1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <linux/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/sched/mm.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/notifier.h> 97 #include <linux/skbuff.h> 98 #include <linux/bpf.h> 99 #include <linux/bpf_trace.h> 100 #include <net/net_namespace.h> 101 #include <net/sock.h> 102 #include <net/busy_poll.h> 103 #include <linux/rtnetlink.h> 104 #include <linux/stat.h> 105 #include <net/dst.h> 106 #include <net/dst_metadata.h> 107 #include <net/pkt_sched.h> 108 #include <net/pkt_cls.h> 109 #include <net/checksum.h> 110 #include <net/xfrm.h> 111 #include <linux/highmem.h> 112 #include <linux/init.h> 113 #include <linux/module.h> 114 #include <linux/netpoll.h> 115 #include <linux/rcupdate.h> 116 #include <linux/delay.h> 117 #include <net/iw_handler.h> 118 #include <asm/current.h> 119 #include <linux/audit.h> 120 #include <linux/dmaengine.h> 121 #include <linux/err.h> 122 #include <linux/ctype.h> 123 #include <linux/if_arp.h> 124 #include <linux/if_vlan.h> 125 #include <linux/ip.h> 126 #include <net/ip.h> 127 #include <net/mpls.h> 128 #include <linux/ipv6.h> 129 #include <linux/in.h> 130 #include <linux/jhash.h> 131 #include <linux/random.h> 132 #include <trace/events/napi.h> 133 #include <trace/events/net.h> 134 #include <trace/events/skb.h> 135 #include <linux/pci.h> 136 #include <linux/inetdevice.h> 137 #include <linux/cpu_rmap.h> 138 #include <linux/static_key.h> 139 #include <linux/hashtable.h> 140 #include <linux/vmalloc.h> 141 #include <linux/if_macvlan.h> 142 #include <linux/errqueue.h> 143 #include <linux/hrtimer.h> 144 #include <linux/netfilter_ingress.h> 145 #include <linux/crash_dump.h> 146 #include <linux/sctp.h> 147 #include <net/udp_tunnel.h> 148 149 #include "net-sysfs.h" 150 151 /* Instead of increasing this, you should create a hash table. */ 152 #define MAX_GRO_SKBS 8 153 154 /* This should be increased if a protocol with a bigger head is added. */ 155 #define GRO_MAX_HEAD (MAX_HEADER + 128) 156 157 static DEFINE_SPINLOCK(ptype_lock); 158 static DEFINE_SPINLOCK(offload_lock); 159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 160 struct list_head ptype_all __read_mostly; /* Taps */ 161 static struct list_head offload_base __read_mostly; 162 163 static int netif_rx_internal(struct sk_buff *skb); 164 static int call_netdevice_notifiers_info(unsigned long val, 165 struct net_device *dev, 166 struct netdev_notifier_info *info); 167 static struct napi_struct *napi_by_id(unsigned int napi_id); 168 169 /* 170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 171 * semaphore. 172 * 173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 174 * 175 * Writers must hold the rtnl semaphore while they loop through the 176 * dev_base_head list, and hold dev_base_lock for writing when they do the 177 * actual updates. This allows pure readers to access the list even 178 * while a writer is preparing to update it. 179 * 180 * To put it another way, dev_base_lock is held for writing only to 181 * protect against pure readers; the rtnl semaphore provides the 182 * protection against other writers. 183 * 184 * See, for example usages, register_netdevice() and 185 * unregister_netdevice(), which must be called with the rtnl 186 * semaphore held. 187 */ 188 DEFINE_RWLOCK(dev_base_lock); 189 EXPORT_SYMBOL(dev_base_lock); 190 191 static DEFINE_MUTEX(ifalias_mutex); 192 193 /* protects napi_hash addition/deletion and napi_gen_id */ 194 static DEFINE_SPINLOCK(napi_hash_lock); 195 196 static unsigned int napi_gen_id = NR_CPUS; 197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 198 199 static seqcount_t devnet_rename_seq; 200 201 static inline void dev_base_seq_inc(struct net *net) 202 { 203 while (++net->dev_base_seq == 0) 204 ; 205 } 206 207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 208 { 209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 210 211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 212 } 213 214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 215 { 216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 217 } 218 219 static inline void rps_lock(struct softnet_data *sd) 220 { 221 #ifdef CONFIG_RPS 222 spin_lock(&sd->input_pkt_queue.lock); 223 #endif 224 } 225 226 static inline void rps_unlock(struct softnet_data *sd) 227 { 228 #ifdef CONFIG_RPS 229 spin_unlock(&sd->input_pkt_queue.lock); 230 #endif 231 } 232 233 /* Device list insertion */ 234 static void list_netdevice(struct net_device *dev) 235 { 236 struct net *net = dev_net(dev); 237 238 ASSERT_RTNL(); 239 240 write_lock_bh(&dev_base_lock); 241 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 242 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 243 hlist_add_head_rcu(&dev->index_hlist, 244 dev_index_hash(net, dev->ifindex)); 245 write_unlock_bh(&dev_base_lock); 246 247 dev_base_seq_inc(net); 248 } 249 250 /* Device list removal 251 * caller must respect a RCU grace period before freeing/reusing dev 252 */ 253 static void unlist_netdevice(struct net_device *dev) 254 { 255 ASSERT_RTNL(); 256 257 /* Unlink dev from the device chain */ 258 write_lock_bh(&dev_base_lock); 259 list_del_rcu(&dev->dev_list); 260 hlist_del_rcu(&dev->name_hlist); 261 hlist_del_rcu(&dev->index_hlist); 262 write_unlock_bh(&dev_base_lock); 263 264 dev_base_seq_inc(dev_net(dev)); 265 } 266 267 /* 268 * Our notifier list 269 */ 270 271 static RAW_NOTIFIER_HEAD(netdev_chain); 272 273 /* 274 * Device drivers call our routines to queue packets here. We empty the 275 * queue in the local softnet handler. 276 */ 277 278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 279 EXPORT_PER_CPU_SYMBOL(softnet_data); 280 281 #ifdef CONFIG_LOCKDEP 282 /* 283 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 284 * according to dev->type 285 */ 286 static const unsigned short netdev_lock_type[] = { 287 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 288 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 289 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 290 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 291 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 292 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 293 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 294 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 295 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 296 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 297 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 298 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 299 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 300 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 301 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 302 303 static const char *const netdev_lock_name[] = { 304 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 305 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 306 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 307 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 308 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 309 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 310 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 311 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 312 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 313 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 314 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 315 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 316 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 317 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 318 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 319 320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 322 323 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 324 { 325 int i; 326 327 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 328 if (netdev_lock_type[i] == dev_type) 329 return i; 330 /* the last key is used by default */ 331 return ARRAY_SIZE(netdev_lock_type) - 1; 332 } 333 334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 335 unsigned short dev_type) 336 { 337 int i; 338 339 i = netdev_lock_pos(dev_type); 340 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 341 netdev_lock_name[i]); 342 } 343 344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 345 { 346 int i; 347 348 i = netdev_lock_pos(dev->type); 349 lockdep_set_class_and_name(&dev->addr_list_lock, 350 &netdev_addr_lock_key[i], 351 netdev_lock_name[i]); 352 } 353 #else 354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 355 unsigned short dev_type) 356 { 357 } 358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 359 { 360 } 361 #endif 362 363 /******************************************************************************* 364 * 365 * Protocol management and registration routines 366 * 367 *******************************************************************************/ 368 369 370 /* 371 * Add a protocol ID to the list. Now that the input handler is 372 * smarter we can dispense with all the messy stuff that used to be 373 * here. 374 * 375 * BEWARE!!! Protocol handlers, mangling input packets, 376 * MUST BE last in hash buckets and checking protocol handlers 377 * MUST start from promiscuous ptype_all chain in net_bh. 378 * It is true now, do not change it. 379 * Explanation follows: if protocol handler, mangling packet, will 380 * be the first on list, it is not able to sense, that packet 381 * is cloned and should be copied-on-write, so that it will 382 * change it and subsequent readers will get broken packet. 383 * --ANK (980803) 384 */ 385 386 static inline struct list_head *ptype_head(const struct packet_type *pt) 387 { 388 if (pt->type == htons(ETH_P_ALL)) 389 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 390 else 391 return pt->dev ? &pt->dev->ptype_specific : 392 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 393 } 394 395 /** 396 * dev_add_pack - add packet handler 397 * @pt: packet type declaration 398 * 399 * Add a protocol handler to the networking stack. The passed &packet_type 400 * is linked into kernel lists and may not be freed until it has been 401 * removed from the kernel lists. 402 * 403 * This call does not sleep therefore it can not 404 * guarantee all CPU's that are in middle of receiving packets 405 * will see the new packet type (until the next received packet). 406 */ 407 408 void dev_add_pack(struct packet_type *pt) 409 { 410 struct list_head *head = ptype_head(pt); 411 412 spin_lock(&ptype_lock); 413 list_add_rcu(&pt->list, head); 414 spin_unlock(&ptype_lock); 415 } 416 EXPORT_SYMBOL(dev_add_pack); 417 418 /** 419 * __dev_remove_pack - remove packet handler 420 * @pt: packet type declaration 421 * 422 * Remove a protocol handler that was previously added to the kernel 423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 424 * from the kernel lists and can be freed or reused once this function 425 * returns. 426 * 427 * The packet type might still be in use by receivers 428 * and must not be freed until after all the CPU's have gone 429 * through a quiescent state. 430 */ 431 void __dev_remove_pack(struct packet_type *pt) 432 { 433 struct list_head *head = ptype_head(pt); 434 struct packet_type *pt1; 435 436 spin_lock(&ptype_lock); 437 438 list_for_each_entry(pt1, head, list) { 439 if (pt == pt1) { 440 list_del_rcu(&pt->list); 441 goto out; 442 } 443 } 444 445 pr_warn("dev_remove_pack: %p not found\n", pt); 446 out: 447 spin_unlock(&ptype_lock); 448 } 449 EXPORT_SYMBOL(__dev_remove_pack); 450 451 /** 452 * dev_remove_pack - remove packet handler 453 * @pt: packet type declaration 454 * 455 * Remove a protocol handler that was previously added to the kernel 456 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 457 * from the kernel lists and can be freed or reused once this function 458 * returns. 459 * 460 * This call sleeps to guarantee that no CPU is looking at the packet 461 * type after return. 462 */ 463 void dev_remove_pack(struct packet_type *pt) 464 { 465 __dev_remove_pack(pt); 466 467 synchronize_net(); 468 } 469 EXPORT_SYMBOL(dev_remove_pack); 470 471 472 /** 473 * dev_add_offload - register offload handlers 474 * @po: protocol offload declaration 475 * 476 * Add protocol offload handlers to the networking stack. The passed 477 * &proto_offload is linked into kernel lists and may not be freed until 478 * it has been removed from the kernel lists. 479 * 480 * This call does not sleep therefore it can not 481 * guarantee all CPU's that are in middle of receiving packets 482 * will see the new offload handlers (until the next received packet). 483 */ 484 void dev_add_offload(struct packet_offload *po) 485 { 486 struct packet_offload *elem; 487 488 spin_lock(&offload_lock); 489 list_for_each_entry(elem, &offload_base, list) { 490 if (po->priority < elem->priority) 491 break; 492 } 493 list_add_rcu(&po->list, elem->list.prev); 494 spin_unlock(&offload_lock); 495 } 496 EXPORT_SYMBOL(dev_add_offload); 497 498 /** 499 * __dev_remove_offload - remove offload handler 500 * @po: packet offload declaration 501 * 502 * Remove a protocol offload handler that was previously added to the 503 * kernel offload handlers by dev_add_offload(). The passed &offload_type 504 * is removed from the kernel lists and can be freed or reused once this 505 * function returns. 506 * 507 * The packet type might still be in use by receivers 508 * and must not be freed until after all the CPU's have gone 509 * through a quiescent state. 510 */ 511 static void __dev_remove_offload(struct packet_offload *po) 512 { 513 struct list_head *head = &offload_base; 514 struct packet_offload *po1; 515 516 spin_lock(&offload_lock); 517 518 list_for_each_entry(po1, head, list) { 519 if (po == po1) { 520 list_del_rcu(&po->list); 521 goto out; 522 } 523 } 524 525 pr_warn("dev_remove_offload: %p not found\n", po); 526 out: 527 spin_unlock(&offload_lock); 528 } 529 530 /** 531 * dev_remove_offload - remove packet offload handler 532 * @po: packet offload declaration 533 * 534 * Remove a packet offload handler that was previously added to the kernel 535 * offload handlers by dev_add_offload(). The passed &offload_type is 536 * removed from the kernel lists and can be freed or reused once this 537 * function returns. 538 * 539 * This call sleeps to guarantee that no CPU is looking at the packet 540 * type after return. 541 */ 542 void dev_remove_offload(struct packet_offload *po) 543 { 544 __dev_remove_offload(po); 545 546 synchronize_net(); 547 } 548 EXPORT_SYMBOL(dev_remove_offload); 549 550 /****************************************************************************** 551 * 552 * Device Boot-time Settings Routines 553 * 554 ******************************************************************************/ 555 556 /* Boot time configuration table */ 557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 558 559 /** 560 * netdev_boot_setup_add - add new setup entry 561 * @name: name of the device 562 * @map: configured settings for the device 563 * 564 * Adds new setup entry to the dev_boot_setup list. The function 565 * returns 0 on error and 1 on success. This is a generic routine to 566 * all netdevices. 567 */ 568 static int netdev_boot_setup_add(char *name, struct ifmap *map) 569 { 570 struct netdev_boot_setup *s; 571 int i; 572 573 s = dev_boot_setup; 574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 575 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 576 memset(s[i].name, 0, sizeof(s[i].name)); 577 strlcpy(s[i].name, name, IFNAMSIZ); 578 memcpy(&s[i].map, map, sizeof(s[i].map)); 579 break; 580 } 581 } 582 583 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 584 } 585 586 /** 587 * netdev_boot_setup_check - check boot time settings 588 * @dev: the netdevice 589 * 590 * Check boot time settings for the device. 591 * The found settings are set for the device to be used 592 * later in the device probing. 593 * Returns 0 if no settings found, 1 if they are. 594 */ 595 int netdev_boot_setup_check(struct net_device *dev) 596 { 597 struct netdev_boot_setup *s = dev_boot_setup; 598 int i; 599 600 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 601 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 602 !strcmp(dev->name, s[i].name)) { 603 dev->irq = s[i].map.irq; 604 dev->base_addr = s[i].map.base_addr; 605 dev->mem_start = s[i].map.mem_start; 606 dev->mem_end = s[i].map.mem_end; 607 return 1; 608 } 609 } 610 return 0; 611 } 612 EXPORT_SYMBOL(netdev_boot_setup_check); 613 614 615 /** 616 * netdev_boot_base - get address from boot time settings 617 * @prefix: prefix for network device 618 * @unit: id for network device 619 * 620 * Check boot time settings for the base address of device. 621 * The found settings are set for the device to be used 622 * later in the device probing. 623 * Returns 0 if no settings found. 624 */ 625 unsigned long netdev_boot_base(const char *prefix, int unit) 626 { 627 const struct netdev_boot_setup *s = dev_boot_setup; 628 char name[IFNAMSIZ]; 629 int i; 630 631 sprintf(name, "%s%d", prefix, unit); 632 633 /* 634 * If device already registered then return base of 1 635 * to indicate not to probe for this interface 636 */ 637 if (__dev_get_by_name(&init_net, name)) 638 return 1; 639 640 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 641 if (!strcmp(name, s[i].name)) 642 return s[i].map.base_addr; 643 return 0; 644 } 645 646 /* 647 * Saves at boot time configured settings for any netdevice. 648 */ 649 int __init netdev_boot_setup(char *str) 650 { 651 int ints[5]; 652 struct ifmap map; 653 654 str = get_options(str, ARRAY_SIZE(ints), ints); 655 if (!str || !*str) 656 return 0; 657 658 /* Save settings */ 659 memset(&map, 0, sizeof(map)); 660 if (ints[0] > 0) 661 map.irq = ints[1]; 662 if (ints[0] > 1) 663 map.base_addr = ints[2]; 664 if (ints[0] > 2) 665 map.mem_start = ints[3]; 666 if (ints[0] > 3) 667 map.mem_end = ints[4]; 668 669 /* Add new entry to the list */ 670 return netdev_boot_setup_add(str, &map); 671 } 672 673 __setup("netdev=", netdev_boot_setup); 674 675 /******************************************************************************* 676 * 677 * Device Interface Subroutines 678 * 679 *******************************************************************************/ 680 681 /** 682 * dev_get_iflink - get 'iflink' value of a interface 683 * @dev: targeted interface 684 * 685 * Indicates the ifindex the interface is linked to. 686 * Physical interfaces have the same 'ifindex' and 'iflink' values. 687 */ 688 689 int dev_get_iflink(const struct net_device *dev) 690 { 691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 692 return dev->netdev_ops->ndo_get_iflink(dev); 693 694 return dev->ifindex; 695 } 696 EXPORT_SYMBOL(dev_get_iflink); 697 698 /** 699 * dev_fill_metadata_dst - Retrieve tunnel egress information. 700 * @dev: targeted interface 701 * @skb: The packet. 702 * 703 * For better visibility of tunnel traffic OVS needs to retrieve 704 * egress tunnel information for a packet. Following API allows 705 * user to get this info. 706 */ 707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 708 { 709 struct ip_tunnel_info *info; 710 711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 712 return -EINVAL; 713 714 info = skb_tunnel_info_unclone(skb); 715 if (!info) 716 return -ENOMEM; 717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 718 return -EINVAL; 719 720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 721 } 722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 723 724 /** 725 * __dev_get_by_name - find a device by its name 726 * @net: the applicable net namespace 727 * @name: name to find 728 * 729 * Find an interface by name. Must be called under RTNL semaphore 730 * or @dev_base_lock. If the name is found a pointer to the device 731 * is returned. If the name is not found then %NULL is returned. The 732 * reference counters are not incremented so the caller must be 733 * careful with locks. 734 */ 735 736 struct net_device *__dev_get_by_name(struct net *net, const char *name) 737 { 738 struct net_device *dev; 739 struct hlist_head *head = dev_name_hash(net, name); 740 741 hlist_for_each_entry(dev, head, name_hlist) 742 if (!strncmp(dev->name, name, IFNAMSIZ)) 743 return dev; 744 745 return NULL; 746 } 747 EXPORT_SYMBOL(__dev_get_by_name); 748 749 /** 750 * dev_get_by_name_rcu - find a device by its name 751 * @net: the applicable net namespace 752 * @name: name to find 753 * 754 * Find an interface by name. 755 * If the name is found a pointer to the device is returned. 756 * If the name is not found then %NULL is returned. 757 * The reference counters are not incremented so the caller must be 758 * careful with locks. The caller must hold RCU lock. 759 */ 760 761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 762 { 763 struct net_device *dev; 764 struct hlist_head *head = dev_name_hash(net, name); 765 766 hlist_for_each_entry_rcu(dev, head, name_hlist) 767 if (!strncmp(dev->name, name, IFNAMSIZ)) 768 return dev; 769 770 return NULL; 771 } 772 EXPORT_SYMBOL(dev_get_by_name_rcu); 773 774 /** 775 * dev_get_by_name - find a device by its name 776 * @net: the applicable net namespace 777 * @name: name to find 778 * 779 * Find an interface by name. This can be called from any 780 * context and does its own locking. The returned handle has 781 * the usage count incremented and the caller must use dev_put() to 782 * release it when it is no longer needed. %NULL is returned if no 783 * matching device is found. 784 */ 785 786 struct net_device *dev_get_by_name(struct net *net, const char *name) 787 { 788 struct net_device *dev; 789 790 rcu_read_lock(); 791 dev = dev_get_by_name_rcu(net, name); 792 if (dev) 793 dev_hold(dev); 794 rcu_read_unlock(); 795 return dev; 796 } 797 EXPORT_SYMBOL(dev_get_by_name); 798 799 /** 800 * __dev_get_by_index - find a device by its ifindex 801 * @net: the applicable net namespace 802 * @ifindex: index of device 803 * 804 * Search for an interface by index. Returns %NULL if the device 805 * is not found or a pointer to the device. The device has not 806 * had its reference counter increased so the caller must be careful 807 * about locking. The caller must hold either the RTNL semaphore 808 * or @dev_base_lock. 809 */ 810 811 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 812 { 813 struct net_device *dev; 814 struct hlist_head *head = dev_index_hash(net, ifindex); 815 816 hlist_for_each_entry(dev, head, index_hlist) 817 if (dev->ifindex == ifindex) 818 return dev; 819 820 return NULL; 821 } 822 EXPORT_SYMBOL(__dev_get_by_index); 823 824 /** 825 * dev_get_by_index_rcu - find a device by its ifindex 826 * @net: the applicable net namespace 827 * @ifindex: index of device 828 * 829 * Search for an interface by index. Returns %NULL if the device 830 * is not found or a pointer to the device. The device has not 831 * had its reference counter increased so the caller must be careful 832 * about locking. The caller must hold RCU lock. 833 */ 834 835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 836 { 837 struct net_device *dev; 838 struct hlist_head *head = dev_index_hash(net, ifindex); 839 840 hlist_for_each_entry_rcu(dev, head, index_hlist) 841 if (dev->ifindex == ifindex) 842 return dev; 843 844 return NULL; 845 } 846 EXPORT_SYMBOL(dev_get_by_index_rcu); 847 848 849 /** 850 * dev_get_by_index - find a device by its ifindex 851 * @net: the applicable net namespace 852 * @ifindex: index of device 853 * 854 * Search for an interface by index. Returns NULL if the device 855 * is not found or a pointer to the device. The device returned has 856 * had a reference added and the pointer is safe until the user calls 857 * dev_put to indicate they have finished with it. 858 */ 859 860 struct net_device *dev_get_by_index(struct net *net, int ifindex) 861 { 862 struct net_device *dev; 863 864 rcu_read_lock(); 865 dev = dev_get_by_index_rcu(net, ifindex); 866 if (dev) 867 dev_hold(dev); 868 rcu_read_unlock(); 869 return dev; 870 } 871 EXPORT_SYMBOL(dev_get_by_index); 872 873 /** 874 * dev_get_by_napi_id - find a device by napi_id 875 * @napi_id: ID of the NAPI struct 876 * 877 * Search for an interface by NAPI ID. Returns %NULL if the device 878 * is not found or a pointer to the device. The device has not had 879 * its reference counter increased so the caller must be careful 880 * about locking. The caller must hold RCU lock. 881 */ 882 883 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 884 { 885 struct napi_struct *napi; 886 887 WARN_ON_ONCE(!rcu_read_lock_held()); 888 889 if (napi_id < MIN_NAPI_ID) 890 return NULL; 891 892 napi = napi_by_id(napi_id); 893 894 return napi ? napi->dev : NULL; 895 } 896 EXPORT_SYMBOL(dev_get_by_napi_id); 897 898 /** 899 * netdev_get_name - get a netdevice name, knowing its ifindex. 900 * @net: network namespace 901 * @name: a pointer to the buffer where the name will be stored. 902 * @ifindex: the ifindex of the interface to get the name from. 903 * 904 * The use of raw_seqcount_begin() and cond_resched() before 905 * retrying is required as we want to give the writers a chance 906 * to complete when CONFIG_PREEMPT is not set. 907 */ 908 int netdev_get_name(struct net *net, char *name, int ifindex) 909 { 910 struct net_device *dev; 911 unsigned int seq; 912 913 retry: 914 seq = raw_seqcount_begin(&devnet_rename_seq); 915 rcu_read_lock(); 916 dev = dev_get_by_index_rcu(net, ifindex); 917 if (!dev) { 918 rcu_read_unlock(); 919 return -ENODEV; 920 } 921 922 strcpy(name, dev->name); 923 rcu_read_unlock(); 924 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 925 cond_resched(); 926 goto retry; 927 } 928 929 return 0; 930 } 931 932 /** 933 * dev_getbyhwaddr_rcu - find a device by its hardware address 934 * @net: the applicable net namespace 935 * @type: media type of device 936 * @ha: hardware address 937 * 938 * Search for an interface by MAC address. Returns NULL if the device 939 * is not found or a pointer to the device. 940 * The caller must hold RCU or RTNL. 941 * The returned device has not had its ref count increased 942 * and the caller must therefore be careful about locking 943 * 944 */ 945 946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 947 const char *ha) 948 { 949 struct net_device *dev; 950 951 for_each_netdev_rcu(net, dev) 952 if (dev->type == type && 953 !memcmp(dev->dev_addr, ha, dev->addr_len)) 954 return dev; 955 956 return NULL; 957 } 958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 959 960 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 961 { 962 struct net_device *dev; 963 964 ASSERT_RTNL(); 965 for_each_netdev(net, dev) 966 if (dev->type == type) 967 return dev; 968 969 return NULL; 970 } 971 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 972 973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 974 { 975 struct net_device *dev, *ret = NULL; 976 977 rcu_read_lock(); 978 for_each_netdev_rcu(net, dev) 979 if (dev->type == type) { 980 dev_hold(dev); 981 ret = dev; 982 break; 983 } 984 rcu_read_unlock(); 985 return ret; 986 } 987 EXPORT_SYMBOL(dev_getfirstbyhwtype); 988 989 /** 990 * __dev_get_by_flags - find any device with given flags 991 * @net: the applicable net namespace 992 * @if_flags: IFF_* values 993 * @mask: bitmask of bits in if_flags to check 994 * 995 * Search for any interface with the given flags. Returns NULL if a device 996 * is not found or a pointer to the device. Must be called inside 997 * rtnl_lock(), and result refcount is unchanged. 998 */ 999 1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1001 unsigned short mask) 1002 { 1003 struct net_device *dev, *ret; 1004 1005 ASSERT_RTNL(); 1006 1007 ret = NULL; 1008 for_each_netdev(net, dev) { 1009 if (((dev->flags ^ if_flags) & mask) == 0) { 1010 ret = dev; 1011 break; 1012 } 1013 } 1014 return ret; 1015 } 1016 EXPORT_SYMBOL(__dev_get_by_flags); 1017 1018 /** 1019 * dev_valid_name - check if name is okay for network device 1020 * @name: name string 1021 * 1022 * Network device names need to be valid file names to 1023 * to allow sysfs to work. We also disallow any kind of 1024 * whitespace. 1025 */ 1026 bool dev_valid_name(const char *name) 1027 { 1028 if (*name == '\0') 1029 return false; 1030 if (strlen(name) >= IFNAMSIZ) 1031 return false; 1032 if (!strcmp(name, ".") || !strcmp(name, "..")) 1033 return false; 1034 1035 while (*name) { 1036 if (*name == '/' || *name == ':' || isspace(*name)) 1037 return false; 1038 name++; 1039 } 1040 return true; 1041 } 1042 EXPORT_SYMBOL(dev_valid_name); 1043 1044 /** 1045 * __dev_alloc_name - allocate a name for a device 1046 * @net: network namespace to allocate the device name in 1047 * @name: name format string 1048 * @buf: scratch buffer and result name string 1049 * 1050 * Passed a format string - eg "lt%d" it will try and find a suitable 1051 * id. It scans list of devices to build up a free map, then chooses 1052 * the first empty slot. The caller must hold the dev_base or rtnl lock 1053 * while allocating the name and adding the device in order to avoid 1054 * duplicates. 1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1056 * Returns the number of the unit assigned or a negative errno code. 1057 */ 1058 1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1060 { 1061 int i = 0; 1062 const char *p; 1063 const int max_netdevices = 8*PAGE_SIZE; 1064 unsigned long *inuse; 1065 struct net_device *d; 1066 1067 p = strnchr(name, IFNAMSIZ-1, '%'); 1068 if (p) { 1069 /* 1070 * Verify the string as this thing may have come from 1071 * the user. There must be either one "%d" and no other "%" 1072 * characters. 1073 */ 1074 if (p[1] != 'd' || strchr(p + 2, '%')) 1075 return -EINVAL; 1076 1077 /* Use one page as a bit array of possible slots */ 1078 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1079 if (!inuse) 1080 return -ENOMEM; 1081 1082 for_each_netdev(net, d) { 1083 if (!sscanf(d->name, name, &i)) 1084 continue; 1085 if (i < 0 || i >= max_netdevices) 1086 continue; 1087 1088 /* avoid cases where sscanf is not exact inverse of printf */ 1089 snprintf(buf, IFNAMSIZ, name, i); 1090 if (!strncmp(buf, d->name, IFNAMSIZ)) 1091 set_bit(i, inuse); 1092 } 1093 1094 i = find_first_zero_bit(inuse, max_netdevices); 1095 free_page((unsigned long) inuse); 1096 } 1097 1098 if (buf != name) 1099 snprintf(buf, IFNAMSIZ, name, i); 1100 if (!__dev_get_by_name(net, buf)) 1101 return i; 1102 1103 /* It is possible to run out of possible slots 1104 * when the name is long and there isn't enough space left 1105 * for the digits, or if all bits are used. 1106 */ 1107 return -ENFILE; 1108 } 1109 1110 /** 1111 * dev_alloc_name - allocate a name for a device 1112 * @dev: device 1113 * @name: name format string 1114 * 1115 * Passed a format string - eg "lt%d" it will try and find a suitable 1116 * id. It scans list of devices to build up a free map, then chooses 1117 * the first empty slot. The caller must hold the dev_base or rtnl lock 1118 * while allocating the name and adding the device in order to avoid 1119 * duplicates. 