xref: /openbmc/linux/net/core/dev.c (revision 2f4e3926)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <net/tcx.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <trace/events/qdisc.h>
136 #include <trace/events/xdp.h>
137 #include <linux/inetdevice.h>
138 #include <linux/cpu_rmap.h>
139 #include <linux/static_key.h>
140 #include <linux/hashtable.h>
141 #include <linux/vmalloc.h>
142 #include <linux/if_macvlan.h>
143 #include <linux/errqueue.h>
144 #include <linux/hrtimer.h>
145 #include <linux/netfilter_netdev.h>
146 #include <linux/crash_dump.h>
147 #include <linux/sctp.h>
148 #include <net/udp_tunnel.h>
149 #include <linux/net_namespace.h>
150 #include <linux/indirect_call_wrapper.h>
151 #include <net/devlink.h>
152 #include <linux/pm_runtime.h>
153 #include <linux/prandom.h>
154 #include <linux/once_lite.h>
155 #include <net/netdev_rx_queue.h>
156 
157 #include "dev.h"
158 #include "net-sysfs.h"
159 
160 static DEFINE_SPINLOCK(ptype_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly;	/* Taps */
163 
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166 					   struct net_device *dev,
167 					   struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169 
170 /*
171  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172  * semaphore.
173  *
174  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175  *
176  * Writers must hold the rtnl semaphore while they loop through the
177  * dev_base_head list, and hold dev_base_lock for writing when they do the
178  * actual updates.  This allows pure readers to access the list even
179  * while a writer is preparing to update it.
180  *
181  * To put it another way, dev_base_lock is held for writing only to
182  * protect against pure readers; the rtnl semaphore provides the
183  * protection against other writers.
184  *
185  * See, for example usages, register_netdevice() and
186  * unregister_netdevice(), which must be called with the rtnl
187  * semaphore held.
188  */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191 
192 static DEFINE_MUTEX(ifalias_mutex);
193 
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196 
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199 
200 static DECLARE_RWSEM(devnet_rename_sem);
201 
202 static inline void dev_base_seq_inc(struct net *net)
203 {
204 	while (++net->dev_base_seq == 0)
205 		;
206 }
207 
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211 
212 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214 
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219 
220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221 				    unsigned long *flags)
222 {
223 	if (IS_ENABLED(CONFIG_RPS))
224 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226 		local_irq_save(*flags);
227 }
228 
229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
230 {
231 	if (IS_ENABLED(CONFIG_RPS))
232 		spin_lock_irq(&sd->input_pkt_queue.lock);
233 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234 		local_irq_disable();
235 }
236 
237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238 					  unsigned long *flags)
239 {
240 	if (IS_ENABLED(CONFIG_RPS))
241 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243 		local_irq_restore(*flags);
244 }
245 
246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247 {
248 	if (IS_ENABLED(CONFIG_RPS))
249 		spin_unlock_irq(&sd->input_pkt_queue.lock);
250 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251 		local_irq_enable();
252 }
253 
254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255 						       const char *name)
256 {
257 	struct netdev_name_node *name_node;
258 
259 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260 	if (!name_node)
261 		return NULL;
262 	INIT_HLIST_NODE(&name_node->hlist);
263 	name_node->dev = dev;
264 	name_node->name = name;
265 	return name_node;
266 }
267 
268 static struct netdev_name_node *
269 netdev_name_node_head_alloc(struct net_device *dev)
270 {
271 	struct netdev_name_node *name_node;
272 
273 	name_node = netdev_name_node_alloc(dev, dev->name);
274 	if (!name_node)
275 		return NULL;
276 	INIT_LIST_HEAD(&name_node->list);
277 	return name_node;
278 }
279 
280 static void netdev_name_node_free(struct netdev_name_node *name_node)
281 {
282 	kfree(name_node);
283 }
284 
285 static void netdev_name_node_add(struct net *net,
286 				 struct netdev_name_node *name_node)
287 {
288 	hlist_add_head_rcu(&name_node->hlist,
289 			   dev_name_hash(net, name_node->name));
290 }
291 
292 static void netdev_name_node_del(struct netdev_name_node *name_node)
293 {
294 	hlist_del_rcu(&name_node->hlist);
295 }
296 
297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298 							const char *name)
299 {
300 	struct hlist_head *head = dev_name_hash(net, name);
301 	struct netdev_name_node *name_node;
302 
303 	hlist_for_each_entry(name_node, head, hlist)
304 		if (!strcmp(name_node->name, name))
305 			return name_node;
306 	return NULL;
307 }
308 
309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310 							    const char *name)
311 {
312 	struct hlist_head *head = dev_name_hash(net, name);
313 	struct netdev_name_node *name_node;
314 
315 	hlist_for_each_entry_rcu(name_node, head, hlist)
316 		if (!strcmp(name_node->name, name))
317 			return name_node;
318 	return NULL;
319 }
320 
321 bool netdev_name_in_use(struct net *net, const char *name)
322 {
323 	return netdev_name_node_lookup(net, name);
324 }
325 EXPORT_SYMBOL(netdev_name_in_use);
326 
327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328 {
329 	struct netdev_name_node *name_node;
330 	struct net *net = dev_net(dev);
331 
332 	name_node = netdev_name_node_lookup(net, name);
333 	if (name_node)
334 		return -EEXIST;
335 	name_node = netdev_name_node_alloc(dev, name);
336 	if (!name_node)
337 		return -ENOMEM;
338 	netdev_name_node_add(net, name_node);
339 	/* The node that holds dev->name acts as a head of per-device list. */
340 	list_add_tail(&name_node->list, &dev->name_node->list);
341 
342 	return 0;
343 }
344 
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347 	list_del(&name_node->list);
348 	kfree(name_node->name);
349 	netdev_name_node_free(name_node);
350 }
351 
352 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
353 {
354 	struct netdev_name_node *name_node;
355 	struct net *net = dev_net(dev);
356 
357 	name_node = netdev_name_node_lookup(net, name);
358 	if (!name_node)
359 		return -ENOENT;
360 	/* lookup might have found our primary name or a name belonging
361 	 * to another device.
362 	 */
363 	if (name_node == dev->name_node || name_node->dev != dev)
364 		return -EINVAL;
365 
366 	netdev_name_node_del(name_node);
367 	synchronize_rcu();
368 	__netdev_name_node_alt_destroy(name_node);
369 
370 	return 0;
371 }
372 
373 static void netdev_name_node_alt_flush(struct net_device *dev)
374 {
375 	struct netdev_name_node *name_node, *tmp;
376 
377 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
378 		__netdev_name_node_alt_destroy(name_node);
379 }
380 
381 /* Device list insertion */
382 static void list_netdevice(struct net_device *dev)
383 {
384 	struct netdev_name_node *name_node;
385 	struct net *net = dev_net(dev);
386 
387 	ASSERT_RTNL();
388 
389 	write_lock(&dev_base_lock);
390 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
391 	netdev_name_node_add(net, dev->name_node);
392 	hlist_add_head_rcu(&dev->index_hlist,
393 			   dev_index_hash(net, dev->ifindex));
394 	write_unlock(&dev_base_lock);
395 
396 	netdev_for_each_altname(dev, name_node)
397 		netdev_name_node_add(net, name_node);
398 
399 	/* We reserved the ifindex, this can't fail */
400 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
401 
402 	dev_base_seq_inc(net);
403 }
404 
405 /* Device list removal
406  * caller must respect a RCU grace period before freeing/reusing dev
407  */
408 static void unlist_netdevice(struct net_device *dev, bool lock)
409 {
410 	struct netdev_name_node *name_node;
411 	struct net *net = dev_net(dev);
412 
413 	ASSERT_RTNL();
414 
415 	xa_erase(&net->dev_by_index, dev->ifindex);
416 
417 	netdev_for_each_altname(dev, name_node)
418 		netdev_name_node_del(name_node);
419 
420 	/* Unlink dev from the device chain */
421 	if (lock)
422 		write_lock(&dev_base_lock);
423 	list_del_rcu(&dev->dev_list);
424 	netdev_name_node_del(dev->name_node);
425 	hlist_del_rcu(&dev->index_hlist);
426 	if (lock)
427 		write_unlock(&dev_base_lock);
428 
429 	dev_base_seq_inc(dev_net(dev));
430 }
431 
432 /*
433  *	Our notifier list
434  */
435 
436 static RAW_NOTIFIER_HEAD(netdev_chain);
437 
438 /*
439  *	Device drivers call our routines to queue packets here. We empty the
440  *	queue in the local softnet handler.
441  */
442 
443 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
444 EXPORT_PER_CPU_SYMBOL(softnet_data);
445 
446 #ifdef CONFIG_LOCKDEP
447 /*
448  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
449  * according to dev->type
450  */
451 static const unsigned short netdev_lock_type[] = {
452 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
453 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
454 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
455 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
456 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
457 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
458 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
459 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
460 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
461 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
462 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
463 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
464 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
465 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
466 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
467 
468 static const char *const netdev_lock_name[] = {
469 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
470 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
471 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
472 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
473 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
474 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
475 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
476 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
477 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
478 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
479 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
480 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
481 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
482 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
483 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
484 
485 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
486 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
487 
488 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
489 {
490 	int i;
491 
492 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
493 		if (netdev_lock_type[i] == dev_type)
494 			return i;
495 	/* the last key is used by default */
496 	return ARRAY_SIZE(netdev_lock_type) - 1;
497 }
498 
499 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
500 						 unsigned short dev_type)
501 {
502 	int i;
503 
504 	i = netdev_lock_pos(dev_type);
505 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
506 				   netdev_lock_name[i]);
507 }
508 
509 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
510 {
511 	int i;
512 
513 	i = netdev_lock_pos(dev->type);
514 	lockdep_set_class_and_name(&dev->addr_list_lock,
515 				   &netdev_addr_lock_key[i],
516 				   netdev_lock_name[i]);
517 }
518 #else
519 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
520 						 unsigned short dev_type)
521 {
522 }
523 
524 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
525 {
526 }
527 #endif
528 
529 /*******************************************************************************
530  *
531  *		Protocol management and registration routines
532  *
533  *******************************************************************************/
534 
535 
536 /*
537  *	Add a protocol ID to the list. Now that the input handler is
538  *	smarter we can dispense with all the messy stuff that used to be
539  *	here.
540  *
541  *	BEWARE!!! Protocol handlers, mangling input packets,
542  *	MUST BE last in hash buckets and checking protocol handlers
543  *	MUST start from promiscuous ptype_all chain in net_bh.
544  *	It is true now, do not change it.
545  *	Explanation follows: if protocol handler, mangling packet, will
546  *	be the first on list, it is not able to sense, that packet
547  *	is cloned and should be copied-on-write, so that it will
548  *	change it and subsequent readers will get broken packet.
549  *							--ANK (980803)
550  */
551 
552 static inline struct list_head *ptype_head(const struct packet_type *pt)
553 {
554 	if (pt->type == htons(ETH_P_ALL))
555 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
556 	else
557 		return pt->dev ? &pt->dev->ptype_specific :
558 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
559 }
560 
561 /**
562  *	dev_add_pack - add packet handler
563  *	@pt: packet type declaration
564  *
565  *	Add a protocol handler to the networking stack. The passed &packet_type
566  *	is linked into kernel lists and may not be freed until it has been
567  *	removed from the kernel lists.
568  *
569  *	This call does not sleep therefore it can not
570  *	guarantee all CPU's that are in middle of receiving packets
571  *	will see the new packet type (until the next received packet).
572  */
573 
574 void dev_add_pack(struct packet_type *pt)
575 {
576 	struct list_head *head = ptype_head(pt);
577 
578 	spin_lock(&ptype_lock);
579 	list_add_rcu(&pt->list, head);
580 	spin_unlock(&ptype_lock);
581 }
582 EXPORT_SYMBOL(dev_add_pack);
583 
584 /**
585  *	__dev_remove_pack	 - remove packet handler
586  *	@pt: packet type declaration
587  *
588  *	Remove a protocol handler that was previously added to the kernel
589  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
590  *	from the kernel lists and can be freed or reused once this function
591  *	returns.
592  *
593  *      The packet type might still be in use by receivers
594  *	and must not be freed until after all the CPU's have gone
595  *	through a quiescent state.
596  */
597 void __dev_remove_pack(struct packet_type *pt)
598 {
599 	struct list_head *head = ptype_head(pt);
600 	struct packet_type *pt1;
601 
602 	spin_lock(&ptype_lock);
603 
604 	list_for_each_entry(pt1, head, list) {
605 		if (pt == pt1) {
606 			list_del_rcu(&pt->list);
607 			goto out;
608 		}
609 	}
610 
611 	pr_warn("dev_remove_pack: %p not found\n", pt);
612 out:
613 	spin_unlock(&ptype_lock);
614 }
615 EXPORT_SYMBOL(__dev_remove_pack);
616 
617 /**
618  *	dev_remove_pack	 - remove packet handler
619  *	@pt: packet type declaration
620  *
621  *	Remove a protocol handler that was previously added to the kernel
622  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
623  *	from the kernel lists and can be freed or reused once this function
624  *	returns.
625  *
626  *	This call sleeps to guarantee that no CPU is looking at the packet
627  *	type after return.
628  */
629 void dev_remove_pack(struct packet_type *pt)
630 {
631 	__dev_remove_pack(pt);
632 
633 	synchronize_net();
634 }
635 EXPORT_SYMBOL(dev_remove_pack);
636 
637 
638 /*******************************************************************************
639  *
640  *			    Device Interface Subroutines
641  *
642  *******************************************************************************/
643 
644 /**
645  *	dev_get_iflink	- get 'iflink' value of a interface
646  *	@dev: targeted interface
647  *
648  *	Indicates the ifindex the interface is linked to.
649  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
650  */
651 
652 int dev_get_iflink(const struct net_device *dev)
653 {
654 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
655 		return dev->netdev_ops->ndo_get_iflink(dev);
656 
657 	return dev->ifindex;
658 }
659 EXPORT_SYMBOL(dev_get_iflink);
660 
661 /**
662  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
663  *	@dev: targeted interface
664  *	@skb: The packet.
665  *
666  *	For better visibility of tunnel traffic OVS needs to retrieve
667  *	egress tunnel information for a packet. Following API allows
668  *	user to get this info.
669  */
670 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
671 {
672 	struct ip_tunnel_info *info;
673 
674 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
675 		return -EINVAL;
676 
677 	info = skb_tunnel_info_unclone(skb);
678 	if (!info)
679 		return -ENOMEM;
680 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
681 		return -EINVAL;
682 
683 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
684 }
685 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
686 
687 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
688 {
689 	int k = stack->num_paths++;
690 
691 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
692 		return NULL;
693 
694 	return &stack->path[k];
695 }
696 
697 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
698 			  struct net_device_path_stack *stack)
699 {
700 	const struct net_device *last_dev;
701 	struct net_device_path_ctx ctx = {
702 		.dev	= dev,
703 	};
704 	struct net_device_path *path;
705 	int ret = 0;
706 
707 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
708 	stack->num_paths = 0;
709 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
710 		last_dev = ctx.dev;
711 		path = dev_fwd_path(stack);
712 		if (!path)
713 			return -1;
714 
715 		memset(path, 0, sizeof(struct net_device_path));
716 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
717 		if (ret < 0)
718 			return -1;
719 
720 		if (WARN_ON_ONCE(last_dev == ctx.dev))
721 			return -1;
722 	}
723 
724 	if (!ctx.dev)
725 		return ret;
726 
727 	path = dev_fwd_path(stack);
728 	if (!path)
729 		return -1;
730 	path->type = DEV_PATH_ETHERNET;
731 	path->dev = ctx.dev;
732 
733 	return ret;
734 }
735 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
736 
737 /**
738  *	__dev_get_by_name	- find a device by its name
739  *	@net: the applicable net namespace
740  *	@name: name to find
741  *
742  *	Find an interface by name. Must be called under RTNL semaphore
743  *	or @dev_base_lock. If the name is found a pointer to the device
744  *	is returned. If the name is not found then %NULL is returned. The
745  *	reference counters are not incremented so the caller must be
746  *	careful with locks.
747  */
748 
749 struct net_device *__dev_get_by_name(struct net *net, const char *name)
750 {
751 	struct netdev_name_node *node_name;
752 
753 	node_name = netdev_name_node_lookup(net, name);
754 	return node_name ? node_name->dev : NULL;
755 }
756 EXPORT_SYMBOL(__dev_get_by_name);
757 
758 /**
759  * dev_get_by_name_rcu	- find a device by its name
760  * @net: the applicable net namespace
761  * @name: name to find
762  *
763  * Find an interface by name.
764  * If the name is found a pointer to the device is returned.
765  * If the name is not found then %NULL is returned.
766  * The reference counters are not incremented so the caller must be
767  * careful with locks. The caller must hold RCU lock.
768  */
769 
770 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
771 {
772 	struct netdev_name_node *node_name;
773 
774 	node_name = netdev_name_node_lookup_rcu(net, name);
775 	return node_name ? node_name->dev : NULL;
776 }
777 EXPORT_SYMBOL(dev_get_by_name_rcu);
778 
779 /* Deprecated for new users, call netdev_get_by_name() instead */
780 struct net_device *dev_get_by_name(struct net *net, const char *name)
781 {
782 	struct net_device *dev;
783 
784 	rcu_read_lock();
785 	dev = dev_get_by_name_rcu(net, name);
786 	dev_hold(dev);
787 	rcu_read_unlock();
788 	return dev;
789 }
790 EXPORT_SYMBOL(dev_get_by_name);
791 
792 /**
793  *	netdev_get_by_name() - find a device by its name
794  *	@net: the applicable net namespace
795  *	@name: name to find
796  *	@tracker: tracking object for the acquired reference
797  *	@gfp: allocation flags for the tracker
798  *
799  *	Find an interface by name. This can be called from any
800  *	context and does its own locking. The returned handle has
801  *	the usage count incremented and the caller must use netdev_put() to
802  *	release it when it is no longer needed. %NULL is returned if no
803  *	matching device is found.
804  */
805 struct net_device *netdev_get_by_name(struct net *net, const char *name,
806 				      netdevice_tracker *tracker, gfp_t gfp)
807 {
808 	struct net_device *dev;
809 
810 	dev = dev_get_by_name(net, name);
811 	if (dev)
812 		netdev_tracker_alloc(dev, tracker, gfp);
813 	return dev;
814 }
815 EXPORT_SYMBOL(netdev_get_by_name);
816 
817 /**
818  *	__dev_get_by_index - find a device by its ifindex
819  *	@net: the applicable net namespace
820  *	@ifindex: index of device
821  *
822  *	Search for an interface by index. Returns %NULL if the device
823  *	is not found or a pointer to the device. The device has not
824  *	had its reference counter increased so the caller must be careful
825  *	about locking. The caller must hold either the RTNL semaphore
826  *	or @dev_base_lock.
827  */
828 
829 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
830 {
831 	struct net_device *dev;
832 	struct hlist_head *head = dev_index_hash(net, ifindex);
833 
834 	hlist_for_each_entry(dev, head, index_hlist)
835 		if (dev->ifindex == ifindex)
836 			return dev;
837 
838 	return NULL;
839 }
840 EXPORT_SYMBOL(__dev_get_by_index);
841 
842 /**
843  *	dev_get_by_index_rcu - find a device by its ifindex
844  *	@net: the applicable net namespace
845  *	@ifindex: index of device
846  *
847  *	Search for an interface by index. Returns %NULL if the device
848  *	is not found or a pointer to the device. The device has not
849  *	had its reference counter increased so the caller must be careful
850  *	about locking. The caller must hold RCU lock.
851  */
852 
853 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
854 {
855 	struct net_device *dev;
856 	struct hlist_head *head = dev_index_hash(net, ifindex);
857 
858 	hlist_for_each_entry_rcu(dev, head, index_hlist)
859 		if (dev->ifindex == ifindex)
860 			return dev;
861 
862 	return NULL;
863 }
864 EXPORT_SYMBOL(dev_get_by_index_rcu);
865 
866 /* Deprecated for new users, call netdev_get_by_index() instead */
867 struct net_device *dev_get_by_index(struct net *net, int ifindex)
868 {
869 	struct net_device *dev;
870 
871 	rcu_read_lock();
872 	dev = dev_get_by_index_rcu(net, ifindex);
873 	dev_hold(dev);
874 	rcu_read_unlock();
875 	return dev;
876 }
877 EXPORT_SYMBOL(dev_get_by_index);
878 
879 /**
880  *	netdev_get_by_index() - find a device by its ifindex
881  *	@net: the applicable net namespace
882  *	@ifindex: index of device
883  *	@tracker: tracking object for the acquired reference
884  *	@gfp: allocation flags for the tracker
885  *
886  *	Search for an interface by index. Returns NULL if the device
887  *	is not found or a pointer to the device. The device returned has
888  *	had a reference added and the pointer is safe until the user calls
889  *	netdev_put() to indicate they have finished with it.
890  */
891 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
892 				       netdevice_tracker *tracker, gfp_t gfp)
893 {
894 	struct net_device *dev;
895 
896 	dev = dev_get_by_index(net, ifindex);
897 	if (dev)
898 		netdev_tracker_alloc(dev, tracker, gfp);
899 	return dev;
900 }
901 EXPORT_SYMBOL(netdev_get_by_index);
902 
903 /**
904  *	dev_get_by_napi_id - find a device by napi_id
905  *	@napi_id: ID of the NAPI struct
906  *
907  *	Search for an interface by NAPI ID. Returns %NULL if the device
908  *	is not found or a pointer to the device. The device has not had
909  *	its reference counter increased so the caller must be careful
910  *	about locking. The caller must hold RCU lock.
911  */
912 
913 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
914 {
915 	struct napi_struct *napi;
916 
917 	WARN_ON_ONCE(!rcu_read_lock_held());
918 
919 	if (napi_id < MIN_NAPI_ID)
920 		return NULL;
921 
922 	napi = napi_by_id(napi_id);
923 
924 	return napi ? napi->dev : NULL;
925 }
926 EXPORT_SYMBOL(dev_get_by_napi_id);
927 
928 /**
929  *	netdev_get_name - get a netdevice name, knowing its ifindex.
930  *	@net: network namespace
931  *	@name: a pointer to the buffer where the name will be stored.
932  *	@ifindex: the ifindex of the interface to get the name from.
933  */
934 int netdev_get_name(struct net *net, char *name, int ifindex)
935 {
936 	struct net_device *dev;
937 	int ret;
938 
939 	down_read(&devnet_rename_sem);
940 	rcu_read_lock();
941 
942 	dev = dev_get_by_index_rcu(net, ifindex);
943 	if (!dev) {
944 		ret = -ENODEV;
945 		goto out;
946 	}
947 
948 	strcpy(name, dev->name);
949 
950 	ret = 0;
951 out:
952 	rcu_read_unlock();
953 	up_read(&devnet_rename_sem);
954 	return ret;
955 }
956 
957 /**
958  *	dev_getbyhwaddr_rcu - find a device by its hardware address
959  *	@net: the applicable net namespace
960  *	@type: media type of device
961  *	@ha: hardware address
962  *
963  *	Search for an interface by MAC address. Returns NULL if the device
964  *	is not found or a pointer to the device.
965  *	The caller must hold RCU or RTNL.
966  *	The returned device has not had its ref count increased
967  *	and the caller must therefore be careful about locking
968  *
969  */
970 
971 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
972 				       const char *ha)
973 {
974 	struct net_device *dev;
975 
976 	for_each_netdev_rcu(net, dev)
977 		if (dev->type == type &&
978 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
979 			return dev;
980 
981 	return NULL;
982 }
983 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
984 
985 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
986 {
987 	struct net_device *dev, *ret = NULL;
988 
989 	rcu_read_lock();
990 	for_each_netdev_rcu(net, dev)
991 		if (dev->type == type) {
992 			dev_hold(dev);
993 			ret = dev;
994 			break;
995 		}
996 	rcu_read_unlock();
997 	return ret;
998 }
999 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1000 
1001 /**
1002  *	__dev_get_by_flags - find any device with given flags
1003  *	@net: the applicable net namespace
1004  *	@if_flags: IFF_* values
1005  *	@mask: bitmask of bits in if_flags to check
1006  *
1007  *	Search for any interface with the given flags. Returns NULL if a device
1008  *	is not found or a pointer to the device. Must be called inside
1009  *	rtnl_lock(), and result refcount is unchanged.
1010  */
1011 
1012 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1013 				      unsigned short mask)
1014 {
1015 	struct net_device *dev, *ret;
1016 
1017 	ASSERT_RTNL();
1018 
1019 	ret = NULL;
1020 	for_each_netdev(net, dev) {
1021 		if (((dev->flags ^ if_flags) & mask) == 0) {
1022 			ret = dev;
1023 			break;
1024 		}
1025 	}
1026 	return ret;
1027 }
1028 EXPORT_SYMBOL(__dev_get_by_flags);
1029 
1030 /**
1031  *	dev_valid_name - check if name is okay for network device
1032  *	@name: name string
1033  *
1034  *	Network device names need to be valid file names to
1035  *	allow sysfs to work.  We also disallow any kind of
1036  *	whitespace.
1037  */
1038 bool dev_valid_name(const char *name)
1039 {
1040 	if (*name == '\0')
1041 		return false;
1042 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1043 		return false;
1044 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1045 		return false;
1046 
1047 	while (*name) {
1048 		if (*name == '/' || *name == ':' || isspace(*name))
1049 			return false;
1050 		name++;
1051 	}
1052 	return true;
1053 }
1054 EXPORT_SYMBOL(dev_valid_name);
1055 
1056 /**
1057  *	__dev_alloc_name - allocate a name for a device
1058  *	@net: network namespace to allocate the device name in
1059  *	@name: name format string
1060  *	@buf:  scratch buffer and result name string
1061  *
1062  *	Passed a format string - eg "lt%d" it will try and find a suitable
1063  *	id. It scans list of devices to build up a free map, then chooses
1064  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1065  *	while allocating the name and adding the device in order to avoid
1066  *	duplicates.
1067  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1068  *	Returns the number of the unit assigned or a negative errno code.
1069  */
1070 
1071 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1072 {
1073 	int i = 0;
1074 	const char *p;
1075 	const int max_netdevices = 8*PAGE_SIZE;
1076 	unsigned long *inuse;
1077 	struct net_device *d;
1078 
1079 	if (!dev_valid_name(name))
1080 		return -EINVAL;
1081 
1082 	p = strchr(name, '%');
1083 	if (p) {
1084 		/*
1085 		 * Verify the string as this thing may have come from
1086 		 * the user.  There must be either one "%d" and no other "%"
1087 		 * characters.
1088 		 */
1089 		if (p[1] != 'd' || strchr(p + 2, '%'))
1090 			return -EINVAL;
1091 
1092 		/* Use one page as a bit array of possible slots */
1093 		inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1094 		if (!inuse)
1095 			return -ENOMEM;
1096 
1097 		for_each_netdev(net, d) {
1098 			struct netdev_name_node *name_node;
1099 
1100 			netdev_for_each_altname(d, name_node) {
1101 				if (!sscanf(name_node->name, name, &i))
1102 					continue;
1103 				if (i < 0 || i >= max_netdevices)
1104 					continue;
1105 
1106 				/*  avoid cases where sscanf is not exact inverse of printf */
1107 				snprintf(buf, IFNAMSIZ, name, i);
1108 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1109 					__set_bit(i, inuse);
1110 			}
1111 			if (!sscanf(d->name, name, &i))
1112 				continue;
1113 			if (i < 0 || i >= max_netdevices)
1114 				continue;
1115 
1116 			/*  avoid cases where sscanf is not exact inverse of printf */
1117 			snprintf(buf, IFNAMSIZ, name, i);
1118 			if (!strncmp(buf, d->name, IFNAMSIZ))
1119 				__set_bit(i, inuse);
1120 		}
1121 
1122 		i = find_first_zero_bit(inuse, max_netdevices);
1123 		bitmap_free(inuse);
1124 	}
1125 
1126 	snprintf(buf, IFNAMSIZ, name, i);
1127 	if (!netdev_name_in_use(net, buf))
1128 		return i;
1129 
1130 	/* It is possible to run out of possible slots
1131 	 * when the name is long and there isn't enough space left
1132 	 * for the digits, or if all bits are used.
1133 	 */
1134 	return -ENFILE;
1135 }
1136 
1137 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1138 			       const char *want_name, char *out_name)
1139 {
1140 	int ret;
1141 
1142 	if (!dev_valid_name(want_name))
1143 		return -EINVAL;
1144 
1145 	if (strchr(want_name, '%')) {
1146 		ret = __dev_alloc_name(net, want_name, out_name);
1147 		return ret < 0 ? ret : 0;
1148 	} else if (netdev_name_in_use(net, want_name)) {
1149 		return -EEXIST;
1150 	} else if (out_name != want_name) {
1151 		strscpy(out_name, want_name, IFNAMSIZ);
1152 	}
1153 
1154 	return 0;
1155 }
1156 
1157 static int dev_alloc_name_ns(struct net *net,
1158 			     struct net_device *dev,
1159 			     const char *name)
1160 {
1161 	char buf[IFNAMSIZ];
1162 	int ret;
1163 
1164 	BUG_ON(!net);
1165 	ret = __dev_alloc_name(net, name, buf);
1166 	if (ret >= 0)
1167 		strscpy(dev->name, buf, IFNAMSIZ);
1168 	return ret;
1169 }
1170 
1171 /**
1172  *	dev_alloc_name - allocate a name for a device
1173  *	@dev: device
1174  *	@name: name format string
1175  *
1176  *	Passed a format string - eg "lt%d" it will try and find a suitable
1177  *	id. It scans list of devices to build up a free map, then chooses
1178  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1179  *	while allocating the name and adding the device in order to avoid
1180  *	duplicates.
1181  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1182  *	Returns the number of the unit assigned or a negative errno code.
1183  */
1184 
1185 int dev_alloc_name(struct net_device *dev, const char *name)
1186 {
1187 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1188 }
1189 EXPORT_SYMBOL(dev_alloc_name);
1190 
1191 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1192 			      const char *name)
1193 {
1194 	char buf[IFNAMSIZ];
1195 	int ret;
1196 
1197 	ret = dev_prep_valid_name(net, dev, name, buf);
1198 	if (ret >= 0)
1199 		strscpy(dev->name, buf, IFNAMSIZ);
1200 	return ret;
1201 }
1202 
1203 /**
1204  *	dev_change_name - change name of a device
1205  *	@dev: device
1206  *	@newname: name (or format string) must be at least IFNAMSIZ
1207  *
1208  *	Change name of a device, can pass format strings "eth%d".
1209  *	for wildcarding.
1210  */
1211 int dev_change_name(struct net_device *dev, const char *newname)
1212 {
1213 	unsigned char old_assign_type;
1214 	char oldname[IFNAMSIZ];
1215 	int err = 0;
1216 	int ret;
1217 	struct net *net;
1218 
1219 	ASSERT_RTNL();
1220 	BUG_ON(!dev_net(dev));
1221 
1222 	net = dev_net(dev);
1223 
1224 	down_write(&devnet_rename_sem);
1225 
1226 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1227 		up_write(&devnet_rename_sem);
1228 		return 0;
1229 	}
1230 
1231 	memcpy(oldname, dev->name, IFNAMSIZ);
1232 
1233 	err = dev_get_valid_name(net, dev, newname);
1234 	if (err < 0) {
1235 		up_write(&devnet_rename_sem);
1236 		return err;
1237 	}
1238 
1239 	if (oldname[0] && !strchr(oldname, '%'))
1240 		netdev_info(dev, "renamed from %s%s\n", oldname,
1241 			    dev->flags & IFF_UP ? " (while UP)" : "");
1242 
1243 	old_assign_type = dev->name_assign_type;
1244 	dev->name_assign_type = NET_NAME_RENAMED;
1245 
1246 rollback:
1247 	ret = device_rename(&dev->dev, dev->name);
1248 	if (ret) {
1249 		memcpy(dev->name, oldname, IFNAMSIZ);
1250 		dev->name_assign_type = old_assign_type;
1251 		up_write(&devnet_rename_sem);
1252 		return ret;
1253 	}
1254 
1255 	up_write(&devnet_rename_sem);
1256 
1257 	netdev_adjacent_rename_links(dev, oldname);
1258 
1259 	write_lock(&dev_base_lock);
1260 	netdev_name_node_del(dev->name_node);
1261 	write_unlock(&dev_base_lock);
1262 
1263 	synchronize_rcu();
1264 
1265 	write_lock(&dev_base_lock);
1266 	netdev_name_node_add(net, dev->name_node);
1267 	write_unlock(&dev_base_lock);
1268 
1269 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1270 	ret = notifier_to_errno(ret);
1271 
1272 	if (ret) {
1273 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1274 		if (err >= 0) {
1275 			err = ret;
1276 			down_write(&devnet_rename_sem);
1277 			memcpy(dev->name, oldname, IFNAMSIZ);
1278 			memcpy(oldname, newname, IFNAMSIZ);
1279 			dev->name_assign_type = old_assign_type;
1280 			old_assign_type = NET_NAME_RENAMED;
1281 			goto rollback;
1282 		} else {
1283 			netdev_err(dev, "name change rollback failed: %d\n",
1284 				   ret);
1285 		}
1286 	}
1287 
1288 	return err;
1289 }
1290 
1291 /**
1292  *	dev_set_alias - change ifalias of a device
1293  *	@dev: device
1294  *	@alias: name up to IFALIASZ
1295  *	@len: limit of bytes to copy from info
1296  *
1297  *	Set ifalias for a device,
1298  */
1299 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1300 {
1301 	struct dev_ifalias *new_alias = NULL;
1302 
1303 	if (len >= IFALIASZ)
1304 		return -EINVAL;
1305 
1306 	if (len) {
1307 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1308 		if (!new_alias)
1309 			return -ENOMEM;
1310 
1311 		memcpy(new_alias->ifalias, alias, len);
1312 		new_alias->ifalias[len] = 0;
1313 	}
1314 
1315 	mutex_lock(&ifalias_mutex);
1316 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1317 					mutex_is_locked(&ifalias_mutex));
1318 	mutex_unlock(&ifalias_mutex);
1319 
1320 	if (new_alias)
1321 		kfree_rcu(new_alias, rcuhead);
1322 
1323 	return len;
1324 }
1325 EXPORT_SYMBOL(dev_set_alias);
1326 
1327 /**
1328  *	dev_get_alias - get ifalias of a device
1329  *	@dev: device
1330  *	@name: buffer to store name of ifalias
1331  *	@len: size of buffer
1332  *
1333  *	get ifalias for a device.  Caller must make sure dev cannot go
1334  *	away,  e.g. rcu read lock or own a reference count to device.
1335  */
1336 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1337 {
1338 	const struct dev_ifalias *alias;
1339 	int ret = 0;
1340 
1341 	rcu_read_lock();
1342 	alias = rcu_dereference(dev->ifalias);
1343 	if (alias)
1344 		ret = snprintf(name, len, "%s", alias->ifalias);
1345 	rcu_read_unlock();
1346 
1347 	return ret;
1348 }
1349 
1350 /**
1351  *	netdev_features_change - device changes features
1352  *	@dev: device to cause notification
1353  *
1354  *	Called to indicate a device has changed features.
1355  */
1356 void netdev_features_change(struct net_device *dev)
1357 {
1358 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1359 }
1360 EXPORT_SYMBOL(netdev_features_change);
1361 
1362 /**
1363  *	netdev_state_change - device changes state
1364  *	@dev: device to cause notification
1365  *
1366  *	Called to indicate a device has changed state. This function calls
1367  *	the notifier chains for netdev_chain and sends a NEWLINK message
1368  *	to the routing socket.
1369  */
1370 void netdev_state_change(struct net_device *dev)
1371 {
1372 	if (dev->flags & IFF_UP) {
1373 		struct netdev_notifier_change_info change_info = {
1374 			.info.dev = dev,
1375 		};
1376 
1377 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1378 					      &change_info.info);
1379 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1380 	}
1381 }
1382 EXPORT_SYMBOL(netdev_state_change);
1383 
1384 /**
1385  * __netdev_notify_peers - notify network peers about existence of @dev,
1386  * to be called when rtnl lock is already held.
1387  * @dev: network device
1388  *
1389  * Generate traffic such that interested network peers are aware of
1390  * @dev, such as by generating a gratuitous ARP. This may be used when
1391  * a device wants to inform the rest of the network about some sort of
1392  * reconfiguration such as a failover event or virtual machine
1393  * migration.
1394  */
1395 void __netdev_notify_peers(struct net_device *dev)
1396 {
1397 	ASSERT_RTNL();
1398 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1399 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1400 }
1401 EXPORT_SYMBOL(__netdev_notify_peers);
1402 
1403 /**
1404  * netdev_notify_peers - notify network peers about existence of @dev
1405  * @dev: network device
1406  *
1407  * Generate traffic such that interested network peers are aware of
1408  * @dev, such as by generating a gratuitous ARP. This may be used when
1409  * a device wants to inform the rest of the network about some sort of
1410  * reconfiguration such as a failover event or virtual machine
1411  * migration.
1412  */
1413 void netdev_notify_peers(struct net_device *dev)
1414 {
1415 	rtnl_lock();
1416 	__netdev_notify_peers(dev);
1417 	rtnl_unlock();
1418 }
1419 EXPORT_SYMBOL(netdev_notify_peers);
1420 
1421 static int napi_threaded_poll(void *data);
1422 
1423 static int napi_kthread_create(struct napi_struct *n)
1424 {
1425 	int err = 0;
1426 
1427 	/* Create and wake up the kthread once to put it in
1428 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1429 	 * warning and work with loadavg.
1430 	 */
1431 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1432 				n->dev->name, n->napi_id);
1433 	if (IS_ERR(n->thread)) {
1434 		err = PTR_ERR(n->thread);
1435 		pr_err("kthread_run failed with err %d\n", err);
1436 		n->thread = NULL;
1437 	}
1438 
1439 	return err;
1440 }
1441 
1442 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1443 {
1444 	const struct net_device_ops *ops = dev->netdev_ops;
1445 	int ret;
1446 
1447 	ASSERT_RTNL();
1448 	dev_addr_check(dev);
1449 
1450 	if (!netif_device_present(dev)) {
1451 		/* may be detached because parent is runtime-suspended */
1452 		if (dev->dev.parent)
1453 			pm_runtime_resume(dev->dev.parent);
1454 		if (!netif_device_present(dev))
1455 			return -ENODEV;
1456 	}
1457 
1458 	/* Block netpoll from trying to do any rx path servicing.
1459 	 * If we don't do this there is a chance ndo_poll_controller
1460 	 * or ndo_poll may be running while we open the device
1461 	 */
1462 	netpoll_poll_disable(dev);
1463 
1464 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1465 	ret = notifier_to_errno(ret);
1466 	if (ret)
1467 		return ret;
1468 
1469 	set_bit(__LINK_STATE_START, &dev->state);
1470 
1471 	if (ops->ndo_validate_addr)
1472 		ret = ops->ndo_validate_addr(dev);
1473 
1474 	if (!ret && ops->ndo_open)
1475 		ret = ops->ndo_open(dev);
1476 
1477 	netpoll_poll_enable(dev);
1478 
1479 	if (ret)
1480 		clear_bit(__LINK_STATE_START, &dev->state);
1481 	else {
1482 		dev->flags |= IFF_UP;
1483 		dev_set_rx_mode(dev);
1484 		dev_activate(dev);
1485 		add_device_randomness(dev->dev_addr, dev->addr_len);
1486 	}
1487 
1488 	return ret;
1489 }
1490 
1491 /**
1492  *	dev_open	- prepare an interface for use.
1493  *	@dev: device to open
1494  *	@extack: netlink extended ack
1495  *
1496  *	Takes a device from down to up state. The device's private open
1497  *	function is invoked and then the multicast lists are loaded. Finally
1498  *	the device is moved into the up state and a %NETDEV_UP message is
1499  *	sent to the netdev notifier chain.
1500  *
1501  *	Calling this function on an active interface is a nop. On a failure
1502  *	a negative errno code is returned.
1503  */
1504 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1505 {
1506 	int ret;
1507 
1508 	if (dev->flags & IFF_UP)
1509 		return 0;
1510 
1511 	ret = __dev_open(dev, extack);
1512 	if (ret < 0)
1513 		return ret;
1514 
1515 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1516 	call_netdevice_notifiers(NETDEV_UP, dev);
1517 
1518 	return ret;
1519 }
1520 EXPORT_SYMBOL(dev_open);
1521 
1522 static void __dev_close_many(struct list_head *head)
1523 {
1524 	struct net_device *dev;
1525 
1526 	ASSERT_RTNL();
1527 	might_sleep();
1528 
1529 	list_for_each_entry(dev, head, close_list) {
1530 		/* Temporarily disable netpoll until the interface is down */
1531 		netpoll_poll_disable(dev);
1532 
1533 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1534 
1535 		clear_bit(__LINK_STATE_START, &dev->state);
1536 
1537 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1538 		 * can be even on different cpu. So just clear netif_running().
1539 		 *
1540 		 * dev->stop() will invoke napi_disable() on all of it's
1541 		 * napi_struct instances on this device.
1542 		 */
1543 		smp_mb__after_atomic(); /* Commit netif_running(). */
1544 	}
1545 
1546 	dev_deactivate_many(head);
1547 
1548 	list_for_each_entry(dev, head, close_list) {
1549 		const struct net_device_ops *ops = dev->netdev_ops;
1550 
1551 		/*
1552 		 *	Call the device specific close. This cannot fail.
1553 		 *	Only if device is UP
1554 		 *
1555 		 *	We allow it to be called even after a DETACH hot-plug
1556 		 *	event.
1557 		 */
1558 		if (ops->ndo_stop)
1559 			ops->ndo_stop(dev);
1560 
1561 		dev->flags &= ~IFF_UP;
1562 		netpoll_poll_enable(dev);
1563 	}
1564 }
1565 
1566 static void __dev_close(struct net_device *dev)
1567 {
1568 	LIST_HEAD(single);
1569 
1570 	list_add(&dev->close_list, &single);
1571 	__dev_close_many(&single);
1572 	list_del(&single);
1573 }
1574 
1575 void dev_close_many(struct list_head *head, bool unlink)
1576 {
1577 	struct net_device *dev, *tmp;
1578 
1579 	/* Remove the devices that don't need to be closed */
1580 	list_for_each_entry_safe(dev, tmp, head, close_list)
1581 		if (!(dev->flags & IFF_UP))
1582 			list_del_init(&dev->close_list);
1583 
1584 	__dev_close_many(head);
1585 
1586 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1587 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1588 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1589 		if (unlink)
1590 			list_del_init(&dev->close_list);
1591 	}
1592 }
1593 EXPORT_SYMBOL(dev_close_many);
1594 
1595 /**
1596  *	dev_close - shutdown an interface.
1597  *	@dev: device to shutdown
1598  *
1599  *	This function moves an active device into down state. A
1600  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1601  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1602  *	chain.
