xref: /openbmc/linux/net/core/dev.c (revision 28efb0046512e8a13ed9f9bdf0d68d10bbfbe9cf)
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 
149 #include "net-sysfs.h"
150 
151 /* Instead of increasing this, you should create a hash table. */
152 #define MAX_GRO_SKBS 8
153 
154 /* This should be increased if a protocol with a bigger head is added. */
155 #define GRO_MAX_HEAD (MAX_HEADER + 128)
156 
157 static DEFINE_SPINLOCK(ptype_lock);
158 static DEFINE_SPINLOCK(offload_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;	/* Taps */
161 static struct list_head offload_base __read_mostly;
162 
163 static int netif_rx_internal(struct sk_buff *skb);
164 static int call_netdevice_notifiers_info(unsigned long val,
165 					 struct net_device *dev,
166 					 struct netdev_notifier_info *info);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168 
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190 
191 static DEFINE_MUTEX(ifalias_mutex);
192 
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195 
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198 
199 static seqcount_t devnet_rename_seq;
200 
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203 	while (++net->dev_base_seq == 0)
204 		;
205 }
206 
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210 
211 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213 
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218 
219 static inline void rps_lock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 	spin_lock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225 
226 static inline void rps_unlock(struct softnet_data *sd)
227 {
228 #ifdef CONFIG_RPS
229 	spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
231 }
232 
233 /* Device list insertion */
234 static void list_netdevice(struct net_device *dev)
235 {
236 	struct net *net = dev_net(dev);
237 
238 	ASSERT_RTNL();
239 
240 	write_lock_bh(&dev_base_lock);
241 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
242 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
243 	hlist_add_head_rcu(&dev->index_hlist,
244 			   dev_index_hash(net, dev->ifindex));
245 	write_unlock_bh(&dev_base_lock);
246 
247 	dev_base_seq_inc(net);
248 }
249 
250 /* Device list removal
251  * caller must respect a RCU grace period before freeing/reusing dev
252  */
253 static void unlist_netdevice(struct net_device *dev)
254 {
255 	ASSERT_RTNL();
256 
257 	/* Unlink dev from the device chain */
258 	write_lock_bh(&dev_base_lock);
259 	list_del_rcu(&dev->dev_list);
260 	hlist_del_rcu(&dev->name_hlist);
261 	hlist_del_rcu(&dev->index_hlist);
262 	write_unlock_bh(&dev_base_lock);
263 
264 	dev_base_seq_inc(dev_net(dev));
265 }
266 
267 /*
268  *	Our notifier list
269  */
270 
271 static RAW_NOTIFIER_HEAD(netdev_chain);
272 
273 /*
274  *	Device drivers call our routines to queue packets here. We empty the
275  *	queue in the local softnet handler.
276  */
277 
278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
279 EXPORT_PER_CPU_SYMBOL(softnet_data);
280 
281 #ifdef CONFIG_LOCKDEP
282 /*
283  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
284  * according to dev->type
285  */
286 static const unsigned short netdev_lock_type[] = {
287 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
288 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
299 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
302 
303 static const char *const netdev_lock_name[] = {
304 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
319 
320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
322 
323 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324 {
325 	int i;
326 
327 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328 		if (netdev_lock_type[i] == dev_type)
329 			return i;
330 	/* the last key is used by default */
331 	return ARRAY_SIZE(netdev_lock_type) - 1;
332 }
333 
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 						 unsigned short dev_type)
336 {
337 	int i;
338 
339 	i = netdev_lock_pos(dev_type);
340 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341 				   netdev_lock_name[i]);
342 }
343 
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346 	int i;
347 
348 	i = netdev_lock_pos(dev->type);
349 	lockdep_set_class_and_name(&dev->addr_list_lock,
350 				   &netdev_addr_lock_key[i],
351 				   netdev_lock_name[i]);
352 }
353 #else
354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355 						 unsigned short dev_type)
356 {
357 }
358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
359 {
360 }
361 #endif
362 
363 /*******************************************************************************
364  *
365  *		Protocol management and registration routines
366  *
367  *******************************************************************************/
368 
369 
370 /*
371  *	Add a protocol ID to the list. Now that the input handler is
372  *	smarter we can dispense with all the messy stuff that used to be
373  *	here.
374  *
375  *	BEWARE!!! Protocol handlers, mangling input packets,
376  *	MUST BE last in hash buckets and checking protocol handlers
377  *	MUST start from promiscuous ptype_all chain in net_bh.
378  *	It is true now, do not change it.
379  *	Explanation follows: if protocol handler, mangling packet, will
380  *	be the first on list, it is not able to sense, that packet
381  *	is cloned and should be copied-on-write, so that it will
382  *	change it and subsequent readers will get broken packet.
383  *							--ANK (980803)
384  */
385 
386 static inline struct list_head *ptype_head(const struct packet_type *pt)
387 {
388 	if (pt->type == htons(ETH_P_ALL))
389 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
390 	else
391 		return pt->dev ? &pt->dev->ptype_specific :
392 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
393 }
394 
395 /**
396  *	dev_add_pack - add packet handler
397  *	@pt: packet type declaration
398  *
399  *	Add a protocol handler to the networking stack. The passed &packet_type
400  *	is linked into kernel lists and may not be freed until it has been
401  *	removed from the kernel lists.
402  *
403  *	This call does not sleep therefore it can not
404  *	guarantee all CPU's that are in middle of receiving packets
405  *	will see the new packet type (until the next received packet).
406  */
407 
408 void dev_add_pack(struct packet_type *pt)
409 {
410 	struct list_head *head = ptype_head(pt);
411 
412 	spin_lock(&ptype_lock);
413 	list_add_rcu(&pt->list, head);
414 	spin_unlock(&ptype_lock);
415 }
416 EXPORT_SYMBOL(dev_add_pack);
417 
418 /**
419  *	__dev_remove_pack	 - remove packet handler
420  *	@pt: packet type declaration
421  *
422  *	Remove a protocol handler that was previously added to the kernel
423  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
424  *	from the kernel lists and can be freed or reused once this function
425  *	returns.
426  *
427  *      The packet type might still be in use by receivers
428  *	and must not be freed until after all the CPU's have gone
429  *	through a quiescent state.
430  */
431 void __dev_remove_pack(struct packet_type *pt)
432 {
433 	struct list_head *head = ptype_head(pt);
434 	struct packet_type *pt1;
435 
436 	spin_lock(&ptype_lock);
437 
438 	list_for_each_entry(pt1, head, list) {
439 		if (pt == pt1) {
440 			list_del_rcu(&pt->list);
441 			goto out;
442 		}
443 	}
444 
445 	pr_warn("dev_remove_pack: %p not found\n", pt);
446 out:
447 	spin_unlock(&ptype_lock);
448 }
449 EXPORT_SYMBOL(__dev_remove_pack);
450 
451 /**
452  *	dev_remove_pack	 - remove packet handler
453  *	@pt: packet type declaration
454  *
455  *	Remove a protocol handler that was previously added to the kernel
456  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
457  *	from the kernel lists and can be freed or reused once this function
458  *	returns.
459  *
460  *	This call sleeps to guarantee that no CPU is looking at the packet
461  *	type after return.
462  */
463 void dev_remove_pack(struct packet_type *pt)
464 {
465 	__dev_remove_pack(pt);
466 
467 	synchronize_net();
468 }
469 EXPORT_SYMBOL(dev_remove_pack);
470 
471 
472 /**
473  *	dev_add_offload - register offload handlers
474  *	@po: protocol offload declaration
475  *
476  *	Add protocol offload handlers to the networking stack. The passed
477  *	&proto_offload is linked into kernel lists and may not be freed until
478  *	it has been removed from the kernel lists.
479  *
480  *	This call does not sleep therefore it can not
481  *	guarantee all CPU's that are in middle of receiving packets
482  *	will see the new offload handlers (until the next received packet).
483  */
484 void dev_add_offload(struct packet_offload *po)
485 {
486 	struct packet_offload *elem;
487 
488 	spin_lock(&offload_lock);
489 	list_for_each_entry(elem, &offload_base, list) {
490 		if (po->priority < elem->priority)
491 			break;
492 	}
493 	list_add_rcu(&po->list, elem->list.prev);
494 	spin_unlock(&offload_lock);
495 }
496 EXPORT_SYMBOL(dev_add_offload);
497 
498 /**
499  *	__dev_remove_offload	 - remove offload handler
500  *	@po: packet offload declaration
501  *
502  *	Remove a protocol offload handler that was previously added to the
503  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
504  *	is removed from the kernel lists and can be freed or reused once this
505  *	function returns.
506  *
507  *      The packet type might still be in use by receivers
508  *	and must not be freed until after all the CPU's have gone
509  *	through a quiescent state.
510  */
511 static void __dev_remove_offload(struct packet_offload *po)
512 {
513 	struct list_head *head = &offload_base;
514 	struct packet_offload *po1;
515 
516 	spin_lock(&offload_lock);
517 
518 	list_for_each_entry(po1, head, list) {
519 		if (po == po1) {
520 			list_del_rcu(&po->list);
521 			goto out;
522 		}
523 	}
524 
525 	pr_warn("dev_remove_offload: %p not found\n", po);
526 out:
527 	spin_unlock(&offload_lock);
528 }
529 
530 /**
531  *	dev_remove_offload	 - remove packet offload handler
532  *	@po: packet offload declaration
533  *
534  *	Remove a packet offload handler that was previously added to the kernel
535  *	offload handlers by dev_add_offload(). The passed &offload_type is
536  *	removed from the kernel lists and can be freed or reused once this
537  *	function returns.
538  *
539  *	This call sleeps to guarantee that no CPU is looking at the packet
540  *	type after return.
541  */
542 void dev_remove_offload(struct packet_offload *po)
543 {
544 	__dev_remove_offload(po);
545 
546 	synchronize_net();
547 }
548 EXPORT_SYMBOL(dev_remove_offload);
549 
550 /******************************************************************************
551  *
552  *		      Device Boot-time Settings Routines
553  *
554  ******************************************************************************/
555 
556 /* Boot time configuration table */
557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558 
559 /**
560  *	netdev_boot_setup_add	- add new setup entry
561  *	@name: name of the device
562  *	@map: configured settings for the device
563  *
564  *	Adds new setup entry to the dev_boot_setup list.  The function
565  *	returns 0 on error and 1 on success.  This is a generic routine to
566  *	all netdevices.
567  */
568 static int netdev_boot_setup_add(char *name, struct ifmap *map)
569 {
570 	struct netdev_boot_setup *s;
571 	int i;
572 
573 	s = dev_boot_setup;
574 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576 			memset(s[i].name, 0, sizeof(s[i].name));
577 			strlcpy(s[i].name, name, IFNAMSIZ);
578 			memcpy(&s[i].map, map, sizeof(s[i].map));
579 			break;
580 		}
581 	}
582 
583 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584 }
585 
586 /**
587  * netdev_boot_setup_check	- check boot time settings
588  * @dev: the netdevice
589  *
590  * Check boot time settings for the device.
591  * The found settings are set for the device to be used
592  * later in the device probing.
593  * Returns 0 if no settings found, 1 if they are.
594  */
595 int netdev_boot_setup_check(struct net_device *dev)
596 {
597 	struct netdev_boot_setup *s = dev_boot_setup;
598 	int i;
599 
600 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
602 		    !strcmp(dev->name, s[i].name)) {
603 			dev->irq = s[i].map.irq;
604 			dev->base_addr = s[i].map.base_addr;
605 			dev->mem_start = s[i].map.mem_start;
606 			dev->mem_end = s[i].map.mem_end;
607 			return 1;
608 		}
609 	}
610 	return 0;
611 }
612 EXPORT_SYMBOL(netdev_boot_setup_check);
613 
614 
615 /**
616  * netdev_boot_base	- get address from boot time settings
617  * @prefix: prefix for network device
618  * @unit: id for network device
619  *
620  * Check boot time settings for the base address of device.
621  * The found settings are set for the device to be used
622  * later in the device probing.
623  * Returns 0 if no settings found.
624  */
625 unsigned long netdev_boot_base(const char *prefix, int unit)
626 {
627 	const struct netdev_boot_setup *s = dev_boot_setup;
628 	char name[IFNAMSIZ];
629 	int i;
630 
631 	sprintf(name, "%s%d", prefix, unit);
632 
633 	/*
634 	 * If device already registered then return base of 1
635 	 * to indicate not to probe for this interface
636 	 */
637 	if (__dev_get_by_name(&init_net, name))
638 		return 1;
639 
640 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641 		if (!strcmp(name, s[i].name))
642 			return s[i].map.base_addr;
643 	return 0;
644 }
645 
646 /*
647  * Saves at boot time configured settings for any netdevice.
648  */
649 int __init netdev_boot_setup(char *str)
650 {
651 	int ints[5];
652 	struct ifmap map;
653 
654 	str = get_options(str, ARRAY_SIZE(ints), ints);
655 	if (!str || !*str)
656 		return 0;
657 
658 	/* Save settings */
659 	memset(&map, 0, sizeof(map));
660 	if (ints[0] > 0)
661 		map.irq = ints[1];
662 	if (ints[0] > 1)
663 		map.base_addr = ints[2];
664 	if (ints[0] > 2)
665 		map.mem_start = ints[3];
666 	if (ints[0] > 3)
667 		map.mem_end = ints[4];
668 
669 	/* Add new entry to the list */
670 	return netdev_boot_setup_add(str, &map);
671 }
672 
673 __setup("netdev=", netdev_boot_setup);
674 
675 /*******************************************************************************
676  *
677  *			    Device Interface Subroutines
678  *
679  *******************************************************************************/
680 
681 /**
682  *	dev_get_iflink	- get 'iflink' value of a interface
683  *	@dev: targeted interface
684  *
685  *	Indicates the ifindex the interface is linked to.
686  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
687  */
688 
689 int dev_get_iflink(const struct net_device *dev)
690 {
691 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 		return dev->netdev_ops->ndo_get_iflink(dev);
693 
694 	return dev->ifindex;
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697 
698 /**
699  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
700  *	@dev: targeted interface
701  *	@skb: The packet.
702  *
703  *	For better visibility of tunnel traffic OVS needs to retrieve
704  *	egress tunnel information for a packet. Following API allows
705  *	user to get this info.
706  */
707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709 	struct ip_tunnel_info *info;
710 
711 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
712 		return -EINVAL;
713 
714 	info = skb_tunnel_info_unclone(skb);
715 	if (!info)
716 		return -ENOMEM;
717 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 		return -EINVAL;
719 
720 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723 
724 /**
725  *	__dev_get_by_name	- find a device by its name
726  *	@net: the applicable net namespace
727  *	@name: name to find
728  *
729  *	Find an interface by name. Must be called under RTNL semaphore
730  *	or @dev_base_lock. If the name is found a pointer to the device
731  *	is returned. If the name is not found then %NULL is returned. The
732  *	reference counters are not incremented so the caller must be
733  *	careful with locks.
734  */
735 
736 struct net_device *__dev_get_by_name(struct net *net, const char *name)
737 {
738 	struct net_device *dev;
739 	struct hlist_head *head = dev_name_hash(net, name);
740 
741 	hlist_for_each_entry(dev, head, name_hlist)
742 		if (!strncmp(dev->name, name, IFNAMSIZ))
743 			return dev;
744 
745 	return NULL;
746 }
747 EXPORT_SYMBOL(__dev_get_by_name);
748 
749 /**
750  * dev_get_by_name_rcu	- find a device by its name
751  * @net: the applicable net namespace
752  * @name: name to find
753  *
754  * Find an interface by name.
755  * If the name is found a pointer to the device is returned.
756  * If the name is not found then %NULL is returned.
757  * The reference counters are not incremented so the caller must be
758  * careful with locks. The caller must hold RCU lock.
759  */
760 
761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762 {
763 	struct net_device *dev;
764 	struct hlist_head *head = dev_name_hash(net, name);
765 
766 	hlist_for_each_entry_rcu(dev, head, name_hlist)
767 		if (!strncmp(dev->name, name, IFNAMSIZ))
768 			return dev;
769 
770 	return NULL;
771 }
772 EXPORT_SYMBOL(dev_get_by_name_rcu);
773 
774 /**
775  *	dev_get_by_name		- find a device by its name
776  *	@net: the applicable net namespace
777  *	@name: name to find
778  *
779  *	Find an interface by name. This can be called from any
780  *	context and does its own locking. The returned handle has
781  *	the usage count incremented and the caller must use dev_put() to
782  *	release it when it is no longer needed. %NULL is returned if no
783  *	matching device is found.
784  */
785 
786 struct net_device *dev_get_by_name(struct net *net, const char *name)
787 {
788 	struct net_device *dev;
789 
790 	rcu_read_lock();
791 	dev = dev_get_by_name_rcu(net, name);
792 	if (dev)
793 		dev_hold(dev);
794 	rcu_read_unlock();
795 	return dev;
796 }
797 EXPORT_SYMBOL(dev_get_by_name);
798 
799 /**
800  *	__dev_get_by_index - find a device by its ifindex
801  *	@net: the applicable net namespace
802  *	@ifindex: index of device
803  *
804  *	Search for an interface by index. Returns %NULL if the device
805  *	is not found or a pointer to the device. The device has not
806  *	had its reference counter increased so the caller must be careful
807  *	about locking. The caller must hold either the RTNL semaphore
808  *	or @dev_base_lock.
809  */
810 
811 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
812 {
813 	struct net_device *dev;
814 	struct hlist_head *head = dev_index_hash(net, ifindex);
815 
816 	hlist_for_each_entry(dev, head, index_hlist)
817 		if (dev->ifindex == ifindex)
818 			return dev;
819 
820 	return NULL;
821 }
822 EXPORT_SYMBOL(__dev_get_by_index);
823 
824 /**
825  *	dev_get_by_index_rcu - find a device by its ifindex
826  *	@net: the applicable net namespace
827  *	@ifindex: index of device
828  *
829  *	Search for an interface by index. Returns %NULL if the device
830  *	is not found or a pointer to the device. The device has not
831  *	had its reference counter increased so the caller must be careful
832  *	about locking. The caller must hold RCU lock.
833  */
834 
835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836 {
837 	struct net_device *dev;
838 	struct hlist_head *head = dev_index_hash(net, ifindex);
839 
840 	hlist_for_each_entry_rcu(dev, head, index_hlist)
841 		if (dev->ifindex == ifindex)
842 			return dev;
843 
844 	return NULL;
845 }
846 EXPORT_SYMBOL(dev_get_by_index_rcu);
847 
848 
849 /**
850  *	dev_get_by_index - find a device by its ifindex
851  *	@net: the applicable net namespace
852  *	@ifindex: index of device
853  *
854  *	Search for an interface by index. Returns NULL if the device
855  *	is not found or a pointer to the device. The device returned has
856  *	had a reference added and the pointer is safe until the user calls
857  *	dev_put to indicate they have finished with it.
858  */
859 
860 struct net_device *dev_get_by_index(struct net *net, int ifindex)
861 {
862 	struct net_device *dev;
863 
864 	rcu_read_lock();
865 	dev = dev_get_by_index_rcu(net, ifindex);
866 	if (dev)
867 		dev_hold(dev);
868 	rcu_read_unlock();
869 	return dev;
870 }
871 EXPORT_SYMBOL(dev_get_by_index);
872 
873 /**
874  *	dev_get_by_napi_id - find a device by napi_id
875  *	@napi_id: ID of the NAPI struct
876  *
877  *	Search for an interface by NAPI ID. Returns %NULL if the device
878  *	is not found or a pointer to the device. The device has not had
879  *	its reference counter increased so the caller must be careful
880  *	about locking. The caller must hold RCU lock.
881  */
882 
883 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884 {
885 	struct napi_struct *napi;
886 
887 	WARN_ON_ONCE(!rcu_read_lock_held());
888 
889 	if (napi_id < MIN_NAPI_ID)
890 		return NULL;
891 
892 	napi = napi_by_id(napi_id);
893 
894 	return napi ? napi->dev : NULL;
895 }
896 EXPORT_SYMBOL(dev_get_by_napi_id);
897 
898 /**
899  *	netdev_get_name - get a netdevice name, knowing its ifindex.
900  *	@net: network namespace
901  *	@name: a pointer to the buffer where the name will be stored.
902  *	@ifindex: the ifindex of the interface to get the name from.
903  *
904  *	The use of raw_seqcount_begin() and cond_resched() before
905  *	retrying is required as we want to give the writers a chance
906  *	to complete when CONFIG_PREEMPT is not set.
907  */
908 int netdev_get_name(struct net *net, char *name, int ifindex)
909 {
910 	struct net_device *dev;
911 	unsigned int seq;
912 
913 retry:
914 	seq = raw_seqcount_begin(&devnet_rename_seq);
915 	rcu_read_lock();
916 	dev = dev_get_by_index_rcu(net, ifindex);
917 	if (!dev) {
918 		rcu_read_unlock();
919 		return -ENODEV;
920 	}
921 
922 	strcpy(name, dev->name);
923 	rcu_read_unlock();
924 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
925 		cond_resched();
926 		goto retry;
927 	}
928 
929 	return 0;
930 }
931 
932 /**
933  *	dev_getbyhwaddr_rcu - find a device by its hardware address
934  *	@net: the applicable net namespace
935  *	@type: media type of device
936  *	@ha: hardware address
937  *
938  *	Search for an interface by MAC address. Returns NULL if the device
939  *	is not found or a pointer to the device.
940  *	The caller must hold RCU or RTNL.
941  *	The returned device has not had its ref count increased
942  *	and the caller must therefore be careful about locking
943  *
944  */
945 
946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947 				       const char *ha)
948 {
949 	struct net_device *dev;
950 
951 	for_each_netdev_rcu(net, dev)
952 		if (dev->type == type &&
953 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
954 			return dev;
955 
956 	return NULL;
957 }
958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
959 
960 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
961 {
962 	struct net_device *dev;
963 
964 	ASSERT_RTNL();
965 	for_each_netdev(net, dev)
966 		if (dev->type == type)
967 			return dev;
968 
969 	return NULL;
970 }
971 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
972 
973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
974 {
975 	struct net_device *dev, *ret = NULL;
976 
977 	rcu_read_lock();
978 	for_each_netdev_rcu(net, dev)
979 		if (dev->type == type) {
980 			dev_hold(dev);
981 			ret = dev;
982 			break;
983 		}
984 	rcu_read_unlock();
985 	return ret;
986 }
987 EXPORT_SYMBOL(dev_getfirstbyhwtype);
988 
989 /**
990  *	__dev_get_by_flags - find any device with given flags
991  *	@net: the applicable net namespace
992  *	@if_flags: IFF_* values
993  *	@mask: bitmask of bits in if_flags to check
994  *
995  *	Search for any interface with the given flags. Returns NULL if a device
996  *	is not found or a pointer to the device. Must be called inside
997  *	rtnl_lock(), and result refcount is unchanged.
998  */
999 
1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001 				      unsigned short mask)
1002 {
1003 	struct net_device *dev, *ret;
1004 
1005 	ASSERT_RTNL();
1006 
1007 	ret = NULL;
1008 	for_each_netdev(net, dev) {
1009 		if (((dev->flags ^ if_flags) & mask) == 0) {
1010 			ret = dev;
1011 			break;
1012 		}
1013 	}
1014 	return ret;
1015 }
1016 EXPORT_SYMBOL(__dev_get_by_flags);
1017 
1018 /**
1019  *	dev_valid_name - check if name is okay for network device
1020  *	@name: name string
1021  *
1022  *	Network device names need to be valid file names to
1023  *	to allow sysfs to work.  We also disallow any kind of
1024  *	whitespace.
1025  */
1026 bool dev_valid_name(const char *name)
1027 {
1028 	if (*name == '\0')
1029 		return false;
1030 	if (strlen(name) >= IFNAMSIZ)
1031 		return false;
1032 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1033 		return false;
1034 
1035 	while (*name) {
1036 		if (*name == '/' || *name == ':' || isspace(*name))
1037 			return false;
1038 		name++;
1039 	}
1040 	return true;
1041 }
1042 EXPORT_SYMBOL(dev_valid_name);
1043 
1044 /**
1045  *	__dev_alloc_name - allocate a name for a device
1046  *	@net: network namespace to allocate the device name in
1047  *	@name: name format string
1048  *	@buf:  scratch buffer and result name string
1049  *
1050  *	Passed a format string - eg "lt%d" it will try and find a suitable
1051  *	id. It scans list of devices to build up a free map, then chooses
1052  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1053  *	while allocating the name and adding the device in order to avoid
1054  *	duplicates.
1055  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056  *	Returns the number of the unit assigned or a negative errno code.
1057  */
1058 
1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1060 {
1061 	int i = 0;
1062 	const char *p;
1063 	const int max_netdevices = 8*PAGE_SIZE;
1064 	unsigned long *inuse;
1065 	struct net_device *d;
1066 
1067 	p = strnchr(name, IFNAMSIZ-1, '%');
1068 	if (p) {
1069 		/*
1070 		 * Verify the string as this thing may have come from
1071 		 * the user.  There must be either one "%d" and no other "%"
1072 		 * characters.
1073 		 */
1074 		if (p[1] != 'd' || strchr(p + 2, '%'))
1075 			return -EINVAL;
1076 
1077 		/* Use one page as a bit array of possible slots */
1078 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1079 		if (!inuse)
1080 			return -ENOMEM;
1081 
1082 		for_each_netdev(net, d) {
1083 			if (!sscanf(d->name, name, &i))
1084 				continue;
1085 			if (i < 0 || i >= max_netdevices)
1086 				continue;
1087 
1088 			/*  avoid cases where sscanf is not exact inverse of printf */
1089 			snprintf(buf, IFNAMSIZ, name, i);
1090 			if (!strncmp(buf, d->name, IFNAMSIZ))
1091 				set_bit(i, inuse);
1092 		}
1093 
1094 		i = find_first_zero_bit(inuse, max_netdevices);
1095 		free_page((unsigned long) inuse);
1096 	}
1097 
1098 	if (buf != name)
1099 		snprintf(buf, IFNAMSIZ, name, i);
1100 	if (!__dev_get_by_name(net, buf))
1101 		return i;
1102 
1103 	/* It is possible to run out of possible slots
1104 	 * when the name is long and there isn't enough space left
1105 	 * for the digits, or if all bits are used.
1106 	 */
1107 	return -ENFILE;
1108 }
1109 
1110 /**
1111  *	dev_alloc_name - allocate a name for a device
1112  *	@dev: device
1113  *	@name: name format string
1114  *
1115  *	Passed a format string - eg "lt%d" it will try and find a suitable
1116  *	id. It scans list of devices to build up a free map, then chooses
1117  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1118  *	while allocating the name and adding the device in order to avoid
1119  *	duplicates.
1120  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1121  *	Returns the number of the unit assigned or a negative errno code.
1122  */
1123 
1124 int dev_alloc_name(struct net_device *dev, const char *name)
1125 {
1126 	char buf[IFNAMSIZ];
1127 	struct net *net;
1128 	int ret;
1129 
1130 	BUG_ON(!dev_net(dev));
1131 	net = dev_net(dev);
1132 	ret = __dev_alloc_name(net, name, buf);
1133 	if (ret >= 0)
1134 		strlcpy(dev->name, buf, IFNAMSIZ);
1135 	return ret;
1136 }
1137 EXPORT_SYMBOL(dev_alloc_name);
1138 
1139 static int dev_alloc_name_ns(struct net *net,
1140 			     struct net_device *dev,
1141 			     const char *name)
1142 {
1143 	char buf[IFNAMSIZ];
1144 	int ret;
1145 
1146 	ret = __dev_alloc_name(net, name, buf);
1147 	if (ret >= 0)
1148 		strlcpy(dev->name, buf, IFNAMSIZ);
1149 	return ret;
1150 }
1151 
1152 static int dev_get_valid_name(struct net *net,
1153 			      struct net_device *dev,
1154 			      const char *name)
1155 {
1156 	BUG_ON(!net);
1157 
1158 	if (!dev_valid_name(name))
1159 		return -EINVAL;
1160 
1161 	if (strchr(name, '%'))
1162 		return dev_alloc_name_ns(net, dev, name);
1163 	else if (__dev_get_by_name(net, name))
1164 		return -EEXIST;
1165 	else if (dev->name != name)
1166 		strlcpy(dev->name, name, IFNAMSIZ);
1167 
1168 	return 0;
1169 }
1170 
1171 /**
1172  *	dev_change_name - change name of a device
1173  *	@dev: device
1174  *	@newname: name (or format string) must be at least IFNAMSIZ
1175  *
1176  *	Change name of a device, can pass format strings "eth%d".
1177  *	for wildcarding.
1178  */
1179 int dev_change_name(struct net_device *dev, const char *newname)
1180 {
1181 	unsigned char old_assign_type;
1182 	char oldname[IFNAMSIZ];
1183 	int err = 0;
1184 	int ret;
1185 	struct net *net;
1186 
1187 	ASSERT_RTNL();
1188 	BUG_ON(!dev_net(dev));
1189 
1190 	net = dev_net(dev);
1191 	if (dev->flags & IFF_UP)
1192 		return -EBUSY;
1193 
1194 	write_seqcount_begin(&devnet_rename_seq);
1195 
1196 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1197 		write_seqcount_end(&devnet_rename_seq);
1198 		return 0;
1199 	}
1200 
1201 	memcpy(oldname, dev->name, IFNAMSIZ);
1202 
1203 	err = dev_get_valid_name(net, dev, newname);
1204 	if (err < 0) {
1205 		write_seqcount_end(&devnet_rename_seq);
1206 		return err;
1207 	}
1208 
1209 	if (oldname[0] && !strchr(oldname, '%'))
1210 		netdev_info(dev, "renamed from %s\n", oldname);
1211 
1212 	old_assign_type = dev->name_assign_type;
1213 	dev->name_assign_type = NET_NAME_RENAMED;
1214 
1215 rollback:
1216 	ret = device_rename(&dev->dev, dev->name);
1217 	if (ret) {
1218 		memcpy(dev->name, oldname, IFNAMSIZ);
1219 		dev->name_assign_type = old_assign_type;
1220 		write_seqcount_end(&devnet_rename_seq);
1221 		return ret;
1222 	}
1223 
1224 	write_seqcount_end(&devnet_rename_seq);
1225 
1226 	netdev_adjacent_rename_links(dev, oldname);
1227 
1228 	write_lock_bh(&dev_base_lock);
1229 	hlist_del_rcu(&dev->name_hlist);
1230 	write_unlock_bh(&dev_base_lock);
1231 
1232 	synchronize_rcu();
1233 
1234 	write_lock_bh(&dev_base_lock);
1235 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1236 	write_unlock_bh(&dev_base_lock);
1237 
1238 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1239 	ret = notifier_to_errno(ret);
1240 
1241 	if (ret) {
1242 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1243 		if (err >= 0) {
1244 			err = ret;
1245 			write_seqcount_begin(&devnet_rename_seq);
1246 			memcpy(dev->name, oldname, IFNAMSIZ);
1247 			memcpy(oldname, newname, IFNAMSIZ);
1248 			dev->name_assign_type = old_assign_type;
1249 			old_assign_type = NET_NAME_RENAMED;
1250 			goto rollback;
1251 		} else {
1252 			pr_err("%s: name change rollback failed: %d\n",
1253 			       dev->name, ret);
1254 		}
1255 	}
1256 
1257 	return err;
1258 }
1259 
1260 /**
1261  *	dev_set_alias - change ifalias of a device
1262  *	@dev: device
1263  *	@alias: name up to IFALIASZ
1264  *	@len: limit of bytes to copy from info
1265  *
1266  *	Set ifalias for a device,
1267  */
1268 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1269 {
1270 	struct dev_ifalias *new_alias = NULL;
1271 
1272 	if (len >= IFALIASZ)
1273 		return -EINVAL;
1274 
1275 	if (len) {
1276 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1277 		if (!new_alias)
1278 			return -ENOMEM;
1279 
1280 		memcpy(new_alias->ifalias, alias, len);
1281 		new_alias->ifalias[len] = 0;
1282 	}
1283 
1284 	mutex_lock(&ifalias_mutex);
1285 	rcu_swap_protected(dev->ifalias, new_alias,
1286 			   mutex_is_locked(&ifalias_mutex));
1287 	mutex_unlock(&ifalias_mutex);
1288 
1289 	if (new_alias)
1290 		kfree_rcu(new_alias, rcuhead);
1291 
1292 	return len;
1293 }
1294 
1295 /**
1296  *	dev_get_alias - get ifalias of a device
1297  *	@dev: device
1298  *	@alias: buffer to store name of ifalias
1299  *	@len: size of buffer
1300  *
1301  *	get ifalias for a device.  Caller must make sure dev cannot go
1302  *	away,  e.g. rcu read lock or own a reference count to device.
