xref: /openbmc/linux/net/core/dev.c (revision 275876e2)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134 #include <linux/if_macvlan.h>
135 #include <linux/errqueue.h>
136 
137 #include "net-sysfs.h"
138 
139 /* Instead of increasing this, you should create a hash table. */
140 #define MAX_GRO_SKBS 8
141 
142 /* This should be increased if a protocol with a bigger head is added. */
143 #define GRO_MAX_HEAD (MAX_HEADER + 128)
144 
145 static DEFINE_SPINLOCK(ptype_lock);
146 static DEFINE_SPINLOCK(offload_lock);
147 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
148 struct list_head ptype_all __read_mostly;	/* Taps */
149 static struct list_head offload_base __read_mostly;
150 
151 static int netif_rx_internal(struct sk_buff *skb);
152 static int call_netdevice_notifiers_info(unsigned long val,
153 					 struct net_device *dev,
154 					 struct netdev_notifier_info *info);
155 
156 /*
157  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
158  * semaphore.
159  *
160  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
161  *
162  * Writers must hold the rtnl semaphore while they loop through the
163  * dev_base_head list, and hold dev_base_lock for writing when they do the
164  * actual updates.  This allows pure readers to access the list even
165  * while a writer is preparing to update it.
166  *
167  * To put it another way, dev_base_lock is held for writing only to
168  * protect against pure readers; the rtnl semaphore provides the
169  * protection against other writers.
170  *
171  * See, for example usages, register_netdevice() and
172  * unregister_netdevice(), which must be called with the rtnl
173  * semaphore held.
174  */
175 DEFINE_RWLOCK(dev_base_lock);
176 EXPORT_SYMBOL(dev_base_lock);
177 
178 /* protects napi_hash addition/deletion and napi_gen_id */
179 static DEFINE_SPINLOCK(napi_hash_lock);
180 
181 static unsigned int napi_gen_id;
182 static DEFINE_HASHTABLE(napi_hash, 8);
183 
184 static seqcount_t devnet_rename_seq;
185 
186 static inline void dev_base_seq_inc(struct net *net)
187 {
188 	while (++net->dev_base_seq == 0);
189 }
190 
191 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
192 {
193 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
194 
195 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
196 }
197 
198 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
199 {
200 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
201 }
202 
203 static inline void rps_lock(struct softnet_data *sd)
204 {
205 #ifdef CONFIG_RPS
206 	spin_lock(&sd->input_pkt_queue.lock);
207 #endif
208 }
209 
210 static inline void rps_unlock(struct softnet_data *sd)
211 {
212 #ifdef CONFIG_RPS
213 	spin_unlock(&sd->input_pkt_queue.lock);
214 #endif
215 }
216 
217 /* Device list insertion */
218 static void list_netdevice(struct net_device *dev)
219 {
220 	struct net *net = dev_net(dev);
221 
222 	ASSERT_RTNL();
223 
224 	write_lock_bh(&dev_base_lock);
225 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
226 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
227 	hlist_add_head_rcu(&dev->index_hlist,
228 			   dev_index_hash(net, dev->ifindex));
229 	write_unlock_bh(&dev_base_lock);
230 
231 	dev_base_seq_inc(net);
232 }
233 
234 /* Device list removal
235  * caller must respect a RCU grace period before freeing/reusing dev
236  */
237 static void unlist_netdevice(struct net_device *dev)
238 {
239 	ASSERT_RTNL();
240 
241 	/* Unlink dev from the device chain */
242 	write_lock_bh(&dev_base_lock);
243 	list_del_rcu(&dev->dev_list);
244 	hlist_del_rcu(&dev->name_hlist);
245 	hlist_del_rcu(&dev->index_hlist);
246 	write_unlock_bh(&dev_base_lock);
247 
248 	dev_base_seq_inc(dev_net(dev));
249 }
250 
251 /*
252  *	Our notifier list
253  */
254 
255 static RAW_NOTIFIER_HEAD(netdev_chain);
256 
257 /*
258  *	Device drivers call our routines to queue packets here. We empty the
259  *	queue in the local softnet handler.
260  */
261 
262 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
263 EXPORT_PER_CPU_SYMBOL(softnet_data);
264 
265 #ifdef CONFIG_LOCKDEP
266 /*
267  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
268  * according to dev->type
269  */
270 static const unsigned short netdev_lock_type[] =
271 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
272 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
273 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
274 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
275 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
276 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
277 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
278 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
279 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
280 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
281 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
282 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
283 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
284 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
285 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
286 
287 static const char *const netdev_lock_name[] =
288 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
289 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
290 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
291 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
292 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
293 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
294 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
295 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
296 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
297 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
298 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
299 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
300 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
301 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
302 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
303 
304 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
305 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
306 
307 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
308 {
309 	int i;
310 
311 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
312 		if (netdev_lock_type[i] == dev_type)
313 			return i;
314 	/* the last key is used by default */
315 	return ARRAY_SIZE(netdev_lock_type) - 1;
316 }
317 
318 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
319 						 unsigned short dev_type)
320 {
321 	int i;
322 
323 	i = netdev_lock_pos(dev_type);
324 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
325 				   netdev_lock_name[i]);
326 }
327 
328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
329 {
330 	int i;
331 
332 	i = netdev_lock_pos(dev->type);
333 	lockdep_set_class_and_name(&dev->addr_list_lock,
334 				   &netdev_addr_lock_key[i],
335 				   netdev_lock_name[i]);
336 }
337 #else
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 						 unsigned short dev_type)
340 {
341 }
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344 }
345 #endif
346 
347 /*******************************************************************************
348 
349 		Protocol management and registration routines
350 
351 *******************************************************************************/
352 
353 /*
354  *	Add a protocol ID to the list. Now that the input handler is
355  *	smarter we can dispense with all the messy stuff that used to be
356  *	here.
357  *
358  *	BEWARE!!! Protocol handlers, mangling input packets,
359  *	MUST BE last in hash buckets and checking protocol handlers
360  *	MUST start from promiscuous ptype_all chain in net_bh.
361  *	It is true now, do not change it.
362  *	Explanation follows: if protocol handler, mangling packet, will
363  *	be the first on list, it is not able to sense, that packet
364  *	is cloned and should be copied-on-write, so that it will
365  *	change it and subsequent readers will get broken packet.
366  *							--ANK (980803)
367  */
368 
369 static inline struct list_head *ptype_head(const struct packet_type *pt)
370 {
371 	if (pt->type == htons(ETH_P_ALL))
372 		return &ptype_all;
373 	else
374 		return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
375 }
376 
377 /**
378  *	dev_add_pack - add packet handler
379  *	@pt: packet type declaration
380  *
381  *	Add a protocol handler to the networking stack. The passed &packet_type
382  *	is linked into kernel lists and may not be freed until it has been
383  *	removed from the kernel lists.
384  *
385  *	This call does not sleep therefore it can not
386  *	guarantee all CPU's that are in middle of receiving packets
387  *	will see the new packet type (until the next received packet).
388  */
389 
390 void dev_add_pack(struct packet_type *pt)
391 {
392 	struct list_head *head = ptype_head(pt);
393 
394 	spin_lock(&ptype_lock);
395 	list_add_rcu(&pt->list, head);
396 	spin_unlock(&ptype_lock);
397 }
398 EXPORT_SYMBOL(dev_add_pack);
399 
400 /**
401  *	__dev_remove_pack	 - remove packet handler
402  *	@pt: packet type declaration
403  *
404  *	Remove a protocol handler that was previously added to the kernel
405  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
406  *	from the kernel lists and can be freed or reused once this function
407  *	returns.
408  *
409  *      The packet type might still be in use by receivers
410  *	and must not be freed until after all the CPU's have gone
411  *	through a quiescent state.
412  */
413 void __dev_remove_pack(struct packet_type *pt)
414 {
415 	struct list_head *head = ptype_head(pt);
416 	struct packet_type *pt1;
417 
418 	spin_lock(&ptype_lock);
419 
420 	list_for_each_entry(pt1, head, list) {
421 		if (pt == pt1) {
422 			list_del_rcu(&pt->list);
423 			goto out;
424 		}
425 	}
426 
427 	pr_warn("dev_remove_pack: %p not found\n", pt);
428 out:
429 	spin_unlock(&ptype_lock);
430 }
431 EXPORT_SYMBOL(__dev_remove_pack);
432 
433 /**
434  *	dev_remove_pack	 - remove packet handler
435  *	@pt: packet type declaration
436  *
437  *	Remove a protocol handler that was previously added to the kernel
438  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
439  *	from the kernel lists and can be freed or reused once this function
440  *	returns.
441  *
442  *	This call sleeps to guarantee that no CPU is looking at the packet
443  *	type after return.
444  */
445 void dev_remove_pack(struct packet_type *pt)
446 {
447 	__dev_remove_pack(pt);
448 
449 	synchronize_net();
450 }
451 EXPORT_SYMBOL(dev_remove_pack);
452 
453 
454 /**
455  *	dev_add_offload - register offload handlers
456  *	@po: protocol offload declaration
457  *
458  *	Add protocol offload handlers to the networking stack. The passed
459  *	&proto_offload is linked into kernel lists and may not be freed until
460  *	it has been removed from the kernel lists.
461  *
462  *	This call does not sleep therefore it can not
463  *	guarantee all CPU's that are in middle of receiving packets
464  *	will see the new offload handlers (until the next received packet).
465  */
466 void dev_add_offload(struct packet_offload *po)
467 {
468 	struct list_head *head = &offload_base;
469 
470 	spin_lock(&offload_lock);
471 	list_add_rcu(&po->list, head);
472 	spin_unlock(&offload_lock);
473 }
474 EXPORT_SYMBOL(dev_add_offload);
475 
476 /**
477  *	__dev_remove_offload	 - remove offload handler
478  *	@po: packet offload declaration
479  *
480  *	Remove a protocol offload handler that was previously added to the
481  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
482  *	is removed from the kernel lists and can be freed or reused once this
483  *	function returns.
484  *
485  *      The packet type might still be in use by receivers
486  *	and must not be freed until after all the CPU's have gone
487  *	through a quiescent state.
488  */
489 static void __dev_remove_offload(struct packet_offload *po)
490 {
491 	struct list_head *head = &offload_base;
492 	struct packet_offload *po1;
493 
494 	spin_lock(&offload_lock);
495 
496 	list_for_each_entry(po1, head, list) {
497 		if (po == po1) {
498 			list_del_rcu(&po->list);
499 			goto out;
500 		}
501 	}
502 
503 	pr_warn("dev_remove_offload: %p not found\n", po);
504 out:
505 	spin_unlock(&offload_lock);
506 }
507 
508 /**
509  *	dev_remove_offload	 - remove packet offload handler
510  *	@po: packet offload declaration
511  *
512  *	Remove a packet offload handler that was previously added to the kernel
513  *	offload handlers by dev_add_offload(). The passed &offload_type is
514  *	removed from the kernel lists and can be freed or reused once this
515  *	function returns.
516  *
517  *	This call sleeps to guarantee that no CPU is looking at the packet
518  *	type after return.
519  */
520 void dev_remove_offload(struct packet_offload *po)
521 {
522 	__dev_remove_offload(po);
523 
524 	synchronize_net();
525 }
526 EXPORT_SYMBOL(dev_remove_offload);
527 
528 /******************************************************************************
529 
530 		      Device Boot-time Settings Routines
531 
532 *******************************************************************************/
533 
534 /* Boot time configuration table */
535 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
536 
537 /**
538  *	netdev_boot_setup_add	- add new setup entry
539  *	@name: name of the device
540  *	@map: configured settings for the device
541  *
542  *	Adds new setup entry to the dev_boot_setup list.  The function
543  *	returns 0 on error and 1 on success.  This is a generic routine to
544  *	all netdevices.
545  */
546 static int netdev_boot_setup_add(char *name, struct ifmap *map)
547 {
548 	struct netdev_boot_setup *s;
549 	int i;
550 
551 	s = dev_boot_setup;
552 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
553 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
554 			memset(s[i].name, 0, sizeof(s[i].name));
555 			strlcpy(s[i].name, name, IFNAMSIZ);
556 			memcpy(&s[i].map, map, sizeof(s[i].map));
557 			break;
558 		}
559 	}
560 
561 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
562 }
563 
564 /**
565  *	netdev_boot_setup_check	- check boot time settings
566  *	@dev: the netdevice
567  *
568  * 	Check boot time settings for the device.
569  *	The found settings are set for the device to be used
570  *	later in the device probing.
571  *	Returns 0 if no settings found, 1 if they are.
572  */
573 int netdev_boot_setup_check(struct net_device *dev)
574 {
575 	struct netdev_boot_setup *s = dev_boot_setup;
576 	int i;
577 
578 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
579 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
580 		    !strcmp(dev->name, s[i].name)) {
581 			dev->irq 	= s[i].map.irq;
582 			dev->base_addr 	= s[i].map.base_addr;
583 			dev->mem_start 	= s[i].map.mem_start;
584 			dev->mem_end 	= s[i].map.mem_end;
585 			return 1;
586 		}
587 	}
588 	return 0;
589 }
590 EXPORT_SYMBOL(netdev_boot_setup_check);
591 
592 
593 /**
594  *	netdev_boot_base	- get address from boot time settings
595  *	@prefix: prefix for network device
596  *	@unit: id for network device
597  *
598  * 	Check boot time settings for the base address of device.
599  *	The found settings are set for the device to be used
600  *	later in the device probing.
601  *	Returns 0 if no settings found.
602  */
603 unsigned long netdev_boot_base(const char *prefix, int unit)
604 {
605 	const struct netdev_boot_setup *s = dev_boot_setup;
606 	char name[IFNAMSIZ];
607 	int i;
608 
609 	sprintf(name, "%s%d", prefix, unit);
610 
611 	/*
612 	 * If device already registered then return base of 1
613 	 * to indicate not to probe for this interface
614 	 */
615 	if (__dev_get_by_name(&init_net, name))
616 		return 1;
617 
618 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
619 		if (!strcmp(name, s[i].name))
620 			return s[i].map.base_addr;
621 	return 0;
622 }
623 
624 /*
625  * Saves at boot time configured settings for any netdevice.
626  */
627 int __init netdev_boot_setup(char *str)
628 {
629 	int ints[5];
630 	struct ifmap map;
631 
632 	str = get_options(str, ARRAY_SIZE(ints), ints);
633 	if (!str || !*str)
634 		return 0;
635 
636 	/* Save settings */
637 	memset(&map, 0, sizeof(map));
638 	if (ints[0] > 0)
639 		map.irq = ints[1];
640 	if (ints[0] > 1)
641 		map.base_addr = ints[2];
642 	if (ints[0] > 2)
643 		map.mem_start = ints[3];
644 	if (ints[0] > 3)
645 		map.mem_end = ints[4];
646 
647 	/* Add new entry to the list */
648 	return netdev_boot_setup_add(str, &map);
649 }
650 
651 __setup("netdev=", netdev_boot_setup);
652 
653 /*******************************************************************************
654 
655 			    Device Interface Subroutines
656 
657 *******************************************************************************/
658 
659 /**
660  *	__dev_get_by_name	- find a device by its name
661  *	@net: the applicable net namespace
662  *	@name: name to find
663  *
664  *	Find an interface by name. Must be called under RTNL semaphore
665  *	or @dev_base_lock. If the name is found a pointer to the device
666  *	is returned. If the name is not found then %NULL is returned. The
667  *	reference counters are not incremented so the caller must be
668  *	careful with locks.
669  */
670 
671 struct net_device *__dev_get_by_name(struct net *net, const char *name)
672 {
673 	struct net_device *dev;
674 	struct hlist_head *head = dev_name_hash(net, name);
675 
676 	hlist_for_each_entry(dev, head, name_hlist)
677 		if (!strncmp(dev->name, name, IFNAMSIZ))
678 			return dev;
679 
680 	return NULL;
681 }
682 EXPORT_SYMBOL(__dev_get_by_name);
683 
684 /**
685  *	dev_get_by_name_rcu	- find a device by its name
686  *	@net: the applicable net namespace
687  *	@name: name to find
688  *
689  *	Find an interface by name.
690  *	If the name is found a pointer to the device is returned.
691  * 	If the name is not found then %NULL is returned.
692  *	The reference counters are not incremented so the caller must be
693  *	careful with locks. The caller must hold RCU lock.
694  */
695 
696 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
697 {
698 	struct net_device *dev;
699 	struct hlist_head *head = dev_name_hash(net, name);
700 
701 	hlist_for_each_entry_rcu(dev, head, name_hlist)
702 		if (!strncmp(dev->name, name, IFNAMSIZ))
703 			return dev;
704 
705 	return NULL;
706 }
707 EXPORT_SYMBOL(dev_get_by_name_rcu);
708 
709 /**
710  *	dev_get_by_name		- find a device by its name
711  *	@net: the applicable net namespace
712  *	@name: name to find
713  *
714  *	Find an interface by name. This can be called from any
715  *	context and does its own locking. The returned handle has
716  *	the usage count incremented and the caller must use dev_put() to
717  *	release it when it is no longer needed. %NULL is returned if no
718  *	matching device is found.
719  */
720 
721 struct net_device *dev_get_by_name(struct net *net, const char *name)
722 {
723 	struct net_device *dev;
724 
725 	rcu_read_lock();
726 	dev = dev_get_by_name_rcu(net, name);
727 	if (dev)
728 		dev_hold(dev);
729 	rcu_read_unlock();
730 	return dev;
731 }
732 EXPORT_SYMBOL(dev_get_by_name);
733 
734 /**
735  *	__dev_get_by_index - find a device by its ifindex
736  *	@net: the applicable net namespace
737  *	@ifindex: index of device
738  *
739  *	Search for an interface by index. Returns %NULL if the device
740  *	is not found or a pointer to the device. The device has not
741  *	had its reference counter increased so the caller must be careful
742  *	about locking. The caller must hold either the RTNL semaphore
743  *	or @dev_base_lock.
744  */
745 
746 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
747 {
748 	struct net_device *dev;
749 	struct hlist_head *head = dev_index_hash(net, ifindex);
750 
751 	hlist_for_each_entry(dev, head, index_hlist)
752 		if (dev->ifindex == ifindex)
753 			return dev;
754 
755 	return NULL;
756 }
757 EXPORT_SYMBOL(__dev_get_by_index);
758 
759 /**
760  *	dev_get_by_index_rcu - find a device by its ifindex
761  *	@net: the applicable net namespace
762  *	@ifindex: index of device
763  *
764  *	Search for an interface by index. Returns %NULL if the device
765  *	is not found or a pointer to the device. The device has not
766  *	had its reference counter increased so the caller must be careful
767  *	about locking. The caller must hold RCU lock.
768  */
769 
770 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
771 {
772 	struct net_device *dev;
773 	struct hlist_head *head = dev_index_hash(net, ifindex);
774 
775 	hlist_for_each_entry_rcu(dev, head, index_hlist)
776 		if (dev->ifindex == ifindex)
777 			return dev;
778 
779 	return NULL;
780 }
781 EXPORT_SYMBOL(dev_get_by_index_rcu);
782 
783 
784 /**
785  *	dev_get_by_index - find a device by its ifindex
786  *	@net: the applicable net namespace
787  *	@ifindex: index of device
788  *
789  *	Search for an interface by index. Returns NULL if the device
790  *	is not found or a pointer to the device. The device returned has
791  *	had a reference added and the pointer is safe until the user calls
792  *	dev_put to indicate they have finished with it.
793  */
794 
795 struct net_device *dev_get_by_index(struct net *net, int ifindex)
796 {
797 	struct net_device *dev;
798 
799 	rcu_read_lock();
800 	dev = dev_get_by_index_rcu(net, ifindex);
801 	if (dev)
802 		dev_hold(dev);
803 	rcu_read_unlock();
804 	return dev;
805 }
806 EXPORT_SYMBOL(dev_get_by_index);
807 
808 /**
809  *	netdev_get_name - get a netdevice name, knowing its ifindex.
810  *	@net: network namespace
811  *	@name: a pointer to the buffer where the name will be stored.
812  *	@ifindex: the ifindex of the interface to get the name from.
813  *
814  *	The use of raw_seqcount_begin() and cond_resched() before
815  *	retrying is required as we want to give the writers a chance
816  *	to complete when CONFIG_PREEMPT is not set.
817  */
818 int netdev_get_name(struct net *net, char *name, int ifindex)
819 {
820 	struct net_device *dev;
821 	unsigned int seq;
822 
823 retry:
824 	seq = raw_seqcount_begin(&devnet_rename_seq);
825 	rcu_read_lock();
826 	dev = dev_get_by_index_rcu(net, ifindex);
827 	if (!dev) {
828 		rcu_read_unlock();
829 		return -ENODEV;
830 	}
831 
832 	strcpy(name, dev->name);
833 	rcu_read_unlock();
834 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
835 		cond_resched();
836 		goto retry;
837 	}
838 
839 	return 0;
840 }
841 
842 /**
843  *	dev_getbyhwaddr_rcu - find a device by its hardware address
844  *	@net: the applicable net namespace
845  *	@type: media type of device
846  *	@ha: hardware address
847  *
848  *	Search for an interface by MAC address. Returns NULL if the device
849  *	is not found or a pointer to the device.
850  *	The caller must hold RCU or RTNL.
851  *	The returned device has not had its ref count increased
852  *	and the caller must therefore be careful about locking
853  *
854  */
855 
856 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
857 				       const char *ha)
858 {
859 	struct net_device *dev;
860 
861 	for_each_netdev_rcu(net, dev)
862 		if (dev->type == type &&
863 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
864 			return dev;
865 
866 	return NULL;
867 }
868 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
869 
870 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
871 {
872 	struct net_device *dev;
873 
874 	ASSERT_RTNL();
875 	for_each_netdev(net, dev)
876 		if (dev->type == type)
877 			return dev;
878 
879 	return NULL;
880 }
881 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
882 
883 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
884 {
885 	struct net_device *dev, *ret = NULL;
886 
887 	rcu_read_lock();
888 	for_each_netdev_rcu(net, dev)
889 		if (dev->type == type) {
890 			dev_hold(dev);
891 			ret = dev;
892 			break;
893 		}
894 	rcu_read_unlock();
895 	return ret;
896 }
897 EXPORT_SYMBOL(dev_getfirstbyhwtype);
898 
899 /**
900  *	dev_get_by_flags_rcu - find any device with given flags
901  *	@net: the applicable net namespace
902  *	@if_flags: IFF_* values
903  *	@mask: bitmask of bits in if_flags to check
904  *
905  *	Search for any interface with the given flags. Returns NULL if a device
906  *	is not found or a pointer to the device. Must be called inside
907  *	rcu_read_lock(), and result refcount is unchanged.
908  */
909 
910 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
911 				    unsigned short mask)
912 {
913 	struct net_device *dev, *ret;
914 
915 	ret = NULL;
916 	for_each_netdev_rcu(net, dev) {
917 		if (((dev->flags ^ if_flags) & mask) == 0) {
918 			ret = dev;
919 			break;
920 		}
921 	}
922 	return ret;
923 }
924 EXPORT_SYMBOL(dev_get_by_flags_rcu);
925 
926 /**
927  *	dev_valid_name - check if name is okay for network device
928  *	@name: name string
929  *
930  *	Network device names need to be valid file names to
931  *	to allow sysfs to work.  We also disallow any kind of
932  *	whitespace.
933  */
934 bool dev_valid_name(const char *name)
935 {
936 	if (*name == '\0')
937 		return false;
938 	if (strlen(name) >= IFNAMSIZ)
939 		return false;
940 	if (!strcmp(name, ".") || !strcmp(name, ".."))
941 		return false;
942 
943 	while (*name) {
944 		if (*name == '/' || isspace(*name))
945 			return false;
946 		name++;
947 	}
948 	return true;
949 }
950 EXPORT_SYMBOL(dev_valid_name);
951 
952 /**
953  *	__dev_alloc_name - allocate a name for a device
954  *	@net: network namespace to allocate the device name in
955  *	@name: name format string
956  *	@buf:  scratch buffer and result name string
957  *
958  *	Passed a format string - eg "lt%d" it will try and find a suitable
959  *	id. It scans list of devices to build up a free map, then chooses
960  *	the first empty slot. The caller must hold the dev_base or rtnl lock
961  *	while allocating the name and adding the device in order to avoid
962  *	duplicates.
963  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
964  *	Returns the number of the unit assigned or a negative errno code.
965  */
966 
967 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
968 {
969 	int i = 0;
970 	const char *p;
971 	const int max_netdevices = 8*PAGE_SIZE;
972 	unsigned long *inuse;
973 	struct net_device *d;
974 
975 	p = strnchr(name, IFNAMSIZ-1, '%');
976 	if (p) {
977 		/*
978 		 * Verify the string as this thing may have come from
979 		 * the user.  There must be either one "%d" and no other "%"
980 		 * characters.
981 		 */
982 		if (p[1] != 'd' || strchr(p + 2, '%'))
983 			return -EINVAL;
984 
985 		/* Use one page as a bit array of possible slots */
986 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
987 		if (!inuse)
988 			return -ENOMEM;
989 
990 		for_each_netdev(net, d) {
991 			if (!sscanf(d->name, name, &i))
992 				continue;
993 			if (i < 0 || i >= max_netdevices)
994 				continue;
995 
996 			/*  avoid cases where sscanf is not exact inverse of printf */
997 			snprintf(buf, IFNAMSIZ, name, i);
998 			if (!strncmp(buf, d->name, IFNAMSIZ))
999 				set_bit(i, inuse);
1000 		}
1001 
1002 		i = find_first_zero_bit(inuse, max_netdevices);
1003 		free_page((unsigned long) inuse);
1004 	}
1005 
1006 	if (buf != name)
1007 		snprintf(buf, IFNAMSIZ, name, i);
1008 	if (!__dev_get_by_name(net, buf))
1009 		return i;
1010 
1011 	/* It is possible to run out of possible slots
1012 	 * when the name is long and there isn't enough space left
1013 	 * for the digits, or if all bits are used.
1014 	 */
1015 	return -ENFILE;
1016 }
1017 
1018 /**
1019  *	dev_alloc_name - allocate a name for a device
1020  *	@dev: device
1021  *	@name: name format string
1022  *
1023  *	Passed a format string - eg "lt%d" it will try and find a suitable
1024  *	id. It scans list of devices to build up a free map, then chooses
1025  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1026  *	while allocating the name and adding the device in order to avoid
1027  *	duplicates.
1028  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1029  *	Returns the number of the unit assigned or a negative errno code.
