1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <linux/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/sched/mm.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/skbuff.h> 97 #include <linux/bpf.h> 98 #include <linux/bpf_trace.h> 99 #include <net/net_namespace.h> 100 #include <net/sock.h> 101 #include <net/busy_poll.h> 102 #include <linux/rtnetlink.h> 103 #include <linux/stat.h> 104 #include <net/dst.h> 105 #include <net/dst_metadata.h> 106 #include <net/pkt_sched.h> 107 #include <net/pkt_cls.h> 108 #include <net/checksum.h> 109 #include <net/xfrm.h> 110 #include <linux/highmem.h> 111 #include <linux/init.h> 112 #include <linux/module.h> 113 #include <linux/netpoll.h> 114 #include <linux/rcupdate.h> 115 #include <linux/delay.h> 116 #include <net/iw_handler.h> 117 #include <asm/current.h> 118 #include <linux/audit.h> 119 #include <linux/dmaengine.h> 120 #include <linux/err.h> 121 #include <linux/ctype.h> 122 #include <linux/if_arp.h> 123 #include <linux/if_vlan.h> 124 #include <linux/ip.h> 125 #include <net/ip.h> 126 #include <net/mpls.h> 127 #include <linux/ipv6.h> 128 #include <linux/in.h> 129 #include <linux/jhash.h> 130 #include <linux/random.h> 131 #include <trace/events/napi.h> 132 #include <trace/events/net.h> 133 #include <trace/events/skb.h> 134 #include <linux/pci.h> 135 #include <linux/inetdevice.h> 136 #include <linux/cpu_rmap.h> 137 #include <linux/static_key.h> 138 #include <linux/hashtable.h> 139 #include <linux/vmalloc.h> 140 #include <linux/if_macvlan.h> 141 #include <linux/errqueue.h> 142 #include <linux/hrtimer.h> 143 #include <linux/netfilter_ingress.h> 144 #include <linux/crash_dump.h> 145 #include <linux/sctp.h> 146 #include <net/udp_tunnel.h> 147 #include <linux/net_namespace.h> 148 149 #include "net-sysfs.h" 150 151 #define MAX_GRO_SKBS 8 152 153 /* This should be increased if a protocol with a bigger head is added. */ 154 #define GRO_MAX_HEAD (MAX_HEADER + 128) 155 156 static DEFINE_SPINLOCK(ptype_lock); 157 static DEFINE_SPINLOCK(offload_lock); 158 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 159 struct list_head ptype_all __read_mostly; /* Taps */ 160 static struct list_head offload_base __read_mostly; 161 162 static int netif_rx_internal(struct sk_buff *skb); 163 static int call_netdevice_notifiers_info(unsigned long val, 164 struct netdev_notifier_info *info); 165 static struct napi_struct *napi_by_id(unsigned int napi_id); 166 167 /* 168 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 169 * semaphore. 170 * 171 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 172 * 173 * Writers must hold the rtnl semaphore while they loop through the 174 * dev_base_head list, and hold dev_base_lock for writing when they do the 175 * actual updates. This allows pure readers to access the list even 176 * while a writer is preparing to update it. 177 * 178 * To put it another way, dev_base_lock is held for writing only to 179 * protect against pure readers; the rtnl semaphore provides the 180 * protection against other writers. 181 * 182 * See, for example usages, register_netdevice() and 183 * unregister_netdevice(), which must be called with the rtnl 184 * semaphore held. 185 */ 186 DEFINE_RWLOCK(dev_base_lock); 187 EXPORT_SYMBOL(dev_base_lock); 188 189 static DEFINE_MUTEX(ifalias_mutex); 190 191 /* protects napi_hash addition/deletion and napi_gen_id */ 192 static DEFINE_SPINLOCK(napi_hash_lock); 193 194 static unsigned int napi_gen_id = NR_CPUS; 195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 196 197 static seqcount_t devnet_rename_seq; 198 199 static inline void dev_base_seq_inc(struct net *net) 200 { 201 while (++net->dev_base_seq == 0) 202 ; 203 } 204 205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 206 { 207 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 208 209 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 210 } 211 212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 213 { 214 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 215 } 216 217 static inline void rps_lock(struct softnet_data *sd) 218 { 219 #ifdef CONFIG_RPS 220 spin_lock(&sd->input_pkt_queue.lock); 221 #endif 222 } 223 224 static inline void rps_unlock(struct softnet_data *sd) 225 { 226 #ifdef CONFIG_RPS 227 spin_unlock(&sd->input_pkt_queue.lock); 228 #endif 229 } 230 231 /* Device list insertion */ 232 static void list_netdevice(struct net_device *dev) 233 { 234 struct net *net = dev_net(dev); 235 236 ASSERT_RTNL(); 237 238 write_lock_bh(&dev_base_lock); 239 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 240 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 241 hlist_add_head_rcu(&dev->index_hlist, 242 dev_index_hash(net, dev->ifindex)); 243 write_unlock_bh(&dev_base_lock); 244 245 dev_base_seq_inc(net); 246 } 247 248 /* Device list removal 249 * caller must respect a RCU grace period before freeing/reusing dev 250 */ 251 static void unlist_netdevice(struct net_device *dev) 252 { 253 ASSERT_RTNL(); 254 255 /* Unlink dev from the device chain */ 256 write_lock_bh(&dev_base_lock); 257 list_del_rcu(&dev->dev_list); 258 hlist_del_rcu(&dev->name_hlist); 259 hlist_del_rcu(&dev->index_hlist); 260 write_unlock_bh(&dev_base_lock); 261 262 dev_base_seq_inc(dev_net(dev)); 263 } 264 265 /* 266 * Our notifier list 267 */ 268 269 static RAW_NOTIFIER_HEAD(netdev_chain); 270 271 /* 272 * Device drivers call our routines to queue packets here. We empty the 273 * queue in the local softnet handler. 274 */ 275 276 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 277 EXPORT_PER_CPU_SYMBOL(softnet_data); 278 279 #ifdef CONFIG_LOCKDEP 280 /* 281 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 282 * according to dev->type 283 */ 284 static const unsigned short netdev_lock_type[] = { 285 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 286 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 287 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 288 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 289 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 290 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 291 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 292 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 293 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 294 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 295 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 296 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 297 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 298 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 299 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 300 301 static const char *const netdev_lock_name[] = { 302 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 303 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 304 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 305 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 306 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 307 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 308 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 309 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 310 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 311 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 312 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 313 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 314 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 315 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 316 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 317 318 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 319 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 320 321 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 322 { 323 int i; 324 325 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 326 if (netdev_lock_type[i] == dev_type) 327 return i; 328 /* the last key is used by default */ 329 return ARRAY_SIZE(netdev_lock_type) - 1; 330 } 331 332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 333 unsigned short dev_type) 334 { 335 int i; 336 337 i = netdev_lock_pos(dev_type); 338 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 339 netdev_lock_name[i]); 340 } 341 342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 343 { 344 int i; 345 346 i = netdev_lock_pos(dev->type); 347 lockdep_set_class_and_name(&dev->addr_list_lock, 348 &netdev_addr_lock_key[i], 349 netdev_lock_name[i]); 350 } 351 #else 352 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 353 unsigned short dev_type) 354 { 355 } 356 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 357 { 358 } 359 #endif 360 361 /******************************************************************************* 362 * 363 * Protocol management and registration routines 364 * 365 *******************************************************************************/ 366 367 368 /* 369 * Add a protocol ID to the list. Now that the input handler is 370 * smarter we can dispense with all the messy stuff that used to be 371 * here. 372 * 373 * BEWARE!!! Protocol handlers, mangling input packets, 374 * MUST BE last in hash buckets and checking protocol handlers 375 * MUST start from promiscuous ptype_all chain in net_bh. 376 * It is true now, do not change it. 377 * Explanation follows: if protocol handler, mangling packet, will 378 * be the first on list, it is not able to sense, that packet 379 * is cloned and should be copied-on-write, so that it will 380 * change it and subsequent readers will get broken packet. 381 * --ANK (980803) 382 */ 383 384 static inline struct list_head *ptype_head(const struct packet_type *pt) 385 { 386 if (pt->type == htons(ETH_P_ALL)) 387 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 388 else 389 return pt->dev ? &pt->dev->ptype_specific : 390 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 391 } 392 393 /** 394 * dev_add_pack - add packet handler 395 * @pt: packet type declaration 396 * 397 * Add a protocol handler to the networking stack. The passed &packet_type 398 * is linked into kernel lists and may not be freed until it has been 399 * removed from the kernel lists. 400 * 401 * This call does not sleep therefore it can not 402 * guarantee all CPU's that are in middle of receiving packets 403 * will see the new packet type (until the next received packet). 404 */ 405 406 void dev_add_pack(struct packet_type *pt) 407 { 408 struct list_head *head = ptype_head(pt); 409 410 spin_lock(&ptype_lock); 411 list_add_rcu(&pt->list, head); 412 spin_unlock(&ptype_lock); 413 } 414 EXPORT_SYMBOL(dev_add_pack); 415 416 /** 417 * __dev_remove_pack - remove packet handler 418 * @pt: packet type declaration 419 * 420 * Remove a protocol handler that was previously added to the kernel 421 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 422 * from the kernel lists and can be freed or reused once this function 423 * returns. 424 * 425 * The packet type might still be in use by receivers 426 * and must not be freed until after all the CPU's have gone 427 * through a quiescent state. 428 */ 429 void __dev_remove_pack(struct packet_type *pt) 430 { 431 struct list_head *head = ptype_head(pt); 432 struct packet_type *pt1; 433 434 spin_lock(&ptype_lock); 435 436 list_for_each_entry(pt1, head, list) { 437 if (pt == pt1) { 438 list_del_rcu(&pt->list); 439 goto out; 440 } 441 } 442 443 pr_warn("dev_remove_pack: %p not found\n", pt); 444 out: 445 spin_unlock(&ptype_lock); 446 } 447 EXPORT_SYMBOL(__dev_remove_pack); 448 449 /** 450 * dev_remove_pack - remove packet handler 451 * @pt: packet type declaration 452 * 453 * Remove a protocol handler that was previously added to the kernel 454 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 455 * from the kernel lists and can be freed or reused once this function 456 * returns. 457 * 458 * This call sleeps to guarantee that no CPU is looking at the packet 459 * type after return. 460 */ 461 void dev_remove_pack(struct packet_type *pt) 462 { 463 __dev_remove_pack(pt); 464 465 synchronize_net(); 466 } 467 EXPORT_SYMBOL(dev_remove_pack); 468 469 470 /** 471 * dev_add_offload - register offload handlers 472 * @po: protocol offload declaration 473 * 474 * Add protocol offload handlers to the networking stack. The passed 475 * &proto_offload is linked into kernel lists and may not be freed until 476 * it has been removed from the kernel lists. 477 * 478 * This call does not sleep therefore it can not 479 * guarantee all CPU's that are in middle of receiving packets 480 * will see the new offload handlers (until the next received packet). 481 */ 482 void dev_add_offload(struct packet_offload *po) 483 { 484 struct packet_offload *elem; 485 486 spin_lock(&offload_lock); 487 list_for_each_entry(elem, &offload_base, list) { 488 if (po->priority < elem->priority) 489 break; 490 } 491 list_add_rcu(&po->list, elem->list.prev); 492 spin_unlock(&offload_lock); 493 } 494 EXPORT_SYMBOL(dev_add_offload); 495 496 /** 497 * __dev_remove_offload - remove offload handler 498 * @po: packet offload declaration 499 * 500 * Remove a protocol offload handler that was previously added to the 501 * kernel offload handlers by dev_add_offload(). The passed &offload_type 502 * is removed from the kernel lists and can be freed or reused once this 503 * function returns. 504 * 505 * The packet type might still be in use by receivers 506 * and must not be freed until after all the CPU's have gone 507 * through a quiescent state. 508 */ 509 static void __dev_remove_offload(struct packet_offload *po) 510 { 511 struct list_head *head = &offload_base; 512 struct packet_offload *po1; 513 514 spin_lock(&offload_lock); 515 516 list_for_each_entry(po1, head, list) { 517 if (po == po1) { 518 list_del_rcu(&po->list); 519 goto out; 520 } 521 } 522 523 pr_warn("dev_remove_offload: %p not found\n", po); 524 out: 525 spin_unlock(&offload_lock); 526 } 527 528 /** 529 * dev_remove_offload - remove packet offload handler 530 * @po: packet offload declaration 531 * 532 * Remove a packet offload handler that was previously added to the kernel 533 * offload handlers by dev_add_offload(). The passed &offload_type is 534 * removed from the kernel lists and can be freed or reused once this 535 * function returns. 536 * 537 * This call sleeps to guarantee that no CPU is looking at the packet 538 * type after return. 539 */ 540 void dev_remove_offload(struct packet_offload *po) 541 { 542 __dev_remove_offload(po); 543 544 synchronize_net(); 545 } 546 EXPORT_SYMBOL(dev_remove_offload); 547 548 /****************************************************************************** 549 * 550 * Device Boot-time Settings Routines 551 * 552 ******************************************************************************/ 553 554 /* Boot time configuration table */ 555 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 556 557 /** 558 * netdev_boot_setup_add - add new setup entry 559 * @name: name of the device 560 * @map: configured settings for the device 561 * 562 * Adds new setup entry to the dev_boot_setup list. The function 563 * returns 0 on error and 1 on success. This is a generic routine to 564 * all netdevices. 565 */ 566 static int netdev_boot_setup_add(char *name, struct ifmap *map) 567 { 568 struct netdev_boot_setup *s; 569 int i; 570 571 s = dev_boot_setup; 572 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 573 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 574 memset(s[i].name, 0, sizeof(s[i].name)); 575 strlcpy(s[i].name, name, IFNAMSIZ); 576 memcpy(&s[i].map, map, sizeof(s[i].map)); 577 break; 578 } 579 } 580 581 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 582 } 583 584 /** 585 * netdev_boot_setup_check - check boot time settings 586 * @dev: the netdevice 587 * 588 * Check boot time settings for the device. 589 * The found settings are set for the device to be used 590 * later in the device probing. 591 * Returns 0 if no settings found, 1 if they are. 592 */ 593 int netdev_boot_setup_check(struct net_device *dev) 594 { 595 struct netdev_boot_setup *s = dev_boot_setup; 596 int i; 597 598 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 599 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 600 !strcmp(dev->name, s[i].name)) { 601 dev->irq = s[i].map.irq; 602 dev->base_addr = s[i].map.base_addr; 603 dev->mem_start = s[i].map.mem_start; 604 dev->mem_end = s[i].map.mem_end; 605 return 1; 606 } 607 } 608 return 0; 609 } 610 EXPORT_SYMBOL(netdev_boot_setup_check); 611 612 613 /** 614 * netdev_boot_base - get address from boot time settings 615 * @prefix: prefix for network device 616 * @unit: id for network device 617 * 618 * Check boot time settings for the base address of device. 619 * The found settings are set for the device to be used 620 * later in the device probing. 621 * Returns 0 if no settings found. 622 */ 623 unsigned long netdev_boot_base(const char *prefix, int unit) 624 { 625 const struct netdev_boot_setup *s = dev_boot_setup; 626 char name[IFNAMSIZ]; 627 int i; 628 629 sprintf(name, "%s%d", prefix, unit); 630 631 /* 632 * If device already registered then return base of 1 633 * to indicate not to probe for this interface 634 */ 635 if (__dev_get_by_name(&init_net, name)) 636 return 1; 637 638 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 639 if (!strcmp(name, s[i].name)) 640 return s[i].map.base_addr; 641 return 0; 642 } 643 644 /* 645 * Saves at boot time configured settings for any netdevice. 646 */ 647 int __init netdev_boot_setup(char *str) 648 { 649 int ints[5]; 650 struct ifmap map; 651 652 str = get_options(str, ARRAY_SIZE(ints), ints); 653 if (!str || !*str) 654 return 0; 655 656 /* Save settings */ 657 memset(&map, 0, sizeof(map)); 658 if (ints[0] > 0) 659 map.irq = ints[1]; 660 if (ints[0] > 1) 661 map.base_addr = ints[2]; 662 if (ints[0] > 2) 663 map.mem_start = ints[3]; 664 if (ints[0] > 3) 665 map.mem_end = ints[4]; 666 667 /* Add new entry to the list */ 668 return netdev_boot_setup_add(str, &map); 669 } 670 671 __setup("netdev=", netdev_boot_setup); 672 673 /******************************************************************************* 674 * 675 * Device Interface Subroutines 676 * 677 *******************************************************************************/ 678 679 /** 680 * dev_get_iflink - get 'iflink' value of a interface 681 * @dev: targeted interface 682 * 683 * Indicates the ifindex the interface is linked to. 684 * Physical interfaces have the same 'ifindex' and 'iflink' values. 685 */ 686 687 int dev_get_iflink(const struct net_device *dev) 688 { 689 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 690 return dev->netdev_ops->ndo_get_iflink(dev); 691 692 return dev->ifindex; 693 } 694 EXPORT_SYMBOL(dev_get_iflink); 695 696 /** 697 * dev_fill_metadata_dst - Retrieve tunnel egress information. 698 * @dev: targeted interface 699 * @skb: The packet. 700 * 701 * For better visibility of tunnel traffic OVS needs to retrieve 702 * egress tunnel information for a packet. Following API allows 703 * user to get this info. 704 */ 705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 706 { 707 struct ip_tunnel_info *info; 708 709 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 710 return -EINVAL; 711 712 info = skb_tunnel_info_unclone(skb); 713 if (!info) 714 return -ENOMEM; 715 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 716 return -EINVAL; 717 718 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 719 } 720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 721 722 /** 723 * __dev_get_by_name - find a device by its name 724 * @net: the applicable net namespace 725 * @name: name to find 726 * 727 * Find an interface by name. Must be called under RTNL semaphore 728 * or @dev_base_lock. If the name is found a pointer to the device 729 * is returned. If the name is not found then %NULL is returned. The 730 * reference counters are not incremented so the caller must be 731 * careful with locks. 732 */ 733 734 struct net_device *__dev_get_by_name(struct net *net, const char *name) 735 { 736 struct net_device *dev; 737 struct hlist_head *head = dev_name_hash(net, name); 738 739 hlist_for_each_entry(dev, head, name_hlist) 740 if (!strncmp(dev->name, name, IFNAMSIZ)) 741 return dev; 742 743 return NULL; 744 } 745 EXPORT_SYMBOL(__dev_get_by_name); 746 747 /** 748 * dev_get_by_name_rcu - find a device by its name 749 * @net: the applicable net namespace 750 * @name: name to find 751 * 752 * Find an interface by name. 753 * If the name is found a pointer to the device is returned. 754 * If the name is not found then %NULL is returned. 755 * The reference counters are not incremented so the caller must be 756 * careful with locks. The caller must hold RCU lock. 757 */ 758 759 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 760 { 761 struct net_device *dev; 762 struct hlist_head *head = dev_name_hash(net, name); 763 764 hlist_for_each_entry_rcu(dev, head, name_hlist) 765 if (!strncmp(dev->name, name, IFNAMSIZ)) 766 return dev; 767 768 return NULL; 769 } 770 EXPORT_SYMBOL(dev_get_by_name_rcu); 771 772 /** 773 * dev_get_by_name - find a device by its name 774 * @net: the applicable net namespace 775 * @name: name to find 776 * 777 * Find an interface by name. This can be called from any 778 * context and does its own locking. The returned handle has 779 * the usage count incremented and the caller must use dev_put() to 780 * release it when it is no longer needed. %NULL is returned if no 781 * matching device is found. 782 */ 783 784 struct net_device *dev_get_by_name(struct net *net, const char *name) 785 { 786 struct net_device *dev; 787 788 rcu_read_lock(); 789 dev = dev_get_by_name_rcu(net, name); 790 if (dev) 791 dev_hold(dev); 792 rcu_read_unlock(); 793 return dev; 794 } 795 EXPORT_SYMBOL(dev_get_by_name); 796 797 /** 798 * __dev_get_by_index - find a device by its ifindex 799 * @net: the applicable net namespace 800 * @ifindex: index of device 801 * 802 * Search for an interface by index. Returns %NULL if the device 803 * is not found or a pointer to the device. The device has not 804 * had its reference counter increased so the caller must be careful 805 * about locking. The caller must hold either the RTNL semaphore 806 * or @dev_base_lock. 807 */ 808 809 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 810 { 811 struct net_device *dev; 812 struct hlist_head *head = dev_index_hash(net, ifindex); 813 814 hlist_for_each_entry(dev, head, index_hlist) 815 if (dev->ifindex == ifindex) 816 return dev; 817 818 return NULL; 819 } 820 EXPORT_SYMBOL(__dev_get_by_index); 821 822 /** 823 * dev_get_by_index_rcu - find a device by its ifindex 824 * @net: the applicable net namespace 825 * @ifindex: index of device 826 * 827 * Search for an interface by index. Returns %NULL if the device 828 * is not found or a pointer to the device. The device has not 829 * had its reference counter increased so the caller must be careful 830 * about locking. The caller must hold RCU lock. 831 */ 832 833 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 834 { 835 struct net_device *dev; 836 struct hlist_head *head = dev_index_hash(net, ifindex); 837 838 hlist_for_each_entry_rcu(dev, head, index_hlist) 839 if (dev->ifindex == ifindex) 840 return dev; 841 842 return NULL; 843 } 844 EXPORT_SYMBOL(dev_get_by_index_rcu); 845 846 847 /** 848 * dev_get_by_index - find a device by its ifindex 849 * @net: the applicable net namespace 850 * @ifindex: index of device 851 * 852 * Search for an interface by index. Returns NULL if the device 853 * is not found or a pointer to the device. The device returned has 854 * had a reference added and the pointer is safe until the user calls 855 * dev_put to indicate they have finished with it. 856 */ 857 858 struct net_device *dev_get_by_index(struct net *net, int ifindex) 859 { 860 struct net_device *dev; 861 862 rcu_read_lock(); 863 dev = dev_get_by_index_rcu(net, ifindex); 864 if (dev) 865 dev_hold(dev); 866 rcu_read_unlock(); 867 return dev; 868 } 869 EXPORT_SYMBOL(dev_get_by_index); 870 871 /** 872 * dev_get_by_napi_id - find a device by napi_id 873 * @napi_id: ID of the NAPI struct 874 * 875 * Search for an interface by NAPI ID. Returns %NULL if the device 876 * is not found or a pointer to the device. The device has not had 877 * its reference counter increased so the caller must be careful 878 * about locking. The caller must hold RCU lock. 879 */ 880 881 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 882 { 883 struct napi_struct *napi; 884 885 WARN_ON_ONCE(!rcu_read_lock_held()); 886 887 if (napi_id < MIN_NAPI_ID) 888 return NULL; 889 890 napi = napi_by_id(napi_id); 891 892 return napi ? napi->dev : NULL; 893 } 894 EXPORT_SYMBOL(dev_get_by_napi_id); 895 896 /** 897 * netdev_get_name - get a netdevice name, knowing its ifindex. 898 * @net: network namespace 899 * @name: a pointer to the buffer where the name will be stored. 900 * @ifindex: the ifindex of the interface to get the name from. 901 * 902 * The use of raw_seqcount_begin() and cond_resched() before 903 * retrying is required as we want to give the writers a chance 904 * to complete when CONFIG_PREEMPT is not set. 905 */ 906 int netdev_get_name(struct net *net, char *name, int ifindex) 907 { 908 struct net_device *dev; 909 unsigned int seq; 910 911 retry: 912 seq = raw_seqcount_begin(&devnet_rename_seq); 913 rcu_read_lock(); 914 dev = dev_get_by_index_rcu(net, ifindex); 915 if (!dev) { 916 rcu_read_unlock(); 917 return -ENODEV; 918 } 919 920 strcpy(name, dev->name); 921 rcu_read_unlock(); 922 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 923 cond_resched(); 924 goto retry; 925 } 926 927 return 0; 928 } 929 930 /** 931 * dev_getbyhwaddr_rcu - find a device by its hardware address 932 * @net: the applicable net namespace 933 * @type: media type of device 934 * @ha: hardware address 935 * 936 * Search for an interface by MAC address. Returns NULL if the device 937 * is not found or a pointer to the device. 938 * The caller must hold RCU or RTNL. 939 * The returned device has not had its ref count increased 940 * and the caller must therefore be careful about locking 941 * 942 */ 943 944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 945 const char *ha) 946 { 947 struct net_device *dev; 948 949 for_each_netdev_rcu(net, dev) 950 if (dev->type == type && 951 !memcmp(dev->dev_addr, ha, dev->addr_len)) 952 return dev; 953 954 return NULL; 955 } 956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 957 958 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 959 { 960 struct net_device *dev; 961 962 ASSERT_RTNL(); 963 for_each_netdev(net, dev) 964 if (dev->type == type) 965 return dev; 966 967 return NULL; 968 } 969 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 970 971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 972 { 973 struct net_device *dev, *ret = NULL; 974 975 rcu_read_lock(); 976 for_each_netdev_rcu(net, dev) 977 if (dev->type == type) { 978 dev_hold(dev); 979 ret = dev; 980 break; 981 } 982 rcu_read_unlock(); 983 return ret; 984 } 985 EXPORT_SYMBOL(dev_getfirstbyhwtype); 986 987 /** 988 * __dev_get_by_flags - find any device with given flags 989 * @net: the applicable net namespace 990 * @if_flags: IFF_* values 991 * @mask: bitmask of bits in if_flags to check 992 * 993 * Search for any interface with the given flags. Returns NULL if a device 994 * is not found or a pointer to the device. Must be called inside 995 * rtnl_lock(), and result refcount is unchanged. 996 */ 997 998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 999 unsigned short mask) 1000 { 1001 struct net_device *dev, *ret; 1002 1003 ASSERT_RTNL(); 1004 1005 ret = NULL; 1006 for_each_netdev(net, dev) { 1007 if (((dev->flags ^ if_flags) & mask) == 0) { 1008 ret = dev; 1009 break; 1010 } 1011 } 1012 return ret; 1013 } 1014 EXPORT_SYMBOL(__dev_get_by_flags); 1015 1016 /** 1017 * dev_valid_name - check if name is okay for network device 1018 * @name: name string 1019 * 1020 * Network device names need to be valid file names to 1021 * to allow sysfs to work. We also disallow any kind of 1022 * whitespace. 1023 */ 1024 bool dev_valid_name(const char *name) 1025 { 1026 if (*name == '\0') 1027 return false; 1028 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1029 return false; 1030 if (!strcmp(name, ".") || !strcmp(name, "..")) 1031 return false; 1032 1033 while (*name) { 1034 if (*name == '/' || *name == ':' || isspace(*name)) 1035 return false; 1036 name++; 1037 } 1038 return true; 1039 } 1040 EXPORT_SYMBOL(dev_valid_name); 1041 1042 /** 1043 * __dev_alloc_name - allocate a name for a device 1044 * @net: network namespace to allocate the device name in 1045 * @name: name format string 1046 * @buf: scratch buffer and result name string 1047 * 1048 * Passed a format string - eg "lt%d" it will try and find a suitable 1049 * id. It scans list of devices to build up a free map, then chooses 1050 * the first empty slot. The caller must hold the dev_base or rtnl lock 1051 * while allocating the name and adding the device in order to avoid 1052 * duplicates. 1053 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1054 * Returns the number of the unit assigned or a negative errno code. 1055 */ 1056 1057 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1058 { 1059 int i = 0; 1060 const char *p; 1061 const int max_netdevices = 8*PAGE_SIZE; 1062 unsigned long *inuse; 1063 struct net_device *d; 1064 1065 if (!dev_valid_name(name)) 1066 return -EINVAL; 1067 1068 p = strchr(name, '%'); 1069 if (p) { 1070 /* 1071 * Verify the string as this thing may have come from 1072 * the user. There must be either one "%d" and no other "%" 1073 * characters. 1074 */ 1075 if (p[1] != 'd' || strchr(p + 2, '%')) 1076 return -EINVAL; 1077 1078 /* Use one page as a bit array of possible slots */ 1079 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1080 if (!inuse) 1081 return -ENOMEM; 1082 1083 for_each_netdev(net, d) { 1084 if (!sscanf(d->name, name, &i)) 1085 continue; 1086 if (i < 0 || i >= max_netdevices) 1087 continue; 1088 1089 /* avoid cases where sscanf is not exact inverse of printf */ 1090 snprintf(buf, IFNAMSIZ, name, i); 1091 if (!strncmp(buf, d->name, IFNAMSIZ)) 1092 set_bit(i, inuse); 1093 } 1094 1095 i = find_first_zero_bit(inuse, max_netdevices); 1096 free_page((unsigned long) inuse); 1097 } 1098 1099 snprintf(buf, IFNAMSIZ, name, i); 1100 if (!__dev_get_by_name(net, buf)) 1101 return i; 1102 1103 /* It is possible to run out of possible slots 1104 * when the name is long and there isn't enough space left 1105 * for the digits, or if all bits are used. 1106 */ 1107 return -ENFILE; 1108 } 1109 1110 static int dev_alloc_name_ns(struct net *net, 1111 struct net_device *dev, 1112 const char *name) 1113 { 1114 char buf[IFNAMSIZ]; 1115 int ret; 1116 1117 BUG_ON(!net); 1118 ret = __dev_alloc_name(net, name, buf); 1119 if (ret >= 0) 1120 strlcpy(dev->name, buf, IFNAMSIZ); 1121 return ret; 1122 } 1123 1124 /** 1125 * dev_alloc_name - allocate a name for a device 1126 * @dev: device 1127 * @name: name format string 1128 * 1129 * Passed a format string - eg "lt%d" it will try and find a suitable 1130 * id. It scans list of devices to build up a free map, then chooses 1131 * the first empty slot. The caller must hold the dev_base or rtnl lock 1132 * while allocating the name and adding the device in order to avoid 1133 * duplicates. 1134 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1135 * Returns the number of the unit assigned or a negative errno code. 1136 */ 1137 1138 int dev_alloc_name(struct net_device *dev, const char *name) 1139 { 1140 return dev_alloc_name_ns(dev_net(dev), dev, name); 1141 } 1142 EXPORT_SYMBOL(dev_alloc_name); 1143 1144 int dev_get_valid_name(struct net *net, struct net_device *dev, 1145 const char *name) 1146 { 1147 BUG_ON(!net); 1148 1149 if (!dev_valid_name(name)) 1150 return -EINVAL; 1151 1152 if (strchr(name, '%')) 1153 return dev_alloc_name_ns(net, dev, name); 1154 else if (__dev_get_by_name(net, name)) 1155 return -EEXIST; 1156 else if (dev->name != name) 1157 strlcpy(dev->name, name, IFNAMSIZ); 1158 1159 return 0; 1160 } 1161 EXPORT_SYMBOL(dev_get_valid_name); 1162 1163 /** 1164 * dev_change_name - change name of a device 1165 * @dev: device 1166 * @newname: name (or format string) must be at least IFNAMSIZ 1167 * 1168 * Change name of a device, can pass format strings "eth%d". 