1303  */
1304 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1305 {
1306 	const struct dev_ifalias *alias;
1307 	int ret = 0;
1308 
1309 	rcu_read_lock();
1310 	alias = rcu_dereference(dev->ifalias);
1311 	if (alias)
1312 		ret = snprintf(name, len, "%s", alias->ifalias);
1313 	rcu_read_unlock();
1314 
1315 	return ret;
1316 }
1317 
1318 /**
1319  *	netdev_features_change - device changes features
1320  *	@dev: device to cause notification
1321  *
1322  *	Called to indicate a device has changed features.
1323  */
1324 void netdev_features_change(struct net_device *dev)
1325 {
1326 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1327 }
1328 EXPORT_SYMBOL(netdev_features_change);
1329 
1330 /**
1331  *	netdev_state_change - device changes state
1332  *	@dev: device to cause notification
1333  *
1334  *	Called to indicate a device has changed state. This function calls
1335  *	the notifier chains for netdev_chain and sends a NEWLINK message
1336  *	to the routing socket.
1337  */
1338 void netdev_state_change(struct net_device *dev)
1339 {
1340 	if (dev->flags & IFF_UP) {
1341 		struct netdev_notifier_change_info change_info;
1342 
1343 		change_info.flags_changed = 0;
1344 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1345 					      &change_info.info);
1346 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1347 	}
1348 }
1349 EXPORT_SYMBOL(netdev_state_change);
1350 
1351 /**
1352  * netdev_notify_peers - notify network peers about existence of @dev
1353  * @dev: network device
1354  *
1355  * Generate traffic such that interested network peers are aware of
1356  * @dev, such as by generating a gratuitous ARP. This may be used when
1357  * a device wants to inform the rest of the network about some sort of
1358  * reconfiguration such as a failover event or virtual machine
1359  * migration.
1360  */
1361 void netdev_notify_peers(struct net_device *dev)
1362 {
1363 	rtnl_lock();
1364 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1365 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1366 	rtnl_unlock();
1367 }
1368 EXPORT_SYMBOL(netdev_notify_peers);
1369 
1370 static int __dev_open(struct net_device *dev)
1371 {
1372 	const struct net_device_ops *ops = dev->netdev_ops;
1373 	int ret;
1374 
1375 	ASSERT_RTNL();
1376 
1377 	if (!netif_device_present(dev))
1378 		return -ENODEV;
1379 
1380 	/* Block netpoll from trying to do any rx path servicing.
1381 	 * If we don't do this there is a chance ndo_poll_controller
1382 	 * or ndo_poll may be running while we open the device
1383 	 */
1384 	netpoll_poll_disable(dev);
1385 
1386 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1387 	ret = notifier_to_errno(ret);
1388 	if (ret)
1389 		return ret;
1390 
1391 	set_bit(__LINK_STATE_START, &dev->state);
1392 
1393 	if (ops->ndo_validate_addr)
1394 		ret = ops->ndo_validate_addr(dev);
1395 
1396 	if (!ret && ops->ndo_open)
1397 		ret = ops->ndo_open(dev);
1398 
1399 	netpoll_poll_enable(dev);
1400 
1401 	if (ret)
1402 		clear_bit(__LINK_STATE_START, &dev->state);
1403 	else {
1404 		dev->flags |= IFF_UP;
1405 		dev_set_rx_mode(dev);
1406 		dev_activate(dev);
1407 		add_device_randomness(dev->dev_addr, dev->addr_len);
1408 	}
1409 
1410 	return ret;
1411 }
1412 
1413 /**
1414  *	dev_open	- prepare an interface for use.
1415  *	@dev:	device to open
1416  *
1417  *	Takes a device from down to up state. The device's private open
1418  *	function is invoked and then the multicast lists are loaded. Finally
1419  *	the device is moved into the up state and a %NETDEV_UP message is
1420  *	sent to the netdev notifier chain.
1421  *
1422  *	Calling this function on an active interface is a nop. On a failure
1423  *	a negative errno code is returned.
1424  */
1425 int dev_open(struct net_device *dev)
1426 {
1427 	int ret;
1428 
1429 	if (dev->flags & IFF_UP)
1430 		return 0;
1431 
1432 	ret = __dev_open(dev);
1433 	if (ret < 0)
1434 		return ret;
1435 
1436 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1437 	call_netdevice_notifiers(NETDEV_UP, dev);
1438 
1439 	return ret;
1440 }
1441 EXPORT_SYMBOL(dev_open);
1442 
1443 static void __dev_close_many(struct list_head *head)
1444 {
1445 	struct net_device *dev;
1446 
1447 	ASSERT_RTNL();
1448 	might_sleep();
1449 
1450 	list_for_each_entry(dev, head, close_list) {
1451 		/* Temporarily disable netpoll until the interface is down */
1452 		netpoll_poll_disable(dev);
1453 
1454 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1455 
1456 		clear_bit(__LINK_STATE_START, &dev->state);
1457 
1458 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1459 		 * can be even on different cpu. So just clear netif_running().
1460 		 *
1461 		 * dev->stop() will invoke napi_disable() on all of it's
1462 		 * napi_struct instances on this device.
1463 		 */
1464 		smp_mb__after_atomic(); /* Commit netif_running(). */
1465 	}
1466 
1467 	dev_deactivate_many(head);
1468 
1469 	list_for_each_entry(dev, head, close_list) {
1470 		const struct net_device_ops *ops = dev->netdev_ops;
1471 
1472 		/*
1473 		 *	Call the device specific close. This cannot fail.
1474 		 *	Only if device is UP
1475 		 *
1476 		 *	We allow it to be called even after a DETACH hot-plug
1477 		 *	event.
1478 		 */
1479 		if (ops->ndo_stop)
1480 			ops->ndo_stop(dev);
1481 
1482 		dev->flags &= ~IFF_UP;
1483 		netpoll_poll_enable(dev);
1484 	}
1485 }
1486 
1487 static void __dev_close(struct net_device *dev)
1488 {
1489 	LIST_HEAD(single);
1490 
1491 	list_add(&dev->close_list, &single);
1492 	__dev_close_many(&single);
1493 	list_del(&single);
1494 }
1495 
1496 void dev_close_many(struct list_head *head, bool unlink)
1497 {
1498 	struct net_device *dev, *tmp;
1499 
1500 	/* Remove the devices that don't need to be closed */
1501 	list_for_each_entry_safe(dev, tmp, head, close_list)
1502 		if (!(dev->flags & IFF_UP))
1503 			list_del_init(&dev->close_list);
1504 
1505 	__dev_close_many(head);
1506 
1507 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1508 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1509 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1510 		if (unlink)
1511 			list_del_init(&dev->close_list);
1512 	}
1513 }
1514 EXPORT_SYMBOL(dev_close_many);
1515 
1516 /**
1517  *	dev_close - shutdown an interface.
1518  *	@dev: device to shutdown
1519  *
1520  *	This function moves an active device into down state. A
1521  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1522  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1523  *	chain.
1524  */
1525 void dev_close(struct net_device *dev)
1526 {
1527 	if (dev->flags & IFF_UP) {
1528 		LIST_HEAD(single);
1529 
1530 		list_add(&dev->close_list, &single);
1531 		dev_close_many(&single, true);
1532 		list_del(&single);
1533 	}
1534 }
1535 EXPORT_SYMBOL(dev_close);
1536 
1537 
1538 /**
1539  *	dev_disable_lro - disable Large Receive Offload on a device
1540  *	@dev: device
1541  *
1542  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1543  *	called under RTNL.  This is needed if received packets may be
1544  *	forwarded to another interface.
1545  */
1546 void dev_disable_lro(struct net_device *dev)
1547 {
1548 	struct net_device *lower_dev;
1549 	struct list_head *iter;
1550 
1551 	dev->wanted_features &= ~NETIF_F_LRO;
1552 	netdev_update_features(dev);
1553 
1554 	if (unlikely(dev->features & NETIF_F_LRO))
1555 		netdev_WARN(dev, "failed to disable LRO!\n");
1556 
1557 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1558 		dev_disable_lro(lower_dev);
1559 }
1560 EXPORT_SYMBOL(dev_disable_lro);
1561 
1562 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1563 				   struct net_device *dev)
1564 {
1565 	struct netdev_notifier_info info;
1566 
1567 	netdev_notifier_info_init(&info, dev);
1568 	return nb->notifier_call(nb, val, &info);
1569 }
1570 
1571 static int dev_boot_phase = 1;
1572 
1573 /**
1574  * register_netdevice_notifier - register a network notifier block
1575  * @nb: notifier
1576  *
1577  * Register a notifier to be called when network device events occur.
1578  * The notifier passed is linked into the kernel structures and must
1579  * not be reused until it has been unregistered. A negative errno code
1580  * is returned on a failure.
1581  *
1582  * When registered all registration and up events are replayed
1583  * to the new notifier to allow device to have a race free
1584  * view of the network device list.
1585  */
1586 
1587 int register_netdevice_notifier(struct notifier_block *nb)
1588 {
1589 	struct net_device *dev;
1590 	struct net_device *last;
1591 	struct net *net;
1592 	int err;
1593 
1594 	rtnl_lock();
1595 	err = raw_notifier_chain_register(&netdev_chain, nb);
1596 	if (err)
1597 		goto unlock;
1598 	if (dev_boot_phase)
1599 		goto unlock;
1600 	for_each_net(net) {
1601 		for_each_netdev(net, dev) {
1602 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1603 			err = notifier_to_errno(err);
1604 			if (err)
1605 				goto rollback;
1606 
1607 			if (!(dev->flags & IFF_UP))
1608 				continue;
1609 
1610 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1611 		}
1612 	}
1613 
1614 unlock:
1615 	rtnl_unlock();
1616 	return err;
1617 
1618 rollback:
1619 	last = dev;
1620 	for_each_net(net) {
1621 		for_each_netdev(net, dev) {
1622 			if (dev == last)
1623 				goto outroll;
1624 
1625 			if (dev->flags & IFF_UP) {
1626 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1627 							dev);
1628 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1629 			}
1630 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1631 		}
1632 	}
1633 
1634 outroll:
1635 	raw_notifier_chain_unregister(&netdev_chain, nb);
1636 	goto unlock;
1637 }
1638 EXPORT_SYMBOL(register_netdevice_notifier);
1639 
1640 /**
1641  * unregister_netdevice_notifier - unregister a network notifier block
1642  * @nb: notifier
1643  *
1644  * Unregister a notifier previously registered by
1645  * register_netdevice_notifier(). The notifier is unlinked into the
1646  * kernel structures and may then be reused. A negative errno code
1647  * is returned on a failure.
1648  *
1649  * After unregistering unregister and down device events are synthesized
1650  * for all devices on the device list to the removed notifier to remove
1651  * the need for special case cleanup code.
1652  */
1653 
1654 int unregister_netdevice_notifier(struct notifier_block *nb)
1655 {
1656 	struct net_device *dev;
1657 	struct net *net;
1658 	int err;
1659 
1660 	rtnl_lock();
1661 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1662 	if (err)
1663 		goto unlock;
1664 
1665 	for_each_net(net) {
1666 		for_each_netdev(net, dev) {
1667 			if (dev->flags & IFF_UP) {
1668 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1669 							dev);
1670 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1671 			}
1672 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1673 		}
1674 	}
1675 unlock:
1676 	rtnl_unlock();
1677 	return err;
1678 }
1679 EXPORT_SYMBOL(unregister_netdevice_notifier);
1680 
1681 /**
1682  *	call_netdevice_notifiers_info - call all network notifier blocks
1683  *	@val: value passed unmodified to notifier function
1684  *	@dev: net_device pointer passed unmodified to notifier function
1685  *	@info: notifier information data
1686  *
1687  *	Call all network notifier blocks.  Parameters and return value
1688  *	are as for raw_notifier_call_chain().
1689  */
1690 
1691 static int call_netdevice_notifiers_info(unsigned long val,
1692 					 struct net_device *dev,
1693 					 struct netdev_notifier_info *info)
1694 {
1695 	ASSERT_RTNL();
1696 	netdev_notifier_info_init(info, dev);
1697 	return raw_notifier_call_chain(&netdev_chain, val, info);
1698 }
1699 
1700 /**
1701  *	call_netdevice_notifiers - call all network notifier blocks
1702  *      @val: value passed unmodified to notifier function
1703  *      @dev: net_device pointer passed unmodified to notifier function
1704  *
1705  *	Call all network notifier blocks.  Parameters and return value
1706  *	are as for raw_notifier_call_chain().
1707  */
1708 
1709 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1710 {
1711 	struct netdev_notifier_info info;
1712 
1713 	return call_netdevice_notifiers_info(val, dev, &info);
1714 }
1715 EXPORT_SYMBOL(call_netdevice_notifiers);
1716 
1717 #ifdef CONFIG_NET_INGRESS
1718 static struct static_key ingress_needed __read_mostly;
1719 
1720 void net_inc_ingress_queue(void)
1721 {
1722 	static_key_slow_inc(&ingress_needed);
1723 }
1724 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1725 
1726 void net_dec_ingress_queue(void)
1727 {
1728 	static_key_slow_dec(&ingress_needed);
1729 }
1730 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1731 #endif
1732 
1733 #ifdef CONFIG_NET_EGRESS
1734 static struct static_key egress_needed __read_mostly;
1735 
1736 void net_inc_egress_queue(void)
1737 {
1738 	static_key_slow_inc(&egress_needed);
1739 }
1740 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1741 
1742 void net_dec_egress_queue(void)
1743 {
1744 	static_key_slow_dec(&egress_needed);
1745 }
1746 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1747 #endif
1748 
1749 static struct static_key netstamp_needed __read_mostly;
1750 #ifdef HAVE_JUMP_LABEL
1751 static atomic_t netstamp_needed_deferred;
1752 static atomic_t netstamp_wanted;
1753 static void netstamp_clear(struct work_struct *work)
1754 {
1755 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1756 	int wanted;
1757 
1758 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1759 	if (wanted > 0)
1760 		static_key_enable(&netstamp_needed);
1761 	else
1762 		static_key_disable(&netstamp_needed);
1763 }
1764 static DECLARE_WORK(netstamp_work, netstamp_clear);
1765 #endif
1766 
1767 void net_enable_timestamp(void)
1768 {
1769 #ifdef HAVE_JUMP_LABEL
1770 	int wanted;
1771 
1772 	while (1) {
1773 		wanted = atomic_read(&netstamp_wanted);
1774 		if (wanted <= 0)
1775 			break;
1776 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1777 			return;
1778 	}
1779 	atomic_inc(&netstamp_needed_deferred);
1780 	schedule_work(&netstamp_work);
1781 #else
1782 	static_key_slow_inc(&netstamp_needed);
1783 #endif
1784 }
1785 EXPORT_SYMBOL(net_enable_timestamp);
1786 
1787 void net_disable_timestamp(void)
1788 {
1789 #ifdef HAVE_JUMP_LABEL
1790 	int wanted;
1791 
1792 	while (1) {
1793 		wanted = atomic_read(&netstamp_wanted);
1794 		if (wanted <= 1)
1795 			break;
1796 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1797 			return;
1798 	}
1799 	atomic_dec(&netstamp_needed_deferred);
1800 	schedule_work(&netstamp_work);
1801 #else
1802 	static_key_slow_dec(&netstamp_needed);
1803 #endif
1804 }
1805 EXPORT_SYMBOL(net_disable_timestamp);
1806 
1807 static inline void net_timestamp_set(struct sk_buff *skb)
1808 {
1809 	skb->tstamp = 0;
1810 	if (static_key_false(&netstamp_needed))
1811 		__net_timestamp(skb);
1812 }
1813 
1814 #define net_timestamp_check(COND, SKB)			\
1815 	if (static_key_false(&netstamp_needed)) {		\
1816 		if ((COND) && !(SKB)->tstamp)	\
1817 			__net_timestamp(SKB);		\
1818 	}						\
1819 
1820 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1821 {
1822 	unsigned int len;
1823 
1824 	if (!(dev->flags & IFF_UP))
1825 		return false;
1826 
1827 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1828 	if (skb->len <= len)
1829 		return true;
1830 
1831 	/* if TSO is enabled, we don't care about the length as the packet
1832 	 * could be forwarded without being segmented before
1833 	 */
1834 	if (skb_is_gso(skb))
1835 		return true;
1836 
1837 	return false;
1838 }
1839 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1840 
1841 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1842 {
1843 	int ret = ____dev_forward_skb(dev, skb);
1844 
1845 	if (likely(!ret)) {
1846 		skb->protocol = eth_type_trans(skb, dev);
1847 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1848 	}
1849 
1850 	return ret;
1851 }
1852 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1853 
1854 /**
1855  * dev_forward_skb - loopback an skb to another netif
1856  *
1857  * @dev: destination network device
1858  * @skb: buffer to forward
1859  *
1860  * return values:
1861  *	NET_RX_SUCCESS	(no congestion)
1862  *	NET_RX_DROP     (packet was dropped, but freed)
1863  *
1864  * dev_forward_skb can be used for injecting an skb from the
1865  * start_xmit function of one device into the receive queue
1866  * of another device.
1867  *
1868  * The receiving device may be in another namespace, so
1869  * we have to clear all information in the skb that could
1870  * impact namespace isolation.
1871  */
1872 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1873 {
1874 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1875 }
1876 EXPORT_SYMBOL_GPL(dev_forward_skb);
1877 
1878 static inline int deliver_skb(struct sk_buff *skb,
1879 			      struct packet_type *pt_prev,
1880 			      struct net_device *orig_dev)
1881 {
1882 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1883 		return -ENOMEM;
1884 	refcount_inc(&skb->users);
1885 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1886 }
1887 
1888 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1889 					  struct packet_type **pt,
1890 					  struct net_device *orig_dev,
1891 					  __be16 type,
1892 					  struct list_head *ptype_list)
1893 {
1894 	struct packet_type *ptype, *pt_prev = *pt;
1895 
1896 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1897 		if (ptype->type != type)
1898 			continue;
1899 		if (pt_prev)
1900 			deliver_skb(skb, pt_prev, orig_dev);
1901 		pt_prev = ptype;
1902 	}
1903 	*pt = pt_prev;
1904 }
1905 
1906 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1907 {
1908 	if (!ptype->af_packet_priv || !skb->sk)
1909 		return false;
1910 
1911 	if (ptype->id_match)
1912 		return ptype->id_match(ptype, skb->sk);
1913 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1914 		return true;
1915 
1916 	return false;
1917 }
1918 
1919 /*
1920  *	Support routine. Sends outgoing frames to any network
1921  *	taps currently in use.
1922  */
1923 
1924 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1925 {
1926 	struct packet_type *ptype;
1927 	struct sk_buff *skb2 = NULL;
1928 	struct packet_type *pt_prev = NULL;
1929 	struct list_head *ptype_list = &ptype_all;
1930 
1931 	rcu_read_lock();
1932 again:
1933 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1934 		/* Never send packets back to the socket
1935 		 * they originated from - MvS (miquels@drinkel.ow.org)
1936 		 */
1937 		if (skb_loop_sk(ptype, skb))
1938 			continue;
1939 
1940 		if (pt_prev) {
1941 			deliver_skb(skb2, pt_prev, skb->dev);
1942 			pt_prev = ptype;
1943 			continue;
1944 		}
1945 
1946 		/* need to clone skb, done only once */
1947 		skb2 = skb_clone(skb, GFP_ATOMIC);
1948 		if (!skb2)
1949 			goto out_unlock;
1950 
1951 		net_timestamp_set(skb2);
1952 
1953 		/* skb->nh should be correctly
1954 		 * set by sender, so that the second statement is
1955 		 * just protection against buggy protocols.
1956 		 */
1957 		skb_reset_mac_header(skb2);
1958 
1959 		if (skb_network_header(skb2) < skb2->data ||
1960 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1961 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1962 					     ntohs(skb2->protocol),
1963 					     dev->name);
1964 			skb_reset_network_header(skb2);
1965 		}
1966 
1967 		skb2->transport_header = skb2->network_header;
1968 		skb2->pkt_type = PACKET_OUTGOING;
1969 		pt_prev = ptype;
1970 	}
1971 
1972 	if (ptype_list == &ptype_all) {
1973 		ptype_list = &dev->ptype_all;
1974 		goto again;
1975 	}
1976 out_unlock:
1977 	if (pt_prev) {
1978 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
1979 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1980 		else
1981 			kfree_skb(skb2);
1982 	}
1983 	rcu_read_unlock();
1984 }
1985 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1986 
1987 /**
1988  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1989  * @dev: Network device
1990  * @txq: number of queues available
1991  *
1992  * If real_num_tx_queues is changed the tc mappings may no longer be
1993  * valid. To resolve this verify the tc mapping remains valid and if
1994  * not NULL the mapping. With no priorities mapping to this
1995  * offset/count pair it will no longer be used. In the worst case TC0
1996  * is invalid nothing can be done so disable priority mappings. If is
1997  * expected that drivers will fix this mapping if they can before
1998  * calling netif_set_real_num_tx_queues.
1999  */
2000 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2001 {
2002 	int i;
2003 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2004 
2005 	/* If TC0 is invalidated disable TC mapping */
2006 	if (tc->offset + tc->count > txq) {
2007 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2008 		dev->num_tc = 0;
2009 		return;
2010 	}
2011 
2012 	/* Invalidated prio to tc mappings set to TC0 */
2013 	for (i = 1; i < TC_BITMASK + 1; i++) {
2014 		int q = netdev_get_prio_tc_map(dev, i);
2015 
2016 		tc = &dev->tc_to_txq[q];
2017 		if (tc->offset + tc->count > txq) {
2018 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2019 				i, q);
2020 			netdev_set_prio_tc_map(dev, i, 0);
2021 		}
2022 	}
2023 }
2024 
2025 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2026 {
2027 	if (dev->num_tc) {
2028 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2029 		int i;
2030 
2031 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2032 			if ((txq - tc->offset) < tc->count)
2033 				return i;
2034 		}
2035 
2036 		return -1;
2037 	}
2038 
2039 	return 0;
2040 }
2041 
2042 #ifdef CONFIG_XPS
2043 static DEFINE_MUTEX(xps_map_mutex);
2044 #define xmap_dereference(P)		\
2045 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2046 
2047 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2048 			     int tci, u16 index)
2049 {
2050 	struct xps_map *map = NULL;
2051 	int pos;
2052 
2053 	if (dev_maps)
2054 		map = xmap_dereference(dev_maps->cpu_map[tci]);
2055 	if (!map)
2056 		return false;
2057 
2058 	for (pos = map->len; pos--;) {
2059 		if (map->queues[pos] != index)
2060 			continue;
2061 
2062 		if (map->len > 1) {
2063 			map->queues[pos] = map->queues[--map->len];
2064 			break;
2065 		}
2066 
2067 		RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2068 		kfree_rcu(map, rcu);
2069 		return false;
2070 	}
2071 
2072 	return true;
2073 }
2074 
2075 static bool remove_xps_queue_cpu(struct net_device *dev,
2076 				 struct xps_dev_maps *dev_maps,
2077 				 int cpu, u16 offset, u16 count)
2078 {
2079 	int num_tc = dev->num_tc ? : 1;
2080 	bool active = false;
2081 	int tci;
2082 
2083 	for (tci = cpu * num_tc; num_tc--; tci++) {
2084 		int i, j;
2085 
2086 		for (i = count, j = offset; i--; j++) {
2087 			if (!remove_xps_queue(dev_maps, cpu, j))
2088 				break;
2089 		}
2090 
2091 		active |= i < 0;
2092 	}
2093 
2094 	return active;
2095 }
2096 
2097 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2098 				   u16 count)
2099 {
2100 	struct xps_dev_maps *dev_maps;
2101 	int cpu, i;
2102 	bool active = false;
2103 
2104 	mutex_lock(&xps_map_mutex);
2105 	dev_maps = xmap_dereference(dev->xps_maps);
2106 
2107 	if (!dev_maps)
2108 		goto out_no_maps;
2109 
2110 	for_each_possible_cpu(cpu)
2111 		active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2112 					       offset, count);
2113 
2114 	if (!active) {
2115 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2116 		kfree_rcu(dev_maps, rcu);
2117 	}
2118 
2119 	for (i = offset + (count - 1); count--; i--)
2120 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2121 					     NUMA_NO_NODE);
2122 
2123 out_no_maps:
2124 	mutex_unlock(&xps_map_mutex);
2125 }
2126 
2127 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2128 {
2129 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2130 }
2131 
2132 static struct xps_map *expand_xps_map(struct xps_map *map,
2133 				      int cpu, u16 index)
2134 {
2135 	struct xps_map *new_map;
2136 	int alloc_len = XPS_MIN_MAP_ALLOC;
2137 	int i, pos;
2138 
2139 	for (pos = 0; map && pos < map->len; pos++) {
2140 		if (map->queues[pos] != index)
2141 			continue;
2142 		return map;
2143 	}
2144 
2145 	/* Need to add queue to this CPU's existing map */
2146 	if (map) {
2147 		if (pos < map->alloc_len)
2148 			return map;
2149 
2150 		alloc_len = map->alloc_len * 2;
2151 	}
2152 
2153 	/* Need to allocate new map to store queue on this CPU's map */
2154 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2155 			       cpu_to_node(cpu));
2156 	if (!new_map)
2157 		return NULL;
2158 
2159 	for (i = 0; i < pos; i++)
2160 		new_map->queues[i] = map->queues[i];
2161 	new_map->alloc_len = alloc_len;
2162 	new_map->len = pos;
2163 
2164 	return new_map;
2165 }
2166 
2167 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2168 			u16 index)
2169 {
2170 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2171 	int i, cpu, tci, numa_node_id = -2;
2172 	int maps_sz, num_tc = 1, tc = 0;
2173 	struct xps_map *map, *new_map;
2174 	bool active = false;
2175 
2176 	if (dev->num_tc) {
2177 		num_tc = dev->num_tc;
2178 		tc = netdev_txq_to_tc(dev, index);
2179 		if (tc < 0)
2180 			return -EINVAL;
2181 	}
2182 
2183 	maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2184 	if (maps_sz < L1_CACHE_BYTES)
2185 		maps_sz = L1_CACHE_BYTES;
2186 
2187 	mutex_lock(&xps_map_mutex);
2188 
2189 	dev_maps = xmap_dereference(dev->xps_maps);
2190 
2191 	/* allocate memory for queue storage */
2192 	for_each_cpu_and(cpu, cpu_online_mask, mask) {
2193 		if (!new_dev_maps)
2194 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2195 		if (!new_dev_maps) {
2196 			mutex_unlock(&xps_map_mutex);
2197 			return -ENOMEM;
2198 		}
2199 
2200 		tci = cpu * num_tc + tc;
2201 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2202 				 NULL;
2203 
2204 		map = expand_xps_map(map, cpu, index);
2205 		if (!map)
2206 			goto error;
2207 
2208 		RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2209 	}
2210 
2211 	if (!new_dev_maps)
2212 		goto out_no_new_maps;
2213 
2214 	for_each_possible_cpu(cpu) {
2215 		/* copy maps belonging to foreign traffic classes */
2216 		for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2217 			/* fill in the new device map from the old device map */
2218 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2219 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2220 		}
2221 
2222 		/* We need to explicitly update tci as prevous loop
2223 		 * could break out early if dev_maps is NULL.
2224 		 */
2225 		tci = cpu * num_tc + tc;
2226 
2227 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2228 			/* add queue to CPU maps */
2229 			int pos = 0;
2230 
2231 			map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2232 			while ((pos < map->len) && (map->queues[pos] != index))
2233 				pos++;
2234 
2235 			if (pos == map->len)
2236 				map->queues[map->len++] = index;
2237 #ifdef CONFIG_NUMA
2238 			if (numa_node_id == -2)
2239 				numa_node_id = cpu_to_node(cpu);
2240 			else if (numa_node_id != cpu_to_node(cpu))
2241 				numa_node_id = -1;
2242 #endif
2243 		} else if (dev_maps) {
2244 			/* fill in the new device map from the old device map */
2245 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2246 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2247 		}
2248 
2249 		/* copy maps belonging to foreign traffic classes */
2250 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2251 			/* fill in the new device map from the old device map */
2252 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2253 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2254 		}
2255 	}
2256 
2257 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2258 
2259 	/* Cleanup old maps */
2260 	if (!dev_maps)
2261 		goto out_no_old_maps;
2262 
2263 	for_each_possible_cpu(cpu) {
2264 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2265 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2266 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2267 			if (map && map != new_map)
2268 				kfree_rcu(map, rcu);
2269 		}
2270 	}
2271 
2272 	kfree_rcu(dev_maps, rcu);
2273 
2274 out_no_old_maps:
2275 	dev_maps = new_dev_maps;
2276 	active = true;
2277 
2278 out_no_new_maps:
2279 	/* update Tx queue numa node */
2280 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2281 				     (numa_node_id >= 0) ? numa_node_id :
2282 				     NUMA_NO_NODE);
2283 
2284 	if (!dev_maps)
2285 		goto out_no_maps;
2286 
2287 	/* removes queue from unused CPUs */
2288 	for_each_possible_cpu(cpu) {
2289 		for (i = tc, tci = cpu * num_tc; i--; tci++)
2290 			active |= remove_xps_queue(dev_maps, tci, index);
2291 		if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2292 			active |= remove_xps_queue(dev_maps, tci, index);
2293 		for (i = num_tc - tc, tci++; --i; tci++)
2294 			active |= remove_xps_queue(dev_maps, tci, index);
2295 	}
2296 
2297 	/* free map if not active */
2298 	if (!active) {
2299 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2300 		kfree_rcu(dev_maps, rcu);
2301 	}
2302 
2303 out_no_maps:
2304 	mutex_unlock(&xps_map_mutex);
2305 
2306 	return 0;
2307 error:
2308 	/* remove any maps that we added */
2309 	for_each_possible_cpu(cpu) {
2310 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2311 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2312 			map = dev_maps ?
2313 			      xmap_dereference(dev_maps->cpu_map[tci]) :
2314 			      NULL;
2315 			if (new_map && new_map != map)
2316 				kfree(new_map);
2317 		}
2318 	}
2319 
2320 	mutex_unlock(&xps_map_mutex);
2321 
2322 	kfree(new_dev_maps);
2323 	return -ENOMEM;
2324 }
2325 EXPORT_SYMBOL(netif_set_xps_queue);
2326 
2327 #endif
2328 void netdev_reset_tc(struct net_device *dev)
2329 {
2330 #ifdef CONFIG_XPS
2331 	netif_reset_xps_queues_gt(dev, 0);
2332 #endif
2333 	dev->num_tc = 0;
2334 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2335 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2336 }
2337 EXPORT_SYMBOL(netdev_reset_tc);
2338 
2339 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2340 {
2341 	if (tc >= dev->num_tc)
2342 		return -EINVAL;
2343 
2344 #ifdef CONFIG_XPS
2345 	netif_reset_xps_queues(dev, offset, count);
2346 #endif
2347 	dev->tc_to_txq[tc].count = count;
2348 	dev->tc_to_txq[tc].offset = offset;
2349 	return 0;
2350 }
2351 EXPORT_SYMBOL(netdev_set_tc_queue);
2352 
2353 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2354 {
2355 	if (num_tc > TC_MAX_QUEUE)
2356 		return -EINVAL;
2357 
2358 #ifdef CONFIG_XPS
2359 	netif_reset_xps_queues_gt(dev, 0);
2360 #endif
2361 	dev->num_tc = num_tc;
2362 	return 0;
2363 }
2364 EXPORT_SYMBOL(netdev_set_num_tc);
2365 
2366 /*
2367  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2368  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2369  */
2370 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2371 {
2372 	int rc;
2373 
2374 	if (txq < 1 || txq > dev->num_tx_queues)
2375 		return -EINVAL;
2376 
2377 	if (dev->reg_state == NETREG_REGISTERED ||
2378 	    dev->reg_state == NETREG_UNREGISTERING) {
2379 		ASSERT_RTNL();
2380 
2381 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2382 						  txq);
2383 		if (rc)
2384 			return rc;
2385 
2386 		if (dev->num_tc)
2387 			netif_setup_tc(dev, txq);
2388 
2389 		if (txq < dev->real_num_tx_queues) {
2390 			qdisc_reset_all_tx_gt(dev, txq);
2391 #ifdef CONFIG_XPS
2392 			netif_reset_xps_queues_gt(dev, txq);
2393 #endif
2394 		}
2395 	}
2396 
2397 	dev->real_num_tx_queues = txq;
2398 	return 0;
2399 }
2400 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2401 
2402 #ifdef CONFIG_SYSFS
2403 /**
2404  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2405  *	@dev: Network device
2406  *	@rxq: Actual number of RX queues
2407  *
2408  *	This must be called either with the rtnl_lock held or before
2409  *	registration of the net device.  Returns 0 on success, or a
2410  *	negative error code.  If called before registration, it always
2411  *	succeeds.
