1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitops.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/mm.h> 81 #include <linux/mutex.h> 82 #include <linux/string.h> 83 #include <linux/mm.h> 84 #include <linux/socket.h> 85 #include <linux/sockios.h> 86 #include <linux/errno.h> 87 #include <linux/interrupt.h> 88 #include <linux/if_ether.h> 89 #include <linux/netdevice.h> 90 #include <linux/etherdevice.h> 91 #include <linux/ethtool.h> 92 #include <linux/skbuff.h> 93 #include <linux/bpf.h> 94 #include <linux/bpf_trace.h> 95 #include <net/net_namespace.h> 96 #include <net/sock.h> 97 #include <net/busy_poll.h> 98 #include <linux/rtnetlink.h> 99 #include <linux/stat.h> 100 #include <net/dst.h> 101 #include <net/dst_metadata.h> 102 #include <net/pkt_sched.h> 103 #include <net/pkt_cls.h> 104 #include <net/checksum.h> 105 #include <net/xfrm.h> 106 #include <linux/highmem.h> 107 #include <linux/init.h> 108 #include <linux/module.h> 109 #include <linux/netpoll.h> 110 #include <linux/rcupdate.h> 111 #include <linux/delay.h> 112 #include <net/iw_handler.h> 113 #include <asm/current.h> 114 #include <linux/audit.h> 115 #include <linux/dmaengine.h> 116 #include <linux/err.h> 117 #include <linux/ctype.h> 118 #include <linux/if_arp.h> 119 #include <linux/if_vlan.h> 120 #include <linux/ip.h> 121 #include <net/ip.h> 122 #include <net/mpls.h> 123 #include <linux/ipv6.h> 124 #include <linux/in.h> 125 #include <linux/jhash.h> 126 #include <linux/random.h> 127 #include <trace/events/napi.h> 128 #include <trace/events/net.h> 129 #include <trace/events/skb.h> 130 #include <linux/inetdevice.h> 131 #include <linux/cpu_rmap.h> 132 #include <linux/static_key.h> 133 #include <linux/hashtable.h> 134 #include <linux/vmalloc.h> 135 #include <linux/if_macvlan.h> 136 #include <linux/errqueue.h> 137 #include <linux/hrtimer.h> 138 #include <linux/netfilter_ingress.h> 139 #include <linux/crash_dump.h> 140 #include <linux/sctp.h> 141 #include <net/udp_tunnel.h> 142 #include <linux/net_namespace.h> 143 #include <linux/indirect_call_wrapper.h> 144 #include <net/devlink.h> 145 146 #include "net-sysfs.h" 147 148 #define MAX_GRO_SKBS 8 149 150 /* This should be increased if a protocol with a bigger head is added. */ 151 #define GRO_MAX_HEAD (MAX_HEADER + 128) 152 153 static DEFINE_SPINLOCK(ptype_lock); 154 static DEFINE_SPINLOCK(offload_lock); 155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 156 struct list_head ptype_all __read_mostly; /* Taps */ 157 static struct list_head offload_base __read_mostly; 158 159 static int netif_rx_internal(struct sk_buff *skb); 160 static int call_netdevice_notifiers_info(unsigned long val, 161 struct netdev_notifier_info *info); 162 static int call_netdevice_notifiers_extack(unsigned long val, 163 struct net_device *dev, 164 struct netlink_ext_ack *extack); 165 static struct napi_struct *napi_by_id(unsigned int napi_id); 166 167 /* 168 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 169 * semaphore. 170 * 171 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 172 * 173 * Writers must hold the rtnl semaphore while they loop through the 174 * dev_base_head list, and hold dev_base_lock for writing when they do the 175 * actual updates. This allows pure readers to access the list even 176 * while a writer is preparing to update it. 177 * 178 * To put it another way, dev_base_lock is held for writing only to 179 * protect against pure readers; the rtnl semaphore provides the 180 * protection against other writers. 181 * 182 * See, for example usages, register_netdevice() and 183 * unregister_netdevice(), which must be called with the rtnl 184 * semaphore held. 185 */ 186 DEFINE_RWLOCK(dev_base_lock); 187 EXPORT_SYMBOL(dev_base_lock); 188 189 static DEFINE_MUTEX(ifalias_mutex); 190 191 /* protects napi_hash addition/deletion and napi_gen_id */ 192 static DEFINE_SPINLOCK(napi_hash_lock); 193 194 static unsigned int napi_gen_id = NR_CPUS; 195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 196 197 static seqcount_t devnet_rename_seq; 198 199 static inline void dev_base_seq_inc(struct net *net) 200 { 201 while (++net->dev_base_seq == 0) 202 ; 203 } 204 205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 206 { 207 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 208 209 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 210 } 211 212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 213 { 214 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 215 } 216 217 static inline void rps_lock(struct softnet_data *sd) 218 { 219 #ifdef CONFIG_RPS 220 spin_lock(&sd->input_pkt_queue.lock); 221 #endif 222 } 223 224 static inline void rps_unlock(struct softnet_data *sd) 225 { 226 #ifdef CONFIG_RPS 227 spin_unlock(&sd->input_pkt_queue.lock); 228 #endif 229 } 230 231 /* Device list insertion */ 232 static void list_netdevice(struct net_device *dev) 233 { 234 struct net *net = dev_net(dev); 235 236 ASSERT_RTNL(); 237 238 write_lock_bh(&dev_base_lock); 239 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 240 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 241 hlist_add_head_rcu(&dev->index_hlist, 242 dev_index_hash(net, dev->ifindex)); 243 write_unlock_bh(&dev_base_lock); 244 245 dev_base_seq_inc(net); 246 } 247 248 /* Device list removal 249 * caller must respect a RCU grace period before freeing/reusing dev 250 */ 251 static void unlist_netdevice(struct net_device *dev) 252 { 253 ASSERT_RTNL(); 254 255 /* Unlink dev from the device chain */ 256 write_lock_bh(&dev_base_lock); 257 list_del_rcu(&dev->dev_list); 258 hlist_del_rcu(&dev->name_hlist); 259 hlist_del_rcu(&dev->index_hlist); 260 write_unlock_bh(&dev_base_lock); 261 262 dev_base_seq_inc(dev_net(dev)); 263 } 264 265 /* 266 * Our notifier list 267 */ 268 269 static RAW_NOTIFIER_HEAD(netdev_chain); 270 271 /* 272 * Device drivers call our routines to queue packets here. We empty the 273 * queue in the local softnet handler. 274 */ 275 276 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 277 EXPORT_PER_CPU_SYMBOL(softnet_data); 278 279 #ifdef CONFIG_LOCKDEP 280 /* 281 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 282 * according to dev->type 283 */ 284 static const unsigned short netdev_lock_type[] = { 285 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 286 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 287 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 288 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 289 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 290 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 291 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 292 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 293 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 294 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 295 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 296 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 297 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 298 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 299 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 300 301 static const char *const netdev_lock_name[] = { 302 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 303 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 304 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 305 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 306 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 307 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 308 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 309 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 310 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 311 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 312 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 313 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 314 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 315 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 316 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 317 318 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 319 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 320 321 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 322 { 323 int i; 324 325 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 326 if (netdev_lock_type[i] == dev_type) 327 return i; 328 /* the last key is used by default */ 329 return ARRAY_SIZE(netdev_lock_type) - 1; 330 } 331 332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 333 unsigned short dev_type) 334 { 335 int i; 336 337 i = netdev_lock_pos(dev_type); 338 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 339 netdev_lock_name[i]); 340 } 341 342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 343 { 344 int i; 345 346 i = netdev_lock_pos(dev->type); 347 lockdep_set_class_and_name(&dev->addr_list_lock, 348 &netdev_addr_lock_key[i], 349 netdev_lock_name[i]); 350 } 351 #else 352 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 353 unsigned short dev_type) 354 { 355 } 356 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 357 { 358 } 359 #endif 360 361 /******************************************************************************* 362 * 363 * Protocol management and registration routines 364 * 365 *******************************************************************************/ 366 367 368 /* 369 * Add a protocol ID to the list. Now that the input handler is 370 * smarter we can dispense with all the messy stuff that used to be 371 * here. 372 * 373 * BEWARE!!! Protocol handlers, mangling input packets, 374 * MUST BE last in hash buckets and checking protocol handlers 375 * MUST start from promiscuous ptype_all chain in net_bh. 376 * It is true now, do not change it. 377 * Explanation follows: if protocol handler, mangling packet, will 378 * be the first on list, it is not able to sense, that packet 379 * is cloned and should be copied-on-write, so that it will 380 * change it and subsequent readers will get broken packet. 381 * --ANK (980803) 382 */ 383 384 static inline struct list_head *ptype_head(const struct packet_type *pt) 385 { 386 if (pt->type == htons(ETH_P_ALL)) 387 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 388 else 389 return pt->dev ? &pt->dev->ptype_specific : 390 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 391 } 392 393 /** 394 * dev_add_pack - add packet handler 395 * @pt: packet type declaration 396 * 397 * Add a protocol handler to the networking stack. The passed &packet_type 398 * is linked into kernel lists and may not be freed until it has been 399 * removed from the kernel lists. 400 * 401 * This call does not sleep therefore it can not 402 * guarantee all CPU's that are in middle of receiving packets 403 * will see the new packet type (until the next received packet). 404 */ 405 406 void dev_add_pack(struct packet_type *pt) 407 { 408 struct list_head *head = ptype_head(pt); 409 410 spin_lock(&ptype_lock); 411 list_add_rcu(&pt->list, head); 412 spin_unlock(&ptype_lock); 413 } 414 EXPORT_SYMBOL(dev_add_pack); 415 416 /** 417 * __dev_remove_pack - remove packet handler 418 * @pt: packet type declaration 419 * 420 * Remove a protocol handler that was previously added to the kernel 421 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 422 * from the kernel lists and can be freed or reused once this function 423 * returns. 424 * 425 * The packet type might still be in use by receivers 426 * and must not be freed until after all the CPU's have gone 427 * through a quiescent state. 428 */ 429 void __dev_remove_pack(struct packet_type *pt) 430 { 431 struct list_head *head = ptype_head(pt); 432 struct packet_type *pt1; 433 434 spin_lock(&ptype_lock); 435 436 list_for_each_entry(pt1, head, list) { 437 if (pt == pt1) { 438 list_del_rcu(&pt->list); 439 goto out; 440 } 441 } 442 443 pr_warn("dev_remove_pack: %p not found\n", pt); 444 out: 445 spin_unlock(&ptype_lock); 446 } 447 EXPORT_SYMBOL(__dev_remove_pack); 448 449 /** 450 * dev_remove_pack - remove packet handler 451 * @pt: packet type declaration 452 * 453 * Remove a protocol handler that was previously added to the kernel 454 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 455 * from the kernel lists and can be freed or reused once this function 456 * returns. 457 * 458 * This call sleeps to guarantee that no CPU is looking at the packet 459 * type after return. 460 */ 461 void dev_remove_pack(struct packet_type *pt) 462 { 463 __dev_remove_pack(pt); 464 465 synchronize_net(); 466 } 467 EXPORT_SYMBOL(dev_remove_pack); 468 469 470 /** 471 * dev_add_offload - register offload handlers 472 * @po: protocol offload declaration 473 * 474 * Add protocol offload handlers to the networking stack. The passed 475 * &proto_offload is linked into kernel lists and may not be freed until 476 * it has been removed from the kernel lists. 477 * 478 * This call does not sleep therefore it can not 479 * guarantee all CPU's that are in middle of receiving packets 480 * will see the new offload handlers (until the next received packet). 481 */ 482 void dev_add_offload(struct packet_offload *po) 483 { 484 struct packet_offload *elem; 485 486 spin_lock(&offload_lock); 487 list_for_each_entry(elem, &offload_base, list) { 488 if (po->priority < elem->priority) 489 break; 490 } 491 list_add_rcu(&po->list, elem->list.prev); 492 spin_unlock(&offload_lock); 493 } 494 EXPORT_SYMBOL(dev_add_offload); 495 496 /** 497 * __dev_remove_offload - remove offload handler 498 * @po: packet offload declaration 499 * 500 * Remove a protocol offload handler that was previously added to the 501 * kernel offload handlers by dev_add_offload(). The passed &offload_type 502 * is removed from the kernel lists and can be freed or reused once this 503 * function returns. 504 * 505 * The packet type might still be in use by receivers 506 * and must not be freed until after all the CPU's have gone 507 * through a quiescent state. 508 */ 509 static void __dev_remove_offload(struct packet_offload *po) 510 { 511 struct list_head *head = &offload_base; 512 struct packet_offload *po1; 513 514 spin_lock(&offload_lock); 515 516 list_for_each_entry(po1, head, list) { 517 if (po == po1) { 518 list_del_rcu(&po->list); 519 goto out; 520 } 521 } 522 523 pr_warn("dev_remove_offload: %p not found\n", po); 524 out: 525 spin_unlock(&offload_lock); 526 } 527 528 /** 529 * dev_remove_offload - remove packet offload handler 530 * @po: packet offload declaration 531 * 532 * Remove a packet offload handler that was previously added to the kernel 533 * offload handlers by dev_add_offload(). The passed &offload_type is 534 * removed from the kernel lists and can be freed or reused once this 535 * function returns. 536 * 537 * This call sleeps to guarantee that no CPU is looking at the packet 538 * type after return. 539 */ 540 void dev_remove_offload(struct packet_offload *po) 541 { 542 __dev_remove_offload(po); 543 544 synchronize_net(); 545 } 546 EXPORT_SYMBOL(dev_remove_offload); 547 548 /****************************************************************************** 549 * 550 * Device Boot-time Settings Routines 551 * 552 ******************************************************************************/ 553 554 /* Boot time configuration table */ 555 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 556 557 /** 558 * netdev_boot_setup_add - add new setup entry 559 * @name: name of the device 560 * @map: configured settings for the device 561 * 562 * Adds new setup entry to the dev_boot_setup list. The function 563 * returns 0 on error and 1 on success. This is a generic routine to 564 * all netdevices. 565 */ 566 static int netdev_boot_setup_add(char *name, struct ifmap *map) 567 { 568 struct netdev_boot_setup *s; 569 int i; 570 571 s = dev_boot_setup; 572 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 573 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 574 memset(s[i].name, 0, sizeof(s[i].name)); 575 strlcpy(s[i].name, name, IFNAMSIZ); 576 memcpy(&s[i].map, map, sizeof(s[i].map)); 577 break; 578 } 579 } 580 581 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 582 } 583 584 /** 585 * netdev_boot_setup_check - check boot time settings 586 * @dev: the netdevice 587 * 588 * Check boot time settings for the device. 589 * The found settings are set for the device to be used 590 * later in the device probing. 591 * Returns 0 if no settings found, 1 if they are. 592 */ 593 int netdev_boot_setup_check(struct net_device *dev) 594 { 595 struct netdev_boot_setup *s = dev_boot_setup; 596 int i; 597 598 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 599 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 600 !strcmp(dev->name, s[i].name)) { 601 dev->irq = s[i].map.irq; 602 dev->base_addr = s[i].map.base_addr; 603 dev->mem_start = s[i].map.mem_start; 604 dev->mem_end = s[i].map.mem_end; 605 return 1; 606 } 607 } 608 return 0; 609 } 610 EXPORT_SYMBOL(netdev_boot_setup_check); 611 612 613 /** 614 * netdev_boot_base - get address from boot time settings 615 * @prefix: prefix for network device 616 * @unit: id for network device 617 * 618 * Check boot time settings for the base address of device. 619 * The found settings are set for the device to be used 620 * later in the device probing. 621 * Returns 0 if no settings found. 622 */ 623 unsigned long netdev_boot_base(const char *prefix, int unit) 624 { 625 const struct netdev_boot_setup *s = dev_boot_setup; 626 char name[IFNAMSIZ]; 627 int i; 628 629 sprintf(name, "%s%d", prefix, unit); 630 631 /* 632 * If device already registered then return base of 1 633 * to indicate not to probe for this interface 634 */ 635 if (__dev_get_by_name(&init_net, name)) 636 return 1; 637 638 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 639 if (!strcmp(name, s[i].name)) 640 return s[i].map.base_addr; 641 return 0; 642 } 643 644 /* 645 * Saves at boot time configured settings for any netdevice. 646 */ 647 int __init netdev_boot_setup(char *str) 648 { 649 int ints[5]; 650 struct ifmap map; 651 652 str = get_options(str, ARRAY_SIZE(ints), ints); 653 if (!str || !*str) 654 return 0; 655 656 /* Save settings */ 657 memset(&map, 0, sizeof(map)); 658 if (ints[0] > 0) 659 map.irq = ints[1]; 660 if (ints[0] > 1) 661 map.base_addr = ints[2]; 662 if (ints[0] > 2) 663 map.mem_start = ints[3]; 664 if (ints[0] > 3) 665 map.mem_end = ints[4]; 666 667 /* Add new entry to the list */ 668 return netdev_boot_setup_add(str, &map); 669 } 670 671 __setup("netdev=", netdev_boot_setup); 672 673 /******************************************************************************* 674 * 675 * Device Interface Subroutines 676 * 677 *******************************************************************************/ 678 679 /** 680 * dev_get_iflink - get 'iflink' value of a interface 681 * @dev: targeted interface 682 * 683 * Indicates the ifindex the interface is linked to. 684 * Physical interfaces have the same 'ifindex' and 'iflink' values. 685 */ 686 687 int dev_get_iflink(const struct net_device *dev) 688 { 689 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 690 return dev->netdev_ops->ndo_get_iflink(dev); 691 692 return dev->ifindex; 693 } 694 EXPORT_SYMBOL(dev_get_iflink); 695 696 /** 697 * dev_fill_metadata_dst - Retrieve tunnel egress information. 698 * @dev: targeted interface 699 * @skb: The packet. 700 * 701 * For better visibility of tunnel traffic OVS needs to retrieve 702 * egress tunnel information for a packet. Following API allows 703 * user to get this info. 704 */ 705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 706 { 707 struct ip_tunnel_info *info; 708 709 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 710 return -EINVAL; 711 712 info = skb_tunnel_info_unclone(skb); 713 if (!info) 714 return -ENOMEM; 715 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 716 return -EINVAL; 717 718 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 719 } 720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 721 722 /** 723 * __dev_get_by_name - find a device by its name 724 * @net: the applicable net namespace 725 * @name: name to find 726 * 727 * Find an interface by name. Must be called under RTNL semaphore 728 * or @dev_base_lock. If the name is found a pointer to the device 729 * is returned. If the name is not found then %NULL is returned. The 730 * reference counters are not incremented so the caller must be 731 * careful with locks. 732 */ 733 734 struct net_device *__dev_get_by_name(struct net *net, const char *name) 735 { 736 struct net_device *dev; 737 struct hlist_head *head = dev_name_hash(net, name); 738 739 hlist_for_each_entry(dev, head, name_hlist) 740 if (!strncmp(dev->name, name, IFNAMSIZ)) 741 return dev; 742 743 return NULL; 744 } 745 EXPORT_SYMBOL(__dev_get_by_name); 746 747 /** 748 * dev_get_by_name_rcu - find a device by its name 749 * @net: the applicable net namespace 750 * @name: name to find 751 * 752 * Find an interface by name. 753 * If the name is found a pointer to the device is returned. 754 * If the name is not found then %NULL is returned. 755 * The reference counters are not incremented so the caller must be 756 * careful with locks. The caller must hold RCU lock. 757 */ 758 759 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 760 { 761 struct net_device *dev; 762 struct hlist_head *head = dev_name_hash(net, name); 763 764 hlist_for_each_entry_rcu(dev, head, name_hlist) 765 if (!strncmp(dev->name, name, IFNAMSIZ)) 766 return dev; 767 768 return NULL; 769 } 770 EXPORT_SYMBOL(dev_get_by_name_rcu); 771 772 /** 773 * dev_get_by_name - find a device by its name 774 * @net: the applicable net namespace 775 * @name: name to find 776 * 777 * Find an interface by name. This can be called from any 778 * context and does its own locking. The returned handle has 779 * the usage count incremented and the caller must use dev_put() to 780 * release it when it is no longer needed. %NULL is returned if no 781 * matching device is found. 782 */ 783 784 struct net_device *dev_get_by_name(struct net *net, const char *name) 785 { 786 struct net_device *dev; 787 788 rcu_read_lock(); 789 dev = dev_get_by_name_rcu(net, name); 790 if (dev) 791 dev_hold(dev); 792 rcu_read_unlock(); 793 return dev; 794 } 795 EXPORT_SYMBOL(dev_get_by_name); 796 797 /** 798 * __dev_get_by_index - find a device by its ifindex 799 * @net: the applicable net namespace 800 * @ifindex: index of device 801 * 802 * Search for an interface by index. Returns %NULL if the device 803 * is not found or a pointer to the device. The device has not 804 * had its reference counter increased so the caller must be careful 805 * about locking. The caller must hold either the RTNL semaphore 806 * or @dev_base_lock. 807 */ 808 809 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 810 { 811 struct net_device *dev; 812 struct hlist_head *head = dev_index_hash(net, ifindex); 813 814 hlist_for_each_entry(dev, head, index_hlist) 815 if (dev->ifindex == ifindex) 816 return dev; 817 818 return NULL; 819 } 820 EXPORT_SYMBOL(__dev_get_by_index); 821 822 /** 823 * dev_get_by_index_rcu - find a device by its ifindex 824 * @net: the applicable net namespace 825 * @ifindex: index of device 826 * 827 * Search for an interface by index. Returns %NULL if the device 828 * is not found or a pointer to the device. The device has not 829 * had its reference counter increased so the caller must be careful 830 * about locking. The caller must hold RCU lock. 831 */ 832 833 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 834 { 835 struct net_device *dev; 836 struct hlist_head *head = dev_index_hash(net, ifindex); 837 838 hlist_for_each_entry_rcu(dev, head, index_hlist) 839 if (dev->ifindex == ifindex) 840 return dev; 841 842 return NULL; 843 } 844 EXPORT_SYMBOL(dev_get_by_index_rcu); 845 846 847 /** 848 * dev_get_by_index - find a device by its ifindex 849 * @net: the applicable net namespace 850 * @ifindex: index of device 851 * 852 * Search for an interface by index. Returns NULL if the device 853 * is not found or a pointer to the device. The device returned has 854 * had a reference added and the pointer is safe until the user calls 855 * dev_put to indicate they have finished with it. 856 */ 857 858 struct net_device *dev_get_by_index(struct net *net, int ifindex) 859 { 860 struct net_device *dev; 861 862 rcu_read_lock(); 863 dev = dev_get_by_index_rcu(net, ifindex); 864 if (dev) 865 dev_hold(dev); 866 rcu_read_unlock(); 867 return dev; 868 } 869 EXPORT_SYMBOL(dev_get_by_index); 870 871 /** 872 * dev_get_by_napi_id - find a device by napi_id 873 * @napi_id: ID of the NAPI struct 874 * 875 * Search for an interface by NAPI ID. Returns %NULL if the device 876 * is not found or a pointer to the device. The device has not had 877 * its reference counter increased so the caller must be careful 878 * about locking. The caller must hold RCU lock. 879 */ 880 881 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 882 { 883 struct napi_struct *napi; 884 885 WARN_ON_ONCE(!rcu_read_lock_held()); 886 887 if (napi_id < MIN_NAPI_ID) 888 return NULL; 889 890 napi = napi_by_id(napi_id); 891 892 return napi ? napi->dev : NULL; 893 } 894 EXPORT_SYMBOL(dev_get_by_napi_id); 895 896 /** 897 * netdev_get_name - get a netdevice name, knowing its ifindex. 898 * @net: network namespace 899 * @name: a pointer to the buffer where the name will be stored. 900 * @ifindex: the ifindex of the interface to get the name from. 901 * 902 * The use of raw_seqcount_begin() and cond_resched() before 903 * retrying is required as we want to give the writers a chance 904 * to complete when CONFIG_PREEMPT is not set. 905 */ 906 int netdev_get_name(struct net *net, char *name, int ifindex) 907 { 908 struct net_device *dev; 909 unsigned int seq; 910 911 retry: 912 seq = raw_seqcount_begin(&devnet_rename_seq); 913 rcu_read_lock(); 914 dev = dev_get_by_index_rcu(net, ifindex); 915 if (!dev) { 916 rcu_read_unlock(); 917 return -ENODEV; 918 } 919 920 strcpy(name, dev->name); 921 rcu_read_unlock(); 922 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 923 cond_resched(); 924 goto retry; 925 } 926 927 return 0; 928 } 929 930 /** 931 * dev_getbyhwaddr_rcu - find a device by its hardware address 932 * @net: the applicable net namespace 933 * @type: media type of device 934 * @ha: hardware address 935 * 936 * Search for an interface by MAC address. Returns NULL if the device 937 * is not found or a pointer to the device. 938 * The caller must hold RCU or RTNL. 939 * The returned device has not had its ref count increased 940 * and the caller must therefore be careful about locking 941 * 942 */ 943 944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 945 const char *ha) 946 { 947 struct net_device *dev; 948 949 for_each_netdev_rcu(net, dev) 950 if (dev->type == type && 951 !memcmp(dev->dev_addr, ha, dev->addr_len)) 952 return dev; 953 954 return NULL; 955 } 956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 957 958 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 959 { 960 struct net_device *dev; 961 962 ASSERT_RTNL(); 963 for_each_netdev(net, dev) 964 if (dev->type == type) 965 return dev; 966 967 return NULL; 968 } 969 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 970 971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 972 { 973 struct net_device *dev, *ret = NULL; 974 975 rcu_read_lock(); 976 for_each_netdev_rcu(net, dev) 977 if (dev->type == type) { 978 dev_hold(dev); 979 ret = dev; 980 break; 981 } 982 rcu_read_unlock(); 983 return ret; 984 } 985 EXPORT_SYMBOL(dev_getfirstbyhwtype); 986 987 /** 988 * __dev_get_by_flags - find any device with given flags 989 * @net: the applicable net namespace 990 * @if_flags: IFF_* values 991 * @mask: bitmask of bits in if_flags to check 992 * 993 * Search for any interface with the given flags. Returns NULL if a device 994 * is not found or a pointer to the device. Must be called inside 995 * rtnl_lock(), and result refcount is unchanged. 996 */ 997 998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 999 unsigned short mask) 1000 { 1001 struct net_device *dev, *ret; 1002 1003 ASSERT_RTNL(); 1004 1005 ret = NULL; 1006 for_each_netdev(net, dev) { 1007 if (((dev->flags ^ if_flags) & mask) == 0) { 1008 ret = dev; 1009 break; 1010 } 1011 } 1012 return ret; 1013 } 1014 EXPORT_SYMBOL(__dev_get_by_flags); 1015 1016 /** 1017 * dev_valid_name - check if name is okay for network device 1018 * @name: name string 1019 * 1020 * Network device names need to be valid file names to 1021 * to allow sysfs to work. We also disallow any kind of 1022 * whitespace. 1023 */ 1024 bool dev_valid_name(const char *name) 1025 { 1026 if (*name == '\0') 1027 return false; 1028 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1029 return false; 1030 if (!strcmp(name, ".") || !strcmp(name, "..")) 1031 return false; 1032 1033 while (*name) { 1034 if (*name == '/' || *name == ':' || isspace(*name)) 1035 return false; 1036 name++; 1037 } 1038 return true; 1039 } 1040 EXPORT_SYMBOL(dev_valid_name); 1041 1042 /** 1043 * __dev_alloc_name - allocate a name for a device 1044 * @net: network namespace to allocate the device name in 1045 * @name: name format string 1046 * @buf: scratch buffer and result name string 1047 * 1048 * Passed a format string - eg "lt%d" it will try and find a suitable 1049 * id. It scans list of devices to build up a free map, then chooses 1050 * the first empty slot. The caller must hold the dev_base or rtnl lock 1051 * while allocating the name and adding the device in order to avoid 1052 * duplicates. 1053 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1054 * Returns the number of the unit assigned or a negative errno code. 1055 */ 1056 1057 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1058 { 1059 int i = 0; 1060 const char *p; 1061 const int max_netdevices = 8*PAGE_SIZE; 1062 unsigned long *inuse; 1063 struct net_device *d; 1064 1065 if (!dev_valid_name(name)) 1066 return -EINVAL; 1067 1068 p = strchr(name, '%'); 1069 if (p) { 1070 /* 1071 * Verify the string as this thing may have come from 1072 * the user. There must be either one "%d" and no other "%" 1073 * characters. 1074 */ 1075 if (p[1] != 'd' || strchr(p + 2, '%')) 1076 return -EINVAL; 1077 1078 /* Use one page as a bit array of possible slots */ 1079 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1080 if (!inuse) 1081 return -ENOMEM; 1082 1083 for_each_netdev(net, d) { 1084 if (!sscanf(d->name, name, &i)) 1085 continue; 1086 if (i < 0 || i >= max_netdevices) 1087 continue; 1088 1089 /* avoid cases where sscanf is not exact inverse of printf */ 1090 snprintf(buf, IFNAMSIZ, name, i); 1091 if (!strncmp(buf, d->name, IFNAMSIZ)) 1092 set_bit(i, inuse); 1093 } 1094 1095 i = find_first_zero_bit(inuse, max_netdevices); 1096 free_page((unsigned long) inuse); 1097 } 1098 1099 snprintf(buf, IFNAMSIZ, name, i); 1100 if (!__dev_get_by_name(net, buf)) 1101 return i; 1102 1103 /* It is possible to run out of possible slots 1104 * when the name is long and there isn't enough space left 1105 * for the digits, or if all bits are used. 1106 */ 1107 return -ENFILE; 1108 } 1109 1110 static int dev_alloc_name_ns(struct net *net, 1111 struct net_device *dev, 1112 const char *name) 1113 { 1114 char buf[IFNAMSIZ]; 1115 int ret; 1116 1117 BUG_ON(!net); 1118 ret = __dev_alloc_name(net, name, buf); 1119 if (ret >= 0) 1120 strlcpy(dev->name, buf, IFNAMSIZ); 1121 return ret; 1122 } 1123 1124 /** 1125 * dev_alloc_name - allocate a name for a device 1126 * @dev: device 1127 * @name: name format string 1128 * 1129 * Passed a format string - eg "lt%d" it will try and find a suitable 1130 * id. It scans list of devices to build up a free map, then chooses 1131 * the first empty slot. The caller must hold the dev_base or rtnl lock 1132 * while allocating the name and adding the device in order to avoid 1133 * duplicates. 1134 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1135 * Returns the number of the unit assigned or a negative errno code. 1136 */ 1137 1138 int dev_alloc_name(struct net_device *dev, const char *name) 1139 { 1140 return dev_alloc_name_ns(dev_net(dev), dev, name); 1141 } 1142 EXPORT_SYMBOL(dev_alloc_name); 1143 1144 int dev_get_valid_name(struct net *net, struct net_device *dev, 1145 const char *name) 1146 { 1147 BUG_ON(!net); 1148 1149 if (!dev_valid_name(name)) 1150 return -EINVAL; 1151 1152 if (strchr(name, '%')) 1153 return dev_alloc_name_ns(net, dev, name); 1154 else if (__dev_get_by_name(net, name)) 1155 return -EEXIST; 1156 else if (dev->name != name) 1157 strlcpy(dev->name, name, IFNAMSIZ); 1158 1159 return 0; 1160 } 1161 EXPORT_SYMBOL(dev_get_valid_name); 1162 1163 /** 1164 * dev_change_name - change name of a device 1165 * @dev: device 1166 * @newname: name (or format string) must be at least IFNAMSIZ 1167 * 1168 * Change name of a device, can pass format strings "eth%d". 1169 * for wildcarding. 1170 */ 1171 int dev_change_name(struct net_device *dev, const char *newname) 1172 { 1173 unsigned char old_assign_type; 1174 char oldname[IFNAMSIZ]; 1175 int err = 0; 1176 int ret; 1177 struct net *net; 1178 1179 ASSERT_RTNL(); 1180 BUG_ON(!dev_net(dev)); 1181 1182 net = dev_net(dev); 1183 1184 /* Some auto-enslaved devices e.g. failover slaves are 1185 * special, as userspace might rename the device after 1186 * the interface had been brought up and running since 1187 * the point kernel initiated auto-enslavement. Allow 1188 * live name change even when these slave devices are 1189 * up and running. 1190 * 1191 * Typically, users of these auto-enslaving devices 1192 * don't actually care about slave name change, as 1193 * they are supposed to operate on master interface 1194 * directly. 