1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <net/busy_poll.h> 100 #include <linux/rtnetlink.h> 101 #include <linux/stat.h> 102 #include <net/dst.h> 103 #include <net/dst_metadata.h> 104 #include <net/pkt_sched.h> 105 #include <net/checksum.h> 106 #include <net/xfrm.h> 107 #include <linux/highmem.h> 108 #include <linux/init.h> 109 #include <linux/module.h> 110 #include <linux/netpoll.h> 111 #include <linux/rcupdate.h> 112 #include <linux/delay.h> 113 #include <net/iw_handler.h> 114 #include <asm/current.h> 115 #include <linux/audit.h> 116 #include <linux/dmaengine.h> 117 #include <linux/err.h> 118 #include <linux/ctype.h> 119 #include <linux/if_arp.h> 120 #include <linux/if_vlan.h> 121 #include <linux/ip.h> 122 #include <net/ip.h> 123 #include <net/mpls.h> 124 #include <linux/ipv6.h> 125 #include <linux/in.h> 126 #include <linux/jhash.h> 127 #include <linux/random.h> 128 #include <trace/events/napi.h> 129 #include <trace/events/net.h> 130 #include <trace/events/skb.h> 131 #include <linux/pci.h> 132 #include <linux/inetdevice.h> 133 #include <linux/cpu_rmap.h> 134 #include <linux/static_key.h> 135 #include <linux/hashtable.h> 136 #include <linux/vmalloc.h> 137 #include <linux/if_macvlan.h> 138 #include <linux/errqueue.h> 139 #include <linux/hrtimer.h> 140 #include <linux/netfilter_ingress.h> 141 #include <linux/sctp.h> 142 143 #include "net-sysfs.h" 144 145 /* Instead of increasing this, you should create a hash table. */ 146 #define MAX_GRO_SKBS 8 147 148 /* This should be increased if a protocol with a bigger head is added. */ 149 #define GRO_MAX_HEAD (MAX_HEADER + 128) 150 151 static DEFINE_SPINLOCK(ptype_lock); 152 static DEFINE_SPINLOCK(offload_lock); 153 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 154 struct list_head ptype_all __read_mostly; /* Taps */ 155 static struct list_head offload_base __read_mostly; 156 157 static int netif_rx_internal(struct sk_buff *skb); 158 static int call_netdevice_notifiers_info(unsigned long val, 159 struct net_device *dev, 160 struct netdev_notifier_info *info); 161 162 /* 163 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 164 * semaphore. 165 * 166 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 167 * 168 * Writers must hold the rtnl semaphore while they loop through the 169 * dev_base_head list, and hold dev_base_lock for writing when they do the 170 * actual updates. This allows pure readers to access the list even 171 * while a writer is preparing to update it. 172 * 173 * To put it another way, dev_base_lock is held for writing only to 174 * protect against pure readers; the rtnl semaphore provides the 175 * protection against other writers. 176 * 177 * See, for example usages, register_netdevice() and 178 * unregister_netdevice(), which must be called with the rtnl 179 * semaphore held. 180 */ 181 DEFINE_RWLOCK(dev_base_lock); 182 EXPORT_SYMBOL(dev_base_lock); 183 184 /* protects napi_hash addition/deletion and napi_gen_id */ 185 static DEFINE_SPINLOCK(napi_hash_lock); 186 187 static unsigned int napi_gen_id = NR_CPUS; 188 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 189 190 static seqcount_t devnet_rename_seq; 191 192 static inline void dev_base_seq_inc(struct net *net) 193 { 194 while (++net->dev_base_seq == 0); 195 } 196 197 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 198 { 199 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 200 201 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 202 } 203 204 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 205 { 206 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 207 } 208 209 static inline void rps_lock(struct softnet_data *sd) 210 { 211 #ifdef CONFIG_RPS 212 spin_lock(&sd->input_pkt_queue.lock); 213 #endif 214 } 215 216 static inline void rps_unlock(struct softnet_data *sd) 217 { 218 #ifdef CONFIG_RPS 219 spin_unlock(&sd->input_pkt_queue.lock); 220 #endif 221 } 222 223 /* Device list insertion */ 224 static void list_netdevice(struct net_device *dev) 225 { 226 struct net *net = dev_net(dev); 227 228 ASSERT_RTNL(); 229 230 write_lock_bh(&dev_base_lock); 231 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 232 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 233 hlist_add_head_rcu(&dev->index_hlist, 234 dev_index_hash(net, dev->ifindex)); 235 write_unlock_bh(&dev_base_lock); 236 237 dev_base_seq_inc(net); 238 } 239 240 /* Device list removal 241 * caller must respect a RCU grace period before freeing/reusing dev 242 */ 243 static void unlist_netdevice(struct net_device *dev) 244 { 245 ASSERT_RTNL(); 246 247 /* Unlink dev from the device chain */ 248 write_lock_bh(&dev_base_lock); 249 list_del_rcu(&dev->dev_list); 250 hlist_del_rcu(&dev->name_hlist); 251 hlist_del_rcu(&dev->index_hlist); 252 write_unlock_bh(&dev_base_lock); 253 254 dev_base_seq_inc(dev_net(dev)); 255 } 256 257 /* 258 * Our notifier list 259 */ 260 261 static RAW_NOTIFIER_HEAD(netdev_chain); 262 263 /* 264 * Device drivers call our routines to queue packets here. We empty the 265 * queue in the local softnet handler. 266 */ 267 268 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 269 EXPORT_PER_CPU_SYMBOL(softnet_data); 270 271 #ifdef CONFIG_LOCKDEP 272 /* 273 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 274 * according to dev->type 275 */ 276 static const unsigned short netdev_lock_type[] = 277 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 278 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 279 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 280 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 281 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 282 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 283 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 284 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 285 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 286 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 287 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 288 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 289 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 290 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 291 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 292 293 static const char *const netdev_lock_name[] = 294 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 295 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 296 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 297 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 298 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 299 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 300 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 301 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 302 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 303 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 304 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 305 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 306 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 307 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 308 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 309 310 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 311 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 312 313 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 314 { 315 int i; 316 317 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 318 if (netdev_lock_type[i] == dev_type) 319 return i; 320 /* the last key is used by default */ 321 return ARRAY_SIZE(netdev_lock_type) - 1; 322 } 323 324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 325 unsigned short dev_type) 326 { 327 int i; 328 329 i = netdev_lock_pos(dev_type); 330 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 331 netdev_lock_name[i]); 332 } 333 334 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 335 { 336 int i; 337 338 i = netdev_lock_pos(dev->type); 339 lockdep_set_class_and_name(&dev->addr_list_lock, 340 &netdev_addr_lock_key[i], 341 netdev_lock_name[i]); 342 } 343 #else 344 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 345 unsigned short dev_type) 346 { 347 } 348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 349 { 350 } 351 #endif 352 353 /******************************************************************************* 354 355 Protocol management and registration routines 356 357 *******************************************************************************/ 358 359 /* 360 * Add a protocol ID to the list. Now that the input handler is 361 * smarter we can dispense with all the messy stuff that used to be 362 * here. 363 * 364 * BEWARE!!! Protocol handlers, mangling input packets, 365 * MUST BE last in hash buckets and checking protocol handlers 366 * MUST start from promiscuous ptype_all chain in net_bh. 367 * It is true now, do not change it. 368 * Explanation follows: if protocol handler, mangling packet, will 369 * be the first on list, it is not able to sense, that packet 370 * is cloned and should be copied-on-write, so that it will 371 * change it and subsequent readers will get broken packet. 372 * --ANK (980803) 373 */ 374 375 static inline struct list_head *ptype_head(const struct packet_type *pt) 376 { 377 if (pt->type == htons(ETH_P_ALL)) 378 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 379 else 380 return pt->dev ? &pt->dev->ptype_specific : 381 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 382 } 383 384 /** 385 * dev_add_pack - add packet handler 386 * @pt: packet type declaration 387 * 388 * Add a protocol handler to the networking stack. The passed &packet_type 389 * is linked into kernel lists and may not be freed until it has been 390 * removed from the kernel lists. 391 * 392 * This call does not sleep therefore it can not 393 * guarantee all CPU's that are in middle of receiving packets 394 * will see the new packet type (until the next received packet). 395 */ 396 397 void dev_add_pack(struct packet_type *pt) 398 { 399 struct list_head *head = ptype_head(pt); 400 401 spin_lock(&ptype_lock); 402 list_add_rcu(&pt->list, head); 403 spin_unlock(&ptype_lock); 404 } 405 EXPORT_SYMBOL(dev_add_pack); 406 407 /** 408 * __dev_remove_pack - remove packet handler 409 * @pt: packet type declaration 410 * 411 * Remove a protocol handler that was previously added to the kernel 412 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 413 * from the kernel lists and can be freed or reused once this function 414 * returns. 415 * 416 * The packet type might still be in use by receivers 417 * and must not be freed until after all the CPU's have gone 418 * through a quiescent state. 419 */ 420 void __dev_remove_pack(struct packet_type *pt) 421 { 422 struct list_head *head = ptype_head(pt); 423 struct packet_type *pt1; 424 425 spin_lock(&ptype_lock); 426 427 list_for_each_entry(pt1, head, list) { 428 if (pt == pt1) { 429 list_del_rcu(&pt->list); 430 goto out; 431 } 432 } 433 434 pr_warn("dev_remove_pack: %p not found\n", pt); 435 out: 436 spin_unlock(&ptype_lock); 437 } 438 EXPORT_SYMBOL(__dev_remove_pack); 439 440 /** 441 * dev_remove_pack - remove packet handler 442 * @pt: packet type declaration 443 * 444 * Remove a protocol handler that was previously added to the kernel 445 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 446 * from the kernel lists and can be freed or reused once this function 447 * returns. 448 * 449 * This call sleeps to guarantee that no CPU is looking at the packet 450 * type after return. 451 */ 452 void dev_remove_pack(struct packet_type *pt) 453 { 454 __dev_remove_pack(pt); 455 456 synchronize_net(); 457 } 458 EXPORT_SYMBOL(dev_remove_pack); 459 460 461 /** 462 * dev_add_offload - register offload handlers 463 * @po: protocol offload declaration 464 * 465 * Add protocol offload handlers to the networking stack. The passed 466 * &proto_offload is linked into kernel lists and may not be freed until 467 * it has been removed from the kernel lists. 468 * 469 * This call does not sleep therefore it can not 470 * guarantee all CPU's that are in middle of receiving packets 471 * will see the new offload handlers (until the next received packet). 472 */ 473 void dev_add_offload(struct packet_offload *po) 474 { 475 struct packet_offload *elem; 476 477 spin_lock(&offload_lock); 478 list_for_each_entry(elem, &offload_base, list) { 479 if (po->priority < elem->priority) 480 break; 481 } 482 list_add_rcu(&po->list, elem->list.prev); 483 spin_unlock(&offload_lock); 484 } 485 EXPORT_SYMBOL(dev_add_offload); 486 487 /** 488 * __dev_remove_offload - remove offload handler 489 * @po: packet offload declaration 490 * 491 * Remove a protocol offload handler that was previously added to the 492 * kernel offload handlers by dev_add_offload(). The passed &offload_type 493 * is removed from the kernel lists and can be freed or reused once this 494 * function returns. 495 * 496 * The packet type might still be in use by receivers 497 * and must not be freed until after all the CPU's have gone 498 * through a quiescent state. 499 */ 500 static void __dev_remove_offload(struct packet_offload *po) 501 { 502 struct list_head *head = &offload_base; 503 struct packet_offload *po1; 504 505 spin_lock(&offload_lock); 506 507 list_for_each_entry(po1, head, list) { 508 if (po == po1) { 509 list_del_rcu(&po->list); 510 goto out; 511 } 512 } 513 514 pr_warn("dev_remove_offload: %p not found\n", po); 515 out: 516 spin_unlock(&offload_lock); 517 } 518 519 /** 520 * dev_remove_offload - remove packet offload handler 521 * @po: packet offload declaration 522 * 523 * Remove a packet offload handler that was previously added to the kernel 524 * offload handlers by dev_add_offload(). The passed &offload_type is 525 * removed from the kernel lists and can be freed or reused once this 526 * function returns. 527 * 528 * This call sleeps to guarantee that no CPU is looking at the packet 529 * type after return. 530 */ 531 void dev_remove_offload(struct packet_offload *po) 532 { 533 __dev_remove_offload(po); 534 535 synchronize_net(); 536 } 537 EXPORT_SYMBOL(dev_remove_offload); 538 539 /****************************************************************************** 540 541 Device Boot-time Settings Routines 542 543 *******************************************************************************/ 544 545 /* Boot time configuration table */ 546 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 547 548 /** 549 * netdev_boot_setup_add - add new setup entry 550 * @name: name of the device 551 * @map: configured settings for the device 552 * 553 * Adds new setup entry to the dev_boot_setup list. The function 554 * returns 0 on error and 1 on success. This is a generic routine to 555 * all netdevices. 556 */ 557 static int netdev_boot_setup_add(char *name, struct ifmap *map) 558 { 559 struct netdev_boot_setup *s; 560 int i; 561 562 s = dev_boot_setup; 563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 564 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 565 memset(s[i].name, 0, sizeof(s[i].name)); 566 strlcpy(s[i].name, name, IFNAMSIZ); 567 memcpy(&s[i].map, map, sizeof(s[i].map)); 568 break; 569 } 570 } 571 572 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 573 } 574 575 /** 576 * netdev_boot_setup_check - check boot time settings 577 * @dev: the netdevice 578 * 579 * Check boot time settings for the device. 580 * The found settings are set for the device to be used 581 * later in the device probing. 582 * Returns 0 if no settings found, 1 if they are. 583 */ 584 int netdev_boot_setup_check(struct net_device *dev) 585 { 586 struct netdev_boot_setup *s = dev_boot_setup; 587 int i; 588 589 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 590 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 591 !strcmp(dev->name, s[i].name)) { 592 dev->irq = s[i].map.irq; 593 dev->base_addr = s[i].map.base_addr; 594 dev->mem_start = s[i].map.mem_start; 595 dev->mem_end = s[i].map.mem_end; 596 return 1; 597 } 598 } 599 return 0; 600 } 601 EXPORT_SYMBOL(netdev_boot_setup_check); 602 603 604 /** 605 * netdev_boot_base - get address from boot time settings 606 * @prefix: prefix for network device 607 * @unit: id for network device 608 * 609 * Check boot time settings for the base address of device. 610 * The found settings are set for the device to be used 611 * later in the device probing. 612 * Returns 0 if no settings found. 613 */ 614 unsigned long netdev_boot_base(const char *prefix, int unit) 615 { 616 const struct netdev_boot_setup *s = dev_boot_setup; 617 char name[IFNAMSIZ]; 618 int i; 619 620 sprintf(name, "%s%d", prefix, unit); 621 622 /* 623 * If device already registered then return base of 1 624 * to indicate not to probe for this interface 625 */ 626 if (__dev_get_by_name(&init_net, name)) 627 return 1; 628 629 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 630 if (!strcmp(name, s[i].name)) 631 return s[i].map.base_addr; 632 return 0; 633 } 634 635 /* 636 * Saves at boot time configured settings for any netdevice. 637 */ 638 int __init netdev_boot_setup(char *str) 639 { 640 int ints[5]; 641 struct ifmap map; 642 643 str = get_options(str, ARRAY_SIZE(ints), ints); 644 if (!str || !*str) 645 return 0; 646 647 /* Save settings */ 648 memset(&map, 0, sizeof(map)); 649 if (ints[0] > 0) 650 map.irq = ints[1]; 651 if (ints[0] > 1) 652 map.base_addr = ints[2]; 653 if (ints[0] > 2) 654 map.mem_start = ints[3]; 655 if (ints[0] > 3) 656 map.mem_end = ints[4]; 657 658 /* Add new entry to the list */ 659 return netdev_boot_setup_add(str, &map); 660 } 661 662 __setup("netdev=", netdev_boot_setup); 663 664 /******************************************************************************* 665 666 Device Interface Subroutines 667 668 *******************************************************************************/ 669 670 /** 671 * dev_get_iflink - get 'iflink' value of a interface 672 * @dev: targeted interface 673 * 674 * Indicates the ifindex the interface is linked to. 675 * Physical interfaces have the same 'ifindex' and 'iflink' values. 676 */ 677 678 int dev_get_iflink(const struct net_device *dev) 679 { 680 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 681 return dev->netdev_ops->ndo_get_iflink(dev); 682 683 return dev->ifindex; 684 } 685 EXPORT_SYMBOL(dev_get_iflink); 686 687 /** 688 * dev_fill_metadata_dst - Retrieve tunnel egress information. 689 * @dev: targeted interface 690 * @skb: The packet. 691 * 692 * For better visibility of tunnel traffic OVS needs to retrieve 693 * egress tunnel information for a packet. Following API allows 694 * user to get this info. 695 */ 696 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 697 { 698 struct ip_tunnel_info *info; 699 700 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 701 return -EINVAL; 702 703 info = skb_tunnel_info_unclone(skb); 704 if (!info) 705 return -ENOMEM; 706 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 707 return -EINVAL; 708 709 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 710 } 711 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 712 713 /** 714 * __dev_get_by_name - find a device by its name 715 * @net: the applicable net namespace 716 * @name: name to find 717 * 718 * Find an interface by name. Must be called under RTNL semaphore 719 * or @dev_base_lock. If the name is found a pointer to the device 720 * is returned. If the name is not found then %NULL is returned. The 721 * reference counters are not incremented so the caller must be 722 * careful with locks. 723 */ 724 725 struct net_device *__dev_get_by_name(struct net *net, const char *name) 726 { 727 struct net_device *dev; 728 struct hlist_head *head = dev_name_hash(net, name); 729 730 hlist_for_each_entry(dev, head, name_hlist) 731 if (!strncmp(dev->name, name, IFNAMSIZ)) 732 return dev; 733 734 return NULL; 735 } 736 EXPORT_SYMBOL(__dev_get_by_name); 737 738 /** 739 * dev_get_by_name_rcu - find a device by its name 740 * @net: the applicable net namespace 741 * @name: name to find 742 * 743 * Find an interface by name. 744 * If the name is found a pointer to the device is returned. 745 * If the name is not found then %NULL is returned. 746 * The reference counters are not incremented so the caller must be 747 * careful with locks. The caller must hold RCU lock. 748 */ 749 750 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 751 { 752 struct net_device *dev; 753 struct hlist_head *head = dev_name_hash(net, name); 754 755 hlist_for_each_entry_rcu(dev, head, name_hlist) 756 if (!strncmp(dev->name, name, IFNAMSIZ)) 757 return dev; 758 759 return NULL; 760 } 761 EXPORT_SYMBOL(dev_get_by_name_rcu); 762 763 /** 764 * dev_get_by_name - find a device by its name 765 * @net: the applicable net namespace 766 * @name: name to find 767 * 768 * Find an interface by name. This can be called from any 769 * context and does its own locking. The returned handle has 770 * the usage count incremented and the caller must use dev_put() to 771 * release it when it is no longer needed. %NULL is returned if no 772 * matching device is found. 773 */ 774 775 struct net_device *dev_get_by_name(struct net *net, const char *name) 776 { 777 struct net_device *dev; 778 779 rcu_read_lock(); 780 dev = dev_get_by_name_rcu(net, name); 781 if (dev) 782 dev_hold(dev); 783 rcu_read_unlock(); 784 return dev; 785 } 786 EXPORT_SYMBOL(dev_get_by_name); 787 788 /** 789 * __dev_get_by_index - find a device by its ifindex 790 * @net: the applicable net namespace 791 * @ifindex: index of device 792 * 793 * Search for an interface by index. Returns %NULL if the device 794 * is not found or a pointer to the device. The device has not 795 * had its reference counter increased so the caller must be careful 796 * about locking. The caller must hold either the RTNL semaphore 797 * or @dev_base_lock. 798 */ 799 800 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 801 { 802 struct net_device *dev; 803 struct hlist_head *head = dev_index_hash(net, ifindex); 804 805 hlist_for_each_entry(dev, head, index_hlist) 806 if (dev->ifindex == ifindex) 807 return dev; 808 809 return NULL; 810 } 811 EXPORT_SYMBOL(__dev_get_by_index); 812 813 /** 814 * dev_get_by_index_rcu - find a device by its ifindex 815 * @net: the applicable net namespace 816 * @ifindex: index of device 817 * 818 * Search for an interface by index. Returns %NULL if the device 819 * is not found or a pointer to the device. The device has not 820 * had its reference counter increased so the caller must be careful 821 * about locking. The caller must hold RCU lock. 822 */ 823 824 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 825 { 826 struct net_device *dev; 827 struct hlist_head *head = dev_index_hash(net, ifindex); 828 829 hlist_for_each_entry_rcu(dev, head, index_hlist) 830 if (dev->ifindex == ifindex) 831 return dev; 832 833 return NULL; 834 } 835 EXPORT_SYMBOL(dev_get_by_index_rcu); 836 837 838 /** 839 * dev_get_by_index - find a device by its ifindex 840 * @net: the applicable net namespace 841 * @ifindex: index of device 842 * 843 * Search for an interface by index. Returns NULL if the device 844 * is not found or a pointer to the device. The device returned has 845 * had a reference added and the pointer is safe until the user calls 846 * dev_put to indicate they have finished with it. 847 */ 848 849 struct net_device *dev_get_by_index(struct net *net, int ifindex) 850 { 851 struct net_device *dev; 852 853 rcu_read_lock(); 854 dev = dev_get_by_index_rcu(net, ifindex); 855 if (dev) 856 dev_hold(dev); 857 rcu_read_unlock(); 858 return dev; 859 } 860 EXPORT_SYMBOL(dev_get_by_index); 861 862 /** 863 * netdev_get_name - get a netdevice name, knowing its ifindex. 864 * @net: network namespace 865 * @name: a pointer to the buffer where the name will be stored. 866 * @ifindex: the ifindex of the interface to get the name from. 867 * 868 * The use of raw_seqcount_begin() and cond_resched() before 869 * retrying is required as we want to give the writers a chance 870 * to complete when CONFIG_PREEMPT is not set. 871 */ 872 int netdev_get_name(struct net *net, char *name, int ifindex) 873 { 874 struct net_device *dev; 875 unsigned int seq; 876 877 retry: 878 seq = raw_seqcount_begin(&devnet_rename_seq); 879 rcu_read_lock(); 880 dev = dev_get_by_index_rcu(net, ifindex); 881 if (!dev) { 882 rcu_read_unlock(); 883 return -ENODEV; 884 } 885 886 strcpy(name, dev->name); 887 rcu_read_unlock(); 888 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 889 cond_resched(); 890 goto retry; 891 } 892 893 return 0; 894 } 895 896 /** 897 * dev_getbyhwaddr_rcu - find a device by its hardware address 898 * @net: the applicable net namespace 899 * @type: media type of device 900 * @ha: hardware address 901 * 902 * Search for an interface by MAC address. Returns NULL if the device 903 * is not found or a pointer to the device. 904 * The caller must hold RCU or RTNL. 905 * The returned device has not had its ref count increased 906 * and the caller must therefore be careful about locking 907 * 908 */ 909 910 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 911 const char *ha) 912 { 913 struct net_device *dev; 914 915 for_each_netdev_rcu(net, dev) 916 if (dev->type == type && 917 !memcmp(dev->dev_addr, ha, dev->addr_len)) 918 return dev; 919 920 return NULL; 921 } 922 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 923 924 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 925 { 926 struct net_device *dev; 927 928 ASSERT_RTNL(); 929 for_each_netdev(net, dev) 930 if (dev->type == type) 931 return dev; 932 933 return NULL; 934 } 935 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 936 937 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 938 { 939 struct net_device *dev, *ret = NULL; 940 941 rcu_read_lock(); 942 for_each_netdev_rcu(net, dev) 943 if (dev->type == type) { 944 dev_hold(dev); 945 ret = dev; 946 break; 947 } 948 rcu_read_unlock(); 949 return ret; 950 } 951 EXPORT_SYMBOL(dev_getfirstbyhwtype); 952 953 /** 954 * __dev_get_by_flags - find any device with given flags 955 * @net: the applicable net namespace 956 * @if_flags: IFF_* values 957 * @mask: bitmask of bits in if_flags to check 958 * 959 * Search for any interface with the given flags. Returns NULL if a device 960 * is not found or a pointer to the device. Must be called inside 961 * rtnl_lock(), and result refcount is unchanged. 962 */ 963 964 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 965 unsigned short mask) 966 { 967 struct net_device *dev, *ret; 968 969 ASSERT_RTNL(); 970 971 ret = NULL; 972 for_each_netdev(net, dev) { 973 if (((dev->flags ^ if_flags) & mask) == 0) { 974 ret = dev; 975 break; 976 } 977 } 978 return ret; 979 } 980 EXPORT_SYMBOL(__dev_get_by_flags); 981 982 /** 983 * dev_valid_name - check if name is okay for network device 984 * @name: name string 985 * 986 * Network device names need to be valid file names to 987 * to allow sysfs to work. We also disallow any kind of 988 * whitespace. 989 */ 990 bool dev_valid_name(const char *name) 991 { 992 if (*name == '\0') 993 return false; 994 if (strlen(name) >= IFNAMSIZ) 995 return false; 996 if (!strcmp(name, ".") || !strcmp(name, "..")) 997 return false; 998 999 while (*name) { 1000 if (*name == '/' || *name == ':' || isspace(*name)) 1001 return false; 1002 name++; 1003 } 1004 return true; 1005 } 1006 EXPORT_SYMBOL(dev_valid_name); 1007 1008 /** 1009 * __dev_alloc_name - allocate a name for a device 1010 * @net: network namespace to allocate the device name in 1011 * @name: name format string 1012 * @buf: scratch buffer and result name string 1013 * 1014 * Passed a format string - eg "lt%d" it will try and find a suitable 1015 * id. It scans list of devices to build up a free map, then chooses 1016 * the first empty slot. The caller must hold the dev_base or rtnl lock 1017 * while allocating the name and adding the device in order to avoid 1018 * duplicates. 1019 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1020 * Returns the number of the unit assigned or a negative errno code. 1021 */ 1022 1023 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1024 { 1025 int i = 0; 1026 const char *p; 1027 const int max_netdevices = 8*PAGE_SIZE; 1028 unsigned long *inuse; 1029 struct net_device *d; 1030 1031 p = strnchr(name, IFNAMSIZ-1, '%'); 1032 if (p) { 1033 /* 1034 * Verify the string as this thing may have come from 1035 * the user. There must be either one "%d" and no other "%" 1036 * characters. 