xref: /openbmc/linux/net/core/dev.c (revision 2d594783)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <net/tcx.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <trace/events/qdisc.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_netdev.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
149 #include <linux/indirect_call_wrapper.h>
150 #include <net/devlink.h>
151 #include <linux/pm_runtime.h>
152 #include <linux/prandom.h>
153 #include <linux/once_lite.h>
154 
155 #include "dev.h"
156 #include "net-sysfs.h"
157 
158 static DEFINE_SPINLOCK(ptype_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;	/* Taps */
161 
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_extack(unsigned long val,
164 					   struct net_device *dev,
165 					   struct netlink_ext_ack *extack);
166 static struct napi_struct *napi_by_id(unsigned int napi_id);
167 
168 /*
169  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
170  * semaphore.
171  *
172  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
173  *
174  * Writers must hold the rtnl semaphore while they loop through the
175  * dev_base_head list, and hold dev_base_lock for writing when they do the
176  * actual updates.  This allows pure readers to access the list even
177  * while a writer is preparing to update it.
178  *
179  * To put it another way, dev_base_lock is held for writing only to
180  * protect against pure readers; the rtnl semaphore provides the
181  * protection against other writers.
182  *
183  * See, for example usages, register_netdevice() and
184  * unregister_netdevice(), which must be called with the rtnl
185  * semaphore held.
186  */
187 DEFINE_RWLOCK(dev_base_lock);
188 EXPORT_SYMBOL(dev_base_lock);
189 
190 static DEFINE_MUTEX(ifalias_mutex);
191 
192 /* protects napi_hash addition/deletion and napi_gen_id */
193 static DEFINE_SPINLOCK(napi_hash_lock);
194 
195 static unsigned int napi_gen_id = NR_CPUS;
196 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
197 
198 static DECLARE_RWSEM(devnet_rename_sem);
199 
200 static inline void dev_base_seq_inc(struct net *net)
201 {
202 	while (++net->dev_base_seq == 0)
203 		;
204 }
205 
206 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
207 {
208 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
209 
210 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
211 }
212 
213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214 {
215 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
216 }
217 
218 static inline void rps_lock_irqsave(struct softnet_data *sd,
219 				    unsigned long *flags)
220 {
221 	if (IS_ENABLED(CONFIG_RPS))
222 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
223 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
224 		local_irq_save(*flags);
225 }
226 
227 static inline void rps_lock_irq_disable(struct softnet_data *sd)
228 {
229 	if (IS_ENABLED(CONFIG_RPS))
230 		spin_lock_irq(&sd->input_pkt_queue.lock);
231 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
232 		local_irq_disable();
233 }
234 
235 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
236 					  unsigned long *flags)
237 {
238 	if (IS_ENABLED(CONFIG_RPS))
239 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
240 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
241 		local_irq_restore(*flags);
242 }
243 
244 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
245 {
246 	if (IS_ENABLED(CONFIG_RPS))
247 		spin_unlock_irq(&sd->input_pkt_queue.lock);
248 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
249 		local_irq_enable();
250 }
251 
252 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
253 						       const char *name)
254 {
255 	struct netdev_name_node *name_node;
256 
257 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
258 	if (!name_node)
259 		return NULL;
260 	INIT_HLIST_NODE(&name_node->hlist);
261 	name_node->dev = dev;
262 	name_node->name = name;
263 	return name_node;
264 }
265 
266 static struct netdev_name_node *
267 netdev_name_node_head_alloc(struct net_device *dev)
268 {
269 	struct netdev_name_node *name_node;
270 
271 	name_node = netdev_name_node_alloc(dev, dev->name);
272 	if (!name_node)
273 		return NULL;
274 	INIT_LIST_HEAD(&name_node->list);
275 	return name_node;
276 }
277 
278 static void netdev_name_node_free(struct netdev_name_node *name_node)
279 {
280 	kfree(name_node);
281 }
282 
283 static void netdev_name_node_add(struct net *net,
284 				 struct netdev_name_node *name_node)
285 {
286 	hlist_add_head_rcu(&name_node->hlist,
287 			   dev_name_hash(net, name_node->name));
288 }
289 
290 static void netdev_name_node_del(struct netdev_name_node *name_node)
291 {
292 	hlist_del_rcu(&name_node->hlist);
293 }
294 
295 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
296 							const char *name)
297 {
298 	struct hlist_head *head = dev_name_hash(net, name);
299 	struct netdev_name_node *name_node;
300 
301 	hlist_for_each_entry(name_node, head, hlist)
302 		if (!strcmp(name_node->name, name))
303 			return name_node;
304 	return NULL;
305 }
306 
307 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
308 							    const char *name)
309 {
310 	struct hlist_head *head = dev_name_hash(net, name);
311 	struct netdev_name_node *name_node;
312 
313 	hlist_for_each_entry_rcu(name_node, head, hlist)
314 		if (!strcmp(name_node->name, name))
315 			return name_node;
316 	return NULL;
317 }
318 
319 bool netdev_name_in_use(struct net *net, const char *name)
320 {
321 	return netdev_name_node_lookup(net, name);
322 }
323 EXPORT_SYMBOL(netdev_name_in_use);
324 
325 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
326 {
327 	struct netdev_name_node *name_node;
328 	struct net *net = dev_net(dev);
329 
330 	name_node = netdev_name_node_lookup(net, name);
331 	if (name_node)
332 		return -EEXIST;
333 	name_node = netdev_name_node_alloc(dev, name);
334 	if (!name_node)
335 		return -ENOMEM;
336 	netdev_name_node_add(net, name_node);
337 	/* The node that holds dev->name acts as a head of per-device list. */
338 	list_add_tail(&name_node->list, &dev->name_node->list);
339 
340 	return 0;
341 }
342 
343 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
344 {
345 	list_del(&name_node->list);
346 	netdev_name_node_del(name_node);
347 	kfree(name_node->name);
348 	netdev_name_node_free(name_node);
349 }
350 
351 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
352 {
353 	struct netdev_name_node *name_node;
354 	struct net *net = dev_net(dev);
355 
356 	name_node = netdev_name_node_lookup(net, name);
357 	if (!name_node)
358 		return -ENOENT;
359 	/* lookup might have found our primary name or a name belonging
360 	 * to another device.
361 	 */
362 	if (name_node == dev->name_node || name_node->dev != dev)
363 		return -EINVAL;
364 
365 	__netdev_name_node_alt_destroy(name_node);
366 
367 	return 0;
368 }
369 
370 static void netdev_name_node_alt_flush(struct net_device *dev)
371 {
372 	struct netdev_name_node *name_node, *tmp;
373 
374 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
375 		__netdev_name_node_alt_destroy(name_node);
376 }
377 
378 /* Device list insertion */
379 static void list_netdevice(struct net_device *dev)
380 {
381 	struct net *net = dev_net(dev);
382 
383 	ASSERT_RTNL();
384 
385 	write_lock(&dev_base_lock);
386 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
387 	netdev_name_node_add(net, dev->name_node);
388 	hlist_add_head_rcu(&dev->index_hlist,
389 			   dev_index_hash(net, dev->ifindex));
390 	write_unlock(&dev_base_lock);
391 
392 	dev_base_seq_inc(net);
393 }
394 
395 /* Device list removal
396  * caller must respect a RCU grace period before freeing/reusing dev
397  */
398 static void unlist_netdevice(struct net_device *dev, bool lock)
399 {
400 	ASSERT_RTNL();
401 
402 	/* Unlink dev from the device chain */
403 	if (lock)
404 		write_lock(&dev_base_lock);
405 	list_del_rcu(&dev->dev_list);
406 	netdev_name_node_del(dev->name_node);
407 	hlist_del_rcu(&dev->index_hlist);
408 	if (lock)
409 		write_unlock(&dev_base_lock);
410 
411 	dev_base_seq_inc(dev_net(dev));
412 }
413 
414 /*
415  *	Our notifier list
416  */
417 
418 static RAW_NOTIFIER_HEAD(netdev_chain);
419 
420 /*
421  *	Device drivers call our routines to queue packets here. We empty the
422  *	queue in the local softnet handler.
423  */
424 
425 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
426 EXPORT_PER_CPU_SYMBOL(softnet_data);
427 
428 #ifdef CONFIG_LOCKDEP
429 /*
430  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
431  * according to dev->type
432  */
433 static const unsigned short netdev_lock_type[] = {
434 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
435 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
436 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
437 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
438 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
439 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
440 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
441 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
442 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
443 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
444 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
445 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
446 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
447 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
448 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
449 
450 static const char *const netdev_lock_name[] = {
451 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
452 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
453 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
454 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
455 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
456 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
457 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
458 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
459 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
460 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
461 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
462 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
463 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
464 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
465 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
466 
467 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
468 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
469 
470 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
471 {
472 	int i;
473 
474 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
475 		if (netdev_lock_type[i] == dev_type)
476 			return i;
477 	/* the last key is used by default */
478 	return ARRAY_SIZE(netdev_lock_type) - 1;
479 }
480 
481 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
482 						 unsigned short dev_type)
483 {
484 	int i;
485 
486 	i = netdev_lock_pos(dev_type);
487 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
488 				   netdev_lock_name[i]);
489 }
490 
491 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
492 {
493 	int i;
494 
495 	i = netdev_lock_pos(dev->type);
496 	lockdep_set_class_and_name(&dev->addr_list_lock,
497 				   &netdev_addr_lock_key[i],
498 				   netdev_lock_name[i]);
499 }
500 #else
501 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
502 						 unsigned short dev_type)
503 {
504 }
505 
506 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
507 {
508 }
509 #endif
510 
511 /*******************************************************************************
512  *
513  *		Protocol management and registration routines
514  *
515  *******************************************************************************/
516 
517 
518 /*
519  *	Add a protocol ID to the list. Now that the input handler is
520  *	smarter we can dispense with all the messy stuff that used to be
521  *	here.
522  *
523  *	BEWARE!!! Protocol handlers, mangling input packets,
524  *	MUST BE last in hash buckets and checking protocol handlers
525  *	MUST start from promiscuous ptype_all chain in net_bh.
526  *	It is true now, do not change it.
527  *	Explanation follows: if protocol handler, mangling packet, will
528  *	be the first on list, it is not able to sense, that packet
529  *	is cloned and should be copied-on-write, so that it will
530  *	change it and subsequent readers will get broken packet.
531  *							--ANK (980803)
532  */
533 
534 static inline struct list_head *ptype_head(const struct packet_type *pt)
535 {
536 	if (pt->type == htons(ETH_P_ALL))
537 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
538 	else
539 		return pt->dev ? &pt->dev->ptype_specific :
540 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
541 }
542 
543 /**
544  *	dev_add_pack - add packet handler
545  *	@pt: packet type declaration
546  *
547  *	Add a protocol handler to the networking stack. The passed &packet_type
548  *	is linked into kernel lists and may not be freed until it has been
549  *	removed from the kernel lists.
550  *
551  *	This call does not sleep therefore it can not
552  *	guarantee all CPU's that are in middle of receiving packets
553  *	will see the new packet type (until the next received packet).
554  */
555 
556 void dev_add_pack(struct packet_type *pt)
557 {
558 	struct list_head *head = ptype_head(pt);
559 
560 	spin_lock(&ptype_lock);
561 	list_add_rcu(&pt->list, head);
562 	spin_unlock(&ptype_lock);
563 }
564 EXPORT_SYMBOL(dev_add_pack);
565 
566 /**
567  *	__dev_remove_pack	 - remove packet handler
568  *	@pt: packet type declaration
569  *
570  *	Remove a protocol handler that was previously added to the kernel
571  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
572  *	from the kernel lists and can be freed or reused once this function
573  *	returns.
574  *
575  *      The packet type might still be in use by receivers
576  *	and must not be freed until after all the CPU's have gone
577  *	through a quiescent state.
578  */
579 void __dev_remove_pack(struct packet_type *pt)
580 {
581 	struct list_head *head = ptype_head(pt);
582 	struct packet_type *pt1;
583 
584 	spin_lock(&ptype_lock);
585 
586 	list_for_each_entry(pt1, head, list) {
587 		if (pt == pt1) {
588 			list_del_rcu(&pt->list);
589 			goto out;
590 		}
591 	}
592 
593 	pr_warn("dev_remove_pack: %p not found\n", pt);
594 out:
595 	spin_unlock(&ptype_lock);
596 }
597 EXPORT_SYMBOL(__dev_remove_pack);
598 
599 /**
600  *	dev_remove_pack	 - remove packet handler
601  *	@pt: packet type declaration
602  *
603  *	Remove a protocol handler that was previously added to the kernel
604  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
605  *	from the kernel lists and can be freed or reused once this function
606  *	returns.
607  *
608  *	This call sleeps to guarantee that no CPU is looking at the packet
609  *	type after return.
610  */
611 void dev_remove_pack(struct packet_type *pt)
612 {
613 	__dev_remove_pack(pt);
614 
615 	synchronize_net();
616 }
617 EXPORT_SYMBOL(dev_remove_pack);
618 
619 
620 /*******************************************************************************
621  *
622  *			    Device Interface Subroutines
623  *
624  *******************************************************************************/
625 
626 /**
627  *	dev_get_iflink	- get 'iflink' value of a interface
628  *	@dev: targeted interface
629  *
630  *	Indicates the ifindex the interface is linked to.
631  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
632  */
633 
634 int dev_get_iflink(const struct net_device *dev)
635 {
636 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
637 		return dev->netdev_ops->ndo_get_iflink(dev);
638 
639 	return dev->ifindex;
640 }
641 EXPORT_SYMBOL(dev_get_iflink);
642 
643 /**
644  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
645  *	@dev: targeted interface
646  *	@skb: The packet.
647  *
648  *	For better visibility of tunnel traffic OVS needs to retrieve
649  *	egress tunnel information for a packet. Following API allows
650  *	user to get this info.
651  */
652 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
653 {
654 	struct ip_tunnel_info *info;
655 
656 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
657 		return -EINVAL;
658 
659 	info = skb_tunnel_info_unclone(skb);
660 	if (!info)
661 		return -ENOMEM;
662 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
663 		return -EINVAL;
664 
665 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
666 }
667 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
668 
669 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
670 {
671 	int k = stack->num_paths++;
672 
673 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
674 		return NULL;
675 
676 	return &stack->path[k];
677 }
678 
679 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
680 			  struct net_device_path_stack *stack)
681 {
682 	const struct net_device *last_dev;
683 	struct net_device_path_ctx ctx = {
684 		.dev	= dev,
685 	};
686 	struct net_device_path *path;
687 	int ret = 0;
688 
689 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
690 	stack->num_paths = 0;
691 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
692 		last_dev = ctx.dev;
693 		path = dev_fwd_path(stack);
694 		if (!path)
695 			return -1;
696 
697 		memset(path, 0, sizeof(struct net_device_path));
698 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
699 		if (ret < 0)
700 			return -1;
701 
702 		if (WARN_ON_ONCE(last_dev == ctx.dev))
703 			return -1;
704 	}
705 
706 	if (!ctx.dev)
707 		return ret;
708 
709 	path = dev_fwd_path(stack);
710 	if (!path)
711 		return -1;
712 	path->type = DEV_PATH_ETHERNET;
713 	path->dev = ctx.dev;
714 
715 	return ret;
716 }
717 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
718 
719 /**
720  *	__dev_get_by_name	- find a device by its name
721  *	@net: the applicable net namespace
722  *	@name: name to find
723  *
724  *	Find an interface by name. Must be called under RTNL semaphore
725  *	or @dev_base_lock. If the name is found a pointer to the device
726  *	is returned. If the name is not found then %NULL is returned. The
727  *	reference counters are not incremented so the caller must be
728  *	careful with locks.
729  */
730 
731 struct net_device *__dev_get_by_name(struct net *net, const char *name)
732 {
733 	struct netdev_name_node *node_name;
734 
735 	node_name = netdev_name_node_lookup(net, name);
736 	return node_name ? node_name->dev : NULL;
737 }
738 EXPORT_SYMBOL(__dev_get_by_name);
739 
740 /**
741  * dev_get_by_name_rcu	- find a device by its name
742  * @net: the applicable net namespace
743  * @name: name to find
744  *
745  * Find an interface by name.
746  * If the name is found a pointer to the device is returned.
747  * If the name is not found then %NULL is returned.
748  * The reference counters are not incremented so the caller must be
749  * careful with locks. The caller must hold RCU lock.
750  */
751 
752 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
753 {
754 	struct netdev_name_node *node_name;
755 
756 	node_name = netdev_name_node_lookup_rcu(net, name);
757 	return node_name ? node_name->dev : NULL;
758 }
759 EXPORT_SYMBOL(dev_get_by_name_rcu);
760 
761 /* Deprecated for new users, call netdev_get_by_name() instead */
762 struct net_device *dev_get_by_name(struct net *net, const char *name)
763 {
764 	struct net_device *dev;
765 
766 	rcu_read_lock();
767 	dev = dev_get_by_name_rcu(net, name);
768 	dev_hold(dev);
769 	rcu_read_unlock();
770 	return dev;
771 }
772 EXPORT_SYMBOL(dev_get_by_name);
773 
774 /**
775  *	netdev_get_by_name() - find a device by its name
776  *	@net: the applicable net namespace
777  *	@name: name to find
778  *	@tracker: tracking object for the acquired reference
779  *	@gfp: allocation flags for the tracker
780  *
781  *	Find an interface by name. This can be called from any
782  *	context and does its own locking. The returned handle has
783  *	the usage count incremented and the caller must use netdev_put() to
784  *	release it when it is no longer needed. %NULL is returned if no
785  *	matching device is found.
786  */
787 struct net_device *netdev_get_by_name(struct net *net, const char *name,
788 				      netdevice_tracker *tracker, gfp_t gfp)
789 {
790 	struct net_device *dev;
791 
792 	dev = dev_get_by_name(net, name);
793 	if (dev)
794 		netdev_tracker_alloc(dev, tracker, gfp);
795 	return dev;
796 }
797 EXPORT_SYMBOL(netdev_get_by_name);
798 
799 /**
800  *	__dev_get_by_index - find a device by its ifindex
801  *	@net: the applicable net namespace
802  *	@ifindex: index of device
803  *
804  *	Search for an interface by index. Returns %NULL if the device
805  *	is not found or a pointer to the device. The device has not
806  *	had its reference counter increased so the caller must be careful
807  *	about locking. The caller must hold either the RTNL semaphore
808  *	or @dev_base_lock.
809  */
810 
811 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
812 {
813 	struct net_device *dev;
814 	struct hlist_head *head = dev_index_hash(net, ifindex);
815 
816 	hlist_for_each_entry(dev, head, index_hlist)
817 		if (dev->ifindex == ifindex)
818 			return dev;
819 
820 	return NULL;
821 }
822 EXPORT_SYMBOL(__dev_get_by_index);
823 
824 /**
825  *	dev_get_by_index_rcu - find a device by its ifindex
826  *	@net: the applicable net namespace
827  *	@ifindex: index of device
828  *
829  *	Search for an interface by index. Returns %NULL if the device
830  *	is not found or a pointer to the device. The device has not
831  *	had its reference counter increased so the caller must be careful
832  *	about locking. The caller must hold RCU lock.
833  */
834 
835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836 {
837 	struct net_device *dev;
838 	struct hlist_head *head = dev_index_hash(net, ifindex);
839 
840 	hlist_for_each_entry_rcu(dev, head, index_hlist)
841 		if (dev->ifindex == ifindex)
842 			return dev;
843 
844 	return NULL;
845 }
846 EXPORT_SYMBOL(dev_get_by_index_rcu);
847 
848 /* Deprecated for new users, call netdev_get_by_index() instead */
849 struct net_device *dev_get_by_index(struct net *net, int ifindex)
850 {
851 	struct net_device *dev;
852 
853 	rcu_read_lock();
854 	dev = dev_get_by_index_rcu(net, ifindex);
855 	dev_hold(dev);
856 	rcu_read_unlock();
857 	return dev;
858 }
859 EXPORT_SYMBOL(dev_get_by_index);
860 
861 /**
862  *	netdev_get_by_index() - find a device by its ifindex
863  *	@net: the applicable net namespace
864  *	@ifindex: index of device
865  *	@tracker: tracking object for the acquired reference
866  *	@gfp: allocation flags for the tracker
867  *
868  *	Search for an interface by index. Returns NULL if the device
869  *	is not found or a pointer to the device. The device returned has
870  *	had a reference added and the pointer is safe until the user calls
871  *	netdev_put() to indicate they have finished with it.
872  */
873 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
874 				       netdevice_tracker *tracker, gfp_t gfp)
875 {
876 	struct net_device *dev;
877 
878 	dev = dev_get_by_index(net, ifindex);
879 	if (dev)
880 		netdev_tracker_alloc(dev, tracker, gfp);
881 	return dev;
882 }
883 EXPORT_SYMBOL(netdev_get_by_index);
884 
885 /**
886  *	dev_get_by_napi_id - find a device by napi_id
887  *	@napi_id: ID of the NAPI struct
888  *
889  *	Search for an interface by NAPI ID. Returns %NULL if the device
890  *	is not found or a pointer to the device. The device has not had
891  *	its reference counter increased so the caller must be careful
892  *	about locking. The caller must hold RCU lock.
893  */
894 
895 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
896 {
897 	struct napi_struct *napi;
898 
899 	WARN_ON_ONCE(!rcu_read_lock_held());
900 
901 	if (napi_id < MIN_NAPI_ID)
902 		return NULL;
903 
904 	napi = napi_by_id(napi_id);
905 
906 	return napi ? napi->dev : NULL;
907 }
908 EXPORT_SYMBOL(dev_get_by_napi_id);
909 
910 /**
911  *	netdev_get_name - get a netdevice name, knowing its ifindex.
912  *	@net: network namespace
913  *	@name: a pointer to the buffer where the name will be stored.
914  *	@ifindex: the ifindex of the interface to get the name from.
915  */
916 int netdev_get_name(struct net *net, char *name, int ifindex)
917 {
918 	struct net_device *dev;
919 	int ret;
920 
921 	down_read(&devnet_rename_sem);
922 	rcu_read_lock();
923 
924 	dev = dev_get_by_index_rcu(net, ifindex);
925 	if (!dev) {
926 		ret = -ENODEV;
927 		goto out;
928 	}
929 
930 	strcpy(name, dev->name);
931 
932 	ret = 0;
933 out:
934 	rcu_read_unlock();
935 	up_read(&devnet_rename_sem);
936 	return ret;
937 }
938 
939 /**
940  *	dev_getbyhwaddr_rcu - find a device by its hardware address
941  *	@net: the applicable net namespace
942  *	@type: media type of device
943  *	@ha: hardware address
944  *
945  *	Search for an interface by MAC address. Returns NULL if the device
946  *	is not found or a pointer to the device.
947  *	The caller must hold RCU or RTNL.
948  *	The returned device has not had its ref count increased
949  *	and the caller must therefore be careful about locking
950  *
951  */
952 
953 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
954 				       const char *ha)
955 {
956 	struct net_device *dev;
957 
958 	for_each_netdev_rcu(net, dev)
959 		if (dev->type == type &&
960 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
961 			return dev;
962 
963 	return NULL;
964 }
965 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
966 
967 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
968 {
969 	struct net_device *dev, *ret = NULL;
970 
971 	rcu_read_lock();
972 	for_each_netdev_rcu(net, dev)
973 		if (dev->type == type) {
974 			dev_hold(dev);
975 			ret = dev;
976 			break;
977 		}
978 	rcu_read_unlock();
979 	return ret;
980 }
981 EXPORT_SYMBOL(dev_getfirstbyhwtype);
982 
983 /**
984  *	__dev_get_by_flags - find any device with given flags
985  *	@net: the applicable net namespace
986  *	@if_flags: IFF_* values
987  *	@mask: bitmask of bits in if_flags to check
988  *
989  *	Search for any interface with the given flags. Returns NULL if a device
990  *	is not found or a pointer to the device. Must be called inside
991  *	rtnl_lock(), and result refcount is unchanged.
992  */
993 
994 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
995 				      unsigned short mask)
996 {
997 	struct net_device *dev, *ret;
998 
999 	ASSERT_RTNL();
1000 
1001 	ret = NULL;
1002 	for_each_netdev(net, dev) {
1003 		if (((dev->flags ^ if_flags) & mask) == 0) {
1004 			ret = dev;
1005 			break;
1006 		}
1007 	}
1008 	return ret;
1009 }
1010 EXPORT_SYMBOL(__dev_get_by_flags);
1011 
1012 /**
1013  *	dev_valid_name - check if name is okay for network device
1014  *	@name: name string
1015  *
1016  *	Network device names need to be valid file names to
1017  *	allow sysfs to work.  We also disallow any kind of
1018  *	whitespace.
1019  */
1020 bool dev_valid_name(const char *name)
1021 {
1022 	if (*name == '\0')
1023 		return false;
1024 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1025 		return false;
1026 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1027 		return false;
1028 
1029 	while (*name) {
1030 		if (*name == '/' || *name == ':' || isspace(*name))
1031 			return false;
1032 		name++;
1033 	}
1034 	return true;
1035 }
1036 EXPORT_SYMBOL(dev_valid_name);
1037 
1038 /**
1039  *	__dev_alloc_name - allocate a name for a device
1040  *	@net: network namespace to allocate the device name in
1041  *	@name: name format string
1042  *	@buf:  scratch buffer and result name string
1043  *
1044  *	Passed a format string - eg "lt%d" it will try and find a suitable
1045  *	id. It scans list of devices to build up a free map, then chooses
1046  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1047  *	while allocating the name and adding the device in order to avoid
1048  *	duplicates.
1049  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1050  *	Returns the number of the unit assigned or a negative errno code.
1051  */
1052 
1053 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1054 {
1055 	int i = 0;
1056 	const char *p;
1057 	const int max_netdevices = 8*PAGE_SIZE;
1058 	unsigned long *inuse;
1059 	struct net_device *d;
1060 
1061 	if (!dev_valid_name(name))
1062 		return -EINVAL;
1063 
1064 	p = strchr(name, '%');
1065 	if (p) {
1066 		/*
1067 		 * Verify the string as this thing may have come from
1068 		 * the user.  There must be either one "%d" and no other "%"
1069 		 * characters.
1070 		 */
1071 		if (p[1] != 'd' || strchr(p + 2, '%'))
1072 			return -EINVAL;
1073 
1074 		/* Use one page as a bit array of possible slots */
1075 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1076 		if (!inuse)
1077 			return -ENOMEM;
1078 
1079 		for_each_netdev(net, d) {
1080 			struct netdev_name_node *name_node;
1081 			list_for_each_entry(name_node, &d->name_node->list, list) {
1082 				if (!sscanf(name_node->name, name, &i))
1083 					continue;
1084 				if (i < 0 || i >= max_netdevices)
1085 					continue;
1086 
1087 				/*  avoid cases where sscanf is not exact inverse of printf */
1088 				snprintf(buf, IFNAMSIZ, name, i);
1089 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1090 					__set_bit(i, inuse);
1091 			}
1092 			if (!sscanf(d->name, name, &i))
1093 				continue;
1094 			if (i < 0 || i >= max_netdevices)
1095 				continue;
1096 
1097 			/*  avoid cases where sscanf is not exact inverse of printf */
1098 			snprintf(buf, IFNAMSIZ, name, i);
1099 			if (!strncmp(buf, d->name, IFNAMSIZ))
1100 				__set_bit(i, inuse);
1101 		}
1102 
1103 		i = find_first_zero_bit(inuse, max_netdevices);
1104 		free_page((unsigned long) inuse);
1105 	}
1106 
1107 	snprintf(buf, IFNAMSIZ, name, i);
1108 	if (!netdev_name_in_use(net, buf))
1109 		return i;
1110 
1111 	/* It is possible to run out of possible slots
1112 	 * when the name is long and there isn't enough space left
1113 	 * for the digits, or if all bits are used.
1114 	 */
1115 	return -ENFILE;
1116 }
1117 
1118 static int dev_alloc_name_ns(struct net *net,
1119 			     struct net_device *dev,
1120 			     const char *name)
1121 {
1122 	char buf[IFNAMSIZ];
1123 	int ret;
1124 
1125 	BUG_ON(!net);
1126 	ret = __dev_alloc_name(net, name, buf);
1127 	if (ret >= 0)
1128 		strscpy(dev->name, buf, IFNAMSIZ);
1129 	return ret;
1130 }
1131 
1132 /**
1133  *	dev_alloc_name - allocate a name for a device
1134  *	@dev: device
1135  *	@name: name format string
1136  *
1137  *	Passed a format string - eg "lt%d" it will try and find a suitable
1138  *	id. It scans list of devices to build up a free map, then chooses
1139  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1140  *	while allocating the name and adding the device in order to avoid
1141  *	duplicates.
1142  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1143  *	Returns the number of the unit assigned or a negative errno code.
1144  */
1145 
1146 int dev_alloc_name(struct net_device *dev, const char *name)
1147 {
1148 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1149 }
1150 EXPORT_SYMBOL(dev_alloc_name);
1151 
1152 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1153 			      const char *name)
1154 {
1155 	BUG_ON(!net);
1156 
1157 	if (!dev_valid_name(name))
1158 		return -EINVAL;
1159 
1160 	if (strchr(name, '%'))
1161 		return dev_alloc_name_ns(net, dev, name);
1162 	else if (netdev_name_in_use(net, name))
1163 		return -EEXIST;
1164 	else if (dev->name != name)
1165 		strscpy(dev->name, name, IFNAMSIZ);
1166 
1167 	return 0;
1168 }
1169 
1170 /**
1171  *	dev_change_name - change name of a device
1172  *	@dev: device
1173  *	@newname: name (or format string) must be at least IFNAMSIZ
1174  *
1175  *	Change name of a device, can pass format strings "eth%d".
1176  *	for wildcarding.
1177  */
1178 int dev_change_name(struct net_device *dev, const char *newname)
1179 {
1180 	unsigned char old_assign_type;
1181 	char oldname[IFNAMSIZ];
1182 	int err = 0;
1183 	int ret;
1184 	struct net *net;
1185 
1186 	ASSERT_RTNL();
1187 	BUG_ON(!dev_net(dev));
1188 
1189 	net = dev_net(dev);
1190 
1191 	down_write(&devnet_rename_sem);
1192 
1193 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1194 		up_write(&devnet_rename_sem);
1195 		return 0;
1196 	}
1197 
1198 	memcpy(oldname, dev->name, IFNAMSIZ);
1199 
1200 	err = dev_get_valid_name(net, dev, newname);
1201 	if (err < 0) {
1202 		up_write(&devnet_rename_sem);
1203 		return err;
1204 	}
1205 
1206 	if (oldname[0] && !strchr(oldname, '%'))
1207 		netdev_info(dev, "renamed from %s%s\n", oldname,
1208 			    dev->flags & IFF_UP ? " (while UP)" : "");
1209 
1210 	old_assign_type = dev->name_assign_type;
1211 	dev->name_assign_type = NET_NAME_RENAMED;
1212 
1213 rollback:
1214 	ret = device_rename(&dev->dev, dev->name);
1215 	if (ret) {
1216 		memcpy(dev->name, oldname, IFNAMSIZ);
1217 		dev->name_assign_type = old_assign_type;
1218 		up_write(&devnet_rename_sem);
1219 		return ret;
1220 	}
1221 
1222 	up_write(&devnet_rename_sem);
1223 
1224 	netdev_adjacent_rename_links(dev, oldname);
1225 
1226 	write_lock(&dev_base_lock);
1227 	netdev_name_node_del(dev->name_node);
1228 	write_unlock(&dev_base_lock);
1229 
1230 	synchronize_rcu();
1231 
1232 	write_lock(&dev_base_lock);
1233 	netdev_name_node_add(net, dev->name_node);
1234 	write_unlock(&dev_base_lock);
1235 
1236 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1237 	ret = notifier_to_errno(ret);
1238 
1239 	if (ret) {
1240 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1241 		if (err >= 0) {
1242 			err = ret;
1243 			down_write(&devnet_rename_sem);
1244 			memcpy(dev->name, oldname, IFNAMSIZ);
1245 			memcpy(oldname, newname, IFNAMSIZ);
1246 			dev->name_assign_type = old_assign_type;
1247 			old_assign_type = NET_NAME_RENAMED;
1248 			goto rollback;
1249 		} else {
1250 			netdev_err(dev, "name change rollback failed: %d\n",
1251 				   ret);
1252 		}
1253 	}
1254 
1255 	return err;
1256 }
1257 
1258 /**
1259  *	dev_set_alias - change ifalias of a device
1260  *	@dev: device
1261  *	@alias: name up to IFALIASZ
1262  *	@len: limit of bytes to copy from info
1263  *
1264  *	Set ifalias for a device,
1265  */
1266 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1267 {
1268 	struct dev_ifalias *new_alias = NULL;
1269 
1270 	if (len >= IFALIASZ)
1271 		return -EINVAL;
1272 
1273 	if (len) {
1274 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1275 		if (!new_alias)
1276 			return -ENOMEM;
1277 
1278 		memcpy(new_alias->ifalias, alias, len);
1279 		new_alias->ifalias[len] = 0;
1280 	}
1281 
1282 	mutex_lock(&ifalias_mutex);
1283 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1284 					mutex_is_locked(&ifalias_mutex));
1285 	mutex_unlock(&ifalias_mutex);
1286 
1287 	if (new_alias)
1288 		kfree_rcu(new_alias, rcuhead);
1289 
1290 	return len;
1291 }
1292 EXPORT_SYMBOL(dev_set_alias);
1293 
1294 /**
1295  *	dev_get_alias - get ifalias of a device
1296  *	@dev: device
1297  *	@name: buffer to store name of ifalias
1298  *	@len: size of buffer
1299  *
1300  *	get ifalias for a device.  Caller must make sure dev cannot go
1301  *	away,  e.g. rcu read lock or own a reference count to device.
1302  */
1303 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1304 {
1305 	const struct dev_ifalias *alias;
1306 	int ret = 0;
1307 
1308 	rcu_read_lock();
1309 	alias = rcu_dereference(dev->ifalias);
1310 	if (alias)
1311 		ret = snprintf(name, len, "%s", alias->ifalias);
1312 	rcu_read_unlock();
1313 
1314 	return ret;
1315 }
1316 
1317 /**
1318  *	netdev_features_change - device changes features
1319  *	@dev: device to cause notification
1320  *
1321  *	Called to indicate a device has changed features.
1322  */
1323 void netdev_features_change(struct net_device *dev)
1324 {
1325 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1326 }
1327 EXPORT_SYMBOL(netdev_features_change);
1328 
1329 /**
1330  *	netdev_state_change - device changes state
1331  *	@dev: device to cause notification
1332  *
1333  *	Called to indicate a device has changed state. This function calls
1334  *	the notifier chains for netdev_chain and sends a NEWLINK message
1335  *	to the routing socket.
1336  */
1337 void netdev_state_change(struct net_device *dev)
1338 {
1339 	if (dev->flags & IFF_UP) {
1340 		struct netdev_notifier_change_info change_info = {
1341 			.info.dev = dev,
1342 		};
1343 
1344 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1345 					      &change_info.info);
1346 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1347 	}
1348 }
1349 EXPORT_SYMBOL(netdev_state_change);
1350 
1351 /**
1352  * __netdev_notify_peers - notify network peers about existence of @dev,
1353  * to be called when rtnl lock is already held.
1354  * @dev: network device
1355  *
1356  * Generate traffic such that interested network peers are aware of
1357  * @dev, such as by generating a gratuitous ARP. This may be used when
1358  * a device wants to inform the rest of the network about some sort of
1359  * reconfiguration such as a failover event or virtual machine
1360  * migration.
1361  */
1362 void __netdev_notify_peers(struct net_device *dev)
1363 {
1364 	ASSERT_RTNL();
1365 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1366 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1367 }
1368 EXPORT_SYMBOL(__netdev_notify_peers);
1369 
1370 /**
1371  * netdev_notify_peers - notify network peers about existence of @dev
1372  * @dev: network device
1373  *
1374  * Generate traffic such that interested network peers are aware of
1375  * @dev, such as by generating a gratuitous ARP. This may be used when
1376  * a device wants to inform the rest of the network about some sort of
1377  * reconfiguration such as a failover event or virtual machine
1378  * migration.
1379  */
1380 void netdev_notify_peers(struct net_device *dev)
1381 {
1382 	rtnl_lock();
1383 	__netdev_notify_peers(dev);
1384 	rtnl_unlock();
1385 }
1386 EXPORT_SYMBOL(netdev_notify_peers);
1387 
1388 static int napi_threaded_poll(void *data);
1389 
1390 static int napi_kthread_create(struct napi_struct *n)
1391 {
1392 	int err = 0;
1393 
1394 	/* Create and wake up the kthread once to put it in
1395 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1396 	 * warning and work with loadavg.
1397 	 */
1398 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1399 				n->dev->name, n->napi_id);
1400 	if (IS_ERR(n->thread)) {
1401 		err = PTR_ERR(n->thread);
1402 		pr_err("kthread_run failed with err %d\n", err);
1403 		n->thread = NULL;
1404 	}
1405 
1406 	return err;
1407 }
1408 
1409 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1410 {
1411 	const struct net_device_ops *ops = dev->netdev_ops;
1412 	int ret;
1413 
1414 	ASSERT_RTNL();
1415 	dev_addr_check(dev);
1416 
1417 	if (!netif_device_present(dev)) {
1418 		/* may be detached because parent is runtime-suspended */
1419 		if (dev->dev.parent)
1420 			pm_runtime_resume(dev->dev.parent);
1421 		if (!netif_device_present(dev))
1422 			return -ENODEV;
1423 	}
1424 
1425 	/* Block netpoll from trying to do any rx path servicing.
1426 	 * If we don't do this there is a chance ndo_poll_controller
1427 	 * or ndo_poll may be running while we open the device
1428 	 */
1429 	netpoll_poll_disable(dev);
1430 
1431 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1432 	ret = notifier_to_errno(ret);
1433 	if (ret)
1434 		return ret;
1435 
1436 	set_bit(__LINK_STATE_START, &dev->state);
1437 
1438 	if (ops->ndo_validate_addr)
1439 		ret = ops->ndo_validate_addr(dev);
1440 
1441 	if (!ret && ops->ndo_open)
1442 		ret = ops->ndo_open(dev);
1443 
1444 	netpoll_poll_enable(dev);
1445 
1446 	if (ret)
1447 		clear_bit(__LINK_STATE_START, &dev->state);
1448 	else {
1449 		dev->flags |= IFF_UP;
1450 		dev_set_rx_mode(dev);
1451 		dev_activate(dev);
1452 		add_device_randomness(dev->dev_addr, dev->addr_len);
1453 	}
1454 
1455 	return ret;
1456 }
1457 
1458 /**
1459  *	dev_open	- prepare an interface for use.
1460  *	@dev: device to open
1461  *	@extack: netlink extended ack
1462  *
1463  *	Takes a device from down to up state. The device's private open
1464  *	function is invoked and then the multicast lists are loaded. Finally
1465  *	the device is moved into the up state and a %NETDEV_UP message is
1466  *	sent to the netdev notifier chain.
1467  *
1468  *	Calling this function on an active interface is a nop. On a failure
1469  *	a negative errno code is returned.
1470  */
1471 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1472 {
1473 	int ret;
1474 
1475 	if (dev->flags & IFF_UP)
1476 		return 0;
1477 
1478 	ret = __dev_open(dev, extack);
1479 	if (ret < 0)
1480 		return ret;
1481 
1482 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1483 	call_netdevice_notifiers(NETDEV_UP, dev);
1484 
1485 	return ret;
1486 }
1487 EXPORT_SYMBOL(dev_open);
1488 
1489 static void __dev_close_many(struct list_head *head)
1490 {
1491 	struct net_device *dev;
1492 
1493 	ASSERT_RTNL();
1494 	might_sleep();
1495 
1496 	list_for_each_entry(dev, head, close_list) {
1497 		/* Temporarily disable netpoll until the interface is down */
1498 		netpoll_poll_disable(dev);
1499 
1500 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1501 
1502 		clear_bit(__LINK_STATE_START, &dev->state);
1503 
1504 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1505 		 * can be even on different cpu. So just clear netif_running().
1506 		 *
1507 		 * dev->stop() will invoke napi_disable() on all of it's
1508 		 * napi_struct instances on this device.
1509 		 */
1510 		smp_mb__after_atomic(); /* Commit netif_running(). */
1511 	}
1512 
1513 	dev_deactivate_many(head);
1514 
1515 	list_for_each_entry(dev, head, close_list) {
1516 		const struct net_device_ops *ops = dev->netdev_ops;
1517 
1518 		/*
1519 		 *	Call the device specific close. This cannot fail.
1520 		 *	Only if device is UP
1521 		 *
1522 		 *	We allow it to be called even after a DETACH hot-plug
1523 		 *	event.
1524 		 */
1525 		if (ops->ndo_stop)
1526 			ops->ndo_stop(dev);
1527 
1528 		dev->flags &= ~IFF_UP;
1529 		netpoll_poll_enable(dev);
1530 	}
1531 }
1532 
1533 static void __dev_close(struct net_device *dev)
1534 {
1535 	LIST_HEAD(single);
1536 
1537 	list_add(&dev->close_list, &single);
1538 	__dev_close_many(&single);
1539 	list_del(&single);
1540 }
1541 
1542 void dev_close_many(struct list_head *head, bool unlink)
1543 {
1544 	struct net_device *dev, *tmp;
1545 
1546 	/* Remove the devices that don't need to be closed */
1547 	list_for_each_entry_safe(dev, tmp, head, close_list)
1548 		if (!(dev->flags & IFF_UP))
1549 			list_del_init(&dev->close_list);
1550 
1551 	__dev_close_many(head);
1552 
1553 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1554 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1555 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1556 		if (unlink)
1557 			list_del_init(&dev->close_list);
1558 	}
1559 }
1560 EXPORT_SYMBOL(dev_close_many);
1561 
1562 /**
1563  *	dev_close - shutdown an interface.
1564  *	@dev: device to shutdown
1565  *
1566  *	This function moves an active device into down state. A
1567  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1568  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1569  *	chain.
1570  */
1571 void dev_close(struct net_device *dev)
1572 {
1573 	if (dev->flags & IFF_UP) {
1574 		LIST_HEAD(single);
1575 
1576 		list_add(&dev->close_list, &single);
1577 		dev_close_many(&single, true);
1578 		list_del(&single);
1579 	}
1580 }
1581 EXPORT_SYMBOL(dev_close);
1582 
1583 
1584 /**
1585  *	dev_disable_lro - disable Large Receive Offload on a device
1586  *	@dev: device
1587  *
1588  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1589  *	called under RTNL.  This is needed if received packets may be
1590  *	forwarded to another interface.