1195 */ 1196 if (dev->flags & IFF_UP && 1197 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK))) 1198 return -EBUSY; 1199 1200 write_seqcount_begin(&devnet_rename_seq); 1201 1202 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1203 write_seqcount_end(&devnet_rename_seq); 1204 return 0; 1205 } 1206 1207 memcpy(oldname, dev->name, IFNAMSIZ); 1208 1209 err = dev_get_valid_name(net, dev, newname); 1210 if (err < 0) { 1211 write_seqcount_end(&devnet_rename_seq); 1212 return err; 1213 } 1214 1215 if (oldname[0] && !strchr(oldname, '%')) 1216 netdev_info(dev, "renamed from %s\n", oldname); 1217 1218 old_assign_type = dev->name_assign_type; 1219 dev->name_assign_type = NET_NAME_RENAMED; 1220 1221 rollback: 1222 ret = device_rename(&dev->dev, dev->name); 1223 if (ret) { 1224 memcpy(dev->name, oldname, IFNAMSIZ); 1225 dev->name_assign_type = old_assign_type; 1226 write_seqcount_end(&devnet_rename_seq); 1227 return ret; 1228 } 1229 1230 write_seqcount_end(&devnet_rename_seq); 1231 1232 netdev_adjacent_rename_links(dev, oldname); 1233 1234 write_lock_bh(&dev_base_lock); 1235 hlist_del_rcu(&dev->name_hlist); 1236 write_unlock_bh(&dev_base_lock); 1237 1238 synchronize_rcu(); 1239 1240 write_lock_bh(&dev_base_lock); 1241 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1242 write_unlock_bh(&dev_base_lock); 1243 1244 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1245 ret = notifier_to_errno(ret); 1246 1247 if (ret) { 1248 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1249 if (err >= 0) { 1250 err = ret; 1251 write_seqcount_begin(&devnet_rename_seq); 1252 memcpy(dev->name, oldname, IFNAMSIZ); 1253 memcpy(oldname, newname, IFNAMSIZ); 1254 dev->name_assign_type = old_assign_type; 1255 old_assign_type = NET_NAME_RENAMED; 1256 goto rollback; 1257 } else { 1258 pr_err("%s: name change rollback failed: %d\n", 1259 dev->name, ret); 1260 } 1261 } 1262 1263 return err; 1264 } 1265 1266 /** 1267 * dev_set_alias - change ifalias of a device 1268 * @dev: device 1269 * @alias: name up to IFALIASZ 1270 * @len: limit of bytes to copy from info 1271 * 1272 * Set ifalias for a device, 1273 */ 1274 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1275 { 1276 struct dev_ifalias *new_alias = NULL; 1277 1278 if (len >= IFALIASZ) 1279 return -EINVAL; 1280 1281 if (len) { 1282 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1283 if (!new_alias) 1284 return -ENOMEM; 1285 1286 memcpy(new_alias->ifalias, alias, len); 1287 new_alias->ifalias[len] = 0; 1288 } 1289 1290 mutex_lock(&ifalias_mutex); 1291 rcu_swap_protected(dev->ifalias, new_alias, 1292 mutex_is_locked(&ifalias_mutex)); 1293 mutex_unlock(&ifalias_mutex); 1294 1295 if (new_alias) 1296 kfree_rcu(new_alias, rcuhead); 1297 1298 return len; 1299 } 1300 EXPORT_SYMBOL(dev_set_alias); 1301 1302 /** 1303 * dev_get_alias - get ifalias of a device 1304 * @dev: device 1305 * @name: buffer to store name of ifalias 1306 * @len: size of buffer 1307 * 1308 * get ifalias for a device. Caller must make sure dev cannot go 1309 * away, e.g. rcu read lock or own a reference count to device. 1310 */ 1311 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1312 { 1313 const struct dev_ifalias *alias; 1314 int ret = 0; 1315 1316 rcu_read_lock(); 1317 alias = rcu_dereference(dev->ifalias); 1318 if (alias) 1319 ret = snprintf(name, len, "%s", alias->ifalias); 1320 rcu_read_unlock(); 1321 1322 return ret; 1323 } 1324 1325 /** 1326 * netdev_features_change - device changes features 1327 * @dev: device to cause notification 1328 * 1329 * Called to indicate a device has changed features. 1330 */ 1331 void netdev_features_change(struct net_device *dev) 1332 { 1333 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1334 } 1335 EXPORT_SYMBOL(netdev_features_change); 1336 1337 /** 1338 * netdev_state_change - device changes state 1339 * @dev: device to cause notification 1340 * 1341 * Called to indicate a device has changed state. This function calls 1342 * the notifier chains for netdev_chain and sends a NEWLINK message 1343 * to the routing socket. 1344 */ 1345 void netdev_state_change(struct net_device *dev) 1346 { 1347 if (dev->flags & IFF_UP) { 1348 struct netdev_notifier_change_info change_info = { 1349 .info.dev = dev, 1350 }; 1351 1352 call_netdevice_notifiers_info(NETDEV_CHANGE, 1353 &change_info.info); 1354 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1355 } 1356 } 1357 EXPORT_SYMBOL(netdev_state_change); 1358 1359 /** 1360 * netdev_notify_peers - notify network peers about existence of @dev 1361 * @dev: network device 1362 * 1363 * Generate traffic such that interested network peers are aware of 1364 * @dev, such as by generating a gratuitous ARP. This may be used when 1365 * a device wants to inform the rest of the network about some sort of 1366 * reconfiguration such as a failover event or virtual machine 1367 * migration. 1368 */ 1369 void netdev_notify_peers(struct net_device *dev) 1370 { 1371 rtnl_lock(); 1372 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1373 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1374 rtnl_unlock(); 1375 } 1376 EXPORT_SYMBOL(netdev_notify_peers); 1377 1378 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1379 { 1380 const struct net_device_ops *ops = dev->netdev_ops; 1381 int ret; 1382 1383 ASSERT_RTNL(); 1384 1385 if (!netif_device_present(dev)) 1386 return -ENODEV; 1387 1388 /* Block netpoll from trying to do any rx path servicing. 1389 * If we don't do this there is a chance ndo_poll_controller 1390 * or ndo_poll may be running while we open the device 1391 */ 1392 netpoll_poll_disable(dev); 1393 1394 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1395 ret = notifier_to_errno(ret); 1396 if (ret) 1397 return ret; 1398 1399 set_bit(__LINK_STATE_START, &dev->state); 1400 1401 if (ops->ndo_validate_addr) 1402 ret = ops->ndo_validate_addr(dev); 1403 1404 if (!ret && ops->ndo_open) 1405 ret = ops->ndo_open(dev); 1406 1407 netpoll_poll_enable(dev); 1408 1409 if (ret) 1410 clear_bit(__LINK_STATE_START, &dev->state); 1411 else { 1412 dev->flags |= IFF_UP; 1413 dev_set_rx_mode(dev); 1414 dev_activate(dev); 1415 add_device_randomness(dev->dev_addr, dev->addr_len); 1416 } 1417 1418 return ret; 1419 } 1420 1421 /** 1422 * dev_open - prepare an interface for use. 1423 * @dev: device to open 1424 * @extack: netlink extended ack 1425 * 1426 * Takes a device from down to up state. The device's private open 1427 * function is invoked and then the multicast lists are loaded. Finally 1428 * the device is moved into the up state and a %NETDEV_UP message is 1429 * sent to the netdev notifier chain. 1430 * 1431 * Calling this function on an active interface is a nop. On a failure 1432 * a negative errno code is returned. 1433 */ 1434 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1435 { 1436 int ret; 1437 1438 if (dev->flags & IFF_UP) 1439 return 0; 1440 1441 ret = __dev_open(dev, extack); 1442 if (ret < 0) 1443 return ret; 1444 1445 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1446 call_netdevice_notifiers(NETDEV_UP, dev); 1447 1448 return ret; 1449 } 1450 EXPORT_SYMBOL(dev_open); 1451 1452 static void __dev_close_many(struct list_head *head) 1453 { 1454 struct net_device *dev; 1455 1456 ASSERT_RTNL(); 1457 might_sleep(); 1458 1459 list_for_each_entry(dev, head, close_list) { 1460 /* Temporarily disable netpoll until the interface is down */ 1461 netpoll_poll_disable(dev); 1462 1463 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1464 1465 clear_bit(__LINK_STATE_START, &dev->state); 1466 1467 /* Synchronize to scheduled poll. We cannot touch poll list, it 1468 * can be even on different cpu. So just clear netif_running(). 1469 * 1470 * dev->stop() will invoke napi_disable() on all of it's 1471 * napi_struct instances on this device. 1472 */ 1473 smp_mb__after_atomic(); /* Commit netif_running(). */ 1474 } 1475 1476 dev_deactivate_many(head); 1477 1478 list_for_each_entry(dev, head, close_list) { 1479 const struct net_device_ops *ops = dev->netdev_ops; 1480 1481 /* 1482 * Call the device specific close. This cannot fail. 1483 * Only if device is UP 1484 * 1485 * We allow it to be called even after a DETACH hot-plug 1486 * event. 1487 */ 1488 if (ops->ndo_stop) 1489 ops->ndo_stop(dev); 1490 1491 dev->flags &= ~IFF_UP; 1492 netpoll_poll_enable(dev); 1493 } 1494 } 1495 1496 static void __dev_close(struct net_device *dev) 1497 { 1498 LIST_HEAD(single); 1499 1500 list_add(&dev->close_list, &single); 1501 __dev_close_many(&single); 1502 list_del(&single); 1503 } 1504 1505 void dev_close_many(struct list_head *head, bool unlink) 1506 { 1507 struct net_device *dev, *tmp; 1508 1509 /* Remove the devices that don't need to be closed */ 1510 list_for_each_entry_safe(dev, tmp, head, close_list) 1511 if (!(dev->flags & IFF_UP)) 1512 list_del_init(&dev->close_list); 1513 1514 __dev_close_many(head); 1515 1516 list_for_each_entry_safe(dev, tmp, head, close_list) { 1517 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1518 call_netdevice_notifiers(NETDEV_DOWN, dev); 1519 if (unlink) 1520 list_del_init(&dev->close_list); 1521 } 1522 } 1523 EXPORT_SYMBOL(dev_close_many); 1524 1525 /** 1526 * dev_close - shutdown an interface. 1527 * @dev: device to shutdown 1528 * 1529 * This function moves an active device into down state. A 1530 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1531 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1532 * chain. 1533 */ 1534 void dev_close(struct net_device *dev) 1535 { 1536 if (dev->flags & IFF_UP) { 1537 LIST_HEAD(single); 1538 1539 list_add(&dev->close_list, &single); 1540 dev_close_many(&single, true); 1541 list_del(&single); 1542 } 1543 } 1544 EXPORT_SYMBOL(dev_close); 1545 1546 1547 /** 1548 * dev_disable_lro - disable Large Receive Offload on a device 1549 * @dev: device 1550 * 1551 * Disable Large Receive Offload (LRO) on a net device. Must be 1552 * called under RTNL. This is needed if received packets may be 1553 * forwarded to another interface. 1554 */ 1555 void dev_disable_lro(struct net_device *dev) 1556 { 1557 struct net_device *lower_dev; 1558 struct list_head *iter; 1559 1560 dev->wanted_features &= ~NETIF_F_LRO; 1561 netdev_update_features(dev); 1562 1563 if (unlikely(dev->features & NETIF_F_LRO)) 1564 netdev_WARN(dev, "failed to disable LRO!\n"); 1565 1566 netdev_for_each_lower_dev(dev, lower_dev, iter) 1567 dev_disable_lro(lower_dev); 1568 } 1569 EXPORT_SYMBOL(dev_disable_lro); 1570 1571 /** 1572 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1573 * @dev: device 1574 * 1575 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1576 * called under RTNL. This is needed if Generic XDP is installed on 1577 * the device. 1578 */ 1579 static void dev_disable_gro_hw(struct net_device *dev) 1580 { 1581 dev->wanted_features &= ~NETIF_F_GRO_HW; 1582 netdev_update_features(dev); 1583 1584 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1585 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1586 } 1587 1588 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1589 { 1590 #define N(val) \ 1591 case NETDEV_##val: \ 1592 return "NETDEV_" __stringify(val); 1593 switch (cmd) { 1594 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1595 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1596 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1597 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1598 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1599 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1600 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1601 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1602 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1603 N(PRE_CHANGEADDR) 1604 } 1605 #undef N 1606 return "UNKNOWN_NETDEV_EVENT"; 1607 } 1608 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1609 1610 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1611 struct net_device *dev) 1612 { 1613 struct netdev_notifier_info info = { 1614 .dev = dev, 1615 }; 1616 1617 return nb->notifier_call(nb, val, &info); 1618 } 1619 1620 static int dev_boot_phase = 1; 1621 1622 /** 1623 * register_netdevice_notifier - register a network notifier block 1624 * @nb: notifier 1625 * 1626 * Register a notifier to be called when network device events occur. 1627 * The notifier passed is linked into the kernel structures and must 1628 * not be reused until it has been unregistered. A negative errno code 1629 * is returned on a failure. 1630 * 1631 * When registered all registration and up events are replayed 1632 * to the new notifier to allow device to have a race free 1633 * view of the network device list. 1634 */ 1635 1636 int register_netdevice_notifier(struct notifier_block *nb) 1637 { 1638 struct net_device *dev; 1639 struct net_device *last; 1640 struct net *net; 1641 int err; 1642 1643 /* Close race with setup_net() and cleanup_net() */ 1644 down_write(&pernet_ops_rwsem); 1645 rtnl_lock(); 1646 err = raw_notifier_chain_register(&netdev_chain, nb); 1647 if (err) 1648 goto unlock; 1649 if (dev_boot_phase) 1650 goto unlock; 1651 for_each_net(net) { 1652 for_each_netdev(net, dev) { 1653 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1654 err = notifier_to_errno(err); 1655 if (err) 1656 goto rollback; 1657 1658 if (!(dev->flags & IFF_UP)) 1659 continue; 1660 1661 call_netdevice_notifier(nb, NETDEV_UP, dev); 1662 } 1663 } 1664 1665 unlock: 1666 rtnl_unlock(); 1667 up_write(&pernet_ops_rwsem); 1668 return err; 1669 1670 rollback: 1671 last = dev; 1672 for_each_net(net) { 1673 for_each_netdev(net, dev) { 1674 if (dev == last) 1675 goto outroll; 1676 1677 if (dev->flags & IFF_UP) { 1678 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1679 dev); 1680 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1681 } 1682 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1683 } 1684 } 1685 1686 outroll: 1687 raw_notifier_chain_unregister(&netdev_chain, nb); 1688 goto unlock; 1689 } 1690 EXPORT_SYMBOL(register_netdevice_notifier); 1691 1692 /** 1693 * unregister_netdevice_notifier - unregister a network notifier block 1694 * @nb: notifier 1695 * 1696 * Unregister a notifier previously registered by 1697 * register_netdevice_notifier(). The notifier is unlinked into the 1698 * kernel structures and may then be reused. A negative errno code 1699 * is returned on a failure. 1700 * 1701 * After unregistering unregister and down device events are synthesized 1702 * for all devices on the device list to the removed notifier to remove 1703 * the need for special case cleanup code. 1704 */ 1705 1706 int unregister_netdevice_notifier(struct notifier_block *nb) 1707 { 1708 struct net_device *dev; 1709 struct net *net; 1710 int err; 1711 1712 /* Close race with setup_net() and cleanup_net() */ 1713 down_write(&pernet_ops_rwsem); 1714 rtnl_lock(); 1715 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1716 if (err) 1717 goto unlock; 1718 1719 for_each_net(net) { 1720 for_each_netdev(net, dev) { 1721 if (dev->flags & IFF_UP) { 1722 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1723 dev); 1724 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1725 } 1726 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1727 } 1728 } 1729 unlock: 1730 rtnl_unlock(); 1731 up_write(&pernet_ops_rwsem); 1732 return err; 1733 } 1734 EXPORT_SYMBOL(unregister_netdevice_notifier); 1735 1736 /** 1737 * call_netdevice_notifiers_info - call all network notifier blocks 1738 * @val: value passed unmodified to notifier function 1739 * @info: notifier information data 1740 * 1741 * Call all network notifier blocks. Parameters and return value 1742 * are as for raw_notifier_call_chain(). 1743 */ 1744 1745 static int call_netdevice_notifiers_info(unsigned long val, 1746 struct netdev_notifier_info *info) 1747 { 1748 ASSERT_RTNL(); 1749 return raw_notifier_call_chain(&netdev_chain, val, info); 1750 } 1751 1752 static int call_netdevice_notifiers_extack(unsigned long val, 1753 struct net_device *dev, 1754 struct netlink_ext_ack *extack) 1755 { 1756 struct netdev_notifier_info info = { 1757 .dev = dev, 1758 .extack = extack, 1759 }; 1760 1761 return call_netdevice_notifiers_info(val, &info); 1762 } 1763 1764 /** 1765 * call_netdevice_notifiers - call all network notifier blocks 1766 * @val: value passed unmodified to notifier function 1767 * @dev: net_device pointer passed unmodified to notifier function 1768 * 1769 * Call all network notifier blocks. Parameters and return value 1770 * are as for raw_notifier_call_chain(). 1771 */ 1772 1773 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1774 { 1775 return call_netdevice_notifiers_extack(val, dev, NULL); 1776 } 1777 EXPORT_SYMBOL(call_netdevice_notifiers); 1778 1779 /** 1780 * call_netdevice_notifiers_mtu - call all network notifier blocks 1781 * @val: value passed unmodified to notifier function 1782 * @dev: net_device pointer passed unmodified to notifier function 1783 * @arg: additional u32 argument passed to the notifier function 1784 * 1785 * Call all network notifier blocks. Parameters and return value 1786 * are as for raw_notifier_call_chain(). 1787 */ 1788 static int call_netdevice_notifiers_mtu(unsigned long val, 1789 struct net_device *dev, u32 arg) 1790 { 1791 struct netdev_notifier_info_ext info = { 1792 .info.dev = dev, 1793 .ext.mtu = arg, 1794 }; 1795 1796 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 1797 1798 return call_netdevice_notifiers_info(val, &info.info); 1799 } 1800 1801 #ifdef CONFIG_NET_INGRESS 1802 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 1803 1804 void net_inc_ingress_queue(void) 1805 { 1806 static_branch_inc(&ingress_needed_key); 1807 } 1808 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1809 1810 void net_dec_ingress_queue(void) 1811 { 1812 static_branch_dec(&ingress_needed_key); 1813 } 1814 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1815 #endif 1816 1817 #ifdef CONFIG_NET_EGRESS 1818 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 1819 1820 void net_inc_egress_queue(void) 1821 { 1822 static_branch_inc(&egress_needed_key); 1823 } 1824 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1825 1826 void net_dec_egress_queue(void) 1827 { 1828 static_branch_dec(&egress_needed_key); 1829 } 1830 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1831 #endif 1832 1833 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 1834 #ifdef CONFIG_JUMP_LABEL 1835 static atomic_t netstamp_needed_deferred; 1836 static atomic_t netstamp_wanted; 1837 static void netstamp_clear(struct work_struct *work) 1838 { 1839 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1840 int wanted; 1841 1842 wanted = atomic_add_return(deferred, &netstamp_wanted); 1843 if (wanted > 0) 1844 static_branch_enable(&netstamp_needed_key); 1845 else 1846 static_branch_disable(&netstamp_needed_key); 1847 } 1848 static DECLARE_WORK(netstamp_work, netstamp_clear); 1849 #endif 1850 1851 void net_enable_timestamp(void) 1852 { 1853 #ifdef CONFIG_JUMP_LABEL 1854 int wanted; 1855 1856 while (1) { 1857 wanted = atomic_read(&netstamp_wanted); 1858 if (wanted <= 0) 1859 break; 1860 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 1861 return; 1862 } 1863 atomic_inc(&netstamp_needed_deferred); 1864 schedule_work(&netstamp_work); 1865 #else 1866 static_branch_inc(&netstamp_needed_key); 1867 #endif 1868 } 1869 EXPORT_SYMBOL(net_enable_timestamp); 1870 1871 void net_disable_timestamp(void) 1872 { 1873 #ifdef CONFIG_JUMP_LABEL 1874 int wanted; 1875 1876 while (1) { 1877 wanted = atomic_read(&netstamp_wanted); 1878 if (wanted <= 1) 1879 break; 1880 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 1881 return; 1882 } 1883 atomic_dec(&netstamp_needed_deferred); 1884 schedule_work(&netstamp_work); 1885 #else 1886 static_branch_dec(&netstamp_needed_key); 1887 #endif 1888 } 1889 EXPORT_SYMBOL(net_disable_timestamp); 1890 1891 static inline void net_timestamp_set(struct sk_buff *skb) 1892 { 1893 skb->tstamp = 0; 1894 if (static_branch_unlikely(&netstamp_needed_key)) 1895 __net_timestamp(skb); 1896 } 1897 1898 #define net_timestamp_check(COND, SKB) \ 1899 if (static_branch_unlikely(&netstamp_needed_key)) { \ 1900 if ((COND) && !(SKB)->tstamp) \ 1901 __net_timestamp(SKB); \ 1902 } \ 1903 1904 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1905 { 1906 unsigned int len; 1907 1908 if (!(dev->flags & IFF_UP)) 1909 return false; 1910 1911 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1912 if (skb->len <= len) 1913 return true; 1914 1915 /* if TSO is enabled, we don't care about the length as the packet 1916 * could be forwarded without being segmented before 1917 */ 1918 if (skb_is_gso(skb)) 1919 return true; 1920 1921 return false; 1922 } 1923 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1924 1925 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1926 { 1927 int ret = ____dev_forward_skb(dev, skb); 1928 1929 if (likely(!ret)) { 1930 skb->protocol = eth_type_trans(skb, dev); 1931 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1932 } 1933 1934 return ret; 1935 } 1936 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1937 1938 /** 1939 * dev_forward_skb - loopback an skb to another netif 1940 * 1941 * @dev: destination network device 1942 * @skb: buffer to forward 1943 * 1944 * return values: 1945 * NET_RX_SUCCESS (no congestion) 1946 * NET_RX_DROP (packet was dropped, but freed) 1947 * 1948 * dev_forward_skb can be used for injecting an skb from the 1949 * start_xmit function of one device into the receive queue 1950 * of another device. 1951 * 1952 * The receiving device may be in another namespace, so 1953 * we have to clear all information in the skb that could 1954 * impact namespace isolation. 1955 */ 1956 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1957 { 1958 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1959 } 1960 EXPORT_SYMBOL_GPL(dev_forward_skb); 1961 1962 static inline int deliver_skb(struct sk_buff *skb, 1963 struct packet_type *pt_prev, 1964 struct net_device *orig_dev) 1965 { 1966 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 1967 return -ENOMEM; 1968 refcount_inc(&skb->users); 1969 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1970 } 1971 1972 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1973 struct packet_type **pt, 1974 struct net_device *orig_dev, 1975 __be16 type, 1976 struct list_head *ptype_list) 1977 { 1978 struct packet_type *ptype, *pt_prev = *pt; 1979 1980 list_for_each_entry_rcu(ptype, ptype_list, list) { 1981 if (ptype->type != type) 1982 continue; 1983 if (pt_prev) 1984 deliver_skb(skb, pt_prev, orig_dev); 1985 pt_prev = ptype; 1986 } 1987 *pt = pt_prev; 1988 } 1989 1990 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1991 { 1992 if (!ptype->af_packet_priv || !skb->sk) 1993 return false; 1994 1995 if (ptype->id_match) 1996 return ptype->id_match(ptype, skb->sk); 1997 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1998 return true; 1999 2000 return false; 2001 } 2002 2003 /** 2004 * dev_nit_active - return true if any network interface taps are in use 2005 * 2006 * @dev: network device to check for the presence of taps 2007 */ 2008 bool dev_nit_active(struct net_device *dev) 2009 { 2010 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 2011 } 2012 EXPORT_SYMBOL_GPL(dev_nit_active); 2013 2014 /* 2015 * Support routine. Sends outgoing frames to any network 2016 * taps currently in use. 2017 */ 2018 2019 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2020 { 2021 struct packet_type *ptype; 2022 struct sk_buff *skb2 = NULL; 2023 struct packet_type *pt_prev = NULL; 2024 struct list_head *ptype_list = &ptype_all; 2025 2026 rcu_read_lock(); 2027 again: 2028 list_for_each_entry_rcu(ptype, ptype_list, list) { 2029 if (ptype->ignore_outgoing) 2030 continue; 2031 2032 /* Never send packets back to the socket 2033 * they originated from - MvS (miquels@drinkel.ow.org) 2034 */ 2035 if (skb_loop_sk(ptype, skb)) 2036 continue; 2037 2038 if (pt_prev) { 2039 deliver_skb(skb2, pt_prev, skb->dev); 2040 pt_prev = ptype; 2041 continue; 2042 } 2043 2044 /* need to clone skb, done only once */ 2045 skb2 = skb_clone(skb, GFP_ATOMIC); 2046 if (!skb2) 2047 goto out_unlock; 2048 2049 net_timestamp_set(skb2); 2050 2051 /* skb->nh should be correctly 2052 * set by sender, so that the second statement is 2053 * just protection against buggy protocols. 2054 */ 2055 skb_reset_mac_header(skb2); 2056 2057 if (skb_network_header(skb2) < skb2->data || 2058 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2059 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2060 ntohs(skb2->protocol), 2061 dev->name); 2062 skb_reset_network_header(skb2); 2063 } 2064 2065 skb2->transport_header = skb2->network_header; 2066 skb2->pkt_type = PACKET_OUTGOING; 2067 pt_prev = ptype; 2068 } 2069 2070 if (ptype_list == &ptype_all) { 2071 ptype_list = &dev->ptype_all; 2072 goto again; 2073 } 2074 out_unlock: 2075 if (pt_prev) { 2076 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2077 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2078 else 2079 kfree_skb(skb2); 2080 } 2081 rcu_read_unlock(); 2082 } 2083 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2084 2085 /** 2086 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2087 * @dev: Network device 2088 * @txq: number of queues available 2089 * 2090 * If real_num_tx_queues is changed the tc mappings may no longer be 2091 * valid. To resolve this verify the tc mapping remains valid and if 2092 * not NULL the mapping. With no priorities mapping to this 2093 * offset/count pair it will no longer be used. In the worst case TC0 2094 * is invalid nothing can be done so disable priority mappings. If is 2095 * expected that drivers will fix this mapping if they can before 2096 * calling netif_set_real_num_tx_queues. 2097 */ 2098 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2099 { 2100 int i; 2101 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2102 2103 /* If TC0 is invalidated disable TC mapping */ 2104 if (tc->offset + tc->count > txq) { 2105 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2106 dev->num_tc = 0; 2107 return; 2108 } 2109 2110 /* Invalidated prio to tc mappings set to TC0 */ 2111 for (i = 1; i < TC_BITMASK + 1; i++) { 2112 int q = netdev_get_prio_tc_map(dev, i); 2113 2114 tc = &dev->tc_to_txq[q]; 2115 if (tc->offset + tc->count > txq) { 2116 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2117 i, q); 2118 netdev_set_prio_tc_map(dev, i, 0); 2119 } 2120 } 2121 } 2122 2123 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2124 { 2125 if (dev->num_tc) { 2126 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2127 int i; 2128 2129 /* walk through the TCs and see if it falls into any of them */ 2130 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2131 if ((txq - tc->offset) < tc->count) 2132 return i; 2133 } 2134 2135 /* didn't find it, just return -1 to indicate no match */ 2136 return -1; 2137 } 2138 2139 return 0; 2140 } 2141 EXPORT_SYMBOL(netdev_txq_to_tc); 2142 2143 #ifdef CONFIG_XPS 2144 struct static_key xps_needed __read_mostly; 2145 EXPORT_SYMBOL(xps_needed); 2146 struct static_key xps_rxqs_needed __read_mostly; 2147 EXPORT_SYMBOL(xps_rxqs_needed); 2148 static DEFINE_MUTEX(xps_map_mutex); 2149 #define xmap_dereference(P) \ 2150 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2151 2152 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2153 int tci, u16 index) 2154 { 2155 struct xps_map *map = NULL; 2156 int pos; 2157 2158 if (dev_maps) 2159 map = xmap_dereference(dev_maps->attr_map[tci]); 2160 if (!map) 2161 return false; 2162 2163 for (pos = map->len; pos--;) { 2164 if (map->queues[pos] != index) 2165 continue; 2166 2167 if (map->len > 1) { 2168 map->queues[pos] = map->queues[--map->len]; 2169 break; 2170 } 2171 2172 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2173 kfree_rcu(map, rcu); 2174 return false; 2175 } 2176 2177 return true; 2178 } 2179 2180 static bool remove_xps_queue_cpu(struct net_device *dev, 2181 struct xps_dev_maps *dev_maps, 2182 int cpu, u16 offset, u16 count) 2183 { 2184 int num_tc = dev->num_tc ? : 1; 2185 bool active = false; 2186 int tci; 2187 2188 for (tci = cpu * num_tc; num_tc--; tci++) { 2189 int i, j; 2190 2191 for (i = count, j = offset; i--; j++) { 2192 if (!remove_xps_queue(dev_maps, tci, j)) 2193 break; 2194 } 2195 2196 active |= i < 0; 2197 } 2198 2199 return active; 2200 } 2201 2202 static void reset_xps_maps(struct net_device *dev, 2203 struct xps_dev_maps *dev_maps, 2204 bool is_rxqs_map) 2205 { 2206 if (is_rxqs_map) { 2207 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2208 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL); 2209 } else { 2210 RCU_INIT_POINTER(dev->xps_cpus_map, NULL); 2211 } 2212 static_key_slow_dec_cpuslocked(&xps_needed); 2213 kfree_rcu(dev_maps, rcu); 2214 } 2215 2216 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask, 2217 struct xps_dev_maps *dev_maps, unsigned int nr_ids, 2218 u16 offset, u16 count, bool is_rxqs_map) 2219 { 2220 bool active = false; 2221 int i, j; 2222 2223 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids), 2224 j < nr_ids;) 2225 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, 2226 count); 2227 if (!active) 2228 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2229 2230 if (!is_rxqs_map) { 2231 for (i = offset + (count - 1); count--; i--) { 2232 netdev_queue_numa_node_write( 2233 netdev_get_tx_queue(dev, i), 2234 NUMA_NO_NODE); 2235 } 2236 } 2237 } 2238 2239 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2240 u16 count) 2241 { 2242 const unsigned long *possible_mask = NULL; 2243 struct xps_dev_maps *dev_maps; 2244 unsigned int nr_ids; 2245 2246 if (!static_key_false(&xps_needed)) 2247 return; 2248 2249 cpus_read_lock(); 2250 mutex_lock(&xps_map_mutex); 2251 2252 if (static_key_false(&xps_rxqs_needed)) { 2253 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2254 if (dev_maps) { 2255 nr_ids = dev->num_rx_queues; 2256 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, 2257 offset, count, true); 2258 } 2259 } 2260 2261 dev_maps = xmap_dereference(dev->xps_cpus_map); 2262 if (!dev_maps) 2263 goto out_no_maps; 2264 2265 if (num_possible_cpus() > 1) 2266 possible_mask = cpumask_bits(cpu_possible_mask); 2267 nr_ids = nr_cpu_ids; 2268 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count, 2269 false); 2270 2271 out_no_maps: 2272 mutex_unlock(&xps_map_mutex); 2273 cpus_read_unlock(); 2274 } 2275 2276 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2277 { 2278 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2279 } 2280 2281 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2282 u16 index, bool is_rxqs_map) 2283 { 2284 struct xps_map *new_map; 2285 int alloc_len = XPS_MIN_MAP_ALLOC; 2286 int i, pos; 2287 2288 for (pos = 0; map && pos < map->len; pos++) { 2289 if (map->queues[pos] != index) 2290 continue; 2291 return map; 2292 } 2293 2294 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2295 if (map) { 2296 if (pos < map->alloc_len) 2297 return map; 2298 2299 alloc_len = map->alloc_len * 2; 2300 } 2301 2302 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2303 * map 2304 */ 2305 if (is_rxqs_map) 2306 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2307 else 2308 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2309 cpu_to_node(attr_index)); 2310 if (!new_map) 2311 return NULL; 2312 2313 for (i = 0; i < pos; i++) 2314 new_map->queues[i] = map->queues[i]; 2315 new_map->alloc_len = alloc_len; 2316 new_map->len = pos; 2317 2318 return new_map; 2319 } 2320 2321 /* Must be called under cpus_read_lock */ 2322 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2323 u16 index, bool is_rxqs_map) 2324 { 2325 const unsigned long *online_mask = NULL, *possible_mask = NULL; 2326 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2327 int i, j, tci, numa_node_id = -2; 2328 int maps_sz, num_tc = 1, tc = 0; 2329 struct xps_map *map, *new_map; 2330 bool active = false; 2331 unsigned int nr_ids; 2332 2333 if (dev->num_tc) { 2334 /* Do not allow XPS on subordinate device directly */ 2335 num_tc = dev->num_tc; 2336 if (num_tc < 0) 2337 return -EINVAL; 2338 2339 /* If queue belongs to subordinate dev use its map */ 2340 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2341 2342 tc = netdev_txq_to_tc(dev, index); 2343 if (tc < 0) 2344 return -EINVAL; 2345 } 2346 2347 mutex_lock(&xps_map_mutex); 2348 if (is_rxqs_map) { 2349 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2350 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2351 nr_ids = dev->num_rx_queues; 2352 } else { 2353 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2354 if (num_possible_cpus() > 1) { 2355 online_mask = cpumask_bits(cpu_online_mask); 2356 possible_mask = cpumask_bits(cpu_possible_mask); 2357 } 2358 dev_maps = xmap_dereference(dev->xps_cpus_map); 2359 nr_ids = nr_cpu_ids; 2360 } 2361 2362 if (maps_sz < L1_CACHE_BYTES) 2363 maps_sz = L1_CACHE_BYTES; 2364 2365 /* allocate memory for queue storage */ 2366 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2367 j < nr_ids;) { 2368 if (!new_dev_maps) 2369 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2370 if (!new_dev_maps) { 2371 mutex_unlock(&xps_map_mutex); 2372 return -ENOMEM; 2373 } 2374 2375 tci = j * num_tc + tc; 2376 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) : 2377 NULL; 2378 2379 map = expand_xps_map(map, j, index, is_rxqs_map); 2380 if (!map) 2381 goto error; 2382 2383 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2384 } 2385 2386 if (!new_dev_maps) 2387 goto out_no_new_maps; 2388 2389 if (!dev_maps) { 2390 /* Increment static keys at most once per type */ 2391 static_key_slow_inc_cpuslocked(&xps_needed); 2392 if (is_rxqs_map) 2393 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2394 } 2395 2396 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2397 j < nr_ids;) { 2398 /* copy maps belonging to foreign traffic classes */ 2399 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) { 2400 /* fill in the new device map from the old device map */ 2401 map = xmap_dereference(dev_maps->attr_map[tci]); 2402 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2403 } 2404 2405 /* We need to explicitly update tci as prevous loop 2406 * could break out early if dev_maps is NULL. 2407 */ 2408 tci = j * num_tc + tc; 2409 2410 if (netif_attr_test_mask(j, mask, nr_ids) && 2411 netif_attr_test_online(j, online_mask, nr_ids)) { 2412 /* add tx-queue to CPU/rx-queue maps */ 2413 int pos = 0; 2414 2415 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2416 while ((pos < map->len) && (map->queues[pos] != index)) 2417 pos++; 2418 2419 if (pos == map->len) 2420 map->queues[map->len++] = index; 2421 #ifdef CONFIG_NUMA 2422 if (!is_rxqs_map) { 2423 if (numa_node_id == -2) 2424 numa_node_id = cpu_to_node(j); 2425 else if (numa_node_id != cpu_to_node(j)) 2426 numa_node_id = -1; 2427 } 2428 #endif 2429 } else if (dev_maps) { 2430 /* fill in the new device map from the old device map */ 2431 map = xmap_dereference(dev_maps->attr_map[tci]); 2432 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2433 } 2434 2435 /* copy maps belonging to foreign traffic classes */ 2436 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2437 /* fill in the new device map from the old device map */ 2438 map = xmap_dereference(dev_maps->attr_map[tci]); 2439 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2440 } 2441 } 2442 2443 if (is_rxqs_map) 2444 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps); 2445 else 2446 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps); 2447 2448 /* Cleanup old maps */ 2449 if (!dev_maps) 2450 goto out_no_old_maps; 2451 2452 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2453 j < nr_ids;) { 2454 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2455 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2456 map = xmap_dereference(dev_maps->attr_map[tci]); 2457 if (map && map != new_map) 2458 kfree_rcu(map, rcu); 2459 } 2460 } 2461 2462 kfree_rcu(dev_maps, rcu); 2463 2464 out_no_old_maps: 2465 dev_maps = new_dev_maps; 2466 active = true; 2467 2468 out_no_new_maps: 2469 if (!is_rxqs_map) { 2470 /* update Tx queue numa node */ 2471 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2472 (numa_node_id >= 0) ? 