143  *	Search for any interface with the given flags. Returns NULL if a device
1144  *	is not found or a pointer to the device. Must be called inside
1145  *	rtnl_lock(), and result refcount is unchanged.
1146  */
1147 
1148 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1149 				      unsigned short mask)
1150 {
1151 	struct net_device *dev, *ret;
1152 
1153 	ASSERT_RTNL();
1154 
1155 	ret = NULL;
1156 	for_each_netdev(net, dev) {
1157 		if (((dev->flags ^ if_flags) & mask) == 0) {
1158 			ret = dev;
1159 			break;
1160 		}
1161 	}
1162 	return ret;
1163 }
1164 EXPORT_SYMBOL(__dev_get_by_flags);
1165 
1166 /**
1167  *	dev_valid_name - check if name is okay for network device
1168  *	@name: name string
1169  *
1170  *	Network device names need to be valid file names to
1171  *	allow sysfs to work.  We also disallow any kind of
1172  *	whitespace.
1173  */
1174 bool dev_valid_name(const char *name)
1175 {
1176 	if (*name == '\0')
1177 		return false;
1178 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1179 		return false;
1180 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1181 		return false;
1182 
1183 	while (*name) {
1184 		if (*name == '/' || *name == ':' || isspace(*name))
1185 			return false;
1186 		name++;
1187 	}
1188 	return true;
1189 }
1190 EXPORT_SYMBOL(dev_valid_name);
1191 
1192 /**
1193  *	__dev_alloc_name - allocate a name for a device
1194  *	@net: network namespace to allocate the device name in
1195  *	@name: name format string
1196  *	@buf:  scratch buffer and result name string
1197  *
1198  *	Passed a format string - eg "lt%d" it will try and find a suitable
1199  *	id. It scans list of devices to build up a free map, then chooses
1200  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1201  *	while allocating the name and adding the device in order to avoid
1202  *	duplicates.
1203  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1204  *	Returns the number of the unit assigned or a negative errno code.
1205  */
1206 
1207 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1208 {
1209 	int i = 0;
1210 	const char *p;
1211 	const int max_netdevices = 8*PAGE_SIZE;
1212 	unsigned long *inuse;
1213 	struct net_device *d;
1214 
1215 	if (!dev_valid_name(name))
1216 		return -EINVAL;
1217 
1218 	p = strchr(name, '%');
1219 	if (p) {
1220 		/*
1221 		 * Verify the string as this thing may have come from
1222 		 * the user.  There must be either one "%d" and no other "%"
1223 		 * characters.
1224 		 */
1225 		if (p[1] != 'd' || strchr(p + 2, '%'))
1226 			return -EINVAL;
1227 
1228 		/* Use one page as a bit array of possible slots */
1229 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1230 		if (!inuse)
1231 			return -ENOMEM;
1232 
1233 		for_each_netdev(net, d) {
1234 			struct netdev_name_node *name_node;
1235 			list_for_each_entry(name_node, &d->name_node->list, list) {
1236 				if (!sscanf(name_node->name, name, &i))
1237 					continue;
1238 				if (i < 0 || i >= max_netdevices)
1239 					continue;
1240 
1241 				/*  avoid cases where sscanf is not exact inverse of printf */
1242 				snprintf(buf, IFNAMSIZ, name, i);
1243 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1244 					set_bit(i, inuse);
1245 			}
1246 			if (!sscanf(d->name, name, &i))
1247 				continue;
1248 			if (i < 0 || i >= max_netdevices)
1249 				continue;
1250 
1251 			/*  avoid cases where sscanf is not exact inverse of printf */
1252 			snprintf(buf, IFNAMSIZ, name, i);
1253 			if (!strncmp(buf, d->name, IFNAMSIZ))
1254 				set_bit(i, inuse);
1255 		}
1256 
1257 		i = find_first_zero_bit(inuse, max_netdevices);
1258 		free_page((unsigned long) inuse);
1259 	}
1260 
1261 	snprintf(buf, IFNAMSIZ, name, i);
1262 	if (!__dev_get_by_name(net, buf))
1263 		return i;
1264 
1265 	/* It is possible to run out of possible slots
1266 	 * when the name is long and there isn't enough space left
1267 	 * for the digits, or if all bits are used.
1268 	 */
1269 	return -ENFILE;
1270 }
1271 
1272 static int dev_alloc_name_ns(struct net *net,
1273 			     struct net_device *dev,
1274 			     const char *name)
1275 {
1276 	char buf[IFNAMSIZ];
1277 	int ret;
1278 
1279 	BUG_ON(!net);
1280 	ret = __dev_alloc_name(net, name, buf);
1281 	if (ret >= 0)
1282 		strlcpy(dev->name, buf, IFNAMSIZ);
1283 	return ret;
1284 }
1285 
1286 /**
1287  *	dev_alloc_name - allocate a name for a device
1288  *	@dev: device
1289  *	@name: name format string
1290  *
1291  *	Passed a format string - eg "lt%d" it will try and find a suitable
1292  *	id. It scans list of devices to build up a free map, then chooses
1293  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1294  *	while allocating the name and adding the device in order to avoid
1295  *	duplicates.
1296  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1297  *	Returns the number of the unit assigned or a negative errno code.
1298  */
1299 
1300 int dev_alloc_name(struct net_device *dev, const char *name)
1301 {
1302 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1303 }
1304 EXPORT_SYMBOL(dev_alloc_name);
1305 
1306 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1307 			      const char *name)
1308 {
1309 	BUG_ON(!net);
1310 
1311 	if (!dev_valid_name(name))
1312 		return -EINVAL;
1313 
1314 	if (strchr(name, '%'))
1315 		return dev_alloc_name_ns(net, dev, name);
1316 	else if (__dev_get_by_name(net, name))
1317 		return -EEXIST;
1318 	else if (dev->name != name)
1319 		strlcpy(dev->name, name, IFNAMSIZ);
1320 
1321 	return 0;
1322 }
1323 
1324 /**
1325  *	dev_change_name - change name of a device
1326  *	@dev: device
1327  *	@newname: name (or format string) must be at least IFNAMSIZ
1328  *
1329  *	Change name of a device, can pass format strings "eth%d".
1330  *	for wildcarding.
1331  */
1332 int dev_change_name(struct net_device *dev, const char *newname)
1333 {
1334 	unsigned char old_assign_type;
1335 	char oldname[IFNAMSIZ];
1336 	int err = 0;
1337 	int ret;
1338 	struct net *net;
1339 
1340 	ASSERT_RTNL();
1341 	BUG_ON(!dev_net(dev));
1342 
1343 	net = dev_net(dev);
1344 
1345 	/* Some auto-enslaved devices e.g. failover slaves are
1346 	 * special, as userspace might rename the device after
1347 	 * the interface had been brought up and running since
1348 	 * the point kernel initiated auto-enslavement. Allow
1349 	 * live name change even when these slave devices are
1350 	 * up and running.
1351 	 *
1352 	 * Typically, users of these auto-enslaving devices
1353 	 * don't actually care about slave name change, as
1354 	 * they are supposed to operate on master interface
1355 	 * directly.
1356 	 */
1357 	if (dev->flags & IFF_UP &&
1358 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1359 		return -EBUSY;
1360 
1361 	down_write(&devnet_rename_sem);
1362 
1363 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1364 		up_write(&devnet_rename_sem);
1365 		return 0;
1366 	}
1367 
1368 	memcpy(oldname, dev->name, IFNAMSIZ);
1369 
1370 	err = dev_get_valid_name(net, dev, newname);
1371 	if (err < 0) {
1372 		up_write(&devnet_rename_sem);
1373 		return err;
1374 	}
1375 
1376 	if (oldname[0] && !strchr(oldname, '%'))
1377 		netdev_info(dev, "renamed from %s\n", oldname);
1378 
1379 	old_assign_type = dev->name_assign_type;
1380 	dev->name_assign_type = NET_NAME_RENAMED;
1381 
1382 rollback:
1383 	ret = device_rename(&dev->dev, dev->name);
1384 	if (ret) {
1385 		memcpy(dev->name, oldname, IFNAMSIZ);
1386 		dev->name_assign_type = old_assign_type;
1387 		up_write(&devnet_rename_sem);
1388 		return ret;
1389 	}
1390 
1391 	up_write(&devnet_rename_sem);
1392 
1393 	netdev_adjacent_rename_links(dev, oldname);
1394 
1395 	write_lock_bh(&dev_base_lock);
1396 	netdev_name_node_del(dev->name_node);
1397 	write_unlock_bh(&dev_base_lock);
1398 
1399 	synchronize_rcu();
1400 
1401 	write_lock_bh(&dev_base_lock);
1402 	netdev_name_node_add(net, dev->name_node);
1403 	write_unlock_bh(&dev_base_lock);
1404 
1405 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1406 	ret = notifier_to_errno(ret);
1407 
1408 	if (ret) {
1409 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1410 		if (err >= 0) {
1411 			err = ret;
1412 			down_write(&devnet_rename_sem);
1413 			memcpy(dev->name, oldname, IFNAMSIZ);
1414 			memcpy(oldname, newname, IFNAMSIZ);
1415 			dev->name_assign_type = old_assign_type;
1416 			old_assign_type = NET_NAME_RENAMED;
1417 			goto rollback;
1418 		} else {
1419 			pr_err("%s: name change rollback failed: %d\n",
1420 			       dev->name, ret);
1421 		}
1422 	}
1423 
1424 	return err;
1425 }
1426 
1427 /**
1428  *	dev_set_alias - change ifalias of a device
1429  *	@dev: device
1430  *	@alias: name up to IFALIASZ
1431  *	@len: limit of bytes to copy from info
1432  *
1433  *	Set ifalias for a device,
1434  */
1435 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1436 {
1437 	struct dev_ifalias *new_alias = NULL;
1438 
1439 	if (len >= IFALIASZ)
1440 		return -EINVAL;
1441 
1442 	if (len) {
1443 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1444 		if (!new_alias)
1445 			return -ENOMEM;
1446 
1447 		memcpy(new_alias->ifalias, alias, len);
1448 		new_alias->ifalias[len] = 0;
1449 	}
1450 
1451 	mutex_lock(&ifalias_mutex);
1452 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1453 					mutex_is_locked(&ifalias_mutex));
1454 	mutex_unlock(&ifalias_mutex);
1455 
1456 	if (new_alias)
1457 		kfree_rcu(new_alias, rcuhead);
1458 
1459 	return len;
1460 }
1461 EXPORT_SYMBOL(dev_set_alias);
1462 
1463 /**
1464  *	dev_get_alias - get ifalias of a device
1465  *	@dev: device
1466  *	@name: buffer to store name of ifalias
1467  *	@len: size of buffer
1468  *
1469  *	get ifalias for a device.  Caller must make sure dev cannot go
1470  *	away,  e.g. rcu read lock or own a reference count to device.
1471  */
1472 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1473 {
1474 	const struct dev_ifalias *alias;
1475 	int ret = 0;
1476 
1477 	rcu_read_lock();
1478 	alias = rcu_dereference(dev->ifalias);
1479 	if (alias)
1480 		ret = snprintf(name, len, "%s", alias->ifalias);
1481 	rcu_read_unlock();
1482 
1483 	return ret;
1484 }
1485 
1486 /**
1487  *	netdev_features_change - device changes features
1488  *	@dev: device to cause notification
1489  *
1490  *	Called to indicate a device has changed features.
1491  */
1492 void netdev_features_change(struct net_device *dev)
1493 {
1494 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1495 }
1496 EXPORT_SYMBOL(netdev_features_change);
1497 
1498 /**
1499  *	netdev_state_change - device changes state
1500  *	@dev: device to cause notification
1501  *
1502  *	Called to indicate a device has changed state. This function calls
1503  *	the notifier chains for netdev_chain and sends a NEWLINK message
1504  *	to the routing socket.
1505  */
1506 void netdev_state_change(struct net_device *dev)
1507 {
1508 	if (dev->flags & IFF_UP) {
1509 		struct netdev_notifier_change_info change_info = {
1510 			.info.dev = dev,
1511 		};
1512 
1513 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1514 					      &change_info.info);
1515 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1516 	}
1517 }
1518 EXPORT_SYMBOL(netdev_state_change);
1519 
1520 /**
1521  * __netdev_notify_peers - notify network peers about existence of @dev,
1522  * to be called when rtnl lock is already held.
1523  * @dev: network device
1524  *
1525  * Generate traffic such that interested network peers are aware of
1526  * @dev, such as by generating a gratuitous ARP. This may be used when
1527  * a device wants to inform the rest of the network about some sort of
1528  * reconfiguration such as a failover event or virtual machine
1529  * migration.
1530  */
1531 void __netdev_notify_peers(struct net_device *dev)
1532 {
1533 	ASSERT_RTNL();
1534 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1535 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1536 }
1537 EXPORT_SYMBOL(__netdev_notify_peers);
1538 
1539 /**
1540  * netdev_notify_peers - notify network peers about existence of @dev
1541  * @dev: network device
1542  *
1543  * Generate traffic such that interested network peers are aware of
1544  * @dev, such as by generating a gratuitous ARP. This may be used when
1545  * a device wants to inform the rest of the network about some sort of
1546  * reconfiguration such as a failover event or virtual machine
1547  * migration.
1548  */
1549 void netdev_notify_peers(struct net_device *dev)
1550 {
1551 	rtnl_lock();
1552 	__netdev_notify_peers(dev);
1553 	rtnl_unlock();
1554 }
1555 EXPORT_SYMBOL(netdev_notify_peers);
1556 
1557 static int napi_threaded_poll(void *data);
1558 
1559 static int napi_kthread_create(struct napi_struct *n)
1560 {
1561 	int err = 0;
1562 
1563 	/* Create and wake up the kthread once to put it in
1564 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1565 	 * warning and work with loadavg.
1566 	 */
1567 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1568 				n->dev->name, n->napi_id);
1569 	if (IS_ERR(n->thread)) {
1570 		err = PTR_ERR(n->thread);
1571 		pr_err("kthread_run failed with err %d\n", err);
1572 		n->thread = NULL;
1573 	}
1574 
1575 	return err;
1576 }
1577 
1578 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1579 {
1580 	const struct net_device_ops *ops = dev->netdev_ops;
1581 	int ret;
1582 
1583 	ASSERT_RTNL();
1584 
1585 	if (!netif_device_present(dev)) {
1586 		/* may be detached because parent is runtime-suspended */
1587 		if (dev->dev.parent)
1588 			pm_runtime_resume(dev->dev.parent);
1589 		if (!netif_device_present(dev))
1590 			return -ENODEV;
1591 	}
1592 
1593 	/* Block netpoll from trying to do any rx path servicing.
1594 	 * If we don't do this there is a chance ndo_poll_controller
1595 	 * or ndo_poll may be running while we open the device
1596 	 */
1597 	netpoll_poll_disable(dev);
1598 
1599 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1600 	ret = notifier_to_errno(ret);
1601 	if (ret)
1602 		return ret;
1603 
1604 	set_bit(__LINK_STATE_START, &dev->state);
1605 
1606 	if (ops->ndo_validate_addr)
1607 		ret = ops->ndo_validate_addr(dev);
1608 
1609 	if (!ret && ops->ndo_open)
1610 		ret = ops->ndo_open(dev);
1611 
1612 	netpoll_poll_enable(dev);
1613 
1614 	if (ret)
1615 		clear_bit(__LINK_STATE_START, &dev->state);
1616 	else {
1617 		dev->flags |= IFF_UP;
1618 		dev_set_rx_mode(dev);
1619 		dev_activate(dev);
1620 		add_device_randomness(dev->dev_addr, dev->addr_len);
1621 	}
1622 
1623 	return ret;
1624 }
1625 
1626 /**
1627  *	dev_open	- prepare an interface for use.
1628  *	@dev: device to open
1629  *	@extack: netlink extended ack
1630  *
1631  *	Takes a device from down to up state. The device's private open
1632  *	function is invoked and then the multicast lists are loaded. Finally
1633  *	the device is moved into the up state and a %NETDEV_UP message is
1634  *	sent to the netdev notifier chain.
1635  *
1636  *	Calling this function on an active interface is a nop. On a failure
1637  *	a negative errno code is returned.
1638  */
1639 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1640 {
1641 	int ret;
1642 
1643 	if (dev->flags & IFF_UP)
1644 		return 0;
1645 
1646 	ret = __dev_open(dev, extack);
1647 	if (ret < 0)
1648 		return ret;
1649 
1650 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1651 	call_netdevice_notifiers(NETDEV_UP, dev);
1652 
1653 	return ret;
1654 }
1655 EXPORT_SYMBOL(dev_open);
1656 
1657 static void __dev_close_many(struct list_head *head)
1658 {
1659 	struct net_device *dev;
1660 
1661 	ASSERT_RTNL();
1662 	might_sleep();
1663 
1664 	list_for_each_entry(dev, head, close_list) {
1665 		/* Temporarily disable netpoll until the interface is down */
1666 		netpoll_poll_disable(dev);
1667 
1668 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1669 
1670 		clear_bit(__LINK_STATE_START, &dev->state);
1671 
1672 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1673 		 * can be even on different cpu. So just clear netif_running().
1674 		 *
1675 		 * dev->stop() will invoke napi_disable() on all of it's
1676 		 * napi_struct instances on this device.
1677 		 */
1678 		smp_mb__after_atomic(); /* Commit netif_running(). */
1679 	}
1680 
1681 	dev_deactivate_many(head);
1682 
1683 	list_for_each_entry(dev, head, close_list) {
1684 		const struct net_device_ops *ops = dev->netdev_ops;
1685 
1686 		/*
1687 		 *	Call the device specific close. This cannot fail.
1688 		 *	Only if device is UP
1689 		 *
1690 		 *	We allow it to be called even after a DETACH hot-plug
1691 		 *	event.
1692 		 */
1693 		if (ops->ndo_stop)
1694 			ops->ndo_stop(dev);
1695 
1696 		dev->flags &= ~IFF_UP;
1697 		netpoll_poll_enable(dev);
1698 	}
1699 }
1700 
1701 static void __dev_close(struct net_device *dev)
1702 {
1703 	LIST_HEAD(single);
1704 
1705 	list_add(&dev->close_list, &single);
1706 	__dev_close_many(&single);
1707 	list_del(&single);
1708 }
1709 
1710 void dev_close_many(struct list_head *head, bool unlink)
1711 {
1712 	struct net_device *dev, *tmp;
1713 
1714 	/* Remove the devices that don't need to be closed */
1715 	list_for_each_entry_safe(dev, tmp, head, close_list)
1716 		if (!(dev->flags & IFF_UP))
1717 			list_del_init(&dev->close_list);
1718 
1719 	__dev_close_many(head);
1720 
1721 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1722 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1723 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1724 		if (unlink)
1725 			list_del_init(&dev->close_list);
1726 	}
1727 }
1728 EXPORT_SYMBOL(dev_close_many);
1729 
1730 /**
1731  *	dev_close - shutdown an interface.
1732  *	@dev: device to shutdown
1733  *
1734  *	This function moves an active device into down state. A
1735  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1736  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1737  *	chain.
1738  */
1739 void dev_close(struct net_device *dev)
1740 {
1741 	if (dev->flags & IFF_UP) {
1742 		LIST_HEAD(single);
1743 
1744 		list_add(&dev->close_list, &single);
1745 		dev_close_many(&single, true);
1746 		list_del(&single);
1747 	}
1748 }
1749 EXPORT_SYMBOL(dev_close);
1750 
1751 
1752 /**
1753  *	dev_disable_lro - disable Large Receive Offload on a device
1754  *	@dev: device
1755  *
1756  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1757  *	called under RTNL.  This is needed if received packets may be
1758  *	forwarded to another interface.
1759  */
1760 void dev_disable_lro(struct net_device *dev)
1761 {
1762 	struct net_device *lower_dev;
1763 	struct list_head *iter;
1764 
1765 	dev->wanted_features &= ~NETIF_F_LRO;
1766 	netdev_update_features(dev);
1767 
1768 	if (unlikely(dev->features & NETIF_F_LRO))
1769 		netdev_WARN(dev, "failed to disable LRO!\n");
1770 
1771 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1772 		dev_disable_lro(lower_dev);
1773 }
1774 EXPORT_SYMBOL(dev_disable_lro);
1775 
1776 /**
1777  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1778  *	@dev: device
1779  *
1780  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1781  *	called under RTNL.  This is needed if Generic XDP is installed on
1782  *	the device.
1783  */
1784 static void dev_disable_gro_hw(struct net_device *dev)
1785 {
1786 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1787 	netdev_update_features(dev);
1788 
1789 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1790 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1791 }
1792 
1793 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1794 {
1795 #define N(val) 						\
1796 	case NETDEV_##val:				\
1797 		return "NETDEV_" __stringify(val);
1798 	switch (cmd) {
1799 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1800 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1801 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1802 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1803 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1804 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1805 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1806 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1807 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1808 	N(PRE_CHANGEADDR)
1809 	}
1810 #undef N
1811 	return "UNKNOWN_NETDEV_EVENT";
1812 }
1813 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1814 
1815 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1816 				   struct net_device *dev)
1817 {
1818 	struct netdev_notifier_info info = {
1819 		.dev = dev,
1820 	};
1821 
1822 	return nb->notifier_call(nb, val, &info);
1823 }
1824 
1825 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1826 					     struct net_device *dev)
1827 {
1828 	int err;
1829 
1830 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1831 	err = notifier_to_errno(err);
1832 	if (err)
1833 		return err;
1834 
1835 	if (!(dev->flags & IFF_UP))
1836 		return 0;
1837 
1838 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1839 	return 0;
1840 }
1841 
1842 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1843 						struct net_device *dev)
1844 {
1845 	if (dev->flags & IFF_UP) {
1846 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1847 					dev);
1848 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1849 	}
1850 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1851 }
1852 
1853 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1854 						 struct net *net)
1855 {
1856 	struct net_device *dev;
1857 	int err;
1858 
1859 	for_each_netdev(net, dev) {
1860 		err = call_netdevice_register_notifiers(nb, dev);
1861 		if (err)
1862 			goto rollback;
1863 	}
1864 	return 0;
1865 
1866 rollback:
1867 	for_each_netdev_continue_reverse(net, dev)
1868 		call_netdevice_unregister_notifiers(nb, dev);
1869 	return err;
1870 }
1871 
1872 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1873 						    struct net *net)
1874 {
1875 	struct net_device *dev;
1876 
1877 	for_each_netdev(net, dev)
1878 		call_netdevice_unregister_notifiers(nb, dev);
1879 }
1880 
1881 static int dev_boot_phase = 1;
1882 
1883 /**
1884  * register_netdevice_notifier - register a network notifier block
1885  * @nb: notifier
1886  *
1887  * Register a notifier to be called when network device events occur.
1888  * The notifier passed is linked into the kernel structures and must
1889  * not be reused until it has been unregistered. A negative errno code
1890  * is returned on a failure.
1891  *
1892  * When registered all registration and up events are replayed
1893  * to the new notifier to allow device to have a race free
1894  * view of the network device list.
1895  */
1896 
1897 int register_netdevice_notifier(struct notifier_block *nb)
1898 {
1899 	struct net *net;
1900 	int err;
1901 
1902 	/* Close race with setup_net() and cleanup_net() */
1903 	down_write(&pernet_ops_rwsem);
1904 	rtnl_lock();
1905 	err = raw_notifier_chain_register(&netdev_chain, nb);
1906 	if (err)
1907 		goto unlock;
1908 	if (dev_boot_phase)
1909 		goto unlock;
1910 	for_each_net(net) {
1911 		err = call_netdevice_register_net_notifiers(nb, net);
1912 		if (err)
1913 			goto rollback;
1914 	}
1915 
1916 unlock:
1917 	rtnl_unlock();
1918 	up_write(&pernet_ops_rwsem);
1919 	return err;
1920 
1921 rollback:
1922 	for_each_net_continue_reverse(net)
1923 		call_netdevice_unregister_net_notifiers(nb, net);
1924 
1925 	raw_notifier_chain_unregister(&netdev_chain, nb);
1926 	goto unlock;
1927 }
1928 EXPORT_SYMBOL(register_netdevice_notifier);
1929 
1930 /**
1931  * unregister_netdevice_notifier - unregister a network notifier block
1932  * @nb: notifier
1933  *
1934  * Unregister a notifier previously registered by
1935  * register_netdevice_notifier(). The notifier is unlinked into the
1936  * kernel structures and may then be reused. A negative errno code
1937  * is returned on a failure.
1938  *
1939  * After unregistering unregister and down device events are synthesized
1940  * for all devices on the device list to the removed notifier to remove
1941  * the need for special case cleanup code.
1942  */
1943 
1944 int unregister_netdevice_notifier(struct notifier_block *nb)
1945 {
1946 	struct net *net;
1947 	int err;
1948 
1949 	/* Close race with setup_net() and cleanup_net() */
1950 	down_write(&pernet_ops_rwsem);
1951 	rtnl_lock();
1952 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1953 	if (err)
1954 		goto unlock;
1955 
1956 	for_each_net(net)
1957 		call_netdevice_unregister_net_notifiers(nb, net);
1958 
1959 unlock:
1960 	rtnl_unlock();
1961 	up_write(&pernet_ops_rwsem);
1962 	return err;
1963 }
1964 EXPORT_SYMBOL(unregister_netdevice_notifier);
1965 
1966 static int __register_netdevice_notifier_net(struct net *net,
1967 					     struct notifier_block *nb,
1968 					     bool ignore_call_fail)
1969 {
1970 	int err;
1971 
1972 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1973 	if (err)
1974 		return err;
1975 	if (dev_boot_phase)
1976 		return 0;
1977 
1978 	err = call_netdevice_register_net_notifiers(nb, net);
1979 	if (err && !ignore_call_fail)
1980 		goto chain_unregister;
1981 
1982 	return 0;
1983 
1984 chain_unregister:
1985 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1986 	return err;
1987 }
1988 
1989 static int __unregister_netdevice_notifier_net(struct net *net,
1990 					       struct notifier_block *nb)
1991 {
1992 	int err;
1993 
1994 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1995 	if (err)
1996 		return err;
1997 
1998 	call_netdevice_unregister_net_notifiers(nb, net);
1999 	return 0;
2000 }
2001 
2002 /**
2003  * register_netdevice_notifier_net - register a per-netns network notifier block
2004  * @net: network namespace
2005  * @nb: notifier
2006  *
2007  * Register a notifier to be called when network device events occur.
2008  * The notifier passed is linked into the kernel structures and must
2009  * not be reused until it has been unregistered. A negative errno code
2010  * is returned on a failure.
2011  *
2012  * When registered all registration and up events are replayed
2013  * to the new notifier to allow device to have a race free
2014  * view of the network device list.
2015  */
2016 
2017 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2018 {
2019 	int err;
2020 
2021 	rtnl_lock();
2022 	err = __register_netdevice_notifier_net(net, nb, false);
2023 	rtnl_unlock();
2024 	return err;
2025 }
2026 EXPORT_SYMBOL(register_netdevice_notifier_net);
2027 
2028 /**
2029  * unregister_netdevice_notifier_net - unregister a per-netns
2030  *                                     network notifier block
2031  * @net: network namespace
2032  * @nb: notifier
2033  *
2034  * Unregister a notifier previously registered by
2035  * register_netdevice_notifier(). The notifier is unlinked into the
2036  * kernel structures and may then be reused. A negative errno code
2037  * is returned on a failure.
2038  *
2039  * After unregistering unregister and down device events are synthesized
2040  * for all devices on the device list to the removed notifier to remove
2041  * the need for special case cleanup code.
2042  */
2043 
2044 int unregister_netdevice_notifier_net(struct net *net,
2045 				      struct notifier_block *nb)
2046 {
2047 	int err;
2048 
2049 	rtnl_lock();
2050 	err = __unregister_netdevice_notifier_net(net, nb);
2051 	rtnl_unlock();
2052 	return err;
2053 }
2054 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2055 
2056 int register_netdevice_notifier_dev_net(struct net_device *dev,
2057 					struct notifier_block *nb,
2058 					struct netdev_net_notifier *nn)
2059 {
2060 	int err;
2061 
2062 	rtnl_lock();
2063 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2064 	if (!err) {
2065 		nn->nb = nb;
2066 		list_add(&nn->list, &dev->net_notifier_list);
2067 	}
2068 	rtnl_unlock();
2069 	return err;
2070 }
2071 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2072 
2073 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2074 					  struct notifier_block *nb,
2075 					  struct netdev_net_notifier *nn)
2076 {
2077 	int err;
2078 
2079 	rtnl_lock();
2080 	list_del(&nn->list);
2081 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2082 	rtnl_unlock();
2083 	return err;
2084 }
2085 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2086 
2087 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2088 					     struct net *net)
2089 {
2090 	struct netdev_net_notifier *nn;
2091 
2092 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
2093 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2094 		__register_netdevice_notifier_net(net, nn->nb, true);
2095 	}
2096 }
2097 
2098 /**
2099  *	call_netdevice_notifiers_info - call all network notifier blocks
2100  *	@val: value passed unmodified to notifier function
2101  *	@info: notifier information data
2102  *
2103  *	Call all network notifier blocks.  Parameters and return value
2104  *	are as for raw_notifier_call_chain().
2105  */
2106 
2107 static int call_netdevice_notifiers_info(unsigned long val,
2108 					 struct netdev_notifier_info *info)
2109 {
2110 	struct net *net = dev_net(info->dev);
2111 	int ret;
2112 
2113 	ASSERT_RTNL();
2114 
2115 	/* Run per-netns notifier block chain first, then run the global one.
2116 	 * Hopefully, one day, the global one is going to be removed after
2117 	 * all notifier block registrators get converted to be per-netns.
2118 	 */
2119 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2120 	if (ret & NOTIFY_STOP_MASK)
2121 		return ret;
2122 	return raw_notifier_call_chain(&netdev_chain, val, info);
2123 }
2124 
2125 static int call_netdevice_notifiers_extack(unsigned long val,
2126 					   struct net_device *dev,
2127 					   struct netlink_ext_ack *extack)
2128 {
2129 	struct netdev_notifier_info info = {
2130 		.dev = dev,
2131 		.extack = extack,
2132 	};
2133 
2134 	return call_netdevice_notifiers_info(val, &info);
2135 }
2136 
2137 /**
2138  *	call_netdevice_notifiers - call all network notifier blocks
2139  *      @val: value passed unmodified to notifier function
2140  *      @dev: net_device pointer passed unmodified to notifier function
2141  *
2142  *	Call all network notifier blocks.  Parameters and return value
2143  *	are as for raw_notifier_call_chain().
2144  */
2145 
2146 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2147 {
2148 	return call_netdevice_notifiers_extack(val, dev, NULL);
2149 }
2150 EXPORT_SYMBOL(call_netdevice_notifiers);
2151 
2152 /**
2153  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2154  *	@val: value passed unmodified to notifier function
2155  *	@dev: net_device pointer passed unmodified to notifier function
2156  *	@arg: additional u32 argument passed to the notifier function
2157  *
2158  *	Call all network notifier blocks.  Parameters and return value
2159  *	are as for raw_notifier_call_chain().
2160  */
2161 static int call_netdevice_notifiers_mtu(unsigned long val,
2162 					struct net_device *dev, u32 arg)
2163 {
2164 	struct netdev_notifier_info_ext info = {
2165 		.info.dev = dev,
2166 		.ext.mtu = arg,
2167 	};
2168 
2169 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2170 
2171 	return call_netdevice_notifiers_info(val, &info.info);
2172 }
2173 
2174 #ifdef CONFIG_NET_INGRESS
2175 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2176 
2177 void net_inc_ingress_queue(void)
2178 {
2179 	static_branch_inc(&ingress_needed_key);
2180 }
2181 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2182 
2183 void net_dec_ingress_queue(void)
2184 {
2185 	static_branch_dec(&ingress_needed_key);
2186 }
2187 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2188 #endif
2189 
2190 #ifdef CONFIG_NET_EGRESS
2191 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2192 
2193 void net_inc_egress_queue(void)
2194 {
2195 	static_branch_inc(&egress_needed_key);
2196 }
2197 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2198 
2199 void net_dec_egress_queue(void)
2200 {
2201 	static_branch_dec(&egress_needed_key);
2202 }
2203 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2204 #endif
2205 
2206 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2207 #ifdef CONFIG_JUMP_LABEL
2208 static atomic_t netstamp_needed_deferred;
2209 static atomic_t netstamp_wanted;
2210 static void netstamp_clear(struct work_struct *work)
2211 {
2212 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2213 	int wanted;
2214 
2215 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2216 	if (wanted > 0)
2217 		static_branch_enable(&netstamp_needed_key);
2218 	else
2219 		static_branch_disable(&netstamp_needed_key);
2220 }
2221 static DECLARE_WORK(netstamp_work, netstamp_clear);
2222 #endif
2223 
2224 void net_enable_timestamp(void)
2225 {
2226 #ifdef CONFIG_JUMP_LABEL
2227 	int wanted;
2228 
2229 	while (1) {
2230 		wanted = atomic_read(&netstamp_wanted);
2231 		if (wanted <= 0)
2232 			break;
2233 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2234 			return;
2235 	}
2236 	atomic_inc(&netstamp_needed_deferred);
2237 	schedule_work(&netstamp_work);
2238 #else
2239 	static_branch_inc(&netstamp_needed_key);
2240 #endif
2241 }
2242 EXPORT_SYMBOL(net_enable_timestamp);
2243 
2244 void net_disable_timestamp(void)
2245 {
2246 #ifdef CONFIG_JUMP_LABEL
2247 	int wanted;
2248 
2249 	while (1) {
2250 		wanted = atomic_read(&netstamp_wanted);
2251 		if (wanted <= 1)
2252 			break;
2253 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2254 			return;
2255 	}
2256 	atomic_dec(&netstamp_needed_deferred);
2257 	schedule_work(&netstamp_work);
2258 #else
2259 	static_branch_dec(&netstamp_needed_key);
2260 #endif
2261 }
2262 EXPORT_SYMBOL(net_disable_timestamp);
2263 
2264 static inline void net_timestamp_set(struct sk_buff *skb)
2265 {
2266 	skb->tstamp = 0;
2267 	if (static_branch_unlikely(&netstamp_needed_key))
2268 		__net_timestamp(skb);
2269 }
2270 
2271 #define net_timestamp_check(COND, SKB)				\
2272 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2273 		if ((COND) && !(SKB)->tstamp)			\
2274 			__net_timestamp(SKB);			\
2275 	}							\
2276 
2277 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2278 {
2279 	return __is_skb_forwardable(dev, skb, true);
2280 }
2281 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2282 
2283 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2284 			      bool check_mtu)
2285 {
2286 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2287 
2288 	if (likely(!ret)) {
2289 		skb->protocol = eth_type_trans(skb, dev);
2290 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2291 	}
2292 
2293 	return ret;
2294 }
2295 
2296 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2297 {
2298 	return __dev_forward_skb2(dev, skb, true);
2299 }
2300 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2301 
2302 /**
2303  * dev_forward_skb - loopback an skb to another netif
2304  *
2305  * @dev: destination network device
2306  * @skb: buffer to forward
2307  *
2308  * return values:
2309  *	NET_RX_SUCCESS	(no congestion)
2310  *	NET_RX_DROP     (packet was dropped, but freed)
2311  *
2312  * dev_forward_skb can be used for injecting an skb from the
2313  * start_xmit function of one device into the receive queue
2314  * of another device.
2315  *
2316  * The receiving device may be in another namespace, so
2317  * we have to clear all information in the skb that could
2318  * impact namespace isolation.
2319  */
2320 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2321 {
2322 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2323 }
2324 EXPORT_SYMBOL_GPL(dev_forward_skb);
2325 
2326 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2327 {
2328 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2329 }
2330 
2331 static inline int deliver_skb(struct sk_buff *skb,
2332 			      struct packet_type *pt_prev,
2333 			      struct net_device *orig_dev)
2334 {
2335 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2336 		return -ENOMEM;
2337 	refcount_inc(&skb->users);
2338 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2339 }
2340 
2341 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2342 					  struct packet_type **pt,
2343 					  struct net_device *orig_dev,
2344 					  __be16 type,
2345 					  struct list_head *ptype_list)
2346 {
2347 	struct packet_type *ptype, *pt_prev = *pt;
2348 
2349 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2350 		if (ptype->type != type)
2351 			continue;
2352 		if (pt_prev)
2353 			deliver_skb(skb, pt_prev, orig_dev);
2354 		pt_prev = ptype;
2355 	}
2356 	*pt = pt_prev;
2357 }
2358 
2359 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2360 {
2361 	if (!ptype->af_packet_priv || !skb->sk)
2362 		return false;
2363 
2364 	if (ptype->id_match)
2365 		return ptype->id_match(ptype, skb->sk);
2366 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2367 		return true;
2368 
2369 	return false;
2370 }
2371 
2372 /**
2373  * dev_nit_active - return true if any network interface taps are in use
2374  *
2375  * @dev: network device to check for the presence of taps
2376  */
2377 bool dev_nit_active(struct net_device *dev)
2378 {
2379 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2380 }
2381 EXPORT_SYMBOL_GPL(dev_nit_active);
2382 
2383 /*
2384  *	Support routine. Sends outgoing frames to any network
2385  *	taps currently in use.
2386  */
2387 
2388 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2389 {
2390 	struct packet_type *ptype;
2391 	struct sk_buff *skb2 = NULL;
2392 	struct packet_type *pt_prev = NULL;
2393 	struct list_head *ptype_list = &ptype_all;
2394 
2395 	rcu_read_lock();
2396 again:
2397 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2398 		if (ptype->ignore_outgoing)
2399 			continue;
2400 
2401 		/* Never send packets back to the socket
2402 		 * they originated from - MvS (miquels@drinkel.ow.org)
2403 		 */
2404 		if (skb_loop_sk(ptype, skb))
2405 			continue;
2406 
2407 		if (pt_prev) {
2408 			deliver_skb(skb2, pt_prev, skb->dev);
2409 			pt_prev = ptype;
2410 			continue;
2411 		}
2412 
2413 		/* need to clone skb, done only once */
2414 		skb2 = skb_clone(skb, GFP_ATOMIC);
2415 		if (!skb2)
2416 			goto out_unlock;
2417 
2418 		net_timestamp_set(skb2);
2419 
2420 		/* skb->nh should be correctly
2421 		 * set by sender, so that the second statement is
2422 		 * just protection against buggy protocols.
2423 		 */
2424 		skb_reset_mac_header(skb2);
2425 
2426 		if (skb_network_header(skb2) < skb2->data ||
2427 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2428 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2429 					     ntohs(skb2->protocol),
2430 					     dev->name);
2431 			skb_reset_network_header(skb2);
2432 		}
2433 
2434 		skb2->transport_header = skb2->network_header;
2435 		skb2->pkt_type = PACKET_OUTGOING;
2436 		pt_prev = ptype;
2437 	}
2438 
2439 	if (ptype_list == &ptype_all) {
2440 		ptype_list = &dev->ptype_all;
2441 		goto again;
2442 	}
2443 out_unlock:
2444 	if (pt_prev) {
2445 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2446 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2447 		else
2448 			kfree_skb(skb2);
2449 	}
2450 	rcu_read_unlock();
2451 }
2452 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2453 
2454 /**
2455  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2456  * @dev: Network device
2457  * @txq: number of queues available
2458  *
2459  * If real_num_tx_queues is changed the tc mappings may no longer be
2460  * valid. To resolve this verify the tc mapping remains valid and if
2461  * not NULL the mapping. With no priorities mapping to this
2462  * offset/count pair it will no longer be used. In the worst case TC0
2463  * is invalid nothing can be done so disable priority mappings. If is
2464  * expected that drivers will fix this mapping if they can before
2465  * calling netif_set_real_num_tx_queues.
