1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/stat.h> 101 #include <net/dst.h> 102 #include <net/pkt_sched.h> 103 #include <net/checksum.h> 104 #include <net/xfrm.h> 105 #include <linux/highmem.h> 106 #include <linux/init.h> 107 #include <linux/module.h> 108 #include <linux/netpoll.h> 109 #include <linux/rcupdate.h> 110 #include <linux/delay.h> 111 #include <net/iw_handler.h> 112 #include <asm/current.h> 113 #include <linux/audit.h> 114 #include <linux/dmaengine.h> 115 #include <linux/err.h> 116 #include <linux/ctype.h> 117 #include <linux/if_arp.h> 118 #include <linux/if_vlan.h> 119 #include <linux/ip.h> 120 #include <net/ip.h> 121 #include <linux/ipv6.h> 122 #include <linux/in.h> 123 #include <linux/jhash.h> 124 #include <linux/random.h> 125 #include <trace/events/napi.h> 126 #include <trace/events/net.h> 127 #include <trace/events/skb.h> 128 #include <linux/pci.h> 129 #include <linux/inetdevice.h> 130 #include <linux/cpu_rmap.h> 131 #include <linux/static_key.h> 132 #include <linux/hashtable.h> 133 #include <linux/vmalloc.h> 134 #include <linux/if_macvlan.h> 135 #include <linux/errqueue.h> 136 137 #include "net-sysfs.h" 138 139 /* Instead of increasing this, you should create a hash table. */ 140 #define MAX_GRO_SKBS 8 141 142 /* This should be increased if a protocol with a bigger head is added. */ 143 #define GRO_MAX_HEAD (MAX_HEADER + 128) 144 145 static DEFINE_SPINLOCK(ptype_lock); 146 static DEFINE_SPINLOCK(offload_lock); 147 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 148 struct list_head ptype_all __read_mostly; /* Taps */ 149 static struct list_head offload_base __read_mostly; 150 151 static int netif_rx_internal(struct sk_buff *skb); 152 static int call_netdevice_notifiers_info(unsigned long val, 153 struct net_device *dev, 154 struct netdev_notifier_info *info); 155 156 /* 157 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 158 * semaphore. 159 * 160 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 161 * 162 * Writers must hold the rtnl semaphore while they loop through the 163 * dev_base_head list, and hold dev_base_lock for writing when they do the 164 * actual updates. This allows pure readers to access the list even 165 * while a writer is preparing to update it. 166 * 167 * To put it another way, dev_base_lock is held for writing only to 168 * protect against pure readers; the rtnl semaphore provides the 169 * protection against other writers. 170 * 171 * See, for example usages, register_netdevice() and 172 * unregister_netdevice(), which must be called with the rtnl 173 * semaphore held. 174 */ 175 DEFINE_RWLOCK(dev_base_lock); 176 EXPORT_SYMBOL(dev_base_lock); 177 178 /* protects napi_hash addition/deletion and napi_gen_id */ 179 static DEFINE_SPINLOCK(napi_hash_lock); 180 181 static unsigned int napi_gen_id; 182 static DEFINE_HASHTABLE(napi_hash, 8); 183 184 static seqcount_t devnet_rename_seq; 185 186 static inline void dev_base_seq_inc(struct net *net) 187 { 188 while (++net->dev_base_seq == 0); 189 } 190 191 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 192 { 193 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 194 195 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 196 } 197 198 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 199 { 200 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 201 } 202 203 static inline void rps_lock(struct softnet_data *sd) 204 { 205 #ifdef CONFIG_RPS 206 spin_lock(&sd->input_pkt_queue.lock); 207 #endif 208 } 209 210 static inline void rps_unlock(struct softnet_data *sd) 211 { 212 #ifdef CONFIG_RPS 213 spin_unlock(&sd->input_pkt_queue.lock); 214 #endif 215 } 216 217 /* Device list insertion */ 218 static void list_netdevice(struct net_device *dev) 219 { 220 struct net *net = dev_net(dev); 221 222 ASSERT_RTNL(); 223 224 write_lock_bh(&dev_base_lock); 225 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 226 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 227 hlist_add_head_rcu(&dev->index_hlist, 228 dev_index_hash(net, dev->ifindex)); 229 write_unlock_bh(&dev_base_lock); 230 231 dev_base_seq_inc(net); 232 } 233 234 /* Device list removal 235 * caller must respect a RCU grace period before freeing/reusing dev 236 */ 237 static void unlist_netdevice(struct net_device *dev) 238 { 239 ASSERT_RTNL(); 240 241 /* Unlink dev from the device chain */ 242 write_lock_bh(&dev_base_lock); 243 list_del_rcu(&dev->dev_list); 244 hlist_del_rcu(&dev->name_hlist); 245 hlist_del_rcu(&dev->index_hlist); 246 write_unlock_bh(&dev_base_lock); 247 248 dev_base_seq_inc(dev_net(dev)); 249 } 250 251 /* 252 * Our notifier list 253 */ 254 255 static RAW_NOTIFIER_HEAD(netdev_chain); 256 257 /* 258 * Device drivers call our routines to queue packets here. We empty the 259 * queue in the local softnet handler. 260 */ 261 262 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 263 EXPORT_PER_CPU_SYMBOL(softnet_data); 264 265 #ifdef CONFIG_LOCKDEP 266 /* 267 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 268 * according to dev->type 269 */ 270 static const unsigned short netdev_lock_type[] = 271 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 272 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 273 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 274 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 275 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 276 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 277 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 278 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 279 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 280 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 281 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 282 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 283 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 284 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 285 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 286 287 static const char *const netdev_lock_name[] = 288 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 289 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 290 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 291 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 292 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 293 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 294 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 295 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 296 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 297 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 298 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 299 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 300 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 301 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 302 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 303 304 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 305 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 306 307 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 308 { 309 int i; 310 311 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 312 if (netdev_lock_type[i] == dev_type) 313 return i; 314 /* the last key is used by default */ 315 return ARRAY_SIZE(netdev_lock_type) - 1; 316 } 317 318 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 319 unsigned short dev_type) 320 { 321 int i; 322 323 i = netdev_lock_pos(dev_type); 324 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 325 netdev_lock_name[i]); 326 } 327 328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 329 { 330 int i; 331 332 i = netdev_lock_pos(dev->type); 333 lockdep_set_class_and_name(&dev->addr_list_lock, 334 &netdev_addr_lock_key[i], 335 netdev_lock_name[i]); 336 } 337 #else 338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 339 unsigned short dev_type) 340 { 341 } 342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 343 { 344 } 345 #endif 346 347 /******************************************************************************* 348 349 Protocol management and registration routines 350 351 *******************************************************************************/ 352 353 /* 354 * Add a protocol ID to the list. Now that the input handler is 355 * smarter we can dispense with all the messy stuff that used to be 356 * here. 357 * 358 * BEWARE!!! Protocol handlers, mangling input packets, 359 * MUST BE last in hash buckets and checking protocol handlers 360 * MUST start from promiscuous ptype_all chain in net_bh. 361 * It is true now, do not change it. 362 * Explanation follows: if protocol handler, mangling packet, will 363 * be the first on list, it is not able to sense, that packet 364 * is cloned and should be copied-on-write, so that it will 365 * change it and subsequent readers will get broken packet. 366 * --ANK (980803) 367 */ 368 369 static inline struct list_head *ptype_head(const struct packet_type *pt) 370 { 371 if (pt->type == htons(ETH_P_ALL)) 372 return &ptype_all; 373 else 374 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 375 } 376 377 /** 378 * dev_add_pack - add packet handler 379 * @pt: packet type declaration 380 * 381 * Add a protocol handler to the networking stack. The passed &packet_type 382 * is linked into kernel lists and may not be freed until it has been 383 * removed from the kernel lists. 384 * 385 * This call does not sleep therefore it can not 386 * guarantee all CPU's that are in middle of receiving packets 387 * will see the new packet type (until the next received packet). 388 */ 389 390 void dev_add_pack(struct packet_type *pt) 391 { 392 struct list_head *head = ptype_head(pt); 393 394 spin_lock(&ptype_lock); 395 list_add_rcu(&pt->list, head); 396 spin_unlock(&ptype_lock); 397 } 398 EXPORT_SYMBOL(dev_add_pack); 399 400 /** 401 * __dev_remove_pack - remove packet handler 402 * @pt: packet type declaration 403 * 404 * Remove a protocol handler that was previously added to the kernel 405 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 406 * from the kernel lists and can be freed or reused once this function 407 * returns. 408 * 409 * The packet type might still be in use by receivers 410 * and must not be freed until after all the CPU's have gone 411 * through a quiescent state. 412 */ 413 void __dev_remove_pack(struct packet_type *pt) 414 { 415 struct list_head *head = ptype_head(pt); 416 struct packet_type *pt1; 417 418 spin_lock(&ptype_lock); 419 420 list_for_each_entry(pt1, head, list) { 421 if (pt == pt1) { 422 list_del_rcu(&pt->list); 423 goto out; 424 } 425 } 426 427 pr_warn("dev_remove_pack: %p not found\n", pt); 428 out: 429 spin_unlock(&ptype_lock); 430 } 431 EXPORT_SYMBOL(__dev_remove_pack); 432 433 /** 434 * dev_remove_pack - remove packet handler 435 * @pt: packet type declaration 436 * 437 * Remove a protocol handler that was previously added to the kernel 438 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 439 * from the kernel lists and can be freed or reused once this function 440 * returns. 441 * 442 * This call sleeps to guarantee that no CPU is looking at the packet 443 * type after return. 444 */ 445 void dev_remove_pack(struct packet_type *pt) 446 { 447 __dev_remove_pack(pt); 448 449 synchronize_net(); 450 } 451 EXPORT_SYMBOL(dev_remove_pack); 452 453 454 /** 455 * dev_add_offload - register offload handlers 456 * @po: protocol offload declaration 457 * 458 * Add protocol offload handlers to the networking stack. The passed 459 * &proto_offload is linked into kernel lists and may not be freed until 460 * it has been removed from the kernel lists. 461 * 462 * This call does not sleep therefore it can not 463 * guarantee all CPU's that are in middle of receiving packets 464 * will see the new offload handlers (until the next received packet). 465 */ 466 void dev_add_offload(struct packet_offload *po) 467 { 468 struct list_head *head = &offload_base; 469 470 spin_lock(&offload_lock); 471 list_add_rcu(&po->list, head); 472 spin_unlock(&offload_lock); 473 } 474 EXPORT_SYMBOL(dev_add_offload); 475 476 /** 477 * __dev_remove_offload - remove offload handler 478 * @po: packet offload declaration 479 * 480 * Remove a protocol offload handler that was previously added to the 481 * kernel offload handlers by dev_add_offload(). The passed &offload_type 482 * is removed from the kernel lists and can be freed or reused once this 483 * function returns. 484 * 485 * The packet type might still be in use by receivers 486 * and must not be freed until after all the CPU's have gone 487 * through a quiescent state. 488 */ 489 static void __dev_remove_offload(struct packet_offload *po) 490 { 491 struct list_head *head = &offload_base; 492 struct packet_offload *po1; 493 494 spin_lock(&offload_lock); 495 496 list_for_each_entry(po1, head, list) { 497 if (po == po1) { 498 list_del_rcu(&po->list); 499 goto out; 500 } 501 } 502 503 pr_warn("dev_remove_offload: %p not found\n", po); 504 out: 505 spin_unlock(&offload_lock); 506 } 507 508 /** 509 * dev_remove_offload - remove packet offload handler 510 * @po: packet offload declaration 511 * 512 * Remove a packet offload handler that was previously added to the kernel 513 * offload handlers by dev_add_offload(). The passed &offload_type is 514 * removed from the kernel lists and can be freed or reused once this 515 * function returns. 516 * 517 * This call sleeps to guarantee that no CPU is looking at the packet 518 * type after return. 519 */ 520 void dev_remove_offload(struct packet_offload *po) 521 { 522 __dev_remove_offload(po); 523 524 synchronize_net(); 525 } 526 EXPORT_SYMBOL(dev_remove_offload); 527 528 /****************************************************************************** 529 530 Device Boot-time Settings Routines 531 532 *******************************************************************************/ 533 534 /* Boot time configuration table */ 535 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 536 537 /** 538 * netdev_boot_setup_add - add new setup entry 539 * @name: name of the device 540 * @map: configured settings for the device 541 * 542 * Adds new setup entry to the dev_boot_setup list. The function 543 * returns 0 on error and 1 on success. This is a generic routine to 544 * all netdevices. 545 */ 546 static int netdev_boot_setup_add(char *name, struct ifmap *map) 547 { 548 struct netdev_boot_setup *s; 549 int i; 550 551 s = dev_boot_setup; 552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 553 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 554 memset(s[i].name, 0, sizeof(s[i].name)); 555 strlcpy(s[i].name, name, IFNAMSIZ); 556 memcpy(&s[i].map, map, sizeof(s[i].map)); 557 break; 558 } 559 } 560 561 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 562 } 563 564 /** 565 * netdev_boot_setup_check - check boot time settings 566 * @dev: the netdevice 567 * 568 * Check boot time settings for the device. 569 * The found settings are set for the device to be used 570 * later in the device probing. 571 * Returns 0 if no settings found, 1 if they are. 572 */ 573 int netdev_boot_setup_check(struct net_device *dev) 574 { 575 struct netdev_boot_setup *s = dev_boot_setup; 576 int i; 577 578 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 579 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 580 !strcmp(dev->name, s[i].name)) { 581 dev->irq = s[i].map.irq; 582 dev->base_addr = s[i].map.base_addr; 583 dev->mem_start = s[i].map.mem_start; 584 dev->mem_end = s[i].map.mem_end; 585 return 1; 586 } 587 } 588 return 0; 589 } 590 EXPORT_SYMBOL(netdev_boot_setup_check); 591 592 593 /** 594 * netdev_boot_base - get address from boot time settings 595 * @prefix: prefix for network device 596 * @unit: id for network device 597 * 598 * Check boot time settings for the base address of device. 599 * The found settings are set for the device to be used 600 * later in the device probing. 601 * Returns 0 if no settings found. 602 */ 603 unsigned long netdev_boot_base(const char *prefix, int unit) 604 { 605 const struct netdev_boot_setup *s = dev_boot_setup; 606 char name[IFNAMSIZ]; 607 int i; 608 609 sprintf(name, "%s%d", prefix, unit); 610 611 /* 612 * If device already registered then return base of 1 613 * to indicate not to probe for this interface 614 */ 615 if (__dev_get_by_name(&init_net, name)) 616 return 1; 617 618 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 619 if (!strcmp(name, s[i].name)) 620 return s[i].map.base_addr; 621 return 0; 622 } 623 624 /* 625 * Saves at boot time configured settings for any netdevice. 626 */ 627 int __init netdev_boot_setup(char *str) 628 { 629 int ints[5]; 630 struct ifmap map; 631 632 str = get_options(str, ARRAY_SIZE(ints), ints); 633 if (!str || !*str) 634 return 0; 635 636 /* Save settings */ 637 memset(&map, 0, sizeof(map)); 638 if (ints[0] > 0) 639 map.irq = ints[1]; 640 if (ints[0] > 1) 641 map.base_addr = ints[2]; 642 if (ints[0] > 2) 643 map.mem_start = ints[3]; 644 if (ints[0] > 3) 645 map.mem_end = ints[4]; 646 647 /* Add new entry to the list */ 648 return netdev_boot_setup_add(str, &map); 649 } 650 651 __setup("netdev=", netdev_boot_setup); 652 653 /******************************************************************************* 654 655 Device Interface Subroutines 656 657 *******************************************************************************/ 658 659 /** 660 * __dev_get_by_name - find a device by its name 661 * @net: the applicable net namespace 662 * @name: name to find 663 * 664 * Find an interface by name. Must be called under RTNL semaphore 665 * or @dev_base_lock. If the name is found a pointer to the device 666 * is returned. If the name is not found then %NULL is returned. The 667 * reference counters are not incremented so the caller must be 668 * careful with locks. 669 */ 670 671 struct net_device *__dev_get_by_name(struct net *net, const char *name) 672 { 673 struct net_device *dev; 674 struct hlist_head *head = dev_name_hash(net, name); 675 676 hlist_for_each_entry(dev, head, name_hlist) 677 if (!strncmp(dev->name, name, IFNAMSIZ)) 678 return dev; 679 680 return NULL; 681 } 682 EXPORT_SYMBOL(__dev_get_by_name); 683 684 /** 685 * dev_get_by_name_rcu - find a device by its name 686 * @net: the applicable net namespace 687 * @name: name to find 688 * 689 * Find an interface by name. 690 * If the name is found a pointer to the device is returned. 691 * If the name is not found then %NULL is returned. 692 * The reference counters are not incremented so the caller must be 693 * careful with locks. The caller must hold RCU lock. 694 */ 695 696 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 697 { 698 struct net_device *dev; 699 struct hlist_head *head = dev_name_hash(net, name); 700 701 hlist_for_each_entry_rcu(dev, head, name_hlist) 702 if (!strncmp(dev->name, name, IFNAMSIZ)) 703 return dev; 704 705 return NULL; 706 } 707 EXPORT_SYMBOL(dev_get_by_name_rcu); 708 709 /** 710 * dev_get_by_name - find a device by its name 711 * @net: the applicable net namespace 712 * @name: name to find 713 * 714 * Find an interface by name. This can be called from any 715 * context and does its own locking. The returned handle has 716 * the usage count incremented and the caller must use dev_put() to 717 * release it when it is no longer needed. %NULL is returned if no 718 * matching device is found. 719 */ 720 721 struct net_device *dev_get_by_name(struct net *net, const char *name) 722 { 723 struct net_device *dev; 724 725 rcu_read_lock(); 726 dev = dev_get_by_name_rcu(net, name); 727 if (dev) 728 dev_hold(dev); 729 rcu_read_unlock(); 730 return dev; 731 } 732 EXPORT_SYMBOL(dev_get_by_name); 733 734 /** 735 * __dev_get_by_index - find a device by its ifindex 736 * @net: the applicable net namespace 737 * @ifindex: index of device 738 * 739 * Search for an interface by index. Returns %NULL if the device 740 * is not found or a pointer to the device. The device has not 741 * had its reference counter increased so the caller must be careful 742 * about locking. The caller must hold either the RTNL semaphore 743 * or @dev_base_lock. 744 */ 745 746 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 747 { 748 struct net_device *dev; 749 struct hlist_head *head = dev_index_hash(net, ifindex); 750 751 hlist_for_each_entry(dev, head, index_hlist) 752 if (dev->ifindex == ifindex) 753 return dev; 754 755 return NULL; 756 } 757 EXPORT_SYMBOL(__dev_get_by_index); 758 759 /** 760 * dev_get_by_index_rcu - find a device by its ifindex 761 * @net: the applicable net namespace 762 * @ifindex: index of device 763 * 764 * Search for an interface by index. Returns %NULL if the device 765 * is not found or a pointer to the device. The device has not 766 * had its reference counter increased so the caller must be careful 767 * about locking. The caller must hold RCU lock. 768 */ 769 770 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 771 { 772 struct net_device *dev; 773 struct hlist_head *head = dev_index_hash(net, ifindex); 774 775 hlist_for_each_entry_rcu(dev, head, index_hlist) 776 if (dev->ifindex == ifindex) 777 return dev; 778 779 return NULL; 780 } 781 EXPORT_SYMBOL(dev_get_by_index_rcu); 782 783 784 /** 785 * dev_get_by_index - find a device by its ifindex 786 * @net: the applicable net namespace 787 * @ifindex: index of device 788 * 789 * Search for an interface by index. Returns NULL if the device 790 * is not found or a pointer to the device. The device returned has 791 * had a reference added and the pointer is safe until the user calls 792 * dev_put to indicate they have finished with it. 793 */ 794 795 struct net_device *dev_get_by_index(struct net *net, int ifindex) 796 { 797 struct net_device *dev; 798 799 rcu_read_lock(); 800 dev = dev_get_by_index_rcu(net, ifindex); 801 if (dev) 802 dev_hold(dev); 803 rcu_read_unlock(); 804 return dev; 805 } 806 EXPORT_SYMBOL(dev_get_by_index); 807 808 /** 809 * netdev_get_name - get a netdevice name, knowing its ifindex. 810 * @net: network namespace 811 * @name: a pointer to the buffer where the name will be stored. 812 * @ifindex: the ifindex of the interface to get the name from. 813 * 814 * The use of raw_seqcount_begin() and cond_resched() before 815 * retrying is required as we want to give the writers a chance 816 * to complete when CONFIG_PREEMPT is not set. 817 */ 818 int netdev_get_name(struct net *net, char *name, int ifindex) 819 { 820 struct net_device *dev; 821 unsigned int seq; 822 823 retry: 824 seq = raw_seqcount_begin(&devnet_rename_seq); 825 rcu_read_lock(); 826 dev = dev_get_by_index_rcu(net, ifindex); 827 if (!dev) { 828 rcu_read_unlock(); 829 return -ENODEV; 830 } 831 832 strcpy(name, dev->name); 833 rcu_read_unlock(); 834 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 835 cond_resched(); 836 goto retry; 837 } 838 839 return 0; 840 } 841 842 /** 843 * dev_getbyhwaddr_rcu - find a device by its hardware address 844 * @net: the applicable net namespace 845 * @type: media type of device 846 * @ha: hardware address 847 * 848 * Search for an interface by MAC address. Returns NULL if the device 849 * is not found or a pointer to the device. 850 * The caller must hold RCU or RTNL. 851 * The returned device has not had its ref count increased 852 * and the caller must therefore be careful about locking 853 * 854 */ 855 856 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 857 const char *ha) 858 { 859 struct net_device *dev; 860 861 for_each_netdev_rcu(net, dev) 862 if (dev->type == type && 863 !memcmp(dev->dev_addr, ha, dev->addr_len)) 864 return dev; 865 866 return NULL; 867 } 868 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 869 870 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 871 { 872 struct net_device *dev; 873 874 ASSERT_RTNL(); 875 for_each_netdev(net, dev) 876 if (dev->type == type) 877 return dev; 878 879 return NULL; 880 } 881 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 882 883 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 884 { 885 struct net_device *dev, *ret = NULL; 886 887 rcu_read_lock(); 888 for_each_netdev_rcu(net, dev) 889 if (dev->type == type) { 890 dev_hold(dev); 891 ret = dev; 892 break; 893 } 894 rcu_read_unlock(); 895 return ret; 896 } 897 EXPORT_SYMBOL(dev_getfirstbyhwtype); 898 899 /** 900 * dev_get_by_flags_rcu - find any device with given flags 901 * @net: the applicable net namespace 902 * @if_flags: IFF_* values 903 * @mask: bitmask of bits in if_flags to check 904 * 905 * Search for any interface with the given flags. Returns NULL if a device 906 * is not found or a pointer to the device. Must be called inside 907 * rcu_read_lock(), and result refcount is unchanged. 908 */ 909 910 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 911 unsigned short mask) 912 { 913 struct net_device *dev, *ret; 914 915 ret = NULL; 916 for_each_netdev_rcu(net, dev) { 917 if (((dev->flags ^ if_flags) & mask) == 0) { 918 ret = dev; 919 break; 920 } 921 } 922 return ret; 923 } 924 EXPORT_SYMBOL(dev_get_by_flags_rcu); 925 926 /** 927 * dev_valid_name - check if name is okay for network device 928 * @name: name string 929 * 930 * Network device names need to be valid file names to 931 * to allow sysfs to work. We also disallow any kind of 932 * whitespace. 