1120 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1121 * Returns the number of the unit assigned or a negative errno code. 1122 */ 1123 1124 int dev_alloc_name(struct net_device *dev, const char *name) 1125 { 1126 char buf[IFNAMSIZ]; 1127 struct net *net; 1128 int ret; 1129 1130 BUG_ON(!dev_net(dev)); 1131 net = dev_net(dev); 1132 ret = __dev_alloc_name(net, name, buf); 1133 if (ret >= 0) 1134 strlcpy(dev->name, buf, IFNAMSIZ); 1135 return ret; 1136 } 1137 EXPORT_SYMBOL(dev_alloc_name); 1138 1139 static int dev_alloc_name_ns(struct net *net, 1140 struct net_device *dev, 1141 const char *name) 1142 { 1143 char buf[IFNAMSIZ]; 1144 int ret; 1145 1146 ret = __dev_alloc_name(net, name, buf); 1147 if (ret >= 0) 1148 strlcpy(dev->name, buf, IFNAMSIZ); 1149 return ret; 1150 } 1151 1152 static int dev_get_valid_name(struct net *net, 1153 struct net_device *dev, 1154 const char *name) 1155 { 1156 BUG_ON(!net); 1157 1158 if (!dev_valid_name(name)) 1159 return -EINVAL; 1160 1161 if (strchr(name, '%')) 1162 return dev_alloc_name_ns(net, dev, name); 1163 else if (__dev_get_by_name(net, name)) 1164 return -EEXIST; 1165 else if (dev->name != name) 1166 strlcpy(dev->name, name, IFNAMSIZ); 1167 1168 return 0; 1169 } 1170 1171 /** 1172 * dev_change_name - change name of a device 1173 * @dev: device 1174 * @newname: name (or format string) must be at least IFNAMSIZ 1175 * 1176 * Change name of a device, can pass format strings "eth%d". 1177 * for wildcarding. 1178 */ 1179 int dev_change_name(struct net_device *dev, const char *newname) 1180 { 1181 unsigned char old_assign_type; 1182 char oldname[IFNAMSIZ]; 1183 int err = 0; 1184 int ret; 1185 struct net *net; 1186 1187 ASSERT_RTNL(); 1188 BUG_ON(!dev_net(dev)); 1189 1190 net = dev_net(dev); 1191 if (dev->flags & IFF_UP) 1192 return -EBUSY; 1193 1194 write_seqcount_begin(&devnet_rename_seq); 1195 1196 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1197 write_seqcount_end(&devnet_rename_seq); 1198 return 0; 1199 } 1200 1201 memcpy(oldname, dev->name, IFNAMSIZ); 1202 1203 err = dev_get_valid_name(net, dev, newname); 1204 if (err < 0) { 1205 write_seqcount_end(&devnet_rename_seq); 1206 return err; 1207 } 1208 1209 if (oldname[0] && !strchr(oldname, '%')) 1210 netdev_info(dev, "renamed from %s\n", oldname); 1211 1212 old_assign_type = dev->name_assign_type; 1213 dev->name_assign_type = NET_NAME_RENAMED; 1214 1215 rollback: 1216 ret = device_rename(&dev->dev, dev->name); 1217 if (ret) { 1218 memcpy(dev->name, oldname, IFNAMSIZ); 1219 dev->name_assign_type = old_assign_type; 1220 write_seqcount_end(&devnet_rename_seq); 1221 return ret; 1222 } 1223 1224 write_seqcount_end(&devnet_rename_seq); 1225 1226 netdev_adjacent_rename_links(dev, oldname); 1227 1228 write_lock_bh(&dev_base_lock); 1229 hlist_del_rcu(&dev->name_hlist); 1230 write_unlock_bh(&dev_base_lock); 1231 1232 synchronize_rcu(); 1233 1234 write_lock_bh(&dev_base_lock); 1235 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1236 write_unlock_bh(&dev_base_lock); 1237 1238 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1239 ret = notifier_to_errno(ret); 1240 1241 if (ret) { 1242 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1243 if (err >= 0) { 1244 err = ret; 1245 write_seqcount_begin(&devnet_rename_seq); 1246 memcpy(dev->name, oldname, IFNAMSIZ); 1247 memcpy(oldname, newname, IFNAMSIZ); 1248 dev->name_assign_type = old_assign_type; 1249 old_assign_type = NET_NAME_RENAMED; 1250 goto rollback; 1251 } else { 1252 pr_err("%s: name change rollback failed: %d\n", 1253 dev->name, ret); 1254 } 1255 } 1256 1257 return err; 1258 } 1259 1260 /** 1261 * dev_set_alias - change ifalias of a device 1262 * @dev: device 1263 * @alias: name up to IFALIASZ 1264 * @len: limit of bytes to copy from info 1265 * 1266 * Set ifalias for a device, 1267 */ 1268 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1269 { 1270 struct dev_ifalias *new_alias = NULL; 1271 1272 if (len >= IFALIASZ) 1273 return -EINVAL; 1274 1275 if (len) { 1276 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1277 if (!new_alias) 1278 return -ENOMEM; 1279 1280 memcpy(new_alias->ifalias, alias, len); 1281 new_alias->ifalias[len] = 0; 1282 } 1283 1284 mutex_lock(&ifalias_mutex); 1285 rcu_swap_protected(dev->ifalias, new_alias, 1286 mutex_is_locked(&ifalias_mutex)); 1287 mutex_unlock(&ifalias_mutex); 1288 1289 if (new_alias) 1290 kfree_rcu(new_alias, rcuhead); 1291 1292 return len; 1293 } 1294 1295 /** 1296 * dev_get_alias - get ifalias of a device 1297 * @dev: device 1298 * @alias: buffer to store name of ifalias 1299 * @len: size of buffer 1300 * 1301 * get ifalias for a device. Caller must make sure dev cannot go 1302 * away, e.g. rcu read lock or own a reference count to device. 1303 */ 1304 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1305 { 1306 const struct dev_ifalias *alias; 1307 int ret = 0; 1308 1309 rcu_read_lock(); 1310 alias = rcu_dereference(dev->ifalias); 1311 if (alias) 1312 ret = snprintf(name, len, "%s", alias->ifalias); 1313 rcu_read_unlock(); 1314 1315 return ret; 1316 } 1317 1318 /** 1319 * netdev_features_change - device changes features 1320 * @dev: device to cause notification 1321 * 1322 * Called to indicate a device has changed features. 1323 */ 1324 void netdev_features_change(struct net_device *dev) 1325 { 1326 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1327 } 1328 EXPORT_SYMBOL(netdev_features_change); 1329 1330 /** 1331 * netdev_state_change - device changes state 1332 * @dev: device to cause notification 1333 * 1334 * Called to indicate a device has changed state. This function calls 1335 * the notifier chains for netdev_chain and sends a NEWLINK message 1336 * to the routing socket. 1337 */ 1338 void netdev_state_change(struct net_device *dev) 1339 { 1340 if (dev->flags & IFF_UP) { 1341 struct netdev_notifier_change_info change_info; 1342 1343 change_info.flags_changed = 0; 1344 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 1345 &change_info.info); 1346 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1347 } 1348 } 1349 EXPORT_SYMBOL(netdev_state_change); 1350 1351 /** 1352 * netdev_notify_peers - notify network peers about existence of @dev 1353 * @dev: network device 1354 * 1355 * Generate traffic such that interested network peers are aware of 1356 * @dev, such as by generating a gratuitous ARP. This may be used when 1357 * a device wants to inform the rest of the network about some sort of 1358 * reconfiguration such as a failover event or virtual machine 1359 * migration. 1360 */ 1361 void netdev_notify_peers(struct net_device *dev) 1362 { 1363 rtnl_lock(); 1364 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1365 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1366 rtnl_unlock(); 1367 } 1368 EXPORT_SYMBOL(netdev_notify_peers); 1369 1370 static int __dev_open(struct net_device *dev) 1371 { 1372 const struct net_device_ops *ops = dev->netdev_ops; 1373 int ret; 1374 1375 ASSERT_RTNL(); 1376 1377 if (!netif_device_present(dev)) 1378 return -ENODEV; 1379 1380 /* Block netpoll from trying to do any rx path servicing. 1381 * If we don't do this there is a chance ndo_poll_controller 1382 * or ndo_poll may be running while we open the device 1383 */ 1384 netpoll_poll_disable(dev); 1385 1386 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1387 ret = notifier_to_errno(ret); 1388 if (ret) 1389 return ret; 1390 1391 set_bit(__LINK_STATE_START, &dev->state); 1392 1393 if (ops->ndo_validate_addr) 1394 ret = ops->ndo_validate_addr(dev); 1395 1396 if (!ret && ops->ndo_open) 1397 ret = ops->ndo_open(dev); 1398 1399 netpoll_poll_enable(dev); 1400 1401 if (ret) 1402 clear_bit(__LINK_STATE_START, &dev->state); 1403 else { 1404 dev->flags |= IFF_UP; 1405 dev_set_rx_mode(dev); 1406 dev_activate(dev); 1407 add_device_randomness(dev->dev_addr, dev->addr_len); 1408 } 1409 1410 return ret; 1411 } 1412 1413 /** 1414 * dev_open - prepare an interface for use. 1415 * @dev: device to open 1416 * 1417 * Takes a device from down to up state. The device's private open 1418 * function is invoked and then the multicast lists are loaded. Finally 1419 * the device is moved into the up state and a %NETDEV_UP message is 1420 * sent to the netdev notifier chain. 1421 * 1422 * Calling this function on an active interface is a nop. On a failure 1423 * a negative errno code is returned. 1424 */ 1425 int dev_open(struct net_device *dev) 1426 { 1427 int ret; 1428 1429 if (dev->flags & IFF_UP) 1430 return 0; 1431 1432 ret = __dev_open(dev); 1433 if (ret < 0) 1434 return ret; 1435 1436 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1437 call_netdevice_notifiers(NETDEV_UP, dev); 1438 1439 return ret; 1440 } 1441 EXPORT_SYMBOL(dev_open); 1442 1443 static void __dev_close_many(struct list_head *head) 1444 { 1445 struct net_device *dev; 1446 1447 ASSERT_RTNL(); 1448 might_sleep(); 1449 1450 list_for_each_entry(dev, head, close_list) { 1451 /* Temporarily disable netpoll until the interface is down */ 1452 netpoll_poll_disable(dev); 1453 1454 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1455 1456 clear_bit(__LINK_STATE_START, &dev->state); 1457 1458 /* Synchronize to scheduled poll. We cannot touch poll list, it 1459 * can be even on different cpu. So just clear netif_running(). 1460 * 1461 * dev->stop() will invoke napi_disable() on all of it's 1462 * napi_struct instances on this device. 1463 */ 1464 smp_mb__after_atomic(); /* Commit netif_running(). */ 1465 } 1466 1467 dev_deactivate_many(head); 1468 1469 list_for_each_entry(dev, head, close_list) { 1470 const struct net_device_ops *ops = dev->netdev_ops; 1471 1472 /* 1473 * Call the device specific close. This cannot fail. 1474 * Only if device is UP 1475 * 1476 * We allow it to be called even after a DETACH hot-plug 1477 * event. 1478 */ 1479 if (ops->ndo_stop) 1480 ops->ndo_stop(dev); 1481 1482 dev->flags &= ~IFF_UP; 1483 netpoll_poll_enable(dev); 1484 } 1485 } 1486 1487 static void __dev_close(struct net_device *dev) 1488 { 1489 LIST_HEAD(single); 1490 1491 list_add(&dev->close_list, &single); 1492 __dev_close_many(&single); 1493 list_del(&single); 1494 } 1495 1496 void dev_close_many(struct list_head *head, bool unlink) 1497 { 1498 struct net_device *dev, *tmp; 1499 1500 /* Remove the devices that don't need to be closed */ 1501 list_for_each_entry_safe(dev, tmp, head, close_list) 1502 if (!(dev->flags & IFF_UP)) 1503 list_del_init(&dev->close_list); 1504 1505 __dev_close_many(head); 1506 1507 list_for_each_entry_safe(dev, tmp, head, close_list) { 1508 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1509 call_netdevice_notifiers(NETDEV_DOWN, dev); 1510 if (unlink) 1511 list_del_init(&dev->close_list); 1512 } 1513 } 1514 EXPORT_SYMBOL(dev_close_many); 1515 1516 /** 1517 * dev_close - shutdown an interface. 1518 * @dev: device to shutdown 1519 * 1520 * This function moves an active device into down state. A 1521 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1522 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1523 * chain. 1524 */ 1525 void dev_close(struct net_device *dev) 1526 { 1527 if (dev->flags & IFF_UP) { 1528 LIST_HEAD(single); 1529 1530 list_add(&dev->close_list, &single); 1531 dev_close_many(&single, true); 1532 list_del(&single); 1533 } 1534 } 1535 EXPORT_SYMBOL(dev_close); 1536 1537 1538 /** 1539 * dev_disable_lro - disable Large Receive Offload on a device 1540 * @dev: device 1541 * 1542 * Disable Large Receive Offload (LRO) on a net device. Must be 1543 * called under RTNL. This is needed if received packets may be 1544 * forwarded to another interface. 1545 */ 1546 void dev_disable_lro(struct net_device *dev) 1547 { 1548 struct net_device *lower_dev; 1549 struct list_head *iter; 1550 1551 dev->wanted_features &= ~NETIF_F_LRO; 1552 netdev_update_features(dev); 1553 1554 if (unlikely(dev->features & NETIF_F_LRO)) 1555 netdev_WARN(dev, "failed to disable LRO!\n"); 1556 1557 netdev_for_each_lower_dev(dev, lower_dev, iter) 1558 dev_disable_lro(lower_dev); 1559 } 1560 EXPORT_SYMBOL(dev_disable_lro); 1561 1562 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1563 struct net_device *dev) 1564 { 1565 struct netdev_notifier_info info; 1566 1567 netdev_notifier_info_init(&info, dev); 1568 return nb->notifier_call(nb, val, &info); 1569 } 1570 1571 static int dev_boot_phase = 1; 1572 1573 /** 1574 * register_netdevice_notifier - register a network notifier block 1575 * @nb: notifier 1576 * 1577 * Register a notifier to be called when network device events occur. 1578 * The notifier passed is linked into the kernel structures and must 1579 * not be reused until it has been unregistered. A negative errno code 1580 * is returned on a failure. 1581 * 1582 * When registered all registration and up events are replayed 1583 * to the new notifier to allow device to have a race free 1584 * view of the network device list. 1585 */ 1586 1587 int register_netdevice_notifier(struct notifier_block *nb) 1588 { 1589 struct net_device *dev; 1590 struct net_device *last; 1591 struct net *net; 1592 int err; 1593 1594 rtnl_lock(); 1595 err = raw_notifier_chain_register(&netdev_chain, nb); 1596 if (err) 1597 goto unlock; 1598 if (dev_boot_phase) 1599 goto unlock; 1600 for_each_net(net) { 1601 for_each_netdev(net, dev) { 1602 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1603 err = notifier_to_errno(err); 1604 if (err) 1605 goto rollback; 1606 1607 if (!(dev->flags & IFF_UP)) 1608 continue; 1609 1610 call_netdevice_notifier(nb, NETDEV_UP, dev); 1611 } 1612 } 1613 1614 unlock: 1615 rtnl_unlock(); 1616 return err; 1617 1618 rollback: 1619 last = dev; 1620 for_each_net(net) { 1621 for_each_netdev(net, dev) { 1622 if (dev == last) 1623 goto outroll; 1624 1625 if (dev->flags & IFF_UP) { 1626 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1627 dev); 1628 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1629 } 1630 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1631 } 1632 } 1633 1634 outroll: 1635 raw_notifier_chain_unregister(&netdev_chain, nb); 1636 goto unlock; 1637 } 1638 EXPORT_SYMBOL(register_netdevice_notifier); 1639 1640 /** 1641 * unregister_netdevice_notifier - unregister a network notifier block 1642 * @nb: notifier 1643 * 1644 * Unregister a notifier previously registered by 1645 * register_netdevice_notifier(). The notifier is unlinked into the 1646 * kernel structures and may then be reused. A negative errno code 1647 * is returned on a failure. 1648 * 1649 * After unregistering unregister and down device events are synthesized 1650 * for all devices on the device list to the removed notifier to remove 1651 * the need for special case cleanup code. 1652 */ 1653 1654 int unregister_netdevice_notifier(struct notifier_block *nb) 1655 { 1656 struct net_device *dev; 1657 struct net *net; 1658 int err; 1659 1660 rtnl_lock(); 1661 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1662 if (err) 1663 goto unlock; 1664 1665 for_each_net(net) { 1666 for_each_netdev(net, dev) { 1667 if (dev->flags & IFF_UP) { 1668 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1669 dev); 1670 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1671 } 1672 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1673 } 1674 } 1675 unlock: 1676 rtnl_unlock(); 1677 return err; 1678 } 1679 EXPORT_SYMBOL(unregister_netdevice_notifier); 1680 1681 /** 1682 * call_netdevice_notifiers_info - call all network notifier blocks 1683 * @val: value passed unmodified to notifier function 1684 * @dev: net_device pointer passed unmodified to notifier function 1685 * @info: notifier information data 1686 * 1687 * Call all network notifier blocks. Parameters and return value 1688 * are as for raw_notifier_call_chain(). 1689 */ 1690 1691 static int call_netdevice_notifiers_info(unsigned long val, 1692 struct net_device *dev, 1693 struct netdev_notifier_info *info) 1694 { 1695 ASSERT_RTNL(); 1696 netdev_notifier_info_init(info, dev); 1697 return raw_notifier_call_chain(&netdev_chain, val, info); 1698 } 1699 1700 /** 1701 * call_netdevice_notifiers - call all network notifier blocks 1702 * @val: value passed unmodified to notifier function 1703 * @dev: net_device pointer passed unmodified to notifier function 1704 * 1705 * Call all network notifier blocks. Parameters and return value 1706 * are as for raw_notifier_call_chain(). 1707 */ 1708 1709 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1710 { 1711 struct netdev_notifier_info info; 1712 1713 return call_netdevice_notifiers_info(val, dev, &info); 1714 } 1715 EXPORT_SYMBOL(call_netdevice_notifiers); 1716 1717 #ifdef CONFIG_NET_INGRESS 1718 static struct static_key ingress_needed __read_mostly; 1719 1720 void net_inc_ingress_queue(void) 1721 { 1722 static_key_slow_inc(&ingress_needed); 1723 } 1724 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1725 1726 void net_dec_ingress_queue(void) 1727 { 1728 static_key_slow_dec(&ingress_needed); 1729 } 1730 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1731 #endif 1732 1733 #ifdef CONFIG_NET_EGRESS 1734 static struct static_key egress_needed __read_mostly; 1735 1736 void net_inc_egress_queue(void) 1737 { 1738 static_key_slow_inc(&egress_needed); 1739 } 1740 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1741 1742 void net_dec_egress_queue(void) 1743 { 1744 static_key_slow_dec(&egress_needed); 1745 } 1746 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1747 #endif 1748 1749 static struct static_key netstamp_needed __read_mostly; 1750 #ifdef HAVE_JUMP_LABEL 1751 static atomic_t netstamp_needed_deferred; 1752 static atomic_t netstamp_wanted; 1753 static void netstamp_clear(struct work_struct *work) 1754 { 1755 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1756 int wanted; 1757 1758 wanted = atomic_add_return(deferred, &netstamp_wanted); 1759 if (wanted > 0) 1760 static_key_enable(&netstamp_needed); 1761 else 1762 static_key_disable(&netstamp_needed); 1763 } 1764 static DECLARE_WORK(netstamp_work, netstamp_clear); 1765 #endif 1766 1767 void net_enable_timestamp(void) 1768 { 1769 #ifdef HAVE_JUMP_LABEL 1770 int wanted; 1771 1772 while (1) { 1773 wanted = atomic_read(&netstamp_wanted); 1774 if (wanted <= 0) 1775 break; 1776 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 1777 return; 1778 } 1779 atomic_inc(&netstamp_needed_deferred); 1780 schedule_work(&netstamp_work); 1781 #else 1782 static_key_slow_inc(&netstamp_needed); 1783 #endif 1784 } 1785 EXPORT_SYMBOL(net_enable_timestamp); 1786 1787 void net_disable_timestamp(void) 1788 { 1789 #ifdef HAVE_JUMP_LABEL 1790 int wanted; 1791 1792 while (1) { 1793 wanted = atomic_read(&netstamp_wanted); 1794 if (wanted <= 1) 1795 break; 1796 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 1797 return; 1798 } 1799 atomic_dec(&netstamp_needed_deferred); 1800 schedule_work(&netstamp_work); 1801 #else 1802 static_key_slow_dec(&netstamp_needed); 1803 #endif 1804 } 1805 EXPORT_SYMBOL(net_disable_timestamp); 1806 1807 static inline void net_timestamp_set(struct sk_buff *skb) 1808 { 1809 skb->tstamp = 0; 1810 if (static_key_false(&netstamp_needed)) 1811 __net_timestamp(skb); 1812 } 1813 1814 #define net_timestamp_check(COND, SKB) \ 1815 if (static_key_false(&netstamp_needed)) { \ 1816 if ((COND) && !(SKB)->tstamp) \ 1817 __net_timestamp(SKB); \ 1818 } \ 1819 1820 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1821 { 1822 unsigned int len; 1823 1824 if (!(dev->flags & IFF_UP)) 1825 return false; 1826 1827 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1828 if (skb->len <= len) 1829 return true; 1830 1831 /* if TSO is enabled, we don't care about the length as the packet 1832 * could be forwarded without being segmented before 1833 */ 1834 if (skb_is_gso(skb)) 1835 return true; 1836 1837 return false; 1838 } 1839 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1840 1841 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1842 { 1843 int ret = ____dev_forward_skb(dev, skb); 1844 1845 if (likely(!ret)) { 1846 skb->protocol = eth_type_trans(skb, dev); 1847 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1848 } 1849 1850 return ret; 1851 } 1852 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1853 1854 /** 1855 * dev_forward_skb - loopback an skb to another netif 1856 * 1857 * @dev: destination network device 1858 * @skb: buffer to forward 1859 * 1860 * return values: 1861 * NET_RX_SUCCESS (no congestion) 1862 * NET_RX_DROP (packet was dropped, but freed) 1863 * 1864 * dev_forward_skb can be used for injecting an skb from the 1865 * start_xmit function of one device into the receive queue 1866 * of another device. 1867 * 1868 * The receiving device may be in another namespace, so 1869 * we have to clear all information in the skb that could 1870 * impact namespace isolation. 1871 */ 1872 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1873 { 1874 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1875 } 1876 EXPORT_SYMBOL_GPL(dev_forward_skb); 1877 1878 static inline int deliver_skb(struct sk_buff *skb, 1879 struct packet_type *pt_prev, 1880 struct net_device *orig_dev) 1881 { 1882 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 1883 return -ENOMEM; 1884 refcount_inc(&skb->users); 1885 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1886 } 1887 1888 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1889 struct packet_type **pt, 1890 struct net_device *orig_dev, 1891 __be16 type, 1892 struct list_head *ptype_list) 1893 { 1894 struct packet_type *ptype, *pt_prev = *pt; 1895 1896 list_for_each_entry_rcu(ptype, ptype_list, list) { 1897 if (ptype->type != type) 1898 continue; 1899 if (pt_prev) 1900 deliver_skb(skb, pt_prev, orig_dev); 1901 pt_prev = ptype; 1902 } 1903 *pt = pt_prev; 1904 } 1905 1906 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1907 { 1908 if (!ptype->af_packet_priv || !skb->sk) 1909 return false; 1910 1911 if (ptype->id_match) 1912 return ptype->id_match(ptype, skb->sk); 1913 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1914 return true; 1915 1916 return false; 1917 } 1918 1919 /* 1920 * Support routine. Sends outgoing frames to any network 1921 * taps currently in use. 1922 */ 1923 1924 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1925 { 1926 struct packet_type *ptype; 1927 struct sk_buff *skb2 = NULL; 1928 struct packet_type *pt_prev = NULL; 1929 struct list_head *ptype_list = &ptype_all; 1930 1931 rcu_read_lock(); 1932 again: 1933 list_for_each_entry_rcu(ptype, ptype_list, list) { 1934 /* Never send packets back to the socket 1935 * they originated from - MvS (miquels@drinkel.ow.org) 1936 */ 1937 if (skb_loop_sk(ptype, skb)) 1938 continue; 1939 1940 if (pt_prev) { 1941 deliver_skb(skb2, pt_prev, skb->dev); 1942 pt_prev = ptype; 1943 continue; 1944 } 1945 1946 /* need to clone skb, done only once */ 1947 skb2 = skb_clone(skb, GFP_ATOMIC); 1948 if (!skb2) 1949 goto out_unlock; 1950 1951 net_timestamp_set(skb2); 1952 1953 /* skb->nh should be correctly 1954 * set by sender, so that the second statement is 1955 * just protection against buggy protocols. 1956 */ 1957 skb_reset_mac_header(skb2); 1958 1959 if (skb_network_header(skb2) < skb2->data || 1960 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1961 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1962 ntohs(skb2->protocol), 1963 dev->name); 1964 skb_reset_network_header(skb2); 1965 } 1966 1967 skb2->transport_header = skb2->network_header; 1968 skb2->pkt_type = PACKET_OUTGOING; 1969 pt_prev = ptype; 1970 } 1971 1972 if (ptype_list == &ptype_all) { 1973 ptype_list = &dev->ptype_all; 1974 goto again; 1975 } 1976 out_unlock: 1977 if (pt_prev) { 1978 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 1979 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1980 else 1981 kfree_skb(skb2); 1982 } 1983 rcu_read_unlock(); 1984 } 1985 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 1986 1987 /** 1988 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1989 * @dev: Network device 1990 * @txq: number of queues available 1991 * 1992 * If real_num_tx_queues is changed the tc mappings may no longer be 1993 * valid. To resolve this verify the tc mapping remains valid and if 1994 * not NULL the mapping. With no priorities mapping to this 1995 * offset/count pair it will no longer be used. In the worst case TC0 1996 * is invalid nothing can be done so disable priority mappings. If is 1997 * expected that drivers will fix this mapping if they can before 1998 * calling netif_set_real_num_tx_queues. 1999 */ 2000 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2001 { 2002 int i; 2003 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2004 2005 /* If TC0 is invalidated disable TC mapping */ 2006 if (tc->offset + tc->count > txq) { 2007 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2008 dev->num_tc = 0; 2009 return; 2010 } 2011 2012 /* Invalidated prio to tc mappings set to TC0 */ 2013 for (i = 1; i < TC_BITMASK + 1; i++) { 2014 int q = netdev_get_prio_tc_map(dev, i); 2015 2016 tc = &dev->tc_to_txq[q]; 2017 if (tc->offset + tc->count > txq) { 2018 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2019 i, q); 2020 netdev_set_prio_tc_map(dev, i, 0); 2021 } 2022 } 2023 } 2024 2025 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2026 { 2027 if (dev->num_tc) { 2028 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2029 int i; 2030 2031 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2032 if ((txq - tc->offset) < tc->count) 2033 return i; 2034 } 2035 2036 return -1; 2037 } 2038 2039 return 0; 2040 } 2041 2042 #ifdef CONFIG_XPS 2043 static DEFINE_MUTEX(xps_map_mutex); 2044 #define xmap_dereference(P) \ 2045 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2046 2047 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2048 int tci, u16 index) 2049 { 2050 struct xps_map *map = NULL; 2051 int pos; 2052 2053 if (dev_maps) 2054 map = xmap_dereference(dev_maps->cpu_map[tci]); 2055 if (!map) 2056 return false; 2057 2058 for (pos = map->len; pos--;) { 2059 if (map->queues[pos] != index) 2060 continue; 2061 2062 if (map->len > 1) { 2063 map->queues[pos] = map->queues[--map->len]; 2064 break; 2065 } 2066 2067 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL); 2068 kfree_rcu(map, rcu); 2069 return false; 2070 } 2071 2072 return true; 2073 } 2074 2075 static bool remove_xps_queue_cpu(struct net_device *dev, 2076 struct xps_dev_maps *dev_maps, 2077 int cpu, u16 offset, u16 count) 2078 { 2079 int num_tc = dev->num_tc ? : 1; 2080 bool active = false; 2081 int tci; 2082 2083 for (tci = cpu * num_tc; num_tc--; tci++) { 2084 int i, j; 2085 2086 for (i = count, j = offset; i--; j++) { 2087 if (!remove_xps_queue(dev_maps, cpu, j)) 2088 break; 2089 } 2090 2091 active |= i < 0; 2092 } 2093 2094 return active; 2095 } 2096 2097 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2098 u16 count) 2099 { 2100 struct xps_dev_maps *dev_maps; 2101 int cpu, i; 2102 bool active = false; 2103 2104 mutex_lock(&xps_map_mutex); 2105 dev_maps = xmap_dereference(dev->xps_maps); 2106 2107 if (!dev_maps) 2108 goto out_no_maps; 2109 2110 for_each_possible_cpu(cpu) 2111 active |= remove_xps_queue_cpu(dev, dev_maps, cpu, 2112 offset, count); 2113 2114 if (!active) { 2115 RCU_INIT_POINTER(dev->xps_maps, NULL); 2116 kfree_rcu(dev_maps, rcu); 2117 } 2118 2119 for (i = offset + (count - 1); count--; i--) 2120 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 2121 NUMA_NO_NODE); 2122 2123 out_no_maps: 2124 mutex_unlock(&xps_map_mutex); 2125 } 2126 2127 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2128 { 2129 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2130 } 2131 2132 static struct xps_map *expand_xps_map(struct xps_map *map, 2133 int cpu, u16 index) 2134 { 2135 struct xps_map *new_map; 2136 int alloc_len = XPS_MIN_MAP_ALLOC; 2137 int i, pos; 2138 2139 for (pos = 0; map && pos < map->len; pos++) { 2140 if (map->queues[pos] != index) 2141 continue; 2142 return map; 2143 } 2144 2145 /* Need to add queue to this CPU's existing map */ 2146 if (map) { 2147 if (pos < map->alloc_len) 2148 return map; 2149 2150 alloc_len = map->alloc_len * 2; 2151 } 2152 2153 /* Need to allocate new map to store queue on this CPU's map */ 2154 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2155 cpu_to_node(cpu)); 2156 if (!new_map) 2157 return NULL; 2158 2159 for (i = 0; i < pos; i++) 2160 new_map->queues[i] = map->queues[i]; 2161 new_map->alloc_len = alloc_len; 2162 new_map->len = pos; 2163 2164 return new_map; 2165 } 2166 2167 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2168 u16 index) 2169 { 2170 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2171 int i, cpu, tci, numa_node_id = -2; 2172 int maps_sz, num_tc = 1, tc = 0; 2173 struct xps_map *map, *new_map; 2174 bool active = false; 2175 2176 if (dev->num_tc) { 2177 num_tc = dev->num_tc; 2178 tc = netdev_txq_to_tc(dev, index); 2179 if (tc < 0) 2180 return -EINVAL; 2181 } 2182 2183 maps_sz = XPS_DEV_MAPS_SIZE(num_tc); 2184 if (maps_sz < L1_CACHE_BYTES) 2185 maps_sz = L1_CACHE_BYTES; 2186 2187 mutex_lock(&xps_map_mutex); 2188 2189 dev_maps = xmap_dereference(dev->xps_maps); 2190 2191 /* allocate memory for queue storage */ 2192 for_each_cpu_and(cpu, cpu_online_mask, mask) { 2193 if (!new_dev_maps) 2194 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2195 if (!new_dev_maps) { 2196 mutex_unlock(&xps_map_mutex); 2197 return -ENOMEM; 2198 } 2199 2200 tci = cpu * num_tc + tc; 2201 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) : 2202 NULL; 2203 2204 map = expand_xps_map(map, cpu, index); 2205 if (!map) 2206 goto error; 2207 2208 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2209 } 2210 2211 if (!new_dev_maps) 2212 goto out_no_new_maps; 2213 2214 for_each_possible_cpu(cpu) { 2215 /* copy maps belonging to foreign traffic classes */ 2216 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) { 2217 /* fill in the new device map from the old device map */ 2218 map = xmap_dereference(dev_maps->cpu_map[tci]); 2219 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2220 } 2221 2222 /* We need to explicitly update tci as prevous loop 2223 * could break out early if dev_maps is NULL. 2224 */ 2225 tci = cpu * num_tc + tc; 2226 2227 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 2228 /* add queue to CPU maps */ 2229 int pos = 0; 2230 2231 map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2232 while ((pos < map->len) && (map->queues[pos] != index)) 2233 pos++; 2234 2235 if (pos == map->len) 2236 map->queues[map->len++] = index; 2237 #ifdef CONFIG_NUMA 2238 if (numa_node_id == -2) 2239 numa_node_id = cpu_to_node(cpu); 2240 else if (numa_node_id != cpu_to_node(cpu)) 2241 numa_node_id = -1; 2242 #endif 2243 } else if (dev_maps) { 2244 /* fill in the new device map from the old device map */ 2245 map = xmap_dereference(dev_maps->cpu_map[tci]); 2246 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2247 } 2248 2249 /* copy maps belonging to foreign traffic classes */ 2250 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2251 /* fill in the new device map from the old device map */ 2252 map = xmap_dereference(dev_maps->cpu_map[tci]); 2253 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2254 } 2255 } 2256 2257 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2258 2259 /* Cleanup old maps */ 2260 if (!dev_maps) 2261 goto out_no_old_maps; 2262 2263 for_each_possible_cpu(cpu) { 2264 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2265 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2266 map = xmap_dereference(dev_maps->cpu_map[tci]); 2267 if (map && map != new_map) 2268 kfree_rcu(map, rcu); 2269 } 2270 } 2271 2272 kfree_rcu(dev_maps, rcu); 2273 2274 out_no_old_maps: 2275 dev_maps = new_dev_maps; 2276 active = true; 2277 2278 out_no_new_maps: 2279 /* update Tx queue numa node */ 2280 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2281 (numa_node_id >= 0) ? numa_node_id : 2282 NUMA_NO_NODE); 2283 2284 if (!dev_maps) 2285 goto out_no_maps; 2286 2287 /* removes queue from unused CPUs */ 2288 for_each_possible_cpu(cpu) { 2289 for (i = tc, tci = cpu * num_tc; i--; tci++) 2290 active |= remove_xps_queue(dev_maps, tci, index); 2291 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu)) 2292 active |= remove_xps_queue(dev_maps, tci, index); 2293 for (i = num_tc - tc, tci++; --i; tci++) 2294 active |= remove_xps_queue(dev_maps, tci, index); 2295 } 2296 2297 /* free map if not active */ 2298 if (!active) { 2299 RCU_INIT_POINTER(dev->xps_maps, NULL); 2300 kfree_rcu(dev_maps, rcu); 2301 } 2302 2303 out_no_maps: 2304 mutex_unlock(&xps_map_mutex); 2305 2306 return 0; 2307 error: 2308 /* remove any maps that we added */ 2309 for_each_possible_cpu(cpu) { 2310 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2311 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2312 map = dev_maps ? 