2466  */
2467 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2468 {
2469 	int i;
2470 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2471 
2472 	/* If TC0 is invalidated disable TC mapping */
2473 	if (tc->offset + tc->count > txq) {
2474 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2475 		dev->num_tc = 0;
2476 		return;
2477 	}
2478 
2479 	/* Invalidated prio to tc mappings set to TC0 */
2480 	for (i = 1; i < TC_BITMASK + 1; i++) {
2481 		int q = netdev_get_prio_tc_map(dev, i);
2482 
2483 		tc = &dev->tc_to_txq[q];
2484 		if (tc->offset + tc->count > txq) {
2485 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2486 				i, q);
2487 			netdev_set_prio_tc_map(dev, i, 0);
2488 		}
2489 	}
2490 }
2491 
2492 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2493 {
2494 	if (dev->num_tc) {
2495 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2496 		int i;
2497 
2498 		/* walk through the TCs and see if it falls into any of them */
2499 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2500 			if ((txq - tc->offset) < tc->count)
2501 				return i;
2502 		}
2503 
2504 		/* didn't find it, just return -1 to indicate no match */
2505 		return -1;
2506 	}
2507 
2508 	return 0;
2509 }
2510 EXPORT_SYMBOL(netdev_txq_to_tc);
2511 
2512 #ifdef CONFIG_XPS
2513 static struct static_key xps_needed __read_mostly;
2514 static struct static_key xps_rxqs_needed __read_mostly;
2515 static DEFINE_MUTEX(xps_map_mutex);
2516 #define xmap_dereference(P)		\
2517 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2518 
2519 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2520 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2521 {
2522 	struct xps_map *map = NULL;
2523 	int pos;
2524 
2525 	if (dev_maps)
2526 		map = xmap_dereference(dev_maps->attr_map[tci]);
2527 	if (!map)
2528 		return false;
2529 
2530 	for (pos = map->len; pos--;) {
2531 		if (map->queues[pos] != index)
2532 			continue;
2533 
2534 		if (map->len > 1) {
2535 			map->queues[pos] = map->queues[--map->len];
2536 			break;
2537 		}
2538 
2539 		if (old_maps)
2540 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2541 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2542 		kfree_rcu(map, rcu);
2543 		return false;
2544 	}
2545 
2546 	return true;
2547 }
2548 
2549 static bool remove_xps_queue_cpu(struct net_device *dev,
2550 				 struct xps_dev_maps *dev_maps,
2551 				 int cpu, u16 offset, u16 count)
2552 {
2553 	int num_tc = dev_maps->num_tc;
2554 	bool active = false;
2555 	int tci;
2556 
2557 	for (tci = cpu * num_tc; num_tc--; tci++) {
2558 		int i, j;
2559 
2560 		for (i = count, j = offset; i--; j++) {
2561 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2562 				break;
2563 		}
2564 
2565 		active |= i < 0;
2566 	}
2567 
2568 	return active;
2569 }
2570 
2571 static void reset_xps_maps(struct net_device *dev,
2572 			   struct xps_dev_maps *dev_maps,
2573 			   enum xps_map_type type)
2574 {
2575 	static_key_slow_dec_cpuslocked(&xps_needed);
2576 	if (type == XPS_RXQS)
2577 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2578 
2579 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2580 
2581 	kfree_rcu(dev_maps, rcu);
2582 }
2583 
2584 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2585 			   u16 offset, u16 count)
2586 {
2587 	struct xps_dev_maps *dev_maps;
2588 	bool active = false;
2589 	int i, j;
2590 
2591 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2592 	if (!dev_maps)
2593 		return;
2594 
2595 	for (j = 0; j < dev_maps->nr_ids; j++)
2596 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2597 	if (!active)
2598 		reset_xps_maps(dev, dev_maps, type);
2599 
2600 	if (type == XPS_CPUS) {
2601 		for (i = offset + (count - 1); count--; i--)
2602 			netdev_queue_numa_node_write(
2603 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2604 	}
2605 }
2606 
2607 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2608 				   u16 count)
2609 {
2610 	if (!static_key_false(&xps_needed))
2611 		return;
2612 
2613 	cpus_read_lock();
2614 	mutex_lock(&xps_map_mutex);
2615 
2616 	if (static_key_false(&xps_rxqs_needed))
2617 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2618 
2619 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2620 
2621 	mutex_unlock(&xps_map_mutex);
2622 	cpus_read_unlock();
2623 }
2624 
2625 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2626 {
2627 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2628 }
2629 
2630 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2631 				      u16 index, bool is_rxqs_map)
2632 {
2633 	struct xps_map *new_map;
2634 	int alloc_len = XPS_MIN_MAP_ALLOC;
2635 	int i, pos;
2636 
2637 	for (pos = 0; map && pos < map->len; pos++) {
2638 		if (map->queues[pos] != index)
2639 			continue;
2640 		return map;
2641 	}
2642 
2643 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2644 	if (map) {
2645 		if (pos < map->alloc_len)
2646 			return map;
2647 
2648 		alloc_len = map->alloc_len * 2;
2649 	}
2650 
2651 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2652 	 *  map
2653 	 */
2654 	if (is_rxqs_map)
2655 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2656 	else
2657 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2658 				       cpu_to_node(attr_index));
2659 	if (!new_map)
2660 		return NULL;
2661 
2662 	for (i = 0; i < pos; i++)
2663 		new_map->queues[i] = map->queues[i];
2664 	new_map->alloc_len = alloc_len;
2665 	new_map->len = pos;
2666 
2667 	return new_map;
2668 }
2669 
2670 /* Copy xps maps at a given index */
2671 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2672 			      struct xps_dev_maps *new_dev_maps, int index,
2673 			      int tc, bool skip_tc)
2674 {
2675 	int i, tci = index * dev_maps->num_tc;
2676 	struct xps_map *map;
2677 
2678 	/* copy maps belonging to foreign traffic classes */
2679 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2680 		if (i == tc && skip_tc)
2681 			continue;
2682 
2683 		/* fill in the new device map from the old device map */
2684 		map = xmap_dereference(dev_maps->attr_map[tci]);
2685 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2686 	}
2687 }
2688 
2689 /* Must be called under cpus_read_lock */
2690 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2691 			  u16 index, enum xps_map_type type)
2692 {
2693 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2694 	const unsigned long *online_mask = NULL;
2695 	bool active = false, copy = false;
2696 	int i, j, tci, numa_node_id = -2;
2697 	int maps_sz, num_tc = 1, tc = 0;
2698 	struct xps_map *map, *new_map;
2699 	unsigned int nr_ids;
2700 
2701 	if (dev->num_tc) {
2702 		/* Do not allow XPS on subordinate device directly */
2703 		num_tc = dev->num_tc;
2704 		if (num_tc < 0)
2705 			return -EINVAL;
2706 
2707 		/* If queue belongs to subordinate dev use its map */
2708 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2709 
2710 		tc = netdev_txq_to_tc(dev, index);
2711 		if (tc < 0)
2712 			return -EINVAL;
2713 	}
2714 
2715 	mutex_lock(&xps_map_mutex);
2716 
2717 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2718 	if (type == XPS_RXQS) {
2719 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2720 		nr_ids = dev->num_rx_queues;
2721 	} else {
2722 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2723 		if (num_possible_cpus() > 1)
2724 			online_mask = cpumask_bits(cpu_online_mask);
2725 		nr_ids = nr_cpu_ids;
2726 	}
2727 
2728 	if (maps_sz < L1_CACHE_BYTES)
2729 		maps_sz = L1_CACHE_BYTES;
2730 
2731 	/* The old dev_maps could be larger or smaller than the one we're
2732 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2733 	 * between. We could try to be smart, but let's be safe instead and only
2734 	 * copy foreign traffic classes if the two map sizes match.
2735 	 */
2736 	if (dev_maps &&
2737 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2738 		copy = true;
2739 
2740 	/* allocate memory for queue storage */
2741 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2742 	     j < nr_ids;) {
2743 		if (!new_dev_maps) {
2744 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2745 			if (!new_dev_maps) {
2746 				mutex_unlock(&xps_map_mutex);
2747 				return -ENOMEM;
2748 			}
2749 
2750 			new_dev_maps->nr_ids = nr_ids;
2751 			new_dev_maps->num_tc = num_tc;
2752 		}
2753 
2754 		tci = j * num_tc + tc;
2755 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2756 
2757 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2758 		if (!map)
2759 			goto error;
2760 
2761 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2762 	}
2763 
2764 	if (!new_dev_maps)
2765 		goto out_no_new_maps;
2766 
2767 	if (!dev_maps) {
2768 		/* Increment static keys at most once per type */
2769 		static_key_slow_inc_cpuslocked(&xps_needed);
2770 		if (type == XPS_RXQS)
2771 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2772 	}
2773 
2774 	for (j = 0; j < nr_ids; j++) {
2775 		bool skip_tc = false;
2776 
2777 		tci = j * num_tc + tc;
2778 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2779 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2780 			/* add tx-queue to CPU/rx-queue maps */
2781 			int pos = 0;
2782 
2783 			skip_tc = true;
2784 
2785 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2786 			while ((pos < map->len) && (map->queues[pos] != index))
2787 				pos++;
2788 
2789 			if (pos == map->len)
2790 				map->queues[map->len++] = index;
2791 #ifdef CONFIG_NUMA
2792 			if (type == XPS_CPUS) {
2793 				if (numa_node_id == -2)
2794 					numa_node_id = cpu_to_node(j);
2795 				else if (numa_node_id != cpu_to_node(j))
2796 					numa_node_id = -1;
2797 			}
2798 #endif
2799 		}
2800 
2801 		if (copy)
2802 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2803 					  skip_tc);
2804 	}
2805 
2806 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2807 
2808 	/* Cleanup old maps */
2809 	if (!dev_maps)
2810 		goto out_no_old_maps;
2811 
2812 	for (j = 0; j < dev_maps->nr_ids; j++) {
2813 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2814 			map = xmap_dereference(dev_maps->attr_map[tci]);
2815 			if (!map)
2816 				continue;
2817 
2818 			if (copy) {
2819 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2820 				if (map == new_map)
2821 					continue;
2822 			}
2823 
2824 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2825 			kfree_rcu(map, rcu);
2826 		}
2827 	}
2828 
2829 	old_dev_maps = dev_maps;
2830 
2831 out_no_old_maps:
2832 	dev_maps = new_dev_maps;
2833 	active = true;
2834 
2835 out_no_new_maps:
2836 	if (type == XPS_CPUS)
2837 		/* update Tx queue numa node */
2838 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2839 					     (numa_node_id >= 0) ?
2840 					     numa_node_id : NUMA_NO_NODE);
2841 
2842 	if (!dev_maps)
2843 		goto out_no_maps;
2844 
2845 	/* removes tx-queue from unused CPUs/rx-queues */
2846 	for (j = 0; j < dev_maps->nr_ids; j++) {
2847 		tci = j * dev_maps->num_tc;
2848 
2849 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2850 			if (i == tc &&
2851 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2852 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2853 				continue;
2854 
2855 			active |= remove_xps_queue(dev_maps,
2856 						   copy ? old_dev_maps : NULL,
2857 						   tci, index);
2858 		}
2859 	}
2860 
2861 	if (old_dev_maps)
2862 		kfree_rcu(old_dev_maps, rcu);
2863 
2864 	/* free map if not active */
2865 	if (!active)
2866 		reset_xps_maps(dev, dev_maps, type);
2867 
2868 out_no_maps:
2869 	mutex_unlock(&xps_map_mutex);
2870 
2871 	return 0;
2872 error:
2873 	/* remove any maps that we added */
2874 	for (j = 0; j < nr_ids; j++) {
2875 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2876 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2877 			map = copy ?
2878 			      xmap_dereference(dev_maps->attr_map[tci]) :
2879 			      NULL;
2880 			if (new_map && new_map != map)
2881 				kfree(new_map);
2882 		}
2883 	}
2884 
2885 	mutex_unlock(&xps_map_mutex);
2886 
2887 	kfree(new_dev_maps);
2888 	return -ENOMEM;
2889 }
2890 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2891 
2892 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2893 			u16 index)
2894 {
2895 	int ret;
2896 
2897 	cpus_read_lock();
2898 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2899 	cpus_read_unlock();
2900 
2901 	return ret;
2902 }
2903 EXPORT_SYMBOL(netif_set_xps_queue);
2904 
2905 #endif
2906 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2907 {
2908 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2909 
2910 	/* Unbind any subordinate channels */
2911 	while (txq-- != &dev->_tx[0]) {
2912 		if (txq->sb_dev)
2913 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2914 	}
2915 }
2916 
2917 void netdev_reset_tc(struct net_device *dev)
2918 {
2919 #ifdef CONFIG_XPS
2920 	netif_reset_xps_queues_gt(dev, 0);
2921 #endif
2922 	netdev_unbind_all_sb_channels(dev);
2923 
2924 	/* Reset TC configuration of device */
2925 	dev->num_tc = 0;
2926 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2927 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2928 }
2929 EXPORT_SYMBOL(netdev_reset_tc);
2930 
2931 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2932 {
2933 	if (tc >= dev->num_tc)
2934 		return -EINVAL;
2935 
2936 #ifdef CONFIG_XPS
2937 	netif_reset_xps_queues(dev, offset, count);
2938 #endif
2939 	dev->tc_to_txq[tc].count = count;
2940 	dev->tc_to_txq[tc].offset = offset;
2941 	return 0;
2942 }
2943 EXPORT_SYMBOL(netdev_set_tc_queue);
2944 
2945 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2946 {
2947 	if (num_tc > TC_MAX_QUEUE)
2948 		return -EINVAL;
2949 
2950 #ifdef CONFIG_XPS
2951 	netif_reset_xps_queues_gt(dev, 0);
2952 #endif
2953 	netdev_unbind_all_sb_channels(dev);
2954 
2955 	dev->num_tc = num_tc;
2956 	return 0;
2957 }
2958 EXPORT_SYMBOL(netdev_set_num_tc);
2959 
2960 void netdev_unbind_sb_channel(struct net_device *dev,
2961 			      struct net_device *sb_dev)
2962 {
2963 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2964 
2965 #ifdef CONFIG_XPS
2966 	netif_reset_xps_queues_gt(sb_dev, 0);
2967 #endif
2968 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2969 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2970 
2971 	while (txq-- != &dev->_tx[0]) {
2972 		if (txq->sb_dev == sb_dev)
2973 			txq->sb_dev = NULL;
2974 	}
2975 }
2976 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2977 
2978 int netdev_bind_sb_channel_queue(struct net_device *dev,
2979 				 struct net_device *sb_dev,
2980 				 u8 tc, u16 count, u16 offset)
2981 {
2982 	/* Make certain the sb_dev and dev are already configured */
2983 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2984 		return -EINVAL;
2985 
2986 	/* We cannot hand out queues we don't have */
2987 	if ((offset + count) > dev->real_num_tx_queues)
2988 		return -EINVAL;
2989 
2990 	/* Record the mapping */
2991 	sb_dev->tc_to_txq[tc].count = count;
2992 	sb_dev->tc_to_txq[tc].offset = offset;
2993 
2994 	/* Provide a way for Tx queue to find the tc_to_txq map or
2995 	 * XPS map for itself.
2996 	 */
2997 	while (count--)
2998 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2999 
3000 	return 0;
3001 }
3002 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3003 
3004 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3005 {
3006 	/* Do not use a multiqueue device to represent a subordinate channel */
3007 	if (netif_is_multiqueue(dev))
3008 		return -ENODEV;
3009 
3010 	/* We allow channels 1 - 32767 to be used for subordinate channels.
3011 	 * Channel 0 is meant to be "native" mode and used only to represent
3012 	 * the main root device. We allow writing 0 to reset the device back
3013 	 * to normal mode after being used as a subordinate channel.
3014 	 */
3015 	if (channel > S16_MAX)
3016 		return -EINVAL;
3017 
3018 	dev->num_tc = -channel;
3019 
3020 	return 0;
3021 }
3022 EXPORT_SYMBOL(netdev_set_sb_channel);
3023 
3024 /*
3025  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3026  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3027  */
3028 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3029 {
3030 	bool disabling;
3031 	int rc;
3032 
3033 	disabling = txq < dev->real_num_tx_queues;
3034 
3035 	if (txq < 1 || txq > dev->num_tx_queues)
3036 		return -EINVAL;
3037 
3038 	if (dev->reg_state == NETREG_REGISTERED ||
3039 	    dev->reg_state == NETREG_UNREGISTERING) {
3040 		ASSERT_RTNL();
3041 
3042 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3043 						  txq);
3044 		if (rc)
3045 			return rc;
3046 
3047 		if (dev->num_tc)
3048 			netif_setup_tc(dev, txq);
3049 
3050 		dev->real_num_tx_queues = txq;
3051 
3052 		if (disabling) {
3053 			synchronize_net();
3054 			qdisc_reset_all_tx_gt(dev, txq);
3055 #ifdef CONFIG_XPS
3056 			netif_reset_xps_queues_gt(dev, txq);
3057 #endif
3058 		}
3059 	} else {
3060 		dev->real_num_tx_queues = txq;
3061 	}
3062 
3063 	return 0;
3064 }
3065 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3066 
3067 #ifdef CONFIG_SYSFS
3068 /**
3069  *	netif_set_real_num_rx_queues - set actual number of RX queues used
3070  *	@dev: Network device
3071  *	@rxq: Actual number of RX queues
3072  *
3073  *	This must be called either with the rtnl_lock held or before
3074  *	registration of the net device.  Returns 0 on success, or a
3075  *	negative error code.  If called before registration, it always
3076  *	succeeds.
3077  */
3078 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3079 {
3080 	int rc;
3081 
3082 	if (rxq < 1 || rxq > dev->num_rx_queues)
3083 		return -EINVAL;
3084 
3085 	if (dev->reg_state == NETREG_REGISTERED) {
3086 		ASSERT_RTNL();
3087 
3088 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3089 						  rxq);
3090 		if (rc)
3091 			return rc;
3092 	}
3093 
3094 	dev->real_num_rx_queues = rxq;
3095 	return 0;
3096 }
3097 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3098 #endif
3099 
3100 /**
3101  * netif_get_num_default_rss_queues - default number of RSS queues
3102  *
3103  * This routine should set an upper limit on the number of RSS queues
3104  * used by default by multiqueue devices.
3105  */
3106 int netif_get_num_default_rss_queues(void)
3107 {
3108 	return is_kdump_kernel() ?
3109 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3110 }
3111 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3112 
3113 static void __netif_reschedule(struct Qdisc *q)
3114 {
3115 	struct softnet_data *sd;
3116 	unsigned long flags;
3117 
3118 	local_irq_save(flags);
3119 	sd = this_cpu_ptr(&softnet_data);
3120 	q->next_sched = NULL;
3121 	*sd->output_queue_tailp = q;
3122 	sd->output_queue_tailp = &q->next_sched;
3123 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3124 	local_irq_restore(flags);
3125 }
3126 
3127 void __netif_schedule(struct Qdisc *q)
3128 {
3129 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3130 		__netif_reschedule(q);
3131 }
3132 EXPORT_SYMBOL(__netif_schedule);
3133 
3134 struct dev_kfree_skb_cb {
3135 	enum skb_free_reason reason;
3136 };
3137 
3138 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3139 {
3140 	return (struct dev_kfree_skb_cb *)skb->cb;
3141 }
3142 
3143 void netif_schedule_queue(struct netdev_queue *txq)
3144 {
3145 	rcu_read_lock();
3146 	if (!netif_xmit_stopped(txq)) {
3147 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3148 
3149 		__netif_schedule(q);
3150 	}
3151 	rcu_read_unlock();
3152 }
3153 EXPORT_SYMBOL(netif_schedule_queue);
3154 
3155 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3156 {
3157 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3158 		struct Qdisc *q;
3159 
3160 		rcu_read_lock();
3161 		q = rcu_dereference(dev_queue->qdisc);
3162 		__netif_schedule(q);
3163 		rcu_read_unlock();
3164 	}
3165 }
3166 EXPORT_SYMBOL(netif_tx_wake_queue);
3167 
3168 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3169 {
3170 	unsigned long flags;
3171 
3172 	if (unlikely(!skb))
3173 		return;
3174 
3175 	if (likely(refcount_read(&skb->users) == 1)) {
3176 		smp_rmb();
3177 		refcount_set(&skb->users, 0);
3178 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3179 		return;
3180 	}
3181 	get_kfree_skb_cb(skb)->reason = reason;
3182 	local_irq_save(flags);
3183 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3184 	__this_cpu_write(softnet_data.completion_queue, skb);
3185 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3186 	local_irq_restore(flags);
3187 }
3188 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3189 
3190 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3191 {
3192 	if (in_irq() || irqs_disabled())
3193 		__dev_kfree_skb_irq(skb, reason);
3194 	else
3195 		dev_kfree_skb(skb);
3196 }
3197 EXPORT_SYMBOL(__dev_kfree_skb_any);
3198 
3199 
3200 /**
3201  * netif_device_detach - mark device as removed
3202  * @dev: network device
3203  *
3204  * Mark device as removed from system and therefore no longer available.
3205  */
3206 void netif_device_detach(struct net_device *dev)
3207 {
3208 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3209 	    netif_running(dev)) {
3210 		netif_tx_stop_all_queues(dev);
3211 	}
3212 }
3213 EXPORT_SYMBOL(netif_device_detach);
3214 
3215 /**
3216  * netif_device_attach - mark device as attached
3217  * @dev: network device
3218  *
3219  * Mark device as attached from system and restart if needed.
3220  */
3221 void netif_device_attach(struct net_device *dev)
3222 {
3223 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3224 	    netif_running(dev)) {
3225 		netif_tx_wake_all_queues(dev);
3226 		__netdev_watchdog_up(dev);
3227 	}
3228 }
3229 EXPORT_SYMBOL(netif_device_attach);
3230 
3231 /*
3232  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3233  * to be used as a distribution range.
3234  */
3235 static u16 skb_tx_hash(const struct net_device *dev,
3236 		       const struct net_device *sb_dev,
3237 		       struct sk_buff *skb)
3238 {
3239 	u32 hash;
3240 	u16 qoffset = 0;
3241 	u16 qcount = dev->real_num_tx_queues;
3242 
3243 	if (dev->num_tc) {
3244 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3245 
3246 		qoffset = sb_dev->tc_to_txq[tc].offset;
3247 		qcount = sb_dev->tc_to_txq[tc].count;
3248 	}
3249 
3250 	if (skb_rx_queue_recorded(skb)) {
3251 		hash = skb_get_rx_queue(skb);
3252 		if (hash >= qoffset)
3253 			hash -= qoffset;
3254 		while (unlikely(hash >= qcount))
3255 			hash -= qcount;
3256 		return hash + qoffset;
3257 	}
3258 
3259 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3260 }
3261 
3262 static void skb_warn_bad_offload(const struct sk_buff *skb)
3263 {
3264 	static const netdev_features_t null_features;
3265 	struct net_device *dev = skb->dev;
3266 	const char *name = "";
3267 
3268 	if (!net_ratelimit())
3269 		return;
3270 
3271 	if (dev) {
3272 		if (dev->dev.parent)
3273 			name = dev_driver_string(dev->dev.parent);
3274 		else
3275 			name = netdev_name(dev);
3276 	}
3277 	skb_dump(KERN_WARNING, skb, false);
3278 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3279 	     name, dev ? &dev->features : &null_features,
3280 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3281 }
3282 
3283 /*
3284  * Invalidate hardware checksum when packet is to be mangled, and
3285  * complete checksum manually on outgoing path.
3286  */
3287 int skb_checksum_help(struct sk_buff *skb)
3288 {
3289 	__wsum csum;
3290 	int ret = 0, offset;
3291 
3292 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3293 		goto out_set_summed;
3294 
3295 	if (unlikely(skb_is_gso(skb))) {
3296 		skb_warn_bad_offload(skb);
3297 		return -EINVAL;
3298 	}
3299 
3300 	/* Before computing a checksum, we should make sure no frag could
3301 	 * be modified by an external entity : checksum could be wrong.
3302 	 */
3303 	if (skb_has_shared_frag(skb)) {
3304 		ret = __skb_linearize(skb);
3305 		if (ret)
3306 			goto out;
3307 	}
3308 
3309 	offset = skb_checksum_start_offset(skb);
3310 	BUG_ON(offset >= skb_headlen(skb));
3311 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3312 
3313 	offset += skb->csum_offset;
3314 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3315 
3316 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3317 	if (ret)
3318 		goto out;
3319 
3320 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3321 out_set_summed:
3322 	skb->ip_summed = CHECKSUM_NONE;
3323 out:
3324 	return ret;
3325 }
3326 EXPORT_SYMBOL(skb_checksum_help);
3327 
3328 int skb_crc32c_csum_help(struct sk_buff *skb)
3329 {
3330 	__le32 crc32c_csum;
3331 	int ret = 0, offset, start;
3332 
3333 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3334 		goto out;
3335 
3336 	if (unlikely(skb_is_gso(skb)))
3337 		goto out;
3338 
3339 	/* Before computing a checksum, we should make sure no frag could
3340 	 * be modified by an external entity : checksum could be wrong.
3341 	 */
3342 	if (unlikely(skb_has_shared_frag(skb))) {
3343 		ret = __skb_linearize(skb);
3344 		if (ret)
3345 			goto out;
3346 	}
3347 	start = skb_checksum_start_offset(skb);
3348 	offset = start + offsetof(struct sctphdr, checksum);
3349 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3350 		ret = -EINVAL;
3351 		goto out;
3352 	}
3353 
3354 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3355 	if (ret)
3356 		goto out;
3357 
3358 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3359 						  skb->len - start, ~(__u32)0,
3360 						  crc32c_csum_stub));
3361 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3362 	skb->ip_summed = CHECKSUM_NONE;
3363 	skb->csum_not_inet = 0;
3364 out:
3365 	return ret;
3366 }
3367 
3368 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3369 {
3370 	__be16 type = skb->protocol;
3371 
3372 	/* Tunnel gso handlers can set protocol to ethernet. */
3373 	if (type == htons(ETH_P_TEB)) {
3374 		struct ethhdr *eth;
3375 
3376 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3377 			return 0;
3378 
3379 		eth = (struct ethhdr *)skb->data;
3380 		type = eth->h_proto;
3381 	}
3382 
3383 	return __vlan_get_protocol(skb, type, depth);
3384 }
3385 
3386 /**
3387  *	skb_mac_gso_segment - mac layer segmentation handler.
3388  *	@skb: buffer to segment
3389  *	@features: features for the output path (see dev->features)
3390  */
3391 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3392 				    netdev_features_t features)
3393 {
3394 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3395 	struct packet_offload *ptype;
3396 	int vlan_depth = skb->mac_len;
3397 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3398 
3399 	if (unlikely(!type))
3400 		return ERR_PTR(-EINVAL);
3401 
3402 	__skb_pull(skb, vlan_depth);
3403 
3404 	rcu_read_lock();
3405 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3406 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3407 			segs = ptype->callbacks.gso_segment(skb, features);
3408 			break;
3409 		}
3410 	}
3411 	rcu_read_unlock();
3412 
3413 	__skb_push(skb, skb->data - skb_mac_header(skb));
3414 
3415 	return segs;
3416 }
3417 EXPORT_SYMBOL(skb_mac_gso_segment);
3418 
3419 
3420 /* openvswitch calls this on rx path, so we need a different check.
3421  */
3422 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3423 {
3424 	if (tx_path)
3425 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3426 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3427 
3428 	return skb->ip_summed == CHECKSUM_NONE;
3429 }
3430 
3431 /**
3432  *	__skb_gso_segment - Perform segmentation on skb.
3433  *	@skb: buffer to segment
3434  *	@features: features for the output path (see dev->features)
3435  *	@tx_path: whether it is called in TX path
3436  *
3437  *	This function segments the given skb and returns a list of segments.
3438  *
3439  *	It may return NULL if the skb requires no segmentation.  This is
3440  *	only possible when GSO is used for verifying header integrity.
3441  *
3442  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3443  */
3444 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3445 				  netdev_features_t features, bool tx_path)
3446 {
3447 	struct sk_buff *segs;
3448 
3449 	if (unlikely(skb_needs_check(skb, tx_path))) {
3450 		int err;
3451 
3452 		/* We're going to init ->check field in TCP or UDP header */
3453 		err = skb_cow_head(skb, 0);
3454 		if (err < 0)
3455 			return ERR_PTR(err);
3456 	}
3457 
3458 	/* Only report GSO partial support if it will enable us to
3459 	 * support segmentation on this frame without needing additional
3460 	 * work.
3461 	 */
3462 	if (features & NETIF_F_GSO_PARTIAL) {
3463 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3464 		struct net_device *dev = skb->dev;
3465 
3466 		partial_features |= dev->features & dev->gso_partial_features;
3467 		if (!skb_gso_ok(skb, features | partial_features))
3468 			features &= ~NETIF_F_GSO_PARTIAL;
3469 	}
3470 
3471 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3472 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3473 
3474 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3475 	SKB_GSO_CB(skb)->encap_level = 0;
3476 
3477 	skb_reset_mac_header(skb);
3478 	skb_reset_mac_len(skb);
3479 
3480 	segs = skb_mac_gso_segment(skb, features);
3481 
3482 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3483 		skb_warn_bad_offload(skb);
3484 
3485 	return segs;
3486 }
3487 EXPORT_SYMBOL(__skb_gso_segment);
3488 
3489 /* Take action when hardware reception checksum errors are detected. */
3490 #ifdef CONFIG_BUG
3491 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3492 {
3493 	pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3494 	skb_dump(KERN_ERR, skb, true);
3495 	dump_stack();
3496 }
3497 
3498 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3499 {
3500 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3501 }
3502 EXPORT_SYMBOL(netdev_rx_csum_fault);
3503 #endif
3504 
3505 /* XXX: check that highmem exists at all on the given machine. */
3506 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3507 {
3508 #ifdef CONFIG_HIGHMEM
3509 	int i;
3510 
3511 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3512 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3513 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3514 
3515 			if (PageHighMem(skb_frag_page(frag)))
3516 				return 1;
3517 		}
3518 	}
3519 #endif
3520 	return 0;
3521 }
3522 
3523 /* If MPLS offload request, verify we are testing hardware MPLS features
3524  * instead of standard features for the netdev.
3525  */
3526 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3527 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3528 					   netdev_features_t features,
3529 					   __be16 type)
3530 {
3531 	if (eth_p_mpls(type))
3532 		features &= skb->dev->mpls_features;
3533 
3534 	return features;
3535 }
3536 #else
3537 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3538 					   netdev_features_t features,
3539 					   __be16 type)
3540 {
3541 	return features;
3542 }
3543 #endif
3544 
3545 static netdev_features_t harmonize_features(struct sk_buff *skb,
3546 	netdev_features_t features)
3547 {
3548 	__be16 type;
3549 
3550 	type = skb_network_protocol(skb, NULL);
3551 	features = net_mpls_features(skb, features, type);
3552 
3553 	if (skb->ip_summed != CHECKSUM_NONE &&
3554 	    !can_checksum_protocol(features, type)) {
3555 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3556 	}
3557 	if (illegal_highdma(skb->dev, skb))
3558 		features &= ~NETIF_F_SG;
3559 
3560 	return features;
3561 }
3562 
3563 netdev_features_t passthru_features_check(struct sk_buff *skb,
3564 					  struct net_device *dev,
3565 					  netdev_features_t features)
3566 {
3567 	return features;
3568 }
3569 EXPORT_SYMBOL(passthru_features_check);
3570 
3571 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3572 					     struct net_device *dev,
3573 					     netdev_features_t features)
3574 {
3575 	return vlan_features_check(skb, features);
3576 }
3577 
3578 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3579 					    struct net_device *dev,
3580 					    netdev_features_t features)
3581 {
3582 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3583 
3584 	if (gso_segs > dev->gso_max_segs)
3585 		return features & ~NETIF_F_GSO_MASK;
3586 
3587 	if (!skb_shinfo(skb)->gso_type) {
3588 		skb_warn_bad_offload(skb);
3589 		return features & ~NETIF_F_GSO_MASK;
3590 	}
3591 
3592 	/* Support for GSO partial features requires software
3593 	 * intervention before we can actually process the packets
3594 	 * so we need to strip support for any partial features now
3595 	 * and we can pull them back in after we have partially
3596 	 * segmented the frame.
3597 	 */
3598 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3599 		features &= ~dev->gso_partial_features;
3600 
3601 	/* Make sure to clear the IPv4 ID mangling feature if the
3602 	 * IPv4 header has the potential to be fragmented.
3603 	 */
3604 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3605 		struct iphdr *iph = skb->encapsulation ?
3606 				    inner_ip_hdr(skb) : ip_hdr(skb);
3607 
3608 		if (!(iph->frag_off & htons(IP_DF)))
3609 			features &= ~NETIF_F_TSO_MANGLEID;
3610 	}
3611 
3612 	return features;
3613 }
3614 
3615 netdev_features_t netif_skb_features(struct sk_buff *skb)
3616 {
3617 	struct net_device *dev = skb->dev;
3618 	netdev_features_t features = dev->features;
3619 
3620 	if (skb_is_gso(skb))
3621 		features = gso_features_check(skb, dev, features);
3622 
3623 	/* If encapsulation offload request, verify we are testing
3624 	 * hardware encapsulation features instead of standard
3625 	 * features for the netdev
3626 	 */
3627 	if (skb->encapsulation)
3628 		features &= dev->hw_enc_features;
3629 
3630 	if (skb_vlan_tagged(skb))
3631 		features = netdev_intersect_features(features,
3632 						     dev->vlan_features |
3633 						     NETIF_F_HW_VLAN_CTAG_TX |
3634 						     NETIF_F_HW_VLAN_STAG_TX);
3635 
3636 	if (dev->netdev_ops->ndo_features_check)
3637 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3638 								features);
3639 	else
3640 		features &= dflt_features_check(skb, dev, features);
3641 
3642 	return harmonize_features(skb, features);
3643 }
3644 EXPORT_SYMBOL(netif_skb_features);
3645 
3646 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3647 		    struct netdev_queue *txq, bool more)
3648 {
3649 	unsigned int len;
3650 	int rc;
3651 
3652 	if (dev_nit_active(dev))
3653 		dev_queue_xmit_nit(skb, dev);
3654 
3655 	len = skb->len;
3656 	PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3657 	trace_net_dev_start_xmit(skb, dev);
3658 	rc = netdev_start_xmit(skb, dev, txq, more);
3659 	trace_net_dev_xmit(skb, rc, dev, len);
3660 
3661 	return rc;
3662 }
3663 
3664 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3665 				    struct netdev_queue *txq, int *ret)
3666 {
3667 	struct sk_buff *skb = first;
3668 	int rc = NETDEV_TX_OK;
3669 
3670 	while (skb) {
3671 		struct sk_buff *next = skb->next;
3672 
3673 		skb_mark_not_on_list(skb);
3674 		rc = xmit_one(skb, dev, txq, next != NULL);
3675 		if (unlikely(!dev_xmit_complete(rc))) {
3676 			skb->next = next;
3677 			goto out;
3678 		}
3679 
3680 		skb = next;
3681 		if (netif_tx_queue_stopped(txq) && skb) {
3682 			rc = NETDEV_TX_BUSY;
3683 			break;
3684 		}
3685 	}
3686 
3687 out:
3688 	*ret = rc;
3689 	return skb;
3690 }
3691 
3692 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3693 					  netdev_features_t features)
3694 {
3695 	if (skb_vlan_tag_present(skb) &&
3696 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3697 		skb = __vlan_hwaccel_push_inside(skb);
3698 	return skb;
3699 }
3700 
3701 int skb_csum_hwoffload_help(struct sk_buff *skb,
3702 			    const netdev_features_t features)
3703 {
3704 	if (unlikely(skb_csum_is_sctp(skb)))
3705 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3706 			skb_crc32c_csum_help(skb);
3707 
3708 	if (features & NETIF_F_HW_CSUM)
3709 		return 0;
3710 
3711 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3712 		switch (skb->csum_offset) {
3713 		case offsetof(struct tcphdr, check):
3714 		case offsetof(struct udphdr, check):
3715 			return 0;
3716 		}
3717 	}
3718 
3719 	return skb_checksum_help(skb);
3720 }
3721 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3722 
3723 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3724 {
3725 	netdev_features_t features;
3726 
3727 	features = netif_skb_features(skb);
3728 	skb = validate_xmit_vlan(skb, features);
3729 	if (unlikely(!skb))
3730 		goto out_null;
3731 
3732 	skb = sk_validate_xmit_skb(skb, dev);
3733 	if (unlikely(!skb))
3734 		goto out_null;
3735 
3736 	if (netif_needs_gso(skb, features)) {
3737 		struct sk_buff *segs;
3738 
3739 		segs = skb_gso_segment(skb, features);
3740 		if (IS_ERR(segs)) {
3741 			goto out_kfree_skb;
3742 		} else if (segs) {
3743 			consume_skb(skb);
3744 			skb = segs;
3745 		}
3746 	} else {
3747 		if (skb_needs_linearize(skb, features) &&
3748 		    __skb_linearize(skb))
3749 			goto out_kfree_skb;
3750 
3751 		/* If packet is not checksummed and device does not
3752 		 * support checksumming for this protocol, complete
3753 		 * checksumming here.
3754 		 */
3755 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3756 			if (skb->encapsulation)
3757 				skb_set_inner_transport_header(skb,
3758 							       skb_checksum_start_offset(skb));
3759 			else
3760 				skb_set_transport_header(skb,
3761 							 skb_checksum_start_offset(skb));
3762 			if (skb_csum_hwoffload_help(skb, features))
3763 				goto out_kfree_skb;
3764 		}
3765 	}
3766 
3767 	skb = validate_xmit_xfrm(skb, features, again);
3768 
3769 	return skb;
3770 
3771 out_kfree_skb:
3772 	kfree_skb(skb);
3773 out_null:
3774 	atomic_long_inc(&dev->tx_dropped);
3775 	return NULL;
3776 }
3777 
3778 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3779 {
3780 	struct sk_buff *next, *head = NULL, *tail;
3781 
3782 	for (; skb != NULL; skb = next) {
3783 		next = skb->next;
3784 		skb_mark_not_on_list(skb);
3785 
3786 		/* in case skb wont be segmented, point to itself */
3787 		skb->prev = skb;
3788 
3789 		skb = validate_xmit_skb(skb, dev, again);
3790 		if (!skb)
3791 			continue;
3792 
3793 		if (!head)
3794 			head = skb;
3795 		else
3796 			tail->next = skb;
3797 		/* If skb was segmented, skb->prev points to
3798 		 * the last segment. If not, it still contains skb.
3799 		 */
3800 		tail = skb->prev;
3801 	}
3802 	return head;
3803 }
3804 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3805 
3806 static void qdisc_pkt_len_init(struct sk_buff *skb)
3807 {
3808 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3809 
3810 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3811 
3812 	/* To get more precise estimation of bytes sent on wire,
3813 	 * we add to pkt_len the headers size of all segments
3814 	 */
3815 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3816 		unsigned int hdr_len;
3817 		u16 gso_segs = shinfo->gso_segs;
3818 
3819 		/* mac layer + network layer */
3820 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3821 
3822 		/* + transport layer */
3823 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3824 			const struct tcphdr *th;
3825 			struct tcphdr _tcphdr;
3826 
3827 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3828 						sizeof(_tcphdr), &_tcphdr);
3829 			if (likely(th))
3830 				hdr_len += __tcp_hdrlen(th);
3831 		} else {
3832 			struct udphdr _udphdr;
3833 
3834 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3835 					       sizeof(_udphdr), &_udphdr))
3836 				hdr_len += sizeof(struct udphdr);
3837 		}
3838 
3839 		if (shinfo->gso_type & SKB_GSO_DODGY)
3840 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3841 						shinfo->gso_size);
3842 
3843 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3844 	}
3845 }
3846 
3847 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3848 				 struct net_device *dev,
3849 				 struct netdev_queue *txq)
3850 {
3851 	spinlock_t *root_lock = qdisc_lock(q);
3852 	struct sk_buff *to_free = NULL;
3853 	bool contended;
3854 	int rc;
3855 
3856 	qdisc_calculate_pkt_len(skb, q);
3857 
3858 	if (q->flags & TCQ_F_NOLOCK) {
3859 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3860 		    qdisc_run_begin(q)) {
3861 			/* Retest nolock_qdisc_is_empty() within the protection
3862 			 * of q->seqlock to protect from racing with requeuing.