1591  */
1592 void dev_disable_lro(struct net_device *dev)
1593 {
1594 	struct net_device *lower_dev;
1595 	struct list_head *iter;
1596 
1597 	dev->wanted_features &= ~NETIF_F_LRO;
1598 	netdev_update_features(dev);
1599 
1600 	if (unlikely(dev->features & NETIF_F_LRO))
1601 		netdev_WARN(dev, "failed to disable LRO!\n");
1602 
1603 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1604 		dev_disable_lro(lower_dev);
1605 }
1606 EXPORT_SYMBOL(dev_disable_lro);
1607 
1608 /**
1609  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1610  *	@dev: device
1611  *
1612  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1613  *	called under RTNL.  This is needed if Generic XDP is installed on
1614  *	the device.
1615  */
1616 static void dev_disable_gro_hw(struct net_device *dev)
1617 {
1618 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1619 	netdev_update_features(dev);
1620 
1621 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1622 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1623 }
1624 
1625 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1626 {
1627 #define N(val) 						\
1628 	case NETDEV_##val:				\
1629 		return "NETDEV_" __stringify(val);
1630 	switch (cmd) {
1631 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1632 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1633 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1634 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1635 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1636 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1637 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1638 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1639 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1640 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1641 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1642 	N(XDP_FEAT_CHANGE)
1643 	}
1644 #undef N
1645 	return "UNKNOWN_NETDEV_EVENT";
1646 }
1647 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1648 
1649 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1650 				   struct net_device *dev)
1651 {
1652 	struct netdev_notifier_info info = {
1653 		.dev = dev,
1654 	};
1655 
1656 	return nb->notifier_call(nb, val, &info);
1657 }
1658 
1659 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1660 					     struct net_device *dev)
1661 {
1662 	int err;
1663 
1664 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1665 	err = notifier_to_errno(err);
1666 	if (err)
1667 		return err;
1668 
1669 	if (!(dev->flags & IFF_UP))
1670 		return 0;
1671 
1672 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1673 	return 0;
1674 }
1675 
1676 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1677 						struct net_device *dev)
1678 {
1679 	if (dev->flags & IFF_UP) {
1680 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1681 					dev);
1682 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1683 	}
1684 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1685 }
1686 
1687 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1688 						 struct net *net)
1689 {
1690 	struct net_device *dev;
1691 	int err;
1692 
1693 	for_each_netdev(net, dev) {
1694 		err = call_netdevice_register_notifiers(nb, dev);
1695 		if (err)
1696 			goto rollback;
1697 	}
1698 	return 0;
1699 
1700 rollback:
1701 	for_each_netdev_continue_reverse(net, dev)
1702 		call_netdevice_unregister_notifiers(nb, dev);
1703 	return err;
1704 }
1705 
1706 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1707 						    struct net *net)
1708 {
1709 	struct net_device *dev;
1710 
1711 	for_each_netdev(net, dev)
1712 		call_netdevice_unregister_notifiers(nb, dev);
1713 }
1714 
1715 static int dev_boot_phase = 1;
1716 
1717 /**
1718  * register_netdevice_notifier - register a network notifier block
1719  * @nb: notifier
1720  *
1721  * Register a notifier to be called when network device events occur.
1722  * The notifier passed is linked into the kernel structures and must
1723  * not be reused until it has been unregistered. A negative errno code
1724  * is returned on a failure.
1725  *
1726  * When registered all registration and up events are replayed
1727  * to the new notifier to allow device to have a race free
1728  * view of the network device list.
1729  */
1730 
1731 int register_netdevice_notifier(struct notifier_block *nb)
1732 {
1733 	struct net *net;
1734 	int err;
1735 
1736 	/* Close race with setup_net() and cleanup_net() */
1737 	down_write(&pernet_ops_rwsem);
1738 	rtnl_lock();
1739 	err = raw_notifier_chain_register(&netdev_chain, nb);
1740 	if (err)
1741 		goto unlock;
1742 	if (dev_boot_phase)
1743 		goto unlock;
1744 	for_each_net(net) {
1745 		err = call_netdevice_register_net_notifiers(nb, net);
1746 		if (err)
1747 			goto rollback;
1748 	}
1749 
1750 unlock:
1751 	rtnl_unlock();
1752 	up_write(&pernet_ops_rwsem);
1753 	return err;
1754 
1755 rollback:
1756 	for_each_net_continue_reverse(net)
1757 		call_netdevice_unregister_net_notifiers(nb, net);
1758 
1759 	raw_notifier_chain_unregister(&netdev_chain, nb);
1760 	goto unlock;
1761 }
1762 EXPORT_SYMBOL(register_netdevice_notifier);
1763 
1764 /**
1765  * unregister_netdevice_notifier - unregister a network notifier block
1766  * @nb: notifier
1767  *
1768  * Unregister a notifier previously registered by
1769  * register_netdevice_notifier(). The notifier is unlinked into the
1770  * kernel structures and may then be reused. A negative errno code
1771  * is returned on a failure.
1772  *
1773  * After unregistering unregister and down device events are synthesized
1774  * for all devices on the device list to the removed notifier to remove
1775  * the need for special case cleanup code.
1776  */
1777 
1778 int unregister_netdevice_notifier(struct notifier_block *nb)
1779 {
1780 	struct net *net;
1781 	int err;
1782 
1783 	/* Close race with setup_net() and cleanup_net() */
1784 	down_write(&pernet_ops_rwsem);
1785 	rtnl_lock();
1786 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1787 	if (err)
1788 		goto unlock;
1789 
1790 	for_each_net(net)
1791 		call_netdevice_unregister_net_notifiers(nb, net);
1792 
1793 unlock:
1794 	rtnl_unlock();
1795 	up_write(&pernet_ops_rwsem);
1796 	return err;
1797 }
1798 EXPORT_SYMBOL(unregister_netdevice_notifier);
1799 
1800 static int __register_netdevice_notifier_net(struct net *net,
1801 					     struct notifier_block *nb,
1802 					     bool ignore_call_fail)
1803 {
1804 	int err;
1805 
1806 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1807 	if (err)
1808 		return err;
1809 	if (dev_boot_phase)
1810 		return 0;
1811 
1812 	err = call_netdevice_register_net_notifiers(nb, net);
1813 	if (err && !ignore_call_fail)
1814 		goto chain_unregister;
1815 
1816 	return 0;
1817 
1818 chain_unregister:
1819 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1820 	return err;
1821 }
1822 
1823 static int __unregister_netdevice_notifier_net(struct net *net,
1824 					       struct notifier_block *nb)
1825 {
1826 	int err;
1827 
1828 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1829 	if (err)
1830 		return err;
1831 
1832 	call_netdevice_unregister_net_notifiers(nb, net);
1833 	return 0;
1834 }
1835 
1836 /**
1837  * register_netdevice_notifier_net - register a per-netns network notifier block
1838  * @net: network namespace
1839  * @nb: notifier
1840  *
1841  * Register a notifier to be called when network device events occur.
1842  * The notifier passed is linked into the kernel structures and must
1843  * not be reused until it has been unregistered. A negative errno code
1844  * is returned on a failure.
1845  *
1846  * When registered all registration and up events are replayed
1847  * to the new notifier to allow device to have a race free
1848  * view of the network device list.
1849  */
1850 
1851 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1852 {
1853 	int err;
1854 
1855 	rtnl_lock();
1856 	err = __register_netdevice_notifier_net(net, nb, false);
1857 	rtnl_unlock();
1858 	return err;
1859 }
1860 EXPORT_SYMBOL(register_netdevice_notifier_net);
1861 
1862 /**
1863  * unregister_netdevice_notifier_net - unregister a per-netns
1864  *                                     network notifier block
1865  * @net: network namespace
1866  * @nb: notifier
1867  *
1868  * Unregister a notifier previously registered by
1869  * register_netdevice_notifier_net(). The notifier is unlinked from the
1870  * kernel structures and may then be reused. A negative errno code
1871  * is returned on a failure.
1872  *
1873  * After unregistering unregister and down device events are synthesized
1874  * for all devices on the device list to the removed notifier to remove
1875  * the need for special case cleanup code.
1876  */
1877 
1878 int unregister_netdevice_notifier_net(struct net *net,
1879 				      struct notifier_block *nb)
1880 {
1881 	int err;
1882 
1883 	rtnl_lock();
1884 	err = __unregister_netdevice_notifier_net(net, nb);
1885 	rtnl_unlock();
1886 	return err;
1887 }
1888 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1889 
1890 static void __move_netdevice_notifier_net(struct net *src_net,
1891 					  struct net *dst_net,
1892 					  struct notifier_block *nb)
1893 {
1894 	__unregister_netdevice_notifier_net(src_net, nb);
1895 	__register_netdevice_notifier_net(dst_net, nb, true);
1896 }
1897 
1898 int register_netdevice_notifier_dev_net(struct net_device *dev,
1899 					struct notifier_block *nb,
1900 					struct netdev_net_notifier *nn)
1901 {
1902 	int err;
1903 
1904 	rtnl_lock();
1905 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1906 	if (!err) {
1907 		nn->nb = nb;
1908 		list_add(&nn->list, &dev->net_notifier_list);
1909 	}
1910 	rtnl_unlock();
1911 	return err;
1912 }
1913 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1914 
1915 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1916 					  struct notifier_block *nb,
1917 					  struct netdev_net_notifier *nn)
1918 {
1919 	int err;
1920 
1921 	rtnl_lock();
1922 	list_del(&nn->list);
1923 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1924 	rtnl_unlock();
1925 	return err;
1926 }
1927 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1928 
1929 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1930 					     struct net *net)
1931 {
1932 	struct netdev_net_notifier *nn;
1933 
1934 	list_for_each_entry(nn, &dev->net_notifier_list, list)
1935 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1936 }
1937 
1938 /**
1939  *	call_netdevice_notifiers_info - call all network notifier blocks
1940  *	@val: value passed unmodified to notifier function
1941  *	@info: notifier information data
1942  *
1943  *	Call all network notifier blocks.  Parameters and return value
1944  *	are as for raw_notifier_call_chain().
1945  */
1946 
1947 int call_netdevice_notifiers_info(unsigned long val,
1948 				  struct netdev_notifier_info *info)
1949 {
1950 	struct net *net = dev_net(info->dev);
1951 	int ret;
1952 
1953 	ASSERT_RTNL();
1954 
1955 	/* Run per-netns notifier block chain first, then run the global one.
1956 	 * Hopefully, one day, the global one is going to be removed after
1957 	 * all notifier block registrators get converted to be per-netns.
1958 	 */
1959 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1960 	if (ret & NOTIFY_STOP_MASK)
1961 		return ret;
1962 	return raw_notifier_call_chain(&netdev_chain, val, info);
1963 }
1964 
1965 /**
1966  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1967  *	                                       for and rollback on error
1968  *	@val_up: value passed unmodified to notifier function
1969  *	@val_down: value passed unmodified to the notifier function when
1970  *	           recovering from an error on @val_up
1971  *	@info: notifier information data
1972  *
1973  *	Call all per-netns network notifier blocks, but not notifier blocks on
1974  *	the global notifier chain. Parameters and return value are as for
1975  *	raw_notifier_call_chain_robust().
1976  */
1977 
1978 static int
1979 call_netdevice_notifiers_info_robust(unsigned long val_up,
1980 				     unsigned long val_down,
1981 				     struct netdev_notifier_info *info)
1982 {
1983 	struct net *net = dev_net(info->dev);
1984 
1985 	ASSERT_RTNL();
1986 
1987 	return raw_notifier_call_chain_robust(&net->netdev_chain,
1988 					      val_up, val_down, info);
1989 }
1990 
1991 static int call_netdevice_notifiers_extack(unsigned long val,
1992 					   struct net_device *dev,
1993 					   struct netlink_ext_ack *extack)
1994 {
1995 	struct netdev_notifier_info info = {
1996 		.dev = dev,
1997 		.extack = extack,
1998 	};
1999 
2000 	return call_netdevice_notifiers_info(val, &info);
2001 }
2002 
2003 /**
2004  *	call_netdevice_notifiers - call all network notifier blocks
2005  *      @val: value passed unmodified to notifier function
2006  *      @dev: net_device pointer passed unmodified to notifier function
2007  *
2008  *	Call all network notifier blocks.  Parameters and return value
2009  *	are as for raw_notifier_call_chain().
2010  */
2011 
2012 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2013 {
2014 	return call_netdevice_notifiers_extack(val, dev, NULL);
2015 }
2016 EXPORT_SYMBOL(call_netdevice_notifiers);
2017 
2018 /**
2019  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2020  *	@val: value passed unmodified to notifier function
2021  *	@dev: net_device pointer passed unmodified to notifier function
2022  *	@arg: additional u32 argument passed to the notifier function
2023  *
2024  *	Call all network notifier blocks.  Parameters and return value
2025  *	are as for raw_notifier_call_chain().
2026  */
2027 static int call_netdevice_notifiers_mtu(unsigned long val,
2028 					struct net_device *dev, u32 arg)
2029 {
2030 	struct netdev_notifier_info_ext info = {
2031 		.info.dev = dev,
2032 		.ext.mtu = arg,
2033 	};
2034 
2035 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2036 
2037 	return call_netdevice_notifiers_info(val, &info.info);
2038 }
2039 
2040 #ifdef CONFIG_NET_INGRESS
2041 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2042 
2043 void net_inc_ingress_queue(void)
2044 {
2045 	static_branch_inc(&ingress_needed_key);
2046 }
2047 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2048 
2049 void net_dec_ingress_queue(void)
2050 {
2051 	static_branch_dec(&ingress_needed_key);
2052 }
2053 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2054 #endif
2055 
2056 #ifdef CONFIG_NET_EGRESS
2057 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2058 
2059 void net_inc_egress_queue(void)
2060 {
2061 	static_branch_inc(&egress_needed_key);
2062 }
2063 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2064 
2065 void net_dec_egress_queue(void)
2066 {
2067 	static_branch_dec(&egress_needed_key);
2068 }
2069 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2070 #endif
2071 
2072 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2073 EXPORT_SYMBOL(netstamp_needed_key);
2074 #ifdef CONFIG_JUMP_LABEL
2075 static atomic_t netstamp_needed_deferred;
2076 static atomic_t netstamp_wanted;
2077 static void netstamp_clear(struct work_struct *work)
2078 {
2079 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2080 	int wanted;
2081 
2082 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2083 	if (wanted > 0)
2084 		static_branch_enable(&netstamp_needed_key);
2085 	else
2086 		static_branch_disable(&netstamp_needed_key);
2087 }
2088 static DECLARE_WORK(netstamp_work, netstamp_clear);
2089 #endif
2090 
2091 void net_enable_timestamp(void)
2092 {
2093 #ifdef CONFIG_JUMP_LABEL
2094 	int wanted = atomic_read(&netstamp_wanted);
2095 
2096 	while (wanted > 0) {
2097 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2098 			return;
2099 	}
2100 	atomic_inc(&netstamp_needed_deferred);
2101 	schedule_work(&netstamp_work);
2102 #else
2103 	static_branch_inc(&netstamp_needed_key);
2104 #endif
2105 }
2106 EXPORT_SYMBOL(net_enable_timestamp);
2107 
2108 void net_disable_timestamp(void)
2109 {
2110 #ifdef CONFIG_JUMP_LABEL
2111 	int wanted = atomic_read(&netstamp_wanted);
2112 
2113 	while (wanted > 1) {
2114 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2115 			return;
2116 	}
2117 	atomic_dec(&netstamp_needed_deferred);
2118 	schedule_work(&netstamp_work);
2119 #else
2120 	static_branch_dec(&netstamp_needed_key);
2121 #endif
2122 }
2123 EXPORT_SYMBOL(net_disable_timestamp);
2124 
2125 static inline void net_timestamp_set(struct sk_buff *skb)
2126 {
2127 	skb->tstamp = 0;
2128 	skb->mono_delivery_time = 0;
2129 	if (static_branch_unlikely(&netstamp_needed_key))
2130 		skb->tstamp = ktime_get_real();
2131 }
2132 
2133 #define net_timestamp_check(COND, SKB)				\
2134 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2135 		if ((COND) && !(SKB)->tstamp)			\
2136 			(SKB)->tstamp = ktime_get_real();	\
2137 	}							\
2138 
2139 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2140 {
2141 	return __is_skb_forwardable(dev, skb, true);
2142 }
2143 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2144 
2145 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2146 			      bool check_mtu)
2147 {
2148 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2149 
2150 	if (likely(!ret)) {
2151 		skb->protocol = eth_type_trans(skb, dev);
2152 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2153 	}
2154 
2155 	return ret;
2156 }
2157 
2158 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2159 {
2160 	return __dev_forward_skb2(dev, skb, true);
2161 }
2162 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2163 
2164 /**
2165  * dev_forward_skb - loopback an skb to another netif
2166  *
2167  * @dev: destination network device
2168  * @skb: buffer to forward
2169  *
2170  * return values:
2171  *	NET_RX_SUCCESS	(no congestion)
2172  *	NET_RX_DROP     (packet was dropped, but freed)
2173  *
2174  * dev_forward_skb can be used for injecting an skb from the
2175  * start_xmit function of one device into the receive queue
2176  * of another device.
2177  *
2178  * The receiving device may be in another namespace, so
2179  * we have to clear all information in the skb that could
2180  * impact namespace isolation.
2181  */
2182 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2183 {
2184 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2185 }
2186 EXPORT_SYMBOL_GPL(dev_forward_skb);
2187 
2188 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2189 {
2190 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2191 }
2192 
2193 static inline int deliver_skb(struct sk_buff *skb,
2194 			      struct packet_type *pt_prev,
2195 			      struct net_device *orig_dev)
2196 {
2197 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2198 		return -ENOMEM;
2199 	refcount_inc(&skb->users);
2200 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2201 }
2202 
2203 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2204 					  struct packet_type **pt,
2205 					  struct net_device *orig_dev,
2206 					  __be16 type,
2207 					  struct list_head *ptype_list)
2208 {
2209 	struct packet_type *ptype, *pt_prev = *pt;
2210 
2211 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2212 		if (ptype->type != type)
2213 			continue;
2214 		if (pt_prev)
2215 			deliver_skb(skb, pt_prev, orig_dev);
2216 		pt_prev = ptype;
2217 	}
2218 	*pt = pt_prev;
2219 }
2220 
2221 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2222 {
2223 	if (!ptype->af_packet_priv || !skb->sk)
2224 		return false;
2225 
2226 	if (ptype->id_match)
2227 		return ptype->id_match(ptype, skb->sk);
2228 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2229 		return true;
2230 
2231 	return false;
2232 }
2233 
2234 /**
2235  * dev_nit_active - return true if any network interface taps are in use
2236  *
2237  * @dev: network device to check for the presence of taps
2238  */
2239 bool dev_nit_active(struct net_device *dev)
2240 {
2241 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2242 }
2243 EXPORT_SYMBOL_GPL(dev_nit_active);
2244 
2245 /*
2246  *	Support routine. Sends outgoing frames to any network
2247  *	taps currently in use.
2248  */
2249 
2250 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2251 {
2252 	struct packet_type *ptype;
2253 	struct sk_buff *skb2 = NULL;
2254 	struct packet_type *pt_prev = NULL;
2255 	struct list_head *ptype_list = &ptype_all;
2256 
2257 	rcu_read_lock();
2258 again:
2259 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2260 		if (ptype->ignore_outgoing)
2261 			continue;
2262 
2263 		/* Never send packets back to the socket
2264 		 * they originated from - MvS (miquels@drinkel.ow.org)
2265 		 */
2266 		if (skb_loop_sk(ptype, skb))
2267 			continue;
2268 
2269 		if (pt_prev) {
2270 			deliver_skb(skb2, pt_prev, skb->dev);
2271 			pt_prev = ptype;
2272 			continue;
2273 		}
2274 
2275 		/* need to clone skb, done only once */
2276 		skb2 = skb_clone(skb, GFP_ATOMIC);
2277 		if (!skb2)
2278 			goto out_unlock;
2279 
2280 		net_timestamp_set(skb2);
2281 
2282 		/* skb->nh should be correctly
2283 		 * set by sender, so that the second statement is
2284 		 * just protection against buggy protocols.
2285 		 */
2286 		skb_reset_mac_header(skb2);
2287 
2288 		if (skb_network_header(skb2) < skb2->data ||
2289 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2290 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2291 					     ntohs(skb2->protocol),
2292 					     dev->name);
2293 			skb_reset_network_header(skb2);
2294 		}
2295 
2296 		skb2->transport_header = skb2->network_header;
2297 		skb2->pkt_type = PACKET_OUTGOING;
2298 		pt_prev = ptype;
2299 	}
2300 
2301 	if (ptype_list == &ptype_all) {
2302 		ptype_list = &dev->ptype_all;
2303 		goto again;
2304 	}
2305 out_unlock:
2306 	if (pt_prev) {
2307 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2308 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2309 		else
2310 			kfree_skb(skb2);
2311 	}
2312 	rcu_read_unlock();
2313 }
2314 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2315 
2316 /**
2317  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2318  * @dev: Network device
2319  * @txq: number of queues available
2320  *
2321  * If real_num_tx_queues is changed the tc mappings may no longer be
2322  * valid. To resolve this verify the tc mapping remains valid and if
2323  * not NULL the mapping. With no priorities mapping to this
2324  * offset/count pair it will no longer be used. In the worst case TC0
2325  * is invalid nothing can be done so disable priority mappings. If is
2326  * expected that drivers will fix this mapping if they can before
2327  * calling netif_set_real_num_tx_queues.
2328  */
2329 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2330 {
2331 	int i;
2332 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2333 
2334 	/* If TC0 is invalidated disable TC mapping */
2335 	if (tc->offset + tc->count > txq) {
2336 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2337 		dev->num_tc = 0;
2338 		return;
2339 	}
2340 
2341 	/* Invalidated prio to tc mappings set to TC0 */
2342 	for (i = 1; i < TC_BITMASK + 1; i++) {
2343 		int q = netdev_get_prio_tc_map(dev, i);
2344 
2345 		tc = &dev->tc_to_txq[q];
2346 		if (tc->offset + tc->count > txq) {
2347 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2348 				    i, q);
2349 			netdev_set_prio_tc_map(dev, i, 0);
2350 		}
2351 	}
2352 }
2353 
2354 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2355 {
2356 	if (dev->num_tc) {
2357 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2358 		int i;
2359 
2360 		/* walk through the TCs and see if it falls into any of them */
2361 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2362 			if ((txq - tc->offset) < tc->count)
2363 				return i;
2364 		}
2365 
2366 		/* didn't find it, just return -1 to indicate no match */
2367 		return -1;
2368 	}
2369 
2370 	return 0;
2371 }
2372 EXPORT_SYMBOL(netdev_txq_to_tc);
2373 
2374 #ifdef CONFIG_XPS
2375 static struct static_key xps_needed __read_mostly;
2376 static struct static_key xps_rxqs_needed __read_mostly;
2377 static DEFINE_MUTEX(xps_map_mutex);
2378 #define xmap_dereference(P)		\
2379 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2380 
2381 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2382 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2383 {
2384 	struct xps_map *map = NULL;
2385 	int pos;
2386 
2387 	if (dev_maps)
2388 		map = xmap_dereference(dev_maps->attr_map[tci]);
2389 	if (!map)
2390 		return false;
2391 
2392 	for (pos = map->len; pos--;) {
2393 		if (map->queues[pos] != index)
2394 			continue;
2395 
2396 		if (map->len > 1) {
2397 			map->queues[pos] = map->queues[--map->len];
2398 			break;
2399 		}
2400 
2401 		if (old_maps)
2402 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2403 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2404 		kfree_rcu(map, rcu);
2405 		return false;
2406 	}
2407 
2408 	return true;
2409 }
2410 
2411 static bool remove_xps_queue_cpu(struct net_device *dev,
2412 				 struct xps_dev_maps *dev_maps,
2413 				 int cpu, u16 offset, u16 count)
2414 {
2415 	int num_tc = dev_maps->num_tc;
2416 	bool active = false;
2417 	int tci;
2418 
2419 	for (tci = cpu * num_tc; num_tc--; tci++) {
2420 		int i, j;
2421 
2422 		for (i = count, j = offset; i--; j++) {
2423 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2424 				break;
2425 		}
2426 
2427 		active |= i < 0;
2428 	}
2429 
2430 	return active;
2431 }
2432 
2433 static void reset_xps_maps(struct net_device *dev,
2434 			   struct xps_dev_maps *dev_maps,
2435 			   enum xps_map_type type)
2436 {
2437 	static_key_slow_dec_cpuslocked(&xps_needed);
2438 	if (type == XPS_RXQS)
2439 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2440 
2441 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2442 
2443 	kfree_rcu(dev_maps, rcu);
2444 }
2445 
2446 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2447 			   u16 offset, u16 count)
2448 {
2449 	struct xps_dev_maps *dev_maps;
2450 	bool active = false;
2451 	int i, j;
2452 
2453 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2454 	if (!dev_maps)
2455 		return;
2456 
2457 	for (j = 0; j < dev_maps->nr_ids; j++)
2458 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2459 	if (!active)
2460 		reset_xps_maps(dev, dev_maps, type);
2461 
2462 	if (type == XPS_CPUS) {
2463 		for (i = offset + (count - 1); count--; i--)
2464 			netdev_queue_numa_node_write(
2465 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2466 	}
2467 }
2468 
2469 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2470 				   u16 count)
2471 {
2472 	if (!static_key_false(&xps_needed))
2473 		return;
2474 
2475 	cpus_read_lock();
2476 	mutex_lock(&xps_map_mutex);
2477 
2478 	if (static_key_false(&xps_rxqs_needed))
2479 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2480 
2481 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2482 
2483 	mutex_unlock(&xps_map_mutex);
2484 	cpus_read_unlock();
2485 }
2486 
2487 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2488 {
2489 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2490 }
2491 
2492 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2493 				      u16 index, bool is_rxqs_map)
2494 {
2495 	struct xps_map *new_map;
2496 	int alloc_len = XPS_MIN_MAP_ALLOC;
2497 	int i, pos;
2498 
2499 	for (pos = 0; map && pos < map->len; pos++) {
2500 		if (map->queues[pos] != index)
2501 			continue;
2502 		return map;
2503 	}
2504 
2505 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2506 	if (map) {
2507 		if (pos < map->alloc_len)
2508 			return map;
2509 
2510 		alloc_len = map->alloc_len * 2;
2511 	}
2512 
2513 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2514 	 *  map
2515 	 */
2516 	if (is_rxqs_map)
2517 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2518 	else
2519 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2520 				       cpu_to_node(attr_index));
2521 	if (!new_map)
2522 		return NULL;
2523 
2524 	for (i = 0; i < pos; i++)
2525 		new_map->queues[i] = map->queues[i];
2526 	new_map->alloc_len = alloc_len;
2527 	new_map->len = pos;
2528 
2529 	return new_map;
2530 }
2531 
2532 /* Copy xps maps at a given index */
2533 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2534 			      struct xps_dev_maps *new_dev_maps, int index,
2535 			      int tc, bool skip_tc)
2536 {
2537 	int i, tci = index * dev_maps->num_tc;
2538 	struct xps_map *map;
2539 
2540 	/* copy maps belonging to foreign traffic classes */
2541 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2542 		if (i == tc && skip_tc)
2543 			continue;
2544 
2545 		/* fill in the new device map from the old device map */
2546 		map = xmap_dereference(dev_maps->attr_map[tci]);
2547 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2548 	}
2549 }
2550 
2551 /* Must be called under cpus_read_lock */
2552 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2553 			  u16 index, enum xps_map_type type)
2554 {
2555 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2556 	const unsigned long *online_mask = NULL;
2557 	bool active = false, copy = false;
2558 	int i, j, tci, numa_node_id = -2;
2559 	int maps_sz, num_tc = 1, tc = 0;
2560 	struct xps_map *map, *new_map;
2561 	unsigned int nr_ids;
2562 
2563 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2564 
2565 	if (dev->num_tc) {
2566 		/* Do not allow XPS on subordinate device directly */
2567 		num_tc = dev->num_tc;
2568 		if (num_tc < 0)
2569 			return -EINVAL;
2570 
2571 		/* If queue belongs to subordinate dev use its map */
2572 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2573 
2574 		tc = netdev_txq_to_tc(dev, index);
2575 		if (tc < 0)
2576 			return -EINVAL;
2577 	}
2578 
2579 	mutex_lock(&xps_map_mutex);
2580 
2581 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2582 	if (type == XPS_RXQS) {
2583 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2584 		nr_ids = dev->num_rx_queues;
2585 	} else {
2586 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2587 		if (num_possible_cpus() > 1)
2588 			online_mask = cpumask_bits(cpu_online_mask);
2589 		nr_ids = nr_cpu_ids;
2590 	}
2591 
2592 	if (maps_sz < L1_CACHE_BYTES)
2593 		maps_sz = L1_CACHE_BYTES;
2594 
2595 	/* The old dev_maps could be larger or smaller than the one we're
2596 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2597 	 * between. We could try to be smart, but let's be safe instead and only
2598 	 * copy foreign traffic classes if the two map sizes match.
2599 	 */
2600 	if (dev_maps &&
2601 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2602 		copy = true;
2603 
2604 	/* allocate memory for queue storage */
2605 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2606 	     j < nr_ids;) {
2607 		if (!new_dev_maps) {
2608 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2609 			if (!new_dev_maps) {
2610 				mutex_unlock(&xps_map_mutex);
2611 				return -ENOMEM;
2612 			}
2613 
2614 			new_dev_maps->nr_ids = nr_ids;
2615 			new_dev_maps->num_tc = num_tc;
2616 		}
2617 
2618 		tci = j * num_tc + tc;
2619 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2620 
2621 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2622 		if (!map)
2623 			goto error;
2624 
2625 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2626 	}
2627 
2628 	if (!new_dev_maps)
2629 		goto out_no_new_maps;
2630 
2631 	if (!dev_maps) {
2632 		/* Increment static keys at most once per type */
2633 		static_key_slow_inc_cpuslocked(&xps_needed);
2634 		if (type == XPS_RXQS)
2635 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2636 	}
2637 
2638 	for (j = 0; j < nr_ids; j++) {
2639 		bool skip_tc = false;
2640 
2641 		tci = j * num_tc + tc;
2642 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2643 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2644 			/* add tx-queue to CPU/rx-queue maps */
2645 			int pos = 0;
2646 
2647 			skip_tc = true;
2648 
2649 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2650 			while ((pos < map->len) && (map->queues[pos] != index))
2651 				pos++;
2652 
2653 			if (pos == map->len)
2654 				map->queues[map->len++] = index;
2655 #ifdef CONFIG_NUMA
2656 			if (type == XPS_CPUS) {
2657 				if (numa_node_id == -2)
2658 					numa_node_id = cpu_to_node(j);
2659 				else if (numa_node_id != cpu_to_node(j))
2660 					numa_node_id = -1;
2661 			}
2662 #endif
2663 		}
2664 
2665 		if (copy)
2666 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2667 					  skip_tc);
2668 	}
2669 
2670 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2671 
2672 	/* Cleanup old maps */
2673 	if (!dev_maps)
2674 		goto out_no_old_maps;
2675 
2676 	for (j = 0; j < dev_maps->nr_ids; j++) {
2677 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2678 			map = xmap_dereference(dev_maps->attr_map[tci]);
2679 			if (!map)
2680 				continue;
2681 
2682 			if (copy) {
2683 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2684 				if (map == new_map)
2685 					continue;
2686 			}
2687 
2688 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2689 			kfree_rcu(map, rcu);
2690 		}
2691 	}
2692 
2693 	old_dev_maps = dev_maps;
2694 
2695 out_no_old_maps:
2696 	dev_maps = new_dev_maps;
2697 	active = true;
2698 
2699 out_no_new_maps:
2700 	if (type == XPS_CPUS)
2701 		/* update Tx queue numa node */
2702 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2703 					     (numa_node_id >= 0) ?
2704 					     numa_node_id : NUMA_NO_NODE);
2705 
2706 	if (!dev_maps)
2707 		goto out_no_maps;
2708 
2709 	/* removes tx-queue from unused CPUs/rx-queues */
2710 	for (j = 0; j < dev_maps->nr_ids; j++) {
2711 		tci = j * dev_maps->num_tc;
2712 
2713 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2714 			if (i == tc &&
2715 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2716 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2717 				continue;
2718 
2719 			active |= remove_xps_queue(dev_maps,
2720 						   copy ? old_dev_maps : NULL,
2721 						   tci, index);
2722 		}
2723 	}
2724 
2725 	if (old_dev_maps)
2726 		kfree_rcu(old_dev_maps, rcu);
2727 
2728 	/* free map if not active */
2729 	if (!active)
2730 		reset_xps_maps(dev, dev_maps, type);
2731 
2732 out_no_maps:
2733 	mutex_unlock(&xps_map_mutex);
2734 
2735 	return 0;
2736 error:
2737 	/* remove any maps that we added */
2738 	for (j = 0; j < nr_ids; j++) {
2739 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2740 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2741 			map = copy ?
2742 			      xmap_dereference(dev_maps->attr_map[tci]) :
2743 			      NULL;
2744 			if (new_map && new_map != map)
2745 				kfree(new_map);
2746 		}
2747 	}
2748 
2749 	mutex_unlock(&xps_map_mutex);
2750 
2751 	kfree(new_dev_maps);
2752 	return -ENOMEM;
2753 }
2754 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2755 
2756 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2757 			u16 index)
2758 {
2759 	int ret;
2760 
2761 	cpus_read_lock();
2762 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2763 	cpus_read_unlock();
2764 
2765 	return ret;
2766 }
2767 EXPORT_SYMBOL(netif_set_xps_queue);
2768 
2769 #endif
2770 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2771 {
2772 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2773 
2774 	/* Unbind any subordinate channels */
2775 	while (txq-- != &dev->_tx[0]) {
2776 		if (txq->sb_dev)
2777 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2778 	}
2779 }
2780 
2781 void netdev_reset_tc(struct net_device *dev)
2782 {
2783 #ifdef CONFIG_XPS
2784 	netif_reset_xps_queues_gt(dev, 0);
2785 #endif
2786 	netdev_unbind_all_sb_channels(dev);
2787 
2788 	/* Reset TC configuration of device */
2789 	dev->num_tc = 0;
2790 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2791 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2792 }
2793 EXPORT_SYMBOL(netdev_reset_tc);
2794 
2795 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2796 {
2797 	if (tc >= dev->num_tc)
2798 		return -EINVAL;
2799 
2800 #ifdef CONFIG_XPS
2801 	netif_reset_xps_queues(dev, offset, count);
2802 #endif
2803 	dev->tc_to_txq[tc].count = count;
2804 	dev->tc_to_txq[tc].offset = offset;
2805 	return 0;
2806 }
2807 EXPORT_SYMBOL(netdev_set_tc_queue);
2808 
2809 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2810 {
2811 	if (num_tc > TC_MAX_QUEUE)
2812 		return -EINVAL;
2813 
2814 #ifdef CONFIG_XPS
2815 	netif_reset_xps_queues_gt(dev, 0);
2816 #endif
2817 	netdev_unbind_all_sb_channels(dev);
2818 
2819 	dev->num_tc = num_tc;
2820 	return 0;
2821 }
2822 EXPORT_SYMBOL(netdev_set_num_tc);
2823 
2824 void netdev_unbind_sb_channel(struct net_device *dev,
2825 			      struct net_device *sb_dev)
2826 {
2827 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2828 
2829 #ifdef CONFIG_XPS
2830 	netif_reset_xps_queues_gt(sb_dev, 0);
2831 #endif
2832 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2833 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2834 
2835 	while (txq-- != &dev->_tx[0]) {
2836 		if (txq->sb_dev == sb_dev)
2837 			txq->sb_dev = NULL;
2838 	}
2839 }
2840 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2841 
2842 int netdev_bind_sb_channel_queue(struct net_device *dev,
2843 				 struct net_device *sb_dev,
2844 				 u8 tc, u16 count, u16 offset)
2845 {
2846 	/* Make certain the sb_dev and dev are already configured */
2847 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2848 		return -EINVAL;
2849 
2850 	/* We cannot hand out queues we don't have */
2851 	if ((offset + count) > dev->real_num_tx_queues)
2852 		return -EINVAL;
2853 
2854 	/* Record the mapping */
2855 	sb_dev->tc_to_txq[tc].count = count;
2856 	sb_dev->tc_to_txq[tc].offset = offset;
2857 
2858 	/* Provide a way for Tx queue to find the tc_to_txq map or
2859 	 * XPS map for itself.
2860 	 */
2861 	while (count--)
2862 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2863 
2864 	return 0;
2865 }
2866 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2867 
2868 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2869 {
2870 	/* Do not use a multiqueue device to represent a subordinate channel */
2871 	if (netif_is_multiqueue(dev))
2872 		return -ENODEV;
2873 
2874 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2875 	 * Channel 0 is meant to be "native" mode and used only to represent
2876 	 * the main root device. We allow writing 0 to reset the device back
2877 	 * to normal mode after being used as a subordinate channel.
2878 	 */
2879 	if (channel > S16_MAX)
2880 		return -EINVAL;
2881 
2882 	dev->num_tc = -channel;
2883 
2884 	return 0;
2885 }
2886 EXPORT_SYMBOL(netdev_set_sb_channel);
2887 
2888 /*
2889  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2890  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2891  */
2892 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2893 {
2894 	bool disabling;
2895 	int rc;
2896 
2897 	disabling = txq < dev->real_num_tx_queues;
2898 
2899 	if (txq < 1 || txq > dev->num_tx_queues)
2900 		return -EINVAL;
2901 
2902 	if (dev->reg_state == NETREG_REGISTERED ||
2903 	    dev->reg_state == NETREG_UNREGISTERING) {
2904 		ASSERT_RTNL();
2905 
2906 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2907 						  txq);
2908 		if (rc)
2909 			return rc;
2910 
2911 		if (dev->num_tc)
2912 			netif_setup_tc(dev, txq);
2913 
2914 		dev_qdisc_change_real_num_tx(dev, txq);
2915 
2916 		dev->real_num_tx_queues = txq;
2917 
2918 		if (disabling) {
2919 			synchronize_net();
2920 			qdisc_reset_all_tx_gt(dev, txq);
2921 #ifdef CONFIG_XPS
2922 			netif_reset_xps_queues_gt(dev, txq);
2923 #endif
2924 		}
2925 	} else {
2926 		dev->real_num_tx_queues = txq;
2927 	}
2928 
2929 	return 0;
2930 }
2931 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2932 
2933 #ifdef CONFIG_SYSFS
2934 /**
2935  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2936  *	@dev: Network device
2937  *	@rxq: Actual number of RX queues
2938  *
2939  *	This must be called either with the rtnl_lock held or before
2940  *	registration of the net device.  Returns 0 on success, or a
2941  *	negative error code.  If called before registration, it always
2942  *	succeeds.
2943  */
2944 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2945 {
2946 	int rc;
2947 
2948 	if (rxq < 1 || rxq > dev->num_rx_queues)
2949 		return -EINVAL;
2950 
2951 	if (dev->reg_state == NETREG_REGISTERED) {
2952 		ASSERT_RTNL();
2953 
2954 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2955 						  rxq);
2956 		if (rc)
2957 			return rc;
2958 	}
2959 
2960 	dev->real_num_rx_queues = rxq;
2961 	return 0;
2962 }
2963 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2964 #endif
2965 
2966 /**
2967  *	netif_set_real_num_queues - set actual number of RX and TX queues used
2968  *	@dev: Network device
2969  *	@txq: Actual number of TX queues
2970  *	@rxq: Actual number of RX queues
2971  *
2972  *	Set the real number of both TX and RX queues.
2973  *	Does nothing if the number of queues is already correct.
2974  */
2975 int netif_set_real_num_queues(struct net_device *dev,
2976 			      unsigned int txq, unsigned int rxq)
2977 {
2978 	unsigned int old_rxq = dev->real_num_rx_queues;
2979 	int err;
2980 
2981 	if (txq < 1 || txq > dev->num_tx_queues ||
2982 	    rxq < 1 || rxq > dev->num_rx_queues)
2983 		return -EINVAL;
2984 
2985 	/* Start from increases, so the error path only does decreases -
2986 	 * decreases can't fail.
2987 	 */
2988 	if (rxq > dev->real_num_rx_queues) {
2989 		err = netif_set_real_num_rx_queues(dev, rxq);
2990 		if (err)
2991 			return err;
2992 	}
2993 	if (txq > dev->real_num_tx_queues) {
2994 		err = netif_set_real_num_tx_queues(dev, txq);
2995 		if (err)
2996 			goto undo_rx;
2997 	}
2998 	if (rxq < dev->real_num_rx_queues)
2999 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3000 	if (txq < dev->real_num_tx_queues)
3001 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3002 
3003 	return 0;
3004 undo_rx:
3005 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3006 	return err;
3007 }
3008 EXPORT_SYMBOL(netif_set_real_num_queues);
3009 
3010 /**
3011  * netif_set_tso_max_size() - set the max size of TSO frames supported
3012  * @dev:	netdev to update
3013  * @size:	max skb->len of a TSO frame
3014  *
3015  * Set the limit on the size of TSO super-frames the device can handle.
3016  * Unless explicitly set the stack will assume the value of
3017  * %GSO_LEGACY_MAX_SIZE.
3018  */
3019 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3020 {
3021 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3022 	if (size < READ_ONCE(dev->gso_max_size))
3023 		netif_set_gso_max_size(dev, size);
3024 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3025 		netif_set_gso_ipv4_max_size(dev, size);
3026 }
3027 EXPORT_SYMBOL(netif_set_tso_max_size);
3028 
3029 /**
3030  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3031  * @dev:	netdev to update
3032  * @segs:	max number of TCP segments
3033  *
3034  * Set the limit on the number of TCP segments the device can generate from
3035  * a single TSO super-frame.