2412  */
2413 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2414 {
2415 	int rc;
2416 
2417 	if (rxq < 1 || rxq > dev->num_rx_queues)
2418 		return -EINVAL;
2419 
2420 	if (dev->reg_state == NETREG_REGISTERED) {
2421 		ASSERT_RTNL();
2422 
2423 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2424 						  rxq);
2425 		if (rc)
2426 			return rc;
2427 	}
2428 
2429 	dev->real_num_rx_queues = rxq;
2430 	return 0;
2431 }
2432 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2433 #endif
2434 
2435 /**
2436  * netif_get_num_default_rss_queues - default number of RSS queues
2437  *
2438  * This routine should set an upper limit on the number of RSS queues
2439  * used by default by multiqueue devices.
2440  */
2441 int netif_get_num_default_rss_queues(void)
2442 {
2443 	return is_kdump_kernel() ?
2444 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2445 }
2446 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2447 
2448 static void __netif_reschedule(struct Qdisc *q)
2449 {
2450 	struct softnet_data *sd;
2451 	unsigned long flags;
2452 
2453 	local_irq_save(flags);
2454 	sd = this_cpu_ptr(&softnet_data);
2455 	q->next_sched = NULL;
2456 	*sd->output_queue_tailp = q;
2457 	sd->output_queue_tailp = &q->next_sched;
2458 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2459 	local_irq_restore(flags);
2460 }
2461 
2462 void __netif_schedule(struct Qdisc *q)
2463 {
2464 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2465 		__netif_reschedule(q);
2466 }
2467 EXPORT_SYMBOL(__netif_schedule);
2468 
2469 struct dev_kfree_skb_cb {
2470 	enum skb_free_reason reason;
2471 };
2472 
2473 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2474 {
2475 	return (struct dev_kfree_skb_cb *)skb->cb;
2476 }
2477 
2478 void netif_schedule_queue(struct netdev_queue *txq)
2479 {
2480 	rcu_read_lock();
2481 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2482 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2483 
2484 		__netif_schedule(q);
2485 	}
2486 	rcu_read_unlock();
2487 }
2488 EXPORT_SYMBOL(netif_schedule_queue);
2489 
2490 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2491 {
2492 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2493 		struct Qdisc *q;
2494 
2495 		rcu_read_lock();
2496 		q = rcu_dereference(dev_queue->qdisc);
2497 		__netif_schedule(q);
2498 		rcu_read_unlock();
2499 	}
2500 }
2501 EXPORT_SYMBOL(netif_tx_wake_queue);
2502 
2503 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2504 {
2505 	unsigned long flags;
2506 
2507 	if (unlikely(!skb))
2508 		return;
2509 
2510 	if (likely(refcount_read(&skb->users) == 1)) {
2511 		smp_rmb();
2512 		refcount_set(&skb->users, 0);
2513 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
2514 		return;
2515 	}
2516 	get_kfree_skb_cb(skb)->reason = reason;
2517 	local_irq_save(flags);
2518 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2519 	__this_cpu_write(softnet_data.completion_queue, skb);
2520 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2521 	local_irq_restore(flags);
2522 }
2523 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2524 
2525 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2526 {
2527 	if (in_irq() || irqs_disabled())
2528 		__dev_kfree_skb_irq(skb, reason);
2529 	else
2530 		dev_kfree_skb(skb);
2531 }
2532 EXPORT_SYMBOL(__dev_kfree_skb_any);
2533 
2534 
2535 /**
2536  * netif_device_detach - mark device as removed
2537  * @dev: network device
2538  *
2539  * Mark device as removed from system and therefore no longer available.
2540  */
2541 void netif_device_detach(struct net_device *dev)
2542 {
2543 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2544 	    netif_running(dev)) {
2545 		netif_tx_stop_all_queues(dev);
2546 	}
2547 }
2548 EXPORT_SYMBOL(netif_device_detach);
2549 
2550 /**
2551  * netif_device_attach - mark device as attached
2552  * @dev: network device
2553  *
2554  * Mark device as attached from system and restart if needed.
2555  */
2556 void netif_device_attach(struct net_device *dev)
2557 {
2558 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2559 	    netif_running(dev)) {
2560 		netif_tx_wake_all_queues(dev);
2561 		__netdev_watchdog_up(dev);
2562 	}
2563 }
2564 EXPORT_SYMBOL(netif_device_attach);
2565 
2566 /*
2567  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2568  * to be used as a distribution range.
2569  */
2570 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2571 		  unsigned int num_tx_queues)
2572 {
2573 	u32 hash;
2574 	u16 qoffset = 0;
2575 	u16 qcount = num_tx_queues;
2576 
2577 	if (skb_rx_queue_recorded(skb)) {
2578 		hash = skb_get_rx_queue(skb);
2579 		while (unlikely(hash >= num_tx_queues))
2580 			hash -= num_tx_queues;
2581 		return hash;
2582 	}
2583 
2584 	if (dev->num_tc) {
2585 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2586 
2587 		qoffset = dev->tc_to_txq[tc].offset;
2588 		qcount = dev->tc_to_txq[tc].count;
2589 	}
2590 
2591 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2592 }
2593 EXPORT_SYMBOL(__skb_tx_hash);
2594 
2595 static void skb_warn_bad_offload(const struct sk_buff *skb)
2596 {
2597 	static const netdev_features_t null_features;
2598 	struct net_device *dev = skb->dev;
2599 	const char *name = "";
2600 
2601 	if (!net_ratelimit())
2602 		return;
2603 
2604 	if (dev) {
2605 		if (dev->dev.parent)
2606 			name = dev_driver_string(dev->dev.parent);
2607 		else
2608 			name = netdev_name(dev);
2609 	}
2610 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2611 	     "gso_type=%d ip_summed=%d\n",
2612 	     name, dev ? &dev->features : &null_features,
2613 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2614 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2615 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2616 }
2617 
2618 /*
2619  * Invalidate hardware checksum when packet is to be mangled, and
2620  * complete checksum manually on outgoing path.
2621  */
2622 int skb_checksum_help(struct sk_buff *skb)
2623 {
2624 	__wsum csum;
2625 	int ret = 0, offset;
2626 
2627 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2628 		goto out_set_summed;
2629 
2630 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2631 		skb_warn_bad_offload(skb);
2632 		return -EINVAL;
2633 	}
2634 
2635 	/* Before computing a checksum, we should make sure no frag could
2636 	 * be modified by an external entity : checksum could be wrong.
2637 	 */
2638 	if (skb_has_shared_frag(skb)) {
2639 		ret = __skb_linearize(skb);
2640 		if (ret)
2641 			goto out;
2642 	}
2643 
2644 	offset = skb_checksum_start_offset(skb);
2645 	BUG_ON(offset >= skb_headlen(skb));
2646 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2647 
2648 	offset += skb->csum_offset;
2649 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2650 
2651 	if (skb_cloned(skb) &&
2652 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2653 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2654 		if (ret)
2655 			goto out;
2656 	}
2657 
2658 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2659 out_set_summed:
2660 	skb->ip_summed = CHECKSUM_NONE;
2661 out:
2662 	return ret;
2663 }
2664 EXPORT_SYMBOL(skb_checksum_help);
2665 
2666 int skb_crc32c_csum_help(struct sk_buff *skb)
2667 {
2668 	__le32 crc32c_csum;
2669 	int ret = 0, offset, start;
2670 
2671 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2672 		goto out;
2673 
2674 	if (unlikely(skb_is_gso(skb)))
2675 		goto out;
2676 
2677 	/* Before computing a checksum, we should make sure no frag could
2678 	 * be modified by an external entity : checksum could be wrong.
2679 	 */
2680 	if (unlikely(skb_has_shared_frag(skb))) {
2681 		ret = __skb_linearize(skb);
2682 		if (ret)
2683 			goto out;
2684 	}
2685 	start = skb_checksum_start_offset(skb);
2686 	offset = start + offsetof(struct sctphdr, checksum);
2687 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2688 		ret = -EINVAL;
2689 		goto out;
2690 	}
2691 	if (skb_cloned(skb) &&
2692 	    !skb_clone_writable(skb, offset + sizeof(__le32))) {
2693 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2694 		if (ret)
2695 			goto out;
2696 	}
2697 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2698 						  skb->len - start, ~(__u32)0,
2699 						  crc32c_csum_stub));
2700 	*(__le32 *)(skb->data + offset) = crc32c_csum;
2701 	skb->ip_summed = CHECKSUM_NONE;
2702 	skb->csum_not_inet = 0;
2703 out:
2704 	return ret;
2705 }
2706 
2707 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2708 {
2709 	__be16 type = skb->protocol;
2710 
2711 	/* Tunnel gso handlers can set protocol to ethernet. */
2712 	if (type == htons(ETH_P_TEB)) {
2713 		struct ethhdr *eth;
2714 
2715 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2716 			return 0;
2717 
2718 		eth = (struct ethhdr *)skb_mac_header(skb);
2719 		type = eth->h_proto;
2720 	}
2721 
2722 	return __vlan_get_protocol(skb, type, depth);
2723 }
2724 
2725 /**
2726  *	skb_mac_gso_segment - mac layer segmentation handler.
2727  *	@skb: buffer to segment
2728  *	@features: features for the output path (see dev->features)
2729  */
2730 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2731 				    netdev_features_t features)
2732 {
2733 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2734 	struct packet_offload *ptype;
2735 	int vlan_depth = skb->mac_len;
2736 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2737 
2738 	if (unlikely(!type))
2739 		return ERR_PTR(-EINVAL);
2740 
2741 	__skb_pull(skb, vlan_depth);
2742 
2743 	rcu_read_lock();
2744 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2745 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2746 			segs = ptype->callbacks.gso_segment(skb, features);
2747 			break;
2748 		}
2749 	}
2750 	rcu_read_unlock();
2751 
2752 	__skb_push(skb, skb->data - skb_mac_header(skb));
2753 
2754 	return segs;
2755 }
2756 EXPORT_SYMBOL(skb_mac_gso_segment);
2757 
2758 
2759 /* openvswitch calls this on rx path, so we need a different check.
2760  */
2761 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2762 {
2763 	if (tx_path)
2764 		return skb->ip_summed != CHECKSUM_PARTIAL;
2765 
2766 	return skb->ip_summed == CHECKSUM_NONE;
2767 }
2768 
2769 /**
2770  *	__skb_gso_segment - Perform segmentation on skb.
2771  *	@skb: buffer to segment
2772  *	@features: features for the output path (see dev->features)
2773  *	@tx_path: whether it is called in TX path
2774  *
2775  *	This function segments the given skb and returns a list of segments.
2776  *
2777  *	It may return NULL if the skb requires no segmentation.  This is
2778  *	only possible when GSO is used for verifying header integrity.
2779  *
2780  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2781  */
2782 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2783 				  netdev_features_t features, bool tx_path)
2784 {
2785 	struct sk_buff *segs;
2786 
2787 	if (unlikely(skb_needs_check(skb, tx_path))) {
2788 		int err;
2789 
2790 		/* We're going to init ->check field in TCP or UDP header */
2791 		err = skb_cow_head(skb, 0);
2792 		if (err < 0)
2793 			return ERR_PTR(err);
2794 	}
2795 
2796 	/* Only report GSO partial support if it will enable us to
2797 	 * support segmentation on this frame without needing additional
2798 	 * work.
2799 	 */
2800 	if (features & NETIF_F_GSO_PARTIAL) {
2801 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2802 		struct net_device *dev = skb->dev;
2803 
2804 		partial_features |= dev->features & dev->gso_partial_features;
2805 		if (!skb_gso_ok(skb, features | partial_features))
2806 			features &= ~NETIF_F_GSO_PARTIAL;
2807 	}
2808 
2809 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2810 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2811 
2812 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2813 	SKB_GSO_CB(skb)->encap_level = 0;
2814 
2815 	skb_reset_mac_header(skb);
2816 	skb_reset_mac_len(skb);
2817 
2818 	segs = skb_mac_gso_segment(skb, features);
2819 
2820 	if (unlikely(skb_needs_check(skb, tx_path)))
2821 		skb_warn_bad_offload(skb);
2822 
2823 	return segs;
2824 }
2825 EXPORT_SYMBOL(__skb_gso_segment);
2826 
2827 /* Take action when hardware reception checksum errors are detected. */
2828 #ifdef CONFIG_BUG
2829 void netdev_rx_csum_fault(struct net_device *dev)
2830 {
2831 	if (net_ratelimit()) {
2832 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2833 		dump_stack();
2834 	}
2835 }
2836 EXPORT_SYMBOL(netdev_rx_csum_fault);
2837 #endif
2838 
2839 /* Actually, we should eliminate this check as soon as we know, that:
2840  * 1. IOMMU is present and allows to map all the memory.
2841  * 2. No high memory really exists on this machine.
2842  */
2843 
2844 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2845 {
2846 #ifdef CONFIG_HIGHMEM
2847 	int i;
2848 
2849 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2850 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2851 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2852 
2853 			if (PageHighMem(skb_frag_page(frag)))
2854 				return 1;
2855 		}
2856 	}
2857 
2858 	if (PCI_DMA_BUS_IS_PHYS) {
2859 		struct device *pdev = dev->dev.parent;
2860 
2861 		if (!pdev)
2862 			return 0;
2863 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2864 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2865 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2866 
2867 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2868 				return 1;
2869 		}
2870 	}
2871 #endif
2872 	return 0;
2873 }
2874 
2875 /* If MPLS offload request, verify we are testing hardware MPLS features
2876  * instead of standard features for the netdev.
2877  */
2878 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2879 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2880 					   netdev_features_t features,
2881 					   __be16 type)
2882 {
2883 	if (eth_p_mpls(type))
2884 		features &= skb->dev->mpls_features;
2885 
2886 	return features;
2887 }
2888 #else
2889 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2890 					   netdev_features_t features,
2891 					   __be16 type)
2892 {
2893 	return features;
2894 }
2895 #endif
2896 
2897 static netdev_features_t harmonize_features(struct sk_buff *skb,
2898 	netdev_features_t features)
2899 {
2900 	int tmp;
2901 	__be16 type;
2902 
2903 	type = skb_network_protocol(skb, &tmp);
2904 	features = net_mpls_features(skb, features, type);
2905 
2906 	if (skb->ip_summed != CHECKSUM_NONE &&
2907 	    !can_checksum_protocol(features, type)) {
2908 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2909 	}
2910 	if (illegal_highdma(skb->dev, skb))
2911 		features &= ~NETIF_F_SG;
2912 
2913 	return features;
2914 }
2915 
2916 netdev_features_t passthru_features_check(struct sk_buff *skb,
2917 					  struct net_device *dev,
2918 					  netdev_features_t features)
2919 {
2920 	return features;
2921 }
2922 EXPORT_SYMBOL(passthru_features_check);
2923 
2924 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2925 					     struct net_device *dev,
2926 					     netdev_features_t features)
2927 {
2928 	return vlan_features_check(skb, features);
2929 }
2930 
2931 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2932 					    struct net_device *dev,
2933 					    netdev_features_t features)
2934 {
2935 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2936 
2937 	if (gso_segs > dev->gso_max_segs)
2938 		return features & ~NETIF_F_GSO_MASK;
2939 
2940 	/* Support for GSO partial features requires software
2941 	 * intervention before we can actually process the packets
2942 	 * so we need to strip support for any partial features now
2943 	 * and we can pull them back in after we have partially
2944 	 * segmented the frame.
2945 	 */
2946 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2947 		features &= ~dev->gso_partial_features;
2948 
2949 	/* Make sure to clear the IPv4 ID mangling feature if the
2950 	 * IPv4 header has the potential to be fragmented.
2951 	 */
2952 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2953 		struct iphdr *iph = skb->encapsulation ?
2954 				    inner_ip_hdr(skb) : ip_hdr(skb);
2955 
2956 		if (!(iph->frag_off & htons(IP_DF)))
2957 			features &= ~NETIF_F_TSO_MANGLEID;
2958 	}
2959 
2960 	return features;
2961 }
2962 
2963 netdev_features_t netif_skb_features(struct sk_buff *skb)
2964 {
2965 	struct net_device *dev = skb->dev;
2966 	netdev_features_t features = dev->features;
2967 
2968 	if (skb_is_gso(skb))
2969 		features = gso_features_check(skb, dev, features);
2970 
2971 	/* If encapsulation offload request, verify we are testing
2972 	 * hardware encapsulation features instead of standard
2973 	 * features for the netdev
2974 	 */
2975 	if (skb->encapsulation)
2976 		features &= dev->hw_enc_features;
2977 
2978 	if (skb_vlan_tagged(skb))
2979 		features = netdev_intersect_features(features,
2980 						     dev->vlan_features |
2981 						     NETIF_F_HW_VLAN_CTAG_TX |
2982 						     NETIF_F_HW_VLAN_STAG_TX);
2983 
2984 	if (dev->netdev_ops->ndo_features_check)
2985 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2986 								features);
2987 	else
2988 		features &= dflt_features_check(skb, dev, features);
2989 
2990 	return harmonize_features(skb, features);
2991 }
2992 EXPORT_SYMBOL(netif_skb_features);
2993 
2994 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2995 		    struct netdev_queue *txq, bool more)
2996 {
2997 	unsigned int len;
2998 	int rc;
2999 
3000 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3001 		dev_queue_xmit_nit(skb, dev);
3002 
3003 	len = skb->len;
3004 	trace_net_dev_start_xmit(skb, dev);
3005 	rc = netdev_start_xmit(skb, dev, txq, more);
3006 	trace_net_dev_xmit(skb, rc, dev, len);
3007 
3008 	return rc;
3009 }
3010 
3011 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3012 				    struct netdev_queue *txq, int *ret)
3013 {
3014 	struct sk_buff *skb = first;
3015 	int rc = NETDEV_TX_OK;
3016 
3017 	while (skb) {
3018 		struct sk_buff *next = skb->next;
3019 
3020 		skb->next = NULL;
3021 		rc = xmit_one(skb, dev, txq, next != NULL);
3022 		if (unlikely(!dev_xmit_complete(rc))) {
3023 			skb->next = next;
3024 			goto out;
3025 		}
3026 
3027 		skb = next;
3028 		if (netif_xmit_stopped(txq) && skb) {
3029 			rc = NETDEV_TX_BUSY;
3030 			break;
3031 		}
3032 	}
3033 
3034 out:
3035 	*ret = rc;
3036 	return skb;
3037 }
3038 
3039 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3040 					  netdev_features_t features)
3041 {
3042 	if (skb_vlan_tag_present(skb) &&
3043 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3044 		skb = __vlan_hwaccel_push_inside(skb);
3045 	return skb;
3046 }
3047 
3048 int skb_csum_hwoffload_help(struct sk_buff *skb,
3049 			    const netdev_features_t features)
3050 {
3051 	if (unlikely(skb->csum_not_inet))
3052 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3053 			skb_crc32c_csum_help(skb);
3054 
3055 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3056 }
3057 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3058 
3059 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
3060 {
3061 	netdev_features_t features;
3062 
3063 	features = netif_skb_features(skb);
3064 	skb = validate_xmit_vlan(skb, features);
3065 	if (unlikely(!skb))
3066 		goto out_null;
3067 
3068 	if (netif_needs_gso(skb, features)) {
3069 		struct sk_buff *segs;
3070 
3071 		segs = skb_gso_segment(skb, features);
3072 		if (IS_ERR(segs)) {
3073 			goto out_kfree_skb;
3074 		} else if (segs) {
3075 			consume_skb(skb);
3076 			skb = segs;
3077 		}
3078 	} else {
3079 		if (skb_needs_linearize(skb, features) &&
3080 		    __skb_linearize(skb))
3081 			goto out_kfree_skb;
3082 
3083 		if (validate_xmit_xfrm(skb, features))
3084 			goto out_kfree_skb;
3085 
3086 		/* If packet is not checksummed and device does not
3087 		 * support checksumming for this protocol, complete
3088 		 * checksumming here.
3089 		 */
3090 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3091 			if (skb->encapsulation)
3092 				skb_set_inner_transport_header(skb,
3093 							       skb_checksum_start_offset(skb));
3094 			else
3095 				skb_set_transport_header(skb,
3096 							 skb_checksum_start_offset(skb));
3097 			if (skb_csum_hwoffload_help(skb, features))
3098 				goto out_kfree_skb;
3099 		}
3100 	}
3101 
3102 	return skb;
3103 
3104 out_kfree_skb:
3105 	kfree_skb(skb);
3106 out_null:
3107 	atomic_long_inc(&dev->tx_dropped);
3108 	return NULL;
3109 }
3110 
3111 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3112 {
3113 	struct sk_buff *next, *head = NULL, *tail;
3114 
3115 	for (; skb != NULL; skb = next) {
3116 		next = skb->next;
3117 		skb->next = NULL;
3118 
3119 		/* in case skb wont be segmented, point to itself */
3120 		skb->prev = skb;
3121 
3122 		skb = validate_xmit_skb(skb, dev);
3123 		if (!skb)
3124 			continue;
3125 
3126 		if (!head)
3127 			head = skb;
3128 		else
3129 			tail->next = skb;
3130 		/* If skb was segmented, skb->prev points to
3131 		 * the last segment. If not, it still contains skb.
3132 		 */
3133 		tail = skb->prev;
3134 	}
3135 	return head;
3136 }
3137 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3138 
3139 static void qdisc_pkt_len_init(struct sk_buff *skb)
3140 {
3141 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3142 
3143 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3144 
3145 	/* To get more precise estimation of bytes sent on wire,
3146 	 * we add to pkt_len the headers size of all segments
3147 	 */
3148 	if (shinfo->gso_size)  {
3149 		unsigned int hdr_len;
3150 		u16 gso_segs = shinfo->gso_segs;
3151 
3152 		/* mac layer + network layer */
3153 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3154 
3155 		/* + transport layer */
3156 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3157 			hdr_len += tcp_hdrlen(skb);
3158 		else
3159 			hdr_len += sizeof(struct udphdr);
3160 
3161 		if (shinfo->gso_type & SKB_GSO_DODGY)
3162 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3163 						shinfo->gso_size);
3164 
3165 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3166 	}
3167 }
3168 
3169 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3170 				 struct net_device *dev,
3171 				 struct netdev_queue *txq)
3172 {
3173 	spinlock_t *root_lock = qdisc_lock(q);
3174 	struct sk_buff *to_free = NULL;
3175 	bool contended;
3176 	int rc;
3177 
3178 	qdisc_calculate_pkt_len(skb, q);
3179 	/*
3180 	 * Heuristic to force contended enqueues to serialize on a
3181 	 * separate lock before trying to get qdisc main lock.
3182 	 * This permits qdisc->running owner to get the lock more
3183 	 * often and dequeue packets faster.
3184 	 */
3185 	contended = qdisc_is_running(q);
3186 	if (unlikely(contended))
3187 		spin_lock(&q->busylock);
3188 
3189 	spin_lock(root_lock);
3190 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3191 		__qdisc_drop(skb, &to_free);
3192 		rc = NET_XMIT_DROP;
3193 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3194 		   qdisc_run_begin(q)) {
3195 		/*
3196 		 * This is a work-conserving queue; there are no old skbs
3197 		 * waiting to be sent out; and the qdisc is not running -
3198 		 * xmit the skb directly.
3199 		 */
3200 
3201 		qdisc_bstats_update(q, skb);
3202 
3203 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3204 			if (unlikely(contended)) {
3205 				spin_unlock(&q->busylock);
3206 				contended = false;
3207 			}
3208 			__qdisc_run(q);
3209 		} else
3210 			qdisc_run_end(q);
3211 
3212 		rc = NET_XMIT_SUCCESS;
3213 	} else {
3214 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3215 		if (qdisc_run_begin(q)) {
3216 			if (unlikely(contended)) {
3217 				spin_unlock(&q->busylock);
3218 				contended = false;
3219 			}
3220 			__qdisc_run(q);
3221 		}
3222 	}
3223 	spin_unlock(root_lock);
3224 	if (unlikely(to_free))
3225 		kfree_skb_list(to_free);
3226 	if (unlikely(contended))
3227 		spin_unlock(&q->busylock);
3228 	return rc;
3229 }
3230 
3231 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3232 static void skb_update_prio(struct sk_buff *skb)
3233 {
3234 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3235 
3236 	if (!skb->priority && skb->sk && map) {
3237 		unsigned int prioidx =
3238 			sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3239 
3240 		if (prioidx < map->priomap_len)
3241 			skb->priority = map->priomap[prioidx];
3242 	}
3243 }
3244 #else
3245 #define skb_update_prio(skb)
3246 #endif
3247 
3248 DEFINE_PER_CPU(int, xmit_recursion);
3249 EXPORT_SYMBOL(xmit_recursion);
3250 
3251 /**
3252  *	dev_loopback_xmit - loop back @skb
3253  *	@net: network namespace this loopback is happening in
3254  *	@sk:  sk needed to be a netfilter okfn
3255  *	@skb: buffer to transmit
3256  */
3257 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3258 {
3259 	skb_reset_mac_header(skb);
3260 	__skb_pull(skb, skb_network_offset(skb));
3261 	skb->pkt_type = PACKET_LOOPBACK;
3262 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3263 	WARN_ON(!skb_dst(skb));
3264 	skb_dst_force(skb);
3265 	netif_rx_ni(skb);
3266 	return 0;
3267 }
3268 EXPORT_SYMBOL(dev_loopback_xmit);
3269 
3270 #ifdef CONFIG_NET_EGRESS
3271 static struct sk_buff *
3272 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3273 {
3274 	struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3275 	struct tcf_result cl_res;
3276 
3277 	if (!cl)
3278 		return skb;
3279 
3280 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3281 	qdisc_bstats_cpu_update(cl->q, skb);
3282 
3283 	switch (tcf_classify(skb, cl, &cl_res, false)) {
3284 	case TC_ACT_OK:
3285 	case TC_ACT_RECLASSIFY:
3286 		skb->tc_index = TC_H_MIN(cl_res.classid);
3287 		break;
3288 	case TC_ACT_SHOT:
3289 		qdisc_qstats_cpu_drop(cl->q);
3290 		*ret = NET_XMIT_DROP;
3291 		kfree_skb(skb);
3292 		return NULL;
3293 	case TC_ACT_STOLEN:
3294 	case TC_ACT_QUEUED:
3295 	case TC_ACT_TRAP:
3296 		*ret = NET_XMIT_SUCCESS;
3297 		consume_skb(skb);
3298 		return NULL;
3299 	case TC_ACT_REDIRECT:
3300 		/* No need to push/pop skb's mac_header here on egress! */
3301 		skb_do_redirect(skb);
3302 		*ret = NET_XMIT_SUCCESS;
3303 		return NULL;
3304 	default:
3305 		break;
3306 	}
3307 
3308 	return skb;
3309 }
3310 #endif /* CONFIG_NET_EGRESS */
3311 
3312 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3313 {
3314 #ifdef CONFIG_XPS
3315 	struct xps_dev_maps *dev_maps;
3316 	struct xps_map *map;
3317 	int queue_index = -1;
3318 
3319 	rcu_read_lock();
3320 	dev_maps = rcu_dereference(dev->xps_maps);
3321 	if (dev_maps) {
3322 		unsigned int tci = skb->sender_cpu - 1;
3323 
3324 		if (dev->num_tc) {
3325 			tci *= dev->num_tc;
3326 			tci += netdev_get_prio_tc_map(dev, skb->priority);
3327 		}
3328 
3329 		map = rcu_dereference(dev_maps->cpu_map[tci]);
3330 		if (map) {
3331 			if (map->len == 1)
3332 				queue_index = map->queues[0];
3333 			else
3334 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3335 									   map->len)];
3336 			if (unlikely(queue_index >= dev->real_num_tx_queues))
3337 				queue_index = -1;
3338 		}
3339 	}
3340 	rcu_read_unlock();
3341 
3342 	return queue_index;
3343 #else
3344 	return -1;
3345 #endif
3346 }
3347 
3348 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3349 {
3350 	struct sock *sk = skb->sk;
3351 	int queue_index = sk_tx_queue_get(sk);
3352 
3353 	if (queue_index < 0 || skb->ooo_okay ||
3354 	    queue_index >= dev->real_num_tx_queues) {
3355 		int new_index = get_xps_queue(dev, skb);
3356 
3357 		if (new_index < 0)
3358 			new_index = skb_tx_hash(dev, skb);
3359 
3360 		if (queue_index != new_index && sk &&
3361 		    sk_fullsock(sk) &&
3362 		    rcu_access_pointer(sk->sk_dst_cache))
3363 			sk_tx_queue_set(sk, new_index);
3364 
3365 		queue_index = new_index;
3366 	}
3367 
3368 	return queue_index;
3369 }
3370 
3371 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3372 				    struct sk_buff *skb,
3373 				    void *accel_priv)
3374 {
3375 	int queue_index = 0;
3376 
3377 #ifdef CONFIG_XPS
3378 	u32 sender_cpu = skb->sender_cpu - 1;
3379 
3380 	if (sender_cpu >= (u32)NR_CPUS)
3381 		skb->sender_cpu = raw_smp_processor_id() + 1;
3382 #endif
3383 
3384 	if (dev->real_num_tx_queues != 1) {
3385 		const struct net_device_ops *ops = dev->netdev_ops;
3386 
3387 		if (ops->ndo_select_queue)
3388 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3389 							    __netdev_pick_tx);
3390 		else
3391 			queue_index = __netdev_pick_tx(dev, skb);
3392 
3393 		if (!accel_priv)
3394 			queue_index = netdev_cap_txqueue(dev, queue_index);
3395 	}
3396 
3397 	skb_set_queue_mapping(skb, queue_index);
3398 	return netdev_get_tx_queue(dev, queue_index);
3399 }
3400 
3401 /**
3402  *	__dev_queue_xmit - transmit a buffer
3403  *	@skb: buffer to transmit
3404  *	@accel_priv: private data used for L2 forwarding offload
3405  *
3406  *	Queue a buffer for transmission to a network device. The caller must
3407  *	have set the device and priority and built the buffer before calling
3408  *	this function. The function can be called from an interrupt.
3409  *
3410  *	A negative errno code is returned on a failure. A success does not
3411  *	guarantee the frame will be transmitted as it may be dropped due
3412  *	to congestion or traffic shaping.
3413  *
3414  * -----------------------------------------------------------------------------------
3415  *      I notice this method can also return errors from the queue disciplines,
3416  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3417  *      be positive.
3418  *
3419  *      Regardless of the return value, the skb is consumed, so it is currently
3420  *      difficult to retry a send to this method.  (You can bump the ref count
3421  *      before sending to hold a reference for retry if you are careful.)
3422  *
3423  *      When calling this method, interrupts MUST be enabled.  This is because
3424  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3425  *          --BLG
3426  */
3427 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3428 {
3429 	struct net_device *dev = skb->dev;
3430 	struct netdev_queue *txq;
3431 	struct Qdisc *q;
3432 	int rc = -ENOMEM;
3433 
3434 	skb_reset_mac_header(skb);
3435 
3436 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3437 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3438 
3439 	/* Disable soft irqs for various locks below. Also
3440 	 * stops preemption for RCU.
3441 	 */
3442 	rcu_read_lock_bh();
3443 
3444 	skb_update_prio(skb);
3445 
3446 	qdisc_pkt_len_init(skb);
3447 #ifdef CONFIG_NET_CLS_ACT
3448 	skb->tc_at_ingress = 0;
3449 # ifdef CONFIG_NET_EGRESS
3450 	if (static_key_false(&egress_needed)) {
3451 		skb = sch_handle_egress(skb, &rc, dev);
3452 		if (!skb)
3453 			goto out;
3454 	}
3455 # endif
3456 #endif
3457 	/* If device/qdisc don't need skb->dst, release it right now while
3458 	 * its hot in this cpu cache.
3459 	 */
3460 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3461 		skb_dst_drop(skb);
3462 	else
3463 		skb_dst_force(skb);
3464 
3465 	txq = netdev_pick_tx(dev, skb, accel_priv);
3466 	q = rcu_dereference_bh(txq->qdisc);
3467 
3468 	trace_net_dev_queue(skb);
3469 	if (q->enqueue) {
3470 		rc = __dev_xmit_skb(skb, q, dev, txq);
3471 		goto out;
3472 	}
3473 
3474 	/* The device has no queue. Common case for software devices:
3475 	 * loopback, all the sorts of tunnels...
3476 
3477 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3478 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3479 	 * counters.)
3480 	 * However, it is possible, that they rely on protection
3481 	 * made by us here.
3482 
3483 	 * Check this and shot the lock. It is not prone from deadlocks.