1169 * for wildcarding. 1170 */ 1171 int dev_change_name(struct net_device *dev, const char *newname) 1172 { 1173 unsigned char old_assign_type; 1174 char oldname[IFNAMSIZ]; 1175 int err = 0; 1176 int ret; 1177 struct net *net; 1178 1179 ASSERT_RTNL(); 1180 BUG_ON(!dev_net(dev)); 1181 1182 net = dev_net(dev); 1183 if (dev->flags & IFF_UP) 1184 return -EBUSY; 1185 1186 write_seqcount_begin(&devnet_rename_seq); 1187 1188 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1189 write_seqcount_end(&devnet_rename_seq); 1190 return 0; 1191 } 1192 1193 memcpy(oldname, dev->name, IFNAMSIZ); 1194 1195 err = dev_get_valid_name(net, dev, newname); 1196 if (err < 0) { 1197 write_seqcount_end(&devnet_rename_seq); 1198 return err; 1199 } 1200 1201 if (oldname[0] && !strchr(oldname, '%')) 1202 netdev_info(dev, "renamed from %s\n", oldname); 1203 1204 old_assign_type = dev->name_assign_type; 1205 dev->name_assign_type = NET_NAME_RENAMED; 1206 1207 rollback: 1208 ret = device_rename(&dev->dev, dev->name); 1209 if (ret) { 1210 memcpy(dev->name, oldname, IFNAMSIZ); 1211 dev->name_assign_type = old_assign_type; 1212 write_seqcount_end(&devnet_rename_seq); 1213 return ret; 1214 } 1215 1216 write_seqcount_end(&devnet_rename_seq); 1217 1218 netdev_adjacent_rename_links(dev, oldname); 1219 1220 write_lock_bh(&dev_base_lock); 1221 hlist_del_rcu(&dev->name_hlist); 1222 write_unlock_bh(&dev_base_lock); 1223 1224 synchronize_rcu(); 1225 1226 write_lock_bh(&dev_base_lock); 1227 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1228 write_unlock_bh(&dev_base_lock); 1229 1230 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1231 ret = notifier_to_errno(ret); 1232 1233 if (ret) { 1234 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1235 if (err >= 0) { 1236 err = ret; 1237 write_seqcount_begin(&devnet_rename_seq); 1238 memcpy(dev->name, oldname, IFNAMSIZ); 1239 memcpy(oldname, newname, IFNAMSIZ); 1240 dev->name_assign_type = old_assign_type; 1241 old_assign_type = NET_NAME_RENAMED; 1242 goto rollback; 1243 } else { 1244 pr_err("%s: name change rollback failed: %d\n", 1245 dev->name, ret); 1246 } 1247 } 1248 1249 return err; 1250 } 1251 1252 /** 1253 * dev_set_alias - change ifalias of a device 1254 * @dev: device 1255 * @alias: name up to IFALIASZ 1256 * @len: limit of bytes to copy from info 1257 * 1258 * Set ifalias for a device, 1259 */ 1260 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1261 { 1262 struct dev_ifalias *new_alias = NULL; 1263 1264 if (len >= IFALIASZ) 1265 return -EINVAL; 1266 1267 if (len) { 1268 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1269 if (!new_alias) 1270 return -ENOMEM; 1271 1272 memcpy(new_alias->ifalias, alias, len); 1273 new_alias->ifalias[len] = 0; 1274 } 1275 1276 mutex_lock(&ifalias_mutex); 1277 rcu_swap_protected(dev->ifalias, new_alias, 1278 mutex_is_locked(&ifalias_mutex)); 1279 mutex_unlock(&ifalias_mutex); 1280 1281 if (new_alias) 1282 kfree_rcu(new_alias, rcuhead); 1283 1284 return len; 1285 } 1286 EXPORT_SYMBOL(dev_set_alias); 1287 1288 /** 1289 * dev_get_alias - get ifalias of a device 1290 * @dev: device 1291 * @name: buffer to store name of ifalias 1292 * @len: size of buffer 1293 * 1294 * get ifalias for a device. Caller must make sure dev cannot go 1295 * away, e.g. rcu read lock or own a reference count to device. 1296 */ 1297 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1298 { 1299 const struct dev_ifalias *alias; 1300 int ret = 0; 1301 1302 rcu_read_lock(); 1303 alias = rcu_dereference(dev->ifalias); 1304 if (alias) 1305 ret = snprintf(name, len, "%s", alias->ifalias); 1306 rcu_read_unlock(); 1307 1308 return ret; 1309 } 1310 1311 /** 1312 * netdev_features_change - device changes features 1313 * @dev: device to cause notification 1314 * 1315 * Called to indicate a device has changed features. 1316 */ 1317 void netdev_features_change(struct net_device *dev) 1318 { 1319 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1320 } 1321 EXPORT_SYMBOL(netdev_features_change); 1322 1323 /** 1324 * netdev_state_change - device changes state 1325 * @dev: device to cause notification 1326 * 1327 * Called to indicate a device has changed state. This function calls 1328 * the notifier chains for netdev_chain and sends a NEWLINK message 1329 * to the routing socket. 1330 */ 1331 void netdev_state_change(struct net_device *dev) 1332 { 1333 if (dev->flags & IFF_UP) { 1334 struct netdev_notifier_change_info change_info = { 1335 .info.dev = dev, 1336 }; 1337 1338 call_netdevice_notifiers_info(NETDEV_CHANGE, 1339 &change_info.info); 1340 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1341 } 1342 } 1343 EXPORT_SYMBOL(netdev_state_change); 1344 1345 /** 1346 * netdev_notify_peers - notify network peers about existence of @dev 1347 * @dev: network device 1348 * 1349 * Generate traffic such that interested network peers are aware of 1350 * @dev, such as by generating a gratuitous ARP. This may be used when 1351 * a device wants to inform the rest of the network about some sort of 1352 * reconfiguration such as a failover event or virtual machine 1353 * migration. 1354 */ 1355 void netdev_notify_peers(struct net_device *dev) 1356 { 1357 rtnl_lock(); 1358 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1359 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1360 rtnl_unlock(); 1361 } 1362 EXPORT_SYMBOL(netdev_notify_peers); 1363 1364 static int __dev_open(struct net_device *dev) 1365 { 1366 const struct net_device_ops *ops = dev->netdev_ops; 1367 int ret; 1368 1369 ASSERT_RTNL(); 1370 1371 if (!netif_device_present(dev)) 1372 return -ENODEV; 1373 1374 /* Block netpoll from trying to do any rx path servicing. 1375 * If we don't do this there is a chance ndo_poll_controller 1376 * or ndo_poll may be running while we open the device 1377 */ 1378 netpoll_poll_disable(dev); 1379 1380 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1381 ret = notifier_to_errno(ret); 1382 if (ret) 1383 return ret; 1384 1385 set_bit(__LINK_STATE_START, &dev->state); 1386 1387 if (ops->ndo_validate_addr) 1388 ret = ops->ndo_validate_addr(dev); 1389 1390 if (!ret && ops->ndo_open) 1391 ret = ops->ndo_open(dev); 1392 1393 netpoll_poll_enable(dev); 1394 1395 if (ret) 1396 clear_bit(__LINK_STATE_START, &dev->state); 1397 else { 1398 dev->flags |= IFF_UP; 1399 dev_set_rx_mode(dev); 1400 dev_activate(dev); 1401 add_device_randomness(dev->dev_addr, dev->addr_len); 1402 } 1403 1404 return ret; 1405 } 1406 1407 /** 1408 * dev_open - prepare an interface for use. 1409 * @dev: device to open 1410 * 1411 * Takes a device from down to up state. The device's private open 1412 * function is invoked and then the multicast lists are loaded. Finally 1413 * the device is moved into the up state and a %NETDEV_UP message is 1414 * sent to the netdev notifier chain. 1415 * 1416 * Calling this function on an active interface is a nop. On a failure 1417 * a negative errno code is returned. 1418 */ 1419 int dev_open(struct net_device *dev) 1420 { 1421 int ret; 1422 1423 if (dev->flags & IFF_UP) 1424 return 0; 1425 1426 ret = __dev_open(dev); 1427 if (ret < 0) 1428 return ret; 1429 1430 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1431 call_netdevice_notifiers(NETDEV_UP, dev); 1432 1433 return ret; 1434 } 1435 EXPORT_SYMBOL(dev_open); 1436 1437 static void __dev_close_many(struct list_head *head) 1438 { 1439 struct net_device *dev; 1440 1441 ASSERT_RTNL(); 1442 might_sleep(); 1443 1444 list_for_each_entry(dev, head, close_list) { 1445 /* Temporarily disable netpoll until the interface is down */ 1446 netpoll_poll_disable(dev); 1447 1448 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1449 1450 clear_bit(__LINK_STATE_START, &dev->state); 1451 1452 /* Synchronize to scheduled poll. We cannot touch poll list, it 1453 * can be even on different cpu. So just clear netif_running(). 1454 * 1455 * dev->stop() will invoke napi_disable() on all of it's 1456 * napi_struct instances on this device. 1457 */ 1458 smp_mb__after_atomic(); /* Commit netif_running(). */ 1459 } 1460 1461 dev_deactivate_many(head); 1462 1463 list_for_each_entry(dev, head, close_list) { 1464 const struct net_device_ops *ops = dev->netdev_ops; 1465 1466 /* 1467 * Call the device specific close. This cannot fail. 1468 * Only if device is UP 1469 * 1470 * We allow it to be called even after a DETACH hot-plug 1471 * event. 1472 */ 1473 if (ops->ndo_stop) 1474 ops->ndo_stop(dev); 1475 1476 dev->flags &= ~IFF_UP; 1477 netpoll_poll_enable(dev); 1478 } 1479 } 1480 1481 static void __dev_close(struct net_device *dev) 1482 { 1483 LIST_HEAD(single); 1484 1485 list_add(&dev->close_list, &single); 1486 __dev_close_many(&single); 1487 list_del(&single); 1488 } 1489 1490 void dev_close_many(struct list_head *head, bool unlink) 1491 { 1492 struct net_device *dev, *tmp; 1493 1494 /* Remove the devices that don't need to be closed */ 1495 list_for_each_entry_safe(dev, tmp, head, close_list) 1496 if (!(dev->flags & IFF_UP)) 1497 list_del_init(&dev->close_list); 1498 1499 __dev_close_many(head); 1500 1501 list_for_each_entry_safe(dev, tmp, head, close_list) { 1502 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1503 call_netdevice_notifiers(NETDEV_DOWN, dev); 1504 if (unlink) 1505 list_del_init(&dev->close_list); 1506 } 1507 } 1508 EXPORT_SYMBOL(dev_close_many); 1509 1510 /** 1511 * dev_close - shutdown an interface. 1512 * @dev: device to shutdown 1513 * 1514 * This function moves an active device into down state. A 1515 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1516 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1517 * chain. 1518 */ 1519 void dev_close(struct net_device *dev) 1520 { 1521 if (dev->flags & IFF_UP) { 1522 LIST_HEAD(single); 1523 1524 list_add(&dev->close_list, &single); 1525 dev_close_many(&single, true); 1526 list_del(&single); 1527 } 1528 } 1529 EXPORT_SYMBOL(dev_close); 1530 1531 1532 /** 1533 * dev_disable_lro - disable Large Receive Offload on a device 1534 * @dev: device 1535 * 1536 * Disable Large Receive Offload (LRO) on a net device. Must be 1537 * called under RTNL. This is needed if received packets may be 1538 * forwarded to another interface. 1539 */ 1540 void dev_disable_lro(struct net_device *dev) 1541 { 1542 struct net_device *lower_dev; 1543 struct list_head *iter; 1544 1545 dev->wanted_features &= ~NETIF_F_LRO; 1546 netdev_update_features(dev); 1547 1548 if (unlikely(dev->features & NETIF_F_LRO)) 1549 netdev_WARN(dev, "failed to disable LRO!\n"); 1550 1551 netdev_for_each_lower_dev(dev, lower_dev, iter) 1552 dev_disable_lro(lower_dev); 1553 } 1554 EXPORT_SYMBOL(dev_disable_lro); 1555 1556 /** 1557 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1558 * @dev: device 1559 * 1560 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1561 * called under RTNL. This is needed if Generic XDP is installed on 1562 * the device. 1563 */ 1564 static void dev_disable_gro_hw(struct net_device *dev) 1565 { 1566 dev->wanted_features &= ~NETIF_F_GRO_HW; 1567 netdev_update_features(dev); 1568 1569 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1570 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1571 } 1572 1573 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1574 { 1575 #define N(val) \ 1576 case NETDEV_##val: \ 1577 return "NETDEV_" __stringify(val); 1578 switch (cmd) { 1579 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1580 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1581 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1582 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1583 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1584 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1585 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1586 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1587 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1588 } 1589 #undef N 1590 return "UNKNOWN_NETDEV_EVENT"; 1591 } 1592 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1593 1594 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1595 struct net_device *dev) 1596 { 1597 struct netdev_notifier_info info = { 1598 .dev = dev, 1599 }; 1600 1601 return nb->notifier_call(nb, val, &info); 1602 } 1603 1604 static int dev_boot_phase = 1; 1605 1606 /** 1607 * register_netdevice_notifier - register a network notifier block 1608 * @nb: notifier 1609 * 1610 * Register a notifier to be called when network device events occur. 1611 * The notifier passed is linked into the kernel structures and must 1612 * not be reused until it has been unregistered. A negative errno code 1613 * is returned on a failure. 1614 * 1615 * When registered all registration and up events are replayed 1616 * to the new notifier to allow device to have a race free 1617 * view of the network device list. 1618 */ 1619 1620 int register_netdevice_notifier(struct notifier_block *nb) 1621 { 1622 struct net_device *dev; 1623 struct net_device *last; 1624 struct net *net; 1625 int err; 1626 1627 /* Close race with setup_net() and cleanup_net() */ 1628 down_write(&pernet_ops_rwsem); 1629 rtnl_lock(); 1630 err = raw_notifier_chain_register(&netdev_chain, nb); 1631 if (err) 1632 goto unlock; 1633 if (dev_boot_phase) 1634 goto unlock; 1635 for_each_net(net) { 1636 for_each_netdev(net, dev) { 1637 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1638 err = notifier_to_errno(err); 1639 if (err) 1640 goto rollback; 1641 1642 if (!(dev->flags & IFF_UP)) 1643 continue; 1644 1645 call_netdevice_notifier(nb, NETDEV_UP, dev); 1646 } 1647 } 1648 1649 unlock: 1650 rtnl_unlock(); 1651 up_write(&pernet_ops_rwsem); 1652 return err; 1653 1654 rollback: 1655 last = dev; 1656 for_each_net(net) { 1657 for_each_netdev(net, dev) { 1658 if (dev == last) 1659 goto outroll; 1660 1661 if (dev->flags & IFF_UP) { 1662 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1663 dev); 1664 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1665 } 1666 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1667 } 1668 } 1669 1670 outroll: 1671 raw_notifier_chain_unregister(&netdev_chain, nb); 1672 goto unlock; 1673 } 1674 EXPORT_SYMBOL(register_netdevice_notifier); 1675 1676 /** 1677 * unregister_netdevice_notifier - unregister a network notifier block 1678 * @nb: notifier 1679 * 1680 * Unregister a notifier previously registered by 1681 * register_netdevice_notifier(). The notifier is unlinked into the 1682 * kernel structures and may then be reused. A negative errno code 1683 * is returned on a failure. 1684 * 1685 * After unregistering unregister and down device events are synthesized 1686 * for all devices on the device list to the removed notifier to remove 1687 * the need for special case cleanup code. 1688 */ 1689 1690 int unregister_netdevice_notifier(struct notifier_block *nb) 1691 { 1692 struct net_device *dev; 1693 struct net *net; 1694 int err; 1695 1696 /* Close race with setup_net() and cleanup_net() */ 1697 down_write(&pernet_ops_rwsem); 1698 rtnl_lock(); 1699 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1700 if (err) 1701 goto unlock; 1702 1703 for_each_net(net) { 1704 for_each_netdev(net, dev) { 1705 if (dev->flags & IFF_UP) { 1706 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1707 dev); 1708 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1709 } 1710 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1711 } 1712 } 1713 unlock: 1714 rtnl_unlock(); 1715 up_write(&pernet_ops_rwsem); 1716 return err; 1717 } 1718 EXPORT_SYMBOL(unregister_netdevice_notifier); 1719 1720 /** 1721 * call_netdevice_notifiers_info - call all network notifier blocks 1722 * @val: value passed unmodified to notifier function 1723 * @info: notifier information data 1724 * 1725 * Call all network notifier blocks. Parameters and return value 1726 * are as for raw_notifier_call_chain(). 1727 */ 1728 1729 static int call_netdevice_notifiers_info(unsigned long val, 1730 struct netdev_notifier_info *info) 1731 { 1732 ASSERT_RTNL(); 1733 return raw_notifier_call_chain(&netdev_chain, val, info); 1734 } 1735 1736 /** 1737 * call_netdevice_notifiers - call all network notifier blocks 1738 * @val: value passed unmodified to notifier function 1739 * @dev: net_device pointer passed unmodified to notifier function 1740 * 1741 * Call all network notifier blocks. Parameters and return value 1742 * are as for raw_notifier_call_chain(). 1743 */ 1744 1745 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1746 { 1747 struct netdev_notifier_info info = { 1748 .dev = dev, 1749 }; 1750 1751 return call_netdevice_notifiers_info(val, &info); 1752 } 1753 EXPORT_SYMBOL(call_netdevice_notifiers); 1754 1755 #ifdef CONFIG_NET_INGRESS 1756 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 1757 1758 void net_inc_ingress_queue(void) 1759 { 1760 static_branch_inc(&ingress_needed_key); 1761 } 1762 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1763 1764 void net_dec_ingress_queue(void) 1765 { 1766 static_branch_dec(&ingress_needed_key); 1767 } 1768 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1769 #endif 1770 1771 #ifdef CONFIG_NET_EGRESS 1772 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 1773 1774 void net_inc_egress_queue(void) 1775 { 1776 static_branch_inc(&egress_needed_key); 1777 } 1778 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1779 1780 void net_dec_egress_queue(void) 1781 { 1782 static_branch_dec(&egress_needed_key); 1783 } 1784 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1785 #endif 1786 1787 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 1788 #ifdef HAVE_JUMP_LABEL 1789 static atomic_t netstamp_needed_deferred; 1790 static atomic_t netstamp_wanted; 1791 static void netstamp_clear(struct work_struct *work) 1792 { 1793 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1794 int wanted; 1795 1796 wanted = atomic_add_return(deferred, &netstamp_wanted); 1797 if (wanted > 0) 1798 static_branch_enable(&netstamp_needed_key); 1799 else 1800 static_branch_disable(&netstamp_needed_key); 1801 } 1802 static DECLARE_WORK(netstamp_work, netstamp_clear); 1803 #endif 1804 1805 void net_enable_timestamp(void) 1806 { 1807 #ifdef HAVE_JUMP_LABEL 1808 int wanted; 1809 1810 while (1) { 1811 wanted = atomic_read(&netstamp_wanted); 1812 if (wanted <= 0) 1813 break; 1814 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 1815 return; 1816 } 1817 atomic_inc(&netstamp_needed_deferred); 1818 schedule_work(&netstamp_work); 1819 #else 1820 static_branch_inc(&netstamp_needed_key); 1821 #endif 1822 } 1823 EXPORT_SYMBOL(net_enable_timestamp); 1824 1825 void net_disable_timestamp(void) 1826 { 1827 #ifdef HAVE_JUMP_LABEL 1828 int wanted; 1829 1830 while (1) { 1831 wanted = atomic_read(&netstamp_wanted); 1832 if (wanted <= 1) 1833 break; 1834 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 1835 return; 1836 } 1837 atomic_dec(&netstamp_needed_deferred); 1838 schedule_work(&netstamp_work); 1839 #else 1840 static_branch_dec(&netstamp_needed_key); 1841 #endif 1842 } 1843 EXPORT_SYMBOL(net_disable_timestamp); 1844 1845 static inline void net_timestamp_set(struct sk_buff *skb) 1846 { 1847 skb->tstamp = 0; 1848 if (static_branch_unlikely(&netstamp_needed_key)) 1849 __net_timestamp(skb); 1850 } 1851 1852 #define net_timestamp_check(COND, SKB) \ 1853 if (static_branch_unlikely(&netstamp_needed_key)) { \ 1854 if ((COND) && !(SKB)->tstamp) \ 1855 __net_timestamp(SKB); \ 1856 } \ 1857 1858 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1859 { 1860 unsigned int len; 1861 1862 if (!(dev->flags & IFF_UP)) 1863 return false; 1864 1865 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1866 if (skb->len <= len) 1867 return true; 1868 1869 /* if TSO is enabled, we don't care about the length as the packet 1870 * could be forwarded without being segmented before 1871 */ 1872 if (skb_is_gso(skb)) 1873 return true; 1874 1875 return false; 1876 } 1877 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1878 1879 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1880 { 1881 int ret = ____dev_forward_skb(dev, skb); 1882 1883 if (likely(!ret)) { 1884 skb->protocol = eth_type_trans(skb, dev); 1885 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1886 } 1887 1888 return ret; 1889 } 1890 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1891 1892 /** 1893 * dev_forward_skb - loopback an skb to another netif 1894 * 1895 * @dev: destination network device 1896 * @skb: buffer to forward 1897 * 1898 * return values: 1899 * NET_RX_SUCCESS (no congestion) 1900 * NET_RX_DROP (packet was dropped, but freed) 1901 * 1902 * dev_forward_skb can be used for injecting an skb from the 1903 * start_xmit function of one device into the receive queue 1904 * of another device. 1905 * 1906 * The receiving device may be in another namespace, so 1907 * we have to clear all information in the skb that could 1908 * impact namespace isolation. 1909 */ 1910 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1911 { 1912 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1913 } 1914 EXPORT_SYMBOL_GPL(dev_forward_skb); 1915 1916 static inline int deliver_skb(struct sk_buff *skb, 1917 struct packet_type *pt_prev, 1918 struct net_device *orig_dev) 1919 { 1920 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 1921 return -ENOMEM; 1922 refcount_inc(&skb->users); 1923 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1924 } 1925 1926 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1927 struct packet_type **pt, 1928 struct net_device *orig_dev, 1929 __be16 type, 1930 struct list_head *ptype_list) 1931 { 1932 struct packet_type *ptype, *pt_prev = *pt; 1933 1934 list_for_each_entry_rcu(ptype, ptype_list, list) { 1935 if (ptype->type != type) 1936 continue; 1937 if (pt_prev) 1938 deliver_skb(skb, pt_prev, orig_dev); 1939 pt_prev = ptype; 1940 } 1941 *pt = pt_prev; 1942 } 1943 1944 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1945 { 1946 if (!ptype->af_packet_priv || !skb->sk) 1947 return false; 1948 1949 if (ptype->id_match) 1950 return ptype->id_match(ptype, skb->sk); 1951 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1952 return true; 1953 1954 return false; 1955 } 1956 1957 /* 1958 * Support routine. Sends outgoing frames to any network 1959 * taps currently in use. 1960 */ 1961 1962 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1963 { 1964 struct packet_type *ptype; 1965 struct sk_buff *skb2 = NULL; 1966 struct packet_type *pt_prev = NULL; 1967 struct list_head *ptype_list = &ptype_all; 1968 1969 rcu_read_lock(); 1970 again: 1971 list_for_each_entry_rcu(ptype, ptype_list, list) { 1972 /* Never send packets back to the socket 1973 * they originated from - MvS (miquels@drinkel.ow.org) 1974 */ 1975 if (skb_loop_sk(ptype, skb)) 1976 continue; 1977 1978 if (pt_prev) { 1979 deliver_skb(skb2, pt_prev, skb->dev); 1980 pt_prev = ptype; 1981 continue; 1982 } 1983 1984 /* need to clone skb, done only once */ 1985 skb2 = skb_clone(skb, GFP_ATOMIC); 1986 if (!skb2) 1987 goto out_unlock; 1988 1989 net_timestamp_set(skb2); 1990 1991 /* skb->nh should be correctly 1992 * set by sender, so that the second statement is 1993 * just protection against buggy protocols. 1994 */ 1995 skb_reset_mac_header(skb2); 1996 1997 if (skb_network_header(skb2) < skb2->data || 1998 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1999 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2000 ntohs(skb2->protocol), 2001 dev->name); 2002 skb_reset_network_header(skb2); 2003 } 2004 2005 skb2->transport_header = skb2->network_header; 2006 skb2->pkt_type = PACKET_OUTGOING; 2007 pt_prev = ptype; 2008 } 2009 2010 if (ptype_list == &ptype_all) { 2011 ptype_list = &dev->ptype_all; 2012 goto again; 2013 } 2014 out_unlock: 2015 if (pt_prev) { 2016 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2017 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2018 else 2019 kfree_skb(skb2); 2020 } 2021 rcu_read_unlock(); 2022 } 2023 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2024 2025 /** 2026 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2027 * @dev: Network device 2028 * @txq: number of queues available 2029 * 2030 * If real_num_tx_queues is changed the tc mappings may no longer be 2031 * valid. To resolve this verify the tc mapping remains valid and if 2032 * not NULL the mapping. With no priorities mapping to this 2033 * offset/count pair it will no longer be used. In the worst case TC0 2034 * is invalid nothing can be done so disable priority mappings. If is 2035 * expected that drivers will fix this mapping if they can before 2036 * calling netif_set_real_num_tx_queues. 2037 */ 2038 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2039 { 2040 int i; 2041 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2042 2043 /* If TC0 is invalidated disable TC mapping */ 2044 if (tc->offset + tc->count > txq) { 2045 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2046 dev->num_tc = 0; 2047 return; 2048 } 2049 2050 /* Invalidated prio to tc mappings set to TC0 */ 2051 for (i = 1; i < TC_BITMASK + 1; i++) { 2052 int q = netdev_get_prio_tc_map(dev, i); 2053 2054 tc = &dev->tc_to_txq[q]; 2055 if (tc->offset + tc->count > txq) { 2056 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2057 i, q); 2058 netdev_set_prio_tc_map(dev, i, 0); 2059 } 2060 } 2061 } 2062 2063 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2064 { 2065 if (dev->num_tc) { 2066 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2067 int i; 2068 2069 /* walk through the TCs and see if it falls into any of them */ 2070 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2071 if ((txq - tc->offset) < tc->count) 2072 return i; 2073 } 2074 2075 /* didn't find it, just return -1 to indicate no match */ 2076 return -1; 2077 } 2078 2079 return 0; 2080 } 2081 EXPORT_SYMBOL(netdev_txq_to_tc); 2082 2083 #ifdef CONFIG_XPS 2084 struct static_key xps_needed __read_mostly; 2085 EXPORT_SYMBOL(xps_needed); 2086 struct static_key xps_rxqs_needed __read_mostly; 2087 EXPORT_SYMBOL(xps_rxqs_needed); 2088 static DEFINE_MUTEX(xps_map_mutex); 2089 #define xmap_dereference(P) \ 2090 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2091 2092 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2093 int tci, u16 index) 2094 { 2095 struct xps_map *map = NULL; 2096 int pos; 2097 2098 if (dev_maps) 2099 map = xmap_dereference(dev_maps->attr_map[tci]); 2100 if (!map) 2101 return false; 2102 2103 for (pos = map->len; pos--;) { 2104 if (map->queues[pos] != index) 2105 continue; 2106 2107 if (map->len > 1) { 2108 map->queues[pos] = map->queues[--map->len]; 2109 break; 2110 } 2111 2112 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2113 kfree_rcu(map, rcu); 2114 return false; 2115 } 2116 2117 return true; 2118 } 2119 2120 static bool remove_xps_queue_cpu(struct net_device *dev, 2121 struct xps_dev_maps *dev_maps, 2122 int cpu, u16 offset, u16 count) 2123 { 2124 int num_tc = dev->num_tc ? : 1; 2125 bool active = false; 2126 int tci; 2127 2128 for (tci = cpu * num_tc; num_tc--; tci++) { 2129 int i, j; 2130 2131 for (i = count, j = offset; i--; j++) { 2132 if (!remove_xps_queue(dev_maps, tci, j)) 2133 break; 2134 } 2135 2136 active |= i < 0; 2137 } 2138 2139 return active; 2140 } 2141 2142 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask, 2143 struct xps_dev_maps *dev_maps, unsigned int nr_ids, 2144 u16 offset, u16 count, bool is_rxqs_map) 2145 { 2146 bool active = false; 2147 int i, j; 2148 2149 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids), 2150 j < nr_ids;) 2151 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, 2152 count); 2153 if (!active) { 2154 if (is_rxqs_map) { 2155 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL); 2156 } else { 2157 RCU_INIT_POINTER(dev->xps_cpus_map, NULL); 2158 2159 for (i = offset + (count - 1); count--; i--) 2160 netdev_queue_numa_node_write( 2161 netdev_get_tx_queue(dev, i), 2162 NUMA_NO_NODE); 2163 } 2164 kfree_rcu(dev_maps, rcu); 2165 } 2166 } 2167 2168 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2169 u16 count) 2170 { 2171 const unsigned long *possible_mask = NULL; 2172 struct xps_dev_maps *dev_maps; 2173 unsigned int nr_ids; 2174 2175 if (!static_key_false(&xps_needed)) 2176 return; 2177 2178 cpus_read_lock(); 2179 mutex_lock(&xps_map_mutex); 2180 2181 if (static_key_false(&xps_rxqs_needed)) { 2182 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2183 if (dev_maps) { 2184 nr_ids = dev->num_rx_queues; 2185 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, 2186 offset, count, true); 2187 } 2188 } 2189 2190 dev_maps = xmap_dereference(dev->xps_cpus_map); 2191 if (!dev_maps) 2192 goto out_no_maps; 2193 2194 if (num_possible_cpus() > 1) 2195 possible_mask = cpumask_bits(cpu_possible_mask); 2196 nr_ids = nr_cpu_ids; 2197 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count, 2198 false); 2199 2200 out_no_maps: 2201 if (static_key_enabled(&xps_rxqs_needed)) 2202 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2203 2204 static_key_slow_dec_cpuslocked(&xps_needed); 2205 mutex_unlock(&xps_map_mutex); 2206 cpus_read_unlock(); 2207 } 2208 2209 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2210 { 2211 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2212 } 2213 2214 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2215 u16 index, bool is_rxqs_map) 2216 { 2217 struct xps_map *new_map; 2218 int alloc_len = XPS_MIN_MAP_ALLOC; 2219 int i, pos; 2220 2221 for (pos = 0; map && pos < map->len; pos++) { 2222 if (map->queues[pos] != index) 2223 continue; 2224 return map; 2225 } 2226 2227 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2228 if (map) { 2229 if (pos < map->alloc_len) 2230 return map; 2231 2232 alloc_len = map->alloc_len * 2; 2233 } 2234 2235 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2236 * map 2237 */ 2238 if (is_rxqs_map) 2239 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2240 else 2241 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2242 cpu_to_node(attr_index)); 2243 if (!new_map) 2244 return NULL; 2245 2246 for (i = 0; i < pos; i++) 2247 new_map->queues[i] = map->queues[i]; 2248 new_map->alloc_len = alloc_len; 2249 new_map->len = pos; 2250 2251 return new_map; 2252 } 2253 2254 /* Must be called under cpus_read_lock */ 2255 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2256 u16 index, bool is_rxqs_map) 2257 { 2258 const unsigned long *online_mask = NULL, *possible_mask = NULL; 2259 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2260 int i, j, tci, numa_node_id = -2; 2261 int maps_sz, num_tc = 1, tc = 0; 2262 struct xps_map *map, *new_map; 2263 bool active = false; 2264 unsigned int nr_ids; 2265 2266 if (dev->num_tc) { 2267 /* Do not allow XPS on subordinate device directly */ 2268 num_tc = dev->num_tc; 2269 if (num_tc < 0) 2270 return -EINVAL; 2271 2272 /* If queue belongs to subordinate dev use its map */ 2273 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2274 2275 tc = netdev_txq_to_tc(dev, index); 2276 if (tc < 0) 2277 return -EINVAL; 2278 } 2279 2280 mutex_lock(&xps_map_mutex); 2281 if (is_rxqs_map) { 2282 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2283 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2284 nr_ids = dev->num_rx_queues; 2285 } else { 2286 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2287 if (num_possible_cpus() > 1) { 2288 online_mask = cpumask_bits(cpu_online_mask); 2289 possible_mask = cpumask_bits(cpu_possible_mask); 2290 } 2291 dev_maps = xmap_dereference(dev->xps_cpus_map); 2292 nr_ids = nr_cpu_ids; 2293 } 2294 2295 if (maps_sz < L1_CACHE_BYTES) 2296 maps_sz = L1_CACHE_BYTES; 2297 2298 /* allocate memory for queue storage */ 2299 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2300 j < nr_ids;) { 2301 if (!new_dev_maps) 2302 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2303 if (!new_dev_maps) { 2304 mutex_unlock(&xps_map_mutex); 2305 return -ENOMEM; 2306 } 2307 2308 tci = j * num_tc + tc; 2309 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) : 2310 NULL; 2311 2312 map = expand_xps_map(map, j, index, is_rxqs_map); 2313 if (!map) 2314 goto error; 2315 2316 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2317 } 2318 2319 if (!new_dev_maps) 2320 goto out_no_new_maps; 2321 2322 static_key_slow_inc_cpuslocked(&xps_needed); 2323 if (is_rxqs_map) 2324 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2325 2326 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2327 j < nr_ids;) { 2328 /* copy maps belonging to foreign traffic classes */ 2329 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) { 2330 /* fill in the new device map from the old device map */ 2331 map = xmap_dereference(dev_maps->attr_map[tci]); 2332 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2333 } 2334 2335 /* We need to explicitly update tci as prevous loop 2336 * could break out early if dev_maps is NULL. 2337 */ 2338 tci = j * num_tc + tc; 2339 2340 if (netif_attr_test_mask(j, mask, nr_ids) && 2341 netif_attr_test_online(j, online_mask, nr_ids)) { 2342 /* add tx-queue to CPU/rx-queue maps */ 2343 int pos = 0; 2344 2345 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2346 while ((pos < map->len) && (map->queues[pos] != index)) 2347 pos++; 2348 2349 if (pos == map->len) 2350 map->queues[map->len++] = index; 2351 #ifdef CONFIG_NUMA 2352 if (!is_rxqs_map) { 2353 if (numa_node_id == -2) 2354 numa_node_id = cpu_to_node(j); 2355 else if (numa_node_id != cpu_to_node(j)) 2356 numa_node_id = -1; 2357 } 2358 #endif 2359 } else if (dev_maps) { 2360 /* fill in the new device map from the old device map */ 2361 map = xmap_dereference(dev_maps->attr_map[tci]); 2362 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2363 } 2364 2365 /* copy maps belonging to foreign traffic classes */ 2366 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2367 /* fill in the new device map from the old device map */ 2368 map = xmap_dereference(dev_maps->attr_map[tci]); 2369 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2370 } 2371 } 2372 2373 if (is_rxqs_map) 2374 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps); 2375 else 2376 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps); 2377 2378 /* Cleanup old maps */ 2379 if (!dev_maps) 2380 goto out_no_old_maps; 2381 2382 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2383 j < nr_ids;) { 2384 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2385 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2386 map = xmap_dereference(dev_maps->attr_map[tci]); 2387 if (map && map != new_map) 2388 kfree_rcu(map, rcu); 2389 } 2390 } 2391 2392 kfree_rcu(dev_maps, rcu); 2393 2394 out_no_old_maps: 2395 dev_maps = new_dev_maps; 2396 active = true; 2397 2398 out_no_new_maps: 2399 if (!is_rxqs_map) { 2400 /* update Tx queue numa node */ 2401 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2402 (numa_node_id >= 0) ? 