xref: /openbmc/linux/net/core/dev.c (revision 2eb3ed33e55d003d721d4d1a5e72fe323c12b4c0)
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
149 
150 #include "net-sysfs.h"
151 
152 /* Instead of increasing this, you should create a hash table. */
153 #define MAX_GRO_SKBS 8
154 
155 /* This should be increased if a protocol with a bigger head is added. */
156 #define GRO_MAX_HEAD (MAX_HEADER + 128)
157 
158 static DEFINE_SPINLOCK(ptype_lock);
159 static DEFINE_SPINLOCK(offload_lock);
160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161 struct list_head ptype_all __read_mostly;	/* Taps */
162 static struct list_head offload_base __read_mostly;
163 
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_info(unsigned long val,
166 					 struct netdev_notifier_info *info);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168 
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190 
191 static DEFINE_MUTEX(ifalias_mutex);
192 
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195 
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198 
199 static seqcount_t devnet_rename_seq;
200 
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203 	while (++net->dev_base_seq == 0)
204 		;
205 }
206 
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210 
211 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213 
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218 
219 static inline void rps_lock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 	spin_lock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225 
226 static inline void rps_unlock(struct softnet_data *sd)
227 {
228 #ifdef CONFIG_RPS
229 	spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
231 }
232 
233 /* Device list insertion */
234 static void list_netdevice(struct net_device *dev)
235 {
236 	struct net *net = dev_net(dev);
237 
238 	ASSERT_RTNL();
239 
240 	write_lock_bh(&dev_base_lock);
241 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
242 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
243 	hlist_add_head_rcu(&dev->index_hlist,
244 			   dev_index_hash(net, dev->ifindex));
245 	write_unlock_bh(&dev_base_lock);
246 
247 	dev_base_seq_inc(net);
248 }
249 
250 /* Device list removal
251  * caller must respect a RCU grace period before freeing/reusing dev
252  */
253 static void unlist_netdevice(struct net_device *dev)
254 {
255 	ASSERT_RTNL();
256 
257 	/* Unlink dev from the device chain */
258 	write_lock_bh(&dev_base_lock);
259 	list_del_rcu(&dev->dev_list);
260 	hlist_del_rcu(&dev->name_hlist);
261 	hlist_del_rcu(&dev->index_hlist);
262 	write_unlock_bh(&dev_base_lock);
263 
264 	dev_base_seq_inc(dev_net(dev));
265 }
266 
267 /*
268  *	Our notifier list
269  */
270 
271 static RAW_NOTIFIER_HEAD(netdev_chain);
272 
273 /*
274  *	Device drivers call our routines to queue packets here. We empty the
275  *	queue in the local softnet handler.
276  */
277 
278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
279 EXPORT_PER_CPU_SYMBOL(softnet_data);
280 
281 #ifdef CONFIG_LOCKDEP
282 /*
283  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
284  * according to dev->type
285  */
286 static const unsigned short netdev_lock_type[] = {
287 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
288 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
299 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
302 
303 static const char *const netdev_lock_name[] = {
304 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
319 
320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
322 
323 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324 {
325 	int i;
326 
327 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328 		if (netdev_lock_type[i] == dev_type)
329 			return i;
330 	/* the last key is used by default */
331 	return ARRAY_SIZE(netdev_lock_type) - 1;
332 }
333 
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 						 unsigned short dev_type)
336 {
337 	int i;
338 
339 	i = netdev_lock_pos(dev_type);
340 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341 				   netdev_lock_name[i]);
342 }
343 
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346 	int i;
347 
348 	i = netdev_lock_pos(dev->type);
349 	lockdep_set_class_and_name(&dev->addr_list_lock,
350 				   &netdev_addr_lock_key[i],
351 				   netdev_lock_name[i]);
352 }
353 #else
354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355 						 unsigned short dev_type)
356 {
357 }
358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
359 {
360 }
361 #endif
362 
363 /*******************************************************************************
364  *
365  *		Protocol management and registration routines
366  *
367  *******************************************************************************/
368 
369 
370 /*
371  *	Add a protocol ID to the list. Now that the input handler is
372  *	smarter we can dispense with all the messy stuff that used to be
373  *	here.
374  *
375  *	BEWARE!!! Protocol handlers, mangling input packets,
376  *	MUST BE last in hash buckets and checking protocol handlers
377  *	MUST start from promiscuous ptype_all chain in net_bh.
378  *	It is true now, do not change it.
379  *	Explanation follows: if protocol handler, mangling packet, will
380  *	be the first on list, it is not able to sense, that packet
381  *	is cloned and should be copied-on-write, so that it will
382  *	change it and subsequent readers will get broken packet.
383  *							--ANK (980803)
384  */
385 
386 static inline struct list_head *ptype_head(const struct packet_type *pt)
387 {
388 	if (pt->type == htons(ETH_P_ALL))
389 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
390 	else
391 		return pt->dev ? &pt->dev->ptype_specific :
392 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
393 }
394 
395 /**
396  *	dev_add_pack - add packet handler
397  *	@pt: packet type declaration
398  *
399  *	Add a protocol handler to the networking stack. The passed &packet_type
400  *	is linked into kernel lists and may not be freed until it has been
401  *	removed from the kernel lists.
402  *
403  *	This call does not sleep therefore it can not
404  *	guarantee all CPU's that are in middle of receiving packets
405  *	will see the new packet type (until the next received packet).
406  */
407 
408 void dev_add_pack(struct packet_type *pt)
409 {
410 	struct list_head *head = ptype_head(pt);
411 
412 	spin_lock(&ptype_lock);
413 	list_add_rcu(&pt->list, head);
414 	spin_unlock(&ptype_lock);
415 }
416 EXPORT_SYMBOL(dev_add_pack);
417 
418 /**
419  *	__dev_remove_pack	 - remove packet handler
420  *	@pt: packet type declaration
421  *
422  *	Remove a protocol handler that was previously added to the kernel
423  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
424  *	from the kernel lists and can be freed or reused once this function
425  *	returns.
426  *
427  *      The packet type might still be in use by receivers
428  *	and must not be freed until after all the CPU's have gone
429  *	through a quiescent state.
430  */
431 void __dev_remove_pack(struct packet_type *pt)
432 {
433 	struct list_head *head = ptype_head(pt);
434 	struct packet_type *pt1;
435 
436 	spin_lock(&ptype_lock);
437 
438 	list_for_each_entry(pt1, head, list) {
439 		if (pt == pt1) {
440 			list_del_rcu(&pt->list);
441 			goto out;
442 		}
443 	}
444 
445 	pr_warn("dev_remove_pack: %p not found\n", pt);
446 out:
447 	spin_unlock(&ptype_lock);
448 }
449 EXPORT_SYMBOL(__dev_remove_pack);
450 
451 /**
452  *	dev_remove_pack	 - remove packet handler
453  *	@pt: packet type declaration
454  *
455  *	Remove a protocol handler that was previously added to the kernel
456  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
457  *	from the kernel lists and can be freed or reused once this function
458  *	returns.
459  *
460  *	This call sleeps to guarantee that no CPU is looking at the packet
461  *	type after return.
462  */
463 void dev_remove_pack(struct packet_type *pt)
464 {
465 	__dev_remove_pack(pt);
466 
467 	synchronize_net();
468 }
469 EXPORT_SYMBOL(dev_remove_pack);
470 
471 
472 /**
473  *	dev_add_offload - register offload handlers
474  *	@po: protocol offload declaration
475  *
476  *	Add protocol offload handlers to the networking stack. The passed
477  *	&proto_offload is linked into kernel lists and may not be freed until
478  *	it has been removed from the kernel lists.
479  *
480  *	This call does not sleep therefore it can not
481  *	guarantee all CPU's that are in middle of receiving packets
482  *	will see the new offload handlers (until the next received packet).
483  */
484 void dev_add_offload(struct packet_offload *po)
485 {
486 	struct packet_offload *elem;
487 
488 	spin_lock(&offload_lock);
489 	list_for_each_entry(elem, &offload_base, list) {
490 		if (po->priority < elem->priority)
491 			break;
492 	}
493 	list_add_rcu(&po->list, elem->list.prev);
494 	spin_unlock(&offload_lock);
495 }
496 EXPORT_SYMBOL(dev_add_offload);
497 
498 /**
499  *	__dev_remove_offload	 - remove offload handler
500  *	@po: packet offload declaration
501  *
502  *	Remove a protocol offload handler that was previously added to the
503  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
504  *	is removed from the kernel lists and can be freed or reused once this
505  *	function returns.
506  *
507  *      The packet type might still be in use by receivers
508  *	and must not be freed until after all the CPU's have gone
509  *	through a quiescent state.
510  */
511 static void __dev_remove_offload(struct packet_offload *po)
512 {
513 	struct list_head *head = &offload_base;
514 	struct packet_offload *po1;
515 
516 	spin_lock(&offload_lock);
517 
518 	list_for_each_entry(po1, head, list) {
519 		if (po == po1) {
520 			list_del_rcu(&po->list);
521 			goto out;
522 		}
523 	}
524 
525 	pr_warn("dev_remove_offload: %p not found\n", po);
526 out:
527 	spin_unlock(&offload_lock);
528 }
529 
530 /**
531  *	dev_remove_offload	 - remove packet offload handler
532  *	@po: packet offload declaration
533  *
534  *	Remove a packet offload handler that was previously added to the kernel
535  *	offload handlers by dev_add_offload(). The passed &offload_type is
536  *	removed from the kernel lists and can be freed or reused once this
537  *	function returns.
538  *
539  *	This call sleeps to guarantee that no CPU is looking at the packet
540  *	type after return.
541  */
542 void dev_remove_offload(struct packet_offload *po)
543 {
544 	__dev_remove_offload(po);
545 
546 	synchronize_net();
547 }
548 EXPORT_SYMBOL(dev_remove_offload);
549 
550 /******************************************************************************
551  *
552  *		      Device Boot-time Settings Routines
553  *
554  ******************************************************************************/
555 
556 /* Boot time configuration table */
557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558 
559 /**
560  *	netdev_boot_setup_add	- add new setup entry
561  *	@name: name of the device
562  *	@map: configured settings for the device
563  *
564  *	Adds new setup entry to the dev_boot_setup list.  The function
565  *	returns 0 on error and 1 on success.  This is a generic routine to
566  *	all netdevices.
567  */
568 static int netdev_boot_setup_add(char *name, struct ifmap *map)
569 {
570 	struct netdev_boot_setup *s;
571 	int i;
572 
573 	s = dev_boot_setup;
574 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576 			memset(s[i].name, 0, sizeof(s[i].name));
577 			strlcpy(s[i].name, name, IFNAMSIZ);
578 			memcpy(&s[i].map, map, sizeof(s[i].map));
579 			break;
580 		}
581 	}
582 
583 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584 }
585 
586 /**
587  * netdev_boot_setup_check	- check boot time settings
588  * @dev: the netdevice
589  *
590  * Check boot time settings for the device.
591  * The found settings are set for the device to be used
592  * later in the device probing.
593  * Returns 0 if no settings found, 1 if they are.
594  */
595 int netdev_boot_setup_check(struct net_device *dev)
596 {
597 	struct netdev_boot_setup *s = dev_boot_setup;
598 	int i;
599 
600 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
602 		    !strcmp(dev->name, s[i].name)) {
603 			dev->irq = s[i].map.irq;
604 			dev->base_addr = s[i].map.base_addr;
605 			dev->mem_start = s[i].map.mem_start;
606 			dev->mem_end = s[i].map.mem_end;
607 			return 1;
608 		}
609 	}
610 	return 0;
611 }
612 EXPORT_SYMBOL(netdev_boot_setup_check);
613 
614 
615 /**
616  * netdev_boot_base	- get address from boot time settings
617  * @prefix: prefix for network device
618  * @unit: id for network device
619  *
620  * Check boot time settings for the base address of device.
621  * The found settings are set for the device to be used
622  * later in the device probing.
623  * Returns 0 if no settings found.
624  */
625 unsigned long netdev_boot_base(const char *prefix, int unit)
626 {
627 	const struct netdev_boot_setup *s = dev_boot_setup;
628 	char name[IFNAMSIZ];
629 	int i;
630 
631 	sprintf(name, "%s%d", prefix, unit);
632 
633 	/*
634 	 * If device already registered then return base of 1
635 	 * to indicate not to probe for this interface
636 	 */
637 	if (__dev_get_by_name(&init_net, name))
638 		return 1;
639 
640 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641 		if (!strcmp(name, s[i].name))
642 			return s[i].map.base_addr;
643 	return 0;
644 }
645 
646 /*
647  * Saves at boot time configured settings for any netdevice.
648  */
649 int __init netdev_boot_setup(char *str)
650 {
651 	int ints[5];
652 	struct ifmap map;
653 
654 	str = get_options(str, ARRAY_SIZE(ints), ints);
655 	if (!str || !*str)
656 		return 0;
657 
658 	/* Save settings */
659 	memset(&map, 0, sizeof(map));
660 	if (ints[0] > 0)
661 		map.irq = ints[1];
662 	if (ints[0] > 1)
663 		map.base_addr = ints[2];
664 	if (ints[0] > 2)
665 		map.mem_start = ints[3];
666 	if (ints[0] > 3)
667 		map.mem_end = ints[4];
668 
669 	/* Add new entry to the list */
670 	return netdev_boot_setup_add(str, &map);
671 }
672 
673 __setup("netdev=", netdev_boot_setup);
674 
675 /*******************************************************************************
676  *
677  *			    Device Interface Subroutines
678  *
679  *******************************************************************************/
680 
681 /**
682  *	dev_get_iflink	- get 'iflink' value of a interface
683  *	@dev: targeted interface
684  *
685  *	Indicates the ifindex the interface is linked to.
686  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
687  */
688 
689 int dev_get_iflink(const struct net_device *dev)
690 {
691 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 		return dev->netdev_ops->ndo_get_iflink(dev);
693 
694 	return dev->ifindex;
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697 
698 /**
699  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
700  *	@dev: targeted interface
701  *	@skb: The packet.
702  *
703  *	For better visibility of tunnel traffic OVS needs to retrieve
704  *	egress tunnel information for a packet. Following API allows
705  *	user to get this info.
706  */
707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709 	struct ip_tunnel_info *info;
710 
711 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
712 		return -EINVAL;
713 
714 	info = skb_tunnel_info_unclone(skb);
715 	if (!info)
716 		return -ENOMEM;
717 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 		return -EINVAL;
719 
720 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723 
724 /**
725  *	__dev_get_by_name	- find a device by its name
726  *	@net: the applicable net namespace
727  *	@name: name to find
728  *
729  *	Find an interface by name. Must be called under RTNL semaphore
730  *	or @dev_base_lock. If the name is found a pointer to the device
731  *	is returned. If the name is not found then %NULL is returned. The
732  *	reference counters are not incremented so the caller must be
733  *	careful with locks.
734  */
735 
736 struct net_device *__dev_get_by_name(struct net *net, const char *name)
737 {
738 	struct net_device *dev;
739 	struct hlist_head *head = dev_name_hash(net, name);
740 
741 	hlist_for_each_entry(dev, head, name_hlist)
742 		if (!strncmp(dev->name, name, IFNAMSIZ))
743 			return dev;
744 
745 	return NULL;
746 }
747 EXPORT_SYMBOL(__dev_get_by_name);
748 
749 /**
750  * dev_get_by_name_rcu	- find a device by its name
751  * @net: the applicable net namespace
752  * @name: name to find
753  *
754  * Find an interface by name.
755  * If the name is found a pointer to the device is returned.
756  * If the name is not found then %NULL is returned.
757  * The reference counters are not incremented so the caller must be
758  * careful with locks. The caller must hold RCU lock.
759  */
760 
761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762 {
763 	struct net_device *dev;
764 	struct hlist_head *head = dev_name_hash(net, name);
765 
766 	hlist_for_each_entry_rcu(dev, head, name_hlist)
767 		if (!strncmp(dev->name, name, IFNAMSIZ))
768 			return dev;
769 
770 	return NULL;
771 }
772 EXPORT_SYMBOL(dev_get_by_name_rcu);
773 
774 /**
775  *	dev_get_by_name		- find a device by its name
776  *	@net: the applicable net namespace
777  *	@name: name to find
778  *
779  *	Find an interface by name. This can be called from any
780  *	context and does its own locking. The returned handle has
781  *	the usage count incremented and the caller must use dev_put() to
782  *	release it when it is no longer needed. %NULL is returned if no
783  *	matching device is found.
784  */
785 
786 struct net_device *dev_get_by_name(struct net *net, const char *name)
787 {
788 	struct net_device *dev;
789 
790 	rcu_read_lock();
791 	dev = dev_get_by_name_rcu(net, name);
792 	if (dev)
793 		dev_hold(dev);
794 	rcu_read_unlock();
795 	return dev;
796 }
797 EXPORT_SYMBOL(dev_get_by_name);
798 
799 /**
800  *	__dev_get_by_index - find a device by its ifindex
801  *	@net: the applicable net namespace
802  *	@ifindex: index of device
803  *
804  *	Search for an interface by index. Returns %NULL if the device
805  *	is not found or a pointer to the device. The device has not
806  *	had its reference counter increased so the caller must be careful
807  *	about locking. The caller must hold either the RTNL semaphore
808  *	or @dev_base_lock.
809  */
810 
811 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
812 {
813 	struct net_device *dev;
814 	struct hlist_head *head = dev_index_hash(net, ifindex);
815 
816 	hlist_for_each_entry(dev, head, index_hlist)
817 		if (dev->ifindex == ifindex)
818 			return dev;
819 
820 	return NULL;
821 }
822 EXPORT_SYMBOL(__dev_get_by_index);
823 
824 /**
825  *	dev_get_by_index_rcu - find a device by its ifindex
826  *	@net: the applicable net namespace
827  *	@ifindex: index of device
828  *
829  *	Search for an interface by index. Returns %NULL if the device
830  *	is not found or a pointer to the device. The device has not
831  *	had its reference counter increased so the caller must be careful
832  *	about locking. The caller must hold RCU lock.
833  */
834 
835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836 {
837 	struct net_device *dev;
838 	struct hlist_head *head = dev_index_hash(net, ifindex);
839 
840 	hlist_for_each_entry_rcu(dev, head, index_hlist)
841 		if (dev->ifindex == ifindex)
842 			return dev;
843 
844 	return NULL;
845 }
846 EXPORT_SYMBOL(dev_get_by_index_rcu);
847 
848 
849 /**
850  *	dev_get_by_index - find a device by its ifindex
851  *	@net: the applicable net namespace
852  *	@ifindex: index of device
853  *
854  *	Search for an interface by index. Returns NULL if the device
855  *	is not found or a pointer to the device. The device returned has
856  *	had a reference added and the pointer is safe until the user calls
857  *	dev_put to indicate they have finished with it.
858  */
859 
860 struct net_device *dev_get_by_index(struct net *net, int ifindex)
861 {
862 	struct net_device *dev;
863 
864 	rcu_read_lock();
865 	dev = dev_get_by_index_rcu(net, ifindex);
866 	if (dev)
867 		dev_hold(dev);
868 	rcu_read_unlock();
869 	return dev;
870 }
871 EXPORT_SYMBOL(dev_get_by_index);
872 
873 /**
874  *	dev_get_by_napi_id - find a device by napi_id
875  *	@napi_id: ID of the NAPI struct
876  *
877  *	Search for an interface by NAPI ID. Returns %NULL if the device
878  *	is not found or a pointer to the device. The device has not had
879  *	its reference counter increased so the caller must be careful
880  *	about locking. The caller must hold RCU lock.
881  */
882 
883 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884 {
885 	struct napi_struct *napi;
886 
887 	WARN_ON_ONCE(!rcu_read_lock_held());
888 
889 	if (napi_id < MIN_NAPI_ID)
890 		return NULL;
891 
892 	napi = napi_by_id(napi_id);
893 
894 	return napi ? napi->dev : NULL;
895 }
896 EXPORT_SYMBOL(dev_get_by_napi_id);
897 
898 /**
899  *	netdev_get_name - get a netdevice name, knowing its ifindex.
900  *	@net: network namespace
901  *	@name: a pointer to the buffer where the name will be stored.
902  *	@ifindex: the ifindex of the interface to get the name from.
903  *
904  *	The use of raw_seqcount_begin() and cond_resched() before
905  *	retrying is required as we want to give the writers a chance
906  *	to complete when CONFIG_PREEMPT is not set.
907  */
908 int netdev_get_name(struct net *net, char *name, int ifindex)
909 {
910 	struct net_device *dev;
911 	unsigned int seq;
912 
913 retry:
914 	seq = raw_seqcount_begin(&devnet_rename_seq);
915 	rcu_read_lock();
916 	dev = dev_get_by_index_rcu(net, ifindex);
917 	if (!dev) {
918 		rcu_read_unlock();
919 		return -ENODEV;
920 	}
921 
922 	strcpy(name, dev->name);
923 	rcu_read_unlock();
924 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
925 		cond_resched();
926 		goto retry;
927 	}
928 
929 	return 0;
930 }
931 
932 /**
933  *	dev_getbyhwaddr_rcu - find a device by its hardware address
934  *	@net: the applicable net namespace
935  *	@type: media type of device
936  *	@ha: hardware address
937  *
938  *	Search for an interface by MAC address. Returns NULL if the device
939  *	is not found or a pointer to the device.
940  *	The caller must hold RCU or RTNL.
941  *	The returned device has not had its ref count increased
942  *	and the caller must therefore be careful about locking
943  *
944  */
945 
946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947 				       const char *ha)
948 {
949 	struct net_device *dev;
950 
951 	for_each_netdev_rcu(net, dev)
952 		if (dev->type == type &&
953 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
954 			return dev;
955 
956 	return NULL;
957 }
958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
959 
960 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
961 {
962 	struct net_device *dev;
963 
964 	ASSERT_RTNL();
965 	for_each_netdev(net, dev)
966 		if (dev->type == type)
967 			return dev;
968 
969 	return NULL;
970 }
971 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
972 
973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
974 {
975 	struct net_device *dev, *ret = NULL;
976 
977 	rcu_read_lock();
978 	for_each_netdev_rcu(net, dev)
979 		if (dev->type == type) {
980 			dev_hold(dev);
981 			ret = dev;
982 			break;
983 		}
984 	rcu_read_unlock();
985 	return ret;
986 }
987 EXPORT_SYMBOL(dev_getfirstbyhwtype);
988 
989 /**
990  *	__dev_get_by_flags - find any device with given flags
991  *	@net: the applicable net namespace
992  *	@if_flags: IFF_* values
993  *	@mask: bitmask of bits in if_flags to check
994  *
995  *	Search for any interface with the given flags. Returns NULL if a device
996  *	is not found or a pointer to the device. Must be called inside
997  *	rtnl_lock(), and result refcount is unchanged.
998  */
999 
1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001 				      unsigned short mask)
1002 {
1003 	struct net_device *dev, *ret;
1004 
1005 	ASSERT_RTNL();
1006 
1007 	ret = NULL;
1008 	for_each_netdev(net, dev) {
1009 		if (((dev->flags ^ if_flags) & mask) == 0) {
1010 			ret = dev;
1011 			break;
1012 		}
1013 	}
1014 	return ret;
1015 }
1016 EXPORT_SYMBOL(__dev_get_by_flags);
1017 
1018 /**
1019  *	dev_valid_name - check if name is okay for network device
1020  *	@name: name string
1021  *
1022  *	Network device names need to be valid file names to
1023  *	to allow sysfs to work.  We also disallow any kind of
1024  *	whitespace.
1025  */
1026 bool dev_valid_name(const char *name)
1027 {
1028 	if (*name == '\0')
1029 		return false;
1030 	if (strlen(name) >= IFNAMSIZ)
1031 		return false;
1032 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1033 		return false;
1034 
1035 	while (*name) {
1036 		if (*name == '/' || *name == ':' || isspace(*name))
1037 			return false;
1038 		name++;
1039 	}
1040 	return true;
1041 }
1042 EXPORT_SYMBOL(dev_valid_name);
1043 
1044 /**
1045  *	__dev_alloc_name - allocate a name for a device
1046  *	@net: network namespace to allocate the device name in
1047  *	@name: name format string
1048  *	@buf:  scratch buffer and result name string
1049  *
1050  *	Passed a format string - eg "lt%d" it will try and find a suitable
1051  *	id. It scans list of devices to build up a free map, then chooses
1052  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1053  *	while allocating the name and adding the device in order to avoid
1054  *	duplicates.
1055  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056  *	Returns the number of the unit assigned or a negative errno code.
1057  */
1058 
1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1060 {
1061 	int i = 0;
1062 	const char *p;
1063 	const int max_netdevices = 8*PAGE_SIZE;
1064 	unsigned long *inuse;
1065 	struct net_device *d;
1066 
1067 	p = strnchr(name, IFNAMSIZ-1, '%');
1068 	if (p) {
1069 		/*
1070 		 * Verify the string as this thing may have come from
1071 		 * the user.  There must be either one "%d" and no other "%"
1072 		 * characters.
1073 		 */
1074 		if (p[1] != 'd' || strchr(p + 2, '%'))
1075 			return -EINVAL;
1076 
1077 		/* Use one page as a bit array of possible slots */
1078 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1079 		if (!inuse)
1080 			return -ENOMEM;
1081 
1082 		for_each_netdev(net, d) {
1083 			if (!sscanf(d->name, name, &i))
1084 				continue;
1085 			if (i < 0 || i >= max_netdevices)
1086 				continue;
1087 
1088 			/*  avoid cases where sscanf is not exact inverse of printf */
1089 			snprintf(buf, IFNAMSIZ, name, i);
1090 			if (!strncmp(buf, d->name, IFNAMSIZ))
1091 				set_bit(i, inuse);
1092 		}
1093 
1094 		i = find_first_zero_bit(inuse, max_netdevices);
1095 		free_page((unsigned long) inuse);
1096 	}
1097 
1098 	if (buf != name)
1099 		snprintf(buf, IFNAMSIZ, name, i);
1100 	if (!__dev_get_by_name(net, buf))
1101 		return i;
1102 
1103 	/* It is possible to run out of possible slots
1104 	 * when the name is long and there isn't enough space left
1105 	 * for the digits, or if all bits are used.
1106 	 */
1107 	return -ENFILE;
1108 }
1109 
1110 /**
1111  *	dev_alloc_name - allocate a name for a device
1112  *	@dev: device
1113  *	@name: name format string
1114  *
1115  *	Passed a format string - eg "lt%d" it will try and find a suitable
1116  *	id. It scans list of devices to build up a free map, then chooses
1117  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1118  *	while allocating the name and adding the device in order to avoid
1119  *	duplicates.
1120  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1121  *	Returns the number of the unit assigned or a negative errno code.
1122  */
1123 
1124 int dev_alloc_name(struct net_device *dev, const char *name)
1125 {
1126 	char buf[IFNAMSIZ];
1127 	struct net *net;
1128 	int ret;
1129 
1130 	BUG_ON(!dev_net(dev));
1131 	net = dev_net(dev);
1132 	ret = __dev_alloc_name(net, name, buf);
1133 	if (ret >= 0)
1134 		strlcpy(dev->name, buf, IFNAMSIZ);
1135 	return ret;
1136 }
1137 EXPORT_SYMBOL(dev_alloc_name);
1138 
1139 static int dev_alloc_name_ns(struct net *net,
1140 			     struct net_device *dev,
1141 			     const char *name)
1142 {
1143 	char buf[IFNAMSIZ];
1144 	int ret;
1145 
1146 	ret = __dev_alloc_name(net, name, buf);
1147 	if (ret >= 0)
1148 		strlcpy(dev->name, buf, IFNAMSIZ);
1149 	return ret;
1150 }
1151 
1152 int dev_get_valid_name(struct net *net, struct net_device *dev,
1153 		       const char *name)
1154 {
1155 	BUG_ON(!net);
1156 
1157 	if (!dev_valid_name(name))
1158 		return -EINVAL;
1159 
1160 	if (strchr(name, '%'))
1161 		return dev_alloc_name_ns(net, dev, name);
1162 	else if (__dev_get_by_name(net, name))
1163 		return -EEXIST;
1164 	else if (dev->name != name)
1165 		strlcpy(dev->name, name, IFNAMSIZ);
1166 
1167 	return 0;
1168 }
1169 EXPORT_SYMBOL(dev_get_valid_name);
1170 
1171 /**
1172  *	dev_change_name - change name of a device
1173  *	@dev: device
1174  *	@newname: name (or format string) must be at least IFNAMSIZ
1175  *
1176  *	Change name of a device, can pass format strings "eth%d".
1177  *	for wildcarding.
1178  */
1179 int dev_change_name(struct net_device *dev, const char *newname)
1180 {
1181 	unsigned char old_assign_type;
1182 	char oldname[IFNAMSIZ];
1183 	int err = 0;
1184 	int ret;
1185 	struct net *net;
1186 
1187 	ASSERT_RTNL();
1188 	BUG_ON(!dev_net(dev));
1189 
1190 	net = dev_net(dev);
1191 	if (dev->flags & IFF_UP)
1192 		return -EBUSY;
1193 
1194 	write_seqcount_begin(&devnet_rename_seq);
1195 
1196 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1197 		write_seqcount_end(&devnet_rename_seq);
1198 		return 0;
1199 	}
1200 
1201 	memcpy(oldname, dev->name, IFNAMSIZ);
1202 
1203 	err = dev_get_valid_name(net, dev, newname);
1204 	if (err < 0) {
1205 		write_seqcount_end(&devnet_rename_seq);
1206 		return err;
1207 	}
1208 
1209 	if (oldname[0] && !strchr(oldname, '%'))
1210 		netdev_info(dev, "renamed from %s\n", oldname);
1211 
1212 	old_assign_type = dev->name_assign_type;
1213 	dev->name_assign_type = NET_NAME_RENAMED;
1214 
1215 rollback:
1216 	ret = device_rename(&dev->dev, dev->name);
1217 	if (ret) {
1218 		memcpy(dev->name, oldname, IFNAMSIZ);
1219 		dev->name_assign_type = old_assign_type;
1220 		write_seqcount_end(&devnet_rename_seq);
1221 		return ret;
1222 	}
1223 
1224 	write_seqcount_end(&devnet_rename_seq);
1225 
1226 	netdev_adjacent_rename_links(dev, oldname);
1227 
1228 	write_lock_bh(&dev_base_lock);
1229 	hlist_del_rcu(&dev->name_hlist);
1230 	write_unlock_bh(&dev_base_lock);
1231 
1232 	synchronize_rcu();
1233 
1234 	write_lock_bh(&dev_base_lock);
1235 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1236 	write_unlock_bh(&dev_base_lock);
1237 
1238 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1239 	ret = notifier_to_errno(ret);
1240 
1241 	if (ret) {
1242 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1243 		if (err >= 0) {
1244 			err = ret;
1245 			write_seqcount_begin(&devnet_rename_seq);
1246 			memcpy(dev->name, oldname, IFNAMSIZ);
1247 			memcpy(oldname, newname, IFNAMSIZ);
1248 			dev->name_assign_type = old_assign_type;
1249 			old_assign_type = NET_NAME_RENAMED;
1250 			goto rollback;
1251 		} else {
1252 			pr_err("%s: name change rollback failed: %d\n",
1253 			       dev->name, ret);
1254 		}
1255 	}
1256 
1257 	return err;
1258 }
1259 
1260 /**
1261  *	dev_set_alias - change ifalias of a device
1262  *	@dev: device
1263  *	@alias: name up to IFALIASZ
1264  *	@len: limit of bytes to copy from info
1265  *
1266  *	Set ifalias for a device,
1267  */
1268 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1269 {
1270 	struct dev_ifalias *new_alias = NULL;
1271 
1272 	if (len >= IFALIASZ)
1273 		return -EINVAL;
1274 
1275 	if (len) {
1276 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1277 		if (!new_alias)
1278 			return -ENOMEM;
1279 
1280 		memcpy(new_alias->ifalias, alias, len);
1281 		new_alias->ifalias[len] = 0;
1282 	}
1283 
1284 	mutex_lock(&ifalias_mutex);
1285 	rcu_swap_protected(dev->ifalias, new_alias,
1286 			   mutex_is_locked(&ifalias_mutex));
1287 	mutex_unlock(&ifalias_mutex);
1288 
1289 	if (new_alias)
1290 		kfree_rcu(new_alias, rcuhead);
1291 
1292 	return len;
1293 }
1294 
1295 /**
1296  *	dev_get_alias - get ifalias of a device
1297  *	@dev: device
1298  *	@name: buffer to store name of ifalias
1299  *	@len: size of buffer
1300  *
1301  *	get ifalias for a device.  Caller must make sure dev cannot go
1302  *	away,  e.g. rcu read lock or own a reference count to device.
1303  */
1304 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1305 {
1306 	const struct dev_ifalias *alias;
1307 	int ret = 0;
1308 
1309 	rcu_read_lock();
1310 	alias = rcu_dereference(dev->ifalias);
1311 	if (alias)
1312 		ret = snprintf(name, len, "%s", alias->ifalias);
1313 	rcu_read_unlock();
1314 
1315 	return ret;
1316 }
1317 
1318 /**
1319  *	netdev_features_change - device changes features
1320  *	@dev: device to cause notification
1321  *
1322  *	Called to indicate a device has changed features.