2313 xmap_dereference(dev_maps->cpu_map[tci]) : 2314 NULL; 2315 if (new_map && new_map != map) 2316 kfree(new_map); 2317 } 2318 } 2319 2320 mutex_unlock(&xps_map_mutex); 2321 2322 kfree(new_dev_maps); 2323 return -ENOMEM; 2324 } 2325 EXPORT_SYMBOL(netif_set_xps_queue); 2326 2327 #endif 2328 void netdev_reset_tc(struct net_device *dev) 2329 { 2330 #ifdef CONFIG_XPS 2331 netif_reset_xps_queues_gt(dev, 0); 2332 #endif 2333 dev->num_tc = 0; 2334 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2335 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2336 } 2337 EXPORT_SYMBOL(netdev_reset_tc); 2338 2339 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2340 { 2341 if (tc >= dev->num_tc) 2342 return -EINVAL; 2343 2344 #ifdef CONFIG_XPS 2345 netif_reset_xps_queues(dev, offset, count); 2346 #endif 2347 dev->tc_to_txq[tc].count = count; 2348 dev->tc_to_txq[tc].offset = offset; 2349 return 0; 2350 } 2351 EXPORT_SYMBOL(netdev_set_tc_queue); 2352 2353 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2354 { 2355 if (num_tc > TC_MAX_QUEUE) 2356 return -EINVAL; 2357 2358 #ifdef CONFIG_XPS 2359 netif_reset_xps_queues_gt(dev, 0); 2360 #endif 2361 dev->num_tc = num_tc; 2362 return 0; 2363 } 2364 EXPORT_SYMBOL(netdev_set_num_tc); 2365 2366 /* 2367 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2368 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2369 */ 2370 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2371 { 2372 int rc; 2373 2374 if (txq < 1 || txq > dev->num_tx_queues) 2375 return -EINVAL; 2376 2377 if (dev->reg_state == NETREG_REGISTERED || 2378 dev->reg_state == NETREG_UNREGISTERING) { 2379 ASSERT_RTNL(); 2380 2381 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2382 txq); 2383 if (rc) 2384 return rc; 2385 2386 if (dev->num_tc) 2387 netif_setup_tc(dev, txq); 2388 2389 if (txq < dev->real_num_tx_queues) { 2390 qdisc_reset_all_tx_gt(dev, txq); 2391 #ifdef CONFIG_XPS 2392 netif_reset_xps_queues_gt(dev, txq); 2393 #endif 2394 } 2395 } 2396 2397 dev->real_num_tx_queues = txq; 2398 return 0; 2399 } 2400 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2401 2402 #ifdef CONFIG_SYSFS 2403 /** 2404 * netif_set_real_num_rx_queues - set actual number of RX queues used 2405 * @dev: Network device 2406 * @rxq: Actual number of RX queues 2407 * 2408 * This must be called either with the rtnl_lock held or before 2409 * registration of the net device. Returns 0 on success, or a 2410 * negative error code. If called before registration, it always 2411 * succeeds. 2412 */ 2413 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2414 { 2415 int rc; 2416 2417 if (rxq < 1 || rxq > dev->num_rx_queues) 2418 return -EINVAL; 2419 2420 if (dev->reg_state == NETREG_REGISTERED) { 2421 ASSERT_RTNL(); 2422 2423 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2424 rxq); 2425 if (rc) 2426 return rc; 2427 } 2428 2429 dev->real_num_rx_queues = rxq; 2430 return 0; 2431 } 2432 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2433 #endif 2434 2435 /** 2436 * netif_get_num_default_rss_queues - default number of RSS queues 2437 * 2438 * This routine should set an upper limit on the number of RSS queues 2439 * used by default by multiqueue devices. 2440 */ 2441 int netif_get_num_default_rss_queues(void) 2442 { 2443 return is_kdump_kernel() ? 2444 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2445 } 2446 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2447 2448 static void __netif_reschedule(struct Qdisc *q) 2449 { 2450 struct softnet_data *sd; 2451 unsigned long flags; 2452 2453 local_irq_save(flags); 2454 sd = this_cpu_ptr(&softnet_data); 2455 q->next_sched = NULL; 2456 *sd->output_queue_tailp = q; 2457 sd->output_queue_tailp = &q->next_sched; 2458 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2459 local_irq_restore(flags); 2460 } 2461 2462 void __netif_schedule(struct Qdisc *q) 2463 { 2464 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2465 __netif_reschedule(q); 2466 } 2467 EXPORT_SYMBOL(__netif_schedule); 2468 2469 struct dev_kfree_skb_cb { 2470 enum skb_free_reason reason; 2471 }; 2472 2473 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2474 { 2475 return (struct dev_kfree_skb_cb *)skb->cb; 2476 } 2477 2478 void netif_schedule_queue(struct netdev_queue *txq) 2479 { 2480 rcu_read_lock(); 2481 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2482 struct Qdisc *q = rcu_dereference(txq->qdisc); 2483 2484 __netif_schedule(q); 2485 } 2486 rcu_read_unlock(); 2487 } 2488 EXPORT_SYMBOL(netif_schedule_queue); 2489 2490 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2491 { 2492 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2493 struct Qdisc *q; 2494 2495 rcu_read_lock(); 2496 q = rcu_dereference(dev_queue->qdisc); 2497 __netif_schedule(q); 2498 rcu_read_unlock(); 2499 } 2500 } 2501 EXPORT_SYMBOL(netif_tx_wake_queue); 2502 2503 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2504 { 2505 unsigned long flags; 2506 2507 if (unlikely(!skb)) 2508 return; 2509 2510 if (likely(refcount_read(&skb->users) == 1)) { 2511 smp_rmb(); 2512 refcount_set(&skb->users, 0); 2513 } else if (likely(!refcount_dec_and_test(&skb->users))) { 2514 return; 2515 } 2516 get_kfree_skb_cb(skb)->reason = reason; 2517 local_irq_save(flags); 2518 skb->next = __this_cpu_read(softnet_data.completion_queue); 2519 __this_cpu_write(softnet_data.completion_queue, skb); 2520 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2521 local_irq_restore(flags); 2522 } 2523 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2524 2525 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2526 { 2527 if (in_irq() || irqs_disabled()) 2528 __dev_kfree_skb_irq(skb, reason); 2529 else 2530 dev_kfree_skb(skb); 2531 } 2532 EXPORT_SYMBOL(__dev_kfree_skb_any); 2533 2534 2535 /** 2536 * netif_device_detach - mark device as removed 2537 * @dev: network device 2538 * 2539 * Mark device as removed from system and therefore no longer available. 2540 */ 2541 void netif_device_detach(struct net_device *dev) 2542 { 2543 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2544 netif_running(dev)) { 2545 netif_tx_stop_all_queues(dev); 2546 } 2547 } 2548 EXPORT_SYMBOL(netif_device_detach); 2549 2550 /** 2551 * netif_device_attach - mark device as attached 2552 * @dev: network device 2553 * 2554 * Mark device as attached from system and restart if needed. 2555 */ 2556 void netif_device_attach(struct net_device *dev) 2557 { 2558 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2559 netif_running(dev)) { 2560 netif_tx_wake_all_queues(dev); 2561 __netdev_watchdog_up(dev); 2562 } 2563 } 2564 EXPORT_SYMBOL(netif_device_attach); 2565 2566 /* 2567 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2568 * to be used as a distribution range. 2569 */ 2570 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 2571 unsigned int num_tx_queues) 2572 { 2573 u32 hash; 2574 u16 qoffset = 0; 2575 u16 qcount = num_tx_queues; 2576 2577 if (skb_rx_queue_recorded(skb)) { 2578 hash = skb_get_rx_queue(skb); 2579 while (unlikely(hash >= num_tx_queues)) 2580 hash -= num_tx_queues; 2581 return hash; 2582 } 2583 2584 if (dev->num_tc) { 2585 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2586 2587 qoffset = dev->tc_to_txq[tc].offset; 2588 qcount = dev->tc_to_txq[tc].count; 2589 } 2590 2591 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2592 } 2593 EXPORT_SYMBOL(__skb_tx_hash); 2594 2595 static void skb_warn_bad_offload(const struct sk_buff *skb) 2596 { 2597 static const netdev_features_t null_features; 2598 struct net_device *dev = skb->dev; 2599 const char *name = ""; 2600 2601 if (!net_ratelimit()) 2602 return; 2603 2604 if (dev) { 2605 if (dev->dev.parent) 2606 name = dev_driver_string(dev->dev.parent); 2607 else 2608 name = netdev_name(dev); 2609 } 2610 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2611 "gso_type=%d ip_summed=%d\n", 2612 name, dev ? &dev->features : &null_features, 2613 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2614 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2615 skb_shinfo(skb)->gso_type, skb->ip_summed); 2616 } 2617 2618 /* 2619 * Invalidate hardware checksum when packet is to be mangled, and 2620 * complete checksum manually on outgoing path. 2621 */ 2622 int skb_checksum_help(struct sk_buff *skb) 2623 { 2624 __wsum csum; 2625 int ret = 0, offset; 2626 2627 if (skb->ip_summed == CHECKSUM_COMPLETE) 2628 goto out_set_summed; 2629 2630 if (unlikely(skb_shinfo(skb)->gso_size)) { 2631 skb_warn_bad_offload(skb); 2632 return -EINVAL; 2633 } 2634 2635 /* Before computing a checksum, we should make sure no frag could 2636 * be modified by an external entity : checksum could be wrong. 2637 */ 2638 if (skb_has_shared_frag(skb)) { 2639 ret = __skb_linearize(skb); 2640 if (ret) 2641 goto out; 2642 } 2643 2644 offset = skb_checksum_start_offset(skb); 2645 BUG_ON(offset >= skb_headlen(skb)); 2646 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2647 2648 offset += skb->csum_offset; 2649 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2650 2651 if (skb_cloned(skb) && 2652 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2653 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2654 if (ret) 2655 goto out; 2656 } 2657 2658 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2659 out_set_summed: 2660 skb->ip_summed = CHECKSUM_NONE; 2661 out: 2662 return ret; 2663 } 2664 EXPORT_SYMBOL(skb_checksum_help); 2665 2666 int skb_crc32c_csum_help(struct sk_buff *skb) 2667 { 2668 __le32 crc32c_csum; 2669 int ret = 0, offset, start; 2670 2671 if (skb->ip_summed != CHECKSUM_PARTIAL) 2672 goto out; 2673 2674 if (unlikely(skb_is_gso(skb))) 2675 goto out; 2676 2677 /* Before computing a checksum, we should make sure no frag could 2678 * be modified by an external entity : checksum could be wrong. 2679 */ 2680 if (unlikely(skb_has_shared_frag(skb))) { 2681 ret = __skb_linearize(skb); 2682 if (ret) 2683 goto out; 2684 } 2685 start = skb_checksum_start_offset(skb); 2686 offset = start + offsetof(struct sctphdr, checksum); 2687 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 2688 ret = -EINVAL; 2689 goto out; 2690 } 2691 if (skb_cloned(skb) && 2692 !skb_clone_writable(skb, offset + sizeof(__le32))) { 2693 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2694 if (ret) 2695 goto out; 2696 } 2697 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 2698 skb->len - start, ~(__u32)0, 2699 crc32c_csum_stub)); 2700 *(__le32 *)(skb->data + offset) = crc32c_csum; 2701 skb->ip_summed = CHECKSUM_NONE; 2702 skb->csum_not_inet = 0; 2703 out: 2704 return ret; 2705 } 2706 2707 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2708 { 2709 __be16 type = skb->protocol; 2710 2711 /* Tunnel gso handlers can set protocol to ethernet. */ 2712 if (type == htons(ETH_P_TEB)) { 2713 struct ethhdr *eth; 2714 2715 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2716 return 0; 2717 2718 eth = (struct ethhdr *)skb_mac_header(skb); 2719 type = eth->h_proto; 2720 } 2721 2722 return __vlan_get_protocol(skb, type, depth); 2723 } 2724 2725 /** 2726 * skb_mac_gso_segment - mac layer segmentation handler. 2727 * @skb: buffer to segment 2728 * @features: features for the output path (see dev->features) 2729 */ 2730 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2731 netdev_features_t features) 2732 { 2733 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2734 struct packet_offload *ptype; 2735 int vlan_depth = skb->mac_len; 2736 __be16 type = skb_network_protocol(skb, &vlan_depth); 2737 2738 if (unlikely(!type)) 2739 return ERR_PTR(-EINVAL); 2740 2741 __skb_pull(skb, vlan_depth); 2742 2743 rcu_read_lock(); 2744 list_for_each_entry_rcu(ptype, &offload_base, list) { 2745 if (ptype->type == type && ptype->callbacks.gso_segment) { 2746 segs = ptype->callbacks.gso_segment(skb, features); 2747 break; 2748 } 2749 } 2750 rcu_read_unlock(); 2751 2752 __skb_push(skb, skb->data - skb_mac_header(skb)); 2753 2754 return segs; 2755 } 2756 EXPORT_SYMBOL(skb_mac_gso_segment); 2757 2758 2759 /* openvswitch calls this on rx path, so we need a different check. 2760 */ 2761 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2762 { 2763 if (tx_path) 2764 return skb->ip_summed != CHECKSUM_PARTIAL; 2765 2766 return skb->ip_summed == CHECKSUM_NONE; 2767 } 2768 2769 /** 2770 * __skb_gso_segment - Perform segmentation on skb. 2771 * @skb: buffer to segment 2772 * @features: features for the output path (see dev->features) 2773 * @tx_path: whether it is called in TX path 2774 * 2775 * This function segments the given skb and returns a list of segments. 2776 * 2777 * It may return NULL if the skb requires no segmentation. This is 2778 * only possible when GSO is used for verifying header integrity. 2779 * 2780 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 2781 */ 2782 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2783 netdev_features_t features, bool tx_path) 2784 { 2785 struct sk_buff *segs; 2786 2787 if (unlikely(skb_needs_check(skb, tx_path))) { 2788 int err; 2789 2790 /* We're going to init ->check field in TCP or UDP header */ 2791 err = skb_cow_head(skb, 0); 2792 if (err < 0) 2793 return ERR_PTR(err); 2794 } 2795 2796 /* Only report GSO partial support if it will enable us to 2797 * support segmentation on this frame without needing additional 2798 * work. 2799 */ 2800 if (features & NETIF_F_GSO_PARTIAL) { 2801 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 2802 struct net_device *dev = skb->dev; 2803 2804 partial_features |= dev->features & dev->gso_partial_features; 2805 if (!skb_gso_ok(skb, features | partial_features)) 2806 features &= ~NETIF_F_GSO_PARTIAL; 2807 } 2808 2809 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 2810 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 2811 2812 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2813 SKB_GSO_CB(skb)->encap_level = 0; 2814 2815 skb_reset_mac_header(skb); 2816 skb_reset_mac_len(skb); 2817 2818 segs = skb_mac_gso_segment(skb, features); 2819 2820 if (unlikely(skb_needs_check(skb, tx_path))) 2821 skb_warn_bad_offload(skb); 2822 2823 return segs; 2824 } 2825 EXPORT_SYMBOL(__skb_gso_segment); 2826 2827 /* Take action when hardware reception checksum errors are detected. */ 2828 #ifdef CONFIG_BUG 2829 void netdev_rx_csum_fault(struct net_device *dev) 2830 { 2831 if (net_ratelimit()) { 2832 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2833 dump_stack(); 2834 } 2835 } 2836 EXPORT_SYMBOL(netdev_rx_csum_fault); 2837 #endif 2838 2839 /* Actually, we should eliminate this check as soon as we know, that: 2840 * 1. IOMMU is present and allows to map all the memory. 2841 * 2. No high memory really exists on this machine. 2842 */ 2843 2844 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2845 { 2846 #ifdef CONFIG_HIGHMEM 2847 int i; 2848 2849 if (!(dev->features & NETIF_F_HIGHDMA)) { 2850 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2851 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2852 2853 if (PageHighMem(skb_frag_page(frag))) 2854 return 1; 2855 } 2856 } 2857 2858 if (PCI_DMA_BUS_IS_PHYS) { 2859 struct device *pdev = dev->dev.parent; 2860 2861 if (!pdev) 2862 return 0; 2863 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2864 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2865 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2866 2867 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2868 return 1; 2869 } 2870 } 2871 #endif 2872 return 0; 2873 } 2874 2875 /* If MPLS offload request, verify we are testing hardware MPLS features 2876 * instead of standard features for the netdev. 2877 */ 2878 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2879 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2880 netdev_features_t features, 2881 __be16 type) 2882 { 2883 if (eth_p_mpls(type)) 2884 features &= skb->dev->mpls_features; 2885 2886 return features; 2887 } 2888 #else 2889 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2890 netdev_features_t features, 2891 __be16 type) 2892 { 2893 return features; 2894 } 2895 #endif 2896 2897 static netdev_features_t harmonize_features(struct sk_buff *skb, 2898 netdev_features_t features) 2899 { 2900 int tmp; 2901 __be16 type; 2902 2903 type = skb_network_protocol(skb, &tmp); 2904 features = net_mpls_features(skb, features, type); 2905 2906 if (skb->ip_summed != CHECKSUM_NONE && 2907 !can_checksum_protocol(features, type)) { 2908 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2909 } 2910 if (illegal_highdma(skb->dev, skb)) 2911 features &= ~NETIF_F_SG; 2912 2913 return features; 2914 } 2915 2916 netdev_features_t passthru_features_check(struct sk_buff *skb, 2917 struct net_device *dev, 2918 netdev_features_t features) 2919 { 2920 return features; 2921 } 2922 EXPORT_SYMBOL(passthru_features_check); 2923 2924 static netdev_features_t dflt_features_check(const struct sk_buff *skb, 2925 struct net_device *dev, 2926 netdev_features_t features) 2927 { 2928 return vlan_features_check(skb, features); 2929 } 2930 2931 static netdev_features_t gso_features_check(const struct sk_buff *skb, 2932 struct net_device *dev, 2933 netdev_features_t features) 2934 { 2935 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2936 2937 if (gso_segs > dev->gso_max_segs) 2938 return features & ~NETIF_F_GSO_MASK; 2939 2940 /* Support for GSO partial features requires software 2941 * intervention before we can actually process the packets 2942 * so we need to strip support for any partial features now 2943 * and we can pull them back in after we have partially 2944 * segmented the frame. 2945 */ 2946 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 2947 features &= ~dev->gso_partial_features; 2948 2949 /* Make sure to clear the IPv4 ID mangling feature if the 2950 * IPv4 header has the potential to be fragmented. 2951 */ 2952 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 2953 struct iphdr *iph = skb->encapsulation ? 2954 inner_ip_hdr(skb) : ip_hdr(skb); 2955 2956 if (!(iph->frag_off & htons(IP_DF))) 2957 features &= ~NETIF_F_TSO_MANGLEID; 2958 } 2959 2960 return features; 2961 } 2962 2963 netdev_features_t netif_skb_features(struct sk_buff *skb) 2964 { 2965 struct net_device *dev = skb->dev; 2966 netdev_features_t features = dev->features; 2967 2968 if (skb_is_gso(skb)) 2969 features = gso_features_check(skb, dev, features); 2970 2971 /* If encapsulation offload request, verify we are testing 2972 * hardware encapsulation features instead of standard 2973 * features for the netdev 2974 */ 2975 if (skb->encapsulation) 2976 features &= dev->hw_enc_features; 2977 2978 if (skb_vlan_tagged(skb)) 2979 features = netdev_intersect_features(features, 2980 dev->vlan_features | 2981 NETIF_F_HW_VLAN_CTAG_TX | 2982 NETIF_F_HW_VLAN_STAG_TX); 2983 2984 if (dev->netdev_ops->ndo_features_check) 2985 features &= dev->netdev_ops->ndo_features_check(skb, dev, 2986 features); 2987 else 2988 features &= dflt_features_check(skb, dev, features); 2989 2990 return harmonize_features(skb, features); 2991 } 2992 EXPORT_SYMBOL(netif_skb_features); 2993 2994 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 2995 struct netdev_queue *txq, bool more) 2996 { 2997 unsigned int len; 2998 int rc; 2999 3000 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 3001 dev_queue_xmit_nit(skb, dev); 3002 3003 len = skb->len; 3004 trace_net_dev_start_xmit(skb, dev); 3005 rc = netdev_start_xmit(skb, dev, txq, more); 3006 trace_net_dev_xmit(skb, rc, dev, len); 3007 3008 return rc; 3009 } 3010 3011 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3012 struct netdev_queue *txq, int *ret) 3013 { 3014 struct sk_buff *skb = first; 3015 int rc = NETDEV_TX_OK; 3016 3017 while (skb) { 3018 struct sk_buff *next = skb->next; 3019 3020 skb->next = NULL; 3021 rc = xmit_one(skb, dev, txq, next != NULL); 3022 if (unlikely(!dev_xmit_complete(rc))) { 3023 skb->next = next; 3024 goto out; 3025 } 3026 3027 skb = next; 3028 if (netif_xmit_stopped(txq) && skb) { 3029 rc = NETDEV_TX_BUSY; 3030 break; 3031 } 3032 } 3033 3034 out: 3035 *ret = rc; 3036 return skb; 3037 } 3038 3039 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3040 netdev_features_t features) 3041 { 3042 if (skb_vlan_tag_present(skb) && 3043 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3044 skb = __vlan_hwaccel_push_inside(skb); 3045 return skb; 3046 } 3047 3048 int skb_csum_hwoffload_help(struct sk_buff *skb, 3049 const netdev_features_t features) 3050 { 3051 if (unlikely(skb->csum_not_inet)) 3052 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3053 skb_crc32c_csum_help(skb); 3054 3055 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3056 } 3057 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3058 3059 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) 3060 { 3061 netdev_features_t features; 3062 3063 features = netif_skb_features(skb); 3064 skb = validate_xmit_vlan(skb, features); 3065 if (unlikely(!skb)) 3066 goto out_null; 3067 3068 if (netif_needs_gso(skb, features)) { 3069 struct sk_buff *segs; 3070 3071 segs = skb_gso_segment(skb, features); 3072 if (IS_ERR(segs)) { 3073 goto out_kfree_skb; 3074 } else if (segs) { 3075 consume_skb(skb); 3076 skb = segs; 3077 } 3078 } else { 3079 if (skb_needs_linearize(skb, features) && 3080 __skb_linearize(skb)) 3081 goto out_kfree_skb; 3082 3083 if (validate_xmit_xfrm(skb, features)) 3084 goto out_kfree_skb; 3085 3086 /* If packet is not checksummed and device does not 3087 * support checksumming for this protocol, complete 3088 * checksumming here. 3089 */ 3090 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3091 if (skb->encapsulation) 3092 skb_set_inner_transport_header(skb, 3093 skb_checksum_start_offset(skb)); 3094 else 3095 skb_set_transport_header(skb, 3096 skb_checksum_start_offset(skb)); 3097 if (skb_csum_hwoffload_help(skb, features)) 3098 goto out_kfree_skb; 3099 } 3100 } 3101 3102 return skb; 3103 3104 out_kfree_skb: 3105 kfree_skb(skb); 3106 out_null: 3107 atomic_long_inc(&dev->tx_dropped); 3108 return NULL; 3109 } 3110 3111 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev) 3112 { 3113 struct sk_buff *next, *head = NULL, *tail; 3114 3115 for (; skb != NULL; skb = next) { 3116 next = skb->next; 3117 skb->next = NULL; 3118 3119 /* in case skb wont be segmented, point to itself */ 3120 skb->prev = skb; 3121 3122 skb = validate_xmit_skb(skb, dev); 3123 if (!skb) 3124 continue; 3125 3126 if (!head) 3127 head = skb; 3128 else 3129 tail->next = skb; 3130 /* If skb was segmented, skb->prev points to 3131 * the last segment. If not, it still contains skb. 3132 */ 3133 tail = skb->prev; 3134 } 3135 return head; 3136 } 3137 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3138 3139 static void qdisc_pkt_len_init(struct sk_buff *skb) 3140 { 3141 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3142 3143 qdisc_skb_cb(skb)->pkt_len = skb->len; 3144 3145 /* To get more precise estimation of bytes sent on wire, 3146 * we add to pkt_len the headers size of all segments 3147 */ 3148 if (shinfo->gso_size) { 3149 unsigned int hdr_len; 3150 u16 gso_segs = shinfo->gso_segs; 3151 3152 /* mac layer + network layer */ 3153 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3154 3155 /* + transport layer */ 3156 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 3157 hdr_len += tcp_hdrlen(skb); 3158 else 3159 hdr_len += sizeof(struct udphdr); 3160 3161 if (shinfo->gso_type & SKB_GSO_DODGY) 3162 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3163 shinfo->gso_size); 3164 3165 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3166 } 3167 } 3168 3169 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3170 struct net_device *dev, 3171 struct netdev_queue *txq) 3172 { 3173 spinlock_t *root_lock = qdisc_lock(q); 3174 struct sk_buff *to_free = NULL; 3175 bool contended; 3176 int rc; 3177 3178 qdisc_calculate_pkt_len(skb, q); 3179 /* 3180 * Heuristic to force contended enqueues to serialize on a 3181 * separate lock before trying to get qdisc main lock. 3182 * This permits qdisc->running owner to get the lock more 3183 * often and dequeue packets faster. 3184 */ 3185 contended = qdisc_is_running(q); 3186 if (unlikely(contended)) 3187 spin_lock(&q->busylock); 3188 3189 spin_lock(root_lock); 3190 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3191 __qdisc_drop(skb, &to_free); 3192 rc = NET_XMIT_DROP; 3193 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3194 qdisc_run_begin(q)) { 3195 /* 3196 * This is a work-conserving queue; there are no old skbs 3197 * waiting to be sent out; and the qdisc is not running - 3198 * xmit the skb directly. 3199 */ 3200 3201 qdisc_bstats_update(q, skb); 3202 3203 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3204 if (unlikely(contended)) { 3205 spin_unlock(&q->busylock); 3206 contended = false; 3207 } 3208 __qdisc_run(q); 3209 } else 3210 qdisc_run_end(q); 3211 3212 rc = NET_XMIT_SUCCESS; 3213 } else { 3214 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3215 if (qdisc_run_begin(q)) { 3216 if (unlikely(contended)) { 3217 spin_unlock(&q->busylock); 3218 contended = false; 3219 } 3220 __qdisc_run(q); 3221 } 3222 } 3223 spin_unlock(root_lock); 3224 if (unlikely(to_free)) 3225 kfree_skb_list(to_free); 3226 if (unlikely(contended)) 3227 spin_unlock(&q->busylock); 3228 return rc; 3229 } 3230 3231 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3232 static void skb_update_prio(struct sk_buff *skb) 3233 { 3234 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 3235 3236 if (!skb->priority && skb->sk && map) { 3237 unsigned int prioidx = 3238 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data); 3239 3240 if (prioidx < map->priomap_len) 3241 skb->priority = map->priomap[prioidx]; 3242 } 3243 } 3244 #else 3245 #define skb_update_prio(skb) 3246 #endif 3247 3248 DEFINE_PER_CPU(int, xmit_recursion); 3249 EXPORT_SYMBOL(xmit_recursion); 3250 3251 /** 3252 * dev_loopback_xmit - loop back @skb 3253 * @net: network namespace this loopback is happening in 3254 * @sk: sk needed to be a netfilter okfn 3255 * @skb: buffer to transmit 3256 */ 3257 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3258 { 3259 skb_reset_mac_header(skb); 3260 __skb_pull(skb, skb_network_offset(skb)); 3261 skb->pkt_type = PACKET_LOOPBACK; 3262 skb->ip_summed = CHECKSUM_UNNECESSARY; 3263 WARN_ON(!skb_dst(skb)); 3264 skb_dst_force(skb); 3265 netif_rx_ni(skb); 3266 return 0; 3267 } 3268 EXPORT_SYMBOL(dev_loopback_xmit); 3269 3270 #ifdef CONFIG_NET_EGRESS 3271 static struct sk_buff * 3272 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3273 { 3274 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list); 3275 struct tcf_result cl_res; 3276 3277 if (!cl) 3278 return skb; 3279 3280 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3281 qdisc_bstats_cpu_update(cl->q, skb); 3282 3283 switch (tcf_classify(skb, cl, &cl_res, false)) { 3284 case TC_ACT_OK: 3285 case TC_ACT_RECLASSIFY: 3286 skb->tc_index = TC_H_MIN(cl_res.classid); 3287 break; 3288 case TC_ACT_SHOT: 3289 qdisc_qstats_cpu_drop(cl->q); 3290 *ret = NET_XMIT_DROP; 3291 kfree_skb(skb); 3292 return NULL; 3293 case TC_ACT_STOLEN: 3294 case TC_ACT_QUEUED: 3295 case TC_ACT_TRAP: 3296 *ret = NET_XMIT_SUCCESS; 3297 consume_skb(skb); 3298 return NULL; 3299 case TC_ACT_REDIRECT: 3300 /* No need to push/pop skb's mac_header here on egress! */ 3301 skb_do_redirect(skb); 3302 *ret = NET_XMIT_SUCCESS; 3303 return NULL; 3304 default: 3305 break; 3306 } 3307 3308 return skb; 3309 } 3310 #endif /* CONFIG_NET_EGRESS */ 3311 3312 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 3313 { 3314 #ifdef CONFIG_XPS 3315 struct xps_dev_maps *dev_maps; 3316 struct xps_map *map; 3317 int queue_index = -1; 3318 3319 rcu_read_lock(); 3320 dev_maps = rcu_dereference(dev->xps_maps); 3321 if (dev_maps) { 3322 unsigned int tci = skb->sender_cpu - 1; 3323 3324 if (dev->num_tc) { 3325 tci *= dev->num_tc; 3326 tci += netdev_get_prio_tc_map(dev, skb->priority); 3327 } 3328 3329 map = rcu_dereference(dev_maps->cpu_map[tci]); 3330 if (map) { 3331 if (map->len == 1) 3332 queue_index = map->queues[0]; 3333 else 3334 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb), 3335 map->len)]; 3336 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3337 queue_index = -1; 3338 } 3339 } 3340 rcu_read_unlock(); 3341 3342 return queue_index; 3343 #else 3344 return -1; 3345 #endif 3346 } 3347 3348 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb) 3349 { 3350 struct sock *sk = skb->sk; 3351 int queue_index = sk_tx_queue_get(sk); 3352 3353 if (queue_index < 0 || skb->ooo_okay || 3354 queue_index >= dev->real_num_tx_queues) { 3355 int new_index = get_xps_queue(dev, skb); 3356 3357 if (new_index < 0) 3358 new_index = skb_tx_hash(dev, skb); 3359 3360 if (queue_index != new_index && sk && 3361 sk_fullsock(sk) && 3362 rcu_access_pointer(sk->sk_dst_cache)) 3363 sk_tx_queue_set(sk, new_index); 3364 3365 queue_index = new_index; 3366 } 3367 3368 return queue_index; 3369 } 3370 3371 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3372 struct sk_buff *skb, 3373 void *accel_priv) 3374 { 3375 int queue_index = 0; 3376 3377 #ifdef CONFIG_XPS 3378 u32 sender_cpu = skb->sender_cpu - 1; 3379 3380 if (sender_cpu >= (u32)NR_CPUS) 3381 skb->sender_cpu = raw_smp_processor_id() + 1; 3382 #endif 3383 3384 if (dev->real_num_tx_queues != 1) { 3385 const struct net_device_ops *ops = dev->netdev_ops; 3386 3387 if (ops->ndo_select_queue) 3388 queue_index = ops->ndo_select_queue(dev, skb, accel_priv, 3389 __netdev_pick_tx); 3390 else 3391 queue_index = __netdev_pick_tx(dev, skb); 3392 3393 if (!accel_priv) 3394 queue_index = netdev_cap_txqueue(dev, queue_index); 3395 } 3396 3397 skb_set_queue_mapping(skb, queue_index); 3398 return netdev_get_tx_queue(dev, queue_index); 3399 } 3400 3401 /** 3402 * __dev_queue_xmit - transmit a buffer 3403 * @skb: buffer to transmit 3404 * @accel_priv: private data used for L2 forwarding offload 3405 * 3406 * Queue a buffer for transmission to a network device. The caller must 3407 * have set the device and priority and built the buffer before calling 3408 * this function. The function can be called from an interrupt. 