3863 			 */
3864 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3865 				rc = q->enqueue(skb, q, &to_free) &
3866 					NET_XMIT_MASK;
3867 				__qdisc_run(q);
3868 				qdisc_run_end(q);
3869 
3870 				goto no_lock_out;
3871 			}
3872 
3873 			qdisc_bstats_cpu_update(q, skb);
3874 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3875 			    !nolock_qdisc_is_empty(q))
3876 				__qdisc_run(q);
3877 
3878 			qdisc_run_end(q);
3879 			return NET_XMIT_SUCCESS;
3880 		}
3881 
3882 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3883 		qdisc_run(q);
3884 
3885 no_lock_out:
3886 		if (unlikely(to_free))
3887 			kfree_skb_list(to_free);
3888 		return rc;
3889 	}
3890 
3891 	/*
3892 	 * Heuristic to force contended enqueues to serialize on a
3893 	 * separate lock before trying to get qdisc main lock.
3894 	 * This permits qdisc->running owner to get the lock more
3895 	 * often and dequeue packets faster.
3896 	 */
3897 	contended = qdisc_is_running(q);
3898 	if (unlikely(contended))
3899 		spin_lock(&q->busylock);
3900 
3901 	spin_lock(root_lock);
3902 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3903 		__qdisc_drop(skb, &to_free);
3904 		rc = NET_XMIT_DROP;
3905 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3906 		   qdisc_run_begin(q)) {
3907 		/*
3908 		 * This is a work-conserving queue; there are no old skbs
3909 		 * waiting to be sent out; and the qdisc is not running -
3910 		 * xmit the skb directly.
3911 		 */
3912 
3913 		qdisc_bstats_update(q, skb);
3914 
3915 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3916 			if (unlikely(contended)) {
3917 				spin_unlock(&q->busylock);
3918 				contended = false;
3919 			}
3920 			__qdisc_run(q);
3921 		}
3922 
3923 		qdisc_run_end(q);
3924 		rc = NET_XMIT_SUCCESS;
3925 	} else {
3926 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3927 		if (qdisc_run_begin(q)) {
3928 			if (unlikely(contended)) {
3929 				spin_unlock(&q->busylock);
3930 				contended = false;
3931 			}
3932 			__qdisc_run(q);
3933 			qdisc_run_end(q);
3934 		}
3935 	}
3936 	spin_unlock(root_lock);
3937 	if (unlikely(to_free))
3938 		kfree_skb_list(to_free);
3939 	if (unlikely(contended))
3940 		spin_unlock(&q->busylock);
3941 	return rc;
3942 }
3943 
3944 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3945 static void skb_update_prio(struct sk_buff *skb)
3946 {
3947 	const struct netprio_map *map;
3948 	const struct sock *sk;
3949 	unsigned int prioidx;
3950 
3951 	if (skb->priority)
3952 		return;
3953 	map = rcu_dereference_bh(skb->dev->priomap);
3954 	if (!map)
3955 		return;
3956 	sk = skb_to_full_sk(skb);
3957 	if (!sk)
3958 		return;
3959 
3960 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3961 
3962 	if (prioidx < map->priomap_len)
3963 		skb->priority = map->priomap[prioidx];
3964 }
3965 #else
3966 #define skb_update_prio(skb)
3967 #endif
3968 
3969 /**
3970  *	dev_loopback_xmit - loop back @skb
3971  *	@net: network namespace this loopback is happening in
3972  *	@sk:  sk needed to be a netfilter okfn
3973  *	@skb: buffer to transmit
3974  */
3975 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3976 {
3977 	skb_reset_mac_header(skb);
3978 	__skb_pull(skb, skb_network_offset(skb));
3979 	skb->pkt_type = PACKET_LOOPBACK;
3980 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3981 	WARN_ON(!skb_dst(skb));
3982 	skb_dst_force(skb);
3983 	netif_rx_ni(skb);
3984 	return 0;
3985 }
3986 EXPORT_SYMBOL(dev_loopback_xmit);
3987 
3988 #ifdef CONFIG_NET_EGRESS
3989 static struct sk_buff *
3990 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3991 {
3992 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3993 	struct tcf_result cl_res;
3994 
3995 	if (!miniq)
3996 		return skb;
3997 
3998 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3999 	qdisc_skb_cb(skb)->mru = 0;
4000 	qdisc_skb_cb(skb)->post_ct = false;
4001 	mini_qdisc_bstats_cpu_update(miniq, skb);
4002 
4003 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4004 	case TC_ACT_OK:
4005 	case TC_ACT_RECLASSIFY:
4006 		skb->tc_index = TC_H_MIN(cl_res.classid);
4007 		break;
4008 	case TC_ACT_SHOT:
4009 		mini_qdisc_qstats_cpu_drop(miniq);
4010 		*ret = NET_XMIT_DROP;
4011 		kfree_skb(skb);
4012 		return NULL;
4013 	case TC_ACT_STOLEN:
4014 	case TC_ACT_QUEUED:
4015 	case TC_ACT_TRAP:
4016 		*ret = NET_XMIT_SUCCESS;
4017 		consume_skb(skb);
4018 		return NULL;
4019 	case TC_ACT_REDIRECT:
4020 		/* No need to push/pop skb's mac_header here on egress! */
4021 		skb_do_redirect(skb);
4022 		*ret = NET_XMIT_SUCCESS;
4023 		return NULL;
4024 	default:
4025 		break;
4026 	}
4027 
4028 	return skb;
4029 }
4030 #endif /* CONFIG_NET_EGRESS */
4031 
4032 #ifdef CONFIG_XPS
4033 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4034 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4035 {
4036 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4037 	struct xps_map *map;
4038 	int queue_index = -1;
4039 
4040 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4041 		return queue_index;
4042 
4043 	tci *= dev_maps->num_tc;
4044 	tci += tc;
4045 
4046 	map = rcu_dereference(dev_maps->attr_map[tci]);
4047 	if (map) {
4048 		if (map->len == 1)
4049 			queue_index = map->queues[0];
4050 		else
4051 			queue_index = map->queues[reciprocal_scale(
4052 						skb_get_hash(skb), map->len)];
4053 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4054 			queue_index = -1;
4055 	}
4056 	return queue_index;
4057 }
4058 #endif
4059 
4060 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4061 			 struct sk_buff *skb)
4062 {
4063 #ifdef CONFIG_XPS
4064 	struct xps_dev_maps *dev_maps;
4065 	struct sock *sk = skb->sk;
4066 	int queue_index = -1;
4067 
4068 	if (!static_key_false(&xps_needed))
4069 		return -1;
4070 
4071 	rcu_read_lock();
4072 	if (!static_key_false(&xps_rxqs_needed))
4073 		goto get_cpus_map;
4074 
4075 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4076 	if (dev_maps) {
4077 		int tci = sk_rx_queue_get(sk);
4078 
4079 		if (tci >= 0)
4080 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4081 							  tci);
4082 	}
4083 
4084 get_cpus_map:
4085 	if (queue_index < 0) {
4086 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4087 		if (dev_maps) {
4088 			unsigned int tci = skb->sender_cpu - 1;
4089 
4090 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4091 							  tci);
4092 		}
4093 	}
4094 	rcu_read_unlock();
4095 
4096 	return queue_index;
4097 #else
4098 	return -1;
4099 #endif
4100 }
4101 
4102 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4103 		     struct net_device *sb_dev)
4104 {
4105 	return 0;
4106 }
4107 EXPORT_SYMBOL(dev_pick_tx_zero);
4108 
4109 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4110 		       struct net_device *sb_dev)
4111 {
4112 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4113 }
4114 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4115 
4116 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4117 		     struct net_device *sb_dev)
4118 {
4119 	struct sock *sk = skb->sk;
4120 	int queue_index = sk_tx_queue_get(sk);
4121 
4122 	sb_dev = sb_dev ? : dev;
4123 
4124 	if (queue_index < 0 || skb->ooo_okay ||
4125 	    queue_index >= dev->real_num_tx_queues) {
4126 		int new_index = get_xps_queue(dev, sb_dev, skb);
4127 
4128 		if (new_index < 0)
4129 			new_index = skb_tx_hash(dev, sb_dev, skb);
4130 
4131 		if (queue_index != new_index && sk &&
4132 		    sk_fullsock(sk) &&
4133 		    rcu_access_pointer(sk->sk_dst_cache))
4134 			sk_tx_queue_set(sk, new_index);
4135 
4136 		queue_index = new_index;
4137 	}
4138 
4139 	return queue_index;
4140 }
4141 EXPORT_SYMBOL(netdev_pick_tx);
4142 
4143 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4144 					 struct sk_buff *skb,
4145 					 struct net_device *sb_dev)
4146 {
4147 	int queue_index = 0;
4148 
4149 #ifdef CONFIG_XPS
4150 	u32 sender_cpu = skb->sender_cpu - 1;
4151 
4152 	if (sender_cpu >= (u32)NR_CPUS)
4153 		skb->sender_cpu = raw_smp_processor_id() + 1;
4154 #endif
4155 
4156 	if (dev->real_num_tx_queues != 1) {
4157 		const struct net_device_ops *ops = dev->netdev_ops;
4158 
4159 		if (ops->ndo_select_queue)
4160 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4161 		else
4162 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4163 
4164 		queue_index = netdev_cap_txqueue(dev, queue_index);
4165 	}
4166 
4167 	skb_set_queue_mapping(skb, queue_index);
4168 	return netdev_get_tx_queue(dev, queue_index);
4169 }
4170 
4171 /**
4172  *	__dev_queue_xmit - transmit a buffer
4173  *	@skb: buffer to transmit
4174  *	@sb_dev: suboordinate device used for L2 forwarding offload
4175  *
4176  *	Queue a buffer for transmission to a network device. The caller must
4177  *	have set the device and priority and built the buffer before calling
4178  *	this function. The function can be called from an interrupt.
4179  *
4180  *	A negative errno code is returned on a failure. A success does not
4181  *	guarantee the frame will be transmitted as it may be dropped due
4182  *	to congestion or traffic shaping.
4183  *
4184  * -----------------------------------------------------------------------------------
4185  *      I notice this method can also return errors from the queue disciplines,
4186  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4187  *      be positive.
4188  *
4189  *      Regardless of the return value, the skb is consumed, so it is currently
4190  *      difficult to retry a send to this method.  (You can bump the ref count
4191  *      before sending to hold a reference for retry if you are careful.)
4192  *
4193  *      When calling this method, interrupts MUST be enabled.  This is because
4194  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4195  *          --BLG
4196  */
4197 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4198 {
4199 	struct net_device *dev = skb->dev;
4200 	struct netdev_queue *txq;
4201 	struct Qdisc *q;
4202 	int rc = -ENOMEM;
4203 	bool again = false;
4204 
4205 	skb_reset_mac_header(skb);
4206 
4207 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4208 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4209 
4210 	/* Disable soft irqs for various locks below. Also
4211 	 * stops preemption for RCU.
4212 	 */
4213 	rcu_read_lock_bh();
4214 
4215 	skb_update_prio(skb);
4216 
4217 	qdisc_pkt_len_init(skb);
4218 #ifdef CONFIG_NET_CLS_ACT
4219 	skb->tc_at_ingress = 0;
4220 # ifdef CONFIG_NET_EGRESS
4221 	if (static_branch_unlikely(&egress_needed_key)) {
4222 		skb = sch_handle_egress(skb, &rc, dev);
4223 		if (!skb)
4224 			goto out;
4225 	}
4226 # endif
4227 #endif
4228 	/* If device/qdisc don't need skb->dst, release it right now while
4229 	 * its hot in this cpu cache.
4230 	 */
4231 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4232 		skb_dst_drop(skb);
4233 	else
4234 		skb_dst_force(skb);
4235 
4236 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4237 	q = rcu_dereference_bh(txq->qdisc);
4238 
4239 	trace_net_dev_queue(skb);
4240 	if (q->enqueue) {
4241 		rc = __dev_xmit_skb(skb, q, dev, txq);
4242 		goto out;
4243 	}
4244 
4245 	/* The device has no queue. Common case for software devices:
4246 	 * loopback, all the sorts of tunnels...
4247 
4248 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4249 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4250 	 * counters.)
4251 	 * However, it is possible, that they rely on protection
4252 	 * made by us here.
4253 
4254 	 * Check this and shot the lock. It is not prone from deadlocks.
4255 	 *Either shot noqueue qdisc, it is even simpler 8)
4256 	 */
4257 	if (dev->flags & IFF_UP) {
4258 		int cpu = smp_processor_id(); /* ok because BHs are off */
4259 
4260 		if (txq->xmit_lock_owner != cpu) {
4261 			if (dev_xmit_recursion())
4262 				goto recursion_alert;
4263 
4264 			skb = validate_xmit_skb(skb, dev, &again);
4265 			if (!skb)
4266 				goto out;
4267 
4268 			PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4269 			HARD_TX_LOCK(dev, txq, cpu);
4270 
4271 			if (!netif_xmit_stopped(txq)) {
4272 				dev_xmit_recursion_inc();
4273 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4274 				dev_xmit_recursion_dec();
4275 				if (dev_xmit_complete(rc)) {
4276 					HARD_TX_UNLOCK(dev, txq);
4277 					goto out;
4278 				}
4279 			}
4280 			HARD_TX_UNLOCK(dev, txq);
4281 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4282 					     dev->name);
4283 		} else {
4284 			/* Recursion is detected! It is possible,
4285 			 * unfortunately
4286 			 */
4287 recursion_alert:
4288 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4289 					     dev->name);
4290 		}
4291 	}
4292 
4293 	rc = -ENETDOWN;
4294 	rcu_read_unlock_bh();
4295 
4296 	atomic_long_inc(&dev->tx_dropped);
4297 	kfree_skb_list(skb);
4298 	return rc;
4299 out:
4300 	rcu_read_unlock_bh();
4301 	return rc;
4302 }
4303 
4304 int dev_queue_xmit(struct sk_buff *skb)
4305 {
4306 	return __dev_queue_xmit(skb, NULL);
4307 }
4308 EXPORT_SYMBOL(dev_queue_xmit);
4309 
4310 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4311 {
4312 	return __dev_queue_xmit(skb, sb_dev);
4313 }
4314 EXPORT_SYMBOL(dev_queue_xmit_accel);
4315 
4316 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4317 {
4318 	struct net_device *dev = skb->dev;
4319 	struct sk_buff *orig_skb = skb;
4320 	struct netdev_queue *txq;
4321 	int ret = NETDEV_TX_BUSY;
4322 	bool again = false;
4323 
4324 	if (unlikely(!netif_running(dev) ||
4325 		     !netif_carrier_ok(dev)))
4326 		goto drop;
4327 
4328 	skb = validate_xmit_skb_list(skb, dev, &again);
4329 	if (skb != orig_skb)
4330 		goto drop;
4331 
4332 	skb_set_queue_mapping(skb, queue_id);
4333 	txq = skb_get_tx_queue(dev, skb);
4334 	PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4335 
4336 	local_bh_disable();
4337 
4338 	dev_xmit_recursion_inc();
4339 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4340 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4341 		ret = netdev_start_xmit(skb, dev, txq, false);
4342 	HARD_TX_UNLOCK(dev, txq);
4343 	dev_xmit_recursion_dec();
4344 
4345 	local_bh_enable();
4346 	return ret;
4347 drop:
4348 	atomic_long_inc(&dev->tx_dropped);
4349 	kfree_skb_list(skb);
4350 	return NET_XMIT_DROP;
4351 }
4352 EXPORT_SYMBOL(__dev_direct_xmit);
4353 
4354 /*************************************************************************
4355  *			Receiver routines
4356  *************************************************************************/
4357 
4358 int netdev_max_backlog __read_mostly = 1000;
4359 EXPORT_SYMBOL(netdev_max_backlog);
4360 
4361 int netdev_tstamp_prequeue __read_mostly = 1;
4362 int netdev_budget __read_mostly = 300;
4363 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4364 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4365 int weight_p __read_mostly = 64;           /* old backlog weight */
4366 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4367 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4368 int dev_rx_weight __read_mostly = 64;
4369 int dev_tx_weight __read_mostly = 64;
4370 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4371 int gro_normal_batch __read_mostly = 8;
4372 
4373 /* Called with irq disabled */
4374 static inline void ____napi_schedule(struct softnet_data *sd,
4375 				     struct napi_struct *napi)
4376 {
4377 	struct task_struct *thread;
4378 
4379 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4380 		/* Paired with smp_mb__before_atomic() in
4381 		 * napi_enable()/dev_set_threaded().
4382 		 * Use READ_ONCE() to guarantee a complete
4383 		 * read on napi->thread. Only call
4384 		 * wake_up_process() when it's not NULL.
4385 		 */
4386 		thread = READ_ONCE(napi->thread);
4387 		if (thread) {
4388 			/* Avoid doing set_bit() if the thread is in
4389 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4390 			 * makes sure to proceed with napi polling
4391 			 * if the thread is explicitly woken from here.
4392 			 */
4393 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4394 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4395 			wake_up_process(thread);
4396 			return;
4397 		}
4398 	}
4399 
4400 	list_add_tail(&napi->poll_list, &sd->poll_list);
4401 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4402 }
4403 
4404 #ifdef CONFIG_RPS
4405 
4406 /* One global table that all flow-based protocols share. */
4407 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4408 EXPORT_SYMBOL(rps_sock_flow_table);
4409 u32 rps_cpu_mask __read_mostly;
4410 EXPORT_SYMBOL(rps_cpu_mask);
4411 
4412 struct static_key_false rps_needed __read_mostly;
4413 EXPORT_SYMBOL(rps_needed);
4414 struct static_key_false rfs_needed __read_mostly;
4415 EXPORT_SYMBOL(rfs_needed);
4416 
4417 static struct rps_dev_flow *
4418 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4419 	    struct rps_dev_flow *rflow, u16 next_cpu)
4420 {
4421 	if (next_cpu < nr_cpu_ids) {
4422 #ifdef CONFIG_RFS_ACCEL
4423 		struct netdev_rx_queue *rxqueue;
4424 		struct rps_dev_flow_table *flow_table;
4425 		struct rps_dev_flow *old_rflow;
4426 		u32 flow_id;
4427 		u16 rxq_index;
4428 		int rc;
4429 
4430 		/* Should we steer this flow to a different hardware queue? */
4431 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4432 		    !(dev->features & NETIF_F_NTUPLE))
4433 			goto out;
4434 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4435 		if (rxq_index == skb_get_rx_queue(skb))
4436 			goto out;
4437 
4438 		rxqueue = dev->_rx + rxq_index;
4439 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4440 		if (!flow_table)
4441 			goto out;
4442 		flow_id = skb_get_hash(skb) & flow_table->mask;
4443 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4444 							rxq_index, flow_id);
4445 		if (rc < 0)
4446 			goto out;
4447 		old_rflow = rflow;
4448 		rflow = &flow_table->flows[flow_id];
4449 		rflow->filter = rc;
4450 		if (old_rflow->filter == rflow->filter)
4451 			old_rflow->filter = RPS_NO_FILTER;
4452 	out:
4453 #endif
4454 		rflow->last_qtail =
4455 			per_cpu(softnet_data, next_cpu).input_queue_head;
4456 	}
4457 
4458 	rflow->cpu = next_cpu;
4459 	return rflow;
4460 }
4461 
4462 /*
4463  * get_rps_cpu is called from netif_receive_skb and returns the target
4464  * CPU from the RPS map of the receiving queue for a given skb.
4465  * rcu_read_lock must be held on entry.
4466  */
4467 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4468 		       struct rps_dev_flow **rflowp)
4469 {
4470 	const struct rps_sock_flow_table *sock_flow_table;
4471 	struct netdev_rx_queue *rxqueue = dev->_rx;
4472 	struct rps_dev_flow_table *flow_table;
4473 	struct rps_map *map;
4474 	int cpu = -1;
4475 	u32 tcpu;
4476 	u32 hash;
4477 
4478 	if (skb_rx_queue_recorded(skb)) {
4479 		u16 index = skb_get_rx_queue(skb);
4480 
4481 		if (unlikely(index >= dev->real_num_rx_queues)) {
4482 			WARN_ONCE(dev->real_num_rx_queues > 1,
4483 				  "%s received packet on queue %u, but number "
4484 				  "of RX queues is %u\n",
4485 				  dev->name, index, dev->real_num_rx_queues);
4486 			goto done;
4487 		}
4488 		rxqueue += index;
4489 	}
4490 
4491 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4492 
4493 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4494 	map = rcu_dereference(rxqueue->rps_map);
4495 	if (!flow_table && !map)
4496 		goto done;
4497 
4498 	skb_reset_network_header(skb);
4499 	hash = skb_get_hash(skb);
4500 	if (!hash)
4501 		goto done;
4502 
4503 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4504 	if (flow_table && sock_flow_table) {
4505 		struct rps_dev_flow *rflow;
4506 		u32 next_cpu;
4507 		u32 ident;
4508 
4509 		/* First check into global flow table if there is a match */
4510 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4511 		if ((ident ^ hash) & ~rps_cpu_mask)
4512 			goto try_rps;
4513 
4514 		next_cpu = ident & rps_cpu_mask;
4515 
4516 		/* OK, now we know there is a match,
4517 		 * we can look at the local (per receive queue) flow table
4518 		 */
4519 		rflow = &flow_table->flows[hash & flow_table->mask];
4520 		tcpu = rflow->cpu;
4521 
4522 		/*
4523 		 * If the desired CPU (where last recvmsg was done) is
4524 		 * different from current CPU (one in the rx-queue flow
4525 		 * table entry), switch if one of the following holds:
4526 		 *   - Current CPU is unset (>= nr_cpu_ids).
4527 		 *   - Current CPU is offline.
4528 		 *   - The current CPU's queue tail has advanced beyond the
4529 		 *     last packet that was enqueued using this table entry.
4530 		 *     This guarantees that all previous packets for the flow
4531 		 *     have been dequeued, thus preserving in order delivery.
4532 		 */
4533 		if (unlikely(tcpu != next_cpu) &&
4534 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4535 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4536 		      rflow->last_qtail)) >= 0)) {
4537 			tcpu = next_cpu;
4538 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4539 		}
4540 
4541 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4542 			*rflowp = rflow;
4543 			cpu = tcpu;
4544 			goto done;
4545 		}
4546 	}
4547 
4548 try_rps:
4549 
4550 	if (map) {
4551 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4552 		if (cpu_online(tcpu)) {
4553 			cpu = tcpu;
4554 			goto done;
4555 		}
4556 	}
4557 
4558 done:
4559 	return cpu;
4560 }
4561 
4562 #ifdef CONFIG_RFS_ACCEL
4563 
4564 /**
4565  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4566  * @dev: Device on which the filter was set
4567  * @rxq_index: RX queue index
4568  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4569  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4570  *
4571  * Drivers that implement ndo_rx_flow_steer() should periodically call
4572  * this function for each installed filter and remove the filters for
4573  * which it returns %true.
4574  */
4575 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4576 			 u32 flow_id, u16 filter_id)
4577 {
4578 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4579 	struct rps_dev_flow_table *flow_table;
4580 	struct rps_dev_flow *rflow;
4581 	bool expire = true;
4582 	unsigned int cpu;
4583 
4584 	rcu_read_lock();
4585 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4586 	if (flow_table && flow_id <= flow_table->mask) {
4587 		rflow = &flow_table->flows[flow_id];
4588 		cpu = READ_ONCE(rflow->cpu);
4589 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4590 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4591 			   rflow->last_qtail) <
4592 		     (int)(10 * flow_table->mask)))
4593 			expire = false;
4594 	}
4595 	rcu_read_unlock();
4596 	return expire;
4597 }
4598 EXPORT_SYMBOL(rps_may_expire_flow);
4599 
4600 #endif /* CONFIG_RFS_ACCEL */
4601 
4602 /* Called from hardirq (IPI) context */
4603 static void rps_trigger_softirq(void *data)
4604 {
4605 	struct softnet_data *sd = data;
4606 
4607 	____napi_schedule(sd, &sd->backlog);
4608 	sd->received_rps++;
4609 }
4610 
4611 #endif /* CONFIG_RPS */
4612 
4613 /*
4614  * Check if this softnet_data structure is another cpu one
4615  * If yes, queue it to our IPI list and return 1
4616  * If no, return 0
4617  */
4618 static int rps_ipi_queued(struct softnet_data *sd)
4619 {
4620 #ifdef CONFIG_RPS
4621 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4622 
4623 	if (sd != mysd) {
4624 		sd->rps_ipi_next = mysd->rps_ipi_list;
4625 		mysd->rps_ipi_list = sd;
4626 
4627 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4628 		return 1;
4629 	}
4630 #endif /* CONFIG_RPS */
4631 	return 0;
4632 }
4633 
4634 #ifdef CONFIG_NET_FLOW_LIMIT
4635 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4636 #endif
4637 
4638 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4639 {
4640 #ifdef CONFIG_NET_FLOW_LIMIT
4641 	struct sd_flow_limit *fl;
4642 	struct softnet_data *sd;
4643 	unsigned int old_flow, new_flow;
4644 
4645 	if (qlen < (netdev_max_backlog >> 1))
4646 		return false;
4647 
4648 	sd = this_cpu_ptr(&softnet_data);
4649 
4650 	rcu_read_lock();
4651 	fl = rcu_dereference(sd->flow_limit);
4652 	if (fl) {
4653 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4654 		old_flow = fl->history[fl->history_head];
4655 		fl->history[fl->history_head] = new_flow;
4656 
4657 		fl->history_head++;
4658 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4659 
4660 		if (likely(fl->buckets[old_flow]))
4661 			fl->buckets[old_flow]--;
4662 
4663 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4664 			fl->count++;
4665 			rcu_read_unlock();
4666 			return true;
4667 		}
4668 	}
4669 	rcu_read_unlock();
4670 #endif
4671 	return false;
4672 }
4673 
4674 /*
4675  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4676  * queue (may be a remote CPU queue).
4677  */
4678 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4679 			      unsigned int *qtail)
4680 {
4681 	struct softnet_data *sd;
4682 	unsigned long flags;
4683 	unsigned int qlen;
4684 
4685 	sd = &per_cpu(softnet_data, cpu);
4686 
4687 	local_irq_save(flags);
4688 
4689 	rps_lock(sd);
4690 	if (!netif_running(skb->dev))
4691 		goto drop;
4692 	qlen = skb_queue_len(&sd->input_pkt_queue);
4693 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4694 		if (qlen) {
4695 enqueue:
4696 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4697 			input_queue_tail_incr_save(sd, qtail);
4698 			rps_unlock(sd);
4699 			local_irq_restore(flags);
4700 			return NET_RX_SUCCESS;
4701 		}
4702 
4703 		/* Schedule NAPI for backlog device
4704 		 * We can use non atomic operation since we own the queue lock
4705 		 */
4706 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4707 			if (!rps_ipi_queued(sd))
4708 				____napi_schedule(sd, &sd->backlog);
4709 		}
4710 		goto enqueue;
4711 	}
4712 
4713 drop:
4714 	sd->dropped++;
4715 	rps_unlock(sd);
4716 
4717 	local_irq_restore(flags);
4718 
4719 	atomic_long_inc(&skb->dev->rx_dropped);
4720 	kfree_skb(skb);
4721 	return NET_RX_DROP;
4722 }
4723 
4724 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4725 {
4726 	struct net_device *dev = skb->dev;
4727 	struct netdev_rx_queue *rxqueue;
4728 
4729 	rxqueue = dev->_rx;
4730 
4731 	if (skb_rx_queue_recorded(skb)) {
4732 		u16 index = skb_get_rx_queue(skb);
4733 
4734 		if (unlikely(index >= dev->real_num_rx_queues)) {
4735 			WARN_ONCE(dev->real_num_rx_queues > 1,
4736 				  "%s received packet on queue %u, but number "
4737 				  "of RX queues is %u\n",
4738 				  dev->name, index, dev->real_num_rx_queues);
4739 
4740 			return rxqueue; /* Return first rxqueue */
4741 		}
4742 		rxqueue += index;
4743 	}
4744 	return rxqueue;
4745 }
4746 
4747 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4748 			     struct bpf_prog *xdp_prog)
4749 {
4750 	void *orig_data, *orig_data_end, *hard_start;
4751 	struct netdev_rx_queue *rxqueue;
4752 	bool orig_bcast, orig_host;
4753 	u32 mac_len, frame_sz;
4754 	__be16 orig_eth_type;
4755 	struct ethhdr *eth;
4756 	u32 metalen, act;
4757 	int off;
4758 
4759 	/* The XDP program wants to see the packet starting at the MAC
4760 	 * header.
4761 	 */
4762 	mac_len = skb->data - skb_mac_header(skb);
4763 	hard_start = skb->data - skb_headroom(skb);
4764 
4765 	/* SKB "head" area always have tailroom for skb_shared_info */
4766 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4767 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4768 
4769 	rxqueue = netif_get_rxqueue(skb);
4770 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4771 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4772 			 skb_headlen(skb) + mac_len, true);
4773 
4774 	orig_data_end = xdp->data_end;
4775 	orig_data = xdp->data;
4776 	eth = (struct ethhdr *)xdp->data;
4777 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4778 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4779 	orig_eth_type = eth->h_proto;
4780 
4781 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4782 
4783 	/* check if bpf_xdp_adjust_head was used */
4784 	off = xdp->data - orig_data;
4785 	if (off) {
4786 		if (off > 0)
4787 			__skb_pull(skb, off);
4788 		else if (off < 0)
4789 			__skb_push(skb, -off);
4790 
4791 		skb->mac_header += off;
4792 		skb_reset_network_header(skb);
4793 	}
4794 
4795 	/* check if bpf_xdp_adjust_tail was used */
4796 	off = xdp->data_end - orig_data_end;
4797 	if (off != 0) {
4798 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4799 		skb->len += off; /* positive on grow, negative on shrink */
4800 	}
4801 
4802 	/* check if XDP changed eth hdr such SKB needs update */
4803 	eth = (struct ethhdr *)xdp->data;
4804 	if ((orig_eth_type != eth->h_proto) ||
4805 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4806 						  skb->dev->dev_addr)) ||
4807 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4808 		__skb_push(skb, ETH_HLEN);
4809 		skb->pkt_type = PACKET_HOST;
4810 		skb->protocol = eth_type_trans(skb, skb->dev);
4811 	}
4812 
4813 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4814 	 * before calling us again on redirect path. We do not call do_redirect
4815 	 * as we leave that up to the caller.
4816 	 *
4817 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4818 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4819 	 */
4820 	switch (act) {
4821 	case XDP_REDIRECT:
4822 	case XDP_TX:
4823 		__skb_push(skb, mac_len);
4824 		break;
4825 	case XDP_PASS:
4826 		metalen = xdp->data - xdp->data_meta;
4827 		if (metalen)
4828 			skb_metadata_set(skb, metalen);
4829 		break;
4830 	}
4831 
4832 	return act;
4833 }
4834 
4835 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4836 				     struct xdp_buff *xdp,
4837 				     struct bpf_prog *xdp_prog)
4838 {
4839 	u32 act = XDP_DROP;
4840 
4841 	/* Reinjected packets coming from act_mirred or similar should
4842 	 * not get XDP generic processing.
4843 	 */
4844 	if (skb_is_redirected(skb))
4845 		return XDP_PASS;
4846 
4847 	/* XDP packets must be linear and must have sufficient headroom
4848 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4849 	 * native XDP provides, thus we need to do it here as well.
4850 	 */
4851 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4852 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4853 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4854 		int troom = skb->tail + skb->data_len - skb->end;
4855 
4856 		/* In case we have to go down the path and also linearize,
4857 		 * then lets do the pskb_expand_head() work just once here.
4858 		 */
4859 		if (pskb_expand_head(skb,
4860 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4861 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4862 			goto do_drop;
4863 		if (skb_linearize(skb))
4864 			goto do_drop;
4865 	}
4866 
4867 	act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4868 	switch (act) {
4869 	case XDP_REDIRECT:
4870 	case XDP_TX:
4871 	case XDP_PASS:
4872 		break;
4873 	default:
4874 		bpf_warn_invalid_xdp_action(act);
4875 		fallthrough;
4876 	case XDP_ABORTED:
4877 		trace_xdp_exception(skb->dev, xdp_prog, act);
4878 		fallthrough;
4879 	case XDP_DROP:
4880 	do_drop:
4881 		kfree_skb(skb);
4882 		break;
4883 	}
4884 
4885 	return act;
4886 }
4887 
4888 /* When doing generic XDP we have to bypass the qdisc layer and the
4889  * network taps in order to match in-driver-XDP behavior.
4890  */
4891 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4892 {
4893 	struct net_device *dev = skb->dev;
4894 	struct netdev_queue *txq;
4895 	bool free_skb = true;
4896 	int cpu, rc;
4897 
4898 	txq = netdev_core_pick_tx(dev, skb, NULL);
4899 	cpu = smp_processor_id();
4900 	HARD_TX_LOCK(dev, txq, cpu);
4901 	if (!netif_xmit_stopped(txq)) {
4902 		rc = netdev_start_xmit(skb, dev, txq, 0);
4903 		if (dev_xmit_complete(rc))
4904 			free_skb = false;
4905 	}
4906 	HARD_TX_UNLOCK(dev, txq);
4907 	if (free_skb) {
4908 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4909 		kfree_skb(skb);
4910 	}
4911 }
4912 
4913 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4914 
4915 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4916 {
4917 	if (xdp_prog) {
4918 		struct xdp_buff xdp;
4919 		u32 act;
4920 		int err;
4921 
4922 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4923 		if (act != XDP_PASS) {
4924 			switch (act) {
4925 			case XDP_REDIRECT:
4926 				err = xdp_do_generic_redirect(skb->dev, skb,
4927 							      &xdp, xdp_prog);
4928 				if (err)
4929 					goto out_redir;
4930 				break;
4931 			case XDP_TX:
4932 				generic_xdp_tx(skb, xdp_prog);
4933 				break;
4934 			}
4935 			return XDP_DROP;
4936 		}
4937 	}
4938 	return XDP_PASS;
4939 out_redir:
4940 	kfree_skb(skb);
4941 	return XDP_DROP;
4942 }
4943 EXPORT_SYMBOL_GPL(do_xdp_generic);
4944 
4945 static int netif_rx_internal(struct sk_buff *skb)
4946 {
4947 	int ret;
4948 
4949 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4950 
4951 	trace_netif_rx(skb);
4952 
4953 #ifdef CONFIG_RPS
4954 	if (static_branch_unlikely(&rps_needed)) {
4955 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4956 		int cpu;
4957 
4958 		preempt_disable();
4959 		rcu_read_lock();
4960 
4961 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4962 		if (cpu < 0)
4963 			cpu = smp_processor_id();
4964 
4965 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4966 
4967 		rcu_read_unlock();
4968 		preempt_enable();
4969 	} else
4970 #endif
4971 	{
4972 		unsigned int qtail;
4973 
4974 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4975 		put_cpu();
4976 	}
4977 	return ret;
4978 }
4979 
4980 /**
4981  *	netif_rx	-	post buffer to the network code
4982  *	@skb: buffer to post
4983  *
4984  *	This function receives a packet from a device driver and queues it for
4985  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4986  *	may be dropped during processing for congestion control or by the
4987  *	protocol layers.
4988  *
4989  *	return values:
4990  *	NET_RX_SUCCESS	(no congestion)
4991  *	NET_RX_DROP     (packet was dropped)
4992  *
4993  */
4994 
4995 int netif_rx(struct sk_buff *skb)
4996 {
4997 	int ret;
4998 
4999 	trace_netif_rx_entry(skb);
5000 
5001 	ret = netif_rx_internal(skb);
5002 	trace_netif_rx_exit(ret);
5003 
5004 	return ret;
5005 }
5006 EXPORT_SYMBOL(netif_rx);
5007 
5008 int netif_rx_ni(struct sk_buff *skb)
5009 {
5010 	int err;
5011 
5012 	trace_netif_rx_ni_entry(skb);
5013 
5014 	preempt_disable();
5015 	err = netif_rx_internal(skb);
5016 	if (local_softirq_pending())
5017 		do_softirq();
5018 	preempt_enable();
5019 	trace_netif_rx_ni_exit(err);
5020 
5021 	return err;
5022 }
5023 EXPORT_SYMBOL(netif_rx_ni);
5024 
5025 int netif_rx_any_context(struct sk_buff *skb)
5026 {
5027 	/*
5028 	 * If invoked from contexts which do not invoke bottom half
5029 	 * processing either at return from interrupt or when softrqs are
5030 	 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
5031 	 * directly.
5032 	 */
5033 	if (in_interrupt())
5034 		return netif_rx(skb);
5035 	else
5036 		return netif_rx_ni(skb);
5037 }
5038 EXPORT_SYMBOL(netif_rx_any_context);
5039 
5040 static __latent_entropy void net_tx_action(struct softirq_action *h)
5041 {
5042 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5043 
5044 	if (sd->completion_queue) {
5045 		struct sk_buff *clist;
5046 
5047 		local_irq_disable();
5048 		clist = sd->completion_queue;
5049 		sd->completion_queue = NULL;
5050 		local_irq_enable();
5051 
5052 		while (clist) {
5053 			struct sk_buff *skb = clist;
5054 
5055 			clist = clist->next;
5056 
5057 			WARN_ON(refcount_read(&skb->users));
5058 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5059 				trace_consume_skb(skb);
5060 			else
5061 				trace_kfree_skb(skb, net_tx_action);
5062 
5063 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5064 				__kfree_skb(skb);
5065 			else
5066 				__kfree_skb_defer(skb);
5067 		}
5068 	}
5069 
5070 	if (sd->output_queue) {
5071 		struct Qdisc *head;
5072 
5073 		local_irq_disable();
5074 		head = sd->output_queue;
5075 		sd->output_queue = NULL;
5076 		sd->output_queue_tailp = &sd->output_queue;
5077 		local_irq_enable();
5078 
5079 		rcu_read_lock();
5080 
5081 		while (head) {
5082 			struct Qdisc *q = head;
5083 			spinlock_t *root_lock = NULL;
5084 
5085 			head = head->next_sched;
5086 
5087 			/* We need to make sure head->next_sched is read
5088 			 * before clearing __QDISC_STATE_SCHED
5089 			 */
5090 			smp_mb__before_atomic();
5091 
5092 			if (!(q->flags & TCQ_F_NOLOCK)) {
5093 				root_lock = qdisc_lock(q);
5094 				spin_lock(root_lock);
5095 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5096 						     &q->state))) {
5097 				/* There is a synchronize_net() between
5098 				 * STATE_DEACTIVATED flag being set and
5099 				 * qdisc_reset()/some_qdisc_is_busy() in
5100 				 * dev_deactivate(), so we can safely bail out
5101 				 * early here to avoid data race between
5102 				 * qdisc_deactivate() and some_qdisc_is_busy()
5103 				 * for lockless qdisc.
5104 				 */
5105 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5106 				continue;
5107 			}
5108 
5109 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5110 			qdisc_run(q);
5111 			if (root_lock)
5112 				spin_unlock(root_lock);
5113 		}
5114 
5115 		rcu_read_unlock();
5116 	}
5117 
5118 	xfrm_dev_backlog(sd);
5119 }
5120 
5121 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5122 /* This hook is defined here for ATM LANE */
5123 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5124 			     unsigned char *addr) __read_mostly;
5125 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5126 #endif
5127 
5128 static inline struct sk_buff *
5129 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5130 		   struct net_device *orig_dev, bool *another)
5131 {
5132 #ifdef CONFIG_NET_CLS_ACT
5133 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5134 	struct tcf_result cl_res;
5135 
5136 	/* If there's at least one ingress present somewhere (so
5137 	 * we get here via enabled static key), remaining devices
5138 	 * that are not configured with an ingress qdisc will bail
5139 	 * out here.