1323  */
1324 void netdev_features_change(struct net_device *dev)
1325 {
1326 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1327 }
1328 EXPORT_SYMBOL(netdev_features_change);
1329 
1330 /**
1331  *	netdev_state_change - device changes state
1332  *	@dev: device to cause notification
1333  *
1334  *	Called to indicate a device has changed state. This function calls
1335  *	the notifier chains for netdev_chain and sends a NEWLINK message
1336  *	to the routing socket.
1337  */
1338 void netdev_state_change(struct net_device *dev)
1339 {
1340 	if (dev->flags & IFF_UP) {
1341 		struct netdev_notifier_change_info change_info = {
1342 			.info.dev = dev,
1343 		};
1344 
1345 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1346 					      &change_info.info);
1347 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1348 	}
1349 }
1350 EXPORT_SYMBOL(netdev_state_change);
1351 
1352 /**
1353  * netdev_notify_peers - notify network peers about existence of @dev
1354  * @dev: network device
1355  *
1356  * Generate traffic such that interested network peers are aware of
1357  * @dev, such as by generating a gratuitous ARP. This may be used when
1358  * a device wants to inform the rest of the network about some sort of
1359  * reconfiguration such as a failover event or virtual machine
1360  * migration.
1361  */
1362 void netdev_notify_peers(struct net_device *dev)
1363 {
1364 	rtnl_lock();
1365 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1366 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1367 	rtnl_unlock();
1368 }
1369 EXPORT_SYMBOL(netdev_notify_peers);
1370 
1371 static int __dev_open(struct net_device *dev)
1372 {
1373 	const struct net_device_ops *ops = dev->netdev_ops;
1374 	int ret;
1375 
1376 	ASSERT_RTNL();
1377 
1378 	if (!netif_device_present(dev))
1379 		return -ENODEV;
1380 
1381 	/* Block netpoll from trying to do any rx path servicing.
1382 	 * If we don't do this there is a chance ndo_poll_controller
1383 	 * or ndo_poll may be running while we open the device
1384 	 */
1385 	netpoll_poll_disable(dev);
1386 
1387 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1388 	ret = notifier_to_errno(ret);
1389 	if (ret)
1390 		return ret;
1391 
1392 	set_bit(__LINK_STATE_START, &dev->state);
1393 
1394 	if (ops->ndo_validate_addr)
1395 		ret = ops->ndo_validate_addr(dev);
1396 
1397 	if (!ret && ops->ndo_open)
1398 		ret = ops->ndo_open(dev);
1399 
1400 	netpoll_poll_enable(dev);
1401 
1402 	if (ret)
1403 		clear_bit(__LINK_STATE_START, &dev->state);
1404 	else {
1405 		dev->flags |= IFF_UP;
1406 		dev_set_rx_mode(dev);
1407 		dev_activate(dev);
1408 		add_device_randomness(dev->dev_addr, dev->addr_len);
1409 	}
1410 
1411 	return ret;
1412 }
1413 
1414 /**
1415  *	dev_open	- prepare an interface for use.
1416  *	@dev:	device to open
1417  *
1418  *	Takes a device from down to up state. The device's private open
1419  *	function is invoked and then the multicast lists are loaded. Finally
1420  *	the device is moved into the up state and a %NETDEV_UP message is
1421  *	sent to the netdev notifier chain.
1422  *
1423  *	Calling this function on an active interface is a nop. On a failure
1424  *	a negative errno code is returned.
1425  */
1426 int dev_open(struct net_device *dev)
1427 {
1428 	int ret;
1429 
1430 	if (dev->flags & IFF_UP)
1431 		return 0;
1432 
1433 	ret = __dev_open(dev);
1434 	if (ret < 0)
1435 		return ret;
1436 
1437 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1438 	call_netdevice_notifiers(NETDEV_UP, dev);
1439 
1440 	return ret;
1441 }
1442 EXPORT_SYMBOL(dev_open);
1443 
1444 static void __dev_close_many(struct list_head *head)
1445 {
1446 	struct net_device *dev;
1447 
1448 	ASSERT_RTNL();
1449 	might_sleep();
1450 
1451 	list_for_each_entry(dev, head, close_list) {
1452 		/* Temporarily disable netpoll until the interface is down */
1453 		netpoll_poll_disable(dev);
1454 
1455 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1456 
1457 		clear_bit(__LINK_STATE_START, &dev->state);
1458 
1459 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1460 		 * can be even on different cpu. So just clear netif_running().
1461 		 *
1462 		 * dev->stop() will invoke napi_disable() on all of it's
1463 		 * napi_struct instances on this device.
1464 		 */
1465 		smp_mb__after_atomic(); /* Commit netif_running(). */
1466 	}
1467 
1468 	dev_deactivate_many(head);
1469 
1470 	list_for_each_entry(dev, head, close_list) {
1471 		const struct net_device_ops *ops = dev->netdev_ops;
1472 
1473 		/*
1474 		 *	Call the device specific close. This cannot fail.
1475 		 *	Only if device is UP
1476 		 *
1477 		 *	We allow it to be called even after a DETACH hot-plug
1478 		 *	event.
1479 		 */
1480 		if (ops->ndo_stop)
1481 			ops->ndo_stop(dev);
1482 
1483 		dev->flags &= ~IFF_UP;
1484 		netpoll_poll_enable(dev);
1485 	}
1486 }
1487 
1488 static void __dev_close(struct net_device *dev)
1489 {
1490 	LIST_HEAD(single);
1491 
1492 	list_add(&dev->close_list, &single);
1493 	__dev_close_many(&single);
1494 	list_del(&single);
1495 }
1496 
1497 void dev_close_many(struct list_head *head, bool unlink)
1498 {
1499 	struct net_device *dev, *tmp;
1500 
1501 	/* Remove the devices that don't need to be closed */
1502 	list_for_each_entry_safe(dev, tmp, head, close_list)
1503 		if (!(dev->flags & IFF_UP))
1504 			list_del_init(&dev->close_list);
1505 
1506 	__dev_close_many(head);
1507 
1508 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1509 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1510 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1511 		if (unlink)
1512 			list_del_init(&dev->close_list);
1513 	}
1514 }
1515 EXPORT_SYMBOL(dev_close_many);
1516 
1517 /**
1518  *	dev_close - shutdown an interface.
1519  *	@dev: device to shutdown
1520  *
1521  *	This function moves an active device into down state. A
1522  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1523  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1524  *	chain.
1525  */
1526 void dev_close(struct net_device *dev)
1527 {
1528 	if (dev->flags & IFF_UP) {
1529 		LIST_HEAD(single);
1530 
1531 		list_add(&dev->close_list, &single);
1532 		dev_close_many(&single, true);
1533 		list_del(&single);
1534 	}
1535 }
1536 EXPORT_SYMBOL(dev_close);
1537 
1538 
1539 /**
1540  *	dev_disable_lro - disable Large Receive Offload on a device
1541  *	@dev: device
1542  *
1543  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1544  *	called under RTNL.  This is needed if received packets may be
1545  *	forwarded to another interface.
1546  */
1547 void dev_disable_lro(struct net_device *dev)
1548 {
1549 	struct net_device *lower_dev;
1550 	struct list_head *iter;
1551 
1552 	dev->wanted_features &= ~NETIF_F_LRO;
1553 	netdev_update_features(dev);
1554 
1555 	if (unlikely(dev->features & NETIF_F_LRO))
1556 		netdev_WARN(dev, "failed to disable LRO!\n");
1557 
1558 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1559 		dev_disable_lro(lower_dev);
1560 }
1561 EXPORT_SYMBOL(dev_disable_lro);
1562 
1563 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1564 				   struct net_device *dev)
1565 {
1566 	struct netdev_notifier_info info = {
1567 		.dev = dev,
1568 	};
1569 
1570 	return nb->notifier_call(nb, val, &info);
1571 }
1572 
1573 static int dev_boot_phase = 1;
1574 
1575 /**
1576  * register_netdevice_notifier - register a network notifier block
1577  * @nb: notifier
1578  *
1579  * Register a notifier to be called when network device events occur.
1580  * The notifier passed is linked into the kernel structures and must
1581  * not be reused until it has been unregistered. A negative errno code
1582  * is returned on a failure.
1583  *
1584  * When registered all registration and up events are replayed
1585  * to the new notifier to allow device to have a race free
1586  * view of the network device list.
1587  */
1588 
1589 int register_netdevice_notifier(struct notifier_block *nb)
1590 {
1591 	struct net_device *dev;
1592 	struct net_device *last;
1593 	struct net *net;
1594 	int err;
1595 
1596 	rtnl_lock();
1597 	err = raw_notifier_chain_register(&netdev_chain, nb);
1598 	if (err)
1599 		goto unlock;
1600 	if (dev_boot_phase)
1601 		goto unlock;
1602 	for_each_net(net) {
1603 		for_each_netdev(net, dev) {
1604 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1605 			err = notifier_to_errno(err);
1606 			if (err)
1607 				goto rollback;
1608 
1609 			if (!(dev->flags & IFF_UP))
1610 				continue;
1611 
1612 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1613 		}
1614 	}
1615 
1616 unlock:
1617 	rtnl_unlock();
1618 	return err;
1619 
1620 rollback:
1621 	last = dev;
1622 	for_each_net(net) {
1623 		for_each_netdev(net, dev) {
1624 			if (dev == last)
1625 				goto outroll;
1626 
1627 			if (dev->flags & IFF_UP) {
1628 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1629 							dev);
1630 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1631 			}
1632 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1633 		}
1634 	}
1635 
1636 outroll:
1637 	raw_notifier_chain_unregister(&netdev_chain, nb);
1638 	goto unlock;
1639 }
1640 EXPORT_SYMBOL(register_netdevice_notifier);
1641 
1642 /**
1643  * unregister_netdevice_notifier - unregister a network notifier block
1644  * @nb: notifier
1645  *
1646  * Unregister a notifier previously registered by
1647  * register_netdevice_notifier(). The notifier is unlinked into the
1648  * kernel structures and may then be reused. A negative errno code
1649  * is returned on a failure.
1650  *
1651  * After unregistering unregister and down device events are synthesized
1652  * for all devices on the device list to the removed notifier to remove
1653  * the need for special case cleanup code.
1654  */
1655 
1656 int unregister_netdevice_notifier(struct notifier_block *nb)
1657 {
1658 	struct net_device *dev;
1659 	struct net *net;
1660 	int err;
1661 
1662 	rtnl_lock();
1663 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1664 	if (err)
1665 		goto unlock;
1666 
1667 	for_each_net(net) {
1668 		for_each_netdev(net, dev) {
1669 			if (dev->flags & IFF_UP) {
1670 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1671 							dev);
1672 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1673 			}
1674 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1675 		}
1676 	}
1677 unlock:
1678 	rtnl_unlock();
1679 	return err;
1680 }
1681 EXPORT_SYMBOL(unregister_netdevice_notifier);
1682 
1683 /**
1684  *	call_netdevice_notifiers_info - call all network notifier blocks
1685  *	@val: value passed unmodified to notifier function
1686  *	@dev: net_device pointer passed unmodified to notifier function
1687  *	@info: notifier information data
1688  *
1689  *	Call all network notifier blocks.  Parameters and return value
1690  *	are as for raw_notifier_call_chain().
1691  */
1692 
1693 static int call_netdevice_notifiers_info(unsigned long val,
1694 					 struct netdev_notifier_info *info)
1695 {
1696 	ASSERT_RTNL();
1697 	return raw_notifier_call_chain(&netdev_chain, val, info);
1698 }
1699 
1700 /**
1701  *	call_netdevice_notifiers - call all network notifier blocks
1702  *      @val: value passed unmodified to notifier function
1703  *      @dev: net_device pointer passed unmodified to notifier function
1704  *
1705  *	Call all network notifier blocks.  Parameters and return value
1706  *	are as for raw_notifier_call_chain().
1707  */
1708 
1709 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1710 {
1711 	struct netdev_notifier_info info = {
1712 		.dev = dev,
1713 	};
1714 
1715 	return call_netdevice_notifiers_info(val, &info);
1716 }
1717 EXPORT_SYMBOL(call_netdevice_notifiers);
1718 
1719 #ifdef CONFIG_NET_INGRESS
1720 static struct static_key ingress_needed __read_mostly;
1721 
1722 void net_inc_ingress_queue(void)
1723 {
1724 	static_key_slow_inc(&ingress_needed);
1725 }
1726 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1727 
1728 void net_dec_ingress_queue(void)
1729 {
1730 	static_key_slow_dec(&ingress_needed);
1731 }
1732 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1733 #endif
1734 
1735 #ifdef CONFIG_NET_EGRESS
1736 static struct static_key egress_needed __read_mostly;
1737 
1738 void net_inc_egress_queue(void)
1739 {
1740 	static_key_slow_inc(&egress_needed);
1741 }
1742 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1743 
1744 void net_dec_egress_queue(void)
1745 {
1746 	static_key_slow_dec(&egress_needed);
1747 }
1748 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1749 #endif
1750 
1751 static struct static_key netstamp_needed __read_mostly;
1752 #ifdef HAVE_JUMP_LABEL
1753 static atomic_t netstamp_needed_deferred;
1754 static atomic_t netstamp_wanted;
1755 static void netstamp_clear(struct work_struct *work)
1756 {
1757 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1758 	int wanted;
1759 
1760 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1761 	if (wanted > 0)
1762 		static_key_enable(&netstamp_needed);
1763 	else
1764 		static_key_disable(&netstamp_needed);
1765 }
1766 static DECLARE_WORK(netstamp_work, netstamp_clear);
1767 #endif
1768 
1769 void net_enable_timestamp(void)
1770 {
1771 #ifdef HAVE_JUMP_LABEL
1772 	int wanted;
1773 
1774 	while (1) {
1775 		wanted = atomic_read(&netstamp_wanted);
1776 		if (wanted <= 0)
1777 			break;
1778 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1779 			return;
1780 	}
1781 	atomic_inc(&netstamp_needed_deferred);
1782 	schedule_work(&netstamp_work);
1783 #else
1784 	static_key_slow_inc(&netstamp_needed);
1785 #endif
1786 }
1787 EXPORT_SYMBOL(net_enable_timestamp);
1788 
1789 void net_disable_timestamp(void)
1790 {
1791 #ifdef HAVE_JUMP_LABEL
1792 	int wanted;
1793 
1794 	while (1) {
1795 		wanted = atomic_read(&netstamp_wanted);
1796 		if (wanted <= 1)
1797 			break;
1798 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1799 			return;
1800 	}
1801 	atomic_dec(&netstamp_needed_deferred);
1802 	schedule_work(&netstamp_work);
1803 #else
1804 	static_key_slow_dec(&netstamp_needed);
1805 #endif
1806 }
1807 EXPORT_SYMBOL(net_disable_timestamp);
1808 
1809 static inline void net_timestamp_set(struct sk_buff *skb)
1810 {
1811 	skb->tstamp = 0;
1812 	if (static_key_false(&netstamp_needed))
1813 		__net_timestamp(skb);
1814 }
1815 
1816 #define net_timestamp_check(COND, SKB)			\
1817 	if (static_key_false(&netstamp_needed)) {		\
1818 		if ((COND) && !(SKB)->tstamp)	\
1819 			__net_timestamp(SKB);		\
1820 	}						\
1821 
1822 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1823 {
1824 	unsigned int len;
1825 
1826 	if (!(dev->flags & IFF_UP))
1827 		return false;
1828 
1829 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1830 	if (skb->len <= len)
1831 		return true;
1832 
1833 	/* if TSO is enabled, we don't care about the length as the packet
1834 	 * could be forwarded without being segmented before
1835 	 */
1836 	if (skb_is_gso(skb))
1837 		return true;
1838 
1839 	return false;
1840 }
1841 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1842 
1843 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1844 {
1845 	int ret = ____dev_forward_skb(dev, skb);
1846 
1847 	if (likely(!ret)) {
1848 		skb->protocol = eth_type_trans(skb, dev);
1849 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1850 	}
1851 
1852 	return ret;
1853 }
1854 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1855 
1856 /**
1857  * dev_forward_skb - loopback an skb to another netif
1858  *
1859  * @dev: destination network device
1860  * @skb: buffer to forward
1861  *
1862  * return values:
1863  *	NET_RX_SUCCESS	(no congestion)
1864  *	NET_RX_DROP     (packet was dropped, but freed)
1865  *
1866  * dev_forward_skb can be used for injecting an skb from the
1867  * start_xmit function of one device into the receive queue
1868  * of another device.
1869  *
1870  * The receiving device may be in another namespace, so
1871  * we have to clear all information in the skb that could
1872  * impact namespace isolation.
1873  */
1874 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1875 {
1876 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1877 }
1878 EXPORT_SYMBOL_GPL(dev_forward_skb);
1879 
1880 static inline int deliver_skb(struct sk_buff *skb,
1881 			      struct packet_type *pt_prev,
1882 			      struct net_device *orig_dev)
1883 {
1884 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1885 		return -ENOMEM;
1886 	refcount_inc(&skb->users);
1887 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1888 }
1889 
1890 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1891 					  struct packet_type **pt,
1892 					  struct net_device *orig_dev,
1893 					  __be16 type,
1894 					  struct list_head *ptype_list)
1895 {
1896 	struct packet_type *ptype, *pt_prev = *pt;
1897 
1898 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1899 		if (ptype->type != type)
1900 			continue;
1901 		if (pt_prev)
1902 			deliver_skb(skb, pt_prev, orig_dev);
1903 		pt_prev = ptype;
1904 	}
1905 	*pt = pt_prev;
1906 }
1907 
1908 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1909 {
1910 	if (!ptype->af_packet_priv || !skb->sk)
1911 		return false;
1912 
1913 	if (ptype->id_match)
1914 		return ptype->id_match(ptype, skb->sk);
1915 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1916 		return true;
1917 
1918 	return false;
1919 }
1920 
1921 /*
1922  *	Support routine. Sends outgoing frames to any network
1923  *	taps currently in use.
1924  */
1925 
1926 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1927 {
1928 	struct packet_type *ptype;
1929 	struct sk_buff *skb2 = NULL;
1930 	struct packet_type *pt_prev = NULL;
1931 	struct list_head *ptype_list = &ptype_all;
1932 
1933 	rcu_read_lock();
1934 again:
1935 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1936 		/* Never send packets back to the socket
1937 		 * they originated from - MvS (miquels@drinkel.ow.org)
1938 		 */
1939 		if (skb_loop_sk(ptype, skb))
1940 			continue;
1941 
1942 		if (pt_prev) {
1943 			deliver_skb(skb2, pt_prev, skb->dev);
1944 			pt_prev = ptype;
1945 			continue;
1946 		}
1947 
1948 		/* need to clone skb, done only once */
1949 		skb2 = skb_clone(skb, GFP_ATOMIC);
1950 		if (!skb2)
1951 			goto out_unlock;
1952 
1953 		net_timestamp_set(skb2);
1954 
1955 		/* skb->nh should be correctly
1956 		 * set by sender, so that the second statement is
1957 		 * just protection against buggy protocols.
1958 		 */
1959 		skb_reset_mac_header(skb2);
1960 
1961 		if (skb_network_header(skb2) < skb2->data ||
1962 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1963 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1964 					     ntohs(skb2->protocol),
1965 					     dev->name);
1966 			skb_reset_network_header(skb2);
1967 		}
1968 
1969 		skb2->transport_header = skb2->network_header;
1970 		skb2->pkt_type = PACKET_OUTGOING;
1971 		pt_prev = ptype;
1972 	}
1973 
1974 	if (ptype_list == &ptype_all) {
1975 		ptype_list = &dev->ptype_all;
1976 		goto again;
1977 	}
1978 out_unlock:
1979 	if (pt_prev) {
1980 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
1981 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1982 		else
1983 			kfree_skb(skb2);
1984 	}
1985 	rcu_read_unlock();
1986 }
1987 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1988 
1989 /**
1990  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1991  * @dev: Network device
1992  * @txq: number of queues available
1993  *
1994  * If real_num_tx_queues is changed the tc mappings may no longer be
1995  * valid. To resolve this verify the tc mapping remains valid and if
1996  * not NULL the mapping. With no priorities mapping to this
1997  * offset/count pair it will no longer be used. In the worst case TC0
1998  * is invalid nothing can be done so disable priority mappings. If is
1999  * expected that drivers will fix this mapping if they can before
2000  * calling netif_set_real_num_tx_queues.
2001  */
2002 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2003 {
2004 	int i;
2005 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2006 
2007 	/* If TC0 is invalidated disable TC mapping */
2008 	if (tc->offset + tc->count > txq) {
2009 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2010 		dev->num_tc = 0;
2011 		return;
2012 	}
2013 
2014 	/* Invalidated prio to tc mappings set to TC0 */
2015 	for (i = 1; i < TC_BITMASK + 1; i++) {
2016 		int q = netdev_get_prio_tc_map(dev, i);
2017 
2018 		tc = &dev->tc_to_txq[q];
2019 		if (tc->offset + tc->count > txq) {
2020 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2021 				i, q);
2022 			netdev_set_prio_tc_map(dev, i, 0);
2023 		}
2024 	}
2025 }
2026 
2027 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2028 {
2029 	if (dev->num_tc) {
2030 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2031 		int i;
2032 
2033 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2034 			if ((txq - tc->offset) < tc->count)
2035 				return i;
2036 		}
2037 
2038 		return -1;
2039 	}
2040 
2041 	return 0;
2042 }
2043 EXPORT_SYMBOL(netdev_txq_to_tc);
2044 
2045 #ifdef CONFIG_XPS
2046 static DEFINE_MUTEX(xps_map_mutex);
2047 #define xmap_dereference(P)		\
2048 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2049 
2050 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2051 			     int tci, u16 index)
2052 {
2053 	struct xps_map *map = NULL;
2054 	int pos;
2055 
2056 	if (dev_maps)
2057 		map = xmap_dereference(dev_maps->cpu_map[tci]);
2058 	if (!map)
2059 		return false;
2060 
2061 	for (pos = map->len; pos--;) {
2062 		if (map->queues[pos] != index)
2063 			continue;
2064 
2065 		if (map->len > 1) {
2066 			map->queues[pos] = map->queues[--map->len];
2067 			break;
2068 		}
2069 
2070 		RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2071 		kfree_rcu(map, rcu);
2072 		return false;
2073 	}
2074 
2075 	return true;
2076 }
2077 
2078 static bool remove_xps_queue_cpu(struct net_device *dev,
2079 				 struct xps_dev_maps *dev_maps,
2080 				 int cpu, u16 offset, u16 count)
2081 {
2082 	int num_tc = dev->num_tc ? : 1;
2083 	bool active = false;
2084 	int tci;
2085 
2086 	for (tci = cpu * num_tc; num_tc--; tci++) {
2087 		int i, j;
2088 
2089 		for (i = count, j = offset; i--; j++) {
2090 			if (!remove_xps_queue(dev_maps, cpu, j))
2091 				break;
2092 		}
2093 
2094 		active |= i < 0;
2095 	}
2096 
2097 	return active;
2098 }
2099 
2100 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2101 				   u16 count)
2102 {
2103 	struct xps_dev_maps *dev_maps;
2104 	int cpu, i;
2105 	bool active = false;
2106 
2107 	mutex_lock(&xps_map_mutex);
2108 	dev_maps = xmap_dereference(dev->xps_maps);
2109 
2110 	if (!dev_maps)
2111 		goto out_no_maps;
2112 
2113 	for_each_possible_cpu(cpu)
2114 		active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2115 					       offset, count);
2116 
2117 	if (!active) {
2118 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2119 		kfree_rcu(dev_maps, rcu);
2120 	}
2121 
2122 	for (i = offset + (count - 1); count--; i--)
2123 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2124 					     NUMA_NO_NODE);
2125 
2126 out_no_maps:
2127 	mutex_unlock(&xps_map_mutex);
2128 }
2129 
2130 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2131 {
2132 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2133 }
2134 
2135 static struct xps_map *expand_xps_map(struct xps_map *map,
2136 				      int cpu, u16 index)
2137 {
2138 	struct xps_map *new_map;
2139 	int alloc_len = XPS_MIN_MAP_ALLOC;
2140 	int i, pos;
2141 
2142 	for (pos = 0; map && pos < map->len; pos++) {
2143 		if (map->queues[pos] != index)
2144 			continue;
2145 		return map;
2146 	}
2147 
2148 	/* Need to add queue to this CPU's existing map */
2149 	if (map) {
2150 		if (pos < map->alloc_len)
2151 			return map;
2152 
2153 		alloc_len = map->alloc_len * 2;
2154 	}
2155 
2156 	/* Need to allocate new map to store queue on this CPU's map */
2157 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2158 			       cpu_to_node(cpu));
2159 	if (!new_map)
2160 		return NULL;
2161 
2162 	for (i = 0; i < pos; i++)
2163 		new_map->queues[i] = map->queues[i];
2164 	new_map->alloc_len = alloc_len;
2165 	new_map->len = pos;
2166 
2167 	return new_map;
2168 }
2169 
2170 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2171 			u16 index)
2172 {
2173 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2174 	int i, cpu, tci, numa_node_id = -2;
2175 	int maps_sz, num_tc = 1, tc = 0;
2176 	struct xps_map *map, *new_map;
2177 	bool active = false;
2178 
2179 	if (dev->num_tc) {
2180 		num_tc = dev->num_tc;
2181 		tc = netdev_txq_to_tc(dev, index);
2182 		if (tc < 0)
2183 			return -EINVAL;
2184 	}
2185 
2186 	maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2187 	if (maps_sz < L1_CACHE_BYTES)
2188 		maps_sz = L1_CACHE_BYTES;
2189 
2190 	mutex_lock(&xps_map_mutex);
2191 
2192 	dev_maps = xmap_dereference(dev->xps_maps);
2193 
2194 	/* allocate memory for queue storage */
2195 	for_each_cpu_and(cpu, cpu_online_mask, mask) {
2196 		if (!new_dev_maps)
2197 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2198 		if (!new_dev_maps) {
2199 			mutex_unlock(&xps_map_mutex);
2200 			return -ENOMEM;
2201 		}
2202 
2203 		tci = cpu * num_tc + tc;
2204 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2205 				 NULL;
2206 
2207 		map = expand_xps_map(map, cpu, index);
2208 		if (!map)
2209 			goto error;
2210 
2211 		RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2212 	}
2213 
2214 	if (!new_dev_maps)
2215 		goto out_no_new_maps;
2216 
2217 	for_each_possible_cpu(cpu) {
2218 		/* copy maps belonging to foreign traffic classes */
2219 		for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2220 			/* fill in the new device map from the old device map */
2221 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2222 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2223 		}
2224 
2225 		/* We need to explicitly update tci as prevous loop
2226 		 * could break out early if dev_maps is NULL.
2227 		 */
2228 		tci = cpu * num_tc + tc;
2229 
2230 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2231 			/* add queue to CPU maps */
2232 			int pos = 0;
2233 
2234 			map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2235 			while ((pos < map->len) && (map->queues[pos] != index))
2236 				pos++;
2237 
2238 			if (pos == map->len)
2239 				map->queues[map->len++] = index;
2240 #ifdef CONFIG_NUMA
2241 			if (numa_node_id == -2)
2242 				numa_node_id = cpu_to_node(cpu);
2243 			else if (numa_node_id != cpu_to_node(cpu))
2244 				numa_node_id = -1;
2245 #endif
2246 		} else if (dev_maps) {
2247 			/* fill in the new device map from the old device map */
2248 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2249 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2250 		}
2251 
2252 		/* copy maps belonging to foreign traffic classes */
2253 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2254 			/* fill in the new device map from the old device map */
2255 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2256 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2257 		}
2258 	}
2259 
2260 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2261 
2262 	/* Cleanup old maps */
2263 	if (!dev_maps)
2264 		goto out_no_old_maps;
2265 
2266 	for_each_possible_cpu(cpu) {
2267 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2268 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2269 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2270 			if (map && map != new_map)
2271 				kfree_rcu(map, rcu);
2272 		}
2273 	}
2274 
2275 	kfree_rcu(dev_maps, rcu);
2276 
2277 out_no_old_maps:
2278 	dev_maps = new_dev_maps;
2279 	active = true;
2280 
2281 out_no_new_maps:
2282 	/* update Tx queue numa node */
2283 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2284 				     (numa_node_id >= 0) ? numa_node_id :
2285 				     NUMA_NO_NODE);
2286 
2287 	if (!dev_maps)
2288 		goto out_no_maps;
2289 
2290 	/* removes queue from unused CPUs */
2291 	for_each_possible_cpu(cpu) {
2292 		for (i = tc, tci = cpu * num_tc; i--; tci++)
2293 			active |= remove_xps_queue(dev_maps, tci, index);
2294 		if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2295 			active |= remove_xps_queue(dev_maps, tci, index);
2296 		for (i = num_tc - tc, tci++; --i; tci++)
2297 			active |= remove_xps_queue(dev_maps, tci, index);
2298 	}
2299 
2300 	/* free map if not active */
2301 	if (!active) {
2302 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2303 		kfree_rcu(dev_maps, rcu);
2304 	}
2305 
2306 out_no_maps:
2307 	mutex_unlock(&xps_map_mutex);
2308 
2309 	return 0;
2310 error:
2311 	/* remove any maps that we added */
2312 	for_each_possible_cpu(cpu) {
2313 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2314 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2315 			map = dev_maps ?
2316 			      xmap_dereference(dev_maps->cpu_map[tci]) :
2317 			      NULL;
2318 			if (new_map && new_map != map)
2319 				kfree(new_map);
2320 		}
2321 	}
2322 
2323 	mutex_unlock(&xps_map_mutex);
2324 
2325 	kfree(new_dev_maps);
2326 	return -ENOMEM;
2327 }
2328 EXPORT_SYMBOL(netif_set_xps_queue);
2329 
2330 #endif
2331 void netdev_reset_tc(struct net_device *dev)
2332 {
2333 #ifdef CONFIG_XPS
2334 	netif_reset_xps_queues_gt(dev, 0);
2335 #endif
2336 	dev->num_tc = 0;
2337 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2338 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2339 }
2340 EXPORT_SYMBOL(netdev_reset_tc);
2341 
2342 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2343 {
2344 	if (tc >= dev->num_tc)
2345 		return -EINVAL;
2346 
2347 #ifdef CONFIG_XPS
2348 	netif_reset_xps_queues(dev, offset, count);
2349 #endif
2350 	dev->tc_to_txq[tc].count = count;
2351 	dev->tc_to_txq[tc].offset = offset;
2352 	return 0;
2353 }
2354 EXPORT_SYMBOL(netdev_set_tc_queue);
2355 
2356 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2357 {
2358 	if (num_tc > TC_MAX_QUEUE)
2359 		return -EINVAL;
2360 
2361 #ifdef CONFIG_XPS
2362 	netif_reset_xps_queues_gt(dev, 0);
2363 #endif
2364 	dev->num_tc = num_tc;
2365 	return 0;
2366 }
2367 EXPORT_SYMBOL(netdev_set_num_tc);
2368 
2369 /*
2370  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2371  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2372  */
2373 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2374 {
2375 	int rc;
2376 
2377 	if (txq < 1 || txq > dev->num_tx_queues)
2378 		return -EINVAL;
2379 
2380 	if (dev->reg_state == NETREG_REGISTERED ||
2381 	    dev->reg_state == NETREG_UNREGISTERING) {
2382 		ASSERT_RTNL();
2383 
2384 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2385 						  txq);
2386 		if (rc)
2387 			return rc;
2388 
2389 		if (dev->num_tc)
2390 			netif_setup_tc(dev, txq);
2391 
2392 		if (txq < dev->real_num_tx_queues) {
2393 			qdisc_reset_all_tx_gt(dev, txq);
2394 #ifdef CONFIG_XPS
2395 			netif_reset_xps_queues_gt(dev, txq);
2396 #endif
2397 		}
2398 	}
2399 
2400 	dev->real_num_tx_queues = txq;
2401 	return 0;
2402 }
2403 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2404 
2405 #ifdef CONFIG_SYSFS
2406 /**
2407  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2408  *	@dev: Network device
2409  *	@rxq: Actual number of RX queues
2410  *
2411  *	This must be called either with the rtnl_lock held or before
2412  *	registration of the net device.  Returns 0 on success, or a
2413  *	negative error code.  If called before registration, it always
2414  *	succeeds.
2415  */
2416 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2417 {
2418 	int rc;
2419 
2420 	if (rxq < 1 || rxq > dev->num_rx_queues)
2421 		return -EINVAL;
2422 
2423 	if (dev->reg_state == NETREG_REGISTERED) {
2424 		ASSERT_RTNL();
2425 
2426 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2427 						  rxq);
2428 		if (rc)
2429 			return rc;
2430 	}
2431 
2432 	dev->real_num_rx_queues = rxq;
2433 	return 0;
2434 }
2435 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2436 #endif
2437 
2438 /**
2439  * netif_get_num_default_rss_queues - default number of RSS queues
2440  *
2441  * This routine should set an upper limit on the number of RSS queues
2442  * used by default by multiqueue devices.
