1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <linux/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/sched/mm.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/notifier.h> 97 #include <linux/skbuff.h> 98 #include <linux/bpf.h> 99 #include <linux/bpf_trace.h> 100 #include <net/net_namespace.h> 101 #include <net/sock.h> 102 #include <net/busy_poll.h> 103 #include <linux/rtnetlink.h> 104 #include <linux/stat.h> 105 #include <net/dst.h> 106 #include <net/dst_metadata.h> 107 #include <net/pkt_sched.h> 108 #include <net/pkt_cls.h> 109 #include <net/checksum.h> 110 #include <net/xfrm.h> 111 #include <linux/highmem.h> 112 #include <linux/init.h> 113 #include <linux/module.h> 114 #include <linux/netpoll.h> 115 #include <linux/rcupdate.h> 116 #include <linux/delay.h> 117 #include <net/iw_handler.h> 118 #include <asm/current.h> 119 #include <linux/audit.h> 120 #include <linux/dmaengine.h> 121 #include <linux/err.h> 122 #include <linux/ctype.h> 123 #include <linux/if_arp.h> 124 #include <linux/if_vlan.h> 125 #include <linux/ip.h> 126 #include <net/ip.h> 127 #include <net/mpls.h> 128 #include <linux/ipv6.h> 129 #include <linux/in.h> 130 #include <linux/jhash.h> 131 #include <linux/random.h> 132 #include <trace/events/napi.h> 133 #include <trace/events/net.h> 134 #include <trace/events/skb.h> 135 #include <linux/pci.h> 136 #include <linux/inetdevice.h> 137 #include <linux/cpu_rmap.h> 138 #include <linux/static_key.h> 139 #include <linux/hashtable.h> 140 #include <linux/vmalloc.h> 141 #include <linux/if_macvlan.h> 142 #include <linux/errqueue.h> 143 #include <linux/hrtimer.h> 144 #include <linux/netfilter_ingress.h> 145 #include <linux/crash_dump.h> 146 #include <linux/sctp.h> 147 #include <net/udp_tunnel.h> 148 #include <linux/net_namespace.h> 149 150 #include "net-sysfs.h" 151 152 /* Instead of increasing this, you should create a hash table. */ 153 #define MAX_GRO_SKBS 8 154 155 /* This should be increased if a protocol with a bigger head is added. */ 156 #define GRO_MAX_HEAD (MAX_HEADER + 128) 157 158 static DEFINE_SPINLOCK(ptype_lock); 159 static DEFINE_SPINLOCK(offload_lock); 160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 161 struct list_head ptype_all __read_mostly; /* Taps */ 162 static struct list_head offload_base __read_mostly; 163 164 static int netif_rx_internal(struct sk_buff *skb); 165 static int call_netdevice_notifiers_info(unsigned long val, 166 struct netdev_notifier_info *info); 167 static struct napi_struct *napi_by_id(unsigned int napi_id); 168 169 /* 170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 171 * semaphore. 172 * 173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 174 * 175 * Writers must hold the rtnl semaphore while they loop through the 176 * dev_base_head list, and hold dev_base_lock for writing when they do the 177 * actual updates. This allows pure readers to access the list even 178 * while a writer is preparing to update it. 179 * 180 * To put it another way, dev_base_lock is held for writing only to 181 * protect against pure readers; the rtnl semaphore provides the 182 * protection against other writers. 183 * 184 * See, for example usages, register_netdevice() and 185 * unregister_netdevice(), which must be called with the rtnl 186 * semaphore held. 187 */ 188 DEFINE_RWLOCK(dev_base_lock); 189 EXPORT_SYMBOL(dev_base_lock); 190 191 static DEFINE_MUTEX(ifalias_mutex); 192 193 /* protects napi_hash addition/deletion and napi_gen_id */ 194 static DEFINE_SPINLOCK(napi_hash_lock); 195 196 static unsigned int napi_gen_id = NR_CPUS; 197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 198 199 static seqcount_t devnet_rename_seq; 200 201 static inline void dev_base_seq_inc(struct net *net) 202 { 203 while (++net->dev_base_seq == 0) 204 ; 205 } 206 207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 208 { 209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 210 211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 212 } 213 214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 215 { 216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 217 } 218 219 static inline void rps_lock(struct softnet_data *sd) 220 { 221 #ifdef CONFIG_RPS 222 spin_lock(&sd->input_pkt_queue.lock); 223 #endif 224 } 225 226 static inline void rps_unlock(struct softnet_data *sd) 227 { 228 #ifdef CONFIG_RPS 229 spin_unlock(&sd->input_pkt_queue.lock); 230 #endif 231 } 232 233 /* Device list insertion */ 234 static void list_netdevice(struct net_device *dev) 235 { 236 struct net *net = dev_net(dev); 237 238 ASSERT_RTNL(); 239 240 write_lock_bh(&dev_base_lock); 241 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 242 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 243 hlist_add_head_rcu(&dev->index_hlist, 244 dev_index_hash(net, dev->ifindex)); 245 write_unlock_bh(&dev_base_lock); 246 247 dev_base_seq_inc(net); 248 } 249 250 /* Device list removal 251 * caller must respect a RCU grace period before freeing/reusing dev 252 */ 253 static void unlist_netdevice(struct net_device *dev) 254 { 255 ASSERT_RTNL(); 256 257 /* Unlink dev from the device chain */ 258 write_lock_bh(&dev_base_lock); 259 list_del_rcu(&dev->dev_list); 260 hlist_del_rcu(&dev->name_hlist); 261 hlist_del_rcu(&dev->index_hlist); 262 write_unlock_bh(&dev_base_lock); 263 264 dev_base_seq_inc(dev_net(dev)); 265 } 266 267 /* 268 * Our notifier list 269 */ 270 271 static RAW_NOTIFIER_HEAD(netdev_chain); 272 273 /* 274 * Device drivers call our routines to queue packets here. We empty the 275 * queue in the local softnet handler. 276 */ 277 278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 279 EXPORT_PER_CPU_SYMBOL(softnet_data); 280 281 #ifdef CONFIG_LOCKDEP 282 /* 283 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 284 * according to dev->type 285 */ 286 static const unsigned short netdev_lock_type[] = { 287 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 288 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 289 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 290 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 291 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 292 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 293 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 294 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 295 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 296 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 297 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 298 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 299 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 300 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 301 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 302 303 static const char *const netdev_lock_name[] = { 304 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 305 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 306 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 307 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 308 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 309 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 310 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 311 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 312 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 313 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 314 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 315 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 316 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 317 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 318 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 319 320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 322 323 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 324 { 325 int i; 326 327 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 328 if (netdev_lock_type[i] == dev_type) 329 return i; 330 /* the last key is used by default */ 331 return ARRAY_SIZE(netdev_lock_type) - 1; 332 } 333 334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 335 unsigned short dev_type) 336 { 337 int i; 338 339 i = netdev_lock_pos(dev_type); 340 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 341 netdev_lock_name[i]); 342 } 343 344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 345 { 346 int i; 347 348 i = netdev_lock_pos(dev->type); 349 lockdep_set_class_and_name(&dev->addr_list_lock, 350 &netdev_addr_lock_key[i], 351 netdev_lock_name[i]); 352 } 353 #else 354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 355 unsigned short dev_type) 356 { 357 } 358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 359 { 360 } 361 #endif 362 363 /******************************************************************************* 364 * 365 * Protocol management and registration routines 366 * 367 *******************************************************************************/ 368 369 370 /* 371 * Add a protocol ID to the list. Now that the input handler is 372 * smarter we can dispense with all the messy stuff that used to be 373 * here. 374 * 375 * BEWARE!!! Protocol handlers, mangling input packets, 376 * MUST BE last in hash buckets and checking protocol handlers 377 * MUST start from promiscuous ptype_all chain in net_bh. 378 * It is true now, do not change it. 379 * Explanation follows: if protocol handler, mangling packet, will 380 * be the first on list, it is not able to sense, that packet 381 * is cloned and should be copied-on-write, so that it will 382 * change it and subsequent readers will get broken packet. 383 * --ANK (980803) 384 */ 385 386 static inline struct list_head *ptype_head(const struct packet_type *pt) 387 { 388 if (pt->type == htons(ETH_P_ALL)) 389 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 390 else 391 return pt->dev ? &pt->dev->ptype_specific : 392 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 393 } 394 395 /** 396 * dev_add_pack - add packet handler 397 * @pt: packet type declaration 398 * 399 * Add a protocol handler to the networking stack. The passed &packet_type 400 * is linked into kernel lists and may not be freed until it has been 401 * removed from the kernel lists. 402 * 403 * This call does not sleep therefore it can not 404 * guarantee all CPU's that are in middle of receiving packets 405 * will see the new packet type (until the next received packet). 406 */ 407 408 void dev_add_pack(struct packet_type *pt) 409 { 410 struct list_head *head = ptype_head(pt); 411 412 spin_lock(&ptype_lock); 413 list_add_rcu(&pt->list, head); 414 spin_unlock(&ptype_lock); 415 } 416 EXPORT_SYMBOL(dev_add_pack); 417 418 /** 419 * __dev_remove_pack - remove packet handler 420 * @pt: packet type declaration 421 * 422 * Remove a protocol handler that was previously added to the kernel 423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 424 * from the kernel lists and can be freed or reused once this function 425 * returns. 426 * 427 * The packet type might still be in use by receivers 428 * and must not be freed until after all the CPU's have gone 429 * through a quiescent state. 430 */ 431 void __dev_remove_pack(struct packet_type *pt) 432 { 433 struct list_head *head = ptype_head(pt); 434 struct packet_type *pt1; 435 436 spin_lock(&ptype_lock); 437 438 list_for_each_entry(pt1, head, list) { 439 if (pt == pt1) { 440 list_del_rcu(&pt->list); 441 goto out; 442 } 443 } 444 445 pr_warn("dev_remove_pack: %p not found\n", pt); 446 out: 447 spin_unlock(&ptype_lock); 448 } 449 EXPORT_SYMBOL(__dev_remove_pack); 450 451 /** 452 * dev_remove_pack - remove packet handler 453 * @pt: packet type declaration 454 * 455 * Remove a protocol handler that was previously added to the kernel 456 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 457 * from the kernel lists and can be freed or reused once this function 458 * returns. 459 * 460 * This call sleeps to guarantee that no CPU is looking at the packet 461 * type after return. 462 */ 463 void dev_remove_pack(struct packet_type *pt) 464 { 465 __dev_remove_pack(pt); 466 467 synchronize_net(); 468 } 469 EXPORT_SYMBOL(dev_remove_pack); 470 471 472 /** 473 * dev_add_offload - register offload handlers 474 * @po: protocol offload declaration 475 * 476 * Add protocol offload handlers to the networking stack. The passed 477 * &proto_offload is linked into kernel lists and may not be freed until 478 * it has been removed from the kernel lists. 479 * 480 * This call does not sleep therefore it can not 481 * guarantee all CPU's that are in middle of receiving packets 482 * will see the new offload handlers (until the next received packet). 483 */ 484 void dev_add_offload(struct packet_offload *po) 485 { 486 struct packet_offload *elem; 487 488 spin_lock(&offload_lock); 489 list_for_each_entry(elem, &offload_base, list) { 490 if (po->priority < elem->priority) 491 break; 492 } 493 list_add_rcu(&po->list, elem->list.prev); 494 spin_unlock(&offload_lock); 495 } 496 EXPORT_SYMBOL(dev_add_offload); 497 498 /** 499 * __dev_remove_offload - remove offload handler 500 * @po: packet offload declaration 501 * 502 * Remove a protocol offload handler that was previously added to the 503 * kernel offload handlers by dev_add_offload(). The passed &offload_type 504 * is removed from the kernel lists and can be freed or reused once this 505 * function returns. 506 * 507 * The packet type might still be in use by receivers 508 * and must not be freed until after all the CPU's have gone 509 * through a quiescent state. 510 */ 511 static void __dev_remove_offload(struct packet_offload *po) 512 { 513 struct list_head *head = &offload_base; 514 struct packet_offload *po1; 515 516 spin_lock(&offload_lock); 517 518 list_for_each_entry(po1, head, list) { 519 if (po == po1) { 520 list_del_rcu(&po->list); 521 goto out; 522 } 523 } 524 525 pr_warn("dev_remove_offload: %p not found\n", po); 526 out: 527 spin_unlock(&offload_lock); 528 } 529 530 /** 531 * dev_remove_offload - remove packet offload handler 532 * @po: packet offload declaration 533 * 534 * Remove a packet offload handler that was previously added to the kernel 535 * offload handlers by dev_add_offload(). The passed &offload_type is 536 * removed from the kernel lists and can be freed or reused once this 537 * function returns. 538 * 539 * This call sleeps to guarantee that no CPU is looking at the packet 540 * type after return. 541 */ 542 void dev_remove_offload(struct packet_offload *po) 543 { 544 __dev_remove_offload(po); 545 546 synchronize_net(); 547 } 548 EXPORT_SYMBOL(dev_remove_offload); 549 550 /****************************************************************************** 551 * 552 * Device Boot-time Settings Routines 553 * 554 ******************************************************************************/ 555 556 /* Boot time configuration table */ 557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 558 559 /** 560 * netdev_boot_setup_add - add new setup entry 561 * @name: name of the device 562 * @map: configured settings for the device 563 * 564 * Adds new setup entry to the dev_boot_setup list. The function 565 * returns 0 on error and 1 on success. This is a generic routine to 566 * all netdevices. 567 */ 568 static int netdev_boot_setup_add(char *name, struct ifmap *map) 569 { 570 struct netdev_boot_setup *s; 571 int i; 572 573 s = dev_boot_setup; 574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 575 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 576 memset(s[i].name, 0, sizeof(s[i].name)); 577 strlcpy(s[i].name, name, IFNAMSIZ); 578 memcpy(&s[i].map, map, sizeof(s[i].map)); 579 break; 580 } 581 } 582 583 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 584 } 585 586 /** 587 * netdev_boot_setup_check - check boot time settings 588 * @dev: the netdevice 589 * 590 * Check boot time settings for the device. 591 * The found settings are set for the device to be used 592 * later in the device probing. 593 * Returns 0 if no settings found, 1 if they are. 594 */ 595 int netdev_boot_setup_check(struct net_device *dev) 596 { 597 struct netdev_boot_setup *s = dev_boot_setup; 598 int i; 599 600 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 601 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 602 !strcmp(dev->name, s[i].name)) { 603 dev->irq = s[i].map.irq; 604 dev->base_addr = s[i].map.base_addr; 605 dev->mem_start = s[i].map.mem_start; 606 dev->mem_end = s[i].map.mem_end; 607 return 1; 608 } 609 } 610 return 0; 611 } 612 EXPORT_SYMBOL(netdev_boot_setup_check); 613 614 615 /** 616 * netdev_boot_base - get address from boot time settings 617 * @prefix: prefix for network device 618 * @unit: id for network device 619 * 620 * Check boot time settings for the base address of device. 621 * The found settings are set for the device to be used 622 * later in the device probing. 623 * Returns 0 if no settings found. 624 */ 625 unsigned long netdev_boot_base(const char *prefix, int unit) 626 { 627 const struct netdev_boot_setup *s = dev_boot_setup; 628 char name[IFNAMSIZ]; 629 int i; 630 631 sprintf(name, "%s%d", prefix, unit); 632 633 /* 634 * If device already registered then return base of 1 635 * to indicate not to probe for this interface 636 */ 637 if (__dev_get_by_name(&init_net, name)) 638 return 1; 639 640 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 641 if (!strcmp(name, s[i].name)) 642 return s[i].map.base_addr; 643 return 0; 644 } 645 646 /* 647 * Saves at boot time configured settings for any netdevice. 648 */ 649 int __init netdev_boot_setup(char *str) 650 { 651 int ints[5]; 652 struct ifmap map; 653 654 str = get_options(str, ARRAY_SIZE(ints), ints); 655 if (!str || !*str) 656 return 0; 657 658 /* Save settings */ 659 memset(&map, 0, sizeof(map)); 660 if (ints[0] > 0) 661 map.irq = ints[1]; 662 if (ints[0] > 1) 663 map.base_addr = ints[2]; 664 if (ints[0] > 2) 665 map.mem_start = ints[3]; 666 if (ints[0] > 3) 667 map.mem_end = ints[4]; 668 669 /* Add new entry to the list */ 670 return netdev_boot_setup_add(str, &map); 671 } 672 673 __setup("netdev=", netdev_boot_setup); 674 675 /******************************************************************************* 676 * 677 * Device Interface Subroutines 678 * 679 *******************************************************************************/ 680 681 /** 682 * dev_get_iflink - get 'iflink' value of a interface 683 * @dev: targeted interface 684 * 685 * Indicates the ifindex the interface is linked to. 686 * Physical interfaces have the same 'ifindex' and 'iflink' values. 687 */ 688 689 int dev_get_iflink(const struct net_device *dev) 690 { 691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 692 return dev->netdev_ops->ndo_get_iflink(dev); 693 694 return dev->ifindex; 695 } 696 EXPORT_SYMBOL(dev_get_iflink); 697 698 /** 699 * dev_fill_metadata_dst - Retrieve tunnel egress information. 700 * @dev: targeted interface 701 * @skb: The packet. 702 * 703 * For better visibility of tunnel traffic OVS needs to retrieve 704 * egress tunnel information for a packet. Following API allows 705 * user to get this info. 706 */ 707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 708 { 709 struct ip_tunnel_info *info; 710 711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 712 return -EINVAL; 713 714 info = skb_tunnel_info_unclone(skb); 715 if (!info) 716 return -ENOMEM; 717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 718 return -EINVAL; 719 720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 721 } 722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 723 724 /** 725 * __dev_get_by_name - find a device by its name 726 * @net: the applicable net namespace 727 * @name: name to find 728 * 729 * Find an interface by name. Must be called under RTNL semaphore 730 * or @dev_base_lock. If the name is found a pointer to the device 731 * is returned. If the name is not found then %NULL is returned. The 732 * reference counters are not incremented so the caller must be 733 * careful with locks. 734 */ 735 736 struct net_device *__dev_get_by_name(struct net *net, const char *name) 737 { 738 struct net_device *dev; 739 struct hlist_head *head = dev_name_hash(net, name); 740 741 hlist_for_each_entry(dev, head, name_hlist) 742 if (!strncmp(dev->name, name, IFNAMSIZ)) 743 return dev; 744 745 return NULL; 746 } 747 EXPORT_SYMBOL(__dev_get_by_name); 748 749 /** 750 * dev_get_by_name_rcu - find a device by its name 751 * @net: the applicable net namespace 752 * @name: name to find 753 * 754 * Find an interface by name. 755 * If the name is found a pointer to the device is returned. 756 * If the name is not found then %NULL is returned. 757 * The reference counters are not incremented so the caller must be 758 * careful with locks. The caller must hold RCU lock. 759 */ 760 761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 762 { 763 struct net_device *dev; 764 struct hlist_head *head = dev_name_hash(net, name); 765 766 hlist_for_each_entry_rcu(dev, head, name_hlist) 767 if (!strncmp(dev->name, name, IFNAMSIZ)) 768 return dev; 769 770 return NULL; 771 } 772 EXPORT_SYMBOL(dev_get_by_name_rcu); 773 774 /** 775 * dev_get_by_name - find a device by its name 776 * @net: the applicable net namespace 777 * @name: name to find 778 * 779 * Find an interface by name. This can be called from any 780 * context and does its own locking. The returned handle has 781 * the usage count incremented and the caller must use dev_put() to 782 * release it when it is no longer needed. %NULL is returned if no 783 * matching device is found. 784 */ 785 786 struct net_device *dev_get_by_name(struct net *net, const char *name) 787 { 788 struct net_device *dev; 789 790 rcu_read_lock(); 791 dev = dev_get_by_name_rcu(net, name); 792 if (dev) 793 dev_hold(dev); 794 rcu_read_unlock(); 795 return dev; 796 } 797 EXPORT_SYMBOL(dev_get_by_name); 798 799 /** 800 * __dev_get_by_index - find a device by its ifindex 801 * @net: the applicable net namespace 802 * @ifindex: index of device 803 * 804 * Search for an interface by index. Returns %NULL if the device 805 * is not found or a pointer to the device. The device has not 806 * had its reference counter increased so the caller must be careful 807 * about locking. The caller must hold either the RTNL semaphore 808 * or @dev_base_lock. 809 */ 810 811 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 812 { 813 struct net_device *dev; 814 struct hlist_head *head = dev_index_hash(net, ifindex); 815 816 hlist_for_each_entry(dev, head, index_hlist) 817 if (dev->ifindex == ifindex) 818 return dev; 819 820 return NULL; 821 } 822 EXPORT_SYMBOL(__dev_get_by_index); 823 824 /** 825 * dev_get_by_index_rcu - find a device by its ifindex 826 * @net: the applicable net namespace 827 * @ifindex: index of device 828 * 829 * Search for an interface by index. Returns %NULL if the device 830 * is not found or a pointer to the device. The device has not 831 * had its reference counter increased so the caller must be careful 832 * about locking. The caller must hold RCU lock. 833 */ 834 835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 836 { 837 struct net_device *dev; 838 struct hlist_head *head = dev_index_hash(net, ifindex); 839 840 hlist_for_each_entry_rcu(dev, head, index_hlist) 841 if (dev->ifindex == ifindex) 842 return dev; 843 844 return NULL; 845 } 846 EXPORT_SYMBOL(dev_get_by_index_rcu); 847 848 849 /** 850 * dev_get_by_index - find a device by its ifindex 851 * @net: the applicable net namespace 852 * @ifindex: index of device 853 * 854 * Search for an interface by index. Returns NULL if the device 855 * is not found or a pointer to the device. The device returned has 856 * had a reference added and the pointer is safe until the user calls 857 * dev_put to indicate they have finished with it. 858 */ 859 860 struct net_device *dev_get_by_index(struct net *net, int ifindex) 861 { 862 struct net_device *dev; 863 864 rcu_read_lock(); 865 dev = dev_get_by_index_rcu(net, ifindex); 866 if (dev) 867 dev_hold(dev); 868 rcu_read_unlock(); 869 return dev; 870 } 871 EXPORT_SYMBOL(dev_get_by_index); 872 873 /** 874 * dev_get_by_napi_id - find a device by napi_id 875 * @napi_id: ID of the NAPI struct 876 * 877 * Search for an interface by NAPI ID. Returns %NULL if the device 878 * is not found or a pointer to the device. The device has not had 879 * its reference counter increased so the caller must be careful 880 * about locking. The caller must hold RCU lock. 881 */ 882 883 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 884 { 885 struct napi_struct *napi; 886 887 WARN_ON_ONCE(!rcu_read_lock_held()); 888 889 if (napi_id < MIN_NAPI_ID) 890 return NULL; 891 892 napi = napi_by_id(napi_id); 893 894 return napi ? napi->dev : NULL; 895 } 896 EXPORT_SYMBOL(dev_get_by_napi_id); 897 898 /** 899 * netdev_get_name - get a netdevice name, knowing its ifindex. 900 * @net: network namespace 901 * @name: a pointer to the buffer where the name will be stored. 902 * @ifindex: the ifindex of the interface to get the name from. 903 * 904 * The use of raw_seqcount_begin() and cond_resched() before 905 * retrying is required as we want to give the writers a chance 906 * to complete when CONFIG_PREEMPT is not set. 907 */ 908 int netdev_get_name(struct net *net, char *name, int ifindex) 909 { 910 struct net_device *dev; 911 unsigned int seq; 912 913 retry: 914 seq = raw_seqcount_begin(&devnet_rename_seq); 915 rcu_read_lock(); 916 dev = dev_get_by_index_rcu(net, ifindex); 917 if (!dev) { 918 rcu_read_unlock(); 919 return -ENODEV; 920 } 921 922 strcpy(name, dev->name); 923 rcu_read_unlock(); 924 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 925 cond_resched(); 926 goto retry; 927 } 928 929 return 0; 930 } 931 932 /** 933 * dev_getbyhwaddr_rcu - find a device by its hardware address 934 * @net: the applicable net namespace 935 * @type: media type of device 936 * @ha: hardware address 937 * 938 * Search for an interface by MAC address. Returns NULL if the device 939 * is not found or a pointer to the device. 940 * The caller must hold RCU or RTNL. 941 * The returned device has not had its ref count increased 942 * and the caller must therefore be careful about locking 943 * 944 */ 945 946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 947 const char *ha) 948 { 949 struct net_device *dev; 950 951 for_each_netdev_rcu(net, dev) 952 if (dev->type == type && 953 !memcmp(dev->dev_addr, ha, dev->addr_len)) 954 return dev; 955 956 return NULL; 957 } 958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 959 960 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 961 { 962 struct net_device *dev; 963 964 ASSERT_RTNL(); 965 for_each_netdev(net, dev) 966 if (dev->type == type) 967 return dev; 968 969 return NULL; 970 } 971 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 972 973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 974 { 975 struct net_device *dev, *ret = NULL; 976 977 rcu_read_lock(); 978 for_each_netdev_rcu(net, dev) 979 if (dev->type == type) { 980 dev_hold(dev); 981 ret = dev; 982 break; 983 } 984 rcu_read_unlock(); 985 return ret; 986 } 987 EXPORT_SYMBOL(dev_getfirstbyhwtype); 988 989 /** 990 * __dev_get_by_flags - find any device with given flags 991 * @net: the applicable net namespace 992 * @if_flags: IFF_* values 993 * @mask: bitmask of bits in if_flags to check 994 * 995 * Search for any interface with the given flags. Returns NULL if a device 996 * is not found or a pointer to the device. Must be called inside 997 * rtnl_lock(), and result refcount is unchanged. 998 */ 999 1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1001 unsigned short mask) 1002 { 1003 struct net_device *dev, *ret; 1004 1005 ASSERT_RTNL(); 1006 1007 ret = NULL; 1008 for_each_netdev(net, dev) { 1009 if (((dev->flags ^ if_flags) & mask) == 0) { 1010 ret = dev; 1011 break; 1012 } 1013 } 1014 return ret; 1015 } 1016 EXPORT_SYMBOL(__dev_get_by_flags); 1017 1018 /** 1019 * dev_valid_name - check if name is okay for network device 1020 * @name: name string 1021 * 1022 * Network device names need to be valid file names to 1023 * to allow sysfs to work. We also disallow any kind of 1024 * whitespace. 1025 */ 1026 bool dev_valid_name(const char *name) 1027 { 1028 if (*name == '\0') 1029 return false; 1030 if (strlen(name) >= IFNAMSIZ) 1031 return false; 1032 if (!strcmp(name, ".") || !strcmp(name, "..")) 1033 return false; 1034 1035 while (*name) { 1036 if (*name == '/' || *name == ':' || isspace(*name)) 1037 return false; 1038 name++; 1039 } 1040 return true; 1041 } 1042 EXPORT_SYMBOL(dev_valid_name); 1043 1044 /** 1045 * __dev_alloc_name - allocate a name for a device 1046 * @net: network namespace to allocate the device name in 1047 * @name: name format string 1048 * @buf: scratch buffer and result name string 1049 * 1050 * Passed a format string - eg "lt%d" it will try and find a suitable 1051 * id. It scans list of devices to build up a free map, then chooses 1052 * the first empty slot. The caller must hold the dev_base or rtnl lock 1053 * while allocating the name and adding the device in order to avoid 1054 * duplicates. 1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1056 * Returns the number of the unit assigned or a negative errno code. 1057 */ 1058 1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1060 { 1061 int i = 0; 1062 const char *p; 1063 const int max_netdevices = 8*PAGE_SIZE; 1064 unsigned long *inuse; 1065 struct net_device *d; 1066 1067 p = strnchr(name, IFNAMSIZ-1, '%'); 1068 if (p) { 1069 /* 1070 * Verify the string as this thing may have come from 1071 * the user. There must be either one "%d" and no other "%" 1072 * characters. 1073 */ 1074 if (p[1] != 'd' || strchr(p + 2, '%')) 1075 return -EINVAL; 1076 1077 /* Use one page as a bit array of possible slots */ 1078 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1079 if (!inuse) 1080 return -ENOMEM; 1081 1082 for_each_netdev(net, d) { 1083 if (!sscanf(d->name, name, &i)) 1084 continue; 1085 if (i < 0 || i >= max_netdevices) 1086 continue; 1087 1088 /* avoid cases where sscanf is not exact inverse of printf */ 1089 snprintf(buf, IFNAMSIZ, name, i); 1090 if (!strncmp(buf, d->name, IFNAMSIZ)) 1091 set_bit(i, inuse); 1092 } 1093 1094 i = find_first_zero_bit(inuse, max_netdevices); 1095 free_page((unsigned long) inuse); 1096 } 1097 1098 if (buf != name) 1099 snprintf(buf, IFNAMSIZ, name, i); 1100 if (!__dev_get_by_name(net, buf)) 1101 return i; 1102 1103 /* It is possible to run out of possible slots 1104 * when the name is long and there isn't enough space left 1105 * for the digits, or if all bits are used. 1106 */ 1107 return -ENFILE; 1108 } 1109 1110 /** 1111 * dev_alloc_name - allocate a name for a device 1112 * @dev: device 1113 * @name: name format string 1114 * 1115 * Passed a format string - eg "lt%d" it will try and find a suitable 1116 * id. It scans list of devices to build up a free map, then chooses 1117 * the first empty slot. The caller must hold the dev_base or rtnl lock 1118 * while allocating the name and adding the device in order to avoid 1119 * duplicates. 