2473 numa_node_id : NUMA_NO_NODE); 2474 } 2475 2476 if (!dev_maps) 2477 goto out_no_maps; 2478 2479 /* removes tx-queue from unused CPUs/rx-queues */ 2480 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2481 j < nr_ids;) { 2482 for (i = tc, tci = j * num_tc; i--; tci++) 2483 active |= remove_xps_queue(dev_maps, tci, index); 2484 if (!netif_attr_test_mask(j, mask, nr_ids) || 2485 !netif_attr_test_online(j, online_mask, nr_ids)) 2486 active |= remove_xps_queue(dev_maps, tci, index); 2487 for (i = num_tc - tc, tci++; --i; tci++) 2488 active |= remove_xps_queue(dev_maps, tci, index); 2489 } 2490 2491 /* free map if not active */ 2492 if (!active) 2493 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2494 2495 out_no_maps: 2496 mutex_unlock(&xps_map_mutex); 2497 2498 return 0; 2499 error: 2500 /* remove any maps that we added */ 2501 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2502 j < nr_ids;) { 2503 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2504 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2505 map = dev_maps ? 2506 xmap_dereference(dev_maps->attr_map[tci]) : 2507 NULL; 2508 if (new_map && new_map != map) 2509 kfree(new_map); 2510 } 2511 } 2512 2513 mutex_unlock(&xps_map_mutex); 2514 2515 kfree(new_dev_maps); 2516 return -ENOMEM; 2517 } 2518 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2519 2520 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2521 u16 index) 2522 { 2523 int ret; 2524 2525 cpus_read_lock(); 2526 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false); 2527 cpus_read_unlock(); 2528 2529 return ret; 2530 } 2531 EXPORT_SYMBOL(netif_set_xps_queue); 2532 2533 #endif 2534 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2535 { 2536 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2537 2538 /* Unbind any subordinate channels */ 2539 while (txq-- != &dev->_tx[0]) { 2540 if (txq->sb_dev) 2541 netdev_unbind_sb_channel(dev, txq->sb_dev); 2542 } 2543 } 2544 2545 void netdev_reset_tc(struct net_device *dev) 2546 { 2547 #ifdef CONFIG_XPS 2548 netif_reset_xps_queues_gt(dev, 0); 2549 #endif 2550 netdev_unbind_all_sb_channels(dev); 2551 2552 /* Reset TC configuration of device */ 2553 dev->num_tc = 0; 2554 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2555 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2556 } 2557 EXPORT_SYMBOL(netdev_reset_tc); 2558 2559 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2560 { 2561 if (tc >= dev->num_tc) 2562 return -EINVAL; 2563 2564 #ifdef CONFIG_XPS 2565 netif_reset_xps_queues(dev, offset, count); 2566 #endif 2567 dev->tc_to_txq[tc].count = count; 2568 dev->tc_to_txq[tc].offset = offset; 2569 return 0; 2570 } 2571 EXPORT_SYMBOL(netdev_set_tc_queue); 2572 2573 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2574 { 2575 if (num_tc > TC_MAX_QUEUE) 2576 return -EINVAL; 2577 2578 #ifdef CONFIG_XPS 2579 netif_reset_xps_queues_gt(dev, 0); 2580 #endif 2581 netdev_unbind_all_sb_channels(dev); 2582 2583 dev->num_tc = num_tc; 2584 return 0; 2585 } 2586 EXPORT_SYMBOL(netdev_set_num_tc); 2587 2588 void netdev_unbind_sb_channel(struct net_device *dev, 2589 struct net_device *sb_dev) 2590 { 2591 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2592 2593 #ifdef CONFIG_XPS 2594 netif_reset_xps_queues_gt(sb_dev, 0); 2595 #endif 2596 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2597 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2598 2599 while (txq-- != &dev->_tx[0]) { 2600 if (txq->sb_dev == sb_dev) 2601 txq->sb_dev = NULL; 2602 } 2603 } 2604 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2605 2606 int netdev_bind_sb_channel_queue(struct net_device *dev, 2607 struct net_device *sb_dev, 2608 u8 tc, u16 count, u16 offset) 2609 { 2610 /* Make certain the sb_dev and dev are already configured */ 2611 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2612 return -EINVAL; 2613 2614 /* We cannot hand out queues we don't have */ 2615 if ((offset + count) > dev->real_num_tx_queues) 2616 return -EINVAL; 2617 2618 /* Record the mapping */ 2619 sb_dev->tc_to_txq[tc].count = count; 2620 sb_dev->tc_to_txq[tc].offset = offset; 2621 2622 /* Provide a way for Tx queue to find the tc_to_txq map or 2623 * XPS map for itself. 2624 */ 2625 while (count--) 2626 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2627 2628 return 0; 2629 } 2630 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2631 2632 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2633 { 2634 /* Do not use a multiqueue device to represent a subordinate channel */ 2635 if (netif_is_multiqueue(dev)) 2636 return -ENODEV; 2637 2638 /* We allow channels 1 - 32767 to be used for subordinate channels. 2639 * Channel 0 is meant to be "native" mode and used only to represent 2640 * the main root device. We allow writing 0 to reset the device back 2641 * to normal mode after being used as a subordinate channel. 2642 */ 2643 if (channel > S16_MAX) 2644 return -EINVAL; 2645 2646 dev->num_tc = -channel; 2647 2648 return 0; 2649 } 2650 EXPORT_SYMBOL(netdev_set_sb_channel); 2651 2652 /* 2653 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2654 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2655 */ 2656 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2657 { 2658 bool disabling; 2659 int rc; 2660 2661 disabling = txq < dev->real_num_tx_queues; 2662 2663 if (txq < 1 || txq > dev->num_tx_queues) 2664 return -EINVAL; 2665 2666 if (dev->reg_state == NETREG_REGISTERED || 2667 dev->reg_state == NETREG_UNREGISTERING) { 2668 ASSERT_RTNL(); 2669 2670 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2671 txq); 2672 if (rc) 2673 return rc; 2674 2675 if (dev->num_tc) 2676 netif_setup_tc(dev, txq); 2677 2678 dev->real_num_tx_queues = txq; 2679 2680 if (disabling) { 2681 synchronize_net(); 2682 qdisc_reset_all_tx_gt(dev, txq); 2683 #ifdef CONFIG_XPS 2684 netif_reset_xps_queues_gt(dev, txq); 2685 #endif 2686 } 2687 } else { 2688 dev->real_num_tx_queues = txq; 2689 } 2690 2691 return 0; 2692 } 2693 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2694 2695 #ifdef CONFIG_SYSFS 2696 /** 2697 * netif_set_real_num_rx_queues - set actual number of RX queues used 2698 * @dev: Network device 2699 * @rxq: Actual number of RX queues 2700 * 2701 * This must be called either with the rtnl_lock held or before 2702 * registration of the net device. Returns 0 on success, or a 2703 * negative error code. If called before registration, it always 2704 * succeeds. 2705 */ 2706 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2707 { 2708 int rc; 2709 2710 if (rxq < 1 || rxq > dev->num_rx_queues) 2711 return -EINVAL; 2712 2713 if (dev->reg_state == NETREG_REGISTERED) { 2714 ASSERT_RTNL(); 2715 2716 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2717 rxq); 2718 if (rc) 2719 return rc; 2720 } 2721 2722 dev->real_num_rx_queues = rxq; 2723 return 0; 2724 } 2725 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2726 #endif 2727 2728 /** 2729 * netif_get_num_default_rss_queues - default number of RSS queues 2730 * 2731 * This routine should set an upper limit on the number of RSS queues 2732 * used by default by multiqueue devices. 2733 */ 2734 int netif_get_num_default_rss_queues(void) 2735 { 2736 return is_kdump_kernel() ? 2737 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2738 } 2739 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2740 2741 static void __netif_reschedule(struct Qdisc *q) 2742 { 2743 struct softnet_data *sd; 2744 unsigned long flags; 2745 2746 local_irq_save(flags); 2747 sd = this_cpu_ptr(&softnet_data); 2748 q->next_sched = NULL; 2749 *sd->output_queue_tailp = q; 2750 sd->output_queue_tailp = &q->next_sched; 2751 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2752 local_irq_restore(flags); 2753 } 2754 2755 void __netif_schedule(struct Qdisc *q) 2756 { 2757 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2758 __netif_reschedule(q); 2759 } 2760 EXPORT_SYMBOL(__netif_schedule); 2761 2762 struct dev_kfree_skb_cb { 2763 enum skb_free_reason reason; 2764 }; 2765 2766 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2767 { 2768 return (struct dev_kfree_skb_cb *)skb->cb; 2769 } 2770 2771 void netif_schedule_queue(struct netdev_queue *txq) 2772 { 2773 rcu_read_lock(); 2774 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2775 struct Qdisc *q = rcu_dereference(txq->qdisc); 2776 2777 __netif_schedule(q); 2778 } 2779 rcu_read_unlock(); 2780 } 2781 EXPORT_SYMBOL(netif_schedule_queue); 2782 2783 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2784 { 2785 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2786 struct Qdisc *q; 2787 2788 rcu_read_lock(); 2789 q = rcu_dereference(dev_queue->qdisc); 2790 __netif_schedule(q); 2791 rcu_read_unlock(); 2792 } 2793 } 2794 EXPORT_SYMBOL(netif_tx_wake_queue); 2795 2796 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2797 { 2798 unsigned long flags; 2799 2800 if (unlikely(!skb)) 2801 return; 2802 2803 if (likely(refcount_read(&skb->users) == 1)) { 2804 smp_rmb(); 2805 refcount_set(&skb->users, 0); 2806 } else if (likely(!refcount_dec_and_test(&skb->users))) { 2807 return; 2808 } 2809 get_kfree_skb_cb(skb)->reason = reason; 2810 local_irq_save(flags); 2811 skb->next = __this_cpu_read(softnet_data.completion_queue); 2812 __this_cpu_write(softnet_data.completion_queue, skb); 2813 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2814 local_irq_restore(flags); 2815 } 2816 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2817 2818 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2819 { 2820 if (in_irq() || irqs_disabled()) 2821 __dev_kfree_skb_irq(skb, reason); 2822 else 2823 dev_kfree_skb(skb); 2824 } 2825 EXPORT_SYMBOL(__dev_kfree_skb_any); 2826 2827 2828 /** 2829 * netif_device_detach - mark device as removed 2830 * @dev: network device 2831 * 2832 * Mark device as removed from system and therefore no longer available. 2833 */ 2834 void netif_device_detach(struct net_device *dev) 2835 { 2836 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2837 netif_running(dev)) { 2838 netif_tx_stop_all_queues(dev); 2839 } 2840 } 2841 EXPORT_SYMBOL(netif_device_detach); 2842 2843 /** 2844 * netif_device_attach - mark device as attached 2845 * @dev: network device 2846 * 2847 * Mark device as attached from system and restart if needed. 2848 */ 2849 void netif_device_attach(struct net_device *dev) 2850 { 2851 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2852 netif_running(dev)) { 2853 netif_tx_wake_all_queues(dev); 2854 __netdev_watchdog_up(dev); 2855 } 2856 } 2857 EXPORT_SYMBOL(netif_device_attach); 2858 2859 /* 2860 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2861 * to be used as a distribution range. 2862 */ 2863 static u16 skb_tx_hash(const struct net_device *dev, 2864 const struct net_device *sb_dev, 2865 struct sk_buff *skb) 2866 { 2867 u32 hash; 2868 u16 qoffset = 0; 2869 u16 qcount = dev->real_num_tx_queues; 2870 2871 if (dev->num_tc) { 2872 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2873 2874 qoffset = sb_dev->tc_to_txq[tc].offset; 2875 qcount = sb_dev->tc_to_txq[tc].count; 2876 } 2877 2878 if (skb_rx_queue_recorded(skb)) { 2879 hash = skb_get_rx_queue(skb); 2880 while (unlikely(hash >= qcount)) 2881 hash -= qcount; 2882 return hash + qoffset; 2883 } 2884 2885 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2886 } 2887 2888 static void skb_warn_bad_offload(const struct sk_buff *skb) 2889 { 2890 static const netdev_features_t null_features; 2891 struct net_device *dev = skb->dev; 2892 const char *name = ""; 2893 2894 if (!net_ratelimit()) 2895 return; 2896 2897 if (dev) { 2898 if (dev->dev.parent) 2899 name = dev_driver_string(dev->dev.parent); 2900 else 2901 name = netdev_name(dev); 2902 } 2903 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2904 "gso_type=%d ip_summed=%d\n", 2905 name, dev ? &dev->features : &null_features, 2906 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2907 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2908 skb_shinfo(skb)->gso_type, skb->ip_summed); 2909 } 2910 2911 /* 2912 * Invalidate hardware checksum when packet is to be mangled, and 2913 * complete checksum manually on outgoing path. 2914 */ 2915 int skb_checksum_help(struct sk_buff *skb) 2916 { 2917 __wsum csum; 2918 int ret = 0, offset; 2919 2920 if (skb->ip_summed == CHECKSUM_COMPLETE) 2921 goto out_set_summed; 2922 2923 if (unlikely(skb_shinfo(skb)->gso_size)) { 2924 skb_warn_bad_offload(skb); 2925 return -EINVAL; 2926 } 2927 2928 /* Before computing a checksum, we should make sure no frag could 2929 * be modified by an external entity : checksum could be wrong. 2930 */ 2931 if (skb_has_shared_frag(skb)) { 2932 ret = __skb_linearize(skb); 2933 if (ret) 2934 goto out; 2935 } 2936 2937 offset = skb_checksum_start_offset(skb); 2938 BUG_ON(offset >= skb_headlen(skb)); 2939 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2940 2941 offset += skb->csum_offset; 2942 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2943 2944 if (skb_cloned(skb) && 2945 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2946 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2947 if (ret) 2948 goto out; 2949 } 2950 2951 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2952 out_set_summed: 2953 skb->ip_summed = CHECKSUM_NONE; 2954 out: 2955 return ret; 2956 } 2957 EXPORT_SYMBOL(skb_checksum_help); 2958 2959 int skb_crc32c_csum_help(struct sk_buff *skb) 2960 { 2961 __le32 crc32c_csum; 2962 int ret = 0, offset, start; 2963 2964 if (skb->ip_summed != CHECKSUM_PARTIAL) 2965 goto out; 2966 2967 if (unlikely(skb_is_gso(skb))) 2968 goto out; 2969 2970 /* Before computing a checksum, we should make sure no frag could 2971 * be modified by an external entity : checksum could be wrong. 2972 */ 2973 if (unlikely(skb_has_shared_frag(skb))) { 2974 ret = __skb_linearize(skb); 2975 if (ret) 2976 goto out; 2977 } 2978 start = skb_checksum_start_offset(skb); 2979 offset = start + offsetof(struct sctphdr, checksum); 2980 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 2981 ret = -EINVAL; 2982 goto out; 2983 } 2984 if (skb_cloned(skb) && 2985 !skb_clone_writable(skb, offset + sizeof(__le32))) { 2986 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2987 if (ret) 2988 goto out; 2989 } 2990 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 2991 skb->len - start, ~(__u32)0, 2992 crc32c_csum_stub)); 2993 *(__le32 *)(skb->data + offset) = crc32c_csum; 2994 skb->ip_summed = CHECKSUM_NONE; 2995 skb->csum_not_inet = 0; 2996 out: 2997 return ret; 2998 } 2999 3000 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3001 { 3002 __be16 type = skb->protocol; 3003 3004 /* Tunnel gso handlers can set protocol to ethernet. */ 3005 if (type == htons(ETH_P_TEB)) { 3006 struct ethhdr *eth; 3007 3008 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3009 return 0; 3010 3011 eth = (struct ethhdr *)skb->data; 3012 type = eth->h_proto; 3013 } 3014 3015 return __vlan_get_protocol(skb, type, depth); 3016 } 3017 3018 /** 3019 * skb_mac_gso_segment - mac layer segmentation handler. 3020 * @skb: buffer to segment 3021 * @features: features for the output path (see dev->features) 3022 */ 3023 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3024 netdev_features_t features) 3025 { 3026 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 3027 struct packet_offload *ptype; 3028 int vlan_depth = skb->mac_len; 3029 __be16 type = skb_network_protocol(skb, &vlan_depth); 3030 3031 if (unlikely(!type)) 3032 return ERR_PTR(-EINVAL); 3033 3034 __skb_pull(skb, vlan_depth); 3035 3036 rcu_read_lock(); 3037 list_for_each_entry_rcu(ptype, &offload_base, list) { 3038 if (ptype->type == type && ptype->callbacks.gso_segment) { 3039 segs = ptype->callbacks.gso_segment(skb, features); 3040 break; 3041 } 3042 } 3043 rcu_read_unlock(); 3044 3045 __skb_push(skb, skb->data - skb_mac_header(skb)); 3046 3047 return segs; 3048 } 3049 EXPORT_SYMBOL(skb_mac_gso_segment); 3050 3051 3052 /* openvswitch calls this on rx path, so we need a different check. 3053 */ 3054 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 3055 { 3056 if (tx_path) 3057 return skb->ip_summed != CHECKSUM_PARTIAL && 3058 skb->ip_summed != CHECKSUM_UNNECESSARY; 3059 3060 return skb->ip_summed == CHECKSUM_NONE; 3061 } 3062 3063 /** 3064 * __skb_gso_segment - Perform segmentation on skb. 3065 * @skb: buffer to segment 3066 * @features: features for the output path (see dev->features) 3067 * @tx_path: whether it is called in TX path 3068 * 3069 * This function segments the given skb and returns a list of segments. 3070 * 3071 * It may return NULL if the skb requires no segmentation. This is 3072 * only possible when GSO is used for verifying header integrity. 3073 * 3074 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 3075 */ 3076 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3077 netdev_features_t features, bool tx_path) 3078 { 3079 struct sk_buff *segs; 3080 3081 if (unlikely(skb_needs_check(skb, tx_path))) { 3082 int err; 3083 3084 /* We're going to init ->check field in TCP or UDP header */ 3085 err = skb_cow_head(skb, 0); 3086 if (err < 0) 3087 return ERR_PTR(err); 3088 } 3089 3090 /* Only report GSO partial support if it will enable us to 3091 * support segmentation on this frame without needing additional 3092 * work. 3093 */ 3094 if (features & NETIF_F_GSO_PARTIAL) { 3095 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 3096 struct net_device *dev = skb->dev; 3097 3098 partial_features |= dev->features & dev->gso_partial_features; 3099 if (!skb_gso_ok(skb, features | partial_features)) 3100 features &= ~NETIF_F_GSO_PARTIAL; 3101 } 3102 3103 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 3104 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 3105 3106 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 3107 SKB_GSO_CB(skb)->encap_level = 0; 3108 3109 skb_reset_mac_header(skb); 3110 skb_reset_mac_len(skb); 3111 3112 segs = skb_mac_gso_segment(skb, features); 3113 3114 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 3115 skb_warn_bad_offload(skb); 3116 3117 return segs; 3118 } 3119 EXPORT_SYMBOL(__skb_gso_segment); 3120 3121 /* Take action when hardware reception checksum errors are detected. */ 3122 #ifdef CONFIG_BUG 3123 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3124 { 3125 if (net_ratelimit()) { 3126 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 3127 if (dev) 3128 pr_err("dev features: %pNF\n", &dev->features); 3129 pr_err("skb len=%u data_len=%u pkt_type=%u gso_size=%u gso_type=%u nr_frags=%u ip_summed=%u csum=%x csum_complete_sw=%d csum_valid=%d csum_level=%u\n", 3130 skb->len, skb->data_len, skb->pkt_type, 3131 skb_shinfo(skb)->gso_size, skb_shinfo(skb)->gso_type, 3132 skb_shinfo(skb)->nr_frags, skb->ip_summed, skb->csum, 3133 skb->csum_complete_sw, skb->csum_valid, skb->csum_level); 3134 dump_stack(); 3135 } 3136 } 3137 EXPORT_SYMBOL(netdev_rx_csum_fault); 3138 #endif 3139 3140 /* XXX: check that highmem exists at all on the given machine. */ 3141 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3142 { 3143 #ifdef CONFIG_HIGHMEM 3144 int i; 3145 3146 if (!(dev->features & NETIF_F_HIGHDMA)) { 3147 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3148 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3149 3150 if (PageHighMem(skb_frag_page(frag))) 3151 return 1; 3152 } 3153 } 3154 #endif 3155 return 0; 3156 } 3157 3158 /* If MPLS offload request, verify we are testing hardware MPLS features 3159 * instead of standard features for the netdev. 3160 */ 3161 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3162 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3163 netdev_features_t features, 3164 __be16 type) 3165 { 3166 if (eth_p_mpls(type)) 3167 features &= skb->dev->mpls_features; 3168 3169 return features; 3170 } 3171 #else 3172 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3173 netdev_features_t features, 3174 __be16 type) 3175 { 3176 return features; 3177 } 3178 #endif 3179 3180 static netdev_features_t harmonize_features(struct sk_buff *skb, 3181 netdev_features_t features) 3182 { 3183 int tmp; 3184 __be16 type; 3185 3186 type = skb_network_protocol(skb, &tmp); 3187 features = net_mpls_features(skb, features, type); 3188 3189 if (skb->ip_summed != CHECKSUM_NONE && 3190 !can_checksum_protocol(features, type)) { 3191 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3192 } 3193 if (illegal_highdma(skb->dev, skb)) 3194 features &= ~NETIF_F_SG; 3195 3196 return features; 3197 } 3198 3199 netdev_features_t passthru_features_check(struct sk_buff *skb, 3200 struct net_device *dev, 3201 netdev_features_t features) 3202 { 3203 return features; 3204 } 3205 EXPORT_SYMBOL(passthru_features_check); 3206 3207 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3208 struct net_device *dev, 3209 netdev_features_t features) 3210 { 3211 return vlan_features_check(skb, features); 3212 } 3213 3214 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3215 struct net_device *dev, 3216 netdev_features_t features) 3217 { 3218 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3219 3220 if (gso_segs > dev->gso_max_segs) 3221 return features & ~NETIF_F_GSO_MASK; 3222 3223 /* Support for GSO partial features requires software 3224 * intervention before we can actually process the packets 3225 * so we need to strip support for any partial features now 3226 * and we can pull them back in after we have partially 3227 * segmented the frame. 3228 */ 3229 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3230 features &= ~dev->gso_partial_features; 3231 3232 /* Make sure to clear the IPv4 ID mangling feature if the 3233 * IPv4 header has the potential to be fragmented. 3234 */ 3235 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3236 struct iphdr *iph = skb->encapsulation ? 3237 inner_ip_hdr(skb) : ip_hdr(skb); 3238 3239 if (!(iph->frag_off & htons(IP_DF))) 3240 features &= ~NETIF_F_TSO_MANGLEID; 3241 } 3242 3243 return features; 3244 } 3245 3246 netdev_features_t netif_skb_features(struct sk_buff *skb) 3247 { 3248 struct net_device *dev = skb->dev; 3249 netdev_features_t features = dev->features; 3250 3251 if (skb_is_gso(skb)) 3252 features = gso_features_check(skb, dev, features); 3253 3254 /* If encapsulation offload request, verify we are testing 3255 * hardware encapsulation features instead of standard 3256 * features for the netdev 3257 */ 3258 if (skb->encapsulation) 3259 features &= dev->hw_enc_features; 3260 3261 if (skb_vlan_tagged(skb)) 3262 features = netdev_intersect_features(features, 3263 dev->vlan_features | 3264 NETIF_F_HW_VLAN_CTAG_TX | 3265 NETIF_F_HW_VLAN_STAG_TX); 3266 3267 if (dev->netdev_ops->ndo_features_check) 3268 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3269 features); 3270 else 3271 features &= dflt_features_check(skb, dev, features); 3272 3273 return harmonize_features(skb, features); 3274 } 3275 EXPORT_SYMBOL(netif_skb_features); 3276 3277 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3278 struct netdev_queue *txq, bool more) 3279 { 3280 unsigned int len; 3281 int rc; 3282 3283 if (dev_nit_active(dev)) 3284 dev_queue_xmit_nit(skb, dev); 3285 3286 len = skb->len; 3287 trace_net_dev_start_xmit(skb, dev); 3288 rc = netdev_start_xmit(skb, dev, txq, more); 3289 trace_net_dev_xmit(skb, rc, dev, len); 3290 3291 return rc; 3292 } 3293 3294 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3295 struct netdev_queue *txq, int *ret) 3296 { 3297 struct sk_buff *skb = first; 3298 int rc = NETDEV_TX_OK; 3299 3300 while (skb) { 3301 struct sk_buff *next = skb->next; 3302 3303 skb_mark_not_on_list(skb); 3304 rc = xmit_one(skb, dev, txq, next != NULL); 3305 if (unlikely(!dev_xmit_complete(rc))) { 3306 skb->next = next; 3307 goto out; 3308 } 3309 3310 skb = next; 3311 if (netif_tx_queue_stopped(txq) && skb) { 3312 rc = NETDEV_TX_BUSY; 3313 break; 3314 } 3315 } 3316 3317 out: 3318 *ret = rc; 3319 return skb; 3320 } 3321 3322 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3323 netdev_features_t features) 3324 { 3325 if (skb_vlan_tag_present(skb) && 3326 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3327 skb = __vlan_hwaccel_push_inside(skb); 3328 return skb; 3329 } 3330 3331 int skb_csum_hwoffload_help(struct sk_buff *skb, 3332 const netdev_features_t features) 3333 { 3334 if (unlikely(skb->csum_not_inet)) 3335 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3336 skb_crc32c_csum_help(skb); 3337 3338 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3339 } 3340 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3341 3342 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3343 { 3344 netdev_features_t features; 3345 3346 features = netif_skb_features(skb); 3347 skb = validate_xmit_vlan(skb, features); 3348 if (unlikely(!skb)) 3349 goto out_null; 3350 3351 skb = sk_validate_xmit_skb(skb, dev); 3352 if (unlikely(!skb)) 3353 goto out_null; 3354 3355 if (netif_needs_gso(skb, features)) { 3356 struct sk_buff *segs; 3357 3358 segs = skb_gso_segment(skb, features); 3359 if (IS_ERR(segs)) { 3360 goto out_kfree_skb; 3361 } else if (segs) { 3362 consume_skb(skb); 3363 skb = segs; 3364 } 3365 } else { 3366 if (skb_needs_linearize(skb, features) && 3367 __skb_linearize(skb)) 3368 goto out_kfree_skb; 3369 3370 /* If packet is not checksummed and device does not 3371 * support checksumming for this protocol, complete 3372 * checksumming here. 3373 */ 3374 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3375 if (skb->encapsulation) 3376 skb_set_inner_transport_header(skb, 3377 skb_checksum_start_offset(skb)); 3378 else 3379 skb_set_transport_header(skb, 3380 skb_checksum_start_offset(skb)); 3381 if (skb_csum_hwoffload_help(skb, features)) 3382 goto out_kfree_skb; 3383 } 3384 } 3385 3386 skb = validate_xmit_xfrm(skb, features, again); 3387 3388 return skb; 3389 3390 out_kfree_skb: 3391 kfree_skb(skb); 3392 out_null: 3393 atomic_long_inc(&dev->tx_dropped); 3394 return NULL; 3395 } 3396 3397 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3398 { 3399 struct sk_buff *next, *head = NULL, *tail; 3400 3401 for (; skb != NULL; skb = next) { 3402 next = skb->next; 3403 skb_mark_not_on_list(skb); 3404 3405 /* in case skb wont be segmented, point to itself */ 3406 skb->prev = skb; 3407 3408 skb = validate_xmit_skb(skb, dev, again); 3409 if (!skb) 3410 continue; 3411 3412 if (!head) 3413 head = skb; 3414 else 3415 tail->next = skb; 3416 /* If skb was segmented, skb->prev points to 3417 * the last segment. If not, it still contains skb. 3418 */ 3419 tail = skb->prev; 3420 } 3421 return head; 3422 } 3423 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3424 3425 static void qdisc_pkt_len_init(struct sk_buff *skb) 3426 { 3427 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3428 3429 qdisc_skb_cb(skb)->pkt_len = skb->len; 3430 3431 /* To get more precise estimation of bytes sent on wire, 3432 * we add to pkt_len the headers size of all segments 3433 */ 3434 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3435 unsigned int hdr_len; 3436 u16 gso_segs = shinfo->gso_segs; 3437 3438 /* mac layer + network layer */ 3439 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3440 3441 /* + transport layer */ 3442 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3443 const struct tcphdr *th; 3444 struct tcphdr _tcphdr; 3445 3446 th = skb_header_pointer(skb, skb_transport_offset(skb), 3447 sizeof(_tcphdr), &_tcphdr); 3448 if (likely(th)) 3449 hdr_len += __tcp_hdrlen(th); 3450 } else { 3451 struct udphdr _udphdr; 3452 3453 if (skb_header_pointer(skb, skb_transport_offset(skb), 3454 sizeof(_udphdr), &_udphdr)) 3455 hdr_len += sizeof(struct udphdr); 3456 } 3457 3458 if (shinfo->gso_type & SKB_GSO_DODGY) 3459 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3460 shinfo->gso_size); 3461 3462 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3463 } 3464 } 3465 3466 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3467 struct net_device *dev, 3468 struct netdev_queue *txq) 3469 { 3470 spinlock_t *root_lock = qdisc_lock(q); 3471 struct sk_buff *to_free = NULL; 3472 bool contended; 3473 int rc; 3474 3475 qdisc_calculate_pkt_len(skb, q); 3476 3477 if (q->flags & TCQ_F_NOLOCK) { 3478 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3479 __qdisc_drop(skb, &to_free); 3480 rc = NET_XMIT_DROP; 3481 } else if ((q->flags & TCQ_F_CAN_BYPASS) && q->empty && 3482 qdisc_run_begin(q)) { 3483 qdisc_bstats_cpu_update(q, skb); 3484 3485 if (sch_direct_xmit(skb, q, dev, txq, NULL, true)) 3486 __qdisc_run(q); 3487 3488 qdisc_run_end(q); 3489 rc = NET_XMIT_SUCCESS; 3490 } else { 3491 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3492 qdisc_run(q); 3493 } 3494 3495 if (unlikely(to_free)) 3496 kfree_skb_list(to_free); 3497 return rc; 3498 } 3499 3500 /* 3501 * Heuristic to force contended enqueues to serialize on a 3502 * separate lock before trying to get qdisc main lock. 3503 * This permits qdisc->running owner to get the lock more 3504 * often and dequeue packets faster. 3505 */ 3506 contended = qdisc_is_running(q); 3507 if (unlikely(contended)) 3508 spin_lock(&q->busylock); 3509 3510 spin_lock(root_lock); 3511 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3512 __qdisc_drop(skb, &to_free); 3513 rc = NET_XMIT_DROP; 3514 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3515 qdisc_run_begin(q)) { 3516 /* 3517 * This is a work-conserving queue; there are no old skbs 3518 * waiting to be sent out; and the qdisc is not running - 3519 * xmit the skb directly. 3520 */ 3521 3522 qdisc_bstats_update(q, skb); 3523 3524 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3525 if (unlikely(contended)) { 3526 spin_unlock(&q->busylock); 3527 contended = false; 3528 } 3529 __qdisc_run(q); 3530 } 3531 3532 qdisc_run_end(q); 3533 rc = NET_XMIT_SUCCESS; 3534 } else { 3535 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3536 if (qdisc_run_begin(q)) { 3537 if (unlikely(contended)) { 3538 spin_unlock(&q->busylock); 3539 contended = false; 3540 } 3541 __qdisc_run(q); 3542 qdisc_run_end(q); 3543 } 3544 } 3545 spin_unlock(root_lock); 3546 if (unlikely(to_free)) 3547 kfree_skb_list(to_free); 3548 if (unlikely(contended)) 3549 spin_unlock(&q->busylock); 3550 return rc; 3551 } 3552 3553 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3554 static void skb_update_prio(struct sk_buff *skb) 3555 { 3556 const struct netprio_map *map; 3557 const struct sock *sk; 3558 unsigned int prioidx; 3559 3560 if (skb->priority) 3561 return; 3562 map = rcu_dereference_bh(skb->dev->priomap); 3563 if (!map) 3564 return; 3565 sk = skb_to_full_sk(skb); 3566 if (!sk) 3567 return; 3568 3569 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3570 3571 if (prioidx < map->priomap_len) 3572 skb->priority = map->priomap[prioidx]; 3573 } 3574 #else 3575 #define skb_update_prio(skb) 3576 #endif 3577 3578 /** 3579 * dev_loopback_xmit - loop back @skb 3580 * @net: network namespace this loopback is happening in 3581 * @sk: sk needed to be a netfilter okfn 3582 * @skb: buffer to transmit 3583 */ 3584 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3585 { 3586 skb_reset_mac_header(skb); 3587 __skb_pull(skb, skb_network_offset(skb)); 3588 skb->pkt_type = PACKET_LOOPBACK; 3589 skb->ip_summed = CHECKSUM_UNNECESSARY; 3590 WARN_ON(!skb_dst(skb)); 3591 skb_dst_force(skb); 3592 netif_rx_ni(skb); 3593 return 0; 3594 } 3595 EXPORT_SYMBOL(dev_loopback_xmit); 3596 3597 #ifdef CONFIG_NET_EGRESS 3598 static struct sk_buff * 3599 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3600 { 3601 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3602 struct tcf_result cl_res; 3603 3604 if (!miniq) 3605 return skb; 3606 3607 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3608 mini_qdisc_bstats_cpu_update(miniq, skb); 3609 3610 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3611 case TC_ACT_OK: 3612 case TC_ACT_RECLASSIFY: 3613 skb->tc_index = TC_H_MIN(cl_res.classid); 3614 break; 3615 case TC_ACT_SHOT: 3616 mini_qdisc_qstats_cpu_drop(miniq); 3617 *ret = NET_XMIT_DROP; 3618 kfree_skb(skb); 3619 return NULL; 3620 case TC_ACT_STOLEN: 3621 case TC_ACT_QUEUED: 3622 case TC_ACT_TRAP: 3623 *ret = NET_XMIT_SUCCESS; 3624 consume_skb(skb); 3625 return NULL; 3626 case TC_ACT_REDIRECT: 3627 /* No need to push/pop skb's mac_header here on egress! */ 3628 skb_do_redirect(skb); 3629 *ret = NET_XMIT_SUCCESS; 3630 return NULL; 3631 default: 3632 break; 3633 } 3634 3635 return skb; 3636 } 3637 #endif /* CONFIG_NET_EGRESS */ 3638 3639 #ifdef CONFIG_XPS 3640 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 3641 struct xps_dev_maps *dev_maps, unsigned int tci) 3642 { 3643 struct xps_map *map; 3644 int queue_index = -1; 3645 3646 if (dev->num_tc) { 3647 tci *= dev->num_tc; 3648 tci += netdev_get_prio_tc_map(dev, skb->priority); 3649 } 3650 3651 map = rcu_dereference(dev_maps->attr_map[tci]); 3652 if (map) { 3653 if (map->len == 1) 3654 queue_index = map->queues[0]; 3655 else 3656 queue_index = map->queues[reciprocal_scale( 3657 skb_get_hash(skb), map->len)]; 3658 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3659 queue_index = -1; 3660 } 3661 return queue_index; 3662 } 3663 #endif 3664 3665 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 3666 struct sk_buff *skb) 3667 { 3668 #ifdef CONFIG_XPS 3669 struct xps_dev_maps *dev_maps; 3670 struct sock *sk = skb->sk; 3671 int queue_index = -1; 3672 3673 if (!static_key_false(&xps_needed)) 3674 return -1; 3675 3676 rcu_read_lock(); 3677 if (!static_key_false(&xps_rxqs_needed)) 3678 goto get_cpus_map; 3679 3680 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map); 3681 if (dev_maps) { 3682 int tci = sk_rx_queue_get(sk); 3683 3684 if (tci >= 0 && tci < dev->num_rx_queues) 3685 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3686 tci); 3687 } 3688 3689 get_cpus_map: 3690 if (queue_index < 0) { 3691 dev_maps = rcu_dereference(sb_dev->xps_cpus_map); 3692 if (dev_maps) { 3693 unsigned int tci = skb->sender_cpu - 1; 3694 3695 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3696 tci); 3697 } 3698 } 3699 rcu_read_unlock(); 3700 3701 return queue_index; 3702 #else 3703 return -1; 3704 #endif 3705 } 3706 3707 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3708 struct net_device *sb_dev) 3709 { 3710 return 0; 3711 } 3712 EXPORT_SYMBOL(dev_pick_tx_zero); 3713 3714 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3715 struct net_device *sb_dev) 3716 { 3717 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 3718 } 3719 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 3720 3721 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 3722 struct net_device *sb_dev) 3723 { 3724 struct sock *sk = skb->sk; 3725 int queue_index = sk_tx_queue_get(sk); 3726 3727 sb_dev = sb_dev ? : dev; 3728 3729 if (queue_index < 0 || skb->ooo_okay || 3730 queue_index >= dev->real_num_tx_queues) { 3731 int new_index = get_xps_queue(dev, sb_dev, skb); 3732 3733 if (new_index < 0) 3734 new_index = skb_tx_hash(dev, sb_dev, skb); 3735 3736 if (queue_index != new_index && sk && 3737 sk_fullsock(sk) && 3738 rcu_access_pointer(sk->sk_dst_cache)) 3739 sk_tx_queue_set(sk, new_index); 3740 3741 queue_index = new_index; 3742 } 3743 3744 return queue_index; 3745 } 3746 EXPORT_SYMBOL(netdev_pick_tx); 3747 3748 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 3749 struct sk_buff *skb, 3750 struct net_device *sb_dev) 3751 { 3752 int queue_index = 0; 3753 3754 #ifdef CONFIG_XPS 3755 u32 sender_cpu = skb->sender_cpu - 1; 3756 3757 if (sender_cpu >= (u32)NR_CPUS) 3758 skb->sender_cpu = raw_smp_processor_id() + 1; 3759 #endif 3760 3761 if (dev->real_num_tx_queues != 1) { 3762 const struct net_device_ops *ops = dev->netdev_ops; 3763 3764 if (ops->ndo_select_queue) 3765 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 3766 else 3767 queue_index = netdev_pick_tx(dev, skb, sb_dev); 3768 3769 queue_index = netdev_cap_txqueue(dev, queue_index); 3770 } 3771 3772 skb_set_queue_mapping(skb, queue_index); 3773 return netdev_get_tx_queue(dev, queue_index); 3774 } 3775 3776 /** 3777 * __dev_queue_xmit - transmit a buffer 3778 * @skb: buffer to transmit 3779 * @sb_dev: suboordinate device used for L2 forwarding offload 3780 * 3781 * Queue a buffer for transmission to a network device. The caller must 3782 * have set the device and priority and built the buffer before calling 3783 * this function. The function can be called from an interrupt. 