3484 	 *Either shot noqueue qdisc, it is even simpler 8)
3485 	 */
3486 	if (dev->flags & IFF_UP) {
3487 		int cpu = smp_processor_id(); /* ok because BHs are off */
3488 
3489 		if (txq->xmit_lock_owner != cpu) {
3490 			if (unlikely(__this_cpu_read(xmit_recursion) >
3491 				     XMIT_RECURSION_LIMIT))
3492 				goto recursion_alert;
3493 
3494 			skb = validate_xmit_skb(skb, dev);
3495 			if (!skb)
3496 				goto out;
3497 
3498 			HARD_TX_LOCK(dev, txq, cpu);
3499 
3500 			if (!netif_xmit_stopped(txq)) {
3501 				__this_cpu_inc(xmit_recursion);
3502 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3503 				__this_cpu_dec(xmit_recursion);
3504 				if (dev_xmit_complete(rc)) {
3505 					HARD_TX_UNLOCK(dev, txq);
3506 					goto out;
3507 				}
3508 			}
3509 			HARD_TX_UNLOCK(dev, txq);
3510 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3511 					     dev->name);
3512 		} else {
3513 			/* Recursion is detected! It is possible,
3514 			 * unfortunately
3515 			 */
3516 recursion_alert:
3517 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3518 					     dev->name);
3519 		}
3520 	}
3521 
3522 	rc = -ENETDOWN;
3523 	rcu_read_unlock_bh();
3524 
3525 	atomic_long_inc(&dev->tx_dropped);
3526 	kfree_skb_list(skb);
3527 	return rc;
3528 out:
3529 	rcu_read_unlock_bh();
3530 	return rc;
3531 }
3532 
3533 int dev_queue_xmit(struct sk_buff *skb)
3534 {
3535 	return __dev_queue_xmit(skb, NULL);
3536 }
3537 EXPORT_SYMBOL(dev_queue_xmit);
3538 
3539 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3540 {
3541 	return __dev_queue_xmit(skb, accel_priv);
3542 }
3543 EXPORT_SYMBOL(dev_queue_xmit_accel);
3544 
3545 
3546 /*************************************************************************
3547  *			Receiver routines
3548  *************************************************************************/
3549 
3550 int netdev_max_backlog __read_mostly = 1000;
3551 EXPORT_SYMBOL(netdev_max_backlog);
3552 
3553 int netdev_tstamp_prequeue __read_mostly = 1;
3554 int netdev_budget __read_mostly = 300;
3555 unsigned int __read_mostly netdev_budget_usecs = 2000;
3556 int weight_p __read_mostly = 64;           /* old backlog weight */
3557 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3558 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3559 int dev_rx_weight __read_mostly = 64;
3560 int dev_tx_weight __read_mostly = 64;
3561 
3562 /* Called with irq disabled */
3563 static inline void ____napi_schedule(struct softnet_data *sd,
3564 				     struct napi_struct *napi)
3565 {
3566 	list_add_tail(&napi->poll_list, &sd->poll_list);
3567 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3568 }
3569 
3570 #ifdef CONFIG_RPS
3571 
3572 /* One global table that all flow-based protocols share. */
3573 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3574 EXPORT_SYMBOL(rps_sock_flow_table);
3575 u32 rps_cpu_mask __read_mostly;
3576 EXPORT_SYMBOL(rps_cpu_mask);
3577 
3578 struct static_key rps_needed __read_mostly;
3579 EXPORT_SYMBOL(rps_needed);
3580 struct static_key rfs_needed __read_mostly;
3581 EXPORT_SYMBOL(rfs_needed);
3582 
3583 static struct rps_dev_flow *
3584 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3585 	    struct rps_dev_flow *rflow, u16 next_cpu)
3586 {
3587 	if (next_cpu < nr_cpu_ids) {
3588 #ifdef CONFIG_RFS_ACCEL
3589 		struct netdev_rx_queue *rxqueue;
3590 		struct rps_dev_flow_table *flow_table;
3591 		struct rps_dev_flow *old_rflow;
3592 		u32 flow_id;
3593 		u16 rxq_index;
3594 		int rc;
3595 
3596 		/* Should we steer this flow to a different hardware queue? */
3597 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3598 		    !(dev->features & NETIF_F_NTUPLE))
3599 			goto out;
3600 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3601 		if (rxq_index == skb_get_rx_queue(skb))
3602 			goto out;
3603 
3604 		rxqueue = dev->_rx + rxq_index;
3605 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3606 		if (!flow_table)
3607 			goto out;
3608 		flow_id = skb_get_hash(skb) & flow_table->mask;
3609 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3610 							rxq_index, flow_id);
3611 		if (rc < 0)
3612 			goto out;
3613 		old_rflow = rflow;
3614 		rflow = &flow_table->flows[flow_id];
3615 		rflow->filter = rc;
3616 		if (old_rflow->filter == rflow->filter)
3617 			old_rflow->filter = RPS_NO_FILTER;
3618 	out:
3619 #endif
3620 		rflow->last_qtail =
3621 			per_cpu(softnet_data, next_cpu).input_queue_head;
3622 	}
3623 
3624 	rflow->cpu = next_cpu;
3625 	return rflow;
3626 }
3627 
3628 /*
3629  * get_rps_cpu is called from netif_receive_skb and returns the target
3630  * CPU from the RPS map of the receiving queue for a given skb.
3631  * rcu_read_lock must be held on entry.
3632  */
3633 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3634 		       struct rps_dev_flow **rflowp)
3635 {
3636 	const struct rps_sock_flow_table *sock_flow_table;
3637 	struct netdev_rx_queue *rxqueue = dev->_rx;
3638 	struct rps_dev_flow_table *flow_table;
3639 	struct rps_map *map;
3640 	int cpu = -1;
3641 	u32 tcpu;
3642 	u32 hash;
3643 
3644 	if (skb_rx_queue_recorded(skb)) {
3645 		u16 index = skb_get_rx_queue(skb);
3646 
3647 		if (unlikely(index >= dev->real_num_rx_queues)) {
3648 			WARN_ONCE(dev->real_num_rx_queues > 1,
3649 				  "%s received packet on queue %u, but number "
3650 				  "of RX queues is %u\n",
3651 				  dev->name, index, dev->real_num_rx_queues);
3652 			goto done;
3653 		}
3654 		rxqueue += index;
3655 	}
3656 
3657 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3658 
3659 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3660 	map = rcu_dereference(rxqueue->rps_map);
3661 	if (!flow_table && !map)
3662 		goto done;
3663 
3664 	skb_reset_network_header(skb);
3665 	hash = skb_get_hash(skb);
3666 	if (!hash)
3667 		goto done;
3668 
3669 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3670 	if (flow_table && sock_flow_table) {
3671 		struct rps_dev_flow *rflow;
3672 		u32 next_cpu;
3673 		u32 ident;
3674 
3675 		/* First check into global flow table if there is a match */
3676 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3677 		if ((ident ^ hash) & ~rps_cpu_mask)
3678 			goto try_rps;
3679 
3680 		next_cpu = ident & rps_cpu_mask;
3681 
3682 		/* OK, now we know there is a match,
3683 		 * we can look at the local (per receive queue) flow table
3684 		 */
3685 		rflow = &flow_table->flows[hash & flow_table->mask];
3686 		tcpu = rflow->cpu;
3687 
3688 		/*
3689 		 * If the desired CPU (where last recvmsg was done) is
3690 		 * different from current CPU (one in the rx-queue flow
3691 		 * table entry), switch if one of the following holds:
3692 		 *   - Current CPU is unset (>= nr_cpu_ids).
3693 		 *   - Current CPU is offline.
3694 		 *   - The current CPU's queue tail has advanced beyond the
3695 		 *     last packet that was enqueued using this table entry.
3696 		 *     This guarantees that all previous packets for the flow
3697 		 *     have been dequeued, thus preserving in order delivery.
3698 		 */
3699 		if (unlikely(tcpu != next_cpu) &&
3700 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3701 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3702 		      rflow->last_qtail)) >= 0)) {
3703 			tcpu = next_cpu;
3704 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3705 		}
3706 
3707 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3708 			*rflowp = rflow;
3709 			cpu = tcpu;
3710 			goto done;
3711 		}
3712 	}
3713 
3714 try_rps:
3715 
3716 	if (map) {
3717 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3718 		if (cpu_online(tcpu)) {
3719 			cpu = tcpu;
3720 			goto done;
3721 		}
3722 	}
3723 
3724 done:
3725 	return cpu;
3726 }
3727 
3728 #ifdef CONFIG_RFS_ACCEL
3729 
3730 /**
3731  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3732  * @dev: Device on which the filter was set
3733  * @rxq_index: RX queue index
3734  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3735  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3736  *
3737  * Drivers that implement ndo_rx_flow_steer() should periodically call
3738  * this function for each installed filter and remove the filters for
3739  * which it returns %true.
3740  */
3741 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3742 			 u32 flow_id, u16 filter_id)
3743 {
3744 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3745 	struct rps_dev_flow_table *flow_table;
3746 	struct rps_dev_flow *rflow;
3747 	bool expire = true;
3748 	unsigned int cpu;
3749 
3750 	rcu_read_lock();
3751 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3752 	if (flow_table && flow_id <= flow_table->mask) {
3753 		rflow = &flow_table->flows[flow_id];
3754 		cpu = ACCESS_ONCE(rflow->cpu);
3755 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3756 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3757 			   rflow->last_qtail) <
3758 		     (int)(10 * flow_table->mask)))
3759 			expire = false;
3760 	}
3761 	rcu_read_unlock();
3762 	return expire;
3763 }
3764 EXPORT_SYMBOL(rps_may_expire_flow);
3765 
3766 #endif /* CONFIG_RFS_ACCEL */
3767 
3768 /* Called from hardirq (IPI) context */
3769 static void rps_trigger_softirq(void *data)
3770 {
3771 	struct softnet_data *sd = data;
3772 
3773 	____napi_schedule(sd, &sd->backlog);
3774 	sd->received_rps++;
3775 }
3776 
3777 #endif /* CONFIG_RPS */
3778 
3779 /*
3780  * Check if this softnet_data structure is another cpu one
3781  * If yes, queue it to our IPI list and return 1
3782  * If no, return 0
3783  */
3784 static int rps_ipi_queued(struct softnet_data *sd)
3785 {
3786 #ifdef CONFIG_RPS
3787 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3788 
3789 	if (sd != mysd) {
3790 		sd->rps_ipi_next = mysd->rps_ipi_list;
3791 		mysd->rps_ipi_list = sd;
3792 
3793 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3794 		return 1;
3795 	}
3796 #endif /* CONFIG_RPS */
3797 	return 0;
3798 }
3799 
3800 #ifdef CONFIG_NET_FLOW_LIMIT
3801 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3802 #endif
3803 
3804 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3805 {
3806 #ifdef CONFIG_NET_FLOW_LIMIT
3807 	struct sd_flow_limit *fl;
3808 	struct softnet_data *sd;
3809 	unsigned int old_flow, new_flow;
3810 
3811 	if (qlen < (netdev_max_backlog >> 1))
3812 		return false;
3813 
3814 	sd = this_cpu_ptr(&softnet_data);
3815 
3816 	rcu_read_lock();
3817 	fl = rcu_dereference(sd->flow_limit);
3818 	if (fl) {
3819 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3820 		old_flow = fl->history[fl->history_head];
3821 		fl->history[fl->history_head] = new_flow;
3822 
3823 		fl->history_head++;
3824 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3825 
3826 		if (likely(fl->buckets[old_flow]))
3827 			fl->buckets[old_flow]--;
3828 
3829 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3830 			fl->count++;
3831 			rcu_read_unlock();
3832 			return true;
3833 		}
3834 	}
3835 	rcu_read_unlock();
3836 #endif
3837 	return false;
3838 }
3839 
3840 /*
3841  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3842  * queue (may be a remote CPU queue).
3843  */
3844 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3845 			      unsigned int *qtail)
3846 {
3847 	struct softnet_data *sd;
3848 	unsigned long flags;
3849 	unsigned int qlen;
3850 
3851 	sd = &per_cpu(softnet_data, cpu);
3852 
3853 	local_irq_save(flags);
3854 
3855 	rps_lock(sd);
3856 	if (!netif_running(skb->dev))
3857 		goto drop;
3858 	qlen = skb_queue_len(&sd->input_pkt_queue);
3859 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3860 		if (qlen) {
3861 enqueue:
3862 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3863 			input_queue_tail_incr_save(sd, qtail);
3864 			rps_unlock(sd);
3865 			local_irq_restore(flags);
3866 			return NET_RX_SUCCESS;
3867 		}
3868 
3869 		/* Schedule NAPI for backlog device
3870 		 * We can use non atomic operation since we own the queue lock
3871 		 */
3872 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3873 			if (!rps_ipi_queued(sd))
3874 				____napi_schedule(sd, &sd->backlog);
3875 		}
3876 		goto enqueue;
3877 	}
3878 
3879 drop:
3880 	sd->dropped++;
3881 	rps_unlock(sd);
3882 
3883 	local_irq_restore(flags);
3884 
3885 	atomic_long_inc(&skb->dev->rx_dropped);
3886 	kfree_skb(skb);
3887 	return NET_RX_DROP;
3888 }
3889 
3890 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3891 				     struct bpf_prog *xdp_prog)
3892 {
3893 	u32 metalen, act = XDP_DROP;
3894 	struct xdp_buff xdp;
3895 	void *orig_data;
3896 	int hlen, off;
3897 	u32 mac_len;
3898 
3899 	/* Reinjected packets coming from act_mirred or similar should
3900 	 * not get XDP generic processing.
3901 	 */
3902 	if (skb_cloned(skb))
3903 		return XDP_PASS;
3904 
3905 	/* XDP packets must be linear and must have sufficient headroom
3906 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
3907 	 * native XDP provides, thus we need to do it here as well.
3908 	 */
3909 	if (skb_is_nonlinear(skb) ||
3910 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
3911 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
3912 		int troom = skb->tail + skb->data_len - skb->end;
3913 
3914 		/* In case we have to go down the path and also linearize,
3915 		 * then lets do the pskb_expand_head() work just once here.
3916 		 */
3917 		if (pskb_expand_head(skb,
3918 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
3919 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
3920 			goto do_drop;
3921 		if (troom > 0 && __skb_linearize(skb))
3922 			goto do_drop;
3923 	}
3924 
3925 	/* The XDP program wants to see the packet starting at the MAC
3926 	 * header.
3927 	 */
3928 	mac_len = skb->data - skb_mac_header(skb);
3929 	hlen = skb_headlen(skb) + mac_len;
3930 	xdp.data = skb->data - mac_len;
3931 	xdp.data_meta = xdp.data;
3932 	xdp.data_end = xdp.data + hlen;
3933 	xdp.data_hard_start = skb->data - skb_headroom(skb);
3934 	orig_data = xdp.data;
3935 
3936 	act = bpf_prog_run_xdp(xdp_prog, &xdp);
3937 
3938 	off = xdp.data - orig_data;
3939 	if (off > 0)
3940 		__skb_pull(skb, off);
3941 	else if (off < 0)
3942 		__skb_push(skb, -off);
3943 	skb->mac_header += off;
3944 
3945 	switch (act) {
3946 	case XDP_REDIRECT:
3947 	case XDP_TX:
3948 		__skb_push(skb, mac_len);
3949 		break;
3950 	case XDP_PASS:
3951 		metalen = xdp.data - xdp.data_meta;
3952 		if (metalen)
3953 			skb_metadata_set(skb, metalen);
3954 		break;
3955 	default:
3956 		bpf_warn_invalid_xdp_action(act);
3957 		/* fall through */
3958 	case XDP_ABORTED:
3959 		trace_xdp_exception(skb->dev, xdp_prog, act);
3960 		/* fall through */
3961 	case XDP_DROP:
3962 	do_drop:
3963 		kfree_skb(skb);
3964 		break;
3965 	}
3966 
3967 	return act;
3968 }
3969 
3970 /* When doing generic XDP we have to bypass the qdisc layer and the
3971  * network taps in order to match in-driver-XDP behavior.
3972  */
3973 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
3974 {
3975 	struct net_device *dev = skb->dev;
3976 	struct netdev_queue *txq;
3977 	bool free_skb = true;
3978 	int cpu, rc;
3979 
3980 	txq = netdev_pick_tx(dev, skb, NULL);
3981 	cpu = smp_processor_id();
3982 	HARD_TX_LOCK(dev, txq, cpu);
3983 	if (!netif_xmit_stopped(txq)) {
3984 		rc = netdev_start_xmit(skb, dev, txq, 0);
3985 		if (dev_xmit_complete(rc))
3986 			free_skb = false;
3987 	}
3988 	HARD_TX_UNLOCK(dev, txq);
3989 	if (free_skb) {
3990 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
3991 		kfree_skb(skb);
3992 	}
3993 }
3994 EXPORT_SYMBOL_GPL(generic_xdp_tx);
3995 
3996 static struct static_key generic_xdp_needed __read_mostly;
3997 
3998 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
3999 {
4000 	if (xdp_prog) {
4001 		u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4002 		int err;
4003 
4004 		if (act != XDP_PASS) {
4005 			switch (act) {
4006 			case XDP_REDIRECT:
4007 				err = xdp_do_generic_redirect(skb->dev, skb,
4008 							      xdp_prog);
4009 				if (err)
4010 					goto out_redir;
4011 			/* fallthru to submit skb */
4012 			case XDP_TX:
4013 				generic_xdp_tx(skb, xdp_prog);
4014 				break;
4015 			}
4016 			return XDP_DROP;
4017 		}
4018 	}
4019 	return XDP_PASS;
4020 out_redir:
4021 	kfree_skb(skb);
4022 	return XDP_DROP;
4023 }
4024 EXPORT_SYMBOL_GPL(do_xdp_generic);
4025 
4026 static int netif_rx_internal(struct sk_buff *skb)
4027 {
4028 	int ret;
4029 
4030 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4031 
4032 	trace_netif_rx(skb);
4033 
4034 	if (static_key_false(&generic_xdp_needed)) {
4035 		int ret;
4036 
4037 		preempt_disable();
4038 		rcu_read_lock();
4039 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4040 		rcu_read_unlock();
4041 		preempt_enable();
4042 
4043 		/* Consider XDP consuming the packet a success from
4044 		 * the netdev point of view we do not want to count
4045 		 * this as an error.
4046 		 */
4047 		if (ret != XDP_PASS)
4048 			return NET_RX_SUCCESS;
4049 	}
4050 
4051 #ifdef CONFIG_RPS
4052 	if (static_key_false(&rps_needed)) {
4053 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4054 		int cpu;
4055 
4056 		preempt_disable();
4057 		rcu_read_lock();
4058 
4059 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4060 		if (cpu < 0)
4061 			cpu = smp_processor_id();
4062 
4063 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4064 
4065 		rcu_read_unlock();
4066 		preempt_enable();
4067 	} else
4068 #endif
4069 	{
4070 		unsigned int qtail;
4071 
4072 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4073 		put_cpu();
4074 	}
4075 	return ret;
4076 }
4077 
4078 /**
4079  *	netif_rx	-	post buffer to the network code
4080  *	@skb: buffer to post
4081  *
4082  *	This function receives a packet from a device driver and queues it for
4083  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4084  *	may be dropped during processing for congestion control or by the
4085  *	protocol layers.
4086  *
4087  *	return values:
4088  *	NET_RX_SUCCESS	(no congestion)
4089  *	NET_RX_DROP     (packet was dropped)
4090  *
4091  */
4092 
4093 int netif_rx(struct sk_buff *skb)
4094 {
4095 	trace_netif_rx_entry(skb);
4096 
4097 	return netif_rx_internal(skb);
4098 }
4099 EXPORT_SYMBOL(netif_rx);
4100 
4101 int netif_rx_ni(struct sk_buff *skb)
4102 {
4103 	int err;
4104 
4105 	trace_netif_rx_ni_entry(skb);
4106 
4107 	preempt_disable();
4108 	err = netif_rx_internal(skb);
4109 	if (local_softirq_pending())
4110 		do_softirq();
4111 	preempt_enable();
4112 
4113 	return err;
4114 }
4115 EXPORT_SYMBOL(netif_rx_ni);
4116 
4117 static __latent_entropy void net_tx_action(struct softirq_action *h)
4118 {
4119 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4120 
4121 	if (sd->completion_queue) {
4122 		struct sk_buff *clist;
4123 
4124 		local_irq_disable();
4125 		clist = sd->completion_queue;
4126 		sd->completion_queue = NULL;
4127 		local_irq_enable();
4128 
4129 		while (clist) {
4130 			struct sk_buff *skb = clist;
4131 
4132 			clist = clist->next;
4133 
4134 			WARN_ON(refcount_read(&skb->users));
4135 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4136 				trace_consume_skb(skb);
4137 			else
4138 				trace_kfree_skb(skb, net_tx_action);
4139 
4140 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4141 				__kfree_skb(skb);
4142 			else
4143 				__kfree_skb_defer(skb);
4144 		}
4145 
4146 		__kfree_skb_flush();
4147 	}
4148 
4149 	if (sd->output_queue) {
4150 		struct Qdisc *head;
4151 
4152 		local_irq_disable();
4153 		head = sd->output_queue;
4154 		sd->output_queue = NULL;
4155 		sd->output_queue_tailp = &sd->output_queue;
4156 		local_irq_enable();
4157 
4158 		while (head) {
4159 			struct Qdisc *q = head;
4160 			spinlock_t *root_lock;
4161 
4162 			head = head->next_sched;
4163 
4164 			root_lock = qdisc_lock(q);
4165 			spin_lock(root_lock);
4166 			/* We need to make sure head->next_sched is read
4167 			 * before clearing __QDISC_STATE_SCHED
4168 			 */
4169 			smp_mb__before_atomic();
4170 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4171 			qdisc_run(q);
4172 			spin_unlock(root_lock);
4173 		}
4174 	}
4175 }
4176 
4177 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4178 /* This hook is defined here for ATM LANE */
4179 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4180 			     unsigned char *addr) __read_mostly;
4181 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4182 #endif
4183 
4184 static inline struct sk_buff *
4185 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4186 		   struct net_device *orig_dev)
4187 {
4188 #ifdef CONFIG_NET_CLS_ACT
4189 	struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
4190 	struct tcf_result cl_res;
4191 
4192 	/* If there's at least one ingress present somewhere (so
4193 	 * we get here via enabled static key), remaining devices
4194 	 * that are not configured with an ingress qdisc will bail
4195 	 * out here.
4196 	 */
4197 	if (!cl)
4198 		return skb;
4199 	if (*pt_prev) {
4200 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4201 		*pt_prev = NULL;
4202 	}
4203 
4204 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4205 	skb->tc_at_ingress = 1;
4206 	qdisc_bstats_cpu_update(cl->q, skb);
4207 
4208 	switch (tcf_classify(skb, cl, &cl_res, false)) {
4209 	case TC_ACT_OK:
4210 	case TC_ACT_RECLASSIFY:
4211 		skb->tc_index = TC_H_MIN(cl_res.classid);
4212 		break;
4213 	case TC_ACT_SHOT:
4214 		qdisc_qstats_cpu_drop(cl->q);
4215 		kfree_skb(skb);
4216 		return NULL;
4217 	case TC_ACT_STOLEN:
4218 	case TC_ACT_QUEUED:
4219 	case TC_ACT_TRAP:
4220 		consume_skb(skb);
4221 		return NULL;
4222 	case TC_ACT_REDIRECT:
4223 		/* skb_mac_header check was done by cls/act_bpf, so
4224 		 * we can safely push the L2 header back before
4225 		 * redirecting to another netdev
4226 		 */
4227 		__skb_push(skb, skb->mac_len);
4228 		skb_do_redirect(skb);
4229 		return NULL;
4230 	default:
4231 		break;
4232 	}
4233 #endif /* CONFIG_NET_CLS_ACT */
4234 	return skb;
4235 }
4236 
4237 /**
4238  *	netdev_is_rx_handler_busy - check if receive handler is registered
4239  *	@dev: device to check
4240  *
4241  *	Check if a receive handler is already registered for a given device.
4242  *	Return true if there one.
4243  *
4244  *	The caller must hold the rtnl_mutex.
4245  */
4246 bool netdev_is_rx_handler_busy(struct net_device *dev)
4247 {
4248 	ASSERT_RTNL();
4249 	return dev && rtnl_dereference(dev->rx_handler);
4250 }
4251 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4252 
4253 /**
4254  *	netdev_rx_handler_register - register receive handler
4255  *	@dev: device to register a handler for
4256  *	@rx_handler: receive handler to register
4257  *	@rx_handler_data: data pointer that is used by rx handler
4258  *
4259  *	Register a receive handler for a device. This handler will then be
4260  *	called from __netif_receive_skb. A negative errno code is returned
4261  *	on a failure.
4262  *
4263  *	The caller must hold the rtnl_mutex.
4264  *
4265  *	For a general description of rx_handler, see enum rx_handler_result.
4266  */
4267 int netdev_rx_handler_register(struct net_device *dev,
4268 			       rx_handler_func_t *rx_handler,
4269 			       void *rx_handler_data)
4270 {
4271 	if (netdev_is_rx_handler_busy(dev))
4272 		return -EBUSY;
4273 
4274 	/* Note: rx_handler_data must be set before rx_handler */
4275 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4276 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4277 
4278 	return 0;
4279 }
4280 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4281 
4282 /**
4283  *	netdev_rx_handler_unregister - unregister receive handler
4284  *	@dev: device to unregister a handler from
4285  *
4286  *	Unregister a receive handler from a device.
4287  *
4288  *	The caller must hold the rtnl_mutex.
4289  */
4290 void netdev_rx_handler_unregister(struct net_device *dev)
4291 {
4292 
4293 	ASSERT_RTNL();
4294 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4295 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4296 	 * section has a guarantee to see a non NULL rx_handler_data
4297 	 * as well.
4298 	 */
4299 	synchronize_net();
4300 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4301 }
4302 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4303 
4304 /*
4305  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4306  * the special handling of PFMEMALLOC skbs.
4307  */
4308 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4309 {
4310 	switch (skb->protocol) {
4311 	case htons(ETH_P_ARP):
4312 	case htons(ETH_P_IP):
4313 	case htons(ETH_P_IPV6):
4314 	case htons(ETH_P_8021Q):
4315 	case htons(ETH_P_8021AD):
4316 		return true;
4317 	default:
4318 		return false;
4319 	}
4320 }
4321 
4322 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4323 			     int *ret, struct net_device *orig_dev)
4324 {
4325 #ifdef CONFIG_NETFILTER_INGRESS
4326 	if (nf_hook_ingress_active(skb)) {
4327 		int ingress_retval;
4328 
4329 		if (*pt_prev) {
4330 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4331 			*pt_prev = NULL;
4332 		}
4333 
4334 		rcu_read_lock();
4335 		ingress_retval = nf_hook_ingress(skb);
4336 		rcu_read_unlock();
4337 		return ingress_retval;
4338 	}
4339 #endif /* CONFIG_NETFILTER_INGRESS */
4340 	return 0;
4341 }
4342 
4343 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4344 {
4345 	struct packet_type *ptype, *pt_prev;
4346 	rx_handler_func_t *rx_handler;
4347 	struct net_device *orig_dev;
4348 	bool deliver_exact = false;
4349 	int ret = NET_RX_DROP;
4350 	__be16 type;
4351 
4352 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4353 
4354 	trace_netif_receive_skb(skb);
4355 
4356 	orig_dev = skb->dev;
4357 
4358 	skb_reset_network_header(skb);
4359 	if (!skb_transport_header_was_set(skb))
4360 		skb_reset_transport_header(skb);
4361 	skb_reset_mac_len(skb);
4362 
4363 	pt_prev = NULL;
4364 
4365 another_round:
4366 	skb->skb_iif = skb->dev->ifindex;
4367 
4368 	__this_cpu_inc(softnet_data.processed);
4369 
4370 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4371 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4372 		skb = skb_vlan_untag(skb);
4373 		if (unlikely(!skb))
4374 			goto out;
4375 	}
4376 
4377 	if (skb_skip_tc_classify(skb))
4378 		goto skip_classify;
4379 
4380 	if (pfmemalloc)
4381 		goto skip_taps;
4382 
4383 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4384 		if (pt_prev)
4385 			ret = deliver_skb(skb, pt_prev, orig_dev);
4386 		pt_prev = ptype;
4387 	}
4388 
4389 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4390 		if (pt_prev)
4391 			ret = deliver_skb(skb, pt_prev, orig_dev);
4392 		pt_prev = ptype;
4393 	}
4394 
4395 skip_taps:
4396 #ifdef CONFIG_NET_INGRESS
4397 	if (static_key_false(&ingress_needed)) {
4398 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4399 		if (!skb)
4400 			goto out;
4401 
4402 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4403 			goto out;
4404 	}
4405 #endif
4406 	skb_reset_tc(skb);
4407 skip_classify:
4408 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4409 		goto drop;
4410 
4411 	if (skb_vlan_tag_present(skb)) {
4412 		if (pt_prev) {
4413 			ret = deliver_skb(skb, pt_prev, orig_dev);
4414 			pt_prev = NULL;
4415 		}
4416 		if (vlan_do_receive(&skb))
4417 			goto another_round;
4418 		else if (unlikely(!skb))
4419 			goto out;
4420 	}
4421 
4422 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4423 	if (rx_handler) {
4424 		if (pt_prev) {
4425 			ret = deliver_skb(skb, pt_prev, orig_dev);
4426 			pt_prev = NULL;
4427 		}
4428 		switch (rx_handler(&skb)) {
4429 		case RX_HANDLER_CONSUMED:
4430 			ret = NET_RX_SUCCESS;
4431 			goto out;
4432 		case RX_HANDLER_ANOTHER:
4433 			goto another_round;
4434 		case RX_HANDLER_EXACT:
4435 			deliver_exact = true;
4436 		case RX_HANDLER_PASS:
4437 			break;
4438 		default:
4439 			BUG();
4440 		}
4441 	}
4442 
4443 	if (unlikely(skb_vlan_tag_present(skb))) {
4444 		if (skb_vlan_tag_get_id(skb))
4445 			skb->pkt_type = PACKET_OTHERHOST;
4446 		/* Note: we might in the future use prio bits
4447 		 * and set skb->priority like in vlan_do_receive()
4448 		 * For the time being, just ignore Priority Code Point
4449 		 */
4450 		skb->vlan_tci = 0;
4451 	}
4452 
4453 	type = skb->protocol;
4454 
4455 	/* deliver only exact match when indicated */
4456 	if (likely(!deliver_exact)) {
4457 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4458 				       &ptype_base[ntohs(type) &
4459 						   PTYPE_HASH_MASK]);
4460 	}
4461 
4462 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4463 			       &orig_dev->ptype_specific);
4464 
4465 	if (unlikely(skb->dev != orig_dev)) {
4466 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4467 				       &skb->dev->ptype_specific);
4468 	}
4469 
4470 	if (pt_prev) {
4471 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4472 			goto drop;
4473 		else
4474 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4475 	} else {
4476 drop:
4477 		if (!deliver_exact)
4478 			atomic_long_inc(&skb->dev->rx_dropped);
4479 		else
4480 			atomic_long_inc(&skb->dev->rx_nohandler);
4481 		kfree_skb(skb);
4482 		/* Jamal, now you will not able to escape explaining
4483 		 * me how you were going to use this. :-)
4484 		 */
4485 		ret = NET_RX_DROP;
4486 	}
4487 
4488 out:
4489 	return ret;
4490 }
4491 
4492 static int __netif_receive_skb(struct sk_buff *skb)
4493 {
4494 	int ret;
4495 
4496 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4497 		unsigned int noreclaim_flag;
4498 
4499 		/*
4500 		 * PFMEMALLOC skbs are special, they should
4501 		 * - be delivered to SOCK_MEMALLOC sockets only
4502 		 * - stay away from userspace
4503 		 * - have bounded memory usage
4504 		 *
4505 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4506 		 * context down to all allocation sites.
4507 		 */
4508 		noreclaim_flag = memalloc_noreclaim_save();
4509 		ret = __netif_receive_skb_core(skb, true);
4510 		memalloc_noreclaim_restore(noreclaim_flag);
4511 	} else
4512 		ret = __netif_receive_skb_core(skb, false);
4513 
4514 	return ret;
4515 }
4516 
4517 static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp)
4518 {
4519 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4520 	struct bpf_prog *new = xdp->prog;
4521 	int ret = 0;
4522 
4523 	switch (xdp->command) {
4524 	case XDP_SETUP_PROG:
4525 		rcu_assign_pointer(dev->xdp_prog, new);
4526 		if (old)
4527 			bpf_prog_put(old);
4528 
4529 		if (old && !new) {
4530 			static_key_slow_dec(&generic_xdp_needed);
4531 		} else if (new && !old) {
4532 			static_key_slow_inc(&generic_xdp_needed);
4533 			dev_disable_lro(dev);
4534 		}
4535 		break;
4536 
4537 	case XDP_QUERY_PROG:
4538 		xdp->prog_attached = !!old;
4539 		xdp->prog_id = old ? old->aux->id : 0;
4540 		break;
4541 
4542 	default:
4543 		ret = -EINVAL;
4544 		break;
4545 	}
4546 
4547 	return ret;
4548 }
4549 
4550 static int netif_receive_skb_internal(struct sk_buff *skb)
4551 {
4552 	int ret;
4553 
4554 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4555 
4556 	if (skb_defer_rx_timestamp(skb))
4557 		return NET_RX_SUCCESS;
4558 
4559 	if (static_key_false(&generic_xdp_needed)) {
4560 		int ret;
4561 
4562 		preempt_disable();
4563 		rcu_read_lock();
4564 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4565 		rcu_read_unlock();
4566 		preempt_enable();
4567 
4568 		if (ret != XDP_PASS)
4569 			return NET_RX_DROP;
4570 	}
4571 
4572 	rcu_read_lock();
4573 #ifdef CONFIG_RPS
4574 	if (static_key_false(&rps_needed)) {
4575 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4576 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4577 
4578 		if (cpu >= 0) {
4579 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4580 			rcu_read_unlock();
4581 			return ret;
4582 		}
4583 	}
4584 #endif
4585 	ret = __netif_receive_skb(skb);
4586 	rcu_read_unlock();
4587 	return ret;
4588 }
4589 
4590 /**
4591  *	netif_receive_skb - process receive buffer from network
4592  *	@skb: buffer to process
4593  *
4594  *	netif_receive_skb() is the main receive data processing function.