2403 numa_node_id : NUMA_NO_NODE); 2404 } 2405 2406 if (!dev_maps) 2407 goto out_no_maps; 2408 2409 /* removes tx-queue from unused CPUs/rx-queues */ 2410 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2411 j < nr_ids;) { 2412 for (i = tc, tci = j * num_tc; i--; tci++) 2413 active |= remove_xps_queue(dev_maps, tci, index); 2414 if (!netif_attr_test_mask(j, mask, nr_ids) || 2415 !netif_attr_test_online(j, online_mask, nr_ids)) 2416 active |= remove_xps_queue(dev_maps, tci, index); 2417 for (i = num_tc - tc, tci++; --i; tci++) 2418 active |= remove_xps_queue(dev_maps, tci, index); 2419 } 2420 2421 /* free map if not active */ 2422 if (!active) { 2423 if (is_rxqs_map) 2424 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL); 2425 else 2426 RCU_INIT_POINTER(dev->xps_cpus_map, NULL); 2427 kfree_rcu(dev_maps, rcu); 2428 } 2429 2430 out_no_maps: 2431 mutex_unlock(&xps_map_mutex); 2432 2433 return 0; 2434 error: 2435 /* remove any maps that we added */ 2436 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2437 j < nr_ids;) { 2438 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2439 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2440 map = dev_maps ? 2441 xmap_dereference(dev_maps->attr_map[tci]) : 2442 NULL; 2443 if (new_map && new_map != map) 2444 kfree(new_map); 2445 } 2446 } 2447 2448 mutex_unlock(&xps_map_mutex); 2449 2450 kfree(new_dev_maps); 2451 return -ENOMEM; 2452 } 2453 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2454 2455 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2456 u16 index) 2457 { 2458 int ret; 2459 2460 cpus_read_lock(); 2461 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false); 2462 cpus_read_unlock(); 2463 2464 return ret; 2465 } 2466 EXPORT_SYMBOL(netif_set_xps_queue); 2467 2468 #endif 2469 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2470 { 2471 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2472 2473 /* Unbind any subordinate channels */ 2474 while (txq-- != &dev->_tx[0]) { 2475 if (txq->sb_dev) 2476 netdev_unbind_sb_channel(dev, txq->sb_dev); 2477 } 2478 } 2479 2480 void netdev_reset_tc(struct net_device *dev) 2481 { 2482 #ifdef CONFIG_XPS 2483 netif_reset_xps_queues_gt(dev, 0); 2484 #endif 2485 netdev_unbind_all_sb_channels(dev); 2486 2487 /* Reset TC configuration of device */ 2488 dev->num_tc = 0; 2489 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2490 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2491 } 2492 EXPORT_SYMBOL(netdev_reset_tc); 2493 2494 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2495 { 2496 if (tc >= dev->num_tc) 2497 return -EINVAL; 2498 2499 #ifdef CONFIG_XPS 2500 netif_reset_xps_queues(dev, offset, count); 2501 #endif 2502 dev->tc_to_txq[tc].count = count; 2503 dev->tc_to_txq[tc].offset = offset; 2504 return 0; 2505 } 2506 EXPORT_SYMBOL(netdev_set_tc_queue); 2507 2508 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2509 { 2510 if (num_tc > TC_MAX_QUEUE) 2511 return -EINVAL; 2512 2513 #ifdef CONFIG_XPS 2514 netif_reset_xps_queues_gt(dev, 0); 2515 #endif 2516 netdev_unbind_all_sb_channels(dev); 2517 2518 dev->num_tc = num_tc; 2519 return 0; 2520 } 2521 EXPORT_SYMBOL(netdev_set_num_tc); 2522 2523 void netdev_unbind_sb_channel(struct net_device *dev, 2524 struct net_device *sb_dev) 2525 { 2526 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2527 2528 #ifdef CONFIG_XPS 2529 netif_reset_xps_queues_gt(sb_dev, 0); 2530 #endif 2531 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2532 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2533 2534 while (txq-- != &dev->_tx[0]) { 2535 if (txq->sb_dev == sb_dev) 2536 txq->sb_dev = NULL; 2537 } 2538 } 2539 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2540 2541 int netdev_bind_sb_channel_queue(struct net_device *dev, 2542 struct net_device *sb_dev, 2543 u8 tc, u16 count, u16 offset) 2544 { 2545 /* Make certain the sb_dev and dev are already configured */ 2546 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2547 return -EINVAL; 2548 2549 /* We cannot hand out queues we don't have */ 2550 if ((offset + count) > dev->real_num_tx_queues) 2551 return -EINVAL; 2552 2553 /* Record the mapping */ 2554 sb_dev->tc_to_txq[tc].count = count; 2555 sb_dev->tc_to_txq[tc].offset = offset; 2556 2557 /* Provide a way for Tx queue to find the tc_to_txq map or 2558 * XPS map for itself. 2559 */ 2560 while (count--) 2561 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2562 2563 return 0; 2564 } 2565 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2566 2567 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2568 { 2569 /* Do not use a multiqueue device to represent a subordinate channel */ 2570 if (netif_is_multiqueue(dev)) 2571 return -ENODEV; 2572 2573 /* We allow channels 1 - 32767 to be used for subordinate channels. 2574 * Channel 0 is meant to be "native" mode and used only to represent 2575 * the main root device. We allow writing 0 to reset the device back 2576 * to normal mode after being used as a subordinate channel. 2577 */ 2578 if (channel > S16_MAX) 2579 return -EINVAL; 2580 2581 dev->num_tc = -channel; 2582 2583 return 0; 2584 } 2585 EXPORT_SYMBOL(netdev_set_sb_channel); 2586 2587 /* 2588 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2589 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2590 */ 2591 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2592 { 2593 bool disabling; 2594 int rc; 2595 2596 disabling = txq < dev->real_num_tx_queues; 2597 2598 if (txq < 1 || txq > dev->num_tx_queues) 2599 return -EINVAL; 2600 2601 if (dev->reg_state == NETREG_REGISTERED || 2602 dev->reg_state == NETREG_UNREGISTERING) { 2603 ASSERT_RTNL(); 2604 2605 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2606 txq); 2607 if (rc) 2608 return rc; 2609 2610 if (dev->num_tc) 2611 netif_setup_tc(dev, txq); 2612 2613 dev->real_num_tx_queues = txq; 2614 2615 if (disabling) { 2616 synchronize_net(); 2617 qdisc_reset_all_tx_gt(dev, txq); 2618 #ifdef CONFIG_XPS 2619 netif_reset_xps_queues_gt(dev, txq); 2620 #endif 2621 } 2622 } else { 2623 dev->real_num_tx_queues = txq; 2624 } 2625 2626 return 0; 2627 } 2628 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2629 2630 #ifdef CONFIG_SYSFS 2631 /** 2632 * netif_set_real_num_rx_queues - set actual number of RX queues used 2633 * @dev: Network device 2634 * @rxq: Actual number of RX queues 2635 * 2636 * This must be called either with the rtnl_lock held or before 2637 * registration of the net device. Returns 0 on success, or a 2638 * negative error code. If called before registration, it always 2639 * succeeds. 2640 */ 2641 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2642 { 2643 int rc; 2644 2645 if (rxq < 1 || rxq > dev->num_rx_queues) 2646 return -EINVAL; 2647 2648 if (dev->reg_state == NETREG_REGISTERED) { 2649 ASSERT_RTNL(); 2650 2651 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2652 rxq); 2653 if (rc) 2654 return rc; 2655 } 2656 2657 dev->real_num_rx_queues = rxq; 2658 return 0; 2659 } 2660 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2661 #endif 2662 2663 /** 2664 * netif_get_num_default_rss_queues - default number of RSS queues 2665 * 2666 * This routine should set an upper limit on the number of RSS queues 2667 * used by default by multiqueue devices. 2668 */ 2669 int netif_get_num_default_rss_queues(void) 2670 { 2671 return is_kdump_kernel() ? 2672 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2673 } 2674 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2675 2676 static void __netif_reschedule(struct Qdisc *q) 2677 { 2678 struct softnet_data *sd; 2679 unsigned long flags; 2680 2681 local_irq_save(flags); 2682 sd = this_cpu_ptr(&softnet_data); 2683 q->next_sched = NULL; 2684 *sd->output_queue_tailp = q; 2685 sd->output_queue_tailp = &q->next_sched; 2686 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2687 local_irq_restore(flags); 2688 } 2689 2690 void __netif_schedule(struct Qdisc *q) 2691 { 2692 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2693 __netif_reschedule(q); 2694 } 2695 EXPORT_SYMBOL(__netif_schedule); 2696 2697 struct dev_kfree_skb_cb { 2698 enum skb_free_reason reason; 2699 }; 2700 2701 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2702 { 2703 return (struct dev_kfree_skb_cb *)skb->cb; 2704 } 2705 2706 void netif_schedule_queue(struct netdev_queue *txq) 2707 { 2708 rcu_read_lock(); 2709 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2710 struct Qdisc *q = rcu_dereference(txq->qdisc); 2711 2712 __netif_schedule(q); 2713 } 2714 rcu_read_unlock(); 2715 } 2716 EXPORT_SYMBOL(netif_schedule_queue); 2717 2718 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2719 { 2720 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2721 struct Qdisc *q; 2722 2723 rcu_read_lock(); 2724 q = rcu_dereference(dev_queue->qdisc); 2725 __netif_schedule(q); 2726 rcu_read_unlock(); 2727 } 2728 } 2729 EXPORT_SYMBOL(netif_tx_wake_queue); 2730 2731 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2732 { 2733 unsigned long flags; 2734 2735 if (unlikely(!skb)) 2736 return; 2737 2738 if (likely(refcount_read(&skb->users) == 1)) { 2739 smp_rmb(); 2740 refcount_set(&skb->users, 0); 2741 } else if (likely(!refcount_dec_and_test(&skb->users))) { 2742 return; 2743 } 2744 get_kfree_skb_cb(skb)->reason = reason; 2745 local_irq_save(flags); 2746 skb->next = __this_cpu_read(softnet_data.completion_queue); 2747 __this_cpu_write(softnet_data.completion_queue, skb); 2748 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2749 local_irq_restore(flags); 2750 } 2751 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2752 2753 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2754 { 2755 if (in_irq() || irqs_disabled()) 2756 __dev_kfree_skb_irq(skb, reason); 2757 else 2758 dev_kfree_skb(skb); 2759 } 2760 EXPORT_SYMBOL(__dev_kfree_skb_any); 2761 2762 2763 /** 2764 * netif_device_detach - mark device as removed 2765 * @dev: network device 2766 * 2767 * Mark device as removed from system and therefore no longer available. 2768 */ 2769 void netif_device_detach(struct net_device *dev) 2770 { 2771 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2772 netif_running(dev)) { 2773 netif_tx_stop_all_queues(dev); 2774 } 2775 } 2776 EXPORT_SYMBOL(netif_device_detach); 2777 2778 /** 2779 * netif_device_attach - mark device as attached 2780 * @dev: network device 2781 * 2782 * Mark device as attached from system and restart if needed. 2783 */ 2784 void netif_device_attach(struct net_device *dev) 2785 { 2786 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2787 netif_running(dev)) { 2788 netif_tx_wake_all_queues(dev); 2789 __netdev_watchdog_up(dev); 2790 } 2791 } 2792 EXPORT_SYMBOL(netif_device_attach); 2793 2794 /* 2795 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2796 * to be used as a distribution range. 2797 */ 2798 static u16 skb_tx_hash(const struct net_device *dev, 2799 const struct net_device *sb_dev, 2800 struct sk_buff *skb) 2801 { 2802 u32 hash; 2803 u16 qoffset = 0; 2804 u16 qcount = dev->real_num_tx_queues; 2805 2806 if (dev->num_tc) { 2807 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2808 2809 qoffset = sb_dev->tc_to_txq[tc].offset; 2810 qcount = sb_dev->tc_to_txq[tc].count; 2811 } 2812 2813 if (skb_rx_queue_recorded(skb)) { 2814 hash = skb_get_rx_queue(skb); 2815 while (unlikely(hash >= qcount)) 2816 hash -= qcount; 2817 return hash + qoffset; 2818 } 2819 2820 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2821 } 2822 2823 static void skb_warn_bad_offload(const struct sk_buff *skb) 2824 { 2825 static const netdev_features_t null_features; 2826 struct net_device *dev = skb->dev; 2827 const char *name = ""; 2828 2829 if (!net_ratelimit()) 2830 return; 2831 2832 if (dev) { 2833 if (dev->dev.parent) 2834 name = dev_driver_string(dev->dev.parent); 2835 else 2836 name = netdev_name(dev); 2837 } 2838 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2839 "gso_type=%d ip_summed=%d\n", 2840 name, dev ? &dev->features : &null_features, 2841 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2842 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2843 skb_shinfo(skb)->gso_type, skb->ip_summed); 2844 } 2845 2846 /* 2847 * Invalidate hardware checksum when packet is to be mangled, and 2848 * complete checksum manually on outgoing path. 2849 */ 2850 int skb_checksum_help(struct sk_buff *skb) 2851 { 2852 __wsum csum; 2853 int ret = 0, offset; 2854 2855 if (skb->ip_summed == CHECKSUM_COMPLETE) 2856 goto out_set_summed; 2857 2858 if (unlikely(skb_shinfo(skb)->gso_size)) { 2859 skb_warn_bad_offload(skb); 2860 return -EINVAL; 2861 } 2862 2863 /* Before computing a checksum, we should make sure no frag could 2864 * be modified by an external entity : checksum could be wrong. 2865 */ 2866 if (skb_has_shared_frag(skb)) { 2867 ret = __skb_linearize(skb); 2868 if (ret) 2869 goto out; 2870 } 2871 2872 offset = skb_checksum_start_offset(skb); 2873 BUG_ON(offset >= skb_headlen(skb)); 2874 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2875 2876 offset += skb->csum_offset; 2877 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2878 2879 if (skb_cloned(skb) && 2880 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2881 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2882 if (ret) 2883 goto out; 2884 } 2885 2886 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2887 out_set_summed: 2888 skb->ip_summed = CHECKSUM_NONE; 2889 out: 2890 return ret; 2891 } 2892 EXPORT_SYMBOL(skb_checksum_help); 2893 2894 int skb_crc32c_csum_help(struct sk_buff *skb) 2895 { 2896 __le32 crc32c_csum; 2897 int ret = 0, offset, start; 2898 2899 if (skb->ip_summed != CHECKSUM_PARTIAL) 2900 goto out; 2901 2902 if (unlikely(skb_is_gso(skb))) 2903 goto out; 2904 2905 /* Before computing a checksum, we should make sure no frag could 2906 * be modified by an external entity : checksum could be wrong. 2907 */ 2908 if (unlikely(skb_has_shared_frag(skb))) { 2909 ret = __skb_linearize(skb); 2910 if (ret) 2911 goto out; 2912 } 2913 start = skb_checksum_start_offset(skb); 2914 offset = start + offsetof(struct sctphdr, checksum); 2915 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 2916 ret = -EINVAL; 2917 goto out; 2918 } 2919 if (skb_cloned(skb) && 2920 !skb_clone_writable(skb, offset + sizeof(__le32))) { 2921 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2922 if (ret) 2923 goto out; 2924 } 2925 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 2926 skb->len - start, ~(__u32)0, 2927 crc32c_csum_stub)); 2928 *(__le32 *)(skb->data + offset) = crc32c_csum; 2929 skb->ip_summed = CHECKSUM_NONE; 2930 skb->csum_not_inet = 0; 2931 out: 2932 return ret; 2933 } 2934 2935 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2936 { 2937 __be16 type = skb->protocol; 2938 2939 /* Tunnel gso handlers can set protocol to ethernet. */ 2940 if (type == htons(ETH_P_TEB)) { 2941 struct ethhdr *eth; 2942 2943 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2944 return 0; 2945 2946 eth = (struct ethhdr *)skb->data; 2947 type = eth->h_proto; 2948 } 2949 2950 return __vlan_get_protocol(skb, type, depth); 2951 } 2952 2953 /** 2954 * skb_mac_gso_segment - mac layer segmentation handler. 2955 * @skb: buffer to segment 2956 * @features: features for the output path (see dev->features) 2957 */ 2958 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2959 netdev_features_t features) 2960 { 2961 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2962 struct packet_offload *ptype; 2963 int vlan_depth = skb->mac_len; 2964 __be16 type = skb_network_protocol(skb, &vlan_depth); 2965 2966 if (unlikely(!type)) 2967 return ERR_PTR(-EINVAL); 2968 2969 __skb_pull(skb, vlan_depth); 2970 2971 rcu_read_lock(); 2972 list_for_each_entry_rcu(ptype, &offload_base, list) { 2973 if (ptype->type == type && ptype->callbacks.gso_segment) { 2974 segs = ptype->callbacks.gso_segment(skb, features); 2975 break; 2976 } 2977 } 2978 rcu_read_unlock(); 2979 2980 __skb_push(skb, skb->data - skb_mac_header(skb)); 2981 2982 return segs; 2983 } 2984 EXPORT_SYMBOL(skb_mac_gso_segment); 2985 2986 2987 /* openvswitch calls this on rx path, so we need a different check. 2988 */ 2989 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2990 { 2991 if (tx_path) 2992 return skb->ip_summed != CHECKSUM_PARTIAL && 2993 skb->ip_summed != CHECKSUM_UNNECESSARY; 2994 2995 return skb->ip_summed == CHECKSUM_NONE; 2996 } 2997 2998 /** 2999 * __skb_gso_segment - Perform segmentation on skb. 3000 * @skb: buffer to segment 3001 * @features: features for the output path (see dev->features) 3002 * @tx_path: whether it is called in TX path 3003 * 3004 * This function segments the given skb and returns a list of segments. 3005 * 3006 * It may return NULL if the skb requires no segmentation. This is 3007 * only possible when GSO is used for verifying header integrity. 3008 * 3009 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 3010 */ 3011 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3012 netdev_features_t features, bool tx_path) 3013 { 3014 struct sk_buff *segs; 3015 3016 if (unlikely(skb_needs_check(skb, tx_path))) { 3017 int err; 3018 3019 /* We're going to init ->check field in TCP or UDP header */ 3020 err = skb_cow_head(skb, 0); 3021 if (err < 0) 3022 return ERR_PTR(err); 3023 } 3024 3025 /* Only report GSO partial support if it will enable us to 3026 * support segmentation on this frame without needing additional 3027 * work. 3028 */ 3029 if (features & NETIF_F_GSO_PARTIAL) { 3030 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 3031 struct net_device *dev = skb->dev; 3032 3033 partial_features |= dev->features & dev->gso_partial_features; 3034 if (!skb_gso_ok(skb, features | partial_features)) 3035 features &= ~NETIF_F_GSO_PARTIAL; 3036 } 3037 3038 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 3039 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 3040 3041 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 3042 SKB_GSO_CB(skb)->encap_level = 0; 3043 3044 skb_reset_mac_header(skb); 3045 skb_reset_mac_len(skb); 3046 3047 segs = skb_mac_gso_segment(skb, features); 3048 3049 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 3050 skb_warn_bad_offload(skb); 3051 3052 return segs; 3053 } 3054 EXPORT_SYMBOL(__skb_gso_segment); 3055 3056 /* Take action when hardware reception checksum errors are detected. */ 3057 #ifdef CONFIG_BUG 3058 void netdev_rx_csum_fault(struct net_device *dev) 3059 { 3060 if (net_ratelimit()) { 3061 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 3062 dump_stack(); 3063 } 3064 } 3065 EXPORT_SYMBOL(netdev_rx_csum_fault); 3066 #endif 3067 3068 /* XXX: check that highmem exists at all on the given machine. */ 3069 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3070 { 3071 #ifdef CONFIG_HIGHMEM 3072 int i; 3073 3074 if (!(dev->features & NETIF_F_HIGHDMA)) { 3075 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3076 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3077 3078 if (PageHighMem(skb_frag_page(frag))) 3079 return 1; 3080 } 3081 } 3082 #endif 3083 return 0; 3084 } 3085 3086 /* If MPLS offload request, verify we are testing hardware MPLS features 3087 * instead of standard features for the netdev. 3088 */ 3089 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3090 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3091 netdev_features_t features, 3092 __be16 type) 3093 { 3094 if (eth_p_mpls(type)) 3095 features &= skb->dev->mpls_features; 3096 3097 return features; 3098 } 3099 #else 3100 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3101 netdev_features_t features, 3102 __be16 type) 3103 { 3104 return features; 3105 } 3106 #endif 3107 3108 static netdev_features_t harmonize_features(struct sk_buff *skb, 3109 netdev_features_t features) 3110 { 3111 int tmp; 3112 __be16 type; 3113 3114 type = skb_network_protocol(skb, &tmp); 3115 features = net_mpls_features(skb, features, type); 3116 3117 if (skb->ip_summed != CHECKSUM_NONE && 3118 !can_checksum_protocol(features, type)) { 3119 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3120 } 3121 if (illegal_highdma(skb->dev, skb)) 3122 features &= ~NETIF_F_SG; 3123 3124 return features; 3125 } 3126 3127 netdev_features_t passthru_features_check(struct sk_buff *skb, 3128 struct net_device *dev, 3129 netdev_features_t features) 3130 { 3131 return features; 3132 } 3133 EXPORT_SYMBOL(passthru_features_check); 3134 3135 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3136 struct net_device *dev, 3137 netdev_features_t features) 3138 { 3139 return vlan_features_check(skb, features); 3140 } 3141 3142 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3143 struct net_device *dev, 3144 netdev_features_t features) 3145 { 3146 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3147 3148 if (gso_segs > dev->gso_max_segs) 3149 return features & ~NETIF_F_GSO_MASK; 3150 3151 /* Support for GSO partial features requires software 3152 * intervention before we can actually process the packets 3153 * so we need to strip support for any partial features now 3154 * and we can pull them back in after we have partially 3155 * segmented the frame. 3156 */ 3157 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3158 features &= ~dev->gso_partial_features; 3159 3160 /* Make sure to clear the IPv4 ID mangling feature if the 3161 * IPv4 header has the potential to be fragmented. 3162 */ 3163 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3164 struct iphdr *iph = skb->encapsulation ? 3165 inner_ip_hdr(skb) : ip_hdr(skb); 3166 3167 if (!(iph->frag_off & htons(IP_DF))) 3168 features &= ~NETIF_F_TSO_MANGLEID; 3169 } 3170 3171 return features; 3172 } 3173 3174 netdev_features_t netif_skb_features(struct sk_buff *skb) 3175 { 3176 struct net_device *dev = skb->dev; 3177 netdev_features_t features = dev->features; 3178 3179 if (skb_is_gso(skb)) 3180 features = gso_features_check(skb, dev, features); 3181 3182 /* If encapsulation offload request, verify we are testing 3183 * hardware encapsulation features instead of standard 3184 * features for the netdev 3185 */ 3186 if (skb->encapsulation) 3187 features &= dev->hw_enc_features; 3188 3189 if (skb_vlan_tagged(skb)) 3190 features = netdev_intersect_features(features, 3191 dev->vlan_features | 3192 NETIF_F_HW_VLAN_CTAG_TX | 3193 NETIF_F_HW_VLAN_STAG_TX); 3194 3195 if (dev->netdev_ops->ndo_features_check) 3196 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3197 features); 3198 else 3199 features &= dflt_features_check(skb, dev, features); 3200 3201 return harmonize_features(skb, features); 3202 } 3203 EXPORT_SYMBOL(netif_skb_features); 3204 3205 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3206 struct netdev_queue *txq, bool more) 3207 { 3208 unsigned int len; 3209 int rc; 3210 3211 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 3212 dev_queue_xmit_nit(skb, dev); 3213 3214 len = skb->len; 3215 trace_net_dev_start_xmit(skb, dev); 3216 rc = netdev_start_xmit(skb, dev, txq, more); 3217 trace_net_dev_xmit(skb, rc, dev, len); 3218 3219 return rc; 3220 } 3221 3222 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3223 struct netdev_queue *txq, int *ret) 3224 { 3225 struct sk_buff *skb = first; 3226 int rc = NETDEV_TX_OK; 3227 3228 while (skb) { 3229 struct sk_buff *next = skb->next; 3230 3231 skb->next = NULL; 3232 rc = xmit_one(skb, dev, txq, next != NULL); 3233 if (unlikely(!dev_xmit_complete(rc))) { 3234 skb->next = next; 3235 goto out; 3236 } 3237 3238 skb = next; 3239 if (netif_xmit_stopped(txq) && skb) { 3240 rc = NETDEV_TX_BUSY; 3241 break; 3242 } 3243 } 3244 3245 out: 3246 *ret = rc; 3247 return skb; 3248 } 3249 3250 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3251 netdev_features_t features) 3252 { 3253 if (skb_vlan_tag_present(skb) && 3254 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3255 skb = __vlan_hwaccel_push_inside(skb); 3256 return skb; 3257 } 3258 3259 int skb_csum_hwoffload_help(struct sk_buff *skb, 3260 const netdev_features_t features) 3261 { 3262 if (unlikely(skb->csum_not_inet)) 3263 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3264 skb_crc32c_csum_help(skb); 3265 3266 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3267 } 3268 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3269 3270 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3271 { 3272 netdev_features_t features; 3273 3274 features = netif_skb_features(skb); 3275 skb = validate_xmit_vlan(skb, features); 3276 if (unlikely(!skb)) 3277 goto out_null; 3278 3279 skb = sk_validate_xmit_skb(skb, dev); 3280 if (unlikely(!skb)) 3281 goto out_null; 3282 3283 if (netif_needs_gso(skb, features)) { 3284 struct sk_buff *segs; 3285 3286 segs = skb_gso_segment(skb, features); 3287 if (IS_ERR(segs)) { 3288 goto out_kfree_skb; 3289 } else if (segs) { 3290 consume_skb(skb); 3291 skb = segs; 3292 } 3293 } else { 3294 if (skb_needs_linearize(skb, features) && 3295 __skb_linearize(skb)) 3296 goto out_kfree_skb; 3297 3298 /* If packet is not checksummed and device does not 3299 * support checksumming for this protocol, complete 3300 * checksumming here. 3301 */ 3302 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3303 if (skb->encapsulation) 3304 skb_set_inner_transport_header(skb, 3305 skb_checksum_start_offset(skb)); 3306 else 3307 skb_set_transport_header(skb, 3308 skb_checksum_start_offset(skb)); 3309 if (skb_csum_hwoffload_help(skb, features)) 3310 goto out_kfree_skb; 3311 } 3312 } 3313 3314 skb = validate_xmit_xfrm(skb, features, again); 3315 3316 return skb; 3317 3318 out_kfree_skb: 3319 kfree_skb(skb); 3320 out_null: 3321 atomic_long_inc(&dev->tx_dropped); 3322 return NULL; 3323 } 3324 3325 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3326 { 3327 struct sk_buff *next, *head = NULL, *tail; 3328 3329 for (; skb != NULL; skb = next) { 3330 next = skb->next; 3331 skb->next = NULL; 3332 3333 /* in case skb wont be segmented, point to itself */ 3334 skb->prev = skb; 3335 3336 skb = validate_xmit_skb(skb, dev, again); 3337 if (!skb) 3338 continue; 3339 3340 if (!head) 3341 head = skb; 3342 else 3343 tail->next = skb; 3344 /* If skb was segmented, skb->prev points to 3345 * the last segment. If not, it still contains skb. 3346 */ 3347 tail = skb->prev; 3348 } 3349 return head; 3350 } 3351 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3352 3353 static void qdisc_pkt_len_init(struct sk_buff *skb) 3354 { 3355 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3356 3357 qdisc_skb_cb(skb)->pkt_len = skb->len; 3358 3359 /* To get more precise estimation of bytes sent on wire, 3360 * we add to pkt_len the headers size of all segments 3361 */ 3362 if (shinfo->gso_size) { 3363 unsigned int hdr_len; 3364 u16 gso_segs = shinfo->gso_segs; 3365 3366 /* mac layer + network layer */ 3367 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3368 3369 /* + transport layer */ 3370 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3371 const struct tcphdr *th; 3372 struct tcphdr _tcphdr; 3373 3374 th = skb_header_pointer(skb, skb_transport_offset(skb), 3375 sizeof(_tcphdr), &_tcphdr); 3376 if (likely(th)) 3377 hdr_len += __tcp_hdrlen(th); 3378 } else { 3379 struct udphdr _udphdr; 3380 3381 if (skb_header_pointer(skb, skb_transport_offset(skb), 3382 sizeof(_udphdr), &_udphdr)) 3383 hdr_len += sizeof(struct udphdr); 3384 } 3385 3386 if (shinfo->gso_type & SKB_GSO_DODGY) 3387 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3388 shinfo->gso_size); 3389 3390 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3391 } 3392 } 3393 3394 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3395 struct net_device *dev, 3396 struct netdev_queue *txq) 3397 { 3398 spinlock_t *root_lock = qdisc_lock(q); 3399 struct sk_buff *to_free = NULL; 3400 bool contended; 3401 int rc; 3402 3403 qdisc_calculate_pkt_len(skb, q); 3404 3405 if (q->flags & TCQ_F_NOLOCK) { 3406 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3407 __qdisc_drop(skb, &to_free); 3408 rc = NET_XMIT_DROP; 3409 } else { 3410 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3411 qdisc_run(q); 3412 } 3413 3414 if (unlikely(to_free)) 3415 kfree_skb_list(to_free); 3416 return rc; 3417 } 3418 3419 /* 3420 * Heuristic to force contended enqueues to serialize on a 3421 * separate lock before trying to get qdisc main lock. 3422 * This permits qdisc->running owner to get the lock more 3423 * often and dequeue packets faster. 3424 */ 3425 contended = qdisc_is_running(q); 3426 if (unlikely(contended)) 3427 spin_lock(&q->busylock); 3428 3429 spin_lock(root_lock); 3430 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3431 __qdisc_drop(skb, &to_free); 3432 rc = NET_XMIT_DROP; 3433 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3434 qdisc_run_begin(q)) { 3435 /* 3436 * This is a work-conserving queue; there are no old skbs 3437 * waiting to be sent out; and the qdisc is not running - 3438 * xmit the skb directly. 