1037 */ 1038 if (p[1] != 'd' || strchr(p + 2, '%')) 1039 return -EINVAL; 1040 1041 /* Use one page as a bit array of possible slots */ 1042 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1043 if (!inuse) 1044 return -ENOMEM; 1045 1046 for_each_netdev(net, d) { 1047 if (!sscanf(d->name, name, &i)) 1048 continue; 1049 if (i < 0 || i >= max_netdevices) 1050 continue; 1051 1052 /* avoid cases where sscanf is not exact inverse of printf */ 1053 snprintf(buf, IFNAMSIZ, name, i); 1054 if (!strncmp(buf, d->name, IFNAMSIZ)) 1055 set_bit(i, inuse); 1056 } 1057 1058 i = find_first_zero_bit(inuse, max_netdevices); 1059 free_page((unsigned long) inuse); 1060 } 1061 1062 if (buf != name) 1063 snprintf(buf, IFNAMSIZ, name, i); 1064 if (!__dev_get_by_name(net, buf)) 1065 return i; 1066 1067 /* It is possible to run out of possible slots 1068 * when the name is long and there isn't enough space left 1069 * for the digits, or if all bits are used. 1070 */ 1071 return -ENFILE; 1072 } 1073 1074 /** 1075 * dev_alloc_name - allocate a name for a device 1076 * @dev: device 1077 * @name: name format string 1078 * 1079 * Passed a format string - eg "lt%d" it will try and find a suitable 1080 * id. It scans list of devices to build up a free map, then chooses 1081 * the first empty slot. The caller must hold the dev_base or rtnl lock 1082 * while allocating the name and adding the device in order to avoid 1083 * duplicates. 1084 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1085 * Returns the number of the unit assigned or a negative errno code. 1086 */ 1087 1088 int dev_alloc_name(struct net_device *dev, const char *name) 1089 { 1090 char buf[IFNAMSIZ]; 1091 struct net *net; 1092 int ret; 1093 1094 BUG_ON(!dev_net(dev)); 1095 net = dev_net(dev); 1096 ret = __dev_alloc_name(net, name, buf); 1097 if (ret >= 0) 1098 strlcpy(dev->name, buf, IFNAMSIZ); 1099 return ret; 1100 } 1101 EXPORT_SYMBOL(dev_alloc_name); 1102 1103 static int dev_alloc_name_ns(struct net *net, 1104 struct net_device *dev, 1105 const char *name) 1106 { 1107 char buf[IFNAMSIZ]; 1108 int ret; 1109 1110 ret = __dev_alloc_name(net, name, buf); 1111 if (ret >= 0) 1112 strlcpy(dev->name, buf, IFNAMSIZ); 1113 return ret; 1114 } 1115 1116 static int dev_get_valid_name(struct net *net, 1117 struct net_device *dev, 1118 const char *name) 1119 { 1120 BUG_ON(!net); 1121 1122 if (!dev_valid_name(name)) 1123 return -EINVAL; 1124 1125 if (strchr(name, '%')) 1126 return dev_alloc_name_ns(net, dev, name); 1127 else if (__dev_get_by_name(net, name)) 1128 return -EEXIST; 1129 else if (dev->name != name) 1130 strlcpy(dev->name, name, IFNAMSIZ); 1131 1132 return 0; 1133 } 1134 1135 /** 1136 * dev_change_name - change name of a device 1137 * @dev: device 1138 * @newname: name (or format string) must be at least IFNAMSIZ 1139 * 1140 * Change name of a device, can pass format strings "eth%d". 1141 * for wildcarding. 1142 */ 1143 int dev_change_name(struct net_device *dev, const char *newname) 1144 { 1145 unsigned char old_assign_type; 1146 char oldname[IFNAMSIZ]; 1147 int err = 0; 1148 int ret; 1149 struct net *net; 1150 1151 ASSERT_RTNL(); 1152 BUG_ON(!dev_net(dev)); 1153 1154 net = dev_net(dev); 1155 if (dev->flags & IFF_UP) 1156 return -EBUSY; 1157 1158 write_seqcount_begin(&devnet_rename_seq); 1159 1160 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1161 write_seqcount_end(&devnet_rename_seq); 1162 return 0; 1163 } 1164 1165 memcpy(oldname, dev->name, IFNAMSIZ); 1166 1167 err = dev_get_valid_name(net, dev, newname); 1168 if (err < 0) { 1169 write_seqcount_end(&devnet_rename_seq); 1170 return err; 1171 } 1172 1173 if (oldname[0] && !strchr(oldname, '%')) 1174 netdev_info(dev, "renamed from %s\n", oldname); 1175 1176 old_assign_type = dev->name_assign_type; 1177 dev->name_assign_type = NET_NAME_RENAMED; 1178 1179 rollback: 1180 ret = device_rename(&dev->dev, dev->name); 1181 if (ret) { 1182 memcpy(dev->name, oldname, IFNAMSIZ); 1183 dev->name_assign_type = old_assign_type; 1184 write_seqcount_end(&devnet_rename_seq); 1185 return ret; 1186 } 1187 1188 write_seqcount_end(&devnet_rename_seq); 1189 1190 netdev_adjacent_rename_links(dev, oldname); 1191 1192 write_lock_bh(&dev_base_lock); 1193 hlist_del_rcu(&dev->name_hlist); 1194 write_unlock_bh(&dev_base_lock); 1195 1196 synchronize_rcu(); 1197 1198 write_lock_bh(&dev_base_lock); 1199 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1200 write_unlock_bh(&dev_base_lock); 1201 1202 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1203 ret = notifier_to_errno(ret); 1204 1205 if (ret) { 1206 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1207 if (err >= 0) { 1208 err = ret; 1209 write_seqcount_begin(&devnet_rename_seq); 1210 memcpy(dev->name, oldname, IFNAMSIZ); 1211 memcpy(oldname, newname, IFNAMSIZ); 1212 dev->name_assign_type = old_assign_type; 1213 old_assign_type = NET_NAME_RENAMED; 1214 goto rollback; 1215 } else { 1216 pr_err("%s: name change rollback failed: %d\n", 1217 dev->name, ret); 1218 } 1219 } 1220 1221 return err; 1222 } 1223 1224 /** 1225 * dev_set_alias - change ifalias of a device 1226 * @dev: device 1227 * @alias: name up to IFALIASZ 1228 * @len: limit of bytes to copy from info 1229 * 1230 * Set ifalias for a device, 1231 */ 1232 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1233 { 1234 char *new_ifalias; 1235 1236 ASSERT_RTNL(); 1237 1238 if (len >= IFALIASZ) 1239 return -EINVAL; 1240 1241 if (!len) { 1242 kfree(dev->ifalias); 1243 dev->ifalias = NULL; 1244 return 0; 1245 } 1246 1247 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1248 if (!new_ifalias) 1249 return -ENOMEM; 1250 dev->ifalias = new_ifalias; 1251 1252 strlcpy(dev->ifalias, alias, len+1); 1253 return len; 1254 } 1255 1256 1257 /** 1258 * netdev_features_change - device changes features 1259 * @dev: device to cause notification 1260 * 1261 * Called to indicate a device has changed features. 1262 */ 1263 void netdev_features_change(struct net_device *dev) 1264 { 1265 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1266 } 1267 EXPORT_SYMBOL(netdev_features_change); 1268 1269 /** 1270 * netdev_state_change - device changes state 1271 * @dev: device to cause notification 1272 * 1273 * Called to indicate a device has changed state. This function calls 1274 * the notifier chains for netdev_chain and sends a NEWLINK message 1275 * to the routing socket. 1276 */ 1277 void netdev_state_change(struct net_device *dev) 1278 { 1279 if (dev->flags & IFF_UP) { 1280 struct netdev_notifier_change_info change_info; 1281 1282 change_info.flags_changed = 0; 1283 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 1284 &change_info.info); 1285 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1286 } 1287 } 1288 EXPORT_SYMBOL(netdev_state_change); 1289 1290 /** 1291 * netdev_notify_peers - notify network peers about existence of @dev 1292 * @dev: network device 1293 * 1294 * Generate traffic such that interested network peers are aware of 1295 * @dev, such as by generating a gratuitous ARP. This may be used when 1296 * a device wants to inform the rest of the network about some sort of 1297 * reconfiguration such as a failover event or virtual machine 1298 * migration. 1299 */ 1300 void netdev_notify_peers(struct net_device *dev) 1301 { 1302 rtnl_lock(); 1303 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1304 rtnl_unlock(); 1305 } 1306 EXPORT_SYMBOL(netdev_notify_peers); 1307 1308 static int __dev_open(struct net_device *dev) 1309 { 1310 const struct net_device_ops *ops = dev->netdev_ops; 1311 int ret; 1312 1313 ASSERT_RTNL(); 1314 1315 if (!netif_device_present(dev)) 1316 return -ENODEV; 1317 1318 /* Block netpoll from trying to do any rx path servicing. 1319 * If we don't do this there is a chance ndo_poll_controller 1320 * or ndo_poll may be running while we open the device 1321 */ 1322 netpoll_poll_disable(dev); 1323 1324 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1325 ret = notifier_to_errno(ret); 1326 if (ret) 1327 return ret; 1328 1329 set_bit(__LINK_STATE_START, &dev->state); 1330 1331 if (ops->ndo_validate_addr) 1332 ret = ops->ndo_validate_addr(dev); 1333 1334 if (!ret && ops->ndo_open) 1335 ret = ops->ndo_open(dev); 1336 1337 netpoll_poll_enable(dev); 1338 1339 if (ret) 1340 clear_bit(__LINK_STATE_START, &dev->state); 1341 else { 1342 dev->flags |= IFF_UP; 1343 dev_set_rx_mode(dev); 1344 dev_activate(dev); 1345 add_device_randomness(dev->dev_addr, dev->addr_len); 1346 } 1347 1348 return ret; 1349 } 1350 1351 /** 1352 * dev_open - prepare an interface for use. 1353 * @dev: device to open 1354 * 1355 * Takes a device from down to up state. The device's private open 1356 * function is invoked and then the multicast lists are loaded. Finally 1357 * the device is moved into the up state and a %NETDEV_UP message is 1358 * sent to the netdev notifier chain. 1359 * 1360 * Calling this function on an active interface is a nop. On a failure 1361 * a negative errno code is returned. 1362 */ 1363 int dev_open(struct net_device *dev) 1364 { 1365 int ret; 1366 1367 if (dev->flags & IFF_UP) 1368 return 0; 1369 1370 ret = __dev_open(dev); 1371 if (ret < 0) 1372 return ret; 1373 1374 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1375 call_netdevice_notifiers(NETDEV_UP, dev); 1376 1377 return ret; 1378 } 1379 EXPORT_SYMBOL(dev_open); 1380 1381 static int __dev_close_many(struct list_head *head) 1382 { 1383 struct net_device *dev; 1384 1385 ASSERT_RTNL(); 1386 might_sleep(); 1387 1388 list_for_each_entry(dev, head, close_list) { 1389 /* Temporarily disable netpoll until the interface is down */ 1390 netpoll_poll_disable(dev); 1391 1392 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1393 1394 clear_bit(__LINK_STATE_START, &dev->state); 1395 1396 /* Synchronize to scheduled poll. We cannot touch poll list, it 1397 * can be even on different cpu. So just clear netif_running(). 1398 * 1399 * dev->stop() will invoke napi_disable() on all of it's 1400 * napi_struct instances on this device. 1401 */ 1402 smp_mb__after_atomic(); /* Commit netif_running(). */ 1403 } 1404 1405 dev_deactivate_many(head); 1406 1407 list_for_each_entry(dev, head, close_list) { 1408 const struct net_device_ops *ops = dev->netdev_ops; 1409 1410 /* 1411 * Call the device specific close. This cannot fail. 1412 * Only if device is UP 1413 * 1414 * We allow it to be called even after a DETACH hot-plug 1415 * event. 1416 */ 1417 if (ops->ndo_stop) 1418 ops->ndo_stop(dev); 1419 1420 dev->flags &= ~IFF_UP; 1421 netpoll_poll_enable(dev); 1422 } 1423 1424 return 0; 1425 } 1426 1427 static int __dev_close(struct net_device *dev) 1428 { 1429 int retval; 1430 LIST_HEAD(single); 1431 1432 list_add(&dev->close_list, &single); 1433 retval = __dev_close_many(&single); 1434 list_del(&single); 1435 1436 return retval; 1437 } 1438 1439 int dev_close_many(struct list_head *head, bool unlink) 1440 { 1441 struct net_device *dev, *tmp; 1442 1443 /* Remove the devices that don't need to be closed */ 1444 list_for_each_entry_safe(dev, tmp, head, close_list) 1445 if (!(dev->flags & IFF_UP)) 1446 list_del_init(&dev->close_list); 1447 1448 __dev_close_many(head); 1449 1450 list_for_each_entry_safe(dev, tmp, head, close_list) { 1451 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1452 call_netdevice_notifiers(NETDEV_DOWN, dev); 1453 if (unlink) 1454 list_del_init(&dev->close_list); 1455 } 1456 1457 return 0; 1458 } 1459 EXPORT_SYMBOL(dev_close_many); 1460 1461 /** 1462 * dev_close - shutdown an interface. 1463 * @dev: device to shutdown 1464 * 1465 * This function moves an active device into down state. A 1466 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1467 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1468 * chain. 1469 */ 1470 int dev_close(struct net_device *dev) 1471 { 1472 if (dev->flags & IFF_UP) { 1473 LIST_HEAD(single); 1474 1475 list_add(&dev->close_list, &single); 1476 dev_close_many(&single, true); 1477 list_del(&single); 1478 } 1479 return 0; 1480 } 1481 EXPORT_SYMBOL(dev_close); 1482 1483 1484 /** 1485 * dev_disable_lro - disable Large Receive Offload on a device 1486 * @dev: device 1487 * 1488 * Disable Large Receive Offload (LRO) on a net device. Must be 1489 * called under RTNL. This is needed if received packets may be 1490 * forwarded to another interface. 1491 */ 1492 void dev_disable_lro(struct net_device *dev) 1493 { 1494 struct net_device *lower_dev; 1495 struct list_head *iter; 1496 1497 dev->wanted_features &= ~NETIF_F_LRO; 1498 netdev_update_features(dev); 1499 1500 if (unlikely(dev->features & NETIF_F_LRO)) 1501 netdev_WARN(dev, "failed to disable LRO!\n"); 1502 1503 netdev_for_each_lower_dev(dev, lower_dev, iter) 1504 dev_disable_lro(lower_dev); 1505 } 1506 EXPORT_SYMBOL(dev_disable_lro); 1507 1508 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1509 struct net_device *dev) 1510 { 1511 struct netdev_notifier_info info; 1512 1513 netdev_notifier_info_init(&info, dev); 1514 return nb->notifier_call(nb, val, &info); 1515 } 1516 1517 static int dev_boot_phase = 1; 1518 1519 /** 1520 * register_netdevice_notifier - register a network notifier block 1521 * @nb: notifier 1522 * 1523 * Register a notifier to be called when network device events occur. 1524 * The notifier passed is linked into the kernel structures and must 1525 * not be reused until it has been unregistered. A negative errno code 1526 * is returned on a failure. 1527 * 1528 * When registered all registration and up events are replayed 1529 * to the new notifier to allow device to have a race free 1530 * view of the network device list. 1531 */ 1532 1533 int register_netdevice_notifier(struct notifier_block *nb) 1534 { 1535 struct net_device *dev; 1536 struct net_device *last; 1537 struct net *net; 1538 int err; 1539 1540 rtnl_lock(); 1541 err = raw_notifier_chain_register(&netdev_chain, nb); 1542 if (err) 1543 goto unlock; 1544 if (dev_boot_phase) 1545 goto unlock; 1546 for_each_net(net) { 1547 for_each_netdev(net, dev) { 1548 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1549 err = notifier_to_errno(err); 1550 if (err) 1551 goto rollback; 1552 1553 if (!(dev->flags & IFF_UP)) 1554 continue; 1555 1556 call_netdevice_notifier(nb, NETDEV_UP, dev); 1557 } 1558 } 1559 1560 unlock: 1561 rtnl_unlock(); 1562 return err; 1563 1564 rollback: 1565 last = dev; 1566 for_each_net(net) { 1567 for_each_netdev(net, dev) { 1568 if (dev == last) 1569 goto outroll; 1570 1571 if (dev->flags & IFF_UP) { 1572 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1573 dev); 1574 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1575 } 1576 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1577 } 1578 } 1579 1580 outroll: 1581 raw_notifier_chain_unregister(&netdev_chain, nb); 1582 goto unlock; 1583 } 1584 EXPORT_SYMBOL(register_netdevice_notifier); 1585 1586 /** 1587 * unregister_netdevice_notifier - unregister a network notifier block 1588 * @nb: notifier 1589 * 1590 * Unregister a notifier previously registered by 1591 * register_netdevice_notifier(). The notifier is unlinked into the 1592 * kernel structures and may then be reused. A negative errno code 1593 * is returned on a failure. 1594 * 1595 * After unregistering unregister and down device events are synthesized 1596 * for all devices on the device list to the removed notifier to remove 1597 * the need for special case cleanup code. 1598 */ 1599 1600 int unregister_netdevice_notifier(struct notifier_block *nb) 1601 { 1602 struct net_device *dev; 1603 struct net *net; 1604 int err; 1605 1606 rtnl_lock(); 1607 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1608 if (err) 1609 goto unlock; 1610 1611 for_each_net(net) { 1612 for_each_netdev(net, dev) { 1613 if (dev->flags & IFF_UP) { 1614 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1615 dev); 1616 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1617 } 1618 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1619 } 1620 } 1621 unlock: 1622 rtnl_unlock(); 1623 return err; 1624 } 1625 EXPORT_SYMBOL(unregister_netdevice_notifier); 1626 1627 /** 1628 * call_netdevice_notifiers_info - call all network notifier blocks 1629 * @val: value passed unmodified to notifier function 1630 * @dev: net_device pointer passed unmodified to notifier function 1631 * @info: notifier information data 1632 * 1633 * Call all network notifier blocks. Parameters and return value 1634 * are as for raw_notifier_call_chain(). 1635 */ 1636 1637 static int call_netdevice_notifiers_info(unsigned long val, 1638 struct net_device *dev, 1639 struct netdev_notifier_info *info) 1640 { 1641 ASSERT_RTNL(); 1642 netdev_notifier_info_init(info, dev); 1643 return raw_notifier_call_chain(&netdev_chain, val, info); 1644 } 1645 1646 /** 1647 * call_netdevice_notifiers - call all network notifier blocks 1648 * @val: value passed unmodified to notifier function 1649 * @dev: net_device pointer passed unmodified to notifier function 1650 * 1651 * Call all network notifier blocks. Parameters and return value 1652 * are as for raw_notifier_call_chain(). 1653 */ 1654 1655 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1656 { 1657 struct netdev_notifier_info info; 1658 1659 return call_netdevice_notifiers_info(val, dev, &info); 1660 } 1661 EXPORT_SYMBOL(call_netdevice_notifiers); 1662 1663 #ifdef CONFIG_NET_INGRESS 1664 static struct static_key ingress_needed __read_mostly; 1665 1666 void net_inc_ingress_queue(void) 1667 { 1668 static_key_slow_inc(&ingress_needed); 1669 } 1670 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1671 1672 void net_dec_ingress_queue(void) 1673 { 1674 static_key_slow_dec(&ingress_needed); 1675 } 1676 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1677 #endif 1678 1679 #ifdef CONFIG_NET_EGRESS 1680 static struct static_key egress_needed __read_mostly; 1681 1682 void net_inc_egress_queue(void) 1683 { 1684 static_key_slow_inc(&egress_needed); 1685 } 1686 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1687 1688 void net_dec_egress_queue(void) 1689 { 1690 static_key_slow_dec(&egress_needed); 1691 } 1692 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1693 #endif 1694 1695 static struct static_key netstamp_needed __read_mostly; 1696 #ifdef HAVE_JUMP_LABEL 1697 /* We are not allowed to call static_key_slow_dec() from irq context 1698 * If net_disable_timestamp() is called from irq context, defer the 1699 * static_key_slow_dec() calls. 1700 */ 1701 static atomic_t netstamp_needed_deferred; 1702 #endif 1703 1704 void net_enable_timestamp(void) 1705 { 1706 #ifdef HAVE_JUMP_LABEL 1707 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1708 1709 if (deferred) { 1710 while (--deferred) 1711 static_key_slow_dec(&netstamp_needed); 1712 return; 1713 } 1714 #endif 1715 static_key_slow_inc(&netstamp_needed); 1716 } 1717 EXPORT_SYMBOL(net_enable_timestamp); 1718 1719 void net_disable_timestamp(void) 1720 { 1721 #ifdef HAVE_JUMP_LABEL 1722 if (in_interrupt()) { 1723 atomic_inc(&netstamp_needed_deferred); 1724 return; 1725 } 1726 #endif 1727 static_key_slow_dec(&netstamp_needed); 1728 } 1729 EXPORT_SYMBOL(net_disable_timestamp); 1730 1731 static inline void net_timestamp_set(struct sk_buff *skb) 1732 { 1733 skb->tstamp.tv64 = 0; 1734 if (static_key_false(&netstamp_needed)) 1735 __net_timestamp(skb); 1736 } 1737 1738 #define net_timestamp_check(COND, SKB) \ 1739 if (static_key_false(&netstamp_needed)) { \ 1740 if ((COND) && !(SKB)->tstamp.tv64) \ 1741 __net_timestamp(SKB); \ 1742 } \ 1743 1744 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb) 1745 { 1746 unsigned int len; 1747 1748 if (!(dev->flags & IFF_UP)) 1749 return false; 1750 1751 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1752 if (skb->len <= len) 1753 return true; 1754 1755 /* if TSO is enabled, we don't care about the length as the packet 1756 * could be forwarded without being segmented before 1757 */ 1758 if (skb_is_gso(skb)) 1759 return true; 1760 1761 return false; 1762 } 1763 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1764 1765 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1766 { 1767 if (skb_orphan_frags(skb, GFP_ATOMIC) || 1768 unlikely(!is_skb_forwardable(dev, skb))) { 1769 atomic_long_inc(&dev->rx_dropped); 1770 kfree_skb(skb); 1771 return NET_RX_DROP; 1772 } 1773 1774 skb_scrub_packet(skb, true); 1775 skb->priority = 0; 1776 skb->protocol = eth_type_trans(skb, dev); 1777 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1778 1779 return 0; 1780 } 1781 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1782 1783 /** 1784 * dev_forward_skb - loopback an skb to another netif 1785 * 1786 * @dev: destination network device 1787 * @skb: buffer to forward 1788 * 1789 * return values: 1790 * NET_RX_SUCCESS (no congestion) 1791 * NET_RX_DROP (packet was dropped, but freed) 1792 * 1793 * dev_forward_skb can be used for injecting an skb from the 1794 * start_xmit function of one device into the receive queue 1795 * of another device. 1796 * 1797 * The receiving device may be in another namespace, so 1798 * we have to clear all information in the skb that could 1799 * impact namespace isolation. 1800 */ 1801 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1802 { 1803 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1804 } 1805 EXPORT_SYMBOL_GPL(dev_forward_skb); 1806 1807 static inline int deliver_skb(struct sk_buff *skb, 1808 struct packet_type *pt_prev, 1809 struct net_device *orig_dev) 1810 { 1811 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1812 return -ENOMEM; 1813 atomic_inc(&skb->users); 1814 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1815 } 1816 1817 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1818 struct packet_type **pt, 1819 struct net_device *orig_dev, 1820 __be16 type, 1821 struct list_head *ptype_list) 1822 { 1823 struct packet_type *ptype, *pt_prev = *pt; 1824 1825 list_for_each_entry_rcu(ptype, ptype_list, list) { 1826 if (ptype->type != type) 1827 continue; 1828 if (pt_prev) 1829 deliver_skb(skb, pt_prev, orig_dev); 1830 pt_prev = ptype; 1831 } 1832 *pt = pt_prev; 1833 } 1834 1835 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1836 { 1837 if (!ptype->af_packet_priv || !skb->sk) 1838 return false; 1839 1840 if (ptype->id_match) 1841 return ptype->id_match(ptype, skb->sk); 1842 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1843 return true; 1844 1845 return false; 1846 } 1847 1848 /* 1849 * Support routine. Sends outgoing frames to any network 1850 * taps currently in use. 1851 */ 1852 1853 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1854 { 1855 struct packet_type *ptype; 1856 struct sk_buff *skb2 = NULL; 1857 struct packet_type *pt_prev = NULL; 1858 struct list_head *ptype_list = &ptype_all; 1859 1860 rcu_read_lock(); 1861 again: 1862 list_for_each_entry_rcu(ptype, ptype_list, list) { 1863 /* Never send packets back to the socket 1864 * they originated from - MvS (miquels@drinkel.ow.org) 1865 */ 1866 if (skb_loop_sk(ptype, skb)) 1867 continue; 1868 1869 if (pt_prev) { 1870 deliver_skb(skb2, pt_prev, skb->dev); 1871 pt_prev = ptype; 1872 continue; 1873 } 1874 1875 /* need to clone skb, done only once */ 1876 skb2 = skb_clone(skb, GFP_ATOMIC); 1877 if (!skb2) 1878 goto out_unlock; 1879 1880 net_timestamp_set(skb2); 1881 1882 /* skb->nh should be correctly 1883 * set by sender, so that the second statement is 1884 * just protection against buggy protocols. 1885 */ 1886 skb_reset_mac_header(skb2); 1887 1888 if (skb_network_header(skb2) < skb2->data || 1889 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1890 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1891 ntohs(skb2->protocol), 1892 dev->name); 1893 skb_reset_network_header(skb2); 1894 } 1895 1896 skb2->transport_header = skb2->network_header; 1897 skb2->pkt_type = PACKET_OUTGOING; 1898 pt_prev = ptype; 1899 } 1900 1901 if (ptype_list == &ptype_all) { 1902 ptype_list = &dev->ptype_all; 1903 goto again; 1904 } 1905 out_unlock: 1906 if (pt_prev) 1907 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1908 rcu_read_unlock(); 1909 } 1910 1911 /** 1912 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1913 * @dev: Network device 1914 * @txq: number of queues available 1915 * 1916 * If real_num_tx_queues is changed the tc mappings may no longer be 1917 * valid. To resolve this verify the tc mapping remains valid and if 1918 * not NULL the mapping. With no priorities mapping to this 1919 * offset/count pair it will no longer be used. In the worst case TC0 1920 * is invalid nothing can be done so disable priority mappings. If is 1921 * expected that drivers will fix this mapping if they can before 1922 * calling netif_set_real_num_tx_queues. 