933 */ 934 bool dev_valid_name(const char *name) 935 { 936 if (*name == '\0') 937 return false; 938 if (strlen(name) >= IFNAMSIZ) 939 return false; 940 if (!strcmp(name, ".") || !strcmp(name, "..")) 941 return false; 942 943 while (*name) { 944 if (*name == '/' || isspace(*name)) 945 return false; 946 name++; 947 } 948 return true; 949 } 950 EXPORT_SYMBOL(dev_valid_name); 951 952 /** 953 * __dev_alloc_name - allocate a name for a device 954 * @net: network namespace to allocate the device name in 955 * @name: name format string 956 * @buf: scratch buffer and result name string 957 * 958 * Passed a format string - eg "lt%d" it will try and find a suitable 959 * id. It scans list of devices to build up a free map, then chooses 960 * the first empty slot. The caller must hold the dev_base or rtnl lock 961 * while allocating the name and adding the device in order to avoid 962 * duplicates. 963 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 964 * Returns the number of the unit assigned or a negative errno code. 965 */ 966 967 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 968 { 969 int i = 0; 970 const char *p; 971 const int max_netdevices = 8*PAGE_SIZE; 972 unsigned long *inuse; 973 struct net_device *d; 974 975 p = strnchr(name, IFNAMSIZ-1, '%'); 976 if (p) { 977 /* 978 * Verify the string as this thing may have come from 979 * the user. There must be either one "%d" and no other "%" 980 * characters. 981 */ 982 if (p[1] != 'd' || strchr(p + 2, '%')) 983 return -EINVAL; 984 985 /* Use one page as a bit array of possible slots */ 986 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 987 if (!inuse) 988 return -ENOMEM; 989 990 for_each_netdev(net, d) { 991 if (!sscanf(d->name, name, &i)) 992 continue; 993 if (i < 0 || i >= max_netdevices) 994 continue; 995 996 /* avoid cases where sscanf is not exact inverse of printf */ 997 snprintf(buf, IFNAMSIZ, name, i); 998 if (!strncmp(buf, d->name, IFNAMSIZ)) 999 set_bit(i, inuse); 1000 } 1001 1002 i = find_first_zero_bit(inuse, max_netdevices); 1003 free_page((unsigned long) inuse); 1004 } 1005 1006 if (buf != name) 1007 snprintf(buf, IFNAMSIZ, name, i); 1008 if (!__dev_get_by_name(net, buf)) 1009 return i; 1010 1011 /* It is possible to run out of possible slots 1012 * when the name is long and there isn't enough space left 1013 * for the digits, or if all bits are used. 1014 */ 1015 return -ENFILE; 1016 } 1017 1018 /** 1019 * dev_alloc_name - allocate a name for a device 1020 * @dev: device 1021 * @name: name format string 1022 * 1023 * Passed a format string - eg "lt%d" it will try and find a suitable 1024 * id. It scans list of devices to build up a free map, then chooses 1025 * the first empty slot. The caller must hold the dev_base or rtnl lock 1026 * while allocating the name and adding the device in order to avoid 1027 * duplicates. 1028 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1029 * Returns the number of the unit assigned or a negative errno code. 1030 */ 1031 1032 int dev_alloc_name(struct net_device *dev, const char *name) 1033 { 1034 char buf[IFNAMSIZ]; 1035 struct net *net; 1036 int ret; 1037 1038 BUG_ON(!dev_net(dev)); 1039 net = dev_net(dev); 1040 ret = __dev_alloc_name(net, name, buf); 1041 if (ret >= 0) 1042 strlcpy(dev->name, buf, IFNAMSIZ); 1043 return ret; 1044 } 1045 EXPORT_SYMBOL(dev_alloc_name); 1046 1047 static int dev_alloc_name_ns(struct net *net, 1048 struct net_device *dev, 1049 const char *name) 1050 { 1051 char buf[IFNAMSIZ]; 1052 int ret; 1053 1054 ret = __dev_alloc_name(net, name, buf); 1055 if (ret >= 0) 1056 strlcpy(dev->name, buf, IFNAMSIZ); 1057 return ret; 1058 } 1059 1060 static int dev_get_valid_name(struct net *net, 1061 struct net_device *dev, 1062 const char *name) 1063 { 1064 BUG_ON(!net); 1065 1066 if (!dev_valid_name(name)) 1067 return -EINVAL; 1068 1069 if (strchr(name, '%')) 1070 return dev_alloc_name_ns(net, dev, name); 1071 else if (__dev_get_by_name(net, name)) 1072 return -EEXIST; 1073 else if (dev->name != name) 1074 strlcpy(dev->name, name, IFNAMSIZ); 1075 1076 return 0; 1077 } 1078 1079 /** 1080 * dev_change_name - change name of a device 1081 * @dev: device 1082 * @newname: name (or format string) must be at least IFNAMSIZ 1083 * 1084 * Change name of a device, can pass format strings "eth%d". 1085 * for wildcarding. 1086 */ 1087 int dev_change_name(struct net_device *dev, const char *newname) 1088 { 1089 unsigned char old_assign_type; 1090 char oldname[IFNAMSIZ]; 1091 int err = 0; 1092 int ret; 1093 struct net *net; 1094 1095 ASSERT_RTNL(); 1096 BUG_ON(!dev_net(dev)); 1097 1098 net = dev_net(dev); 1099 if (dev->flags & IFF_UP) 1100 return -EBUSY; 1101 1102 write_seqcount_begin(&devnet_rename_seq); 1103 1104 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1105 write_seqcount_end(&devnet_rename_seq); 1106 return 0; 1107 } 1108 1109 memcpy(oldname, dev->name, IFNAMSIZ); 1110 1111 err = dev_get_valid_name(net, dev, newname); 1112 if (err < 0) { 1113 write_seqcount_end(&devnet_rename_seq); 1114 return err; 1115 } 1116 1117 if (oldname[0] && !strchr(oldname, '%')) 1118 netdev_info(dev, "renamed from %s\n", oldname); 1119 1120 old_assign_type = dev->name_assign_type; 1121 dev->name_assign_type = NET_NAME_RENAMED; 1122 1123 rollback: 1124 ret = device_rename(&dev->dev, dev->name); 1125 if (ret) { 1126 memcpy(dev->name, oldname, IFNAMSIZ); 1127 dev->name_assign_type = old_assign_type; 1128 write_seqcount_end(&devnet_rename_seq); 1129 return ret; 1130 } 1131 1132 write_seqcount_end(&devnet_rename_seq); 1133 1134 netdev_adjacent_rename_links(dev, oldname); 1135 1136 write_lock_bh(&dev_base_lock); 1137 hlist_del_rcu(&dev->name_hlist); 1138 write_unlock_bh(&dev_base_lock); 1139 1140 synchronize_rcu(); 1141 1142 write_lock_bh(&dev_base_lock); 1143 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1144 write_unlock_bh(&dev_base_lock); 1145 1146 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1147 ret = notifier_to_errno(ret); 1148 1149 if (ret) { 1150 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1151 if (err >= 0) { 1152 err = ret; 1153 write_seqcount_begin(&devnet_rename_seq); 1154 memcpy(dev->name, oldname, IFNAMSIZ); 1155 memcpy(oldname, newname, IFNAMSIZ); 1156 dev->name_assign_type = old_assign_type; 1157 old_assign_type = NET_NAME_RENAMED; 1158 goto rollback; 1159 } else { 1160 pr_err("%s: name change rollback failed: %d\n", 1161 dev->name, ret); 1162 } 1163 } 1164 1165 return err; 1166 } 1167 1168 /** 1169 * dev_set_alias - change ifalias of a device 1170 * @dev: device 1171 * @alias: name up to IFALIASZ 1172 * @len: limit of bytes to copy from info 1173 * 1174 * Set ifalias for a device, 1175 */ 1176 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1177 { 1178 char *new_ifalias; 1179 1180 ASSERT_RTNL(); 1181 1182 if (len >= IFALIASZ) 1183 return -EINVAL; 1184 1185 if (!len) { 1186 kfree(dev->ifalias); 1187 dev->ifalias = NULL; 1188 return 0; 1189 } 1190 1191 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1192 if (!new_ifalias) 1193 return -ENOMEM; 1194 dev->ifalias = new_ifalias; 1195 1196 strlcpy(dev->ifalias, alias, len+1); 1197 return len; 1198 } 1199 1200 1201 /** 1202 * netdev_features_change - device changes features 1203 * @dev: device to cause notification 1204 * 1205 * Called to indicate a device has changed features. 1206 */ 1207 void netdev_features_change(struct net_device *dev) 1208 { 1209 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1210 } 1211 EXPORT_SYMBOL(netdev_features_change); 1212 1213 /** 1214 * netdev_state_change - device changes state 1215 * @dev: device to cause notification 1216 * 1217 * Called to indicate a device has changed state. This function calls 1218 * the notifier chains for netdev_chain and sends a NEWLINK message 1219 * to the routing socket. 1220 */ 1221 void netdev_state_change(struct net_device *dev) 1222 { 1223 if (dev->flags & IFF_UP) { 1224 struct netdev_notifier_change_info change_info; 1225 1226 change_info.flags_changed = 0; 1227 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 1228 &change_info.info); 1229 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1230 } 1231 } 1232 EXPORT_SYMBOL(netdev_state_change); 1233 1234 /** 1235 * netdev_notify_peers - notify network peers about existence of @dev 1236 * @dev: network device 1237 * 1238 * Generate traffic such that interested network peers are aware of 1239 * @dev, such as by generating a gratuitous ARP. This may be used when 1240 * a device wants to inform the rest of the network about some sort of 1241 * reconfiguration such as a failover event or virtual machine 1242 * migration. 1243 */ 1244 void netdev_notify_peers(struct net_device *dev) 1245 { 1246 rtnl_lock(); 1247 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1248 rtnl_unlock(); 1249 } 1250 EXPORT_SYMBOL(netdev_notify_peers); 1251 1252 static int __dev_open(struct net_device *dev) 1253 { 1254 const struct net_device_ops *ops = dev->netdev_ops; 1255 int ret; 1256 1257 ASSERT_RTNL(); 1258 1259 if (!netif_device_present(dev)) 1260 return -ENODEV; 1261 1262 /* Block netpoll from trying to do any rx path servicing. 1263 * If we don't do this there is a chance ndo_poll_controller 1264 * or ndo_poll may be running while we open the device 1265 */ 1266 netpoll_poll_disable(dev); 1267 1268 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1269 ret = notifier_to_errno(ret); 1270 if (ret) 1271 return ret; 1272 1273 set_bit(__LINK_STATE_START, &dev->state); 1274 1275 if (ops->ndo_validate_addr) 1276 ret = ops->ndo_validate_addr(dev); 1277 1278 if (!ret && ops->ndo_open) 1279 ret = ops->ndo_open(dev); 1280 1281 netpoll_poll_enable(dev); 1282 1283 if (ret) 1284 clear_bit(__LINK_STATE_START, &dev->state); 1285 else { 1286 dev->flags |= IFF_UP; 1287 net_dmaengine_get(); 1288 dev_set_rx_mode(dev); 1289 dev_activate(dev); 1290 add_device_randomness(dev->dev_addr, dev->addr_len); 1291 } 1292 1293 return ret; 1294 } 1295 1296 /** 1297 * dev_open - prepare an interface for use. 1298 * @dev: device to open 1299 * 1300 * Takes a device from down to up state. The device's private open 1301 * function is invoked and then the multicast lists are loaded. Finally 1302 * the device is moved into the up state and a %NETDEV_UP message is 1303 * sent to the netdev notifier chain. 1304 * 1305 * Calling this function on an active interface is a nop. On a failure 1306 * a negative errno code is returned. 1307 */ 1308 int dev_open(struct net_device *dev) 1309 { 1310 int ret; 1311 1312 if (dev->flags & IFF_UP) 1313 return 0; 1314 1315 ret = __dev_open(dev); 1316 if (ret < 0) 1317 return ret; 1318 1319 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1320 call_netdevice_notifiers(NETDEV_UP, dev); 1321 1322 return ret; 1323 } 1324 EXPORT_SYMBOL(dev_open); 1325 1326 static int __dev_close_many(struct list_head *head) 1327 { 1328 struct net_device *dev; 1329 1330 ASSERT_RTNL(); 1331 might_sleep(); 1332 1333 list_for_each_entry(dev, head, close_list) { 1334 /* Temporarily disable netpoll until the interface is down */ 1335 netpoll_poll_disable(dev); 1336 1337 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1338 1339 clear_bit(__LINK_STATE_START, &dev->state); 1340 1341 /* Synchronize to scheduled poll. We cannot touch poll list, it 1342 * can be even on different cpu. So just clear netif_running(). 1343 * 1344 * dev->stop() will invoke napi_disable() on all of it's 1345 * napi_struct instances on this device. 1346 */ 1347 smp_mb__after_atomic(); /* Commit netif_running(). */ 1348 } 1349 1350 dev_deactivate_many(head); 1351 1352 list_for_each_entry(dev, head, close_list) { 1353 const struct net_device_ops *ops = dev->netdev_ops; 1354 1355 /* 1356 * Call the device specific close. This cannot fail. 1357 * Only if device is UP 1358 * 1359 * We allow it to be called even after a DETACH hot-plug 1360 * event. 1361 */ 1362 if (ops->ndo_stop) 1363 ops->ndo_stop(dev); 1364 1365 dev->flags &= ~IFF_UP; 1366 net_dmaengine_put(); 1367 netpoll_poll_enable(dev); 1368 } 1369 1370 return 0; 1371 } 1372 1373 static int __dev_close(struct net_device *dev) 1374 { 1375 int retval; 1376 LIST_HEAD(single); 1377 1378 list_add(&dev->close_list, &single); 1379 retval = __dev_close_many(&single); 1380 list_del(&single); 1381 1382 return retval; 1383 } 1384 1385 static int dev_close_many(struct list_head *head) 1386 { 1387 struct net_device *dev, *tmp; 1388 1389 /* Remove the devices that don't need to be closed */ 1390 list_for_each_entry_safe(dev, tmp, head, close_list) 1391 if (!(dev->flags & IFF_UP)) 1392 list_del_init(&dev->close_list); 1393 1394 __dev_close_many(head); 1395 1396 list_for_each_entry_safe(dev, tmp, head, close_list) { 1397 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1398 call_netdevice_notifiers(NETDEV_DOWN, dev); 1399 list_del_init(&dev->close_list); 1400 } 1401 1402 return 0; 1403 } 1404 1405 /** 1406 * dev_close - shutdown an interface. 1407 * @dev: device to shutdown 1408 * 1409 * This function moves an active device into down state. A 1410 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1411 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1412 * chain. 1413 */ 1414 int dev_close(struct net_device *dev) 1415 { 1416 if (dev->flags & IFF_UP) { 1417 LIST_HEAD(single); 1418 1419 list_add(&dev->close_list, &single); 1420 dev_close_many(&single); 1421 list_del(&single); 1422 } 1423 return 0; 1424 } 1425 EXPORT_SYMBOL(dev_close); 1426 1427 1428 /** 1429 * dev_disable_lro - disable Large Receive Offload on a device 1430 * @dev: device 1431 * 1432 * Disable Large Receive Offload (LRO) on a net device. Must be 1433 * called under RTNL. This is needed if received packets may be 1434 * forwarded to another interface. 1435 */ 1436 void dev_disable_lro(struct net_device *dev) 1437 { 1438 /* 1439 * If we're trying to disable lro on a vlan device 1440 * use the underlying physical device instead 1441 */ 1442 if (is_vlan_dev(dev)) 1443 dev = vlan_dev_real_dev(dev); 1444 1445 /* the same for macvlan devices */ 1446 if (netif_is_macvlan(dev)) 1447 dev = macvlan_dev_real_dev(dev); 1448 1449 dev->wanted_features &= ~NETIF_F_LRO; 1450 netdev_update_features(dev); 1451 1452 if (unlikely(dev->features & NETIF_F_LRO)) 1453 netdev_WARN(dev, "failed to disable LRO!\n"); 1454 } 1455 EXPORT_SYMBOL(dev_disable_lro); 1456 1457 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1458 struct net_device *dev) 1459 { 1460 struct netdev_notifier_info info; 1461 1462 netdev_notifier_info_init(&info, dev); 1463 return nb->notifier_call(nb, val, &info); 1464 } 1465 1466 static int dev_boot_phase = 1; 1467 1468 /** 1469 * register_netdevice_notifier - register a network notifier block 1470 * @nb: notifier 1471 * 1472 * Register a notifier to be called when network device events occur. 1473 * The notifier passed is linked into the kernel structures and must 1474 * not be reused until it has been unregistered. A negative errno code 1475 * is returned on a failure. 1476 * 1477 * When registered all registration and up events are replayed 1478 * to the new notifier to allow device to have a race free 1479 * view of the network device list. 1480 */ 1481 1482 int register_netdevice_notifier(struct notifier_block *nb) 1483 { 1484 struct net_device *dev; 1485 struct net_device *last; 1486 struct net *net; 1487 int err; 1488 1489 rtnl_lock(); 1490 err = raw_notifier_chain_register(&netdev_chain, nb); 1491 if (err) 1492 goto unlock; 1493 if (dev_boot_phase) 1494 goto unlock; 1495 for_each_net(net) { 1496 for_each_netdev(net, dev) { 1497 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1498 err = notifier_to_errno(err); 1499 if (err) 1500 goto rollback; 1501 1502 if (!(dev->flags & IFF_UP)) 1503 continue; 1504 1505 call_netdevice_notifier(nb, NETDEV_UP, dev); 1506 } 1507 } 1508 1509 unlock: 1510 rtnl_unlock(); 1511 return err; 1512 1513 rollback: 1514 last = dev; 1515 for_each_net(net) { 1516 for_each_netdev(net, dev) { 1517 if (dev == last) 1518 goto outroll; 1519 1520 if (dev->flags & IFF_UP) { 1521 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1522 dev); 1523 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1524 } 1525 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1526 } 1527 } 1528 1529 outroll: 1530 raw_notifier_chain_unregister(&netdev_chain, nb); 1531 goto unlock; 1532 } 1533 EXPORT_SYMBOL(register_netdevice_notifier); 1534 1535 /** 1536 * unregister_netdevice_notifier - unregister a network notifier block 1537 * @nb: notifier 1538 * 1539 * Unregister a notifier previously registered by 1540 * register_netdevice_notifier(). The notifier is unlinked into the 1541 * kernel structures and may then be reused. A negative errno code 1542 * is returned on a failure. 1543 * 1544 * After unregistering unregister and down device events are synthesized 1545 * for all devices on the device list to the removed notifier to remove 1546 * the need for special case cleanup code. 1547 */ 1548 1549 int unregister_netdevice_notifier(struct notifier_block *nb) 1550 { 1551 struct net_device *dev; 1552 struct net *net; 1553 int err; 1554 1555 rtnl_lock(); 1556 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1557 if (err) 1558 goto unlock; 1559 1560 for_each_net(net) { 1561 for_each_netdev(net, dev) { 1562 if (dev->flags & IFF_UP) { 1563 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1564 dev); 1565 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1566 } 1567 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1568 } 1569 } 1570 unlock: 1571 rtnl_unlock(); 1572 return err; 1573 } 1574 EXPORT_SYMBOL(unregister_netdevice_notifier); 1575 1576 /** 1577 * call_netdevice_notifiers_info - call all network notifier blocks 1578 * @val: value passed unmodified to notifier function 1579 * @dev: net_device pointer passed unmodified to notifier function 1580 * @info: notifier information data 1581 * 1582 * Call all network notifier blocks. Parameters and return value 1583 * are as for raw_notifier_call_chain(). 1584 */ 1585 1586 static int call_netdevice_notifiers_info(unsigned long val, 1587 struct net_device *dev, 1588 struct netdev_notifier_info *info) 1589 { 1590 ASSERT_RTNL(); 1591 netdev_notifier_info_init(info, dev); 1592 return raw_notifier_call_chain(&netdev_chain, val, info); 1593 } 1594 1595 /** 1596 * call_netdevice_notifiers - call all network notifier blocks 1597 * @val: value passed unmodified to notifier function 1598 * @dev: net_device pointer passed unmodified to notifier function 1599 * 1600 * Call all network notifier blocks. Parameters and return value 1601 * are as for raw_notifier_call_chain(). 1602 */ 1603 1604 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1605 { 1606 struct netdev_notifier_info info; 1607 1608 return call_netdevice_notifiers_info(val, dev, &info); 1609 } 1610 EXPORT_SYMBOL(call_netdevice_notifiers); 1611 1612 static struct static_key netstamp_needed __read_mostly; 1613 #ifdef HAVE_JUMP_LABEL 1614 /* We are not allowed to call static_key_slow_dec() from irq context 1615 * If net_disable_timestamp() is called from irq context, defer the 1616 * static_key_slow_dec() calls. 1617 */ 1618 static atomic_t netstamp_needed_deferred; 1619 #endif 1620 1621 void net_enable_timestamp(void) 1622 { 1623 #ifdef HAVE_JUMP_LABEL 1624 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1625 1626 if (deferred) { 1627 while (--deferred) 1628 static_key_slow_dec(&netstamp_needed); 1629 return; 1630 } 1631 #endif 1632 static_key_slow_inc(&netstamp_needed); 1633 } 1634 EXPORT_SYMBOL(net_enable_timestamp); 1635 1636 void net_disable_timestamp(void) 1637 { 1638 #ifdef HAVE_JUMP_LABEL 1639 if (in_interrupt()) { 1640 atomic_inc(&netstamp_needed_deferred); 1641 return; 1642 } 1643 #endif 1644 static_key_slow_dec(&netstamp_needed); 1645 } 1646 EXPORT_SYMBOL(net_disable_timestamp); 1647 1648 static inline void net_timestamp_set(struct sk_buff *skb) 1649 { 1650 skb->tstamp.tv64 = 0; 1651 if (static_key_false(&netstamp_needed)) 1652 __net_timestamp(skb); 1653 } 1654 1655 #define net_timestamp_check(COND, SKB) \ 1656 if (static_key_false(&netstamp_needed)) { \ 1657 if ((COND) && !(SKB)->tstamp.tv64) \ 1658 __net_timestamp(SKB); \ 1659 } \ 1660 1661 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb) 1662 { 1663 unsigned int len; 1664 1665 if (!(dev->flags & IFF_UP)) 1666 return false; 1667 1668 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1669 if (skb->len <= len) 1670 return true; 1671 1672 /* if TSO is enabled, we don't care about the length as the packet 1673 * could be forwarded without being segmented before 1674 */ 1675 if (skb_is_gso(skb)) 1676 return true; 1677 1678 return false; 1679 } 1680 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1681 1682 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1683 { 1684 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1685 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1686 atomic_long_inc(&dev->rx_dropped); 1687 kfree_skb(skb); 1688 return NET_RX_DROP; 1689 } 1690 } 1691 1692 if (unlikely(!is_skb_forwardable(dev, skb))) { 1693 atomic_long_inc(&dev->rx_dropped); 1694 kfree_skb(skb); 1695 return NET_RX_DROP; 1696 } 1697 1698 skb_scrub_packet(skb, true); 1699 skb->protocol = eth_type_trans(skb, dev); 1700 1701 return 0; 1702 } 1703 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1704 1705 /** 1706 * dev_forward_skb - loopback an skb to another netif 1707 * 1708 * @dev: destination network device 1709 * @skb: buffer to forward 1710 * 1711 * return values: 1712 * NET_RX_SUCCESS (no congestion) 1713 * NET_RX_DROP (packet was dropped, but freed) 1714 * 1715 * dev_forward_skb can be used for injecting an skb from the 1716 * start_xmit function of one device into the receive queue 1717 * of another device. 1718 * 1719 * The receiving device may be in another namespace, so 1720 * we have to clear all information in the skb that could 1721 * impact namespace isolation. 1722 */ 1723 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1724 { 1725 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1726 } 1727 EXPORT_SYMBOL_GPL(dev_forward_skb); 1728 1729 static inline int deliver_skb(struct sk_buff *skb, 1730 struct packet_type *pt_prev, 1731 struct net_device *orig_dev) 1732 { 1733 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1734 return -ENOMEM; 1735 atomic_inc(&skb->users); 1736 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1737 } 1738 1739 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1740 { 1741 if (!ptype->af_packet_priv || !skb->sk) 1742 return false; 1743 1744 if (ptype->id_match) 1745 return ptype->id_match(ptype, skb->sk); 1746 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1747 return true; 1748 1749 return false; 1750 } 1751 1752 /* 1753 * Support routine. Sends outgoing frames to any network 1754 * taps currently in use. 1755 */ 1756 1757 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1758 { 1759 struct packet_type *ptype; 1760 struct sk_buff *skb2 = NULL; 1761 struct packet_type *pt_prev = NULL; 1762 1763 rcu_read_lock(); 1764 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1765 /* Never send packets back to the socket 1766 * they originated from - MvS (miquels@drinkel.ow.org) 1767 */ 1768 if ((ptype->dev == dev || !ptype->dev) && 1769 (!skb_loop_sk(ptype, skb))) { 1770 if (pt_prev) { 1771 deliver_skb(skb2, pt_prev, skb->dev); 1772 pt_prev = ptype; 1773 continue; 1774 } 1775 1776 skb2 = skb_clone(skb, GFP_ATOMIC); 1777 if (!skb2) 1778 break; 1779 1780 net_timestamp_set(skb2); 1781 1782 /* skb->nh should be correctly 1783 set by sender, so that the second statement is 1784 just protection against buggy protocols. 1785 */ 1786 skb_reset_mac_header(skb2); 1787 1788 if (skb_network_header(skb2) < skb2->data || 1789 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1790 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1791 ntohs(skb2->protocol), 1792 dev->name); 1793 skb_reset_network_header(skb2); 1794 } 1795 1796 skb2->transport_header = skb2->network_header; 1797 skb2->pkt_type = PACKET_OUTGOING; 1798 pt_prev = ptype; 1799 } 1800 } 1801 if (pt_prev) 1802 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1803 rcu_read_unlock(); 1804 } 1805 1806 /** 1807 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1808 * @dev: Network device 1809 * @txq: number of queues available 1810 * 1811 * If real_num_tx_queues is changed the tc mappings may no longer be 1812 * valid. To resolve this verify the tc mapping remains valid and if 1813 * not NULL the mapping. With no priorities mapping to this 1814 * offset/count pair it will no longer be used. In the worst case TC0 1815 * is invalid nothing can be done so disable priority mappings. If is 1816 * expected that drivers will fix this mapping if they can before 1817 * calling netif_set_real_num_tx_queues. 