3784 * 3785 * A negative errno code is returned on a failure. A success does not 3786 * guarantee the frame will be transmitted as it may be dropped due 3787 * to congestion or traffic shaping. 3788 * 3789 * ----------------------------------------------------------------------------------- 3790 * I notice this method can also return errors from the queue disciplines, 3791 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3792 * be positive. 3793 * 3794 * Regardless of the return value, the skb is consumed, so it is currently 3795 * difficult to retry a send to this method. (You can bump the ref count 3796 * before sending to hold a reference for retry if you are careful.) 3797 * 3798 * When calling this method, interrupts MUST be enabled. This is because 3799 * the BH enable code must have IRQs enabled so that it will not deadlock. 3800 * --BLG 3801 */ 3802 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 3803 { 3804 struct net_device *dev = skb->dev; 3805 struct netdev_queue *txq; 3806 struct Qdisc *q; 3807 int rc = -ENOMEM; 3808 bool again = false; 3809 3810 skb_reset_mac_header(skb); 3811 3812 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3813 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3814 3815 /* Disable soft irqs for various locks below. Also 3816 * stops preemption for RCU. 3817 */ 3818 rcu_read_lock_bh(); 3819 3820 skb_update_prio(skb); 3821 3822 qdisc_pkt_len_init(skb); 3823 #ifdef CONFIG_NET_CLS_ACT 3824 skb->tc_at_ingress = 0; 3825 # ifdef CONFIG_NET_EGRESS 3826 if (static_branch_unlikely(&egress_needed_key)) { 3827 skb = sch_handle_egress(skb, &rc, dev); 3828 if (!skb) 3829 goto out; 3830 } 3831 # endif 3832 #endif 3833 /* If device/qdisc don't need skb->dst, release it right now while 3834 * its hot in this cpu cache. 3835 */ 3836 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3837 skb_dst_drop(skb); 3838 else 3839 skb_dst_force(skb); 3840 3841 txq = netdev_core_pick_tx(dev, skb, sb_dev); 3842 q = rcu_dereference_bh(txq->qdisc); 3843 3844 trace_net_dev_queue(skb); 3845 if (q->enqueue) { 3846 rc = __dev_xmit_skb(skb, q, dev, txq); 3847 goto out; 3848 } 3849 3850 /* The device has no queue. Common case for software devices: 3851 * loopback, all the sorts of tunnels... 3852 3853 * Really, it is unlikely that netif_tx_lock protection is necessary 3854 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 3855 * counters.) 3856 * However, it is possible, that they rely on protection 3857 * made by us here. 3858 3859 * Check this and shot the lock. It is not prone from deadlocks. 3860 *Either shot noqueue qdisc, it is even simpler 8) 3861 */ 3862 if (dev->flags & IFF_UP) { 3863 int cpu = smp_processor_id(); /* ok because BHs are off */ 3864 3865 if (txq->xmit_lock_owner != cpu) { 3866 if (dev_xmit_recursion()) 3867 goto recursion_alert; 3868 3869 skb = validate_xmit_skb(skb, dev, &again); 3870 if (!skb) 3871 goto out; 3872 3873 HARD_TX_LOCK(dev, txq, cpu); 3874 3875 if (!netif_xmit_stopped(txq)) { 3876 dev_xmit_recursion_inc(); 3877 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3878 dev_xmit_recursion_dec(); 3879 if (dev_xmit_complete(rc)) { 3880 HARD_TX_UNLOCK(dev, txq); 3881 goto out; 3882 } 3883 } 3884 HARD_TX_UNLOCK(dev, txq); 3885 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3886 dev->name); 3887 } else { 3888 /* Recursion is detected! It is possible, 3889 * unfortunately 3890 */ 3891 recursion_alert: 3892 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3893 dev->name); 3894 } 3895 } 3896 3897 rc = -ENETDOWN; 3898 rcu_read_unlock_bh(); 3899 3900 atomic_long_inc(&dev->tx_dropped); 3901 kfree_skb_list(skb); 3902 return rc; 3903 out: 3904 rcu_read_unlock_bh(); 3905 return rc; 3906 } 3907 3908 int dev_queue_xmit(struct sk_buff *skb) 3909 { 3910 return __dev_queue_xmit(skb, NULL); 3911 } 3912 EXPORT_SYMBOL(dev_queue_xmit); 3913 3914 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev) 3915 { 3916 return __dev_queue_xmit(skb, sb_dev); 3917 } 3918 EXPORT_SYMBOL(dev_queue_xmit_accel); 3919 3920 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3921 { 3922 struct net_device *dev = skb->dev; 3923 struct sk_buff *orig_skb = skb; 3924 struct netdev_queue *txq; 3925 int ret = NETDEV_TX_BUSY; 3926 bool again = false; 3927 3928 if (unlikely(!netif_running(dev) || 3929 !netif_carrier_ok(dev))) 3930 goto drop; 3931 3932 skb = validate_xmit_skb_list(skb, dev, &again); 3933 if (skb != orig_skb) 3934 goto drop; 3935 3936 skb_set_queue_mapping(skb, queue_id); 3937 txq = skb_get_tx_queue(dev, skb); 3938 3939 local_bh_disable(); 3940 3941 HARD_TX_LOCK(dev, txq, smp_processor_id()); 3942 if (!netif_xmit_frozen_or_drv_stopped(txq)) 3943 ret = netdev_start_xmit(skb, dev, txq, false); 3944 HARD_TX_UNLOCK(dev, txq); 3945 3946 local_bh_enable(); 3947 3948 if (!dev_xmit_complete(ret)) 3949 kfree_skb(skb); 3950 3951 return ret; 3952 drop: 3953 atomic_long_inc(&dev->tx_dropped); 3954 kfree_skb_list(skb); 3955 return NET_XMIT_DROP; 3956 } 3957 EXPORT_SYMBOL(dev_direct_xmit); 3958 3959 /************************************************************************* 3960 * Receiver routines 3961 *************************************************************************/ 3962 3963 int netdev_max_backlog __read_mostly = 1000; 3964 EXPORT_SYMBOL(netdev_max_backlog); 3965 3966 int netdev_tstamp_prequeue __read_mostly = 1; 3967 int netdev_budget __read_mostly = 300; 3968 unsigned int __read_mostly netdev_budget_usecs = 2000; 3969 int weight_p __read_mostly = 64; /* old backlog weight */ 3970 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 3971 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 3972 int dev_rx_weight __read_mostly = 64; 3973 int dev_tx_weight __read_mostly = 64; 3974 3975 /* Called with irq disabled */ 3976 static inline void ____napi_schedule(struct softnet_data *sd, 3977 struct napi_struct *napi) 3978 { 3979 list_add_tail(&napi->poll_list, &sd->poll_list); 3980 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3981 } 3982 3983 #ifdef CONFIG_RPS 3984 3985 /* One global table that all flow-based protocols share. */ 3986 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3987 EXPORT_SYMBOL(rps_sock_flow_table); 3988 u32 rps_cpu_mask __read_mostly; 3989 EXPORT_SYMBOL(rps_cpu_mask); 3990 3991 struct static_key_false rps_needed __read_mostly; 3992 EXPORT_SYMBOL(rps_needed); 3993 struct static_key_false rfs_needed __read_mostly; 3994 EXPORT_SYMBOL(rfs_needed); 3995 3996 static struct rps_dev_flow * 3997 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3998 struct rps_dev_flow *rflow, u16 next_cpu) 3999 { 4000 if (next_cpu < nr_cpu_ids) { 4001 #ifdef CONFIG_RFS_ACCEL 4002 struct netdev_rx_queue *rxqueue; 4003 struct rps_dev_flow_table *flow_table; 4004 struct rps_dev_flow *old_rflow; 4005 u32 flow_id; 4006 u16 rxq_index; 4007 int rc; 4008 4009 /* Should we steer this flow to a different hardware queue? */ 4010 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4011 !(dev->features & NETIF_F_NTUPLE)) 4012 goto out; 4013 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4014 if (rxq_index == skb_get_rx_queue(skb)) 4015 goto out; 4016 4017 rxqueue = dev->_rx + rxq_index; 4018 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4019 if (!flow_table) 4020 goto out; 4021 flow_id = skb_get_hash(skb) & flow_table->mask; 4022 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4023 rxq_index, flow_id); 4024 if (rc < 0) 4025 goto out; 4026 old_rflow = rflow; 4027 rflow = &flow_table->flows[flow_id]; 4028 rflow->filter = rc; 4029 if (old_rflow->filter == rflow->filter) 4030 old_rflow->filter = RPS_NO_FILTER; 4031 out: 4032 #endif 4033 rflow->last_qtail = 4034 per_cpu(softnet_data, next_cpu).input_queue_head; 4035 } 4036 4037 rflow->cpu = next_cpu; 4038 return rflow; 4039 } 4040 4041 /* 4042 * get_rps_cpu is called from netif_receive_skb and returns the target 4043 * CPU from the RPS map of the receiving queue for a given skb. 4044 * rcu_read_lock must be held on entry. 4045 */ 4046 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4047 struct rps_dev_flow **rflowp) 4048 { 4049 const struct rps_sock_flow_table *sock_flow_table; 4050 struct netdev_rx_queue *rxqueue = dev->_rx; 4051 struct rps_dev_flow_table *flow_table; 4052 struct rps_map *map; 4053 int cpu = -1; 4054 u32 tcpu; 4055 u32 hash; 4056 4057 if (skb_rx_queue_recorded(skb)) { 4058 u16 index = skb_get_rx_queue(skb); 4059 4060 if (unlikely(index >= dev->real_num_rx_queues)) { 4061 WARN_ONCE(dev->real_num_rx_queues > 1, 4062 "%s received packet on queue %u, but number " 4063 "of RX queues is %u\n", 4064 dev->name, index, dev->real_num_rx_queues); 4065 goto done; 4066 } 4067 rxqueue += index; 4068 } 4069 4070 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4071 4072 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4073 map = rcu_dereference(rxqueue->rps_map); 4074 if (!flow_table && !map) 4075 goto done; 4076 4077 skb_reset_network_header(skb); 4078 hash = skb_get_hash(skb); 4079 if (!hash) 4080 goto done; 4081 4082 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4083 if (flow_table && sock_flow_table) { 4084 struct rps_dev_flow *rflow; 4085 u32 next_cpu; 4086 u32 ident; 4087 4088 /* First check into global flow table if there is a match */ 4089 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 4090 if ((ident ^ hash) & ~rps_cpu_mask) 4091 goto try_rps; 4092 4093 next_cpu = ident & rps_cpu_mask; 4094 4095 /* OK, now we know there is a match, 4096 * we can look at the local (per receive queue) flow table 4097 */ 4098 rflow = &flow_table->flows[hash & flow_table->mask]; 4099 tcpu = rflow->cpu; 4100 4101 /* 4102 * If the desired CPU (where last recvmsg was done) is 4103 * different from current CPU (one in the rx-queue flow 4104 * table entry), switch if one of the following holds: 4105 * - Current CPU is unset (>= nr_cpu_ids). 4106 * - Current CPU is offline. 4107 * - The current CPU's queue tail has advanced beyond the 4108 * last packet that was enqueued using this table entry. 4109 * This guarantees that all previous packets for the flow 4110 * have been dequeued, thus preserving in order delivery. 4111 */ 4112 if (unlikely(tcpu != next_cpu) && 4113 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4114 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4115 rflow->last_qtail)) >= 0)) { 4116 tcpu = next_cpu; 4117 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4118 } 4119 4120 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4121 *rflowp = rflow; 4122 cpu = tcpu; 4123 goto done; 4124 } 4125 } 4126 4127 try_rps: 4128 4129 if (map) { 4130 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4131 if (cpu_online(tcpu)) { 4132 cpu = tcpu; 4133 goto done; 4134 } 4135 } 4136 4137 done: 4138 return cpu; 4139 } 4140 4141 #ifdef CONFIG_RFS_ACCEL 4142 4143 /** 4144 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4145 * @dev: Device on which the filter was set 4146 * @rxq_index: RX queue index 4147 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4148 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4149 * 4150 * Drivers that implement ndo_rx_flow_steer() should periodically call 4151 * this function for each installed filter and remove the filters for 4152 * which it returns %true. 4153 */ 4154 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4155 u32 flow_id, u16 filter_id) 4156 { 4157 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4158 struct rps_dev_flow_table *flow_table; 4159 struct rps_dev_flow *rflow; 4160 bool expire = true; 4161 unsigned int cpu; 4162 4163 rcu_read_lock(); 4164 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4165 if (flow_table && flow_id <= flow_table->mask) { 4166 rflow = &flow_table->flows[flow_id]; 4167 cpu = READ_ONCE(rflow->cpu); 4168 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4169 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4170 rflow->last_qtail) < 4171 (int)(10 * flow_table->mask))) 4172 expire = false; 4173 } 4174 rcu_read_unlock(); 4175 return expire; 4176 } 4177 EXPORT_SYMBOL(rps_may_expire_flow); 4178 4179 #endif /* CONFIG_RFS_ACCEL */ 4180 4181 /* Called from hardirq (IPI) context */ 4182 static void rps_trigger_softirq(void *data) 4183 { 4184 struct softnet_data *sd = data; 4185 4186 ____napi_schedule(sd, &sd->backlog); 4187 sd->received_rps++; 4188 } 4189 4190 #endif /* CONFIG_RPS */ 4191 4192 /* 4193 * Check if this softnet_data structure is another cpu one 4194 * If yes, queue it to our IPI list and return 1 4195 * If no, return 0 4196 */ 4197 static int rps_ipi_queued(struct softnet_data *sd) 4198 { 4199 #ifdef CONFIG_RPS 4200 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4201 4202 if (sd != mysd) { 4203 sd->rps_ipi_next = mysd->rps_ipi_list; 4204 mysd->rps_ipi_list = sd; 4205 4206 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4207 return 1; 4208 } 4209 #endif /* CONFIG_RPS */ 4210 return 0; 4211 } 4212 4213 #ifdef CONFIG_NET_FLOW_LIMIT 4214 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4215 #endif 4216 4217 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4218 { 4219 #ifdef CONFIG_NET_FLOW_LIMIT 4220 struct sd_flow_limit *fl; 4221 struct softnet_data *sd; 4222 unsigned int old_flow, new_flow; 4223 4224 if (qlen < (netdev_max_backlog >> 1)) 4225 return false; 4226 4227 sd = this_cpu_ptr(&softnet_data); 4228 4229 rcu_read_lock(); 4230 fl = rcu_dereference(sd->flow_limit); 4231 if (fl) { 4232 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4233 old_flow = fl->history[fl->history_head]; 4234 fl->history[fl->history_head] = new_flow; 4235 4236 fl->history_head++; 4237 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4238 4239 if (likely(fl->buckets[old_flow])) 4240 fl->buckets[old_flow]--; 4241 4242 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4243 fl->count++; 4244 rcu_read_unlock(); 4245 return true; 4246 } 4247 } 4248 rcu_read_unlock(); 4249 #endif 4250 return false; 4251 } 4252 4253 /* 4254 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4255 * queue (may be a remote CPU queue). 4256 */ 4257 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4258 unsigned int *qtail) 4259 { 4260 struct softnet_data *sd; 4261 unsigned long flags; 4262 unsigned int qlen; 4263 4264 sd = &per_cpu(softnet_data, cpu); 4265 4266 local_irq_save(flags); 4267 4268 rps_lock(sd); 4269 if (!netif_running(skb->dev)) 4270 goto drop; 4271 qlen = skb_queue_len(&sd->input_pkt_queue); 4272 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 4273 if (qlen) { 4274 enqueue: 4275 __skb_queue_tail(&sd->input_pkt_queue, skb); 4276 input_queue_tail_incr_save(sd, qtail); 4277 rps_unlock(sd); 4278 local_irq_restore(flags); 4279 return NET_RX_SUCCESS; 4280 } 4281 4282 /* Schedule NAPI for backlog device 4283 * We can use non atomic operation since we own the queue lock 4284 */ 4285 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 4286 if (!rps_ipi_queued(sd)) 4287 ____napi_schedule(sd, &sd->backlog); 4288 } 4289 goto enqueue; 4290 } 4291 4292 drop: 4293 sd->dropped++; 4294 rps_unlock(sd); 4295 4296 local_irq_restore(flags); 4297 4298 atomic_long_inc(&skb->dev->rx_dropped); 4299 kfree_skb(skb); 4300 return NET_RX_DROP; 4301 } 4302 4303 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4304 { 4305 struct net_device *dev = skb->dev; 4306 struct netdev_rx_queue *rxqueue; 4307 4308 rxqueue = dev->_rx; 4309 4310 if (skb_rx_queue_recorded(skb)) { 4311 u16 index = skb_get_rx_queue(skb); 4312 4313 if (unlikely(index >= dev->real_num_rx_queues)) { 4314 WARN_ONCE(dev->real_num_rx_queues > 1, 4315 "%s received packet on queue %u, but number " 4316 "of RX queues is %u\n", 4317 dev->name, index, dev->real_num_rx_queues); 4318 4319 return rxqueue; /* Return first rxqueue */ 4320 } 4321 rxqueue += index; 4322 } 4323 return rxqueue; 4324 } 4325 4326 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4327 struct xdp_buff *xdp, 4328 struct bpf_prog *xdp_prog) 4329 { 4330 struct netdev_rx_queue *rxqueue; 4331 void *orig_data, *orig_data_end; 4332 u32 metalen, act = XDP_DROP; 4333 __be16 orig_eth_type; 4334 struct ethhdr *eth; 4335 bool orig_bcast; 4336 int hlen, off; 4337 u32 mac_len; 4338 4339 /* Reinjected packets coming from act_mirred or similar should 4340 * not get XDP generic processing. 4341 */ 4342 if (skb_cloned(skb) || skb_is_tc_redirected(skb)) 4343 return XDP_PASS; 4344 4345 /* XDP packets must be linear and must have sufficient headroom 4346 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4347 * native XDP provides, thus we need to do it here as well. 4348 */ 4349 if (skb_is_nonlinear(skb) || 4350 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4351 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4352 int troom = skb->tail + skb->data_len - skb->end; 4353 4354 /* In case we have to go down the path and also linearize, 4355 * then lets do the pskb_expand_head() work just once here. 4356 */ 4357 if (pskb_expand_head(skb, 4358 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4359 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4360 goto do_drop; 4361 if (skb_linearize(skb)) 4362 goto do_drop; 4363 } 4364 4365 /* The XDP program wants to see the packet starting at the MAC 4366 * header. 4367 */ 4368 mac_len = skb->data - skb_mac_header(skb); 4369 hlen = skb_headlen(skb) + mac_len; 4370 xdp->data = skb->data - mac_len; 4371 xdp->data_meta = xdp->data; 4372 xdp->data_end = xdp->data + hlen; 4373 xdp->data_hard_start = skb->data - skb_headroom(skb); 4374 orig_data_end = xdp->data_end; 4375 orig_data = xdp->data; 4376 eth = (struct ethhdr *)xdp->data; 4377 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4378 orig_eth_type = eth->h_proto; 4379 4380 rxqueue = netif_get_rxqueue(skb); 4381 xdp->rxq = &rxqueue->xdp_rxq; 4382 4383 act = bpf_prog_run_xdp(xdp_prog, xdp); 4384 4385 off = xdp->data - orig_data; 4386 if (off > 0) 4387 __skb_pull(skb, off); 4388 else if (off < 0) 4389 __skb_push(skb, -off); 4390 skb->mac_header += off; 4391 4392 /* check if bpf_xdp_adjust_tail was used. it can only "shrink" 4393 * pckt. 4394 */ 4395 off = orig_data_end - xdp->data_end; 4396 if (off != 0) { 4397 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4398 skb->len -= off; 4399 4400 } 4401 4402 /* check if XDP changed eth hdr such SKB needs update */ 4403 eth = (struct ethhdr *)xdp->data; 4404 if ((orig_eth_type != eth->h_proto) || 4405 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4406 __skb_push(skb, ETH_HLEN); 4407 skb->protocol = eth_type_trans(skb, skb->dev); 4408 } 4409 4410 switch (act) { 4411 case XDP_REDIRECT: 4412 case XDP_TX: 4413 __skb_push(skb, mac_len); 4414 break; 4415 case XDP_PASS: 4416 metalen = xdp->data - xdp->data_meta; 4417 if (metalen) 4418 skb_metadata_set(skb, metalen); 4419 break; 4420 default: 4421 bpf_warn_invalid_xdp_action(act); 4422 /* fall through */ 4423 case XDP_ABORTED: 4424 trace_xdp_exception(skb->dev, xdp_prog, act); 4425 /* fall through */ 4426 case XDP_DROP: 4427 do_drop: 4428 kfree_skb(skb); 4429 break; 4430 } 4431 4432 return act; 4433 } 4434 4435 /* When doing generic XDP we have to bypass the qdisc layer and the 4436 * network taps in order to match in-driver-XDP behavior. 4437 */ 4438 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4439 { 4440 struct net_device *dev = skb->dev; 4441 struct netdev_queue *txq; 4442 bool free_skb = true; 4443 int cpu, rc; 4444 4445 txq = netdev_core_pick_tx(dev, skb, NULL); 4446 cpu = smp_processor_id(); 4447 HARD_TX_LOCK(dev, txq, cpu); 4448 if (!netif_xmit_stopped(txq)) { 4449 rc = netdev_start_xmit(skb, dev, txq, 0); 4450 if (dev_xmit_complete(rc)) 4451 free_skb = false; 4452 } 4453 HARD_TX_UNLOCK(dev, txq); 4454 if (free_skb) { 4455 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4456 kfree_skb(skb); 4457 } 4458 } 4459 EXPORT_SYMBOL_GPL(generic_xdp_tx); 4460 4461 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4462 4463 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4464 { 4465 if (xdp_prog) { 4466 struct xdp_buff xdp; 4467 u32 act; 4468 int err; 4469 4470 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4471 if (act != XDP_PASS) { 4472 switch (act) { 4473 case XDP_REDIRECT: 4474 err = xdp_do_generic_redirect(skb->dev, skb, 4475 &xdp, xdp_prog); 4476 if (err) 4477 goto out_redir; 4478 break; 4479 case XDP_TX: 4480 generic_xdp_tx(skb, xdp_prog); 4481 break; 4482 } 4483 return XDP_DROP; 4484 } 4485 } 4486 return XDP_PASS; 4487 out_redir: 4488 kfree_skb(skb); 4489 return XDP_DROP; 4490 } 4491 EXPORT_SYMBOL_GPL(do_xdp_generic); 4492 4493 static int netif_rx_internal(struct sk_buff *skb) 4494 { 4495 int ret; 4496 4497 net_timestamp_check(netdev_tstamp_prequeue, skb); 4498 4499 trace_netif_rx(skb); 4500 4501 if (static_branch_unlikely(&generic_xdp_needed_key)) { 4502 int ret; 4503 4504 preempt_disable(); 4505 rcu_read_lock(); 4506 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4507 rcu_read_unlock(); 4508 preempt_enable(); 4509 4510 /* Consider XDP consuming the packet a success from 4511 * the netdev point of view we do not want to count 4512 * this as an error. 4513 */ 4514 if (ret != XDP_PASS) 4515 return NET_RX_SUCCESS; 4516 } 4517 4518 #ifdef CONFIG_RPS 4519 if (static_branch_unlikely(&rps_needed)) { 4520 struct rps_dev_flow voidflow, *rflow = &voidflow; 4521 int cpu; 4522 4523 preempt_disable(); 4524 rcu_read_lock(); 4525 4526 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4527 if (cpu < 0) 4528 cpu = smp_processor_id(); 4529 4530 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4531 4532 rcu_read_unlock(); 4533 preempt_enable(); 4534 } else 4535 #endif 4536 { 4537 unsigned int qtail; 4538 4539 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4540 put_cpu(); 4541 } 4542 return ret; 4543 } 4544 4545 /** 4546 * netif_rx - post buffer to the network code 4547 * @skb: buffer to post 4548 * 4549 * This function receives a packet from a device driver and queues it for 4550 * the upper (protocol) levels to process. It always succeeds. The buffer 4551 * may be dropped during processing for congestion control or by the 4552 * protocol layers. 4553 * 4554 * return values: 4555 * NET_RX_SUCCESS (no congestion) 4556 * NET_RX_DROP (packet was dropped) 4557 * 4558 */ 4559 4560 int netif_rx(struct sk_buff *skb) 4561 { 4562 int ret; 4563 4564 trace_netif_rx_entry(skb); 4565 4566 ret = netif_rx_internal(skb); 4567 trace_netif_rx_exit(ret); 4568 4569 return ret; 4570 } 4571 EXPORT_SYMBOL(netif_rx); 4572 4573 int netif_rx_ni(struct sk_buff *skb) 4574 { 4575 int err; 4576 4577 trace_netif_rx_ni_entry(skb); 4578 4579 preempt_disable(); 4580 err = netif_rx_internal(skb); 4581 if (local_softirq_pending()) 4582 do_softirq(); 4583 preempt_enable(); 4584 trace_netif_rx_ni_exit(err); 4585 4586 return err; 4587 } 4588 EXPORT_SYMBOL(netif_rx_ni); 4589 4590 static __latent_entropy void net_tx_action(struct softirq_action *h) 4591 { 4592 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4593 4594 if (sd->completion_queue) { 4595 struct sk_buff *clist; 4596 4597 local_irq_disable(); 4598 clist = sd->completion_queue; 4599 sd->completion_queue = NULL; 4600 local_irq_enable(); 4601 4602 while (clist) { 4603 struct sk_buff *skb = clist; 4604 4605 clist = clist->next; 4606 4607 WARN_ON(refcount_read(&skb->users)); 4608 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4609 trace_consume_skb(skb); 4610 else 4611 trace_kfree_skb(skb, net_tx_action); 4612 4613 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4614 __kfree_skb(skb); 4615 else 4616 __kfree_skb_defer(skb); 4617 } 4618 4619 __kfree_skb_flush(); 4620 } 4621 4622 if (sd->output_queue) { 4623 struct Qdisc *head; 4624 4625 local_irq_disable(); 4626 head = sd->output_queue; 4627 sd->output_queue = NULL; 4628 sd->output_queue_tailp = &sd->output_queue; 4629 local_irq_enable(); 4630 4631 while (head) { 4632 struct Qdisc *q = head; 4633 spinlock_t *root_lock = NULL; 4634 4635 head = head->next_sched; 4636 4637 if (!(q->flags & TCQ_F_NOLOCK)) { 4638 root_lock = qdisc_lock(q); 4639 spin_lock(root_lock); 4640 } 4641 /* We need to make sure head->next_sched is read 4642 * before clearing __QDISC_STATE_SCHED 4643 */ 4644 smp_mb__before_atomic(); 4645 clear_bit(__QDISC_STATE_SCHED, &q->state); 4646 qdisc_run(q); 4647 if (root_lock) 4648 spin_unlock(root_lock); 4649 } 4650 } 4651 4652 xfrm_dev_backlog(sd); 4653 } 4654 4655 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4656 /* This hook is defined here for ATM LANE */ 4657 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4658 unsigned char *addr) __read_mostly; 4659 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4660 #endif 4661 4662 static inline struct sk_buff * 4663 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4664 struct net_device *orig_dev) 4665 { 4666 #ifdef CONFIG_NET_CLS_ACT 4667 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 4668 struct tcf_result cl_res; 4669 4670 /* If there's at least one ingress present somewhere (so 4671 * we get here via enabled static key), remaining devices 4672 * that are not configured with an ingress qdisc will bail 4673 * out here. 4674 */ 4675 if (!miniq) 4676 return skb; 4677 4678 if (*pt_prev) { 4679 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4680 *pt_prev = NULL; 4681 } 4682 4683 qdisc_skb_cb(skb)->pkt_len = skb->len; 4684 skb->tc_at_ingress = 1; 4685 mini_qdisc_bstats_cpu_update(miniq, skb); 4686 4687 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 4688 case TC_ACT_OK: 4689 case TC_ACT_RECLASSIFY: 4690 skb->tc_index = TC_H_MIN(cl_res.classid); 4691 break; 4692 case TC_ACT_SHOT: 4693 mini_qdisc_qstats_cpu_drop(miniq); 4694 kfree_skb(skb); 4695 return NULL; 4696 case TC_ACT_STOLEN: 4697 case TC_ACT_QUEUED: 4698 case TC_ACT_TRAP: 4699 consume_skb(skb); 4700 return NULL; 4701 case TC_ACT_REDIRECT: 4702 /* skb_mac_header check was done by cls/act_bpf, so 4703 * we can safely push the L2 header back before 4704 * redirecting to another netdev 4705 */ 4706 __skb_push(skb, skb->mac_len); 4707 skb_do_redirect(skb); 4708 return NULL; 4709 case TC_ACT_REINSERT: 4710 /* this does not scrub the packet, and updates stats on error */ 4711 skb_tc_reinsert(skb, &cl_res); 4712 return NULL; 4713 default: 4714 break; 4715 } 4716 #endif /* CONFIG_NET_CLS_ACT */ 4717 return skb; 4718 } 4719 4720 /** 4721 * netdev_is_rx_handler_busy - check if receive handler is registered 4722 * @dev: device to check 4723 * 4724 * Check if a receive handler is already registered for a given device. 4725 * Return true if there one. 4726 * 4727 * The caller must hold the rtnl_mutex. 4728 */ 4729 bool netdev_is_rx_handler_busy(struct net_device *dev) 4730 { 4731 ASSERT_RTNL(); 4732 return dev && rtnl_dereference(dev->rx_handler); 4733 } 4734 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4735 4736 /** 4737 * netdev_rx_handler_register - register receive handler 4738 * @dev: device to register a handler for 4739 * @rx_handler: receive handler to register 4740 * @rx_handler_data: data pointer that is used by rx handler 4741 * 4742 * Register a receive handler for a device. This handler will then be 4743 * called from __netif_receive_skb. A negative errno code is returned 4744 * on a failure. 4745 * 4746 * The caller must hold the rtnl_mutex. 4747 * 4748 * For a general description of rx_handler, see enum rx_handler_result. 4749 */ 4750 int netdev_rx_handler_register(struct net_device *dev, 4751 rx_handler_func_t *rx_handler, 4752 void *rx_handler_data) 4753 { 4754 if (netdev_is_rx_handler_busy(dev)) 4755 return -EBUSY; 4756 4757 if (dev->priv_flags & IFF_NO_RX_HANDLER) 4758 return -EINVAL; 4759 4760 /* Note: rx_handler_data must be set before rx_handler */ 4761 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4762 rcu_assign_pointer(dev->rx_handler, rx_handler); 4763 4764 return 0; 4765 } 4766 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4767 4768 /** 4769 * netdev_rx_handler_unregister - unregister receive handler 4770 * @dev: device to unregister a handler from 4771 * 4772 * Unregister a receive handler from a device. 4773 * 4774 * The caller must hold the rtnl_mutex. 4775 */ 4776 void netdev_rx_handler_unregister(struct net_device *dev) 4777 { 4778 4779 ASSERT_RTNL(); 4780 RCU_INIT_POINTER(dev->rx_handler, NULL); 4781 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4782 * section has a guarantee to see a non NULL rx_handler_data 4783 * as well. 4784 */ 4785 synchronize_net(); 4786 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4787 } 4788 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4789 4790 /* 4791 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4792 * the special handling of PFMEMALLOC skbs. 4793 */ 4794 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4795 { 4796 switch (skb->protocol) { 4797 case htons(ETH_P_ARP): 4798 case htons(ETH_P_IP): 4799 case htons(ETH_P_IPV6): 4800 case htons(ETH_P_8021Q): 4801 case htons(ETH_P_8021AD): 4802 return true; 4803 default: 4804 return false; 4805 } 4806 } 4807 4808 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4809 int *ret, struct net_device *orig_dev) 4810 { 4811 #ifdef CONFIG_NETFILTER_INGRESS 4812 if (nf_hook_ingress_active(skb)) { 4813 int ingress_retval; 4814 4815 if (*pt_prev) { 4816 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4817 *pt_prev = NULL; 4818 } 4819 4820 rcu_read_lock(); 4821 ingress_retval = nf_hook_ingress(skb); 4822 rcu_read_unlock(); 4823 return ingress_retval; 4824 } 4825 #endif /* CONFIG_NETFILTER_INGRESS */ 4826 return 0; 4827 } 4828 4829 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc, 4830 struct packet_type **ppt_prev) 4831 { 4832 struct packet_type *ptype, *pt_prev; 4833 rx_handler_func_t *rx_handler; 4834 struct net_device *orig_dev; 4835 bool deliver_exact = false; 4836 int ret = NET_RX_DROP; 4837 __be16 type; 4838 4839 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4840 4841 trace_netif_receive_skb(skb); 4842 4843 orig_dev = skb->dev; 4844 4845 skb_reset_network_header(skb); 4846 if (!skb_transport_header_was_set(skb)) 4847 skb_reset_transport_header(skb); 4848 skb_reset_mac_len(skb); 4849 4850 pt_prev = NULL; 4851 4852 another_round: 4853 skb->skb_iif = skb->dev->ifindex; 4854 4855 __this_cpu_inc(softnet_data.processed); 4856 4857 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4858 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4859 skb = skb_vlan_untag(skb); 4860 if (unlikely(!skb)) 4861 goto out; 4862 } 4863 4864 if (skb_skip_tc_classify(skb)) 4865 goto skip_classify; 4866 4867 if (pfmemalloc) 4868 goto skip_taps; 4869 4870 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4871 if (pt_prev) 4872 ret = deliver_skb(skb, pt_prev, orig_dev); 4873 pt_prev = ptype; 4874 } 4875 4876 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4877 if (pt_prev) 4878 ret = deliver_skb(skb, pt_prev, orig_dev); 4879 pt_prev = ptype; 4880 } 4881 4882 skip_taps: 4883 #ifdef CONFIG_NET_INGRESS 4884 if (static_branch_unlikely(&ingress_needed_key)) { 4885 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4886 if (!skb) 4887 goto out; 4888 4889 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4890 goto out; 4891 } 4892 #endif 4893 skb_reset_tc(skb); 4894 skip_classify: 4895 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4896 goto drop; 4897 4898 if (skb_vlan_tag_present(skb)) { 4899 if (pt_prev) { 4900 ret = deliver_skb(skb, pt_prev, orig_dev); 4901 pt_prev = NULL; 4902 } 4903 if (vlan_do_receive(&skb)) 4904 goto another_round; 4905 else if (unlikely(!skb)) 4906 goto out; 4907 } 4908 4909 rx_handler = rcu_dereference(skb->dev->rx_handler); 4910 if (rx_handler) { 4911 if (pt_prev) { 4912 ret = deliver_skb(skb, pt_prev, orig_dev); 4913 pt_prev = NULL; 4914 } 4915 switch (rx_handler(&skb)) { 4916 case RX_HANDLER_CONSUMED: 4917 ret = NET_RX_SUCCESS; 4918 goto out; 4919 case RX_HANDLER_ANOTHER: 4920 goto another_round; 4921 case RX_HANDLER_EXACT: 4922 deliver_exact = true; 4923 case RX_HANDLER_PASS: 4924 break; 4925 default: 4926 BUG(); 4927 } 4928 } 4929 4930 if (unlikely(skb_vlan_tag_present(skb))) { 4931 if (skb_vlan_tag_get_id(skb)) 4932 skb->pkt_type = PACKET_OTHERHOST; 4933 /* Note: we might in the future use prio bits 4934 * and set skb->priority like in vlan_do_receive() 4935 * For the time being, just ignore Priority Code Point 4936 */ 4937 __vlan_hwaccel_clear_tag(skb); 4938 } 4939 4940 type = skb->protocol; 4941 4942 /* deliver only exact match when indicated */ 4943 if (likely(!deliver_exact)) { 4944 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4945 &ptype_base[ntohs(type) & 4946 PTYPE_HASH_MASK]); 4947 } 4948 4949 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4950 &orig_dev->ptype_specific); 4951 4952 if (unlikely(skb->dev != orig_dev)) { 4953 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4954 &skb->dev->ptype_specific); 4955 } 4956 4957 if (pt_prev) { 4958 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 4959 goto drop; 4960 *ppt_prev = pt_prev; 4961 } else { 4962 drop: 4963 if (!deliver_exact) 4964 atomic_long_inc(&skb->dev->rx_dropped); 4965 else 4966 atomic_long_inc(&skb->dev->rx_nohandler); 4967 kfree_skb(skb); 4968 /* Jamal, now you will not able to escape explaining 4969 * me how you were going to use this. :-) 4970 */ 4971 ret = NET_RX_DROP; 4972 } 4973 4974 out: 4975 return ret; 4976 } 4977 4978 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 4979 { 4980 struct net_device *orig_dev = skb->dev; 4981 struct packet_type *pt_prev = NULL; 4982 int ret; 4983 4984 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 4985 if (pt_prev) 4986 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 4987 skb->dev, pt_prev, orig_dev); 4988 return ret; 4989 } 4990 4991 /** 4992 * netif_receive_skb_core - special purpose version of netif_receive_skb 4993 * @skb: buffer to process 4994 * 4995 * More direct receive version of netif_receive_skb(). It should 4996 * only be used by callers that have a need to skip RPS and Generic XDP. 4997 * Caller must also take care of handling if (page_is_)pfmemalloc. 