1923 */ 1924 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1925 { 1926 int i; 1927 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1928 1929 /* If TC0 is invalidated disable TC mapping */ 1930 if (tc->offset + tc->count > txq) { 1931 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1932 dev->num_tc = 0; 1933 return; 1934 } 1935 1936 /* Invalidated prio to tc mappings set to TC0 */ 1937 for (i = 1; i < TC_BITMASK + 1; i++) { 1938 int q = netdev_get_prio_tc_map(dev, i); 1939 1940 tc = &dev->tc_to_txq[q]; 1941 if (tc->offset + tc->count > txq) { 1942 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1943 i, q); 1944 netdev_set_prio_tc_map(dev, i, 0); 1945 } 1946 } 1947 } 1948 1949 #ifdef CONFIG_XPS 1950 static DEFINE_MUTEX(xps_map_mutex); 1951 #define xmap_dereference(P) \ 1952 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1953 1954 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps, 1955 int cpu, u16 index) 1956 { 1957 struct xps_map *map = NULL; 1958 int pos; 1959 1960 if (dev_maps) 1961 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1962 1963 for (pos = 0; map && pos < map->len; pos++) { 1964 if (map->queues[pos] == index) { 1965 if (map->len > 1) { 1966 map->queues[pos] = map->queues[--map->len]; 1967 } else { 1968 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL); 1969 kfree_rcu(map, rcu); 1970 map = NULL; 1971 } 1972 break; 1973 } 1974 } 1975 1976 return map; 1977 } 1978 1979 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 1980 { 1981 struct xps_dev_maps *dev_maps; 1982 int cpu, i; 1983 bool active = false; 1984 1985 mutex_lock(&xps_map_mutex); 1986 dev_maps = xmap_dereference(dev->xps_maps); 1987 1988 if (!dev_maps) 1989 goto out_no_maps; 1990 1991 for_each_possible_cpu(cpu) { 1992 for (i = index; i < dev->num_tx_queues; i++) { 1993 if (!remove_xps_queue(dev_maps, cpu, i)) 1994 break; 1995 } 1996 if (i == dev->num_tx_queues) 1997 active = true; 1998 } 1999 2000 if (!active) { 2001 RCU_INIT_POINTER(dev->xps_maps, NULL); 2002 kfree_rcu(dev_maps, rcu); 2003 } 2004 2005 for (i = index; i < dev->num_tx_queues; i++) 2006 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 2007 NUMA_NO_NODE); 2008 2009 out_no_maps: 2010 mutex_unlock(&xps_map_mutex); 2011 } 2012 2013 static struct xps_map *expand_xps_map(struct xps_map *map, 2014 int cpu, u16 index) 2015 { 2016 struct xps_map *new_map; 2017 int alloc_len = XPS_MIN_MAP_ALLOC; 2018 int i, pos; 2019 2020 for (pos = 0; map && pos < map->len; pos++) { 2021 if (map->queues[pos] != index) 2022 continue; 2023 return map; 2024 } 2025 2026 /* Need to add queue to this CPU's existing map */ 2027 if (map) { 2028 if (pos < map->alloc_len) 2029 return map; 2030 2031 alloc_len = map->alloc_len * 2; 2032 } 2033 2034 /* Need to allocate new map to store queue on this CPU's map */ 2035 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2036 cpu_to_node(cpu)); 2037 if (!new_map) 2038 return NULL; 2039 2040 for (i = 0; i < pos; i++) 2041 new_map->queues[i] = map->queues[i]; 2042 new_map->alloc_len = alloc_len; 2043 new_map->len = pos; 2044 2045 return new_map; 2046 } 2047 2048 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2049 u16 index) 2050 { 2051 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2052 struct xps_map *map, *new_map; 2053 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES); 2054 int cpu, numa_node_id = -2; 2055 bool active = false; 2056 2057 mutex_lock(&xps_map_mutex); 2058 2059 dev_maps = xmap_dereference(dev->xps_maps); 2060 2061 /* allocate memory for queue storage */ 2062 for_each_online_cpu(cpu) { 2063 if (!cpumask_test_cpu(cpu, mask)) 2064 continue; 2065 2066 if (!new_dev_maps) 2067 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2068 if (!new_dev_maps) { 2069 mutex_unlock(&xps_map_mutex); 2070 return -ENOMEM; 2071 } 2072 2073 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2074 NULL; 2075 2076 map = expand_xps_map(map, cpu, index); 2077 if (!map) 2078 goto error; 2079 2080 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 2081 } 2082 2083 if (!new_dev_maps) 2084 goto out_no_new_maps; 2085 2086 for_each_possible_cpu(cpu) { 2087 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 2088 /* add queue to CPU maps */ 2089 int pos = 0; 2090 2091 map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2092 while ((pos < map->len) && (map->queues[pos] != index)) 2093 pos++; 2094 2095 if (pos == map->len) 2096 map->queues[map->len++] = index; 2097 #ifdef CONFIG_NUMA 2098 if (numa_node_id == -2) 2099 numa_node_id = cpu_to_node(cpu); 2100 else if (numa_node_id != cpu_to_node(cpu)) 2101 numa_node_id = -1; 2102 #endif 2103 } else if (dev_maps) { 2104 /* fill in the new device map from the old device map */ 2105 map = xmap_dereference(dev_maps->cpu_map[cpu]); 2106 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 2107 } 2108 2109 } 2110 2111 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2112 2113 /* Cleanup old maps */ 2114 if (dev_maps) { 2115 for_each_possible_cpu(cpu) { 2116 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2117 map = xmap_dereference(dev_maps->cpu_map[cpu]); 2118 if (map && map != new_map) 2119 kfree_rcu(map, rcu); 2120 } 2121 2122 kfree_rcu(dev_maps, rcu); 2123 } 2124 2125 dev_maps = new_dev_maps; 2126 active = true; 2127 2128 out_no_new_maps: 2129 /* update Tx queue numa node */ 2130 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2131 (numa_node_id >= 0) ? numa_node_id : 2132 NUMA_NO_NODE); 2133 2134 if (!dev_maps) 2135 goto out_no_maps; 2136 2137 /* removes queue from unused CPUs */ 2138 for_each_possible_cpu(cpu) { 2139 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) 2140 continue; 2141 2142 if (remove_xps_queue(dev_maps, cpu, index)) 2143 active = true; 2144 } 2145 2146 /* free map if not active */ 2147 if (!active) { 2148 RCU_INIT_POINTER(dev->xps_maps, NULL); 2149 kfree_rcu(dev_maps, rcu); 2150 } 2151 2152 out_no_maps: 2153 mutex_unlock(&xps_map_mutex); 2154 2155 return 0; 2156 error: 2157 /* remove any maps that we added */ 2158 for_each_possible_cpu(cpu) { 2159 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2160 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2161 NULL; 2162 if (new_map && new_map != map) 2163 kfree(new_map); 2164 } 2165 2166 mutex_unlock(&xps_map_mutex); 2167 2168 kfree(new_dev_maps); 2169 return -ENOMEM; 2170 } 2171 EXPORT_SYMBOL(netif_set_xps_queue); 2172 2173 #endif 2174 /* 2175 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2176 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2177 */ 2178 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2179 { 2180 int rc; 2181 2182 if (txq < 1 || txq > dev->num_tx_queues) 2183 return -EINVAL; 2184 2185 if (dev->reg_state == NETREG_REGISTERED || 2186 dev->reg_state == NETREG_UNREGISTERING) { 2187 ASSERT_RTNL(); 2188 2189 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2190 txq); 2191 if (rc) 2192 return rc; 2193 2194 if (dev->num_tc) 2195 netif_setup_tc(dev, txq); 2196 2197 if (txq < dev->real_num_tx_queues) { 2198 qdisc_reset_all_tx_gt(dev, txq); 2199 #ifdef CONFIG_XPS 2200 netif_reset_xps_queues_gt(dev, txq); 2201 #endif 2202 } 2203 } 2204 2205 dev->real_num_tx_queues = txq; 2206 return 0; 2207 } 2208 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2209 2210 #ifdef CONFIG_SYSFS 2211 /** 2212 * netif_set_real_num_rx_queues - set actual number of RX queues used 2213 * @dev: Network device 2214 * @rxq: Actual number of RX queues 2215 * 2216 * This must be called either with the rtnl_lock held or before 2217 * registration of the net device. Returns 0 on success, or a 2218 * negative error code. If called before registration, it always 2219 * succeeds. 2220 */ 2221 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2222 { 2223 int rc; 2224 2225 if (rxq < 1 || rxq > dev->num_rx_queues) 2226 return -EINVAL; 2227 2228 if (dev->reg_state == NETREG_REGISTERED) { 2229 ASSERT_RTNL(); 2230 2231 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2232 rxq); 2233 if (rc) 2234 return rc; 2235 } 2236 2237 dev->real_num_rx_queues = rxq; 2238 return 0; 2239 } 2240 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2241 #endif 2242 2243 /** 2244 * netif_get_num_default_rss_queues - default number of RSS queues 2245 * 2246 * This routine should set an upper limit on the number of RSS queues 2247 * used by default by multiqueue devices. 2248 */ 2249 int netif_get_num_default_rss_queues(void) 2250 { 2251 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2252 } 2253 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2254 2255 static inline void __netif_reschedule(struct Qdisc *q) 2256 { 2257 struct softnet_data *sd; 2258 unsigned long flags; 2259 2260 local_irq_save(flags); 2261 sd = this_cpu_ptr(&softnet_data); 2262 q->next_sched = NULL; 2263 *sd->output_queue_tailp = q; 2264 sd->output_queue_tailp = &q->next_sched; 2265 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2266 local_irq_restore(flags); 2267 } 2268 2269 void __netif_schedule(struct Qdisc *q) 2270 { 2271 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2272 __netif_reschedule(q); 2273 } 2274 EXPORT_SYMBOL(__netif_schedule); 2275 2276 struct dev_kfree_skb_cb { 2277 enum skb_free_reason reason; 2278 }; 2279 2280 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2281 { 2282 return (struct dev_kfree_skb_cb *)skb->cb; 2283 } 2284 2285 void netif_schedule_queue(struct netdev_queue *txq) 2286 { 2287 rcu_read_lock(); 2288 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2289 struct Qdisc *q = rcu_dereference(txq->qdisc); 2290 2291 __netif_schedule(q); 2292 } 2293 rcu_read_unlock(); 2294 } 2295 EXPORT_SYMBOL(netif_schedule_queue); 2296 2297 /** 2298 * netif_wake_subqueue - allow sending packets on subqueue 2299 * @dev: network device 2300 * @queue_index: sub queue index 2301 * 2302 * Resume individual transmit queue of a device with multiple transmit queues. 2303 */ 2304 void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 2305 { 2306 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2307 2308 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) { 2309 struct Qdisc *q; 2310 2311 rcu_read_lock(); 2312 q = rcu_dereference(txq->qdisc); 2313 __netif_schedule(q); 2314 rcu_read_unlock(); 2315 } 2316 } 2317 EXPORT_SYMBOL(netif_wake_subqueue); 2318 2319 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2320 { 2321 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2322 struct Qdisc *q; 2323 2324 rcu_read_lock(); 2325 q = rcu_dereference(dev_queue->qdisc); 2326 __netif_schedule(q); 2327 rcu_read_unlock(); 2328 } 2329 } 2330 EXPORT_SYMBOL(netif_tx_wake_queue); 2331 2332 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2333 { 2334 unsigned long flags; 2335 2336 if (likely(atomic_read(&skb->users) == 1)) { 2337 smp_rmb(); 2338 atomic_set(&skb->users, 0); 2339 } else if (likely(!atomic_dec_and_test(&skb->users))) { 2340 return; 2341 } 2342 get_kfree_skb_cb(skb)->reason = reason; 2343 local_irq_save(flags); 2344 skb->next = __this_cpu_read(softnet_data.completion_queue); 2345 __this_cpu_write(softnet_data.completion_queue, skb); 2346 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2347 local_irq_restore(flags); 2348 } 2349 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2350 2351 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2352 { 2353 if (in_irq() || irqs_disabled()) 2354 __dev_kfree_skb_irq(skb, reason); 2355 else 2356 dev_kfree_skb(skb); 2357 } 2358 EXPORT_SYMBOL(__dev_kfree_skb_any); 2359 2360 2361 /** 2362 * netif_device_detach - mark device as removed 2363 * @dev: network device 2364 * 2365 * Mark device as removed from system and therefore no longer available. 2366 */ 2367 void netif_device_detach(struct net_device *dev) 2368 { 2369 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2370 netif_running(dev)) { 2371 netif_tx_stop_all_queues(dev); 2372 } 2373 } 2374 EXPORT_SYMBOL(netif_device_detach); 2375 2376 /** 2377 * netif_device_attach - mark device as attached 2378 * @dev: network device 2379 * 2380 * Mark device as attached from system and restart if needed. 2381 */ 2382 void netif_device_attach(struct net_device *dev) 2383 { 2384 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2385 netif_running(dev)) { 2386 netif_tx_wake_all_queues(dev); 2387 __netdev_watchdog_up(dev); 2388 } 2389 } 2390 EXPORT_SYMBOL(netif_device_attach); 2391 2392 /* 2393 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2394 * to be used as a distribution range. 2395 */ 2396 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 2397 unsigned int num_tx_queues) 2398 { 2399 u32 hash; 2400 u16 qoffset = 0; 2401 u16 qcount = num_tx_queues; 2402 2403 if (skb_rx_queue_recorded(skb)) { 2404 hash = skb_get_rx_queue(skb); 2405 while (unlikely(hash >= num_tx_queues)) 2406 hash -= num_tx_queues; 2407 return hash; 2408 } 2409 2410 if (dev->num_tc) { 2411 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2412 qoffset = dev->tc_to_txq[tc].offset; 2413 qcount = dev->tc_to_txq[tc].count; 2414 } 2415 2416 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2417 } 2418 EXPORT_SYMBOL(__skb_tx_hash); 2419 2420 static void skb_warn_bad_offload(const struct sk_buff *skb) 2421 { 2422 static const netdev_features_t null_features = 0; 2423 struct net_device *dev = skb->dev; 2424 const char *name = ""; 2425 2426 if (!net_ratelimit()) 2427 return; 2428 2429 if (dev) { 2430 if (dev->dev.parent) 2431 name = dev_driver_string(dev->dev.parent); 2432 else 2433 name = netdev_name(dev); 2434 } 2435 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2436 "gso_type=%d ip_summed=%d\n", 2437 name, dev ? &dev->features : &null_features, 2438 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2439 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2440 skb_shinfo(skb)->gso_type, skb->ip_summed); 2441 } 2442 2443 /* 2444 * Invalidate hardware checksum when packet is to be mangled, and 2445 * complete checksum manually on outgoing path. 2446 */ 2447 int skb_checksum_help(struct sk_buff *skb) 2448 { 2449 __wsum csum; 2450 int ret = 0, offset; 2451 2452 if (skb->ip_summed == CHECKSUM_COMPLETE) 2453 goto out_set_summed; 2454 2455 if (unlikely(skb_shinfo(skb)->gso_size)) { 2456 skb_warn_bad_offload(skb); 2457 return -EINVAL; 2458 } 2459 2460 /* Before computing a checksum, we should make sure no frag could 2461 * be modified by an external entity : checksum could be wrong. 2462 */ 2463 if (skb_has_shared_frag(skb)) { 2464 ret = __skb_linearize(skb); 2465 if (ret) 2466 goto out; 2467 } 2468 2469 offset = skb_checksum_start_offset(skb); 2470 BUG_ON(offset >= skb_headlen(skb)); 2471 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2472 2473 offset += skb->csum_offset; 2474 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2475 2476 if (skb_cloned(skb) && 2477 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2478 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2479 if (ret) 2480 goto out; 2481 } 2482 2483 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 2484 out_set_summed: 2485 skb->ip_summed = CHECKSUM_NONE; 2486 out: 2487 return ret; 2488 } 2489 EXPORT_SYMBOL(skb_checksum_help); 2490 2491 /* skb_csum_offload_check - Driver helper function to determine if a device 2492 * with limited checksum offload capabilities is able to offload the checksum 2493 * for a given packet. 2494 * 2495 * Arguments: 2496 * skb - sk_buff for the packet in question 2497 * spec - contains the description of what device can offload 2498 * csum_encapped - returns true if the checksum being offloaded is 2499 * encpasulated. That is it is checksum for the transport header 2500 * in the inner headers. 2501 * checksum_help - when set indicates that helper function should 2502 * call skb_checksum_help if offload checks fail 2503 * 2504 * Returns: 2505 * true: Packet has passed the checksum checks and should be offloadable to 2506 * the device (a driver may still need to check for additional 2507 * restrictions of its device) 2508 * false: Checksum is not offloadable. If checksum_help was set then 2509 * skb_checksum_help was called to resolve checksum for non-GSO 2510 * packets and when IP protocol is not SCTP 2511 */ 2512 bool __skb_csum_offload_chk(struct sk_buff *skb, 2513 const struct skb_csum_offl_spec *spec, 2514 bool *csum_encapped, 2515 bool csum_help) 2516 { 2517 struct iphdr *iph; 2518 struct ipv6hdr *ipv6; 2519 void *nhdr; 2520 int protocol; 2521 u8 ip_proto; 2522 2523 if (skb->protocol == htons(ETH_P_8021Q) || 2524 skb->protocol == htons(ETH_P_8021AD)) { 2525 if (!spec->vlan_okay) 2526 goto need_help; 2527 } 2528 2529 /* We check whether the checksum refers to a transport layer checksum in 2530 * the outermost header or an encapsulated transport layer checksum that 2531 * corresponds to the inner headers of the skb. If the checksum is for 2532 * something else in the packet we need help. 2533 */ 2534 if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) { 2535 /* Non-encapsulated checksum */ 2536 protocol = eproto_to_ipproto(vlan_get_protocol(skb)); 2537 nhdr = skb_network_header(skb); 2538 *csum_encapped = false; 2539 if (spec->no_not_encapped) 2540 goto need_help; 2541 } else if (skb->encapsulation && spec->encap_okay && 2542 skb_checksum_start_offset(skb) == 2543 skb_inner_transport_offset(skb)) { 2544 /* Encapsulated checksum */ 2545 *csum_encapped = true; 2546 switch (skb->inner_protocol_type) { 2547 case ENCAP_TYPE_ETHER: 2548 protocol = eproto_to_ipproto(skb->inner_protocol); 2549 break; 2550 case ENCAP_TYPE_IPPROTO: 2551 protocol = skb->inner_protocol; 2552 break; 2553 } 2554 nhdr = skb_inner_network_header(skb); 2555 } else { 2556 goto need_help; 2557 } 2558 2559 switch (protocol) { 2560 case IPPROTO_IP: 2561 if (!spec->ipv4_okay) 2562 goto need_help; 2563 iph = nhdr; 2564 ip_proto = iph->protocol; 2565 if (iph->ihl != 5 && !spec->ip_options_okay) 2566 goto need_help; 2567 break; 2568 case IPPROTO_IPV6: 2569 if (!spec->ipv6_okay) 2570 goto need_help; 2571 if (spec->no_encapped_ipv6 && *csum_encapped) 2572 goto need_help; 2573 ipv6 = nhdr; 2574 nhdr += sizeof(*ipv6); 2575 ip_proto = ipv6->nexthdr; 2576 break; 2577 default: 2578 goto need_help; 2579 } 2580 2581 ip_proto_again: 2582 switch (ip_proto) { 2583 case IPPROTO_TCP: 2584 if (!spec->tcp_okay || 2585 skb->csum_offset != offsetof(struct tcphdr, check)) 2586 goto need_help; 2587 break; 2588 case IPPROTO_UDP: 2589 if (!spec->udp_okay || 2590 skb->csum_offset != offsetof(struct udphdr, check)) 2591 goto need_help; 2592 break; 2593 case IPPROTO_SCTP: 2594 if (!spec->sctp_okay || 2595 skb->csum_offset != offsetof(struct sctphdr, checksum)) 2596 goto cant_help; 2597 break; 2598 case NEXTHDR_HOP: 2599 case NEXTHDR_ROUTING: 2600 case NEXTHDR_DEST: { 2601 u8 *opthdr = nhdr; 2602 2603 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay) 2604 goto need_help; 2605 2606 ip_proto = opthdr[0]; 2607 nhdr += (opthdr[1] + 1) << 3; 2608 2609 goto ip_proto_again; 2610 } 2611 default: 2612 goto need_help; 2613 } 2614 2615 /* Passed the tests for offloading checksum */ 2616 return true; 2617 2618 need_help: 2619 if (csum_help && !skb_shinfo(skb)->gso_size) 2620 skb_checksum_help(skb); 2621 cant_help: 2622 return false; 2623 } 2624 EXPORT_SYMBOL(__skb_csum_offload_chk); 2625 2626 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2627 { 2628 __be16 type = skb->protocol; 2629 2630 /* Tunnel gso handlers can set protocol to ethernet. */ 2631 if (type == htons(ETH_P_TEB)) { 2632 struct ethhdr *eth; 2633 2634 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2635 return 0; 2636 2637 eth = (struct ethhdr *)skb_mac_header(skb); 2638 type = eth->h_proto; 2639 } 2640 2641 return __vlan_get_protocol(skb, type, depth); 2642 } 2643 2644 /** 2645 * skb_mac_gso_segment - mac layer segmentation handler. 2646 * @skb: buffer to segment 2647 * @features: features for the output path (see dev->features) 2648 */ 2649 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2650 netdev_features_t features) 2651 { 2652 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2653 struct packet_offload *ptype; 2654 int vlan_depth = skb->mac_len; 2655 __be16 type = skb_network_protocol(skb, &vlan_depth); 2656 2657 if (unlikely(!type)) 2658 return ERR_PTR(-EINVAL); 2659 2660 __skb_pull(skb, vlan_depth); 2661 2662 rcu_read_lock(); 2663 list_for_each_entry_rcu(ptype, &offload_base, list) { 2664 if (ptype->type == type && ptype->callbacks.gso_segment) { 2665 segs = ptype->callbacks.gso_segment(skb, features); 2666 break; 2667 } 2668 } 2669 rcu_read_unlock(); 2670 2671 __skb_push(skb, skb->data - skb_mac_header(skb)); 2672 2673 return segs; 2674 } 2675 EXPORT_SYMBOL(skb_mac_gso_segment); 2676 2677 2678 /* openvswitch calls this on rx path, so we need a different check. 2679 */ 2680 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2681 { 2682 if (tx_path) 2683 return skb->ip_summed != CHECKSUM_PARTIAL; 2684 else 2685 return skb->ip_summed == CHECKSUM_NONE; 2686 } 2687 2688 /** 2689 * __skb_gso_segment - Perform segmentation on skb. 2690 * @skb: buffer to segment 2691 * @features: features for the output path (see dev->features) 2692 * @tx_path: whether it is called in TX path 2693 * 2694 * This function segments the given skb and returns a list of segments. 2695 * 2696 * It may return NULL if the skb requires no segmentation. This is 2697 * only possible when GSO is used for verifying header integrity. 2698 * 2699 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 2700 */ 2701 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2702 netdev_features_t features, bool tx_path) 2703 { 2704 if (unlikely(skb_needs_check(skb, tx_path))) { 2705 int err; 2706 2707 skb_warn_bad_offload(skb); 2708 2709 err = skb_cow_head(skb, 0); 2710 if (err < 0) 2711 return ERR_PTR(err); 2712 } 2713 2714 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 2715 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 2716 2717 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2718 SKB_GSO_CB(skb)->encap_level = 0; 2719 2720 skb_reset_mac_header(skb); 2721 skb_reset_mac_len(skb); 2722 2723 return skb_mac_gso_segment(skb, features); 2724 } 2725 EXPORT_SYMBOL(__skb_gso_segment); 2726 2727 /* Take action when hardware reception checksum errors are detected. */ 2728 #ifdef CONFIG_BUG 2729 void netdev_rx_csum_fault(struct net_device *dev) 2730 { 2731 if (net_ratelimit()) { 2732 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2733 dump_stack(); 2734 } 2735 } 2736 EXPORT_SYMBOL(netdev_rx_csum_fault); 2737 #endif 2738 2739 /* Actually, we should eliminate this check as soon as we know, that: 2740 * 1. IOMMU is present and allows to map all the memory. 2741 * 2. No high memory really exists on this machine. 2742 */ 2743 2744 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2745 { 2746 #ifdef CONFIG_HIGHMEM 2747 int i; 2748 if (!(dev->features & NETIF_F_HIGHDMA)) { 2749 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2750 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2751 if (PageHighMem(skb_frag_page(frag))) 2752 return 1; 2753 } 2754 } 2755 2756 if (PCI_DMA_BUS_IS_PHYS) { 2757 struct device *pdev = dev->dev.parent; 2758 2759 if (!pdev) 2760 return 0; 2761 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2762 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2763 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2764 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2765 return 1; 2766 } 2767 } 2768 #endif 2769 return 0; 2770 } 2771 2772 /* If MPLS offload request, verify we are testing hardware MPLS features 2773 * instead of standard features for the netdev. 2774 */ 2775 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2776 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2777 netdev_features_t features, 2778 __be16 type) 2779 { 2780 if (eth_p_mpls(type)) 2781 features &= skb->dev->mpls_features; 2782 2783 return features; 2784 } 2785 #else 2786 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2787 netdev_features_t features, 2788 __be16 type) 2789 { 2790 return features; 2791 } 2792 #endif 2793 2794 static netdev_features_t harmonize_features(struct sk_buff *skb, 2795 netdev_features_t features) 2796 { 2797 int tmp; 2798 __be16 type; 2799 2800 type = skb_network_protocol(skb, &tmp); 2801 features = net_mpls_features(skb, features, type); 2802 2803 if (skb->ip_summed != CHECKSUM_NONE && 2804 !can_checksum_protocol(features, type)) { 2805 features &= ~NETIF_F_CSUM_MASK; 2806 } else if (illegal_highdma(skb->dev, skb)) { 2807 features &= ~NETIF_F_SG; 2808 } 2809 2810 return features; 2811 } 2812 2813 netdev_features_t passthru_features_check(struct sk_buff *skb, 2814 struct net_device *dev, 2815 netdev_features_t features) 2816 { 2817 return features; 2818 } 2819 EXPORT_SYMBOL(passthru_features_check); 2820 2821 static netdev_features_t dflt_features_check(const struct sk_buff *skb, 2822 struct net_device *dev, 2823 netdev_features_t features) 2824 { 2825 return vlan_features_check(skb, features); 2826 } 2827 2828 netdev_features_t netif_skb_features(struct sk_buff *skb) 2829 { 2830 struct net_device *dev = skb->dev; 2831 netdev_features_t features = dev->features; 2832 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2833 2834 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs) 2835 features &= ~NETIF_F_GSO_MASK; 2836 2837 /* If encapsulation offload request, verify we are testing 2838 * hardware encapsulation features instead of standard 2839 * features for the netdev 2840 */ 2841 if (skb->encapsulation) 2842 features &= dev->hw_enc_features; 2843 2844 if (skb_vlan_tagged(skb)) 2845 features = netdev_intersect_features(features, 2846 dev->vlan_features | 2847 NETIF_F_HW_VLAN_CTAG_TX | 2848 NETIF_F_HW_VLAN_STAG_TX); 2849 2850 if (dev->netdev_ops->ndo_features_check) 2851 features &= dev->netdev_ops->ndo_features_check(skb, dev, 2852 features); 2853 else 2854 features &= dflt_features_check(skb, dev, features); 2855 2856 return harmonize_features(skb, features); 2857 } 2858 EXPORT_SYMBOL(netif_skb_features); 2859 2860 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 2861 struct netdev_queue *txq, bool more) 2862 { 2863 unsigned int len; 2864 int rc; 2865 2866 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 2867 dev_queue_xmit_nit(skb, dev); 2868 2869 len = skb->len; 2870 trace_net_dev_start_xmit(skb, dev); 2871 rc = netdev_start_xmit(skb, dev, txq, more); 2872 trace_net_dev_xmit(skb, rc, dev, len); 2873 2874 return rc; 2875 } 2876 2877 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 2878 struct netdev_queue *txq, int *ret) 2879 { 2880 struct sk_buff *skb = first; 2881 int rc = NETDEV_TX_OK; 2882 2883 while (skb) { 2884 struct sk_buff *next = skb->next; 2885 2886 skb->next = NULL; 2887 rc = xmit_one(skb, dev, txq, next != NULL); 2888 if (unlikely(!dev_xmit_complete(rc))) { 2889 skb->next = next; 2890 goto out; 2891 } 2892 2893 skb = next; 2894 if (netif_xmit_stopped(txq) && skb) { 2895 rc = NETDEV_TX_BUSY; 2896 break; 2897 } 2898 } 2899 2900 out: 2901 *ret = rc; 2902 return skb; 2903 } 2904 2905 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 2906 netdev_features_t features) 2907 { 2908 if (skb_vlan_tag_present(skb) && 2909 !vlan_hw_offload_capable(features, skb->vlan_proto)) 2910 skb = __vlan_hwaccel_push_inside(skb); 2911 return skb; 2912 } 2913 2914 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) 2915 { 2916 netdev_features_t features; 2917 2918 if (skb->next) 2919 return skb; 2920 2921 features = netif_skb_features(skb); 2922 skb = validate_xmit_vlan(skb, features); 2923 if (unlikely(!skb)) 2924 goto out_null; 2925 2926 if (netif_needs_gso(skb, features)) { 2927 struct sk_buff *segs; 2928 2929 segs = skb_gso_segment(skb, features); 2930 if (IS_ERR(segs)) { 2931 goto out_kfree_skb; 2932 } else if (segs) { 2933 consume_skb(skb); 2934 skb = segs; 2935 } 2936 } else { 2937 if (skb_needs_linearize(skb, features) && 2938 __skb_linearize(skb)) 2939 goto out_kfree_skb; 2940 2941 /* If packet is not checksummed and device does not 2942 * support checksumming for this protocol, complete 2943 * checksumming here. 2944 */ 2945 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2946 if (skb->encapsulation) 2947 skb_set_inner_transport_header(skb, 2948 skb_checksum_start_offset(skb)); 2949 else 2950 skb_set_transport_header(skb, 2951 skb_checksum_start_offset(skb)); 2952 if (!(features & NETIF_F_CSUM_MASK) && 2953 skb_checksum_help(skb)) 2954 goto out_kfree_skb; 2955 } 2956 } 2957 2958 return skb; 2959 2960 out_kfree_skb: 2961 kfree_skb(skb); 2962 out_null: 2963 return NULL; 2964 } 2965 2966 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev) 2967 { 2968 struct sk_buff *next, *head = NULL, *tail; 2969 2970 for (; skb != NULL; skb = next) { 2971 next = skb->next; 2972 skb->next = NULL; 2973 2974 /* in case skb wont be segmented, point to itself */ 2975 skb->prev = skb; 2976 2977 skb = validate_xmit_skb(skb, dev); 2978 if (!skb) 2979 continue; 2980 2981 if (!head) 2982 head = skb; 2983 else 2984 tail->next = skb; 2985 /* If skb was segmented, skb->prev points to 2986 * the last segment. If not, it still contains skb. 2987 */ 2988 tail = skb->prev; 2989 } 2990 return head; 2991 } 2992 2993 static void qdisc_pkt_len_init(struct sk_buff *skb) 2994 { 2995 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2996 2997 qdisc_skb_cb(skb)->pkt_len = skb->len; 2998 2999 /* To get more precise estimation of bytes sent on wire, 3000 * we add to pkt_len the headers size of all segments 3001 */ 3002 if (shinfo->gso_size) { 3003 unsigned int hdr_len; 3004 u16 gso_segs = shinfo->gso_segs; 3005 3006 /* mac layer + network layer */ 3007 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3008 3009 /* + transport layer */ 3010 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 3011 hdr_len += tcp_hdrlen(skb); 3012 else 3013 hdr_len += sizeof(struct udphdr); 3014 3015 if (shinfo->gso_type & SKB_GSO_DODGY) 3016 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3017 shinfo->gso_size); 3018 3019 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3020 } 3021 } 3022 3023 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3024 struct net_device *dev, 3025 struct netdev_queue *txq) 3026 { 3027 spinlock_t *root_lock = qdisc_lock(q); 3028 bool contended; 3029 int rc; 3030 3031 qdisc_calculate_pkt_len(skb, q); 3032 /* 3033 * Heuristic to force contended enqueues to serialize on a 3034 * separate lock before trying to get qdisc main lock. 3035 * This permits __QDISC___STATE_RUNNING owner to get the lock more 3036 * often and dequeue packets faster. 3037 */ 3038 contended = qdisc_is_running(q); 3039 if (unlikely(contended)) 3040 spin_lock(&q->busylock); 3041 3042 spin_lock(root_lock); 3043 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3044 kfree_skb(skb); 3045 rc = NET_XMIT_DROP; 3046 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3047 qdisc_run_begin(q)) { 3048 /* 3049 * This is a work-conserving queue; there are no old skbs 3050 * waiting to be sent out; and the qdisc is not running - 3051 * xmit the skb directly. 3052 */ 3053 3054 qdisc_bstats_update(q, skb); 3055 3056 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3057 if (unlikely(contended)) { 3058 spin_unlock(&q->busylock); 3059 contended = false; 3060 } 3061 __qdisc_run(q); 3062 } else 3063 qdisc_run_end(q); 3064 3065 rc = NET_XMIT_SUCCESS; 3066 } else { 3067 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 3068 if (qdisc_run_begin(q)) { 3069 if (unlikely(contended)) { 3070 spin_unlock(&q->busylock); 3071 contended = false; 3072 } 3073 __qdisc_run(q); 3074 } 3075 } 3076 spin_unlock(root_lock); 3077 if (unlikely(contended)) 3078 spin_unlock(&q->busylock); 3079 return rc; 3080 } 3081 3082 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3083 static void skb_update_prio(struct sk_buff *skb) 3084 { 3085 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 3086 3087 if (!skb->priority && skb->sk && map) { 3088 unsigned int prioidx = 3089 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data); 3090 3091 if (prioidx < map->priomap_len) 3092 skb->priority = map->priomap[prioidx]; 3093 } 3094 } 3095 #else 3096 #define skb_update_prio(skb) 3097 #endif 3098 3099 DEFINE_PER_CPU(int, xmit_recursion); 3100 EXPORT_SYMBOL(xmit_recursion); 3101 3102 #define RECURSION_LIMIT 10 3103 3104 /** 3105 * dev_loopback_xmit - loop back @skb 3106 * @net: network namespace this loopback is happening in 3107 * @sk: sk needed to be a netfilter okfn 3108 * @skb: buffer to transmit 3109 */ 3110 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3111 { 3112 skb_reset_mac_header(skb); 3113 __skb_pull(skb, skb_network_offset(skb)); 3114 skb->pkt_type = PACKET_LOOPBACK; 3115 skb->ip_summed = CHECKSUM_UNNECESSARY; 3116 WARN_ON(!skb_dst(skb)); 3117 skb_dst_force(skb); 3118 netif_rx_ni(skb); 3119 return 0; 3120 } 3121 EXPORT_SYMBOL(dev_loopback_xmit); 3122 3123 #ifdef CONFIG_NET_EGRESS 3124 static struct sk_buff * 3125 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3126 { 3127 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list); 3128 struct tcf_result cl_res; 3129 3130 if (!cl) 3131 return skb; 3132 3133 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set 3134 * earlier by the caller. 