1818 */ 1819 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1820 { 1821 int i; 1822 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1823 1824 /* If TC0 is invalidated disable TC mapping */ 1825 if (tc->offset + tc->count > txq) { 1826 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1827 dev->num_tc = 0; 1828 return; 1829 } 1830 1831 /* Invalidated prio to tc mappings set to TC0 */ 1832 for (i = 1; i < TC_BITMASK + 1; i++) { 1833 int q = netdev_get_prio_tc_map(dev, i); 1834 1835 tc = &dev->tc_to_txq[q]; 1836 if (tc->offset + tc->count > txq) { 1837 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1838 i, q); 1839 netdev_set_prio_tc_map(dev, i, 0); 1840 } 1841 } 1842 } 1843 1844 #ifdef CONFIG_XPS 1845 static DEFINE_MUTEX(xps_map_mutex); 1846 #define xmap_dereference(P) \ 1847 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1848 1849 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps, 1850 int cpu, u16 index) 1851 { 1852 struct xps_map *map = NULL; 1853 int pos; 1854 1855 if (dev_maps) 1856 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1857 1858 for (pos = 0; map && pos < map->len; pos++) { 1859 if (map->queues[pos] == index) { 1860 if (map->len > 1) { 1861 map->queues[pos] = map->queues[--map->len]; 1862 } else { 1863 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL); 1864 kfree_rcu(map, rcu); 1865 map = NULL; 1866 } 1867 break; 1868 } 1869 } 1870 1871 return map; 1872 } 1873 1874 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 1875 { 1876 struct xps_dev_maps *dev_maps; 1877 int cpu, i; 1878 bool active = false; 1879 1880 mutex_lock(&xps_map_mutex); 1881 dev_maps = xmap_dereference(dev->xps_maps); 1882 1883 if (!dev_maps) 1884 goto out_no_maps; 1885 1886 for_each_possible_cpu(cpu) { 1887 for (i = index; i < dev->num_tx_queues; i++) { 1888 if (!remove_xps_queue(dev_maps, cpu, i)) 1889 break; 1890 } 1891 if (i == dev->num_tx_queues) 1892 active = true; 1893 } 1894 1895 if (!active) { 1896 RCU_INIT_POINTER(dev->xps_maps, NULL); 1897 kfree_rcu(dev_maps, rcu); 1898 } 1899 1900 for (i = index; i < dev->num_tx_queues; i++) 1901 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 1902 NUMA_NO_NODE); 1903 1904 out_no_maps: 1905 mutex_unlock(&xps_map_mutex); 1906 } 1907 1908 static struct xps_map *expand_xps_map(struct xps_map *map, 1909 int cpu, u16 index) 1910 { 1911 struct xps_map *new_map; 1912 int alloc_len = XPS_MIN_MAP_ALLOC; 1913 int i, pos; 1914 1915 for (pos = 0; map && pos < map->len; pos++) { 1916 if (map->queues[pos] != index) 1917 continue; 1918 return map; 1919 } 1920 1921 /* Need to add queue to this CPU's existing map */ 1922 if (map) { 1923 if (pos < map->alloc_len) 1924 return map; 1925 1926 alloc_len = map->alloc_len * 2; 1927 } 1928 1929 /* Need to allocate new map to store queue on this CPU's map */ 1930 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 1931 cpu_to_node(cpu)); 1932 if (!new_map) 1933 return NULL; 1934 1935 for (i = 0; i < pos; i++) 1936 new_map->queues[i] = map->queues[i]; 1937 new_map->alloc_len = alloc_len; 1938 new_map->len = pos; 1939 1940 return new_map; 1941 } 1942 1943 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 1944 u16 index) 1945 { 1946 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 1947 struct xps_map *map, *new_map; 1948 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES); 1949 int cpu, numa_node_id = -2; 1950 bool active = false; 1951 1952 mutex_lock(&xps_map_mutex); 1953 1954 dev_maps = xmap_dereference(dev->xps_maps); 1955 1956 /* allocate memory for queue storage */ 1957 for_each_online_cpu(cpu) { 1958 if (!cpumask_test_cpu(cpu, mask)) 1959 continue; 1960 1961 if (!new_dev_maps) 1962 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 1963 if (!new_dev_maps) { 1964 mutex_unlock(&xps_map_mutex); 1965 return -ENOMEM; 1966 } 1967 1968 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 1969 NULL; 1970 1971 map = expand_xps_map(map, cpu, index); 1972 if (!map) 1973 goto error; 1974 1975 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1976 } 1977 1978 if (!new_dev_maps) 1979 goto out_no_new_maps; 1980 1981 for_each_possible_cpu(cpu) { 1982 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 1983 /* add queue to CPU maps */ 1984 int pos = 0; 1985 1986 map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1987 while ((pos < map->len) && (map->queues[pos] != index)) 1988 pos++; 1989 1990 if (pos == map->len) 1991 map->queues[map->len++] = index; 1992 #ifdef CONFIG_NUMA 1993 if (numa_node_id == -2) 1994 numa_node_id = cpu_to_node(cpu); 1995 else if (numa_node_id != cpu_to_node(cpu)) 1996 numa_node_id = -1; 1997 #endif 1998 } else if (dev_maps) { 1999 /* fill in the new device map from the old device map */ 2000 map = xmap_dereference(dev_maps->cpu_map[cpu]); 2001 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 2002 } 2003 2004 } 2005 2006 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2007 2008 /* Cleanup old maps */ 2009 if (dev_maps) { 2010 for_each_possible_cpu(cpu) { 2011 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2012 map = xmap_dereference(dev_maps->cpu_map[cpu]); 2013 if (map && map != new_map) 2014 kfree_rcu(map, rcu); 2015 } 2016 2017 kfree_rcu(dev_maps, rcu); 2018 } 2019 2020 dev_maps = new_dev_maps; 2021 active = true; 2022 2023 out_no_new_maps: 2024 /* update Tx queue numa node */ 2025 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2026 (numa_node_id >= 0) ? numa_node_id : 2027 NUMA_NO_NODE); 2028 2029 if (!dev_maps) 2030 goto out_no_maps; 2031 2032 /* removes queue from unused CPUs */ 2033 for_each_possible_cpu(cpu) { 2034 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) 2035 continue; 2036 2037 if (remove_xps_queue(dev_maps, cpu, index)) 2038 active = true; 2039 } 2040 2041 /* free map if not active */ 2042 if (!active) { 2043 RCU_INIT_POINTER(dev->xps_maps, NULL); 2044 kfree_rcu(dev_maps, rcu); 2045 } 2046 2047 out_no_maps: 2048 mutex_unlock(&xps_map_mutex); 2049 2050 return 0; 2051 error: 2052 /* remove any maps that we added */ 2053 for_each_possible_cpu(cpu) { 2054 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2055 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2056 NULL; 2057 if (new_map && new_map != map) 2058 kfree(new_map); 2059 } 2060 2061 mutex_unlock(&xps_map_mutex); 2062 2063 kfree(new_dev_maps); 2064 return -ENOMEM; 2065 } 2066 EXPORT_SYMBOL(netif_set_xps_queue); 2067 2068 #endif 2069 /* 2070 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2071 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2072 */ 2073 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2074 { 2075 int rc; 2076 2077 if (txq < 1 || txq > dev->num_tx_queues) 2078 return -EINVAL; 2079 2080 if (dev->reg_state == NETREG_REGISTERED || 2081 dev->reg_state == NETREG_UNREGISTERING) { 2082 ASSERT_RTNL(); 2083 2084 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2085 txq); 2086 if (rc) 2087 return rc; 2088 2089 if (dev->num_tc) 2090 netif_setup_tc(dev, txq); 2091 2092 if (txq < dev->real_num_tx_queues) { 2093 qdisc_reset_all_tx_gt(dev, txq); 2094 #ifdef CONFIG_XPS 2095 netif_reset_xps_queues_gt(dev, txq); 2096 #endif 2097 } 2098 } 2099 2100 dev->real_num_tx_queues = txq; 2101 return 0; 2102 } 2103 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2104 2105 #ifdef CONFIG_SYSFS 2106 /** 2107 * netif_set_real_num_rx_queues - set actual number of RX queues used 2108 * @dev: Network device 2109 * @rxq: Actual number of RX queues 2110 * 2111 * This must be called either with the rtnl_lock held or before 2112 * registration of the net device. Returns 0 on success, or a 2113 * negative error code. If called before registration, it always 2114 * succeeds. 2115 */ 2116 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2117 { 2118 int rc; 2119 2120 if (rxq < 1 || rxq > dev->num_rx_queues) 2121 return -EINVAL; 2122 2123 if (dev->reg_state == NETREG_REGISTERED) { 2124 ASSERT_RTNL(); 2125 2126 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2127 rxq); 2128 if (rc) 2129 return rc; 2130 } 2131 2132 dev->real_num_rx_queues = rxq; 2133 return 0; 2134 } 2135 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2136 #endif 2137 2138 /** 2139 * netif_get_num_default_rss_queues - default number of RSS queues 2140 * 2141 * This routine should set an upper limit on the number of RSS queues 2142 * used by default by multiqueue devices. 2143 */ 2144 int netif_get_num_default_rss_queues(void) 2145 { 2146 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2147 } 2148 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2149 2150 static inline void __netif_reschedule(struct Qdisc *q) 2151 { 2152 struct softnet_data *sd; 2153 unsigned long flags; 2154 2155 local_irq_save(flags); 2156 sd = &__get_cpu_var(softnet_data); 2157 q->next_sched = NULL; 2158 *sd->output_queue_tailp = q; 2159 sd->output_queue_tailp = &q->next_sched; 2160 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2161 local_irq_restore(flags); 2162 } 2163 2164 void __netif_schedule(struct Qdisc *q) 2165 { 2166 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2167 __netif_reschedule(q); 2168 } 2169 EXPORT_SYMBOL(__netif_schedule); 2170 2171 struct dev_kfree_skb_cb { 2172 enum skb_free_reason reason; 2173 }; 2174 2175 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2176 { 2177 return (struct dev_kfree_skb_cb *)skb->cb; 2178 } 2179 2180 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2181 { 2182 unsigned long flags; 2183 2184 if (likely(atomic_read(&skb->users) == 1)) { 2185 smp_rmb(); 2186 atomic_set(&skb->users, 0); 2187 } else if (likely(!atomic_dec_and_test(&skb->users))) { 2188 return; 2189 } 2190 get_kfree_skb_cb(skb)->reason = reason; 2191 local_irq_save(flags); 2192 skb->next = __this_cpu_read(softnet_data.completion_queue); 2193 __this_cpu_write(softnet_data.completion_queue, skb); 2194 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2195 local_irq_restore(flags); 2196 } 2197 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2198 2199 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2200 { 2201 if (in_irq() || irqs_disabled()) 2202 __dev_kfree_skb_irq(skb, reason); 2203 else 2204 dev_kfree_skb(skb); 2205 } 2206 EXPORT_SYMBOL(__dev_kfree_skb_any); 2207 2208 2209 /** 2210 * netif_device_detach - mark device as removed 2211 * @dev: network device 2212 * 2213 * Mark device as removed from system and therefore no longer available. 2214 */ 2215 void netif_device_detach(struct net_device *dev) 2216 { 2217 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2218 netif_running(dev)) { 2219 netif_tx_stop_all_queues(dev); 2220 } 2221 } 2222 EXPORT_SYMBOL(netif_device_detach); 2223 2224 /** 2225 * netif_device_attach - mark device as attached 2226 * @dev: network device 2227 * 2228 * Mark device as attached from system and restart if needed. 2229 */ 2230 void netif_device_attach(struct net_device *dev) 2231 { 2232 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2233 netif_running(dev)) { 2234 netif_tx_wake_all_queues(dev); 2235 __netdev_watchdog_up(dev); 2236 } 2237 } 2238 EXPORT_SYMBOL(netif_device_attach); 2239 2240 static void skb_warn_bad_offload(const struct sk_buff *skb) 2241 { 2242 static const netdev_features_t null_features = 0; 2243 struct net_device *dev = skb->dev; 2244 const char *driver = ""; 2245 2246 if (!net_ratelimit()) 2247 return; 2248 2249 if (dev && dev->dev.parent) 2250 driver = dev_driver_string(dev->dev.parent); 2251 2252 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2253 "gso_type=%d ip_summed=%d\n", 2254 driver, dev ? &dev->features : &null_features, 2255 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2256 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2257 skb_shinfo(skb)->gso_type, skb->ip_summed); 2258 } 2259 2260 /* 2261 * Invalidate hardware checksum when packet is to be mangled, and 2262 * complete checksum manually on outgoing path. 2263 */ 2264 int skb_checksum_help(struct sk_buff *skb) 2265 { 2266 __wsum csum; 2267 int ret = 0, offset; 2268 2269 if (skb->ip_summed == CHECKSUM_COMPLETE) 2270 goto out_set_summed; 2271 2272 if (unlikely(skb_shinfo(skb)->gso_size)) { 2273 skb_warn_bad_offload(skb); 2274 return -EINVAL; 2275 } 2276 2277 /* Before computing a checksum, we should make sure no frag could 2278 * be modified by an external entity : checksum could be wrong. 2279 */ 2280 if (skb_has_shared_frag(skb)) { 2281 ret = __skb_linearize(skb); 2282 if (ret) 2283 goto out; 2284 } 2285 2286 offset = skb_checksum_start_offset(skb); 2287 BUG_ON(offset >= skb_headlen(skb)); 2288 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2289 2290 offset += skb->csum_offset; 2291 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2292 2293 if (skb_cloned(skb) && 2294 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2295 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2296 if (ret) 2297 goto out; 2298 } 2299 2300 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 2301 out_set_summed: 2302 skb->ip_summed = CHECKSUM_NONE; 2303 out: 2304 return ret; 2305 } 2306 EXPORT_SYMBOL(skb_checksum_help); 2307 2308 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2309 { 2310 unsigned int vlan_depth = skb->mac_len; 2311 __be16 type = skb->protocol; 2312 2313 /* Tunnel gso handlers can set protocol to ethernet. */ 2314 if (type == htons(ETH_P_TEB)) { 2315 struct ethhdr *eth; 2316 2317 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2318 return 0; 2319 2320 eth = (struct ethhdr *)skb_mac_header(skb); 2321 type = eth->h_proto; 2322 } 2323 2324 /* if skb->protocol is 802.1Q/AD then the header should already be 2325 * present at mac_len - VLAN_HLEN (if mac_len > 0), or at 2326 * ETH_HLEN otherwise 2327 */ 2328 if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) { 2329 if (vlan_depth) { 2330 if (WARN_ON(vlan_depth < VLAN_HLEN)) 2331 return 0; 2332 vlan_depth -= VLAN_HLEN; 2333 } else { 2334 vlan_depth = ETH_HLEN; 2335 } 2336 do { 2337 struct vlan_hdr *vh; 2338 2339 if (unlikely(!pskb_may_pull(skb, 2340 vlan_depth + VLAN_HLEN))) 2341 return 0; 2342 2343 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 2344 type = vh->h_vlan_encapsulated_proto; 2345 vlan_depth += VLAN_HLEN; 2346 } while (type == htons(ETH_P_8021Q) || 2347 type == htons(ETH_P_8021AD)); 2348 } 2349 2350 *depth = vlan_depth; 2351 2352 return type; 2353 } 2354 2355 /** 2356 * skb_mac_gso_segment - mac layer segmentation handler. 2357 * @skb: buffer to segment 2358 * @features: features for the output path (see dev->features) 2359 */ 2360 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2361 netdev_features_t features) 2362 { 2363 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2364 struct packet_offload *ptype; 2365 int vlan_depth = skb->mac_len; 2366 __be16 type = skb_network_protocol(skb, &vlan_depth); 2367 2368 if (unlikely(!type)) 2369 return ERR_PTR(-EINVAL); 2370 2371 __skb_pull(skb, vlan_depth); 2372 2373 rcu_read_lock(); 2374 list_for_each_entry_rcu(ptype, &offload_base, list) { 2375 if (ptype->type == type && ptype->callbacks.gso_segment) { 2376 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 2377 int err; 2378 2379 err = ptype->callbacks.gso_send_check(skb); 2380 segs = ERR_PTR(err); 2381 if (err || skb_gso_ok(skb, features)) 2382 break; 2383 __skb_push(skb, (skb->data - 2384 skb_network_header(skb))); 2385 } 2386 segs = ptype->callbacks.gso_segment(skb, features); 2387 break; 2388 } 2389 } 2390 rcu_read_unlock(); 2391 2392 __skb_push(skb, skb->data - skb_mac_header(skb)); 2393 2394 return segs; 2395 } 2396 EXPORT_SYMBOL(skb_mac_gso_segment); 2397 2398 2399 /* openvswitch calls this on rx path, so we need a different check. 2400 */ 2401 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2402 { 2403 if (tx_path) 2404 return skb->ip_summed != CHECKSUM_PARTIAL; 2405 else 2406 return skb->ip_summed == CHECKSUM_NONE; 2407 } 2408 2409 /** 2410 * __skb_gso_segment - Perform segmentation on skb. 2411 * @skb: buffer to segment 2412 * @features: features for the output path (see dev->features) 2413 * @tx_path: whether it is called in TX path 2414 * 2415 * This function segments the given skb and returns a list of segments. 2416 * 2417 * It may return NULL if the skb requires no segmentation. This is 2418 * only possible when GSO is used for verifying header integrity. 2419 */ 2420 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2421 netdev_features_t features, bool tx_path) 2422 { 2423 if (unlikely(skb_needs_check(skb, tx_path))) { 2424 int err; 2425 2426 skb_warn_bad_offload(skb); 2427 2428 err = skb_cow_head(skb, 0); 2429 if (err < 0) 2430 return ERR_PTR(err); 2431 } 2432 2433 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2434 SKB_GSO_CB(skb)->encap_level = 0; 2435 2436 skb_reset_mac_header(skb); 2437 skb_reset_mac_len(skb); 2438 2439 return skb_mac_gso_segment(skb, features); 2440 } 2441 EXPORT_SYMBOL(__skb_gso_segment); 2442 2443 /* Take action when hardware reception checksum errors are detected. */ 2444 #ifdef CONFIG_BUG 2445 void netdev_rx_csum_fault(struct net_device *dev) 2446 { 2447 if (net_ratelimit()) { 2448 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2449 dump_stack(); 2450 } 2451 } 2452 EXPORT_SYMBOL(netdev_rx_csum_fault); 2453 #endif 2454 2455 /* Actually, we should eliminate this check as soon as we know, that: 2456 * 1. IOMMU is present and allows to map all the memory. 2457 * 2. No high memory really exists on this machine. 2458 */ 2459 2460 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2461 { 2462 #ifdef CONFIG_HIGHMEM 2463 int i; 2464 if (!(dev->features & NETIF_F_HIGHDMA)) { 2465 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2466 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2467 if (PageHighMem(skb_frag_page(frag))) 2468 return 1; 2469 } 2470 } 2471 2472 if (PCI_DMA_BUS_IS_PHYS) { 2473 struct device *pdev = dev->dev.parent; 2474 2475 if (!pdev) 2476 return 0; 2477 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2478 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2479 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2480 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2481 return 1; 2482 } 2483 } 2484 #endif 2485 return 0; 2486 } 2487 2488 struct dev_gso_cb { 2489 void (*destructor)(struct sk_buff *skb); 2490 }; 2491 2492 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 2493 2494 static void dev_gso_skb_destructor(struct sk_buff *skb) 2495 { 2496 struct dev_gso_cb *cb; 2497 2498 kfree_skb_list(skb->next); 2499 skb->next = NULL; 2500 2501 cb = DEV_GSO_CB(skb); 2502 if (cb->destructor) 2503 cb->destructor(skb); 2504 } 2505 2506 /** 2507 * dev_gso_segment - Perform emulated hardware segmentation on skb. 2508 * @skb: buffer to segment 2509 * @features: device features as applicable to this skb 2510 * 2511 * This function segments the given skb and stores the list of segments 2512 * in skb->next. 2513 */ 2514 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features) 2515 { 2516 struct sk_buff *segs; 2517 2518 segs = skb_gso_segment(skb, features); 2519 2520 /* Verifying header integrity only. */ 2521 if (!segs) 2522 return 0; 2523 2524 if (IS_ERR(segs)) 2525 return PTR_ERR(segs); 2526 2527 skb->next = segs; 2528 DEV_GSO_CB(skb)->destructor = skb->destructor; 2529 skb->destructor = dev_gso_skb_destructor; 2530 2531 return 0; 2532 } 2533 2534 /* If MPLS offload request, verify we are testing hardware MPLS features 2535 * instead of standard features for the netdev. 2536 */ 2537 #ifdef CONFIG_NET_MPLS_GSO 2538 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2539 netdev_features_t features, 2540 __be16 type) 2541 { 2542 if (type == htons(ETH_P_MPLS_UC) || type == htons(ETH_P_MPLS_MC)) 2543 features &= skb->dev->mpls_features; 2544 2545 return features; 2546 } 2547 #else 2548 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2549 netdev_features_t features, 2550 __be16 type) 2551 { 2552 return features; 2553 } 2554 #endif 2555 2556 static netdev_features_t harmonize_features(struct sk_buff *skb, 2557 netdev_features_t features) 2558 { 2559 int tmp; 2560 __be16 type; 2561 2562 type = skb_network_protocol(skb, &tmp); 2563 features = net_mpls_features(skb, features, type); 2564 2565 if (skb->ip_summed != CHECKSUM_NONE && 2566 !can_checksum_protocol(features, type)) { 2567 features &= ~NETIF_F_ALL_CSUM; 2568 } else if (illegal_highdma(skb->dev, skb)) { 2569 features &= ~NETIF_F_SG; 2570 } 2571 2572 return features; 2573 } 2574 2575 netdev_features_t netif_skb_features(struct sk_buff *skb) 2576 { 2577 __be16 protocol = skb->protocol; 2578 netdev_features_t features = skb->dev->features; 2579 2580 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs) 2581 features &= ~NETIF_F_GSO_MASK; 2582 2583 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) { 2584 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2585 protocol = veh->h_vlan_encapsulated_proto; 2586 } else if (!vlan_tx_tag_present(skb)) { 2587 return harmonize_features(skb, features); 2588 } 2589 2590 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX | 2591 NETIF_F_HW_VLAN_STAG_TX); 2592 2593 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) 2594 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2595 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX | 2596 NETIF_F_HW_VLAN_STAG_TX; 2597 2598 return harmonize_features(skb, features); 2599 } 2600 EXPORT_SYMBOL(netif_skb_features); 2601 2602 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2603 struct netdev_queue *txq) 2604 { 2605 const struct net_device_ops *ops = dev->netdev_ops; 2606 int rc = NETDEV_TX_OK; 2607 unsigned int skb_len; 2608 2609 if (likely(!skb->next)) { 2610 netdev_features_t features; 2611 2612 /* 2613 * If device doesn't need skb->dst, release it right now while 2614 * its hot in this cpu cache 2615 */ 2616 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2617 skb_dst_drop(skb); 2618 2619 features = netif_skb_features(skb); 2620 2621 if (vlan_tx_tag_present(skb) && 2622 !vlan_hw_offload_capable(features, skb->vlan_proto)) { 2623 skb = __vlan_put_tag(skb, skb->vlan_proto, 2624 vlan_tx_tag_get(skb)); 2625 if (unlikely(!skb)) 2626 goto out; 2627 2628 skb->vlan_tci = 0; 2629 } 2630 2631 /* If encapsulation offload request, verify we are testing 2632 * hardware encapsulation features instead of standard 2633 * features for the netdev 2634 */ 2635 if (skb->encapsulation) 2636 features &= dev->hw_enc_features; 2637 2638 if (netif_needs_gso(skb, features)) { 2639 if (unlikely(dev_gso_segment(skb, features))) 2640 goto out_kfree_skb; 2641 if (skb->next) 2642 goto gso; 2643 } else { 2644 if (skb_needs_linearize(skb, features) && 2645 __skb_linearize(skb)) 2646 goto out_kfree_skb; 2647 2648 /* If packet is not checksummed and device does not 2649 * support checksumming for this protocol, complete 2650 * checksumming here. 2651 */ 2652 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2653 if (skb->encapsulation) 2654 skb_set_inner_transport_header(skb, 2655 skb_checksum_start_offset(skb)); 2656 else 2657 skb_set_transport_header(skb, 2658 skb_checksum_start_offset(skb)); 2659 if (!(features & NETIF_F_ALL_CSUM) && 2660 skb_checksum_help(skb)) 2661 goto out_kfree_skb; 2662 } 2663 } 2664 2665 if (!list_empty(&ptype_all)) 2666 dev_queue_xmit_nit(skb, dev); 2667 2668 skb_len = skb->len; 2669 trace_net_dev_start_xmit(skb, dev); 2670 rc = ops->ndo_start_xmit(skb, dev); 2671 trace_net_dev_xmit(skb, rc, dev, skb_len); 2672 if (rc == NETDEV_TX_OK) 2673 txq_trans_update(txq); 2674 return rc; 2675 } 2676 2677 gso: 2678 do { 2679 struct sk_buff *nskb = skb->next; 2680 2681 skb->next = nskb->next; 2682 nskb->next = NULL; 2683 2684 if (!list_empty(&ptype_all)) 2685 dev_queue_xmit_nit(nskb, dev); 2686 2687 skb_len = nskb->len; 2688 trace_net_dev_start_xmit(nskb, dev); 2689 rc = ops->ndo_start_xmit(nskb, dev); 2690 trace_net_dev_xmit(nskb, rc, dev, skb_len); 2691 if (unlikely(rc != NETDEV_TX_OK)) { 2692 if (rc & ~NETDEV_TX_MASK) 2693 goto out_kfree_gso_skb; 2694 nskb->next = skb->next; 2695 skb->next = nskb; 2696 return rc; 2697 } 2698 txq_trans_update(txq); 2699 if (unlikely(netif_xmit_stopped(txq) && skb->next)) 2700 return NETDEV_TX_BUSY; 2701 } while (skb->next); 2702 2703 out_kfree_gso_skb: 2704 if (likely(skb->next == NULL)) { 2705 skb->destructor = DEV_GSO_CB(skb)->destructor; 2706 consume_skb(skb); 2707 return rc; 2708 } 2709 out_kfree_skb: 2710 kfree_skb(skb); 2711 out: 2712 return rc; 2713 } 2714 EXPORT_SYMBOL_GPL(dev_hard_start_xmit); 2715 2716 static void qdisc_pkt_len_init(struct sk_buff *skb) 2717 { 2718 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2719 2720 qdisc_skb_cb(skb)->pkt_len = skb->len; 2721 2722 /* To get more precise estimation of bytes sent on wire, 2723 * we add to pkt_len the headers size of all segments 2724 */ 2725 if (shinfo->gso_size) { 2726 unsigned int hdr_len; 2727 u16 gso_segs = shinfo->gso_segs; 2728 2729 /* mac layer + network layer */ 2730 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 2731 2732 /* + transport layer */ 2733 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 2734 hdr_len += tcp_hdrlen(skb); 2735 else 2736 hdr_len += sizeof(struct udphdr); 2737 2738 if (shinfo->gso_type & SKB_GSO_DODGY) 2739 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 2740 shinfo->gso_size); 2741 2742 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 2743 } 2744 } 2745 2746 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2747 struct net_device *dev, 2748 struct netdev_queue *txq) 2749 { 2750 spinlock_t *root_lock = qdisc_lock(q); 2751 bool contended; 2752 int rc; 2753 2754 qdisc_pkt_len_init(skb); 2755 qdisc_calculate_pkt_len(skb, q); 2756 /* 2757 * Heuristic to force contended enqueues to serialize on a 2758 * separate lock before trying to get qdisc main lock. 2759 * This permits __QDISC___STATE_RUNNING owner to get the lock more 2760 * often and dequeue packets faster. 