1030  */
1031 
1032 int dev_alloc_name(struct net_device *dev, const char *name)
1033 {
1034 	char buf[IFNAMSIZ];
1035 	struct net *net;
1036 	int ret;
1037 
1038 	BUG_ON(!dev_net(dev));
1039 	net = dev_net(dev);
1040 	ret = __dev_alloc_name(net, name, buf);
1041 	if (ret >= 0)
1042 		strlcpy(dev->name, buf, IFNAMSIZ);
1043 	return ret;
1044 }
1045 EXPORT_SYMBOL(dev_alloc_name);
1046 
1047 static int dev_alloc_name_ns(struct net *net,
1048 			     struct net_device *dev,
1049 			     const char *name)
1050 {
1051 	char buf[IFNAMSIZ];
1052 	int ret;
1053 
1054 	ret = __dev_alloc_name(net, name, buf);
1055 	if (ret >= 0)
1056 		strlcpy(dev->name, buf, IFNAMSIZ);
1057 	return ret;
1058 }
1059 
1060 static int dev_get_valid_name(struct net *net,
1061 			      struct net_device *dev,
1062 			      const char *name)
1063 {
1064 	BUG_ON(!net);
1065 
1066 	if (!dev_valid_name(name))
1067 		return -EINVAL;
1068 
1069 	if (strchr(name, '%'))
1070 		return dev_alloc_name_ns(net, dev, name);
1071 	else if (__dev_get_by_name(net, name))
1072 		return -EEXIST;
1073 	else if (dev->name != name)
1074 		strlcpy(dev->name, name, IFNAMSIZ);
1075 
1076 	return 0;
1077 }
1078 
1079 /**
1080  *	dev_change_name - change name of a device
1081  *	@dev: device
1082  *	@newname: name (or format string) must be at least IFNAMSIZ
1083  *
1084  *	Change name of a device, can pass format strings "eth%d".
1085  *	for wildcarding.
1086  */
1087 int dev_change_name(struct net_device *dev, const char *newname)
1088 {
1089 	unsigned char old_assign_type;
1090 	char oldname[IFNAMSIZ];
1091 	int err = 0;
1092 	int ret;
1093 	struct net *net;
1094 
1095 	ASSERT_RTNL();
1096 	BUG_ON(!dev_net(dev));
1097 
1098 	net = dev_net(dev);
1099 	if (dev->flags & IFF_UP)
1100 		return -EBUSY;
1101 
1102 	write_seqcount_begin(&devnet_rename_seq);
1103 
1104 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1105 		write_seqcount_end(&devnet_rename_seq);
1106 		return 0;
1107 	}
1108 
1109 	memcpy(oldname, dev->name, IFNAMSIZ);
1110 
1111 	err = dev_get_valid_name(net, dev, newname);
1112 	if (err < 0) {
1113 		write_seqcount_end(&devnet_rename_seq);
1114 		return err;
1115 	}
1116 
1117 	if (oldname[0] && !strchr(oldname, '%'))
1118 		netdev_info(dev, "renamed from %s\n", oldname);
1119 
1120 	old_assign_type = dev->name_assign_type;
1121 	dev->name_assign_type = NET_NAME_RENAMED;
1122 
1123 rollback:
1124 	ret = device_rename(&dev->dev, dev->name);
1125 	if (ret) {
1126 		memcpy(dev->name, oldname, IFNAMSIZ);
1127 		dev->name_assign_type = old_assign_type;
1128 		write_seqcount_end(&devnet_rename_seq);
1129 		return ret;
1130 	}
1131 
1132 	write_seqcount_end(&devnet_rename_seq);
1133 
1134 	netdev_adjacent_rename_links(dev, oldname);
1135 
1136 	write_lock_bh(&dev_base_lock);
1137 	hlist_del_rcu(&dev->name_hlist);
1138 	write_unlock_bh(&dev_base_lock);
1139 
1140 	synchronize_rcu();
1141 
1142 	write_lock_bh(&dev_base_lock);
1143 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1144 	write_unlock_bh(&dev_base_lock);
1145 
1146 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1147 	ret = notifier_to_errno(ret);
1148 
1149 	if (ret) {
1150 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1151 		if (err >= 0) {
1152 			err = ret;
1153 			write_seqcount_begin(&devnet_rename_seq);
1154 			memcpy(dev->name, oldname, IFNAMSIZ);
1155 			memcpy(oldname, newname, IFNAMSIZ);
1156 			dev->name_assign_type = old_assign_type;
1157 			old_assign_type = NET_NAME_RENAMED;
1158 			goto rollback;
1159 		} else {
1160 			pr_err("%s: name change rollback failed: %d\n",
1161 			       dev->name, ret);
1162 		}
1163 	}
1164 
1165 	return err;
1166 }
1167 
1168 /**
1169  *	dev_set_alias - change ifalias of a device
1170  *	@dev: device
1171  *	@alias: name up to IFALIASZ
1172  *	@len: limit of bytes to copy from info
1173  *
1174  *	Set ifalias for a device,
1175  */
1176 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1177 {
1178 	char *new_ifalias;
1179 
1180 	ASSERT_RTNL();
1181 
1182 	if (len >= IFALIASZ)
1183 		return -EINVAL;
1184 
1185 	if (!len) {
1186 		kfree(dev->ifalias);
1187 		dev->ifalias = NULL;
1188 		return 0;
1189 	}
1190 
1191 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1192 	if (!new_ifalias)
1193 		return -ENOMEM;
1194 	dev->ifalias = new_ifalias;
1195 
1196 	strlcpy(dev->ifalias, alias, len+1);
1197 	return len;
1198 }
1199 
1200 
1201 /**
1202  *	netdev_features_change - device changes features
1203  *	@dev: device to cause notification
1204  *
1205  *	Called to indicate a device has changed features.
1206  */
1207 void netdev_features_change(struct net_device *dev)
1208 {
1209 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1210 }
1211 EXPORT_SYMBOL(netdev_features_change);
1212 
1213 /**
1214  *	netdev_state_change - device changes state
1215  *	@dev: device to cause notification
1216  *
1217  *	Called to indicate a device has changed state. This function calls
1218  *	the notifier chains for netdev_chain and sends a NEWLINK message
1219  *	to the routing socket.
1220  */
1221 void netdev_state_change(struct net_device *dev)
1222 {
1223 	if (dev->flags & IFF_UP) {
1224 		struct netdev_notifier_change_info change_info;
1225 
1226 		change_info.flags_changed = 0;
1227 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1228 					      &change_info.info);
1229 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1230 	}
1231 }
1232 EXPORT_SYMBOL(netdev_state_change);
1233 
1234 /**
1235  * 	netdev_notify_peers - notify network peers about existence of @dev
1236  * 	@dev: network device
1237  *
1238  * Generate traffic such that interested network peers are aware of
1239  * @dev, such as by generating a gratuitous ARP. This may be used when
1240  * a device wants to inform the rest of the network about some sort of
1241  * reconfiguration such as a failover event or virtual machine
1242  * migration.
1243  */
1244 void netdev_notify_peers(struct net_device *dev)
1245 {
1246 	rtnl_lock();
1247 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1248 	rtnl_unlock();
1249 }
1250 EXPORT_SYMBOL(netdev_notify_peers);
1251 
1252 static int __dev_open(struct net_device *dev)
1253 {
1254 	const struct net_device_ops *ops = dev->netdev_ops;
1255 	int ret;
1256 
1257 	ASSERT_RTNL();
1258 
1259 	if (!netif_device_present(dev))
1260 		return -ENODEV;
1261 
1262 	/* Block netpoll from trying to do any rx path servicing.
1263 	 * If we don't do this there is a chance ndo_poll_controller
1264 	 * or ndo_poll may be running while we open the device
1265 	 */
1266 	netpoll_poll_disable(dev);
1267 
1268 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1269 	ret = notifier_to_errno(ret);
1270 	if (ret)
1271 		return ret;
1272 
1273 	set_bit(__LINK_STATE_START, &dev->state);
1274 
1275 	if (ops->ndo_validate_addr)
1276 		ret = ops->ndo_validate_addr(dev);
1277 
1278 	if (!ret && ops->ndo_open)
1279 		ret = ops->ndo_open(dev);
1280 
1281 	netpoll_poll_enable(dev);
1282 
1283 	if (ret)
1284 		clear_bit(__LINK_STATE_START, &dev->state);
1285 	else {
1286 		dev->flags |= IFF_UP;
1287 		net_dmaengine_get();
1288 		dev_set_rx_mode(dev);
1289 		dev_activate(dev);
1290 		add_device_randomness(dev->dev_addr, dev->addr_len);
1291 	}
1292 
1293 	return ret;
1294 }
1295 
1296 /**
1297  *	dev_open	- prepare an interface for use.
1298  *	@dev:	device to open
1299  *
1300  *	Takes a device from down to up state. The device's private open
1301  *	function is invoked and then the multicast lists are loaded. Finally
1302  *	the device is moved into the up state and a %NETDEV_UP message is
1303  *	sent to the netdev notifier chain.
1304  *
1305  *	Calling this function on an active interface is a nop. On a failure
1306  *	a negative errno code is returned.
1307  */
1308 int dev_open(struct net_device *dev)
1309 {
1310 	int ret;
1311 
1312 	if (dev->flags & IFF_UP)
1313 		return 0;
1314 
1315 	ret = __dev_open(dev);
1316 	if (ret < 0)
1317 		return ret;
1318 
1319 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1320 	call_netdevice_notifiers(NETDEV_UP, dev);
1321 
1322 	return ret;
1323 }
1324 EXPORT_SYMBOL(dev_open);
1325 
1326 static int __dev_close_many(struct list_head *head)
1327 {
1328 	struct net_device *dev;
1329 
1330 	ASSERT_RTNL();
1331 	might_sleep();
1332 
1333 	list_for_each_entry(dev, head, close_list) {
1334 		/* Temporarily disable netpoll until the interface is down */
1335 		netpoll_poll_disable(dev);
1336 
1337 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1338 
1339 		clear_bit(__LINK_STATE_START, &dev->state);
1340 
1341 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1342 		 * can be even on different cpu. So just clear netif_running().
1343 		 *
1344 		 * dev->stop() will invoke napi_disable() on all of it's
1345 		 * napi_struct instances on this device.
1346 		 */
1347 		smp_mb__after_atomic(); /* Commit netif_running(). */
1348 	}
1349 
1350 	dev_deactivate_many(head);
1351 
1352 	list_for_each_entry(dev, head, close_list) {
1353 		const struct net_device_ops *ops = dev->netdev_ops;
1354 
1355 		/*
1356 		 *	Call the device specific close. This cannot fail.
1357 		 *	Only if device is UP
1358 		 *
1359 		 *	We allow it to be called even after a DETACH hot-plug
1360 		 *	event.
1361 		 */
1362 		if (ops->ndo_stop)
1363 			ops->ndo_stop(dev);
1364 
1365 		dev->flags &= ~IFF_UP;
1366 		net_dmaengine_put();
1367 		netpoll_poll_enable(dev);
1368 	}
1369 
1370 	return 0;
1371 }
1372 
1373 static int __dev_close(struct net_device *dev)
1374 {
1375 	int retval;
1376 	LIST_HEAD(single);
1377 
1378 	list_add(&dev->close_list, &single);
1379 	retval = __dev_close_many(&single);
1380 	list_del(&single);
1381 
1382 	return retval;
1383 }
1384 
1385 static int dev_close_many(struct list_head *head)
1386 {
1387 	struct net_device *dev, *tmp;
1388 
1389 	/* Remove the devices that don't need to be closed */
1390 	list_for_each_entry_safe(dev, tmp, head, close_list)
1391 		if (!(dev->flags & IFF_UP))
1392 			list_del_init(&dev->close_list);
1393 
1394 	__dev_close_many(head);
1395 
1396 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1397 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1398 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1399 		list_del_init(&dev->close_list);
1400 	}
1401 
1402 	return 0;
1403 }
1404 
1405 /**
1406  *	dev_close - shutdown an interface.
1407  *	@dev: device to shutdown
1408  *
1409  *	This function moves an active device into down state. A
1410  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1411  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1412  *	chain.
1413  */
1414 int dev_close(struct net_device *dev)
1415 {
1416 	if (dev->flags & IFF_UP) {
1417 		LIST_HEAD(single);
1418 
1419 		list_add(&dev->close_list, &single);
1420 		dev_close_many(&single);
1421 		list_del(&single);
1422 	}
1423 	return 0;
1424 }
1425 EXPORT_SYMBOL(dev_close);
1426 
1427 
1428 /**
1429  *	dev_disable_lro - disable Large Receive Offload on a device
1430  *	@dev: device
1431  *
1432  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1433  *	called under RTNL.  This is needed if received packets may be
1434  *	forwarded to another interface.
1435  */
1436 void dev_disable_lro(struct net_device *dev)
1437 {
1438 	/*
1439 	 * If we're trying to disable lro on a vlan device
1440 	 * use the underlying physical device instead
1441 	 */
1442 	if (is_vlan_dev(dev))
1443 		dev = vlan_dev_real_dev(dev);
1444 
1445 	/* the same for macvlan devices */
1446 	if (netif_is_macvlan(dev))
1447 		dev = macvlan_dev_real_dev(dev);
1448 
1449 	dev->wanted_features &= ~NETIF_F_LRO;
1450 	netdev_update_features(dev);
1451 
1452 	if (unlikely(dev->features & NETIF_F_LRO))
1453 		netdev_WARN(dev, "failed to disable LRO!\n");
1454 }
1455 EXPORT_SYMBOL(dev_disable_lro);
1456 
1457 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1458 				   struct net_device *dev)
1459 {
1460 	struct netdev_notifier_info info;
1461 
1462 	netdev_notifier_info_init(&info, dev);
1463 	return nb->notifier_call(nb, val, &info);
1464 }
1465 
1466 static int dev_boot_phase = 1;
1467 
1468 /**
1469  *	register_netdevice_notifier - register a network notifier block
1470  *	@nb: notifier
1471  *
1472  *	Register a notifier to be called when network device events occur.
1473  *	The notifier passed is linked into the kernel structures and must
1474  *	not be reused until it has been unregistered. A negative errno code
1475  *	is returned on a failure.
1476  *
1477  * 	When registered all registration and up events are replayed
1478  *	to the new notifier to allow device to have a race free
1479  *	view of the network device list.
1480  */
1481 
1482 int register_netdevice_notifier(struct notifier_block *nb)
1483 {
1484 	struct net_device *dev;
1485 	struct net_device *last;
1486 	struct net *net;
1487 	int err;
1488 
1489 	rtnl_lock();
1490 	err = raw_notifier_chain_register(&netdev_chain, nb);
1491 	if (err)
1492 		goto unlock;
1493 	if (dev_boot_phase)
1494 		goto unlock;
1495 	for_each_net(net) {
1496 		for_each_netdev(net, dev) {
1497 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1498 			err = notifier_to_errno(err);
1499 			if (err)
1500 				goto rollback;
1501 
1502 			if (!(dev->flags & IFF_UP))
1503 				continue;
1504 
1505 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1506 		}
1507 	}
1508 
1509 unlock:
1510 	rtnl_unlock();
1511 	return err;
1512 
1513 rollback:
1514 	last = dev;
1515 	for_each_net(net) {
1516 		for_each_netdev(net, dev) {
1517 			if (dev == last)
1518 				goto outroll;
1519 
1520 			if (dev->flags & IFF_UP) {
1521 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1522 							dev);
1523 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1524 			}
1525 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1526 		}
1527 	}
1528 
1529 outroll:
1530 	raw_notifier_chain_unregister(&netdev_chain, nb);
1531 	goto unlock;
1532 }
1533 EXPORT_SYMBOL(register_netdevice_notifier);
1534 
1535 /**
1536  *	unregister_netdevice_notifier - unregister a network notifier block
1537  *	@nb: notifier
1538  *
1539  *	Unregister a notifier previously registered by
1540  *	register_netdevice_notifier(). The notifier is unlinked into the
1541  *	kernel structures and may then be reused. A negative errno code
1542  *	is returned on a failure.
1543  *
1544  * 	After unregistering unregister and down device events are synthesized
1545  *	for all devices on the device list to the removed notifier to remove
1546  *	the need for special case cleanup code.
1547  */
1548 
1549 int unregister_netdevice_notifier(struct notifier_block *nb)
1550 {
1551 	struct net_device *dev;
1552 	struct net *net;
1553 	int err;
1554 
1555 	rtnl_lock();
1556 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1557 	if (err)
1558 		goto unlock;
1559 
1560 	for_each_net(net) {
1561 		for_each_netdev(net, dev) {
1562 			if (dev->flags & IFF_UP) {
1563 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1564 							dev);
1565 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1566 			}
1567 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1568 		}
1569 	}
1570 unlock:
1571 	rtnl_unlock();
1572 	return err;
1573 }
1574 EXPORT_SYMBOL(unregister_netdevice_notifier);
1575 
1576 /**
1577  *	call_netdevice_notifiers_info - call all network notifier blocks
1578  *	@val: value passed unmodified to notifier function
1579  *	@dev: net_device pointer passed unmodified to notifier function
1580  *	@info: notifier information data
1581  *
1582  *	Call all network notifier blocks.  Parameters and return value
1583  *	are as for raw_notifier_call_chain().
1584  */
1585 
1586 static int call_netdevice_notifiers_info(unsigned long val,
1587 					 struct net_device *dev,
1588 					 struct netdev_notifier_info *info)
1589 {
1590 	ASSERT_RTNL();
1591 	netdev_notifier_info_init(info, dev);
1592 	return raw_notifier_call_chain(&netdev_chain, val, info);
1593 }
1594 
1595 /**
1596  *	call_netdevice_notifiers - call all network notifier blocks
1597  *      @val: value passed unmodified to notifier function
1598  *      @dev: net_device pointer passed unmodified to notifier function
1599  *
1600  *	Call all network notifier blocks.  Parameters and return value
1601  *	are as for raw_notifier_call_chain().
1602  */
1603 
1604 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1605 {
1606 	struct netdev_notifier_info info;
1607 
1608 	return call_netdevice_notifiers_info(val, dev, &info);
1609 }
1610 EXPORT_SYMBOL(call_netdevice_notifiers);
1611 
1612 static struct static_key netstamp_needed __read_mostly;
1613 #ifdef HAVE_JUMP_LABEL
1614 /* We are not allowed to call static_key_slow_dec() from irq context
1615  * If net_disable_timestamp() is called from irq context, defer the
1616  * static_key_slow_dec() calls.
1617  */
1618 static atomic_t netstamp_needed_deferred;
1619 #endif
1620 
1621 void net_enable_timestamp(void)
1622 {
1623 #ifdef HAVE_JUMP_LABEL
1624 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1625 
1626 	if (deferred) {
1627 		while (--deferred)
1628 			static_key_slow_dec(&netstamp_needed);
1629 		return;
1630 	}
1631 #endif
1632 	static_key_slow_inc(&netstamp_needed);
1633 }
1634 EXPORT_SYMBOL(net_enable_timestamp);
1635 
1636 void net_disable_timestamp(void)
1637 {
1638 #ifdef HAVE_JUMP_LABEL
1639 	if (in_interrupt()) {
1640 		atomic_inc(&netstamp_needed_deferred);
1641 		return;
1642 	}
1643 #endif
1644 	static_key_slow_dec(&netstamp_needed);
1645 }
1646 EXPORT_SYMBOL(net_disable_timestamp);
1647 
1648 static inline void net_timestamp_set(struct sk_buff *skb)
1649 {
1650 	skb->tstamp.tv64 = 0;
1651 	if (static_key_false(&netstamp_needed))
1652 		__net_timestamp(skb);
1653 }
1654 
1655 #define net_timestamp_check(COND, SKB)			\
1656 	if (static_key_false(&netstamp_needed)) {		\
1657 		if ((COND) && !(SKB)->tstamp.tv64)	\
1658 			__net_timestamp(SKB);		\
1659 	}						\
1660 
1661 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1662 {
1663 	unsigned int len;
1664 
1665 	if (!(dev->flags & IFF_UP))
1666 		return false;
1667 
1668 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1669 	if (skb->len <= len)
1670 		return true;
1671 
1672 	/* if TSO is enabled, we don't care about the length as the packet
1673 	 * could be forwarded without being segmented before
1674 	 */
1675 	if (skb_is_gso(skb))
1676 		return true;
1677 
1678 	return false;
1679 }
1680 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1681 
1682 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1683 {
1684 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1685 		if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1686 			atomic_long_inc(&dev->rx_dropped);
1687 			kfree_skb(skb);
1688 			return NET_RX_DROP;
1689 		}
1690 	}
1691 
1692 	if (unlikely(!is_skb_forwardable(dev, skb))) {
1693 		atomic_long_inc(&dev->rx_dropped);
1694 		kfree_skb(skb);
1695 		return NET_RX_DROP;
1696 	}
1697 
1698 	skb_scrub_packet(skb, true);
1699 	skb->protocol = eth_type_trans(skb, dev);
1700 
1701 	return 0;
1702 }
1703 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1704 
1705 /**
1706  * dev_forward_skb - loopback an skb to another netif
1707  *
1708  * @dev: destination network device
1709  * @skb: buffer to forward
1710  *
1711  * return values:
1712  *	NET_RX_SUCCESS	(no congestion)
1713  *	NET_RX_DROP     (packet was dropped, but freed)
1714  *
1715  * dev_forward_skb can be used for injecting an skb from the
1716  * start_xmit function of one device into the receive queue
1717  * of another device.
1718  *
1719  * The receiving device may be in another namespace, so
1720  * we have to clear all information in the skb that could
1721  * impact namespace isolation.
1722  */
1723 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1724 {
1725 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1726 }
1727 EXPORT_SYMBOL_GPL(dev_forward_skb);
1728 
1729 static inline int deliver_skb(struct sk_buff *skb,
1730 			      struct packet_type *pt_prev,
1731 			      struct net_device *orig_dev)
1732 {
1733 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1734 		return -ENOMEM;
1735 	atomic_inc(&skb->users);
1736 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1737 }
1738 
1739 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1740 {
1741 	if (!ptype->af_packet_priv || !skb->sk)
1742 		return false;
1743 
1744 	if (ptype->id_match)
1745 		return ptype->id_match(ptype, skb->sk);
1746 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1747 		return true;
1748 
1749 	return false;
1750 }
1751 
1752 /*
1753  *	Support routine. Sends outgoing frames to any network
1754  *	taps currently in use.
1755  */
1756 
1757 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1758 {
1759 	struct packet_type *ptype;
1760 	struct sk_buff *skb2 = NULL;
1761 	struct packet_type *pt_prev = NULL;
1762 
1763 	rcu_read_lock();
1764 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1765 		/* Never send packets back to the socket
1766 		 * they originated from - MvS (miquels@drinkel.ow.org)
1767 		 */
1768 		if ((ptype->dev == dev || !ptype->dev) &&
1769 		    (!skb_loop_sk(ptype, skb))) {
1770 			if (pt_prev) {
1771 				deliver_skb(skb2, pt_prev, skb->dev);
1772 				pt_prev = ptype;
1773 				continue;
1774 			}
1775 
1776 			skb2 = skb_clone(skb, GFP_ATOMIC);
1777 			if (!skb2)
1778 				break;
1779 
1780 			net_timestamp_set(skb2);
1781 
1782 			/* skb->nh should be correctly
1783 			   set by sender, so that the second statement is
1784 			   just protection against buggy protocols.
1785 			 */
1786 			skb_reset_mac_header(skb2);
1787 
1788 			if (skb_network_header(skb2) < skb2->data ||
1789 			    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1790 				net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1791 						     ntohs(skb2->protocol),
1792 						     dev->name);
1793 				skb_reset_network_header(skb2);
1794 			}
1795 
1796 			skb2->transport_header = skb2->network_header;
1797 			skb2->pkt_type = PACKET_OUTGOING;
1798 			pt_prev = ptype;
1799 		}
1800 	}
1801 	if (pt_prev)
1802 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1803 	rcu_read_unlock();
1804 }
1805 
1806 /**
1807  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1808  * @dev: Network device
1809  * @txq: number of queues available
1810  *
1811  * If real_num_tx_queues is changed the tc mappings may no longer be
1812  * valid. To resolve this verify the tc mapping remains valid and if
1813  * not NULL the mapping. With no priorities mapping to this
1814  * offset/count pair it will no longer be used. In the worst case TC0
1815  * is invalid nothing can be done so disable priority mappings. If is
1816  * expected that drivers will fix this mapping if they can before
1817  * calling netif_set_real_num_tx_queues.