3036  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3037  */
3038 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3039 {
3040 	dev->tso_max_segs = segs;
3041 	if (segs < READ_ONCE(dev->gso_max_segs))
3042 		netif_set_gso_max_segs(dev, segs);
3043 }
3044 EXPORT_SYMBOL(netif_set_tso_max_segs);
3045 
3046 /**
3047  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3048  * @to:		netdev to update
3049  * @from:	netdev from which to copy the limits
3050  */
3051 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3052 {
3053 	netif_set_tso_max_size(to, from->tso_max_size);
3054 	netif_set_tso_max_segs(to, from->tso_max_segs);
3055 }
3056 EXPORT_SYMBOL(netif_inherit_tso_max);
3057 
3058 /**
3059  * netif_get_num_default_rss_queues - default number of RSS queues
3060  *
3061  * Default value is the number of physical cores if there are only 1 or 2, or
3062  * divided by 2 if there are more.
3063  */
3064 int netif_get_num_default_rss_queues(void)
3065 {
3066 	cpumask_var_t cpus;
3067 	int cpu, count = 0;
3068 
3069 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3070 		return 1;
3071 
3072 	cpumask_copy(cpus, cpu_online_mask);
3073 	for_each_cpu(cpu, cpus) {
3074 		++count;
3075 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3076 	}
3077 	free_cpumask_var(cpus);
3078 
3079 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3080 }
3081 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3082 
3083 static void __netif_reschedule(struct Qdisc *q)
3084 {
3085 	struct softnet_data *sd;
3086 	unsigned long flags;
3087 
3088 	local_irq_save(flags);
3089 	sd = this_cpu_ptr(&softnet_data);
3090 	q->next_sched = NULL;
3091 	*sd->output_queue_tailp = q;
3092 	sd->output_queue_tailp = &q->next_sched;
3093 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3094 	local_irq_restore(flags);
3095 }
3096 
3097 void __netif_schedule(struct Qdisc *q)
3098 {
3099 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3100 		__netif_reschedule(q);
3101 }
3102 EXPORT_SYMBOL(__netif_schedule);
3103 
3104 struct dev_kfree_skb_cb {
3105 	enum skb_drop_reason reason;
3106 };
3107 
3108 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3109 {
3110 	return (struct dev_kfree_skb_cb *)skb->cb;
3111 }
3112 
3113 void netif_schedule_queue(struct netdev_queue *txq)
3114 {
3115 	rcu_read_lock();
3116 	if (!netif_xmit_stopped(txq)) {
3117 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3118 
3119 		__netif_schedule(q);
3120 	}
3121 	rcu_read_unlock();
3122 }
3123 EXPORT_SYMBOL(netif_schedule_queue);
3124 
3125 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3126 {
3127 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3128 		struct Qdisc *q;
3129 
3130 		rcu_read_lock();
3131 		q = rcu_dereference(dev_queue->qdisc);
3132 		__netif_schedule(q);
3133 		rcu_read_unlock();
3134 	}
3135 }
3136 EXPORT_SYMBOL(netif_tx_wake_queue);
3137 
3138 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3139 {
3140 	unsigned long flags;
3141 
3142 	if (unlikely(!skb))
3143 		return;
3144 
3145 	if (likely(refcount_read(&skb->users) == 1)) {
3146 		smp_rmb();
3147 		refcount_set(&skb->users, 0);
3148 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3149 		return;
3150 	}
3151 	get_kfree_skb_cb(skb)->reason = reason;
3152 	local_irq_save(flags);
3153 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3154 	__this_cpu_write(softnet_data.completion_queue, skb);
3155 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3156 	local_irq_restore(flags);
3157 }
3158 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3159 
3160 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3161 {
3162 	if (in_hardirq() || irqs_disabled())
3163 		dev_kfree_skb_irq_reason(skb, reason);
3164 	else
3165 		kfree_skb_reason(skb, reason);
3166 }
3167 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3168 
3169 
3170 /**
3171  * netif_device_detach - mark device as removed
3172  * @dev: network device
3173  *
3174  * Mark device as removed from system and therefore no longer available.
3175  */
3176 void netif_device_detach(struct net_device *dev)
3177 {
3178 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3179 	    netif_running(dev)) {
3180 		netif_tx_stop_all_queues(dev);
3181 	}
3182 }
3183 EXPORT_SYMBOL(netif_device_detach);
3184 
3185 /**
3186  * netif_device_attach - mark device as attached
3187  * @dev: network device
3188  *
3189  * Mark device as attached from system and restart if needed.
3190  */
3191 void netif_device_attach(struct net_device *dev)
3192 {
3193 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3194 	    netif_running(dev)) {
3195 		netif_tx_wake_all_queues(dev);
3196 		__netdev_watchdog_up(dev);
3197 	}
3198 }
3199 EXPORT_SYMBOL(netif_device_attach);
3200 
3201 /*
3202  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3203  * to be used as a distribution range.
3204  */
3205 static u16 skb_tx_hash(const struct net_device *dev,
3206 		       const struct net_device *sb_dev,
3207 		       struct sk_buff *skb)
3208 {
3209 	u32 hash;
3210 	u16 qoffset = 0;
3211 	u16 qcount = dev->real_num_tx_queues;
3212 
3213 	if (dev->num_tc) {
3214 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3215 
3216 		qoffset = sb_dev->tc_to_txq[tc].offset;
3217 		qcount = sb_dev->tc_to_txq[tc].count;
3218 		if (unlikely(!qcount)) {
3219 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3220 					     sb_dev->name, qoffset, tc);
3221 			qoffset = 0;
3222 			qcount = dev->real_num_tx_queues;
3223 		}
3224 	}
3225 
3226 	if (skb_rx_queue_recorded(skb)) {
3227 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3228 		hash = skb_get_rx_queue(skb);
3229 		if (hash >= qoffset)
3230 			hash -= qoffset;
3231 		while (unlikely(hash >= qcount))
3232 			hash -= qcount;
3233 		return hash + qoffset;
3234 	}
3235 
3236 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3237 }
3238 
3239 void skb_warn_bad_offload(const struct sk_buff *skb)
3240 {
3241 	static const netdev_features_t null_features;
3242 	struct net_device *dev = skb->dev;
3243 	const char *name = "";
3244 
3245 	if (!net_ratelimit())
3246 		return;
3247 
3248 	if (dev) {
3249 		if (dev->dev.parent)
3250 			name = dev_driver_string(dev->dev.parent);
3251 		else
3252 			name = netdev_name(dev);
3253 	}
3254 	skb_dump(KERN_WARNING, skb, false);
3255 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3256 	     name, dev ? &dev->features : &null_features,
3257 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3258 }
3259 
3260 /*
3261  * Invalidate hardware checksum when packet is to be mangled, and
3262  * complete checksum manually on outgoing path.
3263  */
3264 int skb_checksum_help(struct sk_buff *skb)
3265 {
3266 	__wsum csum;
3267 	int ret = 0, offset;
3268 
3269 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3270 		goto out_set_summed;
3271 
3272 	if (unlikely(skb_is_gso(skb))) {
3273 		skb_warn_bad_offload(skb);
3274 		return -EINVAL;
3275 	}
3276 
3277 	/* Before computing a checksum, we should make sure no frag could
3278 	 * be modified by an external entity : checksum could be wrong.
3279 	 */
3280 	if (skb_has_shared_frag(skb)) {
3281 		ret = __skb_linearize(skb);
3282 		if (ret)
3283 			goto out;
3284 	}
3285 
3286 	offset = skb_checksum_start_offset(skb);
3287 	ret = -EINVAL;
3288 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3289 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3290 		goto out;
3291 	}
3292 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3293 
3294 	offset += skb->csum_offset;
3295 	if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb))) {
3296 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3297 		goto out;
3298 	}
3299 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3300 	if (ret)
3301 		goto out;
3302 
3303 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3304 out_set_summed:
3305 	skb->ip_summed = CHECKSUM_NONE;
3306 out:
3307 	return ret;
3308 }
3309 EXPORT_SYMBOL(skb_checksum_help);
3310 
3311 int skb_crc32c_csum_help(struct sk_buff *skb)
3312 {
3313 	__le32 crc32c_csum;
3314 	int ret = 0, offset, start;
3315 
3316 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3317 		goto out;
3318 
3319 	if (unlikely(skb_is_gso(skb)))
3320 		goto out;
3321 
3322 	/* Before computing a checksum, we should make sure no frag could
3323 	 * be modified by an external entity : checksum could be wrong.
3324 	 */
3325 	if (unlikely(skb_has_shared_frag(skb))) {
3326 		ret = __skb_linearize(skb);
3327 		if (ret)
3328 			goto out;
3329 	}
3330 	start = skb_checksum_start_offset(skb);
3331 	offset = start + offsetof(struct sctphdr, checksum);
3332 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3333 		ret = -EINVAL;
3334 		goto out;
3335 	}
3336 
3337 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3338 	if (ret)
3339 		goto out;
3340 
3341 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3342 						  skb->len - start, ~(__u32)0,
3343 						  crc32c_csum_stub));
3344 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3345 	skb_reset_csum_not_inet(skb);
3346 out:
3347 	return ret;
3348 }
3349 
3350 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3351 {
3352 	__be16 type = skb->protocol;
3353 
3354 	/* Tunnel gso handlers can set protocol to ethernet. */
3355 	if (type == htons(ETH_P_TEB)) {
3356 		struct ethhdr *eth;
3357 
3358 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3359 			return 0;
3360 
3361 		eth = (struct ethhdr *)skb->data;
3362 		type = eth->h_proto;
3363 	}
3364 
3365 	return vlan_get_protocol_and_depth(skb, type, depth);
3366 }
3367 
3368 
3369 /* Take action when hardware reception checksum errors are detected. */
3370 #ifdef CONFIG_BUG
3371 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3372 {
3373 	netdev_err(dev, "hw csum failure\n");
3374 	skb_dump(KERN_ERR, skb, true);
3375 	dump_stack();
3376 }
3377 
3378 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3379 {
3380 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3381 }
3382 EXPORT_SYMBOL(netdev_rx_csum_fault);
3383 #endif
3384 
3385 /* XXX: check that highmem exists at all on the given machine. */
3386 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3387 {
3388 #ifdef CONFIG_HIGHMEM
3389 	int i;
3390 
3391 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3392 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3393 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3394 
3395 			if (PageHighMem(skb_frag_page(frag)))
3396 				return 1;
3397 		}
3398 	}
3399 #endif
3400 	return 0;
3401 }
3402 
3403 /* If MPLS offload request, verify we are testing hardware MPLS features
3404  * instead of standard features for the netdev.
3405  */
3406 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3407 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3408 					   netdev_features_t features,
3409 					   __be16 type)
3410 {
3411 	if (eth_p_mpls(type))
3412 		features &= skb->dev->mpls_features;
3413 
3414 	return features;
3415 }
3416 #else
3417 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3418 					   netdev_features_t features,
3419 					   __be16 type)
3420 {
3421 	return features;
3422 }
3423 #endif
3424 
3425 static netdev_features_t harmonize_features(struct sk_buff *skb,
3426 	netdev_features_t features)
3427 {
3428 	__be16 type;
3429 
3430 	type = skb_network_protocol(skb, NULL);
3431 	features = net_mpls_features(skb, features, type);
3432 
3433 	if (skb->ip_summed != CHECKSUM_NONE &&
3434 	    !can_checksum_protocol(features, type)) {
3435 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3436 	}
3437 	if (illegal_highdma(skb->dev, skb))
3438 		features &= ~NETIF_F_SG;
3439 
3440 	return features;
3441 }
3442 
3443 netdev_features_t passthru_features_check(struct sk_buff *skb,
3444 					  struct net_device *dev,
3445 					  netdev_features_t features)
3446 {
3447 	return features;
3448 }
3449 EXPORT_SYMBOL(passthru_features_check);
3450 
3451 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3452 					     struct net_device *dev,
3453 					     netdev_features_t features)
3454 {
3455 	return vlan_features_check(skb, features);
3456 }
3457 
3458 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3459 					    struct net_device *dev,
3460 					    netdev_features_t features)
3461 {
3462 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3463 
3464 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3465 		return features & ~NETIF_F_GSO_MASK;
3466 
3467 	if (!skb_shinfo(skb)->gso_type) {
3468 		skb_warn_bad_offload(skb);
3469 		return features & ~NETIF_F_GSO_MASK;
3470 	}
3471 
3472 	/* Support for GSO partial features requires software
3473 	 * intervention before we can actually process the packets
3474 	 * so we need to strip support for any partial features now
3475 	 * and we can pull them back in after we have partially
3476 	 * segmented the frame.
3477 	 */
3478 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3479 		features &= ~dev->gso_partial_features;
3480 
3481 	/* Make sure to clear the IPv4 ID mangling feature if the
3482 	 * IPv4 header has the potential to be fragmented.
3483 	 */
3484 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3485 		struct iphdr *iph = skb->encapsulation ?
3486 				    inner_ip_hdr(skb) : ip_hdr(skb);
3487 
3488 		if (!(iph->frag_off & htons(IP_DF)))
3489 			features &= ~NETIF_F_TSO_MANGLEID;
3490 	}
3491 
3492 	return features;
3493 }
3494 
3495 netdev_features_t netif_skb_features(struct sk_buff *skb)
3496 {
3497 	struct net_device *dev = skb->dev;
3498 	netdev_features_t features = dev->features;
3499 
3500 	if (skb_is_gso(skb))
3501 		features = gso_features_check(skb, dev, features);
3502 
3503 	/* If encapsulation offload request, verify we are testing
3504 	 * hardware encapsulation features instead of standard
3505 	 * features for the netdev
3506 	 */
3507 	if (skb->encapsulation)
3508 		features &= dev->hw_enc_features;
3509 
3510 	if (skb_vlan_tagged(skb))
3511 		features = netdev_intersect_features(features,
3512 						     dev->vlan_features |
3513 						     NETIF_F_HW_VLAN_CTAG_TX |
3514 						     NETIF_F_HW_VLAN_STAG_TX);
3515 
3516 	if (dev->netdev_ops->ndo_features_check)
3517 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3518 								features);
3519 	else
3520 		features &= dflt_features_check(skb, dev, features);
3521 
3522 	return harmonize_features(skb, features);
3523 }
3524 EXPORT_SYMBOL(netif_skb_features);
3525 
3526 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3527 		    struct netdev_queue *txq, bool more)
3528 {
3529 	unsigned int len;
3530 	int rc;
3531 
3532 	if (dev_nit_active(dev))
3533 		dev_queue_xmit_nit(skb, dev);
3534 
3535 	len = skb->len;
3536 	trace_net_dev_start_xmit(skb, dev);
3537 	rc = netdev_start_xmit(skb, dev, txq, more);
3538 	trace_net_dev_xmit(skb, rc, dev, len);
3539 
3540 	return rc;
3541 }
3542 
3543 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3544 				    struct netdev_queue *txq, int *ret)
3545 {
3546 	struct sk_buff *skb = first;
3547 	int rc = NETDEV_TX_OK;
3548 
3549 	while (skb) {
3550 		struct sk_buff *next = skb->next;
3551 
3552 		skb_mark_not_on_list(skb);
3553 		rc = xmit_one(skb, dev, txq, next != NULL);
3554 		if (unlikely(!dev_xmit_complete(rc))) {
3555 			skb->next = next;
3556 			goto out;
3557 		}
3558 
3559 		skb = next;
3560 		if (netif_tx_queue_stopped(txq) && skb) {
3561 			rc = NETDEV_TX_BUSY;
3562 			break;
3563 		}
3564 	}
3565 
3566 out:
3567 	*ret = rc;
3568 	return skb;
3569 }
3570 
3571 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3572 					  netdev_features_t features)
3573 {
3574 	if (skb_vlan_tag_present(skb) &&
3575 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3576 		skb = __vlan_hwaccel_push_inside(skb);
3577 	return skb;
3578 }
3579 
3580 int skb_csum_hwoffload_help(struct sk_buff *skb,
3581 			    const netdev_features_t features)
3582 {
3583 	if (unlikely(skb_csum_is_sctp(skb)))
3584 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3585 			skb_crc32c_csum_help(skb);
3586 
3587 	if (features & NETIF_F_HW_CSUM)
3588 		return 0;
3589 
3590 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3591 		switch (skb->csum_offset) {
3592 		case offsetof(struct tcphdr, check):
3593 		case offsetof(struct udphdr, check):
3594 			return 0;
3595 		}
3596 	}
3597 
3598 	return skb_checksum_help(skb);
3599 }
3600 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3601 
3602 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3603 {
3604 	netdev_features_t features;
3605 
3606 	features = netif_skb_features(skb);
3607 	skb = validate_xmit_vlan(skb, features);
3608 	if (unlikely(!skb))
3609 		goto out_null;
3610 
3611 	skb = sk_validate_xmit_skb(skb, dev);
3612 	if (unlikely(!skb))
3613 		goto out_null;
3614 
3615 	if (netif_needs_gso(skb, features)) {
3616 		struct sk_buff *segs;
3617 
3618 		segs = skb_gso_segment(skb, features);
3619 		if (IS_ERR(segs)) {
3620 			goto out_kfree_skb;
3621 		} else if (segs) {
3622 			consume_skb(skb);
3623 			skb = segs;
3624 		}
3625 	} else {
3626 		if (skb_needs_linearize(skb, features) &&
3627 		    __skb_linearize(skb))
3628 			goto out_kfree_skb;
3629 
3630 		/* If packet is not checksummed and device does not
3631 		 * support checksumming for this protocol, complete
3632 		 * checksumming here.
3633 		 */
3634 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3635 			if (skb->encapsulation)
3636 				skb_set_inner_transport_header(skb,
3637 							       skb_checksum_start_offset(skb));
3638 			else
3639 				skb_set_transport_header(skb,
3640 							 skb_checksum_start_offset(skb));
3641 			if (skb_csum_hwoffload_help(skb, features))
3642 				goto out_kfree_skb;
3643 		}
3644 	}
3645 
3646 	skb = validate_xmit_xfrm(skb, features, again);
3647 
3648 	return skb;
3649 
3650 out_kfree_skb:
3651 	kfree_skb(skb);
3652 out_null:
3653 	dev_core_stats_tx_dropped_inc(dev);
3654 	return NULL;
3655 }
3656 
3657 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3658 {
3659 	struct sk_buff *next, *head = NULL, *tail;
3660 
3661 	for (; skb != NULL; skb = next) {
3662 		next = skb->next;
3663 		skb_mark_not_on_list(skb);
3664 
3665 		/* in case skb wont be segmented, point to itself */
3666 		skb->prev = skb;
3667 
3668 		skb = validate_xmit_skb(skb, dev, again);
3669 		if (!skb)
3670 			continue;
3671 
3672 		if (!head)
3673 			head = skb;
3674 		else
3675 			tail->next = skb;
3676 		/* If skb was segmented, skb->prev points to
3677 		 * the last segment. If not, it still contains skb.
3678 		 */
3679 		tail = skb->prev;
3680 	}
3681 	return head;
3682 }
3683 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3684 
3685 static void qdisc_pkt_len_init(struct sk_buff *skb)
3686 {
3687 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3688 
3689 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3690 
3691 	/* To get more precise estimation of bytes sent on wire,
3692 	 * we add to pkt_len the headers size of all segments
3693 	 */
3694 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3695 		u16 gso_segs = shinfo->gso_segs;
3696 		unsigned int hdr_len;
3697 
3698 		/* mac layer + network layer */
3699 		hdr_len = skb_transport_offset(skb);
3700 
3701 		/* + transport layer */
3702 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3703 			const struct tcphdr *th;
3704 			struct tcphdr _tcphdr;
3705 
3706 			th = skb_header_pointer(skb, hdr_len,
3707 						sizeof(_tcphdr), &_tcphdr);
3708 			if (likely(th))
3709 				hdr_len += __tcp_hdrlen(th);
3710 		} else {
3711 			struct udphdr _udphdr;
3712 
3713 			if (skb_header_pointer(skb, hdr_len,
3714 					       sizeof(_udphdr), &_udphdr))
3715 				hdr_len += sizeof(struct udphdr);
3716 		}
3717 
3718 		if (shinfo->gso_type & SKB_GSO_DODGY)
3719 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3720 						shinfo->gso_size);
3721 
3722 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3723 	}
3724 }
3725 
3726 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3727 			     struct sk_buff **to_free,
3728 			     struct netdev_queue *txq)
3729 {
3730 	int rc;
3731 
3732 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3733 	if (rc == NET_XMIT_SUCCESS)
3734 		trace_qdisc_enqueue(q, txq, skb);
3735 	return rc;
3736 }
3737 
3738 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3739 				 struct net_device *dev,
3740 				 struct netdev_queue *txq)
3741 {
3742 	spinlock_t *root_lock = qdisc_lock(q);
3743 	struct sk_buff *to_free = NULL;
3744 	bool contended;
3745 	int rc;
3746 
3747 	qdisc_calculate_pkt_len(skb, q);
3748 
3749 	if (q->flags & TCQ_F_NOLOCK) {
3750 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3751 		    qdisc_run_begin(q)) {
3752 			/* Retest nolock_qdisc_is_empty() within the protection
3753 			 * of q->seqlock to protect from racing with requeuing.
3754 			 */
3755 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3756 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3757 				__qdisc_run(q);
3758 				qdisc_run_end(q);
3759 
3760 				goto no_lock_out;
3761 			}
3762 
3763 			qdisc_bstats_cpu_update(q, skb);
3764 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3765 			    !nolock_qdisc_is_empty(q))
3766 				__qdisc_run(q);
3767 
3768 			qdisc_run_end(q);
3769 			return NET_XMIT_SUCCESS;
3770 		}
3771 
3772 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3773 		qdisc_run(q);
3774 
3775 no_lock_out:
3776 		if (unlikely(to_free))
3777 			kfree_skb_list_reason(to_free,
3778 					      SKB_DROP_REASON_QDISC_DROP);
3779 		return rc;
3780 	}
3781 
3782 	/*
3783 	 * Heuristic to force contended enqueues to serialize on a
3784 	 * separate lock before trying to get qdisc main lock.
3785 	 * This permits qdisc->running owner to get the lock more
3786 	 * often and dequeue packets faster.
3787 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3788 	 * and then other tasks will only enqueue packets. The packets will be
3789 	 * sent after the qdisc owner is scheduled again. To prevent this
3790 	 * scenario the task always serialize on the lock.
3791 	 */
3792 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3793 	if (unlikely(contended))
3794 		spin_lock(&q->busylock);
3795 
3796 	spin_lock(root_lock);
3797 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3798 		__qdisc_drop(skb, &to_free);
3799 		rc = NET_XMIT_DROP;
3800 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3801 		   qdisc_run_begin(q)) {
3802 		/*
3803 		 * This is a work-conserving queue; there are no old skbs
3804 		 * waiting to be sent out; and the qdisc is not running -
3805 		 * xmit the skb directly.
3806 		 */
3807 
3808 		qdisc_bstats_update(q, skb);
3809 
3810 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3811 			if (unlikely(contended)) {
3812 				spin_unlock(&q->busylock);
3813 				contended = false;
3814 			}
3815 			__qdisc_run(q);
3816 		}
3817 
3818 		qdisc_run_end(q);
3819 		rc = NET_XMIT_SUCCESS;
3820 	} else {
3821 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3822 		if (qdisc_run_begin(q)) {
3823 			if (unlikely(contended)) {
3824 				spin_unlock(&q->busylock);
3825 				contended = false;
3826 			}
3827 			__qdisc_run(q);
3828 			qdisc_run_end(q);
3829 		}
3830 	}
3831 	spin_unlock(root_lock);
3832 	if (unlikely(to_free))
3833 		kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3834 	if (unlikely(contended))
3835 		spin_unlock(&q->busylock);
3836 	return rc;
3837 }
3838 
3839 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3840 static void skb_update_prio(struct sk_buff *skb)
3841 {
3842 	const struct netprio_map *map;
3843 	const struct sock *sk;
3844 	unsigned int prioidx;
3845 
3846 	if (skb->priority)
3847 		return;
3848 	map = rcu_dereference_bh(skb->dev->priomap);
3849 	if (!map)
3850 		return;
3851 	sk = skb_to_full_sk(skb);
3852 	if (!sk)
3853 		return;
3854 
3855 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3856 
3857 	if (prioidx < map->priomap_len)
3858 		skb->priority = map->priomap[prioidx];
3859 }
3860 #else
3861 #define skb_update_prio(skb)
3862 #endif
3863 
3864 /**
3865  *	dev_loopback_xmit - loop back @skb
3866  *	@net: network namespace this loopback is happening in
3867  *	@sk:  sk needed to be a netfilter okfn
3868  *	@skb: buffer to transmit
3869  */
3870 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3871 {
3872 	skb_reset_mac_header(skb);
3873 	__skb_pull(skb, skb_network_offset(skb));
3874 	skb->pkt_type = PACKET_LOOPBACK;
3875 	if (skb->ip_summed == CHECKSUM_NONE)
3876 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3877 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3878 	skb_dst_force(skb);
3879 	netif_rx(skb);
3880 	return 0;
3881 }
3882 EXPORT_SYMBOL(dev_loopback_xmit);
3883 
3884 #ifdef CONFIG_NET_EGRESS
3885 static struct netdev_queue *
3886 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3887 {
3888 	int qm = skb_get_queue_mapping(skb);
3889 
3890 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3891 }
3892 
3893 static bool netdev_xmit_txqueue_skipped(void)
3894 {
3895 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3896 }
3897 
3898 void netdev_xmit_skip_txqueue(bool skip)
3899 {
3900 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3901 }
3902 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3903 #endif /* CONFIG_NET_EGRESS */
3904 
3905 #ifdef CONFIG_NET_XGRESS
3906 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb)
3907 {
3908 	int ret = TC_ACT_UNSPEC;
3909 #ifdef CONFIG_NET_CLS_ACT
3910 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3911 	struct tcf_result res;
3912 
3913 	if (!miniq)
3914 		return ret;
3915 
3916 	tc_skb_cb(skb)->mru = 0;
3917 	tc_skb_cb(skb)->post_ct = false;
3918 
3919 	mini_qdisc_bstats_cpu_update(miniq, skb);
3920 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3921 	/* Only tcf related quirks below. */
3922 	switch (ret) {
3923 	case TC_ACT_SHOT:
3924 		mini_qdisc_qstats_cpu_drop(miniq);
3925 		break;
3926 	case TC_ACT_OK:
3927 	case TC_ACT_RECLASSIFY:
3928 		skb->tc_index = TC_H_MIN(res.classid);
3929 		break;
3930 	}
3931 #endif /* CONFIG_NET_CLS_ACT */
3932 	return ret;
3933 }
3934 
3935 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3936 
3937 void tcx_inc(void)
3938 {
3939 	static_branch_inc(&tcx_needed_key);
3940 }
3941 
3942 void tcx_dec(void)
3943 {
3944 	static_branch_dec(&tcx_needed_key);
3945 }
3946 
3947 static __always_inline enum tcx_action_base
3948 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3949 	const bool needs_mac)
3950 {
3951 	const struct bpf_mprog_fp *fp;
3952 	const struct bpf_prog *prog;
3953 	int ret = TCX_NEXT;
3954 
3955 	if (needs_mac)
3956 		__skb_push(skb, skb->mac_len);
3957 	bpf_mprog_foreach_prog(entry, fp, prog) {
3958 		bpf_compute_data_pointers(skb);
3959 		ret = bpf_prog_run(prog, skb);
3960 		if (ret != TCX_NEXT)
3961 			break;
3962 	}
3963 	if (needs_mac)
3964 		__skb_pull(skb, skb->mac_len);
3965 	return tcx_action_code(skb, ret);
3966 }
3967 
3968 static __always_inline struct sk_buff *
3969 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3970 		   struct net_device *orig_dev, bool *another)
3971 {
3972 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
3973 	int sch_ret;
3974 
3975 	if (!entry)
3976 		return skb;
3977 	if (*pt_prev) {
3978 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3979 		*pt_prev = NULL;
3980 	}
3981 
3982 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3983 	tcx_set_ingress(skb, true);
3984 
3985 	if (static_branch_unlikely(&tcx_needed_key)) {
3986 		sch_ret = tcx_run(entry, skb, true);
3987 		if (sch_ret != TC_ACT_UNSPEC)
3988 			goto ingress_verdict;
3989 	}
3990 	sch_ret = tc_run(tcx_entry(entry), skb);
3991 ingress_verdict:
3992 	switch (sch_ret) {
3993 	case TC_ACT_REDIRECT:
3994 		/* skb_mac_header check was done by BPF, so we can safely
3995 		 * push the L2 header back before redirecting to another
3996 		 * netdev.
3997 		 */
3998 		__skb_push(skb, skb->mac_len);
3999 		if (skb_do_redirect(skb) == -EAGAIN) {
4000 			__skb_pull(skb, skb->mac_len);
4001 			*another = true;
4002 			break;
4003 		}
4004 		*ret = NET_RX_SUCCESS;
4005 		return NULL;
4006 	case TC_ACT_SHOT:
4007 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
4008 		*ret = NET_RX_DROP;
4009 		return NULL;
4010 	/* used by tc_run */
4011 	case TC_ACT_STOLEN:
4012 	case TC_ACT_QUEUED:
4013 	case TC_ACT_TRAP:
4014 		consume_skb(skb);
4015 		fallthrough;
4016 	case TC_ACT_CONSUMED:
4017 		*ret = NET_RX_SUCCESS;
4018 		return NULL;
4019 	}
4020 
4021 	return skb;
4022 }
4023 
4024 static __always_inline struct sk_buff *
4025 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4026 {
4027 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4028 	int sch_ret;
4029 
4030 	if (!entry)
4031 		return skb;
4032 
4033 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4034 	 * already set by the caller.
4035 	 */
4036 	if (static_branch_unlikely(&tcx_needed_key)) {
4037 		sch_ret = tcx_run(entry, skb, false);
4038 		if (sch_ret != TC_ACT_UNSPEC)
4039 			goto egress_verdict;
4040 	}
4041 	sch_ret = tc_run(tcx_entry(entry), skb);
4042 egress_verdict:
4043 	switch (sch_ret) {
4044 	case TC_ACT_REDIRECT:
4045 		/* No need to push/pop skb's mac_header here on egress! */
4046 		skb_do_redirect(skb);
4047 		*ret = NET_XMIT_SUCCESS;
4048 		return NULL;
4049 	case TC_ACT_SHOT:
4050 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
4051 		*ret = NET_XMIT_DROP;
4052 		return NULL;
4053 	/* used by tc_run */
4054 	case TC_ACT_STOLEN:
4055 	case TC_ACT_QUEUED:
4056 	case TC_ACT_TRAP:
4057 		*ret = NET_XMIT_SUCCESS;
4058 		return NULL;
4059 	}
4060 
4061 	return skb;
4062 }
4063 #else
4064 static __always_inline struct sk_buff *
4065 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4066 		   struct net_device *orig_dev, bool *another)
4067 {
4068 	return skb;
4069 }
4070 
4071 static __always_inline struct sk_buff *
4072 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4073 {
4074 	return skb;
4075 }
4076 #endif /* CONFIG_NET_XGRESS */
4077 
4078 #ifdef CONFIG_XPS
4079 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4080 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4081 {
4082 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4083 	struct xps_map *map;
4084 	int queue_index = -1;
4085 
4086 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4087 		return queue_index;
4088 
4089 	tci *= dev_maps->num_tc;
4090 	tci += tc;
4091 
4092 	map = rcu_dereference(dev_maps->attr_map[tci]);
4093 	if (map) {
4094 		if (map->len == 1)
4095 			queue_index = map->queues[0];
4096 		else
4097 			queue_index = map->queues[reciprocal_scale(
4098 						skb_get_hash(skb), map->len)];
4099 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4100 			queue_index = -1;
4101 	}
4102 	return queue_index;
4103 }
4104 #endif
4105 
4106 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4107 			 struct sk_buff *skb)
4108 {
4109 #ifdef CONFIG_XPS
4110 	struct xps_dev_maps *dev_maps;
4111 	struct sock *sk = skb->sk;
4112 	int queue_index = -1;
4113 
4114 	if (!static_key_false(&xps_needed))
4115 		return -1;
4116 
4117 	rcu_read_lock();
4118 	if (!static_key_false(&xps_rxqs_needed))
4119 		goto get_cpus_map;
4120 
4121 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4122 	if (dev_maps) {
4123 		int tci = sk_rx_queue_get(sk);
4124 
4125 		if (tci >= 0)
4126 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4127 							  tci);
4128 	}
4129 
4130 get_cpus_map:
4131 	if (queue_index < 0) {
4132 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4133 		if (dev_maps) {
4134 			unsigned int tci = skb->sender_cpu - 1;
4135 
4136 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4137 							  tci);
4138 		}
4139 	}
4140 	rcu_read_unlock();
4141 
4142 	return queue_index;
4143 #else
4144 	return -1;
4145 #endif
4146 }
4147 
4148 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4149 		     struct net_device *sb_dev)
4150 {
4151 	return 0;
4152 }
4153 EXPORT_SYMBOL(dev_pick_tx_zero);
4154 
4155 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4156 		       struct net_device *sb_dev)
4157 {
4158 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4159 }
4160 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4161 
4162 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4163 		     struct net_device *sb_dev)
4164 {
4165 	struct sock *sk = skb->sk;
4166 	int queue_index = sk_tx_queue_get(sk);
4167 
4168 	sb_dev = sb_dev ? : dev;
4169 
4170 	if (queue_index < 0 || skb->ooo_okay ||
4171 	    queue_index >= dev->real_num_tx_queues) {
4172 		int new_index = get_xps_queue(dev, sb_dev, skb);
4173 
4174 		if (new_index < 0)
4175 			new_index = skb_tx_hash(dev, sb_dev, skb);
4176 
4177 		if (queue_index != new_index && sk &&
4178 		    sk_fullsock(sk) &&
4179 		    rcu_access_pointer(sk->sk_dst_cache))
4180 			sk_tx_queue_set(sk, new_index);
4181 
4182 		queue_index = new_index;
4183 	}
4184 
4185 	return queue_index;
4186 }
4187 EXPORT_SYMBOL(netdev_pick_tx);
4188 
4189 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4190 					 struct sk_buff *skb,
4191 					 struct net_device *sb_dev)
4192 {
4193 	int queue_index = 0;
4194 
4195 #ifdef CONFIG_XPS
4196 	u32 sender_cpu = skb->sender_cpu - 1;
4197 
4198 	if (sender_cpu >= (u32)NR_CPUS)
4199 		skb->sender_cpu = raw_smp_processor_id() + 1;
4200 #endif
4201 
4202 	if (dev->real_num_tx_queues != 1) {
4203 		const struct net_device_ops *ops = dev->netdev_ops;
4204 
4205 		if (ops->ndo_select_queue)
4206 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4207 		else
4208 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4209 
4210 		queue_index = netdev_cap_txqueue(dev, queue_index);
4211 	}
4212 
4213 	skb_set_queue_mapping(skb, queue_index);
4214 	return netdev_get_tx_queue(dev, queue_index);
4215 }
4216 
4217 /**
4218  * __dev_queue_xmit() - transmit a buffer
4219  * @skb:	buffer to transmit
4220  * @sb_dev:	suboordinate device used for L2 forwarding offload
4221  *
4222  * Queue a buffer for transmission to a network device. The caller must
4223  * have set the device and priority and built the buffer before calling
4224  * this function. The function can be called from an interrupt.
4225  *
4226  * When calling this method, interrupts MUST be enabled. This is because
4227  * the BH enable code must have IRQs enabled so that it will not deadlock.
4228  *
4229  * Regardless of the return value, the skb is consumed, so it is currently
4230  * difficult to retry a send to this method. (You can bump the ref count
4231  * before sending to hold a reference for retry if you are careful.)
4232  *
4233  * Return:
4234  * * 0				- buffer successfully transmitted
4235  * * positive qdisc return code	- NET_XMIT_DROP etc.
4236  * * negative errno		- other errors
4237  */
4238 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4239 {
4240 	struct net_device *dev = skb->dev;
4241 	struct netdev_queue *txq = NULL;
4242 	struct Qdisc *q;
4243 	int rc = -ENOMEM;
4244 	bool again = false;
4245 
4246 	skb_reset_mac_header(skb);
4247 	skb_assert_len(skb);
4248 
4249 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4250 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4251 
4252 	/* Disable soft irqs for various locks below. Also
4253 	 * stops preemption for RCU.
4254 	 */
4255 	rcu_read_lock_bh();
4256 
4257 	skb_update_prio(skb);
4258 
4259 	qdisc_pkt_len_init(skb);
4260 	tcx_set_ingress(skb, false);
4261 #ifdef CONFIG_NET_EGRESS
4262 	if (static_branch_unlikely(&egress_needed_key)) {
4263 		if (nf_hook_egress_active()) {
4264 			skb = nf_hook_egress(skb, &rc, dev);
4265 			if (!skb)
4266 				goto out;
4267 		}
4268 
4269 		netdev_xmit_skip_txqueue(false);
4270 
4271 		nf_skip_egress(skb, true);
4272 		skb = sch_handle_egress(skb, &rc, dev);
4273 		if (!skb)
4274 			goto out;
4275 		nf_skip_egress(skb, false);
4276 
4277 		if (netdev_xmit_txqueue_skipped())
4278 			txq = netdev_tx_queue_mapping(dev, skb);
4279 	}
4280 #endif
4281 	/* If device/qdisc don't need skb->dst, release it right now while
4282 	 * its hot in this cpu cache.
4283 	 */
4284 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4285 		skb_dst_drop(skb);
4286 	else
4287 		skb_dst_force(skb);
4288 
4289 	if (!txq)
4290 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4291 
4292 	q = rcu_dereference_bh(txq->qdisc);
4293 
4294 	trace_net_dev_queue(skb);
4295 	if (q->enqueue) {
4296 		rc = __dev_xmit_skb(skb, q, dev, txq);
4297 		goto out;
4298 	}
4299 
4300 	/* The device has no queue. Common case for software devices:
4301 	 * loopback, all the sorts of tunnels...
4302 
4303 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4304 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4305 	 * counters.)
4306 	 * However, it is possible, that they rely on protection
4307 	 * made by us here.
4308 
4309 	 * Check this and shot the lock. It is not prone from deadlocks.
4310 	 *Either shot noqueue qdisc, it is even simpler 8)
4311 	 */
4312 	if (dev->flags & IFF_UP) {
4313 		int cpu = smp_processor_id(); /* ok because BHs are off */
4314 
4315 		/* Other cpus might concurrently change txq->xmit_lock_owner
4316 		 * to -1 or to their cpu id, but not to our id.
4317 		 */
4318 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4319 			if (dev_xmit_recursion())
4320 				goto recursion_alert;
4321 
4322 			skb = validate_xmit_skb(skb, dev, &again);
4323 			if (!skb)
4324 				goto out;
4325 
4326 			HARD_TX_LOCK(dev, txq, cpu);
4327 
4328 			if (!netif_xmit_stopped(txq)) {
4329 				dev_xmit_recursion_inc();
4330 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4331 				dev_xmit_recursion_dec();
4332 				if (dev_xmit_complete(rc)) {
4333 					HARD_TX_UNLOCK(dev, txq);
4334 					goto out;
4335 				}
4336 			}
4337 			HARD_TX_UNLOCK(dev, txq);
4338 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4339 					     dev->name);
4340 		} else {
4341 			/* Recursion is detected! It is possible,
4342 			 * unfortunately
4343 			 */
4344 recursion_alert:
4345 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4346 					     dev->name);
4347 		}
4348 	}
4349 
4350 	rc = -ENETDOWN;
4351 	rcu_read_unlock_bh();
4352 
4353 	dev_core_stats_tx_dropped_inc(dev);
4354 	kfree_skb_list(skb);
4355 	return rc;
4356 out:
4357 	rcu_read_unlock_bh();
4358 	return rc;
4359 }
4360 EXPORT_SYMBOL(__dev_queue_xmit);
4361 
4362 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4363 {
4364 	struct net_device *dev = skb->dev;
4365 	struct sk_buff *orig_skb = skb;
4366 	struct netdev_queue *txq;
4367 	int ret = NETDEV_TX_BUSY;
4368 	bool again = false;
4369 
4370 	if (unlikely(!netif_running(dev) ||
4371 		     !netif_carrier_ok(dev)))
4372 		goto drop;
4373 
4374 	skb = validate_xmit_skb_list(skb, dev, &again);
4375 	if (skb != orig_skb)
4376 		goto drop;
4377 
4378 	skb_set_queue_mapping(skb, queue_id);
4379 	txq = skb_get_tx_queue(dev, skb);
4380 
4381 	local_bh_disable();
4382 
4383 	dev_xmit_recursion_inc();
4384 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4385 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4386 		ret = netdev_start_xmit(skb, dev, txq, false);
4387 	HARD_TX_UNLOCK(dev, txq);
4388 	dev_xmit_recursion_dec();
4389 
4390 	local_bh_enable();
4391 	return ret;
4392 drop:
4393 	dev_core_stats_tx_dropped_inc(dev);
4394 	kfree_skb_list(skb);
4395 	return NET_XMIT_DROP;
4396 }
4397 EXPORT_SYMBOL(__dev_direct_xmit);
4398 
4399 /*************************************************************************
4400  *			Receiver routines
4401  *************************************************************************/
4402 
4403 int netdev_max_backlog __read_mostly = 1000;
4404 EXPORT_SYMBOL(netdev_max_backlog);
4405 
4406 int netdev_tstamp_prequeue __read_mostly = 1;
4407 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4408 int netdev_budget __read_mostly = 300;
4409 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4410 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4411 int weight_p __read_mostly = 64;           /* old backlog weight */
4412 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4413 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4414 int dev_rx_weight __read_mostly = 64;
4415 int dev_tx_weight __read_mostly = 64;
4416 
4417 /* Called with irq disabled */
4418 static inline void ____napi_schedule(struct softnet_data *sd,
4419 				     struct napi_struct *napi)
4420 {
4421 	struct task_struct *thread;
4422 
4423 	lockdep_assert_irqs_disabled();
4424 
4425 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4426 		/* Paired with smp_mb__before_atomic() in
4427 		 * napi_enable()/dev_set_threaded().
4428 		 * Use READ_ONCE() to guarantee a complete
4429 		 * read on napi->thread. Only call
4430 		 * wake_up_process() when it's not NULL.
4431 		 */
4432 		thread = READ_ONCE(napi->thread);
4433 		if (thread) {
4434 			/* Avoid doing set_bit() if the thread is in
4435 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4436 			 * makes sure to proceed with napi polling
4437 			 * if the thread is explicitly woken from here.
4438 			 */
4439 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4440 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4441 			wake_up_process(thread);
4442 			return;
4443 		}
4444 	}
4445 
4446 	list_add_tail(&napi->poll_list, &sd->poll_list);
4447 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4448 	/* If not called from net_rx_action()
4449 	 * we have to raise NET_RX_SOFTIRQ.