2761 */ 2762 contended = qdisc_is_running(q); 2763 if (unlikely(contended)) 2764 spin_lock(&q->busylock); 2765 2766 spin_lock(root_lock); 2767 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2768 kfree_skb(skb); 2769 rc = NET_XMIT_DROP; 2770 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2771 qdisc_run_begin(q)) { 2772 /* 2773 * This is a work-conserving queue; there are no old skbs 2774 * waiting to be sent out; and the qdisc is not running - 2775 * xmit the skb directly. 2776 */ 2777 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2778 skb_dst_force(skb); 2779 2780 qdisc_bstats_update(q, skb); 2781 2782 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2783 if (unlikely(contended)) { 2784 spin_unlock(&q->busylock); 2785 contended = false; 2786 } 2787 __qdisc_run(q); 2788 } else 2789 qdisc_run_end(q); 2790 2791 rc = NET_XMIT_SUCCESS; 2792 } else { 2793 skb_dst_force(skb); 2794 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2795 if (qdisc_run_begin(q)) { 2796 if (unlikely(contended)) { 2797 spin_unlock(&q->busylock); 2798 contended = false; 2799 } 2800 __qdisc_run(q); 2801 } 2802 } 2803 spin_unlock(root_lock); 2804 if (unlikely(contended)) 2805 spin_unlock(&q->busylock); 2806 return rc; 2807 } 2808 2809 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2810 static void skb_update_prio(struct sk_buff *skb) 2811 { 2812 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2813 2814 if (!skb->priority && skb->sk && map) { 2815 unsigned int prioidx = skb->sk->sk_cgrp_prioidx; 2816 2817 if (prioidx < map->priomap_len) 2818 skb->priority = map->priomap[prioidx]; 2819 } 2820 } 2821 #else 2822 #define skb_update_prio(skb) 2823 #endif 2824 2825 static DEFINE_PER_CPU(int, xmit_recursion); 2826 #define RECURSION_LIMIT 10 2827 2828 /** 2829 * dev_loopback_xmit - loop back @skb 2830 * @skb: buffer to transmit 2831 */ 2832 int dev_loopback_xmit(struct sk_buff *skb) 2833 { 2834 skb_reset_mac_header(skb); 2835 __skb_pull(skb, skb_network_offset(skb)); 2836 skb->pkt_type = PACKET_LOOPBACK; 2837 skb->ip_summed = CHECKSUM_UNNECESSARY; 2838 WARN_ON(!skb_dst(skb)); 2839 skb_dst_force(skb); 2840 netif_rx_ni(skb); 2841 return 0; 2842 } 2843 EXPORT_SYMBOL(dev_loopback_xmit); 2844 2845 /** 2846 * __dev_queue_xmit - transmit a buffer 2847 * @skb: buffer to transmit 2848 * @accel_priv: private data used for L2 forwarding offload 2849 * 2850 * Queue a buffer for transmission to a network device. The caller must 2851 * have set the device and priority and built the buffer before calling 2852 * this function. The function can be called from an interrupt. 2853 * 2854 * A negative errno code is returned on a failure. A success does not 2855 * guarantee the frame will be transmitted as it may be dropped due 2856 * to congestion or traffic shaping. 2857 * 2858 * ----------------------------------------------------------------------------------- 2859 * I notice this method can also return errors from the queue disciplines, 2860 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2861 * be positive. 2862 * 2863 * Regardless of the return value, the skb is consumed, so it is currently 2864 * difficult to retry a send to this method. (You can bump the ref count 2865 * before sending to hold a reference for retry if you are careful.) 2866 * 2867 * When calling this method, interrupts MUST be enabled. This is because 2868 * the BH enable code must have IRQs enabled so that it will not deadlock. 2869 * --BLG 2870 */ 2871 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 2872 { 2873 struct net_device *dev = skb->dev; 2874 struct netdev_queue *txq; 2875 struct Qdisc *q; 2876 int rc = -ENOMEM; 2877 2878 skb_reset_mac_header(skb); 2879 2880 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 2881 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 2882 2883 /* Disable soft irqs for various locks below. Also 2884 * stops preemption for RCU. 2885 */ 2886 rcu_read_lock_bh(); 2887 2888 skb_update_prio(skb); 2889 2890 txq = netdev_pick_tx(dev, skb, accel_priv); 2891 q = rcu_dereference_bh(txq->qdisc); 2892 2893 #ifdef CONFIG_NET_CLS_ACT 2894 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2895 #endif 2896 trace_net_dev_queue(skb); 2897 if (q->enqueue) { 2898 rc = __dev_xmit_skb(skb, q, dev, txq); 2899 goto out; 2900 } 2901 2902 /* The device has no queue. Common case for software devices: 2903 loopback, all the sorts of tunnels... 2904 2905 Really, it is unlikely that netif_tx_lock protection is necessary 2906 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2907 counters.) 2908 However, it is possible, that they rely on protection 2909 made by us here. 2910 2911 Check this and shot the lock. It is not prone from deadlocks. 2912 Either shot noqueue qdisc, it is even simpler 8) 2913 */ 2914 if (dev->flags & IFF_UP) { 2915 int cpu = smp_processor_id(); /* ok because BHs are off */ 2916 2917 if (txq->xmit_lock_owner != cpu) { 2918 2919 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2920 goto recursion_alert; 2921 2922 HARD_TX_LOCK(dev, txq, cpu); 2923 2924 if (!netif_xmit_stopped(txq)) { 2925 __this_cpu_inc(xmit_recursion); 2926 rc = dev_hard_start_xmit(skb, dev, txq); 2927 __this_cpu_dec(xmit_recursion); 2928 if (dev_xmit_complete(rc)) { 2929 HARD_TX_UNLOCK(dev, txq); 2930 goto out; 2931 } 2932 } 2933 HARD_TX_UNLOCK(dev, txq); 2934 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 2935 dev->name); 2936 } else { 2937 /* Recursion is detected! It is possible, 2938 * unfortunately 2939 */ 2940 recursion_alert: 2941 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 2942 dev->name); 2943 } 2944 } 2945 2946 rc = -ENETDOWN; 2947 rcu_read_unlock_bh(); 2948 2949 atomic_long_inc(&dev->tx_dropped); 2950 kfree_skb(skb); 2951 return rc; 2952 out: 2953 rcu_read_unlock_bh(); 2954 return rc; 2955 } 2956 2957 int dev_queue_xmit(struct sk_buff *skb) 2958 { 2959 return __dev_queue_xmit(skb, NULL); 2960 } 2961 EXPORT_SYMBOL(dev_queue_xmit); 2962 2963 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 2964 { 2965 return __dev_queue_xmit(skb, accel_priv); 2966 } 2967 EXPORT_SYMBOL(dev_queue_xmit_accel); 2968 2969 2970 /*======================================================================= 2971 Receiver routines 2972 =======================================================================*/ 2973 2974 int netdev_max_backlog __read_mostly = 1000; 2975 EXPORT_SYMBOL(netdev_max_backlog); 2976 2977 int netdev_tstamp_prequeue __read_mostly = 1; 2978 int netdev_budget __read_mostly = 300; 2979 int weight_p __read_mostly = 64; /* old backlog weight */ 2980 2981 /* Called with irq disabled */ 2982 static inline void ____napi_schedule(struct softnet_data *sd, 2983 struct napi_struct *napi) 2984 { 2985 list_add_tail(&napi->poll_list, &sd->poll_list); 2986 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2987 } 2988 2989 #ifdef CONFIG_RPS 2990 2991 /* One global table that all flow-based protocols share. */ 2992 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2993 EXPORT_SYMBOL(rps_sock_flow_table); 2994 2995 struct static_key rps_needed __read_mostly; 2996 2997 static struct rps_dev_flow * 2998 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2999 struct rps_dev_flow *rflow, u16 next_cpu) 3000 { 3001 if (next_cpu != RPS_NO_CPU) { 3002 #ifdef CONFIG_RFS_ACCEL 3003 struct netdev_rx_queue *rxqueue; 3004 struct rps_dev_flow_table *flow_table; 3005 struct rps_dev_flow *old_rflow; 3006 u32 flow_id; 3007 u16 rxq_index; 3008 int rc; 3009 3010 /* Should we steer this flow to a different hardware queue? */ 3011 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3012 !(dev->features & NETIF_F_NTUPLE)) 3013 goto out; 3014 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3015 if (rxq_index == skb_get_rx_queue(skb)) 3016 goto out; 3017 3018 rxqueue = dev->_rx + rxq_index; 3019 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3020 if (!flow_table) 3021 goto out; 3022 flow_id = skb_get_hash(skb) & flow_table->mask; 3023 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3024 rxq_index, flow_id); 3025 if (rc < 0) 3026 goto out; 3027 old_rflow = rflow; 3028 rflow = &flow_table->flows[flow_id]; 3029 rflow->filter = rc; 3030 if (old_rflow->filter == rflow->filter) 3031 old_rflow->filter = RPS_NO_FILTER; 3032 out: 3033 #endif 3034 rflow->last_qtail = 3035 per_cpu(softnet_data, next_cpu).input_queue_head; 3036 } 3037 3038 rflow->cpu = next_cpu; 3039 return rflow; 3040 } 3041 3042 /* 3043 * get_rps_cpu is called from netif_receive_skb and returns the target 3044 * CPU from the RPS map of the receiving queue for a given skb. 3045 * rcu_read_lock must be held on entry. 3046 */ 3047 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3048 struct rps_dev_flow **rflowp) 3049 { 3050 struct netdev_rx_queue *rxqueue; 3051 struct rps_map *map; 3052 struct rps_dev_flow_table *flow_table; 3053 struct rps_sock_flow_table *sock_flow_table; 3054 int cpu = -1; 3055 u16 tcpu; 3056 u32 hash; 3057 3058 if (skb_rx_queue_recorded(skb)) { 3059 u16 index = skb_get_rx_queue(skb); 3060 if (unlikely(index >= dev->real_num_rx_queues)) { 3061 WARN_ONCE(dev->real_num_rx_queues > 1, 3062 "%s received packet on queue %u, but number " 3063 "of RX queues is %u\n", 3064 dev->name, index, dev->real_num_rx_queues); 3065 goto done; 3066 } 3067 rxqueue = dev->_rx + index; 3068 } else 3069 rxqueue = dev->_rx; 3070 3071 map = rcu_dereference(rxqueue->rps_map); 3072 if (map) { 3073 if (map->len == 1 && 3074 !rcu_access_pointer(rxqueue->rps_flow_table)) { 3075 tcpu = map->cpus[0]; 3076 if (cpu_online(tcpu)) 3077 cpu = tcpu; 3078 goto done; 3079 } 3080 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) { 3081 goto done; 3082 } 3083 3084 skb_reset_network_header(skb); 3085 hash = skb_get_hash(skb); 3086 if (!hash) 3087 goto done; 3088 3089 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3090 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3091 if (flow_table && sock_flow_table) { 3092 u16 next_cpu; 3093 struct rps_dev_flow *rflow; 3094 3095 rflow = &flow_table->flows[hash & flow_table->mask]; 3096 tcpu = rflow->cpu; 3097 3098 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask]; 3099 3100 /* 3101 * If the desired CPU (where last recvmsg was done) is 3102 * different from current CPU (one in the rx-queue flow 3103 * table entry), switch if one of the following holds: 3104 * - Current CPU is unset (equal to RPS_NO_CPU). 3105 * - Current CPU is offline. 3106 * - The current CPU's queue tail has advanced beyond the 3107 * last packet that was enqueued using this table entry. 3108 * This guarantees that all previous packets for the flow 3109 * have been dequeued, thus preserving in order delivery. 3110 */ 3111 if (unlikely(tcpu != next_cpu) && 3112 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 3113 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3114 rflow->last_qtail)) >= 0)) { 3115 tcpu = next_cpu; 3116 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3117 } 3118 3119 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 3120 *rflowp = rflow; 3121 cpu = tcpu; 3122 goto done; 3123 } 3124 } 3125 3126 if (map) { 3127 tcpu = map->cpus[((u64) hash * map->len) >> 32]; 3128 3129 if (cpu_online(tcpu)) { 3130 cpu = tcpu; 3131 goto done; 3132 } 3133 } 3134 3135 done: 3136 return cpu; 3137 } 3138 3139 #ifdef CONFIG_RFS_ACCEL 3140 3141 /** 3142 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3143 * @dev: Device on which the filter was set 3144 * @rxq_index: RX queue index 3145 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3146 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3147 * 3148 * Drivers that implement ndo_rx_flow_steer() should periodically call 3149 * this function for each installed filter and remove the filters for 3150 * which it returns %true. 3151 */ 3152 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3153 u32 flow_id, u16 filter_id) 3154 { 3155 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3156 struct rps_dev_flow_table *flow_table; 3157 struct rps_dev_flow *rflow; 3158 bool expire = true; 3159 int cpu; 3160 3161 rcu_read_lock(); 3162 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3163 if (flow_table && flow_id <= flow_table->mask) { 3164 rflow = &flow_table->flows[flow_id]; 3165 cpu = ACCESS_ONCE(rflow->cpu); 3166 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 3167 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3168 rflow->last_qtail) < 3169 (int)(10 * flow_table->mask))) 3170 expire = false; 3171 } 3172 rcu_read_unlock(); 3173 return expire; 3174 } 3175 EXPORT_SYMBOL(rps_may_expire_flow); 3176 3177 #endif /* CONFIG_RFS_ACCEL */ 3178 3179 /* Called from hardirq (IPI) context */ 3180 static void rps_trigger_softirq(void *data) 3181 { 3182 struct softnet_data *sd = data; 3183 3184 ____napi_schedule(sd, &sd->backlog); 3185 sd->received_rps++; 3186 } 3187 3188 #endif /* CONFIG_RPS */ 3189 3190 /* 3191 * Check if this softnet_data structure is another cpu one 3192 * If yes, queue it to our IPI list and return 1 3193 * If no, return 0 3194 */ 3195 static int rps_ipi_queued(struct softnet_data *sd) 3196 { 3197 #ifdef CONFIG_RPS 3198 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 3199 3200 if (sd != mysd) { 3201 sd->rps_ipi_next = mysd->rps_ipi_list; 3202 mysd->rps_ipi_list = sd; 3203 3204 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3205 return 1; 3206 } 3207 #endif /* CONFIG_RPS */ 3208 return 0; 3209 } 3210 3211 #ifdef CONFIG_NET_FLOW_LIMIT 3212 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3213 #endif 3214 3215 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3216 { 3217 #ifdef CONFIG_NET_FLOW_LIMIT 3218 struct sd_flow_limit *fl; 3219 struct softnet_data *sd; 3220 unsigned int old_flow, new_flow; 3221 3222 if (qlen < (netdev_max_backlog >> 1)) 3223 return false; 3224 3225 sd = &__get_cpu_var(softnet_data); 3226 3227 rcu_read_lock(); 3228 fl = rcu_dereference(sd->flow_limit); 3229 if (fl) { 3230 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3231 old_flow = fl->history[fl->history_head]; 3232 fl->history[fl->history_head] = new_flow; 3233 3234 fl->history_head++; 3235 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3236 3237 if (likely(fl->buckets[old_flow])) 3238 fl->buckets[old_flow]--; 3239 3240 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3241 fl->count++; 3242 rcu_read_unlock(); 3243 return true; 3244 } 3245 } 3246 rcu_read_unlock(); 3247 #endif 3248 return false; 3249 } 3250 3251 /* 3252 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3253 * queue (may be a remote CPU queue). 3254 */ 3255 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3256 unsigned int *qtail) 3257 { 3258 struct softnet_data *sd; 3259 unsigned long flags; 3260 unsigned int qlen; 3261 3262 sd = &per_cpu(softnet_data, cpu); 3263 3264 local_irq_save(flags); 3265 3266 rps_lock(sd); 3267 qlen = skb_queue_len(&sd->input_pkt_queue); 3268 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3269 if (skb_queue_len(&sd->input_pkt_queue)) { 3270 enqueue: 3271 __skb_queue_tail(&sd->input_pkt_queue, skb); 3272 input_queue_tail_incr_save(sd, qtail); 3273 rps_unlock(sd); 3274 local_irq_restore(flags); 3275 return NET_RX_SUCCESS; 3276 } 3277 3278 /* Schedule NAPI for backlog device 3279 * We can use non atomic operation since we own the queue lock 3280 */ 3281 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3282 if (!rps_ipi_queued(sd)) 3283 ____napi_schedule(sd, &sd->backlog); 3284 } 3285 goto enqueue; 3286 } 3287 3288 sd->dropped++; 3289 rps_unlock(sd); 3290 3291 local_irq_restore(flags); 3292 3293 atomic_long_inc(&skb->dev->rx_dropped); 3294 kfree_skb(skb); 3295 return NET_RX_DROP; 3296 } 3297 3298 static int netif_rx_internal(struct sk_buff *skb) 3299 { 3300 int ret; 3301 3302 net_timestamp_check(netdev_tstamp_prequeue, skb); 3303 3304 trace_netif_rx(skb); 3305 #ifdef CONFIG_RPS 3306 if (static_key_false(&rps_needed)) { 3307 struct rps_dev_flow voidflow, *rflow = &voidflow; 3308 int cpu; 3309 3310 preempt_disable(); 3311 rcu_read_lock(); 3312 3313 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3314 if (cpu < 0) 3315 cpu = smp_processor_id(); 3316 3317 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3318 3319 rcu_read_unlock(); 3320 preempt_enable(); 3321 } else 3322 #endif 3323 { 3324 unsigned int qtail; 3325 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3326 put_cpu(); 3327 } 3328 return ret; 3329 } 3330 3331 /** 3332 * netif_rx - post buffer to the network code 3333 * @skb: buffer to post 3334 * 3335 * This function receives a packet from a device driver and queues it for 3336 * the upper (protocol) levels to process. It always succeeds. The buffer 3337 * may be dropped during processing for congestion control or by the 3338 * protocol layers. 3339 * 3340 * return values: 3341 * NET_RX_SUCCESS (no congestion) 3342 * NET_RX_DROP (packet was dropped) 3343 * 3344 */ 3345 3346 int netif_rx(struct sk_buff *skb) 3347 { 3348 trace_netif_rx_entry(skb); 3349 3350 return netif_rx_internal(skb); 3351 } 3352 EXPORT_SYMBOL(netif_rx); 3353 3354 int netif_rx_ni(struct sk_buff *skb) 3355 { 3356 int err; 3357 3358 trace_netif_rx_ni_entry(skb); 3359 3360 preempt_disable(); 3361 err = netif_rx_internal(skb); 3362 if (local_softirq_pending()) 3363 do_softirq(); 3364 preempt_enable(); 3365 3366 return err; 3367 } 3368 EXPORT_SYMBOL(netif_rx_ni); 3369 3370 static void net_tx_action(struct softirq_action *h) 3371 { 3372 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3373 3374 if (sd->completion_queue) { 3375 struct sk_buff *clist; 3376 3377 local_irq_disable(); 3378 clist = sd->completion_queue; 3379 sd->completion_queue = NULL; 3380 local_irq_enable(); 3381 3382 while (clist) { 3383 struct sk_buff *skb = clist; 3384 clist = clist->next; 3385 3386 WARN_ON(atomic_read(&skb->users)); 3387 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 3388 trace_consume_skb(skb); 3389 else 3390 trace_kfree_skb(skb, net_tx_action); 3391 __kfree_skb(skb); 3392 } 3393 } 3394 3395 if (sd->output_queue) { 3396 struct Qdisc *head; 3397 3398 local_irq_disable(); 3399 head = sd->output_queue; 3400 sd->output_queue = NULL; 3401 sd->output_queue_tailp = &sd->output_queue; 3402 local_irq_enable(); 3403 3404 while (head) { 3405 struct Qdisc *q = head; 3406 spinlock_t *root_lock; 3407 3408 head = head->next_sched; 3409 3410 root_lock = qdisc_lock(q); 3411 if (spin_trylock(root_lock)) { 3412 smp_mb__before_atomic(); 3413 clear_bit(__QDISC_STATE_SCHED, 3414 &q->state); 3415 qdisc_run(q); 3416 spin_unlock(root_lock); 3417 } else { 3418 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3419 &q->state)) { 3420 __netif_reschedule(q); 3421 } else { 3422 smp_mb__before_atomic(); 3423 clear_bit(__QDISC_STATE_SCHED, 3424 &q->state); 3425 } 3426 } 3427 } 3428 } 3429 } 3430 3431 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3432 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3433 /* This hook is defined here for ATM LANE */ 3434 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3435 unsigned char *addr) __read_mostly; 3436 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3437 #endif 3438 3439 #ifdef CONFIG_NET_CLS_ACT 3440 /* TODO: Maybe we should just force sch_ingress to be compiled in 3441 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3442 * a compare and 2 stores extra right now if we dont have it on 3443 * but have CONFIG_NET_CLS_ACT 3444 * NOTE: This doesn't stop any functionality; if you dont have 3445 * the ingress scheduler, you just can't add policies on ingress. 3446 * 3447 */ 3448 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3449 { 3450 struct net_device *dev = skb->dev; 3451 u32 ttl = G_TC_RTTL(skb->tc_verd); 3452 int result = TC_ACT_OK; 3453 struct Qdisc *q; 3454 3455 if (unlikely(MAX_RED_LOOP < ttl++)) { 3456 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n", 3457 skb->skb_iif, dev->ifindex); 3458 return TC_ACT_SHOT; 3459 } 3460 3461 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3462 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3463 3464 q = rxq->qdisc; 3465 if (q != &noop_qdisc) { 3466 spin_lock(qdisc_lock(q)); 3467 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3468 result = qdisc_enqueue_root(skb, q); 3469 spin_unlock(qdisc_lock(q)); 3470 } 3471 3472 return result; 3473 } 3474 3475 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3476 struct packet_type **pt_prev, 3477 int *ret, struct net_device *orig_dev) 3478 { 3479 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3480 3481 if (!rxq || rxq->qdisc == &noop_qdisc) 3482 goto out; 3483 3484 if (*pt_prev) { 3485 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3486 *pt_prev = NULL; 3487 } 3488 3489 switch (ing_filter(skb, rxq)) { 3490 case TC_ACT_SHOT: 3491 case TC_ACT_STOLEN: 3492 kfree_skb(skb); 3493 return NULL; 3494 } 3495 3496 out: 3497 skb->tc_verd = 0; 3498 return skb; 3499 } 3500 #endif 3501 3502 /** 3503 * netdev_rx_handler_register - register receive handler 3504 * @dev: device to register a handler for 3505 * @rx_handler: receive handler to register 3506 * @rx_handler_data: data pointer that is used by rx handler 3507 * 3508 * Register a receive handler for a device. This handler will then be 3509 * called from __netif_receive_skb. A negative errno code is returned 3510 * on a failure. 3511 * 3512 * The caller must hold the rtnl_mutex. 3513 * 3514 * For a general description of rx_handler, see enum rx_handler_result. 3515 */ 3516 int netdev_rx_handler_register(struct net_device *dev, 3517 rx_handler_func_t *rx_handler, 3518 void *rx_handler_data) 3519 { 3520 ASSERT_RTNL(); 3521 3522 if (dev->rx_handler) 3523 return -EBUSY; 3524 3525 /* Note: rx_handler_data must be set before rx_handler */ 3526 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3527 rcu_assign_pointer(dev->rx_handler, rx_handler); 3528 3529 return 0; 3530 } 3531 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3532 3533 /** 3534 * netdev_rx_handler_unregister - unregister receive handler 3535 * @dev: device to unregister a handler from 3536 * 3537 * Unregister a receive handler from a device. 3538 * 3539 * The caller must hold the rtnl_mutex. 3540 */ 3541 void netdev_rx_handler_unregister(struct net_device *dev) 3542 { 3543 3544 ASSERT_RTNL(); 3545 RCU_INIT_POINTER(dev->rx_handler, NULL); 3546 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 3547 * section has a guarantee to see a non NULL rx_handler_data 3548 * as well. 3549 */ 3550 synchronize_net(); 3551 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3552 } 3553 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3554 3555 /* 3556 * Limit the use of PFMEMALLOC reserves to those protocols that implement 3557 * the special handling of PFMEMALLOC skbs. 3558 */ 3559 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 3560 { 3561 switch (skb->protocol) { 3562 case htons(ETH_P_ARP): 3563 case htons(ETH_P_IP): 3564 case htons(ETH_P_IPV6): 3565 case htons(ETH_P_8021Q): 3566 case htons(ETH_P_8021AD): 3567 return true; 3568 default: 3569 return false; 3570 } 3571 } 3572 3573 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 3574 { 3575 struct packet_type *ptype, *pt_prev; 3576 rx_handler_func_t *rx_handler; 3577 struct net_device *orig_dev; 3578 struct net_device *null_or_dev; 3579 bool deliver_exact = false; 3580 int ret = NET_RX_DROP; 3581 __be16 type; 3582 3583 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3584 3585 trace_netif_receive_skb(skb); 3586 3587 orig_dev = skb->dev; 3588 3589 skb_reset_network_header(skb); 3590 if (!skb_transport_header_was_set(skb)) 3591 skb_reset_transport_header(skb); 3592 skb_reset_mac_len(skb); 3593 3594 pt_prev = NULL; 3595 3596 rcu_read_lock(); 3597 3598 another_round: 3599 skb->skb_iif = skb->dev->ifindex; 3600 3601 __this_cpu_inc(softnet_data.processed); 3602 3603 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 3604 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 3605 skb = skb_vlan_untag(skb); 3606 if (unlikely(!skb)) 3607 goto unlock; 3608 } 3609 3610 #ifdef CONFIG_NET_CLS_ACT 3611 if (skb->tc_verd & TC_NCLS) { 3612 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3613 goto ncls; 3614 } 3615 #endif 3616 3617 if (pfmemalloc) 3618 goto skip_taps; 3619 3620 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3621 if (!ptype->dev || ptype->dev == skb->dev) { 3622 if (pt_prev) 3623 ret = deliver_skb(skb, pt_prev, orig_dev); 3624 pt_prev = ptype; 3625 } 3626 } 3627 3628 skip_taps: 3629 #ifdef CONFIG_NET_CLS_ACT 3630 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3631 if (!skb) 3632 goto unlock; 3633 ncls: 3634 #endif 3635 3636 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 3637 goto drop; 3638 3639 if (vlan_tx_tag_present(skb)) { 3640 if (pt_prev) { 3641 ret = deliver_skb(skb, pt_prev, orig_dev); 3642 pt_prev = NULL; 3643 } 3644 if (vlan_do_receive(&skb)) 3645 goto another_round; 3646 else if (unlikely(!skb)) 3647 goto unlock; 3648 } 3649 3650 rx_handler = rcu_dereference(skb->dev->rx_handler); 3651 if (rx_handler) { 3652 if (pt_prev) { 3653 ret = deliver_skb(skb, pt_prev, orig_dev); 3654 pt_prev = NULL; 3655 } 3656 switch (rx_handler(&skb)) { 3657 case RX_HANDLER_CONSUMED: 3658 ret = NET_RX_SUCCESS; 3659 goto unlock; 3660 case RX_HANDLER_ANOTHER: 3661 goto another_round; 3662 case RX_HANDLER_EXACT: 3663 deliver_exact = true; 3664 case RX_HANDLER_PASS: 3665 break; 3666 default: 3667 BUG(); 3668 } 3669 } 3670 3671 if (unlikely(vlan_tx_tag_present(skb))) { 3672 if (vlan_tx_tag_get_id(skb)) 3673 skb->pkt_type = PACKET_OTHERHOST; 3674 /* Note: we might in the future use prio bits 3675 * and set skb->priority like in vlan_do_receive() 3676 * For the time being, just ignore Priority Code Point 3677 */ 3678 skb->vlan_tci = 0; 3679 } 3680 3681 /* deliver only exact match when indicated */ 3682 null_or_dev = deliver_exact ? skb->dev : NULL; 3683 3684 type = skb->protocol; 3685 list_for_each_entry_rcu(ptype, 3686 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3687 if (ptype->type == type && 3688 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3689 ptype->dev == orig_dev)) { 3690 if (pt_prev) 3691 ret = deliver_skb(skb, pt_prev, orig_dev); 3692 pt_prev = ptype; 3693 } 3694 } 3695 3696 if (pt_prev) { 3697 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 3698 goto drop; 3699 else 3700 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3701 } else { 3702 drop: 3703 atomic_long_inc(&skb->dev->rx_dropped); 3704 kfree_skb(skb); 3705 /* Jamal, now you will not able to escape explaining 3706 * me how you were going to use this. :-) 3707 */ 3708 ret = NET_RX_DROP; 3709 } 3710 3711 unlock: 3712 rcu_read_unlock(); 3713 return ret; 3714 } 3715 3716 static int __netif_receive_skb(struct sk_buff *skb) 3717 { 3718 int ret; 3719 3720 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 3721 unsigned long pflags = current->flags; 3722 3723 /* 3724 * PFMEMALLOC skbs are special, they should 3725 * - be delivered to SOCK_MEMALLOC sockets only 3726 * - stay away from userspace 3727 * - have bounded memory usage 3728 * 3729 * Use PF_MEMALLOC as this saves us from propagating the allocation 3730 * context down to all allocation sites. 