2443  */
2444 int netif_get_num_default_rss_queues(void)
2445 {
2446 	return is_kdump_kernel() ?
2447 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2448 }
2449 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2450 
2451 static void __netif_reschedule(struct Qdisc *q)
2452 {
2453 	struct softnet_data *sd;
2454 	unsigned long flags;
2455 
2456 	local_irq_save(flags);
2457 	sd = this_cpu_ptr(&softnet_data);
2458 	q->next_sched = NULL;
2459 	*sd->output_queue_tailp = q;
2460 	sd->output_queue_tailp = &q->next_sched;
2461 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2462 	local_irq_restore(flags);
2463 }
2464 
2465 void __netif_schedule(struct Qdisc *q)
2466 {
2467 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2468 		__netif_reschedule(q);
2469 }
2470 EXPORT_SYMBOL(__netif_schedule);
2471 
2472 struct dev_kfree_skb_cb {
2473 	enum skb_free_reason reason;
2474 };
2475 
2476 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2477 {
2478 	return (struct dev_kfree_skb_cb *)skb->cb;
2479 }
2480 
2481 void netif_schedule_queue(struct netdev_queue *txq)
2482 {
2483 	rcu_read_lock();
2484 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2485 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2486 
2487 		__netif_schedule(q);
2488 	}
2489 	rcu_read_unlock();
2490 }
2491 EXPORT_SYMBOL(netif_schedule_queue);
2492 
2493 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2494 {
2495 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2496 		struct Qdisc *q;
2497 
2498 		rcu_read_lock();
2499 		q = rcu_dereference(dev_queue->qdisc);
2500 		__netif_schedule(q);
2501 		rcu_read_unlock();
2502 	}
2503 }
2504 EXPORT_SYMBOL(netif_tx_wake_queue);
2505 
2506 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2507 {
2508 	unsigned long flags;
2509 
2510 	if (unlikely(!skb))
2511 		return;
2512 
2513 	if (likely(refcount_read(&skb->users) == 1)) {
2514 		smp_rmb();
2515 		refcount_set(&skb->users, 0);
2516 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
2517 		return;
2518 	}
2519 	get_kfree_skb_cb(skb)->reason = reason;
2520 	local_irq_save(flags);
2521 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2522 	__this_cpu_write(softnet_data.completion_queue, skb);
2523 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2524 	local_irq_restore(flags);
2525 }
2526 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2527 
2528 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2529 {
2530 	if (in_irq() || irqs_disabled())
2531 		__dev_kfree_skb_irq(skb, reason);
2532 	else
2533 		dev_kfree_skb(skb);
2534 }
2535 EXPORT_SYMBOL(__dev_kfree_skb_any);
2536 
2537 
2538 /**
2539  * netif_device_detach - mark device as removed
2540  * @dev: network device
2541  *
2542  * Mark device as removed from system and therefore no longer available.
2543  */
2544 void netif_device_detach(struct net_device *dev)
2545 {
2546 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2547 	    netif_running(dev)) {
2548 		netif_tx_stop_all_queues(dev);
2549 	}
2550 }
2551 EXPORT_SYMBOL(netif_device_detach);
2552 
2553 /**
2554  * netif_device_attach - mark device as attached
2555  * @dev: network device
2556  *
2557  * Mark device as attached from system and restart if needed.
2558  */
2559 void netif_device_attach(struct net_device *dev)
2560 {
2561 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2562 	    netif_running(dev)) {
2563 		netif_tx_wake_all_queues(dev);
2564 		__netdev_watchdog_up(dev);
2565 	}
2566 }
2567 EXPORT_SYMBOL(netif_device_attach);
2568 
2569 /*
2570  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2571  * to be used as a distribution range.
2572  */
2573 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2574 		  unsigned int num_tx_queues)
2575 {
2576 	u32 hash;
2577 	u16 qoffset = 0;
2578 	u16 qcount = num_tx_queues;
2579 
2580 	if (skb_rx_queue_recorded(skb)) {
2581 		hash = skb_get_rx_queue(skb);
2582 		while (unlikely(hash >= num_tx_queues))
2583 			hash -= num_tx_queues;
2584 		return hash;
2585 	}
2586 
2587 	if (dev->num_tc) {
2588 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2589 
2590 		qoffset = dev->tc_to_txq[tc].offset;
2591 		qcount = dev->tc_to_txq[tc].count;
2592 	}
2593 
2594 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2595 }
2596 EXPORT_SYMBOL(__skb_tx_hash);
2597 
2598 static void skb_warn_bad_offload(const struct sk_buff *skb)
2599 {
2600 	static const netdev_features_t null_features;
2601 	struct net_device *dev = skb->dev;
2602 	const char *name = "";
2603 
2604 	if (!net_ratelimit())
2605 		return;
2606 
2607 	if (dev) {
2608 		if (dev->dev.parent)
2609 			name = dev_driver_string(dev->dev.parent);
2610 		else
2611 			name = netdev_name(dev);
2612 	}
2613 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2614 	     "gso_type=%d ip_summed=%d\n",
2615 	     name, dev ? &dev->features : &null_features,
2616 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2617 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2618 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2619 }
2620 
2621 /*
2622  * Invalidate hardware checksum when packet is to be mangled, and
2623  * complete checksum manually on outgoing path.
2624  */
2625 int skb_checksum_help(struct sk_buff *skb)
2626 {
2627 	__wsum csum;
2628 	int ret = 0, offset;
2629 
2630 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2631 		goto out_set_summed;
2632 
2633 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2634 		skb_warn_bad_offload(skb);
2635 		return -EINVAL;
2636 	}
2637 
2638 	/* Before computing a checksum, we should make sure no frag could
2639 	 * be modified by an external entity : checksum could be wrong.
2640 	 */
2641 	if (skb_has_shared_frag(skb)) {
2642 		ret = __skb_linearize(skb);
2643 		if (ret)
2644 			goto out;
2645 	}
2646 
2647 	offset = skb_checksum_start_offset(skb);
2648 	BUG_ON(offset >= skb_headlen(skb));
2649 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2650 
2651 	offset += skb->csum_offset;
2652 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2653 
2654 	if (skb_cloned(skb) &&
2655 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2656 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2657 		if (ret)
2658 			goto out;
2659 	}
2660 
2661 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2662 out_set_summed:
2663 	skb->ip_summed = CHECKSUM_NONE;
2664 out:
2665 	return ret;
2666 }
2667 EXPORT_SYMBOL(skb_checksum_help);
2668 
2669 int skb_crc32c_csum_help(struct sk_buff *skb)
2670 {
2671 	__le32 crc32c_csum;
2672 	int ret = 0, offset, start;
2673 
2674 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2675 		goto out;
2676 
2677 	if (unlikely(skb_is_gso(skb)))
2678 		goto out;
2679 
2680 	/* Before computing a checksum, we should make sure no frag could
2681 	 * be modified by an external entity : checksum could be wrong.
2682 	 */
2683 	if (unlikely(skb_has_shared_frag(skb))) {
2684 		ret = __skb_linearize(skb);
2685 		if (ret)
2686 			goto out;
2687 	}
2688 	start = skb_checksum_start_offset(skb);
2689 	offset = start + offsetof(struct sctphdr, checksum);
2690 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2691 		ret = -EINVAL;
2692 		goto out;
2693 	}
2694 	if (skb_cloned(skb) &&
2695 	    !skb_clone_writable(skb, offset + sizeof(__le32))) {
2696 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2697 		if (ret)
2698 			goto out;
2699 	}
2700 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2701 						  skb->len - start, ~(__u32)0,
2702 						  crc32c_csum_stub));
2703 	*(__le32 *)(skb->data + offset) = crc32c_csum;
2704 	skb->ip_summed = CHECKSUM_NONE;
2705 	skb->csum_not_inet = 0;
2706 out:
2707 	return ret;
2708 }
2709 
2710 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2711 {
2712 	__be16 type = skb->protocol;
2713 
2714 	/* Tunnel gso handlers can set protocol to ethernet. */
2715 	if (type == htons(ETH_P_TEB)) {
2716 		struct ethhdr *eth;
2717 
2718 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2719 			return 0;
2720 
2721 		eth = (struct ethhdr *)skb_mac_header(skb);
2722 		type = eth->h_proto;
2723 	}
2724 
2725 	return __vlan_get_protocol(skb, type, depth);
2726 }
2727 
2728 /**
2729  *	skb_mac_gso_segment - mac layer segmentation handler.
2730  *	@skb: buffer to segment
2731  *	@features: features for the output path (see dev->features)
2732  */
2733 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2734 				    netdev_features_t features)
2735 {
2736 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2737 	struct packet_offload *ptype;
2738 	int vlan_depth = skb->mac_len;
2739 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2740 
2741 	if (unlikely(!type))
2742 		return ERR_PTR(-EINVAL);
2743 
2744 	__skb_pull(skb, vlan_depth);
2745 
2746 	rcu_read_lock();
2747 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2748 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2749 			segs = ptype->callbacks.gso_segment(skb, features);
2750 			break;
2751 		}
2752 	}
2753 	rcu_read_unlock();
2754 
2755 	__skb_push(skb, skb->data - skb_mac_header(skb));
2756 
2757 	return segs;
2758 }
2759 EXPORT_SYMBOL(skb_mac_gso_segment);
2760 
2761 
2762 /* openvswitch calls this on rx path, so we need a different check.
2763  */
2764 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2765 {
2766 	if (tx_path)
2767 		return skb->ip_summed != CHECKSUM_PARTIAL;
2768 
2769 	return skb->ip_summed == CHECKSUM_NONE;
2770 }
2771 
2772 /**
2773  *	__skb_gso_segment - Perform segmentation on skb.
2774  *	@skb: buffer to segment
2775  *	@features: features for the output path (see dev->features)
2776  *	@tx_path: whether it is called in TX path
2777  *
2778  *	This function segments the given skb and returns a list of segments.
2779  *
2780  *	It may return NULL if the skb requires no segmentation.  This is
2781  *	only possible when GSO is used for verifying header integrity.
2782  *
2783  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2784  */
2785 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2786 				  netdev_features_t features, bool tx_path)
2787 {
2788 	struct sk_buff *segs;
2789 
2790 	if (unlikely(skb_needs_check(skb, tx_path))) {
2791 		int err;
2792 
2793 		/* We're going to init ->check field in TCP or UDP header */
2794 		err = skb_cow_head(skb, 0);
2795 		if (err < 0)
2796 			return ERR_PTR(err);
2797 	}
2798 
2799 	/* Only report GSO partial support if it will enable us to
2800 	 * support segmentation on this frame without needing additional
2801 	 * work.
2802 	 */
2803 	if (features & NETIF_F_GSO_PARTIAL) {
2804 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2805 		struct net_device *dev = skb->dev;
2806 
2807 		partial_features |= dev->features & dev->gso_partial_features;
2808 		if (!skb_gso_ok(skb, features | partial_features))
2809 			features &= ~NETIF_F_GSO_PARTIAL;
2810 	}
2811 
2812 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2813 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2814 
2815 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2816 	SKB_GSO_CB(skb)->encap_level = 0;
2817 
2818 	skb_reset_mac_header(skb);
2819 	skb_reset_mac_len(skb);
2820 
2821 	segs = skb_mac_gso_segment(skb, features);
2822 
2823 	if (unlikely(skb_needs_check(skb, tx_path)))
2824 		skb_warn_bad_offload(skb);
2825 
2826 	return segs;
2827 }
2828 EXPORT_SYMBOL(__skb_gso_segment);
2829 
2830 /* Take action when hardware reception checksum errors are detected. */
2831 #ifdef CONFIG_BUG
2832 void netdev_rx_csum_fault(struct net_device *dev)
2833 {
2834 	if (net_ratelimit()) {
2835 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2836 		dump_stack();
2837 	}
2838 }
2839 EXPORT_SYMBOL(netdev_rx_csum_fault);
2840 #endif
2841 
2842 /* Actually, we should eliminate this check as soon as we know, that:
2843  * 1. IOMMU is present and allows to map all the memory.
2844  * 2. No high memory really exists on this machine.
2845  */
2846 
2847 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2848 {
2849 #ifdef CONFIG_HIGHMEM
2850 	int i;
2851 
2852 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2853 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2854 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2855 
2856 			if (PageHighMem(skb_frag_page(frag)))
2857 				return 1;
2858 		}
2859 	}
2860 
2861 	if (PCI_DMA_BUS_IS_PHYS) {
2862 		struct device *pdev = dev->dev.parent;
2863 
2864 		if (!pdev)
2865 			return 0;
2866 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2867 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2868 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2869 
2870 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2871 				return 1;
2872 		}
2873 	}
2874 #endif
2875 	return 0;
2876 }
2877 
2878 /* If MPLS offload request, verify we are testing hardware MPLS features
2879  * instead of standard features for the netdev.
2880  */
2881 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2882 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2883 					   netdev_features_t features,
2884 					   __be16 type)
2885 {
2886 	if (eth_p_mpls(type))
2887 		features &= skb->dev->mpls_features;
2888 
2889 	return features;
2890 }
2891 #else
2892 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2893 					   netdev_features_t features,
2894 					   __be16 type)
2895 {
2896 	return features;
2897 }
2898 #endif
2899 
2900 static netdev_features_t harmonize_features(struct sk_buff *skb,
2901 	netdev_features_t features)
2902 {
2903 	int tmp;
2904 	__be16 type;
2905 
2906 	type = skb_network_protocol(skb, &tmp);
2907 	features = net_mpls_features(skb, features, type);
2908 
2909 	if (skb->ip_summed != CHECKSUM_NONE &&
2910 	    !can_checksum_protocol(features, type)) {
2911 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2912 	}
2913 	if (illegal_highdma(skb->dev, skb))
2914 		features &= ~NETIF_F_SG;
2915 
2916 	return features;
2917 }
2918 
2919 netdev_features_t passthru_features_check(struct sk_buff *skb,
2920 					  struct net_device *dev,
2921 					  netdev_features_t features)
2922 {
2923 	return features;
2924 }
2925 EXPORT_SYMBOL(passthru_features_check);
2926 
2927 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2928 					     struct net_device *dev,
2929 					     netdev_features_t features)
2930 {
2931 	return vlan_features_check(skb, features);
2932 }
2933 
2934 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2935 					    struct net_device *dev,
2936 					    netdev_features_t features)
2937 {
2938 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2939 
2940 	if (gso_segs > dev->gso_max_segs)
2941 		return features & ~NETIF_F_GSO_MASK;
2942 
2943 	/* Support for GSO partial features requires software
2944 	 * intervention before we can actually process the packets
2945 	 * so we need to strip support for any partial features now
2946 	 * and we can pull them back in after we have partially
2947 	 * segmented the frame.
2948 	 */
2949 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2950 		features &= ~dev->gso_partial_features;
2951 
2952 	/* Make sure to clear the IPv4 ID mangling feature if the
2953 	 * IPv4 header has the potential to be fragmented.
2954 	 */
2955 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2956 		struct iphdr *iph = skb->encapsulation ?
2957 				    inner_ip_hdr(skb) : ip_hdr(skb);
2958 
2959 		if (!(iph->frag_off & htons(IP_DF)))
2960 			features &= ~NETIF_F_TSO_MANGLEID;
2961 	}
2962 
2963 	return features;
2964 }
2965 
2966 netdev_features_t netif_skb_features(struct sk_buff *skb)
2967 {
2968 	struct net_device *dev = skb->dev;
2969 	netdev_features_t features = dev->features;
2970 
2971 	if (skb_is_gso(skb))
2972 		features = gso_features_check(skb, dev, features);
2973 
2974 	/* If encapsulation offload request, verify we are testing
2975 	 * hardware encapsulation features instead of standard
2976 	 * features for the netdev
2977 	 */
2978 	if (skb->encapsulation)
2979 		features &= dev->hw_enc_features;
2980 
2981 	if (skb_vlan_tagged(skb))
2982 		features = netdev_intersect_features(features,
2983 						     dev->vlan_features |
2984 						     NETIF_F_HW_VLAN_CTAG_TX |
2985 						     NETIF_F_HW_VLAN_STAG_TX);
2986 
2987 	if (dev->netdev_ops->ndo_features_check)
2988 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2989 								features);
2990 	else
2991 		features &= dflt_features_check(skb, dev, features);
2992 
2993 	return harmonize_features(skb, features);
2994 }
2995 EXPORT_SYMBOL(netif_skb_features);
2996 
2997 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2998 		    struct netdev_queue *txq, bool more)
2999 {
3000 	unsigned int len;
3001 	int rc;
3002 
3003 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3004 		dev_queue_xmit_nit(skb, dev);
3005 
3006 	len = skb->len;
3007 	trace_net_dev_start_xmit(skb, dev);
3008 	rc = netdev_start_xmit(skb, dev, txq, more);
3009 	trace_net_dev_xmit(skb, rc, dev, len);
3010 
3011 	return rc;
3012 }
3013 
3014 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3015 				    struct netdev_queue *txq, int *ret)
3016 {
3017 	struct sk_buff *skb = first;
3018 	int rc = NETDEV_TX_OK;
3019 
3020 	while (skb) {
3021 		struct sk_buff *next = skb->next;
3022 
3023 		skb->next = NULL;
3024 		rc = xmit_one(skb, dev, txq, next != NULL);
3025 		if (unlikely(!dev_xmit_complete(rc))) {
3026 			skb->next = next;
3027 			goto out;
3028 		}
3029 
3030 		skb = next;
3031 		if (netif_xmit_stopped(txq) && skb) {
3032 			rc = NETDEV_TX_BUSY;
3033 			break;
3034 		}
3035 	}
3036 
3037 out:
3038 	*ret = rc;
3039 	return skb;
3040 }
3041 
3042 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3043 					  netdev_features_t features)
3044 {
3045 	if (skb_vlan_tag_present(skb) &&
3046 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3047 		skb = __vlan_hwaccel_push_inside(skb);
3048 	return skb;
3049 }
3050 
3051 int skb_csum_hwoffload_help(struct sk_buff *skb,
3052 			    const netdev_features_t features)
3053 {
3054 	if (unlikely(skb->csum_not_inet))
3055 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3056 			skb_crc32c_csum_help(skb);
3057 
3058 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3059 }
3060 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3061 
3062 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
3063 {
3064 	netdev_features_t features;
3065 
3066 	features = netif_skb_features(skb);
3067 	skb = validate_xmit_vlan(skb, features);
3068 	if (unlikely(!skb))
3069 		goto out_null;
3070 
3071 	if (netif_needs_gso(skb, features)) {
3072 		struct sk_buff *segs;
3073 
3074 		segs = skb_gso_segment(skb, features);
3075 		if (IS_ERR(segs)) {
3076 			goto out_kfree_skb;
3077 		} else if (segs) {
3078 			consume_skb(skb);
3079 			skb = segs;
3080 		}
3081 	} else {
3082 		if (skb_needs_linearize(skb, features) &&
3083 		    __skb_linearize(skb))
3084 			goto out_kfree_skb;
3085 
3086 		if (validate_xmit_xfrm(skb, features))
3087 			goto out_kfree_skb;
3088 
3089 		/* If packet is not checksummed and device does not
3090 		 * support checksumming for this protocol, complete
3091 		 * checksumming here.
3092 		 */
3093 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3094 			if (skb->encapsulation)
3095 				skb_set_inner_transport_header(skb,
3096 							       skb_checksum_start_offset(skb));
3097 			else
3098 				skb_set_transport_header(skb,
3099 							 skb_checksum_start_offset(skb));
3100 			if (skb_csum_hwoffload_help(skb, features))
3101 				goto out_kfree_skb;
3102 		}
3103 	}
3104 
3105 	return skb;
3106 
3107 out_kfree_skb:
3108 	kfree_skb(skb);
3109 out_null:
3110 	atomic_long_inc(&dev->tx_dropped);
3111 	return NULL;
3112 }
3113 
3114 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3115 {
3116 	struct sk_buff *next, *head = NULL, *tail;
3117 
3118 	for (; skb != NULL; skb = next) {
3119 		next = skb->next;
3120 		skb->next = NULL;
3121 
3122 		/* in case skb wont be segmented, point to itself */
3123 		skb->prev = skb;
3124 
3125 		skb = validate_xmit_skb(skb, dev);
3126 		if (!skb)
3127 			continue;
3128 
3129 		if (!head)
3130 			head = skb;
3131 		else
3132 			tail->next = skb;
3133 		/* If skb was segmented, skb->prev points to
3134 		 * the last segment. If not, it still contains skb.
3135 		 */
3136 		tail = skb->prev;
3137 	}
3138 	return head;
3139 }
3140 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3141 
3142 static void qdisc_pkt_len_init(struct sk_buff *skb)
3143 {
3144 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3145 
3146 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3147 
3148 	/* To get more precise estimation of bytes sent on wire,
3149 	 * we add to pkt_len the headers size of all segments
3150 	 */
3151 	if (shinfo->gso_size)  {
3152 		unsigned int hdr_len;
3153 		u16 gso_segs = shinfo->gso_segs;
3154 
3155 		/* mac layer + network layer */
3156 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3157 
3158 		/* + transport layer */
3159 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3160 			hdr_len += tcp_hdrlen(skb);
3161 		else
3162 			hdr_len += sizeof(struct udphdr);
3163 
3164 		if (shinfo->gso_type & SKB_GSO_DODGY)
3165 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3166 						shinfo->gso_size);
3167 
3168 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3169 	}
3170 }
3171 
3172 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3173 				 struct net_device *dev,
3174 				 struct netdev_queue *txq)
3175 {
3176 	spinlock_t *root_lock = qdisc_lock(q);
3177 	struct sk_buff *to_free = NULL;
3178 	bool contended;
3179 	int rc;
3180 
3181 	qdisc_calculate_pkt_len(skb, q);
3182 	/*
3183 	 * Heuristic to force contended enqueues to serialize on a
3184 	 * separate lock before trying to get qdisc main lock.
3185 	 * This permits qdisc->running owner to get the lock more
3186 	 * often and dequeue packets faster.
3187 	 */
3188 	contended = qdisc_is_running(q);
3189 	if (unlikely(contended))
3190 		spin_lock(&q->busylock);
3191 
3192 	spin_lock(root_lock);
3193 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3194 		__qdisc_drop(skb, &to_free);
3195 		rc = NET_XMIT_DROP;
3196 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3197 		   qdisc_run_begin(q)) {
3198 		/*
3199 		 * This is a work-conserving queue; there are no old skbs
3200 		 * waiting to be sent out; and the qdisc is not running -
3201 		 * xmit the skb directly.
3202 		 */
3203 
3204 		qdisc_bstats_update(q, skb);
3205 
3206 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3207 			if (unlikely(contended)) {
3208 				spin_unlock(&q->busylock);
3209 				contended = false;
3210 			}
3211 			__qdisc_run(q);
3212 		} else
3213 			qdisc_run_end(q);
3214 
3215 		rc = NET_XMIT_SUCCESS;
3216 	} else {
3217 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3218 		if (qdisc_run_begin(q)) {
3219 			if (unlikely(contended)) {
3220 				spin_unlock(&q->busylock);
3221 				contended = false;
3222 			}
3223 			__qdisc_run(q);
3224 		}
3225 	}
3226 	spin_unlock(root_lock);
3227 	if (unlikely(to_free))
3228 		kfree_skb_list(to_free);
3229 	if (unlikely(contended))
3230 		spin_unlock(&q->busylock);
3231 	return rc;
3232 }
3233 
3234 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3235 static void skb_update_prio(struct sk_buff *skb)
3236 {
3237 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3238 
3239 	if (!skb->priority && skb->sk && map) {
3240 		unsigned int prioidx =
3241 			sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3242 
3243 		if (prioidx < map->priomap_len)
3244 			skb->priority = map->priomap[prioidx];
3245 	}
3246 }
3247 #else
3248 #define skb_update_prio(skb)
3249 #endif
3250 
3251 DEFINE_PER_CPU(int, xmit_recursion);
3252 EXPORT_SYMBOL(xmit_recursion);
3253 
3254 /**
3255  *	dev_loopback_xmit - loop back @skb
3256  *	@net: network namespace this loopback is happening in
3257  *	@sk:  sk needed to be a netfilter okfn
3258  *	@skb: buffer to transmit
3259  */
3260 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3261 {
3262 	skb_reset_mac_header(skb);
3263 	__skb_pull(skb, skb_network_offset(skb));
3264 	skb->pkt_type = PACKET_LOOPBACK;
3265 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3266 	WARN_ON(!skb_dst(skb));
3267 	skb_dst_force(skb);
3268 	netif_rx_ni(skb);
3269 	return 0;
3270 }
3271 EXPORT_SYMBOL(dev_loopback_xmit);
3272 
3273 #ifdef CONFIG_NET_EGRESS
3274 static struct sk_buff *
3275 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3276 {
3277 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3278 	struct tcf_result cl_res;
3279 
3280 	if (!miniq)
3281 		return skb;
3282 
3283 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3284 	mini_qdisc_bstats_cpu_update(miniq, skb);
3285 
3286 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3287 	case TC_ACT_OK:
3288 	case TC_ACT_RECLASSIFY:
3289 		skb->tc_index = TC_H_MIN(cl_res.classid);
3290 		break;
3291 	case TC_ACT_SHOT:
3292 		mini_qdisc_qstats_cpu_drop(miniq);
3293 		*ret = NET_XMIT_DROP;
3294 		kfree_skb(skb);
3295 		return NULL;
3296 	case TC_ACT_STOLEN:
3297 	case TC_ACT_QUEUED:
3298 	case TC_ACT_TRAP:
3299 		*ret = NET_XMIT_SUCCESS;
3300 		consume_skb(skb);
3301 		return NULL;
3302 	case TC_ACT_REDIRECT:
3303 		/* No need to push/pop skb's mac_header here on egress! */
3304 		skb_do_redirect(skb);
3305 		*ret = NET_XMIT_SUCCESS;
3306 		return NULL;
3307 	default:
3308 		break;
3309 	}
3310 
3311 	return skb;
3312 }
3313 #endif /* CONFIG_NET_EGRESS */
3314 
3315 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3316 {
3317 #ifdef CONFIG_XPS
3318 	struct xps_dev_maps *dev_maps;
3319 	struct xps_map *map;
3320 	int queue_index = -1;
3321 
3322 	rcu_read_lock();
3323 	dev_maps = rcu_dereference(dev->xps_maps);
3324 	if (dev_maps) {
3325 		unsigned int tci = skb->sender_cpu - 1;
3326 
3327 		if (dev->num_tc) {
3328 			tci *= dev->num_tc;
3329 			tci += netdev_get_prio_tc_map(dev, skb->priority);
3330 		}
3331 
3332 		map = rcu_dereference(dev_maps->cpu_map[tci]);
3333 		if (map) {
3334 			if (map->len == 1)
3335 				queue_index = map->queues[0];
3336 			else
3337 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3338 									   map->len)];
3339 			if (unlikely(queue_index >= dev->real_num_tx_queues))
3340 				queue_index = -1;
3341 		}
3342 	}
3343 	rcu_read_unlock();
3344 
3345 	return queue_index;
3346 #else
3347 	return -1;
3348 #endif
3349 }
3350 
3351 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3352 {
3353 	struct sock *sk = skb->sk;
3354 	int queue_index = sk_tx_queue_get(sk);
3355 
3356 	if (queue_index < 0 || skb->ooo_okay ||
3357 	    queue_index >= dev->real_num_tx_queues) {
3358 		int new_index = get_xps_queue(dev, skb);
3359 
3360 		if (new_index < 0)
3361 			new_index = skb_tx_hash(dev, skb);
3362 
3363 		if (queue_index != new_index && sk &&
3364 		    sk_fullsock(sk) &&
3365 		    rcu_access_pointer(sk->sk_dst_cache))
3366 			sk_tx_queue_set(sk, new_index);
3367 
3368 		queue_index = new_index;
3369 	}
3370 
3371 	return queue_index;
3372 }
3373 
3374 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3375 				    struct sk_buff *skb,
3376 				    void *accel_priv)
3377 {
3378 	int queue_index = 0;
3379 
3380 #ifdef CONFIG_XPS
3381 	u32 sender_cpu = skb->sender_cpu - 1;
3382 
3383 	if (sender_cpu >= (u32)NR_CPUS)
3384 		skb->sender_cpu = raw_smp_processor_id() + 1;
3385 #endif
3386 
3387 	if (dev->real_num_tx_queues != 1) {
3388 		const struct net_device_ops *ops = dev->netdev_ops;
3389 
3390 		if (ops->ndo_select_queue)
3391 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3392 							    __netdev_pick_tx);
3393 		else
3394 			queue_index = __netdev_pick_tx(dev, skb);
3395 
3396 		if (!accel_priv)
3397 			queue_index = netdev_cap_txqueue(dev, queue_index);
3398 	}
3399 
3400 	skb_set_queue_mapping(skb, queue_index);
3401 	return netdev_get_tx_queue(dev, queue_index);
3402 }
3403 
3404 /**
3405  *	__dev_queue_xmit - transmit a buffer
3406  *	@skb: buffer to transmit
3407  *	@accel_priv: private data used for L2 forwarding offload
3408  *
3409  *	Queue a buffer for transmission to a network device. The caller must
3410  *	have set the device and priority and built the buffer before calling
3411  *	this function. The function can be called from an interrupt.
3412  *
3413  *	A negative errno code is returned on a failure. A success does not
3414  *	guarantee the frame will be transmitted as it may be dropped due
3415  *	to congestion or traffic shaping.
3416  *
3417  * -----------------------------------------------------------------------------------
3418  *      I notice this method can also return errors from the queue disciplines,
3419  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3420  *      be positive.
3421  *
3422  *      Regardless of the return value, the skb is consumed, so it is currently
3423  *      difficult to retry a send to this method.  (You can bump the ref count
3424  *      before sending to hold a reference for retry if you are careful.)
3425  *
3426  *      When calling this method, interrupts MUST be enabled.  This is because
3427  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3428  *          --BLG
3429  */
3430 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3431 {
3432 	struct net_device *dev = skb->dev;
3433 	struct netdev_queue *txq;
3434 	struct Qdisc *q;
3435 	int rc = -ENOMEM;
3436 
3437 	skb_reset_mac_header(skb);
3438 
3439 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3440 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3441 
3442 	/* Disable soft irqs for various locks below. Also
3443 	 * stops preemption for RCU.
3444 	 */
3445 	rcu_read_lock_bh();
3446 
3447 	skb_update_prio(skb);
3448 
3449 	qdisc_pkt_len_init(skb);
3450 #ifdef CONFIG_NET_CLS_ACT
3451 	skb->tc_at_ingress = 0;
3452 # ifdef CONFIG_NET_EGRESS
3453 	if (static_key_false(&egress_needed)) {
3454 		skb = sch_handle_egress(skb, &rc, dev);
3455 		if (!skb)
3456 			goto out;
3457 	}
3458 # endif
3459 #endif
3460 	/* If device/qdisc don't need skb->dst, release it right now while
3461 	 * its hot in this cpu cache.
3462 	 */
3463 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3464 		skb_dst_drop(skb);
3465 	else
3466 		skb_dst_force(skb);
3467 
3468 	txq = netdev_pick_tx(dev, skb, accel_priv);
3469 	q = rcu_dereference_bh(txq->qdisc);
3470 
3471 	trace_net_dev_queue(skb);
3472 	if (q->enqueue) {
3473 		rc = __dev_xmit_skb(skb, q, dev, txq);
3474 		goto out;
3475 	}
3476 
3477 	/* The device has no queue. Common case for software devices:
3478 	 * loopback, all the sorts of tunnels...
3479 
3480 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3481 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3482 	 * counters.)
3483 	 * However, it is possible, that they rely on protection
3484 	 * made by us here.
3485 
3486 	 * Check this and shot the lock. It is not prone from deadlocks.