1818  */
1819 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1820 {
1821 	int i;
1822 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1823 
1824 	/* If TC0 is invalidated disable TC mapping */
1825 	if (tc->offset + tc->count > txq) {
1826 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1827 		dev->num_tc = 0;
1828 		return;
1829 	}
1830 
1831 	/* Invalidated prio to tc mappings set to TC0 */
1832 	for (i = 1; i < TC_BITMASK + 1; i++) {
1833 		int q = netdev_get_prio_tc_map(dev, i);
1834 
1835 		tc = &dev->tc_to_txq[q];
1836 		if (tc->offset + tc->count > txq) {
1837 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1838 				i, q);
1839 			netdev_set_prio_tc_map(dev, i, 0);
1840 		}
1841 	}
1842 }
1843 
1844 #ifdef CONFIG_XPS
1845 static DEFINE_MUTEX(xps_map_mutex);
1846 #define xmap_dereference(P)		\
1847 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1848 
1849 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1850 					int cpu, u16 index)
1851 {
1852 	struct xps_map *map = NULL;
1853 	int pos;
1854 
1855 	if (dev_maps)
1856 		map = xmap_dereference(dev_maps->cpu_map[cpu]);
1857 
1858 	for (pos = 0; map && pos < map->len; pos++) {
1859 		if (map->queues[pos] == index) {
1860 			if (map->len > 1) {
1861 				map->queues[pos] = map->queues[--map->len];
1862 			} else {
1863 				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1864 				kfree_rcu(map, rcu);
1865 				map = NULL;
1866 			}
1867 			break;
1868 		}
1869 	}
1870 
1871 	return map;
1872 }
1873 
1874 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1875 {
1876 	struct xps_dev_maps *dev_maps;
1877 	int cpu, i;
1878 	bool active = false;
1879 
1880 	mutex_lock(&xps_map_mutex);
1881 	dev_maps = xmap_dereference(dev->xps_maps);
1882 
1883 	if (!dev_maps)
1884 		goto out_no_maps;
1885 
1886 	for_each_possible_cpu(cpu) {
1887 		for (i = index; i < dev->num_tx_queues; i++) {
1888 			if (!remove_xps_queue(dev_maps, cpu, i))
1889 				break;
1890 		}
1891 		if (i == dev->num_tx_queues)
1892 			active = true;
1893 	}
1894 
1895 	if (!active) {
1896 		RCU_INIT_POINTER(dev->xps_maps, NULL);
1897 		kfree_rcu(dev_maps, rcu);
1898 	}
1899 
1900 	for (i = index; i < dev->num_tx_queues; i++)
1901 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1902 					     NUMA_NO_NODE);
1903 
1904 out_no_maps:
1905 	mutex_unlock(&xps_map_mutex);
1906 }
1907 
1908 static struct xps_map *expand_xps_map(struct xps_map *map,
1909 				      int cpu, u16 index)
1910 {
1911 	struct xps_map *new_map;
1912 	int alloc_len = XPS_MIN_MAP_ALLOC;
1913 	int i, pos;
1914 
1915 	for (pos = 0; map && pos < map->len; pos++) {
1916 		if (map->queues[pos] != index)
1917 			continue;
1918 		return map;
1919 	}
1920 
1921 	/* Need to add queue to this CPU's existing map */
1922 	if (map) {
1923 		if (pos < map->alloc_len)
1924 			return map;
1925 
1926 		alloc_len = map->alloc_len * 2;
1927 	}
1928 
1929 	/* Need to allocate new map to store queue on this CPU's map */
1930 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1931 			       cpu_to_node(cpu));
1932 	if (!new_map)
1933 		return NULL;
1934 
1935 	for (i = 0; i < pos; i++)
1936 		new_map->queues[i] = map->queues[i];
1937 	new_map->alloc_len = alloc_len;
1938 	new_map->len = pos;
1939 
1940 	return new_map;
1941 }
1942 
1943 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1944 			u16 index)
1945 {
1946 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1947 	struct xps_map *map, *new_map;
1948 	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1949 	int cpu, numa_node_id = -2;
1950 	bool active = false;
1951 
1952 	mutex_lock(&xps_map_mutex);
1953 
1954 	dev_maps = xmap_dereference(dev->xps_maps);
1955 
1956 	/* allocate memory for queue storage */
1957 	for_each_online_cpu(cpu) {
1958 		if (!cpumask_test_cpu(cpu, mask))
1959 			continue;
1960 
1961 		if (!new_dev_maps)
1962 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1963 		if (!new_dev_maps) {
1964 			mutex_unlock(&xps_map_mutex);
1965 			return -ENOMEM;
1966 		}
1967 
1968 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1969 				 NULL;
1970 
1971 		map = expand_xps_map(map, cpu, index);
1972 		if (!map)
1973 			goto error;
1974 
1975 		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1976 	}
1977 
1978 	if (!new_dev_maps)
1979 		goto out_no_new_maps;
1980 
1981 	for_each_possible_cpu(cpu) {
1982 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1983 			/* add queue to CPU maps */
1984 			int pos = 0;
1985 
1986 			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1987 			while ((pos < map->len) && (map->queues[pos] != index))
1988 				pos++;
1989 
1990 			if (pos == map->len)
1991 				map->queues[map->len++] = index;
1992 #ifdef CONFIG_NUMA
1993 			if (numa_node_id == -2)
1994 				numa_node_id = cpu_to_node(cpu);
1995 			else if (numa_node_id != cpu_to_node(cpu))
1996 				numa_node_id = -1;
1997 #endif
1998 		} else if (dev_maps) {
1999 			/* fill in the new device map from the old device map */
2000 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2001 			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2002 		}
2003 
2004 	}
2005 
2006 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2007 
2008 	/* Cleanup old maps */
2009 	if (dev_maps) {
2010 		for_each_possible_cpu(cpu) {
2011 			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2012 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2013 			if (map && map != new_map)
2014 				kfree_rcu(map, rcu);
2015 		}
2016 
2017 		kfree_rcu(dev_maps, rcu);
2018 	}
2019 
2020 	dev_maps = new_dev_maps;
2021 	active = true;
2022 
2023 out_no_new_maps:
2024 	/* update Tx queue numa node */
2025 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2026 				     (numa_node_id >= 0) ? numa_node_id :
2027 				     NUMA_NO_NODE);
2028 
2029 	if (!dev_maps)
2030 		goto out_no_maps;
2031 
2032 	/* removes queue from unused CPUs */
2033 	for_each_possible_cpu(cpu) {
2034 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2035 			continue;
2036 
2037 		if (remove_xps_queue(dev_maps, cpu, index))
2038 			active = true;
2039 	}
2040 
2041 	/* free map if not active */
2042 	if (!active) {
2043 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2044 		kfree_rcu(dev_maps, rcu);
2045 	}
2046 
2047 out_no_maps:
2048 	mutex_unlock(&xps_map_mutex);
2049 
2050 	return 0;
2051 error:
2052 	/* remove any maps that we added */
2053 	for_each_possible_cpu(cpu) {
2054 		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2055 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2056 				 NULL;
2057 		if (new_map && new_map != map)
2058 			kfree(new_map);
2059 	}
2060 
2061 	mutex_unlock(&xps_map_mutex);
2062 
2063 	kfree(new_dev_maps);
2064 	return -ENOMEM;
2065 }
2066 EXPORT_SYMBOL(netif_set_xps_queue);
2067 
2068 #endif
2069 /*
2070  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2071  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2072  */
2073 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2074 {
2075 	int rc;
2076 
2077 	if (txq < 1 || txq > dev->num_tx_queues)
2078 		return -EINVAL;
2079 
2080 	if (dev->reg_state == NETREG_REGISTERED ||
2081 	    dev->reg_state == NETREG_UNREGISTERING) {
2082 		ASSERT_RTNL();
2083 
2084 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2085 						  txq);
2086 		if (rc)
2087 			return rc;
2088 
2089 		if (dev->num_tc)
2090 			netif_setup_tc(dev, txq);
2091 
2092 		if (txq < dev->real_num_tx_queues) {
2093 			qdisc_reset_all_tx_gt(dev, txq);
2094 #ifdef CONFIG_XPS
2095 			netif_reset_xps_queues_gt(dev, txq);
2096 #endif
2097 		}
2098 	}
2099 
2100 	dev->real_num_tx_queues = txq;
2101 	return 0;
2102 }
2103 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2104 
2105 #ifdef CONFIG_SYSFS
2106 /**
2107  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2108  *	@dev: Network device
2109  *	@rxq: Actual number of RX queues
2110  *
2111  *	This must be called either with the rtnl_lock held or before
2112  *	registration of the net device.  Returns 0 on success, or a
2113  *	negative error code.  If called before registration, it always
2114  *	succeeds.
2115  */
2116 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2117 {
2118 	int rc;
2119 
2120 	if (rxq < 1 || rxq > dev->num_rx_queues)
2121 		return -EINVAL;
2122 
2123 	if (dev->reg_state == NETREG_REGISTERED) {
2124 		ASSERT_RTNL();
2125 
2126 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2127 						  rxq);
2128 		if (rc)
2129 			return rc;
2130 	}
2131 
2132 	dev->real_num_rx_queues = rxq;
2133 	return 0;
2134 }
2135 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2136 #endif
2137 
2138 /**
2139  * netif_get_num_default_rss_queues - default number of RSS queues
2140  *
2141  * This routine should set an upper limit on the number of RSS queues
2142  * used by default by multiqueue devices.
2143  */
2144 int netif_get_num_default_rss_queues(void)
2145 {
2146 	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2147 }
2148 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2149 
2150 static inline void __netif_reschedule(struct Qdisc *q)
2151 {
2152 	struct softnet_data *sd;
2153 	unsigned long flags;
2154 
2155 	local_irq_save(flags);
2156 	sd = &__get_cpu_var(softnet_data);
2157 	q->next_sched = NULL;
2158 	*sd->output_queue_tailp = q;
2159 	sd->output_queue_tailp = &q->next_sched;
2160 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2161 	local_irq_restore(flags);
2162 }
2163 
2164 void __netif_schedule(struct Qdisc *q)
2165 {
2166 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2167 		__netif_reschedule(q);
2168 }
2169 EXPORT_SYMBOL(__netif_schedule);
2170 
2171 struct dev_kfree_skb_cb {
2172 	enum skb_free_reason reason;
2173 };
2174 
2175 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2176 {
2177 	return (struct dev_kfree_skb_cb *)skb->cb;
2178 }
2179 
2180 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2181 {
2182 	unsigned long flags;
2183 
2184 	if (likely(atomic_read(&skb->users) == 1)) {
2185 		smp_rmb();
2186 		atomic_set(&skb->users, 0);
2187 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2188 		return;
2189 	}
2190 	get_kfree_skb_cb(skb)->reason = reason;
2191 	local_irq_save(flags);
2192 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2193 	__this_cpu_write(softnet_data.completion_queue, skb);
2194 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2195 	local_irq_restore(flags);
2196 }
2197 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2198 
2199 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2200 {
2201 	if (in_irq() || irqs_disabled())
2202 		__dev_kfree_skb_irq(skb, reason);
2203 	else
2204 		dev_kfree_skb(skb);
2205 }
2206 EXPORT_SYMBOL(__dev_kfree_skb_any);
2207 
2208 
2209 /**
2210  * netif_device_detach - mark device as removed
2211  * @dev: network device
2212  *
2213  * Mark device as removed from system and therefore no longer available.
2214  */
2215 void netif_device_detach(struct net_device *dev)
2216 {
2217 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2218 	    netif_running(dev)) {
2219 		netif_tx_stop_all_queues(dev);
2220 	}
2221 }
2222 EXPORT_SYMBOL(netif_device_detach);
2223 
2224 /**
2225  * netif_device_attach - mark device as attached
2226  * @dev: network device
2227  *
2228  * Mark device as attached from system and restart if needed.
2229  */
2230 void netif_device_attach(struct net_device *dev)
2231 {
2232 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2233 	    netif_running(dev)) {
2234 		netif_tx_wake_all_queues(dev);
2235 		__netdev_watchdog_up(dev);
2236 	}
2237 }
2238 EXPORT_SYMBOL(netif_device_attach);
2239 
2240 static void skb_warn_bad_offload(const struct sk_buff *skb)
2241 {
2242 	static const netdev_features_t null_features = 0;
2243 	struct net_device *dev = skb->dev;
2244 	const char *driver = "";
2245 
2246 	if (!net_ratelimit())
2247 		return;
2248 
2249 	if (dev && dev->dev.parent)
2250 		driver = dev_driver_string(dev->dev.parent);
2251 
2252 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2253 	     "gso_type=%d ip_summed=%d\n",
2254 	     driver, dev ? &dev->features : &null_features,
2255 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2256 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2257 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2258 }
2259 
2260 /*
2261  * Invalidate hardware checksum when packet is to be mangled, and
2262  * complete checksum manually on outgoing path.
2263  */
2264 int skb_checksum_help(struct sk_buff *skb)
2265 {
2266 	__wsum csum;
2267 	int ret = 0, offset;
2268 
2269 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2270 		goto out_set_summed;
2271 
2272 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2273 		skb_warn_bad_offload(skb);
2274 		return -EINVAL;
2275 	}
2276 
2277 	/* Before computing a checksum, we should make sure no frag could
2278 	 * be modified by an external entity : checksum could be wrong.
2279 	 */
2280 	if (skb_has_shared_frag(skb)) {
2281 		ret = __skb_linearize(skb);
2282 		if (ret)
2283 			goto out;
2284 	}
2285 
2286 	offset = skb_checksum_start_offset(skb);
2287 	BUG_ON(offset >= skb_headlen(skb));
2288 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2289 
2290 	offset += skb->csum_offset;
2291 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2292 
2293 	if (skb_cloned(skb) &&
2294 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2295 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2296 		if (ret)
2297 			goto out;
2298 	}
2299 
2300 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2301 out_set_summed:
2302 	skb->ip_summed = CHECKSUM_NONE;
2303 out:
2304 	return ret;
2305 }
2306 EXPORT_SYMBOL(skb_checksum_help);
2307 
2308 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2309 {
2310 	unsigned int vlan_depth = skb->mac_len;
2311 	__be16 type = skb->protocol;
2312 
2313 	/* Tunnel gso handlers can set protocol to ethernet. */
2314 	if (type == htons(ETH_P_TEB)) {
2315 		struct ethhdr *eth;
2316 
2317 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2318 			return 0;
2319 
2320 		eth = (struct ethhdr *)skb_mac_header(skb);
2321 		type = eth->h_proto;
2322 	}
2323 
2324 	/* if skb->protocol is 802.1Q/AD then the header should already be
2325 	 * present at mac_len - VLAN_HLEN (if mac_len > 0), or at
2326 	 * ETH_HLEN otherwise
2327 	 */
2328 	if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2329 		if (vlan_depth) {
2330 			if (WARN_ON(vlan_depth < VLAN_HLEN))
2331 				return 0;
2332 			vlan_depth -= VLAN_HLEN;
2333 		} else {
2334 			vlan_depth = ETH_HLEN;
2335 		}
2336 		do {
2337 			struct vlan_hdr *vh;
2338 
2339 			if (unlikely(!pskb_may_pull(skb,
2340 						    vlan_depth + VLAN_HLEN)))
2341 				return 0;
2342 
2343 			vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2344 			type = vh->h_vlan_encapsulated_proto;
2345 			vlan_depth += VLAN_HLEN;
2346 		} while (type == htons(ETH_P_8021Q) ||
2347 			 type == htons(ETH_P_8021AD));
2348 	}
2349 
2350 	*depth = vlan_depth;
2351 
2352 	return type;
2353 }
2354 
2355 /**
2356  *	skb_mac_gso_segment - mac layer segmentation handler.
2357  *	@skb: buffer to segment
2358  *	@features: features for the output path (see dev->features)
2359  */
2360 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2361 				    netdev_features_t features)
2362 {
2363 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2364 	struct packet_offload *ptype;
2365 	int vlan_depth = skb->mac_len;
2366 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2367 
2368 	if (unlikely(!type))
2369 		return ERR_PTR(-EINVAL);
2370 
2371 	__skb_pull(skb, vlan_depth);
2372 
2373 	rcu_read_lock();
2374 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2375 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2376 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2377 				int err;
2378 
2379 				err = ptype->callbacks.gso_send_check(skb);
2380 				segs = ERR_PTR(err);
2381 				if (err || skb_gso_ok(skb, features))
2382 					break;
2383 				__skb_push(skb, (skb->data -
2384 						 skb_network_header(skb)));
2385 			}
2386 			segs = ptype->callbacks.gso_segment(skb, features);
2387 			break;
2388 		}
2389 	}
2390 	rcu_read_unlock();
2391 
2392 	__skb_push(skb, skb->data - skb_mac_header(skb));
2393 
2394 	return segs;
2395 }
2396 EXPORT_SYMBOL(skb_mac_gso_segment);
2397 
2398 
2399 /* openvswitch calls this on rx path, so we need a different check.
2400  */
2401 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2402 {
2403 	if (tx_path)
2404 		return skb->ip_summed != CHECKSUM_PARTIAL;
2405 	else
2406 		return skb->ip_summed == CHECKSUM_NONE;
2407 }
2408 
2409 /**
2410  *	__skb_gso_segment - Perform segmentation on skb.
2411  *	@skb: buffer to segment
2412  *	@features: features for the output path (see dev->features)
2413  *	@tx_path: whether it is called in TX path
2414  *
2415  *	This function segments the given skb and returns a list of segments.
2416  *
2417  *	It may return NULL if the skb requires no segmentation.  This is
2418  *	only possible when GSO is used for verifying header integrity.
2419  */
2420 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2421 				  netdev_features_t features, bool tx_path)
2422 {
2423 	if (unlikely(skb_needs_check(skb, tx_path))) {
2424 		int err;
2425 
2426 		skb_warn_bad_offload(skb);
2427 
2428 		err = skb_cow_head(skb, 0);
2429 		if (err < 0)
2430 			return ERR_PTR(err);
2431 	}
2432 
2433 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2434 	SKB_GSO_CB(skb)->encap_level = 0;
2435 
2436 	skb_reset_mac_header(skb);
2437 	skb_reset_mac_len(skb);
2438 
2439 	return skb_mac_gso_segment(skb, features);
2440 }
2441 EXPORT_SYMBOL(__skb_gso_segment);
2442 
2443 /* Take action when hardware reception checksum errors are detected. */
2444 #ifdef CONFIG_BUG
2445 void netdev_rx_csum_fault(struct net_device *dev)
2446 {
2447 	if (net_ratelimit()) {
2448 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2449 		dump_stack();
2450 	}
2451 }
2452 EXPORT_SYMBOL(netdev_rx_csum_fault);
2453 #endif
2454 
2455 /* Actually, we should eliminate this check as soon as we know, that:
2456  * 1. IOMMU is present and allows to map all the memory.
2457  * 2. No high memory really exists on this machine.
2458  */
2459 
2460 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2461 {
2462 #ifdef CONFIG_HIGHMEM
2463 	int i;
2464 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2465 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2466 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2467 			if (PageHighMem(skb_frag_page(frag)))
2468 				return 1;
2469 		}
2470 	}
2471 
2472 	if (PCI_DMA_BUS_IS_PHYS) {
2473 		struct device *pdev = dev->dev.parent;
2474 
2475 		if (!pdev)
2476 			return 0;
2477 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2478 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2479 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2480 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2481 				return 1;
2482 		}
2483 	}
2484 #endif
2485 	return 0;
2486 }
2487 
2488 struct dev_gso_cb {
2489 	void (*destructor)(struct sk_buff *skb);
2490 };
2491 
2492 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2493 
2494 static void dev_gso_skb_destructor(struct sk_buff *skb)
2495 {
2496 	struct dev_gso_cb *cb;
2497 
2498 	kfree_skb_list(skb->next);
2499 	skb->next = NULL;
2500 
2501 	cb = DEV_GSO_CB(skb);
2502 	if (cb->destructor)
2503 		cb->destructor(skb);
2504 }
2505 
2506 /**
2507  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
2508  *	@skb: buffer to segment
2509  *	@features: device features as applicable to this skb
2510  *
2511  *	This function segments the given skb and stores the list of segments
2512  *	in skb->next.
2513  */
2514 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2515 {
2516 	struct sk_buff *segs;
2517 
2518 	segs = skb_gso_segment(skb, features);
2519 
2520 	/* Verifying header integrity only. */
2521 	if (!segs)
2522 		return 0;
2523 
2524 	if (IS_ERR(segs))
2525 		return PTR_ERR(segs);
2526 
2527 	skb->next = segs;
2528 	DEV_GSO_CB(skb)->destructor = skb->destructor;
2529 	skb->destructor = dev_gso_skb_destructor;
2530 
2531 	return 0;
2532 }
2533 
2534 /* If MPLS offload request, verify we are testing hardware MPLS features
2535  * instead of standard features for the netdev.
2536  */
2537 #ifdef CONFIG_NET_MPLS_GSO
2538 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2539 					   netdev_features_t features,
2540 					   __be16 type)
2541 {
2542 	if (type == htons(ETH_P_MPLS_UC) || type == htons(ETH_P_MPLS_MC))
2543 		features &= skb->dev->mpls_features;
2544 
2545 	return features;
2546 }
2547 #else
2548 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2549 					   netdev_features_t features,
2550 					   __be16 type)
2551 {
2552 	return features;
2553 }
2554 #endif
2555 
2556 static netdev_features_t harmonize_features(struct sk_buff *skb,
2557 	netdev_features_t features)
2558 {
2559 	int tmp;
2560 	__be16 type;
2561 
2562 	type = skb_network_protocol(skb, &tmp);
2563 	features = net_mpls_features(skb, features, type);
2564 
2565 	if (skb->ip_summed != CHECKSUM_NONE &&
2566 	    !can_checksum_protocol(features, type)) {
2567 		features &= ~NETIF_F_ALL_CSUM;
2568 	} else if (illegal_highdma(skb->dev, skb)) {
2569 		features &= ~NETIF_F_SG;
2570 	}
2571 
2572 	return features;
2573 }
2574 
2575 netdev_features_t netif_skb_features(struct sk_buff *skb)
2576 {
2577 	__be16 protocol = skb->protocol;
2578 	netdev_features_t features = skb->dev->features;
2579 
2580 	if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2581 		features &= ~NETIF_F_GSO_MASK;
2582 
2583 	if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2584 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2585 		protocol = veh->h_vlan_encapsulated_proto;
2586 	} else if (!vlan_tx_tag_present(skb)) {
2587 		return harmonize_features(skb, features);
2588 	}
2589 
2590 	features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2591 					       NETIF_F_HW_VLAN_STAG_TX);
2592 
2593 	if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2594 		features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2595 				NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2596 				NETIF_F_HW_VLAN_STAG_TX;
2597 
2598 	return harmonize_features(skb, features);
2599 }
2600 EXPORT_SYMBOL(netif_skb_features);
2601 
2602 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2603 			struct netdev_queue *txq)
2604 {
2605 	const struct net_device_ops *ops = dev->netdev_ops;
2606 	int rc = NETDEV_TX_OK;
2607 	unsigned int skb_len;
2608 
2609 	if (likely(!skb->next)) {
2610 		netdev_features_t features;
2611 
2612 		/*
2613 		 * If device doesn't need skb->dst, release it right now while
2614 		 * its hot in this cpu cache
2615 		 */
2616 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2617 			skb_dst_drop(skb);
2618 
2619 		features = netif_skb_features(skb);
2620 
2621 		if (vlan_tx_tag_present(skb) &&
2622 		    !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2623 			skb = __vlan_put_tag(skb, skb->vlan_proto,
2624 					     vlan_tx_tag_get(skb));
2625 			if (unlikely(!skb))
2626 				goto out;
2627 
2628 			skb->vlan_tci = 0;
2629 		}
2630 
2631 		/* If encapsulation offload request, verify we are testing
2632 		 * hardware encapsulation features instead of standard
2633 		 * features for the netdev
2634 		 */
2635 		if (skb->encapsulation)
2636 			features &= dev->hw_enc_features;
2637 
2638 		if (netif_needs_gso(skb, features)) {
2639 			if (unlikely(dev_gso_segment(skb, features)))
2640 				goto out_kfree_skb;
2641 			if (skb->next)
2642 				goto gso;
2643 		} else {
2644 			if (skb_needs_linearize(skb, features) &&
2645 			    __skb_linearize(skb))
2646 				goto out_kfree_skb;
2647 
2648 			/* If packet is not checksummed and device does not
2649 			 * support checksumming for this protocol, complete
2650 			 * checksumming here.
2651 			 */
2652 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
2653 				if (skb->encapsulation)
2654 					skb_set_inner_transport_header(skb,
2655 						skb_checksum_start_offset(skb));
2656 				else
2657 					skb_set_transport_header(skb,
2658 						skb_checksum_start_offset(skb));
2659 				if (!(features & NETIF_F_ALL_CSUM) &&
2660 				     skb_checksum_help(skb))
2661 					goto out_kfree_skb;
2662 			}
2663 		}
2664 
2665 		if (!list_empty(&ptype_all))
2666 			dev_queue_xmit_nit(skb, dev);
2667 
2668 		skb_len = skb->len;
2669 		trace_net_dev_start_xmit(skb, dev);
2670 		rc = ops->ndo_start_xmit(skb, dev);
2671 		trace_net_dev_xmit(skb, rc, dev, skb_len);
2672 		if (rc == NETDEV_TX_OK)
2673 			txq_trans_update(txq);
2674 		return rc;
2675 	}
2676 
2677 gso:
2678 	do {
2679 		struct sk_buff *nskb = skb->next;
2680 
2681 		skb->next = nskb->next;
2682 		nskb->next = NULL;
2683 
2684 		if (!list_empty(&ptype_all))
2685 			dev_queue_xmit_nit(nskb, dev);
2686 
2687 		skb_len = nskb->len;
2688 		trace_net_dev_start_xmit(nskb, dev);
2689 		rc = ops->ndo_start_xmit(nskb, dev);
2690 		trace_net_dev_xmit(nskb, rc, dev, skb_len);
2691 		if (unlikely(rc != NETDEV_TX_OK)) {
2692 			if (rc & ~NETDEV_TX_MASK)
2693 				goto out_kfree_gso_skb;
2694 			nskb->next = skb->next;
2695 			skb->next = nskb;
2696 			return rc;
2697 		}
2698 		txq_trans_update(txq);
2699 		if (unlikely(netif_xmit_stopped(txq) && skb->next))
2700 			return NETDEV_TX_BUSY;
2701 	} while (skb->next);
2702 
2703 out_kfree_gso_skb:
2704 	if (likely(skb->next == NULL)) {
2705 		skb->destructor = DEV_GSO_CB(skb)->destructor;
2706 		consume_skb(skb);
2707 		return rc;
2708 	}
2709 out_kfree_skb:
2710 	kfree_skb(skb);
2711 out:
2712 	return rc;
2713 }
2714 EXPORT_SYMBOL_GPL(dev_hard_start_xmit);
2715 
2716 static void qdisc_pkt_len_init(struct sk_buff *skb)
2717 {
2718 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2719 
2720 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2721 
2722 	/* To get more precise estimation of bytes sent on wire,
2723 	 * we add to pkt_len the headers size of all segments
2724 	 */
2725 	if (shinfo->gso_size)  {
2726 		unsigned int hdr_len;
2727 		u16 gso_segs = shinfo->gso_segs;
2728 
2729 		/* mac layer + network layer */
2730 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2731 
2732 		/* + transport layer */
2733 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2734 			hdr_len += tcp_hdrlen(skb);
2735 		else
2736 			hdr_len += sizeof(struct udphdr);
2737 
2738 		if (shinfo->gso_type & SKB_GSO_DODGY)
2739 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2740 						shinfo->gso_size);
2741 
2742 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2743 	}
2744 }
2745 
2746 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2747 				 struct net_device *dev,
2748 				 struct netdev_queue *txq)
2749 {
2750 	spinlock_t *root_lock = qdisc_lock(q);
2751 	bool contended;
2752 	int rc;
2753 
2754 	qdisc_pkt_len_init(skb);
2755 	qdisc_calculate_pkt_len(skb, q);
2756 	/*
2757 	 * Heuristic to force contended enqueues to serialize on a
2758 	 * separate lock before trying to get qdisc main lock.
2759 	 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2760 	 * often and dequeue packets faster.
2761 	 */
2762 	contended = qdisc_is_running(q);
2763 	if (unlikely(contended))
2764 		spin_lock(&q->busylock);
2765 
2766 	spin_lock(root_lock);
2767 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2768 		kfree_skb(skb);
2769 		rc = NET_XMIT_DROP;
2770 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2771 		   qdisc_run_begin(q)) {
2772 		/*
2773 		 * This is a work-conserving queue; there are no old skbs
2774 		 * waiting to be sent out; and the qdisc is not running -
2775 		 * xmit the skb directly.
2776 		 */
2777 		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2778 			skb_dst_force(skb);
2779 
2780 		qdisc_bstats_update(q, skb);
2781 
2782 		if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2783 			if (unlikely(contended)) {
2784 				spin_unlock(&q->busylock);
2785 				contended = false;
2786 			}
2787 			__qdisc_run(q);
2788 		} else
2789 			qdisc_run_end(q);
2790 
2791 		rc = NET_XMIT_SUCCESS;
2792 	} else {
2793 		skb_dst_force(skb);
2794 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2795 		if (qdisc_run_begin(q)) {
2796 			if (unlikely(contended)) {
2797 				spin_unlock(&q->busylock);
2798 				contended = false;
2799 			}
2800 			__qdisc_run(q);
2801 		}
2802 	}
2803 	spin_unlock(root_lock);
2804 	if (unlikely(contended))
2805 		spin_unlock(&q->busylock);
2806 	return rc;
2807 }
2808 
2809 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2810 static void skb_update_prio(struct sk_buff *skb)
2811 {
2812 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2813 
2814 	if (!skb->priority && skb->sk && map) {
2815 		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2816 
2817 		if (prioidx < map->priomap_len)
2818 			skb->priority = map->priomap[prioidx];
2819 	}
2820 }
2821 #else
2822 #define skb_update_prio(skb)
2823 #endif
2824 
2825 static DEFINE_PER_CPU(int, xmit_recursion);
2826 #define RECURSION_LIMIT 10
2827 
2828 /**
2829  *	dev_loopback_xmit - loop back @skb
2830  *	@skb: buffer to transmit
2831  */
2832 int dev_loopback_xmit(struct sk_buff *skb)
2833 {
2834 	skb_reset_mac_header(skb);
2835 	__skb_pull(skb, skb_network_offset(skb));
2836 	skb->pkt_type = PACKET_LOOPBACK;
2837 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2838 	WARN_ON(!skb_dst(skb));
2839 	skb_dst_force(skb);
2840 	netif_rx_ni(skb);
2841 	return 0;
2842 }
2843 EXPORT_SYMBOL(dev_loopback_xmit);
2844 
2845 /**
2846  *	__dev_queue_xmit - transmit a buffer
2847  *	@skb: buffer to transmit
2848  *	@accel_priv: private data used for L2 forwarding offload
2849  *
2850  *	Queue a buffer for transmission to a network device. The caller must
2851  *	have set the device and priority and built the buffer before calling
2852  *	this function. The function can be called from an interrupt.
