xref: /openbmc/linux/net/core/dev.c (revision 2a86ac30)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <net/tcx.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <trace/events/qdisc.h>
136 #include <trace/events/xdp.h>
137 #include <linux/inetdevice.h>
138 #include <linux/cpu_rmap.h>
139 #include <linux/static_key.h>
140 #include <linux/hashtable.h>
141 #include <linux/vmalloc.h>
142 #include <linux/if_macvlan.h>
143 #include <linux/errqueue.h>
144 #include <linux/hrtimer.h>
145 #include <linux/netfilter_netdev.h>
146 #include <linux/crash_dump.h>
147 #include <linux/sctp.h>
148 #include <net/udp_tunnel.h>
149 #include <linux/net_namespace.h>
150 #include <linux/indirect_call_wrapper.h>
151 #include <net/devlink.h>
152 #include <linux/pm_runtime.h>
153 #include <linux/prandom.h>
154 #include <linux/once_lite.h>
155 #include <net/netdev_rx_queue.h>
156 
157 #include "dev.h"
158 #include "net-sysfs.h"
159 
160 static DEFINE_SPINLOCK(ptype_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly;	/* Taps */
163 
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166 					   struct net_device *dev,
167 					   struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169 
170 /*
171  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172  * semaphore.
173  *
174  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175  *
176  * Writers must hold the rtnl semaphore while they loop through the
177  * dev_base_head list, and hold dev_base_lock for writing when they do the
178  * actual updates.  This allows pure readers to access the list even
179  * while a writer is preparing to update it.
180  *
181  * To put it another way, dev_base_lock is held for writing only to
182  * protect against pure readers; the rtnl semaphore provides the
183  * protection against other writers.
184  *
185  * See, for example usages, register_netdevice() and
186  * unregister_netdevice(), which must be called with the rtnl
187  * semaphore held.
188  */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191 
192 static DEFINE_MUTEX(ifalias_mutex);
193 
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196 
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199 
200 static DECLARE_RWSEM(devnet_rename_sem);
201 
202 static inline void dev_base_seq_inc(struct net *net)
203 {
204 	while (++net->dev_base_seq == 0)
205 		;
206 }
207 
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211 
212 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214 
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219 
220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221 				    unsigned long *flags)
222 {
223 	if (IS_ENABLED(CONFIG_RPS))
224 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226 		local_irq_save(*flags);
227 }
228 
229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
230 {
231 	if (IS_ENABLED(CONFIG_RPS))
232 		spin_lock_irq(&sd->input_pkt_queue.lock);
233 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234 		local_irq_disable();
235 }
236 
237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238 					  unsigned long *flags)
239 {
240 	if (IS_ENABLED(CONFIG_RPS))
241 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243 		local_irq_restore(*flags);
244 }
245 
246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247 {
248 	if (IS_ENABLED(CONFIG_RPS))
249 		spin_unlock_irq(&sd->input_pkt_queue.lock);
250 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251 		local_irq_enable();
252 }
253 
254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255 						       const char *name)
256 {
257 	struct netdev_name_node *name_node;
258 
259 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260 	if (!name_node)
261 		return NULL;
262 	INIT_HLIST_NODE(&name_node->hlist);
263 	name_node->dev = dev;
264 	name_node->name = name;
265 	return name_node;
266 }
267 
268 static struct netdev_name_node *
269 netdev_name_node_head_alloc(struct net_device *dev)
270 {
271 	struct netdev_name_node *name_node;
272 
273 	name_node = netdev_name_node_alloc(dev, dev->name);
274 	if (!name_node)
275 		return NULL;
276 	INIT_LIST_HEAD(&name_node->list);
277 	return name_node;
278 }
279 
280 static void netdev_name_node_free(struct netdev_name_node *name_node)
281 {
282 	kfree(name_node);
283 }
284 
285 static void netdev_name_node_add(struct net *net,
286 				 struct netdev_name_node *name_node)
287 {
288 	hlist_add_head_rcu(&name_node->hlist,
289 			   dev_name_hash(net, name_node->name));
290 }
291 
292 static void netdev_name_node_del(struct netdev_name_node *name_node)
293 {
294 	hlist_del_rcu(&name_node->hlist);
295 }
296 
297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298 							const char *name)
299 {
300 	struct hlist_head *head = dev_name_hash(net, name);
301 	struct netdev_name_node *name_node;
302 
303 	hlist_for_each_entry(name_node, head, hlist)
304 		if (!strcmp(name_node->name, name))
305 			return name_node;
306 	return NULL;
307 }
308 
309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310 							    const char *name)
311 {
312 	struct hlist_head *head = dev_name_hash(net, name);
313 	struct netdev_name_node *name_node;
314 
315 	hlist_for_each_entry_rcu(name_node, head, hlist)
316 		if (!strcmp(name_node->name, name))
317 			return name_node;
318 	return NULL;
319 }
320 
321 bool netdev_name_in_use(struct net *net, const char *name)
322 {
323 	return netdev_name_node_lookup(net, name);
324 }
325 EXPORT_SYMBOL(netdev_name_in_use);
326 
327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328 {
329 	struct netdev_name_node *name_node;
330 	struct net *net = dev_net(dev);
331 
332 	name_node = netdev_name_node_lookup(net, name);
333 	if (name_node)
334 		return -EEXIST;
335 	name_node = netdev_name_node_alloc(dev, name);
336 	if (!name_node)
337 		return -ENOMEM;
338 	netdev_name_node_add(net, name_node);
339 	/* The node that holds dev->name acts as a head of per-device list. */
340 	list_add_tail(&name_node->list, &dev->name_node->list);
341 
342 	return 0;
343 }
344 
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347 	list_del(&name_node->list);
348 	netdev_name_node_del(name_node);
349 	kfree(name_node->name);
350 	netdev_name_node_free(name_node);
351 }
352 
353 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
354 {
355 	struct netdev_name_node *name_node;
356 	struct net *net = dev_net(dev);
357 
358 	name_node = netdev_name_node_lookup(net, name);
359 	if (!name_node)
360 		return -ENOENT;
361 	/* lookup might have found our primary name or a name belonging
362 	 * to another device.
363 	 */
364 	if (name_node == dev->name_node || name_node->dev != dev)
365 		return -EINVAL;
366 
367 	__netdev_name_node_alt_destroy(name_node);
368 
369 	return 0;
370 }
371 
372 static void netdev_name_node_alt_flush(struct net_device *dev)
373 {
374 	struct netdev_name_node *name_node, *tmp;
375 
376 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
377 		__netdev_name_node_alt_destroy(name_node);
378 }
379 
380 /* Device list insertion */
381 static void list_netdevice(struct net_device *dev)
382 {
383 	struct net *net = dev_net(dev);
384 
385 	ASSERT_RTNL();
386 
387 	write_lock(&dev_base_lock);
388 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
389 	netdev_name_node_add(net, dev->name_node);
390 	hlist_add_head_rcu(&dev->index_hlist,
391 			   dev_index_hash(net, dev->ifindex));
392 	write_unlock(&dev_base_lock);
393 	/* We reserved the ifindex, this can't fail */
394 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
395 
396 	dev_base_seq_inc(net);
397 }
398 
399 /* Device list removal
400  * caller must respect a RCU grace period before freeing/reusing dev
401  */
402 static void unlist_netdevice(struct net_device *dev, bool lock)
403 {
404 	struct net *net = dev_net(dev);
405 
406 	ASSERT_RTNL();
407 
408 	xa_erase(&net->dev_by_index, dev->ifindex);
409 
410 	/* Unlink dev from the device chain */
411 	if (lock)
412 		write_lock(&dev_base_lock);
413 	list_del_rcu(&dev->dev_list);
414 	netdev_name_node_del(dev->name_node);
415 	hlist_del_rcu(&dev->index_hlist);
416 	if (lock)
417 		write_unlock(&dev_base_lock);
418 
419 	dev_base_seq_inc(dev_net(dev));
420 }
421 
422 /*
423  *	Our notifier list
424  */
425 
426 static RAW_NOTIFIER_HEAD(netdev_chain);
427 
428 /*
429  *	Device drivers call our routines to queue packets here. We empty the
430  *	queue in the local softnet handler.
431  */
432 
433 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
434 EXPORT_PER_CPU_SYMBOL(softnet_data);
435 
436 #ifdef CONFIG_LOCKDEP
437 /*
438  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
439  * according to dev->type
440  */
441 static const unsigned short netdev_lock_type[] = {
442 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
443 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
444 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
445 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
446 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
447 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
448 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
449 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
450 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
451 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
452 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
453 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
454 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
455 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
456 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
457 
458 static const char *const netdev_lock_name[] = {
459 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
460 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
461 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
462 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
463 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
464 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
465 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
466 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
467 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
468 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
469 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
470 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
471 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
472 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
473 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
474 
475 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
476 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
477 
478 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
479 {
480 	int i;
481 
482 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
483 		if (netdev_lock_type[i] == dev_type)
484 			return i;
485 	/* the last key is used by default */
486 	return ARRAY_SIZE(netdev_lock_type) - 1;
487 }
488 
489 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
490 						 unsigned short dev_type)
491 {
492 	int i;
493 
494 	i = netdev_lock_pos(dev_type);
495 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
496 				   netdev_lock_name[i]);
497 }
498 
499 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
500 {
501 	int i;
502 
503 	i = netdev_lock_pos(dev->type);
504 	lockdep_set_class_and_name(&dev->addr_list_lock,
505 				   &netdev_addr_lock_key[i],
506 				   netdev_lock_name[i]);
507 }
508 #else
509 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
510 						 unsigned short dev_type)
511 {
512 }
513 
514 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
515 {
516 }
517 #endif
518 
519 /*******************************************************************************
520  *
521  *		Protocol management and registration routines
522  *
523  *******************************************************************************/
524 
525 
526 /*
527  *	Add a protocol ID to the list. Now that the input handler is
528  *	smarter we can dispense with all the messy stuff that used to be
529  *	here.
530  *
531  *	BEWARE!!! Protocol handlers, mangling input packets,
532  *	MUST BE last in hash buckets and checking protocol handlers
533  *	MUST start from promiscuous ptype_all chain in net_bh.
534  *	It is true now, do not change it.
535  *	Explanation follows: if protocol handler, mangling packet, will
536  *	be the first on list, it is not able to sense, that packet
537  *	is cloned and should be copied-on-write, so that it will
538  *	change it and subsequent readers will get broken packet.
539  *							--ANK (980803)
540  */
541 
542 static inline struct list_head *ptype_head(const struct packet_type *pt)
543 {
544 	if (pt->type == htons(ETH_P_ALL))
545 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
546 	else
547 		return pt->dev ? &pt->dev->ptype_specific :
548 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
549 }
550 
551 /**
552  *	dev_add_pack - add packet handler
553  *	@pt: packet type declaration
554  *
555  *	Add a protocol handler to the networking stack. The passed &packet_type
556  *	is linked into kernel lists and may not be freed until it has been
557  *	removed from the kernel lists.
558  *
559  *	This call does not sleep therefore it can not
560  *	guarantee all CPU's that are in middle of receiving packets
561  *	will see the new packet type (until the next received packet).
562  */
563 
564 void dev_add_pack(struct packet_type *pt)
565 {
566 	struct list_head *head = ptype_head(pt);
567 
568 	spin_lock(&ptype_lock);
569 	list_add_rcu(&pt->list, head);
570 	spin_unlock(&ptype_lock);
571 }
572 EXPORT_SYMBOL(dev_add_pack);
573 
574 /**
575  *	__dev_remove_pack	 - remove packet handler
576  *	@pt: packet type declaration
577  *
578  *	Remove a protocol handler that was previously added to the kernel
579  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
580  *	from the kernel lists and can be freed or reused once this function
581  *	returns.
582  *
583  *      The packet type might still be in use by receivers
584  *	and must not be freed until after all the CPU's have gone
585  *	through a quiescent state.
586  */
587 void __dev_remove_pack(struct packet_type *pt)
588 {
589 	struct list_head *head = ptype_head(pt);
590 	struct packet_type *pt1;
591 
592 	spin_lock(&ptype_lock);
593 
594 	list_for_each_entry(pt1, head, list) {
595 		if (pt == pt1) {
596 			list_del_rcu(&pt->list);
597 			goto out;
598 		}
599 	}
600 
601 	pr_warn("dev_remove_pack: %p not found\n", pt);
602 out:
603 	spin_unlock(&ptype_lock);
604 }
605 EXPORT_SYMBOL(__dev_remove_pack);
606 
607 /**
608  *	dev_remove_pack	 - remove packet handler
609  *	@pt: packet type declaration
610  *
611  *	Remove a protocol handler that was previously added to the kernel
612  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
613  *	from the kernel lists and can be freed or reused once this function
614  *	returns.
615  *
616  *	This call sleeps to guarantee that no CPU is looking at the packet
617  *	type after return.
618  */
619 void dev_remove_pack(struct packet_type *pt)
620 {
621 	__dev_remove_pack(pt);
622 
623 	synchronize_net();
624 }
625 EXPORT_SYMBOL(dev_remove_pack);
626 
627 
628 /*******************************************************************************
629  *
630  *			    Device Interface Subroutines
631  *
632  *******************************************************************************/
633 
634 /**
635  *	dev_get_iflink	- get 'iflink' value of a interface
636  *	@dev: targeted interface
637  *
638  *	Indicates the ifindex the interface is linked to.
639  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
640  */
641 
642 int dev_get_iflink(const struct net_device *dev)
643 {
644 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
645 		return dev->netdev_ops->ndo_get_iflink(dev);
646 
647 	return dev->ifindex;
648 }
649 EXPORT_SYMBOL(dev_get_iflink);
650 
651 /**
652  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
653  *	@dev: targeted interface
654  *	@skb: The packet.
655  *
656  *	For better visibility of tunnel traffic OVS needs to retrieve
657  *	egress tunnel information for a packet. Following API allows
658  *	user to get this info.
659  */
660 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
661 {
662 	struct ip_tunnel_info *info;
663 
664 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
665 		return -EINVAL;
666 
667 	info = skb_tunnel_info_unclone(skb);
668 	if (!info)
669 		return -ENOMEM;
670 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
671 		return -EINVAL;
672 
673 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
674 }
675 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
676 
677 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
678 {
679 	int k = stack->num_paths++;
680 
681 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
682 		return NULL;
683 
684 	return &stack->path[k];
685 }
686 
687 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
688 			  struct net_device_path_stack *stack)
689 {
690 	const struct net_device *last_dev;
691 	struct net_device_path_ctx ctx = {
692 		.dev	= dev,
693 	};
694 	struct net_device_path *path;
695 	int ret = 0;
696 
697 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
698 	stack->num_paths = 0;
699 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
700 		last_dev = ctx.dev;
701 		path = dev_fwd_path(stack);
702 		if (!path)
703 			return -1;
704 
705 		memset(path, 0, sizeof(struct net_device_path));
706 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
707 		if (ret < 0)
708 			return -1;
709 
710 		if (WARN_ON_ONCE(last_dev == ctx.dev))
711 			return -1;
712 	}
713 
714 	if (!ctx.dev)
715 		return ret;
716 
717 	path = dev_fwd_path(stack);
718 	if (!path)
719 		return -1;
720 	path->type = DEV_PATH_ETHERNET;
721 	path->dev = ctx.dev;
722 
723 	return ret;
724 }
725 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
726 
727 /**
728  *	__dev_get_by_name	- find a device by its name
729  *	@net: the applicable net namespace
730  *	@name: name to find
731  *
732  *	Find an interface by name. Must be called under RTNL semaphore
733  *	or @dev_base_lock. If the name is found a pointer to the device
734  *	is returned. If the name is not found then %NULL is returned. The
735  *	reference counters are not incremented so the caller must be
736  *	careful with locks.
737  */
738 
739 struct net_device *__dev_get_by_name(struct net *net, const char *name)
740 {
741 	struct netdev_name_node *node_name;
742 
743 	node_name = netdev_name_node_lookup(net, name);
744 	return node_name ? node_name->dev : NULL;
745 }
746 EXPORT_SYMBOL(__dev_get_by_name);
747 
748 /**
749  * dev_get_by_name_rcu	- find a device by its name
750  * @net: the applicable net namespace
751  * @name: name to find
752  *
753  * Find an interface by name.
754  * If the name is found a pointer to the device is returned.
755  * If the name is not found then %NULL is returned.
756  * The reference counters are not incremented so the caller must be
757  * careful with locks. The caller must hold RCU lock.
758  */
759 
760 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
761 {
762 	struct netdev_name_node *node_name;
763 
764 	node_name = netdev_name_node_lookup_rcu(net, name);
765 	return node_name ? node_name->dev : NULL;
766 }
767 EXPORT_SYMBOL(dev_get_by_name_rcu);
768 
769 /* Deprecated for new users, call netdev_get_by_name() instead */
770 struct net_device *dev_get_by_name(struct net *net, const char *name)
771 {
772 	struct net_device *dev;
773 
774 	rcu_read_lock();
775 	dev = dev_get_by_name_rcu(net, name);
776 	dev_hold(dev);
777 	rcu_read_unlock();
778 	return dev;
779 }
780 EXPORT_SYMBOL(dev_get_by_name);
781 
782 /**
783  *	netdev_get_by_name() - find a device by its name
784  *	@net: the applicable net namespace
785  *	@name: name to find
786  *	@tracker: tracking object for the acquired reference
787  *	@gfp: allocation flags for the tracker
788  *
789  *	Find an interface by name. This can be called from any
790  *	context and does its own locking. The returned handle has
791  *	the usage count incremented and the caller must use netdev_put() to
792  *	release it when it is no longer needed. %NULL is returned if no
793  *	matching device is found.
794  */
795 struct net_device *netdev_get_by_name(struct net *net, const char *name,
796 				      netdevice_tracker *tracker, gfp_t gfp)
797 {
798 	struct net_device *dev;
799 
800 	dev = dev_get_by_name(net, name);
801 	if (dev)
802 		netdev_tracker_alloc(dev, tracker, gfp);
803 	return dev;
804 }
805 EXPORT_SYMBOL(netdev_get_by_name);
806 
807 /**
808  *	__dev_get_by_index - find a device by its ifindex
809  *	@net: the applicable net namespace
810  *	@ifindex: index of device
811  *
812  *	Search for an interface by index. Returns %NULL if the device
813  *	is not found or a pointer to the device. The device has not
814  *	had its reference counter increased so the caller must be careful
815  *	about locking. The caller must hold either the RTNL semaphore
816  *	or @dev_base_lock.
817  */
818 
819 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
820 {
821 	struct net_device *dev;
822 	struct hlist_head *head = dev_index_hash(net, ifindex);
823 
824 	hlist_for_each_entry(dev, head, index_hlist)
825 		if (dev->ifindex == ifindex)
826 			return dev;
827 
828 	return NULL;
829 }
830 EXPORT_SYMBOL(__dev_get_by_index);
831 
832 /**
833  *	dev_get_by_index_rcu - find a device by its ifindex
834  *	@net: the applicable net namespace
835  *	@ifindex: index of device
836  *
837  *	Search for an interface by index. Returns %NULL if the device
838  *	is not found or a pointer to the device. The device has not
839  *	had its reference counter increased so the caller must be careful
840  *	about locking. The caller must hold RCU lock.
841  */
842 
843 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
844 {
845 	struct net_device *dev;
846 	struct hlist_head *head = dev_index_hash(net, ifindex);
847 
848 	hlist_for_each_entry_rcu(dev, head, index_hlist)
849 		if (dev->ifindex == ifindex)
850 			return dev;
851 
852 	return NULL;
853 }
854 EXPORT_SYMBOL(dev_get_by_index_rcu);
855 
856 /* Deprecated for new users, call netdev_get_by_index() instead */
857 struct net_device *dev_get_by_index(struct net *net, int ifindex)
858 {
859 	struct net_device *dev;
860 
861 	rcu_read_lock();
862 	dev = dev_get_by_index_rcu(net, ifindex);
863 	dev_hold(dev);
864 	rcu_read_unlock();
865 	return dev;
866 }
867 EXPORT_SYMBOL(dev_get_by_index);
868 
869 /**
870  *	netdev_get_by_index() - find a device by its ifindex
871  *	@net: the applicable net namespace
872  *	@ifindex: index of device
873  *	@tracker: tracking object for the acquired reference
874  *	@gfp: allocation flags for the tracker
875  *
876  *	Search for an interface by index. Returns NULL if the device
877  *	is not found or a pointer to the device. The device returned has
878  *	had a reference added and the pointer is safe until the user calls
879  *	netdev_put() to indicate they have finished with it.
880  */
881 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
882 				       netdevice_tracker *tracker, gfp_t gfp)
883 {
884 	struct net_device *dev;
885 
886 	dev = dev_get_by_index(net, ifindex);
887 	if (dev)
888 		netdev_tracker_alloc(dev, tracker, gfp);
889 	return dev;
890 }
891 EXPORT_SYMBOL(netdev_get_by_index);
892 
893 /**
894  *	dev_get_by_napi_id - find a device by napi_id
895  *	@napi_id: ID of the NAPI struct
896  *
897  *	Search for an interface by NAPI ID. Returns %NULL if the device
898  *	is not found or a pointer to the device. The device has not had
899  *	its reference counter increased so the caller must be careful
900  *	about locking. The caller must hold RCU lock.
901  */
902 
903 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
904 {
905 	struct napi_struct *napi;
906 
907 	WARN_ON_ONCE(!rcu_read_lock_held());
908 
909 	if (napi_id < MIN_NAPI_ID)
910 		return NULL;
911 
912 	napi = napi_by_id(napi_id);
913 
914 	return napi ? napi->dev : NULL;
915 }
916 EXPORT_SYMBOL(dev_get_by_napi_id);
917 
918 /**
919  *	netdev_get_name - get a netdevice name, knowing its ifindex.
920  *	@net: network namespace
921  *	@name: a pointer to the buffer where the name will be stored.
922  *	@ifindex: the ifindex of the interface to get the name from.
923  */
924 int netdev_get_name(struct net *net, char *name, int ifindex)
925 {
926 	struct net_device *dev;
927 	int ret;
928 
929 	down_read(&devnet_rename_sem);
930 	rcu_read_lock();
931 
932 	dev = dev_get_by_index_rcu(net, ifindex);
933 	if (!dev) {
934 		ret = -ENODEV;
935 		goto out;
936 	}
937 
938 	strcpy(name, dev->name);
939 
940 	ret = 0;
941 out:
942 	rcu_read_unlock();
943 	up_read(&devnet_rename_sem);
944 	return ret;
945 }
946 
947 /**
948  *	dev_getbyhwaddr_rcu - find a device by its hardware address
949  *	@net: the applicable net namespace
950  *	@type: media type of device
951  *	@ha: hardware address
952  *
953  *	Search for an interface by MAC address. Returns NULL if the device
954  *	is not found or a pointer to the device.
955  *	The caller must hold RCU or RTNL.
956  *	The returned device has not had its ref count increased
957  *	and the caller must therefore be careful about locking
958  *
959  */
960 
961 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
962 				       const char *ha)
963 {
964 	struct net_device *dev;
965 
966 	for_each_netdev_rcu(net, dev)
967 		if (dev->type == type &&
968 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
969 			return dev;
970 
971 	return NULL;
972 }
973 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
974 
975 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
976 {
977 	struct net_device *dev, *ret = NULL;
978 
979 	rcu_read_lock();
980 	for_each_netdev_rcu(net, dev)
981 		if (dev->type == type) {
982 			dev_hold(dev);
983 			ret = dev;
984 			break;
985 		}
986 	rcu_read_unlock();
987 	return ret;
988 }
989 EXPORT_SYMBOL(dev_getfirstbyhwtype);
990 
991 /**
992  *	__dev_get_by_flags - find any device with given flags
993  *	@net: the applicable net namespace
994  *	@if_flags: IFF_* values
995  *	@mask: bitmask of bits in if_flags to check
996  *
997  *	Search for any interface with the given flags. Returns NULL if a device
998  *	is not found or a pointer to the device. Must be called inside
999  *	rtnl_lock(), and result refcount is unchanged.
1000  */
1001 
1002 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1003 				      unsigned short mask)
1004 {
1005 	struct net_device *dev, *ret;
1006 
1007 	ASSERT_RTNL();
1008 
1009 	ret = NULL;
1010 	for_each_netdev(net, dev) {
1011 		if (((dev->flags ^ if_flags) & mask) == 0) {
1012 			ret = dev;
1013 			break;
1014 		}
1015 	}
1016 	return ret;
1017 }
1018 EXPORT_SYMBOL(__dev_get_by_flags);
1019 
1020 /**
1021  *	dev_valid_name - check if name is okay for network device
1022  *	@name: name string
1023  *
1024  *	Network device names need to be valid file names to
1025  *	allow sysfs to work.  We also disallow any kind of
1026  *	whitespace.
1027  */
1028 bool dev_valid_name(const char *name)
1029 {
1030 	if (*name == '\0')
1031 		return false;
1032 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1033 		return false;
1034 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1035 		return false;
1036 
1037 	while (*name) {
1038 		if (*name == '/' || *name == ':' || isspace(*name))
1039 			return false;
1040 		name++;
1041 	}
1042 	return true;
1043 }
1044 EXPORT_SYMBOL(dev_valid_name);
1045 
1046 /**
1047  *	__dev_alloc_name - allocate a name for a device
1048  *	@net: network namespace to allocate the device name in
1049  *	@name: name format string
1050  *	@buf:  scratch buffer and result name string
1051  *
1052  *	Passed a format string - eg "lt%d" it will try and find a suitable
1053  *	id. It scans list of devices to build up a free map, then chooses
1054  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1055  *	while allocating the name and adding the device in order to avoid
1056  *	duplicates.
1057  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1058  *	Returns the number of the unit assigned or a negative errno code.
1059  */
1060 
1061 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1062 {
1063 	int i = 0;
1064 	const char *p;
1065 	const int max_netdevices = 8*PAGE_SIZE;
1066 	unsigned long *inuse;
1067 	struct net_device *d;
1068 
1069 	if (!dev_valid_name(name))
1070 		return -EINVAL;
1071 
1072 	p = strchr(name, '%');
1073 	if (p) {
1074 		/*
1075 		 * Verify the string as this thing may have come from
1076 		 * the user.  There must be either one "%d" and no other "%"
1077 		 * characters.
1078 		 */
1079 		if (p[1] != 'd' || strchr(p + 2, '%'))
1080 			return -EINVAL;
1081 
1082 		/* Use one page as a bit array of possible slots */
1083 		inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1084 		if (!inuse)
1085 			return -ENOMEM;
1086 
1087 		for_each_netdev(net, d) {
1088 			struct netdev_name_node *name_node;
1089 			list_for_each_entry(name_node, &d->name_node->list, list) {
1090 				if (!sscanf(name_node->name, name, &i))
1091 					continue;
1092 				if (i < 0 || i >= max_netdevices)
1093 					continue;
1094 
1095 				/*  avoid cases where sscanf is not exact inverse of printf */
1096 				snprintf(buf, IFNAMSIZ, name, i);
1097 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1098 					__set_bit(i, inuse);
1099 			}
1100 			if (!sscanf(d->name, name, &i))
1101 				continue;
1102 			if (i < 0 || i >= max_netdevices)
1103 				continue;
1104 
1105 			/*  avoid cases where sscanf is not exact inverse of printf */
1106 			snprintf(buf, IFNAMSIZ, name, i);
1107 			if (!strncmp(buf, d->name, IFNAMSIZ))
1108 				__set_bit(i, inuse);
1109 		}
1110 
1111 		i = find_first_zero_bit(inuse, max_netdevices);
1112 		bitmap_free(inuse);
1113 	}
1114 
1115 	snprintf(buf, IFNAMSIZ, name, i);
1116 	if (!netdev_name_in_use(net, buf))
1117 		return i;
1118 
1119 	/* It is possible to run out of possible slots
1120 	 * when the name is long and there isn't enough space left
1121 	 * for the digits, or if all bits are used.
1122 	 */
1123 	return -ENFILE;
1124 }
1125 
1126 static int dev_alloc_name_ns(struct net *net,
1127 			     struct net_device *dev,
1128 			     const char *name)
1129 {
1130 	char buf[IFNAMSIZ];
1131 	int ret;
1132 
1133 	BUG_ON(!net);
1134 	ret = __dev_alloc_name(net, name, buf);
1135 	if (ret >= 0)
1136 		strscpy(dev->name, buf, IFNAMSIZ);
1137 	return ret;
1138 }
1139 
1140 /**
1141  *	dev_alloc_name - allocate a name for a device
1142  *	@dev: device
1143  *	@name: name format string
1144  *
1145  *	Passed a format string - eg "lt%d" it will try and find a suitable
1146  *	id. It scans list of devices to build up a free map, then chooses
1147  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1148  *	while allocating the name and adding the device in order to avoid
1149  *	duplicates.
1150  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1151  *	Returns the number of the unit assigned or a negative errno code.
1152  */
1153 
1154 int dev_alloc_name(struct net_device *dev, const char *name)
1155 {
1156 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1157 }
1158 EXPORT_SYMBOL(dev_alloc_name);
1159 
1160 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1161 			      const char *name)
1162 {
1163 	BUG_ON(!net);
1164 
1165 	if (!dev_valid_name(name))
1166 		return -EINVAL;
1167 
1168 	if (strchr(name, '%'))
1169 		return dev_alloc_name_ns(net, dev, name);
1170 	else if (netdev_name_in_use(net, name))
1171 		return -EEXIST;
1172 	else if (dev->name != name)
1173 		strscpy(dev->name, name, IFNAMSIZ);
1174 
1175 	return 0;
1176 }
1177 
1178 /**
1179  *	dev_change_name - change name of a device
1180  *	@dev: device
1181  *	@newname: name (or format string) must be at least IFNAMSIZ
1182  *
1183  *	Change name of a device, can pass format strings "eth%d".
1184  *	for wildcarding.
1185  */
1186 int dev_change_name(struct net_device *dev, const char *newname)
1187 {
1188 	unsigned char old_assign_type;
1189 	char oldname[IFNAMSIZ];
1190 	int err = 0;
1191 	int ret;
1192 	struct net *net;
1193 
1194 	ASSERT_RTNL();
1195 	BUG_ON(!dev_net(dev));
1196 
1197 	net = dev_net(dev);
1198 
1199 	down_write(&devnet_rename_sem);
1200 
1201 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1202 		up_write(&devnet_rename_sem);
1203 		return 0;
1204 	}
1205 
1206 	memcpy(oldname, dev->name, IFNAMSIZ);
1207 
1208 	err = dev_get_valid_name(net, dev, newname);
1209 	if (err < 0) {
1210 		up_write(&devnet_rename_sem);
1211 		return err;
1212 	}
1213 
1214 	if (oldname[0] && !strchr(oldname, '%'))
1215 		netdev_info(dev, "renamed from %s%s\n", oldname,
1216 			    dev->flags & IFF_UP ? " (while UP)" : "");
1217 
1218 	old_assign_type = dev->name_assign_type;
1219 	dev->name_assign_type = NET_NAME_RENAMED;
1220 
1221 rollback:
1222 	ret = device_rename(&dev->dev, dev->name);
1223 	if (ret) {
1224 		memcpy(dev->name, oldname, IFNAMSIZ);
1225 		dev->name_assign_type = old_assign_type;
1226 		up_write(&devnet_rename_sem);
1227 		return ret;
1228 	}
1229 
1230 	up_write(&devnet_rename_sem);
1231 
1232 	netdev_adjacent_rename_links(dev, oldname);
1233 
1234 	write_lock(&dev_base_lock);
1235 	netdev_name_node_del(dev->name_node);
1236 	write_unlock(&dev_base_lock);
1237 
1238 	synchronize_rcu();
1239 
1240 	write_lock(&dev_base_lock);
1241 	netdev_name_node_add(net, dev->name_node);
1242 	write_unlock(&dev_base_lock);
1243 
1244 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1245 	ret = notifier_to_errno(ret);
1246 
1247 	if (ret) {
1248 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1249 		if (err >= 0) {
1250 			err = ret;
1251 			down_write(&devnet_rename_sem);
1252 			memcpy(dev->name, oldname, IFNAMSIZ);
1253 			memcpy(oldname, newname, IFNAMSIZ);
1254 			dev->name_assign_type = old_assign_type;
1255 			old_assign_type = NET_NAME_RENAMED;
1256 			goto rollback;
1257 		} else {
1258 			netdev_err(dev, "name change rollback failed: %d\n",
1259 				   ret);
1260 		}
1261 	}
1262 
1263 	return err;
1264 }
1265 
1266 /**
1267  *	dev_set_alias - change ifalias of a device
1268  *	@dev: device
1269  *	@alias: name up to IFALIASZ
1270  *	@len: limit of bytes to copy from info
1271  *
1272  *	Set ifalias for a device,
1273  */
1274 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1275 {
1276 	struct dev_ifalias *new_alias = NULL;
1277 
1278 	if (len >= IFALIASZ)
1279 		return -EINVAL;
1280 
1281 	if (len) {
1282 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1283 		if (!new_alias)
1284 			return -ENOMEM;
1285 
1286 		memcpy(new_alias->ifalias, alias, len);
1287 		new_alias->ifalias[len] = 0;
1288 	}
1289 
1290 	mutex_lock(&ifalias_mutex);
1291 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1292 					mutex_is_locked(&ifalias_mutex));
1293 	mutex_unlock(&ifalias_mutex);
1294 
1295 	if (new_alias)
1296 		kfree_rcu(new_alias, rcuhead);
1297 
1298 	return len;
1299 }
1300 EXPORT_SYMBOL(dev_set_alias);
1301 
1302 /**
1303  *	dev_get_alias - get ifalias of a device
1304  *	@dev: device
1305  *	@name: buffer to store name of ifalias
1306  *	@len: size of buffer
1307  *
1308  *	get ifalias for a device.  Caller must make sure dev cannot go
1309  *	away,  e.g. rcu read lock or own a reference count to device.
1310  */
1311 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1312 {
1313 	const struct dev_ifalias *alias;
1314 	int ret = 0;
1315 
1316 	rcu_read_lock();
1317 	alias = rcu_dereference(dev->ifalias);
1318 	if (alias)
1319 		ret = snprintf(name, len, "%s", alias->ifalias);
1320 	rcu_read_unlock();
1321 
1322 	return ret;
1323 }
1324 
1325 /**
1326  *	netdev_features_change - device changes features
1327  *	@dev: device to cause notification
1328  *
1329  *	Called to indicate a device has changed features.
1330  */
1331 void netdev_features_change(struct net_device *dev)
1332 {
1333 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1334 }
1335 EXPORT_SYMBOL(netdev_features_change);
1336 
1337 /**
1338  *	netdev_state_change - device changes state
1339  *	@dev: device to cause notification
1340  *
1341  *	Called to indicate a device has changed state. This function calls
1342  *	the notifier chains for netdev_chain and sends a NEWLINK message
1343  *	to the routing socket.
1344  */
1345 void netdev_state_change(struct net_device *dev)
1346 {
1347 	if (dev->flags & IFF_UP) {
1348 		struct netdev_notifier_change_info change_info = {
1349 			.info.dev = dev,
1350 		};
1351 
1352 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1353 					      &change_info.info);
1354 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1355 	}
1356 }
1357 EXPORT_SYMBOL(netdev_state_change);
1358 
1359 /**
1360  * __netdev_notify_peers - notify network peers about existence of @dev,
1361  * to be called when rtnl lock is already held.
1362  * @dev: network device
1363  *
1364  * Generate traffic such that interested network peers are aware of
1365  * @dev, such as by generating a gratuitous ARP. This may be used when
1366  * a device wants to inform the rest of the network about some sort of
1367  * reconfiguration such as a failover event or virtual machine
1368  * migration.
1369  */
1370 void __netdev_notify_peers(struct net_device *dev)
1371 {
1372 	ASSERT_RTNL();
1373 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1374 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1375 }
1376 EXPORT_SYMBOL(__netdev_notify_peers);
1377 
1378 /**
1379  * netdev_notify_peers - notify network peers about existence of @dev
1380  * @dev: network device
1381  *
1382  * Generate traffic such that interested network peers are aware of
1383  * @dev, such as by generating a gratuitous ARP. This may be used when
1384  * a device wants to inform the rest of the network about some sort of
1385  * reconfiguration such as a failover event or virtual machine
1386  * migration.
1387  */
1388 void netdev_notify_peers(struct net_device *dev)
1389 {
1390 	rtnl_lock();
1391 	__netdev_notify_peers(dev);
1392 	rtnl_unlock();
1393 }
1394 EXPORT_SYMBOL(netdev_notify_peers);
1395 
1396 static int napi_threaded_poll(void *data);
1397 
1398 static int napi_kthread_create(struct napi_struct *n)
1399 {
1400 	int err = 0;
1401 
1402 	/* Create and wake up the kthread once to put it in
1403 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1404 	 * warning and work with loadavg.
1405 	 */
1406 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1407 				n->dev->name, n->napi_id);
1408 	if (IS_ERR(n->thread)) {
1409 		err = PTR_ERR(n->thread);
1410 		pr_err("kthread_run failed with err %d\n", err);
1411 		n->thread = NULL;
1412 	}
1413 
1414 	return err;
1415 }
1416 
1417 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1418 {
1419 	const struct net_device_ops *ops = dev->netdev_ops;
1420 	int ret;
1421 
1422 	ASSERT_RTNL();
1423 	dev_addr_check(dev);
1424 
1425 	if (!netif_device_present(dev)) {
1426 		/* may be detached because parent is runtime-suspended */
1427 		if (dev->dev.parent)
1428 			pm_runtime_resume(dev->dev.parent);
1429 		if (!netif_device_present(dev))
1430 			return -ENODEV;
1431 	}
1432 
1433 	/* Block netpoll from trying to do any rx path servicing.
1434 	 * If we don't do this there is a chance ndo_poll_controller
1435 	 * or ndo_poll may be running while we open the device
1436 	 */
1437 	netpoll_poll_disable(dev);
1438 
1439 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1440 	ret = notifier_to_errno(ret);
1441 	if (ret)
1442 		return ret;
1443 
1444 	set_bit(__LINK_STATE_START, &dev->state);
1445 
1446 	if (ops->ndo_validate_addr)
1447 		ret = ops->ndo_validate_addr(dev);
1448 
1449 	if (!ret && ops->ndo_open)
1450 		ret = ops->ndo_open(dev);
1451 
1452 	netpoll_poll_enable(dev);
1453 
1454 	if (ret)
1455 		clear_bit(__LINK_STATE_START, &dev->state);
1456 	else {
1457 		dev->flags |= IFF_UP;
1458 		dev_set_rx_mode(dev);
1459 		dev_activate(dev);
1460 		add_device_randomness(dev->dev_addr, dev->addr_len);
1461 	}
1462 
1463 	return ret;
1464 }
1465 
1466 /**
1467  *	dev_open	- prepare an interface for use.
1468  *	@dev: device to open
1469  *	@extack: netlink extended ack
1470  *
1471  *	Takes a device from down to up state. The device's private open
1472  *	function is invoked and then the multicast lists are loaded. Finally
1473  *	the device is moved into the up state and a %NETDEV_UP message is
1474  *	sent to the netdev notifier chain.
1475  *
1476  *	Calling this function on an active interface is a nop. On a failure
1477  *	a negative errno code is returned.
1478  */
1479 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1480 {
1481 	int ret;
1482 
1483 	if (dev->flags & IFF_UP)
1484 		return 0;
1485 
1486 	ret = __dev_open(dev, extack);
1487 	if (ret < 0)
1488 		return ret;
1489 
1490 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1491 	call_netdevice_notifiers(NETDEV_UP, dev);
1492 
1493 	return ret;
1494 }
1495 EXPORT_SYMBOL(dev_open);
1496 
1497 static void __dev_close_many(struct list_head *head)
1498 {
1499 	struct net_device *dev;
1500 
1501 	ASSERT_RTNL();
1502 	might_sleep();
1503 
1504 	list_for_each_entry(dev, head, close_list) {
1505 		/* Temporarily disable netpoll until the interface is down */
1506 		netpoll_poll_disable(dev);
1507 
1508 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1509 
1510 		clear_bit(__LINK_STATE_START, &dev->state);
1511 
1512 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1513 		 * can be even on different cpu. So just clear netif_running().
1514 		 *
1515 		 * dev->stop() will invoke napi_disable() on all of it's
1516 		 * napi_struct instances on this device.
1517 		 */
1518 		smp_mb__after_atomic(); /* Commit netif_running(). */
1519 	}
1520 
1521 	dev_deactivate_many(head);
1522 
1523 	list_for_each_entry(dev, head, close_list) {
1524 		const struct net_device_ops *ops = dev->netdev_ops;
1525 
1526 		/*
1527 		 *	Call the device specific close. This cannot fail.
1528 		 *	Only if device is UP
1529 		 *
1530 		 *	We allow it to be called even after a DETACH hot-plug
1531 		 *	event.
1532 		 */
1533 		if (ops->ndo_stop)
1534 			ops->ndo_stop(dev);
1535 
1536 		dev->flags &= ~IFF_UP;
1537 		netpoll_poll_enable(dev);
1538 	}
1539 }
1540 
1541 static void __dev_close(struct net_device *dev)
1542 {
1543 	LIST_HEAD(single);
1544 
1545 	list_add(&dev->close_list, &single);
1546 	__dev_close_many(&single);
1547 	list_del(&single);
1548 }
1549 
1550 void dev_close_many(struct list_head *head, bool unlink)
1551 {
1552 	struct net_device *dev, *tmp;
1553 
1554 	/* Remove the devices that don't need to be closed */
1555 	list_for_each_entry_safe(dev, tmp, head, close_list)
1556 		if (!(dev->flags & IFF_UP))
1557 			list_del_init(&dev->close_list);
1558 
1559 	__dev_close_many(head);
1560 
1561 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1562 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1563 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1564 		if (unlink)
1565 			list_del_init(&dev->close_list);
1566 	}
1567 }
1568 EXPORT_SYMBOL(dev_close_many);
1569 
1570 /**
1571  *	dev_close - shutdown an interface.
1572  *	@dev: device to shutdown
1573  *
1574  *	This function moves an active device into down state. A
1575  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1576  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1577  *	chain.
1578  */
1579 void dev_close(struct net_device *dev)
1580 {
1581 	if (dev->flags & IFF_UP) {
1582 		LIST_HEAD(single);
1583 
1584 		list_add(&dev->close_list, &single);
1585 		dev_close_many(&single, true);
1586 		list_del(&single);
1587 	}
1588 }
1589 EXPORT_SYMBOL(dev_close);
1590 
1591 
1592 /**
1593  *	dev_disable_lro - disable Large Receive Offload on a device
1594  *	@dev: device
1595  *
1596  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1597  *	called under RTNL.  This is needed if received packets may be
1598  *	forwarded to another interface.