3487 	 *Either shot noqueue qdisc, it is even simpler 8)
3488 	 */
3489 	if (dev->flags & IFF_UP) {
3490 		int cpu = smp_processor_id(); /* ok because BHs are off */
3491 
3492 		if (txq->xmit_lock_owner != cpu) {
3493 			if (unlikely(__this_cpu_read(xmit_recursion) >
3494 				     XMIT_RECURSION_LIMIT))
3495 				goto recursion_alert;
3496 
3497 			skb = validate_xmit_skb(skb, dev);
3498 			if (!skb)
3499 				goto out;
3500 
3501 			HARD_TX_LOCK(dev, txq, cpu);
3502 
3503 			if (!netif_xmit_stopped(txq)) {
3504 				__this_cpu_inc(xmit_recursion);
3505 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3506 				__this_cpu_dec(xmit_recursion);
3507 				if (dev_xmit_complete(rc)) {
3508 					HARD_TX_UNLOCK(dev, txq);
3509 					goto out;
3510 				}
3511 			}
3512 			HARD_TX_UNLOCK(dev, txq);
3513 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3514 					     dev->name);
3515 		} else {
3516 			/* Recursion is detected! It is possible,
3517 			 * unfortunately
3518 			 */
3519 recursion_alert:
3520 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3521 					     dev->name);
3522 		}
3523 	}
3524 
3525 	rc = -ENETDOWN;
3526 	rcu_read_unlock_bh();
3527 
3528 	atomic_long_inc(&dev->tx_dropped);
3529 	kfree_skb_list(skb);
3530 	return rc;
3531 out:
3532 	rcu_read_unlock_bh();
3533 	return rc;
3534 }
3535 
3536 int dev_queue_xmit(struct sk_buff *skb)
3537 {
3538 	return __dev_queue_xmit(skb, NULL);
3539 }
3540 EXPORT_SYMBOL(dev_queue_xmit);
3541 
3542 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3543 {
3544 	return __dev_queue_xmit(skb, accel_priv);
3545 }
3546 EXPORT_SYMBOL(dev_queue_xmit_accel);
3547 
3548 
3549 /*************************************************************************
3550  *			Receiver routines
3551  *************************************************************************/
3552 
3553 int netdev_max_backlog __read_mostly = 1000;
3554 EXPORT_SYMBOL(netdev_max_backlog);
3555 
3556 int netdev_tstamp_prequeue __read_mostly = 1;
3557 int netdev_budget __read_mostly = 300;
3558 unsigned int __read_mostly netdev_budget_usecs = 2000;
3559 int weight_p __read_mostly = 64;           /* old backlog weight */
3560 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3561 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3562 int dev_rx_weight __read_mostly = 64;
3563 int dev_tx_weight __read_mostly = 64;
3564 
3565 /* Called with irq disabled */
3566 static inline void ____napi_schedule(struct softnet_data *sd,
3567 				     struct napi_struct *napi)
3568 {
3569 	list_add_tail(&napi->poll_list, &sd->poll_list);
3570 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3571 }
3572 
3573 #ifdef CONFIG_RPS
3574 
3575 /* One global table that all flow-based protocols share. */
3576 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3577 EXPORT_SYMBOL(rps_sock_flow_table);
3578 u32 rps_cpu_mask __read_mostly;
3579 EXPORT_SYMBOL(rps_cpu_mask);
3580 
3581 struct static_key rps_needed __read_mostly;
3582 EXPORT_SYMBOL(rps_needed);
3583 struct static_key rfs_needed __read_mostly;
3584 EXPORT_SYMBOL(rfs_needed);
3585 
3586 static struct rps_dev_flow *
3587 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3588 	    struct rps_dev_flow *rflow, u16 next_cpu)
3589 {
3590 	if (next_cpu < nr_cpu_ids) {
3591 #ifdef CONFIG_RFS_ACCEL
3592 		struct netdev_rx_queue *rxqueue;
3593 		struct rps_dev_flow_table *flow_table;
3594 		struct rps_dev_flow *old_rflow;
3595 		u32 flow_id;
3596 		u16 rxq_index;
3597 		int rc;
3598 
3599 		/* Should we steer this flow to a different hardware queue? */
3600 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3601 		    !(dev->features & NETIF_F_NTUPLE))
3602 			goto out;
3603 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3604 		if (rxq_index == skb_get_rx_queue(skb))
3605 			goto out;
3606 
3607 		rxqueue = dev->_rx + rxq_index;
3608 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3609 		if (!flow_table)
3610 			goto out;
3611 		flow_id = skb_get_hash(skb) & flow_table->mask;
3612 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3613 							rxq_index, flow_id);
3614 		if (rc < 0)
3615 			goto out;
3616 		old_rflow = rflow;
3617 		rflow = &flow_table->flows[flow_id];
3618 		rflow->filter = rc;
3619 		if (old_rflow->filter == rflow->filter)
3620 			old_rflow->filter = RPS_NO_FILTER;
3621 	out:
3622 #endif
3623 		rflow->last_qtail =
3624 			per_cpu(softnet_data, next_cpu).input_queue_head;
3625 	}
3626 
3627 	rflow->cpu = next_cpu;
3628 	return rflow;
3629 }
3630 
3631 /*
3632  * get_rps_cpu is called from netif_receive_skb and returns the target
3633  * CPU from the RPS map of the receiving queue for a given skb.
3634  * rcu_read_lock must be held on entry.
3635  */
3636 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3637 		       struct rps_dev_flow **rflowp)
3638 {
3639 	const struct rps_sock_flow_table *sock_flow_table;
3640 	struct netdev_rx_queue *rxqueue = dev->_rx;
3641 	struct rps_dev_flow_table *flow_table;
3642 	struct rps_map *map;
3643 	int cpu = -1;
3644 	u32 tcpu;
3645 	u32 hash;
3646 
3647 	if (skb_rx_queue_recorded(skb)) {
3648 		u16 index = skb_get_rx_queue(skb);
3649 
3650 		if (unlikely(index >= dev->real_num_rx_queues)) {
3651 			WARN_ONCE(dev->real_num_rx_queues > 1,
3652 				  "%s received packet on queue %u, but number "
3653 				  "of RX queues is %u\n",
3654 				  dev->name, index, dev->real_num_rx_queues);
3655 			goto done;
3656 		}
3657 		rxqueue += index;
3658 	}
3659 
3660 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3661 
3662 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3663 	map = rcu_dereference(rxqueue->rps_map);
3664 	if (!flow_table && !map)
3665 		goto done;
3666 
3667 	skb_reset_network_header(skb);
3668 	hash = skb_get_hash(skb);
3669 	if (!hash)
3670 		goto done;
3671 
3672 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3673 	if (flow_table && sock_flow_table) {
3674 		struct rps_dev_flow *rflow;
3675 		u32 next_cpu;
3676 		u32 ident;
3677 
3678 		/* First check into global flow table if there is a match */
3679 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3680 		if ((ident ^ hash) & ~rps_cpu_mask)
3681 			goto try_rps;
3682 
3683 		next_cpu = ident & rps_cpu_mask;
3684 
3685 		/* OK, now we know there is a match,
3686 		 * we can look at the local (per receive queue) flow table
3687 		 */
3688 		rflow = &flow_table->flows[hash & flow_table->mask];
3689 		tcpu = rflow->cpu;
3690 
3691 		/*
3692 		 * If the desired CPU (where last recvmsg was done) is
3693 		 * different from current CPU (one in the rx-queue flow
3694 		 * table entry), switch if one of the following holds:
3695 		 *   - Current CPU is unset (>= nr_cpu_ids).
3696 		 *   - Current CPU is offline.
3697 		 *   - The current CPU's queue tail has advanced beyond the
3698 		 *     last packet that was enqueued using this table entry.
3699 		 *     This guarantees that all previous packets for the flow
3700 		 *     have been dequeued, thus preserving in order delivery.
3701 		 */
3702 		if (unlikely(tcpu != next_cpu) &&
3703 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3704 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3705 		      rflow->last_qtail)) >= 0)) {
3706 			tcpu = next_cpu;
3707 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3708 		}
3709 
3710 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3711 			*rflowp = rflow;
3712 			cpu = tcpu;
3713 			goto done;
3714 		}
3715 	}
3716 
3717 try_rps:
3718 
3719 	if (map) {
3720 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3721 		if (cpu_online(tcpu)) {
3722 			cpu = tcpu;
3723 			goto done;
3724 		}
3725 	}
3726 
3727 done:
3728 	return cpu;
3729 }
3730 
3731 #ifdef CONFIG_RFS_ACCEL
3732 
3733 /**
3734  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3735  * @dev: Device on which the filter was set
3736  * @rxq_index: RX queue index
3737  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3738  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3739  *
3740  * Drivers that implement ndo_rx_flow_steer() should periodically call
3741  * this function for each installed filter and remove the filters for
3742  * which it returns %true.
3743  */
3744 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3745 			 u32 flow_id, u16 filter_id)
3746 {
3747 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3748 	struct rps_dev_flow_table *flow_table;
3749 	struct rps_dev_flow *rflow;
3750 	bool expire = true;
3751 	unsigned int cpu;
3752 
3753 	rcu_read_lock();
3754 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3755 	if (flow_table && flow_id <= flow_table->mask) {
3756 		rflow = &flow_table->flows[flow_id];
3757 		cpu = ACCESS_ONCE(rflow->cpu);
3758 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3759 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3760 			   rflow->last_qtail) <
3761 		     (int)(10 * flow_table->mask)))
3762 			expire = false;
3763 	}
3764 	rcu_read_unlock();
3765 	return expire;
3766 }
3767 EXPORT_SYMBOL(rps_may_expire_flow);
3768 
3769 #endif /* CONFIG_RFS_ACCEL */
3770 
3771 /* Called from hardirq (IPI) context */
3772 static void rps_trigger_softirq(void *data)
3773 {
3774 	struct softnet_data *sd = data;
3775 
3776 	____napi_schedule(sd, &sd->backlog);
3777 	sd->received_rps++;
3778 }
3779 
3780 #endif /* CONFIG_RPS */
3781 
3782 /*
3783  * Check if this softnet_data structure is another cpu one
3784  * If yes, queue it to our IPI list and return 1
3785  * If no, return 0
3786  */
3787 static int rps_ipi_queued(struct softnet_data *sd)
3788 {
3789 #ifdef CONFIG_RPS
3790 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3791 
3792 	if (sd != mysd) {
3793 		sd->rps_ipi_next = mysd->rps_ipi_list;
3794 		mysd->rps_ipi_list = sd;
3795 
3796 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3797 		return 1;
3798 	}
3799 #endif /* CONFIG_RPS */
3800 	return 0;
3801 }
3802 
3803 #ifdef CONFIG_NET_FLOW_LIMIT
3804 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3805 #endif
3806 
3807 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3808 {
3809 #ifdef CONFIG_NET_FLOW_LIMIT
3810 	struct sd_flow_limit *fl;
3811 	struct softnet_data *sd;
3812 	unsigned int old_flow, new_flow;
3813 
3814 	if (qlen < (netdev_max_backlog >> 1))
3815 		return false;
3816 
3817 	sd = this_cpu_ptr(&softnet_data);
3818 
3819 	rcu_read_lock();
3820 	fl = rcu_dereference(sd->flow_limit);
3821 	if (fl) {
3822 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3823 		old_flow = fl->history[fl->history_head];
3824 		fl->history[fl->history_head] = new_flow;
3825 
3826 		fl->history_head++;
3827 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3828 
3829 		if (likely(fl->buckets[old_flow]))
3830 			fl->buckets[old_flow]--;
3831 
3832 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3833 			fl->count++;
3834 			rcu_read_unlock();
3835 			return true;
3836 		}
3837 	}
3838 	rcu_read_unlock();
3839 #endif
3840 	return false;
3841 }
3842 
3843 /*
3844  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3845  * queue (may be a remote CPU queue).
3846  */
3847 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3848 			      unsigned int *qtail)
3849 {
3850 	struct softnet_data *sd;
3851 	unsigned long flags;
3852 	unsigned int qlen;
3853 
3854 	sd = &per_cpu(softnet_data, cpu);
3855 
3856 	local_irq_save(flags);
3857 
3858 	rps_lock(sd);
3859 	if (!netif_running(skb->dev))
3860 		goto drop;
3861 	qlen = skb_queue_len(&sd->input_pkt_queue);
3862 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3863 		if (qlen) {
3864 enqueue:
3865 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3866 			input_queue_tail_incr_save(sd, qtail);
3867 			rps_unlock(sd);
3868 			local_irq_restore(flags);
3869 			return NET_RX_SUCCESS;
3870 		}
3871 
3872 		/* Schedule NAPI for backlog device
3873 		 * We can use non atomic operation since we own the queue lock
3874 		 */
3875 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3876 			if (!rps_ipi_queued(sd))
3877 				____napi_schedule(sd, &sd->backlog);
3878 		}
3879 		goto enqueue;
3880 	}
3881 
3882 drop:
3883 	sd->dropped++;
3884 	rps_unlock(sd);
3885 
3886 	local_irq_restore(flags);
3887 
3888 	atomic_long_inc(&skb->dev->rx_dropped);
3889 	kfree_skb(skb);
3890 	return NET_RX_DROP;
3891 }
3892 
3893 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3894 				     struct bpf_prog *xdp_prog)
3895 {
3896 	u32 metalen, act = XDP_DROP;
3897 	struct xdp_buff xdp;
3898 	void *orig_data;
3899 	int hlen, off;
3900 	u32 mac_len;
3901 
3902 	/* Reinjected packets coming from act_mirred or similar should
3903 	 * not get XDP generic processing.
3904 	 */
3905 	if (skb_cloned(skb))
3906 		return XDP_PASS;
3907 
3908 	/* XDP packets must be linear and must have sufficient headroom
3909 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
3910 	 * native XDP provides, thus we need to do it here as well.
3911 	 */
3912 	if (skb_is_nonlinear(skb) ||
3913 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
3914 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
3915 		int troom = skb->tail + skb->data_len - skb->end;
3916 
3917 		/* In case we have to go down the path and also linearize,
3918 		 * then lets do the pskb_expand_head() work just once here.
3919 		 */
3920 		if (pskb_expand_head(skb,
3921 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
3922 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
3923 			goto do_drop;
3924 		if (troom > 0 && __skb_linearize(skb))
3925 			goto do_drop;
3926 	}
3927 
3928 	/* The XDP program wants to see the packet starting at the MAC
3929 	 * header.
3930 	 */
3931 	mac_len = skb->data - skb_mac_header(skb);
3932 	hlen = skb_headlen(skb) + mac_len;
3933 	xdp.data = skb->data - mac_len;
3934 	xdp.data_meta = xdp.data;
3935 	xdp.data_end = xdp.data + hlen;
3936 	xdp.data_hard_start = skb->data - skb_headroom(skb);
3937 	orig_data = xdp.data;
3938 
3939 	act = bpf_prog_run_xdp(xdp_prog, &xdp);
3940 
3941 	off = xdp.data - orig_data;
3942 	if (off > 0)
3943 		__skb_pull(skb, off);
3944 	else if (off < 0)
3945 		__skb_push(skb, -off);
3946 	skb->mac_header += off;
3947 
3948 	switch (act) {
3949 	case XDP_REDIRECT:
3950 	case XDP_TX:
3951 		__skb_push(skb, mac_len);
3952 		break;
3953 	case XDP_PASS:
3954 		metalen = xdp.data - xdp.data_meta;
3955 		if (metalen)
3956 			skb_metadata_set(skb, metalen);
3957 		break;
3958 	default:
3959 		bpf_warn_invalid_xdp_action(act);
3960 		/* fall through */
3961 	case XDP_ABORTED:
3962 		trace_xdp_exception(skb->dev, xdp_prog, act);
3963 		/* fall through */
3964 	case XDP_DROP:
3965 	do_drop:
3966 		kfree_skb(skb);
3967 		break;
3968 	}
3969 
3970 	return act;
3971 }
3972 
3973 /* When doing generic XDP we have to bypass the qdisc layer and the
3974  * network taps in order to match in-driver-XDP behavior.
3975  */
3976 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
3977 {
3978 	struct net_device *dev = skb->dev;
3979 	struct netdev_queue *txq;
3980 	bool free_skb = true;
3981 	int cpu, rc;
3982 
3983 	txq = netdev_pick_tx(dev, skb, NULL);
3984 	cpu = smp_processor_id();
3985 	HARD_TX_LOCK(dev, txq, cpu);
3986 	if (!netif_xmit_stopped(txq)) {
3987 		rc = netdev_start_xmit(skb, dev, txq, 0);
3988 		if (dev_xmit_complete(rc))
3989 			free_skb = false;
3990 	}
3991 	HARD_TX_UNLOCK(dev, txq);
3992 	if (free_skb) {
3993 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
3994 		kfree_skb(skb);
3995 	}
3996 }
3997 EXPORT_SYMBOL_GPL(generic_xdp_tx);
3998 
3999 static struct static_key generic_xdp_needed __read_mostly;
4000 
4001 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4002 {
4003 	if (xdp_prog) {
4004 		u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4005 		int err;
4006 
4007 		if (act != XDP_PASS) {
4008 			switch (act) {
4009 			case XDP_REDIRECT:
4010 				err = xdp_do_generic_redirect(skb->dev, skb,
4011 							      xdp_prog);
4012 				if (err)
4013 					goto out_redir;
4014 			/* fallthru to submit skb */
4015 			case XDP_TX:
4016 				generic_xdp_tx(skb, xdp_prog);
4017 				break;
4018 			}
4019 			return XDP_DROP;
4020 		}
4021 	}
4022 	return XDP_PASS;
4023 out_redir:
4024 	kfree_skb(skb);
4025 	return XDP_DROP;
4026 }
4027 EXPORT_SYMBOL_GPL(do_xdp_generic);
4028 
4029 static int netif_rx_internal(struct sk_buff *skb)
4030 {
4031 	int ret;
4032 
4033 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4034 
4035 	trace_netif_rx(skb);
4036 
4037 	if (static_key_false(&generic_xdp_needed)) {
4038 		int ret;
4039 
4040 		preempt_disable();
4041 		rcu_read_lock();
4042 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4043 		rcu_read_unlock();
4044 		preempt_enable();
4045 
4046 		/* Consider XDP consuming the packet a success from
4047 		 * the netdev point of view we do not want to count
4048 		 * this as an error.
4049 		 */
4050 		if (ret != XDP_PASS)
4051 			return NET_RX_SUCCESS;
4052 	}
4053 
4054 #ifdef CONFIG_RPS
4055 	if (static_key_false(&rps_needed)) {
4056 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4057 		int cpu;
4058 
4059 		preempt_disable();
4060 		rcu_read_lock();
4061 
4062 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4063 		if (cpu < 0)
4064 			cpu = smp_processor_id();
4065 
4066 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4067 
4068 		rcu_read_unlock();
4069 		preempt_enable();
4070 	} else
4071 #endif
4072 	{
4073 		unsigned int qtail;
4074 
4075 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4076 		put_cpu();
4077 	}
4078 	return ret;
4079 }
4080 
4081 /**
4082  *	netif_rx	-	post buffer to the network code
4083  *	@skb: buffer to post
4084  *
4085  *	This function receives a packet from a device driver and queues it for
4086  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4087  *	may be dropped during processing for congestion control or by the
4088  *	protocol layers.
4089  *
4090  *	return values:
4091  *	NET_RX_SUCCESS	(no congestion)
4092  *	NET_RX_DROP     (packet was dropped)
4093  *
4094  */
4095 
4096 int netif_rx(struct sk_buff *skb)
4097 {
4098 	trace_netif_rx_entry(skb);
4099 
4100 	return netif_rx_internal(skb);
4101 }
4102 EXPORT_SYMBOL(netif_rx);
4103 
4104 int netif_rx_ni(struct sk_buff *skb)
4105 {
4106 	int err;
4107 
4108 	trace_netif_rx_ni_entry(skb);
4109 
4110 	preempt_disable();
4111 	err = netif_rx_internal(skb);
4112 	if (local_softirq_pending())
4113 		do_softirq();
4114 	preempt_enable();
4115 
4116 	return err;
4117 }
4118 EXPORT_SYMBOL(netif_rx_ni);
4119 
4120 static __latent_entropy void net_tx_action(struct softirq_action *h)
4121 {
4122 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4123 
4124 	if (sd->completion_queue) {
4125 		struct sk_buff *clist;
4126 
4127 		local_irq_disable();
4128 		clist = sd->completion_queue;
4129 		sd->completion_queue = NULL;
4130 		local_irq_enable();
4131 
4132 		while (clist) {
4133 			struct sk_buff *skb = clist;
4134 
4135 			clist = clist->next;
4136 
4137 			WARN_ON(refcount_read(&skb->users));
4138 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4139 				trace_consume_skb(skb);
4140 			else
4141 				trace_kfree_skb(skb, net_tx_action);
4142 
4143 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4144 				__kfree_skb(skb);
4145 			else
4146 				__kfree_skb_defer(skb);
4147 		}
4148 
4149 		__kfree_skb_flush();
4150 	}
4151 
4152 	if (sd->output_queue) {
4153 		struct Qdisc *head;
4154 
4155 		local_irq_disable();
4156 		head = sd->output_queue;
4157 		sd->output_queue = NULL;
4158 		sd->output_queue_tailp = &sd->output_queue;
4159 		local_irq_enable();
4160 
4161 		while (head) {
4162 			struct Qdisc *q = head;
4163 			spinlock_t *root_lock;
4164 
4165 			head = head->next_sched;
4166 
4167 			root_lock = qdisc_lock(q);
4168 			spin_lock(root_lock);
4169 			/* We need to make sure head->next_sched is read
4170 			 * before clearing __QDISC_STATE_SCHED
4171 			 */
4172 			smp_mb__before_atomic();
4173 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4174 			qdisc_run(q);
4175 			spin_unlock(root_lock);
4176 		}
4177 	}
4178 }
4179 
4180 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4181 /* This hook is defined here for ATM LANE */
4182 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4183 			     unsigned char *addr) __read_mostly;
4184 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4185 #endif
4186 
4187 static inline struct sk_buff *
4188 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4189 		   struct net_device *orig_dev)
4190 {
4191 #ifdef CONFIG_NET_CLS_ACT
4192 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4193 	struct tcf_result cl_res;
4194 
4195 	/* If there's at least one ingress present somewhere (so
4196 	 * we get here via enabled static key), remaining devices
4197 	 * that are not configured with an ingress qdisc will bail
4198 	 * out here.
4199 	 */
4200 	if (!miniq)
4201 		return skb;
4202 
4203 	if (*pt_prev) {
4204 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4205 		*pt_prev = NULL;
4206 	}
4207 
4208 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4209 	skb->tc_at_ingress = 1;
4210 	mini_qdisc_bstats_cpu_update(miniq, skb);
4211 
4212 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4213 	case TC_ACT_OK:
4214 	case TC_ACT_RECLASSIFY:
4215 		skb->tc_index = TC_H_MIN(cl_res.classid);
4216 		break;
4217 	case TC_ACT_SHOT:
4218 		mini_qdisc_qstats_cpu_drop(miniq);
4219 		kfree_skb(skb);
4220 		return NULL;
4221 	case TC_ACT_STOLEN:
4222 	case TC_ACT_QUEUED:
4223 	case TC_ACT_TRAP:
4224 		consume_skb(skb);
4225 		return NULL;
4226 	case TC_ACT_REDIRECT:
4227 		/* skb_mac_header check was done by cls/act_bpf, so
4228 		 * we can safely push the L2 header back before
4229 		 * redirecting to another netdev
4230 		 */
4231 		__skb_push(skb, skb->mac_len);
4232 		skb_do_redirect(skb);
4233 		return NULL;
4234 	default:
4235 		break;
4236 	}
4237 #endif /* CONFIG_NET_CLS_ACT */
4238 	return skb;
4239 }
4240 
4241 /**
4242  *	netdev_is_rx_handler_busy - check if receive handler is registered
4243  *	@dev: device to check
4244  *
4245  *	Check if a receive handler is already registered for a given device.
4246  *	Return true if there one.
4247  *
4248  *	The caller must hold the rtnl_mutex.
4249  */
4250 bool netdev_is_rx_handler_busy(struct net_device *dev)
4251 {
4252 	ASSERT_RTNL();
4253 	return dev && rtnl_dereference(dev->rx_handler);
4254 }
4255 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4256 
4257 /**
4258  *	netdev_rx_handler_register - register receive handler
4259  *	@dev: device to register a handler for
4260  *	@rx_handler: receive handler to register
4261  *	@rx_handler_data: data pointer that is used by rx handler
4262  *
4263  *	Register a receive handler for a device. This handler will then be
4264  *	called from __netif_receive_skb. A negative errno code is returned
4265  *	on a failure.
4266  *
4267  *	The caller must hold the rtnl_mutex.
4268  *
4269  *	For a general description of rx_handler, see enum rx_handler_result.
4270  */
4271 int netdev_rx_handler_register(struct net_device *dev,
4272 			       rx_handler_func_t *rx_handler,
4273 			       void *rx_handler_data)
4274 {
4275 	if (netdev_is_rx_handler_busy(dev))
4276 		return -EBUSY;
4277 
4278 	/* Note: rx_handler_data must be set before rx_handler */
4279 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4280 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4281 
4282 	return 0;
4283 }
4284 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4285 
4286 /**
4287  *	netdev_rx_handler_unregister - unregister receive handler
4288  *	@dev: device to unregister a handler from
4289  *
4290  *	Unregister a receive handler from a device.
4291  *
4292  *	The caller must hold the rtnl_mutex.
4293  */
4294 void netdev_rx_handler_unregister(struct net_device *dev)
4295 {
4296 
4297 	ASSERT_RTNL();
4298 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4299 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4300 	 * section has a guarantee to see a non NULL rx_handler_data
4301 	 * as well.
4302 	 */
4303 	synchronize_net();
4304 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4305 }
4306 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4307 
4308 /*
4309  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4310  * the special handling of PFMEMALLOC skbs.
4311  */
4312 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4313 {
4314 	switch (skb->protocol) {
4315 	case htons(ETH_P_ARP):
4316 	case htons(ETH_P_IP):
4317 	case htons(ETH_P_IPV6):
4318 	case htons(ETH_P_8021Q):
4319 	case htons(ETH_P_8021AD):
4320 		return true;
4321 	default:
4322 		return false;
4323 	}
4324 }
4325 
4326 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4327 			     int *ret, struct net_device *orig_dev)
4328 {
4329 #ifdef CONFIG_NETFILTER_INGRESS
4330 	if (nf_hook_ingress_active(skb)) {
4331 		int ingress_retval;
4332 
4333 		if (*pt_prev) {
4334 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4335 			*pt_prev = NULL;
4336 		}
4337 
4338 		rcu_read_lock();
4339 		ingress_retval = nf_hook_ingress(skb);
4340 		rcu_read_unlock();
4341 		return ingress_retval;
4342 	}
4343 #endif /* CONFIG_NETFILTER_INGRESS */
4344 	return 0;
4345 }
4346 
4347 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4348 {
4349 	struct packet_type *ptype, *pt_prev;
4350 	rx_handler_func_t *rx_handler;
4351 	struct net_device *orig_dev;
4352 	bool deliver_exact = false;
4353 	int ret = NET_RX_DROP;
4354 	__be16 type;
4355 
4356 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4357 
4358 	trace_netif_receive_skb(skb);
4359 
4360 	orig_dev = skb->dev;
4361 
4362 	skb_reset_network_header(skb);
4363 	if (!skb_transport_header_was_set(skb))
4364 		skb_reset_transport_header(skb);
4365 	skb_reset_mac_len(skb);
4366 
4367 	pt_prev = NULL;
4368 
4369 another_round:
4370 	skb->skb_iif = skb->dev->ifindex;
4371 
4372 	__this_cpu_inc(softnet_data.processed);
4373 
4374 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4375 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4376 		skb = skb_vlan_untag(skb);
4377 		if (unlikely(!skb))
4378 			goto out;
4379 	}
4380 
4381 	if (skb_skip_tc_classify(skb))
4382 		goto skip_classify;
4383 
4384 	if (pfmemalloc)
4385 		goto skip_taps;
4386 
4387 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4388 		if (pt_prev)
4389 			ret = deliver_skb(skb, pt_prev, orig_dev);
4390 		pt_prev = ptype;
4391 	}
4392 
4393 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4394 		if (pt_prev)
4395 			ret = deliver_skb(skb, pt_prev, orig_dev);
4396 		pt_prev = ptype;
4397 	}
4398 
4399 skip_taps:
4400 #ifdef CONFIG_NET_INGRESS
4401 	if (static_key_false(&ingress_needed)) {
4402 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4403 		if (!skb)
4404 			goto out;
4405 
4406 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4407 			goto out;
4408 	}
4409 #endif
4410 	skb_reset_tc(skb);
4411 skip_classify:
4412 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4413 		goto drop;
4414 
4415 	if (skb_vlan_tag_present(skb)) {
4416 		if (pt_prev) {
4417 			ret = deliver_skb(skb, pt_prev, orig_dev);
4418 			pt_prev = NULL;
4419 		}
4420 		if (vlan_do_receive(&skb))
4421 			goto another_round;
4422 		else if (unlikely(!skb))
4423 			goto out;
4424 	}
4425 
4426 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4427 	if (rx_handler) {
4428 		if (pt_prev) {
4429 			ret = deliver_skb(skb, pt_prev, orig_dev);
4430 			pt_prev = NULL;
4431 		}
4432 		switch (rx_handler(&skb)) {
4433 		case RX_HANDLER_CONSUMED:
4434 			ret = NET_RX_SUCCESS;
4435 			goto out;
4436 		case RX_HANDLER_ANOTHER:
4437 			goto another_round;
4438 		case RX_HANDLER_EXACT:
4439 			deliver_exact = true;
4440 		case RX_HANDLER_PASS:
4441 			break;
4442 		default:
4443 			BUG();
4444 		}
4445 	}
4446 
4447 	if (unlikely(skb_vlan_tag_present(skb))) {
4448 		if (skb_vlan_tag_get_id(skb))
4449 			skb->pkt_type = PACKET_OTHERHOST;
4450 		/* Note: we might in the future use prio bits
4451 		 * and set skb->priority like in vlan_do_receive()
4452 		 * For the time being, just ignore Priority Code Point
4453 		 */
4454 		skb->vlan_tci = 0;
4455 	}
4456 
4457 	type = skb->protocol;
4458 
4459 	/* deliver only exact match when indicated */
4460 	if (likely(!deliver_exact)) {
4461 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4462 				       &ptype_base[ntohs(type) &
4463 						   PTYPE_HASH_MASK]);
4464 	}
4465 
4466 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4467 			       &orig_dev->ptype_specific);
4468 
4469 	if (unlikely(skb->dev != orig_dev)) {
4470 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4471 				       &skb->dev->ptype_specific);
4472 	}
4473 
4474 	if (pt_prev) {
4475 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4476 			goto drop;
4477 		else
4478 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4479 	} else {
4480 drop:
4481 		if (!deliver_exact)
4482 			atomic_long_inc(&skb->dev->rx_dropped);
4483 		else
4484 			atomic_long_inc(&skb->dev->rx_nohandler);
4485 		kfree_skb(skb);
4486 		/* Jamal, now you will not able to escape explaining
4487 		 * me how you were going to use this. :-)
4488 		 */
4489 		ret = NET_RX_DROP;
4490 	}
4491 
4492 out:
4493 	return ret;
4494 }
4495 
4496 /**
4497  *	netif_receive_skb_core - special purpose version of netif_receive_skb
4498  *	@skb: buffer to process
4499  *
4500  *	More direct receive version of netif_receive_skb().  It should
4501  *	only be used by callers that have a need to skip RPS and Generic XDP.
4502  *	Caller must also take care of handling if (page_is_)pfmemalloc.
4503  *
4504  *	This function may only be called from softirq context and interrupts
4505  *	should be enabled.
4506  *
4507  *	Return values (usually ignored):
4508  *	NET_RX_SUCCESS: no congestion
4509  *	NET_RX_DROP: packet was dropped
4510  */
4511 int netif_receive_skb_core(struct sk_buff *skb)
4512 {
4513 	int ret;
4514 
4515 	rcu_read_lock();
4516 	ret = __netif_receive_skb_core(skb, false);
4517 	rcu_read_unlock();
4518 
4519 	return ret;
4520 }
4521 EXPORT_SYMBOL(netif_receive_skb_core);
4522 
4523 static int __netif_receive_skb(struct sk_buff *skb)
4524 {
4525 	int ret;
4526 
4527 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4528 		unsigned int noreclaim_flag;
4529 
4530 		/*
4531 		 * PFMEMALLOC skbs are special, they should
4532 		 * - be delivered to SOCK_MEMALLOC sockets only
4533 		 * - stay away from userspace
4534 		 * - have bounded memory usage
4535 		 *
4536 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4537 		 * context down to all allocation sites.
4538 		 */
4539 		noreclaim_flag = memalloc_noreclaim_save();
4540 		ret = __netif_receive_skb_core(skb, true);
4541 		memalloc_noreclaim_restore(noreclaim_flag);
4542 	} else
4543 		ret = __netif_receive_skb_core(skb, false);
4544 
4545 	return ret;
4546 }
4547 
4548 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
4549 {
4550 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4551 	struct bpf_prog *new = xdp->prog;
4552 	int ret = 0;
4553 
4554 	switch (xdp->command) {
4555 	case XDP_SETUP_PROG:
4556 		rcu_assign_pointer(dev->xdp_prog, new);
4557 		if (old)
4558 			bpf_prog_put(old);
4559 
4560 		if (old && !new) {
4561 			static_key_slow_dec(&generic_xdp_needed);
4562 		} else if (new && !old) {
4563 			static_key_slow_inc(&generic_xdp_needed);
4564 			dev_disable_lro(dev);
4565 		}
4566 		break;
4567 
4568 	case XDP_QUERY_PROG:
4569 		xdp->prog_attached = !!old;
4570 		xdp->prog_id = old ? old->aux->id : 0;
4571 		break;
4572 
4573 	default:
4574 		ret = -EINVAL;
4575 		break;
4576 	}
4577 
4578 	return ret;
4579 }
4580 
4581 static int netif_receive_skb_internal(struct sk_buff *skb)
4582 {
4583 	int ret;
4584 
4585 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4586 
4587 	if (skb_defer_rx_timestamp(skb))
4588 		return NET_RX_SUCCESS;
4589 
4590 	if (static_key_false(&generic_xdp_needed)) {
4591 		int ret;
4592 
4593 		preempt_disable();
4594 		rcu_read_lock();
4595 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4596 		rcu_read_unlock();
4597 		preempt_enable();
4598 
4599 		if (ret != XDP_PASS)
4600 			return NET_RX_DROP;
4601 	}
4602 
4603 	rcu_read_lock();
4604 #ifdef CONFIG_RPS
4605 	if (static_key_false(&rps_needed)) {
4606 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4607 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4608 
4609 		if (cpu >= 0) {
4610 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4611 			rcu_read_unlock();
4612 			return ret;
4613 		}
4614 	}
4615 #endif
4616 	ret = __netif_receive_skb(skb);
4617 	rcu_read_unlock();
4618 	return ret;
4619 }
4620 
4621 /**
4622  *	netif_receive_skb - process receive buffer from network
4623  *	@skb: buffer to process
4624  *
4625  *	netif_receive_skb() is the main receive data processing function.