1120 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1121 * Returns the number of the unit assigned or a negative errno code. 1122 */ 1123 1124 int dev_alloc_name(struct net_device *dev, const char *name) 1125 { 1126 char buf[IFNAMSIZ]; 1127 struct net *net; 1128 int ret; 1129 1130 BUG_ON(!dev_net(dev)); 1131 net = dev_net(dev); 1132 ret = __dev_alloc_name(net, name, buf); 1133 if (ret >= 0) 1134 strlcpy(dev->name, buf, IFNAMSIZ); 1135 return ret; 1136 } 1137 EXPORT_SYMBOL(dev_alloc_name); 1138 1139 static int dev_alloc_name_ns(struct net *net, 1140 struct net_device *dev, 1141 const char *name) 1142 { 1143 char buf[IFNAMSIZ]; 1144 int ret; 1145 1146 ret = __dev_alloc_name(net, name, buf); 1147 if (ret >= 0) 1148 strlcpy(dev->name, buf, IFNAMSIZ); 1149 return ret; 1150 } 1151 1152 int dev_get_valid_name(struct net *net, struct net_device *dev, 1153 const char *name) 1154 { 1155 BUG_ON(!net); 1156 1157 if (!dev_valid_name(name)) 1158 return -EINVAL; 1159 1160 if (strchr(name, '%')) 1161 return dev_alloc_name_ns(net, dev, name); 1162 else if (__dev_get_by_name(net, name)) 1163 return -EEXIST; 1164 else if (dev->name != name) 1165 strlcpy(dev->name, name, IFNAMSIZ); 1166 1167 return 0; 1168 } 1169 EXPORT_SYMBOL(dev_get_valid_name); 1170 1171 /** 1172 * dev_change_name - change name of a device 1173 * @dev: device 1174 * @newname: name (or format string) must be at least IFNAMSIZ 1175 * 1176 * Change name of a device, can pass format strings "eth%d". 1177 * for wildcarding. 1178 */ 1179 int dev_change_name(struct net_device *dev, const char *newname) 1180 { 1181 unsigned char old_assign_type; 1182 char oldname[IFNAMSIZ]; 1183 int err = 0; 1184 int ret; 1185 struct net *net; 1186 1187 ASSERT_RTNL(); 1188 BUG_ON(!dev_net(dev)); 1189 1190 net = dev_net(dev); 1191 if (dev->flags & IFF_UP) 1192 return -EBUSY; 1193 1194 write_seqcount_begin(&devnet_rename_seq); 1195 1196 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1197 write_seqcount_end(&devnet_rename_seq); 1198 return 0; 1199 } 1200 1201 memcpy(oldname, dev->name, IFNAMSIZ); 1202 1203 err = dev_get_valid_name(net, dev, newname); 1204 if (err < 0) { 1205 write_seqcount_end(&devnet_rename_seq); 1206 return err; 1207 } 1208 1209 if (oldname[0] && !strchr(oldname, '%')) 1210 netdev_info(dev, "renamed from %s\n", oldname); 1211 1212 old_assign_type = dev->name_assign_type; 1213 dev->name_assign_type = NET_NAME_RENAMED; 1214 1215 rollback: 1216 ret = device_rename(&dev->dev, dev->name); 1217 if (ret) { 1218 memcpy(dev->name, oldname, IFNAMSIZ); 1219 dev->name_assign_type = old_assign_type; 1220 write_seqcount_end(&devnet_rename_seq); 1221 return ret; 1222 } 1223 1224 write_seqcount_end(&devnet_rename_seq); 1225 1226 netdev_adjacent_rename_links(dev, oldname); 1227 1228 write_lock_bh(&dev_base_lock); 1229 hlist_del_rcu(&dev->name_hlist); 1230 write_unlock_bh(&dev_base_lock); 1231 1232 synchronize_rcu(); 1233 1234 write_lock_bh(&dev_base_lock); 1235 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1236 write_unlock_bh(&dev_base_lock); 1237 1238 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1239 ret = notifier_to_errno(ret); 1240 1241 if (ret) { 1242 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1243 if (err >= 0) { 1244 err = ret; 1245 write_seqcount_begin(&devnet_rename_seq); 1246 memcpy(dev->name, oldname, IFNAMSIZ); 1247 memcpy(oldname, newname, IFNAMSIZ); 1248 dev->name_assign_type = old_assign_type; 1249 old_assign_type = NET_NAME_RENAMED; 1250 goto rollback; 1251 } else { 1252 pr_err("%s: name change rollback failed: %d\n", 1253 dev->name, ret); 1254 } 1255 } 1256 1257 return err; 1258 } 1259 1260 /** 1261 * dev_set_alias - change ifalias of a device 1262 * @dev: device 1263 * @alias: name up to IFALIASZ 1264 * @len: limit of bytes to copy from info 1265 * 1266 * Set ifalias for a device, 1267 */ 1268 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1269 { 1270 struct dev_ifalias *new_alias = NULL; 1271 1272 if (len >= IFALIASZ) 1273 return -EINVAL; 1274 1275 if (len) { 1276 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1277 if (!new_alias) 1278 return -ENOMEM; 1279 1280 memcpy(new_alias->ifalias, alias, len); 1281 new_alias->ifalias[len] = 0; 1282 } 1283 1284 mutex_lock(&ifalias_mutex); 1285 rcu_swap_protected(dev->ifalias, new_alias, 1286 mutex_is_locked(&ifalias_mutex)); 1287 mutex_unlock(&ifalias_mutex); 1288 1289 if (new_alias) 1290 kfree_rcu(new_alias, rcuhead); 1291 1292 return len; 1293 } 1294 1295 /** 1296 * dev_get_alias - get ifalias of a device 1297 * @dev: device 1298 * @name: buffer to store name of ifalias 1299 * @len: size of buffer 1300 * 1301 * get ifalias for a device. Caller must make sure dev cannot go 1302 * away, e.g. rcu read lock or own a reference count to device. 1303 */ 1304 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1305 { 1306 const struct dev_ifalias *alias; 1307 int ret = 0; 1308 1309 rcu_read_lock(); 1310 alias = rcu_dereference(dev->ifalias); 1311 if (alias) 1312 ret = snprintf(name, len, "%s", alias->ifalias); 1313 rcu_read_unlock(); 1314 1315 return ret; 1316 } 1317 1318 /** 1319 * netdev_features_change - device changes features 1320 * @dev: device to cause notification 1321 * 1322 * Called to indicate a device has changed features. 1323 */ 1324 void netdev_features_change(struct net_device *dev) 1325 { 1326 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1327 } 1328 EXPORT_SYMBOL(netdev_features_change); 1329 1330 /** 1331 * netdev_state_change - device changes state 1332 * @dev: device to cause notification 1333 * 1334 * Called to indicate a device has changed state. This function calls 1335 * the notifier chains for netdev_chain and sends a NEWLINK message 1336 * to the routing socket. 1337 */ 1338 void netdev_state_change(struct net_device *dev) 1339 { 1340 if (dev->flags & IFF_UP) { 1341 struct netdev_notifier_change_info change_info = { 1342 .info.dev = dev, 1343 }; 1344 1345 call_netdevice_notifiers_info(NETDEV_CHANGE, 1346 &change_info.info); 1347 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1348 } 1349 } 1350 EXPORT_SYMBOL(netdev_state_change); 1351 1352 /** 1353 * netdev_notify_peers - notify network peers about existence of @dev 1354 * @dev: network device 1355 * 1356 * Generate traffic such that interested network peers are aware of 1357 * @dev, such as by generating a gratuitous ARP. This may be used when 1358 * a device wants to inform the rest of the network about some sort of 1359 * reconfiguration such as a failover event or virtual machine 1360 * migration. 1361 */ 1362 void netdev_notify_peers(struct net_device *dev) 1363 { 1364 rtnl_lock(); 1365 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1366 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1367 rtnl_unlock(); 1368 } 1369 EXPORT_SYMBOL(netdev_notify_peers); 1370 1371 static int __dev_open(struct net_device *dev) 1372 { 1373 const struct net_device_ops *ops = dev->netdev_ops; 1374 int ret; 1375 1376 ASSERT_RTNL(); 1377 1378 if (!netif_device_present(dev)) 1379 return -ENODEV; 1380 1381 /* Block netpoll from trying to do any rx path servicing. 1382 * If we don't do this there is a chance ndo_poll_controller 1383 * or ndo_poll may be running while we open the device 1384 */ 1385 netpoll_poll_disable(dev); 1386 1387 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1388 ret = notifier_to_errno(ret); 1389 if (ret) 1390 return ret; 1391 1392 set_bit(__LINK_STATE_START, &dev->state); 1393 1394 if (ops->ndo_validate_addr) 1395 ret = ops->ndo_validate_addr(dev); 1396 1397 if (!ret && ops->ndo_open) 1398 ret = ops->ndo_open(dev); 1399 1400 netpoll_poll_enable(dev); 1401 1402 if (ret) 1403 clear_bit(__LINK_STATE_START, &dev->state); 1404 else { 1405 dev->flags |= IFF_UP; 1406 dev_set_rx_mode(dev); 1407 dev_activate(dev); 1408 add_device_randomness(dev->dev_addr, dev->addr_len); 1409 } 1410 1411 return ret; 1412 } 1413 1414 /** 1415 * dev_open - prepare an interface for use. 1416 * @dev: device to open 1417 * 1418 * Takes a device from down to up state. The device's private open 1419 * function is invoked and then the multicast lists are loaded. Finally 1420 * the device is moved into the up state and a %NETDEV_UP message is 1421 * sent to the netdev notifier chain. 1422 * 1423 * Calling this function on an active interface is a nop. On a failure 1424 * a negative errno code is returned. 1425 */ 1426 int dev_open(struct net_device *dev) 1427 { 1428 int ret; 1429 1430 if (dev->flags & IFF_UP) 1431 return 0; 1432 1433 ret = __dev_open(dev); 1434 if (ret < 0) 1435 return ret; 1436 1437 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1438 call_netdevice_notifiers(NETDEV_UP, dev); 1439 1440 return ret; 1441 } 1442 EXPORT_SYMBOL(dev_open); 1443 1444 static void __dev_close_many(struct list_head *head) 1445 { 1446 struct net_device *dev; 1447 1448 ASSERT_RTNL(); 1449 might_sleep(); 1450 1451 list_for_each_entry(dev, head, close_list) { 1452 /* Temporarily disable netpoll until the interface is down */ 1453 netpoll_poll_disable(dev); 1454 1455 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1456 1457 clear_bit(__LINK_STATE_START, &dev->state); 1458 1459 /* Synchronize to scheduled poll. We cannot touch poll list, it 1460 * can be even on different cpu. So just clear netif_running(). 1461 * 1462 * dev->stop() will invoke napi_disable() on all of it's 1463 * napi_struct instances on this device. 1464 */ 1465 smp_mb__after_atomic(); /* Commit netif_running(). */ 1466 } 1467 1468 dev_deactivate_many(head); 1469 1470 list_for_each_entry(dev, head, close_list) { 1471 const struct net_device_ops *ops = dev->netdev_ops; 1472 1473 /* 1474 * Call the device specific close. This cannot fail. 1475 * Only if device is UP 1476 * 1477 * We allow it to be called even after a DETACH hot-plug 1478 * event. 1479 */ 1480 if (ops->ndo_stop) 1481 ops->ndo_stop(dev); 1482 1483 dev->flags &= ~IFF_UP; 1484 netpoll_poll_enable(dev); 1485 } 1486 } 1487 1488 static void __dev_close(struct net_device *dev) 1489 { 1490 LIST_HEAD(single); 1491 1492 list_add(&dev->close_list, &single); 1493 __dev_close_many(&single); 1494 list_del(&single); 1495 } 1496 1497 void dev_close_many(struct list_head *head, bool unlink) 1498 { 1499 struct net_device *dev, *tmp; 1500 1501 /* Remove the devices that don't need to be closed */ 1502 list_for_each_entry_safe(dev, tmp, head, close_list) 1503 if (!(dev->flags & IFF_UP)) 1504 list_del_init(&dev->close_list); 1505 1506 __dev_close_many(head); 1507 1508 list_for_each_entry_safe(dev, tmp, head, close_list) { 1509 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1510 call_netdevice_notifiers(NETDEV_DOWN, dev); 1511 if (unlink) 1512 list_del_init(&dev->close_list); 1513 } 1514 } 1515 EXPORT_SYMBOL(dev_close_many); 1516 1517 /** 1518 * dev_close - shutdown an interface. 1519 * @dev: device to shutdown 1520 * 1521 * This function moves an active device into down state. A 1522 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1523 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1524 * chain. 1525 */ 1526 void dev_close(struct net_device *dev) 1527 { 1528 if (dev->flags & IFF_UP) { 1529 LIST_HEAD(single); 1530 1531 list_add(&dev->close_list, &single); 1532 dev_close_many(&single, true); 1533 list_del(&single); 1534 } 1535 } 1536 EXPORT_SYMBOL(dev_close); 1537 1538 1539 /** 1540 * dev_disable_lro - disable Large Receive Offload on a device 1541 * @dev: device 1542 * 1543 * Disable Large Receive Offload (LRO) on a net device. Must be 1544 * called under RTNL. This is needed if received packets may be 1545 * forwarded to another interface. 1546 */ 1547 void dev_disable_lro(struct net_device *dev) 1548 { 1549 struct net_device *lower_dev; 1550 struct list_head *iter; 1551 1552 dev->wanted_features &= ~NETIF_F_LRO; 1553 netdev_update_features(dev); 1554 1555 if (unlikely(dev->features & NETIF_F_LRO)) 1556 netdev_WARN(dev, "failed to disable LRO!\n"); 1557 1558 netdev_for_each_lower_dev(dev, lower_dev, iter) 1559 dev_disable_lro(lower_dev); 1560 } 1561 EXPORT_SYMBOL(dev_disable_lro); 1562 1563 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1564 struct net_device *dev) 1565 { 1566 struct netdev_notifier_info info = { 1567 .dev = dev, 1568 }; 1569 1570 return nb->notifier_call(nb, val, &info); 1571 } 1572 1573 static int dev_boot_phase = 1; 1574 1575 /** 1576 * register_netdevice_notifier - register a network notifier block 1577 * @nb: notifier 1578 * 1579 * Register a notifier to be called when network device events occur. 1580 * The notifier passed is linked into the kernel structures and must 1581 * not be reused until it has been unregistered. A negative errno code 1582 * is returned on a failure. 1583 * 1584 * When registered all registration and up events are replayed 1585 * to the new notifier to allow device to have a race free 1586 * view of the network device list. 1587 */ 1588 1589 int register_netdevice_notifier(struct notifier_block *nb) 1590 { 1591 struct net_device *dev; 1592 struct net_device *last; 1593 struct net *net; 1594 int err; 1595 1596 rtnl_lock(); 1597 err = raw_notifier_chain_register(&netdev_chain, nb); 1598 if (err) 1599 goto unlock; 1600 if (dev_boot_phase) 1601 goto unlock; 1602 for_each_net(net) { 1603 for_each_netdev(net, dev) { 1604 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1605 err = notifier_to_errno(err); 1606 if (err) 1607 goto rollback; 1608 1609 if (!(dev->flags & IFF_UP)) 1610 continue; 1611 1612 call_netdevice_notifier(nb, NETDEV_UP, dev); 1613 } 1614 } 1615 1616 unlock: 1617 rtnl_unlock(); 1618 return err; 1619 1620 rollback: 1621 last = dev; 1622 for_each_net(net) { 1623 for_each_netdev(net, dev) { 1624 if (dev == last) 1625 goto outroll; 1626 1627 if (dev->flags & IFF_UP) { 1628 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1629 dev); 1630 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1631 } 1632 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1633 } 1634 } 1635 1636 outroll: 1637 raw_notifier_chain_unregister(&netdev_chain, nb); 1638 goto unlock; 1639 } 1640 EXPORT_SYMBOL(register_netdevice_notifier); 1641 1642 /** 1643 * unregister_netdevice_notifier - unregister a network notifier block 1644 * @nb: notifier 1645 * 1646 * Unregister a notifier previously registered by 1647 * register_netdevice_notifier(). The notifier is unlinked into the 1648 * kernel structures and may then be reused. A negative errno code 1649 * is returned on a failure. 1650 * 1651 * After unregistering unregister and down device events are synthesized 1652 * for all devices on the device list to the removed notifier to remove 1653 * the need for special case cleanup code. 1654 */ 1655 1656 int unregister_netdevice_notifier(struct notifier_block *nb) 1657 { 1658 struct net_device *dev; 1659 struct net *net; 1660 int err; 1661 1662 rtnl_lock(); 1663 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1664 if (err) 1665 goto unlock; 1666 1667 for_each_net(net) { 1668 for_each_netdev(net, dev) { 1669 if (dev->flags & IFF_UP) { 1670 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1671 dev); 1672 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1673 } 1674 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1675 } 1676 } 1677 unlock: 1678 rtnl_unlock(); 1679 return err; 1680 } 1681 EXPORT_SYMBOL(unregister_netdevice_notifier); 1682 1683 /** 1684 * call_netdevice_notifiers_info - call all network notifier blocks 1685 * @val: value passed unmodified to notifier function 1686 * @dev: net_device pointer passed unmodified to notifier function 1687 * @info: notifier information data 1688 * 1689 * Call all network notifier blocks. Parameters and return value 1690 * are as for raw_notifier_call_chain(). 1691 */ 1692 1693 static int call_netdevice_notifiers_info(unsigned long val, 1694 struct netdev_notifier_info *info) 1695 { 1696 ASSERT_RTNL(); 1697 return raw_notifier_call_chain(&netdev_chain, val, info); 1698 } 1699 1700 /** 1701 * call_netdevice_notifiers - call all network notifier blocks 1702 * @val: value passed unmodified to notifier function 1703 * @dev: net_device pointer passed unmodified to notifier function 1704 * 1705 * Call all network notifier blocks. Parameters and return value 1706 * are as for raw_notifier_call_chain(). 1707 */ 1708 1709 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1710 { 1711 struct netdev_notifier_info info = { 1712 .dev = dev, 1713 }; 1714 1715 return call_netdevice_notifiers_info(val, &info); 1716 } 1717 EXPORT_SYMBOL(call_netdevice_notifiers); 1718 1719 #ifdef CONFIG_NET_INGRESS 1720 static struct static_key ingress_needed __read_mostly; 1721 1722 void net_inc_ingress_queue(void) 1723 { 1724 static_key_slow_inc(&ingress_needed); 1725 } 1726 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1727 1728 void net_dec_ingress_queue(void) 1729 { 1730 static_key_slow_dec(&ingress_needed); 1731 } 1732 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1733 #endif 1734 1735 #ifdef CONFIG_NET_EGRESS 1736 static struct static_key egress_needed __read_mostly; 1737 1738 void net_inc_egress_queue(void) 1739 { 1740 static_key_slow_inc(&egress_needed); 1741 } 1742 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1743 1744 void net_dec_egress_queue(void) 1745 { 1746 static_key_slow_dec(&egress_needed); 1747 } 1748 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1749 #endif 1750 1751 static struct static_key netstamp_needed __read_mostly; 1752 #ifdef HAVE_JUMP_LABEL 1753 static atomic_t netstamp_needed_deferred; 1754 static atomic_t netstamp_wanted; 1755 static void netstamp_clear(struct work_struct *work) 1756 { 1757 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1758 int wanted; 1759 1760 wanted = atomic_add_return(deferred, &netstamp_wanted); 1761 if (wanted > 0) 1762 static_key_enable(&netstamp_needed); 1763 else 1764 static_key_disable(&netstamp_needed); 1765 } 1766 static DECLARE_WORK(netstamp_work, netstamp_clear); 1767 #endif 1768 1769 void net_enable_timestamp(void) 1770 { 1771 #ifdef HAVE_JUMP_LABEL 1772 int wanted; 1773 1774 while (1) { 1775 wanted = atomic_read(&netstamp_wanted); 1776 if (wanted <= 0) 1777 break; 1778 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 1779 return; 1780 } 1781 atomic_inc(&netstamp_needed_deferred); 1782 schedule_work(&netstamp_work); 1783 #else 1784 static_key_slow_inc(&netstamp_needed); 1785 #endif 1786 } 1787 EXPORT_SYMBOL(net_enable_timestamp); 1788 1789 void net_disable_timestamp(void) 1790 { 1791 #ifdef HAVE_JUMP_LABEL 1792 int wanted; 1793 1794 while (1) { 1795 wanted = atomic_read(&netstamp_wanted); 1796 if (wanted <= 1) 1797 break; 1798 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 1799 return; 1800 } 1801 atomic_dec(&netstamp_needed_deferred); 1802 schedule_work(&netstamp_work); 1803 #else 1804 static_key_slow_dec(&netstamp_needed); 1805 #endif 1806 } 1807 EXPORT_SYMBOL(net_disable_timestamp); 1808 1809 static inline void net_timestamp_set(struct sk_buff *skb) 1810 { 1811 skb->tstamp = 0; 1812 if (static_key_false(&netstamp_needed)) 1813 __net_timestamp(skb); 1814 } 1815 1816 #define net_timestamp_check(COND, SKB) \ 1817 if (static_key_false(&netstamp_needed)) { \ 1818 if ((COND) && !(SKB)->tstamp) \ 1819 __net_timestamp(SKB); \ 1820 } \ 1821 1822 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1823 { 1824 unsigned int len; 1825 1826 if (!(dev->flags & IFF_UP)) 1827 return false; 1828 1829 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1830 if (skb->len <= len) 1831 return true; 1832 1833 /* if TSO is enabled, we don't care about the length as the packet 1834 * could be forwarded without being segmented before 1835 */ 1836 if (skb_is_gso(skb)) 1837 return true; 1838 1839 return false; 1840 } 1841 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1842 1843 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1844 { 1845 int ret = ____dev_forward_skb(dev, skb); 1846 1847 if (likely(!ret)) { 1848 skb->protocol = eth_type_trans(skb, dev); 1849 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1850 } 1851 1852 return ret; 1853 } 1854 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1855 1856 /** 1857 * dev_forward_skb - loopback an skb to another netif 1858 * 1859 * @dev: destination network device 1860 * @skb: buffer to forward 1861 * 1862 * return values: 1863 * NET_RX_SUCCESS (no congestion) 1864 * NET_RX_DROP (packet was dropped, but freed) 1865 * 1866 * dev_forward_skb can be used for injecting an skb from the 1867 * start_xmit function of one device into the receive queue 1868 * of another device. 1869 * 1870 * The receiving device may be in another namespace, so 1871 * we have to clear all information in the skb that could 1872 * impact namespace isolation. 1873 */ 1874 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1875 { 1876 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1877 } 1878 EXPORT_SYMBOL_GPL(dev_forward_skb); 1879 1880 static inline int deliver_skb(struct sk_buff *skb, 1881 struct packet_type *pt_prev, 1882 struct net_device *orig_dev) 1883 { 1884 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 1885 return -ENOMEM; 1886 refcount_inc(&skb->users); 1887 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1888 } 1889 1890 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1891 struct packet_type **pt, 1892 struct net_device *orig_dev, 1893 __be16 type, 1894 struct list_head *ptype_list) 1895 { 1896 struct packet_type *ptype, *pt_prev = *pt; 1897 1898 list_for_each_entry_rcu(ptype, ptype_list, list) { 1899 if (ptype->type != type) 1900 continue; 1901 if (pt_prev) 1902 deliver_skb(skb, pt_prev, orig_dev); 1903 pt_prev = ptype; 1904 } 1905 *pt = pt_prev; 1906 } 1907 1908 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1909 { 1910 if (!ptype->af_packet_priv || !skb->sk) 1911 return false; 1912 1913 if (ptype->id_match) 1914 return ptype->id_match(ptype, skb->sk); 1915 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1916 return true; 1917 1918 return false; 1919 } 1920 1921 /* 1922 * Support routine. Sends outgoing frames to any network 1923 * taps currently in use. 1924 */ 1925 1926 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1927 { 1928 struct packet_type *ptype; 1929 struct sk_buff *skb2 = NULL; 1930 struct packet_type *pt_prev = NULL; 1931 struct list_head *ptype_list = &ptype_all; 1932 1933 rcu_read_lock(); 1934 again: 1935 list_for_each_entry_rcu(ptype, ptype_list, list) { 1936 /* Never send packets back to the socket 1937 * they originated from - MvS (miquels@drinkel.ow.org) 1938 */ 1939 if (skb_loop_sk(ptype, skb)) 1940 continue; 1941 1942 if (pt_prev) { 1943 deliver_skb(skb2, pt_prev, skb->dev); 1944 pt_prev = ptype; 1945 continue; 1946 } 1947 1948 /* need to clone skb, done only once */ 1949 skb2 = skb_clone(skb, GFP_ATOMIC); 1950 if (!skb2) 1951 goto out_unlock; 1952 1953 net_timestamp_set(skb2); 1954 1955 /* skb->nh should be correctly 1956 * set by sender, so that the second statement is 1957 * just protection against buggy protocols. 1958 */ 1959 skb_reset_mac_header(skb2); 1960 1961 if (skb_network_header(skb2) < skb2->data || 1962 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1963 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1964 ntohs(skb2->protocol), 1965 dev->name); 1966 skb_reset_network_header(skb2); 1967 } 1968 1969 skb2->transport_header = skb2->network_header; 1970 skb2->pkt_type = PACKET_OUTGOING; 1971 pt_prev = ptype; 1972 } 1973 1974 if (ptype_list == &ptype_all) { 1975 ptype_list = &dev->ptype_all; 1976 goto again; 1977 } 1978 out_unlock: 1979 if (pt_prev) { 1980 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 1981 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1982 else 1983 kfree_skb(skb2); 1984 } 1985 rcu_read_unlock(); 1986 } 1987 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 1988 1989 /** 1990 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1991 * @dev: Network device 1992 * @txq: number of queues available 1993 * 1994 * If real_num_tx_queues is changed the tc mappings may no longer be 1995 * valid. To resolve this verify the tc mapping remains valid and if 1996 * not NULL the mapping. With no priorities mapping to this 1997 * offset/count pair it will no longer be used. In the worst case TC0 1998 * is invalid nothing can be done so disable priority mappings. If is 1999 * expected that drivers will fix this mapping if they can before 2000 * calling netif_set_real_num_tx_queues. 2001 */ 2002 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2003 { 2004 int i; 2005 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2006 2007 /* If TC0 is invalidated disable TC mapping */ 2008 if (tc->offset + tc->count > txq) { 2009 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2010 dev->num_tc = 0; 2011 return; 2012 } 2013 2014 /* Invalidated prio to tc mappings set to TC0 */ 2015 for (i = 1; i < TC_BITMASK + 1; i++) { 2016 int q = netdev_get_prio_tc_map(dev, i); 2017 2018 tc = &dev->tc_to_txq[q]; 2019 if (tc->offset + tc->count > txq) { 2020 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2021 i, q); 2022 netdev_set_prio_tc_map(dev, i, 0); 2023 } 2024 } 2025 } 2026 2027 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2028 { 2029 if (dev->num_tc) { 2030 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2031 int i; 2032 2033 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2034 if ((txq - tc->offset) < tc->count) 2035 return i; 2036 } 2037 2038 return -1; 2039 } 2040 2041 return 0; 2042 } 2043 EXPORT_SYMBOL(netdev_txq_to_tc); 2044 2045 #ifdef CONFIG_XPS 2046 static DEFINE_MUTEX(xps_map_mutex); 2047 #define xmap_dereference(P) \ 2048 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2049 2050 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2051 int tci, u16 index) 2052 { 2053 struct xps_map *map = NULL; 2054 int pos; 2055 2056 if (dev_maps) 2057 map = xmap_dereference(dev_maps->cpu_map[tci]); 2058 if (!map) 2059 return false; 2060 2061 for (pos = map->len; pos--;) { 2062 if (map->queues[pos] != index) 2063 continue; 2064 2065 if (map->len > 1) { 2066 map->queues[pos] = map->queues[--map->len]; 2067 break; 2068 } 2069 2070 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL); 2071 kfree_rcu(map, rcu); 2072 return false; 2073 } 2074 2075 return true; 2076 } 2077 2078 static bool remove_xps_queue_cpu(struct net_device *dev, 2079 struct xps_dev_maps *dev_maps, 2080 int cpu, u16 offset, u16 count) 2081 { 2082 int num_tc = dev->num_tc ? : 1; 2083 bool active = false; 2084 int tci; 2085 2086 for (tci = cpu * num_tc; num_tc--; tci++) { 2087 int i, j; 2088 2089 for (i = count, j = offset; i--; j++) { 2090 if (!remove_xps_queue(dev_maps, cpu, j)) 2091 break; 2092 } 2093 2094 active |= i < 0; 2095 } 2096 2097 return active; 2098 } 2099 2100 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2101 u16 count) 2102 { 2103 struct xps_dev_maps *dev_maps; 2104 int cpu, i; 2105 bool active = false; 2106 2107 mutex_lock(&xps_map_mutex); 2108 dev_maps = xmap_dereference(dev->xps_maps); 2109 2110 if (!dev_maps) 2111 goto out_no_maps; 2112 2113 for_each_possible_cpu(cpu) 2114 active |= remove_xps_queue_cpu(dev, dev_maps, cpu, 2115 offset, count); 2116 2117 if (!active) { 2118 RCU_INIT_POINTER(dev->xps_maps, NULL); 2119 kfree_rcu(dev_maps, rcu); 2120 } 2121 2122 for (i = offset + (count - 1); count--; i--) 2123 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 2124 NUMA_NO_NODE); 2125 2126 out_no_maps: 2127 mutex_unlock(&xps_map_mutex); 2128 } 2129 2130 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2131 { 2132 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2133 } 2134 2135 static struct xps_map *expand_xps_map(struct xps_map *map, 2136 int cpu, u16 index) 2137 { 2138 struct xps_map *new_map; 2139 int alloc_len = XPS_MIN_MAP_ALLOC; 2140 int i, pos; 2141 2142 for (pos = 0; map && pos < map->len; pos++) { 2143 if (map->queues[pos] != index) 2144 continue; 2145 return map; 2146 } 2147 2148 /* Need to add queue to this CPU's existing map */ 2149 if (map) { 2150 if (pos < map->alloc_len) 2151 return map; 2152 2153 alloc_len = map->alloc_len * 2; 2154 } 2155 2156 /* Need to allocate new map to store queue on this CPU's map */ 2157 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2158 cpu_to_node(cpu)); 2159 if (!new_map) 2160 return NULL; 2161 2162 for (i = 0; i < pos; i++) 2163 new_map->queues[i] = map->queues[i]; 2164 new_map->alloc_len = alloc_len; 2165 new_map->len = pos; 2166 2167 return new_map; 2168 } 2169 2170 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2171 u16 index) 2172 { 2173 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2174 int i, cpu, tci, numa_node_id = -2; 2175 int maps_sz, num_tc = 1, tc = 0; 2176 struct xps_map *map, *new_map; 2177 bool active = false; 2178 2179 if (dev->num_tc) { 2180 num_tc = dev->num_tc; 2181 tc = netdev_txq_to_tc(dev, index); 2182 if (tc < 0) 2183 return -EINVAL; 2184 } 2185 2186 maps_sz = XPS_DEV_MAPS_SIZE(num_tc); 2187 if (maps_sz < L1_CACHE_BYTES) 2188 maps_sz = L1_CACHE_BYTES; 2189 2190 mutex_lock(&xps_map_mutex); 2191 2192 dev_maps = xmap_dereference(dev->xps_maps); 2193 2194 /* allocate memory for queue storage */ 2195 for_each_cpu_and(cpu, cpu_online_mask, mask) { 2196 if (!new_dev_maps) 2197 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2198 if (!new_dev_maps) { 2199 mutex_unlock(&xps_map_mutex); 2200 return -ENOMEM; 2201 } 2202 2203 tci = cpu * num_tc + tc; 2204 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) : 2205 NULL; 2206 2207 map = expand_xps_map(map, cpu, index); 2208 if (!map) 2209 goto error; 2210 2211 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2212 } 2213 2214 if (!new_dev_maps) 2215 goto out_no_new_maps; 2216 2217 for_each_possible_cpu(cpu) { 2218 /* copy maps belonging to foreign traffic classes */ 2219 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) { 2220 /* fill in the new device map from the old device map */ 2221 map = xmap_dereference(dev_maps->cpu_map[tci]); 2222 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2223 } 2224 2225 /* We need to explicitly update tci as prevous loop 2226 * could break out early if dev_maps is NULL. 2227 */ 2228 tci = cpu * num_tc + tc; 2229 2230 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 2231 /* add queue to CPU maps */ 2232 int pos = 0; 2233 2234 map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2235 while ((pos < map->len) && (map->queues[pos] != index)) 2236 pos++; 2237 2238 if (pos == map->len) 2239 map->queues[map->len++] = index; 2240 #ifdef CONFIG_NUMA 2241 if (numa_node_id == -2) 2242 numa_node_id = cpu_to_node(cpu); 2243 else if (numa_node_id != cpu_to_node(cpu)) 2244 numa_node_id = -1; 2245 #endif 2246 } else if (dev_maps) { 2247 /* fill in the new device map from the old device map */ 2248 map = xmap_dereference(dev_maps->cpu_map[tci]); 2249 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2250 } 2251 2252 /* copy maps belonging to foreign traffic classes */ 2253 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2254 /* fill in the new device map from the old device map */ 2255 map = xmap_dereference(dev_maps->cpu_map[tci]); 2256 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2257 } 2258 } 2259 2260 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2261 2262 /* Cleanup old maps */ 2263 if (!dev_maps) 2264 goto out_no_old_maps; 2265 2266 for_each_possible_cpu(cpu) { 2267 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2268 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2269 map = xmap_dereference(dev_maps->cpu_map[tci]); 2270 if (map && map != new_map) 2271 kfree_rcu(map, rcu); 2272 } 2273 } 2274 2275 kfree_rcu(dev_maps, rcu); 2276 2277 out_no_old_maps: 2278 dev_maps = new_dev_maps; 2279 active = true; 2280 2281 out_no_new_maps: 2282 /* update Tx queue numa node */ 2283 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2284 (numa_node_id >= 0) ? numa_node_id : 2285 NUMA_NO_NODE); 2286 2287 if (!dev_maps) 2288 goto out_no_maps; 2289 2290 /* removes queue from unused CPUs */ 2291 for_each_possible_cpu(cpu) { 2292 for (i = tc, tci = cpu * num_tc; i--; tci++) 2293 active |= remove_xps_queue(dev_maps, tci, index); 2294 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu)) 2295 active |= remove_xps_queue(dev_maps, tci, index); 2296 for (i = num_tc - tc, tci++; --i; tci++) 2297 active |= remove_xps_queue(dev_maps, tci, index); 2298 } 2299 2300 /* free map if not active */ 2301 if (!active) { 2302 RCU_INIT_POINTER(dev->xps_maps, NULL); 2303 kfree_rcu(dev_maps, rcu); 2304 } 2305 2306 out_no_maps: 2307 mutex_unlock(&xps_map_mutex); 2308 2309 return 0; 2310 error: 2311 /* remove any maps that we added */ 2312 for_each_possible_cpu(cpu) { 2313 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2314 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2315 map = dev_maps ? 