2853  *
2854  *	A negative errno code is returned on a failure. A success does not
2855  *	guarantee the frame will be transmitted as it may be dropped due
2856  *	to congestion or traffic shaping.
2857  *
2858  * -----------------------------------------------------------------------------------
2859  *      I notice this method can also return errors from the queue disciplines,
2860  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2861  *      be positive.
2862  *
2863  *      Regardless of the return value, the skb is consumed, so it is currently
2864  *      difficult to retry a send to this method.  (You can bump the ref count
2865  *      before sending to hold a reference for retry if you are careful.)
2866  *
2867  *      When calling this method, interrupts MUST be enabled.  This is because
2868  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2869  *          --BLG
2870  */
2871 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2872 {
2873 	struct net_device *dev = skb->dev;
2874 	struct netdev_queue *txq;
2875 	struct Qdisc *q;
2876 	int rc = -ENOMEM;
2877 
2878 	skb_reset_mac_header(skb);
2879 
2880 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2881 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2882 
2883 	/* Disable soft irqs for various locks below. Also
2884 	 * stops preemption for RCU.
2885 	 */
2886 	rcu_read_lock_bh();
2887 
2888 	skb_update_prio(skb);
2889 
2890 	txq = netdev_pick_tx(dev, skb, accel_priv);
2891 	q = rcu_dereference_bh(txq->qdisc);
2892 
2893 #ifdef CONFIG_NET_CLS_ACT
2894 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2895 #endif
2896 	trace_net_dev_queue(skb);
2897 	if (q->enqueue) {
2898 		rc = __dev_xmit_skb(skb, q, dev, txq);
2899 		goto out;
2900 	}
2901 
2902 	/* The device has no queue. Common case for software devices:
2903 	   loopback, all the sorts of tunnels...
2904 
2905 	   Really, it is unlikely that netif_tx_lock protection is necessary
2906 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2907 	   counters.)
2908 	   However, it is possible, that they rely on protection
2909 	   made by us here.
2910 
2911 	   Check this and shot the lock. It is not prone from deadlocks.
2912 	   Either shot noqueue qdisc, it is even simpler 8)
2913 	 */
2914 	if (dev->flags & IFF_UP) {
2915 		int cpu = smp_processor_id(); /* ok because BHs are off */
2916 
2917 		if (txq->xmit_lock_owner != cpu) {
2918 
2919 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2920 				goto recursion_alert;
2921 
2922 			HARD_TX_LOCK(dev, txq, cpu);
2923 
2924 			if (!netif_xmit_stopped(txq)) {
2925 				__this_cpu_inc(xmit_recursion);
2926 				rc = dev_hard_start_xmit(skb, dev, txq);
2927 				__this_cpu_dec(xmit_recursion);
2928 				if (dev_xmit_complete(rc)) {
2929 					HARD_TX_UNLOCK(dev, txq);
2930 					goto out;
2931 				}
2932 			}
2933 			HARD_TX_UNLOCK(dev, txq);
2934 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2935 					     dev->name);
2936 		} else {
2937 			/* Recursion is detected! It is possible,
2938 			 * unfortunately
2939 			 */
2940 recursion_alert:
2941 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2942 					     dev->name);
2943 		}
2944 	}
2945 
2946 	rc = -ENETDOWN;
2947 	rcu_read_unlock_bh();
2948 
2949 	atomic_long_inc(&dev->tx_dropped);
2950 	kfree_skb(skb);
2951 	return rc;
2952 out:
2953 	rcu_read_unlock_bh();
2954 	return rc;
2955 }
2956 
2957 int dev_queue_xmit(struct sk_buff *skb)
2958 {
2959 	return __dev_queue_xmit(skb, NULL);
2960 }
2961 EXPORT_SYMBOL(dev_queue_xmit);
2962 
2963 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
2964 {
2965 	return __dev_queue_xmit(skb, accel_priv);
2966 }
2967 EXPORT_SYMBOL(dev_queue_xmit_accel);
2968 
2969 
2970 /*=======================================================================
2971 			Receiver routines
2972   =======================================================================*/
2973 
2974 int netdev_max_backlog __read_mostly = 1000;
2975 EXPORT_SYMBOL(netdev_max_backlog);
2976 
2977 int netdev_tstamp_prequeue __read_mostly = 1;
2978 int netdev_budget __read_mostly = 300;
2979 int weight_p __read_mostly = 64;            /* old backlog weight */
2980 
2981 /* Called with irq disabled */
2982 static inline void ____napi_schedule(struct softnet_data *sd,
2983 				     struct napi_struct *napi)
2984 {
2985 	list_add_tail(&napi->poll_list, &sd->poll_list);
2986 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2987 }
2988 
2989 #ifdef CONFIG_RPS
2990 
2991 /* One global table that all flow-based protocols share. */
2992 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2993 EXPORT_SYMBOL(rps_sock_flow_table);
2994 
2995 struct static_key rps_needed __read_mostly;
2996 
2997 static struct rps_dev_flow *
2998 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2999 	    struct rps_dev_flow *rflow, u16 next_cpu)
3000 {
3001 	if (next_cpu != RPS_NO_CPU) {
3002 #ifdef CONFIG_RFS_ACCEL
3003 		struct netdev_rx_queue *rxqueue;
3004 		struct rps_dev_flow_table *flow_table;
3005 		struct rps_dev_flow *old_rflow;
3006 		u32 flow_id;
3007 		u16 rxq_index;
3008 		int rc;
3009 
3010 		/* Should we steer this flow to a different hardware queue? */
3011 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3012 		    !(dev->features & NETIF_F_NTUPLE))
3013 			goto out;
3014 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3015 		if (rxq_index == skb_get_rx_queue(skb))
3016 			goto out;
3017 
3018 		rxqueue = dev->_rx + rxq_index;
3019 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3020 		if (!flow_table)
3021 			goto out;
3022 		flow_id = skb_get_hash(skb) & flow_table->mask;
3023 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3024 							rxq_index, flow_id);
3025 		if (rc < 0)
3026 			goto out;
3027 		old_rflow = rflow;
3028 		rflow = &flow_table->flows[flow_id];
3029 		rflow->filter = rc;
3030 		if (old_rflow->filter == rflow->filter)
3031 			old_rflow->filter = RPS_NO_FILTER;
3032 	out:
3033 #endif
3034 		rflow->last_qtail =
3035 			per_cpu(softnet_data, next_cpu).input_queue_head;
3036 	}
3037 
3038 	rflow->cpu = next_cpu;
3039 	return rflow;
3040 }
3041 
3042 /*
3043  * get_rps_cpu is called from netif_receive_skb and returns the target
3044  * CPU from the RPS map of the receiving queue for a given skb.
3045  * rcu_read_lock must be held on entry.
3046  */
3047 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3048 		       struct rps_dev_flow **rflowp)
3049 {
3050 	struct netdev_rx_queue *rxqueue;
3051 	struct rps_map *map;
3052 	struct rps_dev_flow_table *flow_table;
3053 	struct rps_sock_flow_table *sock_flow_table;
3054 	int cpu = -1;
3055 	u16 tcpu;
3056 	u32 hash;
3057 
3058 	if (skb_rx_queue_recorded(skb)) {
3059 		u16 index = skb_get_rx_queue(skb);
3060 		if (unlikely(index >= dev->real_num_rx_queues)) {
3061 			WARN_ONCE(dev->real_num_rx_queues > 1,
3062 				  "%s received packet on queue %u, but number "
3063 				  "of RX queues is %u\n",
3064 				  dev->name, index, dev->real_num_rx_queues);
3065 			goto done;
3066 		}
3067 		rxqueue = dev->_rx + index;
3068 	} else
3069 		rxqueue = dev->_rx;
3070 
3071 	map = rcu_dereference(rxqueue->rps_map);
3072 	if (map) {
3073 		if (map->len == 1 &&
3074 		    !rcu_access_pointer(rxqueue->rps_flow_table)) {
3075 			tcpu = map->cpus[0];
3076 			if (cpu_online(tcpu))
3077 				cpu = tcpu;
3078 			goto done;
3079 		}
3080 	} else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3081 		goto done;
3082 	}
3083 
3084 	skb_reset_network_header(skb);
3085 	hash = skb_get_hash(skb);
3086 	if (!hash)
3087 		goto done;
3088 
3089 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3090 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3091 	if (flow_table && sock_flow_table) {
3092 		u16 next_cpu;
3093 		struct rps_dev_flow *rflow;
3094 
3095 		rflow = &flow_table->flows[hash & flow_table->mask];
3096 		tcpu = rflow->cpu;
3097 
3098 		next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
3099 
3100 		/*
3101 		 * If the desired CPU (where last recvmsg was done) is
3102 		 * different from current CPU (one in the rx-queue flow
3103 		 * table entry), switch if one of the following holds:
3104 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
3105 		 *   - Current CPU is offline.
3106 		 *   - The current CPU's queue tail has advanced beyond the
3107 		 *     last packet that was enqueued using this table entry.
3108 		 *     This guarantees that all previous packets for the flow
3109 		 *     have been dequeued, thus preserving in order delivery.
3110 		 */
3111 		if (unlikely(tcpu != next_cpu) &&
3112 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3113 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3114 		      rflow->last_qtail)) >= 0)) {
3115 			tcpu = next_cpu;
3116 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3117 		}
3118 
3119 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3120 			*rflowp = rflow;
3121 			cpu = tcpu;
3122 			goto done;
3123 		}
3124 	}
3125 
3126 	if (map) {
3127 		tcpu = map->cpus[((u64) hash * map->len) >> 32];
3128 
3129 		if (cpu_online(tcpu)) {
3130 			cpu = tcpu;
3131 			goto done;
3132 		}
3133 	}
3134 
3135 done:
3136 	return cpu;
3137 }
3138 
3139 #ifdef CONFIG_RFS_ACCEL
3140 
3141 /**
3142  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3143  * @dev: Device on which the filter was set
3144  * @rxq_index: RX queue index
3145  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3146  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3147  *
3148  * Drivers that implement ndo_rx_flow_steer() should periodically call
3149  * this function for each installed filter and remove the filters for
3150  * which it returns %true.
3151  */
3152 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3153 			 u32 flow_id, u16 filter_id)
3154 {
3155 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3156 	struct rps_dev_flow_table *flow_table;
3157 	struct rps_dev_flow *rflow;
3158 	bool expire = true;
3159 	int cpu;
3160 
3161 	rcu_read_lock();
3162 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3163 	if (flow_table && flow_id <= flow_table->mask) {
3164 		rflow = &flow_table->flows[flow_id];
3165 		cpu = ACCESS_ONCE(rflow->cpu);
3166 		if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3167 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3168 			   rflow->last_qtail) <
3169 		     (int)(10 * flow_table->mask)))
3170 			expire = false;
3171 	}
3172 	rcu_read_unlock();
3173 	return expire;
3174 }
3175 EXPORT_SYMBOL(rps_may_expire_flow);
3176 
3177 #endif /* CONFIG_RFS_ACCEL */
3178 
3179 /* Called from hardirq (IPI) context */
3180 static void rps_trigger_softirq(void *data)
3181 {
3182 	struct softnet_data *sd = data;
3183 
3184 	____napi_schedule(sd, &sd->backlog);
3185 	sd->received_rps++;
3186 }
3187 
3188 #endif /* CONFIG_RPS */
3189 
3190 /*
3191  * Check if this softnet_data structure is another cpu one
3192  * If yes, queue it to our IPI list and return 1
3193  * If no, return 0
3194  */
3195 static int rps_ipi_queued(struct softnet_data *sd)
3196 {
3197 #ifdef CONFIG_RPS
3198 	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3199 
3200 	if (sd != mysd) {
3201 		sd->rps_ipi_next = mysd->rps_ipi_list;
3202 		mysd->rps_ipi_list = sd;
3203 
3204 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3205 		return 1;
3206 	}
3207 #endif /* CONFIG_RPS */
3208 	return 0;
3209 }
3210 
3211 #ifdef CONFIG_NET_FLOW_LIMIT
3212 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3213 #endif
3214 
3215 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3216 {
3217 #ifdef CONFIG_NET_FLOW_LIMIT
3218 	struct sd_flow_limit *fl;
3219 	struct softnet_data *sd;
3220 	unsigned int old_flow, new_flow;
3221 
3222 	if (qlen < (netdev_max_backlog >> 1))
3223 		return false;
3224 
3225 	sd = &__get_cpu_var(softnet_data);
3226 
3227 	rcu_read_lock();
3228 	fl = rcu_dereference(sd->flow_limit);
3229 	if (fl) {
3230 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3231 		old_flow = fl->history[fl->history_head];
3232 		fl->history[fl->history_head] = new_flow;
3233 
3234 		fl->history_head++;
3235 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3236 
3237 		if (likely(fl->buckets[old_flow]))
3238 			fl->buckets[old_flow]--;
3239 
3240 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3241 			fl->count++;
3242 			rcu_read_unlock();
3243 			return true;
3244 		}
3245 	}
3246 	rcu_read_unlock();
3247 #endif
3248 	return false;
3249 }
3250 
3251 /*
3252  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3253  * queue (may be a remote CPU queue).
3254  */
3255 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3256 			      unsigned int *qtail)
3257 {
3258 	struct softnet_data *sd;
3259 	unsigned long flags;
3260 	unsigned int qlen;
3261 
3262 	sd = &per_cpu(softnet_data, cpu);
3263 
3264 	local_irq_save(flags);
3265 
3266 	rps_lock(sd);
3267 	qlen = skb_queue_len(&sd->input_pkt_queue);
3268 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3269 		if (skb_queue_len(&sd->input_pkt_queue)) {
3270 enqueue:
3271 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3272 			input_queue_tail_incr_save(sd, qtail);
3273 			rps_unlock(sd);
3274 			local_irq_restore(flags);
3275 			return NET_RX_SUCCESS;
3276 		}
3277 
3278 		/* Schedule NAPI for backlog device
3279 		 * We can use non atomic operation since we own the queue lock
3280 		 */
3281 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3282 			if (!rps_ipi_queued(sd))
3283 				____napi_schedule(sd, &sd->backlog);
3284 		}
3285 		goto enqueue;
3286 	}
3287 
3288 	sd->dropped++;
3289 	rps_unlock(sd);
3290 
3291 	local_irq_restore(flags);
3292 
3293 	atomic_long_inc(&skb->dev->rx_dropped);
3294 	kfree_skb(skb);
3295 	return NET_RX_DROP;
3296 }
3297 
3298 static int netif_rx_internal(struct sk_buff *skb)
3299 {
3300 	int ret;
3301 
3302 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3303 
3304 	trace_netif_rx(skb);
3305 #ifdef CONFIG_RPS
3306 	if (static_key_false(&rps_needed)) {
3307 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3308 		int cpu;
3309 
3310 		preempt_disable();
3311 		rcu_read_lock();
3312 
3313 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3314 		if (cpu < 0)
3315 			cpu = smp_processor_id();
3316 
3317 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3318 
3319 		rcu_read_unlock();
3320 		preempt_enable();
3321 	} else
3322 #endif
3323 	{
3324 		unsigned int qtail;
3325 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3326 		put_cpu();
3327 	}
3328 	return ret;
3329 }
3330 
3331 /**
3332  *	netif_rx	-	post buffer to the network code
3333  *	@skb: buffer to post
3334  *
3335  *	This function receives a packet from a device driver and queues it for
3336  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3337  *	may be dropped during processing for congestion control or by the
3338  *	protocol layers.
3339  *
3340  *	return values:
3341  *	NET_RX_SUCCESS	(no congestion)
3342  *	NET_RX_DROP     (packet was dropped)
3343  *
3344  */
3345 
3346 int netif_rx(struct sk_buff *skb)
3347 {
3348 	trace_netif_rx_entry(skb);
3349 
3350 	return netif_rx_internal(skb);
3351 }
3352 EXPORT_SYMBOL(netif_rx);
3353 
3354 int netif_rx_ni(struct sk_buff *skb)
3355 {
3356 	int err;
3357 
3358 	trace_netif_rx_ni_entry(skb);
3359 
3360 	preempt_disable();
3361 	err = netif_rx_internal(skb);
3362 	if (local_softirq_pending())
3363 		do_softirq();
3364 	preempt_enable();
3365 
3366 	return err;
3367 }
3368 EXPORT_SYMBOL(netif_rx_ni);
3369 
3370 static void net_tx_action(struct softirq_action *h)
3371 {
3372 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3373 
3374 	if (sd->completion_queue) {
3375 		struct sk_buff *clist;
3376 
3377 		local_irq_disable();
3378 		clist = sd->completion_queue;
3379 		sd->completion_queue = NULL;
3380 		local_irq_enable();
3381 
3382 		while (clist) {
3383 			struct sk_buff *skb = clist;
3384 			clist = clist->next;
3385 
3386 			WARN_ON(atomic_read(&skb->users));
3387 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3388 				trace_consume_skb(skb);
3389 			else
3390 				trace_kfree_skb(skb, net_tx_action);
3391 			__kfree_skb(skb);
3392 		}
3393 	}
3394 
3395 	if (sd->output_queue) {
3396 		struct Qdisc *head;
3397 
3398 		local_irq_disable();
3399 		head = sd->output_queue;
3400 		sd->output_queue = NULL;
3401 		sd->output_queue_tailp = &sd->output_queue;
3402 		local_irq_enable();
3403 
3404 		while (head) {
3405 			struct Qdisc *q = head;
3406 			spinlock_t *root_lock;
3407 
3408 			head = head->next_sched;
3409 
3410 			root_lock = qdisc_lock(q);
3411 			if (spin_trylock(root_lock)) {
3412 				smp_mb__before_atomic();
3413 				clear_bit(__QDISC_STATE_SCHED,
3414 					  &q->state);
3415 				qdisc_run(q);
3416 				spin_unlock(root_lock);
3417 			} else {
3418 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3419 					      &q->state)) {
3420 					__netif_reschedule(q);
3421 				} else {
3422 					smp_mb__before_atomic();
3423 					clear_bit(__QDISC_STATE_SCHED,
3424 						  &q->state);
3425 				}
3426 			}
3427 		}
3428 	}
3429 }
3430 
3431 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3432     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3433 /* This hook is defined here for ATM LANE */
3434 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3435 			     unsigned char *addr) __read_mostly;
3436 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3437 #endif
3438 
3439 #ifdef CONFIG_NET_CLS_ACT
3440 /* TODO: Maybe we should just force sch_ingress to be compiled in
3441  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3442  * a compare and 2 stores extra right now if we dont have it on
3443  * but have CONFIG_NET_CLS_ACT
3444  * NOTE: This doesn't stop any functionality; if you dont have
3445  * the ingress scheduler, you just can't add policies on ingress.
3446  *
3447  */
3448 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3449 {
3450 	struct net_device *dev = skb->dev;
3451 	u32 ttl = G_TC_RTTL(skb->tc_verd);
3452 	int result = TC_ACT_OK;
3453 	struct Qdisc *q;
3454 
3455 	if (unlikely(MAX_RED_LOOP < ttl++)) {
3456 		net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3457 				     skb->skb_iif, dev->ifindex);
3458 		return TC_ACT_SHOT;
3459 	}
3460 
3461 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3462 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3463 
3464 	q = rxq->qdisc;
3465 	if (q != &noop_qdisc) {
3466 		spin_lock(qdisc_lock(q));
3467 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3468 			result = qdisc_enqueue_root(skb, q);
3469 		spin_unlock(qdisc_lock(q));
3470 	}
3471 
3472 	return result;
3473 }
3474 
3475 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3476 					 struct packet_type **pt_prev,
3477 					 int *ret, struct net_device *orig_dev)
3478 {
3479 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3480 
3481 	if (!rxq || rxq->qdisc == &noop_qdisc)
3482 		goto out;
3483 
3484 	if (*pt_prev) {
3485 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3486 		*pt_prev = NULL;
3487 	}
3488 
3489 	switch (ing_filter(skb, rxq)) {
3490 	case TC_ACT_SHOT:
3491 	case TC_ACT_STOLEN:
3492 		kfree_skb(skb);
3493 		return NULL;
3494 	}
3495 
3496 out:
3497 	skb->tc_verd = 0;
3498 	return skb;
3499 }
3500 #endif
3501 
3502 /**
3503  *	netdev_rx_handler_register - register receive handler
3504  *	@dev: device to register a handler for
3505  *	@rx_handler: receive handler to register
3506  *	@rx_handler_data: data pointer that is used by rx handler
3507  *
3508  *	Register a receive handler for a device. This handler will then be
3509  *	called from __netif_receive_skb. A negative errno code is returned
3510  *	on a failure.
3511  *
3512  *	The caller must hold the rtnl_mutex.
3513  *
3514  *	For a general description of rx_handler, see enum rx_handler_result.
3515  */
3516 int netdev_rx_handler_register(struct net_device *dev,
3517 			       rx_handler_func_t *rx_handler,
3518 			       void *rx_handler_data)
3519 {
3520 	ASSERT_RTNL();
3521 
3522 	if (dev->rx_handler)
3523 		return -EBUSY;
3524 
3525 	/* Note: rx_handler_data must be set before rx_handler */
3526 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3527 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3528 
3529 	return 0;
3530 }
3531 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3532 
3533 /**
3534  *	netdev_rx_handler_unregister - unregister receive handler
3535  *	@dev: device to unregister a handler from
3536  *
3537  *	Unregister a receive handler from a device.
3538  *
3539  *	The caller must hold the rtnl_mutex.
3540  */
3541 void netdev_rx_handler_unregister(struct net_device *dev)
3542 {
3543 
3544 	ASSERT_RTNL();
3545 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3546 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3547 	 * section has a guarantee to see a non NULL rx_handler_data
3548 	 * as well.
3549 	 */
3550 	synchronize_net();
3551 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3552 }
3553 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3554 
3555 /*
3556  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3557  * the special handling of PFMEMALLOC skbs.
3558  */
3559 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3560 {
3561 	switch (skb->protocol) {
3562 	case htons(ETH_P_ARP):
3563 	case htons(ETH_P_IP):
3564 	case htons(ETH_P_IPV6):
3565 	case htons(ETH_P_8021Q):
3566 	case htons(ETH_P_8021AD):
3567 		return true;
3568 	default:
3569 		return false;
3570 	}
3571 }
3572 
3573 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3574 {
3575 	struct packet_type *ptype, *pt_prev;
3576 	rx_handler_func_t *rx_handler;
3577 	struct net_device *orig_dev;
3578 	struct net_device *null_or_dev;
3579 	bool deliver_exact = false;
3580 	int ret = NET_RX_DROP;
3581 	__be16 type;
3582 
3583 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3584 
3585 	trace_netif_receive_skb(skb);
3586 
3587 	orig_dev = skb->dev;
3588 
3589 	skb_reset_network_header(skb);
3590 	if (!skb_transport_header_was_set(skb))
3591 		skb_reset_transport_header(skb);
3592 	skb_reset_mac_len(skb);
3593 
3594 	pt_prev = NULL;
3595 
3596 	rcu_read_lock();
3597 
3598 another_round:
3599 	skb->skb_iif = skb->dev->ifindex;
3600 
3601 	__this_cpu_inc(softnet_data.processed);
3602 
3603 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3604 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3605 		skb = skb_vlan_untag(skb);
3606 		if (unlikely(!skb))
3607 			goto unlock;
3608 	}
3609 
3610 #ifdef CONFIG_NET_CLS_ACT
3611 	if (skb->tc_verd & TC_NCLS) {
3612 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3613 		goto ncls;
3614 	}
3615 #endif
3616 
3617 	if (pfmemalloc)
3618 		goto skip_taps;
3619 
3620 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3621 		if (!ptype->dev || ptype->dev == skb->dev) {
3622 			if (pt_prev)
3623 				ret = deliver_skb(skb, pt_prev, orig_dev);
3624 			pt_prev = ptype;
3625 		}
3626 	}
3627 
3628 skip_taps:
3629 #ifdef CONFIG_NET_CLS_ACT
3630 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3631 	if (!skb)
3632 		goto unlock;
3633 ncls:
3634 #endif
3635 
3636 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3637 		goto drop;
3638 
3639 	if (vlan_tx_tag_present(skb)) {
3640 		if (pt_prev) {
3641 			ret = deliver_skb(skb, pt_prev, orig_dev);
3642 			pt_prev = NULL;
3643 		}
3644 		if (vlan_do_receive(&skb))
3645 			goto another_round;
3646 		else if (unlikely(!skb))
3647 			goto unlock;
3648 	}
3649 
3650 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3651 	if (rx_handler) {
3652 		if (pt_prev) {
3653 			ret = deliver_skb(skb, pt_prev, orig_dev);
3654 			pt_prev = NULL;
3655 		}
3656 		switch (rx_handler(&skb)) {
3657 		case RX_HANDLER_CONSUMED:
3658 			ret = NET_RX_SUCCESS;
3659 			goto unlock;
3660 		case RX_HANDLER_ANOTHER:
3661 			goto another_round;
3662 		case RX_HANDLER_EXACT:
3663 			deliver_exact = true;
3664 		case RX_HANDLER_PASS:
3665 			break;
3666 		default:
3667 			BUG();
3668 		}
3669 	}
3670 
3671 	if (unlikely(vlan_tx_tag_present(skb))) {
3672 		if (vlan_tx_tag_get_id(skb))
3673 			skb->pkt_type = PACKET_OTHERHOST;
3674 		/* Note: we might in the future use prio bits
3675 		 * and set skb->priority like in vlan_do_receive()
3676 		 * For the time being, just ignore Priority Code Point
3677 		 */
3678 		skb->vlan_tci = 0;
3679 	}
3680 
3681 	/* deliver only exact match when indicated */
3682 	null_or_dev = deliver_exact ? skb->dev : NULL;
3683 
3684 	type = skb->protocol;
3685 	list_for_each_entry_rcu(ptype,
3686 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3687 		if (ptype->type == type &&
3688 		    (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3689 		     ptype->dev == orig_dev)) {
3690 			if (pt_prev)
3691 				ret = deliver_skb(skb, pt_prev, orig_dev);
3692 			pt_prev = ptype;
3693 		}
3694 	}
3695 
3696 	if (pt_prev) {
3697 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3698 			goto drop;
3699 		else
3700 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3701 	} else {
3702 drop:
3703 		atomic_long_inc(&skb->dev->rx_dropped);
3704 		kfree_skb(skb);
3705 		/* Jamal, now you will not able to escape explaining
3706 		 * me how you were going to use this. :-)
3707 		 */
3708 		ret = NET_RX_DROP;
3709 	}
3710 
3711 unlock:
3712 	rcu_read_unlock();
3713 	return ret;
3714 }
3715 
3716 static int __netif_receive_skb(struct sk_buff *skb)
3717 {
3718 	int ret;
3719 
3720 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3721 		unsigned long pflags = current->flags;
3722 
3723 		/*
3724 		 * PFMEMALLOC skbs are special, they should
3725 		 * - be delivered to SOCK_MEMALLOC sockets only
3726 		 * - stay away from userspace
3727 		 * - have bounded memory usage
3728 		 *
3729 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
3730 		 * context down to all allocation sites.