3439 */ 3440 3441 qdisc_bstats_update(q, skb); 3442 3443 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3444 if (unlikely(contended)) { 3445 spin_unlock(&q->busylock); 3446 contended = false; 3447 } 3448 __qdisc_run(q); 3449 } 3450 3451 qdisc_run_end(q); 3452 rc = NET_XMIT_SUCCESS; 3453 } else { 3454 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3455 if (qdisc_run_begin(q)) { 3456 if (unlikely(contended)) { 3457 spin_unlock(&q->busylock); 3458 contended = false; 3459 } 3460 __qdisc_run(q); 3461 qdisc_run_end(q); 3462 } 3463 } 3464 spin_unlock(root_lock); 3465 if (unlikely(to_free)) 3466 kfree_skb_list(to_free); 3467 if (unlikely(contended)) 3468 spin_unlock(&q->busylock); 3469 return rc; 3470 } 3471 3472 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3473 static void skb_update_prio(struct sk_buff *skb) 3474 { 3475 const struct netprio_map *map; 3476 const struct sock *sk; 3477 unsigned int prioidx; 3478 3479 if (skb->priority) 3480 return; 3481 map = rcu_dereference_bh(skb->dev->priomap); 3482 if (!map) 3483 return; 3484 sk = skb_to_full_sk(skb); 3485 if (!sk) 3486 return; 3487 3488 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3489 3490 if (prioidx < map->priomap_len) 3491 skb->priority = map->priomap[prioidx]; 3492 } 3493 #else 3494 #define skb_update_prio(skb) 3495 #endif 3496 3497 DEFINE_PER_CPU(int, xmit_recursion); 3498 EXPORT_SYMBOL(xmit_recursion); 3499 3500 /** 3501 * dev_loopback_xmit - loop back @skb 3502 * @net: network namespace this loopback is happening in 3503 * @sk: sk needed to be a netfilter okfn 3504 * @skb: buffer to transmit 3505 */ 3506 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3507 { 3508 skb_reset_mac_header(skb); 3509 __skb_pull(skb, skb_network_offset(skb)); 3510 skb->pkt_type = PACKET_LOOPBACK; 3511 skb->ip_summed = CHECKSUM_UNNECESSARY; 3512 WARN_ON(!skb_dst(skb)); 3513 skb_dst_force(skb); 3514 netif_rx_ni(skb); 3515 return 0; 3516 } 3517 EXPORT_SYMBOL(dev_loopback_xmit); 3518 3519 #ifdef CONFIG_NET_EGRESS 3520 static struct sk_buff * 3521 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3522 { 3523 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3524 struct tcf_result cl_res; 3525 3526 if (!miniq) 3527 return skb; 3528 3529 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3530 mini_qdisc_bstats_cpu_update(miniq, skb); 3531 3532 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3533 case TC_ACT_OK: 3534 case TC_ACT_RECLASSIFY: 3535 skb->tc_index = TC_H_MIN(cl_res.classid); 3536 break; 3537 case TC_ACT_SHOT: 3538 mini_qdisc_qstats_cpu_drop(miniq); 3539 *ret = NET_XMIT_DROP; 3540 kfree_skb(skb); 3541 return NULL; 3542 case TC_ACT_STOLEN: 3543 case TC_ACT_QUEUED: 3544 case TC_ACT_TRAP: 3545 *ret = NET_XMIT_SUCCESS; 3546 consume_skb(skb); 3547 return NULL; 3548 case TC_ACT_REDIRECT: 3549 /* No need to push/pop skb's mac_header here on egress! */ 3550 skb_do_redirect(skb); 3551 *ret = NET_XMIT_SUCCESS; 3552 return NULL; 3553 default: 3554 break; 3555 } 3556 3557 return skb; 3558 } 3559 #endif /* CONFIG_NET_EGRESS */ 3560 3561 #ifdef CONFIG_XPS 3562 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 3563 struct xps_dev_maps *dev_maps, unsigned int tci) 3564 { 3565 struct xps_map *map; 3566 int queue_index = -1; 3567 3568 if (dev->num_tc) { 3569 tci *= dev->num_tc; 3570 tci += netdev_get_prio_tc_map(dev, skb->priority); 3571 } 3572 3573 map = rcu_dereference(dev_maps->attr_map[tci]); 3574 if (map) { 3575 if (map->len == 1) 3576 queue_index = map->queues[0]; 3577 else 3578 queue_index = map->queues[reciprocal_scale( 3579 skb_get_hash(skb), map->len)]; 3580 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3581 queue_index = -1; 3582 } 3583 return queue_index; 3584 } 3585 #endif 3586 3587 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 3588 struct sk_buff *skb) 3589 { 3590 #ifdef CONFIG_XPS 3591 struct xps_dev_maps *dev_maps; 3592 struct sock *sk = skb->sk; 3593 int queue_index = -1; 3594 3595 if (!static_key_false(&xps_needed)) 3596 return -1; 3597 3598 rcu_read_lock(); 3599 if (!static_key_false(&xps_rxqs_needed)) 3600 goto get_cpus_map; 3601 3602 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map); 3603 if (dev_maps) { 3604 int tci = sk_rx_queue_get(sk); 3605 3606 if (tci >= 0 && tci < dev->num_rx_queues) 3607 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3608 tci); 3609 } 3610 3611 get_cpus_map: 3612 if (queue_index < 0) { 3613 dev_maps = rcu_dereference(sb_dev->xps_cpus_map); 3614 if (dev_maps) { 3615 unsigned int tci = skb->sender_cpu - 1; 3616 3617 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3618 tci); 3619 } 3620 } 3621 rcu_read_unlock(); 3622 3623 return queue_index; 3624 #else 3625 return -1; 3626 #endif 3627 } 3628 3629 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3630 struct net_device *sb_dev, 3631 select_queue_fallback_t fallback) 3632 { 3633 return 0; 3634 } 3635 EXPORT_SYMBOL(dev_pick_tx_zero); 3636 3637 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3638 struct net_device *sb_dev, 3639 select_queue_fallback_t fallback) 3640 { 3641 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 3642 } 3643 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 3644 3645 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 3646 struct net_device *sb_dev) 3647 { 3648 struct sock *sk = skb->sk; 3649 int queue_index = sk_tx_queue_get(sk); 3650 3651 sb_dev = sb_dev ? : dev; 3652 3653 if (queue_index < 0 || skb->ooo_okay || 3654 queue_index >= dev->real_num_tx_queues) { 3655 int new_index = get_xps_queue(dev, sb_dev, skb); 3656 3657 if (new_index < 0) 3658 new_index = skb_tx_hash(dev, sb_dev, skb); 3659 3660 if (queue_index != new_index && sk && 3661 sk_fullsock(sk) && 3662 rcu_access_pointer(sk->sk_dst_cache)) 3663 sk_tx_queue_set(sk, new_index); 3664 3665 queue_index = new_index; 3666 } 3667 3668 return queue_index; 3669 } 3670 3671 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3672 struct sk_buff *skb, 3673 struct net_device *sb_dev) 3674 { 3675 int queue_index = 0; 3676 3677 #ifdef CONFIG_XPS 3678 u32 sender_cpu = skb->sender_cpu - 1; 3679 3680 if (sender_cpu >= (u32)NR_CPUS) 3681 skb->sender_cpu = raw_smp_processor_id() + 1; 3682 #endif 3683 3684 if (dev->real_num_tx_queues != 1) { 3685 const struct net_device_ops *ops = dev->netdev_ops; 3686 3687 if (ops->ndo_select_queue) 3688 queue_index = ops->ndo_select_queue(dev, skb, sb_dev, 3689 __netdev_pick_tx); 3690 else 3691 queue_index = __netdev_pick_tx(dev, skb, sb_dev); 3692 3693 queue_index = netdev_cap_txqueue(dev, queue_index); 3694 } 3695 3696 skb_set_queue_mapping(skb, queue_index); 3697 return netdev_get_tx_queue(dev, queue_index); 3698 } 3699 3700 /** 3701 * __dev_queue_xmit - transmit a buffer 3702 * @skb: buffer to transmit 3703 * @sb_dev: suboordinate device used for L2 forwarding offload 3704 * 3705 * Queue a buffer for transmission to a network device. The caller must 3706 * have set the device and priority and built the buffer before calling 3707 * this function. The function can be called from an interrupt. 3708 * 3709 * A negative errno code is returned on a failure. A success does not 3710 * guarantee the frame will be transmitted as it may be dropped due 3711 * to congestion or traffic shaping. 3712 * 3713 * ----------------------------------------------------------------------------------- 3714 * I notice this method can also return errors from the queue disciplines, 3715 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3716 * be positive. 3717 * 3718 * Regardless of the return value, the skb is consumed, so it is currently 3719 * difficult to retry a send to this method. (You can bump the ref count 3720 * before sending to hold a reference for retry if you are careful.) 3721 * 3722 * When calling this method, interrupts MUST be enabled. This is because 3723 * the BH enable code must have IRQs enabled so that it will not deadlock. 3724 * --BLG 3725 */ 3726 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 3727 { 3728 struct net_device *dev = skb->dev; 3729 struct netdev_queue *txq; 3730 struct Qdisc *q; 3731 int rc = -ENOMEM; 3732 bool again = false; 3733 3734 skb_reset_mac_header(skb); 3735 3736 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3737 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3738 3739 /* Disable soft irqs for various locks below. Also 3740 * stops preemption for RCU. 3741 */ 3742 rcu_read_lock_bh(); 3743 3744 skb_update_prio(skb); 3745 3746 qdisc_pkt_len_init(skb); 3747 #ifdef CONFIG_NET_CLS_ACT 3748 skb->tc_at_ingress = 0; 3749 # ifdef CONFIG_NET_EGRESS 3750 if (static_branch_unlikely(&egress_needed_key)) { 3751 skb = sch_handle_egress(skb, &rc, dev); 3752 if (!skb) 3753 goto out; 3754 } 3755 # endif 3756 #endif 3757 /* If device/qdisc don't need skb->dst, release it right now while 3758 * its hot in this cpu cache. 3759 */ 3760 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3761 skb_dst_drop(skb); 3762 else 3763 skb_dst_force(skb); 3764 3765 txq = netdev_pick_tx(dev, skb, sb_dev); 3766 q = rcu_dereference_bh(txq->qdisc); 3767 3768 trace_net_dev_queue(skb); 3769 if (q->enqueue) { 3770 rc = __dev_xmit_skb(skb, q, dev, txq); 3771 goto out; 3772 } 3773 3774 /* The device has no queue. Common case for software devices: 3775 * loopback, all the sorts of tunnels... 3776 3777 * Really, it is unlikely that netif_tx_lock protection is necessary 3778 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 3779 * counters.) 3780 * However, it is possible, that they rely on protection 3781 * made by us here. 3782 3783 * Check this and shot the lock. It is not prone from deadlocks. 3784 *Either shot noqueue qdisc, it is even simpler 8) 3785 */ 3786 if (dev->flags & IFF_UP) { 3787 int cpu = smp_processor_id(); /* ok because BHs are off */ 3788 3789 if (txq->xmit_lock_owner != cpu) { 3790 if (unlikely(__this_cpu_read(xmit_recursion) > 3791 XMIT_RECURSION_LIMIT)) 3792 goto recursion_alert; 3793 3794 skb = validate_xmit_skb(skb, dev, &again); 3795 if (!skb) 3796 goto out; 3797 3798 HARD_TX_LOCK(dev, txq, cpu); 3799 3800 if (!netif_xmit_stopped(txq)) { 3801 __this_cpu_inc(xmit_recursion); 3802 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3803 __this_cpu_dec(xmit_recursion); 3804 if (dev_xmit_complete(rc)) { 3805 HARD_TX_UNLOCK(dev, txq); 3806 goto out; 3807 } 3808 } 3809 HARD_TX_UNLOCK(dev, txq); 3810 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3811 dev->name); 3812 } else { 3813 /* Recursion is detected! It is possible, 3814 * unfortunately 3815 */ 3816 recursion_alert: 3817 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3818 dev->name); 3819 } 3820 } 3821 3822 rc = -ENETDOWN; 3823 rcu_read_unlock_bh(); 3824 3825 atomic_long_inc(&dev->tx_dropped); 3826 kfree_skb_list(skb); 3827 return rc; 3828 out: 3829 rcu_read_unlock_bh(); 3830 return rc; 3831 } 3832 3833 int dev_queue_xmit(struct sk_buff *skb) 3834 { 3835 return __dev_queue_xmit(skb, NULL); 3836 } 3837 EXPORT_SYMBOL(dev_queue_xmit); 3838 3839 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev) 3840 { 3841 return __dev_queue_xmit(skb, sb_dev); 3842 } 3843 EXPORT_SYMBOL(dev_queue_xmit_accel); 3844 3845 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3846 { 3847 struct net_device *dev = skb->dev; 3848 struct sk_buff *orig_skb = skb; 3849 struct netdev_queue *txq; 3850 int ret = NETDEV_TX_BUSY; 3851 bool again = false; 3852 3853 if (unlikely(!netif_running(dev) || 3854 !netif_carrier_ok(dev))) 3855 goto drop; 3856 3857 skb = validate_xmit_skb_list(skb, dev, &again); 3858 if (skb != orig_skb) 3859 goto drop; 3860 3861 skb_set_queue_mapping(skb, queue_id); 3862 txq = skb_get_tx_queue(dev, skb); 3863 3864 local_bh_disable(); 3865 3866 HARD_TX_LOCK(dev, txq, smp_processor_id()); 3867 if (!netif_xmit_frozen_or_drv_stopped(txq)) 3868 ret = netdev_start_xmit(skb, dev, txq, false); 3869 HARD_TX_UNLOCK(dev, txq); 3870 3871 local_bh_enable(); 3872 3873 if (!dev_xmit_complete(ret)) 3874 kfree_skb(skb); 3875 3876 return ret; 3877 drop: 3878 atomic_long_inc(&dev->tx_dropped); 3879 kfree_skb_list(skb); 3880 return NET_XMIT_DROP; 3881 } 3882 EXPORT_SYMBOL(dev_direct_xmit); 3883 3884 /************************************************************************* 3885 * Receiver routines 3886 *************************************************************************/ 3887 3888 int netdev_max_backlog __read_mostly = 1000; 3889 EXPORT_SYMBOL(netdev_max_backlog); 3890 3891 int netdev_tstamp_prequeue __read_mostly = 1; 3892 int netdev_budget __read_mostly = 300; 3893 unsigned int __read_mostly netdev_budget_usecs = 2000; 3894 int weight_p __read_mostly = 64; /* old backlog weight */ 3895 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 3896 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 3897 int dev_rx_weight __read_mostly = 64; 3898 int dev_tx_weight __read_mostly = 64; 3899 3900 /* Called with irq disabled */ 3901 static inline void ____napi_schedule(struct softnet_data *sd, 3902 struct napi_struct *napi) 3903 { 3904 list_add_tail(&napi->poll_list, &sd->poll_list); 3905 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3906 } 3907 3908 #ifdef CONFIG_RPS 3909 3910 /* One global table that all flow-based protocols share. */ 3911 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3912 EXPORT_SYMBOL(rps_sock_flow_table); 3913 u32 rps_cpu_mask __read_mostly; 3914 EXPORT_SYMBOL(rps_cpu_mask); 3915 3916 struct static_key rps_needed __read_mostly; 3917 EXPORT_SYMBOL(rps_needed); 3918 struct static_key rfs_needed __read_mostly; 3919 EXPORT_SYMBOL(rfs_needed); 3920 3921 static struct rps_dev_flow * 3922 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3923 struct rps_dev_flow *rflow, u16 next_cpu) 3924 { 3925 if (next_cpu < nr_cpu_ids) { 3926 #ifdef CONFIG_RFS_ACCEL 3927 struct netdev_rx_queue *rxqueue; 3928 struct rps_dev_flow_table *flow_table; 3929 struct rps_dev_flow *old_rflow; 3930 u32 flow_id; 3931 u16 rxq_index; 3932 int rc; 3933 3934 /* Should we steer this flow to a different hardware queue? */ 3935 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3936 !(dev->features & NETIF_F_NTUPLE)) 3937 goto out; 3938 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3939 if (rxq_index == skb_get_rx_queue(skb)) 3940 goto out; 3941 3942 rxqueue = dev->_rx + rxq_index; 3943 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3944 if (!flow_table) 3945 goto out; 3946 flow_id = skb_get_hash(skb) & flow_table->mask; 3947 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3948 rxq_index, flow_id); 3949 if (rc < 0) 3950 goto out; 3951 old_rflow = rflow; 3952 rflow = &flow_table->flows[flow_id]; 3953 rflow->filter = rc; 3954 if (old_rflow->filter == rflow->filter) 3955 old_rflow->filter = RPS_NO_FILTER; 3956 out: 3957 #endif 3958 rflow->last_qtail = 3959 per_cpu(softnet_data, next_cpu).input_queue_head; 3960 } 3961 3962 rflow->cpu = next_cpu; 3963 return rflow; 3964 } 3965 3966 /* 3967 * get_rps_cpu is called from netif_receive_skb and returns the target 3968 * CPU from the RPS map of the receiving queue for a given skb. 3969 * rcu_read_lock must be held on entry. 3970 */ 3971 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3972 struct rps_dev_flow **rflowp) 3973 { 3974 const struct rps_sock_flow_table *sock_flow_table; 3975 struct netdev_rx_queue *rxqueue = dev->_rx; 3976 struct rps_dev_flow_table *flow_table; 3977 struct rps_map *map; 3978 int cpu = -1; 3979 u32 tcpu; 3980 u32 hash; 3981 3982 if (skb_rx_queue_recorded(skb)) { 3983 u16 index = skb_get_rx_queue(skb); 3984 3985 if (unlikely(index >= dev->real_num_rx_queues)) { 3986 WARN_ONCE(dev->real_num_rx_queues > 1, 3987 "%s received packet on queue %u, but number " 3988 "of RX queues is %u\n", 3989 dev->name, index, dev->real_num_rx_queues); 3990 goto done; 3991 } 3992 rxqueue += index; 3993 } 3994 3995 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3996 3997 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3998 map = rcu_dereference(rxqueue->rps_map); 3999 if (!flow_table && !map) 4000 goto done; 4001 4002 skb_reset_network_header(skb); 4003 hash = skb_get_hash(skb); 4004 if (!hash) 4005 goto done; 4006 4007 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4008 if (flow_table && sock_flow_table) { 4009 struct rps_dev_flow *rflow; 4010 u32 next_cpu; 4011 u32 ident; 4012 4013 /* First check into global flow table if there is a match */ 4014 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 4015 if ((ident ^ hash) & ~rps_cpu_mask) 4016 goto try_rps; 4017 4018 next_cpu = ident & rps_cpu_mask; 4019 4020 /* OK, now we know there is a match, 4021 * we can look at the local (per receive queue) flow table 4022 */ 4023 rflow = &flow_table->flows[hash & flow_table->mask]; 4024 tcpu = rflow->cpu; 4025 4026 /* 4027 * If the desired CPU (where last recvmsg was done) is 4028 * different from current CPU (one in the rx-queue flow 4029 * table entry), switch if one of the following holds: 4030 * - Current CPU is unset (>= nr_cpu_ids). 4031 * - Current CPU is offline. 4032 * - The current CPU's queue tail has advanced beyond the 4033 * last packet that was enqueued using this table entry. 4034 * This guarantees that all previous packets for the flow 4035 * have been dequeued, thus preserving in order delivery. 4036 */ 4037 if (unlikely(tcpu != next_cpu) && 4038 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4039 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4040 rflow->last_qtail)) >= 0)) { 4041 tcpu = next_cpu; 4042 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4043 } 4044 4045 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4046 *rflowp = rflow; 4047 cpu = tcpu; 4048 goto done; 4049 } 4050 } 4051 4052 try_rps: 4053 4054 if (map) { 4055 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4056 if (cpu_online(tcpu)) { 4057 cpu = tcpu; 4058 goto done; 4059 } 4060 } 4061 4062 done: 4063 return cpu; 4064 } 4065 4066 #ifdef CONFIG_RFS_ACCEL 4067 4068 /** 4069 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4070 * @dev: Device on which the filter was set 4071 * @rxq_index: RX queue index 4072 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4073 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4074 * 4075 * Drivers that implement ndo_rx_flow_steer() should periodically call 4076 * this function for each installed filter and remove the filters for 4077 * which it returns %true. 4078 */ 4079 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4080 u32 flow_id, u16 filter_id) 4081 { 4082 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4083 struct rps_dev_flow_table *flow_table; 4084 struct rps_dev_flow *rflow; 4085 bool expire = true; 4086 unsigned int cpu; 4087 4088 rcu_read_lock(); 4089 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4090 if (flow_table && flow_id <= flow_table->mask) { 4091 rflow = &flow_table->flows[flow_id]; 4092 cpu = READ_ONCE(rflow->cpu); 4093 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4094 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4095 rflow->last_qtail) < 4096 (int)(10 * flow_table->mask))) 4097 expire = false; 4098 } 4099 rcu_read_unlock(); 4100 return expire; 4101 } 4102 EXPORT_SYMBOL(rps_may_expire_flow); 4103 4104 #endif /* CONFIG_RFS_ACCEL */ 4105 4106 /* Called from hardirq (IPI) context */ 4107 static void rps_trigger_softirq(void *data) 4108 { 4109 struct softnet_data *sd = data; 4110 4111 ____napi_schedule(sd, &sd->backlog); 4112 sd->received_rps++; 4113 } 4114 4115 #endif /* CONFIG_RPS */ 4116 4117 /* 4118 * Check if this softnet_data structure is another cpu one 4119 * If yes, queue it to our IPI list and return 1 4120 * If no, return 0 4121 */ 4122 static int rps_ipi_queued(struct softnet_data *sd) 4123 { 4124 #ifdef CONFIG_RPS 4125 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4126 4127 if (sd != mysd) { 4128 sd->rps_ipi_next = mysd->rps_ipi_list; 4129 mysd->rps_ipi_list = sd; 4130 4131 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4132 return 1; 4133 } 4134 #endif /* CONFIG_RPS */ 4135 return 0; 4136 } 4137 4138 #ifdef CONFIG_NET_FLOW_LIMIT 4139 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4140 #endif 4141 4142 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4143 { 4144 #ifdef CONFIG_NET_FLOW_LIMIT 4145 struct sd_flow_limit *fl; 4146 struct softnet_data *sd; 4147 unsigned int old_flow, new_flow; 4148 4149 if (qlen < (netdev_max_backlog >> 1)) 4150 return false; 4151 4152 sd = this_cpu_ptr(&softnet_data); 4153 4154 rcu_read_lock(); 4155 fl = rcu_dereference(sd->flow_limit); 4156 if (fl) { 4157 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4158 old_flow = fl->history[fl->history_head]; 4159 fl->history[fl->history_head] = new_flow; 4160 4161 fl->history_head++; 4162 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4163 4164 if (likely(fl->buckets[old_flow])) 4165 fl->buckets[old_flow]--; 4166 4167 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4168 fl->count++; 4169 rcu_read_unlock(); 4170 return true; 4171 } 4172 } 4173 rcu_read_unlock(); 4174 #endif 4175 return false; 4176 } 4177 4178 /* 4179 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4180 * queue (may be a remote CPU queue). 4181 */ 4182 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4183 unsigned int *qtail) 4184 { 4185 struct softnet_data *sd; 4186 unsigned long flags; 4187 unsigned int qlen; 4188 4189 sd = &per_cpu(softnet_data, cpu); 4190 4191 local_irq_save(flags); 4192 4193 rps_lock(sd); 4194 if (!netif_running(skb->dev)) 4195 goto drop; 4196 qlen = skb_queue_len(&sd->input_pkt_queue); 4197 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 4198 if (qlen) { 4199 enqueue: 4200 __skb_queue_tail(&sd->input_pkt_queue, skb); 4201 input_queue_tail_incr_save(sd, qtail); 4202 rps_unlock(sd); 4203 local_irq_restore(flags); 4204 return NET_RX_SUCCESS; 4205 } 4206 4207 /* Schedule NAPI for backlog device 4208 * We can use non atomic operation since we own the queue lock 4209 */ 4210 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 4211 if (!rps_ipi_queued(sd)) 4212 ____napi_schedule(sd, &sd->backlog); 4213 } 4214 goto enqueue; 4215 } 4216 4217 drop: 4218 sd->dropped++; 4219 rps_unlock(sd); 4220 4221 local_irq_restore(flags); 4222 4223 atomic_long_inc(&skb->dev->rx_dropped); 4224 kfree_skb(skb); 4225 return NET_RX_DROP; 4226 } 4227 4228 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4229 { 4230 struct net_device *dev = skb->dev; 4231 struct netdev_rx_queue *rxqueue; 4232 4233 rxqueue = dev->_rx; 4234 4235 if (skb_rx_queue_recorded(skb)) { 4236 u16 index = skb_get_rx_queue(skb); 4237 4238 if (unlikely(index >= dev->real_num_rx_queues)) { 4239 WARN_ONCE(dev->real_num_rx_queues > 1, 4240 "%s received packet on queue %u, but number " 4241 "of RX queues is %u\n", 4242 dev->name, index, dev->real_num_rx_queues); 4243 4244 return rxqueue; /* Return first rxqueue */ 4245 } 4246 rxqueue += index; 4247 } 4248 return rxqueue; 4249 } 4250 4251 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4252 struct xdp_buff *xdp, 4253 struct bpf_prog *xdp_prog) 4254 { 4255 struct netdev_rx_queue *rxqueue; 4256 void *orig_data, *orig_data_end; 4257 u32 metalen, act = XDP_DROP; 4258 int hlen, off; 4259 u32 mac_len; 4260 4261 /* Reinjected packets coming from act_mirred or similar should 4262 * not get XDP generic processing. 4263 */ 4264 if (skb_cloned(skb) || skb_is_tc_redirected(skb)) 4265 return XDP_PASS; 4266 4267 /* XDP packets must be linear and must have sufficient headroom 4268 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4269 * native XDP provides, thus we need to do it here as well. 4270 */ 4271 if (skb_is_nonlinear(skb) || 4272 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4273 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4274 int troom = skb->tail + skb->data_len - skb->end; 4275 4276 /* In case we have to go down the path and also linearize, 4277 * then lets do the pskb_expand_head() work just once here. 4278 */ 4279 if (pskb_expand_head(skb, 4280 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4281 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4282 goto do_drop; 4283 if (skb_linearize(skb)) 4284 goto do_drop; 4285 } 4286 4287 /* The XDP program wants to see the packet starting at the MAC 4288 * header. 4289 */ 4290 mac_len = skb->data - skb_mac_header(skb); 4291 hlen = skb_headlen(skb) + mac_len; 4292 xdp->data = skb->data - mac_len; 4293 xdp->data_meta = xdp->data; 4294 xdp->data_end = xdp->data + hlen; 4295 xdp->data_hard_start = skb->data - skb_headroom(skb); 4296 orig_data_end = xdp->data_end; 4297 orig_data = xdp->data; 4298 4299 rxqueue = netif_get_rxqueue(skb); 4300 xdp->rxq = &rxqueue->xdp_rxq; 4301 4302 act = bpf_prog_run_xdp(xdp_prog, xdp); 4303 4304 off = xdp->data - orig_data; 4305 if (off > 0) 4306 __skb_pull(skb, off); 4307 else if (off < 0) 4308 __skb_push(skb, -off); 4309 skb->mac_header += off; 4310 4311 /* check if bpf_xdp_adjust_tail was used. it can only "shrink" 4312 * pckt. 4313 */ 4314 off = orig_data_end - xdp->data_end; 4315 if (off != 0) { 4316 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4317 skb->len -= off; 4318 4319 } 4320 4321 switch (act) { 4322 case XDP_REDIRECT: 4323 case XDP_TX: 4324 __skb_push(skb, mac_len); 4325 break; 4326 case XDP_PASS: 4327 metalen = xdp->data - xdp->data_meta; 4328 if (metalen) 4329 skb_metadata_set(skb, metalen); 4330 break; 4331 default: 4332 bpf_warn_invalid_xdp_action(act); 4333 /* fall through */ 4334 case XDP_ABORTED: 4335 trace_xdp_exception(skb->dev, xdp_prog, act); 4336 /* fall through */ 4337 case XDP_DROP: 4338 do_drop: 4339 kfree_skb(skb); 4340 break; 4341 } 4342 4343 return act; 4344 } 4345 4346 /* When doing generic XDP we have to bypass the qdisc layer and the 4347 * network taps in order to match in-driver-XDP behavior. 4348 */ 4349 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4350 { 4351 struct net_device *dev = skb->dev; 4352 struct netdev_queue *txq; 4353 bool free_skb = true; 4354 int cpu, rc; 4355 4356 txq = netdev_pick_tx(dev, skb, NULL); 4357 cpu = smp_processor_id(); 4358 HARD_TX_LOCK(dev, txq, cpu); 4359 if (!netif_xmit_stopped(txq)) { 4360 rc = netdev_start_xmit(skb, dev, txq, 0); 4361 if (dev_xmit_complete(rc)) 4362 free_skb = false; 4363 } 4364 HARD_TX_UNLOCK(dev, txq); 4365 if (free_skb) { 4366 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4367 kfree_skb(skb); 4368 } 4369 } 4370 EXPORT_SYMBOL_GPL(generic_xdp_tx); 4371 4372 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4373 4374 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4375 { 4376 if (xdp_prog) { 4377 struct xdp_buff xdp; 4378 u32 act; 4379 int err; 4380 4381 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4382 if (act != XDP_PASS) { 4383 switch (act) { 4384 case XDP_REDIRECT: 4385 err = xdp_do_generic_redirect(skb->dev, skb, 4386 &xdp, xdp_prog); 4387 if (err) 4388 goto out_redir; 4389 break; 4390 case XDP_TX: 4391 generic_xdp_tx(skb, xdp_prog); 4392 break; 4393 } 4394 return XDP_DROP; 4395 } 4396 } 4397 return XDP_PASS; 4398 out_redir: 4399 kfree_skb(skb); 4400 return XDP_DROP; 4401 } 4402 EXPORT_SYMBOL_GPL(do_xdp_generic); 4403 4404 static int netif_rx_internal(struct sk_buff *skb) 4405 { 4406 int ret; 4407 4408 net_timestamp_check(netdev_tstamp_prequeue, skb); 4409 4410 trace_netif_rx(skb); 4411 4412 if (static_branch_unlikely(&generic_xdp_needed_key)) { 4413 int ret; 4414 4415 preempt_disable(); 4416 rcu_read_lock(); 4417 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4418 rcu_read_unlock(); 4419 preempt_enable(); 4420 4421 /* Consider XDP consuming the packet a success from 4422 * the netdev point of view we do not want to count 4423 * this as an error. 4424 */ 4425 if (ret != XDP_PASS) 4426 return NET_RX_SUCCESS; 4427 } 4428 4429 #ifdef CONFIG_RPS 4430 if (static_key_false(&rps_needed)) { 4431 struct rps_dev_flow voidflow, *rflow = &voidflow; 4432 int cpu; 4433 4434 preempt_disable(); 4435 rcu_read_lock(); 4436 4437 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4438 if (cpu < 0) 4439 cpu = smp_processor_id(); 4440 4441 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4442 4443 rcu_read_unlock(); 4444 preempt_enable(); 4445 } else 4446 #endif 4447 { 4448 unsigned int qtail; 4449 4450 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4451 put_cpu(); 4452 } 4453 return ret; 4454 } 4455 4456 /** 4457 * netif_rx - post buffer to the network code 4458 * @skb: buffer to post 4459 * 4460 * This function receives a packet from a device driver and queues it for 4461 * the upper (protocol) levels to process. It always succeeds. The buffer 4462 * may be dropped during processing for congestion control or by the 4463 * protocol layers. 4464 * 4465 * return values: 4466 * NET_RX_SUCCESS (no congestion) 4467 * NET_RX_DROP (packet was dropped) 4468 * 4469 */ 4470 4471 int netif_rx(struct sk_buff *skb) 4472 { 4473 trace_netif_rx_entry(skb); 4474 4475 return netif_rx_internal(skb); 4476 } 4477 EXPORT_SYMBOL(netif_rx); 4478 4479 int netif_rx_ni(struct sk_buff *skb) 4480 { 4481 int err; 4482 4483 trace_netif_rx_ni_entry(skb); 4484 4485 preempt_disable(); 4486 err = netif_rx_internal(skb); 4487 if (local_softirq_pending()) 4488 do_softirq(); 4489 preempt_enable(); 4490 4491 return err; 4492 } 4493 EXPORT_SYMBOL(netif_rx_ni); 4494 4495 static __latent_entropy void net_tx_action(struct softirq_action *h) 4496 { 4497 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4498 4499 if (sd->completion_queue) { 4500 struct sk_buff *clist; 4501 4502 local_irq_disable(); 4503 clist = sd->completion_queue; 4504 sd->completion_queue = NULL; 4505 local_irq_enable(); 4506 4507 while (clist) { 4508 struct sk_buff *skb = clist; 4509 4510 clist = clist->next; 4511 4512 WARN_ON(refcount_read(&skb->users)); 4513 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4514 trace_consume_skb(skb); 4515 else 4516 trace_kfree_skb(skb, net_tx_action); 4517 4518 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4519 __kfree_skb(skb); 4520 else 4521 __kfree_skb_defer(skb); 4522 } 4523 4524 __kfree_skb_flush(); 4525 } 4526 4527 if (sd->output_queue) { 4528 struct Qdisc *head; 4529 4530 local_irq_disable(); 4531 head = sd->output_queue; 4532 sd->output_queue = NULL; 4533 sd->output_queue_tailp = &sd->output_queue; 4534 local_irq_enable(); 4535 4536 while (head) { 4537 struct Qdisc *q = head; 4538 spinlock_t *root_lock = NULL; 4539 4540 head = head->next_sched; 4541 4542 if (!(q->flags & TCQ_F_NOLOCK)) { 4543 root_lock = qdisc_lock(q); 4544 spin_lock(root_lock); 4545 } 4546 /* We need to make sure head->next_sched is read 4547 * before clearing __QDISC_STATE_SCHED 4548 */ 4549 smp_mb__before_atomic(); 4550 clear_bit(__QDISC_STATE_SCHED, &q->state); 4551 qdisc_run(q); 4552 if (root_lock) 4553 spin_unlock(root_lock); 4554 } 4555 } 4556 4557 xfrm_dev_backlog(sd); 4558 } 4559 4560 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4561 /* This hook is defined here for ATM LANE */ 4562 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4563 unsigned char *addr) __read_mostly; 4564 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4565 #endif 4566 4567 static inline struct sk_buff * 4568 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4569 struct net_device *orig_dev) 4570 { 4571 #ifdef CONFIG_NET_CLS_ACT 4572 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 4573 struct tcf_result cl_res; 4574 4575 /* If there's at least one ingress present somewhere (so 4576 * we get here via enabled static key), remaining devices 4577 * that are not configured with an ingress qdisc will bail 4578 * out here. 4579 */ 4580 if (!miniq) 4581 return skb; 4582 4583 if (*pt_prev) { 4584 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4585 *pt_prev = NULL; 4586 } 4587 4588 qdisc_skb_cb(skb)->pkt_len = skb->len; 4589 skb->tc_at_ingress = 1; 4590 mini_qdisc_bstats_cpu_update(miniq, skb); 4591 4592 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 4593 case TC_ACT_OK: 4594 case TC_ACT_RECLASSIFY: 4595 skb->tc_index = TC_H_MIN(cl_res.classid); 4596 break; 4597 case TC_ACT_SHOT: 4598 mini_qdisc_qstats_cpu_drop(miniq); 4599 kfree_skb(skb); 4600 return NULL; 4601 case TC_ACT_STOLEN: 4602 case TC_ACT_QUEUED: 4603 case TC_ACT_TRAP: 4604 consume_skb(skb); 4605 return NULL; 4606 case TC_ACT_REDIRECT: 4607 /* skb_mac_header check was done by cls/act_bpf, so 4608 * we can safely push the L2 header back before 4609 * redirecting to another netdev 4610 */ 4611 __skb_push(skb, skb->mac_len); 4612 skb_do_redirect(skb); 4613 return NULL; 4614 case TC_ACT_REINSERT: 4615 /* this does not scrub the packet, and updates stats on error */ 4616 skb_tc_reinsert(skb, &cl_res); 4617 return NULL; 4618 default: 4619 break; 4620 } 4621 #endif /* CONFIG_NET_CLS_ACT */ 4622 return skb; 4623 } 4624 4625 /** 4626 * netdev_is_rx_handler_busy - check if receive handler is registered 4627 * @dev: device to check 4628 * 4629 * Check if a receive handler is already registered for a given device. 