2316 xmap_dereference(dev_maps->cpu_map[tci]) : 2317 NULL; 2318 if (new_map && new_map != map) 2319 kfree(new_map); 2320 } 2321 } 2322 2323 mutex_unlock(&xps_map_mutex); 2324 2325 kfree(new_dev_maps); 2326 return -ENOMEM; 2327 } 2328 EXPORT_SYMBOL(netif_set_xps_queue); 2329 2330 #endif 2331 void netdev_reset_tc(struct net_device *dev) 2332 { 2333 #ifdef CONFIG_XPS 2334 netif_reset_xps_queues_gt(dev, 0); 2335 #endif 2336 dev->num_tc = 0; 2337 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2338 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2339 } 2340 EXPORT_SYMBOL(netdev_reset_tc); 2341 2342 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2343 { 2344 if (tc >= dev->num_tc) 2345 return -EINVAL; 2346 2347 #ifdef CONFIG_XPS 2348 netif_reset_xps_queues(dev, offset, count); 2349 #endif 2350 dev->tc_to_txq[tc].count = count; 2351 dev->tc_to_txq[tc].offset = offset; 2352 return 0; 2353 } 2354 EXPORT_SYMBOL(netdev_set_tc_queue); 2355 2356 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2357 { 2358 if (num_tc > TC_MAX_QUEUE) 2359 return -EINVAL; 2360 2361 #ifdef CONFIG_XPS 2362 netif_reset_xps_queues_gt(dev, 0); 2363 #endif 2364 dev->num_tc = num_tc; 2365 return 0; 2366 } 2367 EXPORT_SYMBOL(netdev_set_num_tc); 2368 2369 /* 2370 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2371 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2372 */ 2373 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2374 { 2375 int rc; 2376 2377 if (txq < 1 || txq > dev->num_tx_queues) 2378 return -EINVAL; 2379 2380 if (dev->reg_state == NETREG_REGISTERED || 2381 dev->reg_state == NETREG_UNREGISTERING) { 2382 ASSERT_RTNL(); 2383 2384 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2385 txq); 2386 if (rc) 2387 return rc; 2388 2389 if (dev->num_tc) 2390 netif_setup_tc(dev, txq); 2391 2392 if (txq < dev->real_num_tx_queues) { 2393 qdisc_reset_all_tx_gt(dev, txq); 2394 #ifdef CONFIG_XPS 2395 netif_reset_xps_queues_gt(dev, txq); 2396 #endif 2397 } 2398 } 2399 2400 dev->real_num_tx_queues = txq; 2401 return 0; 2402 } 2403 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2404 2405 #ifdef CONFIG_SYSFS 2406 /** 2407 * netif_set_real_num_rx_queues - set actual number of RX queues used 2408 * @dev: Network device 2409 * @rxq: Actual number of RX queues 2410 * 2411 * This must be called either with the rtnl_lock held or before 2412 * registration of the net device. Returns 0 on success, or a 2413 * negative error code. If called before registration, it always 2414 * succeeds. 2415 */ 2416 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2417 { 2418 int rc; 2419 2420 if (rxq < 1 || rxq > dev->num_rx_queues) 2421 return -EINVAL; 2422 2423 if (dev->reg_state == NETREG_REGISTERED) { 2424 ASSERT_RTNL(); 2425 2426 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2427 rxq); 2428 if (rc) 2429 return rc; 2430 } 2431 2432 dev->real_num_rx_queues = rxq; 2433 return 0; 2434 } 2435 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2436 #endif 2437 2438 /** 2439 * netif_get_num_default_rss_queues - default number of RSS queues 2440 * 2441 * This routine should set an upper limit on the number of RSS queues 2442 * used by default by multiqueue devices. 2443 */ 2444 int netif_get_num_default_rss_queues(void) 2445 { 2446 return is_kdump_kernel() ? 2447 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2448 } 2449 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2450 2451 static void __netif_reschedule(struct Qdisc *q) 2452 { 2453 struct softnet_data *sd; 2454 unsigned long flags; 2455 2456 local_irq_save(flags); 2457 sd = this_cpu_ptr(&softnet_data); 2458 q->next_sched = NULL; 2459 *sd->output_queue_tailp = q; 2460 sd->output_queue_tailp = &q->next_sched; 2461 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2462 local_irq_restore(flags); 2463 } 2464 2465 void __netif_schedule(struct Qdisc *q) 2466 { 2467 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2468 __netif_reschedule(q); 2469 } 2470 EXPORT_SYMBOL(__netif_schedule); 2471 2472 struct dev_kfree_skb_cb { 2473 enum skb_free_reason reason; 2474 }; 2475 2476 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2477 { 2478 return (struct dev_kfree_skb_cb *)skb->cb; 2479 } 2480 2481 void netif_schedule_queue(struct netdev_queue *txq) 2482 { 2483 rcu_read_lock(); 2484 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2485 struct Qdisc *q = rcu_dereference(txq->qdisc); 2486 2487 __netif_schedule(q); 2488 } 2489 rcu_read_unlock(); 2490 } 2491 EXPORT_SYMBOL(netif_schedule_queue); 2492 2493 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2494 { 2495 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2496 struct Qdisc *q; 2497 2498 rcu_read_lock(); 2499 q = rcu_dereference(dev_queue->qdisc); 2500 __netif_schedule(q); 2501 rcu_read_unlock(); 2502 } 2503 } 2504 EXPORT_SYMBOL(netif_tx_wake_queue); 2505 2506 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2507 { 2508 unsigned long flags; 2509 2510 if (unlikely(!skb)) 2511 return; 2512 2513 if (likely(refcount_read(&skb->users) == 1)) { 2514 smp_rmb(); 2515 refcount_set(&skb->users, 0); 2516 } else if (likely(!refcount_dec_and_test(&skb->users))) { 2517 return; 2518 } 2519 get_kfree_skb_cb(skb)->reason = reason; 2520 local_irq_save(flags); 2521 skb->next = __this_cpu_read(softnet_data.completion_queue); 2522 __this_cpu_write(softnet_data.completion_queue, skb); 2523 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2524 local_irq_restore(flags); 2525 } 2526 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2527 2528 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2529 { 2530 if (in_irq() || irqs_disabled()) 2531 __dev_kfree_skb_irq(skb, reason); 2532 else 2533 dev_kfree_skb(skb); 2534 } 2535 EXPORT_SYMBOL(__dev_kfree_skb_any); 2536 2537 2538 /** 2539 * netif_device_detach - mark device as removed 2540 * @dev: network device 2541 * 2542 * Mark device as removed from system and therefore no longer available. 2543 */ 2544 void netif_device_detach(struct net_device *dev) 2545 { 2546 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2547 netif_running(dev)) { 2548 netif_tx_stop_all_queues(dev); 2549 } 2550 } 2551 EXPORT_SYMBOL(netif_device_detach); 2552 2553 /** 2554 * netif_device_attach - mark device as attached 2555 * @dev: network device 2556 * 2557 * Mark device as attached from system and restart if needed. 2558 */ 2559 void netif_device_attach(struct net_device *dev) 2560 { 2561 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2562 netif_running(dev)) { 2563 netif_tx_wake_all_queues(dev); 2564 __netdev_watchdog_up(dev); 2565 } 2566 } 2567 EXPORT_SYMBOL(netif_device_attach); 2568 2569 /* 2570 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2571 * to be used as a distribution range. 2572 */ 2573 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 2574 unsigned int num_tx_queues) 2575 { 2576 u32 hash; 2577 u16 qoffset = 0; 2578 u16 qcount = num_tx_queues; 2579 2580 if (skb_rx_queue_recorded(skb)) { 2581 hash = skb_get_rx_queue(skb); 2582 while (unlikely(hash >= num_tx_queues)) 2583 hash -= num_tx_queues; 2584 return hash; 2585 } 2586 2587 if (dev->num_tc) { 2588 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2589 2590 qoffset = dev->tc_to_txq[tc].offset; 2591 qcount = dev->tc_to_txq[tc].count; 2592 } 2593 2594 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2595 } 2596 EXPORT_SYMBOL(__skb_tx_hash); 2597 2598 static void skb_warn_bad_offload(const struct sk_buff *skb) 2599 { 2600 static const netdev_features_t null_features; 2601 struct net_device *dev = skb->dev; 2602 const char *name = ""; 2603 2604 if (!net_ratelimit()) 2605 return; 2606 2607 if (dev) { 2608 if (dev->dev.parent) 2609 name = dev_driver_string(dev->dev.parent); 2610 else 2611 name = netdev_name(dev); 2612 } 2613 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2614 "gso_type=%d ip_summed=%d\n", 2615 name, dev ? &dev->features : &null_features, 2616 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2617 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2618 skb_shinfo(skb)->gso_type, skb->ip_summed); 2619 } 2620 2621 /* 2622 * Invalidate hardware checksum when packet is to be mangled, and 2623 * complete checksum manually on outgoing path. 2624 */ 2625 int skb_checksum_help(struct sk_buff *skb) 2626 { 2627 __wsum csum; 2628 int ret = 0, offset; 2629 2630 if (skb->ip_summed == CHECKSUM_COMPLETE) 2631 goto out_set_summed; 2632 2633 if (unlikely(skb_shinfo(skb)->gso_size)) { 2634 skb_warn_bad_offload(skb); 2635 return -EINVAL; 2636 } 2637 2638 /* Before computing a checksum, we should make sure no frag could 2639 * be modified by an external entity : checksum could be wrong. 2640 */ 2641 if (skb_has_shared_frag(skb)) { 2642 ret = __skb_linearize(skb); 2643 if (ret) 2644 goto out; 2645 } 2646 2647 offset = skb_checksum_start_offset(skb); 2648 BUG_ON(offset >= skb_headlen(skb)); 2649 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2650 2651 offset += skb->csum_offset; 2652 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2653 2654 if (skb_cloned(skb) && 2655 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2656 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2657 if (ret) 2658 goto out; 2659 } 2660 2661 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2662 out_set_summed: 2663 skb->ip_summed = CHECKSUM_NONE; 2664 out: 2665 return ret; 2666 } 2667 EXPORT_SYMBOL(skb_checksum_help); 2668 2669 int skb_crc32c_csum_help(struct sk_buff *skb) 2670 { 2671 __le32 crc32c_csum; 2672 int ret = 0, offset, start; 2673 2674 if (skb->ip_summed != CHECKSUM_PARTIAL) 2675 goto out; 2676 2677 if (unlikely(skb_is_gso(skb))) 2678 goto out; 2679 2680 /* Before computing a checksum, we should make sure no frag could 2681 * be modified by an external entity : checksum could be wrong. 2682 */ 2683 if (unlikely(skb_has_shared_frag(skb))) { 2684 ret = __skb_linearize(skb); 2685 if (ret) 2686 goto out; 2687 } 2688 start = skb_checksum_start_offset(skb); 2689 offset = start + offsetof(struct sctphdr, checksum); 2690 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 2691 ret = -EINVAL; 2692 goto out; 2693 } 2694 if (skb_cloned(skb) && 2695 !skb_clone_writable(skb, offset + sizeof(__le32))) { 2696 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2697 if (ret) 2698 goto out; 2699 } 2700 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 2701 skb->len - start, ~(__u32)0, 2702 crc32c_csum_stub)); 2703 *(__le32 *)(skb->data + offset) = crc32c_csum; 2704 skb->ip_summed = CHECKSUM_NONE; 2705 skb->csum_not_inet = 0; 2706 out: 2707 return ret; 2708 } 2709 2710 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2711 { 2712 __be16 type = skb->protocol; 2713 2714 /* Tunnel gso handlers can set protocol to ethernet. */ 2715 if (type == htons(ETH_P_TEB)) { 2716 struct ethhdr *eth; 2717 2718 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2719 return 0; 2720 2721 eth = (struct ethhdr *)skb_mac_header(skb); 2722 type = eth->h_proto; 2723 } 2724 2725 return __vlan_get_protocol(skb, type, depth); 2726 } 2727 2728 /** 2729 * skb_mac_gso_segment - mac layer segmentation handler. 2730 * @skb: buffer to segment 2731 * @features: features for the output path (see dev->features) 2732 */ 2733 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2734 netdev_features_t features) 2735 { 2736 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2737 struct packet_offload *ptype; 2738 int vlan_depth = skb->mac_len; 2739 __be16 type = skb_network_protocol(skb, &vlan_depth); 2740 2741 if (unlikely(!type)) 2742 return ERR_PTR(-EINVAL); 2743 2744 __skb_pull(skb, vlan_depth); 2745 2746 rcu_read_lock(); 2747 list_for_each_entry_rcu(ptype, &offload_base, list) { 2748 if (ptype->type == type && ptype->callbacks.gso_segment) { 2749 segs = ptype->callbacks.gso_segment(skb, features); 2750 break; 2751 } 2752 } 2753 rcu_read_unlock(); 2754 2755 __skb_push(skb, skb->data - skb_mac_header(skb)); 2756 2757 return segs; 2758 } 2759 EXPORT_SYMBOL(skb_mac_gso_segment); 2760 2761 2762 /* openvswitch calls this on rx path, so we need a different check. 2763 */ 2764 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2765 { 2766 if (tx_path) 2767 return skb->ip_summed != CHECKSUM_PARTIAL; 2768 2769 return skb->ip_summed == CHECKSUM_NONE; 2770 } 2771 2772 /** 2773 * __skb_gso_segment - Perform segmentation on skb. 2774 * @skb: buffer to segment 2775 * @features: features for the output path (see dev->features) 2776 * @tx_path: whether it is called in TX path 2777 * 2778 * This function segments the given skb and returns a list of segments. 2779 * 2780 * It may return NULL if the skb requires no segmentation. This is 2781 * only possible when GSO is used for verifying header integrity. 2782 * 2783 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 2784 */ 2785 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2786 netdev_features_t features, bool tx_path) 2787 { 2788 struct sk_buff *segs; 2789 2790 if (unlikely(skb_needs_check(skb, tx_path))) { 2791 int err; 2792 2793 /* We're going to init ->check field in TCP or UDP header */ 2794 err = skb_cow_head(skb, 0); 2795 if (err < 0) 2796 return ERR_PTR(err); 2797 } 2798 2799 /* Only report GSO partial support if it will enable us to 2800 * support segmentation on this frame without needing additional 2801 * work. 2802 */ 2803 if (features & NETIF_F_GSO_PARTIAL) { 2804 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 2805 struct net_device *dev = skb->dev; 2806 2807 partial_features |= dev->features & dev->gso_partial_features; 2808 if (!skb_gso_ok(skb, features | partial_features)) 2809 features &= ~NETIF_F_GSO_PARTIAL; 2810 } 2811 2812 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 2813 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 2814 2815 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2816 SKB_GSO_CB(skb)->encap_level = 0; 2817 2818 skb_reset_mac_header(skb); 2819 skb_reset_mac_len(skb); 2820 2821 segs = skb_mac_gso_segment(skb, features); 2822 2823 if (unlikely(skb_needs_check(skb, tx_path))) 2824 skb_warn_bad_offload(skb); 2825 2826 return segs; 2827 } 2828 EXPORT_SYMBOL(__skb_gso_segment); 2829 2830 /* Take action when hardware reception checksum errors are detected. */ 2831 #ifdef CONFIG_BUG 2832 void netdev_rx_csum_fault(struct net_device *dev) 2833 { 2834 if (net_ratelimit()) { 2835 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2836 dump_stack(); 2837 } 2838 } 2839 EXPORT_SYMBOL(netdev_rx_csum_fault); 2840 #endif 2841 2842 /* Actually, we should eliminate this check as soon as we know, that: 2843 * 1. IOMMU is present and allows to map all the memory. 2844 * 2. No high memory really exists on this machine. 2845 */ 2846 2847 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2848 { 2849 #ifdef CONFIG_HIGHMEM 2850 int i; 2851 2852 if (!(dev->features & NETIF_F_HIGHDMA)) { 2853 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2854 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2855 2856 if (PageHighMem(skb_frag_page(frag))) 2857 return 1; 2858 } 2859 } 2860 2861 if (PCI_DMA_BUS_IS_PHYS) { 2862 struct device *pdev = dev->dev.parent; 2863 2864 if (!pdev) 2865 return 0; 2866 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2867 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2868 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2869 2870 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2871 return 1; 2872 } 2873 } 2874 #endif 2875 return 0; 2876 } 2877 2878 /* If MPLS offload request, verify we are testing hardware MPLS features 2879 * instead of standard features for the netdev. 2880 */ 2881 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2882 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2883 netdev_features_t features, 2884 __be16 type) 2885 { 2886 if (eth_p_mpls(type)) 2887 features &= skb->dev->mpls_features; 2888 2889 return features; 2890 } 2891 #else 2892 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2893 netdev_features_t features, 2894 __be16 type) 2895 { 2896 return features; 2897 } 2898 #endif 2899 2900 static netdev_features_t harmonize_features(struct sk_buff *skb, 2901 netdev_features_t features) 2902 { 2903 int tmp; 2904 __be16 type; 2905 2906 type = skb_network_protocol(skb, &tmp); 2907 features = net_mpls_features(skb, features, type); 2908 2909 if (skb->ip_summed != CHECKSUM_NONE && 2910 !can_checksum_protocol(features, type)) { 2911 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2912 } 2913 if (illegal_highdma(skb->dev, skb)) 2914 features &= ~NETIF_F_SG; 2915 2916 return features; 2917 } 2918 2919 netdev_features_t passthru_features_check(struct sk_buff *skb, 2920 struct net_device *dev, 2921 netdev_features_t features) 2922 { 2923 return features; 2924 } 2925 EXPORT_SYMBOL(passthru_features_check); 2926 2927 static netdev_features_t dflt_features_check(const struct sk_buff *skb, 2928 struct net_device *dev, 2929 netdev_features_t features) 2930 { 2931 return vlan_features_check(skb, features); 2932 } 2933 2934 static netdev_features_t gso_features_check(const struct sk_buff *skb, 2935 struct net_device *dev, 2936 netdev_features_t features) 2937 { 2938 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2939 2940 if (gso_segs > dev->gso_max_segs) 2941 return features & ~NETIF_F_GSO_MASK; 2942 2943 /* Support for GSO partial features requires software 2944 * intervention before we can actually process the packets 2945 * so we need to strip support for any partial features now 2946 * and we can pull them back in after we have partially 2947 * segmented the frame. 2948 */ 2949 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 2950 features &= ~dev->gso_partial_features; 2951 2952 /* Make sure to clear the IPv4 ID mangling feature if the 2953 * IPv4 header has the potential to be fragmented. 2954 */ 2955 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 2956 struct iphdr *iph = skb->encapsulation ? 2957 inner_ip_hdr(skb) : ip_hdr(skb); 2958 2959 if (!(iph->frag_off & htons(IP_DF))) 2960 features &= ~NETIF_F_TSO_MANGLEID; 2961 } 2962 2963 return features; 2964 } 2965 2966 netdev_features_t netif_skb_features(struct sk_buff *skb) 2967 { 2968 struct net_device *dev = skb->dev; 2969 netdev_features_t features = dev->features; 2970 2971 if (skb_is_gso(skb)) 2972 features = gso_features_check(skb, dev, features); 2973 2974 /* If encapsulation offload request, verify we are testing 2975 * hardware encapsulation features instead of standard 2976 * features for the netdev 2977 */ 2978 if (skb->encapsulation) 2979 features &= dev->hw_enc_features; 2980 2981 if (skb_vlan_tagged(skb)) 2982 features = netdev_intersect_features(features, 2983 dev->vlan_features | 2984 NETIF_F_HW_VLAN_CTAG_TX | 2985 NETIF_F_HW_VLAN_STAG_TX); 2986 2987 if (dev->netdev_ops->ndo_features_check) 2988 features &= dev->netdev_ops->ndo_features_check(skb, dev, 2989 features); 2990 else 2991 features &= dflt_features_check(skb, dev, features); 2992 2993 return harmonize_features(skb, features); 2994 } 2995 EXPORT_SYMBOL(netif_skb_features); 2996 2997 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 2998 struct netdev_queue *txq, bool more) 2999 { 3000 unsigned int len; 3001 int rc; 3002 3003 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 3004 dev_queue_xmit_nit(skb, dev); 3005 3006 len = skb->len; 3007 trace_net_dev_start_xmit(skb, dev); 3008 rc = netdev_start_xmit(skb, dev, txq, more); 3009 trace_net_dev_xmit(skb, rc, dev, len); 3010 3011 return rc; 3012 } 3013 3014 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3015 struct netdev_queue *txq, int *ret) 3016 { 3017 struct sk_buff *skb = first; 3018 int rc = NETDEV_TX_OK; 3019 3020 while (skb) { 3021 struct sk_buff *next = skb->next; 3022 3023 skb->next = NULL; 3024 rc = xmit_one(skb, dev, txq, next != NULL); 3025 if (unlikely(!dev_xmit_complete(rc))) { 3026 skb->next = next; 3027 goto out; 3028 } 3029 3030 skb = next; 3031 if (netif_xmit_stopped(txq) && skb) { 3032 rc = NETDEV_TX_BUSY; 3033 break; 3034 } 3035 } 3036 3037 out: 3038 *ret = rc; 3039 return skb; 3040 } 3041 3042 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3043 netdev_features_t features) 3044 { 3045 if (skb_vlan_tag_present(skb) && 3046 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3047 skb = __vlan_hwaccel_push_inside(skb); 3048 return skb; 3049 } 3050 3051 int skb_csum_hwoffload_help(struct sk_buff *skb, 3052 const netdev_features_t features) 3053 { 3054 if (unlikely(skb->csum_not_inet)) 3055 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3056 skb_crc32c_csum_help(skb); 3057 3058 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3059 } 3060 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3061 3062 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) 3063 { 3064 netdev_features_t features; 3065 3066 features = netif_skb_features(skb); 3067 skb = validate_xmit_vlan(skb, features); 3068 if (unlikely(!skb)) 3069 goto out_null; 3070 3071 if (netif_needs_gso(skb, features)) { 3072 struct sk_buff *segs; 3073 3074 segs = skb_gso_segment(skb, features); 3075 if (IS_ERR(segs)) { 3076 goto out_kfree_skb; 3077 } else if (segs) { 3078 consume_skb(skb); 3079 skb = segs; 3080 } 3081 } else { 3082 if (skb_needs_linearize(skb, features) && 3083 __skb_linearize(skb)) 3084 goto out_kfree_skb; 3085 3086 if (validate_xmit_xfrm(skb, features)) 3087 goto out_kfree_skb; 3088 3089 /* If packet is not checksummed and device does not 3090 * support checksumming for this protocol, complete 3091 * checksumming here. 3092 */ 3093 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3094 if (skb->encapsulation) 3095 skb_set_inner_transport_header(skb, 3096 skb_checksum_start_offset(skb)); 3097 else 3098 skb_set_transport_header(skb, 3099 skb_checksum_start_offset(skb)); 3100 if (skb_csum_hwoffload_help(skb, features)) 3101 goto out_kfree_skb; 3102 } 3103 } 3104 3105 return skb; 3106 3107 out_kfree_skb: 3108 kfree_skb(skb); 3109 out_null: 3110 atomic_long_inc(&dev->tx_dropped); 3111 return NULL; 3112 } 3113 3114 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev) 3115 { 3116 struct sk_buff *next, *head = NULL, *tail; 3117 3118 for (; skb != NULL; skb = next) { 3119 next = skb->next; 3120 skb->next = NULL; 3121 3122 /* in case skb wont be segmented, point to itself */ 3123 skb->prev = skb; 3124 3125 skb = validate_xmit_skb(skb, dev); 3126 if (!skb) 3127 continue; 3128 3129 if (!head) 3130 head = skb; 3131 else 3132 tail->next = skb; 3133 /* If skb was segmented, skb->prev points to 3134 * the last segment. If not, it still contains skb. 3135 */ 3136 tail = skb->prev; 3137 } 3138 return head; 3139 } 3140 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3141 3142 static void qdisc_pkt_len_init(struct sk_buff *skb) 3143 { 3144 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3145 3146 qdisc_skb_cb(skb)->pkt_len = skb->len; 3147 3148 /* To get more precise estimation of bytes sent on wire, 3149 * we add to pkt_len the headers size of all segments 3150 */ 3151 if (shinfo->gso_size) { 3152 unsigned int hdr_len; 3153 u16 gso_segs = shinfo->gso_segs; 3154 3155 /* mac layer + network layer */ 3156 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3157 3158 /* + transport layer */ 3159 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 3160 hdr_len += tcp_hdrlen(skb); 3161 else 3162 hdr_len += sizeof(struct udphdr); 3163 3164 if (shinfo->gso_type & SKB_GSO_DODGY) 3165 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3166 shinfo->gso_size); 3167 3168 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3169 } 3170 } 3171 3172 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3173 struct net_device *dev, 3174 struct netdev_queue *txq) 3175 { 3176 spinlock_t *root_lock = qdisc_lock(q); 3177 struct sk_buff *to_free = NULL; 3178 bool contended; 3179 int rc; 3180 3181 qdisc_calculate_pkt_len(skb, q); 3182 /* 3183 * Heuristic to force contended enqueues to serialize on a 3184 * separate lock before trying to get qdisc main lock. 3185 * This permits qdisc->running owner to get the lock more 3186 * often and dequeue packets faster. 3187 */ 3188 contended = qdisc_is_running(q); 3189 if (unlikely(contended)) 3190 spin_lock(&q->busylock); 3191 3192 spin_lock(root_lock); 3193 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3194 __qdisc_drop(skb, &to_free); 3195 rc = NET_XMIT_DROP; 3196 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3197 qdisc_run_begin(q)) { 3198 /* 3199 * This is a work-conserving queue; there are no old skbs 3200 * waiting to be sent out; and the qdisc is not running - 3201 * xmit the skb directly. 3202 */ 3203 3204 qdisc_bstats_update(q, skb); 3205 3206 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3207 if (unlikely(contended)) { 3208 spin_unlock(&q->busylock); 3209 contended = false; 3210 } 3211 __qdisc_run(q); 3212 } else 3213 qdisc_run_end(q); 3214 3215 rc = NET_XMIT_SUCCESS; 3216 } else { 3217 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3218 if (qdisc_run_begin(q)) { 3219 if (unlikely(contended)) { 3220 spin_unlock(&q->busylock); 3221 contended = false; 3222 } 3223 __qdisc_run(q); 3224 } 3225 } 3226 spin_unlock(root_lock); 3227 if (unlikely(to_free)) 3228 kfree_skb_list(to_free); 3229 if (unlikely(contended)) 3230 spin_unlock(&q->busylock); 3231 return rc; 3232 } 3233 3234 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3235 static void skb_update_prio(struct sk_buff *skb) 3236 { 3237 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 3238 3239 if (!skb->priority && skb->sk && map) { 3240 unsigned int prioidx = 3241 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data); 3242 3243 if (prioidx < map->priomap_len) 3244 skb->priority = map->priomap[prioidx]; 3245 } 3246 } 3247 #else 3248 #define skb_update_prio(skb) 3249 #endif 3250 3251 DEFINE_PER_CPU(int, xmit_recursion); 3252 EXPORT_SYMBOL(xmit_recursion); 3253 3254 /** 3255 * dev_loopback_xmit - loop back @skb 3256 * @net: network namespace this loopback is happening in 3257 * @sk: sk needed to be a netfilter okfn 3258 * @skb: buffer to transmit 3259 */ 3260 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3261 { 3262 skb_reset_mac_header(skb); 3263 __skb_pull(skb, skb_network_offset(skb)); 3264 skb->pkt_type = PACKET_LOOPBACK; 3265 skb->ip_summed = CHECKSUM_UNNECESSARY; 3266 WARN_ON(!skb_dst(skb)); 3267 skb_dst_force(skb); 3268 netif_rx_ni(skb); 3269 return 0; 3270 } 3271 EXPORT_SYMBOL(dev_loopback_xmit); 3272 3273 #ifdef CONFIG_NET_EGRESS 3274 static struct sk_buff * 3275 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3276 { 3277 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3278 struct tcf_result cl_res; 3279 3280 if (!miniq) 3281 return skb; 3282 3283 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3284 mini_qdisc_bstats_cpu_update(miniq, skb); 3285 3286 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3287 case TC_ACT_OK: 3288 case TC_ACT_RECLASSIFY: 3289 skb->tc_index = TC_H_MIN(cl_res.classid); 3290 break; 3291 case TC_ACT_SHOT: 3292 mini_qdisc_qstats_cpu_drop(miniq); 3293 *ret = NET_XMIT_DROP; 3294 kfree_skb(skb); 3295 return NULL; 3296 case TC_ACT_STOLEN: 3297 case TC_ACT_QUEUED: 3298 case TC_ACT_TRAP: 3299 *ret = NET_XMIT_SUCCESS; 3300 consume_skb(skb); 3301 return NULL; 3302 case TC_ACT_REDIRECT: 3303 /* No need to push/pop skb's mac_header here on egress! */ 3304 skb_do_redirect(skb); 3305 *ret = NET_XMIT_SUCCESS; 3306 return NULL; 3307 default: 3308 break; 3309 } 3310 3311 return skb; 3312 } 3313 #endif /* CONFIG_NET_EGRESS */ 3314 3315 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 3316 { 3317 #ifdef CONFIG_XPS 3318 struct xps_dev_maps *dev_maps; 3319 struct xps_map *map; 3320 int queue_index = -1; 3321 3322 rcu_read_lock(); 3323 dev_maps = rcu_dereference(dev->xps_maps); 3324 if (dev_maps) { 3325 unsigned int tci = skb->sender_cpu - 1; 3326 3327 if (dev->num_tc) { 3328 tci *= dev->num_tc; 3329 tci += netdev_get_prio_tc_map(dev, skb->priority); 3330 } 3331 3332 map = rcu_dereference(dev_maps->cpu_map[tci]); 3333 if (map) { 3334 if (map->len == 1) 3335 queue_index = map->queues[0]; 3336 else 3337 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb), 3338 map->len)]; 3339 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3340 queue_index = -1; 3341 } 3342 } 3343 rcu_read_unlock(); 3344 3345 return queue_index; 3346 #else 3347 return -1; 3348 #endif 3349 } 3350 3351 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb) 3352 { 3353 struct sock *sk = skb->sk; 3354 int queue_index = sk_tx_queue_get(sk); 3355 3356 if (queue_index < 0 || skb->ooo_okay || 3357 queue_index >= dev->real_num_tx_queues) { 3358 int new_index = get_xps_queue(dev, skb); 3359 3360 if (new_index < 0) 3361 new_index = skb_tx_hash(dev, skb); 3362 3363 if (queue_index != new_index && sk && 3364 sk_fullsock(sk) && 3365 rcu_access_pointer(sk->sk_dst_cache)) 3366 sk_tx_queue_set(sk, new_index); 3367 3368 queue_index = new_index; 3369 } 3370 3371 return queue_index; 3372 } 3373 3374 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3375 struct sk_buff *skb, 3376 void *accel_priv) 3377 { 3378 int queue_index = 0; 3379 3380 #ifdef CONFIG_XPS 3381 u32 sender_cpu = skb->sender_cpu - 1; 3382 3383 if (sender_cpu >= (u32)NR_CPUS) 3384 skb->sender_cpu = raw_smp_processor_id() + 1; 3385 #endif 3386 3387 if (dev->real_num_tx_queues != 1) { 3388 const struct net_device_ops *ops = dev->netdev_ops; 3389 3390 if (ops->ndo_select_queue) 3391 queue_index = ops->ndo_select_queue(dev, skb, accel_priv, 3392 __netdev_pick_tx); 3393 else 3394 queue_index = __netdev_pick_tx(dev, skb); 3395 3396 if (!accel_priv) 3397 queue_index = netdev_cap_txqueue(dev, queue_index); 3398 } 3399 3400 skb_set_queue_mapping(skb, queue_index); 3401 return netdev_get_tx_queue(dev, queue_index); 3402 } 3403 3404 /** 3405 * __dev_queue_xmit - transmit a buffer 3406 * @skb: buffer to transmit 3407 * @accel_priv: private data used for L2 forwarding offload 3408 * 3409 * Queue a buffer for transmission to a network device. The caller must 3410 * have set the device and priority and built the buffer before calling 3411 * this function. The function can be called from an interrupt. 