1603  */
1604 void dev_close(struct net_device *dev)
1605 {
1606 	if (dev->flags & IFF_UP) {
1607 		LIST_HEAD(single);
1608 
1609 		list_add(&dev->close_list, &single);
1610 		dev_close_many(&single, true);
1611 		list_del(&single);
1612 	}
1613 }
1614 EXPORT_SYMBOL(dev_close);
1615 
1616 
1617 /**
1618  *	dev_disable_lro - disable Large Receive Offload on a device
1619  *	@dev: device
1620  *
1621  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1622  *	called under RTNL.  This is needed if received packets may be
1623  *	forwarded to another interface.
1624  */
1625 void dev_disable_lro(struct net_device *dev)
1626 {
1627 	struct net_device *lower_dev;
1628 	struct list_head *iter;
1629 
1630 	dev->wanted_features &= ~NETIF_F_LRO;
1631 	netdev_update_features(dev);
1632 
1633 	if (unlikely(dev->features & NETIF_F_LRO))
1634 		netdev_WARN(dev, "failed to disable LRO!\n");
1635 
1636 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1637 		dev_disable_lro(lower_dev);
1638 }
1639 EXPORT_SYMBOL(dev_disable_lro);
1640 
1641 /**
1642  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1643  *	@dev: device
1644  *
1645  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1646  *	called under RTNL.  This is needed if Generic XDP is installed on
1647  *	the device.
1648  */
1649 static void dev_disable_gro_hw(struct net_device *dev)
1650 {
1651 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1652 	netdev_update_features(dev);
1653 
1654 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1655 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1656 }
1657 
1658 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1659 {
1660 #define N(val) 						\
1661 	case NETDEV_##val:				\
1662 		return "NETDEV_" __stringify(val);
1663 	switch (cmd) {
1664 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1665 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1666 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1667 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1668 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1669 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1670 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1671 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1672 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1673 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1674 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1675 	N(XDP_FEAT_CHANGE)
1676 	}
1677 #undef N
1678 	return "UNKNOWN_NETDEV_EVENT";
1679 }
1680 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1681 
1682 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1683 				   struct net_device *dev)
1684 {
1685 	struct netdev_notifier_info info = {
1686 		.dev = dev,
1687 	};
1688 
1689 	return nb->notifier_call(nb, val, &info);
1690 }
1691 
1692 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1693 					     struct net_device *dev)
1694 {
1695 	int err;
1696 
1697 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1698 	err = notifier_to_errno(err);
1699 	if (err)
1700 		return err;
1701 
1702 	if (!(dev->flags & IFF_UP))
1703 		return 0;
1704 
1705 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1706 	return 0;
1707 }
1708 
1709 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1710 						struct net_device *dev)
1711 {
1712 	if (dev->flags & IFF_UP) {
1713 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1714 					dev);
1715 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1716 	}
1717 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1718 }
1719 
1720 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1721 						 struct net *net)
1722 {
1723 	struct net_device *dev;
1724 	int err;
1725 
1726 	for_each_netdev(net, dev) {
1727 		err = call_netdevice_register_notifiers(nb, dev);
1728 		if (err)
1729 			goto rollback;
1730 	}
1731 	return 0;
1732 
1733 rollback:
1734 	for_each_netdev_continue_reverse(net, dev)
1735 		call_netdevice_unregister_notifiers(nb, dev);
1736 	return err;
1737 }
1738 
1739 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1740 						    struct net *net)
1741 {
1742 	struct net_device *dev;
1743 
1744 	for_each_netdev(net, dev)
1745 		call_netdevice_unregister_notifiers(nb, dev);
1746 }
1747 
1748 static int dev_boot_phase = 1;
1749 
1750 /**
1751  * register_netdevice_notifier - register a network notifier block
1752  * @nb: notifier
1753  *
1754  * Register a notifier to be called when network device events occur.
1755  * The notifier passed is linked into the kernel structures and must
1756  * not be reused until it has been unregistered. A negative errno code
1757  * is returned on a failure.
1758  *
1759  * When registered all registration and up events are replayed
1760  * to the new notifier to allow device to have a race free
1761  * view of the network device list.
1762  */
1763 
1764 int register_netdevice_notifier(struct notifier_block *nb)
1765 {
1766 	struct net *net;
1767 	int err;
1768 
1769 	/* Close race with setup_net() and cleanup_net() */
1770 	down_write(&pernet_ops_rwsem);
1771 	rtnl_lock();
1772 	err = raw_notifier_chain_register(&netdev_chain, nb);
1773 	if (err)
1774 		goto unlock;
1775 	if (dev_boot_phase)
1776 		goto unlock;
1777 	for_each_net(net) {
1778 		err = call_netdevice_register_net_notifiers(nb, net);
1779 		if (err)
1780 			goto rollback;
1781 	}
1782 
1783 unlock:
1784 	rtnl_unlock();
1785 	up_write(&pernet_ops_rwsem);
1786 	return err;
1787 
1788 rollback:
1789 	for_each_net_continue_reverse(net)
1790 		call_netdevice_unregister_net_notifiers(nb, net);
1791 
1792 	raw_notifier_chain_unregister(&netdev_chain, nb);
1793 	goto unlock;
1794 }
1795 EXPORT_SYMBOL(register_netdevice_notifier);
1796 
1797 /**
1798  * unregister_netdevice_notifier - unregister a network notifier block
1799  * @nb: notifier
1800  *
1801  * Unregister a notifier previously registered by
1802  * register_netdevice_notifier(). The notifier is unlinked into the
1803  * kernel structures and may then be reused. A negative errno code
1804  * is returned on a failure.
1805  *
1806  * After unregistering unregister and down device events are synthesized
1807  * for all devices on the device list to the removed notifier to remove
1808  * the need for special case cleanup code.
1809  */
1810 
1811 int unregister_netdevice_notifier(struct notifier_block *nb)
1812 {
1813 	struct net *net;
1814 	int err;
1815 
1816 	/* Close race with setup_net() and cleanup_net() */
1817 	down_write(&pernet_ops_rwsem);
1818 	rtnl_lock();
1819 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1820 	if (err)
1821 		goto unlock;
1822 
1823 	for_each_net(net)
1824 		call_netdevice_unregister_net_notifiers(nb, net);
1825 
1826 unlock:
1827 	rtnl_unlock();
1828 	up_write(&pernet_ops_rwsem);
1829 	return err;
1830 }
1831 EXPORT_SYMBOL(unregister_netdevice_notifier);
1832 
1833 static int __register_netdevice_notifier_net(struct net *net,
1834 					     struct notifier_block *nb,
1835 					     bool ignore_call_fail)
1836 {
1837 	int err;
1838 
1839 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1840 	if (err)
1841 		return err;
1842 	if (dev_boot_phase)
1843 		return 0;
1844 
1845 	err = call_netdevice_register_net_notifiers(nb, net);
1846 	if (err && !ignore_call_fail)
1847 		goto chain_unregister;
1848 
1849 	return 0;
1850 
1851 chain_unregister:
1852 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1853 	return err;
1854 }
1855 
1856 static int __unregister_netdevice_notifier_net(struct net *net,
1857 					       struct notifier_block *nb)
1858 {
1859 	int err;
1860 
1861 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1862 	if (err)
1863 		return err;
1864 
1865 	call_netdevice_unregister_net_notifiers(nb, net);
1866 	return 0;
1867 }
1868 
1869 /**
1870  * register_netdevice_notifier_net - register a per-netns network notifier block
1871  * @net: network namespace
1872  * @nb: notifier
1873  *
1874  * Register a notifier to be called when network device events occur.
1875  * The notifier passed is linked into the kernel structures and must
1876  * not be reused until it has been unregistered. A negative errno code
1877  * is returned on a failure.
1878  *
1879  * When registered all registration and up events are replayed
1880  * to the new notifier to allow device to have a race free
1881  * view of the network device list.
1882  */
1883 
1884 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1885 {
1886 	int err;
1887 
1888 	rtnl_lock();
1889 	err = __register_netdevice_notifier_net(net, nb, false);
1890 	rtnl_unlock();
1891 	return err;
1892 }
1893 EXPORT_SYMBOL(register_netdevice_notifier_net);
1894 
1895 /**
1896  * unregister_netdevice_notifier_net - unregister a per-netns
1897  *                                     network notifier block
1898  * @net: network namespace
1899  * @nb: notifier
1900  *
1901  * Unregister a notifier previously registered by
1902  * register_netdevice_notifier_net(). The notifier is unlinked from the
1903  * kernel structures and may then be reused. A negative errno code
1904  * is returned on a failure.
1905  *
1906  * After unregistering unregister and down device events are synthesized
1907  * for all devices on the device list to the removed notifier to remove
1908  * the need for special case cleanup code.
1909  */
1910 
1911 int unregister_netdevice_notifier_net(struct net *net,
1912 				      struct notifier_block *nb)
1913 {
1914 	int err;
1915 
1916 	rtnl_lock();
1917 	err = __unregister_netdevice_notifier_net(net, nb);
1918 	rtnl_unlock();
1919 	return err;
1920 }
1921 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1922 
1923 static void __move_netdevice_notifier_net(struct net *src_net,
1924 					  struct net *dst_net,
1925 					  struct notifier_block *nb)
1926 {
1927 	__unregister_netdevice_notifier_net(src_net, nb);
1928 	__register_netdevice_notifier_net(dst_net, nb, true);
1929 }
1930 
1931 int register_netdevice_notifier_dev_net(struct net_device *dev,
1932 					struct notifier_block *nb,
1933 					struct netdev_net_notifier *nn)
1934 {
1935 	int err;
1936 
1937 	rtnl_lock();
1938 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1939 	if (!err) {
1940 		nn->nb = nb;
1941 		list_add(&nn->list, &dev->net_notifier_list);
1942 	}
1943 	rtnl_unlock();
1944 	return err;
1945 }
1946 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1947 
1948 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1949 					  struct notifier_block *nb,
1950 					  struct netdev_net_notifier *nn)
1951 {
1952 	int err;
1953 
1954 	rtnl_lock();
1955 	list_del(&nn->list);
1956 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1957 	rtnl_unlock();
1958 	return err;
1959 }
1960 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1961 
1962 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1963 					     struct net *net)
1964 {
1965 	struct netdev_net_notifier *nn;
1966 
1967 	list_for_each_entry(nn, &dev->net_notifier_list, list)
1968 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1969 }
1970 
1971 /**
1972  *	call_netdevice_notifiers_info - call all network notifier blocks
1973  *	@val: value passed unmodified to notifier function
1974  *	@info: notifier information data
1975  *
1976  *	Call all network notifier blocks.  Parameters and return value
1977  *	are as for raw_notifier_call_chain().
1978  */
1979 
1980 int call_netdevice_notifiers_info(unsigned long val,
1981 				  struct netdev_notifier_info *info)
1982 {
1983 	struct net *net = dev_net(info->dev);
1984 	int ret;
1985 
1986 	ASSERT_RTNL();
1987 
1988 	/* Run per-netns notifier block chain first, then run the global one.
1989 	 * Hopefully, one day, the global one is going to be removed after
1990 	 * all notifier block registrators get converted to be per-netns.
1991 	 */
1992 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1993 	if (ret & NOTIFY_STOP_MASK)
1994 		return ret;
1995 	return raw_notifier_call_chain(&netdev_chain, val, info);
1996 }
1997 
1998 /**
1999  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2000  *	                                       for and rollback on error
2001  *	@val_up: value passed unmodified to notifier function
2002  *	@val_down: value passed unmodified to the notifier function when
2003  *	           recovering from an error on @val_up
2004  *	@info: notifier information data
2005  *
2006  *	Call all per-netns network notifier blocks, but not notifier blocks on
2007  *	the global notifier chain. Parameters and return value are as for
2008  *	raw_notifier_call_chain_robust().
2009  */
2010 
2011 static int
2012 call_netdevice_notifiers_info_robust(unsigned long val_up,
2013 				     unsigned long val_down,
2014 				     struct netdev_notifier_info *info)
2015 {
2016 	struct net *net = dev_net(info->dev);
2017 
2018 	ASSERT_RTNL();
2019 
2020 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2021 					      val_up, val_down, info);
2022 }
2023 
2024 static int call_netdevice_notifiers_extack(unsigned long val,
2025 					   struct net_device *dev,
2026 					   struct netlink_ext_ack *extack)
2027 {
2028 	struct netdev_notifier_info info = {
2029 		.dev = dev,
2030 		.extack = extack,
2031 	};
2032 
2033 	return call_netdevice_notifiers_info(val, &info);
2034 }
2035 
2036 /**
2037  *	call_netdevice_notifiers - call all network notifier blocks
2038  *      @val: value passed unmodified to notifier function
2039  *      @dev: net_device pointer passed unmodified to notifier function
2040  *
2041  *	Call all network notifier blocks.  Parameters and return value
2042  *	are as for raw_notifier_call_chain().
2043  */
2044 
2045 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2046 {
2047 	return call_netdevice_notifiers_extack(val, dev, NULL);
2048 }
2049 EXPORT_SYMBOL(call_netdevice_notifiers);
2050 
2051 /**
2052  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2053  *	@val: value passed unmodified to notifier function
2054  *	@dev: net_device pointer passed unmodified to notifier function
2055  *	@arg: additional u32 argument passed to the notifier function
2056  *
2057  *	Call all network notifier blocks.  Parameters and return value
2058  *	are as for raw_notifier_call_chain().
2059  */
2060 static int call_netdevice_notifiers_mtu(unsigned long val,
2061 					struct net_device *dev, u32 arg)
2062 {
2063 	struct netdev_notifier_info_ext info = {
2064 		.info.dev = dev,
2065 		.ext.mtu = arg,
2066 	};
2067 
2068 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2069 
2070 	return call_netdevice_notifiers_info(val, &info.info);
2071 }
2072 
2073 #ifdef CONFIG_NET_INGRESS
2074 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2075 
2076 void net_inc_ingress_queue(void)
2077 {
2078 	static_branch_inc(&ingress_needed_key);
2079 }
2080 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2081 
2082 void net_dec_ingress_queue(void)
2083 {
2084 	static_branch_dec(&ingress_needed_key);
2085 }
2086 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2087 #endif
2088 
2089 #ifdef CONFIG_NET_EGRESS
2090 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2091 
2092 void net_inc_egress_queue(void)
2093 {
2094 	static_branch_inc(&egress_needed_key);
2095 }
2096 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2097 
2098 void net_dec_egress_queue(void)
2099 {
2100 	static_branch_dec(&egress_needed_key);
2101 }
2102 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2103 #endif
2104 
2105 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2106 EXPORT_SYMBOL(netstamp_needed_key);
2107 #ifdef CONFIG_JUMP_LABEL
2108 static atomic_t netstamp_needed_deferred;
2109 static atomic_t netstamp_wanted;
2110 static void netstamp_clear(struct work_struct *work)
2111 {
2112 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2113 	int wanted;
2114 
2115 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2116 	if (wanted > 0)
2117 		static_branch_enable(&netstamp_needed_key);
2118 	else
2119 		static_branch_disable(&netstamp_needed_key);
2120 }
2121 static DECLARE_WORK(netstamp_work, netstamp_clear);
2122 #endif
2123 
2124 void net_enable_timestamp(void)
2125 {
2126 #ifdef CONFIG_JUMP_LABEL
2127 	int wanted = atomic_read(&netstamp_wanted);
2128 
2129 	while (wanted > 0) {
2130 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2131 			return;
2132 	}
2133 	atomic_inc(&netstamp_needed_deferred);
2134 	schedule_work(&netstamp_work);
2135 #else
2136 	static_branch_inc(&netstamp_needed_key);
2137 #endif
2138 }
2139 EXPORT_SYMBOL(net_enable_timestamp);
2140 
2141 void net_disable_timestamp(void)
2142 {
2143 #ifdef CONFIG_JUMP_LABEL
2144 	int wanted = atomic_read(&netstamp_wanted);
2145 
2146 	while (wanted > 1) {
2147 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2148 			return;
2149 	}
2150 	atomic_dec(&netstamp_needed_deferred);
2151 	schedule_work(&netstamp_work);
2152 #else
2153 	static_branch_dec(&netstamp_needed_key);
2154 #endif
2155 }
2156 EXPORT_SYMBOL(net_disable_timestamp);
2157 
2158 static inline void net_timestamp_set(struct sk_buff *skb)
2159 {
2160 	skb->tstamp = 0;
2161 	skb->mono_delivery_time = 0;
2162 	if (static_branch_unlikely(&netstamp_needed_key))
2163 		skb->tstamp = ktime_get_real();
2164 }
2165 
2166 #define net_timestamp_check(COND, SKB)				\
2167 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2168 		if ((COND) && !(SKB)->tstamp)			\
2169 			(SKB)->tstamp = ktime_get_real();	\
2170 	}							\
2171 
2172 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2173 {
2174 	return __is_skb_forwardable(dev, skb, true);
2175 }
2176 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2177 
2178 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2179 			      bool check_mtu)
2180 {
2181 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2182 
2183 	if (likely(!ret)) {
2184 		skb->protocol = eth_type_trans(skb, dev);
2185 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2186 	}
2187 
2188 	return ret;
2189 }
2190 
2191 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2192 {
2193 	return __dev_forward_skb2(dev, skb, true);
2194 }
2195 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2196 
2197 /**
2198  * dev_forward_skb - loopback an skb to another netif
2199  *
2200  * @dev: destination network device
2201  * @skb: buffer to forward
2202  *
2203  * return values:
2204  *	NET_RX_SUCCESS	(no congestion)
2205  *	NET_RX_DROP     (packet was dropped, but freed)
2206  *
2207  * dev_forward_skb can be used for injecting an skb from the
2208  * start_xmit function of one device into the receive queue
2209  * of another device.
2210  *
2211  * The receiving device may be in another namespace, so
2212  * we have to clear all information in the skb that could
2213  * impact namespace isolation.
2214  */
2215 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2216 {
2217 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2218 }
2219 EXPORT_SYMBOL_GPL(dev_forward_skb);
2220 
2221 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2222 {
2223 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2224 }
2225 
2226 static inline int deliver_skb(struct sk_buff *skb,
2227 			      struct packet_type *pt_prev,
2228 			      struct net_device *orig_dev)
2229 {
2230 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2231 		return -ENOMEM;
2232 	refcount_inc(&skb->users);
2233 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2234 }
2235 
2236 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2237 					  struct packet_type **pt,
2238 					  struct net_device *orig_dev,
2239 					  __be16 type,
2240 					  struct list_head *ptype_list)
2241 {
2242 	struct packet_type *ptype, *pt_prev = *pt;
2243 
2244 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2245 		if (ptype->type != type)
2246 			continue;
2247 		if (pt_prev)
2248 			deliver_skb(skb, pt_prev, orig_dev);
2249 		pt_prev = ptype;
2250 	}
2251 	*pt = pt_prev;
2252 }
2253 
2254 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2255 {
2256 	if (!ptype->af_packet_priv || !skb->sk)
2257 		return false;
2258 
2259 	if (ptype->id_match)
2260 		return ptype->id_match(ptype, skb->sk);
2261 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2262 		return true;
2263 
2264 	return false;
2265 }
2266 
2267 /**
2268  * dev_nit_active - return true if any network interface taps are in use
2269  *
2270  * @dev: network device to check for the presence of taps
2271  */
2272 bool dev_nit_active(struct net_device *dev)
2273 {
2274 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2275 }
2276 EXPORT_SYMBOL_GPL(dev_nit_active);
2277 
2278 /*
2279  *	Support routine. Sends outgoing frames to any network
2280  *	taps currently in use.
2281  */
2282 
2283 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2284 {
2285 	struct packet_type *ptype;
2286 	struct sk_buff *skb2 = NULL;
2287 	struct packet_type *pt_prev = NULL;
2288 	struct list_head *ptype_list = &ptype_all;
2289 
2290 	rcu_read_lock();
2291 again:
2292 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2293 		if (READ_ONCE(ptype->ignore_outgoing))
2294 			continue;
2295 
2296 		/* Never send packets back to the socket
2297 		 * they originated from - MvS (miquels@drinkel.ow.org)
2298 		 */
2299 		if (skb_loop_sk(ptype, skb))
2300 			continue;
2301 
2302 		if (pt_prev) {
2303 			deliver_skb(skb2, pt_prev, skb->dev);
2304 			pt_prev = ptype;
2305 			continue;
2306 		}
2307 
2308 		/* need to clone skb, done only once */
2309 		skb2 = skb_clone(skb, GFP_ATOMIC);
2310 		if (!skb2)
2311 			goto out_unlock;
2312 
2313 		net_timestamp_set(skb2);
2314 
2315 		/* skb->nh should be correctly
2316 		 * set by sender, so that the second statement is
2317 		 * just protection against buggy protocols.
2318 		 */
2319 		skb_reset_mac_header(skb2);
2320 
2321 		if (skb_network_header(skb2) < skb2->data ||
2322 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2323 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2324 					     ntohs(skb2->protocol),
2325 					     dev->name);
2326 			skb_reset_network_header(skb2);
2327 		}
2328 
2329 		skb2->transport_header = skb2->network_header;
2330 		skb2->pkt_type = PACKET_OUTGOING;
2331 		pt_prev = ptype;
2332 	}
2333 
2334 	if (ptype_list == &ptype_all) {
2335 		ptype_list = &dev->ptype_all;
2336 		goto again;
2337 	}
2338 out_unlock:
2339 	if (pt_prev) {
2340 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2341 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2342 		else
2343 			kfree_skb(skb2);
2344 	}
2345 	rcu_read_unlock();
2346 }
2347 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2348 
2349 /**
2350  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2351  * @dev: Network device
2352  * @txq: number of queues available
2353  *
2354  * If real_num_tx_queues is changed the tc mappings may no longer be
2355  * valid. To resolve this verify the tc mapping remains valid and if
2356  * not NULL the mapping. With no priorities mapping to this
2357  * offset/count pair it will no longer be used. In the worst case TC0
2358  * is invalid nothing can be done so disable priority mappings. If is
2359  * expected that drivers will fix this mapping if they can before
2360  * calling netif_set_real_num_tx_queues.
2361  */
2362 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2363 {
2364 	int i;
2365 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2366 
2367 	/* If TC0 is invalidated disable TC mapping */
2368 	if (tc->offset + tc->count > txq) {
2369 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2370 		dev->num_tc = 0;
2371 		return;
2372 	}
2373 
2374 	/* Invalidated prio to tc mappings set to TC0 */
2375 	for (i = 1; i < TC_BITMASK + 1; i++) {
2376 		int q = netdev_get_prio_tc_map(dev, i);
2377 
2378 		tc = &dev->tc_to_txq[q];
2379 		if (tc->offset + tc->count > txq) {
2380 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2381 				    i, q);
2382 			netdev_set_prio_tc_map(dev, i, 0);
2383 		}
2384 	}
2385 }
2386 
2387 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2388 {
2389 	if (dev->num_tc) {
2390 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2391 		int i;
2392 
2393 		/* walk through the TCs and see if it falls into any of them */
2394 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2395 			if ((txq - tc->offset) < tc->count)
2396 				return i;
2397 		}
2398 
2399 		/* didn't find it, just return -1 to indicate no match */
2400 		return -1;
2401 	}
2402 
2403 	return 0;
2404 }
2405 EXPORT_SYMBOL(netdev_txq_to_tc);
2406 
2407 #ifdef CONFIG_XPS
2408 static struct static_key xps_needed __read_mostly;
2409 static struct static_key xps_rxqs_needed __read_mostly;
2410 static DEFINE_MUTEX(xps_map_mutex);
2411 #define xmap_dereference(P)		\
2412 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2413 
2414 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2415 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2416 {
2417 	struct xps_map *map = NULL;
2418 	int pos;
2419 
2420 	map = xmap_dereference(dev_maps->attr_map[tci]);
2421 	if (!map)
2422 		return false;
2423 
2424 	for (pos = map->len; pos--;) {
2425 		if (map->queues[pos] != index)
2426 			continue;
2427 
2428 		if (map->len > 1) {
2429 			map->queues[pos] = map->queues[--map->len];
2430 			break;
2431 		}
2432 
2433 		if (old_maps)
2434 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2435 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2436 		kfree_rcu(map, rcu);
2437 		return false;
2438 	}
2439 
2440 	return true;
2441 }
2442 
2443 static bool remove_xps_queue_cpu(struct net_device *dev,
2444 				 struct xps_dev_maps *dev_maps,
2445 				 int cpu, u16 offset, u16 count)
2446 {
2447 	int num_tc = dev_maps->num_tc;
2448 	bool active = false;
2449 	int tci;
2450 
2451 	for (tci = cpu * num_tc; num_tc--; tci++) {
2452 		int i, j;
2453 
2454 		for (i = count, j = offset; i--; j++) {
2455 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2456 				break;
2457 		}
2458 
2459 		active |= i < 0;
2460 	}
2461 
2462 	return active;
2463 }
2464 
2465 static void reset_xps_maps(struct net_device *dev,
2466 			   struct xps_dev_maps *dev_maps,
2467 			   enum xps_map_type type)
2468 {
2469 	static_key_slow_dec_cpuslocked(&xps_needed);
2470 	if (type == XPS_RXQS)
2471 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2472 
2473 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2474 
2475 	kfree_rcu(dev_maps, rcu);
2476 }
2477 
2478 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2479 			   u16 offset, u16 count)
2480 {
2481 	struct xps_dev_maps *dev_maps;
2482 	bool active = false;
2483 	int i, j;
2484 
2485 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2486 	if (!dev_maps)
2487 		return;
2488 
2489 	for (j = 0; j < dev_maps->nr_ids; j++)
2490 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2491 	if (!active)
2492 		reset_xps_maps(dev, dev_maps, type);
2493 
2494 	if (type == XPS_CPUS) {
2495 		for (i = offset + (count - 1); count--; i--)
2496 			netdev_queue_numa_node_write(
2497 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2498 	}
2499 }
2500 
2501 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2502 				   u16 count)
2503 {
2504 	if (!static_key_false(&xps_needed))
2505 		return;
2506 
2507 	cpus_read_lock();
2508 	mutex_lock(&xps_map_mutex);
2509 
2510 	if (static_key_false(&xps_rxqs_needed))
2511 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2512 
2513 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2514 
2515 	mutex_unlock(&xps_map_mutex);
2516 	cpus_read_unlock();
2517 }
2518 
2519 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2520 {
2521 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2522 }
2523 
2524 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2525 				      u16 index, bool is_rxqs_map)
2526 {
2527 	struct xps_map *new_map;
2528 	int alloc_len = XPS_MIN_MAP_ALLOC;
2529 	int i, pos;
2530 
2531 	for (pos = 0; map && pos < map->len; pos++) {
2532 		if (map->queues[pos] != index)
2533 			continue;
2534 		return map;
2535 	}
2536 
2537 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2538 	if (map) {
2539 		if (pos < map->alloc_len)
2540 			return map;
2541 
2542 		alloc_len = map->alloc_len * 2;
2543 	}
2544 
2545 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2546 	 *  map
2547 	 */
2548 	if (is_rxqs_map)
2549 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2550 	else
2551 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2552 				       cpu_to_node(attr_index));
2553 	if (!new_map)
2554 		return NULL;
2555 
2556 	for (i = 0; i < pos; i++)
2557 		new_map->queues[i] = map->queues[i];
2558 	new_map->alloc_len = alloc_len;
2559 	new_map->len = pos;
2560 
2561 	return new_map;
2562 }
2563 
2564 /* Copy xps maps at a given index */
2565 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2566 			      struct xps_dev_maps *new_dev_maps, int index,
2567 			      int tc, bool skip_tc)
2568 {
2569 	int i, tci = index * dev_maps->num_tc;
2570 	struct xps_map *map;
2571 
2572 	/* copy maps belonging to foreign traffic classes */
2573 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2574 		if (i == tc && skip_tc)
2575 			continue;
2576 
2577 		/* fill in the new device map from the old device map */
2578 		map = xmap_dereference(dev_maps->attr_map[tci]);
2579 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2580 	}
2581 }
2582 
2583 /* Must be called under cpus_read_lock */
2584 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2585 			  u16 index, enum xps_map_type type)
2586 {
2587 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2588 	const unsigned long *online_mask = NULL;
2589 	bool active = false, copy = false;
2590 	int i, j, tci, numa_node_id = -2;
2591 	int maps_sz, num_tc = 1, tc = 0;
2592 	struct xps_map *map, *new_map;
2593 	unsigned int nr_ids;
2594 
2595 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2596 
2597 	if (dev->num_tc) {
2598 		/* Do not allow XPS on subordinate device directly */
2599 		num_tc = dev->num_tc;
2600 		if (num_tc < 0)
2601 			return -EINVAL;
2602 
2603 		/* If queue belongs to subordinate dev use its map */
2604 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2605 
2606 		tc = netdev_txq_to_tc(dev, index);
2607 		if (tc < 0)
2608 			return -EINVAL;
2609 	}
2610 
2611 	mutex_lock(&xps_map_mutex);
2612 
2613 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2614 	if (type == XPS_RXQS) {
2615 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2616 		nr_ids = dev->num_rx_queues;
2617 	} else {
2618 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2619 		if (num_possible_cpus() > 1)
2620 			online_mask = cpumask_bits(cpu_online_mask);
2621 		nr_ids = nr_cpu_ids;
2622 	}
2623 
2624 	if (maps_sz < L1_CACHE_BYTES)
2625 		maps_sz = L1_CACHE_BYTES;
2626 
2627 	/* The old dev_maps could be larger or smaller than the one we're
2628 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2629 	 * between. We could try to be smart, but let's be safe instead and only
2630 	 * copy foreign traffic classes if the two map sizes match.
2631 	 */
2632 	if (dev_maps &&
2633 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2634 		copy = true;
2635 
2636 	/* allocate memory for queue storage */
2637 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2638 	     j < nr_ids;) {
2639 		if (!new_dev_maps) {
2640 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2641 			if (!new_dev_maps) {
2642 				mutex_unlock(&xps_map_mutex);
2643 				return -ENOMEM;
2644 			}
2645 
2646 			new_dev_maps->nr_ids = nr_ids;
2647 			new_dev_maps->num_tc = num_tc;
2648 		}
2649 
2650 		tci = j * num_tc + tc;
2651 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2652 
2653 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2654 		if (!map)
2655 			goto error;
2656 
2657 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2658 	}
2659 
2660 	if (!new_dev_maps)
2661 		goto out_no_new_maps;
2662 
2663 	if (!dev_maps) {
2664 		/* Increment static keys at most once per type */
2665 		static_key_slow_inc_cpuslocked(&xps_needed);
2666 		if (type == XPS_RXQS)
2667 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2668 	}
2669 
2670 	for (j = 0; j < nr_ids; j++) {
2671 		bool skip_tc = false;
2672 
2673 		tci = j * num_tc + tc;
2674 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2675 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2676 			/* add tx-queue to CPU/rx-queue maps */
2677 			int pos = 0;
2678 
2679 			skip_tc = true;
2680 
2681 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2682 			while ((pos < map->len) && (map->queues[pos] != index))
2683 				pos++;
2684 
2685 			if (pos == map->len)
2686 				map->queues[map->len++] = index;
2687 #ifdef CONFIG_NUMA
2688 			if (type == XPS_CPUS) {
2689 				if (numa_node_id == -2)
2690 					numa_node_id = cpu_to_node(j);
2691 				else if (numa_node_id != cpu_to_node(j))
2692 					numa_node_id = -1;
2693 			}
2694 #endif
2695 		}
2696 
2697 		if (copy)
2698 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2699 					  skip_tc);
2700 	}
2701 
2702 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2703 
2704 	/* Cleanup old maps */
2705 	if (!dev_maps)
2706 		goto out_no_old_maps;
2707 
2708 	for (j = 0; j < dev_maps->nr_ids; j++) {
2709 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2710 			map = xmap_dereference(dev_maps->attr_map[tci]);
2711 			if (!map)
2712 				continue;
2713 
2714 			if (copy) {
2715 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2716 				if (map == new_map)
2717 					continue;
2718 			}
2719 
2720 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2721 			kfree_rcu(map, rcu);
2722 		}
2723 	}
2724 
2725 	old_dev_maps = dev_maps;
2726 
2727 out_no_old_maps:
2728 	dev_maps = new_dev_maps;
2729 	active = true;
2730 
2731 out_no_new_maps:
2732 	if (type == XPS_CPUS)
2733 		/* update Tx queue numa node */
2734 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2735 					     (numa_node_id >= 0) ?
2736 					     numa_node_id : NUMA_NO_NODE);
2737 
2738 	if (!dev_maps)
2739 		goto out_no_maps;
2740 
2741 	/* removes tx-queue from unused CPUs/rx-queues */
2742 	for (j = 0; j < dev_maps->nr_ids; j++) {
2743 		tci = j * dev_maps->num_tc;
2744 
2745 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2746 			if (i == tc &&
2747 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2748 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2749 				continue;
2750 
2751 			active |= remove_xps_queue(dev_maps,
2752 						   copy ? old_dev_maps : NULL,
2753 						   tci, index);
2754 		}
2755 	}
2756 
2757 	if (old_dev_maps)
2758 		kfree_rcu(old_dev_maps, rcu);
2759 
2760 	/* free map if not active */
2761 	if (!active)
2762 		reset_xps_maps(dev, dev_maps, type);
2763 
2764 out_no_maps:
2765 	mutex_unlock(&xps_map_mutex);
2766 
2767 	return 0;
2768 error:
2769 	/* remove any maps that we added */
2770 	for (j = 0; j < nr_ids; j++) {
2771 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2772 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2773 			map = copy ?
2774 			      xmap_dereference(dev_maps->attr_map[tci]) :
2775 			      NULL;
2776 			if (new_map && new_map != map)
2777 				kfree(new_map);
2778 		}
2779 	}
2780 
2781 	mutex_unlock(&xps_map_mutex);
2782 
2783 	kfree(new_dev_maps);
2784 	return -ENOMEM;
2785 }
2786 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2787 
2788 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2789 			u16 index)
2790 {
2791 	int ret;
2792 
2793 	cpus_read_lock();
2794 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2795 	cpus_read_unlock();
2796 
2797 	return ret;
2798 }
2799 EXPORT_SYMBOL(netif_set_xps_queue);
2800 
2801 #endif
2802 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2803 {
2804 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2805 
2806 	/* Unbind any subordinate channels */
2807 	while (txq-- != &dev->_tx[0]) {
2808 		if (txq->sb_dev)
2809 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2810 	}
2811 }
2812 
2813 void netdev_reset_tc(struct net_device *dev)
2814 {
2815 #ifdef CONFIG_XPS
2816 	netif_reset_xps_queues_gt(dev, 0);
2817 #endif
2818 	netdev_unbind_all_sb_channels(dev);
2819 
2820 	/* Reset TC configuration of device */
2821 	dev->num_tc = 0;
2822 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2823 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2824 }
2825 EXPORT_SYMBOL(netdev_reset_tc);
2826 
2827 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2828 {
2829 	if (tc >= dev->num_tc)
2830 		return -EINVAL;
2831 
2832 #ifdef CONFIG_XPS
2833 	netif_reset_xps_queues(dev, offset, count);
2834 #endif
2835 	dev->tc_to_txq[tc].count = count;
2836 	dev->tc_to_txq[tc].offset = offset;
2837 	return 0;
2838 }
2839 EXPORT_SYMBOL(netdev_set_tc_queue);
2840 
2841 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2842 {
2843 	if (num_tc > TC_MAX_QUEUE)
2844 		return -EINVAL;
2845 
2846 #ifdef CONFIG_XPS
2847 	netif_reset_xps_queues_gt(dev, 0);
2848 #endif
2849 	netdev_unbind_all_sb_channels(dev);
2850 
2851 	dev->num_tc = num_tc;
2852 	return 0;
2853 }
2854 EXPORT_SYMBOL(netdev_set_num_tc);
2855 
2856 void netdev_unbind_sb_channel(struct net_device *dev,
2857 			      struct net_device *sb_dev)
2858 {
2859 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2860 
2861 #ifdef CONFIG_XPS
2862 	netif_reset_xps_queues_gt(sb_dev, 0);
2863 #endif
2864 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2865 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2866 
2867 	while (txq-- != &dev->_tx[0]) {
2868 		if (txq->sb_dev == sb_dev)
2869 			txq->sb_dev = NULL;
2870 	}
2871 }
2872 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2873 
2874 int netdev_bind_sb_channel_queue(struct net_device *dev,
2875 				 struct net_device *sb_dev,
2876 				 u8 tc, u16 count, u16 offset)
2877 {
2878 	/* Make certain the sb_dev and dev are already configured */
2879 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2880 		return -EINVAL;
2881 
2882 	/* We cannot hand out queues we don't have */
2883 	if ((offset + count) > dev->real_num_tx_queues)
2884 		return -EINVAL;
2885 
2886 	/* Record the mapping */
2887 	sb_dev->tc_to_txq[tc].count = count;
2888 	sb_dev->tc_to_txq[tc].offset = offset;
2889 
2890 	/* Provide a way for Tx queue to find the tc_to_txq map or
2891 	 * XPS map for itself.
2892 	 */
2893 	while (count--)
2894 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2895 
2896 	return 0;
2897 }
2898 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2899 
2900 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2901 {
2902 	/* Do not use a multiqueue device to represent a subordinate channel */
2903 	if (netif_is_multiqueue(dev))
2904 		return -ENODEV;
2905 
2906 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2907 	 * Channel 0 is meant to be "native" mode and used only to represent
2908 	 * the main root device. We allow writing 0 to reset the device back
2909 	 * to normal mode after being used as a subordinate channel.
2910 	 */
2911 	if (channel > S16_MAX)
2912 		return -EINVAL;
2913 
2914 	dev->num_tc = -channel;
2915 
2916 	return 0;
2917 }
2918 EXPORT_SYMBOL(netdev_set_sb_channel);
2919 
2920 /*
2921  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2922  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2923  */
2924 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2925 {
2926 	bool disabling;
2927 	int rc;
2928 
2929 	disabling = txq < dev->real_num_tx_queues;
2930 
2931 	if (txq < 1 || txq > dev->num_tx_queues)
2932 		return -EINVAL;
2933 
2934 	if (dev->reg_state == NETREG_REGISTERED ||
2935 	    dev->reg_state == NETREG_UNREGISTERING) {
2936 		ASSERT_RTNL();
2937 
2938 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2939 						  txq);
2940 		if (rc)
2941 			return rc;
2942 
2943 		if (dev->num_tc)
2944 			netif_setup_tc(dev, txq);
2945 
2946 		dev_qdisc_change_real_num_tx(dev, txq);
2947 
2948 		dev->real_num_tx_queues = txq;
2949 
2950 		if (disabling) {
2951 			synchronize_net();
2952 			qdisc_reset_all_tx_gt(dev, txq);
2953 #ifdef CONFIG_XPS
2954 			netif_reset_xps_queues_gt(dev, txq);
2955 #endif
2956 		}
2957 	} else {
2958 		dev->real_num_tx_queues = txq;
2959 	}
2960 
2961 	return 0;
2962 }
2963 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2964 
2965 #ifdef CONFIG_SYSFS
2966 /**
2967  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2968  *	@dev: Network device
2969  *	@rxq: Actual number of RX queues
2970  *
2971  *	This must be called either with the rtnl_lock held or before
2972  *	registration of the net device.  Returns 0 on success, or a
2973  *	negative error code.  If called before registration, it always
2974  *	succeeds.
2975  */
2976 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2977 {
2978 	int rc;
2979 
2980 	if (rxq < 1 || rxq > dev->num_rx_queues)
2981 		return -EINVAL;
2982 
2983 	if (dev->reg_state == NETREG_REGISTERED) {
2984 		ASSERT_RTNL();
2985 
2986 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2987 						  rxq);
2988 		if (rc)
2989 			return rc;
2990 	}
2991 
2992 	dev->real_num_rx_queues = rxq;
2993 	return 0;
2994 }
2995 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2996 #endif
2997 
2998 /**
2999  *	netif_set_real_num_queues - set actual number of RX and TX queues used
3000  *	@dev: Network device
3001  *	@txq: Actual number of TX queues
3002  *	@rxq: Actual number of RX queues
3003  *
3004  *	Set the real number of both TX and RX queues.
3005  *	Does nothing if the number of queues is already correct.
3006  */
3007 int netif_set_real_num_queues(struct net_device *dev,
3008 			      unsigned int txq, unsigned int rxq)
3009 {
3010 	unsigned int old_rxq = dev->real_num_rx_queues;
3011 	int err;
3012 
3013 	if (txq < 1 || txq > dev->num_tx_queues ||
3014 	    rxq < 1 || rxq > dev->num_rx_queues)
3015 		return -EINVAL;
3016 
3017 	/* Start from increases, so the error path only does decreases -
3018 	 * decreases can't fail.
3019 	 */
3020 	if (rxq > dev->real_num_rx_queues) {
3021 		err = netif_set_real_num_rx_queues(dev, rxq);
3022 		if (err)
3023 			return err;
3024 	}
3025 	if (txq > dev->real_num_tx_queues) {
3026 		err = netif_set_real_num_tx_queues(dev, txq);
3027 		if (err)
3028 			goto undo_rx;
3029 	}
3030 	if (rxq < dev->real_num_rx_queues)
3031 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3032 	if (txq < dev->real_num_tx_queues)
3033 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3034 
3035 	return 0;
3036 undo_rx:
3037 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3038 	return err;
3039 }
3040 EXPORT_SYMBOL(netif_set_real_num_queues);
3041 
3042 /**
3043  * netif_set_tso_max_size() - set the max size of TSO frames supported
3044  * @dev:	netdev to update
3045  * @size:	max skb->len of a TSO frame
3046  *
3047  * Set the limit on the size of TSO super-frames the device can handle.
3048  * Unless explicitly set the stack will assume the value of
3049  * %GSO_LEGACY_MAX_SIZE.
3050  */
3051 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3052 {
3053 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3054 	if (size < READ_ONCE(dev->gso_max_size))
3055 		netif_set_gso_max_size(dev, size);
3056 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3057 		netif_set_gso_ipv4_max_size(dev, size);
3058 }
3059 EXPORT_SYMBOL(netif_set_tso_max_size);
3060 
3061 /**
3062  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3063  * @dev:	netdev to update
3064  * @segs:	max number of TCP segments
3065  *
3066  * Set the limit on the number of TCP segments the device can generate from
3067  * a single TSO super-frame.
3068  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3069  */
3070 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3071 {
3072 	dev->tso_max_segs = segs;
3073 	if (segs < READ_ONCE(dev->gso_max_segs))
3074 		netif_set_gso_max_segs(dev, segs);
3075 }
3076 EXPORT_SYMBOL(netif_set_tso_max_segs);
3077 
3078 /**
3079  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3080  * @to:		netdev to update
3081  * @from:	netdev from which to copy the limits
3082  */
3083 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3084 {
3085 	netif_set_tso_max_size(to, from->tso_max_size);
3086 	netif_set_tso_max_segs(to, from->tso_max_segs);
3087 }
3088 EXPORT_SYMBOL(netif_inherit_tso_max);
3089 
3090 /**
3091  * netif_get_num_default_rss_queues - default number of RSS queues
3092  *
3093  * Default value is the number of physical cores if there are only 1 or 2, or
3094  * divided by 2 if there are more.