1599  */
1600 void dev_disable_lro(struct net_device *dev)
1601 {
1602 	struct net_device *lower_dev;
1603 	struct list_head *iter;
1604 
1605 	dev->wanted_features &= ~NETIF_F_LRO;
1606 	netdev_update_features(dev);
1607 
1608 	if (unlikely(dev->features & NETIF_F_LRO))
1609 		netdev_WARN(dev, "failed to disable LRO!\n");
1610 
1611 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1612 		dev_disable_lro(lower_dev);
1613 }
1614 EXPORT_SYMBOL(dev_disable_lro);
1615 
1616 /**
1617  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1618  *	@dev: device
1619  *
1620  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1621  *	called under RTNL.  This is needed if Generic XDP is installed on
1622  *	the device.
1623  */
1624 static void dev_disable_gro_hw(struct net_device *dev)
1625 {
1626 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1627 	netdev_update_features(dev);
1628 
1629 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1630 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1631 }
1632 
1633 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1634 {
1635 #define N(val) 						\
1636 	case NETDEV_##val:				\
1637 		return "NETDEV_" __stringify(val);
1638 	switch (cmd) {
1639 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1640 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1641 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1642 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1643 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1644 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1645 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1646 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1647 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1648 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1649 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1650 	N(XDP_FEAT_CHANGE)
1651 	}
1652 #undef N
1653 	return "UNKNOWN_NETDEV_EVENT";
1654 }
1655 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1656 
1657 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1658 				   struct net_device *dev)
1659 {
1660 	struct netdev_notifier_info info = {
1661 		.dev = dev,
1662 	};
1663 
1664 	return nb->notifier_call(nb, val, &info);
1665 }
1666 
1667 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1668 					     struct net_device *dev)
1669 {
1670 	int err;
1671 
1672 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1673 	err = notifier_to_errno(err);
1674 	if (err)
1675 		return err;
1676 
1677 	if (!(dev->flags & IFF_UP))
1678 		return 0;
1679 
1680 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1681 	return 0;
1682 }
1683 
1684 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1685 						struct net_device *dev)
1686 {
1687 	if (dev->flags & IFF_UP) {
1688 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1689 					dev);
1690 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1691 	}
1692 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1693 }
1694 
1695 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1696 						 struct net *net)
1697 {
1698 	struct net_device *dev;
1699 	int err;
1700 
1701 	for_each_netdev(net, dev) {
1702 		err = call_netdevice_register_notifiers(nb, dev);
1703 		if (err)
1704 			goto rollback;
1705 	}
1706 	return 0;
1707 
1708 rollback:
1709 	for_each_netdev_continue_reverse(net, dev)
1710 		call_netdevice_unregister_notifiers(nb, dev);
1711 	return err;
1712 }
1713 
1714 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1715 						    struct net *net)
1716 {
1717 	struct net_device *dev;
1718 
1719 	for_each_netdev(net, dev)
1720 		call_netdevice_unregister_notifiers(nb, dev);
1721 }
1722 
1723 static int dev_boot_phase = 1;
1724 
1725 /**
1726  * register_netdevice_notifier - register a network notifier block
1727  * @nb: notifier
1728  *
1729  * Register a notifier to be called when network device events occur.
1730  * The notifier passed is linked into the kernel structures and must
1731  * not be reused until it has been unregistered. A negative errno code
1732  * is returned on a failure.
1733  *
1734  * When registered all registration and up events are replayed
1735  * to the new notifier to allow device to have a race free
1736  * view of the network device list.
1737  */
1738 
1739 int register_netdevice_notifier(struct notifier_block *nb)
1740 {
1741 	struct net *net;
1742 	int err;
1743 
1744 	/* Close race with setup_net() and cleanup_net() */
1745 	down_write(&pernet_ops_rwsem);
1746 	rtnl_lock();
1747 	err = raw_notifier_chain_register(&netdev_chain, nb);
1748 	if (err)
1749 		goto unlock;
1750 	if (dev_boot_phase)
1751 		goto unlock;
1752 	for_each_net(net) {
1753 		err = call_netdevice_register_net_notifiers(nb, net);
1754 		if (err)
1755 			goto rollback;
1756 	}
1757 
1758 unlock:
1759 	rtnl_unlock();
1760 	up_write(&pernet_ops_rwsem);
1761 	return err;
1762 
1763 rollback:
1764 	for_each_net_continue_reverse(net)
1765 		call_netdevice_unregister_net_notifiers(nb, net);
1766 
1767 	raw_notifier_chain_unregister(&netdev_chain, nb);
1768 	goto unlock;
1769 }
1770 EXPORT_SYMBOL(register_netdevice_notifier);
1771 
1772 /**
1773  * unregister_netdevice_notifier - unregister a network notifier block
1774  * @nb: notifier
1775  *
1776  * Unregister a notifier previously registered by
1777  * register_netdevice_notifier(). The notifier is unlinked into the
1778  * kernel structures and may then be reused. A negative errno code
1779  * is returned on a failure.
1780  *
1781  * After unregistering unregister and down device events are synthesized
1782  * for all devices on the device list to the removed notifier to remove
1783  * the need for special case cleanup code.
1784  */
1785 
1786 int unregister_netdevice_notifier(struct notifier_block *nb)
1787 {
1788 	struct net *net;
1789 	int err;
1790 
1791 	/* Close race with setup_net() and cleanup_net() */
1792 	down_write(&pernet_ops_rwsem);
1793 	rtnl_lock();
1794 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1795 	if (err)
1796 		goto unlock;
1797 
1798 	for_each_net(net)
1799 		call_netdevice_unregister_net_notifiers(nb, net);
1800 
1801 unlock:
1802 	rtnl_unlock();
1803 	up_write(&pernet_ops_rwsem);
1804 	return err;
1805 }
1806 EXPORT_SYMBOL(unregister_netdevice_notifier);
1807 
1808 static int __register_netdevice_notifier_net(struct net *net,
1809 					     struct notifier_block *nb,
1810 					     bool ignore_call_fail)
1811 {
1812 	int err;
1813 
1814 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1815 	if (err)
1816 		return err;
1817 	if (dev_boot_phase)
1818 		return 0;
1819 
1820 	err = call_netdevice_register_net_notifiers(nb, net);
1821 	if (err && !ignore_call_fail)
1822 		goto chain_unregister;
1823 
1824 	return 0;
1825 
1826 chain_unregister:
1827 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1828 	return err;
1829 }
1830 
1831 static int __unregister_netdevice_notifier_net(struct net *net,
1832 					       struct notifier_block *nb)
1833 {
1834 	int err;
1835 
1836 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1837 	if (err)
1838 		return err;
1839 
1840 	call_netdevice_unregister_net_notifiers(nb, net);
1841 	return 0;
1842 }
1843 
1844 /**
1845  * register_netdevice_notifier_net - register a per-netns network notifier block
1846  * @net: network namespace
1847  * @nb: notifier
1848  *
1849  * Register a notifier to be called when network device events occur.
1850  * The notifier passed is linked into the kernel structures and must
1851  * not be reused until it has been unregistered. A negative errno code
1852  * is returned on a failure.
1853  *
1854  * When registered all registration and up events are replayed
1855  * to the new notifier to allow device to have a race free
1856  * view of the network device list.
1857  */
1858 
1859 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1860 {
1861 	int err;
1862 
1863 	rtnl_lock();
1864 	err = __register_netdevice_notifier_net(net, nb, false);
1865 	rtnl_unlock();
1866 	return err;
1867 }
1868 EXPORT_SYMBOL(register_netdevice_notifier_net);
1869 
1870 /**
1871  * unregister_netdevice_notifier_net - unregister a per-netns
1872  *                                     network notifier block
1873  * @net: network namespace
1874  * @nb: notifier
1875  *
1876  * Unregister a notifier previously registered by
1877  * register_netdevice_notifier_net(). The notifier is unlinked from the
1878  * kernel structures and may then be reused. A negative errno code
1879  * is returned on a failure.
1880  *
1881  * After unregistering unregister and down device events are synthesized
1882  * for all devices on the device list to the removed notifier to remove
1883  * the need for special case cleanup code.
1884  */
1885 
1886 int unregister_netdevice_notifier_net(struct net *net,
1887 				      struct notifier_block *nb)
1888 {
1889 	int err;
1890 
1891 	rtnl_lock();
1892 	err = __unregister_netdevice_notifier_net(net, nb);
1893 	rtnl_unlock();
1894 	return err;
1895 }
1896 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1897 
1898 static void __move_netdevice_notifier_net(struct net *src_net,
1899 					  struct net *dst_net,
1900 					  struct notifier_block *nb)
1901 {
1902 	__unregister_netdevice_notifier_net(src_net, nb);
1903 	__register_netdevice_notifier_net(dst_net, nb, true);
1904 }
1905 
1906 int register_netdevice_notifier_dev_net(struct net_device *dev,
1907 					struct notifier_block *nb,
1908 					struct netdev_net_notifier *nn)
1909 {
1910 	int err;
1911 
1912 	rtnl_lock();
1913 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1914 	if (!err) {
1915 		nn->nb = nb;
1916 		list_add(&nn->list, &dev->net_notifier_list);
1917 	}
1918 	rtnl_unlock();
1919 	return err;
1920 }
1921 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1922 
1923 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1924 					  struct notifier_block *nb,
1925 					  struct netdev_net_notifier *nn)
1926 {
1927 	int err;
1928 
1929 	rtnl_lock();
1930 	list_del(&nn->list);
1931 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1932 	rtnl_unlock();
1933 	return err;
1934 }
1935 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1936 
1937 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1938 					     struct net *net)
1939 {
1940 	struct netdev_net_notifier *nn;
1941 
1942 	list_for_each_entry(nn, &dev->net_notifier_list, list)
1943 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1944 }
1945 
1946 /**
1947  *	call_netdevice_notifiers_info - call all network notifier blocks
1948  *	@val: value passed unmodified to notifier function
1949  *	@info: notifier information data
1950  *
1951  *	Call all network notifier blocks.  Parameters and return value
1952  *	are as for raw_notifier_call_chain().
1953  */
1954 
1955 int call_netdevice_notifiers_info(unsigned long val,
1956 				  struct netdev_notifier_info *info)
1957 {
1958 	struct net *net = dev_net(info->dev);
1959 	int ret;
1960 
1961 	ASSERT_RTNL();
1962 
1963 	/* Run per-netns notifier block chain first, then run the global one.
1964 	 * Hopefully, one day, the global one is going to be removed after
1965 	 * all notifier block registrators get converted to be per-netns.
1966 	 */
1967 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1968 	if (ret & NOTIFY_STOP_MASK)
1969 		return ret;
1970 	return raw_notifier_call_chain(&netdev_chain, val, info);
1971 }
1972 
1973 /**
1974  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1975  *	                                       for and rollback on error
1976  *	@val_up: value passed unmodified to notifier function
1977  *	@val_down: value passed unmodified to the notifier function when
1978  *	           recovering from an error on @val_up
1979  *	@info: notifier information data
1980  *
1981  *	Call all per-netns network notifier blocks, but not notifier blocks on
1982  *	the global notifier chain. Parameters and return value are as for
1983  *	raw_notifier_call_chain_robust().
1984  */
1985 
1986 static int
1987 call_netdevice_notifiers_info_robust(unsigned long val_up,
1988 				     unsigned long val_down,
1989 				     struct netdev_notifier_info *info)
1990 {
1991 	struct net *net = dev_net(info->dev);
1992 
1993 	ASSERT_RTNL();
1994 
1995 	return raw_notifier_call_chain_robust(&net->netdev_chain,
1996 					      val_up, val_down, info);
1997 }
1998 
1999 static int call_netdevice_notifiers_extack(unsigned long val,
2000 					   struct net_device *dev,
2001 					   struct netlink_ext_ack *extack)
2002 {
2003 	struct netdev_notifier_info info = {
2004 		.dev = dev,
2005 		.extack = extack,
2006 	};
2007 
2008 	return call_netdevice_notifiers_info(val, &info);
2009 }
2010 
2011 /**
2012  *	call_netdevice_notifiers - call all network notifier blocks
2013  *      @val: value passed unmodified to notifier function
2014  *      @dev: net_device pointer passed unmodified to notifier function
2015  *
2016  *	Call all network notifier blocks.  Parameters and return value
2017  *	are as for raw_notifier_call_chain().
2018  */
2019 
2020 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2021 {
2022 	return call_netdevice_notifiers_extack(val, dev, NULL);
2023 }
2024 EXPORT_SYMBOL(call_netdevice_notifiers);
2025 
2026 /**
2027  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2028  *	@val: value passed unmodified to notifier function
2029  *	@dev: net_device pointer passed unmodified to notifier function
2030  *	@arg: additional u32 argument passed to the notifier function
2031  *
2032  *	Call all network notifier blocks.  Parameters and return value
2033  *	are as for raw_notifier_call_chain().
2034  */
2035 static int call_netdevice_notifiers_mtu(unsigned long val,
2036 					struct net_device *dev, u32 arg)
2037 {
2038 	struct netdev_notifier_info_ext info = {
2039 		.info.dev = dev,
2040 		.ext.mtu = arg,
2041 	};
2042 
2043 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2044 
2045 	return call_netdevice_notifiers_info(val, &info.info);
2046 }
2047 
2048 #ifdef CONFIG_NET_INGRESS
2049 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2050 
2051 void net_inc_ingress_queue(void)
2052 {
2053 	static_branch_inc(&ingress_needed_key);
2054 }
2055 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2056 
2057 void net_dec_ingress_queue(void)
2058 {
2059 	static_branch_dec(&ingress_needed_key);
2060 }
2061 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2062 #endif
2063 
2064 #ifdef CONFIG_NET_EGRESS
2065 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2066 
2067 void net_inc_egress_queue(void)
2068 {
2069 	static_branch_inc(&egress_needed_key);
2070 }
2071 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2072 
2073 void net_dec_egress_queue(void)
2074 {
2075 	static_branch_dec(&egress_needed_key);
2076 }
2077 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2078 #endif
2079 
2080 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2081 EXPORT_SYMBOL(netstamp_needed_key);
2082 #ifdef CONFIG_JUMP_LABEL
2083 static atomic_t netstamp_needed_deferred;
2084 static atomic_t netstamp_wanted;
2085 static void netstamp_clear(struct work_struct *work)
2086 {
2087 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2088 	int wanted;
2089 
2090 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2091 	if (wanted > 0)
2092 		static_branch_enable(&netstamp_needed_key);
2093 	else
2094 		static_branch_disable(&netstamp_needed_key);
2095 }
2096 static DECLARE_WORK(netstamp_work, netstamp_clear);
2097 #endif
2098 
2099 void net_enable_timestamp(void)
2100 {
2101 #ifdef CONFIG_JUMP_LABEL
2102 	int wanted = atomic_read(&netstamp_wanted);
2103 
2104 	while (wanted > 0) {
2105 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2106 			return;
2107 	}
2108 	atomic_inc(&netstamp_needed_deferred);
2109 	schedule_work(&netstamp_work);
2110 #else
2111 	static_branch_inc(&netstamp_needed_key);
2112 #endif
2113 }
2114 EXPORT_SYMBOL(net_enable_timestamp);
2115 
2116 void net_disable_timestamp(void)
2117 {
2118 #ifdef CONFIG_JUMP_LABEL
2119 	int wanted = atomic_read(&netstamp_wanted);
2120 
2121 	while (wanted > 1) {
2122 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2123 			return;
2124 	}
2125 	atomic_dec(&netstamp_needed_deferred);
2126 	schedule_work(&netstamp_work);
2127 #else
2128 	static_branch_dec(&netstamp_needed_key);
2129 #endif
2130 }
2131 EXPORT_SYMBOL(net_disable_timestamp);
2132 
2133 static inline void net_timestamp_set(struct sk_buff *skb)
2134 {
2135 	skb->tstamp = 0;
2136 	skb->mono_delivery_time = 0;
2137 	if (static_branch_unlikely(&netstamp_needed_key))
2138 		skb->tstamp = ktime_get_real();
2139 }
2140 
2141 #define net_timestamp_check(COND, SKB)				\
2142 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2143 		if ((COND) && !(SKB)->tstamp)			\
2144 			(SKB)->tstamp = ktime_get_real();	\
2145 	}							\
2146 
2147 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2148 {
2149 	return __is_skb_forwardable(dev, skb, true);
2150 }
2151 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2152 
2153 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2154 			      bool check_mtu)
2155 {
2156 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2157 
2158 	if (likely(!ret)) {
2159 		skb->protocol = eth_type_trans(skb, dev);
2160 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2161 	}
2162 
2163 	return ret;
2164 }
2165 
2166 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2167 {
2168 	return __dev_forward_skb2(dev, skb, true);
2169 }
2170 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2171 
2172 /**
2173  * dev_forward_skb - loopback an skb to another netif
2174  *
2175  * @dev: destination network device
2176  * @skb: buffer to forward
2177  *
2178  * return values:
2179  *	NET_RX_SUCCESS	(no congestion)
2180  *	NET_RX_DROP     (packet was dropped, but freed)
2181  *
2182  * dev_forward_skb can be used for injecting an skb from the
2183  * start_xmit function of one device into the receive queue
2184  * of another device.
2185  *
2186  * The receiving device may be in another namespace, so
2187  * we have to clear all information in the skb that could
2188  * impact namespace isolation.
2189  */
2190 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2191 {
2192 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2193 }
2194 EXPORT_SYMBOL_GPL(dev_forward_skb);
2195 
2196 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2197 {
2198 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2199 }
2200 
2201 static inline int deliver_skb(struct sk_buff *skb,
2202 			      struct packet_type *pt_prev,
2203 			      struct net_device *orig_dev)
2204 {
2205 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2206 		return -ENOMEM;
2207 	refcount_inc(&skb->users);
2208 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2209 }
2210 
2211 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2212 					  struct packet_type **pt,
2213 					  struct net_device *orig_dev,
2214 					  __be16 type,
2215 					  struct list_head *ptype_list)
2216 {
2217 	struct packet_type *ptype, *pt_prev = *pt;
2218 
2219 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2220 		if (ptype->type != type)
2221 			continue;
2222 		if (pt_prev)
2223 			deliver_skb(skb, pt_prev, orig_dev);
2224 		pt_prev = ptype;
2225 	}
2226 	*pt = pt_prev;
2227 }
2228 
2229 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2230 {
2231 	if (!ptype->af_packet_priv || !skb->sk)
2232 		return false;
2233 
2234 	if (ptype->id_match)
2235 		return ptype->id_match(ptype, skb->sk);
2236 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2237 		return true;
2238 
2239 	return false;
2240 }
2241 
2242 /**
2243  * dev_nit_active - return true if any network interface taps are in use
2244  *
2245  * @dev: network device to check for the presence of taps
2246  */
2247 bool dev_nit_active(struct net_device *dev)
2248 {
2249 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2250 }
2251 EXPORT_SYMBOL_GPL(dev_nit_active);
2252 
2253 /*
2254  *	Support routine. Sends outgoing frames to any network
2255  *	taps currently in use.
2256  */
2257 
2258 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2259 {
2260 	struct packet_type *ptype;
2261 	struct sk_buff *skb2 = NULL;
2262 	struct packet_type *pt_prev = NULL;
2263 	struct list_head *ptype_list = &ptype_all;
2264 
2265 	rcu_read_lock();
2266 again:
2267 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2268 		if (ptype->ignore_outgoing)
2269 			continue;
2270 
2271 		/* Never send packets back to the socket
2272 		 * they originated from - MvS (miquels@drinkel.ow.org)
2273 		 */
2274 		if (skb_loop_sk(ptype, skb))
2275 			continue;
2276 
2277 		if (pt_prev) {
2278 			deliver_skb(skb2, pt_prev, skb->dev);
2279 			pt_prev = ptype;
2280 			continue;
2281 		}
2282 
2283 		/* need to clone skb, done only once */
2284 		skb2 = skb_clone(skb, GFP_ATOMIC);
2285 		if (!skb2)
2286 			goto out_unlock;
2287 
2288 		net_timestamp_set(skb2);
2289 
2290 		/* skb->nh should be correctly
2291 		 * set by sender, so that the second statement is
2292 		 * just protection against buggy protocols.
2293 		 */
2294 		skb_reset_mac_header(skb2);
2295 
2296 		if (skb_network_header(skb2) < skb2->data ||
2297 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2298 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2299 					     ntohs(skb2->protocol),
2300 					     dev->name);
2301 			skb_reset_network_header(skb2);
2302 		}
2303 
2304 		skb2->transport_header = skb2->network_header;
2305 		skb2->pkt_type = PACKET_OUTGOING;
2306 		pt_prev = ptype;
2307 	}
2308 
2309 	if (ptype_list == &ptype_all) {
2310 		ptype_list = &dev->ptype_all;
2311 		goto again;
2312 	}
2313 out_unlock:
2314 	if (pt_prev) {
2315 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2316 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2317 		else
2318 			kfree_skb(skb2);
2319 	}
2320 	rcu_read_unlock();
2321 }
2322 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2323 
2324 /**
2325  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2326  * @dev: Network device
2327  * @txq: number of queues available
2328  *
2329  * If real_num_tx_queues is changed the tc mappings may no longer be
2330  * valid. To resolve this verify the tc mapping remains valid and if
2331  * not NULL the mapping. With no priorities mapping to this
2332  * offset/count pair it will no longer be used. In the worst case TC0
2333  * is invalid nothing can be done so disable priority mappings. If is
2334  * expected that drivers will fix this mapping if they can before
2335  * calling netif_set_real_num_tx_queues.
2336  */
2337 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2338 {
2339 	int i;
2340 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2341 
2342 	/* If TC0 is invalidated disable TC mapping */
2343 	if (tc->offset + tc->count > txq) {
2344 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2345 		dev->num_tc = 0;
2346 		return;
2347 	}
2348 
2349 	/* Invalidated prio to tc mappings set to TC0 */
2350 	for (i = 1; i < TC_BITMASK + 1; i++) {
2351 		int q = netdev_get_prio_tc_map(dev, i);
2352 
2353 		tc = &dev->tc_to_txq[q];
2354 		if (tc->offset + tc->count > txq) {
2355 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2356 				    i, q);
2357 			netdev_set_prio_tc_map(dev, i, 0);
2358 		}
2359 	}
2360 }
2361 
2362 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2363 {
2364 	if (dev->num_tc) {
2365 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2366 		int i;
2367 
2368 		/* walk through the TCs and see if it falls into any of them */
2369 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2370 			if ((txq - tc->offset) < tc->count)
2371 				return i;
2372 		}
2373 
2374 		/* didn't find it, just return -1 to indicate no match */
2375 		return -1;
2376 	}
2377 
2378 	return 0;
2379 }
2380 EXPORT_SYMBOL(netdev_txq_to_tc);
2381 
2382 #ifdef CONFIG_XPS
2383 static struct static_key xps_needed __read_mostly;
2384 static struct static_key xps_rxqs_needed __read_mostly;
2385 static DEFINE_MUTEX(xps_map_mutex);
2386 #define xmap_dereference(P)		\
2387 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2388 
2389 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2390 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2391 {
2392 	struct xps_map *map = NULL;
2393 	int pos;
2394 
2395 	map = xmap_dereference(dev_maps->attr_map[tci]);
2396 	if (!map)
2397 		return false;
2398 
2399 	for (pos = map->len; pos--;) {
2400 		if (map->queues[pos] != index)
2401 			continue;
2402 
2403 		if (map->len > 1) {
2404 			map->queues[pos] = map->queues[--map->len];
2405 			break;
2406 		}
2407 
2408 		if (old_maps)
2409 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2410 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2411 		kfree_rcu(map, rcu);
2412 		return false;
2413 	}
2414 
2415 	return true;
2416 }
2417 
2418 static bool remove_xps_queue_cpu(struct net_device *dev,
2419 				 struct xps_dev_maps *dev_maps,
2420 				 int cpu, u16 offset, u16 count)
2421 {
2422 	int num_tc = dev_maps->num_tc;
2423 	bool active = false;
2424 	int tci;
2425 
2426 	for (tci = cpu * num_tc; num_tc--; tci++) {
2427 		int i, j;
2428 
2429 		for (i = count, j = offset; i--; j++) {
2430 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2431 				break;
2432 		}
2433 
2434 		active |= i < 0;
2435 	}
2436 
2437 	return active;
2438 }
2439 
2440 static void reset_xps_maps(struct net_device *dev,
2441 			   struct xps_dev_maps *dev_maps,
2442 			   enum xps_map_type type)
2443 {
2444 	static_key_slow_dec_cpuslocked(&xps_needed);
2445 	if (type == XPS_RXQS)
2446 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2447 
2448 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2449 
2450 	kfree_rcu(dev_maps, rcu);
2451 }
2452 
2453 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2454 			   u16 offset, u16 count)
2455 {
2456 	struct xps_dev_maps *dev_maps;
2457 	bool active = false;
2458 	int i, j;
2459 
2460 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2461 	if (!dev_maps)
2462 		return;
2463 
2464 	for (j = 0; j < dev_maps->nr_ids; j++)
2465 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2466 	if (!active)
2467 		reset_xps_maps(dev, dev_maps, type);
2468 
2469 	if (type == XPS_CPUS) {
2470 		for (i = offset + (count - 1); count--; i--)
2471 			netdev_queue_numa_node_write(
2472 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2473 	}
2474 }
2475 
2476 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2477 				   u16 count)
2478 {
2479 	if (!static_key_false(&xps_needed))
2480 		return;
2481 
2482 	cpus_read_lock();
2483 	mutex_lock(&xps_map_mutex);
2484 
2485 	if (static_key_false(&xps_rxqs_needed))
2486 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2487 
2488 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2489 
2490 	mutex_unlock(&xps_map_mutex);
2491 	cpus_read_unlock();
2492 }
2493 
2494 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2495 {
2496 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2497 }
2498 
2499 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2500 				      u16 index, bool is_rxqs_map)
2501 {
2502 	struct xps_map *new_map;
2503 	int alloc_len = XPS_MIN_MAP_ALLOC;
2504 	int i, pos;
2505 
2506 	for (pos = 0; map && pos < map->len; pos++) {
2507 		if (map->queues[pos] != index)
2508 			continue;
2509 		return map;
2510 	}
2511 
2512 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2513 	if (map) {
2514 		if (pos < map->alloc_len)
2515 			return map;
2516 
2517 		alloc_len = map->alloc_len * 2;
2518 	}
2519 
2520 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2521 	 *  map
2522 	 */
2523 	if (is_rxqs_map)
2524 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2525 	else
2526 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2527 				       cpu_to_node(attr_index));
2528 	if (!new_map)
2529 		return NULL;
2530 
2531 	for (i = 0; i < pos; i++)
2532 		new_map->queues[i] = map->queues[i];
2533 	new_map->alloc_len = alloc_len;
2534 	new_map->len = pos;
2535 
2536 	return new_map;
2537 }
2538 
2539 /* Copy xps maps at a given index */
2540 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2541 			      struct xps_dev_maps *new_dev_maps, int index,
2542 			      int tc, bool skip_tc)
2543 {
2544 	int i, tci = index * dev_maps->num_tc;
2545 	struct xps_map *map;
2546 
2547 	/* copy maps belonging to foreign traffic classes */
2548 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2549 		if (i == tc && skip_tc)
2550 			continue;
2551 
2552 		/* fill in the new device map from the old device map */
2553 		map = xmap_dereference(dev_maps->attr_map[tci]);
2554 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2555 	}
2556 }
2557 
2558 /* Must be called under cpus_read_lock */
2559 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2560 			  u16 index, enum xps_map_type type)
2561 {
2562 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2563 	const unsigned long *online_mask = NULL;
2564 	bool active = false, copy = false;
2565 	int i, j, tci, numa_node_id = -2;
2566 	int maps_sz, num_tc = 1, tc = 0;
2567 	struct xps_map *map, *new_map;
2568 	unsigned int nr_ids;
2569 
2570 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2571 
2572 	if (dev->num_tc) {
2573 		/* Do not allow XPS on subordinate device directly */
2574 		num_tc = dev->num_tc;
2575 		if (num_tc < 0)
2576 			return -EINVAL;
2577 
2578 		/* If queue belongs to subordinate dev use its map */
2579 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2580 
2581 		tc = netdev_txq_to_tc(dev, index);
2582 		if (tc < 0)
2583 			return -EINVAL;
2584 	}
2585 
2586 	mutex_lock(&xps_map_mutex);
2587 
2588 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2589 	if (type == XPS_RXQS) {
2590 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2591 		nr_ids = dev->num_rx_queues;
2592 	} else {
2593 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2594 		if (num_possible_cpus() > 1)
2595 			online_mask = cpumask_bits(cpu_online_mask);
2596 		nr_ids = nr_cpu_ids;
2597 	}
2598 
2599 	if (maps_sz < L1_CACHE_BYTES)
2600 		maps_sz = L1_CACHE_BYTES;
2601 
2602 	/* The old dev_maps could be larger or smaller than the one we're
2603 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2604 	 * between. We could try to be smart, but let's be safe instead and only
2605 	 * copy foreign traffic classes if the two map sizes match.
2606 	 */
2607 	if (dev_maps &&
2608 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2609 		copy = true;
2610 
2611 	/* allocate memory for queue storage */
2612 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2613 	     j < nr_ids;) {
2614 		if (!new_dev_maps) {
2615 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2616 			if (!new_dev_maps) {
2617 				mutex_unlock(&xps_map_mutex);
2618 				return -ENOMEM;
2619 			}
2620 
2621 			new_dev_maps->nr_ids = nr_ids;
2622 			new_dev_maps->num_tc = num_tc;
2623 		}
2624 
2625 		tci = j * num_tc + tc;
2626 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2627 
2628 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2629 		if (!map)
2630 			goto error;
2631 
2632 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2633 	}
2634 
2635 	if (!new_dev_maps)
2636 		goto out_no_new_maps;
2637 
2638 	if (!dev_maps) {
2639 		/* Increment static keys at most once per type */
2640 		static_key_slow_inc_cpuslocked(&xps_needed);
2641 		if (type == XPS_RXQS)
2642 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2643 	}
2644 
2645 	for (j = 0; j < nr_ids; j++) {
2646 		bool skip_tc = false;
2647 
2648 		tci = j * num_tc + tc;
2649 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2650 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2651 			/* add tx-queue to CPU/rx-queue maps */
2652 			int pos = 0;
2653 
2654 			skip_tc = true;
2655 
2656 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2657 			while ((pos < map->len) && (map->queues[pos] != index))
2658 				pos++;
2659 
2660 			if (pos == map->len)
2661 				map->queues[map->len++] = index;
2662 #ifdef CONFIG_NUMA
2663 			if (type == XPS_CPUS) {
2664 				if (numa_node_id == -2)
2665 					numa_node_id = cpu_to_node(j);
2666 				else if (numa_node_id != cpu_to_node(j))
2667 					numa_node_id = -1;
2668 			}
2669 #endif
2670 		}
2671 
2672 		if (copy)
2673 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2674 					  skip_tc);
2675 	}
2676 
2677 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2678 
2679 	/* Cleanup old maps */
2680 	if (!dev_maps)
2681 		goto out_no_old_maps;
2682 
2683 	for (j = 0; j < dev_maps->nr_ids; j++) {
2684 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2685 			map = xmap_dereference(dev_maps->attr_map[tci]);
2686 			if (!map)
2687 				continue;
2688 
2689 			if (copy) {
2690 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2691 				if (map == new_map)
2692 					continue;
2693 			}
2694 
2695 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2696 			kfree_rcu(map, rcu);
2697 		}
2698 	}
2699 
2700 	old_dev_maps = dev_maps;
2701 
2702 out_no_old_maps:
2703 	dev_maps = new_dev_maps;
2704 	active = true;
2705 
2706 out_no_new_maps:
2707 	if (type == XPS_CPUS)
2708 		/* update Tx queue numa node */
2709 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2710 					     (numa_node_id >= 0) ?
2711 					     numa_node_id : NUMA_NO_NODE);
2712 
2713 	if (!dev_maps)
2714 		goto out_no_maps;
2715 
2716 	/* removes tx-queue from unused CPUs/rx-queues */
2717 	for (j = 0; j < dev_maps->nr_ids; j++) {
2718 		tci = j * dev_maps->num_tc;
2719 
2720 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2721 			if (i == tc &&
2722 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2723 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2724 				continue;
2725 
2726 			active |= remove_xps_queue(dev_maps,
2727 						   copy ? old_dev_maps : NULL,
2728 						   tci, index);
2729 		}
2730 	}
2731 
2732 	if (old_dev_maps)
2733 		kfree_rcu(old_dev_maps, rcu);
2734 
2735 	/* free map if not active */
2736 	if (!active)
2737 		reset_xps_maps(dev, dev_maps, type);
2738 
2739 out_no_maps:
2740 	mutex_unlock(&xps_map_mutex);
2741 
2742 	return 0;
2743 error:
2744 	/* remove any maps that we added */
2745 	for (j = 0; j < nr_ids; j++) {
2746 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2747 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2748 			map = copy ?
2749 			      xmap_dereference(dev_maps->attr_map[tci]) :
2750 			      NULL;
2751 			if (new_map && new_map != map)
2752 				kfree(new_map);
2753 		}
2754 	}
2755 
2756 	mutex_unlock(&xps_map_mutex);
2757 
2758 	kfree(new_dev_maps);
2759 	return -ENOMEM;
2760 }
2761 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2762 
2763 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2764 			u16 index)
2765 {
2766 	int ret;
2767 
2768 	cpus_read_lock();
2769 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2770 	cpus_read_unlock();
2771 
2772 	return ret;
2773 }
2774 EXPORT_SYMBOL(netif_set_xps_queue);
2775 
2776 #endif
2777 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2778 {
2779 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2780 
2781 	/* Unbind any subordinate channels */
2782 	while (txq-- != &dev->_tx[0]) {
2783 		if (txq->sb_dev)
2784 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2785 	}
2786 }
2787 
2788 void netdev_reset_tc(struct net_device *dev)
2789 {
2790 #ifdef CONFIG_XPS
2791 	netif_reset_xps_queues_gt(dev, 0);
2792 #endif
2793 	netdev_unbind_all_sb_channels(dev);
2794 
2795 	/* Reset TC configuration of device */
2796 	dev->num_tc = 0;
2797 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2798 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2799 }
2800 EXPORT_SYMBOL(netdev_reset_tc);
2801 
2802 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2803 {
2804 	if (tc >= dev->num_tc)
2805 		return -EINVAL;
2806 
2807 #ifdef CONFIG_XPS
2808 	netif_reset_xps_queues(dev, offset, count);
2809 #endif
2810 	dev->tc_to_txq[tc].count = count;
2811 	dev->tc_to_txq[tc].offset = offset;
2812 	return 0;
2813 }
2814 EXPORT_SYMBOL(netdev_set_tc_queue);
2815 
2816 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2817 {
2818 	if (num_tc > TC_MAX_QUEUE)
2819 		return -EINVAL;
2820 
2821 #ifdef CONFIG_XPS
2822 	netif_reset_xps_queues_gt(dev, 0);
2823 #endif
2824 	netdev_unbind_all_sb_channels(dev);
2825 
2826 	dev->num_tc = num_tc;
2827 	return 0;
2828 }
2829 EXPORT_SYMBOL(netdev_set_num_tc);
2830 
2831 void netdev_unbind_sb_channel(struct net_device *dev,
2832 			      struct net_device *sb_dev)
2833 {
2834 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2835 
2836 #ifdef CONFIG_XPS
2837 	netif_reset_xps_queues_gt(sb_dev, 0);
2838 #endif
2839 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2840 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2841 
2842 	while (txq-- != &dev->_tx[0]) {
2843 		if (txq->sb_dev == sb_dev)
2844 			txq->sb_dev = NULL;
2845 	}
2846 }
2847 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2848 
2849 int netdev_bind_sb_channel_queue(struct net_device *dev,
2850 				 struct net_device *sb_dev,
2851 				 u8 tc, u16 count, u16 offset)
2852 {
2853 	/* Make certain the sb_dev and dev are already configured */
2854 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2855 		return -EINVAL;
2856 
2857 	/* We cannot hand out queues we don't have */
2858 	if ((offset + count) > dev->real_num_tx_queues)
2859 		return -EINVAL;
2860 
2861 	/* Record the mapping */
2862 	sb_dev->tc_to_txq[tc].count = count;
2863 	sb_dev->tc_to_txq[tc].offset = offset;
2864 
2865 	/* Provide a way for Tx queue to find the tc_to_txq map or
2866 	 * XPS map for itself.
2867 	 */
2868 	while (count--)
2869 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2870 
2871 	return 0;
2872 }
2873 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2874 
2875 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2876 {
2877 	/* Do not use a multiqueue device to represent a subordinate channel */
2878 	if (netif_is_multiqueue(dev))
2879 		return -ENODEV;
2880 
2881 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2882 	 * Channel 0 is meant to be "native" mode and used only to represent
2883 	 * the main root device. We allow writing 0 to reset the device back
2884 	 * to normal mode after being used as a subordinate channel.
2885 	 */
2886 	if (channel > S16_MAX)
2887 		return -EINVAL;
2888 
2889 	dev->num_tc = -channel;
2890 
2891 	return 0;
2892 }
2893 EXPORT_SYMBOL(netdev_set_sb_channel);
2894 
2895 /*
2896  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2897  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2898  */
2899 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2900 {
2901 	bool disabling;
2902 	int rc;
2903 
2904 	disabling = txq < dev->real_num_tx_queues;
2905 
2906 	if (txq < 1 || txq > dev->num_tx_queues)
2907 		return -EINVAL;
2908 
2909 	if (dev->reg_state == NETREG_REGISTERED ||
2910 	    dev->reg_state == NETREG_UNREGISTERING) {
2911 		ASSERT_RTNL();
2912 
2913 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2914 						  txq);
2915 		if (rc)
2916 			return rc;
2917 
2918 		if (dev->num_tc)
2919 			netif_setup_tc(dev, txq);
2920 
2921 		dev_qdisc_change_real_num_tx(dev, txq);
2922 
2923 		dev->real_num_tx_queues = txq;
2924 
2925 		if (disabling) {
2926 			synchronize_net();
2927 			qdisc_reset_all_tx_gt(dev, txq);
2928 #ifdef CONFIG_XPS
2929 			netif_reset_xps_queues_gt(dev, txq);
2930 #endif
2931 		}
2932 	} else {
2933 		dev->real_num_tx_queues = txq;
2934 	}
2935 
2936 	return 0;
2937 }
2938 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2939 
2940 #ifdef CONFIG_SYSFS
2941 /**
2942  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2943  *	@dev: Network device
2944  *	@rxq: Actual number of RX queues
2945  *
2946  *	This must be called either with the rtnl_lock held or before
2947  *	registration of the net device.  Returns 0 on success, or a
2948  *	negative error code.  If called before registration, it always
2949  *	succeeds.
2950  */
2951 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2952 {
2953 	int rc;
2954 
2955 	if (rxq < 1 || rxq > dev->num_rx_queues)
2956 		return -EINVAL;
2957 
2958 	if (dev->reg_state == NETREG_REGISTERED) {
2959 		ASSERT_RTNL();
2960 
2961 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2962 						  rxq);
2963 		if (rc)
2964 			return rc;
2965 	}
2966 
2967 	dev->real_num_rx_queues = rxq;
2968 	return 0;
2969 }
2970 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2971 #endif
2972 
2973 /**
2974  *	netif_set_real_num_queues - set actual number of RX and TX queues used
2975  *	@dev: Network device
2976  *	@txq: Actual number of TX queues
2977  *	@rxq: Actual number of RX queues
2978  *
2979  *	Set the real number of both TX and RX queues.
2980  *	Does nothing if the number of queues is already correct.
2981  */
2982 int netif_set_real_num_queues(struct net_device *dev,
2983 			      unsigned int txq, unsigned int rxq)
2984 {
2985 	unsigned int old_rxq = dev->real_num_rx_queues;
2986 	int err;
2987 
2988 	if (txq < 1 || txq > dev->num_tx_queues ||
2989 	    rxq < 1 || rxq > dev->num_rx_queues)
2990 		return -EINVAL;
2991 
2992 	/* Start from increases, so the error path only does decreases -
2993 	 * decreases can't fail.
2994 	 */
2995 	if (rxq > dev->real_num_rx_queues) {
2996 		err = netif_set_real_num_rx_queues(dev, rxq);
2997 		if (err)
2998 			return err;
2999 	}
3000 	if (txq > dev->real_num_tx_queues) {
3001 		err = netif_set_real_num_tx_queues(dev, txq);
3002 		if (err)
3003 			goto undo_rx;
3004 	}
3005 	if (rxq < dev->real_num_rx_queues)
3006 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3007 	if (txq < dev->real_num_tx_queues)
3008 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3009 
3010 	return 0;
3011 undo_rx:
3012 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3013 	return err;
3014 }
3015 EXPORT_SYMBOL(netif_set_real_num_queues);
3016 
3017 /**
3018  * netif_set_tso_max_size() - set the max size of TSO frames supported
3019  * @dev:	netdev to update
3020  * @size:	max skb->len of a TSO frame
3021  *
3022  * Set the limit on the size of TSO super-frames the device can handle.
3023  * Unless explicitly set the stack will assume the value of
3024  * %GSO_LEGACY_MAX_SIZE.
3025  */
3026 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3027 {
3028 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3029 	if (size < READ_ONCE(dev->gso_max_size))
3030 		netif_set_gso_max_size(dev, size);
3031 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3032 		netif_set_gso_ipv4_max_size(dev, size);
3033 }
3034 EXPORT_SYMBOL(netif_set_tso_max_size);
3035 
3036 /**
3037  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3038  * @dev:	netdev to update
3039  * @segs:	max number of TCP segments
3040  *
3041  * Set the limit on the number of TCP segments the device can generate from
3042  * a single TSO super-frame.
3043  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3044  */
3045 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3046 {
3047 	dev->tso_max_segs = segs;
3048 	if (segs < READ_ONCE(dev->gso_max_segs))
3049 		netif_set_gso_max_segs(dev, segs);
3050 }
3051 EXPORT_SYMBOL(netif_set_tso_max_segs);
3052 
3053 /**
3054  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3055  * @to:		netdev to update
3056  * @from:	netdev from which to copy the limits
3057  */
3058 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3059 {
3060 	netif_set_tso_max_size(to, from->tso_max_size);
3061 	netif_set_tso_max_segs(to, from->tso_max_segs);
3062 }
3063 EXPORT_SYMBOL(netif_inherit_tso_max);
3064 
3065 /**
3066  * netif_get_num_default_rss_queues - default number of RSS queues
3067  *
3068  * Default value is the number of physical cores if there are only 1 or 2, or
3069  * divided by 2 if there are more.