4630 * Return true if there one. 4631 * 4632 * The caller must hold the rtnl_mutex. 4633 */ 4634 bool netdev_is_rx_handler_busy(struct net_device *dev) 4635 { 4636 ASSERT_RTNL(); 4637 return dev && rtnl_dereference(dev->rx_handler); 4638 } 4639 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4640 4641 /** 4642 * netdev_rx_handler_register - register receive handler 4643 * @dev: device to register a handler for 4644 * @rx_handler: receive handler to register 4645 * @rx_handler_data: data pointer that is used by rx handler 4646 * 4647 * Register a receive handler for a device. This handler will then be 4648 * called from __netif_receive_skb. A negative errno code is returned 4649 * on a failure. 4650 * 4651 * The caller must hold the rtnl_mutex. 4652 * 4653 * For a general description of rx_handler, see enum rx_handler_result. 4654 */ 4655 int netdev_rx_handler_register(struct net_device *dev, 4656 rx_handler_func_t *rx_handler, 4657 void *rx_handler_data) 4658 { 4659 if (netdev_is_rx_handler_busy(dev)) 4660 return -EBUSY; 4661 4662 if (dev->priv_flags & IFF_NO_RX_HANDLER) 4663 return -EINVAL; 4664 4665 /* Note: rx_handler_data must be set before rx_handler */ 4666 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4667 rcu_assign_pointer(dev->rx_handler, rx_handler); 4668 4669 return 0; 4670 } 4671 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4672 4673 /** 4674 * netdev_rx_handler_unregister - unregister receive handler 4675 * @dev: device to unregister a handler from 4676 * 4677 * Unregister a receive handler from a device. 4678 * 4679 * The caller must hold the rtnl_mutex. 4680 */ 4681 void netdev_rx_handler_unregister(struct net_device *dev) 4682 { 4683 4684 ASSERT_RTNL(); 4685 RCU_INIT_POINTER(dev->rx_handler, NULL); 4686 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4687 * section has a guarantee to see a non NULL rx_handler_data 4688 * as well. 4689 */ 4690 synchronize_net(); 4691 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4692 } 4693 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4694 4695 /* 4696 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4697 * the special handling of PFMEMALLOC skbs. 4698 */ 4699 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4700 { 4701 switch (skb->protocol) { 4702 case htons(ETH_P_ARP): 4703 case htons(ETH_P_IP): 4704 case htons(ETH_P_IPV6): 4705 case htons(ETH_P_8021Q): 4706 case htons(ETH_P_8021AD): 4707 return true; 4708 default: 4709 return false; 4710 } 4711 } 4712 4713 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4714 int *ret, struct net_device *orig_dev) 4715 { 4716 #ifdef CONFIG_NETFILTER_INGRESS 4717 if (nf_hook_ingress_active(skb)) { 4718 int ingress_retval; 4719 4720 if (*pt_prev) { 4721 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4722 *pt_prev = NULL; 4723 } 4724 4725 rcu_read_lock(); 4726 ingress_retval = nf_hook_ingress(skb); 4727 rcu_read_unlock(); 4728 return ingress_retval; 4729 } 4730 #endif /* CONFIG_NETFILTER_INGRESS */ 4731 return 0; 4732 } 4733 4734 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc, 4735 struct packet_type **ppt_prev) 4736 { 4737 struct packet_type *ptype, *pt_prev; 4738 rx_handler_func_t *rx_handler; 4739 struct net_device *orig_dev; 4740 bool deliver_exact = false; 4741 int ret = NET_RX_DROP; 4742 __be16 type; 4743 4744 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4745 4746 trace_netif_receive_skb(skb); 4747 4748 orig_dev = skb->dev; 4749 4750 skb_reset_network_header(skb); 4751 if (!skb_transport_header_was_set(skb)) 4752 skb_reset_transport_header(skb); 4753 skb_reset_mac_len(skb); 4754 4755 pt_prev = NULL; 4756 4757 another_round: 4758 skb->skb_iif = skb->dev->ifindex; 4759 4760 __this_cpu_inc(softnet_data.processed); 4761 4762 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4763 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4764 skb = skb_vlan_untag(skb); 4765 if (unlikely(!skb)) 4766 goto out; 4767 } 4768 4769 if (skb_skip_tc_classify(skb)) 4770 goto skip_classify; 4771 4772 if (pfmemalloc) 4773 goto skip_taps; 4774 4775 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4776 if (pt_prev) 4777 ret = deliver_skb(skb, pt_prev, orig_dev); 4778 pt_prev = ptype; 4779 } 4780 4781 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4782 if (pt_prev) 4783 ret = deliver_skb(skb, pt_prev, orig_dev); 4784 pt_prev = ptype; 4785 } 4786 4787 skip_taps: 4788 #ifdef CONFIG_NET_INGRESS 4789 if (static_branch_unlikely(&ingress_needed_key)) { 4790 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4791 if (!skb) 4792 goto out; 4793 4794 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4795 goto out; 4796 } 4797 #endif 4798 skb_reset_tc(skb); 4799 skip_classify: 4800 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4801 goto drop; 4802 4803 if (skb_vlan_tag_present(skb)) { 4804 if (pt_prev) { 4805 ret = deliver_skb(skb, pt_prev, orig_dev); 4806 pt_prev = NULL; 4807 } 4808 if (vlan_do_receive(&skb)) 4809 goto another_round; 4810 else if (unlikely(!skb)) 4811 goto out; 4812 } 4813 4814 rx_handler = rcu_dereference(skb->dev->rx_handler); 4815 if (rx_handler) { 4816 if (pt_prev) { 4817 ret = deliver_skb(skb, pt_prev, orig_dev); 4818 pt_prev = NULL; 4819 } 4820 switch (rx_handler(&skb)) { 4821 case RX_HANDLER_CONSUMED: 4822 ret = NET_RX_SUCCESS; 4823 goto out; 4824 case RX_HANDLER_ANOTHER: 4825 goto another_round; 4826 case RX_HANDLER_EXACT: 4827 deliver_exact = true; 4828 case RX_HANDLER_PASS: 4829 break; 4830 default: 4831 BUG(); 4832 } 4833 } 4834 4835 if (unlikely(skb_vlan_tag_present(skb))) { 4836 if (skb_vlan_tag_get_id(skb)) 4837 skb->pkt_type = PACKET_OTHERHOST; 4838 /* Note: we might in the future use prio bits 4839 * and set skb->priority like in vlan_do_receive() 4840 * For the time being, just ignore Priority Code Point 4841 */ 4842 skb->vlan_tci = 0; 4843 } 4844 4845 type = skb->protocol; 4846 4847 /* deliver only exact match when indicated */ 4848 if (likely(!deliver_exact)) { 4849 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4850 &ptype_base[ntohs(type) & 4851 PTYPE_HASH_MASK]); 4852 } 4853 4854 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4855 &orig_dev->ptype_specific); 4856 4857 if (unlikely(skb->dev != orig_dev)) { 4858 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4859 &skb->dev->ptype_specific); 4860 } 4861 4862 if (pt_prev) { 4863 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 4864 goto drop; 4865 *ppt_prev = pt_prev; 4866 } else { 4867 drop: 4868 if (!deliver_exact) 4869 atomic_long_inc(&skb->dev->rx_dropped); 4870 else 4871 atomic_long_inc(&skb->dev->rx_nohandler); 4872 kfree_skb(skb); 4873 /* Jamal, now you will not able to escape explaining 4874 * me how you were going to use this. :-) 4875 */ 4876 ret = NET_RX_DROP; 4877 } 4878 4879 out: 4880 return ret; 4881 } 4882 4883 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 4884 { 4885 struct net_device *orig_dev = skb->dev; 4886 struct packet_type *pt_prev = NULL; 4887 int ret; 4888 4889 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 4890 if (pt_prev) 4891 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4892 return ret; 4893 } 4894 4895 /** 4896 * netif_receive_skb_core - special purpose version of netif_receive_skb 4897 * @skb: buffer to process 4898 * 4899 * More direct receive version of netif_receive_skb(). It should 4900 * only be used by callers that have a need to skip RPS and Generic XDP. 4901 * Caller must also take care of handling if (page_is_)pfmemalloc. 4902 * 4903 * This function may only be called from softirq context and interrupts 4904 * should be enabled. 4905 * 4906 * Return values (usually ignored): 4907 * NET_RX_SUCCESS: no congestion 4908 * NET_RX_DROP: packet was dropped 4909 */ 4910 int netif_receive_skb_core(struct sk_buff *skb) 4911 { 4912 int ret; 4913 4914 rcu_read_lock(); 4915 ret = __netif_receive_skb_one_core(skb, false); 4916 rcu_read_unlock(); 4917 4918 return ret; 4919 } 4920 EXPORT_SYMBOL(netif_receive_skb_core); 4921 4922 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 4923 struct packet_type *pt_prev, 4924 struct net_device *orig_dev) 4925 { 4926 struct sk_buff *skb, *next; 4927 4928 if (!pt_prev) 4929 return; 4930 if (list_empty(head)) 4931 return; 4932 if (pt_prev->list_func != NULL) 4933 pt_prev->list_func(head, pt_prev, orig_dev); 4934 else 4935 list_for_each_entry_safe(skb, next, head, list) 4936 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4937 } 4938 4939 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 4940 { 4941 /* Fast-path assumptions: 4942 * - There is no RX handler. 4943 * - Only one packet_type matches. 4944 * If either of these fails, we will end up doing some per-packet 4945 * processing in-line, then handling the 'last ptype' for the whole 4946 * sublist. This can't cause out-of-order delivery to any single ptype, 4947 * because the 'last ptype' must be constant across the sublist, and all 4948 * other ptypes are handled per-packet. 4949 */ 4950 /* Current (common) ptype of sublist */ 4951 struct packet_type *pt_curr = NULL; 4952 /* Current (common) orig_dev of sublist */ 4953 struct net_device *od_curr = NULL; 4954 struct list_head sublist; 4955 struct sk_buff *skb, *next; 4956 4957 INIT_LIST_HEAD(&sublist); 4958 list_for_each_entry_safe(skb, next, head, list) { 4959 struct net_device *orig_dev = skb->dev; 4960 struct packet_type *pt_prev = NULL; 4961 4962 list_del(&skb->list); 4963 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 4964 if (!pt_prev) 4965 continue; 4966 if (pt_curr != pt_prev || od_curr != orig_dev) { 4967 /* dispatch old sublist */ 4968 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 4969 /* start new sublist */ 4970 INIT_LIST_HEAD(&sublist); 4971 pt_curr = pt_prev; 4972 od_curr = orig_dev; 4973 } 4974 list_add_tail(&skb->list, &sublist); 4975 } 4976 4977 /* dispatch final sublist */ 4978 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 4979 } 4980 4981 static int __netif_receive_skb(struct sk_buff *skb) 4982 { 4983 int ret; 4984 4985 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 4986 unsigned int noreclaim_flag; 4987 4988 /* 4989 * PFMEMALLOC skbs are special, they should 4990 * - be delivered to SOCK_MEMALLOC sockets only 4991 * - stay away from userspace 4992 * - have bounded memory usage 4993 * 4994 * Use PF_MEMALLOC as this saves us from propagating the allocation 4995 * context down to all allocation sites. 4996 */ 4997 noreclaim_flag = memalloc_noreclaim_save(); 4998 ret = __netif_receive_skb_one_core(skb, true); 4999 memalloc_noreclaim_restore(noreclaim_flag); 5000 } else 5001 ret = __netif_receive_skb_one_core(skb, false); 5002 5003 return ret; 5004 } 5005 5006 static void __netif_receive_skb_list(struct list_head *head) 5007 { 5008 unsigned long noreclaim_flag = 0; 5009 struct sk_buff *skb, *next; 5010 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5011 5012 list_for_each_entry_safe(skb, next, head, list) { 5013 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5014 struct list_head sublist; 5015 5016 /* Handle the previous sublist */ 5017 list_cut_before(&sublist, head, &skb->list); 5018 if (!list_empty(&sublist)) 5019 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5020 pfmemalloc = !pfmemalloc; 5021 /* See comments in __netif_receive_skb */ 5022 if (pfmemalloc) 5023 noreclaim_flag = memalloc_noreclaim_save(); 5024 else 5025 memalloc_noreclaim_restore(noreclaim_flag); 5026 } 5027 } 5028 /* Handle the remaining sublist */ 5029 if (!list_empty(head)) 5030 __netif_receive_skb_list_core(head, pfmemalloc); 5031 /* Restore pflags */ 5032 if (pfmemalloc) 5033 memalloc_noreclaim_restore(noreclaim_flag); 5034 } 5035 5036 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5037 { 5038 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5039 struct bpf_prog *new = xdp->prog; 5040 int ret = 0; 5041 5042 switch (xdp->command) { 5043 case XDP_SETUP_PROG: 5044 rcu_assign_pointer(dev->xdp_prog, new); 5045 if (old) 5046 bpf_prog_put(old); 5047 5048 if (old && !new) { 5049 static_branch_dec(&generic_xdp_needed_key); 5050 } else if (new && !old) { 5051 static_branch_inc(&generic_xdp_needed_key); 5052 dev_disable_lro(dev); 5053 dev_disable_gro_hw(dev); 5054 } 5055 break; 5056 5057 case XDP_QUERY_PROG: 5058 xdp->prog_id = old ? old->aux->id : 0; 5059 break; 5060 5061 default: 5062 ret = -EINVAL; 5063 break; 5064 } 5065 5066 return ret; 5067 } 5068 5069 static int netif_receive_skb_internal(struct sk_buff *skb) 5070 { 5071 int ret; 5072 5073 net_timestamp_check(netdev_tstamp_prequeue, skb); 5074 5075 if (skb_defer_rx_timestamp(skb)) 5076 return NET_RX_SUCCESS; 5077 5078 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5079 int ret; 5080 5081 preempt_disable(); 5082 rcu_read_lock(); 5083 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 5084 rcu_read_unlock(); 5085 preempt_enable(); 5086 5087 if (ret != XDP_PASS) 5088 return NET_RX_DROP; 5089 } 5090 5091 rcu_read_lock(); 5092 #ifdef CONFIG_RPS 5093 if (static_key_false(&rps_needed)) { 5094 struct rps_dev_flow voidflow, *rflow = &voidflow; 5095 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5096 5097 if (cpu >= 0) { 5098 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5099 rcu_read_unlock(); 5100 return ret; 5101 } 5102 } 5103 #endif 5104 ret = __netif_receive_skb(skb); 5105 rcu_read_unlock(); 5106 return ret; 5107 } 5108 5109 static void netif_receive_skb_list_internal(struct list_head *head) 5110 { 5111 struct bpf_prog *xdp_prog = NULL; 5112 struct sk_buff *skb, *next; 5113 struct list_head sublist; 5114 5115 INIT_LIST_HEAD(&sublist); 5116 list_for_each_entry_safe(skb, next, head, list) { 5117 net_timestamp_check(netdev_tstamp_prequeue, skb); 5118 list_del(&skb->list); 5119 if (!skb_defer_rx_timestamp(skb)) 5120 list_add_tail(&skb->list, &sublist); 5121 } 5122 list_splice_init(&sublist, head); 5123 5124 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5125 preempt_disable(); 5126 rcu_read_lock(); 5127 list_for_each_entry_safe(skb, next, head, list) { 5128 xdp_prog = rcu_dereference(skb->dev->xdp_prog); 5129 list_del(&skb->list); 5130 if (do_xdp_generic(xdp_prog, skb) == XDP_PASS) 5131 list_add_tail(&skb->list, &sublist); 5132 } 5133 rcu_read_unlock(); 5134 preempt_enable(); 5135 /* Put passed packets back on main list */ 5136 list_splice_init(&sublist, head); 5137 } 5138 5139 rcu_read_lock(); 5140 #ifdef CONFIG_RPS 5141 if (static_key_false(&rps_needed)) { 5142 list_for_each_entry_safe(skb, next, head, list) { 5143 struct rps_dev_flow voidflow, *rflow = &voidflow; 5144 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5145 5146 if (cpu >= 0) { 5147 /* Will be handled, remove from list */ 5148 list_del(&skb->list); 5149 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5150 } 5151 } 5152 } 5153 #endif 5154 __netif_receive_skb_list(head); 5155 rcu_read_unlock(); 5156 } 5157 5158 /** 5159 * netif_receive_skb - process receive buffer from network 5160 * @skb: buffer to process 5161 * 5162 * netif_receive_skb() is the main receive data processing function. 5163 * It always succeeds. The buffer may be dropped during processing 5164 * for congestion control or by the protocol layers. 5165 * 5166 * This function may only be called from softirq context and interrupts 5167 * should be enabled. 5168 * 5169 * Return values (usually ignored): 5170 * NET_RX_SUCCESS: no congestion 5171 * NET_RX_DROP: packet was dropped 5172 */ 5173 int netif_receive_skb(struct sk_buff *skb) 5174 { 5175 trace_netif_receive_skb_entry(skb); 5176 5177 return netif_receive_skb_internal(skb); 5178 } 5179 EXPORT_SYMBOL(netif_receive_skb); 5180 5181 /** 5182 * netif_receive_skb_list - process many receive buffers from network 5183 * @head: list of skbs to process. 5184 * 5185 * Since return value of netif_receive_skb() is normally ignored, and 5186 * wouldn't be meaningful for a list, this function returns void. 5187 * 5188 * This function may only be called from softirq context and interrupts 5189 * should be enabled. 5190 */ 5191 void netif_receive_skb_list(struct list_head *head) 5192 { 5193 struct sk_buff *skb; 5194 5195 if (list_empty(head)) 5196 return; 5197 list_for_each_entry(skb, head, list) 5198 trace_netif_receive_skb_list_entry(skb); 5199 netif_receive_skb_list_internal(head); 5200 } 5201 EXPORT_SYMBOL(netif_receive_skb_list); 5202 5203 DEFINE_PER_CPU(struct work_struct, flush_works); 5204 5205 /* Network device is going away, flush any packets still pending */ 5206 static void flush_backlog(struct work_struct *work) 5207 { 5208 struct sk_buff *skb, *tmp; 5209 struct softnet_data *sd; 5210 5211 local_bh_disable(); 5212 sd = this_cpu_ptr(&softnet_data); 5213 5214 local_irq_disable(); 5215 rps_lock(sd); 5216 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5217 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5218 __skb_unlink(skb, &sd->input_pkt_queue); 5219 kfree_skb(skb); 5220 input_queue_head_incr(sd); 5221 } 5222 } 5223 rps_unlock(sd); 5224 local_irq_enable(); 5225 5226 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5227 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5228 __skb_unlink(skb, &sd->process_queue); 5229 kfree_skb(skb); 5230 input_queue_head_incr(sd); 5231 } 5232 } 5233 local_bh_enable(); 5234 } 5235 5236 static void flush_all_backlogs(void) 5237 { 5238 unsigned int cpu; 5239 5240 get_online_cpus(); 5241 5242 for_each_online_cpu(cpu) 5243 queue_work_on(cpu, system_highpri_wq, 5244 per_cpu_ptr(&flush_works, cpu)); 5245 5246 for_each_online_cpu(cpu) 5247 flush_work(per_cpu_ptr(&flush_works, cpu)); 5248 5249 put_online_cpus(); 5250 } 5251 5252 static int napi_gro_complete(struct sk_buff *skb) 5253 { 5254 struct packet_offload *ptype; 5255 __be16 type = skb->protocol; 5256 struct list_head *head = &offload_base; 5257 int err = -ENOENT; 5258 5259 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 5260 5261 if (NAPI_GRO_CB(skb)->count == 1) { 5262 skb_shinfo(skb)->gso_size = 0; 5263 goto out; 5264 } 5265 5266 rcu_read_lock(); 5267 list_for_each_entry_rcu(ptype, head, list) { 5268 if (ptype->type != type || !ptype->callbacks.gro_complete) 5269 continue; 5270 5271 err = ptype->callbacks.gro_complete(skb, 0); 5272 break; 5273 } 5274 rcu_read_unlock(); 5275 5276 if (err) { 5277 WARN_ON(&ptype->list == head); 5278 kfree_skb(skb); 5279 return NET_RX_SUCCESS; 5280 } 5281 5282 out: 5283 return netif_receive_skb_internal(skb); 5284 } 5285 5286 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index, 5287 bool flush_old) 5288 { 5289 struct list_head *head = &napi->gro_hash[index].list; 5290 struct sk_buff *skb, *p; 5291 5292 list_for_each_entry_safe_reverse(skb, p, head, list) { 5293 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 5294 return; 5295 list_del(&skb->list); 5296 skb->next = NULL; 5297 napi_gro_complete(skb); 5298 napi->gro_hash[index].count--; 5299 } 5300 5301 if (!napi->gro_hash[index].count) 5302 __clear_bit(index, &napi->gro_bitmask); 5303 } 5304 5305 /* napi->gro_hash[].list contains packets ordered by age. 5306 * youngest packets at the head of it. 5307 * Complete skbs in reverse order to reduce latencies. 5308 */ 5309 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 5310 { 5311 u32 i; 5312 5313 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 5314 if (test_bit(i, &napi->gro_bitmask)) 5315 __napi_gro_flush_chain(napi, i, flush_old); 5316 } 5317 } 5318 EXPORT_SYMBOL(napi_gro_flush); 5319 5320 static struct list_head *gro_list_prepare(struct napi_struct *napi, 5321 struct sk_buff *skb) 5322 { 5323 unsigned int maclen = skb->dev->hard_header_len; 5324 u32 hash = skb_get_hash_raw(skb); 5325 struct list_head *head; 5326 struct sk_buff *p; 5327 5328 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list; 5329 list_for_each_entry(p, head, list) { 5330 unsigned long diffs; 5331 5332 NAPI_GRO_CB(p)->flush = 0; 5333 5334 if (hash != skb_get_hash_raw(p)) { 5335 NAPI_GRO_CB(p)->same_flow = 0; 5336 continue; 5337 } 5338 5339 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 5340 diffs |= p->vlan_tci ^ skb->vlan_tci; 5341 diffs |= skb_metadata_dst_cmp(p, skb); 5342 diffs |= skb_metadata_differs(p, skb); 5343 if (maclen == ETH_HLEN) 5344 diffs |= compare_ether_header(skb_mac_header(p), 5345 skb_mac_header(skb)); 5346 else if (!diffs) 5347 diffs = memcmp(skb_mac_header(p), 5348 skb_mac_header(skb), 5349 maclen); 5350 NAPI_GRO_CB(p)->same_flow = !diffs; 5351 } 5352 5353 return head; 5354 } 5355 5356 static void skb_gro_reset_offset(struct sk_buff *skb) 5357 { 5358 const struct skb_shared_info *pinfo = skb_shinfo(skb); 5359 const skb_frag_t *frag0 = &pinfo->frags[0]; 5360 5361 NAPI_GRO_CB(skb)->data_offset = 0; 5362 NAPI_GRO_CB(skb)->frag0 = NULL; 5363 NAPI_GRO_CB(skb)->frag0_len = 0; 5364 5365 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 5366 pinfo->nr_frags && 5367 !PageHighMem(skb_frag_page(frag0))) { 5368 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 5369 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 5370 skb_frag_size(frag0), 5371 skb->end - skb->tail); 5372 } 5373 } 5374 5375 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 5376 { 5377 struct skb_shared_info *pinfo = skb_shinfo(skb); 5378 5379 BUG_ON(skb->end - skb->tail < grow); 5380 5381 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 5382 5383 skb->data_len -= grow; 5384 skb->tail += grow; 5385 5386 pinfo->frags[0].page_offset += grow; 5387 skb_frag_size_sub(&pinfo->frags[0], grow); 5388 5389 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 5390 skb_frag_unref(skb, 0); 5391 memmove(pinfo->frags, pinfo->frags + 1, 5392 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 5393 } 5394 } 5395 5396 static void gro_flush_oldest(struct list_head *head) 5397 { 5398 struct sk_buff *oldest; 5399 5400 oldest = list_last_entry(head, struct sk_buff, list); 5401 5402 /* We are called with head length >= MAX_GRO_SKBS, so this is 5403 * impossible. 5404 */ 5405 if (WARN_ON_ONCE(!oldest)) 5406 return; 5407 5408 /* Do not adjust napi->gro_hash[].count, caller is adding a new 5409 * SKB to the chain. 5410 */ 5411 list_del(&oldest->list); 5412 napi_gro_complete(oldest); 5413 } 5414 5415 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5416 { 5417 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1); 5418 struct list_head *head = &offload_base; 5419 struct packet_offload *ptype; 5420 __be16 type = skb->protocol; 5421 struct list_head *gro_head; 5422 struct sk_buff *pp = NULL; 5423 enum gro_result ret; 5424 int same_flow; 5425 int grow; 5426 5427 if (netif_elide_gro(skb->dev)) 5428 goto normal; 5429 5430 gro_head = gro_list_prepare(napi, skb); 5431 5432 rcu_read_lock(); 5433 list_for_each_entry_rcu(ptype, head, list) { 5434 if (ptype->type != type || !ptype->callbacks.gro_receive) 5435 continue; 5436 5437 skb_set_network_header(skb, skb_gro_offset(skb)); 5438 skb_reset_mac_len(skb); 5439 NAPI_GRO_CB(skb)->same_flow = 0; 5440 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 5441 NAPI_GRO_CB(skb)->free = 0; 5442 NAPI_GRO_CB(skb)->encap_mark = 0; 5443 NAPI_GRO_CB(skb)->recursion_counter = 0; 5444 NAPI_GRO_CB(skb)->is_fou = 0; 5445 NAPI_GRO_CB(skb)->is_atomic = 1; 5446 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 5447 5448 /* Setup for GRO checksum validation */ 5449 switch (skb->ip_summed) { 5450 case CHECKSUM_COMPLETE: 5451 NAPI_GRO_CB(skb)->csum = skb->csum; 5452 NAPI_GRO_CB(skb)->csum_valid = 1; 5453 NAPI_GRO_CB(skb)->csum_cnt = 0; 5454 break; 5455 case CHECKSUM_UNNECESSARY: 5456 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 5457 NAPI_GRO_CB(skb)->csum_valid = 0; 5458 break; 5459 default: 5460 NAPI_GRO_CB(skb)->csum_cnt = 0; 5461 NAPI_GRO_CB(skb)->csum_valid = 0; 5462 } 5463 5464 pp = ptype->callbacks.gro_receive(gro_head, skb); 5465 break; 5466 } 5467 rcu_read_unlock(); 5468 5469 if (&ptype->list == head) 5470 goto normal; 5471 5472 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) { 5473 ret = GRO_CONSUMED; 5474 goto ok; 5475 } 5476 5477 same_flow = NAPI_GRO_CB(skb)->same_flow; 5478 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 5479 5480 if (pp) { 5481 list_del(&pp->list); 5482 pp->next = NULL; 5483 napi_gro_complete(pp); 5484 napi->gro_hash[hash].count--; 5485 } 5486 5487 if (same_flow) 5488 goto ok; 5489 5490 if (NAPI_GRO_CB(skb)->flush) 5491 goto normal; 5492 5493 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) { 5494 gro_flush_oldest(gro_head); 5495 } else { 5496 napi->gro_hash[hash].count++; 5497 } 5498 NAPI_GRO_CB(skb)->count = 1; 5499 NAPI_GRO_CB(skb)->age = jiffies; 5500 NAPI_GRO_CB(skb)->last = skb; 5501 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 5502 list_add(&skb->list, gro_head); 5503 ret = GRO_HELD; 5504 5505 pull: 5506 grow = skb_gro_offset(skb) - skb_headlen(skb); 5507 if (grow > 0) 5508 gro_pull_from_frag0(skb, grow); 5509 ok: 5510 if (napi->gro_hash[hash].count) { 5511 if (!test_bit(hash, &napi->gro_bitmask)) 5512 __set_bit(hash, &napi->gro_bitmask); 5513 } else if (test_bit(hash, &napi->gro_bitmask)) { 5514 __clear_bit(hash, &napi->gro_bitmask); 5515 } 5516 5517 return ret; 5518 5519 normal: 5520 ret = GRO_NORMAL; 5521 goto pull; 5522 } 5523 5524 struct packet_offload *gro_find_receive_by_type(__be16 type) 5525 { 5526 struct list_head *offload_head = &offload_base; 5527 struct packet_offload *ptype; 5528 5529 list_for_each_entry_rcu(ptype, offload_head, list) { 5530 if (ptype->type != type || !ptype->callbacks.gro_receive) 5531 continue; 5532 return ptype; 5533 } 5534 return NULL; 5535 } 5536 EXPORT_SYMBOL(gro_find_receive_by_type); 5537 5538 struct packet_offload *gro_find_complete_by_type(__be16 type) 5539 { 5540 struct list_head *offload_head = &offload_base; 5541 struct packet_offload *ptype; 5542 5543 list_for_each_entry_rcu(ptype, offload_head, list) { 5544 if (ptype->type != type || !ptype->callbacks.gro_complete) 5545 continue; 5546 return ptype; 5547 } 5548 return NULL; 5549 } 5550 EXPORT_SYMBOL(gro_find_complete_by_type); 5551 5552 static void napi_skb_free_stolen_head(struct sk_buff *skb) 5553 { 5554 skb_dst_drop(skb); 5555 secpath_reset(skb); 5556 kmem_cache_free(skbuff_head_cache, skb); 5557 } 5558 5559 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 5560 { 5561 switch (ret) { 5562 case GRO_NORMAL: 5563 if (netif_receive_skb_internal(skb)) 5564 ret = GRO_DROP; 5565 break; 5566 5567 case GRO_DROP: 5568 kfree_skb(skb); 5569 break; 5570 5571 case GRO_MERGED_FREE: 5572 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5573 napi_skb_free_stolen_head(skb); 5574 else 5575 __kfree_skb(skb); 5576 break; 5577 5578 case GRO_HELD: 5579 case GRO_MERGED: 5580 case GRO_CONSUMED: 5581 break; 5582 } 5583 5584 return ret; 5585 } 5586 5587 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5588 { 5589 skb_mark_napi_id(skb, napi); 5590 trace_napi_gro_receive_entry(skb); 5591 5592 skb_gro_reset_offset(skb); 5593 5594 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 5595 } 5596 EXPORT_SYMBOL(napi_gro_receive); 5597 5598 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 5599 { 5600 if (unlikely(skb->pfmemalloc)) { 5601 consume_skb(skb); 5602 return; 5603 } 5604 __skb_pull(skb, skb_headlen(skb)); 5605 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 5606 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 5607 skb->vlan_tci = 0; 5608 skb->dev = napi->dev; 5609 skb->skb_iif = 0; 5610 skb->encapsulation = 0; 5611 skb_shinfo(skb)->gso_type = 0; 5612 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5613 secpath_reset(skb); 5614 5615 napi->skb = skb; 5616 } 5617 5618 struct sk_buff *napi_get_frags(struct napi_struct *napi) 5619 { 5620 struct sk_buff *skb = napi->skb; 5621 5622 if (!skb) { 5623 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 5624 if (skb) { 5625 napi->skb = skb; 5626 skb_mark_napi_id(skb, napi); 5627 } 5628 } 5629 return skb; 5630 } 5631 EXPORT_SYMBOL(napi_get_frags); 5632 5633 static gro_result_t napi_frags_finish(struct napi_struct *napi, 5634 struct sk_buff *skb, 5635 gro_result_t ret) 5636 { 5637 switch (ret) { 5638 case GRO_NORMAL: 5639 case GRO_HELD: 5640 __skb_push(skb, ETH_HLEN); 5641 skb->protocol = eth_type_trans(skb, skb->dev); 5642 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 5643 ret = GRO_DROP; 5644 break; 5645 5646 case GRO_DROP: 5647 napi_reuse_skb(napi, skb); 5648 break; 5649 5650 case GRO_MERGED_FREE: 5651 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5652 napi_skb_free_stolen_head(skb); 5653 else 5654 napi_reuse_skb(napi, skb); 5655 break; 5656 5657 case GRO_MERGED: 5658 case GRO_CONSUMED: 5659 break; 5660 } 5661 5662 return ret; 5663 } 5664 5665 /* Upper GRO stack assumes network header starts at gro_offset=0 5666 * Drivers could call both napi_gro_frags() and napi_gro_receive() 5667 * We copy ethernet header into skb->data to have a common layout. 5668 */ 5669 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 5670 { 5671 struct sk_buff *skb = napi->skb; 5672 const struct ethhdr *eth; 5673 unsigned int hlen = sizeof(*eth); 5674 5675 napi->skb = NULL; 5676 5677 skb_reset_mac_header(skb); 5678 skb_gro_reset_offset(skb); 5679 5680 eth = skb_gro_header_fast(skb, 0); 5681 if (unlikely(skb_gro_header_hard(skb, hlen))) { 5682 eth = skb_gro_header_slow(skb, hlen, 0); 5683 if (unlikely(!eth)) { 5684 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 5685 __func__, napi->dev->name); 5686 napi_reuse_skb(napi, skb); 5687 return NULL; 5688 } 5689 } else { 5690 gro_pull_from_frag0(skb, hlen); 5691 NAPI_GRO_CB(skb)->frag0 += hlen; 5692 NAPI_GRO_CB(skb)->frag0_len -= hlen; 5693 } 5694 __skb_pull(skb, hlen); 5695 5696 /* 5697 * This works because the only protocols we care about don't require 5698 * special handling. 5699 * We'll fix it up properly in napi_frags_finish() 5700 */ 5701 skb->protocol = eth->h_proto; 5702 5703 return skb; 5704 } 5705 5706 gro_result_t napi_gro_frags(struct napi_struct *napi) 5707 { 5708 struct sk_buff *skb = napi_frags_skb(napi); 5709 5710 if (!skb) 5711 return GRO_DROP; 5712 5713 trace_napi_gro_frags_entry(skb); 5714 5715 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 5716 } 5717 EXPORT_SYMBOL(napi_gro_frags); 5718 5719 /* Compute the checksum from gro_offset and return the folded value 5720 * after adding in any pseudo checksum. 5721 */ 5722 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 5723 { 5724 __wsum wsum; 5725 __sum16 sum; 5726 5727 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 5728 5729 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 5730 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 5731 if (likely(!sum)) { 5732 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 5733 !skb->csum_complete_sw) 5734 netdev_rx_csum_fault(skb->dev); 5735 } 5736 5737 NAPI_GRO_CB(skb)->csum = wsum; 5738 NAPI_GRO_CB(skb)->csum_valid = 1; 5739 5740 return sum; 5741 } 5742 EXPORT_SYMBOL(__skb_gro_checksum_complete); 5743 5744 static void net_rps_send_ipi(struct softnet_data *remsd) 5745 { 5746 #ifdef CONFIG_RPS 5747 while (remsd) { 5748 struct softnet_data *next = remsd->rps_ipi_next; 5749 5750 if (cpu_online(remsd->cpu)) 5751 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5752 remsd = next; 5753 } 5754 #endif 5755 } 5756 5757 /* 5758 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5759 * Note: called with local irq disabled, but exits with local irq enabled. 