5140 	 */
5141 	if (!miniq)
5142 		return skb;
5143 
5144 	if (*pt_prev) {
5145 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
5146 		*pt_prev = NULL;
5147 	}
5148 
5149 	qdisc_skb_cb(skb)->pkt_len = skb->len;
5150 	qdisc_skb_cb(skb)->mru = 0;
5151 	qdisc_skb_cb(skb)->post_ct = false;
5152 	skb->tc_at_ingress = 1;
5153 	mini_qdisc_bstats_cpu_update(miniq, skb);
5154 
5155 	switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5156 				     &cl_res, false)) {
5157 	case TC_ACT_OK:
5158 	case TC_ACT_RECLASSIFY:
5159 		skb->tc_index = TC_H_MIN(cl_res.classid);
5160 		break;
5161 	case TC_ACT_SHOT:
5162 		mini_qdisc_qstats_cpu_drop(miniq);
5163 		kfree_skb(skb);
5164 		return NULL;
5165 	case TC_ACT_STOLEN:
5166 	case TC_ACT_QUEUED:
5167 	case TC_ACT_TRAP:
5168 		consume_skb(skb);
5169 		return NULL;
5170 	case TC_ACT_REDIRECT:
5171 		/* skb_mac_header check was done by cls/act_bpf, so
5172 		 * we can safely push the L2 header back before
5173 		 * redirecting to another netdev
5174 		 */
5175 		__skb_push(skb, skb->mac_len);
5176 		if (skb_do_redirect(skb) == -EAGAIN) {
5177 			__skb_pull(skb, skb->mac_len);
5178 			*another = true;
5179 			break;
5180 		}
5181 		return NULL;
5182 	case TC_ACT_CONSUMED:
5183 		return NULL;
5184 	default:
5185 		break;
5186 	}
5187 #endif /* CONFIG_NET_CLS_ACT */
5188 	return skb;
5189 }
5190 
5191 /**
5192  *	netdev_is_rx_handler_busy - check if receive handler is registered
5193  *	@dev: device to check
5194  *
5195  *	Check if a receive handler is already registered for a given device.
5196  *	Return true if there one.
5197  *
5198  *	The caller must hold the rtnl_mutex.
5199  */
5200 bool netdev_is_rx_handler_busy(struct net_device *dev)
5201 {
5202 	ASSERT_RTNL();
5203 	return dev && rtnl_dereference(dev->rx_handler);
5204 }
5205 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5206 
5207 /**
5208  *	netdev_rx_handler_register - register receive handler
5209  *	@dev: device to register a handler for
5210  *	@rx_handler: receive handler to register
5211  *	@rx_handler_data: data pointer that is used by rx handler
5212  *
5213  *	Register a receive handler for a device. This handler will then be
5214  *	called from __netif_receive_skb. A negative errno code is returned
5215  *	on a failure.
5216  *
5217  *	The caller must hold the rtnl_mutex.
5218  *
5219  *	For a general description of rx_handler, see enum rx_handler_result.
5220  */
5221 int netdev_rx_handler_register(struct net_device *dev,
5222 			       rx_handler_func_t *rx_handler,
5223 			       void *rx_handler_data)
5224 {
5225 	if (netdev_is_rx_handler_busy(dev))
5226 		return -EBUSY;
5227 
5228 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5229 		return -EINVAL;
5230 
5231 	/* Note: rx_handler_data must be set before rx_handler */
5232 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5233 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5234 
5235 	return 0;
5236 }
5237 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5238 
5239 /**
5240  *	netdev_rx_handler_unregister - unregister receive handler
5241  *	@dev: device to unregister a handler from
5242  *
5243  *	Unregister a receive handler from a device.
5244  *
5245  *	The caller must hold the rtnl_mutex.
5246  */
5247 void netdev_rx_handler_unregister(struct net_device *dev)
5248 {
5249 
5250 	ASSERT_RTNL();
5251 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5252 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5253 	 * section has a guarantee to see a non NULL rx_handler_data
5254 	 * as well.
5255 	 */
5256 	synchronize_net();
5257 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5258 }
5259 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5260 
5261 /*
5262  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5263  * the special handling of PFMEMALLOC skbs.
5264  */
5265 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5266 {
5267 	switch (skb->protocol) {
5268 	case htons(ETH_P_ARP):
5269 	case htons(ETH_P_IP):
5270 	case htons(ETH_P_IPV6):
5271 	case htons(ETH_P_8021Q):
5272 	case htons(ETH_P_8021AD):
5273 		return true;
5274 	default:
5275 		return false;
5276 	}
5277 }
5278 
5279 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5280 			     int *ret, struct net_device *orig_dev)
5281 {
5282 	if (nf_hook_ingress_active(skb)) {
5283 		int ingress_retval;
5284 
5285 		if (*pt_prev) {
5286 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5287 			*pt_prev = NULL;
5288 		}
5289 
5290 		rcu_read_lock();
5291 		ingress_retval = nf_hook_ingress(skb);
5292 		rcu_read_unlock();
5293 		return ingress_retval;
5294 	}
5295 	return 0;
5296 }
5297 
5298 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5299 				    struct packet_type **ppt_prev)
5300 {
5301 	struct packet_type *ptype, *pt_prev;
5302 	rx_handler_func_t *rx_handler;
5303 	struct sk_buff *skb = *pskb;
5304 	struct net_device *orig_dev;
5305 	bool deliver_exact = false;
5306 	int ret = NET_RX_DROP;
5307 	__be16 type;
5308 
5309 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5310 
5311 	trace_netif_receive_skb(skb);
5312 
5313 	orig_dev = skb->dev;
5314 
5315 	skb_reset_network_header(skb);
5316 	if (!skb_transport_header_was_set(skb))
5317 		skb_reset_transport_header(skb);
5318 	skb_reset_mac_len(skb);
5319 
5320 	pt_prev = NULL;
5321 
5322 another_round:
5323 	skb->skb_iif = skb->dev->ifindex;
5324 
5325 	__this_cpu_inc(softnet_data.processed);
5326 
5327 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5328 		int ret2;
5329 
5330 		migrate_disable();
5331 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5332 		migrate_enable();
5333 
5334 		if (ret2 != XDP_PASS) {
5335 			ret = NET_RX_DROP;
5336 			goto out;
5337 		}
5338 	}
5339 
5340 	if (eth_type_vlan(skb->protocol)) {
5341 		skb = skb_vlan_untag(skb);
5342 		if (unlikely(!skb))
5343 			goto out;
5344 	}
5345 
5346 	if (skb_skip_tc_classify(skb))
5347 		goto skip_classify;
5348 
5349 	if (pfmemalloc)
5350 		goto skip_taps;
5351 
5352 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5353 		if (pt_prev)
5354 			ret = deliver_skb(skb, pt_prev, orig_dev);
5355 		pt_prev = ptype;
5356 	}
5357 
5358 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5359 		if (pt_prev)
5360 			ret = deliver_skb(skb, pt_prev, orig_dev);
5361 		pt_prev = ptype;
5362 	}
5363 
5364 skip_taps:
5365 #ifdef CONFIG_NET_INGRESS
5366 	if (static_branch_unlikely(&ingress_needed_key)) {
5367 		bool another = false;
5368 
5369 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5370 					 &another);
5371 		if (another)
5372 			goto another_round;
5373 		if (!skb)
5374 			goto out;
5375 
5376 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5377 			goto out;
5378 	}
5379 #endif
5380 	skb_reset_redirect(skb);
5381 skip_classify:
5382 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5383 		goto drop;
5384 
5385 	if (skb_vlan_tag_present(skb)) {
5386 		if (pt_prev) {
5387 			ret = deliver_skb(skb, pt_prev, orig_dev);
5388 			pt_prev = NULL;
5389 		}
5390 		if (vlan_do_receive(&skb))
5391 			goto another_round;
5392 		else if (unlikely(!skb))
5393 			goto out;
5394 	}
5395 
5396 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5397 	if (rx_handler) {
5398 		if (pt_prev) {
5399 			ret = deliver_skb(skb, pt_prev, orig_dev);
5400 			pt_prev = NULL;
5401 		}
5402 		switch (rx_handler(&skb)) {
5403 		case RX_HANDLER_CONSUMED:
5404 			ret = NET_RX_SUCCESS;
5405 			goto out;
5406 		case RX_HANDLER_ANOTHER:
5407 			goto another_round;
5408 		case RX_HANDLER_EXACT:
5409 			deliver_exact = true;
5410 			break;
5411 		case RX_HANDLER_PASS:
5412 			break;
5413 		default:
5414 			BUG();
5415 		}
5416 	}
5417 
5418 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5419 check_vlan_id:
5420 		if (skb_vlan_tag_get_id(skb)) {
5421 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5422 			 * find vlan device.
5423 			 */
5424 			skb->pkt_type = PACKET_OTHERHOST;
5425 		} else if (eth_type_vlan(skb->protocol)) {
5426 			/* Outer header is 802.1P with vlan 0, inner header is
5427 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5428 			 * not find vlan dev for vlan id 0.
5429 			 */
5430 			__vlan_hwaccel_clear_tag(skb);
5431 			skb = skb_vlan_untag(skb);
5432 			if (unlikely(!skb))
5433 				goto out;
5434 			if (vlan_do_receive(&skb))
5435 				/* After stripping off 802.1P header with vlan 0
5436 				 * vlan dev is found for inner header.
5437 				 */
5438 				goto another_round;
5439 			else if (unlikely(!skb))
5440 				goto out;
5441 			else
5442 				/* We have stripped outer 802.1P vlan 0 header.
5443 				 * But could not find vlan dev.
5444 				 * check again for vlan id to set OTHERHOST.
5445 				 */
5446 				goto check_vlan_id;
5447 		}
5448 		/* Note: we might in the future use prio bits
5449 		 * and set skb->priority like in vlan_do_receive()
5450 		 * For the time being, just ignore Priority Code Point
5451 		 */
5452 		__vlan_hwaccel_clear_tag(skb);
5453 	}
5454 
5455 	type = skb->protocol;
5456 
5457 	/* deliver only exact match when indicated */
5458 	if (likely(!deliver_exact)) {
5459 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5460 				       &ptype_base[ntohs(type) &
5461 						   PTYPE_HASH_MASK]);
5462 	}
5463 
5464 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5465 			       &orig_dev->ptype_specific);
5466 
5467 	if (unlikely(skb->dev != orig_dev)) {
5468 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5469 				       &skb->dev->ptype_specific);
5470 	}
5471 
5472 	if (pt_prev) {
5473 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5474 			goto drop;
5475 		*ppt_prev = pt_prev;
5476 	} else {
5477 drop:
5478 		if (!deliver_exact)
5479 			atomic_long_inc(&skb->dev->rx_dropped);
5480 		else
5481 			atomic_long_inc(&skb->dev->rx_nohandler);
5482 		kfree_skb(skb);
5483 		/* Jamal, now you will not able to escape explaining
5484 		 * me how you were going to use this. :-)
5485 		 */
5486 		ret = NET_RX_DROP;
5487 	}
5488 
5489 out:
5490 	/* The invariant here is that if *ppt_prev is not NULL
5491 	 * then skb should also be non-NULL.
5492 	 *
5493 	 * Apparently *ppt_prev assignment above holds this invariant due to
5494 	 * skb dereferencing near it.
5495 	 */
5496 	*pskb = skb;
5497 	return ret;
5498 }
5499 
5500 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5501 {
5502 	struct net_device *orig_dev = skb->dev;
5503 	struct packet_type *pt_prev = NULL;
5504 	int ret;
5505 
5506 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5507 	if (pt_prev)
5508 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5509 					 skb->dev, pt_prev, orig_dev);
5510 	return ret;
5511 }
5512 
5513 /**
5514  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5515  *	@skb: buffer to process
5516  *
5517  *	More direct receive version of netif_receive_skb().  It should
5518  *	only be used by callers that have a need to skip RPS and Generic XDP.
5519  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5520  *
5521  *	This function may only be called from softirq context and interrupts
5522  *	should be enabled.
5523  *
5524  *	Return values (usually ignored):
5525  *	NET_RX_SUCCESS: no congestion
5526  *	NET_RX_DROP: packet was dropped
5527  */
5528 int netif_receive_skb_core(struct sk_buff *skb)
5529 {
5530 	int ret;
5531 
5532 	rcu_read_lock();
5533 	ret = __netif_receive_skb_one_core(skb, false);
5534 	rcu_read_unlock();
5535 
5536 	return ret;
5537 }
5538 EXPORT_SYMBOL(netif_receive_skb_core);
5539 
5540 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5541 						  struct packet_type *pt_prev,
5542 						  struct net_device *orig_dev)
5543 {
5544 	struct sk_buff *skb, *next;
5545 
5546 	if (!pt_prev)
5547 		return;
5548 	if (list_empty(head))
5549 		return;
5550 	if (pt_prev->list_func != NULL)
5551 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5552 				   ip_list_rcv, head, pt_prev, orig_dev);
5553 	else
5554 		list_for_each_entry_safe(skb, next, head, list) {
5555 			skb_list_del_init(skb);
5556 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5557 		}
5558 }
5559 
5560 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5561 {
5562 	/* Fast-path assumptions:
5563 	 * - There is no RX handler.
5564 	 * - Only one packet_type matches.
5565 	 * If either of these fails, we will end up doing some per-packet
5566 	 * processing in-line, then handling the 'last ptype' for the whole
5567 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5568 	 * because the 'last ptype' must be constant across the sublist, and all
5569 	 * other ptypes are handled per-packet.
5570 	 */
5571 	/* Current (common) ptype of sublist */
5572 	struct packet_type *pt_curr = NULL;
5573 	/* Current (common) orig_dev of sublist */
5574 	struct net_device *od_curr = NULL;
5575 	struct list_head sublist;
5576 	struct sk_buff *skb, *next;
5577 
5578 	INIT_LIST_HEAD(&sublist);
5579 	list_for_each_entry_safe(skb, next, head, list) {
5580 		struct net_device *orig_dev = skb->dev;
5581 		struct packet_type *pt_prev = NULL;
5582 
5583 		skb_list_del_init(skb);
5584 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5585 		if (!pt_prev)
5586 			continue;
5587 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5588 			/* dispatch old sublist */
5589 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5590 			/* start new sublist */
5591 			INIT_LIST_HEAD(&sublist);
5592 			pt_curr = pt_prev;
5593 			od_curr = orig_dev;
5594 		}
5595 		list_add_tail(&skb->list, &sublist);
5596 	}
5597 
5598 	/* dispatch final sublist */
5599 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5600 }
5601 
5602 static int __netif_receive_skb(struct sk_buff *skb)
5603 {
5604 	int ret;
5605 
5606 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5607 		unsigned int noreclaim_flag;
5608 
5609 		/*
5610 		 * PFMEMALLOC skbs are special, they should
5611 		 * - be delivered to SOCK_MEMALLOC sockets only
5612 		 * - stay away from userspace
5613 		 * - have bounded memory usage
5614 		 *
5615 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5616 		 * context down to all allocation sites.
5617 		 */
5618 		noreclaim_flag = memalloc_noreclaim_save();
5619 		ret = __netif_receive_skb_one_core(skb, true);
5620 		memalloc_noreclaim_restore(noreclaim_flag);
5621 	} else
5622 		ret = __netif_receive_skb_one_core(skb, false);
5623 
5624 	return ret;
5625 }
5626 
5627 static void __netif_receive_skb_list(struct list_head *head)
5628 {
5629 	unsigned long noreclaim_flag = 0;
5630 	struct sk_buff *skb, *next;
5631 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5632 
5633 	list_for_each_entry_safe(skb, next, head, list) {
5634 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5635 			struct list_head sublist;
5636 
5637 			/* Handle the previous sublist */
5638 			list_cut_before(&sublist, head, &skb->list);
5639 			if (!list_empty(&sublist))
5640 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5641 			pfmemalloc = !pfmemalloc;
5642 			/* See comments in __netif_receive_skb */
5643 			if (pfmemalloc)
5644 				noreclaim_flag = memalloc_noreclaim_save();
5645 			else
5646 				memalloc_noreclaim_restore(noreclaim_flag);
5647 		}
5648 	}
5649 	/* Handle the remaining sublist */
5650 	if (!list_empty(head))
5651 		__netif_receive_skb_list_core(head, pfmemalloc);
5652 	/* Restore pflags */
5653 	if (pfmemalloc)
5654 		memalloc_noreclaim_restore(noreclaim_flag);
5655 }
5656 
5657 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5658 {
5659 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5660 	struct bpf_prog *new = xdp->prog;
5661 	int ret = 0;
5662 
5663 	switch (xdp->command) {
5664 	case XDP_SETUP_PROG:
5665 		rcu_assign_pointer(dev->xdp_prog, new);
5666 		if (old)
5667 			bpf_prog_put(old);
5668 
5669 		if (old && !new) {
5670 			static_branch_dec(&generic_xdp_needed_key);
5671 		} else if (new && !old) {
5672 			static_branch_inc(&generic_xdp_needed_key);
5673 			dev_disable_lro(dev);
5674 			dev_disable_gro_hw(dev);
5675 		}
5676 		break;
5677 
5678 	default:
5679 		ret = -EINVAL;
5680 		break;
5681 	}
5682 
5683 	return ret;
5684 }
5685 
5686 static int netif_receive_skb_internal(struct sk_buff *skb)
5687 {
5688 	int ret;
5689 
5690 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5691 
5692 	if (skb_defer_rx_timestamp(skb))
5693 		return NET_RX_SUCCESS;
5694 
5695 	rcu_read_lock();
5696 #ifdef CONFIG_RPS
5697 	if (static_branch_unlikely(&rps_needed)) {
5698 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5699 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5700 
5701 		if (cpu >= 0) {
5702 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5703 			rcu_read_unlock();
5704 			return ret;
5705 		}
5706 	}
5707 #endif
5708 	ret = __netif_receive_skb(skb);
5709 	rcu_read_unlock();
5710 	return ret;
5711 }
5712 
5713 static void netif_receive_skb_list_internal(struct list_head *head)
5714 {
5715 	struct sk_buff *skb, *next;
5716 	struct list_head sublist;
5717 
5718 	INIT_LIST_HEAD(&sublist);
5719 	list_for_each_entry_safe(skb, next, head, list) {
5720 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5721 		skb_list_del_init(skb);
5722 		if (!skb_defer_rx_timestamp(skb))
5723 			list_add_tail(&skb->list, &sublist);
5724 	}
5725 	list_splice_init(&sublist, head);
5726 
5727 	rcu_read_lock();
5728 #ifdef CONFIG_RPS
5729 	if (static_branch_unlikely(&rps_needed)) {
5730 		list_for_each_entry_safe(skb, next, head, list) {
5731 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5732 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5733 
5734 			if (cpu >= 0) {
5735 				/* Will be handled, remove from list */
5736 				skb_list_del_init(skb);
5737 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5738 			}
5739 		}
5740 	}
5741 #endif
5742 	__netif_receive_skb_list(head);
5743 	rcu_read_unlock();
5744 }
5745 
5746 /**
5747  *	netif_receive_skb - process receive buffer from network
5748  *	@skb: buffer to process
5749  *
5750  *	netif_receive_skb() is the main receive data processing function.
5751  *	It always succeeds. The buffer may be dropped during processing
5752  *	for congestion control or by the protocol layers.
5753  *
5754  *	This function may only be called from softirq context and interrupts
5755  *	should be enabled.
5756  *
5757  *	Return values (usually ignored):
5758  *	NET_RX_SUCCESS: no congestion
5759  *	NET_RX_DROP: packet was dropped
5760  */
5761 int netif_receive_skb(struct sk_buff *skb)
5762 {
5763 	int ret;
5764 
5765 	trace_netif_receive_skb_entry(skb);
5766 
5767 	ret = netif_receive_skb_internal(skb);
5768 	trace_netif_receive_skb_exit(ret);
5769 
5770 	return ret;
5771 }
5772 EXPORT_SYMBOL(netif_receive_skb);
5773 
5774 /**
5775  *	netif_receive_skb_list - process many receive buffers from network
5776  *	@head: list of skbs to process.
5777  *
5778  *	Since return value of netif_receive_skb() is normally ignored, and
5779  *	wouldn't be meaningful for a list, this function returns void.
5780  *
5781  *	This function may only be called from softirq context and interrupts
5782  *	should be enabled.
5783  */
5784 void netif_receive_skb_list(struct list_head *head)
5785 {
5786 	struct sk_buff *skb;
5787 
5788 	if (list_empty(head))
5789 		return;
5790 	if (trace_netif_receive_skb_list_entry_enabled()) {
5791 		list_for_each_entry(skb, head, list)
5792 			trace_netif_receive_skb_list_entry(skb);
5793 	}
5794 	netif_receive_skb_list_internal(head);
5795 	trace_netif_receive_skb_list_exit(0);
5796 }
5797 EXPORT_SYMBOL(netif_receive_skb_list);
5798 
5799 static DEFINE_PER_CPU(struct work_struct, flush_works);
5800 
5801 /* Network device is going away, flush any packets still pending */
5802 static void flush_backlog(struct work_struct *work)
5803 {
5804 	struct sk_buff *skb, *tmp;
5805 	struct softnet_data *sd;
5806 
5807 	local_bh_disable();
5808 	sd = this_cpu_ptr(&softnet_data);
5809 
5810 	local_irq_disable();
5811 	rps_lock(sd);
5812 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5813 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5814 			__skb_unlink(skb, &sd->input_pkt_queue);
5815 			dev_kfree_skb_irq(skb);
5816 			input_queue_head_incr(sd);
5817 		}
5818 	}
5819 	rps_unlock(sd);
5820 	local_irq_enable();
5821 
5822 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5823 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5824 			__skb_unlink(skb, &sd->process_queue);
5825 			kfree_skb(skb);
5826 			input_queue_head_incr(sd);
5827 		}
5828 	}
5829 	local_bh_enable();
5830 }
5831 
5832 static bool flush_required(int cpu)
5833 {
5834 #if IS_ENABLED(CONFIG_RPS)
5835 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5836 	bool do_flush;
5837 
5838 	local_irq_disable();
5839 	rps_lock(sd);
5840 
5841 	/* as insertion into process_queue happens with the rps lock held,
5842 	 * process_queue access may race only with dequeue
5843 	 */
5844 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5845 		   !skb_queue_empty_lockless(&sd->process_queue);
5846 	rps_unlock(sd);
5847 	local_irq_enable();
5848 
5849 	return do_flush;
5850 #endif
5851 	/* without RPS we can't safely check input_pkt_queue: during a
5852 	 * concurrent remote skb_queue_splice() we can detect as empty both
5853 	 * input_pkt_queue and process_queue even if the latter could end-up
5854 	 * containing a lot of packets.
5855 	 */
5856 	return true;
5857 }
5858 
5859 static void flush_all_backlogs(void)
5860 {
5861 	static cpumask_t flush_cpus;
5862 	unsigned int cpu;
5863 
5864 	/* since we are under rtnl lock protection we can use static data
5865 	 * for the cpumask and avoid allocating on stack the possibly
5866 	 * large mask
5867 	 */
5868 	ASSERT_RTNL();
5869 
5870 	get_online_cpus();
5871 
5872 	cpumask_clear(&flush_cpus);
5873 	for_each_online_cpu(cpu) {
5874 		if (flush_required(cpu)) {
5875 			queue_work_on(cpu, system_highpri_wq,
5876 				      per_cpu_ptr(&flush_works, cpu));
5877 			cpumask_set_cpu(cpu, &flush_cpus);
5878 		}
5879 	}
5880 
5881 	/* we can have in flight packet[s] on the cpus we are not flushing,
5882 	 * synchronize_net() in unregister_netdevice_many() will take care of
5883 	 * them
5884 	 */
5885 	for_each_cpu(cpu, &flush_cpus)
5886 		flush_work(per_cpu_ptr(&flush_works, cpu));
5887 
5888 	put_online_cpus();
5889 }
5890 
5891 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5892 static void gro_normal_list(struct napi_struct *napi)
5893 {
5894 	if (!napi->rx_count)
5895 		return;
5896 	netif_receive_skb_list_internal(&napi->rx_list);
5897 	INIT_LIST_HEAD(&napi->rx_list);
5898 	napi->rx_count = 0;
5899 }
5900 
5901 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5902  * pass the whole batch up to the stack.
5903  */
5904 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5905 {
5906 	list_add_tail(&skb->list, &napi->rx_list);
5907 	napi->rx_count += segs;
5908 	if (napi->rx_count >= gro_normal_batch)
5909 		gro_normal_list(napi);
5910 }
5911 
5912 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5913 {
5914 	struct packet_offload *ptype;
5915 	__be16 type = skb->protocol;
5916 	struct list_head *head = &offload_base;
5917 	int err = -ENOENT;
5918 
5919 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5920 
5921 	if (NAPI_GRO_CB(skb)->count == 1) {
5922 		skb_shinfo(skb)->gso_size = 0;
5923 		goto out;
5924 	}
5925 
5926 	rcu_read_lock();
5927 	list_for_each_entry_rcu(ptype, head, list) {
5928 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5929 			continue;
5930 
5931 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5932 					 ipv6_gro_complete, inet_gro_complete,
5933 					 skb, 0);
5934 		break;
5935 	}
5936 	rcu_read_unlock();
5937 
5938 	if (err) {
5939 		WARN_ON(&ptype->list == head);
5940 		kfree_skb(skb);
5941 		return NET_RX_SUCCESS;
5942 	}
5943 
5944 out:
5945 	gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5946 	return NET_RX_SUCCESS;
5947 }
5948 
5949 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5950 				   bool flush_old)
5951 {
5952 	struct list_head *head = &napi->gro_hash[index].list;
5953 	struct sk_buff *skb, *p;
5954 
5955 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5956 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5957 			return;
5958 		skb_list_del_init(skb);
5959 		napi_gro_complete(napi, skb);
5960 		napi->gro_hash[index].count--;
5961 	}
5962 
5963 	if (!napi->gro_hash[index].count)
5964 		__clear_bit(index, &napi->gro_bitmask);
5965 }
5966 
5967 /* napi->gro_hash[].list contains packets ordered by age.
5968  * youngest packets at the head of it.
5969  * Complete skbs in reverse order to reduce latencies.
5970  */
5971 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5972 {
5973 	unsigned long bitmask = napi->gro_bitmask;
5974 	unsigned int i, base = ~0U;
5975 
5976 	while ((i = ffs(bitmask)) != 0) {
5977 		bitmask >>= i;
5978 		base += i;
5979 		__napi_gro_flush_chain(napi, base, flush_old);
5980 	}
5981 }
5982 EXPORT_SYMBOL(napi_gro_flush);
5983 
5984 static void gro_list_prepare(const struct list_head *head,
5985 			     const struct sk_buff *skb)
5986 {
5987 	unsigned int maclen = skb->dev->hard_header_len;
5988 	u32 hash = skb_get_hash_raw(skb);
5989 	struct sk_buff *p;
5990 
5991 	list_for_each_entry(p, head, list) {
5992 		unsigned long diffs;
5993 
5994 		NAPI_GRO_CB(p)->flush = 0;
5995 
5996 		if (hash != skb_get_hash_raw(p)) {
5997 			NAPI_GRO_CB(p)->same_flow = 0;
5998 			continue;
5999 		}
6000 
6001 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
6002 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
6003 		if (skb_vlan_tag_present(p))
6004 			diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
6005 		diffs |= skb_metadata_dst_cmp(p, skb);
6006 		diffs |= skb_metadata_differs(p, skb);
6007 		if (maclen == ETH_HLEN)
6008 			diffs |= compare_ether_header(skb_mac_header(p),
6009 						      skb_mac_header(skb));
6010 		else if (!diffs)
6011 			diffs = memcmp(skb_mac_header(p),
6012 				       skb_mac_header(skb),
6013 				       maclen);
6014 
6015 		diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb);
6016 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
6017 		if (!diffs) {
6018 			struct tc_skb_ext *skb_ext = skb_ext_find(skb, TC_SKB_EXT);
6019 			struct tc_skb_ext *p_ext = skb_ext_find(p, TC_SKB_EXT);
6020 
6021 			diffs |= (!!p_ext) ^ (!!skb_ext);
6022 			if (!diffs && unlikely(skb_ext))
6023 				diffs |= p_ext->chain ^ skb_ext->chain;
6024 		}
6025 #endif
6026 
6027 		NAPI_GRO_CB(p)->same_flow = !diffs;
6028 	}
6029 }
6030 
6031 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
6032 {
6033 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
6034 	const skb_frag_t *frag0 = &pinfo->frags[0];
6035 
6036 	NAPI_GRO_CB(skb)->data_offset = 0;
6037 	NAPI_GRO_CB(skb)->frag0 = NULL;
6038 	NAPI_GRO_CB(skb)->frag0_len = 0;
6039 
6040 	if (!skb_headlen(skb) && pinfo->nr_frags &&
6041 	    !PageHighMem(skb_frag_page(frag0)) &&
6042 	    (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
6043 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
6044 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
6045 						    skb_frag_size(frag0),
6046 						    skb->end - skb->tail);
6047 	}
6048 }
6049 
6050 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
6051 {
6052 	struct skb_shared_info *pinfo = skb_shinfo(skb);
6053 
6054 	BUG_ON(skb->end - skb->tail < grow);
6055 
6056 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
6057 
6058 	skb->data_len -= grow;
6059 	skb->tail += grow;
6060 
6061 	skb_frag_off_add(&pinfo->frags[0], grow);
6062 	skb_frag_size_sub(&pinfo->frags[0], grow);
6063 
6064 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6065 		skb_frag_unref(skb, 0);
6066 		memmove(pinfo->frags, pinfo->frags + 1,
6067 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
6068 	}
6069 }
6070 
6071 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6072 {
6073 	struct sk_buff *oldest;
6074 
6075 	oldest = list_last_entry(head, struct sk_buff, list);
6076 
6077 	/* We are called with head length >= MAX_GRO_SKBS, so this is
6078 	 * impossible.
6079 	 */
6080 	if (WARN_ON_ONCE(!oldest))
6081 		return;
6082 
6083 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
6084 	 * SKB to the chain.
6085 	 */
6086 	skb_list_del_init(oldest);
6087 	napi_gro_complete(napi, oldest);
6088 }
6089 
6090 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6091 {
6092 	u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6093 	struct gro_list *gro_list = &napi->gro_hash[bucket];
6094 	struct list_head *head = &offload_base;
6095 	struct packet_offload *ptype;
6096 	__be16 type = skb->protocol;
6097 	struct sk_buff *pp = NULL;
6098 	enum gro_result ret;
6099 	int same_flow;
6100 	int grow;
6101 
6102 	if (netif_elide_gro(skb->dev))
6103 		goto normal;
6104 
6105 	gro_list_prepare(&gro_list->list, skb);
6106 
6107 	rcu_read_lock();
6108 	list_for_each_entry_rcu(ptype, head, list) {
6109 		if (ptype->type != type || !ptype->callbacks.gro_receive)
6110 			continue;
6111 
6112 		skb_set_network_header(skb, skb_gro_offset(skb));
6113 		skb_reset_mac_len(skb);
6114 		NAPI_GRO_CB(skb)->same_flow = 0;
6115 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6116 		NAPI_GRO_CB(skb)->free = 0;
6117 		NAPI_GRO_CB(skb)->encap_mark = 0;
6118 		NAPI_GRO_CB(skb)->recursion_counter = 0;
6119 		NAPI_GRO_CB(skb)->is_fou = 0;
6120 		NAPI_GRO_CB(skb)->is_atomic = 1;
6121 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6122 
6123 		/* Setup for GRO checksum validation */
6124 		switch (skb->ip_summed) {
6125 		case CHECKSUM_COMPLETE:
6126 			NAPI_GRO_CB(skb)->csum = skb->csum;
6127 			NAPI_GRO_CB(skb)->csum_valid = 1;
6128 			NAPI_GRO_CB(skb)->csum_cnt = 0;
6129 			break;
6130 		case CHECKSUM_UNNECESSARY:
6131 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6132 			NAPI_GRO_CB(skb)->csum_valid = 0;
6133 			break;
6134 		default:
6135 			NAPI_GRO_CB(skb)->csum_cnt = 0;
6136 			NAPI_GRO_CB(skb)->csum_valid = 0;
6137 		}
6138 
6139 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6140 					ipv6_gro_receive, inet_gro_receive,
6141 					&gro_list->list, skb);
6142 		break;
6143 	}
6144 	rcu_read_unlock();
6145 
6146 	if (&ptype->list == head)
6147 		goto normal;
6148 
6149 	if (PTR_ERR(pp) == -EINPROGRESS) {
6150 		ret = GRO_CONSUMED;
6151 		goto ok;
6152 	}
6153 
6154 	same_flow = NAPI_GRO_CB(skb)->same_flow;
6155 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6156 
6157 	if (pp) {
6158 		skb_list_del_init(pp);
6159 		napi_gro_complete(napi, pp);
6160 		gro_list->count--;
6161 	}
6162 
6163 	if (same_flow)
6164 		goto ok;
6165 
6166 	if (NAPI_GRO_CB(skb)->flush)
6167 		goto normal;
6168 
6169 	if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6170 		gro_flush_oldest(napi, &gro_list->list);
6171 	else
6172 		gro_list->count++;
6173 
6174 	NAPI_GRO_CB(skb)->count = 1;
6175 	NAPI_GRO_CB(skb)->age = jiffies;
6176 	NAPI_GRO_CB(skb)->last = skb;
6177 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6178 	list_add(&skb->list, &gro_list->list);
6179 	ret = GRO_HELD;
6180 
6181 pull:
6182 	grow = skb_gro_offset(skb) - skb_headlen(skb);
6183 	if (grow > 0)
6184 		gro_pull_from_frag0(skb, grow);
6185 ok:
6186 	if (gro_list->count) {
6187 		if (!test_bit(bucket, &napi->gro_bitmask))
6188 			__set_bit(bucket, &napi->gro_bitmask);
6189 	} else if (test_bit(bucket, &napi->gro_bitmask)) {
6190 		__clear_bit(bucket, &napi->gro_bitmask);
6191 	}
6192 
6193 	return ret;
6194 
6195 normal:
6196 	ret = GRO_NORMAL;
6197 	goto pull;
6198 }
6199 
6200 struct packet_offload *gro_find_receive_by_type(__be16 type)
6201 {
6202 	struct list_head *offload_head = &offload_base;
6203 	struct packet_offload *ptype;
6204 
6205 	list_for_each_entry_rcu(ptype, offload_head, list) {
6206 		if (ptype->type != type || !ptype->callbacks.gro_receive)
6207 			continue;
6208 		return ptype;
6209 	}
6210 	return NULL;
6211 }
6212 EXPORT_SYMBOL(gro_find_receive_by_type);
6213 
6214 struct packet_offload *gro_find_complete_by_type(__be16 type)
6215 {
6216 	struct list_head *offload_head = &offload_base;
6217 	struct packet_offload *ptype;
6218 
6219 	list_for_each_entry_rcu(ptype, offload_head, list) {
6220 		if (ptype->type != type || !ptype->callbacks.gro_complete)
6221 			continue;
6222 		return ptype;
6223 	}
6224 	return NULL;
6225 }
6226 EXPORT_SYMBOL(gro_find_complete_by_type);
6227 
6228 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6229 				    struct sk_buff *skb,
6230 				    gro_result_t ret)
6231 {
6232 	switch (ret) {
6233 	case GRO_NORMAL:
6234 		gro_normal_one(napi, skb, 1);
6235 		break;
6236 
6237 	case GRO_MERGED_FREE:
6238 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6239 			napi_skb_free_stolen_head(skb);
6240 		else if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
6241 			__kfree_skb(skb);
6242 		else
6243 			__kfree_skb_defer(skb);
6244 		break;
6245 
6246 	case GRO_HELD:
6247 	case GRO_MERGED:
6248 	case GRO_CONSUMED:
6249 		break;
6250 	}
6251 
6252 	return ret;
6253 }
6254 
6255 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6256 {
6257 	gro_result_t ret;
6258 
6259 	skb_mark_napi_id(skb, napi);
6260 	trace_napi_gro_receive_entry(skb);
6261 
6262 	skb_gro_reset_offset(skb, 0);
6263 
6264 	ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6265 	trace_napi_gro_receive_exit(ret);
6266 
6267 	return ret;
6268 }
6269 EXPORT_SYMBOL(napi_gro_receive);
6270 
6271 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6272 {
6273 	if (unlikely(skb->pfmemalloc)) {
6274 		consume_skb(skb);
6275 		return;
6276 	}
6277 	__skb_pull(skb, skb_headlen(skb));
6278 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
6279 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6280 	__vlan_hwaccel_clear_tag(skb);
6281 	skb->dev = napi->dev;
6282 	skb->skb_iif = 0;
6283 
6284 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
6285 	skb->pkt_type = PACKET_HOST;
6286 
6287 	skb->encapsulation = 0;
6288 	skb_shinfo(skb)->gso_type = 0;
6289 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6290 	skb_ext_reset(skb);
6291 	nf_reset_ct(skb);
6292 
6293 	napi->skb = skb;
6294 }
6295 
6296 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6297 {
6298 	struct sk_buff *skb = napi->skb;
6299 
6300 	if (!skb) {
6301 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6302 		if (skb) {
6303 			napi->skb = skb;
6304 			skb_mark_napi_id(skb, napi);
6305 		}
6306 	}
6307 	return skb;
6308 }
6309 EXPORT_SYMBOL(napi_get_frags);
6310 
6311 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6312 				      struct sk_buff *skb,
6313 				      gro_result_t ret)
6314 {
6315 	switch (ret) {
6316 	case GRO_NORMAL:
6317 	case GRO_HELD:
6318 		__skb_push(skb, ETH_HLEN);
6319 		skb->protocol = eth_type_trans(skb, skb->dev);
6320 		if (ret == GRO_NORMAL)
6321 			gro_normal_one(napi, skb, 1);
6322 		break;
6323 
6324 	case GRO_MERGED_FREE:
6325 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6326 			napi_skb_free_stolen_head(skb);
6327 		else
6328 			napi_reuse_skb(napi, skb);
6329 		break;
6330 
6331 	case GRO_MERGED:
6332 	case GRO_CONSUMED:
6333 		break;
6334 	}
6335 
6336 	return ret;
6337 }
6338 
6339 /* Upper GRO stack assumes network header starts at gro_offset=0
6340  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6341  * We copy ethernet header into skb->data to have a common layout.
6342  */
6343 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6344 {
6345 	struct sk_buff *skb = napi->skb;
6346 	const struct ethhdr *eth;
6347 	unsigned int hlen = sizeof(*eth);
6348 
6349 	napi->skb = NULL;
6350 
6351 	skb_reset_mac_header(skb);
6352 	skb_gro_reset_offset(skb, hlen);
6353 
6354 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
6355 		eth = skb_gro_header_slow(skb, hlen, 0);
6356 		if (unlikely(!eth)) {
6357 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6358 					     __func__, napi->dev->name);
6359 			napi_reuse_skb(napi, skb);
6360 			return NULL;
6361 		}
6362 	} else {
6363 		eth = (const struct ethhdr *)skb->data;
6364 		gro_pull_from_frag0(skb, hlen);
6365 		NAPI_GRO_CB(skb)->frag0 += hlen;
6366 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
6367 	}
6368 	__skb_pull(skb, hlen);
6369 
6370 	/*
6371 	 * This works because the only protocols we care about don't require
6372 	 * special handling.