3412 * 3413 * A negative errno code is returned on a failure. A success does not 3414 * guarantee the frame will be transmitted as it may be dropped due 3415 * to congestion or traffic shaping. 3416 * 3417 * ----------------------------------------------------------------------------------- 3418 * I notice this method can also return errors from the queue disciplines, 3419 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3420 * be positive. 3421 * 3422 * Regardless of the return value, the skb is consumed, so it is currently 3423 * difficult to retry a send to this method. (You can bump the ref count 3424 * before sending to hold a reference for retry if you are careful.) 3425 * 3426 * When calling this method, interrupts MUST be enabled. This is because 3427 * the BH enable code must have IRQs enabled so that it will not deadlock. 3428 * --BLG 3429 */ 3430 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 3431 { 3432 struct net_device *dev = skb->dev; 3433 struct netdev_queue *txq; 3434 struct Qdisc *q; 3435 int rc = -ENOMEM; 3436 3437 skb_reset_mac_header(skb); 3438 3439 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3440 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3441 3442 /* Disable soft irqs for various locks below. Also 3443 * stops preemption for RCU. 3444 */ 3445 rcu_read_lock_bh(); 3446 3447 skb_update_prio(skb); 3448 3449 qdisc_pkt_len_init(skb); 3450 #ifdef CONFIG_NET_CLS_ACT 3451 skb->tc_at_ingress = 0; 3452 # ifdef CONFIG_NET_EGRESS 3453 if (static_key_false(&egress_needed)) { 3454 skb = sch_handle_egress(skb, &rc, dev); 3455 if (!skb) 3456 goto out; 3457 } 3458 # endif 3459 #endif 3460 /* If device/qdisc don't need skb->dst, release it right now while 3461 * its hot in this cpu cache. 3462 */ 3463 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3464 skb_dst_drop(skb); 3465 else 3466 skb_dst_force(skb); 3467 3468 txq = netdev_pick_tx(dev, skb, accel_priv); 3469 q = rcu_dereference_bh(txq->qdisc); 3470 3471 trace_net_dev_queue(skb); 3472 if (q->enqueue) { 3473 rc = __dev_xmit_skb(skb, q, dev, txq); 3474 goto out; 3475 } 3476 3477 /* The device has no queue. Common case for software devices: 3478 * loopback, all the sorts of tunnels... 3479 3480 * Really, it is unlikely that netif_tx_lock protection is necessary 3481 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 3482 * counters.) 3483 * However, it is possible, that they rely on protection 3484 * made by us here. 3485 3486 * Check this and shot the lock. It is not prone from deadlocks. 3487 *Either shot noqueue qdisc, it is even simpler 8) 3488 */ 3489 if (dev->flags & IFF_UP) { 3490 int cpu = smp_processor_id(); /* ok because BHs are off */ 3491 3492 if (txq->xmit_lock_owner != cpu) { 3493 if (unlikely(__this_cpu_read(xmit_recursion) > 3494 XMIT_RECURSION_LIMIT)) 3495 goto recursion_alert; 3496 3497 skb = validate_xmit_skb(skb, dev); 3498 if (!skb) 3499 goto out; 3500 3501 HARD_TX_LOCK(dev, txq, cpu); 3502 3503 if (!netif_xmit_stopped(txq)) { 3504 __this_cpu_inc(xmit_recursion); 3505 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3506 __this_cpu_dec(xmit_recursion); 3507 if (dev_xmit_complete(rc)) { 3508 HARD_TX_UNLOCK(dev, txq); 3509 goto out; 3510 } 3511 } 3512 HARD_TX_UNLOCK(dev, txq); 3513 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3514 dev->name); 3515 } else { 3516 /* Recursion is detected! It is possible, 3517 * unfortunately 3518 */ 3519 recursion_alert: 3520 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3521 dev->name); 3522 } 3523 } 3524 3525 rc = -ENETDOWN; 3526 rcu_read_unlock_bh(); 3527 3528 atomic_long_inc(&dev->tx_dropped); 3529 kfree_skb_list(skb); 3530 return rc; 3531 out: 3532 rcu_read_unlock_bh(); 3533 return rc; 3534 } 3535 3536 int dev_queue_xmit(struct sk_buff *skb) 3537 { 3538 return __dev_queue_xmit(skb, NULL); 3539 } 3540 EXPORT_SYMBOL(dev_queue_xmit); 3541 3542 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3543 { 3544 return __dev_queue_xmit(skb, accel_priv); 3545 } 3546 EXPORT_SYMBOL(dev_queue_xmit_accel); 3547 3548 3549 /************************************************************************* 3550 * Receiver routines 3551 *************************************************************************/ 3552 3553 int netdev_max_backlog __read_mostly = 1000; 3554 EXPORT_SYMBOL(netdev_max_backlog); 3555 3556 int netdev_tstamp_prequeue __read_mostly = 1; 3557 int netdev_budget __read_mostly = 300; 3558 unsigned int __read_mostly netdev_budget_usecs = 2000; 3559 int weight_p __read_mostly = 64; /* old backlog weight */ 3560 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 3561 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 3562 int dev_rx_weight __read_mostly = 64; 3563 int dev_tx_weight __read_mostly = 64; 3564 3565 /* Called with irq disabled */ 3566 static inline void ____napi_schedule(struct softnet_data *sd, 3567 struct napi_struct *napi) 3568 { 3569 list_add_tail(&napi->poll_list, &sd->poll_list); 3570 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3571 } 3572 3573 #ifdef CONFIG_RPS 3574 3575 /* One global table that all flow-based protocols share. */ 3576 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3577 EXPORT_SYMBOL(rps_sock_flow_table); 3578 u32 rps_cpu_mask __read_mostly; 3579 EXPORT_SYMBOL(rps_cpu_mask); 3580 3581 struct static_key rps_needed __read_mostly; 3582 EXPORT_SYMBOL(rps_needed); 3583 struct static_key rfs_needed __read_mostly; 3584 EXPORT_SYMBOL(rfs_needed); 3585 3586 static struct rps_dev_flow * 3587 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3588 struct rps_dev_flow *rflow, u16 next_cpu) 3589 { 3590 if (next_cpu < nr_cpu_ids) { 3591 #ifdef CONFIG_RFS_ACCEL 3592 struct netdev_rx_queue *rxqueue; 3593 struct rps_dev_flow_table *flow_table; 3594 struct rps_dev_flow *old_rflow; 3595 u32 flow_id; 3596 u16 rxq_index; 3597 int rc; 3598 3599 /* Should we steer this flow to a different hardware queue? */ 3600 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3601 !(dev->features & NETIF_F_NTUPLE)) 3602 goto out; 3603 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3604 if (rxq_index == skb_get_rx_queue(skb)) 3605 goto out; 3606 3607 rxqueue = dev->_rx + rxq_index; 3608 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3609 if (!flow_table) 3610 goto out; 3611 flow_id = skb_get_hash(skb) & flow_table->mask; 3612 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3613 rxq_index, flow_id); 3614 if (rc < 0) 3615 goto out; 3616 old_rflow = rflow; 3617 rflow = &flow_table->flows[flow_id]; 3618 rflow->filter = rc; 3619 if (old_rflow->filter == rflow->filter) 3620 old_rflow->filter = RPS_NO_FILTER; 3621 out: 3622 #endif 3623 rflow->last_qtail = 3624 per_cpu(softnet_data, next_cpu).input_queue_head; 3625 } 3626 3627 rflow->cpu = next_cpu; 3628 return rflow; 3629 } 3630 3631 /* 3632 * get_rps_cpu is called from netif_receive_skb and returns the target 3633 * CPU from the RPS map of the receiving queue for a given skb. 3634 * rcu_read_lock must be held on entry. 3635 */ 3636 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3637 struct rps_dev_flow **rflowp) 3638 { 3639 const struct rps_sock_flow_table *sock_flow_table; 3640 struct netdev_rx_queue *rxqueue = dev->_rx; 3641 struct rps_dev_flow_table *flow_table; 3642 struct rps_map *map; 3643 int cpu = -1; 3644 u32 tcpu; 3645 u32 hash; 3646 3647 if (skb_rx_queue_recorded(skb)) { 3648 u16 index = skb_get_rx_queue(skb); 3649 3650 if (unlikely(index >= dev->real_num_rx_queues)) { 3651 WARN_ONCE(dev->real_num_rx_queues > 1, 3652 "%s received packet on queue %u, but number " 3653 "of RX queues is %u\n", 3654 dev->name, index, dev->real_num_rx_queues); 3655 goto done; 3656 } 3657 rxqueue += index; 3658 } 3659 3660 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3661 3662 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3663 map = rcu_dereference(rxqueue->rps_map); 3664 if (!flow_table && !map) 3665 goto done; 3666 3667 skb_reset_network_header(skb); 3668 hash = skb_get_hash(skb); 3669 if (!hash) 3670 goto done; 3671 3672 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3673 if (flow_table && sock_flow_table) { 3674 struct rps_dev_flow *rflow; 3675 u32 next_cpu; 3676 u32 ident; 3677 3678 /* First check into global flow table if there is a match */ 3679 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3680 if ((ident ^ hash) & ~rps_cpu_mask) 3681 goto try_rps; 3682 3683 next_cpu = ident & rps_cpu_mask; 3684 3685 /* OK, now we know there is a match, 3686 * we can look at the local (per receive queue) flow table 3687 */ 3688 rflow = &flow_table->flows[hash & flow_table->mask]; 3689 tcpu = rflow->cpu; 3690 3691 /* 3692 * If the desired CPU (where last recvmsg was done) is 3693 * different from current CPU (one in the rx-queue flow 3694 * table entry), switch if one of the following holds: 3695 * - Current CPU is unset (>= nr_cpu_ids). 3696 * - Current CPU is offline. 3697 * - The current CPU's queue tail has advanced beyond the 3698 * last packet that was enqueued using this table entry. 3699 * This guarantees that all previous packets for the flow 3700 * have been dequeued, thus preserving in order delivery. 3701 */ 3702 if (unlikely(tcpu != next_cpu) && 3703 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 3704 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3705 rflow->last_qtail)) >= 0)) { 3706 tcpu = next_cpu; 3707 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3708 } 3709 3710 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 3711 *rflowp = rflow; 3712 cpu = tcpu; 3713 goto done; 3714 } 3715 } 3716 3717 try_rps: 3718 3719 if (map) { 3720 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3721 if (cpu_online(tcpu)) { 3722 cpu = tcpu; 3723 goto done; 3724 } 3725 } 3726 3727 done: 3728 return cpu; 3729 } 3730 3731 #ifdef CONFIG_RFS_ACCEL 3732 3733 /** 3734 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3735 * @dev: Device on which the filter was set 3736 * @rxq_index: RX queue index 3737 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3738 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3739 * 3740 * Drivers that implement ndo_rx_flow_steer() should periodically call 3741 * this function for each installed filter and remove the filters for 3742 * which it returns %true. 3743 */ 3744 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3745 u32 flow_id, u16 filter_id) 3746 { 3747 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3748 struct rps_dev_flow_table *flow_table; 3749 struct rps_dev_flow *rflow; 3750 bool expire = true; 3751 unsigned int cpu; 3752 3753 rcu_read_lock(); 3754 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3755 if (flow_table && flow_id <= flow_table->mask) { 3756 rflow = &flow_table->flows[flow_id]; 3757 cpu = ACCESS_ONCE(rflow->cpu); 3758 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 3759 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3760 rflow->last_qtail) < 3761 (int)(10 * flow_table->mask))) 3762 expire = false; 3763 } 3764 rcu_read_unlock(); 3765 return expire; 3766 } 3767 EXPORT_SYMBOL(rps_may_expire_flow); 3768 3769 #endif /* CONFIG_RFS_ACCEL */ 3770 3771 /* Called from hardirq (IPI) context */ 3772 static void rps_trigger_softirq(void *data) 3773 { 3774 struct softnet_data *sd = data; 3775 3776 ____napi_schedule(sd, &sd->backlog); 3777 sd->received_rps++; 3778 } 3779 3780 #endif /* CONFIG_RPS */ 3781 3782 /* 3783 * Check if this softnet_data structure is another cpu one 3784 * If yes, queue it to our IPI list and return 1 3785 * If no, return 0 3786 */ 3787 static int rps_ipi_queued(struct softnet_data *sd) 3788 { 3789 #ifdef CONFIG_RPS 3790 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3791 3792 if (sd != mysd) { 3793 sd->rps_ipi_next = mysd->rps_ipi_list; 3794 mysd->rps_ipi_list = sd; 3795 3796 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3797 return 1; 3798 } 3799 #endif /* CONFIG_RPS */ 3800 return 0; 3801 } 3802 3803 #ifdef CONFIG_NET_FLOW_LIMIT 3804 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3805 #endif 3806 3807 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3808 { 3809 #ifdef CONFIG_NET_FLOW_LIMIT 3810 struct sd_flow_limit *fl; 3811 struct softnet_data *sd; 3812 unsigned int old_flow, new_flow; 3813 3814 if (qlen < (netdev_max_backlog >> 1)) 3815 return false; 3816 3817 sd = this_cpu_ptr(&softnet_data); 3818 3819 rcu_read_lock(); 3820 fl = rcu_dereference(sd->flow_limit); 3821 if (fl) { 3822 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3823 old_flow = fl->history[fl->history_head]; 3824 fl->history[fl->history_head] = new_flow; 3825 3826 fl->history_head++; 3827 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3828 3829 if (likely(fl->buckets[old_flow])) 3830 fl->buckets[old_flow]--; 3831 3832 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3833 fl->count++; 3834 rcu_read_unlock(); 3835 return true; 3836 } 3837 } 3838 rcu_read_unlock(); 3839 #endif 3840 return false; 3841 } 3842 3843 /* 3844 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3845 * queue (may be a remote CPU queue). 3846 */ 3847 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3848 unsigned int *qtail) 3849 { 3850 struct softnet_data *sd; 3851 unsigned long flags; 3852 unsigned int qlen; 3853 3854 sd = &per_cpu(softnet_data, cpu); 3855 3856 local_irq_save(flags); 3857 3858 rps_lock(sd); 3859 if (!netif_running(skb->dev)) 3860 goto drop; 3861 qlen = skb_queue_len(&sd->input_pkt_queue); 3862 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3863 if (qlen) { 3864 enqueue: 3865 __skb_queue_tail(&sd->input_pkt_queue, skb); 3866 input_queue_tail_incr_save(sd, qtail); 3867 rps_unlock(sd); 3868 local_irq_restore(flags); 3869 return NET_RX_SUCCESS; 3870 } 3871 3872 /* Schedule NAPI for backlog device 3873 * We can use non atomic operation since we own the queue lock 3874 */ 3875 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3876 if (!rps_ipi_queued(sd)) 3877 ____napi_schedule(sd, &sd->backlog); 3878 } 3879 goto enqueue; 3880 } 3881 3882 drop: 3883 sd->dropped++; 3884 rps_unlock(sd); 3885 3886 local_irq_restore(flags); 3887 3888 atomic_long_inc(&skb->dev->rx_dropped); 3889 kfree_skb(skb); 3890 return NET_RX_DROP; 3891 } 3892 3893 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 3894 struct bpf_prog *xdp_prog) 3895 { 3896 u32 metalen, act = XDP_DROP; 3897 struct xdp_buff xdp; 3898 void *orig_data; 3899 int hlen, off; 3900 u32 mac_len; 3901 3902 /* Reinjected packets coming from act_mirred or similar should 3903 * not get XDP generic processing. 3904 */ 3905 if (skb_cloned(skb)) 3906 return XDP_PASS; 3907 3908 /* XDP packets must be linear and must have sufficient headroom 3909 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 3910 * native XDP provides, thus we need to do it here as well. 3911 */ 3912 if (skb_is_nonlinear(skb) || 3913 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 3914 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 3915 int troom = skb->tail + skb->data_len - skb->end; 3916 3917 /* In case we have to go down the path and also linearize, 3918 * then lets do the pskb_expand_head() work just once here. 3919 */ 3920 if (pskb_expand_head(skb, 3921 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 3922 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 3923 goto do_drop; 3924 if (troom > 0 && __skb_linearize(skb)) 3925 goto do_drop; 3926 } 3927 3928 /* The XDP program wants to see the packet starting at the MAC 3929 * header. 3930 */ 3931 mac_len = skb->data - skb_mac_header(skb); 3932 hlen = skb_headlen(skb) + mac_len; 3933 xdp.data = skb->data - mac_len; 3934 xdp.data_meta = xdp.data; 3935 xdp.data_end = xdp.data + hlen; 3936 xdp.data_hard_start = skb->data - skb_headroom(skb); 3937 orig_data = xdp.data; 3938 3939 act = bpf_prog_run_xdp(xdp_prog, &xdp); 3940 3941 off = xdp.data - orig_data; 3942 if (off > 0) 3943 __skb_pull(skb, off); 3944 else if (off < 0) 3945 __skb_push(skb, -off); 3946 skb->mac_header += off; 3947 3948 switch (act) { 3949 case XDP_REDIRECT: 3950 case XDP_TX: 3951 __skb_push(skb, mac_len); 3952 break; 3953 case XDP_PASS: 3954 metalen = xdp.data - xdp.data_meta; 3955 if (metalen) 3956 skb_metadata_set(skb, metalen); 3957 break; 3958 default: 3959 bpf_warn_invalid_xdp_action(act); 3960 /* fall through */ 3961 case XDP_ABORTED: 3962 trace_xdp_exception(skb->dev, xdp_prog, act); 3963 /* fall through */ 3964 case XDP_DROP: 3965 do_drop: 3966 kfree_skb(skb); 3967 break; 3968 } 3969 3970 return act; 3971 } 3972 3973 /* When doing generic XDP we have to bypass the qdisc layer and the 3974 * network taps in order to match in-driver-XDP behavior. 3975 */ 3976 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 3977 { 3978 struct net_device *dev = skb->dev; 3979 struct netdev_queue *txq; 3980 bool free_skb = true; 3981 int cpu, rc; 3982 3983 txq = netdev_pick_tx(dev, skb, NULL); 3984 cpu = smp_processor_id(); 3985 HARD_TX_LOCK(dev, txq, cpu); 3986 if (!netif_xmit_stopped(txq)) { 3987 rc = netdev_start_xmit(skb, dev, txq, 0); 3988 if (dev_xmit_complete(rc)) 3989 free_skb = false; 3990 } 3991 HARD_TX_UNLOCK(dev, txq); 3992 if (free_skb) { 3993 trace_xdp_exception(dev, xdp_prog, XDP_TX); 3994 kfree_skb(skb); 3995 } 3996 } 3997 EXPORT_SYMBOL_GPL(generic_xdp_tx); 3998 3999 static struct static_key generic_xdp_needed __read_mostly; 4000 4001 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4002 { 4003 if (xdp_prog) { 4004 u32 act = netif_receive_generic_xdp(skb, xdp_prog); 4005 int err; 4006 4007 if (act != XDP_PASS) { 4008 switch (act) { 4009 case XDP_REDIRECT: 4010 err = xdp_do_generic_redirect(skb->dev, skb, 4011 xdp_prog); 4012 if (err) 4013 goto out_redir; 4014 /* fallthru to submit skb */ 4015 case XDP_TX: 4016 generic_xdp_tx(skb, xdp_prog); 4017 break; 4018 } 4019 return XDP_DROP; 4020 } 4021 } 4022 return XDP_PASS; 4023 out_redir: 4024 kfree_skb(skb); 4025 return XDP_DROP; 4026 } 4027 EXPORT_SYMBOL_GPL(do_xdp_generic); 4028 4029 static int netif_rx_internal(struct sk_buff *skb) 4030 { 4031 int ret; 4032 4033 net_timestamp_check(netdev_tstamp_prequeue, skb); 4034 4035 trace_netif_rx(skb); 4036 4037 if (static_key_false(&generic_xdp_needed)) { 4038 int ret; 4039 4040 preempt_disable(); 4041 rcu_read_lock(); 4042 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4043 rcu_read_unlock(); 4044 preempt_enable(); 4045 4046 /* Consider XDP consuming the packet a success from 4047 * the netdev point of view we do not want to count 4048 * this as an error. 4049 */ 4050 if (ret != XDP_PASS) 4051 return NET_RX_SUCCESS; 4052 } 4053 4054 #ifdef CONFIG_RPS 4055 if (static_key_false(&rps_needed)) { 4056 struct rps_dev_flow voidflow, *rflow = &voidflow; 4057 int cpu; 4058 4059 preempt_disable(); 4060 rcu_read_lock(); 4061 4062 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4063 if (cpu < 0) 4064 cpu = smp_processor_id(); 4065 4066 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4067 4068 rcu_read_unlock(); 4069 preempt_enable(); 4070 } else 4071 #endif 4072 { 4073 unsigned int qtail; 4074 4075 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4076 put_cpu(); 4077 } 4078 return ret; 4079 } 4080 4081 /** 4082 * netif_rx - post buffer to the network code 4083 * @skb: buffer to post 4084 * 4085 * This function receives a packet from a device driver and queues it for 4086 * the upper (protocol) levels to process. It always succeeds. The buffer 4087 * may be dropped during processing for congestion control or by the 4088 * protocol layers. 4089 * 4090 * return values: 4091 * NET_RX_SUCCESS (no congestion) 4092 * NET_RX_DROP (packet was dropped) 4093 * 4094 */ 4095 4096 int netif_rx(struct sk_buff *skb) 4097 { 4098 trace_netif_rx_entry(skb); 4099 4100 return netif_rx_internal(skb); 4101 } 4102 EXPORT_SYMBOL(netif_rx); 4103 4104 int netif_rx_ni(struct sk_buff *skb) 4105 { 4106 int err; 4107 4108 trace_netif_rx_ni_entry(skb); 4109 4110 preempt_disable(); 4111 err = netif_rx_internal(skb); 4112 if (local_softirq_pending()) 4113 do_softirq(); 4114 preempt_enable(); 4115 4116 return err; 4117 } 4118 EXPORT_SYMBOL(netif_rx_ni); 4119 4120 static __latent_entropy void net_tx_action(struct softirq_action *h) 4121 { 4122 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4123 4124 if (sd->completion_queue) { 4125 struct sk_buff *clist; 4126 4127 local_irq_disable(); 4128 clist = sd->completion_queue; 4129 sd->completion_queue = NULL; 4130 local_irq_enable(); 4131 4132 while (clist) { 4133 struct sk_buff *skb = clist; 4134 4135 clist = clist->next; 4136 4137 WARN_ON(refcount_read(&skb->users)); 4138 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4139 trace_consume_skb(skb); 4140 else 4141 trace_kfree_skb(skb, net_tx_action); 4142 4143 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4144 __kfree_skb(skb); 4145 else 4146 __kfree_skb_defer(skb); 4147 } 4148 4149 __kfree_skb_flush(); 4150 } 4151 4152 if (sd->output_queue) { 4153 struct Qdisc *head; 4154 4155 local_irq_disable(); 4156 head = sd->output_queue; 4157 sd->output_queue = NULL; 4158 sd->output_queue_tailp = &sd->output_queue; 4159 local_irq_enable(); 4160 4161 while (head) { 4162 struct Qdisc *q = head; 4163 spinlock_t *root_lock; 4164 4165 head = head->next_sched; 4166 4167 root_lock = qdisc_lock(q); 4168 spin_lock(root_lock); 4169 /* We need to make sure head->next_sched is read 4170 * before clearing __QDISC_STATE_SCHED 4171 */ 4172 smp_mb__before_atomic(); 4173 clear_bit(__QDISC_STATE_SCHED, &q->state); 4174 qdisc_run(q); 4175 spin_unlock(root_lock); 4176 } 4177 } 4178 } 4179 4180 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4181 /* This hook is defined here for ATM LANE */ 4182 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4183 unsigned char *addr) __read_mostly; 4184 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4185 #endif 4186 4187 static inline struct sk_buff * 4188 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4189 struct net_device *orig_dev) 4190 { 4191 #ifdef CONFIG_NET_CLS_ACT 4192 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 4193 struct tcf_result cl_res; 4194 4195 /* If there's at least one ingress present somewhere (so 4196 * we get here via enabled static key), remaining devices 4197 * that are not configured with an ingress qdisc will bail 4198 * out here. 4199 */ 4200 if (!miniq) 4201 return skb; 4202 4203 if (*pt_prev) { 4204 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4205 *pt_prev = NULL; 4206 } 4207 4208 qdisc_skb_cb(skb)->pkt_len = skb->len; 4209 skb->tc_at_ingress = 1; 4210 mini_qdisc_bstats_cpu_update(miniq, skb); 4211 4212 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 4213 case TC_ACT_OK: 4214 case TC_ACT_RECLASSIFY: 4215 skb->tc_index = TC_H_MIN(cl_res.classid); 4216 break; 4217 case TC_ACT_SHOT: 4218 mini_qdisc_qstats_cpu_drop(miniq); 4219 kfree_skb(skb); 4220 return NULL; 4221 case TC_ACT_STOLEN: 4222 case TC_ACT_QUEUED: 4223 case TC_ACT_TRAP: 4224 consume_skb(skb); 4225 return NULL; 4226 case TC_ACT_REDIRECT: 4227 /* skb_mac_header check was done by cls/act_bpf, so 4228 * we can safely push the L2 header back before 4229 * redirecting to another netdev 4230 */ 4231 __skb_push(skb, skb->mac_len); 4232 skb_do_redirect(skb); 4233 return NULL; 4234 default: 4235 break; 4236 } 4237 #endif /* CONFIG_NET_CLS_ACT */ 4238 return skb; 4239 } 4240 4241 /** 4242 * netdev_is_rx_handler_busy - check if receive handler is registered 4243 * @dev: device to check 4244 * 4245 * Check if a receive handler is already registered for a given device. 4246 * Return true if there one. 4247 * 4248 * The caller must hold the rtnl_mutex. 4249 */ 4250 bool netdev_is_rx_handler_busy(struct net_device *dev) 4251 { 4252 ASSERT_RTNL(); 4253 return dev && rtnl_dereference(dev->rx_handler); 4254 } 4255 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4256 4257 /** 4258 * netdev_rx_handler_register - register receive handler 4259 * @dev: device to register a handler for 4260 * @rx_handler: receive handler to register 4261 * @rx_handler_data: data pointer that is used by rx handler 4262 * 4263 * Register a receive handler for a device. This handler will then be 4264 * called from __netif_receive_skb. A negative errno code is returned 4265 * on a failure. 4266 * 4267 * The caller must hold the rtnl_mutex. 4268 * 4269 * For a general description of rx_handler, see enum rx_handler_result. 4270 */ 4271 int netdev_rx_handler_register(struct net_device *dev, 4272 rx_handler_func_t *rx_handler, 4273 void *rx_handler_data) 4274 { 4275 if (netdev_is_rx_handler_busy(dev)) 4276 return -EBUSY; 4277 4278 /* Note: rx_handler_data must be set before rx_handler */ 4279 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4280 rcu_assign_pointer(dev->rx_handler, rx_handler); 4281 4282 return 0; 4283 } 4284 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4285 4286 /** 4287 * netdev_rx_handler_unregister - unregister receive handler 4288 * @dev: device to unregister a handler from 4289 * 4290 * Unregister a receive handler from a device. 4291 * 4292 * The caller must hold the rtnl_mutex. 4293 */ 4294 void netdev_rx_handler_unregister(struct net_device *dev) 4295 { 4296 4297 ASSERT_RTNL(); 4298 RCU_INIT_POINTER(dev->rx_handler, NULL); 4299 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4300 * section has a guarantee to see a non NULL rx_handler_data 4301 * as well. 4302 */ 4303 synchronize_net(); 4304 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4305 } 4306 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4307 4308 /* 4309 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4310 * the special handling of PFMEMALLOC skbs. 4311 */ 4312 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4313 { 4314 switch (skb->protocol) { 4315 case htons(ETH_P_ARP): 4316 case htons(ETH_P_IP): 4317 case htons(ETH_P_IPV6): 4318 case htons(ETH_P_8021Q): 4319 case htons(ETH_P_8021AD): 4320 return true; 4321 default: 4322 return false; 4323 } 4324 } 4325 4326 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4327 int *ret, struct net_device *orig_dev) 4328 { 4329 #ifdef CONFIG_NETFILTER_INGRESS 4330 if (nf_hook_ingress_active(skb)) { 4331 int ingress_retval; 4332 4333 if (*pt_prev) { 4334 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4335 *pt_prev = NULL; 4336 } 4337 4338 rcu_read_lock(); 4339 ingress_retval = nf_hook_ingress(skb); 4340 rcu_read_unlock(); 4341 return ingress_retval; 4342 } 4343 #endif /* CONFIG_NETFILTER_INGRESS */ 4344 return 0; 4345 } 4346 4347 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 4348 { 4349 struct packet_type *ptype, *pt_prev; 4350 rx_handler_func_t *rx_handler; 4351 struct net_device *orig_dev; 4352 bool deliver_exact = false; 4353 int ret = NET_RX_DROP; 4354 __be16 type; 4355 4356 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4357 4358 trace_netif_receive_skb(skb); 4359 4360 orig_dev = skb->dev; 4361 4362 skb_reset_network_header(skb); 4363 if (!skb_transport_header_was_set(skb)) 4364 skb_reset_transport_header(skb); 4365 skb_reset_mac_len(skb); 4366 4367 pt_prev = NULL; 4368 4369 another_round: 4370 skb->skb_iif = skb->dev->ifindex; 4371 4372 __this_cpu_inc(softnet_data.processed); 4373 4374 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4375 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4376 skb = skb_vlan_untag(skb); 4377 if (unlikely(!skb)) 4378 goto out; 4379 } 4380 4381 if (skb_skip_tc_classify(skb)) 4382 goto skip_classify; 4383 4384 if (pfmemalloc) 4385 goto skip_taps; 4386 4387 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4388 if (pt_prev) 4389 ret = deliver_skb(skb, pt_prev, orig_dev); 4390 pt_prev = ptype; 4391 } 4392 4393 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4394 if (pt_prev) 4395 ret = deliver_skb(skb, pt_prev, orig_dev); 4396 pt_prev = ptype; 4397 } 4398 4399 skip_taps: 4400 #ifdef CONFIG_NET_INGRESS 4401 if (static_key_false(&ingress_needed)) { 4402 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4403 if (!skb) 4404 goto out; 4405 4406 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4407 goto out; 4408 } 4409 #endif 4410 skb_reset_tc(skb); 4411 skip_classify: 4412 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4413 goto drop; 4414 4415 if (skb_vlan_tag_present(skb)) { 4416 if (pt_prev) { 4417 ret = deliver_skb(skb, pt_prev, orig_dev); 4418 pt_prev = NULL; 4419 } 4420 if (vlan_do_receive(&skb)) 4421 goto another_round; 4422 else if (unlikely(!skb)) 4423 goto out; 4424 } 4425 4426 rx_handler = rcu_dereference(skb->dev->rx_handler); 4427 if (rx_handler) { 4428 if (pt_prev) { 4429 ret = deliver_skb(skb, pt_prev, orig_dev); 4430 pt_prev = NULL; 4431 } 4432 switch (rx_handler(&skb)) { 4433 case RX_HANDLER_CONSUMED: 4434 ret = NET_RX_SUCCESS; 4435 goto out; 4436 case RX_HANDLER_ANOTHER: 4437 goto another_round; 4438 case RX_HANDLER_EXACT: 4439 deliver_exact = true; 4440 case RX_HANDLER_PASS: 4441 break; 4442 default: 4443 BUG(); 4444 } 4445 } 4446 4447 if (unlikely(skb_vlan_tag_present(skb))) { 4448 if (skb_vlan_tag_get_id(skb)) 4449 skb->pkt_type = PACKET_OTHERHOST; 4450 /* Note: we might in the future use prio bits 4451 * and set skb->priority like in vlan_do_receive() 4452 * For the time being, just ignore Priority Code Point 4453 */ 4454 skb->vlan_tci = 0; 4455 } 4456 4457 type = skb->protocol; 4458 4459 /* deliver only exact match when indicated */ 4460 if (likely(!deliver_exact)) { 4461 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4462 &ptype_base[ntohs(type) & 4463 PTYPE_HASH_MASK]); 4464 } 4465 4466 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4467 &orig_dev->ptype_specific); 4468 4469 if (unlikely(skb->dev != orig_dev)) { 4470 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4471 &skb->dev->ptype_specific); 4472 } 4473 4474 if (pt_prev) { 4475 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 4476 goto drop; 4477 else 4478 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4479 } else { 4480 drop: 4481 if (!deliver_exact) 4482 atomic_long_inc(&skb->dev->rx_dropped); 4483 else 4484 atomic_long_inc(&skb->dev->rx_nohandler); 4485 kfree_skb(skb); 4486 /* Jamal, now you will not able to escape explaining 4487 * me how you were going to use this. :-) 4488 */ 4489 ret = NET_RX_DROP; 4490 } 4491 4492 out: 4493 return ret; 4494 } 4495 4496 /** 4497 * netif_receive_skb_core - special purpose version of netif_receive_skb 4498 * @skb: buffer to process 4499 * 4500 * More direct receive version of netif_receive_skb(). It should 4501 * only be used by callers that have a need to skip RPS and Generic XDP. 4502 * Caller must also take care of handling if (page_is_)pfmemalloc. 