5760 */ 5761 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5762 { 5763 #ifdef CONFIG_RPS 5764 struct softnet_data *remsd = sd->rps_ipi_list; 5765 5766 if (remsd) { 5767 sd->rps_ipi_list = NULL; 5768 5769 local_irq_enable(); 5770 5771 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5772 net_rps_send_ipi(remsd); 5773 } else 5774 #endif 5775 local_irq_enable(); 5776 } 5777 5778 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5779 { 5780 #ifdef CONFIG_RPS 5781 return sd->rps_ipi_list != NULL; 5782 #else 5783 return false; 5784 #endif 5785 } 5786 5787 static int process_backlog(struct napi_struct *napi, int quota) 5788 { 5789 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5790 bool again = true; 5791 int work = 0; 5792 5793 /* Check if we have pending ipi, its better to send them now, 5794 * not waiting net_rx_action() end. 5795 */ 5796 if (sd_has_rps_ipi_waiting(sd)) { 5797 local_irq_disable(); 5798 net_rps_action_and_irq_enable(sd); 5799 } 5800 5801 napi->weight = dev_rx_weight; 5802 while (again) { 5803 struct sk_buff *skb; 5804 5805 while ((skb = __skb_dequeue(&sd->process_queue))) { 5806 rcu_read_lock(); 5807 __netif_receive_skb(skb); 5808 rcu_read_unlock(); 5809 input_queue_head_incr(sd); 5810 if (++work >= quota) 5811 return work; 5812 5813 } 5814 5815 local_irq_disable(); 5816 rps_lock(sd); 5817 if (skb_queue_empty(&sd->input_pkt_queue)) { 5818 /* 5819 * Inline a custom version of __napi_complete(). 5820 * only current cpu owns and manipulates this napi, 5821 * and NAPI_STATE_SCHED is the only possible flag set 5822 * on backlog. 5823 * We can use a plain write instead of clear_bit(), 5824 * and we dont need an smp_mb() memory barrier. 5825 */ 5826 napi->state = 0; 5827 again = false; 5828 } else { 5829 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5830 &sd->process_queue); 5831 } 5832 rps_unlock(sd); 5833 local_irq_enable(); 5834 } 5835 5836 return work; 5837 } 5838 5839 /** 5840 * __napi_schedule - schedule for receive 5841 * @n: entry to schedule 5842 * 5843 * The entry's receive function will be scheduled to run. 5844 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5845 */ 5846 void __napi_schedule(struct napi_struct *n) 5847 { 5848 unsigned long flags; 5849 5850 local_irq_save(flags); 5851 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5852 local_irq_restore(flags); 5853 } 5854 EXPORT_SYMBOL(__napi_schedule); 5855 5856 /** 5857 * napi_schedule_prep - check if napi can be scheduled 5858 * @n: napi context 5859 * 5860 * Test if NAPI routine is already running, and if not mark 5861 * it as running. This is used as a condition variable 5862 * insure only one NAPI poll instance runs. We also make 5863 * sure there is no pending NAPI disable. 5864 */ 5865 bool napi_schedule_prep(struct napi_struct *n) 5866 { 5867 unsigned long val, new; 5868 5869 do { 5870 val = READ_ONCE(n->state); 5871 if (unlikely(val & NAPIF_STATE_DISABLE)) 5872 return false; 5873 new = val | NAPIF_STATE_SCHED; 5874 5875 /* Sets STATE_MISSED bit if STATE_SCHED was already set 5876 * This was suggested by Alexander Duyck, as compiler 5877 * emits better code than : 5878 * if (val & NAPIF_STATE_SCHED) 5879 * new |= NAPIF_STATE_MISSED; 5880 */ 5881 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 5882 NAPIF_STATE_MISSED; 5883 } while (cmpxchg(&n->state, val, new) != val); 5884 5885 return !(val & NAPIF_STATE_SCHED); 5886 } 5887 EXPORT_SYMBOL(napi_schedule_prep); 5888 5889 /** 5890 * __napi_schedule_irqoff - schedule for receive 5891 * @n: entry to schedule 5892 * 5893 * Variant of __napi_schedule() assuming hard irqs are masked 5894 */ 5895 void __napi_schedule_irqoff(struct napi_struct *n) 5896 { 5897 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5898 } 5899 EXPORT_SYMBOL(__napi_schedule_irqoff); 5900 5901 bool napi_complete_done(struct napi_struct *n, int work_done) 5902 { 5903 unsigned long flags, val, new; 5904 5905 /* 5906 * 1) Don't let napi dequeue from the cpu poll list 5907 * just in case its running on a different cpu. 5908 * 2) If we are busy polling, do nothing here, we have 5909 * the guarantee we will be called later. 5910 */ 5911 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 5912 NAPIF_STATE_IN_BUSY_POLL))) 5913 return false; 5914 5915 if (n->gro_bitmask) { 5916 unsigned long timeout = 0; 5917 5918 if (work_done) 5919 timeout = n->dev->gro_flush_timeout; 5920 5921 if (timeout) 5922 hrtimer_start(&n->timer, ns_to_ktime(timeout), 5923 HRTIMER_MODE_REL_PINNED); 5924 else 5925 napi_gro_flush(n, false); 5926 } 5927 if (unlikely(!list_empty(&n->poll_list))) { 5928 /* If n->poll_list is not empty, we need to mask irqs */ 5929 local_irq_save(flags); 5930 list_del_init(&n->poll_list); 5931 local_irq_restore(flags); 5932 } 5933 5934 do { 5935 val = READ_ONCE(n->state); 5936 5937 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 5938 5939 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 5940 5941 /* If STATE_MISSED was set, leave STATE_SCHED set, 5942 * because we will call napi->poll() one more time. 5943 * This C code was suggested by Alexander Duyck to help gcc. 5944 */ 5945 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 5946 NAPIF_STATE_SCHED; 5947 } while (cmpxchg(&n->state, val, new) != val); 5948 5949 if (unlikely(val & NAPIF_STATE_MISSED)) { 5950 __napi_schedule(n); 5951 return false; 5952 } 5953 5954 return true; 5955 } 5956 EXPORT_SYMBOL(napi_complete_done); 5957 5958 /* must be called under rcu_read_lock(), as we dont take a reference */ 5959 static struct napi_struct *napi_by_id(unsigned int napi_id) 5960 { 5961 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 5962 struct napi_struct *napi; 5963 5964 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 5965 if (napi->napi_id == napi_id) 5966 return napi; 5967 5968 return NULL; 5969 } 5970 5971 #if defined(CONFIG_NET_RX_BUSY_POLL) 5972 5973 #define BUSY_POLL_BUDGET 8 5974 5975 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 5976 { 5977 int rc; 5978 5979 /* Busy polling means there is a high chance device driver hard irq 5980 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 5981 * set in napi_schedule_prep(). 5982 * Since we are about to call napi->poll() once more, we can safely 5983 * clear NAPI_STATE_MISSED. 5984 * 5985 * Note: x86 could use a single "lock and ..." instruction 5986 * to perform these two clear_bit() 5987 */ 5988 clear_bit(NAPI_STATE_MISSED, &napi->state); 5989 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 5990 5991 local_bh_disable(); 5992 5993 /* All we really want here is to re-enable device interrupts. 5994 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 5995 */ 5996 rc = napi->poll(napi, BUSY_POLL_BUDGET); 5997 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 5998 netpoll_poll_unlock(have_poll_lock); 5999 if (rc == BUSY_POLL_BUDGET) 6000 __napi_schedule(napi); 6001 local_bh_enable(); 6002 } 6003 6004 void napi_busy_loop(unsigned int napi_id, 6005 bool (*loop_end)(void *, unsigned long), 6006 void *loop_end_arg) 6007 { 6008 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6009 int (*napi_poll)(struct napi_struct *napi, int budget); 6010 void *have_poll_lock = NULL; 6011 struct napi_struct *napi; 6012 6013 restart: 6014 napi_poll = NULL; 6015 6016 rcu_read_lock(); 6017 6018 napi = napi_by_id(napi_id); 6019 if (!napi) 6020 goto out; 6021 6022 preempt_disable(); 6023 for (;;) { 6024 int work = 0; 6025 6026 local_bh_disable(); 6027 if (!napi_poll) { 6028 unsigned long val = READ_ONCE(napi->state); 6029 6030 /* If multiple threads are competing for this napi, 6031 * we avoid dirtying napi->state as much as we can. 6032 */ 6033 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6034 NAPIF_STATE_IN_BUSY_POLL)) 6035 goto count; 6036 if (cmpxchg(&napi->state, val, 6037 val | NAPIF_STATE_IN_BUSY_POLL | 6038 NAPIF_STATE_SCHED) != val) 6039 goto count; 6040 have_poll_lock = netpoll_poll_lock(napi); 6041 napi_poll = napi->poll; 6042 } 6043 work = napi_poll(napi, BUSY_POLL_BUDGET); 6044 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 6045 count: 6046 if (work > 0) 6047 __NET_ADD_STATS(dev_net(napi->dev), 6048 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6049 local_bh_enable(); 6050 6051 if (!loop_end || loop_end(loop_end_arg, start_time)) 6052 break; 6053 6054 if (unlikely(need_resched())) { 6055 if (napi_poll) 6056 busy_poll_stop(napi, have_poll_lock); 6057 preempt_enable(); 6058 rcu_read_unlock(); 6059 cond_resched(); 6060 if (loop_end(loop_end_arg, start_time)) 6061 return; 6062 goto restart; 6063 } 6064 cpu_relax(); 6065 } 6066 if (napi_poll) 6067 busy_poll_stop(napi, have_poll_lock); 6068 preempt_enable(); 6069 out: 6070 rcu_read_unlock(); 6071 } 6072 EXPORT_SYMBOL(napi_busy_loop); 6073 6074 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6075 6076 static void napi_hash_add(struct napi_struct *napi) 6077 { 6078 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 6079 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 6080 return; 6081 6082 spin_lock(&napi_hash_lock); 6083 6084 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6085 do { 6086 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6087 napi_gen_id = MIN_NAPI_ID; 6088 } while (napi_by_id(napi_gen_id)); 6089 napi->napi_id = napi_gen_id; 6090 6091 hlist_add_head_rcu(&napi->napi_hash_node, 6092 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6093 6094 spin_unlock(&napi_hash_lock); 6095 } 6096 6097 /* Warning : caller is responsible to make sure rcu grace period 6098 * is respected before freeing memory containing @napi 6099 */ 6100 bool napi_hash_del(struct napi_struct *napi) 6101 { 6102 bool rcu_sync_needed = false; 6103 6104 spin_lock(&napi_hash_lock); 6105 6106 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 6107 rcu_sync_needed = true; 6108 hlist_del_rcu(&napi->napi_hash_node); 6109 } 6110 spin_unlock(&napi_hash_lock); 6111 return rcu_sync_needed; 6112 } 6113 EXPORT_SYMBOL_GPL(napi_hash_del); 6114 6115 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6116 { 6117 struct napi_struct *napi; 6118 6119 napi = container_of(timer, struct napi_struct, timer); 6120 6121 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6122 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6123 */ 6124 if (napi->gro_bitmask && !napi_disable_pending(napi) && 6125 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 6126 __napi_schedule_irqoff(napi); 6127 6128 return HRTIMER_NORESTART; 6129 } 6130 6131 static void init_gro_hash(struct napi_struct *napi) 6132 { 6133 int i; 6134 6135 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6136 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6137 napi->gro_hash[i].count = 0; 6138 } 6139 napi->gro_bitmask = 0; 6140 } 6141 6142 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 6143 int (*poll)(struct napi_struct *, int), int weight) 6144 { 6145 INIT_LIST_HEAD(&napi->poll_list); 6146 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6147 napi->timer.function = napi_watchdog; 6148 init_gro_hash(napi); 6149 napi->skb = NULL; 6150 napi->poll = poll; 6151 if (weight > NAPI_POLL_WEIGHT) 6152 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 6153 weight, dev->name); 6154 napi->weight = weight; 6155 list_add(&napi->dev_list, &dev->napi_list); 6156 napi->dev = dev; 6157 #ifdef CONFIG_NETPOLL 6158 napi->poll_owner = -1; 6159 #endif 6160 set_bit(NAPI_STATE_SCHED, &napi->state); 6161 napi_hash_add(napi); 6162 } 6163 EXPORT_SYMBOL(netif_napi_add); 6164 6165 void napi_disable(struct napi_struct *n) 6166 { 6167 might_sleep(); 6168 set_bit(NAPI_STATE_DISABLE, &n->state); 6169 6170 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 6171 msleep(1); 6172 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 6173 msleep(1); 6174 6175 hrtimer_cancel(&n->timer); 6176 6177 clear_bit(NAPI_STATE_DISABLE, &n->state); 6178 } 6179 EXPORT_SYMBOL(napi_disable); 6180 6181 static void flush_gro_hash(struct napi_struct *napi) 6182 { 6183 int i; 6184 6185 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6186 struct sk_buff *skb, *n; 6187 6188 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6189 kfree_skb(skb); 6190 napi->gro_hash[i].count = 0; 6191 } 6192 } 6193 6194 /* Must be called in process context */ 6195 void netif_napi_del(struct napi_struct *napi) 6196 { 6197 might_sleep(); 6198 if (napi_hash_del(napi)) 6199 synchronize_net(); 6200 list_del_init(&napi->dev_list); 6201 napi_free_frags(napi); 6202 6203 flush_gro_hash(napi); 6204 napi->gro_bitmask = 0; 6205 } 6206 EXPORT_SYMBOL(netif_napi_del); 6207 6208 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6209 { 6210 void *have; 6211 int work, weight; 6212 6213 list_del_init(&n->poll_list); 6214 6215 have = netpoll_poll_lock(n); 6216 6217 weight = n->weight; 6218 6219 /* This NAPI_STATE_SCHED test is for avoiding a race 6220 * with netpoll's poll_napi(). Only the entity which 6221 * obtains the lock and sees NAPI_STATE_SCHED set will 6222 * actually make the ->poll() call. Therefore we avoid 6223 * accidentally calling ->poll() when NAPI is not scheduled. 6224 */ 6225 work = 0; 6226 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 6227 work = n->poll(n, weight); 6228 trace_napi_poll(n, work, weight); 6229 } 6230 6231 WARN_ON_ONCE(work > weight); 6232 6233 if (likely(work < weight)) 6234 goto out_unlock; 6235 6236 /* Drivers must not modify the NAPI state if they 6237 * consume the entire weight. In such cases this code 6238 * still "owns" the NAPI instance and therefore can 6239 * move the instance around on the list at-will. 6240 */ 6241 if (unlikely(napi_disable_pending(n))) { 6242 napi_complete(n); 6243 goto out_unlock; 6244 } 6245 6246 if (n->gro_bitmask) { 6247 /* flush too old packets 6248 * If HZ < 1000, flush all packets. 6249 */ 6250 napi_gro_flush(n, HZ >= 1000); 6251 } 6252 6253 /* Some drivers may have called napi_schedule 6254 * prior to exhausting their budget. 6255 */ 6256 if (unlikely(!list_empty(&n->poll_list))) { 6257 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6258 n->dev ? n->dev->name : "backlog"); 6259 goto out_unlock; 6260 } 6261 6262 list_add_tail(&n->poll_list, repoll); 6263 6264 out_unlock: 6265 netpoll_poll_unlock(have); 6266 6267 return work; 6268 } 6269 6270 static __latent_entropy void net_rx_action(struct softirq_action *h) 6271 { 6272 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6273 unsigned long time_limit = jiffies + 6274 usecs_to_jiffies(netdev_budget_usecs); 6275 int budget = netdev_budget; 6276 LIST_HEAD(list); 6277 LIST_HEAD(repoll); 6278 6279 local_irq_disable(); 6280 list_splice_init(&sd->poll_list, &list); 6281 local_irq_enable(); 6282 6283 for (;;) { 6284 struct napi_struct *n; 6285 6286 if (list_empty(&list)) { 6287 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 6288 goto out; 6289 break; 6290 } 6291 6292 n = list_first_entry(&list, struct napi_struct, poll_list); 6293 budget -= napi_poll(n, &repoll); 6294 6295 /* If softirq window is exhausted then punt. 6296 * Allow this to run for 2 jiffies since which will allow 6297 * an average latency of 1.5/HZ. 6298 */ 6299 if (unlikely(budget <= 0 || 6300 time_after_eq(jiffies, time_limit))) { 6301 sd->time_squeeze++; 6302 break; 6303 } 6304 } 6305 6306 local_irq_disable(); 6307 6308 list_splice_tail_init(&sd->poll_list, &list); 6309 list_splice_tail(&repoll, &list); 6310 list_splice(&list, &sd->poll_list); 6311 if (!list_empty(&sd->poll_list)) 6312 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6313 6314 net_rps_action_and_irq_enable(sd); 6315 out: 6316 __kfree_skb_flush(); 6317 } 6318 6319 struct netdev_adjacent { 6320 struct net_device *dev; 6321 6322 /* upper master flag, there can only be one master device per list */ 6323 bool master; 6324 6325 /* counter for the number of times this device was added to us */ 6326 u16 ref_nr; 6327 6328 /* private field for the users */ 6329 void *private; 6330 6331 struct list_head list; 6332 struct rcu_head rcu; 6333 }; 6334 6335 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6336 struct list_head *adj_list) 6337 { 6338 struct netdev_adjacent *adj; 6339 6340 list_for_each_entry(adj, adj_list, list) { 6341 if (adj->dev == adj_dev) 6342 return adj; 6343 } 6344 return NULL; 6345 } 6346 6347 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 6348 { 6349 struct net_device *dev = data; 6350 6351 return upper_dev == dev; 6352 } 6353 6354 /** 6355 * netdev_has_upper_dev - Check if device is linked to an upper device 6356 * @dev: device 6357 * @upper_dev: upper device to check 6358 * 6359 * Find out if a device is linked to specified upper device and return true 6360 * in case it is. Note that this checks only immediate upper device, 6361 * not through a complete stack of devices. The caller must hold the RTNL lock. 6362 */ 6363 bool netdev_has_upper_dev(struct net_device *dev, 6364 struct net_device *upper_dev) 6365 { 6366 ASSERT_RTNL(); 6367 6368 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 6369 upper_dev); 6370 } 6371 EXPORT_SYMBOL(netdev_has_upper_dev); 6372 6373 /** 6374 * netdev_has_upper_dev_all - Check if device is linked to an upper device 6375 * @dev: device 6376 * @upper_dev: upper device to check 6377 * 6378 * Find out if a device is linked to specified upper device and return true 6379 * in case it is. Note that this checks the entire upper device chain. 6380 * The caller must hold rcu lock. 6381 */ 6382 6383 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 6384 struct net_device *upper_dev) 6385 { 6386 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 6387 upper_dev); 6388 } 6389 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 6390 6391 /** 6392 * netdev_has_any_upper_dev - Check if device is linked to some device 6393 * @dev: device 6394 * 6395 * Find out if a device is linked to an upper device and return true in case 6396 * it is. The caller must hold the RTNL lock. 6397 */ 6398 bool netdev_has_any_upper_dev(struct net_device *dev) 6399 { 6400 ASSERT_RTNL(); 6401 6402 return !list_empty(&dev->adj_list.upper); 6403 } 6404 EXPORT_SYMBOL(netdev_has_any_upper_dev); 6405 6406 /** 6407 * netdev_master_upper_dev_get - Get master upper device 6408 * @dev: device 6409 * 6410 * Find a master upper device and return pointer to it or NULL in case 6411 * it's not there. The caller must hold the RTNL lock. 6412 */ 6413 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 6414 { 6415 struct netdev_adjacent *upper; 6416 6417 ASSERT_RTNL(); 6418 6419 if (list_empty(&dev->adj_list.upper)) 6420 return NULL; 6421 6422 upper = list_first_entry(&dev->adj_list.upper, 6423 struct netdev_adjacent, list); 6424 if (likely(upper->master)) 6425 return upper->dev; 6426 return NULL; 6427 } 6428 EXPORT_SYMBOL(netdev_master_upper_dev_get); 6429 6430 /** 6431 * netdev_has_any_lower_dev - Check if device is linked to some device 6432 * @dev: device 6433 * 6434 * Find out if a device is linked to a lower device and return true in case 6435 * it is. The caller must hold the RTNL lock. 6436 */ 6437 static bool netdev_has_any_lower_dev(struct net_device *dev) 6438 { 6439 ASSERT_RTNL(); 6440 6441 return !list_empty(&dev->adj_list.lower); 6442 } 6443 6444 void *netdev_adjacent_get_private(struct list_head *adj_list) 6445 { 6446 struct netdev_adjacent *adj; 6447 6448 adj = list_entry(adj_list, struct netdev_adjacent, list); 6449 6450 return adj->private; 6451 } 6452 EXPORT_SYMBOL(netdev_adjacent_get_private); 6453 6454 /** 6455 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 6456 * @dev: device 6457 * @iter: list_head ** of the current position 6458 * 6459 * Gets the next device from the dev's upper list, starting from iter 6460 * position. The caller must hold RCU read lock. 6461 */ 6462 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 6463 struct list_head **iter) 6464 { 6465 struct netdev_adjacent *upper; 6466 6467 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6468 6469 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6470 6471 if (&upper->list == &dev->adj_list.upper) 6472 return NULL; 6473 6474 *iter = &upper->list; 6475 6476 return upper->dev; 6477 } 6478 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 6479 6480 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 6481 struct list_head **iter) 6482 { 6483 struct netdev_adjacent *upper; 6484 6485 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6486 6487 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6488 6489 if (&upper->list == &dev->adj_list.upper) 6490 return NULL; 6491 6492 *iter = &upper->list; 6493 6494 return upper->dev; 6495 } 6496 6497 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 6498 int (*fn)(struct net_device *dev, 6499 void *data), 6500 void *data) 6501 { 6502 struct net_device *udev; 6503 struct list_head *iter; 6504 int ret; 6505 6506 for (iter = &dev->adj_list.upper, 6507 udev = netdev_next_upper_dev_rcu(dev, &iter); 6508 udev; 6509 udev = netdev_next_upper_dev_rcu(dev, &iter)) { 6510 /* first is the upper device itself */ 6511 ret = fn(udev, data); 6512 if (ret) 6513 return ret; 6514 6515 /* then look at all of its upper devices */ 6516 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); 6517 if (ret) 6518 return ret; 6519 } 6520 6521 return 0; 6522 } 6523 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 6524 6525 /** 6526 * netdev_lower_get_next_private - Get the next ->private from the 6527 * lower neighbour list 6528 * @dev: device 6529 * @iter: list_head ** of the current position 6530 * 6531 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6532 * list, starting from iter position. The caller must hold either hold the 6533 * RTNL lock or its own locking that guarantees that the neighbour lower 6534 * list will remain unchanged. 6535 */ 6536 void *netdev_lower_get_next_private(struct net_device *dev, 6537 struct list_head **iter) 6538 { 6539 struct netdev_adjacent *lower; 6540 6541 lower = list_entry(*iter, struct netdev_adjacent, list); 6542 6543 if (&lower->list == &dev->adj_list.lower) 6544 return NULL; 6545 6546 *iter = lower->list.next; 6547 6548 return lower->private; 6549 } 6550 EXPORT_SYMBOL(netdev_lower_get_next_private); 6551 6552 /** 6553 * netdev_lower_get_next_private_rcu - Get the next ->private from the 6554 * lower neighbour list, RCU 6555 * variant 6556 * @dev: device 6557 * @iter: list_head ** of the current position 6558 * 6559 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6560 * list, starting from iter position. The caller must hold RCU read lock. 6561 */ 6562 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 6563 struct list_head **iter) 6564 { 6565 struct netdev_adjacent *lower; 6566 6567 WARN_ON_ONCE(!rcu_read_lock_held()); 6568 6569 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6570 6571 if (&lower->list == &dev->adj_list.lower) 6572 return NULL; 6573 6574 *iter = &lower->list; 6575 6576 return lower->private; 6577 } 6578 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 6579 6580 /** 6581 * netdev_lower_get_next - Get the next device from the lower neighbour 6582 * list 6583 * @dev: device 6584 * @iter: list_head ** of the current position 6585 * 6586 * Gets the next netdev_adjacent from the dev's lower neighbour 6587 * list, starting from iter position. The caller must hold RTNL lock or 6588 * its own locking that guarantees that the neighbour lower 6589 * list will remain unchanged. 6590 */ 6591 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 6592 { 6593 struct netdev_adjacent *lower; 6594 6595 lower = list_entry(*iter, struct netdev_adjacent, list); 6596 6597 if (&lower->list == &dev->adj_list.lower) 6598 return NULL; 6599 6600 *iter = lower->list.next; 6601 6602 return lower->dev; 6603 } 6604 EXPORT_SYMBOL(netdev_lower_get_next); 6605 6606 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 6607 struct list_head **iter) 6608 { 6609 struct netdev_adjacent *lower; 6610 6611 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 6612 6613 if (&lower->list == &dev->adj_list.lower) 6614 return NULL; 6615 6616 *iter = &lower->list; 6617 6618 return lower->dev; 6619 } 6620 6621 int netdev_walk_all_lower_dev(struct net_device *dev, 6622 int (*fn)(struct net_device *dev, 6623 void *data), 6624 void *data) 6625 { 6626 struct net_device *ldev; 6627 struct list_head *iter; 6628 int ret; 6629 6630 for (iter = &dev->adj_list.lower, 6631 ldev = netdev_next_lower_dev(dev, &iter); 6632 ldev; 6633 ldev = netdev_next_lower_dev(dev, &iter)) { 6634 /* first is the lower device itself */ 6635 ret = fn(ldev, data); 6636 if (ret) 6637 return ret; 6638 6639 /* then look at all of its lower devices */ 6640 ret = netdev_walk_all_lower_dev(ldev, fn, data); 6641 if (ret) 6642 return ret; 6643 } 6644 6645 return 0; 6646 } 6647 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 6648 6649 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 6650 struct list_head **iter) 6651 { 6652 struct netdev_adjacent *lower; 6653 6654 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6655 if (&lower->list == &dev->adj_list.lower) 6656 return NULL; 6657 6658 *iter = &lower->list; 6659 6660 return lower->dev; 6661 } 6662 6663 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 6664 int (*fn)(struct net_device *dev, 6665 void *data), 6666 void *data) 6667 { 6668 struct net_device *ldev; 6669 struct list_head *iter; 6670 int ret; 6671 6672 for (iter = &dev->adj_list.lower, 6673 ldev = netdev_next_lower_dev_rcu(dev, &iter); 6674 ldev; 6675 ldev = netdev_next_lower_dev_rcu(dev, &iter)) { 6676 /* first is the lower device itself */ 6677 ret = fn(ldev, data); 6678 if (ret) 6679 return ret; 6680 6681 /* then look at all of its lower devices */ 6682 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); 6683 if (ret) 6684 return ret; 6685 } 6686 6687 return 0; 6688 } 6689 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 6690 6691 /** 6692 * netdev_lower_get_first_private_rcu - Get the first ->private from the 6693 * lower neighbour list, RCU 6694 * variant 6695 * @dev: device 6696 * 6697 * Gets the first netdev_adjacent->private from the dev's lower neighbour 6698 * list. The caller must hold RCU read lock. 6699 */ 6700 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 6701 { 6702 struct netdev_adjacent *lower; 6703 6704 lower = list_first_or_null_rcu(&dev->adj_list.lower, 6705 struct netdev_adjacent, list); 6706 if (lower) 6707 return lower->private; 6708 return NULL; 6709 } 6710 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 6711 6712 /** 6713 * netdev_master_upper_dev_get_rcu - Get master upper device 6714 * @dev: device 6715 * 6716 * Find a master upper device and return pointer to it or NULL in case 6717 * it's not there. The caller must hold the RCU read lock. 6718 */ 6719 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 6720 { 6721 struct netdev_adjacent *upper; 6722 6723 upper = list_first_or_null_rcu(&dev->adj_list.upper, 6724 struct netdev_adjacent, list); 6725 if (upper && likely(upper->master)) 6726 return upper->dev; 6727 return NULL; 6728 } 6729 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 6730 6731 static int netdev_adjacent_sysfs_add(struct net_device *dev, 6732 struct net_device *adj_dev, 6733 struct list_head *dev_list) 6734 { 6735 char linkname[IFNAMSIZ+7]; 6736 6737 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6738 "upper_%s" : "lower_%s", adj_dev->name); 6739 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 6740 linkname); 6741 } 6742 static void netdev_adjacent_sysfs_del(struct net_device *dev, 6743 char *name, 6744 struct list_head *dev_list) 6745 { 6746 char linkname[IFNAMSIZ+7]; 6747 6748 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6749 "upper_%s" : "lower_%s", name); 6750 sysfs_remove_link(&(dev->dev.kobj), linkname); 6751 } 6752 6753 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 6754 struct net_device *adj_dev, 6755 struct list_head *dev_list) 6756 { 6757 return (dev_list == &dev->adj_list.upper || 6758 dev_list == &dev->adj_list.lower) && 6759 net_eq(dev_net(dev), dev_net(adj_dev)); 6760 } 6761 6762 static int __netdev_adjacent_dev_insert(struct net_device *dev, 6763 struct net_device *adj_dev, 6764 struct list_head *dev_list, 6765 void *private, bool master) 6766 { 6767 struct netdev_adjacent *adj; 6768 int ret; 6769 6770 adj = __netdev_find_adj(adj_dev, dev_list); 6771 6772 if (adj) { 6773 adj->ref_nr += 1; 6774 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 6775 dev->name, adj_dev->name, adj->ref_nr); 6776 6777 return 0; 6778 } 6779 6780 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 6781 if (!adj) 6782 return -ENOMEM; 6783 6784 adj->dev = adj_dev; 6785 adj->master = master; 6786 adj->ref_nr = 1; 6787 adj->private = private; 6788 dev_hold(adj_dev); 6789 6790 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 6791 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 6792 6793 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 6794 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 6795 if (ret) 6796 goto free_adj; 6797 } 6798 6799 /* Ensure that master link is always the first item in list. */ 6800 if (master) { 6801 ret = sysfs_create_link(&(dev->dev.kobj), 6802 &(adj_dev->dev.kobj), "master"); 6803 if (ret) 6804 goto remove_symlinks; 6805 6806 list_add_rcu(&adj->list, dev_list); 6807 } else { 6808 list_add_tail_rcu(&adj->list, dev_list); 6809 } 6810 6811 return 0; 6812 6813 remove_symlinks: 6814 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6815 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6816 free_adj: 6817 kfree(adj); 6818 dev_put(adj_dev); 6819 6820 return ret; 6821 } 6822 6823 static void __netdev_adjacent_dev_remove(struct net_device *dev, 6824 struct net_device *adj_dev, 6825 u16 ref_nr, 6826 struct list_head *dev_list) 6827 { 6828 struct netdev_adjacent *adj; 6829 6830 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 6831 dev->name, adj_dev->name, ref_nr); 6832 6833 adj = __netdev_find_adj(adj_dev, dev_list); 6834 6835 if (!adj) { 6836 pr_err("Adjacency does not exist for device %s from %s\n", 6837 dev->name, adj_dev->name); 6838 WARN_ON(1); 6839 return; 6840 } 6841 6842 if (adj->ref_nr > ref_nr) { 6843 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 6844 dev->name, adj_dev->name, ref_nr, 6845 adj->ref_nr - ref_nr); 6846 adj->ref_nr -= ref_nr; 6847 return; 6848 } 6849 6850 if (adj->master) 6851 sysfs_remove_link(&(dev->dev.kobj), "master"); 6852 6853 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6854 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6855 6856 list_del_rcu(&adj->list); 6857 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 6858 adj_dev->name, dev->name, adj_dev->name); 6859 dev_put(adj_dev); 6860 kfree_rcu(adj, rcu); 6861 } 6862 6863 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 6864 struct net_device *upper_dev, 6865 struct list_head *up_list, 6866 struct list_head *down_list, 6867 void *private, bool master) 6868 { 6869 int ret; 6870 6871 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 6872 private, master); 6873 if (ret) 6874 return ret; 6875 6876 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 6877 private, false); 6878 if (ret) { 6879 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 6880 return ret; 6881 } 6882 6883 return 0; 6884 } 6885 6886 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 6887 struct net_device *upper_dev, 6888 u16 ref_nr, 6889 struct list_head *up_list, 6890 struct list_head *down_list) 6891 { 6892 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 6893 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 6894 } 6895 6896 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 6897 struct net_device *upper_dev, 6898 void *private, bool master) 6899 { 6900 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 6901 &dev->adj_list.upper, 6902 &upper_dev->adj_list.lower, 6903 private, master); 6904 } 6905 6906 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 6907 struct net_device *upper_dev) 6908 { 6909 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 6910 &dev->adj_list.upper, 6911 &upper_dev->adj_list.lower); 6912 } 6913 6914 static int __netdev_upper_dev_link(struct net_device *dev, 6915 struct net_device *upper_dev, bool master, 6916 void *upper_priv, void *upper_info, 6917 struct netlink_ext_ack *extack) 6918 { 6919 struct netdev_notifier_changeupper_info changeupper_info = { 6920 .info = { 6921 .dev = dev, 6922 .extack = extack, 6923 }, 6924 .upper_dev = upper_dev, 6925 .master = master, 6926 .linking = true, 6927 .upper_info = upper_info, 6928 }; 6929 struct net_device *master_dev; 6930 int ret = 0; 6931 6932 ASSERT_RTNL(); 6933 6934 if (dev == upper_dev) 6935 return -EBUSY; 6936 6937 /* To prevent loops, check if dev is not upper device to upper_dev. */ 6938 if (netdev_has_upper_dev(upper_dev, dev)) 6939 return -EBUSY; 6940 6941 if (!master) { 6942 if (netdev_has_upper_dev(dev, upper_dev)) 6943 return -EEXIST; 6944 } else { 6945 master_dev = netdev_master_upper_dev_get(dev); 6946 if (master_dev) 6947 return master_dev == upper_dev ? -EEXIST : -EBUSY; 6948 } 6949 6950 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 6951 &changeupper_info.info); 6952 ret = notifier_to_errno(ret); 6953 if (ret) 6954 return ret; 6955 6956 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 6957 master); 6958 if (ret) 6959 return ret; 6960 6961 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 6962 &changeupper_info.info); 6963 ret = notifier_to_errno(ret); 6964 if (ret) 6965 goto rollback; 6966 6967 return 0; 6968 6969 rollback: 6970 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6971 6972 return ret; 6973 } 6974 6975 /** 6976 * netdev_upper_dev_link - Add a link to the upper device 6977 * @dev: device 6978 * @upper_dev: new upper device 6979 * @extack: netlink extended ack 6980 * 6981 * Adds a link to device which is upper to this one. The caller must hold 6982 * the RTNL lock. On a failure a negative errno code is returned. 