4450 	 */
4451 	if (!sd->in_net_rx_action)
4452 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4453 }
4454 
4455 #ifdef CONFIG_RPS
4456 
4457 /* One global table that all flow-based protocols share. */
4458 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4459 EXPORT_SYMBOL(rps_sock_flow_table);
4460 u32 rps_cpu_mask __read_mostly;
4461 EXPORT_SYMBOL(rps_cpu_mask);
4462 
4463 struct static_key_false rps_needed __read_mostly;
4464 EXPORT_SYMBOL(rps_needed);
4465 struct static_key_false rfs_needed __read_mostly;
4466 EXPORT_SYMBOL(rfs_needed);
4467 
4468 static struct rps_dev_flow *
4469 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4470 	    struct rps_dev_flow *rflow, u16 next_cpu)
4471 {
4472 	if (next_cpu < nr_cpu_ids) {
4473 #ifdef CONFIG_RFS_ACCEL
4474 		struct netdev_rx_queue *rxqueue;
4475 		struct rps_dev_flow_table *flow_table;
4476 		struct rps_dev_flow *old_rflow;
4477 		u32 flow_id;
4478 		u16 rxq_index;
4479 		int rc;
4480 
4481 		/* Should we steer this flow to a different hardware queue? */
4482 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4483 		    !(dev->features & NETIF_F_NTUPLE))
4484 			goto out;
4485 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4486 		if (rxq_index == skb_get_rx_queue(skb))
4487 			goto out;
4488 
4489 		rxqueue = dev->_rx + rxq_index;
4490 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4491 		if (!flow_table)
4492 			goto out;
4493 		flow_id = skb_get_hash(skb) & flow_table->mask;
4494 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4495 							rxq_index, flow_id);
4496 		if (rc < 0)
4497 			goto out;
4498 		old_rflow = rflow;
4499 		rflow = &flow_table->flows[flow_id];
4500 		rflow->filter = rc;
4501 		if (old_rflow->filter == rflow->filter)
4502 			old_rflow->filter = RPS_NO_FILTER;
4503 	out:
4504 #endif
4505 		rflow->last_qtail =
4506 			per_cpu(softnet_data, next_cpu).input_queue_head;
4507 	}
4508 
4509 	rflow->cpu = next_cpu;
4510 	return rflow;
4511 }
4512 
4513 /*
4514  * get_rps_cpu is called from netif_receive_skb and returns the target
4515  * CPU from the RPS map of the receiving queue for a given skb.
4516  * rcu_read_lock must be held on entry.
4517  */
4518 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4519 		       struct rps_dev_flow **rflowp)
4520 {
4521 	const struct rps_sock_flow_table *sock_flow_table;
4522 	struct netdev_rx_queue *rxqueue = dev->_rx;
4523 	struct rps_dev_flow_table *flow_table;
4524 	struct rps_map *map;
4525 	int cpu = -1;
4526 	u32 tcpu;
4527 	u32 hash;
4528 
4529 	if (skb_rx_queue_recorded(skb)) {
4530 		u16 index = skb_get_rx_queue(skb);
4531 
4532 		if (unlikely(index >= dev->real_num_rx_queues)) {
4533 			WARN_ONCE(dev->real_num_rx_queues > 1,
4534 				  "%s received packet on queue %u, but number "
4535 				  "of RX queues is %u\n",
4536 				  dev->name, index, dev->real_num_rx_queues);
4537 			goto done;
4538 		}
4539 		rxqueue += index;
4540 	}
4541 
4542 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4543 
4544 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4545 	map = rcu_dereference(rxqueue->rps_map);
4546 	if (!flow_table && !map)
4547 		goto done;
4548 
4549 	skb_reset_network_header(skb);
4550 	hash = skb_get_hash(skb);
4551 	if (!hash)
4552 		goto done;
4553 
4554 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4555 	if (flow_table && sock_flow_table) {
4556 		struct rps_dev_flow *rflow;
4557 		u32 next_cpu;
4558 		u32 ident;
4559 
4560 		/* First check into global flow table if there is a match.
4561 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4562 		 */
4563 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4564 		if ((ident ^ hash) & ~rps_cpu_mask)
4565 			goto try_rps;
4566 
4567 		next_cpu = ident & rps_cpu_mask;
4568 
4569 		/* OK, now we know there is a match,
4570 		 * we can look at the local (per receive queue) flow table
4571 		 */
4572 		rflow = &flow_table->flows[hash & flow_table->mask];
4573 		tcpu = rflow->cpu;
4574 
4575 		/*
4576 		 * If the desired CPU (where last recvmsg was done) is
4577 		 * different from current CPU (one in the rx-queue flow
4578 		 * table entry), switch if one of the following holds:
4579 		 *   - Current CPU is unset (>= nr_cpu_ids).
4580 		 *   - Current CPU is offline.
4581 		 *   - The current CPU's queue tail has advanced beyond the
4582 		 *     last packet that was enqueued using this table entry.
4583 		 *     This guarantees that all previous packets for the flow
4584 		 *     have been dequeued, thus preserving in order delivery.
4585 		 */
4586 		if (unlikely(tcpu != next_cpu) &&
4587 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4588 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4589 		      rflow->last_qtail)) >= 0)) {
4590 			tcpu = next_cpu;
4591 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4592 		}
4593 
4594 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4595 			*rflowp = rflow;
4596 			cpu = tcpu;
4597 			goto done;
4598 		}
4599 	}
4600 
4601 try_rps:
4602 
4603 	if (map) {
4604 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4605 		if (cpu_online(tcpu)) {
4606 			cpu = tcpu;
4607 			goto done;
4608 		}
4609 	}
4610 
4611 done:
4612 	return cpu;
4613 }
4614 
4615 #ifdef CONFIG_RFS_ACCEL
4616 
4617 /**
4618  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4619  * @dev: Device on which the filter was set
4620  * @rxq_index: RX queue index
4621  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4622  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4623  *
4624  * Drivers that implement ndo_rx_flow_steer() should periodically call
4625  * this function for each installed filter and remove the filters for
4626  * which it returns %true.
4627  */
4628 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4629 			 u32 flow_id, u16 filter_id)
4630 {
4631 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4632 	struct rps_dev_flow_table *flow_table;
4633 	struct rps_dev_flow *rflow;
4634 	bool expire = true;
4635 	unsigned int cpu;
4636 
4637 	rcu_read_lock();
4638 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4639 	if (flow_table && flow_id <= flow_table->mask) {
4640 		rflow = &flow_table->flows[flow_id];
4641 		cpu = READ_ONCE(rflow->cpu);
4642 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4643 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4644 			   rflow->last_qtail) <
4645 		     (int)(10 * flow_table->mask)))
4646 			expire = false;
4647 	}
4648 	rcu_read_unlock();
4649 	return expire;
4650 }
4651 EXPORT_SYMBOL(rps_may_expire_flow);
4652 
4653 #endif /* CONFIG_RFS_ACCEL */
4654 
4655 /* Called from hardirq (IPI) context */
4656 static void rps_trigger_softirq(void *data)
4657 {
4658 	struct softnet_data *sd = data;
4659 
4660 	____napi_schedule(sd, &sd->backlog);
4661 	sd->received_rps++;
4662 }
4663 
4664 #endif /* CONFIG_RPS */
4665 
4666 /* Called from hardirq (IPI) context */
4667 static void trigger_rx_softirq(void *data)
4668 {
4669 	struct softnet_data *sd = data;
4670 
4671 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4672 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4673 }
4674 
4675 /*
4676  * After we queued a packet into sd->input_pkt_queue,
4677  * we need to make sure this queue is serviced soon.
4678  *
4679  * - If this is another cpu queue, link it to our rps_ipi_list,
4680  *   and make sure we will process rps_ipi_list from net_rx_action().
4681  *
4682  * - If this is our own queue, NAPI schedule our backlog.
4683  *   Note that this also raises NET_RX_SOFTIRQ.
4684  */
4685 static void napi_schedule_rps(struct softnet_data *sd)
4686 {
4687 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4688 
4689 #ifdef CONFIG_RPS
4690 	if (sd != mysd) {
4691 		sd->rps_ipi_next = mysd->rps_ipi_list;
4692 		mysd->rps_ipi_list = sd;
4693 
4694 		/* If not called from net_rx_action() or napi_threaded_poll()
4695 		 * we have to raise NET_RX_SOFTIRQ.
4696 		 */
4697 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4698 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4699 		return;
4700 	}
4701 #endif /* CONFIG_RPS */
4702 	__napi_schedule_irqoff(&mysd->backlog);
4703 }
4704 
4705 #ifdef CONFIG_NET_FLOW_LIMIT
4706 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4707 #endif
4708 
4709 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4710 {
4711 #ifdef CONFIG_NET_FLOW_LIMIT
4712 	struct sd_flow_limit *fl;
4713 	struct softnet_data *sd;
4714 	unsigned int old_flow, new_flow;
4715 
4716 	if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4717 		return false;
4718 
4719 	sd = this_cpu_ptr(&softnet_data);
4720 
4721 	rcu_read_lock();
4722 	fl = rcu_dereference(sd->flow_limit);
4723 	if (fl) {
4724 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4725 		old_flow = fl->history[fl->history_head];
4726 		fl->history[fl->history_head] = new_flow;
4727 
4728 		fl->history_head++;
4729 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4730 
4731 		if (likely(fl->buckets[old_flow]))
4732 			fl->buckets[old_flow]--;
4733 
4734 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4735 			fl->count++;
4736 			rcu_read_unlock();
4737 			return true;
4738 		}
4739 	}
4740 	rcu_read_unlock();
4741 #endif
4742 	return false;
4743 }
4744 
4745 /*
4746  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4747  * queue (may be a remote CPU queue).
4748  */
4749 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4750 			      unsigned int *qtail)
4751 {
4752 	enum skb_drop_reason reason;
4753 	struct softnet_data *sd;
4754 	unsigned long flags;
4755 	unsigned int qlen;
4756 
4757 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
4758 	sd = &per_cpu(softnet_data, cpu);
4759 
4760 	rps_lock_irqsave(sd, &flags);
4761 	if (!netif_running(skb->dev))
4762 		goto drop;
4763 	qlen = skb_queue_len(&sd->input_pkt_queue);
4764 	if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4765 		if (qlen) {
4766 enqueue:
4767 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4768 			input_queue_tail_incr_save(sd, qtail);
4769 			rps_unlock_irq_restore(sd, &flags);
4770 			return NET_RX_SUCCESS;
4771 		}
4772 
4773 		/* Schedule NAPI for backlog device
4774 		 * We can use non atomic operation since we own the queue lock
4775 		 */
4776 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4777 			napi_schedule_rps(sd);
4778 		goto enqueue;
4779 	}
4780 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4781 
4782 drop:
4783 	sd->dropped++;
4784 	rps_unlock_irq_restore(sd, &flags);
4785 
4786 	dev_core_stats_rx_dropped_inc(skb->dev);
4787 	kfree_skb_reason(skb, reason);
4788 	return NET_RX_DROP;
4789 }
4790 
4791 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4792 {
4793 	struct net_device *dev = skb->dev;
4794 	struct netdev_rx_queue *rxqueue;
4795 
4796 	rxqueue = dev->_rx;
4797 
4798 	if (skb_rx_queue_recorded(skb)) {
4799 		u16 index = skb_get_rx_queue(skb);
4800 
4801 		if (unlikely(index >= dev->real_num_rx_queues)) {
4802 			WARN_ONCE(dev->real_num_rx_queues > 1,
4803 				  "%s received packet on queue %u, but number "
4804 				  "of RX queues is %u\n",
4805 				  dev->name, index, dev->real_num_rx_queues);
4806 
4807 			return rxqueue; /* Return first rxqueue */
4808 		}
4809 		rxqueue += index;
4810 	}
4811 	return rxqueue;
4812 }
4813 
4814 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4815 			     struct bpf_prog *xdp_prog)
4816 {
4817 	void *orig_data, *orig_data_end, *hard_start;
4818 	struct netdev_rx_queue *rxqueue;
4819 	bool orig_bcast, orig_host;
4820 	u32 mac_len, frame_sz;
4821 	__be16 orig_eth_type;
4822 	struct ethhdr *eth;
4823 	u32 metalen, act;
4824 	int off;
4825 
4826 	/* The XDP program wants to see the packet starting at the MAC
4827 	 * header.
4828 	 */
4829 	mac_len = skb->data - skb_mac_header(skb);
4830 	hard_start = skb->data - skb_headroom(skb);
4831 
4832 	/* SKB "head" area always have tailroom for skb_shared_info */
4833 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4834 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4835 
4836 	rxqueue = netif_get_rxqueue(skb);
4837 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4838 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4839 			 skb_headlen(skb) + mac_len, true);
4840 
4841 	orig_data_end = xdp->data_end;
4842 	orig_data = xdp->data;
4843 	eth = (struct ethhdr *)xdp->data;
4844 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4845 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4846 	orig_eth_type = eth->h_proto;
4847 
4848 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4849 
4850 	/* check if bpf_xdp_adjust_head was used */
4851 	off = xdp->data - orig_data;
4852 	if (off) {
4853 		if (off > 0)
4854 			__skb_pull(skb, off);
4855 		else if (off < 0)
4856 			__skb_push(skb, -off);
4857 
4858 		skb->mac_header += off;
4859 		skb_reset_network_header(skb);
4860 	}
4861 
4862 	/* check if bpf_xdp_adjust_tail was used */
4863 	off = xdp->data_end - orig_data_end;
4864 	if (off != 0) {
4865 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4866 		skb->len += off; /* positive on grow, negative on shrink */
4867 	}
4868 
4869 	/* check if XDP changed eth hdr such SKB needs update */
4870 	eth = (struct ethhdr *)xdp->data;
4871 	if ((orig_eth_type != eth->h_proto) ||
4872 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4873 						  skb->dev->dev_addr)) ||
4874 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4875 		__skb_push(skb, ETH_HLEN);
4876 		skb->pkt_type = PACKET_HOST;
4877 		skb->protocol = eth_type_trans(skb, skb->dev);
4878 	}
4879 
4880 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4881 	 * before calling us again on redirect path. We do not call do_redirect
4882 	 * as we leave that up to the caller.
4883 	 *
4884 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4885 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4886 	 */
4887 	switch (act) {
4888 	case XDP_REDIRECT:
4889 	case XDP_TX:
4890 		__skb_push(skb, mac_len);
4891 		break;
4892 	case XDP_PASS:
4893 		metalen = xdp->data - xdp->data_meta;
4894 		if (metalen)
4895 			skb_metadata_set(skb, metalen);
4896 		break;
4897 	}
4898 
4899 	return act;
4900 }
4901 
4902 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4903 				     struct xdp_buff *xdp,
4904 				     struct bpf_prog *xdp_prog)
4905 {
4906 	u32 act = XDP_DROP;
4907 
4908 	/* Reinjected packets coming from act_mirred or similar should
4909 	 * not get XDP generic processing.
4910 	 */
4911 	if (skb_is_redirected(skb))
4912 		return XDP_PASS;
4913 
4914 	/* XDP packets must be linear and must have sufficient headroom
4915 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4916 	 * native XDP provides, thus we need to do it here as well.
4917 	 */
4918 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4919 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4920 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4921 		int troom = skb->tail + skb->data_len - skb->end;
4922 
4923 		/* In case we have to go down the path and also linearize,
4924 		 * then lets do the pskb_expand_head() work just once here.
4925 		 */
4926 		if (pskb_expand_head(skb,
4927 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4928 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4929 			goto do_drop;
4930 		if (skb_linearize(skb))
4931 			goto do_drop;
4932 	}
4933 
4934 	act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4935 	switch (act) {
4936 	case XDP_REDIRECT:
4937 	case XDP_TX:
4938 	case XDP_PASS:
4939 		break;
4940 	default:
4941 		bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4942 		fallthrough;
4943 	case XDP_ABORTED:
4944 		trace_xdp_exception(skb->dev, xdp_prog, act);
4945 		fallthrough;
4946 	case XDP_DROP:
4947 	do_drop:
4948 		kfree_skb(skb);
4949 		break;
4950 	}
4951 
4952 	return act;
4953 }
4954 
4955 /* When doing generic XDP we have to bypass the qdisc layer and the
4956  * network taps in order to match in-driver-XDP behavior. This also means
4957  * that XDP packets are able to starve other packets going through a qdisc,
4958  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4959  * queues, so they do not have this starvation issue.
4960  */
4961 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4962 {
4963 	struct net_device *dev = skb->dev;
4964 	struct netdev_queue *txq;
4965 	bool free_skb = true;
4966 	int cpu, rc;
4967 
4968 	txq = netdev_core_pick_tx(dev, skb, NULL);
4969 	cpu = smp_processor_id();
4970 	HARD_TX_LOCK(dev, txq, cpu);
4971 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4972 		rc = netdev_start_xmit(skb, dev, txq, 0);
4973 		if (dev_xmit_complete(rc))
4974 			free_skb = false;
4975 	}
4976 	HARD_TX_UNLOCK(dev, txq);
4977 	if (free_skb) {
4978 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4979 		dev_core_stats_tx_dropped_inc(dev);
4980 		kfree_skb(skb);
4981 	}
4982 }
4983 
4984 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4985 
4986 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4987 {
4988 	if (xdp_prog) {
4989 		struct xdp_buff xdp;
4990 		u32 act;
4991 		int err;
4992 
4993 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4994 		if (act != XDP_PASS) {
4995 			switch (act) {
4996 			case XDP_REDIRECT:
4997 				err = xdp_do_generic_redirect(skb->dev, skb,
4998 							      &xdp, xdp_prog);
4999 				if (err)
5000 					goto out_redir;
5001 				break;
5002 			case XDP_TX:
5003 				generic_xdp_tx(skb, xdp_prog);
5004 				break;
5005 			}
5006 			return XDP_DROP;
5007 		}
5008 	}
5009 	return XDP_PASS;
5010 out_redir:
5011 	kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
5012 	return XDP_DROP;
5013 }
5014 EXPORT_SYMBOL_GPL(do_xdp_generic);
5015 
5016 static int netif_rx_internal(struct sk_buff *skb)
5017 {
5018 	int ret;
5019 
5020 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5021 
5022 	trace_netif_rx(skb);
5023 
5024 #ifdef CONFIG_RPS
5025 	if (static_branch_unlikely(&rps_needed)) {
5026 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5027 		int cpu;
5028 
5029 		rcu_read_lock();
5030 
5031 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5032 		if (cpu < 0)
5033 			cpu = smp_processor_id();
5034 
5035 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5036 
5037 		rcu_read_unlock();
5038 	} else
5039 #endif
5040 	{
5041 		unsigned int qtail;
5042 
5043 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5044 	}
5045 	return ret;
5046 }
5047 
5048 /**
5049  *	__netif_rx	-	Slightly optimized version of netif_rx
5050  *	@skb: buffer to post
5051  *
5052  *	This behaves as netif_rx except that it does not disable bottom halves.
5053  *	As a result this function may only be invoked from the interrupt context
5054  *	(either hard or soft interrupt).
5055  */
5056 int __netif_rx(struct sk_buff *skb)
5057 {
5058 	int ret;
5059 
5060 	lockdep_assert_once(hardirq_count() | softirq_count());
5061 
5062 	trace_netif_rx_entry(skb);
5063 	ret = netif_rx_internal(skb);
5064 	trace_netif_rx_exit(ret);
5065 	return ret;
5066 }
5067 EXPORT_SYMBOL(__netif_rx);
5068 
5069 /**
5070  *	netif_rx	-	post buffer to the network code
5071  *	@skb: buffer to post
5072  *
5073  *	This function receives a packet from a device driver and queues it for
5074  *	the upper (protocol) levels to process via the backlog NAPI device. It
5075  *	always succeeds. The buffer may be dropped during processing for
5076  *	congestion control or by the protocol layers.
5077  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5078  *	driver should use NAPI and GRO.
5079  *	This function can used from interrupt and from process context. The
5080  *	caller from process context must not disable interrupts before invoking
5081  *	this function.
5082  *
5083  *	return values:
5084  *	NET_RX_SUCCESS	(no congestion)
5085  *	NET_RX_DROP     (packet was dropped)
5086  *
5087  */
5088 int netif_rx(struct sk_buff *skb)
5089 {
5090 	bool need_bh_off = !(hardirq_count() | softirq_count());
5091 	int ret;
5092 
5093 	if (need_bh_off)
5094 		local_bh_disable();
5095 	trace_netif_rx_entry(skb);
5096 	ret = netif_rx_internal(skb);
5097 	trace_netif_rx_exit(ret);
5098 	if (need_bh_off)
5099 		local_bh_enable();
5100 	return ret;
5101 }
5102 EXPORT_SYMBOL(netif_rx);
5103 
5104 static __latent_entropy void net_tx_action(struct softirq_action *h)
5105 {
5106 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5107 
5108 	if (sd->completion_queue) {
5109 		struct sk_buff *clist;
5110 
5111 		local_irq_disable();
5112 		clist = sd->completion_queue;
5113 		sd->completion_queue = NULL;
5114 		local_irq_enable();
5115 
5116 		while (clist) {
5117 			struct sk_buff *skb = clist;
5118 
5119 			clist = clist->next;
5120 
5121 			WARN_ON(refcount_read(&skb->users));
5122 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5123 				trace_consume_skb(skb, net_tx_action);
5124 			else
5125 				trace_kfree_skb(skb, net_tx_action,
5126 						get_kfree_skb_cb(skb)->reason);
5127 
5128 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5129 				__kfree_skb(skb);
5130 			else
5131 				__napi_kfree_skb(skb,
5132 						 get_kfree_skb_cb(skb)->reason);
5133 		}
5134 	}
5135 
5136 	if (sd->output_queue) {
5137 		struct Qdisc *head;
5138 
5139 		local_irq_disable();
5140 		head = sd->output_queue;
5141 		sd->output_queue = NULL;
5142 		sd->output_queue_tailp = &sd->output_queue;
5143 		local_irq_enable();
5144 
5145 		rcu_read_lock();
5146 
5147 		while (head) {
5148 			struct Qdisc *q = head;
5149 			spinlock_t *root_lock = NULL;
5150 
5151 			head = head->next_sched;
5152 
5153 			/* We need to make sure head->next_sched is read
5154 			 * before clearing __QDISC_STATE_SCHED
5155 			 */
5156 			smp_mb__before_atomic();
5157 
5158 			if (!(q->flags & TCQ_F_NOLOCK)) {
5159 				root_lock = qdisc_lock(q);
5160 				spin_lock(root_lock);
5161 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5162 						     &q->state))) {
5163 				/* There is a synchronize_net() between
5164 				 * STATE_DEACTIVATED flag being set and
5165 				 * qdisc_reset()/some_qdisc_is_busy() in
5166 				 * dev_deactivate(), so we can safely bail out
5167 				 * early here to avoid data race between
5168 				 * qdisc_deactivate() and some_qdisc_is_busy()
5169 				 * for lockless qdisc.
5170 				 */
5171 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5172 				continue;
5173 			}
5174 
5175 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5176 			qdisc_run(q);
5177 			if (root_lock)
5178 				spin_unlock(root_lock);
5179 		}
5180 
5181 		rcu_read_unlock();
5182 	}
5183 
5184 	xfrm_dev_backlog(sd);
5185 }
5186 
5187 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5188 /* This hook is defined here for ATM LANE */
5189 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5190 			     unsigned char *addr) __read_mostly;
5191 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5192 #endif
5193 
5194 /**
5195  *	netdev_is_rx_handler_busy - check if receive handler is registered
5196  *	@dev: device to check
5197  *
5198  *	Check if a receive handler is already registered for a given device.
5199  *	Return true if there one.
5200  *
5201  *	The caller must hold the rtnl_mutex.
5202  */
5203 bool netdev_is_rx_handler_busy(struct net_device *dev)
5204 {
5205 	ASSERT_RTNL();
5206 	return dev && rtnl_dereference(dev->rx_handler);
5207 }
5208 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5209 
5210 /**
5211  *	netdev_rx_handler_register - register receive handler
5212  *	@dev: device to register a handler for
5213  *	@rx_handler: receive handler to register
5214  *	@rx_handler_data: data pointer that is used by rx handler
5215  *
5216  *	Register a receive handler for a device. This handler will then be
5217  *	called from __netif_receive_skb. A negative errno code is returned
5218  *	on a failure.
5219  *
5220  *	The caller must hold the rtnl_mutex.
5221  *
5222  *	For a general description of rx_handler, see enum rx_handler_result.
5223  */
5224 int netdev_rx_handler_register(struct net_device *dev,
5225 			       rx_handler_func_t *rx_handler,
5226 			       void *rx_handler_data)
5227 {
5228 	if (netdev_is_rx_handler_busy(dev))
5229 		return -EBUSY;
5230 
5231 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5232 		return -EINVAL;
5233 
5234 	/* Note: rx_handler_data must be set before rx_handler */
5235 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5236 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5237 
5238 	return 0;
5239 }
5240 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5241 
5242 /**
5243  *	netdev_rx_handler_unregister - unregister receive handler
5244  *	@dev: device to unregister a handler from
5245  *
5246  *	Unregister a receive handler from a device.
5247  *
5248  *	The caller must hold the rtnl_mutex.
5249  */
5250 void netdev_rx_handler_unregister(struct net_device *dev)
5251 {
5252 
5253 	ASSERT_RTNL();
5254 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5255 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5256 	 * section has a guarantee to see a non NULL rx_handler_data
5257 	 * as well.
5258 	 */
5259 	synchronize_net();
5260 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5261 }
5262 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5263 
5264 /*
5265  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5266  * the special handling of PFMEMALLOC skbs.
5267  */
5268 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5269 {
5270 	switch (skb->protocol) {
5271 	case htons(ETH_P_ARP):
5272 	case htons(ETH_P_IP):
5273 	case htons(ETH_P_IPV6):
5274 	case htons(ETH_P_8021Q):
5275 	case htons(ETH_P_8021AD):
5276 		return true;
5277 	default:
5278 		return false;
5279 	}
5280 }
5281 
5282 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5283 			     int *ret, struct net_device *orig_dev)
5284 {
5285 	if (nf_hook_ingress_active(skb)) {
5286 		int ingress_retval;
5287 
5288 		if (*pt_prev) {
5289 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5290 			*pt_prev = NULL;
5291 		}
5292 
5293 		rcu_read_lock();
5294 		ingress_retval = nf_hook_ingress(skb);
5295 		rcu_read_unlock();
5296 		return ingress_retval;
5297 	}
5298 	return 0;
5299 }
5300 
5301 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5302 				    struct packet_type **ppt_prev)
5303 {
5304 	struct packet_type *ptype, *pt_prev;
5305 	rx_handler_func_t *rx_handler;
5306 	struct sk_buff *skb = *pskb;
5307 	struct net_device *orig_dev;
5308 	bool deliver_exact = false;
5309 	int ret = NET_RX_DROP;
5310 	__be16 type;
5311 
5312 	net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5313 
5314 	trace_netif_receive_skb(skb);
5315 
5316 	orig_dev = skb->dev;
5317 
5318 	skb_reset_network_header(skb);
5319 	if (!skb_transport_header_was_set(skb))
5320 		skb_reset_transport_header(skb);
5321 	skb_reset_mac_len(skb);
5322 
5323 	pt_prev = NULL;
5324 
5325 another_round:
5326 	skb->skb_iif = skb->dev->ifindex;
5327 
5328 	__this_cpu_inc(softnet_data.processed);
5329 
5330 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5331 		int ret2;
5332 
5333 		migrate_disable();
5334 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5335 		migrate_enable();
5336 
5337 		if (ret2 != XDP_PASS) {
5338 			ret = NET_RX_DROP;
5339 			goto out;
5340 		}
5341 	}
5342 
5343 	if (eth_type_vlan(skb->protocol)) {
5344 		skb = skb_vlan_untag(skb);
5345 		if (unlikely(!skb))
5346 			goto out;
5347 	}
5348 
5349 	if (skb_skip_tc_classify(skb))
5350 		goto skip_classify;
5351 
5352 	if (pfmemalloc)
5353 		goto skip_taps;
5354 
5355 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5356 		if (pt_prev)
5357 			ret = deliver_skb(skb, pt_prev, orig_dev);
5358 		pt_prev = ptype;
5359 	}
5360 
5361 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5362 		if (pt_prev)
5363 			ret = deliver_skb(skb, pt_prev, orig_dev);
5364 		pt_prev = ptype;
5365 	}
5366 
5367 skip_taps:
5368 #ifdef CONFIG_NET_INGRESS
5369 	if (static_branch_unlikely(&ingress_needed_key)) {
5370 		bool another = false;
5371 
5372 		nf_skip_egress(skb, true);
5373 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5374 					 &another);
5375 		if (another)
5376 			goto another_round;
5377 		if (!skb)
5378 			goto out;
5379 
5380 		nf_skip_egress(skb, false);
5381 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5382 			goto out;
5383 	}
5384 #endif
5385 	skb_reset_redirect(skb);
5386 skip_classify:
5387 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5388 		goto drop;
5389 
5390 	if (skb_vlan_tag_present(skb)) {
5391 		if (pt_prev) {
5392 			ret = deliver_skb(skb, pt_prev, orig_dev);
5393 			pt_prev = NULL;
5394 		}
5395 		if (vlan_do_receive(&skb))
5396 			goto another_round;
5397 		else if (unlikely(!skb))
5398 			goto out;
5399 	}
5400 
5401 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5402 	if (rx_handler) {
5403 		if (pt_prev) {
5404 			ret = deliver_skb(skb, pt_prev, orig_dev);
5405 			pt_prev = NULL;
5406 		}
5407 		switch (rx_handler(&skb)) {
5408 		case RX_HANDLER_CONSUMED:
5409 			ret = NET_RX_SUCCESS;
5410 			goto out;
5411 		case RX_HANDLER_ANOTHER:
5412 			goto another_round;
5413 		case RX_HANDLER_EXACT:
5414 			deliver_exact = true;
5415 			break;
5416 		case RX_HANDLER_PASS:
5417 			break;
5418 		default:
5419 			BUG();
5420 		}
5421 	}
5422 
5423 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5424 check_vlan_id:
5425 		if (skb_vlan_tag_get_id(skb)) {
5426 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5427 			 * find vlan device.
5428 			 */
5429 			skb->pkt_type = PACKET_OTHERHOST;
5430 		} else if (eth_type_vlan(skb->protocol)) {
5431 			/* Outer header is 802.1P with vlan 0, inner header is
5432 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5433 			 * not find vlan dev for vlan id 0.
5434 			 */
5435 			__vlan_hwaccel_clear_tag(skb);
5436 			skb = skb_vlan_untag(skb);
5437 			if (unlikely(!skb))
5438 				goto out;
5439 			if (vlan_do_receive(&skb))
5440 				/* After stripping off 802.1P header with vlan 0
5441 				 * vlan dev is found for inner header.
5442 				 */
5443 				goto another_round;
5444 			else if (unlikely(!skb))
5445 				goto out;
5446 			else
5447 				/* We have stripped outer 802.1P vlan 0 header.
5448 				 * But could not find vlan dev.
5449 				 * check again for vlan id to set OTHERHOST.
5450 				 */
5451 				goto check_vlan_id;
5452 		}
5453 		/* Note: we might in the future use prio bits
5454 		 * and set skb->priority like in vlan_do_receive()
5455 		 * For the time being, just ignore Priority Code Point
5456 		 */
5457 		__vlan_hwaccel_clear_tag(skb);
5458 	}
5459 
5460 	type = skb->protocol;
5461 
5462 	/* deliver only exact match when indicated */
5463 	if (likely(!deliver_exact)) {
5464 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5465 				       &ptype_base[ntohs(type) &
5466 						   PTYPE_HASH_MASK]);
5467 	}
5468 
5469 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5470 			       &orig_dev->ptype_specific);
5471 
5472 	if (unlikely(skb->dev != orig_dev)) {
5473 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5474 				       &skb->dev->ptype_specific);
5475 	}
5476 
5477 	if (pt_prev) {
5478 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5479 			goto drop;
5480 		*ppt_prev = pt_prev;
5481 	} else {
5482 drop:
5483 		if (!deliver_exact)
5484 			dev_core_stats_rx_dropped_inc(skb->dev);
5485 		else
5486 			dev_core_stats_rx_nohandler_inc(skb->dev);
5487 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5488 		/* Jamal, now you will not able to escape explaining
5489 		 * me how you were going to use this. :-)
5490 		 */
5491 		ret = NET_RX_DROP;
5492 	}
5493 
5494 out:
5495 	/* The invariant here is that if *ppt_prev is not NULL
5496 	 * then skb should also be non-NULL.
5497 	 *
5498 	 * Apparently *ppt_prev assignment above holds this invariant due to
5499 	 * skb dereferencing near it.
5500 	 */
5501 	*pskb = skb;
5502 	return ret;
5503 }
5504 
5505 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5506 {
5507 	struct net_device *orig_dev = skb->dev;
5508 	struct packet_type *pt_prev = NULL;
5509 	int ret;
5510 
5511 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5512 	if (pt_prev)
5513 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5514 					 skb->dev, pt_prev, orig_dev);
5515 	return ret;
5516 }
5517 
5518 /**
5519  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5520  *	@skb: buffer to process
5521  *
5522  *	More direct receive version of netif_receive_skb().  It should
5523  *	only be used by callers that have a need to skip RPS and Generic XDP.
5524  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5525  *
5526  *	This function may only be called from softirq context and interrupts
5527  *	should be enabled.
5528  *
5529  *	Return values (usually ignored):
5530  *	NET_RX_SUCCESS: no congestion
5531  *	NET_RX_DROP: packet was dropped
5532  */
5533 int netif_receive_skb_core(struct sk_buff *skb)
5534 {
5535 	int ret;
5536 
5537 	rcu_read_lock();
5538 	ret = __netif_receive_skb_one_core(skb, false);
5539 	rcu_read_unlock();
5540 
5541 	return ret;
5542 }
5543 EXPORT_SYMBOL(netif_receive_skb_core);
5544 
5545 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5546 						  struct packet_type *pt_prev,
5547 						  struct net_device *orig_dev)
5548 {
5549 	struct sk_buff *skb, *next;
5550 
5551 	if (!pt_prev)
5552 		return;
5553 	if (list_empty(head))
5554 		return;
5555 	if (pt_prev->list_func != NULL)
5556 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5557 				   ip_list_rcv, head, pt_prev, orig_dev);
5558 	else
5559 		list_for_each_entry_safe(skb, next, head, list) {
5560 			skb_list_del_init(skb);
5561 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5562 		}
5563 }
5564 
5565 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5566 {
5567 	/* Fast-path assumptions:
5568 	 * - There is no RX handler.
5569 	 * - Only one packet_type matches.
5570 	 * If either of these fails, we will end up doing some per-packet
5571 	 * processing in-line, then handling the 'last ptype' for the whole
5572 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5573 	 * because the 'last ptype' must be constant across the sublist, and all
5574 	 * other ptypes are handled per-packet.
5575 	 */
5576 	/* Current (common) ptype of sublist */
5577 	struct packet_type *pt_curr = NULL;
5578 	/* Current (common) orig_dev of sublist */
5579 	struct net_device *od_curr = NULL;
5580 	struct list_head sublist;
5581 	struct sk_buff *skb, *next;
5582 
5583 	INIT_LIST_HEAD(&sublist);
5584 	list_for_each_entry_safe(skb, next, head, list) {
5585 		struct net_device *orig_dev = skb->dev;
5586 		struct packet_type *pt_prev = NULL;
5587 
5588 		skb_list_del_init(skb);
5589 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5590 		if (!pt_prev)
5591 			continue;
5592 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5593 			/* dispatch old sublist */
5594 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5595 			/* start new sublist */
5596 			INIT_LIST_HEAD(&sublist);
5597 			pt_curr = pt_prev;
5598 			od_curr = orig_dev;
5599 		}
5600 		list_add_tail(&skb->list, &sublist);
5601 	}
5602 
5603 	/* dispatch final sublist */
5604 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5605 }
5606 
5607 static int __netif_receive_skb(struct sk_buff *skb)
5608 {
5609 	int ret;
5610 
5611 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5612 		unsigned int noreclaim_flag;
5613 
5614 		/*
5615 		 * PFMEMALLOC skbs are special, they should
5616 		 * - be delivered to SOCK_MEMALLOC sockets only
5617 		 * - stay away from userspace
5618 		 * - have bounded memory usage
5619 		 *
5620 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5621 		 * context down to all allocation sites.
5622 		 */
5623 		noreclaim_flag = memalloc_noreclaim_save();
5624 		ret = __netif_receive_skb_one_core(skb, true);
5625 		memalloc_noreclaim_restore(noreclaim_flag);
5626 	} else
5627 		ret = __netif_receive_skb_one_core(skb, false);
5628 
5629 	return ret;
5630 }
5631 
5632 static void __netif_receive_skb_list(struct list_head *head)
5633 {
5634 	unsigned long noreclaim_flag = 0;
5635 	struct sk_buff *skb, *next;
5636 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5637 
5638 	list_for_each_entry_safe(skb, next, head, list) {
5639 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5640 			struct list_head sublist;
5641 
5642 			/* Handle the previous sublist */
5643 			list_cut_before(&sublist, head, &skb->list);
5644 			if (!list_empty(&sublist))
5645 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5646 			pfmemalloc = !pfmemalloc;
5647 			/* See comments in __netif_receive_skb */
5648 			if (pfmemalloc)
5649 				noreclaim_flag = memalloc_noreclaim_save();
5650 			else
5651 				memalloc_noreclaim_restore(noreclaim_flag);
5652 		}
5653 	}
5654 	/* Handle the remaining sublist */
5655 	if (!list_empty(head))
5656 		__netif_receive_skb_list_core(head, pfmemalloc);
5657 	/* Restore pflags */
5658 	if (pfmemalloc)
5659 		memalloc_noreclaim_restore(noreclaim_flag);
5660 }
5661 
5662 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5663 {
5664 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5665 	struct bpf_prog *new = xdp->prog;
5666 	int ret = 0;
5667 
5668 	switch (xdp->command) {
5669 	case XDP_SETUP_PROG:
5670 		rcu_assign_pointer(dev->xdp_prog, new);
5671 		if (old)
5672 			bpf_prog_put(old);
5673 
5674 		if (old && !new) {
5675 			static_branch_dec(&generic_xdp_needed_key);
5676 		} else if (new && !old) {
5677 			static_branch_inc(&generic_xdp_needed_key);
5678 			dev_disable_lro(dev);
5679 			dev_disable_gro_hw(dev);
5680 		}
5681 		break;
5682 
5683 	default:
5684 		ret = -EINVAL;
5685 		break;
5686 	}
5687 
5688 	return ret;
5689 }
5690 
5691 static int netif_receive_skb_internal(struct sk_buff *skb)
5692 {
5693 	int ret;
5694 
5695 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5696 
5697 	if (skb_defer_rx_timestamp(skb))
5698 		return NET_RX_SUCCESS;
5699 
5700 	rcu_read_lock();
5701 #ifdef CONFIG_RPS
5702 	if (static_branch_unlikely(&rps_needed)) {
5703 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5704 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5705 
5706 		if (cpu >= 0) {
5707 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5708 			rcu_read_unlock();
5709 			return ret;
5710 		}
5711 	}
5712 #endif
5713 	ret = __netif_receive_skb(skb);
5714 	rcu_read_unlock();
5715 	return ret;
5716 }
5717 
5718 void netif_receive_skb_list_internal(struct list_head *head)
5719 {
5720 	struct sk_buff *skb, *next;
5721 	struct list_head sublist;
5722 
5723 	INIT_LIST_HEAD(&sublist);
5724 	list_for_each_entry_safe(skb, next, head, list) {
5725 		net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5726 		skb_list_del_init(skb);
5727 		if (!skb_defer_rx_timestamp(skb))
5728 			list_add_tail(&skb->list, &sublist);
5729 	}
5730 	list_splice_init(&sublist, head);
5731 
5732 	rcu_read_lock();
5733 #ifdef CONFIG_RPS
5734 	if (static_branch_unlikely(&rps_needed)) {
5735 		list_for_each_entry_safe(skb, next, head, list) {
5736 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5737 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5738 
5739 			if (cpu >= 0) {
5740 				/* Will be handled, remove from list */
5741 				skb_list_del_init(skb);
5742 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5743 			}
5744 		}
5745 	}
5746 #endif
5747 	__netif_receive_skb_list(head);
5748 	rcu_read_unlock();
5749 }
5750 
5751 /**
5752  *	netif_receive_skb - process receive buffer from network
5753  *	@skb: buffer to process
5754  *
5755  *	netif_receive_skb() is the main receive data processing function.
5756  *	It always succeeds. The buffer may be dropped during processing
5757  *	for congestion control or by the protocol layers.
5758  *
5759  *	This function may only be called from softirq context and interrupts
5760  *	should be enabled.
5761  *
5762  *	Return values (usually ignored):
5763  *	NET_RX_SUCCESS: no congestion
5764  *	NET_RX_DROP: packet was dropped
5765  */
5766 int netif_receive_skb(struct sk_buff *skb)
5767 {
5768 	int ret;
5769 
5770 	trace_netif_receive_skb_entry(skb);
5771 
5772 	ret = netif_receive_skb_internal(skb);
5773 	trace_netif_receive_skb_exit(ret);
5774 
5775 	return ret;
5776 }
5777 EXPORT_SYMBOL(netif_receive_skb);
5778 
5779 /**
5780  *	netif_receive_skb_list - process many receive buffers from network
5781  *	@head: list of skbs to process.
5782  *
5783  *	Since return value of netif_receive_skb() is normally ignored, and
5784  *	wouldn't be meaningful for a list, this function returns void.
5785  *
5786  *	This function may only be called from softirq context and interrupts
5787  *	should be enabled.