3731 */ 3732 current->flags |= PF_MEMALLOC; 3733 ret = __netif_receive_skb_core(skb, true); 3734 tsk_restore_flags(current, pflags, PF_MEMALLOC); 3735 } else 3736 ret = __netif_receive_skb_core(skb, false); 3737 3738 return ret; 3739 } 3740 3741 static int netif_receive_skb_internal(struct sk_buff *skb) 3742 { 3743 net_timestamp_check(netdev_tstamp_prequeue, skb); 3744 3745 if (skb_defer_rx_timestamp(skb)) 3746 return NET_RX_SUCCESS; 3747 3748 #ifdef CONFIG_RPS 3749 if (static_key_false(&rps_needed)) { 3750 struct rps_dev_flow voidflow, *rflow = &voidflow; 3751 int cpu, ret; 3752 3753 rcu_read_lock(); 3754 3755 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3756 3757 if (cpu >= 0) { 3758 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3759 rcu_read_unlock(); 3760 return ret; 3761 } 3762 rcu_read_unlock(); 3763 } 3764 #endif 3765 return __netif_receive_skb(skb); 3766 } 3767 3768 /** 3769 * netif_receive_skb - process receive buffer from network 3770 * @skb: buffer to process 3771 * 3772 * netif_receive_skb() is the main receive data processing function. 3773 * It always succeeds. The buffer may be dropped during processing 3774 * for congestion control or by the protocol layers. 3775 * 3776 * This function may only be called from softirq context and interrupts 3777 * should be enabled. 3778 * 3779 * Return values (usually ignored): 3780 * NET_RX_SUCCESS: no congestion 3781 * NET_RX_DROP: packet was dropped 3782 */ 3783 int netif_receive_skb(struct sk_buff *skb) 3784 { 3785 trace_netif_receive_skb_entry(skb); 3786 3787 return netif_receive_skb_internal(skb); 3788 } 3789 EXPORT_SYMBOL(netif_receive_skb); 3790 3791 /* Network device is going away, flush any packets still pending 3792 * Called with irqs disabled. 3793 */ 3794 static void flush_backlog(void *arg) 3795 { 3796 struct net_device *dev = arg; 3797 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3798 struct sk_buff *skb, *tmp; 3799 3800 rps_lock(sd); 3801 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3802 if (skb->dev == dev) { 3803 __skb_unlink(skb, &sd->input_pkt_queue); 3804 kfree_skb(skb); 3805 input_queue_head_incr(sd); 3806 } 3807 } 3808 rps_unlock(sd); 3809 3810 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3811 if (skb->dev == dev) { 3812 __skb_unlink(skb, &sd->process_queue); 3813 kfree_skb(skb); 3814 input_queue_head_incr(sd); 3815 } 3816 } 3817 } 3818 3819 static int napi_gro_complete(struct sk_buff *skb) 3820 { 3821 struct packet_offload *ptype; 3822 __be16 type = skb->protocol; 3823 struct list_head *head = &offload_base; 3824 int err = -ENOENT; 3825 3826 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 3827 3828 if (NAPI_GRO_CB(skb)->count == 1) { 3829 skb_shinfo(skb)->gso_size = 0; 3830 goto out; 3831 } 3832 3833 rcu_read_lock(); 3834 list_for_each_entry_rcu(ptype, head, list) { 3835 if (ptype->type != type || !ptype->callbacks.gro_complete) 3836 continue; 3837 3838 err = ptype->callbacks.gro_complete(skb, 0); 3839 break; 3840 } 3841 rcu_read_unlock(); 3842 3843 if (err) { 3844 WARN_ON(&ptype->list == head); 3845 kfree_skb(skb); 3846 return NET_RX_SUCCESS; 3847 } 3848 3849 out: 3850 return netif_receive_skb_internal(skb); 3851 } 3852 3853 /* napi->gro_list contains packets ordered by age. 3854 * youngest packets at the head of it. 3855 * Complete skbs in reverse order to reduce latencies. 3856 */ 3857 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 3858 { 3859 struct sk_buff *skb, *prev = NULL; 3860 3861 /* scan list and build reverse chain */ 3862 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 3863 skb->prev = prev; 3864 prev = skb; 3865 } 3866 3867 for (skb = prev; skb; skb = prev) { 3868 skb->next = NULL; 3869 3870 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 3871 return; 3872 3873 prev = skb->prev; 3874 napi_gro_complete(skb); 3875 napi->gro_count--; 3876 } 3877 3878 napi->gro_list = NULL; 3879 } 3880 EXPORT_SYMBOL(napi_gro_flush); 3881 3882 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 3883 { 3884 struct sk_buff *p; 3885 unsigned int maclen = skb->dev->hard_header_len; 3886 u32 hash = skb_get_hash_raw(skb); 3887 3888 for (p = napi->gro_list; p; p = p->next) { 3889 unsigned long diffs; 3890 3891 NAPI_GRO_CB(p)->flush = 0; 3892 3893 if (hash != skb_get_hash_raw(p)) { 3894 NAPI_GRO_CB(p)->same_flow = 0; 3895 continue; 3896 } 3897 3898 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3899 diffs |= p->vlan_tci ^ skb->vlan_tci; 3900 if (maclen == ETH_HLEN) 3901 diffs |= compare_ether_header(skb_mac_header(p), 3902 skb_mac_header(skb)); 3903 else if (!diffs) 3904 diffs = memcmp(skb_mac_header(p), 3905 skb_mac_header(skb), 3906 maclen); 3907 NAPI_GRO_CB(p)->same_flow = !diffs; 3908 } 3909 } 3910 3911 static void skb_gro_reset_offset(struct sk_buff *skb) 3912 { 3913 const struct skb_shared_info *pinfo = skb_shinfo(skb); 3914 const skb_frag_t *frag0 = &pinfo->frags[0]; 3915 3916 NAPI_GRO_CB(skb)->data_offset = 0; 3917 NAPI_GRO_CB(skb)->frag0 = NULL; 3918 NAPI_GRO_CB(skb)->frag0_len = 0; 3919 3920 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 3921 pinfo->nr_frags && 3922 !PageHighMem(skb_frag_page(frag0))) { 3923 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 3924 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 3925 } 3926 } 3927 3928 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 3929 { 3930 struct skb_shared_info *pinfo = skb_shinfo(skb); 3931 3932 BUG_ON(skb->end - skb->tail < grow); 3933 3934 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3935 3936 skb->data_len -= grow; 3937 skb->tail += grow; 3938 3939 pinfo->frags[0].page_offset += grow; 3940 skb_frag_size_sub(&pinfo->frags[0], grow); 3941 3942 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 3943 skb_frag_unref(skb, 0); 3944 memmove(pinfo->frags, pinfo->frags + 1, 3945 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 3946 } 3947 } 3948 3949 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3950 { 3951 struct sk_buff **pp = NULL; 3952 struct packet_offload *ptype; 3953 __be16 type = skb->protocol; 3954 struct list_head *head = &offload_base; 3955 int same_flow; 3956 enum gro_result ret; 3957 int grow; 3958 3959 if (!(skb->dev->features & NETIF_F_GRO)) 3960 goto normal; 3961 3962 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3963 goto normal; 3964 3965 gro_list_prepare(napi, skb); 3966 NAPI_GRO_CB(skb)->csum = skb->csum; /* Needed for CHECKSUM_COMPLETE */ 3967 3968 rcu_read_lock(); 3969 list_for_each_entry_rcu(ptype, head, list) { 3970 if (ptype->type != type || !ptype->callbacks.gro_receive) 3971 continue; 3972 3973 skb_set_network_header(skb, skb_gro_offset(skb)); 3974 skb_reset_mac_len(skb); 3975 NAPI_GRO_CB(skb)->same_flow = 0; 3976 NAPI_GRO_CB(skb)->flush = 0; 3977 NAPI_GRO_CB(skb)->free = 0; 3978 NAPI_GRO_CB(skb)->udp_mark = 0; 3979 3980 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 3981 break; 3982 } 3983 rcu_read_unlock(); 3984 3985 if (&ptype->list == head) 3986 goto normal; 3987 3988 same_flow = NAPI_GRO_CB(skb)->same_flow; 3989 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3990 3991 if (pp) { 3992 struct sk_buff *nskb = *pp; 3993 3994 *pp = nskb->next; 3995 nskb->next = NULL; 3996 napi_gro_complete(nskb); 3997 napi->gro_count--; 3998 } 3999 4000 if (same_flow) 4001 goto ok; 4002 4003 if (NAPI_GRO_CB(skb)->flush) 4004 goto normal; 4005 4006 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4007 struct sk_buff *nskb = napi->gro_list; 4008 4009 /* locate the end of the list to select the 'oldest' flow */ 4010 while (nskb->next) { 4011 pp = &nskb->next; 4012 nskb = *pp; 4013 } 4014 *pp = NULL; 4015 nskb->next = NULL; 4016 napi_gro_complete(nskb); 4017 } else { 4018 napi->gro_count++; 4019 } 4020 NAPI_GRO_CB(skb)->count = 1; 4021 NAPI_GRO_CB(skb)->age = jiffies; 4022 NAPI_GRO_CB(skb)->last = skb; 4023 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 4024 skb->next = napi->gro_list; 4025 napi->gro_list = skb; 4026 ret = GRO_HELD; 4027 4028 pull: 4029 grow = skb_gro_offset(skb) - skb_headlen(skb); 4030 if (grow > 0) 4031 gro_pull_from_frag0(skb, grow); 4032 ok: 4033 return ret; 4034 4035 normal: 4036 ret = GRO_NORMAL; 4037 goto pull; 4038 } 4039 4040 struct packet_offload *gro_find_receive_by_type(__be16 type) 4041 { 4042 struct list_head *offload_head = &offload_base; 4043 struct packet_offload *ptype; 4044 4045 list_for_each_entry_rcu(ptype, offload_head, list) { 4046 if (ptype->type != type || !ptype->callbacks.gro_receive) 4047 continue; 4048 return ptype; 4049 } 4050 return NULL; 4051 } 4052 EXPORT_SYMBOL(gro_find_receive_by_type); 4053 4054 struct packet_offload *gro_find_complete_by_type(__be16 type) 4055 { 4056 struct list_head *offload_head = &offload_base; 4057 struct packet_offload *ptype; 4058 4059 list_for_each_entry_rcu(ptype, offload_head, list) { 4060 if (ptype->type != type || !ptype->callbacks.gro_complete) 4061 continue; 4062 return ptype; 4063 } 4064 return NULL; 4065 } 4066 EXPORT_SYMBOL(gro_find_complete_by_type); 4067 4068 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4069 { 4070 switch (ret) { 4071 case GRO_NORMAL: 4072 if (netif_receive_skb_internal(skb)) 4073 ret = GRO_DROP; 4074 break; 4075 4076 case GRO_DROP: 4077 kfree_skb(skb); 4078 break; 4079 4080 case GRO_MERGED_FREE: 4081 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 4082 kmem_cache_free(skbuff_head_cache, skb); 4083 else 4084 __kfree_skb(skb); 4085 break; 4086 4087 case GRO_HELD: 4088 case GRO_MERGED: 4089 break; 4090 } 4091 4092 return ret; 4093 } 4094 4095 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4096 { 4097 trace_napi_gro_receive_entry(skb); 4098 4099 skb_gro_reset_offset(skb); 4100 4101 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 4102 } 4103 EXPORT_SYMBOL(napi_gro_receive); 4104 4105 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 4106 { 4107 __skb_pull(skb, skb_headlen(skb)); 4108 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 4109 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 4110 skb->vlan_tci = 0; 4111 skb->dev = napi->dev; 4112 skb->skb_iif = 0; 4113 skb->encapsulation = 0; 4114 skb_shinfo(skb)->gso_type = 0; 4115 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4116 4117 napi->skb = skb; 4118 } 4119 4120 struct sk_buff *napi_get_frags(struct napi_struct *napi) 4121 { 4122 struct sk_buff *skb = napi->skb; 4123 4124 if (!skb) { 4125 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 4126 napi->skb = skb; 4127 } 4128 return skb; 4129 } 4130 EXPORT_SYMBOL(napi_get_frags); 4131 4132 static gro_result_t napi_frags_finish(struct napi_struct *napi, 4133 struct sk_buff *skb, 4134 gro_result_t ret) 4135 { 4136 switch (ret) { 4137 case GRO_NORMAL: 4138 case GRO_HELD: 4139 __skb_push(skb, ETH_HLEN); 4140 skb->protocol = eth_type_trans(skb, skb->dev); 4141 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 4142 ret = GRO_DROP; 4143 break; 4144 4145 case GRO_DROP: 4146 case GRO_MERGED_FREE: 4147 napi_reuse_skb(napi, skb); 4148 break; 4149 4150 case GRO_MERGED: 4151 break; 4152 } 4153 4154 return ret; 4155 } 4156 4157 /* Upper GRO stack assumes network header starts at gro_offset=0 4158 * Drivers could call both napi_gro_frags() and napi_gro_receive() 4159 * We copy ethernet header into skb->data to have a common layout. 4160 */ 4161 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4162 { 4163 struct sk_buff *skb = napi->skb; 4164 const struct ethhdr *eth; 4165 unsigned int hlen = sizeof(*eth); 4166 4167 napi->skb = NULL; 4168 4169 skb_reset_mac_header(skb); 4170 skb_gro_reset_offset(skb); 4171 4172 eth = skb_gro_header_fast(skb, 0); 4173 if (unlikely(skb_gro_header_hard(skb, hlen))) { 4174 eth = skb_gro_header_slow(skb, hlen, 0); 4175 if (unlikely(!eth)) { 4176 napi_reuse_skb(napi, skb); 4177 return NULL; 4178 } 4179 } else { 4180 gro_pull_from_frag0(skb, hlen); 4181 NAPI_GRO_CB(skb)->frag0 += hlen; 4182 NAPI_GRO_CB(skb)->frag0_len -= hlen; 4183 } 4184 __skb_pull(skb, hlen); 4185 4186 /* 4187 * This works because the only protocols we care about don't require 4188 * special handling. 4189 * We'll fix it up properly in napi_frags_finish() 4190 */ 4191 skb->protocol = eth->h_proto; 4192 4193 return skb; 4194 } 4195 4196 gro_result_t napi_gro_frags(struct napi_struct *napi) 4197 { 4198 struct sk_buff *skb = napi_frags_skb(napi); 4199 4200 if (!skb) 4201 return GRO_DROP; 4202 4203 trace_napi_gro_frags_entry(skb); 4204 4205 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4206 } 4207 EXPORT_SYMBOL(napi_gro_frags); 4208 4209 /* 4210 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 4211 * Note: called with local irq disabled, but exits with local irq enabled. 4212 */ 4213 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 4214 { 4215 #ifdef CONFIG_RPS 4216 struct softnet_data *remsd = sd->rps_ipi_list; 4217 4218 if (remsd) { 4219 sd->rps_ipi_list = NULL; 4220 4221 local_irq_enable(); 4222 4223 /* Send pending IPI's to kick RPS processing on remote cpus. */ 4224 while (remsd) { 4225 struct softnet_data *next = remsd->rps_ipi_next; 4226 4227 if (cpu_online(remsd->cpu)) 4228 smp_call_function_single_async(remsd->cpu, 4229 &remsd->csd); 4230 remsd = next; 4231 } 4232 } else 4233 #endif 4234 local_irq_enable(); 4235 } 4236 4237 static int process_backlog(struct napi_struct *napi, int quota) 4238 { 4239 int work = 0; 4240 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 4241 4242 #ifdef CONFIG_RPS 4243 /* Check if we have pending ipi, its better to send them now, 4244 * not waiting net_rx_action() end. 4245 */ 4246 if (sd->rps_ipi_list) { 4247 local_irq_disable(); 4248 net_rps_action_and_irq_enable(sd); 4249 } 4250 #endif 4251 napi->weight = weight_p; 4252 local_irq_disable(); 4253 while (1) { 4254 struct sk_buff *skb; 4255 4256 while ((skb = __skb_dequeue(&sd->process_queue))) { 4257 local_irq_enable(); 4258 __netif_receive_skb(skb); 4259 local_irq_disable(); 4260 input_queue_head_incr(sd); 4261 if (++work >= quota) { 4262 local_irq_enable(); 4263 return work; 4264 } 4265 } 4266 4267 rps_lock(sd); 4268 if (skb_queue_empty(&sd->input_pkt_queue)) { 4269 /* 4270 * Inline a custom version of __napi_complete(). 4271 * only current cpu owns and manipulates this napi, 4272 * and NAPI_STATE_SCHED is the only possible flag set 4273 * on backlog. 4274 * We can use a plain write instead of clear_bit(), 4275 * and we dont need an smp_mb() memory barrier. 4276 */ 4277 list_del(&napi->poll_list); 4278 napi->state = 0; 4279 rps_unlock(sd); 4280 4281 break; 4282 } 4283 4284 skb_queue_splice_tail_init(&sd->input_pkt_queue, 4285 &sd->process_queue); 4286 rps_unlock(sd); 4287 } 4288 local_irq_enable(); 4289 4290 return work; 4291 } 4292 4293 /** 4294 * __napi_schedule - schedule for receive 4295 * @n: entry to schedule 4296 * 4297 * The entry's receive function will be scheduled to run 4298 */ 4299 void __napi_schedule(struct napi_struct *n) 4300 { 4301 unsigned long flags; 4302 4303 local_irq_save(flags); 4304 ____napi_schedule(&__get_cpu_var(softnet_data), n); 4305 local_irq_restore(flags); 4306 } 4307 EXPORT_SYMBOL(__napi_schedule); 4308 4309 void __napi_complete(struct napi_struct *n) 4310 { 4311 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 4312 BUG_ON(n->gro_list); 4313 4314 list_del(&n->poll_list); 4315 smp_mb__before_atomic(); 4316 clear_bit(NAPI_STATE_SCHED, &n->state); 4317 } 4318 EXPORT_SYMBOL(__napi_complete); 4319 4320 void napi_complete(struct napi_struct *n) 4321 { 4322 unsigned long flags; 4323 4324 /* 4325 * don't let napi dequeue from the cpu poll list 4326 * just in case its running on a different cpu 4327 */ 4328 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 4329 return; 4330 4331 napi_gro_flush(n, false); 4332 local_irq_save(flags); 4333 __napi_complete(n); 4334 local_irq_restore(flags); 4335 } 4336 EXPORT_SYMBOL(napi_complete); 4337 4338 /* must be called under rcu_read_lock(), as we dont take a reference */ 4339 struct napi_struct *napi_by_id(unsigned int napi_id) 4340 { 4341 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 4342 struct napi_struct *napi; 4343 4344 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 4345 if (napi->napi_id == napi_id) 4346 return napi; 4347 4348 return NULL; 4349 } 4350 EXPORT_SYMBOL_GPL(napi_by_id); 4351 4352 void napi_hash_add(struct napi_struct *napi) 4353 { 4354 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) { 4355 4356 spin_lock(&napi_hash_lock); 4357 4358 /* 0 is not a valid id, we also skip an id that is taken 4359 * we expect both events to be extremely rare 4360 */ 4361 napi->napi_id = 0; 4362 while (!napi->napi_id) { 4363 napi->napi_id = ++napi_gen_id; 4364 if (napi_by_id(napi->napi_id)) 4365 napi->napi_id = 0; 4366 } 4367 4368 hlist_add_head_rcu(&napi->napi_hash_node, 4369 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 4370 4371 spin_unlock(&napi_hash_lock); 4372 } 4373 } 4374 EXPORT_SYMBOL_GPL(napi_hash_add); 4375 4376 /* Warning : caller is responsible to make sure rcu grace period 4377 * is respected before freeing memory containing @napi 4378 */ 4379 void napi_hash_del(struct napi_struct *napi) 4380 { 4381 spin_lock(&napi_hash_lock); 4382 4383 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) 4384 hlist_del_rcu(&napi->napi_hash_node); 4385 4386 spin_unlock(&napi_hash_lock); 4387 } 4388 EXPORT_SYMBOL_GPL(napi_hash_del); 4389 4390 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 4391 int (*poll)(struct napi_struct *, int), int weight) 4392 { 4393 INIT_LIST_HEAD(&napi->poll_list); 4394 napi->gro_count = 0; 4395 napi->gro_list = NULL; 4396 napi->skb = NULL; 4397 napi->poll = poll; 4398 if (weight > NAPI_POLL_WEIGHT) 4399 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 4400 weight, dev->name); 4401 napi->weight = weight; 4402 list_add(&napi->dev_list, &dev->napi_list); 4403 napi->dev = dev; 4404 #ifdef CONFIG_NETPOLL 4405 spin_lock_init(&napi->poll_lock); 4406 napi->poll_owner = -1; 4407 #endif 4408 set_bit(NAPI_STATE_SCHED, &napi->state); 4409 } 4410 EXPORT_SYMBOL(netif_napi_add); 4411 4412 void netif_napi_del(struct napi_struct *napi) 4413 { 4414 list_del_init(&napi->dev_list); 4415 napi_free_frags(napi); 4416 4417 kfree_skb_list(napi->gro_list); 4418 napi->gro_list = NULL; 4419 napi->gro_count = 0; 4420 } 4421 EXPORT_SYMBOL(netif_napi_del); 4422 4423 static void net_rx_action(struct softirq_action *h) 4424 { 4425 struct softnet_data *sd = &__get_cpu_var(softnet_data); 4426 unsigned long time_limit = jiffies + 2; 4427 int budget = netdev_budget; 4428 void *have; 4429 4430 local_irq_disable(); 4431 4432 while (!list_empty(&sd->poll_list)) { 4433 struct napi_struct *n; 4434 int work, weight; 4435 4436 /* If softirq window is exhuasted then punt. 4437 * Allow this to run for 2 jiffies since which will allow 4438 * an average latency of 1.5/HZ. 4439 */ 4440 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit))) 4441 goto softnet_break; 4442 4443 local_irq_enable(); 4444 4445 /* Even though interrupts have been re-enabled, this 4446 * access is safe because interrupts can only add new 4447 * entries to the tail of this list, and only ->poll() 4448 * calls can remove this head entry from the list. 4449 */ 4450 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 4451 4452 have = netpoll_poll_lock(n); 4453 4454 weight = n->weight; 4455 4456 /* This NAPI_STATE_SCHED test is for avoiding a race 4457 * with netpoll's poll_napi(). Only the entity which 4458 * obtains the lock and sees NAPI_STATE_SCHED set will 4459 * actually make the ->poll() call. Therefore we avoid 4460 * accidentally calling ->poll() when NAPI is not scheduled. 4461 */ 4462 work = 0; 4463 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 4464 work = n->poll(n, weight); 4465 trace_napi_poll(n); 4466 } 4467 4468 WARN_ON_ONCE(work > weight); 4469 4470 budget -= work; 4471 4472 local_irq_disable(); 4473 4474 /* Drivers must not modify the NAPI state if they 4475 * consume the entire weight. In such cases this code 4476 * still "owns" the NAPI instance and therefore can 4477 * move the instance around on the list at-will. 4478 */ 4479 if (unlikely(work == weight)) { 4480 if (unlikely(napi_disable_pending(n))) { 4481 local_irq_enable(); 4482 napi_complete(n); 4483 local_irq_disable(); 4484 } else { 4485 if (n->gro_list) { 4486 /* flush too old packets 4487 * If HZ < 1000, flush all packets. 4488 */ 4489 local_irq_enable(); 4490 napi_gro_flush(n, HZ >= 1000); 4491 local_irq_disable(); 4492 } 4493 list_move_tail(&n->poll_list, &sd->poll_list); 4494 } 4495 } 4496 4497 netpoll_poll_unlock(have); 4498 } 4499 out: 4500 net_rps_action_and_irq_enable(sd); 4501 4502 #ifdef CONFIG_NET_DMA 4503 /* 4504 * There may not be any more sk_buffs coming right now, so push 4505 * any pending DMA copies to hardware 4506 */ 4507 dma_issue_pending_all(); 4508 #endif 4509 4510 return; 4511 4512 softnet_break: 4513 sd->time_squeeze++; 4514 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4515 goto out; 4516 } 4517 4518 struct netdev_adjacent { 4519 struct net_device *dev; 4520 4521 /* upper master flag, there can only be one master device per list */ 4522 bool master; 4523 4524 /* counter for the number of times this device was added to us */ 4525 u16 ref_nr; 4526 4527 /* private field for the users */ 4528 void *private; 4529 4530 struct list_head list; 4531 struct rcu_head rcu; 4532 }; 4533 4534 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev, 4535 struct net_device *adj_dev, 4536 struct list_head *adj_list) 4537 { 4538 struct netdev_adjacent *adj; 4539 4540 list_for_each_entry(adj, adj_list, list) { 4541 if (adj->dev == adj_dev) 4542 return adj; 4543 } 4544 return NULL; 4545 } 4546 4547 /** 4548 * netdev_has_upper_dev - Check if device is linked to an upper device 4549 * @dev: device 4550 * @upper_dev: upper device to check 4551 * 4552 * Find out if a device is linked to specified upper device and return true 4553 * in case it is. Note that this checks only immediate upper device, 4554 * not through a complete stack of devices. The caller must hold the RTNL lock. 4555 */ 4556 bool netdev_has_upper_dev(struct net_device *dev, 4557 struct net_device *upper_dev) 4558 { 4559 ASSERT_RTNL(); 4560 4561 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper); 4562 } 4563 EXPORT_SYMBOL(netdev_has_upper_dev); 4564 4565 /** 4566 * netdev_has_any_upper_dev - Check if device is linked to some device 4567 * @dev: device 4568 * 4569 * Find out if a device is linked to an upper device and return true in case 4570 * it is. The caller must hold the RTNL lock. 4571 */ 4572 static bool netdev_has_any_upper_dev(struct net_device *dev) 4573 { 4574 ASSERT_RTNL(); 4575 4576 return !list_empty(&dev->all_adj_list.upper); 4577 } 4578 4579 /** 4580 * netdev_master_upper_dev_get - Get master upper device 4581 * @dev: device 4582 * 4583 * Find a master upper device and return pointer to it or NULL in case 4584 * it's not there. The caller must hold the RTNL lock. 4585 */ 4586 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 4587 { 4588 struct netdev_adjacent *upper; 4589 4590 ASSERT_RTNL(); 4591 4592 if (list_empty(&dev->adj_list.upper)) 4593 return NULL; 4594 4595 upper = list_first_entry(&dev->adj_list.upper, 4596 struct netdev_adjacent, list); 4597 if (likely(upper->master)) 4598 return upper->dev; 4599 return NULL; 4600 } 4601 EXPORT_SYMBOL(netdev_master_upper_dev_get); 4602 4603 void *netdev_adjacent_get_private(struct list_head *adj_list) 4604 { 4605 struct netdev_adjacent *adj; 4606 4607 adj = list_entry(adj_list, struct netdev_adjacent, list); 4608 4609 return adj->private; 4610 } 4611 EXPORT_SYMBOL(netdev_adjacent_get_private); 4612 4613 /** 4614 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 4615 * @dev: device 4616 * @iter: list_head ** of the current position 4617 * 4618 * Gets the next device from the dev's upper list, starting from iter 4619 * position. The caller must hold RCU read lock. 4620 */ 4621 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4622 struct list_head **iter) 4623 { 4624 struct netdev_adjacent *upper; 4625 4626 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 4627 4628 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4629 4630 if (&upper->list == &dev->adj_list.upper) 4631 return NULL; 4632 4633 *iter = &upper->list; 4634 4635 return upper->dev; 4636 } 4637 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 4638 4639 /** 4640 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list 4641 * @dev: device 4642 * @iter: list_head ** of the current position 4643 * 4644 * Gets the next device from the dev's upper list, starting from iter 4645 * position. The caller must hold RCU read lock. 4646 */ 4647 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4648 struct list_head **iter) 4649 { 4650 struct netdev_adjacent *upper; 4651 4652 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 4653 4654 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4655 4656 if (&upper->list == &dev->all_adj_list.upper) 4657 return NULL; 4658 4659 *iter = &upper->list; 4660 4661 return upper->dev; 4662 } 4663 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu); 4664 4665 /** 4666 * netdev_lower_get_next_private - Get the next ->private from the 4667 * lower neighbour list 4668 * @dev: device 4669 * @iter: list_head ** of the current position 4670 * 4671 * Gets the next netdev_adjacent->private from the dev's lower neighbour 4672 * list, starting from iter position. The caller must hold either hold the 4673 * RTNL lock or its own locking that guarantees that the neighbour lower 4674 * list will remain unchainged. 