3409 * 3410 * A negative errno code is returned on a failure. A success does not 3411 * guarantee the frame will be transmitted as it may be dropped due 3412 * to congestion or traffic shaping. 3413 * 3414 * ----------------------------------------------------------------------------------- 3415 * I notice this method can also return errors from the queue disciplines, 3416 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3417 * be positive. 3418 * 3419 * Regardless of the return value, the skb is consumed, so it is currently 3420 * difficult to retry a send to this method. (You can bump the ref count 3421 * before sending to hold a reference for retry if you are careful.) 3422 * 3423 * When calling this method, interrupts MUST be enabled. This is because 3424 * the BH enable code must have IRQs enabled so that it will not deadlock. 3425 * --BLG 3426 */ 3427 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 3428 { 3429 struct net_device *dev = skb->dev; 3430 struct netdev_queue *txq; 3431 struct Qdisc *q; 3432 int rc = -ENOMEM; 3433 3434 skb_reset_mac_header(skb); 3435 3436 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3437 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3438 3439 /* Disable soft irqs for various locks below. Also 3440 * stops preemption for RCU. 3441 */ 3442 rcu_read_lock_bh(); 3443 3444 skb_update_prio(skb); 3445 3446 qdisc_pkt_len_init(skb); 3447 #ifdef CONFIG_NET_CLS_ACT 3448 skb->tc_at_ingress = 0; 3449 # ifdef CONFIG_NET_EGRESS 3450 if (static_key_false(&egress_needed)) { 3451 skb = sch_handle_egress(skb, &rc, dev); 3452 if (!skb) 3453 goto out; 3454 } 3455 # endif 3456 #endif 3457 /* If device/qdisc don't need skb->dst, release it right now while 3458 * its hot in this cpu cache. 3459 */ 3460 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3461 skb_dst_drop(skb); 3462 else 3463 skb_dst_force(skb); 3464 3465 txq = netdev_pick_tx(dev, skb, accel_priv); 3466 q = rcu_dereference_bh(txq->qdisc); 3467 3468 trace_net_dev_queue(skb); 3469 if (q->enqueue) { 3470 rc = __dev_xmit_skb(skb, q, dev, txq); 3471 goto out; 3472 } 3473 3474 /* The device has no queue. Common case for software devices: 3475 * loopback, all the sorts of tunnels... 3476 3477 * Really, it is unlikely that netif_tx_lock protection is necessary 3478 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 3479 * counters.) 3480 * However, it is possible, that they rely on protection 3481 * made by us here. 3482 3483 * Check this and shot the lock. It is not prone from deadlocks. 3484 *Either shot noqueue qdisc, it is even simpler 8) 3485 */ 3486 if (dev->flags & IFF_UP) { 3487 int cpu = smp_processor_id(); /* ok because BHs are off */ 3488 3489 if (txq->xmit_lock_owner != cpu) { 3490 if (unlikely(__this_cpu_read(xmit_recursion) > 3491 XMIT_RECURSION_LIMIT)) 3492 goto recursion_alert; 3493 3494 skb = validate_xmit_skb(skb, dev); 3495 if (!skb) 3496 goto out; 3497 3498 HARD_TX_LOCK(dev, txq, cpu); 3499 3500 if (!netif_xmit_stopped(txq)) { 3501 __this_cpu_inc(xmit_recursion); 3502 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3503 __this_cpu_dec(xmit_recursion); 3504 if (dev_xmit_complete(rc)) { 3505 HARD_TX_UNLOCK(dev, txq); 3506 goto out; 3507 } 3508 } 3509 HARD_TX_UNLOCK(dev, txq); 3510 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3511 dev->name); 3512 } else { 3513 /* Recursion is detected! It is possible, 3514 * unfortunately 3515 */ 3516 recursion_alert: 3517 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3518 dev->name); 3519 } 3520 } 3521 3522 rc = -ENETDOWN; 3523 rcu_read_unlock_bh(); 3524 3525 atomic_long_inc(&dev->tx_dropped); 3526 kfree_skb_list(skb); 3527 return rc; 3528 out: 3529 rcu_read_unlock_bh(); 3530 return rc; 3531 } 3532 3533 int dev_queue_xmit(struct sk_buff *skb) 3534 { 3535 return __dev_queue_xmit(skb, NULL); 3536 } 3537 EXPORT_SYMBOL(dev_queue_xmit); 3538 3539 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3540 { 3541 return __dev_queue_xmit(skb, accel_priv); 3542 } 3543 EXPORT_SYMBOL(dev_queue_xmit_accel); 3544 3545 3546 /************************************************************************* 3547 * Receiver routines 3548 *************************************************************************/ 3549 3550 int netdev_max_backlog __read_mostly = 1000; 3551 EXPORT_SYMBOL(netdev_max_backlog); 3552 3553 int netdev_tstamp_prequeue __read_mostly = 1; 3554 int netdev_budget __read_mostly = 300; 3555 unsigned int __read_mostly netdev_budget_usecs = 2000; 3556 int weight_p __read_mostly = 64; /* old backlog weight */ 3557 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 3558 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 3559 int dev_rx_weight __read_mostly = 64; 3560 int dev_tx_weight __read_mostly = 64; 3561 3562 /* Called with irq disabled */ 3563 static inline void ____napi_schedule(struct softnet_data *sd, 3564 struct napi_struct *napi) 3565 { 3566 list_add_tail(&napi->poll_list, &sd->poll_list); 3567 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3568 } 3569 3570 #ifdef CONFIG_RPS 3571 3572 /* One global table that all flow-based protocols share. */ 3573 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3574 EXPORT_SYMBOL(rps_sock_flow_table); 3575 u32 rps_cpu_mask __read_mostly; 3576 EXPORT_SYMBOL(rps_cpu_mask); 3577 3578 struct static_key rps_needed __read_mostly; 3579 EXPORT_SYMBOL(rps_needed); 3580 struct static_key rfs_needed __read_mostly; 3581 EXPORT_SYMBOL(rfs_needed); 3582 3583 static struct rps_dev_flow * 3584 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3585 struct rps_dev_flow *rflow, u16 next_cpu) 3586 { 3587 if (next_cpu < nr_cpu_ids) { 3588 #ifdef CONFIG_RFS_ACCEL 3589 struct netdev_rx_queue *rxqueue; 3590 struct rps_dev_flow_table *flow_table; 3591 struct rps_dev_flow *old_rflow; 3592 u32 flow_id; 3593 u16 rxq_index; 3594 int rc; 3595 3596 /* Should we steer this flow to a different hardware queue? */ 3597 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3598 !(dev->features & NETIF_F_NTUPLE)) 3599 goto out; 3600 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3601 if (rxq_index == skb_get_rx_queue(skb)) 3602 goto out; 3603 3604 rxqueue = dev->_rx + rxq_index; 3605 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3606 if (!flow_table) 3607 goto out; 3608 flow_id = skb_get_hash(skb) & flow_table->mask; 3609 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3610 rxq_index, flow_id); 3611 if (rc < 0) 3612 goto out; 3613 old_rflow = rflow; 3614 rflow = &flow_table->flows[flow_id]; 3615 rflow->filter = rc; 3616 if (old_rflow->filter == rflow->filter) 3617 old_rflow->filter = RPS_NO_FILTER; 3618 out: 3619 #endif 3620 rflow->last_qtail = 3621 per_cpu(softnet_data, next_cpu).input_queue_head; 3622 } 3623 3624 rflow->cpu = next_cpu; 3625 return rflow; 3626 } 3627 3628 /* 3629 * get_rps_cpu is called from netif_receive_skb and returns the target 3630 * CPU from the RPS map of the receiving queue for a given skb. 3631 * rcu_read_lock must be held on entry. 3632 */ 3633 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3634 struct rps_dev_flow **rflowp) 3635 { 3636 const struct rps_sock_flow_table *sock_flow_table; 3637 struct netdev_rx_queue *rxqueue = dev->_rx; 3638 struct rps_dev_flow_table *flow_table; 3639 struct rps_map *map; 3640 int cpu = -1; 3641 u32 tcpu; 3642 u32 hash; 3643 3644 if (skb_rx_queue_recorded(skb)) { 3645 u16 index = skb_get_rx_queue(skb); 3646 3647 if (unlikely(index >= dev->real_num_rx_queues)) { 3648 WARN_ONCE(dev->real_num_rx_queues > 1, 3649 "%s received packet on queue %u, but number " 3650 "of RX queues is %u\n", 3651 dev->name, index, dev->real_num_rx_queues); 3652 goto done; 3653 } 3654 rxqueue += index; 3655 } 3656 3657 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3658 3659 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3660 map = rcu_dereference(rxqueue->rps_map); 3661 if (!flow_table && !map) 3662 goto done; 3663 3664 skb_reset_network_header(skb); 3665 hash = skb_get_hash(skb); 3666 if (!hash) 3667 goto done; 3668 3669 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3670 if (flow_table && sock_flow_table) { 3671 struct rps_dev_flow *rflow; 3672 u32 next_cpu; 3673 u32 ident; 3674 3675 /* First check into global flow table if there is a match */ 3676 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3677 if ((ident ^ hash) & ~rps_cpu_mask) 3678 goto try_rps; 3679 3680 next_cpu = ident & rps_cpu_mask; 3681 3682 /* OK, now we know there is a match, 3683 * we can look at the local (per receive queue) flow table 3684 */ 3685 rflow = &flow_table->flows[hash & flow_table->mask]; 3686 tcpu = rflow->cpu; 3687 3688 /* 3689 * If the desired CPU (where last recvmsg was done) is 3690 * different from current CPU (one in the rx-queue flow 3691 * table entry), switch if one of the following holds: 3692 * - Current CPU is unset (>= nr_cpu_ids). 3693 * - Current CPU is offline. 3694 * - The current CPU's queue tail has advanced beyond the 3695 * last packet that was enqueued using this table entry. 3696 * This guarantees that all previous packets for the flow 3697 * have been dequeued, thus preserving in order delivery. 3698 */ 3699 if (unlikely(tcpu != next_cpu) && 3700 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 3701 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3702 rflow->last_qtail)) >= 0)) { 3703 tcpu = next_cpu; 3704 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3705 } 3706 3707 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 3708 *rflowp = rflow; 3709 cpu = tcpu; 3710 goto done; 3711 } 3712 } 3713 3714 try_rps: 3715 3716 if (map) { 3717 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3718 if (cpu_online(tcpu)) { 3719 cpu = tcpu; 3720 goto done; 3721 } 3722 } 3723 3724 done: 3725 return cpu; 3726 } 3727 3728 #ifdef CONFIG_RFS_ACCEL 3729 3730 /** 3731 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3732 * @dev: Device on which the filter was set 3733 * @rxq_index: RX queue index 3734 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3735 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3736 * 3737 * Drivers that implement ndo_rx_flow_steer() should periodically call 3738 * this function for each installed filter and remove the filters for 3739 * which it returns %true. 3740 */ 3741 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3742 u32 flow_id, u16 filter_id) 3743 { 3744 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3745 struct rps_dev_flow_table *flow_table; 3746 struct rps_dev_flow *rflow; 3747 bool expire = true; 3748 unsigned int cpu; 3749 3750 rcu_read_lock(); 3751 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3752 if (flow_table && flow_id <= flow_table->mask) { 3753 rflow = &flow_table->flows[flow_id]; 3754 cpu = ACCESS_ONCE(rflow->cpu); 3755 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 3756 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3757 rflow->last_qtail) < 3758 (int)(10 * flow_table->mask))) 3759 expire = false; 3760 } 3761 rcu_read_unlock(); 3762 return expire; 3763 } 3764 EXPORT_SYMBOL(rps_may_expire_flow); 3765 3766 #endif /* CONFIG_RFS_ACCEL */ 3767 3768 /* Called from hardirq (IPI) context */ 3769 static void rps_trigger_softirq(void *data) 3770 { 3771 struct softnet_data *sd = data; 3772 3773 ____napi_schedule(sd, &sd->backlog); 3774 sd->received_rps++; 3775 } 3776 3777 #endif /* CONFIG_RPS */ 3778 3779 /* 3780 * Check if this softnet_data structure is another cpu one 3781 * If yes, queue it to our IPI list and return 1 3782 * If no, return 0 3783 */ 3784 static int rps_ipi_queued(struct softnet_data *sd) 3785 { 3786 #ifdef CONFIG_RPS 3787 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3788 3789 if (sd != mysd) { 3790 sd->rps_ipi_next = mysd->rps_ipi_list; 3791 mysd->rps_ipi_list = sd; 3792 3793 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3794 return 1; 3795 } 3796 #endif /* CONFIG_RPS */ 3797 return 0; 3798 } 3799 3800 #ifdef CONFIG_NET_FLOW_LIMIT 3801 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3802 #endif 3803 3804 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3805 { 3806 #ifdef CONFIG_NET_FLOW_LIMIT 3807 struct sd_flow_limit *fl; 3808 struct softnet_data *sd; 3809 unsigned int old_flow, new_flow; 3810 3811 if (qlen < (netdev_max_backlog >> 1)) 3812 return false; 3813 3814 sd = this_cpu_ptr(&softnet_data); 3815 3816 rcu_read_lock(); 3817 fl = rcu_dereference(sd->flow_limit); 3818 if (fl) { 3819 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3820 old_flow = fl->history[fl->history_head]; 3821 fl->history[fl->history_head] = new_flow; 3822 3823 fl->history_head++; 3824 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3825 3826 if (likely(fl->buckets[old_flow])) 3827 fl->buckets[old_flow]--; 3828 3829 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3830 fl->count++; 3831 rcu_read_unlock(); 3832 return true; 3833 } 3834 } 3835 rcu_read_unlock(); 3836 #endif 3837 return false; 3838 } 3839 3840 /* 3841 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3842 * queue (may be a remote CPU queue). 3843 */ 3844 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3845 unsigned int *qtail) 3846 { 3847 struct softnet_data *sd; 3848 unsigned long flags; 3849 unsigned int qlen; 3850 3851 sd = &per_cpu(softnet_data, cpu); 3852 3853 local_irq_save(flags); 3854 3855 rps_lock(sd); 3856 if (!netif_running(skb->dev)) 3857 goto drop; 3858 qlen = skb_queue_len(&sd->input_pkt_queue); 3859 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3860 if (qlen) { 3861 enqueue: 3862 __skb_queue_tail(&sd->input_pkt_queue, skb); 3863 input_queue_tail_incr_save(sd, qtail); 3864 rps_unlock(sd); 3865 local_irq_restore(flags); 3866 return NET_RX_SUCCESS; 3867 } 3868 3869 /* Schedule NAPI for backlog device 3870 * We can use non atomic operation since we own the queue lock 3871 */ 3872 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3873 if (!rps_ipi_queued(sd)) 3874 ____napi_schedule(sd, &sd->backlog); 3875 } 3876 goto enqueue; 3877 } 3878 3879 drop: 3880 sd->dropped++; 3881 rps_unlock(sd); 3882 3883 local_irq_restore(flags); 3884 3885 atomic_long_inc(&skb->dev->rx_dropped); 3886 kfree_skb(skb); 3887 return NET_RX_DROP; 3888 } 3889 3890 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 3891 struct bpf_prog *xdp_prog) 3892 { 3893 u32 metalen, act = XDP_DROP; 3894 struct xdp_buff xdp; 3895 void *orig_data; 3896 int hlen, off; 3897 u32 mac_len; 3898 3899 /* Reinjected packets coming from act_mirred or similar should 3900 * not get XDP generic processing. 3901 */ 3902 if (skb_cloned(skb)) 3903 return XDP_PASS; 3904 3905 /* XDP packets must be linear and must have sufficient headroom 3906 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 3907 * native XDP provides, thus we need to do it here as well. 3908 */ 3909 if (skb_is_nonlinear(skb) || 3910 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 3911 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 3912 int troom = skb->tail + skb->data_len - skb->end; 3913 3914 /* In case we have to go down the path and also linearize, 3915 * then lets do the pskb_expand_head() work just once here. 3916 */ 3917 if (pskb_expand_head(skb, 3918 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 3919 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 3920 goto do_drop; 3921 if (troom > 0 && __skb_linearize(skb)) 3922 goto do_drop; 3923 } 3924 3925 /* The XDP program wants to see the packet starting at the MAC 3926 * header. 3927 */ 3928 mac_len = skb->data - skb_mac_header(skb); 3929 hlen = skb_headlen(skb) + mac_len; 3930 xdp.data = skb->data - mac_len; 3931 xdp.data_meta = xdp.data; 3932 xdp.data_end = xdp.data + hlen; 3933 xdp.data_hard_start = skb->data - skb_headroom(skb); 3934 orig_data = xdp.data; 3935 3936 act = bpf_prog_run_xdp(xdp_prog, &xdp); 3937 3938 off = xdp.data - orig_data; 3939 if (off > 0) 3940 __skb_pull(skb, off); 3941 else if (off < 0) 3942 __skb_push(skb, -off); 3943 skb->mac_header += off; 3944 3945 switch (act) { 3946 case XDP_REDIRECT: 3947 case XDP_TX: 3948 __skb_push(skb, mac_len); 3949 break; 3950 case XDP_PASS: 3951 metalen = xdp.data - xdp.data_meta; 3952 if (metalen) 3953 skb_metadata_set(skb, metalen); 3954 break; 3955 default: 3956 bpf_warn_invalid_xdp_action(act); 3957 /* fall through */ 3958 case XDP_ABORTED: 3959 trace_xdp_exception(skb->dev, xdp_prog, act); 3960 /* fall through */ 3961 case XDP_DROP: 3962 do_drop: 3963 kfree_skb(skb); 3964 break; 3965 } 3966 3967 return act; 3968 } 3969 3970 /* When doing generic XDP we have to bypass the qdisc layer and the 3971 * network taps in order to match in-driver-XDP behavior. 3972 */ 3973 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 3974 { 3975 struct net_device *dev = skb->dev; 3976 struct netdev_queue *txq; 3977 bool free_skb = true; 3978 int cpu, rc; 3979 3980 txq = netdev_pick_tx(dev, skb, NULL); 3981 cpu = smp_processor_id(); 3982 HARD_TX_LOCK(dev, txq, cpu); 3983 if (!netif_xmit_stopped(txq)) { 3984 rc = netdev_start_xmit(skb, dev, txq, 0); 3985 if (dev_xmit_complete(rc)) 3986 free_skb = false; 3987 } 3988 HARD_TX_UNLOCK(dev, txq); 3989 if (free_skb) { 3990 trace_xdp_exception(dev, xdp_prog, XDP_TX); 3991 kfree_skb(skb); 3992 } 3993 } 3994 EXPORT_SYMBOL_GPL(generic_xdp_tx); 3995 3996 static struct static_key generic_xdp_needed __read_mostly; 3997 3998 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 3999 { 4000 if (xdp_prog) { 4001 u32 act = netif_receive_generic_xdp(skb, xdp_prog); 4002 int err; 4003 4004 if (act != XDP_PASS) { 4005 switch (act) { 4006 case XDP_REDIRECT: 4007 err = xdp_do_generic_redirect(skb->dev, skb, 4008 xdp_prog); 4009 if (err) 4010 goto out_redir; 4011 /* fallthru to submit skb */ 4012 case XDP_TX: 4013 generic_xdp_tx(skb, xdp_prog); 4014 break; 4015 } 4016 return XDP_DROP; 4017 } 4018 } 4019 return XDP_PASS; 4020 out_redir: 4021 kfree_skb(skb); 4022 return XDP_DROP; 4023 } 4024 EXPORT_SYMBOL_GPL(do_xdp_generic); 4025 4026 static int netif_rx_internal(struct sk_buff *skb) 4027 { 4028 int ret; 4029 4030 net_timestamp_check(netdev_tstamp_prequeue, skb); 4031 4032 trace_netif_rx(skb); 4033 4034 if (static_key_false(&generic_xdp_needed)) { 4035 int ret; 4036 4037 preempt_disable(); 4038 rcu_read_lock(); 4039 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4040 rcu_read_unlock(); 4041 preempt_enable(); 4042 4043 /* Consider XDP consuming the packet a success from 4044 * the netdev point of view we do not want to count 4045 * this as an error. 4046 */ 4047 if (ret != XDP_PASS) 4048 return NET_RX_SUCCESS; 4049 } 4050 4051 #ifdef CONFIG_RPS 4052 if (static_key_false(&rps_needed)) { 4053 struct rps_dev_flow voidflow, *rflow = &voidflow; 4054 int cpu; 4055 4056 preempt_disable(); 4057 rcu_read_lock(); 4058 4059 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4060 if (cpu < 0) 4061 cpu = smp_processor_id(); 4062 4063 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4064 4065 rcu_read_unlock(); 4066 preempt_enable(); 4067 } else 4068 #endif 4069 { 4070 unsigned int qtail; 4071 4072 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4073 put_cpu(); 4074 } 4075 return ret; 4076 } 4077 4078 /** 4079 * netif_rx - post buffer to the network code 4080 * @skb: buffer to post 4081 * 4082 * This function receives a packet from a device driver and queues it for 4083 * the upper (protocol) levels to process. It always succeeds. The buffer 4084 * may be dropped during processing for congestion control or by the 4085 * protocol layers. 4086 * 4087 * return values: 4088 * NET_RX_SUCCESS (no congestion) 4089 * NET_RX_DROP (packet was dropped) 4090 * 4091 */ 4092 4093 int netif_rx(struct sk_buff *skb) 4094 { 4095 trace_netif_rx_entry(skb); 4096 4097 return netif_rx_internal(skb); 4098 } 4099 EXPORT_SYMBOL(netif_rx); 4100 4101 int netif_rx_ni(struct sk_buff *skb) 4102 { 4103 int err; 4104 4105 trace_netif_rx_ni_entry(skb); 4106 4107 preempt_disable(); 4108 err = netif_rx_internal(skb); 4109 if (local_softirq_pending()) 4110 do_softirq(); 4111 preempt_enable(); 4112 4113 return err; 4114 } 4115 EXPORT_SYMBOL(netif_rx_ni); 4116 4117 static __latent_entropy void net_tx_action(struct softirq_action *h) 4118 { 4119 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4120 4121 if (sd->completion_queue) { 4122 struct sk_buff *clist; 4123 4124 local_irq_disable(); 4125 clist = sd->completion_queue; 4126 sd->completion_queue = NULL; 4127 local_irq_enable(); 4128 4129 while (clist) { 4130 struct sk_buff *skb = clist; 4131 4132 clist = clist->next; 4133 4134 WARN_ON(refcount_read(&skb->users)); 4135 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4136 trace_consume_skb(skb); 4137 else 4138 trace_kfree_skb(skb, net_tx_action); 4139 4140 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4141 __kfree_skb(skb); 4142 else 4143 __kfree_skb_defer(skb); 4144 } 4145 4146 __kfree_skb_flush(); 4147 } 4148 4149 if (sd->output_queue) { 4150 struct Qdisc *head; 4151 4152 local_irq_disable(); 4153 head = sd->output_queue; 4154 sd->output_queue = NULL; 4155 sd->output_queue_tailp = &sd->output_queue; 4156 local_irq_enable(); 4157 4158 while (head) { 4159 struct Qdisc *q = head; 4160 spinlock_t *root_lock; 4161 4162 head = head->next_sched; 4163 4164 root_lock = qdisc_lock(q); 4165 spin_lock(root_lock); 4166 /* We need to make sure head->next_sched is read 4167 * before clearing __QDISC_STATE_SCHED 4168 */ 4169 smp_mb__before_atomic(); 4170 clear_bit(__QDISC_STATE_SCHED, &q->state); 4171 qdisc_run(q); 4172 spin_unlock(root_lock); 4173 } 4174 } 4175 } 4176 4177 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4178 /* This hook is defined here for ATM LANE */ 4179 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4180 unsigned char *addr) __read_mostly; 4181 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4182 #endif 4183 4184 static inline struct sk_buff * 4185 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4186 struct net_device *orig_dev) 4187 { 4188 #ifdef CONFIG_NET_CLS_ACT 4189 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list); 4190 struct tcf_result cl_res; 4191 4192 /* If there's at least one ingress present somewhere (so 4193 * we get here via enabled static key), remaining devices 4194 * that are not configured with an ingress qdisc will bail 4195 * out here. 4196 */ 4197 if (!cl) 4198 return skb; 4199 if (*pt_prev) { 4200 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4201 *pt_prev = NULL; 4202 } 4203 4204 qdisc_skb_cb(skb)->pkt_len = skb->len; 4205 skb->tc_at_ingress = 1; 4206 qdisc_bstats_cpu_update(cl->q, skb); 4207 4208 switch (tcf_classify(skb, cl, &cl_res, false)) { 4209 case TC_ACT_OK: 4210 case TC_ACT_RECLASSIFY: 4211 skb->tc_index = TC_H_MIN(cl_res.classid); 4212 break; 4213 case TC_ACT_SHOT: 4214 qdisc_qstats_cpu_drop(cl->q); 4215 kfree_skb(skb); 4216 return NULL; 4217 case TC_ACT_STOLEN: 4218 case TC_ACT_QUEUED: 4219 case TC_ACT_TRAP: 4220 consume_skb(skb); 4221 return NULL; 4222 case TC_ACT_REDIRECT: 4223 /* skb_mac_header check was done by cls/act_bpf, so 4224 * we can safely push the L2 header back before 4225 * redirecting to another netdev 4226 */ 4227 __skb_push(skb, skb->mac_len); 4228 skb_do_redirect(skb); 4229 return NULL; 4230 default: 4231 break; 4232 } 4233 #endif /* CONFIG_NET_CLS_ACT */ 4234 return skb; 4235 } 4236 4237 /** 4238 * netdev_is_rx_handler_busy - check if receive handler is registered 4239 * @dev: device to check 4240 * 4241 * Check if a receive handler is already registered for a given device. 4242 * Return true if there one. 4243 * 4244 * The caller must hold the rtnl_mutex. 4245 */ 4246 bool netdev_is_rx_handler_busy(struct net_device *dev) 4247 { 4248 ASSERT_RTNL(); 4249 return dev && rtnl_dereference(dev->rx_handler); 4250 } 4251 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4252 4253 /** 4254 * netdev_rx_handler_register - register receive handler 4255 * @dev: device to register a handler for 4256 * @rx_handler: receive handler to register 4257 * @rx_handler_data: data pointer that is used by rx handler 4258 * 4259 * Register a receive handler for a device. This handler will then be 4260 * called from __netif_receive_skb. A negative errno code is returned 4261 * on a failure. 4262 * 4263 * The caller must hold the rtnl_mutex. 4264 * 4265 * For a general description of rx_handler, see enum rx_handler_result. 4266 */ 4267 int netdev_rx_handler_register(struct net_device *dev, 4268 rx_handler_func_t *rx_handler, 4269 void *rx_handler_data) 4270 { 4271 if (netdev_is_rx_handler_busy(dev)) 4272 return -EBUSY; 4273 4274 /* Note: rx_handler_data must be set before rx_handler */ 4275 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4276 rcu_assign_pointer(dev->rx_handler, rx_handler); 4277 4278 return 0; 4279 } 4280 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4281 4282 /** 4283 * netdev_rx_handler_unregister - unregister receive handler 4284 * @dev: device to unregister a handler from 4285 * 4286 * Unregister a receive handler from a device. 4287 * 4288 * The caller must hold the rtnl_mutex. 4289 */ 4290 void netdev_rx_handler_unregister(struct net_device *dev) 4291 { 4292 4293 ASSERT_RTNL(); 4294 RCU_INIT_POINTER(dev->rx_handler, NULL); 4295 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4296 * section has a guarantee to see a non NULL rx_handler_data 4297 * as well. 4298 */ 4299 synchronize_net(); 4300 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4301 } 4302 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4303 4304 /* 4305 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4306 * the special handling of PFMEMALLOC skbs. 4307 */ 4308 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4309 { 4310 switch (skb->protocol) { 4311 case htons(ETH_P_ARP): 4312 case htons(ETH_P_IP): 4313 case htons(ETH_P_IPV6): 4314 case htons(ETH_P_8021Q): 4315 case htons(ETH_P_8021AD): 4316 return true; 4317 default: 4318 return false; 4319 } 4320 } 4321 4322 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4323 int *ret, struct net_device *orig_dev) 4324 { 4325 #ifdef CONFIG_NETFILTER_INGRESS 4326 if (nf_hook_ingress_active(skb)) { 4327 int ingress_retval; 4328 4329 if (*pt_prev) { 4330 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4331 *pt_prev = NULL; 4332 } 4333 4334 rcu_read_lock(); 4335 ingress_retval = nf_hook_ingress(skb); 4336 rcu_read_unlock(); 4337 return ingress_retval; 4338 } 4339 #endif /* CONFIG_NETFILTER_INGRESS */ 4340 return 0; 4341 } 4342 4343 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 4344 { 4345 struct packet_type *ptype, *pt_prev; 4346 rx_handler_func_t *rx_handler; 4347 struct net_device *orig_dev; 4348 bool deliver_exact = false; 4349 int ret = NET_RX_DROP; 4350 __be16 type; 4351 4352 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4353 4354 trace_netif_receive_skb(skb); 4355 4356 orig_dev = skb->dev; 4357 4358 skb_reset_network_header(skb); 4359 if (!skb_transport_header_was_set(skb)) 4360 skb_reset_transport_header(skb); 4361 skb_reset_mac_len(skb); 4362 4363 pt_prev = NULL; 4364 4365 another_round: 4366 skb->skb_iif = skb->dev->ifindex; 4367 4368 __this_cpu_inc(softnet_data.processed); 4369 4370 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4371 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4372 skb = skb_vlan_untag(skb); 4373 if (unlikely(!skb)) 4374 goto out; 4375 } 4376 4377 if (skb_skip_tc_classify(skb)) 4378 goto skip_classify; 4379 4380 if (pfmemalloc) 4381 goto skip_taps; 4382 4383 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4384 if (pt_prev) 4385 ret = deliver_skb(skb, pt_prev, orig_dev); 4386 pt_prev = ptype; 4387 } 4388 4389 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4390 if (pt_prev) 4391 ret = deliver_skb(skb, pt_prev, orig_dev); 4392 pt_prev = ptype; 4393 } 4394 4395 skip_taps: 4396 #ifdef CONFIG_NET_INGRESS 4397 if (static_key_false(&ingress_needed)) { 4398 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4399 if (!skb) 4400 goto out; 4401 4402 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4403 goto out; 4404 } 4405 #endif 4406 skb_reset_tc(skb); 4407 skip_classify: 4408 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4409 goto drop; 4410 4411 if (skb_vlan_tag_present(skb)) { 4412 if (pt_prev) { 4413 ret = deliver_skb(skb, pt_prev, orig_dev); 4414 pt_prev = NULL; 4415 } 4416 if (vlan_do_receive(&skb)) 4417 goto another_round; 4418 else if (unlikely(!skb)) 4419 goto out; 4420 } 4421 4422 rx_handler = rcu_dereference(skb->dev->rx_handler); 4423 if (rx_handler) { 4424 if (pt_prev) { 4425 ret = deliver_skb(skb, pt_prev, orig_dev); 4426 pt_prev = NULL; 4427 } 4428 switch (rx_handler(&skb)) { 4429 case RX_HANDLER_CONSUMED: 4430 ret = NET_RX_SUCCESS; 4431 goto out; 4432 case RX_HANDLER_ANOTHER: 4433 goto another_round; 4434 case RX_HANDLER_EXACT: 4435 deliver_exact = true; 4436 case RX_HANDLER_PASS: 4437 break; 4438 default: 4439 BUG(); 4440 } 4441 } 4442 4443 if (unlikely(skb_vlan_tag_present(skb))) { 4444 if (skb_vlan_tag_get_id(skb)) 4445 skb->pkt_type = PACKET_OTHERHOST; 4446 /* Note: we might in the future use prio bits 4447 * and set skb->priority like in vlan_do_receive() 4448 * For the time being, just ignore Priority Code Point 4449 */ 4450 skb->vlan_tci = 0; 4451 } 4452 4453 type = skb->protocol; 4454 4455 /* deliver only exact match when indicated */ 4456 if (likely(!deliver_exact)) { 4457 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4458 &ptype_base[ntohs(type) & 4459 PTYPE_HASH_MASK]); 4460 } 4461 4462 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4463 &orig_dev->ptype_specific); 4464 4465 if (unlikely(skb->dev != orig_dev)) { 4466 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4467 &skb->dev->ptype_specific); 4468 } 4469 4470 if (pt_prev) { 4471 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 4472 goto drop; 4473 else 4474 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4475 } else { 4476 drop: 4477 if (!deliver_exact) 4478 atomic_long_inc(&skb->dev->rx_dropped); 4479 else 4480 atomic_long_inc(&skb->dev->rx_nohandler); 4481 kfree_skb(skb); 4482 /* Jamal, now you will not able to escape explaining 4483 * me how you were going to use this. :-) 4484 */ 4485 ret = NET_RX_DROP; 4486 } 4487 4488 out: 4489 return ret; 4490 } 4491 4492 static int __netif_receive_skb(struct sk_buff *skb) 4493 { 4494 int ret; 4495 4496 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 4497 unsigned int noreclaim_flag; 4498 4499 /* 4500 * PFMEMALLOC skbs are special, they should 4501 * - be delivered to SOCK_MEMALLOC sockets only 4502 * - stay away from userspace 4503 * - have bounded memory usage 4504 * 4505 * Use PF_MEMALLOC as this saves us from propagating the allocation 4506 * context down to all allocation sites. 