3070  */
3071 int netif_get_num_default_rss_queues(void)
3072 {
3073 	cpumask_var_t cpus;
3074 	int cpu, count = 0;
3075 
3076 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3077 		return 1;
3078 
3079 	cpumask_copy(cpus, cpu_online_mask);
3080 	for_each_cpu(cpu, cpus) {
3081 		++count;
3082 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3083 	}
3084 	free_cpumask_var(cpus);
3085 
3086 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3087 }
3088 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3089 
3090 static void __netif_reschedule(struct Qdisc *q)
3091 {
3092 	struct softnet_data *sd;
3093 	unsigned long flags;
3094 
3095 	local_irq_save(flags);
3096 	sd = this_cpu_ptr(&softnet_data);
3097 	q->next_sched = NULL;
3098 	*sd->output_queue_tailp = q;
3099 	sd->output_queue_tailp = &q->next_sched;
3100 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3101 	local_irq_restore(flags);
3102 }
3103 
3104 void __netif_schedule(struct Qdisc *q)
3105 {
3106 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3107 		__netif_reschedule(q);
3108 }
3109 EXPORT_SYMBOL(__netif_schedule);
3110 
3111 struct dev_kfree_skb_cb {
3112 	enum skb_drop_reason reason;
3113 };
3114 
3115 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3116 {
3117 	return (struct dev_kfree_skb_cb *)skb->cb;
3118 }
3119 
3120 void netif_schedule_queue(struct netdev_queue *txq)
3121 {
3122 	rcu_read_lock();
3123 	if (!netif_xmit_stopped(txq)) {
3124 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3125 
3126 		__netif_schedule(q);
3127 	}
3128 	rcu_read_unlock();
3129 }
3130 EXPORT_SYMBOL(netif_schedule_queue);
3131 
3132 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3133 {
3134 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3135 		struct Qdisc *q;
3136 
3137 		rcu_read_lock();
3138 		q = rcu_dereference(dev_queue->qdisc);
3139 		__netif_schedule(q);
3140 		rcu_read_unlock();
3141 	}
3142 }
3143 EXPORT_SYMBOL(netif_tx_wake_queue);
3144 
3145 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3146 {
3147 	unsigned long flags;
3148 
3149 	if (unlikely(!skb))
3150 		return;
3151 
3152 	if (likely(refcount_read(&skb->users) == 1)) {
3153 		smp_rmb();
3154 		refcount_set(&skb->users, 0);
3155 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3156 		return;
3157 	}
3158 	get_kfree_skb_cb(skb)->reason = reason;
3159 	local_irq_save(flags);
3160 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3161 	__this_cpu_write(softnet_data.completion_queue, skb);
3162 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3163 	local_irq_restore(flags);
3164 }
3165 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3166 
3167 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3168 {
3169 	if (in_hardirq() || irqs_disabled())
3170 		dev_kfree_skb_irq_reason(skb, reason);
3171 	else
3172 		kfree_skb_reason(skb, reason);
3173 }
3174 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3175 
3176 
3177 /**
3178  * netif_device_detach - mark device as removed
3179  * @dev: network device
3180  *
3181  * Mark device as removed from system and therefore no longer available.
3182  */
3183 void netif_device_detach(struct net_device *dev)
3184 {
3185 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3186 	    netif_running(dev)) {
3187 		netif_tx_stop_all_queues(dev);
3188 	}
3189 }
3190 EXPORT_SYMBOL(netif_device_detach);
3191 
3192 /**
3193  * netif_device_attach - mark device as attached
3194  * @dev: network device
3195  *
3196  * Mark device as attached from system and restart if needed.
3197  */
3198 void netif_device_attach(struct net_device *dev)
3199 {
3200 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3201 	    netif_running(dev)) {
3202 		netif_tx_wake_all_queues(dev);
3203 		__netdev_watchdog_up(dev);
3204 	}
3205 }
3206 EXPORT_SYMBOL(netif_device_attach);
3207 
3208 /*
3209  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3210  * to be used as a distribution range.
3211  */
3212 static u16 skb_tx_hash(const struct net_device *dev,
3213 		       const struct net_device *sb_dev,
3214 		       struct sk_buff *skb)
3215 {
3216 	u32 hash;
3217 	u16 qoffset = 0;
3218 	u16 qcount = dev->real_num_tx_queues;
3219 
3220 	if (dev->num_tc) {
3221 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3222 
3223 		qoffset = sb_dev->tc_to_txq[tc].offset;
3224 		qcount = sb_dev->tc_to_txq[tc].count;
3225 		if (unlikely(!qcount)) {
3226 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3227 					     sb_dev->name, qoffset, tc);
3228 			qoffset = 0;
3229 			qcount = dev->real_num_tx_queues;
3230 		}
3231 	}
3232 
3233 	if (skb_rx_queue_recorded(skb)) {
3234 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3235 		hash = skb_get_rx_queue(skb);
3236 		if (hash >= qoffset)
3237 			hash -= qoffset;
3238 		while (unlikely(hash >= qcount))
3239 			hash -= qcount;
3240 		return hash + qoffset;
3241 	}
3242 
3243 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3244 }
3245 
3246 void skb_warn_bad_offload(const struct sk_buff *skb)
3247 {
3248 	static const netdev_features_t null_features;
3249 	struct net_device *dev = skb->dev;
3250 	const char *name = "";
3251 
3252 	if (!net_ratelimit())
3253 		return;
3254 
3255 	if (dev) {
3256 		if (dev->dev.parent)
3257 			name = dev_driver_string(dev->dev.parent);
3258 		else
3259 			name = netdev_name(dev);
3260 	}
3261 	skb_dump(KERN_WARNING, skb, false);
3262 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3263 	     name, dev ? &dev->features : &null_features,
3264 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3265 }
3266 
3267 /*
3268  * Invalidate hardware checksum when packet is to be mangled, and
3269  * complete checksum manually on outgoing path.
3270  */
3271 int skb_checksum_help(struct sk_buff *skb)
3272 {
3273 	__wsum csum;
3274 	int ret = 0, offset;
3275 
3276 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3277 		goto out_set_summed;
3278 
3279 	if (unlikely(skb_is_gso(skb))) {
3280 		skb_warn_bad_offload(skb);
3281 		return -EINVAL;
3282 	}
3283 
3284 	/* Before computing a checksum, we should make sure no frag could
3285 	 * be modified by an external entity : checksum could be wrong.
3286 	 */
3287 	if (skb_has_shared_frag(skb)) {
3288 		ret = __skb_linearize(skb);
3289 		if (ret)
3290 			goto out;
3291 	}
3292 
3293 	offset = skb_checksum_start_offset(skb);
3294 	ret = -EINVAL;
3295 	if (unlikely(offset >= skb_headlen(skb))) {
3296 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3297 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3298 			  offset, skb_headlen(skb));
3299 		goto out;
3300 	}
3301 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3302 
3303 	offset += skb->csum_offset;
3304 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3305 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3306 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3307 			  offset + sizeof(__sum16), skb_headlen(skb));
3308 		goto out;
3309 	}
3310 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3311 	if (ret)
3312 		goto out;
3313 
3314 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3315 out_set_summed:
3316 	skb->ip_summed = CHECKSUM_NONE;
3317 out:
3318 	return ret;
3319 }
3320 EXPORT_SYMBOL(skb_checksum_help);
3321 
3322 int skb_crc32c_csum_help(struct sk_buff *skb)
3323 {
3324 	__le32 crc32c_csum;
3325 	int ret = 0, offset, start;
3326 
3327 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3328 		goto out;
3329 
3330 	if (unlikely(skb_is_gso(skb)))
3331 		goto out;
3332 
3333 	/* Before computing a checksum, we should make sure no frag could
3334 	 * be modified by an external entity : checksum could be wrong.
3335 	 */
3336 	if (unlikely(skb_has_shared_frag(skb))) {
3337 		ret = __skb_linearize(skb);
3338 		if (ret)
3339 			goto out;
3340 	}
3341 	start = skb_checksum_start_offset(skb);
3342 	offset = start + offsetof(struct sctphdr, checksum);
3343 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3344 		ret = -EINVAL;
3345 		goto out;
3346 	}
3347 
3348 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3349 	if (ret)
3350 		goto out;
3351 
3352 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3353 						  skb->len - start, ~(__u32)0,
3354 						  crc32c_csum_stub));
3355 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3356 	skb_reset_csum_not_inet(skb);
3357 out:
3358 	return ret;
3359 }
3360 
3361 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3362 {
3363 	__be16 type = skb->protocol;
3364 
3365 	/* Tunnel gso handlers can set protocol to ethernet. */
3366 	if (type == htons(ETH_P_TEB)) {
3367 		struct ethhdr *eth;
3368 
3369 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3370 			return 0;
3371 
3372 		eth = (struct ethhdr *)skb->data;
3373 		type = eth->h_proto;
3374 	}
3375 
3376 	return vlan_get_protocol_and_depth(skb, type, depth);
3377 }
3378 
3379 
3380 /* Take action when hardware reception checksum errors are detected. */
3381 #ifdef CONFIG_BUG
3382 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3383 {
3384 	netdev_err(dev, "hw csum failure\n");
3385 	skb_dump(KERN_ERR, skb, true);
3386 	dump_stack();
3387 }
3388 
3389 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3390 {
3391 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3392 }
3393 EXPORT_SYMBOL(netdev_rx_csum_fault);
3394 #endif
3395 
3396 /* XXX: check that highmem exists at all on the given machine. */
3397 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3398 {
3399 #ifdef CONFIG_HIGHMEM
3400 	int i;
3401 
3402 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3403 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3404 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3405 
3406 			if (PageHighMem(skb_frag_page(frag)))
3407 				return 1;
3408 		}
3409 	}
3410 #endif
3411 	return 0;
3412 }
3413 
3414 /* If MPLS offload request, verify we are testing hardware MPLS features
3415  * instead of standard features for the netdev.
3416  */
3417 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3418 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3419 					   netdev_features_t features,
3420 					   __be16 type)
3421 {
3422 	if (eth_p_mpls(type))
3423 		features &= skb->dev->mpls_features;
3424 
3425 	return features;
3426 }
3427 #else
3428 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3429 					   netdev_features_t features,
3430 					   __be16 type)
3431 {
3432 	return features;
3433 }
3434 #endif
3435 
3436 static netdev_features_t harmonize_features(struct sk_buff *skb,
3437 	netdev_features_t features)
3438 {
3439 	__be16 type;
3440 
3441 	type = skb_network_protocol(skb, NULL);
3442 	features = net_mpls_features(skb, features, type);
3443 
3444 	if (skb->ip_summed != CHECKSUM_NONE &&
3445 	    !can_checksum_protocol(features, type)) {
3446 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3447 	}
3448 	if (illegal_highdma(skb->dev, skb))
3449 		features &= ~NETIF_F_SG;
3450 
3451 	return features;
3452 }
3453 
3454 netdev_features_t passthru_features_check(struct sk_buff *skb,
3455 					  struct net_device *dev,
3456 					  netdev_features_t features)
3457 {
3458 	return features;
3459 }
3460 EXPORT_SYMBOL(passthru_features_check);
3461 
3462 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3463 					     struct net_device *dev,
3464 					     netdev_features_t features)
3465 {
3466 	return vlan_features_check(skb, features);
3467 }
3468 
3469 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3470 					    struct net_device *dev,
3471 					    netdev_features_t features)
3472 {
3473 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3474 
3475 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3476 		return features & ~NETIF_F_GSO_MASK;
3477 
3478 	if (!skb_shinfo(skb)->gso_type) {
3479 		skb_warn_bad_offload(skb);
3480 		return features & ~NETIF_F_GSO_MASK;
3481 	}
3482 
3483 	/* Support for GSO partial features requires software
3484 	 * intervention before we can actually process the packets
3485 	 * so we need to strip support for any partial features now
3486 	 * and we can pull them back in after we have partially
3487 	 * segmented the frame.
3488 	 */
3489 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3490 		features &= ~dev->gso_partial_features;
3491 
3492 	/* Make sure to clear the IPv4 ID mangling feature if the
3493 	 * IPv4 header has the potential to be fragmented.
3494 	 */
3495 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3496 		struct iphdr *iph = skb->encapsulation ?
3497 				    inner_ip_hdr(skb) : ip_hdr(skb);
3498 
3499 		if (!(iph->frag_off & htons(IP_DF)))
3500 			features &= ~NETIF_F_TSO_MANGLEID;
3501 	}
3502 
3503 	return features;
3504 }
3505 
3506 netdev_features_t netif_skb_features(struct sk_buff *skb)
3507 {
3508 	struct net_device *dev = skb->dev;
3509 	netdev_features_t features = dev->features;
3510 
3511 	if (skb_is_gso(skb))
3512 		features = gso_features_check(skb, dev, features);
3513 
3514 	/* If encapsulation offload request, verify we are testing
3515 	 * hardware encapsulation features instead of standard
3516 	 * features for the netdev
3517 	 */
3518 	if (skb->encapsulation)
3519 		features &= dev->hw_enc_features;
3520 
3521 	if (skb_vlan_tagged(skb))
3522 		features = netdev_intersect_features(features,
3523 						     dev->vlan_features |
3524 						     NETIF_F_HW_VLAN_CTAG_TX |
3525 						     NETIF_F_HW_VLAN_STAG_TX);
3526 
3527 	if (dev->netdev_ops->ndo_features_check)
3528 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3529 								features);
3530 	else
3531 		features &= dflt_features_check(skb, dev, features);
3532 
3533 	return harmonize_features(skb, features);
3534 }
3535 EXPORT_SYMBOL(netif_skb_features);
3536 
3537 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3538 		    struct netdev_queue *txq, bool more)
3539 {
3540 	unsigned int len;
3541 	int rc;
3542 
3543 	if (dev_nit_active(dev))
3544 		dev_queue_xmit_nit(skb, dev);
3545 
3546 	len = skb->len;
3547 	trace_net_dev_start_xmit(skb, dev);
3548 	rc = netdev_start_xmit(skb, dev, txq, more);
3549 	trace_net_dev_xmit(skb, rc, dev, len);
3550 
3551 	return rc;
3552 }
3553 
3554 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3555 				    struct netdev_queue *txq, int *ret)
3556 {
3557 	struct sk_buff *skb = first;
3558 	int rc = NETDEV_TX_OK;
3559 
3560 	while (skb) {
3561 		struct sk_buff *next = skb->next;
3562 
3563 		skb_mark_not_on_list(skb);
3564 		rc = xmit_one(skb, dev, txq, next != NULL);
3565 		if (unlikely(!dev_xmit_complete(rc))) {
3566 			skb->next = next;
3567 			goto out;
3568 		}
3569 
3570 		skb = next;
3571 		if (netif_tx_queue_stopped(txq) && skb) {
3572 			rc = NETDEV_TX_BUSY;
3573 			break;
3574 		}
3575 	}
3576 
3577 out:
3578 	*ret = rc;
3579 	return skb;
3580 }
3581 
3582 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3583 					  netdev_features_t features)
3584 {
3585 	if (skb_vlan_tag_present(skb) &&
3586 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3587 		skb = __vlan_hwaccel_push_inside(skb);
3588 	return skb;
3589 }
3590 
3591 int skb_csum_hwoffload_help(struct sk_buff *skb,
3592 			    const netdev_features_t features)
3593 {
3594 	if (unlikely(skb_csum_is_sctp(skb)))
3595 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3596 			skb_crc32c_csum_help(skb);
3597 
3598 	if (features & NETIF_F_HW_CSUM)
3599 		return 0;
3600 
3601 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3602 		switch (skb->csum_offset) {
3603 		case offsetof(struct tcphdr, check):
3604 		case offsetof(struct udphdr, check):
3605 			return 0;
3606 		}
3607 	}
3608 
3609 	return skb_checksum_help(skb);
3610 }
3611 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3612 
3613 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3614 {
3615 	netdev_features_t features;
3616 
3617 	features = netif_skb_features(skb);
3618 	skb = validate_xmit_vlan(skb, features);
3619 	if (unlikely(!skb))
3620 		goto out_null;
3621 
3622 	skb = sk_validate_xmit_skb(skb, dev);
3623 	if (unlikely(!skb))
3624 		goto out_null;
3625 
3626 	if (netif_needs_gso(skb, features)) {
3627 		struct sk_buff *segs;
3628 
3629 		segs = skb_gso_segment(skb, features);
3630 		if (IS_ERR(segs)) {
3631 			goto out_kfree_skb;
3632 		} else if (segs) {
3633 			consume_skb(skb);
3634 			skb = segs;
3635 		}
3636 	} else {
3637 		if (skb_needs_linearize(skb, features) &&
3638 		    __skb_linearize(skb))
3639 			goto out_kfree_skb;
3640 
3641 		/* If packet is not checksummed and device does not
3642 		 * support checksumming for this protocol, complete
3643 		 * checksumming here.
3644 		 */
3645 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3646 			if (skb->encapsulation)
3647 				skb_set_inner_transport_header(skb,
3648 							       skb_checksum_start_offset(skb));
3649 			else
3650 				skb_set_transport_header(skb,
3651 							 skb_checksum_start_offset(skb));
3652 			if (skb_csum_hwoffload_help(skb, features))
3653 				goto out_kfree_skb;
3654 		}
3655 	}
3656 
3657 	skb = validate_xmit_xfrm(skb, features, again);
3658 
3659 	return skb;
3660 
3661 out_kfree_skb:
3662 	kfree_skb(skb);
3663 out_null:
3664 	dev_core_stats_tx_dropped_inc(dev);
3665 	return NULL;
3666 }
3667 
3668 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3669 {
3670 	struct sk_buff *next, *head = NULL, *tail;
3671 
3672 	for (; skb != NULL; skb = next) {
3673 		next = skb->next;
3674 		skb_mark_not_on_list(skb);
3675 
3676 		/* in case skb wont be segmented, point to itself */
3677 		skb->prev = skb;
3678 
3679 		skb = validate_xmit_skb(skb, dev, again);
3680 		if (!skb)
3681 			continue;
3682 
3683 		if (!head)
3684 			head = skb;
3685 		else
3686 			tail->next = skb;
3687 		/* If skb was segmented, skb->prev points to
3688 		 * the last segment. If not, it still contains skb.
3689 		 */
3690 		tail = skb->prev;
3691 	}
3692 	return head;
3693 }
3694 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3695 
3696 static void qdisc_pkt_len_init(struct sk_buff *skb)
3697 {
3698 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3699 
3700 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3701 
3702 	/* To get more precise estimation of bytes sent on wire,
3703 	 * we add to pkt_len the headers size of all segments
3704 	 */
3705 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3706 		u16 gso_segs = shinfo->gso_segs;
3707 		unsigned int hdr_len;
3708 
3709 		/* mac layer + network layer */
3710 		hdr_len = skb_transport_offset(skb);
3711 
3712 		/* + transport layer */
3713 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3714 			const struct tcphdr *th;
3715 			struct tcphdr _tcphdr;
3716 
3717 			th = skb_header_pointer(skb, hdr_len,
3718 						sizeof(_tcphdr), &_tcphdr);
3719 			if (likely(th))
3720 				hdr_len += __tcp_hdrlen(th);
3721 		} else {
3722 			struct udphdr _udphdr;
3723 
3724 			if (skb_header_pointer(skb, hdr_len,
3725 					       sizeof(_udphdr), &_udphdr))
3726 				hdr_len += sizeof(struct udphdr);
3727 		}
3728 
3729 		if (shinfo->gso_type & SKB_GSO_DODGY)
3730 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3731 						shinfo->gso_size);
3732 
3733 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3734 	}
3735 }
3736 
3737 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3738 			     struct sk_buff **to_free,
3739 			     struct netdev_queue *txq)
3740 {
3741 	int rc;
3742 
3743 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3744 	if (rc == NET_XMIT_SUCCESS)
3745 		trace_qdisc_enqueue(q, txq, skb);
3746 	return rc;
3747 }
3748 
3749 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3750 				 struct net_device *dev,
3751 				 struct netdev_queue *txq)
3752 {
3753 	spinlock_t *root_lock = qdisc_lock(q);
3754 	struct sk_buff *to_free = NULL;
3755 	bool contended;
3756 	int rc;
3757 
3758 	qdisc_calculate_pkt_len(skb, q);
3759 
3760 	if (q->flags & TCQ_F_NOLOCK) {
3761 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3762 		    qdisc_run_begin(q)) {
3763 			/* Retest nolock_qdisc_is_empty() within the protection
3764 			 * of q->seqlock to protect from racing with requeuing.
3765 			 */
3766 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3767 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3768 				__qdisc_run(q);
3769 				qdisc_run_end(q);
3770 
3771 				goto no_lock_out;
3772 			}
3773 
3774 			qdisc_bstats_cpu_update(q, skb);
3775 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3776 			    !nolock_qdisc_is_empty(q))
3777 				__qdisc_run(q);
3778 
3779 			qdisc_run_end(q);
3780 			return NET_XMIT_SUCCESS;
3781 		}
3782 
3783 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3784 		qdisc_run(q);
3785 
3786 no_lock_out:
3787 		if (unlikely(to_free))
3788 			kfree_skb_list_reason(to_free,
3789 					      SKB_DROP_REASON_QDISC_DROP);
3790 		return rc;
3791 	}
3792 
3793 	/*
3794 	 * Heuristic to force contended enqueues to serialize on a
3795 	 * separate lock before trying to get qdisc main lock.
3796 	 * This permits qdisc->running owner to get the lock more
3797 	 * often and dequeue packets faster.
3798 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3799 	 * and then other tasks will only enqueue packets. The packets will be
3800 	 * sent after the qdisc owner is scheduled again. To prevent this
3801 	 * scenario the task always serialize on the lock.
3802 	 */
3803 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3804 	if (unlikely(contended))
3805 		spin_lock(&q->busylock);
3806 
3807 	spin_lock(root_lock);
3808 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3809 		__qdisc_drop(skb, &to_free);
3810 		rc = NET_XMIT_DROP;
3811 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3812 		   qdisc_run_begin(q)) {
3813 		/*
3814 		 * This is a work-conserving queue; there are no old skbs
3815 		 * waiting to be sent out; and the qdisc is not running -
3816 		 * xmit the skb directly.
3817 		 */
3818 
3819 		qdisc_bstats_update(q, skb);
3820 
3821 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3822 			if (unlikely(contended)) {
3823 				spin_unlock(&q->busylock);
3824 				contended = false;
3825 			}
3826 			__qdisc_run(q);
3827 		}
3828 
3829 		qdisc_run_end(q);
3830 		rc = NET_XMIT_SUCCESS;
3831 	} else {
3832 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3833 		if (qdisc_run_begin(q)) {
3834 			if (unlikely(contended)) {
3835 				spin_unlock(&q->busylock);
3836 				contended = false;
3837 			}
3838 			__qdisc_run(q);
3839 			qdisc_run_end(q);
3840 		}
3841 	}
3842 	spin_unlock(root_lock);
3843 	if (unlikely(to_free))
3844 		kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3845 	if (unlikely(contended))
3846 		spin_unlock(&q->busylock);
3847 	return rc;
3848 }
3849 
3850 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3851 static void skb_update_prio(struct sk_buff *skb)
3852 {
3853 	const struct netprio_map *map;
3854 	const struct sock *sk;
3855 	unsigned int prioidx;
3856 
3857 	if (skb->priority)
3858 		return;
3859 	map = rcu_dereference_bh(skb->dev->priomap);
3860 	if (!map)
3861 		return;
3862 	sk = skb_to_full_sk(skb);
3863 	if (!sk)
3864 		return;
3865 
3866 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3867 
3868 	if (prioidx < map->priomap_len)
3869 		skb->priority = map->priomap[prioidx];
3870 }
3871 #else
3872 #define skb_update_prio(skb)
3873 #endif
3874 
3875 /**
3876  *	dev_loopback_xmit - loop back @skb
3877  *	@net: network namespace this loopback is happening in
3878  *	@sk:  sk needed to be a netfilter okfn
3879  *	@skb: buffer to transmit
3880  */
3881 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3882 {
3883 	skb_reset_mac_header(skb);
3884 	__skb_pull(skb, skb_network_offset(skb));
3885 	skb->pkt_type = PACKET_LOOPBACK;
3886 	if (skb->ip_summed == CHECKSUM_NONE)
3887 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3888 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3889 	skb_dst_force(skb);
3890 	netif_rx(skb);
3891 	return 0;
3892 }
3893 EXPORT_SYMBOL(dev_loopback_xmit);
3894 
3895 #ifdef CONFIG_NET_EGRESS
3896 static struct netdev_queue *
3897 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3898 {
3899 	int qm = skb_get_queue_mapping(skb);
3900 
3901 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3902 }
3903 
3904 static bool netdev_xmit_txqueue_skipped(void)
3905 {
3906 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3907 }
3908 
3909 void netdev_xmit_skip_txqueue(bool skip)
3910 {
3911 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3912 }
3913 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3914 #endif /* CONFIG_NET_EGRESS */
3915 
3916 #ifdef CONFIG_NET_XGRESS
3917 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb)
3918 {
3919 	int ret = TC_ACT_UNSPEC;
3920 #ifdef CONFIG_NET_CLS_ACT
3921 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3922 	struct tcf_result res;
3923 
3924 	if (!miniq)
3925 		return ret;
3926 
3927 	tc_skb_cb(skb)->mru = 0;
3928 	tc_skb_cb(skb)->post_ct = false;
3929 
3930 	mini_qdisc_bstats_cpu_update(miniq, skb);
3931 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3932 	/* Only tcf related quirks below. */
3933 	switch (ret) {
3934 	case TC_ACT_SHOT:
3935 		mini_qdisc_qstats_cpu_drop(miniq);
3936 		break;
3937 	case TC_ACT_OK:
3938 	case TC_ACT_RECLASSIFY:
3939 		skb->tc_index = TC_H_MIN(res.classid);
3940 		break;
3941 	}
3942 #endif /* CONFIG_NET_CLS_ACT */
3943 	return ret;
3944 }
3945 
3946 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3947 
3948 void tcx_inc(void)
3949 {
3950 	static_branch_inc(&tcx_needed_key);
3951 }
3952 
3953 void tcx_dec(void)
3954 {
3955 	static_branch_dec(&tcx_needed_key);
3956 }
3957 
3958 static __always_inline enum tcx_action_base
3959 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3960 	const bool needs_mac)
3961 {
3962 	const struct bpf_mprog_fp *fp;
3963 	const struct bpf_prog *prog;
3964 	int ret = TCX_NEXT;
3965 
3966 	if (needs_mac)
3967 		__skb_push(skb, skb->mac_len);
3968 	bpf_mprog_foreach_prog(entry, fp, prog) {
3969 		bpf_compute_data_pointers(skb);
3970 		ret = bpf_prog_run(prog, skb);
3971 		if (ret != TCX_NEXT)
3972 			break;
3973 	}
3974 	if (needs_mac)
3975 		__skb_pull(skb, skb->mac_len);
3976 	return tcx_action_code(skb, ret);
3977 }
3978 
3979 static __always_inline struct sk_buff *
3980 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3981 		   struct net_device *orig_dev, bool *another)
3982 {
3983 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
3984 	int sch_ret;
3985 
3986 	if (!entry)
3987 		return skb;
3988 	if (*pt_prev) {
3989 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3990 		*pt_prev = NULL;
3991 	}
3992 
3993 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3994 	tcx_set_ingress(skb, true);
3995 
3996 	if (static_branch_unlikely(&tcx_needed_key)) {
3997 		sch_ret = tcx_run(entry, skb, true);
3998 		if (sch_ret != TC_ACT_UNSPEC)
3999 			goto ingress_verdict;
4000 	}
4001 	sch_ret = tc_run(tcx_entry(entry), skb);
4002 ingress_verdict:
4003 	switch (sch_ret) {
4004 	case TC_ACT_REDIRECT:
4005 		/* skb_mac_header check was done by BPF, so we can safely
4006 		 * push the L2 header back before redirecting to another
4007 		 * netdev.
4008 		 */
4009 		__skb_push(skb, skb->mac_len);
4010 		if (skb_do_redirect(skb) == -EAGAIN) {
4011 			__skb_pull(skb, skb->mac_len);
4012 			*another = true;
4013 			break;
4014 		}
4015 		*ret = NET_RX_SUCCESS;
4016 		return NULL;
4017 	case TC_ACT_SHOT:
4018 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
4019 		*ret = NET_RX_DROP;
4020 		return NULL;
4021 	/* used by tc_run */
4022 	case TC_ACT_STOLEN:
4023 	case TC_ACT_QUEUED:
4024 	case TC_ACT_TRAP:
4025 		consume_skb(skb);
4026 		fallthrough;
4027 	case TC_ACT_CONSUMED:
4028 		*ret = NET_RX_SUCCESS;
4029 		return NULL;
4030 	}
4031 
4032 	return skb;
4033 }
4034 
4035 static __always_inline struct sk_buff *
4036 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4037 {
4038 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4039 	int sch_ret;
4040 
4041 	if (!entry)
4042 		return skb;
4043 
4044 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4045 	 * already set by the caller.
4046 	 */
4047 	if (static_branch_unlikely(&tcx_needed_key)) {
4048 		sch_ret = tcx_run(entry, skb, false);
4049 		if (sch_ret != TC_ACT_UNSPEC)
4050 			goto egress_verdict;
4051 	}
4052 	sch_ret = tc_run(tcx_entry(entry), skb);
4053 egress_verdict:
4054 	switch (sch_ret) {
4055 	case TC_ACT_REDIRECT:
4056 		/* No need to push/pop skb's mac_header here on egress! */
4057 		skb_do_redirect(skb);
4058 		*ret = NET_XMIT_SUCCESS;
4059 		return NULL;
4060 	case TC_ACT_SHOT:
4061 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
4062 		*ret = NET_XMIT_DROP;
4063 		return NULL;
4064 	/* used by tc_run */
4065 	case TC_ACT_STOLEN:
4066 	case TC_ACT_QUEUED:
4067 	case TC_ACT_TRAP:
4068 		consume_skb(skb);
4069 		fallthrough;
4070 	case TC_ACT_CONSUMED:
4071 		*ret = NET_XMIT_SUCCESS;
4072 		return NULL;
4073 	}
4074 
4075 	return skb;
4076 }
4077 #else
4078 static __always_inline struct sk_buff *
4079 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4080 		   struct net_device *orig_dev, bool *another)
4081 {
4082 	return skb;
4083 }
4084 
4085 static __always_inline struct sk_buff *
4086 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4087 {
4088 	return skb;
4089 }
4090 #endif /* CONFIG_NET_XGRESS */
4091 
4092 #ifdef CONFIG_XPS
4093 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4094 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4095 {
4096 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4097 	struct xps_map *map;
4098 	int queue_index = -1;
4099 
4100 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4101 		return queue_index;
4102 
4103 	tci *= dev_maps->num_tc;
4104 	tci += tc;
4105 
4106 	map = rcu_dereference(dev_maps->attr_map[tci]);
4107 	if (map) {
4108 		if (map->len == 1)
4109 			queue_index = map->queues[0];
4110 		else
4111 			queue_index = map->queues[reciprocal_scale(
4112 						skb_get_hash(skb), map->len)];
4113 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4114 			queue_index = -1;
4115 	}
4116 	return queue_index;
4117 }
4118 #endif
4119 
4120 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4121 			 struct sk_buff *skb)
4122 {
4123 #ifdef CONFIG_XPS
4124 	struct xps_dev_maps *dev_maps;
4125 	struct sock *sk = skb->sk;
4126 	int queue_index = -1;
4127 
4128 	if (!static_key_false(&xps_needed))
4129 		return -1;
4130 
4131 	rcu_read_lock();
4132 	if (!static_key_false(&xps_rxqs_needed))
4133 		goto get_cpus_map;
4134 
4135 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4136 	if (dev_maps) {
4137 		int tci = sk_rx_queue_get(sk);
4138 
4139 		if (tci >= 0)
4140 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4141 							  tci);
4142 	}
4143 
4144 get_cpus_map:
4145 	if (queue_index < 0) {
4146 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4147 		if (dev_maps) {
4148 			unsigned int tci = skb->sender_cpu - 1;
4149 
4150 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4151 							  tci);
4152 		}
4153 	}
4154 	rcu_read_unlock();
4155 
4156 	return queue_index;
4157 #else
4158 	return -1;
4159 #endif
4160 }
4161 
4162 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4163 		     struct net_device *sb_dev)
4164 {
4165 	return 0;
4166 }
4167 EXPORT_SYMBOL(dev_pick_tx_zero);
4168 
4169 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4170 		       struct net_device *sb_dev)
4171 {
4172 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4173 }
4174 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4175 
4176 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4177 		     struct net_device *sb_dev)
4178 {
4179 	struct sock *sk = skb->sk;
4180 	int queue_index = sk_tx_queue_get(sk);
4181 
4182 	sb_dev = sb_dev ? : dev;
4183 
4184 	if (queue_index < 0 || skb->ooo_okay ||
4185 	    queue_index >= dev->real_num_tx_queues) {
4186 		int new_index = get_xps_queue(dev, sb_dev, skb);
4187 
4188 		if (new_index < 0)
4189 			new_index = skb_tx_hash(dev, sb_dev, skb);
4190 
4191 		if (queue_index != new_index && sk &&
4192 		    sk_fullsock(sk) &&
4193 		    rcu_access_pointer(sk->sk_dst_cache))
4194 			sk_tx_queue_set(sk, new_index);
4195 
4196 		queue_index = new_index;
4197 	}
4198 
4199 	return queue_index;
4200 }
4201 EXPORT_SYMBOL(netdev_pick_tx);
4202 
4203 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4204 					 struct sk_buff *skb,
4205 					 struct net_device *sb_dev)
4206 {
4207 	int queue_index = 0;
4208 
4209 #ifdef CONFIG_XPS
4210 	u32 sender_cpu = skb->sender_cpu - 1;
4211 
4212 	if (sender_cpu >= (u32)NR_CPUS)
4213 		skb->sender_cpu = raw_smp_processor_id() + 1;
4214 #endif
4215 
4216 	if (dev->real_num_tx_queues != 1) {
4217 		const struct net_device_ops *ops = dev->netdev_ops;
4218 
4219 		if (ops->ndo_select_queue)
4220 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4221 		else
4222 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4223 
4224 		queue_index = netdev_cap_txqueue(dev, queue_index);
4225 	}
4226 
4227 	skb_set_queue_mapping(skb, queue_index);
4228 	return netdev_get_tx_queue(dev, queue_index);
4229 }
4230 
4231 /**
4232  * __dev_queue_xmit() - transmit a buffer
4233  * @skb:	buffer to transmit
4234  * @sb_dev:	suboordinate device used for L2 forwarding offload
4235  *
4236  * Queue a buffer for transmission to a network device. The caller must
4237  * have set the device and priority and built the buffer before calling
4238  * this function. The function can be called from an interrupt.
4239  *
4240  * When calling this method, interrupts MUST be enabled. This is because
4241  * the BH enable code must have IRQs enabled so that it will not deadlock.
4242  *
4243  * Regardless of the return value, the skb is consumed, so it is currently
4244  * difficult to retry a send to this method. (You can bump the ref count
4245  * before sending to hold a reference for retry if you are careful.)
4246  *
4247  * Return:
4248  * * 0				- buffer successfully transmitted
4249  * * positive qdisc return code	- NET_XMIT_DROP etc.
4250  * * negative errno		- other errors
4251  */
4252 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4253 {
4254 	struct net_device *dev = skb->dev;
4255 	struct netdev_queue *txq = NULL;
4256 	struct Qdisc *q;
4257 	int rc = -ENOMEM;
4258 	bool again = false;
4259 
4260 	skb_reset_mac_header(skb);
4261 	skb_assert_len(skb);
4262 
4263 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4264 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4265 
4266 	/* Disable soft irqs for various locks below. Also
4267 	 * stops preemption for RCU.
4268 	 */
4269 	rcu_read_lock_bh();
4270 
4271 	skb_update_prio(skb);
4272 
4273 	qdisc_pkt_len_init(skb);
4274 	tcx_set_ingress(skb, false);
4275 #ifdef CONFIG_NET_EGRESS
4276 	if (static_branch_unlikely(&egress_needed_key)) {
4277 		if (nf_hook_egress_active()) {
4278 			skb = nf_hook_egress(skb, &rc, dev);
4279 			if (!skb)
4280 				goto out;
4281 		}
4282 
4283 		netdev_xmit_skip_txqueue(false);
4284 
4285 		nf_skip_egress(skb, true);
4286 		skb = sch_handle_egress(skb, &rc, dev);
4287 		if (!skb)
4288 			goto out;
4289 		nf_skip_egress(skb, false);
4290 
4291 		if (netdev_xmit_txqueue_skipped())
4292 			txq = netdev_tx_queue_mapping(dev, skb);
4293 	}
4294 #endif
4295 	/* If device/qdisc don't need skb->dst, release it right now while
4296 	 * its hot in this cpu cache.
4297 	 */
4298 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4299 		skb_dst_drop(skb);
4300 	else
4301 		skb_dst_force(skb);
4302 
4303 	if (!txq)
4304 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4305 
4306 	q = rcu_dereference_bh(txq->qdisc);
4307 
4308 	trace_net_dev_queue(skb);
4309 	if (q->enqueue) {
4310 		rc = __dev_xmit_skb(skb, q, dev, txq);
4311 		goto out;
4312 	}
4313 
4314 	/* The device has no queue. Common case for software devices:
4315 	 * loopback, all the sorts of tunnels...
4316 
4317 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4318 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4319 	 * counters.)
4320 	 * However, it is possible, that they rely on protection
4321 	 * made by us here.
4322 
4323 	 * Check this and shot the lock. It is not prone from deadlocks.
4324 	 *Either shot noqueue qdisc, it is even simpler 8)
4325 	 */
4326 	if (dev->flags & IFF_UP) {
4327 		int cpu = smp_processor_id(); /* ok because BHs are off */
4328 
4329 		/* Other cpus might concurrently change txq->xmit_lock_owner
4330 		 * to -1 or to their cpu id, but not to our id.
4331 		 */
4332 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4333 			if (dev_xmit_recursion())
4334 				goto recursion_alert;
4335 
4336 			skb = validate_xmit_skb(skb, dev, &again);
4337 			if (!skb)
4338 				goto out;
4339 
4340 			HARD_TX_LOCK(dev, txq, cpu);
4341 
4342 			if (!netif_xmit_stopped(txq)) {
4343 				dev_xmit_recursion_inc();
4344 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4345 				dev_xmit_recursion_dec();
4346 				if (dev_xmit_complete(rc)) {
4347 					HARD_TX_UNLOCK(dev, txq);
4348 					goto out;
4349 				}
4350 			}
4351 			HARD_TX_UNLOCK(dev, txq);
4352 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4353 					     dev->name);
4354 		} else {
4355 			/* Recursion is detected! It is possible,
4356 			 * unfortunately
4357 			 */
4358 recursion_alert:
4359 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4360 					     dev->name);
4361 		}
4362 	}
4363 
4364 	rc = -ENETDOWN;
4365 	rcu_read_unlock_bh();
4366 
4367 	dev_core_stats_tx_dropped_inc(dev);
4368 	kfree_skb_list(skb);
4369 	return rc;
4370 out:
4371 	rcu_read_unlock_bh();
4372 	return rc;
4373 }
4374 EXPORT_SYMBOL(__dev_queue_xmit);
4375 
4376 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4377 {
4378 	struct net_device *dev = skb->dev;
4379 	struct sk_buff *orig_skb = skb;
4380 	struct netdev_queue *txq;
4381 	int ret = NETDEV_TX_BUSY;
4382 	bool again = false;
4383 
4384 	if (unlikely(!netif_running(dev) ||
4385 		     !netif_carrier_ok(dev)))
4386 		goto drop;
4387 
4388 	skb = validate_xmit_skb_list(skb, dev, &again);
4389 	if (skb != orig_skb)
4390 		goto drop;
4391 
4392 	skb_set_queue_mapping(skb, queue_id);
4393 	txq = skb_get_tx_queue(dev, skb);
4394 
4395 	local_bh_disable();
4396 
4397 	dev_xmit_recursion_inc();
4398 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4399 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4400 		ret = netdev_start_xmit(skb, dev, txq, false);
4401 	HARD_TX_UNLOCK(dev, txq);
4402 	dev_xmit_recursion_dec();
4403 
4404 	local_bh_enable();
4405 	return ret;
4406 drop:
4407 	dev_core_stats_tx_dropped_inc(dev);
4408 	kfree_skb_list(skb);
4409 	return NET_XMIT_DROP;
4410 }
4411 EXPORT_SYMBOL(__dev_direct_xmit);
4412 
4413 /*************************************************************************
4414  *			Receiver routines
4415  *************************************************************************/
4416 
4417 int netdev_max_backlog __read_mostly = 1000;
4418 EXPORT_SYMBOL(netdev_max_backlog);
4419 
4420 int netdev_tstamp_prequeue __read_mostly = 1;
4421 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4422 int netdev_budget __read_mostly = 300;
4423 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4424 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4425 int weight_p __read_mostly = 64;           /* old backlog weight */
4426 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4427 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4428 int dev_rx_weight __read_mostly = 64;
4429 int dev_tx_weight __read_mostly = 64;
4430 
4431 /* Called with irq disabled */
4432 static inline void ____napi_schedule(struct softnet_data *sd,
4433 				     struct napi_struct *napi)
4434 {
4435 	struct task_struct *thread;
4436 
4437 	lockdep_assert_irqs_disabled();
4438 
4439 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4440 		/* Paired with smp_mb__before_atomic() in
4441 		 * napi_enable()/dev_set_threaded().
4442 		 * Use READ_ONCE() to guarantee a complete
4443 		 * read on napi->thread. Only call
4444 		 * wake_up_process() when it's not NULL.
4445 		 */
4446 		thread = READ_ONCE(napi->thread);
4447 		if (thread) {
4448 			/* Avoid doing set_bit() if the thread is in
4449 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4450 			 * makes sure to proceed with napi polling
4451 			 * if the thread is explicitly woken from here.
4452 			 */
4453 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4454 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4455 			wake_up_process(thread);
4456 			return;
4457 		}
4458 	}
4459 
4460 	list_add_tail(&napi->poll_list, &sd->poll_list);
4461 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4462 	/* If not called from net_rx_action()
4463 	 * we have to raise NET_RX_SOFTIRQ.