4595  *	It always succeeds. The buffer may be dropped during processing
4596  *	for congestion control or by the protocol layers.
4597  *
4598  *	This function may only be called from softirq context and interrupts
4599  *	should be enabled.
4600  *
4601  *	Return values (usually ignored):
4602  *	NET_RX_SUCCESS: no congestion
4603  *	NET_RX_DROP: packet was dropped
4604  */
4605 int netif_receive_skb(struct sk_buff *skb)
4606 {
4607 	trace_netif_receive_skb_entry(skb);
4608 
4609 	return netif_receive_skb_internal(skb);
4610 }
4611 EXPORT_SYMBOL(netif_receive_skb);
4612 
4613 DEFINE_PER_CPU(struct work_struct, flush_works);
4614 
4615 /* Network device is going away, flush any packets still pending */
4616 static void flush_backlog(struct work_struct *work)
4617 {
4618 	struct sk_buff *skb, *tmp;
4619 	struct softnet_data *sd;
4620 
4621 	local_bh_disable();
4622 	sd = this_cpu_ptr(&softnet_data);
4623 
4624 	local_irq_disable();
4625 	rps_lock(sd);
4626 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4627 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4628 			__skb_unlink(skb, &sd->input_pkt_queue);
4629 			kfree_skb(skb);
4630 			input_queue_head_incr(sd);
4631 		}
4632 	}
4633 	rps_unlock(sd);
4634 	local_irq_enable();
4635 
4636 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4637 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4638 			__skb_unlink(skb, &sd->process_queue);
4639 			kfree_skb(skb);
4640 			input_queue_head_incr(sd);
4641 		}
4642 	}
4643 	local_bh_enable();
4644 }
4645 
4646 static void flush_all_backlogs(void)
4647 {
4648 	unsigned int cpu;
4649 
4650 	get_online_cpus();
4651 
4652 	for_each_online_cpu(cpu)
4653 		queue_work_on(cpu, system_highpri_wq,
4654 			      per_cpu_ptr(&flush_works, cpu));
4655 
4656 	for_each_online_cpu(cpu)
4657 		flush_work(per_cpu_ptr(&flush_works, cpu));
4658 
4659 	put_online_cpus();
4660 }
4661 
4662 static int napi_gro_complete(struct sk_buff *skb)
4663 {
4664 	struct packet_offload *ptype;
4665 	__be16 type = skb->protocol;
4666 	struct list_head *head = &offload_base;
4667 	int err = -ENOENT;
4668 
4669 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4670 
4671 	if (NAPI_GRO_CB(skb)->count == 1) {
4672 		skb_shinfo(skb)->gso_size = 0;
4673 		goto out;
4674 	}
4675 
4676 	rcu_read_lock();
4677 	list_for_each_entry_rcu(ptype, head, list) {
4678 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4679 			continue;
4680 
4681 		err = ptype->callbacks.gro_complete(skb, 0);
4682 		break;
4683 	}
4684 	rcu_read_unlock();
4685 
4686 	if (err) {
4687 		WARN_ON(&ptype->list == head);
4688 		kfree_skb(skb);
4689 		return NET_RX_SUCCESS;
4690 	}
4691 
4692 out:
4693 	return netif_receive_skb_internal(skb);
4694 }
4695 
4696 /* napi->gro_list contains packets ordered by age.
4697  * youngest packets at the head of it.
4698  * Complete skbs in reverse order to reduce latencies.
4699  */
4700 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4701 {
4702 	struct sk_buff *skb, *prev = NULL;
4703 
4704 	/* scan list and build reverse chain */
4705 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4706 		skb->prev = prev;
4707 		prev = skb;
4708 	}
4709 
4710 	for (skb = prev; skb; skb = prev) {
4711 		skb->next = NULL;
4712 
4713 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4714 			return;
4715 
4716 		prev = skb->prev;
4717 		napi_gro_complete(skb);
4718 		napi->gro_count--;
4719 	}
4720 
4721 	napi->gro_list = NULL;
4722 }
4723 EXPORT_SYMBOL(napi_gro_flush);
4724 
4725 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4726 {
4727 	struct sk_buff *p;
4728 	unsigned int maclen = skb->dev->hard_header_len;
4729 	u32 hash = skb_get_hash_raw(skb);
4730 
4731 	for (p = napi->gro_list; p; p = p->next) {
4732 		unsigned long diffs;
4733 
4734 		NAPI_GRO_CB(p)->flush = 0;
4735 
4736 		if (hash != skb_get_hash_raw(p)) {
4737 			NAPI_GRO_CB(p)->same_flow = 0;
4738 			continue;
4739 		}
4740 
4741 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4742 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4743 		diffs |= skb_metadata_dst_cmp(p, skb);
4744 		diffs |= skb_metadata_differs(p, skb);
4745 		if (maclen == ETH_HLEN)
4746 			diffs |= compare_ether_header(skb_mac_header(p),
4747 						      skb_mac_header(skb));
4748 		else if (!diffs)
4749 			diffs = memcmp(skb_mac_header(p),
4750 				       skb_mac_header(skb),
4751 				       maclen);
4752 		NAPI_GRO_CB(p)->same_flow = !diffs;
4753 	}
4754 }
4755 
4756 static void skb_gro_reset_offset(struct sk_buff *skb)
4757 {
4758 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4759 	const skb_frag_t *frag0 = &pinfo->frags[0];
4760 
4761 	NAPI_GRO_CB(skb)->data_offset = 0;
4762 	NAPI_GRO_CB(skb)->frag0 = NULL;
4763 	NAPI_GRO_CB(skb)->frag0_len = 0;
4764 
4765 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4766 	    pinfo->nr_frags &&
4767 	    !PageHighMem(skb_frag_page(frag0))) {
4768 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4769 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4770 						    skb_frag_size(frag0),
4771 						    skb->end - skb->tail);
4772 	}
4773 }
4774 
4775 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4776 {
4777 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4778 
4779 	BUG_ON(skb->end - skb->tail < grow);
4780 
4781 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4782 
4783 	skb->data_len -= grow;
4784 	skb->tail += grow;
4785 
4786 	pinfo->frags[0].page_offset += grow;
4787 	skb_frag_size_sub(&pinfo->frags[0], grow);
4788 
4789 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4790 		skb_frag_unref(skb, 0);
4791 		memmove(pinfo->frags, pinfo->frags + 1,
4792 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4793 	}
4794 }
4795 
4796 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4797 {
4798 	struct sk_buff **pp = NULL;
4799 	struct packet_offload *ptype;
4800 	__be16 type = skb->protocol;
4801 	struct list_head *head = &offload_base;
4802 	int same_flow;
4803 	enum gro_result ret;
4804 	int grow;
4805 
4806 	if (netif_elide_gro(skb->dev))
4807 		goto normal;
4808 
4809 	gro_list_prepare(napi, skb);
4810 
4811 	rcu_read_lock();
4812 	list_for_each_entry_rcu(ptype, head, list) {
4813 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4814 			continue;
4815 
4816 		skb_set_network_header(skb, skb_gro_offset(skb));
4817 		skb_reset_mac_len(skb);
4818 		NAPI_GRO_CB(skb)->same_flow = 0;
4819 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4820 		NAPI_GRO_CB(skb)->free = 0;
4821 		NAPI_GRO_CB(skb)->encap_mark = 0;
4822 		NAPI_GRO_CB(skb)->recursion_counter = 0;
4823 		NAPI_GRO_CB(skb)->is_fou = 0;
4824 		NAPI_GRO_CB(skb)->is_atomic = 1;
4825 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4826 
4827 		/* Setup for GRO checksum validation */
4828 		switch (skb->ip_summed) {
4829 		case CHECKSUM_COMPLETE:
4830 			NAPI_GRO_CB(skb)->csum = skb->csum;
4831 			NAPI_GRO_CB(skb)->csum_valid = 1;
4832 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4833 			break;
4834 		case CHECKSUM_UNNECESSARY:
4835 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4836 			NAPI_GRO_CB(skb)->csum_valid = 0;
4837 			break;
4838 		default:
4839 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4840 			NAPI_GRO_CB(skb)->csum_valid = 0;
4841 		}
4842 
4843 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4844 		break;
4845 	}
4846 	rcu_read_unlock();
4847 
4848 	if (&ptype->list == head)
4849 		goto normal;
4850 
4851 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4852 		ret = GRO_CONSUMED;
4853 		goto ok;
4854 	}
4855 
4856 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4857 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4858 
4859 	if (pp) {
4860 		struct sk_buff *nskb = *pp;
4861 
4862 		*pp = nskb->next;
4863 		nskb->next = NULL;
4864 		napi_gro_complete(nskb);
4865 		napi->gro_count--;
4866 	}
4867 
4868 	if (same_flow)
4869 		goto ok;
4870 
4871 	if (NAPI_GRO_CB(skb)->flush)
4872 		goto normal;
4873 
4874 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4875 		struct sk_buff *nskb = napi->gro_list;
4876 
4877 		/* locate the end of the list to select the 'oldest' flow */
4878 		while (nskb->next) {
4879 			pp = &nskb->next;
4880 			nskb = *pp;
4881 		}
4882 		*pp = NULL;
4883 		nskb->next = NULL;
4884 		napi_gro_complete(nskb);
4885 	} else {
4886 		napi->gro_count++;
4887 	}
4888 	NAPI_GRO_CB(skb)->count = 1;
4889 	NAPI_GRO_CB(skb)->age = jiffies;
4890 	NAPI_GRO_CB(skb)->last = skb;
4891 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4892 	skb->next = napi->gro_list;
4893 	napi->gro_list = skb;
4894 	ret = GRO_HELD;
4895 
4896 pull:
4897 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4898 	if (grow > 0)
4899 		gro_pull_from_frag0(skb, grow);
4900 ok:
4901 	return ret;
4902 
4903 normal:
4904 	ret = GRO_NORMAL;
4905 	goto pull;
4906 }
4907 
4908 struct packet_offload *gro_find_receive_by_type(__be16 type)
4909 {
4910 	struct list_head *offload_head = &offload_base;
4911 	struct packet_offload *ptype;
4912 
4913 	list_for_each_entry_rcu(ptype, offload_head, list) {
4914 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4915 			continue;
4916 		return ptype;
4917 	}
4918 	return NULL;
4919 }
4920 EXPORT_SYMBOL(gro_find_receive_by_type);
4921 
4922 struct packet_offload *gro_find_complete_by_type(__be16 type)
4923 {
4924 	struct list_head *offload_head = &offload_base;
4925 	struct packet_offload *ptype;
4926 
4927 	list_for_each_entry_rcu(ptype, offload_head, list) {
4928 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4929 			continue;
4930 		return ptype;
4931 	}
4932 	return NULL;
4933 }
4934 EXPORT_SYMBOL(gro_find_complete_by_type);
4935 
4936 static void napi_skb_free_stolen_head(struct sk_buff *skb)
4937 {
4938 	skb_dst_drop(skb);
4939 	secpath_reset(skb);
4940 	kmem_cache_free(skbuff_head_cache, skb);
4941 }
4942 
4943 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4944 {
4945 	switch (ret) {
4946 	case GRO_NORMAL:
4947 		if (netif_receive_skb_internal(skb))
4948 			ret = GRO_DROP;
4949 		break;
4950 
4951 	case GRO_DROP:
4952 		kfree_skb(skb);
4953 		break;
4954 
4955 	case GRO_MERGED_FREE:
4956 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4957 			napi_skb_free_stolen_head(skb);
4958 		else
4959 			__kfree_skb(skb);
4960 		break;
4961 
4962 	case GRO_HELD:
4963 	case GRO_MERGED:
4964 	case GRO_CONSUMED:
4965 		break;
4966 	}
4967 
4968 	return ret;
4969 }
4970 
4971 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4972 {
4973 	skb_mark_napi_id(skb, napi);
4974 	trace_napi_gro_receive_entry(skb);
4975 
4976 	skb_gro_reset_offset(skb);
4977 
4978 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4979 }
4980 EXPORT_SYMBOL(napi_gro_receive);
4981 
4982 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4983 {
4984 	if (unlikely(skb->pfmemalloc)) {
4985 		consume_skb(skb);
4986 		return;
4987 	}
4988 	__skb_pull(skb, skb_headlen(skb));
4989 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4990 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4991 	skb->vlan_tci = 0;
4992 	skb->dev = napi->dev;
4993 	skb->skb_iif = 0;
4994 	skb->encapsulation = 0;
4995 	skb_shinfo(skb)->gso_type = 0;
4996 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4997 	secpath_reset(skb);
4998 
4999 	napi->skb = skb;
5000 }
5001 
5002 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5003 {
5004 	struct sk_buff *skb = napi->skb;
5005 
5006 	if (!skb) {
5007 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5008 		if (skb) {
5009 			napi->skb = skb;
5010 			skb_mark_napi_id(skb, napi);
5011 		}
5012 	}
5013 	return skb;
5014 }
5015 EXPORT_SYMBOL(napi_get_frags);
5016 
5017 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5018 				      struct sk_buff *skb,
5019 				      gro_result_t ret)
5020 {
5021 	switch (ret) {
5022 	case GRO_NORMAL:
5023 	case GRO_HELD:
5024 		__skb_push(skb, ETH_HLEN);
5025 		skb->protocol = eth_type_trans(skb, skb->dev);
5026 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5027 			ret = GRO_DROP;
5028 		break;
5029 
5030 	case GRO_DROP:
5031 		napi_reuse_skb(napi, skb);
5032 		break;
5033 
5034 	case GRO_MERGED_FREE:
5035 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5036 			napi_skb_free_stolen_head(skb);
5037 		else
5038 			napi_reuse_skb(napi, skb);
5039 		break;
5040 
5041 	case GRO_MERGED:
5042 	case GRO_CONSUMED:
5043 		break;
5044 	}
5045 
5046 	return ret;
5047 }
5048 
5049 /* Upper GRO stack assumes network header starts at gro_offset=0
5050  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5051  * We copy ethernet header into skb->data to have a common layout.
5052  */
5053 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5054 {
5055 	struct sk_buff *skb = napi->skb;
5056 	const struct ethhdr *eth;
5057 	unsigned int hlen = sizeof(*eth);
5058 
5059 	napi->skb = NULL;
5060 
5061 	skb_reset_mac_header(skb);
5062 	skb_gro_reset_offset(skb);
5063 
5064 	eth = skb_gro_header_fast(skb, 0);
5065 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
5066 		eth = skb_gro_header_slow(skb, hlen, 0);
5067 		if (unlikely(!eth)) {
5068 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5069 					     __func__, napi->dev->name);
5070 			napi_reuse_skb(napi, skb);
5071 			return NULL;
5072 		}
5073 	} else {
5074 		gro_pull_from_frag0(skb, hlen);
5075 		NAPI_GRO_CB(skb)->frag0 += hlen;
5076 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
5077 	}
5078 	__skb_pull(skb, hlen);
5079 
5080 	/*
5081 	 * This works because the only protocols we care about don't require
5082 	 * special handling.
5083 	 * We'll fix it up properly in napi_frags_finish()
5084 	 */
5085 	skb->protocol = eth->h_proto;
5086 
5087 	return skb;
5088 }
5089 
5090 gro_result_t napi_gro_frags(struct napi_struct *napi)
5091 {
5092 	struct sk_buff *skb = napi_frags_skb(napi);
5093 
5094 	if (!skb)
5095 		return GRO_DROP;
5096 
5097 	trace_napi_gro_frags_entry(skb);
5098 
5099 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5100 }
5101 EXPORT_SYMBOL(napi_gro_frags);
5102 
5103 /* Compute the checksum from gro_offset and return the folded value
5104  * after adding in any pseudo checksum.
5105  */
5106 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5107 {
5108 	__wsum wsum;
5109 	__sum16 sum;
5110 
5111 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5112 
5113 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5114 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5115 	if (likely(!sum)) {
5116 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5117 		    !skb->csum_complete_sw)
5118 			netdev_rx_csum_fault(skb->dev);
5119 	}
5120 
5121 	NAPI_GRO_CB(skb)->csum = wsum;
5122 	NAPI_GRO_CB(skb)->csum_valid = 1;
5123 
5124 	return sum;
5125 }
5126 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5127 
5128 static void net_rps_send_ipi(struct softnet_data *remsd)
5129 {
5130 #ifdef CONFIG_RPS
5131 	while (remsd) {
5132 		struct softnet_data *next = remsd->rps_ipi_next;
5133 
5134 		if (cpu_online(remsd->cpu))
5135 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5136 		remsd = next;
5137 	}
5138 #endif
5139 }
5140 
5141 /*
5142  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5143  * Note: called with local irq disabled, but exits with local irq enabled.
5144  */
5145 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5146 {
5147 #ifdef CONFIG_RPS
5148 	struct softnet_data *remsd = sd->rps_ipi_list;
5149 
5150 	if (remsd) {
5151 		sd->rps_ipi_list = NULL;
5152 
5153 		local_irq_enable();
5154 
5155 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5156 		net_rps_send_ipi(remsd);
5157 	} else
5158 #endif
5159 		local_irq_enable();
5160 }
5161 
5162 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5163 {
5164 #ifdef CONFIG_RPS
5165 	return sd->rps_ipi_list != NULL;
5166 #else
5167 	return false;
5168 #endif
5169 }
5170 
5171 static int process_backlog(struct napi_struct *napi, int quota)
5172 {
5173 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5174 	bool again = true;
5175 	int work = 0;
5176 
5177 	/* Check if we have pending ipi, its better to send them now,
5178 	 * not waiting net_rx_action() end.
5179 	 */
5180 	if (sd_has_rps_ipi_waiting(sd)) {
5181 		local_irq_disable();
5182 		net_rps_action_and_irq_enable(sd);
5183 	}
5184 
5185 	napi->weight = dev_rx_weight;
5186 	while (again) {
5187 		struct sk_buff *skb;
5188 
5189 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5190 			rcu_read_lock();
5191 			__netif_receive_skb(skb);
5192 			rcu_read_unlock();
5193 			input_queue_head_incr(sd);
5194 			if (++work >= quota)
5195 				return work;
5196 
5197 		}
5198 
5199 		local_irq_disable();
5200 		rps_lock(sd);
5201 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5202 			/*
5203 			 * Inline a custom version of __napi_complete().
5204 			 * only current cpu owns and manipulates this napi,
5205 			 * and NAPI_STATE_SCHED is the only possible flag set
5206 			 * on backlog.
5207 			 * We can use a plain write instead of clear_bit(),
5208 			 * and we dont need an smp_mb() memory barrier.
5209 			 */
5210 			napi->state = 0;
5211 			again = false;
5212 		} else {
5213 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5214 						   &sd->process_queue);
5215 		}
5216 		rps_unlock(sd);
5217 		local_irq_enable();
5218 	}
5219 
5220 	return work;
5221 }
5222 
5223 /**
5224  * __napi_schedule - schedule for receive
5225  * @n: entry to schedule
5226  *
5227  * The entry's receive function will be scheduled to run.
5228  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5229  */
5230 void __napi_schedule(struct napi_struct *n)
5231 {
5232 	unsigned long flags;
5233 
5234 	local_irq_save(flags);
5235 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5236 	local_irq_restore(flags);
5237 }
5238 EXPORT_SYMBOL(__napi_schedule);
5239 
5240 /**
5241  *	napi_schedule_prep - check if napi can be scheduled
5242  *	@n: napi context
5243  *
5244  * Test if NAPI routine is already running, and if not mark
5245  * it as running.  This is used as a condition variable
5246  * insure only one NAPI poll instance runs.  We also make
5247  * sure there is no pending NAPI disable.
5248  */
5249 bool napi_schedule_prep(struct napi_struct *n)
5250 {
5251 	unsigned long val, new;
5252 
5253 	do {
5254 		val = READ_ONCE(n->state);
5255 		if (unlikely(val & NAPIF_STATE_DISABLE))
5256 			return false;
5257 		new = val | NAPIF_STATE_SCHED;
5258 
5259 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5260 		 * This was suggested by Alexander Duyck, as compiler
5261 		 * emits better code than :
5262 		 * if (val & NAPIF_STATE_SCHED)
5263 		 *     new |= NAPIF_STATE_MISSED;
5264 		 */
5265 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5266 						   NAPIF_STATE_MISSED;
5267 	} while (cmpxchg(&n->state, val, new) != val);
5268 
5269 	return !(val & NAPIF_STATE_SCHED);
5270 }
5271 EXPORT_SYMBOL(napi_schedule_prep);
5272 
5273 /**
5274  * __napi_schedule_irqoff - schedule for receive
5275  * @n: entry to schedule
5276  *
5277  * Variant of __napi_schedule() assuming hard irqs are masked
5278  */
5279 void __napi_schedule_irqoff(struct napi_struct *n)
5280 {
5281 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5282 }
5283 EXPORT_SYMBOL(__napi_schedule_irqoff);
5284 
5285 bool napi_complete_done(struct napi_struct *n, int work_done)
5286 {
5287 	unsigned long flags, val, new;
5288 
5289 	/*
5290 	 * 1) Don't let napi dequeue from the cpu poll list
5291 	 *    just in case its running on a different cpu.
5292 	 * 2) If we are busy polling, do nothing here, we have
5293 	 *    the guarantee we will be called later.
5294 	 */
5295 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5296 				 NAPIF_STATE_IN_BUSY_POLL)))
5297 		return false;
5298 
5299 	if (n->gro_list) {
5300 		unsigned long timeout = 0;
5301 
5302 		if (work_done)
5303 			timeout = n->dev->gro_flush_timeout;
5304 
5305 		if (timeout)
5306 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
5307 				      HRTIMER_MODE_REL_PINNED);
5308 		else
5309 			napi_gro_flush(n, false);
5310 	}
5311 	if (unlikely(!list_empty(&n->poll_list))) {
5312 		/* If n->poll_list is not empty, we need to mask irqs */
5313 		local_irq_save(flags);
5314 		list_del_init(&n->poll_list);
5315 		local_irq_restore(flags);
5316 	}
5317 
5318 	do {
5319 		val = READ_ONCE(n->state);
5320 
5321 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5322 
5323 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5324 
5325 		/* If STATE_MISSED was set, leave STATE_SCHED set,
5326 		 * because we will call napi->poll() one more time.
5327 		 * This C code was suggested by Alexander Duyck to help gcc.
5328 		 */
5329 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5330 						    NAPIF_STATE_SCHED;
5331 	} while (cmpxchg(&n->state, val, new) != val);
5332 
5333 	if (unlikely(val & NAPIF_STATE_MISSED)) {
5334 		__napi_schedule(n);
5335 		return false;
5336 	}
5337 
5338 	return true;
5339 }
5340 EXPORT_SYMBOL(napi_complete_done);
5341 
5342 /* must be called under rcu_read_lock(), as we dont take a reference */
5343 static struct napi_struct *napi_by_id(unsigned int napi_id)
5344 {
5345 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5346 	struct napi_struct *napi;
5347 
5348 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5349 		if (napi->napi_id == napi_id)
5350 			return napi;
5351 
5352 	return NULL;
5353 }
5354 
5355 #if defined(CONFIG_NET_RX_BUSY_POLL)
5356 
5357 #define BUSY_POLL_BUDGET 8
5358 
5359 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5360 {
5361 	int rc;
5362 
5363 	/* Busy polling means there is a high chance device driver hard irq
5364 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5365 	 * set in napi_schedule_prep().
5366 	 * Since we are about to call napi->poll() once more, we can safely
5367 	 * clear NAPI_STATE_MISSED.
5368 	 *
5369 	 * Note: x86 could use a single "lock and ..." instruction
5370 	 * to perform these two clear_bit()
5371 	 */
5372 	clear_bit(NAPI_STATE_MISSED, &napi->state);
5373 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5374 
5375 	local_bh_disable();
5376 
5377 	/* All we really want here is to re-enable device interrupts.
5378 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5379 	 */
5380 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
5381 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5382 	netpoll_poll_unlock(have_poll_lock);
5383 	if (rc == BUSY_POLL_BUDGET)
5384 		__napi_schedule(napi);
5385 	local_bh_enable();
5386 }
5387 
5388 void napi_busy_loop(unsigned int napi_id,
5389 		    bool (*loop_end)(void *, unsigned long),
5390 		    void *loop_end_arg)
5391 {
5392 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5393 	int (*napi_poll)(struct napi_struct *napi, int budget);
5394 	void *have_poll_lock = NULL;
5395 	struct napi_struct *napi;
5396 
5397 restart:
5398 	napi_poll = NULL;
5399 
5400 	rcu_read_lock();
5401 
5402 	napi = napi_by_id(napi_id);
5403 	if (!napi)
5404 		goto out;
5405 
5406 	preempt_disable();
5407 	for (;;) {
5408 		int work = 0;
5409 
5410 		local_bh_disable();
5411 		if (!napi_poll) {
5412 			unsigned long val = READ_ONCE(napi->state);
5413 
5414 			/* If multiple threads are competing for this napi,
5415 			 * we avoid dirtying napi->state as much as we can.
5416 			 */
5417 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5418 				   NAPIF_STATE_IN_BUSY_POLL))
5419 				goto count;
5420 			if (cmpxchg(&napi->state, val,
5421 				    val | NAPIF_STATE_IN_BUSY_POLL |
5422 					  NAPIF_STATE_SCHED) != val)
5423 				goto count;
5424 			have_poll_lock = netpoll_poll_lock(napi);
5425 			napi_poll = napi->poll;
5426 		}
5427 		work = napi_poll(napi, BUSY_POLL_BUDGET);
5428 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5429 count:
5430 		if (work > 0)
5431 			__NET_ADD_STATS(dev_net(napi->dev),
5432 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
5433 		local_bh_enable();
5434 
5435 		if (!loop_end || loop_end(loop_end_arg, start_time))
5436 			break;
5437 
5438 		if (unlikely(need_resched())) {
5439 			if (napi_poll)
5440 				busy_poll_stop(napi, have_poll_lock);
5441 			preempt_enable();
5442 			rcu_read_unlock();
5443 			cond_resched();
5444 			if (loop_end(loop_end_arg, start_time))
5445 				return;
5446 			goto restart;
5447 		}
5448 		cpu_relax();
5449 	}
5450 	if (napi_poll)
5451 		busy_poll_stop(napi, have_poll_lock);
5452 	preempt_enable();
5453 out:
5454 	rcu_read_unlock();
5455 }
5456 EXPORT_SYMBOL(napi_busy_loop);
5457 
5458 #endif /* CONFIG_NET_RX_BUSY_POLL */
5459 
5460 static void napi_hash_add(struct napi_struct *napi)
5461 {
5462 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5463 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5464 		return;
5465 
5466 	spin_lock(&napi_hash_lock);
5467 
5468 	/* 0..NR_CPUS range is reserved for sender_cpu use */
5469 	do {
5470 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5471 			napi_gen_id = MIN_NAPI_ID;
5472 	} while (napi_by_id(napi_gen_id));
5473 	napi->napi_id = napi_gen_id;
5474 
5475 	hlist_add_head_rcu(&napi->napi_hash_node,
5476 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5477 
5478 	spin_unlock(&napi_hash_lock);
5479 }
5480 
5481 /* Warning : caller is responsible to make sure rcu grace period
5482  * is respected before freeing memory containing @napi
5483  */
5484 bool napi_hash_del(struct napi_struct *napi)
5485 {
5486 	bool rcu_sync_needed = false;
5487 
5488 	spin_lock(&napi_hash_lock);
5489 
5490 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5491 		rcu_sync_needed = true;
5492 		hlist_del_rcu(&napi->napi_hash_node);
5493 	}
5494 	spin_unlock(&napi_hash_lock);
5495 	return rcu_sync_needed;
5496 }
5497 EXPORT_SYMBOL_GPL(napi_hash_del);
5498 
5499 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5500 {
5501 	struct napi_struct *napi;
5502 
5503 	napi = container_of(timer, struct napi_struct, timer);
5504 
5505 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
5506 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5507 	 */
5508 	if (napi->gro_list && !napi_disable_pending(napi) &&
5509 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5510 		__napi_schedule_irqoff(napi);
5511 
5512 	return HRTIMER_NORESTART;
5513 }
5514 
5515 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5516 		    int (*poll)(struct napi_struct *, int), int weight)
5517 {
5518 	INIT_LIST_HEAD(&napi->poll_list);
5519 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5520 	napi->timer.function = napi_watchdog;
5521 	napi->gro_count = 0;
5522 	napi->gro_list = NULL;
5523 	napi->skb = NULL;
5524 	napi->poll = poll;
5525 	if (weight > NAPI_POLL_WEIGHT)
5526 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5527 			    weight, dev->name);
5528 	napi->weight = weight;
5529 	list_add(&napi->dev_list, &dev->napi_list);
5530 	napi->dev = dev;
5531 #ifdef CONFIG_NETPOLL
5532 	napi->poll_owner = -1;
5533 #endif
5534 	set_bit(NAPI_STATE_SCHED, &napi->state);
5535 	napi_hash_add(napi);
5536 }
5537 EXPORT_SYMBOL(netif_napi_add);
5538 
5539 void napi_disable(struct napi_struct *n)
5540 {
5541 	might_sleep();
5542 	set_bit(NAPI_STATE_DISABLE, &n->state);
5543 
5544 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5545 		msleep(1);
5546 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5547 		msleep(1);
5548 
5549 	hrtimer_cancel(&n->timer);
5550 
5551 	clear_bit(NAPI_STATE_DISABLE, &n->state);
5552 }
5553 EXPORT_SYMBOL(napi_disable);
5554 
5555 /* Must be called in process context */
5556 void netif_napi_del(struct napi_struct *napi)
5557 {
5558 	might_sleep();
5559 	if (napi_hash_del(napi))
5560 		synchronize_net();
5561 	list_del_init(&napi->dev_list);
5562 	napi_free_frags(napi);
5563 
5564 	kfree_skb_list(napi->gro_list);
5565 	napi->gro_list = NULL;
5566 	napi->gro_count = 0;
5567 }
5568 EXPORT_SYMBOL(netif_napi_del);
5569 
5570 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5571 {
5572 	void *have;
5573 	int work, weight;
5574 
5575 	list_del_init(&n->poll_list);
5576 
5577 	have = netpoll_poll_lock(n);
5578 
5579 	weight = n->weight;
5580 
5581 	/* This NAPI_STATE_SCHED test is for avoiding a race
5582 	 * with netpoll's poll_napi().  Only the entity which
5583 	 * obtains the lock and sees NAPI_STATE_SCHED set will
5584 	 * actually make the ->poll() call.  Therefore we avoid
5585 	 * accidentally calling ->poll() when NAPI is not scheduled.
5586 	 */
5587 	work = 0;
5588 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5589 		work = n->poll(n, weight);
5590 		trace_napi_poll(n, work, weight);
5591 	}
5592 
5593 	WARN_ON_ONCE(work > weight);
5594 
5595 	if (likely(work < weight))
5596 		goto out_unlock;
5597 
5598 	/* Drivers must not modify the NAPI state if they
5599 	 * consume the entire weight.  In such cases this code
5600 	 * still "owns" the NAPI instance and therefore can
5601 	 * move the instance around on the list at-will.
5602 	 */
5603 	if (unlikely(napi_disable_pending(n))) {
5604 		napi_complete(n);
5605 		goto out_unlock;
5606 	}
5607 
5608 	if (n->gro_list) {
5609 		/* flush too old packets
5610 		 * If HZ < 1000, flush all packets.
5611 		 */
5612 		napi_gro_flush(n, HZ >= 1000);
5613 	}
5614 
5615 	/* Some drivers may have called napi_schedule
5616 	 * prior to exhausting their budget.