4626  *	It always succeeds. The buffer may be dropped during processing
4627  *	for congestion control or by the protocol layers.
4628  *
4629  *	This function may only be called from softirq context and interrupts
4630  *	should be enabled.
4631  *
4632  *	Return values (usually ignored):
4633  *	NET_RX_SUCCESS: no congestion
4634  *	NET_RX_DROP: packet was dropped
4635  */
4636 int netif_receive_skb(struct sk_buff *skb)
4637 {
4638 	trace_netif_receive_skb_entry(skb);
4639 
4640 	return netif_receive_skb_internal(skb);
4641 }
4642 EXPORT_SYMBOL(netif_receive_skb);
4643 
4644 DEFINE_PER_CPU(struct work_struct, flush_works);
4645 
4646 /* Network device is going away, flush any packets still pending */
4647 static void flush_backlog(struct work_struct *work)
4648 {
4649 	struct sk_buff *skb, *tmp;
4650 	struct softnet_data *sd;
4651 
4652 	local_bh_disable();
4653 	sd = this_cpu_ptr(&softnet_data);
4654 
4655 	local_irq_disable();
4656 	rps_lock(sd);
4657 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4658 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4659 			__skb_unlink(skb, &sd->input_pkt_queue);
4660 			kfree_skb(skb);
4661 			input_queue_head_incr(sd);
4662 		}
4663 	}
4664 	rps_unlock(sd);
4665 	local_irq_enable();
4666 
4667 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4668 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4669 			__skb_unlink(skb, &sd->process_queue);
4670 			kfree_skb(skb);
4671 			input_queue_head_incr(sd);
4672 		}
4673 	}
4674 	local_bh_enable();
4675 }
4676 
4677 static void flush_all_backlogs(void)
4678 {
4679 	unsigned int cpu;
4680 
4681 	get_online_cpus();
4682 
4683 	for_each_online_cpu(cpu)
4684 		queue_work_on(cpu, system_highpri_wq,
4685 			      per_cpu_ptr(&flush_works, cpu));
4686 
4687 	for_each_online_cpu(cpu)
4688 		flush_work(per_cpu_ptr(&flush_works, cpu));
4689 
4690 	put_online_cpus();
4691 }
4692 
4693 static int napi_gro_complete(struct sk_buff *skb)
4694 {
4695 	struct packet_offload *ptype;
4696 	__be16 type = skb->protocol;
4697 	struct list_head *head = &offload_base;
4698 	int err = -ENOENT;
4699 
4700 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4701 
4702 	if (NAPI_GRO_CB(skb)->count == 1) {
4703 		skb_shinfo(skb)->gso_size = 0;
4704 		goto out;
4705 	}
4706 
4707 	rcu_read_lock();
4708 	list_for_each_entry_rcu(ptype, head, list) {
4709 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4710 			continue;
4711 
4712 		err = ptype->callbacks.gro_complete(skb, 0);
4713 		break;
4714 	}
4715 	rcu_read_unlock();
4716 
4717 	if (err) {
4718 		WARN_ON(&ptype->list == head);
4719 		kfree_skb(skb);
4720 		return NET_RX_SUCCESS;
4721 	}
4722 
4723 out:
4724 	return netif_receive_skb_internal(skb);
4725 }
4726 
4727 /* napi->gro_list contains packets ordered by age.
4728  * youngest packets at the head of it.
4729  * Complete skbs in reverse order to reduce latencies.
4730  */
4731 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4732 {
4733 	struct sk_buff *skb, *prev = NULL;
4734 
4735 	/* scan list and build reverse chain */
4736 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4737 		skb->prev = prev;
4738 		prev = skb;
4739 	}
4740 
4741 	for (skb = prev; skb; skb = prev) {
4742 		skb->next = NULL;
4743 
4744 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4745 			return;
4746 
4747 		prev = skb->prev;
4748 		napi_gro_complete(skb);
4749 		napi->gro_count--;
4750 	}
4751 
4752 	napi->gro_list = NULL;
4753 }
4754 EXPORT_SYMBOL(napi_gro_flush);
4755 
4756 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4757 {
4758 	struct sk_buff *p;
4759 	unsigned int maclen = skb->dev->hard_header_len;
4760 	u32 hash = skb_get_hash_raw(skb);
4761 
4762 	for (p = napi->gro_list; p; p = p->next) {
4763 		unsigned long diffs;
4764 
4765 		NAPI_GRO_CB(p)->flush = 0;
4766 
4767 		if (hash != skb_get_hash_raw(p)) {
4768 			NAPI_GRO_CB(p)->same_flow = 0;
4769 			continue;
4770 		}
4771 
4772 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4773 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4774 		diffs |= skb_metadata_dst_cmp(p, skb);
4775 		diffs |= skb_metadata_differs(p, skb);
4776 		if (maclen == ETH_HLEN)
4777 			diffs |= compare_ether_header(skb_mac_header(p),
4778 						      skb_mac_header(skb));
4779 		else if (!diffs)
4780 			diffs = memcmp(skb_mac_header(p),
4781 				       skb_mac_header(skb),
4782 				       maclen);
4783 		NAPI_GRO_CB(p)->same_flow = !diffs;
4784 	}
4785 }
4786 
4787 static void skb_gro_reset_offset(struct sk_buff *skb)
4788 {
4789 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4790 	const skb_frag_t *frag0 = &pinfo->frags[0];
4791 
4792 	NAPI_GRO_CB(skb)->data_offset = 0;
4793 	NAPI_GRO_CB(skb)->frag0 = NULL;
4794 	NAPI_GRO_CB(skb)->frag0_len = 0;
4795 
4796 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4797 	    pinfo->nr_frags &&
4798 	    !PageHighMem(skb_frag_page(frag0))) {
4799 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4800 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4801 						    skb_frag_size(frag0),
4802 						    skb->end - skb->tail);
4803 	}
4804 }
4805 
4806 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4807 {
4808 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4809 
4810 	BUG_ON(skb->end - skb->tail < grow);
4811 
4812 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4813 
4814 	skb->data_len -= grow;
4815 	skb->tail += grow;
4816 
4817 	pinfo->frags[0].page_offset += grow;
4818 	skb_frag_size_sub(&pinfo->frags[0], grow);
4819 
4820 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4821 		skb_frag_unref(skb, 0);
4822 		memmove(pinfo->frags, pinfo->frags + 1,
4823 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4824 	}
4825 }
4826 
4827 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4828 {
4829 	struct sk_buff **pp = NULL;
4830 	struct packet_offload *ptype;
4831 	__be16 type = skb->protocol;
4832 	struct list_head *head = &offload_base;
4833 	int same_flow;
4834 	enum gro_result ret;
4835 	int grow;
4836 
4837 	if (netif_elide_gro(skb->dev))
4838 		goto normal;
4839 
4840 	gro_list_prepare(napi, skb);
4841 
4842 	rcu_read_lock();
4843 	list_for_each_entry_rcu(ptype, head, list) {
4844 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4845 			continue;
4846 
4847 		skb_set_network_header(skb, skb_gro_offset(skb));
4848 		skb_reset_mac_len(skb);
4849 		NAPI_GRO_CB(skb)->same_flow = 0;
4850 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4851 		NAPI_GRO_CB(skb)->free = 0;
4852 		NAPI_GRO_CB(skb)->encap_mark = 0;
4853 		NAPI_GRO_CB(skb)->recursion_counter = 0;
4854 		NAPI_GRO_CB(skb)->is_fou = 0;
4855 		NAPI_GRO_CB(skb)->is_atomic = 1;
4856 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4857 
4858 		/* Setup for GRO checksum validation */
4859 		switch (skb->ip_summed) {
4860 		case CHECKSUM_COMPLETE:
4861 			NAPI_GRO_CB(skb)->csum = skb->csum;
4862 			NAPI_GRO_CB(skb)->csum_valid = 1;
4863 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4864 			break;
4865 		case CHECKSUM_UNNECESSARY:
4866 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4867 			NAPI_GRO_CB(skb)->csum_valid = 0;
4868 			break;
4869 		default:
4870 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4871 			NAPI_GRO_CB(skb)->csum_valid = 0;
4872 		}
4873 
4874 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4875 		break;
4876 	}
4877 	rcu_read_unlock();
4878 
4879 	if (&ptype->list == head)
4880 		goto normal;
4881 
4882 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4883 		ret = GRO_CONSUMED;
4884 		goto ok;
4885 	}
4886 
4887 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4888 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4889 
4890 	if (pp) {
4891 		struct sk_buff *nskb = *pp;
4892 
4893 		*pp = nskb->next;
4894 		nskb->next = NULL;
4895 		napi_gro_complete(nskb);
4896 		napi->gro_count--;
4897 	}
4898 
4899 	if (same_flow)
4900 		goto ok;
4901 
4902 	if (NAPI_GRO_CB(skb)->flush)
4903 		goto normal;
4904 
4905 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4906 		struct sk_buff *nskb = napi->gro_list;
4907 
4908 		/* locate the end of the list to select the 'oldest' flow */
4909 		while (nskb->next) {
4910 			pp = &nskb->next;
4911 			nskb = *pp;
4912 		}
4913 		*pp = NULL;
4914 		nskb->next = NULL;
4915 		napi_gro_complete(nskb);
4916 	} else {
4917 		napi->gro_count++;
4918 	}
4919 	NAPI_GRO_CB(skb)->count = 1;
4920 	NAPI_GRO_CB(skb)->age = jiffies;
4921 	NAPI_GRO_CB(skb)->last = skb;
4922 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4923 	skb->next = napi->gro_list;
4924 	napi->gro_list = skb;
4925 	ret = GRO_HELD;
4926 
4927 pull:
4928 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4929 	if (grow > 0)
4930 		gro_pull_from_frag0(skb, grow);
4931 ok:
4932 	return ret;
4933 
4934 normal:
4935 	ret = GRO_NORMAL;
4936 	goto pull;
4937 }
4938 
4939 struct packet_offload *gro_find_receive_by_type(__be16 type)
4940 {
4941 	struct list_head *offload_head = &offload_base;
4942 	struct packet_offload *ptype;
4943 
4944 	list_for_each_entry_rcu(ptype, offload_head, list) {
4945 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4946 			continue;
4947 		return ptype;
4948 	}
4949 	return NULL;
4950 }
4951 EXPORT_SYMBOL(gro_find_receive_by_type);
4952 
4953 struct packet_offload *gro_find_complete_by_type(__be16 type)
4954 {
4955 	struct list_head *offload_head = &offload_base;
4956 	struct packet_offload *ptype;
4957 
4958 	list_for_each_entry_rcu(ptype, offload_head, list) {
4959 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4960 			continue;
4961 		return ptype;
4962 	}
4963 	return NULL;
4964 }
4965 EXPORT_SYMBOL(gro_find_complete_by_type);
4966 
4967 static void napi_skb_free_stolen_head(struct sk_buff *skb)
4968 {
4969 	skb_dst_drop(skb);
4970 	secpath_reset(skb);
4971 	kmem_cache_free(skbuff_head_cache, skb);
4972 }
4973 
4974 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4975 {
4976 	switch (ret) {
4977 	case GRO_NORMAL:
4978 		if (netif_receive_skb_internal(skb))
4979 			ret = GRO_DROP;
4980 		break;
4981 
4982 	case GRO_DROP:
4983 		kfree_skb(skb);
4984 		break;
4985 
4986 	case GRO_MERGED_FREE:
4987 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4988 			napi_skb_free_stolen_head(skb);
4989 		else
4990 			__kfree_skb(skb);
4991 		break;
4992 
4993 	case GRO_HELD:
4994 	case GRO_MERGED:
4995 	case GRO_CONSUMED:
4996 		break;
4997 	}
4998 
4999 	return ret;
5000 }
5001 
5002 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5003 {
5004 	skb_mark_napi_id(skb, napi);
5005 	trace_napi_gro_receive_entry(skb);
5006 
5007 	skb_gro_reset_offset(skb);
5008 
5009 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5010 }
5011 EXPORT_SYMBOL(napi_gro_receive);
5012 
5013 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5014 {
5015 	if (unlikely(skb->pfmemalloc)) {
5016 		consume_skb(skb);
5017 		return;
5018 	}
5019 	__skb_pull(skb, skb_headlen(skb));
5020 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5021 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5022 	skb->vlan_tci = 0;
5023 	skb->dev = napi->dev;
5024 	skb->skb_iif = 0;
5025 	skb->encapsulation = 0;
5026 	skb_shinfo(skb)->gso_type = 0;
5027 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5028 	secpath_reset(skb);
5029 
5030 	napi->skb = skb;
5031 }
5032 
5033 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5034 {
5035 	struct sk_buff *skb = napi->skb;
5036 
5037 	if (!skb) {
5038 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5039 		if (skb) {
5040 			napi->skb = skb;
5041 			skb_mark_napi_id(skb, napi);
5042 		}
5043 	}
5044 	return skb;
5045 }
5046 EXPORT_SYMBOL(napi_get_frags);
5047 
5048 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5049 				      struct sk_buff *skb,
5050 				      gro_result_t ret)
5051 {
5052 	switch (ret) {
5053 	case GRO_NORMAL:
5054 	case GRO_HELD:
5055 		__skb_push(skb, ETH_HLEN);
5056 		skb->protocol = eth_type_trans(skb, skb->dev);
5057 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5058 			ret = GRO_DROP;
5059 		break;
5060 
5061 	case GRO_DROP:
5062 		napi_reuse_skb(napi, skb);
5063 		break;
5064 
5065 	case GRO_MERGED_FREE:
5066 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5067 			napi_skb_free_stolen_head(skb);
5068 		else
5069 			napi_reuse_skb(napi, skb);
5070 		break;
5071 
5072 	case GRO_MERGED:
5073 	case GRO_CONSUMED:
5074 		break;
5075 	}
5076 
5077 	return ret;
5078 }
5079 
5080 /* Upper GRO stack assumes network header starts at gro_offset=0
5081  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5082  * We copy ethernet header into skb->data to have a common layout.
5083  */
5084 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5085 {
5086 	struct sk_buff *skb = napi->skb;
5087 	const struct ethhdr *eth;
5088 	unsigned int hlen = sizeof(*eth);
5089 
5090 	napi->skb = NULL;
5091 
5092 	skb_reset_mac_header(skb);
5093 	skb_gro_reset_offset(skb);
5094 
5095 	eth = skb_gro_header_fast(skb, 0);
5096 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
5097 		eth = skb_gro_header_slow(skb, hlen, 0);
5098 		if (unlikely(!eth)) {
5099 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5100 					     __func__, napi->dev->name);
5101 			napi_reuse_skb(napi, skb);
5102 			return NULL;
5103 		}
5104 	} else {
5105 		gro_pull_from_frag0(skb, hlen);
5106 		NAPI_GRO_CB(skb)->frag0 += hlen;
5107 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
5108 	}
5109 	__skb_pull(skb, hlen);
5110 
5111 	/*
5112 	 * This works because the only protocols we care about don't require
5113 	 * special handling.
5114 	 * We'll fix it up properly in napi_frags_finish()
5115 	 */
5116 	skb->protocol = eth->h_proto;
5117 
5118 	return skb;
5119 }
5120 
5121 gro_result_t napi_gro_frags(struct napi_struct *napi)
5122 {
5123 	struct sk_buff *skb = napi_frags_skb(napi);
5124 
5125 	if (!skb)
5126 		return GRO_DROP;
5127 
5128 	trace_napi_gro_frags_entry(skb);
5129 
5130 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5131 }
5132 EXPORT_SYMBOL(napi_gro_frags);
5133 
5134 /* Compute the checksum from gro_offset and return the folded value
5135  * after adding in any pseudo checksum.
5136  */
5137 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5138 {
5139 	__wsum wsum;
5140 	__sum16 sum;
5141 
5142 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5143 
5144 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5145 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5146 	if (likely(!sum)) {
5147 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5148 		    !skb->csum_complete_sw)
5149 			netdev_rx_csum_fault(skb->dev);
5150 	}
5151 
5152 	NAPI_GRO_CB(skb)->csum = wsum;
5153 	NAPI_GRO_CB(skb)->csum_valid = 1;
5154 
5155 	return sum;
5156 }
5157 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5158 
5159 static void net_rps_send_ipi(struct softnet_data *remsd)
5160 {
5161 #ifdef CONFIG_RPS
5162 	while (remsd) {
5163 		struct softnet_data *next = remsd->rps_ipi_next;
5164 
5165 		if (cpu_online(remsd->cpu))
5166 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5167 		remsd = next;
5168 	}
5169 #endif
5170 }
5171 
5172 /*
5173  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5174  * Note: called with local irq disabled, but exits with local irq enabled.
5175  */
5176 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5177 {
5178 #ifdef CONFIG_RPS
5179 	struct softnet_data *remsd = sd->rps_ipi_list;
5180 
5181 	if (remsd) {
5182 		sd->rps_ipi_list = NULL;
5183 
5184 		local_irq_enable();
5185 
5186 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5187 		net_rps_send_ipi(remsd);
5188 	} else
5189 #endif
5190 		local_irq_enable();
5191 }
5192 
5193 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5194 {
5195 #ifdef CONFIG_RPS
5196 	return sd->rps_ipi_list != NULL;
5197 #else
5198 	return false;
5199 #endif
5200 }
5201 
5202 static int process_backlog(struct napi_struct *napi, int quota)
5203 {
5204 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5205 	bool again = true;
5206 	int work = 0;
5207 
5208 	/* Check if we have pending ipi, its better to send them now,
5209 	 * not waiting net_rx_action() end.
5210 	 */
5211 	if (sd_has_rps_ipi_waiting(sd)) {
5212 		local_irq_disable();
5213 		net_rps_action_and_irq_enable(sd);
5214 	}
5215 
5216 	napi->weight = dev_rx_weight;
5217 	while (again) {
5218 		struct sk_buff *skb;
5219 
5220 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5221 			rcu_read_lock();
5222 			__netif_receive_skb(skb);
5223 			rcu_read_unlock();
5224 			input_queue_head_incr(sd);
5225 			if (++work >= quota)
5226 				return work;
5227 
5228 		}
5229 
5230 		local_irq_disable();
5231 		rps_lock(sd);
5232 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5233 			/*
5234 			 * Inline a custom version of __napi_complete().
5235 			 * only current cpu owns and manipulates this napi,
5236 			 * and NAPI_STATE_SCHED is the only possible flag set
5237 			 * on backlog.
5238 			 * We can use a plain write instead of clear_bit(),
5239 			 * and we dont need an smp_mb() memory barrier.
5240 			 */
5241 			napi->state = 0;
5242 			again = false;
5243 		} else {
5244 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5245 						   &sd->process_queue);
5246 		}
5247 		rps_unlock(sd);
5248 		local_irq_enable();
5249 	}
5250 
5251 	return work;
5252 }
5253 
5254 /**
5255  * __napi_schedule - schedule for receive
5256  * @n: entry to schedule
5257  *
5258  * The entry's receive function will be scheduled to run.
5259  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5260  */
5261 void __napi_schedule(struct napi_struct *n)
5262 {
5263 	unsigned long flags;
5264 
5265 	local_irq_save(flags);
5266 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5267 	local_irq_restore(flags);
5268 }
5269 EXPORT_SYMBOL(__napi_schedule);
5270 
5271 /**
5272  *	napi_schedule_prep - check if napi can be scheduled
5273  *	@n: napi context
5274  *
5275  * Test if NAPI routine is already running, and if not mark
5276  * it as running.  This is used as a condition variable
5277  * insure only one NAPI poll instance runs.  We also make
5278  * sure there is no pending NAPI disable.
5279  */
5280 bool napi_schedule_prep(struct napi_struct *n)
5281 {
5282 	unsigned long val, new;
5283 
5284 	do {
5285 		val = READ_ONCE(n->state);
5286 		if (unlikely(val & NAPIF_STATE_DISABLE))
5287 			return false;
5288 		new = val | NAPIF_STATE_SCHED;
5289 
5290 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5291 		 * This was suggested by Alexander Duyck, as compiler
5292 		 * emits better code than :
5293 		 * if (val & NAPIF_STATE_SCHED)
5294 		 *     new |= NAPIF_STATE_MISSED;
5295 		 */
5296 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5297 						   NAPIF_STATE_MISSED;
5298 	} while (cmpxchg(&n->state, val, new) != val);
5299 
5300 	return !(val & NAPIF_STATE_SCHED);
5301 }
5302 EXPORT_SYMBOL(napi_schedule_prep);
5303 
5304 /**
5305  * __napi_schedule_irqoff - schedule for receive
5306  * @n: entry to schedule
5307  *
5308  * Variant of __napi_schedule() assuming hard irqs are masked
5309  */
5310 void __napi_schedule_irqoff(struct napi_struct *n)
5311 {
5312 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5313 }
5314 EXPORT_SYMBOL(__napi_schedule_irqoff);
5315 
5316 bool napi_complete_done(struct napi_struct *n, int work_done)
5317 {
5318 	unsigned long flags, val, new;
5319 
5320 	/*
5321 	 * 1) Don't let napi dequeue from the cpu poll list
5322 	 *    just in case its running on a different cpu.
5323 	 * 2) If we are busy polling, do nothing here, we have
5324 	 *    the guarantee we will be called later.
5325 	 */
5326 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5327 				 NAPIF_STATE_IN_BUSY_POLL)))
5328 		return false;
5329 
5330 	if (n->gro_list) {
5331 		unsigned long timeout = 0;
5332 
5333 		if (work_done)
5334 			timeout = n->dev->gro_flush_timeout;
5335 
5336 		if (timeout)
5337 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
5338 				      HRTIMER_MODE_REL_PINNED);
5339 		else
5340 			napi_gro_flush(n, false);
5341 	}
5342 	if (unlikely(!list_empty(&n->poll_list))) {
5343 		/* If n->poll_list is not empty, we need to mask irqs */
5344 		local_irq_save(flags);
5345 		list_del_init(&n->poll_list);
5346 		local_irq_restore(flags);
5347 	}
5348 
5349 	do {
5350 		val = READ_ONCE(n->state);
5351 
5352 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5353 
5354 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5355 
5356 		/* If STATE_MISSED was set, leave STATE_SCHED set,
5357 		 * because we will call napi->poll() one more time.
5358 		 * This C code was suggested by Alexander Duyck to help gcc.
5359 		 */
5360 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5361 						    NAPIF_STATE_SCHED;
5362 	} while (cmpxchg(&n->state, val, new) != val);
5363 
5364 	if (unlikely(val & NAPIF_STATE_MISSED)) {
5365 		__napi_schedule(n);
5366 		return false;
5367 	}
5368 
5369 	return true;
5370 }
5371 EXPORT_SYMBOL(napi_complete_done);
5372 
5373 /* must be called under rcu_read_lock(), as we dont take a reference */
5374 static struct napi_struct *napi_by_id(unsigned int napi_id)
5375 {
5376 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5377 	struct napi_struct *napi;
5378 
5379 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5380 		if (napi->napi_id == napi_id)
5381 			return napi;
5382 
5383 	return NULL;
5384 }
5385 
5386 #if defined(CONFIG_NET_RX_BUSY_POLL)
5387 
5388 #define BUSY_POLL_BUDGET 8
5389 
5390 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5391 {
5392 	int rc;
5393 
5394 	/* Busy polling means there is a high chance device driver hard irq
5395 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5396 	 * set in napi_schedule_prep().
5397 	 * Since we are about to call napi->poll() once more, we can safely
5398 	 * clear NAPI_STATE_MISSED.
5399 	 *
5400 	 * Note: x86 could use a single "lock and ..." instruction
5401 	 * to perform these two clear_bit()
5402 	 */
5403 	clear_bit(NAPI_STATE_MISSED, &napi->state);
5404 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5405 
5406 	local_bh_disable();
5407 
5408 	/* All we really want here is to re-enable device interrupts.
5409 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5410 	 */
5411 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
5412 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5413 	netpoll_poll_unlock(have_poll_lock);
5414 	if (rc == BUSY_POLL_BUDGET)
5415 		__napi_schedule(napi);
5416 	local_bh_enable();
5417 }
5418 
5419 void napi_busy_loop(unsigned int napi_id,
5420 		    bool (*loop_end)(void *, unsigned long),
5421 		    void *loop_end_arg)
5422 {
5423 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5424 	int (*napi_poll)(struct napi_struct *napi, int budget);
5425 	void *have_poll_lock = NULL;
5426 	struct napi_struct *napi;
5427 
5428 restart:
5429 	napi_poll = NULL;
5430 
5431 	rcu_read_lock();
5432 
5433 	napi = napi_by_id(napi_id);
5434 	if (!napi)
5435 		goto out;
5436 
5437 	preempt_disable();
5438 	for (;;) {
5439 		int work = 0;
5440 
5441 		local_bh_disable();
5442 		if (!napi_poll) {
5443 			unsigned long val = READ_ONCE(napi->state);
5444 
5445 			/* If multiple threads are competing for this napi,
5446 			 * we avoid dirtying napi->state as much as we can.
5447 			 */
5448 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5449 				   NAPIF_STATE_IN_BUSY_POLL))
5450 				goto count;
5451 			if (cmpxchg(&napi->state, val,
5452 				    val | NAPIF_STATE_IN_BUSY_POLL |
5453 					  NAPIF_STATE_SCHED) != val)
5454 				goto count;
5455 			have_poll_lock = netpoll_poll_lock(napi);
5456 			napi_poll = napi->poll;
5457 		}
5458 		work = napi_poll(napi, BUSY_POLL_BUDGET);
5459 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5460 count:
5461 		if (work > 0)
5462 			__NET_ADD_STATS(dev_net(napi->dev),
5463 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
5464 		local_bh_enable();
5465 
5466 		if (!loop_end || loop_end(loop_end_arg, start_time))
5467 			break;
5468 
5469 		if (unlikely(need_resched())) {
5470 			if (napi_poll)
5471 				busy_poll_stop(napi, have_poll_lock);
5472 			preempt_enable();
5473 			rcu_read_unlock();
5474 			cond_resched();
5475 			if (loop_end(loop_end_arg, start_time))
5476 				return;
5477 			goto restart;
5478 		}
5479 		cpu_relax();
5480 	}
5481 	if (napi_poll)
5482 		busy_poll_stop(napi, have_poll_lock);
5483 	preempt_enable();
5484 out:
5485 	rcu_read_unlock();
5486 }
5487 EXPORT_SYMBOL(napi_busy_loop);
5488 
5489 #endif /* CONFIG_NET_RX_BUSY_POLL */
5490 
5491 static void napi_hash_add(struct napi_struct *napi)
5492 {
5493 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5494 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5495 		return;
5496 
5497 	spin_lock(&napi_hash_lock);
5498 
5499 	/* 0..NR_CPUS range is reserved for sender_cpu use */
5500 	do {
5501 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5502 			napi_gen_id = MIN_NAPI_ID;
5503 	} while (napi_by_id(napi_gen_id));
5504 	napi->napi_id = napi_gen_id;
5505 
5506 	hlist_add_head_rcu(&napi->napi_hash_node,
5507 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5508 
5509 	spin_unlock(&napi_hash_lock);
5510 }
5511 
5512 /* Warning : caller is responsible to make sure rcu grace period
5513  * is respected before freeing memory containing @napi
5514  */
5515 bool napi_hash_del(struct napi_struct *napi)
5516 {
5517 	bool rcu_sync_needed = false;
5518 
5519 	spin_lock(&napi_hash_lock);
5520 
5521 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5522 		rcu_sync_needed = true;
5523 		hlist_del_rcu(&napi->napi_hash_node);
5524 	}
5525 	spin_unlock(&napi_hash_lock);
5526 	return rcu_sync_needed;
5527 }
5528 EXPORT_SYMBOL_GPL(napi_hash_del);
5529 
5530 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5531 {
5532 	struct napi_struct *napi;
5533 
5534 	napi = container_of(timer, struct napi_struct, timer);
5535 
5536 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
5537 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5538 	 */
5539 	if (napi->gro_list && !napi_disable_pending(napi) &&
5540 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5541 		__napi_schedule_irqoff(napi);
5542 
5543 	return HRTIMER_NORESTART;
5544 }
5545 
5546 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5547 		    int (*poll)(struct napi_struct *, int), int weight)
5548 {
5549 	INIT_LIST_HEAD(&napi->poll_list);
5550 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5551 	napi->timer.function = napi_watchdog;
5552 	napi->gro_count = 0;
5553 	napi->gro_list = NULL;
5554 	napi->skb = NULL;
5555 	napi->poll = poll;
5556 	if (weight > NAPI_POLL_WEIGHT)
5557 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5558 			    weight, dev->name);
5559 	napi->weight = weight;
5560 	list_add(&napi->dev_list, &dev->napi_list);
5561 	napi->dev = dev;
5562 #ifdef CONFIG_NETPOLL
5563 	napi->poll_owner = -1;
5564 #endif
5565 	set_bit(NAPI_STATE_SCHED, &napi->state);
5566 	napi_hash_add(napi);
5567 }
5568 EXPORT_SYMBOL(netif_napi_add);
5569 
5570 void napi_disable(struct napi_struct *n)
5571 {
5572 	might_sleep();
5573 	set_bit(NAPI_STATE_DISABLE, &n->state);
5574 
5575 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5576 		msleep(1);
5577 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5578 		msleep(1);
5579 
5580 	hrtimer_cancel(&n->timer);
5581 
5582 	clear_bit(NAPI_STATE_DISABLE, &n->state);
5583 }
5584 EXPORT_SYMBOL(napi_disable);
5585 
5586 /* Must be called in process context */
5587 void netif_napi_del(struct napi_struct *napi)
5588 {
5589 	might_sleep();
5590 	if (napi_hash_del(napi))
5591 		synchronize_net();
5592 	list_del_init(&napi->dev_list);
5593 	napi_free_frags(napi);
5594 
5595 	kfree_skb_list(napi->gro_list);
5596 	napi->gro_list = NULL;
5597 	napi->gro_count = 0;
5598 }
5599 EXPORT_SYMBOL(netif_napi_del);
5600 
5601 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5602 {
5603 	void *have;
5604 	int work, weight;
5605 
5606 	list_del_init(&n->poll_list);
5607 
5608 	have = netpoll_poll_lock(n);
5609 
5610 	weight = n->weight;
5611 
5612 	/* This NAPI_STATE_SCHED test is for avoiding a race
5613 	 * with netpoll's poll_napi().  Only the entity which
5614 	 * obtains the lock and sees NAPI_STATE_SCHED set will
5615 	 * actually make the ->poll() call.  Therefore we avoid
5616 	 * accidentally calling ->poll() when NAPI is not scheduled.
5617 	 */
5618 	work = 0;
5619 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5620 		work = n->poll(n, weight);
5621 		trace_napi_poll(n, work, weight);
5622 	}
5623 
5624 	WARN_ON_ONCE(work > weight);
5625 
5626 	if (likely(work < weight))
5627 		goto out_unlock;
5628 
5629 	/* Drivers must not modify the NAPI state if they
5630 	 * consume the entire weight.  In such cases this code
5631 	 * still "owns" the NAPI instance and therefore can
5632 	 * move the instance around on the list at-will.
5633 	 */
5634 	if (unlikely(napi_disable_pending(n))) {
5635 		napi_complete(n);
5636 		goto out_unlock;
5637 	}
5638 
5639 	if (n->gro_list) {
5640 		/* flush too old packets
5641 		 * If HZ < 1000, flush all packets.
5642 		 */
5643 		napi_gro_flush(n, HZ >= 1000);
5644 	}
5645 
5646 	/* Some drivers may have called napi_schedule
5647 	 * prior to exhausting their budget.