4998 * 4999 * This function may only be called from softirq context and interrupts 5000 * should be enabled. 5001 * 5002 * Return values (usually ignored): 5003 * NET_RX_SUCCESS: no congestion 5004 * NET_RX_DROP: packet was dropped 5005 */ 5006 int netif_receive_skb_core(struct sk_buff *skb) 5007 { 5008 int ret; 5009 5010 rcu_read_lock(); 5011 ret = __netif_receive_skb_one_core(skb, false); 5012 rcu_read_unlock(); 5013 5014 return ret; 5015 } 5016 EXPORT_SYMBOL(netif_receive_skb_core); 5017 5018 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5019 struct packet_type *pt_prev, 5020 struct net_device *orig_dev) 5021 { 5022 struct sk_buff *skb, *next; 5023 5024 if (!pt_prev) 5025 return; 5026 if (list_empty(head)) 5027 return; 5028 if (pt_prev->list_func != NULL) 5029 pt_prev->list_func(head, pt_prev, orig_dev); 5030 else 5031 list_for_each_entry_safe(skb, next, head, list) { 5032 skb_list_del_init(skb); 5033 INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5034 skb->dev, pt_prev, orig_dev); 5035 } 5036 } 5037 5038 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5039 { 5040 /* Fast-path assumptions: 5041 * - There is no RX handler. 5042 * - Only one packet_type matches. 5043 * If either of these fails, we will end up doing some per-packet 5044 * processing in-line, then handling the 'last ptype' for the whole 5045 * sublist. This can't cause out-of-order delivery to any single ptype, 5046 * because the 'last ptype' must be constant across the sublist, and all 5047 * other ptypes are handled per-packet. 5048 */ 5049 /* Current (common) ptype of sublist */ 5050 struct packet_type *pt_curr = NULL; 5051 /* Current (common) orig_dev of sublist */ 5052 struct net_device *od_curr = NULL; 5053 struct list_head sublist; 5054 struct sk_buff *skb, *next; 5055 5056 INIT_LIST_HEAD(&sublist); 5057 list_for_each_entry_safe(skb, next, head, list) { 5058 struct net_device *orig_dev = skb->dev; 5059 struct packet_type *pt_prev = NULL; 5060 5061 skb_list_del_init(skb); 5062 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 5063 if (!pt_prev) 5064 continue; 5065 if (pt_curr != pt_prev || od_curr != orig_dev) { 5066 /* dispatch old sublist */ 5067 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5068 /* start new sublist */ 5069 INIT_LIST_HEAD(&sublist); 5070 pt_curr = pt_prev; 5071 od_curr = orig_dev; 5072 } 5073 list_add_tail(&skb->list, &sublist); 5074 } 5075 5076 /* dispatch final sublist */ 5077 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5078 } 5079 5080 static int __netif_receive_skb(struct sk_buff *skb) 5081 { 5082 int ret; 5083 5084 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5085 unsigned int noreclaim_flag; 5086 5087 /* 5088 * PFMEMALLOC skbs are special, they should 5089 * - be delivered to SOCK_MEMALLOC sockets only 5090 * - stay away from userspace 5091 * - have bounded memory usage 5092 * 5093 * Use PF_MEMALLOC as this saves us from propagating the allocation 5094 * context down to all allocation sites. 5095 */ 5096 noreclaim_flag = memalloc_noreclaim_save(); 5097 ret = __netif_receive_skb_one_core(skb, true); 5098 memalloc_noreclaim_restore(noreclaim_flag); 5099 } else 5100 ret = __netif_receive_skb_one_core(skb, false); 5101 5102 return ret; 5103 } 5104 5105 static void __netif_receive_skb_list(struct list_head *head) 5106 { 5107 unsigned long noreclaim_flag = 0; 5108 struct sk_buff *skb, *next; 5109 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5110 5111 list_for_each_entry_safe(skb, next, head, list) { 5112 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5113 struct list_head sublist; 5114 5115 /* Handle the previous sublist */ 5116 list_cut_before(&sublist, head, &skb->list); 5117 if (!list_empty(&sublist)) 5118 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5119 pfmemalloc = !pfmemalloc; 5120 /* See comments in __netif_receive_skb */ 5121 if (pfmemalloc) 5122 noreclaim_flag = memalloc_noreclaim_save(); 5123 else 5124 memalloc_noreclaim_restore(noreclaim_flag); 5125 } 5126 } 5127 /* Handle the remaining sublist */ 5128 if (!list_empty(head)) 5129 __netif_receive_skb_list_core(head, pfmemalloc); 5130 /* Restore pflags */ 5131 if (pfmemalloc) 5132 memalloc_noreclaim_restore(noreclaim_flag); 5133 } 5134 5135 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5136 { 5137 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5138 struct bpf_prog *new = xdp->prog; 5139 int ret = 0; 5140 5141 switch (xdp->command) { 5142 case XDP_SETUP_PROG: 5143 rcu_assign_pointer(dev->xdp_prog, new); 5144 if (old) 5145 bpf_prog_put(old); 5146 5147 if (old && !new) { 5148 static_branch_dec(&generic_xdp_needed_key); 5149 } else if (new && !old) { 5150 static_branch_inc(&generic_xdp_needed_key); 5151 dev_disable_lro(dev); 5152 dev_disable_gro_hw(dev); 5153 } 5154 break; 5155 5156 case XDP_QUERY_PROG: 5157 xdp->prog_id = old ? old->aux->id : 0; 5158 break; 5159 5160 default: 5161 ret = -EINVAL; 5162 break; 5163 } 5164 5165 return ret; 5166 } 5167 5168 static int netif_receive_skb_internal(struct sk_buff *skb) 5169 { 5170 int ret; 5171 5172 net_timestamp_check(netdev_tstamp_prequeue, skb); 5173 5174 if (skb_defer_rx_timestamp(skb)) 5175 return NET_RX_SUCCESS; 5176 5177 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5178 int ret; 5179 5180 preempt_disable(); 5181 rcu_read_lock(); 5182 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 5183 rcu_read_unlock(); 5184 preempt_enable(); 5185 5186 if (ret != XDP_PASS) 5187 return NET_RX_DROP; 5188 } 5189 5190 rcu_read_lock(); 5191 #ifdef CONFIG_RPS 5192 if (static_branch_unlikely(&rps_needed)) { 5193 struct rps_dev_flow voidflow, *rflow = &voidflow; 5194 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5195 5196 if (cpu >= 0) { 5197 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5198 rcu_read_unlock(); 5199 return ret; 5200 } 5201 } 5202 #endif 5203 ret = __netif_receive_skb(skb); 5204 rcu_read_unlock(); 5205 return ret; 5206 } 5207 5208 static void netif_receive_skb_list_internal(struct list_head *head) 5209 { 5210 struct bpf_prog *xdp_prog = NULL; 5211 struct sk_buff *skb, *next; 5212 struct list_head sublist; 5213 5214 INIT_LIST_HEAD(&sublist); 5215 list_for_each_entry_safe(skb, next, head, list) { 5216 net_timestamp_check(netdev_tstamp_prequeue, skb); 5217 skb_list_del_init(skb); 5218 if (!skb_defer_rx_timestamp(skb)) 5219 list_add_tail(&skb->list, &sublist); 5220 } 5221 list_splice_init(&sublist, head); 5222 5223 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5224 preempt_disable(); 5225 rcu_read_lock(); 5226 list_for_each_entry_safe(skb, next, head, list) { 5227 xdp_prog = rcu_dereference(skb->dev->xdp_prog); 5228 skb_list_del_init(skb); 5229 if (do_xdp_generic(xdp_prog, skb) == XDP_PASS) 5230 list_add_tail(&skb->list, &sublist); 5231 } 5232 rcu_read_unlock(); 5233 preempt_enable(); 5234 /* Put passed packets back on main list */ 5235 list_splice_init(&sublist, head); 5236 } 5237 5238 rcu_read_lock(); 5239 #ifdef CONFIG_RPS 5240 if (static_branch_unlikely(&rps_needed)) { 5241 list_for_each_entry_safe(skb, next, head, list) { 5242 struct rps_dev_flow voidflow, *rflow = &voidflow; 5243 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5244 5245 if (cpu >= 0) { 5246 /* Will be handled, remove from list */ 5247 skb_list_del_init(skb); 5248 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5249 } 5250 } 5251 } 5252 #endif 5253 __netif_receive_skb_list(head); 5254 rcu_read_unlock(); 5255 } 5256 5257 /** 5258 * netif_receive_skb - process receive buffer from network 5259 * @skb: buffer to process 5260 * 5261 * netif_receive_skb() is the main receive data processing function. 5262 * It always succeeds. The buffer may be dropped during processing 5263 * for congestion control or by the protocol layers. 5264 * 5265 * This function may only be called from softirq context and interrupts 5266 * should be enabled. 5267 * 5268 * Return values (usually ignored): 5269 * NET_RX_SUCCESS: no congestion 5270 * NET_RX_DROP: packet was dropped 5271 */ 5272 int netif_receive_skb(struct sk_buff *skb) 5273 { 5274 int ret; 5275 5276 trace_netif_receive_skb_entry(skb); 5277 5278 ret = netif_receive_skb_internal(skb); 5279 trace_netif_receive_skb_exit(ret); 5280 5281 return ret; 5282 } 5283 EXPORT_SYMBOL(netif_receive_skb); 5284 5285 /** 5286 * netif_receive_skb_list - process many receive buffers from network 5287 * @head: list of skbs to process. 5288 * 5289 * Since return value of netif_receive_skb() is normally ignored, and 5290 * wouldn't be meaningful for a list, this function returns void. 5291 * 5292 * This function may only be called from softirq context and interrupts 5293 * should be enabled. 5294 */ 5295 void netif_receive_skb_list(struct list_head *head) 5296 { 5297 struct sk_buff *skb; 5298 5299 if (list_empty(head)) 5300 return; 5301 if (trace_netif_receive_skb_list_entry_enabled()) { 5302 list_for_each_entry(skb, head, list) 5303 trace_netif_receive_skb_list_entry(skb); 5304 } 5305 netif_receive_skb_list_internal(head); 5306 trace_netif_receive_skb_list_exit(0); 5307 } 5308 EXPORT_SYMBOL(netif_receive_skb_list); 5309 5310 DEFINE_PER_CPU(struct work_struct, flush_works); 5311 5312 /* Network device is going away, flush any packets still pending */ 5313 static void flush_backlog(struct work_struct *work) 5314 { 5315 struct sk_buff *skb, *tmp; 5316 struct softnet_data *sd; 5317 5318 local_bh_disable(); 5319 sd = this_cpu_ptr(&softnet_data); 5320 5321 local_irq_disable(); 5322 rps_lock(sd); 5323 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5324 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5325 __skb_unlink(skb, &sd->input_pkt_queue); 5326 kfree_skb(skb); 5327 input_queue_head_incr(sd); 5328 } 5329 } 5330 rps_unlock(sd); 5331 local_irq_enable(); 5332 5333 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5334 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5335 __skb_unlink(skb, &sd->process_queue); 5336 kfree_skb(skb); 5337 input_queue_head_incr(sd); 5338 } 5339 } 5340 local_bh_enable(); 5341 } 5342 5343 static void flush_all_backlogs(void) 5344 { 5345 unsigned int cpu; 5346 5347 get_online_cpus(); 5348 5349 for_each_online_cpu(cpu) 5350 queue_work_on(cpu, system_highpri_wq, 5351 per_cpu_ptr(&flush_works, cpu)); 5352 5353 for_each_online_cpu(cpu) 5354 flush_work(per_cpu_ptr(&flush_works, cpu)); 5355 5356 put_online_cpus(); 5357 } 5358 5359 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int)); 5360 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int)); 5361 static int napi_gro_complete(struct sk_buff *skb) 5362 { 5363 struct packet_offload *ptype; 5364 __be16 type = skb->protocol; 5365 struct list_head *head = &offload_base; 5366 int err = -ENOENT; 5367 5368 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 5369 5370 if (NAPI_GRO_CB(skb)->count == 1) { 5371 skb_shinfo(skb)->gso_size = 0; 5372 goto out; 5373 } 5374 5375 rcu_read_lock(); 5376 list_for_each_entry_rcu(ptype, head, list) { 5377 if (ptype->type != type || !ptype->callbacks.gro_complete) 5378 continue; 5379 5380 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete, 5381 ipv6_gro_complete, inet_gro_complete, 5382 skb, 0); 5383 break; 5384 } 5385 rcu_read_unlock(); 5386 5387 if (err) { 5388 WARN_ON(&ptype->list == head); 5389 kfree_skb(skb); 5390 return NET_RX_SUCCESS; 5391 } 5392 5393 out: 5394 return netif_receive_skb_internal(skb); 5395 } 5396 5397 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index, 5398 bool flush_old) 5399 { 5400 struct list_head *head = &napi->gro_hash[index].list; 5401 struct sk_buff *skb, *p; 5402 5403 list_for_each_entry_safe_reverse(skb, p, head, list) { 5404 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 5405 return; 5406 skb_list_del_init(skb); 5407 napi_gro_complete(skb); 5408 napi->gro_hash[index].count--; 5409 } 5410 5411 if (!napi->gro_hash[index].count) 5412 __clear_bit(index, &napi->gro_bitmask); 5413 } 5414 5415 /* napi->gro_hash[].list contains packets ordered by age. 5416 * youngest packets at the head of it. 5417 * Complete skbs in reverse order to reduce latencies. 5418 */ 5419 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 5420 { 5421 unsigned long bitmask = napi->gro_bitmask; 5422 unsigned int i, base = ~0U; 5423 5424 while ((i = ffs(bitmask)) != 0) { 5425 bitmask >>= i; 5426 base += i; 5427 __napi_gro_flush_chain(napi, base, flush_old); 5428 } 5429 } 5430 EXPORT_SYMBOL(napi_gro_flush); 5431 5432 static struct list_head *gro_list_prepare(struct napi_struct *napi, 5433 struct sk_buff *skb) 5434 { 5435 unsigned int maclen = skb->dev->hard_header_len; 5436 u32 hash = skb_get_hash_raw(skb); 5437 struct list_head *head; 5438 struct sk_buff *p; 5439 5440 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list; 5441 list_for_each_entry(p, head, list) { 5442 unsigned long diffs; 5443 5444 NAPI_GRO_CB(p)->flush = 0; 5445 5446 if (hash != skb_get_hash_raw(p)) { 5447 NAPI_GRO_CB(p)->same_flow = 0; 5448 continue; 5449 } 5450 5451 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 5452 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb); 5453 if (skb_vlan_tag_present(p)) 5454 diffs |= p->vlan_tci ^ skb->vlan_tci; 5455 diffs |= skb_metadata_dst_cmp(p, skb); 5456 diffs |= skb_metadata_differs(p, skb); 5457 if (maclen == ETH_HLEN) 5458 diffs |= compare_ether_header(skb_mac_header(p), 5459 skb_mac_header(skb)); 5460 else if (!diffs) 5461 diffs = memcmp(skb_mac_header(p), 5462 skb_mac_header(skb), 5463 maclen); 5464 NAPI_GRO_CB(p)->same_flow = !diffs; 5465 } 5466 5467 return head; 5468 } 5469 5470 static void skb_gro_reset_offset(struct sk_buff *skb) 5471 { 5472 const struct skb_shared_info *pinfo = skb_shinfo(skb); 5473 const skb_frag_t *frag0 = &pinfo->frags[0]; 5474 5475 NAPI_GRO_CB(skb)->data_offset = 0; 5476 NAPI_GRO_CB(skb)->frag0 = NULL; 5477 NAPI_GRO_CB(skb)->frag0_len = 0; 5478 5479 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 5480 pinfo->nr_frags && 5481 !PageHighMem(skb_frag_page(frag0))) { 5482 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 5483 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 5484 skb_frag_size(frag0), 5485 skb->end - skb->tail); 5486 } 5487 } 5488 5489 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 5490 { 5491 struct skb_shared_info *pinfo = skb_shinfo(skb); 5492 5493 BUG_ON(skb->end - skb->tail < grow); 5494 5495 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 5496 5497 skb->data_len -= grow; 5498 skb->tail += grow; 5499 5500 pinfo->frags[0].page_offset += grow; 5501 skb_frag_size_sub(&pinfo->frags[0], grow); 5502 5503 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 5504 skb_frag_unref(skb, 0); 5505 memmove(pinfo->frags, pinfo->frags + 1, 5506 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 5507 } 5508 } 5509 5510 static void gro_flush_oldest(struct list_head *head) 5511 { 5512 struct sk_buff *oldest; 5513 5514 oldest = list_last_entry(head, struct sk_buff, list); 5515 5516 /* We are called with head length >= MAX_GRO_SKBS, so this is 5517 * impossible. 5518 */ 5519 if (WARN_ON_ONCE(!oldest)) 5520 return; 5521 5522 /* Do not adjust napi->gro_hash[].count, caller is adding a new 5523 * SKB to the chain. 5524 */ 5525 skb_list_del_init(oldest); 5526 napi_gro_complete(oldest); 5527 } 5528 5529 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *, 5530 struct sk_buff *)); 5531 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *, 5532 struct sk_buff *)); 5533 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5534 { 5535 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1); 5536 struct list_head *head = &offload_base; 5537 struct packet_offload *ptype; 5538 __be16 type = skb->protocol; 5539 struct list_head *gro_head; 5540 struct sk_buff *pp = NULL; 5541 enum gro_result ret; 5542 int same_flow; 5543 int grow; 5544 5545 if (netif_elide_gro(skb->dev)) 5546 goto normal; 5547 5548 gro_head = gro_list_prepare(napi, skb); 5549 5550 rcu_read_lock(); 5551 list_for_each_entry_rcu(ptype, head, list) { 5552 if (ptype->type != type || !ptype->callbacks.gro_receive) 5553 continue; 5554 5555 skb_set_network_header(skb, skb_gro_offset(skb)); 5556 skb_reset_mac_len(skb); 5557 NAPI_GRO_CB(skb)->same_flow = 0; 5558 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 5559 NAPI_GRO_CB(skb)->free = 0; 5560 NAPI_GRO_CB(skb)->encap_mark = 0; 5561 NAPI_GRO_CB(skb)->recursion_counter = 0; 5562 NAPI_GRO_CB(skb)->is_fou = 0; 5563 NAPI_GRO_CB(skb)->is_atomic = 1; 5564 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 5565 5566 /* Setup for GRO checksum validation */ 5567 switch (skb->ip_summed) { 5568 case CHECKSUM_COMPLETE: 5569 NAPI_GRO_CB(skb)->csum = skb->csum; 5570 NAPI_GRO_CB(skb)->csum_valid = 1; 5571 NAPI_GRO_CB(skb)->csum_cnt = 0; 5572 break; 5573 case CHECKSUM_UNNECESSARY: 5574 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 5575 NAPI_GRO_CB(skb)->csum_valid = 0; 5576 break; 5577 default: 5578 NAPI_GRO_CB(skb)->csum_cnt = 0; 5579 NAPI_GRO_CB(skb)->csum_valid = 0; 5580 } 5581 5582 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive, 5583 ipv6_gro_receive, inet_gro_receive, 5584 gro_head, skb); 5585 break; 5586 } 5587 rcu_read_unlock(); 5588 5589 if (&ptype->list == head) 5590 goto normal; 5591 5592 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) { 5593 ret = GRO_CONSUMED; 5594 goto ok; 5595 } 5596 5597 same_flow = NAPI_GRO_CB(skb)->same_flow; 5598 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 5599 5600 if (pp) { 5601 skb_list_del_init(pp); 5602 napi_gro_complete(pp); 5603 napi->gro_hash[hash].count--; 5604 } 5605 5606 if (same_flow) 5607 goto ok; 5608 5609 if (NAPI_GRO_CB(skb)->flush) 5610 goto normal; 5611 5612 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) { 5613 gro_flush_oldest(gro_head); 5614 } else { 5615 napi->gro_hash[hash].count++; 5616 } 5617 NAPI_GRO_CB(skb)->count = 1; 5618 NAPI_GRO_CB(skb)->age = jiffies; 5619 NAPI_GRO_CB(skb)->last = skb; 5620 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 5621 list_add(&skb->list, gro_head); 5622 ret = GRO_HELD; 5623 5624 pull: 5625 grow = skb_gro_offset(skb) - skb_headlen(skb); 5626 if (grow > 0) 5627 gro_pull_from_frag0(skb, grow); 5628 ok: 5629 if (napi->gro_hash[hash].count) { 5630 if (!test_bit(hash, &napi->gro_bitmask)) 5631 __set_bit(hash, &napi->gro_bitmask); 5632 } else if (test_bit(hash, &napi->gro_bitmask)) { 5633 __clear_bit(hash, &napi->gro_bitmask); 5634 } 5635 5636 return ret; 5637 5638 normal: 5639 ret = GRO_NORMAL; 5640 goto pull; 5641 } 5642 5643 struct packet_offload *gro_find_receive_by_type(__be16 type) 5644 { 5645 struct list_head *offload_head = &offload_base; 5646 struct packet_offload *ptype; 5647 5648 list_for_each_entry_rcu(ptype, offload_head, list) { 5649 if (ptype->type != type || !ptype->callbacks.gro_receive) 5650 continue; 5651 return ptype; 5652 } 5653 return NULL; 5654 } 5655 EXPORT_SYMBOL(gro_find_receive_by_type); 5656 5657 struct packet_offload *gro_find_complete_by_type(__be16 type) 5658 { 5659 struct list_head *offload_head = &offload_base; 5660 struct packet_offload *ptype; 5661 5662 list_for_each_entry_rcu(ptype, offload_head, list) { 5663 if (ptype->type != type || !ptype->callbacks.gro_complete) 5664 continue; 5665 return ptype; 5666 } 5667 return NULL; 5668 } 5669 EXPORT_SYMBOL(gro_find_complete_by_type); 5670 5671 static void napi_skb_free_stolen_head(struct sk_buff *skb) 5672 { 5673 skb_dst_drop(skb); 5674 secpath_reset(skb); 5675 kmem_cache_free(skbuff_head_cache, skb); 5676 } 5677 5678 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 5679 { 5680 switch (ret) { 5681 case GRO_NORMAL: 5682 if (netif_receive_skb_internal(skb)) 5683 ret = GRO_DROP; 5684 break; 5685 5686 case GRO_DROP: 5687 kfree_skb(skb); 5688 break; 5689 5690 case GRO_MERGED_FREE: 5691 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5692 napi_skb_free_stolen_head(skb); 5693 else 5694 __kfree_skb(skb); 5695 break; 5696 5697 case GRO_HELD: 5698 case GRO_MERGED: 5699 case GRO_CONSUMED: 5700 break; 5701 } 5702 5703 return ret; 5704 } 5705 5706 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5707 { 5708 gro_result_t ret; 5709 5710 skb_mark_napi_id(skb, napi); 5711 trace_napi_gro_receive_entry(skb); 5712 5713 skb_gro_reset_offset(skb); 5714 5715 ret = napi_skb_finish(dev_gro_receive(napi, skb), skb); 5716 trace_napi_gro_receive_exit(ret); 5717 5718 return ret; 5719 } 5720 EXPORT_SYMBOL(napi_gro_receive); 5721 5722 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 5723 { 5724 if (unlikely(skb->pfmemalloc)) { 5725 consume_skb(skb); 5726 return; 5727 } 5728 __skb_pull(skb, skb_headlen(skb)); 5729 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 5730 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 5731 __vlan_hwaccel_clear_tag(skb); 5732 skb->dev = napi->dev; 5733 skb->skb_iif = 0; 5734 5735 /* eth_type_trans() assumes pkt_type is PACKET_HOST */ 5736 skb->pkt_type = PACKET_HOST; 5737 5738 skb->encapsulation = 0; 5739 skb_shinfo(skb)->gso_type = 0; 5740 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5741 secpath_reset(skb); 5742 5743 napi->skb = skb; 5744 } 5745 5746 struct sk_buff *napi_get_frags(struct napi_struct *napi) 5747 { 5748 struct sk_buff *skb = napi->skb; 5749 5750 if (!skb) { 5751 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 5752 if (skb) { 5753 napi->skb = skb; 5754 skb_mark_napi_id(skb, napi); 5755 } 5756 } 5757 return skb; 5758 } 5759 EXPORT_SYMBOL(napi_get_frags); 5760 5761 static gro_result_t napi_frags_finish(struct napi_struct *napi, 5762 struct sk_buff *skb, 5763 gro_result_t ret) 5764 { 5765 switch (ret) { 5766 case GRO_NORMAL: 5767 case GRO_HELD: 5768 __skb_push(skb, ETH_HLEN); 5769 skb->protocol = eth_type_trans(skb, skb->dev); 5770 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 5771 ret = GRO_DROP; 5772 break; 5773 5774 case GRO_DROP: 5775 napi_reuse_skb(napi, skb); 5776 break; 5777 5778 case GRO_MERGED_FREE: 5779 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5780 napi_skb_free_stolen_head(skb); 5781 else 5782 napi_reuse_skb(napi, skb); 5783 break; 5784 5785 case GRO_MERGED: 5786 case GRO_CONSUMED: 5787 break; 5788 } 5789 5790 return ret; 5791 } 5792 5793 /* Upper GRO stack assumes network header starts at gro_offset=0 5794 * Drivers could call both napi_gro_frags() and napi_gro_receive() 5795 * We copy ethernet header into skb->data to have a common layout. 5796 */ 5797 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 5798 { 5799 struct sk_buff *skb = napi->skb; 5800 const struct ethhdr *eth; 5801 unsigned int hlen = sizeof(*eth); 5802 5803 napi->skb = NULL; 5804 5805 skb_reset_mac_header(skb); 5806 skb_gro_reset_offset(skb); 5807 5808 eth = skb_gro_header_fast(skb, 0); 5809 if (unlikely(skb_gro_header_hard(skb, hlen))) { 5810 eth = skb_gro_header_slow(skb, hlen, 0); 5811 if (unlikely(!eth)) { 5812 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 5813 __func__, napi->dev->name); 5814 napi_reuse_skb(napi, skb); 5815 return NULL; 5816 } 5817 } else { 5818 gro_pull_from_frag0(skb, hlen); 5819 NAPI_GRO_CB(skb)->frag0 += hlen; 5820 NAPI_GRO_CB(skb)->frag0_len -= hlen; 5821 } 5822 __skb_pull(skb, hlen); 5823 5824 /* 5825 * This works because the only protocols we care about don't require 5826 * special handling. 5827 * We'll fix it up properly in napi_frags_finish() 5828 */ 5829 skb->protocol = eth->h_proto; 5830 5831 return skb; 5832 } 5833 5834 gro_result_t napi_gro_frags(struct napi_struct *napi) 5835 { 5836 gro_result_t ret; 5837 struct sk_buff *skb = napi_frags_skb(napi); 5838 5839 if (!skb) 5840 return GRO_DROP; 5841 5842 trace_napi_gro_frags_entry(skb); 5843 5844 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 5845 trace_napi_gro_frags_exit(ret); 5846 5847 return ret; 5848 } 5849 EXPORT_SYMBOL(napi_gro_frags); 5850 5851 /* Compute the checksum from gro_offset and return the folded value 5852 * after adding in any pseudo checksum. 5853 */ 5854 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 5855 { 5856 __wsum wsum; 5857 __sum16 sum; 5858 5859 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 5860 5861 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 5862 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 5863 /* See comments in __skb_checksum_complete(). */ 5864 if (likely(!sum)) { 5865 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 5866 !skb->csum_complete_sw) 5867 netdev_rx_csum_fault(skb->dev, skb); 5868 } 5869 5870 NAPI_GRO_CB(skb)->csum = wsum; 5871 NAPI_GRO_CB(skb)->csum_valid = 1; 5872 5873 return sum; 5874 } 5875 EXPORT_SYMBOL(__skb_gro_checksum_complete); 5876 5877 static void net_rps_send_ipi(struct softnet_data *remsd) 5878 { 5879 #ifdef CONFIG_RPS 5880 while (remsd) { 5881 struct softnet_data *next = remsd->rps_ipi_next; 5882 5883 if (cpu_online(remsd->cpu)) 5884 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5885 remsd = next; 5886 } 5887 #endif 5888 } 5889 5890 /* 5891 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5892 * Note: called with local irq disabled, but exits with local irq enabled. 5893 */ 5894 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5895 { 5896 #ifdef CONFIG_RPS 5897 struct softnet_data *remsd = sd->rps_ipi_list; 5898 5899 if (remsd) { 5900 sd->rps_ipi_list = NULL; 5901 5902 local_irq_enable(); 5903 5904 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5905 net_rps_send_ipi(remsd); 5906 } else 5907 #endif 5908 local_irq_enable(); 5909 } 5910 5911 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5912 { 5913 #ifdef CONFIG_RPS 5914 return sd->rps_ipi_list != NULL; 5915 #else 5916 return false; 5917 #endif 5918 } 5919 5920 static int process_backlog(struct napi_struct *napi, int quota) 5921 { 5922 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5923 bool again = true; 5924 int work = 0; 5925 5926 /* Check if we have pending ipi, its better to send them now, 5927 * not waiting net_rx_action() end. 5928 */ 5929 if (sd_has_rps_ipi_waiting(sd)) { 5930 local_irq_disable(); 5931 net_rps_action_and_irq_enable(sd); 5932 } 5933 5934 napi->weight = dev_rx_weight; 5935 while (again) { 5936 struct sk_buff *skb; 5937 5938 while ((skb = __skb_dequeue(&sd->process_queue))) { 5939 rcu_read_lock(); 5940 __netif_receive_skb(skb); 5941 rcu_read_unlock(); 5942 input_queue_head_incr(sd); 5943 if (++work >= quota) 5944 return work; 5945 5946 } 5947 5948 local_irq_disable(); 5949 rps_lock(sd); 5950 if (skb_queue_empty(&sd->input_pkt_queue)) { 5951 /* 5952 * Inline a custom version of __napi_complete(). 5953 * only current cpu owns and manipulates this napi, 5954 * and NAPI_STATE_SCHED is the only possible flag set 5955 * on backlog. 5956 * We can use a plain write instead of clear_bit(), 5957 * and we dont need an smp_mb() memory barrier. 5958 */ 5959 napi->state = 0; 5960 again = false; 5961 } else { 5962 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5963 &sd->process_queue); 5964 } 5965 rps_unlock(sd); 5966 local_irq_enable(); 5967 } 5968 5969 return work; 5970 } 5971 5972 /** 5973 * __napi_schedule - schedule for receive 5974 * @n: entry to schedule 5975 * 5976 * The entry's receive function will be scheduled to run. 5977 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5978 */ 5979 void __napi_schedule(struct napi_struct *n) 5980 { 5981 unsigned long flags; 5982 5983 local_irq_save(flags); 5984 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5985 local_irq_restore(flags); 5986 } 5987 EXPORT_SYMBOL(__napi_schedule); 5988 5989 /** 5990 * napi_schedule_prep - check if napi can be scheduled 5991 * @n: napi context 5992 * 5993 * Test if NAPI routine is already running, and if not mark 5994 * it as running. This is used as a condition variable 5995 * insure only one NAPI poll instance runs. We also make 5996 * sure there is no pending NAPI disable. 5997 */ 5998 bool napi_schedule_prep(struct napi_struct *n) 5999 { 6000 unsigned long val, new; 6001 6002 do { 6003 val = READ_ONCE(n->state); 6004 if (unlikely(val & NAPIF_STATE_DISABLE)) 6005 return false; 6006 new = val | NAPIF_STATE_SCHED; 6007 6008 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6009 * This was suggested by Alexander Duyck, as compiler 6010 * emits better code than : 6011 * if (val & NAPIF_STATE_SCHED) 6012 * new |= NAPIF_STATE_MISSED; 6013 */ 6014 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6015 NAPIF_STATE_MISSED; 6016 } while (cmpxchg(&n->state, val, new) != val); 6017 6018 return !(val & NAPIF_STATE_SCHED); 6019 } 6020 EXPORT_SYMBOL(napi_schedule_prep); 6021 6022 /** 6023 * __napi_schedule_irqoff - schedule for receive 6024 * @n: entry to schedule 6025 * 6026 * Variant of __napi_schedule() assuming hard irqs are masked 6027 */ 6028 void __napi_schedule_irqoff(struct napi_struct *n) 6029 { 6030 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6031 } 6032 EXPORT_SYMBOL(__napi_schedule_irqoff); 6033 6034 bool napi_complete_done(struct napi_struct *n, int work_done) 6035 { 6036 unsigned long flags, val, new; 6037 6038 /* 6039 * 1) Don't let napi dequeue from the cpu poll list 6040 * just in case its running on a different cpu. 6041 * 2) If we are busy polling, do nothing here, we have 6042 * the guarantee we will be called later. 6043 */ 6044 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6045 NAPIF_STATE_IN_BUSY_POLL))) 6046 return false; 6047 6048 if (n->gro_bitmask) { 6049 unsigned long timeout = 0; 6050 6051 if (work_done) 6052 timeout = n->dev->gro_flush_timeout; 6053 6054 /* When the NAPI instance uses a timeout and keeps postponing 6055 * it, we need to bound somehow the time packets are kept in 6056 * the GRO layer 6057 */ 6058 napi_gro_flush(n, !!timeout); 6059 if (timeout) 6060 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6061 HRTIMER_MODE_REL_PINNED); 6062 } 6063 if (unlikely(!list_empty(&n->poll_list))) { 6064 /* If n->poll_list is not empty, we need to mask irqs */ 6065 local_irq_save(flags); 6066 list_del_init(&n->poll_list); 6067 local_irq_restore(flags); 6068 } 6069 6070 do { 6071 val = READ_ONCE(n->state); 6072 6073 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6074 6075 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 6076 6077 /* If STATE_MISSED was set, leave STATE_SCHED set, 6078 * because we will call napi->poll() one more time. 6079 * This C code was suggested by Alexander Duyck to help gcc. 6080 */ 6081 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6082 NAPIF_STATE_SCHED; 6083 } while (cmpxchg(&n->state, val, new) != val); 6084 6085 if (unlikely(val & NAPIF_STATE_MISSED)) { 6086 __napi_schedule(n); 6087 return false; 6088 } 6089 6090 return true; 6091 } 6092 EXPORT_SYMBOL(napi_complete_done); 6093 6094 /* must be called under rcu_read_lock(), as we dont take a reference */ 6095 static struct napi_struct *napi_by_id(unsigned int napi_id) 6096 { 6097 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6098 struct napi_struct *napi; 6099 6100 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6101 if (napi->napi_id == napi_id) 6102 return napi; 6103 6104 return NULL; 6105 } 6106 6107 #if defined(CONFIG_NET_RX_BUSY_POLL) 6108 6109 #define BUSY_POLL_BUDGET 8 6110 6111 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 6112 { 6113 int rc; 6114 6115 /* Busy polling means there is a high chance device driver hard irq 6116 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6117 * set in napi_schedule_prep(). 6118 * Since we are about to call napi->poll() once more, we can safely 6119 * clear NAPI_STATE_MISSED. 6120 * 6121 * Note: x86 could use a single "lock and ..." instruction 6122 * to perform these two clear_bit() 6123 */ 6124 clear_bit(NAPI_STATE_MISSED, &napi->state); 6125 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6126 6127 local_bh_disable(); 6128 6129 /* All we really want here is to re-enable device interrupts. 6130 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6131 */ 6132 rc = napi->poll(napi, BUSY_POLL_BUDGET); 6133 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 6134 netpoll_poll_unlock(have_poll_lock); 6135 if (rc == BUSY_POLL_BUDGET) 6136 __napi_schedule(napi); 6137 local_bh_enable(); 6138 } 6139 6140 void napi_busy_loop(unsigned int napi_id, 6141 bool (*loop_end)(void *, unsigned long), 6142 void *loop_end_arg) 6143 { 6144 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6145 int (*napi_poll)(struct napi_struct *napi, int budget); 6146 void *have_poll_lock = NULL; 6147 struct napi_struct *napi; 6148 6149 restart: 6150 napi_poll = NULL; 6151 6152 rcu_read_lock(); 6153 6154 napi = napi_by_id(napi_id); 6155 if (!napi) 6156 goto out; 6157 6158 preempt_disable(); 6159 for (;;) { 6160 int work = 0; 6161 6162 local_bh_disable(); 6163 if (!napi_poll) { 6164 unsigned long val = READ_ONCE(napi->state); 6165 6166 /* If multiple threads are competing for this napi, 6167 * we avoid dirtying napi->state as much as we can. 6168 */ 6169 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6170 NAPIF_STATE_IN_BUSY_POLL)) 6171 goto count; 6172 if (cmpxchg(&napi->state, val, 6173 val | NAPIF_STATE_IN_BUSY_POLL | 6174 NAPIF_STATE_SCHED) != val) 6175 goto count; 6176 have_poll_lock = netpoll_poll_lock(napi); 6177 napi_poll = napi->poll; 6178 } 6179 work = napi_poll(napi, BUSY_POLL_BUDGET); 6180 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 6181 count: 6182 if (work > 0) 6183 __NET_ADD_STATS(dev_net(napi->dev), 6184 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6185 local_bh_enable(); 6186 6187 if (!loop_end || loop_end(loop_end_arg, start_time)) 6188 break; 6189 6190 if (unlikely(need_resched())) { 6191 if (napi_poll) 6192 busy_poll_stop(napi, have_poll_lock); 6193 preempt_enable(); 6194 rcu_read_unlock(); 6195 cond_resched(); 6196 if (loop_end(loop_end_arg, start_time)) 6197 return; 6198 goto restart; 6199 } 6200 cpu_relax(); 6201 } 6202 if (napi_poll) 6203 busy_poll_stop(napi, have_poll_lock); 6204 preempt_enable(); 6205 out: 6206 rcu_read_unlock(); 6207 } 6208 EXPORT_SYMBOL(napi_busy_loop); 6209 6210 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6211 6212 static void napi_hash_add(struct napi_struct *napi) 6213 { 6214 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 6215 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 6216 return; 6217 6218 spin_lock(&napi_hash_lock); 6219 6220 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6221 do { 6222 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6223 napi_gen_id = MIN_NAPI_ID; 6224 } while (napi_by_id(napi_gen_id)); 6225 napi->napi_id = napi_gen_id; 6226 6227 hlist_add_head_rcu(&napi->napi_hash_node, 6228 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6229 6230 spin_unlock(&napi_hash_lock); 6231 } 6232 6233 /* Warning : caller is responsible to make sure rcu grace period 6234 * is respected before freeing memory containing @napi 6235 */ 6236 bool napi_hash_del(struct napi_struct *napi) 6237 { 6238 bool rcu_sync_needed = false; 6239 6240 spin_lock(&napi_hash_lock); 6241 6242 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 6243 rcu_sync_needed = true; 6244 hlist_del_rcu(&napi->napi_hash_node); 6245 } 6246 spin_unlock(&napi_hash_lock); 6247 return rcu_sync_needed; 6248 } 6249 EXPORT_SYMBOL_GPL(napi_hash_del); 6250 6251 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6252 { 6253 struct napi_struct *napi; 6254 6255 napi = container_of(timer, struct napi_struct, timer); 6256 6257 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6258 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6259 */ 6260 if (napi->gro_bitmask && !napi_disable_pending(napi) && 6261 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 6262 __napi_schedule_irqoff(napi); 6263 6264 return HRTIMER_NORESTART; 6265 } 6266 6267 static void init_gro_hash(struct napi_struct *napi) 6268 { 6269 int i; 6270 6271 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6272 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6273 napi->gro_hash[i].count = 0; 6274 } 6275 napi->gro_bitmask = 0; 6276 } 6277 6278 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 6279 int (*poll)(struct napi_struct *, int), int weight) 6280 { 6281 INIT_LIST_HEAD(&napi->poll_list); 6282 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6283 napi->timer.function = napi_watchdog; 6284 init_gro_hash(napi); 6285 napi->skb = NULL; 6286 napi->poll = poll; 6287 if (weight > NAPI_POLL_WEIGHT) 6288 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6289 weight); 6290 napi->weight = weight; 6291 list_add(&napi->dev_list, &dev->napi_list); 6292 napi->dev = dev; 6293 #ifdef CONFIG_NETPOLL 6294 napi->poll_owner = -1; 6295 #endif 6296 set_bit(NAPI_STATE_SCHED, &napi->state); 6297 napi_hash_add(napi); 6298 } 6299 EXPORT_SYMBOL(netif_napi_add); 6300 6301 void napi_disable(struct napi_struct *n) 6302 { 6303 might_sleep(); 6304 set_bit(NAPI_STATE_DISABLE, &n->state); 6305 6306 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 6307 msleep(1); 6308 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 6309 msleep(1); 6310 6311 hrtimer_cancel(&n->timer); 6312 6313 clear_bit(NAPI_STATE_DISABLE, &n->state); 6314 } 6315 EXPORT_SYMBOL(napi_disable); 6316 6317 static void flush_gro_hash(struct napi_struct *napi) 6318 { 6319 int i; 6320 6321 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6322 struct sk_buff *skb, *n; 6323 6324 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6325 kfree_skb(skb); 6326 napi->gro_hash[i].count = 0; 6327 } 6328 } 6329 6330 /* Must be called in process context */ 6331 void netif_napi_del(struct napi_struct *napi) 6332 { 6333 might_sleep(); 6334 if (napi_hash_del(napi)) 6335 synchronize_net(); 6336 list_del_init(&napi->dev_list); 6337 napi_free_frags(napi); 6338 6339 flush_gro_hash(napi); 6340 napi->gro_bitmask = 0; 6341 } 6342 EXPORT_SYMBOL(netif_napi_del); 6343 6344 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6345 { 6346 void *have; 6347 int work, weight; 6348 6349 list_del_init(&n->poll_list); 6350 6351 have = netpoll_poll_lock(n); 6352 6353 weight = n->weight; 6354 6355 /* This NAPI_STATE_SCHED test is for avoiding a race 6356 * with netpoll's poll_napi(). Only the entity which 6357 * obtains the lock and sees NAPI_STATE_SCHED set will 6358 * actually make the ->poll() call. Therefore we avoid 6359 * accidentally calling ->poll() when NAPI is not scheduled. 