5617 	 */
5618 	if (unlikely(!list_empty(&n->poll_list))) {
5619 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5620 			     n->dev ? n->dev->name : "backlog");
5621 		goto out_unlock;
5622 	}
5623 
5624 	list_add_tail(&n->poll_list, repoll);
5625 
5626 out_unlock:
5627 	netpoll_poll_unlock(have);
5628 
5629 	return work;
5630 }
5631 
5632 static __latent_entropy void net_rx_action(struct softirq_action *h)
5633 {
5634 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5635 	unsigned long time_limit = jiffies +
5636 		usecs_to_jiffies(netdev_budget_usecs);
5637 	int budget = netdev_budget;
5638 	LIST_HEAD(list);
5639 	LIST_HEAD(repoll);
5640 
5641 	local_irq_disable();
5642 	list_splice_init(&sd->poll_list, &list);
5643 	local_irq_enable();
5644 
5645 	for (;;) {
5646 		struct napi_struct *n;
5647 
5648 		if (list_empty(&list)) {
5649 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5650 				goto out;
5651 			break;
5652 		}
5653 
5654 		n = list_first_entry(&list, struct napi_struct, poll_list);
5655 		budget -= napi_poll(n, &repoll);
5656 
5657 		/* If softirq window is exhausted then punt.
5658 		 * Allow this to run for 2 jiffies since which will allow
5659 		 * an average latency of 1.5/HZ.
5660 		 */
5661 		if (unlikely(budget <= 0 ||
5662 			     time_after_eq(jiffies, time_limit))) {
5663 			sd->time_squeeze++;
5664 			break;
5665 		}
5666 	}
5667 
5668 	local_irq_disable();
5669 
5670 	list_splice_tail_init(&sd->poll_list, &list);
5671 	list_splice_tail(&repoll, &list);
5672 	list_splice(&list, &sd->poll_list);
5673 	if (!list_empty(&sd->poll_list))
5674 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5675 
5676 	net_rps_action_and_irq_enable(sd);
5677 out:
5678 	__kfree_skb_flush();
5679 }
5680 
5681 struct netdev_adjacent {
5682 	struct net_device *dev;
5683 
5684 	/* upper master flag, there can only be one master device per list */
5685 	bool master;
5686 
5687 	/* counter for the number of times this device was added to us */
5688 	u16 ref_nr;
5689 
5690 	/* private field for the users */
5691 	void *private;
5692 
5693 	struct list_head list;
5694 	struct rcu_head rcu;
5695 };
5696 
5697 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5698 						 struct list_head *adj_list)
5699 {
5700 	struct netdev_adjacent *adj;
5701 
5702 	list_for_each_entry(adj, adj_list, list) {
5703 		if (adj->dev == adj_dev)
5704 			return adj;
5705 	}
5706 	return NULL;
5707 }
5708 
5709 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5710 {
5711 	struct net_device *dev = data;
5712 
5713 	return upper_dev == dev;
5714 }
5715 
5716 /**
5717  * netdev_has_upper_dev - Check if device is linked to an upper device
5718  * @dev: device
5719  * @upper_dev: upper device to check
5720  *
5721  * Find out if a device is linked to specified upper device and return true
5722  * in case it is. Note that this checks only immediate upper device,
5723  * not through a complete stack of devices. The caller must hold the RTNL lock.
5724  */
5725 bool netdev_has_upper_dev(struct net_device *dev,
5726 			  struct net_device *upper_dev)
5727 {
5728 	ASSERT_RTNL();
5729 
5730 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5731 					     upper_dev);
5732 }
5733 EXPORT_SYMBOL(netdev_has_upper_dev);
5734 
5735 /**
5736  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5737  * @dev: device
5738  * @upper_dev: upper device to check
5739  *
5740  * Find out if a device is linked to specified upper device and return true
5741  * in case it is. Note that this checks the entire upper device chain.
5742  * The caller must hold rcu lock.
5743  */
5744 
5745 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5746 				  struct net_device *upper_dev)
5747 {
5748 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5749 					       upper_dev);
5750 }
5751 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5752 
5753 /**
5754  * netdev_has_any_upper_dev - Check if device is linked to some device
5755  * @dev: device
5756  *
5757  * Find out if a device is linked to an upper device and return true in case
5758  * it is. The caller must hold the RTNL lock.
5759  */
5760 bool netdev_has_any_upper_dev(struct net_device *dev)
5761 {
5762 	ASSERT_RTNL();
5763 
5764 	return !list_empty(&dev->adj_list.upper);
5765 }
5766 EXPORT_SYMBOL(netdev_has_any_upper_dev);
5767 
5768 /**
5769  * netdev_master_upper_dev_get - Get master upper device
5770  * @dev: device
5771  *
5772  * Find a master upper device and return pointer to it or NULL in case
5773  * it's not there. The caller must hold the RTNL lock.
5774  */
5775 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5776 {
5777 	struct netdev_adjacent *upper;
5778 
5779 	ASSERT_RTNL();
5780 
5781 	if (list_empty(&dev->adj_list.upper))
5782 		return NULL;
5783 
5784 	upper = list_first_entry(&dev->adj_list.upper,
5785 				 struct netdev_adjacent, list);
5786 	if (likely(upper->master))
5787 		return upper->dev;
5788 	return NULL;
5789 }
5790 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5791 
5792 /**
5793  * netdev_has_any_lower_dev - Check if device is linked to some device
5794  * @dev: device
5795  *
5796  * Find out if a device is linked to a lower device and return true in case
5797  * it is. The caller must hold the RTNL lock.
5798  */
5799 static bool netdev_has_any_lower_dev(struct net_device *dev)
5800 {
5801 	ASSERT_RTNL();
5802 
5803 	return !list_empty(&dev->adj_list.lower);
5804 }
5805 
5806 void *netdev_adjacent_get_private(struct list_head *adj_list)
5807 {
5808 	struct netdev_adjacent *adj;
5809 
5810 	adj = list_entry(adj_list, struct netdev_adjacent, list);
5811 
5812 	return adj->private;
5813 }
5814 EXPORT_SYMBOL(netdev_adjacent_get_private);
5815 
5816 /**
5817  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5818  * @dev: device
5819  * @iter: list_head ** of the current position
5820  *
5821  * Gets the next device from the dev's upper list, starting from iter
5822  * position. The caller must hold RCU read lock.
5823  */
5824 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5825 						 struct list_head **iter)
5826 {
5827 	struct netdev_adjacent *upper;
5828 
5829 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5830 
5831 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5832 
5833 	if (&upper->list == &dev->adj_list.upper)
5834 		return NULL;
5835 
5836 	*iter = &upper->list;
5837 
5838 	return upper->dev;
5839 }
5840 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5841 
5842 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5843 						    struct list_head **iter)
5844 {
5845 	struct netdev_adjacent *upper;
5846 
5847 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5848 
5849 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5850 
5851 	if (&upper->list == &dev->adj_list.upper)
5852 		return NULL;
5853 
5854 	*iter = &upper->list;
5855 
5856 	return upper->dev;
5857 }
5858 
5859 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5860 				  int (*fn)(struct net_device *dev,
5861 					    void *data),
5862 				  void *data)
5863 {
5864 	struct net_device *udev;
5865 	struct list_head *iter;
5866 	int ret;
5867 
5868 	for (iter = &dev->adj_list.upper,
5869 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
5870 	     udev;
5871 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5872 		/* first is the upper device itself */
5873 		ret = fn(udev, data);
5874 		if (ret)
5875 			return ret;
5876 
5877 		/* then look at all of its upper devices */
5878 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5879 		if (ret)
5880 			return ret;
5881 	}
5882 
5883 	return 0;
5884 }
5885 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5886 
5887 /**
5888  * netdev_lower_get_next_private - Get the next ->private from the
5889  *				   lower neighbour list
5890  * @dev: device
5891  * @iter: list_head ** of the current position
5892  *
5893  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5894  * list, starting from iter position. The caller must hold either hold the
5895  * RTNL lock or its own locking that guarantees that the neighbour lower
5896  * list will remain unchanged.
5897  */
5898 void *netdev_lower_get_next_private(struct net_device *dev,
5899 				    struct list_head **iter)
5900 {
5901 	struct netdev_adjacent *lower;
5902 
5903 	lower = list_entry(*iter, struct netdev_adjacent, list);
5904 
5905 	if (&lower->list == &dev->adj_list.lower)
5906 		return NULL;
5907 
5908 	*iter = lower->list.next;
5909 
5910 	return lower->private;
5911 }
5912 EXPORT_SYMBOL(netdev_lower_get_next_private);
5913 
5914 /**
5915  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5916  *				       lower neighbour list, RCU
5917  *				       variant
5918  * @dev: device
5919  * @iter: list_head ** of the current position
5920  *
5921  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5922  * list, starting from iter position. The caller must hold RCU read lock.
5923  */
5924 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5925 					struct list_head **iter)
5926 {
5927 	struct netdev_adjacent *lower;
5928 
5929 	WARN_ON_ONCE(!rcu_read_lock_held());
5930 
5931 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5932 
5933 	if (&lower->list == &dev->adj_list.lower)
5934 		return NULL;
5935 
5936 	*iter = &lower->list;
5937 
5938 	return lower->private;
5939 }
5940 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5941 
5942 /**
5943  * netdev_lower_get_next - Get the next device from the lower neighbour
5944  *                         list
5945  * @dev: device
5946  * @iter: list_head ** of the current position
5947  *
5948  * Gets the next netdev_adjacent from the dev's lower neighbour
5949  * list, starting from iter position. The caller must hold RTNL lock or
5950  * its own locking that guarantees that the neighbour lower
5951  * list will remain unchanged.
5952  */
5953 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5954 {
5955 	struct netdev_adjacent *lower;
5956 
5957 	lower = list_entry(*iter, struct netdev_adjacent, list);
5958 
5959 	if (&lower->list == &dev->adj_list.lower)
5960 		return NULL;
5961 
5962 	*iter = lower->list.next;
5963 
5964 	return lower->dev;
5965 }
5966 EXPORT_SYMBOL(netdev_lower_get_next);
5967 
5968 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5969 						struct list_head **iter)
5970 {
5971 	struct netdev_adjacent *lower;
5972 
5973 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5974 
5975 	if (&lower->list == &dev->adj_list.lower)
5976 		return NULL;
5977 
5978 	*iter = &lower->list;
5979 
5980 	return lower->dev;
5981 }
5982 
5983 int netdev_walk_all_lower_dev(struct net_device *dev,
5984 			      int (*fn)(struct net_device *dev,
5985 					void *data),
5986 			      void *data)
5987 {
5988 	struct net_device *ldev;
5989 	struct list_head *iter;
5990 	int ret;
5991 
5992 	for (iter = &dev->adj_list.lower,
5993 	     ldev = netdev_next_lower_dev(dev, &iter);
5994 	     ldev;
5995 	     ldev = netdev_next_lower_dev(dev, &iter)) {
5996 		/* first is the lower device itself */
5997 		ret = fn(ldev, data);
5998 		if (ret)
5999 			return ret;
6000 
6001 		/* then look at all of its lower devices */
6002 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
6003 		if (ret)
6004 			return ret;
6005 	}
6006 
6007 	return 0;
6008 }
6009 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6010 
6011 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6012 						    struct list_head **iter)
6013 {
6014 	struct netdev_adjacent *lower;
6015 
6016 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6017 	if (&lower->list == &dev->adj_list.lower)
6018 		return NULL;
6019 
6020 	*iter = &lower->list;
6021 
6022 	return lower->dev;
6023 }
6024 
6025 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6026 				  int (*fn)(struct net_device *dev,
6027 					    void *data),
6028 				  void *data)
6029 {
6030 	struct net_device *ldev;
6031 	struct list_head *iter;
6032 	int ret;
6033 
6034 	for (iter = &dev->adj_list.lower,
6035 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
6036 	     ldev;
6037 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6038 		/* first is the lower device itself */
6039 		ret = fn(ldev, data);
6040 		if (ret)
6041 			return ret;
6042 
6043 		/* then look at all of its lower devices */
6044 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6045 		if (ret)
6046 			return ret;
6047 	}
6048 
6049 	return 0;
6050 }
6051 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6052 
6053 /**
6054  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6055  *				       lower neighbour list, RCU
6056  *				       variant
6057  * @dev: device
6058  *
6059  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6060  * list. The caller must hold RCU read lock.
6061  */
6062 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6063 {
6064 	struct netdev_adjacent *lower;
6065 
6066 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
6067 			struct netdev_adjacent, list);
6068 	if (lower)
6069 		return lower->private;
6070 	return NULL;
6071 }
6072 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6073 
6074 /**
6075  * netdev_master_upper_dev_get_rcu - Get master upper device
6076  * @dev: device
6077  *
6078  * Find a master upper device and return pointer to it or NULL in case
6079  * it's not there. The caller must hold the RCU read lock.
6080  */
6081 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6082 {
6083 	struct netdev_adjacent *upper;
6084 
6085 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
6086 				       struct netdev_adjacent, list);
6087 	if (upper && likely(upper->master))
6088 		return upper->dev;
6089 	return NULL;
6090 }
6091 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6092 
6093 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6094 			      struct net_device *adj_dev,
6095 			      struct list_head *dev_list)
6096 {
6097 	char linkname[IFNAMSIZ+7];
6098 
6099 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6100 		"upper_%s" : "lower_%s", adj_dev->name);
6101 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6102 				 linkname);
6103 }
6104 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6105 			       char *name,
6106 			       struct list_head *dev_list)
6107 {
6108 	char linkname[IFNAMSIZ+7];
6109 
6110 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6111 		"upper_%s" : "lower_%s", name);
6112 	sysfs_remove_link(&(dev->dev.kobj), linkname);
6113 }
6114 
6115 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6116 						 struct net_device *adj_dev,
6117 						 struct list_head *dev_list)
6118 {
6119 	return (dev_list == &dev->adj_list.upper ||
6120 		dev_list == &dev->adj_list.lower) &&
6121 		net_eq(dev_net(dev), dev_net(adj_dev));
6122 }
6123 
6124 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6125 					struct net_device *adj_dev,
6126 					struct list_head *dev_list,
6127 					void *private, bool master)
6128 {
6129 	struct netdev_adjacent *adj;
6130 	int ret;
6131 
6132 	adj = __netdev_find_adj(adj_dev, dev_list);
6133 
6134 	if (adj) {
6135 		adj->ref_nr += 1;
6136 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6137 			 dev->name, adj_dev->name, adj->ref_nr);
6138 
6139 		return 0;
6140 	}
6141 
6142 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6143 	if (!adj)
6144 		return -ENOMEM;
6145 
6146 	adj->dev = adj_dev;
6147 	adj->master = master;
6148 	adj->ref_nr = 1;
6149 	adj->private = private;
6150 	dev_hold(adj_dev);
6151 
6152 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6153 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6154 
6155 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6156 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6157 		if (ret)
6158 			goto free_adj;
6159 	}
6160 
6161 	/* Ensure that master link is always the first item in list. */
6162 	if (master) {
6163 		ret = sysfs_create_link(&(dev->dev.kobj),
6164 					&(adj_dev->dev.kobj), "master");
6165 		if (ret)
6166 			goto remove_symlinks;
6167 
6168 		list_add_rcu(&adj->list, dev_list);
6169 	} else {
6170 		list_add_tail_rcu(&adj->list, dev_list);
6171 	}
6172 
6173 	return 0;
6174 
6175 remove_symlinks:
6176 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6177 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6178 free_adj:
6179 	kfree(adj);
6180 	dev_put(adj_dev);
6181 
6182 	return ret;
6183 }
6184 
6185 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6186 					 struct net_device *adj_dev,
6187 					 u16 ref_nr,
6188 					 struct list_head *dev_list)
6189 {
6190 	struct netdev_adjacent *adj;
6191 
6192 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6193 		 dev->name, adj_dev->name, ref_nr);
6194 
6195 	adj = __netdev_find_adj(adj_dev, dev_list);
6196 
6197 	if (!adj) {
6198 		pr_err("Adjacency does not exist for device %s from %s\n",
6199 		       dev->name, adj_dev->name);
6200 		WARN_ON(1);
6201 		return;
6202 	}
6203 
6204 	if (adj->ref_nr > ref_nr) {
6205 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6206 			 dev->name, adj_dev->name, ref_nr,
6207 			 adj->ref_nr - ref_nr);
6208 		adj->ref_nr -= ref_nr;
6209 		return;
6210 	}
6211 
6212 	if (adj->master)
6213 		sysfs_remove_link(&(dev->dev.kobj), "master");
6214 
6215 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6216 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6217 
6218 	list_del_rcu(&adj->list);
6219 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6220 		 adj_dev->name, dev->name, adj_dev->name);
6221 	dev_put(adj_dev);
6222 	kfree_rcu(adj, rcu);
6223 }
6224 
6225 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6226 					    struct net_device *upper_dev,
6227 					    struct list_head *up_list,
6228 					    struct list_head *down_list,
6229 					    void *private, bool master)
6230 {
6231 	int ret;
6232 
6233 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6234 					   private, master);
6235 	if (ret)
6236 		return ret;
6237 
6238 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6239 					   private, false);
6240 	if (ret) {
6241 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6242 		return ret;
6243 	}
6244 
6245 	return 0;
6246 }
6247 
6248 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6249 					       struct net_device *upper_dev,
6250 					       u16 ref_nr,
6251 					       struct list_head *up_list,
6252 					       struct list_head *down_list)
6253 {
6254 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6255 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6256 }
6257 
6258 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6259 						struct net_device *upper_dev,
6260 						void *private, bool master)
6261 {
6262 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6263 						&dev->adj_list.upper,
6264 						&upper_dev->adj_list.lower,
6265 						private, master);
6266 }
6267 
6268 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6269 						   struct net_device *upper_dev)
6270 {
6271 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6272 					   &dev->adj_list.upper,
6273 					   &upper_dev->adj_list.lower);
6274 }
6275 
6276 static int __netdev_upper_dev_link(struct net_device *dev,
6277 				   struct net_device *upper_dev, bool master,
6278 				   void *upper_priv, void *upper_info)
6279 {
6280 	struct netdev_notifier_changeupper_info changeupper_info;
6281 	int ret = 0;
6282 
6283 	ASSERT_RTNL();
6284 
6285 	if (dev == upper_dev)
6286 		return -EBUSY;
6287 
6288 	/* To prevent loops, check if dev is not upper device to upper_dev. */
6289 	if (netdev_has_upper_dev(upper_dev, dev))
6290 		return -EBUSY;
6291 
6292 	if (netdev_has_upper_dev(dev, upper_dev))
6293 		return -EEXIST;
6294 
6295 	if (master && netdev_master_upper_dev_get(dev))
6296 		return -EBUSY;
6297 
6298 	changeupper_info.upper_dev = upper_dev;
6299 	changeupper_info.master = master;
6300 	changeupper_info.linking = true;
6301 	changeupper_info.upper_info = upper_info;
6302 
6303 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6304 					    &changeupper_info.info);
6305 	ret = notifier_to_errno(ret);
6306 	if (ret)
6307 		return ret;
6308 
6309 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6310 						   master);
6311 	if (ret)
6312 		return ret;
6313 
6314 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6315 					    &changeupper_info.info);
6316 	ret = notifier_to_errno(ret);
6317 	if (ret)
6318 		goto rollback;
6319 
6320 	return 0;
6321 
6322 rollback:
6323 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6324 
6325 	return ret;
6326 }
6327 
6328 /**
6329  * netdev_upper_dev_link - Add a link to the upper device
6330  * @dev: device
6331  * @upper_dev: new upper device
6332  *
6333  * Adds a link to device which is upper to this one. The caller must hold
6334  * the RTNL lock. On a failure a negative errno code is returned.
6335  * On success the reference counts are adjusted and the function
6336  * returns zero.
6337  */
6338 int netdev_upper_dev_link(struct net_device *dev,
6339 			  struct net_device *upper_dev)
6340 {
6341 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
6342 }
6343 EXPORT_SYMBOL(netdev_upper_dev_link);
6344 
6345 /**
6346  * netdev_master_upper_dev_link - Add a master link to the upper device
6347  * @dev: device
6348  * @upper_dev: new upper device
6349  * @upper_priv: upper device private
6350  * @upper_info: upper info to be passed down via notifier
6351  *
6352  * Adds a link to device which is upper to this one. In this case, only
6353  * one master upper device can be linked, although other non-master devices
6354  * might be linked as well. The caller must hold the RTNL lock.
6355  * On a failure a negative errno code is returned. On success the reference
6356  * counts are adjusted and the function returns zero.
6357  */
6358 int netdev_master_upper_dev_link(struct net_device *dev,
6359 				 struct net_device *upper_dev,
6360 				 void *upper_priv, void *upper_info)
6361 {
6362 	return __netdev_upper_dev_link(dev, upper_dev, true,
6363 				       upper_priv, upper_info);
6364 }
6365 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6366 
6367 /**
6368  * netdev_upper_dev_unlink - Removes a link to upper device
6369  * @dev: device
6370  * @upper_dev: new upper device
6371  *
6372  * Removes a link to device which is upper to this one. The caller must hold
6373  * the RTNL lock.
6374  */
6375 void netdev_upper_dev_unlink(struct net_device *dev,
6376 			     struct net_device *upper_dev)
6377 {
6378 	struct netdev_notifier_changeupper_info changeupper_info;
6379 
6380 	ASSERT_RTNL();
6381 
6382 	changeupper_info.upper_dev = upper_dev;
6383 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6384 	changeupper_info.linking = false;
6385 
6386 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6387 				      &changeupper_info.info);
6388 
6389 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6390 
6391 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6392 				      &changeupper_info.info);
6393 }
6394 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6395 
6396 /**
6397  * netdev_bonding_info_change - Dispatch event about slave change
6398  * @dev: device
6399  * @bonding_info: info to dispatch
6400  *
6401  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6402  * The caller must hold the RTNL lock.
6403  */
6404 void netdev_bonding_info_change(struct net_device *dev,
6405 				struct netdev_bonding_info *bonding_info)
6406 {
6407 	struct netdev_notifier_bonding_info	info;
6408 
6409 	memcpy(&info.bonding_info, bonding_info,
6410 	       sizeof(struct netdev_bonding_info));
6411 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6412 				      &info.info);
6413 }
6414 EXPORT_SYMBOL(netdev_bonding_info_change);
6415 
6416 static void netdev_adjacent_add_links(struct net_device *dev)
6417 {
6418 	struct netdev_adjacent *iter;
6419 
6420 	struct net *net = dev_net(dev);
6421 
6422 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6423 		if (!net_eq(net, dev_net(iter->dev)))
6424 			continue;
6425 		netdev_adjacent_sysfs_add(iter->dev, dev,
6426 					  &iter->dev->adj_list.lower);
6427 		netdev_adjacent_sysfs_add(dev, iter->dev,
6428 					  &dev->adj_list.upper);
6429 	}
6430 
6431 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6432 		if (!net_eq(net, dev_net(iter->dev)))
6433 			continue;
6434 		netdev_adjacent_sysfs_add(iter->dev, dev,
6435 					  &iter->dev->adj_list.upper);
6436 		netdev_adjacent_sysfs_add(dev, iter->dev,
6437 					  &dev->adj_list.lower);
6438 	}
6439 }
6440 
6441 static void netdev_adjacent_del_links(struct net_device *dev)
6442 {
6443 	struct netdev_adjacent *iter;
6444 
6445 	struct net *net = dev_net(dev);
6446 
6447 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6448 		if (!net_eq(net, dev_net(iter->dev)))
6449 			continue;
6450 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6451 					  &iter->dev->adj_list.lower);
6452 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6453 					  &dev->adj_list.upper);
6454 	}
6455 
6456 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6457 		if (!net_eq(net, dev_net(iter->dev)))
6458 			continue;
6459 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6460 					  &iter->dev->adj_list.upper);
6461 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6462 					  &dev->adj_list.lower);
6463 	}
6464 }
6465 
6466 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6467 {
6468 	struct netdev_adjacent *iter;
6469 
6470 	struct net *net = dev_net(dev);
6471 
6472 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6473 		if (!net_eq(net, dev_net(iter->dev)))
6474 			continue;
6475 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6476 					  &iter->dev->adj_list.lower);
6477 		netdev_adjacent_sysfs_add(iter->dev, dev,
6478 					  &iter->dev->adj_list.lower);
6479 	}
6480 
6481 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6482 		if (!net_eq(net, dev_net(iter->dev)))
6483 			continue;
6484 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6485 					  &iter->dev->adj_list.upper);
6486 		netdev_adjacent_sysfs_add(iter->dev, dev,
6487 					  &iter->dev->adj_list.upper);
6488 	}
6489 }
6490 
6491 void *netdev_lower_dev_get_private(struct net_device *dev,
6492 				   struct net_device *lower_dev)
6493 {
6494 	struct netdev_adjacent *lower;
6495 
6496 	if (!lower_dev)
6497 		return NULL;
6498 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6499 	if (!lower)
6500 		return NULL;
6501 
6502 	return lower->private;
6503 }
6504 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6505 
6506 
6507 int dev_get_nest_level(struct net_device *dev)
6508 {
6509 	struct net_device *lower = NULL;
6510 	struct list_head *iter;
6511 	int max_nest = -1;
6512 	int nest;
6513 
6514 	ASSERT_RTNL();
6515 
6516 	netdev_for_each_lower_dev(dev, lower, iter) {
6517 		nest = dev_get_nest_level(lower);
6518 		if (max_nest < nest)
6519 			max_nest = nest;
6520 	}
6521 
6522 	return max_nest + 1;
6523 }
6524 EXPORT_SYMBOL(dev_get_nest_level);
6525 
6526 /**
6527  * netdev_lower_change - Dispatch event about lower device state change
6528  * @lower_dev: device
6529  * @lower_state_info: state to dispatch
6530  *
6531  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6532  * The caller must hold the RTNL lock.
6533  */
6534 void netdev_lower_state_changed(struct net_device *lower_dev,
6535 				void *lower_state_info)
6536 {
6537 	struct netdev_notifier_changelowerstate_info changelowerstate_info;
6538 
6539 	ASSERT_RTNL();
6540 	changelowerstate_info.lower_state_info = lower_state_info;
6541 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6542 				      &changelowerstate_info.info);
6543 }
6544 EXPORT_SYMBOL(netdev_lower_state_changed);
6545 
6546 static void dev_change_rx_flags(struct net_device *dev, int flags)
6547 {
6548 	const struct net_device_ops *ops = dev->netdev_ops;
6549 
6550 	if (ops->ndo_change_rx_flags)
6551 		ops->ndo_change_rx_flags(dev, flags);
6552 }
6553 
6554 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6555 {
6556 	unsigned int old_flags = dev->flags;
6557 	kuid_t uid;
6558 	kgid_t gid;
6559 
6560 	ASSERT_RTNL();
6561 
6562 	dev->flags |= IFF_PROMISC;
6563 	dev->promiscuity += inc;
6564 	if (dev->promiscuity == 0) {
6565 		/*
6566 		 * Avoid overflow.
6567 		 * If inc causes overflow, untouch promisc and return error.
6568 		 */
6569 		if (inc < 0)
6570 			dev->flags &= ~IFF_PROMISC;
6571 		else {
6572 			dev->promiscuity -= inc;
6573 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6574 				dev->name);
6575 			return -EOVERFLOW;
6576 		}
6577 	}
6578 	if (dev->flags != old_flags) {
6579 		pr_info("device %s %s promiscuous mode\n",
6580 			dev->name,
6581 			dev->flags & IFF_PROMISC ? "entered" : "left");
6582 		if (audit_enabled) {
6583 			current_uid_gid(&uid, &gid);
6584 			audit_log(current->audit_context, GFP_ATOMIC,
6585 				AUDIT_ANOM_PROMISCUOUS,
6586 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6587 				dev->name, (dev->flags & IFF_PROMISC),
6588 				(old_flags & IFF_PROMISC),
6589 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
6590 				from_kuid(&init_user_ns, uid),
6591 				from_kgid(&init_user_ns, gid),
6592 				audit_get_sessionid(current));
6593 		}
6594 
6595 		dev_change_rx_flags(dev, IFF_PROMISC);
6596 	}
6597 	if (notify)
6598 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
6599 	return 0;
6600 }
6601 
6602 /**
6603  *	dev_set_promiscuity	- update promiscuity count on a device
6604  *	@dev: device
6605  *	@inc: modifier
6606  *
6607  *	Add or remove promiscuity from a device. While the count in the device
6608  *	remains above zero the interface remains promiscuous. Once it hits zero
6609  *	the device reverts back to normal filtering operation. A negative inc
6610  *	value is used to drop promiscuity on the device.
6611  *	Return 0 if successful or a negative errno code on error.
6612  */
6613 int dev_set_promiscuity(struct net_device *dev, int inc)
6614 {
6615 	unsigned int old_flags = dev->flags;
6616 	int err;
6617 
6618 	err = __dev_set_promiscuity(dev, inc, true);
6619 	if (err < 0)
6620 		return err;
6621 	if (dev->flags != old_flags)
6622 		dev_set_rx_mode(dev);
6623 	return err;
6624 }
6625 EXPORT_SYMBOL(dev_set_promiscuity);
6626 
6627 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6628 {
6629 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6630 
6631 	ASSERT_RTNL();
6632 
6633 	dev->flags |= IFF_ALLMULTI;
6634 	dev->allmulti += inc;
6635 	if (dev->allmulti == 0) {
6636 		/*
6637 		 * Avoid overflow.
6638 		 * If inc causes overflow, untouch allmulti and return error.
6639 		 */
6640 		if (inc < 0)
6641 			dev->flags &= ~IFF_ALLMULTI;
6642 		else {
6643 			dev->allmulti -= inc;
6644 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6645 				dev->name);
6646 			return -EOVERFLOW;
6647 		}
6648 	}
6649 	if (dev->flags ^ old_flags) {
6650 		dev_change_rx_flags(dev, IFF_ALLMULTI);
6651 		dev_set_rx_mode(dev);
6652 		if (notify)
6653 			__dev_notify_flags(dev, old_flags,
6654 					   dev->gflags ^ old_gflags);
6655 	}
6656 	return 0;
6657 }
6658 
6659 /**
6660  *	dev_set_allmulti	- update allmulti count on a device
6661  *	@dev: device
6662  *	@inc: modifier
6663  *
6664  *	Add or remove reception of all multicast frames to a device. While the
6665  *	count in the device remains above zero the interface remains listening
6666  *	to all interfaces. Once it hits zero the device reverts back to normal
6667  *	filtering operation. A negative @inc value is used to drop the counter
6668  *	when releasing a resource needing all multicasts.
6669  *	Return 0 if successful or a negative errno code on error.
6670  */
6671 
6672 int dev_set_allmulti(struct net_device *dev, int inc)
6673 {
6674 	return __dev_set_allmulti(dev, inc, true);
6675 }
6676 EXPORT_SYMBOL(dev_set_allmulti);
6677 
6678 /*
6679  *	Upload unicast and multicast address lists to device and
6680  *	configure RX filtering. When the device doesn't support unicast
6681  *	filtering it is put in promiscuous mode while unicast addresses
6682  *	are present.
6683  */
6684 void __dev_set_rx_mode(struct net_device *dev)
6685 {
6686 	const struct net_device_ops *ops = dev->netdev_ops;
6687 
6688 	/* dev_open will call this function so the list will stay sane. */
6689 	if (!(dev->flags&IFF_UP))
6690 		return;
6691 
6692 	if (!netif_device_present(dev))
6693 		return;
6694 
6695 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6696 		/* Unicast addresses changes may only happen under the rtnl,
6697 		 * therefore calling __dev_set_promiscuity here is safe.
6698 		 */
6699 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6700 			__dev_set_promiscuity(dev, 1, false);
6701 			dev->uc_promisc = true;
6702 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6703 			__dev_set_promiscuity(dev, -1, false);
6704 			dev->uc_promisc = false;
6705 		}
6706 	}
6707 
6708 	if (ops->ndo_set_rx_mode)
6709 		ops->ndo_set_rx_mode(dev);
6710 }
6711 
6712 void dev_set_rx_mode(struct net_device *dev)
6713 {
6714 	netif_addr_lock_bh(dev);
6715 	__dev_set_rx_mode(dev);
6716 	netif_addr_unlock_bh(dev);
6717 }
6718 
6719 /**
6720  *	dev_get_flags - get flags reported to userspace
6721  *	@dev: device
6722  *
6723  *	Get the combination of flag bits exported through APIs to userspace.
6724  */
6725 unsigned int dev_get_flags(const struct net_device *dev)
6726 {
6727 	unsigned int flags;
6728 
6729 	flags = (dev->flags & ~(IFF_PROMISC |
6730 				IFF_ALLMULTI |
6731 				IFF_RUNNING |
6732 				IFF_LOWER_UP |
6733 				IFF_DORMANT)) |
6734 		(dev->gflags & (IFF_PROMISC |
6735 				IFF_ALLMULTI));
6736 
6737 	if (netif_running(dev)) {
6738 		if (netif_oper_up(dev))
6739 			flags |= IFF_RUNNING;
6740 		if (netif_carrier_ok(dev))
6741 			flags |= IFF_LOWER_UP;
6742 		if (netif_dormant(dev))
6743 			flags |= IFF_DORMANT;
6744 	}
6745 
6746 	return flags;
6747 }
6748 EXPORT_SYMBOL(dev_get_flags);
6749 
6750 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6751 {
6752 	unsigned int old_flags = dev->flags;
6753 	int ret;
6754 
6755 	ASSERT_RTNL();
6756 
6757 	/*
6758 	 *	Set the flags on our device.