3095  */
3096 int netif_get_num_default_rss_queues(void)
3097 {
3098 	cpumask_var_t cpus;
3099 	int cpu, count = 0;
3100 
3101 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3102 		return 1;
3103 
3104 	cpumask_copy(cpus, cpu_online_mask);
3105 	for_each_cpu(cpu, cpus) {
3106 		++count;
3107 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3108 	}
3109 	free_cpumask_var(cpus);
3110 
3111 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3112 }
3113 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3114 
3115 static void __netif_reschedule(struct Qdisc *q)
3116 {
3117 	struct softnet_data *sd;
3118 	unsigned long flags;
3119 
3120 	local_irq_save(flags);
3121 	sd = this_cpu_ptr(&softnet_data);
3122 	q->next_sched = NULL;
3123 	*sd->output_queue_tailp = q;
3124 	sd->output_queue_tailp = &q->next_sched;
3125 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3126 	local_irq_restore(flags);
3127 }
3128 
3129 void __netif_schedule(struct Qdisc *q)
3130 {
3131 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3132 		__netif_reschedule(q);
3133 }
3134 EXPORT_SYMBOL(__netif_schedule);
3135 
3136 struct dev_kfree_skb_cb {
3137 	enum skb_drop_reason reason;
3138 };
3139 
3140 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3141 {
3142 	return (struct dev_kfree_skb_cb *)skb->cb;
3143 }
3144 
3145 void netif_schedule_queue(struct netdev_queue *txq)
3146 {
3147 	rcu_read_lock();
3148 	if (!netif_xmit_stopped(txq)) {
3149 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3150 
3151 		__netif_schedule(q);
3152 	}
3153 	rcu_read_unlock();
3154 }
3155 EXPORT_SYMBOL(netif_schedule_queue);
3156 
3157 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3158 {
3159 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3160 		struct Qdisc *q;
3161 
3162 		rcu_read_lock();
3163 		q = rcu_dereference(dev_queue->qdisc);
3164 		__netif_schedule(q);
3165 		rcu_read_unlock();
3166 	}
3167 }
3168 EXPORT_SYMBOL(netif_tx_wake_queue);
3169 
3170 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3171 {
3172 	unsigned long flags;
3173 
3174 	if (unlikely(!skb))
3175 		return;
3176 
3177 	if (likely(refcount_read(&skb->users) == 1)) {
3178 		smp_rmb();
3179 		refcount_set(&skb->users, 0);
3180 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3181 		return;
3182 	}
3183 	get_kfree_skb_cb(skb)->reason = reason;
3184 	local_irq_save(flags);
3185 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3186 	__this_cpu_write(softnet_data.completion_queue, skb);
3187 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3188 	local_irq_restore(flags);
3189 }
3190 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3191 
3192 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3193 {
3194 	if (in_hardirq() || irqs_disabled())
3195 		dev_kfree_skb_irq_reason(skb, reason);
3196 	else
3197 		kfree_skb_reason(skb, reason);
3198 }
3199 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3200 
3201 
3202 /**
3203  * netif_device_detach - mark device as removed
3204  * @dev: network device
3205  *
3206  * Mark device as removed from system and therefore no longer available.
3207  */
3208 void netif_device_detach(struct net_device *dev)
3209 {
3210 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3211 	    netif_running(dev)) {
3212 		netif_tx_stop_all_queues(dev);
3213 	}
3214 }
3215 EXPORT_SYMBOL(netif_device_detach);
3216 
3217 /**
3218  * netif_device_attach - mark device as attached
3219  * @dev: network device
3220  *
3221  * Mark device as attached from system and restart if needed.
3222  */
3223 void netif_device_attach(struct net_device *dev)
3224 {
3225 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3226 	    netif_running(dev)) {
3227 		netif_tx_wake_all_queues(dev);
3228 		__netdev_watchdog_up(dev);
3229 	}
3230 }
3231 EXPORT_SYMBOL(netif_device_attach);
3232 
3233 /*
3234  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3235  * to be used as a distribution range.
3236  */
3237 static u16 skb_tx_hash(const struct net_device *dev,
3238 		       const struct net_device *sb_dev,
3239 		       struct sk_buff *skb)
3240 {
3241 	u32 hash;
3242 	u16 qoffset = 0;
3243 	u16 qcount = dev->real_num_tx_queues;
3244 
3245 	if (dev->num_tc) {
3246 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3247 
3248 		qoffset = sb_dev->tc_to_txq[tc].offset;
3249 		qcount = sb_dev->tc_to_txq[tc].count;
3250 		if (unlikely(!qcount)) {
3251 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3252 					     sb_dev->name, qoffset, tc);
3253 			qoffset = 0;
3254 			qcount = dev->real_num_tx_queues;
3255 		}
3256 	}
3257 
3258 	if (skb_rx_queue_recorded(skb)) {
3259 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3260 		hash = skb_get_rx_queue(skb);
3261 		if (hash >= qoffset)
3262 			hash -= qoffset;
3263 		while (unlikely(hash >= qcount))
3264 			hash -= qcount;
3265 		return hash + qoffset;
3266 	}
3267 
3268 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3269 }
3270 
3271 void skb_warn_bad_offload(const struct sk_buff *skb)
3272 {
3273 	static const netdev_features_t null_features;
3274 	struct net_device *dev = skb->dev;
3275 	const char *name = "";
3276 
3277 	if (!net_ratelimit())
3278 		return;
3279 
3280 	if (dev) {
3281 		if (dev->dev.parent)
3282 			name = dev_driver_string(dev->dev.parent);
3283 		else
3284 			name = netdev_name(dev);
3285 	}
3286 	skb_dump(KERN_WARNING, skb, false);
3287 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3288 	     name, dev ? &dev->features : &null_features,
3289 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3290 }
3291 
3292 /*
3293  * Invalidate hardware checksum when packet is to be mangled, and
3294  * complete checksum manually on outgoing path.
3295  */
3296 int skb_checksum_help(struct sk_buff *skb)
3297 {
3298 	__wsum csum;
3299 	int ret = 0, offset;
3300 
3301 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3302 		goto out_set_summed;
3303 
3304 	if (unlikely(skb_is_gso(skb))) {
3305 		skb_warn_bad_offload(skb);
3306 		return -EINVAL;
3307 	}
3308 
3309 	/* Before computing a checksum, we should make sure no frag could
3310 	 * be modified by an external entity : checksum could be wrong.
3311 	 */
3312 	if (skb_has_shared_frag(skb)) {
3313 		ret = __skb_linearize(skb);
3314 		if (ret)
3315 			goto out;
3316 	}
3317 
3318 	offset = skb_checksum_start_offset(skb);
3319 	ret = -EINVAL;
3320 	if (unlikely(offset >= skb_headlen(skb))) {
3321 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3322 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3323 			  offset, skb_headlen(skb));
3324 		goto out;
3325 	}
3326 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3327 
3328 	offset += skb->csum_offset;
3329 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3330 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3331 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3332 			  offset + sizeof(__sum16), skb_headlen(skb));
3333 		goto out;
3334 	}
3335 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3336 	if (ret)
3337 		goto out;
3338 
3339 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3340 out_set_summed:
3341 	skb->ip_summed = CHECKSUM_NONE;
3342 out:
3343 	return ret;
3344 }
3345 EXPORT_SYMBOL(skb_checksum_help);
3346 
3347 int skb_crc32c_csum_help(struct sk_buff *skb)
3348 {
3349 	__le32 crc32c_csum;
3350 	int ret = 0, offset, start;
3351 
3352 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3353 		goto out;
3354 
3355 	if (unlikely(skb_is_gso(skb)))
3356 		goto out;
3357 
3358 	/* Before computing a checksum, we should make sure no frag could
3359 	 * be modified by an external entity : checksum could be wrong.
3360 	 */
3361 	if (unlikely(skb_has_shared_frag(skb))) {
3362 		ret = __skb_linearize(skb);
3363 		if (ret)
3364 			goto out;
3365 	}
3366 	start = skb_checksum_start_offset(skb);
3367 	offset = start + offsetof(struct sctphdr, checksum);
3368 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3369 		ret = -EINVAL;
3370 		goto out;
3371 	}
3372 
3373 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3374 	if (ret)
3375 		goto out;
3376 
3377 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3378 						  skb->len - start, ~(__u32)0,
3379 						  crc32c_csum_stub));
3380 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3381 	skb_reset_csum_not_inet(skb);
3382 out:
3383 	return ret;
3384 }
3385 
3386 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3387 {
3388 	__be16 type = skb->protocol;
3389 
3390 	/* Tunnel gso handlers can set protocol to ethernet. */
3391 	if (type == htons(ETH_P_TEB)) {
3392 		struct ethhdr *eth;
3393 
3394 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3395 			return 0;
3396 
3397 		eth = (struct ethhdr *)skb->data;
3398 		type = eth->h_proto;
3399 	}
3400 
3401 	return vlan_get_protocol_and_depth(skb, type, depth);
3402 }
3403 
3404 
3405 /* Take action when hardware reception checksum errors are detected. */
3406 #ifdef CONFIG_BUG
3407 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3408 {
3409 	netdev_err(dev, "hw csum failure\n");
3410 	skb_dump(KERN_ERR, skb, true);
3411 	dump_stack();
3412 }
3413 
3414 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3415 {
3416 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3417 }
3418 EXPORT_SYMBOL(netdev_rx_csum_fault);
3419 #endif
3420 
3421 /* XXX: check that highmem exists at all on the given machine. */
3422 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3423 {
3424 #ifdef CONFIG_HIGHMEM
3425 	int i;
3426 
3427 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3428 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3429 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3430 
3431 			if (PageHighMem(skb_frag_page(frag)))
3432 				return 1;
3433 		}
3434 	}
3435 #endif
3436 	return 0;
3437 }
3438 
3439 /* If MPLS offload request, verify we are testing hardware MPLS features
3440  * instead of standard features for the netdev.
3441  */
3442 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3443 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3444 					   netdev_features_t features,
3445 					   __be16 type)
3446 {
3447 	if (eth_p_mpls(type))
3448 		features &= skb->dev->mpls_features;
3449 
3450 	return features;
3451 }
3452 #else
3453 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3454 					   netdev_features_t features,
3455 					   __be16 type)
3456 {
3457 	return features;
3458 }
3459 #endif
3460 
3461 static netdev_features_t harmonize_features(struct sk_buff *skb,
3462 	netdev_features_t features)
3463 {
3464 	__be16 type;
3465 
3466 	type = skb_network_protocol(skb, NULL);
3467 	features = net_mpls_features(skb, features, type);
3468 
3469 	if (skb->ip_summed != CHECKSUM_NONE &&
3470 	    !can_checksum_protocol(features, type)) {
3471 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3472 	}
3473 	if (illegal_highdma(skb->dev, skb))
3474 		features &= ~NETIF_F_SG;
3475 
3476 	return features;
3477 }
3478 
3479 netdev_features_t passthru_features_check(struct sk_buff *skb,
3480 					  struct net_device *dev,
3481 					  netdev_features_t features)
3482 {
3483 	return features;
3484 }
3485 EXPORT_SYMBOL(passthru_features_check);
3486 
3487 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3488 					     struct net_device *dev,
3489 					     netdev_features_t features)
3490 {
3491 	return vlan_features_check(skb, features);
3492 }
3493 
3494 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3495 					    struct net_device *dev,
3496 					    netdev_features_t features)
3497 {
3498 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3499 
3500 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3501 		return features & ~NETIF_F_GSO_MASK;
3502 
3503 	if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3504 		return features & ~NETIF_F_GSO_MASK;
3505 
3506 	if (!skb_shinfo(skb)->gso_type) {
3507 		skb_warn_bad_offload(skb);
3508 		return features & ~NETIF_F_GSO_MASK;
3509 	}
3510 
3511 	/* Support for GSO partial features requires software
3512 	 * intervention before we can actually process the packets
3513 	 * so we need to strip support for any partial features now
3514 	 * and we can pull them back in after we have partially
3515 	 * segmented the frame.
3516 	 */
3517 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3518 		features &= ~dev->gso_partial_features;
3519 
3520 	/* Make sure to clear the IPv4 ID mangling feature if the
3521 	 * IPv4 header has the potential to be fragmented.
3522 	 */
3523 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3524 		struct iphdr *iph = skb->encapsulation ?
3525 				    inner_ip_hdr(skb) : ip_hdr(skb);
3526 
3527 		if (!(iph->frag_off & htons(IP_DF)))
3528 			features &= ~NETIF_F_TSO_MANGLEID;
3529 	}
3530 
3531 	return features;
3532 }
3533 
3534 netdev_features_t netif_skb_features(struct sk_buff *skb)
3535 {
3536 	struct net_device *dev = skb->dev;
3537 	netdev_features_t features = dev->features;
3538 
3539 	if (skb_is_gso(skb))
3540 		features = gso_features_check(skb, dev, features);
3541 
3542 	/* If encapsulation offload request, verify we are testing
3543 	 * hardware encapsulation features instead of standard
3544 	 * features for the netdev
3545 	 */
3546 	if (skb->encapsulation)
3547 		features &= dev->hw_enc_features;
3548 
3549 	if (skb_vlan_tagged(skb))
3550 		features = netdev_intersect_features(features,
3551 						     dev->vlan_features |
3552 						     NETIF_F_HW_VLAN_CTAG_TX |
3553 						     NETIF_F_HW_VLAN_STAG_TX);
3554 
3555 	if (dev->netdev_ops->ndo_features_check)
3556 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3557 								features);
3558 	else
3559 		features &= dflt_features_check(skb, dev, features);
3560 
3561 	return harmonize_features(skb, features);
3562 }
3563 EXPORT_SYMBOL(netif_skb_features);
3564 
3565 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3566 		    struct netdev_queue *txq, bool more)
3567 {
3568 	unsigned int len;
3569 	int rc;
3570 
3571 	if (dev_nit_active(dev))
3572 		dev_queue_xmit_nit(skb, dev);
3573 
3574 	len = skb->len;
3575 	trace_net_dev_start_xmit(skb, dev);
3576 	rc = netdev_start_xmit(skb, dev, txq, more);
3577 	trace_net_dev_xmit(skb, rc, dev, len);
3578 
3579 	return rc;
3580 }
3581 
3582 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3583 				    struct netdev_queue *txq, int *ret)
3584 {
3585 	struct sk_buff *skb = first;
3586 	int rc = NETDEV_TX_OK;
3587 
3588 	while (skb) {
3589 		struct sk_buff *next = skb->next;
3590 
3591 		skb_mark_not_on_list(skb);
3592 		rc = xmit_one(skb, dev, txq, next != NULL);
3593 		if (unlikely(!dev_xmit_complete(rc))) {
3594 			skb->next = next;
3595 			goto out;
3596 		}
3597 
3598 		skb = next;
3599 		if (netif_tx_queue_stopped(txq) && skb) {
3600 			rc = NETDEV_TX_BUSY;
3601 			break;
3602 		}
3603 	}
3604 
3605 out:
3606 	*ret = rc;
3607 	return skb;
3608 }
3609 
3610 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3611 					  netdev_features_t features)
3612 {
3613 	if (skb_vlan_tag_present(skb) &&
3614 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3615 		skb = __vlan_hwaccel_push_inside(skb);
3616 	return skb;
3617 }
3618 
3619 int skb_csum_hwoffload_help(struct sk_buff *skb,
3620 			    const netdev_features_t features)
3621 {
3622 	if (unlikely(skb_csum_is_sctp(skb)))
3623 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3624 			skb_crc32c_csum_help(skb);
3625 
3626 	if (features & NETIF_F_HW_CSUM)
3627 		return 0;
3628 
3629 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3630 		switch (skb->csum_offset) {
3631 		case offsetof(struct tcphdr, check):
3632 		case offsetof(struct udphdr, check):
3633 			return 0;
3634 		}
3635 	}
3636 
3637 	return skb_checksum_help(skb);
3638 }
3639 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3640 
3641 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3642 {
3643 	netdev_features_t features;
3644 
3645 	features = netif_skb_features(skb);
3646 	skb = validate_xmit_vlan(skb, features);
3647 	if (unlikely(!skb))
3648 		goto out_null;
3649 
3650 	skb = sk_validate_xmit_skb(skb, dev);
3651 	if (unlikely(!skb))
3652 		goto out_null;
3653 
3654 	if (netif_needs_gso(skb, features)) {
3655 		struct sk_buff *segs;
3656 
3657 		segs = skb_gso_segment(skb, features);
3658 		if (IS_ERR(segs)) {
3659 			goto out_kfree_skb;
3660 		} else if (segs) {
3661 			consume_skb(skb);
3662 			skb = segs;
3663 		}
3664 	} else {
3665 		if (skb_needs_linearize(skb, features) &&
3666 		    __skb_linearize(skb))
3667 			goto out_kfree_skb;
3668 
3669 		/* If packet is not checksummed and device does not
3670 		 * support checksumming for this protocol, complete
3671 		 * checksumming here.
3672 		 */
3673 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3674 			if (skb->encapsulation)
3675 				skb_set_inner_transport_header(skb,
3676 							       skb_checksum_start_offset(skb));
3677 			else
3678 				skb_set_transport_header(skb,
3679 							 skb_checksum_start_offset(skb));
3680 			if (skb_csum_hwoffload_help(skb, features))
3681 				goto out_kfree_skb;
3682 		}
3683 	}
3684 
3685 	skb = validate_xmit_xfrm(skb, features, again);
3686 
3687 	return skb;
3688 
3689 out_kfree_skb:
3690 	kfree_skb(skb);
3691 out_null:
3692 	dev_core_stats_tx_dropped_inc(dev);
3693 	return NULL;
3694 }
3695 
3696 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3697 {
3698 	struct sk_buff *next, *head = NULL, *tail;
3699 
3700 	for (; skb != NULL; skb = next) {
3701 		next = skb->next;
3702 		skb_mark_not_on_list(skb);
3703 
3704 		/* in case skb wont be segmented, point to itself */
3705 		skb->prev = skb;
3706 
3707 		skb = validate_xmit_skb(skb, dev, again);
3708 		if (!skb)
3709 			continue;
3710 
3711 		if (!head)
3712 			head = skb;
3713 		else
3714 			tail->next = skb;
3715 		/* If skb was segmented, skb->prev points to
3716 		 * the last segment. If not, it still contains skb.
3717 		 */
3718 		tail = skb->prev;
3719 	}
3720 	return head;
3721 }
3722 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3723 
3724 static void qdisc_pkt_len_init(struct sk_buff *skb)
3725 {
3726 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3727 
3728 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3729 
3730 	/* To get more precise estimation of bytes sent on wire,
3731 	 * we add to pkt_len the headers size of all segments
3732 	 */
3733 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3734 		u16 gso_segs = shinfo->gso_segs;
3735 		unsigned int hdr_len;
3736 
3737 		/* mac layer + network layer */
3738 		hdr_len = skb_transport_offset(skb);
3739 
3740 		/* + transport layer */
3741 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3742 			const struct tcphdr *th;
3743 			struct tcphdr _tcphdr;
3744 
3745 			th = skb_header_pointer(skb, hdr_len,
3746 						sizeof(_tcphdr), &_tcphdr);
3747 			if (likely(th))
3748 				hdr_len += __tcp_hdrlen(th);
3749 		} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
3750 			struct udphdr _udphdr;
3751 
3752 			if (skb_header_pointer(skb, hdr_len,
3753 					       sizeof(_udphdr), &_udphdr))
3754 				hdr_len += sizeof(struct udphdr);
3755 		}
3756 
3757 		if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
3758 			int payload = skb->len - hdr_len;
3759 
3760 			/* Malicious packet. */
3761 			if (payload <= 0)
3762 				return;
3763 			gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
3764 		}
3765 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3766 	}
3767 }
3768 
3769 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3770 			     struct sk_buff **to_free,
3771 			     struct netdev_queue *txq)
3772 {
3773 	int rc;
3774 
3775 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3776 	if (rc == NET_XMIT_SUCCESS)
3777 		trace_qdisc_enqueue(q, txq, skb);
3778 	return rc;
3779 }
3780 
3781 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3782 				 struct net_device *dev,
3783 				 struct netdev_queue *txq)
3784 {
3785 	spinlock_t *root_lock = qdisc_lock(q);
3786 	struct sk_buff *to_free = NULL;
3787 	bool contended;
3788 	int rc;
3789 
3790 	qdisc_calculate_pkt_len(skb, q);
3791 
3792 	if (q->flags & TCQ_F_NOLOCK) {
3793 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3794 		    qdisc_run_begin(q)) {
3795 			/* Retest nolock_qdisc_is_empty() within the protection
3796 			 * of q->seqlock to protect from racing with requeuing.
3797 			 */
3798 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3799 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3800 				__qdisc_run(q);
3801 				qdisc_run_end(q);
3802 
3803 				goto no_lock_out;
3804 			}
3805 
3806 			qdisc_bstats_cpu_update(q, skb);
3807 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3808 			    !nolock_qdisc_is_empty(q))
3809 				__qdisc_run(q);
3810 
3811 			qdisc_run_end(q);
3812 			return NET_XMIT_SUCCESS;
3813 		}
3814 
3815 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3816 		qdisc_run(q);
3817 
3818 no_lock_out:
3819 		if (unlikely(to_free))
3820 			kfree_skb_list_reason(to_free,
3821 					      SKB_DROP_REASON_QDISC_DROP);
3822 		return rc;
3823 	}
3824 
3825 	/*
3826 	 * Heuristic to force contended enqueues to serialize on a
3827 	 * separate lock before trying to get qdisc main lock.
3828 	 * This permits qdisc->running owner to get the lock more
3829 	 * often and dequeue packets faster.
3830 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3831 	 * and then other tasks will only enqueue packets. The packets will be
3832 	 * sent after the qdisc owner is scheduled again. To prevent this
3833 	 * scenario the task always serialize on the lock.
3834 	 */
3835 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3836 	if (unlikely(contended))
3837 		spin_lock(&q->busylock);
3838 
3839 	spin_lock(root_lock);
3840 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3841 		__qdisc_drop(skb, &to_free);
3842 		rc = NET_XMIT_DROP;
3843 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3844 		   qdisc_run_begin(q)) {
3845 		/*
3846 		 * This is a work-conserving queue; there are no old skbs
3847 		 * waiting to be sent out; and the qdisc is not running -
3848 		 * xmit the skb directly.
3849 		 */
3850 
3851 		qdisc_bstats_update(q, skb);
3852 
3853 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3854 			if (unlikely(contended)) {
3855 				spin_unlock(&q->busylock);
3856 				contended = false;
3857 			}
3858 			__qdisc_run(q);
3859 		}
3860 
3861 		qdisc_run_end(q);
3862 		rc = NET_XMIT_SUCCESS;
3863 	} else {
3864 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3865 		if (qdisc_run_begin(q)) {
3866 			if (unlikely(contended)) {
3867 				spin_unlock(&q->busylock);
3868 				contended = false;
3869 			}
3870 			__qdisc_run(q);
3871 			qdisc_run_end(q);
3872 		}
3873 	}
3874 	spin_unlock(root_lock);
3875 	if (unlikely(to_free))
3876 		kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3877 	if (unlikely(contended))
3878 		spin_unlock(&q->busylock);
3879 	return rc;
3880 }
3881 
3882 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3883 static void skb_update_prio(struct sk_buff *skb)
3884 {
3885 	const struct netprio_map *map;
3886 	const struct sock *sk;
3887 	unsigned int prioidx;
3888 
3889 	if (skb->priority)
3890 		return;
3891 	map = rcu_dereference_bh(skb->dev->priomap);
3892 	if (!map)
3893 		return;
3894 	sk = skb_to_full_sk(skb);
3895 	if (!sk)
3896 		return;
3897 
3898 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3899 
3900 	if (prioidx < map->priomap_len)
3901 		skb->priority = map->priomap[prioidx];
3902 }
3903 #else
3904 #define skb_update_prio(skb)
3905 #endif
3906 
3907 /**
3908  *	dev_loopback_xmit - loop back @skb
3909  *	@net: network namespace this loopback is happening in
3910  *	@sk:  sk needed to be a netfilter okfn
3911  *	@skb: buffer to transmit
3912  */
3913 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3914 {
3915 	skb_reset_mac_header(skb);
3916 	__skb_pull(skb, skb_network_offset(skb));
3917 	skb->pkt_type = PACKET_LOOPBACK;
3918 	if (skb->ip_summed == CHECKSUM_NONE)
3919 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3920 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3921 	skb_dst_force(skb);
3922 	netif_rx(skb);
3923 	return 0;
3924 }
3925 EXPORT_SYMBOL(dev_loopback_xmit);
3926 
3927 #ifdef CONFIG_NET_EGRESS
3928 static struct netdev_queue *
3929 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3930 {
3931 	int qm = skb_get_queue_mapping(skb);
3932 
3933 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3934 }
3935 
3936 static bool netdev_xmit_txqueue_skipped(void)
3937 {
3938 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3939 }
3940 
3941 void netdev_xmit_skip_txqueue(bool skip)
3942 {
3943 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3944 }
3945 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3946 #endif /* CONFIG_NET_EGRESS */
3947 
3948 #ifdef CONFIG_NET_XGRESS
3949 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb)
3950 {
3951 	int ret = TC_ACT_UNSPEC;
3952 #ifdef CONFIG_NET_CLS_ACT
3953 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3954 	struct tcf_result res;
3955 
3956 	if (!miniq)
3957 		return ret;
3958 
3959 	tc_skb_cb(skb)->mru = 0;
3960 	tc_skb_cb(skb)->post_ct = false;
3961 
3962 	mini_qdisc_bstats_cpu_update(miniq, skb);
3963 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3964 	/* Only tcf related quirks below. */
3965 	switch (ret) {
3966 	case TC_ACT_SHOT:
3967 		mini_qdisc_qstats_cpu_drop(miniq);
3968 		break;
3969 	case TC_ACT_OK:
3970 	case TC_ACT_RECLASSIFY:
3971 		skb->tc_index = TC_H_MIN(res.classid);
3972 		break;
3973 	}
3974 #endif /* CONFIG_NET_CLS_ACT */
3975 	return ret;
3976 }
3977 
3978 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3979 
3980 void tcx_inc(void)
3981 {
3982 	static_branch_inc(&tcx_needed_key);
3983 }
3984 
3985 void tcx_dec(void)
3986 {
3987 	static_branch_dec(&tcx_needed_key);
3988 }
3989 
3990 static __always_inline enum tcx_action_base
3991 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3992 	const bool needs_mac)
3993 {
3994 	const struct bpf_mprog_fp *fp;
3995 	const struct bpf_prog *prog;
3996 	int ret = TCX_NEXT;
3997 
3998 	if (needs_mac)
3999 		__skb_push(skb, skb->mac_len);
4000 	bpf_mprog_foreach_prog(entry, fp, prog) {
4001 		bpf_compute_data_pointers(skb);
4002 		ret = bpf_prog_run(prog, skb);
4003 		if (ret != TCX_NEXT)
4004 			break;
4005 	}
4006 	if (needs_mac)
4007 		__skb_pull(skb, skb->mac_len);
4008 	return tcx_action_code(skb, ret);
4009 }
4010 
4011 static __always_inline struct sk_buff *
4012 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4013 		   struct net_device *orig_dev, bool *another)
4014 {
4015 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4016 	int sch_ret;
4017 
4018 	if (!entry)
4019 		return skb;
4020 	if (*pt_prev) {
4021 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4022 		*pt_prev = NULL;
4023 	}
4024 
4025 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4026 	tcx_set_ingress(skb, true);
4027 
4028 	if (static_branch_unlikely(&tcx_needed_key)) {
4029 		sch_ret = tcx_run(entry, skb, true);
4030 		if (sch_ret != TC_ACT_UNSPEC)
4031 			goto ingress_verdict;
4032 	}
4033 	sch_ret = tc_run(tcx_entry(entry), skb);
4034 ingress_verdict:
4035 	switch (sch_ret) {
4036 	case TC_ACT_REDIRECT:
4037 		/* skb_mac_header check was done by BPF, so we can safely
4038 		 * push the L2 header back before redirecting to another
4039 		 * netdev.
4040 		 */
4041 		__skb_push(skb, skb->mac_len);
4042 		if (skb_do_redirect(skb) == -EAGAIN) {
4043 			__skb_pull(skb, skb->mac_len);
4044 			*another = true;
4045 			break;
4046 		}
4047 		*ret = NET_RX_SUCCESS;
4048 		return NULL;
4049 	case TC_ACT_SHOT:
4050 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
4051 		*ret = NET_RX_DROP;
4052 		return NULL;
4053 	/* used by tc_run */
4054 	case TC_ACT_STOLEN:
4055 	case TC_ACT_QUEUED:
4056 	case TC_ACT_TRAP:
4057 		consume_skb(skb);
4058 		fallthrough;
4059 	case TC_ACT_CONSUMED:
4060 		*ret = NET_RX_SUCCESS;
4061 		return NULL;
4062 	}
4063 
4064 	return skb;
4065 }
4066 
4067 static __always_inline struct sk_buff *
4068 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4069 {
4070 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4071 	int sch_ret;
4072 
4073 	if (!entry)
4074 		return skb;
4075 
4076 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4077 	 * already set by the caller.
4078 	 */
4079 	if (static_branch_unlikely(&tcx_needed_key)) {
4080 		sch_ret = tcx_run(entry, skb, false);
4081 		if (sch_ret != TC_ACT_UNSPEC)
4082 			goto egress_verdict;
4083 	}
4084 	sch_ret = tc_run(tcx_entry(entry), skb);
4085 egress_verdict:
4086 	switch (sch_ret) {
4087 	case TC_ACT_REDIRECT:
4088 		/* No need to push/pop skb's mac_header here on egress! */
4089 		skb_do_redirect(skb);
4090 		*ret = NET_XMIT_SUCCESS;
4091 		return NULL;
4092 	case TC_ACT_SHOT:
4093 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
4094 		*ret = NET_XMIT_DROP;
4095 		return NULL;
4096 	/* used by tc_run */
4097 	case TC_ACT_STOLEN:
4098 	case TC_ACT_QUEUED:
4099 	case TC_ACT_TRAP:
4100 		consume_skb(skb);
4101 		fallthrough;
4102 	case TC_ACT_CONSUMED:
4103 		*ret = NET_XMIT_SUCCESS;
4104 		return NULL;
4105 	}
4106 
4107 	return skb;
4108 }
4109 #else
4110 static __always_inline struct sk_buff *
4111 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4112 		   struct net_device *orig_dev, bool *another)
4113 {
4114 	return skb;
4115 }
4116 
4117 static __always_inline struct sk_buff *
4118 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4119 {
4120 	return skb;
4121 }
4122 #endif /* CONFIG_NET_XGRESS */
4123 
4124 #ifdef CONFIG_XPS
4125 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4126 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4127 {
4128 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4129 	struct xps_map *map;
4130 	int queue_index = -1;
4131 
4132 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4133 		return queue_index;
4134 
4135 	tci *= dev_maps->num_tc;
4136 	tci += tc;
4137 
4138 	map = rcu_dereference(dev_maps->attr_map[tci]);
4139 	if (map) {
4140 		if (map->len == 1)
4141 			queue_index = map->queues[0];
4142 		else
4143 			queue_index = map->queues[reciprocal_scale(
4144 						skb_get_hash(skb), map->len)];
4145 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4146 			queue_index = -1;
4147 	}
4148 	return queue_index;
4149 }
4150 #endif
4151 
4152 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4153 			 struct sk_buff *skb)
4154 {
4155 #ifdef CONFIG_XPS
4156 	struct xps_dev_maps *dev_maps;
4157 	struct sock *sk = skb->sk;
4158 	int queue_index = -1;
4159 
4160 	if (!static_key_false(&xps_needed))
4161 		return -1;
4162 
4163 	rcu_read_lock();
4164 	if (!static_key_false(&xps_rxqs_needed))
4165 		goto get_cpus_map;
4166 
4167 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4168 	if (dev_maps) {
4169 		int tci = sk_rx_queue_get(sk);
4170 
4171 		if (tci >= 0)
4172 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4173 							  tci);
4174 	}
4175 
4176 get_cpus_map:
4177 	if (queue_index < 0) {
4178 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4179 		if (dev_maps) {
4180 			unsigned int tci = skb->sender_cpu - 1;
4181 
4182 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4183 							  tci);
4184 		}
4185 	}
4186 	rcu_read_unlock();
4187 
4188 	return queue_index;
4189 #else
4190 	return -1;
4191 #endif
4192 }
4193 
4194 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4195 		     struct net_device *sb_dev)
4196 {
4197 	return 0;
4198 }
4199 EXPORT_SYMBOL(dev_pick_tx_zero);
4200 
4201 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4202 		       struct net_device *sb_dev)
4203 {
4204 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4205 }
4206 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4207 
4208 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4209 		     struct net_device *sb_dev)
4210 {
4211 	struct sock *sk = skb->sk;
4212 	int queue_index = sk_tx_queue_get(sk);
4213 
4214 	sb_dev = sb_dev ? : dev;
4215 
4216 	if (queue_index < 0 || skb->ooo_okay ||
4217 	    queue_index >= dev->real_num_tx_queues) {
4218 		int new_index = get_xps_queue(dev, sb_dev, skb);
4219 
4220 		if (new_index < 0)
4221 			new_index = skb_tx_hash(dev, sb_dev, skb);
4222 
4223 		if (queue_index != new_index && sk &&
4224 		    sk_fullsock(sk) &&
4225 		    rcu_access_pointer(sk->sk_dst_cache))
4226 			sk_tx_queue_set(sk, new_index);
4227 
4228 		queue_index = new_index;
4229 	}
4230 
4231 	return queue_index;
4232 }
4233 EXPORT_SYMBOL(netdev_pick_tx);
4234 
4235 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4236 					 struct sk_buff *skb,
4237 					 struct net_device *sb_dev)
4238 {
4239 	int queue_index = 0;
4240 
4241 #ifdef CONFIG_XPS
4242 	u32 sender_cpu = skb->sender_cpu - 1;
4243 
4244 	if (sender_cpu >= (u32)NR_CPUS)
4245 		skb->sender_cpu = raw_smp_processor_id() + 1;
4246 #endif
4247 
4248 	if (dev->real_num_tx_queues != 1) {
4249 		const struct net_device_ops *ops = dev->netdev_ops;
4250 
4251 		if (ops->ndo_select_queue)
4252 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4253 		else
4254 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4255 
4256 		queue_index = netdev_cap_txqueue(dev, queue_index);
4257 	}
4258 
4259 	skb_set_queue_mapping(skb, queue_index);
4260 	return netdev_get_tx_queue(dev, queue_index);
4261 }
4262 
4263 /**
4264  * __dev_queue_xmit() - transmit a buffer
4265  * @skb:	buffer to transmit
4266  * @sb_dev:	suboordinate device used for L2 forwarding offload
4267  *
4268  * Queue a buffer for transmission to a network device. The caller must
4269  * have set the device and priority and built the buffer before calling
4270  * this function. The function can be called from an interrupt.
4271  *
4272  * When calling this method, interrupts MUST be enabled. This is because
4273  * the BH enable code must have IRQs enabled so that it will not deadlock.
4274  *
4275  * Regardless of the return value, the skb is consumed, so it is currently
4276  * difficult to retry a send to this method. (You can bump the ref count
4277  * before sending to hold a reference for retry if you are careful.)
4278  *
4279  * Return:
4280  * * 0				- buffer successfully transmitted
4281  * * positive qdisc return code	- NET_XMIT_DROP etc.
4282  * * negative errno		- other errors
4283  */
4284 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4285 {
4286 	struct net_device *dev = skb->dev;
4287 	struct netdev_queue *txq = NULL;
4288 	struct Qdisc *q;
4289 	int rc = -ENOMEM;
4290 	bool again = false;
4291 
4292 	skb_reset_mac_header(skb);
4293 	skb_assert_len(skb);
4294 
4295 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4296 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4297 
4298 	/* Disable soft irqs for various locks below. Also
4299 	 * stops preemption for RCU.
4300 	 */
4301 	rcu_read_lock_bh();
4302 
4303 	skb_update_prio(skb);
4304 
4305 	qdisc_pkt_len_init(skb);
4306 	tcx_set_ingress(skb, false);
4307 #ifdef CONFIG_NET_EGRESS
4308 	if (static_branch_unlikely(&egress_needed_key)) {
4309 		if (nf_hook_egress_active()) {
4310 			skb = nf_hook_egress(skb, &rc, dev);
4311 			if (!skb)
4312 				goto out;
4313 		}
4314 
4315 		netdev_xmit_skip_txqueue(false);
4316 
4317 		nf_skip_egress(skb, true);
4318 		skb = sch_handle_egress(skb, &rc, dev);
4319 		if (!skb)
4320 			goto out;
4321 		nf_skip_egress(skb, false);
4322 
4323 		if (netdev_xmit_txqueue_skipped())
4324 			txq = netdev_tx_queue_mapping(dev, skb);
4325 	}
4326 #endif
4327 	/* If device/qdisc don't need skb->dst, release it right now while
4328 	 * its hot in this cpu cache.
4329 	 */
4330 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4331 		skb_dst_drop(skb);
4332 	else
4333 		skb_dst_force(skb);
4334 
4335 	if (!txq)
4336 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4337 
4338 	q = rcu_dereference_bh(txq->qdisc);
4339 
4340 	trace_net_dev_queue(skb);
4341 	if (q->enqueue) {
4342 		rc = __dev_xmit_skb(skb, q, dev, txq);
4343 		goto out;
4344 	}
4345 
4346 	/* The device has no queue. Common case for software devices:
4347 	 * loopback, all the sorts of tunnels...
4348 
4349 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4350 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4351 	 * counters.)
4352 	 * However, it is possible, that they rely on protection
4353 	 * made by us here.
4354 
4355 	 * Check this and shot the lock. It is not prone from deadlocks.
4356 	 *Either shot noqueue qdisc, it is even simpler 8)
4357 	 */
4358 	if (dev->flags & IFF_UP) {
4359 		int cpu = smp_processor_id(); /* ok because BHs are off */
4360 
4361 		/* Other cpus might concurrently change txq->xmit_lock_owner
4362 		 * to -1 or to their cpu id, but not to our id.
4363 		 */
4364 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4365 			if (dev_xmit_recursion())
4366 				goto recursion_alert;
4367 
4368 			skb = validate_xmit_skb(skb, dev, &again);
4369 			if (!skb)
4370 				goto out;
4371 
4372 			HARD_TX_LOCK(dev, txq, cpu);
4373 
4374 			if (!netif_xmit_stopped(txq)) {
4375 				dev_xmit_recursion_inc();
4376 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4377 				dev_xmit_recursion_dec();
4378 				if (dev_xmit_complete(rc)) {
4379 					HARD_TX_UNLOCK(dev, txq);
4380 					goto out;
4381 				}
4382 			}
4383 			HARD_TX_UNLOCK(dev, txq);
4384 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4385 					     dev->name);
4386 		} else {
4387 			/* Recursion is detected! It is possible,
4388 			 * unfortunately
4389 			 */
4390 recursion_alert:
4391 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4392 					     dev->name);
4393 		}
4394 	}
4395 
4396 	rc = -ENETDOWN;
4397 	rcu_read_unlock_bh();
4398 
4399 	dev_core_stats_tx_dropped_inc(dev);
4400 	kfree_skb_list(skb);
4401 	return rc;
4402 out:
4403 	rcu_read_unlock_bh();
4404 	return rc;
4405 }
4406 EXPORT_SYMBOL(__dev_queue_xmit);
4407 
4408 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4409 {
4410 	struct net_device *dev = skb->dev;
4411 	struct sk_buff *orig_skb = skb;
4412 	struct netdev_queue *txq;
4413 	int ret = NETDEV_TX_BUSY;
4414 	bool again = false;
4415 
4416 	if (unlikely(!netif_running(dev) ||
4417 		     !netif_carrier_ok(dev)))
4418 		goto drop;
4419 
4420 	skb = validate_xmit_skb_list(skb, dev, &again);
4421 	if (skb != orig_skb)
4422 		goto drop;
4423 
4424 	skb_set_queue_mapping(skb, queue_id);
4425 	txq = skb_get_tx_queue(dev, skb);
4426 
4427 	local_bh_disable();
4428 
4429 	dev_xmit_recursion_inc();
4430 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4431 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4432 		ret = netdev_start_xmit(skb, dev, txq, false);
4433 	HARD_TX_UNLOCK(dev, txq);
4434 	dev_xmit_recursion_dec();
4435 
4436 	local_bh_enable();
4437 	return ret;
4438 drop:
4439 	dev_core_stats_tx_dropped_inc(dev);
4440 	kfree_skb_list(skb);
4441 	return NET_XMIT_DROP;
4442 }
4443 EXPORT_SYMBOL(__dev_direct_xmit);
4444 
4445 /*************************************************************************
4446  *			Receiver routines
4447  *************************************************************************/
4448 
4449 int netdev_max_backlog __read_mostly = 1000;
4450 EXPORT_SYMBOL(netdev_max_backlog);
4451 
4452 int netdev_tstamp_prequeue __read_mostly = 1;
4453 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4454 int netdev_budget __read_mostly = 300;
4455 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4456 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4457 int weight_p __read_mostly = 64;           /* old backlog weight */
4458 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4459 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4460 int dev_rx_weight __read_mostly = 64;
4461 int dev_tx_weight __read_mostly = 64;
4462 
4463 /* Called with irq disabled */
4464 static inline void ____napi_schedule(struct softnet_data *sd,
4465 				     struct napi_struct *napi)
4466 {
4467 	struct task_struct *thread;
4468 
4469 	lockdep_assert_irqs_disabled();
4470 
4471 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4472 		/* Paired with smp_mb__before_atomic() in
4473 		 * napi_enable()/dev_set_threaded().
4474 		 * Use READ_ONCE() to guarantee a complete
4475 		 * read on napi->thread. Only call
4476 		 * wake_up_process() when it's not NULL.
4477 		 */
4478 		thread = READ_ONCE(napi->thread);
4479 		if (thread) {
4480 			/* Avoid doing set_bit() if the thread is in
4481 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4482 			 * makes sure to proceed with napi polling
4483 			 * if the thread is explicitly woken from here.
4484 			 */
4485 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4486 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4487 			wake_up_process(thread);
4488 			return;
4489 		}
4490 	}
4491 
4492 	list_add_tail(&napi->poll_list, &sd->poll_list);
4493 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4494 	/* If not called from net_rx_action()
4495 	 * we have to raise NET_RX_SOFTIRQ.