3731 		 */
3732 		current->flags |= PF_MEMALLOC;
3733 		ret = __netif_receive_skb_core(skb, true);
3734 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
3735 	} else
3736 		ret = __netif_receive_skb_core(skb, false);
3737 
3738 	return ret;
3739 }
3740 
3741 static int netif_receive_skb_internal(struct sk_buff *skb)
3742 {
3743 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3744 
3745 	if (skb_defer_rx_timestamp(skb))
3746 		return NET_RX_SUCCESS;
3747 
3748 #ifdef CONFIG_RPS
3749 	if (static_key_false(&rps_needed)) {
3750 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3751 		int cpu, ret;
3752 
3753 		rcu_read_lock();
3754 
3755 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3756 
3757 		if (cpu >= 0) {
3758 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3759 			rcu_read_unlock();
3760 			return ret;
3761 		}
3762 		rcu_read_unlock();
3763 	}
3764 #endif
3765 	return __netif_receive_skb(skb);
3766 }
3767 
3768 /**
3769  *	netif_receive_skb - process receive buffer from network
3770  *	@skb: buffer to process
3771  *
3772  *	netif_receive_skb() is the main receive data processing function.
3773  *	It always succeeds. The buffer may be dropped during processing
3774  *	for congestion control or by the protocol layers.
3775  *
3776  *	This function may only be called from softirq context and interrupts
3777  *	should be enabled.
3778  *
3779  *	Return values (usually ignored):
3780  *	NET_RX_SUCCESS: no congestion
3781  *	NET_RX_DROP: packet was dropped
3782  */
3783 int netif_receive_skb(struct sk_buff *skb)
3784 {
3785 	trace_netif_receive_skb_entry(skb);
3786 
3787 	return netif_receive_skb_internal(skb);
3788 }
3789 EXPORT_SYMBOL(netif_receive_skb);
3790 
3791 /* Network device is going away, flush any packets still pending
3792  * Called with irqs disabled.
3793  */
3794 static void flush_backlog(void *arg)
3795 {
3796 	struct net_device *dev = arg;
3797 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3798 	struct sk_buff *skb, *tmp;
3799 
3800 	rps_lock(sd);
3801 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3802 		if (skb->dev == dev) {
3803 			__skb_unlink(skb, &sd->input_pkt_queue);
3804 			kfree_skb(skb);
3805 			input_queue_head_incr(sd);
3806 		}
3807 	}
3808 	rps_unlock(sd);
3809 
3810 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3811 		if (skb->dev == dev) {
3812 			__skb_unlink(skb, &sd->process_queue);
3813 			kfree_skb(skb);
3814 			input_queue_head_incr(sd);
3815 		}
3816 	}
3817 }
3818 
3819 static int napi_gro_complete(struct sk_buff *skb)
3820 {
3821 	struct packet_offload *ptype;
3822 	__be16 type = skb->protocol;
3823 	struct list_head *head = &offload_base;
3824 	int err = -ENOENT;
3825 
3826 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3827 
3828 	if (NAPI_GRO_CB(skb)->count == 1) {
3829 		skb_shinfo(skb)->gso_size = 0;
3830 		goto out;
3831 	}
3832 
3833 	rcu_read_lock();
3834 	list_for_each_entry_rcu(ptype, head, list) {
3835 		if (ptype->type != type || !ptype->callbacks.gro_complete)
3836 			continue;
3837 
3838 		err = ptype->callbacks.gro_complete(skb, 0);
3839 		break;
3840 	}
3841 	rcu_read_unlock();
3842 
3843 	if (err) {
3844 		WARN_ON(&ptype->list == head);
3845 		kfree_skb(skb);
3846 		return NET_RX_SUCCESS;
3847 	}
3848 
3849 out:
3850 	return netif_receive_skb_internal(skb);
3851 }
3852 
3853 /* napi->gro_list contains packets ordered by age.
3854  * youngest packets at the head of it.
3855  * Complete skbs in reverse order to reduce latencies.
3856  */
3857 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3858 {
3859 	struct sk_buff *skb, *prev = NULL;
3860 
3861 	/* scan list and build reverse chain */
3862 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3863 		skb->prev = prev;
3864 		prev = skb;
3865 	}
3866 
3867 	for (skb = prev; skb; skb = prev) {
3868 		skb->next = NULL;
3869 
3870 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3871 			return;
3872 
3873 		prev = skb->prev;
3874 		napi_gro_complete(skb);
3875 		napi->gro_count--;
3876 	}
3877 
3878 	napi->gro_list = NULL;
3879 }
3880 EXPORT_SYMBOL(napi_gro_flush);
3881 
3882 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3883 {
3884 	struct sk_buff *p;
3885 	unsigned int maclen = skb->dev->hard_header_len;
3886 	u32 hash = skb_get_hash_raw(skb);
3887 
3888 	for (p = napi->gro_list; p; p = p->next) {
3889 		unsigned long diffs;
3890 
3891 		NAPI_GRO_CB(p)->flush = 0;
3892 
3893 		if (hash != skb_get_hash_raw(p)) {
3894 			NAPI_GRO_CB(p)->same_flow = 0;
3895 			continue;
3896 		}
3897 
3898 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3899 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3900 		if (maclen == ETH_HLEN)
3901 			diffs |= compare_ether_header(skb_mac_header(p),
3902 						      skb_mac_header(skb));
3903 		else if (!diffs)
3904 			diffs = memcmp(skb_mac_header(p),
3905 				       skb_mac_header(skb),
3906 				       maclen);
3907 		NAPI_GRO_CB(p)->same_flow = !diffs;
3908 	}
3909 }
3910 
3911 static void skb_gro_reset_offset(struct sk_buff *skb)
3912 {
3913 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
3914 	const skb_frag_t *frag0 = &pinfo->frags[0];
3915 
3916 	NAPI_GRO_CB(skb)->data_offset = 0;
3917 	NAPI_GRO_CB(skb)->frag0 = NULL;
3918 	NAPI_GRO_CB(skb)->frag0_len = 0;
3919 
3920 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3921 	    pinfo->nr_frags &&
3922 	    !PageHighMem(skb_frag_page(frag0))) {
3923 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3924 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3925 	}
3926 }
3927 
3928 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3929 {
3930 	struct skb_shared_info *pinfo = skb_shinfo(skb);
3931 
3932 	BUG_ON(skb->end - skb->tail < grow);
3933 
3934 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3935 
3936 	skb->data_len -= grow;
3937 	skb->tail += grow;
3938 
3939 	pinfo->frags[0].page_offset += grow;
3940 	skb_frag_size_sub(&pinfo->frags[0], grow);
3941 
3942 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3943 		skb_frag_unref(skb, 0);
3944 		memmove(pinfo->frags, pinfo->frags + 1,
3945 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
3946 	}
3947 }
3948 
3949 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3950 {
3951 	struct sk_buff **pp = NULL;
3952 	struct packet_offload *ptype;
3953 	__be16 type = skb->protocol;
3954 	struct list_head *head = &offload_base;
3955 	int same_flow;
3956 	enum gro_result ret;
3957 	int grow;
3958 
3959 	if (!(skb->dev->features & NETIF_F_GRO))
3960 		goto normal;
3961 
3962 	if (skb_is_gso(skb) || skb_has_frag_list(skb))
3963 		goto normal;
3964 
3965 	gro_list_prepare(napi, skb);
3966 	NAPI_GRO_CB(skb)->csum = skb->csum; /* Needed for CHECKSUM_COMPLETE */
3967 
3968 	rcu_read_lock();
3969 	list_for_each_entry_rcu(ptype, head, list) {
3970 		if (ptype->type != type || !ptype->callbacks.gro_receive)
3971 			continue;
3972 
3973 		skb_set_network_header(skb, skb_gro_offset(skb));
3974 		skb_reset_mac_len(skb);
3975 		NAPI_GRO_CB(skb)->same_flow = 0;
3976 		NAPI_GRO_CB(skb)->flush = 0;
3977 		NAPI_GRO_CB(skb)->free = 0;
3978 		NAPI_GRO_CB(skb)->udp_mark = 0;
3979 
3980 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3981 		break;
3982 	}
3983 	rcu_read_unlock();
3984 
3985 	if (&ptype->list == head)
3986 		goto normal;
3987 
3988 	same_flow = NAPI_GRO_CB(skb)->same_flow;
3989 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3990 
3991 	if (pp) {
3992 		struct sk_buff *nskb = *pp;
3993 
3994 		*pp = nskb->next;
3995 		nskb->next = NULL;
3996 		napi_gro_complete(nskb);
3997 		napi->gro_count--;
3998 	}
3999 
4000 	if (same_flow)
4001 		goto ok;
4002 
4003 	if (NAPI_GRO_CB(skb)->flush)
4004 		goto normal;
4005 
4006 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4007 		struct sk_buff *nskb = napi->gro_list;
4008 
4009 		/* locate the end of the list to select the 'oldest' flow */
4010 		while (nskb->next) {
4011 			pp = &nskb->next;
4012 			nskb = *pp;
4013 		}
4014 		*pp = NULL;
4015 		nskb->next = NULL;
4016 		napi_gro_complete(nskb);
4017 	} else {
4018 		napi->gro_count++;
4019 	}
4020 	NAPI_GRO_CB(skb)->count = 1;
4021 	NAPI_GRO_CB(skb)->age = jiffies;
4022 	NAPI_GRO_CB(skb)->last = skb;
4023 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4024 	skb->next = napi->gro_list;
4025 	napi->gro_list = skb;
4026 	ret = GRO_HELD;
4027 
4028 pull:
4029 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4030 	if (grow > 0)
4031 		gro_pull_from_frag0(skb, grow);
4032 ok:
4033 	return ret;
4034 
4035 normal:
4036 	ret = GRO_NORMAL;
4037 	goto pull;
4038 }
4039 
4040 struct packet_offload *gro_find_receive_by_type(__be16 type)
4041 {
4042 	struct list_head *offload_head = &offload_base;
4043 	struct packet_offload *ptype;
4044 
4045 	list_for_each_entry_rcu(ptype, offload_head, list) {
4046 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4047 			continue;
4048 		return ptype;
4049 	}
4050 	return NULL;
4051 }
4052 EXPORT_SYMBOL(gro_find_receive_by_type);
4053 
4054 struct packet_offload *gro_find_complete_by_type(__be16 type)
4055 {
4056 	struct list_head *offload_head = &offload_base;
4057 	struct packet_offload *ptype;
4058 
4059 	list_for_each_entry_rcu(ptype, offload_head, list) {
4060 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4061 			continue;
4062 		return ptype;
4063 	}
4064 	return NULL;
4065 }
4066 EXPORT_SYMBOL(gro_find_complete_by_type);
4067 
4068 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4069 {
4070 	switch (ret) {
4071 	case GRO_NORMAL:
4072 		if (netif_receive_skb_internal(skb))
4073 			ret = GRO_DROP;
4074 		break;
4075 
4076 	case GRO_DROP:
4077 		kfree_skb(skb);
4078 		break;
4079 
4080 	case GRO_MERGED_FREE:
4081 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4082 			kmem_cache_free(skbuff_head_cache, skb);
4083 		else
4084 			__kfree_skb(skb);
4085 		break;
4086 
4087 	case GRO_HELD:
4088 	case GRO_MERGED:
4089 		break;
4090 	}
4091 
4092 	return ret;
4093 }
4094 
4095 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4096 {
4097 	trace_napi_gro_receive_entry(skb);
4098 
4099 	skb_gro_reset_offset(skb);
4100 
4101 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4102 }
4103 EXPORT_SYMBOL(napi_gro_receive);
4104 
4105 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4106 {
4107 	__skb_pull(skb, skb_headlen(skb));
4108 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4109 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4110 	skb->vlan_tci = 0;
4111 	skb->dev = napi->dev;
4112 	skb->skb_iif = 0;
4113 	skb->encapsulation = 0;
4114 	skb_shinfo(skb)->gso_type = 0;
4115 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4116 
4117 	napi->skb = skb;
4118 }
4119 
4120 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4121 {
4122 	struct sk_buff *skb = napi->skb;
4123 
4124 	if (!skb) {
4125 		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
4126 		napi->skb = skb;
4127 	}
4128 	return skb;
4129 }
4130 EXPORT_SYMBOL(napi_get_frags);
4131 
4132 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4133 				      struct sk_buff *skb,
4134 				      gro_result_t ret)
4135 {
4136 	switch (ret) {
4137 	case GRO_NORMAL:
4138 	case GRO_HELD:
4139 		__skb_push(skb, ETH_HLEN);
4140 		skb->protocol = eth_type_trans(skb, skb->dev);
4141 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4142 			ret = GRO_DROP;
4143 		break;
4144 
4145 	case GRO_DROP:
4146 	case GRO_MERGED_FREE:
4147 		napi_reuse_skb(napi, skb);
4148 		break;
4149 
4150 	case GRO_MERGED:
4151 		break;
4152 	}
4153 
4154 	return ret;
4155 }
4156 
4157 /* Upper GRO stack assumes network header starts at gro_offset=0
4158  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4159  * We copy ethernet header into skb->data to have a common layout.
4160  */
4161 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4162 {
4163 	struct sk_buff *skb = napi->skb;
4164 	const struct ethhdr *eth;
4165 	unsigned int hlen = sizeof(*eth);
4166 
4167 	napi->skb = NULL;
4168 
4169 	skb_reset_mac_header(skb);
4170 	skb_gro_reset_offset(skb);
4171 
4172 	eth = skb_gro_header_fast(skb, 0);
4173 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4174 		eth = skb_gro_header_slow(skb, hlen, 0);
4175 		if (unlikely(!eth)) {
4176 			napi_reuse_skb(napi, skb);
4177 			return NULL;
4178 		}
4179 	} else {
4180 		gro_pull_from_frag0(skb, hlen);
4181 		NAPI_GRO_CB(skb)->frag0 += hlen;
4182 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4183 	}
4184 	__skb_pull(skb, hlen);
4185 
4186 	/*
4187 	 * This works because the only protocols we care about don't require
4188 	 * special handling.
4189 	 * We'll fix it up properly in napi_frags_finish()
4190 	 */
4191 	skb->protocol = eth->h_proto;
4192 
4193 	return skb;
4194 }
4195 
4196 gro_result_t napi_gro_frags(struct napi_struct *napi)
4197 {
4198 	struct sk_buff *skb = napi_frags_skb(napi);
4199 
4200 	if (!skb)
4201 		return GRO_DROP;
4202 
4203 	trace_napi_gro_frags_entry(skb);
4204 
4205 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4206 }
4207 EXPORT_SYMBOL(napi_gro_frags);
4208 
4209 /*
4210  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4211  * Note: called with local irq disabled, but exits with local irq enabled.
4212  */
4213 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4214 {
4215 #ifdef CONFIG_RPS
4216 	struct softnet_data *remsd = sd->rps_ipi_list;
4217 
4218 	if (remsd) {
4219 		sd->rps_ipi_list = NULL;
4220 
4221 		local_irq_enable();
4222 
4223 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4224 		while (remsd) {
4225 			struct softnet_data *next = remsd->rps_ipi_next;
4226 
4227 			if (cpu_online(remsd->cpu))
4228 				smp_call_function_single_async(remsd->cpu,
4229 							   &remsd->csd);
4230 			remsd = next;
4231 		}
4232 	} else
4233 #endif
4234 		local_irq_enable();
4235 }
4236 
4237 static int process_backlog(struct napi_struct *napi, int quota)
4238 {
4239 	int work = 0;
4240 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4241 
4242 #ifdef CONFIG_RPS
4243 	/* Check if we have pending ipi, its better to send them now,
4244 	 * not waiting net_rx_action() end.
4245 	 */
4246 	if (sd->rps_ipi_list) {
4247 		local_irq_disable();
4248 		net_rps_action_and_irq_enable(sd);
4249 	}
4250 #endif
4251 	napi->weight = weight_p;
4252 	local_irq_disable();
4253 	while (1) {
4254 		struct sk_buff *skb;
4255 
4256 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4257 			local_irq_enable();
4258 			__netif_receive_skb(skb);
4259 			local_irq_disable();
4260 			input_queue_head_incr(sd);
4261 			if (++work >= quota) {
4262 				local_irq_enable();
4263 				return work;
4264 			}
4265 		}
4266 
4267 		rps_lock(sd);
4268 		if (skb_queue_empty(&sd->input_pkt_queue)) {
4269 			/*
4270 			 * Inline a custom version of __napi_complete().
4271 			 * only current cpu owns and manipulates this napi,
4272 			 * and NAPI_STATE_SCHED is the only possible flag set
4273 			 * on backlog.
4274 			 * We can use a plain write instead of clear_bit(),
4275 			 * and we dont need an smp_mb() memory barrier.
4276 			 */
4277 			list_del(&napi->poll_list);
4278 			napi->state = 0;
4279 			rps_unlock(sd);
4280 
4281 			break;
4282 		}
4283 
4284 		skb_queue_splice_tail_init(&sd->input_pkt_queue,
4285 					   &sd->process_queue);
4286 		rps_unlock(sd);
4287 	}
4288 	local_irq_enable();
4289 
4290 	return work;
4291 }
4292 
4293 /**
4294  * __napi_schedule - schedule for receive
4295  * @n: entry to schedule
4296  *
4297  * The entry's receive function will be scheduled to run
4298  */
4299 void __napi_schedule(struct napi_struct *n)
4300 {
4301 	unsigned long flags;
4302 
4303 	local_irq_save(flags);
4304 	____napi_schedule(&__get_cpu_var(softnet_data), n);
4305 	local_irq_restore(flags);
4306 }
4307 EXPORT_SYMBOL(__napi_schedule);
4308 
4309 void __napi_complete(struct napi_struct *n)
4310 {
4311 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4312 	BUG_ON(n->gro_list);
4313 
4314 	list_del(&n->poll_list);
4315 	smp_mb__before_atomic();
4316 	clear_bit(NAPI_STATE_SCHED, &n->state);
4317 }
4318 EXPORT_SYMBOL(__napi_complete);
4319 
4320 void napi_complete(struct napi_struct *n)
4321 {
4322 	unsigned long flags;
4323 
4324 	/*
4325 	 * don't let napi dequeue from the cpu poll list
4326 	 * just in case its running on a different cpu
4327 	 */
4328 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4329 		return;
4330 
4331 	napi_gro_flush(n, false);
4332 	local_irq_save(flags);
4333 	__napi_complete(n);
4334 	local_irq_restore(flags);
4335 }
4336 EXPORT_SYMBOL(napi_complete);
4337 
4338 /* must be called under rcu_read_lock(), as we dont take a reference */
4339 struct napi_struct *napi_by_id(unsigned int napi_id)
4340 {
4341 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4342 	struct napi_struct *napi;
4343 
4344 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4345 		if (napi->napi_id == napi_id)
4346 			return napi;
4347 
4348 	return NULL;
4349 }
4350 EXPORT_SYMBOL_GPL(napi_by_id);
4351 
4352 void napi_hash_add(struct napi_struct *napi)
4353 {
4354 	if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4355 
4356 		spin_lock(&napi_hash_lock);
4357 
4358 		/* 0 is not a valid id, we also skip an id that is taken
4359 		 * we expect both events to be extremely rare
4360 		 */
4361 		napi->napi_id = 0;
4362 		while (!napi->napi_id) {
4363 			napi->napi_id = ++napi_gen_id;
4364 			if (napi_by_id(napi->napi_id))
4365 				napi->napi_id = 0;
4366 		}
4367 
4368 		hlist_add_head_rcu(&napi->napi_hash_node,
4369 			&napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4370 
4371 		spin_unlock(&napi_hash_lock);
4372 	}
4373 }
4374 EXPORT_SYMBOL_GPL(napi_hash_add);
4375 
4376 /* Warning : caller is responsible to make sure rcu grace period
4377  * is respected before freeing memory containing @napi
4378  */
4379 void napi_hash_del(struct napi_struct *napi)
4380 {
4381 	spin_lock(&napi_hash_lock);
4382 
4383 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4384 		hlist_del_rcu(&napi->napi_hash_node);
4385 
4386 	spin_unlock(&napi_hash_lock);
4387 }
4388 EXPORT_SYMBOL_GPL(napi_hash_del);
4389 
4390 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4391 		    int (*poll)(struct napi_struct *, int), int weight)
4392 {
4393 	INIT_LIST_HEAD(&napi->poll_list);
4394 	napi->gro_count = 0;
4395 	napi->gro_list = NULL;
4396 	napi->skb = NULL;
4397 	napi->poll = poll;
4398 	if (weight > NAPI_POLL_WEIGHT)
4399 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4400 			    weight, dev->name);
4401 	napi->weight = weight;
4402 	list_add(&napi->dev_list, &dev->napi_list);
4403 	napi->dev = dev;
4404 #ifdef CONFIG_NETPOLL
4405 	spin_lock_init(&napi->poll_lock);
4406 	napi->poll_owner = -1;
4407 #endif
4408 	set_bit(NAPI_STATE_SCHED, &napi->state);
4409 }
4410 EXPORT_SYMBOL(netif_napi_add);
4411 
4412 void netif_napi_del(struct napi_struct *napi)
4413 {
4414 	list_del_init(&napi->dev_list);
4415 	napi_free_frags(napi);
4416 
4417 	kfree_skb_list(napi->gro_list);
4418 	napi->gro_list = NULL;
4419 	napi->gro_count = 0;
4420 }
4421 EXPORT_SYMBOL(netif_napi_del);
4422 
4423 static void net_rx_action(struct softirq_action *h)
4424 {
4425 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
4426 	unsigned long time_limit = jiffies + 2;
4427 	int budget = netdev_budget;
4428 	void *have;
4429 
4430 	local_irq_disable();
4431 
4432 	while (!list_empty(&sd->poll_list)) {
4433 		struct napi_struct *n;
4434 		int work, weight;
4435 
4436 		/* If softirq window is exhuasted then punt.
4437 		 * Allow this to run for 2 jiffies since which will allow
4438 		 * an average latency of 1.5/HZ.
4439 		 */
4440 		if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4441 			goto softnet_break;
4442 
4443 		local_irq_enable();
4444 
4445 		/* Even though interrupts have been re-enabled, this
4446 		 * access is safe because interrupts can only add new
4447 		 * entries to the tail of this list, and only ->poll()
4448 		 * calls can remove this head entry from the list.
4449 		 */
4450 		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4451 
4452 		have = netpoll_poll_lock(n);
4453 
4454 		weight = n->weight;
4455 
4456 		/* This NAPI_STATE_SCHED test is for avoiding a race
4457 		 * with netpoll's poll_napi().  Only the entity which
4458 		 * obtains the lock and sees NAPI_STATE_SCHED set will
4459 		 * actually make the ->poll() call.  Therefore we avoid
4460 		 * accidentally calling ->poll() when NAPI is not scheduled.
4461 		 */
4462 		work = 0;
4463 		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4464 			work = n->poll(n, weight);
4465 			trace_napi_poll(n);
4466 		}
4467 
4468 		WARN_ON_ONCE(work > weight);
4469 
4470 		budget -= work;
4471 
4472 		local_irq_disable();
4473 
4474 		/* Drivers must not modify the NAPI state if they
4475 		 * consume the entire weight.  In such cases this code
4476 		 * still "owns" the NAPI instance and therefore can
4477 		 * move the instance around on the list at-will.
4478 		 */
4479 		if (unlikely(work == weight)) {
4480 			if (unlikely(napi_disable_pending(n))) {
4481 				local_irq_enable();
4482 				napi_complete(n);
4483 				local_irq_disable();
4484 			} else {
4485 				if (n->gro_list) {
4486 					/* flush too old packets
4487 					 * If HZ < 1000, flush all packets.
4488 					 */
4489 					local_irq_enable();
4490 					napi_gro_flush(n, HZ >= 1000);
4491 					local_irq_disable();
4492 				}
4493 				list_move_tail(&n->poll_list, &sd->poll_list);
4494 			}
4495 		}
4496 
4497 		netpoll_poll_unlock(have);
4498 	}
4499 out:
4500 	net_rps_action_and_irq_enable(sd);
4501 
4502 #ifdef CONFIG_NET_DMA
4503 	/*
4504 	 * There may not be any more sk_buffs coming right now, so push
4505 	 * any pending DMA copies to hardware
4506 	 */
4507 	dma_issue_pending_all();
4508 #endif
4509 
4510 	return;
4511 
4512 softnet_break:
4513 	sd->time_squeeze++;
4514 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4515 	goto out;
4516 }
4517 
4518 struct netdev_adjacent {
4519 	struct net_device *dev;
4520 
4521 	/* upper master flag, there can only be one master device per list */
4522 	bool master;
4523 
4524 	/* counter for the number of times this device was added to us */
4525 	u16 ref_nr;
4526 
4527 	/* private field for the users */
4528 	void *private;
4529 
4530 	struct list_head list;
4531 	struct rcu_head rcu;
4532 };
4533 
4534 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4535 						 struct net_device *adj_dev,
4536 						 struct list_head *adj_list)
4537 {
4538 	struct netdev_adjacent *adj;
4539 
4540 	list_for_each_entry(adj, adj_list, list) {
4541 		if (adj->dev == adj_dev)
4542 			return adj;
4543 	}
4544 	return NULL;
4545 }
4546 
4547 /**
4548  * netdev_has_upper_dev - Check if device is linked to an upper device
4549  * @dev: device
4550  * @upper_dev: upper device to check
4551  *
4552  * Find out if a device is linked to specified upper device and return true
4553  * in case it is. Note that this checks only immediate upper device,
4554  * not through a complete stack of devices. The caller must hold the RTNL lock.
4555  */
4556 bool netdev_has_upper_dev(struct net_device *dev,
4557 			  struct net_device *upper_dev)
4558 {
4559 	ASSERT_RTNL();
4560 
4561 	return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4562 }
4563 EXPORT_SYMBOL(netdev_has_upper_dev);
4564 
4565 /**
4566  * netdev_has_any_upper_dev - Check if device is linked to some device
4567  * @dev: device
4568  *
4569  * Find out if a device is linked to an upper device and return true in case
4570  * it is. The caller must hold the RTNL lock.
4571  */
4572 static bool netdev_has_any_upper_dev(struct net_device *dev)
4573 {
4574 	ASSERT_RTNL();
4575 
4576 	return !list_empty(&dev->all_adj_list.upper);
4577 }
4578 
4579 /**
4580  * netdev_master_upper_dev_get - Get master upper device
4581  * @dev: device
4582  *
4583  * Find a master upper device and return pointer to it or NULL in case
4584  * it's not there. The caller must hold the RTNL lock.