6983 * On success the reference counts are adjusted and the function 6984 * returns zero. 6985 */ 6986 int netdev_upper_dev_link(struct net_device *dev, 6987 struct net_device *upper_dev, 6988 struct netlink_ext_ack *extack) 6989 { 6990 return __netdev_upper_dev_link(dev, upper_dev, false, 6991 NULL, NULL, extack); 6992 } 6993 EXPORT_SYMBOL(netdev_upper_dev_link); 6994 6995 /** 6996 * netdev_master_upper_dev_link - Add a master link to the upper device 6997 * @dev: device 6998 * @upper_dev: new upper device 6999 * @upper_priv: upper device private 7000 * @upper_info: upper info to be passed down via notifier 7001 * @extack: netlink extended ack 7002 * 7003 * Adds a link to device which is upper to this one. In this case, only 7004 * one master upper device can be linked, although other non-master devices 7005 * might be linked as well. The caller must hold the RTNL lock. 7006 * On a failure a negative errno code is returned. On success the reference 7007 * counts are adjusted and the function returns zero. 7008 */ 7009 int netdev_master_upper_dev_link(struct net_device *dev, 7010 struct net_device *upper_dev, 7011 void *upper_priv, void *upper_info, 7012 struct netlink_ext_ack *extack) 7013 { 7014 return __netdev_upper_dev_link(dev, upper_dev, true, 7015 upper_priv, upper_info, extack); 7016 } 7017 EXPORT_SYMBOL(netdev_master_upper_dev_link); 7018 7019 /** 7020 * netdev_upper_dev_unlink - Removes a link to upper device 7021 * @dev: device 7022 * @upper_dev: new upper device 7023 * 7024 * Removes a link to device which is upper to this one. The caller must hold 7025 * the RTNL lock. 7026 */ 7027 void netdev_upper_dev_unlink(struct net_device *dev, 7028 struct net_device *upper_dev) 7029 { 7030 struct netdev_notifier_changeupper_info changeupper_info = { 7031 .info = { 7032 .dev = dev, 7033 }, 7034 .upper_dev = upper_dev, 7035 .linking = false, 7036 }; 7037 7038 ASSERT_RTNL(); 7039 7040 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 7041 7042 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7043 &changeupper_info.info); 7044 7045 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7046 7047 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7048 &changeupper_info.info); 7049 } 7050 EXPORT_SYMBOL(netdev_upper_dev_unlink); 7051 7052 /** 7053 * netdev_bonding_info_change - Dispatch event about slave change 7054 * @dev: device 7055 * @bonding_info: info to dispatch 7056 * 7057 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 7058 * The caller must hold the RTNL lock. 7059 */ 7060 void netdev_bonding_info_change(struct net_device *dev, 7061 struct netdev_bonding_info *bonding_info) 7062 { 7063 struct netdev_notifier_bonding_info info = { 7064 .info.dev = dev, 7065 }; 7066 7067 memcpy(&info.bonding_info, bonding_info, 7068 sizeof(struct netdev_bonding_info)); 7069 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 7070 &info.info); 7071 } 7072 EXPORT_SYMBOL(netdev_bonding_info_change); 7073 7074 static void netdev_adjacent_add_links(struct net_device *dev) 7075 { 7076 struct netdev_adjacent *iter; 7077 7078 struct net *net = dev_net(dev); 7079 7080 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7081 if (!net_eq(net, dev_net(iter->dev))) 7082 continue; 7083 netdev_adjacent_sysfs_add(iter->dev, dev, 7084 &iter->dev->adj_list.lower); 7085 netdev_adjacent_sysfs_add(dev, iter->dev, 7086 &dev->adj_list.upper); 7087 } 7088 7089 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7090 if (!net_eq(net, dev_net(iter->dev))) 7091 continue; 7092 netdev_adjacent_sysfs_add(iter->dev, dev, 7093 &iter->dev->adj_list.upper); 7094 netdev_adjacent_sysfs_add(dev, iter->dev, 7095 &dev->adj_list.lower); 7096 } 7097 } 7098 7099 static void netdev_adjacent_del_links(struct net_device *dev) 7100 { 7101 struct netdev_adjacent *iter; 7102 7103 struct net *net = dev_net(dev); 7104 7105 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7106 if (!net_eq(net, dev_net(iter->dev))) 7107 continue; 7108 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7109 &iter->dev->adj_list.lower); 7110 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7111 &dev->adj_list.upper); 7112 } 7113 7114 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7115 if (!net_eq(net, dev_net(iter->dev))) 7116 continue; 7117 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7118 &iter->dev->adj_list.upper); 7119 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7120 &dev->adj_list.lower); 7121 } 7122 } 7123 7124 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 7125 { 7126 struct netdev_adjacent *iter; 7127 7128 struct net *net = dev_net(dev); 7129 7130 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7131 if (!net_eq(net, dev_net(iter->dev))) 7132 continue; 7133 netdev_adjacent_sysfs_del(iter->dev, oldname, 7134 &iter->dev->adj_list.lower); 7135 netdev_adjacent_sysfs_add(iter->dev, dev, 7136 &iter->dev->adj_list.lower); 7137 } 7138 7139 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7140 if (!net_eq(net, dev_net(iter->dev))) 7141 continue; 7142 netdev_adjacent_sysfs_del(iter->dev, oldname, 7143 &iter->dev->adj_list.upper); 7144 netdev_adjacent_sysfs_add(iter->dev, dev, 7145 &iter->dev->adj_list.upper); 7146 } 7147 } 7148 7149 void *netdev_lower_dev_get_private(struct net_device *dev, 7150 struct net_device *lower_dev) 7151 { 7152 struct netdev_adjacent *lower; 7153 7154 if (!lower_dev) 7155 return NULL; 7156 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 7157 if (!lower) 7158 return NULL; 7159 7160 return lower->private; 7161 } 7162 EXPORT_SYMBOL(netdev_lower_dev_get_private); 7163 7164 7165 int dev_get_nest_level(struct net_device *dev) 7166 { 7167 struct net_device *lower = NULL; 7168 struct list_head *iter; 7169 int max_nest = -1; 7170 int nest; 7171 7172 ASSERT_RTNL(); 7173 7174 netdev_for_each_lower_dev(dev, lower, iter) { 7175 nest = dev_get_nest_level(lower); 7176 if (max_nest < nest) 7177 max_nest = nest; 7178 } 7179 7180 return max_nest + 1; 7181 } 7182 EXPORT_SYMBOL(dev_get_nest_level); 7183 7184 /** 7185 * netdev_lower_change - Dispatch event about lower device state change 7186 * @lower_dev: device 7187 * @lower_state_info: state to dispatch 7188 * 7189 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 7190 * The caller must hold the RTNL lock. 7191 */ 7192 void netdev_lower_state_changed(struct net_device *lower_dev, 7193 void *lower_state_info) 7194 { 7195 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 7196 .info.dev = lower_dev, 7197 }; 7198 7199 ASSERT_RTNL(); 7200 changelowerstate_info.lower_state_info = lower_state_info; 7201 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 7202 &changelowerstate_info.info); 7203 } 7204 EXPORT_SYMBOL(netdev_lower_state_changed); 7205 7206 static void dev_change_rx_flags(struct net_device *dev, int flags) 7207 { 7208 const struct net_device_ops *ops = dev->netdev_ops; 7209 7210 if (ops->ndo_change_rx_flags) 7211 ops->ndo_change_rx_flags(dev, flags); 7212 } 7213 7214 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 7215 { 7216 unsigned int old_flags = dev->flags; 7217 kuid_t uid; 7218 kgid_t gid; 7219 7220 ASSERT_RTNL(); 7221 7222 dev->flags |= IFF_PROMISC; 7223 dev->promiscuity += inc; 7224 if (dev->promiscuity == 0) { 7225 /* 7226 * Avoid overflow. 7227 * If inc causes overflow, untouch promisc and return error. 7228 */ 7229 if (inc < 0) 7230 dev->flags &= ~IFF_PROMISC; 7231 else { 7232 dev->promiscuity -= inc; 7233 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 7234 dev->name); 7235 return -EOVERFLOW; 7236 } 7237 } 7238 if (dev->flags != old_flags) { 7239 pr_info("device %s %s promiscuous mode\n", 7240 dev->name, 7241 dev->flags & IFF_PROMISC ? "entered" : "left"); 7242 if (audit_enabled) { 7243 current_uid_gid(&uid, &gid); 7244 audit_log(audit_context(), GFP_ATOMIC, 7245 AUDIT_ANOM_PROMISCUOUS, 7246 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 7247 dev->name, (dev->flags & IFF_PROMISC), 7248 (old_flags & IFF_PROMISC), 7249 from_kuid(&init_user_ns, audit_get_loginuid(current)), 7250 from_kuid(&init_user_ns, uid), 7251 from_kgid(&init_user_ns, gid), 7252 audit_get_sessionid(current)); 7253 } 7254 7255 dev_change_rx_flags(dev, IFF_PROMISC); 7256 } 7257 if (notify) 7258 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 7259 return 0; 7260 } 7261 7262 /** 7263 * dev_set_promiscuity - update promiscuity count on a device 7264 * @dev: device 7265 * @inc: modifier 7266 * 7267 * Add or remove promiscuity from a device. While the count in the device 7268 * remains above zero the interface remains promiscuous. Once it hits zero 7269 * the device reverts back to normal filtering operation. A negative inc 7270 * value is used to drop promiscuity on the device. 7271 * Return 0 if successful or a negative errno code on error. 7272 */ 7273 int dev_set_promiscuity(struct net_device *dev, int inc) 7274 { 7275 unsigned int old_flags = dev->flags; 7276 int err; 7277 7278 err = __dev_set_promiscuity(dev, inc, true); 7279 if (err < 0) 7280 return err; 7281 if (dev->flags != old_flags) 7282 dev_set_rx_mode(dev); 7283 return err; 7284 } 7285 EXPORT_SYMBOL(dev_set_promiscuity); 7286 7287 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 7288 { 7289 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 7290 7291 ASSERT_RTNL(); 7292 7293 dev->flags |= IFF_ALLMULTI; 7294 dev->allmulti += inc; 7295 if (dev->allmulti == 0) { 7296 /* 7297 * Avoid overflow. 7298 * If inc causes overflow, untouch allmulti and return error. 7299 */ 7300 if (inc < 0) 7301 dev->flags &= ~IFF_ALLMULTI; 7302 else { 7303 dev->allmulti -= inc; 7304 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 7305 dev->name); 7306 return -EOVERFLOW; 7307 } 7308 } 7309 if (dev->flags ^ old_flags) { 7310 dev_change_rx_flags(dev, IFF_ALLMULTI); 7311 dev_set_rx_mode(dev); 7312 if (notify) 7313 __dev_notify_flags(dev, old_flags, 7314 dev->gflags ^ old_gflags); 7315 } 7316 return 0; 7317 } 7318 7319 /** 7320 * dev_set_allmulti - update allmulti count on a device 7321 * @dev: device 7322 * @inc: modifier 7323 * 7324 * Add or remove reception of all multicast frames to a device. While the 7325 * count in the device remains above zero the interface remains listening 7326 * to all interfaces. Once it hits zero the device reverts back to normal 7327 * filtering operation. A negative @inc value is used to drop the counter 7328 * when releasing a resource needing all multicasts. 7329 * Return 0 if successful or a negative errno code on error. 7330 */ 7331 7332 int dev_set_allmulti(struct net_device *dev, int inc) 7333 { 7334 return __dev_set_allmulti(dev, inc, true); 7335 } 7336 EXPORT_SYMBOL(dev_set_allmulti); 7337 7338 /* 7339 * Upload unicast and multicast address lists to device and 7340 * configure RX filtering. When the device doesn't support unicast 7341 * filtering it is put in promiscuous mode while unicast addresses 7342 * are present. 7343 */ 7344 void __dev_set_rx_mode(struct net_device *dev) 7345 { 7346 const struct net_device_ops *ops = dev->netdev_ops; 7347 7348 /* dev_open will call this function so the list will stay sane. */ 7349 if (!(dev->flags&IFF_UP)) 7350 return; 7351 7352 if (!netif_device_present(dev)) 7353 return; 7354 7355 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 7356 /* Unicast addresses changes may only happen under the rtnl, 7357 * therefore calling __dev_set_promiscuity here is safe. 7358 */ 7359 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 7360 __dev_set_promiscuity(dev, 1, false); 7361 dev->uc_promisc = true; 7362 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 7363 __dev_set_promiscuity(dev, -1, false); 7364 dev->uc_promisc = false; 7365 } 7366 } 7367 7368 if (ops->ndo_set_rx_mode) 7369 ops->ndo_set_rx_mode(dev); 7370 } 7371 7372 void dev_set_rx_mode(struct net_device *dev) 7373 { 7374 netif_addr_lock_bh(dev); 7375 __dev_set_rx_mode(dev); 7376 netif_addr_unlock_bh(dev); 7377 } 7378 7379 /** 7380 * dev_get_flags - get flags reported to userspace 7381 * @dev: device 7382 * 7383 * Get the combination of flag bits exported through APIs to userspace. 7384 */ 7385 unsigned int dev_get_flags(const struct net_device *dev) 7386 { 7387 unsigned int flags; 7388 7389 flags = (dev->flags & ~(IFF_PROMISC | 7390 IFF_ALLMULTI | 7391 IFF_RUNNING | 7392 IFF_LOWER_UP | 7393 IFF_DORMANT)) | 7394 (dev->gflags & (IFF_PROMISC | 7395 IFF_ALLMULTI)); 7396 7397 if (netif_running(dev)) { 7398 if (netif_oper_up(dev)) 7399 flags |= IFF_RUNNING; 7400 if (netif_carrier_ok(dev)) 7401 flags |= IFF_LOWER_UP; 7402 if (netif_dormant(dev)) 7403 flags |= IFF_DORMANT; 7404 } 7405 7406 return flags; 7407 } 7408 EXPORT_SYMBOL(dev_get_flags); 7409 7410 int __dev_change_flags(struct net_device *dev, unsigned int flags) 7411 { 7412 unsigned int old_flags = dev->flags; 7413 int ret; 7414 7415 ASSERT_RTNL(); 7416 7417 /* 7418 * Set the flags on our device. 7419 */ 7420 7421 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 7422 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 7423 IFF_AUTOMEDIA)) | 7424 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 7425 IFF_ALLMULTI)); 7426 7427 /* 7428 * Load in the correct multicast list now the flags have changed. 7429 */ 7430 7431 if ((old_flags ^ flags) & IFF_MULTICAST) 7432 dev_change_rx_flags(dev, IFF_MULTICAST); 7433 7434 dev_set_rx_mode(dev); 7435 7436 /* 7437 * Have we downed the interface. We handle IFF_UP ourselves 7438 * according to user attempts to set it, rather than blindly 7439 * setting it. 7440 */ 7441 7442 ret = 0; 7443 if ((old_flags ^ flags) & IFF_UP) { 7444 if (old_flags & IFF_UP) 7445 __dev_close(dev); 7446 else 7447 ret = __dev_open(dev); 7448 } 7449 7450 if ((flags ^ dev->gflags) & IFF_PROMISC) { 7451 int inc = (flags & IFF_PROMISC) ? 1 : -1; 7452 unsigned int old_flags = dev->flags; 7453 7454 dev->gflags ^= IFF_PROMISC; 7455 7456 if (__dev_set_promiscuity(dev, inc, false) >= 0) 7457 if (dev->flags != old_flags) 7458 dev_set_rx_mode(dev); 7459 } 7460 7461 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 7462 * is important. Some (broken) drivers set IFF_PROMISC, when 7463 * IFF_ALLMULTI is requested not asking us and not reporting. 7464 */ 7465 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 7466 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 7467 7468 dev->gflags ^= IFF_ALLMULTI; 7469 __dev_set_allmulti(dev, inc, false); 7470 } 7471 7472 return ret; 7473 } 7474 7475 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 7476 unsigned int gchanges) 7477 { 7478 unsigned int changes = dev->flags ^ old_flags; 7479 7480 if (gchanges) 7481 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 7482 7483 if (changes & IFF_UP) { 7484 if (dev->flags & IFF_UP) 7485 call_netdevice_notifiers(NETDEV_UP, dev); 7486 else 7487 call_netdevice_notifiers(NETDEV_DOWN, dev); 7488 } 7489 7490 if (dev->flags & IFF_UP && 7491 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 7492 struct netdev_notifier_change_info change_info = { 7493 .info = { 7494 .dev = dev, 7495 }, 7496 .flags_changed = changes, 7497 }; 7498 7499 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 7500 } 7501 } 7502 7503 /** 7504 * dev_change_flags - change device settings 7505 * @dev: device 7506 * @flags: device state flags 7507 * 7508 * Change settings on device based state flags. The flags are 7509 * in the userspace exported format. 7510 */ 7511 int dev_change_flags(struct net_device *dev, unsigned int flags) 7512 { 7513 int ret; 7514 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 7515 7516 ret = __dev_change_flags(dev, flags); 7517 if (ret < 0) 7518 return ret; 7519 7520 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 7521 __dev_notify_flags(dev, old_flags, changes); 7522 return ret; 7523 } 7524 EXPORT_SYMBOL(dev_change_flags); 7525 7526 int __dev_set_mtu(struct net_device *dev, int new_mtu) 7527 { 7528 const struct net_device_ops *ops = dev->netdev_ops; 7529 7530 if (ops->ndo_change_mtu) 7531 return ops->ndo_change_mtu(dev, new_mtu); 7532 7533 dev->mtu = new_mtu; 7534 return 0; 7535 } 7536 EXPORT_SYMBOL(__dev_set_mtu); 7537 7538 /** 7539 * dev_set_mtu_ext - Change maximum transfer unit 7540 * @dev: device 7541 * @new_mtu: new transfer unit 7542 * @extack: netlink extended ack 7543 * 7544 * Change the maximum transfer size of the network device. 7545 */ 7546 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 7547 struct netlink_ext_ack *extack) 7548 { 7549 int err, orig_mtu; 7550 7551 if (new_mtu == dev->mtu) 7552 return 0; 7553 7554 /* MTU must be positive, and in range */ 7555 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 7556 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 7557 return -EINVAL; 7558 } 7559 7560 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 7561 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 7562 return -EINVAL; 7563 } 7564 7565 if (!netif_device_present(dev)) 7566 return -ENODEV; 7567 7568 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 7569 err = notifier_to_errno(err); 7570 if (err) 7571 return err; 7572 7573 orig_mtu = dev->mtu; 7574 err = __dev_set_mtu(dev, new_mtu); 7575 7576 if (!err) { 7577 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 7578 err = notifier_to_errno(err); 7579 if (err) { 7580 /* setting mtu back and notifying everyone again, 7581 * so that they have a chance to revert changes. 7582 */ 7583 __dev_set_mtu(dev, orig_mtu); 7584 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 7585 } 7586 } 7587 return err; 7588 } 7589 7590 int dev_set_mtu(struct net_device *dev, int new_mtu) 7591 { 7592 struct netlink_ext_ack extack; 7593 int err; 7594 7595 memset(&extack, 0, sizeof(extack)); 7596 err = dev_set_mtu_ext(dev, new_mtu, &extack); 7597 if (err && extack._msg) 7598 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 7599 return err; 7600 } 7601 EXPORT_SYMBOL(dev_set_mtu); 7602 7603 /** 7604 * dev_change_tx_queue_len - Change TX queue length of a netdevice 7605 * @dev: device 7606 * @new_len: new tx queue length 7607 */ 7608 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 7609 { 7610 unsigned int orig_len = dev->tx_queue_len; 7611 int res; 7612 7613 if (new_len != (unsigned int)new_len) 7614 return -ERANGE; 7615 7616 if (new_len != orig_len) { 7617 dev->tx_queue_len = new_len; 7618 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 7619 res = notifier_to_errno(res); 7620 if (res) 7621 goto err_rollback; 7622 res = dev_qdisc_change_tx_queue_len(dev); 7623 if (res) 7624 goto err_rollback; 7625 } 7626 7627 return 0; 7628 7629 err_rollback: 7630 netdev_err(dev, "refused to change device tx_queue_len\n"); 7631 dev->tx_queue_len = orig_len; 7632 return res; 7633 } 7634 7635 /** 7636 * dev_set_group - Change group this device belongs to 7637 * @dev: device 7638 * @new_group: group this device should belong to 7639 */ 7640 void dev_set_group(struct net_device *dev, int new_group) 7641 { 7642 dev->group = new_group; 7643 } 7644 EXPORT_SYMBOL(dev_set_group); 7645 7646 /** 7647 * dev_set_mac_address - Change Media Access Control Address 7648 * @dev: device 7649 * @sa: new address 7650 * 7651 * Change the hardware (MAC) address of the device 7652 */ 7653 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 7654 { 7655 const struct net_device_ops *ops = dev->netdev_ops; 7656 int err; 7657 7658 if (!ops->ndo_set_mac_address) 7659 return -EOPNOTSUPP; 7660 if (sa->sa_family != dev->type) 7661 return -EINVAL; 7662 if (!netif_device_present(dev)) 7663 return -ENODEV; 7664 err = ops->ndo_set_mac_address(dev, sa); 7665 if (err) 7666 return err; 7667 dev->addr_assign_type = NET_ADDR_SET; 7668 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 7669 add_device_randomness(dev->dev_addr, dev->addr_len); 7670 return 0; 7671 } 7672 EXPORT_SYMBOL(dev_set_mac_address); 7673 7674 /** 7675 * dev_change_carrier - Change device carrier 7676 * @dev: device 7677 * @new_carrier: new value 7678 * 7679 * Change device carrier 7680 */ 7681 int dev_change_carrier(struct net_device *dev, bool new_carrier) 7682 { 7683 const struct net_device_ops *ops = dev->netdev_ops; 7684 7685 if (!ops->ndo_change_carrier) 7686 return -EOPNOTSUPP; 7687 if (!netif_device_present(dev)) 7688 return -ENODEV; 7689 return ops->ndo_change_carrier(dev, new_carrier); 7690 } 7691 EXPORT_SYMBOL(dev_change_carrier); 7692 7693 /** 7694 * dev_get_phys_port_id - Get device physical port ID 7695 * @dev: device 7696 * @ppid: port ID 7697 * 7698 * Get device physical port ID 7699 */ 7700 int dev_get_phys_port_id(struct net_device *dev, 7701 struct netdev_phys_item_id *ppid) 7702 { 7703 const struct net_device_ops *ops = dev->netdev_ops; 7704 7705 if (!ops->ndo_get_phys_port_id) 7706 return -EOPNOTSUPP; 7707 return ops->ndo_get_phys_port_id(dev, ppid); 7708 } 7709 EXPORT_SYMBOL(dev_get_phys_port_id); 7710 7711 /** 7712 * dev_get_phys_port_name - Get device physical port name 7713 * @dev: device 7714 * @name: port name 7715 * @len: limit of bytes to copy to name 7716 * 7717 * Get device physical port name 7718 */ 7719 int dev_get_phys_port_name(struct net_device *dev, 7720 char *name, size_t len) 7721 { 7722 const struct net_device_ops *ops = dev->netdev_ops; 7723 7724 if (!ops->ndo_get_phys_port_name) 7725 return -EOPNOTSUPP; 7726 return ops->ndo_get_phys_port_name(dev, name, len); 7727 } 7728 EXPORT_SYMBOL(dev_get_phys_port_name); 7729 7730 /** 7731 * dev_change_proto_down - update protocol port state information 7732 * @dev: device 7733 * @proto_down: new value 7734 * 7735 * This info can be used by switch drivers to set the phys state of the 7736 * port. 7737 */ 7738 int dev_change_proto_down(struct net_device *dev, bool proto_down) 7739 { 7740 const struct net_device_ops *ops = dev->netdev_ops; 7741 7742 if (!ops->ndo_change_proto_down) 7743 return -EOPNOTSUPP; 7744 if (!netif_device_present(dev)) 7745 return -ENODEV; 7746 return ops->ndo_change_proto_down(dev, proto_down); 7747 } 7748 EXPORT_SYMBOL(dev_change_proto_down); 7749 7750 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op, 7751 enum bpf_netdev_command cmd) 7752 { 7753 struct netdev_bpf xdp; 7754 7755 if (!bpf_op) 7756 return 0; 7757 7758 memset(&xdp, 0, sizeof(xdp)); 7759 xdp.command = cmd; 7760 7761 /* Query must always succeed. */ 7762 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG); 7763 7764 return xdp.prog_id; 7765 } 7766 7767 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op, 7768 struct netlink_ext_ack *extack, u32 flags, 7769 struct bpf_prog *prog) 7770 { 7771 struct netdev_bpf xdp; 7772 7773 memset(&xdp, 0, sizeof(xdp)); 7774 if (flags & XDP_FLAGS_HW_MODE) 7775 xdp.command = XDP_SETUP_PROG_HW; 7776 else 7777 xdp.command = XDP_SETUP_PROG; 7778 xdp.extack = extack; 7779 xdp.flags = flags; 7780 xdp.prog = prog; 7781 7782 return bpf_op(dev, &xdp); 7783 } 7784 7785 static void dev_xdp_uninstall(struct net_device *dev) 7786 { 7787 struct netdev_bpf xdp; 7788 bpf_op_t ndo_bpf; 7789 7790 /* Remove generic XDP */ 7791 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL)); 7792 7793 /* Remove from the driver */ 7794 ndo_bpf = dev->netdev_ops->ndo_bpf; 7795 if (!ndo_bpf) 7796 return; 7797 7798 memset(&xdp, 0, sizeof(xdp)); 7799 xdp.command = XDP_QUERY_PROG; 7800 WARN_ON(ndo_bpf(dev, &xdp)); 7801 if (xdp.prog_id) 7802 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 7803 NULL)); 7804 7805 /* Remove HW offload */ 7806 memset(&xdp, 0, sizeof(xdp)); 7807 xdp.command = XDP_QUERY_PROG_HW; 7808 if (!ndo_bpf(dev, &xdp) && xdp.prog_id) 7809 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 7810 NULL)); 7811 } 7812 7813 /** 7814 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 7815 * @dev: device 7816 * @extack: netlink extended ack 7817 * @fd: new program fd or negative value to clear 7818 * @flags: xdp-related flags 7819 * 7820 * Set or clear a bpf program for a device 7821 */ 7822 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 7823 int fd, u32 flags) 7824 { 7825 const struct net_device_ops *ops = dev->netdev_ops; 7826 enum bpf_netdev_command query; 7827 struct bpf_prog *prog = NULL; 7828 bpf_op_t bpf_op, bpf_chk; 7829 int err; 7830 7831 ASSERT_RTNL(); 7832 7833 query = flags & XDP_FLAGS_HW_MODE ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG; 7834 7835 bpf_op = bpf_chk = ops->ndo_bpf; 7836 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) 7837 return -EOPNOTSUPP; 7838 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE)) 7839 bpf_op = generic_xdp_install; 7840 if (bpf_op == bpf_chk) 7841 bpf_chk = generic_xdp_install; 7842 7843 if (fd >= 0) { 7844 if (__dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG) || 7845 __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG_HW)) 7846 return -EEXIST; 7847 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && 7848 __dev_xdp_query(dev, bpf_op, query)) 7849 return -EBUSY; 7850 7851 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 7852 bpf_op == ops->ndo_bpf); 7853 if (IS_ERR(prog)) 7854 return PTR_ERR(prog); 7855 7856 if (!(flags & XDP_FLAGS_HW_MODE) && 7857 bpf_prog_is_dev_bound(prog->aux)) { 7858 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported"); 7859 bpf_prog_put(prog); 7860 return -EINVAL; 7861 } 7862 } 7863 7864 err = dev_xdp_install(dev, bpf_op, extack, flags, prog); 7865 if (err < 0 && prog) 7866 bpf_prog_put(prog); 7867 7868 return err; 7869 } 7870 7871 /** 7872 * dev_new_index - allocate an ifindex 7873 * @net: the applicable net namespace 7874 * 7875 * Returns a suitable unique value for a new device interface 7876 * number. The caller must hold the rtnl semaphore or the 7877 * dev_base_lock to be sure it remains unique. 7878 */ 7879 static int dev_new_index(struct net *net) 7880 { 7881 int ifindex = net->ifindex; 7882 7883 for (;;) { 7884 if (++ifindex <= 0) 7885 ifindex = 1; 7886 if (!__dev_get_by_index(net, ifindex)) 7887 return net->ifindex = ifindex; 7888 } 7889 } 7890 7891 /* Delayed registration/unregisteration */ 7892 static LIST_HEAD(net_todo_list); 7893 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 7894 7895 static void net_set_todo(struct net_device *dev) 7896 { 7897 list_add_tail(&dev->todo_list, &net_todo_list); 7898 dev_net(dev)->dev_unreg_count++; 7899 } 7900 7901 static void rollback_registered_many(struct list_head *head) 7902 { 7903 struct net_device *dev, *tmp; 7904 LIST_HEAD(close_head); 7905 7906 BUG_ON(dev_boot_phase); 7907 ASSERT_RTNL(); 7908 7909 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 7910 /* Some devices call without registering 7911 * for initialization unwind. Remove those 7912 * devices and proceed with the remaining. 7913 */ 7914 if (dev->reg_state == NETREG_UNINITIALIZED) { 7915 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 7916 dev->name, dev); 7917 7918 WARN_ON(1); 7919 list_del(&dev->unreg_list); 7920 continue; 7921 } 7922 dev->dismantle = true; 7923 BUG_ON(dev->reg_state != NETREG_REGISTERED); 7924 } 7925 7926 /* If device is running, close it first. */ 7927 list_for_each_entry(dev, head, unreg_list) 7928 list_add_tail(&dev->close_list, &close_head); 7929 dev_close_many(&close_head, true); 7930 7931 list_for_each_entry(dev, head, unreg_list) { 7932 /* And unlink it from device chain. */ 7933 unlist_netdevice(dev); 7934 7935 dev->reg_state = NETREG_UNREGISTERING; 7936 } 7937 flush_all_backlogs(); 7938 7939 synchronize_net(); 7940 7941 list_for_each_entry(dev, head, unreg_list) { 7942 struct sk_buff *skb = NULL; 7943 7944 /* Shutdown queueing discipline. */ 7945 dev_shutdown(dev); 7946 7947 dev_xdp_uninstall(dev); 7948 7949 /* Notify protocols, that we are about to destroy 7950 * this device. They should clean all the things. 7951 */ 7952 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7953 7954 if (!dev->rtnl_link_ops || 7955 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7956 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 7957 GFP_KERNEL, NULL, 0); 7958 7959 /* 7960 * Flush the unicast and multicast chains 7961 */ 7962 dev_uc_flush(dev); 7963 dev_mc_flush(dev); 7964 7965 if (dev->netdev_ops->ndo_uninit) 7966 dev->netdev_ops->ndo_uninit(dev); 7967 7968 if (skb) 7969 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 7970 7971 /* Notifier chain MUST detach us all upper devices. */ 7972 WARN_ON(netdev_has_any_upper_dev(dev)); 7973 WARN_ON(netdev_has_any_lower_dev(dev)); 7974 7975 /* Remove entries from kobject tree */ 7976 netdev_unregister_kobject(dev); 7977 #ifdef CONFIG_XPS 7978 /* Remove XPS queueing entries */ 7979 netif_reset_xps_queues_gt(dev, 0); 7980 #endif 7981 } 7982 7983 synchronize_net(); 7984 7985 list_for_each_entry(dev, head, unreg_list) 7986 dev_put(dev); 7987 } 7988 7989 static void rollback_registered(struct net_device *dev) 7990 { 7991 LIST_HEAD(single); 7992 7993 list_add(&dev->unreg_list, &single); 7994 rollback_registered_many(&single); 7995 list_del(&single); 7996 } 7997 7998 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 7999 struct net_device *upper, netdev_features_t features) 8000 { 8001 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 8002 netdev_features_t feature; 8003 int feature_bit; 8004 8005 for_each_netdev_feature(&upper_disables, feature_bit) { 8006 feature = __NETIF_F_BIT(feature_bit); 8007 if (!(upper->wanted_features & feature) 8008 && (features & feature)) { 8009 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 8010 &feature, upper->name); 8011 features &= ~feature; 8012 } 8013 } 8014 8015 return features; 8016 } 8017 8018 static void netdev_sync_lower_features(struct net_device *upper, 8019 struct net_device *lower, netdev_features_t features) 8020 { 8021 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 8022 netdev_features_t feature; 8023 int feature_bit; 8024 8025 for_each_netdev_feature(&upper_disables, feature_bit) { 8026 feature = __NETIF_F_BIT(feature_bit); 8027 if (!(features & feature) && (lower->features & feature)) { 8028 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 8029 &feature, lower->name); 8030 lower->wanted_features &= ~feature; 8031 netdev_update_features(lower); 8032 8033 if (unlikely(lower->features & feature)) 8034 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 8035 &feature, lower->name); 8036 } 8037 } 8038 } 8039 8040 static netdev_features_t netdev_fix_features(struct net_device *dev, 8041 netdev_features_t features) 8042 { 8043 /* Fix illegal checksum combinations */ 8044 if ((features & NETIF_F_HW_CSUM) && 8045 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 8046 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 8047 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 8048 } 8049 8050 /* TSO requires that SG is present as well. */ 8051 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 8052 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 8053 features &= ~NETIF_F_ALL_TSO; 8054 } 8055 8056 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 8057 !