4507 */ 4508 noreclaim_flag = memalloc_noreclaim_save(); 4509 ret = __netif_receive_skb_core(skb, true); 4510 memalloc_noreclaim_restore(noreclaim_flag); 4511 } else 4512 ret = __netif_receive_skb_core(skb, false); 4513 4514 return ret; 4515 } 4516 4517 static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp) 4518 { 4519 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 4520 struct bpf_prog *new = xdp->prog; 4521 int ret = 0; 4522 4523 switch (xdp->command) { 4524 case XDP_SETUP_PROG: 4525 rcu_assign_pointer(dev->xdp_prog, new); 4526 if (old) 4527 bpf_prog_put(old); 4528 4529 if (old && !new) { 4530 static_key_slow_dec(&generic_xdp_needed); 4531 } else if (new && !old) { 4532 static_key_slow_inc(&generic_xdp_needed); 4533 dev_disable_lro(dev); 4534 } 4535 break; 4536 4537 case XDP_QUERY_PROG: 4538 xdp->prog_attached = !!old; 4539 xdp->prog_id = old ? old->aux->id : 0; 4540 break; 4541 4542 default: 4543 ret = -EINVAL; 4544 break; 4545 } 4546 4547 return ret; 4548 } 4549 4550 static int netif_receive_skb_internal(struct sk_buff *skb) 4551 { 4552 int ret; 4553 4554 net_timestamp_check(netdev_tstamp_prequeue, skb); 4555 4556 if (skb_defer_rx_timestamp(skb)) 4557 return NET_RX_SUCCESS; 4558 4559 if (static_key_false(&generic_xdp_needed)) { 4560 int ret; 4561 4562 preempt_disable(); 4563 rcu_read_lock(); 4564 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4565 rcu_read_unlock(); 4566 preempt_enable(); 4567 4568 if (ret != XDP_PASS) 4569 return NET_RX_DROP; 4570 } 4571 4572 rcu_read_lock(); 4573 #ifdef CONFIG_RPS 4574 if (static_key_false(&rps_needed)) { 4575 struct rps_dev_flow voidflow, *rflow = &voidflow; 4576 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 4577 4578 if (cpu >= 0) { 4579 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4580 rcu_read_unlock(); 4581 return ret; 4582 } 4583 } 4584 #endif 4585 ret = __netif_receive_skb(skb); 4586 rcu_read_unlock(); 4587 return ret; 4588 } 4589 4590 /** 4591 * netif_receive_skb - process receive buffer from network 4592 * @skb: buffer to process 4593 * 4594 * netif_receive_skb() is the main receive data processing function. 4595 * It always succeeds. The buffer may be dropped during processing 4596 * for congestion control or by the protocol layers. 4597 * 4598 * This function may only be called from softirq context and interrupts 4599 * should be enabled. 4600 * 4601 * Return values (usually ignored): 4602 * NET_RX_SUCCESS: no congestion 4603 * NET_RX_DROP: packet was dropped 4604 */ 4605 int netif_receive_skb(struct sk_buff *skb) 4606 { 4607 trace_netif_receive_skb_entry(skb); 4608 4609 return netif_receive_skb_internal(skb); 4610 } 4611 EXPORT_SYMBOL(netif_receive_skb); 4612 4613 DEFINE_PER_CPU(struct work_struct, flush_works); 4614 4615 /* Network device is going away, flush any packets still pending */ 4616 static void flush_backlog(struct work_struct *work) 4617 { 4618 struct sk_buff *skb, *tmp; 4619 struct softnet_data *sd; 4620 4621 local_bh_disable(); 4622 sd = this_cpu_ptr(&softnet_data); 4623 4624 local_irq_disable(); 4625 rps_lock(sd); 4626 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 4627 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4628 __skb_unlink(skb, &sd->input_pkt_queue); 4629 kfree_skb(skb); 4630 input_queue_head_incr(sd); 4631 } 4632 } 4633 rps_unlock(sd); 4634 local_irq_enable(); 4635 4636 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 4637 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4638 __skb_unlink(skb, &sd->process_queue); 4639 kfree_skb(skb); 4640 input_queue_head_incr(sd); 4641 } 4642 } 4643 local_bh_enable(); 4644 } 4645 4646 static void flush_all_backlogs(void) 4647 { 4648 unsigned int cpu; 4649 4650 get_online_cpus(); 4651 4652 for_each_online_cpu(cpu) 4653 queue_work_on(cpu, system_highpri_wq, 4654 per_cpu_ptr(&flush_works, cpu)); 4655 4656 for_each_online_cpu(cpu) 4657 flush_work(per_cpu_ptr(&flush_works, cpu)); 4658 4659 put_online_cpus(); 4660 } 4661 4662 static int napi_gro_complete(struct sk_buff *skb) 4663 { 4664 struct packet_offload *ptype; 4665 __be16 type = skb->protocol; 4666 struct list_head *head = &offload_base; 4667 int err = -ENOENT; 4668 4669 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 4670 4671 if (NAPI_GRO_CB(skb)->count == 1) { 4672 skb_shinfo(skb)->gso_size = 0; 4673 goto out; 4674 } 4675 4676 rcu_read_lock(); 4677 list_for_each_entry_rcu(ptype, head, list) { 4678 if (ptype->type != type || !ptype->callbacks.gro_complete) 4679 continue; 4680 4681 err = ptype->callbacks.gro_complete(skb, 0); 4682 break; 4683 } 4684 rcu_read_unlock(); 4685 4686 if (err) { 4687 WARN_ON(&ptype->list == head); 4688 kfree_skb(skb); 4689 return NET_RX_SUCCESS; 4690 } 4691 4692 out: 4693 return netif_receive_skb_internal(skb); 4694 } 4695 4696 /* napi->gro_list contains packets ordered by age. 4697 * youngest packets at the head of it. 4698 * Complete skbs in reverse order to reduce latencies. 4699 */ 4700 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 4701 { 4702 struct sk_buff *skb, *prev = NULL; 4703 4704 /* scan list and build reverse chain */ 4705 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 4706 skb->prev = prev; 4707 prev = skb; 4708 } 4709 4710 for (skb = prev; skb; skb = prev) { 4711 skb->next = NULL; 4712 4713 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 4714 return; 4715 4716 prev = skb->prev; 4717 napi_gro_complete(skb); 4718 napi->gro_count--; 4719 } 4720 4721 napi->gro_list = NULL; 4722 } 4723 EXPORT_SYMBOL(napi_gro_flush); 4724 4725 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 4726 { 4727 struct sk_buff *p; 4728 unsigned int maclen = skb->dev->hard_header_len; 4729 u32 hash = skb_get_hash_raw(skb); 4730 4731 for (p = napi->gro_list; p; p = p->next) { 4732 unsigned long diffs; 4733 4734 NAPI_GRO_CB(p)->flush = 0; 4735 4736 if (hash != skb_get_hash_raw(p)) { 4737 NAPI_GRO_CB(p)->same_flow = 0; 4738 continue; 4739 } 4740 4741 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 4742 diffs |= p->vlan_tci ^ skb->vlan_tci; 4743 diffs |= skb_metadata_dst_cmp(p, skb); 4744 diffs |= skb_metadata_differs(p, skb); 4745 if (maclen == ETH_HLEN) 4746 diffs |= compare_ether_header(skb_mac_header(p), 4747 skb_mac_header(skb)); 4748 else if (!diffs) 4749 diffs = memcmp(skb_mac_header(p), 4750 skb_mac_header(skb), 4751 maclen); 4752 NAPI_GRO_CB(p)->same_flow = !diffs; 4753 } 4754 } 4755 4756 static void skb_gro_reset_offset(struct sk_buff *skb) 4757 { 4758 const struct skb_shared_info *pinfo = skb_shinfo(skb); 4759 const skb_frag_t *frag0 = &pinfo->frags[0]; 4760 4761 NAPI_GRO_CB(skb)->data_offset = 0; 4762 NAPI_GRO_CB(skb)->frag0 = NULL; 4763 NAPI_GRO_CB(skb)->frag0_len = 0; 4764 4765 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 4766 pinfo->nr_frags && 4767 !PageHighMem(skb_frag_page(frag0))) { 4768 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 4769 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 4770 skb_frag_size(frag0), 4771 skb->end - skb->tail); 4772 } 4773 } 4774 4775 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 4776 { 4777 struct skb_shared_info *pinfo = skb_shinfo(skb); 4778 4779 BUG_ON(skb->end - skb->tail < grow); 4780 4781 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 4782 4783 skb->data_len -= grow; 4784 skb->tail += grow; 4785 4786 pinfo->frags[0].page_offset += grow; 4787 skb_frag_size_sub(&pinfo->frags[0], grow); 4788 4789 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 4790 skb_frag_unref(skb, 0); 4791 memmove(pinfo->frags, pinfo->frags + 1, 4792 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 4793 } 4794 } 4795 4796 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4797 { 4798 struct sk_buff **pp = NULL; 4799 struct packet_offload *ptype; 4800 __be16 type = skb->protocol; 4801 struct list_head *head = &offload_base; 4802 int same_flow; 4803 enum gro_result ret; 4804 int grow; 4805 4806 if (netif_elide_gro(skb->dev)) 4807 goto normal; 4808 4809 gro_list_prepare(napi, skb); 4810 4811 rcu_read_lock(); 4812 list_for_each_entry_rcu(ptype, head, list) { 4813 if (ptype->type != type || !ptype->callbacks.gro_receive) 4814 continue; 4815 4816 skb_set_network_header(skb, skb_gro_offset(skb)); 4817 skb_reset_mac_len(skb); 4818 NAPI_GRO_CB(skb)->same_flow = 0; 4819 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 4820 NAPI_GRO_CB(skb)->free = 0; 4821 NAPI_GRO_CB(skb)->encap_mark = 0; 4822 NAPI_GRO_CB(skb)->recursion_counter = 0; 4823 NAPI_GRO_CB(skb)->is_fou = 0; 4824 NAPI_GRO_CB(skb)->is_atomic = 1; 4825 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 4826 4827 /* Setup for GRO checksum validation */ 4828 switch (skb->ip_summed) { 4829 case CHECKSUM_COMPLETE: 4830 NAPI_GRO_CB(skb)->csum = skb->csum; 4831 NAPI_GRO_CB(skb)->csum_valid = 1; 4832 NAPI_GRO_CB(skb)->csum_cnt = 0; 4833 break; 4834 case CHECKSUM_UNNECESSARY: 4835 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 4836 NAPI_GRO_CB(skb)->csum_valid = 0; 4837 break; 4838 default: 4839 NAPI_GRO_CB(skb)->csum_cnt = 0; 4840 NAPI_GRO_CB(skb)->csum_valid = 0; 4841 } 4842 4843 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4844 break; 4845 } 4846 rcu_read_unlock(); 4847 4848 if (&ptype->list == head) 4849 goto normal; 4850 4851 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) { 4852 ret = GRO_CONSUMED; 4853 goto ok; 4854 } 4855 4856 same_flow = NAPI_GRO_CB(skb)->same_flow; 4857 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 4858 4859 if (pp) { 4860 struct sk_buff *nskb = *pp; 4861 4862 *pp = nskb->next; 4863 nskb->next = NULL; 4864 napi_gro_complete(nskb); 4865 napi->gro_count--; 4866 } 4867 4868 if (same_flow) 4869 goto ok; 4870 4871 if (NAPI_GRO_CB(skb)->flush) 4872 goto normal; 4873 4874 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4875 struct sk_buff *nskb = napi->gro_list; 4876 4877 /* locate the end of the list to select the 'oldest' flow */ 4878 while (nskb->next) { 4879 pp = &nskb->next; 4880 nskb = *pp; 4881 } 4882 *pp = NULL; 4883 nskb->next = NULL; 4884 napi_gro_complete(nskb); 4885 } else { 4886 napi->gro_count++; 4887 } 4888 NAPI_GRO_CB(skb)->count = 1; 4889 NAPI_GRO_CB(skb)->age = jiffies; 4890 NAPI_GRO_CB(skb)->last = skb; 4891 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 4892 skb->next = napi->gro_list; 4893 napi->gro_list = skb; 4894 ret = GRO_HELD; 4895 4896 pull: 4897 grow = skb_gro_offset(skb) - skb_headlen(skb); 4898 if (grow > 0) 4899 gro_pull_from_frag0(skb, grow); 4900 ok: 4901 return ret; 4902 4903 normal: 4904 ret = GRO_NORMAL; 4905 goto pull; 4906 } 4907 4908 struct packet_offload *gro_find_receive_by_type(__be16 type) 4909 { 4910 struct list_head *offload_head = &offload_base; 4911 struct packet_offload *ptype; 4912 4913 list_for_each_entry_rcu(ptype, offload_head, list) { 4914 if (ptype->type != type || !ptype->callbacks.gro_receive) 4915 continue; 4916 return ptype; 4917 } 4918 return NULL; 4919 } 4920 EXPORT_SYMBOL(gro_find_receive_by_type); 4921 4922 struct packet_offload *gro_find_complete_by_type(__be16 type) 4923 { 4924 struct list_head *offload_head = &offload_base; 4925 struct packet_offload *ptype; 4926 4927 list_for_each_entry_rcu(ptype, offload_head, list) { 4928 if (ptype->type != type || !ptype->callbacks.gro_complete) 4929 continue; 4930 return ptype; 4931 } 4932 return NULL; 4933 } 4934 EXPORT_SYMBOL(gro_find_complete_by_type); 4935 4936 static void napi_skb_free_stolen_head(struct sk_buff *skb) 4937 { 4938 skb_dst_drop(skb); 4939 secpath_reset(skb); 4940 kmem_cache_free(skbuff_head_cache, skb); 4941 } 4942 4943 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4944 { 4945 switch (ret) { 4946 case GRO_NORMAL: 4947 if (netif_receive_skb_internal(skb)) 4948 ret = GRO_DROP; 4949 break; 4950 4951 case GRO_DROP: 4952 kfree_skb(skb); 4953 break; 4954 4955 case GRO_MERGED_FREE: 4956 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 4957 napi_skb_free_stolen_head(skb); 4958 else 4959 __kfree_skb(skb); 4960 break; 4961 4962 case GRO_HELD: 4963 case GRO_MERGED: 4964 case GRO_CONSUMED: 4965 break; 4966 } 4967 4968 return ret; 4969 } 4970 4971 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4972 { 4973 skb_mark_napi_id(skb, napi); 4974 trace_napi_gro_receive_entry(skb); 4975 4976 skb_gro_reset_offset(skb); 4977 4978 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 4979 } 4980 EXPORT_SYMBOL(napi_gro_receive); 4981 4982 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 4983 { 4984 if (unlikely(skb->pfmemalloc)) { 4985 consume_skb(skb); 4986 return; 4987 } 4988 __skb_pull(skb, skb_headlen(skb)); 4989 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 4990 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 4991 skb->vlan_tci = 0; 4992 skb->dev = napi->dev; 4993 skb->skb_iif = 0; 4994 skb->encapsulation = 0; 4995 skb_shinfo(skb)->gso_type = 0; 4996 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4997 secpath_reset(skb); 4998 4999 napi->skb = skb; 5000 } 5001 5002 struct sk_buff *napi_get_frags(struct napi_struct *napi) 5003 { 5004 struct sk_buff *skb = napi->skb; 5005 5006 if (!skb) { 5007 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 5008 if (skb) { 5009 napi->skb = skb; 5010 skb_mark_napi_id(skb, napi); 5011 } 5012 } 5013 return skb; 5014 } 5015 EXPORT_SYMBOL(napi_get_frags); 5016 5017 static gro_result_t napi_frags_finish(struct napi_struct *napi, 5018 struct sk_buff *skb, 5019 gro_result_t ret) 5020 { 5021 switch (ret) { 5022 case GRO_NORMAL: 5023 case GRO_HELD: 5024 __skb_push(skb, ETH_HLEN); 5025 skb->protocol = eth_type_trans(skb, skb->dev); 5026 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 5027 ret = GRO_DROP; 5028 break; 5029 5030 case GRO_DROP: 5031 napi_reuse_skb(napi, skb); 5032 break; 5033 5034 case GRO_MERGED_FREE: 5035 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5036 napi_skb_free_stolen_head(skb); 5037 else 5038 napi_reuse_skb(napi, skb); 5039 break; 5040 5041 case GRO_MERGED: 5042 case GRO_CONSUMED: 5043 break; 5044 } 5045 5046 return ret; 5047 } 5048 5049 /* Upper GRO stack assumes network header starts at gro_offset=0 5050 * Drivers could call both napi_gro_frags() and napi_gro_receive() 5051 * We copy ethernet header into skb->data to have a common layout. 5052 */ 5053 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 5054 { 5055 struct sk_buff *skb = napi->skb; 5056 const struct ethhdr *eth; 5057 unsigned int hlen = sizeof(*eth); 5058 5059 napi->skb = NULL; 5060 5061 skb_reset_mac_header(skb); 5062 skb_gro_reset_offset(skb); 5063 5064 eth = skb_gro_header_fast(skb, 0); 5065 if (unlikely(skb_gro_header_hard(skb, hlen))) { 5066 eth = skb_gro_header_slow(skb, hlen, 0); 5067 if (unlikely(!eth)) { 5068 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 5069 __func__, napi->dev->name); 5070 napi_reuse_skb(napi, skb); 5071 return NULL; 5072 } 5073 } else { 5074 gro_pull_from_frag0(skb, hlen); 5075 NAPI_GRO_CB(skb)->frag0 += hlen; 5076 NAPI_GRO_CB(skb)->frag0_len -= hlen; 5077 } 5078 __skb_pull(skb, hlen); 5079 5080 /* 5081 * This works because the only protocols we care about don't require 5082 * special handling. 5083 * We'll fix it up properly in napi_frags_finish() 5084 */ 5085 skb->protocol = eth->h_proto; 5086 5087 return skb; 5088 } 5089 5090 gro_result_t napi_gro_frags(struct napi_struct *napi) 5091 { 5092 struct sk_buff *skb = napi_frags_skb(napi); 5093 5094 if (!skb) 5095 return GRO_DROP; 5096 5097 trace_napi_gro_frags_entry(skb); 5098 5099 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 5100 } 5101 EXPORT_SYMBOL(napi_gro_frags); 5102 5103 /* Compute the checksum from gro_offset and return the folded value 5104 * after adding in any pseudo checksum. 5105 */ 5106 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 5107 { 5108 __wsum wsum; 5109 __sum16 sum; 5110 5111 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 5112 5113 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 5114 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 5115 if (likely(!sum)) { 5116 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 5117 !skb->csum_complete_sw) 5118 netdev_rx_csum_fault(skb->dev); 5119 } 5120 5121 NAPI_GRO_CB(skb)->csum = wsum; 5122 NAPI_GRO_CB(skb)->csum_valid = 1; 5123 5124 return sum; 5125 } 5126 EXPORT_SYMBOL(__skb_gro_checksum_complete); 5127 5128 static void net_rps_send_ipi(struct softnet_data *remsd) 5129 { 5130 #ifdef CONFIG_RPS 5131 while (remsd) { 5132 struct softnet_data *next = remsd->rps_ipi_next; 5133 5134 if (cpu_online(remsd->cpu)) 5135 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5136 remsd = next; 5137 } 5138 #endif 5139 } 5140 5141 /* 5142 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5143 * Note: called with local irq disabled, but exits with local irq enabled. 5144 */ 5145 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5146 { 5147 #ifdef CONFIG_RPS 5148 struct softnet_data *remsd = sd->rps_ipi_list; 5149 5150 if (remsd) { 5151 sd->rps_ipi_list = NULL; 5152 5153 local_irq_enable(); 5154 5155 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5156 net_rps_send_ipi(remsd); 5157 } else 5158 #endif 5159 local_irq_enable(); 5160 } 5161 5162 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5163 { 5164 #ifdef CONFIG_RPS 5165 return sd->rps_ipi_list != NULL; 5166 #else 5167 return false; 5168 #endif 5169 } 5170 5171 static int process_backlog(struct napi_struct *napi, int quota) 5172 { 5173 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5174 bool again = true; 5175 int work = 0; 5176 5177 /* Check if we have pending ipi, its better to send them now, 5178 * not waiting net_rx_action() end. 5179 */ 5180 if (sd_has_rps_ipi_waiting(sd)) { 5181 local_irq_disable(); 5182 net_rps_action_and_irq_enable(sd); 5183 } 5184 5185 napi->weight = dev_rx_weight; 5186 while (again) { 5187 struct sk_buff *skb; 5188 5189 while ((skb = __skb_dequeue(&sd->process_queue))) { 5190 rcu_read_lock(); 5191 __netif_receive_skb(skb); 5192 rcu_read_unlock(); 5193 input_queue_head_incr(sd); 5194 if (++work >= quota) 5195 return work; 5196 5197 } 5198 5199 local_irq_disable(); 5200 rps_lock(sd); 5201 if (skb_queue_empty(&sd->input_pkt_queue)) { 5202 /* 5203 * Inline a custom version of __napi_complete(). 5204 * only current cpu owns and manipulates this napi, 5205 * and NAPI_STATE_SCHED is the only possible flag set 5206 * on backlog. 5207 * We can use a plain write instead of clear_bit(), 5208 * and we dont need an smp_mb() memory barrier. 5209 */ 5210 napi->state = 0; 5211 again = false; 5212 } else { 5213 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5214 &sd->process_queue); 5215 } 5216 rps_unlock(sd); 5217 local_irq_enable(); 5218 } 5219 5220 return work; 5221 } 5222 5223 /** 5224 * __napi_schedule - schedule for receive 5225 * @n: entry to schedule 5226 * 5227 * The entry's receive function will be scheduled to run. 5228 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5229 */ 5230 void __napi_schedule(struct napi_struct *n) 5231 { 5232 unsigned long flags; 5233 5234 local_irq_save(flags); 5235 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5236 local_irq_restore(flags); 5237 } 5238 EXPORT_SYMBOL(__napi_schedule); 5239 5240 /** 5241 * napi_schedule_prep - check if napi can be scheduled 5242 * @n: napi context 5243 * 5244 * Test if NAPI routine is already running, and if not mark 5245 * it as running. This is used as a condition variable 5246 * insure only one NAPI poll instance runs. We also make 5247 * sure there is no pending NAPI disable. 5248 */ 5249 bool napi_schedule_prep(struct napi_struct *n) 5250 { 5251 unsigned long val, new; 5252 5253 do { 5254 val = READ_ONCE(n->state); 5255 if (unlikely(val & NAPIF_STATE_DISABLE)) 5256 return false; 5257 new = val | NAPIF_STATE_SCHED; 5258 5259 /* Sets STATE_MISSED bit if STATE_SCHED was already set 5260 * This was suggested by Alexander Duyck, as compiler 5261 * emits better code than : 5262 * if (val & NAPIF_STATE_SCHED) 5263 * new |= NAPIF_STATE_MISSED; 5264 */ 5265 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 5266 NAPIF_STATE_MISSED; 5267 } while (cmpxchg(&n->state, val, new) != val); 5268 5269 return !(val & NAPIF_STATE_SCHED); 5270 } 5271 EXPORT_SYMBOL(napi_schedule_prep); 5272 5273 /** 5274 * __napi_schedule_irqoff - schedule for receive 5275 * @n: entry to schedule 5276 * 5277 * Variant of __napi_schedule() assuming hard irqs are masked 5278 */ 5279 void __napi_schedule_irqoff(struct napi_struct *n) 5280 { 5281 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5282 } 5283 EXPORT_SYMBOL(__napi_schedule_irqoff); 5284 5285 bool napi_complete_done(struct napi_struct *n, int work_done) 5286 { 5287 unsigned long flags, val, new; 5288 5289 /* 5290 * 1) Don't let napi dequeue from the cpu poll list 5291 * just in case its running on a different cpu. 5292 * 2) If we are busy polling, do nothing here, we have 5293 * the guarantee we will be called later. 5294 */ 5295 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 5296 NAPIF_STATE_IN_BUSY_POLL))) 5297 return false; 5298 5299 if (n->gro_list) { 5300 unsigned long timeout = 0; 5301 5302 if (work_done) 5303 timeout = n->dev->gro_flush_timeout; 5304 5305 if (timeout) 5306 hrtimer_start(&n->timer, ns_to_ktime(timeout), 5307 HRTIMER_MODE_REL_PINNED); 5308 else 5309 napi_gro_flush(n, false); 5310 } 5311 if (unlikely(!list_empty(&n->poll_list))) { 5312 /* If n->poll_list is not empty, we need to mask irqs */ 5313 local_irq_save(flags); 5314 list_del_init(&n->poll_list); 5315 local_irq_restore(flags); 5316 } 5317 5318 do { 5319 val = READ_ONCE(n->state); 5320 5321 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 5322 5323 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 5324 5325 /* If STATE_MISSED was set, leave STATE_SCHED set, 5326 * because we will call napi->poll() one more time. 5327 * This C code was suggested by Alexander Duyck to help gcc. 5328 */ 5329 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 5330 NAPIF_STATE_SCHED; 5331 } while (cmpxchg(&n->state, val, new) != val); 5332 5333 if (unlikely(val & NAPIF_STATE_MISSED)) { 5334 __napi_schedule(n); 5335 return false; 5336 } 5337 5338 return true; 5339 } 5340 EXPORT_SYMBOL(napi_complete_done); 5341 5342 /* must be called under rcu_read_lock(), as we dont take a reference */ 5343 static struct napi_struct *napi_by_id(unsigned int napi_id) 5344 { 5345 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 5346 struct napi_struct *napi; 5347 5348 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 5349 if (napi->napi_id == napi_id) 5350 return napi; 5351 5352 return NULL; 5353 } 5354 5355 #if defined(CONFIG_NET_RX_BUSY_POLL) 5356 5357 #define BUSY_POLL_BUDGET 8 5358 5359 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 5360 { 5361 int rc; 5362 5363 /* Busy polling means there is a high chance device driver hard irq 5364 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 5365 * set in napi_schedule_prep(). 5366 * Since we are about to call napi->poll() once more, we can safely 5367 * clear NAPI_STATE_MISSED. 5368 * 5369 * Note: x86 could use a single "lock and ..." instruction 5370 * to perform these two clear_bit() 5371 */ 5372 clear_bit(NAPI_STATE_MISSED, &napi->state); 5373 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 5374 5375 local_bh_disable(); 5376 5377 /* All we really want here is to re-enable device interrupts. 5378 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 5379 */ 5380 rc = napi->poll(napi, BUSY_POLL_BUDGET); 5381 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 5382 netpoll_poll_unlock(have_poll_lock); 5383 if (rc == BUSY_POLL_BUDGET) 5384 __napi_schedule(napi); 5385 local_bh_enable(); 5386 } 5387 5388 void napi_busy_loop(unsigned int napi_id, 5389 bool (*loop_end)(void *, unsigned long), 5390 void *loop_end_arg) 5391 { 5392 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 5393 int (*napi_poll)(struct napi_struct *napi, int budget); 5394 void *have_poll_lock = NULL; 5395 struct napi_struct *napi; 5396 5397 restart: 5398 napi_poll = NULL; 5399 5400 rcu_read_lock(); 5401 5402 napi = napi_by_id(napi_id); 5403 if (!napi) 5404 goto out; 5405 5406 preempt_disable(); 5407 for (;;) { 5408 int work = 0; 5409 5410 local_bh_disable(); 5411 if (!napi_poll) { 5412 unsigned long val = READ_ONCE(napi->state); 5413 5414 /* If multiple threads are competing for this napi, 5415 * we avoid dirtying napi->state as much as we can. 5416 */ 5417 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 5418 NAPIF_STATE_IN_BUSY_POLL)) 5419 goto count; 5420 if (cmpxchg(&napi->state, val, 5421 val | NAPIF_STATE_IN_BUSY_POLL | 5422 NAPIF_STATE_SCHED) != val) 5423 goto count; 5424 have_poll_lock = netpoll_poll_lock(napi); 5425 napi_poll = napi->poll; 5426 } 5427 work = napi_poll(napi, BUSY_POLL_BUDGET); 5428 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 5429 count: 5430 if (work > 0) 5431 __NET_ADD_STATS(dev_net(napi->dev), 5432 LINUX_MIB_BUSYPOLLRXPACKETS, work); 5433 local_bh_enable(); 5434 5435 if (!loop_end || loop_end(loop_end_arg, start_time)) 5436 break; 5437 5438 if (unlikely(need_resched())) { 5439 if (napi_poll) 5440 busy_poll_stop(napi, have_poll_lock); 5441 preempt_enable(); 5442 rcu_read_unlock(); 5443 cond_resched(); 5444 if (loop_end(loop_end_arg, start_time)) 5445 return; 5446 goto restart; 5447 } 5448 cpu_relax(); 5449 } 5450 if (napi_poll) 5451 busy_poll_stop(napi, have_poll_lock); 5452 preempt_enable(); 5453 out: 5454 rcu_read_unlock(); 5455 } 5456 EXPORT_SYMBOL(napi_busy_loop); 5457 5458 #endif /* CONFIG_NET_RX_BUSY_POLL */ 5459 5460 static void napi_hash_add(struct napi_struct *napi) 5461 { 5462 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 5463 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 5464 return; 5465 5466 spin_lock(&napi_hash_lock); 5467 5468 /* 0..NR_CPUS range is reserved for sender_cpu use */ 5469 do { 5470 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 5471 napi_gen_id = MIN_NAPI_ID; 5472 } while (napi_by_id(napi_gen_id)); 5473 napi->napi_id = napi_gen_id; 5474 5475 hlist_add_head_rcu(&napi->napi_hash_node, 5476 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 5477 5478 spin_unlock(&napi_hash_lock); 5479 } 5480 5481 /* Warning : caller is responsible to make sure rcu grace period 5482 * is respected before freeing memory containing @napi 5483 */ 5484 bool napi_hash_del(struct napi_struct *napi) 5485 { 5486 bool rcu_sync_needed = false; 5487 5488 spin_lock(&napi_hash_lock); 5489 5490 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 5491 rcu_sync_needed = true; 5492 hlist_del_rcu(&napi->napi_hash_node); 5493 } 5494 spin_unlock(&napi_hash_lock); 5495 return rcu_sync_needed; 5496 } 5497 EXPORT_SYMBOL_GPL(napi_hash_del); 5498 5499 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 5500 { 5501 struct napi_struct *napi; 5502 5503 napi = container_of(timer, struct napi_struct, timer); 5504 5505 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 5506 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 5507 */ 5508 if (napi->gro_list && !napi_disable_pending(napi) && 5509 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 5510 __napi_schedule_irqoff(napi); 5511 5512 return HRTIMER_NORESTART; 5513 } 5514 5515 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 5516 int (*poll)(struct napi_struct *, int), int weight) 5517 { 5518 INIT_LIST_HEAD(&napi->poll_list); 5519 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 5520 napi->timer.function = napi_watchdog; 5521 napi->gro_count = 0; 5522 napi->gro_list = NULL; 5523 napi->skb = NULL; 5524 napi->poll = poll; 5525 if (weight > NAPI_POLL_WEIGHT) 5526 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 5527 weight, dev->name); 5528 napi->weight = weight; 5529 list_add(&napi->dev_list, &dev->napi_list); 5530 napi->dev = dev; 5531 #ifdef CONFIG_NETPOLL 5532 napi->poll_owner = -1; 5533 #endif 5534 set_bit(NAPI_STATE_SCHED, &napi->state); 5535 napi_hash_add(napi); 5536 } 5537 EXPORT_SYMBOL(netif_napi_add); 5538 5539 void napi_disable(struct napi_struct *n) 5540 { 5541 might_sleep(); 5542 set_bit(NAPI_STATE_DISABLE, &n->state); 5543 5544 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 5545 msleep(1); 5546 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 5547 msleep(1); 5548 5549 hrtimer_cancel(&n->timer); 5550 5551 clear_bit(NAPI_STATE_DISABLE, &n->state); 5552 } 5553 EXPORT_SYMBOL(napi_disable); 5554 5555 /* Must be called in process context */ 5556 void netif_napi_del(struct napi_struct *napi) 5557 { 5558 might_sleep(); 5559 if (napi_hash_del(napi)) 5560 synchronize_net(); 5561 list_del_init(&napi->dev_list); 5562 napi_free_frags(napi); 5563 5564 kfree_skb_list(napi->gro_list); 5565 napi->gro_list = NULL; 5566 napi->gro_count = 0; 5567 } 5568 EXPORT_SYMBOL(netif_napi_del); 5569 5570 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 5571 { 5572 void *have; 5573 int work, weight; 5574 5575 list_del_init(&n->poll_list); 5576 5577 have = netpoll_poll_lock(n); 5578 5579 weight = n->weight; 5580 5581 /* This NAPI_STATE_SCHED test is for avoiding a race 5582 * with netpoll's poll_napi(). Only the entity which 5583 * obtains the lock and sees NAPI_STATE_SCHED set will 5584 * actually make the ->poll() call. Therefore we avoid 5585 * accidentally calling ->poll() when NAPI is not scheduled. 5586 */ 5587 work = 0; 5588 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 5589 work = n->poll(n, weight); 5590 trace_napi_poll(n, work, weight); 5591 } 5592 5593 WARN_ON_ONCE(work > weight); 5594 5595 if (likely(work < weight)) 5596 goto out_unlock; 5597 5598 /* Drivers must not modify the NAPI state if they 5599 * consume the entire weight. In such cases this code 5600 * still "owns" the NAPI instance and therefore can 5601 * move the instance around on the list at-will. 5602 */ 5603 if (unlikely(napi_disable_pending(n))) { 5604 napi_complete(n); 5605 goto out_unlock; 5606 } 5607 5608 if (n->gro_list) { 5609 /* flush too old packets 5610 * If HZ < 1000, flush all packets. 