4675 */ 4676 void *netdev_lower_get_next_private(struct net_device *dev, 4677 struct list_head **iter) 4678 { 4679 struct netdev_adjacent *lower; 4680 4681 lower = list_entry(*iter, struct netdev_adjacent, list); 4682 4683 if (&lower->list == &dev->adj_list.lower) 4684 return NULL; 4685 4686 *iter = lower->list.next; 4687 4688 return lower->private; 4689 } 4690 EXPORT_SYMBOL(netdev_lower_get_next_private); 4691 4692 /** 4693 * netdev_lower_get_next_private_rcu - Get the next ->private from the 4694 * lower neighbour list, RCU 4695 * variant 4696 * @dev: device 4697 * @iter: list_head ** of the current position 4698 * 4699 * Gets the next netdev_adjacent->private from the dev's lower neighbour 4700 * list, starting from iter position. The caller must hold RCU read lock. 4701 */ 4702 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4703 struct list_head **iter) 4704 { 4705 struct netdev_adjacent *lower; 4706 4707 WARN_ON_ONCE(!rcu_read_lock_held()); 4708 4709 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4710 4711 if (&lower->list == &dev->adj_list.lower) 4712 return NULL; 4713 4714 *iter = &lower->list; 4715 4716 return lower->private; 4717 } 4718 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 4719 4720 /** 4721 * netdev_lower_get_next - Get the next device from the lower neighbour 4722 * list 4723 * @dev: device 4724 * @iter: list_head ** of the current position 4725 * 4726 * Gets the next netdev_adjacent from the dev's lower neighbour 4727 * list, starting from iter position. The caller must hold RTNL lock or 4728 * its own locking that guarantees that the neighbour lower 4729 * list will remain unchainged. 4730 */ 4731 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 4732 { 4733 struct netdev_adjacent *lower; 4734 4735 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 4736 4737 if (&lower->list == &dev->adj_list.lower) 4738 return NULL; 4739 4740 *iter = &lower->list; 4741 4742 return lower->dev; 4743 } 4744 EXPORT_SYMBOL(netdev_lower_get_next); 4745 4746 /** 4747 * netdev_lower_get_first_private_rcu - Get the first ->private from the 4748 * lower neighbour list, RCU 4749 * variant 4750 * @dev: device 4751 * 4752 * Gets the first netdev_adjacent->private from the dev's lower neighbour 4753 * list. The caller must hold RCU read lock. 4754 */ 4755 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 4756 { 4757 struct netdev_adjacent *lower; 4758 4759 lower = list_first_or_null_rcu(&dev->adj_list.lower, 4760 struct netdev_adjacent, list); 4761 if (lower) 4762 return lower->private; 4763 return NULL; 4764 } 4765 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 4766 4767 /** 4768 * netdev_master_upper_dev_get_rcu - Get master upper device 4769 * @dev: device 4770 * 4771 * Find a master upper device and return pointer to it or NULL in case 4772 * it's not there. The caller must hold the RCU read lock. 4773 */ 4774 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 4775 { 4776 struct netdev_adjacent *upper; 4777 4778 upper = list_first_or_null_rcu(&dev->adj_list.upper, 4779 struct netdev_adjacent, list); 4780 if (upper && likely(upper->master)) 4781 return upper->dev; 4782 return NULL; 4783 } 4784 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 4785 4786 static int netdev_adjacent_sysfs_add(struct net_device *dev, 4787 struct net_device *adj_dev, 4788 struct list_head *dev_list) 4789 { 4790 char linkname[IFNAMSIZ+7]; 4791 sprintf(linkname, dev_list == &dev->adj_list.upper ? 4792 "upper_%s" : "lower_%s", adj_dev->name); 4793 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 4794 linkname); 4795 } 4796 static void netdev_adjacent_sysfs_del(struct net_device *dev, 4797 char *name, 4798 struct list_head *dev_list) 4799 { 4800 char linkname[IFNAMSIZ+7]; 4801 sprintf(linkname, dev_list == &dev->adj_list.upper ? 4802 "upper_%s" : "lower_%s", name); 4803 sysfs_remove_link(&(dev->dev.kobj), linkname); 4804 } 4805 4806 #define netdev_adjacent_is_neigh_list(dev, dev_list) \ 4807 (dev_list == &dev->adj_list.upper || \ 4808 dev_list == &dev->adj_list.lower) 4809 4810 static int __netdev_adjacent_dev_insert(struct net_device *dev, 4811 struct net_device *adj_dev, 4812 struct list_head *dev_list, 4813 void *private, bool master) 4814 { 4815 struct netdev_adjacent *adj; 4816 int ret; 4817 4818 adj = __netdev_find_adj(dev, adj_dev, dev_list); 4819 4820 if (adj) { 4821 adj->ref_nr++; 4822 return 0; 4823 } 4824 4825 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 4826 if (!adj) 4827 return -ENOMEM; 4828 4829 adj->dev = adj_dev; 4830 adj->master = master; 4831 adj->ref_nr = 1; 4832 adj->private = private; 4833 dev_hold(adj_dev); 4834 4835 pr_debug("dev_hold for %s, because of link added from %s to %s\n", 4836 adj_dev->name, dev->name, adj_dev->name); 4837 4838 if (netdev_adjacent_is_neigh_list(dev, dev_list)) { 4839 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 4840 if (ret) 4841 goto free_adj; 4842 } 4843 4844 /* Ensure that master link is always the first item in list. */ 4845 if (master) { 4846 ret = sysfs_create_link(&(dev->dev.kobj), 4847 &(adj_dev->dev.kobj), "master"); 4848 if (ret) 4849 goto remove_symlinks; 4850 4851 list_add_rcu(&adj->list, dev_list); 4852 } else { 4853 list_add_tail_rcu(&adj->list, dev_list); 4854 } 4855 4856 return 0; 4857 4858 remove_symlinks: 4859 if (netdev_adjacent_is_neigh_list(dev, dev_list)) 4860 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 4861 free_adj: 4862 kfree(adj); 4863 dev_put(adj_dev); 4864 4865 return ret; 4866 } 4867 4868 static void __netdev_adjacent_dev_remove(struct net_device *dev, 4869 struct net_device *adj_dev, 4870 struct list_head *dev_list) 4871 { 4872 struct netdev_adjacent *adj; 4873 4874 adj = __netdev_find_adj(dev, adj_dev, dev_list); 4875 4876 if (!adj) { 4877 pr_err("tried to remove device %s from %s\n", 4878 dev->name, adj_dev->name); 4879 BUG(); 4880 } 4881 4882 if (adj->ref_nr > 1) { 4883 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name, 4884 adj->ref_nr-1); 4885 adj->ref_nr--; 4886 return; 4887 } 4888 4889 if (adj->master) 4890 sysfs_remove_link(&(dev->dev.kobj), "master"); 4891 4892 if (netdev_adjacent_is_neigh_list(dev, dev_list)) 4893 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 4894 4895 list_del_rcu(&adj->list); 4896 pr_debug("dev_put for %s, because link removed from %s to %s\n", 4897 adj_dev->name, dev->name, adj_dev->name); 4898 dev_put(adj_dev); 4899 kfree_rcu(adj, rcu); 4900 } 4901 4902 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 4903 struct net_device *upper_dev, 4904 struct list_head *up_list, 4905 struct list_head *down_list, 4906 void *private, bool master) 4907 { 4908 int ret; 4909 4910 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private, 4911 master); 4912 if (ret) 4913 return ret; 4914 4915 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private, 4916 false); 4917 if (ret) { 4918 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 4919 return ret; 4920 } 4921 4922 return 0; 4923 } 4924 4925 static int __netdev_adjacent_dev_link(struct net_device *dev, 4926 struct net_device *upper_dev) 4927 { 4928 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 4929 &dev->all_adj_list.upper, 4930 &upper_dev->all_adj_list.lower, 4931 NULL, false); 4932 } 4933 4934 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 4935 struct net_device *upper_dev, 4936 struct list_head *up_list, 4937 struct list_head *down_list) 4938 { 4939 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 4940 __netdev_adjacent_dev_remove(upper_dev, dev, down_list); 4941 } 4942 4943 static void __netdev_adjacent_dev_unlink(struct net_device *dev, 4944 struct net_device *upper_dev) 4945 { 4946 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 4947 &dev->all_adj_list.upper, 4948 &upper_dev->all_adj_list.lower); 4949 } 4950 4951 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 4952 struct net_device *upper_dev, 4953 void *private, bool master) 4954 { 4955 int ret = __netdev_adjacent_dev_link(dev, upper_dev); 4956 4957 if (ret) 4958 return ret; 4959 4960 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 4961 &dev->adj_list.upper, 4962 &upper_dev->adj_list.lower, 4963 private, master); 4964 if (ret) { 4965 __netdev_adjacent_dev_unlink(dev, upper_dev); 4966 return ret; 4967 } 4968 4969 return 0; 4970 } 4971 4972 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 4973 struct net_device *upper_dev) 4974 { 4975 __netdev_adjacent_dev_unlink(dev, upper_dev); 4976 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 4977 &dev->adj_list.upper, 4978 &upper_dev->adj_list.lower); 4979 } 4980 4981 static int __netdev_upper_dev_link(struct net_device *dev, 4982 struct net_device *upper_dev, bool master, 4983 void *private) 4984 { 4985 struct netdev_adjacent *i, *j, *to_i, *to_j; 4986 int ret = 0; 4987 4988 ASSERT_RTNL(); 4989 4990 if (dev == upper_dev) 4991 return -EBUSY; 4992 4993 /* To prevent loops, check if dev is not upper device to upper_dev. */ 4994 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper)) 4995 return -EBUSY; 4996 4997 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper)) 4998 return -EEXIST; 4999 5000 if (master && netdev_master_upper_dev_get(dev)) 5001 return -EBUSY; 5002 5003 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private, 5004 master); 5005 if (ret) 5006 return ret; 5007 5008 /* Now that we linked these devs, make all the upper_dev's 5009 * all_adj_list.upper visible to every dev's all_adj_list.lower an 5010 * versa, and don't forget the devices itself. All of these 5011 * links are non-neighbours. 5012 */ 5013 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5014 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5015 pr_debug("Interlinking %s with %s, non-neighbour\n", 5016 i->dev->name, j->dev->name); 5017 ret = __netdev_adjacent_dev_link(i->dev, j->dev); 5018 if (ret) 5019 goto rollback_mesh; 5020 } 5021 } 5022 5023 /* add dev to every upper_dev's upper device */ 5024 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 5025 pr_debug("linking %s's upper device %s with %s\n", 5026 upper_dev->name, i->dev->name, dev->name); 5027 ret = __netdev_adjacent_dev_link(dev, i->dev); 5028 if (ret) 5029 goto rollback_upper_mesh; 5030 } 5031 5032 /* add upper_dev to every dev's lower device */ 5033 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5034 pr_debug("linking %s's lower device %s with %s\n", dev->name, 5035 i->dev->name, upper_dev->name); 5036 ret = __netdev_adjacent_dev_link(i->dev, upper_dev); 5037 if (ret) 5038 goto rollback_lower_mesh; 5039 } 5040 5041 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 5042 return 0; 5043 5044 rollback_lower_mesh: 5045 to_i = i; 5046 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5047 if (i == to_i) 5048 break; 5049 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5050 } 5051 5052 i = NULL; 5053 5054 rollback_upper_mesh: 5055 to_i = i; 5056 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 5057 if (i == to_i) 5058 break; 5059 __netdev_adjacent_dev_unlink(dev, i->dev); 5060 } 5061 5062 i = j = NULL; 5063 5064 rollback_mesh: 5065 to_i = i; 5066 to_j = j; 5067 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5068 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5069 if (i == to_i && j == to_j) 5070 break; 5071 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5072 } 5073 if (i == to_i) 5074 break; 5075 } 5076 5077 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5078 5079 return ret; 5080 } 5081 5082 /** 5083 * netdev_upper_dev_link - Add a link to the upper device 5084 * @dev: device 5085 * @upper_dev: new upper device 5086 * 5087 * Adds a link to device which is upper to this one. The caller must hold 5088 * the RTNL lock. On a failure a negative errno code is returned. 5089 * On success the reference counts are adjusted and the function 5090 * returns zero. 5091 */ 5092 int netdev_upper_dev_link(struct net_device *dev, 5093 struct net_device *upper_dev) 5094 { 5095 return __netdev_upper_dev_link(dev, upper_dev, false, NULL); 5096 } 5097 EXPORT_SYMBOL(netdev_upper_dev_link); 5098 5099 /** 5100 * netdev_master_upper_dev_link - Add a master link to the upper device 5101 * @dev: device 5102 * @upper_dev: new upper device 5103 * 5104 * Adds a link to device which is upper to this one. In this case, only 5105 * one master upper device can be linked, although other non-master devices 5106 * might be linked as well. The caller must hold the RTNL lock. 5107 * On a failure a negative errno code is returned. On success the reference 5108 * counts are adjusted and the function returns zero. 5109 */ 5110 int netdev_master_upper_dev_link(struct net_device *dev, 5111 struct net_device *upper_dev) 5112 { 5113 return __netdev_upper_dev_link(dev, upper_dev, true, NULL); 5114 } 5115 EXPORT_SYMBOL(netdev_master_upper_dev_link); 5116 5117 int netdev_master_upper_dev_link_private(struct net_device *dev, 5118 struct net_device *upper_dev, 5119 void *private) 5120 { 5121 return __netdev_upper_dev_link(dev, upper_dev, true, private); 5122 } 5123 EXPORT_SYMBOL(netdev_master_upper_dev_link_private); 5124 5125 /** 5126 * netdev_upper_dev_unlink - Removes a link to upper device 5127 * @dev: device 5128 * @upper_dev: new upper device 5129 * 5130 * Removes a link to device which is upper to this one. The caller must hold 5131 * the RTNL lock. 5132 */ 5133 void netdev_upper_dev_unlink(struct net_device *dev, 5134 struct net_device *upper_dev) 5135 { 5136 struct netdev_adjacent *i, *j; 5137 ASSERT_RTNL(); 5138 5139 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5140 5141 /* Here is the tricky part. We must remove all dev's lower 5142 * devices from all upper_dev's upper devices and vice 5143 * versa, to maintain the graph relationship. 5144 */ 5145 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5146 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) 5147 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5148 5149 /* remove also the devices itself from lower/upper device 5150 * list 5151 */ 5152 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5153 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5154 5155 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) 5156 __netdev_adjacent_dev_unlink(dev, i->dev); 5157 5158 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 5159 } 5160 EXPORT_SYMBOL(netdev_upper_dev_unlink); 5161 5162 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 5163 { 5164 struct netdev_adjacent *iter; 5165 5166 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5167 netdev_adjacent_sysfs_del(iter->dev, oldname, 5168 &iter->dev->adj_list.lower); 5169 netdev_adjacent_sysfs_add(iter->dev, dev, 5170 &iter->dev->adj_list.lower); 5171 } 5172 5173 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5174 netdev_adjacent_sysfs_del(iter->dev, oldname, 5175 &iter->dev->adj_list.upper); 5176 netdev_adjacent_sysfs_add(iter->dev, dev, 5177 &iter->dev->adj_list.upper); 5178 } 5179 } 5180 5181 void *netdev_lower_dev_get_private(struct net_device *dev, 5182 struct net_device *lower_dev) 5183 { 5184 struct netdev_adjacent *lower; 5185 5186 if (!lower_dev) 5187 return NULL; 5188 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower); 5189 if (!lower) 5190 return NULL; 5191 5192 return lower->private; 5193 } 5194 EXPORT_SYMBOL(netdev_lower_dev_get_private); 5195 5196 5197 int dev_get_nest_level(struct net_device *dev, 5198 bool (*type_check)(struct net_device *dev)) 5199 { 5200 struct net_device *lower = NULL; 5201 struct list_head *iter; 5202 int max_nest = -1; 5203 int nest; 5204 5205 ASSERT_RTNL(); 5206 5207 netdev_for_each_lower_dev(dev, lower, iter) { 5208 nest = dev_get_nest_level(lower, type_check); 5209 if (max_nest < nest) 5210 max_nest = nest; 5211 } 5212 5213 if (type_check(dev)) 5214 max_nest++; 5215 5216 return max_nest; 5217 } 5218 EXPORT_SYMBOL(dev_get_nest_level); 5219 5220 static void dev_change_rx_flags(struct net_device *dev, int flags) 5221 { 5222 const struct net_device_ops *ops = dev->netdev_ops; 5223 5224 if (ops->ndo_change_rx_flags) 5225 ops->ndo_change_rx_flags(dev, flags); 5226 } 5227 5228 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 5229 { 5230 unsigned int old_flags = dev->flags; 5231 kuid_t uid; 5232 kgid_t gid; 5233 5234 ASSERT_RTNL(); 5235 5236 dev->flags |= IFF_PROMISC; 5237 dev->promiscuity += inc; 5238 if (dev->promiscuity == 0) { 5239 /* 5240 * Avoid overflow. 5241 * If inc causes overflow, untouch promisc and return error. 5242 */ 5243 if (inc < 0) 5244 dev->flags &= ~IFF_PROMISC; 5245 else { 5246 dev->promiscuity -= inc; 5247 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 5248 dev->name); 5249 return -EOVERFLOW; 5250 } 5251 } 5252 if (dev->flags != old_flags) { 5253 pr_info("device %s %s promiscuous mode\n", 5254 dev->name, 5255 dev->flags & IFF_PROMISC ? "entered" : "left"); 5256 if (audit_enabled) { 5257 current_uid_gid(&uid, &gid); 5258 audit_log(current->audit_context, GFP_ATOMIC, 5259 AUDIT_ANOM_PROMISCUOUS, 5260 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 5261 dev->name, (dev->flags & IFF_PROMISC), 5262 (old_flags & IFF_PROMISC), 5263 from_kuid(&init_user_ns, audit_get_loginuid(current)), 5264 from_kuid(&init_user_ns, uid), 5265 from_kgid(&init_user_ns, gid), 5266 audit_get_sessionid(current)); 5267 } 5268 5269 dev_change_rx_flags(dev, IFF_PROMISC); 5270 } 5271 if (notify) 5272 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 5273 return 0; 5274 } 5275 5276 /** 5277 * dev_set_promiscuity - update promiscuity count on a device 5278 * @dev: device 5279 * @inc: modifier 5280 * 5281 * Add or remove promiscuity from a device. While the count in the device 5282 * remains above zero the interface remains promiscuous. Once it hits zero 5283 * the device reverts back to normal filtering operation. A negative inc 5284 * value is used to drop promiscuity on the device. 5285 * Return 0 if successful or a negative errno code on error. 5286 */ 5287 int dev_set_promiscuity(struct net_device *dev, int inc) 5288 { 5289 unsigned int old_flags = dev->flags; 5290 int err; 5291 5292 err = __dev_set_promiscuity(dev, inc, true); 5293 if (err < 0) 5294 return err; 5295 if (dev->flags != old_flags) 5296 dev_set_rx_mode(dev); 5297 return err; 5298 } 5299 EXPORT_SYMBOL(dev_set_promiscuity); 5300 5301 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 5302 { 5303 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 5304 5305 ASSERT_RTNL(); 5306 5307 dev->flags |= IFF_ALLMULTI; 5308 dev->allmulti += inc; 5309 if (dev->allmulti == 0) { 5310 /* 5311 * Avoid overflow. 5312 * If inc causes overflow, untouch allmulti and return error. 5313 */ 5314 if (inc < 0) 5315 dev->flags &= ~IFF_ALLMULTI; 5316 else { 5317 dev->allmulti -= inc; 5318 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 5319 dev->name); 5320 return -EOVERFLOW; 5321 } 5322 } 5323 if (dev->flags ^ old_flags) { 5324 dev_change_rx_flags(dev, IFF_ALLMULTI); 5325 dev_set_rx_mode(dev); 5326 if (notify) 5327 __dev_notify_flags(dev, old_flags, 5328 dev->gflags ^ old_gflags); 5329 } 5330 return 0; 5331 } 5332 5333 /** 5334 * dev_set_allmulti - update allmulti count on a device 5335 * @dev: device 5336 * @inc: modifier 5337 * 5338 * Add or remove reception of all multicast frames to a device. While the 5339 * count in the device remains above zero the interface remains listening 5340 * to all interfaces. Once it hits zero the device reverts back to normal 5341 * filtering operation. A negative @inc value is used to drop the counter 5342 * when releasing a resource needing all multicasts. 5343 * Return 0 if successful or a negative errno code on error. 5344 */ 5345 5346 int dev_set_allmulti(struct net_device *dev, int inc) 5347 { 5348 return __dev_set_allmulti(dev, inc, true); 5349 } 5350 EXPORT_SYMBOL(dev_set_allmulti); 5351 5352 /* 5353 * Upload unicast and multicast address lists to device and 5354 * configure RX filtering. When the device doesn't support unicast 5355 * filtering it is put in promiscuous mode while unicast addresses 5356 * are present. 5357 */ 5358 void __dev_set_rx_mode(struct net_device *dev) 5359 { 5360 const struct net_device_ops *ops = dev->netdev_ops; 5361 5362 /* dev_open will call this function so the list will stay sane. */ 5363 if (!(dev->flags&IFF_UP)) 5364 return; 5365 5366 if (!netif_device_present(dev)) 5367 return; 5368 5369 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 5370 /* Unicast addresses changes may only happen under the rtnl, 5371 * therefore calling __dev_set_promiscuity here is safe. 5372 */ 5373 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 5374 __dev_set_promiscuity(dev, 1, false); 5375 dev->uc_promisc = true; 5376 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 5377 __dev_set_promiscuity(dev, -1, false); 5378 dev->uc_promisc = false; 5379 } 5380 } 5381 5382 if (ops->ndo_set_rx_mode) 5383 ops->ndo_set_rx_mode(dev); 5384 } 5385 5386 void dev_set_rx_mode(struct net_device *dev) 5387 { 5388 netif_addr_lock_bh(dev); 5389 __dev_set_rx_mode(dev); 5390 netif_addr_unlock_bh(dev); 5391 } 5392 5393 /** 5394 * dev_get_flags - get flags reported to userspace 5395 * @dev: device 5396 * 5397 * Get the combination of flag bits exported through APIs to userspace. 5398 */ 5399 unsigned int dev_get_flags(const struct net_device *dev) 5400 { 5401 unsigned int flags; 5402 5403 flags = (dev->flags & ~(IFF_PROMISC | 5404 IFF_ALLMULTI | 5405 IFF_RUNNING | 5406 IFF_LOWER_UP | 5407 IFF_DORMANT)) | 5408 (dev->gflags & (IFF_PROMISC | 5409 IFF_ALLMULTI)); 5410 5411 if (netif_running(dev)) { 5412 if (netif_oper_up(dev)) 5413 flags |= IFF_RUNNING; 5414 if (netif_carrier_ok(dev)) 5415 flags |= IFF_LOWER_UP; 5416 if (netif_dormant(dev)) 5417 flags |= IFF_DORMANT; 5418 } 5419 5420 return flags; 5421 } 5422 EXPORT_SYMBOL(dev_get_flags); 5423 5424 int __dev_change_flags(struct net_device *dev, unsigned int flags) 5425 { 5426 unsigned int old_flags = dev->flags; 5427 int ret; 5428 5429 ASSERT_RTNL(); 5430 5431 /* 5432 * Set the flags on our device. 5433 */ 5434 5435 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 5436 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 5437 IFF_AUTOMEDIA)) | 5438 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 5439 IFF_ALLMULTI)); 5440 5441 /* 5442 * Load in the correct multicast list now the flags have changed. 5443 */ 5444 5445 if ((old_flags ^ flags) & IFF_MULTICAST) 5446 dev_change_rx_flags(dev, IFF_MULTICAST); 5447 5448 dev_set_rx_mode(dev); 5449 5450 /* 5451 * Have we downed the interface. We handle IFF_UP ourselves 5452 * according to user attempts to set it, rather than blindly 5453 * setting it. 5454 */ 5455 5456 ret = 0; 5457 if ((old_flags ^ flags) & IFF_UP) 5458 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 5459 5460 if ((flags ^ dev->gflags) & IFF_PROMISC) { 5461 int inc = (flags & IFF_PROMISC) ? 