4585  */
4586 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4587 {
4588 	struct netdev_adjacent *upper;
4589 
4590 	ASSERT_RTNL();
4591 
4592 	if (list_empty(&dev->adj_list.upper))
4593 		return NULL;
4594 
4595 	upper = list_first_entry(&dev->adj_list.upper,
4596 				 struct netdev_adjacent, list);
4597 	if (likely(upper->master))
4598 		return upper->dev;
4599 	return NULL;
4600 }
4601 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4602 
4603 void *netdev_adjacent_get_private(struct list_head *adj_list)
4604 {
4605 	struct netdev_adjacent *adj;
4606 
4607 	adj = list_entry(adj_list, struct netdev_adjacent, list);
4608 
4609 	return adj->private;
4610 }
4611 EXPORT_SYMBOL(netdev_adjacent_get_private);
4612 
4613 /**
4614  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4615  * @dev: device
4616  * @iter: list_head ** of the current position
4617  *
4618  * Gets the next device from the dev's upper list, starting from iter
4619  * position. The caller must hold RCU read lock.
4620  */
4621 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4622 						 struct list_head **iter)
4623 {
4624 	struct netdev_adjacent *upper;
4625 
4626 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4627 
4628 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4629 
4630 	if (&upper->list == &dev->adj_list.upper)
4631 		return NULL;
4632 
4633 	*iter = &upper->list;
4634 
4635 	return upper->dev;
4636 }
4637 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4638 
4639 /**
4640  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4641  * @dev: device
4642  * @iter: list_head ** of the current position
4643  *
4644  * Gets the next device from the dev's upper list, starting from iter
4645  * position. The caller must hold RCU read lock.
4646  */
4647 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4648 						     struct list_head **iter)
4649 {
4650 	struct netdev_adjacent *upper;
4651 
4652 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4653 
4654 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4655 
4656 	if (&upper->list == &dev->all_adj_list.upper)
4657 		return NULL;
4658 
4659 	*iter = &upper->list;
4660 
4661 	return upper->dev;
4662 }
4663 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4664 
4665 /**
4666  * netdev_lower_get_next_private - Get the next ->private from the
4667  *				   lower neighbour list
4668  * @dev: device
4669  * @iter: list_head ** of the current position
4670  *
4671  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4672  * list, starting from iter position. The caller must hold either hold the
4673  * RTNL lock or its own locking that guarantees that the neighbour lower
4674  * list will remain unchainged.
4675  */
4676 void *netdev_lower_get_next_private(struct net_device *dev,
4677 				    struct list_head **iter)
4678 {
4679 	struct netdev_adjacent *lower;
4680 
4681 	lower = list_entry(*iter, struct netdev_adjacent, list);
4682 
4683 	if (&lower->list == &dev->adj_list.lower)
4684 		return NULL;
4685 
4686 	*iter = lower->list.next;
4687 
4688 	return lower->private;
4689 }
4690 EXPORT_SYMBOL(netdev_lower_get_next_private);
4691 
4692 /**
4693  * netdev_lower_get_next_private_rcu - Get the next ->private from the
4694  *				       lower neighbour list, RCU
4695  *				       variant
4696  * @dev: device
4697  * @iter: list_head ** of the current position
4698  *
4699  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4700  * list, starting from iter position. The caller must hold RCU read lock.
4701  */
4702 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4703 					struct list_head **iter)
4704 {
4705 	struct netdev_adjacent *lower;
4706 
4707 	WARN_ON_ONCE(!rcu_read_lock_held());
4708 
4709 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4710 
4711 	if (&lower->list == &dev->adj_list.lower)
4712 		return NULL;
4713 
4714 	*iter = &lower->list;
4715 
4716 	return lower->private;
4717 }
4718 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4719 
4720 /**
4721  * netdev_lower_get_next - Get the next device from the lower neighbour
4722  *                         list
4723  * @dev: device
4724  * @iter: list_head ** of the current position
4725  *
4726  * Gets the next netdev_adjacent from the dev's lower neighbour
4727  * list, starting from iter position. The caller must hold RTNL lock or
4728  * its own locking that guarantees that the neighbour lower
4729  * list will remain unchainged.
4730  */
4731 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4732 {
4733 	struct netdev_adjacent *lower;
4734 
4735 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4736 
4737 	if (&lower->list == &dev->adj_list.lower)
4738 		return NULL;
4739 
4740 	*iter = &lower->list;
4741 
4742 	return lower->dev;
4743 }
4744 EXPORT_SYMBOL(netdev_lower_get_next);
4745 
4746 /**
4747  * netdev_lower_get_first_private_rcu - Get the first ->private from the
4748  *				       lower neighbour list, RCU
4749  *				       variant
4750  * @dev: device
4751  *
4752  * Gets the first netdev_adjacent->private from the dev's lower neighbour
4753  * list. The caller must hold RCU read lock.
4754  */
4755 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4756 {
4757 	struct netdev_adjacent *lower;
4758 
4759 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
4760 			struct netdev_adjacent, list);
4761 	if (lower)
4762 		return lower->private;
4763 	return NULL;
4764 }
4765 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4766 
4767 /**
4768  * netdev_master_upper_dev_get_rcu - Get master upper device
4769  * @dev: device
4770  *
4771  * Find a master upper device and return pointer to it or NULL in case
4772  * it's not there. The caller must hold the RCU read lock.
4773  */
4774 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4775 {
4776 	struct netdev_adjacent *upper;
4777 
4778 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
4779 				       struct netdev_adjacent, list);
4780 	if (upper && likely(upper->master))
4781 		return upper->dev;
4782 	return NULL;
4783 }
4784 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4785 
4786 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4787 			      struct net_device *adj_dev,
4788 			      struct list_head *dev_list)
4789 {
4790 	char linkname[IFNAMSIZ+7];
4791 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
4792 		"upper_%s" : "lower_%s", adj_dev->name);
4793 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4794 				 linkname);
4795 }
4796 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4797 			       char *name,
4798 			       struct list_head *dev_list)
4799 {
4800 	char linkname[IFNAMSIZ+7];
4801 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
4802 		"upper_%s" : "lower_%s", name);
4803 	sysfs_remove_link(&(dev->dev.kobj), linkname);
4804 }
4805 
4806 #define netdev_adjacent_is_neigh_list(dev, dev_list) \
4807 		(dev_list == &dev->adj_list.upper || \
4808 		 dev_list == &dev->adj_list.lower)
4809 
4810 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4811 					struct net_device *adj_dev,
4812 					struct list_head *dev_list,
4813 					void *private, bool master)
4814 {
4815 	struct netdev_adjacent *adj;
4816 	int ret;
4817 
4818 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
4819 
4820 	if (adj) {
4821 		adj->ref_nr++;
4822 		return 0;
4823 	}
4824 
4825 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4826 	if (!adj)
4827 		return -ENOMEM;
4828 
4829 	adj->dev = adj_dev;
4830 	adj->master = master;
4831 	adj->ref_nr = 1;
4832 	adj->private = private;
4833 	dev_hold(adj_dev);
4834 
4835 	pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4836 		 adj_dev->name, dev->name, adj_dev->name);
4837 
4838 	if (netdev_adjacent_is_neigh_list(dev, dev_list)) {
4839 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4840 		if (ret)
4841 			goto free_adj;
4842 	}
4843 
4844 	/* Ensure that master link is always the first item in list. */
4845 	if (master) {
4846 		ret = sysfs_create_link(&(dev->dev.kobj),
4847 					&(adj_dev->dev.kobj), "master");
4848 		if (ret)
4849 			goto remove_symlinks;
4850 
4851 		list_add_rcu(&adj->list, dev_list);
4852 	} else {
4853 		list_add_tail_rcu(&adj->list, dev_list);
4854 	}
4855 
4856 	return 0;
4857 
4858 remove_symlinks:
4859 	if (netdev_adjacent_is_neigh_list(dev, dev_list))
4860 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4861 free_adj:
4862 	kfree(adj);
4863 	dev_put(adj_dev);
4864 
4865 	return ret;
4866 }
4867 
4868 static void __netdev_adjacent_dev_remove(struct net_device *dev,
4869 					 struct net_device *adj_dev,
4870 					 struct list_head *dev_list)
4871 {
4872 	struct netdev_adjacent *adj;
4873 
4874 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
4875 
4876 	if (!adj) {
4877 		pr_err("tried to remove device %s from %s\n",
4878 		       dev->name, adj_dev->name);
4879 		BUG();
4880 	}
4881 
4882 	if (adj->ref_nr > 1) {
4883 		pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4884 			 adj->ref_nr-1);
4885 		adj->ref_nr--;
4886 		return;
4887 	}
4888 
4889 	if (adj->master)
4890 		sysfs_remove_link(&(dev->dev.kobj), "master");
4891 
4892 	if (netdev_adjacent_is_neigh_list(dev, dev_list))
4893 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4894 
4895 	list_del_rcu(&adj->list);
4896 	pr_debug("dev_put for %s, because link removed from %s to %s\n",
4897 		 adj_dev->name, dev->name, adj_dev->name);
4898 	dev_put(adj_dev);
4899 	kfree_rcu(adj, rcu);
4900 }
4901 
4902 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4903 					    struct net_device *upper_dev,
4904 					    struct list_head *up_list,
4905 					    struct list_head *down_list,
4906 					    void *private, bool master)
4907 {
4908 	int ret;
4909 
4910 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4911 					   master);
4912 	if (ret)
4913 		return ret;
4914 
4915 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4916 					   false);
4917 	if (ret) {
4918 		__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4919 		return ret;
4920 	}
4921 
4922 	return 0;
4923 }
4924 
4925 static int __netdev_adjacent_dev_link(struct net_device *dev,
4926 				      struct net_device *upper_dev)
4927 {
4928 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4929 						&dev->all_adj_list.upper,
4930 						&upper_dev->all_adj_list.lower,
4931 						NULL, false);
4932 }
4933 
4934 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4935 					       struct net_device *upper_dev,
4936 					       struct list_head *up_list,
4937 					       struct list_head *down_list)
4938 {
4939 	__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4940 	__netdev_adjacent_dev_remove(upper_dev, dev, down_list);
4941 }
4942 
4943 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
4944 					 struct net_device *upper_dev)
4945 {
4946 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4947 					   &dev->all_adj_list.upper,
4948 					   &upper_dev->all_adj_list.lower);
4949 }
4950 
4951 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4952 						struct net_device *upper_dev,
4953 						void *private, bool master)
4954 {
4955 	int ret = __netdev_adjacent_dev_link(dev, upper_dev);
4956 
4957 	if (ret)
4958 		return ret;
4959 
4960 	ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
4961 					       &dev->adj_list.upper,
4962 					       &upper_dev->adj_list.lower,
4963 					       private, master);
4964 	if (ret) {
4965 		__netdev_adjacent_dev_unlink(dev, upper_dev);
4966 		return ret;
4967 	}
4968 
4969 	return 0;
4970 }
4971 
4972 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
4973 						   struct net_device *upper_dev)
4974 {
4975 	__netdev_adjacent_dev_unlink(dev, upper_dev);
4976 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4977 					   &dev->adj_list.upper,
4978 					   &upper_dev->adj_list.lower);
4979 }
4980 
4981 static int __netdev_upper_dev_link(struct net_device *dev,
4982 				   struct net_device *upper_dev, bool master,
4983 				   void *private)
4984 {
4985 	struct netdev_adjacent *i, *j, *to_i, *to_j;
4986 	int ret = 0;
4987 
4988 	ASSERT_RTNL();
4989 
4990 	if (dev == upper_dev)
4991 		return -EBUSY;
4992 
4993 	/* To prevent loops, check if dev is not upper device to upper_dev. */
4994 	if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
4995 		return -EBUSY;
4996 
4997 	if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
4998 		return -EEXIST;
4999 
5000 	if (master && netdev_master_upper_dev_get(dev))
5001 		return -EBUSY;
5002 
5003 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5004 						   master);
5005 	if (ret)
5006 		return ret;
5007 
5008 	/* Now that we linked these devs, make all the upper_dev's
5009 	 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5010 	 * versa, and don't forget the devices itself. All of these
5011 	 * links are non-neighbours.
5012 	 */
5013 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5014 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5015 			pr_debug("Interlinking %s with %s, non-neighbour\n",
5016 				 i->dev->name, j->dev->name);
5017 			ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5018 			if (ret)
5019 				goto rollback_mesh;
5020 		}
5021 	}
5022 
5023 	/* add dev to every upper_dev's upper device */
5024 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5025 		pr_debug("linking %s's upper device %s with %s\n",
5026 			 upper_dev->name, i->dev->name, dev->name);
5027 		ret = __netdev_adjacent_dev_link(dev, i->dev);
5028 		if (ret)
5029 			goto rollback_upper_mesh;
5030 	}
5031 
5032 	/* add upper_dev to every dev's lower device */
5033 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5034 		pr_debug("linking %s's lower device %s with %s\n", dev->name,
5035 			 i->dev->name, upper_dev->name);
5036 		ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5037 		if (ret)
5038 			goto rollback_lower_mesh;
5039 	}
5040 
5041 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5042 	return 0;
5043 
5044 rollback_lower_mesh:
5045 	to_i = i;
5046 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5047 		if (i == to_i)
5048 			break;
5049 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5050 	}
5051 
5052 	i = NULL;
5053 
5054 rollback_upper_mesh:
5055 	to_i = i;
5056 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5057 		if (i == to_i)
5058 			break;
5059 		__netdev_adjacent_dev_unlink(dev, i->dev);
5060 	}
5061 
5062 	i = j = NULL;
5063 
5064 rollback_mesh:
5065 	to_i = i;
5066 	to_j = j;
5067 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5068 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5069 			if (i == to_i && j == to_j)
5070 				break;
5071 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5072 		}
5073 		if (i == to_i)
5074 			break;
5075 	}
5076 
5077 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5078 
5079 	return ret;
5080 }
5081 
5082 /**
5083  * netdev_upper_dev_link - Add a link to the upper device
5084  * @dev: device
5085  * @upper_dev: new upper device
5086  *
5087  * Adds a link to device which is upper to this one. The caller must hold
5088  * the RTNL lock. On a failure a negative errno code is returned.
5089  * On success the reference counts are adjusted and the function
5090  * returns zero.
5091  */
5092 int netdev_upper_dev_link(struct net_device *dev,
5093 			  struct net_device *upper_dev)
5094 {
5095 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5096 }
5097 EXPORT_SYMBOL(netdev_upper_dev_link);
5098 
5099 /**
5100  * netdev_master_upper_dev_link - Add a master link to the upper device
5101  * @dev: device
5102  * @upper_dev: new upper device
5103  *
5104  * Adds a link to device which is upper to this one. In this case, only
5105  * one master upper device can be linked, although other non-master devices
5106  * might be linked as well. The caller must hold the RTNL lock.
5107  * On a failure a negative errno code is returned. On success the reference
5108  * counts are adjusted and the function returns zero.
5109  */
5110 int netdev_master_upper_dev_link(struct net_device *dev,
5111 				 struct net_device *upper_dev)
5112 {
5113 	return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5114 }
5115 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5116 
5117 int netdev_master_upper_dev_link_private(struct net_device *dev,
5118 					 struct net_device *upper_dev,
5119 					 void *private)
5120 {
5121 	return __netdev_upper_dev_link(dev, upper_dev, true, private);
5122 }
5123 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5124 
5125 /**
5126  * netdev_upper_dev_unlink - Removes a link to upper device
5127  * @dev: device
5128  * @upper_dev: new upper device
5129  *
5130  * Removes a link to device which is upper to this one. The caller must hold
5131  * the RTNL lock.
5132  */
5133 void netdev_upper_dev_unlink(struct net_device *dev,
5134 			     struct net_device *upper_dev)
5135 {
5136 	struct netdev_adjacent *i, *j;
5137 	ASSERT_RTNL();
5138 
5139 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5140 
5141 	/* Here is the tricky part. We must remove all dev's lower
5142 	 * devices from all upper_dev's upper devices and vice
5143 	 * versa, to maintain the graph relationship.
5144 	 */
5145 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5146 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5147 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5148 
5149 	/* remove also the devices itself from lower/upper device
5150 	 * list
5151 	 */
5152 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5153 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5154 
5155 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5156 		__netdev_adjacent_dev_unlink(dev, i->dev);
5157 
5158 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5159 }
5160 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5161 
5162 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5163 {
5164 	struct netdev_adjacent *iter;
5165 
5166 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5167 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5168 					  &iter->dev->adj_list.lower);
5169 		netdev_adjacent_sysfs_add(iter->dev, dev,
5170 					  &iter->dev->adj_list.lower);
5171 	}
5172 
5173 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5174 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5175 					  &iter->dev->adj_list.upper);
5176 		netdev_adjacent_sysfs_add(iter->dev, dev,
5177 					  &iter->dev->adj_list.upper);
5178 	}
5179 }
5180 
5181 void *netdev_lower_dev_get_private(struct net_device *dev,
5182 				   struct net_device *lower_dev)
5183 {
5184 	struct netdev_adjacent *lower;
5185 
5186 	if (!lower_dev)
5187 		return NULL;
5188 	lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5189 	if (!lower)
5190 		return NULL;
5191 
5192 	return lower->private;
5193 }
5194 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5195 
5196 
5197 int dev_get_nest_level(struct net_device *dev,
5198 		       bool (*type_check)(struct net_device *dev))
5199 {
5200 	struct net_device *lower = NULL;
5201 	struct list_head *iter;
5202 	int max_nest = -1;
5203 	int nest;
5204 
5205 	ASSERT_RTNL();
5206 
5207 	netdev_for_each_lower_dev(dev, lower, iter) {
5208 		nest = dev_get_nest_level(lower, type_check);
5209 		if (max_nest < nest)
5210 			max_nest = nest;
5211 	}
5212 
5213 	if (type_check(dev))
5214 		max_nest++;
5215 
5216 	return max_nest;
5217 }
5218 EXPORT_SYMBOL(dev_get_nest_level);
5219 
5220 static void dev_change_rx_flags(struct net_device *dev, int flags)
5221 {
5222 	const struct net_device_ops *ops = dev->netdev_ops;
5223 
5224 	if (ops->ndo_change_rx_flags)
5225 		ops->ndo_change_rx_flags(dev, flags);
5226 }
5227 
5228 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5229 {
5230 	unsigned int old_flags = dev->flags;
5231 	kuid_t uid;
5232 	kgid_t gid;
5233 
5234 	ASSERT_RTNL();
5235 
5236 	dev->flags |= IFF_PROMISC;
5237 	dev->promiscuity += inc;
5238 	if (dev->promiscuity == 0) {
5239 		/*
5240 		 * Avoid overflow.
5241 		 * If inc causes overflow, untouch promisc and return error.
5242 		 */
5243 		if (inc < 0)
5244 			dev->flags &= ~IFF_PROMISC;
5245 		else {
5246 			dev->promiscuity -= inc;
5247 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5248 				dev->name);
5249 			return -EOVERFLOW;
5250 		}
5251 	}
5252 	if (dev->flags != old_flags) {
5253 		pr_info("device %s %s promiscuous mode\n",
5254 			dev->name,
5255 			dev->flags & IFF_PROMISC ? "entered" : "left");
5256 		if (audit_enabled) {
5257 			current_uid_gid(&uid, &gid);
5258 			audit_log(current->audit_context, GFP_ATOMIC,
5259 				AUDIT_ANOM_PROMISCUOUS,
5260 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5261 				dev->name, (dev->flags & IFF_PROMISC),
5262 				(old_flags & IFF_PROMISC),
5263 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
5264 				from_kuid(&init_user_ns, uid),
5265 				from_kgid(&init_user_ns, gid),
5266 				audit_get_sessionid(current));
5267 		}
5268 
5269 		dev_change_rx_flags(dev, IFF_PROMISC);
5270 	}
5271 	if (notify)
5272 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
5273 	return 0;
5274 }
5275 
5276 /**
5277  *	dev_set_promiscuity	- update promiscuity count on a device
5278  *	@dev: device
5279  *	@inc: modifier
5280  *
5281  *	Add or remove promiscuity from a device. While the count in the device
5282  *	remains above zero the interface remains promiscuous. Once it hits zero
5283  *	the device reverts back to normal filtering operation. A negative inc
5284  *	value is used to drop promiscuity on the device.
5285  *	Return 0 if successful or a negative errno code on error.
5286  */
5287 int dev_set_promiscuity(struct net_device *dev, int inc)
5288 {
5289 	unsigned int old_flags = dev->flags;
5290 	int err;
5291 
5292 	err = __dev_set_promiscuity(dev, inc, true);
5293 	if (err < 0)
5294 		return err;
5295 	if (dev->flags != old_flags)
5296 		dev_set_rx_mode(dev);
5297 	return err;
5298 }
5299 EXPORT_SYMBOL(dev_set_promiscuity);
5300 
5301 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5302 {
5303 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5304 
5305 	ASSERT_RTNL();
5306 
5307 	dev->flags |= IFF_ALLMULTI;
5308 	dev->allmulti += inc;
5309 	if (dev->allmulti == 0) {
5310 		/*
5311 		 * Avoid overflow.
5312 		 * If inc causes overflow, untouch allmulti and return error.
5313 		 */
5314 		if (inc < 0)
5315 			dev->flags &= ~IFF_ALLMULTI;
5316 		else {
5317 			dev->allmulti -= inc;
5318 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5319 				dev->name);
5320 			return -EOVERFLOW;
5321 		}
5322 	}
5323 	if (dev->flags ^ old_flags) {
5324 		dev_change_rx_flags(dev, IFF_ALLMULTI);
5325 		dev_set_rx_mode(dev);
5326 		if (notify)
5327 			__dev_notify_flags(dev, old_flags,
5328 					   dev->gflags ^ old_gflags);
5329 	}
5330 	return 0;
5331 }
5332 
5333 /**
5334  *	dev_set_allmulti	- update allmulti count on a device
5335  *	@dev: device
5336  *	@inc: modifier
5337  *
5338  *	Add or remove reception of all multicast frames to a device. While the
5339  *	count in the device remains above zero the interface remains listening
5340  *	to all interfaces. Once it hits zero the device reverts back to normal
5341  *	filtering operation. A negative @inc value is used to drop the counter
5342  *	when releasing a resource needing all multicasts.
5343  *	Return 0 if successful or a negative errno code on error.
5344  */
5345 
5346 int dev_set_allmulti(struct net_device *dev, int inc)
5347 {
5348 	return __dev_set_allmulti(dev, inc, true);
5349 }
5350 EXPORT_SYMBOL(dev_set_allmulti);
5351 
5352 /*
5353  *	Upload unicast and multicast address lists to device and
5354  *	configure RX filtering. When the device doesn't support unicast
5355  *	filtering it is put in promiscuous mode while unicast addresses
5356  *	are present.
5357  */
5358 void __dev_set_rx_mode(struct net_device *dev)
5359 {
5360 	const struct net_device_ops *ops = dev->netdev_ops;
5361 
5362 	/* dev_open will call this function so the list will stay sane. */
5363 	if (!(dev->flags&IFF_UP))
5364 		return;
5365 
5366 	if (!netif_device_present(dev))
5367 		return;
5368 
5369 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5370 		/* Unicast addresses changes may only happen under the rtnl,
5371 		 * therefore calling __dev_set_promiscuity here is safe.
5372 		 */
5373 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5374 			__dev_set_promiscuity(dev, 1, false);
5375 			dev->uc_promisc = true;
5376 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5377 			__dev_set_promiscuity(dev, -1, false);
5378 			dev->uc_promisc = false;
5379 		}
5380 	}
5381 
5382 	if (ops->ndo_set_rx_mode)
5383 		ops->ndo_set_rx_mode(dev);
5384 }
5385 
5386 void dev_set_rx_mode(struct net_device *dev)
5387 {
5388 	netif_addr_lock_bh(dev);
5389 	__dev_set_rx_mode(dev);
5390 	netif_addr_unlock_bh(dev);
5391 }
5392 
5393 /**
5394  *	dev_get_flags - get flags reported to userspace
5395  *	@dev: device
5396  *
5397  *	Get the combination of flag bits exported through APIs to userspace.
5398  */
5399 unsigned int dev_get_flags(const struct net_device *dev)
5400 {
5401 	unsigned int flags;
5402 
5403 	flags = (dev->flags & ~(IFF_PROMISC |
5404 				IFF_ALLMULTI |
5405 				IFF_RUNNING |
5406 				IFF_LOWER_UP |
5407 				IFF_DORMANT)) |
5408 		(dev->gflags & (IFF_PROMISC |
5409 				IFF_ALLMULTI));
5410 
5411 	if (netif_running(dev)) {
5412 		if (netif_oper_up(dev))
5413 			flags |= IFF_RUNNING;
5414 		if (netif_carrier_ok(dev))
5415 			flags |= IFF_LOWER_UP;
5416 		if (netif_dormant(dev))
5417 			flags |= IFF_DORMANT;
5418 	}
5419 
5420 	return flags;
5421 }
5422 EXPORT_SYMBOL(dev_get_flags);
5423 
5424 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5425 {
5426 	unsigned int old_flags = dev->flags;
5427 	int ret;
5428 
5429 	ASSERT_RTNL();
5430 
5431 	/*
5432 	 *	Set the flags on our device.
5433 	 */
5434 
5435 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5436 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5437 			       IFF_AUTOMEDIA)) |
5438 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5439 				    IFF_ALLMULTI));
5440 
5441 	/*
5442 	 *	Load in the correct multicast list now the flags have changed.
5443 	 */
5444 
5445 	if ((old_flags ^ flags) & IFF_MULTICAST)
5446 		dev_change_rx_flags(dev, IFF_MULTICAST);
5447 
5448 	dev_set_rx_mode(dev);
5449 
5450 	/*
5451 	 *	Have we downed the interface. We handle IFF_UP ourselves
5452 	 *	according to user attempts to set it, rather than blindly
5453 	 *	setting it.
5454 	 */
5455 
5456 	ret = 0;
5457 	if ((old_flags ^ flags) & IFF_UP)
5458 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5459 
5460 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
5461 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
5462 		unsigned int old_flags = dev->flags;
5463 
5464 		dev->gflags ^= IFF_PROMISC;
5465 
5466 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
5467 			if (dev->flags != old_flags)
5468 				dev_set_rx_mode(dev);
5469 	}
5470 
5471 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5472 	   is important. Some (broken) drivers set IFF_PROMISC, when
5473 	   IFF_ALLMULTI is requested not asking us and not reporting.
5474 	 */
5475 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5476 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5477 
5478 		dev->gflags ^= IFF_ALLMULTI;
5479 		__dev_set_allmulti(dev, inc, false);
5480 	}
5481 
5482 	return ret;
5483 }
5484 
5485 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5486 			unsigned int gchanges)
5487 {
5488 	unsigned int changes = dev->flags ^ old_flags;
5489 
5490 	if (gchanges)
5491 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5492 
5493 	if (changes & IFF_UP) {
5494 		if (dev->flags & IFF_UP)
5495 			call_netdevice_notifiers(NETDEV_UP, dev);
5496 		else
5497 			call_netdevice_notifiers(NETDEV_DOWN, dev);
5498 	}
5499 
5500 	if (dev->flags & IFF_UP &&
5501 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5502 		struct netdev_notifier_change_info change_info;
5503 
5504 		change_info.flags_changed = changes;
5505 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5506 					      &change_info.info);
5507 	}
5508 }
5509 
5510 /**
5511  *	dev_change_flags - change device settings
5512  *	@dev: device
5513  *	@flags: device state flags
5514  *
5515  *	Change settings on device based state flags. The flags are
5516  *	in the userspace exported format.