5611 */ 5612 napi_gro_flush(n, HZ >= 1000); 5613 } 5614 5615 /* Some drivers may have called napi_schedule 5616 * prior to exhausting their budget. 5617 */ 5618 if (unlikely(!list_empty(&n->poll_list))) { 5619 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 5620 n->dev ? n->dev->name : "backlog"); 5621 goto out_unlock; 5622 } 5623 5624 list_add_tail(&n->poll_list, repoll); 5625 5626 out_unlock: 5627 netpoll_poll_unlock(have); 5628 5629 return work; 5630 } 5631 5632 static __latent_entropy void net_rx_action(struct softirq_action *h) 5633 { 5634 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5635 unsigned long time_limit = jiffies + 5636 usecs_to_jiffies(netdev_budget_usecs); 5637 int budget = netdev_budget; 5638 LIST_HEAD(list); 5639 LIST_HEAD(repoll); 5640 5641 local_irq_disable(); 5642 list_splice_init(&sd->poll_list, &list); 5643 local_irq_enable(); 5644 5645 for (;;) { 5646 struct napi_struct *n; 5647 5648 if (list_empty(&list)) { 5649 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 5650 goto out; 5651 break; 5652 } 5653 5654 n = list_first_entry(&list, struct napi_struct, poll_list); 5655 budget -= napi_poll(n, &repoll); 5656 5657 /* If softirq window is exhausted then punt. 5658 * Allow this to run for 2 jiffies since which will allow 5659 * an average latency of 1.5/HZ. 5660 */ 5661 if (unlikely(budget <= 0 || 5662 time_after_eq(jiffies, time_limit))) { 5663 sd->time_squeeze++; 5664 break; 5665 } 5666 } 5667 5668 local_irq_disable(); 5669 5670 list_splice_tail_init(&sd->poll_list, &list); 5671 list_splice_tail(&repoll, &list); 5672 list_splice(&list, &sd->poll_list); 5673 if (!list_empty(&sd->poll_list)) 5674 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5675 5676 net_rps_action_and_irq_enable(sd); 5677 out: 5678 __kfree_skb_flush(); 5679 } 5680 5681 struct netdev_adjacent { 5682 struct net_device *dev; 5683 5684 /* upper master flag, there can only be one master device per list */ 5685 bool master; 5686 5687 /* counter for the number of times this device was added to us */ 5688 u16 ref_nr; 5689 5690 /* private field for the users */ 5691 void *private; 5692 5693 struct list_head list; 5694 struct rcu_head rcu; 5695 }; 5696 5697 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 5698 struct list_head *adj_list) 5699 { 5700 struct netdev_adjacent *adj; 5701 5702 list_for_each_entry(adj, adj_list, list) { 5703 if (adj->dev == adj_dev) 5704 return adj; 5705 } 5706 return NULL; 5707 } 5708 5709 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 5710 { 5711 struct net_device *dev = data; 5712 5713 return upper_dev == dev; 5714 } 5715 5716 /** 5717 * netdev_has_upper_dev - Check if device is linked to an upper device 5718 * @dev: device 5719 * @upper_dev: upper device to check 5720 * 5721 * Find out if a device is linked to specified upper device and return true 5722 * in case it is. Note that this checks only immediate upper device, 5723 * not through a complete stack of devices. The caller must hold the RTNL lock. 5724 */ 5725 bool netdev_has_upper_dev(struct net_device *dev, 5726 struct net_device *upper_dev) 5727 { 5728 ASSERT_RTNL(); 5729 5730 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5731 upper_dev); 5732 } 5733 EXPORT_SYMBOL(netdev_has_upper_dev); 5734 5735 /** 5736 * netdev_has_upper_dev_all - Check if device is linked to an upper device 5737 * @dev: device 5738 * @upper_dev: upper device to check 5739 * 5740 * Find out if a device is linked to specified upper device and return true 5741 * in case it is. Note that this checks the entire upper device chain. 5742 * The caller must hold rcu lock. 5743 */ 5744 5745 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 5746 struct net_device *upper_dev) 5747 { 5748 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5749 upper_dev); 5750 } 5751 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 5752 5753 /** 5754 * netdev_has_any_upper_dev - Check if device is linked to some device 5755 * @dev: device 5756 * 5757 * Find out if a device is linked to an upper device and return true in case 5758 * it is. The caller must hold the RTNL lock. 5759 */ 5760 bool netdev_has_any_upper_dev(struct net_device *dev) 5761 { 5762 ASSERT_RTNL(); 5763 5764 return !list_empty(&dev->adj_list.upper); 5765 } 5766 EXPORT_SYMBOL(netdev_has_any_upper_dev); 5767 5768 /** 5769 * netdev_master_upper_dev_get - Get master upper device 5770 * @dev: device 5771 * 5772 * Find a master upper device and return pointer to it or NULL in case 5773 * it's not there. The caller must hold the RTNL lock. 5774 */ 5775 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 5776 { 5777 struct netdev_adjacent *upper; 5778 5779 ASSERT_RTNL(); 5780 5781 if (list_empty(&dev->adj_list.upper)) 5782 return NULL; 5783 5784 upper = list_first_entry(&dev->adj_list.upper, 5785 struct netdev_adjacent, list); 5786 if (likely(upper->master)) 5787 return upper->dev; 5788 return NULL; 5789 } 5790 EXPORT_SYMBOL(netdev_master_upper_dev_get); 5791 5792 /** 5793 * netdev_has_any_lower_dev - Check if device is linked to some device 5794 * @dev: device 5795 * 5796 * Find out if a device is linked to a lower device and return true in case 5797 * it is. The caller must hold the RTNL lock. 5798 */ 5799 static bool netdev_has_any_lower_dev(struct net_device *dev) 5800 { 5801 ASSERT_RTNL(); 5802 5803 return !list_empty(&dev->adj_list.lower); 5804 } 5805 5806 void *netdev_adjacent_get_private(struct list_head *adj_list) 5807 { 5808 struct netdev_adjacent *adj; 5809 5810 adj = list_entry(adj_list, struct netdev_adjacent, list); 5811 5812 return adj->private; 5813 } 5814 EXPORT_SYMBOL(netdev_adjacent_get_private); 5815 5816 /** 5817 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 5818 * @dev: device 5819 * @iter: list_head ** of the current position 5820 * 5821 * Gets the next device from the dev's upper list, starting from iter 5822 * position. The caller must hold RCU read lock. 5823 */ 5824 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 5825 struct list_head **iter) 5826 { 5827 struct netdev_adjacent *upper; 5828 5829 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5830 5831 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5832 5833 if (&upper->list == &dev->adj_list.upper) 5834 return NULL; 5835 5836 *iter = &upper->list; 5837 5838 return upper->dev; 5839 } 5840 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 5841 5842 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 5843 struct list_head **iter) 5844 { 5845 struct netdev_adjacent *upper; 5846 5847 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5848 5849 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5850 5851 if (&upper->list == &dev->adj_list.upper) 5852 return NULL; 5853 5854 *iter = &upper->list; 5855 5856 return upper->dev; 5857 } 5858 5859 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 5860 int (*fn)(struct net_device *dev, 5861 void *data), 5862 void *data) 5863 { 5864 struct net_device *udev; 5865 struct list_head *iter; 5866 int ret; 5867 5868 for (iter = &dev->adj_list.upper, 5869 udev = netdev_next_upper_dev_rcu(dev, &iter); 5870 udev; 5871 udev = netdev_next_upper_dev_rcu(dev, &iter)) { 5872 /* first is the upper device itself */ 5873 ret = fn(udev, data); 5874 if (ret) 5875 return ret; 5876 5877 /* then look at all of its upper devices */ 5878 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); 5879 if (ret) 5880 return ret; 5881 } 5882 5883 return 0; 5884 } 5885 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 5886 5887 /** 5888 * netdev_lower_get_next_private - Get the next ->private from the 5889 * lower neighbour list 5890 * @dev: device 5891 * @iter: list_head ** of the current position 5892 * 5893 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5894 * list, starting from iter position. The caller must hold either hold the 5895 * RTNL lock or its own locking that guarantees that the neighbour lower 5896 * list will remain unchanged. 5897 */ 5898 void *netdev_lower_get_next_private(struct net_device *dev, 5899 struct list_head **iter) 5900 { 5901 struct netdev_adjacent *lower; 5902 5903 lower = list_entry(*iter, struct netdev_adjacent, list); 5904 5905 if (&lower->list == &dev->adj_list.lower) 5906 return NULL; 5907 5908 *iter = lower->list.next; 5909 5910 return lower->private; 5911 } 5912 EXPORT_SYMBOL(netdev_lower_get_next_private); 5913 5914 /** 5915 * netdev_lower_get_next_private_rcu - Get the next ->private from the 5916 * lower neighbour list, RCU 5917 * variant 5918 * @dev: device 5919 * @iter: list_head ** of the current position 5920 * 5921 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5922 * list, starting from iter position. The caller must hold RCU read lock. 5923 */ 5924 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 5925 struct list_head **iter) 5926 { 5927 struct netdev_adjacent *lower; 5928 5929 WARN_ON_ONCE(!rcu_read_lock_held()); 5930 5931 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5932 5933 if (&lower->list == &dev->adj_list.lower) 5934 return NULL; 5935 5936 *iter = &lower->list; 5937 5938 return lower->private; 5939 } 5940 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 5941 5942 /** 5943 * netdev_lower_get_next - Get the next device from the lower neighbour 5944 * list 5945 * @dev: device 5946 * @iter: list_head ** of the current position 5947 * 5948 * Gets the next netdev_adjacent from the dev's lower neighbour 5949 * list, starting from iter position. The caller must hold RTNL lock or 5950 * its own locking that guarantees that the neighbour lower 5951 * list will remain unchanged. 5952 */ 5953 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 5954 { 5955 struct netdev_adjacent *lower; 5956 5957 lower = list_entry(*iter, struct netdev_adjacent, list); 5958 5959 if (&lower->list == &dev->adj_list.lower) 5960 return NULL; 5961 5962 *iter = lower->list.next; 5963 5964 return lower->dev; 5965 } 5966 EXPORT_SYMBOL(netdev_lower_get_next); 5967 5968 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 5969 struct list_head **iter) 5970 { 5971 struct netdev_adjacent *lower; 5972 5973 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 5974 5975 if (&lower->list == &dev->adj_list.lower) 5976 return NULL; 5977 5978 *iter = &lower->list; 5979 5980 return lower->dev; 5981 } 5982 5983 int netdev_walk_all_lower_dev(struct net_device *dev, 5984 int (*fn)(struct net_device *dev, 5985 void *data), 5986 void *data) 5987 { 5988 struct net_device *ldev; 5989 struct list_head *iter; 5990 int ret; 5991 5992 for (iter = &dev->adj_list.lower, 5993 ldev = netdev_next_lower_dev(dev, &iter); 5994 ldev; 5995 ldev = netdev_next_lower_dev(dev, &iter)) { 5996 /* first is the lower device itself */ 5997 ret = fn(ldev, data); 5998 if (ret) 5999 return ret; 6000 6001 /* then look at all of its lower devices */ 6002 ret = netdev_walk_all_lower_dev(ldev, fn, data); 6003 if (ret) 6004 return ret; 6005 } 6006 6007 return 0; 6008 } 6009 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 6010 6011 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 6012 struct list_head **iter) 6013 { 6014 struct netdev_adjacent *lower; 6015 6016 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6017 if (&lower->list == &dev->adj_list.lower) 6018 return NULL; 6019 6020 *iter = &lower->list; 6021 6022 return lower->dev; 6023 } 6024 6025 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 6026 int (*fn)(struct net_device *dev, 6027 void *data), 6028 void *data) 6029 { 6030 struct net_device *ldev; 6031 struct list_head *iter; 6032 int ret; 6033 6034 for (iter = &dev->adj_list.lower, 6035 ldev = netdev_next_lower_dev_rcu(dev, &iter); 6036 ldev; 6037 ldev = netdev_next_lower_dev_rcu(dev, &iter)) { 6038 /* first is the lower device itself */ 6039 ret = fn(ldev, data); 6040 if (ret) 6041 return ret; 6042 6043 /* then look at all of its lower devices */ 6044 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); 6045 if (ret) 6046 return ret; 6047 } 6048 6049 return 0; 6050 } 6051 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 6052 6053 /** 6054 * netdev_lower_get_first_private_rcu - Get the first ->private from the 6055 * lower neighbour list, RCU 6056 * variant 6057 * @dev: device 6058 * 6059 * Gets the first netdev_adjacent->private from the dev's lower neighbour 6060 * list. The caller must hold RCU read lock. 6061 */ 6062 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 6063 { 6064 struct netdev_adjacent *lower; 6065 6066 lower = list_first_or_null_rcu(&dev->adj_list.lower, 6067 struct netdev_adjacent, list); 6068 if (lower) 6069 return lower->private; 6070 return NULL; 6071 } 6072 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 6073 6074 /** 6075 * netdev_master_upper_dev_get_rcu - Get master upper device 6076 * @dev: device 6077 * 6078 * Find a master upper device and return pointer to it or NULL in case 6079 * it's not there. The caller must hold the RCU read lock. 6080 */ 6081 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 6082 { 6083 struct netdev_adjacent *upper; 6084 6085 upper = list_first_or_null_rcu(&dev->adj_list.upper, 6086 struct netdev_adjacent, list); 6087 if (upper && likely(upper->master)) 6088 return upper->dev; 6089 return NULL; 6090 } 6091 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 6092 6093 static int netdev_adjacent_sysfs_add(struct net_device *dev, 6094 struct net_device *adj_dev, 6095 struct list_head *dev_list) 6096 { 6097 char linkname[IFNAMSIZ+7]; 6098 6099 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6100 "upper_%s" : "lower_%s", adj_dev->name); 6101 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 6102 linkname); 6103 } 6104 static void netdev_adjacent_sysfs_del(struct net_device *dev, 6105 char *name, 6106 struct list_head *dev_list) 6107 { 6108 char linkname[IFNAMSIZ+7]; 6109 6110 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6111 "upper_%s" : "lower_%s", name); 6112 sysfs_remove_link(&(dev->dev.kobj), linkname); 6113 } 6114 6115 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 6116 struct net_device *adj_dev, 6117 struct list_head *dev_list) 6118 { 6119 return (dev_list == &dev->adj_list.upper || 6120 dev_list == &dev->adj_list.lower) && 6121 net_eq(dev_net(dev), dev_net(adj_dev)); 6122 } 6123 6124 static int __netdev_adjacent_dev_insert(struct net_device *dev, 6125 struct net_device *adj_dev, 6126 struct list_head *dev_list, 6127 void *private, bool master) 6128 { 6129 struct netdev_adjacent *adj; 6130 int ret; 6131 6132 adj = __netdev_find_adj(adj_dev, dev_list); 6133 6134 if (adj) { 6135 adj->ref_nr += 1; 6136 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 6137 dev->name, adj_dev->name, adj->ref_nr); 6138 6139 return 0; 6140 } 6141 6142 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 6143 if (!adj) 6144 return -ENOMEM; 6145 6146 adj->dev = adj_dev; 6147 adj->master = master; 6148 adj->ref_nr = 1; 6149 adj->private = private; 6150 dev_hold(adj_dev); 6151 6152 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 6153 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 6154 6155 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 6156 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 6157 if (ret) 6158 goto free_adj; 6159 } 6160 6161 /* Ensure that master link is always the first item in list. */ 6162 if (master) { 6163 ret = sysfs_create_link(&(dev->dev.kobj), 6164 &(adj_dev->dev.kobj), "master"); 6165 if (ret) 6166 goto remove_symlinks; 6167 6168 list_add_rcu(&adj->list, dev_list); 6169 } else { 6170 list_add_tail_rcu(&adj->list, dev_list); 6171 } 6172 6173 return 0; 6174 6175 remove_symlinks: 6176 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6177 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6178 free_adj: 6179 kfree(adj); 6180 dev_put(adj_dev); 6181 6182 return ret; 6183 } 6184 6185 static void __netdev_adjacent_dev_remove(struct net_device *dev, 6186 struct net_device *adj_dev, 6187 u16 ref_nr, 6188 struct list_head *dev_list) 6189 { 6190 struct netdev_adjacent *adj; 6191 6192 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 6193 dev->name, adj_dev->name, ref_nr); 6194 6195 adj = __netdev_find_adj(adj_dev, dev_list); 6196 6197 if (!adj) { 6198 pr_err("Adjacency does not exist for device %s from %s\n", 6199 dev->name, adj_dev->name); 6200 WARN_ON(1); 6201 return; 6202 } 6203 6204 if (adj->ref_nr > ref_nr) { 6205 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 6206 dev->name, adj_dev->name, ref_nr, 6207 adj->ref_nr - ref_nr); 6208 adj->ref_nr -= ref_nr; 6209 return; 6210 } 6211 6212 if (adj->master) 6213 sysfs_remove_link(&(dev->dev.kobj), "master"); 6214 6215 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6216 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6217 6218 list_del_rcu(&adj->list); 6219 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 6220 adj_dev->name, dev->name, adj_dev->name); 6221 dev_put(adj_dev); 6222 kfree_rcu(adj, rcu); 6223 } 6224 6225 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 6226 struct net_device *upper_dev, 6227 struct list_head *up_list, 6228 struct list_head *down_list, 6229 void *private, bool master) 6230 { 6231 int ret; 6232 6233 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 6234 private, master); 6235 if (ret) 6236 return ret; 6237 6238 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 6239 private, false); 6240 if (ret) { 6241 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 6242 return ret; 6243 } 6244 6245 return 0; 6246 } 6247 6248 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 6249 struct net_device *upper_dev, 6250 u16 ref_nr, 6251 struct list_head *up_list, 6252 struct list_head *down_list) 6253 { 6254 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 6255 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 6256 } 6257 6258 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 6259 struct net_device *upper_dev, 6260 void *private, bool master) 6261 { 6262 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 6263 &dev->adj_list.upper, 6264 &upper_dev->adj_list.lower, 6265 private, master); 6266 } 6267 6268 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 6269 struct net_device *upper_dev) 6270 { 6271 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 6272 &dev->adj_list.upper, 6273 &upper_dev->adj_list.lower); 6274 } 6275 6276 static int __netdev_upper_dev_link(struct net_device *dev, 6277 struct net_device *upper_dev, bool master, 6278 void *upper_priv, void *upper_info) 6279 { 6280 struct netdev_notifier_changeupper_info changeupper_info; 6281 int ret = 0; 6282 6283 ASSERT_RTNL(); 6284 6285 if (dev == upper_dev) 6286 return -EBUSY; 6287 6288 /* To prevent loops, check if dev is not upper device to upper_dev. */ 6289 if (netdev_has_upper_dev(upper_dev, dev)) 6290 return -EBUSY; 6291 6292 if (netdev_has_upper_dev(dev, upper_dev)) 6293 return -EEXIST; 6294 6295 if (master && netdev_master_upper_dev_get(dev)) 6296 return -EBUSY; 6297 6298 changeupper_info.upper_dev = upper_dev; 6299 changeupper_info.master = master; 6300 changeupper_info.linking = true; 6301 changeupper_info.upper_info = upper_info; 6302 6303 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 6304 &changeupper_info.info); 6305 ret = notifier_to_errno(ret); 6306 if (ret) 6307 return ret; 6308 6309 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 6310 master); 6311 if (ret) 6312 return ret; 6313 6314 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 6315 &changeupper_info.info); 6316 ret = notifier_to_errno(ret); 6317 if (ret) 6318 goto rollback; 6319 6320 return 0; 6321 6322 rollback: 6323 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6324 6325 return ret; 6326 } 6327 6328 /** 6329 * netdev_upper_dev_link - Add a link to the upper device 6330 * @dev: device 6331 * @upper_dev: new upper device 6332 * 6333 * Adds a link to device which is upper to this one. The caller must hold 6334 * the RTNL lock. On a failure a negative errno code is returned. 6335 * On success the reference counts are adjusted and the function 6336 * returns zero. 6337 */ 6338 int netdev_upper_dev_link(struct net_device *dev, 6339 struct net_device *upper_dev) 6340 { 6341 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL); 6342 } 6343 EXPORT_SYMBOL(netdev_upper_dev_link); 6344 6345 /** 6346 * netdev_master_upper_dev_link - Add a master link to the upper device 6347 * @dev: device 6348 * @upper_dev: new upper device 6349 * @upper_priv: upper device private 6350 * @upper_info: upper info to be passed down via notifier 6351 * 6352 * Adds a link to device which is upper to this one. In this case, only 6353 * one master upper device can be linked, although other non-master devices 6354 * might be linked as well. The caller must hold the RTNL lock. 6355 * On a failure a negative errno code is returned. On success the reference 6356 * counts are adjusted and the function returns zero. 6357 */ 6358 int netdev_master_upper_dev_link(struct net_device *dev, 6359 struct net_device *upper_dev, 6360 void *upper_priv, void *upper_info) 6361 { 6362 return __netdev_upper_dev_link(dev, upper_dev, true, 6363 upper_priv, upper_info); 6364 } 6365 EXPORT_SYMBOL(netdev_master_upper_dev_link); 6366 6367 /** 6368 * netdev_upper_dev_unlink - Removes a link to upper device 6369 * @dev: device 6370 * @upper_dev: new upper device 6371 * 6372 * Removes a link to device which is upper to this one. The caller must hold 6373 * the RTNL lock. 6374 */ 6375 void netdev_upper_dev_unlink(struct net_device *dev, 6376 struct net_device *upper_dev) 6377 { 6378 struct netdev_notifier_changeupper_info changeupper_info; 6379 6380 ASSERT_RTNL(); 6381 6382 changeupper_info.upper_dev = upper_dev; 6383 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 6384 changeupper_info.linking = false; 6385 6386 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 6387 &changeupper_info.info); 6388 6389 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6390 6391 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 6392 &changeupper_info.info); 6393 } 6394 EXPORT_SYMBOL(netdev_upper_dev_unlink); 6395 6396 /** 6397 * netdev_bonding_info_change - Dispatch event about slave change 6398 * @dev: device 6399 * @bonding_info: info to dispatch 6400 * 6401 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 6402 * The caller must hold the RTNL lock. 6403 */ 6404 void netdev_bonding_info_change(struct net_device *dev, 6405 struct netdev_bonding_info *bonding_info) 6406 { 6407 struct netdev_notifier_bonding_info info; 6408 6409 memcpy(&info.bonding_info, bonding_info, 6410 sizeof(struct netdev_bonding_info)); 6411 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev, 6412 &info.info); 6413 } 6414 EXPORT_SYMBOL(netdev_bonding_info_change); 6415 6416 static void netdev_adjacent_add_links(struct net_device *dev) 6417 { 6418 struct netdev_adjacent *iter; 6419 6420 struct net *net = dev_net(dev); 6421 6422 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6423 if (!net_eq(net, dev_net(iter->dev))) 6424 continue; 6425 netdev_adjacent_sysfs_add(iter->dev, dev, 6426 &iter->dev->adj_list.lower); 6427 netdev_adjacent_sysfs_add(dev, iter->dev, 6428 &dev->adj_list.upper); 6429 } 6430 6431 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6432 if (!net_eq(net, dev_net(iter->dev))) 6433 continue; 6434 netdev_adjacent_sysfs_add(iter->dev, dev, 6435 &iter->dev->adj_list.upper); 6436 netdev_adjacent_sysfs_add(dev, iter->dev, 6437 &dev->adj_list.lower); 6438 } 6439 } 6440 6441 static void netdev_adjacent_del_links(struct net_device *dev) 6442 { 6443 struct netdev_adjacent *iter; 6444 6445 struct net *net = dev_net(dev); 6446 6447 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6448 if (!net_eq(net, dev_net(iter->dev))) 6449 continue; 6450 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6451 &iter->dev->adj_list.lower); 6452 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6453 &dev->adj_list.upper); 6454 } 6455 6456 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6457 if (!net_eq(net, dev_net(iter->dev))) 6458 continue; 6459 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6460 &iter->dev->adj_list.upper); 6461 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6462 &dev->adj_list.lower); 6463 } 6464 } 6465 6466 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 6467 { 6468 struct netdev_adjacent *iter; 6469 6470 struct net *net = dev_net(dev); 6471 6472 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6473 if (!net_eq(net, dev_net(iter->dev))) 6474 continue; 6475 netdev_adjacent_sysfs_del(iter->dev, oldname, 6476 &iter->dev->adj_list.lower); 6477 netdev_adjacent_sysfs_add(iter->dev, dev, 6478 &iter->dev->adj_list.lower); 6479 } 6480 6481 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6482 if (!net_eq(net, dev_net(iter->dev))) 6483 continue; 6484 netdev_adjacent_sysfs_del(iter->dev, oldname, 6485 &iter->dev->adj_list.upper); 6486 netdev_adjacent_sysfs_add(iter->dev, dev, 6487 &iter->dev->adj_list.upper); 6488 } 6489 } 6490 6491 void *netdev_lower_dev_get_private(struct net_device *dev, 6492 struct net_device *lower_dev) 6493 { 6494 struct netdev_adjacent *lower; 6495 6496 if (!lower_dev) 6497 return NULL; 6498 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 6499 if (!lower) 6500 return NULL; 6501 6502 return lower->private; 6503 } 6504 EXPORT_SYMBOL(netdev_lower_dev_get_private); 6505 6506 6507 int dev_get_nest_level(struct net_device *dev) 6508 { 6509 struct net_device *lower = NULL; 6510 struct list_head *iter; 6511 int max_nest = -1; 6512 int nest; 6513 6514 ASSERT_RTNL(); 6515 6516 netdev_for_each_lower_dev(dev, lower, iter) { 6517 nest = dev_get_nest_level(lower); 6518 if (max_nest < nest) 6519 max_nest = nest; 6520 } 6521 6522 return max_nest + 1; 6523 } 6524 EXPORT_SYMBOL(dev_get_nest_level); 6525 6526 /** 6527 * netdev_lower_change - Dispatch event about lower device state change 6528 * @lower_dev: device 6529 * @lower_state_info: state to dispatch 6530 * 6531 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 6532 * The caller must hold the RTNL lock. 6533 */ 6534 void netdev_lower_state_changed(struct net_device *lower_dev, 6535 void *lower_state_info) 6536 { 6537 struct netdev_notifier_changelowerstate_info changelowerstate_info; 6538 6539 ASSERT_RTNL(); 6540 changelowerstate_info.lower_state_info = lower_state_info; 6541 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev, 6542 &changelowerstate_info.info); 6543 } 6544 EXPORT_SYMBOL(netdev_lower_state_changed); 6545 6546 static void dev_change_rx_flags(struct net_device *dev, int flags) 6547 { 6548 const struct net_device_ops *ops = dev->netdev_ops; 6549 6550 if (ops->ndo_change_rx_flags) 6551 ops->ndo_change_rx_flags(dev, flags); 6552 } 6553 6554 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 6555 { 6556 unsigned int old_flags = dev->flags; 6557 kuid_t uid; 6558 kgid_t gid; 6559 6560 ASSERT_RTNL(); 6561 6562 dev->flags |= IFF_PROMISC; 6563 dev->promiscuity += inc; 6564 if (dev->promiscuity == 0) { 6565 /* 6566 * Avoid overflow. 6567 * If inc causes overflow, untouch promisc and return error. 6568 */ 6569 if (inc < 0) 6570 dev->flags &= ~IFF_PROMISC; 6571 else { 6572 dev->promiscuity -= inc; 6573 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 6574 dev->name); 6575 return -EOVERFLOW; 6576 } 6577 } 6578 if (dev->flags != old_flags) { 6579 pr_info("device %s %s promiscuous mode\n", 6580 dev->name, 6581 dev->flags & IFF_PROMISC ? "entered" : "left"); 6582 if (audit_enabled) { 6583 current_uid_gid(&uid, &gid); 6584 audit_log(current->audit_context, GFP_ATOMIC, 6585 AUDIT_ANOM_PROMISCUOUS, 6586 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 6587 dev->name, (dev->flags & IFF_PROMISC), 6588 (old_flags & IFF_PROMISC), 6589 from_kuid(&init_user_ns, audit_get_loginuid(current)), 6590 from_kuid(&init_user_ns, uid), 6591 from_kgid(&init_user_ns, gid), 6592 audit_get_sessionid(current)); 6593 } 6594 6595 dev_change_rx_flags(dev, IFF_PROMISC); 6596 } 6597 if (notify) 6598 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 6599 return 0; 6600 } 6601 6602 /** 6603 * dev_set_promiscuity - update promiscuity count on a device 6604 * @dev: device 6605 * @inc: modifier 6606 * 6607 * Add or remove promiscuity from a device. While the count in the device 6608 * remains above zero the interface remains promiscuous. Once it hits zero 6609 * the device reverts back to normal filtering operation. A negative inc 6610 * value is used to drop promiscuity on the device. 6611 * Return 0 if successful or a negative errno code on error. 6612 */ 6613 int dev_set_promiscuity(struct net_device *dev, int inc) 6614 { 6615 unsigned int old_flags = dev->flags; 6616 int err; 6617 6618 err = __dev_set_promiscuity(dev, inc, true); 6619 if (err < 0) 6620 return err; 6621 if (dev->flags != old_flags) 6622 dev_set_rx_mode(dev); 6623 return err; 6624 } 6625 EXPORT_SYMBOL(dev_set_promiscuity); 6626 6627 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 6628 { 6629 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 6630 6631 ASSERT_RTNL(); 6632 6633 dev->flags |= IFF_ALLMULTI; 6634 dev->allmulti += inc; 6635 if (dev->allmulti == 0) { 6636 /* 6637 * Avoid overflow. 6638 * If inc causes overflow, untouch allmulti and return error. 6639 */ 6640 if (inc < 0) 6641 dev->flags &= ~IFF_ALLMULTI; 6642 else { 6643 dev->allmulti -= inc; 6644 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 6645 dev->name); 6646 return -EOVERFLOW; 6647 } 6648 } 6649 if (dev->flags ^ old_flags) { 6650 dev_change_rx_flags(dev, IFF_ALLMULTI); 6651 dev_set_rx_mode(dev); 6652 if (notify) 6653 __dev_notify_flags(dev, old_flags, 6654 dev->gflags ^ old_gflags); 6655 } 6656 return 0; 6657 } 6658 6659 /** 6660 * dev_set_allmulti - update allmulti count on a device 6661 * @dev: device 6662 * @inc: modifier 6663 * 6664 * Add or remove reception of all multicast frames to a device. While the 6665 * count in the device remains above zero the interface remains listening 6666 * to all interfaces. Once it hits zero the device reverts back to normal 6667 * filtering operation. A negative @inc value is used to drop the counter 6668 * when releasing a resource needing all multicasts. 6669 * Return 0 if successful or a negative errno code on error. 6670 */ 6671 6672 int dev_set_allmulti(struct net_device *dev, int inc) 6673 { 6674 return __dev_set_allmulti(dev, inc, true); 6675 } 6676 EXPORT_SYMBOL(dev_set_allmulti); 6677 6678 /* 6679 * Upload unicast and multicast address lists to device and 6680 * configure RX filtering. When the device doesn't support unicast 6681 * filtering it is put in promiscuous mode while unicast addresses 6682 * are present. 6683 */ 6684 void __dev_set_rx_mode(struct net_device *dev) 6685 { 6686 const struct net_device_ops *ops = dev->netdev_ops; 6687 6688 /* dev_open will call this function so the list will stay sane. */ 6689 if (!