4496 	 */
4497 	if (!sd->in_net_rx_action)
4498 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4499 }
4500 
4501 #ifdef CONFIG_RPS
4502 
4503 /* One global table that all flow-based protocols share. */
4504 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4505 EXPORT_SYMBOL(rps_sock_flow_table);
4506 u32 rps_cpu_mask __read_mostly;
4507 EXPORT_SYMBOL(rps_cpu_mask);
4508 
4509 struct static_key_false rps_needed __read_mostly;
4510 EXPORT_SYMBOL(rps_needed);
4511 struct static_key_false rfs_needed __read_mostly;
4512 EXPORT_SYMBOL(rfs_needed);
4513 
4514 static struct rps_dev_flow *
4515 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4516 	    struct rps_dev_flow *rflow, u16 next_cpu)
4517 {
4518 	if (next_cpu < nr_cpu_ids) {
4519 #ifdef CONFIG_RFS_ACCEL
4520 		struct netdev_rx_queue *rxqueue;
4521 		struct rps_dev_flow_table *flow_table;
4522 		struct rps_dev_flow *old_rflow;
4523 		u32 flow_id;
4524 		u16 rxq_index;
4525 		int rc;
4526 
4527 		/* Should we steer this flow to a different hardware queue? */
4528 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4529 		    !(dev->features & NETIF_F_NTUPLE))
4530 			goto out;
4531 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4532 		if (rxq_index == skb_get_rx_queue(skb))
4533 			goto out;
4534 
4535 		rxqueue = dev->_rx + rxq_index;
4536 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4537 		if (!flow_table)
4538 			goto out;
4539 		flow_id = skb_get_hash(skb) & flow_table->mask;
4540 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4541 							rxq_index, flow_id);
4542 		if (rc < 0)
4543 			goto out;
4544 		old_rflow = rflow;
4545 		rflow = &flow_table->flows[flow_id];
4546 		rflow->filter = rc;
4547 		if (old_rflow->filter == rflow->filter)
4548 			old_rflow->filter = RPS_NO_FILTER;
4549 	out:
4550 #endif
4551 		rflow->last_qtail =
4552 			per_cpu(softnet_data, next_cpu).input_queue_head;
4553 	}
4554 
4555 	rflow->cpu = next_cpu;
4556 	return rflow;
4557 }
4558 
4559 /*
4560  * get_rps_cpu is called from netif_receive_skb and returns the target
4561  * CPU from the RPS map of the receiving queue for a given skb.
4562  * rcu_read_lock must be held on entry.
4563  */
4564 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4565 		       struct rps_dev_flow **rflowp)
4566 {
4567 	const struct rps_sock_flow_table *sock_flow_table;
4568 	struct netdev_rx_queue *rxqueue = dev->_rx;
4569 	struct rps_dev_flow_table *flow_table;
4570 	struct rps_map *map;
4571 	int cpu = -1;
4572 	u32 tcpu;
4573 	u32 hash;
4574 
4575 	if (skb_rx_queue_recorded(skb)) {
4576 		u16 index = skb_get_rx_queue(skb);
4577 
4578 		if (unlikely(index >= dev->real_num_rx_queues)) {
4579 			WARN_ONCE(dev->real_num_rx_queues > 1,
4580 				  "%s received packet on queue %u, but number "
4581 				  "of RX queues is %u\n",
4582 				  dev->name, index, dev->real_num_rx_queues);
4583 			goto done;
4584 		}
4585 		rxqueue += index;
4586 	}
4587 
4588 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4589 
4590 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4591 	map = rcu_dereference(rxqueue->rps_map);
4592 	if (!flow_table && !map)
4593 		goto done;
4594 
4595 	skb_reset_network_header(skb);
4596 	hash = skb_get_hash(skb);
4597 	if (!hash)
4598 		goto done;
4599 
4600 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4601 	if (flow_table && sock_flow_table) {
4602 		struct rps_dev_flow *rflow;
4603 		u32 next_cpu;
4604 		u32 ident;
4605 
4606 		/* First check into global flow table if there is a match.
4607 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4608 		 */
4609 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4610 		if ((ident ^ hash) & ~rps_cpu_mask)
4611 			goto try_rps;
4612 
4613 		next_cpu = ident & rps_cpu_mask;
4614 
4615 		/* OK, now we know there is a match,
4616 		 * we can look at the local (per receive queue) flow table
4617 		 */
4618 		rflow = &flow_table->flows[hash & flow_table->mask];
4619 		tcpu = rflow->cpu;
4620 
4621 		/*
4622 		 * If the desired CPU (where last recvmsg was done) is
4623 		 * different from current CPU (one in the rx-queue flow
4624 		 * table entry), switch if one of the following holds:
4625 		 *   - Current CPU is unset (>= nr_cpu_ids).
4626 		 *   - Current CPU is offline.
4627 		 *   - The current CPU's queue tail has advanced beyond the
4628 		 *     last packet that was enqueued using this table entry.
4629 		 *     This guarantees that all previous packets for the flow
4630 		 *     have been dequeued, thus preserving in order delivery.
4631 		 */
4632 		if (unlikely(tcpu != next_cpu) &&
4633 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4634 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4635 		      rflow->last_qtail)) >= 0)) {
4636 			tcpu = next_cpu;
4637 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4638 		}
4639 
4640 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4641 			*rflowp = rflow;
4642 			cpu = tcpu;
4643 			goto done;
4644 		}
4645 	}
4646 
4647 try_rps:
4648 
4649 	if (map) {
4650 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4651 		if (cpu_online(tcpu)) {
4652 			cpu = tcpu;
4653 			goto done;
4654 		}
4655 	}
4656 
4657 done:
4658 	return cpu;
4659 }
4660 
4661 #ifdef CONFIG_RFS_ACCEL
4662 
4663 /**
4664  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4665  * @dev: Device on which the filter was set
4666  * @rxq_index: RX queue index
4667  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4668  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4669  *
4670  * Drivers that implement ndo_rx_flow_steer() should periodically call
4671  * this function for each installed filter and remove the filters for
4672  * which it returns %true.
4673  */
4674 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4675 			 u32 flow_id, u16 filter_id)
4676 {
4677 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4678 	struct rps_dev_flow_table *flow_table;
4679 	struct rps_dev_flow *rflow;
4680 	bool expire = true;
4681 	unsigned int cpu;
4682 
4683 	rcu_read_lock();
4684 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4685 	if (flow_table && flow_id <= flow_table->mask) {
4686 		rflow = &flow_table->flows[flow_id];
4687 		cpu = READ_ONCE(rflow->cpu);
4688 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4689 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4690 			   rflow->last_qtail) <
4691 		     (int)(10 * flow_table->mask)))
4692 			expire = false;
4693 	}
4694 	rcu_read_unlock();
4695 	return expire;
4696 }
4697 EXPORT_SYMBOL(rps_may_expire_flow);
4698 
4699 #endif /* CONFIG_RFS_ACCEL */
4700 
4701 /* Called from hardirq (IPI) context */
4702 static void rps_trigger_softirq(void *data)
4703 {
4704 	struct softnet_data *sd = data;
4705 
4706 	____napi_schedule(sd, &sd->backlog);
4707 	sd->received_rps++;
4708 }
4709 
4710 #endif /* CONFIG_RPS */
4711 
4712 /* Called from hardirq (IPI) context */
4713 static void trigger_rx_softirq(void *data)
4714 {
4715 	struct softnet_data *sd = data;
4716 
4717 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4718 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4719 }
4720 
4721 /*
4722  * After we queued a packet into sd->input_pkt_queue,
4723  * we need to make sure this queue is serviced soon.
4724  *
4725  * - If this is another cpu queue, link it to our rps_ipi_list,
4726  *   and make sure we will process rps_ipi_list from net_rx_action().
4727  *
4728  * - If this is our own queue, NAPI schedule our backlog.
4729  *   Note that this also raises NET_RX_SOFTIRQ.
4730  */
4731 static void napi_schedule_rps(struct softnet_data *sd)
4732 {
4733 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4734 
4735 #ifdef CONFIG_RPS
4736 	if (sd != mysd) {
4737 		sd->rps_ipi_next = mysd->rps_ipi_list;
4738 		mysd->rps_ipi_list = sd;
4739 
4740 		/* If not called from net_rx_action() or napi_threaded_poll()
4741 		 * we have to raise NET_RX_SOFTIRQ.
4742 		 */
4743 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4744 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4745 		return;
4746 	}
4747 #endif /* CONFIG_RPS */
4748 	__napi_schedule_irqoff(&mysd->backlog);
4749 }
4750 
4751 #ifdef CONFIG_NET_FLOW_LIMIT
4752 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4753 #endif
4754 
4755 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4756 {
4757 #ifdef CONFIG_NET_FLOW_LIMIT
4758 	struct sd_flow_limit *fl;
4759 	struct softnet_data *sd;
4760 	unsigned int old_flow, new_flow;
4761 
4762 	if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4763 		return false;
4764 
4765 	sd = this_cpu_ptr(&softnet_data);
4766 
4767 	rcu_read_lock();
4768 	fl = rcu_dereference(sd->flow_limit);
4769 	if (fl) {
4770 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4771 		old_flow = fl->history[fl->history_head];
4772 		fl->history[fl->history_head] = new_flow;
4773 
4774 		fl->history_head++;
4775 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4776 
4777 		if (likely(fl->buckets[old_flow]))
4778 			fl->buckets[old_flow]--;
4779 
4780 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4781 			fl->count++;
4782 			rcu_read_unlock();
4783 			return true;
4784 		}
4785 	}
4786 	rcu_read_unlock();
4787 #endif
4788 	return false;
4789 }
4790 
4791 /*
4792  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4793  * queue (may be a remote CPU queue).
4794  */
4795 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4796 			      unsigned int *qtail)
4797 {
4798 	enum skb_drop_reason reason;
4799 	struct softnet_data *sd;
4800 	unsigned long flags;
4801 	unsigned int qlen;
4802 
4803 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
4804 	sd = &per_cpu(softnet_data, cpu);
4805 
4806 	rps_lock_irqsave(sd, &flags);
4807 	if (!netif_running(skb->dev))
4808 		goto drop;
4809 	qlen = skb_queue_len(&sd->input_pkt_queue);
4810 	if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4811 		if (qlen) {
4812 enqueue:
4813 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4814 			input_queue_tail_incr_save(sd, qtail);
4815 			rps_unlock_irq_restore(sd, &flags);
4816 			return NET_RX_SUCCESS;
4817 		}
4818 
4819 		/* Schedule NAPI for backlog device
4820 		 * We can use non atomic operation since we own the queue lock
4821 		 */
4822 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4823 			napi_schedule_rps(sd);
4824 		goto enqueue;
4825 	}
4826 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4827 
4828 drop:
4829 	sd->dropped++;
4830 	rps_unlock_irq_restore(sd, &flags);
4831 
4832 	dev_core_stats_rx_dropped_inc(skb->dev);
4833 	kfree_skb_reason(skb, reason);
4834 	return NET_RX_DROP;
4835 }
4836 
4837 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4838 {
4839 	struct net_device *dev = skb->dev;
4840 	struct netdev_rx_queue *rxqueue;
4841 
4842 	rxqueue = dev->_rx;
4843 
4844 	if (skb_rx_queue_recorded(skb)) {
4845 		u16 index = skb_get_rx_queue(skb);
4846 
4847 		if (unlikely(index >= dev->real_num_rx_queues)) {
4848 			WARN_ONCE(dev->real_num_rx_queues > 1,
4849 				  "%s received packet on queue %u, but number "
4850 				  "of RX queues is %u\n",
4851 				  dev->name, index, dev->real_num_rx_queues);
4852 
4853 			return rxqueue; /* Return first rxqueue */
4854 		}
4855 		rxqueue += index;
4856 	}
4857 	return rxqueue;
4858 }
4859 
4860 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4861 			     struct bpf_prog *xdp_prog)
4862 {
4863 	void *orig_data, *orig_data_end, *hard_start;
4864 	struct netdev_rx_queue *rxqueue;
4865 	bool orig_bcast, orig_host;
4866 	u32 mac_len, frame_sz;
4867 	__be16 orig_eth_type;
4868 	struct ethhdr *eth;
4869 	u32 metalen, act;
4870 	int off;
4871 
4872 	/* The XDP program wants to see the packet starting at the MAC
4873 	 * header.
4874 	 */
4875 	mac_len = skb->data - skb_mac_header(skb);
4876 	hard_start = skb->data - skb_headroom(skb);
4877 
4878 	/* SKB "head" area always have tailroom for skb_shared_info */
4879 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4880 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4881 
4882 	rxqueue = netif_get_rxqueue(skb);
4883 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4884 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4885 			 skb_headlen(skb) + mac_len, true);
4886 
4887 	orig_data_end = xdp->data_end;
4888 	orig_data = xdp->data;
4889 	eth = (struct ethhdr *)xdp->data;
4890 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4891 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4892 	orig_eth_type = eth->h_proto;
4893 
4894 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4895 
4896 	/* check if bpf_xdp_adjust_head was used */
4897 	off = xdp->data - orig_data;
4898 	if (off) {
4899 		if (off > 0)
4900 			__skb_pull(skb, off);
4901 		else if (off < 0)
4902 			__skb_push(skb, -off);
4903 
4904 		skb->mac_header += off;
4905 		skb_reset_network_header(skb);
4906 	}
4907 
4908 	/* check if bpf_xdp_adjust_tail was used */
4909 	off = xdp->data_end - orig_data_end;
4910 	if (off != 0) {
4911 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4912 		skb->len += off; /* positive on grow, negative on shrink */
4913 	}
4914 
4915 	/* check if XDP changed eth hdr such SKB needs update */
4916 	eth = (struct ethhdr *)xdp->data;
4917 	if ((orig_eth_type != eth->h_proto) ||
4918 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4919 						  skb->dev->dev_addr)) ||
4920 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4921 		__skb_push(skb, ETH_HLEN);
4922 		skb->pkt_type = PACKET_HOST;
4923 		skb->protocol = eth_type_trans(skb, skb->dev);
4924 	}
4925 
4926 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4927 	 * before calling us again on redirect path. We do not call do_redirect
4928 	 * as we leave that up to the caller.
4929 	 *
4930 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4931 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4932 	 */
4933 	switch (act) {
4934 	case XDP_REDIRECT:
4935 	case XDP_TX:
4936 		__skb_push(skb, mac_len);
4937 		break;
4938 	case XDP_PASS:
4939 		metalen = xdp->data - xdp->data_meta;
4940 		if (metalen)
4941 			skb_metadata_set(skb, metalen);
4942 		break;
4943 	}
4944 
4945 	return act;
4946 }
4947 
4948 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4949 				     struct xdp_buff *xdp,
4950 				     struct bpf_prog *xdp_prog)
4951 {
4952 	u32 act = XDP_DROP;
4953 
4954 	/* Reinjected packets coming from act_mirred or similar should
4955 	 * not get XDP generic processing.
4956 	 */
4957 	if (skb_is_redirected(skb))
4958 		return XDP_PASS;
4959 
4960 	/* XDP packets must be linear and must have sufficient headroom
4961 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4962 	 * native XDP provides, thus we need to do it here as well.
4963 	 */
4964 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4965 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4966 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4967 		int troom = skb->tail + skb->data_len - skb->end;
4968 
4969 		/* In case we have to go down the path and also linearize,
4970 		 * then lets do the pskb_expand_head() work just once here.
4971 		 */
4972 		if (pskb_expand_head(skb,
4973 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4974 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4975 			goto do_drop;
4976 		if (skb_linearize(skb))
4977 			goto do_drop;
4978 	}
4979 
4980 	act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4981 	switch (act) {
4982 	case XDP_REDIRECT:
4983 	case XDP_TX:
4984 	case XDP_PASS:
4985 		break;
4986 	default:
4987 		bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4988 		fallthrough;
4989 	case XDP_ABORTED:
4990 		trace_xdp_exception(skb->dev, xdp_prog, act);
4991 		fallthrough;
4992 	case XDP_DROP:
4993 	do_drop:
4994 		kfree_skb(skb);
4995 		break;
4996 	}
4997 
4998 	return act;
4999 }
5000 
5001 /* When doing generic XDP we have to bypass the qdisc layer and the
5002  * network taps in order to match in-driver-XDP behavior. This also means
5003  * that XDP packets are able to starve other packets going through a qdisc,
5004  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5005  * queues, so they do not have this starvation issue.
5006  */
5007 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
5008 {
5009 	struct net_device *dev = skb->dev;
5010 	struct netdev_queue *txq;
5011 	bool free_skb = true;
5012 	int cpu, rc;
5013 
5014 	txq = netdev_core_pick_tx(dev, skb, NULL);
5015 	cpu = smp_processor_id();
5016 	HARD_TX_LOCK(dev, txq, cpu);
5017 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5018 		rc = netdev_start_xmit(skb, dev, txq, 0);
5019 		if (dev_xmit_complete(rc))
5020 			free_skb = false;
5021 	}
5022 	HARD_TX_UNLOCK(dev, txq);
5023 	if (free_skb) {
5024 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5025 		dev_core_stats_tx_dropped_inc(dev);
5026 		kfree_skb(skb);
5027 	}
5028 }
5029 
5030 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5031 
5032 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
5033 {
5034 	if (xdp_prog) {
5035 		struct xdp_buff xdp;
5036 		u32 act;
5037 		int err;
5038 
5039 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
5040 		if (act != XDP_PASS) {
5041 			switch (act) {
5042 			case XDP_REDIRECT:
5043 				err = xdp_do_generic_redirect(skb->dev, skb,
5044 							      &xdp, xdp_prog);
5045 				if (err)
5046 					goto out_redir;
5047 				break;
5048 			case XDP_TX:
5049 				generic_xdp_tx(skb, xdp_prog);
5050 				break;
5051 			}
5052 			return XDP_DROP;
5053 		}
5054 	}
5055 	return XDP_PASS;
5056 out_redir:
5057 	kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
5058 	return XDP_DROP;
5059 }
5060 EXPORT_SYMBOL_GPL(do_xdp_generic);
5061 
5062 static int netif_rx_internal(struct sk_buff *skb)
5063 {
5064 	int ret;
5065 
5066 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5067 
5068 	trace_netif_rx(skb);
5069 
5070 #ifdef CONFIG_RPS
5071 	if (static_branch_unlikely(&rps_needed)) {
5072 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5073 		int cpu;
5074 
5075 		rcu_read_lock();
5076 
5077 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5078 		if (cpu < 0)
5079 			cpu = smp_processor_id();
5080 
5081 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5082 
5083 		rcu_read_unlock();
5084 	} else
5085 #endif
5086 	{
5087 		unsigned int qtail;
5088 
5089 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5090 	}
5091 	return ret;
5092 }
5093 
5094 /**
5095  *	__netif_rx	-	Slightly optimized version of netif_rx
5096  *	@skb: buffer to post
5097  *
5098  *	This behaves as netif_rx except that it does not disable bottom halves.
5099  *	As a result this function may only be invoked from the interrupt context
5100  *	(either hard or soft interrupt).
5101  */
5102 int __netif_rx(struct sk_buff *skb)
5103 {
5104 	int ret;
5105 
5106 	lockdep_assert_once(hardirq_count() | softirq_count());
5107 
5108 	trace_netif_rx_entry(skb);
5109 	ret = netif_rx_internal(skb);
5110 	trace_netif_rx_exit(ret);
5111 	return ret;
5112 }
5113 EXPORT_SYMBOL(__netif_rx);
5114 
5115 /**
5116  *	netif_rx	-	post buffer to the network code
5117  *	@skb: buffer to post
5118  *
5119  *	This function receives a packet from a device driver and queues it for
5120  *	the upper (protocol) levels to process via the backlog NAPI device. It
5121  *	always succeeds. The buffer may be dropped during processing for
5122  *	congestion control or by the protocol layers.
5123  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5124  *	driver should use NAPI and GRO.
5125  *	This function can used from interrupt and from process context. The
5126  *	caller from process context must not disable interrupts before invoking
5127  *	this function.
5128  *
5129  *	return values:
5130  *	NET_RX_SUCCESS	(no congestion)
5131  *	NET_RX_DROP     (packet was dropped)
5132  *
5133  */
5134 int netif_rx(struct sk_buff *skb)
5135 {
5136 	bool need_bh_off = !(hardirq_count() | softirq_count());
5137 	int ret;
5138 
5139 	if (need_bh_off)
5140 		local_bh_disable();
5141 	trace_netif_rx_entry(skb);
5142 	ret = netif_rx_internal(skb);
5143 	trace_netif_rx_exit(ret);
5144 	if (need_bh_off)
5145 		local_bh_enable();
5146 	return ret;
5147 }
5148 EXPORT_SYMBOL(netif_rx);
5149 
5150 static __latent_entropy void net_tx_action(struct softirq_action *h)
5151 {
5152 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5153 
5154 	if (sd->completion_queue) {
5155 		struct sk_buff *clist;
5156 
5157 		local_irq_disable();
5158 		clist = sd->completion_queue;
5159 		sd->completion_queue = NULL;
5160 		local_irq_enable();
5161 
5162 		while (clist) {
5163 			struct sk_buff *skb = clist;
5164 
5165 			clist = clist->next;
5166 
5167 			WARN_ON(refcount_read(&skb->users));
5168 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5169 				trace_consume_skb(skb, net_tx_action);
5170 			else
5171 				trace_kfree_skb(skb, net_tx_action,
5172 						get_kfree_skb_cb(skb)->reason);
5173 
5174 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5175 				__kfree_skb(skb);
5176 			else
5177 				__napi_kfree_skb(skb,
5178 						 get_kfree_skb_cb(skb)->reason);
5179 		}
5180 	}
5181 
5182 	if (sd->output_queue) {
5183 		struct Qdisc *head;
5184 
5185 		local_irq_disable();
5186 		head = sd->output_queue;
5187 		sd->output_queue = NULL;
5188 		sd->output_queue_tailp = &sd->output_queue;
5189 		local_irq_enable();
5190 
5191 		rcu_read_lock();
5192 
5193 		while (head) {
5194 			struct Qdisc *q = head;
5195 			spinlock_t *root_lock = NULL;
5196 
5197 			head = head->next_sched;
5198 
5199 			/* We need to make sure head->next_sched is read
5200 			 * before clearing __QDISC_STATE_SCHED
5201 			 */
5202 			smp_mb__before_atomic();
5203 
5204 			if (!(q->flags & TCQ_F_NOLOCK)) {
5205 				root_lock = qdisc_lock(q);
5206 				spin_lock(root_lock);
5207 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5208 						     &q->state))) {
5209 				/* There is a synchronize_net() between
5210 				 * STATE_DEACTIVATED flag being set and
5211 				 * qdisc_reset()/some_qdisc_is_busy() in
5212 				 * dev_deactivate(), so we can safely bail out
5213 				 * early here to avoid data race between
5214 				 * qdisc_deactivate() and some_qdisc_is_busy()
5215 				 * for lockless qdisc.
5216 				 */
5217 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5218 				continue;
5219 			}
5220 
5221 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5222 			qdisc_run(q);
5223 			if (root_lock)
5224 				spin_unlock(root_lock);
5225 		}
5226 
5227 		rcu_read_unlock();
5228 	}
5229 
5230 	xfrm_dev_backlog(sd);
5231 }
5232 
5233 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5234 /* This hook is defined here for ATM LANE */
5235 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5236 			     unsigned char *addr) __read_mostly;
5237 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5238 #endif
5239 
5240 /**
5241  *	netdev_is_rx_handler_busy - check if receive handler is registered
5242  *	@dev: device to check
5243  *
5244  *	Check if a receive handler is already registered for a given device.
5245  *	Return true if there one.
5246  *
5247  *	The caller must hold the rtnl_mutex.
5248  */
5249 bool netdev_is_rx_handler_busy(struct net_device *dev)
5250 {
5251 	ASSERT_RTNL();
5252 	return dev && rtnl_dereference(dev->rx_handler);
5253 }
5254 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5255 
5256 /**
5257  *	netdev_rx_handler_register - register receive handler
5258  *	@dev: device to register a handler for
5259  *	@rx_handler: receive handler to register
5260  *	@rx_handler_data: data pointer that is used by rx handler
5261  *
5262  *	Register a receive handler for a device. This handler will then be
5263  *	called from __netif_receive_skb. A negative errno code is returned
5264  *	on a failure.
5265  *
5266  *	The caller must hold the rtnl_mutex.
5267  *
5268  *	For a general description of rx_handler, see enum rx_handler_result.
5269  */
5270 int netdev_rx_handler_register(struct net_device *dev,
5271 			       rx_handler_func_t *rx_handler,
5272 			       void *rx_handler_data)
5273 {
5274 	if (netdev_is_rx_handler_busy(dev))
5275 		return -EBUSY;
5276 
5277 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5278 		return -EINVAL;
5279 
5280 	/* Note: rx_handler_data must be set before rx_handler */
5281 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5282 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5283 
5284 	return 0;
5285 }
5286 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5287 
5288 /**
5289  *	netdev_rx_handler_unregister - unregister receive handler
5290  *	@dev: device to unregister a handler from
5291  *
5292  *	Unregister a receive handler from a device.
5293  *
5294  *	The caller must hold the rtnl_mutex.
5295  */
5296 void netdev_rx_handler_unregister(struct net_device *dev)
5297 {
5298 
5299 	ASSERT_RTNL();
5300 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5301 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5302 	 * section has a guarantee to see a non NULL rx_handler_data
5303 	 * as well.
5304 	 */
5305 	synchronize_net();
5306 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5307 }
5308 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5309 
5310 /*
5311  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5312  * the special handling of PFMEMALLOC skbs.
5313  */
5314 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5315 {
5316 	switch (skb->protocol) {
5317 	case htons(ETH_P_ARP):
5318 	case htons(ETH_P_IP):
5319 	case htons(ETH_P_IPV6):
5320 	case htons(ETH_P_8021Q):
5321 	case htons(ETH_P_8021AD):
5322 		return true;
5323 	default:
5324 		return false;
5325 	}
5326 }
5327 
5328 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5329 			     int *ret, struct net_device *orig_dev)
5330 {
5331 	if (nf_hook_ingress_active(skb)) {
5332 		int ingress_retval;
5333 
5334 		if (*pt_prev) {
5335 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5336 			*pt_prev = NULL;
5337 		}
5338 
5339 		rcu_read_lock();
5340 		ingress_retval = nf_hook_ingress(skb);
5341 		rcu_read_unlock();
5342 		return ingress_retval;
5343 	}
5344 	return 0;
5345 }
5346 
5347 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5348 				    struct packet_type **ppt_prev)
5349 {
5350 	struct packet_type *ptype, *pt_prev;
5351 	rx_handler_func_t *rx_handler;
5352 	struct sk_buff *skb = *pskb;
5353 	struct net_device *orig_dev;
5354 	bool deliver_exact = false;
5355 	int ret = NET_RX_DROP;
5356 	__be16 type;
5357 
5358 	net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5359 
5360 	trace_netif_receive_skb(skb);
5361 
5362 	orig_dev = skb->dev;
5363 
5364 	skb_reset_network_header(skb);
5365 	if (!skb_transport_header_was_set(skb))
5366 		skb_reset_transport_header(skb);
5367 	skb_reset_mac_len(skb);
5368 
5369 	pt_prev = NULL;
5370 
5371 another_round:
5372 	skb->skb_iif = skb->dev->ifindex;
5373 
5374 	__this_cpu_inc(softnet_data.processed);
5375 
5376 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5377 		int ret2;
5378 
5379 		migrate_disable();
5380 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5381 		migrate_enable();
5382 
5383 		if (ret2 != XDP_PASS) {
5384 			ret = NET_RX_DROP;
5385 			goto out;
5386 		}
5387 	}
5388 
5389 	if (eth_type_vlan(skb->protocol)) {
5390 		skb = skb_vlan_untag(skb);
5391 		if (unlikely(!skb))
5392 			goto out;
5393 	}
5394 
5395 	if (skb_skip_tc_classify(skb))
5396 		goto skip_classify;
5397 
5398 	if (pfmemalloc)
5399 		goto skip_taps;
5400 
5401 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5402 		if (pt_prev)
5403 			ret = deliver_skb(skb, pt_prev, orig_dev);
5404 		pt_prev = ptype;
5405 	}
5406 
5407 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5408 		if (pt_prev)
5409 			ret = deliver_skb(skb, pt_prev, orig_dev);
5410 		pt_prev = ptype;
5411 	}
5412 
5413 skip_taps:
5414 #ifdef CONFIG_NET_INGRESS
5415 	if (static_branch_unlikely(&ingress_needed_key)) {
5416 		bool another = false;
5417 
5418 		nf_skip_egress(skb, true);
5419 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5420 					 &another);
5421 		if (another)
5422 			goto another_round;
5423 		if (!skb)
5424 			goto out;
5425 
5426 		nf_skip_egress(skb, false);
5427 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5428 			goto out;
5429 	}
5430 #endif
5431 	skb_reset_redirect(skb);
5432 skip_classify:
5433 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5434 		goto drop;
5435 
5436 	if (skb_vlan_tag_present(skb)) {
5437 		if (pt_prev) {
5438 			ret = deliver_skb(skb, pt_prev, orig_dev);
5439 			pt_prev = NULL;
5440 		}
5441 		if (vlan_do_receive(&skb))
5442 			goto another_round;
5443 		else if (unlikely(!skb))
5444 			goto out;
5445 	}
5446 
5447 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5448 	if (rx_handler) {
5449 		if (pt_prev) {
5450 			ret = deliver_skb(skb, pt_prev, orig_dev);
5451 			pt_prev = NULL;
5452 		}
5453 		switch (rx_handler(&skb)) {
5454 		case RX_HANDLER_CONSUMED:
5455 			ret = NET_RX_SUCCESS;
5456 			goto out;
5457 		case RX_HANDLER_ANOTHER:
5458 			goto another_round;
5459 		case RX_HANDLER_EXACT:
5460 			deliver_exact = true;
5461 			break;
5462 		case RX_HANDLER_PASS:
5463 			break;
5464 		default:
5465 			BUG();
5466 		}
5467 	}
5468 
5469 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5470 check_vlan_id:
5471 		if (skb_vlan_tag_get_id(skb)) {
5472 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5473 			 * find vlan device.
5474 			 */
5475 			skb->pkt_type = PACKET_OTHERHOST;
5476 		} else if (eth_type_vlan(skb->protocol)) {
5477 			/* Outer header is 802.1P with vlan 0, inner header is
5478 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5479 			 * not find vlan dev for vlan id 0.
5480 			 */
5481 			__vlan_hwaccel_clear_tag(skb);
5482 			skb = skb_vlan_untag(skb);
5483 			if (unlikely(!skb))
5484 				goto out;
5485 			if (vlan_do_receive(&skb))
5486 				/* After stripping off 802.1P header with vlan 0
5487 				 * vlan dev is found for inner header.
5488 				 */
5489 				goto another_round;
5490 			else if (unlikely(!skb))
5491 				goto out;
5492 			else
5493 				/* We have stripped outer 802.1P vlan 0 header.
5494 				 * But could not find vlan dev.
5495 				 * check again for vlan id to set OTHERHOST.
5496 				 */
5497 				goto check_vlan_id;
5498 		}
5499 		/* Note: we might in the future use prio bits
5500 		 * and set skb->priority like in vlan_do_receive()
5501 		 * For the time being, just ignore Priority Code Point
5502 		 */
5503 		__vlan_hwaccel_clear_tag(skb);
5504 	}
5505 
5506 	type = skb->protocol;
5507 
5508 	/* deliver only exact match when indicated */
5509 	if (likely(!deliver_exact)) {
5510 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5511 				       &ptype_base[ntohs(type) &
5512 						   PTYPE_HASH_MASK]);
5513 	}
5514 
5515 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5516 			       &orig_dev->ptype_specific);
5517 
5518 	if (unlikely(skb->dev != orig_dev)) {
5519 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5520 				       &skb->dev->ptype_specific);
5521 	}
5522 
5523 	if (pt_prev) {
5524 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5525 			goto drop;
5526 		*ppt_prev = pt_prev;
5527 	} else {
5528 drop:
5529 		if (!deliver_exact)
5530 			dev_core_stats_rx_dropped_inc(skb->dev);
5531 		else
5532 			dev_core_stats_rx_nohandler_inc(skb->dev);
5533 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5534 		/* Jamal, now you will not able to escape explaining
5535 		 * me how you were going to use this. :-)
5536 		 */
5537 		ret = NET_RX_DROP;
5538 	}
5539 
5540 out:
5541 	/* The invariant here is that if *ppt_prev is not NULL
5542 	 * then skb should also be non-NULL.
5543 	 *
5544 	 * Apparently *ppt_prev assignment above holds this invariant due to
5545 	 * skb dereferencing near it.
5546 	 */
5547 	*pskb = skb;
5548 	return ret;
5549 }
5550 
5551 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5552 {
5553 	struct net_device *orig_dev = skb->dev;
5554 	struct packet_type *pt_prev = NULL;
5555 	int ret;
5556 
5557 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5558 	if (pt_prev)
5559 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5560 					 skb->dev, pt_prev, orig_dev);
5561 	return ret;
5562 }
5563 
5564 /**
5565  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5566  *	@skb: buffer to process
5567  *
5568  *	More direct receive version of netif_receive_skb().  It should
5569  *	only be used by callers that have a need to skip RPS and Generic XDP.
5570  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5571  *
5572  *	This function may only be called from softirq context and interrupts
5573  *	should be enabled.
5574  *
5575  *	Return values (usually ignored):
5576  *	NET_RX_SUCCESS: no congestion
5577  *	NET_RX_DROP: packet was dropped
5578  */
5579 int netif_receive_skb_core(struct sk_buff *skb)
5580 {
5581 	int ret;
5582 
5583 	rcu_read_lock();
5584 	ret = __netif_receive_skb_one_core(skb, false);
5585 	rcu_read_unlock();
5586 
5587 	return ret;
5588 }
5589 EXPORT_SYMBOL(netif_receive_skb_core);
5590 
5591 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5592 						  struct packet_type *pt_prev,
5593 						  struct net_device *orig_dev)
5594 {
5595 	struct sk_buff *skb, *next;
5596 
5597 	if (!pt_prev)
5598 		return;
5599 	if (list_empty(head))
5600 		return;
5601 	if (pt_prev->list_func != NULL)
5602 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5603 				   ip_list_rcv, head, pt_prev, orig_dev);
5604 	else
5605 		list_for_each_entry_safe(skb, next, head, list) {
5606 			skb_list_del_init(skb);
5607 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5608 		}
5609 }
5610 
5611 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5612 {
5613 	/* Fast-path assumptions:
5614 	 * - There is no RX handler.
5615 	 * - Only one packet_type matches.
5616 	 * If either of these fails, we will end up doing some per-packet
5617 	 * processing in-line, then handling the 'last ptype' for the whole
5618 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5619 	 * because the 'last ptype' must be constant across the sublist, and all
5620 	 * other ptypes are handled per-packet.
5621 	 */
5622 	/* Current (common) ptype of sublist */
5623 	struct packet_type *pt_curr = NULL;
5624 	/* Current (common) orig_dev of sublist */
5625 	struct net_device *od_curr = NULL;
5626 	struct list_head sublist;
5627 	struct sk_buff *skb, *next;
5628 
5629 	INIT_LIST_HEAD(&sublist);
5630 	list_for_each_entry_safe(skb, next, head, list) {
5631 		struct net_device *orig_dev = skb->dev;
5632 		struct packet_type *pt_prev = NULL;
5633 
5634 		skb_list_del_init(skb);
5635 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5636 		if (!pt_prev)
5637 			continue;
5638 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5639 			/* dispatch old sublist */
5640 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5641 			/* start new sublist */
5642 			INIT_LIST_HEAD(&sublist);
5643 			pt_curr = pt_prev;
5644 			od_curr = orig_dev;
5645 		}
5646 		list_add_tail(&skb->list, &sublist);
5647 	}
5648 
5649 	/* dispatch final sublist */
5650 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5651 }
5652 
5653 static int __netif_receive_skb(struct sk_buff *skb)
5654 {
5655 	int ret;
5656 
5657 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5658 		unsigned int noreclaim_flag;
5659 
5660 		/*
5661 		 * PFMEMALLOC skbs are special, they should
5662 		 * - be delivered to SOCK_MEMALLOC sockets only
5663 		 * - stay away from userspace
5664 		 * - have bounded memory usage
5665 		 *
5666 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5667 		 * context down to all allocation sites.
5668 		 */
5669 		noreclaim_flag = memalloc_noreclaim_save();
5670 		ret = __netif_receive_skb_one_core(skb, true);
5671 		memalloc_noreclaim_restore(noreclaim_flag);
5672 	} else
5673 		ret = __netif_receive_skb_one_core(skb, false);
5674 
5675 	return ret;
5676 }
5677 
5678 static void __netif_receive_skb_list(struct list_head *head)
5679 {
5680 	unsigned long noreclaim_flag = 0;
5681 	struct sk_buff *skb, *next;
5682 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5683 
5684 	list_for_each_entry_safe(skb, next, head, list) {
5685 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5686 			struct list_head sublist;
5687 
5688 			/* Handle the previous sublist */
5689 			list_cut_before(&sublist, head, &skb->list);
5690 			if (!list_empty(&sublist))
5691 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5692 			pfmemalloc = !pfmemalloc;
5693 			/* See comments in __netif_receive_skb */
5694 			if (pfmemalloc)
5695 				noreclaim_flag = memalloc_noreclaim_save();
5696 			else
5697 				memalloc_noreclaim_restore(noreclaim_flag);
5698 		}
5699 	}
5700 	/* Handle the remaining sublist */
5701 	if (!list_empty(head))
5702 		__netif_receive_skb_list_core(head, pfmemalloc);
5703 	/* Restore pflags */
5704 	if (pfmemalloc)
5705 		memalloc_noreclaim_restore(noreclaim_flag);
5706 }
5707 
5708 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5709 {
5710 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5711 	struct bpf_prog *new = xdp->prog;
5712 	int ret = 0;
5713 
5714 	switch (xdp->command) {
5715 	case XDP_SETUP_PROG:
5716 		rcu_assign_pointer(dev->xdp_prog, new);
5717 		if (old)
5718 			bpf_prog_put(old);
5719 
5720 		if (old && !new) {
5721 			static_branch_dec(&generic_xdp_needed_key);
5722 		} else if (new && !old) {
5723 			static_branch_inc(&generic_xdp_needed_key);
5724 			dev_disable_lro(dev);
5725 			dev_disable_gro_hw(dev);
5726 		}
5727 		break;
5728 
5729 	default:
5730 		ret = -EINVAL;
5731 		break;
5732 	}
5733 
5734 	return ret;
5735 }
5736 
5737 static int netif_receive_skb_internal(struct sk_buff *skb)
5738 {
5739 	int ret;
5740 
5741 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5742 
5743 	if (skb_defer_rx_timestamp(skb))
5744 		return NET_RX_SUCCESS;
5745 
5746 	rcu_read_lock();
5747 #ifdef CONFIG_RPS
5748 	if (static_branch_unlikely(&rps_needed)) {
5749 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5750 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5751 
5752 		if (cpu >= 0) {
5753 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5754 			rcu_read_unlock();
5755 			return ret;
5756 		}
5757 	}
5758 #endif
5759 	ret = __netif_receive_skb(skb);
5760 	rcu_read_unlock();
5761 	return ret;
5762 }
5763 
5764 void netif_receive_skb_list_internal(struct list_head *head)
5765 {
5766 	struct sk_buff *skb, *next;
5767 	struct list_head sublist;
5768 
5769 	INIT_LIST_HEAD(&sublist);
5770 	list_for_each_entry_safe(skb, next, head, list) {
5771 		net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5772 		skb_list_del_init(skb);
5773 		if (!skb_defer_rx_timestamp(skb))
5774 			list_add_tail(&skb->list, &sublist);
5775 	}
5776 	list_splice_init(&sublist, head);
5777 
5778 	rcu_read_lock();
5779 #ifdef CONFIG_RPS
5780 	if (static_branch_unlikely(&rps_needed)) {
5781 		list_for_each_entry_safe(skb, next, head, list) {
5782 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5783 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5784 
5785 			if (cpu >= 0) {
5786 				/* Will be handled, remove from list */
5787 				skb_list_del_init(skb);
5788 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5789 			}
5790 		}
5791 	}
5792 #endif
5793 	__netif_receive_skb_list(head);
5794 	rcu_read_unlock();
5795 }
5796 
5797 /**
5798  *	netif_receive_skb - process receive buffer from network
5799  *	@skb: buffer to process
5800  *
5801  *	netif_receive_skb() is the main receive data processing function.
5802  *	It always succeeds. The buffer may be dropped during processing
5803  *	for congestion control or by the protocol layers.
5804  *
5805  *	This function may only be called from softirq context and interrupts
5806  *	should be enabled.
5807  *
5808  *	Return values (usually ignored):
5809  *	NET_RX_SUCCESS: no congestion
5810  *	NET_RX_DROP: packet was dropped
5811  */
5812 int netif_receive_skb(struct sk_buff *skb)
5813 {
5814 	int ret;
5815 
5816 	trace_netif_receive_skb_entry(skb);
5817 
5818 	ret = netif_receive_skb_internal(skb);
5819 	trace_netif_receive_skb_exit(ret);
5820 
5821 	return ret;
5822 }
5823 EXPORT_SYMBOL(netif_receive_skb);
5824 
5825 /**
5826  *	netif_receive_skb_list - process many receive buffers from network
5827  *	@head: list of skbs to process.
5828  *
5829  *	Since return value of netif_receive_skb() is normally ignored, and
5830  *	wouldn't be meaningful for a list, this function returns void.
5831  *
5832  *	This function may only be called from softirq context and interrupts
5833  *	should be enabled.
5834  */
5835 void netif_receive_skb_list(struct list_head *head)
5836 {
5837 	struct sk_buff *skb;
5838 
5839 	if (list_empty(head))
5840 		return;
5841 	if (trace_netif_receive_skb_list_entry_enabled()) {
5842 		list_for_each_entry(skb, head, list)
5843 			trace_netif_receive_skb_list_entry(skb);
5844 	}
5845 	netif_receive_skb_list_internal(head);
5846 	trace_netif_receive_skb_list_exit(0);
5847 }
5848 EXPORT_SYMBOL(netif_receive_skb_list);
5849 
5850 static DEFINE_PER_CPU(struct work_struct, flush_works);
5851 
5852 /* Network device is going away, flush any packets still pending */
5853 static void flush_backlog(struct work_struct *work)
5854 {
5855 	struct sk_buff *skb, *tmp;
5856 	struct softnet_data *sd;
5857 
5858 	local_bh_disable();
5859 	sd = this_cpu_ptr(&softnet_data);
5860 
5861 	rps_lock_irq_disable(sd);
5862 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5863 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5864 			__skb_unlink(skb, &sd->input_pkt_queue);
5865 			dev_kfree_skb_irq(skb);
5866 			input_queue_head_incr(sd);
5867 		}
5868 	}
5869 	rps_unlock_irq_enable(sd);
5870 
5871 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5872 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5873 			__skb_unlink(skb, &sd->process_queue);
5874 			kfree_skb(skb);
5875 			input_queue_head_incr(sd);
5876 		}
5877 	}
5878 	local_bh_enable();
5879 }
5880 
5881 static bool flush_required(int cpu)
5882 {
5883 #if IS_ENABLED(CONFIG_RPS)
5884 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5885 	bool do_flush;
5886 
5887 	rps_lock_irq_disable(sd);
5888 
5889 	/* as insertion into process_queue happens with the rps lock held,
5890 	 * process_queue access may race only with dequeue
5891 	 */
5892 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5893 		   !skb_queue_empty_lockless(&sd->process_queue);
5894 	rps_unlock_irq_enable(sd);
5895 
5896 	return do_flush;
5897 #endif
5898 	/* without RPS we can't safely check input_pkt_queue: during a
5899 	 * concurrent remote skb_queue_splice() we can detect as empty both
5900 	 * input_pkt_queue and process_queue even if the latter could end-up
5901 	 * containing a lot of packets.