5648 	 */
5649 	if (unlikely(!list_empty(&n->poll_list))) {
5650 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5651 			     n->dev ? n->dev->name : "backlog");
5652 		goto out_unlock;
5653 	}
5654 
5655 	list_add_tail(&n->poll_list, repoll);
5656 
5657 out_unlock:
5658 	netpoll_poll_unlock(have);
5659 
5660 	return work;
5661 }
5662 
5663 static __latent_entropy void net_rx_action(struct softirq_action *h)
5664 {
5665 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5666 	unsigned long time_limit = jiffies +
5667 		usecs_to_jiffies(netdev_budget_usecs);
5668 	int budget = netdev_budget;
5669 	LIST_HEAD(list);
5670 	LIST_HEAD(repoll);
5671 
5672 	local_irq_disable();
5673 	list_splice_init(&sd->poll_list, &list);
5674 	local_irq_enable();
5675 
5676 	for (;;) {
5677 		struct napi_struct *n;
5678 
5679 		if (list_empty(&list)) {
5680 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5681 				goto out;
5682 			break;
5683 		}
5684 
5685 		n = list_first_entry(&list, struct napi_struct, poll_list);
5686 		budget -= napi_poll(n, &repoll);
5687 
5688 		/* If softirq window is exhausted then punt.
5689 		 * Allow this to run for 2 jiffies since which will allow
5690 		 * an average latency of 1.5/HZ.
5691 		 */
5692 		if (unlikely(budget <= 0 ||
5693 			     time_after_eq(jiffies, time_limit))) {
5694 			sd->time_squeeze++;
5695 			break;
5696 		}
5697 	}
5698 
5699 	local_irq_disable();
5700 
5701 	list_splice_tail_init(&sd->poll_list, &list);
5702 	list_splice_tail(&repoll, &list);
5703 	list_splice(&list, &sd->poll_list);
5704 	if (!list_empty(&sd->poll_list))
5705 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5706 
5707 	net_rps_action_and_irq_enable(sd);
5708 out:
5709 	__kfree_skb_flush();
5710 }
5711 
5712 struct netdev_adjacent {
5713 	struct net_device *dev;
5714 
5715 	/* upper master flag, there can only be one master device per list */
5716 	bool master;
5717 
5718 	/* counter for the number of times this device was added to us */
5719 	u16 ref_nr;
5720 
5721 	/* private field for the users */
5722 	void *private;
5723 
5724 	struct list_head list;
5725 	struct rcu_head rcu;
5726 };
5727 
5728 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5729 						 struct list_head *adj_list)
5730 {
5731 	struct netdev_adjacent *adj;
5732 
5733 	list_for_each_entry(adj, adj_list, list) {
5734 		if (adj->dev == adj_dev)
5735 			return adj;
5736 	}
5737 	return NULL;
5738 }
5739 
5740 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5741 {
5742 	struct net_device *dev = data;
5743 
5744 	return upper_dev == dev;
5745 }
5746 
5747 /**
5748  * netdev_has_upper_dev - Check if device is linked to an upper device
5749  * @dev: device
5750  * @upper_dev: upper device to check
5751  *
5752  * Find out if a device is linked to specified upper device and return true
5753  * in case it is. Note that this checks only immediate upper device,
5754  * not through a complete stack of devices. The caller must hold the RTNL lock.
5755  */
5756 bool netdev_has_upper_dev(struct net_device *dev,
5757 			  struct net_device *upper_dev)
5758 {
5759 	ASSERT_RTNL();
5760 
5761 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5762 					     upper_dev);
5763 }
5764 EXPORT_SYMBOL(netdev_has_upper_dev);
5765 
5766 /**
5767  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5768  * @dev: device
5769  * @upper_dev: upper device to check
5770  *
5771  * Find out if a device is linked to specified upper device and return true
5772  * in case it is. Note that this checks the entire upper device chain.
5773  * The caller must hold rcu lock.
5774  */
5775 
5776 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5777 				  struct net_device *upper_dev)
5778 {
5779 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5780 					       upper_dev);
5781 }
5782 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5783 
5784 /**
5785  * netdev_has_any_upper_dev - Check if device is linked to some device
5786  * @dev: device
5787  *
5788  * Find out if a device is linked to an upper device and return true in case
5789  * it is. The caller must hold the RTNL lock.
5790  */
5791 bool netdev_has_any_upper_dev(struct net_device *dev)
5792 {
5793 	ASSERT_RTNL();
5794 
5795 	return !list_empty(&dev->adj_list.upper);
5796 }
5797 EXPORT_SYMBOL(netdev_has_any_upper_dev);
5798 
5799 /**
5800  * netdev_master_upper_dev_get - Get master upper device
5801  * @dev: device
5802  *
5803  * Find a master upper device and return pointer to it or NULL in case
5804  * it's not there. The caller must hold the RTNL lock.
5805  */
5806 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5807 {
5808 	struct netdev_adjacent *upper;
5809 
5810 	ASSERT_RTNL();
5811 
5812 	if (list_empty(&dev->adj_list.upper))
5813 		return NULL;
5814 
5815 	upper = list_first_entry(&dev->adj_list.upper,
5816 				 struct netdev_adjacent, list);
5817 	if (likely(upper->master))
5818 		return upper->dev;
5819 	return NULL;
5820 }
5821 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5822 
5823 /**
5824  * netdev_has_any_lower_dev - Check if device is linked to some device
5825  * @dev: device
5826  *
5827  * Find out if a device is linked to a lower device and return true in case
5828  * it is. The caller must hold the RTNL lock.
5829  */
5830 static bool netdev_has_any_lower_dev(struct net_device *dev)
5831 {
5832 	ASSERT_RTNL();
5833 
5834 	return !list_empty(&dev->adj_list.lower);
5835 }
5836 
5837 void *netdev_adjacent_get_private(struct list_head *adj_list)
5838 {
5839 	struct netdev_adjacent *adj;
5840 
5841 	adj = list_entry(adj_list, struct netdev_adjacent, list);
5842 
5843 	return adj->private;
5844 }
5845 EXPORT_SYMBOL(netdev_adjacent_get_private);
5846 
5847 /**
5848  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5849  * @dev: device
5850  * @iter: list_head ** of the current position
5851  *
5852  * Gets the next device from the dev's upper list, starting from iter
5853  * position. The caller must hold RCU read lock.
5854  */
5855 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5856 						 struct list_head **iter)
5857 {
5858 	struct netdev_adjacent *upper;
5859 
5860 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5861 
5862 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5863 
5864 	if (&upper->list == &dev->adj_list.upper)
5865 		return NULL;
5866 
5867 	*iter = &upper->list;
5868 
5869 	return upper->dev;
5870 }
5871 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5872 
5873 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5874 						    struct list_head **iter)
5875 {
5876 	struct netdev_adjacent *upper;
5877 
5878 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5879 
5880 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5881 
5882 	if (&upper->list == &dev->adj_list.upper)
5883 		return NULL;
5884 
5885 	*iter = &upper->list;
5886 
5887 	return upper->dev;
5888 }
5889 
5890 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5891 				  int (*fn)(struct net_device *dev,
5892 					    void *data),
5893 				  void *data)
5894 {
5895 	struct net_device *udev;
5896 	struct list_head *iter;
5897 	int ret;
5898 
5899 	for (iter = &dev->adj_list.upper,
5900 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
5901 	     udev;
5902 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5903 		/* first is the upper device itself */
5904 		ret = fn(udev, data);
5905 		if (ret)
5906 			return ret;
5907 
5908 		/* then look at all of its upper devices */
5909 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5910 		if (ret)
5911 			return ret;
5912 	}
5913 
5914 	return 0;
5915 }
5916 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5917 
5918 /**
5919  * netdev_lower_get_next_private - Get the next ->private from the
5920  *				   lower neighbour list
5921  * @dev: device
5922  * @iter: list_head ** of the current position
5923  *
5924  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5925  * list, starting from iter position. The caller must hold either hold the
5926  * RTNL lock or its own locking that guarantees that the neighbour lower
5927  * list will remain unchanged.
5928  */
5929 void *netdev_lower_get_next_private(struct net_device *dev,
5930 				    struct list_head **iter)
5931 {
5932 	struct netdev_adjacent *lower;
5933 
5934 	lower = list_entry(*iter, struct netdev_adjacent, list);
5935 
5936 	if (&lower->list == &dev->adj_list.lower)
5937 		return NULL;
5938 
5939 	*iter = lower->list.next;
5940 
5941 	return lower->private;
5942 }
5943 EXPORT_SYMBOL(netdev_lower_get_next_private);
5944 
5945 /**
5946  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5947  *				       lower neighbour list, RCU
5948  *				       variant
5949  * @dev: device
5950  * @iter: list_head ** of the current position
5951  *
5952  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5953  * list, starting from iter position. The caller must hold RCU read lock.
5954  */
5955 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5956 					struct list_head **iter)
5957 {
5958 	struct netdev_adjacent *lower;
5959 
5960 	WARN_ON_ONCE(!rcu_read_lock_held());
5961 
5962 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5963 
5964 	if (&lower->list == &dev->adj_list.lower)
5965 		return NULL;
5966 
5967 	*iter = &lower->list;
5968 
5969 	return lower->private;
5970 }
5971 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5972 
5973 /**
5974  * netdev_lower_get_next - Get the next device from the lower neighbour
5975  *                         list
5976  * @dev: device
5977  * @iter: list_head ** of the current position
5978  *
5979  * Gets the next netdev_adjacent from the dev's lower neighbour
5980  * list, starting from iter position. The caller must hold RTNL lock or
5981  * its own locking that guarantees that the neighbour lower
5982  * list will remain unchanged.
5983  */
5984 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5985 {
5986 	struct netdev_adjacent *lower;
5987 
5988 	lower = list_entry(*iter, struct netdev_adjacent, list);
5989 
5990 	if (&lower->list == &dev->adj_list.lower)
5991 		return NULL;
5992 
5993 	*iter = lower->list.next;
5994 
5995 	return lower->dev;
5996 }
5997 EXPORT_SYMBOL(netdev_lower_get_next);
5998 
5999 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6000 						struct list_head **iter)
6001 {
6002 	struct netdev_adjacent *lower;
6003 
6004 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6005 
6006 	if (&lower->list == &dev->adj_list.lower)
6007 		return NULL;
6008 
6009 	*iter = &lower->list;
6010 
6011 	return lower->dev;
6012 }
6013 
6014 int netdev_walk_all_lower_dev(struct net_device *dev,
6015 			      int (*fn)(struct net_device *dev,
6016 					void *data),
6017 			      void *data)
6018 {
6019 	struct net_device *ldev;
6020 	struct list_head *iter;
6021 	int ret;
6022 
6023 	for (iter = &dev->adj_list.lower,
6024 	     ldev = netdev_next_lower_dev(dev, &iter);
6025 	     ldev;
6026 	     ldev = netdev_next_lower_dev(dev, &iter)) {
6027 		/* first is the lower device itself */
6028 		ret = fn(ldev, data);
6029 		if (ret)
6030 			return ret;
6031 
6032 		/* then look at all of its lower devices */
6033 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
6034 		if (ret)
6035 			return ret;
6036 	}
6037 
6038 	return 0;
6039 }
6040 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6041 
6042 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6043 						    struct list_head **iter)
6044 {
6045 	struct netdev_adjacent *lower;
6046 
6047 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6048 	if (&lower->list == &dev->adj_list.lower)
6049 		return NULL;
6050 
6051 	*iter = &lower->list;
6052 
6053 	return lower->dev;
6054 }
6055 
6056 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6057 				  int (*fn)(struct net_device *dev,
6058 					    void *data),
6059 				  void *data)
6060 {
6061 	struct net_device *ldev;
6062 	struct list_head *iter;
6063 	int ret;
6064 
6065 	for (iter = &dev->adj_list.lower,
6066 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
6067 	     ldev;
6068 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6069 		/* first is the lower device itself */
6070 		ret = fn(ldev, data);
6071 		if (ret)
6072 			return ret;
6073 
6074 		/* then look at all of its lower devices */
6075 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6076 		if (ret)
6077 			return ret;
6078 	}
6079 
6080 	return 0;
6081 }
6082 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6083 
6084 /**
6085  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6086  *				       lower neighbour list, RCU
6087  *				       variant
6088  * @dev: device
6089  *
6090  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6091  * list. The caller must hold RCU read lock.
6092  */
6093 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6094 {
6095 	struct netdev_adjacent *lower;
6096 
6097 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
6098 			struct netdev_adjacent, list);
6099 	if (lower)
6100 		return lower->private;
6101 	return NULL;
6102 }
6103 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6104 
6105 /**
6106  * netdev_master_upper_dev_get_rcu - Get master upper device
6107  * @dev: device
6108  *
6109  * Find a master upper device and return pointer to it or NULL in case
6110  * it's not there. The caller must hold the RCU read lock.
6111  */
6112 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6113 {
6114 	struct netdev_adjacent *upper;
6115 
6116 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
6117 				       struct netdev_adjacent, list);
6118 	if (upper && likely(upper->master))
6119 		return upper->dev;
6120 	return NULL;
6121 }
6122 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6123 
6124 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6125 			      struct net_device *adj_dev,
6126 			      struct list_head *dev_list)
6127 {
6128 	char linkname[IFNAMSIZ+7];
6129 
6130 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6131 		"upper_%s" : "lower_%s", adj_dev->name);
6132 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6133 				 linkname);
6134 }
6135 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6136 			       char *name,
6137 			       struct list_head *dev_list)
6138 {
6139 	char linkname[IFNAMSIZ+7];
6140 
6141 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6142 		"upper_%s" : "lower_%s", name);
6143 	sysfs_remove_link(&(dev->dev.kobj), linkname);
6144 }
6145 
6146 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6147 						 struct net_device *adj_dev,
6148 						 struct list_head *dev_list)
6149 {
6150 	return (dev_list == &dev->adj_list.upper ||
6151 		dev_list == &dev->adj_list.lower) &&
6152 		net_eq(dev_net(dev), dev_net(adj_dev));
6153 }
6154 
6155 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6156 					struct net_device *adj_dev,
6157 					struct list_head *dev_list,
6158 					void *private, bool master)
6159 {
6160 	struct netdev_adjacent *adj;
6161 	int ret;
6162 
6163 	adj = __netdev_find_adj(adj_dev, dev_list);
6164 
6165 	if (adj) {
6166 		adj->ref_nr += 1;
6167 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6168 			 dev->name, adj_dev->name, adj->ref_nr);
6169 
6170 		return 0;
6171 	}
6172 
6173 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6174 	if (!adj)
6175 		return -ENOMEM;
6176 
6177 	adj->dev = adj_dev;
6178 	adj->master = master;
6179 	adj->ref_nr = 1;
6180 	adj->private = private;
6181 	dev_hold(adj_dev);
6182 
6183 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6184 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6185 
6186 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6187 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6188 		if (ret)
6189 			goto free_adj;
6190 	}
6191 
6192 	/* Ensure that master link is always the first item in list. */
6193 	if (master) {
6194 		ret = sysfs_create_link(&(dev->dev.kobj),
6195 					&(adj_dev->dev.kobj), "master");
6196 		if (ret)
6197 			goto remove_symlinks;
6198 
6199 		list_add_rcu(&adj->list, dev_list);
6200 	} else {
6201 		list_add_tail_rcu(&adj->list, dev_list);
6202 	}
6203 
6204 	return 0;
6205 
6206 remove_symlinks:
6207 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6208 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6209 free_adj:
6210 	kfree(adj);
6211 	dev_put(adj_dev);
6212 
6213 	return ret;
6214 }
6215 
6216 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6217 					 struct net_device *adj_dev,
6218 					 u16 ref_nr,
6219 					 struct list_head *dev_list)
6220 {
6221 	struct netdev_adjacent *adj;
6222 
6223 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6224 		 dev->name, adj_dev->name, ref_nr);
6225 
6226 	adj = __netdev_find_adj(adj_dev, dev_list);
6227 
6228 	if (!adj) {
6229 		pr_err("Adjacency does not exist for device %s from %s\n",
6230 		       dev->name, adj_dev->name);
6231 		WARN_ON(1);
6232 		return;
6233 	}
6234 
6235 	if (adj->ref_nr > ref_nr) {
6236 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6237 			 dev->name, adj_dev->name, ref_nr,
6238 			 adj->ref_nr - ref_nr);
6239 		adj->ref_nr -= ref_nr;
6240 		return;
6241 	}
6242 
6243 	if (adj->master)
6244 		sysfs_remove_link(&(dev->dev.kobj), "master");
6245 
6246 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6247 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6248 
6249 	list_del_rcu(&adj->list);
6250 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6251 		 adj_dev->name, dev->name, adj_dev->name);
6252 	dev_put(adj_dev);
6253 	kfree_rcu(adj, rcu);
6254 }
6255 
6256 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6257 					    struct net_device *upper_dev,
6258 					    struct list_head *up_list,
6259 					    struct list_head *down_list,
6260 					    void *private, bool master)
6261 {
6262 	int ret;
6263 
6264 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6265 					   private, master);
6266 	if (ret)
6267 		return ret;
6268 
6269 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6270 					   private, false);
6271 	if (ret) {
6272 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6273 		return ret;
6274 	}
6275 
6276 	return 0;
6277 }
6278 
6279 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6280 					       struct net_device *upper_dev,
6281 					       u16 ref_nr,
6282 					       struct list_head *up_list,
6283 					       struct list_head *down_list)
6284 {
6285 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6286 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6287 }
6288 
6289 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6290 						struct net_device *upper_dev,
6291 						void *private, bool master)
6292 {
6293 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6294 						&dev->adj_list.upper,
6295 						&upper_dev->adj_list.lower,
6296 						private, master);
6297 }
6298 
6299 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6300 						   struct net_device *upper_dev)
6301 {
6302 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6303 					   &dev->adj_list.upper,
6304 					   &upper_dev->adj_list.lower);
6305 }
6306 
6307 static int __netdev_upper_dev_link(struct net_device *dev,
6308 				   struct net_device *upper_dev, bool master,
6309 				   void *upper_priv, void *upper_info,
6310 				   struct netlink_ext_ack *extack)
6311 {
6312 	struct netdev_notifier_changeupper_info changeupper_info = {
6313 		.info = {
6314 			.dev = dev,
6315 			.extack = extack,
6316 		},
6317 		.upper_dev = upper_dev,
6318 		.master = master,
6319 		.linking = true,
6320 		.upper_info = upper_info,
6321 	};
6322 	int ret = 0;
6323 
6324 	ASSERT_RTNL();
6325 
6326 	if (dev == upper_dev)
6327 		return -EBUSY;
6328 
6329 	/* To prevent loops, check if dev is not upper device to upper_dev. */
6330 	if (netdev_has_upper_dev(upper_dev, dev))
6331 		return -EBUSY;
6332 
6333 	if (netdev_has_upper_dev(dev, upper_dev))
6334 		return -EEXIST;
6335 
6336 	if (master && netdev_master_upper_dev_get(dev))
6337 		return -EBUSY;
6338 
6339 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6340 					    &changeupper_info.info);
6341 	ret = notifier_to_errno(ret);
6342 	if (ret)
6343 		return ret;
6344 
6345 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6346 						   master);
6347 	if (ret)
6348 		return ret;
6349 
6350 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6351 					    &changeupper_info.info);
6352 	ret = notifier_to_errno(ret);
6353 	if (ret)
6354 		goto rollback;
6355 
6356 	return 0;
6357 
6358 rollback:
6359 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6360 
6361 	return ret;
6362 }
6363 
6364 /**
6365  * netdev_upper_dev_link - Add a link to the upper device
6366  * @dev: device
6367  * @upper_dev: new upper device
6368  *
6369  * Adds a link to device which is upper to this one. The caller must hold
6370  * the RTNL lock. On a failure a negative errno code is returned.
6371  * On success the reference counts are adjusted and the function
6372  * returns zero.
6373  */
6374 int netdev_upper_dev_link(struct net_device *dev,
6375 			  struct net_device *upper_dev,
6376 			  struct netlink_ext_ack *extack)
6377 {
6378 	return __netdev_upper_dev_link(dev, upper_dev, false,
6379 				       NULL, NULL, extack);
6380 }
6381 EXPORT_SYMBOL(netdev_upper_dev_link);
6382 
6383 /**
6384  * netdev_master_upper_dev_link - Add a master link to the upper device
6385  * @dev: device
6386  * @upper_dev: new upper device
6387  * @upper_priv: upper device private
6388  * @upper_info: upper info to be passed down via notifier
6389  *
6390  * Adds a link to device which is upper to this one. In this case, only
6391  * one master upper device can be linked, although other non-master devices
6392  * might be linked as well. The caller must hold the RTNL lock.
6393  * On a failure a negative errno code is returned. On success the reference
6394  * counts are adjusted and the function returns zero.
6395  */
6396 int netdev_master_upper_dev_link(struct net_device *dev,
6397 				 struct net_device *upper_dev,
6398 				 void *upper_priv, void *upper_info,
6399 				 struct netlink_ext_ack *extack)
6400 {
6401 	return __netdev_upper_dev_link(dev, upper_dev, true,
6402 				       upper_priv, upper_info, extack);
6403 }
6404 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6405 
6406 /**
6407  * netdev_upper_dev_unlink - Removes a link to upper device
6408  * @dev: device
6409  * @upper_dev: new upper device
6410  *
6411  * Removes a link to device which is upper to this one. The caller must hold
6412  * the RTNL lock.
6413  */
6414 void netdev_upper_dev_unlink(struct net_device *dev,
6415 			     struct net_device *upper_dev)
6416 {
6417 	struct netdev_notifier_changeupper_info changeupper_info = {
6418 		.info = {
6419 			.dev = dev,
6420 		},
6421 		.upper_dev = upper_dev,
6422 		.linking = false,
6423 	};
6424 
6425 	ASSERT_RTNL();
6426 
6427 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6428 
6429 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6430 				      &changeupper_info.info);
6431 
6432 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6433 
6434 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6435 				      &changeupper_info.info);
6436 }
6437 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6438 
6439 /**
6440  * netdev_bonding_info_change - Dispatch event about slave change
6441  * @dev: device
6442  * @bonding_info: info to dispatch
6443  *
6444  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6445  * The caller must hold the RTNL lock.
6446  */
6447 void netdev_bonding_info_change(struct net_device *dev,
6448 				struct netdev_bonding_info *bonding_info)
6449 {
6450 	struct netdev_notifier_bonding_info info = {
6451 		.info.dev = dev,
6452 	};
6453 
6454 	memcpy(&info.bonding_info, bonding_info,
6455 	       sizeof(struct netdev_bonding_info));
6456 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
6457 				      &info.info);
6458 }
6459 EXPORT_SYMBOL(netdev_bonding_info_change);
6460 
6461 static void netdev_adjacent_add_links(struct net_device *dev)
6462 {
6463 	struct netdev_adjacent *iter;
6464 
6465 	struct net *net = dev_net(dev);
6466 
6467 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6468 		if (!net_eq(net, dev_net(iter->dev)))
6469 			continue;
6470 		netdev_adjacent_sysfs_add(iter->dev, dev,
6471 					  &iter->dev->adj_list.lower);
6472 		netdev_adjacent_sysfs_add(dev, iter->dev,
6473 					  &dev->adj_list.upper);
6474 	}
6475 
6476 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6477 		if (!net_eq(net, dev_net(iter->dev)))
6478 			continue;
6479 		netdev_adjacent_sysfs_add(iter->dev, dev,
6480 					  &iter->dev->adj_list.upper);
6481 		netdev_adjacent_sysfs_add(dev, iter->dev,
6482 					  &dev->adj_list.lower);
6483 	}
6484 }
6485 
6486 static void netdev_adjacent_del_links(struct net_device *dev)
6487 {
6488 	struct netdev_adjacent *iter;
6489 
6490 	struct net *net = dev_net(dev);
6491 
6492 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6493 		if (!net_eq(net, dev_net(iter->dev)))
6494 			continue;
6495 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6496 					  &iter->dev->adj_list.lower);
6497 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6498 					  &dev->adj_list.upper);
6499 	}
6500 
6501 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6502 		if (!net_eq(net, dev_net(iter->dev)))
6503 			continue;
6504 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6505 					  &iter->dev->adj_list.upper);
6506 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6507 					  &dev->adj_list.lower);
6508 	}
6509 }
6510 
6511 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6512 {
6513 	struct netdev_adjacent *iter;
6514 
6515 	struct net *net = dev_net(dev);
6516 
6517 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6518 		if (!net_eq(net, dev_net(iter->dev)))
6519 			continue;
6520 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6521 					  &iter->dev->adj_list.lower);
6522 		netdev_adjacent_sysfs_add(iter->dev, dev,
6523 					  &iter->dev->adj_list.lower);
6524 	}
6525 
6526 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6527 		if (!net_eq(net, dev_net(iter->dev)))
6528 			continue;
6529 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6530 					  &iter->dev->adj_list.upper);
6531 		netdev_adjacent_sysfs_add(iter->dev, dev,
6532 					  &iter->dev->adj_list.upper);
6533 	}
6534 }
6535 
6536 void *netdev_lower_dev_get_private(struct net_device *dev,
6537 				   struct net_device *lower_dev)
6538 {
6539 	struct netdev_adjacent *lower;
6540 
6541 	if (!lower_dev)
6542 		return NULL;
6543 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6544 	if (!lower)
6545 		return NULL;
6546 
6547 	return lower->private;
6548 }
6549 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6550 
6551 
6552 int dev_get_nest_level(struct net_device *dev)
6553 {
6554 	struct net_device *lower = NULL;
6555 	struct list_head *iter;
6556 	int max_nest = -1;
6557 	int nest;
6558 
6559 	ASSERT_RTNL();
6560 
6561 	netdev_for_each_lower_dev(dev, lower, iter) {
6562 		nest = dev_get_nest_level(lower);
6563 		if (max_nest < nest)
6564 			max_nest = nest;
6565 	}
6566 
6567 	return max_nest + 1;
6568 }
6569 EXPORT_SYMBOL(dev_get_nest_level);
6570 
6571 /**
6572  * netdev_lower_change - Dispatch event about lower device state change
6573  * @lower_dev: device
6574  * @lower_state_info: state to dispatch
6575  *
6576  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6577  * The caller must hold the RTNL lock.
6578  */
6579 void netdev_lower_state_changed(struct net_device *lower_dev,
6580 				void *lower_state_info)
6581 {
6582 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
6583 		.info.dev = lower_dev,
6584 	};
6585 
6586 	ASSERT_RTNL();
6587 	changelowerstate_info.lower_state_info = lower_state_info;
6588 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
6589 				      &changelowerstate_info.info);
6590 }
6591 EXPORT_SYMBOL(netdev_lower_state_changed);
6592 
6593 static void dev_change_rx_flags(struct net_device *dev, int flags)
6594 {
6595 	const struct net_device_ops *ops = dev->netdev_ops;
6596 
6597 	if (ops->ndo_change_rx_flags)
6598 		ops->ndo_change_rx_flags(dev, flags);
6599 }
6600 
6601 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6602 {
6603 	unsigned int old_flags = dev->flags;
6604 	kuid_t uid;
6605 	kgid_t gid;
6606 
6607 	ASSERT_RTNL();
6608 
6609 	dev->flags |= IFF_PROMISC;
6610 	dev->promiscuity += inc;
6611 	if (dev->promiscuity == 0) {
6612 		/*
6613 		 * Avoid overflow.
6614 		 * If inc causes overflow, untouch promisc and return error.
6615 		 */
6616 		if (inc < 0)
6617 			dev->flags &= ~IFF_PROMISC;
6618 		else {
6619 			dev->promiscuity -= inc;
6620 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6621 				dev->name);
6622 			return -EOVERFLOW;
6623 		}
6624 	}
6625 	if (dev->flags != old_flags) {
6626 		pr_info("device %s %s promiscuous mode\n",
6627 			dev->name,
6628 			dev->flags & IFF_PROMISC ? "entered" : "left");
6629 		if (audit_enabled) {
6630 			current_uid_gid(&uid, &gid);
6631 			audit_log(current->audit_context, GFP_ATOMIC,
6632 				AUDIT_ANOM_PROMISCUOUS,
6633 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6634 				dev->name, (dev->flags & IFF_PROMISC),
6635 				(old_flags & IFF_PROMISC),
6636 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
6637 				from_kuid(&init_user_ns, uid),
6638 				from_kgid(&init_user_ns, gid),
6639 				audit_get_sessionid(current));
6640 		}
6641 
6642 		dev_change_rx_flags(dev, IFF_PROMISC);
6643 	}
6644 	if (notify)
6645 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
6646 	return 0;
6647 }
6648 
6649 /**
6650  *	dev_set_promiscuity	- update promiscuity count on a device
6651  *	@dev: device
6652  *	@inc: modifier
6653  *
6654  *	Add or remove promiscuity from a device. While the count in the device
6655  *	remains above zero the interface remains promiscuous. Once it hits zero
6656  *	the device reverts back to normal filtering operation. A negative inc
6657  *	value is used to drop promiscuity on the device.
6658  *	Return 0 if successful or a negative errno code on error.
6659  */
6660 int dev_set_promiscuity(struct net_device *dev, int inc)
6661 {
6662 	unsigned int old_flags = dev->flags;
6663 	int err;
6664 
6665 	err = __dev_set_promiscuity(dev, inc, true);
6666 	if (err < 0)
6667 		return err;
6668 	if (dev->flags != old_flags)
6669 		dev_set_rx_mode(dev);
6670 	return err;
6671 }
6672 EXPORT_SYMBOL(dev_set_promiscuity);
6673 
6674 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6675 {
6676 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6677 
6678 	ASSERT_RTNL();
6679 
6680 	dev->flags |= IFF_ALLMULTI;
6681 	dev->allmulti += inc;
6682 	if (dev->allmulti == 0) {
6683 		/*
6684 		 * Avoid overflow.
6685 		 * If inc causes overflow, untouch allmulti and return error.
6686 		 */
6687 		if (inc < 0)
6688 			dev->flags &= ~IFF_ALLMULTI;
6689 		else {
6690 			dev->allmulti -= inc;
6691 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6692 				dev->name);
6693 			return -EOVERFLOW;
6694 		}
6695 	}
6696 	if (dev->flags ^ old_flags) {
6697 		dev_change_rx_flags(dev, IFF_ALLMULTI);
6698 		dev_set_rx_mode(dev);
6699 		if (notify)
6700 			__dev_notify_flags(dev, old_flags,
6701 					   dev->gflags ^ old_gflags);
6702 	}
6703 	return 0;
6704 }
6705 
6706 /**
6707  *	dev_set_allmulti	- update allmulti count on a device
6708  *	@dev: device
6709  *	@inc: modifier
6710  *
6711  *	Add or remove reception of all multicast frames to a device. While the
6712  *	count in the device remains above zero the interface remains listening
6713  *	to all interfaces. Once it hits zero the device reverts back to normal
6714  *	filtering operation. A negative @inc value is used to drop the counter
6715  *	when releasing a resource needing all multicasts.
6716  *	Return 0 if successful or a negative errno code on error.
6717  */
6718 
6719 int dev_set_allmulti(struct net_device *dev, int inc)
6720 {
6721 	return __dev_set_allmulti(dev, inc, true);
6722 }
6723 EXPORT_SYMBOL(dev_set_allmulti);
6724 
6725 /*
6726  *	Upload unicast and multicast address lists to device and
6727  *	configure RX filtering. When the device doesn't support unicast
6728  *	filtering it is put in promiscuous mode while unicast addresses
6729  *	are present.
6730  */
6731 void __dev_set_rx_mode(struct net_device *dev)
6732 {
6733 	const struct net_device_ops *ops = dev->netdev_ops;
6734 
6735 	/* dev_open will call this function so the list will stay sane. */
6736 	if (!(dev->flags&IFF_UP))
6737 		return;
6738 
6739 	if (!netif_device_present(dev))
6740 		return;
6741 
6742 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6743 		/* Unicast addresses changes may only happen under the rtnl,
6744 		 * therefore calling __dev_set_promiscuity here is safe.
6745 		 */
6746 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6747 			__dev_set_promiscuity(dev, 1, false);
6748 			dev->uc_promisc = true;
6749 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6750 			__dev_set_promiscuity(dev, -1, false);
6751 			dev->uc_promisc = false;
6752 		}
6753 	}
6754 
6755 	if (ops->ndo_set_rx_mode)
6756 		ops->ndo_set_rx_mode(dev);
6757 }
6758 
6759 void dev_set_rx_mode(struct net_device *dev)
6760 {
6761 	netif_addr_lock_bh(dev);
6762 	__dev_set_rx_mode(dev);
6763 	netif_addr_unlock_bh(dev);
6764 }
6765 
6766 /**
6767  *	dev_get_flags - get flags reported to userspace
6768  *	@dev: device
6769  *
6770  *	Get the combination of flag bits exported through APIs to userspace.
6771  */
6772 unsigned int dev_get_flags(const struct net_device *dev)
6773 {
6774 	unsigned int flags;
6775 
6776 	flags = (dev->flags & ~(IFF_PROMISC |
6777 				IFF_ALLMULTI |
6778 				IFF_RUNNING |
6779 				IFF_LOWER_UP |
6780 				IFF_DORMANT)) |
6781 		(dev->gflags & (IFF_PROMISC |
6782 				IFF_ALLMULTI));
6783 
6784 	if (netif_running(dev)) {
6785 		if (netif_oper_up(dev))
6786 			flags |= IFF_RUNNING;
6787 		if (netif_carrier_ok(dev))
6788 			flags |= IFF_LOWER_UP;
6789 		if (netif_dormant(dev))
6790 			flags |= IFF_DORMANT;
6791 	}
6792 
6793 	return flags;
6794 }
6795 EXPORT_SYMBOL(dev_get_flags);
6796 
6797 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6798 {
6799 	unsigned int old_flags = dev->flags;
6800 	int ret;
6801 
6802 	ASSERT_RTNL();
6803 
6804 	/*
6805 	 *	Set the flags on our device.