4503 * 4504 * This function may only be called from softirq context and interrupts 4505 * should be enabled. 4506 * 4507 * Return values (usually ignored): 4508 * NET_RX_SUCCESS: no congestion 4509 * NET_RX_DROP: packet was dropped 4510 */ 4511 int netif_receive_skb_core(struct sk_buff *skb) 4512 { 4513 int ret; 4514 4515 rcu_read_lock(); 4516 ret = __netif_receive_skb_core(skb, false); 4517 rcu_read_unlock(); 4518 4519 return ret; 4520 } 4521 EXPORT_SYMBOL(netif_receive_skb_core); 4522 4523 static int __netif_receive_skb(struct sk_buff *skb) 4524 { 4525 int ret; 4526 4527 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 4528 unsigned int noreclaim_flag; 4529 4530 /* 4531 * PFMEMALLOC skbs are special, they should 4532 * - be delivered to SOCK_MEMALLOC sockets only 4533 * - stay away from userspace 4534 * - have bounded memory usage 4535 * 4536 * Use PF_MEMALLOC as this saves us from propagating the allocation 4537 * context down to all allocation sites. 4538 */ 4539 noreclaim_flag = memalloc_noreclaim_save(); 4540 ret = __netif_receive_skb_core(skb, true); 4541 memalloc_noreclaim_restore(noreclaim_flag); 4542 } else 4543 ret = __netif_receive_skb_core(skb, false); 4544 4545 return ret; 4546 } 4547 4548 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 4549 { 4550 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 4551 struct bpf_prog *new = xdp->prog; 4552 int ret = 0; 4553 4554 switch (xdp->command) { 4555 case XDP_SETUP_PROG: 4556 rcu_assign_pointer(dev->xdp_prog, new); 4557 if (old) 4558 bpf_prog_put(old); 4559 4560 if (old && !new) { 4561 static_key_slow_dec(&generic_xdp_needed); 4562 } else if (new && !old) { 4563 static_key_slow_inc(&generic_xdp_needed); 4564 dev_disable_lro(dev); 4565 } 4566 break; 4567 4568 case XDP_QUERY_PROG: 4569 xdp->prog_attached = !!old; 4570 xdp->prog_id = old ? old->aux->id : 0; 4571 break; 4572 4573 default: 4574 ret = -EINVAL; 4575 break; 4576 } 4577 4578 return ret; 4579 } 4580 4581 static int netif_receive_skb_internal(struct sk_buff *skb) 4582 { 4583 int ret; 4584 4585 net_timestamp_check(netdev_tstamp_prequeue, skb); 4586 4587 if (skb_defer_rx_timestamp(skb)) 4588 return NET_RX_SUCCESS; 4589 4590 if (static_key_false(&generic_xdp_needed)) { 4591 int ret; 4592 4593 preempt_disable(); 4594 rcu_read_lock(); 4595 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4596 rcu_read_unlock(); 4597 preempt_enable(); 4598 4599 if (ret != XDP_PASS) 4600 return NET_RX_DROP; 4601 } 4602 4603 rcu_read_lock(); 4604 #ifdef CONFIG_RPS 4605 if (static_key_false(&rps_needed)) { 4606 struct rps_dev_flow voidflow, *rflow = &voidflow; 4607 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 4608 4609 if (cpu >= 0) { 4610 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4611 rcu_read_unlock(); 4612 return ret; 4613 } 4614 } 4615 #endif 4616 ret = __netif_receive_skb(skb); 4617 rcu_read_unlock(); 4618 return ret; 4619 } 4620 4621 /** 4622 * netif_receive_skb - process receive buffer from network 4623 * @skb: buffer to process 4624 * 4625 * netif_receive_skb() is the main receive data processing function. 4626 * It always succeeds. The buffer may be dropped during processing 4627 * for congestion control or by the protocol layers. 4628 * 4629 * This function may only be called from softirq context and interrupts 4630 * should be enabled. 4631 * 4632 * Return values (usually ignored): 4633 * NET_RX_SUCCESS: no congestion 4634 * NET_RX_DROP: packet was dropped 4635 */ 4636 int netif_receive_skb(struct sk_buff *skb) 4637 { 4638 trace_netif_receive_skb_entry(skb); 4639 4640 return netif_receive_skb_internal(skb); 4641 } 4642 EXPORT_SYMBOL(netif_receive_skb); 4643 4644 DEFINE_PER_CPU(struct work_struct, flush_works); 4645 4646 /* Network device is going away, flush any packets still pending */ 4647 static void flush_backlog(struct work_struct *work) 4648 { 4649 struct sk_buff *skb, *tmp; 4650 struct softnet_data *sd; 4651 4652 local_bh_disable(); 4653 sd = this_cpu_ptr(&softnet_data); 4654 4655 local_irq_disable(); 4656 rps_lock(sd); 4657 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 4658 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4659 __skb_unlink(skb, &sd->input_pkt_queue); 4660 kfree_skb(skb); 4661 input_queue_head_incr(sd); 4662 } 4663 } 4664 rps_unlock(sd); 4665 local_irq_enable(); 4666 4667 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 4668 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4669 __skb_unlink(skb, &sd->process_queue); 4670 kfree_skb(skb); 4671 input_queue_head_incr(sd); 4672 } 4673 } 4674 local_bh_enable(); 4675 } 4676 4677 static void flush_all_backlogs(void) 4678 { 4679 unsigned int cpu; 4680 4681 get_online_cpus(); 4682 4683 for_each_online_cpu(cpu) 4684 queue_work_on(cpu, system_highpri_wq, 4685 per_cpu_ptr(&flush_works, cpu)); 4686 4687 for_each_online_cpu(cpu) 4688 flush_work(per_cpu_ptr(&flush_works, cpu)); 4689 4690 put_online_cpus(); 4691 } 4692 4693 static int napi_gro_complete(struct sk_buff *skb) 4694 { 4695 struct packet_offload *ptype; 4696 __be16 type = skb->protocol; 4697 struct list_head *head = &offload_base; 4698 int err = -ENOENT; 4699 4700 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 4701 4702 if (NAPI_GRO_CB(skb)->count == 1) { 4703 skb_shinfo(skb)->gso_size = 0; 4704 goto out; 4705 } 4706 4707 rcu_read_lock(); 4708 list_for_each_entry_rcu(ptype, head, list) { 4709 if (ptype->type != type || !ptype->callbacks.gro_complete) 4710 continue; 4711 4712 err = ptype->callbacks.gro_complete(skb, 0); 4713 break; 4714 } 4715 rcu_read_unlock(); 4716 4717 if (err) { 4718 WARN_ON(&ptype->list == head); 4719 kfree_skb(skb); 4720 return NET_RX_SUCCESS; 4721 } 4722 4723 out: 4724 return netif_receive_skb_internal(skb); 4725 } 4726 4727 /* napi->gro_list contains packets ordered by age. 4728 * youngest packets at the head of it. 4729 * Complete skbs in reverse order to reduce latencies. 4730 */ 4731 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 4732 { 4733 struct sk_buff *skb, *prev = NULL; 4734 4735 /* scan list and build reverse chain */ 4736 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 4737 skb->prev = prev; 4738 prev = skb; 4739 } 4740 4741 for (skb = prev; skb; skb = prev) { 4742 skb->next = NULL; 4743 4744 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 4745 return; 4746 4747 prev = skb->prev; 4748 napi_gro_complete(skb); 4749 napi->gro_count--; 4750 } 4751 4752 napi->gro_list = NULL; 4753 } 4754 EXPORT_SYMBOL(napi_gro_flush); 4755 4756 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 4757 { 4758 struct sk_buff *p; 4759 unsigned int maclen = skb->dev->hard_header_len; 4760 u32 hash = skb_get_hash_raw(skb); 4761 4762 for (p = napi->gro_list; p; p = p->next) { 4763 unsigned long diffs; 4764 4765 NAPI_GRO_CB(p)->flush = 0; 4766 4767 if (hash != skb_get_hash_raw(p)) { 4768 NAPI_GRO_CB(p)->same_flow = 0; 4769 continue; 4770 } 4771 4772 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 4773 diffs |= p->vlan_tci ^ skb->vlan_tci; 4774 diffs |= skb_metadata_dst_cmp(p, skb); 4775 diffs |= skb_metadata_differs(p, skb); 4776 if (maclen == ETH_HLEN) 4777 diffs |= compare_ether_header(skb_mac_header(p), 4778 skb_mac_header(skb)); 4779 else if (!diffs) 4780 diffs = memcmp(skb_mac_header(p), 4781 skb_mac_header(skb), 4782 maclen); 4783 NAPI_GRO_CB(p)->same_flow = !diffs; 4784 } 4785 } 4786 4787 static void skb_gro_reset_offset(struct sk_buff *skb) 4788 { 4789 const struct skb_shared_info *pinfo = skb_shinfo(skb); 4790 const skb_frag_t *frag0 = &pinfo->frags[0]; 4791 4792 NAPI_GRO_CB(skb)->data_offset = 0; 4793 NAPI_GRO_CB(skb)->frag0 = NULL; 4794 NAPI_GRO_CB(skb)->frag0_len = 0; 4795 4796 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 4797 pinfo->nr_frags && 4798 !PageHighMem(skb_frag_page(frag0))) { 4799 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 4800 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 4801 skb_frag_size(frag0), 4802 skb->end - skb->tail); 4803 } 4804 } 4805 4806 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 4807 { 4808 struct skb_shared_info *pinfo = skb_shinfo(skb); 4809 4810 BUG_ON(skb->end - skb->tail < grow); 4811 4812 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 4813 4814 skb->data_len -= grow; 4815 skb->tail += grow; 4816 4817 pinfo->frags[0].page_offset += grow; 4818 skb_frag_size_sub(&pinfo->frags[0], grow); 4819 4820 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 4821 skb_frag_unref(skb, 0); 4822 memmove(pinfo->frags, pinfo->frags + 1, 4823 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 4824 } 4825 } 4826 4827 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4828 { 4829 struct sk_buff **pp = NULL; 4830 struct packet_offload *ptype; 4831 __be16 type = skb->protocol; 4832 struct list_head *head = &offload_base; 4833 int same_flow; 4834 enum gro_result ret; 4835 int grow; 4836 4837 if (netif_elide_gro(skb->dev)) 4838 goto normal; 4839 4840 gro_list_prepare(napi, skb); 4841 4842 rcu_read_lock(); 4843 list_for_each_entry_rcu(ptype, head, list) { 4844 if (ptype->type != type || !ptype->callbacks.gro_receive) 4845 continue; 4846 4847 skb_set_network_header(skb, skb_gro_offset(skb)); 4848 skb_reset_mac_len(skb); 4849 NAPI_GRO_CB(skb)->same_flow = 0; 4850 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 4851 NAPI_GRO_CB(skb)->free = 0; 4852 NAPI_GRO_CB(skb)->encap_mark = 0; 4853 NAPI_GRO_CB(skb)->recursion_counter = 0; 4854 NAPI_GRO_CB(skb)->is_fou = 0; 4855 NAPI_GRO_CB(skb)->is_atomic = 1; 4856 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 4857 4858 /* Setup for GRO checksum validation */ 4859 switch (skb->ip_summed) { 4860 case CHECKSUM_COMPLETE: 4861 NAPI_GRO_CB(skb)->csum = skb->csum; 4862 NAPI_GRO_CB(skb)->csum_valid = 1; 4863 NAPI_GRO_CB(skb)->csum_cnt = 0; 4864 break; 4865 case CHECKSUM_UNNECESSARY: 4866 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 4867 NAPI_GRO_CB(skb)->csum_valid = 0; 4868 break; 4869 default: 4870 NAPI_GRO_CB(skb)->csum_cnt = 0; 4871 NAPI_GRO_CB(skb)->csum_valid = 0; 4872 } 4873 4874 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4875 break; 4876 } 4877 rcu_read_unlock(); 4878 4879 if (&ptype->list == head) 4880 goto normal; 4881 4882 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) { 4883 ret = GRO_CONSUMED; 4884 goto ok; 4885 } 4886 4887 same_flow = NAPI_GRO_CB(skb)->same_flow; 4888 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 4889 4890 if (pp) { 4891 struct sk_buff *nskb = *pp; 4892 4893 *pp = nskb->next; 4894 nskb->next = NULL; 4895 napi_gro_complete(nskb); 4896 napi->gro_count--; 4897 } 4898 4899 if (same_flow) 4900 goto ok; 4901 4902 if (NAPI_GRO_CB(skb)->flush) 4903 goto normal; 4904 4905 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4906 struct sk_buff *nskb = napi->gro_list; 4907 4908 /* locate the end of the list to select the 'oldest' flow */ 4909 while (nskb->next) { 4910 pp = &nskb->next; 4911 nskb = *pp; 4912 } 4913 *pp = NULL; 4914 nskb->next = NULL; 4915 napi_gro_complete(nskb); 4916 } else { 4917 napi->gro_count++; 4918 } 4919 NAPI_GRO_CB(skb)->count = 1; 4920 NAPI_GRO_CB(skb)->age = jiffies; 4921 NAPI_GRO_CB(skb)->last = skb; 4922 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 4923 skb->next = napi->gro_list; 4924 napi->gro_list = skb; 4925 ret = GRO_HELD; 4926 4927 pull: 4928 grow = skb_gro_offset(skb) - skb_headlen(skb); 4929 if (grow > 0) 4930 gro_pull_from_frag0(skb, grow); 4931 ok: 4932 return ret; 4933 4934 normal: 4935 ret = GRO_NORMAL; 4936 goto pull; 4937 } 4938 4939 struct packet_offload *gro_find_receive_by_type(__be16 type) 4940 { 4941 struct list_head *offload_head = &offload_base; 4942 struct packet_offload *ptype; 4943 4944 list_for_each_entry_rcu(ptype, offload_head, list) { 4945 if (ptype->type != type || !ptype->callbacks.gro_receive) 4946 continue; 4947 return ptype; 4948 } 4949 return NULL; 4950 } 4951 EXPORT_SYMBOL(gro_find_receive_by_type); 4952 4953 struct packet_offload *gro_find_complete_by_type(__be16 type) 4954 { 4955 struct list_head *offload_head = &offload_base; 4956 struct packet_offload *ptype; 4957 4958 list_for_each_entry_rcu(ptype, offload_head, list) { 4959 if (ptype->type != type || !ptype->callbacks.gro_complete) 4960 continue; 4961 return ptype; 4962 } 4963 return NULL; 4964 } 4965 EXPORT_SYMBOL(gro_find_complete_by_type); 4966 4967 static void napi_skb_free_stolen_head(struct sk_buff *skb) 4968 { 4969 skb_dst_drop(skb); 4970 secpath_reset(skb); 4971 kmem_cache_free(skbuff_head_cache, skb); 4972 } 4973 4974 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4975 { 4976 switch (ret) { 4977 case GRO_NORMAL: 4978 if (netif_receive_skb_internal(skb)) 4979 ret = GRO_DROP; 4980 break; 4981 4982 case GRO_DROP: 4983 kfree_skb(skb); 4984 break; 4985 4986 case GRO_MERGED_FREE: 4987 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 4988 napi_skb_free_stolen_head(skb); 4989 else 4990 __kfree_skb(skb); 4991 break; 4992 4993 case GRO_HELD: 4994 case GRO_MERGED: 4995 case GRO_CONSUMED: 4996 break; 4997 } 4998 4999 return ret; 5000 } 5001 5002 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5003 { 5004 skb_mark_napi_id(skb, napi); 5005 trace_napi_gro_receive_entry(skb); 5006 5007 skb_gro_reset_offset(skb); 5008 5009 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 5010 } 5011 EXPORT_SYMBOL(napi_gro_receive); 5012 5013 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 5014 { 5015 if (unlikely(skb->pfmemalloc)) { 5016 consume_skb(skb); 5017 return; 5018 } 5019 __skb_pull(skb, skb_headlen(skb)); 5020 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 5021 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 5022 skb->vlan_tci = 0; 5023 skb->dev = napi->dev; 5024 skb->skb_iif = 0; 5025 skb->encapsulation = 0; 5026 skb_shinfo(skb)->gso_type = 0; 5027 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5028 secpath_reset(skb); 5029 5030 napi->skb = skb; 5031 } 5032 5033 struct sk_buff *napi_get_frags(struct napi_struct *napi) 5034 { 5035 struct sk_buff *skb = napi->skb; 5036 5037 if (!skb) { 5038 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 5039 if (skb) { 5040 napi->skb = skb; 5041 skb_mark_napi_id(skb, napi); 5042 } 5043 } 5044 return skb; 5045 } 5046 EXPORT_SYMBOL(napi_get_frags); 5047 5048 static gro_result_t napi_frags_finish(struct napi_struct *napi, 5049 struct sk_buff *skb, 5050 gro_result_t ret) 5051 { 5052 switch (ret) { 5053 case GRO_NORMAL: 5054 case GRO_HELD: 5055 __skb_push(skb, ETH_HLEN); 5056 skb->protocol = eth_type_trans(skb, skb->dev); 5057 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 5058 ret = GRO_DROP; 5059 break; 5060 5061 case GRO_DROP: 5062 napi_reuse_skb(napi, skb); 5063 break; 5064 5065 case GRO_MERGED_FREE: 5066 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5067 napi_skb_free_stolen_head(skb); 5068 else 5069 napi_reuse_skb(napi, skb); 5070 break; 5071 5072 case GRO_MERGED: 5073 case GRO_CONSUMED: 5074 break; 5075 } 5076 5077 return ret; 5078 } 5079 5080 /* Upper GRO stack assumes network header starts at gro_offset=0 5081 * Drivers could call both napi_gro_frags() and napi_gro_receive() 5082 * We copy ethernet header into skb->data to have a common layout. 5083 */ 5084 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 5085 { 5086 struct sk_buff *skb = napi->skb; 5087 const struct ethhdr *eth; 5088 unsigned int hlen = sizeof(*eth); 5089 5090 napi->skb = NULL; 5091 5092 skb_reset_mac_header(skb); 5093 skb_gro_reset_offset(skb); 5094 5095 eth = skb_gro_header_fast(skb, 0); 5096 if (unlikely(skb_gro_header_hard(skb, hlen))) { 5097 eth = skb_gro_header_slow(skb, hlen, 0); 5098 if (unlikely(!eth)) { 5099 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 5100 __func__, napi->dev->name); 5101 napi_reuse_skb(napi, skb); 5102 return NULL; 5103 } 5104 } else { 5105 gro_pull_from_frag0(skb, hlen); 5106 NAPI_GRO_CB(skb)->frag0 += hlen; 5107 NAPI_GRO_CB(skb)->frag0_len -= hlen; 5108 } 5109 __skb_pull(skb, hlen); 5110 5111 /* 5112 * This works because the only protocols we care about don't require 5113 * special handling. 5114 * We'll fix it up properly in napi_frags_finish() 5115 */ 5116 skb->protocol = eth->h_proto; 5117 5118 return skb; 5119 } 5120 5121 gro_result_t napi_gro_frags(struct napi_struct *napi) 5122 { 5123 struct sk_buff *skb = napi_frags_skb(napi); 5124 5125 if (!skb) 5126 return GRO_DROP; 5127 5128 trace_napi_gro_frags_entry(skb); 5129 5130 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 5131 } 5132 EXPORT_SYMBOL(napi_gro_frags); 5133 5134 /* Compute the checksum from gro_offset and return the folded value 5135 * after adding in any pseudo checksum. 5136 */ 5137 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 5138 { 5139 __wsum wsum; 5140 __sum16 sum; 5141 5142 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 5143 5144 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 5145 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 5146 if (likely(!sum)) { 5147 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 5148 !skb->csum_complete_sw) 5149 netdev_rx_csum_fault(skb->dev); 5150 } 5151 5152 NAPI_GRO_CB(skb)->csum = wsum; 5153 NAPI_GRO_CB(skb)->csum_valid = 1; 5154 5155 return sum; 5156 } 5157 EXPORT_SYMBOL(__skb_gro_checksum_complete); 5158 5159 static void net_rps_send_ipi(struct softnet_data *remsd) 5160 { 5161 #ifdef CONFIG_RPS 5162 while (remsd) { 5163 struct softnet_data *next = remsd->rps_ipi_next; 5164 5165 if (cpu_online(remsd->cpu)) 5166 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5167 remsd = next; 5168 } 5169 #endif 5170 } 5171 5172 /* 5173 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5174 * Note: called with local irq disabled, but exits with local irq enabled. 5175 */ 5176 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5177 { 5178 #ifdef CONFIG_RPS 5179 struct softnet_data *remsd = sd->rps_ipi_list; 5180 5181 if (remsd) { 5182 sd->rps_ipi_list = NULL; 5183 5184 local_irq_enable(); 5185 5186 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5187 net_rps_send_ipi(remsd); 5188 } else 5189 #endif 5190 local_irq_enable(); 5191 } 5192 5193 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5194 { 5195 #ifdef CONFIG_RPS 5196 return sd->rps_ipi_list != NULL; 5197 #else 5198 return false; 5199 #endif 5200 } 5201 5202 static int process_backlog(struct napi_struct *napi, int quota) 5203 { 5204 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5205 bool again = true; 5206 int work = 0; 5207 5208 /* Check if we have pending ipi, its better to send them now, 5209 * not waiting net_rx_action() end. 5210 */ 5211 if (sd_has_rps_ipi_waiting(sd)) { 5212 local_irq_disable(); 5213 net_rps_action_and_irq_enable(sd); 5214 } 5215 5216 napi->weight = dev_rx_weight; 5217 while (again) { 5218 struct sk_buff *skb; 5219 5220 while ((skb = __skb_dequeue(&sd->process_queue))) { 5221 rcu_read_lock(); 5222 __netif_receive_skb(skb); 5223 rcu_read_unlock(); 5224 input_queue_head_incr(sd); 5225 if (++work >= quota) 5226 return work; 5227 5228 } 5229 5230 local_irq_disable(); 5231 rps_lock(sd); 5232 if (skb_queue_empty(&sd->input_pkt_queue)) { 5233 /* 5234 * Inline a custom version of __napi_complete(). 5235 * only current cpu owns and manipulates this napi, 5236 * and NAPI_STATE_SCHED is the only possible flag set 5237 * on backlog. 5238 * We can use a plain write instead of clear_bit(), 5239 * and we dont need an smp_mb() memory barrier. 5240 */ 5241 napi->state = 0; 5242 again = false; 5243 } else { 5244 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5245 &sd->process_queue); 5246 } 5247 rps_unlock(sd); 5248 local_irq_enable(); 5249 } 5250 5251 return work; 5252 } 5253 5254 /** 5255 * __napi_schedule - schedule for receive 5256 * @n: entry to schedule 5257 * 5258 * The entry's receive function will be scheduled to run. 5259 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5260 */ 5261 void __napi_schedule(struct napi_struct *n) 5262 { 5263 unsigned long flags; 5264 5265 local_irq_save(flags); 5266 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5267 local_irq_restore(flags); 5268 } 5269 EXPORT_SYMBOL(__napi_schedule); 5270 5271 /** 5272 * napi_schedule_prep - check if napi can be scheduled 5273 * @n: napi context 5274 * 5275 * Test if NAPI routine is already running, and if not mark 5276 * it as running. This is used as a condition variable 5277 * insure only one NAPI poll instance runs. We also make 5278 * sure there is no pending NAPI disable. 5279 */ 5280 bool napi_schedule_prep(struct napi_struct *n) 5281 { 5282 unsigned long val, new; 5283 5284 do { 5285 val = READ_ONCE(n->state); 5286 if (unlikely(val & NAPIF_STATE_DISABLE)) 5287 return false; 5288 new = val | NAPIF_STATE_SCHED; 5289 5290 /* Sets STATE_MISSED bit if STATE_SCHED was already set 5291 * This was suggested by Alexander Duyck, as compiler 5292 * emits better code than : 5293 * if (val & NAPIF_STATE_SCHED) 5294 * new |= NAPIF_STATE_MISSED; 5295 */ 5296 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 5297 NAPIF_STATE_MISSED; 5298 } while (cmpxchg(&n->state, val, new) != val); 5299 5300 return !(val & NAPIF_STATE_SCHED); 5301 } 5302 EXPORT_SYMBOL(napi_schedule_prep); 5303 5304 /** 5305 * __napi_schedule_irqoff - schedule for receive 5306 * @n: entry to schedule 5307 * 5308 * Variant of __napi_schedule() assuming hard irqs are masked 5309 */ 5310 void __napi_schedule_irqoff(struct napi_struct *n) 5311 { 5312 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5313 } 5314 EXPORT_SYMBOL(__napi_schedule_irqoff); 5315 5316 bool napi_complete_done(struct napi_struct *n, int work_done) 5317 { 5318 unsigned long flags, val, new; 5319 5320 /* 5321 * 1) Don't let napi dequeue from the cpu poll list 5322 * just in case its running on a different cpu. 5323 * 2) If we are busy polling, do nothing here, we have 5324 * the guarantee we will be called later. 5325 */ 5326 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 5327 NAPIF_STATE_IN_BUSY_POLL))) 5328 return false; 5329 5330 if (n->gro_list) { 5331 unsigned long timeout = 0; 5332 5333 if (work_done) 5334 timeout = n->dev->gro_flush_timeout; 5335 5336 if (timeout) 5337 hrtimer_start(&n->timer, ns_to_ktime(timeout), 5338 HRTIMER_MODE_REL_PINNED); 5339 else 5340 napi_gro_flush(n, false); 5341 } 5342 if (unlikely(!list_empty(&n->poll_list))) { 5343 /* If n->poll_list is not empty, we need to mask irqs */ 5344 local_irq_save(flags); 5345 list_del_init(&n->poll_list); 5346 local_irq_restore(flags); 5347 } 5348 5349 do { 5350 val = READ_ONCE(n->state); 5351 5352 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 5353 5354 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 5355 5356 /* If STATE_MISSED was set, leave STATE_SCHED set, 5357 * because we will call napi->poll() one more time. 5358 * This C code was suggested by Alexander Duyck to help gcc. 5359 */ 5360 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 5361 NAPIF_STATE_SCHED; 5362 } while (cmpxchg(&n->state, val, new) != val); 5363 5364 if (unlikely(val & NAPIF_STATE_MISSED)) { 5365 __napi_schedule(n); 5366 return false; 5367 } 5368 5369 return true; 5370 } 5371 EXPORT_SYMBOL(napi_complete_done); 5372 5373 /* must be called under rcu_read_lock(), as we dont take a reference */ 5374 static struct napi_struct *napi_by_id(unsigned int napi_id) 5375 { 5376 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 5377 struct napi_struct *napi; 5378 5379 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 5380 if (napi->napi_id == napi_id) 5381 return napi; 5382 5383 return NULL; 5384 } 5385 5386 #if defined(CONFIG_NET_RX_BUSY_POLL) 5387 5388 #define BUSY_POLL_BUDGET 8 5389 5390 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 5391 { 5392 int rc; 5393 5394 /* Busy polling means there is a high chance device driver hard irq 5395 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 5396 * set in napi_schedule_prep(). 5397 * Since we are about to call napi->poll() once more, we can safely 5398 * clear NAPI_STATE_MISSED. 5399 * 5400 * Note: x86 could use a single "lock and ..." instruction 5401 * to perform these two clear_bit() 5402 */ 5403 clear_bit(NAPI_STATE_MISSED, &napi->state); 5404 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 5405 5406 local_bh_disable(); 5407 5408 /* All we really want here is to re-enable device interrupts. 5409 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 5410 */ 5411 rc = napi->poll(napi, BUSY_POLL_BUDGET); 5412 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 5413 netpoll_poll_unlock(have_poll_lock); 5414 if (rc == BUSY_POLL_BUDGET) 5415 __napi_schedule(napi); 5416 local_bh_enable(); 5417 } 5418 5419 void napi_busy_loop(unsigned int napi_id, 5420 bool (*loop_end)(void *, unsigned long), 5421 void *loop_end_arg) 5422 { 5423 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 5424 int (*napi_poll)(struct napi_struct *napi, int budget); 5425 void *have_poll_lock = NULL; 5426 struct napi_struct *napi; 5427 5428 restart: 5429 napi_poll = NULL; 5430 5431 rcu_read_lock(); 5432 5433 napi = napi_by_id(napi_id); 5434 if (!napi) 5435 goto out; 5436 5437 preempt_disable(); 5438 for (;;) { 5439 int work = 0; 5440 5441 local_bh_disable(); 5442 if (!napi_poll) { 5443 unsigned long val = READ_ONCE(napi->state); 5444 5445 /* If multiple threads are competing for this napi, 5446 * we avoid dirtying napi->state as much as we can. 5447 */ 5448 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 5449 NAPIF_STATE_IN_BUSY_POLL)) 5450 goto count; 5451 if (cmpxchg(&napi->state, val, 5452 val | NAPIF_STATE_IN_BUSY_POLL | 5453 NAPIF_STATE_SCHED) != val) 5454 goto count; 5455 have_poll_lock = netpoll_poll_lock(napi); 5456 napi_poll = napi->poll; 5457 } 5458 work = napi_poll(napi, BUSY_POLL_BUDGET); 5459 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 5460 count: 5461 if (work > 0) 5462 __NET_ADD_STATS(dev_net(napi->dev), 5463 LINUX_MIB_BUSYPOLLRXPACKETS, work); 5464 local_bh_enable(); 5465 5466 if (!loop_end || loop_end(loop_end_arg, start_time)) 5467 break; 5468 5469 if (unlikely(need_resched())) { 5470 if (napi_poll) 5471 busy_poll_stop(napi, have_poll_lock); 5472 preempt_enable(); 5473 rcu_read_unlock(); 5474 cond_resched(); 5475 if (loop_end(loop_end_arg, start_time)) 5476 return; 5477 goto restart; 5478 } 5479 cpu_relax(); 5480 } 5481 if (napi_poll) 5482 busy_poll_stop(napi, have_poll_lock); 5483 preempt_enable(); 5484 out: 5485 rcu_read_unlock(); 5486 } 5487 EXPORT_SYMBOL(napi_busy_loop); 5488 5489 #endif /* CONFIG_NET_RX_BUSY_POLL */ 5490 5491 static void napi_hash_add(struct napi_struct *napi) 5492 { 5493 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 5494 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 5495 return; 5496 5497 spin_lock(&napi_hash_lock); 5498 5499 /* 0..NR_CPUS range is reserved for sender_cpu use */ 5500 do { 5501 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 5502 napi_gen_id = MIN_NAPI_ID; 5503 } while (napi_by_id(napi_gen_id)); 5504 napi->napi_id = napi_gen_id; 5505 5506 hlist_add_head_rcu(&napi->napi_hash_node, 5507 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 5508 5509 spin_unlock(&napi_hash_lock); 5510 } 5511 5512 /* Warning : caller is responsible to make sure rcu grace period 5513 * is respected before freeing memory containing @napi 5514 */ 5515 bool napi_hash_del(struct napi_struct *napi) 5516 { 5517 bool rcu_sync_needed = false; 5518 5519 spin_lock(&napi_hash_lock); 5520 5521 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 5522 rcu_sync_needed = true; 5523 hlist_del_rcu(&napi->napi_hash_node); 5524 } 5525 spin_unlock(&napi_hash_lock); 5526 return rcu_sync_needed; 5527 } 5528 EXPORT_SYMBOL_GPL(napi_hash_del); 5529 5530 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 5531 { 5532 struct napi_struct *napi; 5533 5534 napi = container_of(timer, struct napi_struct, timer); 5535 5536 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 5537 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 5538 */ 5539 if (napi->gro_list && !napi_disable_pending(napi) && 5540 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 5541 __napi_schedule_irqoff(napi); 5542 5543 return HRTIMER_NORESTART; 5544 } 5545 5546 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 5547 int (*poll)(struct napi_struct *, int), int weight) 5548 { 5549 INIT_LIST_HEAD(&napi->poll_list); 5550 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 5551 napi->timer.function = napi_watchdog; 5552 napi->gro_count = 0; 5553 napi->gro_list = NULL; 5554 napi->skb = NULL; 5555 napi->poll = poll; 5556 if (weight > NAPI_POLL_WEIGHT) 5557 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 5558 weight, dev->name); 5559 napi->weight = weight; 5560 list_add(&napi->dev_list, &dev->napi_list); 5561 napi->dev = dev; 5562 #ifdef CONFIG_NETPOLL 5563 napi->poll_owner = -1; 5564 #endif 5565 set_bit(NAPI_STATE_SCHED, &napi->state); 5566 napi_hash_add(napi); 5567 } 5568 EXPORT_SYMBOL(netif_napi_add); 5569 5570 void napi_disable(struct napi_struct *n) 5571 { 5572 might_sleep(); 5573 set_bit(NAPI_STATE_DISABLE, &n->state); 5574 5575 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 5576 msleep(1); 5577 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 5578 msleep(1); 5579 5580 hrtimer_cancel(&n->timer); 5581 5582 clear_bit(NAPI_STATE_DISABLE, &n->state); 5583 } 5584 EXPORT_SYMBOL(napi_disable); 5585 5586 /* Must be called in process context */ 5587 void netif_napi_del(struct napi_struct *napi) 5588 { 5589 might_sleep(); 5590 if (napi_hash_del(napi)) 5591 synchronize_net(); 5592 list_del_init(&napi->dev_list); 5593 napi_free_frags(napi); 5594 5595 kfree_skb_list(napi->gro_list); 5596 napi->gro_list = NULL; 5597 napi->gro_count = 0; 5598 } 5599 EXPORT_SYMBOL(netif_napi_del); 5600 5601 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 5602 { 5603 void *have; 5604 int work, weight; 5605 5606 list_del_init(&n->poll_list); 5607 5608 have = netpoll_poll_lock(n); 5609 5610 weight = n->weight; 5611 5612 /* This NAPI_STATE_SCHED test is for avoiding a race 5613 * with netpoll's poll_napi(). Only the entity which 5614 * obtains the lock and sees NAPI_STATE_SCHED set will 5615 * actually make the ->poll() call. Therefore we avoid 5616 * accidentally calling ->poll() when NAPI is not scheduled. 5617 */ 5618 work = 0; 5619 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 5620 work = n->poll(n, weight); 5621 trace_napi_poll(n, work, weight); 5622 } 5623 5624 WARN_ON_ONCE(work > weight); 5625 5626 if (likely(work < weight)) 5627 goto out_unlock; 5628 5629 /* Drivers must not modify the NAPI state if they 5630 * consume the entire weight. In such cases this code 5631 * still "owns" the NAPI instance and therefore can 5632 * move the instance around on the list at-will. 5633 */ 5634 if (unlikely(napi_disable_pending(n))) { 5635 napi_complete(n); 5636 goto out_unlock; 5637 } 5638 5639 if (n->gro_list) { 5640 /* flush too old packets 5641 * If HZ < 1000, flush all packets. 