5788  */
5789 void netif_receive_skb_list(struct list_head *head)
5790 {
5791 	struct sk_buff *skb;
5792 
5793 	if (list_empty(head))
5794 		return;
5795 	if (trace_netif_receive_skb_list_entry_enabled()) {
5796 		list_for_each_entry(skb, head, list)
5797 			trace_netif_receive_skb_list_entry(skb);
5798 	}
5799 	netif_receive_skb_list_internal(head);
5800 	trace_netif_receive_skb_list_exit(0);
5801 }
5802 EXPORT_SYMBOL(netif_receive_skb_list);
5803 
5804 static DEFINE_PER_CPU(struct work_struct, flush_works);
5805 
5806 /* Network device is going away, flush any packets still pending */
5807 static void flush_backlog(struct work_struct *work)
5808 {
5809 	struct sk_buff *skb, *tmp;
5810 	struct softnet_data *sd;
5811 
5812 	local_bh_disable();
5813 	sd = this_cpu_ptr(&softnet_data);
5814 
5815 	rps_lock_irq_disable(sd);
5816 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5817 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5818 			__skb_unlink(skb, &sd->input_pkt_queue);
5819 			dev_kfree_skb_irq(skb);
5820 			input_queue_head_incr(sd);
5821 		}
5822 	}
5823 	rps_unlock_irq_enable(sd);
5824 
5825 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5826 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5827 			__skb_unlink(skb, &sd->process_queue);
5828 			kfree_skb(skb);
5829 			input_queue_head_incr(sd);
5830 		}
5831 	}
5832 	local_bh_enable();
5833 }
5834 
5835 static bool flush_required(int cpu)
5836 {
5837 #if IS_ENABLED(CONFIG_RPS)
5838 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5839 	bool do_flush;
5840 
5841 	rps_lock_irq_disable(sd);
5842 
5843 	/* as insertion into process_queue happens with the rps lock held,
5844 	 * process_queue access may race only with dequeue
5845 	 */
5846 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5847 		   !skb_queue_empty_lockless(&sd->process_queue);
5848 	rps_unlock_irq_enable(sd);
5849 
5850 	return do_flush;
5851 #endif
5852 	/* without RPS we can't safely check input_pkt_queue: during a
5853 	 * concurrent remote skb_queue_splice() we can detect as empty both
5854 	 * input_pkt_queue and process_queue even if the latter could end-up
5855 	 * containing a lot of packets.
5856 	 */
5857 	return true;
5858 }
5859 
5860 static void flush_all_backlogs(void)
5861 {
5862 	static cpumask_t flush_cpus;
5863 	unsigned int cpu;
5864 
5865 	/* since we are under rtnl lock protection we can use static data
5866 	 * for the cpumask and avoid allocating on stack the possibly
5867 	 * large mask
5868 	 */
5869 	ASSERT_RTNL();
5870 
5871 	cpus_read_lock();
5872 
5873 	cpumask_clear(&flush_cpus);
5874 	for_each_online_cpu(cpu) {
5875 		if (flush_required(cpu)) {
5876 			queue_work_on(cpu, system_highpri_wq,
5877 				      per_cpu_ptr(&flush_works, cpu));
5878 			cpumask_set_cpu(cpu, &flush_cpus);
5879 		}
5880 	}
5881 
5882 	/* we can have in flight packet[s] on the cpus we are not flushing,
5883 	 * synchronize_net() in unregister_netdevice_many() will take care of
5884 	 * them
5885 	 */
5886 	for_each_cpu(cpu, &flush_cpus)
5887 		flush_work(per_cpu_ptr(&flush_works, cpu));
5888 
5889 	cpus_read_unlock();
5890 }
5891 
5892 static void net_rps_send_ipi(struct softnet_data *remsd)
5893 {
5894 #ifdef CONFIG_RPS
5895 	while (remsd) {
5896 		struct softnet_data *next = remsd->rps_ipi_next;
5897 
5898 		if (cpu_online(remsd->cpu))
5899 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5900 		remsd = next;
5901 	}
5902 #endif
5903 }
5904 
5905 /*
5906  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5907  * Note: called with local irq disabled, but exits with local irq enabled.
5908  */
5909 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5910 {
5911 #ifdef CONFIG_RPS
5912 	struct softnet_data *remsd = sd->rps_ipi_list;
5913 
5914 	if (remsd) {
5915 		sd->rps_ipi_list = NULL;
5916 
5917 		local_irq_enable();
5918 
5919 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5920 		net_rps_send_ipi(remsd);
5921 	} else
5922 #endif
5923 		local_irq_enable();
5924 }
5925 
5926 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5927 {
5928 #ifdef CONFIG_RPS
5929 	return sd->rps_ipi_list != NULL;
5930 #else
5931 	return false;
5932 #endif
5933 }
5934 
5935 static int process_backlog(struct napi_struct *napi, int quota)
5936 {
5937 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5938 	bool again = true;
5939 	int work = 0;
5940 
5941 	/* Check if we have pending ipi, its better to send them now,
5942 	 * not waiting net_rx_action() end.
5943 	 */
5944 	if (sd_has_rps_ipi_waiting(sd)) {
5945 		local_irq_disable();
5946 		net_rps_action_and_irq_enable(sd);
5947 	}
5948 
5949 	napi->weight = READ_ONCE(dev_rx_weight);
5950 	while (again) {
5951 		struct sk_buff *skb;
5952 
5953 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5954 			rcu_read_lock();
5955 			__netif_receive_skb(skb);
5956 			rcu_read_unlock();
5957 			input_queue_head_incr(sd);
5958 			if (++work >= quota)
5959 				return work;
5960 
5961 		}
5962 
5963 		rps_lock_irq_disable(sd);
5964 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5965 			/*
5966 			 * Inline a custom version of __napi_complete().
5967 			 * only current cpu owns and manipulates this napi,
5968 			 * and NAPI_STATE_SCHED is the only possible flag set
5969 			 * on backlog.
5970 			 * We can use a plain write instead of clear_bit(),
5971 			 * and we dont need an smp_mb() memory barrier.
5972 			 */
5973 			napi->state = 0;
5974 			again = false;
5975 		} else {
5976 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5977 						   &sd->process_queue);
5978 		}
5979 		rps_unlock_irq_enable(sd);
5980 	}
5981 
5982 	return work;
5983 }
5984 
5985 /**
5986  * __napi_schedule - schedule for receive
5987  * @n: entry to schedule
5988  *
5989  * The entry's receive function will be scheduled to run.
5990  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5991  */
5992 void __napi_schedule(struct napi_struct *n)
5993 {
5994 	unsigned long flags;
5995 
5996 	local_irq_save(flags);
5997 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5998 	local_irq_restore(flags);
5999 }
6000 EXPORT_SYMBOL(__napi_schedule);
6001 
6002 /**
6003  *	napi_schedule_prep - check if napi can be scheduled
6004  *	@n: napi context
6005  *
6006  * Test if NAPI routine is already running, and if not mark
6007  * it as running.  This is used as a condition variable to
6008  * insure only one NAPI poll instance runs.  We also make
6009  * sure there is no pending NAPI disable.
6010  */
6011 bool napi_schedule_prep(struct napi_struct *n)
6012 {
6013 	unsigned long new, val = READ_ONCE(n->state);
6014 
6015 	do {
6016 		if (unlikely(val & NAPIF_STATE_DISABLE))
6017 			return false;
6018 		new = val | NAPIF_STATE_SCHED;
6019 
6020 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6021 		 * This was suggested by Alexander Duyck, as compiler
6022 		 * emits better code than :
6023 		 * if (val & NAPIF_STATE_SCHED)
6024 		 *     new |= NAPIF_STATE_MISSED;
6025 		 */
6026 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6027 						   NAPIF_STATE_MISSED;
6028 	} while (!try_cmpxchg(&n->state, &val, new));
6029 
6030 	return !(val & NAPIF_STATE_SCHED);
6031 }
6032 EXPORT_SYMBOL(napi_schedule_prep);
6033 
6034 /**
6035  * __napi_schedule_irqoff - schedule for receive
6036  * @n: entry to schedule
6037  *
6038  * Variant of __napi_schedule() assuming hard irqs are masked.
6039  *
6040  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6041  * because the interrupt disabled assumption might not be true
6042  * due to force-threaded interrupts and spinlock substitution.
6043  */
6044 void __napi_schedule_irqoff(struct napi_struct *n)
6045 {
6046 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6047 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6048 	else
6049 		__napi_schedule(n);
6050 }
6051 EXPORT_SYMBOL(__napi_schedule_irqoff);
6052 
6053 bool napi_complete_done(struct napi_struct *n, int work_done)
6054 {
6055 	unsigned long flags, val, new, timeout = 0;
6056 	bool ret = true;
6057 
6058 	/*
6059 	 * 1) Don't let napi dequeue from the cpu poll list
6060 	 *    just in case its running on a different cpu.
6061 	 * 2) If we are busy polling, do nothing here, we have
6062 	 *    the guarantee we will be called later.
6063 	 */
6064 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6065 				 NAPIF_STATE_IN_BUSY_POLL)))
6066 		return false;
6067 
6068 	if (work_done) {
6069 		if (n->gro_bitmask)
6070 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6071 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6072 	}
6073 	if (n->defer_hard_irqs_count > 0) {
6074 		n->defer_hard_irqs_count--;
6075 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6076 		if (timeout)
6077 			ret = false;
6078 	}
6079 	if (n->gro_bitmask) {
6080 		/* When the NAPI instance uses a timeout and keeps postponing
6081 		 * it, we need to bound somehow the time packets are kept in
6082 		 * the GRO layer
6083 		 */
6084 		napi_gro_flush(n, !!timeout);
6085 	}
6086 
6087 	gro_normal_list(n);
6088 
6089 	if (unlikely(!list_empty(&n->poll_list))) {
6090 		/* If n->poll_list is not empty, we need to mask irqs */
6091 		local_irq_save(flags);
6092 		list_del_init(&n->poll_list);
6093 		local_irq_restore(flags);
6094 	}
6095 	WRITE_ONCE(n->list_owner, -1);
6096 
6097 	val = READ_ONCE(n->state);
6098 	do {
6099 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6100 
6101 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6102 			      NAPIF_STATE_SCHED_THREADED |
6103 			      NAPIF_STATE_PREFER_BUSY_POLL);
6104 
6105 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6106 		 * because we will call napi->poll() one more time.
6107 		 * This C code was suggested by Alexander Duyck to help gcc.
6108 		 */
6109 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6110 						    NAPIF_STATE_SCHED;
6111 	} while (!try_cmpxchg(&n->state, &val, new));
6112 
6113 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6114 		__napi_schedule(n);
6115 		return false;
6116 	}
6117 
6118 	if (timeout)
6119 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6120 			      HRTIMER_MODE_REL_PINNED);
6121 	return ret;
6122 }
6123 EXPORT_SYMBOL(napi_complete_done);
6124 
6125 /* must be called under rcu_read_lock(), as we dont take a reference */
6126 static struct napi_struct *napi_by_id(unsigned int napi_id)
6127 {
6128 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6129 	struct napi_struct *napi;
6130 
6131 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6132 		if (napi->napi_id == napi_id)
6133 			return napi;
6134 
6135 	return NULL;
6136 }
6137 
6138 #if defined(CONFIG_NET_RX_BUSY_POLL)
6139 
6140 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6141 {
6142 	if (!skip_schedule) {
6143 		gro_normal_list(napi);
6144 		__napi_schedule(napi);
6145 		return;
6146 	}
6147 
6148 	if (napi->gro_bitmask) {
6149 		/* flush too old packets
6150 		 * If HZ < 1000, flush all packets.
6151 		 */
6152 		napi_gro_flush(napi, HZ >= 1000);
6153 	}
6154 
6155 	gro_normal_list(napi);
6156 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6157 }
6158 
6159 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6160 			   u16 budget)
6161 {
6162 	bool skip_schedule = false;
6163 	unsigned long timeout;
6164 	int rc;
6165 
6166 	/* Busy polling means there is a high chance device driver hard irq
6167 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6168 	 * set in napi_schedule_prep().
6169 	 * Since we are about to call napi->poll() once more, we can safely
6170 	 * clear NAPI_STATE_MISSED.
6171 	 *
6172 	 * Note: x86 could use a single "lock and ..." instruction
6173 	 * to perform these two clear_bit()
6174 	 */
6175 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6176 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6177 
6178 	local_bh_disable();
6179 
6180 	if (prefer_busy_poll) {
6181 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6182 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6183 		if (napi->defer_hard_irqs_count && timeout) {
6184 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6185 			skip_schedule = true;
6186 		}
6187 	}
6188 
6189 	/* All we really want here is to re-enable device interrupts.
6190 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6191 	 */
6192 	rc = napi->poll(napi, budget);
6193 	/* We can't gro_normal_list() here, because napi->poll() might have
6194 	 * rearmed the napi (napi_complete_done()) in which case it could
6195 	 * already be running on another CPU.
6196 	 */
6197 	trace_napi_poll(napi, rc, budget);
6198 	netpoll_poll_unlock(have_poll_lock);
6199 	if (rc == budget)
6200 		__busy_poll_stop(napi, skip_schedule);
6201 	local_bh_enable();
6202 }
6203 
6204 void napi_busy_loop(unsigned int napi_id,
6205 		    bool (*loop_end)(void *, unsigned long),
6206 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6207 {
6208 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6209 	int (*napi_poll)(struct napi_struct *napi, int budget);
6210 	void *have_poll_lock = NULL;
6211 	struct napi_struct *napi;
6212 
6213 restart:
6214 	napi_poll = NULL;
6215 
6216 	rcu_read_lock();
6217 
6218 	napi = napi_by_id(napi_id);
6219 	if (!napi)
6220 		goto out;
6221 
6222 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6223 		preempt_disable();
6224 	for (;;) {
6225 		int work = 0;
6226 
6227 		local_bh_disable();
6228 		if (!napi_poll) {
6229 			unsigned long val = READ_ONCE(napi->state);
6230 
6231 			/* If multiple threads are competing for this napi,
6232 			 * we avoid dirtying napi->state as much as we can.
6233 			 */
6234 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6235 				   NAPIF_STATE_IN_BUSY_POLL)) {
6236 				if (prefer_busy_poll)
6237 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6238 				goto count;
6239 			}
6240 			if (cmpxchg(&napi->state, val,
6241 				    val | NAPIF_STATE_IN_BUSY_POLL |
6242 					  NAPIF_STATE_SCHED) != val) {
6243 				if (prefer_busy_poll)
6244 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6245 				goto count;
6246 			}
6247 			have_poll_lock = netpoll_poll_lock(napi);
6248 			napi_poll = napi->poll;
6249 		}
6250 		work = napi_poll(napi, budget);
6251 		trace_napi_poll(napi, work, budget);
6252 		gro_normal_list(napi);
6253 count:
6254 		if (work > 0)
6255 			__NET_ADD_STATS(dev_net(napi->dev),
6256 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6257 		local_bh_enable();
6258 
6259 		if (!loop_end || loop_end(loop_end_arg, start_time))
6260 			break;
6261 
6262 		if (unlikely(need_resched())) {
6263 			if (napi_poll)
6264 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6265 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6266 				preempt_enable();
6267 			rcu_read_unlock();
6268 			cond_resched();
6269 			if (loop_end(loop_end_arg, start_time))
6270 				return;
6271 			goto restart;
6272 		}
6273 		cpu_relax();
6274 	}
6275 	if (napi_poll)
6276 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6277 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6278 		preempt_enable();
6279 out:
6280 	rcu_read_unlock();
6281 }
6282 EXPORT_SYMBOL(napi_busy_loop);
6283 
6284 #endif /* CONFIG_NET_RX_BUSY_POLL */
6285 
6286 static void napi_hash_add(struct napi_struct *napi)
6287 {
6288 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6289 		return;
6290 
6291 	spin_lock(&napi_hash_lock);
6292 
6293 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6294 	do {
6295 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6296 			napi_gen_id = MIN_NAPI_ID;
6297 	} while (napi_by_id(napi_gen_id));
6298 	napi->napi_id = napi_gen_id;
6299 
6300 	hlist_add_head_rcu(&napi->napi_hash_node,
6301 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6302 
6303 	spin_unlock(&napi_hash_lock);
6304 }
6305 
6306 /* Warning : caller is responsible to make sure rcu grace period
6307  * is respected before freeing memory containing @napi
6308  */
6309 static void napi_hash_del(struct napi_struct *napi)
6310 {
6311 	spin_lock(&napi_hash_lock);
6312 
6313 	hlist_del_init_rcu(&napi->napi_hash_node);
6314 
6315 	spin_unlock(&napi_hash_lock);
6316 }
6317 
6318 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6319 {
6320 	struct napi_struct *napi;
6321 
6322 	napi = container_of(timer, struct napi_struct, timer);
6323 
6324 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6325 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6326 	 */
6327 	if (!napi_disable_pending(napi) &&
6328 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6329 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6330 		__napi_schedule_irqoff(napi);
6331 	}
6332 
6333 	return HRTIMER_NORESTART;
6334 }
6335 
6336 static void init_gro_hash(struct napi_struct *napi)
6337 {
6338 	int i;
6339 
6340 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6341 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6342 		napi->gro_hash[i].count = 0;
6343 	}
6344 	napi->gro_bitmask = 0;
6345 }
6346 
6347 int dev_set_threaded(struct net_device *dev, bool threaded)
6348 {
6349 	struct napi_struct *napi;
6350 	int err = 0;
6351 
6352 	if (dev->threaded == threaded)
6353 		return 0;
6354 
6355 	if (threaded) {
6356 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6357 			if (!napi->thread) {
6358 				err = napi_kthread_create(napi);
6359 				if (err) {
6360 					threaded = false;
6361 					break;
6362 				}
6363 			}
6364 		}
6365 	}
6366 
6367 	dev->threaded = threaded;
6368 
6369 	/* Make sure kthread is created before THREADED bit
6370 	 * is set.
6371 	 */
6372 	smp_mb__before_atomic();
6373 
6374 	/* Setting/unsetting threaded mode on a napi might not immediately
6375 	 * take effect, if the current napi instance is actively being
6376 	 * polled. In this case, the switch between threaded mode and
6377 	 * softirq mode will happen in the next round of napi_schedule().
6378 	 * This should not cause hiccups/stalls to the live traffic.
6379 	 */
6380 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6381 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6382 
6383 	return err;
6384 }
6385 EXPORT_SYMBOL(dev_set_threaded);
6386 
6387 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6388 			   int (*poll)(struct napi_struct *, int), int weight)
6389 {
6390 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6391 		return;
6392 
6393 	INIT_LIST_HEAD(&napi->poll_list);
6394 	INIT_HLIST_NODE(&napi->napi_hash_node);
6395 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6396 	napi->timer.function = napi_watchdog;
6397 	init_gro_hash(napi);
6398 	napi->skb = NULL;
6399 	INIT_LIST_HEAD(&napi->rx_list);
6400 	napi->rx_count = 0;
6401 	napi->poll = poll;
6402 	if (weight > NAPI_POLL_WEIGHT)
6403 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6404 				weight);
6405 	napi->weight = weight;
6406 	napi->dev = dev;
6407 #ifdef CONFIG_NETPOLL
6408 	napi->poll_owner = -1;
6409 #endif
6410 	napi->list_owner = -1;
6411 	set_bit(NAPI_STATE_SCHED, &napi->state);
6412 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6413 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6414 	napi_hash_add(napi);
6415 	napi_get_frags_check(napi);
6416 	/* Create kthread for this napi if dev->threaded is set.
6417 	 * Clear dev->threaded if kthread creation failed so that
6418 	 * threaded mode will not be enabled in napi_enable().
6419 	 */
6420 	if (dev->threaded && napi_kthread_create(napi))
6421 		dev->threaded = 0;
6422 }
6423 EXPORT_SYMBOL(netif_napi_add_weight);
6424 
6425 void napi_disable(struct napi_struct *n)
6426 {
6427 	unsigned long val, new;
6428 
6429 	might_sleep();
6430 	set_bit(NAPI_STATE_DISABLE, &n->state);
6431 
6432 	val = READ_ONCE(n->state);
6433 	do {
6434 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6435 			usleep_range(20, 200);
6436 			val = READ_ONCE(n->state);
6437 		}
6438 
6439 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6440 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6441 	} while (!try_cmpxchg(&n->state, &val, new));
6442 
6443 	hrtimer_cancel(&n->timer);
6444 
6445 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6446 }
6447 EXPORT_SYMBOL(napi_disable);
6448 
6449 /**
6450  *	napi_enable - enable NAPI scheduling
6451  *	@n: NAPI context
6452  *
6453  * Resume NAPI from being scheduled on this context.
6454  * Must be paired with napi_disable.
6455  */
6456 void napi_enable(struct napi_struct *n)
6457 {
6458 	unsigned long new, val = READ_ONCE(n->state);
6459 
6460 	do {
6461 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6462 
6463 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6464 		if (n->dev->threaded && n->thread)
6465 			new |= NAPIF_STATE_THREADED;
6466 	} while (!try_cmpxchg(&n->state, &val, new));
6467 }
6468 EXPORT_SYMBOL(napi_enable);
6469 
6470 static void flush_gro_hash(struct napi_struct *napi)
6471 {
6472 	int i;
6473 
6474 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6475 		struct sk_buff *skb, *n;
6476 
6477 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6478 			kfree_skb(skb);
6479 		napi->gro_hash[i].count = 0;
6480 	}
6481 }
6482 
6483 /* Must be called in process context */
6484 void __netif_napi_del(struct napi_struct *napi)
6485 {
6486 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6487 		return;
6488 
6489 	napi_hash_del(napi);
6490 	list_del_rcu(&napi->dev_list);
6491 	napi_free_frags(napi);
6492 
6493 	flush_gro_hash(napi);
6494 	napi->gro_bitmask = 0;
6495 
6496 	if (napi->thread) {
6497 		kthread_stop(napi->thread);
6498 		napi->thread = NULL;
6499 	}
6500 }
6501 EXPORT_SYMBOL(__netif_napi_del);
6502 
6503 static int __napi_poll(struct napi_struct *n, bool *repoll)
6504 {
6505 	int work, weight;
6506 
6507 	weight = n->weight;
6508 
6509 	/* This NAPI_STATE_SCHED test is for avoiding a race
6510 	 * with netpoll's poll_napi().  Only the entity which
6511 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6512 	 * actually make the ->poll() call.  Therefore we avoid
6513 	 * accidentally calling ->poll() when NAPI is not scheduled.
6514 	 */
6515 	work = 0;
6516 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6517 		work = n->poll(n, weight);
6518 		trace_napi_poll(n, work, weight);
6519 	}
6520 
6521 	if (unlikely(work > weight))
6522 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6523 				n->poll, work, weight);
6524 
6525 	if (likely(work < weight))
6526 		return work;
6527 
6528 	/* Drivers must not modify the NAPI state if they
6529 	 * consume the entire weight.  In such cases this code
6530 	 * still "owns" the NAPI instance and therefore can
6531 	 * move the instance around on the list at-will.
6532 	 */
6533 	if (unlikely(napi_disable_pending(n))) {
6534 		napi_complete(n);
6535 		return work;
6536 	}
6537 
6538 	/* The NAPI context has more processing work, but busy-polling
6539 	 * is preferred. Exit early.
6540 	 */
6541 	if (napi_prefer_busy_poll(n)) {
6542 		if (napi_complete_done(n, work)) {
6543 			/* If timeout is not set, we need to make sure
6544 			 * that the NAPI is re-scheduled.
6545 			 */
6546 			napi_schedule(n);
6547 		}
6548 		return work;
6549 	}
6550 
6551 	if (n->gro_bitmask) {
6552 		/* flush too old packets
6553 		 * If HZ < 1000, flush all packets.
6554 		 */
6555 		napi_gro_flush(n, HZ >= 1000);
6556 	}
6557 
6558 	gro_normal_list(n);
6559 
6560 	/* Some drivers may have called napi_schedule
6561 	 * prior to exhausting their budget.
6562 	 */
6563 	if (unlikely(!list_empty(&n->poll_list))) {
6564 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6565 			     n->dev ? n->dev->name : "backlog");
6566 		return work;
6567 	}
6568 
6569 	*repoll = true;
6570 
6571 	return work;
6572 }
6573 
6574 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6575 {
6576 	bool do_repoll = false;
6577 	void *have;
6578 	int work;
6579 
6580 	list_del_init(&n->poll_list);
6581 
6582 	have = netpoll_poll_lock(n);
6583 
6584 	work = __napi_poll(n, &do_repoll);
6585 
6586 	if (do_repoll)
6587 		list_add_tail(&n->poll_list, repoll);
6588 
6589 	netpoll_poll_unlock(have);
6590 
6591 	return work;
6592 }
6593 
6594 static int napi_thread_wait(struct napi_struct *napi)
6595 {
6596 	bool woken = false;
6597 
6598 	set_current_state(TASK_INTERRUPTIBLE);
6599 
6600 	while (!kthread_should_stop()) {
6601 		/* Testing SCHED_THREADED bit here to make sure the current
6602 		 * kthread owns this napi and could poll on this napi.
6603 		 * Testing SCHED bit is not enough because SCHED bit might be
6604 		 * set by some other busy poll thread or by napi_disable().
6605 		 */
6606 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6607 			WARN_ON(!list_empty(&napi->poll_list));
6608 			__set_current_state(TASK_RUNNING);
6609 			return 0;
6610 		}
6611 
6612 		schedule();
6613 		/* woken being true indicates this thread owns this napi. */
6614 		woken = true;
6615 		set_current_state(TASK_INTERRUPTIBLE);
6616 	}
6617 	__set_current_state(TASK_RUNNING);
6618 
6619 	return -1;
6620 }
6621 
6622 static void skb_defer_free_flush(struct softnet_data *sd)
6623 {
6624 	struct sk_buff *skb, *next;
6625 
6626 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6627 	if (!READ_ONCE(sd->defer_list))
6628 		return;
6629 
6630 	spin_lock(&sd->defer_lock);
6631 	skb = sd->defer_list;
6632 	sd->defer_list = NULL;
6633 	sd->defer_count = 0;
6634 	spin_unlock(&sd->defer_lock);
6635 
6636 	while (skb != NULL) {
6637 		next = skb->next;
6638 		napi_consume_skb(skb, 1);
6639 		skb = next;
6640 	}
6641 }
6642 
6643 static int napi_threaded_poll(void *data)
6644 {
6645 	struct napi_struct *napi = data;
6646 	struct softnet_data *sd;
6647 	void *have;
6648 
6649 	while (!napi_thread_wait(napi)) {
6650 		for (;;) {
6651 			bool repoll = false;
6652 
6653 			local_bh_disable();
6654 			sd = this_cpu_ptr(&softnet_data);
6655 			sd->in_napi_threaded_poll = true;
6656 
6657 			have = netpoll_poll_lock(napi);
6658 			__napi_poll(napi, &repoll);
6659 			netpoll_poll_unlock(have);
6660 
6661 			sd->in_napi_threaded_poll = false;
6662 			barrier();
6663 
6664 			if (sd_has_rps_ipi_waiting(sd)) {
6665 				local_irq_disable();
6666 				net_rps_action_and_irq_enable(sd);
6667 			}
6668 			skb_defer_free_flush(sd);
6669 			local_bh_enable();
6670 
6671 			if (!repoll)
6672 				break;
6673 
6674 			cond_resched();
6675 		}
6676 	}
6677 	return 0;
6678 }
6679 
6680 static __latent_entropy void net_rx_action(struct softirq_action *h)
6681 {
6682 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6683 	unsigned long time_limit = jiffies +
6684 		usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6685 	int budget = READ_ONCE(netdev_budget);
6686 	LIST_HEAD(list);
6687 	LIST_HEAD(repoll);
6688 
6689 start:
6690 	sd->in_net_rx_action = true;
6691 	local_irq_disable();
6692 	list_splice_init(&sd->poll_list, &list);
6693 	local_irq_enable();
6694 
6695 	for (;;) {
6696 		struct napi_struct *n;
6697 
6698 		skb_defer_free_flush(sd);
6699 
6700 		if (list_empty(&list)) {
6701 			if (list_empty(&repoll)) {
6702 				sd->in_net_rx_action = false;
6703 				barrier();
6704 				/* We need to check if ____napi_schedule()
6705 				 * had refilled poll_list while
6706 				 * sd->in_net_rx_action was true.
6707 				 */
6708 				if (!list_empty(&sd->poll_list))
6709 					goto start;
6710 				if (!sd_has_rps_ipi_waiting(sd))
6711 					goto end;
6712 			}
6713 			break;
6714 		}
6715 
6716 		n = list_first_entry(&list, struct napi_struct, poll_list);
6717 		budget -= napi_poll(n, &repoll);
6718 
6719 		/* If softirq window is exhausted then punt.
6720 		 * Allow this to run for 2 jiffies since which will allow
6721 		 * an average latency of 1.5/HZ.
6722 		 */
6723 		if (unlikely(budget <= 0 ||
6724 			     time_after_eq(jiffies, time_limit))) {
6725 			sd->time_squeeze++;
6726 			break;
6727 		}
6728 	}
6729 
6730 	local_irq_disable();
6731 
6732 	list_splice_tail_init(&sd->poll_list, &list);
6733 	list_splice_tail(&repoll, &list);
6734 	list_splice(&list, &sd->poll_list);
6735 	if (!list_empty(&sd->poll_list))
6736 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6737 	else
6738 		sd->in_net_rx_action = false;
6739 
6740 	net_rps_action_and_irq_enable(sd);
6741 end:;
6742 }
6743 
6744 struct netdev_adjacent {
6745 	struct net_device *dev;
6746 	netdevice_tracker dev_tracker;
6747 
6748 	/* upper master flag, there can only be one master device per list */
6749 	bool master;
6750 
6751 	/* lookup ignore flag */
6752 	bool ignore;
6753 
6754 	/* counter for the number of times this device was added to us */
6755 	u16 ref_nr;
6756 
6757 	/* private field for the users */
6758 	void *private;
6759 
6760 	struct list_head list;
6761 	struct rcu_head rcu;
6762 };
6763 
6764 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6765 						 struct list_head *adj_list)
6766 {
6767 	struct netdev_adjacent *adj;
6768 
6769 	list_for_each_entry(adj, adj_list, list) {
6770 		if (adj->dev == adj_dev)
6771 			return adj;
6772 	}
6773 	return NULL;
6774 }
6775 
6776 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6777 				    struct netdev_nested_priv *priv)
6778 {
6779 	struct net_device *dev = (struct net_device *)priv->data;
6780 
6781 	return upper_dev == dev;
6782 }
6783 
6784 /**
6785  * netdev_has_upper_dev - Check if device is linked to an upper device
6786  * @dev: device
6787  * @upper_dev: upper device to check
6788  *
6789  * Find out if a device is linked to specified upper device and return true
6790  * in case it is. Note that this checks only immediate upper device,
6791  * not through a complete stack of devices. The caller must hold the RTNL lock.
6792  */
6793 bool netdev_has_upper_dev(struct net_device *dev,
6794 			  struct net_device *upper_dev)
6795 {
6796 	struct netdev_nested_priv priv = {
6797 		.data = (void *)upper_dev,
6798 	};
6799 
6800 	ASSERT_RTNL();
6801 
6802 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6803 					     &priv);
6804 }
6805 EXPORT_SYMBOL(netdev_has_upper_dev);
6806 
6807 /**
6808  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6809  * @dev: device
6810  * @upper_dev: upper device to check
6811  *
6812  * Find out if a device is linked to specified upper device and return true
6813  * in case it is. Note that this checks the entire upper device chain.
6814  * The caller must hold rcu lock.
6815  */
6816 
6817 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6818 				  struct net_device *upper_dev)
6819 {
6820 	struct netdev_nested_priv priv = {
6821 		.data = (void *)upper_dev,
6822 	};
6823 
6824 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6825 					       &priv);
6826 }
6827 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6828 
6829 /**
6830  * netdev_has_any_upper_dev - Check if device is linked to some device
6831  * @dev: device
6832  *
6833  * Find out if a device is linked to an upper device and return true in case
6834  * it is. The caller must hold the RTNL lock.
6835  */
6836 bool netdev_has_any_upper_dev(struct net_device *dev)
6837 {
6838 	ASSERT_RTNL();
6839 
6840 	return !list_empty(&dev->adj_list.upper);
6841 }
6842 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6843 
6844 /**
6845  * netdev_master_upper_dev_get - Get master upper device
6846  * @dev: device
6847  *
6848  * Find a master upper device and return pointer to it or NULL in case
6849  * it's not there. The caller must hold the RTNL lock.
6850  */
6851 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6852 {
6853 	struct netdev_adjacent *upper;
6854 
6855 	ASSERT_RTNL();
6856 
6857 	if (list_empty(&dev->adj_list.upper))
6858 		return NULL;
6859 
6860 	upper = list_first_entry(&dev->adj_list.upper,
6861 				 struct netdev_adjacent, list);
6862 	if (likely(upper->master))
6863 		return upper->dev;
6864 	return NULL;
6865 }
6866 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6867 
6868 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6869 {
6870 	struct netdev_adjacent *upper;
6871 
6872 	ASSERT_RTNL();
6873 
6874 	if (list_empty(&dev->adj_list.upper))
6875 		return NULL;
6876 
6877 	upper = list_first_entry(&dev->adj_list.upper,
6878 				 struct netdev_adjacent, list);
6879 	if (likely(upper->master) && !upper->ignore)
6880 		return upper->dev;
6881 	return NULL;
6882 }
6883 
6884 /**
6885  * netdev_has_any_lower_dev - Check if device is linked to some device
6886  * @dev: device
6887  *
6888  * Find out if a device is linked to a lower device and return true in case
6889  * it is. The caller must hold the RTNL lock.
6890  */
6891 static bool netdev_has_any_lower_dev(struct net_device *dev)
6892 {
6893 	ASSERT_RTNL();
6894 
6895 	return !list_empty(&dev->adj_list.lower);
6896 }
6897 
6898 void *netdev_adjacent_get_private(struct list_head *adj_list)
6899 {
6900 	struct netdev_adjacent *adj;
6901 
6902 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6903 
6904 	return adj->private;
6905 }
6906 EXPORT_SYMBOL(netdev_adjacent_get_private);
6907 
6908 /**
6909  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6910  * @dev: device
6911  * @iter: list_head ** of the current position
6912  *
6913  * Gets the next device from the dev's upper list, starting from iter
6914  * position. The caller must hold RCU read lock.
6915  */
6916 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6917 						 struct list_head **iter)
6918 {
6919 	struct netdev_adjacent *upper;
6920 
6921 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6922 
6923 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6924 
6925 	if (&upper->list == &dev->adj_list.upper)
6926 		return NULL;
6927 
6928 	*iter = &upper->list;
6929 
6930 	return upper->dev;
6931 }
6932 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6933 
6934 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6935 						  struct list_head **iter,
6936 						  bool *ignore)
6937 {
6938 	struct netdev_adjacent *upper;
6939 
6940 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6941 
6942 	if (&upper->list == &dev->adj_list.upper)
6943 		return NULL;
6944 
6945 	*iter = &upper->list;
6946 	*ignore = upper->ignore;
6947 
6948 	return upper->dev;
6949 }
6950 
6951 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6952 						    struct list_head **iter)
6953 {
6954 	struct netdev_adjacent *upper;
6955 
6956 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6957 
6958 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6959 
6960 	if (&upper->list == &dev->adj_list.upper)
6961 		return NULL;
6962 
6963 	*iter = &upper->list;
6964 
6965 	return upper->dev;
6966 }
6967 
6968 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6969 				       int (*fn)(struct net_device *dev,
6970 					 struct netdev_nested_priv *priv),
6971 				       struct netdev_nested_priv *priv)
6972 {
6973 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6974 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6975 	int ret, cur = 0;
6976 	bool ignore;
6977 
6978 	now = dev;
6979 	iter = &dev->adj_list.upper;
6980 
6981 	while (1) {
6982 		if (now != dev) {
6983 			ret = fn(now, priv);
6984 			if (ret)
6985 				return ret;
6986 		}
6987 
6988 		next = NULL;
6989 		while (1) {
6990 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
6991 			if (!udev)
6992 				break;
6993 			if (ignore)
6994 				continue;
6995 
6996 			next = udev;
6997 			niter = &udev->adj_list.upper;
6998 			dev_stack[cur] = now;
6999 			iter_stack[cur++] = iter;
7000 			break;
7001 		}
7002 
7003 		if (!next) {
7004 			if (!cur)
7005 				return 0;
7006 			next = dev_stack[--cur];
7007 			niter = iter_stack[cur];
7008 		}
7009 
7010 		now = next;
7011 		iter = niter;
7012 	}
7013 
7014 	return 0;
7015 }
7016 
7017 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7018 				  int (*fn)(struct net_device *dev,
7019 					    struct netdev_nested_priv *priv),
7020 				  struct netdev_nested_priv *priv)
7021 {
7022 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7023 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7024 	int ret, cur = 0;
7025 
7026 	now = dev;
7027 	iter = &dev->adj_list.upper;
7028 
7029 	while (1) {
7030 		if (now != dev) {
7031 			ret = fn(now, priv);
7032 			if (ret)
7033 				return ret;
7034 		}
7035 
7036 		next = NULL;
7037 		while (1) {
7038 			udev = netdev_next_upper_dev_rcu(now, &iter);
7039 			if (!udev)
7040 				break;
7041 
7042 			next = udev;
7043 			niter = &udev->adj_list.upper;
7044 			dev_stack[cur] = now;
7045 			iter_stack[cur++] = iter;
7046 			break;
7047 		}
7048 
7049 		if (!next) {
7050 			if (!cur)
7051 				return 0;
7052 			next = dev_stack[--cur];
7053 			niter = iter_stack[cur];
7054 		}
7055 
7056 		now = next;
7057 		iter = niter;
7058 	}
7059 
7060 	return 0;
7061 }
7062 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7063 
7064 static bool __netdev_has_upper_dev(struct net_device *dev,
7065 				   struct net_device *upper_dev)
7066 {
7067 	struct netdev_nested_priv priv = {
7068 		.flags = 0,
7069 		.data = (void *)upper_dev,
7070 	};
7071 
7072 	ASSERT_RTNL();
7073 
7074 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7075 					   &priv);
7076 }
7077 
7078 /**
7079  * netdev_lower_get_next_private - Get the next ->private from the
7080  *				   lower neighbour list
7081  * @dev: device
7082  * @iter: list_head ** of the current position
7083  *
7084  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7085  * list, starting from iter position. The caller must hold either hold the
7086  * RTNL lock or its own locking that guarantees that the neighbour lower
7087  * list will remain unchanged.
7088  */
7089 void *netdev_lower_get_next_private(struct net_device *dev,
7090 				    struct list_head **iter)
7091 {
7092 	struct netdev_adjacent *lower;
7093 
7094 	lower = list_entry(*iter, struct netdev_adjacent, list);
7095 
7096 	if (&lower->list == &dev->adj_list.lower)
7097 		return NULL;
7098 
7099 	*iter = lower->list.next;
7100 
7101 	return lower->private;
7102 }
7103 EXPORT_SYMBOL(netdev_lower_get_next_private);
7104 
7105 /**
7106  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7107  *				       lower neighbour list, RCU
7108  *				       variant
7109  * @dev: device
7110  * @iter: list_head ** of the current position
7111  *
7112  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7113  * list, starting from iter position. The caller must hold RCU read lock.
7114  */
7115 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7116 					struct list_head **iter)
7117 {
7118 	struct netdev_adjacent *lower;
7119 
7120 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7121 
7122 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7123 
7124 	if (&lower->list == &dev->adj_list.lower)
7125 		return NULL;
7126 
7127 	*iter = &lower->list;
7128 
7129 	return lower->private;
7130 }
7131 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7132 
7133 /**
7134  * netdev_lower_get_next - Get the next device from the lower neighbour
7135  *                         list
7136  * @dev: device
7137  * @iter: list_head ** of the current position
7138  *
7139  * Gets the next netdev_adjacent from the dev's lower neighbour
7140  * list, starting from iter position. The caller must hold RTNL lock or
7141  * its own locking that guarantees that the neighbour lower
7142  * list will remain unchanged.