6373 	 * We'll fix it up properly in napi_frags_finish()
6374 	 */
6375 	skb->protocol = eth->h_proto;
6376 
6377 	return skb;
6378 }
6379 
6380 gro_result_t napi_gro_frags(struct napi_struct *napi)
6381 {
6382 	gro_result_t ret;
6383 	struct sk_buff *skb = napi_frags_skb(napi);
6384 
6385 	trace_napi_gro_frags_entry(skb);
6386 
6387 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6388 	trace_napi_gro_frags_exit(ret);
6389 
6390 	return ret;
6391 }
6392 EXPORT_SYMBOL(napi_gro_frags);
6393 
6394 /* Compute the checksum from gro_offset and return the folded value
6395  * after adding in any pseudo checksum.
6396  */
6397 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6398 {
6399 	__wsum wsum;
6400 	__sum16 sum;
6401 
6402 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6403 
6404 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6405 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6406 	/* See comments in __skb_checksum_complete(). */
6407 	if (likely(!sum)) {
6408 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6409 		    !skb->csum_complete_sw)
6410 			netdev_rx_csum_fault(skb->dev, skb);
6411 	}
6412 
6413 	NAPI_GRO_CB(skb)->csum = wsum;
6414 	NAPI_GRO_CB(skb)->csum_valid = 1;
6415 
6416 	return sum;
6417 }
6418 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6419 
6420 static void net_rps_send_ipi(struct softnet_data *remsd)
6421 {
6422 #ifdef CONFIG_RPS
6423 	while (remsd) {
6424 		struct softnet_data *next = remsd->rps_ipi_next;
6425 
6426 		if (cpu_online(remsd->cpu))
6427 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6428 		remsd = next;
6429 	}
6430 #endif
6431 }
6432 
6433 /*
6434  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6435  * Note: called with local irq disabled, but exits with local irq enabled.
6436  */
6437 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6438 {
6439 #ifdef CONFIG_RPS
6440 	struct softnet_data *remsd = sd->rps_ipi_list;
6441 
6442 	if (remsd) {
6443 		sd->rps_ipi_list = NULL;
6444 
6445 		local_irq_enable();
6446 
6447 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6448 		net_rps_send_ipi(remsd);
6449 	} else
6450 #endif
6451 		local_irq_enable();
6452 }
6453 
6454 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6455 {
6456 #ifdef CONFIG_RPS
6457 	return sd->rps_ipi_list != NULL;
6458 #else
6459 	return false;
6460 #endif
6461 }
6462 
6463 static int process_backlog(struct napi_struct *napi, int quota)
6464 {
6465 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6466 	bool again = true;
6467 	int work = 0;
6468 
6469 	/* Check if we have pending ipi, its better to send them now,
6470 	 * not waiting net_rx_action() end.
6471 	 */
6472 	if (sd_has_rps_ipi_waiting(sd)) {
6473 		local_irq_disable();
6474 		net_rps_action_and_irq_enable(sd);
6475 	}
6476 
6477 	napi->weight = dev_rx_weight;
6478 	while (again) {
6479 		struct sk_buff *skb;
6480 
6481 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6482 			rcu_read_lock();
6483 			__netif_receive_skb(skb);
6484 			rcu_read_unlock();
6485 			input_queue_head_incr(sd);
6486 			if (++work >= quota)
6487 				return work;
6488 
6489 		}
6490 
6491 		local_irq_disable();
6492 		rps_lock(sd);
6493 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6494 			/*
6495 			 * Inline a custom version of __napi_complete().
6496 			 * only current cpu owns and manipulates this napi,
6497 			 * and NAPI_STATE_SCHED is the only possible flag set
6498 			 * on backlog.
6499 			 * We can use a plain write instead of clear_bit(),
6500 			 * and we dont need an smp_mb() memory barrier.
6501 			 */
6502 			napi->state = 0;
6503 			again = false;
6504 		} else {
6505 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6506 						   &sd->process_queue);
6507 		}
6508 		rps_unlock(sd);
6509 		local_irq_enable();
6510 	}
6511 
6512 	return work;
6513 }
6514 
6515 /**
6516  * __napi_schedule - schedule for receive
6517  * @n: entry to schedule
6518  *
6519  * The entry's receive function will be scheduled to run.
6520  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6521  */
6522 void __napi_schedule(struct napi_struct *n)
6523 {
6524 	unsigned long flags;
6525 
6526 	local_irq_save(flags);
6527 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6528 	local_irq_restore(flags);
6529 }
6530 EXPORT_SYMBOL(__napi_schedule);
6531 
6532 /**
6533  *	napi_schedule_prep - check if napi can be scheduled
6534  *	@n: napi context
6535  *
6536  * Test if NAPI routine is already running, and if not mark
6537  * it as running.  This is used as a condition variable to
6538  * insure only one NAPI poll instance runs.  We also make
6539  * sure there is no pending NAPI disable.
6540  */
6541 bool napi_schedule_prep(struct napi_struct *n)
6542 {
6543 	unsigned long val, new;
6544 
6545 	do {
6546 		val = READ_ONCE(n->state);
6547 		if (unlikely(val & NAPIF_STATE_DISABLE))
6548 			return false;
6549 		new = val | NAPIF_STATE_SCHED;
6550 
6551 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6552 		 * This was suggested by Alexander Duyck, as compiler
6553 		 * emits better code than :
6554 		 * if (val & NAPIF_STATE_SCHED)
6555 		 *     new |= NAPIF_STATE_MISSED;
6556 		 */
6557 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6558 						   NAPIF_STATE_MISSED;
6559 	} while (cmpxchg(&n->state, val, new) != val);
6560 
6561 	return !(val & NAPIF_STATE_SCHED);
6562 }
6563 EXPORT_SYMBOL(napi_schedule_prep);
6564 
6565 /**
6566  * __napi_schedule_irqoff - schedule for receive
6567  * @n: entry to schedule
6568  *
6569  * Variant of __napi_schedule() assuming hard irqs are masked.
6570  *
6571  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6572  * because the interrupt disabled assumption might not be true
6573  * due to force-threaded interrupts and spinlock substitution.
6574  */
6575 void __napi_schedule_irqoff(struct napi_struct *n)
6576 {
6577 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6578 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6579 	else
6580 		__napi_schedule(n);
6581 }
6582 EXPORT_SYMBOL(__napi_schedule_irqoff);
6583 
6584 bool napi_complete_done(struct napi_struct *n, int work_done)
6585 {
6586 	unsigned long flags, val, new, timeout = 0;
6587 	bool ret = true;
6588 
6589 	/*
6590 	 * 1) Don't let napi dequeue from the cpu poll list
6591 	 *    just in case its running on a different cpu.
6592 	 * 2) If we are busy polling, do nothing here, we have
6593 	 *    the guarantee we will be called later.
6594 	 */
6595 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6596 				 NAPIF_STATE_IN_BUSY_POLL)))
6597 		return false;
6598 
6599 	if (work_done) {
6600 		if (n->gro_bitmask)
6601 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6602 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6603 	}
6604 	if (n->defer_hard_irqs_count > 0) {
6605 		n->defer_hard_irqs_count--;
6606 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6607 		if (timeout)
6608 			ret = false;
6609 	}
6610 	if (n->gro_bitmask) {
6611 		/* When the NAPI instance uses a timeout and keeps postponing
6612 		 * it, we need to bound somehow the time packets are kept in
6613 		 * the GRO layer
6614 		 */
6615 		napi_gro_flush(n, !!timeout);
6616 	}
6617 
6618 	gro_normal_list(n);
6619 
6620 	if (unlikely(!list_empty(&n->poll_list))) {
6621 		/* If n->poll_list is not empty, we need to mask irqs */
6622 		local_irq_save(flags);
6623 		list_del_init(&n->poll_list);
6624 		local_irq_restore(flags);
6625 	}
6626 
6627 	do {
6628 		val = READ_ONCE(n->state);
6629 
6630 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6631 
6632 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6633 			      NAPIF_STATE_SCHED_THREADED |
6634 			      NAPIF_STATE_PREFER_BUSY_POLL);
6635 
6636 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6637 		 * because we will call napi->poll() one more time.
6638 		 * This C code was suggested by Alexander Duyck to help gcc.
6639 		 */
6640 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6641 						    NAPIF_STATE_SCHED;
6642 	} while (cmpxchg(&n->state, val, new) != val);
6643 
6644 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6645 		__napi_schedule(n);
6646 		return false;
6647 	}
6648 
6649 	if (timeout)
6650 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6651 			      HRTIMER_MODE_REL_PINNED);
6652 	return ret;
6653 }
6654 EXPORT_SYMBOL(napi_complete_done);
6655 
6656 /* must be called under rcu_read_lock(), as we dont take a reference */
6657 static struct napi_struct *napi_by_id(unsigned int napi_id)
6658 {
6659 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6660 	struct napi_struct *napi;
6661 
6662 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6663 		if (napi->napi_id == napi_id)
6664 			return napi;
6665 
6666 	return NULL;
6667 }
6668 
6669 #if defined(CONFIG_NET_RX_BUSY_POLL)
6670 
6671 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6672 {
6673 	if (!skip_schedule) {
6674 		gro_normal_list(napi);
6675 		__napi_schedule(napi);
6676 		return;
6677 	}
6678 
6679 	if (napi->gro_bitmask) {
6680 		/* flush too old packets
6681 		 * If HZ < 1000, flush all packets.
6682 		 */
6683 		napi_gro_flush(napi, HZ >= 1000);
6684 	}
6685 
6686 	gro_normal_list(napi);
6687 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6688 }
6689 
6690 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6691 			   u16 budget)
6692 {
6693 	bool skip_schedule = false;
6694 	unsigned long timeout;
6695 	int rc;
6696 
6697 	/* Busy polling means there is a high chance device driver hard irq
6698 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6699 	 * set in napi_schedule_prep().
6700 	 * Since we are about to call napi->poll() once more, we can safely
6701 	 * clear NAPI_STATE_MISSED.
6702 	 *
6703 	 * Note: x86 could use a single "lock and ..." instruction
6704 	 * to perform these two clear_bit()
6705 	 */
6706 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6707 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6708 
6709 	local_bh_disable();
6710 
6711 	if (prefer_busy_poll) {
6712 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6713 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6714 		if (napi->defer_hard_irqs_count && timeout) {
6715 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6716 			skip_schedule = true;
6717 		}
6718 	}
6719 
6720 	/* All we really want here is to re-enable device interrupts.
6721 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6722 	 */
6723 	rc = napi->poll(napi, budget);
6724 	/* We can't gro_normal_list() here, because napi->poll() might have
6725 	 * rearmed the napi (napi_complete_done()) in which case it could
6726 	 * already be running on another CPU.
6727 	 */
6728 	trace_napi_poll(napi, rc, budget);
6729 	netpoll_poll_unlock(have_poll_lock);
6730 	if (rc == budget)
6731 		__busy_poll_stop(napi, skip_schedule);
6732 	local_bh_enable();
6733 }
6734 
6735 void napi_busy_loop(unsigned int napi_id,
6736 		    bool (*loop_end)(void *, unsigned long),
6737 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6738 {
6739 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6740 	int (*napi_poll)(struct napi_struct *napi, int budget);
6741 	void *have_poll_lock = NULL;
6742 	struct napi_struct *napi;
6743 
6744 restart:
6745 	napi_poll = NULL;
6746 
6747 	rcu_read_lock();
6748 
6749 	napi = napi_by_id(napi_id);
6750 	if (!napi)
6751 		goto out;
6752 
6753 	preempt_disable();
6754 	for (;;) {
6755 		int work = 0;
6756 
6757 		local_bh_disable();
6758 		if (!napi_poll) {
6759 			unsigned long val = READ_ONCE(napi->state);
6760 
6761 			/* If multiple threads are competing for this napi,
6762 			 * we avoid dirtying napi->state as much as we can.
6763 			 */
6764 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6765 				   NAPIF_STATE_IN_BUSY_POLL)) {
6766 				if (prefer_busy_poll)
6767 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6768 				goto count;
6769 			}
6770 			if (cmpxchg(&napi->state, val,
6771 				    val | NAPIF_STATE_IN_BUSY_POLL |
6772 					  NAPIF_STATE_SCHED) != val) {
6773 				if (prefer_busy_poll)
6774 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6775 				goto count;
6776 			}
6777 			have_poll_lock = netpoll_poll_lock(napi);
6778 			napi_poll = napi->poll;
6779 		}
6780 		work = napi_poll(napi, budget);
6781 		trace_napi_poll(napi, work, budget);
6782 		gro_normal_list(napi);
6783 count:
6784 		if (work > 0)
6785 			__NET_ADD_STATS(dev_net(napi->dev),
6786 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6787 		local_bh_enable();
6788 
6789 		if (!loop_end || loop_end(loop_end_arg, start_time))
6790 			break;
6791 
6792 		if (unlikely(need_resched())) {
6793 			if (napi_poll)
6794 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6795 			preempt_enable();
6796 			rcu_read_unlock();
6797 			cond_resched();
6798 			if (loop_end(loop_end_arg, start_time))
6799 				return;
6800 			goto restart;
6801 		}
6802 		cpu_relax();
6803 	}
6804 	if (napi_poll)
6805 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6806 	preempt_enable();
6807 out:
6808 	rcu_read_unlock();
6809 }
6810 EXPORT_SYMBOL(napi_busy_loop);
6811 
6812 #endif /* CONFIG_NET_RX_BUSY_POLL */
6813 
6814 static void napi_hash_add(struct napi_struct *napi)
6815 {
6816 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6817 		return;
6818 
6819 	spin_lock(&napi_hash_lock);
6820 
6821 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6822 	do {
6823 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6824 			napi_gen_id = MIN_NAPI_ID;
6825 	} while (napi_by_id(napi_gen_id));
6826 	napi->napi_id = napi_gen_id;
6827 
6828 	hlist_add_head_rcu(&napi->napi_hash_node,
6829 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6830 
6831 	spin_unlock(&napi_hash_lock);
6832 }
6833 
6834 /* Warning : caller is responsible to make sure rcu grace period
6835  * is respected before freeing memory containing @napi
6836  */
6837 static void napi_hash_del(struct napi_struct *napi)
6838 {
6839 	spin_lock(&napi_hash_lock);
6840 
6841 	hlist_del_init_rcu(&napi->napi_hash_node);
6842 
6843 	spin_unlock(&napi_hash_lock);
6844 }
6845 
6846 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6847 {
6848 	struct napi_struct *napi;
6849 
6850 	napi = container_of(timer, struct napi_struct, timer);
6851 
6852 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6853 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6854 	 */
6855 	if (!napi_disable_pending(napi) &&
6856 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6857 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6858 		__napi_schedule_irqoff(napi);
6859 	}
6860 
6861 	return HRTIMER_NORESTART;
6862 }
6863 
6864 static void init_gro_hash(struct napi_struct *napi)
6865 {
6866 	int i;
6867 
6868 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6869 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6870 		napi->gro_hash[i].count = 0;
6871 	}
6872 	napi->gro_bitmask = 0;
6873 }
6874 
6875 int dev_set_threaded(struct net_device *dev, bool threaded)
6876 {
6877 	struct napi_struct *napi;
6878 	int err = 0;
6879 
6880 	if (dev->threaded == threaded)
6881 		return 0;
6882 
6883 	if (threaded) {
6884 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6885 			if (!napi->thread) {
6886 				err = napi_kthread_create(napi);
6887 				if (err) {
6888 					threaded = false;
6889 					break;
6890 				}
6891 			}
6892 		}
6893 	}
6894 
6895 	dev->threaded = threaded;
6896 
6897 	/* Make sure kthread is created before THREADED bit
6898 	 * is set.
6899 	 */
6900 	smp_mb__before_atomic();
6901 
6902 	/* Setting/unsetting threaded mode on a napi might not immediately
6903 	 * take effect, if the current napi instance is actively being
6904 	 * polled. In this case, the switch between threaded mode and
6905 	 * softirq mode will happen in the next round of napi_schedule().
6906 	 * This should not cause hiccups/stalls to the live traffic.
6907 	 */
6908 	list_for_each_entry(napi, &dev->napi_list, dev_list) {
6909 		if (threaded)
6910 			set_bit(NAPI_STATE_THREADED, &napi->state);
6911 		else
6912 			clear_bit(NAPI_STATE_THREADED, &napi->state);
6913 	}
6914 
6915 	return err;
6916 }
6917 EXPORT_SYMBOL(dev_set_threaded);
6918 
6919 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6920 		    int (*poll)(struct napi_struct *, int), int weight)
6921 {
6922 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6923 		return;
6924 
6925 	INIT_LIST_HEAD(&napi->poll_list);
6926 	INIT_HLIST_NODE(&napi->napi_hash_node);
6927 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6928 	napi->timer.function = napi_watchdog;
6929 	init_gro_hash(napi);
6930 	napi->skb = NULL;
6931 	INIT_LIST_HEAD(&napi->rx_list);
6932 	napi->rx_count = 0;
6933 	napi->poll = poll;
6934 	if (weight > NAPI_POLL_WEIGHT)
6935 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6936 				weight);
6937 	napi->weight = weight;
6938 	napi->dev = dev;
6939 #ifdef CONFIG_NETPOLL
6940 	napi->poll_owner = -1;
6941 #endif
6942 	set_bit(NAPI_STATE_SCHED, &napi->state);
6943 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6944 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6945 	napi_hash_add(napi);
6946 	/* Create kthread for this napi if dev->threaded is set.
6947 	 * Clear dev->threaded if kthread creation failed so that
6948 	 * threaded mode will not be enabled in napi_enable().
6949 	 */
6950 	if (dev->threaded && napi_kthread_create(napi))
6951 		dev->threaded = 0;
6952 }
6953 EXPORT_SYMBOL(netif_napi_add);
6954 
6955 void napi_disable(struct napi_struct *n)
6956 {
6957 	might_sleep();
6958 	set_bit(NAPI_STATE_DISABLE, &n->state);
6959 
6960 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6961 		msleep(1);
6962 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6963 		msleep(1);
6964 
6965 	hrtimer_cancel(&n->timer);
6966 
6967 	clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6968 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6969 	clear_bit(NAPI_STATE_THREADED, &n->state);
6970 }
6971 EXPORT_SYMBOL(napi_disable);
6972 
6973 /**
6974  *	napi_enable - enable NAPI scheduling
6975  *	@n: NAPI context
6976  *
6977  * Resume NAPI from being scheduled on this context.
6978  * Must be paired with napi_disable.
6979  */
6980 void napi_enable(struct napi_struct *n)
6981 {
6982 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
6983 	smp_mb__before_atomic();
6984 	clear_bit(NAPI_STATE_SCHED, &n->state);
6985 	clear_bit(NAPI_STATE_NPSVC, &n->state);
6986 	if (n->dev->threaded && n->thread)
6987 		set_bit(NAPI_STATE_THREADED, &n->state);
6988 }
6989 EXPORT_SYMBOL(napi_enable);
6990 
6991 static void flush_gro_hash(struct napi_struct *napi)
6992 {
6993 	int i;
6994 
6995 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6996 		struct sk_buff *skb, *n;
6997 
6998 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6999 			kfree_skb(skb);
7000 		napi->gro_hash[i].count = 0;
7001 	}
7002 }
7003 
7004 /* Must be called in process context */
7005 void __netif_napi_del(struct napi_struct *napi)
7006 {
7007 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7008 		return;
7009 
7010 	napi_hash_del(napi);
7011 	list_del_rcu(&napi->dev_list);
7012 	napi_free_frags(napi);
7013 
7014 	flush_gro_hash(napi);
7015 	napi->gro_bitmask = 0;
7016 
7017 	if (napi->thread) {
7018 		kthread_stop(napi->thread);
7019 		napi->thread = NULL;
7020 	}
7021 }
7022 EXPORT_SYMBOL(__netif_napi_del);
7023 
7024 static int __napi_poll(struct napi_struct *n, bool *repoll)
7025 {
7026 	int work, weight;
7027 
7028 	weight = n->weight;
7029 
7030 	/* This NAPI_STATE_SCHED test is for avoiding a race
7031 	 * with netpoll's poll_napi().  Only the entity which
7032 	 * obtains the lock and sees NAPI_STATE_SCHED set will
7033 	 * actually make the ->poll() call.  Therefore we avoid
7034 	 * accidentally calling ->poll() when NAPI is not scheduled.
7035 	 */
7036 	work = 0;
7037 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
7038 		work = n->poll(n, weight);
7039 		trace_napi_poll(n, work, weight);
7040 	}
7041 
7042 	if (unlikely(work > weight))
7043 		pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7044 			    n->poll, work, weight);
7045 
7046 	if (likely(work < weight))
7047 		return work;
7048 
7049 	/* Drivers must not modify the NAPI state if they
7050 	 * consume the entire weight.  In such cases this code
7051 	 * still "owns" the NAPI instance and therefore can
7052 	 * move the instance around on the list at-will.
7053 	 */
7054 	if (unlikely(napi_disable_pending(n))) {
7055 		napi_complete(n);
7056 		return work;
7057 	}
7058 
7059 	/* The NAPI context has more processing work, but busy-polling
7060 	 * is preferred. Exit early.
7061 	 */
7062 	if (napi_prefer_busy_poll(n)) {
7063 		if (napi_complete_done(n, work)) {
7064 			/* If timeout is not set, we need to make sure
7065 			 * that the NAPI is re-scheduled.
7066 			 */
7067 			napi_schedule(n);
7068 		}
7069 		return work;
7070 	}
7071 
7072 	if (n->gro_bitmask) {
7073 		/* flush too old packets
7074 		 * If HZ < 1000, flush all packets.
7075 		 */
7076 		napi_gro_flush(n, HZ >= 1000);
7077 	}
7078 
7079 	gro_normal_list(n);
7080 
7081 	/* Some drivers may have called napi_schedule
7082 	 * prior to exhausting their budget.
7083 	 */
7084 	if (unlikely(!list_empty(&n->poll_list))) {
7085 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7086 			     n->dev ? n->dev->name : "backlog");
7087 		return work;
7088 	}
7089 
7090 	*repoll = true;
7091 
7092 	return work;
7093 }
7094 
7095 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7096 {
7097 	bool do_repoll = false;
7098 	void *have;
7099 	int work;
7100 
7101 	list_del_init(&n->poll_list);
7102 
7103 	have = netpoll_poll_lock(n);
7104 
7105 	work = __napi_poll(n, &do_repoll);
7106 
7107 	if (do_repoll)
7108 		list_add_tail(&n->poll_list, repoll);
7109 
7110 	netpoll_poll_unlock(have);
7111 
7112 	return work;
7113 }
7114 
7115 static int napi_thread_wait(struct napi_struct *napi)
7116 {
7117 	bool woken = false;
7118 
7119 	set_current_state(TASK_INTERRUPTIBLE);
7120 
7121 	while (!kthread_should_stop()) {
7122 		/* Testing SCHED_THREADED bit here to make sure the current
7123 		 * kthread owns this napi and could poll on this napi.
7124 		 * Testing SCHED bit is not enough because SCHED bit might be
7125 		 * set by some other busy poll thread or by napi_disable().
7126 		 */
7127 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7128 			WARN_ON(!list_empty(&napi->poll_list));
7129 			__set_current_state(TASK_RUNNING);
7130 			return 0;
7131 		}
7132 
7133 		schedule();
7134 		/* woken being true indicates this thread owns this napi. */
7135 		woken = true;
7136 		set_current_state(TASK_INTERRUPTIBLE);
7137 	}
7138 	__set_current_state(TASK_RUNNING);
7139 
7140 	return -1;
7141 }
7142 
7143 static int napi_threaded_poll(void *data)
7144 {
7145 	struct napi_struct *napi = data;
7146 	void *have;
7147 
7148 	while (!napi_thread_wait(napi)) {
7149 		for (;;) {
7150 			bool repoll = false;
7151 
7152 			local_bh_disable();
7153 
7154 			have = netpoll_poll_lock(napi);
7155 			__napi_poll(napi, &repoll);
7156 			netpoll_poll_unlock(have);
7157 
7158 			local_bh_enable();
7159 
7160 			if (!repoll)
7161 				break;
7162 
7163 			cond_resched();
7164 		}
7165 	}
7166 	return 0;
7167 }
7168 
7169 static __latent_entropy void net_rx_action(struct softirq_action *h)
7170 {
7171 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7172 	unsigned long time_limit = jiffies +
7173 		usecs_to_jiffies(netdev_budget_usecs);
7174 	int budget = netdev_budget;
7175 	LIST_HEAD(list);
7176 	LIST_HEAD(repoll);
7177 
7178 	local_irq_disable();
7179 	list_splice_init(&sd->poll_list, &list);
7180 	local_irq_enable();
7181 
7182 	for (;;) {
7183 		struct napi_struct *n;
7184 
7185 		if (list_empty(&list)) {
7186 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7187 				return;
7188 			break;
7189 		}
7190 
7191 		n = list_first_entry(&list, struct napi_struct, poll_list);
7192 		budget -= napi_poll(n, &repoll);
7193 
7194 		/* If softirq window is exhausted then punt.
7195 		 * Allow this to run for 2 jiffies since which will allow
7196 		 * an average latency of 1.5/HZ.
7197 		 */
7198 		if (unlikely(budget <= 0 ||
7199 			     time_after_eq(jiffies, time_limit))) {
7200 			sd->time_squeeze++;
7201 			break;
7202 		}
7203 	}
7204 
7205 	local_irq_disable();
7206 
7207 	list_splice_tail_init(&sd->poll_list, &list);
7208 	list_splice_tail(&repoll, &list);
7209 	list_splice(&list, &sd->poll_list);
7210 	if (!list_empty(&sd->poll_list))
7211 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7212 
7213 	net_rps_action_and_irq_enable(sd);
7214 }
7215 
7216 struct netdev_adjacent {
7217 	struct net_device *dev;
7218 
7219 	/* upper master flag, there can only be one master device per list */
7220 	bool master;
7221 
7222 	/* lookup ignore flag */
7223 	bool ignore;
7224 
7225 	/* counter for the number of times this device was added to us */
7226 	u16 ref_nr;
7227 
7228 	/* private field for the users */
7229 	void *private;
7230 
7231 	struct list_head list;
7232 	struct rcu_head rcu;
7233 };
7234 
7235 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7236 						 struct list_head *adj_list)
7237 {
7238 	struct netdev_adjacent *adj;
7239 
7240 	list_for_each_entry(adj, adj_list, list) {
7241 		if (adj->dev == adj_dev)
7242 			return adj;
7243 	}
7244 	return NULL;
7245 }
7246 
7247 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7248 				    struct netdev_nested_priv *priv)
7249 {
7250 	struct net_device *dev = (struct net_device *)priv->data;
7251 
7252 	return upper_dev == dev;
7253 }
7254 
7255 /**
7256  * netdev_has_upper_dev - Check if device is linked to an upper device
7257  * @dev: device
7258  * @upper_dev: upper device to check
7259  *
7260  * Find out if a device is linked to specified upper device and return true
7261  * in case it is. Note that this checks only immediate upper device,
7262  * not through a complete stack of devices. The caller must hold the RTNL lock.
7263  */
7264 bool netdev_has_upper_dev(struct net_device *dev,
7265 			  struct net_device *upper_dev)
7266 {
7267 	struct netdev_nested_priv priv = {
7268 		.data = (void *)upper_dev,
7269 	};
7270 
7271 	ASSERT_RTNL();
7272 
7273 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7274 					     &priv);
7275 }
7276 EXPORT_SYMBOL(netdev_has_upper_dev);
7277 
7278 /**
7279  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7280  * @dev: device
7281  * @upper_dev: upper device to check
7282  *
7283  * Find out if a device is linked to specified upper device and return true
7284  * in case it is. Note that this checks the entire upper device chain.
7285  * The caller must hold rcu lock.
7286  */
7287 
7288 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7289 				  struct net_device *upper_dev)
7290 {
7291 	struct netdev_nested_priv priv = {
7292 		.data = (void *)upper_dev,
7293 	};
7294 
7295 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7296 					       &priv);
7297 }
7298 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7299 
7300 /**
7301  * netdev_has_any_upper_dev - Check if device is linked to some device
7302  * @dev: device
7303  *
7304  * Find out if a device is linked to an upper device and return true in case
7305  * it is. The caller must hold the RTNL lock.
7306  */
7307 bool netdev_has_any_upper_dev(struct net_device *dev)
7308 {
7309 	ASSERT_RTNL();
7310 
7311 	return !list_empty(&dev->adj_list.upper);
7312 }
7313 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7314 
7315 /**
7316  * netdev_master_upper_dev_get - Get master upper device
7317  * @dev: device
7318  *
7319  * Find a master upper device and return pointer to it or NULL in case
7320  * it's not there. The caller must hold the RTNL lock.
7321  */
7322 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7323 {
7324 	struct netdev_adjacent *upper;
7325 
7326 	ASSERT_RTNL();
7327 
7328 	if (list_empty(&dev->adj_list.upper))
7329 		return NULL;
7330 
7331 	upper = list_first_entry(&dev->adj_list.upper,
7332 				 struct netdev_adjacent, list);
7333 	if (likely(upper->master))
7334 		return upper->dev;
7335 	return NULL;
7336 }
7337 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7338 
7339 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7340 {
7341 	struct netdev_adjacent *upper;
7342 
7343 	ASSERT_RTNL();
7344 
7345 	if (list_empty(&dev->adj_list.upper))
7346 		return NULL;
7347 
7348 	upper = list_first_entry(&dev->adj_list.upper,
7349 				 struct netdev_adjacent, list);
7350 	if (likely(upper->master) && !upper->ignore)
7351 		return upper->dev;
7352 	return NULL;
7353 }
7354 
7355 /**
7356  * netdev_has_any_lower_dev - Check if device is linked to some device
7357  * @dev: device
7358  *
7359  * Find out if a device is linked to a lower device and return true in case
7360  * it is. The caller must hold the RTNL lock.
7361  */
7362 static bool netdev_has_any_lower_dev(struct net_device *dev)
7363 {
7364 	ASSERT_RTNL();
7365 
7366 	return !list_empty(&dev->adj_list.lower);
7367 }
7368 
7369 void *netdev_adjacent_get_private(struct list_head *adj_list)
7370 {
7371 	struct netdev_adjacent *adj;
7372 
7373 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7374 
7375 	return adj->private;
7376 }
7377 EXPORT_SYMBOL(netdev_adjacent_get_private);
7378 
7379 /**
7380  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7381  * @dev: device
7382  * @iter: list_head ** of the current position
7383  *
7384  * Gets the next device from the dev's upper list, starting from iter
7385  * position. The caller must hold RCU read lock.
7386  */
7387 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7388 						 struct list_head **iter)
7389 {
7390 	struct netdev_adjacent *upper;
7391 
7392 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7393 
7394 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7395 
7396 	if (&upper->list == &dev->adj_list.upper)
7397 		return NULL;
7398 
7399 	*iter = &upper->list;
7400 
7401 	return upper->dev;
7402 }
7403 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7404 
7405 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7406 						  struct list_head **iter,
7407 						  bool *ignore)
7408 {
7409 	struct netdev_adjacent *upper;
7410 
7411 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7412 
7413 	if (&upper->list == &dev->adj_list.upper)
7414 		return NULL;
7415 
7416 	*iter = &upper->list;
7417 	*ignore = upper->ignore;
7418 
7419 	return upper->dev;
7420 }
7421 
7422 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7423 						    struct list_head **iter)
7424 {
7425 	struct netdev_adjacent *upper;
7426 
7427 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7428 
7429 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7430 
7431 	if (&upper->list == &dev->adj_list.upper)
7432 		return NULL;
7433 
7434 	*iter = &upper->list;
7435 
7436 	return upper->dev;
7437 }
7438 
7439 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7440 				       int (*fn)(struct net_device *dev,
7441 					 struct netdev_nested_priv *priv),
7442 				       struct netdev_nested_priv *priv)
7443 {
7444 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7445 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7446 	int ret, cur = 0;
7447 	bool ignore;
7448 
7449 	now = dev;
7450 	iter = &dev->adj_list.upper;
7451 
7452 	while (1) {
7453 		if (now != dev) {
7454 			ret = fn(now, priv);
7455 			if (ret)
7456 				return ret;
7457 		}
7458 
7459 		next = NULL;
7460 		while (1) {
7461 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7462 			if (!udev)
7463 				break;
7464 			if (ignore)
7465 				continue;
7466 
7467 			next = udev;
7468 			niter = &udev->adj_list.upper;
7469 			dev_stack[cur] = now;
7470 			iter_stack[cur++] = iter;
7471 			break;
7472 		}
7473 
7474 		if (!next) {
7475 			if (!cur)
7476 				return 0;
7477 			next = dev_stack[--cur];
7478 			niter = iter_stack[cur];
7479 		}
7480 
7481 		now = next;
7482 		iter = niter;
7483 	}
7484 
7485 	return 0;
7486 }
7487 
7488 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7489 				  int (*fn)(struct net_device *dev,
7490 					    struct netdev_nested_priv *priv),
7491 				  struct netdev_nested_priv *priv)
7492 {
7493 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7494 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7495 	int ret, cur = 0;
7496 
7497 	now = dev;
7498 	iter = &dev->adj_list.upper;
7499 
7500 	while (1) {
7501 		if (now != dev) {
7502 			ret = fn(now, priv);
7503 			if (ret)
7504 				return ret;
7505 		}
7506 
7507 		next = NULL;
7508 		while (1) {
7509 			udev = netdev_next_upper_dev_rcu(now, &iter);
7510 			if (!udev)
7511 				break;
7512 
7513 			next = udev;
7514 			niter = &udev->adj_list.upper;
7515 			dev_stack[cur] = now;
7516 			iter_stack[cur++] = iter;
7517 			break;
7518 		}
7519 
7520 		if (!next) {
7521 			if (!cur)
7522 				return 0;
7523 			next = dev_stack[--cur];
7524 			niter = iter_stack[cur];
7525 		}
7526 
7527 		now = next;
7528 		iter = niter;
7529 	}
7530 
7531 	return 0;
7532 }
7533 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7534 
7535 static bool __netdev_has_upper_dev(struct net_device *dev,
7536 				   struct net_device *upper_dev)
7537 {
7538 	struct netdev_nested_priv priv = {
7539 		.flags = 0,
7540 		.data = (void *)upper_dev,
7541 	};
7542 
7543 	ASSERT_RTNL();
7544 
7545 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7546 					   &priv);
7547 }
7548 
7549 /**
7550  * netdev_lower_get_next_private - Get the next ->private from the
7551  *				   lower neighbour list
7552  * @dev: device
7553  * @iter: list_head ** of the current position
7554  *
7555  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7556  * list, starting from iter position. The caller must hold either hold the
7557  * RTNL lock or its own locking that guarantees that the neighbour lower
7558  * list will remain unchanged.
7559  */
7560 void *netdev_lower_get_next_private(struct net_device *dev,
7561 				    struct list_head **iter)
7562 {
7563 	struct netdev_adjacent *lower;
7564 
7565 	lower = list_entry(*iter, struct netdev_adjacent, list);
7566 
7567 	if (&lower->list == &dev->adj_list.lower)
7568 		return NULL;
7569 
7570 	*iter = lower->list.next;
7571 
7572 	return lower->private;
7573 }
7574 EXPORT_SYMBOL(netdev_lower_get_next_private);
7575 
7576 /**
7577  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7578  *				       lower neighbour list, RCU
7579  *				       variant
7580  * @dev: device
7581  * @iter: list_head ** of the current position
7582  *
7583  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7584  * list, starting from iter position. The caller must hold RCU read lock.
7585  */
7586 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7587 					struct list_head **iter)
7588 {
7589 	struct netdev_adjacent *lower;
7590 
7591 	WARN_ON_ONCE(!rcu_read_lock_held());
7592 
7593 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7594 
7595 	if (&lower->list == &dev->adj_list.lower)
7596 		return NULL;
7597 
7598 	*iter = &lower->list;
7599 
7600 	return lower->private;
7601 }
7602 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7603 
7604 /**
7605  * netdev_lower_get_next - Get the next device from the lower neighbour
7606  *                         list
7607  * @dev: device
7608  * @iter: list_head ** of the current position
7609  *
7610  * Gets the next netdev_adjacent from the dev's lower neighbour
7611  * list, starting from iter position. The caller must hold RTNL lock or
7612  * its own locking that guarantees that the neighbour lower
7613  * list will remain unchanged.
7614  */
7615 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7616 {
7617 	struct netdev_adjacent *lower;
7618 
7619 	lower = list_entry(*iter, struct netdev_adjacent, list);
7620 
7621 	if (&lower->list == &dev->adj_list.lower)
7622 		return NULL;
7623 
7624 	*iter = lower->list.next;
7625 
7626 	return lower->dev;
7627 }
7628 EXPORT_SYMBOL(netdev_lower_get_next);
7629 
7630 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7631 						struct list_head **iter)
7632 {
7633 	struct netdev_adjacent *lower;
7634 
7635 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7636 
7637 	if (&lower->list == &dev->adj_list.lower)
7638 		return NULL;
7639 
7640 	*iter = &lower->list;
7641 
7642 	return lower->dev;
7643 }
7644 
7645 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7646 						  struct list_head **iter,
7647 						  bool *ignore)
7648 {
7649 	struct netdev_adjacent *lower;
7650 
7651 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7652 
7653 	if (&lower->list == &dev->adj_list.lower)
7654 		return NULL;
7655 
7656 	*iter = &lower->list;
7657 	*ignore = lower->ignore;
7658 
7659 	return lower->dev;
7660 }
7661 
7662 int netdev_walk_all_lower_dev(struct net_device *dev,
7663 			      int (*fn)(struct net_device *dev,
7664 					struct netdev_nested_priv *priv),
7665 			      struct netdev_nested_priv *priv)
7666 {
7667 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7668 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7669 	int ret, cur = 0;
7670 
7671 	now = dev;
7672 	iter = &dev->adj_list.lower;
7673 
7674 	while (1) {
7675 		if (now != dev) {
7676 			ret = fn(now, priv);
7677 			if (ret)
7678 				return ret;
7679 		}
7680 
7681 		next = NULL;
7682 		while (1) {
7683 			ldev = netdev_next_lower_dev(now, &iter);
7684 			if (!ldev)
7685 				break;
7686 
7687 			next = ldev;
7688 			niter = &ldev->adj_list.lower;
7689 			dev_stack[cur] = now;
7690 			iter_stack[cur++] = iter;
7691 			break;
7692 		}
7693 
7694 		if (!next) {
7695 			if (!cur)
7696 				return 0;
7697 			next = dev_stack[--cur];
7698 			niter = iter_stack[cur];
7699 		}
7700 
7701 		now = next;
7702 		iter = niter;
7703 	}
7704 
7705 	return 0;
7706 }
7707 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7708 
7709 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7710 				       int (*fn)(struct net_device *dev,
7711 					 struct netdev_nested_priv *priv),
7712 				       struct netdev_nested_priv *priv)
7713 {
7714 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7715 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7716 	int ret, cur = 0;
7717 	bool ignore;
7718 
7719 	now = dev;
7720 	iter = &dev->adj_list.lower;
7721 
7722 	while (1) {
7723 		if (now != dev) {
7724 			ret = fn(now, priv);
7725 			if (ret)
7726 				return ret;
7727 		}
7728 
7729 		next = NULL;
7730 		while (1) {
7731 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7732 			if (!ldev)
7733 				break;
7734 			if (ignore)
7735 				continue;
7736 
7737 			next = ldev;
7738 			niter = &ldev->adj_list.lower;
7739 			dev_stack[cur] = now;
7740 			iter_stack[cur++] = iter;
7741 			break;
7742 		}
7743 
7744 		if (!next) {
7745 			if (!cur)
7746 				return 0;
7747 			next = dev_stack[--cur];
7748 			niter = iter_stack[cur];
7749 		}
7750 
7751 		now = next;
7752 		iter = niter;
7753 	}
7754 
7755 	return 0;
7756 }
7757 
7758 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7759 					     struct list_head **iter)
7760 {
7761 	struct netdev_adjacent *lower;
7762 
7763 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7764 	if (&lower->list == &dev->adj_list.lower)
7765 		return NULL;
7766 
7767 	*iter = &lower->list;
7768 
7769 	return lower->dev;
7770 }
7771 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7772 
7773 static u8 __netdev_upper_depth(struct net_device *dev)
7774 {
7775 	struct net_device *udev;
7776 	struct list_head *iter;
7777 	u8 max_depth = 0;
7778 	bool ignore;
7779 
7780 	for (iter = &dev->adj_list.upper,
7781 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7782 	     udev;
7783 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7784 		if (ignore)
7785 			continue;
7786 		if (max_depth < udev->upper_level)
7787 			max_depth = udev->upper_level;
7788 	}
7789 
7790 	return max_depth;
7791 }
7792 
7793 static u8 __netdev_lower_depth(struct net_device *dev)
7794 {
7795 	struct net_device *ldev;
7796 	struct list_head *iter;
7797 	u8 max_depth = 0;
7798 	bool ignore;
7799 
7800 	for (iter = &dev->adj_list.lower,
7801 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7802 	     ldev;
7803 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7804 		if (ignore)
7805 			continue;
7806 		if (max_depth < ldev->lower_level)
7807 			max_depth = ldev->lower_level;
7808 	}
7809 
7810 	return max_depth;
7811 }
7812 
7813 static int __netdev_update_upper_level(struct net_device *dev,
7814 				       struct netdev_nested_priv *__unused)
7815 {
7816 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7817 	return 0;
7818 }
7819 
7820 static int __netdev_update_lower_level(struct net_device *dev,
7821 				       struct netdev_nested_priv *priv)
7822 {
7823 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7824 
7825 #ifdef CONFIG_LOCKDEP
7826 	if (!priv)
7827 		return 0;
7828 
7829 	if (priv->flags & NESTED_SYNC_IMM)
7830 		dev->nested_level = dev->lower_level - 1;
7831 	if (priv->flags & NESTED_SYNC_TODO)
7832 		net_unlink_todo(dev);
7833 #endif
7834 	return 0;
7835 }
7836 
7837 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7838 				  int (*fn)(struct net_device *dev,
7839 					    struct netdev_nested_priv *priv),
7840 				  struct netdev_nested_priv *priv)
7841 {
7842 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7843 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7844 	int ret, cur = 0;
7845 
7846 	now = dev;
7847 	iter = &dev->adj_list.lower;
7848 
7849 	while (1) {
7850 		if (now != dev) {
7851 			ret = fn(now, priv);
7852 			if (ret)
7853 				return ret;
7854 		}
7855 
7856 		next = NULL;
7857 		while (1) {
7858 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7859 			if (!ldev)
7860 				break;
7861 
7862 			next = ldev;
7863 			niter = &ldev->adj_list.lower;
7864 			dev_stack[cur] = now;
7865 			iter_stack[cur++] = iter;
7866 			break;
7867 		}
7868 
7869 		if (!next) {
7870 			if (!cur)
7871 				return 0;
7872 			next = dev_stack[--cur];
7873 			niter = iter_stack[cur];
7874 		}
7875 
7876 		now = next;
7877 		iter = niter;
7878 	}
7879 
7880 	return 0;
7881 }
7882 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7883 
7884 /**
7885  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7886  *				       lower neighbour list, RCU
7887  *				       variant
7888  * @dev: device
7889  *
7890  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7891  * list. The caller must hold RCU read lock.