5642 */ 5643 napi_gro_flush(n, HZ >= 1000); 5644 } 5645 5646 /* Some drivers may have called napi_schedule 5647 * prior to exhausting their budget. 5648 */ 5649 if (unlikely(!list_empty(&n->poll_list))) { 5650 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 5651 n->dev ? n->dev->name : "backlog"); 5652 goto out_unlock; 5653 } 5654 5655 list_add_tail(&n->poll_list, repoll); 5656 5657 out_unlock: 5658 netpoll_poll_unlock(have); 5659 5660 return work; 5661 } 5662 5663 static __latent_entropy void net_rx_action(struct softirq_action *h) 5664 { 5665 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5666 unsigned long time_limit = jiffies + 5667 usecs_to_jiffies(netdev_budget_usecs); 5668 int budget = netdev_budget; 5669 LIST_HEAD(list); 5670 LIST_HEAD(repoll); 5671 5672 local_irq_disable(); 5673 list_splice_init(&sd->poll_list, &list); 5674 local_irq_enable(); 5675 5676 for (;;) { 5677 struct napi_struct *n; 5678 5679 if (list_empty(&list)) { 5680 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 5681 goto out; 5682 break; 5683 } 5684 5685 n = list_first_entry(&list, struct napi_struct, poll_list); 5686 budget -= napi_poll(n, &repoll); 5687 5688 /* If softirq window is exhausted then punt. 5689 * Allow this to run for 2 jiffies since which will allow 5690 * an average latency of 1.5/HZ. 5691 */ 5692 if (unlikely(budget <= 0 || 5693 time_after_eq(jiffies, time_limit))) { 5694 sd->time_squeeze++; 5695 break; 5696 } 5697 } 5698 5699 local_irq_disable(); 5700 5701 list_splice_tail_init(&sd->poll_list, &list); 5702 list_splice_tail(&repoll, &list); 5703 list_splice(&list, &sd->poll_list); 5704 if (!list_empty(&sd->poll_list)) 5705 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5706 5707 net_rps_action_and_irq_enable(sd); 5708 out: 5709 __kfree_skb_flush(); 5710 } 5711 5712 struct netdev_adjacent { 5713 struct net_device *dev; 5714 5715 /* upper master flag, there can only be one master device per list */ 5716 bool master; 5717 5718 /* counter for the number of times this device was added to us */ 5719 u16 ref_nr; 5720 5721 /* private field for the users */ 5722 void *private; 5723 5724 struct list_head list; 5725 struct rcu_head rcu; 5726 }; 5727 5728 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 5729 struct list_head *adj_list) 5730 { 5731 struct netdev_adjacent *adj; 5732 5733 list_for_each_entry(adj, adj_list, list) { 5734 if (adj->dev == adj_dev) 5735 return adj; 5736 } 5737 return NULL; 5738 } 5739 5740 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 5741 { 5742 struct net_device *dev = data; 5743 5744 return upper_dev == dev; 5745 } 5746 5747 /** 5748 * netdev_has_upper_dev - Check if device is linked to an upper device 5749 * @dev: device 5750 * @upper_dev: upper device to check 5751 * 5752 * Find out if a device is linked to specified upper device and return true 5753 * in case it is. Note that this checks only immediate upper device, 5754 * not through a complete stack of devices. The caller must hold the RTNL lock. 5755 */ 5756 bool netdev_has_upper_dev(struct net_device *dev, 5757 struct net_device *upper_dev) 5758 { 5759 ASSERT_RTNL(); 5760 5761 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5762 upper_dev); 5763 } 5764 EXPORT_SYMBOL(netdev_has_upper_dev); 5765 5766 /** 5767 * netdev_has_upper_dev_all - Check if device is linked to an upper device 5768 * @dev: device 5769 * @upper_dev: upper device to check 5770 * 5771 * Find out if a device is linked to specified upper device and return true 5772 * in case it is. Note that this checks the entire upper device chain. 5773 * The caller must hold rcu lock. 5774 */ 5775 5776 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 5777 struct net_device *upper_dev) 5778 { 5779 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5780 upper_dev); 5781 } 5782 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 5783 5784 /** 5785 * netdev_has_any_upper_dev - Check if device is linked to some device 5786 * @dev: device 5787 * 5788 * Find out if a device is linked to an upper device and return true in case 5789 * it is. The caller must hold the RTNL lock. 5790 */ 5791 bool netdev_has_any_upper_dev(struct net_device *dev) 5792 { 5793 ASSERT_RTNL(); 5794 5795 return !list_empty(&dev->adj_list.upper); 5796 } 5797 EXPORT_SYMBOL(netdev_has_any_upper_dev); 5798 5799 /** 5800 * netdev_master_upper_dev_get - Get master upper device 5801 * @dev: device 5802 * 5803 * Find a master upper device and return pointer to it or NULL in case 5804 * it's not there. The caller must hold the RTNL lock. 5805 */ 5806 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 5807 { 5808 struct netdev_adjacent *upper; 5809 5810 ASSERT_RTNL(); 5811 5812 if (list_empty(&dev->adj_list.upper)) 5813 return NULL; 5814 5815 upper = list_first_entry(&dev->adj_list.upper, 5816 struct netdev_adjacent, list); 5817 if (likely(upper->master)) 5818 return upper->dev; 5819 return NULL; 5820 } 5821 EXPORT_SYMBOL(netdev_master_upper_dev_get); 5822 5823 /** 5824 * netdev_has_any_lower_dev - Check if device is linked to some device 5825 * @dev: device 5826 * 5827 * Find out if a device is linked to a lower device and return true in case 5828 * it is. The caller must hold the RTNL lock. 5829 */ 5830 static bool netdev_has_any_lower_dev(struct net_device *dev) 5831 { 5832 ASSERT_RTNL(); 5833 5834 return !list_empty(&dev->adj_list.lower); 5835 } 5836 5837 void *netdev_adjacent_get_private(struct list_head *adj_list) 5838 { 5839 struct netdev_adjacent *adj; 5840 5841 adj = list_entry(adj_list, struct netdev_adjacent, list); 5842 5843 return adj->private; 5844 } 5845 EXPORT_SYMBOL(netdev_adjacent_get_private); 5846 5847 /** 5848 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 5849 * @dev: device 5850 * @iter: list_head ** of the current position 5851 * 5852 * Gets the next device from the dev's upper list, starting from iter 5853 * position. The caller must hold RCU read lock. 5854 */ 5855 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 5856 struct list_head **iter) 5857 { 5858 struct netdev_adjacent *upper; 5859 5860 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5861 5862 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5863 5864 if (&upper->list == &dev->adj_list.upper) 5865 return NULL; 5866 5867 *iter = &upper->list; 5868 5869 return upper->dev; 5870 } 5871 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 5872 5873 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 5874 struct list_head **iter) 5875 { 5876 struct netdev_adjacent *upper; 5877 5878 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5879 5880 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5881 5882 if (&upper->list == &dev->adj_list.upper) 5883 return NULL; 5884 5885 *iter = &upper->list; 5886 5887 return upper->dev; 5888 } 5889 5890 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 5891 int (*fn)(struct net_device *dev, 5892 void *data), 5893 void *data) 5894 { 5895 struct net_device *udev; 5896 struct list_head *iter; 5897 int ret; 5898 5899 for (iter = &dev->adj_list.upper, 5900 udev = netdev_next_upper_dev_rcu(dev, &iter); 5901 udev; 5902 udev = netdev_next_upper_dev_rcu(dev, &iter)) { 5903 /* first is the upper device itself */ 5904 ret = fn(udev, data); 5905 if (ret) 5906 return ret; 5907 5908 /* then look at all of its upper devices */ 5909 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); 5910 if (ret) 5911 return ret; 5912 } 5913 5914 return 0; 5915 } 5916 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 5917 5918 /** 5919 * netdev_lower_get_next_private - Get the next ->private from the 5920 * lower neighbour list 5921 * @dev: device 5922 * @iter: list_head ** of the current position 5923 * 5924 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5925 * list, starting from iter position. The caller must hold either hold the 5926 * RTNL lock or its own locking that guarantees that the neighbour lower 5927 * list will remain unchanged. 5928 */ 5929 void *netdev_lower_get_next_private(struct net_device *dev, 5930 struct list_head **iter) 5931 { 5932 struct netdev_adjacent *lower; 5933 5934 lower = list_entry(*iter, struct netdev_adjacent, list); 5935 5936 if (&lower->list == &dev->adj_list.lower) 5937 return NULL; 5938 5939 *iter = lower->list.next; 5940 5941 return lower->private; 5942 } 5943 EXPORT_SYMBOL(netdev_lower_get_next_private); 5944 5945 /** 5946 * netdev_lower_get_next_private_rcu - Get the next ->private from the 5947 * lower neighbour list, RCU 5948 * variant 5949 * @dev: device 5950 * @iter: list_head ** of the current position 5951 * 5952 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5953 * list, starting from iter position. The caller must hold RCU read lock. 5954 */ 5955 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 5956 struct list_head **iter) 5957 { 5958 struct netdev_adjacent *lower; 5959 5960 WARN_ON_ONCE(!rcu_read_lock_held()); 5961 5962 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5963 5964 if (&lower->list == &dev->adj_list.lower) 5965 return NULL; 5966 5967 *iter = &lower->list; 5968 5969 return lower->private; 5970 } 5971 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 5972 5973 /** 5974 * netdev_lower_get_next - Get the next device from the lower neighbour 5975 * list 5976 * @dev: device 5977 * @iter: list_head ** of the current position 5978 * 5979 * Gets the next netdev_adjacent from the dev's lower neighbour 5980 * list, starting from iter position. The caller must hold RTNL lock or 5981 * its own locking that guarantees that the neighbour lower 5982 * list will remain unchanged. 5983 */ 5984 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 5985 { 5986 struct netdev_adjacent *lower; 5987 5988 lower = list_entry(*iter, struct netdev_adjacent, list); 5989 5990 if (&lower->list == &dev->adj_list.lower) 5991 return NULL; 5992 5993 *iter = lower->list.next; 5994 5995 return lower->dev; 5996 } 5997 EXPORT_SYMBOL(netdev_lower_get_next); 5998 5999 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 6000 struct list_head **iter) 6001 { 6002 struct netdev_adjacent *lower; 6003 6004 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 6005 6006 if (&lower->list == &dev->adj_list.lower) 6007 return NULL; 6008 6009 *iter = &lower->list; 6010 6011 return lower->dev; 6012 } 6013 6014 int netdev_walk_all_lower_dev(struct net_device *dev, 6015 int (*fn)(struct net_device *dev, 6016 void *data), 6017 void *data) 6018 { 6019 struct net_device *ldev; 6020 struct list_head *iter; 6021 int ret; 6022 6023 for (iter = &dev->adj_list.lower, 6024 ldev = netdev_next_lower_dev(dev, &iter); 6025 ldev; 6026 ldev = netdev_next_lower_dev(dev, &iter)) { 6027 /* first is the lower device itself */ 6028 ret = fn(ldev, data); 6029 if (ret) 6030 return ret; 6031 6032 /* then look at all of its lower devices */ 6033 ret = netdev_walk_all_lower_dev(ldev, fn, data); 6034 if (ret) 6035 return ret; 6036 } 6037 6038 return 0; 6039 } 6040 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 6041 6042 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 6043 struct list_head **iter) 6044 { 6045 struct netdev_adjacent *lower; 6046 6047 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6048 if (&lower->list == &dev->adj_list.lower) 6049 return NULL; 6050 6051 *iter = &lower->list; 6052 6053 return lower->dev; 6054 } 6055 6056 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 6057 int (*fn)(struct net_device *dev, 6058 void *data), 6059 void *data) 6060 { 6061 struct net_device *ldev; 6062 struct list_head *iter; 6063 int ret; 6064 6065 for (iter = &dev->adj_list.lower, 6066 ldev = netdev_next_lower_dev_rcu(dev, &iter); 6067 ldev; 6068 ldev = netdev_next_lower_dev_rcu(dev, &iter)) { 6069 /* first is the lower device itself */ 6070 ret = fn(ldev, data); 6071 if (ret) 6072 return ret; 6073 6074 /* then look at all of its lower devices */ 6075 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); 6076 if (ret) 6077 return ret; 6078 } 6079 6080 return 0; 6081 } 6082 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 6083 6084 /** 6085 * netdev_lower_get_first_private_rcu - Get the first ->private from the 6086 * lower neighbour list, RCU 6087 * variant 6088 * @dev: device 6089 * 6090 * Gets the first netdev_adjacent->private from the dev's lower neighbour 6091 * list. The caller must hold RCU read lock. 6092 */ 6093 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 6094 { 6095 struct netdev_adjacent *lower; 6096 6097 lower = list_first_or_null_rcu(&dev->adj_list.lower, 6098 struct netdev_adjacent, list); 6099 if (lower) 6100 return lower->private; 6101 return NULL; 6102 } 6103 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 6104 6105 /** 6106 * netdev_master_upper_dev_get_rcu - Get master upper device 6107 * @dev: device 6108 * 6109 * Find a master upper device and return pointer to it or NULL in case 6110 * it's not there. The caller must hold the RCU read lock. 6111 */ 6112 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 6113 { 6114 struct netdev_adjacent *upper; 6115 6116 upper = list_first_or_null_rcu(&dev->adj_list.upper, 6117 struct netdev_adjacent, list); 6118 if (upper && likely(upper->master)) 6119 return upper->dev; 6120 return NULL; 6121 } 6122 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 6123 6124 static int netdev_adjacent_sysfs_add(struct net_device *dev, 6125 struct net_device *adj_dev, 6126 struct list_head *dev_list) 6127 { 6128 char linkname[IFNAMSIZ+7]; 6129 6130 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6131 "upper_%s" : "lower_%s", adj_dev->name); 6132 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 6133 linkname); 6134 } 6135 static void netdev_adjacent_sysfs_del(struct net_device *dev, 6136 char *name, 6137 struct list_head *dev_list) 6138 { 6139 char linkname[IFNAMSIZ+7]; 6140 6141 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6142 "upper_%s" : "lower_%s", name); 6143 sysfs_remove_link(&(dev->dev.kobj), linkname); 6144 } 6145 6146 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 6147 struct net_device *adj_dev, 6148 struct list_head *dev_list) 6149 { 6150 return (dev_list == &dev->adj_list.upper || 6151 dev_list == &dev->adj_list.lower) && 6152 net_eq(dev_net(dev), dev_net(adj_dev)); 6153 } 6154 6155 static int __netdev_adjacent_dev_insert(struct net_device *dev, 6156 struct net_device *adj_dev, 6157 struct list_head *dev_list, 6158 void *private, bool master) 6159 { 6160 struct netdev_adjacent *adj; 6161 int ret; 6162 6163 adj = __netdev_find_adj(adj_dev, dev_list); 6164 6165 if (adj) { 6166 adj->ref_nr += 1; 6167 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 6168 dev->name, adj_dev->name, adj->ref_nr); 6169 6170 return 0; 6171 } 6172 6173 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 6174 if (!adj) 6175 return -ENOMEM; 6176 6177 adj->dev = adj_dev; 6178 adj->master = master; 6179 adj->ref_nr = 1; 6180 adj->private = private; 6181 dev_hold(adj_dev); 6182 6183 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 6184 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 6185 6186 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 6187 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 6188 if (ret) 6189 goto free_adj; 6190 } 6191 6192 /* Ensure that master link is always the first item in list. */ 6193 if (master) { 6194 ret = sysfs_create_link(&(dev->dev.kobj), 6195 &(adj_dev->dev.kobj), "master"); 6196 if (ret) 6197 goto remove_symlinks; 6198 6199 list_add_rcu(&adj->list, dev_list); 6200 } else { 6201 list_add_tail_rcu(&adj->list, dev_list); 6202 } 6203 6204 return 0; 6205 6206 remove_symlinks: 6207 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6208 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6209 free_adj: 6210 kfree(adj); 6211 dev_put(adj_dev); 6212 6213 return ret; 6214 } 6215 6216 static void __netdev_adjacent_dev_remove(struct net_device *dev, 6217 struct net_device *adj_dev, 6218 u16 ref_nr, 6219 struct list_head *dev_list) 6220 { 6221 struct netdev_adjacent *adj; 6222 6223 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 6224 dev->name, adj_dev->name, ref_nr); 6225 6226 adj = __netdev_find_adj(adj_dev, dev_list); 6227 6228 if (!adj) { 6229 pr_err("Adjacency does not exist for device %s from %s\n", 6230 dev->name, adj_dev->name); 6231 WARN_ON(1); 6232 return; 6233 } 6234 6235 if (adj->ref_nr > ref_nr) { 6236 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 6237 dev->name, adj_dev->name, ref_nr, 6238 adj->ref_nr - ref_nr); 6239 adj->ref_nr -= ref_nr; 6240 return; 6241 } 6242 6243 if (adj->master) 6244 sysfs_remove_link(&(dev->dev.kobj), "master"); 6245 6246 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6247 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6248 6249 list_del_rcu(&adj->list); 6250 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 6251 adj_dev->name, dev->name, adj_dev->name); 6252 dev_put(adj_dev); 6253 kfree_rcu(adj, rcu); 6254 } 6255 6256 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 6257 struct net_device *upper_dev, 6258 struct list_head *up_list, 6259 struct list_head *down_list, 6260 void *private, bool master) 6261 { 6262 int ret; 6263 6264 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 6265 private, master); 6266 if (ret) 6267 return ret; 6268 6269 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 6270 private, false); 6271 if (ret) { 6272 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 6273 return ret; 6274 } 6275 6276 return 0; 6277 } 6278 6279 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 6280 struct net_device *upper_dev, 6281 u16 ref_nr, 6282 struct list_head *up_list, 6283 struct list_head *down_list) 6284 { 6285 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 6286 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 6287 } 6288 6289 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 6290 struct net_device *upper_dev, 6291 void *private, bool master) 6292 { 6293 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 6294 &dev->adj_list.upper, 6295 &upper_dev->adj_list.lower, 6296 private, master); 6297 } 6298 6299 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 6300 struct net_device *upper_dev) 6301 { 6302 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 6303 &dev->adj_list.upper, 6304 &upper_dev->adj_list.lower); 6305 } 6306 6307 static int __netdev_upper_dev_link(struct net_device *dev, 6308 struct net_device *upper_dev, bool master, 6309 void *upper_priv, void *upper_info, 6310 struct netlink_ext_ack *extack) 6311 { 6312 struct netdev_notifier_changeupper_info changeupper_info = { 6313 .info = { 6314 .dev = dev, 6315 .extack = extack, 6316 }, 6317 .upper_dev = upper_dev, 6318 .master = master, 6319 .linking = true, 6320 .upper_info = upper_info, 6321 }; 6322 int ret = 0; 6323 6324 ASSERT_RTNL(); 6325 6326 if (dev == upper_dev) 6327 return -EBUSY; 6328 6329 /* To prevent loops, check if dev is not upper device to upper_dev. */ 6330 if (netdev_has_upper_dev(upper_dev, dev)) 6331 return -EBUSY; 6332 6333 if (netdev_has_upper_dev(dev, upper_dev)) 6334 return -EEXIST; 6335 6336 if (master && netdev_master_upper_dev_get(dev)) 6337 return -EBUSY; 6338 6339 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 6340 &changeupper_info.info); 6341 ret = notifier_to_errno(ret); 6342 if (ret) 6343 return ret; 6344 6345 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 6346 master); 6347 if (ret) 6348 return ret; 6349 6350 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 6351 &changeupper_info.info); 6352 ret = notifier_to_errno(ret); 6353 if (ret) 6354 goto rollback; 6355 6356 return 0; 6357 6358 rollback: 6359 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6360 6361 return ret; 6362 } 6363 6364 /** 6365 * netdev_upper_dev_link - Add a link to the upper device 6366 * @dev: device 6367 * @upper_dev: new upper device 6368 * 6369 * Adds a link to device which is upper to this one. The caller must hold 6370 * the RTNL lock. On a failure a negative errno code is returned. 6371 * On success the reference counts are adjusted and the function 6372 * returns zero. 6373 */ 6374 int netdev_upper_dev_link(struct net_device *dev, 6375 struct net_device *upper_dev, 6376 struct netlink_ext_ack *extack) 6377 { 6378 return __netdev_upper_dev_link(dev, upper_dev, false, 6379 NULL, NULL, extack); 6380 } 6381 EXPORT_SYMBOL(netdev_upper_dev_link); 6382 6383 /** 6384 * netdev_master_upper_dev_link - Add a master link to the upper device 6385 * @dev: device 6386 * @upper_dev: new upper device 6387 * @upper_priv: upper device private 6388 * @upper_info: upper info to be passed down via notifier 6389 * 6390 * Adds a link to device which is upper to this one. In this case, only 6391 * one master upper device can be linked, although other non-master devices 6392 * might be linked as well. The caller must hold the RTNL lock. 6393 * On a failure a negative errno code is returned. On success the reference 6394 * counts are adjusted and the function returns zero. 6395 */ 6396 int netdev_master_upper_dev_link(struct net_device *dev, 6397 struct net_device *upper_dev, 6398 void *upper_priv, void *upper_info, 6399 struct netlink_ext_ack *extack) 6400 { 6401 return __netdev_upper_dev_link(dev, upper_dev, true, 6402 upper_priv, upper_info, extack); 6403 } 6404 EXPORT_SYMBOL(netdev_master_upper_dev_link); 6405 6406 /** 6407 * netdev_upper_dev_unlink - Removes a link to upper device 6408 * @dev: device 6409 * @upper_dev: new upper device 6410 * 6411 * Removes a link to device which is upper to this one. The caller must hold 6412 * the RTNL lock. 6413 */ 6414 void netdev_upper_dev_unlink(struct net_device *dev, 6415 struct net_device *upper_dev) 6416 { 6417 struct netdev_notifier_changeupper_info changeupper_info = { 6418 .info = { 6419 .dev = dev, 6420 }, 6421 .upper_dev = upper_dev, 6422 .linking = false, 6423 }; 6424 6425 ASSERT_RTNL(); 6426 6427 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 6428 6429 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 6430 &changeupper_info.info); 6431 6432 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6433 6434 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 6435 &changeupper_info.info); 6436 } 6437 EXPORT_SYMBOL(netdev_upper_dev_unlink); 6438 6439 /** 6440 * netdev_bonding_info_change - Dispatch event about slave change 6441 * @dev: device 6442 * @bonding_info: info to dispatch 6443 * 6444 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 6445 * The caller must hold the RTNL lock. 6446 */ 6447 void netdev_bonding_info_change(struct net_device *dev, 6448 struct netdev_bonding_info *bonding_info) 6449 { 6450 struct netdev_notifier_bonding_info info = { 6451 .info.dev = dev, 6452 }; 6453 6454 memcpy(&info.bonding_info, bonding_info, 6455 sizeof(struct netdev_bonding_info)); 6456 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 6457 &info.info); 6458 } 6459 EXPORT_SYMBOL(netdev_bonding_info_change); 6460 6461 static void netdev_adjacent_add_links(struct net_device *dev) 6462 { 6463 struct netdev_adjacent *iter; 6464 6465 struct net *net = dev_net(dev); 6466 6467 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6468 if (!net_eq(net, dev_net(iter->dev))) 6469 continue; 6470 netdev_adjacent_sysfs_add(iter->dev, dev, 6471 &iter->dev->adj_list.lower); 6472 netdev_adjacent_sysfs_add(dev, iter->dev, 6473 &dev->adj_list.upper); 6474 } 6475 6476 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6477 if (!net_eq(net, dev_net(iter->dev))) 6478 continue; 6479 netdev_adjacent_sysfs_add(iter->dev, dev, 6480 &iter->dev->adj_list.upper); 6481 netdev_adjacent_sysfs_add(dev, iter->dev, 6482 &dev->adj_list.lower); 6483 } 6484 } 6485 6486 static void netdev_adjacent_del_links(struct net_device *dev) 6487 { 6488 struct netdev_adjacent *iter; 6489 6490 struct net *net = dev_net(dev); 6491 6492 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6493 if (!net_eq(net, dev_net(iter->dev))) 6494 continue; 6495 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6496 &iter->dev->adj_list.lower); 6497 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6498 &dev->adj_list.upper); 6499 } 6500 6501 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6502 if (!net_eq(net, dev_net(iter->dev))) 6503 continue; 6504 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6505 &iter->dev->adj_list.upper); 6506 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6507 &dev->adj_list.lower); 6508 } 6509 } 6510 6511 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 6512 { 6513 struct netdev_adjacent *iter; 6514 6515 struct net *net = dev_net(dev); 6516 6517 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6518 if (!net_eq(net, dev_net(iter->dev))) 6519 continue; 6520 netdev_adjacent_sysfs_del(iter->dev, oldname, 6521 &iter->dev->adj_list.lower); 6522 netdev_adjacent_sysfs_add(iter->dev, dev, 6523 &iter->dev->adj_list.lower); 6524 } 6525 6526 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6527 if (!net_eq(net, dev_net(iter->dev))) 6528 continue; 6529 netdev_adjacent_sysfs_del(iter->dev, oldname, 6530 &iter->dev->adj_list.upper); 6531 netdev_adjacent_sysfs_add(iter->dev, dev, 6532 &iter->dev->adj_list.upper); 6533 } 6534 } 6535 6536 void *netdev_lower_dev_get_private(struct net_device *dev, 6537 struct net_device *lower_dev) 6538 { 6539 struct netdev_adjacent *lower; 6540 6541 if (!lower_dev) 6542 return NULL; 6543 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 6544 if (!lower) 6545 return NULL; 6546 6547 return lower->private; 6548 } 6549 EXPORT_SYMBOL(netdev_lower_dev_get_private); 6550 6551 6552 int dev_get_nest_level(struct net_device *dev) 6553 { 6554 struct net_device *lower = NULL; 6555 struct list_head *iter; 6556 int max_nest = -1; 6557 int nest; 6558 6559 ASSERT_RTNL(); 6560 6561 netdev_for_each_lower_dev(dev, lower, iter) { 6562 nest = dev_get_nest_level(lower); 6563 if (max_nest < nest) 6564 max_nest = nest; 6565 } 6566 6567 return max_nest + 1; 6568 } 6569 EXPORT_SYMBOL(dev_get_nest_level); 6570 6571 /** 6572 * netdev_lower_change - Dispatch event about lower device state change 6573 * @lower_dev: device 6574 * @lower_state_info: state to dispatch 6575 * 6576 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 6577 * The caller must hold the RTNL lock. 6578 */ 6579 void netdev_lower_state_changed(struct net_device *lower_dev, 6580 void *lower_state_info) 6581 { 6582 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 6583 .info.dev = lower_dev, 6584 }; 6585 6586 ASSERT_RTNL(); 6587 changelowerstate_info.lower_state_info = lower_state_info; 6588 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 6589 &changelowerstate_info.info); 6590 } 6591 EXPORT_SYMBOL(netdev_lower_state_changed); 6592 6593 static void dev_change_rx_flags(struct net_device *dev, int flags) 6594 { 6595 const struct net_device_ops *ops = dev->netdev_ops; 6596 6597 if (ops->ndo_change_rx_flags) 6598 ops->ndo_change_rx_flags(dev, flags); 6599 } 6600 6601 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 6602 { 6603 unsigned int old_flags = dev->flags; 6604 kuid_t uid; 6605 kgid_t gid; 6606 6607 ASSERT_RTNL(); 6608 6609 dev->flags |= IFF_PROMISC; 6610 dev->promiscuity += inc; 6611 if (dev->promiscuity == 0) { 6612 /* 6613 * Avoid overflow. 6614 * If inc causes overflow, untouch promisc and return error. 6615 */ 6616 if (inc < 0) 6617 dev->flags &= ~IFF_PROMISC; 6618 else { 6619 dev->promiscuity -= inc; 6620 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 6621 dev->name); 6622 return -EOVERFLOW; 6623 } 6624 } 6625 if (dev->flags != old_flags) { 6626 pr_info("device %s %s promiscuous mode\n", 6627 dev->name, 6628 dev->flags & IFF_PROMISC ? "entered" : "left"); 6629 if (audit_enabled) { 6630 current_uid_gid(&uid, &gid); 6631 audit_log(current->audit_context, GFP_ATOMIC, 6632 AUDIT_ANOM_PROMISCUOUS, 6633 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 6634 dev->name, (dev->flags & IFF_PROMISC), 6635 (old_flags & IFF_PROMISC), 6636 from_kuid(&init_user_ns, audit_get_loginuid(current)), 6637 from_kuid(&init_user_ns, uid), 6638 from_kgid(&init_user_ns, gid), 6639 audit_get_sessionid(current)); 6640 } 6641 6642 dev_change_rx_flags(dev, IFF_PROMISC); 6643 } 6644 if (notify) 6645 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 6646 return 0; 6647 } 6648 6649 /** 6650 * dev_set_promiscuity - update promiscuity count on a device 6651 * @dev: device 6652 * @inc: modifier 6653 * 6654 * Add or remove promiscuity from a device. While the count in the device 6655 * remains above zero the interface remains promiscuous. Once it hits zero 6656 * the device reverts back to normal filtering operation. A negative inc 6657 * value is used to drop promiscuity on the device. 6658 * Return 0 if successful or a negative errno code on error. 6659 */ 6660 int dev_set_promiscuity(struct net_device *dev, int inc) 6661 { 6662 unsigned int old_flags = dev->flags; 6663 int err; 6664 6665 err = __dev_set_promiscuity(dev, inc, true); 6666 if (err < 0) 6667 return err; 6668 if (dev->flags != old_flags) 6669 dev_set_rx_mode(dev); 6670 return err; 6671 } 6672 EXPORT_SYMBOL(dev_set_promiscuity); 6673 6674 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 6675 { 6676 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 6677 6678 ASSERT_RTNL(); 6679 6680 dev->flags |= IFF_ALLMULTI; 6681 dev->allmulti += inc; 6682 if (dev->allmulti == 0) { 6683 /* 6684 * Avoid overflow. 6685 * If inc causes overflow, untouch allmulti and return error. 6686 */ 6687 if (inc < 0) 6688 dev->flags &= ~IFF_ALLMULTI; 6689 else { 6690 dev->allmulti -= inc; 6691 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 6692 dev->name); 6693 return -EOVERFLOW; 6694 } 6695 } 6696 if (dev->flags ^ old_flags) { 6697 dev_change_rx_flags(dev, IFF_ALLMULTI); 6698 dev_set_rx_mode(dev); 6699 if (notify) 6700 __dev_notify_flags(dev, old_flags, 6701 dev->gflags ^ old_gflags); 6702 } 6703 return 0; 6704 } 6705 6706 /** 6707 * dev_set_allmulti - update allmulti count on a device 6708 * @dev: device 6709 * @inc: modifier 6710 * 6711 * Add or remove reception of all multicast frames to a device. While the 6712 * count in the device remains above zero the interface remains listening 6713 * to all interfaces. Once it hits zero the device reverts back to normal 6714 * filtering operation. A negative @inc value is used to drop the counter 6715 * when releasing a resource needing all multicasts. 6716 * Return 0 if successful or a negative errno code on error. 6717 */ 6718 6719 int dev_set_allmulti(struct net_device *dev, int inc) 6720 { 6721 return __dev_set_allmulti(dev, inc, true); 6722 } 6723 EXPORT_SYMBOL(dev_set_allmulti); 6724 6725 /* 6726 * Upload unicast and multicast address lists to device and 6727 * configure RX filtering. When the device doesn't support unicast 6728 * filtering it is put in promiscuous mode while unicast addresses 6729 * are present. 6730 */ 6731 void __dev_set_rx_mode(struct net_device *dev) 6732 { 6733 const struct net_device_ops *ops = dev->netdev_ops; 6734 6735 /* dev_open will call this function so the list will stay sane. */ 6736 if (!