3135 */ 3136 qdisc_bstats_cpu_update(cl->q, skb); 3137 3138 switch (tc_classify(skb, cl, &cl_res, false)) { 3139 case TC_ACT_OK: 3140 case TC_ACT_RECLASSIFY: 3141 skb->tc_index = TC_H_MIN(cl_res.classid); 3142 break; 3143 case TC_ACT_SHOT: 3144 qdisc_qstats_cpu_drop(cl->q); 3145 *ret = NET_XMIT_DROP; 3146 goto drop; 3147 case TC_ACT_STOLEN: 3148 case TC_ACT_QUEUED: 3149 *ret = NET_XMIT_SUCCESS; 3150 drop: 3151 kfree_skb(skb); 3152 return NULL; 3153 case TC_ACT_REDIRECT: 3154 /* No need to push/pop skb's mac_header here on egress! */ 3155 skb_do_redirect(skb); 3156 *ret = NET_XMIT_SUCCESS; 3157 return NULL; 3158 default: 3159 break; 3160 } 3161 3162 return skb; 3163 } 3164 #endif /* CONFIG_NET_EGRESS */ 3165 3166 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 3167 { 3168 #ifdef CONFIG_XPS 3169 struct xps_dev_maps *dev_maps; 3170 struct xps_map *map; 3171 int queue_index = -1; 3172 3173 rcu_read_lock(); 3174 dev_maps = rcu_dereference(dev->xps_maps); 3175 if (dev_maps) { 3176 map = rcu_dereference( 3177 dev_maps->cpu_map[skb->sender_cpu - 1]); 3178 if (map) { 3179 if (map->len == 1) 3180 queue_index = map->queues[0]; 3181 else 3182 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb), 3183 map->len)]; 3184 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3185 queue_index = -1; 3186 } 3187 } 3188 rcu_read_unlock(); 3189 3190 return queue_index; 3191 #else 3192 return -1; 3193 #endif 3194 } 3195 3196 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb) 3197 { 3198 struct sock *sk = skb->sk; 3199 int queue_index = sk_tx_queue_get(sk); 3200 3201 if (queue_index < 0 || skb->ooo_okay || 3202 queue_index >= dev->real_num_tx_queues) { 3203 int new_index = get_xps_queue(dev, skb); 3204 if (new_index < 0) 3205 new_index = skb_tx_hash(dev, skb); 3206 3207 if (queue_index != new_index && sk && 3208 sk_fullsock(sk) && 3209 rcu_access_pointer(sk->sk_dst_cache)) 3210 sk_tx_queue_set(sk, new_index); 3211 3212 queue_index = new_index; 3213 } 3214 3215 return queue_index; 3216 } 3217 3218 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3219 struct sk_buff *skb, 3220 void *accel_priv) 3221 { 3222 int queue_index = 0; 3223 3224 #ifdef CONFIG_XPS 3225 u32 sender_cpu = skb->sender_cpu - 1; 3226 3227 if (sender_cpu >= (u32)NR_CPUS) 3228 skb->sender_cpu = raw_smp_processor_id() + 1; 3229 #endif 3230 3231 if (dev->real_num_tx_queues != 1) { 3232 const struct net_device_ops *ops = dev->netdev_ops; 3233 if (ops->ndo_select_queue) 3234 queue_index = ops->ndo_select_queue(dev, skb, accel_priv, 3235 __netdev_pick_tx); 3236 else 3237 queue_index = __netdev_pick_tx(dev, skb); 3238 3239 if (!accel_priv) 3240 queue_index = netdev_cap_txqueue(dev, queue_index); 3241 } 3242 3243 skb_set_queue_mapping(skb, queue_index); 3244 return netdev_get_tx_queue(dev, queue_index); 3245 } 3246 3247 /** 3248 * __dev_queue_xmit - transmit a buffer 3249 * @skb: buffer to transmit 3250 * @accel_priv: private data used for L2 forwarding offload 3251 * 3252 * Queue a buffer for transmission to a network device. The caller must 3253 * have set the device and priority and built the buffer before calling 3254 * this function. The function can be called from an interrupt. 3255 * 3256 * A negative errno code is returned on a failure. A success does not 3257 * guarantee the frame will be transmitted as it may be dropped due 3258 * to congestion or traffic shaping. 3259 * 3260 * ----------------------------------------------------------------------------------- 3261 * I notice this method can also return errors from the queue disciplines, 3262 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3263 * be positive. 3264 * 3265 * Regardless of the return value, the skb is consumed, so it is currently 3266 * difficult to retry a send to this method. (You can bump the ref count 3267 * before sending to hold a reference for retry if you are careful.) 3268 * 3269 * When calling this method, interrupts MUST be enabled. This is because 3270 * the BH enable code must have IRQs enabled so that it will not deadlock. 3271 * --BLG 3272 */ 3273 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 3274 { 3275 struct net_device *dev = skb->dev; 3276 struct netdev_queue *txq; 3277 struct Qdisc *q; 3278 int rc = -ENOMEM; 3279 3280 skb_reset_mac_header(skb); 3281 3282 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3283 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3284 3285 /* Disable soft irqs for various locks below. Also 3286 * stops preemption for RCU. 3287 */ 3288 rcu_read_lock_bh(); 3289 3290 skb_update_prio(skb); 3291 3292 qdisc_pkt_len_init(skb); 3293 #ifdef CONFIG_NET_CLS_ACT 3294 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 3295 # ifdef CONFIG_NET_EGRESS 3296 if (static_key_false(&egress_needed)) { 3297 skb = sch_handle_egress(skb, &rc, dev); 3298 if (!skb) 3299 goto out; 3300 } 3301 # endif 3302 #endif 3303 /* If device/qdisc don't need skb->dst, release it right now while 3304 * its hot in this cpu cache. 3305 */ 3306 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3307 skb_dst_drop(skb); 3308 else 3309 skb_dst_force(skb); 3310 3311 #ifdef CONFIG_NET_SWITCHDEV 3312 /* Don't forward if offload device already forwarded */ 3313 if (skb->offload_fwd_mark && 3314 skb->offload_fwd_mark == dev->offload_fwd_mark) { 3315 consume_skb(skb); 3316 rc = NET_XMIT_SUCCESS; 3317 goto out; 3318 } 3319 #endif 3320 3321 txq = netdev_pick_tx(dev, skb, accel_priv); 3322 q = rcu_dereference_bh(txq->qdisc); 3323 3324 trace_net_dev_queue(skb); 3325 if (q->enqueue) { 3326 rc = __dev_xmit_skb(skb, q, dev, txq); 3327 goto out; 3328 } 3329 3330 /* The device has no queue. Common case for software devices: 3331 loopback, all the sorts of tunnels... 3332 3333 Really, it is unlikely that netif_tx_lock protection is necessary 3334 here. (f.e. loopback and IP tunnels are clean ignoring statistics 3335 counters.) 3336 However, it is possible, that they rely on protection 3337 made by us here. 3338 3339 Check this and shot the lock. It is not prone from deadlocks. 3340 Either shot noqueue qdisc, it is even simpler 8) 3341 */ 3342 if (dev->flags & IFF_UP) { 3343 int cpu = smp_processor_id(); /* ok because BHs are off */ 3344 3345 if (txq->xmit_lock_owner != cpu) { 3346 3347 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 3348 goto recursion_alert; 3349 3350 skb = validate_xmit_skb(skb, dev); 3351 if (!skb) 3352 goto drop; 3353 3354 HARD_TX_LOCK(dev, txq, cpu); 3355 3356 if (!netif_xmit_stopped(txq)) { 3357 __this_cpu_inc(xmit_recursion); 3358 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3359 __this_cpu_dec(xmit_recursion); 3360 if (dev_xmit_complete(rc)) { 3361 HARD_TX_UNLOCK(dev, txq); 3362 goto out; 3363 } 3364 } 3365 HARD_TX_UNLOCK(dev, txq); 3366 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3367 dev->name); 3368 } else { 3369 /* Recursion is detected! It is possible, 3370 * unfortunately 3371 */ 3372 recursion_alert: 3373 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3374 dev->name); 3375 } 3376 } 3377 3378 rc = -ENETDOWN; 3379 drop: 3380 rcu_read_unlock_bh(); 3381 3382 atomic_long_inc(&dev->tx_dropped); 3383 kfree_skb_list(skb); 3384 return rc; 3385 out: 3386 rcu_read_unlock_bh(); 3387 return rc; 3388 } 3389 3390 int dev_queue_xmit(struct sk_buff *skb) 3391 { 3392 return __dev_queue_xmit(skb, NULL); 3393 } 3394 EXPORT_SYMBOL(dev_queue_xmit); 3395 3396 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3397 { 3398 return __dev_queue_xmit(skb, accel_priv); 3399 } 3400 EXPORT_SYMBOL(dev_queue_xmit_accel); 3401 3402 3403 /*======================================================================= 3404 Receiver routines 3405 =======================================================================*/ 3406 3407 int netdev_max_backlog __read_mostly = 1000; 3408 EXPORT_SYMBOL(netdev_max_backlog); 3409 3410 int netdev_tstamp_prequeue __read_mostly = 1; 3411 int netdev_budget __read_mostly = 300; 3412 int weight_p __read_mostly = 64; /* old backlog weight */ 3413 3414 /* Called with irq disabled */ 3415 static inline void ____napi_schedule(struct softnet_data *sd, 3416 struct napi_struct *napi) 3417 { 3418 list_add_tail(&napi->poll_list, &sd->poll_list); 3419 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3420 } 3421 3422 #ifdef CONFIG_RPS 3423 3424 /* One global table that all flow-based protocols share. */ 3425 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3426 EXPORT_SYMBOL(rps_sock_flow_table); 3427 u32 rps_cpu_mask __read_mostly; 3428 EXPORT_SYMBOL(rps_cpu_mask); 3429 3430 struct static_key rps_needed __read_mostly; 3431 3432 static struct rps_dev_flow * 3433 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3434 struct rps_dev_flow *rflow, u16 next_cpu) 3435 { 3436 if (next_cpu < nr_cpu_ids) { 3437 #ifdef CONFIG_RFS_ACCEL 3438 struct netdev_rx_queue *rxqueue; 3439 struct rps_dev_flow_table *flow_table; 3440 struct rps_dev_flow *old_rflow; 3441 u32 flow_id; 3442 u16 rxq_index; 3443 int rc; 3444 3445 /* Should we steer this flow to a different hardware queue? */ 3446 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3447 !(dev->features & NETIF_F_NTUPLE)) 3448 goto out; 3449 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3450 if (rxq_index == skb_get_rx_queue(skb)) 3451 goto out; 3452 3453 rxqueue = dev->_rx + rxq_index; 3454 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3455 if (!flow_table) 3456 goto out; 3457 flow_id = skb_get_hash(skb) & flow_table->mask; 3458 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3459 rxq_index, flow_id); 3460 if (rc < 0) 3461 goto out; 3462 old_rflow = rflow; 3463 rflow = &flow_table->flows[flow_id]; 3464 rflow->filter = rc; 3465 if (old_rflow->filter == rflow->filter) 3466 old_rflow->filter = RPS_NO_FILTER; 3467 out: 3468 #endif 3469 rflow->last_qtail = 3470 per_cpu(softnet_data, next_cpu).input_queue_head; 3471 } 3472 3473 rflow->cpu = next_cpu; 3474 return rflow; 3475 } 3476 3477 /* 3478 * get_rps_cpu is called from netif_receive_skb and returns the target 3479 * CPU from the RPS map of the receiving queue for a given skb. 3480 * rcu_read_lock must be held on entry. 3481 */ 3482 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3483 struct rps_dev_flow **rflowp) 3484 { 3485 const struct rps_sock_flow_table *sock_flow_table; 3486 struct netdev_rx_queue *rxqueue = dev->_rx; 3487 struct rps_dev_flow_table *flow_table; 3488 struct rps_map *map; 3489 int cpu = -1; 3490 u32 tcpu; 3491 u32 hash; 3492 3493 if (skb_rx_queue_recorded(skb)) { 3494 u16 index = skb_get_rx_queue(skb); 3495 3496 if (unlikely(index >= dev->real_num_rx_queues)) { 3497 WARN_ONCE(dev->real_num_rx_queues > 1, 3498 "%s received packet on queue %u, but number " 3499 "of RX queues is %u\n", 3500 dev->name, index, dev->real_num_rx_queues); 3501 goto done; 3502 } 3503 rxqueue += index; 3504 } 3505 3506 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3507 3508 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3509 map = rcu_dereference(rxqueue->rps_map); 3510 if (!flow_table && !map) 3511 goto done; 3512 3513 skb_reset_network_header(skb); 3514 hash = skb_get_hash(skb); 3515 if (!hash) 3516 goto done; 3517 3518 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3519 if (flow_table && sock_flow_table) { 3520 struct rps_dev_flow *rflow; 3521 u32 next_cpu; 3522 u32 ident; 3523 3524 /* First check into global flow table if there is a match */ 3525 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3526 if ((ident ^ hash) & ~rps_cpu_mask) 3527 goto try_rps; 3528 3529 next_cpu = ident & rps_cpu_mask; 3530 3531 /* OK, now we know there is a match, 3532 * we can look at the local (per receive queue) flow table 3533 */ 3534 rflow = &flow_table->flows[hash & flow_table->mask]; 3535 tcpu = rflow->cpu; 3536 3537 /* 3538 * If the desired CPU (where last recvmsg was done) is 3539 * different from current CPU (one in the rx-queue flow 3540 * table entry), switch if one of the following holds: 3541 * - Current CPU is unset (>= nr_cpu_ids). 3542 * - Current CPU is offline. 3543 * - The current CPU's queue tail has advanced beyond the 3544 * last packet that was enqueued using this table entry. 3545 * This guarantees that all previous packets for the flow 3546 * have been dequeued, thus preserving in order delivery. 3547 */ 3548 if (unlikely(tcpu != next_cpu) && 3549 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 3550 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3551 rflow->last_qtail)) >= 0)) { 3552 tcpu = next_cpu; 3553 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3554 } 3555 3556 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 3557 *rflowp = rflow; 3558 cpu = tcpu; 3559 goto done; 3560 } 3561 } 3562 3563 try_rps: 3564 3565 if (map) { 3566 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3567 if (cpu_online(tcpu)) { 3568 cpu = tcpu; 3569 goto done; 3570 } 3571 } 3572 3573 done: 3574 return cpu; 3575 } 3576 3577 #ifdef CONFIG_RFS_ACCEL 3578 3579 /** 3580 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3581 * @dev: Device on which the filter was set 3582 * @rxq_index: RX queue index 3583 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3584 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3585 * 3586 * Drivers that implement ndo_rx_flow_steer() should periodically call 3587 * this function for each installed filter and remove the filters for 3588 * which it returns %true. 3589 */ 3590 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3591 u32 flow_id, u16 filter_id) 3592 { 3593 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3594 struct rps_dev_flow_table *flow_table; 3595 struct rps_dev_flow *rflow; 3596 bool expire = true; 3597 unsigned int cpu; 3598 3599 rcu_read_lock(); 3600 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3601 if (flow_table && flow_id <= flow_table->mask) { 3602 rflow = &flow_table->flows[flow_id]; 3603 cpu = ACCESS_ONCE(rflow->cpu); 3604 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 3605 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3606 rflow->last_qtail) < 3607 (int)(10 * flow_table->mask))) 3608 expire = false; 3609 } 3610 rcu_read_unlock(); 3611 return expire; 3612 } 3613 EXPORT_SYMBOL(rps_may_expire_flow); 3614 3615 #endif /* CONFIG_RFS_ACCEL */ 3616 3617 /* Called from hardirq (IPI) context */ 3618 static void rps_trigger_softirq(void *data) 3619 { 3620 struct softnet_data *sd = data; 3621 3622 ____napi_schedule(sd, &sd->backlog); 3623 sd->received_rps++; 3624 } 3625 3626 #endif /* CONFIG_RPS */ 3627 3628 /* 3629 * Check if this softnet_data structure is another cpu one 3630 * If yes, queue it to our IPI list and return 1 3631 * If no, return 0 3632 */ 3633 static int rps_ipi_queued(struct softnet_data *sd) 3634 { 3635 #ifdef CONFIG_RPS 3636 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3637 3638 if (sd != mysd) { 3639 sd->rps_ipi_next = mysd->rps_ipi_list; 3640 mysd->rps_ipi_list = sd; 3641 3642 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3643 return 1; 3644 } 3645 #endif /* CONFIG_RPS */ 3646 return 0; 3647 } 3648 3649 #ifdef CONFIG_NET_FLOW_LIMIT 3650 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3651 #endif 3652 3653 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3654 { 3655 #ifdef CONFIG_NET_FLOW_LIMIT 3656 struct sd_flow_limit *fl; 3657 struct softnet_data *sd; 3658 unsigned int old_flow, new_flow; 3659 3660 if (qlen < (netdev_max_backlog >> 1)) 3661 return false; 3662 3663 sd = this_cpu_ptr(&softnet_data); 3664 3665 rcu_read_lock(); 3666 fl = rcu_dereference(sd->flow_limit); 3667 if (fl) { 3668 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3669 old_flow = fl->history[fl->history_head]; 3670 fl->history[fl->history_head] = new_flow; 3671 3672 fl->history_head++; 3673 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3674 3675 if (likely(fl->buckets[old_flow])) 3676 fl->buckets[old_flow]--; 3677 3678 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3679 fl->count++; 3680 rcu_read_unlock(); 3681 return true; 3682 } 3683 } 3684 rcu_read_unlock(); 3685 #endif 3686 return false; 3687 } 3688 3689 /* 3690 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3691 * queue (may be a remote CPU queue). 3692 */ 3693 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3694 unsigned int *qtail) 3695 { 3696 struct softnet_data *sd; 3697 unsigned long flags; 3698 unsigned int qlen; 3699 3700 sd = &per_cpu(softnet_data, cpu); 3701 3702 local_irq_save(flags); 3703 3704 rps_lock(sd); 3705 if (!netif_running(skb->dev)) 3706 goto drop; 3707 qlen = skb_queue_len(&sd->input_pkt_queue); 3708 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3709 if (qlen) { 3710 enqueue: 3711 __skb_queue_tail(&sd->input_pkt_queue, skb); 3712 input_queue_tail_incr_save(sd, qtail); 3713 rps_unlock(sd); 3714 local_irq_restore(flags); 3715 return NET_RX_SUCCESS; 3716 } 3717 3718 /* Schedule NAPI for backlog device 3719 * We can use non atomic operation since we own the queue lock 3720 */ 3721 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3722 if (!rps_ipi_queued(sd)) 3723 ____napi_schedule(sd, &sd->backlog); 3724 } 3725 goto enqueue; 3726 } 3727 3728 drop: 3729 sd->dropped++; 3730 rps_unlock(sd); 3731 3732 local_irq_restore(flags); 3733 3734 atomic_long_inc(&skb->dev->rx_dropped); 3735 kfree_skb(skb); 3736 return NET_RX_DROP; 3737 } 3738 3739 static int netif_rx_internal(struct sk_buff *skb) 3740 { 3741 int ret; 3742 3743 net_timestamp_check(netdev_tstamp_prequeue, skb); 3744 3745 trace_netif_rx(skb); 3746 #ifdef CONFIG_RPS 3747 if (static_key_false(&rps_needed)) { 3748 struct rps_dev_flow voidflow, *rflow = &voidflow; 3749 int cpu; 3750 3751 preempt_disable(); 3752 rcu_read_lock(); 3753 3754 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3755 if (cpu < 0) 3756 cpu = smp_processor_id(); 3757 3758 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3759 3760 rcu_read_unlock(); 3761 preempt_enable(); 3762 } else 3763 #endif 3764 { 3765 unsigned int qtail; 3766 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3767 put_cpu(); 3768 } 3769 return ret; 3770 } 3771 3772 /** 3773 * netif_rx - post buffer to the network code 3774 * @skb: buffer to post 3775 * 3776 * This function receives a packet from a device driver and queues it for 3777 * the upper (protocol) levels to process. It always succeeds. The buffer 3778 * may be dropped during processing for congestion control or by the 3779 * protocol layers. 3780 * 3781 * return values: 3782 * NET_RX_SUCCESS (no congestion) 3783 * NET_RX_DROP (packet was dropped) 3784 * 3785 */ 3786 3787 int netif_rx(struct sk_buff *skb) 3788 { 3789 trace_netif_rx_entry(skb); 3790 3791 return netif_rx_internal(skb); 3792 } 3793 EXPORT_SYMBOL(netif_rx); 3794 3795 int netif_rx_ni(struct sk_buff *skb) 3796 { 3797 int err; 3798 3799 trace_netif_rx_ni_entry(skb); 3800 3801 preempt_disable(); 3802 err = netif_rx_internal(skb); 3803 if (local_softirq_pending()) 3804 do_softirq(); 3805 preempt_enable(); 3806 3807 return err; 3808 } 3809 EXPORT_SYMBOL(netif_rx_ni); 3810 3811 static void net_tx_action(struct softirq_action *h) 3812 { 3813 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 3814 3815 if (sd->completion_queue) { 3816 struct sk_buff *clist; 3817 3818 local_irq_disable(); 3819 clist = sd->completion_queue; 3820 sd->completion_queue = NULL; 3821 local_irq_enable(); 3822 3823 while (clist) { 3824 struct sk_buff *skb = clist; 3825 clist = clist->next; 3826 3827 WARN_ON(atomic_read(&skb->users)); 3828 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 3829 trace_consume_skb(skb); 3830 else 3831 trace_kfree_skb(skb, net_tx_action); 3832 __kfree_skb(skb); 3833 } 3834 } 3835 3836 if (sd->output_queue) { 3837 struct Qdisc *head; 3838 3839 local_irq_disable(); 3840 head = sd->output_queue; 3841 sd->output_queue = NULL; 3842 sd->output_queue_tailp = &sd->output_queue; 3843 local_irq_enable(); 3844 3845 while (head) { 3846 struct Qdisc *q = head; 3847 spinlock_t *root_lock; 3848 3849 head = head->next_sched; 3850 3851 root_lock = qdisc_lock(q); 3852 if (spin_trylock(root_lock)) { 3853 smp_mb__before_atomic(); 3854 clear_bit(__QDISC_STATE_SCHED, 3855 &q->state); 3856 qdisc_run(q); 3857 spin_unlock(root_lock); 3858 } else { 3859 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3860 &q->state)) { 3861 __netif_reschedule(q); 3862 } else { 3863 smp_mb__before_atomic(); 3864 clear_bit(__QDISC_STATE_SCHED, 3865 &q->state); 3866 } 3867 } 3868 } 3869 } 3870 } 3871 3872 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3873 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3874 /* This hook is defined here for ATM LANE */ 3875 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3876 unsigned char *addr) __read_mostly; 3877 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3878 #endif 3879 3880 static inline struct sk_buff * 3881 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 3882 struct net_device *orig_dev) 3883 { 3884 #ifdef CONFIG_NET_CLS_ACT 3885 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list); 3886 struct tcf_result cl_res; 3887 3888 /* If there's at least one ingress present somewhere (so 3889 * we get here via enabled static key), remaining devices 3890 * that are not configured with an ingress qdisc will bail 3891 * out here. 3892 */ 3893 if (!cl) 3894 return skb; 3895 if (*pt_prev) { 3896 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3897 *pt_prev = NULL; 3898 } 3899 3900 qdisc_skb_cb(skb)->pkt_len = skb->len; 3901 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3902 qdisc_bstats_cpu_update(cl->q, skb); 3903 3904 switch (tc_classify(skb, cl, &cl_res, false)) { 3905 case TC_ACT_OK: 3906 case TC_ACT_RECLASSIFY: 3907 skb->tc_index = TC_H_MIN(cl_res.classid); 3908 break; 3909 case TC_ACT_SHOT: 3910 qdisc_qstats_cpu_drop(cl->q); 3911 case TC_ACT_STOLEN: 3912 case TC_ACT_QUEUED: 3913 kfree_skb(skb); 3914 return NULL; 3915 case TC_ACT_REDIRECT: 3916 /* skb_mac_header check was done by cls/act_bpf, so 3917 * we can safely push the L2 header back before 3918 * redirecting to another netdev 3919 */ 3920 __skb_push(skb, skb->mac_len); 3921 skb_do_redirect(skb); 3922 return NULL; 3923 default: 3924 break; 3925 } 3926 #endif /* CONFIG_NET_CLS_ACT */ 3927 return skb; 3928 } 3929 3930 /** 3931 * netdev_rx_handler_register - register receive handler 3932 * @dev: device to register a handler for 3933 * @rx_handler: receive handler to register 3934 * @rx_handler_data: data pointer that is used by rx handler 3935 * 3936 * Register a receive handler for a device. This handler will then be 3937 * called from __netif_receive_skb. A negative errno code is returned 3938 * on a failure. 3939 * 3940 * The caller must hold the rtnl_mutex. 3941 * 3942 * For a general description of rx_handler, see enum rx_handler_result. 3943 */ 3944 int netdev_rx_handler_register(struct net_device *dev, 3945 rx_handler_func_t *rx_handler, 3946 void *rx_handler_data) 3947 { 3948 ASSERT_RTNL(); 3949 3950 if (dev->rx_handler) 3951 return -EBUSY; 3952 3953 /* Note: rx_handler_data must be set before rx_handler */ 3954 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3955 rcu_assign_pointer(dev->rx_handler, rx_handler); 3956 3957 return 0; 3958 } 3959 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3960 3961 /** 3962 * netdev_rx_handler_unregister - unregister receive handler 3963 * @dev: device to unregister a handler from 3964 * 3965 * Unregister a receive handler from a device. 3966 * 3967 * The caller must hold the rtnl_mutex. 3968 */ 3969 void netdev_rx_handler_unregister(struct net_device *dev) 3970 { 3971 3972 ASSERT_RTNL(); 3973 RCU_INIT_POINTER(dev->rx_handler, NULL); 3974 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 3975 * section has a guarantee to see a non NULL rx_handler_data 3976 * as well. 3977 */ 3978 synchronize_net(); 3979 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3980 } 3981 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3982 3983 /* 3984 * Limit the use of PFMEMALLOC reserves to those protocols that implement 3985 * the special handling of PFMEMALLOC skbs. 3986 */ 3987 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 3988 { 3989 switch (skb->protocol) { 3990 case htons(ETH_P_ARP): 3991 case htons(ETH_P_IP): 3992 case htons(ETH_P_IPV6): 3993 case htons(ETH_P_8021Q): 3994 case htons(ETH_P_8021AD): 3995 return true; 3996 default: 3997 return false; 3998 } 3999 } 4000 4001 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4002 int *ret, struct net_device *orig_dev) 4003 { 4004 #ifdef CONFIG_NETFILTER_INGRESS 4005 if (nf_hook_ingress_active(skb)) { 4006 if (*pt_prev) { 4007 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4008 *pt_prev = NULL; 4009 } 4010 4011 return nf_hook_ingress(skb); 4012 } 4013 #endif /* CONFIG_NETFILTER_INGRESS */ 4014 return 0; 4015 } 4016 4017 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 4018 { 4019 struct packet_type *ptype, *pt_prev; 4020 rx_handler_func_t *rx_handler; 4021 struct net_device *orig_dev; 4022 bool deliver_exact = false; 4023 int ret = NET_RX_DROP; 4024 __be16 type; 4025 4026 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4027 4028 trace_netif_receive_skb(skb); 4029 4030 orig_dev = skb->dev; 4031 4032 skb_reset_network_header(skb); 4033 if (!skb_transport_header_was_set(skb)) 4034 skb_reset_transport_header(skb); 4035 skb_reset_mac_len(skb); 4036 4037 pt_prev = NULL; 4038 4039 another_round: 4040 skb->skb_iif = skb->dev->ifindex; 4041 4042 __this_cpu_inc(softnet_data.processed); 4043 4044 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4045 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4046 skb = skb_vlan_untag(skb); 4047 if (unlikely(!skb)) 4048 goto out; 4049 } 4050 4051 #ifdef CONFIG_NET_CLS_ACT 4052 if (skb->tc_verd & TC_NCLS) { 4053 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 4054 goto ncls; 4055 } 4056 #endif 4057 4058 if (pfmemalloc) 4059 goto skip_taps; 4060 4061 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4062 if (pt_prev) 4063 ret = deliver_skb(skb, pt_prev, orig_dev); 4064 pt_prev = ptype; 4065 } 4066 4067 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4068 if (pt_prev) 4069 ret = deliver_skb(skb, pt_prev, orig_dev); 4070 pt_prev = ptype; 4071 } 4072 4073 skip_taps: 4074 #ifdef CONFIG_NET_INGRESS 4075 if (static_key_false(&ingress_needed)) { 4076 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4077 if (!skb) 4078 goto out; 4079 4080 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4081 goto out; 4082 } 4083 #endif 4084 #ifdef CONFIG_NET_CLS_ACT 4085 skb->tc_verd = 0; 4086 ncls: 4087 #endif 4088 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4089 goto drop; 4090 4091 if (skb_vlan_tag_present(skb)) { 4092 if (pt_prev) { 4093 ret = deliver_skb(skb, pt_prev, orig_dev); 4094 pt_prev = NULL; 4095 } 4096 if (vlan_do_receive(&skb)) 4097 goto another_round; 4098 else if (unlikely(!skb)) 4099 goto out; 4100 } 4101 4102 rx_handler = rcu_dereference(skb->dev->rx_handler); 4103 if (rx_handler) { 4104 if (pt_prev) { 4105 ret = deliver_skb(skb, pt_prev, orig_dev); 4106 pt_prev = NULL; 4107 } 4108 switch (rx_handler(&skb)) { 4109 case RX_HANDLER_CONSUMED: 4110 ret = NET_RX_SUCCESS; 4111 goto out; 4112 case RX_HANDLER_ANOTHER: 4113 goto another_round; 4114 case RX_HANDLER_EXACT: 4115 deliver_exact = true; 4116 case RX_HANDLER_PASS: 4117 break; 4118 default: 4119 BUG(); 4120 } 4121 } 4122 4123 if (unlikely(skb_vlan_tag_present(skb))) { 4124 if (skb_vlan_tag_get_id(skb)) 4125 skb->pkt_type = PACKET_OTHERHOST; 4126 /* Note: we might in the future use prio bits 4127 * and set skb->priority like in vlan_do_receive() 4128 * For the time being, just ignore Priority Code Point 4129 */ 4130 skb->vlan_tci = 0; 4131 } 4132 4133 type = skb->protocol; 4134 4135 /* deliver only exact match when indicated */ 4136 if (likely(!deliver_exact)) { 4137 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4138 &ptype_base[ntohs(type) & 4139 PTYPE_HASH_MASK]); 4140 } 4141 4142 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4143 &orig_dev->ptype_specific); 4144 4145 if (unlikely(skb->dev != orig_dev)) { 4146 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4147 &skb->dev->ptype_specific); 4148 } 4149 4150 if (pt_prev) { 4151 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 4152 goto drop; 4153 else 4154 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4155 } else { 4156 drop: 4157 atomic_long_inc(&skb->dev->rx_dropped); 4158 kfree_skb(skb); 4159 /* Jamal, now you will not able to escape explaining 4160 * me how you were going to use this. :-) 4161 */ 4162 ret = NET_RX_DROP; 4163 } 4164 4165 out: 4166 return ret; 4167 } 4168 4169 static int __netif_receive_skb(struct sk_buff *skb) 4170 { 4171 int ret; 4172 4173 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 4174 unsigned long pflags = current->flags; 4175 4176 /* 4177 * PFMEMALLOC skbs are special, they should 4178 * - be delivered to SOCK_MEMALLOC sockets only 4179 * - stay away from userspace 4180 * - have bounded memory usage 4181 * 4182 * Use PF_MEMALLOC as this saves us from propagating the allocation 4183 * context down to all allocation sites. 