6759 	 */
6760 
6761 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6762 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6763 			       IFF_AUTOMEDIA)) |
6764 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6765 				    IFF_ALLMULTI));
6766 
6767 	/*
6768 	 *	Load in the correct multicast list now the flags have changed.
6769 	 */
6770 
6771 	if ((old_flags ^ flags) & IFF_MULTICAST)
6772 		dev_change_rx_flags(dev, IFF_MULTICAST);
6773 
6774 	dev_set_rx_mode(dev);
6775 
6776 	/*
6777 	 *	Have we downed the interface. We handle IFF_UP ourselves
6778 	 *	according to user attempts to set it, rather than blindly
6779 	 *	setting it.
6780 	 */
6781 
6782 	ret = 0;
6783 	if ((old_flags ^ flags) & IFF_UP) {
6784 		if (old_flags & IFF_UP)
6785 			__dev_close(dev);
6786 		else
6787 			ret = __dev_open(dev);
6788 	}
6789 
6790 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
6791 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
6792 		unsigned int old_flags = dev->flags;
6793 
6794 		dev->gflags ^= IFF_PROMISC;
6795 
6796 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
6797 			if (dev->flags != old_flags)
6798 				dev_set_rx_mode(dev);
6799 	}
6800 
6801 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6802 	 * is important. Some (broken) drivers set IFF_PROMISC, when
6803 	 * IFF_ALLMULTI is requested not asking us and not reporting.
6804 	 */
6805 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6806 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6807 
6808 		dev->gflags ^= IFF_ALLMULTI;
6809 		__dev_set_allmulti(dev, inc, false);
6810 	}
6811 
6812 	return ret;
6813 }
6814 
6815 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6816 			unsigned int gchanges)
6817 {
6818 	unsigned int changes = dev->flags ^ old_flags;
6819 
6820 	if (gchanges)
6821 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6822 
6823 	if (changes & IFF_UP) {
6824 		if (dev->flags & IFF_UP)
6825 			call_netdevice_notifiers(NETDEV_UP, dev);
6826 		else
6827 			call_netdevice_notifiers(NETDEV_DOWN, dev);
6828 	}
6829 
6830 	if (dev->flags & IFF_UP &&
6831 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6832 		struct netdev_notifier_change_info change_info;
6833 
6834 		change_info.flags_changed = changes;
6835 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6836 					      &change_info.info);
6837 	}
6838 }
6839 
6840 /**
6841  *	dev_change_flags - change device settings
6842  *	@dev: device
6843  *	@flags: device state flags
6844  *
6845  *	Change settings on device based state flags. The flags are
6846  *	in the userspace exported format.
6847  */
6848 int dev_change_flags(struct net_device *dev, unsigned int flags)
6849 {
6850 	int ret;
6851 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6852 
6853 	ret = __dev_change_flags(dev, flags);
6854 	if (ret < 0)
6855 		return ret;
6856 
6857 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6858 	__dev_notify_flags(dev, old_flags, changes);
6859 	return ret;
6860 }
6861 EXPORT_SYMBOL(dev_change_flags);
6862 
6863 int __dev_set_mtu(struct net_device *dev, int new_mtu)
6864 {
6865 	const struct net_device_ops *ops = dev->netdev_ops;
6866 
6867 	if (ops->ndo_change_mtu)
6868 		return ops->ndo_change_mtu(dev, new_mtu);
6869 
6870 	dev->mtu = new_mtu;
6871 	return 0;
6872 }
6873 EXPORT_SYMBOL(__dev_set_mtu);
6874 
6875 /**
6876  *	dev_set_mtu - Change maximum transfer unit
6877  *	@dev: device
6878  *	@new_mtu: new transfer unit
6879  *
6880  *	Change the maximum transfer size of the network device.
6881  */
6882 int dev_set_mtu(struct net_device *dev, int new_mtu)
6883 {
6884 	int err, orig_mtu;
6885 
6886 	if (new_mtu == dev->mtu)
6887 		return 0;
6888 
6889 	/* MTU must be positive, and in range */
6890 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6891 		net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6892 				    dev->name, new_mtu, dev->min_mtu);
6893 		return -EINVAL;
6894 	}
6895 
6896 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6897 		net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6898 				    dev->name, new_mtu, dev->max_mtu);
6899 		return -EINVAL;
6900 	}
6901 
6902 	if (!netif_device_present(dev))
6903 		return -ENODEV;
6904 
6905 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6906 	err = notifier_to_errno(err);
6907 	if (err)
6908 		return err;
6909 
6910 	orig_mtu = dev->mtu;
6911 	err = __dev_set_mtu(dev, new_mtu);
6912 
6913 	if (!err) {
6914 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6915 		err = notifier_to_errno(err);
6916 		if (err) {
6917 			/* setting mtu back and notifying everyone again,
6918 			 * so that they have a chance to revert changes.
6919 			 */
6920 			__dev_set_mtu(dev, orig_mtu);
6921 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6922 		}
6923 	}
6924 	return err;
6925 }
6926 EXPORT_SYMBOL(dev_set_mtu);
6927 
6928 /**
6929  *	dev_set_group - Change group this device belongs to
6930  *	@dev: device
6931  *	@new_group: group this device should belong to
6932  */
6933 void dev_set_group(struct net_device *dev, int new_group)
6934 {
6935 	dev->group = new_group;
6936 }
6937 EXPORT_SYMBOL(dev_set_group);
6938 
6939 /**
6940  *	dev_set_mac_address - Change Media Access Control Address
6941  *	@dev: device
6942  *	@sa: new address
6943  *
6944  *	Change the hardware (MAC) address of the device
6945  */
6946 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6947 {
6948 	const struct net_device_ops *ops = dev->netdev_ops;
6949 	int err;
6950 
6951 	if (!ops->ndo_set_mac_address)
6952 		return -EOPNOTSUPP;
6953 	if (sa->sa_family != dev->type)
6954 		return -EINVAL;
6955 	if (!netif_device_present(dev))
6956 		return -ENODEV;
6957 	err = ops->ndo_set_mac_address(dev, sa);
6958 	if (err)
6959 		return err;
6960 	dev->addr_assign_type = NET_ADDR_SET;
6961 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6962 	add_device_randomness(dev->dev_addr, dev->addr_len);
6963 	return 0;
6964 }
6965 EXPORT_SYMBOL(dev_set_mac_address);
6966 
6967 /**
6968  *	dev_change_carrier - Change device carrier
6969  *	@dev: device
6970  *	@new_carrier: new value
6971  *
6972  *	Change device carrier
6973  */
6974 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6975 {
6976 	const struct net_device_ops *ops = dev->netdev_ops;
6977 
6978 	if (!ops->ndo_change_carrier)
6979 		return -EOPNOTSUPP;
6980 	if (!netif_device_present(dev))
6981 		return -ENODEV;
6982 	return ops->ndo_change_carrier(dev, new_carrier);
6983 }
6984 EXPORT_SYMBOL(dev_change_carrier);
6985 
6986 /**
6987  *	dev_get_phys_port_id - Get device physical port ID
6988  *	@dev: device
6989  *	@ppid: port ID
6990  *
6991  *	Get device physical port ID
6992  */
6993 int dev_get_phys_port_id(struct net_device *dev,
6994 			 struct netdev_phys_item_id *ppid)
6995 {
6996 	const struct net_device_ops *ops = dev->netdev_ops;
6997 
6998 	if (!ops->ndo_get_phys_port_id)
6999 		return -EOPNOTSUPP;
7000 	return ops->ndo_get_phys_port_id(dev, ppid);
7001 }
7002 EXPORT_SYMBOL(dev_get_phys_port_id);
7003 
7004 /**
7005  *	dev_get_phys_port_name - Get device physical port name
7006  *	@dev: device
7007  *	@name: port name
7008  *	@len: limit of bytes to copy to name
7009  *
7010  *	Get device physical port name
7011  */
7012 int dev_get_phys_port_name(struct net_device *dev,
7013 			   char *name, size_t len)
7014 {
7015 	const struct net_device_ops *ops = dev->netdev_ops;
7016 
7017 	if (!ops->ndo_get_phys_port_name)
7018 		return -EOPNOTSUPP;
7019 	return ops->ndo_get_phys_port_name(dev, name, len);
7020 }
7021 EXPORT_SYMBOL(dev_get_phys_port_name);
7022 
7023 /**
7024  *	dev_change_proto_down - update protocol port state information
7025  *	@dev: device
7026  *	@proto_down: new value
7027  *
7028  *	This info can be used by switch drivers to set the phys state of the
7029  *	port.
7030  */
7031 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7032 {
7033 	const struct net_device_ops *ops = dev->netdev_ops;
7034 
7035 	if (!ops->ndo_change_proto_down)
7036 		return -EOPNOTSUPP;
7037 	if (!netif_device_present(dev))
7038 		return -ENODEV;
7039 	return ops->ndo_change_proto_down(dev, proto_down);
7040 }
7041 EXPORT_SYMBOL(dev_change_proto_down);
7042 
7043 u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id)
7044 {
7045 	struct netdev_xdp xdp;
7046 
7047 	memset(&xdp, 0, sizeof(xdp));
7048 	xdp.command = XDP_QUERY_PROG;
7049 
7050 	/* Query must always succeed. */
7051 	WARN_ON(xdp_op(dev, &xdp) < 0);
7052 	if (prog_id)
7053 		*prog_id = xdp.prog_id;
7054 
7055 	return xdp.prog_attached;
7056 }
7057 
7058 static int dev_xdp_install(struct net_device *dev, xdp_op_t xdp_op,
7059 			   struct netlink_ext_ack *extack, u32 flags,
7060 			   struct bpf_prog *prog)
7061 {
7062 	struct netdev_xdp xdp;
7063 
7064 	memset(&xdp, 0, sizeof(xdp));
7065 	if (flags & XDP_FLAGS_HW_MODE)
7066 		xdp.command = XDP_SETUP_PROG_HW;
7067 	else
7068 		xdp.command = XDP_SETUP_PROG;
7069 	xdp.extack = extack;
7070 	xdp.flags = flags;
7071 	xdp.prog = prog;
7072 
7073 	return xdp_op(dev, &xdp);
7074 }
7075 
7076 /**
7077  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
7078  *	@dev: device
7079  *	@extack: netlink extended ack
7080  *	@fd: new program fd or negative value to clear
7081  *	@flags: xdp-related flags
7082  *
7083  *	Set or clear a bpf program for a device
7084  */
7085 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7086 		      int fd, u32 flags)
7087 {
7088 	const struct net_device_ops *ops = dev->netdev_ops;
7089 	struct bpf_prog *prog = NULL;
7090 	xdp_op_t xdp_op, xdp_chk;
7091 	int err;
7092 
7093 	ASSERT_RTNL();
7094 
7095 	xdp_op = xdp_chk = ops->ndo_xdp;
7096 	if (!xdp_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7097 		return -EOPNOTSUPP;
7098 	if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE))
7099 		xdp_op = generic_xdp_install;
7100 	if (xdp_op == xdp_chk)
7101 		xdp_chk = generic_xdp_install;
7102 
7103 	if (fd >= 0) {
7104 		if (xdp_chk && __dev_xdp_attached(dev, xdp_chk, NULL))
7105 			return -EEXIST;
7106 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7107 		    __dev_xdp_attached(dev, xdp_op, NULL))
7108 			return -EBUSY;
7109 
7110 		prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
7111 		if (IS_ERR(prog))
7112 			return PTR_ERR(prog);
7113 	}
7114 
7115 	err = dev_xdp_install(dev, xdp_op, extack, flags, prog);
7116 	if (err < 0 && prog)
7117 		bpf_prog_put(prog);
7118 
7119 	return err;
7120 }
7121 
7122 /**
7123  *	dev_new_index	-	allocate an ifindex
7124  *	@net: the applicable net namespace
7125  *
7126  *	Returns a suitable unique value for a new device interface
7127  *	number.  The caller must hold the rtnl semaphore or the
7128  *	dev_base_lock to be sure it remains unique.
7129  */
7130 static int dev_new_index(struct net *net)
7131 {
7132 	int ifindex = net->ifindex;
7133 
7134 	for (;;) {
7135 		if (++ifindex <= 0)
7136 			ifindex = 1;
7137 		if (!__dev_get_by_index(net, ifindex))
7138 			return net->ifindex = ifindex;
7139 	}
7140 }
7141 
7142 /* Delayed registration/unregisteration */
7143 static LIST_HEAD(net_todo_list);
7144 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7145 
7146 static void net_set_todo(struct net_device *dev)
7147 {
7148 	list_add_tail(&dev->todo_list, &net_todo_list);
7149 	dev_net(dev)->dev_unreg_count++;
7150 }
7151 
7152 static void rollback_registered_many(struct list_head *head)
7153 {
7154 	struct net_device *dev, *tmp;
7155 	LIST_HEAD(close_head);
7156 
7157 	BUG_ON(dev_boot_phase);
7158 	ASSERT_RTNL();
7159 
7160 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7161 		/* Some devices call without registering
7162 		 * for initialization unwind. Remove those
7163 		 * devices and proceed with the remaining.
7164 		 */
7165 		if (dev->reg_state == NETREG_UNINITIALIZED) {
7166 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7167 				 dev->name, dev);
7168 
7169 			WARN_ON(1);
7170 			list_del(&dev->unreg_list);
7171 			continue;
7172 		}
7173 		dev->dismantle = true;
7174 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
7175 	}
7176 
7177 	/* If device is running, close it first. */
7178 	list_for_each_entry(dev, head, unreg_list)
7179 		list_add_tail(&dev->close_list, &close_head);
7180 	dev_close_many(&close_head, true);
7181 
7182 	list_for_each_entry(dev, head, unreg_list) {
7183 		/* And unlink it from device chain. */
7184 		unlist_netdevice(dev);
7185 
7186 		dev->reg_state = NETREG_UNREGISTERING;
7187 	}
7188 	flush_all_backlogs();
7189 
7190 	synchronize_net();
7191 
7192 	list_for_each_entry(dev, head, unreg_list) {
7193 		struct sk_buff *skb = NULL;
7194 
7195 		/* Shutdown queueing discipline. */
7196 		dev_shutdown(dev);
7197 
7198 
7199 		/* Notify protocols, that we are about to destroy
7200 		 * this device. They should clean all the things.
7201 		 */
7202 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7203 
7204 		if (!dev->rtnl_link_ops ||
7205 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7206 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7207 						     GFP_KERNEL);
7208 
7209 		/*
7210 		 *	Flush the unicast and multicast chains
7211 		 */
7212 		dev_uc_flush(dev);
7213 		dev_mc_flush(dev);
7214 
7215 		if (dev->netdev_ops->ndo_uninit)
7216 			dev->netdev_ops->ndo_uninit(dev);
7217 
7218 		if (skb)
7219 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7220 
7221 		/* Notifier chain MUST detach us all upper devices. */
7222 		WARN_ON(netdev_has_any_upper_dev(dev));
7223 		WARN_ON(netdev_has_any_lower_dev(dev));
7224 
7225 		/* Remove entries from kobject tree */
7226 		netdev_unregister_kobject(dev);
7227 #ifdef CONFIG_XPS
7228 		/* Remove XPS queueing entries */
7229 		netif_reset_xps_queues_gt(dev, 0);
7230 #endif
7231 	}
7232 
7233 	synchronize_net();
7234 
7235 	list_for_each_entry(dev, head, unreg_list)
7236 		dev_put(dev);
7237 }
7238 
7239 static void rollback_registered(struct net_device *dev)
7240 {
7241 	LIST_HEAD(single);
7242 
7243 	list_add(&dev->unreg_list, &single);
7244 	rollback_registered_many(&single);
7245 	list_del(&single);
7246 }
7247 
7248 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7249 	struct net_device *upper, netdev_features_t features)
7250 {
7251 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7252 	netdev_features_t feature;
7253 	int feature_bit;
7254 
7255 	for_each_netdev_feature(&upper_disables, feature_bit) {
7256 		feature = __NETIF_F_BIT(feature_bit);
7257 		if (!(upper->wanted_features & feature)
7258 		    && (features & feature)) {
7259 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7260 				   &feature, upper->name);
7261 			features &= ~feature;
7262 		}
7263 	}
7264 
7265 	return features;
7266 }
7267 
7268 static void netdev_sync_lower_features(struct net_device *upper,
7269 	struct net_device *lower, netdev_features_t features)
7270 {
7271 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7272 	netdev_features_t feature;
7273 	int feature_bit;
7274 
7275 	for_each_netdev_feature(&upper_disables, feature_bit) {
7276 		feature = __NETIF_F_BIT(feature_bit);
7277 		if (!(features & feature) && (lower->features & feature)) {
7278 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7279 				   &feature, lower->name);
7280 			lower->wanted_features &= ~feature;
7281 			netdev_update_features(lower);
7282 
7283 			if (unlikely(lower->features & feature))
7284 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7285 					    &feature, lower->name);
7286 		}
7287 	}
7288 }
7289 
7290 static netdev_features_t netdev_fix_features(struct net_device *dev,
7291 	netdev_features_t features)
7292 {
7293 	/* Fix illegal checksum combinations */
7294 	if ((features & NETIF_F_HW_CSUM) &&
7295 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7296 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7297 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7298 	}
7299 
7300 	/* TSO requires that SG is present as well. */
7301 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7302 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7303 		features &= ~NETIF_F_ALL_TSO;
7304 	}
7305 
7306 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7307 					!(features & NETIF_F_IP_CSUM)) {
7308 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7309 		features &= ~NETIF_F_TSO;
7310 		features &= ~NETIF_F_TSO_ECN;
7311 	}
7312 
7313 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7314 					 !(features & NETIF_F_IPV6_CSUM)) {
7315 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7316 		features &= ~NETIF_F_TSO6;
7317 	}
7318 
7319 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7320 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7321 		features &= ~NETIF_F_TSO_MANGLEID;
7322 
7323 	/* TSO ECN requires that TSO is present as well. */
7324 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7325 		features &= ~NETIF_F_TSO_ECN;
7326 
7327 	/* Software GSO depends on SG. */
7328 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7329 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7330 		features &= ~NETIF_F_GSO;
7331 	}
7332 
7333 	/* GSO partial features require GSO partial be set */
7334 	if ((features & dev->gso_partial_features) &&
7335 	    !(features & NETIF_F_GSO_PARTIAL)) {
7336 		netdev_dbg(dev,
7337 			   "Dropping partially supported GSO features since no GSO partial.\n");
7338 		features &= ~dev->gso_partial_features;
7339 	}
7340 
7341 	return features;
7342 }
7343 
7344 int __netdev_update_features(struct net_device *dev)
7345 {
7346 	struct net_device *upper, *lower;
7347 	netdev_features_t features;
7348 	struct list_head *iter;
7349 	int err = -1;
7350 
7351 	ASSERT_RTNL();
7352 
7353 	features = netdev_get_wanted_features(dev);
7354 
7355 	if (dev->netdev_ops->ndo_fix_features)
7356 		features = dev->netdev_ops->ndo_fix_features(dev, features);
7357 
7358 	/* driver might be less strict about feature dependencies */
7359 	features = netdev_fix_features(dev, features);
7360 
7361 	/* some features can't be enabled if they're off an an upper device */
7362 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
7363 		features = netdev_sync_upper_features(dev, upper, features);
7364 
7365 	if (dev->features == features)
7366 		goto sync_lower;
7367 
7368 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7369 		&dev->features, &features);
7370 
7371 	if (dev->netdev_ops->ndo_set_features)
7372 		err = dev->netdev_ops->ndo_set_features(dev, features);
7373 	else
7374 		err = 0;
7375 
7376 	if (unlikely(err < 0)) {
7377 		netdev_err(dev,
7378 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
7379 			err, &features, &dev->features);
7380 		/* return non-0 since some features might have changed and
7381 		 * it's better to fire a spurious notification than miss it
7382 		 */
7383 		return -1;
7384 	}
7385 
7386 sync_lower:
7387 	/* some features must be disabled on lower devices when disabled
7388 	 * on an upper device (think: bonding master or bridge)
7389 	 */
7390 	netdev_for_each_lower_dev(dev, lower, iter)
7391 		netdev_sync_lower_features(dev, lower, features);
7392 
7393 	if (!err) {
7394 		netdev_features_t diff = features ^ dev->features;
7395 
7396 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7397 			/* udp_tunnel_{get,drop}_rx_info both need
7398 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7399 			 * device, or they won't do anything.
7400 			 * Thus we need to update dev->features
7401 			 * *before* calling udp_tunnel_get_rx_info,
7402 			 * but *after* calling udp_tunnel_drop_rx_info.
7403 			 */
7404 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7405 				dev->features = features;
7406 				udp_tunnel_get_rx_info(dev);
7407 			} else {
7408 				udp_tunnel_drop_rx_info(dev);
7409 			}
7410 		}
7411 
7412 		dev->features = features;
7413 	}
7414 
7415 	return err < 0 ? 0 : 1;
7416 }
7417 
7418 /**
7419  *	netdev_update_features - recalculate device features
7420  *	@dev: the device to check
7421  *
7422  *	Recalculate dev->features set and send notifications if it
7423  *	has changed. Should be called after driver or hardware dependent
7424  *	conditions might have changed that influence the features.
7425  */
7426 void netdev_update_features(struct net_device *dev)
7427 {
7428 	if (__netdev_update_features(dev))
7429 		netdev_features_change(dev);
7430 }
7431 EXPORT_SYMBOL(netdev_update_features);
7432 
7433 /**
7434  *	netdev_change_features - recalculate device features
7435  *	@dev: the device to check
7436  *
7437  *	Recalculate dev->features set and send notifications even
7438  *	if they have not changed. Should be called instead of
7439  *	netdev_update_features() if also dev->vlan_features might
7440  *	have changed to allow the changes to be propagated to stacked
7441  *	VLAN devices.
7442  */
7443 void netdev_change_features(struct net_device *dev)
7444 {
7445 	__netdev_update_features(dev);
7446 	netdev_features_change(dev);
7447 }
7448 EXPORT_SYMBOL(netdev_change_features);
7449 
7450 /**
7451  *	netif_stacked_transfer_operstate -	transfer operstate
7452  *	@rootdev: the root or lower level device to transfer state from
7453  *	@dev: the device to transfer operstate to
7454  *
7455  *	Transfer operational state from root to device. This is normally
7456  *	called when a stacking relationship exists between the root
7457  *	device and the device(a leaf device).
7458  */
7459 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7460 					struct net_device *dev)
7461 {
7462 	if (rootdev->operstate == IF_OPER_DORMANT)
7463 		netif_dormant_on(dev);
7464 	else
7465 		netif_dormant_off(dev);
7466 
7467 	if (netif_carrier_ok(rootdev))
7468 		netif_carrier_on(dev);
7469 	else
7470 		netif_carrier_off(dev);
7471 }
7472 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7473 
7474 #ifdef CONFIG_SYSFS
7475 static int netif_alloc_rx_queues(struct net_device *dev)
7476 {
7477 	unsigned int i, count = dev->num_rx_queues;
7478 	struct netdev_rx_queue *rx;
7479 	size_t sz = count * sizeof(*rx);
7480 
7481 	BUG_ON(count < 1);
7482 
7483 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7484 	if (!rx)
7485 		return -ENOMEM;
7486 
7487 	dev->_rx = rx;
7488 
7489 	for (i = 0; i < count; i++)
7490 		rx[i].dev = dev;
7491 	return 0;
7492 }
7493 #endif
7494 
7495 static void netdev_init_one_queue(struct net_device *dev,
7496 				  struct netdev_queue *queue, void *_unused)
7497 {
7498 	/* Initialize queue lock */
7499 	spin_lock_init(&queue->_xmit_lock);
7500 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7501 	queue->xmit_lock_owner = -1;
7502 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7503 	queue->dev = dev;
7504 #ifdef CONFIG_BQL
7505 	dql_init(&queue->dql, HZ);
7506 #endif
7507 }
7508 
7509 static void netif_free_tx_queues(struct net_device *dev)
7510 {
7511 	kvfree(dev->_tx);
7512 }
7513 
7514 static int netif_alloc_netdev_queues(struct net_device *dev)
7515 {
7516 	unsigned int count = dev->num_tx_queues;
7517 	struct netdev_queue *tx;
7518 	size_t sz = count * sizeof(*tx);
7519 
7520 	if (count < 1 || count > 0xffff)
7521 		return -EINVAL;
7522 
7523 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7524 	if (!tx)
7525 		return -ENOMEM;
7526 
7527 	dev->_tx = tx;
7528 
7529 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7530 	spin_lock_init(&dev->tx_global_lock);
7531 
7532 	return 0;
7533 }
7534 
7535 void netif_tx_stop_all_queues(struct net_device *dev)
7536 {
7537 	unsigned int i;
7538 
7539 	for (i = 0; i < dev->num_tx_queues; i++) {
7540 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7541 
7542 		netif_tx_stop_queue(txq);
7543 	}
7544 }
7545 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7546 
7547 /**
7548  *	register_netdevice	- register a network device
7549  *	@dev: device to register
7550  *
7551  *	Take a completed network device structure and add it to the kernel
7552  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7553  *	chain. 0 is returned on success. A negative errno code is returned
7554  *	on a failure to set up the device, or if the name is a duplicate.
7555  *
7556  *	Callers must hold the rtnl semaphore. You may want
7557  *	register_netdev() instead of this.
7558  *
7559  *	BUGS:
7560  *	The locking appears insufficient to guarantee two parallel registers
7561  *	will not get the same name.
7562  */
7563 
7564 int register_netdevice(struct net_device *dev)
7565 {
7566 	int ret;
7567 	struct net *net = dev_net(dev);
7568 
7569 	BUG_ON(dev_boot_phase);
7570 	ASSERT_RTNL();
7571 
7572 	might_sleep();
7573 
7574 	/* When net_device's are persistent, this will be fatal. */
7575 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7576 	BUG_ON(!net);
7577 
7578 	spin_lock_init(&dev->addr_list_lock);
7579 	netdev_set_addr_lockdep_class(dev);
7580 
7581 	ret = dev_get_valid_name(net, dev, dev->name);
7582 	if (ret < 0)
7583 		goto out;
7584 
7585 	/* Init, if this function is available */
7586 	if (dev->netdev_ops->ndo_init) {
7587 		ret = dev->netdev_ops->ndo_init(dev);
7588 		if (ret) {
7589 			if (ret > 0)
7590 				ret = -EIO;
7591 			goto out;
7592 		}
7593 	}
7594 
7595 	if (((dev->hw_features | dev->features) &
7596 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
7597 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7598 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7599 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7600 		ret = -EINVAL;
7601 		goto err_uninit;
7602 	}
7603 
7604 	ret = -EBUSY;
7605 	if (!dev->ifindex)
7606 		dev->ifindex = dev_new_index(net);
7607 	else if (__dev_get_by_index(net, dev->ifindex))
7608 		goto err_uninit;
7609 
7610 	/* Transfer changeable features to wanted_features and enable
7611 	 * software offloads (GSO and GRO).
7612 	 */
7613 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
7614 	dev->features |= NETIF_F_SOFT_FEATURES;
7615 
7616 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
7617 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7618 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7619 	}
7620 
7621 	dev->wanted_features = dev->features & dev->hw_features;
7622 
7623 	if (!(dev->flags & IFF_LOOPBACK))
7624 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
7625 
7626 	/* If IPv4 TCP segmentation offload is supported we should also
7627 	 * allow the device to enable segmenting the frame with the option
7628 	 * of ignoring a static IP ID value.  This doesn't enable the
7629 	 * feature itself but allows the user to enable it later.
7630 	 */
7631 	if (dev->hw_features & NETIF_F_TSO)
7632 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
7633 	if (dev->vlan_features & NETIF_F_TSO)
7634 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7635 	if (dev->mpls_features & NETIF_F_TSO)
7636 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7637 	if (dev->hw_enc_features & NETIF_F_TSO)
7638 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7639 
7640 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7641 	 */
7642 	dev->vlan_features |= NETIF_F_HIGHDMA;
7643 
7644 	/* Make NETIF_F_SG inheritable to tunnel devices.
7645 	 */
7646 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7647 
7648 	/* Make NETIF_F_SG inheritable to MPLS.
7649 	 */
7650 	dev->mpls_features |= NETIF_F_SG;
7651 
7652 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7653 	ret = notifier_to_errno(ret);
7654 	if (ret)
7655 		goto err_uninit;
7656 
7657 	ret = netdev_register_kobject(dev);
7658 	if (ret)
7659 		goto err_uninit;
7660 	dev->reg_state = NETREG_REGISTERED;
7661 
7662 	__netdev_update_features(dev);
7663 
7664 	/*
7665 	 *	Default initial state at registry is that the
7666 	 *	device is present.
7667 	 */
7668 
7669 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7670 
7671 	linkwatch_init_dev(dev);
7672 
7673 	dev_init_scheduler(dev);
7674 	dev_hold(dev);
7675 	list_netdevice(dev);
7676 	add_device_randomness(dev->dev_addr, dev->addr_len);
7677 
7678 	/* If the device has permanent device address, driver should
7679 	 * set dev_addr and also addr_assign_type should be set to
7680 	 * NET_ADDR_PERM (default value).
7681 	 */
7682 	if (dev->addr_assign_type == NET_ADDR_PERM)
7683 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7684 
7685 	/* Notify protocols, that a new device appeared. */
7686 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7687 	ret = notifier_to_errno(ret);
7688 	if (ret) {
7689 		rollback_registered(dev);
7690 		dev->reg_state = NETREG_UNREGISTERED;
7691 	}
7692 	/*
7693 	 *	Prevent userspace races by waiting until the network
7694 	 *	device is fully setup before sending notifications.
7695 	 */
7696 	if (!dev->rtnl_link_ops ||
7697 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7698 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7699 
7700 out:
7701 	return ret;
7702 
7703 err_uninit:
7704 	if (dev->netdev_ops->ndo_uninit)
7705 		dev->netdev_ops->ndo_uninit(dev);
7706 	if (dev->priv_destructor)
7707 		dev->priv_destructor(dev);
7708 	goto out;
7709 }
7710 EXPORT_SYMBOL(register_netdevice);
7711 
7712 /**
7713  *	init_dummy_netdev	- init a dummy network device for NAPI
7714  *	@dev: device to init
7715  *
7716  *	This takes a network device structure and initialize the minimum
7717  *	amount of fields so it can be used to schedule NAPI polls without
7718  *	registering a full blown interface. This is to be used by drivers
7719  *	that need to tie several hardware interfaces to a single NAPI
7720  *	poll scheduler due to HW limitations.
7721  */
7722 int init_dummy_netdev(struct net_device *dev)
7723 {
7724 	/* Clear everything. Note we don't initialize spinlocks
7725 	 * are they aren't supposed to be taken by any of the
7726 	 * NAPI code and this dummy netdev is supposed to be
7727 	 * only ever used for NAPI polls
7728 	 */
7729 	memset(dev, 0, sizeof(struct net_device));
7730 
7731 	/* make sure we BUG if trying to hit standard
7732 	 * register/unregister code path
7733 	 */
7734 	dev->reg_state = NETREG_DUMMY;
7735 
7736 	/* NAPI wants this */
7737 	INIT_LIST_HEAD(&dev->napi_list);
7738 
7739 	/* a dummy interface is started by default */
7740 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7741 	set_bit(__LINK_STATE_START, &dev->state);
7742 
7743 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
7744 	 * because users of this 'device' dont need to change
7745 	 * its refcount.
7746 	 */
7747 
7748 	return 0;
7749 }
7750 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7751 
7752 
7753 /**
7754  *	register_netdev	- register a network device
7755  *	@dev: device to register
7756  *
7757  *	Take a completed network device structure and add it to the kernel
7758  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7759  *	chain. 0 is returned on success. A negative errno code is returned
7760  *	on a failure to set up the device, or if the name is a duplicate.
7761  *
7762  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
7763  *	and expands the device name if you passed a format string to
7764  *	alloc_netdev.
7765  */
7766 int register_netdev(struct net_device *dev)
7767 {
7768 	int err;
7769 
7770 	rtnl_lock();
7771 	err = register_netdevice(dev);
7772 	rtnl_unlock();
7773 	return err;
7774 }
7775 EXPORT_SYMBOL(register_netdev);
7776 
7777 int netdev_refcnt_read(const struct net_device *dev)
7778 {
7779 	int i, refcnt = 0;
7780 
7781 	for_each_possible_cpu(i)
7782 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7783 	return refcnt;
7784 }
7785 EXPORT_SYMBOL(netdev_refcnt_read);
7786 
7787 /**
7788  * netdev_wait_allrefs - wait until all references are gone.
7789  * @dev: target net_device
7790  *
7791  * This is called when unregistering network devices.