5902 	 */
5903 	return true;
5904 }
5905 
5906 static void flush_all_backlogs(void)
5907 {
5908 	static cpumask_t flush_cpus;
5909 	unsigned int cpu;
5910 
5911 	/* since we are under rtnl lock protection we can use static data
5912 	 * for the cpumask and avoid allocating on stack the possibly
5913 	 * large mask
5914 	 */
5915 	ASSERT_RTNL();
5916 
5917 	cpus_read_lock();
5918 
5919 	cpumask_clear(&flush_cpus);
5920 	for_each_online_cpu(cpu) {
5921 		if (flush_required(cpu)) {
5922 			queue_work_on(cpu, system_highpri_wq,
5923 				      per_cpu_ptr(&flush_works, cpu));
5924 			cpumask_set_cpu(cpu, &flush_cpus);
5925 		}
5926 	}
5927 
5928 	/* we can have in flight packet[s] on the cpus we are not flushing,
5929 	 * synchronize_net() in unregister_netdevice_many() will take care of
5930 	 * them
5931 	 */
5932 	for_each_cpu(cpu, &flush_cpus)
5933 		flush_work(per_cpu_ptr(&flush_works, cpu));
5934 
5935 	cpus_read_unlock();
5936 }
5937 
5938 static void net_rps_send_ipi(struct softnet_data *remsd)
5939 {
5940 #ifdef CONFIG_RPS
5941 	while (remsd) {
5942 		struct softnet_data *next = remsd->rps_ipi_next;
5943 
5944 		if (cpu_online(remsd->cpu))
5945 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5946 		remsd = next;
5947 	}
5948 #endif
5949 }
5950 
5951 /*
5952  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5953  * Note: called with local irq disabled, but exits with local irq enabled.
5954  */
5955 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5956 {
5957 #ifdef CONFIG_RPS
5958 	struct softnet_data *remsd = sd->rps_ipi_list;
5959 
5960 	if (remsd) {
5961 		sd->rps_ipi_list = NULL;
5962 
5963 		local_irq_enable();
5964 
5965 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5966 		net_rps_send_ipi(remsd);
5967 	} else
5968 #endif
5969 		local_irq_enable();
5970 }
5971 
5972 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5973 {
5974 #ifdef CONFIG_RPS
5975 	return sd->rps_ipi_list != NULL;
5976 #else
5977 	return false;
5978 #endif
5979 }
5980 
5981 static int process_backlog(struct napi_struct *napi, int quota)
5982 {
5983 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5984 	bool again = true;
5985 	int work = 0;
5986 
5987 	/* Check if we have pending ipi, its better to send them now,
5988 	 * not waiting net_rx_action() end.
5989 	 */
5990 	if (sd_has_rps_ipi_waiting(sd)) {
5991 		local_irq_disable();
5992 		net_rps_action_and_irq_enable(sd);
5993 	}
5994 
5995 	napi->weight = READ_ONCE(dev_rx_weight);
5996 	while (again) {
5997 		struct sk_buff *skb;
5998 
5999 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6000 			rcu_read_lock();
6001 			__netif_receive_skb(skb);
6002 			rcu_read_unlock();
6003 			input_queue_head_incr(sd);
6004 			if (++work >= quota)
6005 				return work;
6006 
6007 		}
6008 
6009 		rps_lock_irq_disable(sd);
6010 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6011 			/*
6012 			 * Inline a custom version of __napi_complete().
6013 			 * only current cpu owns and manipulates this napi,
6014 			 * and NAPI_STATE_SCHED is the only possible flag set
6015 			 * on backlog.
6016 			 * We can use a plain write instead of clear_bit(),
6017 			 * and we dont need an smp_mb() memory barrier.
6018 			 */
6019 			napi->state = 0;
6020 			again = false;
6021 		} else {
6022 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6023 						   &sd->process_queue);
6024 		}
6025 		rps_unlock_irq_enable(sd);
6026 	}
6027 
6028 	return work;
6029 }
6030 
6031 /**
6032  * __napi_schedule - schedule for receive
6033  * @n: entry to schedule
6034  *
6035  * The entry's receive function will be scheduled to run.
6036  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6037  */
6038 void __napi_schedule(struct napi_struct *n)
6039 {
6040 	unsigned long flags;
6041 
6042 	local_irq_save(flags);
6043 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6044 	local_irq_restore(flags);
6045 }
6046 EXPORT_SYMBOL(__napi_schedule);
6047 
6048 /**
6049  *	napi_schedule_prep - check if napi can be scheduled
6050  *	@n: napi context
6051  *
6052  * Test if NAPI routine is already running, and if not mark
6053  * it as running.  This is used as a condition variable to
6054  * insure only one NAPI poll instance runs.  We also make
6055  * sure there is no pending NAPI disable.
6056  */
6057 bool napi_schedule_prep(struct napi_struct *n)
6058 {
6059 	unsigned long new, val = READ_ONCE(n->state);
6060 
6061 	do {
6062 		if (unlikely(val & NAPIF_STATE_DISABLE))
6063 			return false;
6064 		new = val | NAPIF_STATE_SCHED;
6065 
6066 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6067 		 * This was suggested by Alexander Duyck, as compiler
6068 		 * emits better code than :
6069 		 * if (val & NAPIF_STATE_SCHED)
6070 		 *     new |= NAPIF_STATE_MISSED;
6071 		 */
6072 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6073 						   NAPIF_STATE_MISSED;
6074 	} while (!try_cmpxchg(&n->state, &val, new));
6075 
6076 	return !(val & NAPIF_STATE_SCHED);
6077 }
6078 EXPORT_SYMBOL(napi_schedule_prep);
6079 
6080 /**
6081  * __napi_schedule_irqoff - schedule for receive
6082  * @n: entry to schedule
6083  *
6084  * Variant of __napi_schedule() assuming hard irqs are masked.
6085  *
6086  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6087  * because the interrupt disabled assumption might not be true
6088  * due to force-threaded interrupts and spinlock substitution.
6089  */
6090 void __napi_schedule_irqoff(struct napi_struct *n)
6091 {
6092 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6093 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6094 	else
6095 		__napi_schedule(n);
6096 }
6097 EXPORT_SYMBOL(__napi_schedule_irqoff);
6098 
6099 bool napi_complete_done(struct napi_struct *n, int work_done)
6100 {
6101 	unsigned long flags, val, new, timeout = 0;
6102 	bool ret = true;
6103 
6104 	/*
6105 	 * 1) Don't let napi dequeue from the cpu poll list
6106 	 *    just in case its running on a different cpu.
6107 	 * 2) If we are busy polling, do nothing here, we have
6108 	 *    the guarantee we will be called later.
6109 	 */
6110 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6111 				 NAPIF_STATE_IN_BUSY_POLL)))
6112 		return false;
6113 
6114 	if (work_done) {
6115 		if (n->gro_bitmask)
6116 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6117 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6118 	}
6119 	if (n->defer_hard_irqs_count > 0) {
6120 		n->defer_hard_irqs_count--;
6121 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6122 		if (timeout)
6123 			ret = false;
6124 	}
6125 	if (n->gro_bitmask) {
6126 		/* When the NAPI instance uses a timeout and keeps postponing
6127 		 * it, we need to bound somehow the time packets are kept in
6128 		 * the GRO layer
6129 		 */
6130 		napi_gro_flush(n, !!timeout);
6131 	}
6132 
6133 	gro_normal_list(n);
6134 
6135 	if (unlikely(!list_empty(&n->poll_list))) {
6136 		/* If n->poll_list is not empty, we need to mask irqs */
6137 		local_irq_save(flags);
6138 		list_del_init(&n->poll_list);
6139 		local_irq_restore(flags);
6140 	}
6141 	WRITE_ONCE(n->list_owner, -1);
6142 
6143 	val = READ_ONCE(n->state);
6144 	do {
6145 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6146 
6147 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6148 			      NAPIF_STATE_SCHED_THREADED |
6149 			      NAPIF_STATE_PREFER_BUSY_POLL);
6150 
6151 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6152 		 * because we will call napi->poll() one more time.
6153 		 * This C code was suggested by Alexander Duyck to help gcc.
6154 		 */
6155 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6156 						    NAPIF_STATE_SCHED;
6157 	} while (!try_cmpxchg(&n->state, &val, new));
6158 
6159 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6160 		__napi_schedule(n);
6161 		return false;
6162 	}
6163 
6164 	if (timeout)
6165 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6166 			      HRTIMER_MODE_REL_PINNED);
6167 	return ret;
6168 }
6169 EXPORT_SYMBOL(napi_complete_done);
6170 
6171 /* must be called under rcu_read_lock(), as we dont take a reference */
6172 static struct napi_struct *napi_by_id(unsigned int napi_id)
6173 {
6174 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6175 	struct napi_struct *napi;
6176 
6177 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6178 		if (napi->napi_id == napi_id)
6179 			return napi;
6180 
6181 	return NULL;
6182 }
6183 
6184 #if defined(CONFIG_NET_RX_BUSY_POLL)
6185 
6186 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6187 {
6188 	if (!skip_schedule) {
6189 		gro_normal_list(napi);
6190 		__napi_schedule(napi);
6191 		return;
6192 	}
6193 
6194 	if (napi->gro_bitmask) {
6195 		/* flush too old packets
6196 		 * If HZ < 1000, flush all packets.
6197 		 */
6198 		napi_gro_flush(napi, HZ >= 1000);
6199 	}
6200 
6201 	gro_normal_list(napi);
6202 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6203 }
6204 
6205 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6206 			   u16 budget)
6207 {
6208 	bool skip_schedule = false;
6209 	unsigned long timeout;
6210 	int rc;
6211 
6212 	/* Busy polling means there is a high chance device driver hard irq
6213 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6214 	 * set in napi_schedule_prep().
6215 	 * Since we are about to call napi->poll() once more, we can safely
6216 	 * clear NAPI_STATE_MISSED.
6217 	 *
6218 	 * Note: x86 could use a single "lock and ..." instruction
6219 	 * to perform these two clear_bit()
6220 	 */
6221 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6222 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6223 
6224 	local_bh_disable();
6225 
6226 	if (prefer_busy_poll) {
6227 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6228 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6229 		if (napi->defer_hard_irqs_count && timeout) {
6230 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6231 			skip_schedule = true;
6232 		}
6233 	}
6234 
6235 	/* All we really want here is to re-enable device interrupts.
6236 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6237 	 */
6238 	rc = napi->poll(napi, budget);
6239 	/* We can't gro_normal_list() here, because napi->poll() might have
6240 	 * rearmed the napi (napi_complete_done()) in which case it could
6241 	 * already be running on another CPU.
6242 	 */
6243 	trace_napi_poll(napi, rc, budget);
6244 	netpoll_poll_unlock(have_poll_lock);
6245 	if (rc == budget)
6246 		__busy_poll_stop(napi, skip_schedule);
6247 	local_bh_enable();
6248 }
6249 
6250 void napi_busy_loop(unsigned int napi_id,
6251 		    bool (*loop_end)(void *, unsigned long),
6252 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6253 {
6254 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6255 	int (*napi_poll)(struct napi_struct *napi, int budget);
6256 	void *have_poll_lock = NULL;
6257 	struct napi_struct *napi;
6258 
6259 restart:
6260 	napi_poll = NULL;
6261 
6262 	rcu_read_lock();
6263 
6264 	napi = napi_by_id(napi_id);
6265 	if (!napi)
6266 		goto out;
6267 
6268 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6269 		preempt_disable();
6270 	for (;;) {
6271 		int work = 0;
6272 
6273 		local_bh_disable();
6274 		if (!napi_poll) {
6275 			unsigned long val = READ_ONCE(napi->state);
6276 
6277 			/* If multiple threads are competing for this napi,
6278 			 * we avoid dirtying napi->state as much as we can.
6279 			 */
6280 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6281 				   NAPIF_STATE_IN_BUSY_POLL)) {
6282 				if (prefer_busy_poll)
6283 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6284 				goto count;
6285 			}
6286 			if (cmpxchg(&napi->state, val,
6287 				    val | NAPIF_STATE_IN_BUSY_POLL |
6288 					  NAPIF_STATE_SCHED) != val) {
6289 				if (prefer_busy_poll)
6290 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6291 				goto count;
6292 			}
6293 			have_poll_lock = netpoll_poll_lock(napi);
6294 			napi_poll = napi->poll;
6295 		}
6296 		work = napi_poll(napi, budget);
6297 		trace_napi_poll(napi, work, budget);
6298 		gro_normal_list(napi);
6299 count:
6300 		if (work > 0)
6301 			__NET_ADD_STATS(dev_net(napi->dev),
6302 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6303 		local_bh_enable();
6304 
6305 		if (!loop_end || loop_end(loop_end_arg, start_time))
6306 			break;
6307 
6308 		if (unlikely(need_resched())) {
6309 			if (napi_poll)
6310 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6311 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6312 				preempt_enable();
6313 			rcu_read_unlock();
6314 			cond_resched();
6315 			if (loop_end(loop_end_arg, start_time))
6316 				return;
6317 			goto restart;
6318 		}
6319 		cpu_relax();
6320 	}
6321 	if (napi_poll)
6322 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6323 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6324 		preempt_enable();
6325 out:
6326 	rcu_read_unlock();
6327 }
6328 EXPORT_SYMBOL(napi_busy_loop);
6329 
6330 #endif /* CONFIG_NET_RX_BUSY_POLL */
6331 
6332 static void napi_hash_add(struct napi_struct *napi)
6333 {
6334 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6335 		return;
6336 
6337 	spin_lock(&napi_hash_lock);
6338 
6339 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6340 	do {
6341 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6342 			napi_gen_id = MIN_NAPI_ID;
6343 	} while (napi_by_id(napi_gen_id));
6344 	napi->napi_id = napi_gen_id;
6345 
6346 	hlist_add_head_rcu(&napi->napi_hash_node,
6347 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6348 
6349 	spin_unlock(&napi_hash_lock);
6350 }
6351 
6352 /* Warning : caller is responsible to make sure rcu grace period
6353  * is respected before freeing memory containing @napi
6354  */
6355 static void napi_hash_del(struct napi_struct *napi)
6356 {
6357 	spin_lock(&napi_hash_lock);
6358 
6359 	hlist_del_init_rcu(&napi->napi_hash_node);
6360 
6361 	spin_unlock(&napi_hash_lock);
6362 }
6363 
6364 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6365 {
6366 	struct napi_struct *napi;
6367 
6368 	napi = container_of(timer, struct napi_struct, timer);
6369 
6370 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6371 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6372 	 */
6373 	if (!napi_disable_pending(napi) &&
6374 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6375 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6376 		__napi_schedule_irqoff(napi);
6377 	}
6378 
6379 	return HRTIMER_NORESTART;
6380 }
6381 
6382 static void init_gro_hash(struct napi_struct *napi)
6383 {
6384 	int i;
6385 
6386 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6387 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6388 		napi->gro_hash[i].count = 0;
6389 	}
6390 	napi->gro_bitmask = 0;
6391 }
6392 
6393 int dev_set_threaded(struct net_device *dev, bool threaded)
6394 {
6395 	struct napi_struct *napi;
6396 	int err = 0;
6397 
6398 	if (dev->threaded == threaded)
6399 		return 0;
6400 
6401 	if (threaded) {
6402 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6403 			if (!napi->thread) {
6404 				err = napi_kthread_create(napi);
6405 				if (err) {
6406 					threaded = false;
6407 					break;
6408 				}
6409 			}
6410 		}
6411 	}
6412 
6413 	dev->threaded = threaded;
6414 
6415 	/* Make sure kthread is created before THREADED bit
6416 	 * is set.
6417 	 */
6418 	smp_mb__before_atomic();
6419 
6420 	/* Setting/unsetting threaded mode on a napi might not immediately
6421 	 * take effect, if the current napi instance is actively being
6422 	 * polled. In this case, the switch between threaded mode and
6423 	 * softirq mode will happen in the next round of napi_schedule().
6424 	 * This should not cause hiccups/stalls to the live traffic.
6425 	 */
6426 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6427 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6428 
6429 	return err;
6430 }
6431 EXPORT_SYMBOL(dev_set_threaded);
6432 
6433 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6434 			   int (*poll)(struct napi_struct *, int), int weight)
6435 {
6436 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6437 		return;
6438 
6439 	INIT_LIST_HEAD(&napi->poll_list);
6440 	INIT_HLIST_NODE(&napi->napi_hash_node);
6441 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6442 	napi->timer.function = napi_watchdog;
6443 	init_gro_hash(napi);
6444 	napi->skb = NULL;
6445 	INIT_LIST_HEAD(&napi->rx_list);
6446 	napi->rx_count = 0;
6447 	napi->poll = poll;
6448 	if (weight > NAPI_POLL_WEIGHT)
6449 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6450 				weight);
6451 	napi->weight = weight;
6452 	napi->dev = dev;
6453 #ifdef CONFIG_NETPOLL
6454 	napi->poll_owner = -1;
6455 #endif
6456 	napi->list_owner = -1;
6457 	set_bit(NAPI_STATE_SCHED, &napi->state);
6458 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6459 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6460 	napi_hash_add(napi);
6461 	napi_get_frags_check(napi);
6462 	/* Create kthread for this napi if dev->threaded is set.
6463 	 * Clear dev->threaded if kthread creation failed so that
6464 	 * threaded mode will not be enabled in napi_enable().
6465 	 */
6466 	if (dev->threaded && napi_kthread_create(napi))
6467 		dev->threaded = 0;
6468 }
6469 EXPORT_SYMBOL(netif_napi_add_weight);
6470 
6471 void napi_disable(struct napi_struct *n)
6472 {
6473 	unsigned long val, new;
6474 
6475 	might_sleep();
6476 	set_bit(NAPI_STATE_DISABLE, &n->state);
6477 
6478 	val = READ_ONCE(n->state);
6479 	do {
6480 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6481 			usleep_range(20, 200);
6482 			val = READ_ONCE(n->state);
6483 		}
6484 
6485 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6486 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6487 	} while (!try_cmpxchg(&n->state, &val, new));
6488 
6489 	hrtimer_cancel(&n->timer);
6490 
6491 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6492 }
6493 EXPORT_SYMBOL(napi_disable);
6494 
6495 /**
6496  *	napi_enable - enable NAPI scheduling
6497  *	@n: NAPI context
6498  *
6499  * Resume NAPI from being scheduled on this context.
6500  * Must be paired with napi_disable.
6501  */
6502 void napi_enable(struct napi_struct *n)
6503 {
6504 	unsigned long new, val = READ_ONCE(n->state);
6505 
6506 	do {
6507 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6508 
6509 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6510 		if (n->dev->threaded && n->thread)
6511 			new |= NAPIF_STATE_THREADED;
6512 	} while (!try_cmpxchg(&n->state, &val, new));
6513 }
6514 EXPORT_SYMBOL(napi_enable);
6515 
6516 static void flush_gro_hash(struct napi_struct *napi)
6517 {
6518 	int i;
6519 
6520 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6521 		struct sk_buff *skb, *n;
6522 
6523 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6524 			kfree_skb(skb);
6525 		napi->gro_hash[i].count = 0;
6526 	}
6527 }
6528 
6529 /* Must be called in process context */
6530 void __netif_napi_del(struct napi_struct *napi)
6531 {
6532 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6533 		return;
6534 
6535 	napi_hash_del(napi);
6536 	list_del_rcu(&napi->dev_list);
6537 	napi_free_frags(napi);
6538 
6539 	flush_gro_hash(napi);
6540 	napi->gro_bitmask = 0;
6541 
6542 	if (napi->thread) {
6543 		kthread_stop(napi->thread);
6544 		napi->thread = NULL;
6545 	}
6546 }
6547 EXPORT_SYMBOL(__netif_napi_del);
6548 
6549 static int __napi_poll(struct napi_struct *n, bool *repoll)
6550 {
6551 	int work, weight;
6552 
6553 	weight = n->weight;
6554 
6555 	/* This NAPI_STATE_SCHED test is for avoiding a race
6556 	 * with netpoll's poll_napi().  Only the entity which
6557 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6558 	 * actually make the ->poll() call.  Therefore we avoid
6559 	 * accidentally calling ->poll() when NAPI is not scheduled.
6560 	 */
6561 	work = 0;
6562 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6563 		work = n->poll(n, weight);
6564 		trace_napi_poll(n, work, weight);
6565 	}
6566 
6567 	if (unlikely(work > weight))
6568 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6569 				n->poll, work, weight);
6570 
6571 	if (likely(work < weight))
6572 		return work;
6573 
6574 	/* Drivers must not modify the NAPI state if they
6575 	 * consume the entire weight.  In such cases this code
6576 	 * still "owns" the NAPI instance and therefore can
6577 	 * move the instance around on the list at-will.
6578 	 */
6579 	if (unlikely(napi_disable_pending(n))) {
6580 		napi_complete(n);
6581 		return work;
6582 	}
6583 
6584 	/* The NAPI context has more processing work, but busy-polling
6585 	 * is preferred. Exit early.
6586 	 */
6587 	if (napi_prefer_busy_poll(n)) {
6588 		if (napi_complete_done(n, work)) {
6589 			/* If timeout is not set, we need to make sure
6590 			 * that the NAPI is re-scheduled.
6591 			 */
6592 			napi_schedule(n);
6593 		}
6594 		return work;
6595 	}
6596 
6597 	if (n->gro_bitmask) {
6598 		/* flush too old packets
6599 		 * If HZ < 1000, flush all packets.
6600 		 */
6601 		napi_gro_flush(n, HZ >= 1000);
6602 	}
6603 
6604 	gro_normal_list(n);
6605 
6606 	/* Some drivers may have called napi_schedule
6607 	 * prior to exhausting their budget.
6608 	 */
6609 	if (unlikely(!list_empty(&n->poll_list))) {
6610 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6611 			     n->dev ? n->dev->name : "backlog");
6612 		return work;
6613 	}
6614 
6615 	*repoll = true;
6616 
6617 	return work;
6618 }
6619 
6620 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6621 {
6622 	bool do_repoll = false;
6623 	void *have;
6624 	int work;
6625 
6626 	list_del_init(&n->poll_list);
6627 
6628 	have = netpoll_poll_lock(n);
6629 
6630 	work = __napi_poll(n, &do_repoll);
6631 
6632 	if (do_repoll)
6633 		list_add_tail(&n->poll_list, repoll);
6634 
6635 	netpoll_poll_unlock(have);
6636 
6637 	return work;
6638 }
6639 
6640 static int napi_thread_wait(struct napi_struct *napi)
6641 {
6642 	bool woken = false;
6643 
6644 	set_current_state(TASK_INTERRUPTIBLE);
6645 
6646 	while (!kthread_should_stop()) {
6647 		/* Testing SCHED_THREADED bit here to make sure the current
6648 		 * kthread owns this napi and could poll on this napi.
6649 		 * Testing SCHED bit is not enough because SCHED bit might be
6650 		 * set by some other busy poll thread or by napi_disable().
6651 		 */
6652 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6653 			WARN_ON(!list_empty(&napi->poll_list));
6654 			__set_current_state(TASK_RUNNING);
6655 			return 0;
6656 		}
6657 
6658 		schedule();
6659 		/* woken being true indicates this thread owns this napi. */
6660 		woken = true;
6661 		set_current_state(TASK_INTERRUPTIBLE);
6662 	}
6663 	__set_current_state(TASK_RUNNING);
6664 
6665 	return -1;
6666 }
6667 
6668 static void skb_defer_free_flush(struct softnet_data *sd)
6669 {
6670 	struct sk_buff *skb, *next;
6671 
6672 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6673 	if (!READ_ONCE(sd->defer_list))
6674 		return;
6675 
6676 	spin_lock(&sd->defer_lock);
6677 	skb = sd->defer_list;
6678 	sd->defer_list = NULL;
6679 	sd->defer_count = 0;
6680 	spin_unlock(&sd->defer_lock);
6681 
6682 	while (skb != NULL) {
6683 		next = skb->next;
6684 		napi_consume_skb(skb, 1);
6685 		skb = next;
6686 	}
6687 }
6688 
6689 static int napi_threaded_poll(void *data)
6690 {
6691 	struct napi_struct *napi = data;
6692 	struct softnet_data *sd;
6693 	void *have;
6694 
6695 	while (!napi_thread_wait(napi)) {
6696 		unsigned long last_qs = jiffies;
6697 
6698 		for (;;) {
6699 			bool repoll = false;
6700 
6701 			local_bh_disable();
6702 			sd = this_cpu_ptr(&softnet_data);
6703 			sd->in_napi_threaded_poll = true;
6704 
6705 			have = netpoll_poll_lock(napi);
6706 			__napi_poll(napi, &repoll);
6707 			netpoll_poll_unlock(have);
6708 
6709 			sd->in_napi_threaded_poll = false;
6710 			barrier();
6711 
6712 			if (sd_has_rps_ipi_waiting(sd)) {
6713 				local_irq_disable();
6714 				net_rps_action_and_irq_enable(sd);
6715 			}
6716 			skb_defer_free_flush(sd);
6717 			local_bh_enable();
6718 
6719 			if (!repoll)
6720 				break;
6721 
6722 			rcu_softirq_qs_periodic(last_qs);
6723 			cond_resched();
6724 		}
6725 	}
6726 	return 0;
6727 }
6728 
6729 static __latent_entropy void net_rx_action(struct softirq_action *h)
6730 {
6731 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6732 	unsigned long time_limit = jiffies +
6733 		usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6734 	int budget = READ_ONCE(netdev_budget);
6735 	LIST_HEAD(list);
6736 	LIST_HEAD(repoll);
6737 
6738 start:
6739 	sd->in_net_rx_action = true;
6740 	local_irq_disable();
6741 	list_splice_init(&sd->poll_list, &list);
6742 	local_irq_enable();
6743 
6744 	for (;;) {
6745 		struct napi_struct *n;
6746 
6747 		skb_defer_free_flush(sd);
6748 
6749 		if (list_empty(&list)) {
6750 			if (list_empty(&repoll)) {
6751 				sd->in_net_rx_action = false;
6752 				barrier();
6753 				/* We need to check if ____napi_schedule()
6754 				 * had refilled poll_list while
6755 				 * sd->in_net_rx_action was true.
6756 				 */
6757 				if (!list_empty(&sd->poll_list))
6758 					goto start;
6759 				if (!sd_has_rps_ipi_waiting(sd))
6760 					goto end;
6761 			}
6762 			break;
6763 		}
6764 
6765 		n = list_first_entry(&list, struct napi_struct, poll_list);
6766 		budget -= napi_poll(n, &repoll);
6767 
6768 		/* If softirq window is exhausted then punt.
6769 		 * Allow this to run for 2 jiffies since which will allow
6770 		 * an average latency of 1.5/HZ.
6771 		 */
6772 		if (unlikely(budget <= 0 ||
6773 			     time_after_eq(jiffies, time_limit))) {
6774 			sd->time_squeeze++;
6775 			break;
6776 		}
6777 	}
6778 
6779 	local_irq_disable();
6780 
6781 	list_splice_tail_init(&sd->poll_list, &list);
6782 	list_splice_tail(&repoll, &list);
6783 	list_splice(&list, &sd->poll_list);
6784 	if (!list_empty(&sd->poll_list))
6785 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6786 	else
6787 		sd->in_net_rx_action = false;
6788 
6789 	net_rps_action_and_irq_enable(sd);
6790 end:;
6791 }
6792 
6793 struct netdev_adjacent {
6794 	struct net_device *dev;
6795 	netdevice_tracker dev_tracker;
6796 
6797 	/* upper master flag, there can only be one master device per list */
6798 	bool master;
6799 
6800 	/* lookup ignore flag */
6801 	bool ignore;
6802 
6803 	/* counter for the number of times this device was added to us */
6804 	u16 ref_nr;
6805 
6806 	/* private field for the users */
6807 	void *private;
6808 
6809 	struct list_head list;
6810 	struct rcu_head rcu;
6811 };
6812 
6813 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6814 						 struct list_head *adj_list)
6815 {
6816 	struct netdev_adjacent *adj;
6817 
6818 	list_for_each_entry(adj, adj_list, list) {
6819 		if (adj->dev == adj_dev)
6820 			return adj;
6821 	}
6822 	return NULL;
6823 }
6824 
6825 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6826 				    struct netdev_nested_priv *priv)
6827 {
6828 	struct net_device *dev = (struct net_device *)priv->data;
6829 
6830 	return upper_dev == dev;
6831 }
6832 
6833 /**
6834  * netdev_has_upper_dev - Check if device is linked to an upper device
6835  * @dev: device
6836  * @upper_dev: upper device to check
6837  *
6838  * Find out if a device is linked to specified upper device and return true
6839  * in case it is. Note that this checks only immediate upper device,
6840  * not through a complete stack of devices. The caller must hold the RTNL lock.
6841  */
6842 bool netdev_has_upper_dev(struct net_device *dev,
6843 			  struct net_device *upper_dev)
6844 {
6845 	struct netdev_nested_priv priv = {
6846 		.data = (void *)upper_dev,
6847 	};
6848 
6849 	ASSERT_RTNL();
6850 
6851 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6852 					     &priv);
6853 }
6854 EXPORT_SYMBOL(netdev_has_upper_dev);
6855 
6856 /**
6857  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6858  * @dev: device
6859  * @upper_dev: upper device to check
6860  *
6861  * Find out if a device is linked to specified upper device and return true
6862  * in case it is. Note that this checks the entire upper device chain.
6863  * The caller must hold rcu lock.
6864  */
6865 
6866 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6867 				  struct net_device *upper_dev)
6868 {
6869 	struct netdev_nested_priv priv = {
6870 		.data = (void *)upper_dev,
6871 	};
6872 
6873 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6874 					       &priv);
6875 }
6876 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6877 
6878 /**
6879  * netdev_has_any_upper_dev - Check if device is linked to some device
6880  * @dev: device
6881  *
6882  * Find out if a device is linked to an upper device and return true in case
6883  * it is. The caller must hold the RTNL lock.
6884  */
6885 bool netdev_has_any_upper_dev(struct net_device *dev)
6886 {
6887 	ASSERT_RTNL();
6888 
6889 	return !list_empty(&dev->adj_list.upper);
6890 }
6891 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6892 
6893 /**
6894  * netdev_master_upper_dev_get - Get master upper device
6895  * @dev: device
6896  *
6897  * Find a master upper device and return pointer to it or NULL in case
6898  * it's not there. The caller must hold the RTNL lock.
6899  */
6900 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6901 {
6902 	struct netdev_adjacent *upper;
6903 
6904 	ASSERT_RTNL();
6905 
6906 	if (list_empty(&dev->adj_list.upper))
6907 		return NULL;
6908 
6909 	upper = list_first_entry(&dev->adj_list.upper,
6910 				 struct netdev_adjacent, list);
6911 	if (likely(upper->master))
6912 		return upper->dev;
6913 	return NULL;
6914 }
6915 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6916 
6917 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6918 {
6919 	struct netdev_adjacent *upper;
6920 
6921 	ASSERT_RTNL();
6922 
6923 	if (list_empty(&dev->adj_list.upper))
6924 		return NULL;
6925 
6926 	upper = list_first_entry(&dev->adj_list.upper,
6927 				 struct netdev_adjacent, list);
6928 	if (likely(upper->master) && !upper->ignore)
6929 		return upper->dev;
6930 	return NULL;
6931 }
6932 
6933 /**
6934  * netdev_has_any_lower_dev - Check if device is linked to some device
6935  * @dev: device
6936  *
6937  * Find out if a device is linked to a lower device and return true in case
6938  * it is. The caller must hold the RTNL lock.
6939  */
6940 static bool netdev_has_any_lower_dev(struct net_device *dev)
6941 {
6942 	ASSERT_RTNL();
6943 
6944 	return !list_empty(&dev->adj_list.lower);
6945 }
6946 
6947 void *netdev_adjacent_get_private(struct list_head *adj_list)
6948 {
6949 	struct netdev_adjacent *adj;
6950 
6951 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6952 
6953 	return adj->private;
6954 }
6955 EXPORT_SYMBOL(netdev_adjacent_get_private);
6956 
6957 /**
6958  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6959  * @dev: device
6960  * @iter: list_head ** of the current position
6961  *
6962  * Gets the next device from the dev's upper list, starting from iter
6963  * position. The caller must hold RCU read lock.
6964  */
6965 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6966 						 struct list_head **iter)
6967 {
6968 	struct netdev_adjacent *upper;
6969 
6970 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6971 
6972 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6973 
6974 	if (&upper->list == &dev->adj_list.upper)
6975 		return NULL;
6976 
6977 	*iter = &upper->list;
6978 
6979 	return upper->dev;
6980 }
6981 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6982 
6983 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6984 						  struct list_head **iter,
6985 						  bool *ignore)
6986 {
6987 	struct netdev_adjacent *upper;
6988 
6989 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6990 
6991 	if (&upper->list == &dev->adj_list.upper)
6992 		return NULL;
6993 
6994 	*iter = &upper->list;
6995 	*ignore = upper->ignore;
6996 
6997 	return upper->dev;
6998 }
6999 
7000 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7001 						    struct list_head **iter)
7002 {
7003 	struct netdev_adjacent *upper;
7004 
7005 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7006 
7007 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7008 
7009 	if (&upper->list == &dev->adj_list.upper)
7010 		return NULL;
7011 
7012 	*iter = &upper->list;
7013 
7014 	return upper->dev;
7015 }
7016 
7017 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7018 				       int (*fn)(struct net_device *dev,
7019 					 struct netdev_nested_priv *priv),
7020 				       struct netdev_nested_priv *priv)
7021 {
7022 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7023 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7024 	int ret, cur = 0;
7025 	bool ignore;
7026 
7027 	now = dev;
7028 	iter = &dev->adj_list.upper;
7029 
7030 	while (1) {
7031 		if (now != dev) {
7032 			ret = fn(now, priv);
7033 			if (ret)
7034 				return ret;
7035 		}
7036 
7037 		next = NULL;
7038 		while (1) {
7039 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7040 			if (!udev)
7041 				break;
7042 			if (ignore)
7043 				continue;
7044 
7045 			next = udev;
7046 			niter = &udev->adj_list.upper;
7047 			dev_stack[cur] = now;
7048 			iter_stack[cur++] = iter;
7049 			break;
7050 		}
7051 
7052 		if (!next) {
7053 			if (!cur)
7054 				return 0;
7055 			next = dev_stack[--cur];
7056 			niter = iter_stack[cur];
7057 		}
7058 
7059 		now = next;
7060 		iter = niter;
7061 	}
7062 
7063 	return 0;
7064 }
7065 
7066 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7067 				  int (*fn)(struct net_device *dev,
7068 					    struct netdev_nested_priv *priv),
7069 				  struct netdev_nested_priv *priv)
7070 {
7071 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7072 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7073 	int ret, cur = 0;
7074 
7075 	now = dev;
7076 	iter = &dev->adj_list.upper;
7077 
7078 	while (1) {
7079 		if (now != dev) {
7080 			ret = fn(now, priv);
7081 			if (ret)
7082 				return ret;
7083 		}
7084 
7085 		next = NULL;
7086 		while (1) {
7087 			udev = netdev_next_upper_dev_rcu(now, &iter);
7088 			if (!udev)
7089 				break;
7090 
7091 			next = udev;
7092 			niter = &udev->adj_list.upper;
7093 			dev_stack[cur] = now;
7094 			iter_stack[cur++] = iter;
7095 			break;
7096 		}
7097 
7098 		if (!next) {
7099 			if (!cur)
7100 				return 0;
7101 			next = dev_stack[--cur];
7102 			niter = iter_stack[cur];
7103 		}
7104 
7105 		now = next;
7106 		iter = niter;
7107 	}
7108 
7109 	return 0;
7110 }
7111 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7112 
7113 static bool __netdev_has_upper_dev(struct net_device *dev,
7114 				   struct net_device *upper_dev)
7115 {
7116 	struct netdev_nested_priv priv = {
7117 		.flags = 0,
7118 		.data = (void *)upper_dev,
7119 	};
7120 
7121 	ASSERT_RTNL();
7122 
7123 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7124 					   &priv);
7125 }
7126 
7127 /**
7128  * netdev_lower_get_next_private - Get the next ->private from the
7129  *				   lower neighbour list
7130  * @dev: device
7131  * @iter: list_head ** of the current position
7132  *
7133  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7134  * list, starting from iter position. The caller must hold either hold the
7135  * RTNL lock or its own locking that guarantees that the neighbour lower
7136  * list will remain unchanged.
7137  */
7138 void *netdev_lower_get_next_private(struct net_device *dev,
7139 				    struct list_head **iter)
7140 {
7141 	struct netdev_adjacent *lower;
7142 
7143 	lower = list_entry(*iter, struct netdev_adjacent, list);
7144 
7145 	if (&lower->list == &dev->adj_list.lower)
7146 		return NULL;
7147 
7148 	*iter = lower->list.next;
7149 
7150 	return lower->private;
7151 }
7152 EXPORT_SYMBOL(netdev_lower_get_next_private);
7153 
7154 /**
7155  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7156  *				       lower neighbour list, RCU
7157  *				       variant
7158  * @dev: device
7159  * @iter: list_head ** of the current position
7160  *
7161  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7162  * list, starting from iter position. The caller must hold RCU read lock.
7163  */
7164 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7165 					struct list_head **iter)
7166 {
7167 	struct netdev_adjacent *lower;
7168 
7169 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7170 
7171 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7172 
7173 	if (&lower->list == &dev->adj_list.lower)
7174 		return NULL;
7175 
7176 	*iter = &lower->list;
7177 
7178 	return lower->private;
7179 }
7180 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7181 
7182 /**
7183  * netdev_lower_get_next - Get the next device from the lower neighbour
7184  *                         list
7185  * @dev: device
7186  * @iter: list_head ** of the current position
7187  *
7188  * Gets the next netdev_adjacent from the dev's lower neighbour
7189  * list, starting from iter position. The caller must hold RTNL lock or
7190  * its own locking that guarantees that the neighbour lower
7191  * list will remain unchanged.
7192  */
7193 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7194 {
7195 	struct netdev_adjacent *lower;
7196 
7197 	lower = list_entry(*iter, struct netdev_adjacent, list);
7198 
7199 	if (&lower->list == &dev->adj_list.lower)
7200 		return NULL;
7201 
7202 	*iter = lower->list.next;
7203 
7204 	return lower->dev;
7205 }
7206 EXPORT_SYMBOL(netdev_lower_get_next);
7207 
7208 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7209 						struct list_head **iter)
7210 {
7211 	struct netdev_adjacent *lower;
7212 
7213 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7214 
7215 	if (&lower->list == &dev->adj_list.lower)
7216 		return NULL;
7217 
7218 	*iter = &lower->list;
7219 
7220 	return lower->dev;
7221 }
7222 
7223 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7224 						  struct list_head **iter,
7225 						  bool *ignore)
7226 {
7227 	struct netdev_adjacent *lower;
7228 
7229 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7230 
7231 	if (&lower->list == &dev->adj_list.lower)
7232 		return NULL;
7233 
7234 	*iter = &lower->list;
7235 	*ignore = lower->ignore;
7236 
7237 	return lower->dev;
7238 }
7239 
7240 int netdev_walk_all_lower_dev(struct net_device *dev,
7241 			      int (*fn)(struct net_device *dev,
7242 					struct netdev_nested_priv *priv),
7243 			      struct netdev_nested_priv *priv)
7244 {
7245 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7246 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7247 	int ret, cur = 0;
7248 
7249 	now = dev;
7250 	iter = &dev->adj_list.lower;
7251 
7252 	while (1) {
7253 		if (now != dev) {
7254 			ret = fn(now, priv);
7255 			if (ret)
7256 				return ret;
7257 		}
7258 
7259 		next = NULL;
7260 		while (1) {
7261 			ldev = netdev_next_lower_dev(now, &iter);
7262 			if (!ldev)
7263 				break;
7264 
7265 			next = ldev;
7266 			niter = &ldev->adj_list.lower;
7267 			dev_stack[cur] = now;
7268 			iter_stack[cur++] = iter;
7269 			break;
7270 		}
7271 
7272 		if (!next) {
7273 			if (!cur)
7274 				return 0;
7275 			next = dev_stack[--cur];
7276 			niter = iter_stack[cur];
7277 		}
7278 
7279 		now = next;
7280 		iter = niter;
7281 	}
7282 
7283 	return 0;
7284 }
7285 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7286 
7287 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7288 				       int (*fn)(struct net_device *dev,
7289 					 struct netdev_nested_priv *priv),
7290 				       struct netdev_nested_priv *priv)
7291 {
7292 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7293 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7294 	int ret, cur = 0;
7295 	bool ignore;
7296 
7297 	now = dev;
7298 	iter = &dev->adj_list.lower;
7299 
7300 	while (1) {
7301 		if (now != dev) {
7302 			ret = fn(now, priv);
7303 			if (ret)
7304 				return ret;
7305 		}
7306 
7307 		next = NULL;
7308 		while (1) {
7309 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7310 			if (!ldev)
7311 				break;
7312 			if (ignore)
7313 				continue;
7314 
7315 			next = ldev;
7316 			niter = &ldev->adj_list.lower;
7317 			dev_stack[cur] = now;
7318 			iter_stack[cur++] = iter;
7319 			break;
7320 		}
7321 
7322 		if (!next) {
7323 			if (!cur)
7324 				return 0;
7325 			next = dev_stack[--cur];
7326 			niter = iter_stack[cur];
7327 		}
7328 
7329 		now = next;
7330 		iter = niter;
7331 	}
7332 
7333 	return 0;
7334 }
7335 
7336 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7337 					     struct list_head **iter)
7338 {
7339 	struct netdev_adjacent *lower;
7340 
7341 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7342 	if (&lower->list == &dev->adj_list.lower)
7343 		return NULL;
7344 
7345 	*iter = &lower->list;
7346 
7347 	return lower->dev;
7348 }
7349 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7350 
7351 static u8 __netdev_upper_depth(struct net_device *dev)
7352 {
7353 	struct net_device *udev;
7354 	struct list_head *iter;
7355 	u8 max_depth = 0;
7356 	bool ignore;
7357 
7358 	for (iter = &dev->adj_list.upper,
7359 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7360 	     udev;
7361 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7362 		if (ignore)
7363 			continue;
7364 		if (max_depth < udev->upper_level)
7365 			max_depth = udev->upper_level;
7366 	}
7367 
7368 	return max_depth;
7369 }
7370 
7371 static u8 __netdev_lower_depth(struct net_device *dev)
7372 {
7373 	struct net_device *ldev;
7374 	struct list_head *iter;
7375 	u8 max_depth = 0;
7376 	bool ignore;
7377 
7378 	for (iter = &dev->adj_list.lower,
7379 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7380 	     ldev;
7381 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7382 		if (ignore)
7383 			continue;
7384 		if (max_depth < ldev->lower_level)
7385 			max_depth = ldev->lower_level;
7386 	}
7387 
7388 	return max_depth;
7389 }
7390 
7391 static int __netdev_update_upper_level(struct net_device *dev,
7392 				       struct netdev_nested_priv *__unused)
7393 {
7394 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7395 	return 0;
7396 }
7397 
7398 #ifdef CONFIG_LOCKDEP
7399 static LIST_HEAD(net_unlink_list);
7400 
7401 static void net_unlink_todo(struct net_device *dev)
7402 {
7403 	if (list_empty(&dev->unlink_list))
7404 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7405 }
7406 #endif
7407 
7408 static int __netdev_update_lower_level(struct net_device *dev,
7409 				       struct netdev_nested_priv *priv)
7410 {
7411 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7412 
7413 #ifdef CONFIG_LOCKDEP
7414 	if (!priv)
7415 		return 0;
7416 
7417 	if (priv->flags & NESTED_SYNC_IMM)
7418 		dev->nested_level = dev->lower_level - 1;
7419 	if (priv->flags & NESTED_SYNC_TODO)
7420 		net_unlink_todo(dev);
7421 #endif
7422 	return 0;
7423 }
7424 
7425 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7426 				  int (*fn)(struct net_device *dev,
7427 					    struct netdev_nested_priv *priv),
7428 				  struct netdev_nested_priv *priv)
7429 {
7430 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7431 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7432 	int ret, cur = 0;
7433 
7434 	now = dev;
7435 	iter = &dev->adj_list.lower;
7436 
7437 	while (1) {
7438 		if (now != dev) {
7439 			ret = fn(now, priv);
7440 			if (ret)
7441 				return ret;
7442 		}
7443 
7444 		next = NULL;
7445 		while (1) {
7446 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7447 			if (!ldev)
7448 				break;
7449 
7450 			next = ldev;
7451 			niter = &ldev->adj_list.lower;
7452 			dev_stack[cur] = now;
7453 			iter_stack[cur++] = iter;
7454 			break;
7455 		}
7456 
7457 		if (!next) {
7458 			if (!cur)
7459 				return 0;
7460 			next = dev_stack[--cur];
7461 			niter = iter_stack[cur];
7462 		}
7463 
7464 		now = next;
7465 		iter = niter;
7466 	}
7467 
7468 	return 0;
7469 }
7470 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7471 
7472 /**
7473  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7474  *				       lower neighbour list, RCU
7475  *				       variant
7476  * @dev: device
7477  *
7478  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7479  * list. The caller must hold RCU read lock.