7143  */
7144 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7145 {
7146 	struct netdev_adjacent *lower;
7147 
7148 	lower = list_entry(*iter, struct netdev_adjacent, list);
7149 
7150 	if (&lower->list == &dev->adj_list.lower)
7151 		return NULL;
7152 
7153 	*iter = lower->list.next;
7154 
7155 	return lower->dev;
7156 }
7157 EXPORT_SYMBOL(netdev_lower_get_next);
7158 
7159 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7160 						struct list_head **iter)
7161 {
7162 	struct netdev_adjacent *lower;
7163 
7164 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7165 
7166 	if (&lower->list == &dev->adj_list.lower)
7167 		return NULL;
7168 
7169 	*iter = &lower->list;
7170 
7171 	return lower->dev;
7172 }
7173 
7174 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7175 						  struct list_head **iter,
7176 						  bool *ignore)
7177 {
7178 	struct netdev_adjacent *lower;
7179 
7180 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7181 
7182 	if (&lower->list == &dev->adj_list.lower)
7183 		return NULL;
7184 
7185 	*iter = &lower->list;
7186 	*ignore = lower->ignore;
7187 
7188 	return lower->dev;
7189 }
7190 
7191 int netdev_walk_all_lower_dev(struct net_device *dev,
7192 			      int (*fn)(struct net_device *dev,
7193 					struct netdev_nested_priv *priv),
7194 			      struct netdev_nested_priv *priv)
7195 {
7196 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7197 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7198 	int ret, cur = 0;
7199 
7200 	now = dev;
7201 	iter = &dev->adj_list.lower;
7202 
7203 	while (1) {
7204 		if (now != dev) {
7205 			ret = fn(now, priv);
7206 			if (ret)
7207 				return ret;
7208 		}
7209 
7210 		next = NULL;
7211 		while (1) {
7212 			ldev = netdev_next_lower_dev(now, &iter);
7213 			if (!ldev)
7214 				break;
7215 
7216 			next = ldev;
7217 			niter = &ldev->adj_list.lower;
7218 			dev_stack[cur] = now;
7219 			iter_stack[cur++] = iter;
7220 			break;
7221 		}
7222 
7223 		if (!next) {
7224 			if (!cur)
7225 				return 0;
7226 			next = dev_stack[--cur];
7227 			niter = iter_stack[cur];
7228 		}
7229 
7230 		now = next;
7231 		iter = niter;
7232 	}
7233 
7234 	return 0;
7235 }
7236 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7237 
7238 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7239 				       int (*fn)(struct net_device *dev,
7240 					 struct netdev_nested_priv *priv),
7241 				       struct netdev_nested_priv *priv)
7242 {
7243 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7244 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7245 	int ret, cur = 0;
7246 	bool ignore;
7247 
7248 	now = dev;
7249 	iter = &dev->adj_list.lower;
7250 
7251 	while (1) {
7252 		if (now != dev) {
7253 			ret = fn(now, priv);
7254 			if (ret)
7255 				return ret;
7256 		}
7257 
7258 		next = NULL;
7259 		while (1) {
7260 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7261 			if (!ldev)
7262 				break;
7263 			if (ignore)
7264 				continue;
7265 
7266 			next = ldev;
7267 			niter = &ldev->adj_list.lower;
7268 			dev_stack[cur] = now;
7269 			iter_stack[cur++] = iter;
7270 			break;
7271 		}
7272 
7273 		if (!next) {
7274 			if (!cur)
7275 				return 0;
7276 			next = dev_stack[--cur];
7277 			niter = iter_stack[cur];
7278 		}
7279 
7280 		now = next;
7281 		iter = niter;
7282 	}
7283 
7284 	return 0;
7285 }
7286 
7287 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7288 					     struct list_head **iter)
7289 {
7290 	struct netdev_adjacent *lower;
7291 
7292 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7293 	if (&lower->list == &dev->adj_list.lower)
7294 		return NULL;
7295 
7296 	*iter = &lower->list;
7297 
7298 	return lower->dev;
7299 }
7300 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7301 
7302 static u8 __netdev_upper_depth(struct net_device *dev)
7303 {
7304 	struct net_device *udev;
7305 	struct list_head *iter;
7306 	u8 max_depth = 0;
7307 	bool ignore;
7308 
7309 	for (iter = &dev->adj_list.upper,
7310 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7311 	     udev;
7312 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7313 		if (ignore)
7314 			continue;
7315 		if (max_depth < udev->upper_level)
7316 			max_depth = udev->upper_level;
7317 	}
7318 
7319 	return max_depth;
7320 }
7321 
7322 static u8 __netdev_lower_depth(struct net_device *dev)
7323 {
7324 	struct net_device *ldev;
7325 	struct list_head *iter;
7326 	u8 max_depth = 0;
7327 	bool ignore;
7328 
7329 	for (iter = &dev->adj_list.lower,
7330 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7331 	     ldev;
7332 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7333 		if (ignore)
7334 			continue;
7335 		if (max_depth < ldev->lower_level)
7336 			max_depth = ldev->lower_level;
7337 	}
7338 
7339 	return max_depth;
7340 }
7341 
7342 static int __netdev_update_upper_level(struct net_device *dev,
7343 				       struct netdev_nested_priv *__unused)
7344 {
7345 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7346 	return 0;
7347 }
7348 
7349 #ifdef CONFIG_LOCKDEP
7350 static LIST_HEAD(net_unlink_list);
7351 
7352 static void net_unlink_todo(struct net_device *dev)
7353 {
7354 	if (list_empty(&dev->unlink_list))
7355 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7356 }
7357 #endif
7358 
7359 static int __netdev_update_lower_level(struct net_device *dev,
7360 				       struct netdev_nested_priv *priv)
7361 {
7362 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7363 
7364 #ifdef CONFIG_LOCKDEP
7365 	if (!priv)
7366 		return 0;
7367 
7368 	if (priv->flags & NESTED_SYNC_IMM)
7369 		dev->nested_level = dev->lower_level - 1;
7370 	if (priv->flags & NESTED_SYNC_TODO)
7371 		net_unlink_todo(dev);
7372 #endif
7373 	return 0;
7374 }
7375 
7376 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7377 				  int (*fn)(struct net_device *dev,
7378 					    struct netdev_nested_priv *priv),
7379 				  struct netdev_nested_priv *priv)
7380 {
7381 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7382 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7383 	int ret, cur = 0;
7384 
7385 	now = dev;
7386 	iter = &dev->adj_list.lower;
7387 
7388 	while (1) {
7389 		if (now != dev) {
7390 			ret = fn(now, priv);
7391 			if (ret)
7392 				return ret;
7393 		}
7394 
7395 		next = NULL;
7396 		while (1) {
7397 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7398 			if (!ldev)
7399 				break;
7400 
7401 			next = ldev;
7402 			niter = &ldev->adj_list.lower;
7403 			dev_stack[cur] = now;
7404 			iter_stack[cur++] = iter;
7405 			break;
7406 		}
7407 
7408 		if (!next) {
7409 			if (!cur)
7410 				return 0;
7411 			next = dev_stack[--cur];
7412 			niter = iter_stack[cur];
7413 		}
7414 
7415 		now = next;
7416 		iter = niter;
7417 	}
7418 
7419 	return 0;
7420 }
7421 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7422 
7423 /**
7424  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7425  *				       lower neighbour list, RCU
7426  *				       variant
7427  * @dev: device
7428  *
7429  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7430  * list. The caller must hold RCU read lock.
7431  */
7432 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7433 {
7434 	struct netdev_adjacent *lower;
7435 
7436 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7437 			struct netdev_adjacent, list);
7438 	if (lower)
7439 		return lower->private;
7440 	return NULL;
7441 }
7442 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7443 
7444 /**
7445  * netdev_master_upper_dev_get_rcu - Get master upper device
7446  * @dev: device
7447  *
7448  * Find a master upper device and return pointer to it or NULL in case
7449  * it's not there. The caller must hold the RCU read lock.
7450  */
7451 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7452 {
7453 	struct netdev_adjacent *upper;
7454 
7455 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7456 				       struct netdev_adjacent, list);
7457 	if (upper && likely(upper->master))
7458 		return upper->dev;
7459 	return NULL;
7460 }
7461 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7462 
7463 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7464 			      struct net_device *adj_dev,
7465 			      struct list_head *dev_list)
7466 {
7467 	char linkname[IFNAMSIZ+7];
7468 
7469 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7470 		"upper_%s" : "lower_%s", adj_dev->name);
7471 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7472 				 linkname);
7473 }
7474 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7475 			       char *name,
7476 			       struct list_head *dev_list)
7477 {
7478 	char linkname[IFNAMSIZ+7];
7479 
7480 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7481 		"upper_%s" : "lower_%s", name);
7482 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7483 }
7484 
7485 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7486 						 struct net_device *adj_dev,
7487 						 struct list_head *dev_list)
7488 {
7489 	return (dev_list == &dev->adj_list.upper ||
7490 		dev_list == &dev->adj_list.lower) &&
7491 		net_eq(dev_net(dev), dev_net(adj_dev));
7492 }
7493 
7494 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7495 					struct net_device *adj_dev,
7496 					struct list_head *dev_list,
7497 					void *private, bool master)
7498 {
7499 	struct netdev_adjacent *adj;
7500 	int ret;
7501 
7502 	adj = __netdev_find_adj(adj_dev, dev_list);
7503 
7504 	if (adj) {
7505 		adj->ref_nr += 1;
7506 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7507 			 dev->name, adj_dev->name, adj->ref_nr);
7508 
7509 		return 0;
7510 	}
7511 
7512 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7513 	if (!adj)
7514 		return -ENOMEM;
7515 
7516 	adj->dev = adj_dev;
7517 	adj->master = master;
7518 	adj->ref_nr = 1;
7519 	adj->private = private;
7520 	adj->ignore = false;
7521 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7522 
7523 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7524 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7525 
7526 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7527 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7528 		if (ret)
7529 			goto free_adj;
7530 	}
7531 
7532 	/* Ensure that master link is always the first item in list. */
7533 	if (master) {
7534 		ret = sysfs_create_link(&(dev->dev.kobj),
7535 					&(adj_dev->dev.kobj), "master");
7536 		if (ret)
7537 			goto remove_symlinks;
7538 
7539 		list_add_rcu(&adj->list, dev_list);
7540 	} else {
7541 		list_add_tail_rcu(&adj->list, dev_list);
7542 	}
7543 
7544 	return 0;
7545 
7546 remove_symlinks:
7547 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7548 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7549 free_adj:
7550 	netdev_put(adj_dev, &adj->dev_tracker);
7551 	kfree(adj);
7552 
7553 	return ret;
7554 }
7555 
7556 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7557 					 struct net_device *adj_dev,
7558 					 u16 ref_nr,
7559 					 struct list_head *dev_list)
7560 {
7561 	struct netdev_adjacent *adj;
7562 
7563 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7564 		 dev->name, adj_dev->name, ref_nr);
7565 
7566 	adj = __netdev_find_adj(adj_dev, dev_list);
7567 
7568 	if (!adj) {
7569 		pr_err("Adjacency does not exist for device %s from %s\n",
7570 		       dev->name, adj_dev->name);
7571 		WARN_ON(1);
7572 		return;
7573 	}
7574 
7575 	if (adj->ref_nr > ref_nr) {
7576 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7577 			 dev->name, adj_dev->name, ref_nr,
7578 			 adj->ref_nr - ref_nr);
7579 		adj->ref_nr -= ref_nr;
7580 		return;
7581 	}
7582 
7583 	if (adj->master)
7584 		sysfs_remove_link(&(dev->dev.kobj), "master");
7585 
7586 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7587 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7588 
7589 	list_del_rcu(&adj->list);
7590 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7591 		 adj_dev->name, dev->name, adj_dev->name);
7592 	netdev_put(adj_dev, &adj->dev_tracker);
7593 	kfree_rcu(adj, rcu);
7594 }
7595 
7596 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7597 					    struct net_device *upper_dev,
7598 					    struct list_head *up_list,
7599 					    struct list_head *down_list,
7600 					    void *private, bool master)
7601 {
7602 	int ret;
7603 
7604 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7605 					   private, master);
7606 	if (ret)
7607 		return ret;
7608 
7609 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7610 					   private, false);
7611 	if (ret) {
7612 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7613 		return ret;
7614 	}
7615 
7616 	return 0;
7617 }
7618 
7619 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7620 					       struct net_device *upper_dev,
7621 					       u16 ref_nr,
7622 					       struct list_head *up_list,
7623 					       struct list_head *down_list)
7624 {
7625 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7626 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7627 }
7628 
7629 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7630 						struct net_device *upper_dev,
7631 						void *private, bool master)
7632 {
7633 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7634 						&dev->adj_list.upper,
7635 						&upper_dev->adj_list.lower,
7636 						private, master);
7637 }
7638 
7639 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7640 						   struct net_device *upper_dev)
7641 {
7642 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7643 					   &dev->adj_list.upper,
7644 					   &upper_dev->adj_list.lower);
7645 }
7646 
7647 static int __netdev_upper_dev_link(struct net_device *dev,
7648 				   struct net_device *upper_dev, bool master,
7649 				   void *upper_priv, void *upper_info,
7650 				   struct netdev_nested_priv *priv,
7651 				   struct netlink_ext_ack *extack)
7652 {
7653 	struct netdev_notifier_changeupper_info changeupper_info = {
7654 		.info = {
7655 			.dev = dev,
7656 			.extack = extack,
7657 		},
7658 		.upper_dev = upper_dev,
7659 		.master = master,
7660 		.linking = true,
7661 		.upper_info = upper_info,
7662 	};
7663 	struct net_device *master_dev;
7664 	int ret = 0;
7665 
7666 	ASSERT_RTNL();
7667 
7668 	if (dev == upper_dev)
7669 		return -EBUSY;
7670 
7671 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7672 	if (__netdev_has_upper_dev(upper_dev, dev))
7673 		return -EBUSY;
7674 
7675 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7676 		return -EMLINK;
7677 
7678 	if (!master) {
7679 		if (__netdev_has_upper_dev(dev, upper_dev))
7680 			return -EEXIST;
7681 	} else {
7682 		master_dev = __netdev_master_upper_dev_get(dev);
7683 		if (master_dev)
7684 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7685 	}
7686 
7687 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7688 					    &changeupper_info.info);
7689 	ret = notifier_to_errno(ret);
7690 	if (ret)
7691 		return ret;
7692 
7693 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7694 						   master);
7695 	if (ret)
7696 		return ret;
7697 
7698 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7699 					    &changeupper_info.info);
7700 	ret = notifier_to_errno(ret);
7701 	if (ret)
7702 		goto rollback;
7703 
7704 	__netdev_update_upper_level(dev, NULL);
7705 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7706 
7707 	__netdev_update_lower_level(upper_dev, priv);
7708 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7709 				    priv);
7710 
7711 	return 0;
7712 
7713 rollback:
7714 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7715 
7716 	return ret;
7717 }
7718 
7719 /**
7720  * netdev_upper_dev_link - Add a link to the upper device
7721  * @dev: device
7722  * @upper_dev: new upper device
7723  * @extack: netlink extended ack
7724  *
7725  * Adds a link to device which is upper to this one. The caller must hold
7726  * the RTNL lock. On a failure a negative errno code is returned.
7727  * On success the reference counts are adjusted and the function
7728  * returns zero.
7729  */
7730 int netdev_upper_dev_link(struct net_device *dev,
7731 			  struct net_device *upper_dev,
7732 			  struct netlink_ext_ack *extack)
7733 {
7734 	struct netdev_nested_priv priv = {
7735 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7736 		.data = NULL,
7737 	};
7738 
7739 	return __netdev_upper_dev_link(dev, upper_dev, false,
7740 				       NULL, NULL, &priv, extack);
7741 }
7742 EXPORT_SYMBOL(netdev_upper_dev_link);
7743 
7744 /**
7745  * netdev_master_upper_dev_link - Add a master link to the upper device
7746  * @dev: device
7747  * @upper_dev: new upper device
7748  * @upper_priv: upper device private
7749  * @upper_info: upper info to be passed down via notifier
7750  * @extack: netlink extended ack
7751  *
7752  * Adds a link to device which is upper to this one. In this case, only
7753  * one master upper device can be linked, although other non-master devices
7754  * might be linked as well. The caller must hold the RTNL lock.
7755  * On a failure a negative errno code is returned. On success the reference
7756  * counts are adjusted and the function returns zero.
7757  */
7758 int netdev_master_upper_dev_link(struct net_device *dev,
7759 				 struct net_device *upper_dev,
7760 				 void *upper_priv, void *upper_info,
7761 				 struct netlink_ext_ack *extack)
7762 {
7763 	struct netdev_nested_priv priv = {
7764 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7765 		.data = NULL,
7766 	};
7767 
7768 	return __netdev_upper_dev_link(dev, upper_dev, true,
7769 				       upper_priv, upper_info, &priv, extack);
7770 }
7771 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7772 
7773 static void __netdev_upper_dev_unlink(struct net_device *dev,
7774 				      struct net_device *upper_dev,
7775 				      struct netdev_nested_priv *priv)
7776 {
7777 	struct netdev_notifier_changeupper_info changeupper_info = {
7778 		.info = {
7779 			.dev = dev,
7780 		},
7781 		.upper_dev = upper_dev,
7782 		.linking = false,
7783 	};
7784 
7785 	ASSERT_RTNL();
7786 
7787 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7788 
7789 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7790 				      &changeupper_info.info);
7791 
7792 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7793 
7794 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7795 				      &changeupper_info.info);
7796 
7797 	__netdev_update_upper_level(dev, NULL);
7798 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7799 
7800 	__netdev_update_lower_level(upper_dev, priv);
7801 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7802 				    priv);
7803 }
7804 
7805 /**
7806  * netdev_upper_dev_unlink - Removes a link to upper device
7807  * @dev: device
7808  * @upper_dev: new upper device
7809  *
7810  * Removes a link to device which is upper to this one. The caller must hold
7811  * the RTNL lock.
7812  */
7813 void netdev_upper_dev_unlink(struct net_device *dev,
7814 			     struct net_device *upper_dev)
7815 {
7816 	struct netdev_nested_priv priv = {
7817 		.flags = NESTED_SYNC_TODO,
7818 		.data = NULL,
7819 	};
7820 
7821 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7822 }
7823 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7824 
7825 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7826 				      struct net_device *lower_dev,
7827 				      bool val)
7828 {
7829 	struct netdev_adjacent *adj;
7830 
7831 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7832 	if (adj)
7833 		adj->ignore = val;
7834 
7835 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7836 	if (adj)
7837 		adj->ignore = val;
7838 }
7839 
7840 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7841 					struct net_device *lower_dev)
7842 {
7843 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7844 }
7845 
7846 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7847 				       struct net_device *lower_dev)
7848 {
7849 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7850 }
7851 
7852 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7853 				   struct net_device *new_dev,
7854 				   struct net_device *dev,
7855 				   struct netlink_ext_ack *extack)
7856 {
7857 	struct netdev_nested_priv priv = {
7858 		.flags = 0,
7859 		.data = NULL,
7860 	};
7861 	int err;
7862 
7863 	if (!new_dev)
7864 		return 0;
7865 
7866 	if (old_dev && new_dev != old_dev)
7867 		netdev_adjacent_dev_disable(dev, old_dev);
7868 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7869 				      extack);
7870 	if (err) {
7871 		if (old_dev && new_dev != old_dev)
7872 			netdev_adjacent_dev_enable(dev, old_dev);
7873 		return err;
7874 	}
7875 
7876 	return 0;
7877 }
7878 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7879 
7880 void netdev_adjacent_change_commit(struct net_device *old_dev,
7881 				   struct net_device *new_dev,
7882 				   struct net_device *dev)
7883 {
7884 	struct netdev_nested_priv priv = {
7885 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7886 		.data = NULL,
7887 	};
7888 
7889 	if (!new_dev || !old_dev)
7890 		return;
7891 
7892 	if (new_dev == old_dev)
7893 		return;
7894 
7895 	netdev_adjacent_dev_enable(dev, old_dev);
7896 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
7897 }
7898 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7899 
7900 void netdev_adjacent_change_abort(struct net_device *old_dev,
7901 				  struct net_device *new_dev,
7902 				  struct net_device *dev)
7903 {
7904 	struct netdev_nested_priv priv = {
7905 		.flags = 0,
7906 		.data = NULL,
7907 	};
7908 
7909 	if (!new_dev)
7910 		return;
7911 
7912 	if (old_dev && new_dev != old_dev)
7913 		netdev_adjacent_dev_enable(dev, old_dev);
7914 
7915 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
7916 }
7917 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7918 
7919 /**
7920  * netdev_bonding_info_change - Dispatch event about slave change
7921  * @dev: device
7922  * @bonding_info: info to dispatch
7923  *
7924  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7925  * The caller must hold the RTNL lock.
7926  */
7927 void netdev_bonding_info_change(struct net_device *dev,
7928 				struct netdev_bonding_info *bonding_info)
7929 {
7930 	struct netdev_notifier_bonding_info info = {
7931 		.info.dev = dev,
7932 	};
7933 
7934 	memcpy(&info.bonding_info, bonding_info,
7935 	       sizeof(struct netdev_bonding_info));
7936 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7937 				      &info.info);
7938 }
7939 EXPORT_SYMBOL(netdev_bonding_info_change);
7940 
7941 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7942 					   struct netlink_ext_ack *extack)
7943 {
7944 	struct netdev_notifier_offload_xstats_info info = {
7945 		.info.dev = dev,
7946 		.info.extack = extack,
7947 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7948 	};
7949 	int err;
7950 	int rc;
7951 
7952 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7953 					 GFP_KERNEL);
7954 	if (!dev->offload_xstats_l3)
7955 		return -ENOMEM;
7956 
7957 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7958 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
7959 						  &info.info);
7960 	err = notifier_to_errno(rc);
7961 	if (err)
7962 		goto free_stats;
7963 
7964 	return 0;
7965 
7966 free_stats:
7967 	kfree(dev->offload_xstats_l3);
7968 	dev->offload_xstats_l3 = NULL;
7969 	return err;
7970 }
7971 
7972 int netdev_offload_xstats_enable(struct net_device *dev,
7973 				 enum netdev_offload_xstats_type type,
7974 				 struct netlink_ext_ack *extack)
7975 {
7976 	ASSERT_RTNL();
7977 
7978 	if (netdev_offload_xstats_enabled(dev, type))
7979 		return -EALREADY;
7980 
7981 	switch (type) {
7982 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7983 		return netdev_offload_xstats_enable_l3(dev, extack);
7984 	}
7985 
7986 	WARN_ON(1);
7987 	return -EINVAL;
7988 }
7989 EXPORT_SYMBOL(netdev_offload_xstats_enable);
7990 
7991 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7992 {
7993 	struct netdev_notifier_offload_xstats_info info = {
7994 		.info.dev = dev,
7995 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7996 	};
7997 
7998 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
7999 				      &info.info);
8000 	kfree(dev->offload_xstats_l3);
8001 	dev->offload_xstats_l3 = NULL;
8002 }
8003 
8004 int netdev_offload_xstats_disable(struct net_device *dev,
8005 				  enum netdev_offload_xstats_type type)
8006 {
8007 	ASSERT_RTNL();
8008 
8009 	if (!netdev_offload_xstats_enabled(dev, type))
8010 		return -EALREADY;
8011 
8012 	switch (type) {
8013 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8014 		netdev_offload_xstats_disable_l3(dev);
8015 		return 0;
8016 	}
8017 
8018 	WARN_ON(1);
8019 	return -EINVAL;
8020 }
8021 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8022 
8023 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8024 {
8025 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8026 }
8027 
8028 static struct rtnl_hw_stats64 *
8029 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8030 			      enum netdev_offload_xstats_type type)
8031 {
8032 	switch (type) {
8033 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8034 		return dev->offload_xstats_l3;
8035 	}
8036 
8037 	WARN_ON(1);
8038 	return NULL;
8039 }
8040 
8041 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8042 				   enum netdev_offload_xstats_type type)
8043 {
8044 	ASSERT_RTNL();
8045 
8046 	return netdev_offload_xstats_get_ptr(dev, type);
8047 }
8048 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8049 
8050 struct netdev_notifier_offload_xstats_ru {
8051 	bool used;
8052 };
8053 
8054 struct netdev_notifier_offload_xstats_rd {
8055 	struct rtnl_hw_stats64 stats;
8056 	bool used;
8057 };
8058 
8059 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8060 				  const struct rtnl_hw_stats64 *src)
8061 {
8062 	dest->rx_packets	  += src->rx_packets;
8063 	dest->tx_packets	  += src->tx_packets;
8064 	dest->rx_bytes		  += src->rx_bytes;
8065 	dest->tx_bytes		  += src->tx_bytes;
8066 	dest->rx_errors		  += src->rx_errors;
8067 	dest->tx_errors		  += src->tx_errors;
8068 	dest->rx_dropped	  += src->rx_dropped;
8069 	dest->tx_dropped	  += src->tx_dropped;
8070 	dest->multicast		  += src->multicast;
8071 }
8072 
8073 static int netdev_offload_xstats_get_used(struct net_device *dev,
8074 					  enum netdev_offload_xstats_type type,
8075 					  bool *p_used,
8076 					  struct netlink_ext_ack *extack)
8077 {
8078 	struct netdev_notifier_offload_xstats_ru report_used = {};
8079 	struct netdev_notifier_offload_xstats_info info = {
8080 		.info.dev = dev,
8081 		.info.extack = extack,
8082 		.type = type,
8083 		.report_used = &report_used,
8084 	};
8085 	int rc;
8086 
8087 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8088 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8089 					   &info.info);
8090 	*p_used = report_used.used;
8091 	return notifier_to_errno(rc);
8092 }
8093 
8094 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8095 					   enum netdev_offload_xstats_type type,
8096 					   struct rtnl_hw_stats64 *p_stats,
8097 					   bool *p_used,
8098 					   struct netlink_ext_ack *extack)
8099 {
8100 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8101 	struct netdev_notifier_offload_xstats_info info = {
8102 		.info.dev = dev,
8103 		.info.extack = extack,
8104 		.type = type,
8105 		.report_delta = &report_delta,
8106 	};
8107 	struct rtnl_hw_stats64 *stats;
8108 	int rc;
8109 
8110 	stats = netdev_offload_xstats_get_ptr(dev, type);
8111 	if (WARN_ON(!stats))
8112 		return -EINVAL;
8113 
8114 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8115 					   &info.info);
8116 
8117 	/* Cache whatever we got, even if there was an error, otherwise the
8118 	 * successful stats retrievals would get lost.
8119 	 */
8120 	netdev_hw_stats64_add(stats, &report_delta.stats);
8121 
8122 	if (p_stats)
8123 		*p_stats = *stats;
8124 	*p_used = report_delta.used;
8125 
8126 	return notifier_to_errno(rc);
8127 }
8128 
8129 int netdev_offload_xstats_get(struct net_device *dev,
8130 			      enum netdev_offload_xstats_type type,
8131 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8132 			      struct netlink_ext_ack *extack)
8133 {
8134 	ASSERT_RTNL();
8135 
8136 	if (p_stats)
8137 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8138 						       p_used, extack);
8139 	else
8140 		return netdev_offload_xstats_get_used(dev, type, p_used,
8141 						      extack);
8142 }
8143 EXPORT_SYMBOL(netdev_offload_xstats_get);
8144 
8145 void
8146 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8147 				   const struct rtnl_hw_stats64 *stats)
8148 {
8149 	report_delta->used = true;
8150 	netdev_hw_stats64_add(&report_delta->stats, stats);
8151 }
8152 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8153 
8154 void
8155 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8156 {
8157 	report_used->used = true;
8158 }
8159 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8160 
8161 void netdev_offload_xstats_push_delta(struct net_device *dev,
8162 				      enum netdev_offload_xstats_type type,
8163 				      const struct rtnl_hw_stats64 *p_stats)
8164 {
8165 	struct rtnl_hw_stats64 *stats;
8166 
8167 	ASSERT_RTNL();
8168 
8169 	stats = netdev_offload_xstats_get_ptr(dev, type);
8170 	if (WARN_ON(!stats))
8171 		return;
8172 
8173 	netdev_hw_stats64_add(stats, p_stats);
8174 }
8175 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8176 
8177 /**
8178  * netdev_get_xmit_slave - Get the xmit slave of master device
8179  * @dev: device
8180  * @skb: The packet
8181  * @all_slaves: assume all the slaves are active
8182  *
8183  * The reference counters are not incremented so the caller must be
8184  * careful with locks. The caller must hold RCU lock.
8185  * %NULL is returned if no slave is found.
8186  */
8187 
8188 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8189 					 struct sk_buff *skb,
8190 					 bool all_slaves)
8191 {
8192 	const struct net_device_ops *ops = dev->netdev_ops;
8193 
8194 	if (!ops->ndo_get_xmit_slave)
8195 		return NULL;
8196 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8197 }
8198 EXPORT_SYMBOL(netdev_get_xmit_slave);
8199 
8200 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8201 						  struct sock *sk)
8202 {
8203 	const struct net_device_ops *ops = dev->netdev_ops;
8204 
8205 	if (!ops->ndo_sk_get_lower_dev)
8206 		return NULL;
8207 	return ops->ndo_sk_get_lower_dev(dev, sk);
8208 }
8209 
8210 /**
8211  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8212  * @dev: device
8213  * @sk: the socket
8214  *
8215  * %NULL is returned if no lower device is found.
8216  */
8217 
8218 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8219 					    struct sock *sk)
8220 {
8221 	struct net_device *lower;
8222 
8223 	lower = netdev_sk_get_lower_dev(dev, sk);
8224 	while (lower) {
8225 		dev = lower;
8226 		lower = netdev_sk_get_lower_dev(dev, sk);
8227 	}
8228 
8229 	return dev;
8230 }
8231 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8232 
8233 static void netdev_adjacent_add_links(struct net_device *dev)
8234 {
8235 	struct netdev_adjacent *iter;
8236 
8237 	struct net *net = dev_net(dev);
8238 
8239 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8240 		if (!net_eq(net, dev_net(iter->dev)))
8241 			continue;
8242 		netdev_adjacent_sysfs_add(iter->dev, dev,
8243 					  &iter->dev->adj_list.lower);
8244 		netdev_adjacent_sysfs_add(dev, iter->dev,
8245 					  &dev->adj_list.upper);
8246 	}
8247 
8248 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8249 		if (!net_eq(net, dev_net(iter->dev)))
8250 			continue;
8251 		netdev_adjacent_sysfs_add(iter->dev, dev,
8252 					  &iter->dev->adj_list.upper);
8253 		netdev_adjacent_sysfs_add(dev, iter->dev,
8254 					  &dev->adj_list.lower);
8255 	}
8256 }
8257 
8258 static void netdev_adjacent_del_links(struct net_device *dev)
8259 {
8260 	struct netdev_adjacent *iter;
8261 
8262 	struct net *net = dev_net(dev);
8263 
8264 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8265 		if (!net_eq(net, dev_net(iter->dev)))
8266 			continue;
8267 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8268 					  &iter->dev->adj_list.lower);
8269 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8270 					  &dev->adj_list.upper);
8271 	}
8272 
8273 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8274 		if (!net_eq(net, dev_net(iter->dev)))
8275 			continue;
8276 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8277 					  &iter->dev->adj_list.upper);
8278 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8279 					  &dev->adj_list.lower);
8280 	}
8281 }
8282 
8283 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8284 {
8285 	struct netdev_adjacent *iter;
8286 
8287 	struct net *net = dev_net(dev);
8288 
8289 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8290 		if (!net_eq(net, dev_net(iter->dev)))
8291 			continue;
8292 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8293 					  &iter->dev->adj_list.lower);
8294 		netdev_adjacent_sysfs_add(iter->dev, dev,
8295 					  &iter->dev->adj_list.lower);
8296 	}
8297 
8298 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8299 		if (!net_eq(net, dev_net(iter->dev)))
8300 			continue;
8301 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8302 					  &iter->dev->adj_list.upper);
8303 		netdev_adjacent_sysfs_add(iter->dev, dev,
8304 					  &iter->dev->adj_list.upper);
8305 	}
8306 }
8307 
8308 void *netdev_lower_dev_get_private(struct net_device *dev,
8309 				   struct net_device *lower_dev)
8310 {
8311 	struct netdev_adjacent *lower;
8312 
8313 	if (!lower_dev)
8314 		return NULL;
8315 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8316 	if (!lower)
8317 		return NULL;
8318 
8319 	return lower->private;
8320 }
8321 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8322 
8323 
8324 /**
8325  * netdev_lower_state_changed - Dispatch event about lower device state change
8326  * @lower_dev: device
8327  * @lower_state_info: state to dispatch
8328  *
8329  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8330  * The caller must hold the RTNL lock.
8331  */
8332 void netdev_lower_state_changed(struct net_device *lower_dev,
8333 				void *lower_state_info)
8334 {
8335 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8336 		.info.dev = lower_dev,
8337 	};
8338 
8339 	ASSERT_RTNL();
8340 	changelowerstate_info.lower_state_info = lower_state_info;
8341 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8342 				      &changelowerstate_info.info);
8343 }
8344 EXPORT_SYMBOL(netdev_lower_state_changed);
8345 
8346 static void dev_change_rx_flags(struct net_device *dev, int flags)
8347 {
8348 	const struct net_device_ops *ops = dev->netdev_ops;
8349 
8350 	if (ops->ndo_change_rx_flags)
8351 		ops->ndo_change_rx_flags(dev, flags);
8352 }
8353 
8354 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8355 {
8356 	unsigned int old_flags = dev->flags;
8357 	kuid_t uid;
8358 	kgid_t gid;
8359 
8360 	ASSERT_RTNL();
8361 
8362 	dev->flags |= IFF_PROMISC;
8363 	dev->promiscuity += inc;
8364 	if (dev->promiscuity == 0) {
8365 		/*
8366 		 * Avoid overflow.
8367 		 * If inc causes overflow, untouch promisc and return error.
8368 		 */
8369 		if (inc < 0)
8370 			dev->flags &= ~IFF_PROMISC;
8371 		else {
8372 			dev->promiscuity -= inc;
8373 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8374 			return -EOVERFLOW;
8375 		}
8376 	}
8377 	if (dev->flags != old_flags) {
8378 		netdev_info(dev, "%s promiscuous mode\n",
8379 			    dev->flags & IFF_PROMISC ? "entered" : "left");
8380 		if (audit_enabled) {
8381 			current_uid_gid(&uid, &gid);
8382 			audit_log(audit_context(), GFP_ATOMIC,
8383 				  AUDIT_ANOM_PROMISCUOUS,
8384 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8385 				  dev->name, (dev->flags & IFF_PROMISC),
8386 				  (old_flags & IFF_PROMISC),
8387 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8388 				  from_kuid(&init_user_ns, uid),
8389 				  from_kgid(&init_user_ns, gid),
8390 				  audit_get_sessionid(current));
8391 		}
8392 
8393 		dev_change_rx_flags(dev, IFF_PROMISC);
8394 	}
8395 	if (notify)
8396 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8397 	return 0;
8398 }
8399 
8400 /**
8401  *	dev_set_promiscuity	- update promiscuity count on a device
8402  *	@dev: device
8403  *	@inc: modifier
8404  *
8405  *	Add or remove promiscuity from a device. While the count in the device
8406  *	remains above zero the interface remains promiscuous. Once it hits zero
8407  *	the device reverts back to normal filtering operation. A negative inc
8408  *	value is used to drop promiscuity on the device.
8409  *	Return 0 if successful or a negative errno code on error.
8410  */
8411 int dev_set_promiscuity(struct net_device *dev, int inc)
8412 {
8413 	unsigned int old_flags = dev->flags;
8414 	int err;
8415 
8416 	err = __dev_set_promiscuity(dev, inc, true);
8417 	if (err < 0)
8418 		return err;
8419 	if (dev->flags != old_flags)
8420 		dev_set_rx_mode(dev);
8421 	return err;
8422 }
8423 EXPORT_SYMBOL(dev_set_promiscuity);
8424 
8425 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8426 {
8427 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8428 
8429 	ASSERT_RTNL();
8430 
8431 	dev->flags |= IFF_ALLMULTI;
8432 	dev->allmulti += inc;
8433 	if (dev->allmulti == 0) {
8434 		/*
8435 		 * Avoid overflow.
8436 		 * If inc causes overflow, untouch allmulti and return error.
8437 		 */
8438 		if (inc < 0)
8439 			dev->flags &= ~IFF_ALLMULTI;
8440 		else {
8441 			dev->allmulti -= inc;
8442 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8443 			return -EOVERFLOW;
8444 		}
8445 	}
8446 	if (dev->flags ^ old_flags) {
8447 		netdev_info(dev, "%s allmulticast mode\n",
8448 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
8449 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8450 		dev_set_rx_mode(dev);
8451 		if (notify)
8452 			__dev_notify_flags(dev, old_flags,
8453 					   dev->gflags ^ old_gflags, 0, NULL);
8454 	}
8455 	return 0;
8456 }
8457 
8458 /**
8459  *	dev_set_allmulti	- update allmulti count on a device
8460  *	@dev: device
8461  *	@inc: modifier
8462  *
8463  *	Add or remove reception of all multicast frames to a device. While the
8464  *	count in the device remains above zero the interface remains listening
8465  *	to all interfaces. Once it hits zero the device reverts back to normal
8466  *	filtering operation. A negative @inc value is used to drop the counter
8467  *	when releasing a resource needing all multicasts.
8468  *	Return 0 if successful or a negative errno code on error.
8469  */
8470 
8471 int dev_set_allmulti(struct net_device *dev, int inc)
8472 {
8473 	return __dev_set_allmulti(dev, inc, true);
8474 }
8475 EXPORT_SYMBOL(dev_set_allmulti);
8476 
8477 /*
8478  *	Upload unicast and multicast address lists to device and
8479  *	configure RX filtering. When the device doesn't support unicast
8480  *	filtering it is put in promiscuous mode while unicast addresses
8481  *	are present.
8482  */
8483 void __dev_set_rx_mode(struct net_device *dev)
8484 {
8485 	const struct net_device_ops *ops = dev->netdev_ops;
8486 
8487 	/* dev_open will call this function so the list will stay sane. */
8488 	if (!(dev->flags&IFF_UP))
8489 		return;
8490 
8491 	if (!netif_device_present(dev))
8492 		return;
8493 
8494 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8495 		/* Unicast addresses changes may only happen under the rtnl,
8496 		 * therefore calling __dev_set_promiscuity here is safe.
8497 		 */
8498 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8499 			__dev_set_promiscuity(dev, 1, false);
8500 			dev->uc_promisc = true;
8501 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8502 			__dev_set_promiscuity(dev, -1, false);
8503 			dev->uc_promisc = false;
8504 		}
8505 	}
8506 
8507 	if (ops->ndo_set_rx_mode)
8508 		ops->ndo_set_rx_mode(dev);
8509 }
8510 
8511 void dev_set_rx_mode(struct net_device *dev)
8512 {
8513 	netif_addr_lock_bh(dev);
8514 	__dev_set_rx_mode(dev);
8515 	netif_addr_unlock_bh(dev);
8516 }
8517 
8518 /**
8519  *	dev_get_flags - get flags reported to userspace
8520  *	@dev: device
8521  *
8522  *	Get the combination of flag bits exported through APIs to userspace.
8523  */
8524 unsigned int dev_get_flags(const struct net_device *dev)
8525 {
8526 	unsigned int flags;
8527 
8528 	flags = (dev->flags & ~(IFF_PROMISC |
8529 				IFF_ALLMULTI |
8530 				IFF_RUNNING |
8531 				IFF_LOWER_UP |
8532 				IFF_DORMANT)) |
8533 		(dev->gflags & (IFF_PROMISC |
8534 				IFF_ALLMULTI));
8535 
8536 	if (netif_running(dev)) {
8537 		if (netif_oper_up(dev))
8538 			flags |= IFF_RUNNING;
8539 		if (netif_carrier_ok(dev))
8540 			flags |= IFF_LOWER_UP;
8541 		if (netif_dormant(dev))
8542 			flags |= IFF_DORMANT;
8543 	}
8544 
8545 	return flags;
8546 }
8547 EXPORT_SYMBOL(dev_get_flags);
8548 
8549 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8550 		       struct netlink_ext_ack *extack)
8551 {
8552 	unsigned int old_flags = dev->flags;
8553 	int ret;
8554 
8555 	ASSERT_RTNL();
8556 
8557 	/*
8558 	 *	Set the flags on our device.
8559 	 */
8560 
8561 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8562 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8563 			       IFF_AUTOMEDIA)) |
8564 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8565 				    IFF_ALLMULTI));
8566 
8567 	/*
8568 	 *	Load in the correct multicast list now the flags have changed.
8569 	 */
8570 
8571 	if ((old_flags ^ flags) & IFF_MULTICAST)
8572 		dev_change_rx_flags(dev, IFF_MULTICAST);
8573 
8574 	dev_set_rx_mode(dev);
8575 
8576 	/*
8577 	 *	Have we downed the interface. We handle IFF_UP ourselves
8578 	 *	according to user attempts to set it, rather than blindly
8579 	 *	setting it.
8580 	 */
8581 
8582 	ret = 0;
8583 	if ((old_flags ^ flags) & IFF_UP) {
8584 		if (old_flags & IFF_UP)
8585 			__dev_close(dev);
8586 		else
8587 			ret = __dev_open(dev, extack);
8588 	}
8589 
8590 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8591 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8592 		unsigned int old_flags = dev->flags;
8593 
8594 		dev->gflags ^= IFF_PROMISC;
8595 
8596 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8597 			if (dev->flags != old_flags)
8598 				dev_set_rx_mode(dev);
8599 	}
8600 
8601 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8602 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8603 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8604 	 */
8605 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8606 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8607 
8608 		dev->gflags ^= IFF_ALLMULTI;
8609 		__dev_set_allmulti(dev, inc, false);
8610 	}
8611 
8612 	return ret;
8613 }
8614 
8615 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8616 			unsigned int gchanges, u32 portid,
8617 			const struct nlmsghdr *nlh)
8618 {
8619 	unsigned int changes = dev->flags ^ old_flags;
8620 
8621 	if (gchanges)
8622 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8623 
8624 	if (changes & IFF_UP) {
8625 		if (dev->flags & IFF_UP)
8626 			call_netdevice_notifiers(NETDEV_UP, dev);
8627 		else
8628 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8629 	}
8630 
8631 	if (dev->flags & IFF_UP &&
8632 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8633 		struct netdev_notifier_change_info change_info = {
8634 			.info = {
8635 				.dev = dev,
8636 			},
8637 			.flags_changed = changes,
8638 		};
8639 
8640 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8641 	}
8642 }
8643 
8644 /**
8645  *	dev_change_flags - change device settings
8646  *	@dev: device
8647  *	@flags: device state flags
8648  *	@extack: netlink extended ack
8649  *
8650  *	Change settings on device based state flags. The flags are
8651  *	in the userspace exported format.
8652  */
8653 int dev_change_flags(struct net_device *dev, unsigned int flags,
8654 		     struct netlink_ext_ack *extack)
8655 {
8656 	int ret;
8657 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8658 
8659 	ret = __dev_change_flags(dev, flags, extack);
8660 	if (ret < 0)
8661 		return ret;
8662 
8663 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8664 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
8665 	return ret;
8666 }
8667 EXPORT_SYMBOL(dev_change_flags);
8668 
8669 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8670 {
8671 	const struct net_device_ops *ops = dev->netdev_ops;
8672 
8673 	if (ops->ndo_change_mtu)
8674 		return ops->ndo_change_mtu(dev, new_mtu);
8675 
8676 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8677 	WRITE_ONCE(dev->mtu, new_mtu);
8678 	return 0;
8679 }
8680 EXPORT_SYMBOL(__dev_set_mtu);
8681 
8682 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8683 		     struct netlink_ext_ack *extack)
8684 {
8685 	/* MTU must be positive, and in range */
8686 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8687 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8688 		return -EINVAL;
8689 	}
8690 
8691 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8692 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8693 		return -EINVAL;
8694 	}
8695 	return 0;
8696 }
8697 
8698 /**
8699  *	dev_set_mtu_ext - Change maximum transfer unit
8700  *	@dev: device
8701  *	@new_mtu: new transfer unit
8702  *	@extack: netlink extended ack
8703  *
8704  *	Change the maximum transfer size of the network device.
8705  */
8706 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8707 		    struct netlink_ext_ack *extack)
8708 {
8709 	int err, orig_mtu;
8710 
8711 	if (new_mtu == dev->mtu)
8712 		return 0;
8713 
8714 	err = dev_validate_mtu(dev, new_mtu, extack);
8715 	if (err)
8716 		return err;
8717 
8718 	if (!netif_device_present(dev))
8719 		return -ENODEV;
8720 
8721 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8722 	err = notifier_to_errno(err);
8723 	if (err)
8724 		return err;
8725 
8726 	orig_mtu = dev->mtu;
8727 	err = __dev_set_mtu(dev, new_mtu);
8728 
8729 	if (!err) {
8730 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8731 						   orig_mtu);
8732 		err = notifier_to_errno(err);
8733 		if (err) {
8734 			/* setting mtu back and notifying everyone again,
8735 			 * so that they have a chance to revert changes.