1 : -1; 5462 unsigned int old_flags = dev->flags; 5463 5464 dev->gflags ^= IFF_PROMISC; 5465 5466 if (__dev_set_promiscuity(dev, inc, false) >= 0) 5467 if (dev->flags != old_flags) 5468 dev_set_rx_mode(dev); 5469 } 5470 5471 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 5472 is important. Some (broken) drivers set IFF_PROMISC, when 5473 IFF_ALLMULTI is requested not asking us and not reporting. 5474 */ 5475 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 5476 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 5477 5478 dev->gflags ^= IFF_ALLMULTI; 5479 __dev_set_allmulti(dev, inc, false); 5480 } 5481 5482 return ret; 5483 } 5484 5485 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 5486 unsigned int gchanges) 5487 { 5488 unsigned int changes = dev->flags ^ old_flags; 5489 5490 if (gchanges) 5491 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 5492 5493 if (changes & IFF_UP) { 5494 if (dev->flags & IFF_UP) 5495 call_netdevice_notifiers(NETDEV_UP, dev); 5496 else 5497 call_netdevice_notifiers(NETDEV_DOWN, dev); 5498 } 5499 5500 if (dev->flags & IFF_UP && 5501 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 5502 struct netdev_notifier_change_info change_info; 5503 5504 change_info.flags_changed = changes; 5505 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 5506 &change_info.info); 5507 } 5508 } 5509 5510 /** 5511 * dev_change_flags - change device settings 5512 * @dev: device 5513 * @flags: device state flags 5514 * 5515 * Change settings on device based state flags. The flags are 5516 * in the userspace exported format. 5517 */ 5518 int dev_change_flags(struct net_device *dev, unsigned int flags) 5519 { 5520 int ret; 5521 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 5522 5523 ret = __dev_change_flags(dev, flags); 5524 if (ret < 0) 5525 return ret; 5526 5527 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 5528 __dev_notify_flags(dev, old_flags, changes); 5529 return ret; 5530 } 5531 EXPORT_SYMBOL(dev_change_flags); 5532 5533 static int __dev_set_mtu(struct net_device *dev, int new_mtu) 5534 { 5535 const struct net_device_ops *ops = dev->netdev_ops; 5536 5537 if (ops->ndo_change_mtu) 5538 return ops->ndo_change_mtu(dev, new_mtu); 5539 5540 dev->mtu = new_mtu; 5541 return 0; 5542 } 5543 5544 /** 5545 * dev_set_mtu - Change maximum transfer unit 5546 * @dev: device 5547 * @new_mtu: new transfer unit 5548 * 5549 * Change the maximum transfer size of the network device. 5550 */ 5551 int dev_set_mtu(struct net_device *dev, int new_mtu) 5552 { 5553 int err, orig_mtu; 5554 5555 if (new_mtu == dev->mtu) 5556 return 0; 5557 5558 /* MTU must be positive. */ 5559 if (new_mtu < 0) 5560 return -EINVAL; 5561 5562 if (!netif_device_present(dev)) 5563 return -ENODEV; 5564 5565 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 5566 err = notifier_to_errno(err); 5567 if (err) 5568 return err; 5569 5570 orig_mtu = dev->mtu; 5571 err = __dev_set_mtu(dev, new_mtu); 5572 5573 if (!err) { 5574 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 5575 err = notifier_to_errno(err); 5576 if (err) { 5577 /* setting mtu back and notifying everyone again, 5578 * so that they have a chance to revert changes. 5579 */ 5580 __dev_set_mtu(dev, orig_mtu); 5581 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 5582 } 5583 } 5584 return err; 5585 } 5586 EXPORT_SYMBOL(dev_set_mtu); 5587 5588 /** 5589 * dev_set_group - Change group this device belongs to 5590 * @dev: device 5591 * @new_group: group this device should belong to 5592 */ 5593 void dev_set_group(struct net_device *dev, int new_group) 5594 { 5595 dev->group = new_group; 5596 } 5597 EXPORT_SYMBOL(dev_set_group); 5598 5599 /** 5600 * dev_set_mac_address - Change Media Access Control Address 5601 * @dev: device 5602 * @sa: new address 5603 * 5604 * Change the hardware (MAC) address of the device 5605 */ 5606 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 5607 { 5608 const struct net_device_ops *ops = dev->netdev_ops; 5609 int err; 5610 5611 if (!ops->ndo_set_mac_address) 5612 return -EOPNOTSUPP; 5613 if (sa->sa_family != dev->type) 5614 return -EINVAL; 5615 if (!netif_device_present(dev)) 5616 return -ENODEV; 5617 err = ops->ndo_set_mac_address(dev, sa); 5618 if (err) 5619 return err; 5620 dev->addr_assign_type = NET_ADDR_SET; 5621 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 5622 add_device_randomness(dev->dev_addr, dev->addr_len); 5623 return 0; 5624 } 5625 EXPORT_SYMBOL(dev_set_mac_address); 5626 5627 /** 5628 * dev_change_carrier - Change device carrier 5629 * @dev: device 5630 * @new_carrier: new value 5631 * 5632 * Change device carrier 5633 */ 5634 int dev_change_carrier(struct net_device *dev, bool new_carrier) 5635 { 5636 const struct net_device_ops *ops = dev->netdev_ops; 5637 5638 if (!ops->ndo_change_carrier) 5639 return -EOPNOTSUPP; 5640 if (!netif_device_present(dev)) 5641 return -ENODEV; 5642 return ops->ndo_change_carrier(dev, new_carrier); 5643 } 5644 EXPORT_SYMBOL(dev_change_carrier); 5645 5646 /** 5647 * dev_get_phys_port_id - Get device physical port ID 5648 * @dev: device 5649 * @ppid: port ID 5650 * 5651 * Get device physical port ID 5652 */ 5653 int dev_get_phys_port_id(struct net_device *dev, 5654 struct netdev_phys_port_id *ppid) 5655 { 5656 const struct net_device_ops *ops = dev->netdev_ops; 5657 5658 if (!ops->ndo_get_phys_port_id) 5659 return -EOPNOTSUPP; 5660 return ops->ndo_get_phys_port_id(dev, ppid); 5661 } 5662 EXPORT_SYMBOL(dev_get_phys_port_id); 5663 5664 /** 5665 * dev_new_index - allocate an ifindex 5666 * @net: the applicable net namespace 5667 * 5668 * Returns a suitable unique value for a new device interface 5669 * number. The caller must hold the rtnl semaphore or the 5670 * dev_base_lock to be sure it remains unique. 5671 */ 5672 static int dev_new_index(struct net *net) 5673 { 5674 int ifindex = net->ifindex; 5675 for (;;) { 5676 if (++ifindex <= 0) 5677 ifindex = 1; 5678 if (!__dev_get_by_index(net, ifindex)) 5679 return net->ifindex = ifindex; 5680 } 5681 } 5682 5683 /* Delayed registration/unregisteration */ 5684 static LIST_HEAD(net_todo_list); 5685 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 5686 5687 static void net_set_todo(struct net_device *dev) 5688 { 5689 list_add_tail(&dev->todo_list, &net_todo_list); 5690 dev_net(dev)->dev_unreg_count++; 5691 } 5692 5693 static void rollback_registered_many(struct list_head *head) 5694 { 5695 struct net_device *dev, *tmp; 5696 LIST_HEAD(close_head); 5697 5698 BUG_ON(dev_boot_phase); 5699 ASSERT_RTNL(); 5700 5701 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5702 /* Some devices call without registering 5703 * for initialization unwind. Remove those 5704 * devices and proceed with the remaining. 5705 */ 5706 if (dev->reg_state == NETREG_UNINITIALIZED) { 5707 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 5708 dev->name, dev); 5709 5710 WARN_ON(1); 5711 list_del(&dev->unreg_list); 5712 continue; 5713 } 5714 dev->dismantle = true; 5715 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5716 } 5717 5718 /* If device is running, close it first. */ 5719 list_for_each_entry(dev, head, unreg_list) 5720 list_add_tail(&dev->close_list, &close_head); 5721 dev_close_many(&close_head); 5722 5723 list_for_each_entry(dev, head, unreg_list) { 5724 /* And unlink it from device chain. */ 5725 unlist_netdevice(dev); 5726 5727 dev->reg_state = NETREG_UNREGISTERING; 5728 } 5729 5730 synchronize_net(); 5731 5732 list_for_each_entry(dev, head, unreg_list) { 5733 /* Shutdown queueing discipline. */ 5734 dev_shutdown(dev); 5735 5736 5737 /* Notify protocols, that we are about to destroy 5738 this device. They should clean all the things. 5739 */ 5740 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5741 5742 /* 5743 * Flush the unicast and multicast chains 5744 */ 5745 dev_uc_flush(dev); 5746 dev_mc_flush(dev); 5747 5748 if (dev->netdev_ops->ndo_uninit) 5749 dev->netdev_ops->ndo_uninit(dev); 5750 5751 if (!dev->rtnl_link_ops || 5752 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5753 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 5754 5755 /* Notifier chain MUST detach us all upper devices. */ 5756 WARN_ON(netdev_has_any_upper_dev(dev)); 5757 5758 /* Remove entries from kobject tree */ 5759 netdev_unregister_kobject(dev); 5760 #ifdef CONFIG_XPS 5761 /* Remove XPS queueing entries */ 5762 netif_reset_xps_queues_gt(dev, 0); 5763 #endif 5764 } 5765 5766 synchronize_net(); 5767 5768 list_for_each_entry(dev, head, unreg_list) 5769 dev_put(dev); 5770 } 5771 5772 static void rollback_registered(struct net_device *dev) 5773 { 5774 LIST_HEAD(single); 5775 5776 list_add(&dev->unreg_list, &single); 5777 rollback_registered_many(&single); 5778 list_del(&single); 5779 } 5780 5781 static netdev_features_t netdev_fix_features(struct net_device *dev, 5782 netdev_features_t features) 5783 { 5784 /* Fix illegal checksum combinations */ 5785 if ((features & NETIF_F_HW_CSUM) && 5786 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5787 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 5788 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5789 } 5790 5791 /* TSO requires that SG is present as well. */ 5792 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 5793 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 5794 features &= ~NETIF_F_ALL_TSO; 5795 } 5796 5797 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 5798 !(features & NETIF_F_IP_CSUM)) { 5799 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 5800 features &= ~NETIF_F_TSO; 5801 features &= ~NETIF_F_TSO_ECN; 5802 } 5803 5804 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 5805 !(features & NETIF_F_IPV6_CSUM)) { 5806 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 5807 features &= ~NETIF_F_TSO6; 5808 } 5809 5810 /* TSO ECN requires that TSO is present as well. */ 5811 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 5812 features &= ~NETIF_F_TSO_ECN; 5813 5814 /* Software GSO depends on SG. */ 5815 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 5816 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 5817 features &= ~NETIF_F_GSO; 5818 } 5819 5820 /* UFO needs SG and checksumming */ 5821 if (features & NETIF_F_UFO) { 5822 /* maybe split UFO into V4 and V6? */ 5823 if (!((features & NETIF_F_GEN_CSUM) || 5824 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5825 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5826 netdev_dbg(dev, 5827 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 5828 features &= ~NETIF_F_UFO; 5829 } 5830 5831 if (!(features & NETIF_F_SG)) { 5832 netdev_dbg(dev, 5833 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 5834 features &= ~NETIF_F_UFO; 5835 } 5836 } 5837 5838 #ifdef CONFIG_NET_RX_BUSY_POLL 5839 if (dev->netdev_ops->ndo_busy_poll) 5840 features |= NETIF_F_BUSY_POLL; 5841 else 5842 #endif 5843 features &= ~NETIF_F_BUSY_POLL; 5844 5845 return features; 5846 } 5847 5848 int __netdev_update_features(struct net_device *dev) 5849 { 5850 netdev_features_t features; 5851 int err = 0; 5852 5853 ASSERT_RTNL(); 5854 5855 features = netdev_get_wanted_features(dev); 5856 5857 if (dev->netdev_ops->ndo_fix_features) 5858 features = dev->netdev_ops->ndo_fix_features(dev, features); 5859 5860 /* driver might be less strict about feature dependencies */ 5861 features = netdev_fix_features(dev, features); 5862 5863 if (dev->features == features) 5864 return 0; 5865 5866 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 5867 &dev->features, &features); 5868 5869 if (dev->netdev_ops->ndo_set_features) 5870 err = dev->netdev_ops->ndo_set_features(dev, features); 5871 5872 if (unlikely(err < 0)) { 5873 netdev_err(dev, 5874 "set_features() failed (%d); wanted %pNF, left %pNF\n", 5875 err, &features, &dev->features); 5876 return -1; 5877 } 5878 5879 if (!err) 5880 dev->features = features; 5881 5882 return 1; 5883 } 5884 5885 /** 5886 * netdev_update_features - recalculate device features 5887 * @dev: the device to check 5888 * 5889 * Recalculate dev->features set and send notifications if it 5890 * has changed. Should be called after driver or hardware dependent 5891 * conditions might have changed that influence the features. 5892 */ 5893 void netdev_update_features(struct net_device *dev) 5894 { 5895 if (__netdev_update_features(dev)) 5896 netdev_features_change(dev); 5897 } 5898 EXPORT_SYMBOL(netdev_update_features); 5899 5900 /** 5901 * netdev_change_features - recalculate device features 5902 * @dev: the device to check 5903 * 5904 * Recalculate dev->features set and send notifications even 5905 * if they have not changed. Should be called instead of 5906 * netdev_update_features() if also dev->vlan_features might 5907 * have changed to allow the changes to be propagated to stacked 5908 * VLAN devices. 5909 */ 5910 void netdev_change_features(struct net_device *dev) 5911 { 5912 __netdev_update_features(dev); 5913 netdev_features_change(dev); 5914 } 5915 EXPORT_SYMBOL(netdev_change_features); 5916 5917 /** 5918 * netif_stacked_transfer_operstate - transfer operstate 5919 * @rootdev: the root or lower level device to transfer state from 5920 * @dev: the device to transfer operstate to 5921 * 5922 * Transfer operational state from root to device. This is normally 5923 * called when a stacking relationship exists between the root 5924 * device and the device(a leaf device). 5925 */ 5926 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5927 struct net_device *dev) 5928 { 5929 if (rootdev->operstate == IF_OPER_DORMANT) 5930 netif_dormant_on(dev); 5931 else 5932 netif_dormant_off(dev); 5933 5934 if (netif_carrier_ok(rootdev)) { 5935 if (!netif_carrier_ok(dev)) 5936 netif_carrier_on(dev); 5937 } else { 5938 if (netif_carrier_ok(dev)) 5939 netif_carrier_off(dev); 5940 } 5941 } 5942 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5943 5944 #ifdef CONFIG_SYSFS 5945 static int netif_alloc_rx_queues(struct net_device *dev) 5946 { 5947 unsigned int i, count = dev->num_rx_queues; 5948 struct netdev_rx_queue *rx; 5949 5950 BUG_ON(count < 1); 5951 5952 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5953 if (!rx) 5954 return -ENOMEM; 5955 5956 dev->_rx = rx; 5957 5958 for (i = 0; i < count; i++) 5959 rx[i].dev = dev; 5960 return 0; 5961 } 5962 #endif 5963 5964 static void netdev_init_one_queue(struct net_device *dev, 5965 struct netdev_queue *queue, void *_unused) 5966 { 5967 /* Initialize queue lock */ 5968 spin_lock_init(&queue->_xmit_lock); 5969 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5970 queue->xmit_lock_owner = -1; 5971 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5972 queue->dev = dev; 5973 #ifdef CONFIG_BQL 5974 dql_init(&queue->dql, HZ); 5975 #endif 5976 } 5977 5978 static void netif_free_tx_queues(struct net_device *dev) 5979 { 5980 kvfree(dev->_tx); 5981 } 5982 5983 static int netif_alloc_netdev_queues(struct net_device *dev) 5984 { 5985 unsigned int count = dev->num_tx_queues; 5986 struct netdev_queue *tx; 5987 size_t sz = count * sizeof(*tx); 5988 5989 BUG_ON(count < 1 || count > 0xffff); 5990 5991 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 5992 if (!tx) { 5993 tx = vzalloc(sz); 5994 if (!tx) 5995 return -ENOMEM; 5996 } 5997 dev->_tx = tx; 5998 5999 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 6000 spin_lock_init(&dev->tx_global_lock); 6001 6002 return 0; 6003 } 6004 6005 /** 6006 * register_netdevice - register a network device 6007 * @dev: device to register 6008 * 6009 * Take a completed network device structure and add it to the kernel 6010 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 6011 * chain. 0 is returned on success. A negative errno code is returned 6012 * on a failure to set up the device, or if the name is a duplicate. 6013 * 6014 * Callers must hold the rtnl semaphore. You may want 6015 * register_netdev() instead of this. 6016 * 6017 * BUGS: 6018 * The locking appears insufficient to guarantee two parallel registers 6019 * will not get the same name. 6020 */ 6021 6022 int register_netdevice(struct net_device *dev) 6023 { 6024 int ret; 6025 struct net *net = dev_net(dev); 6026 6027 BUG_ON(dev_boot_phase); 6028 ASSERT_RTNL(); 6029 6030 might_sleep(); 6031 6032 /* When net_device's are persistent, this will be fatal. */ 6033 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 6034 BUG_ON(!net); 6035 6036 spin_lock_init(&dev->addr_list_lock); 6037 netdev_set_addr_lockdep_class(dev); 6038 6039 dev->iflink = -1; 6040 6041 ret = dev_get_valid_name(net, dev, dev->name); 6042 if (ret < 0) 6043 goto out; 6044 6045 /* Init, if this function is available */ 6046 if (dev->netdev_ops->ndo_init) { 6047 ret = dev->netdev_ops->ndo_init(dev); 6048 if (ret) { 6049 if (ret > 0) 6050 ret = -EIO; 6051 goto out; 6052 } 6053 } 6054 6055 if (((dev->hw_features | dev->features) & 6056 NETIF_F_HW_VLAN_CTAG_FILTER) && 6057 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 6058 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 6059 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 6060 ret = -EINVAL; 6061 goto err_uninit; 6062 } 6063 6064 ret = -EBUSY; 6065 if (!dev->ifindex) 6066 dev->ifindex = dev_new_index(net); 6067 else if (__dev_get_by_index(net, dev->ifindex)) 6068 goto err_uninit; 6069 6070 if (dev->iflink == -1) 6071 dev->iflink = dev->ifindex; 6072 6073 /* Transfer changeable features to wanted_features and enable 6074 * software offloads (GSO and GRO). 6075 */ 6076 dev->hw_features |= NETIF_F_SOFT_FEATURES; 6077 dev->features |= NETIF_F_SOFT_FEATURES; 6078 dev->wanted_features = dev->features & dev->hw_features; 6079 6080 if (!(dev->flags & IFF_LOOPBACK)) { 6081 dev->hw_features |= NETIF_F_NOCACHE_COPY; 6082 } 6083 6084 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 6085 */ 6086 dev->vlan_features |= NETIF_F_HIGHDMA; 6087 6088 /* Make NETIF_F_SG inheritable to tunnel devices. 6089 */ 6090 dev->hw_enc_features |= NETIF_F_SG; 6091 6092 /* Make NETIF_F_SG inheritable to MPLS. 6093 */ 6094 dev->mpls_features |= NETIF_F_SG; 6095 6096 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 6097 ret = notifier_to_errno(ret); 6098 if (ret) 6099 goto err_uninit; 6100 6101 ret = netdev_register_kobject(dev); 6102 if (ret) 6103 goto err_uninit; 6104 dev->reg_state = NETREG_REGISTERED; 6105 6106 __netdev_update_features(dev); 6107 6108 /* 6109 * Default initial state at registry is that the 6110 * device is present. 6111 */ 6112 6113 set_bit(__LINK_STATE_PRESENT, &dev->state); 6114 6115 linkwatch_init_dev(dev); 6116 6117 dev_init_scheduler(dev); 6118 dev_hold(dev); 6119 list_netdevice(dev); 6120 add_device_randomness(dev->dev_addr, dev->addr_len); 6121 6122 /* If the device has permanent device address, driver should 6123 * set dev_addr and also addr_assign_type should be set to 6124 * NET_ADDR_PERM (default value). 6125 */ 6126 if (dev->addr_assign_type == NET_ADDR_PERM) 6127 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 6128 6129 /* Notify protocols, that a new device appeared. */ 6130 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 6131 ret = notifier_to_errno(ret); 6132 if (ret) { 6133 rollback_registered(dev); 6134 dev->reg_state = NETREG_UNREGISTERED; 6135 } 6136 /* 6137 * Prevent userspace races by waiting until the network 6138 * device is fully setup before sending notifications. 6139 */ 6140 if (!dev->rtnl_link_ops || 6141 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 6142 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 6143 6144 out: 6145 return ret; 6146 6147 err_uninit: 6148 if (dev->netdev_ops->ndo_uninit) 6149 dev->netdev_ops->ndo_uninit(dev); 6150 goto out; 6151 } 6152 EXPORT_SYMBOL(register_netdevice); 6153 6154 /** 6155 * init_dummy_netdev - init a dummy network device for NAPI 6156 * @dev: device to init 6157 * 6158 * This takes a network device structure and initialize the minimum 6159 * amount of fields so it can be used to schedule NAPI polls without 6160 * registering a full blown interface. This is to be used by drivers 6161 * that need to tie several hardware interfaces to a single NAPI 6162 * poll scheduler due to HW limitations. 6163 */ 6164 int init_dummy_netdev(struct net_device *dev) 6165 { 6166 /* Clear everything. Note we don't initialize spinlocks 6167 * are they aren't supposed to be taken by any of the 6168 * NAPI code and this dummy netdev is supposed to be 6169 * only ever used for NAPI polls 6170 */ 6171 memset(dev, 0, sizeof(struct net_device)); 6172 6173 /* make sure we BUG if trying to hit standard 6174 * register/unregister code path 6175 */ 6176 dev->reg_state = NETREG_DUMMY; 6177 6178 /* NAPI wants this */ 6179 INIT_LIST_HEAD(&dev->napi_list); 6180 6181 /* a dummy interface is started by default */ 6182 set_bit(__LINK_STATE_PRESENT, &dev->state); 6183 set_bit(__LINK_STATE_START, &dev->state); 6184 6185 /* Note : We dont allocate pcpu_refcnt for dummy devices, 6186 * because users of this 'device' dont need to change 6187 * its refcount. 6188 */ 6189 6190 return 0; 6191 } 6192 EXPORT_SYMBOL_GPL(init_dummy_netdev); 6193 6194 6195 /** 6196 * register_netdev - register a network device 6197 * @dev: device to register 6198 * 6199 * Take a completed network device structure and add it to the kernel 6200 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 6201 * chain. 0 is returned on success. A negative errno code is returned 6202 * on a failure to set up the device, or if the name is a duplicate. 6203 * 6204 * This is a wrapper around register_netdevice that takes the rtnl semaphore 6205 * and expands the device name if you passed a format string to 6206 * alloc_netdev. 6207 */ 6208 int register_netdev(struct net_device *dev) 6209 { 6210 int err; 6211 6212 rtnl_lock(); 6213 err = register_netdevice(dev); 6214 rtnl_unlock(); 6215 return err; 6216 } 6217 EXPORT_SYMBOL(register_netdev); 6218 6219 int netdev_refcnt_read(const struct net_device *dev) 6220 { 6221 int i, refcnt = 0; 6222 6223 for_each_possible_cpu(i) 6224 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 6225 return refcnt; 6226 } 6227 EXPORT_SYMBOL(netdev_refcnt_read); 6228 6229 /** 6230 * netdev_wait_allrefs - wait until all references are gone. 6231 * @dev: target net_device 6232 * 6233 * This is called when unregistering network devices. 6234 * 6235 * Any protocol or device that holds a reference should register 6236 * for netdevice notification, and cleanup and put back the 6237 * reference if they receive an UNREGISTER event. 6238 * We can get stuck here if buggy protocols don't correctly 6239 * call dev_put. 6240 */ 6241 static void netdev_wait_allrefs(struct net_device *dev) 6242 { 6243 unsigned long rebroadcast_time, warning_time; 6244 int refcnt; 6245 6246 linkwatch_forget_dev(dev); 6247 6248 rebroadcast_time = warning_time = jiffies; 6249 refcnt = netdev_refcnt_read(dev); 6250 6251 while (refcnt != 0) { 6252 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 6253 rtnl_lock(); 6254 6255 /* Rebroadcast unregister notification */ 6256 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6257 6258 __rtnl_unlock(); 6259 rcu_barrier(); 6260 rtnl_lock(); 6261 6262 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6263 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 6264 &dev->state)) { 6265 /* We must not have linkwatch events 6266 * pending on unregister. If this 6267 * happens, we simply run the queue 6268 * unscheduled, resulting in a noop 6269 * for this device. 6270 */ 6271 linkwatch_run_queue(); 6272 } 6273 6274 __rtnl_unlock(); 6275 6276 rebroadcast_time = jiffies; 6277 } 6278 6279 msleep(250); 6280 6281 refcnt = netdev_refcnt_read(dev); 6282 6283 if (time_after(jiffies, warning_time + 10 * HZ)) { 6284 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 6285 dev->name, refcnt); 6286 warning_time = jiffies; 6287 } 6288 } 6289 } 6290 6291 /* The sequence is: 6292 * 6293 * rtnl_lock(); 6294 * ... 6295 * register_netdevice(x1); 6296 * register_netdevice(x2); 6297 * ... 6298 * unregister_netdevice(y1); 6299 * unregister_netdevice(y2); 6300 * ... 6301 * rtnl_unlock(); 6302 * free_netdev(y1); 6303 * free_netdev(y2); 6304 * 6305 * We are invoked by rtnl_unlock(). 6306 * This allows us to deal with problems: 6307 * 1) We can delete sysfs objects which invoke hotplug 6308 * without deadlocking with linkwatch via keventd. 6309 * 2) Since we run with the RTNL semaphore not held, we can sleep 6310 * safely in order to wait for the netdev refcnt to drop to zero. 6311 * 6312 * We must not return until all unregister events added during 6313 * the interval the lock was held have been completed. 