4464 	 */
4465 	if (!sd->in_net_rx_action)
4466 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4467 }
4468 
4469 #ifdef CONFIG_RPS
4470 
4471 /* One global table that all flow-based protocols share. */
4472 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4473 EXPORT_SYMBOL(rps_sock_flow_table);
4474 u32 rps_cpu_mask __read_mostly;
4475 EXPORT_SYMBOL(rps_cpu_mask);
4476 
4477 struct static_key_false rps_needed __read_mostly;
4478 EXPORT_SYMBOL(rps_needed);
4479 struct static_key_false rfs_needed __read_mostly;
4480 EXPORT_SYMBOL(rfs_needed);
4481 
4482 static struct rps_dev_flow *
4483 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4484 	    struct rps_dev_flow *rflow, u16 next_cpu)
4485 {
4486 	if (next_cpu < nr_cpu_ids) {
4487 #ifdef CONFIG_RFS_ACCEL
4488 		struct netdev_rx_queue *rxqueue;
4489 		struct rps_dev_flow_table *flow_table;
4490 		struct rps_dev_flow *old_rflow;
4491 		u32 flow_id;
4492 		u16 rxq_index;
4493 		int rc;
4494 
4495 		/* Should we steer this flow to a different hardware queue? */
4496 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4497 		    !(dev->features & NETIF_F_NTUPLE))
4498 			goto out;
4499 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4500 		if (rxq_index == skb_get_rx_queue(skb))
4501 			goto out;
4502 
4503 		rxqueue = dev->_rx + rxq_index;
4504 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4505 		if (!flow_table)
4506 			goto out;
4507 		flow_id = skb_get_hash(skb) & flow_table->mask;
4508 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4509 							rxq_index, flow_id);
4510 		if (rc < 0)
4511 			goto out;
4512 		old_rflow = rflow;
4513 		rflow = &flow_table->flows[flow_id];
4514 		rflow->filter = rc;
4515 		if (old_rflow->filter == rflow->filter)
4516 			old_rflow->filter = RPS_NO_FILTER;
4517 	out:
4518 #endif
4519 		rflow->last_qtail =
4520 			per_cpu(softnet_data, next_cpu).input_queue_head;
4521 	}
4522 
4523 	rflow->cpu = next_cpu;
4524 	return rflow;
4525 }
4526 
4527 /*
4528  * get_rps_cpu is called from netif_receive_skb and returns the target
4529  * CPU from the RPS map of the receiving queue for a given skb.
4530  * rcu_read_lock must be held on entry.
4531  */
4532 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4533 		       struct rps_dev_flow **rflowp)
4534 {
4535 	const struct rps_sock_flow_table *sock_flow_table;
4536 	struct netdev_rx_queue *rxqueue = dev->_rx;
4537 	struct rps_dev_flow_table *flow_table;
4538 	struct rps_map *map;
4539 	int cpu = -1;
4540 	u32 tcpu;
4541 	u32 hash;
4542 
4543 	if (skb_rx_queue_recorded(skb)) {
4544 		u16 index = skb_get_rx_queue(skb);
4545 
4546 		if (unlikely(index >= dev->real_num_rx_queues)) {
4547 			WARN_ONCE(dev->real_num_rx_queues > 1,
4548 				  "%s received packet on queue %u, but number "
4549 				  "of RX queues is %u\n",
4550 				  dev->name, index, dev->real_num_rx_queues);
4551 			goto done;
4552 		}
4553 		rxqueue += index;
4554 	}
4555 
4556 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4557 
4558 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4559 	map = rcu_dereference(rxqueue->rps_map);
4560 	if (!flow_table && !map)
4561 		goto done;
4562 
4563 	skb_reset_network_header(skb);
4564 	hash = skb_get_hash(skb);
4565 	if (!hash)
4566 		goto done;
4567 
4568 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4569 	if (flow_table && sock_flow_table) {
4570 		struct rps_dev_flow *rflow;
4571 		u32 next_cpu;
4572 		u32 ident;
4573 
4574 		/* First check into global flow table if there is a match.
4575 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4576 		 */
4577 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4578 		if ((ident ^ hash) & ~rps_cpu_mask)
4579 			goto try_rps;
4580 
4581 		next_cpu = ident & rps_cpu_mask;
4582 
4583 		/* OK, now we know there is a match,
4584 		 * we can look at the local (per receive queue) flow table
4585 		 */
4586 		rflow = &flow_table->flows[hash & flow_table->mask];
4587 		tcpu = rflow->cpu;
4588 
4589 		/*
4590 		 * If the desired CPU (where last recvmsg was done) is
4591 		 * different from current CPU (one in the rx-queue flow
4592 		 * table entry), switch if one of the following holds:
4593 		 *   - Current CPU is unset (>= nr_cpu_ids).
4594 		 *   - Current CPU is offline.
4595 		 *   - The current CPU's queue tail has advanced beyond the
4596 		 *     last packet that was enqueued using this table entry.
4597 		 *     This guarantees that all previous packets for the flow
4598 		 *     have been dequeued, thus preserving in order delivery.
4599 		 */
4600 		if (unlikely(tcpu != next_cpu) &&
4601 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4602 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4603 		      rflow->last_qtail)) >= 0)) {
4604 			tcpu = next_cpu;
4605 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4606 		}
4607 
4608 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4609 			*rflowp = rflow;
4610 			cpu = tcpu;
4611 			goto done;
4612 		}
4613 	}
4614 
4615 try_rps:
4616 
4617 	if (map) {
4618 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4619 		if (cpu_online(tcpu)) {
4620 			cpu = tcpu;
4621 			goto done;
4622 		}
4623 	}
4624 
4625 done:
4626 	return cpu;
4627 }
4628 
4629 #ifdef CONFIG_RFS_ACCEL
4630 
4631 /**
4632  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4633  * @dev: Device on which the filter was set
4634  * @rxq_index: RX queue index
4635  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4636  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4637  *
4638  * Drivers that implement ndo_rx_flow_steer() should periodically call
4639  * this function for each installed filter and remove the filters for
4640  * which it returns %true.
4641  */
4642 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4643 			 u32 flow_id, u16 filter_id)
4644 {
4645 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4646 	struct rps_dev_flow_table *flow_table;
4647 	struct rps_dev_flow *rflow;
4648 	bool expire = true;
4649 	unsigned int cpu;
4650 
4651 	rcu_read_lock();
4652 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4653 	if (flow_table && flow_id <= flow_table->mask) {
4654 		rflow = &flow_table->flows[flow_id];
4655 		cpu = READ_ONCE(rflow->cpu);
4656 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4657 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4658 			   rflow->last_qtail) <
4659 		     (int)(10 * flow_table->mask)))
4660 			expire = false;
4661 	}
4662 	rcu_read_unlock();
4663 	return expire;
4664 }
4665 EXPORT_SYMBOL(rps_may_expire_flow);
4666 
4667 #endif /* CONFIG_RFS_ACCEL */
4668 
4669 /* Called from hardirq (IPI) context */
4670 static void rps_trigger_softirq(void *data)
4671 {
4672 	struct softnet_data *sd = data;
4673 
4674 	____napi_schedule(sd, &sd->backlog);
4675 	sd->received_rps++;
4676 }
4677 
4678 #endif /* CONFIG_RPS */
4679 
4680 /* Called from hardirq (IPI) context */
4681 static void trigger_rx_softirq(void *data)
4682 {
4683 	struct softnet_data *sd = data;
4684 
4685 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4686 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4687 }
4688 
4689 /*
4690  * After we queued a packet into sd->input_pkt_queue,
4691  * we need to make sure this queue is serviced soon.
4692  *
4693  * - If this is another cpu queue, link it to our rps_ipi_list,
4694  *   and make sure we will process rps_ipi_list from net_rx_action().
4695  *
4696  * - If this is our own queue, NAPI schedule our backlog.
4697  *   Note that this also raises NET_RX_SOFTIRQ.
4698  */
4699 static void napi_schedule_rps(struct softnet_data *sd)
4700 {
4701 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4702 
4703 #ifdef CONFIG_RPS
4704 	if (sd != mysd) {
4705 		sd->rps_ipi_next = mysd->rps_ipi_list;
4706 		mysd->rps_ipi_list = sd;
4707 
4708 		/* If not called from net_rx_action() or napi_threaded_poll()
4709 		 * we have to raise NET_RX_SOFTIRQ.
4710 		 */
4711 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4712 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4713 		return;
4714 	}
4715 #endif /* CONFIG_RPS */
4716 	__napi_schedule_irqoff(&mysd->backlog);
4717 }
4718 
4719 #ifdef CONFIG_NET_FLOW_LIMIT
4720 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4721 #endif
4722 
4723 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4724 {
4725 #ifdef CONFIG_NET_FLOW_LIMIT
4726 	struct sd_flow_limit *fl;
4727 	struct softnet_data *sd;
4728 	unsigned int old_flow, new_flow;
4729 
4730 	if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4731 		return false;
4732 
4733 	sd = this_cpu_ptr(&softnet_data);
4734 
4735 	rcu_read_lock();
4736 	fl = rcu_dereference(sd->flow_limit);
4737 	if (fl) {
4738 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4739 		old_flow = fl->history[fl->history_head];
4740 		fl->history[fl->history_head] = new_flow;
4741 
4742 		fl->history_head++;
4743 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4744 
4745 		if (likely(fl->buckets[old_flow]))
4746 			fl->buckets[old_flow]--;
4747 
4748 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4749 			fl->count++;
4750 			rcu_read_unlock();
4751 			return true;
4752 		}
4753 	}
4754 	rcu_read_unlock();
4755 #endif
4756 	return false;
4757 }
4758 
4759 /*
4760  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4761  * queue (may be a remote CPU queue).
4762  */
4763 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4764 			      unsigned int *qtail)
4765 {
4766 	enum skb_drop_reason reason;
4767 	struct softnet_data *sd;
4768 	unsigned long flags;
4769 	unsigned int qlen;
4770 
4771 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
4772 	sd = &per_cpu(softnet_data, cpu);
4773 
4774 	rps_lock_irqsave(sd, &flags);
4775 	if (!netif_running(skb->dev))
4776 		goto drop;
4777 	qlen = skb_queue_len(&sd->input_pkt_queue);
4778 	if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4779 		if (qlen) {
4780 enqueue:
4781 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4782 			input_queue_tail_incr_save(sd, qtail);
4783 			rps_unlock_irq_restore(sd, &flags);
4784 			return NET_RX_SUCCESS;
4785 		}
4786 
4787 		/* Schedule NAPI for backlog device
4788 		 * We can use non atomic operation since we own the queue lock
4789 		 */
4790 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4791 			napi_schedule_rps(sd);
4792 		goto enqueue;
4793 	}
4794 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4795 
4796 drop:
4797 	sd->dropped++;
4798 	rps_unlock_irq_restore(sd, &flags);
4799 
4800 	dev_core_stats_rx_dropped_inc(skb->dev);
4801 	kfree_skb_reason(skb, reason);
4802 	return NET_RX_DROP;
4803 }
4804 
4805 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4806 {
4807 	struct net_device *dev = skb->dev;
4808 	struct netdev_rx_queue *rxqueue;
4809 
4810 	rxqueue = dev->_rx;
4811 
4812 	if (skb_rx_queue_recorded(skb)) {
4813 		u16 index = skb_get_rx_queue(skb);
4814 
4815 		if (unlikely(index >= dev->real_num_rx_queues)) {
4816 			WARN_ONCE(dev->real_num_rx_queues > 1,
4817 				  "%s received packet on queue %u, but number "
4818 				  "of RX queues is %u\n",
4819 				  dev->name, index, dev->real_num_rx_queues);
4820 
4821 			return rxqueue; /* Return first rxqueue */
4822 		}
4823 		rxqueue += index;
4824 	}
4825 	return rxqueue;
4826 }
4827 
4828 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4829 			     struct bpf_prog *xdp_prog)
4830 {
4831 	void *orig_data, *orig_data_end, *hard_start;
4832 	struct netdev_rx_queue *rxqueue;
4833 	bool orig_bcast, orig_host;
4834 	u32 mac_len, frame_sz;
4835 	__be16 orig_eth_type;
4836 	struct ethhdr *eth;
4837 	u32 metalen, act;
4838 	int off;
4839 
4840 	/* The XDP program wants to see the packet starting at the MAC
4841 	 * header.
4842 	 */
4843 	mac_len = skb->data - skb_mac_header(skb);
4844 	hard_start = skb->data - skb_headroom(skb);
4845 
4846 	/* SKB "head" area always have tailroom for skb_shared_info */
4847 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4848 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4849 
4850 	rxqueue = netif_get_rxqueue(skb);
4851 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4852 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4853 			 skb_headlen(skb) + mac_len, true);
4854 
4855 	orig_data_end = xdp->data_end;
4856 	orig_data = xdp->data;
4857 	eth = (struct ethhdr *)xdp->data;
4858 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4859 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4860 	orig_eth_type = eth->h_proto;
4861 
4862 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4863 
4864 	/* check if bpf_xdp_adjust_head was used */
4865 	off = xdp->data - orig_data;
4866 	if (off) {
4867 		if (off > 0)
4868 			__skb_pull(skb, off);
4869 		else if (off < 0)
4870 			__skb_push(skb, -off);
4871 
4872 		skb->mac_header += off;
4873 		skb_reset_network_header(skb);
4874 	}
4875 
4876 	/* check if bpf_xdp_adjust_tail was used */
4877 	off = xdp->data_end - orig_data_end;
4878 	if (off != 0) {
4879 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4880 		skb->len += off; /* positive on grow, negative on shrink */
4881 	}
4882 
4883 	/* check if XDP changed eth hdr such SKB needs update */
4884 	eth = (struct ethhdr *)xdp->data;
4885 	if ((orig_eth_type != eth->h_proto) ||
4886 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4887 						  skb->dev->dev_addr)) ||
4888 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4889 		__skb_push(skb, ETH_HLEN);
4890 		skb->pkt_type = PACKET_HOST;
4891 		skb->protocol = eth_type_trans(skb, skb->dev);
4892 	}
4893 
4894 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4895 	 * before calling us again on redirect path. We do not call do_redirect
4896 	 * as we leave that up to the caller.
4897 	 *
4898 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4899 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4900 	 */
4901 	switch (act) {
4902 	case XDP_REDIRECT:
4903 	case XDP_TX:
4904 		__skb_push(skb, mac_len);
4905 		break;
4906 	case XDP_PASS:
4907 		metalen = xdp->data - xdp->data_meta;
4908 		if (metalen)
4909 			skb_metadata_set(skb, metalen);
4910 		break;
4911 	}
4912 
4913 	return act;
4914 }
4915 
4916 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4917 				     struct xdp_buff *xdp,
4918 				     struct bpf_prog *xdp_prog)
4919 {
4920 	u32 act = XDP_DROP;
4921 
4922 	/* Reinjected packets coming from act_mirred or similar should
4923 	 * not get XDP generic processing.
4924 	 */
4925 	if (skb_is_redirected(skb))
4926 		return XDP_PASS;
4927 
4928 	/* XDP packets must be linear and must have sufficient headroom
4929 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4930 	 * native XDP provides, thus we need to do it here as well.
4931 	 */
4932 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4933 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4934 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4935 		int troom = skb->tail + skb->data_len - skb->end;
4936 
4937 		/* In case we have to go down the path and also linearize,
4938 		 * then lets do the pskb_expand_head() work just once here.
4939 		 */
4940 		if (pskb_expand_head(skb,
4941 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4942 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4943 			goto do_drop;
4944 		if (skb_linearize(skb))
4945 			goto do_drop;
4946 	}
4947 
4948 	act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4949 	switch (act) {
4950 	case XDP_REDIRECT:
4951 	case XDP_TX:
4952 	case XDP_PASS:
4953 		break;
4954 	default:
4955 		bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4956 		fallthrough;
4957 	case XDP_ABORTED:
4958 		trace_xdp_exception(skb->dev, xdp_prog, act);
4959 		fallthrough;
4960 	case XDP_DROP:
4961 	do_drop:
4962 		kfree_skb(skb);
4963 		break;
4964 	}
4965 
4966 	return act;
4967 }
4968 
4969 /* When doing generic XDP we have to bypass the qdisc layer and the
4970  * network taps in order to match in-driver-XDP behavior. This also means
4971  * that XDP packets are able to starve other packets going through a qdisc,
4972  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4973  * queues, so they do not have this starvation issue.
4974  */
4975 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4976 {
4977 	struct net_device *dev = skb->dev;
4978 	struct netdev_queue *txq;
4979 	bool free_skb = true;
4980 	int cpu, rc;
4981 
4982 	txq = netdev_core_pick_tx(dev, skb, NULL);
4983 	cpu = smp_processor_id();
4984 	HARD_TX_LOCK(dev, txq, cpu);
4985 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4986 		rc = netdev_start_xmit(skb, dev, txq, 0);
4987 		if (dev_xmit_complete(rc))
4988 			free_skb = false;
4989 	}
4990 	HARD_TX_UNLOCK(dev, txq);
4991 	if (free_skb) {
4992 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4993 		dev_core_stats_tx_dropped_inc(dev);
4994 		kfree_skb(skb);
4995 	}
4996 }
4997 
4998 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4999 
5000 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
5001 {
5002 	if (xdp_prog) {
5003 		struct xdp_buff xdp;
5004 		u32 act;
5005 		int err;
5006 
5007 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
5008 		if (act != XDP_PASS) {
5009 			switch (act) {
5010 			case XDP_REDIRECT:
5011 				err = xdp_do_generic_redirect(skb->dev, skb,
5012 							      &xdp, xdp_prog);
5013 				if (err)
5014 					goto out_redir;
5015 				break;
5016 			case XDP_TX:
5017 				generic_xdp_tx(skb, xdp_prog);
5018 				break;
5019 			}
5020 			return XDP_DROP;
5021 		}
5022 	}
5023 	return XDP_PASS;
5024 out_redir:
5025 	kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
5026 	return XDP_DROP;
5027 }
5028 EXPORT_SYMBOL_GPL(do_xdp_generic);
5029 
5030 static int netif_rx_internal(struct sk_buff *skb)
5031 {
5032 	int ret;
5033 
5034 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5035 
5036 	trace_netif_rx(skb);
5037 
5038 #ifdef CONFIG_RPS
5039 	if (static_branch_unlikely(&rps_needed)) {
5040 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5041 		int cpu;
5042 
5043 		rcu_read_lock();
5044 
5045 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5046 		if (cpu < 0)
5047 			cpu = smp_processor_id();
5048 
5049 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5050 
5051 		rcu_read_unlock();
5052 	} else
5053 #endif
5054 	{
5055 		unsigned int qtail;
5056 
5057 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5058 	}
5059 	return ret;
5060 }
5061 
5062 /**
5063  *	__netif_rx	-	Slightly optimized version of netif_rx
5064  *	@skb: buffer to post
5065  *
5066  *	This behaves as netif_rx except that it does not disable bottom halves.
5067  *	As a result this function may only be invoked from the interrupt context
5068  *	(either hard or soft interrupt).
5069  */
5070 int __netif_rx(struct sk_buff *skb)
5071 {
5072 	int ret;
5073 
5074 	lockdep_assert_once(hardirq_count() | softirq_count());
5075 
5076 	trace_netif_rx_entry(skb);
5077 	ret = netif_rx_internal(skb);
5078 	trace_netif_rx_exit(ret);
5079 	return ret;
5080 }
5081 EXPORT_SYMBOL(__netif_rx);
5082 
5083 /**
5084  *	netif_rx	-	post buffer to the network code
5085  *	@skb: buffer to post
5086  *
5087  *	This function receives a packet from a device driver and queues it for
5088  *	the upper (protocol) levels to process via the backlog NAPI device. It
5089  *	always succeeds. The buffer may be dropped during processing for
5090  *	congestion control or by the protocol layers.
5091  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5092  *	driver should use NAPI and GRO.
5093  *	This function can used from interrupt and from process context. The
5094  *	caller from process context must not disable interrupts before invoking
5095  *	this function.
5096  *
5097  *	return values:
5098  *	NET_RX_SUCCESS	(no congestion)
5099  *	NET_RX_DROP     (packet was dropped)
5100  *
5101  */
5102 int netif_rx(struct sk_buff *skb)
5103 {
5104 	bool need_bh_off = !(hardirq_count() | softirq_count());
5105 	int ret;
5106 
5107 	if (need_bh_off)
5108 		local_bh_disable();
5109 	trace_netif_rx_entry(skb);
5110 	ret = netif_rx_internal(skb);
5111 	trace_netif_rx_exit(ret);
5112 	if (need_bh_off)
5113 		local_bh_enable();
5114 	return ret;
5115 }
5116 EXPORT_SYMBOL(netif_rx);
5117 
5118 static __latent_entropy void net_tx_action(struct softirq_action *h)
5119 {
5120 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5121 
5122 	if (sd->completion_queue) {
5123 		struct sk_buff *clist;
5124 
5125 		local_irq_disable();
5126 		clist = sd->completion_queue;
5127 		sd->completion_queue = NULL;
5128 		local_irq_enable();
5129 
5130 		while (clist) {
5131 			struct sk_buff *skb = clist;
5132 
5133 			clist = clist->next;
5134 
5135 			WARN_ON(refcount_read(&skb->users));
5136 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5137 				trace_consume_skb(skb, net_tx_action);
5138 			else
5139 				trace_kfree_skb(skb, net_tx_action,
5140 						get_kfree_skb_cb(skb)->reason);
5141 
5142 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5143 				__kfree_skb(skb);
5144 			else
5145 				__napi_kfree_skb(skb,
5146 						 get_kfree_skb_cb(skb)->reason);
5147 		}
5148 	}
5149 
5150 	if (sd->output_queue) {
5151 		struct Qdisc *head;
5152 
5153 		local_irq_disable();
5154 		head = sd->output_queue;
5155 		sd->output_queue = NULL;
5156 		sd->output_queue_tailp = &sd->output_queue;
5157 		local_irq_enable();
5158 
5159 		rcu_read_lock();
5160 
5161 		while (head) {
5162 			struct Qdisc *q = head;
5163 			spinlock_t *root_lock = NULL;
5164 
5165 			head = head->next_sched;
5166 
5167 			/* We need to make sure head->next_sched is read
5168 			 * before clearing __QDISC_STATE_SCHED
5169 			 */
5170 			smp_mb__before_atomic();
5171 
5172 			if (!(q->flags & TCQ_F_NOLOCK)) {
5173 				root_lock = qdisc_lock(q);
5174 				spin_lock(root_lock);
5175 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5176 						     &q->state))) {
5177 				/* There is a synchronize_net() between
5178 				 * STATE_DEACTIVATED flag being set and
5179 				 * qdisc_reset()/some_qdisc_is_busy() in
5180 				 * dev_deactivate(), so we can safely bail out
5181 				 * early here to avoid data race between
5182 				 * qdisc_deactivate() and some_qdisc_is_busy()
5183 				 * for lockless qdisc.
5184 				 */
5185 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5186 				continue;
5187 			}
5188 
5189 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5190 			qdisc_run(q);
5191 			if (root_lock)
5192 				spin_unlock(root_lock);
5193 		}
5194 
5195 		rcu_read_unlock();
5196 	}
5197 
5198 	xfrm_dev_backlog(sd);
5199 }
5200 
5201 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5202 /* This hook is defined here for ATM LANE */
5203 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5204 			     unsigned char *addr) __read_mostly;
5205 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5206 #endif
5207 
5208 /**
5209  *	netdev_is_rx_handler_busy - check if receive handler is registered
5210  *	@dev: device to check
5211  *
5212  *	Check if a receive handler is already registered for a given device.
5213  *	Return true if there one.
5214  *
5215  *	The caller must hold the rtnl_mutex.
5216  */
5217 bool netdev_is_rx_handler_busy(struct net_device *dev)
5218 {
5219 	ASSERT_RTNL();
5220 	return dev && rtnl_dereference(dev->rx_handler);
5221 }
5222 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5223 
5224 /**
5225  *	netdev_rx_handler_register - register receive handler
5226  *	@dev: device to register a handler for
5227  *	@rx_handler: receive handler to register
5228  *	@rx_handler_data: data pointer that is used by rx handler
5229  *
5230  *	Register a receive handler for a device. This handler will then be
5231  *	called from __netif_receive_skb. A negative errno code is returned
5232  *	on a failure.
5233  *
5234  *	The caller must hold the rtnl_mutex.
5235  *
5236  *	For a general description of rx_handler, see enum rx_handler_result.
5237  */
5238 int netdev_rx_handler_register(struct net_device *dev,
5239 			       rx_handler_func_t *rx_handler,
5240 			       void *rx_handler_data)
5241 {
5242 	if (netdev_is_rx_handler_busy(dev))
5243 		return -EBUSY;
5244 
5245 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5246 		return -EINVAL;
5247 
5248 	/* Note: rx_handler_data must be set before rx_handler */
5249 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5250 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5251 
5252 	return 0;
5253 }
5254 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5255 
5256 /**
5257  *	netdev_rx_handler_unregister - unregister receive handler
5258  *	@dev: device to unregister a handler from
5259  *
5260  *	Unregister a receive handler from a device.
5261  *
5262  *	The caller must hold the rtnl_mutex.
5263  */
5264 void netdev_rx_handler_unregister(struct net_device *dev)
5265 {
5266 
5267 	ASSERT_RTNL();
5268 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5269 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5270 	 * section has a guarantee to see a non NULL rx_handler_data
5271 	 * as well.
5272 	 */
5273 	synchronize_net();
5274 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5275 }
5276 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5277 
5278 /*
5279  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5280  * the special handling of PFMEMALLOC skbs.
5281  */
5282 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5283 {
5284 	switch (skb->protocol) {
5285 	case htons(ETH_P_ARP):
5286 	case htons(ETH_P_IP):
5287 	case htons(ETH_P_IPV6):
5288 	case htons(ETH_P_8021Q):
5289 	case htons(ETH_P_8021AD):
5290 		return true;
5291 	default:
5292 		return false;
5293 	}
5294 }
5295 
5296 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5297 			     int *ret, struct net_device *orig_dev)
5298 {
5299 	if (nf_hook_ingress_active(skb)) {
5300 		int ingress_retval;
5301 
5302 		if (*pt_prev) {
5303 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5304 			*pt_prev = NULL;
5305 		}
5306 
5307 		rcu_read_lock();
5308 		ingress_retval = nf_hook_ingress(skb);
5309 		rcu_read_unlock();
5310 		return ingress_retval;
5311 	}
5312 	return 0;
5313 }
5314 
5315 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5316 				    struct packet_type **ppt_prev)
5317 {
5318 	struct packet_type *ptype, *pt_prev;
5319 	rx_handler_func_t *rx_handler;
5320 	struct sk_buff *skb = *pskb;
5321 	struct net_device *orig_dev;
5322 	bool deliver_exact = false;
5323 	int ret = NET_RX_DROP;
5324 	__be16 type;
5325 
5326 	net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5327 
5328 	trace_netif_receive_skb(skb);
5329 
5330 	orig_dev = skb->dev;
5331 
5332 	skb_reset_network_header(skb);
5333 	if (!skb_transport_header_was_set(skb))
5334 		skb_reset_transport_header(skb);
5335 	skb_reset_mac_len(skb);
5336 
5337 	pt_prev = NULL;
5338 
5339 another_round:
5340 	skb->skb_iif = skb->dev->ifindex;
5341 
5342 	__this_cpu_inc(softnet_data.processed);
5343 
5344 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5345 		int ret2;
5346 
5347 		migrate_disable();
5348 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5349 		migrate_enable();
5350 
5351 		if (ret2 != XDP_PASS) {
5352 			ret = NET_RX_DROP;
5353 			goto out;
5354 		}
5355 	}
5356 
5357 	if (eth_type_vlan(skb->protocol)) {
5358 		skb = skb_vlan_untag(skb);
5359 		if (unlikely(!skb))
5360 			goto out;
5361 	}
5362 
5363 	if (skb_skip_tc_classify(skb))
5364 		goto skip_classify;
5365 
5366 	if (pfmemalloc)
5367 		goto skip_taps;
5368 
5369 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5370 		if (pt_prev)
5371 			ret = deliver_skb(skb, pt_prev, orig_dev);
5372 		pt_prev = ptype;
5373 	}
5374 
5375 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5376 		if (pt_prev)
5377 			ret = deliver_skb(skb, pt_prev, orig_dev);
5378 		pt_prev = ptype;
5379 	}
5380 
5381 skip_taps:
5382 #ifdef CONFIG_NET_INGRESS
5383 	if (static_branch_unlikely(&ingress_needed_key)) {
5384 		bool another = false;
5385 
5386 		nf_skip_egress(skb, true);
5387 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5388 					 &another);
5389 		if (another)
5390 			goto another_round;
5391 		if (!skb)
5392 			goto out;
5393 
5394 		nf_skip_egress(skb, false);
5395 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5396 			goto out;
5397 	}
5398 #endif
5399 	skb_reset_redirect(skb);
5400 skip_classify:
5401 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5402 		goto drop;
5403 
5404 	if (skb_vlan_tag_present(skb)) {
5405 		if (pt_prev) {
5406 			ret = deliver_skb(skb, pt_prev, orig_dev);
5407 			pt_prev = NULL;
5408 		}
5409 		if (vlan_do_receive(&skb))
5410 			goto another_round;
5411 		else if (unlikely(!skb))
5412 			goto out;
5413 	}
5414 
5415 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5416 	if (rx_handler) {
5417 		if (pt_prev) {
5418 			ret = deliver_skb(skb, pt_prev, orig_dev);
5419 			pt_prev = NULL;
5420 		}
5421 		switch (rx_handler(&skb)) {
5422 		case RX_HANDLER_CONSUMED:
5423 			ret = NET_RX_SUCCESS;
5424 			goto out;
5425 		case RX_HANDLER_ANOTHER:
5426 			goto another_round;
5427 		case RX_HANDLER_EXACT:
5428 			deliver_exact = true;
5429 			break;
5430 		case RX_HANDLER_PASS:
5431 			break;
5432 		default:
5433 			BUG();
5434 		}
5435 	}
5436 
5437 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5438 check_vlan_id:
5439 		if (skb_vlan_tag_get_id(skb)) {
5440 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5441 			 * find vlan device.
5442 			 */
5443 			skb->pkt_type = PACKET_OTHERHOST;
5444 		} else if (eth_type_vlan(skb->protocol)) {
5445 			/* Outer header is 802.1P with vlan 0, inner header is
5446 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5447 			 * not find vlan dev for vlan id 0.
5448 			 */
5449 			__vlan_hwaccel_clear_tag(skb);
5450 			skb = skb_vlan_untag(skb);
5451 			if (unlikely(!skb))
5452 				goto out;
5453 			if (vlan_do_receive(&skb))
5454 				/* After stripping off 802.1P header with vlan 0
5455 				 * vlan dev is found for inner header.
5456 				 */
5457 				goto another_round;
5458 			else if (unlikely(!skb))
5459 				goto out;
5460 			else
5461 				/* We have stripped outer 802.1P vlan 0 header.
5462 				 * But could not find vlan dev.
5463 				 * check again for vlan id to set OTHERHOST.
5464 				 */
5465 				goto check_vlan_id;
5466 		}
5467 		/* Note: we might in the future use prio bits
5468 		 * and set skb->priority like in vlan_do_receive()
5469 		 * For the time being, just ignore Priority Code Point
5470 		 */
5471 		__vlan_hwaccel_clear_tag(skb);
5472 	}
5473 
5474 	type = skb->protocol;
5475 
5476 	/* deliver only exact match when indicated */
5477 	if (likely(!deliver_exact)) {
5478 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5479 				       &ptype_base[ntohs(type) &
5480 						   PTYPE_HASH_MASK]);
5481 	}
5482 
5483 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5484 			       &orig_dev->ptype_specific);
5485 
5486 	if (unlikely(skb->dev != orig_dev)) {
5487 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5488 				       &skb->dev->ptype_specific);
5489 	}
5490 
5491 	if (pt_prev) {
5492 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5493 			goto drop;
5494 		*ppt_prev = pt_prev;
5495 	} else {
5496 drop:
5497 		if (!deliver_exact)
5498 			dev_core_stats_rx_dropped_inc(skb->dev);
5499 		else
5500 			dev_core_stats_rx_nohandler_inc(skb->dev);
5501 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5502 		/* Jamal, now you will not able to escape explaining
5503 		 * me how you were going to use this. :-)
5504 		 */
5505 		ret = NET_RX_DROP;
5506 	}
5507 
5508 out:
5509 	/* The invariant here is that if *ppt_prev is not NULL
5510 	 * then skb should also be non-NULL.
5511 	 *
5512 	 * Apparently *ppt_prev assignment above holds this invariant due to
5513 	 * skb dereferencing near it.
5514 	 */
5515 	*pskb = skb;
5516 	return ret;
5517 }
5518 
5519 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5520 {
5521 	struct net_device *orig_dev = skb->dev;
5522 	struct packet_type *pt_prev = NULL;
5523 	int ret;
5524 
5525 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5526 	if (pt_prev)
5527 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5528 					 skb->dev, pt_prev, orig_dev);
5529 	return ret;
5530 }
5531 
5532 /**
5533  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5534  *	@skb: buffer to process
5535  *
5536  *	More direct receive version of netif_receive_skb().  It should
5537  *	only be used by callers that have a need to skip RPS and Generic XDP.
5538  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5539  *
5540  *	This function may only be called from softirq context and interrupts
5541  *	should be enabled.
5542  *
5543  *	Return values (usually ignored):
5544  *	NET_RX_SUCCESS: no congestion
5545  *	NET_RX_DROP: packet was dropped
5546  */
5547 int netif_receive_skb_core(struct sk_buff *skb)
5548 {
5549 	int ret;
5550 
5551 	rcu_read_lock();
5552 	ret = __netif_receive_skb_one_core(skb, false);
5553 	rcu_read_unlock();
5554 
5555 	return ret;
5556 }
5557 EXPORT_SYMBOL(netif_receive_skb_core);
5558 
5559 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5560 						  struct packet_type *pt_prev,
5561 						  struct net_device *orig_dev)
5562 {
5563 	struct sk_buff *skb, *next;
5564 
5565 	if (!pt_prev)
5566 		return;
5567 	if (list_empty(head))
5568 		return;
5569 	if (pt_prev->list_func != NULL)
5570 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5571 				   ip_list_rcv, head, pt_prev, orig_dev);
5572 	else
5573 		list_for_each_entry_safe(skb, next, head, list) {
5574 			skb_list_del_init(skb);
5575 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5576 		}
5577 }
5578 
5579 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5580 {
5581 	/* Fast-path assumptions:
5582 	 * - There is no RX handler.
5583 	 * - Only one packet_type matches.
5584 	 * If either of these fails, we will end up doing some per-packet
5585 	 * processing in-line, then handling the 'last ptype' for the whole
5586 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5587 	 * because the 'last ptype' must be constant across the sublist, and all
5588 	 * other ptypes are handled per-packet.
5589 	 */
5590 	/* Current (common) ptype of sublist */
5591 	struct packet_type *pt_curr = NULL;
5592 	/* Current (common) orig_dev of sublist */
5593 	struct net_device *od_curr = NULL;
5594 	struct list_head sublist;
5595 	struct sk_buff *skb, *next;
5596 
5597 	INIT_LIST_HEAD(&sublist);
5598 	list_for_each_entry_safe(skb, next, head, list) {
5599 		struct net_device *orig_dev = skb->dev;
5600 		struct packet_type *pt_prev = NULL;
5601 
5602 		skb_list_del_init(skb);
5603 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5604 		if (!pt_prev)
5605 			continue;
5606 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5607 			/* dispatch old sublist */
5608 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5609 			/* start new sublist */
5610 			INIT_LIST_HEAD(&sublist);
5611 			pt_curr = pt_prev;
5612 			od_curr = orig_dev;
5613 		}
5614 		list_add_tail(&skb->list, &sublist);
5615 	}
5616 
5617 	/* dispatch final sublist */
5618 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5619 }
5620 
5621 static int __netif_receive_skb(struct sk_buff *skb)
5622 {
5623 	int ret;
5624 
5625 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5626 		unsigned int noreclaim_flag;
5627 
5628 		/*
5629 		 * PFMEMALLOC skbs are special, they should
5630 		 * - be delivered to SOCK_MEMALLOC sockets only
5631 		 * - stay away from userspace
5632 		 * - have bounded memory usage
5633 		 *
5634 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5635 		 * context down to all allocation sites.
5636 		 */
5637 		noreclaim_flag = memalloc_noreclaim_save();
5638 		ret = __netif_receive_skb_one_core(skb, true);
5639 		memalloc_noreclaim_restore(noreclaim_flag);
5640 	} else
5641 		ret = __netif_receive_skb_one_core(skb, false);
5642 
5643 	return ret;
5644 }
5645 
5646 static void __netif_receive_skb_list(struct list_head *head)
5647 {
5648 	unsigned long noreclaim_flag = 0;
5649 	struct sk_buff *skb, *next;
5650 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5651 
5652 	list_for_each_entry_safe(skb, next, head, list) {
5653 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5654 			struct list_head sublist;
5655 
5656 			/* Handle the previous sublist */
5657 			list_cut_before(&sublist, head, &skb->list);
5658 			if (!list_empty(&sublist))
5659 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5660 			pfmemalloc = !pfmemalloc;
5661 			/* See comments in __netif_receive_skb */
5662 			if (pfmemalloc)
5663 				noreclaim_flag = memalloc_noreclaim_save();
5664 			else
5665 				memalloc_noreclaim_restore(noreclaim_flag);
5666 		}
5667 	}
5668 	/* Handle the remaining sublist */
5669 	if (!list_empty(head))
5670 		__netif_receive_skb_list_core(head, pfmemalloc);
5671 	/* Restore pflags */
5672 	if (pfmemalloc)
5673 		memalloc_noreclaim_restore(noreclaim_flag);
5674 }
5675 
5676 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5677 {
5678 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5679 	struct bpf_prog *new = xdp->prog;
5680 	int ret = 0;
5681 
5682 	switch (xdp->command) {
5683 	case XDP_SETUP_PROG:
5684 		rcu_assign_pointer(dev->xdp_prog, new);
5685 		if (old)
5686 			bpf_prog_put(old);
5687 
5688 		if (old && !new) {
5689 			static_branch_dec(&generic_xdp_needed_key);
5690 		} else if (new && !old) {
5691 			static_branch_inc(&generic_xdp_needed_key);
5692 			dev_disable_lro(dev);
5693 			dev_disable_gro_hw(dev);
5694 		}
5695 		break;
5696 
5697 	default:
5698 		ret = -EINVAL;
5699 		break;
5700 	}
5701 
5702 	return ret;
5703 }
5704 
5705 static int netif_receive_skb_internal(struct sk_buff *skb)
5706 {
5707 	int ret;
5708 
5709 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5710 
5711 	if (skb_defer_rx_timestamp(skb))
5712 		return NET_RX_SUCCESS;
5713 
5714 	rcu_read_lock();
5715 #ifdef CONFIG_RPS
5716 	if (static_branch_unlikely(&rps_needed)) {
5717 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5718 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5719 
5720 		if (cpu >= 0) {
5721 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5722 			rcu_read_unlock();
5723 			return ret;
5724 		}
5725 	}
5726 #endif
5727 	ret = __netif_receive_skb(skb);
5728 	rcu_read_unlock();
5729 	return ret;
5730 }
5731 
5732 void netif_receive_skb_list_internal(struct list_head *head)
5733 {
5734 	struct sk_buff *skb, *next;
5735 	struct list_head sublist;
5736 
5737 	INIT_LIST_HEAD(&sublist);
5738 	list_for_each_entry_safe(skb, next, head, list) {
5739 		net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5740 		skb_list_del_init(skb);
5741 		if (!skb_defer_rx_timestamp(skb))
5742 			list_add_tail(&skb->list, &sublist);
5743 	}
5744 	list_splice_init(&sublist, head);
5745 
5746 	rcu_read_lock();
5747 #ifdef CONFIG_RPS
5748 	if (static_branch_unlikely(&rps_needed)) {
5749 		list_for_each_entry_safe(skb, next, head, list) {
5750 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5751 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5752 
5753 			if (cpu >= 0) {
5754 				/* Will be handled, remove from list */
5755 				skb_list_del_init(skb);
5756 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5757 			}
5758 		}
5759 	}
5760 #endif
5761 	__netif_receive_skb_list(head);
5762 	rcu_read_unlock();
5763 }
5764 
5765 /**
5766  *	netif_receive_skb - process receive buffer from network
5767  *	@skb: buffer to process
5768  *
5769  *	netif_receive_skb() is the main receive data processing function.
5770  *	It always succeeds. The buffer may be dropped during processing
5771  *	for congestion control or by the protocol layers.
5772  *
5773  *	This function may only be called from softirq context and interrupts
5774  *	should be enabled.
5775  *
5776  *	Return values (usually ignored):
5777  *	NET_RX_SUCCESS: no congestion
5778  *	NET_RX_DROP: packet was dropped
5779  */
5780 int netif_receive_skb(struct sk_buff *skb)
5781 {
5782 	int ret;
5783 
5784 	trace_netif_receive_skb_entry(skb);
5785 
5786 	ret = netif_receive_skb_internal(skb);
5787 	trace_netif_receive_skb_exit(ret);
5788 
5789 	return ret;
5790 }
5791 EXPORT_SYMBOL(netif_receive_skb);
5792 
5793 /**
5794  *	netif_receive_skb_list - process many receive buffers from network
5795  *	@head: list of skbs to process.
5796  *
5797  *	Since return value of netif_receive_skb() is normally ignored, and
5798  *	wouldn't be meaningful for a list, this function returns void.
5799  *
5800  *	This function may only be called from softirq context and interrupts
5801  *	should be enabled.