4184 */ 4185 current->flags |= PF_MEMALLOC; 4186 ret = __netif_receive_skb_core(skb, true); 4187 tsk_restore_flags(current, pflags, PF_MEMALLOC); 4188 } else 4189 ret = __netif_receive_skb_core(skb, false); 4190 4191 return ret; 4192 } 4193 4194 static int netif_receive_skb_internal(struct sk_buff *skb) 4195 { 4196 int ret; 4197 4198 net_timestamp_check(netdev_tstamp_prequeue, skb); 4199 4200 if (skb_defer_rx_timestamp(skb)) 4201 return NET_RX_SUCCESS; 4202 4203 rcu_read_lock(); 4204 4205 #ifdef CONFIG_RPS 4206 if (static_key_false(&rps_needed)) { 4207 struct rps_dev_flow voidflow, *rflow = &voidflow; 4208 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 4209 4210 if (cpu >= 0) { 4211 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4212 rcu_read_unlock(); 4213 return ret; 4214 } 4215 } 4216 #endif 4217 ret = __netif_receive_skb(skb); 4218 rcu_read_unlock(); 4219 return ret; 4220 } 4221 4222 /** 4223 * netif_receive_skb - process receive buffer from network 4224 * @skb: buffer to process 4225 * 4226 * netif_receive_skb() is the main receive data processing function. 4227 * It always succeeds. The buffer may be dropped during processing 4228 * for congestion control or by the protocol layers. 4229 * 4230 * This function may only be called from softirq context and interrupts 4231 * should be enabled. 4232 * 4233 * Return values (usually ignored): 4234 * NET_RX_SUCCESS: no congestion 4235 * NET_RX_DROP: packet was dropped 4236 */ 4237 int netif_receive_skb(struct sk_buff *skb) 4238 { 4239 trace_netif_receive_skb_entry(skb); 4240 4241 return netif_receive_skb_internal(skb); 4242 } 4243 EXPORT_SYMBOL(netif_receive_skb); 4244 4245 /* Network device is going away, flush any packets still pending 4246 * Called with irqs disabled. 4247 */ 4248 static void flush_backlog(void *arg) 4249 { 4250 struct net_device *dev = arg; 4251 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4252 struct sk_buff *skb, *tmp; 4253 4254 rps_lock(sd); 4255 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 4256 if (skb->dev == dev) { 4257 __skb_unlink(skb, &sd->input_pkt_queue); 4258 kfree_skb(skb); 4259 input_queue_head_incr(sd); 4260 } 4261 } 4262 rps_unlock(sd); 4263 4264 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 4265 if (skb->dev == dev) { 4266 __skb_unlink(skb, &sd->process_queue); 4267 kfree_skb(skb); 4268 input_queue_head_incr(sd); 4269 } 4270 } 4271 } 4272 4273 static int napi_gro_complete(struct sk_buff *skb) 4274 { 4275 struct packet_offload *ptype; 4276 __be16 type = skb->protocol; 4277 struct list_head *head = &offload_base; 4278 int err = -ENOENT; 4279 4280 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 4281 4282 if (NAPI_GRO_CB(skb)->count == 1) { 4283 skb_shinfo(skb)->gso_size = 0; 4284 goto out; 4285 } 4286 4287 rcu_read_lock(); 4288 list_for_each_entry_rcu(ptype, head, list) { 4289 if (ptype->type != type || !ptype->callbacks.gro_complete) 4290 continue; 4291 4292 err = ptype->callbacks.gro_complete(skb, 0); 4293 break; 4294 } 4295 rcu_read_unlock(); 4296 4297 if (err) { 4298 WARN_ON(&ptype->list == head); 4299 kfree_skb(skb); 4300 return NET_RX_SUCCESS; 4301 } 4302 4303 out: 4304 return netif_receive_skb_internal(skb); 4305 } 4306 4307 /* napi->gro_list contains packets ordered by age. 4308 * youngest packets at the head of it. 4309 * Complete skbs in reverse order to reduce latencies. 4310 */ 4311 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 4312 { 4313 struct sk_buff *skb, *prev = NULL; 4314 4315 /* scan list and build reverse chain */ 4316 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 4317 skb->prev = prev; 4318 prev = skb; 4319 } 4320 4321 for (skb = prev; skb; skb = prev) { 4322 skb->next = NULL; 4323 4324 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 4325 return; 4326 4327 prev = skb->prev; 4328 napi_gro_complete(skb); 4329 napi->gro_count--; 4330 } 4331 4332 napi->gro_list = NULL; 4333 } 4334 EXPORT_SYMBOL(napi_gro_flush); 4335 4336 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 4337 { 4338 struct sk_buff *p; 4339 unsigned int maclen = skb->dev->hard_header_len; 4340 u32 hash = skb_get_hash_raw(skb); 4341 4342 for (p = napi->gro_list; p; p = p->next) { 4343 unsigned long diffs; 4344 4345 NAPI_GRO_CB(p)->flush = 0; 4346 4347 if (hash != skb_get_hash_raw(p)) { 4348 NAPI_GRO_CB(p)->same_flow = 0; 4349 continue; 4350 } 4351 4352 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 4353 diffs |= p->vlan_tci ^ skb->vlan_tci; 4354 diffs |= skb_metadata_dst_cmp(p, skb); 4355 if (maclen == ETH_HLEN) 4356 diffs |= compare_ether_header(skb_mac_header(p), 4357 skb_mac_header(skb)); 4358 else if (!diffs) 4359 diffs = memcmp(skb_mac_header(p), 4360 skb_mac_header(skb), 4361 maclen); 4362 NAPI_GRO_CB(p)->same_flow = !diffs; 4363 } 4364 } 4365 4366 static void skb_gro_reset_offset(struct sk_buff *skb) 4367 { 4368 const struct skb_shared_info *pinfo = skb_shinfo(skb); 4369 const skb_frag_t *frag0 = &pinfo->frags[0]; 4370 4371 NAPI_GRO_CB(skb)->data_offset = 0; 4372 NAPI_GRO_CB(skb)->frag0 = NULL; 4373 NAPI_GRO_CB(skb)->frag0_len = 0; 4374 4375 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 4376 pinfo->nr_frags && 4377 !PageHighMem(skb_frag_page(frag0))) { 4378 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 4379 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 4380 } 4381 } 4382 4383 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 4384 { 4385 struct skb_shared_info *pinfo = skb_shinfo(skb); 4386 4387 BUG_ON(skb->end - skb->tail < grow); 4388 4389 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 4390 4391 skb->data_len -= grow; 4392 skb->tail += grow; 4393 4394 pinfo->frags[0].page_offset += grow; 4395 skb_frag_size_sub(&pinfo->frags[0], grow); 4396 4397 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 4398 skb_frag_unref(skb, 0); 4399 memmove(pinfo->frags, pinfo->frags + 1, 4400 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 4401 } 4402 } 4403 4404 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4405 { 4406 struct sk_buff **pp = NULL; 4407 struct packet_offload *ptype; 4408 __be16 type = skb->protocol; 4409 struct list_head *head = &offload_base; 4410 int same_flow; 4411 enum gro_result ret; 4412 int grow; 4413 4414 if (!(skb->dev->features & NETIF_F_GRO)) 4415 goto normal; 4416 4417 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad) 4418 goto normal; 4419 4420 gro_list_prepare(napi, skb); 4421 4422 rcu_read_lock(); 4423 list_for_each_entry_rcu(ptype, head, list) { 4424 if (ptype->type != type || !ptype->callbacks.gro_receive) 4425 continue; 4426 4427 skb_set_network_header(skb, skb_gro_offset(skb)); 4428 skb_reset_mac_len(skb); 4429 NAPI_GRO_CB(skb)->same_flow = 0; 4430 NAPI_GRO_CB(skb)->flush = 0; 4431 NAPI_GRO_CB(skb)->free = 0; 4432 NAPI_GRO_CB(skb)->udp_mark = 0; 4433 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 4434 4435 /* Setup for GRO checksum validation */ 4436 switch (skb->ip_summed) { 4437 case CHECKSUM_COMPLETE: 4438 NAPI_GRO_CB(skb)->csum = skb->csum; 4439 NAPI_GRO_CB(skb)->csum_valid = 1; 4440 NAPI_GRO_CB(skb)->csum_cnt = 0; 4441 break; 4442 case CHECKSUM_UNNECESSARY: 4443 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 4444 NAPI_GRO_CB(skb)->csum_valid = 0; 4445 break; 4446 default: 4447 NAPI_GRO_CB(skb)->csum_cnt = 0; 4448 NAPI_GRO_CB(skb)->csum_valid = 0; 4449 } 4450 4451 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4452 break; 4453 } 4454 rcu_read_unlock(); 4455 4456 if (&ptype->list == head) 4457 goto normal; 4458 4459 same_flow = NAPI_GRO_CB(skb)->same_flow; 4460 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 4461 4462 if (pp) { 4463 struct sk_buff *nskb = *pp; 4464 4465 *pp = nskb->next; 4466 nskb->next = NULL; 4467 napi_gro_complete(nskb); 4468 napi->gro_count--; 4469 } 4470 4471 if (same_flow) 4472 goto ok; 4473 4474 if (NAPI_GRO_CB(skb)->flush) 4475 goto normal; 4476 4477 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4478 struct sk_buff *nskb = napi->gro_list; 4479 4480 /* locate the end of the list to select the 'oldest' flow */ 4481 while (nskb->next) { 4482 pp = &nskb->next; 4483 nskb = *pp; 4484 } 4485 *pp = NULL; 4486 nskb->next = NULL; 4487 napi_gro_complete(nskb); 4488 } else { 4489 napi->gro_count++; 4490 } 4491 NAPI_GRO_CB(skb)->count = 1; 4492 NAPI_GRO_CB(skb)->age = jiffies; 4493 NAPI_GRO_CB(skb)->last = skb; 4494 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 4495 skb->next = napi->gro_list; 4496 napi->gro_list = skb; 4497 ret = GRO_HELD; 4498 4499 pull: 4500 grow = skb_gro_offset(skb) - skb_headlen(skb); 4501 if (grow > 0) 4502 gro_pull_from_frag0(skb, grow); 4503 ok: 4504 return ret; 4505 4506 normal: 4507 ret = GRO_NORMAL; 4508 goto pull; 4509 } 4510 4511 struct packet_offload *gro_find_receive_by_type(__be16 type) 4512 { 4513 struct list_head *offload_head = &offload_base; 4514 struct packet_offload *ptype; 4515 4516 list_for_each_entry_rcu(ptype, offload_head, list) { 4517 if (ptype->type != type || !ptype->callbacks.gro_receive) 4518 continue; 4519 return ptype; 4520 } 4521 return NULL; 4522 } 4523 EXPORT_SYMBOL(gro_find_receive_by_type); 4524 4525 struct packet_offload *gro_find_complete_by_type(__be16 type) 4526 { 4527 struct list_head *offload_head = &offload_base; 4528 struct packet_offload *ptype; 4529 4530 list_for_each_entry_rcu(ptype, offload_head, list) { 4531 if (ptype->type != type || !ptype->callbacks.gro_complete) 4532 continue; 4533 return ptype; 4534 } 4535 return NULL; 4536 } 4537 EXPORT_SYMBOL(gro_find_complete_by_type); 4538 4539 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4540 { 4541 switch (ret) { 4542 case GRO_NORMAL: 4543 if (netif_receive_skb_internal(skb)) 4544 ret = GRO_DROP; 4545 break; 4546 4547 case GRO_DROP: 4548 kfree_skb(skb); 4549 break; 4550 4551 case GRO_MERGED_FREE: 4552 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) { 4553 skb_dst_drop(skb); 4554 kmem_cache_free(skbuff_head_cache, skb); 4555 } else { 4556 __kfree_skb(skb); 4557 } 4558 break; 4559 4560 case GRO_HELD: 4561 case GRO_MERGED: 4562 break; 4563 } 4564 4565 return ret; 4566 } 4567 4568 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4569 { 4570 skb_mark_napi_id(skb, napi); 4571 trace_napi_gro_receive_entry(skb); 4572 4573 skb_gro_reset_offset(skb); 4574 4575 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 4576 } 4577 EXPORT_SYMBOL(napi_gro_receive); 4578 4579 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 4580 { 4581 if (unlikely(skb->pfmemalloc)) { 4582 consume_skb(skb); 4583 return; 4584 } 4585 __skb_pull(skb, skb_headlen(skb)); 4586 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 4587 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 4588 skb->vlan_tci = 0; 4589 skb->dev = napi->dev; 4590 skb->skb_iif = 0; 4591 skb->encapsulation = 0; 4592 skb_shinfo(skb)->gso_type = 0; 4593 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4594 4595 napi->skb = skb; 4596 } 4597 4598 struct sk_buff *napi_get_frags(struct napi_struct *napi) 4599 { 4600 struct sk_buff *skb = napi->skb; 4601 4602 if (!skb) { 4603 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 4604 if (skb) { 4605 napi->skb = skb; 4606 skb_mark_napi_id(skb, napi); 4607 } 4608 } 4609 return skb; 4610 } 4611 EXPORT_SYMBOL(napi_get_frags); 4612 4613 static gro_result_t napi_frags_finish(struct napi_struct *napi, 4614 struct sk_buff *skb, 4615 gro_result_t ret) 4616 { 4617 switch (ret) { 4618 case GRO_NORMAL: 4619 case GRO_HELD: 4620 __skb_push(skb, ETH_HLEN); 4621 skb->protocol = eth_type_trans(skb, skb->dev); 4622 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 4623 ret = GRO_DROP; 4624 break; 4625 4626 case GRO_DROP: 4627 case GRO_MERGED_FREE: 4628 napi_reuse_skb(napi, skb); 4629 break; 4630 4631 case GRO_MERGED: 4632 break; 4633 } 4634 4635 return ret; 4636 } 4637 4638 /* Upper GRO stack assumes network header starts at gro_offset=0 4639 * Drivers could call both napi_gro_frags() and napi_gro_receive() 4640 * We copy ethernet header into skb->data to have a common layout. 4641 */ 4642 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4643 { 4644 struct sk_buff *skb = napi->skb; 4645 const struct ethhdr *eth; 4646 unsigned int hlen = sizeof(*eth); 4647 4648 napi->skb = NULL; 4649 4650 skb_reset_mac_header(skb); 4651 skb_gro_reset_offset(skb); 4652 4653 eth = skb_gro_header_fast(skb, 0); 4654 if (unlikely(skb_gro_header_hard(skb, hlen))) { 4655 eth = skb_gro_header_slow(skb, hlen, 0); 4656 if (unlikely(!eth)) { 4657 napi_reuse_skb(napi, skb); 4658 return NULL; 4659 } 4660 } else { 4661 gro_pull_from_frag0(skb, hlen); 4662 NAPI_GRO_CB(skb)->frag0 += hlen; 4663 NAPI_GRO_CB(skb)->frag0_len -= hlen; 4664 } 4665 __skb_pull(skb, hlen); 4666 4667 /* 4668 * This works because the only protocols we care about don't require 4669 * special handling. 4670 * We'll fix it up properly in napi_frags_finish() 4671 */ 4672 skb->protocol = eth->h_proto; 4673 4674 return skb; 4675 } 4676 4677 gro_result_t napi_gro_frags(struct napi_struct *napi) 4678 { 4679 struct sk_buff *skb = napi_frags_skb(napi); 4680 4681 if (!skb) 4682 return GRO_DROP; 4683 4684 trace_napi_gro_frags_entry(skb); 4685 4686 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4687 } 4688 EXPORT_SYMBOL(napi_gro_frags); 4689 4690 /* Compute the checksum from gro_offset and return the folded value 4691 * after adding in any pseudo checksum. 4692 */ 4693 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 4694 { 4695 __wsum wsum; 4696 __sum16 sum; 4697 4698 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 4699 4700 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 4701 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 4702 if (likely(!sum)) { 4703 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 4704 !skb->csum_complete_sw) 4705 netdev_rx_csum_fault(skb->dev); 4706 } 4707 4708 NAPI_GRO_CB(skb)->csum = wsum; 4709 NAPI_GRO_CB(skb)->csum_valid = 1; 4710 4711 return sum; 4712 } 4713 EXPORT_SYMBOL(__skb_gro_checksum_complete); 4714 4715 /* 4716 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 4717 * Note: called with local irq disabled, but exits with local irq enabled. 4718 */ 4719 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 4720 { 4721 #ifdef CONFIG_RPS 4722 struct softnet_data *remsd = sd->rps_ipi_list; 4723 4724 if (remsd) { 4725 sd->rps_ipi_list = NULL; 4726 4727 local_irq_enable(); 4728 4729 /* Send pending IPI's to kick RPS processing on remote cpus. */ 4730 while (remsd) { 4731 struct softnet_data *next = remsd->rps_ipi_next; 4732 4733 if (cpu_online(remsd->cpu)) 4734 smp_call_function_single_async(remsd->cpu, 4735 &remsd->csd); 4736 remsd = next; 4737 } 4738 } else 4739 #endif 4740 local_irq_enable(); 4741 } 4742 4743 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 4744 { 4745 #ifdef CONFIG_RPS 4746 return sd->rps_ipi_list != NULL; 4747 #else 4748 return false; 4749 #endif 4750 } 4751 4752 static int process_backlog(struct napi_struct *napi, int quota) 4753 { 4754 int work = 0; 4755 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 4756 4757 /* Check if we have pending ipi, its better to send them now, 4758 * not waiting net_rx_action() end. 4759 */ 4760 if (sd_has_rps_ipi_waiting(sd)) { 4761 local_irq_disable(); 4762 net_rps_action_and_irq_enable(sd); 4763 } 4764 4765 napi->weight = weight_p; 4766 local_irq_disable(); 4767 while (1) { 4768 struct sk_buff *skb; 4769 4770 while ((skb = __skb_dequeue(&sd->process_queue))) { 4771 rcu_read_lock(); 4772 local_irq_enable(); 4773 __netif_receive_skb(skb); 4774 rcu_read_unlock(); 4775 local_irq_disable(); 4776 input_queue_head_incr(sd); 4777 if (++work >= quota) { 4778 local_irq_enable(); 4779 return work; 4780 } 4781 } 4782 4783 rps_lock(sd); 4784 if (skb_queue_empty(&sd->input_pkt_queue)) { 4785 /* 4786 * Inline a custom version of __napi_complete(). 4787 * only current cpu owns and manipulates this napi, 4788 * and NAPI_STATE_SCHED is the only possible flag set 4789 * on backlog. 4790 * We can use a plain write instead of clear_bit(), 4791 * and we dont need an smp_mb() memory barrier. 4792 */ 4793 napi->state = 0; 4794 rps_unlock(sd); 4795 4796 break; 4797 } 4798 4799 skb_queue_splice_tail_init(&sd->input_pkt_queue, 4800 &sd->process_queue); 4801 rps_unlock(sd); 4802 } 4803 local_irq_enable(); 4804 4805 return work; 4806 } 4807 4808 /** 4809 * __napi_schedule - schedule for receive 4810 * @n: entry to schedule 4811 * 4812 * The entry's receive function will be scheduled to run. 4813 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 4814 */ 4815 void __napi_schedule(struct napi_struct *n) 4816 { 4817 unsigned long flags; 4818 4819 local_irq_save(flags); 4820 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4821 local_irq_restore(flags); 4822 } 4823 EXPORT_SYMBOL(__napi_schedule); 4824 4825 /** 4826 * __napi_schedule_irqoff - schedule for receive 4827 * @n: entry to schedule 4828 * 4829 * Variant of __napi_schedule() assuming hard irqs are masked 4830 */ 4831 void __napi_schedule_irqoff(struct napi_struct *n) 4832 { 4833 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4834 } 4835 EXPORT_SYMBOL(__napi_schedule_irqoff); 4836 4837 void __napi_complete(struct napi_struct *n) 4838 { 4839 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 4840 4841 list_del_init(&n->poll_list); 4842 smp_mb__before_atomic(); 4843 clear_bit(NAPI_STATE_SCHED, &n->state); 4844 } 4845 EXPORT_SYMBOL(__napi_complete); 4846 4847 void napi_complete_done(struct napi_struct *n, int work_done) 4848 { 4849 unsigned long flags; 4850 4851 /* 4852 * don't let napi dequeue from the cpu poll list 4853 * just in case its running on a different cpu 4854 */ 4855 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 4856 return; 4857 4858 if (n->gro_list) { 4859 unsigned long timeout = 0; 4860 4861 if (work_done) 4862 timeout = n->dev->gro_flush_timeout; 4863 4864 if (timeout) 4865 hrtimer_start(&n->timer, ns_to_ktime(timeout), 4866 HRTIMER_MODE_REL_PINNED); 4867 else 4868 napi_gro_flush(n, false); 4869 } 4870 if (likely(list_empty(&n->poll_list))) { 4871 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state)); 4872 } else { 4873 /* If n->poll_list is not empty, we need to mask irqs */ 4874 local_irq_save(flags); 4875 __napi_complete(n); 4876 local_irq_restore(flags); 4877 } 4878 } 4879 EXPORT_SYMBOL(napi_complete_done); 4880 4881 /* must be called under rcu_read_lock(), as we dont take a reference */ 4882 static struct napi_struct *napi_by_id(unsigned int napi_id) 4883 { 4884 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 4885 struct napi_struct *napi; 4886 4887 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 4888 if (napi->napi_id == napi_id) 4889 return napi; 4890 4891 return NULL; 4892 } 4893 4894 #if defined(CONFIG_NET_RX_BUSY_POLL) 4895 #define BUSY_POLL_BUDGET 8 4896 bool sk_busy_loop(struct sock *sk, int nonblock) 4897 { 4898 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0; 4899 int (*busy_poll)(struct napi_struct *dev); 4900 struct napi_struct *napi; 4901 int rc = false; 4902 4903 rcu_read_lock(); 4904 4905 napi = napi_by_id(sk->sk_napi_id); 4906 if (!napi) 4907 goto out; 4908 4909 /* Note: ndo_busy_poll method is optional in linux-4.5 */ 4910 busy_poll = napi->dev->netdev_ops->ndo_busy_poll; 4911 4912 do { 4913 rc = 0; 4914 local_bh_disable(); 4915 if (busy_poll) { 4916 rc = busy_poll(napi); 4917 } else if (napi_schedule_prep(napi)) { 4918 void *have = netpoll_poll_lock(napi); 4919 4920 if (test_bit(NAPI_STATE_SCHED, &napi->state)) { 4921 rc = napi->poll(napi, BUSY_POLL_BUDGET); 4922 trace_napi_poll(napi); 4923 if (rc == BUSY_POLL_BUDGET) { 4924 napi_complete_done(napi, rc); 4925 napi_schedule(napi); 4926 } 4927 } 4928 netpoll_poll_unlock(have); 4929 } 4930 if (rc > 0) 4931 NET_ADD_STATS_BH(sock_net(sk), 4932 LINUX_MIB_BUSYPOLLRXPACKETS, rc); 4933 local_bh_enable(); 4934 4935 if (rc == LL_FLUSH_FAILED) 4936 break; /* permanent failure */ 4937 4938 cpu_relax(); 4939 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) && 4940 !need_resched() && !busy_loop_timeout(end_time)); 4941 4942 rc = !skb_queue_empty(&sk->sk_receive_queue); 4943 out: 4944 rcu_read_unlock(); 4945 return rc; 4946 } 4947 EXPORT_SYMBOL(sk_busy_loop); 4948 4949 #endif /* CONFIG_NET_RX_BUSY_POLL */ 4950 4951 void napi_hash_add(struct napi_struct *napi) 4952 { 4953 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 4954 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 4955 return; 4956 4957 spin_lock(&napi_hash_lock); 4958 4959 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */ 4960 do { 4961 if (unlikely(++napi_gen_id < NR_CPUS + 1)) 4962 napi_gen_id = NR_CPUS + 1; 4963 } while (napi_by_id(napi_gen_id)); 4964 napi->napi_id = napi_gen_id; 4965 4966 hlist_add_head_rcu(&napi->napi_hash_node, 4967 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 4968 4969 spin_unlock(&napi_hash_lock); 4970 } 4971 EXPORT_SYMBOL_GPL(napi_hash_add); 4972 4973 /* Warning : caller is responsible to make sure rcu grace period 4974 * is respected before freeing memory containing @napi 4975 */ 4976 bool napi_hash_del(struct napi_struct *napi) 4977 { 4978 bool rcu_sync_needed = false; 4979 4980 spin_lock(&napi_hash_lock); 4981 4982 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 4983 rcu_sync_needed = true; 4984 hlist_del_rcu(&napi->napi_hash_node); 4985 } 4986 spin_unlock(&napi_hash_lock); 4987 return rcu_sync_needed; 4988 } 4989 EXPORT_SYMBOL_GPL(napi_hash_del); 4990 4991 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 4992 { 4993 struct napi_struct *napi; 4994 4995 napi = container_of(timer, struct napi_struct, timer); 4996 if (napi->gro_list) 4997 napi_schedule(napi); 4998 4999 return HRTIMER_NORESTART; 5000 } 5001 5002 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 5003 int (*poll)(struct napi_struct *, int), int weight) 5004 { 5005 INIT_LIST_HEAD(&napi->poll_list); 5006 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 5007 napi->timer.function = napi_watchdog; 5008 napi->gro_count = 0; 5009 napi->gro_list = NULL; 5010 napi->skb = NULL; 5011 napi->poll = poll; 5012 if (weight > NAPI_POLL_WEIGHT) 5013 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 5014 weight, dev->name); 5015 napi->weight = weight; 5016 list_add(&napi->dev_list, &dev->napi_list); 5017 napi->dev = dev; 5018 #ifdef CONFIG_NETPOLL 5019 spin_lock_init(&napi->poll_lock); 5020 napi->poll_owner = -1; 5021 #endif 5022 set_bit(NAPI_STATE_SCHED, &napi->state); 5023 napi_hash_add(napi); 5024 } 5025 EXPORT_SYMBOL(netif_napi_add); 5026 5027 void napi_disable(struct napi_struct *n) 5028 { 5029 might_sleep(); 5030 set_bit(NAPI_STATE_DISABLE, &n->state); 5031 5032 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 5033 msleep(1); 5034 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 5035 msleep(1); 5036 5037 hrtimer_cancel(&n->timer); 5038 5039 clear_bit(NAPI_STATE_DISABLE, &n->state); 5040 } 5041 EXPORT_SYMBOL(napi_disable); 5042 5043 /* Must be called in process context */ 5044 void netif_napi_del(struct napi_struct *napi) 5045 { 5046 might_sleep(); 5047 if (napi_hash_del(napi)) 5048 synchronize_net(); 5049 list_del_init(&napi->dev_list); 5050 napi_free_frags(napi); 5051 5052 kfree_skb_list(napi->gro_list); 5053 napi->gro_list = NULL; 5054 napi->gro_count = 0; 5055 } 5056 EXPORT_SYMBOL(netif_napi_del); 5057 5058 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 5059 { 5060 void *have; 5061 int work, weight; 5062 5063 list_del_init(&n->poll_list); 5064 5065 have = netpoll_poll_lock(n); 5066 5067 weight = n->weight; 5068 5069 /* This NAPI_STATE_SCHED test is for avoiding a race 5070 * with netpoll's poll_napi(). Only the entity which 5071 * obtains the lock and sees NAPI_STATE_SCHED set will 5072 * actually make the ->poll() call. Therefore we avoid 5073 * accidentally calling ->poll() when NAPI is not scheduled. 5074 */ 5075 work = 0; 5076 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 5077 work = n->poll(n, weight); 5078 trace_napi_poll(n); 5079 } 5080 5081 WARN_ON_ONCE(work > weight); 5082 5083 if (likely(work < weight)) 5084 goto out_unlock; 5085 5086 /* Drivers must not modify the NAPI state if they 5087 * consume the entire weight. In such cases this code 5088 * still "owns" the NAPI instance and therefore can 5089 * move the instance around on the list at-will. 5090 */ 5091 if (unlikely(napi_disable_pending(n))) { 5092 napi_complete(n); 5093 goto out_unlock; 5094 } 5095 5096 if (n->gro_list) { 5097 /* flush too old packets 5098 * If HZ < 1000, flush all packets. 5099 */ 5100 napi_gro_flush(n, HZ >= 1000); 5101 } 5102 5103 /* Some drivers may have called napi_schedule 5104 * prior to exhausting their budget. 