7480  */
7481 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7482 {
7483 	struct netdev_adjacent *lower;
7484 
7485 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7486 			struct netdev_adjacent, list);
7487 	if (lower)
7488 		return lower->private;
7489 	return NULL;
7490 }
7491 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7492 
7493 /**
7494  * netdev_master_upper_dev_get_rcu - Get master upper device
7495  * @dev: device
7496  *
7497  * Find a master upper device and return pointer to it or NULL in case
7498  * it's not there. The caller must hold the RCU read lock.
7499  */
7500 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7501 {
7502 	struct netdev_adjacent *upper;
7503 
7504 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7505 				       struct netdev_adjacent, list);
7506 	if (upper && likely(upper->master))
7507 		return upper->dev;
7508 	return NULL;
7509 }
7510 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7511 
7512 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7513 			      struct net_device *adj_dev,
7514 			      struct list_head *dev_list)
7515 {
7516 	char linkname[IFNAMSIZ+7];
7517 
7518 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7519 		"upper_%s" : "lower_%s", adj_dev->name);
7520 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7521 				 linkname);
7522 }
7523 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7524 			       char *name,
7525 			       struct list_head *dev_list)
7526 {
7527 	char linkname[IFNAMSIZ+7];
7528 
7529 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7530 		"upper_%s" : "lower_%s", name);
7531 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7532 }
7533 
7534 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7535 						 struct net_device *adj_dev,
7536 						 struct list_head *dev_list)
7537 {
7538 	return (dev_list == &dev->adj_list.upper ||
7539 		dev_list == &dev->adj_list.lower) &&
7540 		net_eq(dev_net(dev), dev_net(adj_dev));
7541 }
7542 
7543 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7544 					struct net_device *adj_dev,
7545 					struct list_head *dev_list,
7546 					void *private, bool master)
7547 {
7548 	struct netdev_adjacent *adj;
7549 	int ret;
7550 
7551 	adj = __netdev_find_adj(adj_dev, dev_list);
7552 
7553 	if (adj) {
7554 		adj->ref_nr += 1;
7555 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7556 			 dev->name, adj_dev->name, adj->ref_nr);
7557 
7558 		return 0;
7559 	}
7560 
7561 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7562 	if (!adj)
7563 		return -ENOMEM;
7564 
7565 	adj->dev = adj_dev;
7566 	adj->master = master;
7567 	adj->ref_nr = 1;
7568 	adj->private = private;
7569 	adj->ignore = false;
7570 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7571 
7572 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7573 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7574 
7575 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7576 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7577 		if (ret)
7578 			goto free_adj;
7579 	}
7580 
7581 	/* Ensure that master link is always the first item in list. */
7582 	if (master) {
7583 		ret = sysfs_create_link(&(dev->dev.kobj),
7584 					&(adj_dev->dev.kobj), "master");
7585 		if (ret)
7586 			goto remove_symlinks;
7587 
7588 		list_add_rcu(&adj->list, dev_list);
7589 	} else {
7590 		list_add_tail_rcu(&adj->list, dev_list);
7591 	}
7592 
7593 	return 0;
7594 
7595 remove_symlinks:
7596 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7597 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7598 free_adj:
7599 	netdev_put(adj_dev, &adj->dev_tracker);
7600 	kfree(adj);
7601 
7602 	return ret;
7603 }
7604 
7605 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7606 					 struct net_device *adj_dev,
7607 					 u16 ref_nr,
7608 					 struct list_head *dev_list)
7609 {
7610 	struct netdev_adjacent *adj;
7611 
7612 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7613 		 dev->name, adj_dev->name, ref_nr);
7614 
7615 	adj = __netdev_find_adj(adj_dev, dev_list);
7616 
7617 	if (!adj) {
7618 		pr_err("Adjacency does not exist for device %s from %s\n",
7619 		       dev->name, adj_dev->name);
7620 		WARN_ON(1);
7621 		return;
7622 	}
7623 
7624 	if (adj->ref_nr > ref_nr) {
7625 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7626 			 dev->name, adj_dev->name, ref_nr,
7627 			 adj->ref_nr - ref_nr);
7628 		adj->ref_nr -= ref_nr;
7629 		return;
7630 	}
7631 
7632 	if (adj->master)
7633 		sysfs_remove_link(&(dev->dev.kobj), "master");
7634 
7635 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7636 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7637 
7638 	list_del_rcu(&adj->list);
7639 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7640 		 adj_dev->name, dev->name, adj_dev->name);
7641 	netdev_put(adj_dev, &adj->dev_tracker);
7642 	kfree_rcu(adj, rcu);
7643 }
7644 
7645 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7646 					    struct net_device *upper_dev,
7647 					    struct list_head *up_list,
7648 					    struct list_head *down_list,
7649 					    void *private, bool master)
7650 {
7651 	int ret;
7652 
7653 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7654 					   private, master);
7655 	if (ret)
7656 		return ret;
7657 
7658 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7659 					   private, false);
7660 	if (ret) {
7661 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7662 		return ret;
7663 	}
7664 
7665 	return 0;
7666 }
7667 
7668 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7669 					       struct net_device *upper_dev,
7670 					       u16 ref_nr,
7671 					       struct list_head *up_list,
7672 					       struct list_head *down_list)
7673 {
7674 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7675 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7676 }
7677 
7678 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7679 						struct net_device *upper_dev,
7680 						void *private, bool master)
7681 {
7682 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7683 						&dev->adj_list.upper,
7684 						&upper_dev->adj_list.lower,
7685 						private, master);
7686 }
7687 
7688 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7689 						   struct net_device *upper_dev)
7690 {
7691 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7692 					   &dev->adj_list.upper,
7693 					   &upper_dev->adj_list.lower);
7694 }
7695 
7696 static int __netdev_upper_dev_link(struct net_device *dev,
7697 				   struct net_device *upper_dev, bool master,
7698 				   void *upper_priv, void *upper_info,
7699 				   struct netdev_nested_priv *priv,
7700 				   struct netlink_ext_ack *extack)
7701 {
7702 	struct netdev_notifier_changeupper_info changeupper_info = {
7703 		.info = {
7704 			.dev = dev,
7705 			.extack = extack,
7706 		},
7707 		.upper_dev = upper_dev,
7708 		.master = master,
7709 		.linking = true,
7710 		.upper_info = upper_info,
7711 	};
7712 	struct net_device *master_dev;
7713 	int ret = 0;
7714 
7715 	ASSERT_RTNL();
7716 
7717 	if (dev == upper_dev)
7718 		return -EBUSY;
7719 
7720 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7721 	if (__netdev_has_upper_dev(upper_dev, dev))
7722 		return -EBUSY;
7723 
7724 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7725 		return -EMLINK;
7726 
7727 	if (!master) {
7728 		if (__netdev_has_upper_dev(dev, upper_dev))
7729 			return -EEXIST;
7730 	} else {
7731 		master_dev = __netdev_master_upper_dev_get(dev);
7732 		if (master_dev)
7733 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7734 	}
7735 
7736 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7737 					    &changeupper_info.info);
7738 	ret = notifier_to_errno(ret);
7739 	if (ret)
7740 		return ret;
7741 
7742 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7743 						   master);
7744 	if (ret)
7745 		return ret;
7746 
7747 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7748 					    &changeupper_info.info);
7749 	ret = notifier_to_errno(ret);
7750 	if (ret)
7751 		goto rollback;
7752 
7753 	__netdev_update_upper_level(dev, NULL);
7754 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7755 
7756 	__netdev_update_lower_level(upper_dev, priv);
7757 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7758 				    priv);
7759 
7760 	return 0;
7761 
7762 rollback:
7763 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7764 
7765 	return ret;
7766 }
7767 
7768 /**
7769  * netdev_upper_dev_link - Add a link to the upper device
7770  * @dev: device
7771  * @upper_dev: new upper device
7772  * @extack: netlink extended ack
7773  *
7774  * Adds a link to device which is upper to this one. The caller must hold
7775  * the RTNL lock. On a failure a negative errno code is returned.
7776  * On success the reference counts are adjusted and the function
7777  * returns zero.
7778  */
7779 int netdev_upper_dev_link(struct net_device *dev,
7780 			  struct net_device *upper_dev,
7781 			  struct netlink_ext_ack *extack)
7782 {
7783 	struct netdev_nested_priv priv = {
7784 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7785 		.data = NULL,
7786 	};
7787 
7788 	return __netdev_upper_dev_link(dev, upper_dev, false,
7789 				       NULL, NULL, &priv, extack);
7790 }
7791 EXPORT_SYMBOL(netdev_upper_dev_link);
7792 
7793 /**
7794  * netdev_master_upper_dev_link - Add a master link to the upper device
7795  * @dev: device
7796  * @upper_dev: new upper device
7797  * @upper_priv: upper device private
7798  * @upper_info: upper info to be passed down via notifier
7799  * @extack: netlink extended ack
7800  *
7801  * Adds a link to device which is upper to this one. In this case, only
7802  * one master upper device can be linked, although other non-master devices
7803  * might be linked as well. The caller must hold the RTNL lock.
7804  * On a failure a negative errno code is returned. On success the reference
7805  * counts are adjusted and the function returns zero.
7806  */
7807 int netdev_master_upper_dev_link(struct net_device *dev,
7808 				 struct net_device *upper_dev,
7809 				 void *upper_priv, void *upper_info,
7810 				 struct netlink_ext_ack *extack)
7811 {
7812 	struct netdev_nested_priv priv = {
7813 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7814 		.data = NULL,
7815 	};
7816 
7817 	return __netdev_upper_dev_link(dev, upper_dev, true,
7818 				       upper_priv, upper_info, &priv, extack);
7819 }
7820 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7821 
7822 static void __netdev_upper_dev_unlink(struct net_device *dev,
7823 				      struct net_device *upper_dev,
7824 				      struct netdev_nested_priv *priv)
7825 {
7826 	struct netdev_notifier_changeupper_info changeupper_info = {
7827 		.info = {
7828 			.dev = dev,
7829 		},
7830 		.upper_dev = upper_dev,
7831 		.linking = false,
7832 	};
7833 
7834 	ASSERT_RTNL();
7835 
7836 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7837 
7838 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7839 				      &changeupper_info.info);
7840 
7841 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7842 
7843 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7844 				      &changeupper_info.info);
7845 
7846 	__netdev_update_upper_level(dev, NULL);
7847 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7848 
7849 	__netdev_update_lower_level(upper_dev, priv);
7850 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7851 				    priv);
7852 }
7853 
7854 /**
7855  * netdev_upper_dev_unlink - Removes a link to upper device
7856  * @dev: device
7857  * @upper_dev: new upper device
7858  *
7859  * Removes a link to device which is upper to this one. The caller must hold
7860  * the RTNL lock.
7861  */
7862 void netdev_upper_dev_unlink(struct net_device *dev,
7863 			     struct net_device *upper_dev)
7864 {
7865 	struct netdev_nested_priv priv = {
7866 		.flags = NESTED_SYNC_TODO,
7867 		.data = NULL,
7868 	};
7869 
7870 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7871 }
7872 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7873 
7874 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7875 				      struct net_device *lower_dev,
7876 				      bool val)
7877 {
7878 	struct netdev_adjacent *adj;
7879 
7880 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7881 	if (adj)
7882 		adj->ignore = val;
7883 
7884 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7885 	if (adj)
7886 		adj->ignore = val;
7887 }
7888 
7889 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7890 					struct net_device *lower_dev)
7891 {
7892 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7893 }
7894 
7895 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7896 				       struct net_device *lower_dev)
7897 {
7898 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7899 }
7900 
7901 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7902 				   struct net_device *new_dev,
7903 				   struct net_device *dev,
7904 				   struct netlink_ext_ack *extack)
7905 {
7906 	struct netdev_nested_priv priv = {
7907 		.flags = 0,
7908 		.data = NULL,
7909 	};
7910 	int err;
7911 
7912 	if (!new_dev)
7913 		return 0;
7914 
7915 	if (old_dev && new_dev != old_dev)
7916 		netdev_adjacent_dev_disable(dev, old_dev);
7917 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7918 				      extack);
7919 	if (err) {
7920 		if (old_dev && new_dev != old_dev)
7921 			netdev_adjacent_dev_enable(dev, old_dev);
7922 		return err;
7923 	}
7924 
7925 	return 0;
7926 }
7927 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7928 
7929 void netdev_adjacent_change_commit(struct net_device *old_dev,
7930 				   struct net_device *new_dev,
7931 				   struct net_device *dev)
7932 {
7933 	struct netdev_nested_priv priv = {
7934 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7935 		.data = NULL,
7936 	};
7937 
7938 	if (!new_dev || !old_dev)
7939 		return;
7940 
7941 	if (new_dev == old_dev)
7942 		return;
7943 
7944 	netdev_adjacent_dev_enable(dev, old_dev);
7945 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
7946 }
7947 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7948 
7949 void netdev_adjacent_change_abort(struct net_device *old_dev,
7950 				  struct net_device *new_dev,
7951 				  struct net_device *dev)
7952 {
7953 	struct netdev_nested_priv priv = {
7954 		.flags = 0,
7955 		.data = NULL,
7956 	};
7957 
7958 	if (!new_dev)
7959 		return;
7960 
7961 	if (old_dev && new_dev != old_dev)
7962 		netdev_adjacent_dev_enable(dev, old_dev);
7963 
7964 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
7965 }
7966 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7967 
7968 /**
7969  * netdev_bonding_info_change - Dispatch event about slave change
7970  * @dev: device
7971  * @bonding_info: info to dispatch
7972  *
7973  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7974  * The caller must hold the RTNL lock.
7975  */
7976 void netdev_bonding_info_change(struct net_device *dev,
7977 				struct netdev_bonding_info *bonding_info)
7978 {
7979 	struct netdev_notifier_bonding_info info = {
7980 		.info.dev = dev,
7981 	};
7982 
7983 	memcpy(&info.bonding_info, bonding_info,
7984 	       sizeof(struct netdev_bonding_info));
7985 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7986 				      &info.info);
7987 }
7988 EXPORT_SYMBOL(netdev_bonding_info_change);
7989 
7990 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7991 					   struct netlink_ext_ack *extack)
7992 {
7993 	struct netdev_notifier_offload_xstats_info info = {
7994 		.info.dev = dev,
7995 		.info.extack = extack,
7996 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7997 	};
7998 	int err;
7999 	int rc;
8000 
8001 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8002 					 GFP_KERNEL);
8003 	if (!dev->offload_xstats_l3)
8004 		return -ENOMEM;
8005 
8006 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8007 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8008 						  &info.info);
8009 	err = notifier_to_errno(rc);
8010 	if (err)
8011 		goto free_stats;
8012 
8013 	return 0;
8014 
8015 free_stats:
8016 	kfree(dev->offload_xstats_l3);
8017 	dev->offload_xstats_l3 = NULL;
8018 	return err;
8019 }
8020 
8021 int netdev_offload_xstats_enable(struct net_device *dev,
8022 				 enum netdev_offload_xstats_type type,
8023 				 struct netlink_ext_ack *extack)
8024 {
8025 	ASSERT_RTNL();
8026 
8027 	if (netdev_offload_xstats_enabled(dev, type))
8028 		return -EALREADY;
8029 
8030 	switch (type) {
8031 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8032 		return netdev_offload_xstats_enable_l3(dev, extack);
8033 	}
8034 
8035 	WARN_ON(1);
8036 	return -EINVAL;
8037 }
8038 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8039 
8040 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8041 {
8042 	struct netdev_notifier_offload_xstats_info info = {
8043 		.info.dev = dev,
8044 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8045 	};
8046 
8047 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8048 				      &info.info);
8049 	kfree(dev->offload_xstats_l3);
8050 	dev->offload_xstats_l3 = NULL;
8051 }
8052 
8053 int netdev_offload_xstats_disable(struct net_device *dev,
8054 				  enum netdev_offload_xstats_type type)
8055 {
8056 	ASSERT_RTNL();
8057 
8058 	if (!netdev_offload_xstats_enabled(dev, type))
8059 		return -EALREADY;
8060 
8061 	switch (type) {
8062 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8063 		netdev_offload_xstats_disable_l3(dev);
8064 		return 0;
8065 	}
8066 
8067 	WARN_ON(1);
8068 	return -EINVAL;
8069 }
8070 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8071 
8072 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8073 {
8074 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8075 }
8076 
8077 static struct rtnl_hw_stats64 *
8078 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8079 			      enum netdev_offload_xstats_type type)
8080 {
8081 	switch (type) {
8082 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8083 		return dev->offload_xstats_l3;
8084 	}
8085 
8086 	WARN_ON(1);
8087 	return NULL;
8088 }
8089 
8090 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8091 				   enum netdev_offload_xstats_type type)
8092 {
8093 	ASSERT_RTNL();
8094 
8095 	return netdev_offload_xstats_get_ptr(dev, type);
8096 }
8097 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8098 
8099 struct netdev_notifier_offload_xstats_ru {
8100 	bool used;
8101 };
8102 
8103 struct netdev_notifier_offload_xstats_rd {
8104 	struct rtnl_hw_stats64 stats;
8105 	bool used;
8106 };
8107 
8108 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8109 				  const struct rtnl_hw_stats64 *src)
8110 {
8111 	dest->rx_packets	  += src->rx_packets;
8112 	dest->tx_packets	  += src->tx_packets;
8113 	dest->rx_bytes		  += src->rx_bytes;
8114 	dest->tx_bytes		  += src->tx_bytes;
8115 	dest->rx_errors		  += src->rx_errors;
8116 	dest->tx_errors		  += src->tx_errors;
8117 	dest->rx_dropped	  += src->rx_dropped;
8118 	dest->tx_dropped	  += src->tx_dropped;
8119 	dest->multicast		  += src->multicast;
8120 }
8121 
8122 static int netdev_offload_xstats_get_used(struct net_device *dev,
8123 					  enum netdev_offload_xstats_type type,
8124 					  bool *p_used,
8125 					  struct netlink_ext_ack *extack)
8126 {
8127 	struct netdev_notifier_offload_xstats_ru report_used = {};
8128 	struct netdev_notifier_offload_xstats_info info = {
8129 		.info.dev = dev,
8130 		.info.extack = extack,
8131 		.type = type,
8132 		.report_used = &report_used,
8133 	};
8134 	int rc;
8135 
8136 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8137 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8138 					   &info.info);
8139 	*p_used = report_used.used;
8140 	return notifier_to_errno(rc);
8141 }
8142 
8143 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8144 					   enum netdev_offload_xstats_type type,
8145 					   struct rtnl_hw_stats64 *p_stats,
8146 					   bool *p_used,
8147 					   struct netlink_ext_ack *extack)
8148 {
8149 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8150 	struct netdev_notifier_offload_xstats_info info = {
8151 		.info.dev = dev,
8152 		.info.extack = extack,
8153 		.type = type,
8154 		.report_delta = &report_delta,
8155 	};
8156 	struct rtnl_hw_stats64 *stats;
8157 	int rc;
8158 
8159 	stats = netdev_offload_xstats_get_ptr(dev, type);
8160 	if (WARN_ON(!stats))
8161 		return -EINVAL;
8162 
8163 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8164 					   &info.info);
8165 
8166 	/* Cache whatever we got, even if there was an error, otherwise the
8167 	 * successful stats retrievals would get lost.
8168 	 */
8169 	netdev_hw_stats64_add(stats, &report_delta.stats);
8170 
8171 	if (p_stats)
8172 		*p_stats = *stats;
8173 	*p_used = report_delta.used;
8174 
8175 	return notifier_to_errno(rc);
8176 }
8177 
8178 int netdev_offload_xstats_get(struct net_device *dev,
8179 			      enum netdev_offload_xstats_type type,
8180 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8181 			      struct netlink_ext_ack *extack)
8182 {
8183 	ASSERT_RTNL();
8184 
8185 	if (p_stats)
8186 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8187 						       p_used, extack);
8188 	else
8189 		return netdev_offload_xstats_get_used(dev, type, p_used,
8190 						      extack);
8191 }
8192 EXPORT_SYMBOL(netdev_offload_xstats_get);
8193 
8194 void
8195 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8196 				   const struct rtnl_hw_stats64 *stats)
8197 {
8198 	report_delta->used = true;
8199 	netdev_hw_stats64_add(&report_delta->stats, stats);
8200 }
8201 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8202 
8203 void
8204 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8205 {
8206 	report_used->used = true;
8207 }
8208 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8209 
8210 void netdev_offload_xstats_push_delta(struct net_device *dev,
8211 				      enum netdev_offload_xstats_type type,
8212 				      const struct rtnl_hw_stats64 *p_stats)
8213 {
8214 	struct rtnl_hw_stats64 *stats;
8215 
8216 	ASSERT_RTNL();
8217 
8218 	stats = netdev_offload_xstats_get_ptr(dev, type);
8219 	if (WARN_ON(!stats))
8220 		return;
8221 
8222 	netdev_hw_stats64_add(stats, p_stats);
8223 }
8224 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8225 
8226 /**
8227  * netdev_get_xmit_slave - Get the xmit slave of master device
8228  * @dev: device
8229  * @skb: The packet
8230  * @all_slaves: assume all the slaves are active
8231  *
8232  * The reference counters are not incremented so the caller must be
8233  * careful with locks. The caller must hold RCU lock.
8234  * %NULL is returned if no slave is found.
8235  */
8236 
8237 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8238 					 struct sk_buff *skb,
8239 					 bool all_slaves)
8240 {
8241 	const struct net_device_ops *ops = dev->netdev_ops;
8242 
8243 	if (!ops->ndo_get_xmit_slave)
8244 		return NULL;
8245 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8246 }
8247 EXPORT_SYMBOL(netdev_get_xmit_slave);
8248 
8249 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8250 						  struct sock *sk)
8251 {
8252 	const struct net_device_ops *ops = dev->netdev_ops;
8253 
8254 	if (!ops->ndo_sk_get_lower_dev)
8255 		return NULL;
8256 	return ops->ndo_sk_get_lower_dev(dev, sk);
8257 }
8258 
8259 /**
8260  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8261  * @dev: device
8262  * @sk: the socket
8263  *
8264  * %NULL is returned if no lower device is found.
8265  */
8266 
8267 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8268 					    struct sock *sk)
8269 {
8270 	struct net_device *lower;
8271 
8272 	lower = netdev_sk_get_lower_dev(dev, sk);
8273 	while (lower) {
8274 		dev = lower;
8275 		lower = netdev_sk_get_lower_dev(dev, sk);
8276 	}
8277 
8278 	return dev;
8279 }
8280 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8281 
8282 static void netdev_adjacent_add_links(struct net_device *dev)
8283 {
8284 	struct netdev_adjacent *iter;
8285 
8286 	struct net *net = dev_net(dev);
8287 
8288 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8289 		if (!net_eq(net, dev_net(iter->dev)))
8290 			continue;
8291 		netdev_adjacent_sysfs_add(iter->dev, dev,
8292 					  &iter->dev->adj_list.lower);
8293 		netdev_adjacent_sysfs_add(dev, iter->dev,
8294 					  &dev->adj_list.upper);
8295 	}
8296 
8297 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8298 		if (!net_eq(net, dev_net(iter->dev)))
8299 			continue;
8300 		netdev_adjacent_sysfs_add(iter->dev, dev,
8301 					  &iter->dev->adj_list.upper);
8302 		netdev_adjacent_sysfs_add(dev, iter->dev,
8303 					  &dev->adj_list.lower);
8304 	}
8305 }
8306 
8307 static void netdev_adjacent_del_links(struct net_device *dev)
8308 {
8309 	struct netdev_adjacent *iter;
8310 
8311 	struct net *net = dev_net(dev);
8312 
8313 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8314 		if (!net_eq(net, dev_net(iter->dev)))
8315 			continue;
8316 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8317 					  &iter->dev->adj_list.lower);
8318 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8319 					  &dev->adj_list.upper);
8320 	}
8321 
8322 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8323 		if (!net_eq(net, dev_net(iter->dev)))
8324 			continue;
8325 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8326 					  &iter->dev->adj_list.upper);
8327 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8328 					  &dev->adj_list.lower);
8329 	}
8330 }
8331 
8332 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8333 {
8334 	struct netdev_adjacent *iter;
8335 
8336 	struct net *net = dev_net(dev);
8337 
8338 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8339 		if (!net_eq(net, dev_net(iter->dev)))
8340 			continue;
8341 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8342 					  &iter->dev->adj_list.lower);
8343 		netdev_adjacent_sysfs_add(iter->dev, dev,
8344 					  &iter->dev->adj_list.lower);
8345 	}
8346 
8347 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8348 		if (!net_eq(net, dev_net(iter->dev)))
8349 			continue;
8350 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8351 					  &iter->dev->adj_list.upper);
8352 		netdev_adjacent_sysfs_add(iter->dev, dev,
8353 					  &iter->dev->adj_list.upper);
8354 	}
8355 }
8356 
8357 void *netdev_lower_dev_get_private(struct net_device *dev,
8358 				   struct net_device *lower_dev)
8359 {
8360 	struct netdev_adjacent *lower;
8361 
8362 	if (!lower_dev)
8363 		return NULL;
8364 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8365 	if (!lower)
8366 		return NULL;
8367 
8368 	return lower->private;
8369 }
8370 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8371 
8372 
8373 /**
8374  * netdev_lower_state_changed - Dispatch event about lower device state change
8375  * @lower_dev: device
8376  * @lower_state_info: state to dispatch
8377  *
8378  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8379  * The caller must hold the RTNL lock.
8380  */
8381 void netdev_lower_state_changed(struct net_device *lower_dev,
8382 				void *lower_state_info)
8383 {
8384 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8385 		.info.dev = lower_dev,
8386 	};
8387 
8388 	ASSERT_RTNL();
8389 	changelowerstate_info.lower_state_info = lower_state_info;
8390 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8391 				      &changelowerstate_info.info);
8392 }
8393 EXPORT_SYMBOL(netdev_lower_state_changed);
8394 
8395 static void dev_change_rx_flags(struct net_device *dev, int flags)
8396 {
8397 	const struct net_device_ops *ops = dev->netdev_ops;
8398 
8399 	if (ops->ndo_change_rx_flags)
8400 		ops->ndo_change_rx_flags(dev, flags);
8401 }
8402 
8403 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8404 {
8405 	unsigned int old_flags = dev->flags;
8406 	kuid_t uid;
8407 	kgid_t gid;
8408 
8409 	ASSERT_RTNL();
8410 
8411 	dev->flags |= IFF_PROMISC;
8412 	dev->promiscuity += inc;
8413 	if (dev->promiscuity == 0) {
8414 		/*
8415 		 * Avoid overflow.
8416 		 * If inc causes overflow, untouch promisc and return error.
8417 		 */
8418 		if (inc < 0)
8419 			dev->flags &= ~IFF_PROMISC;
8420 		else {
8421 			dev->promiscuity -= inc;
8422 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8423 			return -EOVERFLOW;
8424 		}
8425 	}
8426 	if (dev->flags != old_flags) {
8427 		netdev_info(dev, "%s promiscuous mode\n",
8428 			    dev->flags & IFF_PROMISC ? "entered" : "left");
8429 		if (audit_enabled) {
8430 			current_uid_gid(&uid, &gid);
8431 			audit_log(audit_context(), GFP_ATOMIC,
8432 				  AUDIT_ANOM_PROMISCUOUS,
8433 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8434 				  dev->name, (dev->flags & IFF_PROMISC),
8435 				  (old_flags & IFF_PROMISC),
8436 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8437 				  from_kuid(&init_user_ns, uid),
8438 				  from_kgid(&init_user_ns, gid),
8439 				  audit_get_sessionid(current));
8440 		}
8441 
8442 		dev_change_rx_flags(dev, IFF_PROMISC);
8443 	}
8444 	if (notify)
8445 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8446 	return 0;
8447 }
8448 
8449 /**
8450  *	dev_set_promiscuity	- update promiscuity count on a device
8451  *	@dev: device
8452  *	@inc: modifier
8453  *
8454  *	Add or remove promiscuity from a device. While the count in the device
8455  *	remains above zero the interface remains promiscuous. Once it hits zero
8456  *	the device reverts back to normal filtering operation. A negative inc
8457  *	value is used to drop promiscuity on the device.
8458  *	Return 0 if successful or a negative errno code on error.
8459  */
8460 int dev_set_promiscuity(struct net_device *dev, int inc)
8461 {
8462 	unsigned int old_flags = dev->flags;
8463 	int err;
8464 
8465 	err = __dev_set_promiscuity(dev, inc, true);
8466 	if (err < 0)
8467 		return err;
8468 	if (dev->flags != old_flags)
8469 		dev_set_rx_mode(dev);
8470 	return err;
8471 }
8472 EXPORT_SYMBOL(dev_set_promiscuity);
8473 
8474 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8475 {
8476 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8477 
8478 	ASSERT_RTNL();
8479 
8480 	dev->flags |= IFF_ALLMULTI;
8481 	dev->allmulti += inc;
8482 	if (dev->allmulti == 0) {
8483 		/*
8484 		 * Avoid overflow.
8485 		 * If inc causes overflow, untouch allmulti and return error.
8486 		 */
8487 		if (inc < 0)
8488 			dev->flags &= ~IFF_ALLMULTI;
8489 		else {
8490 			dev->allmulti -= inc;
8491 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8492 			return -EOVERFLOW;
8493 		}
8494 	}
8495 	if (dev->flags ^ old_flags) {
8496 		netdev_info(dev, "%s allmulticast mode\n",
8497 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
8498 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8499 		dev_set_rx_mode(dev);
8500 		if (notify)
8501 			__dev_notify_flags(dev, old_flags,
8502 					   dev->gflags ^ old_gflags, 0, NULL);
8503 	}
8504 	return 0;
8505 }
8506 
8507 /**
8508  *	dev_set_allmulti	- update allmulti count on a device
8509  *	@dev: device
8510  *	@inc: modifier
8511  *
8512  *	Add or remove reception of all multicast frames to a device. While the
8513  *	count in the device remains above zero the interface remains listening
8514  *	to all interfaces. Once it hits zero the device reverts back to normal
8515  *	filtering operation. A negative @inc value is used to drop the counter
8516  *	when releasing a resource needing all multicasts.
8517  *	Return 0 if successful or a negative errno code on error.
8518  */
8519 
8520 int dev_set_allmulti(struct net_device *dev, int inc)
8521 {
8522 	return __dev_set_allmulti(dev, inc, true);
8523 }
8524 EXPORT_SYMBOL(dev_set_allmulti);
8525 
8526 /*
8527  *	Upload unicast and multicast address lists to device and
8528  *	configure RX filtering. When the device doesn't support unicast
8529  *	filtering it is put in promiscuous mode while unicast addresses
8530  *	are present.
8531  */
8532 void __dev_set_rx_mode(struct net_device *dev)
8533 {
8534 	const struct net_device_ops *ops = dev->netdev_ops;
8535 
8536 	/* dev_open will call this function so the list will stay sane. */
8537 	if (!(dev->flags&IFF_UP))
8538 		return;
8539 
8540 	if (!netif_device_present(dev))
8541 		return;
8542 
8543 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8544 		/* Unicast addresses changes may only happen under the rtnl,
8545 		 * therefore calling __dev_set_promiscuity here is safe.
8546 		 */
8547 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8548 			__dev_set_promiscuity(dev, 1, false);
8549 			dev->uc_promisc = true;
8550 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8551 			__dev_set_promiscuity(dev, -1, false);
8552 			dev->uc_promisc = false;
8553 		}
8554 	}
8555 
8556 	if (ops->ndo_set_rx_mode)
8557 		ops->ndo_set_rx_mode(dev);
8558 }
8559 
8560 void dev_set_rx_mode(struct net_device *dev)
8561 {
8562 	netif_addr_lock_bh(dev);
8563 	__dev_set_rx_mode(dev);
8564 	netif_addr_unlock_bh(dev);
8565 }
8566 
8567 /**
8568  *	dev_get_flags - get flags reported to userspace
8569  *	@dev: device
8570  *
8571  *	Get the combination of flag bits exported through APIs to userspace.
8572  */
8573 unsigned int dev_get_flags(const struct net_device *dev)
8574 {
8575 	unsigned int flags;
8576 
8577 	flags = (dev->flags & ~(IFF_PROMISC |
8578 				IFF_ALLMULTI |
8579 				IFF_RUNNING |
8580 				IFF_LOWER_UP |
8581 				IFF_DORMANT)) |
8582 		(dev->gflags & (IFF_PROMISC |
8583 				IFF_ALLMULTI));
8584 
8585 	if (netif_running(dev)) {
8586 		if (netif_oper_up(dev))
8587 			flags |= IFF_RUNNING;
8588 		if (netif_carrier_ok(dev))
8589 			flags |= IFF_LOWER_UP;
8590 		if (netif_dormant(dev))
8591 			flags |= IFF_DORMANT;
8592 	}
8593 
8594 	return flags;
8595 }
8596 EXPORT_SYMBOL(dev_get_flags);
8597 
8598 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8599 		       struct netlink_ext_ack *extack)
8600 {
8601 	unsigned int old_flags = dev->flags;
8602 	int ret;
8603 
8604 	ASSERT_RTNL();
8605 
8606 	/*
8607 	 *	Set the flags on our device.
8608 	 */
8609 
8610 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8611 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8612 			       IFF_AUTOMEDIA)) |
8613 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8614 				    IFF_ALLMULTI));
8615 
8616 	/*
8617 	 *	Load in the correct multicast list now the flags have changed.
8618 	 */
8619 
8620 	if ((old_flags ^ flags) & IFF_MULTICAST)
8621 		dev_change_rx_flags(dev, IFF_MULTICAST);
8622 
8623 	dev_set_rx_mode(dev);
8624 
8625 	/*
8626 	 *	Have we downed the interface. We handle IFF_UP ourselves
8627 	 *	according to user attempts to set it, rather than blindly
8628 	 *	setting it.
8629 	 */
8630 
8631 	ret = 0;
8632 	if ((old_flags ^ flags) & IFF_UP) {
8633 		if (old_flags & IFF_UP)
8634 			__dev_close(dev);
8635 		else
8636 			ret = __dev_open(dev, extack);
8637 	}
8638 
8639 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8640 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8641 		unsigned int old_flags = dev->flags;
8642 
8643 		dev->gflags ^= IFF_PROMISC;
8644 
8645 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8646 			if (dev->flags != old_flags)
8647 				dev_set_rx_mode(dev);
8648 	}
8649 
8650 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8651 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8652 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8653 	 */
8654 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8655 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8656 
8657 		dev->gflags ^= IFF_ALLMULTI;
8658 		__dev_set_allmulti(dev, inc, false);
8659 	}
8660 
8661 	return ret;
8662 }
8663 
8664 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8665 			unsigned int gchanges, u32 portid,
8666 			const struct nlmsghdr *nlh)
8667 {
8668 	unsigned int changes = dev->flags ^ old_flags;
8669 
8670 	if (gchanges)
8671 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8672 
8673 	if (changes & IFF_UP) {
8674 		if (dev->flags & IFF_UP)
8675 			call_netdevice_notifiers(NETDEV_UP, dev);
8676 		else
8677 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8678 	}
8679 
8680 	if (dev->flags & IFF_UP &&
8681 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8682 		struct netdev_notifier_change_info change_info = {
8683 			.info = {
8684 				.dev = dev,
8685 			},
8686 			.flags_changed = changes,
8687 		};
8688 
8689 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8690 	}
8691 }
8692 
8693 /**
8694  *	dev_change_flags - change device settings
8695  *	@dev: device
8696  *	@flags: device state flags
8697  *	@extack: netlink extended ack
8698  *
8699  *	Change settings on device based state flags. The flags are
8700  *	in the userspace exported format.
8701  */
8702 int dev_change_flags(struct net_device *dev, unsigned int flags,
8703 		     struct netlink_ext_ack *extack)
8704 {
8705 	int ret;
8706 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8707 
8708 	ret = __dev_change_flags(dev, flags, extack);
8709 	if (ret < 0)
8710 		return ret;
8711 
8712 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8713 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
8714 	return ret;
8715 }
8716 EXPORT_SYMBOL(dev_change_flags);
8717 
8718 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8719 {
8720 	const struct net_device_ops *ops = dev->netdev_ops;
8721 
8722 	if (ops->ndo_change_mtu)
8723 		return ops->ndo_change_mtu(dev, new_mtu);
8724 
8725 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8726 	WRITE_ONCE(dev->mtu, new_mtu);
8727 	return 0;
8728 }
8729 EXPORT_SYMBOL(__dev_set_mtu);
8730 
8731 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8732 		     struct netlink_ext_ack *extack)
8733 {
8734 	/* MTU must be positive, and in range */
8735 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8736 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8737 		return -EINVAL;
8738 	}
8739 
8740 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8741 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8742 		return -EINVAL;
8743 	}
8744 	return 0;
8745 }
8746 
8747 /**
8748  *	dev_set_mtu_ext - Change maximum transfer unit
8749  *	@dev: device
8750  *	@new_mtu: new transfer unit
8751  *	@extack: netlink extended ack
8752  *
8753  *	Change the maximum transfer size of the network device.
8754  */
8755 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8756 		    struct netlink_ext_ack *extack)
8757 {
8758 	int err, orig_mtu;
8759 
8760 	if (new_mtu == dev->mtu)
8761 		return 0;
8762 
8763 	err = dev_validate_mtu(dev, new_mtu, extack);
8764 	if (err)
8765 		return err;
8766 
8767 	if (!netif_device_present(dev))
8768 		return -ENODEV;
8769 
8770 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8771 	err = notifier_to_errno(err);
8772 	if (err)
8773 		return err;
8774 
8775 	orig_mtu = dev->mtu;
8776 	err = __dev_set_mtu(dev, new_mtu);
8777 
8778 	if (!err) {
8779 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8780 						   orig_mtu);
8781 		err = notifier_to_errno(err);
8782 		if (err) {
8783 			/* setting mtu back and notifying everyone again,
8784 			 * so that they have a chance to revert changes.