7892  */
7893 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7894 {
7895 	struct netdev_adjacent *lower;
7896 
7897 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7898 			struct netdev_adjacent, list);
7899 	if (lower)
7900 		return lower->private;
7901 	return NULL;
7902 }
7903 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7904 
7905 /**
7906  * netdev_master_upper_dev_get_rcu - Get master upper device
7907  * @dev: device
7908  *
7909  * Find a master upper device and return pointer to it or NULL in case
7910  * it's not there. The caller must hold the RCU read lock.
7911  */
7912 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7913 {
7914 	struct netdev_adjacent *upper;
7915 
7916 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7917 				       struct netdev_adjacent, list);
7918 	if (upper && likely(upper->master))
7919 		return upper->dev;
7920 	return NULL;
7921 }
7922 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7923 
7924 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7925 			      struct net_device *adj_dev,
7926 			      struct list_head *dev_list)
7927 {
7928 	char linkname[IFNAMSIZ+7];
7929 
7930 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7931 		"upper_%s" : "lower_%s", adj_dev->name);
7932 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7933 				 linkname);
7934 }
7935 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7936 			       char *name,
7937 			       struct list_head *dev_list)
7938 {
7939 	char linkname[IFNAMSIZ+7];
7940 
7941 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7942 		"upper_%s" : "lower_%s", name);
7943 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7944 }
7945 
7946 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7947 						 struct net_device *adj_dev,
7948 						 struct list_head *dev_list)
7949 {
7950 	return (dev_list == &dev->adj_list.upper ||
7951 		dev_list == &dev->adj_list.lower) &&
7952 		net_eq(dev_net(dev), dev_net(adj_dev));
7953 }
7954 
7955 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7956 					struct net_device *adj_dev,
7957 					struct list_head *dev_list,
7958 					void *private, bool master)
7959 {
7960 	struct netdev_adjacent *adj;
7961 	int ret;
7962 
7963 	adj = __netdev_find_adj(adj_dev, dev_list);
7964 
7965 	if (adj) {
7966 		adj->ref_nr += 1;
7967 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7968 			 dev->name, adj_dev->name, adj->ref_nr);
7969 
7970 		return 0;
7971 	}
7972 
7973 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7974 	if (!adj)
7975 		return -ENOMEM;
7976 
7977 	adj->dev = adj_dev;
7978 	adj->master = master;
7979 	adj->ref_nr = 1;
7980 	adj->private = private;
7981 	adj->ignore = false;
7982 	dev_hold(adj_dev);
7983 
7984 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7985 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7986 
7987 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7988 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7989 		if (ret)
7990 			goto free_adj;
7991 	}
7992 
7993 	/* Ensure that master link is always the first item in list. */
7994 	if (master) {
7995 		ret = sysfs_create_link(&(dev->dev.kobj),
7996 					&(adj_dev->dev.kobj), "master");
7997 		if (ret)
7998 			goto remove_symlinks;
7999 
8000 		list_add_rcu(&adj->list, dev_list);
8001 	} else {
8002 		list_add_tail_rcu(&adj->list, dev_list);
8003 	}
8004 
8005 	return 0;
8006 
8007 remove_symlinks:
8008 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8009 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8010 free_adj:
8011 	kfree(adj);
8012 	dev_put(adj_dev);
8013 
8014 	return ret;
8015 }
8016 
8017 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8018 					 struct net_device *adj_dev,
8019 					 u16 ref_nr,
8020 					 struct list_head *dev_list)
8021 {
8022 	struct netdev_adjacent *adj;
8023 
8024 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8025 		 dev->name, adj_dev->name, ref_nr);
8026 
8027 	adj = __netdev_find_adj(adj_dev, dev_list);
8028 
8029 	if (!adj) {
8030 		pr_err("Adjacency does not exist for device %s from %s\n",
8031 		       dev->name, adj_dev->name);
8032 		WARN_ON(1);
8033 		return;
8034 	}
8035 
8036 	if (adj->ref_nr > ref_nr) {
8037 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8038 			 dev->name, adj_dev->name, ref_nr,
8039 			 adj->ref_nr - ref_nr);
8040 		adj->ref_nr -= ref_nr;
8041 		return;
8042 	}
8043 
8044 	if (adj->master)
8045 		sysfs_remove_link(&(dev->dev.kobj), "master");
8046 
8047 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8048 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8049 
8050 	list_del_rcu(&adj->list);
8051 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8052 		 adj_dev->name, dev->name, adj_dev->name);
8053 	dev_put(adj_dev);
8054 	kfree_rcu(adj, rcu);
8055 }
8056 
8057 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8058 					    struct net_device *upper_dev,
8059 					    struct list_head *up_list,
8060 					    struct list_head *down_list,
8061 					    void *private, bool master)
8062 {
8063 	int ret;
8064 
8065 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8066 					   private, master);
8067 	if (ret)
8068 		return ret;
8069 
8070 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8071 					   private, false);
8072 	if (ret) {
8073 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8074 		return ret;
8075 	}
8076 
8077 	return 0;
8078 }
8079 
8080 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8081 					       struct net_device *upper_dev,
8082 					       u16 ref_nr,
8083 					       struct list_head *up_list,
8084 					       struct list_head *down_list)
8085 {
8086 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8087 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8088 }
8089 
8090 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8091 						struct net_device *upper_dev,
8092 						void *private, bool master)
8093 {
8094 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8095 						&dev->adj_list.upper,
8096 						&upper_dev->adj_list.lower,
8097 						private, master);
8098 }
8099 
8100 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8101 						   struct net_device *upper_dev)
8102 {
8103 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8104 					   &dev->adj_list.upper,
8105 					   &upper_dev->adj_list.lower);
8106 }
8107 
8108 static int __netdev_upper_dev_link(struct net_device *dev,
8109 				   struct net_device *upper_dev, bool master,
8110 				   void *upper_priv, void *upper_info,
8111 				   struct netdev_nested_priv *priv,
8112 				   struct netlink_ext_ack *extack)
8113 {
8114 	struct netdev_notifier_changeupper_info changeupper_info = {
8115 		.info = {
8116 			.dev = dev,
8117 			.extack = extack,
8118 		},
8119 		.upper_dev = upper_dev,
8120 		.master = master,
8121 		.linking = true,
8122 		.upper_info = upper_info,
8123 	};
8124 	struct net_device *master_dev;
8125 	int ret = 0;
8126 
8127 	ASSERT_RTNL();
8128 
8129 	if (dev == upper_dev)
8130 		return -EBUSY;
8131 
8132 	/* To prevent loops, check if dev is not upper device to upper_dev. */
8133 	if (__netdev_has_upper_dev(upper_dev, dev))
8134 		return -EBUSY;
8135 
8136 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8137 		return -EMLINK;
8138 
8139 	if (!master) {
8140 		if (__netdev_has_upper_dev(dev, upper_dev))
8141 			return -EEXIST;
8142 	} else {
8143 		master_dev = __netdev_master_upper_dev_get(dev);
8144 		if (master_dev)
8145 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8146 	}
8147 
8148 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8149 					    &changeupper_info.info);
8150 	ret = notifier_to_errno(ret);
8151 	if (ret)
8152 		return ret;
8153 
8154 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8155 						   master);
8156 	if (ret)
8157 		return ret;
8158 
8159 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8160 					    &changeupper_info.info);
8161 	ret = notifier_to_errno(ret);
8162 	if (ret)
8163 		goto rollback;
8164 
8165 	__netdev_update_upper_level(dev, NULL);
8166 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8167 
8168 	__netdev_update_lower_level(upper_dev, priv);
8169 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8170 				    priv);
8171 
8172 	return 0;
8173 
8174 rollback:
8175 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8176 
8177 	return ret;
8178 }
8179 
8180 /**
8181  * netdev_upper_dev_link - Add a link to the upper device
8182  * @dev: device
8183  * @upper_dev: new upper device
8184  * @extack: netlink extended ack
8185  *
8186  * Adds a link to device which is upper to this one. The caller must hold
8187  * the RTNL lock. On a failure a negative errno code is returned.
8188  * On success the reference counts are adjusted and the function
8189  * returns zero.
8190  */
8191 int netdev_upper_dev_link(struct net_device *dev,
8192 			  struct net_device *upper_dev,
8193 			  struct netlink_ext_ack *extack)
8194 {
8195 	struct netdev_nested_priv priv = {
8196 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8197 		.data = NULL,
8198 	};
8199 
8200 	return __netdev_upper_dev_link(dev, upper_dev, false,
8201 				       NULL, NULL, &priv, extack);
8202 }
8203 EXPORT_SYMBOL(netdev_upper_dev_link);
8204 
8205 /**
8206  * netdev_master_upper_dev_link - Add a master link to the upper device
8207  * @dev: device
8208  * @upper_dev: new upper device
8209  * @upper_priv: upper device private
8210  * @upper_info: upper info to be passed down via notifier
8211  * @extack: netlink extended ack
8212  *
8213  * Adds a link to device which is upper to this one. In this case, only
8214  * one master upper device can be linked, although other non-master devices
8215  * might be linked as well. The caller must hold the RTNL lock.
8216  * On a failure a negative errno code is returned. On success the reference
8217  * counts are adjusted and the function returns zero.
8218  */
8219 int netdev_master_upper_dev_link(struct net_device *dev,
8220 				 struct net_device *upper_dev,
8221 				 void *upper_priv, void *upper_info,
8222 				 struct netlink_ext_ack *extack)
8223 {
8224 	struct netdev_nested_priv priv = {
8225 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8226 		.data = NULL,
8227 	};
8228 
8229 	return __netdev_upper_dev_link(dev, upper_dev, true,
8230 				       upper_priv, upper_info, &priv, extack);
8231 }
8232 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8233 
8234 static void __netdev_upper_dev_unlink(struct net_device *dev,
8235 				      struct net_device *upper_dev,
8236 				      struct netdev_nested_priv *priv)
8237 {
8238 	struct netdev_notifier_changeupper_info changeupper_info = {
8239 		.info = {
8240 			.dev = dev,
8241 		},
8242 		.upper_dev = upper_dev,
8243 		.linking = false,
8244 	};
8245 
8246 	ASSERT_RTNL();
8247 
8248 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8249 
8250 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8251 				      &changeupper_info.info);
8252 
8253 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8254 
8255 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8256 				      &changeupper_info.info);
8257 
8258 	__netdev_update_upper_level(dev, NULL);
8259 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8260 
8261 	__netdev_update_lower_level(upper_dev, priv);
8262 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8263 				    priv);
8264 }
8265 
8266 /**
8267  * netdev_upper_dev_unlink - Removes a link to upper device
8268  * @dev: device
8269  * @upper_dev: new upper device
8270  *
8271  * Removes a link to device which is upper to this one. The caller must hold
8272  * the RTNL lock.
8273  */
8274 void netdev_upper_dev_unlink(struct net_device *dev,
8275 			     struct net_device *upper_dev)
8276 {
8277 	struct netdev_nested_priv priv = {
8278 		.flags = NESTED_SYNC_TODO,
8279 		.data = NULL,
8280 	};
8281 
8282 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8283 }
8284 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8285 
8286 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8287 				      struct net_device *lower_dev,
8288 				      bool val)
8289 {
8290 	struct netdev_adjacent *adj;
8291 
8292 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8293 	if (adj)
8294 		adj->ignore = val;
8295 
8296 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8297 	if (adj)
8298 		adj->ignore = val;
8299 }
8300 
8301 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8302 					struct net_device *lower_dev)
8303 {
8304 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8305 }
8306 
8307 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8308 				       struct net_device *lower_dev)
8309 {
8310 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8311 }
8312 
8313 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8314 				   struct net_device *new_dev,
8315 				   struct net_device *dev,
8316 				   struct netlink_ext_ack *extack)
8317 {
8318 	struct netdev_nested_priv priv = {
8319 		.flags = 0,
8320 		.data = NULL,
8321 	};
8322 	int err;
8323 
8324 	if (!new_dev)
8325 		return 0;
8326 
8327 	if (old_dev && new_dev != old_dev)
8328 		netdev_adjacent_dev_disable(dev, old_dev);
8329 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8330 				      extack);
8331 	if (err) {
8332 		if (old_dev && new_dev != old_dev)
8333 			netdev_adjacent_dev_enable(dev, old_dev);
8334 		return err;
8335 	}
8336 
8337 	return 0;
8338 }
8339 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8340 
8341 void netdev_adjacent_change_commit(struct net_device *old_dev,
8342 				   struct net_device *new_dev,
8343 				   struct net_device *dev)
8344 {
8345 	struct netdev_nested_priv priv = {
8346 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8347 		.data = NULL,
8348 	};
8349 
8350 	if (!new_dev || !old_dev)
8351 		return;
8352 
8353 	if (new_dev == old_dev)
8354 		return;
8355 
8356 	netdev_adjacent_dev_enable(dev, old_dev);
8357 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8358 }
8359 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8360 
8361 void netdev_adjacent_change_abort(struct net_device *old_dev,
8362 				  struct net_device *new_dev,
8363 				  struct net_device *dev)
8364 {
8365 	struct netdev_nested_priv priv = {
8366 		.flags = 0,
8367 		.data = NULL,
8368 	};
8369 
8370 	if (!new_dev)
8371 		return;
8372 
8373 	if (old_dev && new_dev != old_dev)
8374 		netdev_adjacent_dev_enable(dev, old_dev);
8375 
8376 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8377 }
8378 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8379 
8380 /**
8381  * netdev_bonding_info_change - Dispatch event about slave change
8382  * @dev: device
8383  * @bonding_info: info to dispatch
8384  *
8385  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8386  * The caller must hold the RTNL lock.
8387  */
8388 void netdev_bonding_info_change(struct net_device *dev,
8389 				struct netdev_bonding_info *bonding_info)
8390 {
8391 	struct netdev_notifier_bonding_info info = {
8392 		.info.dev = dev,
8393 	};
8394 
8395 	memcpy(&info.bonding_info, bonding_info,
8396 	       sizeof(struct netdev_bonding_info));
8397 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8398 				      &info.info);
8399 }
8400 EXPORT_SYMBOL(netdev_bonding_info_change);
8401 
8402 /**
8403  * netdev_get_xmit_slave - Get the xmit slave of master device
8404  * @dev: device
8405  * @skb: The packet
8406  * @all_slaves: assume all the slaves are active
8407  *
8408  * The reference counters are not incremented so the caller must be
8409  * careful with locks. The caller must hold RCU lock.
8410  * %NULL is returned if no slave is found.
8411  */
8412 
8413 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8414 					 struct sk_buff *skb,
8415 					 bool all_slaves)
8416 {
8417 	const struct net_device_ops *ops = dev->netdev_ops;
8418 
8419 	if (!ops->ndo_get_xmit_slave)
8420 		return NULL;
8421 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8422 }
8423 EXPORT_SYMBOL(netdev_get_xmit_slave);
8424 
8425 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8426 						  struct sock *sk)
8427 {
8428 	const struct net_device_ops *ops = dev->netdev_ops;
8429 
8430 	if (!ops->ndo_sk_get_lower_dev)
8431 		return NULL;
8432 	return ops->ndo_sk_get_lower_dev(dev, sk);
8433 }
8434 
8435 /**
8436  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8437  * @dev: device
8438  * @sk: the socket
8439  *
8440  * %NULL is returned if no lower device is found.
8441  */
8442 
8443 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8444 					    struct sock *sk)
8445 {
8446 	struct net_device *lower;
8447 
8448 	lower = netdev_sk_get_lower_dev(dev, sk);
8449 	while (lower) {
8450 		dev = lower;
8451 		lower = netdev_sk_get_lower_dev(dev, sk);
8452 	}
8453 
8454 	return dev;
8455 }
8456 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8457 
8458 static void netdev_adjacent_add_links(struct net_device *dev)
8459 {
8460 	struct netdev_adjacent *iter;
8461 
8462 	struct net *net = dev_net(dev);
8463 
8464 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8465 		if (!net_eq(net, dev_net(iter->dev)))
8466 			continue;
8467 		netdev_adjacent_sysfs_add(iter->dev, dev,
8468 					  &iter->dev->adj_list.lower);
8469 		netdev_adjacent_sysfs_add(dev, iter->dev,
8470 					  &dev->adj_list.upper);
8471 	}
8472 
8473 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8474 		if (!net_eq(net, dev_net(iter->dev)))
8475 			continue;
8476 		netdev_adjacent_sysfs_add(iter->dev, dev,
8477 					  &iter->dev->adj_list.upper);
8478 		netdev_adjacent_sysfs_add(dev, iter->dev,
8479 					  &dev->adj_list.lower);
8480 	}
8481 }
8482 
8483 static void netdev_adjacent_del_links(struct net_device *dev)
8484 {
8485 	struct netdev_adjacent *iter;
8486 
8487 	struct net *net = dev_net(dev);
8488 
8489 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8490 		if (!net_eq(net, dev_net(iter->dev)))
8491 			continue;
8492 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8493 					  &iter->dev->adj_list.lower);
8494 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8495 					  &dev->adj_list.upper);
8496 	}
8497 
8498 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8499 		if (!net_eq(net, dev_net(iter->dev)))
8500 			continue;
8501 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8502 					  &iter->dev->adj_list.upper);
8503 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8504 					  &dev->adj_list.lower);
8505 	}
8506 }
8507 
8508 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8509 {
8510 	struct netdev_adjacent *iter;
8511 
8512 	struct net *net = dev_net(dev);
8513 
8514 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8515 		if (!net_eq(net, dev_net(iter->dev)))
8516 			continue;
8517 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8518 					  &iter->dev->adj_list.lower);
8519 		netdev_adjacent_sysfs_add(iter->dev, dev,
8520 					  &iter->dev->adj_list.lower);
8521 	}
8522 
8523 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8524 		if (!net_eq(net, dev_net(iter->dev)))
8525 			continue;
8526 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8527 					  &iter->dev->adj_list.upper);
8528 		netdev_adjacent_sysfs_add(iter->dev, dev,
8529 					  &iter->dev->adj_list.upper);
8530 	}
8531 }
8532 
8533 void *netdev_lower_dev_get_private(struct net_device *dev,
8534 				   struct net_device *lower_dev)
8535 {
8536 	struct netdev_adjacent *lower;
8537 
8538 	if (!lower_dev)
8539 		return NULL;
8540 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8541 	if (!lower)
8542 		return NULL;
8543 
8544 	return lower->private;
8545 }
8546 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8547 
8548 
8549 /**
8550  * netdev_lower_state_changed - Dispatch event about lower device state change
8551  * @lower_dev: device
8552  * @lower_state_info: state to dispatch
8553  *
8554  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8555  * The caller must hold the RTNL lock.
8556  */
8557 void netdev_lower_state_changed(struct net_device *lower_dev,
8558 				void *lower_state_info)
8559 {
8560 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8561 		.info.dev = lower_dev,
8562 	};
8563 
8564 	ASSERT_RTNL();
8565 	changelowerstate_info.lower_state_info = lower_state_info;
8566 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8567 				      &changelowerstate_info.info);
8568 }
8569 EXPORT_SYMBOL(netdev_lower_state_changed);
8570 
8571 static void dev_change_rx_flags(struct net_device *dev, int flags)
8572 {
8573 	const struct net_device_ops *ops = dev->netdev_ops;
8574 
8575 	if (ops->ndo_change_rx_flags)
8576 		ops->ndo_change_rx_flags(dev, flags);
8577 }
8578 
8579 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8580 {
8581 	unsigned int old_flags = dev->flags;
8582 	kuid_t uid;
8583 	kgid_t gid;
8584 
8585 	ASSERT_RTNL();
8586 
8587 	dev->flags |= IFF_PROMISC;
8588 	dev->promiscuity += inc;
8589 	if (dev->promiscuity == 0) {
8590 		/*
8591 		 * Avoid overflow.
8592 		 * If inc causes overflow, untouch promisc and return error.
8593 		 */
8594 		if (inc < 0)
8595 			dev->flags &= ~IFF_PROMISC;
8596 		else {
8597 			dev->promiscuity -= inc;
8598 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8599 				dev->name);
8600 			return -EOVERFLOW;
8601 		}
8602 	}
8603 	if (dev->flags != old_flags) {
8604 		pr_info("device %s %s promiscuous mode\n",
8605 			dev->name,
8606 			dev->flags & IFF_PROMISC ? "entered" : "left");
8607 		if (audit_enabled) {
8608 			current_uid_gid(&uid, &gid);
8609 			audit_log(audit_context(), GFP_ATOMIC,
8610 				  AUDIT_ANOM_PROMISCUOUS,
8611 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8612 				  dev->name, (dev->flags & IFF_PROMISC),
8613 				  (old_flags & IFF_PROMISC),
8614 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8615 				  from_kuid(&init_user_ns, uid),
8616 				  from_kgid(&init_user_ns, gid),
8617 				  audit_get_sessionid(current));
8618 		}
8619 
8620 		dev_change_rx_flags(dev, IFF_PROMISC);
8621 	}
8622 	if (notify)
8623 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8624 	return 0;
8625 }
8626 
8627 /**
8628  *	dev_set_promiscuity	- update promiscuity count on a device
8629  *	@dev: device
8630  *	@inc: modifier
8631  *
8632  *	Add or remove promiscuity from a device. While the count in the device
8633  *	remains above zero the interface remains promiscuous. Once it hits zero
8634  *	the device reverts back to normal filtering operation. A negative inc
8635  *	value is used to drop promiscuity on the device.
8636  *	Return 0 if successful or a negative errno code on error.
8637  */
8638 int dev_set_promiscuity(struct net_device *dev, int inc)
8639 {
8640 	unsigned int old_flags = dev->flags;
8641 	int err;
8642 
8643 	err = __dev_set_promiscuity(dev, inc, true);
8644 	if (err < 0)
8645 		return err;
8646 	if (dev->flags != old_flags)
8647 		dev_set_rx_mode(dev);
8648 	return err;
8649 }
8650 EXPORT_SYMBOL(dev_set_promiscuity);
8651 
8652 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8653 {
8654 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8655 
8656 	ASSERT_RTNL();
8657 
8658 	dev->flags |= IFF_ALLMULTI;
8659 	dev->allmulti += inc;
8660 	if (dev->allmulti == 0) {
8661 		/*
8662 		 * Avoid overflow.
8663 		 * If inc causes overflow, untouch allmulti and return error.
8664 		 */
8665 		if (inc < 0)
8666 			dev->flags &= ~IFF_ALLMULTI;
8667 		else {
8668 			dev->allmulti -= inc;
8669 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8670 				dev->name);
8671 			return -EOVERFLOW;
8672 		}
8673 	}
8674 	if (dev->flags ^ old_flags) {
8675 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8676 		dev_set_rx_mode(dev);
8677 		if (notify)
8678 			__dev_notify_flags(dev, old_flags,
8679 					   dev->gflags ^ old_gflags);
8680 	}
8681 	return 0;
8682 }
8683 
8684 /**
8685  *	dev_set_allmulti	- update allmulti count on a device
8686  *	@dev: device
8687  *	@inc: modifier
8688  *
8689  *	Add or remove reception of all multicast frames to a device. While the
8690  *	count in the device remains above zero the interface remains listening
8691  *	to all interfaces. Once it hits zero the device reverts back to normal
8692  *	filtering operation. A negative @inc value is used to drop the counter
8693  *	when releasing a resource needing all multicasts.
8694  *	Return 0 if successful or a negative errno code on error.
8695  */
8696 
8697 int dev_set_allmulti(struct net_device *dev, int inc)
8698 {
8699 	return __dev_set_allmulti(dev, inc, true);
8700 }
8701 EXPORT_SYMBOL(dev_set_allmulti);
8702 
8703 /*
8704  *	Upload unicast and multicast address lists to device and
8705  *	configure RX filtering. When the device doesn't support unicast
8706  *	filtering it is put in promiscuous mode while unicast addresses
8707  *	are present.
8708  */
8709 void __dev_set_rx_mode(struct net_device *dev)
8710 {
8711 	const struct net_device_ops *ops = dev->netdev_ops;
8712 
8713 	/* dev_open will call this function so the list will stay sane. */
8714 	if (!(dev->flags&IFF_UP))
8715 		return;
8716 
8717 	if (!netif_device_present(dev))
8718 		return;
8719 
8720 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8721 		/* Unicast addresses changes may only happen under the rtnl,
8722 		 * therefore calling __dev_set_promiscuity here is safe.
8723 		 */
8724 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8725 			__dev_set_promiscuity(dev, 1, false);
8726 			dev->uc_promisc = true;
8727 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8728 			__dev_set_promiscuity(dev, -1, false);
8729 			dev->uc_promisc = false;
8730 		}
8731 	}
8732 
8733 	if (ops->ndo_set_rx_mode)
8734 		ops->ndo_set_rx_mode(dev);
8735 }
8736 
8737 void dev_set_rx_mode(struct net_device *dev)
8738 {
8739 	netif_addr_lock_bh(dev);
8740 	__dev_set_rx_mode(dev);
8741 	netif_addr_unlock_bh(dev);
8742 }
8743 
8744 /**
8745  *	dev_get_flags - get flags reported to userspace
8746  *	@dev: device
8747  *
8748  *	Get the combination of flag bits exported through APIs to userspace.
8749  */
8750 unsigned int dev_get_flags(const struct net_device *dev)
8751 {
8752 	unsigned int flags;
8753 
8754 	flags = (dev->flags & ~(IFF_PROMISC |
8755 				IFF_ALLMULTI |
8756 				IFF_RUNNING |
8757 				IFF_LOWER_UP |
8758 				IFF_DORMANT)) |
8759 		(dev->gflags & (IFF_PROMISC |
8760 				IFF_ALLMULTI));
8761 
8762 	if (netif_running(dev)) {
8763 		if (netif_oper_up(dev))
8764 			flags |= IFF_RUNNING;
8765 		if (netif_carrier_ok(dev))
8766 			flags |= IFF_LOWER_UP;
8767 		if (netif_dormant(dev))
8768 			flags |= IFF_DORMANT;
8769 	}
8770 
8771 	return flags;
8772 }
8773 EXPORT_SYMBOL(dev_get_flags);
8774 
8775 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8776 		       struct netlink_ext_ack *extack)
8777 {
8778 	unsigned int old_flags = dev->flags;
8779 	int ret;
8780 
8781 	ASSERT_RTNL();
8782 
8783 	/*
8784 	 *	Set the flags on our device.
8785 	 */
8786 
8787 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8788 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8789 			       IFF_AUTOMEDIA)) |
8790 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8791 				    IFF_ALLMULTI));
8792 
8793 	/*
8794 	 *	Load in the correct multicast list now the flags have changed.
8795 	 */
8796 
8797 	if ((old_flags ^ flags) & IFF_MULTICAST)
8798 		dev_change_rx_flags(dev, IFF_MULTICAST);
8799 
8800 	dev_set_rx_mode(dev);
8801 
8802 	/*
8803 	 *	Have we downed the interface. We handle IFF_UP ourselves
8804 	 *	according to user attempts to set it, rather than blindly
8805 	 *	setting it.
8806 	 */
8807 
8808 	ret = 0;
8809 	if ((old_flags ^ flags) & IFF_UP) {
8810 		if (old_flags & IFF_UP)
8811 			__dev_close(dev);
8812 		else
8813 			ret = __dev_open(dev, extack);
8814 	}
8815 
8816 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8817 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8818 		unsigned int old_flags = dev->flags;
8819 
8820 		dev->gflags ^= IFF_PROMISC;
8821 
8822 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8823 			if (dev->flags != old_flags)
8824 				dev_set_rx_mode(dev);
8825 	}
8826 
8827 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8828 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8829 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8830 	 */
8831 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8832 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8833 
8834 		dev->gflags ^= IFF_ALLMULTI;
8835 		__dev_set_allmulti(dev, inc, false);
8836 	}
8837 
8838 	return ret;
8839 }
8840 
8841 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8842 			unsigned int gchanges)
8843 {
8844 	unsigned int changes = dev->flags ^ old_flags;
8845 
8846 	if (gchanges)
8847 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8848 
8849 	if (changes & IFF_UP) {
8850 		if (dev->flags & IFF_UP)
8851 			call_netdevice_notifiers(NETDEV_UP, dev);
8852 		else
8853 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8854 	}
8855 
8856 	if (dev->flags & IFF_UP &&
8857 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8858 		struct netdev_notifier_change_info change_info = {
8859 			.info = {
8860 				.dev = dev,
8861 			},
8862 			.flags_changed = changes,
8863 		};
8864 
8865 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8866 	}
8867 }
8868 
8869 /**
8870  *	dev_change_flags - change device settings
8871  *	@dev: device
8872  *	@flags: device state flags
8873  *	@extack: netlink extended ack
8874  *
8875  *	Change settings on device based state flags. The flags are
8876  *	in the userspace exported format.
8877  */
8878 int dev_change_flags(struct net_device *dev, unsigned int flags,
8879 		     struct netlink_ext_ack *extack)
8880 {
8881 	int ret;
8882 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8883 
8884 	ret = __dev_change_flags(dev, flags, extack);
8885 	if (ret < 0)
8886 		return ret;
8887 
8888 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8889 	__dev_notify_flags(dev, old_flags, changes);
8890 	return ret;
8891 }
8892 EXPORT_SYMBOL(dev_change_flags);
8893 
8894 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8895 {
8896 	const struct net_device_ops *ops = dev->netdev_ops;
8897 
8898 	if (ops->ndo_change_mtu)
8899 		return ops->ndo_change_mtu(dev, new_mtu);
8900 
8901 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8902 	WRITE_ONCE(dev->mtu, new_mtu);
8903 	return 0;
8904 }
8905 EXPORT_SYMBOL(__dev_set_mtu);
8906 
8907 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8908 		     struct netlink_ext_ack *extack)
8909 {
8910 	/* MTU must be positive, and in range */
8911 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8912 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8913 		return -EINVAL;
8914 	}
8915 
8916 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8917 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8918 		return -EINVAL;
8919 	}
8920 	return 0;
8921 }
8922 
8923 /**
8924  *	dev_set_mtu_ext - Change maximum transfer unit
8925  *	@dev: device
8926  *	@new_mtu: new transfer unit
8927  *	@extack: netlink extended ack
8928  *
8929  *	Change the maximum transfer size of the network device.
8930  */
8931 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8932 		    struct netlink_ext_ack *extack)
8933 {
8934 	int err, orig_mtu;
8935 
8936 	if (new_mtu == dev->mtu)
8937 		return 0;
8938 
8939 	err = dev_validate_mtu(dev, new_mtu, extack);
8940 	if (err)
8941 		return err;
8942 
8943 	if (!netif_device_present(dev))
8944 		return -ENODEV;
8945 
8946 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8947 	err = notifier_to_errno(err);
8948 	if (err)
8949 		return err;
8950 
8951 	orig_mtu = dev->mtu;
8952 	err = __dev_set_mtu(dev, new_mtu);
8953 
8954 	if (!err) {
8955 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8956 						   orig_mtu);
8957 		err = notifier_to_errno(err);
8958 		if (err) {
8959 			/* setting mtu back and notifying everyone again,
8960 			 * so that they have a chance to revert changes.
8961 			 */
8962 			__dev_set_mtu(dev, orig_mtu);
8963 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8964 						     new_mtu);
8965 		}
8966 	}
8967 	return err;
8968 }
8969 
8970 int dev_set_mtu(struct net_device *dev, int new_mtu)
8971 {
8972 	struct netlink_ext_ack extack;
8973 	int err;
8974 
8975 	memset(&extack, 0, sizeof(extack));
8976 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8977 	if (err && extack._msg)
8978 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8979 	return err;
8980 }
8981 EXPORT_SYMBOL(dev_set_mtu);
8982 
8983 /**
8984  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8985  *	@dev: device
8986  *	@new_len: new tx queue length
8987  */
8988 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8989 {
8990 	unsigned int orig_len = dev->tx_queue_len;
8991 	int res;
8992 
8993 	if (new_len != (unsigned int)new_len)
8994 		return -ERANGE;
8995 
8996 	if (new_len != orig_len) {
8997 		dev->tx_queue_len = new_len;
8998 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8999 		res = notifier_to_errno(res);
9000 		if (res)
9001 			goto err_rollback;
9002 		res = dev_qdisc_change_tx_queue_len(dev);
9003 		if (res)
9004 			goto err_rollback;
9005 	}
9006 
9007 	return 0;
9008 
9009 err_rollback:
9010 	netdev_err(dev, "refused to change device tx_queue_len\n");
9011 	dev->tx_queue_len = orig_len;
9012 	return res;
9013 }
9014 
9015 /**
9016  *	dev_set_group - Change group this device belongs to
9017  *	@dev: device
9018  *	@new_group: group this device should belong to
9019  */
9020 void dev_set_group(struct net_device *dev, int new_group)
9021 {
9022 	dev->group = new_group;
9023 }
9024 EXPORT_SYMBOL(dev_set_group);
9025 
9026 /**
9027  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9028  *	@dev: device
9029  *	@addr: new address
9030  *	@extack: netlink extended ack
9031  */
9032 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9033 			      struct netlink_ext_ack *extack)
9034 {
9035 	struct netdev_notifier_pre_changeaddr_info info = {
9036 		.info.dev = dev,
9037 		.info.extack = extack,
9038 		.dev_addr = addr,
9039 	};
9040 	int rc;
9041 
9042 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9043 	return notifier_to_errno(rc);
9044 }
9045 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9046 
9047 /**
9048  *	dev_set_mac_address - Change Media Access Control Address
9049  *	@dev: device
9050  *	@sa: new address
9051  *	@extack: netlink extended ack
9052  *
9053  *	Change the hardware (MAC) address of the device
9054  */
9055 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9056 			struct netlink_ext_ack *extack)
9057 {
9058 	const struct net_device_ops *ops = dev->netdev_ops;
9059 	int err;
9060 
9061 	if (!ops->ndo_set_mac_address)
9062 		return -EOPNOTSUPP;
9063 	if (sa->sa_family != dev->type)
9064 		return -EINVAL;
9065 	if (!netif_device_present(dev))
9066 		return -ENODEV;
9067 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9068 	if (err)
9069 		return err;
9070 	err = ops->ndo_set_mac_address(dev, sa);
9071 	if (err)
9072 		return err;
9073 	dev->addr_assign_type = NET_ADDR_SET;
9074 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9075 	add_device_randomness(dev->dev_addr, dev->addr_len);
9076 	return 0;
9077 }
9078 EXPORT_SYMBOL(dev_set_mac_address);
9079 
9080 static DECLARE_RWSEM(dev_addr_sem);
9081 
9082 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9083 			     struct netlink_ext_ack *extack)
9084 {
9085 	int ret;
9086 
9087 	down_write(&dev_addr_sem);
9088 	ret = dev_set_mac_address(dev, sa, extack);
9089 	up_write(&dev_addr_sem);
9090 	return ret;
9091 }
9092 EXPORT_SYMBOL(dev_set_mac_address_user);
9093 
9094 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9095 {
9096 	size_t size = sizeof(sa->sa_data);
9097 	struct net_device *dev;
9098 	int ret = 0;
9099 
9100 	down_read(&dev_addr_sem);
9101 	rcu_read_lock();
9102 
9103 	dev = dev_get_by_name_rcu(net, dev_name);
9104 	if (!dev) {
9105 		ret = -ENODEV;
9106 		goto unlock;
9107 	}
9108 	if (!dev->addr_len)
9109 		memset(sa->sa_data, 0, size);
9110 	else
9111 		memcpy(sa->sa_data, dev->dev_addr,
9112 		       min_t(size_t, size, dev->addr_len));
9113 	sa->sa_family = dev->type;
9114 
9115 unlock:
9116 	rcu_read_unlock();
9117 	up_read(&dev_addr_sem);
9118 	return ret;
9119 }
9120 EXPORT_SYMBOL(dev_get_mac_address);
9121 
9122 /**
9123  *	dev_change_carrier - Change device carrier
9124  *	@dev: device
9125  *	@new_carrier: new value
9126  *
9127  *	Change device carrier
9128  */
9129 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9130 {
9131 	const struct net_device_ops *ops = dev->netdev_ops;
9132 
9133 	if (!ops->ndo_change_carrier)
9134 		return -EOPNOTSUPP;
9135 	if (!netif_device_present(dev))
9136 		return -ENODEV;
9137 	return ops->ndo_change_carrier(dev, new_carrier);
9138 }
9139 EXPORT_SYMBOL(dev_change_carrier);
9140 
9141 /**
9142  *	dev_get_phys_port_id - Get device physical port ID
9143  *	@dev: device
9144  *	@ppid: port ID
9145  *
9146  *	Get device physical port ID
9147  */
9148 int dev_get_phys_port_id(struct net_device *dev,
9149 			 struct netdev_phys_item_id *ppid)
9150 {
9151 	const struct net_device_ops *ops = dev->netdev_ops;
9152 
9153 	if (!ops->ndo_get_phys_port_id)
9154 		return -EOPNOTSUPP;
9155 	return ops->ndo_get_phys_port_id(dev, ppid);
9156 }
9157 EXPORT_SYMBOL(dev_get_phys_port_id);
9158 
9159 /**
9160  *	dev_get_phys_port_name - Get device physical port name
9161  *	@dev: device
9162  *	@name: port name
9163  *	@len: limit of bytes to copy to name
9164  *
9165  *	Get device physical port name
9166  */
9167 int dev_get_phys_port_name(struct net_device *dev,
9168 			   char *name, size_t len)
9169 {
9170 	const struct net_device_ops *ops = dev->netdev_ops;
9171 	int err;
9172 
9173 	if (ops->ndo_get_phys_port_name) {
9174 		err = ops->ndo_get_phys_port_name(dev, name, len);
9175 		if (err != -EOPNOTSUPP)
9176 			return err;
9177 	}
9178 	return devlink_compat_phys_port_name_get(dev, name, len);
9179 }
9180 EXPORT_SYMBOL(dev_get_phys_port_name);
9181 
9182 /**
9183  *	dev_get_port_parent_id - Get the device's port parent identifier
9184  *	@dev: network device
9185  *	@ppid: pointer to a storage for the port's parent identifier
9186  *	@recurse: allow/disallow recursion to lower devices
9187  *
9188  *	Get the devices's port parent identifier
9189  */
9190 int dev_get_port_parent_id(struct net_device *dev,
9191 			   struct netdev_phys_item_id *ppid,
9192 			   bool recurse)
9193 {
9194 	const struct net_device_ops *ops = dev->netdev_ops;
9195 	struct netdev_phys_item_id first = { };
9196 	struct net_device *lower_dev;
9197 	struct list_head *iter;
9198 	int err;
9199 
9200 	if (ops->ndo_get_port_parent_id) {
9201 		err = ops->ndo_get_port_parent_id(dev, ppid);
9202 		if (err != -EOPNOTSUPP)
9203 			return err;
9204 	}
9205 
9206 	err = devlink_compat_switch_id_get(dev, ppid);
9207 	if (!err || err != -EOPNOTSUPP)
9208 		return err;
9209 
9210 	if (!recurse)
9211 		return -EOPNOTSUPP;
9212 
9213 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9214 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9215 		if (err)
9216 			break;
9217 		if (!first.id_len)
9218 			first = *ppid;
9219 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9220 			return -EOPNOTSUPP;
9221 	}
9222 
9223 	return err;
9224 }
9225 EXPORT_SYMBOL(dev_get_port_parent_id);
9226 
9227 /**
9228  *	netdev_port_same_parent_id - Indicate if two network devices have
9229  *	the same port parent identifier
9230  *	@a: first network device
9231  *	@b: second network device
9232  */
9233 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9234 {
9235 	struct netdev_phys_item_id a_id = { };
9236 	struct netdev_phys_item_id b_id = { };
9237 
9238 	if (dev_get_port_parent_id(a, &a_id, true) ||
9239 	    dev_get_port_parent_id(b, &b_id, true))
9240 		return false;
9241 
9242 	return netdev_phys_item_id_same(&a_id, &b_id);
9243 }
9244 EXPORT_SYMBOL(netdev_port_same_parent_id);
9245 
9246 /**
9247  *	dev_change_proto_down - update protocol port state information
9248  *	@dev: device
9249  *	@proto_down: new value
9250  *
9251  *	This info can be used by switch drivers to set the phys state of the
9252  *	port.