(dev->flags&IFF_UP)) 6690 return; 6691 6692 if (!netif_device_present(dev)) 6693 return; 6694 6695 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 6696 /* Unicast addresses changes may only happen under the rtnl, 6697 * therefore calling __dev_set_promiscuity here is safe. 6698 */ 6699 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 6700 __dev_set_promiscuity(dev, 1, false); 6701 dev->uc_promisc = true; 6702 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 6703 __dev_set_promiscuity(dev, -1, false); 6704 dev->uc_promisc = false; 6705 } 6706 } 6707 6708 if (ops->ndo_set_rx_mode) 6709 ops->ndo_set_rx_mode(dev); 6710 } 6711 6712 void dev_set_rx_mode(struct net_device *dev) 6713 { 6714 netif_addr_lock_bh(dev); 6715 __dev_set_rx_mode(dev); 6716 netif_addr_unlock_bh(dev); 6717 } 6718 6719 /** 6720 * dev_get_flags - get flags reported to userspace 6721 * @dev: device 6722 * 6723 * Get the combination of flag bits exported through APIs to userspace. 6724 */ 6725 unsigned int dev_get_flags(const struct net_device *dev) 6726 { 6727 unsigned int flags; 6728 6729 flags = (dev->flags & ~(IFF_PROMISC | 6730 IFF_ALLMULTI | 6731 IFF_RUNNING | 6732 IFF_LOWER_UP | 6733 IFF_DORMANT)) | 6734 (dev->gflags & (IFF_PROMISC | 6735 IFF_ALLMULTI)); 6736 6737 if (netif_running(dev)) { 6738 if (netif_oper_up(dev)) 6739 flags |= IFF_RUNNING; 6740 if (netif_carrier_ok(dev)) 6741 flags |= IFF_LOWER_UP; 6742 if (netif_dormant(dev)) 6743 flags |= IFF_DORMANT; 6744 } 6745 6746 return flags; 6747 } 6748 EXPORT_SYMBOL(dev_get_flags); 6749 6750 int __dev_change_flags(struct net_device *dev, unsigned int flags) 6751 { 6752 unsigned int old_flags = dev->flags; 6753 int ret; 6754 6755 ASSERT_RTNL(); 6756 6757 /* 6758 * Set the flags on our device. 6759 */ 6760 6761 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 6762 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 6763 IFF_AUTOMEDIA)) | 6764 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 6765 IFF_ALLMULTI)); 6766 6767 /* 6768 * Load in the correct multicast list now the flags have changed. 6769 */ 6770 6771 if ((old_flags ^ flags) & IFF_MULTICAST) 6772 dev_change_rx_flags(dev, IFF_MULTICAST); 6773 6774 dev_set_rx_mode(dev); 6775 6776 /* 6777 * Have we downed the interface. We handle IFF_UP ourselves 6778 * according to user attempts to set it, rather than blindly 6779 * setting it. 6780 */ 6781 6782 ret = 0; 6783 if ((old_flags ^ flags) & IFF_UP) { 6784 if (old_flags & IFF_UP) 6785 __dev_close(dev); 6786 else 6787 ret = __dev_open(dev); 6788 } 6789 6790 if ((flags ^ dev->gflags) & IFF_PROMISC) { 6791 int inc = (flags & IFF_PROMISC) ? 1 : -1; 6792 unsigned int old_flags = dev->flags; 6793 6794 dev->gflags ^= IFF_PROMISC; 6795 6796 if (__dev_set_promiscuity(dev, inc, false) >= 0) 6797 if (dev->flags != old_flags) 6798 dev_set_rx_mode(dev); 6799 } 6800 6801 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 6802 * is important. Some (broken) drivers set IFF_PROMISC, when 6803 * IFF_ALLMULTI is requested not asking us and not reporting. 6804 */ 6805 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 6806 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 6807 6808 dev->gflags ^= IFF_ALLMULTI; 6809 __dev_set_allmulti(dev, inc, false); 6810 } 6811 6812 return ret; 6813 } 6814 6815 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 6816 unsigned int gchanges) 6817 { 6818 unsigned int changes = dev->flags ^ old_flags; 6819 6820 if (gchanges) 6821 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 6822 6823 if (changes & IFF_UP) { 6824 if (dev->flags & IFF_UP) 6825 call_netdevice_notifiers(NETDEV_UP, dev); 6826 else 6827 call_netdevice_notifiers(NETDEV_DOWN, dev); 6828 } 6829 6830 if (dev->flags & IFF_UP && 6831 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 6832 struct netdev_notifier_change_info change_info; 6833 6834 change_info.flags_changed = changes; 6835 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 6836 &change_info.info); 6837 } 6838 } 6839 6840 /** 6841 * dev_change_flags - change device settings 6842 * @dev: device 6843 * @flags: device state flags 6844 * 6845 * Change settings on device based state flags. The flags are 6846 * in the userspace exported format. 6847 */ 6848 int dev_change_flags(struct net_device *dev, unsigned int flags) 6849 { 6850 int ret; 6851 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 6852 6853 ret = __dev_change_flags(dev, flags); 6854 if (ret < 0) 6855 return ret; 6856 6857 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 6858 __dev_notify_flags(dev, old_flags, changes); 6859 return ret; 6860 } 6861 EXPORT_SYMBOL(dev_change_flags); 6862 6863 int __dev_set_mtu(struct net_device *dev, int new_mtu) 6864 { 6865 const struct net_device_ops *ops = dev->netdev_ops; 6866 6867 if (ops->ndo_change_mtu) 6868 return ops->ndo_change_mtu(dev, new_mtu); 6869 6870 dev->mtu = new_mtu; 6871 return 0; 6872 } 6873 EXPORT_SYMBOL(__dev_set_mtu); 6874 6875 /** 6876 * dev_set_mtu - Change maximum transfer unit 6877 * @dev: device 6878 * @new_mtu: new transfer unit 6879 * 6880 * Change the maximum transfer size of the network device. 6881 */ 6882 int dev_set_mtu(struct net_device *dev, int new_mtu) 6883 { 6884 int err, orig_mtu; 6885 6886 if (new_mtu == dev->mtu) 6887 return 0; 6888 6889 /* MTU must be positive, and in range */ 6890 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 6891 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n", 6892 dev->name, new_mtu, dev->min_mtu); 6893 return -EINVAL; 6894 } 6895 6896 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 6897 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n", 6898 dev->name, new_mtu, dev->max_mtu); 6899 return -EINVAL; 6900 } 6901 6902 if (!netif_device_present(dev)) 6903 return -ENODEV; 6904 6905 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 6906 err = notifier_to_errno(err); 6907 if (err) 6908 return err; 6909 6910 orig_mtu = dev->mtu; 6911 err = __dev_set_mtu(dev, new_mtu); 6912 6913 if (!err) { 6914 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6915 err = notifier_to_errno(err); 6916 if (err) { 6917 /* setting mtu back and notifying everyone again, 6918 * so that they have a chance to revert changes. 6919 */ 6920 __dev_set_mtu(dev, orig_mtu); 6921 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6922 } 6923 } 6924 return err; 6925 } 6926 EXPORT_SYMBOL(dev_set_mtu); 6927 6928 /** 6929 * dev_set_group - Change group this device belongs to 6930 * @dev: device 6931 * @new_group: group this device should belong to 6932 */ 6933 void dev_set_group(struct net_device *dev, int new_group) 6934 { 6935 dev->group = new_group; 6936 } 6937 EXPORT_SYMBOL(dev_set_group); 6938 6939 /** 6940 * dev_set_mac_address - Change Media Access Control Address 6941 * @dev: device 6942 * @sa: new address 6943 * 6944 * Change the hardware (MAC) address of the device 6945 */ 6946 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 6947 { 6948 const struct net_device_ops *ops = dev->netdev_ops; 6949 int err; 6950 6951 if (!ops->ndo_set_mac_address) 6952 return -EOPNOTSUPP; 6953 if (sa->sa_family != dev->type) 6954 return -EINVAL; 6955 if (!netif_device_present(dev)) 6956 return -ENODEV; 6957 err = ops->ndo_set_mac_address(dev, sa); 6958 if (err) 6959 return err; 6960 dev->addr_assign_type = NET_ADDR_SET; 6961 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 6962 add_device_randomness(dev->dev_addr, dev->addr_len); 6963 return 0; 6964 } 6965 EXPORT_SYMBOL(dev_set_mac_address); 6966 6967 /** 6968 * dev_change_carrier - Change device carrier 6969 * @dev: device 6970 * @new_carrier: new value 6971 * 6972 * Change device carrier 6973 */ 6974 int dev_change_carrier(struct net_device *dev, bool new_carrier) 6975 { 6976 const struct net_device_ops *ops = dev->netdev_ops; 6977 6978 if (!ops->ndo_change_carrier) 6979 return -EOPNOTSUPP; 6980 if (!netif_device_present(dev)) 6981 return -ENODEV; 6982 return ops->ndo_change_carrier(dev, new_carrier); 6983 } 6984 EXPORT_SYMBOL(dev_change_carrier); 6985 6986 /** 6987 * dev_get_phys_port_id - Get device physical port ID 6988 * @dev: device 6989 * @ppid: port ID 6990 * 6991 * Get device physical port ID 6992 */ 6993 int dev_get_phys_port_id(struct net_device *dev, 6994 struct netdev_phys_item_id *ppid) 6995 { 6996 const struct net_device_ops *ops = dev->netdev_ops; 6997 6998 if (!ops->ndo_get_phys_port_id) 6999 return -EOPNOTSUPP; 7000 return ops->ndo_get_phys_port_id(dev, ppid); 7001 } 7002 EXPORT_SYMBOL(dev_get_phys_port_id); 7003 7004 /** 7005 * dev_get_phys_port_name - Get device physical port name 7006 * @dev: device 7007 * @name: port name 7008 * @len: limit of bytes to copy to name 7009 * 7010 * Get device physical port name 7011 */ 7012 int dev_get_phys_port_name(struct net_device *dev, 7013 char *name, size_t len) 7014 { 7015 const struct net_device_ops *ops = dev->netdev_ops; 7016 7017 if (!ops->ndo_get_phys_port_name) 7018 return -EOPNOTSUPP; 7019 return ops->ndo_get_phys_port_name(dev, name, len); 7020 } 7021 EXPORT_SYMBOL(dev_get_phys_port_name); 7022 7023 /** 7024 * dev_change_proto_down - update protocol port state information 7025 * @dev: device 7026 * @proto_down: new value 7027 * 7028 * This info can be used by switch drivers to set the phys state of the 7029 * port. 7030 */ 7031 int dev_change_proto_down(struct net_device *dev, bool proto_down) 7032 { 7033 const struct net_device_ops *ops = dev->netdev_ops; 7034 7035 if (!ops->ndo_change_proto_down) 7036 return -EOPNOTSUPP; 7037 if (!netif_device_present(dev)) 7038 return -ENODEV; 7039 return ops->ndo_change_proto_down(dev, proto_down); 7040 } 7041 EXPORT_SYMBOL(dev_change_proto_down); 7042 7043 u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id) 7044 { 7045 struct netdev_xdp xdp; 7046 7047 memset(&xdp, 0, sizeof(xdp)); 7048 xdp.command = XDP_QUERY_PROG; 7049 7050 /* Query must always succeed. */ 7051 WARN_ON(xdp_op(dev, &xdp) < 0); 7052 if (prog_id) 7053 *prog_id = xdp.prog_id; 7054 7055 return xdp.prog_attached; 7056 } 7057 7058 static int dev_xdp_install(struct net_device *dev, xdp_op_t xdp_op, 7059 struct netlink_ext_ack *extack, u32 flags, 7060 struct bpf_prog *prog) 7061 { 7062 struct netdev_xdp xdp; 7063 7064 memset(&xdp, 0, sizeof(xdp)); 7065 if (flags & XDP_FLAGS_HW_MODE) 7066 xdp.command = XDP_SETUP_PROG_HW; 7067 else 7068 xdp.command = XDP_SETUP_PROG; 7069 xdp.extack = extack; 7070 xdp.flags = flags; 7071 xdp.prog = prog; 7072 7073 return xdp_op(dev, &xdp); 7074 } 7075 7076 /** 7077 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 7078 * @dev: device 7079 * @extack: netlink extended ack 7080 * @fd: new program fd or negative value to clear 7081 * @flags: xdp-related flags 7082 * 7083 * Set or clear a bpf program for a device 7084 */ 7085 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 7086 int fd, u32 flags) 7087 { 7088 const struct net_device_ops *ops = dev->netdev_ops; 7089 struct bpf_prog *prog = NULL; 7090 xdp_op_t xdp_op, xdp_chk; 7091 int err; 7092 7093 ASSERT_RTNL(); 7094 7095 xdp_op = xdp_chk = ops->ndo_xdp; 7096 if (!xdp_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) 7097 return -EOPNOTSUPP; 7098 if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE)) 7099 xdp_op = generic_xdp_install; 7100 if (xdp_op == xdp_chk) 7101 xdp_chk = generic_xdp_install; 7102 7103 if (fd >= 0) { 7104 if (xdp_chk && __dev_xdp_attached(dev, xdp_chk, NULL)) 7105 return -EEXIST; 7106 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && 7107 __dev_xdp_attached(dev, xdp_op, NULL)) 7108 return -EBUSY; 7109 7110 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP); 7111 if (IS_ERR(prog)) 7112 return PTR_ERR(prog); 7113 } 7114 7115 err = dev_xdp_install(dev, xdp_op, extack, flags, prog); 7116 if (err < 0 && prog) 7117 bpf_prog_put(prog); 7118 7119 return err; 7120 } 7121 7122 /** 7123 * dev_new_index - allocate an ifindex 7124 * @net: the applicable net namespace 7125 * 7126 * Returns a suitable unique value for a new device interface 7127 * number. The caller must hold the rtnl semaphore or the 7128 * dev_base_lock to be sure it remains unique. 7129 */ 7130 static int dev_new_index(struct net *net) 7131 { 7132 int ifindex = net->ifindex; 7133 7134 for (;;) { 7135 if (++ifindex <= 0) 7136 ifindex = 1; 7137 if (!__dev_get_by_index(net, ifindex)) 7138 return net->ifindex = ifindex; 7139 } 7140 } 7141 7142 /* Delayed registration/unregisteration */ 7143 static LIST_HEAD(net_todo_list); 7144 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 7145 7146 static void net_set_todo(struct net_device *dev) 7147 { 7148 list_add_tail(&dev->todo_list, &net_todo_list); 7149 dev_net(dev)->dev_unreg_count++; 7150 } 7151 7152 static void rollback_registered_many(struct list_head *head) 7153 { 7154 struct net_device *dev, *tmp; 7155 LIST_HEAD(close_head); 7156 7157 BUG_ON(dev_boot_phase); 7158 ASSERT_RTNL(); 7159 7160 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 7161 /* Some devices call without registering 7162 * for initialization unwind. Remove those 7163 * devices and proceed with the remaining. 7164 */ 7165 if (dev->reg_state == NETREG_UNINITIALIZED) { 7166 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 7167 dev->name, dev); 7168 7169 WARN_ON(1); 7170 list_del(&dev->unreg_list); 7171 continue; 7172 } 7173 dev->dismantle = true; 7174 BUG_ON(dev->reg_state != NETREG_REGISTERED); 7175 } 7176 7177 /* If device is running, close it first. */ 7178 list_for_each_entry(dev, head, unreg_list) 7179 list_add_tail(&dev->close_list, &close_head); 7180 dev_close_many(&close_head, true); 7181 7182 list_for_each_entry(dev, head, unreg_list) { 7183 /* And unlink it from device chain. */ 7184 unlist_netdevice(dev); 7185 7186 dev->reg_state = NETREG_UNREGISTERING; 7187 } 7188 flush_all_backlogs(); 7189 7190 synchronize_net(); 7191 7192 list_for_each_entry(dev, head, unreg_list) { 7193 struct sk_buff *skb = NULL; 7194 7195 /* Shutdown queueing discipline. */ 7196 dev_shutdown(dev); 7197 7198 7199 /* Notify protocols, that we are about to destroy 7200 * this device. They should clean all the things. 7201 */ 7202 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7203 7204 if (!dev->rtnl_link_ops || 7205 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7206 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 7207 GFP_KERNEL); 7208 7209 /* 7210 * Flush the unicast and multicast chains 7211 */ 7212 dev_uc_flush(dev); 7213 dev_mc_flush(dev); 7214 7215 if (dev->netdev_ops->ndo_uninit) 7216 dev->netdev_ops->ndo_uninit(dev); 7217 7218 if (skb) 7219 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 7220 7221 /* Notifier chain MUST detach us all upper devices. */ 7222 WARN_ON(netdev_has_any_upper_dev(dev)); 7223 WARN_ON(netdev_has_any_lower_dev(dev)); 7224 7225 /* Remove entries from kobject tree */ 7226 netdev_unregister_kobject(dev); 7227 #ifdef CONFIG_XPS 7228 /* Remove XPS queueing entries */ 7229 netif_reset_xps_queues_gt(dev, 0); 7230 #endif 7231 } 7232 7233 synchronize_net(); 7234 7235 list_for_each_entry(dev, head, unreg_list) 7236 dev_put(dev); 7237 } 7238 7239 static void rollback_registered(struct net_device *dev) 7240 { 7241 LIST_HEAD(single); 7242 7243 list_add(&dev->unreg_list, &single); 7244 rollback_registered_many(&single); 7245 list_del(&single); 7246 } 7247 7248 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 7249 struct net_device *upper, netdev_features_t features) 7250 { 7251 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7252 netdev_features_t feature; 7253 int feature_bit; 7254 7255 for_each_netdev_feature(&upper_disables, feature_bit) { 7256 feature = __NETIF_F_BIT(feature_bit); 7257 if (!(upper->wanted_features & feature) 7258 && (features & feature)) { 7259 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 7260 &feature, upper->name); 7261 features &= ~feature; 7262 } 7263 } 7264 7265 return features; 7266 } 7267 7268 static void netdev_sync_lower_features(struct net_device *upper, 7269 struct net_device *lower, netdev_features_t features) 7270 { 7271 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7272 netdev_features_t feature; 7273 int feature_bit; 7274 7275 for_each_netdev_feature(&upper_disables, feature_bit) { 7276 feature = __NETIF_F_BIT(feature_bit); 7277 if (!(features & feature) && (lower->features & feature)) { 7278 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 7279 &feature, lower->name); 7280 lower->wanted_features &= ~feature; 7281 netdev_update_features(lower); 7282 7283 if (unlikely(lower->features & feature)) 7284 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 7285 &feature, lower->name); 7286 } 7287 } 7288 } 7289 7290 static netdev_features_t netdev_fix_features(struct net_device *dev, 7291 netdev_features_t features) 7292 { 7293 /* Fix illegal checksum combinations */ 7294 if ((features & NETIF_F_HW_CSUM) && 7295 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 7296 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 7297 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 7298 } 7299 7300 /* TSO requires that SG is present as well. */ 7301 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 7302 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 7303 features &= ~NETIF_F_ALL_TSO; 7304 } 7305 7306 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 7307 !(features & NETIF_F_IP_CSUM)) { 7308 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 7309 features &= ~NETIF_F_TSO; 7310 features &= ~NETIF_F_TSO_ECN; 7311 } 7312 7313 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 7314 !(features & NETIF_F_IPV6_CSUM)) { 7315 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 7316 features &= ~NETIF_F_TSO6; 7317 } 7318 7319 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 7320 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 7321 features &= ~NETIF_F_TSO_MANGLEID; 7322 7323 /* TSO ECN requires that TSO is present as well. */ 7324 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 7325 features &= ~NETIF_F_TSO_ECN; 7326 7327 /* Software GSO depends on SG. */ 7328 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 7329 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 7330 features &= ~NETIF_F_GSO; 7331 } 7332 7333 /* GSO partial features require GSO partial be set */ 7334 if ((features & dev->gso_partial_features) && 7335 !(features & NETIF_F_GSO_PARTIAL)) { 7336 netdev_dbg(dev, 7337 "Dropping partially supported GSO features since no GSO partial.\n"); 7338 features &= ~dev->gso_partial_features; 7339 } 7340 7341 return features; 7342 } 7343 7344 int __netdev_update_features(struct net_device *dev) 7345 { 7346 struct net_device *upper, *lower; 7347 netdev_features_t features; 7348 struct list_head *iter; 7349 int err = -1; 7350 7351 ASSERT_RTNL(); 7352 7353 features = netdev_get_wanted_features(dev); 7354 7355 if (dev->netdev_ops->ndo_fix_features) 7356 features = dev->netdev_ops->ndo_fix_features(dev, features); 7357 7358 /* driver might be less strict about feature dependencies */ 7359 features = netdev_fix_features(dev, features); 7360 7361 /* some features can't be enabled if they're off an an upper device */ 7362 netdev_for_each_upper_dev_rcu(dev, upper, iter) 7363 features = netdev_sync_upper_features(dev, upper, features); 7364 7365 if (dev->features == features) 7366 goto sync_lower; 7367 7368 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 7369 &dev->features, &features); 7370 7371 if (dev->netdev_ops->ndo_set_features) 7372 err = dev->netdev_ops->ndo_set_features(dev, features); 7373 else 7374 err = 0; 7375 7376 if (unlikely(err < 0)) { 7377 netdev_err(dev, 7378 "set_features() failed (%d); wanted %pNF, left %pNF\n", 7379 err, &features, &dev->features); 7380 /* return non-0 since some features might have changed and 7381 * it's better to fire a spurious notification than miss it 7382 */ 7383 return -1; 7384 } 7385 7386 sync_lower: 7387 /* some features must be disabled on lower devices when disabled 7388 * on an upper device (think: bonding master or bridge) 7389 */ 7390 netdev_for_each_lower_dev(dev, lower, iter) 7391 netdev_sync_lower_features(dev, lower, features); 7392 7393 if (!err) { 7394 netdev_features_t diff = features ^ dev->features; 7395 7396 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 7397 /* udp_tunnel_{get,drop}_rx_info both need 7398 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 7399 * device, or they won't do anything. 7400 * Thus we need to update dev->features 7401 * *before* calling udp_tunnel_get_rx_info, 7402 * but *after* calling udp_tunnel_drop_rx_info. 7403 */ 7404 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 7405 dev->features = features; 7406 udp_tunnel_get_rx_info(dev); 7407 } else { 7408 udp_tunnel_drop_rx_info(dev); 7409 } 7410 } 7411 7412 dev->features = features; 7413 } 7414 7415 return err < 0 ? 0 : 1; 7416 } 7417 7418 /** 7419 * netdev_update_features - recalculate device features 7420 * @dev: the device to check 7421 * 7422 * Recalculate dev->features set and send notifications if it 7423 * has changed. Should be called after driver or hardware dependent 7424 * conditions might have changed that influence the features. 7425 */ 7426 void netdev_update_features(struct net_device *dev) 7427 { 7428 if (__netdev_update_features(dev)) 7429 netdev_features_change(dev); 7430 } 7431 EXPORT_SYMBOL(netdev_update_features); 7432 7433 /** 7434 * netdev_change_features - recalculate device features 7435 * @dev: the device to check 7436 * 7437 * Recalculate dev->features set and send notifications even 7438 * if they have not changed. Should be called instead of 7439 * netdev_update_features() if also dev->vlan_features might 7440 * have changed to allow the changes to be propagated to stacked 7441 * VLAN devices. 7442 */ 7443 void netdev_change_features(struct net_device *dev) 7444 { 7445 __netdev_update_features(dev); 7446 netdev_features_change(dev); 7447 } 7448 EXPORT_SYMBOL(netdev_change_features); 7449 7450 /** 7451 * netif_stacked_transfer_operstate - transfer operstate 7452 * @rootdev: the root or lower level device to transfer state from 7453 * @dev: the device to transfer operstate to 7454 * 7455 * Transfer operational state from root to device. This is normally 7456 * called when a stacking relationship exists between the root 7457 * device and the device(a leaf device). 7458 */ 7459 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 7460 struct net_device *dev) 7461 { 7462 if (rootdev->operstate == IF_OPER_DORMANT) 7463 netif_dormant_on(dev); 7464 else 7465 netif_dormant_off(dev); 7466 7467 if (netif_carrier_ok(rootdev)) 7468 netif_carrier_on(dev); 7469 else 7470 netif_carrier_off(dev); 7471 } 7472 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 7473 7474 #ifdef CONFIG_SYSFS 7475 static int netif_alloc_rx_queues(struct net_device *dev) 7476 { 7477 unsigned int i, count = dev->num_rx_queues; 7478 struct netdev_rx_queue *rx; 7479 size_t sz = count * sizeof(*rx); 7480 7481 BUG_ON(count < 1); 7482 7483 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 7484 if (!rx) 7485 return -ENOMEM; 7486 7487 dev->_rx = rx; 7488 7489 for (i = 0; i < count; i++) 7490 rx[i].dev = dev; 7491 return 0; 7492 } 7493 #endif 7494 7495 static void netdev_init_one_queue(struct net_device *dev, 7496 struct netdev_queue *queue, void *_unused) 7497 { 7498 /* Initialize queue lock */ 7499 spin_lock_init(&queue->_xmit_lock); 7500 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 7501 queue->xmit_lock_owner = -1; 7502 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 7503 queue->dev = dev; 7504 #ifdef CONFIG_BQL 7505 dql_init(&queue->dql, HZ); 7506 #endif 7507 } 7508 7509 static void netif_free_tx_queues(struct net_device *dev) 7510 { 7511 kvfree(dev->_tx); 7512 } 7513 7514 static int netif_alloc_netdev_queues(struct net_device *dev) 7515 { 7516 unsigned int count = dev->num_tx_queues; 7517 struct netdev_queue *tx; 7518 size_t sz = count * sizeof(*tx); 7519 7520 if (count < 1 || count > 0xffff) 7521 return -EINVAL; 7522 7523 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 7524 if (!tx) 7525 return -ENOMEM; 7526 7527 dev->_tx = tx; 7528 7529 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 7530 spin_lock_init(&dev->tx_global_lock); 7531 7532 return 0; 7533 } 7534 7535 void netif_tx_stop_all_queues(struct net_device *dev) 7536 { 7537 unsigned int i; 7538 7539 for (i = 0; i < dev->num_tx_queues; i++) { 7540 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 7541 7542 netif_tx_stop_queue(txq); 7543 } 7544 } 7545 EXPORT_SYMBOL(netif_tx_stop_all_queues); 7546 7547 /** 7548 * register_netdevice - register a network device 7549 * @dev: device to register 7550 * 7551 * Take a completed network device structure and add it to the kernel 7552 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7553 * chain. 0 is returned on success. A negative errno code is returned 7554 * on a failure to set up the device, or if the name is a duplicate. 7555 * 7556 * Callers must hold the rtnl semaphore. You may want 7557 * register_netdev() instead of this. 7558 * 7559 * BUGS: 7560 * The locking appears insufficient to guarantee two parallel registers 7561 * will not get the same name. 7562 */ 7563 7564 int register_netdevice(struct net_device *dev) 7565 { 7566 int ret; 7567 struct net *net = dev_net(dev); 7568 7569 BUG_ON(dev_boot_phase); 7570 ASSERT_RTNL(); 7571 7572 might_sleep(); 7573 7574 /* When net_device's are persistent, this will be fatal. */ 7575 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 7576 BUG_ON(!net); 7577 7578 spin_lock_init(&dev->addr_list_lock); 7579 netdev_set_addr_lockdep_class(dev); 7580 7581 ret = dev_get_valid_name(net, dev, dev->name); 7582 if (ret < 0) 7583 goto out; 7584 7585 /* Init, if this function is available */ 7586 if (dev->netdev_ops->ndo_init) { 7587 ret = dev->netdev_ops->ndo_init(dev); 7588 if (ret) { 7589 if (ret > 0) 7590 ret = -EIO; 7591 goto out; 7592 } 7593 } 7594 7595 if (((dev->hw_features | dev->features) & 7596 NETIF_F_HW_VLAN_CTAG_FILTER) && 7597 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 7598 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 7599 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 7600 ret = -EINVAL; 7601 goto err_uninit; 7602 } 7603 7604 ret = -EBUSY; 7605 if (!dev->ifindex) 7606 dev->ifindex = dev_new_index(net); 7607 else if (__dev_get_by_index(net, dev->ifindex)) 7608 goto err_uninit; 7609 7610 /* Transfer changeable features to wanted_features and enable 7611 * software offloads (GSO and GRO). 7612 */ 7613 dev->hw_features |= NETIF_F_SOFT_FEATURES; 7614 dev->features |= NETIF_F_SOFT_FEATURES; 7615 7616 if (dev->netdev_ops->ndo_udp_tunnel_add) { 7617 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 7618 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 7619 } 7620 7621 dev->wanted_features = dev->features & dev->hw_features; 7622 7623 if (!(dev->flags & IFF_LOOPBACK)) 7624 dev->hw_features |= NETIF_F_NOCACHE_COPY; 7625 7626 /* If IPv4 TCP segmentation offload is supported we should also 7627 * allow the device to enable segmenting the frame with the option 7628 * of ignoring a static IP ID value. This doesn't enable the 7629 * feature itself but allows the user to enable it later. 7630 */ 7631 if (dev->hw_features & NETIF_F_TSO) 7632 dev->hw_features |= NETIF_F_TSO_MANGLEID; 7633 if (dev->vlan_features & NETIF_F_TSO) 7634 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 7635 if (dev->mpls_features & NETIF_F_TSO) 7636 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 7637 if (dev->hw_enc_features & NETIF_F_TSO) 7638 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 7639 7640 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 7641 */ 7642 dev->vlan_features |= NETIF_F_HIGHDMA; 7643 7644 /* Make NETIF_F_SG inheritable to tunnel devices. 7645 */ 7646 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 7647 7648 /* Make NETIF_F_SG inheritable to MPLS. 7649 */ 7650 dev->mpls_features |= NETIF_F_SG; 7651 7652 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 7653 ret = notifier_to_errno(ret); 7654 if (ret) 7655 goto err_uninit; 7656 7657 ret = netdev_register_kobject(dev); 7658 if (ret) 7659 goto err_uninit; 7660 dev->reg_state = NETREG_REGISTERED; 7661 7662 __netdev_update_features(dev); 7663 7664 /* 7665 * Default initial state at registry is that the 7666 * device is present. 7667 */ 7668 7669 set_bit(__LINK_STATE_PRESENT, &dev->state); 7670 7671 linkwatch_init_dev(dev); 7672 7673 dev_init_scheduler(dev); 7674 dev_hold(dev); 7675 list_netdevice(dev); 7676 add_device_randomness(dev->dev_addr, dev->addr_len); 7677 7678 /* If the device has permanent device address, driver should 7679 * set dev_addr and also addr_assign_type should be set to 7680 * NET_ADDR_PERM (default value). 7681 */ 7682 if (dev->addr_assign_type == NET_ADDR_PERM) 7683 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 7684 7685 /* Notify protocols, that a new device appeared. */ 7686 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 7687 ret = notifier_to_errno(ret); 7688 if (ret) { 7689 rollback_registered(dev); 7690 dev->reg_state = NETREG_UNREGISTERED; 7691 } 7692 /* 7693 * Prevent userspace races by waiting until the network 7694 * device is fully setup before sending notifications. 7695 */ 7696 if (!dev->rtnl_link_ops || 7697 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7698 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7699 7700 out: 7701 return ret; 7702 7703 err_uninit: 7704 if (dev->netdev_ops->ndo_uninit) 7705 dev->netdev_ops->ndo_uninit(dev); 7706 if (dev->priv_destructor) 7707 dev->priv_destructor(dev); 7708 goto out; 7709 } 7710 EXPORT_SYMBOL(register_netdevice); 7711 7712 /** 7713 * init_dummy_netdev - init a dummy network device for NAPI 7714 * @dev: device to init 7715 * 7716 * This takes a network device structure and initialize the minimum 7717 * amount of fields so it can be used to schedule NAPI polls without 7718 * registering a full blown interface. This is to be used by drivers 7719 * that need to tie several hardware interfaces to a single NAPI 7720 * poll scheduler due to HW limitations. 7721 */ 7722 int init_dummy_netdev(struct net_device *dev) 7723 { 7724 /* Clear everything. Note we don't initialize spinlocks 7725 * are they aren't supposed to be taken by any of the 7726 * NAPI code and this dummy netdev is supposed to be 7727 * only ever used for NAPI polls 7728 */ 7729 memset(dev, 0, sizeof(struct net_device)); 7730 7731 /* make sure we BUG if trying to hit standard 7732 * register/unregister code path 7733 */ 7734 dev->reg_state = NETREG_DUMMY; 7735 7736 /* NAPI wants this */ 7737 INIT_LIST_HEAD(&dev->napi_list); 7738 7739 /* a dummy interface is started by default */ 7740 set_bit(__LINK_STATE_PRESENT, &dev->state); 7741 set_bit(__LINK_STATE_START, &dev->state); 7742 7743 /* Note : We dont allocate pcpu_refcnt for dummy devices, 7744 * because users of this 'device' dont need to change 7745 * its refcount. 