8785 			 */
8786 			__dev_set_mtu(dev, orig_mtu);
8787 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8788 						     new_mtu);
8789 		}
8790 	}
8791 	return err;
8792 }
8793 
8794 int dev_set_mtu(struct net_device *dev, int new_mtu)
8795 {
8796 	struct netlink_ext_ack extack;
8797 	int err;
8798 
8799 	memset(&extack, 0, sizeof(extack));
8800 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8801 	if (err && extack._msg)
8802 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8803 	return err;
8804 }
8805 EXPORT_SYMBOL(dev_set_mtu);
8806 
8807 /**
8808  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8809  *	@dev: device
8810  *	@new_len: new tx queue length
8811  */
8812 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8813 {
8814 	unsigned int orig_len = dev->tx_queue_len;
8815 	int res;
8816 
8817 	if (new_len != (unsigned int)new_len)
8818 		return -ERANGE;
8819 
8820 	if (new_len != orig_len) {
8821 		dev->tx_queue_len = new_len;
8822 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8823 		res = notifier_to_errno(res);
8824 		if (res)
8825 			goto err_rollback;
8826 		res = dev_qdisc_change_tx_queue_len(dev);
8827 		if (res)
8828 			goto err_rollback;
8829 	}
8830 
8831 	return 0;
8832 
8833 err_rollback:
8834 	netdev_err(dev, "refused to change device tx_queue_len\n");
8835 	dev->tx_queue_len = orig_len;
8836 	return res;
8837 }
8838 
8839 /**
8840  *	dev_set_group - Change group this device belongs to
8841  *	@dev: device
8842  *	@new_group: group this device should belong to
8843  */
8844 void dev_set_group(struct net_device *dev, int new_group)
8845 {
8846 	dev->group = new_group;
8847 }
8848 
8849 /**
8850  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8851  *	@dev: device
8852  *	@addr: new address
8853  *	@extack: netlink extended ack
8854  */
8855 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8856 			      struct netlink_ext_ack *extack)
8857 {
8858 	struct netdev_notifier_pre_changeaddr_info info = {
8859 		.info.dev = dev,
8860 		.info.extack = extack,
8861 		.dev_addr = addr,
8862 	};
8863 	int rc;
8864 
8865 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8866 	return notifier_to_errno(rc);
8867 }
8868 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8869 
8870 /**
8871  *	dev_set_mac_address - Change Media Access Control Address
8872  *	@dev: device
8873  *	@sa: new address
8874  *	@extack: netlink extended ack
8875  *
8876  *	Change the hardware (MAC) address of the device
8877  */
8878 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8879 			struct netlink_ext_ack *extack)
8880 {
8881 	const struct net_device_ops *ops = dev->netdev_ops;
8882 	int err;
8883 
8884 	if (!ops->ndo_set_mac_address)
8885 		return -EOPNOTSUPP;
8886 	if (sa->sa_family != dev->type)
8887 		return -EINVAL;
8888 	if (!netif_device_present(dev))
8889 		return -ENODEV;
8890 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8891 	if (err)
8892 		return err;
8893 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8894 		err = ops->ndo_set_mac_address(dev, sa);
8895 		if (err)
8896 			return err;
8897 	}
8898 	dev->addr_assign_type = NET_ADDR_SET;
8899 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8900 	add_device_randomness(dev->dev_addr, dev->addr_len);
8901 	return 0;
8902 }
8903 EXPORT_SYMBOL(dev_set_mac_address);
8904 
8905 static DECLARE_RWSEM(dev_addr_sem);
8906 
8907 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8908 			     struct netlink_ext_ack *extack)
8909 {
8910 	int ret;
8911 
8912 	down_write(&dev_addr_sem);
8913 	ret = dev_set_mac_address(dev, sa, extack);
8914 	up_write(&dev_addr_sem);
8915 	return ret;
8916 }
8917 EXPORT_SYMBOL(dev_set_mac_address_user);
8918 
8919 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8920 {
8921 	size_t size = sizeof(sa->sa_data_min);
8922 	struct net_device *dev;
8923 	int ret = 0;
8924 
8925 	down_read(&dev_addr_sem);
8926 	rcu_read_lock();
8927 
8928 	dev = dev_get_by_name_rcu(net, dev_name);
8929 	if (!dev) {
8930 		ret = -ENODEV;
8931 		goto unlock;
8932 	}
8933 	if (!dev->addr_len)
8934 		memset(sa->sa_data, 0, size);
8935 	else
8936 		memcpy(sa->sa_data, dev->dev_addr,
8937 		       min_t(size_t, size, dev->addr_len));
8938 	sa->sa_family = dev->type;
8939 
8940 unlock:
8941 	rcu_read_unlock();
8942 	up_read(&dev_addr_sem);
8943 	return ret;
8944 }
8945 EXPORT_SYMBOL(dev_get_mac_address);
8946 
8947 /**
8948  *	dev_change_carrier - Change device carrier
8949  *	@dev: device
8950  *	@new_carrier: new value
8951  *
8952  *	Change device carrier
8953  */
8954 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8955 {
8956 	const struct net_device_ops *ops = dev->netdev_ops;
8957 
8958 	if (!ops->ndo_change_carrier)
8959 		return -EOPNOTSUPP;
8960 	if (!netif_device_present(dev))
8961 		return -ENODEV;
8962 	return ops->ndo_change_carrier(dev, new_carrier);
8963 }
8964 
8965 /**
8966  *	dev_get_phys_port_id - Get device physical port ID
8967  *	@dev: device
8968  *	@ppid: port ID
8969  *
8970  *	Get device physical port ID
8971  */
8972 int dev_get_phys_port_id(struct net_device *dev,
8973 			 struct netdev_phys_item_id *ppid)
8974 {
8975 	const struct net_device_ops *ops = dev->netdev_ops;
8976 
8977 	if (!ops->ndo_get_phys_port_id)
8978 		return -EOPNOTSUPP;
8979 	return ops->ndo_get_phys_port_id(dev, ppid);
8980 }
8981 
8982 /**
8983  *	dev_get_phys_port_name - Get device physical port name
8984  *	@dev: device
8985  *	@name: port name
8986  *	@len: limit of bytes to copy to name
8987  *
8988  *	Get device physical port name
8989  */
8990 int dev_get_phys_port_name(struct net_device *dev,
8991 			   char *name, size_t len)
8992 {
8993 	const struct net_device_ops *ops = dev->netdev_ops;
8994 	int err;
8995 
8996 	if (ops->ndo_get_phys_port_name) {
8997 		err = ops->ndo_get_phys_port_name(dev, name, len);
8998 		if (err != -EOPNOTSUPP)
8999 			return err;
9000 	}
9001 	return devlink_compat_phys_port_name_get(dev, name, len);
9002 }
9003 
9004 /**
9005  *	dev_get_port_parent_id - Get the device's port parent identifier
9006  *	@dev: network device
9007  *	@ppid: pointer to a storage for the port's parent identifier
9008  *	@recurse: allow/disallow recursion to lower devices
9009  *
9010  *	Get the devices's port parent identifier
9011  */
9012 int dev_get_port_parent_id(struct net_device *dev,
9013 			   struct netdev_phys_item_id *ppid,
9014 			   bool recurse)
9015 {
9016 	const struct net_device_ops *ops = dev->netdev_ops;
9017 	struct netdev_phys_item_id first = { };
9018 	struct net_device *lower_dev;
9019 	struct list_head *iter;
9020 	int err;
9021 
9022 	if (ops->ndo_get_port_parent_id) {
9023 		err = ops->ndo_get_port_parent_id(dev, ppid);
9024 		if (err != -EOPNOTSUPP)
9025 			return err;
9026 	}
9027 
9028 	err = devlink_compat_switch_id_get(dev, ppid);
9029 	if (!recurse || err != -EOPNOTSUPP)
9030 		return err;
9031 
9032 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9033 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9034 		if (err)
9035 			break;
9036 		if (!first.id_len)
9037 			first = *ppid;
9038 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9039 			return -EOPNOTSUPP;
9040 	}
9041 
9042 	return err;
9043 }
9044 EXPORT_SYMBOL(dev_get_port_parent_id);
9045 
9046 /**
9047  *	netdev_port_same_parent_id - Indicate if two network devices have
9048  *	the same port parent identifier
9049  *	@a: first network device
9050  *	@b: second network device
9051  */
9052 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9053 {
9054 	struct netdev_phys_item_id a_id = { };
9055 	struct netdev_phys_item_id b_id = { };
9056 
9057 	if (dev_get_port_parent_id(a, &a_id, true) ||
9058 	    dev_get_port_parent_id(b, &b_id, true))
9059 		return false;
9060 
9061 	return netdev_phys_item_id_same(&a_id, &b_id);
9062 }
9063 EXPORT_SYMBOL(netdev_port_same_parent_id);
9064 
9065 /**
9066  *	dev_change_proto_down - set carrier according to proto_down.
9067  *
9068  *	@dev: device
9069  *	@proto_down: new value
9070  */
9071 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9072 {
9073 	if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9074 		return -EOPNOTSUPP;
9075 	if (!netif_device_present(dev))
9076 		return -ENODEV;
9077 	if (proto_down)
9078 		netif_carrier_off(dev);
9079 	else
9080 		netif_carrier_on(dev);
9081 	dev->proto_down = proto_down;
9082 	return 0;
9083 }
9084 
9085 /**
9086  *	dev_change_proto_down_reason - proto down reason
9087  *
9088  *	@dev: device
9089  *	@mask: proto down mask
9090  *	@value: proto down value
9091  */
9092 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9093 				  u32 value)
9094 {
9095 	int b;
9096 
9097 	if (!mask) {
9098 		dev->proto_down_reason = value;
9099 	} else {
9100 		for_each_set_bit(b, &mask, 32) {
9101 			if (value & (1 << b))
9102 				dev->proto_down_reason |= BIT(b);
9103 			else
9104 				dev->proto_down_reason &= ~BIT(b);
9105 		}
9106 	}
9107 }
9108 
9109 struct bpf_xdp_link {
9110 	struct bpf_link link;
9111 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9112 	int flags;
9113 };
9114 
9115 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9116 {
9117 	if (flags & XDP_FLAGS_HW_MODE)
9118 		return XDP_MODE_HW;
9119 	if (flags & XDP_FLAGS_DRV_MODE)
9120 		return XDP_MODE_DRV;
9121 	if (flags & XDP_FLAGS_SKB_MODE)
9122 		return XDP_MODE_SKB;
9123 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9124 }
9125 
9126 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9127 {
9128 	switch (mode) {
9129 	case XDP_MODE_SKB:
9130 		return generic_xdp_install;
9131 	case XDP_MODE_DRV:
9132 	case XDP_MODE_HW:
9133 		return dev->netdev_ops->ndo_bpf;
9134 	default:
9135 		return NULL;
9136 	}
9137 }
9138 
9139 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9140 					 enum bpf_xdp_mode mode)
9141 {
9142 	return dev->xdp_state[mode].link;
9143 }
9144 
9145 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9146 				     enum bpf_xdp_mode mode)
9147 {
9148 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9149 
9150 	if (link)
9151 		return link->link.prog;
9152 	return dev->xdp_state[mode].prog;
9153 }
9154 
9155 u8 dev_xdp_prog_count(struct net_device *dev)
9156 {
9157 	u8 count = 0;
9158 	int i;
9159 
9160 	for (i = 0; i < __MAX_XDP_MODE; i++)
9161 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9162 			count++;
9163 	return count;
9164 }
9165 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9166 
9167 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9168 {
9169 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9170 
9171 	return prog ? prog->aux->id : 0;
9172 }
9173 
9174 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9175 			     struct bpf_xdp_link *link)
9176 {
9177 	dev->xdp_state[mode].link = link;
9178 	dev->xdp_state[mode].prog = NULL;
9179 }
9180 
9181 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9182 			     struct bpf_prog *prog)
9183 {
9184 	dev->xdp_state[mode].link = NULL;
9185 	dev->xdp_state[mode].prog = prog;
9186 }
9187 
9188 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9189 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9190 			   u32 flags, struct bpf_prog *prog)
9191 {
9192 	struct netdev_bpf xdp;
9193 	int err;
9194 
9195 	memset(&xdp, 0, sizeof(xdp));
9196 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9197 	xdp.extack = extack;
9198 	xdp.flags = flags;
9199 	xdp.prog = prog;
9200 
9201 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9202 	 * "moved" into driver), so they don't increment it on their own, but
9203 	 * they do decrement refcnt when program is detached or replaced.
9204 	 * Given net_device also owns link/prog, we need to bump refcnt here
9205 	 * to prevent drivers from underflowing it.
9206 	 */
9207 	if (prog)
9208 		bpf_prog_inc(prog);
9209 	err = bpf_op(dev, &xdp);
9210 	if (err) {
9211 		if (prog)
9212 			bpf_prog_put(prog);
9213 		return err;
9214 	}
9215 
9216 	if (mode != XDP_MODE_HW)
9217 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9218 
9219 	return 0;
9220 }
9221 
9222 static void dev_xdp_uninstall(struct net_device *dev)
9223 {
9224 	struct bpf_xdp_link *link;
9225 	struct bpf_prog *prog;
9226 	enum bpf_xdp_mode mode;
9227 	bpf_op_t bpf_op;
9228 
9229 	ASSERT_RTNL();
9230 
9231 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9232 		prog = dev_xdp_prog(dev, mode);
9233 		if (!prog)
9234 			continue;
9235 
9236 		bpf_op = dev_xdp_bpf_op(dev, mode);
9237 		if (!bpf_op)
9238 			continue;
9239 
9240 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9241 
9242 		/* auto-detach link from net device */
9243 		link = dev_xdp_link(dev, mode);
9244 		if (link)
9245 			link->dev = NULL;
9246 		else
9247 			bpf_prog_put(prog);
9248 
9249 		dev_xdp_set_link(dev, mode, NULL);
9250 	}
9251 }
9252 
9253 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9254 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9255 			  struct bpf_prog *old_prog, u32 flags)
9256 {
9257 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9258 	struct bpf_prog *cur_prog;
9259 	struct net_device *upper;
9260 	struct list_head *iter;
9261 	enum bpf_xdp_mode mode;
9262 	bpf_op_t bpf_op;
9263 	int err;
9264 
9265 	ASSERT_RTNL();
9266 
9267 	/* either link or prog attachment, never both */
9268 	if (link && (new_prog || old_prog))
9269 		return -EINVAL;
9270 	/* link supports only XDP mode flags */
9271 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9272 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9273 		return -EINVAL;
9274 	}
9275 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9276 	if (num_modes > 1) {
9277 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9278 		return -EINVAL;
9279 	}
9280 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9281 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9282 		NL_SET_ERR_MSG(extack,
9283 			       "More than one program loaded, unset mode is ambiguous");
9284 		return -EINVAL;
9285 	}
9286 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9287 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9288 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9289 		return -EINVAL;
9290 	}
9291 
9292 	mode = dev_xdp_mode(dev, flags);
9293 	/* can't replace attached link */
9294 	if (dev_xdp_link(dev, mode)) {
9295 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9296 		return -EBUSY;
9297 	}
9298 
9299 	/* don't allow if an upper device already has a program */
9300 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9301 		if (dev_xdp_prog_count(upper) > 0) {
9302 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9303 			return -EEXIST;
9304 		}
9305 	}
9306 
9307 	cur_prog = dev_xdp_prog(dev, mode);
9308 	/* can't replace attached prog with link */
9309 	if (link && cur_prog) {
9310 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9311 		return -EBUSY;
9312 	}
9313 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9314 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9315 		return -EEXIST;
9316 	}
9317 
9318 	/* put effective new program into new_prog */
9319 	if (link)
9320 		new_prog = link->link.prog;
9321 
9322 	if (new_prog) {
9323 		bool offload = mode == XDP_MODE_HW;
9324 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9325 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9326 
9327 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9328 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9329 			return -EBUSY;
9330 		}
9331 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9332 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9333 			return -EEXIST;
9334 		}
9335 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9336 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9337 			return -EINVAL;
9338 		}
9339 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9340 			NL_SET_ERR_MSG(extack, "Program bound to different device");
9341 			return -EINVAL;
9342 		}
9343 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9344 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9345 			return -EINVAL;
9346 		}
9347 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9348 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9349 			return -EINVAL;
9350 		}
9351 	}
9352 
9353 	/* don't call drivers if the effective program didn't change */
9354 	if (new_prog != cur_prog) {
9355 		bpf_op = dev_xdp_bpf_op(dev, mode);
9356 		if (!bpf_op) {
9357 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9358 			return -EOPNOTSUPP;
9359 		}
9360 
9361 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9362 		if (err)
9363 			return err;
9364 	}
9365 
9366 	if (link)
9367 		dev_xdp_set_link(dev, mode, link);
9368 	else
9369 		dev_xdp_set_prog(dev, mode, new_prog);
9370 	if (cur_prog)
9371 		bpf_prog_put(cur_prog);
9372 
9373 	return 0;
9374 }
9375 
9376 static int dev_xdp_attach_link(struct net_device *dev,
9377 			       struct netlink_ext_ack *extack,
9378 			       struct bpf_xdp_link *link)
9379 {
9380 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9381 }
9382 
9383 static int dev_xdp_detach_link(struct net_device *dev,
9384 			       struct netlink_ext_ack *extack,
9385 			       struct bpf_xdp_link *link)
9386 {
9387 	enum bpf_xdp_mode mode;
9388 	bpf_op_t bpf_op;
9389 
9390 	ASSERT_RTNL();
9391 
9392 	mode = dev_xdp_mode(dev, link->flags);
9393 	if (dev_xdp_link(dev, mode) != link)
9394 		return -EINVAL;
9395 
9396 	bpf_op = dev_xdp_bpf_op(dev, mode);
9397 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9398 	dev_xdp_set_link(dev, mode, NULL);
9399 	return 0;
9400 }
9401 
9402 static void bpf_xdp_link_release(struct bpf_link *link)
9403 {
9404 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9405 
9406 	rtnl_lock();
9407 
9408 	/* if racing with net_device's tear down, xdp_link->dev might be
9409 	 * already NULL, in which case link was already auto-detached
9410 	 */
9411 	if (xdp_link->dev) {
9412 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9413 		xdp_link->dev = NULL;
9414 	}
9415 
9416 	rtnl_unlock();
9417 }
9418 
9419 static int bpf_xdp_link_detach(struct bpf_link *link)
9420 {
9421 	bpf_xdp_link_release(link);
9422 	return 0;
9423 }
9424 
9425 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9426 {
9427 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9428 
9429 	kfree(xdp_link);
9430 }
9431 
9432 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9433 				     struct seq_file *seq)
9434 {
9435 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9436 	u32 ifindex = 0;
9437 
9438 	rtnl_lock();
9439 	if (xdp_link->dev)
9440 		ifindex = xdp_link->dev->ifindex;
9441 	rtnl_unlock();
9442 
9443 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9444 }
9445 
9446 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9447 				       struct bpf_link_info *info)
9448 {
9449 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9450 	u32 ifindex = 0;
9451 
9452 	rtnl_lock();
9453 	if (xdp_link->dev)
9454 		ifindex = xdp_link->dev->ifindex;
9455 	rtnl_unlock();
9456 
9457 	info->xdp.ifindex = ifindex;
9458 	return 0;
9459 }
9460 
9461 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9462 			       struct bpf_prog *old_prog)
9463 {
9464 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9465 	enum bpf_xdp_mode mode;
9466 	bpf_op_t bpf_op;
9467 	int err = 0;
9468 
9469 	rtnl_lock();
9470 
9471 	/* link might have been auto-released already, so fail */
9472 	if (!xdp_link->dev) {
9473 		err = -ENOLINK;
9474 		goto out_unlock;
9475 	}
9476 
9477 	if (old_prog && link->prog != old_prog) {
9478 		err = -EPERM;
9479 		goto out_unlock;
9480 	}
9481 	old_prog = link->prog;
9482 	if (old_prog->type != new_prog->type ||
9483 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9484 		err = -EINVAL;
9485 		goto out_unlock;
9486 	}
9487 
9488 	if (old_prog == new_prog) {
9489 		/* no-op, don't disturb drivers */
9490 		bpf_prog_put(new_prog);
9491 		goto out_unlock;
9492 	}
9493 
9494 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9495 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9496 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9497 			      xdp_link->flags, new_prog);
9498 	if (err)
9499 		goto out_unlock;
9500 
9501 	old_prog = xchg(&link->prog, new_prog);
9502 	bpf_prog_put(old_prog);
9503 
9504 out_unlock:
9505 	rtnl_unlock();
9506 	return err;
9507 }
9508 
9509 static const struct bpf_link_ops bpf_xdp_link_lops = {
9510 	.release = bpf_xdp_link_release,
9511 	.dealloc = bpf_xdp_link_dealloc,
9512 	.detach = bpf_xdp_link_detach,
9513 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9514 	.fill_link_info = bpf_xdp_link_fill_link_info,
9515 	.update_prog = bpf_xdp_link_update,
9516 };
9517 
9518 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9519 {
9520 	struct net *net = current->nsproxy->net_ns;
9521 	struct bpf_link_primer link_primer;
9522 	struct netlink_ext_ack extack = {};
9523 	struct bpf_xdp_link *link;
9524 	struct net_device *dev;
9525 	int err, fd;
9526 
9527 	rtnl_lock();
9528 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9529 	if (!dev) {
9530 		rtnl_unlock();
9531 		return -EINVAL;
9532 	}
9533 
9534 	link = kzalloc(sizeof(*link), GFP_USER);
9535 	if (!link) {
9536 		err = -ENOMEM;
9537 		goto unlock;
9538 	}
9539 
9540 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9541 	link->dev = dev;
9542 	link->flags = attr->link_create.flags;
9543 
9544 	err = bpf_link_prime(&link->link, &link_primer);
9545 	if (err) {
9546 		kfree(link);
9547 		goto unlock;
9548 	}
9549 
9550 	err = dev_xdp_attach_link(dev, &extack, link);
9551 	rtnl_unlock();
9552 
9553 	if (err) {
9554 		link->dev = NULL;
9555 		bpf_link_cleanup(&link_primer);
9556 		trace_bpf_xdp_link_attach_failed(extack._msg);
9557 		goto out_put_dev;
9558 	}
9559 
9560 	fd = bpf_link_settle(&link_primer);
9561 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9562 	dev_put(dev);
9563 	return fd;
9564 
9565 unlock:
9566 	rtnl_unlock();
9567 
9568 out_put_dev:
9569 	dev_put(dev);
9570 	return err;
9571 }
9572 
9573 /**
9574  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9575  *	@dev: device
9576  *	@extack: netlink extended ack
9577  *	@fd: new program fd or negative value to clear
9578  *	@expected_fd: old program fd that userspace expects to replace or clear
9579  *	@flags: xdp-related flags
9580  *
9581  *	Set or clear a bpf program for a device
9582  */
9583 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9584 		      int fd, int expected_fd, u32 flags)
9585 {
9586 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9587 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9588 	int err;
9589 
9590 	ASSERT_RTNL();
9591 
9592 	if (fd >= 0) {
9593 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9594 						 mode != XDP_MODE_SKB);
9595 		if (IS_ERR(new_prog))
9596 			return PTR_ERR(new_prog);
9597 	}
9598 
9599 	if (expected_fd >= 0) {
9600 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9601 						 mode != XDP_MODE_SKB);
9602 		if (IS_ERR(old_prog)) {
9603 			err = PTR_ERR(old_prog);
9604 			old_prog = NULL;
9605 			goto err_out;
9606 		}
9607 	}
9608 
9609 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9610 
9611 err_out:
9612 	if (err && new_prog)
9613 		bpf_prog_put(new_prog);
9614 	if (old_prog)
9615 		bpf_prog_put(old_prog);
9616 	return err;
9617 }
9618 
9619 /**
9620  * dev_index_reserve() - allocate an ifindex in a namespace
9621  * @net: the applicable net namespace
9622  * @ifindex: requested ifindex, pass %0 to get one allocated
9623  *
9624  * Allocate a ifindex for a new device. Caller must either use the ifindex
9625  * to store the device (via list_netdevice()) or call dev_index_release()
9626  * to give the index up.
9627  *
9628  * Return: a suitable unique value for a new device interface number or -errno.
9629  */
9630 static int dev_index_reserve(struct net *net, u32 ifindex)
9631 {
9632 	int err;
9633 
9634 	if (ifindex > INT_MAX) {
9635 		DEBUG_NET_WARN_ON_ONCE(1);
9636 		return -EINVAL;
9637 	}
9638 
9639 	if (!ifindex)
9640 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9641 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
9642 	else
9643 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9644 	if (err < 0)
9645 		return err;
9646 
9647 	return ifindex;
9648 }
9649 
9650 static void dev_index_release(struct net *net, int ifindex)
9651 {
9652 	/* Expect only unused indexes, unlist_netdevice() removes the used */
9653 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9654 }
9655 
9656 /* Delayed registration/unregisteration */
9657 LIST_HEAD(net_todo_list);
9658 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9659 
9660 static void net_set_todo(struct net_device *dev)
9661 {
9662 	list_add_tail(&dev->todo_list, &net_todo_list);
9663 	atomic_inc(&dev_net(dev)->dev_unreg_count);
9664 }
9665 
9666 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9667 	struct net_device *upper, netdev_features_t features)
9668 {
9669 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9670 	netdev_features_t feature;
9671 	int feature_bit;
9672 
9673 	for_each_netdev_feature(upper_disables, feature_bit) {
9674 		feature = __NETIF_F_BIT(feature_bit);
9675 		if (!(upper->wanted_features & feature)
9676 		    && (features & feature)) {
9677 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9678 				   &feature, upper->name);
9679 			features &= ~feature;
9680 		}
9681 	}
9682 
9683 	return features;
9684 }
9685 
9686 static void netdev_sync_lower_features(struct net_device *upper,
9687 	struct net_device *lower, netdev_features_t features)
9688 {
9689 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9690 	netdev_features_t feature;
9691 	int feature_bit;
9692 
9693 	for_each_netdev_feature(upper_disables, feature_bit) {
9694 		feature = __NETIF_F_BIT(feature_bit);
9695 		if (!(features & feature) && (lower->features & feature)) {
9696 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9697 				   &feature, lower->name);
9698 			lower->wanted_features &= ~feature;
9699 			__netdev_update_features(lower);
9700 
9701 			if (unlikely(lower->features & feature))
9702 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9703 					    &feature, lower->name);
9704 			else
9705 				netdev_features_change(lower);
9706 		}
9707 	}
9708 }
9709 
9710 static netdev_features_t netdev_fix_features(struct net_device *dev,
9711 	netdev_features_t features)
9712 {
9713 	/* Fix illegal checksum combinations */
9714 	if ((features & NETIF_F_HW_CSUM) &&
9715 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9716 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9717 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9718 	}
9719 
9720 	/* TSO requires that SG is present as well. */
9721 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9722 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9723 		features &= ~NETIF_F_ALL_TSO;
9724 	}
9725 
9726 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9727 					!(features & NETIF_F_IP_CSUM)) {
9728 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9729 		features &= ~NETIF_F_TSO;
9730 		features &= ~NETIF_F_TSO_ECN;
9731 	}
9732 
9733 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9734 					 !(features & NETIF_F_IPV6_CSUM)) {
9735 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9736 		features &= ~NETIF_F_TSO6;
9737 	}
9738 
9739 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9740 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9741 		features &= ~NETIF_F_TSO_MANGLEID;
9742 
9743 	/* TSO ECN requires that TSO is present as well. */
9744 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9745 		features &= ~NETIF_F_TSO_ECN;
9746 
9747 	/* Software GSO depends on SG. */
9748 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9749 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9750 		features &= ~NETIF_F_GSO;
9751 	}
9752 
9753 	/* GSO partial features require GSO partial be set */
9754 	if ((features & dev->gso_partial_features) &&
9755 	    !(features & NETIF_F_GSO_PARTIAL)) {
9756 		netdev_dbg(dev,
9757 			   "Dropping partially supported GSO features since no GSO partial.\n");
9758 		features &= ~dev->gso_partial_features;
9759 	}
9760 
9761 	if (!(features & NETIF_F_RXCSUM)) {
9762 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9763 		 * successfully merged by hardware must also have the
9764 		 * checksum verified by hardware.  If the user does not
9765 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9766 		 */
9767 		if (features & NETIF_F_GRO_HW) {
9768 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9769 			features &= ~NETIF_F_GRO_HW;
9770 		}
9771 	}
9772 
9773 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9774 	if (features & NETIF_F_RXFCS) {
9775 		if (features & NETIF_F_LRO) {
9776 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9777 			features &= ~NETIF_F_LRO;
9778 		}
9779 
9780 		if (features & NETIF_F_GRO_HW) {
9781 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9782 			features &= ~NETIF_F_GRO_HW;
9783 		}
9784 	}
9785 
9786 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9787 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9788 		features &= ~NETIF_F_LRO;
9789 	}
9790 
9791 	if (features & NETIF_F_HW_TLS_TX) {
9792 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9793 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9794 		bool hw_csum = features & NETIF_F_HW_CSUM;
9795 
9796 		if (!ip_csum && !hw_csum) {
9797 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9798 			features &= ~NETIF_F_HW_TLS_TX;
9799 		}
9800 	}
9801 
9802 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9803 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9804 		features &= ~NETIF_F_HW_TLS_RX;
9805 	}
9806 
9807 	return features;
9808 }
9809 
9810 int __netdev_update_features(struct net_device *dev)
9811 {
9812 	struct net_device *upper, *lower;
9813 	netdev_features_t features;
9814 	struct list_head *iter;
9815 	int err = -1;
9816 
9817 	ASSERT_RTNL();
9818 
9819 	features = netdev_get_wanted_features(dev);
9820 
9821 	if (dev->netdev_ops->ndo_fix_features)
9822 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9823 
9824 	/* driver might be less strict about feature dependencies */
9825 	features = netdev_fix_features(dev, features);
9826 
9827 	/* some features can't be enabled if they're off on an upper device */
9828 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9829 		features = netdev_sync_upper_features(dev, upper, features);
9830 
9831 	if (dev->features == features)
9832 		goto sync_lower;
9833 
9834 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9835 		&dev->features, &features);
9836 
9837 	if (dev->netdev_ops->ndo_set_features)
9838 		err = dev->netdev_ops->ndo_set_features(dev, features);
9839 	else
9840 		err = 0;
9841 
9842 	if (unlikely(err < 0)) {
9843 		netdev_err(dev,
9844 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9845 			err, &features, &dev->features);
9846 		/* return non-0 since some features might have changed and
9847 		 * it's better to fire a spurious notification than miss it
9848 		 */
9849 		return -1;
9850 	}
9851 
9852 sync_lower:
9853 	/* some features must be disabled on lower devices when disabled
9854 	 * on an upper device (think: bonding master or bridge)
9855 	 */
9856 	netdev_for_each_lower_dev(dev, lower, iter)
9857 		netdev_sync_lower_features(dev, lower, features);
9858 
9859 	if (!err) {
9860 		netdev_features_t diff = features ^ dev->features;
9861 
9862 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9863 			/* udp_tunnel_{get,drop}_rx_info both need
9864 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9865 			 * device, or they won't do anything.
9866 			 * Thus we need to update dev->features
9867 			 * *before* calling udp_tunnel_get_rx_info,
9868 			 * but *after* calling udp_tunnel_drop_rx_info.
9869 			 */
9870 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9871 				dev->features = features;
9872 				udp_tunnel_get_rx_info(dev);
9873 			} else {
9874 				udp_tunnel_drop_rx_info(dev);
9875 			}
9876 		}
9877 
9878 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9879 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9880 				dev->features = features;
9881 				err |= vlan_get_rx_ctag_filter_info(dev);
9882 			} else {
9883 				vlan_drop_rx_ctag_filter_info(dev);
9884 			}
9885 		}
9886 
9887 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9888 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9889 				dev->features = features;
9890 				err |= vlan_get_rx_stag_filter_info(dev);
9891 			} else {
9892 				vlan_drop_rx_stag_filter_info(dev);
9893 			}
9894 		}
9895 
9896 		dev->features = features;
9897 	}
9898 
9899 	return err < 0 ? 0 : 1;
9900 }
9901 
9902 /**
9903  *	netdev_update_features - recalculate device features
9904  *	@dev: the device to check
9905  *
9906  *	Recalculate dev->features set and send notifications if it
9907  *	has changed. Should be called after driver or hardware dependent
9908  *	conditions might have changed that influence the features.
9909  */
9910 void netdev_update_features(struct net_device *dev)
9911 {
9912 	if (__netdev_update_features(dev))
9913 		netdev_features_change(dev);
9914 }
9915 EXPORT_SYMBOL(netdev_update_features);
9916 
9917 /**
9918  *	netdev_change_features - recalculate device features
9919  *	@dev: the device to check
9920  *
9921  *	Recalculate dev->features set and send notifications even
9922  *	if they have not changed. Should be called instead of
9923  *	netdev_update_features() if also dev->vlan_features might
9924  *	have changed to allow the changes to be propagated to stacked
9925  *	VLAN devices.
9926  */
9927 void netdev_change_features(struct net_device *dev)
9928 {
9929 	__netdev_update_features(dev);
9930 	netdev_features_change(dev);
9931 }
9932 EXPORT_SYMBOL(netdev_change_features);
9933 
9934 /**
9935  *	netif_stacked_transfer_operstate -	transfer operstate
9936  *	@rootdev: the root or lower level device to transfer state from
9937  *	@dev: the device to transfer operstate to
9938  *
9939  *	Transfer operational state from root to device. This is normally
9940  *	called when a stacking relationship exists between the root
9941  *	device and the device(a leaf device).
9942  */
9943 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9944 					struct net_device *dev)
9945 {
9946 	if (rootdev->operstate == IF_OPER_DORMANT)
9947 		netif_dormant_on(dev);
9948 	else
9949 		netif_dormant_off(dev);
9950 
9951 	if (rootdev->operstate == IF_OPER_TESTING)
9952 		netif_testing_on(dev);
9953 	else
9954 		netif_testing_off(dev);
9955 
9956 	if (netif_carrier_ok(rootdev))
9957 		netif_carrier_on(dev);
9958 	else
9959 		netif_carrier_off(dev);
9960 }
9961 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9962 
9963 static int netif_alloc_rx_queues(struct net_device *dev)
9964 {
9965 	unsigned int i, count = dev->num_rx_queues;
9966 	struct netdev_rx_queue *rx;
9967 	size_t sz = count * sizeof(*rx);
9968 	int err = 0;
9969 
9970 	BUG_ON(count < 1);
9971 
9972 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9973 	if (!rx)
9974 		return -ENOMEM;
9975 
9976 	dev->_rx = rx;
9977 
9978 	for (i = 0; i < count; i++) {
9979 		rx[i].dev = dev;
9980 
9981 		/* XDP RX-queue setup */
9982 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9983 		if (err < 0)
9984 			goto err_rxq_info;
9985 	}
9986 	return 0;
9987 
9988 err_rxq_info:
9989 	/* Rollback successful reg's and free other resources */
9990 	while (i--)
9991 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9992 	kvfree(dev->_rx);
9993 	dev->_rx = NULL;
9994 	return err;
9995 }
9996 
9997 static void netif_free_rx_queues(struct net_device *dev)
9998 {
9999 	unsigned int i, count = dev->num_rx_queues;
10000 
10001 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10002 	if (!dev->_rx)
10003 		return;
10004 
10005 	for (i = 0; i < count; i++)
10006 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10007 
10008 	kvfree(dev->_rx);
10009 }
10010 
10011 static void netdev_init_one_queue(struct net_device *dev,
10012 				  struct netdev_queue *queue, void *_unused)
10013 {
10014 	/* Initialize queue lock */
10015 	spin_lock_init(&queue->_xmit_lock);
10016 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10017 	queue->xmit_lock_owner = -1;
10018 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10019 	queue->dev = dev;
10020 #ifdef CONFIG_BQL
10021 	dql_init(&queue->dql, HZ);
10022 #endif
10023 }
10024 
10025 static void netif_free_tx_queues(struct net_device *dev)
10026 {
10027 	kvfree(dev->_tx);
10028 }
10029 
10030 static int netif_alloc_netdev_queues(struct net_device *dev)
10031 {
10032 	unsigned int count = dev->num_tx_queues;
10033 	struct netdev_queue *tx;
10034 	size_t sz = count * sizeof(*tx);
10035 
10036 	if (count < 1 || count > 0xffff)
10037 		return -EINVAL;
10038 
10039 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10040 	if (!tx)
10041 		return -ENOMEM;
10042 
10043 	dev->_tx = tx;
10044 
10045 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10046 	spin_lock_init(&dev->tx_global_lock);
10047 
10048 	return 0;
10049 }
10050 
10051 void netif_tx_stop_all_queues(struct net_device *dev)
10052 {
10053 	unsigned int i;
10054 
10055 	for (i = 0; i < dev->num_tx_queues; i++) {
10056 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10057 
10058 		netif_tx_stop_queue(txq);
10059 	}
10060 }
10061 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10062 
10063 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10064 {
10065 	void __percpu *v;
10066 
10067 	/* Drivers implementing ndo_get_peer_dev must support tstat
10068 	 * accounting, so that skb_do_redirect() can bump the dev's
10069 	 * RX stats upon network namespace switch.
10070 	 */
10071 	if (dev->netdev_ops->ndo_get_peer_dev &&
10072 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10073 		return -EOPNOTSUPP;
10074 
10075 	switch (dev->pcpu_stat_type) {
10076 	case NETDEV_PCPU_STAT_NONE:
10077 		return 0;
10078 	case NETDEV_PCPU_STAT_LSTATS:
10079 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10080 		break;
10081 	case NETDEV_PCPU_STAT_TSTATS:
10082 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10083 		break;
10084 	case NETDEV_PCPU_STAT_DSTATS:
10085 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10086 		break;
10087 	default:
10088 		return -EINVAL;
10089 	}
10090 
10091 	return v ? 0 : -ENOMEM;
10092 }
10093 
10094 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10095 {
10096 	switch (dev->pcpu_stat_type) {
10097 	case NETDEV_PCPU_STAT_NONE:
10098 		return;
10099 	case NETDEV_PCPU_STAT_LSTATS:
10100 		free_percpu(dev->lstats);
10101 		break;
10102 	case NETDEV_PCPU_STAT_TSTATS:
10103 		free_percpu(dev->tstats);
10104 		break;
10105 	case NETDEV_PCPU_STAT_DSTATS:
10106 		free_percpu(dev->dstats);
10107 		break;
10108 	}
10109 }
10110 
10111 /**
10112  * register_netdevice() - register a network device
10113  * @dev: device to register
10114  *
10115  * Take a prepared network device structure and make it externally accessible.
10116  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10117  * Callers must hold the rtnl lock - you may want register_netdev()
10118  * instead of this.
10119  */
10120 int register_netdevice(struct net_device *dev)
10121 {
10122 	int ret;
10123 	struct net *net = dev_net(dev);
10124 
10125 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10126 		     NETDEV_FEATURE_COUNT);
10127 	BUG_ON(dev_boot_phase);
10128 	ASSERT_RTNL();
10129 
10130 	might_sleep();
10131 
10132 	/* When net_device's are persistent, this will be fatal. */
10133 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10134 	BUG_ON(!net);
10135 
10136 	ret = ethtool_check_ops(dev->ethtool_ops);
10137 	if (ret)
10138 		return ret;
10139 
10140 	spin_lock_init(&dev->addr_list_lock);
10141 	netdev_set_addr_lockdep_class(dev);
10142 
10143 	ret = dev_get_valid_name(net, dev, dev->name);
10144 	if (ret < 0)
10145 		goto out;
10146 
10147 	ret = -ENOMEM;
10148 	dev->name_node = netdev_name_node_head_alloc(dev);
10149 	if (!dev->name_node)
10150 		goto out;
10151 
10152 	/* Init, if this function is available */
10153 	if (dev->netdev_ops->ndo_init) {
10154 		ret = dev->netdev_ops->ndo_init(dev);
10155 		if (ret) {
10156 			if (ret > 0)
10157 				ret = -EIO;
10158 			goto err_free_name;
10159 		}
10160 	}
10161 
10162 	if (((dev->hw_features | dev->features) &
10163 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10164 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10165 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10166 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10167 		ret = -EINVAL;
10168 		goto err_uninit;
10169 	}
10170 
10171 	ret = netdev_do_alloc_pcpu_stats(dev);
10172 	if (ret)
10173 		goto err_uninit;
10174 
10175 	ret = dev_index_reserve(net, dev->ifindex);
10176 	if (ret < 0)
10177 		goto err_free_pcpu;
10178 	dev->ifindex = ret;
10179 
10180 	/* Transfer changeable features to wanted_features and enable
10181 	 * software offloads (GSO and GRO).
10182 	 */
10183 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10184 	dev->features |= NETIF_F_SOFT_FEATURES;
10185 
10186 	if (dev->udp_tunnel_nic_info) {
10187 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10188 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10189 	}
10190 
10191 	dev->wanted_features = dev->features & dev->hw_features;
10192 
10193 	if (!(dev->flags & IFF_LOOPBACK))
10194 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10195 
10196 	/* If IPv4 TCP segmentation offload is supported we should also
10197 	 * allow the device to enable segmenting the frame with the option
10198 	 * of ignoring a static IP ID value.  This doesn't enable the
10199 	 * feature itself but allows the user to enable it later.
10200 	 */
10201 	if (dev->hw_features & NETIF_F_TSO)
10202 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10203 	if (dev->vlan_features & NETIF_F_TSO)
10204 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10205 	if (dev->mpls_features & NETIF_F_TSO)
10206 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10207 	if (dev->hw_enc_features & NETIF_F_TSO)
10208 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10209 
10210 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10211 	 */
10212 	dev->vlan_features |= NETIF_F_HIGHDMA;
10213 
10214 	/* Make NETIF_F_SG inheritable to tunnel devices.
10215 	 */
10216 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10217 
10218 	/* Make NETIF_F_SG inheritable to MPLS.
10219 	 */
10220 	dev->mpls_features |= NETIF_F_SG;
10221 
10222 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10223 	ret = notifier_to_errno(ret);
10224 	if (ret)
10225 		goto err_ifindex_release;
10226 
10227 	ret = netdev_register_kobject(dev);
10228 	write_lock(&dev_base_lock);
10229 	dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10230 	write_unlock(&dev_base_lock);
10231 	if (ret)
10232 		goto err_uninit_notify;
10233 
10234 	__netdev_update_features(dev);
10235 
10236 	/*
10237 	 *	Default initial state at registry is that the
10238 	 *	device is present.
10239 	 */
10240 
10241 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10242 
10243 	linkwatch_init_dev(dev);
10244 
10245 	dev_init_scheduler(dev);
10246 
10247 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10248 	list_netdevice(dev);
10249 
10250 	add_device_randomness(dev->dev_addr, dev->addr_len);
10251 
10252 	/* If the device has permanent device address, driver should
10253 	 * set dev_addr and also addr_assign_type should be set to
10254 	 * NET_ADDR_PERM (default value).
10255 	 */
10256 	if (dev->addr_assign_type == NET_ADDR_PERM)
10257 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10258 
10259 	/* Notify protocols, that a new device appeared. */
10260 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10261 	ret = notifier_to_errno(ret);
10262 	if (ret) {
10263 		/* Expect explicit free_netdev() on failure */
10264 		dev->needs_free_netdev = false;
10265 		unregister_netdevice_queue(dev, NULL);
10266 		goto out;
10267 	}
10268 	/*
10269 	 *	Prevent userspace races by waiting until the network
10270 	 *	device is fully setup before sending notifications.
10271 	 */
10272 	if (!dev->rtnl_link_ops ||
10273 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10274 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10275 
10276 out:
10277 	return ret;
10278 
10279 err_uninit_notify:
10280 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10281 err_ifindex_release:
10282 	dev_index_release(net, dev->ifindex);
10283 err_free_pcpu:
10284 	netdev_do_free_pcpu_stats(dev);
10285 err_uninit:
10286 	if (dev->netdev_ops->ndo_uninit)
10287 		dev->netdev_ops->ndo_uninit(dev);
10288 	if (dev->priv_destructor)
10289 		dev->priv_destructor(dev);
10290 err_free_name:
10291 	netdev_name_node_free(dev->name_node);
10292 	goto out;
10293 }
10294 EXPORT_SYMBOL(register_netdevice);
10295 
10296 /**
10297  *	init_dummy_netdev	- init a dummy network device for NAPI
10298  *	@dev: device to init
10299  *
10300  *	This takes a network device structure and initialize the minimum
10301  *	amount of fields so it can be used to schedule NAPI polls without
10302  *	registering a full blown interface. This is to be used by drivers
10303  *	that need to tie several hardware interfaces to a single NAPI
10304  *	poll scheduler due to HW limitations.
10305  */
10306 int init_dummy_netdev(struct net_device *dev)
10307 {
10308 	/* Clear everything. Note we don't initialize spinlocks
10309 	 * are they aren't supposed to be taken by any of the
10310 	 * NAPI code and this dummy netdev is supposed to be
10311 	 * only ever used for NAPI polls
10312 	 */
10313 	memset(dev, 0, sizeof(struct net_device));
10314 
10315 	/* make sure we BUG if trying to hit standard
10316 	 * register/unregister code path
10317 	 */
10318 	dev->reg_state = NETREG_DUMMY;
10319 
10320 	/* NAPI wants this */
10321 	INIT_LIST_HEAD(&dev->napi_list);
10322 
10323 	/* a dummy interface is started by default */
10324 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10325 	set_bit(__LINK_STATE_START, &dev->state);
10326 
10327 	/* napi_busy_loop stats accounting wants this */
10328 	dev_net_set(dev, &init_net);
10329 
10330 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10331 	 * because users of this 'device' dont need to change
10332 	 * its refcount.