6360 */ 6361 work = 0; 6362 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 6363 work = n->poll(n, weight); 6364 trace_napi_poll(n, work, weight); 6365 } 6366 6367 WARN_ON_ONCE(work > weight); 6368 6369 if (likely(work < weight)) 6370 goto out_unlock; 6371 6372 /* Drivers must not modify the NAPI state if they 6373 * consume the entire weight. In such cases this code 6374 * still "owns" the NAPI instance and therefore can 6375 * move the instance around on the list at-will. 6376 */ 6377 if (unlikely(napi_disable_pending(n))) { 6378 napi_complete(n); 6379 goto out_unlock; 6380 } 6381 6382 if (n->gro_bitmask) { 6383 /* flush too old packets 6384 * If HZ < 1000, flush all packets. 6385 */ 6386 napi_gro_flush(n, HZ >= 1000); 6387 } 6388 6389 /* Some drivers may have called napi_schedule 6390 * prior to exhausting their budget. 6391 */ 6392 if (unlikely(!list_empty(&n->poll_list))) { 6393 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6394 n->dev ? n->dev->name : "backlog"); 6395 goto out_unlock; 6396 } 6397 6398 list_add_tail(&n->poll_list, repoll); 6399 6400 out_unlock: 6401 netpoll_poll_unlock(have); 6402 6403 return work; 6404 } 6405 6406 static __latent_entropy void net_rx_action(struct softirq_action *h) 6407 { 6408 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6409 unsigned long time_limit = jiffies + 6410 usecs_to_jiffies(netdev_budget_usecs); 6411 int budget = netdev_budget; 6412 LIST_HEAD(list); 6413 LIST_HEAD(repoll); 6414 6415 local_irq_disable(); 6416 list_splice_init(&sd->poll_list, &list); 6417 local_irq_enable(); 6418 6419 for (;;) { 6420 struct napi_struct *n; 6421 6422 if (list_empty(&list)) { 6423 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 6424 goto out; 6425 break; 6426 } 6427 6428 n = list_first_entry(&list, struct napi_struct, poll_list); 6429 budget -= napi_poll(n, &repoll); 6430 6431 /* If softirq window is exhausted then punt. 6432 * Allow this to run for 2 jiffies since which will allow 6433 * an average latency of 1.5/HZ. 6434 */ 6435 if (unlikely(budget <= 0 || 6436 time_after_eq(jiffies, time_limit))) { 6437 sd->time_squeeze++; 6438 break; 6439 } 6440 } 6441 6442 local_irq_disable(); 6443 6444 list_splice_tail_init(&sd->poll_list, &list); 6445 list_splice_tail(&repoll, &list); 6446 list_splice(&list, &sd->poll_list); 6447 if (!list_empty(&sd->poll_list)) 6448 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6449 6450 net_rps_action_and_irq_enable(sd); 6451 out: 6452 __kfree_skb_flush(); 6453 } 6454 6455 struct netdev_adjacent { 6456 struct net_device *dev; 6457 6458 /* upper master flag, there can only be one master device per list */ 6459 bool master; 6460 6461 /* counter for the number of times this device was added to us */ 6462 u16 ref_nr; 6463 6464 /* private field for the users */ 6465 void *private; 6466 6467 struct list_head list; 6468 struct rcu_head rcu; 6469 }; 6470 6471 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6472 struct list_head *adj_list) 6473 { 6474 struct netdev_adjacent *adj; 6475 6476 list_for_each_entry(adj, adj_list, list) { 6477 if (adj->dev == adj_dev) 6478 return adj; 6479 } 6480 return NULL; 6481 } 6482 6483 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 6484 { 6485 struct net_device *dev = data; 6486 6487 return upper_dev == dev; 6488 } 6489 6490 /** 6491 * netdev_has_upper_dev - Check if device is linked to an upper device 6492 * @dev: device 6493 * @upper_dev: upper device to check 6494 * 6495 * Find out if a device is linked to specified upper device and return true 6496 * in case it is. Note that this checks only immediate upper device, 6497 * not through a complete stack of devices. The caller must hold the RTNL lock. 6498 */ 6499 bool netdev_has_upper_dev(struct net_device *dev, 6500 struct net_device *upper_dev) 6501 { 6502 ASSERT_RTNL(); 6503 6504 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 6505 upper_dev); 6506 } 6507 EXPORT_SYMBOL(netdev_has_upper_dev); 6508 6509 /** 6510 * netdev_has_upper_dev_all - Check if device is linked to an upper device 6511 * @dev: device 6512 * @upper_dev: upper device to check 6513 * 6514 * Find out if a device is linked to specified upper device and return true 6515 * in case it is. Note that this checks the entire upper device chain. 6516 * The caller must hold rcu lock. 6517 */ 6518 6519 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 6520 struct net_device *upper_dev) 6521 { 6522 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 6523 upper_dev); 6524 } 6525 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 6526 6527 /** 6528 * netdev_has_any_upper_dev - Check if device is linked to some device 6529 * @dev: device 6530 * 6531 * Find out if a device is linked to an upper device and return true in case 6532 * it is. The caller must hold the RTNL lock. 6533 */ 6534 bool netdev_has_any_upper_dev(struct net_device *dev) 6535 { 6536 ASSERT_RTNL(); 6537 6538 return !list_empty(&dev->adj_list.upper); 6539 } 6540 EXPORT_SYMBOL(netdev_has_any_upper_dev); 6541 6542 /** 6543 * netdev_master_upper_dev_get - Get master upper device 6544 * @dev: device 6545 * 6546 * Find a master upper device and return pointer to it or NULL in case 6547 * it's not there. The caller must hold the RTNL lock. 6548 */ 6549 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 6550 { 6551 struct netdev_adjacent *upper; 6552 6553 ASSERT_RTNL(); 6554 6555 if (list_empty(&dev->adj_list.upper)) 6556 return NULL; 6557 6558 upper = list_first_entry(&dev->adj_list.upper, 6559 struct netdev_adjacent, list); 6560 if (likely(upper->master)) 6561 return upper->dev; 6562 return NULL; 6563 } 6564 EXPORT_SYMBOL(netdev_master_upper_dev_get); 6565 6566 /** 6567 * netdev_has_any_lower_dev - Check if device is linked to some device 6568 * @dev: device 6569 * 6570 * Find out if a device is linked to a lower device and return true in case 6571 * it is. The caller must hold the RTNL lock. 6572 */ 6573 static bool netdev_has_any_lower_dev(struct net_device *dev) 6574 { 6575 ASSERT_RTNL(); 6576 6577 return !list_empty(&dev->adj_list.lower); 6578 } 6579 6580 void *netdev_adjacent_get_private(struct list_head *adj_list) 6581 { 6582 struct netdev_adjacent *adj; 6583 6584 adj = list_entry(adj_list, struct netdev_adjacent, list); 6585 6586 return adj->private; 6587 } 6588 EXPORT_SYMBOL(netdev_adjacent_get_private); 6589 6590 /** 6591 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 6592 * @dev: device 6593 * @iter: list_head ** of the current position 6594 * 6595 * Gets the next device from the dev's upper list, starting from iter 6596 * position. The caller must hold RCU read lock. 6597 */ 6598 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 6599 struct list_head **iter) 6600 { 6601 struct netdev_adjacent *upper; 6602 6603 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6604 6605 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6606 6607 if (&upper->list == &dev->adj_list.upper) 6608 return NULL; 6609 6610 *iter = &upper->list; 6611 6612 return upper->dev; 6613 } 6614 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 6615 6616 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 6617 struct list_head **iter) 6618 { 6619 struct netdev_adjacent *upper; 6620 6621 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6622 6623 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6624 6625 if (&upper->list == &dev->adj_list.upper) 6626 return NULL; 6627 6628 *iter = &upper->list; 6629 6630 return upper->dev; 6631 } 6632 6633 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 6634 int (*fn)(struct net_device *dev, 6635 void *data), 6636 void *data) 6637 { 6638 struct net_device *udev; 6639 struct list_head *iter; 6640 int ret; 6641 6642 for (iter = &dev->adj_list.upper, 6643 udev = netdev_next_upper_dev_rcu(dev, &iter); 6644 udev; 6645 udev = netdev_next_upper_dev_rcu(dev, &iter)) { 6646 /* first is the upper device itself */ 6647 ret = fn(udev, data); 6648 if (ret) 6649 return ret; 6650 6651 /* then look at all of its upper devices */ 6652 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); 6653 if (ret) 6654 return ret; 6655 } 6656 6657 return 0; 6658 } 6659 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 6660 6661 /** 6662 * netdev_lower_get_next_private - Get the next ->private from the 6663 * lower neighbour list 6664 * @dev: device 6665 * @iter: list_head ** of the current position 6666 * 6667 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6668 * list, starting from iter position. The caller must hold either hold the 6669 * RTNL lock or its own locking that guarantees that the neighbour lower 6670 * list will remain unchanged. 6671 */ 6672 void *netdev_lower_get_next_private(struct net_device *dev, 6673 struct list_head **iter) 6674 { 6675 struct netdev_adjacent *lower; 6676 6677 lower = list_entry(*iter, struct netdev_adjacent, list); 6678 6679 if (&lower->list == &dev->adj_list.lower) 6680 return NULL; 6681 6682 *iter = lower->list.next; 6683 6684 return lower->private; 6685 } 6686 EXPORT_SYMBOL(netdev_lower_get_next_private); 6687 6688 /** 6689 * netdev_lower_get_next_private_rcu - Get the next ->private from the 6690 * lower neighbour list, RCU 6691 * variant 6692 * @dev: device 6693 * @iter: list_head ** of the current position 6694 * 6695 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6696 * list, starting from iter position. The caller must hold RCU read lock. 6697 */ 6698 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 6699 struct list_head **iter) 6700 { 6701 struct netdev_adjacent *lower; 6702 6703 WARN_ON_ONCE(!rcu_read_lock_held()); 6704 6705 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6706 6707 if (&lower->list == &dev->adj_list.lower) 6708 return NULL; 6709 6710 *iter = &lower->list; 6711 6712 return lower->private; 6713 } 6714 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 6715 6716 /** 6717 * netdev_lower_get_next - Get the next device from the lower neighbour 6718 * list 6719 * @dev: device 6720 * @iter: list_head ** of the current position 6721 * 6722 * Gets the next netdev_adjacent from the dev's lower neighbour 6723 * list, starting from iter position. The caller must hold RTNL lock or 6724 * its own locking that guarantees that the neighbour lower 6725 * list will remain unchanged. 6726 */ 6727 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 6728 { 6729 struct netdev_adjacent *lower; 6730 6731 lower = list_entry(*iter, struct netdev_adjacent, list); 6732 6733 if (&lower->list == &dev->adj_list.lower) 6734 return NULL; 6735 6736 *iter = lower->list.next; 6737 6738 return lower->dev; 6739 } 6740 EXPORT_SYMBOL(netdev_lower_get_next); 6741 6742 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 6743 struct list_head **iter) 6744 { 6745 struct netdev_adjacent *lower; 6746 6747 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 6748 6749 if (&lower->list == &dev->adj_list.lower) 6750 return NULL; 6751 6752 *iter = &lower->list; 6753 6754 return lower->dev; 6755 } 6756 6757 int netdev_walk_all_lower_dev(struct net_device *dev, 6758 int (*fn)(struct net_device *dev, 6759 void *data), 6760 void *data) 6761 { 6762 struct net_device *ldev; 6763 struct list_head *iter; 6764 int ret; 6765 6766 for (iter = &dev->adj_list.lower, 6767 ldev = netdev_next_lower_dev(dev, &iter); 6768 ldev; 6769 ldev = netdev_next_lower_dev(dev, &iter)) { 6770 /* first is the lower device itself */ 6771 ret = fn(ldev, data); 6772 if (ret) 6773 return ret; 6774 6775 /* then look at all of its lower devices */ 6776 ret = netdev_walk_all_lower_dev(ldev, fn, data); 6777 if (ret) 6778 return ret; 6779 } 6780 6781 return 0; 6782 } 6783 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 6784 6785 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 6786 struct list_head **iter) 6787 { 6788 struct netdev_adjacent *lower; 6789 6790 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6791 if (&lower->list == &dev->adj_list.lower) 6792 return NULL; 6793 6794 *iter = &lower->list; 6795 6796 return lower->dev; 6797 } 6798 6799 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 6800 int (*fn)(struct net_device *dev, 6801 void *data), 6802 void *data) 6803 { 6804 struct net_device *ldev; 6805 struct list_head *iter; 6806 int ret; 6807 6808 for (iter = &dev->adj_list.lower, 6809 ldev = netdev_next_lower_dev_rcu(dev, &iter); 6810 ldev; 6811 ldev = netdev_next_lower_dev_rcu(dev, &iter)) { 6812 /* first is the lower device itself */ 6813 ret = fn(ldev, data); 6814 if (ret) 6815 return ret; 6816 6817 /* then look at all of its lower devices */ 6818 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); 6819 if (ret) 6820 return ret; 6821 } 6822 6823 return 0; 6824 } 6825 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 6826 6827 /** 6828 * netdev_lower_get_first_private_rcu - Get the first ->private from the 6829 * lower neighbour list, RCU 6830 * variant 6831 * @dev: device 6832 * 6833 * Gets the first netdev_adjacent->private from the dev's lower neighbour 6834 * list. The caller must hold RCU read lock. 6835 */ 6836 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 6837 { 6838 struct netdev_adjacent *lower; 6839 6840 lower = list_first_or_null_rcu(&dev->adj_list.lower, 6841 struct netdev_adjacent, list); 6842 if (lower) 6843 return lower->private; 6844 return NULL; 6845 } 6846 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 6847 6848 /** 6849 * netdev_master_upper_dev_get_rcu - Get master upper device 6850 * @dev: device 6851 * 6852 * Find a master upper device and return pointer to it or NULL in case 6853 * it's not there. The caller must hold the RCU read lock. 6854 */ 6855 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 6856 { 6857 struct netdev_adjacent *upper; 6858 6859 upper = list_first_or_null_rcu(&dev->adj_list.upper, 6860 struct netdev_adjacent, list); 6861 if (upper && likely(upper->master)) 6862 return upper->dev; 6863 return NULL; 6864 } 6865 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 6866 6867 static int netdev_adjacent_sysfs_add(struct net_device *dev, 6868 struct net_device *adj_dev, 6869 struct list_head *dev_list) 6870 { 6871 char linkname[IFNAMSIZ+7]; 6872 6873 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6874 "upper_%s" : "lower_%s", adj_dev->name); 6875 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 6876 linkname); 6877 } 6878 static void netdev_adjacent_sysfs_del(struct net_device *dev, 6879 char *name, 6880 struct list_head *dev_list) 6881 { 6882 char linkname[IFNAMSIZ+7]; 6883 6884 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6885 "upper_%s" : "lower_%s", name); 6886 sysfs_remove_link(&(dev->dev.kobj), linkname); 6887 } 6888 6889 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 6890 struct net_device *adj_dev, 6891 struct list_head *dev_list) 6892 { 6893 return (dev_list == &dev->adj_list.upper || 6894 dev_list == &dev->adj_list.lower) && 6895 net_eq(dev_net(dev), dev_net(adj_dev)); 6896 } 6897 6898 static int __netdev_adjacent_dev_insert(struct net_device *dev, 6899 struct net_device *adj_dev, 6900 struct list_head *dev_list, 6901 void *private, bool master) 6902 { 6903 struct netdev_adjacent *adj; 6904 int ret; 6905 6906 adj = __netdev_find_adj(adj_dev, dev_list); 6907 6908 if (adj) { 6909 adj->ref_nr += 1; 6910 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 6911 dev->name, adj_dev->name, adj->ref_nr); 6912 6913 return 0; 6914 } 6915 6916 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 6917 if (!adj) 6918 return -ENOMEM; 6919 6920 adj->dev = adj_dev; 6921 adj->master = master; 6922 adj->ref_nr = 1; 6923 adj->private = private; 6924 dev_hold(adj_dev); 6925 6926 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 6927 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 6928 6929 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 6930 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 6931 if (ret) 6932 goto free_adj; 6933 } 6934 6935 /* Ensure that master link is always the first item in list. */ 6936 if (master) { 6937 ret = sysfs_create_link(&(dev->dev.kobj), 6938 &(adj_dev->dev.kobj), "master"); 6939 if (ret) 6940 goto remove_symlinks; 6941 6942 list_add_rcu(&adj->list, dev_list); 6943 } else { 6944 list_add_tail_rcu(&adj->list, dev_list); 6945 } 6946 6947 return 0; 6948 6949 remove_symlinks: 6950 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6951 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6952 free_adj: 6953 kfree(adj); 6954 dev_put(adj_dev); 6955 6956 return ret; 6957 } 6958 6959 static void __netdev_adjacent_dev_remove(struct net_device *dev, 6960 struct net_device *adj_dev, 6961 u16 ref_nr, 6962 struct list_head *dev_list) 6963 { 6964 struct netdev_adjacent *adj; 6965 6966 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 6967 dev->name, adj_dev->name, ref_nr); 6968 6969 adj = __netdev_find_adj(adj_dev, dev_list); 6970 6971 if (!adj) { 6972 pr_err("Adjacency does not exist for device %s from %s\n", 6973 dev->name, adj_dev->name); 6974 WARN_ON(1); 6975 return; 6976 } 6977 6978 if (adj->ref_nr > ref_nr) { 6979 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 6980 dev->name, adj_dev->name, ref_nr, 6981 adj->ref_nr - ref_nr); 6982 adj->ref_nr -= ref_nr; 6983 return; 6984 } 6985 6986 if (adj->master) 6987 sysfs_remove_link(&(dev->dev.kobj), "master"); 6988 6989 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6990 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6991 6992 list_del_rcu(&adj->list); 6993 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 6994 adj_dev->name, dev->name, adj_dev->name); 6995 dev_put(adj_dev); 6996 kfree_rcu(adj, rcu); 6997 } 6998 6999 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 7000 struct net_device *upper_dev, 7001 struct list_head *up_list, 7002 struct list_head *down_list, 7003 void *private, bool master) 7004 { 7005 int ret; 7006 7007 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 7008 private, master); 7009 if (ret) 7010 return ret; 7011 7012 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 7013 private, false); 7014 if (ret) { 7015 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 7016 return ret; 7017 } 7018 7019 return 0; 7020 } 7021 7022 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 7023 struct net_device *upper_dev, 7024 u16 ref_nr, 7025 struct list_head *up_list, 7026 struct list_head *down_list) 7027 { 7028 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 7029 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 7030 } 7031 7032 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 7033 struct net_device *upper_dev, 7034 void *private, bool master) 7035 { 7036 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 7037 &dev->adj_list.upper, 7038 &upper_dev->adj_list.lower, 7039 private, master); 7040 } 7041 7042 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 7043 struct net_device *upper_dev) 7044 { 7045 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 7046 &dev->adj_list.upper, 7047 &upper_dev->adj_list.lower); 7048 } 7049 7050 static int __netdev_upper_dev_link(struct net_device *dev, 7051 struct net_device *upper_dev, bool master, 7052 void *upper_priv, void *upper_info, 7053 struct netlink_ext_ack *extack) 7054 { 7055 struct netdev_notifier_changeupper_info changeupper_info = { 7056 .info = { 7057 .dev = dev, 7058 .extack = extack, 7059 }, 7060 .upper_dev = upper_dev, 7061 .master = master, 7062 .linking = true, 7063 .upper_info = upper_info, 7064 }; 7065 struct net_device *master_dev; 7066 int ret = 0; 7067 7068 ASSERT_RTNL(); 7069 7070 if (dev == upper_dev) 7071 return -EBUSY; 7072 7073 /* To prevent loops, check if dev is not upper device to upper_dev. */ 7074 if (netdev_has_upper_dev(upper_dev, dev)) 7075 return -EBUSY; 7076 7077 if (!master) { 7078 if (netdev_has_upper_dev(dev, upper_dev)) 7079 return -EEXIST; 7080 } else { 7081 master_dev = netdev_master_upper_dev_get(dev); 7082 if (master_dev) 7083 return master_dev == upper_dev ? -EEXIST : -EBUSY; 7084 } 7085 7086 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7087 &changeupper_info.info); 7088 ret = notifier_to_errno(ret); 7089 if (ret) 7090 return ret; 7091 7092 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7093 master); 7094 if (ret) 7095 return ret; 7096 7097 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7098 &changeupper_info.info); 7099 ret = notifier_to_errno(ret); 7100 if (ret) 7101 goto rollback; 7102 7103 return 0; 7104 7105 rollback: 7106 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7107 7108 return ret; 7109 } 7110 7111 /** 7112 * netdev_upper_dev_link - Add a link to the upper device 7113 * @dev: device 7114 * @upper_dev: new upper device 7115 * @extack: netlink extended ack 7116 * 7117 * Adds a link to device which is upper to this one. The caller must hold 7118 * the RTNL lock. On a failure a negative errno code is returned. 7119 * On success the reference counts are adjusted and the function 7120 * returns zero. 7121 */ 7122 int netdev_upper_dev_link(struct net_device *dev, 7123 struct net_device *upper_dev, 7124 struct netlink_ext_ack *extack) 7125 { 7126 return __netdev_upper_dev_link(dev, upper_dev, false, 7127 NULL, NULL, extack); 7128 } 7129 EXPORT_SYMBOL(netdev_upper_dev_link); 7130 7131 /** 7132 * netdev_master_upper_dev_link - Add a master link to the upper device 7133 * @dev: device 7134 * @upper_dev: new upper device 7135 * @upper_priv: upper device private 7136 * @upper_info: upper info to be passed down via notifier 7137 * @extack: netlink extended ack 7138 * 7139 * Adds a link to device which is upper to this one. In this case, only 7140 * one master upper device can be linked, although other non-master devices 7141 * might be linked as well. The caller must hold the RTNL lock. 7142 * On a failure a negative errno code is returned. On success the reference 7143 * counts are adjusted and the function returns zero. 7144 */ 7145 int netdev_master_upper_dev_link(struct net_device *dev, 7146 struct net_device *upper_dev, 7147 void *upper_priv, void *upper_info, 7148 struct netlink_ext_ack *extack) 7149 { 7150 return __netdev_upper_dev_link(dev, upper_dev, true, 7151 upper_priv, upper_info, extack); 7152 } 7153 EXPORT_SYMBOL(netdev_master_upper_dev_link); 7154 7155 /** 7156 * netdev_upper_dev_unlink - Removes a link to upper device 7157 * @dev: device 7158 * @upper_dev: new upper device 7159 * 7160 * Removes a link to device which is upper to this one. The caller must hold 7161 * the RTNL lock. 7162 */ 7163 void netdev_upper_dev_unlink(struct net_device *dev, 7164 struct net_device *upper_dev) 7165 { 7166 struct netdev_notifier_changeupper_info changeupper_info = { 7167 .info = { 7168 .dev = dev, 7169 }, 7170 .upper_dev = upper_dev, 7171 .linking = false, 7172 }; 7173 7174 ASSERT_RTNL(); 7175 7176 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 7177 7178 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7179 &changeupper_info.info); 7180 7181 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7182 7183 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7184 &changeupper_info.info); 7185 } 7186 EXPORT_SYMBOL(netdev_upper_dev_unlink); 7187 7188 /** 7189 * netdev_bonding_info_change - Dispatch event about slave change 7190 * @dev: device 7191 * @bonding_info: info to dispatch 7192 * 7193 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 7194 * The caller must hold the RTNL lock. 7195 */ 7196 void netdev_bonding_info_change(struct net_device *dev, 7197 struct netdev_bonding_info *bonding_info) 7198 { 7199 struct netdev_notifier_bonding_info info = { 7200 .info.dev = dev, 7201 }; 7202 7203 memcpy(&info.bonding_info, bonding_info, 7204 sizeof(struct netdev_bonding_info)); 7205 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 7206 &info.info); 7207 } 7208 EXPORT_SYMBOL(netdev_bonding_info_change); 7209 7210 static void netdev_adjacent_add_links(struct net_device *dev) 7211 { 7212 struct netdev_adjacent *iter; 7213 7214 struct net *net = dev_net(dev); 7215 7216 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7217 if (!net_eq(net, dev_net(iter->dev))) 7218 continue; 7219 netdev_adjacent_sysfs_add(iter->dev, dev, 7220 &iter->dev->adj_list.lower); 7221 netdev_adjacent_sysfs_add(dev, iter->dev, 7222 &dev->adj_list.upper); 7223 } 7224 7225 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7226 if (!net_eq(net, dev_net(iter->dev))) 7227 continue; 7228 netdev_adjacent_sysfs_add(iter->dev, dev, 7229 &iter->dev->adj_list.upper); 7230 netdev_adjacent_sysfs_add(dev, iter->dev, 7231 &dev->adj_list.lower); 7232 } 7233 } 7234 7235 static void netdev_adjacent_del_links(struct net_device *dev) 7236 { 7237 struct netdev_adjacent *iter; 7238 7239 struct net *net = dev_net(dev); 7240 7241 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7242 if (!net_eq(net, dev_net(iter->dev))) 7243 continue; 7244 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7245 &iter->dev->adj_list.lower); 7246 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7247 &dev->adj_list.upper); 7248 } 7249 7250 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7251 if (!net_eq(net, dev_net(iter->dev))) 7252 continue; 7253 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7254 &iter->dev->adj_list.upper); 7255 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7256 &dev->adj_list.lower); 7257 } 7258 } 7259 7260 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 7261 { 7262 struct netdev_adjacent *iter; 7263 7264 struct net *net = dev_net(dev); 7265 7266 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7267 if (!net_eq(net, dev_net(iter->dev))) 7268 continue; 7269 netdev_adjacent_sysfs_del(iter->dev, oldname, 7270 &iter->dev->adj_list.lower); 7271 netdev_adjacent_sysfs_add(iter->dev, dev, 7272 &iter->dev->adj_list.lower); 7273 } 7274 7275 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7276 if (!net_eq(net, dev_net(iter->dev))) 7277 continue; 7278 netdev_adjacent_sysfs_del(iter->dev, oldname, 7279 &iter->dev->adj_list.upper); 7280 netdev_adjacent_sysfs_add(iter->dev, dev, 7281 &iter->dev->adj_list.upper); 7282 } 7283 } 7284 7285 void *netdev_lower_dev_get_private(struct net_device *dev, 7286 struct net_device *lower_dev) 7287 { 7288 struct netdev_adjacent *lower; 7289 7290 if (!lower_dev) 7291 return NULL; 7292 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 7293 if (!lower) 7294 return NULL; 7295 7296 return lower->private; 7297 } 7298 EXPORT_SYMBOL(netdev_lower_dev_get_private); 7299 7300 7301 int dev_get_nest_level(struct net_device *dev) 7302 { 7303 struct net_device *lower = NULL; 7304 struct list_head *iter; 7305 int max_nest = -1; 7306 int nest; 7307 7308 ASSERT_RTNL(); 7309 7310 netdev_for_each_lower_dev(dev, lower, iter) { 7311 nest = dev_get_nest_level(lower); 7312 if (max_nest < nest) 7313 max_nest = nest; 7314 } 7315 7316 return max_nest + 1; 7317 } 7318 EXPORT_SYMBOL(dev_get_nest_level); 7319 7320 /** 7321 * netdev_lower_change - Dispatch event about lower device state change 7322 * @lower_dev: device 7323 * @lower_state_info: state to dispatch 7324 * 7325 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 7326 * The caller must hold the RTNL lock. 7327 */ 7328 void netdev_lower_state_changed(struct net_device *lower_dev, 7329 void *lower_state_info) 7330 { 7331 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 7332 .info.dev = lower_dev, 7333 }; 7334 7335 ASSERT_RTNL(); 7336 changelowerstate_info.lower_state_info = lower_state_info; 7337 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 7338 &changelowerstate_info.info); 7339 } 7340 EXPORT_SYMBOL(netdev_lower_state_changed); 7341 7342 static void dev_change_rx_flags(struct net_device *dev, int flags) 7343 { 7344 const struct net_device_ops *ops = dev->netdev_ops; 7345 7346 if (ops->ndo_change_rx_flags) 7347 ops->ndo_change_rx_flags(dev, flags); 7348 } 7349 7350 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 7351 { 7352 unsigned int old_flags = dev->flags; 7353 kuid_t uid; 7354 kgid_t gid; 7355 7356 ASSERT_RTNL(); 7357 7358 dev->flags |= IFF_PROMISC; 7359 dev->promiscuity += inc; 7360 if (dev->promiscuity == 0) { 7361 /* 7362 * Avoid overflow. 7363 * If inc causes overflow, untouch promisc and return error. 7364 */ 7365 if (inc < 0) 7366 dev->flags &= ~IFF_PROMISC; 7367 else { 7368 dev->promiscuity -= inc; 7369 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 7370 dev->name); 7371 return -EOVERFLOW; 7372 } 7373 } 7374 if (dev->flags != old_flags) { 7375 pr_info("device %s %s promiscuous mode\n", 7376 dev->name, 7377 dev->flags & IFF_PROMISC ? "entered" : "left"); 7378 if (audit_enabled) { 7379 current_uid_gid(&uid, &gid); 7380 audit_log(audit_context(), GFP_ATOMIC, 7381 AUDIT_ANOM_PROMISCUOUS, 7382 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 7383 dev->name, (dev->flags & IFF_PROMISC), 7384 (old_flags & IFF_PROMISC), 7385 from_kuid(&init_user_ns, audit_get_loginuid(current)), 7386 from_kuid(&init_user_ns, uid), 7387 from_kgid(&init_user_ns, gid), 7388 audit_get_sessionid(current)); 7389 } 7390 7391 dev_change_rx_flags(dev, IFF_PROMISC); 7392 } 7393 if (notify) 7394 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 7395 return 0; 7396 } 7397 7398 /** 7399 * dev_set_promiscuity - update promiscuity count on a device 7400 * @dev: device 7401 * @inc: modifier 7402 * 7403 * Add or remove promiscuity from a device. While the count in the device 7404 * remains above zero the interface remains promiscuous. Once it hits zero 7405 * the device reverts back to normal filtering operation. A negative inc 7406 * value is used to drop promiscuity on the device. 7407 * Return 0 if successful or a negative errno code on error. 7408 */ 7409 int dev_set_promiscuity(struct net_device *dev, int inc) 7410 { 7411 unsigned int old_flags = dev->flags; 7412 int err; 7413 7414 err = __dev_set_promiscuity(dev, inc, true); 7415 if (err < 0) 7416 return err; 7417 if (dev->flags != old_flags) 7418 dev_set_rx_mode(dev); 7419 return err; 7420 } 7421 EXPORT_SYMBOL(dev_set_promiscuity); 7422 7423 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 7424 { 7425 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 7426 7427 ASSERT_RTNL(); 7428 7429 dev->flags |= IFF_ALLMULTI; 7430 dev->allmulti += inc; 7431 if (dev->allmulti == 0) { 7432 /* 7433 * Avoid overflow. 7434 * If inc causes overflow, untouch allmulti and return error. 7435 */ 7436 if (inc < 0) 7437 dev->flags &= ~IFF_ALLMULTI; 7438 else { 7439 dev->allmulti -= inc; 7440 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 7441 dev->name); 7442 return -EOVERFLOW; 7443 } 7444 } 7445 if (dev->flags ^ old_flags) { 7446 dev_change_rx_flags(dev, IFF_ALLMULTI); 7447 dev_set_rx_mode(dev); 7448 if (notify) 7449 __dev_notify_flags(dev, old_flags, 7450 dev->gflags ^ old_gflags); 7451 } 7452 return 0; 7453 } 7454 7455 /** 7456 * dev_set_allmulti - update allmulti count on a device 7457 * @dev: device 7458 * @inc: modifier 7459 * 7460 * Add or remove reception of all multicast frames to a device. While the 7461 * count in the device remains above zero the interface remains listening 7462 * to all interfaces. Once it hits zero the device reverts back to normal 7463 * filtering operation. A negative @inc value is used to drop the counter 7464 * when releasing a resource needing all multicasts. 7465 * Return 0 if successful or a negative errno code on error. 7466 */ 7467 7468 int dev_set_allmulti(struct net_device *dev, int inc) 7469 { 7470 return __dev_set_allmulti(dev, inc, true); 7471 } 7472 EXPORT_SYMBOL(dev_set_allmulti); 7473 7474 /* 7475 * Upload unicast and multicast address lists to device and 7476 * configure RX filtering. When the device doesn't support unicast 7477 * filtering it is put in promiscuous mode while unicast addresses 7478 * are present. 7479 */ 7480 void __dev_set_rx_mode(struct net_device *dev) 7481 { 7482 const struct net_device_ops *ops = dev->netdev_ops; 7483 7484 /* dev_open will call this function so the list will stay sane. */ 7485 if (!