7792  *
7793  * Any protocol or device that holds a reference should register
7794  * for netdevice notification, and cleanup and put back the
7795  * reference if they receive an UNREGISTER event.
7796  * We can get stuck here if buggy protocols don't correctly
7797  * call dev_put.
7798  */
7799 static void netdev_wait_allrefs(struct net_device *dev)
7800 {
7801 	unsigned long rebroadcast_time, warning_time;
7802 	int refcnt;
7803 
7804 	linkwatch_forget_dev(dev);
7805 
7806 	rebroadcast_time = warning_time = jiffies;
7807 	refcnt = netdev_refcnt_read(dev);
7808 
7809 	while (refcnt != 0) {
7810 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7811 			rtnl_lock();
7812 
7813 			/* Rebroadcast unregister notification */
7814 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7815 
7816 			__rtnl_unlock();
7817 			rcu_barrier();
7818 			rtnl_lock();
7819 
7820 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7821 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7822 				     &dev->state)) {
7823 				/* We must not have linkwatch events
7824 				 * pending on unregister. If this
7825 				 * happens, we simply run the queue
7826 				 * unscheduled, resulting in a noop
7827 				 * for this device.
7828 				 */
7829 				linkwatch_run_queue();
7830 			}
7831 
7832 			__rtnl_unlock();
7833 
7834 			rebroadcast_time = jiffies;
7835 		}
7836 
7837 		msleep(250);
7838 
7839 		refcnt = netdev_refcnt_read(dev);
7840 
7841 		if (time_after(jiffies, warning_time + 10 * HZ)) {
7842 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7843 				 dev->name, refcnt);
7844 			warning_time = jiffies;
7845 		}
7846 	}
7847 }
7848 
7849 /* The sequence is:
7850  *
7851  *	rtnl_lock();
7852  *	...
7853  *	register_netdevice(x1);
7854  *	register_netdevice(x2);
7855  *	...
7856  *	unregister_netdevice(y1);
7857  *	unregister_netdevice(y2);
7858  *      ...
7859  *	rtnl_unlock();
7860  *	free_netdev(y1);
7861  *	free_netdev(y2);
7862  *
7863  * We are invoked by rtnl_unlock().
7864  * This allows us to deal with problems:
7865  * 1) We can delete sysfs objects which invoke hotplug
7866  *    without deadlocking with linkwatch via keventd.
7867  * 2) Since we run with the RTNL semaphore not held, we can sleep
7868  *    safely in order to wait for the netdev refcnt to drop to zero.
7869  *
7870  * We must not return until all unregister events added during
7871  * the interval the lock was held have been completed.
7872  */
7873 void netdev_run_todo(void)
7874 {
7875 	struct list_head list;
7876 
7877 	/* Snapshot list, allow later requests */
7878 	list_replace_init(&net_todo_list, &list);
7879 
7880 	__rtnl_unlock();
7881 
7882 
7883 	/* Wait for rcu callbacks to finish before next phase */
7884 	if (!list_empty(&list))
7885 		rcu_barrier();
7886 
7887 	while (!list_empty(&list)) {
7888 		struct net_device *dev
7889 			= list_first_entry(&list, struct net_device, todo_list);
7890 		list_del(&dev->todo_list);
7891 
7892 		rtnl_lock();
7893 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7894 		__rtnl_unlock();
7895 
7896 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7897 			pr_err("network todo '%s' but state %d\n",
7898 			       dev->name, dev->reg_state);
7899 			dump_stack();
7900 			continue;
7901 		}
7902 
7903 		dev->reg_state = NETREG_UNREGISTERED;
7904 
7905 		netdev_wait_allrefs(dev);
7906 
7907 		/* paranoia */
7908 		BUG_ON(netdev_refcnt_read(dev));
7909 		BUG_ON(!list_empty(&dev->ptype_all));
7910 		BUG_ON(!list_empty(&dev->ptype_specific));
7911 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
7912 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7913 		WARN_ON(dev->dn_ptr);
7914 
7915 		if (dev->priv_destructor)
7916 			dev->priv_destructor(dev);
7917 		if (dev->needs_free_netdev)
7918 			free_netdev(dev);
7919 
7920 		/* Report a network device has been unregistered */
7921 		rtnl_lock();
7922 		dev_net(dev)->dev_unreg_count--;
7923 		__rtnl_unlock();
7924 		wake_up(&netdev_unregistering_wq);
7925 
7926 		/* Free network device */
7927 		kobject_put(&dev->dev.kobj);
7928 	}
7929 }
7930 
7931 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7932  * all the same fields in the same order as net_device_stats, with only
7933  * the type differing, but rtnl_link_stats64 may have additional fields
7934  * at the end for newer counters.
7935  */
7936 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7937 			     const struct net_device_stats *netdev_stats)
7938 {
7939 #if BITS_PER_LONG == 64
7940 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7941 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
7942 	/* zero out counters that only exist in rtnl_link_stats64 */
7943 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
7944 	       sizeof(*stats64) - sizeof(*netdev_stats));
7945 #else
7946 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7947 	const unsigned long *src = (const unsigned long *)netdev_stats;
7948 	u64 *dst = (u64 *)stats64;
7949 
7950 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7951 	for (i = 0; i < n; i++)
7952 		dst[i] = src[i];
7953 	/* zero out counters that only exist in rtnl_link_stats64 */
7954 	memset((char *)stats64 + n * sizeof(u64), 0,
7955 	       sizeof(*stats64) - n * sizeof(u64));
7956 #endif
7957 }
7958 EXPORT_SYMBOL(netdev_stats_to_stats64);
7959 
7960 /**
7961  *	dev_get_stats	- get network device statistics
7962  *	@dev: device to get statistics from
7963  *	@storage: place to store stats
7964  *
7965  *	Get network statistics from device. Return @storage.
7966  *	The device driver may provide its own method by setting
7967  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7968  *	otherwise the internal statistics structure is used.
7969  */
7970 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7971 					struct rtnl_link_stats64 *storage)
7972 {
7973 	const struct net_device_ops *ops = dev->netdev_ops;
7974 
7975 	if (ops->ndo_get_stats64) {
7976 		memset(storage, 0, sizeof(*storage));
7977 		ops->ndo_get_stats64(dev, storage);
7978 	} else if (ops->ndo_get_stats) {
7979 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7980 	} else {
7981 		netdev_stats_to_stats64(storage, &dev->stats);
7982 	}
7983 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
7984 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
7985 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
7986 	return storage;
7987 }
7988 EXPORT_SYMBOL(dev_get_stats);
7989 
7990 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7991 {
7992 	struct netdev_queue *queue = dev_ingress_queue(dev);
7993 
7994 #ifdef CONFIG_NET_CLS_ACT
7995 	if (queue)
7996 		return queue;
7997 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7998 	if (!queue)
7999 		return NULL;
8000 	netdev_init_one_queue(dev, queue, NULL);
8001 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8002 	queue->qdisc_sleeping = &noop_qdisc;
8003 	rcu_assign_pointer(dev->ingress_queue, queue);
8004 #endif
8005 	return queue;
8006 }
8007 
8008 static const struct ethtool_ops default_ethtool_ops;
8009 
8010 void netdev_set_default_ethtool_ops(struct net_device *dev,
8011 				    const struct ethtool_ops *ops)
8012 {
8013 	if (dev->ethtool_ops == &default_ethtool_ops)
8014 		dev->ethtool_ops = ops;
8015 }
8016 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8017 
8018 void netdev_freemem(struct net_device *dev)
8019 {
8020 	char *addr = (char *)dev - dev->padded;
8021 
8022 	kvfree(addr);
8023 }
8024 
8025 /**
8026  * alloc_netdev_mqs - allocate network device
8027  * @sizeof_priv: size of private data to allocate space for
8028  * @name: device name format string
8029  * @name_assign_type: origin of device name
8030  * @setup: callback to initialize device
8031  * @txqs: the number of TX subqueues to allocate
8032  * @rxqs: the number of RX subqueues to allocate
8033  *
8034  * Allocates a struct net_device with private data area for driver use
8035  * and performs basic initialization.  Also allocates subqueue structs
8036  * for each queue on the device.
8037  */
8038 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8039 		unsigned char name_assign_type,
8040 		void (*setup)(struct net_device *),
8041 		unsigned int txqs, unsigned int rxqs)
8042 {
8043 	struct net_device *dev;
8044 	unsigned int alloc_size;
8045 	struct net_device *p;
8046 
8047 	BUG_ON(strlen(name) >= sizeof(dev->name));
8048 
8049 	if (txqs < 1) {
8050 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8051 		return NULL;
8052 	}
8053 
8054 #ifdef CONFIG_SYSFS
8055 	if (rxqs < 1) {
8056 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8057 		return NULL;
8058 	}
8059 #endif
8060 
8061 	alloc_size = sizeof(struct net_device);
8062 	if (sizeof_priv) {
8063 		/* ensure 32-byte alignment of private area */
8064 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8065 		alloc_size += sizeof_priv;
8066 	}
8067 	/* ensure 32-byte alignment of whole construct */
8068 	alloc_size += NETDEV_ALIGN - 1;
8069 
8070 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8071 	if (!p)
8072 		return NULL;
8073 
8074 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
8075 	dev->padded = (char *)dev - (char *)p;
8076 
8077 	dev->pcpu_refcnt = alloc_percpu(int);
8078 	if (!dev->pcpu_refcnt)
8079 		goto free_dev;
8080 
8081 	if (dev_addr_init(dev))
8082 		goto free_pcpu;
8083 
8084 	dev_mc_init(dev);
8085 	dev_uc_init(dev);
8086 
8087 	dev_net_set(dev, &init_net);
8088 
8089 	dev->gso_max_size = GSO_MAX_SIZE;
8090 	dev->gso_max_segs = GSO_MAX_SEGS;
8091 
8092 	INIT_LIST_HEAD(&dev->napi_list);
8093 	INIT_LIST_HEAD(&dev->unreg_list);
8094 	INIT_LIST_HEAD(&dev->close_list);
8095 	INIT_LIST_HEAD(&dev->link_watch_list);
8096 	INIT_LIST_HEAD(&dev->adj_list.upper);
8097 	INIT_LIST_HEAD(&dev->adj_list.lower);
8098 	INIT_LIST_HEAD(&dev->ptype_all);
8099 	INIT_LIST_HEAD(&dev->ptype_specific);
8100 #ifdef CONFIG_NET_SCHED
8101 	hash_init(dev->qdisc_hash);
8102 #endif
8103 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8104 	setup(dev);
8105 
8106 	if (!dev->tx_queue_len) {
8107 		dev->priv_flags |= IFF_NO_QUEUE;
8108 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8109 	}
8110 
8111 	dev->num_tx_queues = txqs;
8112 	dev->real_num_tx_queues = txqs;
8113 	if (netif_alloc_netdev_queues(dev))
8114 		goto free_all;
8115 
8116 #ifdef CONFIG_SYSFS
8117 	dev->num_rx_queues = rxqs;
8118 	dev->real_num_rx_queues = rxqs;
8119 	if (netif_alloc_rx_queues(dev))
8120 		goto free_all;
8121 #endif
8122 
8123 	strcpy(dev->name, name);
8124 	dev->name_assign_type = name_assign_type;
8125 	dev->group = INIT_NETDEV_GROUP;
8126 	if (!dev->ethtool_ops)
8127 		dev->ethtool_ops = &default_ethtool_ops;
8128 
8129 	nf_hook_ingress_init(dev);
8130 
8131 	return dev;
8132 
8133 free_all:
8134 	free_netdev(dev);
8135 	return NULL;
8136 
8137 free_pcpu:
8138 	free_percpu(dev->pcpu_refcnt);
8139 free_dev:
8140 	netdev_freemem(dev);
8141 	return NULL;
8142 }
8143 EXPORT_SYMBOL(alloc_netdev_mqs);
8144 
8145 /**
8146  * free_netdev - free network device
8147  * @dev: device
8148  *
8149  * This function does the last stage of destroying an allocated device
8150  * interface. The reference to the device object is released. If this
8151  * is the last reference then it will be freed.Must be called in process
8152  * context.
8153  */
8154 void free_netdev(struct net_device *dev)
8155 {
8156 	struct napi_struct *p, *n;
8157 	struct bpf_prog *prog;
8158 
8159 	might_sleep();
8160 	netif_free_tx_queues(dev);
8161 #ifdef CONFIG_SYSFS
8162 	kvfree(dev->_rx);
8163 #endif
8164 
8165 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8166 
8167 	/* Flush device addresses */
8168 	dev_addr_flush(dev);
8169 
8170 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8171 		netif_napi_del(p);
8172 
8173 	free_percpu(dev->pcpu_refcnt);
8174 	dev->pcpu_refcnt = NULL;
8175 
8176 	prog = rcu_dereference_protected(dev->xdp_prog, 1);
8177 	if (prog) {
8178 		bpf_prog_put(prog);
8179 		static_key_slow_dec(&generic_xdp_needed);
8180 	}
8181 
8182 	/*  Compatibility with error handling in drivers */
8183 	if (dev->reg_state == NETREG_UNINITIALIZED) {
8184 		netdev_freemem(dev);
8185 		return;
8186 	}
8187 
8188 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8189 	dev->reg_state = NETREG_RELEASED;
8190 
8191 	/* will free via device release */
8192 	put_device(&dev->dev);
8193 }
8194 EXPORT_SYMBOL(free_netdev);
8195 
8196 /**
8197  *	synchronize_net -  Synchronize with packet receive processing
8198  *
8199  *	Wait for packets currently being received to be done.
8200  *	Does not block later packets from starting.
8201  */
8202 void synchronize_net(void)
8203 {
8204 	might_sleep();
8205 	if (rtnl_is_locked())
8206 		synchronize_rcu_expedited();
8207 	else
8208 		synchronize_rcu();
8209 }
8210 EXPORT_SYMBOL(synchronize_net);
8211 
8212 /**
8213  *	unregister_netdevice_queue - remove device from the kernel
8214  *	@dev: device
8215  *	@head: list
8216  *
8217  *	This function shuts down a device interface and removes it
8218  *	from the kernel tables.
8219  *	If head not NULL, device is queued to be unregistered later.
8220  *
8221  *	Callers must hold the rtnl semaphore.  You may want
8222  *	unregister_netdev() instead of this.
8223  */
8224 
8225 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8226 {
8227 	ASSERT_RTNL();
8228 
8229 	if (head) {
8230 		list_move_tail(&dev->unreg_list, head);
8231 	} else {
8232 		rollback_registered(dev);
8233 		/* Finish processing unregister after unlock */
8234 		net_set_todo(dev);
8235 	}
8236 }
8237 EXPORT_SYMBOL(unregister_netdevice_queue);
8238 
8239 /**
8240  *	unregister_netdevice_many - unregister many devices
8241  *	@head: list of devices
8242  *
8243  *  Note: As most callers use a stack allocated list_head,
8244  *  we force a list_del() to make sure stack wont be corrupted later.
8245  */
8246 void unregister_netdevice_many(struct list_head *head)
8247 {
8248 	struct net_device *dev;
8249 
8250 	if (!list_empty(head)) {
8251 		rollback_registered_many(head);
8252 		list_for_each_entry(dev, head, unreg_list)
8253 			net_set_todo(dev);
8254 		list_del(head);
8255 	}
8256 }
8257 EXPORT_SYMBOL(unregister_netdevice_many);
8258 
8259 /**
8260  *	unregister_netdev - remove device from the kernel
8261  *	@dev: device
8262  *
8263  *	This function shuts down a device interface and removes it
8264  *	from the kernel tables.
8265  *
8266  *	This is just a wrapper for unregister_netdevice that takes
8267  *	the rtnl semaphore.  In general you want to use this and not
8268  *	unregister_netdevice.
8269  */
8270 void unregister_netdev(struct net_device *dev)
8271 {
8272 	rtnl_lock();
8273 	unregister_netdevice(dev);
8274 	rtnl_unlock();
8275 }
8276 EXPORT_SYMBOL(unregister_netdev);
8277 
8278 /**
8279  *	dev_change_net_namespace - move device to different nethost namespace
8280  *	@dev: device
8281  *	@net: network namespace
8282  *	@pat: If not NULL name pattern to try if the current device name
8283  *	      is already taken in the destination network namespace.
8284  *
8285  *	This function shuts down a device interface and moves it
8286  *	to a new network namespace. On success 0 is returned, on
8287  *	a failure a netagive errno code is returned.
8288  *
8289  *	Callers must hold the rtnl semaphore.
8290  */
8291 
8292 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8293 {
8294 	int err;
8295 
8296 	ASSERT_RTNL();
8297 
8298 	/* Don't allow namespace local devices to be moved. */
8299 	err = -EINVAL;
8300 	if (dev->features & NETIF_F_NETNS_LOCAL)
8301 		goto out;
8302 
8303 	/* Ensure the device has been registrered */
8304 	if (dev->reg_state != NETREG_REGISTERED)
8305 		goto out;
8306 
8307 	/* Get out if there is nothing todo */
8308 	err = 0;
8309 	if (net_eq(dev_net(dev), net))
8310 		goto out;
8311 
8312 	/* Pick the destination device name, and ensure
8313 	 * we can use it in the destination network namespace.
8314 	 */
8315 	err = -EEXIST;
8316 	if (__dev_get_by_name(net, dev->name)) {
8317 		/* We get here if we can't use the current device name */
8318 		if (!pat)
8319 			goto out;
8320 		if (dev_get_valid_name(net, dev, pat) < 0)
8321 			goto out;
8322 	}
8323 
8324 	/*
8325 	 * And now a mini version of register_netdevice unregister_netdevice.
8326 	 */
8327 
8328 	/* If device is running close it first. */
8329 	dev_close(dev);
8330 
8331 	/* And unlink it from device chain */
8332 	err = -ENODEV;
8333 	unlist_netdevice(dev);
8334 
8335 	synchronize_net();
8336 
8337 	/* Shutdown queueing discipline. */
8338 	dev_shutdown(dev);
8339 
8340 	/* Notify protocols, that we are about to destroy
8341 	 * this device. They should clean all the things.
8342 	 *
8343 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
8344 	 * This is wanted because this way 8021q and macvlan know
8345 	 * the device is just moving and can keep their slaves up.
8346 	 */
8347 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8348 	rcu_barrier();
8349 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8350 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
8351 
8352 	/*
8353 	 *	Flush the unicast and multicast chains
8354 	 */
8355 	dev_uc_flush(dev);
8356 	dev_mc_flush(dev);
8357 
8358 	/* Send a netdev-removed uevent to the old namespace */
8359 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8360 	netdev_adjacent_del_links(dev);
8361 
8362 	/* Actually switch the network namespace */
8363 	dev_net_set(dev, net);
8364 
8365 	/* If there is an ifindex conflict assign a new one */
8366 	if (__dev_get_by_index(net, dev->ifindex))
8367 		dev->ifindex = dev_new_index(net);
8368 
8369 	/* Send a netdev-add uevent to the new namespace */
8370 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8371 	netdev_adjacent_add_links(dev);
8372 
8373 	/* Fixup kobjects */
8374 	err = device_rename(&dev->dev, dev->name);
8375 	WARN_ON(err);
8376 
8377 	/* Add the device back in the hashes */
8378 	list_netdevice(dev);
8379 
8380 	/* Notify protocols, that a new device appeared. */
8381 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
8382 
8383 	/*
8384 	 *	Prevent userspace races by waiting until the network
8385 	 *	device is fully setup before sending notifications.
8386 	 */
8387 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8388 
8389 	synchronize_net();
8390 	err = 0;
8391 out:
8392 	return err;
8393 }
8394 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8395 
8396 static int dev_cpu_dead(unsigned int oldcpu)
8397 {
8398 	struct sk_buff **list_skb;
8399 	struct sk_buff *skb;
8400 	unsigned int cpu;
8401 	struct softnet_data *sd, *oldsd, *remsd = NULL;
8402 
8403 	local_irq_disable();
8404 	cpu = smp_processor_id();
8405 	sd = &per_cpu(softnet_data, cpu);
8406 	oldsd = &per_cpu(softnet_data, oldcpu);
8407 
8408 	/* Find end of our completion_queue. */
8409 	list_skb = &sd->completion_queue;
8410 	while (*list_skb)
8411 		list_skb = &(*list_skb)->next;
8412 	/* Append completion queue from offline CPU. */
8413 	*list_skb = oldsd->completion_queue;
8414 	oldsd->completion_queue = NULL;
8415 
8416 	/* Append output queue from offline CPU. */
8417 	if (oldsd->output_queue) {
8418 		*sd->output_queue_tailp = oldsd->output_queue;
8419 		sd->output_queue_tailp = oldsd->output_queue_tailp;
8420 		oldsd->output_queue = NULL;
8421 		oldsd->output_queue_tailp = &oldsd->output_queue;
8422 	}
8423 	/* Append NAPI poll list from offline CPU, with one exception :
8424 	 * process_backlog() must be called by cpu owning percpu backlog.
8425 	 * We properly handle process_queue & input_pkt_queue later.
8426 	 */
8427 	while (!list_empty(&oldsd->poll_list)) {
8428 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8429 							    struct napi_struct,
8430 							    poll_list);
8431 
8432 		list_del_init(&napi->poll_list);
8433 		if (napi->poll == process_backlog)
8434 			napi->state = 0;
8435 		else
8436 			____napi_schedule(sd, napi);
8437 	}
8438 
8439 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
8440 	local_irq_enable();
8441 
8442 #ifdef CONFIG_RPS
8443 	remsd = oldsd->rps_ipi_list;
8444 	oldsd->rps_ipi_list = NULL;
8445 #endif
8446 	/* send out pending IPI's on offline CPU */
8447 	net_rps_send_ipi(remsd);
8448 
8449 	/* Process offline CPU's input_pkt_queue */
8450 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8451 		netif_rx_ni(skb);
8452 		input_queue_head_incr(oldsd);
8453 	}
8454 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8455 		netif_rx_ni(skb);
8456 		input_queue_head_incr(oldsd);
8457 	}
8458 
8459 	return 0;
8460 }
8461 
8462 /**
8463  *	netdev_increment_features - increment feature set by one
8464  *	@all: current feature set
8465  *	@one: new feature set
8466  *	@mask: mask feature set
8467  *
8468  *	Computes a new feature set after adding a device with feature set
8469  *	@one to the master device with current feature set @all.  Will not
8470  *	enable anything that is off in @mask. Returns the new feature set.
8471  */
8472 netdev_features_t netdev_increment_features(netdev_features_t all,
8473 	netdev_features_t one, netdev_features_t mask)
8474 {
8475 	if (mask & NETIF_F_HW_CSUM)
8476 		mask |= NETIF_F_CSUM_MASK;
8477 	mask |= NETIF_F_VLAN_CHALLENGED;
8478 
8479 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8480 	all &= one | ~NETIF_F_ALL_FOR_ALL;
8481 
8482 	/* If one device supports hw checksumming, set for all. */
8483 	if (all & NETIF_F_HW_CSUM)
8484 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8485 
8486 	return all;
8487 }
8488 EXPORT_SYMBOL(netdev_increment_features);
8489 
8490 static struct hlist_head * __net_init netdev_create_hash(void)
8491 {
8492 	int i;
8493 	struct hlist_head *hash;
8494 
8495 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8496 	if (hash != NULL)
8497 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
8498 			INIT_HLIST_HEAD(&hash[i]);
8499 
8500 	return hash;
8501 }
8502 
8503 /* Initialize per network namespace state */
8504 static int __net_init netdev_init(struct net *net)
8505 {
8506 	if (net != &init_net)
8507 		INIT_LIST_HEAD(&net->dev_base_head);
8508 
8509 	net->dev_name_head = netdev_create_hash();
8510 	if (net->dev_name_head == NULL)
8511 		goto err_name;
8512 
8513 	net->dev_index_head = netdev_create_hash();
8514 	if (net->dev_index_head == NULL)
8515 		goto err_idx;
8516 
8517 	return 0;
8518 
8519 err_idx:
8520 	kfree(net->dev_name_head);
8521 err_name:
8522 	return -ENOMEM;
8523 }
8524 
8525 /**
8526  *	netdev_drivername - network driver for the device
8527  *	@dev: network device
8528  *
8529  *	Determine network driver for device.
8530  */
8531 const char *netdev_drivername(const struct net_device *dev)
8532 {
8533 	const struct device_driver *driver;
8534 	const struct device *parent;
8535 	const char *empty = "";
8536 
8537 	parent = dev->dev.parent;
8538 	if (!parent)
8539 		return empty;
8540 
8541 	driver = parent->driver;
8542 	if (driver && driver->name)
8543 		return driver->name;
8544 	return empty;
8545 }
8546 
8547 static void __netdev_printk(const char *level, const struct net_device *dev,
8548 			    struct va_format *vaf)
8549 {
8550 	if (dev && dev->dev.parent) {
8551 		dev_printk_emit(level[1] - '0',
8552 				dev->dev.parent,
8553 				"%s %s %s%s: %pV",
8554 				dev_driver_string(dev->dev.parent),
8555 				dev_name(dev->dev.parent),
8556 				netdev_name(dev), netdev_reg_state(dev),
8557 				vaf);
8558 	} else if (dev) {
8559 		printk("%s%s%s: %pV",
8560 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
8561 	} else {
8562 		printk("%s(NULL net_device): %pV", level, vaf);
8563 	}
8564 }
8565 
8566 void netdev_printk(const char *level, const struct net_device *dev,
8567 		   const char *format, ...)
8568 {
8569 	struct va_format vaf;
8570 	va_list args;
8571 
8572 	va_start(args, format);
8573 
8574 	vaf.fmt = format;
8575 	vaf.va = &args;
8576 
8577 	__netdev_printk(level, dev, &vaf);
8578 
8579 	va_end(args);
8580 }
8581 EXPORT_SYMBOL(netdev_printk);
8582 
8583 #define define_netdev_printk_level(func, level)			\
8584 void func(const struct net_device *dev, const char *fmt, ...)	\
8585 {								\
8586 	struct va_format vaf;					\
8587 	va_list args;						\
8588 								\
8589 	va_start(args, fmt);					\
8590 								\
8591 	vaf.fmt = fmt;						\
8592 	vaf.va = &args;						\
8593 								\
8594 	__netdev_printk(level, dev, &vaf);			\
8595 								\
8596 	va_end(args);						\
8597 }								\
8598 EXPORT_SYMBOL(func);
8599 
8600 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8601 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8602 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8603 define_netdev_printk_level(netdev_err, KERN_ERR);
8604 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8605 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8606 define_netdev_printk_level(netdev_info, KERN_INFO);
8607 
8608 static void __net_exit netdev_exit(struct net *net)
8609 {
8610 	kfree(net->dev_name_head);
8611 	kfree(net->dev_index_head);
8612 }
8613 
8614 static struct pernet_operations __net_initdata netdev_net_ops = {
8615 	.init = netdev_init,
8616 	.exit = netdev_exit,
8617 };
8618 
8619 static void __net_exit default_device_exit(struct net *net)
8620 {
8621 	struct net_device *dev, *aux;
8622 	/*
8623 	 * Push all migratable network devices back to the
8624 	 * initial network namespace
8625 	 */
8626 	rtnl_lock();
8627 	for_each_netdev_safe(net, dev, aux) {
8628 		int err;
8629 		char fb_name[IFNAMSIZ];
8630 
8631 		/* Ignore unmoveable devices (i.e. loopback) */
8632 		if (dev->features & NETIF_F_NETNS_LOCAL)
8633 			continue;
8634 
8635 		/* Leave virtual devices for the generic cleanup */
8636 		if (dev->rtnl_link_ops)
8637 			continue;
8638 
8639 		/* Push remaining network devices to init_net */
8640 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8641 		err = dev_change_net_namespace(dev, &init_net, fb_name);
8642 		if (err) {
8643 			pr_emerg("%s: failed to move %s to init_net: %d\n",
8644 				 __func__, dev->name, err);
8645 			BUG();
8646 		}
8647 	}
8648 	rtnl_unlock();
8649 }
8650 
8651 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8652 {
8653 	/* Return with the rtnl_lock held when there are no network
8654 	 * devices unregistering in any network namespace in net_list.
8655 	 */
8656 	struct net *net;
8657 	bool unregistering;
8658 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
8659 
8660 	add_wait_queue(&netdev_unregistering_wq, &wait);
8661 	for (;;) {
8662 		unregistering = false;
8663 		rtnl_lock();
8664 		list_for_each_entry(net, net_list, exit_list) {
8665 			if (net->dev_unreg_count > 0) {
8666 				unregistering = true;
8667 				break;
8668 			}
8669 		}
8670 		if (!unregistering)
8671 			break;
8672 		__rtnl_unlock();
8673 
8674 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8675 	}
8676 	remove_wait_queue(&netdev_unregistering_wq, &wait);
8677 }
8678 
8679 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8680 {
8681 	/* At exit all network devices most be removed from a network
8682 	 * namespace.  Do this in the reverse order of registration.
8683 	 * Do this across as many network namespaces as possible to
8684 	 * improve batching efficiency.
8685 	 */
8686 	struct net_device *dev;
8687 	struct net *net;
8688 	LIST_HEAD(dev_kill_list);
8689 
8690 	/* To prevent network device cleanup code from dereferencing
8691 	 * loopback devices or network devices that have been freed
8692 	 * wait here for all pending unregistrations to complete,
8693 	 * before unregistring the loopback device and allowing the
8694 	 * network namespace be freed.
8695 	 *
8696 	 * The netdev todo list containing all network devices
8697 	 * unregistrations that happen in default_device_exit_batch
8698 	 * will run in the rtnl_unlock() at the end of
8699 	 * default_device_exit_batch.
8700 	 */
8701 	rtnl_lock_unregistering(net_list);
8702 	list_for_each_entry(net, net_list, exit_list) {
8703 		for_each_netdev_reverse(net, dev) {
8704 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8705 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8706 			else
8707 				unregister_netdevice_queue(dev, &dev_kill_list);
8708 		}
8709 	}
8710 	unregister_netdevice_many(&dev_kill_list);
8711 	rtnl_unlock();
8712 }
8713 
8714 static struct pernet_operations __net_initdata default_device_ops = {
8715 	.exit = default_device_exit,
8716 	.exit_batch = default_device_exit_batch,
8717 };
8718 
8719 /*
8720  *	Initialize the DEV module. At boot time this walks the device list and
8721  *	unhooks any devices that fail to initialise (normally hardware not
8722  *	present) and leaves us with a valid list of present and active devices.
8723  *
8724  */
8725 
8726 /*
8727  *       This is called single threaded during boot, so no need
8728  *       to take the rtnl semaphore.
8729  */
8730 static int __init net_dev_init(void)
8731 {
8732 	int i, rc = -ENOMEM;
8733 
8734 	BUG_ON(!dev_boot_phase);
8735 
8736 	if (dev_proc_init())
8737 		goto out;
8738 
8739 	if (netdev_kobject_init())
8740 		goto out;
8741 
8742 	INIT_LIST_HEAD(&ptype_all);
8743 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
8744 		INIT_LIST_HEAD(&ptype_base[i]);
8745 
8746 	INIT_LIST_HEAD(&offload_base);
8747 
8748 	if (register_pernet_subsys(&netdev_net_ops))
8749 		goto out;
8750 
8751 	/*
8752 	 *	Initialise the packet receive queues.
8753 	 */
8754 
8755 	for_each_possible_cpu(i) {
8756 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8757 		struct softnet_data *sd = &per_cpu(softnet_data, i);
8758 
8759 		INIT_WORK(flush, flush_backlog);
8760 
8761 		skb_queue_head_init(&sd->input_pkt_queue);
8762 		skb_queue_head_init(&sd->process_queue);
8763 		INIT_LIST_HEAD(&sd->poll_list);
8764 		sd->output_queue_tailp = &sd->output_queue;
8765 #ifdef CONFIG_RPS
8766 		sd->csd.func = rps_trigger_softirq;
8767 		sd->csd.info = sd;
8768 		sd->cpu = i;
8769 #endif
8770 
8771 		sd->backlog.poll = process_backlog;
8772 		sd->backlog.weight = weight_p;
8773 	}
8774 
8775 	dev_boot_phase = 0;
8776 
8777 	/* The loopback device is special if any other network devices
8778 	 * is present in a network namespace the loopback device must
8779 	 * be present. Since we now dynamically allocate and free the
8780 	 * loopback device ensure this invariant is maintained by
8781 	 * keeping the loopback device as the first device on the
8782 	 * list of network devices.  Ensuring the loopback devices
8783 	 * is the first device that appears and the last network device
8784 	 * that disappears.
8785 	 */
8786 	if (register_pernet_device(&loopback_net_ops))
8787 		goto out;
8788 
8789 	if (register_pernet_device(&default_device_ops))
8790 		goto out;
8791 
8792 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8793 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8794 
8795 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8796 				       NULL, dev_cpu_dead);
8797 	WARN_ON(rc < 0);
8798 	rc = 0;
8799 out:
8800 	return rc;
8801 }
8802 
8803 subsys_initcall(net_dev_init);
8804