8736 			 */
8737 			__dev_set_mtu(dev, orig_mtu);
8738 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8739 						     new_mtu);
8740 		}
8741 	}
8742 	return err;
8743 }
8744 
8745 int dev_set_mtu(struct net_device *dev, int new_mtu)
8746 {
8747 	struct netlink_ext_ack extack;
8748 	int err;
8749 
8750 	memset(&extack, 0, sizeof(extack));
8751 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8752 	if (err && extack._msg)
8753 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8754 	return err;
8755 }
8756 EXPORT_SYMBOL(dev_set_mtu);
8757 
8758 /**
8759  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8760  *	@dev: device
8761  *	@new_len: new tx queue length
8762  */
8763 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8764 {
8765 	unsigned int orig_len = dev->tx_queue_len;
8766 	int res;
8767 
8768 	if (new_len != (unsigned int)new_len)
8769 		return -ERANGE;
8770 
8771 	if (new_len != orig_len) {
8772 		dev->tx_queue_len = new_len;
8773 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8774 		res = notifier_to_errno(res);
8775 		if (res)
8776 			goto err_rollback;
8777 		res = dev_qdisc_change_tx_queue_len(dev);
8778 		if (res)
8779 			goto err_rollback;
8780 	}
8781 
8782 	return 0;
8783 
8784 err_rollback:
8785 	netdev_err(dev, "refused to change device tx_queue_len\n");
8786 	dev->tx_queue_len = orig_len;
8787 	return res;
8788 }
8789 
8790 /**
8791  *	dev_set_group - Change group this device belongs to
8792  *	@dev: device
8793  *	@new_group: group this device should belong to
8794  */
8795 void dev_set_group(struct net_device *dev, int new_group)
8796 {
8797 	dev->group = new_group;
8798 }
8799 
8800 /**
8801  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8802  *	@dev: device
8803  *	@addr: new address
8804  *	@extack: netlink extended ack
8805  */
8806 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8807 			      struct netlink_ext_ack *extack)
8808 {
8809 	struct netdev_notifier_pre_changeaddr_info info = {
8810 		.info.dev = dev,
8811 		.info.extack = extack,
8812 		.dev_addr = addr,
8813 	};
8814 	int rc;
8815 
8816 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8817 	return notifier_to_errno(rc);
8818 }
8819 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8820 
8821 /**
8822  *	dev_set_mac_address - Change Media Access Control Address
8823  *	@dev: device
8824  *	@sa: new address
8825  *	@extack: netlink extended ack
8826  *
8827  *	Change the hardware (MAC) address of the device
8828  */
8829 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8830 			struct netlink_ext_ack *extack)
8831 {
8832 	const struct net_device_ops *ops = dev->netdev_ops;
8833 	int err;
8834 
8835 	if (!ops->ndo_set_mac_address)
8836 		return -EOPNOTSUPP;
8837 	if (sa->sa_family != dev->type)
8838 		return -EINVAL;
8839 	if (!netif_device_present(dev))
8840 		return -ENODEV;
8841 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8842 	if (err)
8843 		return err;
8844 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8845 		err = ops->ndo_set_mac_address(dev, sa);
8846 		if (err)
8847 			return err;
8848 	}
8849 	dev->addr_assign_type = NET_ADDR_SET;
8850 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8851 	add_device_randomness(dev->dev_addr, dev->addr_len);
8852 	return 0;
8853 }
8854 EXPORT_SYMBOL(dev_set_mac_address);
8855 
8856 static DECLARE_RWSEM(dev_addr_sem);
8857 
8858 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8859 			     struct netlink_ext_ack *extack)
8860 {
8861 	int ret;
8862 
8863 	down_write(&dev_addr_sem);
8864 	ret = dev_set_mac_address(dev, sa, extack);
8865 	up_write(&dev_addr_sem);
8866 	return ret;
8867 }
8868 EXPORT_SYMBOL(dev_set_mac_address_user);
8869 
8870 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8871 {
8872 	size_t size = sizeof(sa->sa_data_min);
8873 	struct net_device *dev;
8874 	int ret = 0;
8875 
8876 	down_read(&dev_addr_sem);
8877 	rcu_read_lock();
8878 
8879 	dev = dev_get_by_name_rcu(net, dev_name);
8880 	if (!dev) {
8881 		ret = -ENODEV;
8882 		goto unlock;
8883 	}
8884 	if (!dev->addr_len)
8885 		memset(sa->sa_data, 0, size);
8886 	else
8887 		memcpy(sa->sa_data, dev->dev_addr,
8888 		       min_t(size_t, size, dev->addr_len));
8889 	sa->sa_family = dev->type;
8890 
8891 unlock:
8892 	rcu_read_unlock();
8893 	up_read(&dev_addr_sem);
8894 	return ret;
8895 }
8896 EXPORT_SYMBOL(dev_get_mac_address);
8897 
8898 /**
8899  *	dev_change_carrier - Change device carrier
8900  *	@dev: device
8901  *	@new_carrier: new value
8902  *
8903  *	Change device carrier
8904  */
8905 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8906 {
8907 	const struct net_device_ops *ops = dev->netdev_ops;
8908 
8909 	if (!ops->ndo_change_carrier)
8910 		return -EOPNOTSUPP;
8911 	if (!netif_device_present(dev))
8912 		return -ENODEV;
8913 	return ops->ndo_change_carrier(dev, new_carrier);
8914 }
8915 
8916 /**
8917  *	dev_get_phys_port_id - Get device physical port ID
8918  *	@dev: device
8919  *	@ppid: port ID
8920  *
8921  *	Get device physical port ID
8922  */
8923 int dev_get_phys_port_id(struct net_device *dev,
8924 			 struct netdev_phys_item_id *ppid)
8925 {
8926 	const struct net_device_ops *ops = dev->netdev_ops;
8927 
8928 	if (!ops->ndo_get_phys_port_id)
8929 		return -EOPNOTSUPP;
8930 	return ops->ndo_get_phys_port_id(dev, ppid);
8931 }
8932 
8933 /**
8934  *	dev_get_phys_port_name - Get device physical port name
8935  *	@dev: device
8936  *	@name: port name
8937  *	@len: limit of bytes to copy to name
8938  *
8939  *	Get device physical port name
8940  */
8941 int dev_get_phys_port_name(struct net_device *dev,
8942 			   char *name, size_t len)
8943 {
8944 	const struct net_device_ops *ops = dev->netdev_ops;
8945 	int err;
8946 
8947 	if (ops->ndo_get_phys_port_name) {
8948 		err = ops->ndo_get_phys_port_name(dev, name, len);
8949 		if (err != -EOPNOTSUPP)
8950 			return err;
8951 	}
8952 	return devlink_compat_phys_port_name_get(dev, name, len);
8953 }
8954 
8955 /**
8956  *	dev_get_port_parent_id - Get the device's port parent identifier
8957  *	@dev: network device
8958  *	@ppid: pointer to a storage for the port's parent identifier
8959  *	@recurse: allow/disallow recursion to lower devices
8960  *
8961  *	Get the devices's port parent identifier
8962  */
8963 int dev_get_port_parent_id(struct net_device *dev,
8964 			   struct netdev_phys_item_id *ppid,
8965 			   bool recurse)
8966 {
8967 	const struct net_device_ops *ops = dev->netdev_ops;
8968 	struct netdev_phys_item_id first = { };
8969 	struct net_device *lower_dev;
8970 	struct list_head *iter;
8971 	int err;
8972 
8973 	if (ops->ndo_get_port_parent_id) {
8974 		err = ops->ndo_get_port_parent_id(dev, ppid);
8975 		if (err != -EOPNOTSUPP)
8976 			return err;
8977 	}
8978 
8979 	err = devlink_compat_switch_id_get(dev, ppid);
8980 	if (!recurse || err != -EOPNOTSUPP)
8981 		return err;
8982 
8983 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8984 		err = dev_get_port_parent_id(lower_dev, ppid, true);
8985 		if (err)
8986 			break;
8987 		if (!first.id_len)
8988 			first = *ppid;
8989 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8990 			return -EOPNOTSUPP;
8991 	}
8992 
8993 	return err;
8994 }
8995 EXPORT_SYMBOL(dev_get_port_parent_id);
8996 
8997 /**
8998  *	netdev_port_same_parent_id - Indicate if two network devices have
8999  *	the same port parent identifier
9000  *	@a: first network device
9001  *	@b: second network device
9002  */
9003 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9004 {
9005 	struct netdev_phys_item_id a_id = { };
9006 	struct netdev_phys_item_id b_id = { };
9007 
9008 	if (dev_get_port_parent_id(a, &a_id, true) ||
9009 	    dev_get_port_parent_id(b, &b_id, true))
9010 		return false;
9011 
9012 	return netdev_phys_item_id_same(&a_id, &b_id);
9013 }
9014 EXPORT_SYMBOL(netdev_port_same_parent_id);
9015 
9016 /**
9017  *	dev_change_proto_down - set carrier according to proto_down.
9018  *
9019  *	@dev: device
9020  *	@proto_down: new value
9021  */
9022 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9023 {
9024 	if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9025 		return -EOPNOTSUPP;
9026 	if (!netif_device_present(dev))
9027 		return -ENODEV;
9028 	if (proto_down)
9029 		netif_carrier_off(dev);
9030 	else
9031 		netif_carrier_on(dev);
9032 	dev->proto_down = proto_down;
9033 	return 0;
9034 }
9035 
9036 /**
9037  *	dev_change_proto_down_reason - proto down reason
9038  *
9039  *	@dev: device
9040  *	@mask: proto down mask
9041  *	@value: proto down value
9042  */
9043 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9044 				  u32 value)
9045 {
9046 	int b;
9047 
9048 	if (!mask) {
9049 		dev->proto_down_reason = value;
9050 	} else {
9051 		for_each_set_bit(b, &mask, 32) {
9052 			if (value & (1 << b))
9053 				dev->proto_down_reason |= BIT(b);
9054 			else
9055 				dev->proto_down_reason &= ~BIT(b);
9056 		}
9057 	}
9058 }
9059 
9060 struct bpf_xdp_link {
9061 	struct bpf_link link;
9062 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9063 	int flags;
9064 };
9065 
9066 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9067 {
9068 	if (flags & XDP_FLAGS_HW_MODE)
9069 		return XDP_MODE_HW;
9070 	if (flags & XDP_FLAGS_DRV_MODE)
9071 		return XDP_MODE_DRV;
9072 	if (flags & XDP_FLAGS_SKB_MODE)
9073 		return XDP_MODE_SKB;
9074 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9075 }
9076 
9077 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9078 {
9079 	switch (mode) {
9080 	case XDP_MODE_SKB:
9081 		return generic_xdp_install;
9082 	case XDP_MODE_DRV:
9083 	case XDP_MODE_HW:
9084 		return dev->netdev_ops->ndo_bpf;
9085 	default:
9086 		return NULL;
9087 	}
9088 }
9089 
9090 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9091 					 enum bpf_xdp_mode mode)
9092 {
9093 	return dev->xdp_state[mode].link;
9094 }
9095 
9096 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9097 				     enum bpf_xdp_mode mode)
9098 {
9099 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9100 
9101 	if (link)
9102 		return link->link.prog;
9103 	return dev->xdp_state[mode].prog;
9104 }
9105 
9106 u8 dev_xdp_prog_count(struct net_device *dev)
9107 {
9108 	u8 count = 0;
9109 	int i;
9110 
9111 	for (i = 0; i < __MAX_XDP_MODE; i++)
9112 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9113 			count++;
9114 	return count;
9115 }
9116 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9117 
9118 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9119 {
9120 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9121 
9122 	return prog ? prog->aux->id : 0;
9123 }
9124 
9125 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9126 			     struct bpf_xdp_link *link)
9127 {
9128 	dev->xdp_state[mode].link = link;
9129 	dev->xdp_state[mode].prog = NULL;
9130 }
9131 
9132 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9133 			     struct bpf_prog *prog)
9134 {
9135 	dev->xdp_state[mode].link = NULL;
9136 	dev->xdp_state[mode].prog = prog;
9137 }
9138 
9139 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9140 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9141 			   u32 flags, struct bpf_prog *prog)
9142 {
9143 	struct netdev_bpf xdp;
9144 	int err;
9145 
9146 	memset(&xdp, 0, sizeof(xdp));
9147 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9148 	xdp.extack = extack;
9149 	xdp.flags = flags;
9150 	xdp.prog = prog;
9151 
9152 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9153 	 * "moved" into driver), so they don't increment it on their own, but
9154 	 * they do decrement refcnt when program is detached or replaced.
9155 	 * Given net_device also owns link/prog, we need to bump refcnt here
9156 	 * to prevent drivers from underflowing it.
9157 	 */
9158 	if (prog)
9159 		bpf_prog_inc(prog);
9160 	err = bpf_op(dev, &xdp);
9161 	if (err) {
9162 		if (prog)
9163 			bpf_prog_put(prog);
9164 		return err;
9165 	}
9166 
9167 	if (mode != XDP_MODE_HW)
9168 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9169 
9170 	return 0;
9171 }
9172 
9173 static void dev_xdp_uninstall(struct net_device *dev)
9174 {
9175 	struct bpf_xdp_link *link;
9176 	struct bpf_prog *prog;
9177 	enum bpf_xdp_mode mode;
9178 	bpf_op_t bpf_op;
9179 
9180 	ASSERT_RTNL();
9181 
9182 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9183 		prog = dev_xdp_prog(dev, mode);
9184 		if (!prog)
9185 			continue;
9186 
9187 		bpf_op = dev_xdp_bpf_op(dev, mode);
9188 		if (!bpf_op)
9189 			continue;
9190 
9191 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9192 
9193 		/* auto-detach link from net device */
9194 		link = dev_xdp_link(dev, mode);
9195 		if (link)
9196 			link->dev = NULL;
9197 		else
9198 			bpf_prog_put(prog);
9199 
9200 		dev_xdp_set_link(dev, mode, NULL);
9201 	}
9202 }
9203 
9204 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9205 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9206 			  struct bpf_prog *old_prog, u32 flags)
9207 {
9208 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9209 	struct bpf_prog *cur_prog;
9210 	struct net_device *upper;
9211 	struct list_head *iter;
9212 	enum bpf_xdp_mode mode;
9213 	bpf_op_t bpf_op;
9214 	int err;
9215 
9216 	ASSERT_RTNL();
9217 
9218 	/* either link or prog attachment, never both */
9219 	if (link && (new_prog || old_prog))
9220 		return -EINVAL;
9221 	/* link supports only XDP mode flags */
9222 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9223 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9224 		return -EINVAL;
9225 	}
9226 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9227 	if (num_modes > 1) {
9228 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9229 		return -EINVAL;
9230 	}
9231 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9232 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9233 		NL_SET_ERR_MSG(extack,
9234 			       "More than one program loaded, unset mode is ambiguous");
9235 		return -EINVAL;
9236 	}
9237 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9238 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9239 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9240 		return -EINVAL;
9241 	}
9242 
9243 	mode = dev_xdp_mode(dev, flags);
9244 	/* can't replace attached link */
9245 	if (dev_xdp_link(dev, mode)) {
9246 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9247 		return -EBUSY;
9248 	}
9249 
9250 	/* don't allow if an upper device already has a program */
9251 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9252 		if (dev_xdp_prog_count(upper) > 0) {
9253 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9254 			return -EEXIST;
9255 		}
9256 	}
9257 
9258 	cur_prog = dev_xdp_prog(dev, mode);
9259 	/* can't replace attached prog with link */
9260 	if (link && cur_prog) {
9261 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9262 		return -EBUSY;
9263 	}
9264 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9265 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9266 		return -EEXIST;
9267 	}
9268 
9269 	/* put effective new program into new_prog */
9270 	if (link)
9271 		new_prog = link->link.prog;
9272 
9273 	if (new_prog) {
9274 		bool offload = mode == XDP_MODE_HW;
9275 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9276 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9277 
9278 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9279 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9280 			return -EBUSY;
9281 		}
9282 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9283 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9284 			return -EEXIST;
9285 		}
9286 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9287 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9288 			return -EINVAL;
9289 		}
9290 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9291 			NL_SET_ERR_MSG(extack, "Program bound to different device");
9292 			return -EINVAL;
9293 		}
9294 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9295 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9296 			return -EINVAL;
9297 		}
9298 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9299 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9300 			return -EINVAL;
9301 		}
9302 	}
9303 
9304 	/* don't call drivers if the effective program didn't change */
9305 	if (new_prog != cur_prog) {
9306 		bpf_op = dev_xdp_bpf_op(dev, mode);
9307 		if (!bpf_op) {
9308 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9309 			return -EOPNOTSUPP;
9310 		}
9311 
9312 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9313 		if (err)
9314 			return err;
9315 	}
9316 
9317 	if (link)
9318 		dev_xdp_set_link(dev, mode, link);
9319 	else
9320 		dev_xdp_set_prog(dev, mode, new_prog);
9321 	if (cur_prog)
9322 		bpf_prog_put(cur_prog);
9323 
9324 	return 0;
9325 }
9326 
9327 static int dev_xdp_attach_link(struct net_device *dev,
9328 			       struct netlink_ext_ack *extack,
9329 			       struct bpf_xdp_link *link)
9330 {
9331 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9332 }
9333 
9334 static int dev_xdp_detach_link(struct net_device *dev,
9335 			       struct netlink_ext_ack *extack,
9336 			       struct bpf_xdp_link *link)
9337 {
9338 	enum bpf_xdp_mode mode;
9339 	bpf_op_t bpf_op;
9340 
9341 	ASSERT_RTNL();
9342 
9343 	mode = dev_xdp_mode(dev, link->flags);
9344 	if (dev_xdp_link(dev, mode) != link)
9345 		return -EINVAL;
9346 
9347 	bpf_op = dev_xdp_bpf_op(dev, mode);
9348 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9349 	dev_xdp_set_link(dev, mode, NULL);
9350 	return 0;
9351 }
9352 
9353 static void bpf_xdp_link_release(struct bpf_link *link)
9354 {
9355 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9356 
9357 	rtnl_lock();
9358 
9359 	/* if racing with net_device's tear down, xdp_link->dev might be
9360 	 * already NULL, in which case link was already auto-detached
9361 	 */
9362 	if (xdp_link->dev) {
9363 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9364 		xdp_link->dev = NULL;
9365 	}
9366 
9367 	rtnl_unlock();
9368 }
9369 
9370 static int bpf_xdp_link_detach(struct bpf_link *link)
9371 {
9372 	bpf_xdp_link_release(link);
9373 	return 0;
9374 }
9375 
9376 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9377 {
9378 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9379 
9380 	kfree(xdp_link);
9381 }
9382 
9383 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9384 				     struct seq_file *seq)
9385 {
9386 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9387 	u32 ifindex = 0;
9388 
9389 	rtnl_lock();
9390 	if (xdp_link->dev)
9391 		ifindex = xdp_link->dev->ifindex;
9392 	rtnl_unlock();
9393 
9394 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9395 }
9396 
9397 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9398 				       struct bpf_link_info *info)
9399 {
9400 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9401 	u32 ifindex = 0;
9402 
9403 	rtnl_lock();
9404 	if (xdp_link->dev)
9405 		ifindex = xdp_link->dev->ifindex;
9406 	rtnl_unlock();
9407 
9408 	info->xdp.ifindex = ifindex;
9409 	return 0;
9410 }
9411 
9412 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9413 			       struct bpf_prog *old_prog)
9414 {
9415 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9416 	enum bpf_xdp_mode mode;
9417 	bpf_op_t bpf_op;
9418 	int err = 0;
9419 
9420 	rtnl_lock();
9421 
9422 	/* link might have been auto-released already, so fail */
9423 	if (!xdp_link->dev) {
9424 		err = -ENOLINK;
9425 		goto out_unlock;
9426 	}
9427 
9428 	if (old_prog && link->prog != old_prog) {
9429 		err = -EPERM;
9430 		goto out_unlock;
9431 	}
9432 	old_prog = link->prog;
9433 	if (old_prog->type != new_prog->type ||
9434 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9435 		err = -EINVAL;
9436 		goto out_unlock;
9437 	}
9438 
9439 	if (old_prog == new_prog) {
9440 		/* no-op, don't disturb drivers */
9441 		bpf_prog_put(new_prog);
9442 		goto out_unlock;
9443 	}
9444 
9445 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9446 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9447 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9448 			      xdp_link->flags, new_prog);
9449 	if (err)
9450 		goto out_unlock;
9451 
9452 	old_prog = xchg(&link->prog, new_prog);
9453 	bpf_prog_put(old_prog);
9454 
9455 out_unlock:
9456 	rtnl_unlock();
9457 	return err;
9458 }
9459 
9460 static const struct bpf_link_ops bpf_xdp_link_lops = {
9461 	.release = bpf_xdp_link_release,
9462 	.dealloc = bpf_xdp_link_dealloc,
9463 	.detach = bpf_xdp_link_detach,
9464 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9465 	.fill_link_info = bpf_xdp_link_fill_link_info,
9466 	.update_prog = bpf_xdp_link_update,
9467 };
9468 
9469 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9470 {
9471 	struct net *net = current->nsproxy->net_ns;
9472 	struct bpf_link_primer link_primer;
9473 	struct bpf_xdp_link *link;
9474 	struct net_device *dev;
9475 	int err, fd;
9476 
9477 	rtnl_lock();
9478 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9479 	if (!dev) {
9480 		rtnl_unlock();
9481 		return -EINVAL;
9482 	}
9483 
9484 	link = kzalloc(sizeof(*link), GFP_USER);
9485 	if (!link) {
9486 		err = -ENOMEM;
9487 		goto unlock;
9488 	}
9489 
9490 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9491 	link->dev = dev;
9492 	link->flags = attr->link_create.flags;
9493 
9494 	err = bpf_link_prime(&link->link, &link_primer);
9495 	if (err) {
9496 		kfree(link);
9497 		goto unlock;
9498 	}
9499 
9500 	err = dev_xdp_attach_link(dev, NULL, link);
9501 	rtnl_unlock();
9502 
9503 	if (err) {
9504 		link->dev = NULL;
9505 		bpf_link_cleanup(&link_primer);
9506 		goto out_put_dev;
9507 	}
9508 
9509 	fd = bpf_link_settle(&link_primer);
9510 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9511 	dev_put(dev);
9512 	return fd;
9513 
9514 unlock:
9515 	rtnl_unlock();
9516 
9517 out_put_dev:
9518 	dev_put(dev);
9519 	return err;
9520 }
9521 
9522 /**
9523  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9524  *	@dev: device
9525  *	@extack: netlink extended ack
9526  *	@fd: new program fd or negative value to clear
9527  *	@expected_fd: old program fd that userspace expects to replace or clear
9528  *	@flags: xdp-related flags
9529  *
9530  *	Set or clear a bpf program for a device
9531  */
9532 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9533 		      int fd, int expected_fd, u32 flags)
9534 {
9535 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9536 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9537 	int err;
9538 
9539 	ASSERT_RTNL();
9540 
9541 	if (fd >= 0) {
9542 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9543 						 mode != XDP_MODE_SKB);
9544 		if (IS_ERR(new_prog))
9545 			return PTR_ERR(new_prog);
9546 	}
9547 
9548 	if (expected_fd >= 0) {
9549 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9550 						 mode != XDP_MODE_SKB);
9551 		if (IS_ERR(old_prog)) {
9552 			err = PTR_ERR(old_prog);
9553 			old_prog = NULL;
9554 			goto err_out;
9555 		}
9556 	}
9557 
9558 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9559 
9560 err_out:
9561 	if (err && new_prog)
9562 		bpf_prog_put(new_prog);
9563 	if (old_prog)
9564 		bpf_prog_put(old_prog);
9565 	return err;
9566 }
9567 
9568 /**
9569  *	dev_new_index	-	allocate an ifindex
9570  *	@net: the applicable net namespace
9571  *
9572  *	Returns a suitable unique value for a new device interface
9573  *	number.  The caller must hold the rtnl semaphore or the
9574  *	dev_base_lock to be sure it remains unique.
9575  */
9576 static int dev_new_index(struct net *net)
9577 {
9578 	int ifindex = net->ifindex;
9579 
9580 	for (;;) {
9581 		if (++ifindex <= 0)
9582 			ifindex = 1;
9583 		if (!__dev_get_by_index(net, ifindex))
9584 			return net->ifindex = ifindex;
9585 	}
9586 }
9587 
9588 /* Delayed registration/unregisteration */
9589 LIST_HEAD(net_todo_list);
9590 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9591 
9592 static void net_set_todo(struct net_device *dev)
9593 {
9594 	list_add_tail(&dev->todo_list, &net_todo_list);
9595 	atomic_inc(&dev_net(dev)->dev_unreg_count);
9596 }
9597 
9598 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9599 	struct net_device *upper, netdev_features_t features)
9600 {
9601 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9602 	netdev_features_t feature;
9603 	int feature_bit;
9604 
9605 	for_each_netdev_feature(upper_disables, feature_bit) {
9606 		feature = __NETIF_F_BIT(feature_bit);
9607 		if (!(upper->wanted_features & feature)
9608 		    && (features & feature)) {
9609 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9610 				   &feature, upper->name);
9611 			features &= ~feature;
9612 		}
9613 	}
9614 
9615 	return features;
9616 }
9617 
9618 static void netdev_sync_lower_features(struct net_device *upper,
9619 	struct net_device *lower, netdev_features_t features)
9620 {
9621 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9622 	netdev_features_t feature;
9623 	int feature_bit;
9624 
9625 	for_each_netdev_feature(upper_disables, feature_bit) {
9626 		feature = __NETIF_F_BIT(feature_bit);
9627 		if (!(features & feature) && (lower->features & feature)) {
9628 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9629 				   &feature, lower->name);
9630 			lower->wanted_features &= ~feature;
9631 			__netdev_update_features(lower);
9632 
9633 			if (unlikely(lower->features & feature))
9634 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9635 					    &feature, lower->name);
9636 			else
9637 				netdev_features_change(lower);
9638 		}
9639 	}
9640 }
9641 
9642 static netdev_features_t netdev_fix_features(struct net_device *dev,
9643 	netdev_features_t features)
9644 {
9645 	/* Fix illegal checksum combinations */
9646 	if ((features & NETIF_F_HW_CSUM) &&
9647 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9648 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9649 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9650 	}
9651 
9652 	/* TSO requires that SG is present as well. */
9653 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9654 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9655 		features &= ~NETIF_F_ALL_TSO;
9656 	}
9657 
9658 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9659 					!(features & NETIF_F_IP_CSUM)) {
9660 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9661 		features &= ~NETIF_F_TSO;
9662 		features &= ~NETIF_F_TSO_ECN;
9663 	}
9664 
9665 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9666 					 !(features & NETIF_F_IPV6_CSUM)) {
9667 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9668 		features &= ~NETIF_F_TSO6;
9669 	}
9670 
9671 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9672 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9673 		features &= ~NETIF_F_TSO_MANGLEID;
9674 
9675 	/* TSO ECN requires that TSO is present as well. */
9676 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9677 		features &= ~NETIF_F_TSO_ECN;
9678 
9679 	/* Software GSO depends on SG. */
9680 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9681 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9682 		features &= ~NETIF_F_GSO;
9683 	}
9684 
9685 	/* GSO partial features require GSO partial be set */
9686 	if ((features & dev->gso_partial_features) &&
9687 	    !(features & NETIF_F_GSO_PARTIAL)) {
9688 		netdev_dbg(dev,
9689 			   "Dropping partially supported GSO features since no GSO partial.\n");
9690 		features &= ~dev->gso_partial_features;
9691 	}
9692 
9693 	if (!(features & NETIF_F_RXCSUM)) {
9694 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9695 		 * successfully merged by hardware must also have the
9696 		 * checksum verified by hardware.  If the user does not
9697 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9698 		 */
9699 		if (features & NETIF_F_GRO_HW) {
9700 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9701 			features &= ~NETIF_F_GRO_HW;
9702 		}
9703 	}
9704 
9705 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9706 	if (features & NETIF_F_RXFCS) {
9707 		if (features & NETIF_F_LRO) {
9708 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9709 			features &= ~NETIF_F_LRO;
9710 		}
9711 
9712 		if (features & NETIF_F_GRO_HW) {
9713 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9714 			features &= ~NETIF_F_GRO_HW;
9715 		}
9716 	}
9717 
9718 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9719 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9720 		features &= ~NETIF_F_LRO;
9721 	}
9722 
9723 	if (features & NETIF_F_HW_TLS_TX) {
9724 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9725 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9726 		bool hw_csum = features & NETIF_F_HW_CSUM;
9727 
9728 		if (!ip_csum && !hw_csum) {
9729 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9730 			features &= ~NETIF_F_HW_TLS_TX;
9731 		}
9732 	}
9733 
9734 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9735 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9736 		features &= ~NETIF_F_HW_TLS_RX;
9737 	}
9738 
9739 	return features;
9740 }
9741 
9742 int __netdev_update_features(struct net_device *dev)
9743 {
9744 	struct net_device *upper, *lower;
9745 	netdev_features_t features;
9746 	struct list_head *iter;
9747 	int err = -1;
9748 
9749 	ASSERT_RTNL();
9750 
9751 	features = netdev_get_wanted_features(dev);
9752 
9753 	if (dev->netdev_ops->ndo_fix_features)
9754 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9755 
9756 	/* driver might be less strict about feature dependencies */
9757 	features = netdev_fix_features(dev, features);
9758 
9759 	/* some features can't be enabled if they're off on an upper device */
9760 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9761 		features = netdev_sync_upper_features(dev, upper, features);
9762 
9763 	if (dev->features == features)
9764 		goto sync_lower;
9765 
9766 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9767 		&dev->features, &features);
9768 
9769 	if (dev->netdev_ops->ndo_set_features)
9770 		err = dev->netdev_ops->ndo_set_features(dev, features);
9771 	else
9772 		err = 0;
9773 
9774 	if (unlikely(err < 0)) {
9775 		netdev_err(dev,
9776 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9777 			err, &features, &dev->features);
9778 		/* return non-0 since some features might have changed and
9779 		 * it's better to fire a spurious notification than miss it
9780 		 */
9781 		return -1;
9782 	}
9783 
9784 sync_lower:
9785 	/* some features must be disabled on lower devices when disabled
9786 	 * on an upper device (think: bonding master or bridge)
9787 	 */
9788 	netdev_for_each_lower_dev(dev, lower, iter)
9789 		netdev_sync_lower_features(dev, lower, features);
9790 
9791 	if (!err) {
9792 		netdev_features_t diff = features ^ dev->features;
9793 
9794 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9795 			/* udp_tunnel_{get,drop}_rx_info both need
9796 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9797 			 * device, or they won't do anything.
9798 			 * Thus we need to update dev->features
9799 			 * *before* calling udp_tunnel_get_rx_info,
9800 			 * but *after* calling udp_tunnel_drop_rx_info.
9801 			 */
9802 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9803 				dev->features = features;
9804 				udp_tunnel_get_rx_info(dev);
9805 			} else {
9806 				udp_tunnel_drop_rx_info(dev);
9807 			}
9808 		}
9809 
9810 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9811 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9812 				dev->features = features;
9813 				err |= vlan_get_rx_ctag_filter_info(dev);
9814 			} else {
9815 				vlan_drop_rx_ctag_filter_info(dev);
9816 			}
9817 		}
9818 
9819 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9820 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9821 				dev->features = features;
9822 				err |= vlan_get_rx_stag_filter_info(dev);
9823 			} else {
9824 				vlan_drop_rx_stag_filter_info(dev);
9825 			}
9826 		}
9827 
9828 		dev->features = features;
9829 	}
9830 
9831 	return err < 0 ? 0 : 1;
9832 }
9833 
9834 /**
9835  *	netdev_update_features - recalculate device features
9836  *	@dev: the device to check
9837  *
9838  *	Recalculate dev->features set and send notifications if it
9839  *	has changed. Should be called after driver or hardware dependent
9840  *	conditions might have changed that influence the features.
9841  */
9842 void netdev_update_features(struct net_device *dev)
9843 {
9844 	if (__netdev_update_features(dev))
9845 		netdev_features_change(dev);
9846 }
9847 EXPORT_SYMBOL(netdev_update_features);
9848 
9849 /**
9850  *	netdev_change_features - recalculate device features
9851  *	@dev: the device to check
9852  *
9853  *	Recalculate dev->features set and send notifications even
9854  *	if they have not changed. Should be called instead of
9855  *	netdev_update_features() if also dev->vlan_features might
9856  *	have changed to allow the changes to be propagated to stacked
9857  *	VLAN devices.
9858  */
9859 void netdev_change_features(struct net_device *dev)
9860 {
9861 	__netdev_update_features(dev);
9862 	netdev_features_change(dev);
9863 }
9864 EXPORT_SYMBOL(netdev_change_features);
9865 
9866 /**
9867  *	netif_stacked_transfer_operstate -	transfer operstate
9868  *	@rootdev: the root or lower level device to transfer state from
9869  *	@dev: the device to transfer operstate to
9870  *
9871  *	Transfer operational state from root to device. This is normally
9872  *	called when a stacking relationship exists between the root
9873  *	device and the device(a leaf device).
9874  */
9875 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9876 					struct net_device *dev)
9877 {
9878 	if (rootdev->operstate == IF_OPER_DORMANT)
9879 		netif_dormant_on(dev);
9880 	else
9881 		netif_dormant_off(dev);
9882 
9883 	if (rootdev->operstate == IF_OPER_TESTING)
9884 		netif_testing_on(dev);
9885 	else
9886 		netif_testing_off(dev);
9887 
9888 	if (netif_carrier_ok(rootdev))
9889 		netif_carrier_on(dev);
9890 	else
9891 		netif_carrier_off(dev);
9892 }
9893 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9894 
9895 static int netif_alloc_rx_queues(struct net_device *dev)
9896 {
9897 	unsigned int i, count = dev->num_rx_queues;
9898 	struct netdev_rx_queue *rx;
9899 	size_t sz = count * sizeof(*rx);
9900 	int err = 0;
9901 
9902 	BUG_ON(count < 1);
9903 
9904 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9905 	if (!rx)
9906 		return -ENOMEM;
9907 
9908 	dev->_rx = rx;
9909 
9910 	for (i = 0; i < count; i++) {
9911 		rx[i].dev = dev;
9912 
9913 		/* XDP RX-queue setup */
9914 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9915 		if (err < 0)
9916 			goto err_rxq_info;
9917 	}
9918 	return 0;
9919 
9920 err_rxq_info:
9921 	/* Rollback successful reg's and free other resources */
9922 	while (i--)
9923 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9924 	kvfree(dev->_rx);
9925 	dev->_rx = NULL;
9926 	return err;
9927 }
9928 
9929 static void netif_free_rx_queues(struct net_device *dev)
9930 {
9931 	unsigned int i, count = dev->num_rx_queues;
9932 
9933 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9934 	if (!dev->_rx)
9935 		return;
9936 
9937 	for (i = 0; i < count; i++)
9938 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9939 
9940 	kvfree(dev->_rx);
9941 }
9942 
9943 static void netdev_init_one_queue(struct net_device *dev,
9944 				  struct netdev_queue *queue, void *_unused)
9945 {
9946 	/* Initialize queue lock */
9947 	spin_lock_init(&queue->_xmit_lock);
9948 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9949 	queue->xmit_lock_owner = -1;
9950 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9951 	queue->dev = dev;
9952 #ifdef CONFIG_BQL
9953 	dql_init(&queue->dql, HZ);
9954 #endif
9955 }
9956 
9957 static void netif_free_tx_queues(struct net_device *dev)
9958 {
9959 	kvfree(dev->_tx);
9960 }
9961 
9962 static int netif_alloc_netdev_queues(struct net_device *dev)
9963 {
9964 	unsigned int count = dev->num_tx_queues;
9965 	struct netdev_queue *tx;
9966 	size_t sz = count * sizeof(*tx);
9967 
9968 	if (count < 1 || count > 0xffff)
9969 		return -EINVAL;
9970 
9971 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9972 	if (!tx)
9973 		return -ENOMEM;
9974 
9975 	dev->_tx = tx;
9976 
9977 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9978 	spin_lock_init(&dev->tx_global_lock);
9979 
9980 	return 0;
9981 }
9982 
9983 void netif_tx_stop_all_queues(struct net_device *dev)
9984 {
9985 	unsigned int i;
9986 
9987 	for (i = 0; i < dev->num_tx_queues; i++) {
9988 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9989 
9990 		netif_tx_stop_queue(txq);
9991 	}
9992 }
9993 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9994 
9995 /**
9996  * register_netdevice() - register a network device
9997  * @dev: device to register
9998  *
9999  * Take a prepared network device structure and make it externally accessible.
10000  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10001  * Callers must hold the rtnl lock - you may want register_netdev()
10002  * instead of this.
10003  */
10004 int register_netdevice(struct net_device *dev)
10005 {
10006 	int ret;
10007 	struct net *net = dev_net(dev);
10008 
10009 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10010 		     NETDEV_FEATURE_COUNT);
10011 	BUG_ON(dev_boot_phase);
10012 	ASSERT_RTNL();
10013 
10014 	might_sleep();
10015 
10016 	/* When net_device's are persistent, this will be fatal. */
10017 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10018 	BUG_ON(!net);
10019 
10020 	ret = ethtool_check_ops(dev->ethtool_ops);
10021 	if (ret)
10022 		return ret;
10023 
10024 	spin_lock_init(&dev->addr_list_lock);
10025 	netdev_set_addr_lockdep_class(dev);
10026 
10027 	ret = dev_get_valid_name(net, dev, dev->name);
10028 	if (ret < 0)
10029 		goto out;
10030 
10031 	ret = -ENOMEM;
10032 	dev->name_node = netdev_name_node_head_alloc(dev);
10033 	if (!dev->name_node)
10034 		goto out;
10035 
10036 	/* Init, if this function is available */
10037 	if (dev->netdev_ops->ndo_init) {
10038 		ret = dev->netdev_ops->ndo_init(dev);
10039 		if (ret) {
10040 			if (ret > 0)
10041 				ret = -EIO;
10042 			goto err_free_name;
10043 		}
10044 	}
10045 
10046 	if (((dev->hw_features | dev->features) &
10047 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10048 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10049 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10050 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10051 		ret = -EINVAL;
10052 		goto err_uninit;
10053 	}
10054 
10055 	ret = -EBUSY;
10056 	if (!dev->ifindex)
10057 		dev->ifindex = dev_new_index(net);
10058 	else if (__dev_get_by_index(net, dev->ifindex))
10059 		goto err_uninit;
10060 
10061 	/* Transfer changeable features to wanted_features and enable
10062 	 * software offloads (GSO and GRO).
10063 	 */
10064 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10065 	dev->features |= NETIF_F_SOFT_FEATURES;
10066 
10067 	if (dev->udp_tunnel_nic_info) {
10068 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10069 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10070 	}
10071 
10072 	dev->wanted_features = dev->features & dev->hw_features;
10073 
10074 	if (!(dev->flags & IFF_LOOPBACK))
10075 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10076 
10077 	/* If IPv4 TCP segmentation offload is supported we should also
10078 	 * allow the device to enable segmenting the frame with the option
10079 	 * of ignoring a static IP ID value.  This doesn't enable the
10080 	 * feature itself but allows the user to enable it later.
10081 	 */
10082 	if (dev->hw_features & NETIF_F_TSO)
10083 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10084 	if (dev->vlan_features & NETIF_F_TSO)
10085 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10086 	if (dev->mpls_features & NETIF_F_TSO)
10087 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10088 	if (dev->hw_enc_features & NETIF_F_TSO)
10089 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10090 
10091 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10092 	 */
10093 	dev->vlan_features |= NETIF_F_HIGHDMA;
10094 
10095 	/* Make NETIF_F_SG inheritable to tunnel devices.
10096 	 */
10097 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10098 
10099 	/* Make NETIF_F_SG inheritable to MPLS.
10100 	 */
10101 	dev->mpls_features |= NETIF_F_SG;
10102 
10103 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10104 	ret = notifier_to_errno(ret);
10105 	if (ret)
10106 		goto err_uninit;
10107 
10108 	ret = netdev_register_kobject(dev);
10109 	write_lock(&dev_base_lock);
10110 	dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10111 	write_unlock(&dev_base_lock);
10112 	if (ret)
10113 		goto err_uninit_notify;
10114 
10115 	__netdev_update_features(dev);
10116 
10117 	/*
10118 	 *	Default initial state at registry is that the
10119 	 *	device is present.
10120 	 */
10121 
10122 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10123 
10124 	linkwatch_init_dev(dev);
10125 
10126 	dev_init_scheduler(dev);
10127 
10128 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10129 	list_netdevice(dev);
10130 
10131 	add_device_randomness(dev->dev_addr, dev->addr_len);
10132 
10133 	/* If the device has permanent device address, driver should
10134 	 * set dev_addr and also addr_assign_type should be set to
10135 	 * NET_ADDR_PERM (default value).
10136 	 */
10137 	if (dev->addr_assign_type == NET_ADDR_PERM)
10138 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10139 
10140 	/* Notify protocols, that a new device appeared. */
10141 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10142 	ret = notifier_to_errno(ret);
10143 	if (ret) {
10144 		/* Expect explicit free_netdev() on failure */
10145 		dev->needs_free_netdev = false;
10146 		unregister_netdevice_queue(dev, NULL);
10147 		goto out;
10148 	}
10149 	/*
10150 	 *	Prevent userspace races by waiting until the network
10151 	 *	device is fully setup before sending notifications.
10152 	 */
10153 	if (!dev->rtnl_link_ops ||
10154 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10155 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10156 
10157 out:
10158 	return ret;
10159 
10160 err_uninit_notify:
10161 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10162 err_uninit:
10163 	if (dev->netdev_ops->ndo_uninit)
10164 		dev->netdev_ops->ndo_uninit(dev);
10165 	if (dev->priv_destructor)
10166 		dev->priv_destructor(dev);
10167 err_free_name:
10168 	netdev_name_node_free(dev->name_node);
10169 	goto out;
10170 }
10171 EXPORT_SYMBOL(register_netdevice);
10172 
10173 /**
10174  *	init_dummy_netdev	- init a dummy network device for NAPI
10175  *	@dev: device to init
10176  *
10177  *	This takes a network device structure and initialize the minimum
10178  *	amount of fields so it can be used to schedule NAPI polls without
10179  *	registering a full blown interface. This is to be used by drivers
10180  *	that need to tie several hardware interfaces to a single NAPI
10181  *	poll scheduler due to HW limitations.