6806 	 */
6807 
6808 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6809 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6810 			       IFF_AUTOMEDIA)) |
6811 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6812 				    IFF_ALLMULTI));
6813 
6814 	/*
6815 	 *	Load in the correct multicast list now the flags have changed.
6816 	 */
6817 
6818 	if ((old_flags ^ flags) & IFF_MULTICAST)
6819 		dev_change_rx_flags(dev, IFF_MULTICAST);
6820 
6821 	dev_set_rx_mode(dev);
6822 
6823 	/*
6824 	 *	Have we downed the interface. We handle IFF_UP ourselves
6825 	 *	according to user attempts to set it, rather than blindly
6826 	 *	setting it.
6827 	 */
6828 
6829 	ret = 0;
6830 	if ((old_flags ^ flags) & IFF_UP) {
6831 		if (old_flags & IFF_UP)
6832 			__dev_close(dev);
6833 		else
6834 			ret = __dev_open(dev);
6835 	}
6836 
6837 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
6838 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
6839 		unsigned int old_flags = dev->flags;
6840 
6841 		dev->gflags ^= IFF_PROMISC;
6842 
6843 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
6844 			if (dev->flags != old_flags)
6845 				dev_set_rx_mode(dev);
6846 	}
6847 
6848 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6849 	 * is important. Some (broken) drivers set IFF_PROMISC, when
6850 	 * IFF_ALLMULTI is requested not asking us and not reporting.
6851 	 */
6852 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6853 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6854 
6855 		dev->gflags ^= IFF_ALLMULTI;
6856 		__dev_set_allmulti(dev, inc, false);
6857 	}
6858 
6859 	return ret;
6860 }
6861 
6862 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6863 			unsigned int gchanges)
6864 {
6865 	unsigned int changes = dev->flags ^ old_flags;
6866 
6867 	if (gchanges)
6868 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6869 
6870 	if (changes & IFF_UP) {
6871 		if (dev->flags & IFF_UP)
6872 			call_netdevice_notifiers(NETDEV_UP, dev);
6873 		else
6874 			call_netdevice_notifiers(NETDEV_DOWN, dev);
6875 	}
6876 
6877 	if (dev->flags & IFF_UP &&
6878 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6879 		struct netdev_notifier_change_info change_info = {
6880 			.info = {
6881 				.dev = dev,
6882 			},
6883 			.flags_changed = changes,
6884 		};
6885 
6886 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
6887 	}
6888 }
6889 
6890 /**
6891  *	dev_change_flags - change device settings
6892  *	@dev: device
6893  *	@flags: device state flags
6894  *
6895  *	Change settings on device based state flags. The flags are
6896  *	in the userspace exported format.
6897  */
6898 int dev_change_flags(struct net_device *dev, unsigned int flags)
6899 {
6900 	int ret;
6901 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6902 
6903 	ret = __dev_change_flags(dev, flags);
6904 	if (ret < 0)
6905 		return ret;
6906 
6907 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6908 	__dev_notify_flags(dev, old_flags, changes);
6909 	return ret;
6910 }
6911 EXPORT_SYMBOL(dev_change_flags);
6912 
6913 int __dev_set_mtu(struct net_device *dev, int new_mtu)
6914 {
6915 	const struct net_device_ops *ops = dev->netdev_ops;
6916 
6917 	if (ops->ndo_change_mtu)
6918 		return ops->ndo_change_mtu(dev, new_mtu);
6919 
6920 	dev->mtu = new_mtu;
6921 	return 0;
6922 }
6923 EXPORT_SYMBOL(__dev_set_mtu);
6924 
6925 /**
6926  *	dev_set_mtu - Change maximum transfer unit
6927  *	@dev: device
6928  *	@new_mtu: new transfer unit
6929  *
6930  *	Change the maximum transfer size of the network device.
6931  */
6932 int dev_set_mtu(struct net_device *dev, int new_mtu)
6933 {
6934 	int err, orig_mtu;
6935 
6936 	if (new_mtu == dev->mtu)
6937 		return 0;
6938 
6939 	/* MTU must be positive, and in range */
6940 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6941 		net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6942 				    dev->name, new_mtu, dev->min_mtu);
6943 		return -EINVAL;
6944 	}
6945 
6946 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6947 		net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6948 				    dev->name, new_mtu, dev->max_mtu);
6949 		return -EINVAL;
6950 	}
6951 
6952 	if (!netif_device_present(dev))
6953 		return -ENODEV;
6954 
6955 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6956 	err = notifier_to_errno(err);
6957 	if (err)
6958 		return err;
6959 
6960 	orig_mtu = dev->mtu;
6961 	err = __dev_set_mtu(dev, new_mtu);
6962 
6963 	if (!err) {
6964 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6965 		err = notifier_to_errno(err);
6966 		if (err) {
6967 			/* setting mtu back and notifying everyone again,
6968 			 * so that they have a chance to revert changes.
6969 			 */
6970 			__dev_set_mtu(dev, orig_mtu);
6971 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6972 		}
6973 	}
6974 	return err;
6975 }
6976 EXPORT_SYMBOL(dev_set_mtu);
6977 
6978 /**
6979  *	dev_set_group - Change group this device belongs to
6980  *	@dev: device
6981  *	@new_group: group this device should belong to
6982  */
6983 void dev_set_group(struct net_device *dev, int new_group)
6984 {
6985 	dev->group = new_group;
6986 }
6987 EXPORT_SYMBOL(dev_set_group);
6988 
6989 /**
6990  *	dev_set_mac_address - Change Media Access Control Address
6991  *	@dev: device
6992  *	@sa: new address
6993  *
6994  *	Change the hardware (MAC) address of the device
6995  */
6996 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6997 {
6998 	const struct net_device_ops *ops = dev->netdev_ops;
6999 	int err;
7000 
7001 	if (!ops->ndo_set_mac_address)
7002 		return -EOPNOTSUPP;
7003 	if (sa->sa_family != dev->type)
7004 		return -EINVAL;
7005 	if (!netif_device_present(dev))
7006 		return -ENODEV;
7007 	err = ops->ndo_set_mac_address(dev, sa);
7008 	if (err)
7009 		return err;
7010 	dev->addr_assign_type = NET_ADDR_SET;
7011 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7012 	add_device_randomness(dev->dev_addr, dev->addr_len);
7013 	return 0;
7014 }
7015 EXPORT_SYMBOL(dev_set_mac_address);
7016 
7017 /**
7018  *	dev_change_carrier - Change device carrier
7019  *	@dev: device
7020  *	@new_carrier: new value
7021  *
7022  *	Change device carrier
7023  */
7024 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7025 {
7026 	const struct net_device_ops *ops = dev->netdev_ops;
7027 
7028 	if (!ops->ndo_change_carrier)
7029 		return -EOPNOTSUPP;
7030 	if (!netif_device_present(dev))
7031 		return -ENODEV;
7032 	return ops->ndo_change_carrier(dev, new_carrier);
7033 }
7034 EXPORT_SYMBOL(dev_change_carrier);
7035 
7036 /**
7037  *	dev_get_phys_port_id - Get device physical port ID
7038  *	@dev: device
7039  *	@ppid: port ID
7040  *
7041  *	Get device physical port ID
7042  */
7043 int dev_get_phys_port_id(struct net_device *dev,
7044 			 struct netdev_phys_item_id *ppid)
7045 {
7046 	const struct net_device_ops *ops = dev->netdev_ops;
7047 
7048 	if (!ops->ndo_get_phys_port_id)
7049 		return -EOPNOTSUPP;
7050 	return ops->ndo_get_phys_port_id(dev, ppid);
7051 }
7052 EXPORT_SYMBOL(dev_get_phys_port_id);
7053 
7054 /**
7055  *	dev_get_phys_port_name - Get device physical port name
7056  *	@dev: device
7057  *	@name: port name
7058  *	@len: limit of bytes to copy to name
7059  *
7060  *	Get device physical port name
7061  */
7062 int dev_get_phys_port_name(struct net_device *dev,
7063 			   char *name, size_t len)
7064 {
7065 	const struct net_device_ops *ops = dev->netdev_ops;
7066 
7067 	if (!ops->ndo_get_phys_port_name)
7068 		return -EOPNOTSUPP;
7069 	return ops->ndo_get_phys_port_name(dev, name, len);
7070 }
7071 EXPORT_SYMBOL(dev_get_phys_port_name);
7072 
7073 /**
7074  *	dev_change_proto_down - update protocol port state information
7075  *	@dev: device
7076  *	@proto_down: new value
7077  *
7078  *	This info can be used by switch drivers to set the phys state of the
7079  *	port.
7080  */
7081 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7082 {
7083 	const struct net_device_ops *ops = dev->netdev_ops;
7084 
7085 	if (!ops->ndo_change_proto_down)
7086 		return -EOPNOTSUPP;
7087 	if (!netif_device_present(dev))
7088 		return -ENODEV;
7089 	return ops->ndo_change_proto_down(dev, proto_down);
7090 }
7091 EXPORT_SYMBOL(dev_change_proto_down);
7092 
7093 u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op, u32 *prog_id)
7094 {
7095 	struct netdev_bpf xdp;
7096 
7097 	memset(&xdp, 0, sizeof(xdp));
7098 	xdp.command = XDP_QUERY_PROG;
7099 
7100 	/* Query must always succeed. */
7101 	WARN_ON(bpf_op(dev, &xdp) < 0);
7102 	if (prog_id)
7103 		*prog_id = xdp.prog_id;
7104 
7105 	return xdp.prog_attached;
7106 }
7107 
7108 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7109 			   struct netlink_ext_ack *extack, u32 flags,
7110 			   struct bpf_prog *prog)
7111 {
7112 	struct netdev_bpf xdp;
7113 
7114 	memset(&xdp, 0, sizeof(xdp));
7115 	if (flags & XDP_FLAGS_HW_MODE)
7116 		xdp.command = XDP_SETUP_PROG_HW;
7117 	else
7118 		xdp.command = XDP_SETUP_PROG;
7119 	xdp.extack = extack;
7120 	xdp.flags = flags;
7121 	xdp.prog = prog;
7122 
7123 	return bpf_op(dev, &xdp);
7124 }
7125 
7126 /**
7127  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
7128  *	@dev: device
7129  *	@extack: netlink extended ack
7130  *	@fd: new program fd or negative value to clear
7131  *	@flags: xdp-related flags
7132  *
7133  *	Set or clear a bpf program for a device
7134  */
7135 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7136 		      int fd, u32 flags)
7137 {
7138 	const struct net_device_ops *ops = dev->netdev_ops;
7139 	struct bpf_prog *prog = NULL;
7140 	bpf_op_t bpf_op, bpf_chk;
7141 	int err;
7142 
7143 	ASSERT_RTNL();
7144 
7145 	bpf_op = bpf_chk = ops->ndo_bpf;
7146 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7147 		return -EOPNOTSUPP;
7148 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7149 		bpf_op = generic_xdp_install;
7150 	if (bpf_op == bpf_chk)
7151 		bpf_chk = generic_xdp_install;
7152 
7153 	if (fd >= 0) {
7154 		if (bpf_chk && __dev_xdp_attached(dev, bpf_chk, NULL))
7155 			return -EEXIST;
7156 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7157 		    __dev_xdp_attached(dev, bpf_op, NULL))
7158 			return -EBUSY;
7159 
7160 		if (bpf_op == ops->ndo_bpf)
7161 			prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7162 						     dev);
7163 		else
7164 			prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
7165 		if (IS_ERR(prog))
7166 			return PTR_ERR(prog);
7167 	}
7168 
7169 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7170 	if (err < 0 && prog)
7171 		bpf_prog_put(prog);
7172 
7173 	return err;
7174 }
7175 
7176 /**
7177  *	dev_new_index	-	allocate an ifindex
7178  *	@net: the applicable net namespace
7179  *
7180  *	Returns a suitable unique value for a new device interface
7181  *	number.  The caller must hold the rtnl semaphore or the
7182  *	dev_base_lock to be sure it remains unique.
7183  */
7184 static int dev_new_index(struct net *net)
7185 {
7186 	int ifindex = net->ifindex;
7187 
7188 	for (;;) {
7189 		if (++ifindex <= 0)
7190 			ifindex = 1;
7191 		if (!__dev_get_by_index(net, ifindex))
7192 			return net->ifindex = ifindex;
7193 	}
7194 }
7195 
7196 /* Delayed registration/unregisteration */
7197 static LIST_HEAD(net_todo_list);
7198 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7199 
7200 static void net_set_todo(struct net_device *dev)
7201 {
7202 	list_add_tail(&dev->todo_list, &net_todo_list);
7203 	dev_net(dev)->dev_unreg_count++;
7204 }
7205 
7206 static void rollback_registered_many(struct list_head *head)
7207 {
7208 	struct net_device *dev, *tmp;
7209 	LIST_HEAD(close_head);
7210 
7211 	BUG_ON(dev_boot_phase);
7212 	ASSERT_RTNL();
7213 
7214 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7215 		/* Some devices call without registering
7216 		 * for initialization unwind. Remove those
7217 		 * devices and proceed with the remaining.
7218 		 */
7219 		if (dev->reg_state == NETREG_UNINITIALIZED) {
7220 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7221 				 dev->name, dev);
7222 
7223 			WARN_ON(1);
7224 			list_del(&dev->unreg_list);
7225 			continue;
7226 		}
7227 		dev->dismantle = true;
7228 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
7229 	}
7230 
7231 	/* If device is running, close it first. */
7232 	list_for_each_entry(dev, head, unreg_list)
7233 		list_add_tail(&dev->close_list, &close_head);
7234 	dev_close_many(&close_head, true);
7235 
7236 	list_for_each_entry(dev, head, unreg_list) {
7237 		/* And unlink it from device chain. */
7238 		unlist_netdevice(dev);
7239 
7240 		dev->reg_state = NETREG_UNREGISTERING;
7241 	}
7242 	flush_all_backlogs();
7243 
7244 	synchronize_net();
7245 
7246 	list_for_each_entry(dev, head, unreg_list) {
7247 		struct sk_buff *skb = NULL;
7248 
7249 		/* Shutdown queueing discipline. */
7250 		dev_shutdown(dev);
7251 
7252 
7253 		/* Notify protocols, that we are about to destroy
7254 		 * this device. They should clean all the things.
7255 		 */
7256 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7257 
7258 		if (!dev->rtnl_link_ops ||
7259 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7260 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7261 						     GFP_KERNEL, NULL);
7262 
7263 		/*
7264 		 *	Flush the unicast and multicast chains
7265 		 */
7266 		dev_uc_flush(dev);
7267 		dev_mc_flush(dev);
7268 
7269 		if (dev->netdev_ops->ndo_uninit)
7270 			dev->netdev_ops->ndo_uninit(dev);
7271 
7272 		if (skb)
7273 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7274 
7275 		/* Notifier chain MUST detach us all upper devices. */
7276 		WARN_ON(netdev_has_any_upper_dev(dev));
7277 		WARN_ON(netdev_has_any_lower_dev(dev));
7278 
7279 		/* Remove entries from kobject tree */
7280 		netdev_unregister_kobject(dev);
7281 #ifdef CONFIG_XPS
7282 		/* Remove XPS queueing entries */
7283 		netif_reset_xps_queues_gt(dev, 0);
7284 #endif
7285 	}
7286 
7287 	synchronize_net();
7288 
7289 	list_for_each_entry(dev, head, unreg_list)
7290 		dev_put(dev);
7291 }
7292 
7293 static void rollback_registered(struct net_device *dev)
7294 {
7295 	LIST_HEAD(single);
7296 
7297 	list_add(&dev->unreg_list, &single);
7298 	rollback_registered_many(&single);
7299 	list_del(&single);
7300 }
7301 
7302 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7303 	struct net_device *upper, netdev_features_t features)
7304 {
7305 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7306 	netdev_features_t feature;
7307 	int feature_bit;
7308 
7309 	for_each_netdev_feature(&upper_disables, feature_bit) {
7310 		feature = __NETIF_F_BIT(feature_bit);
7311 		if (!(upper->wanted_features & feature)
7312 		    && (features & feature)) {
7313 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7314 				   &feature, upper->name);
7315 			features &= ~feature;
7316 		}
7317 	}
7318 
7319 	return features;
7320 }
7321 
7322 static void netdev_sync_lower_features(struct net_device *upper,
7323 	struct net_device *lower, netdev_features_t features)
7324 {
7325 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7326 	netdev_features_t feature;
7327 	int feature_bit;
7328 
7329 	for_each_netdev_feature(&upper_disables, feature_bit) {
7330 		feature = __NETIF_F_BIT(feature_bit);
7331 		if (!(features & feature) && (lower->features & feature)) {
7332 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7333 				   &feature, lower->name);
7334 			lower->wanted_features &= ~feature;
7335 			netdev_update_features(lower);
7336 
7337 			if (unlikely(lower->features & feature))
7338 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7339 					    &feature, lower->name);
7340 		}
7341 	}
7342 }
7343 
7344 static netdev_features_t netdev_fix_features(struct net_device *dev,
7345 	netdev_features_t features)
7346 {
7347 	/* Fix illegal checksum combinations */
7348 	if ((features & NETIF_F_HW_CSUM) &&
7349 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7350 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7351 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7352 	}
7353 
7354 	/* TSO requires that SG is present as well. */
7355 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7356 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7357 		features &= ~NETIF_F_ALL_TSO;
7358 	}
7359 
7360 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7361 					!(features & NETIF_F_IP_CSUM)) {
7362 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7363 		features &= ~NETIF_F_TSO;
7364 		features &= ~NETIF_F_TSO_ECN;
7365 	}
7366 
7367 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7368 					 !(features & NETIF_F_IPV6_CSUM)) {
7369 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7370 		features &= ~NETIF_F_TSO6;
7371 	}
7372 
7373 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7374 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7375 		features &= ~NETIF_F_TSO_MANGLEID;
7376 
7377 	/* TSO ECN requires that TSO is present as well. */
7378 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7379 		features &= ~NETIF_F_TSO_ECN;
7380 
7381 	/* Software GSO depends on SG. */
7382 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7383 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7384 		features &= ~NETIF_F_GSO;
7385 	}
7386 
7387 	/* GSO partial features require GSO partial be set */
7388 	if ((features & dev->gso_partial_features) &&
7389 	    !(features & NETIF_F_GSO_PARTIAL)) {
7390 		netdev_dbg(dev,
7391 			   "Dropping partially supported GSO features since no GSO partial.\n");
7392 		features &= ~dev->gso_partial_features;
7393 	}
7394 
7395 	return features;
7396 }
7397 
7398 int __netdev_update_features(struct net_device *dev)
7399 {
7400 	struct net_device *upper, *lower;
7401 	netdev_features_t features;
7402 	struct list_head *iter;
7403 	int err = -1;
7404 
7405 	ASSERT_RTNL();
7406 
7407 	features = netdev_get_wanted_features(dev);
7408 
7409 	if (dev->netdev_ops->ndo_fix_features)
7410 		features = dev->netdev_ops->ndo_fix_features(dev, features);
7411 
7412 	/* driver might be less strict about feature dependencies */
7413 	features = netdev_fix_features(dev, features);
7414 
7415 	/* some features can't be enabled if they're off an an upper device */
7416 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
7417 		features = netdev_sync_upper_features(dev, upper, features);
7418 
7419 	if (dev->features == features)
7420 		goto sync_lower;
7421 
7422 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7423 		&dev->features, &features);
7424 
7425 	if (dev->netdev_ops->ndo_set_features)
7426 		err = dev->netdev_ops->ndo_set_features(dev, features);
7427 	else
7428 		err = 0;
7429 
7430 	if (unlikely(err < 0)) {
7431 		netdev_err(dev,
7432 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
7433 			err, &features, &dev->features);
7434 		/* return non-0 since some features might have changed and
7435 		 * it's better to fire a spurious notification than miss it
7436 		 */
7437 		return -1;
7438 	}
7439 
7440 sync_lower:
7441 	/* some features must be disabled on lower devices when disabled
7442 	 * on an upper device (think: bonding master or bridge)
7443 	 */
7444 	netdev_for_each_lower_dev(dev, lower, iter)
7445 		netdev_sync_lower_features(dev, lower, features);
7446 
7447 	if (!err) {
7448 		netdev_features_t diff = features ^ dev->features;
7449 
7450 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7451 			/* udp_tunnel_{get,drop}_rx_info both need
7452 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7453 			 * device, or they won't do anything.
7454 			 * Thus we need to update dev->features
7455 			 * *before* calling udp_tunnel_get_rx_info,
7456 			 * but *after* calling udp_tunnel_drop_rx_info.
7457 			 */
7458 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7459 				dev->features = features;
7460 				udp_tunnel_get_rx_info(dev);
7461 			} else {
7462 				udp_tunnel_drop_rx_info(dev);
7463 			}
7464 		}
7465 
7466 		dev->features = features;
7467 	}
7468 
7469 	return err < 0 ? 0 : 1;
7470 }
7471 
7472 /**
7473  *	netdev_update_features - recalculate device features
7474  *	@dev: the device to check
7475  *
7476  *	Recalculate dev->features set and send notifications if it
7477  *	has changed. Should be called after driver or hardware dependent
7478  *	conditions might have changed that influence the features.
7479  */
7480 void netdev_update_features(struct net_device *dev)
7481 {
7482 	if (__netdev_update_features(dev))
7483 		netdev_features_change(dev);
7484 }
7485 EXPORT_SYMBOL(netdev_update_features);
7486 
7487 /**
7488  *	netdev_change_features - recalculate device features
7489  *	@dev: the device to check
7490  *
7491  *	Recalculate dev->features set and send notifications even
7492  *	if they have not changed. Should be called instead of
7493  *	netdev_update_features() if also dev->vlan_features might
7494  *	have changed to allow the changes to be propagated to stacked
7495  *	VLAN devices.
7496  */
7497 void netdev_change_features(struct net_device *dev)
7498 {
7499 	__netdev_update_features(dev);
7500 	netdev_features_change(dev);
7501 }
7502 EXPORT_SYMBOL(netdev_change_features);
7503 
7504 /**
7505  *	netif_stacked_transfer_operstate -	transfer operstate
7506  *	@rootdev: the root or lower level device to transfer state from
7507  *	@dev: the device to transfer operstate to
7508  *
7509  *	Transfer operational state from root to device. This is normally
7510  *	called when a stacking relationship exists between the root
7511  *	device and the device(a leaf device).
7512  */
7513 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7514 					struct net_device *dev)
7515 {
7516 	if (rootdev->operstate == IF_OPER_DORMANT)
7517 		netif_dormant_on(dev);
7518 	else
7519 		netif_dormant_off(dev);
7520 
7521 	if (netif_carrier_ok(rootdev))
7522 		netif_carrier_on(dev);
7523 	else
7524 		netif_carrier_off(dev);
7525 }
7526 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7527 
7528 #ifdef CONFIG_SYSFS
7529 static int netif_alloc_rx_queues(struct net_device *dev)
7530 {
7531 	unsigned int i, count = dev->num_rx_queues;
7532 	struct netdev_rx_queue *rx;
7533 	size_t sz = count * sizeof(*rx);
7534 
7535 	BUG_ON(count < 1);
7536 
7537 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7538 	if (!rx)
7539 		return -ENOMEM;
7540 
7541 	dev->_rx = rx;
7542 
7543 	for (i = 0; i < count; i++)
7544 		rx[i].dev = dev;
7545 	return 0;
7546 }
7547 #endif
7548 
7549 static void netdev_init_one_queue(struct net_device *dev,
7550 				  struct netdev_queue *queue, void *_unused)
7551 {
7552 	/* Initialize queue lock */
7553 	spin_lock_init(&queue->_xmit_lock);
7554 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7555 	queue->xmit_lock_owner = -1;
7556 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7557 	queue->dev = dev;
7558 #ifdef CONFIG_BQL
7559 	dql_init(&queue->dql, HZ);
7560 #endif
7561 }
7562 
7563 static void netif_free_tx_queues(struct net_device *dev)
7564 {
7565 	kvfree(dev->_tx);
7566 }
7567 
7568 static int netif_alloc_netdev_queues(struct net_device *dev)
7569 {
7570 	unsigned int count = dev->num_tx_queues;
7571 	struct netdev_queue *tx;
7572 	size_t sz = count * sizeof(*tx);
7573 
7574 	if (count < 1 || count > 0xffff)
7575 		return -EINVAL;
7576 
7577 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7578 	if (!tx)
7579 		return -ENOMEM;
7580 
7581 	dev->_tx = tx;
7582 
7583 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7584 	spin_lock_init(&dev->tx_global_lock);
7585 
7586 	return 0;
7587 }
7588 
7589 void netif_tx_stop_all_queues(struct net_device *dev)
7590 {
7591 	unsigned int i;
7592 
7593 	for (i = 0; i < dev->num_tx_queues; i++) {
7594 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7595 
7596 		netif_tx_stop_queue(txq);
7597 	}
7598 }
7599 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7600 
7601 /**
7602  *	register_netdevice	- register a network device
7603  *	@dev: device to register
7604  *
7605  *	Take a completed network device structure and add it to the kernel
7606  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7607  *	chain. 0 is returned on success. A negative errno code is returned
7608  *	on a failure to set up the device, or if the name is a duplicate.
7609  *
7610  *	Callers must hold the rtnl semaphore. You may want
7611  *	register_netdev() instead of this.
7612  *
7613  *	BUGS:
7614  *	The locking appears insufficient to guarantee two parallel registers
7615  *	will not get the same name.
7616  */
7617 
7618 int register_netdevice(struct net_device *dev)
7619 {
7620 	int ret;
7621 	struct net *net = dev_net(dev);
7622 
7623 	BUG_ON(dev_boot_phase);
7624 	ASSERT_RTNL();
7625 
7626 	might_sleep();
7627 
7628 	/* When net_device's are persistent, this will be fatal. */
7629 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7630 	BUG_ON(!net);
7631 
7632 	spin_lock_init(&dev->addr_list_lock);
7633 	netdev_set_addr_lockdep_class(dev);
7634 
7635 	ret = dev_get_valid_name(net, dev, dev->name);
7636 	if (ret < 0)
7637 		goto out;
7638 
7639 	/* Init, if this function is available */
7640 	if (dev->netdev_ops->ndo_init) {
7641 		ret = dev->netdev_ops->ndo_init(dev);
7642 		if (ret) {
7643 			if (ret > 0)
7644 				ret = -EIO;
7645 			goto out;
7646 		}
7647 	}
7648 
7649 	if (((dev->hw_features | dev->features) &
7650 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
7651 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7652 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7653 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7654 		ret = -EINVAL;
7655 		goto err_uninit;
7656 	}
7657 
7658 	ret = -EBUSY;
7659 	if (!dev->ifindex)
7660 		dev->ifindex = dev_new_index(net);
7661 	else if (__dev_get_by_index(net, dev->ifindex))
7662 		goto err_uninit;
7663 
7664 	/* Transfer changeable features to wanted_features and enable
7665 	 * software offloads (GSO and GRO).
7666 	 */
7667 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
7668 	dev->features |= NETIF_F_SOFT_FEATURES;
7669 
7670 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
7671 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7672 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7673 	}
7674 
7675 	dev->wanted_features = dev->features & dev->hw_features;
7676 
7677 	if (!(dev->flags & IFF_LOOPBACK))
7678 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
7679 
7680 	/* If IPv4 TCP segmentation offload is supported we should also
7681 	 * allow the device to enable segmenting the frame with the option
7682 	 * of ignoring a static IP ID value.  This doesn't enable the
7683 	 * feature itself but allows the user to enable it later.
7684 	 */
7685 	if (dev->hw_features & NETIF_F_TSO)
7686 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
7687 	if (dev->vlan_features & NETIF_F_TSO)
7688 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7689 	if (dev->mpls_features & NETIF_F_TSO)
7690 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7691 	if (dev->hw_enc_features & NETIF_F_TSO)
7692 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7693 
7694 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7695 	 */
7696 	dev->vlan_features |= NETIF_F_HIGHDMA;
7697 
7698 	/* Make NETIF_F_SG inheritable to tunnel devices.
7699 	 */
7700 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7701 
7702 	/* Make NETIF_F_SG inheritable to MPLS.
7703 	 */
7704 	dev->mpls_features |= NETIF_F_SG;
7705 
7706 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7707 	ret = notifier_to_errno(ret);
7708 	if (ret)
7709 		goto err_uninit;
7710 
7711 	ret = netdev_register_kobject(dev);
7712 	if (ret)
7713 		goto err_uninit;
7714 	dev->reg_state = NETREG_REGISTERED;
7715 
7716 	__netdev_update_features(dev);
7717 
7718 	/*
7719 	 *	Default initial state at registry is that the
7720 	 *	device is present.
7721 	 */
7722 
7723 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7724 
7725 	linkwatch_init_dev(dev);
7726 
7727 	dev_init_scheduler(dev);
7728 	dev_hold(dev);
7729 	list_netdevice(dev);
7730 	add_device_randomness(dev->dev_addr, dev->addr_len);
7731 
7732 	/* If the device has permanent device address, driver should
7733 	 * set dev_addr and also addr_assign_type should be set to
7734 	 * NET_ADDR_PERM (default value).
7735 	 */
7736 	if (dev->addr_assign_type == NET_ADDR_PERM)
7737 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7738 
7739 	/* Notify protocols, that a new device appeared. */
7740 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7741 	ret = notifier_to_errno(ret);
7742 	if (ret) {
7743 		rollback_registered(dev);
7744 		dev->reg_state = NETREG_UNREGISTERED;
7745 	}
7746 	/*
7747 	 *	Prevent userspace races by waiting until the network
7748 	 *	device is fully setup before sending notifications.
7749 	 */
7750 	if (!dev->rtnl_link_ops ||
7751 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7752 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7753 
7754 out:
7755 	return ret;
7756 
7757 err_uninit:
7758 	if (dev->netdev_ops->ndo_uninit)
7759 		dev->netdev_ops->ndo_uninit(dev);
7760 	if (dev->priv_destructor)
7761 		dev->priv_destructor(dev);
7762 	goto out;
7763 }
7764 EXPORT_SYMBOL(register_netdevice);
7765 
7766 /**
7767  *	init_dummy_netdev	- init a dummy network device for NAPI
7768  *	@dev: device to init
7769  *
7770  *	This takes a network device structure and initialize the minimum
7771  *	amount of fields so it can be used to schedule NAPI polls without
7772  *	registering a full blown interface. This is to be used by drivers
7773  *	that need to tie several hardware interfaces to a single NAPI
7774  *	poll scheduler due to HW limitations.
7775  */
7776 int init_dummy_netdev(struct net_device *dev)
7777 {
7778 	/* Clear everything. Note we don't initialize spinlocks
7779 	 * are they aren't supposed to be taken by any of the
7780 	 * NAPI code and this dummy netdev is supposed to be
7781 	 * only ever used for NAPI polls
7782 	 */
7783 	memset(dev, 0, sizeof(struct net_device));
7784 
7785 	/* make sure we BUG if trying to hit standard
7786 	 * register/unregister code path
7787 	 */
7788 	dev->reg_state = NETREG_DUMMY;
7789 
7790 	/* NAPI wants this */
7791 	INIT_LIST_HEAD(&dev->napi_list);
7792 
7793 	/* a dummy interface is started by default */
7794 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7795 	set_bit(__LINK_STATE_START, &dev->state);
7796 
7797 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
7798 	 * because users of this 'device' dont need to change
7799 	 * its refcount.
7800 	 */
7801 
7802 	return 0;
7803 }
7804 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7805 
7806 
7807 /**
7808  *	register_netdev	- register a network device
7809  *	@dev: device to register
7810  *
7811  *	Take a completed network device structure and add it to the kernel
7812  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7813  *	chain. 0 is returned on success. A negative errno code is returned
7814  *	on a failure to set up the device, or if the name is a duplicate.
7815  *
7816  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
7817  *	and expands the device name if you passed a format string to
7818  *	alloc_netdev.
7819  */
7820 int register_netdev(struct net_device *dev)
7821 {
7822 	int err;
7823 
7824 	rtnl_lock();
7825 	err = register_netdevice(dev);
7826 	rtnl_unlock();
7827 	return err;
7828 }
7829 EXPORT_SYMBOL(register_netdev);
7830 
7831 int netdev_refcnt_read(const struct net_device *dev)
7832 {
7833 	int i, refcnt = 0;
7834 
7835 	for_each_possible_cpu(i)
7836 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7837 	return refcnt;
7838 }
7839 EXPORT_SYMBOL(netdev_refcnt_read);
7840 
7841 /**
7842  * netdev_wait_allrefs - wait until all references are gone.
7843  * @dev: target net_device
7844  *
7845  * This is called when unregistering network devices.
7846  *
7847  * Any protocol or device that holds a reference should register
7848  * for netdevice notification, and cleanup and put back the
7849  * reference if they receive an UNREGISTER event.