9253  */
9254 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9255 {
9256 	const struct net_device_ops *ops = dev->netdev_ops;
9257 
9258 	if (!ops->ndo_change_proto_down)
9259 		return -EOPNOTSUPP;
9260 	if (!netif_device_present(dev))
9261 		return -ENODEV;
9262 	return ops->ndo_change_proto_down(dev, proto_down);
9263 }
9264 EXPORT_SYMBOL(dev_change_proto_down);
9265 
9266 /**
9267  *	dev_change_proto_down_generic - generic implementation for
9268  * 	ndo_change_proto_down that sets carrier according to
9269  * 	proto_down.
9270  *
9271  *	@dev: device
9272  *	@proto_down: new value
9273  */
9274 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9275 {
9276 	if (proto_down)
9277 		netif_carrier_off(dev);
9278 	else
9279 		netif_carrier_on(dev);
9280 	dev->proto_down = proto_down;
9281 	return 0;
9282 }
9283 EXPORT_SYMBOL(dev_change_proto_down_generic);
9284 
9285 /**
9286  *	dev_change_proto_down_reason - proto down reason
9287  *
9288  *	@dev: device
9289  *	@mask: proto down mask
9290  *	@value: proto down value
9291  */
9292 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9293 				  u32 value)
9294 {
9295 	int b;
9296 
9297 	if (!mask) {
9298 		dev->proto_down_reason = value;
9299 	} else {
9300 		for_each_set_bit(b, &mask, 32) {
9301 			if (value & (1 << b))
9302 				dev->proto_down_reason |= BIT(b);
9303 			else
9304 				dev->proto_down_reason &= ~BIT(b);
9305 		}
9306 	}
9307 }
9308 EXPORT_SYMBOL(dev_change_proto_down_reason);
9309 
9310 struct bpf_xdp_link {
9311 	struct bpf_link link;
9312 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9313 	int flags;
9314 };
9315 
9316 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9317 {
9318 	if (flags & XDP_FLAGS_HW_MODE)
9319 		return XDP_MODE_HW;
9320 	if (flags & XDP_FLAGS_DRV_MODE)
9321 		return XDP_MODE_DRV;
9322 	if (flags & XDP_FLAGS_SKB_MODE)
9323 		return XDP_MODE_SKB;
9324 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9325 }
9326 
9327 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9328 {
9329 	switch (mode) {
9330 	case XDP_MODE_SKB:
9331 		return generic_xdp_install;
9332 	case XDP_MODE_DRV:
9333 	case XDP_MODE_HW:
9334 		return dev->netdev_ops->ndo_bpf;
9335 	default:
9336 		return NULL;
9337 	}
9338 }
9339 
9340 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9341 					 enum bpf_xdp_mode mode)
9342 {
9343 	return dev->xdp_state[mode].link;
9344 }
9345 
9346 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9347 				     enum bpf_xdp_mode mode)
9348 {
9349 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9350 
9351 	if (link)
9352 		return link->link.prog;
9353 	return dev->xdp_state[mode].prog;
9354 }
9355 
9356 static u8 dev_xdp_prog_count(struct net_device *dev)
9357 {
9358 	u8 count = 0;
9359 	int i;
9360 
9361 	for (i = 0; i < __MAX_XDP_MODE; i++)
9362 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9363 			count++;
9364 	return count;
9365 }
9366 
9367 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9368 {
9369 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9370 
9371 	return prog ? prog->aux->id : 0;
9372 }
9373 
9374 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9375 			     struct bpf_xdp_link *link)
9376 {
9377 	dev->xdp_state[mode].link = link;
9378 	dev->xdp_state[mode].prog = NULL;
9379 }
9380 
9381 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9382 			     struct bpf_prog *prog)
9383 {
9384 	dev->xdp_state[mode].link = NULL;
9385 	dev->xdp_state[mode].prog = prog;
9386 }
9387 
9388 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9389 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9390 			   u32 flags, struct bpf_prog *prog)
9391 {
9392 	struct netdev_bpf xdp;
9393 	int err;
9394 
9395 	memset(&xdp, 0, sizeof(xdp));
9396 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9397 	xdp.extack = extack;
9398 	xdp.flags = flags;
9399 	xdp.prog = prog;
9400 
9401 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9402 	 * "moved" into driver), so they don't increment it on their own, but
9403 	 * they do decrement refcnt when program is detached or replaced.
9404 	 * Given net_device also owns link/prog, we need to bump refcnt here
9405 	 * to prevent drivers from underflowing it.
9406 	 */
9407 	if (prog)
9408 		bpf_prog_inc(prog);
9409 	err = bpf_op(dev, &xdp);
9410 	if (err) {
9411 		if (prog)
9412 			bpf_prog_put(prog);
9413 		return err;
9414 	}
9415 
9416 	if (mode != XDP_MODE_HW)
9417 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9418 
9419 	return 0;
9420 }
9421 
9422 static void dev_xdp_uninstall(struct net_device *dev)
9423 {
9424 	struct bpf_xdp_link *link;
9425 	struct bpf_prog *prog;
9426 	enum bpf_xdp_mode mode;
9427 	bpf_op_t bpf_op;
9428 
9429 	ASSERT_RTNL();
9430 
9431 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9432 		prog = dev_xdp_prog(dev, mode);
9433 		if (!prog)
9434 			continue;
9435 
9436 		bpf_op = dev_xdp_bpf_op(dev, mode);
9437 		if (!bpf_op)
9438 			continue;
9439 
9440 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9441 
9442 		/* auto-detach link from net device */
9443 		link = dev_xdp_link(dev, mode);
9444 		if (link)
9445 			link->dev = NULL;
9446 		else
9447 			bpf_prog_put(prog);
9448 
9449 		dev_xdp_set_link(dev, mode, NULL);
9450 	}
9451 }
9452 
9453 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9454 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9455 			  struct bpf_prog *old_prog, u32 flags)
9456 {
9457 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9458 	struct bpf_prog *cur_prog;
9459 	enum bpf_xdp_mode mode;
9460 	bpf_op_t bpf_op;
9461 	int err;
9462 
9463 	ASSERT_RTNL();
9464 
9465 	/* either link or prog attachment, never both */
9466 	if (link && (new_prog || old_prog))
9467 		return -EINVAL;
9468 	/* link supports only XDP mode flags */
9469 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9470 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9471 		return -EINVAL;
9472 	}
9473 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9474 	if (num_modes > 1) {
9475 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9476 		return -EINVAL;
9477 	}
9478 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9479 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9480 		NL_SET_ERR_MSG(extack,
9481 			       "More than one program loaded, unset mode is ambiguous");
9482 		return -EINVAL;
9483 	}
9484 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9485 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9486 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9487 		return -EINVAL;
9488 	}
9489 
9490 	mode = dev_xdp_mode(dev, flags);
9491 	/* can't replace attached link */
9492 	if (dev_xdp_link(dev, mode)) {
9493 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9494 		return -EBUSY;
9495 	}
9496 
9497 	cur_prog = dev_xdp_prog(dev, mode);
9498 	/* can't replace attached prog with link */
9499 	if (link && cur_prog) {
9500 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9501 		return -EBUSY;
9502 	}
9503 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9504 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9505 		return -EEXIST;
9506 	}
9507 
9508 	/* put effective new program into new_prog */
9509 	if (link)
9510 		new_prog = link->link.prog;
9511 
9512 	if (new_prog) {
9513 		bool offload = mode == XDP_MODE_HW;
9514 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9515 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9516 
9517 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9518 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9519 			return -EBUSY;
9520 		}
9521 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9522 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9523 			return -EEXIST;
9524 		}
9525 		if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9526 			NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9527 			return -EINVAL;
9528 		}
9529 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9530 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9531 			return -EINVAL;
9532 		}
9533 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9534 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9535 			return -EINVAL;
9536 		}
9537 	}
9538 
9539 	/* don't call drivers if the effective program didn't change */
9540 	if (new_prog != cur_prog) {
9541 		bpf_op = dev_xdp_bpf_op(dev, mode);
9542 		if (!bpf_op) {
9543 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9544 			return -EOPNOTSUPP;
9545 		}
9546 
9547 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9548 		if (err)
9549 			return err;
9550 	}
9551 
9552 	if (link)
9553 		dev_xdp_set_link(dev, mode, link);
9554 	else
9555 		dev_xdp_set_prog(dev, mode, new_prog);
9556 	if (cur_prog)
9557 		bpf_prog_put(cur_prog);
9558 
9559 	return 0;
9560 }
9561 
9562 static int dev_xdp_attach_link(struct net_device *dev,
9563 			       struct netlink_ext_ack *extack,
9564 			       struct bpf_xdp_link *link)
9565 {
9566 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9567 }
9568 
9569 static int dev_xdp_detach_link(struct net_device *dev,
9570 			       struct netlink_ext_ack *extack,
9571 			       struct bpf_xdp_link *link)
9572 {
9573 	enum bpf_xdp_mode mode;
9574 	bpf_op_t bpf_op;
9575 
9576 	ASSERT_RTNL();
9577 
9578 	mode = dev_xdp_mode(dev, link->flags);
9579 	if (dev_xdp_link(dev, mode) != link)
9580 		return -EINVAL;
9581 
9582 	bpf_op = dev_xdp_bpf_op(dev, mode);
9583 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9584 	dev_xdp_set_link(dev, mode, NULL);
9585 	return 0;
9586 }
9587 
9588 static void bpf_xdp_link_release(struct bpf_link *link)
9589 {
9590 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9591 
9592 	rtnl_lock();
9593 
9594 	/* if racing with net_device's tear down, xdp_link->dev might be
9595 	 * already NULL, in which case link was already auto-detached
9596 	 */
9597 	if (xdp_link->dev) {
9598 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9599 		xdp_link->dev = NULL;
9600 	}
9601 
9602 	rtnl_unlock();
9603 }
9604 
9605 static int bpf_xdp_link_detach(struct bpf_link *link)
9606 {
9607 	bpf_xdp_link_release(link);
9608 	return 0;
9609 }
9610 
9611 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9612 {
9613 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9614 
9615 	kfree(xdp_link);
9616 }
9617 
9618 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9619 				     struct seq_file *seq)
9620 {
9621 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9622 	u32 ifindex = 0;
9623 
9624 	rtnl_lock();
9625 	if (xdp_link->dev)
9626 		ifindex = xdp_link->dev->ifindex;
9627 	rtnl_unlock();
9628 
9629 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9630 }
9631 
9632 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9633 				       struct bpf_link_info *info)
9634 {
9635 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9636 	u32 ifindex = 0;
9637 
9638 	rtnl_lock();
9639 	if (xdp_link->dev)
9640 		ifindex = xdp_link->dev->ifindex;
9641 	rtnl_unlock();
9642 
9643 	info->xdp.ifindex = ifindex;
9644 	return 0;
9645 }
9646 
9647 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9648 			       struct bpf_prog *old_prog)
9649 {
9650 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9651 	enum bpf_xdp_mode mode;
9652 	bpf_op_t bpf_op;
9653 	int err = 0;
9654 
9655 	rtnl_lock();
9656 
9657 	/* link might have been auto-released already, so fail */
9658 	if (!xdp_link->dev) {
9659 		err = -ENOLINK;
9660 		goto out_unlock;
9661 	}
9662 
9663 	if (old_prog && link->prog != old_prog) {
9664 		err = -EPERM;
9665 		goto out_unlock;
9666 	}
9667 	old_prog = link->prog;
9668 	if (old_prog == new_prog) {
9669 		/* no-op, don't disturb drivers */
9670 		bpf_prog_put(new_prog);
9671 		goto out_unlock;
9672 	}
9673 
9674 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9675 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9676 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9677 			      xdp_link->flags, new_prog);
9678 	if (err)
9679 		goto out_unlock;
9680 
9681 	old_prog = xchg(&link->prog, new_prog);
9682 	bpf_prog_put(old_prog);
9683 
9684 out_unlock:
9685 	rtnl_unlock();
9686 	return err;
9687 }
9688 
9689 static const struct bpf_link_ops bpf_xdp_link_lops = {
9690 	.release = bpf_xdp_link_release,
9691 	.dealloc = bpf_xdp_link_dealloc,
9692 	.detach = bpf_xdp_link_detach,
9693 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9694 	.fill_link_info = bpf_xdp_link_fill_link_info,
9695 	.update_prog = bpf_xdp_link_update,
9696 };
9697 
9698 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9699 {
9700 	struct net *net = current->nsproxy->net_ns;
9701 	struct bpf_link_primer link_primer;
9702 	struct bpf_xdp_link *link;
9703 	struct net_device *dev;
9704 	int err, fd;
9705 
9706 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9707 	if (!dev)
9708 		return -EINVAL;
9709 
9710 	link = kzalloc(sizeof(*link), GFP_USER);
9711 	if (!link) {
9712 		err = -ENOMEM;
9713 		goto out_put_dev;
9714 	}
9715 
9716 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9717 	link->dev = dev;
9718 	link->flags = attr->link_create.flags;
9719 
9720 	err = bpf_link_prime(&link->link, &link_primer);
9721 	if (err) {
9722 		kfree(link);
9723 		goto out_put_dev;
9724 	}
9725 
9726 	rtnl_lock();
9727 	err = dev_xdp_attach_link(dev, NULL, link);
9728 	rtnl_unlock();
9729 
9730 	if (err) {
9731 		bpf_link_cleanup(&link_primer);
9732 		goto out_put_dev;
9733 	}
9734 
9735 	fd = bpf_link_settle(&link_primer);
9736 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9737 	dev_put(dev);
9738 	return fd;
9739 
9740 out_put_dev:
9741 	dev_put(dev);
9742 	return err;
9743 }
9744 
9745 /**
9746  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9747  *	@dev: device
9748  *	@extack: netlink extended ack
9749  *	@fd: new program fd or negative value to clear
9750  *	@expected_fd: old program fd that userspace expects to replace or clear
9751  *	@flags: xdp-related flags
9752  *
9753  *	Set or clear a bpf program for a device
9754  */
9755 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9756 		      int fd, int expected_fd, u32 flags)
9757 {
9758 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9759 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9760 	int err;
9761 
9762 	ASSERT_RTNL();
9763 
9764 	if (fd >= 0) {
9765 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9766 						 mode != XDP_MODE_SKB);
9767 		if (IS_ERR(new_prog))
9768 			return PTR_ERR(new_prog);
9769 	}
9770 
9771 	if (expected_fd >= 0) {
9772 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9773 						 mode != XDP_MODE_SKB);
9774 		if (IS_ERR(old_prog)) {
9775 			err = PTR_ERR(old_prog);
9776 			old_prog = NULL;
9777 			goto err_out;
9778 		}
9779 	}
9780 
9781 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9782 
9783 err_out:
9784 	if (err && new_prog)
9785 		bpf_prog_put(new_prog);
9786 	if (old_prog)
9787 		bpf_prog_put(old_prog);
9788 	return err;
9789 }
9790 
9791 /**
9792  *	dev_new_index	-	allocate an ifindex
9793  *	@net: the applicable net namespace
9794  *
9795  *	Returns a suitable unique value for a new device interface
9796  *	number.  The caller must hold the rtnl semaphore or the
9797  *	dev_base_lock to be sure it remains unique.
9798  */
9799 static int dev_new_index(struct net *net)
9800 {
9801 	int ifindex = net->ifindex;
9802 
9803 	for (;;) {
9804 		if (++ifindex <= 0)
9805 			ifindex = 1;
9806 		if (!__dev_get_by_index(net, ifindex))
9807 			return net->ifindex = ifindex;
9808 	}
9809 }
9810 
9811 /* Delayed registration/unregisteration */
9812 static LIST_HEAD(net_todo_list);
9813 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9814 
9815 static void net_set_todo(struct net_device *dev)
9816 {
9817 	list_add_tail(&dev->todo_list, &net_todo_list);
9818 	dev_net(dev)->dev_unreg_count++;
9819 }
9820 
9821 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9822 	struct net_device *upper, netdev_features_t features)
9823 {
9824 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9825 	netdev_features_t feature;
9826 	int feature_bit;
9827 
9828 	for_each_netdev_feature(upper_disables, feature_bit) {
9829 		feature = __NETIF_F_BIT(feature_bit);
9830 		if (!(upper->wanted_features & feature)
9831 		    && (features & feature)) {
9832 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9833 				   &feature, upper->name);
9834 			features &= ~feature;
9835 		}
9836 	}
9837 
9838 	return features;
9839 }
9840 
9841 static void netdev_sync_lower_features(struct net_device *upper,
9842 	struct net_device *lower, netdev_features_t features)
9843 {
9844 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9845 	netdev_features_t feature;
9846 	int feature_bit;
9847 
9848 	for_each_netdev_feature(upper_disables, feature_bit) {
9849 		feature = __NETIF_F_BIT(feature_bit);
9850 		if (!(features & feature) && (lower->features & feature)) {
9851 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9852 				   &feature, lower->name);
9853 			lower->wanted_features &= ~feature;
9854 			__netdev_update_features(lower);
9855 
9856 			if (unlikely(lower->features & feature))
9857 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9858 					    &feature, lower->name);
9859 			else
9860 				netdev_features_change(lower);
9861 		}
9862 	}
9863 }
9864 
9865 static netdev_features_t netdev_fix_features(struct net_device *dev,
9866 	netdev_features_t features)
9867 {
9868 	/* Fix illegal checksum combinations */
9869 	if ((features & NETIF_F_HW_CSUM) &&
9870 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9871 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9872 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9873 	}
9874 
9875 	/* TSO requires that SG is present as well. */
9876 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9877 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9878 		features &= ~NETIF_F_ALL_TSO;
9879 	}
9880 
9881 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9882 					!(features & NETIF_F_IP_CSUM)) {
9883 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9884 		features &= ~NETIF_F_TSO;
9885 		features &= ~NETIF_F_TSO_ECN;
9886 	}
9887 
9888 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9889 					 !(features & NETIF_F_IPV6_CSUM)) {
9890 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9891 		features &= ~NETIF_F_TSO6;
9892 	}
9893 
9894 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9895 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9896 		features &= ~NETIF_F_TSO_MANGLEID;
9897 
9898 	/* TSO ECN requires that TSO is present as well. */
9899 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9900 		features &= ~NETIF_F_TSO_ECN;
9901 
9902 	/* Software GSO depends on SG. */
9903 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9904 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9905 		features &= ~NETIF_F_GSO;
9906 	}
9907 
9908 	/* GSO partial features require GSO partial be set */
9909 	if ((features & dev->gso_partial_features) &&
9910 	    !(features & NETIF_F_GSO_PARTIAL)) {
9911 		netdev_dbg(dev,
9912 			   "Dropping partially supported GSO features since no GSO partial.\n");
9913 		features &= ~dev->gso_partial_features;
9914 	}
9915 
9916 	if (!(features & NETIF_F_RXCSUM)) {
9917 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9918 		 * successfully merged by hardware must also have the
9919 		 * checksum verified by hardware.  If the user does not
9920 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9921 		 */
9922 		if (features & NETIF_F_GRO_HW) {
9923 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9924 			features &= ~NETIF_F_GRO_HW;
9925 		}
9926 	}
9927 
9928 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9929 	if (features & NETIF_F_RXFCS) {
9930 		if (features & NETIF_F_LRO) {
9931 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9932 			features &= ~NETIF_F_LRO;
9933 		}
9934 
9935 		if (features & NETIF_F_GRO_HW) {
9936 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9937 			features &= ~NETIF_F_GRO_HW;
9938 		}
9939 	}
9940 
9941 	if (features & NETIF_F_HW_TLS_TX) {
9942 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9943 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9944 		bool hw_csum = features & NETIF_F_HW_CSUM;
9945 
9946 		if (!ip_csum && !hw_csum) {
9947 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9948 			features &= ~NETIF_F_HW_TLS_TX;
9949 		}
9950 	}
9951 
9952 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9953 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9954 		features &= ~NETIF_F_HW_TLS_RX;
9955 	}
9956 
9957 	return features;
9958 }
9959 
9960 int __netdev_update_features(struct net_device *dev)
9961 {
9962 	struct net_device *upper, *lower;
9963 	netdev_features_t features;
9964 	struct list_head *iter;
9965 	int err = -1;
9966 
9967 	ASSERT_RTNL();
9968 
9969 	features = netdev_get_wanted_features(dev);
9970 
9971 	if (dev->netdev_ops->ndo_fix_features)
9972 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9973 
9974 	/* driver might be less strict about feature dependencies */
9975 	features = netdev_fix_features(dev, features);
9976 
9977 	/* some features can't be enabled if they're off on an upper device */
9978 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9979 		features = netdev_sync_upper_features(dev, upper, features);
9980 
9981 	if (dev->features == features)
9982 		goto sync_lower;
9983 
9984 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9985 		&dev->features, &features);
9986 
9987 	if (dev->netdev_ops->ndo_set_features)
9988 		err = dev->netdev_ops->ndo_set_features(dev, features);
9989 	else
9990 		err = 0;
9991 
9992 	if (unlikely(err < 0)) {
9993 		netdev_err(dev,
9994 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9995 			err, &features, &dev->features);
9996 		/* return non-0 since some features might have changed and
9997 		 * it's better to fire a spurious notification than miss it
9998 		 */
9999 		return -1;
10000 	}
10001 
10002 sync_lower:
10003 	/* some features must be disabled on lower devices when disabled
10004 	 * on an upper device (think: bonding master or bridge)
10005 	 */
10006 	netdev_for_each_lower_dev(dev, lower, iter)
10007 		netdev_sync_lower_features(dev, lower, features);
10008 
10009 	if (!err) {
10010 		netdev_features_t diff = features ^ dev->features;
10011 
10012 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10013 			/* udp_tunnel_{get,drop}_rx_info both need
10014 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10015 			 * device, or they won't do anything.
10016 			 * Thus we need to update dev->features
10017 			 * *before* calling udp_tunnel_get_rx_info,
10018 			 * but *after* calling udp_tunnel_drop_rx_info.
10019 			 */
10020 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10021 				dev->features = features;
10022 				udp_tunnel_get_rx_info(dev);
10023 			} else {
10024 				udp_tunnel_drop_rx_info(dev);
10025 			}
10026 		}
10027 
10028 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10029 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10030 				dev->features = features;
10031 				err |= vlan_get_rx_ctag_filter_info(dev);
10032 			} else {
10033 				vlan_drop_rx_ctag_filter_info(dev);
10034 			}
10035 		}
10036 
10037 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10038 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10039 				dev->features = features;
10040 				err |= vlan_get_rx_stag_filter_info(dev);
10041 			} else {
10042 				vlan_drop_rx_stag_filter_info(dev);
10043 			}
10044 		}
10045 
10046 		dev->features = features;
10047 	}
10048 
10049 	return err < 0 ? 0 : 1;
10050 }
10051 
10052 /**
10053  *	netdev_update_features - recalculate device features
10054  *	@dev: the device to check
10055  *
10056  *	Recalculate dev->features set and send notifications if it
10057  *	has changed. Should be called after driver or hardware dependent
10058  *	conditions might have changed that influence the features.
10059  */
10060 void netdev_update_features(struct net_device *dev)
10061 {
10062 	if (__netdev_update_features(dev))
10063 		netdev_features_change(dev);
10064 }
10065 EXPORT_SYMBOL(netdev_update_features);
10066 
10067 /**
10068  *	netdev_change_features - recalculate device features
10069  *	@dev: the device to check
10070  *
10071  *	Recalculate dev->features set and send notifications even
10072  *	if they have not changed. Should be called instead of
10073  *	netdev_update_features() if also dev->vlan_features might
10074  *	have changed to allow the changes to be propagated to stacked
10075  *	VLAN devices.
10076  */
10077 void netdev_change_features(struct net_device *dev)
10078 {
10079 	__netdev_update_features(dev);
10080 	netdev_features_change(dev);
10081 }
10082 EXPORT_SYMBOL(netdev_change_features);
10083 
10084 /**
10085  *	netif_stacked_transfer_operstate -	transfer operstate
10086  *	@rootdev: the root or lower level device to transfer state from
10087  *	@dev: the device to transfer operstate to
10088  *
10089  *	Transfer operational state from root to device. This is normally
10090  *	called when a stacking relationship exists between the root
10091  *	device and the device(a leaf device).
10092  */
10093 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10094 					struct net_device *dev)
10095 {
10096 	if (rootdev->operstate == IF_OPER_DORMANT)
10097 		netif_dormant_on(dev);
10098 	else
10099 		netif_dormant_off(dev);
10100 
10101 	if (rootdev->operstate == IF_OPER_TESTING)
10102 		netif_testing_on(dev);
10103 	else
10104 		netif_testing_off(dev);
10105 
10106 	if (netif_carrier_ok(rootdev))
10107 		netif_carrier_on(dev);
10108 	else
10109 		netif_carrier_off(dev);
10110 }
10111 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10112 
10113 static int netif_alloc_rx_queues(struct net_device *dev)
10114 {
10115 	unsigned int i, count = dev->num_rx_queues;
10116 	struct netdev_rx_queue *rx;
10117 	size_t sz = count * sizeof(*rx);
10118 	int err = 0;
10119 
10120 	BUG_ON(count < 1);
10121 
10122 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10123 	if (!rx)
10124 		return -ENOMEM;
10125 
10126 	dev->_rx = rx;
10127 
10128 	for (i = 0; i < count; i++) {
10129 		rx[i].dev = dev;
10130 
10131 		/* XDP RX-queue setup */
10132 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10133 		if (err < 0)
10134 			goto err_rxq_info;
10135 	}
10136 	return 0;
10137 
10138 err_rxq_info:
10139 	/* Rollback successful reg's and free other resources */
10140 	while (i--)
10141 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10142 	kvfree(dev->_rx);
10143 	dev->_rx = NULL;
10144 	return err;
10145 }
10146 
10147 static void netif_free_rx_queues(struct net_device *dev)
10148 {
10149 	unsigned int i, count = dev->num_rx_queues;
10150 
10151 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10152 	if (!dev->_rx)
10153 		return;
10154 
10155 	for (i = 0; i < count; i++)
10156 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10157 
10158 	kvfree(dev->_rx);
10159 }
10160 
10161 static void netdev_init_one_queue(struct net_device *dev,
10162 				  struct netdev_queue *queue, void *_unused)
10163 {
10164 	/* Initialize queue lock */
10165 	spin_lock_init(&queue->_xmit_lock);
10166 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10167 	queue->xmit_lock_owner = -1;
10168 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10169 	queue->dev = dev;
10170 #ifdef CONFIG_BQL
10171 	dql_init(&queue->dql, HZ);
10172 #endif
10173 }
10174 
10175 static void netif_free_tx_queues(struct net_device *dev)
10176 {
10177 	kvfree(dev->_tx);
10178 }
10179 
10180 static int netif_alloc_netdev_queues(struct net_device *dev)
10181 {
10182 	unsigned int count = dev->num_tx_queues;
10183 	struct netdev_queue *tx;
10184 	size_t sz = count * sizeof(*tx);
10185 
10186 	if (count < 1 || count > 0xffff)
10187 		return -EINVAL;
10188 
10189 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10190 	if (!tx)
10191 		return -ENOMEM;
10192 
10193 	dev->_tx = tx;
10194 
10195 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10196 	spin_lock_init(&dev->tx_global_lock);
10197 
10198 	return 0;
10199 }
10200 
10201 void netif_tx_stop_all_queues(struct net_device *dev)
10202 {
10203 	unsigned int i;
10204 
10205 	for (i = 0; i < dev->num_tx_queues; i++) {
10206 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10207 
10208 		netif_tx_stop_queue(txq);
10209 	}
10210 }
10211 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10212 
10213 /**
10214  *	register_netdevice	- register a network device
10215  *	@dev: device to register
10216  *
10217  *	Take a completed network device structure and add it to the kernel
10218  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10219  *	chain. 0 is returned on success. A negative errno code is returned
10220  *	on a failure to set up the device, or if the name is a duplicate.
10221  *
10222  *	Callers must hold the rtnl semaphore. You may want
10223  *	register_netdev() instead of this.
10224  *
10225  *	BUGS:
10226  *	The locking appears insufficient to guarantee two parallel registers
10227  *	will not get the same name.
10228  */
10229 
10230 int register_netdevice(struct net_device *dev)
10231 {
10232 	int ret;
10233 	struct net *net = dev_net(dev);
10234 
10235 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10236 		     NETDEV_FEATURE_COUNT);
10237 	BUG_ON(dev_boot_phase);
10238 	ASSERT_RTNL();
10239 
10240 	might_sleep();
10241 
10242 	/* When net_device's are persistent, this will be fatal. */
10243 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10244 	BUG_ON(!net);
10245 
10246 	ret = ethtool_check_ops(dev->ethtool_ops);
10247 	if (ret)
10248 		return ret;
10249 
10250 	spin_lock_init(&dev->addr_list_lock);
10251 	netdev_set_addr_lockdep_class(dev);
10252 
10253 	ret = dev_get_valid_name(net, dev, dev->name);
10254 	if (ret < 0)
10255 		goto out;
10256 
10257 	ret = -ENOMEM;
10258 	dev->name_node = netdev_name_node_head_alloc(dev);
10259 	if (!dev->name_node)
10260 		goto out;
10261 
10262 	/* Init, if this function is available */
10263 	if (dev->netdev_ops->ndo_init) {
10264 		ret = dev->netdev_ops->ndo_init(dev);
10265 		if (ret) {
10266 			if (ret > 0)
10267 				ret = -EIO;
10268 			goto err_free_name;
10269 		}
10270 	}
10271 
10272 	if (((dev->hw_features | dev->features) &
10273 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10274 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10275 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10276 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10277 		ret = -EINVAL;
10278 		goto err_uninit;
10279 	}
10280 
10281 	ret = -EBUSY;
10282 	if (!dev->ifindex)
10283 		dev->ifindex = dev_new_index(net);
10284 	else if (__dev_get_by_index(net, dev->ifindex))
10285 		goto err_uninit;
10286 
10287 	/* Transfer changeable features to wanted_features and enable
10288 	 * software offloads (GSO and GRO).
10289 	 */
10290 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10291 	dev->features |= NETIF_F_SOFT_FEATURES;
10292 
10293 	if (dev->udp_tunnel_nic_info) {
10294 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10295 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10296 	}
10297 
10298 	dev->wanted_features = dev->features & dev->hw_features;
10299 
10300 	if (!(dev->flags & IFF_LOOPBACK))
10301 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10302 
10303 	/* If IPv4 TCP segmentation offload is supported we should also
10304 	 * allow the device to enable segmenting the frame with the option
10305 	 * of ignoring a static IP ID value.  This doesn't enable the
10306 	 * feature itself but allows the user to enable it later.
10307 	 */
10308 	if (dev->hw_features & NETIF_F_TSO)
10309 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10310 	if (dev->vlan_features & NETIF_F_TSO)
10311 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10312 	if (dev->mpls_features & NETIF_F_TSO)
10313 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10314 	if (dev->hw_enc_features & NETIF_F_TSO)
10315 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10316 
10317 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10318 	 */
10319 	dev->vlan_features |= NETIF_F_HIGHDMA;
10320 
10321 	/* Make NETIF_F_SG inheritable to tunnel devices.
10322 	 */
10323 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10324 
10325 	/* Make NETIF_F_SG inheritable to MPLS.
10326 	 */
10327 	dev->mpls_features |= NETIF_F_SG;
10328 
10329 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10330 	ret = notifier_to_errno(ret);
10331 	if (ret)
10332 		goto err_uninit;
10333 
10334 	ret = netdev_register_kobject(dev);
10335 	if (ret) {
10336 		dev->reg_state = NETREG_UNREGISTERED;
10337 		goto err_uninit;
10338 	}
10339 	dev->reg_state = NETREG_REGISTERED;
10340 
10341 	__netdev_update_features(dev);
10342 
10343 	/*
10344 	 *	Default initial state at registry is that the
10345 	 *	device is present.
10346 	 */
10347 
10348 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10349 
10350 	linkwatch_init_dev(dev);
10351 
10352 	dev_init_scheduler(dev);
10353 	dev_hold(dev);
10354 	list_netdevice(dev);
10355 	add_device_randomness(dev->dev_addr, dev->addr_len);
10356 
10357 	/* If the device has permanent device address, driver should
10358 	 * set dev_addr and also addr_assign_type should be set to
10359 	 * NET_ADDR_PERM (default value).
10360 	 */
10361 	if (dev->addr_assign_type == NET_ADDR_PERM)
10362 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10363 
10364 	/* Notify protocols, that a new device appeared. */
10365 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10366 	ret = notifier_to_errno(ret);
10367 	if (ret) {
10368 		/* Expect explicit free_netdev() on failure */
10369 		dev->needs_free_netdev = false;
10370 		unregister_netdevice_queue(dev, NULL);
10371 		goto out;
10372 	}
10373 	/*
10374 	 *	Prevent userspace races by waiting until the network
10375 	 *	device is fully setup before sending notifications.
10376 	 */
10377 	if (!dev->rtnl_link_ops ||
10378 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10379 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10380 
10381 out:
10382 	return ret;
10383 
10384 err_uninit:
10385 	if (dev->netdev_ops->ndo_uninit)
10386 		dev->netdev_ops->ndo_uninit(dev);
10387 	if (dev->priv_destructor)
10388 		dev->priv_destructor(dev);
10389 err_free_name:
10390 	netdev_name_node_free(dev->name_node);
10391 	goto out;
10392 }
10393 EXPORT_SYMBOL(register_netdevice);
10394 
10395 /**
10396  *	init_dummy_netdev	- init a dummy network device for NAPI
10397  *	@dev: device to init
10398  *
10399  *	This takes a network device structure and initialize the minimum
10400  *	amount of fields so it can be used to schedule NAPI polls without
10401  *	registering a full blown interface. This is to be used by drivers
10402  *	that need to tie several hardware interfaces to a single NAPI
10403  *	poll scheduler due to HW limitations.
10404  */
10405 int init_dummy_netdev(struct net_device *dev)
10406 {
10407 	/* Clear everything. Note we don't initialize spinlocks
10408 	 * are they aren't supposed to be taken by any of the
10409 	 * NAPI code and this dummy netdev is supposed to be
10410 	 * only ever used for NAPI polls
10411 	 */
10412 	memset(dev, 0, sizeof(struct net_device));
10413 
10414 	/* make sure we BUG if trying to hit standard
10415 	 * register/unregister code path
10416 	 */
10417 	dev->reg_state = NETREG_DUMMY;
10418 
10419 	/* NAPI wants this */
10420 	INIT_LIST_HEAD(&dev->napi_list);
10421 
10422 	/* a dummy interface is started by default */
10423 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10424 	set_bit(__LINK_STATE_START, &dev->state);
10425 
10426 	/* napi_busy_loop stats accounting wants this */
10427 	dev_net_set(dev, &init_net);
10428 
10429 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10430 	 * because users of this 'device' dont need to change
10431 	 * its refcount.
10432 	 */
10433 
10434 	return 0;
10435 }
10436 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10437 
10438 
10439 /**
10440  *	register_netdev	- register a network device
10441  *	@dev: device to register
10442  *
10443  *	Take a completed network device structure and add it to the kernel
10444  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10445  *	chain. 0 is returned on success. A negative errno code is returned
10446  *	on a failure to set up the device, or if the name is a duplicate.
10447  *
10448  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10449  *	and expands the device name if you passed a format string to
10450  *	alloc_netdev.
10451  */
10452 int register_netdev(struct net_device *dev)
10453 {
10454 	int err;
10455 
10456 	if (rtnl_lock_killable())
10457 		return -EINTR;
10458 	err = register_netdevice(dev);
10459 	rtnl_unlock();
10460 	return err;
10461 }
10462 EXPORT_SYMBOL(register_netdev);
10463 
10464 int netdev_refcnt_read(const struct net_device *dev)
10465 {
10466 #ifdef CONFIG_PCPU_DEV_REFCNT
10467 	int i, refcnt = 0;
10468 
10469 	for_each_possible_cpu(i)
10470 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10471 	return refcnt;
10472 #else
10473 	return refcount_read(&dev->dev_refcnt);
10474 #endif
10475 }
10476 EXPORT_SYMBOL(netdev_refcnt_read);
10477 
10478 int netdev_unregister_timeout_secs __read_mostly = 10;
10479 
10480 #define WAIT_REFS_MIN_MSECS 1
10481 #define WAIT_REFS_MAX_MSECS 250
10482 /**
10483  * netdev_wait_allrefs - wait until all references are gone.