(dev->flags&IFF_UP)) 6737 return; 6738 6739 if (!netif_device_present(dev)) 6740 return; 6741 6742 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 6743 /* Unicast addresses changes may only happen under the rtnl, 6744 * therefore calling __dev_set_promiscuity here is safe. 6745 */ 6746 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 6747 __dev_set_promiscuity(dev, 1, false); 6748 dev->uc_promisc = true; 6749 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 6750 __dev_set_promiscuity(dev, -1, false); 6751 dev->uc_promisc = false; 6752 } 6753 } 6754 6755 if (ops->ndo_set_rx_mode) 6756 ops->ndo_set_rx_mode(dev); 6757 } 6758 6759 void dev_set_rx_mode(struct net_device *dev) 6760 { 6761 netif_addr_lock_bh(dev); 6762 __dev_set_rx_mode(dev); 6763 netif_addr_unlock_bh(dev); 6764 } 6765 6766 /** 6767 * dev_get_flags - get flags reported to userspace 6768 * @dev: device 6769 * 6770 * Get the combination of flag bits exported through APIs to userspace. 6771 */ 6772 unsigned int dev_get_flags(const struct net_device *dev) 6773 { 6774 unsigned int flags; 6775 6776 flags = (dev->flags & ~(IFF_PROMISC | 6777 IFF_ALLMULTI | 6778 IFF_RUNNING | 6779 IFF_LOWER_UP | 6780 IFF_DORMANT)) | 6781 (dev->gflags & (IFF_PROMISC | 6782 IFF_ALLMULTI)); 6783 6784 if (netif_running(dev)) { 6785 if (netif_oper_up(dev)) 6786 flags |= IFF_RUNNING; 6787 if (netif_carrier_ok(dev)) 6788 flags |= IFF_LOWER_UP; 6789 if (netif_dormant(dev)) 6790 flags |= IFF_DORMANT; 6791 } 6792 6793 return flags; 6794 } 6795 EXPORT_SYMBOL(dev_get_flags); 6796 6797 int __dev_change_flags(struct net_device *dev, unsigned int flags) 6798 { 6799 unsigned int old_flags = dev->flags; 6800 int ret; 6801 6802 ASSERT_RTNL(); 6803 6804 /* 6805 * Set the flags on our device. 6806 */ 6807 6808 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 6809 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 6810 IFF_AUTOMEDIA)) | 6811 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 6812 IFF_ALLMULTI)); 6813 6814 /* 6815 * Load in the correct multicast list now the flags have changed. 6816 */ 6817 6818 if ((old_flags ^ flags) & IFF_MULTICAST) 6819 dev_change_rx_flags(dev, IFF_MULTICAST); 6820 6821 dev_set_rx_mode(dev); 6822 6823 /* 6824 * Have we downed the interface. We handle IFF_UP ourselves 6825 * according to user attempts to set it, rather than blindly 6826 * setting it. 6827 */ 6828 6829 ret = 0; 6830 if ((old_flags ^ flags) & IFF_UP) { 6831 if (old_flags & IFF_UP) 6832 __dev_close(dev); 6833 else 6834 ret = __dev_open(dev); 6835 } 6836 6837 if ((flags ^ dev->gflags) & IFF_PROMISC) { 6838 int inc = (flags & IFF_PROMISC) ? 1 : -1; 6839 unsigned int old_flags = dev->flags; 6840 6841 dev->gflags ^= IFF_PROMISC; 6842 6843 if (__dev_set_promiscuity(dev, inc, false) >= 0) 6844 if (dev->flags != old_flags) 6845 dev_set_rx_mode(dev); 6846 } 6847 6848 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 6849 * is important. Some (broken) drivers set IFF_PROMISC, when 6850 * IFF_ALLMULTI is requested not asking us and not reporting. 6851 */ 6852 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 6853 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 6854 6855 dev->gflags ^= IFF_ALLMULTI; 6856 __dev_set_allmulti(dev, inc, false); 6857 } 6858 6859 return ret; 6860 } 6861 6862 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 6863 unsigned int gchanges) 6864 { 6865 unsigned int changes = dev->flags ^ old_flags; 6866 6867 if (gchanges) 6868 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 6869 6870 if (changes & IFF_UP) { 6871 if (dev->flags & IFF_UP) 6872 call_netdevice_notifiers(NETDEV_UP, dev); 6873 else 6874 call_netdevice_notifiers(NETDEV_DOWN, dev); 6875 } 6876 6877 if (dev->flags & IFF_UP && 6878 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 6879 struct netdev_notifier_change_info change_info = { 6880 .info = { 6881 .dev = dev, 6882 }, 6883 .flags_changed = changes, 6884 }; 6885 6886 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 6887 } 6888 } 6889 6890 /** 6891 * dev_change_flags - change device settings 6892 * @dev: device 6893 * @flags: device state flags 6894 * 6895 * Change settings on device based state flags. The flags are 6896 * in the userspace exported format. 6897 */ 6898 int dev_change_flags(struct net_device *dev, unsigned int flags) 6899 { 6900 int ret; 6901 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 6902 6903 ret = __dev_change_flags(dev, flags); 6904 if (ret < 0) 6905 return ret; 6906 6907 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 6908 __dev_notify_flags(dev, old_flags, changes); 6909 return ret; 6910 } 6911 EXPORT_SYMBOL(dev_change_flags); 6912 6913 int __dev_set_mtu(struct net_device *dev, int new_mtu) 6914 { 6915 const struct net_device_ops *ops = dev->netdev_ops; 6916 6917 if (ops->ndo_change_mtu) 6918 return ops->ndo_change_mtu(dev, new_mtu); 6919 6920 dev->mtu = new_mtu; 6921 return 0; 6922 } 6923 EXPORT_SYMBOL(__dev_set_mtu); 6924 6925 /** 6926 * dev_set_mtu - Change maximum transfer unit 6927 * @dev: device 6928 * @new_mtu: new transfer unit 6929 * 6930 * Change the maximum transfer size of the network device. 6931 */ 6932 int dev_set_mtu(struct net_device *dev, int new_mtu) 6933 { 6934 int err, orig_mtu; 6935 6936 if (new_mtu == dev->mtu) 6937 return 0; 6938 6939 /* MTU must be positive, and in range */ 6940 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 6941 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n", 6942 dev->name, new_mtu, dev->min_mtu); 6943 return -EINVAL; 6944 } 6945 6946 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 6947 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n", 6948 dev->name, new_mtu, dev->max_mtu); 6949 return -EINVAL; 6950 } 6951 6952 if (!netif_device_present(dev)) 6953 return -ENODEV; 6954 6955 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 6956 err = notifier_to_errno(err); 6957 if (err) 6958 return err; 6959 6960 orig_mtu = dev->mtu; 6961 err = __dev_set_mtu(dev, new_mtu); 6962 6963 if (!err) { 6964 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6965 err = notifier_to_errno(err); 6966 if (err) { 6967 /* setting mtu back and notifying everyone again, 6968 * so that they have a chance to revert changes. 6969 */ 6970 __dev_set_mtu(dev, orig_mtu); 6971 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6972 } 6973 } 6974 return err; 6975 } 6976 EXPORT_SYMBOL(dev_set_mtu); 6977 6978 /** 6979 * dev_set_group - Change group this device belongs to 6980 * @dev: device 6981 * @new_group: group this device should belong to 6982 */ 6983 void dev_set_group(struct net_device *dev, int new_group) 6984 { 6985 dev->group = new_group; 6986 } 6987 EXPORT_SYMBOL(dev_set_group); 6988 6989 /** 6990 * dev_set_mac_address - Change Media Access Control Address 6991 * @dev: device 6992 * @sa: new address 6993 * 6994 * Change the hardware (MAC) address of the device 6995 */ 6996 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 6997 { 6998 const struct net_device_ops *ops = dev->netdev_ops; 6999 int err; 7000 7001 if (!ops->ndo_set_mac_address) 7002 return -EOPNOTSUPP; 7003 if (sa->sa_family != dev->type) 7004 return -EINVAL; 7005 if (!netif_device_present(dev)) 7006 return -ENODEV; 7007 err = ops->ndo_set_mac_address(dev, sa); 7008 if (err) 7009 return err; 7010 dev->addr_assign_type = NET_ADDR_SET; 7011 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 7012 add_device_randomness(dev->dev_addr, dev->addr_len); 7013 return 0; 7014 } 7015 EXPORT_SYMBOL(dev_set_mac_address); 7016 7017 /** 7018 * dev_change_carrier - Change device carrier 7019 * @dev: device 7020 * @new_carrier: new value 7021 * 7022 * Change device carrier 7023 */ 7024 int dev_change_carrier(struct net_device *dev, bool new_carrier) 7025 { 7026 const struct net_device_ops *ops = dev->netdev_ops; 7027 7028 if (!ops->ndo_change_carrier) 7029 return -EOPNOTSUPP; 7030 if (!netif_device_present(dev)) 7031 return -ENODEV; 7032 return ops->ndo_change_carrier(dev, new_carrier); 7033 } 7034 EXPORT_SYMBOL(dev_change_carrier); 7035 7036 /** 7037 * dev_get_phys_port_id - Get device physical port ID 7038 * @dev: device 7039 * @ppid: port ID 7040 * 7041 * Get device physical port ID 7042 */ 7043 int dev_get_phys_port_id(struct net_device *dev, 7044 struct netdev_phys_item_id *ppid) 7045 { 7046 const struct net_device_ops *ops = dev->netdev_ops; 7047 7048 if (!ops->ndo_get_phys_port_id) 7049 return -EOPNOTSUPP; 7050 return ops->ndo_get_phys_port_id(dev, ppid); 7051 } 7052 EXPORT_SYMBOL(dev_get_phys_port_id); 7053 7054 /** 7055 * dev_get_phys_port_name - Get device physical port name 7056 * @dev: device 7057 * @name: port name 7058 * @len: limit of bytes to copy to name 7059 * 7060 * Get device physical port name 7061 */ 7062 int dev_get_phys_port_name(struct net_device *dev, 7063 char *name, size_t len) 7064 { 7065 const struct net_device_ops *ops = dev->netdev_ops; 7066 7067 if (!ops->ndo_get_phys_port_name) 7068 return -EOPNOTSUPP; 7069 return ops->ndo_get_phys_port_name(dev, name, len); 7070 } 7071 EXPORT_SYMBOL(dev_get_phys_port_name); 7072 7073 /** 7074 * dev_change_proto_down - update protocol port state information 7075 * @dev: device 7076 * @proto_down: new value 7077 * 7078 * This info can be used by switch drivers to set the phys state of the 7079 * port. 7080 */ 7081 int dev_change_proto_down(struct net_device *dev, bool proto_down) 7082 { 7083 const struct net_device_ops *ops = dev->netdev_ops; 7084 7085 if (!ops->ndo_change_proto_down) 7086 return -EOPNOTSUPP; 7087 if (!netif_device_present(dev)) 7088 return -ENODEV; 7089 return ops->ndo_change_proto_down(dev, proto_down); 7090 } 7091 EXPORT_SYMBOL(dev_change_proto_down); 7092 7093 u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op, u32 *prog_id) 7094 { 7095 struct netdev_bpf xdp; 7096 7097 memset(&xdp, 0, sizeof(xdp)); 7098 xdp.command = XDP_QUERY_PROG; 7099 7100 /* Query must always succeed. */ 7101 WARN_ON(bpf_op(dev, &xdp) < 0); 7102 if (prog_id) 7103 *prog_id = xdp.prog_id; 7104 7105 return xdp.prog_attached; 7106 } 7107 7108 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op, 7109 struct netlink_ext_ack *extack, u32 flags, 7110 struct bpf_prog *prog) 7111 { 7112 struct netdev_bpf xdp; 7113 7114 memset(&xdp, 0, sizeof(xdp)); 7115 if (flags & XDP_FLAGS_HW_MODE) 7116 xdp.command = XDP_SETUP_PROG_HW; 7117 else 7118 xdp.command = XDP_SETUP_PROG; 7119 xdp.extack = extack; 7120 xdp.flags = flags; 7121 xdp.prog = prog; 7122 7123 return bpf_op(dev, &xdp); 7124 } 7125 7126 /** 7127 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 7128 * @dev: device 7129 * @extack: netlink extended ack 7130 * @fd: new program fd or negative value to clear 7131 * @flags: xdp-related flags 7132 * 7133 * Set or clear a bpf program for a device 7134 */ 7135 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 7136 int fd, u32 flags) 7137 { 7138 const struct net_device_ops *ops = dev->netdev_ops; 7139 struct bpf_prog *prog = NULL; 7140 bpf_op_t bpf_op, bpf_chk; 7141 int err; 7142 7143 ASSERT_RTNL(); 7144 7145 bpf_op = bpf_chk = ops->ndo_bpf; 7146 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) 7147 return -EOPNOTSUPP; 7148 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE)) 7149 bpf_op = generic_xdp_install; 7150 if (bpf_op == bpf_chk) 7151 bpf_chk = generic_xdp_install; 7152 7153 if (fd >= 0) { 7154 if (bpf_chk && __dev_xdp_attached(dev, bpf_chk, NULL)) 7155 return -EEXIST; 7156 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && 7157 __dev_xdp_attached(dev, bpf_op, NULL)) 7158 return -EBUSY; 7159 7160 if (bpf_op == ops->ndo_bpf) 7161 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 7162 dev); 7163 else 7164 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP); 7165 if (IS_ERR(prog)) 7166 return PTR_ERR(prog); 7167 } 7168 7169 err = dev_xdp_install(dev, bpf_op, extack, flags, prog); 7170 if (err < 0 && prog) 7171 bpf_prog_put(prog); 7172 7173 return err; 7174 } 7175 7176 /** 7177 * dev_new_index - allocate an ifindex 7178 * @net: the applicable net namespace 7179 * 7180 * Returns a suitable unique value for a new device interface 7181 * number. The caller must hold the rtnl semaphore or the 7182 * dev_base_lock to be sure it remains unique. 7183 */ 7184 static int dev_new_index(struct net *net) 7185 { 7186 int ifindex = net->ifindex; 7187 7188 for (;;) { 7189 if (++ifindex <= 0) 7190 ifindex = 1; 7191 if (!__dev_get_by_index(net, ifindex)) 7192 return net->ifindex = ifindex; 7193 } 7194 } 7195 7196 /* Delayed registration/unregisteration */ 7197 static LIST_HEAD(net_todo_list); 7198 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 7199 7200 static void net_set_todo(struct net_device *dev) 7201 { 7202 list_add_tail(&dev->todo_list, &net_todo_list); 7203 dev_net(dev)->dev_unreg_count++; 7204 } 7205 7206 static void rollback_registered_many(struct list_head *head) 7207 { 7208 struct net_device *dev, *tmp; 7209 LIST_HEAD(close_head); 7210 7211 BUG_ON(dev_boot_phase); 7212 ASSERT_RTNL(); 7213 7214 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 7215 /* Some devices call without registering 7216 * for initialization unwind. Remove those 7217 * devices and proceed with the remaining. 7218 */ 7219 if (dev->reg_state == NETREG_UNINITIALIZED) { 7220 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 7221 dev->name, dev); 7222 7223 WARN_ON(1); 7224 list_del(&dev->unreg_list); 7225 continue; 7226 } 7227 dev->dismantle = true; 7228 BUG_ON(dev->reg_state != NETREG_REGISTERED); 7229 } 7230 7231 /* If device is running, close it first. */ 7232 list_for_each_entry(dev, head, unreg_list) 7233 list_add_tail(&dev->close_list, &close_head); 7234 dev_close_many(&close_head, true); 7235 7236 list_for_each_entry(dev, head, unreg_list) { 7237 /* And unlink it from device chain. */ 7238 unlist_netdevice(dev); 7239 7240 dev->reg_state = NETREG_UNREGISTERING; 7241 } 7242 flush_all_backlogs(); 7243 7244 synchronize_net(); 7245 7246 list_for_each_entry(dev, head, unreg_list) { 7247 struct sk_buff *skb = NULL; 7248 7249 /* Shutdown queueing discipline. */ 7250 dev_shutdown(dev); 7251 7252 7253 /* Notify protocols, that we are about to destroy 7254 * this device. They should clean all the things. 7255 */ 7256 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7257 7258 if (!dev->rtnl_link_ops || 7259 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7260 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 7261 GFP_KERNEL, NULL); 7262 7263 /* 7264 * Flush the unicast and multicast chains 7265 */ 7266 dev_uc_flush(dev); 7267 dev_mc_flush(dev); 7268 7269 if (dev->netdev_ops->ndo_uninit) 7270 dev->netdev_ops->ndo_uninit(dev); 7271 7272 if (skb) 7273 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 7274 7275 /* Notifier chain MUST detach us all upper devices. */ 7276 WARN_ON(netdev_has_any_upper_dev(dev)); 7277 WARN_ON(netdev_has_any_lower_dev(dev)); 7278 7279 /* Remove entries from kobject tree */ 7280 netdev_unregister_kobject(dev); 7281 #ifdef CONFIG_XPS 7282 /* Remove XPS queueing entries */ 7283 netif_reset_xps_queues_gt(dev, 0); 7284 #endif 7285 } 7286 7287 synchronize_net(); 7288 7289 list_for_each_entry(dev, head, unreg_list) 7290 dev_put(dev); 7291 } 7292 7293 static void rollback_registered(struct net_device *dev) 7294 { 7295 LIST_HEAD(single); 7296 7297 list_add(&dev->unreg_list, &single); 7298 rollback_registered_many(&single); 7299 list_del(&single); 7300 } 7301 7302 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 7303 struct net_device *upper, netdev_features_t features) 7304 { 7305 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7306 netdev_features_t feature; 7307 int feature_bit; 7308 7309 for_each_netdev_feature(&upper_disables, feature_bit) { 7310 feature = __NETIF_F_BIT(feature_bit); 7311 if (!(upper->wanted_features & feature) 7312 && (features & feature)) { 7313 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 7314 &feature, upper->name); 7315 features &= ~feature; 7316 } 7317 } 7318 7319 return features; 7320 } 7321 7322 static void netdev_sync_lower_features(struct net_device *upper, 7323 struct net_device *lower, netdev_features_t features) 7324 { 7325 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7326 netdev_features_t feature; 7327 int feature_bit; 7328 7329 for_each_netdev_feature(&upper_disables, feature_bit) { 7330 feature = __NETIF_F_BIT(feature_bit); 7331 if (!(features & feature) && (lower->features & feature)) { 7332 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 7333 &feature, lower->name); 7334 lower->wanted_features &= ~feature; 7335 netdev_update_features(lower); 7336 7337 if (unlikely(lower->features & feature)) 7338 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 7339 &feature, lower->name); 7340 } 7341 } 7342 } 7343 7344 static netdev_features_t netdev_fix_features(struct net_device *dev, 7345 netdev_features_t features) 7346 { 7347 /* Fix illegal checksum combinations */ 7348 if ((features & NETIF_F_HW_CSUM) && 7349 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 7350 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 7351 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 7352 } 7353 7354 /* TSO requires that SG is present as well. */ 7355 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 7356 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 7357 features &= ~NETIF_F_ALL_TSO; 7358 } 7359 7360 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 7361 !(features & NETIF_F_IP_CSUM)) { 7362 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 7363 features &= ~NETIF_F_TSO; 7364 features &= ~NETIF_F_TSO_ECN; 7365 } 7366 7367 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 7368 !(features & NETIF_F_IPV6_CSUM)) { 7369 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 7370 features &= ~NETIF_F_TSO6; 7371 } 7372 7373 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 7374 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 7375 features &= ~NETIF_F_TSO_MANGLEID; 7376 7377 /* TSO ECN requires that TSO is present as well. */ 7378 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 7379 features &= ~NETIF_F_TSO_ECN; 7380 7381 /* Software GSO depends on SG. */ 7382 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 7383 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 7384 features &= ~NETIF_F_GSO; 7385 } 7386 7387 /* GSO partial features require GSO partial be set */ 7388 if ((features & dev->gso_partial_features) && 7389 !(features & NETIF_F_GSO_PARTIAL)) { 7390 netdev_dbg(dev, 7391 "Dropping partially supported GSO features since no GSO partial.\n"); 7392 features &= ~dev->gso_partial_features; 7393 } 7394 7395 return features; 7396 } 7397 7398 int __netdev_update_features(struct net_device *dev) 7399 { 7400 struct net_device *upper, *lower; 7401 netdev_features_t features; 7402 struct list_head *iter; 7403 int err = -1; 7404 7405 ASSERT_RTNL(); 7406 7407 features = netdev_get_wanted_features(dev); 7408 7409 if (dev->netdev_ops->ndo_fix_features) 7410 features = dev->netdev_ops->ndo_fix_features(dev, features); 7411 7412 /* driver might be less strict about feature dependencies */ 7413 features = netdev_fix_features(dev, features); 7414 7415 /* some features can't be enabled if they're off an an upper device */ 7416 netdev_for_each_upper_dev_rcu(dev, upper, iter) 7417 features = netdev_sync_upper_features(dev, upper, features); 7418 7419 if (dev->features == features) 7420 goto sync_lower; 7421 7422 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 7423 &dev->features, &features); 7424 7425 if (dev->netdev_ops->ndo_set_features) 7426 err = dev->netdev_ops->ndo_set_features(dev, features); 7427 else 7428 err = 0; 7429 7430 if (unlikely(err < 0)) { 7431 netdev_err(dev, 7432 "set_features() failed (%d); wanted %pNF, left %pNF\n", 7433 err, &features, &dev->features); 7434 /* return non-0 since some features might have changed and 7435 * it's better to fire a spurious notification than miss it 7436 */ 7437 return -1; 7438 } 7439 7440 sync_lower: 7441 /* some features must be disabled on lower devices when disabled 7442 * on an upper device (think: bonding master or bridge) 7443 */ 7444 netdev_for_each_lower_dev(dev, lower, iter) 7445 netdev_sync_lower_features(dev, lower, features); 7446 7447 if (!err) { 7448 netdev_features_t diff = features ^ dev->features; 7449 7450 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 7451 /* udp_tunnel_{get,drop}_rx_info both need 7452 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 7453 * device, or they won't do anything. 7454 * Thus we need to update dev->features 7455 * *before* calling udp_tunnel_get_rx_info, 7456 * but *after* calling udp_tunnel_drop_rx_info. 7457 */ 7458 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 7459 dev->features = features; 7460 udp_tunnel_get_rx_info(dev); 7461 } else { 7462 udp_tunnel_drop_rx_info(dev); 7463 } 7464 } 7465 7466 dev->features = features; 7467 } 7468 7469 return err < 0 ? 0 : 1; 7470 } 7471 7472 /** 7473 * netdev_update_features - recalculate device features 7474 * @dev: the device to check 7475 * 7476 * Recalculate dev->features set and send notifications if it 7477 * has changed. Should be called after driver or hardware dependent 7478 * conditions might have changed that influence the features. 7479 */ 7480 void netdev_update_features(struct net_device *dev) 7481 { 7482 if (__netdev_update_features(dev)) 7483 netdev_features_change(dev); 7484 } 7485 EXPORT_SYMBOL(netdev_update_features); 7486 7487 /** 7488 * netdev_change_features - recalculate device features 7489 * @dev: the device to check 7490 * 7491 * Recalculate dev->features set and send notifications even 7492 * if they have not changed. Should be called instead of 7493 * netdev_update_features() if also dev->vlan_features might 7494 * have changed to allow the changes to be propagated to stacked 7495 * VLAN devices. 7496 */ 7497 void netdev_change_features(struct net_device *dev) 7498 { 7499 __netdev_update_features(dev); 7500 netdev_features_change(dev); 7501 } 7502 EXPORT_SYMBOL(netdev_change_features); 7503 7504 /** 7505 * netif_stacked_transfer_operstate - transfer operstate 7506 * @rootdev: the root or lower level device to transfer state from 7507 * @dev: the device to transfer operstate to 7508 * 7509 * Transfer operational state from root to device. This is normally 7510 * called when a stacking relationship exists between the root 7511 * device and the device(a leaf device). 7512 */ 7513 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 7514 struct net_device *dev) 7515 { 7516 if (rootdev->operstate == IF_OPER_DORMANT) 7517 netif_dormant_on(dev); 7518 else 7519 netif_dormant_off(dev); 7520 7521 if (netif_carrier_ok(rootdev)) 7522 netif_carrier_on(dev); 7523 else 7524 netif_carrier_off(dev); 7525 } 7526 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 7527 7528 #ifdef CONFIG_SYSFS 7529 static int netif_alloc_rx_queues(struct net_device *dev) 7530 { 7531 unsigned int i, count = dev->num_rx_queues; 7532 struct netdev_rx_queue *rx; 7533 size_t sz = count * sizeof(*rx); 7534 7535 BUG_ON(count < 1); 7536 7537 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 7538 if (!rx) 7539 return -ENOMEM; 7540 7541 dev->_rx = rx; 7542 7543 for (i = 0; i < count; i++) 7544 rx[i].dev = dev; 7545 return 0; 7546 } 7547 #endif 7548 7549 static void netdev_init_one_queue(struct net_device *dev, 7550 struct netdev_queue *queue, void *_unused) 7551 { 7552 /* Initialize queue lock */ 7553 spin_lock_init(&queue->_xmit_lock); 7554 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 7555 queue->xmit_lock_owner = -1; 7556 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 7557 queue->dev = dev; 7558 #ifdef CONFIG_BQL 7559 dql_init(&queue->dql, HZ); 7560 #endif 7561 } 7562 7563 static void netif_free_tx_queues(struct net_device *dev) 7564 { 7565 kvfree(dev->_tx); 7566 } 7567 7568 static int netif_alloc_netdev_queues(struct net_device *dev) 7569 { 7570 unsigned int count = dev->num_tx_queues; 7571 struct netdev_queue *tx; 7572 size_t sz = count * sizeof(*tx); 7573 7574 if (count < 1 || count > 0xffff) 7575 return -EINVAL; 7576 7577 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 7578 if (!tx) 7579 return -ENOMEM; 7580 7581 dev->_tx = tx; 7582 7583 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 7584 spin_lock_init(&dev->tx_global_lock); 7585 7586 return 0; 7587 } 7588 7589 void netif_tx_stop_all_queues(struct net_device *dev) 7590 { 7591 unsigned int i; 7592 7593 for (i = 0; i < dev->num_tx_queues; i++) { 7594 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 7595 7596 netif_tx_stop_queue(txq); 7597 } 7598 } 7599 EXPORT_SYMBOL(netif_tx_stop_all_queues); 7600 7601 /** 7602 * register_netdevice - register a network device 7603 * @dev: device to register 7604 * 7605 * Take a completed network device structure and add it to the kernel 7606 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7607 * chain. 0 is returned on success. A negative errno code is returned 7608 * on a failure to set up the device, or if the name is a duplicate. 7609 * 7610 * Callers must hold the rtnl semaphore. You may want 7611 * register_netdev() instead of this. 7612 * 7613 * BUGS: 7614 * The locking appears insufficient to guarantee two parallel registers 7615 * will not get the same name. 7616 */ 7617 7618 int register_netdevice(struct net_device *dev) 7619 { 7620 int ret; 7621 struct net *net = dev_net(dev); 7622 7623 BUG_ON(dev_boot_phase); 7624 ASSERT_RTNL(); 7625 7626 might_sleep(); 7627 7628 /* When net_device's are persistent, this will be fatal. */ 7629 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 7630 BUG_ON(!net); 7631 7632 spin_lock_init(&dev->addr_list_lock); 7633 netdev_set_addr_lockdep_class(dev); 7634 7635 ret = dev_get_valid_name(net, dev, dev->name); 7636 if (ret < 0) 7637 goto out; 7638 7639 /* Init, if this function is available */ 7640 if (dev->netdev_ops->ndo_init) { 7641 ret = dev->netdev_ops->ndo_init(dev); 7642 if (ret) { 7643 if (ret > 0) 7644 ret = -EIO; 7645 goto out; 7646 } 7647 } 7648 7649 if (((dev->hw_features | dev->features) & 7650 NETIF_F_HW_VLAN_CTAG_FILTER) && 7651 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 7652 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 7653 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 7654 ret = -EINVAL; 7655 goto err_uninit; 7656 } 7657 7658 ret = -EBUSY; 7659 if (!dev->ifindex) 7660 dev->ifindex = dev_new_index(net); 7661 else if (__dev_get_by_index(net, dev->ifindex)) 7662 goto err_uninit; 7663 7664 /* Transfer changeable features to wanted_features and enable 7665 * software offloads (GSO and GRO). 7666 */ 7667 dev->hw_features |= NETIF_F_SOFT_FEATURES; 7668 dev->features |= NETIF_F_SOFT_FEATURES; 7669 7670 if (dev->netdev_ops->ndo_udp_tunnel_add) { 7671 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 7672 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 7673 } 7674 7675 dev->wanted_features = dev->features & dev->hw_features; 7676 7677 if (!(dev->flags & IFF_LOOPBACK)) 7678 dev->hw_features |= NETIF_F_NOCACHE_COPY; 7679 7680 /* If IPv4 TCP segmentation offload is supported we should also 7681 * allow the device to enable segmenting the frame with the option 7682 * of ignoring a static IP ID value. This doesn't enable the 7683 * feature itself but allows the user to enable it later. 7684 */ 7685 if (dev->hw_features & NETIF_F_TSO) 7686 dev->hw_features |= NETIF_F_TSO_MANGLEID; 7687 if (dev->vlan_features & NETIF_F_TSO) 7688 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 7689 if (dev->mpls_features & NETIF_F_TSO) 7690 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 7691 if (dev->hw_enc_features & NETIF_F_TSO) 7692 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 7693 7694 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 7695 */ 7696 dev->vlan_features |= NETIF_F_HIGHDMA; 7697 7698 /* Make NETIF_F_SG inheritable to tunnel devices. 7699 */ 7700 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 7701 7702 /* Make NETIF_F_SG inheritable to MPLS. 7703 */ 7704 dev->mpls_features |= NETIF_F_SG; 7705 7706 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 7707 ret = notifier_to_errno(ret); 7708 if (ret) 7709 goto err_uninit; 7710 7711 ret = netdev_register_kobject(dev); 7712 if (ret) 7713 goto err_uninit; 7714 dev->reg_state = NETREG_REGISTERED; 7715 7716 __netdev_update_features(dev); 7717 7718 /* 7719 * Default initial state at registry is that the 7720 * device is present. 7721 */ 7722 7723 set_bit(__LINK_STATE_PRESENT, &dev->state); 7724 7725 linkwatch_init_dev(dev); 7726 7727 dev_init_scheduler(dev); 7728 dev_hold(dev); 7729 list_netdevice(dev); 7730 add_device_randomness(dev->dev_addr, dev->addr_len); 7731 7732 /* If the device has permanent device address, driver should 7733 * set dev_addr and also addr_assign_type should be set to 7734 * NET_ADDR_PERM (default value). 7735 */ 7736 if (dev->addr_assign_type == NET_ADDR_PERM) 7737 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 7738 7739 /* Notify protocols, that a new device appeared. */ 7740 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 7741 ret = notifier_to_errno(ret); 7742 if (ret) { 7743 rollback_registered(dev); 7744 dev->reg_state = NETREG_UNREGISTERED; 7745 } 7746 /* 7747 * Prevent userspace races by waiting until the network 7748 * device is fully setup before sending notifications. 7749 */ 7750 if (!dev->rtnl_link_ops || 7751 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7752 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7753 7754 out: 7755 return ret; 7756 7757 err_uninit: 7758 if (dev->netdev_ops->ndo_uninit) 7759 dev->netdev_ops->ndo_uninit(dev); 7760 if (dev->priv_destructor) 7761 dev->priv_destructor(dev); 7762 goto out; 7763 } 7764 EXPORT_SYMBOL(register_netdevice); 7765 7766 /** 7767 * init_dummy_netdev - init a dummy network device for NAPI 7768 * @dev: device to init 7769 * 7770 * This takes a network device structure and initialize the minimum 7771 * amount of fields so it can be used to schedule NAPI polls without 7772 * registering a full blown interface. This is to be used by drivers 7773 * that need to tie several hardware interfaces to a single NAPI 7774 * poll scheduler due to HW limitations. 7775 */ 7776 int init_dummy_netdev(struct net_device *dev) 7777 { 7778 /* Clear everything. Note we don't initialize spinlocks 7779 * are they aren't supposed to be taken by any of the 7780 * NAPI code and this dummy netdev is supposed to be 7781 * only ever used for NAPI polls 7782 */ 7783 memset(dev, 0, sizeof(struct net_device)); 7784 7785 /* make sure we BUG if trying to hit standard 7786 * register/unregister code path 7787 */ 7788 dev->reg_state = NETREG_DUMMY; 7789 7790 /* NAPI wants this */ 7791 INIT_LIST_HEAD(&dev->napi_list); 7792 7793 /* a dummy interface is started by default */ 7794 set_bit(__LINK_STATE_PRESENT, &dev->state); 7795 set_bit(__LINK_STATE_START, &dev->state); 7796 7797 /* Note : We dont allocate pcpu_refcnt for dummy devices, 7798 * because users of this 'device' dont need to change 7799 * its refcount. 