5802  */
5803 void netif_receive_skb_list(struct list_head *head)
5804 {
5805 	struct sk_buff *skb;
5806 
5807 	if (list_empty(head))
5808 		return;
5809 	if (trace_netif_receive_skb_list_entry_enabled()) {
5810 		list_for_each_entry(skb, head, list)
5811 			trace_netif_receive_skb_list_entry(skb);
5812 	}
5813 	netif_receive_skb_list_internal(head);
5814 	trace_netif_receive_skb_list_exit(0);
5815 }
5816 EXPORT_SYMBOL(netif_receive_skb_list);
5817 
5818 static DEFINE_PER_CPU(struct work_struct, flush_works);
5819 
5820 /* Network device is going away, flush any packets still pending */
5821 static void flush_backlog(struct work_struct *work)
5822 {
5823 	struct sk_buff *skb, *tmp;
5824 	struct softnet_data *sd;
5825 
5826 	local_bh_disable();
5827 	sd = this_cpu_ptr(&softnet_data);
5828 
5829 	rps_lock_irq_disable(sd);
5830 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5831 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5832 			__skb_unlink(skb, &sd->input_pkt_queue);
5833 			dev_kfree_skb_irq(skb);
5834 			input_queue_head_incr(sd);
5835 		}
5836 	}
5837 	rps_unlock_irq_enable(sd);
5838 
5839 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5840 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5841 			__skb_unlink(skb, &sd->process_queue);
5842 			kfree_skb(skb);
5843 			input_queue_head_incr(sd);
5844 		}
5845 	}
5846 	local_bh_enable();
5847 }
5848 
5849 static bool flush_required(int cpu)
5850 {
5851 #if IS_ENABLED(CONFIG_RPS)
5852 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5853 	bool do_flush;
5854 
5855 	rps_lock_irq_disable(sd);
5856 
5857 	/* as insertion into process_queue happens with the rps lock held,
5858 	 * process_queue access may race only with dequeue
5859 	 */
5860 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5861 		   !skb_queue_empty_lockless(&sd->process_queue);
5862 	rps_unlock_irq_enable(sd);
5863 
5864 	return do_flush;
5865 #endif
5866 	/* without RPS we can't safely check input_pkt_queue: during a
5867 	 * concurrent remote skb_queue_splice() we can detect as empty both
5868 	 * input_pkt_queue and process_queue even if the latter could end-up
5869 	 * containing a lot of packets.
5870 	 */
5871 	return true;
5872 }
5873 
5874 static void flush_all_backlogs(void)
5875 {
5876 	static cpumask_t flush_cpus;
5877 	unsigned int cpu;
5878 
5879 	/* since we are under rtnl lock protection we can use static data
5880 	 * for the cpumask and avoid allocating on stack the possibly
5881 	 * large mask
5882 	 */
5883 	ASSERT_RTNL();
5884 
5885 	cpus_read_lock();
5886 
5887 	cpumask_clear(&flush_cpus);
5888 	for_each_online_cpu(cpu) {
5889 		if (flush_required(cpu)) {
5890 			queue_work_on(cpu, system_highpri_wq,
5891 				      per_cpu_ptr(&flush_works, cpu));
5892 			cpumask_set_cpu(cpu, &flush_cpus);
5893 		}
5894 	}
5895 
5896 	/* we can have in flight packet[s] on the cpus we are not flushing,
5897 	 * synchronize_net() in unregister_netdevice_many() will take care of
5898 	 * them
5899 	 */
5900 	for_each_cpu(cpu, &flush_cpus)
5901 		flush_work(per_cpu_ptr(&flush_works, cpu));
5902 
5903 	cpus_read_unlock();
5904 }
5905 
5906 static void net_rps_send_ipi(struct softnet_data *remsd)
5907 {
5908 #ifdef CONFIG_RPS
5909 	while (remsd) {
5910 		struct softnet_data *next = remsd->rps_ipi_next;
5911 
5912 		if (cpu_online(remsd->cpu))
5913 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5914 		remsd = next;
5915 	}
5916 #endif
5917 }
5918 
5919 /*
5920  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5921  * Note: called with local irq disabled, but exits with local irq enabled.
5922  */
5923 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5924 {
5925 #ifdef CONFIG_RPS
5926 	struct softnet_data *remsd = sd->rps_ipi_list;
5927 
5928 	if (remsd) {
5929 		sd->rps_ipi_list = NULL;
5930 
5931 		local_irq_enable();
5932 
5933 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5934 		net_rps_send_ipi(remsd);
5935 	} else
5936 #endif
5937 		local_irq_enable();
5938 }
5939 
5940 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5941 {
5942 #ifdef CONFIG_RPS
5943 	return sd->rps_ipi_list != NULL;
5944 #else
5945 	return false;
5946 #endif
5947 }
5948 
5949 static int process_backlog(struct napi_struct *napi, int quota)
5950 {
5951 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5952 	bool again = true;
5953 	int work = 0;
5954 
5955 	/* Check if we have pending ipi, its better to send them now,
5956 	 * not waiting net_rx_action() end.
5957 	 */
5958 	if (sd_has_rps_ipi_waiting(sd)) {
5959 		local_irq_disable();
5960 		net_rps_action_and_irq_enable(sd);
5961 	}
5962 
5963 	napi->weight = READ_ONCE(dev_rx_weight);
5964 	while (again) {
5965 		struct sk_buff *skb;
5966 
5967 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5968 			rcu_read_lock();
5969 			__netif_receive_skb(skb);
5970 			rcu_read_unlock();
5971 			input_queue_head_incr(sd);
5972 			if (++work >= quota)
5973 				return work;
5974 
5975 		}
5976 
5977 		rps_lock_irq_disable(sd);
5978 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5979 			/*
5980 			 * Inline a custom version of __napi_complete().
5981 			 * only current cpu owns and manipulates this napi,
5982 			 * and NAPI_STATE_SCHED is the only possible flag set
5983 			 * on backlog.
5984 			 * We can use a plain write instead of clear_bit(),
5985 			 * and we dont need an smp_mb() memory barrier.
5986 			 */
5987 			napi->state = 0;
5988 			again = false;
5989 		} else {
5990 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5991 						   &sd->process_queue);
5992 		}
5993 		rps_unlock_irq_enable(sd);
5994 	}
5995 
5996 	return work;
5997 }
5998 
5999 /**
6000  * __napi_schedule - schedule for receive
6001  * @n: entry to schedule
6002  *
6003  * The entry's receive function will be scheduled to run.
6004  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6005  */
6006 void __napi_schedule(struct napi_struct *n)
6007 {
6008 	unsigned long flags;
6009 
6010 	local_irq_save(flags);
6011 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6012 	local_irq_restore(flags);
6013 }
6014 EXPORT_SYMBOL(__napi_schedule);
6015 
6016 /**
6017  *	napi_schedule_prep - check if napi can be scheduled
6018  *	@n: napi context
6019  *
6020  * Test if NAPI routine is already running, and if not mark
6021  * it as running.  This is used as a condition variable to
6022  * insure only one NAPI poll instance runs.  We also make
6023  * sure there is no pending NAPI disable.
6024  */
6025 bool napi_schedule_prep(struct napi_struct *n)
6026 {
6027 	unsigned long new, val = READ_ONCE(n->state);
6028 
6029 	do {
6030 		if (unlikely(val & NAPIF_STATE_DISABLE))
6031 			return false;
6032 		new = val | NAPIF_STATE_SCHED;
6033 
6034 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6035 		 * This was suggested by Alexander Duyck, as compiler
6036 		 * emits better code than :
6037 		 * if (val & NAPIF_STATE_SCHED)
6038 		 *     new |= NAPIF_STATE_MISSED;
6039 		 */
6040 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6041 						   NAPIF_STATE_MISSED;
6042 	} while (!try_cmpxchg(&n->state, &val, new));
6043 
6044 	return !(val & NAPIF_STATE_SCHED);
6045 }
6046 EXPORT_SYMBOL(napi_schedule_prep);
6047 
6048 /**
6049  * __napi_schedule_irqoff - schedule for receive
6050  * @n: entry to schedule
6051  *
6052  * Variant of __napi_schedule() assuming hard irqs are masked.
6053  *
6054  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6055  * because the interrupt disabled assumption might not be true
6056  * due to force-threaded interrupts and spinlock substitution.
6057  */
6058 void __napi_schedule_irqoff(struct napi_struct *n)
6059 {
6060 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6061 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6062 	else
6063 		__napi_schedule(n);
6064 }
6065 EXPORT_SYMBOL(__napi_schedule_irqoff);
6066 
6067 bool napi_complete_done(struct napi_struct *n, int work_done)
6068 {
6069 	unsigned long flags, val, new, timeout = 0;
6070 	bool ret = true;
6071 
6072 	/*
6073 	 * 1) Don't let napi dequeue from the cpu poll list
6074 	 *    just in case its running on a different cpu.
6075 	 * 2) If we are busy polling, do nothing here, we have
6076 	 *    the guarantee we will be called later.
6077 	 */
6078 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6079 				 NAPIF_STATE_IN_BUSY_POLL)))
6080 		return false;
6081 
6082 	if (work_done) {
6083 		if (n->gro_bitmask)
6084 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6085 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6086 	}
6087 	if (n->defer_hard_irqs_count > 0) {
6088 		n->defer_hard_irqs_count--;
6089 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6090 		if (timeout)
6091 			ret = false;
6092 	}
6093 	if (n->gro_bitmask) {
6094 		/* When the NAPI instance uses a timeout and keeps postponing
6095 		 * it, we need to bound somehow the time packets are kept in
6096 		 * the GRO layer
6097 		 */
6098 		napi_gro_flush(n, !!timeout);
6099 	}
6100 
6101 	gro_normal_list(n);
6102 
6103 	if (unlikely(!list_empty(&n->poll_list))) {
6104 		/* If n->poll_list is not empty, we need to mask irqs */
6105 		local_irq_save(flags);
6106 		list_del_init(&n->poll_list);
6107 		local_irq_restore(flags);
6108 	}
6109 	WRITE_ONCE(n->list_owner, -1);
6110 
6111 	val = READ_ONCE(n->state);
6112 	do {
6113 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6114 
6115 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6116 			      NAPIF_STATE_SCHED_THREADED |
6117 			      NAPIF_STATE_PREFER_BUSY_POLL);
6118 
6119 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6120 		 * because we will call napi->poll() one more time.
6121 		 * This C code was suggested by Alexander Duyck to help gcc.
6122 		 */
6123 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6124 						    NAPIF_STATE_SCHED;
6125 	} while (!try_cmpxchg(&n->state, &val, new));
6126 
6127 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6128 		__napi_schedule(n);
6129 		return false;
6130 	}
6131 
6132 	if (timeout)
6133 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6134 			      HRTIMER_MODE_REL_PINNED);
6135 	return ret;
6136 }
6137 EXPORT_SYMBOL(napi_complete_done);
6138 
6139 /* must be called under rcu_read_lock(), as we dont take a reference */
6140 static struct napi_struct *napi_by_id(unsigned int napi_id)
6141 {
6142 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6143 	struct napi_struct *napi;
6144 
6145 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6146 		if (napi->napi_id == napi_id)
6147 			return napi;
6148 
6149 	return NULL;
6150 }
6151 
6152 #if defined(CONFIG_NET_RX_BUSY_POLL)
6153 
6154 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6155 {
6156 	if (!skip_schedule) {
6157 		gro_normal_list(napi);
6158 		__napi_schedule(napi);
6159 		return;
6160 	}
6161 
6162 	if (napi->gro_bitmask) {
6163 		/* flush too old packets
6164 		 * If HZ < 1000, flush all packets.
6165 		 */
6166 		napi_gro_flush(napi, HZ >= 1000);
6167 	}
6168 
6169 	gro_normal_list(napi);
6170 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6171 }
6172 
6173 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6174 			   u16 budget)
6175 {
6176 	bool skip_schedule = false;
6177 	unsigned long timeout;
6178 	int rc;
6179 
6180 	/* Busy polling means there is a high chance device driver hard irq
6181 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6182 	 * set in napi_schedule_prep().
6183 	 * Since we are about to call napi->poll() once more, we can safely
6184 	 * clear NAPI_STATE_MISSED.
6185 	 *
6186 	 * Note: x86 could use a single "lock and ..." instruction
6187 	 * to perform these two clear_bit()
6188 	 */
6189 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6190 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6191 
6192 	local_bh_disable();
6193 
6194 	if (prefer_busy_poll) {
6195 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6196 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6197 		if (napi->defer_hard_irqs_count && timeout) {
6198 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6199 			skip_schedule = true;
6200 		}
6201 	}
6202 
6203 	/* All we really want here is to re-enable device interrupts.
6204 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6205 	 */
6206 	rc = napi->poll(napi, budget);
6207 	/* We can't gro_normal_list() here, because napi->poll() might have
6208 	 * rearmed the napi (napi_complete_done()) in which case it could
6209 	 * already be running on another CPU.
6210 	 */
6211 	trace_napi_poll(napi, rc, budget);
6212 	netpoll_poll_unlock(have_poll_lock);
6213 	if (rc == budget)
6214 		__busy_poll_stop(napi, skip_schedule);
6215 	local_bh_enable();
6216 }
6217 
6218 void napi_busy_loop(unsigned int napi_id,
6219 		    bool (*loop_end)(void *, unsigned long),
6220 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6221 {
6222 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6223 	int (*napi_poll)(struct napi_struct *napi, int budget);
6224 	void *have_poll_lock = NULL;
6225 	struct napi_struct *napi;
6226 
6227 restart:
6228 	napi_poll = NULL;
6229 
6230 	rcu_read_lock();
6231 
6232 	napi = napi_by_id(napi_id);
6233 	if (!napi)
6234 		goto out;
6235 
6236 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6237 		preempt_disable();
6238 	for (;;) {
6239 		int work = 0;
6240 
6241 		local_bh_disable();
6242 		if (!napi_poll) {
6243 			unsigned long val = READ_ONCE(napi->state);
6244 
6245 			/* If multiple threads are competing for this napi,
6246 			 * we avoid dirtying napi->state as much as we can.
6247 			 */
6248 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6249 				   NAPIF_STATE_IN_BUSY_POLL)) {
6250 				if (prefer_busy_poll)
6251 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6252 				goto count;
6253 			}
6254 			if (cmpxchg(&napi->state, val,
6255 				    val | NAPIF_STATE_IN_BUSY_POLL |
6256 					  NAPIF_STATE_SCHED) != val) {
6257 				if (prefer_busy_poll)
6258 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6259 				goto count;
6260 			}
6261 			have_poll_lock = netpoll_poll_lock(napi);
6262 			napi_poll = napi->poll;
6263 		}
6264 		work = napi_poll(napi, budget);
6265 		trace_napi_poll(napi, work, budget);
6266 		gro_normal_list(napi);
6267 count:
6268 		if (work > 0)
6269 			__NET_ADD_STATS(dev_net(napi->dev),
6270 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6271 		local_bh_enable();
6272 
6273 		if (!loop_end || loop_end(loop_end_arg, start_time))
6274 			break;
6275 
6276 		if (unlikely(need_resched())) {
6277 			if (napi_poll)
6278 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6279 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6280 				preempt_enable();
6281 			rcu_read_unlock();
6282 			cond_resched();
6283 			if (loop_end(loop_end_arg, start_time))
6284 				return;
6285 			goto restart;
6286 		}
6287 		cpu_relax();
6288 	}
6289 	if (napi_poll)
6290 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6291 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6292 		preempt_enable();
6293 out:
6294 	rcu_read_unlock();
6295 }
6296 EXPORT_SYMBOL(napi_busy_loop);
6297 
6298 #endif /* CONFIG_NET_RX_BUSY_POLL */
6299 
6300 static void napi_hash_add(struct napi_struct *napi)
6301 {
6302 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6303 		return;
6304 
6305 	spin_lock(&napi_hash_lock);
6306 
6307 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6308 	do {
6309 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6310 			napi_gen_id = MIN_NAPI_ID;
6311 	} while (napi_by_id(napi_gen_id));
6312 	napi->napi_id = napi_gen_id;
6313 
6314 	hlist_add_head_rcu(&napi->napi_hash_node,
6315 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6316 
6317 	spin_unlock(&napi_hash_lock);
6318 }
6319 
6320 /* Warning : caller is responsible to make sure rcu grace period
6321  * is respected before freeing memory containing @napi
6322  */
6323 static void napi_hash_del(struct napi_struct *napi)
6324 {
6325 	spin_lock(&napi_hash_lock);
6326 
6327 	hlist_del_init_rcu(&napi->napi_hash_node);
6328 
6329 	spin_unlock(&napi_hash_lock);
6330 }
6331 
6332 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6333 {
6334 	struct napi_struct *napi;
6335 
6336 	napi = container_of(timer, struct napi_struct, timer);
6337 
6338 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6339 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6340 	 */
6341 	if (!napi_disable_pending(napi) &&
6342 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6343 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6344 		__napi_schedule_irqoff(napi);
6345 	}
6346 
6347 	return HRTIMER_NORESTART;
6348 }
6349 
6350 static void init_gro_hash(struct napi_struct *napi)
6351 {
6352 	int i;
6353 
6354 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6355 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6356 		napi->gro_hash[i].count = 0;
6357 	}
6358 	napi->gro_bitmask = 0;
6359 }
6360 
6361 int dev_set_threaded(struct net_device *dev, bool threaded)
6362 {
6363 	struct napi_struct *napi;
6364 	int err = 0;
6365 
6366 	if (dev->threaded == threaded)
6367 		return 0;
6368 
6369 	if (threaded) {
6370 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6371 			if (!napi->thread) {
6372 				err = napi_kthread_create(napi);
6373 				if (err) {
6374 					threaded = false;
6375 					break;
6376 				}
6377 			}
6378 		}
6379 	}
6380 
6381 	dev->threaded = threaded;
6382 
6383 	/* Make sure kthread is created before THREADED bit
6384 	 * is set.
6385 	 */
6386 	smp_mb__before_atomic();
6387 
6388 	/* Setting/unsetting threaded mode on a napi might not immediately
6389 	 * take effect, if the current napi instance is actively being
6390 	 * polled. In this case, the switch between threaded mode and
6391 	 * softirq mode will happen in the next round of napi_schedule().
6392 	 * This should not cause hiccups/stalls to the live traffic.
6393 	 */
6394 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6395 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6396 
6397 	return err;
6398 }
6399 EXPORT_SYMBOL(dev_set_threaded);
6400 
6401 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6402 			   int (*poll)(struct napi_struct *, int), int weight)
6403 {
6404 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6405 		return;
6406 
6407 	INIT_LIST_HEAD(&napi->poll_list);
6408 	INIT_HLIST_NODE(&napi->napi_hash_node);
6409 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6410 	napi->timer.function = napi_watchdog;
6411 	init_gro_hash(napi);
6412 	napi->skb = NULL;
6413 	INIT_LIST_HEAD(&napi->rx_list);
6414 	napi->rx_count = 0;
6415 	napi->poll = poll;
6416 	if (weight > NAPI_POLL_WEIGHT)
6417 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6418 				weight);
6419 	napi->weight = weight;
6420 	napi->dev = dev;
6421 #ifdef CONFIG_NETPOLL
6422 	napi->poll_owner = -1;
6423 #endif
6424 	napi->list_owner = -1;
6425 	set_bit(NAPI_STATE_SCHED, &napi->state);
6426 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6427 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6428 	napi_hash_add(napi);
6429 	napi_get_frags_check(napi);
6430 	/* Create kthread for this napi if dev->threaded is set.
6431 	 * Clear dev->threaded if kthread creation failed so that
6432 	 * threaded mode will not be enabled in napi_enable().
6433 	 */
6434 	if (dev->threaded && napi_kthread_create(napi))
6435 		dev->threaded = 0;
6436 }
6437 EXPORT_SYMBOL(netif_napi_add_weight);
6438 
6439 void napi_disable(struct napi_struct *n)
6440 {
6441 	unsigned long val, new;
6442 
6443 	might_sleep();
6444 	set_bit(NAPI_STATE_DISABLE, &n->state);
6445 
6446 	val = READ_ONCE(n->state);
6447 	do {
6448 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6449 			usleep_range(20, 200);
6450 			val = READ_ONCE(n->state);
6451 		}
6452 
6453 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6454 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6455 	} while (!try_cmpxchg(&n->state, &val, new));
6456 
6457 	hrtimer_cancel(&n->timer);
6458 
6459 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6460 }
6461 EXPORT_SYMBOL(napi_disable);
6462 
6463 /**
6464  *	napi_enable - enable NAPI scheduling
6465  *	@n: NAPI context
6466  *
6467  * Resume NAPI from being scheduled on this context.
6468  * Must be paired with napi_disable.
6469  */
6470 void napi_enable(struct napi_struct *n)
6471 {
6472 	unsigned long new, val = READ_ONCE(n->state);
6473 
6474 	do {
6475 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6476 
6477 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6478 		if (n->dev->threaded && n->thread)
6479 			new |= NAPIF_STATE_THREADED;
6480 	} while (!try_cmpxchg(&n->state, &val, new));
6481 }
6482 EXPORT_SYMBOL(napi_enable);
6483 
6484 static void flush_gro_hash(struct napi_struct *napi)
6485 {
6486 	int i;
6487 
6488 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6489 		struct sk_buff *skb, *n;
6490 
6491 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6492 			kfree_skb(skb);
6493 		napi->gro_hash[i].count = 0;
6494 	}
6495 }
6496 
6497 /* Must be called in process context */
6498 void __netif_napi_del(struct napi_struct *napi)
6499 {
6500 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6501 		return;
6502 
6503 	napi_hash_del(napi);
6504 	list_del_rcu(&napi->dev_list);
6505 	napi_free_frags(napi);
6506 
6507 	flush_gro_hash(napi);
6508 	napi->gro_bitmask = 0;
6509 
6510 	if (napi->thread) {
6511 		kthread_stop(napi->thread);
6512 		napi->thread = NULL;
6513 	}
6514 }
6515 EXPORT_SYMBOL(__netif_napi_del);
6516 
6517 static int __napi_poll(struct napi_struct *n, bool *repoll)
6518 {
6519 	int work, weight;
6520 
6521 	weight = n->weight;
6522 
6523 	/* This NAPI_STATE_SCHED test is for avoiding a race
6524 	 * with netpoll's poll_napi().  Only the entity which
6525 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6526 	 * actually make the ->poll() call.  Therefore we avoid
6527 	 * accidentally calling ->poll() when NAPI is not scheduled.
6528 	 */
6529 	work = 0;
6530 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6531 		work = n->poll(n, weight);
6532 		trace_napi_poll(n, work, weight);
6533 	}
6534 
6535 	if (unlikely(work > weight))
6536 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6537 				n->poll, work, weight);
6538 
6539 	if (likely(work < weight))
6540 		return work;
6541 
6542 	/* Drivers must not modify the NAPI state if they
6543 	 * consume the entire weight.  In such cases this code
6544 	 * still "owns" the NAPI instance and therefore can
6545 	 * move the instance around on the list at-will.
6546 	 */
6547 	if (unlikely(napi_disable_pending(n))) {
6548 		napi_complete(n);
6549 		return work;
6550 	}
6551 
6552 	/* The NAPI context has more processing work, but busy-polling
6553 	 * is preferred. Exit early.
6554 	 */
6555 	if (napi_prefer_busy_poll(n)) {
6556 		if (napi_complete_done(n, work)) {
6557 			/* If timeout is not set, we need to make sure
6558 			 * that the NAPI is re-scheduled.
6559 			 */
6560 			napi_schedule(n);
6561 		}
6562 		return work;
6563 	}
6564 
6565 	if (n->gro_bitmask) {
6566 		/* flush too old packets
6567 		 * If HZ < 1000, flush all packets.
6568 		 */
6569 		napi_gro_flush(n, HZ >= 1000);
6570 	}
6571 
6572 	gro_normal_list(n);
6573 
6574 	/* Some drivers may have called napi_schedule
6575 	 * prior to exhausting their budget.
6576 	 */
6577 	if (unlikely(!list_empty(&n->poll_list))) {
6578 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6579 			     n->dev ? n->dev->name : "backlog");
6580 		return work;
6581 	}
6582 
6583 	*repoll = true;
6584 
6585 	return work;
6586 }
6587 
6588 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6589 {
6590 	bool do_repoll = false;
6591 	void *have;
6592 	int work;
6593 
6594 	list_del_init(&n->poll_list);
6595 
6596 	have = netpoll_poll_lock(n);
6597 
6598 	work = __napi_poll(n, &do_repoll);
6599 
6600 	if (do_repoll)
6601 		list_add_tail(&n->poll_list, repoll);
6602 
6603 	netpoll_poll_unlock(have);
6604 
6605 	return work;
6606 }
6607 
6608 static int napi_thread_wait(struct napi_struct *napi)
6609 {
6610 	bool woken = false;
6611 
6612 	set_current_state(TASK_INTERRUPTIBLE);
6613 
6614 	while (!kthread_should_stop()) {
6615 		/* Testing SCHED_THREADED bit here to make sure the current
6616 		 * kthread owns this napi and could poll on this napi.
6617 		 * Testing SCHED bit is not enough because SCHED bit might be
6618 		 * set by some other busy poll thread or by napi_disable().
6619 		 */
6620 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6621 			WARN_ON(!list_empty(&napi->poll_list));
6622 			__set_current_state(TASK_RUNNING);
6623 			return 0;
6624 		}
6625 
6626 		schedule();
6627 		/* woken being true indicates this thread owns this napi. */
6628 		woken = true;
6629 		set_current_state(TASK_INTERRUPTIBLE);
6630 	}
6631 	__set_current_state(TASK_RUNNING);
6632 
6633 	return -1;
6634 }
6635 
6636 static void skb_defer_free_flush(struct softnet_data *sd)
6637 {
6638 	struct sk_buff *skb, *next;
6639 
6640 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6641 	if (!READ_ONCE(sd->defer_list))
6642 		return;
6643 
6644 	spin_lock(&sd->defer_lock);
6645 	skb = sd->defer_list;
6646 	sd->defer_list = NULL;
6647 	sd->defer_count = 0;
6648 	spin_unlock(&sd->defer_lock);
6649 
6650 	while (skb != NULL) {
6651 		next = skb->next;
6652 		napi_consume_skb(skb, 1);
6653 		skb = next;
6654 	}
6655 }
6656 
6657 static int napi_threaded_poll(void *data)
6658 {
6659 	struct napi_struct *napi = data;
6660 	struct softnet_data *sd;
6661 	void *have;
6662 
6663 	while (!napi_thread_wait(napi)) {
6664 		for (;;) {
6665 			bool repoll = false;
6666 
6667 			local_bh_disable();
6668 			sd = this_cpu_ptr(&softnet_data);
6669 			sd->in_napi_threaded_poll = true;
6670 
6671 			have = netpoll_poll_lock(napi);
6672 			__napi_poll(napi, &repoll);
6673 			netpoll_poll_unlock(have);
6674 
6675 			sd->in_napi_threaded_poll = false;
6676 			barrier();
6677 
6678 			if (sd_has_rps_ipi_waiting(sd)) {
6679 				local_irq_disable();
6680 				net_rps_action_and_irq_enable(sd);
6681 			}
6682 			skb_defer_free_flush(sd);
6683 			local_bh_enable();
6684 
6685 			if (!repoll)
6686 				break;
6687 
6688 			cond_resched();
6689 		}
6690 	}
6691 	return 0;
6692 }
6693 
6694 static __latent_entropy void net_rx_action(struct softirq_action *h)
6695 {
6696 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6697 	unsigned long time_limit = jiffies +
6698 		usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6699 	int budget = READ_ONCE(netdev_budget);
6700 	LIST_HEAD(list);
6701 	LIST_HEAD(repoll);
6702 
6703 start:
6704 	sd->in_net_rx_action = true;
6705 	local_irq_disable();
6706 	list_splice_init(&sd->poll_list, &list);
6707 	local_irq_enable();
6708 
6709 	for (;;) {
6710 		struct napi_struct *n;
6711 
6712 		skb_defer_free_flush(sd);
6713 
6714 		if (list_empty(&list)) {
6715 			if (list_empty(&repoll)) {
6716 				sd->in_net_rx_action = false;
6717 				barrier();
6718 				/* We need to check if ____napi_schedule()
6719 				 * had refilled poll_list while
6720 				 * sd->in_net_rx_action was true.
6721 				 */
6722 				if (!list_empty(&sd->poll_list))
6723 					goto start;
6724 				if (!sd_has_rps_ipi_waiting(sd))
6725 					goto end;
6726 			}
6727 			break;
6728 		}
6729 
6730 		n = list_first_entry(&list, struct napi_struct, poll_list);
6731 		budget -= napi_poll(n, &repoll);
6732 
6733 		/* If softirq window is exhausted then punt.
6734 		 * Allow this to run for 2 jiffies since which will allow
6735 		 * an average latency of 1.5/HZ.
6736 		 */
6737 		if (unlikely(budget <= 0 ||
6738 			     time_after_eq(jiffies, time_limit))) {
6739 			sd->time_squeeze++;
6740 			break;
6741 		}
6742 	}
6743 
6744 	local_irq_disable();
6745 
6746 	list_splice_tail_init(&sd->poll_list, &list);
6747 	list_splice_tail(&repoll, &list);
6748 	list_splice(&list, &sd->poll_list);
6749 	if (!list_empty(&sd->poll_list))
6750 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6751 	else
6752 		sd->in_net_rx_action = false;
6753 
6754 	net_rps_action_and_irq_enable(sd);
6755 end:;
6756 }
6757 
6758 struct netdev_adjacent {
6759 	struct net_device *dev;
6760 	netdevice_tracker dev_tracker;
6761 
6762 	/* upper master flag, there can only be one master device per list */
6763 	bool master;
6764 
6765 	/* lookup ignore flag */
6766 	bool ignore;
6767 
6768 	/* counter for the number of times this device was added to us */
6769 	u16 ref_nr;
6770 
6771 	/* private field for the users */
6772 	void *private;
6773 
6774 	struct list_head list;
6775 	struct rcu_head rcu;
6776 };
6777 
6778 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6779 						 struct list_head *adj_list)
6780 {
6781 	struct netdev_adjacent *adj;
6782 
6783 	list_for_each_entry(adj, adj_list, list) {
6784 		if (adj->dev == adj_dev)
6785 			return adj;
6786 	}
6787 	return NULL;
6788 }
6789 
6790 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6791 				    struct netdev_nested_priv *priv)
6792 {
6793 	struct net_device *dev = (struct net_device *)priv->data;
6794 
6795 	return upper_dev == dev;
6796 }
6797 
6798 /**
6799  * netdev_has_upper_dev - Check if device is linked to an upper device
6800  * @dev: device
6801  * @upper_dev: upper device to check
6802  *
6803  * Find out if a device is linked to specified upper device and return true
6804  * in case it is. Note that this checks only immediate upper device,
6805  * not through a complete stack of devices. The caller must hold the RTNL lock.
6806  */
6807 bool netdev_has_upper_dev(struct net_device *dev,
6808 			  struct net_device *upper_dev)
6809 {
6810 	struct netdev_nested_priv priv = {
6811 		.data = (void *)upper_dev,
6812 	};
6813 
6814 	ASSERT_RTNL();
6815 
6816 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6817 					     &priv);
6818 }
6819 EXPORT_SYMBOL(netdev_has_upper_dev);
6820 
6821 /**
6822  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6823  * @dev: device
6824  * @upper_dev: upper device to check
6825  *
6826  * Find out if a device is linked to specified upper device and return true
6827  * in case it is. Note that this checks the entire upper device chain.
6828  * The caller must hold rcu lock.
6829  */
6830 
6831 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6832 				  struct net_device *upper_dev)
6833 {
6834 	struct netdev_nested_priv priv = {
6835 		.data = (void *)upper_dev,
6836 	};
6837 
6838 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6839 					       &priv);
6840 }
6841 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6842 
6843 /**
6844  * netdev_has_any_upper_dev - Check if device is linked to some device
6845  * @dev: device
6846  *
6847  * Find out if a device is linked to an upper device and return true in case
6848  * it is. The caller must hold the RTNL lock.
6849  */
6850 bool netdev_has_any_upper_dev(struct net_device *dev)
6851 {
6852 	ASSERT_RTNL();
6853 
6854 	return !list_empty(&dev->adj_list.upper);
6855 }
6856 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6857 
6858 /**
6859  * netdev_master_upper_dev_get - Get master upper device
6860  * @dev: device
6861  *
6862  * Find a master upper device and return pointer to it or NULL in case
6863  * it's not there. The caller must hold the RTNL lock.
6864  */
6865 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6866 {
6867 	struct netdev_adjacent *upper;
6868 
6869 	ASSERT_RTNL();
6870 
6871 	if (list_empty(&dev->adj_list.upper))
6872 		return NULL;
6873 
6874 	upper = list_first_entry(&dev->adj_list.upper,
6875 				 struct netdev_adjacent, list);
6876 	if (likely(upper->master))
6877 		return upper->dev;
6878 	return NULL;
6879 }
6880 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6881 
6882 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6883 {
6884 	struct netdev_adjacent *upper;
6885 
6886 	ASSERT_RTNL();
6887 
6888 	if (list_empty(&dev->adj_list.upper))
6889 		return NULL;
6890 
6891 	upper = list_first_entry(&dev->adj_list.upper,
6892 				 struct netdev_adjacent, list);
6893 	if (likely(upper->master) && !upper->ignore)
6894 		return upper->dev;
6895 	return NULL;
6896 }
6897 
6898 /**
6899  * netdev_has_any_lower_dev - Check if device is linked to some device
6900  * @dev: device
6901  *
6902  * Find out if a device is linked to a lower device and return true in case
6903  * it is. The caller must hold the RTNL lock.
6904  */
6905 static bool netdev_has_any_lower_dev(struct net_device *dev)
6906 {
6907 	ASSERT_RTNL();
6908 
6909 	return !list_empty(&dev->adj_list.lower);
6910 }
6911 
6912 void *netdev_adjacent_get_private(struct list_head *adj_list)
6913 {
6914 	struct netdev_adjacent *adj;
6915 
6916 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6917 
6918 	return adj->private;
6919 }
6920 EXPORT_SYMBOL(netdev_adjacent_get_private);
6921 
6922 /**
6923  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6924  * @dev: device
6925  * @iter: list_head ** of the current position
6926  *
6927  * Gets the next device from the dev's upper list, starting from iter
6928  * position. The caller must hold RCU read lock.
6929  */
6930 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6931 						 struct list_head **iter)
6932 {
6933 	struct netdev_adjacent *upper;
6934 
6935 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6936 
6937 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6938 
6939 	if (&upper->list == &dev->adj_list.upper)
6940 		return NULL;
6941 
6942 	*iter = &upper->list;
6943 
6944 	return upper->dev;
6945 }
6946 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6947 
6948 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6949 						  struct list_head **iter,
6950 						  bool *ignore)
6951 {
6952 	struct netdev_adjacent *upper;
6953 
6954 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6955 
6956 	if (&upper->list == &dev->adj_list.upper)
6957 		return NULL;
6958 
6959 	*iter = &upper->list;
6960 	*ignore = upper->ignore;
6961 
6962 	return upper->dev;
6963 }
6964 
6965 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6966 						    struct list_head **iter)
6967 {
6968 	struct netdev_adjacent *upper;
6969 
6970 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6971 
6972 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6973 
6974 	if (&upper->list == &dev->adj_list.upper)
6975 		return NULL;
6976 
6977 	*iter = &upper->list;
6978 
6979 	return upper->dev;
6980 }
6981 
6982 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6983 				       int (*fn)(struct net_device *dev,
6984 					 struct netdev_nested_priv *priv),
6985 				       struct netdev_nested_priv *priv)
6986 {
6987 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6988 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6989 	int ret, cur = 0;
6990 	bool ignore;
6991 
6992 	now = dev;
6993 	iter = &dev->adj_list.upper;
6994 
6995 	while (1) {
6996 		if (now != dev) {
6997 			ret = fn(now, priv);
6998 			if (ret)
6999 				return ret;
7000 		}
7001 
7002 		next = NULL;
7003 		while (1) {
7004 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7005 			if (!udev)
7006 				break;
7007 			if (ignore)
7008 				continue;
7009 
7010 			next = udev;
7011 			niter = &udev->adj_list.upper;
7012 			dev_stack[cur] = now;
7013 			iter_stack[cur++] = iter;
7014 			break;
7015 		}
7016 
7017 		if (!next) {
7018 			if (!cur)
7019 				return 0;
7020 			next = dev_stack[--cur];
7021 			niter = iter_stack[cur];
7022 		}
7023 
7024 		now = next;
7025 		iter = niter;
7026 	}
7027 
7028 	return 0;
7029 }
7030 
7031 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7032 				  int (*fn)(struct net_device *dev,
7033 					    struct netdev_nested_priv *priv),
7034 				  struct netdev_nested_priv *priv)
7035 {
7036 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7037 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7038 	int ret, cur = 0;
7039 
7040 	now = dev;
7041 	iter = &dev->adj_list.upper;
7042 
7043 	while (1) {
7044 		if (now != dev) {
7045 			ret = fn(now, priv);
7046 			if (ret)
7047 				return ret;
7048 		}
7049 
7050 		next = NULL;
7051 		while (1) {
7052 			udev = netdev_next_upper_dev_rcu(now, &iter);
7053 			if (!udev)
7054 				break;
7055 
7056 			next = udev;
7057 			niter = &udev->adj_list.upper;
7058 			dev_stack[cur] = now;
7059 			iter_stack[cur++] = iter;
7060 			break;
7061 		}
7062 
7063 		if (!next) {
7064 			if (!cur)
7065 				return 0;
7066 			next = dev_stack[--cur];
7067 			niter = iter_stack[cur];
7068 		}
7069 
7070 		now = next;
7071 		iter = niter;
7072 	}
7073 
7074 	return 0;
7075 }
7076 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7077 
7078 static bool __netdev_has_upper_dev(struct net_device *dev,
7079 				   struct net_device *upper_dev)
7080 {
7081 	struct netdev_nested_priv priv = {
7082 		.flags = 0,
7083 		.data = (void *)upper_dev,
7084 	};
7085 
7086 	ASSERT_RTNL();
7087 
7088 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7089 					   &priv);
7090 }
7091 
7092 /**
7093  * netdev_lower_get_next_private - Get the next ->private from the
7094  *				   lower neighbour list
7095  * @dev: device
7096  * @iter: list_head ** of the current position
7097  *
7098  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7099  * list, starting from iter position. The caller must hold either hold the
7100  * RTNL lock or its own locking that guarantees that the neighbour lower
7101  * list will remain unchanged.
7102  */
7103 void *netdev_lower_get_next_private(struct net_device *dev,
7104 				    struct list_head **iter)
7105 {
7106 	struct netdev_adjacent *lower;
7107 
7108 	lower = list_entry(*iter, struct netdev_adjacent, list);
7109 
7110 	if (&lower->list == &dev->adj_list.lower)
7111 		return NULL;
7112 
7113 	*iter = lower->list.next;
7114 
7115 	return lower->private;
7116 }
7117 EXPORT_SYMBOL(netdev_lower_get_next_private);
7118 
7119 /**
7120  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7121  *				       lower neighbour list, RCU
7122  *				       variant
7123  * @dev: device
7124  * @iter: list_head ** of the current position
7125  *
7126  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7127  * list, starting from iter position. The caller must hold RCU read lock.
7128  */
7129 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7130 					struct list_head **iter)
7131 {
7132 	struct netdev_adjacent *lower;
7133 
7134 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7135 
7136 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7137 
7138 	if (&lower->list == &dev->adj_list.lower)
7139 		return NULL;
7140 
7141 	*iter = &lower->list;
7142 
7143 	return lower->private;
7144 }
7145 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7146 
7147 /**
7148  * netdev_lower_get_next - Get the next device from the lower neighbour
7149  *                         list
7150  * @dev: device
7151  * @iter: list_head ** of the current position
7152  *
7153  * Gets the next netdev_adjacent from the dev's lower neighbour
7154  * list, starting from iter position. The caller must hold RTNL lock or
7155  * its own locking that guarantees that the neighbour lower
7156  * list will remain unchanged.