6314 */ 6315 void netdev_run_todo(void) 6316 { 6317 struct list_head list; 6318 6319 /* Snapshot list, allow later requests */ 6320 list_replace_init(&net_todo_list, &list); 6321 6322 __rtnl_unlock(); 6323 6324 6325 /* Wait for rcu callbacks to finish before next phase */ 6326 if (!list_empty(&list)) 6327 rcu_barrier(); 6328 6329 while (!list_empty(&list)) { 6330 struct net_device *dev 6331 = list_first_entry(&list, struct net_device, todo_list); 6332 list_del(&dev->todo_list); 6333 6334 rtnl_lock(); 6335 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6336 __rtnl_unlock(); 6337 6338 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 6339 pr_err("network todo '%s' but state %d\n", 6340 dev->name, dev->reg_state); 6341 dump_stack(); 6342 continue; 6343 } 6344 6345 dev->reg_state = NETREG_UNREGISTERED; 6346 6347 on_each_cpu(flush_backlog, dev, 1); 6348 6349 netdev_wait_allrefs(dev); 6350 6351 /* paranoia */ 6352 BUG_ON(netdev_refcnt_read(dev)); 6353 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 6354 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 6355 WARN_ON(dev->dn_ptr); 6356 6357 if (dev->destructor) 6358 dev->destructor(dev); 6359 6360 /* Report a network device has been unregistered */ 6361 rtnl_lock(); 6362 dev_net(dev)->dev_unreg_count--; 6363 __rtnl_unlock(); 6364 wake_up(&netdev_unregistering_wq); 6365 6366 /* Free network device */ 6367 kobject_put(&dev->dev.kobj); 6368 } 6369 } 6370 6371 /* Convert net_device_stats to rtnl_link_stats64. They have the same 6372 * fields in the same order, with only the type differing. 6373 */ 6374 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 6375 const struct net_device_stats *netdev_stats) 6376 { 6377 #if BITS_PER_LONG == 64 6378 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 6379 memcpy(stats64, netdev_stats, sizeof(*stats64)); 6380 #else 6381 size_t i, n = sizeof(*stats64) / sizeof(u64); 6382 const unsigned long *src = (const unsigned long *)netdev_stats; 6383 u64 *dst = (u64 *)stats64; 6384 6385 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 6386 sizeof(*stats64) / sizeof(u64)); 6387 for (i = 0; i < n; i++) 6388 dst[i] = src[i]; 6389 #endif 6390 } 6391 EXPORT_SYMBOL(netdev_stats_to_stats64); 6392 6393 /** 6394 * dev_get_stats - get network device statistics 6395 * @dev: device to get statistics from 6396 * @storage: place to store stats 6397 * 6398 * Get network statistics from device. Return @storage. 6399 * The device driver may provide its own method by setting 6400 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 6401 * otherwise the internal statistics structure is used. 6402 */ 6403 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 6404 struct rtnl_link_stats64 *storage) 6405 { 6406 const struct net_device_ops *ops = dev->netdev_ops; 6407 6408 if (ops->ndo_get_stats64) { 6409 memset(storage, 0, sizeof(*storage)); 6410 ops->ndo_get_stats64(dev, storage); 6411 } else if (ops->ndo_get_stats) { 6412 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 6413 } else { 6414 netdev_stats_to_stats64(storage, &dev->stats); 6415 } 6416 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 6417 storage->tx_dropped += atomic_long_read(&dev->tx_dropped); 6418 return storage; 6419 } 6420 EXPORT_SYMBOL(dev_get_stats); 6421 6422 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 6423 { 6424 struct netdev_queue *queue = dev_ingress_queue(dev); 6425 6426 #ifdef CONFIG_NET_CLS_ACT 6427 if (queue) 6428 return queue; 6429 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 6430 if (!queue) 6431 return NULL; 6432 netdev_init_one_queue(dev, queue, NULL); 6433 queue->qdisc = &noop_qdisc; 6434 queue->qdisc_sleeping = &noop_qdisc; 6435 rcu_assign_pointer(dev->ingress_queue, queue); 6436 #endif 6437 return queue; 6438 } 6439 6440 static const struct ethtool_ops default_ethtool_ops; 6441 6442 void netdev_set_default_ethtool_ops(struct net_device *dev, 6443 const struct ethtool_ops *ops) 6444 { 6445 if (dev->ethtool_ops == &default_ethtool_ops) 6446 dev->ethtool_ops = ops; 6447 } 6448 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 6449 6450 void netdev_freemem(struct net_device *dev) 6451 { 6452 char *addr = (char *)dev - dev->padded; 6453 6454 kvfree(addr); 6455 } 6456 6457 /** 6458 * alloc_netdev_mqs - allocate network device 6459 * @sizeof_priv: size of private data to allocate space for 6460 * @name: device name format string 6461 * @name_assign_type: origin of device name 6462 * @setup: callback to initialize device 6463 * @txqs: the number of TX subqueues to allocate 6464 * @rxqs: the number of RX subqueues to allocate 6465 * 6466 * Allocates a struct net_device with private data area for driver use 6467 * and performs basic initialization. Also allocates subqueue structs 6468 * for each queue on the device. 6469 */ 6470 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 6471 unsigned char name_assign_type, 6472 void (*setup)(struct net_device *), 6473 unsigned int txqs, unsigned int rxqs) 6474 { 6475 struct net_device *dev; 6476 size_t alloc_size; 6477 struct net_device *p; 6478 6479 BUG_ON(strlen(name) >= sizeof(dev->name)); 6480 6481 if (txqs < 1) { 6482 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 6483 return NULL; 6484 } 6485 6486 #ifdef CONFIG_SYSFS 6487 if (rxqs < 1) { 6488 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 6489 return NULL; 6490 } 6491 #endif 6492 6493 alloc_size = sizeof(struct net_device); 6494 if (sizeof_priv) { 6495 /* ensure 32-byte alignment of private area */ 6496 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 6497 alloc_size += sizeof_priv; 6498 } 6499 /* ensure 32-byte alignment of whole construct */ 6500 alloc_size += NETDEV_ALIGN - 1; 6501 6502 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6503 if (!p) 6504 p = vzalloc(alloc_size); 6505 if (!p) 6506 return NULL; 6507 6508 dev = PTR_ALIGN(p, NETDEV_ALIGN); 6509 dev->padded = (char *)dev - (char *)p; 6510 6511 dev->pcpu_refcnt = alloc_percpu(int); 6512 if (!dev->pcpu_refcnt) 6513 goto free_dev; 6514 6515 if (dev_addr_init(dev)) 6516 goto free_pcpu; 6517 6518 dev_mc_init(dev); 6519 dev_uc_init(dev); 6520 6521 dev_net_set(dev, &init_net); 6522 6523 dev->gso_max_size = GSO_MAX_SIZE; 6524 dev->gso_max_segs = GSO_MAX_SEGS; 6525 6526 INIT_LIST_HEAD(&dev->napi_list); 6527 INIT_LIST_HEAD(&dev->unreg_list); 6528 INIT_LIST_HEAD(&dev->close_list); 6529 INIT_LIST_HEAD(&dev->link_watch_list); 6530 INIT_LIST_HEAD(&dev->adj_list.upper); 6531 INIT_LIST_HEAD(&dev->adj_list.lower); 6532 INIT_LIST_HEAD(&dev->all_adj_list.upper); 6533 INIT_LIST_HEAD(&dev->all_adj_list.lower); 6534 dev->priv_flags = IFF_XMIT_DST_RELEASE; 6535 setup(dev); 6536 6537 dev->num_tx_queues = txqs; 6538 dev->real_num_tx_queues = txqs; 6539 if (netif_alloc_netdev_queues(dev)) 6540 goto free_all; 6541 6542 #ifdef CONFIG_SYSFS 6543 dev->num_rx_queues = rxqs; 6544 dev->real_num_rx_queues = rxqs; 6545 if (netif_alloc_rx_queues(dev)) 6546 goto free_all; 6547 #endif 6548 6549 strcpy(dev->name, name); 6550 dev->name_assign_type = name_assign_type; 6551 dev->group = INIT_NETDEV_GROUP; 6552 if (!dev->ethtool_ops) 6553 dev->ethtool_ops = &default_ethtool_ops; 6554 return dev; 6555 6556 free_all: 6557 free_netdev(dev); 6558 return NULL; 6559 6560 free_pcpu: 6561 free_percpu(dev->pcpu_refcnt); 6562 free_dev: 6563 netdev_freemem(dev); 6564 return NULL; 6565 } 6566 EXPORT_SYMBOL(alloc_netdev_mqs); 6567 6568 /** 6569 * free_netdev - free network device 6570 * @dev: device 6571 * 6572 * This function does the last stage of destroying an allocated device 6573 * interface. The reference to the device object is released. 6574 * If this is the last reference then it will be freed. 6575 */ 6576 void free_netdev(struct net_device *dev) 6577 { 6578 struct napi_struct *p, *n; 6579 6580 release_net(dev_net(dev)); 6581 6582 netif_free_tx_queues(dev); 6583 #ifdef CONFIG_SYSFS 6584 kfree(dev->_rx); 6585 #endif 6586 6587 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 6588 6589 /* Flush device addresses */ 6590 dev_addr_flush(dev); 6591 6592 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 6593 netif_napi_del(p); 6594 6595 free_percpu(dev->pcpu_refcnt); 6596 dev->pcpu_refcnt = NULL; 6597 6598 /* Compatibility with error handling in drivers */ 6599 if (dev->reg_state == NETREG_UNINITIALIZED) { 6600 netdev_freemem(dev); 6601 return; 6602 } 6603 6604 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 6605 dev->reg_state = NETREG_RELEASED; 6606 6607 /* will free via device release */ 6608 put_device(&dev->dev); 6609 } 6610 EXPORT_SYMBOL(free_netdev); 6611 6612 /** 6613 * synchronize_net - Synchronize with packet receive processing 6614 * 6615 * Wait for packets currently being received to be done. 6616 * Does not block later packets from starting. 6617 */ 6618 void synchronize_net(void) 6619 { 6620 might_sleep(); 6621 if (rtnl_is_locked()) 6622 synchronize_rcu_expedited(); 6623 else 6624 synchronize_rcu(); 6625 } 6626 EXPORT_SYMBOL(synchronize_net); 6627 6628 /** 6629 * unregister_netdevice_queue - remove device from the kernel 6630 * @dev: device 6631 * @head: list 6632 * 6633 * This function shuts down a device interface and removes it 6634 * from the kernel tables. 6635 * If head not NULL, device is queued to be unregistered later. 6636 * 6637 * Callers must hold the rtnl semaphore. You may want 6638 * unregister_netdev() instead of this. 6639 */ 6640 6641 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 6642 { 6643 ASSERT_RTNL(); 6644 6645 if (head) { 6646 list_move_tail(&dev->unreg_list, head); 6647 } else { 6648 rollback_registered(dev); 6649 /* Finish processing unregister after unlock */ 6650 net_set_todo(dev); 6651 } 6652 } 6653 EXPORT_SYMBOL(unregister_netdevice_queue); 6654 6655 /** 6656 * unregister_netdevice_many - unregister many devices 6657 * @head: list of devices 6658 * 6659 * Note: As most callers use a stack allocated list_head, 6660 * we force a list_del() to make sure stack wont be corrupted later. 6661 */ 6662 void unregister_netdevice_many(struct list_head *head) 6663 { 6664 struct net_device *dev; 6665 6666 if (!list_empty(head)) { 6667 rollback_registered_many(head); 6668 list_for_each_entry(dev, head, unreg_list) 6669 net_set_todo(dev); 6670 list_del(head); 6671 } 6672 } 6673 EXPORT_SYMBOL(unregister_netdevice_many); 6674 6675 /** 6676 * unregister_netdev - remove device from the kernel 6677 * @dev: device 6678 * 6679 * This function shuts down a device interface and removes it 6680 * from the kernel tables. 6681 * 6682 * This is just a wrapper for unregister_netdevice that takes 6683 * the rtnl semaphore. In general you want to use this and not 6684 * unregister_netdevice. 6685 */ 6686 void unregister_netdev(struct net_device *dev) 6687 { 6688 rtnl_lock(); 6689 unregister_netdevice(dev); 6690 rtnl_unlock(); 6691 } 6692 EXPORT_SYMBOL(unregister_netdev); 6693 6694 /** 6695 * dev_change_net_namespace - move device to different nethost namespace 6696 * @dev: device 6697 * @net: network namespace 6698 * @pat: If not NULL name pattern to try if the current device name 6699 * is already taken in the destination network namespace. 6700 * 6701 * This function shuts down a device interface and moves it 6702 * to a new network namespace. On success 0 is returned, on 6703 * a failure a netagive errno code is returned. 6704 * 6705 * Callers must hold the rtnl semaphore. 6706 */ 6707 6708 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6709 { 6710 int err; 6711 6712 ASSERT_RTNL(); 6713 6714 /* Don't allow namespace local devices to be moved. */ 6715 err = -EINVAL; 6716 if (dev->features & NETIF_F_NETNS_LOCAL) 6717 goto out; 6718 6719 /* Ensure the device has been registrered */ 6720 if (dev->reg_state != NETREG_REGISTERED) 6721 goto out; 6722 6723 /* Get out if there is nothing todo */ 6724 err = 0; 6725 if (net_eq(dev_net(dev), net)) 6726 goto out; 6727 6728 /* Pick the destination device name, and ensure 6729 * we can use it in the destination network namespace. 6730 */ 6731 err = -EEXIST; 6732 if (__dev_get_by_name(net, dev->name)) { 6733 /* We get here if we can't use the current device name */ 6734 if (!pat) 6735 goto out; 6736 if (dev_get_valid_name(net, dev, pat) < 0) 6737 goto out; 6738 } 6739 6740 /* 6741 * And now a mini version of register_netdevice unregister_netdevice. 6742 */ 6743 6744 /* If device is running close it first. */ 6745 dev_close(dev); 6746 6747 /* And unlink it from device chain */ 6748 err = -ENODEV; 6749 unlist_netdevice(dev); 6750 6751 synchronize_net(); 6752 6753 /* Shutdown queueing discipline. */ 6754 dev_shutdown(dev); 6755 6756 /* Notify protocols, that we are about to destroy 6757 this device. They should clean all the things. 6758 6759 Note that dev->reg_state stays at NETREG_REGISTERED. 6760 This is wanted because this way 8021q and macvlan know 6761 the device is just moving and can keep their slaves up. 6762 */ 6763 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6764 rcu_barrier(); 6765 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6766 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 6767 6768 /* 6769 * Flush the unicast and multicast chains 6770 */ 6771 dev_uc_flush(dev); 6772 dev_mc_flush(dev); 6773 6774 /* Send a netdev-removed uevent to the old namespace */ 6775 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 6776 6777 /* Actually switch the network namespace */ 6778 dev_net_set(dev, net); 6779 6780 /* If there is an ifindex conflict assign a new one */ 6781 if (__dev_get_by_index(net, dev->ifindex)) { 6782 int iflink = (dev->iflink == dev->ifindex); 6783 dev->ifindex = dev_new_index(net); 6784 if (iflink) 6785 dev->iflink = dev->ifindex; 6786 } 6787 6788 /* Send a netdev-add uevent to the new namespace */ 6789 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 6790 6791 /* Fixup kobjects */ 6792 err = device_rename(&dev->dev, dev->name); 6793 WARN_ON(err); 6794 6795 /* Add the device back in the hashes */ 6796 list_netdevice(dev); 6797 6798 /* Notify protocols, that a new device appeared. */ 6799 call_netdevice_notifiers(NETDEV_REGISTER, dev); 6800 6801 /* 6802 * Prevent userspace races by waiting until the network 6803 * device is fully setup before sending notifications. 6804 */ 6805 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 6806 6807 synchronize_net(); 6808 err = 0; 6809 out: 6810 return err; 6811 } 6812 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 6813 6814 static int dev_cpu_callback(struct notifier_block *nfb, 6815 unsigned long action, 6816 void *ocpu) 6817 { 6818 struct sk_buff **list_skb; 6819 struct sk_buff *skb; 6820 unsigned int cpu, oldcpu = (unsigned long)ocpu; 6821 struct softnet_data *sd, *oldsd; 6822 6823 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 6824 return NOTIFY_OK; 6825 6826 local_irq_disable(); 6827 cpu = smp_processor_id(); 6828 sd = &per_cpu(softnet_data, cpu); 6829 oldsd = &per_cpu(softnet_data, oldcpu); 6830 6831 /* Find end of our completion_queue. */ 6832 list_skb = &sd->completion_queue; 6833 while (*list_skb) 6834 list_skb = &(*list_skb)->next; 6835 /* Append completion queue from offline CPU. */ 6836 *list_skb = oldsd->completion_queue; 6837 oldsd->completion_queue = NULL; 6838 6839 /* Append output queue from offline CPU. */ 6840 if (oldsd->output_queue) { 6841 *sd->output_queue_tailp = oldsd->output_queue; 6842 sd->output_queue_tailp = oldsd->output_queue_tailp; 6843 oldsd->output_queue = NULL; 6844 oldsd->output_queue_tailp = &oldsd->output_queue; 6845 } 6846 /* Append NAPI poll list from offline CPU. */ 6847 if (!list_empty(&oldsd->poll_list)) { 6848 list_splice_init(&oldsd->poll_list, &sd->poll_list); 6849 raise_softirq_irqoff(NET_RX_SOFTIRQ); 6850 } 6851 6852 raise_softirq_irqoff(NET_TX_SOFTIRQ); 6853 local_irq_enable(); 6854 6855 /* Process offline CPU's input_pkt_queue */ 6856 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 6857 netif_rx_internal(skb); 6858 input_queue_head_incr(oldsd); 6859 } 6860 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 6861 netif_rx_internal(skb); 6862 input_queue_head_incr(oldsd); 6863 } 6864 6865 return NOTIFY_OK; 6866 } 6867 6868 6869 /** 6870 * netdev_increment_features - increment feature set by one 6871 * @all: current feature set 6872 * @one: new feature set 6873 * @mask: mask feature set 6874 * 6875 * Computes a new feature set after adding a device with feature set 6876 * @one to the master device with current feature set @all. Will not 6877 * enable anything that is off in @mask. Returns the new feature set. 6878 */ 6879 netdev_features_t netdev_increment_features(netdev_features_t all, 6880 netdev_features_t one, netdev_features_t mask) 6881 { 6882 if (mask & NETIF_F_GEN_CSUM) 6883 mask |= NETIF_F_ALL_CSUM; 6884 mask |= NETIF_F_VLAN_CHALLENGED; 6885 6886 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 6887 all &= one | ~NETIF_F_ALL_FOR_ALL; 6888 6889 /* If one device supports hw checksumming, set for all. */ 6890 if (all & NETIF_F_GEN_CSUM) 6891 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 6892 6893 return all; 6894 } 6895 EXPORT_SYMBOL(netdev_increment_features); 6896 6897 static struct hlist_head * __net_init netdev_create_hash(void) 6898 { 6899 int i; 6900 struct hlist_head *hash; 6901 6902 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6903 if (hash != NULL) 6904 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6905 INIT_HLIST_HEAD(&hash[i]); 6906 6907 return hash; 6908 } 6909 6910 /* Initialize per network namespace state */ 6911 static int __net_init netdev_init(struct net *net) 6912 { 6913 if (net != &init_net) 6914 INIT_LIST_HEAD(&net->dev_base_head); 6915 6916 net->dev_name_head = netdev_create_hash(); 6917 if (net->dev_name_head == NULL) 6918 goto err_name; 6919 6920 net->dev_index_head = netdev_create_hash(); 6921 if (net->dev_index_head == NULL) 6922 goto err_idx; 6923 6924 return 0; 6925 6926 err_idx: 6927 kfree(net->dev_name_head); 6928 err_name: 6929 return -ENOMEM; 6930 } 6931 6932 /** 6933 * netdev_drivername - network driver for the device 6934 * @dev: network device 6935 * 6936 * Determine network driver for device. 6937 */ 6938 const char *netdev_drivername(const struct net_device *dev) 6939 { 6940 const struct device_driver *driver; 6941 const struct device *parent; 6942 const char *empty = ""; 6943 6944 parent = dev->dev.parent; 6945 if (!parent) 6946 return empty; 6947 6948 driver = parent->driver; 6949 if (driver && driver->name) 6950 return driver->name; 6951 return empty; 6952 } 6953 6954 static int __netdev_printk(const char *level, const struct net_device *dev, 6955 struct va_format *vaf) 6956 { 6957 int r; 6958 6959 if (dev && dev->dev.parent) { 6960 r = dev_printk_emit(level[1] - '0', 6961 dev->dev.parent, 6962 "%s %s %s%s: %pV", 6963 dev_driver_string(dev->dev.parent), 6964 dev_name(dev->dev.parent), 6965 netdev_name(dev), netdev_reg_state(dev), 6966 vaf); 6967 } else if (dev) { 6968 r = printk("%s%s%s: %pV", level, netdev_name(dev), 6969 netdev_reg_state(dev), vaf); 6970 } else { 6971 r = printk("%s(NULL net_device): %pV", level, vaf); 6972 } 6973 6974 return r; 6975 } 6976 6977 int netdev_printk(const char *level, const struct net_device *dev, 6978 const char *format, ...) 6979 { 6980 struct va_format vaf; 6981 va_list args; 6982 int r; 6983 6984 va_start(args, format); 6985 6986 vaf.fmt = format; 6987 vaf.va = &args; 6988 6989 r = __netdev_printk(level, dev, &vaf); 6990 6991 va_end(args); 6992 6993 return r; 6994 } 6995 EXPORT_SYMBOL(netdev_printk); 6996 6997 #define define_netdev_printk_level(func, level) \ 6998 int func(const struct net_device *dev, const char *fmt, ...) \ 6999 { \ 7000 int r; \ 7001 struct va_format vaf; \ 7002 va_list args; \ 7003 \ 7004 va_start(args, fmt); \ 7005 \ 7006 vaf.fmt = fmt; \ 7007 vaf.va = &args; \ 7008 \ 7009 r = __netdev_printk(level, dev, &vaf); \ 7010 \ 7011 va_end(args); \ 7012 \ 7013 return r; \ 7014 } \ 7015 EXPORT_SYMBOL(func); 7016 7017 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 7018 define_netdev_printk_level(netdev_alert, KERN_ALERT); 7019 define_netdev_printk_level(netdev_crit, KERN_CRIT); 7020 define_netdev_printk_level(netdev_err, KERN_ERR); 7021 define_netdev_printk_level(netdev_warn, KERN_WARNING); 7022 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 7023 define_netdev_printk_level(netdev_info, KERN_INFO); 7024 7025 static void __net_exit netdev_exit(struct net *net) 7026 { 7027 kfree(net->dev_name_head); 7028 kfree(net->dev_index_head); 7029 } 7030 7031 static struct pernet_operations __net_initdata netdev_net_ops = { 7032 .init = netdev_init, 7033 .exit = netdev_exit, 7034 }; 7035 7036 static void __net_exit default_device_exit(struct net *net) 7037 { 7038 struct net_device *dev, *aux; 7039 /* 7040 * Push all migratable network devices back to the 7041 * initial network namespace 7042 */ 7043 rtnl_lock(); 7044 for_each_netdev_safe(net, dev, aux) { 7045 int err; 7046 char fb_name[IFNAMSIZ]; 7047 7048 /* Ignore unmoveable devices (i.e. loopback) */ 7049 if (dev->features & NETIF_F_NETNS_LOCAL) 7050 continue; 7051 7052 /* Leave virtual devices for the generic cleanup */ 7053 if (dev->rtnl_link_ops) 7054 continue; 7055 7056 /* Push remaining network devices to init_net */ 7057 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 7058 err = dev_change_net_namespace(dev, &init_net, fb_name); 7059 if (err) { 7060 pr_emerg("%s: failed to move %s to init_net: %d\n", 7061 __func__, dev->name, err); 7062 BUG(); 7063 } 7064 } 7065 rtnl_unlock(); 7066 } 7067 7068 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 7069 { 7070 /* Return with the rtnl_lock held when there are no network 7071 * devices unregistering in any network namespace in net_list. 7072 */ 7073 struct net *net; 7074 bool unregistering; 7075 DEFINE_WAIT(wait); 7076 7077 for (;;) { 7078 prepare_to_wait(&netdev_unregistering_wq, &wait, 7079 TASK_UNINTERRUPTIBLE); 7080 unregistering = false; 7081 rtnl_lock(); 7082 list_for_each_entry(net, net_list, exit_list) { 7083 if (net->dev_unreg_count > 0) { 7084 unregistering = true; 7085 break; 7086 } 7087 } 7088 if (!unregistering) 7089 break; 7090 __rtnl_unlock(); 7091 schedule(); 7092 } 7093 finish_wait(&netdev_unregistering_wq, &wait); 7094 } 7095 7096 static void __net_exit default_device_exit_batch(struct list_head *net_list) 7097 { 7098 /* At exit all network devices most be removed from a network 7099 * namespace. Do this in the reverse order of registration. 7100 * Do this across as many network namespaces as possible to 7101 * improve batching efficiency. 7102 */ 7103 struct net_device *dev; 7104 struct net *net; 7105 LIST_HEAD(dev_kill_list); 7106 7107 /* To prevent network device cleanup code from dereferencing 7108 * loopback devices or network devices that have been freed 7109 * wait here for all pending unregistrations to complete, 7110 * before unregistring the loopback device and allowing the 7111 * network namespace be freed. 7112 * 7113 * The netdev todo list containing all network devices 7114 * unregistrations that happen in default_device_exit_batch 7115 * will run in the rtnl_unlock() at the end of 7116 * default_device_exit_batch. 7117 */ 7118 rtnl_lock_unregistering(net_list); 7119 list_for_each_entry(net, net_list, exit_list) { 7120 for_each_netdev_reverse(net, dev) { 7121 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 7122 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 7123 else 7124 unregister_netdevice_queue(dev, &dev_kill_list); 7125 } 7126 } 7127 unregister_netdevice_many(&dev_kill_list); 7128 rtnl_unlock(); 7129 } 7130 7131 static struct pernet_operations __net_initdata default_device_ops = { 7132 .exit = default_device_exit, 7133 .exit_batch = default_device_exit_batch, 7134 }; 7135 7136 /* 7137 * Initialize the DEV module. At boot time this walks the device list and 7138 * unhooks any devices that fail to initialise (normally hardware not 7139 * present) and leaves us with a valid list of present and active devices. 7140 * 7141 */ 7142 7143 /* 7144 * This is called single threaded during boot, so no need 7145 * to take the rtnl semaphore. 7146 */ 7147 static int __init net_dev_init(void) 7148 { 7149 int i, rc = -ENOMEM; 7150 7151 BUG_ON(!dev_boot_phase); 7152 7153 if (dev_proc_init()) 7154 goto out; 7155 7156 if (netdev_kobject_init()) 7157 goto out; 7158 7159 INIT_LIST_HEAD(&ptype_all); 7160 for (i = 0; i < PTYPE_HASH_SIZE; i++) 7161 INIT_LIST_HEAD(&ptype_base[i]); 7162 7163 INIT_LIST_HEAD(&offload_base); 7164 7165 if (register_pernet_subsys(&netdev_net_ops)) 7166 goto out; 7167 7168 /* 7169 * Initialise the packet receive queues. 7170 */ 7171 7172 for_each_possible_cpu(i) { 7173 struct softnet_data *sd = &per_cpu(softnet_data, i); 7174 7175 skb_queue_head_init(&sd->input_pkt_queue); 7176 skb_queue_head_init(&sd->process_queue); 7177 INIT_LIST_HEAD(&sd->poll_list); 7178 sd->output_queue_tailp = &sd->output_queue; 7179 #ifdef CONFIG_RPS 7180 sd->csd.func = rps_trigger_softirq; 7181 sd->csd.info = sd; 7182 sd->cpu = i; 7183 #endif 7184 7185 sd->backlog.poll = process_backlog; 7186 sd->backlog.weight = weight_p; 7187 } 7188 7189 dev_boot_phase = 0; 7190 7191 /* The loopback device is special if any other network devices 7192 * is present in a network namespace the loopback device must 7193 * be present. Since we now dynamically allocate and free the 7194 * loopback device ensure this invariant is maintained by 7195 * keeping the loopback device as the first device on the 7196 * list of network devices. Ensuring the loopback devices 7197 * is the first device that appears and the last network device 7198 * that disappears. 7199 */ 7200 if (register_pernet_device(&loopback_net_ops)) 7201 goto out; 7202 7203 if (register_pernet_device(&default_device_ops)) 7204 goto out; 7205 7206 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 7207 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 7208 7209 hotcpu_notifier(dev_cpu_callback, 0); 7210 dst_init(); 7211 rc = 0; 7212 out: 7213 return rc; 7214 } 7215 7216 subsys_initcall(net_dev_init); 7217