7800 */ 7801 7802 return 0; 7803 } 7804 EXPORT_SYMBOL_GPL(init_dummy_netdev); 7805 7806 7807 /** 7808 * register_netdev - register a network device 7809 * @dev: device to register 7810 * 7811 * Take a completed network device structure and add it to the kernel 7812 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7813 * chain. 0 is returned on success. A negative errno code is returned 7814 * on a failure to set up the device, or if the name is a duplicate. 7815 * 7816 * This is a wrapper around register_netdevice that takes the rtnl semaphore 7817 * and expands the device name if you passed a format string to 7818 * alloc_netdev. 7819 */ 7820 int register_netdev(struct net_device *dev) 7821 { 7822 int err; 7823 7824 rtnl_lock(); 7825 err = register_netdevice(dev); 7826 rtnl_unlock(); 7827 return err; 7828 } 7829 EXPORT_SYMBOL(register_netdev); 7830 7831 int netdev_refcnt_read(const struct net_device *dev) 7832 { 7833 int i, refcnt = 0; 7834 7835 for_each_possible_cpu(i) 7836 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 7837 return refcnt; 7838 } 7839 EXPORT_SYMBOL(netdev_refcnt_read); 7840 7841 /** 7842 * netdev_wait_allrefs - wait until all references are gone. 7843 * @dev: target net_device 7844 * 7845 * This is called when unregistering network devices. 7846 * 7847 * Any protocol or device that holds a reference should register 7848 * for netdevice notification, and cleanup and put back the 7849 * reference if they receive an UNREGISTER event. 7850 * We can get stuck here if buggy protocols don't correctly 7851 * call dev_put. 7852 */ 7853 static void netdev_wait_allrefs(struct net_device *dev) 7854 { 7855 unsigned long rebroadcast_time, warning_time; 7856 int refcnt; 7857 7858 linkwatch_forget_dev(dev); 7859 7860 rebroadcast_time = warning_time = jiffies; 7861 refcnt = netdev_refcnt_read(dev); 7862 7863 while (refcnt != 0) { 7864 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 7865 rtnl_lock(); 7866 7867 /* Rebroadcast unregister notification */ 7868 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7869 7870 __rtnl_unlock(); 7871 rcu_barrier(); 7872 rtnl_lock(); 7873 7874 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7875 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 7876 &dev->state)) { 7877 /* We must not have linkwatch events 7878 * pending on unregister. If this 7879 * happens, we simply run the queue 7880 * unscheduled, resulting in a noop 7881 * for this device. 7882 */ 7883 linkwatch_run_queue(); 7884 } 7885 7886 __rtnl_unlock(); 7887 7888 rebroadcast_time = jiffies; 7889 } 7890 7891 msleep(250); 7892 7893 refcnt = netdev_refcnt_read(dev); 7894 7895 if (time_after(jiffies, warning_time + 10 * HZ)) { 7896 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 7897 dev->name, refcnt); 7898 warning_time = jiffies; 7899 } 7900 } 7901 } 7902 7903 /* The sequence is: 7904 * 7905 * rtnl_lock(); 7906 * ... 7907 * register_netdevice(x1); 7908 * register_netdevice(x2); 7909 * ... 7910 * unregister_netdevice(y1); 7911 * unregister_netdevice(y2); 7912 * ... 7913 * rtnl_unlock(); 7914 * free_netdev(y1); 7915 * free_netdev(y2); 7916 * 7917 * We are invoked by rtnl_unlock(). 7918 * This allows us to deal with problems: 7919 * 1) We can delete sysfs objects which invoke hotplug 7920 * without deadlocking with linkwatch via keventd. 7921 * 2) Since we run with the RTNL semaphore not held, we can sleep 7922 * safely in order to wait for the netdev refcnt to drop to zero. 7923 * 7924 * We must not return until all unregister events added during 7925 * the interval the lock was held have been completed. 7926 */ 7927 void netdev_run_todo(void) 7928 { 7929 struct list_head list; 7930 7931 /* Snapshot list, allow later requests */ 7932 list_replace_init(&net_todo_list, &list); 7933 7934 __rtnl_unlock(); 7935 7936 7937 /* Wait for rcu callbacks to finish before next phase */ 7938 if (!list_empty(&list)) 7939 rcu_barrier(); 7940 7941 while (!list_empty(&list)) { 7942 struct net_device *dev 7943 = list_first_entry(&list, struct net_device, todo_list); 7944 list_del(&dev->todo_list); 7945 7946 rtnl_lock(); 7947 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7948 __rtnl_unlock(); 7949 7950 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 7951 pr_err("network todo '%s' but state %d\n", 7952 dev->name, dev->reg_state); 7953 dump_stack(); 7954 continue; 7955 } 7956 7957 dev->reg_state = NETREG_UNREGISTERED; 7958 7959 netdev_wait_allrefs(dev); 7960 7961 /* paranoia */ 7962 BUG_ON(netdev_refcnt_read(dev)); 7963 BUG_ON(!list_empty(&dev->ptype_all)); 7964 BUG_ON(!list_empty(&dev->ptype_specific)); 7965 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 7966 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 7967 WARN_ON(dev->dn_ptr); 7968 7969 if (dev->priv_destructor) 7970 dev->priv_destructor(dev); 7971 if (dev->needs_free_netdev) 7972 free_netdev(dev); 7973 7974 /* Report a network device has been unregistered */ 7975 rtnl_lock(); 7976 dev_net(dev)->dev_unreg_count--; 7977 __rtnl_unlock(); 7978 wake_up(&netdev_unregistering_wq); 7979 7980 /* Free network device */ 7981 kobject_put(&dev->dev.kobj); 7982 } 7983 } 7984 7985 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 7986 * all the same fields in the same order as net_device_stats, with only 7987 * the type differing, but rtnl_link_stats64 may have additional fields 7988 * at the end for newer counters. 7989 */ 7990 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 7991 const struct net_device_stats *netdev_stats) 7992 { 7993 #if BITS_PER_LONG == 64 7994 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 7995 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 7996 /* zero out counters that only exist in rtnl_link_stats64 */ 7997 memset((char *)stats64 + sizeof(*netdev_stats), 0, 7998 sizeof(*stats64) - sizeof(*netdev_stats)); 7999 #else 8000 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 8001 const unsigned long *src = (const unsigned long *)netdev_stats; 8002 u64 *dst = (u64 *)stats64; 8003 8004 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 8005 for (i = 0; i < n; i++) 8006 dst[i] = src[i]; 8007 /* zero out counters that only exist in rtnl_link_stats64 */ 8008 memset((char *)stats64 + n * sizeof(u64), 0, 8009 sizeof(*stats64) - n * sizeof(u64)); 8010 #endif 8011 } 8012 EXPORT_SYMBOL(netdev_stats_to_stats64); 8013 8014 /** 8015 * dev_get_stats - get network device statistics 8016 * @dev: device to get statistics from 8017 * @storage: place to store stats 8018 * 8019 * Get network statistics from device. Return @storage. 8020 * The device driver may provide its own method by setting 8021 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 8022 * otherwise the internal statistics structure is used. 8023 */ 8024 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 8025 struct rtnl_link_stats64 *storage) 8026 { 8027 const struct net_device_ops *ops = dev->netdev_ops; 8028 8029 if (ops->ndo_get_stats64) { 8030 memset(storage, 0, sizeof(*storage)); 8031 ops->ndo_get_stats64(dev, storage); 8032 } else if (ops->ndo_get_stats) { 8033 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 8034 } else { 8035 netdev_stats_to_stats64(storage, &dev->stats); 8036 } 8037 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 8038 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 8039 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 8040 return storage; 8041 } 8042 EXPORT_SYMBOL(dev_get_stats); 8043 8044 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 8045 { 8046 struct netdev_queue *queue = dev_ingress_queue(dev); 8047 8048 #ifdef CONFIG_NET_CLS_ACT 8049 if (queue) 8050 return queue; 8051 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 8052 if (!queue) 8053 return NULL; 8054 netdev_init_one_queue(dev, queue, NULL); 8055 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 8056 queue->qdisc_sleeping = &noop_qdisc; 8057 rcu_assign_pointer(dev->ingress_queue, queue); 8058 #endif 8059 return queue; 8060 } 8061 8062 static const struct ethtool_ops default_ethtool_ops; 8063 8064 void netdev_set_default_ethtool_ops(struct net_device *dev, 8065 const struct ethtool_ops *ops) 8066 { 8067 if (dev->ethtool_ops == &default_ethtool_ops) 8068 dev->ethtool_ops = ops; 8069 } 8070 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 8071 8072 void netdev_freemem(struct net_device *dev) 8073 { 8074 char *addr = (char *)dev - dev->padded; 8075 8076 kvfree(addr); 8077 } 8078 8079 /** 8080 * alloc_netdev_mqs - allocate network device 8081 * @sizeof_priv: size of private data to allocate space for 8082 * @name: device name format string 8083 * @name_assign_type: origin of device name 8084 * @setup: callback to initialize device 8085 * @txqs: the number of TX subqueues to allocate 8086 * @rxqs: the number of RX subqueues to allocate 8087 * 8088 * Allocates a struct net_device with private data area for driver use 8089 * and performs basic initialization. Also allocates subqueue structs 8090 * for each queue on the device. 8091 */ 8092 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 8093 unsigned char name_assign_type, 8094 void (*setup)(struct net_device *), 8095 unsigned int txqs, unsigned int rxqs) 8096 { 8097 struct net_device *dev; 8098 unsigned int alloc_size; 8099 struct net_device *p; 8100 8101 BUG_ON(strlen(name) >= sizeof(dev->name)); 8102 8103 if (txqs < 1) { 8104 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 8105 return NULL; 8106 } 8107 8108 #ifdef CONFIG_SYSFS 8109 if (rxqs < 1) { 8110 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 8111 return NULL; 8112 } 8113 #endif 8114 8115 alloc_size = sizeof(struct net_device); 8116 if (sizeof_priv) { 8117 /* ensure 32-byte alignment of private area */ 8118 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 8119 alloc_size += sizeof_priv; 8120 } 8121 /* ensure 32-byte alignment of whole construct */ 8122 alloc_size += NETDEV_ALIGN - 1; 8123 8124 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8125 if (!p) 8126 return NULL; 8127 8128 dev = PTR_ALIGN(p, NETDEV_ALIGN); 8129 dev->padded = (char *)dev - (char *)p; 8130 8131 dev->pcpu_refcnt = alloc_percpu(int); 8132 if (!dev->pcpu_refcnt) 8133 goto free_dev; 8134 8135 if (dev_addr_init(dev)) 8136 goto free_pcpu; 8137 8138 dev_mc_init(dev); 8139 dev_uc_init(dev); 8140 8141 dev_net_set(dev, &init_net); 8142 8143 dev->gso_max_size = GSO_MAX_SIZE; 8144 dev->gso_max_segs = GSO_MAX_SEGS; 8145 8146 INIT_LIST_HEAD(&dev->napi_list); 8147 INIT_LIST_HEAD(&dev->unreg_list); 8148 INIT_LIST_HEAD(&dev->close_list); 8149 INIT_LIST_HEAD(&dev->link_watch_list); 8150 INIT_LIST_HEAD(&dev->adj_list.upper); 8151 INIT_LIST_HEAD(&dev->adj_list.lower); 8152 INIT_LIST_HEAD(&dev->ptype_all); 8153 INIT_LIST_HEAD(&dev->ptype_specific); 8154 #ifdef CONFIG_NET_SCHED 8155 hash_init(dev->qdisc_hash); 8156 #endif 8157 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 8158 setup(dev); 8159 8160 if (!dev->tx_queue_len) { 8161 dev->priv_flags |= IFF_NO_QUEUE; 8162 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 8163 } 8164 8165 dev->num_tx_queues = txqs; 8166 dev->real_num_tx_queues = txqs; 8167 if (netif_alloc_netdev_queues(dev)) 8168 goto free_all; 8169 8170 #ifdef CONFIG_SYSFS 8171 dev->num_rx_queues = rxqs; 8172 dev->real_num_rx_queues = rxqs; 8173 if (netif_alloc_rx_queues(dev)) 8174 goto free_all; 8175 #endif 8176 8177 strcpy(dev->name, name); 8178 dev->name_assign_type = name_assign_type; 8179 dev->group = INIT_NETDEV_GROUP; 8180 if (!dev->ethtool_ops) 8181 dev->ethtool_ops = &default_ethtool_ops; 8182 8183 nf_hook_ingress_init(dev); 8184 8185 return dev; 8186 8187 free_all: 8188 free_netdev(dev); 8189 return NULL; 8190 8191 free_pcpu: 8192 free_percpu(dev->pcpu_refcnt); 8193 free_dev: 8194 netdev_freemem(dev); 8195 return NULL; 8196 } 8197 EXPORT_SYMBOL(alloc_netdev_mqs); 8198 8199 /** 8200 * free_netdev - free network device 8201 * @dev: device 8202 * 8203 * This function does the last stage of destroying an allocated device 8204 * interface. The reference to the device object is released. If this 8205 * is the last reference then it will be freed.Must be called in process 8206 * context. 8207 */ 8208 void free_netdev(struct net_device *dev) 8209 { 8210 struct napi_struct *p, *n; 8211 struct bpf_prog *prog; 8212 8213 might_sleep(); 8214 netif_free_tx_queues(dev); 8215 #ifdef CONFIG_SYSFS 8216 kvfree(dev->_rx); 8217 #endif 8218 8219 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 8220 8221 /* Flush device addresses */ 8222 dev_addr_flush(dev); 8223 8224 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 8225 netif_napi_del(p); 8226 8227 free_percpu(dev->pcpu_refcnt); 8228 dev->pcpu_refcnt = NULL; 8229 8230 prog = rcu_dereference_protected(dev->xdp_prog, 1); 8231 if (prog) { 8232 bpf_prog_put(prog); 8233 static_key_slow_dec(&generic_xdp_needed); 8234 } 8235 8236 /* Compatibility with error handling in drivers */ 8237 if (dev->reg_state == NETREG_UNINITIALIZED) { 8238 netdev_freemem(dev); 8239 return; 8240 } 8241 8242 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 8243 dev->reg_state = NETREG_RELEASED; 8244 8245 /* will free via device release */ 8246 put_device(&dev->dev); 8247 } 8248 EXPORT_SYMBOL(free_netdev); 8249 8250 /** 8251 * synchronize_net - Synchronize with packet receive processing 8252 * 8253 * Wait for packets currently being received to be done. 8254 * Does not block later packets from starting. 8255 */ 8256 void synchronize_net(void) 8257 { 8258 might_sleep(); 8259 if (rtnl_is_locked()) 8260 synchronize_rcu_expedited(); 8261 else 8262 synchronize_rcu(); 8263 } 8264 EXPORT_SYMBOL(synchronize_net); 8265 8266 /** 8267 * unregister_netdevice_queue - remove device from the kernel 8268 * @dev: device 8269 * @head: list 8270 * 8271 * This function shuts down a device interface and removes it 8272 * from the kernel tables. 8273 * If head not NULL, device is queued to be unregistered later. 8274 * 8275 * Callers must hold the rtnl semaphore. You may want 8276 * unregister_netdev() instead of this. 8277 */ 8278 8279 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 8280 { 8281 ASSERT_RTNL(); 8282 8283 if (head) { 8284 list_move_tail(&dev->unreg_list, head); 8285 } else { 8286 rollback_registered(dev); 8287 /* Finish processing unregister after unlock */ 8288 net_set_todo(dev); 8289 } 8290 } 8291 EXPORT_SYMBOL(unregister_netdevice_queue); 8292 8293 /** 8294 * unregister_netdevice_many - unregister many devices 8295 * @head: list of devices 8296 * 8297 * Note: As most callers use a stack allocated list_head, 8298 * we force a list_del() to make sure stack wont be corrupted later. 8299 */ 8300 void unregister_netdevice_many(struct list_head *head) 8301 { 8302 struct net_device *dev; 8303 8304 if (!list_empty(head)) { 8305 rollback_registered_many(head); 8306 list_for_each_entry(dev, head, unreg_list) 8307 net_set_todo(dev); 8308 list_del(head); 8309 } 8310 } 8311 EXPORT_SYMBOL(unregister_netdevice_many); 8312 8313 /** 8314 * unregister_netdev - remove device from the kernel 8315 * @dev: device 8316 * 8317 * This function shuts down a device interface and removes it 8318 * from the kernel tables. 8319 * 8320 * This is just a wrapper for unregister_netdevice that takes 8321 * the rtnl semaphore. In general you want to use this and not 8322 * unregister_netdevice. 8323 */ 8324 void unregister_netdev(struct net_device *dev) 8325 { 8326 rtnl_lock(); 8327 unregister_netdevice(dev); 8328 rtnl_unlock(); 8329 } 8330 EXPORT_SYMBOL(unregister_netdev); 8331 8332 /** 8333 * dev_change_net_namespace - move device to different nethost namespace 8334 * @dev: device 8335 * @net: network namespace 8336 * @pat: If not NULL name pattern to try if the current device name 8337 * is already taken in the destination network namespace. 8338 * 8339 * This function shuts down a device interface and moves it 8340 * to a new network namespace. On success 0 is returned, on 8341 * a failure a netagive errno code is returned. 8342 * 8343 * Callers must hold the rtnl semaphore. 8344 */ 8345 8346 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 8347 { 8348 int err, new_nsid; 8349 8350 ASSERT_RTNL(); 8351 8352 /* Don't allow namespace local devices to be moved. */ 8353 err = -EINVAL; 8354 if (dev->features & NETIF_F_NETNS_LOCAL) 8355 goto out; 8356 8357 /* Ensure the device has been registrered */ 8358 if (dev->reg_state != NETREG_REGISTERED) 8359 goto out; 8360 8361 /* Get out if there is nothing todo */ 8362 err = 0; 8363 if (net_eq(dev_net(dev), net)) 8364 goto out; 8365 8366 /* Pick the destination device name, and ensure 8367 * we can use it in the destination network namespace. 8368 */ 8369 err = -EEXIST; 8370 if (__dev_get_by_name(net, dev->name)) { 8371 /* We get here if we can't use the current device name */ 8372 if (!pat) 8373 goto out; 8374 if (dev_get_valid_name(net, dev, pat) < 0) 8375 goto out; 8376 } 8377 8378 /* 8379 * And now a mini version of register_netdevice unregister_netdevice. 8380 */ 8381 8382 /* If device is running close it first. */ 8383 dev_close(dev); 8384 8385 /* And unlink it from device chain */ 8386 err = -ENODEV; 8387 unlist_netdevice(dev); 8388 8389 synchronize_net(); 8390 8391 /* Shutdown queueing discipline. */ 8392 dev_shutdown(dev); 8393 8394 /* Notify protocols, that we are about to destroy 8395 * this device. They should clean all the things. 8396 * 8397 * Note that dev->reg_state stays at NETREG_REGISTERED. 8398 * This is wanted because this way 8021q and macvlan know 8399 * the device is just moving and can keep their slaves up. 8400 */ 8401 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8402 rcu_barrier(); 8403 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 8404 if (dev->rtnl_link_ops && dev->rtnl_link_ops->get_link_net) 8405 new_nsid = peernet2id_alloc(dev_net(dev), net); 8406 else 8407 new_nsid = peernet2id(dev_net(dev), net); 8408 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid); 8409 8410 /* 8411 * Flush the unicast and multicast chains 8412 */ 8413 dev_uc_flush(dev); 8414 dev_mc_flush(dev); 8415 8416 /* Send a netdev-removed uevent to the old namespace */ 8417 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 8418 netdev_adjacent_del_links(dev); 8419 8420 /* Actually switch the network namespace */ 8421 dev_net_set(dev, net); 8422 8423 /* If there is an ifindex conflict assign a new one */ 8424 if (__dev_get_by_index(net, dev->ifindex)) 8425 dev->ifindex = dev_new_index(net); 8426 8427 /* Send a netdev-add uevent to the new namespace */ 8428 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 8429 netdev_adjacent_add_links(dev); 8430 8431 /* Fixup kobjects */ 8432 err = device_rename(&dev->dev, dev->name); 8433 WARN_ON(err); 8434 8435 /* Add the device back in the hashes */ 8436 list_netdevice(dev); 8437 8438 /* Notify protocols, that a new device appeared. */ 8439 call_netdevice_notifiers(NETDEV_REGISTER, dev); 8440 8441 /* 8442 * Prevent userspace races by waiting until the network 8443 * device is fully setup before sending notifications. 8444 */ 8445 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8446 8447 synchronize_net(); 8448 err = 0; 8449 out: 8450 return err; 8451 } 8452 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 8453 8454 static int dev_cpu_dead(unsigned int oldcpu) 8455 { 8456 struct sk_buff **list_skb; 8457 struct sk_buff *skb; 8458 unsigned int cpu; 8459 struct softnet_data *sd, *oldsd, *remsd = NULL; 8460 8461 local_irq_disable(); 8462 cpu = smp_processor_id(); 8463 sd = &per_cpu(softnet_data, cpu); 8464 oldsd = &per_cpu(softnet_data, oldcpu); 8465 8466 /* Find end of our completion_queue. */ 8467 list_skb = &sd->completion_queue; 8468 while (*list_skb) 8469 list_skb = &(*list_skb)->next; 8470 /* Append completion queue from offline CPU. */ 8471 *list_skb = oldsd->completion_queue; 8472 oldsd->completion_queue = NULL; 8473 8474 /* Append output queue from offline CPU. */ 8475 if (oldsd->output_queue) { 8476 *sd->output_queue_tailp = oldsd->output_queue; 8477 sd->output_queue_tailp = oldsd->output_queue_tailp; 8478 oldsd->output_queue = NULL; 8479 oldsd->output_queue_tailp = &oldsd->output_queue; 8480 } 8481 /* Append NAPI poll list from offline CPU, with one exception : 8482 * process_backlog() must be called by cpu owning percpu backlog. 8483 * We properly handle process_queue & input_pkt_queue later. 8484 */ 8485 while (!list_empty(&oldsd->poll_list)) { 8486 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 8487 struct napi_struct, 8488 poll_list); 8489 8490 list_del_init(&napi->poll_list); 8491 if (napi->poll == process_backlog) 8492 napi->state = 0; 8493 else 8494 ____napi_schedule(sd, napi); 8495 } 8496 8497 raise_softirq_irqoff(NET_TX_SOFTIRQ); 8498 local_irq_enable(); 8499 8500 #ifdef CONFIG_RPS 8501 remsd = oldsd->rps_ipi_list; 8502 oldsd->rps_ipi_list = NULL; 8503 #endif 8504 /* send out pending IPI's on offline CPU */ 8505 net_rps_send_ipi(remsd); 8506 8507 /* Process offline CPU's input_pkt_queue */ 8508 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 8509 netif_rx_ni(skb); 8510 input_queue_head_incr(oldsd); 8511 } 8512 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 8513 netif_rx_ni(skb); 8514 input_queue_head_incr(oldsd); 8515 } 8516 8517 return 0; 8518 } 8519 8520 /** 8521 * netdev_increment_features - increment feature set by one 8522 * @all: current feature set 8523 * @one: new feature set 8524 * @mask: mask feature set 8525 * 8526 * Computes a new feature set after adding a device with feature set 8527 * @one to the master device with current feature set @all. Will not 8528 * enable anything that is off in @mask. Returns the new feature set. 8529 */ 8530 netdev_features_t netdev_increment_features(netdev_features_t all, 8531 netdev_features_t one, netdev_features_t mask) 8532 { 8533 if (mask & NETIF_F_HW_CSUM) 8534 mask |= NETIF_F_CSUM_MASK; 8535 mask |= NETIF_F_VLAN_CHALLENGED; 8536 8537 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 8538 all &= one | ~NETIF_F_ALL_FOR_ALL; 8539 8540 /* If one device supports hw checksumming, set for all. */ 8541 if (all & NETIF_F_HW_CSUM) 8542 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 8543 8544 return all; 8545 } 8546 EXPORT_SYMBOL(netdev_increment_features); 8547 8548 static struct hlist_head * __net_init netdev_create_hash(void) 8549 { 8550 int i; 8551 struct hlist_head *hash; 8552 8553 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 8554 if (hash != NULL) 8555 for (i = 0; i < NETDEV_HASHENTRIES; i++) 8556 INIT_HLIST_HEAD(&hash[i]); 8557 8558 return hash; 8559 } 8560 8561 /* Initialize per network namespace state */ 8562 static int __net_init netdev_init(struct net *net) 8563 { 8564 if (net != &init_net) 8565 INIT_LIST_HEAD(&net->dev_base_head); 8566 8567 net->dev_name_head = netdev_create_hash(); 8568 if (net->dev_name_head == NULL) 8569 goto err_name; 8570 8571 net->dev_index_head = netdev_create_hash(); 8572 if (net->dev_index_head == NULL) 8573 goto err_idx; 8574 8575 return 0; 8576 8577 err_idx: 8578 kfree(net->dev_name_head); 8579 err_name: 8580 return -ENOMEM; 8581 } 8582 8583 /** 8584 * netdev_drivername - network driver for the device 8585 * @dev: network device 8586 * 8587 * Determine network driver for device. 8588 */ 8589 const char *netdev_drivername(const struct net_device *dev) 8590 { 8591 const struct device_driver *driver; 8592 const struct device *parent; 8593 const char *empty = ""; 8594 8595 parent = dev->dev.parent; 8596 if (!parent) 8597 return empty; 8598 8599 driver = parent->driver; 8600 if (driver && driver->name) 8601 return driver->name; 8602 return empty; 8603 } 8604 8605 static void __netdev_printk(const char *level, const struct net_device *dev, 8606 struct va_format *vaf) 8607 { 8608 if (dev && dev->dev.parent) { 8609 dev_printk_emit(level[1] - '0', 8610 dev->dev.parent, 8611 "%s %s %s%s: %pV", 8612 dev_driver_string(dev->dev.parent), 8613 dev_name(dev->dev.parent), 8614 netdev_name(dev), netdev_reg_state(dev), 8615 vaf); 8616 } else if (dev) { 8617 printk("%s%s%s: %pV", 8618 level, netdev_name(dev), netdev_reg_state(dev), vaf); 8619 } else { 8620 printk("%s(NULL net_device): %pV", level, vaf); 8621 } 8622 } 8623 8624 void netdev_printk(const char *level, const struct net_device *dev, 8625 const char *format, ...) 8626 { 8627 struct va_format vaf; 8628 va_list args; 8629 8630 va_start(args, format); 8631 8632 vaf.fmt = format; 8633 vaf.va = &args; 8634 8635 __netdev_printk(level, dev, &vaf); 8636 8637 va_end(args); 8638 } 8639 EXPORT_SYMBOL(netdev_printk); 8640 8641 #define define_netdev_printk_level(func, level) \ 8642 void func(const struct net_device *dev, const char *fmt, ...) \ 8643 { \ 8644 struct va_format vaf; \ 8645 va_list args; \ 8646 \ 8647 va_start(args, fmt); \ 8648 \ 8649 vaf.fmt = fmt; \ 8650 vaf.va = &args; \ 8651 \ 8652 __netdev_printk(level, dev, &vaf); \ 8653 \ 8654 va_end(args); \ 8655 } \ 8656 EXPORT_SYMBOL(func); 8657 8658 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 8659 define_netdev_printk_level(netdev_alert, KERN_ALERT); 8660 define_netdev_printk_level(netdev_crit, KERN_CRIT); 8661 define_netdev_printk_level(netdev_err, KERN_ERR); 8662 define_netdev_printk_level(netdev_warn, KERN_WARNING); 8663 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 8664 define_netdev_printk_level(netdev_info, KERN_INFO); 8665 8666 static void __net_exit netdev_exit(struct net *net) 8667 { 8668 kfree(net->dev_name_head); 8669 kfree(net->dev_index_head); 8670 } 8671 8672 static struct pernet_operations __net_initdata netdev_net_ops = { 8673 .init = netdev_init, 8674 .exit = netdev_exit, 8675 }; 8676 8677 static void __net_exit default_device_exit(struct net *net) 8678 { 8679 struct net_device *dev, *aux; 8680 /* 8681 * Push all migratable network devices back to the 8682 * initial network namespace 8683 */ 8684 rtnl_lock(); 8685 for_each_netdev_safe(net, dev, aux) { 8686 int err; 8687 char fb_name[IFNAMSIZ]; 8688 8689 /* Ignore unmoveable devices (i.e. loopback) */ 8690 if (dev->features & NETIF_F_NETNS_LOCAL) 8691 continue; 8692 8693 /* Leave virtual devices for the generic cleanup */ 8694 if (dev->rtnl_link_ops) 8695 continue; 8696 8697 /* Push remaining network devices to init_net */ 8698 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 8699 err = dev_change_net_namespace(dev, &init_net, fb_name); 8700 if (err) { 8701 pr_emerg("%s: failed to move %s to init_net: %d\n", 8702 __func__, dev->name, err); 8703 BUG(); 8704 } 8705 } 8706 rtnl_unlock(); 8707 } 8708 8709 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 8710 { 8711 /* Return with the rtnl_lock held when there are no network 8712 * devices unregistering in any network namespace in net_list. 8713 */ 8714 struct net *net; 8715 bool unregistering; 8716 DEFINE_WAIT_FUNC(wait, woken_wake_function); 8717 8718 add_wait_queue(&netdev_unregistering_wq, &wait); 8719 for (;;) { 8720 unregistering = false; 8721 rtnl_lock(); 8722 list_for_each_entry(net, net_list, exit_list) { 8723 if (net->dev_unreg_count > 0) { 8724 unregistering = true; 8725 break; 8726 } 8727 } 8728 if (!unregistering) 8729 break; 8730 __rtnl_unlock(); 8731 8732 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 8733 } 8734 remove_wait_queue(&netdev_unregistering_wq, &wait); 8735 } 8736 8737 static void __net_exit default_device_exit_batch(struct list_head *net_list) 8738 { 8739 /* At exit all network devices most be removed from a network 8740 * namespace. Do this in the reverse order of registration. 8741 * Do this across as many network namespaces as possible to 8742 * improve batching efficiency. 8743 */ 8744 struct net_device *dev; 8745 struct net *net; 8746 LIST_HEAD(dev_kill_list); 8747 8748 /* To prevent network device cleanup code from dereferencing 8749 * loopback devices or network devices that have been freed 8750 * wait here for all pending unregistrations to complete, 8751 * before unregistring the loopback device and allowing the 8752 * network namespace be freed. 8753 * 8754 * The netdev todo list containing all network devices 8755 * unregistrations that happen in default_device_exit_batch 8756 * will run in the rtnl_unlock() at the end of 8757 * default_device_exit_batch. 8758 */ 8759 rtnl_lock_unregistering(net_list); 8760 list_for_each_entry(net, net_list, exit_list) { 8761 for_each_netdev_reverse(net, dev) { 8762 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 8763 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 8764 else 8765 unregister_netdevice_queue(dev, &dev_kill_list); 8766 } 8767 } 8768 unregister_netdevice_many(&dev_kill_list); 8769 rtnl_unlock(); 8770 } 8771 8772 static struct pernet_operations __net_initdata default_device_ops = { 8773 .exit = default_device_exit, 8774 .exit_batch = default_device_exit_batch, 8775 }; 8776 8777 /* 8778 * Initialize the DEV module. At boot time this walks the device list and 8779 * unhooks any devices that fail to initialise (normally hardware not 8780 * present) and leaves us with a valid list of present and active devices. 8781 * 8782 */ 8783 8784 /* 8785 * This is called single threaded during boot, so no need 8786 * to take the rtnl semaphore. 8787 */ 8788 static int __init net_dev_init(void) 8789 { 8790 int i, rc = -ENOMEM; 8791 8792 BUG_ON(!dev_boot_phase); 8793 8794 if (dev_proc_init()) 8795 goto out; 8796 8797 if (netdev_kobject_init()) 8798 goto out; 8799 8800 INIT_LIST_HEAD(&ptype_all); 8801 for (i = 0; i < PTYPE_HASH_SIZE; i++) 8802 INIT_LIST_HEAD(&ptype_base[i]); 8803 8804 INIT_LIST_HEAD(&offload_base); 8805 8806 if (register_pernet_subsys(&netdev_net_ops)) 8807 goto out; 8808 8809 /* 8810 * Initialise the packet receive queues. 8811 */ 8812 8813 for_each_possible_cpu(i) { 8814 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 8815 struct softnet_data *sd = &per_cpu(softnet_data, i); 8816 8817 INIT_WORK(flush, flush_backlog); 8818 8819 skb_queue_head_init(&sd->input_pkt_queue); 8820 skb_queue_head_init(&sd->process_queue); 8821 INIT_LIST_HEAD(&sd->poll_list); 8822 sd->output_queue_tailp = &sd->output_queue; 8823 #ifdef CONFIG_RPS 8824 sd->csd.func = rps_trigger_softirq; 8825 sd->csd.info = sd; 8826 sd->cpu = i; 8827 #endif 8828 8829 sd->backlog.poll = process_backlog; 8830 sd->backlog.weight = weight_p; 8831 } 8832 8833 dev_boot_phase = 0; 8834 8835 /* The loopback device is special if any other network devices 8836 * is present in a network namespace the loopback device must 8837 * be present. Since we now dynamically allocate and free the 8838 * loopback device ensure this invariant is maintained by 8839 * keeping the loopback device as the first device on the 8840 * list of network devices. Ensuring the loopback devices 8841 * is the first device that appears and the last network device 8842 * that disappears. 8843 */ 8844 if (register_pernet_device(&loopback_net_ops)) 8845 goto out; 8846 8847 if (register_pernet_device(&default_device_ops)) 8848 goto out; 8849 8850 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 8851 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 8852 8853 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 8854 NULL, dev_cpu_dead); 8855 WARN_ON(rc < 0); 8856 rc = 0; 8857 out: 8858 return rc; 8859 } 8860 8861 subsys_initcall(net_dev_init); 8862