7746 */ 7747 7748 return 0; 7749 } 7750 EXPORT_SYMBOL_GPL(init_dummy_netdev); 7751 7752 7753 /** 7754 * register_netdev - register a network device 7755 * @dev: device to register 7756 * 7757 * Take a completed network device structure and add it to the kernel 7758 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7759 * chain. 0 is returned on success. A negative errno code is returned 7760 * on a failure to set up the device, or if the name is a duplicate. 7761 * 7762 * This is a wrapper around register_netdevice that takes the rtnl semaphore 7763 * and expands the device name if you passed a format string to 7764 * alloc_netdev. 7765 */ 7766 int register_netdev(struct net_device *dev) 7767 { 7768 int err; 7769 7770 rtnl_lock(); 7771 err = register_netdevice(dev); 7772 rtnl_unlock(); 7773 return err; 7774 } 7775 EXPORT_SYMBOL(register_netdev); 7776 7777 int netdev_refcnt_read(const struct net_device *dev) 7778 { 7779 int i, refcnt = 0; 7780 7781 for_each_possible_cpu(i) 7782 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 7783 return refcnt; 7784 } 7785 EXPORT_SYMBOL(netdev_refcnt_read); 7786 7787 /** 7788 * netdev_wait_allrefs - wait until all references are gone. 7789 * @dev: target net_device 7790 * 7791 * This is called when unregistering network devices. 7792 * 7793 * Any protocol or device that holds a reference should register 7794 * for netdevice notification, and cleanup and put back the 7795 * reference if they receive an UNREGISTER event. 7796 * We can get stuck here if buggy protocols don't correctly 7797 * call dev_put. 7798 */ 7799 static void netdev_wait_allrefs(struct net_device *dev) 7800 { 7801 unsigned long rebroadcast_time, warning_time; 7802 int refcnt; 7803 7804 linkwatch_forget_dev(dev); 7805 7806 rebroadcast_time = warning_time = jiffies; 7807 refcnt = netdev_refcnt_read(dev); 7808 7809 while (refcnt != 0) { 7810 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 7811 rtnl_lock(); 7812 7813 /* Rebroadcast unregister notification */ 7814 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7815 7816 __rtnl_unlock(); 7817 rcu_barrier(); 7818 rtnl_lock(); 7819 7820 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7821 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 7822 &dev->state)) { 7823 /* We must not have linkwatch events 7824 * pending on unregister. If this 7825 * happens, we simply run the queue 7826 * unscheduled, resulting in a noop 7827 * for this device. 7828 */ 7829 linkwatch_run_queue(); 7830 } 7831 7832 __rtnl_unlock(); 7833 7834 rebroadcast_time = jiffies; 7835 } 7836 7837 msleep(250); 7838 7839 refcnt = netdev_refcnt_read(dev); 7840 7841 if (time_after(jiffies, warning_time + 10 * HZ)) { 7842 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 7843 dev->name, refcnt); 7844 warning_time = jiffies; 7845 } 7846 } 7847 } 7848 7849 /* The sequence is: 7850 * 7851 * rtnl_lock(); 7852 * ... 7853 * register_netdevice(x1); 7854 * register_netdevice(x2); 7855 * ... 7856 * unregister_netdevice(y1); 7857 * unregister_netdevice(y2); 7858 * ... 7859 * rtnl_unlock(); 7860 * free_netdev(y1); 7861 * free_netdev(y2); 7862 * 7863 * We are invoked by rtnl_unlock(). 7864 * This allows us to deal with problems: 7865 * 1) We can delete sysfs objects which invoke hotplug 7866 * without deadlocking with linkwatch via keventd. 7867 * 2) Since we run with the RTNL semaphore not held, we can sleep 7868 * safely in order to wait for the netdev refcnt to drop to zero. 7869 * 7870 * We must not return until all unregister events added during 7871 * the interval the lock was held have been completed. 7872 */ 7873 void netdev_run_todo(void) 7874 { 7875 struct list_head list; 7876 7877 /* Snapshot list, allow later requests */ 7878 list_replace_init(&net_todo_list, &list); 7879 7880 __rtnl_unlock(); 7881 7882 7883 /* Wait for rcu callbacks to finish before next phase */ 7884 if (!list_empty(&list)) 7885 rcu_barrier(); 7886 7887 while (!list_empty(&list)) { 7888 struct net_device *dev 7889 = list_first_entry(&list, struct net_device, todo_list); 7890 list_del(&dev->todo_list); 7891 7892 rtnl_lock(); 7893 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7894 __rtnl_unlock(); 7895 7896 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 7897 pr_err("network todo '%s' but state %d\n", 7898 dev->name, dev->reg_state); 7899 dump_stack(); 7900 continue; 7901 } 7902 7903 dev->reg_state = NETREG_UNREGISTERED; 7904 7905 netdev_wait_allrefs(dev); 7906 7907 /* paranoia */ 7908 BUG_ON(netdev_refcnt_read(dev)); 7909 BUG_ON(!list_empty(&dev->ptype_all)); 7910 BUG_ON(!list_empty(&dev->ptype_specific)); 7911 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 7912 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 7913 WARN_ON(dev->dn_ptr); 7914 7915 if (dev->priv_destructor) 7916 dev->priv_destructor(dev); 7917 if (dev->needs_free_netdev) 7918 free_netdev(dev); 7919 7920 /* Report a network device has been unregistered */ 7921 rtnl_lock(); 7922 dev_net(dev)->dev_unreg_count--; 7923 __rtnl_unlock(); 7924 wake_up(&netdev_unregistering_wq); 7925 7926 /* Free network device */ 7927 kobject_put(&dev->dev.kobj); 7928 } 7929 } 7930 7931 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 7932 * all the same fields in the same order as net_device_stats, with only 7933 * the type differing, but rtnl_link_stats64 may have additional fields 7934 * at the end for newer counters. 7935 */ 7936 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 7937 const struct net_device_stats *netdev_stats) 7938 { 7939 #if BITS_PER_LONG == 64 7940 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 7941 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 7942 /* zero out counters that only exist in rtnl_link_stats64 */ 7943 memset((char *)stats64 + sizeof(*netdev_stats), 0, 7944 sizeof(*stats64) - sizeof(*netdev_stats)); 7945 #else 7946 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 7947 const unsigned long *src = (const unsigned long *)netdev_stats; 7948 u64 *dst = (u64 *)stats64; 7949 7950 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 7951 for (i = 0; i < n; i++) 7952 dst[i] = src[i]; 7953 /* zero out counters that only exist in rtnl_link_stats64 */ 7954 memset((char *)stats64 + n * sizeof(u64), 0, 7955 sizeof(*stats64) - n * sizeof(u64)); 7956 #endif 7957 } 7958 EXPORT_SYMBOL(netdev_stats_to_stats64); 7959 7960 /** 7961 * dev_get_stats - get network device statistics 7962 * @dev: device to get statistics from 7963 * @storage: place to store stats 7964 * 7965 * Get network statistics from device. Return @storage. 7966 * The device driver may provide its own method by setting 7967 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 7968 * otherwise the internal statistics structure is used. 7969 */ 7970 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 7971 struct rtnl_link_stats64 *storage) 7972 { 7973 const struct net_device_ops *ops = dev->netdev_ops; 7974 7975 if (ops->ndo_get_stats64) { 7976 memset(storage, 0, sizeof(*storage)); 7977 ops->ndo_get_stats64(dev, storage); 7978 } else if (ops->ndo_get_stats) { 7979 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 7980 } else { 7981 netdev_stats_to_stats64(storage, &dev->stats); 7982 } 7983 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 7984 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 7985 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 7986 return storage; 7987 } 7988 EXPORT_SYMBOL(dev_get_stats); 7989 7990 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 7991 { 7992 struct netdev_queue *queue = dev_ingress_queue(dev); 7993 7994 #ifdef CONFIG_NET_CLS_ACT 7995 if (queue) 7996 return queue; 7997 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 7998 if (!queue) 7999 return NULL; 8000 netdev_init_one_queue(dev, queue, NULL); 8001 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 8002 queue->qdisc_sleeping = &noop_qdisc; 8003 rcu_assign_pointer(dev->ingress_queue, queue); 8004 #endif 8005 return queue; 8006 } 8007 8008 static const struct ethtool_ops default_ethtool_ops; 8009 8010 void netdev_set_default_ethtool_ops(struct net_device *dev, 8011 const struct ethtool_ops *ops) 8012 { 8013 if (dev->ethtool_ops == &default_ethtool_ops) 8014 dev->ethtool_ops = ops; 8015 } 8016 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 8017 8018 void netdev_freemem(struct net_device *dev) 8019 { 8020 char *addr = (char *)dev - dev->padded; 8021 8022 kvfree(addr); 8023 } 8024 8025 /** 8026 * alloc_netdev_mqs - allocate network device 8027 * @sizeof_priv: size of private data to allocate space for 8028 * @name: device name format string 8029 * @name_assign_type: origin of device name 8030 * @setup: callback to initialize device 8031 * @txqs: the number of TX subqueues to allocate 8032 * @rxqs: the number of RX subqueues to allocate 8033 * 8034 * Allocates a struct net_device with private data area for driver use 8035 * and performs basic initialization. Also allocates subqueue structs 8036 * for each queue on the device. 8037 */ 8038 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 8039 unsigned char name_assign_type, 8040 void (*setup)(struct net_device *), 8041 unsigned int txqs, unsigned int rxqs) 8042 { 8043 struct net_device *dev; 8044 unsigned int alloc_size; 8045 struct net_device *p; 8046 8047 BUG_ON(strlen(name) >= sizeof(dev->name)); 8048 8049 if (txqs < 1) { 8050 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 8051 return NULL; 8052 } 8053 8054 #ifdef CONFIG_SYSFS 8055 if (rxqs < 1) { 8056 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 8057 return NULL; 8058 } 8059 #endif 8060 8061 alloc_size = sizeof(struct net_device); 8062 if (sizeof_priv) { 8063 /* ensure 32-byte alignment of private area */ 8064 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 8065 alloc_size += sizeof_priv; 8066 } 8067 /* ensure 32-byte alignment of whole construct */ 8068 alloc_size += NETDEV_ALIGN - 1; 8069 8070 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8071 if (!p) 8072 return NULL; 8073 8074 dev = PTR_ALIGN(p, NETDEV_ALIGN); 8075 dev->padded = (char *)dev - (char *)p; 8076 8077 dev->pcpu_refcnt = alloc_percpu(int); 8078 if (!dev->pcpu_refcnt) 8079 goto free_dev; 8080 8081 if (dev_addr_init(dev)) 8082 goto free_pcpu; 8083 8084 dev_mc_init(dev); 8085 dev_uc_init(dev); 8086 8087 dev_net_set(dev, &init_net); 8088 8089 dev->gso_max_size = GSO_MAX_SIZE; 8090 dev->gso_max_segs = GSO_MAX_SEGS; 8091 8092 INIT_LIST_HEAD(&dev->napi_list); 8093 INIT_LIST_HEAD(&dev->unreg_list); 8094 INIT_LIST_HEAD(&dev->close_list); 8095 INIT_LIST_HEAD(&dev->link_watch_list); 8096 INIT_LIST_HEAD(&dev->adj_list.upper); 8097 INIT_LIST_HEAD(&dev->adj_list.lower); 8098 INIT_LIST_HEAD(&dev->ptype_all); 8099 INIT_LIST_HEAD(&dev->ptype_specific); 8100 #ifdef CONFIG_NET_SCHED 8101 hash_init(dev->qdisc_hash); 8102 #endif 8103 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 8104 setup(dev); 8105 8106 if (!dev->tx_queue_len) { 8107 dev->priv_flags |= IFF_NO_QUEUE; 8108 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 8109 } 8110 8111 dev->num_tx_queues = txqs; 8112 dev->real_num_tx_queues = txqs; 8113 if (netif_alloc_netdev_queues(dev)) 8114 goto free_all; 8115 8116 #ifdef CONFIG_SYSFS 8117 dev->num_rx_queues = rxqs; 8118 dev->real_num_rx_queues = rxqs; 8119 if (netif_alloc_rx_queues(dev)) 8120 goto free_all; 8121 #endif 8122 8123 strcpy(dev->name, name); 8124 dev->name_assign_type = name_assign_type; 8125 dev->group = INIT_NETDEV_GROUP; 8126 if (!dev->ethtool_ops) 8127 dev->ethtool_ops = &default_ethtool_ops; 8128 8129 nf_hook_ingress_init(dev); 8130 8131 return dev; 8132 8133 free_all: 8134 free_netdev(dev); 8135 return NULL; 8136 8137 free_pcpu: 8138 free_percpu(dev->pcpu_refcnt); 8139 free_dev: 8140 netdev_freemem(dev); 8141 return NULL; 8142 } 8143 EXPORT_SYMBOL(alloc_netdev_mqs); 8144 8145 /** 8146 * free_netdev - free network device 8147 * @dev: device 8148 * 8149 * This function does the last stage of destroying an allocated device 8150 * interface. The reference to the device object is released. If this 8151 * is the last reference then it will be freed.Must be called in process 8152 * context. 8153 */ 8154 void free_netdev(struct net_device *dev) 8155 { 8156 struct napi_struct *p, *n; 8157 struct bpf_prog *prog; 8158 8159 might_sleep(); 8160 netif_free_tx_queues(dev); 8161 #ifdef CONFIG_SYSFS 8162 kvfree(dev->_rx); 8163 #endif 8164 8165 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 8166 8167 /* Flush device addresses */ 8168 dev_addr_flush(dev); 8169 8170 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 8171 netif_napi_del(p); 8172 8173 free_percpu(dev->pcpu_refcnt); 8174 dev->pcpu_refcnt = NULL; 8175 8176 prog = rcu_dereference_protected(dev->xdp_prog, 1); 8177 if (prog) { 8178 bpf_prog_put(prog); 8179 static_key_slow_dec(&generic_xdp_needed); 8180 } 8181 8182 /* Compatibility with error handling in drivers */ 8183 if (dev->reg_state == NETREG_UNINITIALIZED) { 8184 netdev_freemem(dev); 8185 return; 8186 } 8187 8188 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 8189 dev->reg_state = NETREG_RELEASED; 8190 8191 /* will free via device release */ 8192 put_device(&dev->dev); 8193 } 8194 EXPORT_SYMBOL(free_netdev); 8195 8196 /** 8197 * synchronize_net - Synchronize with packet receive processing 8198 * 8199 * Wait for packets currently being received to be done. 8200 * Does not block later packets from starting. 8201 */ 8202 void synchronize_net(void) 8203 { 8204 might_sleep(); 8205 if (rtnl_is_locked()) 8206 synchronize_rcu_expedited(); 8207 else 8208 synchronize_rcu(); 8209 } 8210 EXPORT_SYMBOL(synchronize_net); 8211 8212 /** 8213 * unregister_netdevice_queue - remove device from the kernel 8214 * @dev: device 8215 * @head: list 8216 * 8217 * This function shuts down a device interface and removes it 8218 * from the kernel tables. 8219 * If head not NULL, device is queued to be unregistered later. 8220 * 8221 * Callers must hold the rtnl semaphore. You may want 8222 * unregister_netdev() instead of this. 8223 */ 8224 8225 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 8226 { 8227 ASSERT_RTNL(); 8228 8229 if (head) { 8230 list_move_tail(&dev->unreg_list, head); 8231 } else { 8232 rollback_registered(dev); 8233 /* Finish processing unregister after unlock */ 8234 net_set_todo(dev); 8235 } 8236 } 8237 EXPORT_SYMBOL(unregister_netdevice_queue); 8238 8239 /** 8240 * unregister_netdevice_many - unregister many devices 8241 * @head: list of devices 8242 * 8243 * Note: As most callers use a stack allocated list_head, 8244 * we force a list_del() to make sure stack wont be corrupted later. 8245 */ 8246 void unregister_netdevice_many(struct list_head *head) 8247 { 8248 struct net_device *dev; 8249 8250 if (!list_empty(head)) { 8251 rollback_registered_many(head); 8252 list_for_each_entry(dev, head, unreg_list) 8253 net_set_todo(dev); 8254 list_del(head); 8255 } 8256 } 8257 EXPORT_SYMBOL(unregister_netdevice_many); 8258 8259 /** 8260 * unregister_netdev - remove device from the kernel 8261 * @dev: device 8262 * 8263 * This function shuts down a device interface and removes it 8264 * from the kernel tables. 8265 * 8266 * This is just a wrapper for unregister_netdevice that takes 8267 * the rtnl semaphore. In general you want to use this and not 8268 * unregister_netdevice. 8269 */ 8270 void unregister_netdev(struct net_device *dev) 8271 { 8272 rtnl_lock(); 8273 unregister_netdevice(dev); 8274 rtnl_unlock(); 8275 } 8276 EXPORT_SYMBOL(unregister_netdev); 8277 8278 /** 8279 * dev_change_net_namespace - move device to different nethost namespace 8280 * @dev: device 8281 * @net: network namespace 8282 * @pat: If not NULL name pattern to try if the current device name 8283 * is already taken in the destination network namespace. 8284 * 8285 * This function shuts down a device interface and moves it 8286 * to a new network namespace. On success 0 is returned, on 8287 * a failure a netagive errno code is returned. 8288 * 8289 * Callers must hold the rtnl semaphore. 8290 */ 8291 8292 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 8293 { 8294 int err; 8295 8296 ASSERT_RTNL(); 8297 8298 /* Don't allow namespace local devices to be moved. */ 8299 err = -EINVAL; 8300 if (dev->features & NETIF_F_NETNS_LOCAL) 8301 goto out; 8302 8303 /* Ensure the device has been registrered */ 8304 if (dev->reg_state != NETREG_REGISTERED) 8305 goto out; 8306 8307 /* Get out if there is nothing todo */ 8308 err = 0; 8309 if (net_eq(dev_net(dev), net)) 8310 goto out; 8311 8312 /* Pick the destination device name, and ensure 8313 * we can use it in the destination network namespace. 8314 */ 8315 err = -EEXIST; 8316 if (__dev_get_by_name(net, dev->name)) { 8317 /* We get here if we can't use the current device name */ 8318 if (!pat) 8319 goto out; 8320 if (dev_get_valid_name(net, dev, pat) < 0) 8321 goto out; 8322 } 8323 8324 /* 8325 * And now a mini version of register_netdevice unregister_netdevice. 8326 */ 8327 8328 /* If device is running close it first. */ 8329 dev_close(dev); 8330 8331 /* And unlink it from device chain */ 8332 err = -ENODEV; 8333 unlist_netdevice(dev); 8334 8335 synchronize_net(); 8336 8337 /* Shutdown queueing discipline. */ 8338 dev_shutdown(dev); 8339 8340 /* Notify protocols, that we are about to destroy 8341 * this device. They should clean all the things. 8342 * 8343 * Note that dev->reg_state stays at NETREG_REGISTERED. 8344 * This is wanted because this way 8021q and macvlan know 8345 * the device is just moving and can keep their slaves up. 8346 */ 8347 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8348 rcu_barrier(); 8349 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 8350 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 8351 8352 /* 8353 * Flush the unicast and multicast chains 8354 */ 8355 dev_uc_flush(dev); 8356 dev_mc_flush(dev); 8357 8358 /* Send a netdev-removed uevent to the old namespace */ 8359 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 8360 netdev_adjacent_del_links(dev); 8361 8362 /* Actually switch the network namespace */ 8363 dev_net_set(dev, net); 8364 8365 /* If there is an ifindex conflict assign a new one */ 8366 if (__dev_get_by_index(net, dev->ifindex)) 8367 dev->ifindex = dev_new_index(net); 8368 8369 /* Send a netdev-add uevent to the new namespace */ 8370 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 8371 netdev_adjacent_add_links(dev); 8372 8373 /* Fixup kobjects */ 8374 err = device_rename(&dev->dev, dev->name); 8375 WARN_ON(err); 8376 8377 /* Add the device back in the hashes */ 8378 list_netdevice(dev); 8379 8380 /* Notify protocols, that a new device appeared. */ 8381 call_netdevice_notifiers(NETDEV_REGISTER, dev); 8382 8383 /* 8384 * Prevent userspace races by waiting until the network 8385 * device is fully setup before sending notifications. 8386 */ 8387 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8388 8389 synchronize_net(); 8390 err = 0; 8391 out: 8392 return err; 8393 } 8394 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 8395 8396 static int dev_cpu_dead(unsigned int oldcpu) 8397 { 8398 struct sk_buff **list_skb; 8399 struct sk_buff *skb; 8400 unsigned int cpu; 8401 struct softnet_data *sd, *oldsd, *remsd = NULL; 8402 8403 local_irq_disable(); 8404 cpu = smp_processor_id(); 8405 sd = &per_cpu(softnet_data, cpu); 8406 oldsd = &per_cpu(softnet_data, oldcpu); 8407 8408 /* Find end of our completion_queue. */ 8409 list_skb = &sd->completion_queue; 8410 while (*list_skb) 8411 list_skb = &(*list_skb)->next; 8412 /* Append completion queue from offline CPU. */ 8413 *list_skb = oldsd->completion_queue; 8414 oldsd->completion_queue = NULL; 8415 8416 /* Append output queue from offline CPU. */ 8417 if (oldsd->output_queue) { 8418 *sd->output_queue_tailp = oldsd->output_queue; 8419 sd->output_queue_tailp = oldsd->output_queue_tailp; 8420 oldsd->output_queue = NULL; 8421 oldsd->output_queue_tailp = &oldsd->output_queue; 8422 } 8423 /* Append NAPI poll list from offline CPU, with one exception : 8424 * process_backlog() must be called by cpu owning percpu backlog. 8425 * We properly handle process_queue & input_pkt_queue later. 8426 */ 8427 while (!list_empty(&oldsd->poll_list)) { 8428 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 8429 struct napi_struct, 8430 poll_list); 8431 8432 list_del_init(&napi->poll_list); 8433 if (napi->poll == process_backlog) 8434 napi->state = 0; 8435 else 8436 ____napi_schedule(sd, napi); 8437 } 8438 8439 raise_softirq_irqoff(NET_TX_SOFTIRQ); 8440 local_irq_enable(); 8441 8442 #ifdef CONFIG_RPS 8443 remsd = oldsd->rps_ipi_list; 8444 oldsd->rps_ipi_list = NULL; 8445 #endif 8446 /* send out pending IPI's on offline CPU */ 8447 net_rps_send_ipi(remsd); 8448 8449 /* Process offline CPU's input_pkt_queue */ 8450 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 8451 netif_rx_ni(skb); 8452 input_queue_head_incr(oldsd); 8453 } 8454 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 8455 netif_rx_ni(skb); 8456 input_queue_head_incr(oldsd); 8457 } 8458 8459 return 0; 8460 } 8461 8462 /** 8463 * netdev_increment_features - increment feature set by one 8464 * @all: current feature set 8465 * @one: new feature set 8466 * @mask: mask feature set 8467 * 8468 * Computes a new feature set after adding a device with feature set 8469 * @one to the master device with current feature set @all. Will not 8470 * enable anything that is off in @mask. Returns the new feature set. 8471 */ 8472 netdev_features_t netdev_increment_features(netdev_features_t all, 8473 netdev_features_t one, netdev_features_t mask) 8474 { 8475 if (mask & NETIF_F_HW_CSUM) 8476 mask |= NETIF_F_CSUM_MASK; 8477 mask |= NETIF_F_VLAN_CHALLENGED; 8478 8479 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 8480 all &= one | ~NETIF_F_ALL_FOR_ALL; 8481 8482 /* If one device supports hw checksumming, set for all. */ 8483 if (all & NETIF_F_HW_CSUM) 8484 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 8485 8486 return all; 8487 } 8488 EXPORT_SYMBOL(netdev_increment_features); 8489 8490 static struct hlist_head * __net_init netdev_create_hash(void) 8491 { 8492 int i; 8493 struct hlist_head *hash; 8494 8495 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 8496 if (hash != NULL) 8497 for (i = 0; i < NETDEV_HASHENTRIES; i++) 8498 INIT_HLIST_HEAD(&hash[i]); 8499 8500 return hash; 8501 } 8502 8503 /* Initialize per network namespace state */ 8504 static int __net_init netdev_init(struct net *net) 8505 { 8506 if (net != &init_net) 8507 INIT_LIST_HEAD(&net->dev_base_head); 8508 8509 net->dev_name_head = netdev_create_hash(); 8510 if (net->dev_name_head == NULL) 8511 goto err_name; 8512 8513 net->dev_index_head = netdev_create_hash(); 8514 if (net->dev_index_head == NULL) 8515 goto err_idx; 8516 8517 return 0; 8518 8519 err_idx: 8520 kfree(net->dev_name_head); 8521 err_name: 8522 return -ENOMEM; 8523 } 8524 8525 /** 8526 * netdev_drivername - network driver for the device 8527 * @dev: network device 8528 * 8529 * Determine network driver for device. 8530 */ 8531 const char *netdev_drivername(const struct net_device *dev) 8532 { 8533 const struct device_driver *driver; 8534 const struct device *parent; 8535 const char *empty = ""; 8536 8537 parent = dev->dev.parent; 8538 if (!parent) 8539 return empty; 8540 8541 driver = parent->driver; 8542 if (driver && driver->name) 8543 return driver->name; 8544 return empty; 8545 } 8546 8547 static void __netdev_printk(const char *level, const struct net_device *dev, 8548 struct va_format *vaf) 8549 { 8550 if (dev && dev->dev.parent) { 8551 dev_printk_emit(level[1] - '0', 8552 dev->dev.parent, 8553 "%s %s %s%s: %pV", 8554 dev_driver_string(dev->dev.parent), 8555 dev_name(dev->dev.parent), 8556 netdev_name(dev), netdev_reg_state(dev), 8557 vaf); 8558 } else if (dev) { 8559 printk("%s%s%s: %pV", 8560 level, netdev_name(dev), netdev_reg_state(dev), vaf); 8561 } else { 8562 printk("%s(NULL net_device): %pV", level, vaf); 8563 } 8564 } 8565 8566 void netdev_printk(const char *level, const struct net_device *dev, 8567 const char *format, ...) 8568 { 8569 struct va_format vaf; 8570 va_list args; 8571 8572 va_start(args, format); 8573 8574 vaf.fmt = format; 8575 vaf.va = &args; 8576 8577 __netdev_printk(level, dev, &vaf); 8578 8579 va_end(args); 8580 } 8581 EXPORT_SYMBOL(netdev_printk); 8582 8583 #define define_netdev_printk_level(func, level) \ 8584 void func(const struct net_device *dev, const char *fmt, ...) \ 8585 { \ 8586 struct va_format vaf; \ 8587 va_list args; \ 8588 \ 8589 va_start(args, fmt); \ 8590 \ 8591 vaf.fmt = fmt; \ 8592 vaf.va = &args; \ 8593 \ 8594 __netdev_printk(level, dev, &vaf); \ 8595 \ 8596 va_end(args); \ 8597 } \ 8598 EXPORT_SYMBOL(func); 8599 8600 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 8601 define_netdev_printk_level(netdev_alert, KERN_ALERT); 8602 define_netdev_printk_level(netdev_crit, KERN_CRIT); 8603 define_netdev_printk_level(netdev_err, KERN_ERR); 8604 define_netdev_printk_level(netdev_warn, KERN_WARNING); 8605 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 8606 define_netdev_printk_level(netdev_info, KERN_INFO); 8607 8608 static void __net_exit netdev_exit(struct net *net) 8609 { 8610 kfree(net->dev_name_head); 8611 kfree(net->dev_index_head); 8612 } 8613 8614 static struct pernet_operations __net_initdata netdev_net_ops = { 8615 .init = netdev_init, 8616 .exit = netdev_exit, 8617 }; 8618 8619 static void __net_exit default_device_exit(struct net *net) 8620 { 8621 struct net_device *dev, *aux; 8622 /* 8623 * Push all migratable network devices back to the 8624 * initial network namespace 8625 */ 8626 rtnl_lock(); 8627 for_each_netdev_safe(net, dev, aux) { 8628 int err; 8629 char fb_name[IFNAMSIZ]; 8630 8631 /* Ignore unmoveable devices (i.e. loopback) */ 8632 if (dev->features & NETIF_F_NETNS_LOCAL) 8633 continue; 8634 8635 /* Leave virtual devices for the generic cleanup */ 8636 if (dev->rtnl_link_ops) 8637 continue; 8638 8639 /* Push remaining network devices to init_net */ 8640 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 8641 err = dev_change_net_namespace(dev, &init_net, fb_name); 8642 if (err) { 8643 pr_emerg("%s: failed to move %s to init_net: %d\n", 8644 __func__, dev->name, err); 8645 BUG(); 8646 } 8647 } 8648 rtnl_unlock(); 8649 } 8650 8651 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 8652 { 8653 /* Return with the rtnl_lock held when there are no network 8654 * devices unregistering in any network namespace in net_list. 8655 */ 8656 struct net *net; 8657 bool unregistering; 8658 DEFINE_WAIT_FUNC(wait, woken_wake_function); 8659 8660 add_wait_queue(&netdev_unregistering_wq, &wait); 8661 for (;;) { 8662 unregistering = false; 8663 rtnl_lock(); 8664 list_for_each_entry(net, net_list, exit_list) { 8665 if (net->dev_unreg_count > 0) { 8666 unregistering = true; 8667 break; 8668 } 8669 } 8670 if (!unregistering) 8671 break; 8672 __rtnl_unlock(); 8673 8674 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 8675 } 8676 remove_wait_queue(&netdev_unregistering_wq, &wait); 8677 } 8678 8679 static void __net_exit default_device_exit_batch(struct list_head *net_list) 8680 { 8681 /* At exit all network devices most be removed from a network 8682 * namespace. Do this in the reverse order of registration. 8683 * Do this across as many network namespaces as possible to 8684 * improve batching efficiency. 8685 */ 8686 struct net_device *dev; 8687 struct net *net; 8688 LIST_HEAD(dev_kill_list); 8689 8690 /* To prevent network device cleanup code from dereferencing 8691 * loopback devices or network devices that have been freed 8692 * wait here for all pending unregistrations to complete, 8693 * before unregistring the loopback device and allowing the 8694 * network namespace be freed. 8695 * 8696 * The netdev todo list containing all network devices 8697 * unregistrations that happen in default_device_exit_batch 8698 * will run in the rtnl_unlock() at the end of 8699 * default_device_exit_batch. 8700 */ 8701 rtnl_lock_unregistering(net_list); 8702 list_for_each_entry(net, net_list, exit_list) { 8703 for_each_netdev_reverse(net, dev) { 8704 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 8705 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 8706 else 8707 unregister_netdevice_queue(dev, &dev_kill_list); 8708 } 8709 } 8710 unregister_netdevice_many(&dev_kill_list); 8711 rtnl_unlock(); 8712 } 8713 8714 static struct pernet_operations __net_initdata default_device_ops = { 8715 .exit = default_device_exit, 8716 .exit_batch = default_device_exit_batch, 8717 }; 8718 8719 /* 8720 * Initialize the DEV module. At boot time this walks the device list and 8721 * unhooks any devices that fail to initialise (normally hardware not 8722 * present) and leaves us with a valid list of present and active devices. 8723 * 8724 */ 8725 8726 /* 8727 * This is called single threaded during boot, so no need 8728 * to take the rtnl semaphore. 8729 */ 8730 static int __init net_dev_init(void) 8731 { 8732 int i, rc = -ENOMEM; 8733 8734 BUG_ON(!dev_boot_phase); 8735 8736 if (dev_proc_init()) 8737 goto out; 8738 8739 if (netdev_kobject_init()) 8740 goto out; 8741 8742 INIT_LIST_HEAD(&ptype_all); 8743 for (i = 0; i < PTYPE_HASH_SIZE; i++) 8744 INIT_LIST_HEAD(&ptype_base[i]); 8745 8746 INIT_LIST_HEAD(&offload_base); 8747 8748 if (register_pernet_subsys(&netdev_net_ops)) 8749 goto out; 8750 8751 /* 8752 * Initialise the packet receive queues. 8753 */ 8754 8755 for_each_possible_cpu(i) { 8756 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 8757 struct softnet_data *sd = &per_cpu(softnet_data, i); 8758 8759 INIT_WORK(flush, flush_backlog); 8760 8761 skb_queue_head_init(&sd->input_pkt_queue); 8762 skb_queue_head_init(&sd->process_queue); 8763 INIT_LIST_HEAD(&sd->poll_list); 8764 sd->output_queue_tailp = &sd->output_queue; 8765 #ifdef CONFIG_RPS 8766 sd->csd.func = rps_trigger_softirq; 8767 sd->csd.info = sd; 8768 sd->cpu = i; 8769 #endif 8770 8771 sd->backlog.poll = process_backlog; 8772 sd->backlog.weight = weight_p; 8773 } 8774 8775 dev_boot_phase = 0; 8776 8777 /* The loopback device is special if any other network devices 8778 * is present in a network namespace the loopback device must 8779 * be present. Since we now dynamically allocate and free the 8780 * loopback device ensure this invariant is maintained by 8781 * keeping the loopback device as the first device on the 8782 * list of network devices. Ensuring the loopback devices 8783 * is the first device that appears and the last network device 8784 * that disappears. 8785 */ 8786 if (register_pernet_device(&loopback_net_ops)) 8787 goto out; 8788 8789 if (register_pernet_device(&default_device_ops)) 8790 goto out; 8791 8792 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 8793 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 8794 8795 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 8796 NULL, dev_cpu_dead); 8797 WARN_ON(rc < 0); 8798 rc = 0; 8799 out: 8800 return rc; 8801 } 8802 8803 subsys_initcall(net_dev_init); 8804