(dev->flags&IFF_UP)) 7486 return; 7487 7488 if (!netif_device_present(dev)) 7489 return; 7490 7491 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 7492 /* Unicast addresses changes may only happen under the rtnl, 7493 * therefore calling __dev_set_promiscuity here is safe. 7494 */ 7495 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 7496 __dev_set_promiscuity(dev, 1, false); 7497 dev->uc_promisc = true; 7498 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 7499 __dev_set_promiscuity(dev, -1, false); 7500 dev->uc_promisc = false; 7501 } 7502 } 7503 7504 if (ops->ndo_set_rx_mode) 7505 ops->ndo_set_rx_mode(dev); 7506 } 7507 7508 void dev_set_rx_mode(struct net_device *dev) 7509 { 7510 netif_addr_lock_bh(dev); 7511 __dev_set_rx_mode(dev); 7512 netif_addr_unlock_bh(dev); 7513 } 7514 7515 /** 7516 * dev_get_flags - get flags reported to userspace 7517 * @dev: device 7518 * 7519 * Get the combination of flag bits exported through APIs to userspace. 7520 */ 7521 unsigned int dev_get_flags(const struct net_device *dev) 7522 { 7523 unsigned int flags; 7524 7525 flags = (dev->flags & ~(IFF_PROMISC | 7526 IFF_ALLMULTI | 7527 IFF_RUNNING | 7528 IFF_LOWER_UP | 7529 IFF_DORMANT)) | 7530 (dev->gflags & (IFF_PROMISC | 7531 IFF_ALLMULTI)); 7532 7533 if (netif_running(dev)) { 7534 if (netif_oper_up(dev)) 7535 flags |= IFF_RUNNING; 7536 if (netif_carrier_ok(dev)) 7537 flags |= IFF_LOWER_UP; 7538 if (netif_dormant(dev)) 7539 flags |= IFF_DORMANT; 7540 } 7541 7542 return flags; 7543 } 7544 EXPORT_SYMBOL(dev_get_flags); 7545 7546 int __dev_change_flags(struct net_device *dev, unsigned int flags, 7547 struct netlink_ext_ack *extack) 7548 { 7549 unsigned int old_flags = dev->flags; 7550 int ret; 7551 7552 ASSERT_RTNL(); 7553 7554 /* 7555 * Set the flags on our device. 7556 */ 7557 7558 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 7559 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 7560 IFF_AUTOMEDIA)) | 7561 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 7562 IFF_ALLMULTI)); 7563 7564 /* 7565 * Load in the correct multicast list now the flags have changed. 7566 */ 7567 7568 if ((old_flags ^ flags) & IFF_MULTICAST) 7569 dev_change_rx_flags(dev, IFF_MULTICAST); 7570 7571 dev_set_rx_mode(dev); 7572 7573 /* 7574 * Have we downed the interface. We handle IFF_UP ourselves 7575 * according to user attempts to set it, rather than blindly 7576 * setting it. 7577 */ 7578 7579 ret = 0; 7580 if ((old_flags ^ flags) & IFF_UP) { 7581 if (old_flags & IFF_UP) 7582 __dev_close(dev); 7583 else 7584 ret = __dev_open(dev, extack); 7585 } 7586 7587 if ((flags ^ dev->gflags) & IFF_PROMISC) { 7588 int inc = (flags & IFF_PROMISC) ? 1 : -1; 7589 unsigned int old_flags = dev->flags; 7590 7591 dev->gflags ^= IFF_PROMISC; 7592 7593 if (__dev_set_promiscuity(dev, inc, false) >= 0) 7594 if (dev->flags != old_flags) 7595 dev_set_rx_mode(dev); 7596 } 7597 7598 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 7599 * is important. Some (broken) drivers set IFF_PROMISC, when 7600 * IFF_ALLMULTI is requested not asking us and not reporting. 7601 */ 7602 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 7603 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 7604 7605 dev->gflags ^= IFF_ALLMULTI; 7606 __dev_set_allmulti(dev, inc, false); 7607 } 7608 7609 return ret; 7610 } 7611 7612 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 7613 unsigned int gchanges) 7614 { 7615 unsigned int changes = dev->flags ^ old_flags; 7616 7617 if (gchanges) 7618 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 7619 7620 if (changes & IFF_UP) { 7621 if (dev->flags & IFF_UP) 7622 call_netdevice_notifiers(NETDEV_UP, dev); 7623 else 7624 call_netdevice_notifiers(NETDEV_DOWN, dev); 7625 } 7626 7627 if (dev->flags & IFF_UP && 7628 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 7629 struct netdev_notifier_change_info change_info = { 7630 .info = { 7631 .dev = dev, 7632 }, 7633 .flags_changed = changes, 7634 }; 7635 7636 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 7637 } 7638 } 7639 7640 /** 7641 * dev_change_flags - change device settings 7642 * @dev: device 7643 * @flags: device state flags 7644 * @extack: netlink extended ack 7645 * 7646 * Change settings on device based state flags. The flags are 7647 * in the userspace exported format. 7648 */ 7649 int dev_change_flags(struct net_device *dev, unsigned int flags, 7650 struct netlink_ext_ack *extack) 7651 { 7652 int ret; 7653 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 7654 7655 ret = __dev_change_flags(dev, flags, extack); 7656 if (ret < 0) 7657 return ret; 7658 7659 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 7660 __dev_notify_flags(dev, old_flags, changes); 7661 return ret; 7662 } 7663 EXPORT_SYMBOL(dev_change_flags); 7664 7665 int __dev_set_mtu(struct net_device *dev, int new_mtu) 7666 { 7667 const struct net_device_ops *ops = dev->netdev_ops; 7668 7669 if (ops->ndo_change_mtu) 7670 return ops->ndo_change_mtu(dev, new_mtu); 7671 7672 dev->mtu = new_mtu; 7673 return 0; 7674 } 7675 EXPORT_SYMBOL(__dev_set_mtu); 7676 7677 /** 7678 * dev_set_mtu_ext - Change maximum transfer unit 7679 * @dev: device 7680 * @new_mtu: new transfer unit 7681 * @extack: netlink extended ack 7682 * 7683 * Change the maximum transfer size of the network device. 7684 */ 7685 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 7686 struct netlink_ext_ack *extack) 7687 { 7688 int err, orig_mtu; 7689 7690 if (new_mtu == dev->mtu) 7691 return 0; 7692 7693 /* MTU must be positive, and in range */ 7694 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 7695 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 7696 return -EINVAL; 7697 } 7698 7699 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 7700 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 7701 return -EINVAL; 7702 } 7703 7704 if (!netif_device_present(dev)) 7705 return -ENODEV; 7706 7707 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 7708 err = notifier_to_errno(err); 7709 if (err) 7710 return err; 7711 7712 orig_mtu = dev->mtu; 7713 err = __dev_set_mtu(dev, new_mtu); 7714 7715 if (!err) { 7716 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 7717 orig_mtu); 7718 err = notifier_to_errno(err); 7719 if (err) { 7720 /* setting mtu back and notifying everyone again, 7721 * so that they have a chance to revert changes. 7722 */ 7723 __dev_set_mtu(dev, orig_mtu); 7724 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 7725 new_mtu); 7726 } 7727 } 7728 return err; 7729 } 7730 7731 int dev_set_mtu(struct net_device *dev, int new_mtu) 7732 { 7733 struct netlink_ext_ack extack; 7734 int err; 7735 7736 memset(&extack, 0, sizeof(extack)); 7737 err = dev_set_mtu_ext(dev, new_mtu, &extack); 7738 if (err && extack._msg) 7739 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 7740 return err; 7741 } 7742 EXPORT_SYMBOL(dev_set_mtu); 7743 7744 /** 7745 * dev_change_tx_queue_len - Change TX queue length of a netdevice 7746 * @dev: device 7747 * @new_len: new tx queue length 7748 */ 7749 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 7750 { 7751 unsigned int orig_len = dev->tx_queue_len; 7752 int res; 7753 7754 if (new_len != (unsigned int)new_len) 7755 return -ERANGE; 7756 7757 if (new_len != orig_len) { 7758 dev->tx_queue_len = new_len; 7759 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 7760 res = notifier_to_errno(res); 7761 if (res) 7762 goto err_rollback; 7763 res = dev_qdisc_change_tx_queue_len(dev); 7764 if (res) 7765 goto err_rollback; 7766 } 7767 7768 return 0; 7769 7770 err_rollback: 7771 netdev_err(dev, "refused to change device tx_queue_len\n"); 7772 dev->tx_queue_len = orig_len; 7773 return res; 7774 } 7775 7776 /** 7777 * dev_set_group - Change group this device belongs to 7778 * @dev: device 7779 * @new_group: group this device should belong to 7780 */ 7781 void dev_set_group(struct net_device *dev, int new_group) 7782 { 7783 dev->group = new_group; 7784 } 7785 EXPORT_SYMBOL(dev_set_group); 7786 7787 /** 7788 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 7789 * @dev: device 7790 * @addr: new address 7791 * @extack: netlink extended ack 7792 */ 7793 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 7794 struct netlink_ext_ack *extack) 7795 { 7796 struct netdev_notifier_pre_changeaddr_info info = { 7797 .info.dev = dev, 7798 .info.extack = extack, 7799 .dev_addr = addr, 7800 }; 7801 int rc; 7802 7803 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 7804 return notifier_to_errno(rc); 7805 } 7806 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 7807 7808 /** 7809 * dev_set_mac_address - Change Media Access Control Address 7810 * @dev: device 7811 * @sa: new address 7812 * @extack: netlink extended ack 7813 * 7814 * Change the hardware (MAC) address of the device 7815 */ 7816 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 7817 struct netlink_ext_ack *extack) 7818 { 7819 const struct net_device_ops *ops = dev->netdev_ops; 7820 int err; 7821 7822 if (!ops->ndo_set_mac_address) 7823 return -EOPNOTSUPP; 7824 if (sa->sa_family != dev->type) 7825 return -EINVAL; 7826 if (!netif_device_present(dev)) 7827 return -ENODEV; 7828 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 7829 if (err) 7830 return err; 7831 err = ops->ndo_set_mac_address(dev, sa); 7832 if (err) 7833 return err; 7834 dev->addr_assign_type = NET_ADDR_SET; 7835 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 7836 add_device_randomness(dev->dev_addr, dev->addr_len); 7837 return 0; 7838 } 7839 EXPORT_SYMBOL(dev_set_mac_address); 7840 7841 /** 7842 * dev_change_carrier - Change device carrier 7843 * @dev: device 7844 * @new_carrier: new value 7845 * 7846 * Change device carrier 7847 */ 7848 int dev_change_carrier(struct net_device *dev, bool new_carrier) 7849 { 7850 const struct net_device_ops *ops = dev->netdev_ops; 7851 7852 if (!ops->ndo_change_carrier) 7853 return -EOPNOTSUPP; 7854 if (!netif_device_present(dev)) 7855 return -ENODEV; 7856 return ops->ndo_change_carrier(dev, new_carrier); 7857 } 7858 EXPORT_SYMBOL(dev_change_carrier); 7859 7860 /** 7861 * dev_get_phys_port_id - Get device physical port ID 7862 * @dev: device 7863 * @ppid: port ID 7864 * 7865 * Get device physical port ID 7866 */ 7867 int dev_get_phys_port_id(struct net_device *dev, 7868 struct netdev_phys_item_id *ppid) 7869 { 7870 const struct net_device_ops *ops = dev->netdev_ops; 7871 7872 if (!ops->ndo_get_phys_port_id) 7873 return -EOPNOTSUPP; 7874 return ops->ndo_get_phys_port_id(dev, ppid); 7875 } 7876 EXPORT_SYMBOL(dev_get_phys_port_id); 7877 7878 /** 7879 * dev_get_phys_port_name - Get device physical port name 7880 * @dev: device 7881 * @name: port name 7882 * @len: limit of bytes to copy to name 7883 * 7884 * Get device physical port name 7885 */ 7886 int dev_get_phys_port_name(struct net_device *dev, 7887 char *name, size_t len) 7888 { 7889 const struct net_device_ops *ops = dev->netdev_ops; 7890 int err; 7891 7892 if (ops->ndo_get_phys_port_name) { 7893 err = ops->ndo_get_phys_port_name(dev, name, len); 7894 if (err != -EOPNOTSUPP) 7895 return err; 7896 } 7897 return devlink_compat_phys_port_name_get(dev, name, len); 7898 } 7899 EXPORT_SYMBOL(dev_get_phys_port_name); 7900 7901 /** 7902 * dev_get_port_parent_id - Get the device's port parent identifier 7903 * @dev: network device 7904 * @ppid: pointer to a storage for the port's parent identifier 7905 * @recurse: allow/disallow recursion to lower devices 7906 * 7907 * Get the devices's port parent identifier 7908 */ 7909 int dev_get_port_parent_id(struct net_device *dev, 7910 struct netdev_phys_item_id *ppid, 7911 bool recurse) 7912 { 7913 const struct net_device_ops *ops = dev->netdev_ops; 7914 struct netdev_phys_item_id first = { }; 7915 struct net_device *lower_dev; 7916 struct list_head *iter; 7917 int err; 7918 7919 if (ops->ndo_get_port_parent_id) { 7920 err = ops->ndo_get_port_parent_id(dev, ppid); 7921 if (err != -EOPNOTSUPP) 7922 return err; 7923 } 7924 7925 err = devlink_compat_switch_id_get(dev, ppid); 7926 if (!err || err != -EOPNOTSUPP) 7927 return err; 7928 7929 if (!recurse) 7930 return -EOPNOTSUPP; 7931 7932 netdev_for_each_lower_dev(dev, lower_dev, iter) { 7933 err = dev_get_port_parent_id(lower_dev, ppid, recurse); 7934 if (err) 7935 break; 7936 if (!first.id_len) 7937 first = *ppid; 7938 else if (memcmp(&first, ppid, sizeof(*ppid))) 7939 return -ENODATA; 7940 } 7941 7942 return err; 7943 } 7944 EXPORT_SYMBOL(dev_get_port_parent_id); 7945 7946 /** 7947 * netdev_port_same_parent_id - Indicate if two network devices have 7948 * the same port parent identifier 7949 * @a: first network device 7950 * @b: second network device 7951 */ 7952 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 7953 { 7954 struct netdev_phys_item_id a_id = { }; 7955 struct netdev_phys_item_id b_id = { }; 7956 7957 if (dev_get_port_parent_id(a, &a_id, true) || 7958 dev_get_port_parent_id(b, &b_id, true)) 7959 return false; 7960 7961 return netdev_phys_item_id_same(&a_id, &b_id); 7962 } 7963 EXPORT_SYMBOL(netdev_port_same_parent_id); 7964 7965 /** 7966 * dev_change_proto_down - update protocol port state information 7967 * @dev: device 7968 * @proto_down: new value 7969 * 7970 * This info can be used by switch drivers to set the phys state of the 7971 * port. 7972 */ 7973 int dev_change_proto_down(struct net_device *dev, bool proto_down) 7974 { 7975 const struct net_device_ops *ops = dev->netdev_ops; 7976 7977 if (!ops->ndo_change_proto_down) 7978 return -EOPNOTSUPP; 7979 if (!netif_device_present(dev)) 7980 return -ENODEV; 7981 return ops->ndo_change_proto_down(dev, proto_down); 7982 } 7983 EXPORT_SYMBOL(dev_change_proto_down); 7984 7985 /** 7986 * dev_change_proto_down_generic - generic implementation for 7987 * ndo_change_proto_down that sets carrier according to 7988 * proto_down. 7989 * 7990 * @dev: device 7991 * @proto_down: new value 7992 */ 7993 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down) 7994 { 7995 if (proto_down) 7996 netif_carrier_off(dev); 7997 else 7998 netif_carrier_on(dev); 7999 dev->proto_down = proto_down; 8000 return 0; 8001 } 8002 EXPORT_SYMBOL(dev_change_proto_down_generic); 8003 8004 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op, 8005 enum bpf_netdev_command cmd) 8006 { 8007 struct netdev_bpf xdp; 8008 8009 if (!bpf_op) 8010 return 0; 8011 8012 memset(&xdp, 0, sizeof(xdp)); 8013 xdp.command = cmd; 8014 8015 /* Query must always succeed. */ 8016 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG); 8017 8018 return xdp.prog_id; 8019 } 8020 8021 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op, 8022 struct netlink_ext_ack *extack, u32 flags, 8023 struct bpf_prog *prog) 8024 { 8025 struct netdev_bpf xdp; 8026 8027 memset(&xdp, 0, sizeof(xdp)); 8028 if (flags & XDP_FLAGS_HW_MODE) 8029 xdp.command = XDP_SETUP_PROG_HW; 8030 else 8031 xdp.command = XDP_SETUP_PROG; 8032 xdp.extack = extack; 8033 xdp.flags = flags; 8034 xdp.prog = prog; 8035 8036 return bpf_op(dev, &xdp); 8037 } 8038 8039 static void dev_xdp_uninstall(struct net_device *dev) 8040 { 8041 struct netdev_bpf xdp; 8042 bpf_op_t ndo_bpf; 8043 8044 /* Remove generic XDP */ 8045 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL)); 8046 8047 /* Remove from the driver */ 8048 ndo_bpf = dev->netdev_ops->ndo_bpf; 8049 if (!ndo_bpf) 8050 return; 8051 8052 memset(&xdp, 0, sizeof(xdp)); 8053 xdp.command = XDP_QUERY_PROG; 8054 WARN_ON(ndo_bpf(dev, &xdp)); 8055 if (xdp.prog_id) 8056 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 8057 NULL)); 8058 8059 /* Remove HW offload */ 8060 memset(&xdp, 0, sizeof(xdp)); 8061 xdp.command = XDP_QUERY_PROG_HW; 8062 if (!ndo_bpf(dev, &xdp) && xdp.prog_id) 8063 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 8064 NULL)); 8065 } 8066 8067 /** 8068 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 8069 * @dev: device 8070 * @extack: netlink extended ack 8071 * @fd: new program fd or negative value to clear 8072 * @flags: xdp-related flags 8073 * 8074 * Set or clear a bpf program for a device 8075 */ 8076 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 8077 int fd, u32 flags) 8078 { 8079 const struct net_device_ops *ops = dev->netdev_ops; 8080 enum bpf_netdev_command query; 8081 struct bpf_prog *prog = NULL; 8082 bpf_op_t bpf_op, bpf_chk; 8083 bool offload; 8084 int err; 8085 8086 ASSERT_RTNL(); 8087 8088 offload = flags & XDP_FLAGS_HW_MODE; 8089 query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG; 8090 8091 bpf_op = bpf_chk = ops->ndo_bpf; 8092 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) { 8093 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode"); 8094 return -EOPNOTSUPP; 8095 } 8096 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE)) 8097 bpf_op = generic_xdp_install; 8098 if (bpf_op == bpf_chk) 8099 bpf_chk = generic_xdp_install; 8100 8101 if (fd >= 0) { 8102 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) { 8103 NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time"); 8104 return -EEXIST; 8105 } 8106 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && 8107 __dev_xdp_query(dev, bpf_op, query)) { 8108 NL_SET_ERR_MSG(extack, "XDP program already attached"); 8109 return -EBUSY; 8110 } 8111 8112 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 8113 bpf_op == ops->ndo_bpf); 8114 if (IS_ERR(prog)) 8115 return PTR_ERR(prog); 8116 8117 if (!offload && bpf_prog_is_dev_bound(prog->aux)) { 8118 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported"); 8119 bpf_prog_put(prog); 8120 return -EINVAL; 8121 } 8122 } 8123 8124 err = dev_xdp_install(dev, bpf_op, extack, flags, prog); 8125 if (err < 0 && prog) 8126 bpf_prog_put(prog); 8127 8128 return err; 8129 } 8130 8131 /** 8132 * dev_new_index - allocate an ifindex 8133 * @net: the applicable net namespace 8134 * 8135 * Returns a suitable unique value for a new device interface 8136 * number. The caller must hold the rtnl semaphore or the 8137 * dev_base_lock to be sure it remains unique. 8138 */ 8139 static int dev_new_index(struct net *net) 8140 { 8141 int ifindex = net->ifindex; 8142 8143 for (;;) { 8144 if (++ifindex <= 0) 8145 ifindex = 1; 8146 if (!__dev_get_by_index(net, ifindex)) 8147 return net->ifindex = ifindex; 8148 } 8149 } 8150 8151 /* Delayed registration/unregisteration */ 8152 static LIST_HEAD(net_todo_list); 8153 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 8154 8155 static void net_set_todo(struct net_device *dev) 8156 { 8157 list_add_tail(&dev->todo_list, &net_todo_list); 8158 dev_net(dev)->dev_unreg_count++; 8159 } 8160 8161 static void rollback_registered_many(struct list_head *head) 8162 { 8163 struct net_device *dev, *tmp; 8164 LIST_HEAD(close_head); 8165 8166 BUG_ON(dev_boot_phase); 8167 ASSERT_RTNL(); 8168 8169 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 8170 /* Some devices call without registering 8171 * for initialization unwind. Remove those 8172 * devices and proceed with the remaining. 8173 */ 8174 if (dev->reg_state == NETREG_UNINITIALIZED) { 8175 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 8176 dev->name, dev); 8177 8178 WARN_ON(1); 8179 list_del(&dev->unreg_list); 8180 continue; 8181 } 8182 dev->dismantle = true; 8183 BUG_ON(dev->reg_state != NETREG_REGISTERED); 8184 } 8185 8186 /* If device is running, close it first. */ 8187 list_for_each_entry(dev, head, unreg_list) 8188 list_add_tail(&dev->close_list, &close_head); 8189 dev_close_many(&close_head, true); 8190 8191 list_for_each_entry(dev, head, unreg_list) { 8192 /* And unlink it from device chain. */ 8193 unlist_netdevice(dev); 8194 8195 dev->reg_state = NETREG_UNREGISTERING; 8196 } 8197 flush_all_backlogs(); 8198 8199 synchronize_net(); 8200 8201 list_for_each_entry(dev, head, unreg_list) { 8202 struct sk_buff *skb = NULL; 8203 8204 /* Shutdown queueing discipline. */ 8205 dev_shutdown(dev); 8206 8207 dev_xdp_uninstall(dev); 8208 8209 /* Notify protocols, that we are about to destroy 8210 * this device. They should clean all the things. 8211 */ 8212 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8213 8214 if (!dev->rtnl_link_ops || 8215 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 8216 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 8217 GFP_KERNEL, NULL, 0); 8218 8219 /* 8220 * Flush the unicast and multicast chains 8221 */ 8222 dev_uc_flush(dev); 8223 dev_mc_flush(dev); 8224 8225 if (dev->netdev_ops->ndo_uninit) 8226 dev->netdev_ops->ndo_uninit(dev); 8227 8228 if (skb) 8229 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 8230 8231 /* Notifier chain MUST detach us all upper devices. */ 8232 WARN_ON(netdev_has_any_upper_dev(dev)); 8233 WARN_ON(netdev_has_any_lower_dev(dev)); 8234 8235 /* Remove entries from kobject tree */ 8236 netdev_unregister_kobject(dev); 8237 #ifdef CONFIG_XPS 8238 /* Remove XPS queueing entries */ 8239 netif_reset_xps_queues_gt(dev, 0); 8240 #endif 8241 } 8242 8243 synchronize_net(); 8244 8245 list_for_each_entry(dev, head, unreg_list) 8246 dev_put(dev); 8247 } 8248 8249 static void rollback_registered(struct net_device *dev) 8250 { 8251 LIST_HEAD(single); 8252 8253 list_add(&dev->unreg_list, &single); 8254 rollback_registered_many(&single); 8255 list_del(&single); 8256 } 8257 8258 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 8259 struct net_device *upper, netdev_features_t features) 8260 { 8261 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 8262 netdev_features_t feature; 8263 int feature_bit; 8264 8265 for_each_netdev_feature(upper_disables, feature_bit) { 8266 feature = __NETIF_F_BIT(feature_bit); 8267 if (!(upper->wanted_features & feature) 8268 && (features & feature)) { 8269 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 8270 &feature, upper->name); 8271 features &= ~feature; 8272 } 8273 } 8274 8275 return features; 8276 } 8277 8278 static void netdev_sync_lower_features(struct net_device *upper, 8279 struct net_device *lower, netdev_features_t features) 8280 { 8281 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 8282 netdev_features_t feature; 8283 int feature_bit; 8284 8285 for_each_netdev_feature(upper_disables, feature_bit) { 8286 feature = __NETIF_F_BIT(feature_bit); 8287 if (!(features & feature) && (lower->features & feature)) { 8288 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 8289 &feature, lower->name); 8290 lower->wanted_features &= ~feature; 8291 netdev_update_features(lower); 8292 8293 if (unlikely(lower->features & feature)) 8294 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 8295 &feature, lower->name); 8296 } 8297 } 8298 } 8299 8300 static netdev_features_t netdev_fix_features(struct net_device *dev, 8301 netdev_features_t features) 8302 { 8303 /* Fix illegal checksum combinations */ 8304 if ((features & NETIF_F_HW_CSUM) && 8305 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 8306 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 8307 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 8308 } 8309 8310 /* TSO requires that SG is present as well. */ 8311 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 8312 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 8313 features &= ~NETIF_F_ALL_TSO; 8314 } 8315 8316 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 8317 !(features & NETIF_F_IP_CSUM)) { 8318 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 8319 features &= ~NETIF_F_TSO; 8320 features &= ~NETIF_F_TSO_ECN; 8321 } 8322 8323 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 8324 !(features & NETIF_F_IPV6_CSUM)) { 8325 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 8326 features &= ~NETIF_F_TSO6; 8327 } 8328 8329 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 8330 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 8331 features &= ~NETIF_F_TSO_MANGLEID; 8332 8333 /* TSO ECN requires that TSO is present as well. */ 8334 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 8335 features &= ~NETIF_F_TSO_ECN; 8336 8337 /* Software GSO depends on SG. */ 8338 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 8339 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 8340 features &= ~NETIF_F_GSO; 8341 } 8342 8343 /* GSO partial features require GSO partial be set */ 8344 if ((features & dev->gso_partial_features) && 8345 !(features & NETIF_F_GSO_PARTIAL)) { 8346 netdev_dbg(dev, 8347 "Dropping partially supported GSO features since no GSO partial.\n"); 8348 features &= ~dev->gso_partial_features; 8349 } 8350 8351 if (!(features & NETIF_F_RXCSUM)) { 8352 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 8353 * successfully merged by hardware must also have the 8354 * checksum verified by hardware. If the user does not 8355 * want to enable RXCSUM, logically, we should disable GRO_HW. 8356 */ 8357 if (features & NETIF_F_GRO_HW) { 8358 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 8359 features &= ~NETIF_F_GRO_HW; 8360 } 8361 } 8362 8363 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 8364 if (features & NETIF_F_RXFCS) { 8365 if (features & NETIF_F_LRO) { 8366 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 8367 features &= ~NETIF_F_LRO; 8368 } 8369 8370 if (features & NETIF_F_GRO_HW) { 8371 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 8372 features &= ~NETIF_F_GRO_HW; 8373 } 8374 } 8375 8376 return features; 8377 } 8378 8379 int __netdev_update_features(struct net_device *dev) 8380 { 8381 struct net_device *upper, *lower; 8382 netdev_features_t features; 8383 struct list_head *iter; 8384 int err = -1; 8385 8386 ASSERT_RTNL(); 8387 8388 features = netdev_get_wanted_features(dev); 8389 8390 if (dev->netdev_ops->ndo_fix_features) 8391 features = dev->netdev_ops->ndo_fix_features(dev, features); 8392 8393 /* driver might be less strict about feature dependencies */ 8394 features = netdev_fix_features(dev, features); 8395 8396 /* some features can't be enabled if they're off an an upper device */ 8397 netdev_for_each_upper_dev_rcu(dev, upper, iter) 8398 features = netdev_sync_upper_features(dev, upper, features); 8399 8400 if (dev->features == features) 8401 goto sync_lower; 8402 8403 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 8404 &dev->features, &features); 8405 8406 if (dev->netdev_ops->ndo_set_features) 8407 err = dev->netdev_ops->ndo_set_features(dev, features); 8408 else 8409 err = 0; 8410 8411 if (unlikely(err < 0)) { 8412 netdev_err(dev, 8413 "set_features() failed (%d); wanted %pNF, left %pNF\n", 8414 err, &features, &dev->features); 8415 /* return non-0 since some features might have changed and 8416 * it's better to fire a spurious notification than miss it 8417 */ 8418 return -1; 8419 } 8420 8421 sync_lower: 8422 /* some features must be disabled on lower devices when disabled 8423 * on an upper device (think: bonding master or bridge) 8424 */ 8425 netdev_for_each_lower_dev(dev, lower, iter) 8426 netdev_sync_lower_features(dev, lower, features); 8427 8428 if (!err) { 8429 netdev_features_t diff = features ^ dev->features; 8430 8431 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 8432 /* udp_tunnel_{get,drop}_rx_info both need 8433 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 8434 * device, or they won't do anything. 8435 * Thus we need to update dev->features 8436 * *before* calling udp_tunnel_get_rx_info, 8437 * but *after* calling udp_tunnel_drop_rx_info. 8438 */ 8439 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 8440 dev->features = features; 8441 udp_tunnel_get_rx_info(dev); 8442 } else { 8443 udp_tunnel_drop_rx_info(dev); 8444 } 8445 } 8446 8447 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 8448 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 8449 dev->features = features; 8450 err |= vlan_get_rx_ctag_filter_info(dev); 8451 } else { 8452 vlan_drop_rx_ctag_filter_info(dev); 8453 } 8454 } 8455 8456 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 8457 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 8458 dev->features = features; 8459 err |= vlan_get_rx_stag_filter_info(dev); 8460 } else { 8461 vlan_drop_rx_stag_filter_info(dev); 8462 } 8463 } 8464 8465 dev->features = features; 8466 } 8467 8468 return err < 0 ? 0 : 1; 8469 } 8470 8471 /** 8472 * netdev_update_features - recalculate device features 8473 * @dev: the device to check 8474 * 8475 * Recalculate dev->features set and send notifications if it 8476 * has changed. Should be called after driver or hardware dependent 8477 * conditions might have changed that influence the features. 8478 */ 8479 void netdev_update_features(struct net_device *dev) 8480 { 8481 if (__netdev_update_features(dev)) 8482 netdev_features_change(dev); 8483 } 8484 EXPORT_SYMBOL(netdev_update_features); 8485 8486 /** 8487 * netdev_change_features - recalculate device features 8488 * @dev: the device to check 8489 * 8490 * Recalculate dev->features set and send notifications even 8491 * if they have not changed. Should be called instead of 8492 * netdev_update_features() if also dev->vlan_features might 8493 * have changed to allow the changes to be propagated to stacked 8494 * VLAN devices. 8495 */ 8496 void netdev_change_features(struct net_device *dev) 8497 { 8498 __netdev_update_features(dev); 8499 netdev_features_change(dev); 8500 } 8501 EXPORT_SYMBOL(netdev_change_features); 8502 8503 /** 8504 * netif_stacked_transfer_operstate - transfer operstate 8505 * @rootdev: the root or lower level device to transfer state from 8506 * @dev: the device to transfer operstate to 8507 * 8508 * Transfer operational state from root to device. This is normally 8509 * called when a stacking relationship exists between the root 8510 * device and the device(a leaf device). 8511 */ 8512 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 8513 struct net_device *dev) 8514 { 8515 if (rootdev->operstate == IF_OPER_DORMANT) 8516 netif_dormant_on(dev); 8517 else 8518 netif_dormant_off(dev); 8519 8520 if (netif_carrier_ok(rootdev)) 8521 netif_carrier_on(dev); 8522 else 8523 netif_carrier_off(dev); 8524 } 8525 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 8526 8527 static int netif_alloc_rx_queues(struct net_device *dev) 8528 { 8529 unsigned int i, count = dev->num_rx_queues; 8530 struct netdev_rx_queue *rx; 8531 size_t sz = count * sizeof(*rx); 8532 int err = 0; 8533 8534 BUG_ON(count < 1); 8535 8536 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8537 if (!rx) 8538 return -ENOMEM; 8539 8540 dev->_rx = rx; 8541 8542 for (i = 0; i < count; i++) { 8543 rx[i].dev = dev; 8544 8545 /* XDP RX-queue setup */ 8546 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i); 8547 if (err < 0) 8548 goto err_rxq_info; 8549 } 8550 return 0; 8551 8552 err_rxq_info: 8553 /* Rollback successful reg's and free other resources */ 8554 while (i--) 8555 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 8556 kvfree(dev->_rx); 8557 dev->_rx = NULL; 8558 return err; 8559 } 8560 8561 static void netif_free_rx_queues(struct net_device *dev) 8562 { 8563 unsigned int i, count = dev->num_rx_queues; 8564 8565 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 8566 if (!dev->_rx) 8567 return; 8568 8569 for (i = 0; i < count; i++) 8570 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 8571 8572 kvfree(dev->_rx); 8573 } 8574 8575 static void netdev_init_one_queue(struct net_device *dev, 8576 struct netdev_queue *queue, void *_unused) 8577 { 8578 /* Initialize queue lock */ 8579 spin_lock_init(&queue->_xmit_lock); 8580 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 8581 queue->xmit_lock_owner = -1; 8582 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 8583 queue->dev = dev; 8584 #ifdef CONFIG_BQL 8585 dql_init(&queue->dql, HZ); 8586 #endif 8587 } 8588 8589 static void netif_free_tx_queues(struct net_device *dev) 8590 { 8591 kvfree(dev->_tx); 8592 } 8593 8594 static int netif_alloc_netdev_queues(struct net_device *dev) 8595 { 8596 unsigned int count = dev->num_tx_queues; 8597 struct netdev_queue *tx; 8598 size_t sz = count * sizeof(*tx); 8599 8600 if (count < 1 || count > 0xffff) 8601 return -EINVAL; 8602 8603 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8604 if (!tx) 8605 return -ENOMEM; 8606 8607 dev->_tx = tx; 8608 8609 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 8610 spin_lock_init(&dev->tx_global_lock); 8611 8612 return 0; 8613 } 8614 8615 void netif_tx_stop_all_queues(struct net_device *dev) 8616 { 8617 unsigned int i; 8618 8619 for (i = 0; i < dev->num_tx_queues; i++) { 8620 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 8621 8622 netif_tx_stop_queue(txq); 8623 } 8624 } 8625 EXPORT_SYMBOL(netif_tx_stop_all_queues); 8626 8627 /** 8628 * register_netdevice - register a network device 8629 * @dev: device to register 8630 * 8631 * Take a completed network device structure and add it to the kernel 8632 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 8633 * chain. 0 is returned on success. A negative errno code is returned 8634 * on a failure to set up the device, or if the name is a duplicate. 8635 * 8636 * Callers must hold the rtnl semaphore. You may want 8637 * register_netdev() instead of this. 8638 * 8639 * BUGS: 8640 * The locking appears insufficient to guarantee two parallel registers 8641 * will not get the same name. 8642 */ 8643 8644 int register_netdevice(struct net_device *dev) 8645 { 8646 int ret; 8647 struct net *net = dev_net(dev); 8648 8649 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 8650 NETDEV_FEATURE_COUNT); 8651 BUG_ON(dev_boot_phase); 8652 ASSERT_RTNL(); 8653 8654 might_sleep(); 8655 8656 /* When net_device's are persistent, this will be fatal. */ 8657 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 8658 BUG_ON(!net); 8659 8660 spin_lock_init(&dev->addr_list_lock); 8661 netdev_set_addr_lockdep_class(dev); 8662 8663 ret = dev_get_valid_name(net, dev, dev->name); 8664 if (ret < 0) 8665 goto out; 8666 8667 /* Init, if this function is available */ 8668 if (dev->netdev_ops->ndo_init) { 8669 ret = dev->netdev_ops->ndo_init(dev); 8670 if (ret) { 8671 if (ret > 0) 8672 ret = -EIO; 8673 goto out; 8674 } 8675 } 8676 8677 if (((dev->hw_features | dev->features) & 8678 NETIF_F_HW_VLAN_CTAG_FILTER) && 8679 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 8680 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 8681 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 8682 ret = -EINVAL; 8683 goto err_uninit; 8684 } 8685 8686 ret = -EBUSY; 8687 if (!dev->ifindex) 8688 dev->ifindex = dev_new_index(net); 8689 else if (__dev_get_by_index(net, dev->ifindex)) 8690 goto err_uninit; 8691 8692 /* Transfer changeable features to wanted_features and enable 8693 * software offloads (GSO and GRO). 8694 */ 8695 dev->hw_features |= NETIF_F_SOFT_FEATURES; 8696 dev->features |= NETIF_F_SOFT_FEATURES; 8697 8698 if (dev->netdev_ops->ndo_udp_tunnel_add) { 8699 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 8700 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 8701 } 8702 8703 dev->wanted_features = dev->features & dev->hw_features; 8704 8705 if (!(dev->flags & IFF_LOOPBACK)) 8706 dev->hw_features |= NETIF_F_NOCACHE_COPY; 8707 8708 /* If IPv4 TCP segmentation offload is supported we should also 8709 * allow the device to enable segmenting the frame with the option 8710 * of ignoring a static IP ID value. This doesn't enable the 8711 * feature itself but allows the user to enable it later. 