5517  */
5518 int dev_change_flags(struct net_device *dev, unsigned int flags)
5519 {
5520 	int ret;
5521 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5522 
5523 	ret = __dev_change_flags(dev, flags);
5524 	if (ret < 0)
5525 		return ret;
5526 
5527 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5528 	__dev_notify_flags(dev, old_flags, changes);
5529 	return ret;
5530 }
5531 EXPORT_SYMBOL(dev_change_flags);
5532 
5533 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5534 {
5535 	const struct net_device_ops *ops = dev->netdev_ops;
5536 
5537 	if (ops->ndo_change_mtu)
5538 		return ops->ndo_change_mtu(dev, new_mtu);
5539 
5540 	dev->mtu = new_mtu;
5541 	return 0;
5542 }
5543 
5544 /**
5545  *	dev_set_mtu - Change maximum transfer unit
5546  *	@dev: device
5547  *	@new_mtu: new transfer unit
5548  *
5549  *	Change the maximum transfer size of the network device.
5550  */
5551 int dev_set_mtu(struct net_device *dev, int new_mtu)
5552 {
5553 	int err, orig_mtu;
5554 
5555 	if (new_mtu == dev->mtu)
5556 		return 0;
5557 
5558 	/*	MTU must be positive.	 */
5559 	if (new_mtu < 0)
5560 		return -EINVAL;
5561 
5562 	if (!netif_device_present(dev))
5563 		return -ENODEV;
5564 
5565 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5566 	err = notifier_to_errno(err);
5567 	if (err)
5568 		return err;
5569 
5570 	orig_mtu = dev->mtu;
5571 	err = __dev_set_mtu(dev, new_mtu);
5572 
5573 	if (!err) {
5574 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5575 		err = notifier_to_errno(err);
5576 		if (err) {
5577 			/* setting mtu back and notifying everyone again,
5578 			 * so that they have a chance to revert changes.
5579 			 */
5580 			__dev_set_mtu(dev, orig_mtu);
5581 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5582 		}
5583 	}
5584 	return err;
5585 }
5586 EXPORT_SYMBOL(dev_set_mtu);
5587 
5588 /**
5589  *	dev_set_group - Change group this device belongs to
5590  *	@dev: device
5591  *	@new_group: group this device should belong to
5592  */
5593 void dev_set_group(struct net_device *dev, int new_group)
5594 {
5595 	dev->group = new_group;
5596 }
5597 EXPORT_SYMBOL(dev_set_group);
5598 
5599 /**
5600  *	dev_set_mac_address - Change Media Access Control Address
5601  *	@dev: device
5602  *	@sa: new address
5603  *
5604  *	Change the hardware (MAC) address of the device
5605  */
5606 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5607 {
5608 	const struct net_device_ops *ops = dev->netdev_ops;
5609 	int err;
5610 
5611 	if (!ops->ndo_set_mac_address)
5612 		return -EOPNOTSUPP;
5613 	if (sa->sa_family != dev->type)
5614 		return -EINVAL;
5615 	if (!netif_device_present(dev))
5616 		return -ENODEV;
5617 	err = ops->ndo_set_mac_address(dev, sa);
5618 	if (err)
5619 		return err;
5620 	dev->addr_assign_type = NET_ADDR_SET;
5621 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5622 	add_device_randomness(dev->dev_addr, dev->addr_len);
5623 	return 0;
5624 }
5625 EXPORT_SYMBOL(dev_set_mac_address);
5626 
5627 /**
5628  *	dev_change_carrier - Change device carrier
5629  *	@dev: device
5630  *	@new_carrier: new value
5631  *
5632  *	Change device carrier
5633  */
5634 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5635 {
5636 	const struct net_device_ops *ops = dev->netdev_ops;
5637 
5638 	if (!ops->ndo_change_carrier)
5639 		return -EOPNOTSUPP;
5640 	if (!netif_device_present(dev))
5641 		return -ENODEV;
5642 	return ops->ndo_change_carrier(dev, new_carrier);
5643 }
5644 EXPORT_SYMBOL(dev_change_carrier);
5645 
5646 /**
5647  *	dev_get_phys_port_id - Get device physical port ID
5648  *	@dev: device
5649  *	@ppid: port ID
5650  *
5651  *	Get device physical port ID
5652  */
5653 int dev_get_phys_port_id(struct net_device *dev,
5654 			 struct netdev_phys_port_id *ppid)
5655 {
5656 	const struct net_device_ops *ops = dev->netdev_ops;
5657 
5658 	if (!ops->ndo_get_phys_port_id)
5659 		return -EOPNOTSUPP;
5660 	return ops->ndo_get_phys_port_id(dev, ppid);
5661 }
5662 EXPORT_SYMBOL(dev_get_phys_port_id);
5663 
5664 /**
5665  *	dev_new_index	-	allocate an ifindex
5666  *	@net: the applicable net namespace
5667  *
5668  *	Returns a suitable unique value for a new device interface
5669  *	number.  The caller must hold the rtnl semaphore or the
5670  *	dev_base_lock to be sure it remains unique.
5671  */
5672 static int dev_new_index(struct net *net)
5673 {
5674 	int ifindex = net->ifindex;
5675 	for (;;) {
5676 		if (++ifindex <= 0)
5677 			ifindex = 1;
5678 		if (!__dev_get_by_index(net, ifindex))
5679 			return net->ifindex = ifindex;
5680 	}
5681 }
5682 
5683 /* Delayed registration/unregisteration */
5684 static LIST_HEAD(net_todo_list);
5685 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5686 
5687 static void net_set_todo(struct net_device *dev)
5688 {
5689 	list_add_tail(&dev->todo_list, &net_todo_list);
5690 	dev_net(dev)->dev_unreg_count++;
5691 }
5692 
5693 static void rollback_registered_many(struct list_head *head)
5694 {
5695 	struct net_device *dev, *tmp;
5696 	LIST_HEAD(close_head);
5697 
5698 	BUG_ON(dev_boot_phase);
5699 	ASSERT_RTNL();
5700 
5701 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5702 		/* Some devices call without registering
5703 		 * for initialization unwind. Remove those
5704 		 * devices and proceed with the remaining.
5705 		 */
5706 		if (dev->reg_state == NETREG_UNINITIALIZED) {
5707 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5708 				 dev->name, dev);
5709 
5710 			WARN_ON(1);
5711 			list_del(&dev->unreg_list);
5712 			continue;
5713 		}
5714 		dev->dismantle = true;
5715 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
5716 	}
5717 
5718 	/* If device is running, close it first. */
5719 	list_for_each_entry(dev, head, unreg_list)
5720 		list_add_tail(&dev->close_list, &close_head);
5721 	dev_close_many(&close_head);
5722 
5723 	list_for_each_entry(dev, head, unreg_list) {
5724 		/* And unlink it from device chain. */
5725 		unlist_netdevice(dev);
5726 
5727 		dev->reg_state = NETREG_UNREGISTERING;
5728 	}
5729 
5730 	synchronize_net();
5731 
5732 	list_for_each_entry(dev, head, unreg_list) {
5733 		/* Shutdown queueing discipline. */
5734 		dev_shutdown(dev);
5735 
5736 
5737 		/* Notify protocols, that we are about to destroy
5738 		   this device. They should clean all the things.
5739 		*/
5740 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5741 
5742 		/*
5743 		 *	Flush the unicast and multicast chains
5744 		 */
5745 		dev_uc_flush(dev);
5746 		dev_mc_flush(dev);
5747 
5748 		if (dev->netdev_ops->ndo_uninit)
5749 			dev->netdev_ops->ndo_uninit(dev);
5750 
5751 		if (!dev->rtnl_link_ops ||
5752 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5753 			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5754 
5755 		/* Notifier chain MUST detach us all upper devices. */
5756 		WARN_ON(netdev_has_any_upper_dev(dev));
5757 
5758 		/* Remove entries from kobject tree */
5759 		netdev_unregister_kobject(dev);
5760 #ifdef CONFIG_XPS
5761 		/* Remove XPS queueing entries */
5762 		netif_reset_xps_queues_gt(dev, 0);
5763 #endif
5764 	}
5765 
5766 	synchronize_net();
5767 
5768 	list_for_each_entry(dev, head, unreg_list)
5769 		dev_put(dev);
5770 }
5771 
5772 static void rollback_registered(struct net_device *dev)
5773 {
5774 	LIST_HEAD(single);
5775 
5776 	list_add(&dev->unreg_list, &single);
5777 	rollback_registered_many(&single);
5778 	list_del(&single);
5779 }
5780 
5781 static netdev_features_t netdev_fix_features(struct net_device *dev,
5782 	netdev_features_t features)
5783 {
5784 	/* Fix illegal checksum combinations */
5785 	if ((features & NETIF_F_HW_CSUM) &&
5786 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5787 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5788 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5789 	}
5790 
5791 	/* TSO requires that SG is present as well. */
5792 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5793 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5794 		features &= ~NETIF_F_ALL_TSO;
5795 	}
5796 
5797 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5798 					!(features & NETIF_F_IP_CSUM)) {
5799 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5800 		features &= ~NETIF_F_TSO;
5801 		features &= ~NETIF_F_TSO_ECN;
5802 	}
5803 
5804 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5805 					 !(features & NETIF_F_IPV6_CSUM)) {
5806 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5807 		features &= ~NETIF_F_TSO6;
5808 	}
5809 
5810 	/* TSO ECN requires that TSO is present as well. */
5811 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5812 		features &= ~NETIF_F_TSO_ECN;
5813 
5814 	/* Software GSO depends on SG. */
5815 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5816 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5817 		features &= ~NETIF_F_GSO;
5818 	}
5819 
5820 	/* UFO needs SG and checksumming */
5821 	if (features & NETIF_F_UFO) {
5822 		/* maybe split UFO into V4 and V6? */
5823 		if (!((features & NETIF_F_GEN_CSUM) ||
5824 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5825 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5826 			netdev_dbg(dev,
5827 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
5828 			features &= ~NETIF_F_UFO;
5829 		}
5830 
5831 		if (!(features & NETIF_F_SG)) {
5832 			netdev_dbg(dev,
5833 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5834 			features &= ~NETIF_F_UFO;
5835 		}
5836 	}
5837 
5838 #ifdef CONFIG_NET_RX_BUSY_POLL
5839 	if (dev->netdev_ops->ndo_busy_poll)
5840 		features |= NETIF_F_BUSY_POLL;
5841 	else
5842 #endif
5843 		features &= ~NETIF_F_BUSY_POLL;
5844 
5845 	return features;
5846 }
5847 
5848 int __netdev_update_features(struct net_device *dev)
5849 {
5850 	netdev_features_t features;
5851 	int err = 0;
5852 
5853 	ASSERT_RTNL();
5854 
5855 	features = netdev_get_wanted_features(dev);
5856 
5857 	if (dev->netdev_ops->ndo_fix_features)
5858 		features = dev->netdev_ops->ndo_fix_features(dev, features);
5859 
5860 	/* driver might be less strict about feature dependencies */
5861 	features = netdev_fix_features(dev, features);
5862 
5863 	if (dev->features == features)
5864 		return 0;
5865 
5866 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5867 		&dev->features, &features);
5868 
5869 	if (dev->netdev_ops->ndo_set_features)
5870 		err = dev->netdev_ops->ndo_set_features(dev, features);
5871 
5872 	if (unlikely(err < 0)) {
5873 		netdev_err(dev,
5874 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
5875 			err, &features, &dev->features);
5876 		return -1;
5877 	}
5878 
5879 	if (!err)
5880 		dev->features = features;
5881 
5882 	return 1;
5883 }
5884 
5885 /**
5886  *	netdev_update_features - recalculate device features
5887  *	@dev: the device to check
5888  *
5889  *	Recalculate dev->features set and send notifications if it
5890  *	has changed. Should be called after driver or hardware dependent
5891  *	conditions might have changed that influence the features.
5892  */
5893 void netdev_update_features(struct net_device *dev)
5894 {
5895 	if (__netdev_update_features(dev))
5896 		netdev_features_change(dev);
5897 }
5898 EXPORT_SYMBOL(netdev_update_features);
5899 
5900 /**
5901  *	netdev_change_features - recalculate device features
5902  *	@dev: the device to check
5903  *
5904  *	Recalculate dev->features set and send notifications even
5905  *	if they have not changed. Should be called instead of
5906  *	netdev_update_features() if also dev->vlan_features might
5907  *	have changed to allow the changes to be propagated to stacked
5908  *	VLAN devices.
5909  */
5910 void netdev_change_features(struct net_device *dev)
5911 {
5912 	__netdev_update_features(dev);
5913 	netdev_features_change(dev);
5914 }
5915 EXPORT_SYMBOL(netdev_change_features);
5916 
5917 /**
5918  *	netif_stacked_transfer_operstate -	transfer operstate
5919  *	@rootdev: the root or lower level device to transfer state from
5920  *	@dev: the device to transfer operstate to
5921  *
5922  *	Transfer operational state from root to device. This is normally
5923  *	called when a stacking relationship exists between the root
5924  *	device and the device(a leaf device).
5925  */
5926 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5927 					struct net_device *dev)
5928 {
5929 	if (rootdev->operstate == IF_OPER_DORMANT)
5930 		netif_dormant_on(dev);
5931 	else
5932 		netif_dormant_off(dev);
5933 
5934 	if (netif_carrier_ok(rootdev)) {
5935 		if (!netif_carrier_ok(dev))
5936 			netif_carrier_on(dev);
5937 	} else {
5938 		if (netif_carrier_ok(dev))
5939 			netif_carrier_off(dev);
5940 	}
5941 }
5942 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5943 
5944 #ifdef CONFIG_SYSFS
5945 static int netif_alloc_rx_queues(struct net_device *dev)
5946 {
5947 	unsigned int i, count = dev->num_rx_queues;
5948 	struct netdev_rx_queue *rx;
5949 
5950 	BUG_ON(count < 1);
5951 
5952 	rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5953 	if (!rx)
5954 		return -ENOMEM;
5955 
5956 	dev->_rx = rx;
5957 
5958 	for (i = 0; i < count; i++)
5959 		rx[i].dev = dev;
5960 	return 0;
5961 }
5962 #endif
5963 
5964 static void netdev_init_one_queue(struct net_device *dev,
5965 				  struct netdev_queue *queue, void *_unused)
5966 {
5967 	/* Initialize queue lock */
5968 	spin_lock_init(&queue->_xmit_lock);
5969 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5970 	queue->xmit_lock_owner = -1;
5971 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5972 	queue->dev = dev;
5973 #ifdef CONFIG_BQL
5974 	dql_init(&queue->dql, HZ);
5975 #endif
5976 }
5977 
5978 static void netif_free_tx_queues(struct net_device *dev)
5979 {
5980 	kvfree(dev->_tx);
5981 }
5982 
5983 static int netif_alloc_netdev_queues(struct net_device *dev)
5984 {
5985 	unsigned int count = dev->num_tx_queues;
5986 	struct netdev_queue *tx;
5987 	size_t sz = count * sizeof(*tx);
5988 
5989 	BUG_ON(count < 1 || count > 0xffff);
5990 
5991 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
5992 	if (!tx) {
5993 		tx = vzalloc(sz);
5994 		if (!tx)
5995 			return -ENOMEM;
5996 	}
5997 	dev->_tx = tx;
5998 
5999 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6000 	spin_lock_init(&dev->tx_global_lock);
6001 
6002 	return 0;
6003 }
6004 
6005 /**
6006  *	register_netdevice	- register a network device
6007  *	@dev: device to register
6008  *
6009  *	Take a completed network device structure and add it to the kernel
6010  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6011  *	chain. 0 is returned on success. A negative errno code is returned
6012  *	on a failure to set up the device, or if the name is a duplicate.
6013  *
6014  *	Callers must hold the rtnl semaphore. You may want
6015  *	register_netdev() instead of this.
6016  *
6017  *	BUGS:
6018  *	The locking appears insufficient to guarantee two parallel registers
6019  *	will not get the same name.
6020  */
6021 
6022 int register_netdevice(struct net_device *dev)
6023 {
6024 	int ret;
6025 	struct net *net = dev_net(dev);
6026 
6027 	BUG_ON(dev_boot_phase);
6028 	ASSERT_RTNL();
6029 
6030 	might_sleep();
6031 
6032 	/* When net_device's are persistent, this will be fatal. */
6033 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6034 	BUG_ON(!net);
6035 
6036 	spin_lock_init(&dev->addr_list_lock);
6037 	netdev_set_addr_lockdep_class(dev);
6038 
6039 	dev->iflink = -1;
6040 
6041 	ret = dev_get_valid_name(net, dev, dev->name);
6042 	if (ret < 0)
6043 		goto out;
6044 
6045 	/* Init, if this function is available */
6046 	if (dev->netdev_ops->ndo_init) {
6047 		ret = dev->netdev_ops->ndo_init(dev);
6048 		if (ret) {
6049 			if (ret > 0)
6050 				ret = -EIO;
6051 			goto out;
6052 		}
6053 	}
6054 
6055 	if (((dev->hw_features | dev->features) &
6056 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
6057 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6058 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6059 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6060 		ret = -EINVAL;
6061 		goto err_uninit;
6062 	}
6063 
6064 	ret = -EBUSY;
6065 	if (!dev->ifindex)
6066 		dev->ifindex = dev_new_index(net);
6067 	else if (__dev_get_by_index(net, dev->ifindex))
6068 		goto err_uninit;
6069 
6070 	if (dev->iflink == -1)
6071 		dev->iflink = dev->ifindex;
6072 
6073 	/* Transfer changeable features to wanted_features and enable
6074 	 * software offloads (GSO and GRO).
6075 	 */
6076 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
6077 	dev->features |= NETIF_F_SOFT_FEATURES;
6078 	dev->wanted_features = dev->features & dev->hw_features;
6079 
6080 	if (!(dev->flags & IFF_LOOPBACK)) {
6081 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
6082 	}
6083 
6084 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6085 	 */
6086 	dev->vlan_features |= NETIF_F_HIGHDMA;
6087 
6088 	/* Make NETIF_F_SG inheritable to tunnel devices.
6089 	 */
6090 	dev->hw_enc_features |= NETIF_F_SG;
6091 
6092 	/* Make NETIF_F_SG inheritable to MPLS.
6093 	 */
6094 	dev->mpls_features |= NETIF_F_SG;
6095 
6096 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6097 	ret = notifier_to_errno(ret);
6098 	if (ret)
6099 		goto err_uninit;
6100 
6101 	ret = netdev_register_kobject(dev);
6102 	if (ret)
6103 		goto err_uninit;
6104 	dev->reg_state = NETREG_REGISTERED;
6105 
6106 	__netdev_update_features(dev);
6107 
6108 	/*
6109 	 *	Default initial state at registry is that the
6110 	 *	device is present.
6111 	 */
6112 
6113 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6114 
6115 	linkwatch_init_dev(dev);
6116 
6117 	dev_init_scheduler(dev);
6118 	dev_hold(dev);
6119 	list_netdevice(dev);
6120 	add_device_randomness(dev->dev_addr, dev->addr_len);
6121 
6122 	/* If the device has permanent device address, driver should
6123 	 * set dev_addr and also addr_assign_type should be set to
6124 	 * NET_ADDR_PERM (default value).
6125 	 */
6126 	if (dev->addr_assign_type == NET_ADDR_PERM)
6127 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6128 
6129 	/* Notify protocols, that a new device appeared. */
6130 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6131 	ret = notifier_to_errno(ret);
6132 	if (ret) {
6133 		rollback_registered(dev);
6134 		dev->reg_state = NETREG_UNREGISTERED;
6135 	}
6136 	/*
6137 	 *	Prevent userspace races by waiting until the network
6138 	 *	device is fully setup before sending notifications.
6139 	 */
6140 	if (!dev->rtnl_link_ops ||
6141 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6142 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6143 
6144 out:
6145 	return ret;
6146 
6147 err_uninit:
6148 	if (dev->netdev_ops->ndo_uninit)
6149 		dev->netdev_ops->ndo_uninit(dev);
6150 	goto out;
6151 }
6152 EXPORT_SYMBOL(register_netdevice);
6153 
6154 /**
6155  *	init_dummy_netdev	- init a dummy network device for NAPI
6156  *	@dev: device to init
6157  *
6158  *	This takes a network device structure and initialize the minimum
6159  *	amount of fields so it can be used to schedule NAPI polls without
6160  *	registering a full blown interface. This is to be used by drivers
6161  *	that need to tie several hardware interfaces to a single NAPI
6162  *	poll scheduler due to HW limitations.
6163  */
6164 int init_dummy_netdev(struct net_device *dev)
6165 {
6166 	/* Clear everything. Note we don't initialize spinlocks
6167 	 * are they aren't supposed to be taken by any of the
6168 	 * NAPI code and this dummy netdev is supposed to be
6169 	 * only ever used for NAPI polls
6170 	 */
6171 	memset(dev, 0, sizeof(struct net_device));
6172 
6173 	/* make sure we BUG if trying to hit standard
6174 	 * register/unregister code path
6175 	 */
6176 	dev->reg_state = NETREG_DUMMY;
6177 
6178 	/* NAPI wants this */
6179 	INIT_LIST_HEAD(&dev->napi_list);
6180 
6181 	/* a dummy interface is started by default */
6182 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6183 	set_bit(__LINK_STATE_START, &dev->state);
6184 
6185 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
6186 	 * because users of this 'device' dont need to change
6187 	 * its refcount.
6188 	 */
6189 
6190 	return 0;
6191 }
6192 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6193 
6194 
6195 /**
6196  *	register_netdev	- register a network device
6197  *	@dev: device to register
6198  *
6199  *	Take a completed network device structure and add it to the kernel
6200  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6201  *	chain. 0 is returned on success. A negative errno code is returned
6202  *	on a failure to set up the device, or if the name is a duplicate.
6203  *
6204  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
6205  *	and expands the device name if you passed a format string to
6206  *	alloc_netdev.
6207  */
6208 int register_netdev(struct net_device *dev)
6209 {
6210 	int err;
6211 
6212 	rtnl_lock();
6213 	err = register_netdevice(dev);
6214 	rtnl_unlock();
6215 	return err;
6216 }
6217 EXPORT_SYMBOL(register_netdev);
6218 
6219 int netdev_refcnt_read(const struct net_device *dev)
6220 {
6221 	int i, refcnt = 0;
6222 
6223 	for_each_possible_cpu(i)
6224 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6225 	return refcnt;
6226 }
6227 EXPORT_SYMBOL(netdev_refcnt_read);
6228 
6229 /**
6230  * netdev_wait_allrefs - wait until all references are gone.
6231  * @dev: target net_device
6232  *
6233  * This is called when unregistering network devices.
6234  *
6235  * Any protocol or device that holds a reference should register
6236  * for netdevice notification, and cleanup and put back the
6237  * reference if they receive an UNREGISTER event.
6238  * We can get stuck here if buggy protocols don't correctly
6239  * call dev_put.
6240  */
6241 static void netdev_wait_allrefs(struct net_device *dev)
6242 {
6243 	unsigned long rebroadcast_time, warning_time;
6244 	int refcnt;
6245 
6246 	linkwatch_forget_dev(dev);
6247 
6248 	rebroadcast_time = warning_time = jiffies;
6249 	refcnt = netdev_refcnt_read(dev);
6250 
6251 	while (refcnt != 0) {
6252 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6253 			rtnl_lock();
6254 
6255 			/* Rebroadcast unregister notification */
6256 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6257 
6258 			__rtnl_unlock();
6259 			rcu_barrier();
6260 			rtnl_lock();
6261 
6262 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6263 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6264 				     &dev->state)) {
6265 				/* We must not have linkwatch events
6266 				 * pending on unregister. If this
6267 				 * happens, we simply run the queue
6268 				 * unscheduled, resulting in a noop
6269 				 * for this device.
6270 				 */
6271 				linkwatch_run_queue();
6272 			}
6273 
6274 			__rtnl_unlock();
6275 
6276 			rebroadcast_time = jiffies;
6277 		}
6278 
6279 		msleep(250);
6280 
6281 		refcnt = netdev_refcnt_read(dev);
6282 
6283 		if (time_after(jiffies, warning_time + 10 * HZ)) {
6284 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6285 				 dev->name, refcnt);
6286 			warning_time = jiffies;
6287 		}
6288 	}
6289 }
6290 
6291 /* The sequence is:
6292  *
6293  *	rtnl_lock();
6294  *	...
6295  *	register_netdevice(x1);
6296  *	register_netdevice(x2);
6297  *	...
6298  *	unregister_netdevice(y1);
6299  *	unregister_netdevice(y2);
6300  *      ...
6301  *	rtnl_unlock();
6302  *	free_netdev(y1);
6303  *	free_netdev(y2);
6304  *
6305  * We are invoked by rtnl_unlock().
6306  * This allows us to deal with problems:
6307  * 1) We can delete sysfs objects which invoke hotplug
6308  *    without deadlocking with linkwatch via keventd.
6309  * 2) Since we run with the RTNL semaphore not held, we can sleep
6310  *    safely in order to wait for the netdev refcnt to drop to zero.
6311  *
6312  * We must not return until all unregister events added during
6313  * the interval the lock was held have been completed.
6314  */
6315 void netdev_run_todo(void)
6316 {
6317 	struct list_head list;
6318 
6319 	/* Snapshot list, allow later requests */
6320 	list_replace_init(&net_todo_list, &list);
6321 
6322 	__rtnl_unlock();
6323 
6324 
6325 	/* Wait for rcu callbacks to finish before next phase */
6326 	if (!list_empty(&list))
6327 		rcu_barrier();
6328 
6329 	while (!list_empty(&list)) {
6330 		struct net_device *dev
6331 			= list_first_entry(&list, struct net_device, todo_list);
6332 		list_del(&dev->todo_list);
6333 
6334 		rtnl_lock();
6335 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6336 		__rtnl_unlock();
6337 
6338 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6339 			pr_err("network todo '%s' but state %d\n",
6340 			       dev->name, dev->reg_state);
6341 			dump_stack();
6342 			continue;
6343 		}
6344 
6345 		dev->reg_state = NETREG_UNREGISTERED;
6346 
6347 		on_each_cpu(flush_backlog, dev, 1);
6348 
6349 		netdev_wait_allrefs(dev);
6350 
6351 		/* paranoia */
6352 		BUG_ON(netdev_refcnt_read(dev));
6353 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
6354 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6355 		WARN_ON(dev->dn_ptr);
6356 
6357 		if (dev->destructor)
6358 			dev->destructor(dev);
6359 
6360 		/* Report a network device has been unregistered */
6361 		rtnl_lock();
6362 		dev_net(dev)->dev_unreg_count--;
6363 		__rtnl_unlock();
6364 		wake_up(&netdev_unregistering_wq);
6365 
6366 		/* Free network device */
6367 		kobject_put(&dev->dev.kobj);
6368 	}
6369 }
6370 
6371 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6372  * fields in the same order, with only the type differing.
6373  */
6374 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6375 			     const struct net_device_stats *netdev_stats)
6376 {
6377 #if BITS_PER_LONG == 64
6378 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6379 	memcpy(stats64, netdev_stats, sizeof(*stats64));
6380 #else
6381 	size_t i, n = sizeof(*stats64) / sizeof(u64);
6382 	const unsigned long *src = (const unsigned long *)netdev_stats;
6383 	u64 *dst = (u64 *)stats64;
6384 
6385 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6386 		     sizeof(*stats64) / sizeof(u64));
6387 	for (i = 0; i < n; i++)
6388 		dst[i] = src[i];
6389 #endif
6390 }
6391 EXPORT_SYMBOL(netdev_stats_to_stats64);
6392 
6393 /**
6394  *	dev_get_stats	- get network device statistics
6395  *	@dev: device to get statistics from
6396  *	@storage: place to store stats
6397  *
6398  *	Get network statistics from device. Return @storage.