5105 */ 5106 if (unlikely(!list_empty(&n->poll_list))) { 5107 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 5108 n->dev ? n->dev->name : "backlog"); 5109 goto out_unlock; 5110 } 5111 5112 list_add_tail(&n->poll_list, repoll); 5113 5114 out_unlock: 5115 netpoll_poll_unlock(have); 5116 5117 return work; 5118 } 5119 5120 static void net_rx_action(struct softirq_action *h) 5121 { 5122 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5123 unsigned long time_limit = jiffies + 2; 5124 int budget = netdev_budget; 5125 LIST_HEAD(list); 5126 LIST_HEAD(repoll); 5127 5128 local_irq_disable(); 5129 list_splice_init(&sd->poll_list, &list); 5130 local_irq_enable(); 5131 5132 for (;;) { 5133 struct napi_struct *n; 5134 5135 if (list_empty(&list)) { 5136 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 5137 return; 5138 break; 5139 } 5140 5141 n = list_first_entry(&list, struct napi_struct, poll_list); 5142 budget -= napi_poll(n, &repoll); 5143 5144 /* If softirq window is exhausted then punt. 5145 * Allow this to run for 2 jiffies since which will allow 5146 * an average latency of 1.5/HZ. 5147 */ 5148 if (unlikely(budget <= 0 || 5149 time_after_eq(jiffies, time_limit))) { 5150 sd->time_squeeze++; 5151 break; 5152 } 5153 } 5154 5155 local_irq_disable(); 5156 5157 list_splice_tail_init(&sd->poll_list, &list); 5158 list_splice_tail(&repoll, &list); 5159 list_splice(&list, &sd->poll_list); 5160 if (!list_empty(&sd->poll_list)) 5161 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5162 5163 net_rps_action_and_irq_enable(sd); 5164 } 5165 5166 struct netdev_adjacent { 5167 struct net_device *dev; 5168 5169 /* upper master flag, there can only be one master device per list */ 5170 bool master; 5171 5172 /* counter for the number of times this device was added to us */ 5173 u16 ref_nr; 5174 5175 /* private field for the users */ 5176 void *private; 5177 5178 struct list_head list; 5179 struct rcu_head rcu; 5180 }; 5181 5182 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 5183 struct list_head *adj_list) 5184 { 5185 struct netdev_adjacent *adj; 5186 5187 list_for_each_entry(adj, adj_list, list) { 5188 if (adj->dev == adj_dev) 5189 return adj; 5190 } 5191 return NULL; 5192 } 5193 5194 /** 5195 * netdev_has_upper_dev - Check if device is linked to an upper device 5196 * @dev: device 5197 * @upper_dev: upper device to check 5198 * 5199 * Find out if a device is linked to specified upper device and return true 5200 * in case it is. Note that this checks only immediate upper device, 5201 * not through a complete stack of devices. The caller must hold the RTNL lock. 5202 */ 5203 bool netdev_has_upper_dev(struct net_device *dev, 5204 struct net_device *upper_dev) 5205 { 5206 ASSERT_RTNL(); 5207 5208 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper); 5209 } 5210 EXPORT_SYMBOL(netdev_has_upper_dev); 5211 5212 /** 5213 * netdev_has_any_upper_dev - Check if device is linked to some device 5214 * @dev: device 5215 * 5216 * Find out if a device is linked to an upper device and return true in case 5217 * it is. The caller must hold the RTNL lock. 5218 */ 5219 static bool netdev_has_any_upper_dev(struct net_device *dev) 5220 { 5221 ASSERT_RTNL(); 5222 5223 return !list_empty(&dev->all_adj_list.upper); 5224 } 5225 5226 /** 5227 * netdev_master_upper_dev_get - Get master upper device 5228 * @dev: device 5229 * 5230 * Find a master upper device and return pointer to it or NULL in case 5231 * it's not there. The caller must hold the RTNL lock. 5232 */ 5233 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 5234 { 5235 struct netdev_adjacent *upper; 5236 5237 ASSERT_RTNL(); 5238 5239 if (list_empty(&dev->adj_list.upper)) 5240 return NULL; 5241 5242 upper = list_first_entry(&dev->adj_list.upper, 5243 struct netdev_adjacent, list); 5244 if (likely(upper->master)) 5245 return upper->dev; 5246 return NULL; 5247 } 5248 EXPORT_SYMBOL(netdev_master_upper_dev_get); 5249 5250 void *netdev_adjacent_get_private(struct list_head *adj_list) 5251 { 5252 struct netdev_adjacent *adj; 5253 5254 adj = list_entry(adj_list, struct netdev_adjacent, list); 5255 5256 return adj->private; 5257 } 5258 EXPORT_SYMBOL(netdev_adjacent_get_private); 5259 5260 /** 5261 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 5262 * @dev: device 5263 * @iter: list_head ** of the current position 5264 * 5265 * Gets the next device from the dev's upper list, starting from iter 5266 * position. The caller must hold RCU read lock. 5267 */ 5268 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 5269 struct list_head **iter) 5270 { 5271 struct netdev_adjacent *upper; 5272 5273 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5274 5275 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5276 5277 if (&upper->list == &dev->adj_list.upper) 5278 return NULL; 5279 5280 *iter = &upper->list; 5281 5282 return upper->dev; 5283 } 5284 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 5285 5286 /** 5287 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list 5288 * @dev: device 5289 * @iter: list_head ** of the current position 5290 * 5291 * Gets the next device from the dev's upper list, starting from iter 5292 * position. The caller must hold RCU read lock. 5293 */ 5294 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 5295 struct list_head **iter) 5296 { 5297 struct netdev_adjacent *upper; 5298 5299 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5300 5301 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5302 5303 if (&upper->list == &dev->all_adj_list.upper) 5304 return NULL; 5305 5306 *iter = &upper->list; 5307 5308 return upper->dev; 5309 } 5310 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu); 5311 5312 /** 5313 * netdev_lower_get_next_private - Get the next ->private from the 5314 * lower neighbour list 5315 * @dev: device 5316 * @iter: list_head ** of the current position 5317 * 5318 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5319 * list, starting from iter position. The caller must hold either hold the 5320 * RTNL lock or its own locking that guarantees that the neighbour lower 5321 * list will remain unchanged. 5322 */ 5323 void *netdev_lower_get_next_private(struct net_device *dev, 5324 struct list_head **iter) 5325 { 5326 struct netdev_adjacent *lower; 5327 5328 lower = list_entry(*iter, struct netdev_adjacent, list); 5329 5330 if (&lower->list == &dev->adj_list.lower) 5331 return NULL; 5332 5333 *iter = lower->list.next; 5334 5335 return lower->private; 5336 } 5337 EXPORT_SYMBOL(netdev_lower_get_next_private); 5338 5339 /** 5340 * netdev_lower_get_next_private_rcu - Get the next ->private from the 5341 * lower neighbour list, RCU 5342 * variant 5343 * @dev: device 5344 * @iter: list_head ** of the current position 5345 * 5346 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5347 * list, starting from iter position. The caller must hold RCU read lock. 5348 */ 5349 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 5350 struct list_head **iter) 5351 { 5352 struct netdev_adjacent *lower; 5353 5354 WARN_ON_ONCE(!rcu_read_lock_held()); 5355 5356 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5357 5358 if (&lower->list == &dev->adj_list.lower) 5359 return NULL; 5360 5361 *iter = &lower->list; 5362 5363 return lower->private; 5364 } 5365 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 5366 5367 /** 5368 * netdev_lower_get_next - Get the next device from the lower neighbour 5369 * list 5370 * @dev: device 5371 * @iter: list_head ** of the current position 5372 * 5373 * Gets the next netdev_adjacent from the dev's lower neighbour 5374 * list, starting from iter position. The caller must hold RTNL lock or 5375 * its own locking that guarantees that the neighbour lower 5376 * list will remain unchanged. 5377 */ 5378 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 5379 { 5380 struct netdev_adjacent *lower; 5381 5382 lower = list_entry(*iter, struct netdev_adjacent, list); 5383 5384 if (&lower->list == &dev->adj_list.lower) 5385 return NULL; 5386 5387 *iter = lower->list.next; 5388 5389 return lower->dev; 5390 } 5391 EXPORT_SYMBOL(netdev_lower_get_next); 5392 5393 /** 5394 * netdev_lower_get_first_private_rcu - Get the first ->private from the 5395 * lower neighbour list, RCU 5396 * variant 5397 * @dev: device 5398 * 5399 * Gets the first netdev_adjacent->private from the dev's lower neighbour 5400 * list. The caller must hold RCU read lock. 5401 */ 5402 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 5403 { 5404 struct netdev_adjacent *lower; 5405 5406 lower = list_first_or_null_rcu(&dev->adj_list.lower, 5407 struct netdev_adjacent, list); 5408 if (lower) 5409 return lower->private; 5410 return NULL; 5411 } 5412 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 5413 5414 /** 5415 * netdev_master_upper_dev_get_rcu - Get master upper device 5416 * @dev: device 5417 * 5418 * Find a master upper device and return pointer to it or NULL in case 5419 * it's not there. The caller must hold the RCU read lock. 5420 */ 5421 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 5422 { 5423 struct netdev_adjacent *upper; 5424 5425 upper = list_first_or_null_rcu(&dev->adj_list.upper, 5426 struct netdev_adjacent, list); 5427 if (upper && likely(upper->master)) 5428 return upper->dev; 5429 return NULL; 5430 } 5431 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 5432 5433 static int netdev_adjacent_sysfs_add(struct net_device *dev, 5434 struct net_device *adj_dev, 5435 struct list_head *dev_list) 5436 { 5437 char linkname[IFNAMSIZ+7]; 5438 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5439 "upper_%s" : "lower_%s", adj_dev->name); 5440 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 5441 linkname); 5442 } 5443 static void netdev_adjacent_sysfs_del(struct net_device *dev, 5444 char *name, 5445 struct list_head *dev_list) 5446 { 5447 char linkname[IFNAMSIZ+7]; 5448 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5449 "upper_%s" : "lower_%s", name); 5450 sysfs_remove_link(&(dev->dev.kobj), linkname); 5451 } 5452 5453 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 5454 struct net_device *adj_dev, 5455 struct list_head *dev_list) 5456 { 5457 return (dev_list == &dev->adj_list.upper || 5458 dev_list == &dev->adj_list.lower) && 5459 net_eq(dev_net(dev), dev_net(adj_dev)); 5460 } 5461 5462 static int __netdev_adjacent_dev_insert(struct net_device *dev, 5463 struct net_device *adj_dev, 5464 struct list_head *dev_list, 5465 void *private, bool master) 5466 { 5467 struct netdev_adjacent *adj; 5468 int ret; 5469 5470 adj = __netdev_find_adj(adj_dev, dev_list); 5471 5472 if (adj) { 5473 adj->ref_nr++; 5474 return 0; 5475 } 5476 5477 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 5478 if (!adj) 5479 return -ENOMEM; 5480 5481 adj->dev = adj_dev; 5482 adj->master = master; 5483 adj->ref_nr = 1; 5484 adj->private = private; 5485 dev_hold(adj_dev); 5486 5487 pr_debug("dev_hold for %s, because of link added from %s to %s\n", 5488 adj_dev->name, dev->name, adj_dev->name); 5489 5490 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 5491 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 5492 if (ret) 5493 goto free_adj; 5494 } 5495 5496 /* Ensure that master link is always the first item in list. */ 5497 if (master) { 5498 ret = sysfs_create_link(&(dev->dev.kobj), 5499 &(adj_dev->dev.kobj), "master"); 5500 if (ret) 5501 goto remove_symlinks; 5502 5503 list_add_rcu(&adj->list, dev_list); 5504 } else { 5505 list_add_tail_rcu(&adj->list, dev_list); 5506 } 5507 5508 return 0; 5509 5510 remove_symlinks: 5511 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5512 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5513 free_adj: 5514 kfree(adj); 5515 dev_put(adj_dev); 5516 5517 return ret; 5518 } 5519 5520 static void __netdev_adjacent_dev_remove(struct net_device *dev, 5521 struct net_device *adj_dev, 5522 struct list_head *dev_list) 5523 { 5524 struct netdev_adjacent *adj; 5525 5526 adj = __netdev_find_adj(adj_dev, dev_list); 5527 5528 if (!adj) { 5529 pr_err("tried to remove device %s from %s\n", 5530 dev->name, adj_dev->name); 5531 BUG(); 5532 } 5533 5534 if (adj->ref_nr > 1) { 5535 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name, 5536 adj->ref_nr-1); 5537 adj->ref_nr--; 5538 return; 5539 } 5540 5541 if (adj->master) 5542 sysfs_remove_link(&(dev->dev.kobj), "master"); 5543 5544 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5545 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5546 5547 list_del_rcu(&adj->list); 5548 pr_debug("dev_put for %s, because link removed from %s to %s\n", 5549 adj_dev->name, dev->name, adj_dev->name); 5550 dev_put(adj_dev); 5551 kfree_rcu(adj, rcu); 5552 } 5553 5554 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 5555 struct net_device *upper_dev, 5556 struct list_head *up_list, 5557 struct list_head *down_list, 5558 void *private, bool master) 5559 { 5560 int ret; 5561 5562 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private, 5563 master); 5564 if (ret) 5565 return ret; 5566 5567 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private, 5568 false); 5569 if (ret) { 5570 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 5571 return ret; 5572 } 5573 5574 return 0; 5575 } 5576 5577 static int __netdev_adjacent_dev_link(struct net_device *dev, 5578 struct net_device *upper_dev) 5579 { 5580 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 5581 &dev->all_adj_list.upper, 5582 &upper_dev->all_adj_list.lower, 5583 NULL, false); 5584 } 5585 5586 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 5587 struct net_device *upper_dev, 5588 struct list_head *up_list, 5589 struct list_head *down_list) 5590 { 5591 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 5592 __netdev_adjacent_dev_remove(upper_dev, dev, down_list); 5593 } 5594 5595 static void __netdev_adjacent_dev_unlink(struct net_device *dev, 5596 struct net_device *upper_dev) 5597 { 5598 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 5599 &dev->all_adj_list.upper, 5600 &upper_dev->all_adj_list.lower); 5601 } 5602 5603 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 5604 struct net_device *upper_dev, 5605 void *private, bool master) 5606 { 5607 int ret = __netdev_adjacent_dev_link(dev, upper_dev); 5608 5609 if (ret) 5610 return ret; 5611 5612 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 5613 &dev->adj_list.upper, 5614 &upper_dev->adj_list.lower, 5615 private, master); 5616 if (ret) { 5617 __netdev_adjacent_dev_unlink(dev, upper_dev); 5618 return ret; 5619 } 5620 5621 return 0; 5622 } 5623 5624 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 5625 struct net_device *upper_dev) 5626 { 5627 __netdev_adjacent_dev_unlink(dev, upper_dev); 5628 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 5629 &dev->adj_list.upper, 5630 &upper_dev->adj_list.lower); 5631 } 5632 5633 static int __netdev_upper_dev_link(struct net_device *dev, 5634 struct net_device *upper_dev, bool master, 5635 void *upper_priv, void *upper_info) 5636 { 5637 struct netdev_notifier_changeupper_info changeupper_info; 5638 struct netdev_adjacent *i, *j, *to_i, *to_j; 5639 int ret = 0; 5640 5641 ASSERT_RTNL(); 5642 5643 if (dev == upper_dev) 5644 return -EBUSY; 5645 5646 /* To prevent loops, check if dev is not upper device to upper_dev. */ 5647 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper)) 5648 return -EBUSY; 5649 5650 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper)) 5651 return -EEXIST; 5652 5653 if (master && netdev_master_upper_dev_get(dev)) 5654 return -EBUSY; 5655 5656 changeupper_info.upper_dev = upper_dev; 5657 changeupper_info.master = master; 5658 changeupper_info.linking = true; 5659 changeupper_info.upper_info = upper_info; 5660 5661 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 5662 &changeupper_info.info); 5663 ret = notifier_to_errno(ret); 5664 if (ret) 5665 return ret; 5666 5667 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 5668 master); 5669 if (ret) 5670 return ret; 5671 5672 /* Now that we linked these devs, make all the upper_dev's 5673 * all_adj_list.upper visible to every dev's all_adj_list.lower an 5674 * versa, and don't forget the devices itself. All of these 5675 * links are non-neighbours. 5676 */ 5677 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5678 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5679 pr_debug("Interlinking %s with %s, non-neighbour\n", 5680 i->dev->name, j->dev->name); 5681 ret = __netdev_adjacent_dev_link(i->dev, j->dev); 5682 if (ret) 5683 goto rollback_mesh; 5684 } 5685 } 5686 5687 /* add dev to every upper_dev's upper device */ 5688 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 5689 pr_debug("linking %s's upper device %s with %s\n", 5690 upper_dev->name, i->dev->name, dev->name); 5691 ret = __netdev_adjacent_dev_link(dev, i->dev); 5692 if (ret) 5693 goto rollback_upper_mesh; 5694 } 5695 5696 /* add upper_dev to every dev's lower device */ 5697 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5698 pr_debug("linking %s's lower device %s with %s\n", dev->name, 5699 i->dev->name, upper_dev->name); 5700 ret = __netdev_adjacent_dev_link(i->dev, upper_dev); 5701 if (ret) 5702 goto rollback_lower_mesh; 5703 } 5704 5705 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 5706 &changeupper_info.info); 5707 ret = notifier_to_errno(ret); 5708 if (ret) 5709 goto rollback_lower_mesh; 5710 5711 return 0; 5712 5713 rollback_lower_mesh: 5714 to_i = i; 5715 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5716 if (i == to_i) 5717 break; 5718 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5719 } 5720 5721 i = NULL; 5722 5723 rollback_upper_mesh: 5724 to_i = i; 5725 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 5726 if (i == to_i) 5727 break; 5728 __netdev_adjacent_dev_unlink(dev, i->dev); 5729 } 5730 5731 i = j = NULL; 5732 5733 rollback_mesh: 5734 to_i = i; 5735 to_j = j; 5736 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5737 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5738 if (i == to_i && j == to_j) 5739 break; 5740 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5741 } 5742 if (i == to_i) 5743 break; 5744 } 5745 5746 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5747 5748 return ret; 5749 } 5750 5751 /** 5752 * netdev_upper_dev_link - Add a link to the upper device 5753 * @dev: device 5754 * @upper_dev: new upper device 5755 * 5756 * Adds a link to device which is upper to this one. The caller must hold 5757 * the RTNL lock. On a failure a negative errno code is returned. 5758 * On success the reference counts are adjusted and the function 5759 * returns zero. 5760 */ 5761 int netdev_upper_dev_link(struct net_device *dev, 5762 struct net_device *upper_dev) 5763 { 5764 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL); 5765 } 5766 EXPORT_SYMBOL(netdev_upper_dev_link); 5767 5768 /** 5769 * netdev_master_upper_dev_link - Add a master link to the upper device 5770 * @dev: device 5771 * @upper_dev: new upper device 5772 * @upper_priv: upper device private 5773 * @upper_info: upper info to be passed down via notifier 5774 * 5775 * Adds a link to device which is upper to this one. In this case, only 5776 * one master upper device can be linked, although other non-master devices 5777 * might be linked as well. The caller must hold the RTNL lock. 5778 * On a failure a negative errno code is returned. On success the reference 5779 * counts are adjusted and the function returns zero. 5780 */ 5781 int netdev_master_upper_dev_link(struct net_device *dev, 5782 struct net_device *upper_dev, 5783 void *upper_priv, void *upper_info) 5784 { 5785 return __netdev_upper_dev_link(dev, upper_dev, true, 5786 upper_priv, upper_info); 5787 } 5788 EXPORT_SYMBOL(netdev_master_upper_dev_link); 5789 5790 /** 5791 * netdev_upper_dev_unlink - Removes a link to upper device 5792 * @dev: device 5793 * @upper_dev: new upper device 5794 * 5795 * Removes a link to device which is upper to this one. The caller must hold 5796 * the RTNL lock. 5797 */ 5798 void netdev_upper_dev_unlink(struct net_device *dev, 5799 struct net_device *upper_dev) 5800 { 5801 struct netdev_notifier_changeupper_info changeupper_info; 5802 struct netdev_adjacent *i, *j; 5803 ASSERT_RTNL(); 5804 5805 changeupper_info.upper_dev = upper_dev; 5806 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 5807 changeupper_info.linking = false; 5808 5809 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 5810 &changeupper_info.info); 5811 5812 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5813 5814 /* Here is the tricky part. We must remove all dev's lower 5815 * devices from all upper_dev's upper devices and vice 5816 * versa, to maintain the graph relationship. 5817 */ 5818 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5819 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) 5820 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5821 5822 /* remove also the devices itself from lower/upper device 5823 * list 5824 */ 5825 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5826 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5827 5828 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) 5829 __netdev_adjacent_dev_unlink(dev, i->dev); 5830 5831 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 5832 &changeupper_info.info); 5833 } 5834 EXPORT_SYMBOL(netdev_upper_dev_unlink); 5835 5836 /** 5837 * netdev_bonding_info_change - Dispatch event about slave change 5838 * @dev: device 5839 * @bonding_info: info to dispatch 5840 * 5841 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 5842 * The caller must hold the RTNL lock. 5843 */ 5844 void netdev_bonding_info_change(struct net_device *dev, 5845 struct netdev_bonding_info *bonding_info) 5846 { 5847 struct netdev_notifier_bonding_info info; 5848 5849 memcpy(&info.bonding_info, bonding_info, 5850 sizeof(struct netdev_bonding_info)); 5851 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev, 5852 &info.info); 5853 } 5854 EXPORT_SYMBOL(netdev_bonding_info_change); 5855 5856 static void netdev_adjacent_add_links(struct net_device *dev) 5857 { 5858 struct netdev_adjacent *iter; 5859 5860 struct net *net = dev_net(dev); 5861 5862 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5863 if (!net_eq(net,dev_net(iter->dev))) 5864 continue; 5865 netdev_adjacent_sysfs_add(iter->dev, dev, 5866 &iter->dev->adj_list.lower); 5867 netdev_adjacent_sysfs_add(dev, iter->dev, 5868 &dev->adj_list.upper); 5869 } 5870 5871 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5872 if (!net_eq(net,dev_net(iter->dev))) 5873 continue; 5874 netdev_adjacent_sysfs_add(iter->dev, dev, 5875 &iter->dev->adj_list.upper); 5876 netdev_adjacent_sysfs_add(dev, iter->dev, 5877 &dev->adj_list.lower); 5878 } 5879 } 5880 5881 static void netdev_adjacent_del_links(struct net_device *dev) 5882 { 5883 struct netdev_adjacent *iter; 5884 5885 struct net *net = dev_net(dev); 5886 5887 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5888 if (!net_eq(net,dev_net(iter->dev))) 5889 continue; 5890 netdev_adjacent_sysfs_del(iter->dev, dev->name, 5891 &iter->dev->adj_list.lower); 5892 netdev_adjacent_sysfs_del(dev, iter->dev->name, 5893 &dev->adj_list.upper); 5894 } 5895 5896 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5897 if (!net_eq(net,dev_net(iter->dev))) 5898 continue; 5899 netdev_adjacent_sysfs_del(iter->dev, dev->name, 5900 &iter->dev->adj_list.upper); 5901 netdev_adjacent_sysfs_del(dev, iter->dev->name, 5902 &dev->adj_list.lower); 5903 } 5904 } 5905 5906 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 5907 { 5908 struct netdev_adjacent *iter; 5909 5910 struct net *net = dev_net(dev); 5911 5912 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5913 if (!net_eq(net,dev_net(iter->dev))) 5914 continue; 5915 netdev_adjacent_sysfs_del(iter->dev, oldname, 5916 &iter->dev->adj_list.lower); 5917 netdev_adjacent_sysfs_add(iter->dev, dev, 5918 &iter->dev->adj_list.lower); 5919 } 5920 5921 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5922 if (!net_eq(net,dev_net(iter->dev))) 5923 continue; 5924 netdev_adjacent_sysfs_del(iter->dev, oldname, 5925 &iter->dev->adj_list.upper); 5926 netdev_adjacent_sysfs_add(iter->dev, dev, 5927 &iter->dev->adj_list.upper); 5928 } 5929 } 5930 5931 void *netdev_lower_dev_get_private(struct net_device *dev, 5932 struct net_device *lower_dev) 5933 { 5934 struct netdev_adjacent *lower; 5935 5936 if (!lower_dev) 5937 return NULL; 5938 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 5939 if (!lower) 5940 return NULL; 5941 5942 return lower->private; 5943 } 5944 EXPORT_SYMBOL(netdev_lower_dev_get_private); 5945 5946 5947 int dev_get_nest_level(struct net_device *dev, 5948 bool (*type_check)(const struct net_device *dev)) 5949 { 5950 struct net_device *lower = NULL; 5951 struct list_head *iter; 5952 int max_nest = -1; 5953 int nest; 5954 5955 ASSERT_RTNL(); 5956 5957 netdev_for_each_lower_dev(dev, lower, iter) { 5958 nest = dev_get_nest_level(lower, type_check); 5959 if (max_nest < nest) 5960 max_nest = nest; 5961 } 5962 5963 if (type_check(dev)) 5964 max_nest++; 5965 5966 return max_nest; 5967 } 5968 EXPORT_SYMBOL(dev_get_nest_level); 5969 5970 /** 5971 * netdev_lower_change - Dispatch event about lower device state change 5972 * @lower_dev: device 5973 * @lower_state_info: state to dispatch 5974 * 5975 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 5976 * The caller must hold the RTNL lock. 5977 */ 5978 void netdev_lower_state_changed(struct net_device *lower_dev, 5979 void *lower_state_info) 5980 { 5981 struct netdev_notifier_changelowerstate_info changelowerstate_info; 5982 5983 ASSERT_RTNL(); 5984 changelowerstate_info.lower_state_info = lower_state_info; 5985 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev, 5986 &changelowerstate_info.info); 5987 } 5988 EXPORT_SYMBOL(netdev_lower_state_changed); 5989 5990 static void dev_change_rx_flags(struct net_device *dev, int flags) 5991 { 5992 const struct net_device_ops *ops = dev->netdev_ops; 5993 5994 if (ops->ndo_change_rx_flags) 5995 ops->ndo_change_rx_flags(dev, flags); 5996 } 5997 5998 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 5999 { 6000 unsigned int old_flags = dev->flags; 6001 kuid_t uid; 6002 kgid_t gid; 6003 6004 ASSERT_RTNL(); 6005 6006 dev->flags |= IFF_PROMISC; 6007 dev->promiscuity += inc; 6008 if (dev->promiscuity == 0) { 6009 /* 6010 * Avoid overflow. 6011 * If inc causes overflow, untouch promisc and return error. 6012 */ 6013 if (inc < 0) 6014 dev->flags &= ~IFF_PROMISC; 6015 else { 6016 dev->promiscuity -= inc; 6017 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 6018 dev->name); 6019 return -EOVERFLOW; 6020 } 6021 } 6022 if (dev->flags != old_flags) { 6023 pr_info("device %s %s promiscuous mode\n", 6024 dev->name, 6025 dev->flags & IFF_PROMISC ? "entered" : "left"); 6026 if (audit_enabled) { 6027 current_uid_gid(&uid, &gid); 6028 audit_log(current->audit_context, GFP_ATOMIC, 6029 AUDIT_ANOM_PROMISCUOUS, 6030 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 6031 dev->name, (dev->flags & IFF_PROMISC), 6032 (old_flags & IFF_PROMISC), 6033 from_kuid(&init_user_ns, audit_get_loginuid(current)), 6034 from_kuid(&init_user_ns, uid), 6035 from_kgid(&init_user_ns, gid), 6036 audit_get_sessionid(current)); 6037 } 6038 6039 dev_change_rx_flags(dev, IFF_PROMISC); 6040 } 6041 if (notify) 6042 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 6043 return 0; 6044 } 6045 6046 /** 6047 * dev_set_promiscuity - update promiscuity count on a device 6048 * @dev: device 6049 * @inc: modifier 6050 * 6051 * Add or remove promiscuity from a device. While the count in the device 6052 * remains above zero the interface remains promiscuous. Once it hits zero 6053 * the device reverts back to normal filtering operation. A negative inc 6054 * value is used to drop promiscuity on the device. 6055 * Return 0 if successful or a negative errno code on error. 6056 */ 6057 int dev_set_promiscuity(struct net_device *dev, int inc) 6058 { 6059 unsigned int old_flags = dev->flags; 6060 int err; 6061 6062 err = __dev_set_promiscuity(dev, inc, true); 6063 if (err < 0) 6064 return err; 6065 if (dev->flags != old_flags) 6066 dev_set_rx_mode(dev); 6067 return err; 6068 } 6069 EXPORT_SYMBOL(dev_set_promiscuity); 6070 6071 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 6072 { 6073 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 6074 6075 ASSERT_RTNL(); 6076 6077 dev->flags |= IFF_ALLMULTI; 6078 dev->allmulti += inc; 6079 if (dev->allmulti == 0) { 6080 /* 6081 * Avoid overflow. 6082 * If inc causes overflow, untouch allmulti and return error. 6083 */ 6084 if (inc < 0) 6085 dev->flags &= ~IFF_ALLMULTI; 6086 else { 6087 dev->allmulti -= inc; 6088 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 6089 dev->name); 6090 return -EOVERFLOW; 6091 } 6092 } 6093 if (dev->flags ^ old_flags) { 6094 dev_change_rx_flags(dev, IFF_ALLMULTI); 6095 dev_set_rx_mode(dev); 6096 if (notify) 6097 __dev_notify_flags(dev, old_flags, 6098 dev->gflags ^ old_gflags); 6099 } 6100 return 0; 6101 } 6102 6103 /** 6104 * dev_set_allmulti - update allmulti count on a device 6105 * @dev: device 6106 * @inc: modifier 6107 * 6108 * Add or remove reception of all multicast frames to a device. While the 6109 * count in the device remains above zero the interface remains listening 6110 * to all interfaces. Once it hits zero the device reverts back to normal 6111 * filtering operation. A negative @inc value is used to drop the counter 6112 * when releasing a resource needing all multicasts. 6113 * Return 0 if successful or a negative errno code on error. 6114 */ 6115 6116 int dev_set_allmulti(struct net_device *dev, int inc) 6117 { 6118 return __dev_set_allmulti(dev, inc, true); 6119 } 6120 EXPORT_SYMBOL(dev_set_allmulti); 6121 6122 /* 6123 * Upload unicast and multicast address lists to device and 6124 * configure RX filtering. When the device doesn't support unicast 6125 * filtering it is put in promiscuous mode while unicast addresses 6126 * are present. 6127 */ 6128 void __dev_set_rx_mode(struct net_device *dev) 6129 { 6130 const struct net_device_ops *ops = dev->netdev_ops; 6131 6132 /* dev_open will call this function so the list will stay sane. */ 6133 if (!