7157  */
7158 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7159 {
7160 	struct netdev_adjacent *lower;
7161 
7162 	lower = list_entry(*iter, struct netdev_adjacent, list);
7163 
7164 	if (&lower->list == &dev->adj_list.lower)
7165 		return NULL;
7166 
7167 	*iter = lower->list.next;
7168 
7169 	return lower->dev;
7170 }
7171 EXPORT_SYMBOL(netdev_lower_get_next);
7172 
7173 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7174 						struct list_head **iter)
7175 {
7176 	struct netdev_adjacent *lower;
7177 
7178 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7179 
7180 	if (&lower->list == &dev->adj_list.lower)
7181 		return NULL;
7182 
7183 	*iter = &lower->list;
7184 
7185 	return lower->dev;
7186 }
7187 
7188 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7189 						  struct list_head **iter,
7190 						  bool *ignore)
7191 {
7192 	struct netdev_adjacent *lower;
7193 
7194 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7195 
7196 	if (&lower->list == &dev->adj_list.lower)
7197 		return NULL;
7198 
7199 	*iter = &lower->list;
7200 	*ignore = lower->ignore;
7201 
7202 	return lower->dev;
7203 }
7204 
7205 int netdev_walk_all_lower_dev(struct net_device *dev,
7206 			      int (*fn)(struct net_device *dev,
7207 					struct netdev_nested_priv *priv),
7208 			      struct netdev_nested_priv *priv)
7209 {
7210 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7211 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7212 	int ret, cur = 0;
7213 
7214 	now = dev;
7215 	iter = &dev->adj_list.lower;
7216 
7217 	while (1) {
7218 		if (now != dev) {
7219 			ret = fn(now, priv);
7220 			if (ret)
7221 				return ret;
7222 		}
7223 
7224 		next = NULL;
7225 		while (1) {
7226 			ldev = netdev_next_lower_dev(now, &iter);
7227 			if (!ldev)
7228 				break;
7229 
7230 			next = ldev;
7231 			niter = &ldev->adj_list.lower;
7232 			dev_stack[cur] = now;
7233 			iter_stack[cur++] = iter;
7234 			break;
7235 		}
7236 
7237 		if (!next) {
7238 			if (!cur)
7239 				return 0;
7240 			next = dev_stack[--cur];
7241 			niter = iter_stack[cur];
7242 		}
7243 
7244 		now = next;
7245 		iter = niter;
7246 	}
7247 
7248 	return 0;
7249 }
7250 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7251 
7252 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7253 				       int (*fn)(struct net_device *dev,
7254 					 struct netdev_nested_priv *priv),
7255 				       struct netdev_nested_priv *priv)
7256 {
7257 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7258 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7259 	int ret, cur = 0;
7260 	bool ignore;
7261 
7262 	now = dev;
7263 	iter = &dev->adj_list.lower;
7264 
7265 	while (1) {
7266 		if (now != dev) {
7267 			ret = fn(now, priv);
7268 			if (ret)
7269 				return ret;
7270 		}
7271 
7272 		next = NULL;
7273 		while (1) {
7274 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7275 			if (!ldev)
7276 				break;
7277 			if (ignore)
7278 				continue;
7279 
7280 			next = ldev;
7281 			niter = &ldev->adj_list.lower;
7282 			dev_stack[cur] = now;
7283 			iter_stack[cur++] = iter;
7284 			break;
7285 		}
7286 
7287 		if (!next) {
7288 			if (!cur)
7289 				return 0;
7290 			next = dev_stack[--cur];
7291 			niter = iter_stack[cur];
7292 		}
7293 
7294 		now = next;
7295 		iter = niter;
7296 	}
7297 
7298 	return 0;
7299 }
7300 
7301 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7302 					     struct list_head **iter)
7303 {
7304 	struct netdev_adjacent *lower;
7305 
7306 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7307 	if (&lower->list == &dev->adj_list.lower)
7308 		return NULL;
7309 
7310 	*iter = &lower->list;
7311 
7312 	return lower->dev;
7313 }
7314 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7315 
7316 static u8 __netdev_upper_depth(struct net_device *dev)
7317 {
7318 	struct net_device *udev;
7319 	struct list_head *iter;
7320 	u8 max_depth = 0;
7321 	bool ignore;
7322 
7323 	for (iter = &dev->adj_list.upper,
7324 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7325 	     udev;
7326 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7327 		if (ignore)
7328 			continue;
7329 		if (max_depth < udev->upper_level)
7330 			max_depth = udev->upper_level;
7331 	}
7332 
7333 	return max_depth;
7334 }
7335 
7336 static u8 __netdev_lower_depth(struct net_device *dev)
7337 {
7338 	struct net_device *ldev;
7339 	struct list_head *iter;
7340 	u8 max_depth = 0;
7341 	bool ignore;
7342 
7343 	for (iter = &dev->adj_list.lower,
7344 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7345 	     ldev;
7346 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7347 		if (ignore)
7348 			continue;
7349 		if (max_depth < ldev->lower_level)
7350 			max_depth = ldev->lower_level;
7351 	}
7352 
7353 	return max_depth;
7354 }
7355 
7356 static int __netdev_update_upper_level(struct net_device *dev,
7357 				       struct netdev_nested_priv *__unused)
7358 {
7359 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7360 	return 0;
7361 }
7362 
7363 #ifdef CONFIG_LOCKDEP
7364 static LIST_HEAD(net_unlink_list);
7365 
7366 static void net_unlink_todo(struct net_device *dev)
7367 {
7368 	if (list_empty(&dev->unlink_list))
7369 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7370 }
7371 #endif
7372 
7373 static int __netdev_update_lower_level(struct net_device *dev,
7374 				       struct netdev_nested_priv *priv)
7375 {
7376 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7377 
7378 #ifdef CONFIG_LOCKDEP
7379 	if (!priv)
7380 		return 0;
7381 
7382 	if (priv->flags & NESTED_SYNC_IMM)
7383 		dev->nested_level = dev->lower_level - 1;
7384 	if (priv->flags & NESTED_SYNC_TODO)
7385 		net_unlink_todo(dev);
7386 #endif
7387 	return 0;
7388 }
7389 
7390 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7391 				  int (*fn)(struct net_device *dev,
7392 					    struct netdev_nested_priv *priv),
7393 				  struct netdev_nested_priv *priv)
7394 {
7395 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7396 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7397 	int ret, cur = 0;
7398 
7399 	now = dev;
7400 	iter = &dev->adj_list.lower;
7401 
7402 	while (1) {
7403 		if (now != dev) {
7404 			ret = fn(now, priv);
7405 			if (ret)
7406 				return ret;
7407 		}
7408 
7409 		next = NULL;
7410 		while (1) {
7411 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7412 			if (!ldev)
7413 				break;
7414 
7415 			next = ldev;
7416 			niter = &ldev->adj_list.lower;
7417 			dev_stack[cur] = now;
7418 			iter_stack[cur++] = iter;
7419 			break;
7420 		}
7421 
7422 		if (!next) {
7423 			if (!cur)
7424 				return 0;
7425 			next = dev_stack[--cur];
7426 			niter = iter_stack[cur];
7427 		}
7428 
7429 		now = next;
7430 		iter = niter;
7431 	}
7432 
7433 	return 0;
7434 }
7435 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7436 
7437 /**
7438  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7439  *				       lower neighbour list, RCU
7440  *				       variant
7441  * @dev: device
7442  *
7443  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7444  * list. The caller must hold RCU read lock.
7445  */
7446 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7447 {
7448 	struct netdev_adjacent *lower;
7449 
7450 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7451 			struct netdev_adjacent, list);
7452 	if (lower)
7453 		return lower->private;
7454 	return NULL;
7455 }
7456 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7457 
7458 /**
7459  * netdev_master_upper_dev_get_rcu - Get master upper device
7460  * @dev: device
7461  *
7462  * Find a master upper device and return pointer to it or NULL in case
7463  * it's not there. The caller must hold the RCU read lock.
7464  */
7465 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7466 {
7467 	struct netdev_adjacent *upper;
7468 
7469 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7470 				       struct netdev_adjacent, list);
7471 	if (upper && likely(upper->master))
7472 		return upper->dev;
7473 	return NULL;
7474 }
7475 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7476 
7477 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7478 			      struct net_device *adj_dev,
7479 			      struct list_head *dev_list)
7480 {
7481 	char linkname[IFNAMSIZ+7];
7482 
7483 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7484 		"upper_%s" : "lower_%s", adj_dev->name);
7485 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7486 				 linkname);
7487 }
7488 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7489 			       char *name,
7490 			       struct list_head *dev_list)
7491 {
7492 	char linkname[IFNAMSIZ+7];
7493 
7494 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7495 		"upper_%s" : "lower_%s", name);
7496 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7497 }
7498 
7499 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7500 						 struct net_device *adj_dev,
7501 						 struct list_head *dev_list)
7502 {
7503 	return (dev_list == &dev->adj_list.upper ||
7504 		dev_list == &dev->adj_list.lower) &&
7505 		net_eq(dev_net(dev), dev_net(adj_dev));
7506 }
7507 
7508 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7509 					struct net_device *adj_dev,
7510 					struct list_head *dev_list,
7511 					void *private, bool master)
7512 {
7513 	struct netdev_adjacent *adj;
7514 	int ret;
7515 
7516 	adj = __netdev_find_adj(adj_dev, dev_list);
7517 
7518 	if (adj) {
7519 		adj->ref_nr += 1;
7520 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7521 			 dev->name, adj_dev->name, adj->ref_nr);
7522 
7523 		return 0;
7524 	}
7525 
7526 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7527 	if (!adj)
7528 		return -ENOMEM;
7529 
7530 	adj->dev = adj_dev;
7531 	adj->master = master;
7532 	adj->ref_nr = 1;
7533 	adj->private = private;
7534 	adj->ignore = false;
7535 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7536 
7537 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7538 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7539 
7540 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7541 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7542 		if (ret)
7543 			goto free_adj;
7544 	}
7545 
7546 	/* Ensure that master link is always the first item in list. */
7547 	if (master) {
7548 		ret = sysfs_create_link(&(dev->dev.kobj),
7549 					&(adj_dev->dev.kobj), "master");
7550 		if (ret)
7551 			goto remove_symlinks;
7552 
7553 		list_add_rcu(&adj->list, dev_list);
7554 	} else {
7555 		list_add_tail_rcu(&adj->list, dev_list);
7556 	}
7557 
7558 	return 0;
7559 
7560 remove_symlinks:
7561 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7562 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7563 free_adj:
7564 	netdev_put(adj_dev, &adj->dev_tracker);
7565 	kfree(adj);
7566 
7567 	return ret;
7568 }
7569 
7570 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7571 					 struct net_device *adj_dev,
7572 					 u16 ref_nr,
7573 					 struct list_head *dev_list)
7574 {
7575 	struct netdev_adjacent *adj;
7576 
7577 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7578 		 dev->name, adj_dev->name, ref_nr);
7579 
7580 	adj = __netdev_find_adj(adj_dev, dev_list);
7581 
7582 	if (!adj) {
7583 		pr_err("Adjacency does not exist for device %s from %s\n",
7584 		       dev->name, adj_dev->name);
7585 		WARN_ON(1);
7586 		return;
7587 	}
7588 
7589 	if (adj->ref_nr > ref_nr) {
7590 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7591 			 dev->name, adj_dev->name, ref_nr,
7592 			 adj->ref_nr - ref_nr);
7593 		adj->ref_nr -= ref_nr;
7594 		return;
7595 	}
7596 
7597 	if (adj->master)
7598 		sysfs_remove_link(&(dev->dev.kobj), "master");
7599 
7600 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7601 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7602 
7603 	list_del_rcu(&adj->list);
7604 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7605 		 adj_dev->name, dev->name, adj_dev->name);
7606 	netdev_put(adj_dev, &adj->dev_tracker);
7607 	kfree_rcu(adj, rcu);
7608 }
7609 
7610 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7611 					    struct net_device *upper_dev,
7612 					    struct list_head *up_list,
7613 					    struct list_head *down_list,
7614 					    void *private, bool master)
7615 {
7616 	int ret;
7617 
7618 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7619 					   private, master);
7620 	if (ret)
7621 		return ret;
7622 
7623 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7624 					   private, false);
7625 	if (ret) {
7626 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7627 		return ret;
7628 	}
7629 
7630 	return 0;
7631 }
7632 
7633 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7634 					       struct net_device *upper_dev,
7635 					       u16 ref_nr,
7636 					       struct list_head *up_list,
7637 					       struct list_head *down_list)
7638 {
7639 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7640 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7641 }
7642 
7643 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7644 						struct net_device *upper_dev,
7645 						void *private, bool master)
7646 {
7647 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7648 						&dev->adj_list.upper,
7649 						&upper_dev->adj_list.lower,
7650 						private, master);
7651 }
7652 
7653 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7654 						   struct net_device *upper_dev)
7655 {
7656 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7657 					   &dev->adj_list.upper,
7658 					   &upper_dev->adj_list.lower);
7659 }
7660 
7661 static int __netdev_upper_dev_link(struct net_device *dev,
7662 				   struct net_device *upper_dev, bool master,
7663 				   void *upper_priv, void *upper_info,
7664 				   struct netdev_nested_priv *priv,
7665 				   struct netlink_ext_ack *extack)
7666 {
7667 	struct netdev_notifier_changeupper_info changeupper_info = {
7668 		.info = {
7669 			.dev = dev,
7670 			.extack = extack,
7671 		},
7672 		.upper_dev = upper_dev,
7673 		.master = master,
7674 		.linking = true,
7675 		.upper_info = upper_info,
7676 	};
7677 	struct net_device *master_dev;
7678 	int ret = 0;
7679 
7680 	ASSERT_RTNL();
7681 
7682 	if (dev == upper_dev)
7683 		return -EBUSY;
7684 
7685 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7686 	if (__netdev_has_upper_dev(upper_dev, dev))
7687 		return -EBUSY;
7688 
7689 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7690 		return -EMLINK;
7691 
7692 	if (!master) {
7693 		if (__netdev_has_upper_dev(dev, upper_dev))
7694 			return -EEXIST;
7695 	} else {
7696 		master_dev = __netdev_master_upper_dev_get(dev);
7697 		if (master_dev)
7698 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7699 	}
7700 
7701 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7702 					    &changeupper_info.info);
7703 	ret = notifier_to_errno(ret);
7704 	if (ret)
7705 		return ret;
7706 
7707 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7708 						   master);
7709 	if (ret)
7710 		return ret;
7711 
7712 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7713 					    &changeupper_info.info);
7714 	ret = notifier_to_errno(ret);
7715 	if (ret)
7716 		goto rollback;
7717 
7718 	__netdev_update_upper_level(dev, NULL);
7719 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7720 
7721 	__netdev_update_lower_level(upper_dev, priv);
7722 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7723 				    priv);
7724 
7725 	return 0;
7726 
7727 rollback:
7728 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7729 
7730 	return ret;
7731 }
7732 
7733 /**
7734  * netdev_upper_dev_link - Add a link to the upper device
7735  * @dev: device
7736  * @upper_dev: new upper device
7737  * @extack: netlink extended ack
7738  *
7739  * Adds a link to device which is upper to this one. The caller must hold
7740  * the RTNL lock. On a failure a negative errno code is returned.
7741  * On success the reference counts are adjusted and the function
7742  * returns zero.
7743  */
7744 int netdev_upper_dev_link(struct net_device *dev,
7745 			  struct net_device *upper_dev,
7746 			  struct netlink_ext_ack *extack)
7747 {
7748 	struct netdev_nested_priv priv = {
7749 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7750 		.data = NULL,
7751 	};
7752 
7753 	return __netdev_upper_dev_link(dev, upper_dev, false,
7754 				       NULL, NULL, &priv, extack);
7755 }
7756 EXPORT_SYMBOL(netdev_upper_dev_link);
7757 
7758 /**
7759  * netdev_master_upper_dev_link - Add a master link to the upper device
7760  * @dev: device
7761  * @upper_dev: new upper device
7762  * @upper_priv: upper device private
7763  * @upper_info: upper info to be passed down via notifier
7764  * @extack: netlink extended ack
7765  *
7766  * Adds a link to device which is upper to this one. In this case, only
7767  * one master upper device can be linked, although other non-master devices
7768  * might be linked as well. The caller must hold the RTNL lock.
7769  * On a failure a negative errno code is returned. On success the reference
7770  * counts are adjusted and the function returns zero.
7771  */
7772 int netdev_master_upper_dev_link(struct net_device *dev,
7773 				 struct net_device *upper_dev,
7774 				 void *upper_priv, void *upper_info,
7775 				 struct netlink_ext_ack *extack)
7776 {
7777 	struct netdev_nested_priv priv = {
7778 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7779 		.data = NULL,
7780 	};
7781 
7782 	return __netdev_upper_dev_link(dev, upper_dev, true,
7783 				       upper_priv, upper_info, &priv, extack);
7784 }
7785 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7786 
7787 static void __netdev_upper_dev_unlink(struct net_device *dev,
7788 				      struct net_device *upper_dev,
7789 				      struct netdev_nested_priv *priv)
7790 {
7791 	struct netdev_notifier_changeupper_info changeupper_info = {
7792 		.info = {
7793 			.dev = dev,
7794 		},
7795 		.upper_dev = upper_dev,
7796 		.linking = false,
7797 	};
7798 
7799 	ASSERT_RTNL();
7800 
7801 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7802 
7803 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7804 				      &changeupper_info.info);
7805 
7806 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7807 
7808 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7809 				      &changeupper_info.info);
7810 
7811 	__netdev_update_upper_level(dev, NULL);
7812 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7813 
7814 	__netdev_update_lower_level(upper_dev, priv);
7815 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7816 				    priv);
7817 }
7818 
7819 /**
7820  * netdev_upper_dev_unlink - Removes a link to upper device
7821  * @dev: device
7822  * @upper_dev: new upper device
7823  *
7824  * Removes a link to device which is upper to this one. The caller must hold
7825  * the RTNL lock.
7826  */
7827 void netdev_upper_dev_unlink(struct net_device *dev,
7828 			     struct net_device *upper_dev)
7829 {
7830 	struct netdev_nested_priv priv = {
7831 		.flags = NESTED_SYNC_TODO,
7832 		.data = NULL,
7833 	};
7834 
7835 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7836 }
7837 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7838 
7839 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7840 				      struct net_device *lower_dev,
7841 				      bool val)
7842 {
7843 	struct netdev_adjacent *adj;
7844 
7845 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7846 	if (adj)
7847 		adj->ignore = val;
7848 
7849 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7850 	if (adj)
7851 		adj->ignore = val;
7852 }
7853 
7854 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7855 					struct net_device *lower_dev)
7856 {
7857 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7858 }
7859 
7860 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7861 				       struct net_device *lower_dev)
7862 {
7863 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7864 }
7865 
7866 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7867 				   struct net_device *new_dev,
7868 				   struct net_device *dev,
7869 				   struct netlink_ext_ack *extack)
7870 {
7871 	struct netdev_nested_priv priv = {
7872 		.flags = 0,
7873 		.data = NULL,
7874 	};
7875 	int err;
7876 
7877 	if (!new_dev)
7878 		return 0;
7879 
7880 	if (old_dev && new_dev != old_dev)
7881 		netdev_adjacent_dev_disable(dev, old_dev);
7882 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7883 				      extack);
7884 	if (err) {
7885 		if (old_dev && new_dev != old_dev)
7886 			netdev_adjacent_dev_enable(dev, old_dev);
7887 		return err;
7888 	}
7889 
7890 	return 0;
7891 }
7892 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7893 
7894 void netdev_adjacent_change_commit(struct net_device *old_dev,
7895 				   struct net_device *new_dev,
7896 				   struct net_device *dev)
7897 {
7898 	struct netdev_nested_priv priv = {
7899 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7900 		.data = NULL,
7901 	};
7902 
7903 	if (!new_dev || !old_dev)
7904 		return;
7905 
7906 	if (new_dev == old_dev)
7907 		return;
7908 
7909 	netdev_adjacent_dev_enable(dev, old_dev);
7910 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
7911 }
7912 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7913 
7914 void netdev_adjacent_change_abort(struct net_device *old_dev,
7915 				  struct net_device *new_dev,
7916 				  struct net_device *dev)
7917 {
7918 	struct netdev_nested_priv priv = {
7919 		.flags = 0,
7920 		.data = NULL,
7921 	};
7922 
7923 	if (!new_dev)
7924 		return;
7925 
7926 	if (old_dev && new_dev != old_dev)
7927 		netdev_adjacent_dev_enable(dev, old_dev);
7928 
7929 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
7930 }
7931 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7932 
7933 /**
7934  * netdev_bonding_info_change - Dispatch event about slave change
7935  * @dev: device
7936  * @bonding_info: info to dispatch
7937  *
7938  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7939  * The caller must hold the RTNL lock.
7940  */
7941 void netdev_bonding_info_change(struct net_device *dev,
7942 				struct netdev_bonding_info *bonding_info)
7943 {
7944 	struct netdev_notifier_bonding_info info = {
7945 		.info.dev = dev,
7946 	};
7947 
7948 	memcpy(&info.bonding_info, bonding_info,
7949 	       sizeof(struct netdev_bonding_info));
7950 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7951 				      &info.info);
7952 }
7953 EXPORT_SYMBOL(netdev_bonding_info_change);
7954 
7955 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7956 					   struct netlink_ext_ack *extack)
7957 {
7958 	struct netdev_notifier_offload_xstats_info info = {
7959 		.info.dev = dev,
7960 		.info.extack = extack,
7961 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7962 	};
7963 	int err;
7964 	int rc;
7965 
7966 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7967 					 GFP_KERNEL);
7968 	if (!dev->offload_xstats_l3)
7969 		return -ENOMEM;
7970 
7971 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7972 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
7973 						  &info.info);
7974 	err = notifier_to_errno(rc);
7975 	if (err)
7976 		goto free_stats;
7977 
7978 	return 0;
7979 
7980 free_stats:
7981 	kfree(dev->offload_xstats_l3);
7982 	dev->offload_xstats_l3 = NULL;
7983 	return err;
7984 }
7985 
7986 int netdev_offload_xstats_enable(struct net_device *dev,
7987 				 enum netdev_offload_xstats_type type,
7988 				 struct netlink_ext_ack *extack)
7989 {
7990 	ASSERT_RTNL();
7991 
7992 	if (netdev_offload_xstats_enabled(dev, type))
7993 		return -EALREADY;
7994 
7995 	switch (type) {
7996 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7997 		return netdev_offload_xstats_enable_l3(dev, extack);
7998 	}
7999 
8000 	WARN_ON(1);
8001 	return -EINVAL;
8002 }
8003 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8004 
8005 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8006 {
8007 	struct netdev_notifier_offload_xstats_info info = {
8008 		.info.dev = dev,
8009 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8010 	};
8011 
8012 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8013 				      &info.info);
8014 	kfree(dev->offload_xstats_l3);
8015 	dev->offload_xstats_l3 = NULL;
8016 }
8017 
8018 int netdev_offload_xstats_disable(struct net_device *dev,
8019 				  enum netdev_offload_xstats_type type)
8020 {
8021 	ASSERT_RTNL();
8022 
8023 	if (!netdev_offload_xstats_enabled(dev, type))
8024 		return -EALREADY;
8025 
8026 	switch (type) {
8027 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8028 		netdev_offload_xstats_disable_l3(dev);
8029 		return 0;
8030 	}
8031 
8032 	WARN_ON(1);
8033 	return -EINVAL;
8034 }
8035 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8036 
8037 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8038 {
8039 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8040 }
8041 
8042 static struct rtnl_hw_stats64 *
8043 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8044 			      enum netdev_offload_xstats_type type)
8045 {
8046 	switch (type) {
8047 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8048 		return dev->offload_xstats_l3;
8049 	}
8050 
8051 	WARN_ON(1);
8052 	return NULL;
8053 }
8054 
8055 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8056 				   enum netdev_offload_xstats_type type)
8057 {
8058 	ASSERT_RTNL();
8059 
8060 	return netdev_offload_xstats_get_ptr(dev, type);
8061 }
8062 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8063 
8064 struct netdev_notifier_offload_xstats_ru {
8065 	bool used;
8066 };
8067 
8068 struct netdev_notifier_offload_xstats_rd {
8069 	struct rtnl_hw_stats64 stats;
8070 	bool used;
8071 };
8072 
8073 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8074 				  const struct rtnl_hw_stats64 *src)
8075 {
8076 	dest->rx_packets	  += src->rx_packets;
8077 	dest->tx_packets	  += src->tx_packets;
8078 	dest->rx_bytes		  += src->rx_bytes;
8079 	dest->tx_bytes		  += src->tx_bytes;
8080 	dest->rx_errors		  += src->rx_errors;
8081 	dest->tx_errors		  += src->tx_errors;
8082 	dest->rx_dropped	  += src->rx_dropped;
8083 	dest->tx_dropped	  += src->tx_dropped;
8084 	dest->multicast		  += src->multicast;
8085 }
8086 
8087 static int netdev_offload_xstats_get_used(struct net_device *dev,
8088 					  enum netdev_offload_xstats_type type,
8089 					  bool *p_used,
8090 					  struct netlink_ext_ack *extack)
8091 {
8092 	struct netdev_notifier_offload_xstats_ru report_used = {};
8093 	struct netdev_notifier_offload_xstats_info info = {
8094 		.info.dev = dev,
8095 		.info.extack = extack,
8096 		.type = type,
8097 		.report_used = &report_used,
8098 	};
8099 	int rc;
8100 
8101 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8102 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8103 					   &info.info);
8104 	*p_used = report_used.used;
8105 	return notifier_to_errno(rc);
8106 }
8107 
8108 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8109 					   enum netdev_offload_xstats_type type,
8110 					   struct rtnl_hw_stats64 *p_stats,
8111 					   bool *p_used,
8112 					   struct netlink_ext_ack *extack)
8113 {
8114 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8115 	struct netdev_notifier_offload_xstats_info info = {
8116 		.info.dev = dev,
8117 		.info.extack = extack,
8118 		.type = type,
8119 		.report_delta = &report_delta,
8120 	};
8121 	struct rtnl_hw_stats64 *stats;
8122 	int rc;
8123 
8124 	stats = netdev_offload_xstats_get_ptr(dev, type);
8125 	if (WARN_ON(!stats))
8126 		return -EINVAL;
8127 
8128 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8129 					   &info.info);
8130 
8131 	/* Cache whatever we got, even if there was an error, otherwise the
8132 	 * successful stats retrievals would get lost.
8133 	 */
8134 	netdev_hw_stats64_add(stats, &report_delta.stats);
8135 
8136 	if (p_stats)
8137 		*p_stats = *stats;
8138 	*p_used = report_delta.used;
8139 
8140 	return notifier_to_errno(rc);
8141 }
8142 
8143 int netdev_offload_xstats_get(struct net_device *dev,
8144 			      enum netdev_offload_xstats_type type,
8145 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8146 			      struct netlink_ext_ack *extack)
8147 {
8148 	ASSERT_RTNL();
8149 
8150 	if (p_stats)
8151 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8152 						       p_used, extack);
8153 	else
8154 		return netdev_offload_xstats_get_used(dev, type, p_used,
8155 						      extack);
8156 }
8157 EXPORT_SYMBOL(netdev_offload_xstats_get);
8158 
8159 void
8160 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8161 				   const struct rtnl_hw_stats64 *stats)
8162 {
8163 	report_delta->used = true;
8164 	netdev_hw_stats64_add(&report_delta->stats, stats);
8165 }
8166 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8167 
8168 void
8169 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8170 {
8171 	report_used->used = true;
8172 }
8173 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8174 
8175 void netdev_offload_xstats_push_delta(struct net_device *dev,
8176 				      enum netdev_offload_xstats_type type,
8177 				      const struct rtnl_hw_stats64 *p_stats)
8178 {
8179 	struct rtnl_hw_stats64 *stats;
8180 
8181 	ASSERT_RTNL();
8182 
8183 	stats = netdev_offload_xstats_get_ptr(dev, type);
8184 	if (WARN_ON(!stats))
8185 		return;
8186 
8187 	netdev_hw_stats64_add(stats, p_stats);
8188 }
8189 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8190 
8191 /**
8192  * netdev_get_xmit_slave - Get the xmit slave of master device
8193  * @dev: device
8194  * @skb: The packet
8195  * @all_slaves: assume all the slaves are active
8196  *
8197  * The reference counters are not incremented so the caller must be
8198  * careful with locks. The caller must hold RCU lock.
8199  * %NULL is returned if no slave is found.
8200  */
8201 
8202 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8203 					 struct sk_buff *skb,
8204 					 bool all_slaves)
8205 {
8206 	const struct net_device_ops *ops = dev->netdev_ops;
8207 
8208 	if (!ops->ndo_get_xmit_slave)
8209 		return NULL;
8210 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8211 }
8212 EXPORT_SYMBOL(netdev_get_xmit_slave);
8213 
8214 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8215 						  struct sock *sk)
8216 {
8217 	const struct net_device_ops *ops = dev->netdev_ops;
8218 
8219 	if (!ops->ndo_sk_get_lower_dev)
8220 		return NULL;
8221 	return ops->ndo_sk_get_lower_dev(dev, sk);
8222 }
8223 
8224 /**
8225  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8226  * @dev: device
8227  * @sk: the socket
8228  *
8229  * %NULL is returned if no lower device is found.
8230  */
8231 
8232 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8233 					    struct sock *sk)
8234 {
8235 	struct net_device *lower;
8236 
8237 	lower = netdev_sk_get_lower_dev(dev, sk);
8238 	while (lower) {
8239 		dev = lower;
8240 		lower = netdev_sk_get_lower_dev(dev, sk);
8241 	}
8242 
8243 	return dev;
8244 }
8245 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8246 
8247 static void netdev_adjacent_add_links(struct net_device *dev)
8248 {
8249 	struct netdev_adjacent *iter;
8250 
8251 	struct net *net = dev_net(dev);
8252 
8253 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8254 		if (!net_eq(net, dev_net(iter->dev)))
8255 			continue;
8256 		netdev_adjacent_sysfs_add(iter->dev, dev,
8257 					  &iter->dev->adj_list.lower);
8258 		netdev_adjacent_sysfs_add(dev, iter->dev,
8259 					  &dev->adj_list.upper);
8260 	}
8261 
8262 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8263 		if (!net_eq(net, dev_net(iter->dev)))
8264 			continue;
8265 		netdev_adjacent_sysfs_add(iter->dev, dev,
8266 					  &iter->dev->adj_list.upper);
8267 		netdev_adjacent_sysfs_add(dev, iter->dev,
8268 					  &dev->adj_list.lower);
8269 	}
8270 }
8271 
8272 static void netdev_adjacent_del_links(struct net_device *dev)
8273 {
8274 	struct netdev_adjacent *iter;
8275 
8276 	struct net *net = dev_net(dev);
8277 
8278 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8279 		if (!net_eq(net, dev_net(iter->dev)))
8280 			continue;
8281 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8282 					  &iter->dev->adj_list.lower);
8283 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8284 					  &dev->adj_list.upper);
8285 	}
8286 
8287 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8288 		if (!net_eq(net, dev_net(iter->dev)))
8289 			continue;
8290 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8291 					  &iter->dev->adj_list.upper);
8292 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8293 					  &dev->adj_list.lower);
8294 	}
8295 }
8296 
8297 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8298 {
8299 	struct netdev_adjacent *iter;
8300 
8301 	struct net *net = dev_net(dev);
8302 
8303 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8304 		if (!net_eq(net, dev_net(iter->dev)))
8305 			continue;
8306 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8307 					  &iter->dev->adj_list.lower);
8308 		netdev_adjacent_sysfs_add(iter->dev, dev,
8309 					  &iter->dev->adj_list.lower);
8310 	}
8311 
8312 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8313 		if (!net_eq(net, dev_net(iter->dev)))
8314 			continue;
8315 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8316 					  &iter->dev->adj_list.upper);
8317 		netdev_adjacent_sysfs_add(iter->dev, dev,
8318 					  &iter->dev->adj_list.upper);
8319 	}
8320 }
8321 
8322 void *netdev_lower_dev_get_private(struct net_device *dev,
8323 				   struct net_device *lower_dev)
8324 {
8325 	struct netdev_adjacent *lower;
8326 
8327 	if (!lower_dev)
8328 		return NULL;
8329 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8330 	if (!lower)
8331 		return NULL;
8332 
8333 	return lower->private;
8334 }
8335 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8336 
8337 
8338 /**
8339  * netdev_lower_state_changed - Dispatch event about lower device state change
8340  * @lower_dev: device
8341  * @lower_state_info: state to dispatch
8342  *
8343  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8344  * The caller must hold the RTNL lock.
8345  */
8346 void netdev_lower_state_changed(struct net_device *lower_dev,
8347 				void *lower_state_info)
8348 {
8349 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8350 		.info.dev = lower_dev,
8351 	};
8352 
8353 	ASSERT_RTNL();
8354 	changelowerstate_info.lower_state_info = lower_state_info;
8355 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8356 				      &changelowerstate_info.info);
8357 }
8358 EXPORT_SYMBOL(netdev_lower_state_changed);
8359 
8360 static void dev_change_rx_flags(struct net_device *dev, int flags)
8361 {
8362 	const struct net_device_ops *ops = dev->netdev_ops;
8363 
8364 	if (ops->ndo_change_rx_flags)
8365 		ops->ndo_change_rx_flags(dev, flags);
8366 }
8367 
8368 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8369 {
8370 	unsigned int old_flags = dev->flags;
8371 	kuid_t uid;
8372 	kgid_t gid;
8373 
8374 	ASSERT_RTNL();
8375 
8376 	dev->flags |= IFF_PROMISC;
8377 	dev->promiscuity += inc;
8378 	if (dev->promiscuity == 0) {
8379 		/*
8380 		 * Avoid overflow.
8381 		 * If inc causes overflow, untouch promisc and return error.
8382 		 */
8383 		if (inc < 0)
8384 			dev->flags &= ~IFF_PROMISC;
8385 		else {
8386 			dev->promiscuity -= inc;
8387 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8388 			return -EOVERFLOW;
8389 		}
8390 	}
8391 	if (dev->flags != old_flags) {
8392 		netdev_info(dev, "%s promiscuous mode\n",
8393 			    dev->flags & IFF_PROMISC ? "entered" : "left");
8394 		if (audit_enabled) {
8395 			current_uid_gid(&uid, &gid);
8396 			audit_log(audit_context(), GFP_ATOMIC,
8397 				  AUDIT_ANOM_PROMISCUOUS,
8398 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8399 				  dev->name, (dev->flags & IFF_PROMISC),
8400 				  (old_flags & IFF_PROMISC),
8401 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8402 				  from_kuid(&init_user_ns, uid),
8403 				  from_kgid(&init_user_ns, gid),
8404 				  audit_get_sessionid(current));
8405 		}
8406 
8407 		dev_change_rx_flags(dev, IFF_PROMISC);
8408 	}
8409 	if (notify)
8410 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8411 	return 0;
8412 }
8413 
8414 /**
8415  *	dev_set_promiscuity	- update promiscuity count on a device
8416  *	@dev: device
8417  *	@inc: modifier
8418  *
8419  *	Add or remove promiscuity from a device. While the count in the device
8420  *	remains above zero the interface remains promiscuous. Once it hits zero
8421  *	the device reverts back to normal filtering operation. A negative inc
8422  *	value is used to drop promiscuity on the device.
8423  *	Return 0 if successful or a negative errno code on error.
8424  */
8425 int dev_set_promiscuity(struct net_device *dev, int inc)
8426 {
8427 	unsigned int old_flags = dev->flags;
8428 	int err;
8429 
8430 	err = __dev_set_promiscuity(dev, inc, true);
8431 	if (err < 0)
8432 		return err;
8433 	if (dev->flags != old_flags)
8434 		dev_set_rx_mode(dev);
8435 	return err;
8436 }
8437 EXPORT_SYMBOL(dev_set_promiscuity);
8438 
8439 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8440 {
8441 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8442 
8443 	ASSERT_RTNL();
8444 
8445 	dev->flags |= IFF_ALLMULTI;
8446 	dev->allmulti += inc;
8447 	if (dev->allmulti == 0) {
8448 		/*
8449 		 * Avoid overflow.
8450 		 * If inc causes overflow, untouch allmulti and return error.
8451 		 */
8452 		if (inc < 0)
8453 			dev->flags &= ~IFF_ALLMULTI;
8454 		else {
8455 			dev->allmulti -= inc;
8456 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8457 			return -EOVERFLOW;
8458 		}
8459 	}
8460 	if (dev->flags ^ old_flags) {
8461 		netdev_info(dev, "%s allmulticast mode\n",
8462 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
8463 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8464 		dev_set_rx_mode(dev);
8465 		if (notify)
8466 			__dev_notify_flags(dev, old_flags,
8467 					   dev->gflags ^ old_gflags, 0, NULL);
8468 	}
8469 	return 0;
8470 }
8471 
8472 /**
8473  *	dev_set_allmulti	- update allmulti count on a device
8474  *	@dev: device
8475  *	@inc: modifier
8476  *
8477  *	Add or remove reception of all multicast frames to a device. While the
8478  *	count in the device remains above zero the interface remains listening
8479  *	to all interfaces. Once it hits zero the device reverts back to normal
8480  *	filtering operation. A negative @inc value is used to drop the counter
8481  *	when releasing a resource needing all multicasts.
8482  *	Return 0 if successful or a negative errno code on error.
8483  */
8484 
8485 int dev_set_allmulti(struct net_device *dev, int inc)
8486 {
8487 	return __dev_set_allmulti(dev, inc, true);
8488 }
8489 EXPORT_SYMBOL(dev_set_allmulti);
8490 
8491 /*
8492  *	Upload unicast and multicast address lists to device and
8493  *	configure RX filtering. When the device doesn't support unicast
8494  *	filtering it is put in promiscuous mode while unicast addresses
8495  *	are present.
8496  */
8497 void __dev_set_rx_mode(struct net_device *dev)
8498 {
8499 	const struct net_device_ops *ops = dev->netdev_ops;
8500 
8501 	/* dev_open will call this function so the list will stay sane. */
8502 	if (!(dev->flags&IFF_UP))
8503 		return;
8504 
8505 	if (!netif_device_present(dev))
8506 		return;
8507 
8508 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8509 		/* Unicast addresses changes may only happen under the rtnl,
8510 		 * therefore calling __dev_set_promiscuity here is safe.
8511 		 */
8512 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8513 			__dev_set_promiscuity(dev, 1, false);
8514 			dev->uc_promisc = true;
8515 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8516 			__dev_set_promiscuity(dev, -1, false);
8517 			dev->uc_promisc = false;
8518 		}
8519 	}
8520 
8521 	if (ops->ndo_set_rx_mode)
8522 		ops->ndo_set_rx_mode(dev);
8523 }
8524 
8525 void dev_set_rx_mode(struct net_device *dev)
8526 {
8527 	netif_addr_lock_bh(dev);
8528 	__dev_set_rx_mode(dev);
8529 	netif_addr_unlock_bh(dev);
8530 }
8531 
8532 /**
8533  *	dev_get_flags - get flags reported to userspace
8534  *	@dev: device
8535  *
8536  *	Get the combination of flag bits exported through APIs to userspace.
8537  */
8538 unsigned int dev_get_flags(const struct net_device *dev)
8539 {
8540 	unsigned int flags;
8541 
8542 	flags = (dev->flags & ~(IFF_PROMISC |
8543 				IFF_ALLMULTI |
8544 				IFF_RUNNING |
8545 				IFF_LOWER_UP |
8546 				IFF_DORMANT)) |
8547 		(dev->gflags & (IFF_PROMISC |
8548 				IFF_ALLMULTI));
8549 
8550 	if (netif_running(dev)) {
8551 		if (netif_oper_up(dev))
8552 			flags |= IFF_RUNNING;
8553 		if (netif_carrier_ok(dev))
8554 			flags |= IFF_LOWER_UP;
8555 		if (netif_dormant(dev))
8556 			flags |= IFF_DORMANT;
8557 	}
8558 
8559 	return flags;
8560 }
8561 EXPORT_SYMBOL(dev_get_flags);
8562 
8563 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8564 		       struct netlink_ext_ack *extack)
8565 {
8566 	unsigned int old_flags = dev->flags;
8567 	int ret;
8568 
8569 	ASSERT_RTNL();
8570 
8571 	/*
8572 	 *	Set the flags on our device.
8573 	 */
8574 
8575 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8576 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8577 			       IFF_AUTOMEDIA)) |
8578 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8579 				    IFF_ALLMULTI));
8580 
8581 	/*
8582 	 *	Load in the correct multicast list now the flags have changed.
8583 	 */
8584 
8585 	if ((old_flags ^ flags) & IFF_MULTICAST)
8586 		dev_change_rx_flags(dev, IFF_MULTICAST);
8587 
8588 	dev_set_rx_mode(dev);
8589 
8590 	/*
8591 	 *	Have we downed the interface. We handle IFF_UP ourselves
8592 	 *	according to user attempts to set it, rather than blindly
8593 	 *	setting it.
8594 	 */
8595 
8596 	ret = 0;
8597 	if ((old_flags ^ flags) & IFF_UP) {
8598 		if (old_flags & IFF_UP)
8599 			__dev_close(dev);
8600 		else
8601 			ret = __dev_open(dev, extack);
8602 	}
8603 
8604 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8605 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8606 		unsigned int old_flags = dev->flags;
8607 
8608 		dev->gflags ^= IFF_PROMISC;
8609 
8610 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8611 			if (dev->flags != old_flags)
8612 				dev_set_rx_mode(dev);
8613 	}
8614 
8615 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8616 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8617 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8618 	 */
8619 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8620 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8621 
8622 		dev->gflags ^= IFF_ALLMULTI;
8623 		__dev_set_allmulti(dev, inc, false);
8624 	}
8625 
8626 	return ret;
8627 }
8628 
8629 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8630 			unsigned int gchanges, u32 portid,
8631 			const struct nlmsghdr *nlh)
8632 {
8633 	unsigned int changes = dev->flags ^ old_flags;
8634 
8635 	if (gchanges)
8636 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8637 
8638 	if (changes & IFF_UP) {
8639 		if (dev->flags & IFF_UP)
8640 			call_netdevice_notifiers(NETDEV_UP, dev);
8641 		else
8642 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8643 	}
8644 
8645 	if (dev->flags & IFF_UP &&
8646 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8647 		struct netdev_notifier_change_info change_info = {
8648 			.info = {
8649 				.dev = dev,
8650 			},
8651 			.flags_changed = changes,
8652 		};
8653 
8654 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8655 	}
8656 }
8657 
8658 /**
8659  *	dev_change_flags - change device settings
8660  *	@dev: device
8661  *	@flags: device state flags
8662  *	@extack: netlink extended ack
8663  *
8664  *	Change settings on device based state flags. The flags are
8665  *	in the userspace exported format.
8666  */
8667 int dev_change_flags(struct net_device *dev, unsigned int flags,
8668 		     struct netlink_ext_ack *extack)
8669 {
8670 	int ret;
8671 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8672 
8673 	ret = __dev_change_flags(dev, flags, extack);
8674 	if (ret < 0)
8675 		return ret;
8676 
8677 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8678 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
8679 	return ret;
8680 }
8681 EXPORT_SYMBOL(dev_change_flags);
8682 
8683 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8684 {
8685 	const struct net_device_ops *ops = dev->netdev_ops;
8686 
8687 	if (ops->ndo_change_mtu)
8688 		return ops->ndo_change_mtu(dev, new_mtu);
8689 
8690 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8691 	WRITE_ONCE(dev->mtu, new_mtu);
8692 	return 0;
8693 }
8694 EXPORT_SYMBOL(__dev_set_mtu);
8695 
8696 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8697 		     struct netlink_ext_ack *extack)
8698 {
8699 	/* MTU must be positive, and in range */
8700 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8701 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8702 		return -EINVAL;
8703 	}
8704 
8705 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8706 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8707 		return -EINVAL;
8708 	}
8709 	return 0;
8710 }
8711 
8712 /**
8713  *	dev_set_mtu_ext - Change maximum transfer unit
8714  *	@dev: device
8715  *	@new_mtu: new transfer unit
8716  *	@extack: netlink extended ack
8717  *
8718  *	Change the maximum transfer size of the network device.
8719  */
8720 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8721 		    struct netlink_ext_ack *extack)
8722 {
8723 	int err, orig_mtu;
8724 
8725 	if (new_mtu == dev->mtu)
8726 		return 0;
8727 
8728 	err = dev_validate_mtu(dev, new_mtu, extack);
8729 	if (err)
8730 		return err;
8731 
8732 	if (!netif_device_present(dev))
8733 		return -ENODEV;
8734 
8735 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8736 	err = notifier_to_errno(err);
8737 	if (err)
8738 		return err;
8739 
8740 	orig_mtu = dev->mtu;
8741 	err = __dev_set_mtu(dev, new_mtu);
8742 
8743 	if (!err) {
8744 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8745 						   orig_mtu);
8746 		err = notifier_to_errno(err);
8747 		if (err) {
8748 			/* setting mtu back and notifying everyone again,
8749 			 * so that they have a chance to revert changes.