10484  * @dev: target net_device
10485  *
10486  * This is called when unregistering network devices.
10487  *
10488  * Any protocol or device that holds a reference should register
10489  * for netdevice notification, and cleanup and put back the
10490  * reference if they receive an UNREGISTER event.
10491  * We can get stuck here if buggy protocols don't correctly
10492  * call dev_put.
10493  */
10494 static void netdev_wait_allrefs(struct net_device *dev)
10495 {
10496 	unsigned long rebroadcast_time, warning_time;
10497 	int wait = 0, refcnt;
10498 
10499 	linkwatch_forget_dev(dev);
10500 
10501 	rebroadcast_time = warning_time = jiffies;
10502 	refcnt = netdev_refcnt_read(dev);
10503 
10504 	while (refcnt != 1) {
10505 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10506 			rtnl_lock();
10507 
10508 			/* Rebroadcast unregister notification */
10509 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10510 
10511 			__rtnl_unlock();
10512 			rcu_barrier();
10513 			rtnl_lock();
10514 
10515 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10516 				     &dev->state)) {
10517 				/* We must not have linkwatch events
10518 				 * pending on unregister. If this
10519 				 * happens, we simply run the queue
10520 				 * unscheduled, resulting in a noop
10521 				 * for this device.
10522 				 */
10523 				linkwatch_run_queue();
10524 			}
10525 
10526 			__rtnl_unlock();
10527 
10528 			rebroadcast_time = jiffies;
10529 		}
10530 
10531 		if (!wait) {
10532 			rcu_barrier();
10533 			wait = WAIT_REFS_MIN_MSECS;
10534 		} else {
10535 			msleep(wait);
10536 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10537 		}
10538 
10539 		refcnt = netdev_refcnt_read(dev);
10540 
10541 		if (refcnt != 1 &&
10542 		    time_after(jiffies, warning_time +
10543 			       netdev_unregister_timeout_secs * HZ)) {
10544 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10545 				 dev->name, refcnt);
10546 			warning_time = jiffies;
10547 		}
10548 	}
10549 }
10550 
10551 /* The sequence is:
10552  *
10553  *	rtnl_lock();
10554  *	...
10555  *	register_netdevice(x1);
10556  *	register_netdevice(x2);
10557  *	...
10558  *	unregister_netdevice(y1);
10559  *	unregister_netdevice(y2);
10560  *      ...
10561  *	rtnl_unlock();
10562  *	free_netdev(y1);
10563  *	free_netdev(y2);
10564  *
10565  * We are invoked by rtnl_unlock().
10566  * This allows us to deal with problems:
10567  * 1) We can delete sysfs objects which invoke hotplug
10568  *    without deadlocking with linkwatch via keventd.
10569  * 2) Since we run with the RTNL semaphore not held, we can sleep
10570  *    safely in order to wait for the netdev refcnt to drop to zero.
10571  *
10572  * We must not return until all unregister events added during
10573  * the interval the lock was held have been completed.
10574  */
10575 void netdev_run_todo(void)
10576 {
10577 	struct list_head list;
10578 #ifdef CONFIG_LOCKDEP
10579 	struct list_head unlink_list;
10580 
10581 	list_replace_init(&net_unlink_list, &unlink_list);
10582 
10583 	while (!list_empty(&unlink_list)) {
10584 		struct net_device *dev = list_first_entry(&unlink_list,
10585 							  struct net_device,
10586 							  unlink_list);
10587 		list_del_init(&dev->unlink_list);
10588 		dev->nested_level = dev->lower_level - 1;
10589 	}
10590 #endif
10591 
10592 	/* Snapshot list, allow later requests */
10593 	list_replace_init(&net_todo_list, &list);
10594 
10595 	__rtnl_unlock();
10596 
10597 
10598 	/* Wait for rcu callbacks to finish before next phase */
10599 	if (!list_empty(&list))
10600 		rcu_barrier();
10601 
10602 	while (!list_empty(&list)) {
10603 		struct net_device *dev
10604 			= list_first_entry(&list, struct net_device, todo_list);
10605 		list_del(&dev->todo_list);
10606 
10607 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10608 			pr_err("network todo '%s' but state %d\n",
10609 			       dev->name, dev->reg_state);
10610 			dump_stack();
10611 			continue;
10612 		}
10613 
10614 		dev->reg_state = NETREG_UNREGISTERED;
10615 
10616 		netdev_wait_allrefs(dev);
10617 
10618 		/* paranoia */
10619 		BUG_ON(netdev_refcnt_read(dev) != 1);
10620 		BUG_ON(!list_empty(&dev->ptype_all));
10621 		BUG_ON(!list_empty(&dev->ptype_specific));
10622 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10623 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10624 #if IS_ENABLED(CONFIG_DECNET)
10625 		WARN_ON(dev->dn_ptr);
10626 #endif
10627 		if (dev->priv_destructor)
10628 			dev->priv_destructor(dev);
10629 		if (dev->needs_free_netdev)
10630 			free_netdev(dev);
10631 
10632 		/* Report a network device has been unregistered */
10633 		rtnl_lock();
10634 		dev_net(dev)->dev_unreg_count--;
10635 		__rtnl_unlock();
10636 		wake_up(&netdev_unregistering_wq);
10637 
10638 		/* Free network device */
10639 		kobject_put(&dev->dev.kobj);
10640 	}
10641 }
10642 
10643 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10644  * all the same fields in the same order as net_device_stats, with only
10645  * the type differing, but rtnl_link_stats64 may have additional fields
10646  * at the end for newer counters.
10647  */
10648 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10649 			     const struct net_device_stats *netdev_stats)
10650 {
10651 #if BITS_PER_LONG == 64
10652 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10653 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10654 	/* zero out counters that only exist in rtnl_link_stats64 */
10655 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
10656 	       sizeof(*stats64) - sizeof(*netdev_stats));
10657 #else
10658 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10659 	const unsigned long *src = (const unsigned long *)netdev_stats;
10660 	u64 *dst = (u64 *)stats64;
10661 
10662 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10663 	for (i = 0; i < n; i++)
10664 		dst[i] = src[i];
10665 	/* zero out counters that only exist in rtnl_link_stats64 */
10666 	memset((char *)stats64 + n * sizeof(u64), 0,
10667 	       sizeof(*stats64) - n * sizeof(u64));
10668 #endif
10669 }
10670 EXPORT_SYMBOL(netdev_stats_to_stats64);
10671 
10672 /**
10673  *	dev_get_stats	- get network device statistics
10674  *	@dev: device to get statistics from
10675  *	@storage: place to store stats
10676  *
10677  *	Get network statistics from device. Return @storage.
10678  *	The device driver may provide its own method by setting
10679  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10680  *	otherwise the internal statistics structure is used.
10681  */
10682 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10683 					struct rtnl_link_stats64 *storage)
10684 {
10685 	const struct net_device_ops *ops = dev->netdev_ops;
10686 
10687 	if (ops->ndo_get_stats64) {
10688 		memset(storage, 0, sizeof(*storage));
10689 		ops->ndo_get_stats64(dev, storage);
10690 	} else if (ops->ndo_get_stats) {
10691 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10692 	} else {
10693 		netdev_stats_to_stats64(storage, &dev->stats);
10694 	}
10695 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10696 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10697 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10698 	return storage;
10699 }
10700 EXPORT_SYMBOL(dev_get_stats);
10701 
10702 /**
10703  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10704  *	@s: place to store stats
10705  *	@netstats: per-cpu network stats to read from
10706  *
10707  *	Read per-cpu network statistics and populate the related fields in @s.
10708  */
10709 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10710 			   const struct pcpu_sw_netstats __percpu *netstats)
10711 {
10712 	int cpu;
10713 
10714 	for_each_possible_cpu(cpu) {
10715 		const struct pcpu_sw_netstats *stats;
10716 		struct pcpu_sw_netstats tmp;
10717 		unsigned int start;
10718 
10719 		stats = per_cpu_ptr(netstats, cpu);
10720 		do {
10721 			start = u64_stats_fetch_begin_irq(&stats->syncp);
10722 			tmp.rx_packets = stats->rx_packets;
10723 			tmp.rx_bytes   = stats->rx_bytes;
10724 			tmp.tx_packets = stats->tx_packets;
10725 			tmp.tx_bytes   = stats->tx_bytes;
10726 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10727 
10728 		s->rx_packets += tmp.rx_packets;
10729 		s->rx_bytes   += tmp.rx_bytes;
10730 		s->tx_packets += tmp.tx_packets;
10731 		s->tx_bytes   += tmp.tx_bytes;
10732 	}
10733 }
10734 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10735 
10736 /**
10737  *	dev_get_tstats64 - ndo_get_stats64 implementation
10738  *	@dev: device to get statistics from
10739  *	@s: place to store stats
10740  *
10741  *	Populate @s from dev->stats and dev->tstats. Can be used as
10742  *	ndo_get_stats64() callback.
10743  */
10744 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10745 {
10746 	netdev_stats_to_stats64(s, &dev->stats);
10747 	dev_fetch_sw_netstats(s, dev->tstats);
10748 }
10749 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10750 
10751 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10752 {
10753 	struct netdev_queue *queue = dev_ingress_queue(dev);
10754 
10755 #ifdef CONFIG_NET_CLS_ACT
10756 	if (queue)
10757 		return queue;
10758 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10759 	if (!queue)
10760 		return NULL;
10761 	netdev_init_one_queue(dev, queue, NULL);
10762 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10763 	queue->qdisc_sleeping = &noop_qdisc;
10764 	rcu_assign_pointer(dev->ingress_queue, queue);
10765 #endif
10766 	return queue;
10767 }
10768 
10769 static const struct ethtool_ops default_ethtool_ops;
10770 
10771 void netdev_set_default_ethtool_ops(struct net_device *dev,
10772 				    const struct ethtool_ops *ops)
10773 {
10774 	if (dev->ethtool_ops == &default_ethtool_ops)
10775 		dev->ethtool_ops = ops;
10776 }
10777 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10778 
10779 void netdev_freemem(struct net_device *dev)
10780 {
10781 	char *addr = (char *)dev - dev->padded;
10782 
10783 	kvfree(addr);
10784 }
10785 
10786 /**
10787  * alloc_netdev_mqs - allocate network device
10788  * @sizeof_priv: size of private data to allocate space for
10789  * @name: device name format string
10790  * @name_assign_type: origin of device name
10791  * @setup: callback to initialize device
10792  * @txqs: the number of TX subqueues to allocate
10793  * @rxqs: the number of RX subqueues to allocate
10794  *
10795  * Allocates a struct net_device with private data area for driver use
10796  * and performs basic initialization.  Also allocates subqueue structs
10797  * for each queue on the device.
10798  */
10799 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10800 		unsigned char name_assign_type,
10801 		void (*setup)(struct net_device *),
10802 		unsigned int txqs, unsigned int rxqs)
10803 {
10804 	struct net_device *dev;
10805 	unsigned int alloc_size;
10806 	struct net_device *p;
10807 
10808 	BUG_ON(strlen(name) >= sizeof(dev->name));
10809 
10810 	if (txqs < 1) {
10811 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10812 		return NULL;
10813 	}
10814 
10815 	if (rxqs < 1) {
10816 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10817 		return NULL;
10818 	}
10819 
10820 	alloc_size = sizeof(struct net_device);
10821 	if (sizeof_priv) {
10822 		/* ensure 32-byte alignment of private area */
10823 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10824 		alloc_size += sizeof_priv;
10825 	}
10826 	/* ensure 32-byte alignment of whole construct */
10827 	alloc_size += NETDEV_ALIGN - 1;
10828 
10829 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10830 	if (!p)
10831 		return NULL;
10832 
10833 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10834 	dev->padded = (char *)dev - (char *)p;
10835 
10836 #ifdef CONFIG_PCPU_DEV_REFCNT
10837 	dev->pcpu_refcnt = alloc_percpu(int);
10838 	if (!dev->pcpu_refcnt)
10839 		goto free_dev;
10840 	dev_hold(dev);
10841 #else
10842 	refcount_set(&dev->dev_refcnt, 1);
10843 #endif
10844 
10845 	if (dev_addr_init(dev))
10846 		goto free_pcpu;
10847 
10848 	dev_mc_init(dev);
10849 	dev_uc_init(dev);
10850 
10851 	dev_net_set(dev, &init_net);
10852 
10853 	dev->gso_max_size = GSO_MAX_SIZE;
10854 	dev->gso_max_segs = GSO_MAX_SEGS;
10855 	dev->upper_level = 1;
10856 	dev->lower_level = 1;
10857 #ifdef CONFIG_LOCKDEP
10858 	dev->nested_level = 0;
10859 	INIT_LIST_HEAD(&dev->unlink_list);
10860 #endif
10861 
10862 	INIT_LIST_HEAD(&dev->napi_list);
10863 	INIT_LIST_HEAD(&dev->unreg_list);
10864 	INIT_LIST_HEAD(&dev->close_list);
10865 	INIT_LIST_HEAD(&dev->link_watch_list);
10866 	INIT_LIST_HEAD(&dev->adj_list.upper);
10867 	INIT_LIST_HEAD(&dev->adj_list.lower);
10868 	INIT_LIST_HEAD(&dev->ptype_all);
10869 	INIT_LIST_HEAD(&dev->ptype_specific);
10870 	INIT_LIST_HEAD(&dev->net_notifier_list);
10871 #ifdef CONFIG_NET_SCHED
10872 	hash_init(dev->qdisc_hash);
10873 #endif
10874 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10875 	setup(dev);
10876 
10877 	if (!dev->tx_queue_len) {
10878 		dev->priv_flags |= IFF_NO_QUEUE;
10879 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10880 	}
10881 
10882 	dev->num_tx_queues = txqs;
10883 	dev->real_num_tx_queues = txqs;
10884 	if (netif_alloc_netdev_queues(dev))
10885 		goto free_all;
10886 
10887 	dev->num_rx_queues = rxqs;
10888 	dev->real_num_rx_queues = rxqs;
10889 	if (netif_alloc_rx_queues(dev))
10890 		goto free_all;
10891 
10892 	strcpy(dev->name, name);
10893 	dev->name_assign_type = name_assign_type;
10894 	dev->group = INIT_NETDEV_GROUP;
10895 	if (!dev->ethtool_ops)
10896 		dev->ethtool_ops = &default_ethtool_ops;
10897 
10898 	nf_hook_ingress_init(dev);
10899 
10900 	return dev;
10901 
10902 free_all:
10903 	free_netdev(dev);
10904 	return NULL;
10905 
10906 free_pcpu:
10907 #ifdef CONFIG_PCPU_DEV_REFCNT
10908 	free_percpu(dev->pcpu_refcnt);
10909 free_dev:
10910 #endif
10911 	netdev_freemem(dev);
10912 	return NULL;
10913 }
10914 EXPORT_SYMBOL(alloc_netdev_mqs);
10915 
10916 /**
10917  * free_netdev - free network device
10918  * @dev: device
10919  *
10920  * This function does the last stage of destroying an allocated device
10921  * interface. The reference to the device object is released. If this
10922  * is the last reference then it will be freed.Must be called in process
10923  * context.
10924  */
10925 void free_netdev(struct net_device *dev)
10926 {
10927 	struct napi_struct *p, *n;
10928 
10929 	might_sleep();
10930 
10931 	/* When called immediately after register_netdevice() failed the unwind
10932 	 * handling may still be dismantling the device. Handle that case by
10933 	 * deferring the free.
10934 	 */
10935 	if (dev->reg_state == NETREG_UNREGISTERING) {
10936 		ASSERT_RTNL();
10937 		dev->needs_free_netdev = true;
10938 		return;
10939 	}
10940 
10941 	netif_free_tx_queues(dev);
10942 	netif_free_rx_queues(dev);
10943 
10944 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10945 
10946 	/* Flush device addresses */
10947 	dev_addr_flush(dev);
10948 
10949 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10950 		netif_napi_del(p);
10951 
10952 #ifdef CONFIG_PCPU_DEV_REFCNT
10953 	free_percpu(dev->pcpu_refcnt);
10954 	dev->pcpu_refcnt = NULL;
10955 #endif
10956 	free_percpu(dev->xdp_bulkq);
10957 	dev->xdp_bulkq = NULL;
10958 
10959 	/*  Compatibility with error handling in drivers */
10960 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10961 		netdev_freemem(dev);
10962 		return;
10963 	}
10964 
10965 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10966 	dev->reg_state = NETREG_RELEASED;
10967 
10968 	/* will free via device release */
10969 	put_device(&dev->dev);
10970 }
10971 EXPORT_SYMBOL(free_netdev);
10972 
10973 /**
10974  *	synchronize_net -  Synchronize with packet receive processing
10975  *
10976  *	Wait for packets currently being received to be done.
10977  *	Does not block later packets from starting.
10978  */
10979 void synchronize_net(void)
10980 {
10981 	might_sleep();
10982 	if (rtnl_is_locked())
10983 		synchronize_rcu_expedited();
10984 	else
10985 		synchronize_rcu();
10986 }
10987 EXPORT_SYMBOL(synchronize_net);
10988 
10989 /**
10990  *	unregister_netdevice_queue - remove device from the kernel
10991  *	@dev: device
10992  *	@head: list
10993  *
10994  *	This function shuts down a device interface and removes it
10995  *	from the kernel tables.
10996  *	If head not NULL, device is queued to be unregistered later.
10997  *
10998  *	Callers must hold the rtnl semaphore.  You may want
10999  *	unregister_netdev() instead of this.
11000  */
11001 
11002 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11003 {
11004 	ASSERT_RTNL();
11005 
11006 	if (head) {
11007 		list_move_tail(&dev->unreg_list, head);
11008 	} else {
11009 		LIST_HEAD(single);
11010 
11011 		list_add(&dev->unreg_list, &single);
11012 		unregister_netdevice_many(&single);
11013 	}
11014 }
11015 EXPORT_SYMBOL(unregister_netdevice_queue);
11016 
11017 /**
11018  *	unregister_netdevice_many - unregister many devices
11019  *	@head: list of devices
11020  *
11021  *  Note: As most callers use a stack allocated list_head,
11022  *  we force a list_del() to make sure stack wont be corrupted later.
11023  */
11024 void unregister_netdevice_many(struct list_head *head)
11025 {
11026 	struct net_device *dev, *tmp;
11027 	LIST_HEAD(close_head);
11028 
11029 	BUG_ON(dev_boot_phase);
11030 	ASSERT_RTNL();
11031 
11032 	if (list_empty(head))
11033 		return;
11034 
11035 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11036 		/* Some devices call without registering
11037 		 * for initialization unwind. Remove those
11038 		 * devices and proceed with the remaining.
11039 		 */
11040 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11041 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11042 				 dev->name, dev);
11043 
11044 			WARN_ON(1);
11045 			list_del(&dev->unreg_list);
11046 			continue;
11047 		}
11048 		dev->dismantle = true;
11049 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11050 	}
11051 
11052 	/* If device is running, close it first. */
11053 	list_for_each_entry(dev, head, unreg_list)
11054 		list_add_tail(&dev->close_list, &close_head);
11055 	dev_close_many(&close_head, true);
11056 
11057 	list_for_each_entry(dev, head, unreg_list) {
11058 		/* And unlink it from device chain. */
11059 		unlist_netdevice(dev);
11060 
11061 		dev->reg_state = NETREG_UNREGISTERING;
11062 	}
11063 	flush_all_backlogs();
11064 
11065 	synchronize_net();
11066 
11067 	list_for_each_entry(dev, head, unreg_list) {
11068 		struct sk_buff *skb = NULL;
11069 
11070 		/* Shutdown queueing discipline. */
11071 		dev_shutdown(dev);
11072 
11073 		dev_xdp_uninstall(dev);
11074 
11075 		/* Notify protocols, that we are about to destroy
11076 		 * this device. They should clean all the things.
11077 		 */
11078 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11079 
11080 		if (!dev->rtnl_link_ops ||
11081 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11082 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11083 						     GFP_KERNEL, NULL, 0);
11084 
11085 		/*
11086 		 *	Flush the unicast and multicast chains
11087 		 */
11088 		dev_uc_flush(dev);
11089 		dev_mc_flush(dev);
11090 
11091 		netdev_name_node_alt_flush(dev);
11092 		netdev_name_node_free(dev->name_node);
11093 
11094 		if (dev->netdev_ops->ndo_uninit)
11095 			dev->netdev_ops->ndo_uninit(dev);
11096 
11097 		if (skb)
11098 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11099 
11100 		/* Notifier chain MUST detach us all upper devices. */
11101 		WARN_ON(netdev_has_any_upper_dev(dev));
11102 		WARN_ON(netdev_has_any_lower_dev(dev));
11103 
11104 		/* Remove entries from kobject tree */
11105 		netdev_unregister_kobject(dev);
11106 #ifdef CONFIG_XPS
11107 		/* Remove XPS queueing entries */
11108 		netif_reset_xps_queues_gt(dev, 0);
11109 #endif
11110 	}
11111 
11112 	synchronize_net();
11113 
11114 	list_for_each_entry(dev, head, unreg_list) {
11115 		dev_put(dev);
11116 		net_set_todo(dev);
11117 	}
11118 
11119 	list_del(head);
11120 }
11121 EXPORT_SYMBOL(unregister_netdevice_many);
11122 
11123 /**
11124  *	unregister_netdev - remove device from the kernel
11125  *	@dev: device
11126  *
11127  *	This function shuts down a device interface and removes it
11128  *	from the kernel tables.
11129  *
11130  *	This is just a wrapper for unregister_netdevice that takes
11131  *	the rtnl semaphore.  In general you want to use this and not
11132  *	unregister_netdevice.
11133  */
11134 void unregister_netdev(struct net_device *dev)
11135 {
11136 	rtnl_lock();
11137 	unregister_netdevice(dev);
11138 	rtnl_unlock();
11139 }
11140 EXPORT_SYMBOL(unregister_netdev);
11141 
11142 /**
11143  *	__dev_change_net_namespace - move device to different nethost namespace
11144  *	@dev: device
11145  *	@net: network namespace
11146  *	@pat: If not NULL name pattern to try if the current device name
11147  *	      is already taken in the destination network namespace.
11148  *	@new_ifindex: If not zero, specifies device index in the target
11149  *	              namespace.
11150  *
11151  *	This function shuts down a device interface and moves it
11152  *	to a new network namespace. On success 0 is returned, on
11153  *	a failure a netagive errno code is returned.
11154  *
11155  *	Callers must hold the rtnl semaphore.
11156  */
11157 
11158 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11159 			       const char *pat, int new_ifindex)
11160 {
11161 	struct net *net_old = dev_net(dev);
11162 	int err, new_nsid;
11163 
11164 	ASSERT_RTNL();
11165 
11166 	/* Don't allow namespace local devices to be moved. */
11167 	err = -EINVAL;
11168 	if (dev->features & NETIF_F_NETNS_LOCAL)
11169 		goto out;
11170 
11171 	/* Ensure the device has been registrered */
11172 	if (dev->reg_state != NETREG_REGISTERED)
11173 		goto out;
11174 
11175 	/* Get out if there is nothing todo */
11176 	err = 0;
11177 	if (net_eq(net_old, net))
11178 		goto out;
11179 
11180 	/* Pick the destination device name, and ensure
11181 	 * we can use it in the destination network namespace.
11182 	 */
11183 	err = -EEXIST;
11184 	if (__dev_get_by_name(net, dev->name)) {
11185 		/* We get here if we can't use the current device name */
11186 		if (!pat)
11187 			goto out;
11188 		err = dev_get_valid_name(net, dev, pat);
11189 		if (err < 0)
11190 			goto out;
11191 	}
11192 
11193 	/* Check that new_ifindex isn't used yet. */
11194 	err = -EBUSY;
11195 	if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11196 		goto out;
11197 
11198 	/*
11199 	 * And now a mini version of register_netdevice unregister_netdevice.
11200 	 */
11201 
11202 	/* If device is running close it first. */
11203 	dev_close(dev);
11204 
11205 	/* And unlink it from device chain */
11206 	unlist_netdevice(dev);
11207 
11208 	synchronize_net();
11209 
11210 	/* Shutdown queueing discipline. */
11211 	dev_shutdown(dev);
11212 
11213 	/* Notify protocols, that we are about to destroy
11214 	 * this device. They should clean all the things.
11215 	 *
11216 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11217 	 * This is wanted because this way 8021q and macvlan know
11218 	 * the device is just moving and can keep their slaves up.
11219 	 */
11220 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11221 	rcu_barrier();
11222 
11223 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11224 	/* If there is an ifindex conflict assign a new one */
11225 	if (!new_ifindex) {
11226 		if (__dev_get_by_index(net, dev->ifindex))
11227 			new_ifindex = dev_new_index(net);
11228 		else
11229 			new_ifindex = dev->ifindex;
11230 	}
11231 
11232 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11233 			    new_ifindex);
11234 
11235 	/*
11236 	 *	Flush the unicast and multicast chains
11237 	 */
11238 	dev_uc_flush(dev);
11239 	dev_mc_flush(dev);
11240 
11241 	/* Send a netdev-removed uevent to the old namespace */
11242 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11243 	netdev_adjacent_del_links(dev);
11244 
11245 	/* Move per-net netdevice notifiers that are following the netdevice */
11246 	move_netdevice_notifiers_dev_net(dev, net);
11247 
11248 	/* Actually switch the network namespace */
11249 	dev_net_set(dev, net);
11250 	dev->ifindex = new_ifindex;
11251 
11252 	/* Send a netdev-add uevent to the new namespace */
11253 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11254 	netdev_adjacent_add_links(dev);
11255 
11256 	/* Fixup kobjects */
11257 	err = device_rename(&dev->dev, dev->name);
11258 	WARN_ON(err);
11259 
11260 	/* Adapt owner in case owning user namespace of target network
11261 	 * namespace is different from the original one.
11262 	 */
11263 	err = netdev_change_owner(dev, net_old, net);
11264 	WARN_ON(err);
11265 
11266 	/* Add the device back in the hashes */
11267 	list_netdevice(dev);
11268 
11269 	/* Notify protocols, that a new device appeared. */
11270 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11271 
11272 	/*
11273 	 *	Prevent userspace races by waiting until the network
11274 	 *	device is fully setup before sending notifications.
11275 	 */
11276 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11277 
11278 	synchronize_net();
11279 	err = 0;
11280 out:
11281 	return err;
11282 }
11283 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11284 
11285 static int dev_cpu_dead(unsigned int oldcpu)
11286 {
11287 	struct sk_buff **list_skb;
11288 	struct sk_buff *skb;
11289 	unsigned int cpu;
11290 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11291 
11292 	local_irq_disable();
11293 	cpu = smp_processor_id();
11294 	sd = &per_cpu(softnet_data, cpu);
11295 	oldsd = &per_cpu(softnet_data, oldcpu);
11296 
11297 	/* Find end of our completion_queue. */
11298 	list_skb = &sd->completion_queue;
11299 	while (*list_skb)
11300 		list_skb = &(*list_skb)->next;
11301 	/* Append completion queue from offline CPU. */
11302 	*list_skb = oldsd->completion_queue;
11303 	oldsd->completion_queue = NULL;
11304 
11305 	/* Append output queue from offline CPU. */
11306 	if (oldsd->output_queue) {
11307 		*sd->output_queue_tailp = oldsd->output_queue;
11308 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11309 		oldsd->output_queue = NULL;
11310 		oldsd->output_queue_tailp = &oldsd->output_queue;
11311 	}
11312 	/* Append NAPI poll list from offline CPU, with one exception :
11313 	 * process_backlog() must be called by cpu owning percpu backlog.
11314 	 * We properly handle process_queue & input_pkt_queue later.
11315 	 */
11316 	while (!list_empty(&oldsd->poll_list)) {
11317 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11318 							    struct napi_struct,
11319 							    poll_list);
11320 
11321 		list_del_init(&napi->poll_list);
11322 		if (napi->poll == process_backlog)
11323 			napi->state = 0;
11324 		else
11325 			____napi_schedule(sd, napi);
11326 	}
11327 
11328 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11329 	local_irq_enable();
11330 
11331 #ifdef CONFIG_RPS
11332 	remsd = oldsd->rps_ipi_list;
11333 	oldsd->rps_ipi_list = NULL;
11334 #endif
11335 	/* send out pending IPI's on offline CPU */
11336 	net_rps_send_ipi(remsd);
11337 
11338 	/* Process offline CPU's input_pkt_queue */
11339 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11340 		netif_rx_ni(skb);
11341 		input_queue_head_incr(oldsd);
11342 	}
11343 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11344 		netif_rx_ni(skb);
11345 		input_queue_head_incr(oldsd);
11346 	}
11347 
11348 	return 0;
11349 }
11350 
11351 /**
11352  *	netdev_increment_features - increment feature set by one
11353  *	@all: current feature set
11354  *	@one: new feature set
11355  *	@mask: mask feature set
11356  *
11357  *	Computes a new feature set after adding a device with feature set
11358  *	@one to the master device with current feature set @all.  Will not
11359  *	enable anything that is off in @mask. Returns the new feature set.
11360  */
11361 netdev_features_t netdev_increment_features(netdev_features_t all,
11362 	netdev_features_t one, netdev_features_t mask)
11363 {
11364 	if (mask & NETIF_F_HW_CSUM)
11365 		mask |= NETIF_F_CSUM_MASK;
11366 	mask |= NETIF_F_VLAN_CHALLENGED;
11367 
11368 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11369 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11370 
11371 	/* If one device supports hw checksumming, set for all. */
11372 	if (all & NETIF_F_HW_CSUM)
11373 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11374 
11375 	return all;
11376 }
11377 EXPORT_SYMBOL(netdev_increment_features);
11378 
11379 static struct hlist_head * __net_init netdev_create_hash(void)
11380 {
11381 	int i;
11382 	struct hlist_head *hash;
11383 
11384 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11385 	if (hash != NULL)
11386 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11387 			INIT_HLIST_HEAD(&hash[i]);
11388 
11389 	return hash;
11390 }
11391 
11392 /* Initialize per network namespace state */
11393 static int __net_init netdev_init(struct net *net)
11394 {
11395 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11396 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11397 
11398 	if (net != &init_net)
11399 		INIT_LIST_HEAD(&net->dev_base_head);
11400 
11401 	net->dev_name_head = netdev_create_hash();
11402 	if (net->dev_name_head == NULL)
11403 		goto err_name;
11404 
11405 	net->dev_index_head = netdev_create_hash();
11406 	if (net->dev_index_head == NULL)
11407 		goto err_idx;
11408 
11409 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11410 
11411 	return 0;
11412 
11413 err_idx:
11414 	kfree(net->dev_name_head);
11415 err_name:
11416 	return -ENOMEM;
11417 }
11418 
11419 /**
11420  *	netdev_drivername - network driver for the device
11421  *	@dev: network device
11422  *
11423  *	Determine network driver for device.
11424  */
11425 const char *netdev_drivername(const struct net_device *dev)
11426 {
11427 	const struct device_driver *driver;
11428 	const struct device *parent;
11429 	const char *empty = "";
11430 
11431 	parent = dev->dev.parent;
11432 	if (!parent)
11433 		return empty;
11434 
11435 	driver = parent->driver;
11436 	if (driver && driver->name)
11437 		return driver->name;
11438 	return empty;
11439 }
11440 
11441 static void __netdev_printk(const char *level, const struct net_device *dev,
11442 			    struct va_format *vaf)
11443 {
11444 	if (dev && dev->dev.parent) {
11445 		dev_printk_emit(level[1] - '0',
11446 				dev->dev.parent,
11447 				"%s %s %s%s: %pV",
11448 				dev_driver_string(dev->dev.parent),
11449 				dev_name(dev->dev.parent),
11450 				netdev_name(dev), netdev_reg_state(dev),
11451 				vaf);
11452 	} else if (dev) {
11453 		printk("%s%s%s: %pV",
11454 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11455 	} else {
11456 		printk("%s(NULL net_device): %pV", level, vaf);
11457 	}
11458 }
11459 
11460 void netdev_printk(const char *level, const struct net_device *dev,
11461 		   const char *format, ...)
11462 {
11463 	struct va_format vaf;
11464 	va_list args;
11465 
11466 	va_start(args, format);
11467 
11468 	vaf.fmt = format;
11469 	vaf.va = &args;
11470 
11471 	__netdev_printk(level, dev, &vaf);
11472 
11473 	va_end(args);
11474 }
11475 EXPORT_SYMBOL(netdev_printk);
11476 
11477 #define define_netdev_printk_level(func, level)			\
11478 void func(const struct net_device *dev, const char *fmt, ...)	\
11479 {								\
11480 	struct va_format vaf;					\
11481 	va_list args;						\
11482 								\
11483 	va_start(args, fmt);					\
11484 								\
11485 	vaf.fmt = fmt;						\
11486 	vaf.va = &args;						\
11487 								\
11488 	__netdev_printk(level, dev, &vaf);			\
11489 								\
11490 	va_end(args);						\
11491 }								\
11492 EXPORT_SYMBOL(func);
11493 
11494 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11495 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11496 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11497 define_netdev_printk_level(netdev_err, KERN_ERR);
11498 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11499 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11500 define_netdev_printk_level(netdev_info, KERN_INFO);
11501 
11502 static void __net_exit netdev_exit(struct net *net)
11503 {
11504 	kfree(net->dev_name_head);
11505 	kfree(net->dev_index_head);
11506 	if (net != &init_net)
11507 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11508 }
11509 
11510 static struct pernet_operations __net_initdata netdev_net_ops = {
11511 	.init = netdev_init,
11512 	.exit = netdev_exit,
11513 };
11514 
11515 static void __net_exit default_device_exit(struct net *net)
11516 {
11517 	struct net_device *dev, *aux;
11518 	/*
11519 	 * Push all migratable network devices back to the
11520 	 * initial network namespace
11521 	 */
11522 	rtnl_lock();
11523 	for_each_netdev_safe(net, dev, aux) {
11524 		int err;
11525 		char fb_name[IFNAMSIZ];
11526 
11527 		/* Ignore unmoveable devices (i.e. loopback) */
11528 		if (dev->features & NETIF_F_NETNS_LOCAL)
11529 			continue;
11530 
11531 		/* Leave virtual devices for the generic cleanup */
11532 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11533 			continue;
11534 
11535 		/* Push remaining network devices to init_net */
11536 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11537 		if (__dev_get_by_name(&init_net, fb_name))
11538 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11539 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11540 		if (err) {
11541 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11542 				 __func__, dev->name, err);
11543 			BUG();
11544 		}
11545 	}
11546 	rtnl_unlock();
11547 }
11548 
11549 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11550 {
11551 	/* Return with the rtnl_lock held when there are no network
11552 	 * devices unregistering in any network namespace in net_list.
11553 	 */
11554 	struct net *net;
11555 	bool unregistering;
11556 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
11557 
11558 	add_wait_queue(&netdev_unregistering_wq, &wait);
11559 	for (;;) {
11560 		unregistering = false;
11561 		rtnl_lock();
11562 		list_for_each_entry(net, net_list, exit_list) {
11563 			if (net->dev_unreg_count > 0) {
11564 				unregistering = true;
11565 				break;
11566 			}
11567 		}
11568 		if (!unregistering)
11569 			break;
11570 		__rtnl_unlock();
11571 
11572 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11573 	}
11574 	remove_wait_queue(&netdev_unregistering_wq, &wait);
11575 }
11576 
11577 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11578 {
11579 	/* At exit all network devices most be removed from a network
11580 	 * namespace.  Do this in the reverse order of registration.
11581 	 * Do this across as many network namespaces as possible to
11582 	 * improve batching efficiency.
11583 	 */
11584 	struct net_device *dev;
11585 	struct net *net;
11586 	LIST_HEAD(dev_kill_list);
11587 
11588 	/* To prevent network device cleanup code from dereferencing
11589 	 * loopback devices or network devices that have been freed
11590 	 * wait here for all pending unregistrations to complete,
11591 	 * before unregistring the loopback device and allowing the
11592 	 * network namespace be freed.
11593 	 *
11594 	 * The netdev todo list containing all network devices
11595 	 * unregistrations that happen in default_device_exit_batch
11596 	 * will run in the rtnl_unlock() at the end of
11597 	 * default_device_exit_batch.
11598 	 */
11599 	rtnl_lock_unregistering(net_list);
11600 	list_for_each_entry(net, net_list, exit_list) {
11601 		for_each_netdev_reverse(net, dev) {
11602 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11603 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11604 			else
11605 				unregister_netdevice_queue(dev, &dev_kill_list);
11606 		}
11607 	}
11608 	unregister_netdevice_many(&dev_kill_list);
11609 	rtnl_unlock();
11610 }
11611 
11612 static struct pernet_operations __net_initdata default_device_ops = {
11613 	.exit = default_device_exit,
11614 	.exit_batch = default_device_exit_batch,
11615 };
11616 
11617 /*
11618  *	Initialize the DEV module. At boot time this walks the device list and
11619  *	unhooks any devices that fail to initialise (normally hardware not
11620  *	present) and leaves us with a valid list of present and active devices.
11621  *
11622  */
11623 
11624 /*
11625  *       This is called single threaded during boot, so no need
11626  *       to take the rtnl semaphore.
11627  */
11628 static int __init net_dev_init(void)
11629 {
11630 	int i, rc = -ENOMEM;
11631 
11632 	BUG_ON(!dev_boot_phase);
11633 
11634 	if (dev_proc_init())
11635 		goto out;
11636 
11637 	if (netdev_kobject_init())
11638 		goto out;
11639 
11640 	INIT_LIST_HEAD(&ptype_all);
11641 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11642 		INIT_LIST_HEAD(&ptype_base[i]);
11643 
11644 	INIT_LIST_HEAD(&offload_base);
11645 
11646 	if (register_pernet_subsys(&netdev_net_ops))
11647 		goto out;
11648 
11649 	/*
11650 	 *	Initialise the packet receive queues.
11651 	 */
11652 
11653 	for_each_possible_cpu(i) {
11654 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11655 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11656 
11657 		INIT_WORK(flush, flush_backlog);
11658 
11659 		skb_queue_head_init(&sd->input_pkt_queue);
11660 		skb_queue_head_init(&sd->process_queue);
11661 #ifdef CONFIG_XFRM_OFFLOAD
11662 		skb_queue_head_init(&sd->xfrm_backlog);
11663 #endif
11664 		INIT_LIST_HEAD(&sd->poll_list);
11665 		sd->output_queue_tailp = &sd->output_queue;
11666 #ifdef CONFIG_RPS
11667 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11668 		sd->cpu = i;
11669 #endif
11670 
11671 		init_gro_hash(&sd->backlog);
11672 		sd->backlog.poll = process_backlog;
11673 		sd->backlog.weight = weight_p;
11674 	}
11675 
11676 	dev_boot_phase = 0;
11677 
11678 	/* The loopback device is special if any other network devices
11679 	 * is present in a network namespace the loopback device must
11680 	 * be present. Since we now dynamically allocate and free the
11681 	 * loopback device ensure this invariant is maintained by
11682 	 * keeping the loopback device as the first device on the
11683 	 * list of network devices.  Ensuring the loopback devices
11684 	 * is the first device that appears and the last network device
11685 	 * that disappears.
11686 	 */
11687 	if (register_pernet_device(&loopback_net_ops))
11688 		goto out;
11689 
11690 	if (register_pernet_device(&default_device_ops))
11691 		goto out;
11692 
11693 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11694 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11695 
11696 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11697 				       NULL, dev_cpu_dead);
11698 	WARN_ON(rc < 0);
11699 	rc = 0;
11700 out:
11701 	return rc;
11702 }
11703 
11704 subsys_initcall(net_dev_init);
11705