10333 	 */
10334 
10335 	return 0;
10336 }
10337 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10338 
10339 
10340 /**
10341  *	register_netdev	- register a network device
10342  *	@dev: device to register
10343  *
10344  *	Take a completed network device structure and add it to the kernel
10345  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10346  *	chain. 0 is returned on success. A negative errno code is returned
10347  *	on a failure to set up the device, or if the name is a duplicate.
10348  *
10349  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10350  *	and expands the device name if you passed a format string to
10351  *	alloc_netdev.
10352  */
10353 int register_netdev(struct net_device *dev)
10354 {
10355 	int err;
10356 
10357 	if (rtnl_lock_killable())
10358 		return -EINTR;
10359 	err = register_netdevice(dev);
10360 	rtnl_unlock();
10361 	return err;
10362 }
10363 EXPORT_SYMBOL(register_netdev);
10364 
10365 int netdev_refcnt_read(const struct net_device *dev)
10366 {
10367 #ifdef CONFIG_PCPU_DEV_REFCNT
10368 	int i, refcnt = 0;
10369 
10370 	for_each_possible_cpu(i)
10371 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10372 	return refcnt;
10373 #else
10374 	return refcount_read(&dev->dev_refcnt);
10375 #endif
10376 }
10377 EXPORT_SYMBOL(netdev_refcnt_read);
10378 
10379 int netdev_unregister_timeout_secs __read_mostly = 10;
10380 
10381 #define WAIT_REFS_MIN_MSECS 1
10382 #define WAIT_REFS_MAX_MSECS 250
10383 /**
10384  * netdev_wait_allrefs_any - wait until all references are gone.
10385  * @list: list of net_devices to wait on
10386  *
10387  * This is called when unregistering network devices.
10388  *
10389  * Any protocol or device that holds a reference should register
10390  * for netdevice notification, and cleanup and put back the
10391  * reference if they receive an UNREGISTER event.
10392  * We can get stuck here if buggy protocols don't correctly
10393  * call dev_put.
10394  */
10395 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10396 {
10397 	unsigned long rebroadcast_time, warning_time;
10398 	struct net_device *dev;
10399 	int wait = 0;
10400 
10401 	rebroadcast_time = warning_time = jiffies;
10402 
10403 	list_for_each_entry(dev, list, todo_list)
10404 		if (netdev_refcnt_read(dev) == 1)
10405 			return dev;
10406 
10407 	while (true) {
10408 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10409 			rtnl_lock();
10410 
10411 			/* Rebroadcast unregister notification */
10412 			list_for_each_entry(dev, list, todo_list)
10413 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10414 
10415 			__rtnl_unlock();
10416 			rcu_barrier();
10417 			rtnl_lock();
10418 
10419 			list_for_each_entry(dev, list, todo_list)
10420 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10421 					     &dev->state)) {
10422 					/* We must not have linkwatch events
10423 					 * pending on unregister. If this
10424 					 * happens, we simply run the queue
10425 					 * unscheduled, resulting in a noop
10426 					 * for this device.
10427 					 */
10428 					linkwatch_run_queue();
10429 					break;
10430 				}
10431 
10432 			__rtnl_unlock();
10433 
10434 			rebroadcast_time = jiffies;
10435 		}
10436 
10437 		rcu_barrier();
10438 
10439 		if (!wait) {
10440 			wait = WAIT_REFS_MIN_MSECS;
10441 		} else {
10442 			msleep(wait);
10443 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10444 		}
10445 
10446 		list_for_each_entry(dev, list, todo_list)
10447 			if (netdev_refcnt_read(dev) == 1)
10448 				return dev;
10449 
10450 		if (time_after(jiffies, warning_time +
10451 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10452 			list_for_each_entry(dev, list, todo_list) {
10453 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10454 					 dev->name, netdev_refcnt_read(dev));
10455 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10456 			}
10457 
10458 			warning_time = jiffies;
10459 		}
10460 	}
10461 }
10462 
10463 /* The sequence is:
10464  *
10465  *	rtnl_lock();
10466  *	...
10467  *	register_netdevice(x1);
10468  *	register_netdevice(x2);
10469  *	...
10470  *	unregister_netdevice(y1);
10471  *	unregister_netdevice(y2);
10472  *      ...
10473  *	rtnl_unlock();
10474  *	free_netdev(y1);
10475  *	free_netdev(y2);
10476  *
10477  * We are invoked by rtnl_unlock().
10478  * This allows us to deal with problems:
10479  * 1) We can delete sysfs objects which invoke hotplug
10480  *    without deadlocking with linkwatch via keventd.
10481  * 2) Since we run with the RTNL semaphore not held, we can sleep
10482  *    safely in order to wait for the netdev refcnt to drop to zero.
10483  *
10484  * We must not return until all unregister events added during
10485  * the interval the lock was held have been completed.
10486  */
10487 void netdev_run_todo(void)
10488 {
10489 	struct net_device *dev, *tmp;
10490 	struct list_head list;
10491 #ifdef CONFIG_LOCKDEP
10492 	struct list_head unlink_list;
10493 
10494 	list_replace_init(&net_unlink_list, &unlink_list);
10495 
10496 	while (!list_empty(&unlink_list)) {
10497 		struct net_device *dev = list_first_entry(&unlink_list,
10498 							  struct net_device,
10499 							  unlink_list);
10500 		list_del_init(&dev->unlink_list);
10501 		dev->nested_level = dev->lower_level - 1;
10502 	}
10503 #endif
10504 
10505 	/* Snapshot list, allow later requests */
10506 	list_replace_init(&net_todo_list, &list);
10507 
10508 	__rtnl_unlock();
10509 
10510 	/* Wait for rcu callbacks to finish before next phase */
10511 	if (!list_empty(&list))
10512 		rcu_barrier();
10513 
10514 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10515 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10516 			netdev_WARN(dev, "run_todo but not unregistering\n");
10517 			list_del(&dev->todo_list);
10518 			continue;
10519 		}
10520 
10521 		write_lock(&dev_base_lock);
10522 		dev->reg_state = NETREG_UNREGISTERED;
10523 		write_unlock(&dev_base_lock);
10524 		linkwatch_forget_dev(dev);
10525 	}
10526 
10527 	while (!list_empty(&list)) {
10528 		dev = netdev_wait_allrefs_any(&list);
10529 		list_del(&dev->todo_list);
10530 
10531 		/* paranoia */
10532 		BUG_ON(netdev_refcnt_read(dev) != 1);
10533 		BUG_ON(!list_empty(&dev->ptype_all));
10534 		BUG_ON(!list_empty(&dev->ptype_specific));
10535 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10536 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10537 
10538 		netdev_do_free_pcpu_stats(dev);
10539 		if (dev->priv_destructor)
10540 			dev->priv_destructor(dev);
10541 		if (dev->needs_free_netdev)
10542 			free_netdev(dev);
10543 
10544 		if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10545 			wake_up(&netdev_unregistering_wq);
10546 
10547 		/* Free network device */
10548 		kobject_put(&dev->dev.kobj);
10549 	}
10550 }
10551 
10552 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10553  * all the same fields in the same order as net_device_stats, with only
10554  * the type differing, but rtnl_link_stats64 may have additional fields
10555  * at the end for newer counters.
10556  */
10557 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10558 			     const struct net_device_stats *netdev_stats)
10559 {
10560 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10561 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10562 	u64 *dst = (u64 *)stats64;
10563 
10564 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10565 	for (i = 0; i < n; i++)
10566 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
10567 	/* zero out counters that only exist in rtnl_link_stats64 */
10568 	memset((char *)stats64 + n * sizeof(u64), 0,
10569 	       sizeof(*stats64) - n * sizeof(u64));
10570 }
10571 EXPORT_SYMBOL(netdev_stats_to_stats64);
10572 
10573 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10574 {
10575 	struct net_device_core_stats __percpu *p;
10576 
10577 	p = alloc_percpu_gfp(struct net_device_core_stats,
10578 			     GFP_ATOMIC | __GFP_NOWARN);
10579 
10580 	if (p && cmpxchg(&dev->core_stats, NULL, p))
10581 		free_percpu(p);
10582 
10583 	/* This READ_ONCE() pairs with the cmpxchg() above */
10584 	return READ_ONCE(dev->core_stats);
10585 }
10586 EXPORT_SYMBOL(netdev_core_stats_alloc);
10587 
10588 /**
10589  *	dev_get_stats	- get network device statistics
10590  *	@dev: device to get statistics from
10591  *	@storage: place to store stats
10592  *
10593  *	Get network statistics from device. Return @storage.
10594  *	The device driver may provide its own method by setting
10595  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10596  *	otherwise the internal statistics structure is used.
10597  */
10598 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10599 					struct rtnl_link_stats64 *storage)
10600 {
10601 	const struct net_device_ops *ops = dev->netdev_ops;
10602 	const struct net_device_core_stats __percpu *p;
10603 
10604 	if (ops->ndo_get_stats64) {
10605 		memset(storage, 0, sizeof(*storage));
10606 		ops->ndo_get_stats64(dev, storage);
10607 	} else if (ops->ndo_get_stats) {
10608 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10609 	} else {
10610 		netdev_stats_to_stats64(storage, &dev->stats);
10611 	}
10612 
10613 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10614 	p = READ_ONCE(dev->core_stats);
10615 	if (p) {
10616 		const struct net_device_core_stats *core_stats;
10617 		int i;
10618 
10619 		for_each_possible_cpu(i) {
10620 			core_stats = per_cpu_ptr(p, i);
10621 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10622 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10623 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10624 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10625 		}
10626 	}
10627 	return storage;
10628 }
10629 EXPORT_SYMBOL(dev_get_stats);
10630 
10631 /**
10632  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10633  *	@s: place to store stats
10634  *	@netstats: per-cpu network stats to read from
10635  *
10636  *	Read per-cpu network statistics and populate the related fields in @s.
10637  */
10638 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10639 			   const struct pcpu_sw_netstats __percpu *netstats)
10640 {
10641 	int cpu;
10642 
10643 	for_each_possible_cpu(cpu) {
10644 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10645 		const struct pcpu_sw_netstats *stats;
10646 		unsigned int start;
10647 
10648 		stats = per_cpu_ptr(netstats, cpu);
10649 		do {
10650 			start = u64_stats_fetch_begin(&stats->syncp);
10651 			rx_packets = u64_stats_read(&stats->rx_packets);
10652 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10653 			tx_packets = u64_stats_read(&stats->tx_packets);
10654 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10655 		} while (u64_stats_fetch_retry(&stats->syncp, start));
10656 
10657 		s->rx_packets += rx_packets;
10658 		s->rx_bytes   += rx_bytes;
10659 		s->tx_packets += tx_packets;
10660 		s->tx_bytes   += tx_bytes;
10661 	}
10662 }
10663 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10664 
10665 /**
10666  *	dev_get_tstats64 - ndo_get_stats64 implementation
10667  *	@dev: device to get statistics from
10668  *	@s: place to store stats
10669  *
10670  *	Populate @s from dev->stats and dev->tstats. Can be used as
10671  *	ndo_get_stats64() callback.
10672  */
10673 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10674 {
10675 	netdev_stats_to_stats64(s, &dev->stats);
10676 	dev_fetch_sw_netstats(s, dev->tstats);
10677 }
10678 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10679 
10680 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10681 {
10682 	struct netdev_queue *queue = dev_ingress_queue(dev);
10683 
10684 #ifdef CONFIG_NET_CLS_ACT
10685 	if (queue)
10686 		return queue;
10687 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10688 	if (!queue)
10689 		return NULL;
10690 	netdev_init_one_queue(dev, queue, NULL);
10691 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10692 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10693 	rcu_assign_pointer(dev->ingress_queue, queue);
10694 #endif
10695 	return queue;
10696 }
10697 
10698 static const struct ethtool_ops default_ethtool_ops;
10699 
10700 void netdev_set_default_ethtool_ops(struct net_device *dev,
10701 				    const struct ethtool_ops *ops)
10702 {
10703 	if (dev->ethtool_ops == &default_ethtool_ops)
10704 		dev->ethtool_ops = ops;
10705 }
10706 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10707 
10708 /**
10709  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10710  * @dev: netdev to enable the IRQ coalescing on
10711  *
10712  * Sets a conservative default for SW IRQ coalescing. Users can use
10713  * sysfs attributes to override the default values.
10714  */
10715 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10716 {
10717 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
10718 
10719 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10720 		dev->gro_flush_timeout = 20000;
10721 		dev->napi_defer_hard_irqs = 1;
10722 	}
10723 }
10724 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10725 
10726 void netdev_freemem(struct net_device *dev)
10727 {
10728 	char *addr = (char *)dev - dev->padded;
10729 
10730 	kvfree(addr);
10731 }
10732 
10733 /**
10734  * alloc_netdev_mqs - allocate network device
10735  * @sizeof_priv: size of private data to allocate space for
10736  * @name: device name format string
10737  * @name_assign_type: origin of device name
10738  * @setup: callback to initialize device
10739  * @txqs: the number of TX subqueues to allocate
10740  * @rxqs: the number of RX subqueues to allocate
10741  *
10742  * Allocates a struct net_device with private data area for driver use
10743  * and performs basic initialization.  Also allocates subqueue structs
10744  * for each queue on the device.
10745  */
10746 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10747 		unsigned char name_assign_type,
10748 		void (*setup)(struct net_device *),
10749 		unsigned int txqs, unsigned int rxqs)
10750 {
10751 	struct net_device *dev;
10752 	unsigned int alloc_size;
10753 	struct net_device *p;
10754 
10755 	BUG_ON(strlen(name) >= sizeof(dev->name));
10756 
10757 	if (txqs < 1) {
10758 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10759 		return NULL;
10760 	}
10761 
10762 	if (rxqs < 1) {
10763 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10764 		return NULL;
10765 	}
10766 
10767 	alloc_size = sizeof(struct net_device);
10768 	if (sizeof_priv) {
10769 		/* ensure 32-byte alignment of private area */
10770 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10771 		alloc_size += sizeof_priv;
10772 	}
10773 	/* ensure 32-byte alignment of whole construct */
10774 	alloc_size += NETDEV_ALIGN - 1;
10775 
10776 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10777 	if (!p)
10778 		return NULL;
10779 
10780 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10781 	dev->padded = (char *)dev - (char *)p;
10782 
10783 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10784 #ifdef CONFIG_PCPU_DEV_REFCNT
10785 	dev->pcpu_refcnt = alloc_percpu(int);
10786 	if (!dev->pcpu_refcnt)
10787 		goto free_dev;
10788 	__dev_hold(dev);
10789 #else
10790 	refcount_set(&dev->dev_refcnt, 1);
10791 #endif
10792 
10793 	if (dev_addr_init(dev))
10794 		goto free_pcpu;
10795 
10796 	dev_mc_init(dev);
10797 	dev_uc_init(dev);
10798 
10799 	dev_net_set(dev, &init_net);
10800 
10801 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10802 	dev->xdp_zc_max_segs = 1;
10803 	dev->gso_max_segs = GSO_MAX_SEGS;
10804 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10805 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10806 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10807 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10808 	dev->tso_max_segs = TSO_MAX_SEGS;
10809 	dev->upper_level = 1;
10810 	dev->lower_level = 1;
10811 #ifdef CONFIG_LOCKDEP
10812 	dev->nested_level = 0;
10813 	INIT_LIST_HEAD(&dev->unlink_list);
10814 #endif
10815 
10816 	INIT_LIST_HEAD(&dev->napi_list);
10817 	INIT_LIST_HEAD(&dev->unreg_list);
10818 	INIT_LIST_HEAD(&dev->close_list);
10819 	INIT_LIST_HEAD(&dev->link_watch_list);
10820 	INIT_LIST_HEAD(&dev->adj_list.upper);
10821 	INIT_LIST_HEAD(&dev->adj_list.lower);
10822 	INIT_LIST_HEAD(&dev->ptype_all);
10823 	INIT_LIST_HEAD(&dev->ptype_specific);
10824 	INIT_LIST_HEAD(&dev->net_notifier_list);
10825 #ifdef CONFIG_NET_SCHED
10826 	hash_init(dev->qdisc_hash);
10827 #endif
10828 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10829 	setup(dev);
10830 
10831 	if (!dev->tx_queue_len) {
10832 		dev->priv_flags |= IFF_NO_QUEUE;
10833 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10834 	}
10835 
10836 	dev->num_tx_queues = txqs;
10837 	dev->real_num_tx_queues = txqs;
10838 	if (netif_alloc_netdev_queues(dev))
10839 		goto free_all;
10840 
10841 	dev->num_rx_queues = rxqs;
10842 	dev->real_num_rx_queues = rxqs;
10843 	if (netif_alloc_rx_queues(dev))
10844 		goto free_all;
10845 
10846 	strcpy(dev->name, name);
10847 	dev->name_assign_type = name_assign_type;
10848 	dev->group = INIT_NETDEV_GROUP;
10849 	if (!dev->ethtool_ops)
10850 		dev->ethtool_ops = &default_ethtool_ops;
10851 
10852 	nf_hook_netdev_init(dev);
10853 
10854 	return dev;
10855 
10856 free_all:
10857 	free_netdev(dev);
10858 	return NULL;
10859 
10860 free_pcpu:
10861 #ifdef CONFIG_PCPU_DEV_REFCNT
10862 	free_percpu(dev->pcpu_refcnt);
10863 free_dev:
10864 #endif
10865 	netdev_freemem(dev);
10866 	return NULL;
10867 }
10868 EXPORT_SYMBOL(alloc_netdev_mqs);
10869 
10870 /**
10871  * free_netdev - free network device
10872  * @dev: device
10873  *
10874  * This function does the last stage of destroying an allocated device
10875  * interface. The reference to the device object is released. If this
10876  * is the last reference then it will be freed.Must be called in process
10877  * context.
10878  */
10879 void free_netdev(struct net_device *dev)
10880 {
10881 	struct napi_struct *p, *n;
10882 
10883 	might_sleep();
10884 
10885 	/* When called immediately after register_netdevice() failed the unwind
10886 	 * handling may still be dismantling the device. Handle that case by
10887 	 * deferring the free.
10888 	 */
10889 	if (dev->reg_state == NETREG_UNREGISTERING) {
10890 		ASSERT_RTNL();
10891 		dev->needs_free_netdev = true;
10892 		return;
10893 	}
10894 
10895 	netif_free_tx_queues(dev);
10896 	netif_free_rx_queues(dev);
10897 
10898 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10899 
10900 	/* Flush device addresses */
10901 	dev_addr_flush(dev);
10902 
10903 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10904 		netif_napi_del(p);
10905 
10906 	ref_tracker_dir_exit(&dev->refcnt_tracker);
10907 #ifdef CONFIG_PCPU_DEV_REFCNT
10908 	free_percpu(dev->pcpu_refcnt);
10909 	dev->pcpu_refcnt = NULL;
10910 #endif
10911 	free_percpu(dev->core_stats);
10912 	dev->core_stats = NULL;
10913 	free_percpu(dev->xdp_bulkq);
10914 	dev->xdp_bulkq = NULL;
10915 
10916 	/*  Compatibility with error handling in drivers */
10917 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10918 		netdev_freemem(dev);
10919 		return;
10920 	}
10921 
10922 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10923 	dev->reg_state = NETREG_RELEASED;
10924 
10925 	/* will free via device release */
10926 	put_device(&dev->dev);
10927 }
10928 EXPORT_SYMBOL(free_netdev);
10929 
10930 /**
10931  *	synchronize_net -  Synchronize with packet receive processing
10932  *
10933  *	Wait for packets currently being received to be done.
10934  *	Does not block later packets from starting.
10935  */
10936 void synchronize_net(void)
10937 {
10938 	might_sleep();
10939 	if (rtnl_is_locked())
10940 		synchronize_rcu_expedited();
10941 	else
10942 		synchronize_rcu();
10943 }
10944 EXPORT_SYMBOL(synchronize_net);
10945 
10946 /**
10947  *	unregister_netdevice_queue - remove device from the kernel
10948  *	@dev: device
10949  *	@head: list
10950  *
10951  *	This function shuts down a device interface and removes it
10952  *	from the kernel tables.
10953  *	If head not NULL, device is queued to be unregistered later.
10954  *
10955  *	Callers must hold the rtnl semaphore.  You may want
10956  *	unregister_netdev() instead of this.
10957  */
10958 
10959 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10960 {
10961 	ASSERT_RTNL();
10962 
10963 	if (head) {
10964 		list_move_tail(&dev->unreg_list, head);
10965 	} else {
10966 		LIST_HEAD(single);
10967 
10968 		list_add(&dev->unreg_list, &single);
10969 		unregister_netdevice_many(&single);
10970 	}
10971 }
10972 EXPORT_SYMBOL(unregister_netdevice_queue);
10973 
10974 void unregister_netdevice_many_notify(struct list_head *head,
10975 				      u32 portid, const struct nlmsghdr *nlh)
10976 {
10977 	struct net_device *dev, *tmp;
10978 	LIST_HEAD(close_head);
10979 
10980 	BUG_ON(dev_boot_phase);
10981 	ASSERT_RTNL();
10982 
10983 	if (list_empty(head))
10984 		return;
10985 
10986 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10987 		/* Some devices call without registering
10988 		 * for initialization unwind. Remove those
10989 		 * devices and proceed with the remaining.
10990 		 */
10991 		if (dev->reg_state == NETREG_UNINITIALIZED) {
10992 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10993 				 dev->name, dev);
10994 
10995 			WARN_ON(1);
10996 			list_del(&dev->unreg_list);
10997 			continue;
10998 		}
10999 		dev->dismantle = true;
11000 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11001 	}
11002 
11003 	/* If device is running, close it first. */
11004 	list_for_each_entry(dev, head, unreg_list)
11005 		list_add_tail(&dev->close_list, &close_head);
11006 	dev_close_many(&close_head, true);
11007 
11008 	list_for_each_entry(dev, head, unreg_list) {
11009 		/* And unlink it from device chain. */
11010 		write_lock(&dev_base_lock);
11011 		unlist_netdevice(dev, false);
11012 		dev->reg_state = NETREG_UNREGISTERING;
11013 		write_unlock(&dev_base_lock);
11014 	}
11015 	flush_all_backlogs();
11016 
11017 	synchronize_net();
11018 
11019 	list_for_each_entry(dev, head, unreg_list) {
11020 		struct sk_buff *skb = NULL;
11021 
11022 		/* Shutdown queueing discipline. */
11023 		dev_shutdown(dev);
11024 		dev_tcx_uninstall(dev);
11025 		dev_xdp_uninstall(dev);
11026 		bpf_dev_bound_netdev_unregister(dev);
11027 
11028 		netdev_offload_xstats_disable_all(dev);
11029 
11030 		/* Notify protocols, that we are about to destroy
11031 		 * this device. They should clean all the things.
11032 		 */
11033 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11034 
11035 		if (!dev->rtnl_link_ops ||
11036 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11037 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11038 						     GFP_KERNEL, NULL, 0,
11039 						     portid, nlh);
11040 
11041 		/*
11042 		 *	Flush the unicast and multicast chains
11043 		 */
11044 		dev_uc_flush(dev);
11045 		dev_mc_flush(dev);
11046 
11047 		netdev_name_node_alt_flush(dev);
11048 		netdev_name_node_free(dev->name_node);
11049 
11050 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11051 
11052 		if (dev->netdev_ops->ndo_uninit)
11053 			dev->netdev_ops->ndo_uninit(dev);
11054 
11055 		if (skb)
11056 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11057 
11058 		/* Notifier chain MUST detach us all upper devices. */
11059 		WARN_ON(netdev_has_any_upper_dev(dev));
11060 		WARN_ON(netdev_has_any_lower_dev(dev));
11061 
11062 		/* Remove entries from kobject tree */
11063 		netdev_unregister_kobject(dev);
11064 #ifdef CONFIG_XPS
11065 		/* Remove XPS queueing entries */
11066 		netif_reset_xps_queues_gt(dev, 0);
11067 #endif
11068 	}
11069 
11070 	synchronize_net();
11071 
11072 	list_for_each_entry(dev, head, unreg_list) {
11073 		netdev_put(dev, &dev->dev_registered_tracker);
11074 		net_set_todo(dev);
11075 	}
11076 
11077 	list_del(head);
11078 }
11079 
11080 /**
11081  *	unregister_netdevice_many - unregister many devices
11082  *	@head: list of devices
11083  *
11084  *  Note: As most callers use a stack allocated list_head,
11085  *  we force a list_del() to make sure stack wont be corrupted later.
11086  */
11087 void unregister_netdevice_many(struct list_head *head)
11088 {
11089 	unregister_netdevice_many_notify(head, 0, NULL);
11090 }
11091 EXPORT_SYMBOL(unregister_netdevice_many);
11092 
11093 /**
11094  *	unregister_netdev - remove device from the kernel
11095  *	@dev: device
11096  *
11097  *	This function shuts down a device interface and removes it
11098  *	from the kernel tables.
11099  *
11100  *	This is just a wrapper for unregister_netdevice that takes
11101  *	the rtnl semaphore.  In general you want to use this and not
11102  *	unregister_netdevice.
11103  */
11104 void unregister_netdev(struct net_device *dev)
11105 {
11106 	rtnl_lock();
11107 	unregister_netdevice(dev);
11108 	rtnl_unlock();
11109 }
11110 EXPORT_SYMBOL(unregister_netdev);
11111 
11112 /**
11113  *	__dev_change_net_namespace - move device to different nethost namespace
11114  *	@dev: device
11115  *	@net: network namespace
11116  *	@pat: If not NULL name pattern to try if the current device name
11117  *	      is already taken in the destination network namespace.
11118  *	@new_ifindex: If not zero, specifies device index in the target
11119  *	              namespace.
11120  *
11121  *	This function shuts down a device interface and moves it
11122  *	to a new network namespace. On success 0 is returned, on
11123  *	a failure a netagive errno code is returned.
11124  *
11125  *	Callers must hold the rtnl semaphore.
11126  */
11127 
11128 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11129 			       const char *pat, int new_ifindex)
11130 {
11131 	struct netdev_name_node *name_node;
11132 	struct net *net_old = dev_net(dev);
11133 	char new_name[IFNAMSIZ] = {};
11134 	int err, new_nsid;
11135 
11136 	ASSERT_RTNL();
11137 
11138 	/* Don't allow namespace local devices to be moved. */
11139 	err = -EINVAL;
11140 	if (dev->features & NETIF_F_NETNS_LOCAL)
11141 		goto out;
11142 
11143 	/* Ensure the device has been registrered */
11144 	if (dev->reg_state != NETREG_REGISTERED)
11145 		goto out;
11146 
11147 	/* Get out if there is nothing todo */
11148 	err = 0;
11149 	if (net_eq(net_old, net))
11150 		goto out;
11151 
11152 	/* Pick the destination device name, and ensure
11153 	 * we can use it in the destination network namespace.
11154 	 */
11155 	err = -EEXIST;
11156 	if (netdev_name_in_use(net, dev->name)) {
11157 		/* We get here if we can't use the current device name */
11158 		if (!pat)
11159 			goto out;
11160 		err = dev_prep_valid_name(net, dev, pat, new_name);
11161 		if (err < 0)
11162 			goto out;
11163 	}
11164 	/* Check that none of the altnames conflicts. */
11165 	err = -EEXIST;
11166 	netdev_for_each_altname(dev, name_node)
11167 		if (netdev_name_in_use(net, name_node->name))
11168 			goto out;
11169 
11170 	/* Check that new_ifindex isn't used yet. */
11171 	if (new_ifindex) {
11172 		err = dev_index_reserve(net, new_ifindex);
11173 		if (err < 0)
11174 			goto out;
11175 	} else {
11176 		/* If there is an ifindex conflict assign a new one */
11177 		err = dev_index_reserve(net, dev->ifindex);
11178 		if (err == -EBUSY)
11179 			err = dev_index_reserve(net, 0);
11180 		if (err < 0)
11181 			goto out;
11182 		new_ifindex = err;
11183 	}
11184 
11185 	/*
11186 	 * And now a mini version of register_netdevice unregister_netdevice.
11187 	 */
11188 
11189 	/* If device is running close it first. */
11190 	dev_close(dev);
11191 
11192 	/* And unlink it from device chain */
11193 	unlist_netdevice(dev, true);
11194 
11195 	synchronize_net();
11196 
11197 	/* Shutdown queueing discipline. */
11198 	dev_shutdown(dev);
11199 
11200 	/* Notify protocols, that we are about to destroy
11201 	 * this device. They should clean all the things.
11202 	 *
11203 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11204 	 * This is wanted because this way 8021q and macvlan know
11205 	 * the device is just moving and can keep their slaves up.
11206 	 */
11207 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11208 	rcu_barrier();
11209 
11210 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11211 
11212 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11213 			    new_ifindex);
11214 
11215 	/*
11216 	 *	Flush the unicast and multicast chains
11217 	 */
11218 	dev_uc_flush(dev);
11219 	dev_mc_flush(dev);
11220 
11221 	/* Send a netdev-removed uevent to the old namespace */
11222 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11223 	netdev_adjacent_del_links(dev);
11224 
11225 	/* Move per-net netdevice notifiers that are following the netdevice */
11226 	move_netdevice_notifiers_dev_net(dev, net);
11227 
11228 	/* Actually switch the network namespace */
11229 	dev_net_set(dev, net);
11230 	dev->ifindex = new_ifindex;
11231 
11232 	/* Send a netdev-add uevent to the new namespace */
11233 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11234 	netdev_adjacent_add_links(dev);
11235 
11236 	if (new_name[0]) /* Rename the netdev to prepared name */
11237 		strscpy(dev->name, new_name, IFNAMSIZ);
11238 
11239 	/* Fixup kobjects */
11240 	err = device_rename(&dev->dev, dev->name);
11241 	WARN_ON(err);
11242 
11243 	/* Adapt owner in case owning user namespace of target network
11244 	 * namespace is different from the original one.
11245 	 */
11246 	err = netdev_change_owner(dev, net_old, net);
11247 	WARN_ON(err);
11248 
11249 	/* Add the device back in the hashes */
11250 	list_netdevice(dev);
11251 
11252 	/* Notify protocols, that a new device appeared. */
11253 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11254 
11255 	/*
11256 	 *	Prevent userspace races by waiting until the network
11257 	 *	device is fully setup before sending notifications.
11258 	 */
11259 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11260 
11261 	synchronize_net();
11262 	err = 0;
11263 out:
11264 	return err;
11265 }
11266 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11267 
11268 static int dev_cpu_dead(unsigned int oldcpu)
11269 {
11270 	struct sk_buff **list_skb;
11271 	struct sk_buff *skb;
11272 	unsigned int cpu;
11273 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11274 
11275 	local_irq_disable();
11276 	cpu = smp_processor_id();
11277 	sd = &per_cpu(softnet_data, cpu);
11278 	oldsd = &per_cpu(softnet_data, oldcpu);
11279 
11280 	/* Find end of our completion_queue. */
11281 	list_skb = &sd->completion_queue;
11282 	while (*list_skb)
11283 		list_skb = &(*list_skb)->next;
11284 	/* Append completion queue from offline CPU. */
11285 	*list_skb = oldsd->completion_queue;
11286 	oldsd->completion_queue = NULL;
11287 
11288 	/* Append output queue from offline CPU. */
11289 	if (oldsd->output_queue) {
11290 		*sd->output_queue_tailp = oldsd->output_queue;
11291 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11292 		oldsd->output_queue = NULL;
11293 		oldsd->output_queue_tailp = &oldsd->output_queue;
11294 	}
11295 	/* Append NAPI poll list from offline CPU, with one exception :
11296 	 * process_backlog() must be called by cpu owning percpu backlog.
11297 	 * We properly handle process_queue & input_pkt_queue later.
11298 	 */
11299 	while (!list_empty(&oldsd->poll_list)) {
11300 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11301 							    struct napi_struct,
11302 							    poll_list);
11303 
11304 		list_del_init(&napi->poll_list);
11305 		if (napi->poll == process_backlog)
11306 			napi->state = 0;
11307 		else
11308 			____napi_schedule(sd, napi);
11309 	}
11310 
11311 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11312 	local_irq_enable();
11313 
11314 #ifdef CONFIG_RPS
11315 	remsd = oldsd->rps_ipi_list;
11316 	oldsd->rps_ipi_list = NULL;
11317 #endif
11318 	/* send out pending IPI's on offline CPU */
11319 	net_rps_send_ipi(remsd);
11320 
11321 	/* Process offline CPU's input_pkt_queue */
11322 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11323 		netif_rx(skb);
11324 		input_queue_head_incr(oldsd);
11325 	}
11326 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11327 		netif_rx(skb);
11328 		input_queue_head_incr(oldsd);
11329 	}
11330 
11331 	return 0;
11332 }
11333 
11334 /**
11335  *	netdev_increment_features - increment feature set by one
11336  *	@all: current feature set
11337  *	@one: new feature set
11338  *	@mask: mask feature set
11339  *
11340  *	Computes a new feature set after adding a device with feature set
11341  *	@one to the master device with current feature set @all.  Will not
11342  *	enable anything that is off in @mask. Returns the new feature set.
11343  */
11344 netdev_features_t netdev_increment_features(netdev_features_t all,
11345 	netdev_features_t one, netdev_features_t mask)
11346 {
11347 	if (mask & NETIF_F_HW_CSUM)
11348 		mask |= NETIF_F_CSUM_MASK;
11349 	mask |= NETIF_F_VLAN_CHALLENGED;
11350 
11351 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11352 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11353 
11354 	/* If one device supports hw checksumming, set for all. */
11355 	if (all & NETIF_F_HW_CSUM)
11356 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11357 
11358 	return all;
11359 }
11360 EXPORT_SYMBOL(netdev_increment_features);
11361 
11362 static struct hlist_head * __net_init netdev_create_hash(void)
11363 {
11364 	int i;
11365 	struct hlist_head *hash;
11366 
11367 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11368 	if (hash != NULL)
11369 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11370 			INIT_HLIST_HEAD(&hash[i]);
11371 
11372 	return hash;
11373 }
11374 
11375 /* Initialize per network namespace state */
11376 static int __net_init netdev_init(struct net *net)
11377 {
11378 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11379 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11380 
11381 	INIT_LIST_HEAD(&net->dev_base_head);
11382 
11383 	net->dev_name_head = netdev_create_hash();
11384 	if (net->dev_name_head == NULL)
11385 		goto err_name;
11386 
11387 	net->dev_index_head = netdev_create_hash();
11388 	if (net->dev_index_head == NULL)
11389 		goto err_idx;
11390 
11391 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11392 
11393 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11394 
11395 	return 0;
11396 
11397 err_idx:
11398 	kfree(net->dev_name_head);
11399 err_name:
11400 	return -ENOMEM;
11401 }
11402 
11403 /**
11404  *	netdev_drivername - network driver for the device
11405  *	@dev: network device
11406  *
11407  *	Determine network driver for device.
11408  */
11409 const char *netdev_drivername(const struct net_device *dev)
11410 {
11411 	const struct device_driver *driver;
11412 	const struct device *parent;
11413 	const char *empty = "";
11414 
11415 	parent = dev->dev.parent;
11416 	if (!parent)
11417 		return empty;
11418 
11419 	driver = parent->driver;
11420 	if (driver && driver->name)
11421 		return driver->name;
11422 	return empty;
11423 }
11424 
11425 static void __netdev_printk(const char *level, const struct net_device *dev,
11426 			    struct va_format *vaf)
11427 {
11428 	if (dev && dev->dev.parent) {
11429 		dev_printk_emit(level[1] - '0',
11430 				dev->dev.parent,
11431 				"%s %s %s%s: %pV",
11432 				dev_driver_string(dev->dev.parent),
11433 				dev_name(dev->dev.parent),
11434 				netdev_name(dev), netdev_reg_state(dev),
11435 				vaf);
11436 	} else if (dev) {
11437 		printk("%s%s%s: %pV",
11438 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11439 	} else {
11440 		printk("%s(NULL net_device): %pV", level, vaf);
11441 	}
11442 }
11443 
11444 void netdev_printk(const char *level, const struct net_device *dev,
11445 		   const char *format, ...)
11446 {
11447 	struct va_format vaf;
11448 	va_list args;
11449 
11450 	va_start(args, format);
11451 
11452 	vaf.fmt = format;
11453 	vaf.va = &args;
11454 
11455 	__netdev_printk(level, dev, &vaf);
11456 
11457 	va_end(args);
11458 }
11459 EXPORT_SYMBOL(netdev_printk);
11460 
11461 #define define_netdev_printk_level(func, level)			\
11462 void func(const struct net_device *dev, const char *fmt, ...)	\
11463 {								\
11464 	struct va_format vaf;					\
11465 	va_list args;						\
11466 								\
11467 	va_start(args, fmt);					\
11468 								\
11469 	vaf.fmt = fmt;						\
11470 	vaf.va = &args;						\
11471 								\
11472 	__netdev_printk(level, dev, &vaf);			\
11473 								\
11474 	va_end(args);						\
11475 }								\
11476 EXPORT_SYMBOL(func);
11477 
11478 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11479 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11480 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11481 define_netdev_printk_level(netdev_err, KERN_ERR);
11482 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11483 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11484 define_netdev_printk_level(netdev_info, KERN_INFO);
11485 
11486 static void __net_exit netdev_exit(struct net *net)
11487 {
11488 	kfree(net->dev_name_head);
11489 	kfree(net->dev_index_head);
11490 	xa_destroy(&net->dev_by_index);
11491 	if (net != &init_net)
11492 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11493 }
11494 
11495 static struct pernet_operations __net_initdata netdev_net_ops = {
11496 	.init = netdev_init,
11497 	.exit = netdev_exit,
11498 };
11499 
11500 static void __net_exit default_device_exit_net(struct net *net)
11501 {
11502 	struct netdev_name_node *name_node, *tmp;
11503 	struct net_device *dev, *aux;
11504 	/*
11505 	 * Push all migratable network devices back to the
11506 	 * initial network namespace
11507 	 */
11508 	ASSERT_RTNL();
11509 	for_each_netdev_safe(net, dev, aux) {
11510 		int err;
11511 		char fb_name[IFNAMSIZ];
11512 
11513 		/* Ignore unmoveable devices (i.e. loopback) */
11514 		if (dev->features & NETIF_F_NETNS_LOCAL)
11515 			continue;
11516 
11517 		/* Leave virtual devices for the generic cleanup */
11518 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11519 			continue;
11520 
11521 		/* Push remaining network devices to init_net */
11522 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11523 		if (netdev_name_in_use(&init_net, fb_name))
11524 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11525 
11526 		netdev_for_each_altname_safe(dev, name_node, tmp)
11527 			if (netdev_name_in_use(&init_net, name_node->name)) {
11528 				netdev_name_node_del(name_node);
11529 				synchronize_rcu();
11530 				__netdev_name_node_alt_destroy(name_node);
11531 			}
11532 
11533 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11534 		if (err) {
11535 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11536 				 __func__, dev->name, err);
11537 			BUG();
11538 		}
11539 	}
11540 }
11541 
11542 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11543 {
11544 	/* At exit all network devices most be removed from a network
11545 	 * namespace.  Do this in the reverse order of registration.
11546 	 * Do this across as many network namespaces as possible to
11547 	 * improve batching efficiency.
11548 	 */
11549 	struct net_device *dev;
11550 	struct net *net;
11551 	LIST_HEAD(dev_kill_list);
11552 
11553 	rtnl_lock();
11554 	list_for_each_entry(net, net_list, exit_list) {
11555 		default_device_exit_net(net);
11556 		cond_resched();
11557 	}
11558 
11559 	list_for_each_entry(net, net_list, exit_list) {
11560 		for_each_netdev_reverse(net, dev) {
11561 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11562 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11563 			else
11564 				unregister_netdevice_queue(dev, &dev_kill_list);
11565 		}
11566 	}
11567 	unregister_netdevice_many(&dev_kill_list);
11568 	rtnl_unlock();
11569 }
11570 
11571 static struct pernet_operations __net_initdata default_device_ops = {
11572 	.exit_batch = default_device_exit_batch,
11573 };
11574 
11575 /*
11576  *	Initialize the DEV module. At boot time this walks the device list and
11577  *	unhooks any devices that fail to initialise (normally hardware not
11578  *	present) and leaves us with a valid list of present and active devices.
11579  *
11580  */
11581 
11582 /*
11583  *       This is called single threaded during boot, so no need
11584  *       to take the rtnl semaphore.
11585  */
11586 static int __init net_dev_init(void)
11587 {
11588 	int i, rc = -ENOMEM;
11589 
11590 	BUG_ON(!dev_boot_phase);
11591 
11592 	if (dev_proc_init())
11593 		goto out;
11594 
11595 	if (netdev_kobject_init())
11596 		goto out;
11597 
11598 	INIT_LIST_HEAD(&ptype_all);
11599 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11600 		INIT_LIST_HEAD(&ptype_base[i]);
11601 
11602 	if (register_pernet_subsys(&netdev_net_ops))
11603 		goto out;
11604 
11605 	/*
11606 	 *	Initialise the packet receive queues.
11607 	 */
11608 
11609 	for_each_possible_cpu(i) {
11610 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11611 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11612 
11613 		INIT_WORK(flush, flush_backlog);
11614 
11615 		skb_queue_head_init(&sd->input_pkt_queue);
11616 		skb_queue_head_init(&sd->process_queue);
11617 #ifdef CONFIG_XFRM_OFFLOAD
11618 		skb_queue_head_init(&sd->xfrm_backlog);
11619 #endif
11620 		INIT_LIST_HEAD(&sd->poll_list);
11621 		sd->output_queue_tailp = &sd->output_queue;
11622 #ifdef CONFIG_RPS
11623 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11624 		sd->cpu = i;
11625 #endif
11626 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11627 		spin_lock_init(&sd->defer_lock);
11628 
11629 		init_gro_hash(&sd->backlog);
11630 		sd->backlog.poll = process_backlog;
11631 		sd->backlog.weight = weight_p;
11632 	}
11633 
11634 	dev_boot_phase = 0;
11635 
11636 	/* The loopback device is special if any other network devices
11637 	 * is present in a network namespace the loopback device must
11638 	 * be present. Since we now dynamically allocate and free the
11639 	 * loopback device ensure this invariant is maintained by
11640 	 * keeping the loopback device as the first device on the
11641 	 * list of network devices.  Ensuring the loopback devices
11642 	 * is the first device that appears and the last network device
11643 	 * that disappears.
11644 	 */
11645 	if (register_pernet_device(&loopback_net_ops))
11646 		goto out;
11647 
11648 	if (register_pernet_device(&default_device_ops))
11649 		goto out;
11650 
11651 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11652 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11653 
11654 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11655 				       NULL, dev_cpu_dead);
11656 	WARN_ON(rc < 0);
11657 	rc = 0;
11658 out:
11659 	return rc;
11660 }
11661 
11662 subsys_initcall(net_dev_init);
11663