8750 			 */
8751 			__dev_set_mtu(dev, orig_mtu);
8752 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8753 						     new_mtu);
8754 		}
8755 	}
8756 	return err;
8757 }
8758 
8759 int dev_set_mtu(struct net_device *dev, int new_mtu)
8760 {
8761 	struct netlink_ext_ack extack;
8762 	int err;
8763 
8764 	memset(&extack, 0, sizeof(extack));
8765 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8766 	if (err && extack._msg)
8767 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8768 	return err;
8769 }
8770 EXPORT_SYMBOL(dev_set_mtu);
8771 
8772 /**
8773  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8774  *	@dev: device
8775  *	@new_len: new tx queue length
8776  */
8777 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8778 {
8779 	unsigned int orig_len = dev->tx_queue_len;
8780 	int res;
8781 
8782 	if (new_len != (unsigned int)new_len)
8783 		return -ERANGE;
8784 
8785 	if (new_len != orig_len) {
8786 		dev->tx_queue_len = new_len;
8787 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8788 		res = notifier_to_errno(res);
8789 		if (res)
8790 			goto err_rollback;
8791 		res = dev_qdisc_change_tx_queue_len(dev);
8792 		if (res)
8793 			goto err_rollback;
8794 	}
8795 
8796 	return 0;
8797 
8798 err_rollback:
8799 	netdev_err(dev, "refused to change device tx_queue_len\n");
8800 	dev->tx_queue_len = orig_len;
8801 	return res;
8802 }
8803 
8804 /**
8805  *	dev_set_group - Change group this device belongs to
8806  *	@dev: device
8807  *	@new_group: group this device should belong to
8808  */
8809 void dev_set_group(struct net_device *dev, int new_group)
8810 {
8811 	dev->group = new_group;
8812 }
8813 
8814 /**
8815  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8816  *	@dev: device
8817  *	@addr: new address
8818  *	@extack: netlink extended ack
8819  */
8820 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8821 			      struct netlink_ext_ack *extack)
8822 {
8823 	struct netdev_notifier_pre_changeaddr_info info = {
8824 		.info.dev = dev,
8825 		.info.extack = extack,
8826 		.dev_addr = addr,
8827 	};
8828 	int rc;
8829 
8830 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8831 	return notifier_to_errno(rc);
8832 }
8833 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8834 
8835 /**
8836  *	dev_set_mac_address - Change Media Access Control Address
8837  *	@dev: device
8838  *	@sa: new address
8839  *	@extack: netlink extended ack
8840  *
8841  *	Change the hardware (MAC) address of the device
8842  */
8843 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8844 			struct netlink_ext_ack *extack)
8845 {
8846 	const struct net_device_ops *ops = dev->netdev_ops;
8847 	int err;
8848 
8849 	if (!ops->ndo_set_mac_address)
8850 		return -EOPNOTSUPP;
8851 	if (sa->sa_family != dev->type)
8852 		return -EINVAL;
8853 	if (!netif_device_present(dev))
8854 		return -ENODEV;
8855 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8856 	if (err)
8857 		return err;
8858 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8859 		err = ops->ndo_set_mac_address(dev, sa);
8860 		if (err)
8861 			return err;
8862 	}
8863 	dev->addr_assign_type = NET_ADDR_SET;
8864 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8865 	add_device_randomness(dev->dev_addr, dev->addr_len);
8866 	return 0;
8867 }
8868 EXPORT_SYMBOL(dev_set_mac_address);
8869 
8870 static DECLARE_RWSEM(dev_addr_sem);
8871 
8872 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8873 			     struct netlink_ext_ack *extack)
8874 {
8875 	int ret;
8876 
8877 	down_write(&dev_addr_sem);
8878 	ret = dev_set_mac_address(dev, sa, extack);
8879 	up_write(&dev_addr_sem);
8880 	return ret;
8881 }
8882 EXPORT_SYMBOL(dev_set_mac_address_user);
8883 
8884 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8885 {
8886 	size_t size = sizeof(sa->sa_data_min);
8887 	struct net_device *dev;
8888 	int ret = 0;
8889 
8890 	down_read(&dev_addr_sem);
8891 	rcu_read_lock();
8892 
8893 	dev = dev_get_by_name_rcu(net, dev_name);
8894 	if (!dev) {
8895 		ret = -ENODEV;
8896 		goto unlock;
8897 	}
8898 	if (!dev->addr_len)
8899 		memset(sa->sa_data, 0, size);
8900 	else
8901 		memcpy(sa->sa_data, dev->dev_addr,
8902 		       min_t(size_t, size, dev->addr_len));
8903 	sa->sa_family = dev->type;
8904 
8905 unlock:
8906 	rcu_read_unlock();
8907 	up_read(&dev_addr_sem);
8908 	return ret;
8909 }
8910 EXPORT_SYMBOL(dev_get_mac_address);
8911 
8912 /**
8913  *	dev_change_carrier - Change device carrier
8914  *	@dev: device
8915  *	@new_carrier: new value
8916  *
8917  *	Change device carrier
8918  */
8919 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8920 {
8921 	const struct net_device_ops *ops = dev->netdev_ops;
8922 
8923 	if (!ops->ndo_change_carrier)
8924 		return -EOPNOTSUPP;
8925 	if (!netif_device_present(dev))
8926 		return -ENODEV;
8927 	return ops->ndo_change_carrier(dev, new_carrier);
8928 }
8929 
8930 /**
8931  *	dev_get_phys_port_id - Get device physical port ID
8932  *	@dev: device
8933  *	@ppid: port ID
8934  *
8935  *	Get device physical port ID
8936  */
8937 int dev_get_phys_port_id(struct net_device *dev,
8938 			 struct netdev_phys_item_id *ppid)
8939 {
8940 	const struct net_device_ops *ops = dev->netdev_ops;
8941 
8942 	if (!ops->ndo_get_phys_port_id)
8943 		return -EOPNOTSUPP;
8944 	return ops->ndo_get_phys_port_id(dev, ppid);
8945 }
8946 
8947 /**
8948  *	dev_get_phys_port_name - Get device physical port name
8949  *	@dev: device
8950  *	@name: port name
8951  *	@len: limit of bytes to copy to name
8952  *
8953  *	Get device physical port name
8954  */
8955 int dev_get_phys_port_name(struct net_device *dev,
8956 			   char *name, size_t len)
8957 {
8958 	const struct net_device_ops *ops = dev->netdev_ops;
8959 	int err;
8960 
8961 	if (ops->ndo_get_phys_port_name) {
8962 		err = ops->ndo_get_phys_port_name(dev, name, len);
8963 		if (err != -EOPNOTSUPP)
8964 			return err;
8965 	}
8966 	return devlink_compat_phys_port_name_get(dev, name, len);
8967 }
8968 
8969 /**
8970  *	dev_get_port_parent_id - Get the device's port parent identifier
8971  *	@dev: network device
8972  *	@ppid: pointer to a storage for the port's parent identifier
8973  *	@recurse: allow/disallow recursion to lower devices
8974  *
8975  *	Get the devices's port parent identifier
8976  */
8977 int dev_get_port_parent_id(struct net_device *dev,
8978 			   struct netdev_phys_item_id *ppid,
8979 			   bool recurse)
8980 {
8981 	const struct net_device_ops *ops = dev->netdev_ops;
8982 	struct netdev_phys_item_id first = { };
8983 	struct net_device *lower_dev;
8984 	struct list_head *iter;
8985 	int err;
8986 
8987 	if (ops->ndo_get_port_parent_id) {
8988 		err = ops->ndo_get_port_parent_id(dev, ppid);
8989 		if (err != -EOPNOTSUPP)
8990 			return err;
8991 	}
8992 
8993 	err = devlink_compat_switch_id_get(dev, ppid);
8994 	if (!recurse || err != -EOPNOTSUPP)
8995 		return err;
8996 
8997 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8998 		err = dev_get_port_parent_id(lower_dev, ppid, true);
8999 		if (err)
9000 			break;
9001 		if (!first.id_len)
9002 			first = *ppid;
9003 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9004 			return -EOPNOTSUPP;
9005 	}
9006 
9007 	return err;
9008 }
9009 EXPORT_SYMBOL(dev_get_port_parent_id);
9010 
9011 /**
9012  *	netdev_port_same_parent_id - Indicate if two network devices have
9013  *	the same port parent identifier
9014  *	@a: first network device
9015  *	@b: second network device
9016  */
9017 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9018 {
9019 	struct netdev_phys_item_id a_id = { };
9020 	struct netdev_phys_item_id b_id = { };
9021 
9022 	if (dev_get_port_parent_id(a, &a_id, true) ||
9023 	    dev_get_port_parent_id(b, &b_id, true))
9024 		return false;
9025 
9026 	return netdev_phys_item_id_same(&a_id, &b_id);
9027 }
9028 EXPORT_SYMBOL(netdev_port_same_parent_id);
9029 
9030 /**
9031  *	dev_change_proto_down - set carrier according to proto_down.
9032  *
9033  *	@dev: device
9034  *	@proto_down: new value
9035  */
9036 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9037 {
9038 	if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9039 		return -EOPNOTSUPP;
9040 	if (!netif_device_present(dev))
9041 		return -ENODEV;
9042 	if (proto_down)
9043 		netif_carrier_off(dev);
9044 	else
9045 		netif_carrier_on(dev);
9046 	dev->proto_down = proto_down;
9047 	return 0;
9048 }
9049 
9050 /**
9051  *	dev_change_proto_down_reason - proto down reason
9052  *
9053  *	@dev: device
9054  *	@mask: proto down mask
9055  *	@value: proto down value
9056  */
9057 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9058 				  u32 value)
9059 {
9060 	int b;
9061 
9062 	if (!mask) {
9063 		dev->proto_down_reason = value;
9064 	} else {
9065 		for_each_set_bit(b, &mask, 32) {
9066 			if (value & (1 << b))
9067 				dev->proto_down_reason |= BIT(b);
9068 			else
9069 				dev->proto_down_reason &= ~BIT(b);
9070 		}
9071 	}
9072 }
9073 
9074 struct bpf_xdp_link {
9075 	struct bpf_link link;
9076 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9077 	int flags;
9078 };
9079 
9080 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9081 {
9082 	if (flags & XDP_FLAGS_HW_MODE)
9083 		return XDP_MODE_HW;
9084 	if (flags & XDP_FLAGS_DRV_MODE)
9085 		return XDP_MODE_DRV;
9086 	if (flags & XDP_FLAGS_SKB_MODE)
9087 		return XDP_MODE_SKB;
9088 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9089 }
9090 
9091 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9092 {
9093 	switch (mode) {
9094 	case XDP_MODE_SKB:
9095 		return generic_xdp_install;
9096 	case XDP_MODE_DRV:
9097 	case XDP_MODE_HW:
9098 		return dev->netdev_ops->ndo_bpf;
9099 	default:
9100 		return NULL;
9101 	}
9102 }
9103 
9104 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9105 					 enum bpf_xdp_mode mode)
9106 {
9107 	return dev->xdp_state[mode].link;
9108 }
9109 
9110 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9111 				     enum bpf_xdp_mode mode)
9112 {
9113 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9114 
9115 	if (link)
9116 		return link->link.prog;
9117 	return dev->xdp_state[mode].prog;
9118 }
9119 
9120 u8 dev_xdp_prog_count(struct net_device *dev)
9121 {
9122 	u8 count = 0;
9123 	int i;
9124 
9125 	for (i = 0; i < __MAX_XDP_MODE; i++)
9126 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9127 			count++;
9128 	return count;
9129 }
9130 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9131 
9132 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9133 {
9134 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9135 
9136 	return prog ? prog->aux->id : 0;
9137 }
9138 
9139 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9140 			     struct bpf_xdp_link *link)
9141 {
9142 	dev->xdp_state[mode].link = link;
9143 	dev->xdp_state[mode].prog = NULL;
9144 }
9145 
9146 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9147 			     struct bpf_prog *prog)
9148 {
9149 	dev->xdp_state[mode].link = NULL;
9150 	dev->xdp_state[mode].prog = prog;
9151 }
9152 
9153 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9154 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9155 			   u32 flags, struct bpf_prog *prog)
9156 {
9157 	struct netdev_bpf xdp;
9158 	int err;
9159 
9160 	memset(&xdp, 0, sizeof(xdp));
9161 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9162 	xdp.extack = extack;
9163 	xdp.flags = flags;
9164 	xdp.prog = prog;
9165 
9166 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9167 	 * "moved" into driver), so they don't increment it on their own, but
9168 	 * they do decrement refcnt when program is detached or replaced.
9169 	 * Given net_device also owns link/prog, we need to bump refcnt here
9170 	 * to prevent drivers from underflowing it.
9171 	 */
9172 	if (prog)
9173 		bpf_prog_inc(prog);
9174 	err = bpf_op(dev, &xdp);
9175 	if (err) {
9176 		if (prog)
9177 			bpf_prog_put(prog);
9178 		return err;
9179 	}
9180 
9181 	if (mode != XDP_MODE_HW)
9182 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9183 
9184 	return 0;
9185 }
9186 
9187 static void dev_xdp_uninstall(struct net_device *dev)
9188 {
9189 	struct bpf_xdp_link *link;
9190 	struct bpf_prog *prog;
9191 	enum bpf_xdp_mode mode;
9192 	bpf_op_t bpf_op;
9193 
9194 	ASSERT_RTNL();
9195 
9196 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9197 		prog = dev_xdp_prog(dev, mode);
9198 		if (!prog)
9199 			continue;
9200 
9201 		bpf_op = dev_xdp_bpf_op(dev, mode);
9202 		if (!bpf_op)
9203 			continue;
9204 
9205 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9206 
9207 		/* auto-detach link from net device */
9208 		link = dev_xdp_link(dev, mode);
9209 		if (link)
9210 			link->dev = NULL;
9211 		else
9212 			bpf_prog_put(prog);
9213 
9214 		dev_xdp_set_link(dev, mode, NULL);
9215 	}
9216 }
9217 
9218 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9219 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9220 			  struct bpf_prog *old_prog, u32 flags)
9221 {
9222 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9223 	struct bpf_prog *cur_prog;
9224 	struct net_device *upper;
9225 	struct list_head *iter;
9226 	enum bpf_xdp_mode mode;
9227 	bpf_op_t bpf_op;
9228 	int err;
9229 
9230 	ASSERT_RTNL();
9231 
9232 	/* either link or prog attachment, never both */
9233 	if (link && (new_prog || old_prog))
9234 		return -EINVAL;
9235 	/* link supports only XDP mode flags */
9236 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9237 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9238 		return -EINVAL;
9239 	}
9240 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9241 	if (num_modes > 1) {
9242 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9243 		return -EINVAL;
9244 	}
9245 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9246 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9247 		NL_SET_ERR_MSG(extack,
9248 			       "More than one program loaded, unset mode is ambiguous");
9249 		return -EINVAL;
9250 	}
9251 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9252 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9253 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9254 		return -EINVAL;
9255 	}
9256 
9257 	mode = dev_xdp_mode(dev, flags);
9258 	/* can't replace attached link */
9259 	if (dev_xdp_link(dev, mode)) {
9260 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9261 		return -EBUSY;
9262 	}
9263 
9264 	/* don't allow if an upper device already has a program */
9265 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9266 		if (dev_xdp_prog_count(upper) > 0) {
9267 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9268 			return -EEXIST;
9269 		}
9270 	}
9271 
9272 	cur_prog = dev_xdp_prog(dev, mode);
9273 	/* can't replace attached prog with link */
9274 	if (link && cur_prog) {
9275 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9276 		return -EBUSY;
9277 	}
9278 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9279 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9280 		return -EEXIST;
9281 	}
9282 
9283 	/* put effective new program into new_prog */
9284 	if (link)
9285 		new_prog = link->link.prog;
9286 
9287 	if (new_prog) {
9288 		bool offload = mode == XDP_MODE_HW;
9289 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9290 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9291 
9292 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9293 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9294 			return -EBUSY;
9295 		}
9296 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9297 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9298 			return -EEXIST;
9299 		}
9300 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9301 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9302 			return -EINVAL;
9303 		}
9304 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9305 			NL_SET_ERR_MSG(extack, "Program bound to different device");
9306 			return -EINVAL;
9307 		}
9308 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9309 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9310 			return -EINVAL;
9311 		}
9312 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9313 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9314 			return -EINVAL;
9315 		}
9316 	}
9317 
9318 	/* don't call drivers if the effective program didn't change */
9319 	if (new_prog != cur_prog) {
9320 		bpf_op = dev_xdp_bpf_op(dev, mode);
9321 		if (!bpf_op) {
9322 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9323 			return -EOPNOTSUPP;
9324 		}
9325 
9326 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9327 		if (err)
9328 			return err;
9329 	}
9330 
9331 	if (link)
9332 		dev_xdp_set_link(dev, mode, link);
9333 	else
9334 		dev_xdp_set_prog(dev, mode, new_prog);
9335 	if (cur_prog)
9336 		bpf_prog_put(cur_prog);
9337 
9338 	return 0;
9339 }
9340 
9341 static int dev_xdp_attach_link(struct net_device *dev,
9342 			       struct netlink_ext_ack *extack,
9343 			       struct bpf_xdp_link *link)
9344 {
9345 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9346 }
9347 
9348 static int dev_xdp_detach_link(struct net_device *dev,
9349 			       struct netlink_ext_ack *extack,
9350 			       struct bpf_xdp_link *link)
9351 {
9352 	enum bpf_xdp_mode mode;
9353 	bpf_op_t bpf_op;
9354 
9355 	ASSERT_RTNL();
9356 
9357 	mode = dev_xdp_mode(dev, link->flags);
9358 	if (dev_xdp_link(dev, mode) != link)
9359 		return -EINVAL;
9360 
9361 	bpf_op = dev_xdp_bpf_op(dev, mode);
9362 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9363 	dev_xdp_set_link(dev, mode, NULL);
9364 	return 0;
9365 }
9366 
9367 static void bpf_xdp_link_release(struct bpf_link *link)
9368 {
9369 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9370 
9371 	rtnl_lock();
9372 
9373 	/* if racing with net_device's tear down, xdp_link->dev might be
9374 	 * already NULL, in which case link was already auto-detached
9375 	 */
9376 	if (xdp_link->dev) {
9377 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9378 		xdp_link->dev = NULL;
9379 	}
9380 
9381 	rtnl_unlock();
9382 }
9383 
9384 static int bpf_xdp_link_detach(struct bpf_link *link)
9385 {
9386 	bpf_xdp_link_release(link);
9387 	return 0;
9388 }
9389 
9390 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9391 {
9392 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9393 
9394 	kfree(xdp_link);
9395 }
9396 
9397 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9398 				     struct seq_file *seq)
9399 {
9400 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9401 	u32 ifindex = 0;
9402 
9403 	rtnl_lock();
9404 	if (xdp_link->dev)
9405 		ifindex = xdp_link->dev->ifindex;
9406 	rtnl_unlock();
9407 
9408 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9409 }
9410 
9411 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9412 				       struct bpf_link_info *info)
9413 {
9414 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9415 	u32 ifindex = 0;
9416 
9417 	rtnl_lock();
9418 	if (xdp_link->dev)
9419 		ifindex = xdp_link->dev->ifindex;
9420 	rtnl_unlock();
9421 
9422 	info->xdp.ifindex = ifindex;
9423 	return 0;
9424 }
9425 
9426 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9427 			       struct bpf_prog *old_prog)
9428 {
9429 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9430 	enum bpf_xdp_mode mode;
9431 	bpf_op_t bpf_op;
9432 	int err = 0;
9433 
9434 	rtnl_lock();
9435 
9436 	/* link might have been auto-released already, so fail */
9437 	if (!xdp_link->dev) {
9438 		err = -ENOLINK;
9439 		goto out_unlock;
9440 	}
9441 
9442 	if (old_prog && link->prog != old_prog) {
9443 		err = -EPERM;
9444 		goto out_unlock;
9445 	}
9446 	old_prog = link->prog;
9447 	if (old_prog->type != new_prog->type ||
9448 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9449 		err = -EINVAL;
9450 		goto out_unlock;
9451 	}
9452 
9453 	if (old_prog == new_prog) {
9454 		/* no-op, don't disturb drivers */
9455 		bpf_prog_put(new_prog);
9456 		goto out_unlock;
9457 	}
9458 
9459 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9460 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9461 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9462 			      xdp_link->flags, new_prog);
9463 	if (err)
9464 		goto out_unlock;
9465 
9466 	old_prog = xchg(&link->prog, new_prog);
9467 	bpf_prog_put(old_prog);
9468 
9469 out_unlock:
9470 	rtnl_unlock();
9471 	return err;
9472 }
9473 
9474 static const struct bpf_link_ops bpf_xdp_link_lops = {
9475 	.release = bpf_xdp_link_release,
9476 	.dealloc = bpf_xdp_link_dealloc,
9477 	.detach = bpf_xdp_link_detach,
9478 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9479 	.fill_link_info = bpf_xdp_link_fill_link_info,
9480 	.update_prog = bpf_xdp_link_update,
9481 };
9482 
9483 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9484 {
9485 	struct net *net = current->nsproxy->net_ns;
9486 	struct bpf_link_primer link_primer;
9487 	struct netlink_ext_ack extack = {};
9488 	struct bpf_xdp_link *link;
9489 	struct net_device *dev;
9490 	int err, fd;
9491 
9492 	rtnl_lock();
9493 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9494 	if (!dev) {
9495 		rtnl_unlock();
9496 		return -EINVAL;
9497 	}
9498 
9499 	link = kzalloc(sizeof(*link), GFP_USER);
9500 	if (!link) {
9501 		err = -ENOMEM;
9502 		goto unlock;
9503 	}
9504 
9505 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9506 	link->dev = dev;
9507 	link->flags = attr->link_create.flags;
9508 
9509 	err = bpf_link_prime(&link->link, &link_primer);
9510 	if (err) {
9511 		kfree(link);
9512 		goto unlock;
9513 	}
9514 
9515 	err = dev_xdp_attach_link(dev, &extack, link);
9516 	rtnl_unlock();
9517 
9518 	if (err) {
9519 		link->dev = NULL;
9520 		bpf_link_cleanup(&link_primer);
9521 		trace_bpf_xdp_link_attach_failed(extack._msg);
9522 		goto out_put_dev;
9523 	}
9524 
9525 	fd = bpf_link_settle(&link_primer);
9526 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9527 	dev_put(dev);
9528 	return fd;
9529 
9530 unlock:
9531 	rtnl_unlock();
9532 
9533 out_put_dev:
9534 	dev_put(dev);
9535 	return err;
9536 }
9537 
9538 /**
9539  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9540  *	@dev: device
9541  *	@extack: netlink extended ack
9542  *	@fd: new program fd or negative value to clear
9543  *	@expected_fd: old program fd that userspace expects to replace or clear
9544  *	@flags: xdp-related flags
9545  *
9546  *	Set or clear a bpf program for a device
9547  */
9548 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9549 		      int fd, int expected_fd, u32 flags)
9550 {
9551 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9552 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9553 	int err;
9554 
9555 	ASSERT_RTNL();
9556 
9557 	if (fd >= 0) {
9558 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9559 						 mode != XDP_MODE_SKB);
9560 		if (IS_ERR(new_prog))
9561 			return PTR_ERR(new_prog);
9562 	}
9563 
9564 	if (expected_fd >= 0) {
9565 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9566 						 mode != XDP_MODE_SKB);
9567 		if (IS_ERR(old_prog)) {
9568 			err = PTR_ERR(old_prog);
9569 			old_prog = NULL;
9570 			goto err_out;
9571 		}
9572 	}
9573 
9574 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9575 
9576 err_out:
9577 	if (err && new_prog)
9578 		bpf_prog_put(new_prog);
9579 	if (old_prog)
9580 		bpf_prog_put(old_prog);
9581 	return err;
9582 }
9583 
9584 /**
9585  * dev_index_reserve() - allocate an ifindex in a namespace
9586  * @net: the applicable net namespace
9587  * @ifindex: requested ifindex, pass %0 to get one allocated
9588  *
9589  * Allocate a ifindex for a new device. Caller must either use the ifindex
9590  * to store the device (via list_netdevice()) or call dev_index_release()
9591  * to give the index up.
9592  *
9593  * Return: a suitable unique value for a new device interface number or -errno.
9594  */
9595 static int dev_index_reserve(struct net *net, u32 ifindex)
9596 {
9597 	int err;
9598 
9599 	if (ifindex > INT_MAX) {
9600 		DEBUG_NET_WARN_ON_ONCE(1);
9601 		return -EINVAL;
9602 	}
9603 
9604 	if (!ifindex)
9605 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9606 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
9607 	else
9608 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9609 	if (err < 0)
9610 		return err;
9611 
9612 	return ifindex;
9613 }
9614 
9615 static void dev_index_release(struct net *net, int ifindex)
9616 {
9617 	/* Expect only unused indexes, unlist_netdevice() removes the used */
9618 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9619 }
9620 
9621 /* Delayed registration/unregisteration */
9622 LIST_HEAD(net_todo_list);
9623 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9624 
9625 static void net_set_todo(struct net_device *dev)
9626 {
9627 	list_add_tail(&dev->todo_list, &net_todo_list);
9628 	atomic_inc(&dev_net(dev)->dev_unreg_count);
9629 }
9630 
9631 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9632 	struct net_device *upper, netdev_features_t features)
9633 {
9634 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9635 	netdev_features_t feature;
9636 	int feature_bit;
9637 
9638 	for_each_netdev_feature(upper_disables, feature_bit) {
9639 		feature = __NETIF_F_BIT(feature_bit);
9640 		if (!(upper->wanted_features & feature)
9641 		    && (features & feature)) {
9642 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9643 				   &feature, upper->name);
9644 			features &= ~feature;
9645 		}
9646 	}
9647 
9648 	return features;
9649 }
9650 
9651 static void netdev_sync_lower_features(struct net_device *upper,
9652 	struct net_device *lower, netdev_features_t features)
9653 {
9654 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9655 	netdev_features_t feature;
9656 	int feature_bit;
9657 
9658 	for_each_netdev_feature(upper_disables, feature_bit) {
9659 		feature = __NETIF_F_BIT(feature_bit);
9660 		if (!(features & feature) && (lower->features & feature)) {
9661 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9662 				   &feature, lower->name);
9663 			lower->wanted_features &= ~feature;
9664 			__netdev_update_features(lower);
9665 
9666 			if (unlikely(lower->features & feature))
9667 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9668 					    &feature, lower->name);
9669 			else
9670 				netdev_features_change(lower);
9671 		}
9672 	}
9673 }
9674 
9675 static netdev_features_t netdev_fix_features(struct net_device *dev,
9676 	netdev_features_t features)
9677 {
9678 	/* Fix illegal checksum combinations */
9679 	if ((features & NETIF_F_HW_CSUM) &&
9680 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9681 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9682 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9683 	}
9684 
9685 	/* TSO requires that SG is present as well. */
9686 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9687 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9688 		features &= ~NETIF_F_ALL_TSO;
9689 	}
9690 
9691 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9692 					!(features & NETIF_F_IP_CSUM)) {
9693 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9694 		features &= ~NETIF_F_TSO;
9695 		features &= ~NETIF_F_TSO_ECN;
9696 	}
9697 
9698 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9699 					 !(features & NETIF_F_IPV6_CSUM)) {
9700 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9701 		features &= ~NETIF_F_TSO6;
9702 	}
9703 
9704 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9705 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9706 		features &= ~NETIF_F_TSO_MANGLEID;
9707 
9708 	/* TSO ECN requires that TSO is present as well. */
9709 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9710 		features &= ~NETIF_F_TSO_ECN;
9711 
9712 	/* Software GSO depends on SG. */
9713 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9714 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9715 		features &= ~NETIF_F_GSO;
9716 	}
9717 
9718 	/* GSO partial features require GSO partial be set */
9719 	if ((features & dev->gso_partial_features) &&
9720 	    !(features & NETIF_F_GSO_PARTIAL)) {
9721 		netdev_dbg(dev,
9722 			   "Dropping partially supported GSO features since no GSO partial.\n");
9723 		features &= ~dev->gso_partial_features;
9724 	}
9725 
9726 	if (!(features & NETIF_F_RXCSUM)) {
9727 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9728 		 * successfully merged by hardware must also have the
9729 		 * checksum verified by hardware.  If the user does not
9730 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9731 		 */
9732 		if (features & NETIF_F_GRO_HW) {
9733 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9734 			features &= ~NETIF_F_GRO_HW;
9735 		}
9736 	}
9737 
9738 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9739 	if (features & NETIF_F_RXFCS) {
9740 		if (features & NETIF_F_LRO) {
9741 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9742 			features &= ~NETIF_F_LRO;
9743 		}
9744 
9745 		if (features & NETIF_F_GRO_HW) {
9746 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9747 			features &= ~NETIF_F_GRO_HW;
9748 		}
9749 	}
9750 
9751 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9752 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9753 		features &= ~NETIF_F_LRO;
9754 	}
9755 
9756 	if (features & NETIF_F_HW_TLS_TX) {
9757 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9758 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9759 		bool hw_csum = features & NETIF_F_HW_CSUM;
9760 
9761 		if (!ip_csum && !hw_csum) {
9762 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9763 			features &= ~NETIF_F_HW_TLS_TX;
9764 		}
9765 	}
9766 
9767 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9768 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9769 		features &= ~NETIF_F_HW_TLS_RX;
9770 	}
9771 
9772 	return features;
9773 }
9774 
9775 int __netdev_update_features(struct net_device *dev)
9776 {
9777 	struct net_device *upper, *lower;
9778 	netdev_features_t features;
9779 	struct list_head *iter;
9780 	int err = -1;
9781 
9782 	ASSERT_RTNL();
9783 
9784 	features = netdev_get_wanted_features(dev);
9785 
9786 	if (dev->netdev_ops->ndo_fix_features)
9787 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9788 
9789 	/* driver might be less strict about feature dependencies */
9790 	features = netdev_fix_features(dev, features);
9791 
9792 	/* some features can't be enabled if they're off on an upper device */
9793 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9794 		features = netdev_sync_upper_features(dev, upper, features);
9795 
9796 	if (dev->features == features)
9797 		goto sync_lower;
9798 
9799 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9800 		&dev->features, &features);
9801 
9802 	if (dev->netdev_ops->ndo_set_features)
9803 		err = dev->netdev_ops->ndo_set_features(dev, features);
9804 	else
9805 		err = 0;
9806 
9807 	if (unlikely(err < 0)) {
9808 		netdev_err(dev,
9809 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9810 			err, &features, &dev->features);
9811 		/* return non-0 since some features might have changed and
9812 		 * it's better to fire a spurious notification than miss it
9813 		 */
9814 		return -1;
9815 	}
9816 
9817 sync_lower:
9818 	/* some features must be disabled on lower devices when disabled
9819 	 * on an upper device (think: bonding master or bridge)
9820 	 */
9821 	netdev_for_each_lower_dev(dev, lower, iter)
9822 		netdev_sync_lower_features(dev, lower, features);
9823 
9824 	if (!err) {
9825 		netdev_features_t diff = features ^ dev->features;
9826 
9827 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9828 			/* udp_tunnel_{get,drop}_rx_info both need
9829 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9830 			 * device, or they won't do anything.
9831 			 * Thus we need to update dev->features
9832 			 * *before* calling udp_tunnel_get_rx_info,
9833 			 * but *after* calling udp_tunnel_drop_rx_info.
9834 			 */
9835 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9836 				dev->features = features;
9837 				udp_tunnel_get_rx_info(dev);
9838 			} else {
9839 				udp_tunnel_drop_rx_info(dev);
9840 			}
9841 		}
9842 
9843 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9844 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9845 				dev->features = features;
9846 				err |= vlan_get_rx_ctag_filter_info(dev);
9847 			} else {
9848 				vlan_drop_rx_ctag_filter_info(dev);
9849 			}
9850 		}
9851 
9852 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9853 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9854 				dev->features = features;
9855 				err |= vlan_get_rx_stag_filter_info(dev);
9856 			} else {
9857 				vlan_drop_rx_stag_filter_info(dev);
9858 			}
9859 		}
9860 
9861 		dev->features = features;
9862 	}
9863 
9864 	return err < 0 ? 0 : 1;
9865 }
9866 
9867 /**
9868  *	netdev_update_features - recalculate device features
9869  *	@dev: the device to check
9870  *
9871  *	Recalculate dev->features set and send notifications if it
9872  *	has changed. Should be called after driver or hardware dependent
9873  *	conditions might have changed that influence the features.
9874  */
9875 void netdev_update_features(struct net_device *dev)
9876 {
9877 	if (__netdev_update_features(dev))
9878 		netdev_features_change(dev);
9879 }
9880 EXPORT_SYMBOL(netdev_update_features);
9881 
9882 /**
9883  *	netdev_change_features - recalculate device features
9884  *	@dev: the device to check
9885  *
9886  *	Recalculate dev->features set and send notifications even
9887  *	if they have not changed. Should be called instead of
9888  *	netdev_update_features() if also dev->vlan_features might
9889  *	have changed to allow the changes to be propagated to stacked
9890  *	VLAN devices.
9891  */
9892 void netdev_change_features(struct net_device *dev)
9893 {
9894 	__netdev_update_features(dev);
9895 	netdev_features_change(dev);
9896 }
9897 EXPORT_SYMBOL(netdev_change_features);
9898 
9899 /**
9900  *	netif_stacked_transfer_operstate -	transfer operstate
9901  *	@rootdev: the root or lower level device to transfer state from
9902  *	@dev: the device to transfer operstate to
9903  *
9904  *	Transfer operational state from root to device. This is normally
9905  *	called when a stacking relationship exists between the root
9906  *	device and the device(a leaf device).
9907  */
9908 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9909 					struct net_device *dev)
9910 {
9911 	if (rootdev->operstate == IF_OPER_DORMANT)
9912 		netif_dormant_on(dev);
9913 	else
9914 		netif_dormant_off(dev);
9915 
9916 	if (rootdev->operstate == IF_OPER_TESTING)
9917 		netif_testing_on(dev);
9918 	else
9919 		netif_testing_off(dev);
9920 
9921 	if (netif_carrier_ok(rootdev))
9922 		netif_carrier_on(dev);
9923 	else
9924 		netif_carrier_off(dev);
9925 }
9926 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9927 
9928 static int netif_alloc_rx_queues(struct net_device *dev)
9929 {
9930 	unsigned int i, count = dev->num_rx_queues;
9931 	struct netdev_rx_queue *rx;
9932 	size_t sz = count * sizeof(*rx);
9933 	int err = 0;
9934 
9935 	BUG_ON(count < 1);
9936 
9937 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9938 	if (!rx)
9939 		return -ENOMEM;
9940 
9941 	dev->_rx = rx;
9942 
9943 	for (i = 0; i < count; i++) {
9944 		rx[i].dev = dev;
9945 
9946 		/* XDP RX-queue setup */
9947 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9948 		if (err < 0)
9949 			goto err_rxq_info;
9950 	}
9951 	return 0;
9952 
9953 err_rxq_info:
9954 	/* Rollback successful reg's and free other resources */
9955 	while (i--)
9956 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9957 	kvfree(dev->_rx);
9958 	dev->_rx = NULL;
9959 	return err;
9960 }
9961 
9962 static void netif_free_rx_queues(struct net_device *dev)
9963 {
9964 	unsigned int i, count = dev->num_rx_queues;
9965 
9966 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9967 	if (!dev->_rx)
9968 		return;
9969 
9970 	for (i = 0; i < count; i++)
9971 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9972 
9973 	kvfree(dev->_rx);
9974 }
9975 
9976 static void netdev_init_one_queue(struct net_device *dev,
9977 				  struct netdev_queue *queue, void *_unused)
9978 {
9979 	/* Initialize queue lock */
9980 	spin_lock_init(&queue->_xmit_lock);
9981 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9982 	queue->xmit_lock_owner = -1;
9983 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9984 	queue->dev = dev;
9985 #ifdef CONFIG_BQL
9986 	dql_init(&queue->dql, HZ);
9987 #endif
9988 }
9989 
9990 static void netif_free_tx_queues(struct net_device *dev)
9991 {
9992 	kvfree(dev->_tx);
9993 }
9994 
9995 static int netif_alloc_netdev_queues(struct net_device *dev)
9996 {
9997 	unsigned int count = dev->num_tx_queues;
9998 	struct netdev_queue *tx;
9999 	size_t sz = count * sizeof(*tx);
10000 
10001 	if (count < 1 || count > 0xffff)
10002 		return -EINVAL;
10003 
10004 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10005 	if (!tx)
10006 		return -ENOMEM;
10007 
10008 	dev->_tx = tx;
10009 
10010 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10011 	spin_lock_init(&dev->tx_global_lock);
10012 
10013 	return 0;
10014 }
10015 
10016 void netif_tx_stop_all_queues(struct net_device *dev)
10017 {
10018 	unsigned int i;
10019 
10020 	for (i = 0; i < dev->num_tx_queues; i++) {
10021 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10022 
10023 		netif_tx_stop_queue(txq);
10024 	}
10025 }
10026 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10027 
10028 /**
10029  * register_netdevice() - register a network device
10030  * @dev: device to register
10031  *
10032  * Take a prepared network device structure and make it externally accessible.
10033  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10034  * Callers must hold the rtnl lock - you may want register_netdev()
10035  * instead of this.
10036  */
10037 int register_netdevice(struct net_device *dev)
10038 {
10039 	int ret;
10040 	struct net *net = dev_net(dev);
10041 
10042 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10043 		     NETDEV_FEATURE_COUNT);
10044 	BUG_ON(dev_boot_phase);
10045 	ASSERT_RTNL();
10046 
10047 	might_sleep();
10048 
10049 	/* When net_device's are persistent, this will be fatal. */
10050 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10051 	BUG_ON(!net);
10052 
10053 	ret = ethtool_check_ops(dev->ethtool_ops);
10054 	if (ret)
10055 		return ret;
10056 
10057 	spin_lock_init(&dev->addr_list_lock);
10058 	netdev_set_addr_lockdep_class(dev);
10059 
10060 	ret = dev_get_valid_name(net, dev, dev->name);
10061 	if (ret < 0)
10062 		goto out;
10063 
10064 	ret = -ENOMEM;
10065 	dev->name_node = netdev_name_node_head_alloc(dev);
10066 	if (!dev->name_node)
10067 		goto out;
10068 
10069 	/* Init, if this function is available */
10070 	if (dev->netdev_ops->ndo_init) {
10071 		ret = dev->netdev_ops->ndo_init(dev);
10072 		if (ret) {
10073 			if (ret > 0)
10074 				ret = -EIO;
10075 			goto err_free_name;
10076 		}
10077 	}
10078 
10079 	if (((dev->hw_features | dev->features) &
10080 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10081 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10082 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10083 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10084 		ret = -EINVAL;
10085 		goto err_uninit;
10086 	}
10087 
10088 	ret = dev_index_reserve(net, dev->ifindex);
10089 	if (ret < 0)
10090 		goto err_uninit;
10091 	dev->ifindex = ret;
10092 
10093 	/* Transfer changeable features to wanted_features and enable
10094 	 * software offloads (GSO and GRO).
10095 	 */
10096 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10097 	dev->features |= NETIF_F_SOFT_FEATURES;
10098 
10099 	if (dev->udp_tunnel_nic_info) {
10100 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10101 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10102 	}
10103 
10104 	dev->wanted_features = dev->features & dev->hw_features;
10105 
10106 	if (!(dev->flags & IFF_LOOPBACK))
10107 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10108 
10109 	/* If IPv4 TCP segmentation offload is supported we should also
10110 	 * allow the device to enable segmenting the frame with the option
10111 	 * of ignoring a static IP ID value.  This doesn't enable the
10112 	 * feature itself but allows the user to enable it later.
10113 	 */
10114 	if (dev->hw_features & NETIF_F_TSO)
10115 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10116 	if (dev->vlan_features & NETIF_F_TSO)
10117 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10118 	if (dev->mpls_features & NETIF_F_TSO)
10119 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10120 	if (dev->hw_enc_features & NETIF_F_TSO)
10121 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10122 
10123 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10124 	 */
10125 	dev->vlan_features |= NETIF_F_HIGHDMA;
10126 
10127 	/* Make NETIF_F_SG inheritable to tunnel devices.
10128 	 */
10129 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10130 
10131 	/* Make NETIF_F_SG inheritable to MPLS.
10132 	 */
10133 	dev->mpls_features |= NETIF_F_SG;
10134 
10135 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10136 	ret = notifier_to_errno(ret);
10137 	if (ret)
10138 		goto err_ifindex_release;
10139 
10140 	ret = netdev_register_kobject(dev);
10141 	write_lock(&dev_base_lock);
10142 	dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10143 	write_unlock(&dev_base_lock);
10144 	if (ret)
10145 		goto err_uninit_notify;
10146 
10147 	__netdev_update_features(dev);
10148 
10149 	/*
10150 	 *	Default initial state at registry is that the
10151 	 *	device is present.
10152 	 */
10153 
10154 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10155 
10156 	linkwatch_init_dev(dev);
10157 
10158 	dev_init_scheduler(dev);
10159 
10160 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10161 	list_netdevice(dev);
10162 
10163 	add_device_randomness(dev->dev_addr, dev->addr_len);
10164 
10165 	/* If the device has permanent device address, driver should
10166 	 * set dev_addr and also addr_assign_type should be set to
10167 	 * NET_ADDR_PERM (default value).
10168 	 */
10169 	if (dev->addr_assign_type == NET_ADDR_PERM)
10170 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10171 
10172 	/* Notify protocols, that a new device appeared. */
10173 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10174 	ret = notifier_to_errno(ret);
10175 	if (ret) {
10176 		/* Expect explicit free_netdev() on failure */
10177 		dev->needs_free_netdev = false;
10178 		unregister_netdevice_queue(dev, NULL);
10179 		goto out;
10180 	}
10181 	/*
10182 	 *	Prevent userspace races by waiting until the network
10183 	 *	device is fully setup before sending notifications.
10184 	 */
10185 	if (!dev->rtnl_link_ops ||
10186 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10187 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10188 
10189 out:
10190 	return ret;
10191 
10192 err_uninit_notify:
10193 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10194 err_ifindex_release:
10195 	dev_index_release(net, dev->ifindex);
10196 err_uninit:
10197 	if (dev->netdev_ops->ndo_uninit)
10198 		dev->netdev_ops->ndo_uninit(dev);
10199 	if (dev->priv_destructor)
10200 		dev->priv_destructor(dev);
10201 err_free_name:
10202 	netdev_name_node_free(dev->name_node);
10203 	goto out;
10204 }
10205 EXPORT_SYMBOL(register_netdevice);
10206 
10207 /**
10208  *	init_dummy_netdev	- init a dummy network device for NAPI
10209  *	@dev: device to init
10210  *
10211  *	This takes a network device structure and initialize the minimum
10212  *	amount of fields so it can be used to schedule NAPI polls without
10213  *	registering a full blown interface. This is to be used by drivers
10214  *	that need to tie several hardware interfaces to a single NAPI
10215  *	poll scheduler due to HW limitations.