(dev->flags&IFF_UP)) 6134 return; 6135 6136 if (!netif_device_present(dev)) 6137 return; 6138 6139 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 6140 /* Unicast addresses changes may only happen under the rtnl, 6141 * therefore calling __dev_set_promiscuity here is safe. 6142 */ 6143 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 6144 __dev_set_promiscuity(dev, 1, false); 6145 dev->uc_promisc = true; 6146 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 6147 __dev_set_promiscuity(dev, -1, false); 6148 dev->uc_promisc = false; 6149 } 6150 } 6151 6152 if (ops->ndo_set_rx_mode) 6153 ops->ndo_set_rx_mode(dev); 6154 } 6155 6156 void dev_set_rx_mode(struct net_device *dev) 6157 { 6158 netif_addr_lock_bh(dev); 6159 __dev_set_rx_mode(dev); 6160 netif_addr_unlock_bh(dev); 6161 } 6162 6163 /** 6164 * dev_get_flags - get flags reported to userspace 6165 * @dev: device 6166 * 6167 * Get the combination of flag bits exported through APIs to userspace. 6168 */ 6169 unsigned int dev_get_flags(const struct net_device *dev) 6170 { 6171 unsigned int flags; 6172 6173 flags = (dev->flags & ~(IFF_PROMISC | 6174 IFF_ALLMULTI | 6175 IFF_RUNNING | 6176 IFF_LOWER_UP | 6177 IFF_DORMANT)) | 6178 (dev->gflags & (IFF_PROMISC | 6179 IFF_ALLMULTI)); 6180 6181 if (netif_running(dev)) { 6182 if (netif_oper_up(dev)) 6183 flags |= IFF_RUNNING; 6184 if (netif_carrier_ok(dev)) 6185 flags |= IFF_LOWER_UP; 6186 if (netif_dormant(dev)) 6187 flags |= IFF_DORMANT; 6188 } 6189 6190 return flags; 6191 } 6192 EXPORT_SYMBOL(dev_get_flags); 6193 6194 int __dev_change_flags(struct net_device *dev, unsigned int flags) 6195 { 6196 unsigned int old_flags = dev->flags; 6197 int ret; 6198 6199 ASSERT_RTNL(); 6200 6201 /* 6202 * Set the flags on our device. 6203 */ 6204 6205 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 6206 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 6207 IFF_AUTOMEDIA)) | 6208 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 6209 IFF_ALLMULTI)); 6210 6211 /* 6212 * Load in the correct multicast list now the flags have changed. 6213 */ 6214 6215 if ((old_flags ^ flags) & IFF_MULTICAST) 6216 dev_change_rx_flags(dev, IFF_MULTICAST); 6217 6218 dev_set_rx_mode(dev); 6219 6220 /* 6221 * Have we downed the interface. We handle IFF_UP ourselves 6222 * according to user attempts to set it, rather than blindly 6223 * setting it. 6224 */ 6225 6226 ret = 0; 6227 if ((old_flags ^ flags) & IFF_UP) 6228 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 6229 6230 if ((flags ^ dev->gflags) & IFF_PROMISC) { 6231 int inc = (flags & IFF_PROMISC) ? 1 : -1; 6232 unsigned int old_flags = dev->flags; 6233 6234 dev->gflags ^= IFF_PROMISC; 6235 6236 if (__dev_set_promiscuity(dev, inc, false) >= 0) 6237 if (dev->flags != old_flags) 6238 dev_set_rx_mode(dev); 6239 } 6240 6241 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 6242 is important. Some (broken) drivers set IFF_PROMISC, when 6243 IFF_ALLMULTI is requested not asking us and not reporting. 6244 */ 6245 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 6246 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 6247 6248 dev->gflags ^= IFF_ALLMULTI; 6249 __dev_set_allmulti(dev, inc, false); 6250 } 6251 6252 return ret; 6253 } 6254 6255 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 6256 unsigned int gchanges) 6257 { 6258 unsigned int changes = dev->flags ^ old_flags; 6259 6260 if (gchanges) 6261 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 6262 6263 if (changes & IFF_UP) { 6264 if (dev->flags & IFF_UP) 6265 call_netdevice_notifiers(NETDEV_UP, dev); 6266 else 6267 call_netdevice_notifiers(NETDEV_DOWN, dev); 6268 } 6269 6270 if (dev->flags & IFF_UP && 6271 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 6272 struct netdev_notifier_change_info change_info; 6273 6274 change_info.flags_changed = changes; 6275 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 6276 &change_info.info); 6277 } 6278 } 6279 6280 /** 6281 * dev_change_flags - change device settings 6282 * @dev: device 6283 * @flags: device state flags 6284 * 6285 * Change settings on device based state flags. The flags are 6286 * in the userspace exported format. 6287 */ 6288 int dev_change_flags(struct net_device *dev, unsigned int flags) 6289 { 6290 int ret; 6291 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 6292 6293 ret = __dev_change_flags(dev, flags); 6294 if (ret < 0) 6295 return ret; 6296 6297 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 6298 __dev_notify_flags(dev, old_flags, changes); 6299 return ret; 6300 } 6301 EXPORT_SYMBOL(dev_change_flags); 6302 6303 static int __dev_set_mtu(struct net_device *dev, int new_mtu) 6304 { 6305 const struct net_device_ops *ops = dev->netdev_ops; 6306 6307 if (ops->ndo_change_mtu) 6308 return ops->ndo_change_mtu(dev, new_mtu); 6309 6310 dev->mtu = new_mtu; 6311 return 0; 6312 } 6313 6314 /** 6315 * dev_set_mtu - Change maximum transfer unit 6316 * @dev: device 6317 * @new_mtu: new transfer unit 6318 * 6319 * Change the maximum transfer size of the network device. 6320 */ 6321 int dev_set_mtu(struct net_device *dev, int new_mtu) 6322 { 6323 int err, orig_mtu; 6324 6325 if (new_mtu == dev->mtu) 6326 return 0; 6327 6328 /* MTU must be positive. */ 6329 if (new_mtu < 0) 6330 return -EINVAL; 6331 6332 if (!netif_device_present(dev)) 6333 return -ENODEV; 6334 6335 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 6336 err = notifier_to_errno(err); 6337 if (err) 6338 return err; 6339 6340 orig_mtu = dev->mtu; 6341 err = __dev_set_mtu(dev, new_mtu); 6342 6343 if (!err) { 6344 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6345 err = notifier_to_errno(err); 6346 if (err) { 6347 /* setting mtu back and notifying everyone again, 6348 * so that they have a chance to revert changes. 6349 */ 6350 __dev_set_mtu(dev, orig_mtu); 6351 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6352 } 6353 } 6354 return err; 6355 } 6356 EXPORT_SYMBOL(dev_set_mtu); 6357 6358 /** 6359 * dev_set_group - Change group this device belongs to 6360 * @dev: device 6361 * @new_group: group this device should belong to 6362 */ 6363 void dev_set_group(struct net_device *dev, int new_group) 6364 { 6365 dev->group = new_group; 6366 } 6367 EXPORT_SYMBOL(dev_set_group); 6368 6369 /** 6370 * dev_set_mac_address - Change Media Access Control Address 6371 * @dev: device 6372 * @sa: new address 6373 * 6374 * Change the hardware (MAC) address of the device 6375 */ 6376 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 6377 { 6378 const struct net_device_ops *ops = dev->netdev_ops; 6379 int err; 6380 6381 if (!ops->ndo_set_mac_address) 6382 return -EOPNOTSUPP; 6383 if (sa->sa_family != dev->type) 6384 return -EINVAL; 6385 if (!netif_device_present(dev)) 6386 return -ENODEV; 6387 err = ops->ndo_set_mac_address(dev, sa); 6388 if (err) 6389 return err; 6390 dev->addr_assign_type = NET_ADDR_SET; 6391 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 6392 add_device_randomness(dev->dev_addr, dev->addr_len); 6393 return 0; 6394 } 6395 EXPORT_SYMBOL(dev_set_mac_address); 6396 6397 /** 6398 * dev_change_carrier - Change device carrier 6399 * @dev: device 6400 * @new_carrier: new value 6401 * 6402 * Change device carrier 6403 */ 6404 int dev_change_carrier(struct net_device *dev, bool new_carrier) 6405 { 6406 const struct net_device_ops *ops = dev->netdev_ops; 6407 6408 if (!ops->ndo_change_carrier) 6409 return -EOPNOTSUPP; 6410 if (!netif_device_present(dev)) 6411 return -ENODEV; 6412 return ops->ndo_change_carrier(dev, new_carrier); 6413 } 6414 EXPORT_SYMBOL(dev_change_carrier); 6415 6416 /** 6417 * dev_get_phys_port_id - Get device physical port ID 6418 * @dev: device 6419 * @ppid: port ID 6420 * 6421 * Get device physical port ID 6422 */ 6423 int dev_get_phys_port_id(struct net_device *dev, 6424 struct netdev_phys_item_id *ppid) 6425 { 6426 const struct net_device_ops *ops = dev->netdev_ops; 6427 6428 if (!ops->ndo_get_phys_port_id) 6429 return -EOPNOTSUPP; 6430 return ops->ndo_get_phys_port_id(dev, ppid); 6431 } 6432 EXPORT_SYMBOL(dev_get_phys_port_id); 6433 6434 /** 6435 * dev_get_phys_port_name - Get device physical port name 6436 * @dev: device 6437 * @name: port name 6438 * 6439 * Get device physical port name 6440 */ 6441 int dev_get_phys_port_name(struct net_device *dev, 6442 char *name, size_t len) 6443 { 6444 const struct net_device_ops *ops = dev->netdev_ops; 6445 6446 if (!ops->ndo_get_phys_port_name) 6447 return -EOPNOTSUPP; 6448 return ops->ndo_get_phys_port_name(dev, name, len); 6449 } 6450 EXPORT_SYMBOL(dev_get_phys_port_name); 6451 6452 /** 6453 * dev_change_proto_down - update protocol port state information 6454 * @dev: device 6455 * @proto_down: new value 6456 * 6457 * This info can be used by switch drivers to set the phys state of the 6458 * port. 6459 */ 6460 int dev_change_proto_down(struct net_device *dev, bool proto_down) 6461 { 6462 const struct net_device_ops *ops = dev->netdev_ops; 6463 6464 if (!ops->ndo_change_proto_down) 6465 return -EOPNOTSUPP; 6466 if (!netif_device_present(dev)) 6467 return -ENODEV; 6468 return ops->ndo_change_proto_down(dev, proto_down); 6469 } 6470 EXPORT_SYMBOL(dev_change_proto_down); 6471 6472 /** 6473 * dev_new_index - allocate an ifindex 6474 * @net: the applicable net namespace 6475 * 6476 * Returns a suitable unique value for a new device interface 6477 * number. The caller must hold the rtnl semaphore or the 6478 * dev_base_lock to be sure it remains unique. 6479 */ 6480 static int dev_new_index(struct net *net) 6481 { 6482 int ifindex = net->ifindex; 6483 for (;;) { 6484 if (++ifindex <= 0) 6485 ifindex = 1; 6486 if (!__dev_get_by_index(net, ifindex)) 6487 return net->ifindex = ifindex; 6488 } 6489 } 6490 6491 /* Delayed registration/unregisteration */ 6492 static LIST_HEAD(net_todo_list); 6493 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 6494 6495 static void net_set_todo(struct net_device *dev) 6496 { 6497 list_add_tail(&dev->todo_list, &net_todo_list); 6498 dev_net(dev)->dev_unreg_count++; 6499 } 6500 6501 static void rollback_registered_many(struct list_head *head) 6502 { 6503 struct net_device *dev, *tmp; 6504 LIST_HEAD(close_head); 6505 6506 BUG_ON(dev_boot_phase); 6507 ASSERT_RTNL(); 6508 6509 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 6510 /* Some devices call without registering 6511 * for initialization unwind. Remove those 6512 * devices and proceed with the remaining. 6513 */ 6514 if (dev->reg_state == NETREG_UNINITIALIZED) { 6515 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 6516 dev->name, dev); 6517 6518 WARN_ON(1); 6519 list_del(&dev->unreg_list); 6520 continue; 6521 } 6522 dev->dismantle = true; 6523 BUG_ON(dev->reg_state != NETREG_REGISTERED); 6524 } 6525 6526 /* If device is running, close it first. */ 6527 list_for_each_entry(dev, head, unreg_list) 6528 list_add_tail(&dev->close_list, &close_head); 6529 dev_close_many(&close_head, true); 6530 6531 list_for_each_entry(dev, head, unreg_list) { 6532 /* And unlink it from device chain. */ 6533 unlist_netdevice(dev); 6534 6535 dev->reg_state = NETREG_UNREGISTERING; 6536 on_each_cpu(flush_backlog, dev, 1); 6537 } 6538 6539 synchronize_net(); 6540 6541 list_for_each_entry(dev, head, unreg_list) { 6542 struct sk_buff *skb = NULL; 6543 6544 /* Shutdown queueing discipline. */ 6545 dev_shutdown(dev); 6546 6547 6548 /* Notify protocols, that we are about to destroy 6549 this device. They should clean all the things. 6550 */ 6551 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6552 6553 if (!dev->rtnl_link_ops || 6554 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 6555 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 6556 GFP_KERNEL); 6557 6558 /* 6559 * Flush the unicast and multicast chains 6560 */ 6561 dev_uc_flush(dev); 6562 dev_mc_flush(dev); 6563 6564 if (dev->netdev_ops->ndo_uninit) 6565 dev->netdev_ops->ndo_uninit(dev); 6566 6567 if (skb) 6568 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 6569 6570 /* Notifier chain MUST detach us all upper devices. */ 6571 WARN_ON(netdev_has_any_upper_dev(dev)); 6572 6573 /* Remove entries from kobject tree */ 6574 netdev_unregister_kobject(dev); 6575 #ifdef CONFIG_XPS 6576 /* Remove XPS queueing entries */ 6577 netif_reset_xps_queues_gt(dev, 0); 6578 #endif 6579 } 6580 6581 synchronize_net(); 6582 6583 list_for_each_entry(dev, head, unreg_list) 6584 dev_put(dev); 6585 } 6586 6587 static void rollback_registered(struct net_device *dev) 6588 { 6589 LIST_HEAD(single); 6590 6591 list_add(&dev->unreg_list, &single); 6592 rollback_registered_many(&single); 6593 list_del(&single); 6594 } 6595 6596 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 6597 struct net_device *upper, netdev_features_t features) 6598 { 6599 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 6600 netdev_features_t feature; 6601 int feature_bit; 6602 6603 for_each_netdev_feature(&upper_disables, feature_bit) { 6604 feature = __NETIF_F_BIT(feature_bit); 6605 if (!(upper->wanted_features & feature) 6606 && (features & feature)) { 6607 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 6608 &feature, upper->name); 6609 features &= ~feature; 6610 } 6611 } 6612 6613 return features; 6614 } 6615 6616 static void netdev_sync_lower_features(struct net_device *upper, 6617 struct net_device *lower, netdev_features_t features) 6618 { 6619 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 6620 netdev_features_t feature; 6621 int feature_bit; 6622 6623 for_each_netdev_feature(&upper_disables, feature_bit) { 6624 feature = __NETIF_F_BIT(feature_bit); 6625 if (!(features & feature) && (lower->features & feature)) { 6626 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 6627 &feature, lower->name); 6628 lower->wanted_features &= ~feature; 6629 netdev_update_features(lower); 6630 6631 if (unlikely(lower->features & feature)) 6632 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 6633 &feature, lower->name); 6634 } 6635 } 6636 } 6637 6638 static netdev_features_t netdev_fix_features(struct net_device *dev, 6639 netdev_features_t features) 6640 { 6641 /* Fix illegal checksum combinations */ 6642 if ((features & NETIF_F_HW_CSUM) && 6643 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 6644 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 6645 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 6646 } 6647 6648 /* TSO requires that SG is present as well. */ 6649 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 6650 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 6651 features &= ~NETIF_F_ALL_TSO; 6652 } 6653 6654 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 6655 !(features & NETIF_F_IP_CSUM)) { 6656 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 6657 features &= ~NETIF_F_TSO; 6658 features &= ~NETIF_F_TSO_ECN; 6659 } 6660 6661 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 6662 !(features & NETIF_F_IPV6_CSUM)) { 6663 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 6664 features &= ~NETIF_F_TSO6; 6665 } 6666 6667 /* TSO ECN requires that TSO is present as well. */ 6668 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 6669 features &= ~NETIF_F_TSO_ECN; 6670 6671 /* Software GSO depends on SG. */ 6672 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 6673 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 6674 features &= ~NETIF_F_GSO; 6675 } 6676 6677 /* UFO needs SG and checksumming */ 6678 if (features & NETIF_F_UFO) { 6679 /* maybe split UFO into V4 and V6? */ 6680 if (!(features & NETIF_F_HW_CSUM) && 6681 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) != 6682 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) { 6683 netdev_dbg(dev, 6684 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 6685 features &= ~NETIF_F_UFO; 6686 } 6687 6688 if (!(features & NETIF_F_SG)) { 6689 netdev_dbg(dev, 6690 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 6691 features &= ~NETIF_F_UFO; 6692 } 6693 } 6694 6695 #ifdef CONFIG_NET_RX_BUSY_POLL 6696 if (dev->netdev_ops->ndo_busy_poll) 6697 features |= NETIF_F_BUSY_POLL; 6698 else 6699 #endif 6700 features &= ~NETIF_F_BUSY_POLL; 6701 6702 return features; 6703 } 6704 6705 int __netdev_update_features(struct net_device *dev) 6706 { 6707 struct net_device *upper, *lower; 6708 netdev_features_t features; 6709 struct list_head *iter; 6710 int err = -1; 6711 6712 ASSERT_RTNL(); 6713 6714 features = netdev_get_wanted_features(dev); 6715 6716 if (dev->netdev_ops->ndo_fix_features) 6717 features = dev->netdev_ops->ndo_fix_features(dev, features); 6718 6719 /* driver might be less strict about feature dependencies */ 6720 features = netdev_fix_features(dev, features); 6721 6722 /* some features can't be enabled if they're off an an upper device */ 6723 netdev_for_each_upper_dev_rcu(dev, upper, iter) 6724 features = netdev_sync_upper_features(dev, upper, features); 6725 6726 if (dev->features == features) 6727 goto sync_lower; 6728 6729 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 6730 &dev->features, &features); 6731 6732 if (dev->netdev_ops->ndo_set_features) 6733 err = dev->netdev_ops->ndo_set_features(dev, features); 6734 else 6735 err = 0; 6736 6737 if (unlikely(err < 0)) { 6738 netdev_err(dev, 6739 "set_features() failed (%d); wanted %pNF, left %pNF\n", 6740 err, &features, &dev->features); 6741 /* return non-0 since some features might have changed and 6742 * it's better to fire a spurious notification than miss it 6743 */ 6744 return -1; 6745 } 6746 6747 sync_lower: 6748 /* some features must be disabled on lower devices when disabled 6749 * on an upper device (think: bonding master or bridge) 6750 */ 6751 netdev_for_each_lower_dev(dev, lower, iter) 6752 netdev_sync_lower_features(dev, lower, features); 6753 6754 if (!err) 6755 dev->features = features; 6756 6757 return err < 0 ? 0 : 1; 6758 } 6759 6760 /** 6761 * netdev_update_features - recalculate device features 6762 * @dev: the device to check 6763 * 6764 * Recalculate dev->features set and send notifications if it 6765 * has changed. Should be called after driver or hardware dependent 6766 * conditions might have changed that influence the features. 6767 */ 6768 void netdev_update_features(struct net_device *dev) 6769 { 6770 if (__netdev_update_features(dev)) 6771 netdev_features_change(dev); 6772 } 6773 EXPORT_SYMBOL(netdev_update_features); 6774 6775 /** 6776 * netdev_change_features - recalculate device features 6777 * @dev: the device to check 6778 * 6779 * Recalculate dev->features set and send notifications even 6780 * if they have not changed. Should be called instead of 6781 * netdev_update_features() if also dev->vlan_features might 6782 * have changed to allow the changes to be propagated to stacked 6783 * VLAN devices. 6784 */ 6785 void netdev_change_features(struct net_device *dev) 6786 { 6787 __netdev_update_features(dev); 6788 netdev_features_change(dev); 6789 } 6790 EXPORT_SYMBOL(netdev_change_features); 6791 6792 /** 6793 * netif_stacked_transfer_operstate - transfer operstate 6794 * @rootdev: the root or lower level device to transfer state from 6795 * @dev: the device to transfer operstate to 6796 * 6797 * Transfer operational state from root to device. This is normally 6798 * called when a stacking relationship exists between the root 6799 * device and the device(a leaf device). 6800 */ 6801 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 6802 struct net_device *dev) 6803 { 6804 if (rootdev->operstate == IF_OPER_DORMANT) 6805 netif_dormant_on(dev); 6806 else 6807 netif_dormant_off(dev); 6808 6809 if (netif_carrier_ok(rootdev)) { 6810 if (!netif_carrier_ok(dev)) 6811 netif_carrier_on(dev); 6812 } else { 6813 if (netif_carrier_ok(dev)) 6814 netif_carrier_off(dev); 6815 } 6816 } 6817 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 6818 6819 #ifdef CONFIG_SYSFS 6820 static int netif_alloc_rx_queues(struct net_device *dev) 6821 { 6822 unsigned int i, count = dev->num_rx_queues; 6823 struct netdev_rx_queue *rx; 6824 size_t sz = count * sizeof(*rx); 6825 6826 BUG_ON(count < 1); 6827 6828 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6829 if (!rx) { 6830 rx = vzalloc(sz); 6831 if (!rx) 6832 return -ENOMEM; 6833 } 6834 dev->_rx = rx; 6835 6836 for (i = 0; i < count; i++) 6837 rx[i].dev = dev; 6838 return 0; 6839 } 6840 #endif 6841 6842 static void netdev_init_one_queue(struct net_device *dev, 6843 struct netdev_queue *queue, void *_unused) 6844 { 6845 /* Initialize queue lock */ 6846 spin_lock_init(&queue->_xmit_lock); 6847 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 6848 queue->xmit_lock_owner = -1; 6849 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 6850 queue->dev = dev; 6851 #ifdef CONFIG_BQL 6852 dql_init(&queue->dql, HZ); 6853 #endif 6854 } 6855 6856 static void netif_free_tx_queues(struct net_device *dev) 6857 { 6858 kvfree(dev->_tx); 6859 } 6860 6861 static int netif_alloc_netdev_queues(struct net_device *dev) 6862 { 6863 unsigned int count = dev->num_tx_queues; 6864 struct netdev_queue *tx; 6865 size_t sz = count * sizeof(*tx); 6866 6867 if (count < 1 || count > 0xffff) 6868 return -EINVAL; 6869 6870 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6871 if (!tx) { 6872 tx = vzalloc(sz); 6873 if (!tx) 6874 return -ENOMEM; 6875 } 6876 dev->_tx = tx; 6877 6878 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 6879 spin_lock_init(&dev->tx_global_lock); 6880 6881 return 0; 6882 } 6883 6884 void netif_tx_stop_all_queues(struct net_device *dev) 6885 { 6886 unsigned int i; 6887 6888 for (i = 0; i < dev->num_tx_queues; i++) { 6889 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 6890 netif_tx_stop_queue(txq); 6891 } 6892 } 6893 EXPORT_SYMBOL(netif_tx_stop_all_queues); 6894 6895 /** 6896 * register_netdevice - register a network device 6897 * @dev: device to register 6898 * 6899 * Take a completed network device structure and add it to the kernel 6900 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 6901 * chain. 0 is returned on success. A negative errno code is returned 6902 * on a failure to set up the device, or if the name is a duplicate. 6903 * 6904 * Callers must hold the rtnl semaphore. You may want 6905 * register_netdev() instead of this. 6906 * 6907 * BUGS: 6908 * The locking appears insufficient to guarantee two parallel registers 6909 * will not get the same name. 6910 */ 6911 6912 int register_netdevice(struct net_device *dev) 6913 { 6914 int ret; 6915 struct net *net = dev_net(dev); 6916 6917 BUG_ON(dev_boot_phase); 6918 ASSERT_RTNL(); 6919 6920 might_sleep(); 6921 6922 /* When net_device's are persistent, this will be fatal. */ 6923 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 6924 BUG_ON(!net); 6925 6926 spin_lock_init(&dev->addr_list_lock); 6927 netdev_set_addr_lockdep_class(dev); 6928 6929 ret = dev_get_valid_name(net, dev, dev->name); 6930 if (ret < 0) 6931 goto out; 6932 6933 /* Init, if this function is available */ 6934 if (dev->netdev_ops->ndo_init) { 6935 ret = dev->netdev_ops->ndo_init(dev); 6936 if (ret) { 6937 if (ret > 0) 6938 ret = -EIO; 6939 goto out; 6940 } 6941 } 6942 6943 if (((dev->hw_features | dev->features) & 6944 NETIF_F_HW_VLAN_CTAG_FILTER) && 6945 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 6946 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 6947 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 6948 ret = -EINVAL; 6949 goto err_uninit; 6950 } 6951 6952 ret = -EBUSY; 6953 if (!dev->ifindex) 6954 dev->ifindex = dev_new_index(net); 6955 else if (__dev_get_by_index(net, dev->ifindex)) 6956 goto err_uninit; 6957 6958 /* Transfer changeable features to wanted_features and enable 6959 * software offloads (GSO and GRO). 6960 */ 6961 dev->hw_features |= NETIF_F_SOFT_FEATURES; 6962 dev->features |= NETIF_F_SOFT_FEATURES; 6963 dev->wanted_features = dev->features & dev->hw_features; 6964 6965 if (!(dev->flags & IFF_LOOPBACK)) { 6966 dev->hw_features |= NETIF_F_NOCACHE_COPY; 6967 } 6968 6969 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 6970 */ 6971 dev->vlan_features |= NETIF_F_HIGHDMA; 6972 6973 /* Make NETIF_F_SG inheritable to tunnel devices. 6974 */ 6975 dev->hw_enc_features |= NETIF_F_SG; 6976 6977 /* Make NETIF_F_SG inheritable to MPLS. 6978 */ 6979 dev->mpls_features |= NETIF_F_SG; 6980 6981 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 6982 ret = notifier_to_errno(ret); 6983 if (ret) 6984 goto err_uninit; 6985 6986 ret = netdev_register_kobject(dev); 6987 if (ret) 6988 goto err_uninit; 6989 dev->reg_state = NETREG_REGISTERED; 6990 6991 __netdev_update_features(dev); 6992 6993 /* 6994 * Default initial state at registry is that the 6995 * device is present. 6996 */ 6997 6998 set_bit(__LINK_STATE_PRESENT, &dev->state); 6999 7000 linkwatch_init_dev(dev); 7001 7002 dev_init_scheduler(dev); 7003 dev_hold(dev); 7004 list_netdevice(dev); 7005 add_device_randomness(dev->dev_addr, dev->addr_len); 7006 7007 /* If the device has permanent device address, driver should 7008 * set dev_addr and also addr_assign_type should be set to 7009 * NET_ADDR_PERM (default value). 7010 */ 7011 if (dev->addr_assign_type == NET_ADDR_PERM) 7012 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 7013 7014 /* Notify protocols, that a new device appeared. */ 7015 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 7016 ret = notifier_to_errno(ret); 7017 if (ret) { 7018 rollback_registered(dev); 7019 dev->reg_state = NETREG_UNREGISTERED; 7020 } 7021 /* 7022 * Prevent userspace races by waiting until the network 7023 * device is fully setup before sending notifications. 7024 */ 7025 if (!dev->rtnl_link_ops || 7026 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7027 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7028 7029 out: 7030 return ret; 7031 7032 err_uninit: 7033 if (dev->netdev_ops->ndo_uninit) 7034 dev->netdev_ops->ndo_uninit(dev); 7035 goto out; 7036 } 7037 EXPORT_SYMBOL(register_netdevice); 7038 7039 /** 7040 * init_dummy_netdev - init a dummy network device for NAPI 7041 * @dev: device to init 7042 * 7043 * This takes a network device structure and initialize the minimum 7044 * amount of fields so it can be used to schedule NAPI polls without 7045 * registering a full blown interface. This is to be used by drivers 7046 * that need to tie several hardware interfaces to a single NAPI 7047 * poll scheduler due to HW limitations. 7048 */ 7049 int init_dummy_netdev(struct net_device *dev) 7050 { 7051 /* Clear everything. Note we don't initialize spinlocks 7052 * are they aren't supposed to be taken by any of the 7053 * NAPI code and this dummy netdev is supposed to be 7054 * only ever used for NAPI polls 7055 */ 7056 memset(dev, 0, sizeof(struct net_device)); 7057 7058 /* make sure we BUG if trying to hit standard 7059 * register/unregister code path 7060 */ 7061 dev->reg_state = NETREG_DUMMY; 7062 7063 /* NAPI wants this */ 7064 INIT_LIST_HEAD(&dev->napi_list); 7065 7066 /* a dummy interface is started by default */ 7067 set_bit(__LINK_STATE_PRESENT, &dev->state); 7068 set_bit(__LINK_STATE_START, &dev->state); 7069 7070 /* Note : We dont allocate pcpu_refcnt for dummy devices, 7071 * because users of this 'device' dont need to change 7072 * its refcount. 7073 */ 7074 7075 return 0; 7076 } 7077 EXPORT_SYMBOL_GPL(init_dummy_netdev); 7078 7079 7080 /** 7081 * register_netdev - register a network device 7082 * @dev: device to register 7083 * 7084 * Take a completed network device structure and add it to the kernel 7085 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7086 * chain. 0 is returned on success. A negative errno code is returned 7087 * on a failure to set up the device, or if the name is a duplicate. 7088 * 7089 * This is a wrapper around register_netdevice that takes the rtnl semaphore 7090 * and expands the device name if you passed a format string to 7091 * alloc_netdev. 7092 */ 7093 int register_netdev(struct net_device *dev) 7094 { 7095 int err; 7096 7097 rtnl_lock(); 7098 err = register_netdevice(dev); 7099 rtnl_unlock(); 7100 return err; 7101 } 7102 EXPORT_SYMBOL(register_netdev); 7103 7104 int netdev_refcnt_read(const struct net_device *dev) 7105 { 7106 int i, refcnt = 0; 7107 7108 for_each_possible_cpu(i) 7109 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 7110 return refcnt; 7111 } 7112 EXPORT_SYMBOL(netdev_refcnt_read); 7113 7114 /** 7115 * netdev_wait_allrefs - wait until all references are gone. 7116 * @dev: target net_device 7117 * 7118 * This is called when unregistering network devices. 7119 * 7120 * Any protocol or device that holds a reference should register 7121 * for netdevice notification, and cleanup and put back the 7122 * reference if they receive an UNREGISTER event. 