7850  * We can get stuck here if buggy protocols don't correctly
7851  * call dev_put.
7852  */
7853 static void netdev_wait_allrefs(struct net_device *dev)
7854 {
7855 	unsigned long rebroadcast_time, warning_time;
7856 	int refcnt;
7857 
7858 	linkwatch_forget_dev(dev);
7859 
7860 	rebroadcast_time = warning_time = jiffies;
7861 	refcnt = netdev_refcnt_read(dev);
7862 
7863 	while (refcnt != 0) {
7864 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7865 			rtnl_lock();
7866 
7867 			/* Rebroadcast unregister notification */
7868 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7869 
7870 			__rtnl_unlock();
7871 			rcu_barrier();
7872 			rtnl_lock();
7873 
7874 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7875 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7876 				     &dev->state)) {
7877 				/* We must not have linkwatch events
7878 				 * pending on unregister. If this
7879 				 * happens, we simply run the queue
7880 				 * unscheduled, resulting in a noop
7881 				 * for this device.
7882 				 */
7883 				linkwatch_run_queue();
7884 			}
7885 
7886 			__rtnl_unlock();
7887 
7888 			rebroadcast_time = jiffies;
7889 		}
7890 
7891 		msleep(250);
7892 
7893 		refcnt = netdev_refcnt_read(dev);
7894 
7895 		if (time_after(jiffies, warning_time + 10 * HZ)) {
7896 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7897 				 dev->name, refcnt);
7898 			warning_time = jiffies;
7899 		}
7900 	}
7901 }
7902 
7903 /* The sequence is:
7904  *
7905  *	rtnl_lock();
7906  *	...
7907  *	register_netdevice(x1);
7908  *	register_netdevice(x2);
7909  *	...
7910  *	unregister_netdevice(y1);
7911  *	unregister_netdevice(y2);
7912  *      ...
7913  *	rtnl_unlock();
7914  *	free_netdev(y1);
7915  *	free_netdev(y2);
7916  *
7917  * We are invoked by rtnl_unlock().
7918  * This allows us to deal with problems:
7919  * 1) We can delete sysfs objects which invoke hotplug
7920  *    without deadlocking with linkwatch via keventd.
7921  * 2) Since we run with the RTNL semaphore not held, we can sleep
7922  *    safely in order to wait for the netdev refcnt to drop to zero.
7923  *
7924  * We must not return until all unregister events added during
7925  * the interval the lock was held have been completed.
7926  */
7927 void netdev_run_todo(void)
7928 {
7929 	struct list_head list;
7930 
7931 	/* Snapshot list, allow later requests */
7932 	list_replace_init(&net_todo_list, &list);
7933 
7934 	__rtnl_unlock();
7935 
7936 
7937 	/* Wait for rcu callbacks to finish before next phase */
7938 	if (!list_empty(&list))
7939 		rcu_barrier();
7940 
7941 	while (!list_empty(&list)) {
7942 		struct net_device *dev
7943 			= list_first_entry(&list, struct net_device, todo_list);
7944 		list_del(&dev->todo_list);
7945 
7946 		rtnl_lock();
7947 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7948 		__rtnl_unlock();
7949 
7950 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7951 			pr_err("network todo '%s' but state %d\n",
7952 			       dev->name, dev->reg_state);
7953 			dump_stack();
7954 			continue;
7955 		}
7956 
7957 		dev->reg_state = NETREG_UNREGISTERED;
7958 
7959 		netdev_wait_allrefs(dev);
7960 
7961 		/* paranoia */
7962 		BUG_ON(netdev_refcnt_read(dev));
7963 		BUG_ON(!list_empty(&dev->ptype_all));
7964 		BUG_ON(!list_empty(&dev->ptype_specific));
7965 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
7966 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7967 		WARN_ON(dev->dn_ptr);
7968 
7969 		if (dev->priv_destructor)
7970 			dev->priv_destructor(dev);
7971 		if (dev->needs_free_netdev)
7972 			free_netdev(dev);
7973 
7974 		/* Report a network device has been unregistered */
7975 		rtnl_lock();
7976 		dev_net(dev)->dev_unreg_count--;
7977 		__rtnl_unlock();
7978 		wake_up(&netdev_unregistering_wq);
7979 
7980 		/* Free network device */
7981 		kobject_put(&dev->dev.kobj);
7982 	}
7983 }
7984 
7985 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7986  * all the same fields in the same order as net_device_stats, with only
7987  * the type differing, but rtnl_link_stats64 may have additional fields
7988  * at the end for newer counters.
7989  */
7990 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7991 			     const struct net_device_stats *netdev_stats)
7992 {
7993 #if BITS_PER_LONG == 64
7994 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7995 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
7996 	/* zero out counters that only exist in rtnl_link_stats64 */
7997 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
7998 	       sizeof(*stats64) - sizeof(*netdev_stats));
7999 #else
8000 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8001 	const unsigned long *src = (const unsigned long *)netdev_stats;
8002 	u64 *dst = (u64 *)stats64;
8003 
8004 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8005 	for (i = 0; i < n; i++)
8006 		dst[i] = src[i];
8007 	/* zero out counters that only exist in rtnl_link_stats64 */
8008 	memset((char *)stats64 + n * sizeof(u64), 0,
8009 	       sizeof(*stats64) - n * sizeof(u64));
8010 #endif
8011 }
8012 EXPORT_SYMBOL(netdev_stats_to_stats64);
8013 
8014 /**
8015  *	dev_get_stats	- get network device statistics
8016  *	@dev: device to get statistics from
8017  *	@storage: place to store stats
8018  *
8019  *	Get network statistics from device. Return @storage.
8020  *	The device driver may provide its own method by setting
8021  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8022  *	otherwise the internal statistics structure is used.
8023  */
8024 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8025 					struct rtnl_link_stats64 *storage)
8026 {
8027 	const struct net_device_ops *ops = dev->netdev_ops;
8028 
8029 	if (ops->ndo_get_stats64) {
8030 		memset(storage, 0, sizeof(*storage));
8031 		ops->ndo_get_stats64(dev, storage);
8032 	} else if (ops->ndo_get_stats) {
8033 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8034 	} else {
8035 		netdev_stats_to_stats64(storage, &dev->stats);
8036 	}
8037 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8038 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8039 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8040 	return storage;
8041 }
8042 EXPORT_SYMBOL(dev_get_stats);
8043 
8044 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8045 {
8046 	struct netdev_queue *queue = dev_ingress_queue(dev);
8047 
8048 #ifdef CONFIG_NET_CLS_ACT
8049 	if (queue)
8050 		return queue;
8051 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8052 	if (!queue)
8053 		return NULL;
8054 	netdev_init_one_queue(dev, queue, NULL);
8055 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8056 	queue->qdisc_sleeping = &noop_qdisc;
8057 	rcu_assign_pointer(dev->ingress_queue, queue);
8058 #endif
8059 	return queue;
8060 }
8061 
8062 static const struct ethtool_ops default_ethtool_ops;
8063 
8064 void netdev_set_default_ethtool_ops(struct net_device *dev,
8065 				    const struct ethtool_ops *ops)
8066 {
8067 	if (dev->ethtool_ops == &default_ethtool_ops)
8068 		dev->ethtool_ops = ops;
8069 }
8070 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8071 
8072 void netdev_freemem(struct net_device *dev)
8073 {
8074 	char *addr = (char *)dev - dev->padded;
8075 
8076 	kvfree(addr);
8077 }
8078 
8079 /**
8080  * alloc_netdev_mqs - allocate network device
8081  * @sizeof_priv: size of private data to allocate space for
8082  * @name: device name format string
8083  * @name_assign_type: origin of device name
8084  * @setup: callback to initialize device
8085  * @txqs: the number of TX subqueues to allocate
8086  * @rxqs: the number of RX subqueues to allocate
8087  *
8088  * Allocates a struct net_device with private data area for driver use
8089  * and performs basic initialization.  Also allocates subqueue structs
8090  * for each queue on the device.
8091  */
8092 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8093 		unsigned char name_assign_type,
8094 		void (*setup)(struct net_device *),
8095 		unsigned int txqs, unsigned int rxqs)
8096 {
8097 	struct net_device *dev;
8098 	unsigned int alloc_size;
8099 	struct net_device *p;
8100 
8101 	BUG_ON(strlen(name) >= sizeof(dev->name));
8102 
8103 	if (txqs < 1) {
8104 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8105 		return NULL;
8106 	}
8107 
8108 #ifdef CONFIG_SYSFS
8109 	if (rxqs < 1) {
8110 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8111 		return NULL;
8112 	}
8113 #endif
8114 
8115 	alloc_size = sizeof(struct net_device);
8116 	if (sizeof_priv) {
8117 		/* ensure 32-byte alignment of private area */
8118 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8119 		alloc_size += sizeof_priv;
8120 	}
8121 	/* ensure 32-byte alignment of whole construct */
8122 	alloc_size += NETDEV_ALIGN - 1;
8123 
8124 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8125 	if (!p)
8126 		return NULL;
8127 
8128 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
8129 	dev->padded = (char *)dev - (char *)p;
8130 
8131 	dev->pcpu_refcnt = alloc_percpu(int);
8132 	if (!dev->pcpu_refcnt)
8133 		goto free_dev;
8134 
8135 	if (dev_addr_init(dev))
8136 		goto free_pcpu;
8137 
8138 	dev_mc_init(dev);
8139 	dev_uc_init(dev);
8140 
8141 	dev_net_set(dev, &init_net);
8142 
8143 	dev->gso_max_size = GSO_MAX_SIZE;
8144 	dev->gso_max_segs = GSO_MAX_SEGS;
8145 
8146 	INIT_LIST_HEAD(&dev->napi_list);
8147 	INIT_LIST_HEAD(&dev->unreg_list);
8148 	INIT_LIST_HEAD(&dev->close_list);
8149 	INIT_LIST_HEAD(&dev->link_watch_list);
8150 	INIT_LIST_HEAD(&dev->adj_list.upper);
8151 	INIT_LIST_HEAD(&dev->adj_list.lower);
8152 	INIT_LIST_HEAD(&dev->ptype_all);
8153 	INIT_LIST_HEAD(&dev->ptype_specific);
8154 #ifdef CONFIG_NET_SCHED
8155 	hash_init(dev->qdisc_hash);
8156 #endif
8157 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8158 	setup(dev);
8159 
8160 	if (!dev->tx_queue_len) {
8161 		dev->priv_flags |= IFF_NO_QUEUE;
8162 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8163 	}
8164 
8165 	dev->num_tx_queues = txqs;
8166 	dev->real_num_tx_queues = txqs;
8167 	if (netif_alloc_netdev_queues(dev))
8168 		goto free_all;
8169 
8170 #ifdef CONFIG_SYSFS
8171 	dev->num_rx_queues = rxqs;
8172 	dev->real_num_rx_queues = rxqs;
8173 	if (netif_alloc_rx_queues(dev))
8174 		goto free_all;
8175 #endif
8176 
8177 	strcpy(dev->name, name);
8178 	dev->name_assign_type = name_assign_type;
8179 	dev->group = INIT_NETDEV_GROUP;
8180 	if (!dev->ethtool_ops)
8181 		dev->ethtool_ops = &default_ethtool_ops;
8182 
8183 	nf_hook_ingress_init(dev);
8184 
8185 	return dev;
8186 
8187 free_all:
8188 	free_netdev(dev);
8189 	return NULL;
8190 
8191 free_pcpu:
8192 	free_percpu(dev->pcpu_refcnt);
8193 free_dev:
8194 	netdev_freemem(dev);
8195 	return NULL;
8196 }
8197 EXPORT_SYMBOL(alloc_netdev_mqs);
8198 
8199 /**
8200  * free_netdev - free network device
8201  * @dev: device
8202  *
8203  * This function does the last stage of destroying an allocated device
8204  * interface. The reference to the device object is released. If this
8205  * is the last reference then it will be freed.Must be called in process
8206  * context.
8207  */
8208 void free_netdev(struct net_device *dev)
8209 {
8210 	struct napi_struct *p, *n;
8211 	struct bpf_prog *prog;
8212 
8213 	might_sleep();
8214 	netif_free_tx_queues(dev);
8215 #ifdef CONFIG_SYSFS
8216 	kvfree(dev->_rx);
8217 #endif
8218 
8219 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8220 
8221 	/* Flush device addresses */
8222 	dev_addr_flush(dev);
8223 
8224 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8225 		netif_napi_del(p);
8226 
8227 	free_percpu(dev->pcpu_refcnt);
8228 	dev->pcpu_refcnt = NULL;
8229 
8230 	prog = rcu_dereference_protected(dev->xdp_prog, 1);
8231 	if (prog) {
8232 		bpf_prog_put(prog);
8233 		static_key_slow_dec(&generic_xdp_needed);
8234 	}
8235 
8236 	/*  Compatibility with error handling in drivers */
8237 	if (dev->reg_state == NETREG_UNINITIALIZED) {
8238 		netdev_freemem(dev);
8239 		return;
8240 	}
8241 
8242 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8243 	dev->reg_state = NETREG_RELEASED;
8244 
8245 	/* will free via device release */
8246 	put_device(&dev->dev);
8247 }
8248 EXPORT_SYMBOL(free_netdev);
8249 
8250 /**
8251  *	synchronize_net -  Synchronize with packet receive processing
8252  *
8253  *	Wait for packets currently being received to be done.
8254  *	Does not block later packets from starting.
8255  */
8256 void synchronize_net(void)
8257 {
8258 	might_sleep();
8259 	if (rtnl_is_locked())
8260 		synchronize_rcu_expedited();
8261 	else
8262 		synchronize_rcu();
8263 }
8264 EXPORT_SYMBOL(synchronize_net);
8265 
8266 /**
8267  *	unregister_netdevice_queue - remove device from the kernel
8268  *	@dev: device
8269  *	@head: list
8270  *
8271  *	This function shuts down a device interface and removes it
8272  *	from the kernel tables.
8273  *	If head not NULL, device is queued to be unregistered later.
8274  *
8275  *	Callers must hold the rtnl semaphore.  You may want
8276  *	unregister_netdev() instead of this.
8277  */
8278 
8279 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8280 {
8281 	ASSERT_RTNL();
8282 
8283 	if (head) {
8284 		list_move_tail(&dev->unreg_list, head);
8285 	} else {
8286 		rollback_registered(dev);
8287 		/* Finish processing unregister after unlock */
8288 		net_set_todo(dev);
8289 	}
8290 }
8291 EXPORT_SYMBOL(unregister_netdevice_queue);
8292 
8293 /**
8294  *	unregister_netdevice_many - unregister many devices
8295  *	@head: list of devices
8296  *
8297  *  Note: As most callers use a stack allocated list_head,
8298  *  we force a list_del() to make sure stack wont be corrupted later.
8299  */
8300 void unregister_netdevice_many(struct list_head *head)
8301 {
8302 	struct net_device *dev;
8303 
8304 	if (!list_empty(head)) {
8305 		rollback_registered_many(head);
8306 		list_for_each_entry(dev, head, unreg_list)
8307 			net_set_todo(dev);
8308 		list_del(head);
8309 	}
8310 }
8311 EXPORT_SYMBOL(unregister_netdevice_many);
8312 
8313 /**
8314  *	unregister_netdev - remove device from the kernel
8315  *	@dev: device
8316  *
8317  *	This function shuts down a device interface and removes it
8318  *	from the kernel tables.
8319  *
8320  *	This is just a wrapper for unregister_netdevice that takes
8321  *	the rtnl semaphore.  In general you want to use this and not
8322  *	unregister_netdevice.
8323  */
8324 void unregister_netdev(struct net_device *dev)
8325 {
8326 	rtnl_lock();
8327 	unregister_netdevice(dev);
8328 	rtnl_unlock();
8329 }
8330 EXPORT_SYMBOL(unregister_netdev);
8331 
8332 /**
8333  *	dev_change_net_namespace - move device to different nethost namespace
8334  *	@dev: device
8335  *	@net: network namespace
8336  *	@pat: If not NULL name pattern to try if the current device name
8337  *	      is already taken in the destination network namespace.
8338  *
8339  *	This function shuts down a device interface and moves it
8340  *	to a new network namespace. On success 0 is returned, on
8341  *	a failure a netagive errno code is returned.
8342  *
8343  *	Callers must hold the rtnl semaphore.
8344  */
8345 
8346 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8347 {
8348 	int err, new_nsid;
8349 
8350 	ASSERT_RTNL();
8351 
8352 	/* Don't allow namespace local devices to be moved. */
8353 	err = -EINVAL;
8354 	if (dev->features & NETIF_F_NETNS_LOCAL)
8355 		goto out;
8356 
8357 	/* Ensure the device has been registrered */
8358 	if (dev->reg_state != NETREG_REGISTERED)
8359 		goto out;
8360 
8361 	/* Get out if there is nothing todo */
8362 	err = 0;
8363 	if (net_eq(dev_net(dev), net))
8364 		goto out;
8365 
8366 	/* Pick the destination device name, and ensure
8367 	 * we can use it in the destination network namespace.
8368 	 */
8369 	err = -EEXIST;
8370 	if (__dev_get_by_name(net, dev->name)) {
8371 		/* We get here if we can't use the current device name */
8372 		if (!pat)
8373 			goto out;
8374 		if (dev_get_valid_name(net, dev, pat) < 0)
8375 			goto out;
8376 	}
8377 
8378 	/*
8379 	 * And now a mini version of register_netdevice unregister_netdevice.
8380 	 */
8381 
8382 	/* If device is running close it first. */
8383 	dev_close(dev);
8384 
8385 	/* And unlink it from device chain */
8386 	err = -ENODEV;
8387 	unlist_netdevice(dev);
8388 
8389 	synchronize_net();
8390 
8391 	/* Shutdown queueing discipline. */
8392 	dev_shutdown(dev);
8393 
8394 	/* Notify protocols, that we are about to destroy
8395 	 * this device. They should clean all the things.
8396 	 *
8397 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
8398 	 * This is wanted because this way 8021q and macvlan know
8399 	 * the device is just moving and can keep their slaves up.
8400 	 */
8401 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8402 	rcu_barrier();
8403 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8404 	if (dev->rtnl_link_ops && dev->rtnl_link_ops->get_link_net)
8405 		new_nsid = peernet2id_alloc(dev_net(dev), net);
8406 	else
8407 		new_nsid = peernet2id(dev_net(dev), net);
8408 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid);
8409 
8410 	/*
8411 	 *	Flush the unicast and multicast chains
8412 	 */
8413 	dev_uc_flush(dev);
8414 	dev_mc_flush(dev);
8415 
8416 	/* Send a netdev-removed uevent to the old namespace */
8417 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8418 	netdev_adjacent_del_links(dev);
8419 
8420 	/* Actually switch the network namespace */
8421 	dev_net_set(dev, net);
8422 
8423 	/* If there is an ifindex conflict assign a new one */
8424 	if (__dev_get_by_index(net, dev->ifindex))
8425 		dev->ifindex = dev_new_index(net);
8426 
8427 	/* Send a netdev-add uevent to the new namespace */
8428 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8429 	netdev_adjacent_add_links(dev);
8430 
8431 	/* Fixup kobjects */
8432 	err = device_rename(&dev->dev, dev->name);
8433 	WARN_ON(err);
8434 
8435 	/* Add the device back in the hashes */
8436 	list_netdevice(dev);
8437 
8438 	/* Notify protocols, that a new device appeared. */
8439 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
8440 
8441 	/*
8442 	 *	Prevent userspace races by waiting until the network
8443 	 *	device is fully setup before sending notifications.
8444 	 */
8445 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8446 
8447 	synchronize_net();
8448 	err = 0;
8449 out:
8450 	return err;
8451 }
8452 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8453 
8454 static int dev_cpu_dead(unsigned int oldcpu)
8455 {
8456 	struct sk_buff **list_skb;
8457 	struct sk_buff *skb;
8458 	unsigned int cpu;
8459 	struct softnet_data *sd, *oldsd, *remsd = NULL;
8460 
8461 	local_irq_disable();
8462 	cpu = smp_processor_id();
8463 	sd = &per_cpu(softnet_data, cpu);
8464 	oldsd = &per_cpu(softnet_data, oldcpu);
8465 
8466 	/* Find end of our completion_queue. */
8467 	list_skb = &sd->completion_queue;
8468 	while (*list_skb)
8469 		list_skb = &(*list_skb)->next;
8470 	/* Append completion queue from offline CPU. */
8471 	*list_skb = oldsd->completion_queue;
8472 	oldsd->completion_queue = NULL;
8473 
8474 	/* Append output queue from offline CPU. */
8475 	if (oldsd->output_queue) {
8476 		*sd->output_queue_tailp = oldsd->output_queue;
8477 		sd->output_queue_tailp = oldsd->output_queue_tailp;
8478 		oldsd->output_queue = NULL;
8479 		oldsd->output_queue_tailp = &oldsd->output_queue;
8480 	}
8481 	/* Append NAPI poll list from offline CPU, with one exception :
8482 	 * process_backlog() must be called by cpu owning percpu backlog.
8483 	 * We properly handle process_queue & input_pkt_queue later.
8484 	 */
8485 	while (!list_empty(&oldsd->poll_list)) {
8486 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8487 							    struct napi_struct,
8488 							    poll_list);
8489 
8490 		list_del_init(&napi->poll_list);
8491 		if (napi->poll == process_backlog)
8492 			napi->state = 0;
8493 		else
8494 			____napi_schedule(sd, napi);
8495 	}
8496 
8497 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
8498 	local_irq_enable();
8499 
8500 #ifdef CONFIG_RPS
8501 	remsd = oldsd->rps_ipi_list;
8502 	oldsd->rps_ipi_list = NULL;
8503 #endif
8504 	/* send out pending IPI's on offline CPU */
8505 	net_rps_send_ipi(remsd);
8506 
8507 	/* Process offline CPU's input_pkt_queue */
8508 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8509 		netif_rx_ni(skb);
8510 		input_queue_head_incr(oldsd);
8511 	}
8512 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8513 		netif_rx_ni(skb);
8514 		input_queue_head_incr(oldsd);
8515 	}
8516 
8517 	return 0;
8518 }
8519 
8520 /**
8521  *	netdev_increment_features - increment feature set by one
8522  *	@all: current feature set
8523  *	@one: new feature set
8524  *	@mask: mask feature set
8525  *
8526  *	Computes a new feature set after adding a device with feature set
8527  *	@one to the master device with current feature set @all.  Will not
8528  *	enable anything that is off in @mask. Returns the new feature set.
8529  */
8530 netdev_features_t netdev_increment_features(netdev_features_t all,
8531 	netdev_features_t one, netdev_features_t mask)
8532 {
8533 	if (mask & NETIF_F_HW_CSUM)
8534 		mask |= NETIF_F_CSUM_MASK;
8535 	mask |= NETIF_F_VLAN_CHALLENGED;
8536 
8537 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8538 	all &= one | ~NETIF_F_ALL_FOR_ALL;
8539 
8540 	/* If one device supports hw checksumming, set for all. */
8541 	if (all & NETIF_F_HW_CSUM)
8542 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8543 
8544 	return all;
8545 }
8546 EXPORT_SYMBOL(netdev_increment_features);
8547 
8548 static struct hlist_head * __net_init netdev_create_hash(void)
8549 {
8550 	int i;
8551 	struct hlist_head *hash;
8552 
8553 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8554 	if (hash != NULL)
8555 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
8556 			INIT_HLIST_HEAD(&hash[i]);
8557 
8558 	return hash;
8559 }
8560 
8561 /* Initialize per network namespace state */
8562 static int __net_init netdev_init(struct net *net)
8563 {
8564 	if (net != &init_net)
8565 		INIT_LIST_HEAD(&net->dev_base_head);
8566 
8567 	net->dev_name_head = netdev_create_hash();
8568 	if (net->dev_name_head == NULL)
8569 		goto err_name;
8570 
8571 	net->dev_index_head = netdev_create_hash();
8572 	if (net->dev_index_head == NULL)
8573 		goto err_idx;
8574 
8575 	return 0;
8576 
8577 err_idx:
8578 	kfree(net->dev_name_head);
8579 err_name:
8580 	return -ENOMEM;
8581 }
8582 
8583 /**
8584  *	netdev_drivername - network driver for the device
8585  *	@dev: network device
8586  *
8587  *	Determine network driver for device.
8588  */
8589 const char *netdev_drivername(const struct net_device *dev)
8590 {
8591 	const struct device_driver *driver;
8592 	const struct device *parent;
8593 	const char *empty = "";
8594 
8595 	parent = dev->dev.parent;
8596 	if (!parent)
8597 		return empty;
8598 
8599 	driver = parent->driver;
8600 	if (driver && driver->name)
8601 		return driver->name;
8602 	return empty;
8603 }
8604 
8605 static void __netdev_printk(const char *level, const struct net_device *dev,
8606 			    struct va_format *vaf)
8607 {
8608 	if (dev && dev->dev.parent) {
8609 		dev_printk_emit(level[1] - '0',
8610 				dev->dev.parent,
8611 				"%s %s %s%s: %pV",
8612 				dev_driver_string(dev->dev.parent),
8613 				dev_name(dev->dev.parent),
8614 				netdev_name(dev), netdev_reg_state(dev),
8615 				vaf);
8616 	} else if (dev) {
8617 		printk("%s%s%s: %pV",
8618 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
8619 	} else {
8620 		printk("%s(NULL net_device): %pV", level, vaf);
8621 	}
8622 }
8623 
8624 void netdev_printk(const char *level, const struct net_device *dev,
8625 		   const char *format, ...)
8626 {
8627 	struct va_format vaf;
8628 	va_list args;
8629 
8630 	va_start(args, format);
8631 
8632 	vaf.fmt = format;
8633 	vaf.va = &args;
8634 
8635 	__netdev_printk(level, dev, &vaf);
8636 
8637 	va_end(args);
8638 }
8639 EXPORT_SYMBOL(netdev_printk);
8640 
8641 #define define_netdev_printk_level(func, level)			\
8642 void func(const struct net_device *dev, const char *fmt, ...)	\
8643 {								\
8644 	struct va_format vaf;					\
8645 	va_list args;						\
8646 								\
8647 	va_start(args, fmt);					\
8648 								\
8649 	vaf.fmt = fmt;						\
8650 	vaf.va = &args;						\
8651 								\
8652 	__netdev_printk(level, dev, &vaf);			\
8653 								\
8654 	va_end(args);						\
8655 }								\
8656 EXPORT_SYMBOL(func);
8657 
8658 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8659 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8660 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8661 define_netdev_printk_level(netdev_err, KERN_ERR);
8662 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8663 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8664 define_netdev_printk_level(netdev_info, KERN_INFO);
8665 
8666 static void __net_exit netdev_exit(struct net *net)
8667 {
8668 	kfree(net->dev_name_head);
8669 	kfree(net->dev_index_head);
8670 }
8671 
8672 static struct pernet_operations __net_initdata netdev_net_ops = {
8673 	.init = netdev_init,
8674 	.exit = netdev_exit,
8675 };
8676 
8677 static void __net_exit default_device_exit(struct net *net)
8678 {
8679 	struct net_device *dev, *aux;
8680 	/*
8681 	 * Push all migratable network devices back to the
8682 	 * initial network namespace
8683 	 */
8684 	rtnl_lock();
8685 	for_each_netdev_safe(net, dev, aux) {
8686 		int err;
8687 		char fb_name[IFNAMSIZ];
8688 
8689 		/* Ignore unmoveable devices (i.e. loopback) */
8690 		if (dev->features & NETIF_F_NETNS_LOCAL)
8691 			continue;
8692 
8693 		/* Leave virtual devices for the generic cleanup */
8694 		if (dev->rtnl_link_ops)
8695 			continue;
8696 
8697 		/* Push remaining network devices to init_net */
8698 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8699 		err = dev_change_net_namespace(dev, &init_net, fb_name);
8700 		if (err) {
8701 			pr_emerg("%s: failed to move %s to init_net: %d\n",
8702 				 __func__, dev->name, err);
8703 			BUG();
8704 		}
8705 	}
8706 	rtnl_unlock();
8707 }
8708 
8709 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8710 {
8711 	/* Return with the rtnl_lock held when there are no network
8712 	 * devices unregistering in any network namespace in net_list.
8713 	 */
8714 	struct net *net;
8715 	bool unregistering;
8716 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
8717 
8718 	add_wait_queue(&netdev_unregistering_wq, &wait);
8719 	for (;;) {
8720 		unregistering = false;
8721 		rtnl_lock();
8722 		list_for_each_entry(net, net_list, exit_list) {
8723 			if (net->dev_unreg_count > 0) {
8724 				unregistering = true;
8725 				break;
8726 			}
8727 		}
8728 		if (!unregistering)
8729 			break;
8730 		__rtnl_unlock();
8731 
8732 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8733 	}
8734 	remove_wait_queue(&netdev_unregistering_wq, &wait);
8735 }
8736 
8737 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8738 {
8739 	/* At exit all network devices most be removed from a network
8740 	 * namespace.  Do this in the reverse order of registration.
8741 	 * Do this across as many network namespaces as possible to
8742 	 * improve batching efficiency.
8743 	 */
8744 	struct net_device *dev;
8745 	struct net *net;
8746 	LIST_HEAD(dev_kill_list);
8747 
8748 	/* To prevent network device cleanup code from dereferencing
8749 	 * loopback devices or network devices that have been freed
8750 	 * wait here for all pending unregistrations to complete,
8751 	 * before unregistring the loopback device and allowing the
8752 	 * network namespace be freed.
8753 	 *
8754 	 * The netdev todo list containing all network devices
8755 	 * unregistrations that happen in default_device_exit_batch
8756 	 * will run in the rtnl_unlock() at the end of
8757 	 * default_device_exit_batch.
8758 	 */
8759 	rtnl_lock_unregistering(net_list);
8760 	list_for_each_entry(net, net_list, exit_list) {
8761 		for_each_netdev_reverse(net, dev) {
8762 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8763 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8764 			else
8765 				unregister_netdevice_queue(dev, &dev_kill_list);
8766 		}
8767 	}
8768 	unregister_netdevice_many(&dev_kill_list);
8769 	rtnl_unlock();
8770 }
8771 
8772 static struct pernet_operations __net_initdata default_device_ops = {
8773 	.exit = default_device_exit,
8774 	.exit_batch = default_device_exit_batch,
8775 };
8776 
8777 /*
8778  *	Initialize the DEV module. At boot time this walks the device list and
8779  *	unhooks any devices that fail to initialise (normally hardware not
8780  *	present) and leaves us with a valid list of present and active devices.
8781  *
8782  */
8783 
8784 /*
8785  *       This is called single threaded during boot, so no need
8786  *       to take the rtnl semaphore.
8787  */
8788 static int __init net_dev_init(void)
8789 {
8790 	int i, rc = -ENOMEM;
8791 
8792 	BUG_ON(!dev_boot_phase);
8793 
8794 	if (dev_proc_init())
8795 		goto out;
8796 
8797 	if (netdev_kobject_init())
8798 		goto out;
8799 
8800 	INIT_LIST_HEAD(&ptype_all);
8801 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
8802 		INIT_LIST_HEAD(&ptype_base[i]);
8803 
8804 	INIT_LIST_HEAD(&offload_base);
8805 
8806 	if (register_pernet_subsys(&netdev_net_ops))
8807 		goto out;
8808 
8809 	/*
8810 	 *	Initialise the packet receive queues.
8811 	 */
8812 
8813 	for_each_possible_cpu(i) {
8814 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8815 		struct softnet_data *sd = &per_cpu(softnet_data, i);
8816 
8817 		INIT_WORK(flush, flush_backlog);
8818 
8819 		skb_queue_head_init(&sd->input_pkt_queue);
8820 		skb_queue_head_init(&sd->process_queue);
8821 		INIT_LIST_HEAD(&sd->poll_list);
8822 		sd->output_queue_tailp = &sd->output_queue;
8823 #ifdef CONFIG_RPS
8824 		sd->csd.func = rps_trigger_softirq;
8825 		sd->csd.info = sd;
8826 		sd->cpu = i;
8827 #endif
8828 
8829 		sd->backlog.poll = process_backlog;
8830 		sd->backlog.weight = weight_p;
8831 	}
8832 
8833 	dev_boot_phase = 0;
8834 
8835 	/* The loopback device is special if any other network devices
8836 	 * is present in a network namespace the loopback device must
8837 	 * be present. Since we now dynamically allocate and free the
8838 	 * loopback device ensure this invariant is maintained by
8839 	 * keeping the loopback device as the first device on the
8840 	 * list of network devices.  Ensuring the loopback devices
8841 	 * is the first device that appears and the last network device
8842 	 * that disappears.
8843 	 */
8844 	if (register_pernet_device(&loopback_net_ops))
8845 		goto out;
8846 
8847 	if (register_pernet_device(&default_device_ops))
8848 		goto out;
8849 
8850 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8851 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8852 
8853 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8854 				       NULL, dev_cpu_dead);
8855 	WARN_ON(rc < 0);
8856 	rc = 0;
8857 out:
8858 	return rc;
8859 }
8860 
8861 subsys_initcall(net_dev_init);
8862