10216  */
10217 int init_dummy_netdev(struct net_device *dev)
10218 {
10219 	/* Clear everything. Note we don't initialize spinlocks
10220 	 * are they aren't supposed to be taken by any of the
10221 	 * NAPI code and this dummy netdev is supposed to be
10222 	 * only ever used for NAPI polls
10223 	 */
10224 	memset(dev, 0, sizeof(struct net_device));
10225 
10226 	/* make sure we BUG if trying to hit standard
10227 	 * register/unregister code path
10228 	 */
10229 	dev->reg_state = NETREG_DUMMY;
10230 
10231 	/* NAPI wants this */
10232 	INIT_LIST_HEAD(&dev->napi_list);
10233 
10234 	/* a dummy interface is started by default */
10235 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10236 	set_bit(__LINK_STATE_START, &dev->state);
10237 
10238 	/* napi_busy_loop stats accounting wants this */
10239 	dev_net_set(dev, &init_net);
10240 
10241 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10242 	 * because users of this 'device' dont need to change
10243 	 * its refcount.
10244 	 */
10245 
10246 	return 0;
10247 }
10248 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10249 
10250 
10251 /**
10252  *	register_netdev	- register a network device
10253  *	@dev: device to register
10254  *
10255  *	Take a completed network device structure and add it to the kernel
10256  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10257  *	chain. 0 is returned on success. A negative errno code is returned
10258  *	on a failure to set up the device, or if the name is a duplicate.
10259  *
10260  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10261  *	and expands the device name if you passed a format string to
10262  *	alloc_netdev.
10263  */
10264 int register_netdev(struct net_device *dev)
10265 {
10266 	int err;
10267 
10268 	if (rtnl_lock_killable())
10269 		return -EINTR;
10270 	err = register_netdevice(dev);
10271 	rtnl_unlock();
10272 	return err;
10273 }
10274 EXPORT_SYMBOL(register_netdev);
10275 
10276 int netdev_refcnt_read(const struct net_device *dev)
10277 {
10278 #ifdef CONFIG_PCPU_DEV_REFCNT
10279 	int i, refcnt = 0;
10280 
10281 	for_each_possible_cpu(i)
10282 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10283 	return refcnt;
10284 #else
10285 	return refcount_read(&dev->dev_refcnt);
10286 #endif
10287 }
10288 EXPORT_SYMBOL(netdev_refcnt_read);
10289 
10290 int netdev_unregister_timeout_secs __read_mostly = 10;
10291 
10292 #define WAIT_REFS_MIN_MSECS 1
10293 #define WAIT_REFS_MAX_MSECS 250
10294 /**
10295  * netdev_wait_allrefs_any - wait until all references are gone.
10296  * @list: list of net_devices to wait on
10297  *
10298  * This is called when unregistering network devices.
10299  *
10300  * Any protocol or device that holds a reference should register
10301  * for netdevice notification, and cleanup and put back the
10302  * reference if they receive an UNREGISTER event.
10303  * We can get stuck here if buggy protocols don't correctly
10304  * call dev_put.
10305  */
10306 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10307 {
10308 	unsigned long rebroadcast_time, warning_time;
10309 	struct net_device *dev;
10310 	int wait = 0;
10311 
10312 	rebroadcast_time = warning_time = jiffies;
10313 
10314 	list_for_each_entry(dev, list, todo_list)
10315 		if (netdev_refcnt_read(dev) == 1)
10316 			return dev;
10317 
10318 	while (true) {
10319 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10320 			rtnl_lock();
10321 
10322 			/* Rebroadcast unregister notification */
10323 			list_for_each_entry(dev, list, todo_list)
10324 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10325 
10326 			__rtnl_unlock();
10327 			rcu_barrier();
10328 			rtnl_lock();
10329 
10330 			list_for_each_entry(dev, list, todo_list)
10331 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10332 					     &dev->state)) {
10333 					/* We must not have linkwatch events
10334 					 * pending on unregister. If this
10335 					 * happens, we simply run the queue
10336 					 * unscheduled, resulting in a noop
10337 					 * for this device.
10338 					 */
10339 					linkwatch_run_queue();
10340 					break;
10341 				}
10342 
10343 			__rtnl_unlock();
10344 
10345 			rebroadcast_time = jiffies;
10346 		}
10347 
10348 		if (!wait) {
10349 			rcu_barrier();
10350 			wait = WAIT_REFS_MIN_MSECS;
10351 		} else {
10352 			msleep(wait);
10353 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10354 		}
10355 
10356 		list_for_each_entry(dev, list, todo_list)
10357 			if (netdev_refcnt_read(dev) == 1)
10358 				return dev;
10359 
10360 		if (time_after(jiffies, warning_time +
10361 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10362 			list_for_each_entry(dev, list, todo_list) {
10363 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10364 					 dev->name, netdev_refcnt_read(dev));
10365 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10366 			}
10367 
10368 			warning_time = jiffies;
10369 		}
10370 	}
10371 }
10372 
10373 /* The sequence is:
10374  *
10375  *	rtnl_lock();
10376  *	...
10377  *	register_netdevice(x1);
10378  *	register_netdevice(x2);
10379  *	...
10380  *	unregister_netdevice(y1);
10381  *	unregister_netdevice(y2);
10382  *      ...
10383  *	rtnl_unlock();
10384  *	free_netdev(y1);
10385  *	free_netdev(y2);
10386  *
10387  * We are invoked by rtnl_unlock().
10388  * This allows us to deal with problems:
10389  * 1) We can delete sysfs objects which invoke hotplug
10390  *    without deadlocking with linkwatch via keventd.
10391  * 2) Since we run with the RTNL semaphore not held, we can sleep
10392  *    safely in order to wait for the netdev refcnt to drop to zero.
10393  *
10394  * We must not return until all unregister events added during
10395  * the interval the lock was held have been completed.
10396  */
10397 void netdev_run_todo(void)
10398 {
10399 	struct net_device *dev, *tmp;
10400 	struct list_head list;
10401 #ifdef CONFIG_LOCKDEP
10402 	struct list_head unlink_list;
10403 
10404 	list_replace_init(&net_unlink_list, &unlink_list);
10405 
10406 	while (!list_empty(&unlink_list)) {
10407 		struct net_device *dev = list_first_entry(&unlink_list,
10408 							  struct net_device,
10409 							  unlink_list);
10410 		list_del_init(&dev->unlink_list);
10411 		dev->nested_level = dev->lower_level - 1;
10412 	}
10413 #endif
10414 
10415 	/* Snapshot list, allow later requests */
10416 	list_replace_init(&net_todo_list, &list);
10417 
10418 	__rtnl_unlock();
10419 
10420 	/* Wait for rcu callbacks to finish before next phase */
10421 	if (!list_empty(&list))
10422 		rcu_barrier();
10423 
10424 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10425 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10426 			netdev_WARN(dev, "run_todo but not unregistering\n");
10427 			list_del(&dev->todo_list);
10428 			continue;
10429 		}
10430 
10431 		write_lock(&dev_base_lock);
10432 		dev->reg_state = NETREG_UNREGISTERED;
10433 		write_unlock(&dev_base_lock);
10434 		linkwatch_forget_dev(dev);
10435 	}
10436 
10437 	while (!list_empty(&list)) {
10438 		dev = netdev_wait_allrefs_any(&list);
10439 		list_del(&dev->todo_list);
10440 
10441 		/* paranoia */
10442 		BUG_ON(netdev_refcnt_read(dev) != 1);
10443 		BUG_ON(!list_empty(&dev->ptype_all));
10444 		BUG_ON(!list_empty(&dev->ptype_specific));
10445 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10446 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10447 
10448 		if (dev->priv_destructor)
10449 			dev->priv_destructor(dev);
10450 		if (dev->needs_free_netdev)
10451 			free_netdev(dev);
10452 
10453 		if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10454 			wake_up(&netdev_unregistering_wq);
10455 
10456 		/* Free network device */
10457 		kobject_put(&dev->dev.kobj);
10458 	}
10459 }
10460 
10461 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10462  * all the same fields in the same order as net_device_stats, with only
10463  * the type differing, but rtnl_link_stats64 may have additional fields
10464  * at the end for newer counters.
10465  */
10466 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10467 			     const struct net_device_stats *netdev_stats)
10468 {
10469 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10470 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10471 	u64 *dst = (u64 *)stats64;
10472 
10473 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10474 	for (i = 0; i < n; i++)
10475 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
10476 	/* zero out counters that only exist in rtnl_link_stats64 */
10477 	memset((char *)stats64 + n * sizeof(u64), 0,
10478 	       sizeof(*stats64) - n * sizeof(u64));
10479 }
10480 EXPORT_SYMBOL(netdev_stats_to_stats64);
10481 
10482 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10483 {
10484 	struct net_device_core_stats __percpu *p;
10485 
10486 	p = alloc_percpu_gfp(struct net_device_core_stats,
10487 			     GFP_ATOMIC | __GFP_NOWARN);
10488 
10489 	if (p && cmpxchg(&dev->core_stats, NULL, p))
10490 		free_percpu(p);
10491 
10492 	/* This READ_ONCE() pairs with the cmpxchg() above */
10493 	return READ_ONCE(dev->core_stats);
10494 }
10495 EXPORT_SYMBOL(netdev_core_stats_alloc);
10496 
10497 /**
10498  *	dev_get_stats	- get network device statistics
10499  *	@dev: device to get statistics from
10500  *	@storage: place to store stats
10501  *
10502  *	Get network statistics from device. Return @storage.
10503  *	The device driver may provide its own method by setting
10504  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10505  *	otherwise the internal statistics structure is used.
10506  */
10507 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10508 					struct rtnl_link_stats64 *storage)
10509 {
10510 	const struct net_device_ops *ops = dev->netdev_ops;
10511 	const struct net_device_core_stats __percpu *p;
10512 
10513 	if (ops->ndo_get_stats64) {
10514 		memset(storage, 0, sizeof(*storage));
10515 		ops->ndo_get_stats64(dev, storage);
10516 	} else if (ops->ndo_get_stats) {
10517 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10518 	} else {
10519 		netdev_stats_to_stats64(storage, &dev->stats);
10520 	}
10521 
10522 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10523 	p = READ_ONCE(dev->core_stats);
10524 	if (p) {
10525 		const struct net_device_core_stats *core_stats;
10526 		int i;
10527 
10528 		for_each_possible_cpu(i) {
10529 			core_stats = per_cpu_ptr(p, i);
10530 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10531 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10532 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10533 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10534 		}
10535 	}
10536 	return storage;
10537 }
10538 EXPORT_SYMBOL(dev_get_stats);
10539 
10540 /**
10541  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10542  *	@s: place to store stats
10543  *	@netstats: per-cpu network stats to read from
10544  *
10545  *	Read per-cpu network statistics and populate the related fields in @s.
10546  */
10547 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10548 			   const struct pcpu_sw_netstats __percpu *netstats)
10549 {
10550 	int cpu;
10551 
10552 	for_each_possible_cpu(cpu) {
10553 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10554 		const struct pcpu_sw_netstats *stats;
10555 		unsigned int start;
10556 
10557 		stats = per_cpu_ptr(netstats, cpu);
10558 		do {
10559 			start = u64_stats_fetch_begin(&stats->syncp);
10560 			rx_packets = u64_stats_read(&stats->rx_packets);
10561 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10562 			tx_packets = u64_stats_read(&stats->tx_packets);
10563 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10564 		} while (u64_stats_fetch_retry(&stats->syncp, start));
10565 
10566 		s->rx_packets += rx_packets;
10567 		s->rx_bytes   += rx_bytes;
10568 		s->tx_packets += tx_packets;
10569 		s->tx_bytes   += tx_bytes;
10570 	}
10571 }
10572 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10573 
10574 /**
10575  *	dev_get_tstats64 - ndo_get_stats64 implementation
10576  *	@dev: device to get statistics from
10577  *	@s: place to store stats
10578  *
10579  *	Populate @s from dev->stats and dev->tstats. Can be used as
10580  *	ndo_get_stats64() callback.
10581  */
10582 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10583 {
10584 	netdev_stats_to_stats64(s, &dev->stats);
10585 	dev_fetch_sw_netstats(s, dev->tstats);
10586 }
10587 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10588 
10589 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10590 {
10591 	struct netdev_queue *queue = dev_ingress_queue(dev);
10592 
10593 #ifdef CONFIG_NET_CLS_ACT
10594 	if (queue)
10595 		return queue;
10596 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10597 	if (!queue)
10598 		return NULL;
10599 	netdev_init_one_queue(dev, queue, NULL);
10600 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10601 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10602 	rcu_assign_pointer(dev->ingress_queue, queue);
10603 #endif
10604 	return queue;
10605 }
10606 
10607 static const struct ethtool_ops default_ethtool_ops;
10608 
10609 void netdev_set_default_ethtool_ops(struct net_device *dev,
10610 				    const struct ethtool_ops *ops)
10611 {
10612 	if (dev->ethtool_ops == &default_ethtool_ops)
10613 		dev->ethtool_ops = ops;
10614 }
10615 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10616 
10617 /**
10618  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10619  * @dev: netdev to enable the IRQ coalescing on
10620  *
10621  * Sets a conservative default for SW IRQ coalescing. Users can use
10622  * sysfs attributes to override the default values.
10623  */
10624 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10625 {
10626 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
10627 
10628 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10629 		dev->gro_flush_timeout = 20000;
10630 		dev->napi_defer_hard_irqs = 1;
10631 	}
10632 }
10633 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10634 
10635 void netdev_freemem(struct net_device *dev)
10636 {
10637 	char *addr = (char *)dev - dev->padded;
10638 
10639 	kvfree(addr);
10640 }
10641 
10642 /**
10643  * alloc_netdev_mqs - allocate network device
10644  * @sizeof_priv: size of private data to allocate space for
10645  * @name: device name format string
10646  * @name_assign_type: origin of device name
10647  * @setup: callback to initialize device
10648  * @txqs: the number of TX subqueues to allocate
10649  * @rxqs: the number of RX subqueues to allocate
10650  *
10651  * Allocates a struct net_device with private data area for driver use
10652  * and performs basic initialization.  Also allocates subqueue structs
10653  * for each queue on the device.
10654  */
10655 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10656 		unsigned char name_assign_type,
10657 		void (*setup)(struct net_device *),
10658 		unsigned int txqs, unsigned int rxqs)
10659 {
10660 	struct net_device *dev;
10661 	unsigned int alloc_size;
10662 	struct net_device *p;
10663 
10664 	BUG_ON(strlen(name) >= sizeof(dev->name));
10665 
10666 	if (txqs < 1) {
10667 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10668 		return NULL;
10669 	}
10670 
10671 	if (rxqs < 1) {
10672 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10673 		return NULL;
10674 	}
10675 
10676 	alloc_size = sizeof(struct net_device);
10677 	if (sizeof_priv) {
10678 		/* ensure 32-byte alignment of private area */
10679 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10680 		alloc_size += sizeof_priv;
10681 	}
10682 	/* ensure 32-byte alignment of whole construct */
10683 	alloc_size += NETDEV_ALIGN - 1;
10684 
10685 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10686 	if (!p)
10687 		return NULL;
10688 
10689 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10690 	dev->padded = (char *)dev - (char *)p;
10691 
10692 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10693 #ifdef CONFIG_PCPU_DEV_REFCNT
10694 	dev->pcpu_refcnt = alloc_percpu(int);
10695 	if (!dev->pcpu_refcnt)
10696 		goto free_dev;
10697 	__dev_hold(dev);
10698 #else
10699 	refcount_set(&dev->dev_refcnt, 1);
10700 #endif
10701 
10702 	if (dev_addr_init(dev))
10703 		goto free_pcpu;
10704 
10705 	dev_mc_init(dev);
10706 	dev_uc_init(dev);
10707 
10708 	dev_net_set(dev, &init_net);
10709 
10710 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10711 	dev->xdp_zc_max_segs = 1;
10712 	dev->gso_max_segs = GSO_MAX_SEGS;
10713 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10714 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10715 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10716 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10717 	dev->tso_max_segs = TSO_MAX_SEGS;
10718 	dev->upper_level = 1;
10719 	dev->lower_level = 1;
10720 #ifdef CONFIG_LOCKDEP
10721 	dev->nested_level = 0;
10722 	INIT_LIST_HEAD(&dev->unlink_list);
10723 #endif
10724 
10725 	INIT_LIST_HEAD(&dev->napi_list);
10726 	INIT_LIST_HEAD(&dev->unreg_list);
10727 	INIT_LIST_HEAD(&dev->close_list);
10728 	INIT_LIST_HEAD(&dev->link_watch_list);
10729 	INIT_LIST_HEAD(&dev->adj_list.upper);
10730 	INIT_LIST_HEAD(&dev->adj_list.lower);
10731 	INIT_LIST_HEAD(&dev->ptype_all);
10732 	INIT_LIST_HEAD(&dev->ptype_specific);
10733 	INIT_LIST_HEAD(&dev->net_notifier_list);
10734 #ifdef CONFIG_NET_SCHED
10735 	hash_init(dev->qdisc_hash);
10736 #endif
10737 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10738 	setup(dev);
10739 
10740 	if (!dev->tx_queue_len) {
10741 		dev->priv_flags |= IFF_NO_QUEUE;
10742 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10743 	}
10744 
10745 	dev->num_tx_queues = txqs;
10746 	dev->real_num_tx_queues = txqs;
10747 	if (netif_alloc_netdev_queues(dev))
10748 		goto free_all;
10749 
10750 	dev->num_rx_queues = rxqs;
10751 	dev->real_num_rx_queues = rxqs;
10752 	if (netif_alloc_rx_queues(dev))
10753 		goto free_all;
10754 
10755 	strcpy(dev->name, name);
10756 	dev->name_assign_type = name_assign_type;
10757 	dev->group = INIT_NETDEV_GROUP;
10758 	if (!dev->ethtool_ops)
10759 		dev->ethtool_ops = &default_ethtool_ops;
10760 
10761 	nf_hook_netdev_init(dev);
10762 
10763 	return dev;
10764 
10765 free_all:
10766 	free_netdev(dev);
10767 	return NULL;
10768 
10769 free_pcpu:
10770 #ifdef CONFIG_PCPU_DEV_REFCNT
10771 	free_percpu(dev->pcpu_refcnt);
10772 free_dev:
10773 #endif
10774 	netdev_freemem(dev);
10775 	return NULL;
10776 }
10777 EXPORT_SYMBOL(alloc_netdev_mqs);
10778 
10779 /**
10780  * free_netdev - free network device
10781  * @dev: device
10782  *
10783  * This function does the last stage of destroying an allocated device
10784  * interface. The reference to the device object is released. If this
10785  * is the last reference then it will be freed.Must be called in process
10786  * context.
10787  */
10788 void free_netdev(struct net_device *dev)
10789 {
10790 	struct napi_struct *p, *n;
10791 
10792 	might_sleep();
10793 
10794 	/* When called immediately after register_netdevice() failed the unwind
10795 	 * handling may still be dismantling the device. Handle that case by
10796 	 * deferring the free.
10797 	 */
10798 	if (dev->reg_state == NETREG_UNREGISTERING) {
10799 		ASSERT_RTNL();
10800 		dev->needs_free_netdev = true;
10801 		return;
10802 	}
10803 
10804 	netif_free_tx_queues(dev);
10805 	netif_free_rx_queues(dev);
10806 
10807 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10808 
10809 	/* Flush device addresses */
10810 	dev_addr_flush(dev);
10811 
10812 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10813 		netif_napi_del(p);
10814 
10815 	ref_tracker_dir_exit(&dev->refcnt_tracker);
10816 #ifdef CONFIG_PCPU_DEV_REFCNT
10817 	free_percpu(dev->pcpu_refcnt);
10818 	dev->pcpu_refcnt = NULL;
10819 #endif
10820 	free_percpu(dev->core_stats);
10821 	dev->core_stats = NULL;
10822 	free_percpu(dev->xdp_bulkq);
10823 	dev->xdp_bulkq = NULL;
10824 
10825 	/*  Compatibility with error handling in drivers */
10826 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10827 		netdev_freemem(dev);
10828 		return;
10829 	}
10830 
10831 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10832 	dev->reg_state = NETREG_RELEASED;
10833 
10834 	/* will free via device release */
10835 	put_device(&dev->dev);
10836 }
10837 EXPORT_SYMBOL(free_netdev);
10838 
10839 /**
10840  *	synchronize_net -  Synchronize with packet receive processing
10841  *
10842  *	Wait for packets currently being received to be done.
10843  *	Does not block later packets from starting.
10844  */
10845 void synchronize_net(void)
10846 {
10847 	might_sleep();
10848 	if (rtnl_is_locked())
10849 		synchronize_rcu_expedited();
10850 	else
10851 		synchronize_rcu();
10852 }
10853 EXPORT_SYMBOL(synchronize_net);
10854 
10855 /**
10856  *	unregister_netdevice_queue - remove device from the kernel
10857  *	@dev: device
10858  *	@head: list
10859  *
10860  *	This function shuts down a device interface and removes it
10861  *	from the kernel tables.
10862  *	If head not NULL, device is queued to be unregistered later.
10863  *
10864  *	Callers must hold the rtnl semaphore.  You may want
10865  *	unregister_netdev() instead of this.
10866  */
10867 
10868 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10869 {
10870 	ASSERT_RTNL();
10871 
10872 	if (head) {
10873 		list_move_tail(&dev->unreg_list, head);
10874 	} else {
10875 		LIST_HEAD(single);
10876 
10877 		list_add(&dev->unreg_list, &single);
10878 		unregister_netdevice_many(&single);
10879 	}
10880 }
10881 EXPORT_SYMBOL(unregister_netdevice_queue);
10882 
10883 void unregister_netdevice_many_notify(struct list_head *head,
10884 				      u32 portid, const struct nlmsghdr *nlh)
10885 {
10886 	struct net_device *dev, *tmp;
10887 	LIST_HEAD(close_head);
10888 
10889 	BUG_ON(dev_boot_phase);
10890 	ASSERT_RTNL();
10891 
10892 	if (list_empty(head))
10893 		return;
10894 
10895 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10896 		/* Some devices call without registering
10897 		 * for initialization unwind. Remove those
10898 		 * devices and proceed with the remaining.
10899 		 */
10900 		if (dev->reg_state == NETREG_UNINITIALIZED) {
10901 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10902 				 dev->name, dev);
10903 
10904 			WARN_ON(1);
10905 			list_del(&dev->unreg_list);
10906 			continue;
10907 		}
10908 		dev->dismantle = true;
10909 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
10910 	}
10911 
10912 	/* If device is running, close it first. */
10913 	list_for_each_entry(dev, head, unreg_list)
10914 		list_add_tail(&dev->close_list, &close_head);
10915 	dev_close_many(&close_head, true);
10916 
10917 	list_for_each_entry(dev, head, unreg_list) {
10918 		/* And unlink it from device chain. */
10919 		write_lock(&dev_base_lock);
10920 		unlist_netdevice(dev, false);
10921 		dev->reg_state = NETREG_UNREGISTERING;
10922 		write_unlock(&dev_base_lock);
10923 	}
10924 	flush_all_backlogs();
10925 
10926 	synchronize_net();
10927 
10928 	list_for_each_entry(dev, head, unreg_list) {
10929 		struct sk_buff *skb = NULL;
10930 
10931 		/* Shutdown queueing discipline. */
10932 		dev_shutdown(dev);
10933 		dev_tcx_uninstall(dev);
10934 		dev_xdp_uninstall(dev);
10935 		bpf_dev_bound_netdev_unregister(dev);
10936 
10937 		netdev_offload_xstats_disable_all(dev);
10938 
10939 		/* Notify protocols, that we are about to destroy
10940 		 * this device. They should clean all the things.
10941 		 */
10942 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10943 
10944 		if (!dev->rtnl_link_ops ||
10945 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10946 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10947 						     GFP_KERNEL, NULL, 0,
10948 						     portid, nlh);
10949 
10950 		/*
10951 		 *	Flush the unicast and multicast chains
10952 		 */
10953 		dev_uc_flush(dev);
10954 		dev_mc_flush(dev);
10955 
10956 		netdev_name_node_alt_flush(dev);
10957 		netdev_name_node_free(dev->name_node);
10958 
10959 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10960 
10961 		if (dev->netdev_ops->ndo_uninit)
10962 			dev->netdev_ops->ndo_uninit(dev);
10963 
10964 		if (skb)
10965 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
10966 
10967 		/* Notifier chain MUST detach us all upper devices. */
10968 		WARN_ON(netdev_has_any_upper_dev(dev));
10969 		WARN_ON(netdev_has_any_lower_dev(dev));
10970 
10971 		/* Remove entries from kobject tree */
10972 		netdev_unregister_kobject(dev);
10973 #ifdef CONFIG_XPS
10974 		/* Remove XPS queueing entries */
10975 		netif_reset_xps_queues_gt(dev, 0);
10976 #endif
10977 	}
10978 
10979 	synchronize_net();
10980 
10981 	list_for_each_entry(dev, head, unreg_list) {
10982 		netdev_put(dev, &dev->dev_registered_tracker);
10983 		net_set_todo(dev);
10984 	}
10985 
10986 	list_del(head);
10987 }
10988 
10989 /**
10990  *	unregister_netdevice_many - unregister many devices
10991  *	@head: list of devices
10992  *
10993  *  Note: As most callers use a stack allocated list_head,
10994  *  we force a list_del() to make sure stack wont be corrupted later.
10995  */
10996 void unregister_netdevice_many(struct list_head *head)
10997 {
10998 	unregister_netdevice_many_notify(head, 0, NULL);
10999 }
11000 EXPORT_SYMBOL(unregister_netdevice_many);
11001 
11002 /**
11003  *	unregister_netdev - remove device from the kernel
11004  *	@dev: device
11005  *
11006  *	This function shuts down a device interface and removes it
11007  *	from the kernel tables.
11008  *
11009  *	This is just a wrapper for unregister_netdevice that takes
11010  *	the rtnl semaphore.  In general you want to use this and not
11011  *	unregister_netdevice.
11012  */
11013 void unregister_netdev(struct net_device *dev)
11014 {
11015 	rtnl_lock();
11016 	unregister_netdevice(dev);
11017 	rtnl_unlock();
11018 }
11019 EXPORT_SYMBOL(unregister_netdev);
11020 
11021 /**
11022  *	__dev_change_net_namespace - move device to different nethost namespace
11023  *	@dev: device
11024  *	@net: network namespace
11025  *	@pat: If not NULL name pattern to try if the current device name
11026  *	      is already taken in the destination network namespace.
11027  *	@new_ifindex: If not zero, specifies device index in the target
11028  *	              namespace.
11029  *
11030  *	This function shuts down a device interface and moves it
11031  *	to a new network namespace. On success 0 is returned, on
11032  *	a failure a netagive errno code is returned.
11033  *
11034  *	Callers must hold the rtnl semaphore.
11035  */
11036 
11037 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11038 			       const char *pat, int new_ifindex)
11039 {
11040 	struct net *net_old = dev_net(dev);
11041 	int err, new_nsid;
11042 
11043 	ASSERT_RTNL();
11044 
11045 	/* Don't allow namespace local devices to be moved. */
11046 	err = -EINVAL;
11047 	if (dev->features & NETIF_F_NETNS_LOCAL)
11048 		goto out;
11049 
11050 	/* Ensure the device has been registrered */
11051 	if (dev->reg_state != NETREG_REGISTERED)
11052 		goto out;
11053 
11054 	/* Get out if there is nothing todo */
11055 	err = 0;
11056 	if (net_eq(net_old, net))
11057 		goto out;
11058 
11059 	/* Pick the destination device name, and ensure
11060 	 * we can use it in the destination network namespace.
11061 	 */
11062 	err = -EEXIST;
11063 	if (netdev_name_in_use(net, dev->name)) {
11064 		/* We get here if we can't use the current device name */
11065 		if (!pat)
11066 			goto out;
11067 		err = dev_get_valid_name(net, dev, pat);
11068 		if (err < 0)
11069 			goto out;
11070 	}
11071 
11072 	/* Check that new_ifindex isn't used yet. */
11073 	if (new_ifindex) {
11074 		err = dev_index_reserve(net, new_ifindex);
11075 		if (err < 0)
11076 			goto out;
11077 	} else {
11078 		/* If there is an ifindex conflict assign a new one */
11079 		err = dev_index_reserve(net, dev->ifindex);
11080 		if (err == -EBUSY)
11081 			err = dev_index_reserve(net, 0);
11082 		if (err < 0)
11083 			goto out;
11084 		new_ifindex = err;
11085 	}
11086 
11087 	/*
11088 	 * And now a mini version of register_netdevice unregister_netdevice.
11089 	 */
11090 
11091 	/* If device is running close it first. */
11092 	dev_close(dev);
11093 
11094 	/* And unlink it from device chain */
11095 	unlist_netdevice(dev, true);
11096 
11097 	synchronize_net();
11098 
11099 	/* Shutdown queueing discipline. */
11100 	dev_shutdown(dev);
11101 
11102 	/* Notify protocols, that we are about to destroy
11103 	 * this device. They should clean all the things.
11104 	 *
11105 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11106 	 * This is wanted because this way 8021q and macvlan know
11107 	 * the device is just moving and can keep their slaves up.
11108 	 */
11109 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11110 	rcu_barrier();
11111 
11112 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11113 
11114 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11115 			    new_ifindex);
11116 
11117 	/*
11118 	 *	Flush the unicast and multicast chains
11119 	 */
11120 	dev_uc_flush(dev);
11121 	dev_mc_flush(dev);
11122 
11123 	/* Send a netdev-removed uevent to the old namespace */
11124 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11125 	netdev_adjacent_del_links(dev);
11126 
11127 	/* Move per-net netdevice notifiers that are following the netdevice */
11128 	move_netdevice_notifiers_dev_net(dev, net);
11129 
11130 	/* Actually switch the network namespace */
11131 	dev_net_set(dev, net);
11132 	dev->ifindex = new_ifindex;
11133 
11134 	/* Send a netdev-add uevent to the new namespace */
11135 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11136 	netdev_adjacent_add_links(dev);
11137 
11138 	/* Fixup kobjects */
11139 	err = device_rename(&dev->dev, dev->name);
11140 	WARN_ON(err);
11141 
11142 	/* Adapt owner in case owning user namespace of target network
11143 	 * namespace is different from the original one.
11144 	 */
11145 	err = netdev_change_owner(dev, net_old, net);
11146 	WARN_ON(err);
11147 
11148 	/* Add the device back in the hashes */
11149 	list_netdevice(dev);
11150 
11151 	/* Notify protocols, that a new device appeared. */
11152 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11153 
11154 	/*
11155 	 *	Prevent userspace races by waiting until the network
11156 	 *	device is fully setup before sending notifications.
11157 	 */
11158 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11159 
11160 	synchronize_net();
11161 	err = 0;
11162 out:
11163 	return err;
11164 }
11165 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11166 
11167 static int dev_cpu_dead(unsigned int oldcpu)
11168 {
11169 	struct sk_buff **list_skb;
11170 	struct sk_buff *skb;
11171 	unsigned int cpu;
11172 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11173 
11174 	local_irq_disable();
11175 	cpu = smp_processor_id();
11176 	sd = &per_cpu(softnet_data, cpu);
11177 	oldsd = &per_cpu(softnet_data, oldcpu);
11178 
11179 	/* Find end of our completion_queue. */
11180 	list_skb = &sd->completion_queue;
11181 	while (*list_skb)
11182 		list_skb = &(*list_skb)->next;
11183 	/* Append completion queue from offline CPU. */
11184 	*list_skb = oldsd->completion_queue;
11185 	oldsd->completion_queue = NULL;
11186 
11187 	/* Append output queue from offline CPU. */
11188 	if (oldsd->output_queue) {
11189 		*sd->output_queue_tailp = oldsd->output_queue;
11190 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11191 		oldsd->output_queue = NULL;
11192 		oldsd->output_queue_tailp = &oldsd->output_queue;
11193 	}
11194 	/* Append NAPI poll list from offline CPU, with one exception :
11195 	 * process_backlog() must be called by cpu owning percpu backlog.
11196 	 * We properly handle process_queue & input_pkt_queue later.
11197 	 */
11198 	while (!list_empty(&oldsd->poll_list)) {
11199 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11200 							    struct napi_struct,
11201 							    poll_list);
11202 
11203 		list_del_init(&napi->poll_list);
11204 		if (napi->poll == process_backlog)
11205 			napi->state = 0;
11206 		else
11207 			____napi_schedule(sd, napi);
11208 	}
11209 
11210 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11211 	local_irq_enable();
11212 
11213 #ifdef CONFIG_RPS
11214 	remsd = oldsd->rps_ipi_list;
11215 	oldsd->rps_ipi_list = NULL;
11216 #endif
11217 	/* send out pending IPI's on offline CPU */
11218 	net_rps_send_ipi(remsd);
11219 
11220 	/* Process offline CPU's input_pkt_queue */
11221 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11222 		netif_rx(skb);
11223 		input_queue_head_incr(oldsd);
11224 	}
11225 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11226 		netif_rx(skb);
11227 		input_queue_head_incr(oldsd);
11228 	}
11229 
11230 	return 0;
11231 }
11232 
11233 /**
11234  *	netdev_increment_features - increment feature set by one
11235  *	@all: current feature set
11236  *	@one: new feature set
11237  *	@mask: mask feature set
11238  *
11239  *	Computes a new feature set after adding a device with feature set
11240  *	@one to the master device with current feature set @all.  Will not
11241  *	enable anything that is off in @mask. Returns the new feature set.
11242  */
11243 netdev_features_t netdev_increment_features(netdev_features_t all,
11244 	netdev_features_t one, netdev_features_t mask)
11245 {
11246 	if (mask & NETIF_F_HW_CSUM)
11247 		mask |= NETIF_F_CSUM_MASK;
11248 	mask |= NETIF_F_VLAN_CHALLENGED;
11249 
11250 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11251 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11252 
11253 	/* If one device supports hw checksumming, set for all. */
11254 	if (all & NETIF_F_HW_CSUM)
11255 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11256 
11257 	return all;
11258 }
11259 EXPORT_SYMBOL(netdev_increment_features);
11260 
11261 static struct hlist_head * __net_init netdev_create_hash(void)
11262 {
11263 	int i;
11264 	struct hlist_head *hash;
11265 
11266 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11267 	if (hash != NULL)
11268 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11269 			INIT_HLIST_HEAD(&hash[i]);
11270 
11271 	return hash;
11272 }
11273 
11274 /* Initialize per network namespace state */
11275 static int __net_init netdev_init(struct net *net)
11276 {
11277 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11278 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11279 
11280 	INIT_LIST_HEAD(&net->dev_base_head);
11281 
11282 	net->dev_name_head = netdev_create_hash();
11283 	if (net->dev_name_head == NULL)
11284 		goto err_name;
11285 
11286 	net->dev_index_head = netdev_create_hash();
11287 	if (net->dev_index_head == NULL)
11288 		goto err_idx;
11289 
11290 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11291 
11292 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11293 
11294 	return 0;
11295 
11296 err_idx:
11297 	kfree(net->dev_name_head);
11298 err_name:
11299 	return -ENOMEM;
11300 }
11301 
11302 /**
11303  *	netdev_drivername - network driver for the device
11304  *	@dev: network device
11305  *
11306  *	Determine network driver for device.
11307  */
11308 const char *netdev_drivername(const struct net_device *dev)
11309 {
11310 	const struct device_driver *driver;
11311 	const struct device *parent;
11312 	const char *empty = "";
11313 
11314 	parent = dev->dev.parent;
11315 	if (!parent)
11316 		return empty;
11317 
11318 	driver = parent->driver;
11319 	if (driver && driver->name)
11320 		return driver->name;
11321 	return empty;
11322 }
11323 
11324 static void __netdev_printk(const char *level, const struct net_device *dev,
11325 			    struct va_format *vaf)
11326 {
11327 	if (dev && dev->dev.parent) {
11328 		dev_printk_emit(level[1] - '0',
11329 				dev->dev.parent,
11330 				"%s %s %s%s: %pV",
11331 				dev_driver_string(dev->dev.parent),
11332 				dev_name(dev->dev.parent),
11333 				netdev_name(dev), netdev_reg_state(dev),
11334 				vaf);
11335 	} else if (dev) {
11336 		printk("%s%s%s: %pV",
11337 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11338 	} else {
11339 		printk("%s(NULL net_device): %pV", level, vaf);
11340 	}
11341 }
11342 
11343 void netdev_printk(const char *level, const struct net_device *dev,
11344 		   const char *format, ...)
11345 {
11346 	struct va_format vaf;
11347 	va_list args;
11348 
11349 	va_start(args, format);
11350 
11351 	vaf.fmt = format;
11352 	vaf.va = &args;
11353 
11354 	__netdev_printk(level, dev, &vaf);
11355 
11356 	va_end(args);
11357 }
11358 EXPORT_SYMBOL(netdev_printk);
11359 
11360 #define define_netdev_printk_level(func, level)			\
11361 void func(const struct net_device *dev, const char *fmt, ...)	\
11362 {								\
11363 	struct va_format vaf;					\
11364 	va_list args;						\
11365 								\
11366 	va_start(args, fmt);					\
11367 								\
11368 	vaf.fmt = fmt;						\
11369 	vaf.va = &args;						\
11370 								\
11371 	__netdev_printk(level, dev, &vaf);			\
11372 								\
11373 	va_end(args);						\
11374 }								\
11375 EXPORT_SYMBOL(func);
11376 
11377 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11378 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11379 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11380 define_netdev_printk_level(netdev_err, KERN_ERR);
11381 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11382 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11383 define_netdev_printk_level(netdev_info, KERN_INFO);
11384 
11385 static void __net_exit netdev_exit(struct net *net)
11386 {
11387 	kfree(net->dev_name_head);
11388 	kfree(net->dev_index_head);
11389 	xa_destroy(&net->dev_by_index);
11390 	if (net != &init_net)
11391 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11392 }
11393 
11394 static struct pernet_operations __net_initdata netdev_net_ops = {
11395 	.init = netdev_init,
11396 	.exit = netdev_exit,
11397 };
11398 
11399 static void __net_exit default_device_exit_net(struct net *net)
11400 {
11401 	struct net_device *dev, *aux;
11402 	/*
11403 	 * Push all migratable network devices back to the
11404 	 * initial network namespace
11405 	 */
11406 	ASSERT_RTNL();
11407 	for_each_netdev_safe(net, dev, aux) {
11408 		int err;
11409 		char fb_name[IFNAMSIZ];
11410 
11411 		/* Ignore unmoveable devices (i.e. loopback) */
11412 		if (dev->features & NETIF_F_NETNS_LOCAL)
11413 			continue;
11414 
11415 		/* Leave virtual devices for the generic cleanup */
11416 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11417 			continue;
11418 
11419 		/* Push remaining network devices to init_net */
11420 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11421 		if (netdev_name_in_use(&init_net, fb_name))
11422 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11423 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11424 		if (err) {
11425 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11426 				 __func__, dev->name, err);
11427 			BUG();
11428 		}
11429 	}
11430 }
11431 
11432 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11433 {
11434 	/* At exit all network devices most be removed from a network
11435 	 * namespace.  Do this in the reverse order of registration.
11436 	 * Do this across as many network namespaces as possible to
11437 	 * improve batching efficiency.
11438 	 */
11439 	struct net_device *dev;
11440 	struct net *net;
11441 	LIST_HEAD(dev_kill_list);
11442 
11443 	rtnl_lock();
11444 	list_for_each_entry(net, net_list, exit_list) {
11445 		default_device_exit_net(net);
11446 		cond_resched();
11447 	}
11448 
11449 	list_for_each_entry(net, net_list, exit_list) {
11450 		for_each_netdev_reverse(net, dev) {
11451 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11452 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11453 			else
11454 				unregister_netdevice_queue(dev, &dev_kill_list);
11455 		}
11456 	}
11457 	unregister_netdevice_many(&dev_kill_list);
11458 	rtnl_unlock();
11459 }
11460 
11461 static struct pernet_operations __net_initdata default_device_ops = {
11462 	.exit_batch = default_device_exit_batch,
11463 };
11464 
11465 /*
11466  *	Initialize the DEV module. At boot time this walks the device list and
11467  *	unhooks any devices that fail to initialise (normally hardware not
11468  *	present) and leaves us with a valid list of present and active devices.
11469  *
11470  */
11471 
11472 /*
11473  *       This is called single threaded during boot, so no need
11474  *       to take the rtnl semaphore.
11475  */
11476 static int __init net_dev_init(void)
11477 {
11478 	int i, rc = -ENOMEM;
11479 
11480 	BUG_ON(!dev_boot_phase);
11481 
11482 	if (dev_proc_init())
11483 		goto out;
11484 
11485 	if (netdev_kobject_init())
11486 		goto out;
11487 
11488 	INIT_LIST_HEAD(&ptype_all);
11489 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11490 		INIT_LIST_HEAD(&ptype_base[i]);
11491 
11492 	if (register_pernet_subsys(&netdev_net_ops))
11493 		goto out;
11494 
11495 	/*
11496 	 *	Initialise the packet receive queues.
11497 	 */
11498 
11499 	for_each_possible_cpu(i) {
11500 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11501 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11502 
11503 		INIT_WORK(flush, flush_backlog);
11504 
11505 		skb_queue_head_init(&sd->input_pkt_queue);
11506 		skb_queue_head_init(&sd->process_queue);
11507 #ifdef CONFIG_XFRM_OFFLOAD
11508 		skb_queue_head_init(&sd->xfrm_backlog);
11509 #endif
11510 		INIT_LIST_HEAD(&sd->poll_list);
11511 		sd->output_queue_tailp = &sd->output_queue;
11512 #ifdef CONFIG_RPS
11513 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11514 		sd->cpu = i;
11515 #endif
11516 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11517 		spin_lock_init(&sd->defer_lock);
11518 
11519 		init_gro_hash(&sd->backlog);
11520 		sd->backlog.poll = process_backlog;
11521 		sd->backlog.weight = weight_p;
11522 	}
11523 
11524 	dev_boot_phase = 0;
11525 
11526 	/* The loopback device is special if any other network devices
11527 	 * is present in a network namespace the loopback device must
11528 	 * be present. Since we now dynamically allocate and free the
11529 	 * loopback device ensure this invariant is maintained by
11530 	 * keeping the loopback device as the first device on the
11531 	 * list of network devices.  Ensuring the loopback devices
11532 	 * is the first device that appears and the last network device
11533 	 * that disappears.
11534 	 */
11535 	if (register_pernet_device(&loopback_net_ops))
11536 		goto out;
11537 
11538 	if (register_pernet_device(&default_device_ops))
11539 		goto out;
11540 
11541 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11542 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11543 
11544 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11545 				       NULL, dev_cpu_dead);
11546 	WARN_ON(rc < 0);
11547 	rc = 0;
11548 out:
11549 	return rc;
11550 }
11551 
11552 subsys_initcall(net_dev_init);
11553