8712 */ 8713 if (dev->hw_features & NETIF_F_TSO) 8714 dev->hw_features |= NETIF_F_TSO_MANGLEID; 8715 if (dev->vlan_features & NETIF_F_TSO) 8716 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 8717 if (dev->mpls_features & NETIF_F_TSO) 8718 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 8719 if (dev->hw_enc_features & NETIF_F_TSO) 8720 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 8721 8722 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 8723 */ 8724 dev->vlan_features |= NETIF_F_HIGHDMA; 8725 8726 /* Make NETIF_F_SG inheritable to tunnel devices. 8727 */ 8728 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 8729 8730 /* Make NETIF_F_SG inheritable to MPLS. 8731 */ 8732 dev->mpls_features |= NETIF_F_SG; 8733 8734 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 8735 ret = notifier_to_errno(ret); 8736 if (ret) 8737 goto err_uninit; 8738 8739 ret = netdev_register_kobject(dev); 8740 if (ret) 8741 goto err_uninit; 8742 dev->reg_state = NETREG_REGISTERED; 8743 8744 __netdev_update_features(dev); 8745 8746 /* 8747 * Default initial state at registry is that the 8748 * device is present. 8749 */ 8750 8751 set_bit(__LINK_STATE_PRESENT, &dev->state); 8752 8753 linkwatch_init_dev(dev); 8754 8755 dev_init_scheduler(dev); 8756 dev_hold(dev); 8757 list_netdevice(dev); 8758 add_device_randomness(dev->dev_addr, dev->addr_len); 8759 8760 /* If the device has permanent device address, driver should 8761 * set dev_addr and also addr_assign_type should be set to 8762 * NET_ADDR_PERM (default value). 8763 */ 8764 if (dev->addr_assign_type == NET_ADDR_PERM) 8765 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 8766 8767 /* Notify protocols, that a new device appeared. */ 8768 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 8769 ret = notifier_to_errno(ret); 8770 if (ret) { 8771 rollback_registered(dev); 8772 dev->reg_state = NETREG_UNREGISTERED; 8773 } 8774 /* 8775 * Prevent userspace races by waiting until the network 8776 * device is fully setup before sending notifications. 8777 */ 8778 if (!dev->rtnl_link_ops || 8779 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 8780 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8781 8782 out: 8783 return ret; 8784 8785 err_uninit: 8786 if (dev->netdev_ops->ndo_uninit) 8787 dev->netdev_ops->ndo_uninit(dev); 8788 if (dev->priv_destructor) 8789 dev->priv_destructor(dev); 8790 goto out; 8791 } 8792 EXPORT_SYMBOL(register_netdevice); 8793 8794 /** 8795 * init_dummy_netdev - init a dummy network device for NAPI 8796 * @dev: device to init 8797 * 8798 * This takes a network device structure and initialize the minimum 8799 * amount of fields so it can be used to schedule NAPI polls without 8800 * registering a full blown interface. This is to be used by drivers 8801 * that need to tie several hardware interfaces to a single NAPI 8802 * poll scheduler due to HW limitations. 8803 */ 8804 int init_dummy_netdev(struct net_device *dev) 8805 { 8806 /* Clear everything. Note we don't initialize spinlocks 8807 * are they aren't supposed to be taken by any of the 8808 * NAPI code and this dummy netdev is supposed to be 8809 * only ever used for NAPI polls 8810 */ 8811 memset(dev, 0, sizeof(struct net_device)); 8812 8813 /* make sure we BUG if trying to hit standard 8814 * register/unregister code path 8815 */ 8816 dev->reg_state = NETREG_DUMMY; 8817 8818 /* NAPI wants this */ 8819 INIT_LIST_HEAD(&dev->napi_list); 8820 8821 /* a dummy interface is started by default */ 8822 set_bit(__LINK_STATE_PRESENT, &dev->state); 8823 set_bit(__LINK_STATE_START, &dev->state); 8824 8825 /* napi_busy_loop stats accounting wants this */ 8826 dev_net_set(dev, &init_net); 8827 8828 /* Note : We dont allocate pcpu_refcnt for dummy devices, 8829 * because users of this 'device' dont need to change 8830 * its refcount. 8831 */ 8832 8833 return 0; 8834 } 8835 EXPORT_SYMBOL_GPL(init_dummy_netdev); 8836 8837 8838 /** 8839 * register_netdev - register a network device 8840 * @dev: device to register 8841 * 8842 * Take a completed network device structure and add it to the kernel 8843 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 8844 * chain. 0 is returned on success. A negative errno code is returned 8845 * on a failure to set up the device, or if the name is a duplicate. 8846 * 8847 * This is a wrapper around register_netdevice that takes the rtnl semaphore 8848 * and expands the device name if you passed a format string to 8849 * alloc_netdev. 8850 */ 8851 int register_netdev(struct net_device *dev) 8852 { 8853 int err; 8854 8855 if (rtnl_lock_killable()) 8856 return -EINTR; 8857 err = register_netdevice(dev); 8858 rtnl_unlock(); 8859 return err; 8860 } 8861 EXPORT_SYMBOL(register_netdev); 8862 8863 int netdev_refcnt_read(const struct net_device *dev) 8864 { 8865 int i, refcnt = 0; 8866 8867 for_each_possible_cpu(i) 8868 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 8869 return refcnt; 8870 } 8871 EXPORT_SYMBOL(netdev_refcnt_read); 8872 8873 /** 8874 * netdev_wait_allrefs - wait until all references are gone. 8875 * @dev: target net_device 8876 * 8877 * This is called when unregistering network devices. 8878 * 8879 * Any protocol or device that holds a reference should register 8880 * for netdevice notification, and cleanup and put back the 8881 * reference if they receive an UNREGISTER event. 8882 * We can get stuck here if buggy protocols don't correctly 8883 * call dev_put. 8884 */ 8885 static void netdev_wait_allrefs(struct net_device *dev) 8886 { 8887 unsigned long rebroadcast_time, warning_time; 8888 int refcnt; 8889 8890 linkwatch_forget_dev(dev); 8891 8892 rebroadcast_time = warning_time = jiffies; 8893 refcnt = netdev_refcnt_read(dev); 8894 8895 while (refcnt != 0) { 8896 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 8897 rtnl_lock(); 8898 8899 /* Rebroadcast unregister notification */ 8900 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8901 8902 __rtnl_unlock(); 8903 rcu_barrier(); 8904 rtnl_lock(); 8905 8906 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 8907 &dev->state)) { 8908 /* We must not have linkwatch events 8909 * pending on unregister. If this 8910 * happens, we simply run the queue 8911 * unscheduled, resulting in a noop 8912 * for this device. 8913 */ 8914 linkwatch_run_queue(); 8915 } 8916 8917 __rtnl_unlock(); 8918 8919 rebroadcast_time = jiffies; 8920 } 8921 8922 msleep(250); 8923 8924 refcnt = netdev_refcnt_read(dev); 8925 8926 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) { 8927 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 8928 dev->name, refcnt); 8929 warning_time = jiffies; 8930 } 8931 } 8932 } 8933 8934 /* The sequence is: 8935 * 8936 * rtnl_lock(); 8937 * ... 8938 * register_netdevice(x1); 8939 * register_netdevice(x2); 8940 * ... 8941 * unregister_netdevice(y1); 8942 * unregister_netdevice(y2); 8943 * ... 8944 * rtnl_unlock(); 8945 * free_netdev(y1); 8946 * free_netdev(y2); 8947 * 8948 * We are invoked by rtnl_unlock(). 8949 * This allows us to deal with problems: 8950 * 1) We can delete sysfs objects which invoke hotplug 8951 * without deadlocking with linkwatch via keventd. 8952 * 2) Since we run with the RTNL semaphore not held, we can sleep 8953 * safely in order to wait for the netdev refcnt to drop to zero. 8954 * 8955 * We must not return until all unregister events added during 8956 * the interval the lock was held have been completed. 8957 */ 8958 void netdev_run_todo(void) 8959 { 8960 struct list_head list; 8961 8962 /* Snapshot list, allow later requests */ 8963 list_replace_init(&net_todo_list, &list); 8964 8965 __rtnl_unlock(); 8966 8967 8968 /* Wait for rcu callbacks to finish before next phase */ 8969 if (!list_empty(&list)) 8970 rcu_barrier(); 8971 8972 while (!list_empty(&list)) { 8973 struct net_device *dev 8974 = list_first_entry(&list, struct net_device, todo_list); 8975 list_del(&dev->todo_list); 8976 8977 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 8978 pr_err("network todo '%s' but state %d\n", 8979 dev->name, dev->reg_state); 8980 dump_stack(); 8981 continue; 8982 } 8983 8984 dev->reg_state = NETREG_UNREGISTERED; 8985 8986 netdev_wait_allrefs(dev); 8987 8988 /* paranoia */ 8989 BUG_ON(netdev_refcnt_read(dev)); 8990 BUG_ON(!list_empty(&dev->ptype_all)); 8991 BUG_ON(!list_empty(&dev->ptype_specific)); 8992 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 8993 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 8994 #if IS_ENABLED(CONFIG_DECNET) 8995 WARN_ON(dev->dn_ptr); 8996 #endif 8997 if (dev->priv_destructor) 8998 dev->priv_destructor(dev); 8999 if (dev->needs_free_netdev) 9000 free_netdev(dev); 9001 9002 /* Report a network device has been unregistered */ 9003 rtnl_lock(); 9004 dev_net(dev)->dev_unreg_count--; 9005 __rtnl_unlock(); 9006 wake_up(&netdev_unregistering_wq); 9007 9008 /* Free network device */ 9009 kobject_put(&dev->dev.kobj); 9010 } 9011 } 9012 9013 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 9014 * all the same fields in the same order as net_device_stats, with only 9015 * the type differing, but rtnl_link_stats64 may have additional fields 9016 * at the end for newer counters. 9017 */ 9018 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 9019 const struct net_device_stats *netdev_stats) 9020 { 9021 #if BITS_PER_LONG == 64 9022 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 9023 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 9024 /* zero out counters that only exist in rtnl_link_stats64 */ 9025 memset((char *)stats64 + sizeof(*netdev_stats), 0, 9026 sizeof(*stats64) - sizeof(*netdev_stats)); 9027 #else 9028 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 9029 const unsigned long *src = (const unsigned long *)netdev_stats; 9030 u64 *dst = (u64 *)stats64; 9031 9032 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 9033 for (i = 0; i < n; i++) 9034 dst[i] = src[i]; 9035 /* zero out counters that only exist in rtnl_link_stats64 */ 9036 memset((char *)stats64 + n * sizeof(u64), 0, 9037 sizeof(*stats64) - n * sizeof(u64)); 9038 #endif 9039 } 9040 EXPORT_SYMBOL(netdev_stats_to_stats64); 9041 9042 /** 9043 * dev_get_stats - get network device statistics 9044 * @dev: device to get statistics from 9045 * @storage: place to store stats 9046 * 9047 * Get network statistics from device. Return @storage. 9048 * The device driver may provide its own method by setting 9049 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 9050 * otherwise the internal statistics structure is used. 9051 */ 9052 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 9053 struct rtnl_link_stats64 *storage) 9054 { 9055 const struct net_device_ops *ops = dev->netdev_ops; 9056 9057 if (ops->ndo_get_stats64) { 9058 memset(storage, 0, sizeof(*storage)); 9059 ops->ndo_get_stats64(dev, storage); 9060 } else if (ops->ndo_get_stats) { 9061 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 9062 } else { 9063 netdev_stats_to_stats64(storage, &dev->stats); 9064 } 9065 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 9066 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 9067 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 9068 return storage; 9069 } 9070 EXPORT_SYMBOL(dev_get_stats); 9071 9072 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 9073 { 9074 struct netdev_queue *queue = dev_ingress_queue(dev); 9075 9076 #ifdef CONFIG_NET_CLS_ACT 9077 if (queue) 9078 return queue; 9079 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 9080 if (!queue) 9081 return NULL; 9082 netdev_init_one_queue(dev, queue, NULL); 9083 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 9084 queue->qdisc_sleeping = &noop_qdisc; 9085 rcu_assign_pointer(dev->ingress_queue, queue); 9086 #endif 9087 return queue; 9088 } 9089 9090 static const struct ethtool_ops default_ethtool_ops; 9091 9092 void netdev_set_default_ethtool_ops(struct net_device *dev, 9093 const struct ethtool_ops *ops) 9094 { 9095 if (dev->ethtool_ops == &default_ethtool_ops) 9096 dev->ethtool_ops = ops; 9097 } 9098 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 9099 9100 void netdev_freemem(struct net_device *dev) 9101 { 9102 char *addr = (char *)dev - dev->padded; 9103 9104 kvfree(addr); 9105 } 9106 9107 /** 9108 * alloc_netdev_mqs - allocate network device 9109 * @sizeof_priv: size of private data to allocate space for 9110 * @name: device name format string 9111 * @name_assign_type: origin of device name 9112 * @setup: callback to initialize device 9113 * @txqs: the number of TX subqueues to allocate 9114 * @rxqs: the number of RX subqueues to allocate 9115 * 9116 * Allocates a struct net_device with private data area for driver use 9117 * and performs basic initialization. Also allocates subqueue structs 9118 * for each queue on the device. 9119 */ 9120 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 9121 unsigned char name_assign_type, 9122 void (*setup)(struct net_device *), 9123 unsigned int txqs, unsigned int rxqs) 9124 { 9125 struct net_device *dev; 9126 unsigned int alloc_size; 9127 struct net_device *p; 9128 9129 BUG_ON(strlen(name) >= sizeof(dev->name)); 9130 9131 if (txqs < 1) { 9132 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 9133 return NULL; 9134 } 9135 9136 if (rxqs < 1) { 9137 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 9138 return NULL; 9139 } 9140 9141 alloc_size = sizeof(struct net_device); 9142 if (sizeof_priv) { 9143 /* ensure 32-byte alignment of private area */ 9144 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 9145 alloc_size += sizeof_priv; 9146 } 9147 /* ensure 32-byte alignment of whole construct */ 9148 alloc_size += NETDEV_ALIGN - 1; 9149 9150 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9151 if (!p) 9152 return NULL; 9153 9154 dev = PTR_ALIGN(p, NETDEV_ALIGN); 9155 dev->padded = (char *)dev - (char *)p; 9156 9157 dev->pcpu_refcnt = alloc_percpu(int); 9158 if (!dev->pcpu_refcnt) 9159 goto free_dev; 9160 9161 if (dev_addr_init(dev)) 9162 goto free_pcpu; 9163 9164 dev_mc_init(dev); 9165 dev_uc_init(dev); 9166 9167 dev_net_set(dev, &init_net); 9168 9169 dev->gso_max_size = GSO_MAX_SIZE; 9170 dev->gso_max_segs = GSO_MAX_SEGS; 9171 9172 INIT_LIST_HEAD(&dev->napi_list); 9173 INIT_LIST_HEAD(&dev->unreg_list); 9174 INIT_LIST_HEAD(&dev->close_list); 9175 INIT_LIST_HEAD(&dev->link_watch_list); 9176 INIT_LIST_HEAD(&dev->adj_list.upper); 9177 INIT_LIST_HEAD(&dev->adj_list.lower); 9178 INIT_LIST_HEAD(&dev->ptype_all); 9179 INIT_LIST_HEAD(&dev->ptype_specific); 9180 #ifdef CONFIG_NET_SCHED 9181 hash_init(dev->qdisc_hash); 9182 #endif 9183 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 9184 setup(dev); 9185 9186 if (!dev->tx_queue_len) { 9187 dev->priv_flags |= IFF_NO_QUEUE; 9188 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 9189 } 9190 9191 dev->num_tx_queues = txqs; 9192 dev->real_num_tx_queues = txqs; 9193 if (netif_alloc_netdev_queues(dev)) 9194 goto free_all; 9195 9196 dev->num_rx_queues = rxqs; 9197 dev->real_num_rx_queues = rxqs; 9198 if (netif_alloc_rx_queues(dev)) 9199 goto free_all; 9200 9201 strcpy(dev->name, name); 9202 dev->name_assign_type = name_assign_type; 9203 dev->group = INIT_NETDEV_GROUP; 9204 if (!dev->ethtool_ops) 9205 dev->ethtool_ops = &default_ethtool_ops; 9206 9207 nf_hook_ingress_init(dev); 9208 9209 return dev; 9210 9211 free_all: 9212 free_netdev(dev); 9213 return NULL; 9214 9215 free_pcpu: 9216 free_percpu(dev->pcpu_refcnt); 9217 free_dev: 9218 netdev_freemem(dev); 9219 return NULL; 9220 } 9221 EXPORT_SYMBOL(alloc_netdev_mqs); 9222 9223 /** 9224 * free_netdev - free network device 9225 * @dev: device 9226 * 9227 * This function does the last stage of destroying an allocated device 9228 * interface. The reference to the device object is released. If this 9229 * is the last reference then it will be freed.Must be called in process 9230 * context. 9231 */ 9232 void free_netdev(struct net_device *dev) 9233 { 9234 struct napi_struct *p, *n; 9235 9236 might_sleep(); 9237 netif_free_tx_queues(dev); 9238 netif_free_rx_queues(dev); 9239 9240 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 9241 9242 /* Flush device addresses */ 9243 dev_addr_flush(dev); 9244 9245 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 9246 netif_napi_del(p); 9247 9248 free_percpu(dev->pcpu_refcnt); 9249 dev->pcpu_refcnt = NULL; 9250 9251 /* Compatibility with error handling in drivers */ 9252 if (dev->reg_state == NETREG_UNINITIALIZED) { 9253 netdev_freemem(dev); 9254 return; 9255 } 9256 9257 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 9258 dev->reg_state = NETREG_RELEASED; 9259 9260 /* will free via device release */ 9261 put_device(&dev->dev); 9262 } 9263 EXPORT_SYMBOL(free_netdev); 9264 9265 /** 9266 * synchronize_net - Synchronize with packet receive processing 9267 * 9268 * Wait for packets currently being received to be done. 9269 * Does not block later packets from starting. 9270 */ 9271 void synchronize_net(void) 9272 { 9273 might_sleep(); 9274 if (rtnl_is_locked()) 9275 synchronize_rcu_expedited(); 9276 else 9277 synchronize_rcu(); 9278 } 9279 EXPORT_SYMBOL(synchronize_net); 9280 9281 /** 9282 * unregister_netdevice_queue - remove device from the kernel 9283 * @dev: device 9284 * @head: list 9285 * 9286 * This function shuts down a device interface and removes it 9287 * from the kernel tables. 9288 * If head not NULL, device is queued to be unregistered later. 9289 * 9290 * Callers must hold the rtnl semaphore. You may want 9291 * unregister_netdev() instead of this. 9292 */ 9293 9294 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 9295 { 9296 ASSERT_RTNL(); 9297 9298 if (head) { 9299 list_move_tail(&dev->unreg_list, head); 9300 } else { 9301 rollback_registered(dev); 9302 /* Finish processing unregister after unlock */ 9303 net_set_todo(dev); 9304 } 9305 } 9306 EXPORT_SYMBOL(unregister_netdevice_queue); 9307 9308 /** 9309 * unregister_netdevice_many - unregister many devices 9310 * @head: list of devices 9311 * 9312 * Note: As most callers use a stack allocated list_head, 9313 * we force a list_del() to make sure stack wont be corrupted later. 9314 */ 9315 void unregister_netdevice_many(struct list_head *head) 9316 { 9317 struct net_device *dev; 9318 9319 if (!list_empty(head)) { 9320 rollback_registered_many(head); 9321 list_for_each_entry(dev, head, unreg_list) 9322 net_set_todo(dev); 9323 list_del(head); 9324 } 9325 } 9326 EXPORT_SYMBOL(unregister_netdevice_many); 9327 9328 /** 9329 * unregister_netdev - remove device from the kernel 9330 * @dev: device 9331 * 9332 * This function shuts down a device interface and removes it 9333 * from the kernel tables. 9334 * 9335 * This is just a wrapper for unregister_netdevice that takes 9336 * the rtnl semaphore. In general you want to use this and not 9337 * unregister_netdevice. 9338 */ 9339 void unregister_netdev(struct net_device *dev) 9340 { 9341 rtnl_lock(); 9342 unregister_netdevice(dev); 9343 rtnl_unlock(); 9344 } 9345 EXPORT_SYMBOL(unregister_netdev); 9346 9347 /** 9348 * dev_change_net_namespace - move device to different nethost namespace 9349 * @dev: device 9350 * @net: network namespace 9351 * @pat: If not NULL name pattern to try if the current device name 9352 * is already taken in the destination network namespace. 9353 * 9354 * This function shuts down a device interface and moves it 9355 * to a new network namespace. On success 0 is returned, on 9356 * a failure a netagive errno code is returned. 9357 * 9358 * Callers must hold the rtnl semaphore. 9359 */ 9360 9361 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 9362 { 9363 int err, new_nsid, new_ifindex; 9364 9365 ASSERT_RTNL(); 9366 9367 /* Don't allow namespace local devices to be moved. */ 9368 err = -EINVAL; 9369 if (dev->features & NETIF_F_NETNS_LOCAL) 9370 goto out; 9371 9372 /* Ensure the device has been registrered */ 9373 if (dev->reg_state != NETREG_REGISTERED) 9374 goto out; 9375 9376 /* Get out if there is nothing todo */ 9377 err = 0; 9378 if (net_eq(dev_net(dev), net)) 9379 goto out; 9380 9381 /* Pick the destination device name, and ensure 9382 * we can use it in the destination network namespace. 9383 */ 9384 err = -EEXIST; 9385 if (__dev_get_by_name(net, dev->name)) { 9386 /* We get here if we can't use the current device name */ 9387 if (!pat) 9388 goto out; 9389 err = dev_get_valid_name(net, dev, pat); 9390 if (err < 0) 9391 goto out; 9392 } 9393 9394 /* 9395 * And now a mini version of register_netdevice unregister_netdevice. 9396 */ 9397 9398 /* If device is running close it first. */ 9399 dev_close(dev); 9400 9401 /* And unlink it from device chain */ 9402 unlist_netdevice(dev); 9403 9404 synchronize_net(); 9405 9406 /* Shutdown queueing discipline. */ 9407 dev_shutdown(dev); 9408 9409 /* Notify protocols, that we are about to destroy 9410 * this device. They should clean all the things. 9411 * 9412 * Note that dev->reg_state stays at NETREG_REGISTERED. 9413 * This is wanted because this way 8021q and macvlan know 9414 * the device is just moving and can keep their slaves up. 9415 */ 9416 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 9417 rcu_barrier(); 9418 9419 new_nsid = peernet2id_alloc(dev_net(dev), net); 9420 /* If there is an ifindex conflict assign a new one */ 9421 if (__dev_get_by_index(net, dev->ifindex)) 9422 new_ifindex = dev_new_index(net); 9423 else 9424 new_ifindex = dev->ifindex; 9425 9426 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 9427 new_ifindex); 9428 9429 /* 9430 * Flush the unicast and multicast chains 9431 */ 9432 dev_uc_flush(dev); 9433 dev_mc_flush(dev); 9434 9435 /* Send a netdev-removed uevent to the old namespace */ 9436 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 9437 netdev_adjacent_del_links(dev); 9438 9439 /* Actually switch the network namespace */ 9440 dev_net_set(dev, net); 9441 dev->ifindex = new_ifindex; 9442 9443 /* Send a netdev-add uevent to the new namespace */ 9444 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 9445 netdev_adjacent_add_links(dev); 9446 9447 /* Fixup kobjects */ 9448 err = device_rename(&dev->dev, dev->name); 9449 WARN_ON(err); 9450 9451 /* Add the device back in the hashes */ 9452 list_netdevice(dev); 9453 9454 /* Notify protocols, that a new device appeared. */ 9455 call_netdevice_notifiers(NETDEV_REGISTER, dev); 9456 9457 /* 9458 * Prevent userspace races by waiting until the network 9459 * device is fully setup before sending notifications. 9460 */ 9461 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 9462 9463 synchronize_net(); 9464 err = 0; 9465 out: 9466 return err; 9467 } 9468 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 9469 9470 static int dev_cpu_dead(unsigned int oldcpu) 9471 { 9472 struct sk_buff **list_skb; 9473 struct sk_buff *skb; 9474 unsigned int cpu; 9475 struct softnet_data *sd, *oldsd, *remsd = NULL; 9476 9477 local_irq_disable(); 9478 cpu = smp_processor_id(); 9479 sd = &per_cpu(softnet_data, cpu); 9480 oldsd = &per_cpu(softnet_data, oldcpu); 9481 9482 /* Find end of our completion_queue. */ 9483 list_skb = &sd->completion_queue; 9484 while (*list_skb) 9485 list_skb = &(*list_skb)->next; 9486 /* Append completion queue from offline CPU. */ 9487 *list_skb = oldsd->completion_queue; 9488 oldsd->completion_queue = NULL; 9489 9490 /* Append output queue from offline CPU. */ 9491 if (oldsd->output_queue) { 9492 *sd->output_queue_tailp = oldsd->output_queue; 9493 sd->output_queue_tailp = oldsd->output_queue_tailp; 9494 oldsd->output_queue = NULL; 9495 oldsd->output_queue_tailp = &oldsd->output_queue; 9496 } 9497 /* Append NAPI poll list from offline CPU, with one exception : 9498 * process_backlog() must be called by cpu owning percpu backlog. 9499 * We properly handle process_queue & input_pkt_queue later. 9500 */ 9501 while (!list_empty(&oldsd->poll_list)) { 9502 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 9503 struct napi_struct, 9504 poll_list); 9505 9506 list_del_init(&napi->poll_list); 9507 if (napi->poll == process_backlog) 9508 napi->state = 0; 9509 else 9510 ____napi_schedule(sd, napi); 9511 } 9512 9513 raise_softirq_irqoff(NET_TX_SOFTIRQ); 9514 local_irq_enable(); 9515 9516 #ifdef CONFIG_RPS 9517 remsd = oldsd->rps_ipi_list; 9518 oldsd->rps_ipi_list = NULL; 9519 #endif 9520 /* send out pending IPI's on offline CPU */ 9521 net_rps_send_ipi(remsd); 9522 9523 /* Process offline CPU's input_pkt_queue */ 9524 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 9525 netif_rx_ni(skb); 9526 input_queue_head_incr(oldsd); 9527 } 9528 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 9529 netif_rx_ni(skb); 9530 input_queue_head_incr(oldsd); 9531 } 9532 9533 return 0; 9534 } 9535 9536 /** 9537 * netdev_increment_features - increment feature set by one 9538 * @all: current feature set 9539 * @one: new feature set 9540 * @mask: mask feature set 9541 * 9542 * Computes a new feature set after adding a device with feature set 9543 * @one to the master device with current feature set @all. Will not 9544 * enable anything that is off in @mask. Returns the new feature set. 9545 */ 9546 netdev_features_t netdev_increment_features(netdev_features_t all, 9547 netdev_features_t one, netdev_features_t mask) 9548 { 9549 if (mask & NETIF_F_HW_CSUM) 9550 mask |= NETIF_F_CSUM_MASK; 9551 mask |= NETIF_F_VLAN_CHALLENGED; 9552 9553 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 9554 all &= one | ~NETIF_F_ALL_FOR_ALL; 9555 9556 /* If one device supports hw checksumming, set for all. */ 9557 if (all & NETIF_F_HW_CSUM) 9558 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 9559 9560 return all; 9561 } 9562 EXPORT_SYMBOL(netdev_increment_features); 9563 9564 static struct hlist_head * __net_init netdev_create_hash(void) 9565 { 9566 int i; 9567 struct hlist_head *hash; 9568 9569 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 9570 if (hash != NULL) 9571 for (i = 0; i < NETDEV_HASHENTRIES; i++) 9572 INIT_HLIST_HEAD(&hash[i]); 9573 9574 return hash; 9575 } 9576 9577 /* Initialize per network namespace state */ 9578 static int __net_init netdev_init(struct net *net) 9579 { 9580 BUILD_BUG_ON(GRO_HASH_BUCKETS > 9581 8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask)); 9582 9583 if (net != &init_net) 9584 INIT_LIST_HEAD(&net->dev_base_head); 9585 9586 net->dev_name_head = netdev_create_hash(); 9587 if (net->dev_name_head == NULL) 9588 goto err_name; 9589 9590 net->dev_index_head = netdev_create_hash(); 9591 if (net->dev_index_head == NULL) 9592 goto err_idx; 9593 9594 return 0; 9595 9596 err_idx: 9597 kfree(net->dev_name_head); 9598 err_name: 9599 return -ENOMEM; 9600 } 9601 9602 /** 9603 * netdev_drivername - network driver for the device 9604 * @dev: network device 9605 * 9606 * Determine network driver for device. 9607 */ 9608 const char *netdev_drivername(const struct net_device *dev) 9609 { 9610 const struct device_driver *driver; 9611 const struct device *parent; 9612 const char *empty = ""; 9613 9614 parent = dev->dev.parent; 9615 if (!parent) 9616 return empty; 9617 9618 driver = parent->driver; 9619 if (driver && driver->name) 9620 return driver->name; 9621 return empty; 9622 } 9623 9624 static void __netdev_printk(const char *level, const struct net_device *dev, 9625 struct va_format *vaf) 9626 { 9627 if (dev && dev->dev.parent) { 9628 dev_printk_emit(level[1] - '0', 9629 dev->dev.parent, 9630 "%s %s %s%s: %pV", 9631 dev_driver_string(dev->dev.parent), 9632 dev_name(dev->dev.parent), 9633 netdev_name(dev), netdev_reg_state(dev), 9634 vaf); 9635 } else if (dev) { 9636 printk("%s%s%s: %pV", 9637 level, netdev_name(dev), netdev_reg_state(dev), vaf); 9638 } else { 9639 printk("%s(NULL net_device): %pV", level, vaf); 9640 } 9641 } 9642 9643 void netdev_printk(const char *level, const struct net_device *dev, 9644 const char *format, ...) 9645 { 9646 struct va_format vaf; 9647 va_list args; 9648 9649 va_start(args, format); 9650 9651 vaf.fmt = format; 9652 vaf.va = &args; 9653 9654 __netdev_printk(level, dev, &vaf); 9655 9656 va_end(args); 9657 } 9658 EXPORT_SYMBOL(netdev_printk); 9659 9660 #define define_netdev_printk_level(func, level) \ 9661 void func(const struct net_device *dev, const char *fmt, ...) \ 9662 { \ 9663 struct va_format vaf; \ 9664 va_list args; \ 9665 \ 9666 va_start(args, fmt); \ 9667 \ 9668 vaf.fmt = fmt; \ 9669 vaf.va = &args; \ 9670 \ 9671 __netdev_printk(level, dev, &vaf); \ 9672 \ 9673 va_end(args); \ 9674 } \ 9675 EXPORT_SYMBOL(func); 9676 9677 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 9678 define_netdev_printk_level(netdev_alert, KERN_ALERT); 9679 define_netdev_printk_level(netdev_crit, KERN_CRIT); 9680 define_netdev_printk_level(netdev_err, KERN_ERR); 9681 define_netdev_printk_level(netdev_warn, KERN_WARNING); 9682 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 9683 define_netdev_printk_level(netdev_info, KERN_INFO); 9684 9685 static void __net_exit netdev_exit(struct net *net) 9686 { 9687 kfree(net->dev_name_head); 9688 kfree(net->dev_index_head); 9689 if (net != &init_net) 9690 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 9691 } 9692 9693 static struct pernet_operations __net_initdata netdev_net_ops = { 9694 .init = netdev_init, 9695 .exit = netdev_exit, 9696 }; 9697 9698 static void __net_exit default_device_exit(struct net *net) 9699 { 9700 struct net_device *dev, *aux; 9701 /* 9702 * Push all migratable network devices back to the 9703 * initial network namespace 9704 */ 9705 rtnl_lock(); 9706 for_each_netdev_safe(net, dev, aux) { 9707 int err; 9708 char fb_name[IFNAMSIZ]; 9709 9710 /* Ignore unmoveable devices (i.e. loopback) */ 9711 if (dev->features & NETIF_F_NETNS_LOCAL) 9712 continue; 9713 9714 /* Leave virtual devices for the generic cleanup */ 9715 if (dev->rtnl_link_ops) 9716 continue; 9717 9718 /* Push remaining network devices to init_net */ 9719 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 9720 err = dev_change_net_namespace(dev, &init_net, fb_name); 9721 if (err) { 9722 pr_emerg("%s: failed to move %s to init_net: %d\n", 9723 __func__, dev->name, err); 9724 BUG(); 9725 } 9726 } 9727 rtnl_unlock(); 9728 } 9729 9730 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 9731 { 9732 /* Return with the rtnl_lock held when there are no network 9733 * devices unregistering in any network namespace in net_list. 9734 */ 9735 struct net *net; 9736 bool unregistering; 9737 DEFINE_WAIT_FUNC(wait, woken_wake_function); 9738 9739 add_wait_queue(&netdev_unregistering_wq, &wait); 9740 for (;;) { 9741 unregistering = false; 9742 rtnl_lock(); 9743 list_for_each_entry(net, net_list, exit_list) { 9744 if (net->dev_unreg_count > 0) { 9745 unregistering = true; 9746 break; 9747 } 9748 } 9749 if (!unregistering) 9750 break; 9751 __rtnl_unlock(); 9752 9753 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 9754 } 9755 remove_wait_queue(&netdev_unregistering_wq, &wait); 9756 } 9757 9758 static void __net_exit default_device_exit_batch(struct list_head *net_list) 9759 { 9760 /* At exit all network devices most be removed from a network 9761 * namespace. Do this in the reverse order of registration. 9762 * Do this across as many network namespaces as possible to 9763 * improve batching efficiency. 9764 */ 9765 struct net_device *dev; 9766 struct net *net; 9767 LIST_HEAD(dev_kill_list); 9768 9769 /* To prevent network device cleanup code from dereferencing 9770 * loopback devices or network devices that have been freed 9771 * wait here for all pending unregistrations to complete, 9772 * before unregistring the loopback device and allowing the 9773 * network namespace be freed. 9774 * 9775 * The netdev todo list containing all network devices 9776 * unregistrations that happen in default_device_exit_batch 9777 * will run in the rtnl_unlock() at the end of 9778 * default_device_exit_batch. 9779 */ 9780 rtnl_lock_unregistering(net_list); 9781 list_for_each_entry(net, net_list, exit_list) { 9782 for_each_netdev_reverse(net, dev) { 9783 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 9784 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 9785 else 9786 unregister_netdevice_queue(dev, &dev_kill_list); 9787 } 9788 } 9789 unregister_netdevice_many(&dev_kill_list); 9790 rtnl_unlock(); 9791 } 9792 9793 static struct pernet_operations __net_initdata default_device_ops = { 9794 .exit = default_device_exit, 9795 .exit_batch = default_device_exit_batch, 9796 }; 9797 9798 /* 9799 * Initialize the DEV module. At boot time this walks the device list and 9800 * unhooks any devices that fail to initialise (normally hardware not 9801 * present) and leaves us with a valid list of present and active devices. 9802 * 9803 */ 9804 9805 /* 9806 * This is called single threaded during boot, so no need 9807 * to take the rtnl semaphore. 9808 */ 9809 static int __init net_dev_init(void) 9810 { 9811 int i, rc = -ENOMEM; 9812 9813 BUG_ON(!dev_boot_phase); 9814 9815 if (dev_proc_init()) 9816 goto out; 9817 9818 if (netdev_kobject_init()) 9819 goto out; 9820 9821 INIT_LIST_HEAD(&ptype_all); 9822 for (i = 0; i < PTYPE_HASH_SIZE; i++) 9823 INIT_LIST_HEAD(&ptype_base[i]); 9824 9825 INIT_LIST_HEAD(&offload_base); 9826 9827 if (register_pernet_subsys(&netdev_net_ops)) 9828 goto out; 9829 9830 /* 9831 * Initialise the packet receive queues. 9832 */ 9833 9834 for_each_possible_cpu(i) { 9835 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 9836 struct softnet_data *sd = &per_cpu(softnet_data, i); 9837 9838 INIT_WORK(flush, flush_backlog); 9839 9840 skb_queue_head_init(&sd->input_pkt_queue); 9841 skb_queue_head_init(&sd->process_queue); 9842 #ifdef CONFIG_XFRM_OFFLOAD 9843 skb_queue_head_init(&sd->xfrm_backlog); 9844 #endif 9845 INIT_LIST_HEAD(&sd->poll_list); 9846 sd->output_queue_tailp = &sd->output_queue; 9847 #ifdef CONFIG_RPS 9848 sd->csd.func = rps_trigger_softirq; 9849 sd->csd.info = sd; 9850 sd->cpu = i; 9851 #endif 9852 9853 init_gro_hash(&sd->backlog); 9854 sd->backlog.poll = process_backlog; 9855 sd->backlog.weight = weight_p; 9856 } 9857 9858 dev_boot_phase = 0; 9859 9860 /* The loopback device is special if any other network devices 9861 * is present in a network namespace the loopback device must 9862 * be present. Since we now dynamically allocate and free the 9863 * loopback device ensure this invariant is maintained by 9864 * keeping the loopback device as the first device on the 9865 * list of network devices. Ensuring the loopback devices 9866 * is the first device that appears and the last network device 9867 * that disappears. 9868 */ 9869 if (register_pernet_device(&loopback_net_ops)) 9870 goto out; 9871 9872 if (register_pernet_device(&default_device_ops)) 9873 goto out; 9874 9875 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 9876 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 9877 9878 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 9879 NULL, dev_cpu_dead); 9880 WARN_ON(rc < 0); 9881 rc = 0; 9882 out: 9883 return rc; 9884 } 9885 9886 subsys_initcall(net_dev_init); 9887