6399  *	The device driver may provide its own method by setting
6400  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6401  *	otherwise the internal statistics structure is used.
6402  */
6403 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6404 					struct rtnl_link_stats64 *storage)
6405 {
6406 	const struct net_device_ops *ops = dev->netdev_ops;
6407 
6408 	if (ops->ndo_get_stats64) {
6409 		memset(storage, 0, sizeof(*storage));
6410 		ops->ndo_get_stats64(dev, storage);
6411 	} else if (ops->ndo_get_stats) {
6412 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6413 	} else {
6414 		netdev_stats_to_stats64(storage, &dev->stats);
6415 	}
6416 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6417 	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6418 	return storage;
6419 }
6420 EXPORT_SYMBOL(dev_get_stats);
6421 
6422 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6423 {
6424 	struct netdev_queue *queue = dev_ingress_queue(dev);
6425 
6426 #ifdef CONFIG_NET_CLS_ACT
6427 	if (queue)
6428 		return queue;
6429 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6430 	if (!queue)
6431 		return NULL;
6432 	netdev_init_one_queue(dev, queue, NULL);
6433 	queue->qdisc = &noop_qdisc;
6434 	queue->qdisc_sleeping = &noop_qdisc;
6435 	rcu_assign_pointer(dev->ingress_queue, queue);
6436 #endif
6437 	return queue;
6438 }
6439 
6440 static const struct ethtool_ops default_ethtool_ops;
6441 
6442 void netdev_set_default_ethtool_ops(struct net_device *dev,
6443 				    const struct ethtool_ops *ops)
6444 {
6445 	if (dev->ethtool_ops == &default_ethtool_ops)
6446 		dev->ethtool_ops = ops;
6447 }
6448 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6449 
6450 void netdev_freemem(struct net_device *dev)
6451 {
6452 	char *addr = (char *)dev - dev->padded;
6453 
6454 	kvfree(addr);
6455 }
6456 
6457 /**
6458  *	alloc_netdev_mqs - allocate network device
6459  *	@sizeof_priv:		size of private data to allocate space for
6460  *	@name:			device name format string
6461  *	@name_assign_type: 	origin of device name
6462  *	@setup:			callback to initialize device
6463  *	@txqs:			the number of TX subqueues to allocate
6464  *	@rxqs:			the number of RX subqueues to allocate
6465  *
6466  *	Allocates a struct net_device with private data area for driver use
6467  *	and performs basic initialization.  Also allocates subqueue structs
6468  *	for each queue on the device.
6469  */
6470 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6471 		unsigned char name_assign_type,
6472 		void (*setup)(struct net_device *),
6473 		unsigned int txqs, unsigned int rxqs)
6474 {
6475 	struct net_device *dev;
6476 	size_t alloc_size;
6477 	struct net_device *p;
6478 
6479 	BUG_ON(strlen(name) >= sizeof(dev->name));
6480 
6481 	if (txqs < 1) {
6482 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6483 		return NULL;
6484 	}
6485 
6486 #ifdef CONFIG_SYSFS
6487 	if (rxqs < 1) {
6488 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6489 		return NULL;
6490 	}
6491 #endif
6492 
6493 	alloc_size = sizeof(struct net_device);
6494 	if (sizeof_priv) {
6495 		/* ensure 32-byte alignment of private area */
6496 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6497 		alloc_size += sizeof_priv;
6498 	}
6499 	/* ensure 32-byte alignment of whole construct */
6500 	alloc_size += NETDEV_ALIGN - 1;
6501 
6502 	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6503 	if (!p)
6504 		p = vzalloc(alloc_size);
6505 	if (!p)
6506 		return NULL;
6507 
6508 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
6509 	dev->padded = (char *)dev - (char *)p;
6510 
6511 	dev->pcpu_refcnt = alloc_percpu(int);
6512 	if (!dev->pcpu_refcnt)
6513 		goto free_dev;
6514 
6515 	if (dev_addr_init(dev))
6516 		goto free_pcpu;
6517 
6518 	dev_mc_init(dev);
6519 	dev_uc_init(dev);
6520 
6521 	dev_net_set(dev, &init_net);
6522 
6523 	dev->gso_max_size = GSO_MAX_SIZE;
6524 	dev->gso_max_segs = GSO_MAX_SEGS;
6525 
6526 	INIT_LIST_HEAD(&dev->napi_list);
6527 	INIT_LIST_HEAD(&dev->unreg_list);
6528 	INIT_LIST_HEAD(&dev->close_list);
6529 	INIT_LIST_HEAD(&dev->link_watch_list);
6530 	INIT_LIST_HEAD(&dev->adj_list.upper);
6531 	INIT_LIST_HEAD(&dev->adj_list.lower);
6532 	INIT_LIST_HEAD(&dev->all_adj_list.upper);
6533 	INIT_LIST_HEAD(&dev->all_adj_list.lower);
6534 	dev->priv_flags = IFF_XMIT_DST_RELEASE;
6535 	setup(dev);
6536 
6537 	dev->num_tx_queues = txqs;
6538 	dev->real_num_tx_queues = txqs;
6539 	if (netif_alloc_netdev_queues(dev))
6540 		goto free_all;
6541 
6542 #ifdef CONFIG_SYSFS
6543 	dev->num_rx_queues = rxqs;
6544 	dev->real_num_rx_queues = rxqs;
6545 	if (netif_alloc_rx_queues(dev))
6546 		goto free_all;
6547 #endif
6548 
6549 	strcpy(dev->name, name);
6550 	dev->name_assign_type = name_assign_type;
6551 	dev->group = INIT_NETDEV_GROUP;
6552 	if (!dev->ethtool_ops)
6553 		dev->ethtool_ops = &default_ethtool_ops;
6554 	return dev;
6555 
6556 free_all:
6557 	free_netdev(dev);
6558 	return NULL;
6559 
6560 free_pcpu:
6561 	free_percpu(dev->pcpu_refcnt);
6562 free_dev:
6563 	netdev_freemem(dev);
6564 	return NULL;
6565 }
6566 EXPORT_SYMBOL(alloc_netdev_mqs);
6567 
6568 /**
6569  *	free_netdev - free network device
6570  *	@dev: device
6571  *
6572  *	This function does the last stage of destroying an allocated device
6573  * 	interface. The reference to the device object is released.
6574  *	If this is the last reference then it will be freed.
6575  */
6576 void free_netdev(struct net_device *dev)
6577 {
6578 	struct napi_struct *p, *n;
6579 
6580 	release_net(dev_net(dev));
6581 
6582 	netif_free_tx_queues(dev);
6583 #ifdef CONFIG_SYSFS
6584 	kfree(dev->_rx);
6585 #endif
6586 
6587 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6588 
6589 	/* Flush device addresses */
6590 	dev_addr_flush(dev);
6591 
6592 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6593 		netif_napi_del(p);
6594 
6595 	free_percpu(dev->pcpu_refcnt);
6596 	dev->pcpu_refcnt = NULL;
6597 
6598 	/*  Compatibility with error handling in drivers */
6599 	if (dev->reg_state == NETREG_UNINITIALIZED) {
6600 		netdev_freemem(dev);
6601 		return;
6602 	}
6603 
6604 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6605 	dev->reg_state = NETREG_RELEASED;
6606 
6607 	/* will free via device release */
6608 	put_device(&dev->dev);
6609 }
6610 EXPORT_SYMBOL(free_netdev);
6611 
6612 /**
6613  *	synchronize_net -  Synchronize with packet receive processing
6614  *
6615  *	Wait for packets currently being received to be done.
6616  *	Does not block later packets from starting.
6617  */
6618 void synchronize_net(void)
6619 {
6620 	might_sleep();
6621 	if (rtnl_is_locked())
6622 		synchronize_rcu_expedited();
6623 	else
6624 		synchronize_rcu();
6625 }
6626 EXPORT_SYMBOL(synchronize_net);
6627 
6628 /**
6629  *	unregister_netdevice_queue - remove device from the kernel
6630  *	@dev: device
6631  *	@head: list
6632  *
6633  *	This function shuts down a device interface and removes it
6634  *	from the kernel tables.
6635  *	If head not NULL, device is queued to be unregistered later.
6636  *
6637  *	Callers must hold the rtnl semaphore.  You may want
6638  *	unregister_netdev() instead of this.
6639  */
6640 
6641 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6642 {
6643 	ASSERT_RTNL();
6644 
6645 	if (head) {
6646 		list_move_tail(&dev->unreg_list, head);
6647 	} else {
6648 		rollback_registered(dev);
6649 		/* Finish processing unregister after unlock */
6650 		net_set_todo(dev);
6651 	}
6652 }
6653 EXPORT_SYMBOL(unregister_netdevice_queue);
6654 
6655 /**
6656  *	unregister_netdevice_many - unregister many devices
6657  *	@head: list of devices
6658  *
6659  *  Note: As most callers use a stack allocated list_head,
6660  *  we force a list_del() to make sure stack wont be corrupted later.
6661  */
6662 void unregister_netdevice_many(struct list_head *head)
6663 {
6664 	struct net_device *dev;
6665 
6666 	if (!list_empty(head)) {
6667 		rollback_registered_many(head);
6668 		list_for_each_entry(dev, head, unreg_list)
6669 			net_set_todo(dev);
6670 		list_del(head);
6671 	}
6672 }
6673 EXPORT_SYMBOL(unregister_netdevice_many);
6674 
6675 /**
6676  *	unregister_netdev - remove device from the kernel
6677  *	@dev: device
6678  *
6679  *	This function shuts down a device interface and removes it
6680  *	from the kernel tables.
6681  *
6682  *	This is just a wrapper for unregister_netdevice that takes
6683  *	the rtnl semaphore.  In general you want to use this and not
6684  *	unregister_netdevice.
6685  */
6686 void unregister_netdev(struct net_device *dev)
6687 {
6688 	rtnl_lock();
6689 	unregister_netdevice(dev);
6690 	rtnl_unlock();
6691 }
6692 EXPORT_SYMBOL(unregister_netdev);
6693 
6694 /**
6695  *	dev_change_net_namespace - move device to different nethost namespace
6696  *	@dev: device
6697  *	@net: network namespace
6698  *	@pat: If not NULL name pattern to try if the current device name
6699  *	      is already taken in the destination network namespace.
6700  *
6701  *	This function shuts down a device interface and moves it
6702  *	to a new network namespace. On success 0 is returned, on
6703  *	a failure a netagive errno code is returned.
6704  *
6705  *	Callers must hold the rtnl semaphore.
6706  */
6707 
6708 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6709 {
6710 	int err;
6711 
6712 	ASSERT_RTNL();
6713 
6714 	/* Don't allow namespace local devices to be moved. */
6715 	err = -EINVAL;
6716 	if (dev->features & NETIF_F_NETNS_LOCAL)
6717 		goto out;
6718 
6719 	/* Ensure the device has been registrered */
6720 	if (dev->reg_state != NETREG_REGISTERED)
6721 		goto out;
6722 
6723 	/* Get out if there is nothing todo */
6724 	err = 0;
6725 	if (net_eq(dev_net(dev), net))
6726 		goto out;
6727 
6728 	/* Pick the destination device name, and ensure
6729 	 * we can use it in the destination network namespace.
6730 	 */
6731 	err = -EEXIST;
6732 	if (__dev_get_by_name(net, dev->name)) {
6733 		/* We get here if we can't use the current device name */
6734 		if (!pat)
6735 			goto out;
6736 		if (dev_get_valid_name(net, dev, pat) < 0)
6737 			goto out;
6738 	}
6739 
6740 	/*
6741 	 * And now a mini version of register_netdevice unregister_netdevice.
6742 	 */
6743 
6744 	/* If device is running close it first. */
6745 	dev_close(dev);
6746 
6747 	/* And unlink it from device chain */
6748 	err = -ENODEV;
6749 	unlist_netdevice(dev);
6750 
6751 	synchronize_net();
6752 
6753 	/* Shutdown queueing discipline. */
6754 	dev_shutdown(dev);
6755 
6756 	/* Notify protocols, that we are about to destroy
6757 	   this device. They should clean all the things.
6758 
6759 	   Note that dev->reg_state stays at NETREG_REGISTERED.
6760 	   This is wanted because this way 8021q and macvlan know
6761 	   the device is just moving and can keep their slaves up.
6762 	*/
6763 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6764 	rcu_barrier();
6765 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6766 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6767 
6768 	/*
6769 	 *	Flush the unicast and multicast chains
6770 	 */
6771 	dev_uc_flush(dev);
6772 	dev_mc_flush(dev);
6773 
6774 	/* Send a netdev-removed uevent to the old namespace */
6775 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6776 
6777 	/* Actually switch the network namespace */
6778 	dev_net_set(dev, net);
6779 
6780 	/* If there is an ifindex conflict assign a new one */
6781 	if (__dev_get_by_index(net, dev->ifindex)) {
6782 		int iflink = (dev->iflink == dev->ifindex);
6783 		dev->ifindex = dev_new_index(net);
6784 		if (iflink)
6785 			dev->iflink = dev->ifindex;
6786 	}
6787 
6788 	/* Send a netdev-add uevent to the new namespace */
6789 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6790 
6791 	/* Fixup kobjects */
6792 	err = device_rename(&dev->dev, dev->name);
6793 	WARN_ON(err);
6794 
6795 	/* Add the device back in the hashes */
6796 	list_netdevice(dev);
6797 
6798 	/* Notify protocols, that a new device appeared. */
6799 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
6800 
6801 	/*
6802 	 *	Prevent userspace races by waiting until the network
6803 	 *	device is fully setup before sending notifications.
6804 	 */
6805 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6806 
6807 	synchronize_net();
6808 	err = 0;
6809 out:
6810 	return err;
6811 }
6812 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6813 
6814 static int dev_cpu_callback(struct notifier_block *nfb,
6815 			    unsigned long action,
6816 			    void *ocpu)
6817 {
6818 	struct sk_buff **list_skb;
6819 	struct sk_buff *skb;
6820 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
6821 	struct softnet_data *sd, *oldsd;
6822 
6823 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6824 		return NOTIFY_OK;
6825 
6826 	local_irq_disable();
6827 	cpu = smp_processor_id();
6828 	sd = &per_cpu(softnet_data, cpu);
6829 	oldsd = &per_cpu(softnet_data, oldcpu);
6830 
6831 	/* Find end of our completion_queue. */
6832 	list_skb = &sd->completion_queue;
6833 	while (*list_skb)
6834 		list_skb = &(*list_skb)->next;
6835 	/* Append completion queue from offline CPU. */
6836 	*list_skb = oldsd->completion_queue;
6837 	oldsd->completion_queue = NULL;
6838 
6839 	/* Append output queue from offline CPU. */
6840 	if (oldsd->output_queue) {
6841 		*sd->output_queue_tailp = oldsd->output_queue;
6842 		sd->output_queue_tailp = oldsd->output_queue_tailp;
6843 		oldsd->output_queue = NULL;
6844 		oldsd->output_queue_tailp = &oldsd->output_queue;
6845 	}
6846 	/* Append NAPI poll list from offline CPU. */
6847 	if (!list_empty(&oldsd->poll_list)) {
6848 		list_splice_init(&oldsd->poll_list, &sd->poll_list);
6849 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
6850 	}
6851 
6852 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
6853 	local_irq_enable();
6854 
6855 	/* Process offline CPU's input_pkt_queue */
6856 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6857 		netif_rx_internal(skb);
6858 		input_queue_head_incr(oldsd);
6859 	}
6860 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6861 		netif_rx_internal(skb);
6862 		input_queue_head_incr(oldsd);
6863 	}
6864 
6865 	return NOTIFY_OK;
6866 }
6867 
6868 
6869 /**
6870  *	netdev_increment_features - increment feature set by one
6871  *	@all: current feature set
6872  *	@one: new feature set
6873  *	@mask: mask feature set
6874  *
6875  *	Computes a new feature set after adding a device with feature set
6876  *	@one to the master device with current feature set @all.  Will not
6877  *	enable anything that is off in @mask. Returns the new feature set.
6878  */
6879 netdev_features_t netdev_increment_features(netdev_features_t all,
6880 	netdev_features_t one, netdev_features_t mask)
6881 {
6882 	if (mask & NETIF_F_GEN_CSUM)
6883 		mask |= NETIF_F_ALL_CSUM;
6884 	mask |= NETIF_F_VLAN_CHALLENGED;
6885 
6886 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6887 	all &= one | ~NETIF_F_ALL_FOR_ALL;
6888 
6889 	/* If one device supports hw checksumming, set for all. */
6890 	if (all & NETIF_F_GEN_CSUM)
6891 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6892 
6893 	return all;
6894 }
6895 EXPORT_SYMBOL(netdev_increment_features);
6896 
6897 static struct hlist_head * __net_init netdev_create_hash(void)
6898 {
6899 	int i;
6900 	struct hlist_head *hash;
6901 
6902 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6903 	if (hash != NULL)
6904 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
6905 			INIT_HLIST_HEAD(&hash[i]);
6906 
6907 	return hash;
6908 }
6909 
6910 /* Initialize per network namespace state */
6911 static int __net_init netdev_init(struct net *net)
6912 {
6913 	if (net != &init_net)
6914 		INIT_LIST_HEAD(&net->dev_base_head);
6915 
6916 	net->dev_name_head = netdev_create_hash();
6917 	if (net->dev_name_head == NULL)
6918 		goto err_name;
6919 
6920 	net->dev_index_head = netdev_create_hash();
6921 	if (net->dev_index_head == NULL)
6922 		goto err_idx;
6923 
6924 	return 0;
6925 
6926 err_idx:
6927 	kfree(net->dev_name_head);
6928 err_name:
6929 	return -ENOMEM;
6930 }
6931 
6932 /**
6933  *	netdev_drivername - network driver for the device
6934  *	@dev: network device
6935  *
6936  *	Determine network driver for device.
6937  */
6938 const char *netdev_drivername(const struct net_device *dev)
6939 {
6940 	const struct device_driver *driver;
6941 	const struct device *parent;
6942 	const char *empty = "";
6943 
6944 	parent = dev->dev.parent;
6945 	if (!parent)
6946 		return empty;
6947 
6948 	driver = parent->driver;
6949 	if (driver && driver->name)
6950 		return driver->name;
6951 	return empty;
6952 }
6953 
6954 static int __netdev_printk(const char *level, const struct net_device *dev,
6955 			   struct va_format *vaf)
6956 {
6957 	int r;
6958 
6959 	if (dev && dev->dev.parent) {
6960 		r = dev_printk_emit(level[1] - '0',
6961 				    dev->dev.parent,
6962 				    "%s %s %s%s: %pV",
6963 				    dev_driver_string(dev->dev.parent),
6964 				    dev_name(dev->dev.parent),
6965 				    netdev_name(dev), netdev_reg_state(dev),
6966 				    vaf);
6967 	} else if (dev) {
6968 		r = printk("%s%s%s: %pV", level, netdev_name(dev),
6969 			   netdev_reg_state(dev), vaf);
6970 	} else {
6971 		r = printk("%s(NULL net_device): %pV", level, vaf);
6972 	}
6973 
6974 	return r;
6975 }
6976 
6977 int netdev_printk(const char *level, const struct net_device *dev,
6978 		  const char *format, ...)
6979 {
6980 	struct va_format vaf;
6981 	va_list args;
6982 	int r;
6983 
6984 	va_start(args, format);
6985 
6986 	vaf.fmt = format;
6987 	vaf.va = &args;
6988 
6989 	r = __netdev_printk(level, dev, &vaf);
6990 
6991 	va_end(args);
6992 
6993 	return r;
6994 }
6995 EXPORT_SYMBOL(netdev_printk);
6996 
6997 #define define_netdev_printk_level(func, level)			\
6998 int func(const struct net_device *dev, const char *fmt, ...)	\
6999 {								\
7000 	int r;							\
7001 	struct va_format vaf;					\
7002 	va_list args;						\
7003 								\
7004 	va_start(args, fmt);					\
7005 								\
7006 	vaf.fmt = fmt;						\
7007 	vaf.va = &args;						\
7008 								\
7009 	r = __netdev_printk(level, dev, &vaf);			\
7010 								\
7011 	va_end(args);						\
7012 								\
7013 	return r;						\
7014 }								\
7015 EXPORT_SYMBOL(func);
7016 
7017 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7018 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7019 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7020 define_netdev_printk_level(netdev_err, KERN_ERR);
7021 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7022 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7023 define_netdev_printk_level(netdev_info, KERN_INFO);
7024 
7025 static void __net_exit netdev_exit(struct net *net)
7026 {
7027 	kfree(net->dev_name_head);
7028 	kfree(net->dev_index_head);
7029 }
7030 
7031 static struct pernet_operations __net_initdata netdev_net_ops = {
7032 	.init = netdev_init,
7033 	.exit = netdev_exit,
7034 };
7035 
7036 static void __net_exit default_device_exit(struct net *net)
7037 {
7038 	struct net_device *dev, *aux;
7039 	/*
7040 	 * Push all migratable network devices back to the
7041 	 * initial network namespace
7042 	 */
7043 	rtnl_lock();
7044 	for_each_netdev_safe(net, dev, aux) {
7045 		int err;
7046 		char fb_name[IFNAMSIZ];
7047 
7048 		/* Ignore unmoveable devices (i.e. loopback) */
7049 		if (dev->features & NETIF_F_NETNS_LOCAL)
7050 			continue;
7051 
7052 		/* Leave virtual devices for the generic cleanup */
7053 		if (dev->rtnl_link_ops)
7054 			continue;
7055 
7056 		/* Push remaining network devices to init_net */
7057 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7058 		err = dev_change_net_namespace(dev, &init_net, fb_name);
7059 		if (err) {
7060 			pr_emerg("%s: failed to move %s to init_net: %d\n",
7061 				 __func__, dev->name, err);
7062 			BUG();
7063 		}
7064 	}
7065 	rtnl_unlock();
7066 }
7067 
7068 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7069 {
7070 	/* Return with the rtnl_lock held when there are no network
7071 	 * devices unregistering in any network namespace in net_list.
7072 	 */
7073 	struct net *net;
7074 	bool unregistering;
7075 	DEFINE_WAIT(wait);
7076 
7077 	for (;;) {
7078 		prepare_to_wait(&netdev_unregistering_wq, &wait,
7079 				TASK_UNINTERRUPTIBLE);
7080 		unregistering = false;
7081 		rtnl_lock();
7082 		list_for_each_entry(net, net_list, exit_list) {
7083 			if (net->dev_unreg_count > 0) {
7084 				unregistering = true;
7085 				break;
7086 			}
7087 		}
7088 		if (!unregistering)
7089 			break;
7090 		__rtnl_unlock();
7091 		schedule();
7092 	}
7093 	finish_wait(&netdev_unregistering_wq, &wait);
7094 }
7095 
7096 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7097 {
7098 	/* At exit all network devices most be removed from a network
7099 	 * namespace.  Do this in the reverse order of registration.
7100 	 * Do this across as many network namespaces as possible to
7101 	 * improve batching efficiency.
7102 	 */
7103 	struct net_device *dev;
7104 	struct net *net;
7105 	LIST_HEAD(dev_kill_list);
7106 
7107 	/* To prevent network device cleanup code from dereferencing
7108 	 * loopback devices or network devices that have been freed
7109 	 * wait here for all pending unregistrations to complete,
7110 	 * before unregistring the loopback device and allowing the
7111 	 * network namespace be freed.
7112 	 *
7113 	 * The netdev todo list containing all network devices
7114 	 * unregistrations that happen in default_device_exit_batch
7115 	 * will run in the rtnl_unlock() at the end of
7116 	 * default_device_exit_batch.
7117 	 */
7118 	rtnl_lock_unregistering(net_list);
7119 	list_for_each_entry(net, net_list, exit_list) {
7120 		for_each_netdev_reverse(net, dev) {
7121 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7122 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7123 			else
7124 				unregister_netdevice_queue(dev, &dev_kill_list);
7125 		}
7126 	}
7127 	unregister_netdevice_many(&dev_kill_list);
7128 	rtnl_unlock();
7129 }
7130 
7131 static struct pernet_operations __net_initdata default_device_ops = {
7132 	.exit = default_device_exit,
7133 	.exit_batch = default_device_exit_batch,
7134 };
7135 
7136 /*
7137  *	Initialize the DEV module. At boot time this walks the device list and
7138  *	unhooks any devices that fail to initialise (normally hardware not
7139  *	present) and leaves us with a valid list of present and active devices.
7140  *
7141  */
7142 
7143 /*
7144  *       This is called single threaded during boot, so no need
7145  *       to take the rtnl semaphore.
7146  */
7147 static int __init net_dev_init(void)
7148 {
7149 	int i, rc = -ENOMEM;
7150 
7151 	BUG_ON(!dev_boot_phase);
7152 
7153 	if (dev_proc_init())
7154 		goto out;
7155 
7156 	if (netdev_kobject_init())
7157 		goto out;
7158 
7159 	INIT_LIST_HEAD(&ptype_all);
7160 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
7161 		INIT_LIST_HEAD(&ptype_base[i]);
7162 
7163 	INIT_LIST_HEAD(&offload_base);
7164 
7165 	if (register_pernet_subsys(&netdev_net_ops))
7166 		goto out;
7167 
7168 	/*
7169 	 *	Initialise the packet receive queues.
7170 	 */
7171 
7172 	for_each_possible_cpu(i) {
7173 		struct softnet_data *sd = &per_cpu(softnet_data, i);
7174 
7175 		skb_queue_head_init(&sd->input_pkt_queue);
7176 		skb_queue_head_init(&sd->process_queue);
7177 		INIT_LIST_HEAD(&sd->poll_list);
7178 		sd->output_queue_tailp = &sd->output_queue;
7179 #ifdef CONFIG_RPS
7180 		sd->csd.func = rps_trigger_softirq;
7181 		sd->csd.info = sd;
7182 		sd->cpu = i;
7183 #endif
7184 
7185 		sd->backlog.poll = process_backlog;
7186 		sd->backlog.weight = weight_p;
7187 	}
7188 
7189 	dev_boot_phase = 0;
7190 
7191 	/* The loopback device is special if any other network devices
7192 	 * is present in a network namespace the loopback device must
7193 	 * be present. Since we now dynamically allocate and free the
7194 	 * loopback device ensure this invariant is maintained by
7195 	 * keeping the loopback device as the first device on the
7196 	 * list of network devices.  Ensuring the loopback devices
7197 	 * is the first device that appears and the last network device
7198 	 * that disappears.
7199 	 */
7200 	if (register_pernet_device(&loopback_net_ops))
7201 		goto out;
7202 
7203 	if (register_pernet_device(&default_device_ops))
7204 		goto out;
7205 
7206 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7207 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7208 
7209 	hotcpu_notifier(dev_cpu_callback, 0);
7210 	dst_init();
7211 	rc = 0;
7212 out:
7213 	return rc;
7214 }
7215 
7216 subsys_initcall(net_dev_init);
7217