7123 * We can get stuck here if buggy protocols don't correctly 7124 * call dev_put. 7125 */ 7126 static void netdev_wait_allrefs(struct net_device *dev) 7127 { 7128 unsigned long rebroadcast_time, warning_time; 7129 int refcnt; 7130 7131 linkwatch_forget_dev(dev); 7132 7133 rebroadcast_time = warning_time = jiffies; 7134 refcnt = netdev_refcnt_read(dev); 7135 7136 while (refcnt != 0) { 7137 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 7138 rtnl_lock(); 7139 7140 /* Rebroadcast unregister notification */ 7141 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7142 7143 __rtnl_unlock(); 7144 rcu_barrier(); 7145 rtnl_lock(); 7146 7147 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7148 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 7149 &dev->state)) { 7150 /* We must not have linkwatch events 7151 * pending on unregister. If this 7152 * happens, we simply run the queue 7153 * unscheduled, resulting in a noop 7154 * for this device. 7155 */ 7156 linkwatch_run_queue(); 7157 } 7158 7159 __rtnl_unlock(); 7160 7161 rebroadcast_time = jiffies; 7162 } 7163 7164 msleep(250); 7165 7166 refcnt = netdev_refcnt_read(dev); 7167 7168 if (time_after(jiffies, warning_time + 10 * HZ)) { 7169 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 7170 dev->name, refcnt); 7171 warning_time = jiffies; 7172 } 7173 } 7174 } 7175 7176 /* The sequence is: 7177 * 7178 * rtnl_lock(); 7179 * ... 7180 * register_netdevice(x1); 7181 * register_netdevice(x2); 7182 * ... 7183 * unregister_netdevice(y1); 7184 * unregister_netdevice(y2); 7185 * ... 7186 * rtnl_unlock(); 7187 * free_netdev(y1); 7188 * free_netdev(y2); 7189 * 7190 * We are invoked by rtnl_unlock(). 7191 * This allows us to deal with problems: 7192 * 1) We can delete sysfs objects which invoke hotplug 7193 * without deadlocking with linkwatch via keventd. 7194 * 2) Since we run with the RTNL semaphore not held, we can sleep 7195 * safely in order to wait for the netdev refcnt to drop to zero. 7196 * 7197 * We must not return until all unregister events added during 7198 * the interval the lock was held have been completed. 7199 */ 7200 void netdev_run_todo(void) 7201 { 7202 struct list_head list; 7203 7204 /* Snapshot list, allow later requests */ 7205 list_replace_init(&net_todo_list, &list); 7206 7207 __rtnl_unlock(); 7208 7209 7210 /* Wait for rcu callbacks to finish before next phase */ 7211 if (!list_empty(&list)) 7212 rcu_barrier(); 7213 7214 while (!list_empty(&list)) { 7215 struct net_device *dev 7216 = list_first_entry(&list, struct net_device, todo_list); 7217 list_del(&dev->todo_list); 7218 7219 rtnl_lock(); 7220 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7221 __rtnl_unlock(); 7222 7223 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 7224 pr_err("network todo '%s' but state %d\n", 7225 dev->name, dev->reg_state); 7226 dump_stack(); 7227 continue; 7228 } 7229 7230 dev->reg_state = NETREG_UNREGISTERED; 7231 7232 netdev_wait_allrefs(dev); 7233 7234 /* paranoia */ 7235 BUG_ON(netdev_refcnt_read(dev)); 7236 BUG_ON(!list_empty(&dev->ptype_all)); 7237 BUG_ON(!list_empty(&dev->ptype_specific)); 7238 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 7239 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 7240 WARN_ON(dev->dn_ptr); 7241 7242 if (dev->destructor) 7243 dev->destructor(dev); 7244 7245 /* Report a network device has been unregistered */ 7246 rtnl_lock(); 7247 dev_net(dev)->dev_unreg_count--; 7248 __rtnl_unlock(); 7249 wake_up(&netdev_unregistering_wq); 7250 7251 /* Free network device */ 7252 kobject_put(&dev->dev.kobj); 7253 } 7254 } 7255 7256 /* Convert net_device_stats to rtnl_link_stats64. They have the same 7257 * fields in the same order, with only the type differing. 7258 */ 7259 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 7260 const struct net_device_stats *netdev_stats) 7261 { 7262 #if BITS_PER_LONG == 64 7263 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 7264 memcpy(stats64, netdev_stats, sizeof(*stats64)); 7265 #else 7266 size_t i, n = sizeof(*stats64) / sizeof(u64); 7267 const unsigned long *src = (const unsigned long *)netdev_stats; 7268 u64 *dst = (u64 *)stats64; 7269 7270 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 7271 sizeof(*stats64) / sizeof(u64)); 7272 for (i = 0; i < n; i++) 7273 dst[i] = src[i]; 7274 #endif 7275 } 7276 EXPORT_SYMBOL(netdev_stats_to_stats64); 7277 7278 /** 7279 * dev_get_stats - get network device statistics 7280 * @dev: device to get statistics from 7281 * @storage: place to store stats 7282 * 7283 * Get network statistics from device. Return @storage. 7284 * The device driver may provide its own method by setting 7285 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 7286 * otherwise the internal statistics structure is used. 7287 */ 7288 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 7289 struct rtnl_link_stats64 *storage) 7290 { 7291 const struct net_device_ops *ops = dev->netdev_ops; 7292 7293 if (ops->ndo_get_stats64) { 7294 memset(storage, 0, sizeof(*storage)); 7295 ops->ndo_get_stats64(dev, storage); 7296 } else if (ops->ndo_get_stats) { 7297 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 7298 } else { 7299 netdev_stats_to_stats64(storage, &dev->stats); 7300 } 7301 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 7302 storage->tx_dropped += atomic_long_read(&dev->tx_dropped); 7303 return storage; 7304 } 7305 EXPORT_SYMBOL(dev_get_stats); 7306 7307 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 7308 { 7309 struct netdev_queue *queue = dev_ingress_queue(dev); 7310 7311 #ifdef CONFIG_NET_CLS_ACT 7312 if (queue) 7313 return queue; 7314 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 7315 if (!queue) 7316 return NULL; 7317 netdev_init_one_queue(dev, queue, NULL); 7318 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 7319 queue->qdisc_sleeping = &noop_qdisc; 7320 rcu_assign_pointer(dev->ingress_queue, queue); 7321 #endif 7322 return queue; 7323 } 7324 7325 static const struct ethtool_ops default_ethtool_ops; 7326 7327 void netdev_set_default_ethtool_ops(struct net_device *dev, 7328 const struct ethtool_ops *ops) 7329 { 7330 if (dev->ethtool_ops == &default_ethtool_ops) 7331 dev->ethtool_ops = ops; 7332 } 7333 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 7334 7335 void netdev_freemem(struct net_device *dev) 7336 { 7337 char *addr = (char *)dev - dev->padded; 7338 7339 kvfree(addr); 7340 } 7341 7342 /** 7343 * alloc_netdev_mqs - allocate network device 7344 * @sizeof_priv: size of private data to allocate space for 7345 * @name: device name format string 7346 * @name_assign_type: origin of device name 7347 * @setup: callback to initialize device 7348 * @txqs: the number of TX subqueues to allocate 7349 * @rxqs: the number of RX subqueues to allocate 7350 * 7351 * Allocates a struct net_device with private data area for driver use 7352 * and performs basic initialization. Also allocates subqueue structs 7353 * for each queue on the device. 7354 */ 7355 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 7356 unsigned char name_assign_type, 7357 void (*setup)(struct net_device *), 7358 unsigned int txqs, unsigned int rxqs) 7359 { 7360 struct net_device *dev; 7361 size_t alloc_size; 7362 struct net_device *p; 7363 7364 BUG_ON(strlen(name) >= sizeof(dev->name)); 7365 7366 if (txqs < 1) { 7367 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 7368 return NULL; 7369 } 7370 7371 #ifdef CONFIG_SYSFS 7372 if (rxqs < 1) { 7373 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 7374 return NULL; 7375 } 7376 #endif 7377 7378 alloc_size = sizeof(struct net_device); 7379 if (sizeof_priv) { 7380 /* ensure 32-byte alignment of private area */ 7381 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 7382 alloc_size += sizeof_priv; 7383 } 7384 /* ensure 32-byte alignment of whole construct */ 7385 alloc_size += NETDEV_ALIGN - 1; 7386 7387 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 7388 if (!p) 7389 p = vzalloc(alloc_size); 7390 if (!p) 7391 return NULL; 7392 7393 dev = PTR_ALIGN(p, NETDEV_ALIGN); 7394 dev->padded = (char *)dev - (char *)p; 7395 7396 dev->pcpu_refcnt = alloc_percpu(int); 7397 if (!dev->pcpu_refcnt) 7398 goto free_dev; 7399 7400 if (dev_addr_init(dev)) 7401 goto free_pcpu; 7402 7403 dev_mc_init(dev); 7404 dev_uc_init(dev); 7405 7406 dev_net_set(dev, &init_net); 7407 7408 dev->gso_max_size = GSO_MAX_SIZE; 7409 dev->gso_max_segs = GSO_MAX_SEGS; 7410 dev->gso_min_segs = 0; 7411 7412 INIT_LIST_HEAD(&dev->napi_list); 7413 INIT_LIST_HEAD(&dev->unreg_list); 7414 INIT_LIST_HEAD(&dev->close_list); 7415 INIT_LIST_HEAD(&dev->link_watch_list); 7416 INIT_LIST_HEAD(&dev->adj_list.upper); 7417 INIT_LIST_HEAD(&dev->adj_list.lower); 7418 INIT_LIST_HEAD(&dev->all_adj_list.upper); 7419 INIT_LIST_HEAD(&dev->all_adj_list.lower); 7420 INIT_LIST_HEAD(&dev->ptype_all); 7421 INIT_LIST_HEAD(&dev->ptype_specific); 7422 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 7423 setup(dev); 7424 7425 if (!dev->tx_queue_len) { 7426 dev->priv_flags |= IFF_NO_QUEUE; 7427 dev->tx_queue_len = 1; 7428 } 7429 7430 dev->num_tx_queues = txqs; 7431 dev->real_num_tx_queues = txqs; 7432 if (netif_alloc_netdev_queues(dev)) 7433 goto free_all; 7434 7435 #ifdef CONFIG_SYSFS 7436 dev->num_rx_queues = rxqs; 7437 dev->real_num_rx_queues = rxqs; 7438 if (netif_alloc_rx_queues(dev)) 7439 goto free_all; 7440 #endif 7441 7442 strcpy(dev->name, name); 7443 dev->name_assign_type = name_assign_type; 7444 dev->group = INIT_NETDEV_GROUP; 7445 if (!dev->ethtool_ops) 7446 dev->ethtool_ops = &default_ethtool_ops; 7447 7448 nf_hook_ingress_init(dev); 7449 7450 return dev; 7451 7452 free_all: 7453 free_netdev(dev); 7454 return NULL; 7455 7456 free_pcpu: 7457 free_percpu(dev->pcpu_refcnt); 7458 free_dev: 7459 netdev_freemem(dev); 7460 return NULL; 7461 } 7462 EXPORT_SYMBOL(alloc_netdev_mqs); 7463 7464 /** 7465 * free_netdev - free network device 7466 * @dev: device 7467 * 7468 * This function does the last stage of destroying an allocated device 7469 * interface. The reference to the device object is released. 7470 * If this is the last reference then it will be freed. 7471 * Must be called in process context. 7472 */ 7473 void free_netdev(struct net_device *dev) 7474 { 7475 struct napi_struct *p, *n; 7476 7477 might_sleep(); 7478 netif_free_tx_queues(dev); 7479 #ifdef CONFIG_SYSFS 7480 kvfree(dev->_rx); 7481 #endif 7482 7483 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 7484 7485 /* Flush device addresses */ 7486 dev_addr_flush(dev); 7487 7488 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 7489 netif_napi_del(p); 7490 7491 free_percpu(dev->pcpu_refcnt); 7492 dev->pcpu_refcnt = NULL; 7493 7494 /* Compatibility with error handling in drivers */ 7495 if (dev->reg_state == NETREG_UNINITIALIZED) { 7496 netdev_freemem(dev); 7497 return; 7498 } 7499 7500 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 7501 dev->reg_state = NETREG_RELEASED; 7502 7503 /* will free via device release */ 7504 put_device(&dev->dev); 7505 } 7506 EXPORT_SYMBOL(free_netdev); 7507 7508 /** 7509 * synchronize_net - Synchronize with packet receive processing 7510 * 7511 * Wait for packets currently being received to be done. 7512 * Does not block later packets from starting. 7513 */ 7514 void synchronize_net(void) 7515 { 7516 might_sleep(); 7517 if (rtnl_is_locked()) 7518 synchronize_rcu_expedited(); 7519 else 7520 synchronize_rcu(); 7521 } 7522 EXPORT_SYMBOL(synchronize_net); 7523 7524 /** 7525 * unregister_netdevice_queue - remove device from the kernel 7526 * @dev: device 7527 * @head: list 7528 * 7529 * This function shuts down a device interface and removes it 7530 * from the kernel tables. 7531 * If head not NULL, device is queued to be unregistered later. 7532 * 7533 * Callers must hold the rtnl semaphore. You may want 7534 * unregister_netdev() instead of this. 7535 */ 7536 7537 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 7538 { 7539 ASSERT_RTNL(); 7540 7541 if (head) { 7542 list_move_tail(&dev->unreg_list, head); 7543 } else { 7544 rollback_registered(dev); 7545 /* Finish processing unregister after unlock */ 7546 net_set_todo(dev); 7547 } 7548 } 7549 EXPORT_SYMBOL(unregister_netdevice_queue); 7550 7551 /** 7552 * unregister_netdevice_many - unregister many devices 7553 * @head: list of devices 7554 * 7555 * Note: As most callers use a stack allocated list_head, 7556 * we force a list_del() to make sure stack wont be corrupted later. 7557 */ 7558 void unregister_netdevice_many(struct list_head *head) 7559 { 7560 struct net_device *dev; 7561 7562 if (!list_empty(head)) { 7563 rollback_registered_many(head); 7564 list_for_each_entry(dev, head, unreg_list) 7565 net_set_todo(dev); 7566 list_del(head); 7567 } 7568 } 7569 EXPORT_SYMBOL(unregister_netdevice_many); 7570 7571 /** 7572 * unregister_netdev - remove device from the kernel 7573 * @dev: device 7574 * 7575 * This function shuts down a device interface and removes it 7576 * from the kernel tables. 7577 * 7578 * This is just a wrapper for unregister_netdevice that takes 7579 * the rtnl semaphore. In general you want to use this and not 7580 * unregister_netdevice. 7581 */ 7582 void unregister_netdev(struct net_device *dev) 7583 { 7584 rtnl_lock(); 7585 unregister_netdevice(dev); 7586 rtnl_unlock(); 7587 } 7588 EXPORT_SYMBOL(unregister_netdev); 7589 7590 /** 7591 * dev_change_net_namespace - move device to different nethost namespace 7592 * @dev: device 7593 * @net: network namespace 7594 * @pat: If not NULL name pattern to try if the current device name 7595 * is already taken in the destination network namespace. 7596 * 7597 * This function shuts down a device interface and moves it 7598 * to a new network namespace. On success 0 is returned, on 7599 * a failure a netagive errno code is returned. 7600 * 7601 * Callers must hold the rtnl semaphore. 7602 */ 7603 7604 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 7605 { 7606 int err; 7607 7608 ASSERT_RTNL(); 7609 7610 /* Don't allow namespace local devices to be moved. */ 7611 err = -EINVAL; 7612 if (dev->features & NETIF_F_NETNS_LOCAL) 7613 goto out; 7614 7615 /* Ensure the device has been registrered */ 7616 if (dev->reg_state != NETREG_REGISTERED) 7617 goto out; 7618 7619 /* Get out if there is nothing todo */ 7620 err = 0; 7621 if (net_eq(dev_net(dev), net)) 7622 goto out; 7623 7624 /* Pick the destination device name, and ensure 7625 * we can use it in the destination network namespace. 7626 */ 7627 err = -EEXIST; 7628 if (__dev_get_by_name(net, dev->name)) { 7629 /* We get here if we can't use the current device name */ 7630 if (!pat) 7631 goto out; 7632 if (dev_get_valid_name(net, dev, pat) < 0) 7633 goto out; 7634 } 7635 7636 /* 7637 * And now a mini version of register_netdevice unregister_netdevice. 7638 */ 7639 7640 /* If device is running close it first. */ 7641 dev_close(dev); 7642 7643 /* And unlink it from device chain */ 7644 err = -ENODEV; 7645 unlist_netdevice(dev); 7646 7647 synchronize_net(); 7648 7649 /* Shutdown queueing discipline. */ 7650 dev_shutdown(dev); 7651 7652 /* Notify protocols, that we are about to destroy 7653 this device. They should clean all the things. 7654 7655 Note that dev->reg_state stays at NETREG_REGISTERED. 7656 This is wanted because this way 8021q and macvlan know 7657 the device is just moving and can keep their slaves up. 7658 */ 7659 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7660 rcu_barrier(); 7661 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7662 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 7663 7664 /* 7665 * Flush the unicast and multicast chains 7666 */ 7667 dev_uc_flush(dev); 7668 dev_mc_flush(dev); 7669 7670 /* Send a netdev-removed uevent to the old namespace */ 7671 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 7672 netdev_adjacent_del_links(dev); 7673 7674 /* Actually switch the network namespace */ 7675 dev_net_set(dev, net); 7676 7677 /* If there is an ifindex conflict assign a new one */ 7678 if (__dev_get_by_index(net, dev->ifindex)) 7679 dev->ifindex = dev_new_index(net); 7680 7681 /* Send a netdev-add uevent to the new namespace */ 7682 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 7683 netdev_adjacent_add_links(dev); 7684 7685 /* Fixup kobjects */ 7686 err = device_rename(&dev->dev, dev->name); 7687 WARN_ON(err); 7688 7689 /* Add the device back in the hashes */ 7690 list_netdevice(dev); 7691 7692 /* Notify protocols, that a new device appeared. */ 7693 call_netdevice_notifiers(NETDEV_REGISTER, dev); 7694 7695 /* 7696 * Prevent userspace races by waiting until the network 7697 * device is fully setup before sending notifications. 7698 */ 7699 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7700 7701 synchronize_net(); 7702 err = 0; 7703 out: 7704 return err; 7705 } 7706 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 7707 7708 static int dev_cpu_callback(struct notifier_block *nfb, 7709 unsigned long action, 7710 void *ocpu) 7711 { 7712 struct sk_buff **list_skb; 7713 struct sk_buff *skb; 7714 unsigned int cpu, oldcpu = (unsigned long)ocpu; 7715 struct softnet_data *sd, *oldsd; 7716 7717 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 7718 return NOTIFY_OK; 7719 7720 local_irq_disable(); 7721 cpu = smp_processor_id(); 7722 sd = &per_cpu(softnet_data, cpu); 7723 oldsd = &per_cpu(softnet_data, oldcpu); 7724 7725 /* Find end of our completion_queue. */ 7726 list_skb = &sd->completion_queue; 7727 while (*list_skb) 7728 list_skb = &(*list_skb)->next; 7729 /* Append completion queue from offline CPU. */ 7730 *list_skb = oldsd->completion_queue; 7731 oldsd->completion_queue = NULL; 7732 7733 /* Append output queue from offline CPU. */ 7734 if (oldsd->output_queue) { 7735 *sd->output_queue_tailp = oldsd->output_queue; 7736 sd->output_queue_tailp = oldsd->output_queue_tailp; 7737 oldsd->output_queue = NULL; 7738 oldsd->output_queue_tailp = &oldsd->output_queue; 7739 } 7740 /* Append NAPI poll list from offline CPU, with one exception : 7741 * process_backlog() must be called by cpu owning percpu backlog. 7742 * We properly handle process_queue & input_pkt_queue later. 7743 */ 7744 while (!list_empty(&oldsd->poll_list)) { 7745 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 7746 struct napi_struct, 7747 poll_list); 7748 7749 list_del_init(&napi->poll_list); 7750 if (napi->poll == process_backlog) 7751 napi->state = 0; 7752 else 7753 ____napi_schedule(sd, napi); 7754 } 7755 7756 raise_softirq_irqoff(NET_TX_SOFTIRQ); 7757 local_irq_enable(); 7758 7759 /* Process offline CPU's input_pkt_queue */ 7760 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 7761 netif_rx_ni(skb); 7762 input_queue_head_incr(oldsd); 7763 } 7764 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 7765 netif_rx_ni(skb); 7766 input_queue_head_incr(oldsd); 7767 } 7768 7769 return NOTIFY_OK; 7770 } 7771 7772 7773 /** 7774 * netdev_increment_features - increment feature set by one 7775 * @all: current feature set 7776 * @one: new feature set 7777 * @mask: mask feature set 7778 * 7779 * Computes a new feature set after adding a device with feature set 7780 * @one to the master device with current feature set @all. Will not 7781 * enable anything that is off in @mask. Returns the new feature set. 7782 */ 7783 netdev_features_t netdev_increment_features(netdev_features_t all, 7784 netdev_features_t one, netdev_features_t mask) 7785 { 7786 if (mask & NETIF_F_HW_CSUM) 7787 mask |= NETIF_F_CSUM_MASK; 7788 mask |= NETIF_F_VLAN_CHALLENGED; 7789 7790 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 7791 all &= one | ~NETIF_F_ALL_FOR_ALL; 7792 7793 /* If one device supports hw checksumming, set for all. */ 7794 if (all & NETIF_F_HW_CSUM) 7795 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 7796 7797 return all; 7798 } 7799 EXPORT_SYMBOL(netdev_increment_features); 7800 7801 static struct hlist_head * __net_init netdev_create_hash(void) 7802 { 7803 int i; 7804 struct hlist_head *hash; 7805 7806 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 7807 if (hash != NULL) 7808 for (i = 0; i < NETDEV_HASHENTRIES; i++) 7809 INIT_HLIST_HEAD(&hash[i]); 7810 7811 return hash; 7812 } 7813 7814 /* Initialize per network namespace state */ 7815 static int __net_init netdev_init(struct net *net) 7816 { 7817 if (net != &init_net) 7818 INIT_LIST_HEAD(&net->dev_base_head); 7819 7820 net->dev_name_head = netdev_create_hash(); 7821 if (net->dev_name_head == NULL) 7822 goto err_name; 7823 7824 net->dev_index_head = netdev_create_hash(); 7825 if (net->dev_index_head == NULL) 7826 goto err_idx; 7827 7828 return 0; 7829 7830 err_idx: 7831 kfree(net->dev_name_head); 7832 err_name: 7833 return -ENOMEM; 7834 } 7835 7836 /** 7837 * netdev_drivername - network driver for the device 7838 * @dev: network device 7839 * 7840 * Determine network driver for device. 7841 */ 7842 const char *netdev_drivername(const struct net_device *dev) 7843 { 7844 const struct device_driver *driver; 7845 const struct device *parent; 7846 const char *empty = ""; 7847 7848 parent = dev->dev.parent; 7849 if (!parent) 7850 return empty; 7851 7852 driver = parent->driver; 7853 if (driver && driver->name) 7854 return driver->name; 7855 return empty; 7856 } 7857 7858 static void __netdev_printk(const char *level, const struct net_device *dev, 7859 struct va_format *vaf) 7860 { 7861 if (dev && dev->dev.parent) { 7862 dev_printk_emit(level[1] - '0', 7863 dev->dev.parent, 7864 "%s %s %s%s: %pV", 7865 dev_driver_string(dev->dev.parent), 7866 dev_name(dev->dev.parent), 7867 netdev_name(dev), netdev_reg_state(dev), 7868 vaf); 7869 } else if (dev) { 7870 printk("%s%s%s: %pV", 7871 level, netdev_name(dev), netdev_reg_state(dev), vaf); 7872 } else { 7873 printk("%s(NULL net_device): %pV", level, vaf); 7874 } 7875 } 7876 7877 void netdev_printk(const char *level, const struct net_device *dev, 7878 const char *format, ...) 7879 { 7880 struct va_format vaf; 7881 va_list args; 7882 7883 va_start(args, format); 7884 7885 vaf.fmt = format; 7886 vaf.va = &args; 7887 7888 __netdev_printk(level, dev, &vaf); 7889 7890 va_end(args); 7891 } 7892 EXPORT_SYMBOL(netdev_printk); 7893 7894 #define define_netdev_printk_level(func, level) \ 7895 void func(const struct net_device *dev, const char *fmt, ...) \ 7896 { \ 7897 struct va_format vaf; \ 7898 va_list args; \ 7899 \ 7900 va_start(args, fmt); \ 7901 \ 7902 vaf.fmt = fmt; \ 7903 vaf.va = &args; \ 7904 \ 7905 __netdev_printk(level, dev, &vaf); \ 7906 \ 7907 va_end(args); \ 7908 } \ 7909 EXPORT_SYMBOL(func); 7910 7911 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 7912 define_netdev_printk_level(netdev_alert, KERN_ALERT); 7913 define_netdev_printk_level(netdev_crit, KERN_CRIT); 7914 define_netdev_printk_level(netdev_err, KERN_ERR); 7915 define_netdev_printk_level(netdev_warn, KERN_WARNING); 7916 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 7917 define_netdev_printk_level(netdev_info, KERN_INFO); 7918 7919 static void __net_exit netdev_exit(struct net *net) 7920 { 7921 kfree(net->dev_name_head); 7922 kfree(net->dev_index_head); 7923 } 7924 7925 static struct pernet_operations __net_initdata netdev_net_ops = { 7926 .init = netdev_init, 7927 .exit = netdev_exit, 7928 }; 7929 7930 static void __net_exit default_device_exit(struct net *net) 7931 { 7932 struct net_device *dev, *aux; 7933 /* 7934 * Push all migratable network devices back to the 7935 * initial network namespace 7936 */ 7937 rtnl_lock(); 7938 for_each_netdev_safe(net, dev, aux) { 7939 int err; 7940 char fb_name[IFNAMSIZ]; 7941 7942 /* Ignore unmoveable devices (i.e. loopback) */ 7943 if (dev->features & NETIF_F_NETNS_LOCAL) 7944 continue; 7945 7946 /* Leave virtual devices for the generic cleanup */ 7947 if (dev->rtnl_link_ops) 7948 continue; 7949 7950 /* Push remaining network devices to init_net */ 7951 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 7952 err = dev_change_net_namespace(dev, &init_net, fb_name); 7953 if (err) { 7954 pr_emerg("%s: failed to move %s to init_net: %d\n", 7955 __func__, dev->name, err); 7956 BUG(); 7957 } 7958 } 7959 rtnl_unlock(); 7960 } 7961 7962 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 7963 { 7964 /* Return with the rtnl_lock held when there are no network 7965 * devices unregistering in any network namespace in net_list. 7966 */ 7967 struct net *net; 7968 bool unregistering; 7969 DEFINE_WAIT_FUNC(wait, woken_wake_function); 7970 7971 add_wait_queue(&netdev_unregistering_wq, &wait); 7972 for (;;) { 7973 unregistering = false; 7974 rtnl_lock(); 7975 list_for_each_entry(net, net_list, exit_list) { 7976 if (net->dev_unreg_count > 0) { 7977 unregistering = true; 7978 break; 7979 } 7980 } 7981 if (!unregistering) 7982 break; 7983 __rtnl_unlock(); 7984 7985 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 7986 } 7987 remove_wait_queue(&netdev_unregistering_wq, &wait); 7988 } 7989 7990 static void __net_exit default_device_exit_batch(struct list_head *net_list) 7991 { 7992 /* At exit all network devices most be removed from a network 7993 * namespace. Do this in the reverse order of registration. 7994 * Do this across as many network namespaces as possible to 7995 * improve batching efficiency. 7996 */ 7997 struct net_device *dev; 7998 struct net *net; 7999 LIST_HEAD(dev_kill_list); 8000 8001 /* To prevent network device cleanup code from dereferencing 8002 * loopback devices or network devices that have been freed 8003 * wait here for all pending unregistrations to complete, 8004 * before unregistring the loopback device and allowing the 8005 * network namespace be freed. 8006 * 8007 * The netdev todo list containing all network devices 8008 * unregistrations that happen in default_device_exit_batch 8009 * will run in the rtnl_unlock() at the end of 8010 * default_device_exit_batch. 8011 */ 8012 rtnl_lock_unregistering(net_list); 8013 list_for_each_entry(net, net_list, exit_list) { 8014 for_each_netdev_reverse(net, dev) { 8015 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 8016 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 8017 else 8018 unregister_netdevice_queue(dev, &dev_kill_list); 8019 } 8020 } 8021 unregister_netdevice_many(&dev_kill_list); 8022 rtnl_unlock(); 8023 } 8024 8025 static struct pernet_operations __net_initdata default_device_ops = { 8026 .exit = default_device_exit, 8027 .exit_batch = default_device_exit_batch, 8028 }; 8029 8030 /* 8031 * Initialize the DEV module. At boot time this walks the device list and 8032 * unhooks any devices that fail to initialise (normally hardware not 8033 * present) and leaves us with a valid list of present and active devices. 8034 * 8035 */ 8036 8037 /* 8038 * This is called single threaded during boot, so no need 8039 * to take the rtnl semaphore. 8040 */ 8041 static int __init net_dev_init(void) 8042 { 8043 int i, rc = -ENOMEM; 8044 8045 BUG_ON(!dev_boot_phase); 8046 8047 if (dev_proc_init()) 8048 goto out; 8049 8050 if (netdev_kobject_init()) 8051 goto out; 8052 8053 INIT_LIST_HEAD(&ptype_all); 8054 for (i = 0; i < PTYPE_HASH_SIZE; i++) 8055 INIT_LIST_HEAD(&ptype_base[i]); 8056 8057 INIT_LIST_HEAD(&offload_base); 8058 8059 if (register_pernet_subsys(&netdev_net_ops)) 8060 goto out; 8061 8062 /* 8063 * Initialise the packet receive queues. 8064 */ 8065 8066 for_each_possible_cpu(i) { 8067 struct softnet_data *sd = &per_cpu(softnet_data, i); 8068 8069 skb_queue_head_init(&sd->input_pkt_queue); 8070 skb_queue_head_init(&sd->process_queue); 8071 INIT_LIST_HEAD(&sd->poll_list); 8072 sd->output_queue_tailp = &sd->output_queue; 8073 #ifdef CONFIG_RPS 8074 sd->csd.func = rps_trigger_softirq; 8075 sd->csd.info = sd; 8076 sd->cpu = i; 8077 #endif 8078 8079 sd->backlog.poll = process_backlog; 8080 sd->backlog.weight = weight_p; 8081 } 8082 8083 dev_boot_phase = 0; 8084 8085 /* The loopback device is special if any other network devices 8086 * is present in a network namespace the loopback device must 8087 * be present. Since we now dynamically allocate and free the 8088 * loopback device ensure this invariant is maintained by 8089 * keeping the loopback device as the first device on the 8090 * list of network devices. Ensuring the loopback devices 8091 * is the first device that appears and the last network device 8092 * that disappears. 8093 */ 8094 if (register_pernet_device(&loopback_net_ops)) 8095 goto out; 8096 8097 if (register_pernet_device(&default_device_ops)) 8098 goto out; 8099 8100 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 8101 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 8102 8103 hotcpu_notifier(dev_cpu_callback, 0); 8104 dst_subsys_init(); 8105 rc = 0; 8106 out: 8107 return rc; 8108 } 8109 8110 subsys_initcall(net_dev_init); 8111