10182  */
10183 int init_dummy_netdev(struct net_device *dev)
10184 {
10185 	/* Clear everything. Note we don't initialize spinlocks
10186 	 * are they aren't supposed to be taken by any of the
10187 	 * NAPI code and this dummy netdev is supposed to be
10188 	 * only ever used for NAPI polls
10189 	 */
10190 	memset(dev, 0, sizeof(struct net_device));
10191 
10192 	/* make sure we BUG if trying to hit standard
10193 	 * register/unregister code path
10194 	 */
10195 	dev->reg_state = NETREG_DUMMY;
10196 
10197 	/* NAPI wants this */
10198 	INIT_LIST_HEAD(&dev->napi_list);
10199 
10200 	/* a dummy interface is started by default */
10201 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10202 	set_bit(__LINK_STATE_START, &dev->state);
10203 
10204 	/* napi_busy_loop stats accounting wants this */
10205 	dev_net_set(dev, &init_net);
10206 
10207 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10208 	 * because users of this 'device' dont need to change
10209 	 * its refcount.
10210 	 */
10211 
10212 	return 0;
10213 }
10214 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10215 
10216 
10217 /**
10218  *	register_netdev	- register a network device
10219  *	@dev: device to register
10220  *
10221  *	Take a completed network device structure and add it to the kernel
10222  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10223  *	chain. 0 is returned on success. A negative errno code is returned
10224  *	on a failure to set up the device, or if the name is a duplicate.
10225  *
10226  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10227  *	and expands the device name if you passed a format string to
10228  *	alloc_netdev.
10229  */
10230 int register_netdev(struct net_device *dev)
10231 {
10232 	int err;
10233 
10234 	if (rtnl_lock_killable())
10235 		return -EINTR;
10236 	err = register_netdevice(dev);
10237 	rtnl_unlock();
10238 	return err;
10239 }
10240 EXPORT_SYMBOL(register_netdev);
10241 
10242 int netdev_refcnt_read(const struct net_device *dev)
10243 {
10244 #ifdef CONFIG_PCPU_DEV_REFCNT
10245 	int i, refcnt = 0;
10246 
10247 	for_each_possible_cpu(i)
10248 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10249 	return refcnt;
10250 #else
10251 	return refcount_read(&dev->dev_refcnt);
10252 #endif
10253 }
10254 EXPORT_SYMBOL(netdev_refcnt_read);
10255 
10256 int netdev_unregister_timeout_secs __read_mostly = 10;
10257 
10258 #define WAIT_REFS_MIN_MSECS 1
10259 #define WAIT_REFS_MAX_MSECS 250
10260 /**
10261  * netdev_wait_allrefs_any - wait until all references are gone.
10262  * @list: list of net_devices to wait on
10263  *
10264  * This is called when unregistering network devices.
10265  *
10266  * Any protocol or device that holds a reference should register
10267  * for netdevice notification, and cleanup and put back the
10268  * reference if they receive an UNREGISTER event.
10269  * We can get stuck here if buggy protocols don't correctly
10270  * call dev_put.
10271  */
10272 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10273 {
10274 	unsigned long rebroadcast_time, warning_time;
10275 	struct net_device *dev;
10276 	int wait = 0;
10277 
10278 	rebroadcast_time = warning_time = jiffies;
10279 
10280 	list_for_each_entry(dev, list, todo_list)
10281 		if (netdev_refcnt_read(dev) == 1)
10282 			return dev;
10283 
10284 	while (true) {
10285 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10286 			rtnl_lock();
10287 
10288 			/* Rebroadcast unregister notification */
10289 			list_for_each_entry(dev, list, todo_list)
10290 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10291 
10292 			__rtnl_unlock();
10293 			rcu_barrier();
10294 			rtnl_lock();
10295 
10296 			list_for_each_entry(dev, list, todo_list)
10297 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10298 					     &dev->state)) {
10299 					/* We must not have linkwatch events
10300 					 * pending on unregister. If this
10301 					 * happens, we simply run the queue
10302 					 * unscheduled, resulting in a noop
10303 					 * for this device.
10304 					 */
10305 					linkwatch_run_queue();
10306 					break;
10307 				}
10308 
10309 			__rtnl_unlock();
10310 
10311 			rebroadcast_time = jiffies;
10312 		}
10313 
10314 		if (!wait) {
10315 			rcu_barrier();
10316 			wait = WAIT_REFS_MIN_MSECS;
10317 		} else {
10318 			msleep(wait);
10319 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10320 		}
10321 
10322 		list_for_each_entry(dev, list, todo_list)
10323 			if (netdev_refcnt_read(dev) == 1)
10324 				return dev;
10325 
10326 		if (time_after(jiffies, warning_time +
10327 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10328 			list_for_each_entry(dev, list, todo_list) {
10329 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10330 					 dev->name, netdev_refcnt_read(dev));
10331 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10332 			}
10333 
10334 			warning_time = jiffies;
10335 		}
10336 	}
10337 }
10338 
10339 /* The sequence is:
10340  *
10341  *	rtnl_lock();
10342  *	...
10343  *	register_netdevice(x1);
10344  *	register_netdevice(x2);
10345  *	...
10346  *	unregister_netdevice(y1);
10347  *	unregister_netdevice(y2);
10348  *      ...
10349  *	rtnl_unlock();
10350  *	free_netdev(y1);
10351  *	free_netdev(y2);
10352  *
10353  * We are invoked by rtnl_unlock().
10354  * This allows us to deal with problems:
10355  * 1) We can delete sysfs objects which invoke hotplug
10356  *    without deadlocking with linkwatch via keventd.
10357  * 2) Since we run with the RTNL semaphore not held, we can sleep
10358  *    safely in order to wait for the netdev refcnt to drop to zero.
10359  *
10360  * We must not return until all unregister events added during
10361  * the interval the lock was held have been completed.
10362  */
10363 void netdev_run_todo(void)
10364 {
10365 	struct net_device *dev, *tmp;
10366 	struct list_head list;
10367 #ifdef CONFIG_LOCKDEP
10368 	struct list_head unlink_list;
10369 
10370 	list_replace_init(&net_unlink_list, &unlink_list);
10371 
10372 	while (!list_empty(&unlink_list)) {
10373 		struct net_device *dev = list_first_entry(&unlink_list,
10374 							  struct net_device,
10375 							  unlink_list);
10376 		list_del_init(&dev->unlink_list);
10377 		dev->nested_level = dev->lower_level - 1;
10378 	}
10379 #endif
10380 
10381 	/* Snapshot list, allow later requests */
10382 	list_replace_init(&net_todo_list, &list);
10383 
10384 	__rtnl_unlock();
10385 
10386 	/* Wait for rcu callbacks to finish before next phase */
10387 	if (!list_empty(&list))
10388 		rcu_barrier();
10389 
10390 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10391 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10392 			netdev_WARN(dev, "run_todo but not unregistering\n");
10393 			list_del(&dev->todo_list);
10394 			continue;
10395 		}
10396 
10397 		write_lock(&dev_base_lock);
10398 		dev->reg_state = NETREG_UNREGISTERED;
10399 		write_unlock(&dev_base_lock);
10400 		linkwatch_forget_dev(dev);
10401 	}
10402 
10403 	while (!list_empty(&list)) {
10404 		dev = netdev_wait_allrefs_any(&list);
10405 		list_del(&dev->todo_list);
10406 
10407 		/* paranoia */
10408 		BUG_ON(netdev_refcnt_read(dev) != 1);
10409 		BUG_ON(!list_empty(&dev->ptype_all));
10410 		BUG_ON(!list_empty(&dev->ptype_specific));
10411 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10412 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10413 
10414 		if (dev->priv_destructor)
10415 			dev->priv_destructor(dev);
10416 		if (dev->needs_free_netdev)
10417 			free_netdev(dev);
10418 
10419 		if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10420 			wake_up(&netdev_unregistering_wq);
10421 
10422 		/* Free network device */
10423 		kobject_put(&dev->dev.kobj);
10424 	}
10425 }
10426 
10427 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10428  * all the same fields in the same order as net_device_stats, with only
10429  * the type differing, but rtnl_link_stats64 may have additional fields
10430  * at the end for newer counters.
10431  */
10432 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10433 			     const struct net_device_stats *netdev_stats)
10434 {
10435 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10436 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10437 	u64 *dst = (u64 *)stats64;
10438 
10439 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10440 	for (i = 0; i < n; i++)
10441 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
10442 	/* zero out counters that only exist in rtnl_link_stats64 */
10443 	memset((char *)stats64 + n * sizeof(u64), 0,
10444 	       sizeof(*stats64) - n * sizeof(u64));
10445 }
10446 EXPORT_SYMBOL(netdev_stats_to_stats64);
10447 
10448 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10449 {
10450 	struct net_device_core_stats __percpu *p;
10451 
10452 	p = alloc_percpu_gfp(struct net_device_core_stats,
10453 			     GFP_ATOMIC | __GFP_NOWARN);
10454 
10455 	if (p && cmpxchg(&dev->core_stats, NULL, p))
10456 		free_percpu(p);
10457 
10458 	/* This READ_ONCE() pairs with the cmpxchg() above */
10459 	return READ_ONCE(dev->core_stats);
10460 }
10461 EXPORT_SYMBOL(netdev_core_stats_alloc);
10462 
10463 /**
10464  *	dev_get_stats	- get network device statistics
10465  *	@dev: device to get statistics from
10466  *	@storage: place to store stats
10467  *
10468  *	Get network statistics from device. Return @storage.
10469  *	The device driver may provide its own method by setting
10470  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10471  *	otherwise the internal statistics structure is used.
10472  */
10473 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10474 					struct rtnl_link_stats64 *storage)
10475 {
10476 	const struct net_device_ops *ops = dev->netdev_ops;
10477 	const struct net_device_core_stats __percpu *p;
10478 
10479 	if (ops->ndo_get_stats64) {
10480 		memset(storage, 0, sizeof(*storage));
10481 		ops->ndo_get_stats64(dev, storage);
10482 	} else if (ops->ndo_get_stats) {
10483 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10484 	} else {
10485 		netdev_stats_to_stats64(storage, &dev->stats);
10486 	}
10487 
10488 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10489 	p = READ_ONCE(dev->core_stats);
10490 	if (p) {
10491 		const struct net_device_core_stats *core_stats;
10492 		int i;
10493 
10494 		for_each_possible_cpu(i) {
10495 			core_stats = per_cpu_ptr(p, i);
10496 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10497 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10498 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10499 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10500 		}
10501 	}
10502 	return storage;
10503 }
10504 EXPORT_SYMBOL(dev_get_stats);
10505 
10506 /**
10507  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10508  *	@s: place to store stats
10509  *	@netstats: per-cpu network stats to read from
10510  *
10511  *	Read per-cpu network statistics and populate the related fields in @s.
10512  */
10513 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10514 			   const struct pcpu_sw_netstats __percpu *netstats)
10515 {
10516 	int cpu;
10517 
10518 	for_each_possible_cpu(cpu) {
10519 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10520 		const struct pcpu_sw_netstats *stats;
10521 		unsigned int start;
10522 
10523 		stats = per_cpu_ptr(netstats, cpu);
10524 		do {
10525 			start = u64_stats_fetch_begin(&stats->syncp);
10526 			rx_packets = u64_stats_read(&stats->rx_packets);
10527 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10528 			tx_packets = u64_stats_read(&stats->tx_packets);
10529 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10530 		} while (u64_stats_fetch_retry(&stats->syncp, start));
10531 
10532 		s->rx_packets += rx_packets;
10533 		s->rx_bytes   += rx_bytes;
10534 		s->tx_packets += tx_packets;
10535 		s->tx_bytes   += tx_bytes;
10536 	}
10537 }
10538 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10539 
10540 /**
10541  *	dev_get_tstats64 - ndo_get_stats64 implementation
10542  *	@dev: device to get statistics from
10543  *	@s: place to store stats
10544  *
10545  *	Populate @s from dev->stats and dev->tstats. Can be used as
10546  *	ndo_get_stats64() callback.
10547  */
10548 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10549 {
10550 	netdev_stats_to_stats64(s, &dev->stats);
10551 	dev_fetch_sw_netstats(s, dev->tstats);
10552 }
10553 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10554 
10555 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10556 {
10557 	struct netdev_queue *queue = dev_ingress_queue(dev);
10558 
10559 #ifdef CONFIG_NET_CLS_ACT
10560 	if (queue)
10561 		return queue;
10562 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10563 	if (!queue)
10564 		return NULL;
10565 	netdev_init_one_queue(dev, queue, NULL);
10566 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10567 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10568 	rcu_assign_pointer(dev->ingress_queue, queue);
10569 #endif
10570 	return queue;
10571 }
10572 
10573 static const struct ethtool_ops default_ethtool_ops;
10574 
10575 void netdev_set_default_ethtool_ops(struct net_device *dev,
10576 				    const struct ethtool_ops *ops)
10577 {
10578 	if (dev->ethtool_ops == &default_ethtool_ops)
10579 		dev->ethtool_ops = ops;
10580 }
10581 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10582 
10583 /**
10584  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10585  * @dev: netdev to enable the IRQ coalescing on
10586  *
10587  * Sets a conservative default for SW IRQ coalescing. Users can use
10588  * sysfs attributes to override the default values.
10589  */
10590 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10591 {
10592 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
10593 
10594 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10595 		dev->gro_flush_timeout = 20000;
10596 		dev->napi_defer_hard_irqs = 1;
10597 	}
10598 }
10599 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10600 
10601 void netdev_freemem(struct net_device *dev)
10602 {
10603 	char *addr = (char *)dev - dev->padded;
10604 
10605 	kvfree(addr);
10606 }
10607 
10608 /**
10609  * alloc_netdev_mqs - allocate network device
10610  * @sizeof_priv: size of private data to allocate space for
10611  * @name: device name format string
10612  * @name_assign_type: origin of device name
10613  * @setup: callback to initialize device
10614  * @txqs: the number of TX subqueues to allocate
10615  * @rxqs: the number of RX subqueues to allocate
10616  *
10617  * Allocates a struct net_device with private data area for driver use
10618  * and performs basic initialization.  Also allocates subqueue structs
10619  * for each queue on the device.
10620  */
10621 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10622 		unsigned char name_assign_type,
10623 		void (*setup)(struct net_device *),
10624 		unsigned int txqs, unsigned int rxqs)
10625 {
10626 	struct net_device *dev;
10627 	unsigned int alloc_size;
10628 	struct net_device *p;
10629 
10630 	BUG_ON(strlen(name) >= sizeof(dev->name));
10631 
10632 	if (txqs < 1) {
10633 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10634 		return NULL;
10635 	}
10636 
10637 	if (rxqs < 1) {
10638 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10639 		return NULL;
10640 	}
10641 
10642 	alloc_size = sizeof(struct net_device);
10643 	if (sizeof_priv) {
10644 		/* ensure 32-byte alignment of private area */
10645 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10646 		alloc_size += sizeof_priv;
10647 	}
10648 	/* ensure 32-byte alignment of whole construct */
10649 	alloc_size += NETDEV_ALIGN - 1;
10650 
10651 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10652 	if (!p)
10653 		return NULL;
10654 
10655 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10656 	dev->padded = (char *)dev - (char *)p;
10657 
10658 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10659 #ifdef CONFIG_PCPU_DEV_REFCNT
10660 	dev->pcpu_refcnt = alloc_percpu(int);
10661 	if (!dev->pcpu_refcnt)
10662 		goto free_dev;
10663 	__dev_hold(dev);
10664 #else
10665 	refcount_set(&dev->dev_refcnt, 1);
10666 #endif
10667 
10668 	if (dev_addr_init(dev))
10669 		goto free_pcpu;
10670 
10671 	dev_mc_init(dev);
10672 	dev_uc_init(dev);
10673 
10674 	dev_net_set(dev, &init_net);
10675 
10676 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10677 	dev->xdp_zc_max_segs = 1;
10678 	dev->gso_max_segs = GSO_MAX_SEGS;
10679 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10680 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10681 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10682 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10683 	dev->tso_max_segs = TSO_MAX_SEGS;
10684 	dev->upper_level = 1;
10685 	dev->lower_level = 1;
10686 #ifdef CONFIG_LOCKDEP
10687 	dev->nested_level = 0;
10688 	INIT_LIST_HEAD(&dev->unlink_list);
10689 #endif
10690 
10691 	INIT_LIST_HEAD(&dev->napi_list);
10692 	INIT_LIST_HEAD(&dev->unreg_list);
10693 	INIT_LIST_HEAD(&dev->close_list);
10694 	INIT_LIST_HEAD(&dev->link_watch_list);
10695 	INIT_LIST_HEAD(&dev->adj_list.upper);
10696 	INIT_LIST_HEAD(&dev->adj_list.lower);
10697 	INIT_LIST_HEAD(&dev->ptype_all);
10698 	INIT_LIST_HEAD(&dev->ptype_specific);
10699 	INIT_LIST_HEAD(&dev->net_notifier_list);
10700 #ifdef CONFIG_NET_SCHED
10701 	hash_init(dev->qdisc_hash);
10702 #endif
10703 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10704 	setup(dev);
10705 
10706 	if (!dev->tx_queue_len) {
10707 		dev->priv_flags |= IFF_NO_QUEUE;
10708 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10709 	}
10710 
10711 	dev->num_tx_queues = txqs;
10712 	dev->real_num_tx_queues = txqs;
10713 	if (netif_alloc_netdev_queues(dev))
10714 		goto free_all;
10715 
10716 	dev->num_rx_queues = rxqs;
10717 	dev->real_num_rx_queues = rxqs;
10718 	if (netif_alloc_rx_queues(dev))
10719 		goto free_all;
10720 
10721 	strcpy(dev->name, name);
10722 	dev->name_assign_type = name_assign_type;
10723 	dev->group = INIT_NETDEV_GROUP;
10724 	if (!dev->ethtool_ops)
10725 		dev->ethtool_ops = &default_ethtool_ops;
10726 
10727 	nf_hook_netdev_init(dev);
10728 
10729 	return dev;
10730 
10731 free_all:
10732 	free_netdev(dev);
10733 	return NULL;
10734 
10735 free_pcpu:
10736 #ifdef CONFIG_PCPU_DEV_REFCNT
10737 	free_percpu(dev->pcpu_refcnt);
10738 free_dev:
10739 #endif
10740 	netdev_freemem(dev);
10741 	return NULL;
10742 }
10743 EXPORT_SYMBOL(alloc_netdev_mqs);
10744 
10745 /**
10746  * free_netdev - free network device
10747  * @dev: device
10748  *
10749  * This function does the last stage of destroying an allocated device
10750  * interface. The reference to the device object is released. If this
10751  * is the last reference then it will be freed.Must be called in process
10752  * context.
10753  */
10754 void free_netdev(struct net_device *dev)
10755 {
10756 	struct napi_struct *p, *n;
10757 
10758 	might_sleep();
10759 
10760 	/* When called immediately after register_netdevice() failed the unwind
10761 	 * handling may still be dismantling the device. Handle that case by
10762 	 * deferring the free.
10763 	 */
10764 	if (dev->reg_state == NETREG_UNREGISTERING) {
10765 		ASSERT_RTNL();
10766 		dev->needs_free_netdev = true;
10767 		return;
10768 	}
10769 
10770 	netif_free_tx_queues(dev);
10771 	netif_free_rx_queues(dev);
10772 
10773 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10774 
10775 	/* Flush device addresses */
10776 	dev_addr_flush(dev);
10777 
10778 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10779 		netif_napi_del(p);
10780 
10781 	ref_tracker_dir_exit(&dev->refcnt_tracker);
10782 #ifdef CONFIG_PCPU_DEV_REFCNT
10783 	free_percpu(dev->pcpu_refcnt);
10784 	dev->pcpu_refcnt = NULL;
10785 #endif
10786 	free_percpu(dev->core_stats);
10787 	dev->core_stats = NULL;
10788 	free_percpu(dev->xdp_bulkq);
10789 	dev->xdp_bulkq = NULL;
10790 
10791 	/*  Compatibility with error handling in drivers */
10792 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10793 		netdev_freemem(dev);
10794 		return;
10795 	}
10796 
10797 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10798 	dev->reg_state = NETREG_RELEASED;
10799 
10800 	/* will free via device release */
10801 	put_device(&dev->dev);
10802 }
10803 EXPORT_SYMBOL(free_netdev);
10804 
10805 /**
10806  *	synchronize_net -  Synchronize with packet receive processing
10807  *
10808  *	Wait for packets currently being received to be done.
10809  *	Does not block later packets from starting.
10810  */
10811 void synchronize_net(void)
10812 {
10813 	might_sleep();
10814 	if (rtnl_is_locked())
10815 		synchronize_rcu_expedited();
10816 	else
10817 		synchronize_rcu();
10818 }
10819 EXPORT_SYMBOL(synchronize_net);
10820 
10821 /**
10822  *	unregister_netdevice_queue - remove device from the kernel
10823  *	@dev: device
10824  *	@head: list
10825  *
10826  *	This function shuts down a device interface and removes it
10827  *	from the kernel tables.
10828  *	If head not NULL, device is queued to be unregistered later.
10829  *
10830  *	Callers must hold the rtnl semaphore.  You may want
10831  *	unregister_netdev() instead of this.
10832  */
10833 
10834 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10835 {
10836 	ASSERT_RTNL();
10837 
10838 	if (head) {
10839 		list_move_tail(&dev->unreg_list, head);
10840 	} else {
10841 		LIST_HEAD(single);
10842 
10843 		list_add(&dev->unreg_list, &single);
10844 		unregister_netdevice_many(&single);
10845 	}
10846 }
10847 EXPORT_SYMBOL(unregister_netdevice_queue);
10848 
10849 void unregister_netdevice_many_notify(struct list_head *head,
10850 				      u32 portid, const struct nlmsghdr *nlh)
10851 {
10852 	struct net_device *dev, *tmp;
10853 	LIST_HEAD(close_head);
10854 
10855 	BUG_ON(dev_boot_phase);
10856 	ASSERT_RTNL();
10857 
10858 	if (list_empty(head))
10859 		return;
10860 
10861 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10862 		/* Some devices call without registering
10863 		 * for initialization unwind. Remove those
10864 		 * devices and proceed with the remaining.
10865 		 */
10866 		if (dev->reg_state == NETREG_UNINITIALIZED) {
10867 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10868 				 dev->name, dev);
10869 
10870 			WARN_ON(1);
10871 			list_del(&dev->unreg_list);
10872 			continue;
10873 		}
10874 		dev->dismantle = true;
10875 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
10876 	}
10877 
10878 	/* If device is running, close it first. */
10879 	list_for_each_entry(dev, head, unreg_list)
10880 		list_add_tail(&dev->close_list, &close_head);
10881 	dev_close_many(&close_head, true);
10882 
10883 	list_for_each_entry(dev, head, unreg_list) {
10884 		/* And unlink it from device chain. */
10885 		write_lock(&dev_base_lock);
10886 		unlist_netdevice(dev, false);
10887 		dev->reg_state = NETREG_UNREGISTERING;
10888 		write_unlock(&dev_base_lock);
10889 	}
10890 	flush_all_backlogs();
10891 
10892 	synchronize_net();
10893 
10894 	list_for_each_entry(dev, head, unreg_list) {
10895 		struct sk_buff *skb = NULL;
10896 
10897 		/* Shutdown queueing discipline. */
10898 		dev_shutdown(dev);
10899 		dev_tcx_uninstall(dev);
10900 		dev_xdp_uninstall(dev);
10901 		bpf_dev_bound_netdev_unregister(dev);
10902 
10903 		netdev_offload_xstats_disable_all(dev);
10904 
10905 		/* Notify protocols, that we are about to destroy
10906 		 * this device. They should clean all the things.
10907 		 */
10908 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10909 
10910 		if (!dev->rtnl_link_ops ||
10911 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10912 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10913 						     GFP_KERNEL, NULL, 0,
10914 						     portid, nlh);
10915 
10916 		/*
10917 		 *	Flush the unicast and multicast chains
10918 		 */
10919 		dev_uc_flush(dev);
10920 		dev_mc_flush(dev);
10921 
10922 		netdev_name_node_alt_flush(dev);
10923 		netdev_name_node_free(dev->name_node);
10924 
10925 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10926 
10927 		if (dev->netdev_ops->ndo_uninit)
10928 			dev->netdev_ops->ndo_uninit(dev);
10929 
10930 		if (skb)
10931 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
10932 
10933 		/* Notifier chain MUST detach us all upper devices. */
10934 		WARN_ON(netdev_has_any_upper_dev(dev));
10935 		WARN_ON(netdev_has_any_lower_dev(dev));
10936 
10937 		/* Remove entries from kobject tree */
10938 		netdev_unregister_kobject(dev);
10939 #ifdef CONFIG_XPS
10940 		/* Remove XPS queueing entries */
10941 		netif_reset_xps_queues_gt(dev, 0);
10942 #endif
10943 	}
10944 
10945 	synchronize_net();
10946 
10947 	list_for_each_entry(dev, head, unreg_list) {
10948 		netdev_put(dev, &dev->dev_registered_tracker);
10949 		net_set_todo(dev);
10950 	}
10951 
10952 	list_del(head);
10953 }
10954 
10955 /**
10956  *	unregister_netdevice_many - unregister many devices
10957  *	@head: list of devices
10958  *
10959  *  Note: As most callers use a stack allocated list_head,
10960  *  we force a list_del() to make sure stack wont be corrupted later.
10961  */
10962 void unregister_netdevice_many(struct list_head *head)
10963 {
10964 	unregister_netdevice_many_notify(head, 0, NULL);
10965 }
10966 EXPORT_SYMBOL(unregister_netdevice_many);
10967 
10968 /**
10969  *	unregister_netdev - remove device from the kernel
10970  *	@dev: device
10971  *
10972  *	This function shuts down a device interface and removes it
10973  *	from the kernel tables.
10974  *
10975  *	This is just a wrapper for unregister_netdevice that takes
10976  *	the rtnl semaphore.  In general you want to use this and not
10977  *	unregister_netdevice.
10978  */
10979 void unregister_netdev(struct net_device *dev)
10980 {
10981 	rtnl_lock();
10982 	unregister_netdevice(dev);
10983 	rtnl_unlock();
10984 }
10985 EXPORT_SYMBOL(unregister_netdev);
10986 
10987 /**
10988  *	__dev_change_net_namespace - move device to different nethost namespace
10989  *	@dev: device
10990  *	@net: network namespace
10991  *	@pat: If not NULL name pattern to try if the current device name
10992  *	      is already taken in the destination network namespace.
10993  *	@new_ifindex: If not zero, specifies device index in the target
10994  *	              namespace.
10995  *
10996  *	This function shuts down a device interface and moves it
10997  *	to a new network namespace. On success 0 is returned, on
10998  *	a failure a netagive errno code is returned.
10999  *
11000  *	Callers must hold the rtnl semaphore.
11001  */
11002 
11003 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11004 			       const char *pat, int new_ifindex)
11005 {
11006 	struct net *net_old = dev_net(dev);
11007 	int err, new_nsid;
11008 
11009 	ASSERT_RTNL();
11010 
11011 	/* Don't allow namespace local devices to be moved. */
11012 	err = -EINVAL;
11013 	if (dev->features & NETIF_F_NETNS_LOCAL)
11014 		goto out;
11015 
11016 	/* Ensure the device has been registrered */
11017 	if (dev->reg_state != NETREG_REGISTERED)
11018 		goto out;
11019 
11020 	/* Get out if there is nothing todo */
11021 	err = 0;
11022 	if (net_eq(net_old, net))
11023 		goto out;
11024 
11025 	/* Pick the destination device name, and ensure
11026 	 * we can use it in the destination network namespace.
11027 	 */
11028 	err = -EEXIST;
11029 	if (netdev_name_in_use(net, dev->name)) {
11030 		/* We get here if we can't use the current device name */
11031 		if (!pat)
11032 			goto out;
11033 		err = dev_get_valid_name(net, dev, pat);
11034 		if (err < 0)
11035 			goto out;
11036 	}
11037 
11038 	/* Check that new_ifindex isn't used yet. */
11039 	err = -EBUSY;
11040 	if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11041 		goto out;
11042 
11043 	/*
11044 	 * And now a mini version of register_netdevice unregister_netdevice.
11045 	 */
11046 
11047 	/* If device is running close it first. */
11048 	dev_close(dev);
11049 
11050 	/* And unlink it from device chain */
11051 	unlist_netdevice(dev, true);
11052 
11053 	synchronize_net();
11054 
11055 	/* Shutdown queueing discipline. */
11056 	dev_shutdown(dev);
11057 
11058 	/* Notify protocols, that we are about to destroy
11059 	 * this device. They should clean all the things.
11060 	 *
11061 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11062 	 * This is wanted because this way 8021q and macvlan know
11063 	 * the device is just moving and can keep their slaves up.
11064 	 */
11065 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11066 	rcu_barrier();
11067 
11068 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11069 	/* If there is an ifindex conflict assign a new one */
11070 	if (!new_ifindex) {
11071 		if (__dev_get_by_index(net, dev->ifindex))
11072 			new_ifindex = dev_new_index(net);
11073 		else
11074 			new_ifindex = dev->ifindex;
11075 	}
11076 
11077 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11078 			    new_ifindex);
11079 
11080 	/*
11081 	 *	Flush the unicast and multicast chains
11082 	 */
11083 	dev_uc_flush(dev);
11084 	dev_mc_flush(dev);
11085 
11086 	/* Send a netdev-removed uevent to the old namespace */
11087 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11088 	netdev_adjacent_del_links(dev);
11089 
11090 	/* Move per-net netdevice notifiers that are following the netdevice */
11091 	move_netdevice_notifiers_dev_net(dev, net);
11092 
11093 	/* Actually switch the network namespace */
11094 	dev_net_set(dev, net);
11095 	dev->ifindex = new_ifindex;
11096 
11097 	/* Send a netdev-add uevent to the new namespace */
11098 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11099 	netdev_adjacent_add_links(dev);
11100 
11101 	/* Fixup kobjects */
11102 	err = device_rename(&dev->dev, dev->name);
11103 	WARN_ON(err);
11104 
11105 	/* Adapt owner in case owning user namespace of target network
11106 	 * namespace is different from the original one.
11107 	 */
11108 	err = netdev_change_owner(dev, net_old, net);
11109 	WARN_ON(err);
11110 
11111 	/* Add the device back in the hashes */
11112 	list_netdevice(dev);
11113 
11114 	/* Notify protocols, that a new device appeared. */
11115 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11116 
11117 	/*
11118 	 *	Prevent userspace races by waiting until the network
11119 	 *	device is fully setup before sending notifications.
11120 	 */
11121 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11122 
11123 	synchronize_net();
11124 	err = 0;
11125 out:
11126 	return err;
11127 }
11128 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11129 
11130 static int dev_cpu_dead(unsigned int oldcpu)
11131 {
11132 	struct sk_buff **list_skb;
11133 	struct sk_buff *skb;
11134 	unsigned int cpu;
11135 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11136 
11137 	local_irq_disable();
11138 	cpu = smp_processor_id();
11139 	sd = &per_cpu(softnet_data, cpu);
11140 	oldsd = &per_cpu(softnet_data, oldcpu);
11141 
11142 	/* Find end of our completion_queue. */
11143 	list_skb = &sd->completion_queue;
11144 	while (*list_skb)
11145 		list_skb = &(*list_skb)->next;
11146 	/* Append completion queue from offline CPU. */
11147 	*list_skb = oldsd->completion_queue;
11148 	oldsd->completion_queue = NULL;
11149 
11150 	/* Append output queue from offline CPU. */
11151 	if (oldsd->output_queue) {
11152 		*sd->output_queue_tailp = oldsd->output_queue;
11153 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11154 		oldsd->output_queue = NULL;
11155 		oldsd->output_queue_tailp = &oldsd->output_queue;
11156 	}
11157 	/* Append NAPI poll list from offline CPU, with one exception :
11158 	 * process_backlog() must be called by cpu owning percpu backlog.
11159 	 * We properly handle process_queue & input_pkt_queue later.
11160 	 */
11161 	while (!list_empty(&oldsd->poll_list)) {
11162 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11163 							    struct napi_struct,
11164 							    poll_list);
11165 
11166 		list_del_init(&napi->poll_list);
11167 		if (napi->poll == process_backlog)
11168 			napi->state = 0;
11169 		else
11170 			____napi_schedule(sd, napi);
11171 	}
11172 
11173 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11174 	local_irq_enable();
11175 
11176 #ifdef CONFIG_RPS
11177 	remsd = oldsd->rps_ipi_list;
11178 	oldsd->rps_ipi_list = NULL;
11179 #endif
11180 	/* send out pending IPI's on offline CPU */
11181 	net_rps_send_ipi(remsd);
11182 
11183 	/* Process offline CPU's input_pkt_queue */
11184 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11185 		netif_rx(skb);
11186 		input_queue_head_incr(oldsd);
11187 	}
11188 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11189 		netif_rx(skb);
11190 		input_queue_head_incr(oldsd);
11191 	}
11192 
11193 	return 0;
11194 }
11195 
11196 /**
11197  *	netdev_increment_features - increment feature set by one
11198  *	@all: current feature set
11199  *	@one: new feature set
11200  *	@mask: mask feature set
11201  *
11202  *	Computes a new feature set after adding a device with feature set
11203  *	@one to the master device with current feature set @all.  Will not
11204  *	enable anything that is off in @mask. Returns the new feature set.
11205  */
11206 netdev_features_t netdev_increment_features(netdev_features_t all,
11207 	netdev_features_t one, netdev_features_t mask)
11208 {
11209 	if (mask & NETIF_F_HW_CSUM)
11210 		mask |= NETIF_F_CSUM_MASK;
11211 	mask |= NETIF_F_VLAN_CHALLENGED;
11212 
11213 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11214 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11215 
11216 	/* If one device supports hw checksumming, set for all. */
11217 	if (all & NETIF_F_HW_CSUM)
11218 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11219 
11220 	return all;
11221 }
11222 EXPORT_SYMBOL(netdev_increment_features);
11223 
11224 static struct hlist_head * __net_init netdev_create_hash(void)
11225 {
11226 	int i;
11227 	struct hlist_head *hash;
11228 
11229 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11230 	if (hash != NULL)
11231 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11232 			INIT_HLIST_HEAD(&hash[i]);
11233 
11234 	return hash;
11235 }
11236 
11237 /* Initialize per network namespace state */
11238 static int __net_init netdev_init(struct net *net)
11239 {
11240 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11241 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11242 
11243 	INIT_LIST_HEAD(&net->dev_base_head);
11244 
11245 	net->dev_name_head = netdev_create_hash();
11246 	if (net->dev_name_head == NULL)
11247 		goto err_name;
11248 
11249 	net->dev_index_head = netdev_create_hash();
11250 	if (net->dev_index_head == NULL)
11251 		goto err_idx;
11252 
11253 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11254 
11255 	return 0;
11256 
11257 err_idx:
11258 	kfree(net->dev_name_head);
11259 err_name:
11260 	return -ENOMEM;
11261 }
11262 
11263 /**
11264  *	netdev_drivername - network driver for the device
11265  *	@dev: network device
11266  *
11267  *	Determine network driver for device.
11268  */
11269 const char *netdev_drivername(const struct net_device *dev)
11270 {
11271 	const struct device_driver *driver;
11272 	const struct device *parent;
11273 	const char *empty = "";
11274 
11275 	parent = dev->dev.parent;
11276 	if (!parent)
11277 		return empty;
11278 
11279 	driver = parent->driver;
11280 	if (driver && driver->name)
11281 		return driver->name;
11282 	return empty;
11283 }
11284 
11285 static void __netdev_printk(const char *level, const struct net_device *dev,
11286 			    struct va_format *vaf)
11287 {
11288 	if (dev && dev->dev.parent) {
11289 		dev_printk_emit(level[1] - '0',
11290 				dev->dev.parent,
11291 				"%s %s %s%s: %pV",
11292 				dev_driver_string(dev->dev.parent),
11293 				dev_name(dev->dev.parent),
11294 				netdev_name(dev), netdev_reg_state(dev),
11295 				vaf);
11296 	} else if (dev) {
11297 		printk("%s%s%s: %pV",
11298 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11299 	} else {
11300 		printk("%s(NULL net_device): %pV", level, vaf);
11301 	}
11302 }
11303 
11304 void netdev_printk(const char *level, const struct net_device *dev,
11305 		   const char *format, ...)
11306 {
11307 	struct va_format vaf;
11308 	va_list args;
11309 
11310 	va_start(args, format);
11311 
11312 	vaf.fmt = format;
11313 	vaf.va = &args;
11314 
11315 	__netdev_printk(level, dev, &vaf);
11316 
11317 	va_end(args);
11318 }
11319 EXPORT_SYMBOL(netdev_printk);
11320 
11321 #define define_netdev_printk_level(func, level)			\
11322 void func(const struct net_device *dev, const char *fmt, ...)	\
11323 {								\
11324 	struct va_format vaf;					\
11325 	va_list args;						\
11326 								\
11327 	va_start(args, fmt);					\
11328 								\
11329 	vaf.fmt = fmt;						\
11330 	vaf.va = &args;						\
11331 								\
11332 	__netdev_printk(level, dev, &vaf);			\
11333 								\
11334 	va_end(args);						\
11335 }								\
11336 EXPORT_SYMBOL(func);
11337 
11338 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11339 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11340 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11341 define_netdev_printk_level(netdev_err, KERN_ERR);
11342 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11343 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11344 define_netdev_printk_level(netdev_info, KERN_INFO);
11345 
11346 static void __net_exit netdev_exit(struct net *net)
11347 {
11348 	kfree(net->dev_name_head);
11349 	kfree(net->dev_index_head);
11350 	if (net != &init_net)
11351 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11352 }
11353 
11354 static struct pernet_operations __net_initdata netdev_net_ops = {
11355 	.init = netdev_init,
11356 	.exit = netdev_exit,
11357 };
11358 
11359 static void __net_exit default_device_exit_net(struct net *net)
11360 {
11361 	struct net_device *dev, *aux;
11362 	/*
11363 	 * Push all migratable network devices back to the
11364 	 * initial network namespace
11365 	 */
11366 	ASSERT_RTNL();
11367 	for_each_netdev_safe(net, dev, aux) {
11368 		int err;
11369 		char fb_name[IFNAMSIZ];
11370 
11371 		/* Ignore unmoveable devices (i.e. loopback) */
11372 		if (dev->features & NETIF_F_NETNS_LOCAL)
11373 			continue;
11374 
11375 		/* Leave virtual devices for the generic cleanup */
11376 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11377 			continue;
11378 
11379 		/* Push remaining network devices to init_net */
11380 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11381 		if (netdev_name_in_use(&init_net, fb_name))
11382 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11383 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11384 		if (err) {
11385 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11386 				 __func__, dev->name, err);
11387 			BUG();
11388 		}
11389 	}
11390 }
11391 
11392 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11393 {
11394 	/* At exit all network devices most be removed from a network
11395 	 * namespace.  Do this in the reverse order of registration.
11396 	 * Do this across as many network namespaces as possible to
11397 	 * improve batching efficiency.
11398 	 */
11399 	struct net_device *dev;
11400 	struct net *net;
11401 	LIST_HEAD(dev_kill_list);
11402 
11403 	rtnl_lock();
11404 	list_for_each_entry(net, net_list, exit_list) {
11405 		default_device_exit_net(net);
11406 		cond_resched();
11407 	}
11408 
11409 	list_for_each_entry(net, net_list, exit_list) {
11410 		for_each_netdev_reverse(net, dev) {
11411 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11412 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11413 			else
11414 				unregister_netdevice_queue(dev, &dev_kill_list);
11415 		}
11416 	}
11417 	unregister_netdevice_many(&dev_kill_list);
11418 	rtnl_unlock();
11419 }
11420 
11421 static struct pernet_operations __net_initdata default_device_ops = {
11422 	.exit_batch = default_device_exit_batch,
11423 };
11424 
11425 /*
11426  *	Initialize the DEV module. At boot time this walks the device list and
11427  *	unhooks any devices that fail to initialise (normally hardware not
11428  *	present) and leaves us with a valid list of present and active devices.
11429  *
11430  */
11431 
11432 /*
11433  *       This is called single threaded during boot, so no need
11434  *       to take the rtnl semaphore.
11435  */
11436 static int __init net_dev_init(void)
11437 {
11438 	int i, rc = -ENOMEM;
11439 
11440 	BUG_ON(!dev_boot_phase);
11441 
11442 	if (dev_proc_init())
11443 		goto out;
11444 
11445 	if (netdev_kobject_init())
11446 		goto out;
11447 
11448 	INIT_LIST_HEAD(&ptype_all);
11449 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11450 		INIT_LIST_HEAD(&ptype_base[i]);
11451 
11452 	if (register_pernet_subsys(&netdev_net_ops))
11453 		goto out;
11454 
11455 	/*
11456 	 *	Initialise the packet receive queues.
11457 	 */
11458 
11459 	for_each_possible_cpu(i) {
11460 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11461 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11462 
11463 		INIT_WORK(flush, flush_backlog);
11464 
11465 		skb_queue_head_init(&sd->input_pkt_queue);
11466 		skb_queue_head_init(&sd->process_queue);
11467 #ifdef CONFIG_XFRM_OFFLOAD
11468 		skb_queue_head_init(&sd->xfrm_backlog);
11469 #endif
11470 		INIT_LIST_HEAD(&sd->poll_list);
11471 		sd->output_queue_tailp = &sd->output_queue;
11472 #ifdef CONFIG_RPS
11473 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11474 		sd->cpu = i;
11475 #endif
11476 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11477 		spin_lock_init(&sd->defer_lock);
11478 
11479 		init_gro_hash(&sd->backlog);
11480 		sd->backlog.poll = process_backlog;
11481 		sd->backlog.weight = weight_p;
11482 	}
11483 
11484 	dev_boot_phase = 0;
11485 
11486 	/* The loopback device is special if any other network devices
11487 	 * is present in a network namespace the loopback device must
11488 	 * be present. Since we now dynamically allocate and free the
11489 	 * loopback device ensure this invariant is maintained by
11490 	 * keeping the loopback device as the first device on the
11491 	 * list of network devices.  Ensuring the loopback devices
11492 	 * is the first device that appears and the last network device
11493 	 * that disappears.
11494 	 */
11495 	if (register_pernet_device(&loopback_net_ops))
11496 		goto out;
11497 
11498 	if (register_pernet_device(&default_device_ops))
11499 		goto out;
11500 
11501 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11502 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11503 
11504 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11505 				       NULL, dev_cpu_dead);
11506 	WARN_ON(rc < 0);
11507 	rc = 0;
11508 out:
11509 	return rc;
11510 }
11511 
11512 subsys_initcall(net_dev_init);
11513