(features & NETIF_F_IP_CSUM)) { 8058 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 8059 features &= ~NETIF_F_TSO; 8060 features &= ~NETIF_F_TSO_ECN; 8061 } 8062 8063 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 8064 !(features & NETIF_F_IPV6_CSUM)) { 8065 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 8066 features &= ~NETIF_F_TSO6; 8067 } 8068 8069 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 8070 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 8071 features &= ~NETIF_F_TSO_MANGLEID; 8072 8073 /* TSO ECN requires that TSO is present as well. */ 8074 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 8075 features &= ~NETIF_F_TSO_ECN; 8076 8077 /* Software GSO depends on SG. */ 8078 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 8079 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 8080 features &= ~NETIF_F_GSO; 8081 } 8082 8083 /* GSO partial features require GSO partial be set */ 8084 if ((features & dev->gso_partial_features) && 8085 !(features & NETIF_F_GSO_PARTIAL)) { 8086 netdev_dbg(dev, 8087 "Dropping partially supported GSO features since no GSO partial.\n"); 8088 features &= ~dev->gso_partial_features; 8089 } 8090 8091 if (!(features & NETIF_F_RXCSUM)) { 8092 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 8093 * successfully merged by hardware must also have the 8094 * checksum verified by hardware. If the user does not 8095 * want to enable RXCSUM, logically, we should disable GRO_HW. 8096 */ 8097 if (features & NETIF_F_GRO_HW) { 8098 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 8099 features &= ~NETIF_F_GRO_HW; 8100 } 8101 } 8102 8103 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 8104 if (features & NETIF_F_RXFCS) { 8105 if (features & NETIF_F_LRO) { 8106 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 8107 features &= ~NETIF_F_LRO; 8108 } 8109 8110 if (features & NETIF_F_GRO_HW) { 8111 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 8112 features &= ~NETIF_F_GRO_HW; 8113 } 8114 } 8115 8116 return features; 8117 } 8118 8119 int __netdev_update_features(struct net_device *dev) 8120 { 8121 struct net_device *upper, *lower; 8122 netdev_features_t features; 8123 struct list_head *iter; 8124 int err = -1; 8125 8126 ASSERT_RTNL(); 8127 8128 features = netdev_get_wanted_features(dev); 8129 8130 if (dev->netdev_ops->ndo_fix_features) 8131 features = dev->netdev_ops->ndo_fix_features(dev, features); 8132 8133 /* driver might be less strict about feature dependencies */ 8134 features = netdev_fix_features(dev, features); 8135 8136 /* some features can't be enabled if they're off an an upper device */ 8137 netdev_for_each_upper_dev_rcu(dev, upper, iter) 8138 features = netdev_sync_upper_features(dev, upper, features); 8139 8140 if (dev->features == features) 8141 goto sync_lower; 8142 8143 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 8144 &dev->features, &features); 8145 8146 if (dev->netdev_ops->ndo_set_features) 8147 err = dev->netdev_ops->ndo_set_features(dev, features); 8148 else 8149 err = 0; 8150 8151 if (unlikely(err < 0)) { 8152 netdev_err(dev, 8153 "set_features() failed (%d); wanted %pNF, left %pNF\n", 8154 err, &features, &dev->features); 8155 /* return non-0 since some features might have changed and 8156 * it's better to fire a spurious notification than miss it 8157 */ 8158 return -1; 8159 } 8160 8161 sync_lower: 8162 /* some features must be disabled on lower devices when disabled 8163 * on an upper device (think: bonding master or bridge) 8164 */ 8165 netdev_for_each_lower_dev(dev, lower, iter) 8166 netdev_sync_lower_features(dev, lower, features); 8167 8168 if (!err) { 8169 netdev_features_t diff = features ^ dev->features; 8170 8171 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 8172 /* udp_tunnel_{get,drop}_rx_info both need 8173 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 8174 * device, or they won't do anything. 8175 * Thus we need to update dev->features 8176 * *before* calling udp_tunnel_get_rx_info, 8177 * but *after* calling udp_tunnel_drop_rx_info. 8178 */ 8179 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 8180 dev->features = features; 8181 udp_tunnel_get_rx_info(dev); 8182 } else { 8183 udp_tunnel_drop_rx_info(dev); 8184 } 8185 } 8186 8187 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 8188 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 8189 dev->features = features; 8190 err |= vlan_get_rx_ctag_filter_info(dev); 8191 } else { 8192 vlan_drop_rx_ctag_filter_info(dev); 8193 } 8194 } 8195 8196 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 8197 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 8198 dev->features = features; 8199 err |= vlan_get_rx_stag_filter_info(dev); 8200 } else { 8201 vlan_drop_rx_stag_filter_info(dev); 8202 } 8203 } 8204 8205 dev->features = features; 8206 } 8207 8208 return err < 0 ? 0 : 1; 8209 } 8210 8211 /** 8212 * netdev_update_features - recalculate device features 8213 * @dev: the device to check 8214 * 8215 * Recalculate dev->features set and send notifications if it 8216 * has changed. Should be called after driver or hardware dependent 8217 * conditions might have changed that influence the features. 8218 */ 8219 void netdev_update_features(struct net_device *dev) 8220 { 8221 if (__netdev_update_features(dev)) 8222 netdev_features_change(dev); 8223 } 8224 EXPORT_SYMBOL(netdev_update_features); 8225 8226 /** 8227 * netdev_change_features - recalculate device features 8228 * @dev: the device to check 8229 * 8230 * Recalculate dev->features set and send notifications even 8231 * if they have not changed. Should be called instead of 8232 * netdev_update_features() if also dev->vlan_features might 8233 * have changed to allow the changes to be propagated to stacked 8234 * VLAN devices. 8235 */ 8236 void netdev_change_features(struct net_device *dev) 8237 { 8238 __netdev_update_features(dev); 8239 netdev_features_change(dev); 8240 } 8241 EXPORT_SYMBOL(netdev_change_features); 8242 8243 /** 8244 * netif_stacked_transfer_operstate - transfer operstate 8245 * @rootdev: the root or lower level device to transfer state from 8246 * @dev: the device to transfer operstate to 8247 * 8248 * Transfer operational state from root to device. This is normally 8249 * called when a stacking relationship exists between the root 8250 * device and the device(a leaf device). 8251 */ 8252 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 8253 struct net_device *dev) 8254 { 8255 if (rootdev->operstate == IF_OPER_DORMANT) 8256 netif_dormant_on(dev); 8257 else 8258 netif_dormant_off(dev); 8259 8260 if (netif_carrier_ok(rootdev)) 8261 netif_carrier_on(dev); 8262 else 8263 netif_carrier_off(dev); 8264 } 8265 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 8266 8267 static int netif_alloc_rx_queues(struct net_device *dev) 8268 { 8269 unsigned int i, count = dev->num_rx_queues; 8270 struct netdev_rx_queue *rx; 8271 size_t sz = count * sizeof(*rx); 8272 int err = 0; 8273 8274 BUG_ON(count < 1); 8275 8276 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8277 if (!rx) 8278 return -ENOMEM; 8279 8280 dev->_rx = rx; 8281 8282 for (i = 0; i < count; i++) { 8283 rx[i].dev = dev; 8284 8285 /* XDP RX-queue setup */ 8286 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i); 8287 if (err < 0) 8288 goto err_rxq_info; 8289 } 8290 return 0; 8291 8292 err_rxq_info: 8293 /* Rollback successful reg's and free other resources */ 8294 while (i--) 8295 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 8296 kvfree(dev->_rx); 8297 dev->_rx = NULL; 8298 return err; 8299 } 8300 8301 static void netif_free_rx_queues(struct net_device *dev) 8302 { 8303 unsigned int i, count = dev->num_rx_queues; 8304 8305 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 8306 if (!dev->_rx) 8307 return; 8308 8309 for (i = 0; i < count; i++) 8310 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 8311 8312 kvfree(dev->_rx); 8313 } 8314 8315 static void netdev_init_one_queue(struct net_device *dev, 8316 struct netdev_queue *queue, void *_unused) 8317 { 8318 /* Initialize queue lock */ 8319 spin_lock_init(&queue->_xmit_lock); 8320 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 8321 queue->xmit_lock_owner = -1; 8322 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 8323 queue->dev = dev; 8324 #ifdef CONFIG_BQL 8325 dql_init(&queue->dql, HZ); 8326 #endif 8327 } 8328 8329 static void netif_free_tx_queues(struct net_device *dev) 8330 { 8331 kvfree(dev->_tx); 8332 } 8333 8334 static int netif_alloc_netdev_queues(struct net_device *dev) 8335 { 8336 unsigned int count = dev->num_tx_queues; 8337 struct netdev_queue *tx; 8338 size_t sz = count * sizeof(*tx); 8339 8340 if (count < 1 || count > 0xffff) 8341 return -EINVAL; 8342 8343 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8344 if (!tx) 8345 return -ENOMEM; 8346 8347 dev->_tx = tx; 8348 8349 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 8350 spin_lock_init(&dev->tx_global_lock); 8351 8352 return 0; 8353 } 8354 8355 void netif_tx_stop_all_queues(struct net_device *dev) 8356 { 8357 unsigned int i; 8358 8359 for (i = 0; i < dev->num_tx_queues; i++) { 8360 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 8361 8362 netif_tx_stop_queue(txq); 8363 } 8364 } 8365 EXPORT_SYMBOL(netif_tx_stop_all_queues); 8366 8367 /** 8368 * register_netdevice - register a network device 8369 * @dev: device to register 8370 * 8371 * Take a completed network device structure and add it to the kernel 8372 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 8373 * chain. 0 is returned on success. A negative errno code is returned 8374 * on a failure to set up the device, or if the name is a duplicate. 8375 * 8376 * Callers must hold the rtnl semaphore. You may want 8377 * register_netdev() instead of this. 8378 * 8379 * BUGS: 8380 * The locking appears insufficient to guarantee two parallel registers 8381 * will not get the same name. 8382 */ 8383 8384 int register_netdevice(struct net_device *dev) 8385 { 8386 int ret; 8387 struct net *net = dev_net(dev); 8388 8389 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 8390 NETDEV_FEATURE_COUNT); 8391 BUG_ON(dev_boot_phase); 8392 ASSERT_RTNL(); 8393 8394 might_sleep(); 8395 8396 /* When net_device's are persistent, this will be fatal. */ 8397 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 8398 BUG_ON(!net); 8399 8400 spin_lock_init(&dev->addr_list_lock); 8401 netdev_set_addr_lockdep_class(dev); 8402 8403 ret = dev_get_valid_name(net, dev, dev->name); 8404 if (ret < 0) 8405 goto out; 8406 8407 /* Init, if this function is available */ 8408 if (dev->netdev_ops->ndo_init) { 8409 ret = dev->netdev_ops->ndo_init(dev); 8410 if (ret) { 8411 if (ret > 0) 8412 ret = -EIO; 8413 goto out; 8414 } 8415 } 8416 8417 if (((dev->hw_features | dev->features) & 8418 NETIF_F_HW_VLAN_CTAG_FILTER) && 8419 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 8420 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 8421 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 8422 ret = -EINVAL; 8423 goto err_uninit; 8424 } 8425 8426 ret = -EBUSY; 8427 if (!dev->ifindex) 8428 dev->ifindex = dev_new_index(net); 8429 else if (__dev_get_by_index(net, dev->ifindex)) 8430 goto err_uninit; 8431 8432 /* Transfer changeable features to wanted_features and enable 8433 * software offloads (GSO and GRO). 8434 */ 8435 dev->hw_features |= NETIF_F_SOFT_FEATURES; 8436 dev->features |= NETIF_F_SOFT_FEATURES; 8437 8438 if (dev->netdev_ops->ndo_udp_tunnel_add) { 8439 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 8440 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 8441 } 8442 8443 dev->wanted_features = dev->features & dev->hw_features; 8444 8445 if (!(dev->flags & IFF_LOOPBACK)) 8446 dev->hw_features |= NETIF_F_NOCACHE_COPY; 8447 8448 /* If IPv4 TCP segmentation offload is supported we should also 8449 * allow the device to enable segmenting the frame with the option 8450 * of ignoring a static IP ID value. This doesn't enable the 8451 * feature itself but allows the user to enable it later. 8452 */ 8453 if (dev->hw_features & NETIF_F_TSO) 8454 dev->hw_features |= NETIF_F_TSO_MANGLEID; 8455 if (dev->vlan_features & NETIF_F_TSO) 8456 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 8457 if (dev->mpls_features & NETIF_F_TSO) 8458 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 8459 if (dev->hw_enc_features & NETIF_F_TSO) 8460 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 8461 8462 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 8463 */ 8464 dev->vlan_features |= NETIF_F_HIGHDMA; 8465 8466 /* Make NETIF_F_SG inheritable to tunnel devices. 8467 */ 8468 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 8469 8470 /* Make NETIF_F_SG inheritable to MPLS. 8471 */ 8472 dev->mpls_features |= NETIF_F_SG; 8473 8474 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 8475 ret = notifier_to_errno(ret); 8476 if (ret) 8477 goto err_uninit; 8478 8479 ret = netdev_register_kobject(dev); 8480 if (ret) 8481 goto err_uninit; 8482 dev->reg_state = NETREG_REGISTERED; 8483 8484 __netdev_update_features(dev); 8485 8486 /* 8487 * Default initial state at registry is that the 8488 * device is present. 8489 */ 8490 8491 set_bit(__LINK_STATE_PRESENT, &dev->state); 8492 8493 linkwatch_init_dev(dev); 8494 8495 dev_init_scheduler(dev); 8496 dev_hold(dev); 8497 list_netdevice(dev); 8498 add_device_randomness(dev->dev_addr, dev->addr_len); 8499 8500 /* If the device has permanent device address, driver should 8501 * set dev_addr and also addr_assign_type should be set to 8502 * NET_ADDR_PERM (default value). 8503 */ 8504 if (dev->addr_assign_type == NET_ADDR_PERM) 8505 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 8506 8507 /* Notify protocols, that a new device appeared. */ 8508 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 8509 ret = notifier_to_errno(ret); 8510 if (ret) { 8511 rollback_registered(dev); 8512 dev->reg_state = NETREG_UNREGISTERED; 8513 } 8514 /* 8515 * Prevent userspace races by waiting until the network 8516 * device is fully setup before sending notifications. 8517 */ 8518 if (!dev->rtnl_link_ops || 8519 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 8520 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8521 8522 out: 8523 return ret; 8524 8525 err_uninit: 8526 if (dev->netdev_ops->ndo_uninit) 8527 dev->netdev_ops->ndo_uninit(dev); 8528 if (dev->priv_destructor) 8529 dev->priv_destructor(dev); 8530 goto out; 8531 } 8532 EXPORT_SYMBOL(register_netdevice); 8533 8534 /** 8535 * init_dummy_netdev - init a dummy network device for NAPI 8536 * @dev: device to init 8537 * 8538 * This takes a network device structure and initialize the minimum 8539 * amount of fields so it can be used to schedule NAPI polls without 8540 * registering a full blown interface. This is to be used by drivers 8541 * that need to tie several hardware interfaces to a single NAPI 8542 * poll scheduler due to HW limitations. 8543 */ 8544 int init_dummy_netdev(struct net_device *dev) 8545 { 8546 /* Clear everything. Note we don't initialize spinlocks 8547 * are they aren't supposed to be taken by any of the 8548 * NAPI code and this dummy netdev is supposed to be 8549 * only ever used for NAPI polls 8550 */ 8551 memset(dev, 0, sizeof(struct net_device)); 8552 8553 /* make sure we BUG if trying to hit standard 8554 * register/unregister code path 8555 */ 8556 dev->reg_state = NETREG_DUMMY; 8557 8558 /* NAPI wants this */ 8559 INIT_LIST_HEAD(&dev->napi_list); 8560 8561 /* a dummy interface is started by default */ 8562 set_bit(__LINK_STATE_PRESENT, &dev->state); 8563 set_bit(__LINK_STATE_START, &dev->state); 8564 8565 /* Note : We dont allocate pcpu_refcnt for dummy devices, 8566 * because users of this 'device' dont need to change 8567 * its refcount. 8568 */ 8569 8570 return 0; 8571 } 8572 EXPORT_SYMBOL_GPL(init_dummy_netdev); 8573 8574 8575 /** 8576 * register_netdev - register a network device 8577 * @dev: device to register 8578 * 8579 * Take a completed network device structure and add it to the kernel 8580 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 8581 * chain. 0 is returned on success. A negative errno code is returned 8582 * on a failure to set up the device, or if the name is a duplicate. 8583 * 8584 * This is a wrapper around register_netdevice that takes the rtnl semaphore 8585 * and expands the device name if you passed a format string to 8586 * alloc_netdev. 8587 */ 8588 int register_netdev(struct net_device *dev) 8589 { 8590 int err; 8591 8592 if (rtnl_lock_killable()) 8593 return -EINTR; 8594 err = register_netdevice(dev); 8595 rtnl_unlock(); 8596 return err; 8597 } 8598 EXPORT_SYMBOL(register_netdev); 8599 8600 int netdev_refcnt_read(const struct net_device *dev) 8601 { 8602 int i, refcnt = 0; 8603 8604 for_each_possible_cpu(i) 8605 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 8606 return refcnt; 8607 } 8608 EXPORT_SYMBOL(netdev_refcnt_read); 8609 8610 /** 8611 * netdev_wait_allrefs - wait until all references are gone. 8612 * @dev: target net_device 8613 * 8614 * This is called when unregistering network devices. 8615 * 8616 * Any protocol or device that holds a reference should register 8617 * for netdevice notification, and cleanup and put back the 8618 * reference if they receive an UNREGISTER event. 8619 * We can get stuck here if buggy protocols don't correctly 8620 * call dev_put. 8621 */ 8622 static void netdev_wait_allrefs(struct net_device *dev) 8623 { 8624 unsigned long rebroadcast_time, warning_time; 8625 int refcnt; 8626 8627 linkwatch_forget_dev(dev); 8628 8629 rebroadcast_time = warning_time = jiffies; 8630 refcnt = netdev_refcnt_read(dev); 8631 8632 while (refcnt != 0) { 8633 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 8634 rtnl_lock(); 8635 8636 /* Rebroadcast unregister notification */ 8637 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8638 8639 __rtnl_unlock(); 8640 rcu_barrier(); 8641 rtnl_lock(); 8642 8643 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 8644 &dev->state)) { 8645 /* We must not have linkwatch events 8646 * pending on unregister. If this 8647 * happens, we simply run the queue 8648 * unscheduled, resulting in a noop 8649 * for this device. 8650 */ 8651 linkwatch_run_queue(); 8652 } 8653 8654 __rtnl_unlock(); 8655 8656 rebroadcast_time = jiffies; 8657 } 8658 8659 msleep(250); 8660 8661 refcnt = netdev_refcnt_read(dev); 8662 8663 if (time_after(jiffies, warning_time + 10 * HZ)) { 8664 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 8665 dev->name, refcnt); 8666 warning_time = jiffies; 8667 } 8668 } 8669 } 8670 8671 /* The sequence is: 8672 * 8673 * rtnl_lock(); 8674 * ... 8675 * register_netdevice(x1); 8676 * register_netdevice(x2); 8677 * ... 8678 * unregister_netdevice(y1); 8679 * unregister_netdevice(y2); 8680 * ... 8681 * rtnl_unlock(); 8682 * free_netdev(y1); 8683 * free_netdev(y2); 8684 * 8685 * We are invoked by rtnl_unlock(). 8686 * This allows us to deal with problems: 8687 * 1) We can delete sysfs objects which invoke hotplug 8688 * without deadlocking with linkwatch via keventd. 8689 * 2) Since we run with the RTNL semaphore not held, we can sleep 8690 * safely in order to wait for the netdev refcnt to drop to zero. 8691 * 8692 * We must not return until all unregister events added during 8693 * the interval the lock was held have been completed. 8694 */ 8695 void netdev_run_todo(void) 8696 { 8697 struct list_head list; 8698 8699 /* Snapshot list, allow later requests */ 8700 list_replace_init(&net_todo_list, &list); 8701 8702 __rtnl_unlock(); 8703 8704 8705 /* Wait for rcu callbacks to finish before next phase */ 8706 if (!list_empty(&list)) 8707 rcu_barrier(); 8708 8709 while (!list_empty(&list)) { 8710 struct net_device *dev 8711 = list_first_entry(&list, struct net_device, todo_list); 8712 list_del(&dev->todo_list); 8713 8714 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 8715 pr_err("network todo '%s' but state %d\n", 8716 dev->name, dev->reg_state); 8717 dump_stack(); 8718 continue; 8719 } 8720 8721 dev->reg_state = NETREG_UNREGISTERED; 8722 8723 netdev_wait_allrefs(dev); 8724 8725 /* paranoia */ 8726 BUG_ON(netdev_refcnt_read(dev)); 8727 BUG_ON(!list_empty(&dev->ptype_all)); 8728 BUG_ON(!list_empty(&dev->ptype_specific)); 8729 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 8730 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 8731 #if IS_ENABLED(CONFIG_DECNET) 8732 WARN_ON(dev->dn_ptr); 8733 #endif 8734 if (dev->priv_destructor) 8735 dev->priv_destructor(dev); 8736 if (dev->needs_free_netdev) 8737 free_netdev(dev); 8738 8739 /* Report a network device has been unregistered */ 8740 rtnl_lock(); 8741 dev_net(dev)->dev_unreg_count--; 8742 __rtnl_unlock(); 8743 wake_up(&netdev_unregistering_wq); 8744 8745 /* Free network device */ 8746 kobject_put(&dev->dev.kobj); 8747 } 8748 } 8749 8750 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 8751 * all the same fields in the same order as net_device_stats, with only 8752 * the type differing, but rtnl_link_stats64 may have additional fields 8753 * at the end for newer counters. 8754 */ 8755 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 8756 const struct net_device_stats *netdev_stats) 8757 { 8758 #if BITS_PER_LONG == 64 8759 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 8760 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 8761 /* zero out counters that only exist in rtnl_link_stats64 */ 8762 memset((char *)stats64 + sizeof(*netdev_stats), 0, 8763 sizeof(*stats64) - sizeof(*netdev_stats)); 8764 #else 8765 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 8766 const unsigned long *src = (const unsigned long *)netdev_stats; 8767 u64 *dst = (u64 *)stats64; 8768 8769 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 8770 for (i = 0; i < n; i++) 8771 dst[i] = src[i]; 8772 /* zero out counters that only exist in rtnl_link_stats64 */ 8773 memset((char *)stats64 + n * sizeof(u64), 0, 8774 sizeof(*stats64) - n * sizeof(u64)); 8775 #endif 8776 } 8777 EXPORT_SYMBOL(netdev_stats_to_stats64); 8778 8779 /** 8780 * dev_get_stats - get network device statistics 8781 * @dev: device to get statistics from 8782 * @storage: place to store stats 8783 * 8784 * Get network statistics from device. Return @storage. 8785 * The device driver may provide its own method by setting 8786 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 8787 * otherwise the internal statistics structure is used. 8788 */ 8789 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 8790 struct rtnl_link_stats64 *storage) 8791 { 8792 const struct net_device_ops *ops = dev->netdev_ops; 8793 8794 if (ops->ndo_get_stats64) { 8795 memset(storage, 0, sizeof(*storage)); 8796 ops->ndo_get_stats64(dev, storage); 8797 } else if (ops->ndo_get_stats) { 8798 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 8799 } else { 8800 netdev_stats_to_stats64(storage, &dev->stats); 8801 } 8802 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 8803 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 8804 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 8805 return storage; 8806 } 8807 EXPORT_SYMBOL(dev_get_stats); 8808 8809 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 8810 { 8811 struct netdev_queue *queue = dev_ingress_queue(dev); 8812 8813 #ifdef CONFIG_NET_CLS_ACT 8814 if (queue) 8815 return queue; 8816 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 8817 if (!queue) 8818 return NULL; 8819 netdev_init_one_queue(dev, queue, NULL); 8820 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 8821 queue->qdisc_sleeping = &noop_qdisc; 8822 rcu_assign_pointer(dev->ingress_queue, queue); 8823 #endif 8824 return queue; 8825 } 8826 8827 static const struct ethtool_ops default_ethtool_ops; 8828 8829 void netdev_set_default_ethtool_ops(struct net_device *dev, 8830 const struct ethtool_ops *ops) 8831 { 8832 if (dev->ethtool_ops == &default_ethtool_ops) 8833 dev->ethtool_ops = ops; 8834 } 8835 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 8836 8837 void netdev_freemem(struct net_device *dev) 8838 { 8839 char *addr = (char *)dev - dev->padded; 8840 8841 kvfree(addr); 8842 } 8843 8844 /** 8845 * alloc_netdev_mqs - allocate network device 8846 * @sizeof_priv: size of private data to allocate space for 8847 * @name: device name format string 8848 * @name_assign_type: origin of device name 8849 * @setup: callback to initialize device 8850 * @txqs: the number of TX subqueues to allocate 8851 * @rxqs: the number of RX subqueues to allocate 8852 * 8853 * Allocates a struct net_device with private data area for driver use 8854 * and performs basic initialization. Also allocates subqueue structs 8855 * for each queue on the device. 8856 */ 8857 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 8858 unsigned char name_assign_type, 8859 void (*setup)(struct net_device *), 8860 unsigned int txqs, unsigned int rxqs) 8861 { 8862 struct net_device *dev; 8863 unsigned int alloc_size; 8864 struct net_device *p; 8865 8866 BUG_ON(strlen(name) >= sizeof(dev->name)); 8867 8868 if (txqs < 1) { 8869 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 8870 return NULL; 8871 } 8872 8873 if (rxqs < 1) { 8874 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 8875 return NULL; 8876 } 8877 8878 alloc_size = sizeof(struct net_device); 8879 if (sizeof_priv) { 8880 /* ensure 32-byte alignment of private area */ 8881 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 8882 alloc_size += sizeof_priv; 8883 } 8884 /* ensure 32-byte alignment of whole construct */ 8885 alloc_size += NETDEV_ALIGN - 1; 8886 8887 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8888 if (!p) 8889 return NULL; 8890 8891 dev = PTR_ALIGN(p, NETDEV_ALIGN); 8892 dev->padded = (char *)dev - (char *)p; 8893 8894 dev->pcpu_refcnt = alloc_percpu(int); 8895 if (!dev->pcpu_refcnt) 8896 goto free_dev; 8897 8898 if (dev_addr_init(dev)) 8899 goto free_pcpu; 8900 8901 dev_mc_init(dev); 8902 dev_uc_init(dev); 8903 8904 dev_net_set(dev, &init_net); 8905 8906 dev->gso_max_size = GSO_MAX_SIZE; 8907 dev->gso_max_segs = GSO_MAX_SEGS; 8908 8909 INIT_LIST_HEAD(&dev->napi_list); 8910 INIT_LIST_HEAD(&dev->unreg_list); 8911 INIT_LIST_HEAD(&dev->close_list); 8912 INIT_LIST_HEAD(&dev->link_watch_list); 8913 INIT_LIST_HEAD(&dev->adj_list.upper); 8914 INIT_LIST_HEAD(&dev->adj_list.lower); 8915 INIT_LIST_HEAD(&dev->ptype_all); 8916 INIT_LIST_HEAD(&dev->ptype_specific); 8917 #ifdef CONFIG_NET_SCHED 8918 hash_init(dev->qdisc_hash); 8919 #endif 8920 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 8921 setup(dev); 8922 8923 if (!dev->tx_queue_len) { 8924 dev->priv_flags |= IFF_NO_QUEUE; 8925 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 8926 } 8927 8928 dev->num_tx_queues = txqs; 8929 dev->real_num_tx_queues = txqs; 8930 if (netif_alloc_netdev_queues(dev)) 8931 goto free_all; 8932 8933 dev->num_rx_queues = rxqs; 8934 dev->real_num_rx_queues = rxqs; 8935 if (netif_alloc_rx_queues(dev)) 8936 goto free_all; 8937 8938 strcpy(dev->name, name); 8939 dev->name_assign_type = name_assign_type; 8940 dev->group = INIT_NETDEV_GROUP; 8941 if (!dev->ethtool_ops) 8942 dev->ethtool_ops = &default_ethtool_ops; 8943 8944 nf_hook_ingress_init(dev); 8945 8946 return dev; 8947 8948 free_all: 8949 free_netdev(dev); 8950 return NULL; 8951 8952 free_pcpu: 8953 free_percpu(dev->pcpu_refcnt); 8954 free_dev: 8955 netdev_freemem(dev); 8956 return NULL; 8957 } 8958 EXPORT_SYMBOL(alloc_netdev_mqs); 8959 8960 /** 8961 * free_netdev - free network device 8962 * @dev: device 8963 * 8964 * This function does the last stage of destroying an allocated device 8965 * interface. The reference to the device object is released. If this 8966 * is the last reference then it will be freed.Must be called in process 8967 * context. 8968 */ 8969 void free_netdev(struct net_device *dev) 8970 { 8971 struct napi_struct *p, *n; 8972 8973 might_sleep(); 8974 netif_free_tx_queues(dev); 8975 netif_free_rx_queues(dev); 8976 8977 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 8978 8979 /* Flush device addresses */ 8980 dev_addr_flush(dev); 8981 8982 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 8983 netif_napi_del(p); 8984 8985 free_percpu(dev->pcpu_refcnt); 8986 dev->pcpu_refcnt = NULL; 8987 8988 /* Compatibility with error handling in drivers */ 8989 if (dev->reg_state == NETREG_UNINITIALIZED) { 8990 netdev_freemem(dev); 8991 return; 8992 } 8993 8994 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 8995 dev->reg_state = NETREG_RELEASED; 8996 8997 /* will free via device release */ 8998 put_device(&dev->dev); 8999 } 9000 EXPORT_SYMBOL(free_netdev); 9001 9002 /** 9003 * synchronize_net - Synchronize with packet receive processing 9004 * 9005 * Wait for packets currently being received to be done. 9006 * Does not block later packets from starting. 9007 */ 9008 void synchronize_net(void) 9009 { 9010 might_sleep(); 9011 if (rtnl_is_locked()) 9012 synchronize_rcu_expedited(); 9013 else 9014 synchronize_rcu(); 9015 } 9016 EXPORT_SYMBOL(synchronize_net); 9017 9018 /** 9019 * unregister_netdevice_queue - remove device from the kernel 9020 * @dev: device 9021 * @head: list 9022 * 9023 * This function shuts down a device interface and removes it 9024 * from the kernel tables. 9025 * If head not NULL, device is queued to be unregistered later. 9026 * 9027 * Callers must hold the rtnl semaphore. You may want 9028 * unregister_netdev() instead of this. 9029 */ 9030 9031 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 9032 { 9033 ASSERT_RTNL(); 9034 9035 if (head) { 9036 list_move_tail(&dev->unreg_list, head); 9037 } else { 9038 rollback_registered(dev); 9039 /* Finish processing unregister after unlock */ 9040 net_set_todo(dev); 9041 } 9042 } 9043 EXPORT_SYMBOL(unregister_netdevice_queue); 9044 9045 /** 9046 * unregister_netdevice_many - unregister many devices 9047 * @head: list of devices 9048 * 9049 * Note: As most callers use a stack allocated list_head, 9050 * we force a list_del() to make sure stack wont be corrupted later. 9051 */ 9052 void unregister_netdevice_many(struct list_head *head) 9053 { 9054 struct net_device *dev; 9055 9056 if (!list_empty(head)) { 9057 rollback_registered_many(head); 9058 list_for_each_entry(dev, head, unreg_list) 9059 net_set_todo(dev); 9060 list_del(head); 9061 } 9062 } 9063 EXPORT_SYMBOL(unregister_netdevice_many); 9064 9065 /** 9066 * unregister_netdev - remove device from the kernel 9067 * @dev: device 9068 * 9069 * This function shuts down a device interface and removes it 9070 * from the kernel tables. 9071 * 9072 * This is just a wrapper for unregister_netdevice that takes 9073 * the rtnl semaphore. In general you want to use this and not 9074 * unregister_netdevice. 9075 */ 9076 void unregister_netdev(struct net_device *dev) 9077 { 9078 rtnl_lock(); 9079 unregister_netdevice(dev); 9080 rtnl_unlock(); 9081 } 9082 EXPORT_SYMBOL(unregister_netdev); 9083 9084 /** 9085 * dev_change_net_namespace - move device to different nethost namespace 9086 * @dev: device 9087 * @net: network namespace 9088 * @pat: If not NULL name pattern to try if the current device name 9089 * is already taken in the destination network namespace. 9090 * 9091 * This function shuts down a device interface and moves it 9092 * to a new network namespace. On success 0 is returned, on 9093 * a failure a netagive errno code is returned. 9094 * 9095 * Callers must hold the rtnl semaphore. 9096 */ 9097 9098 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 9099 { 9100 int err, new_nsid, new_ifindex; 9101 9102 ASSERT_RTNL(); 9103 9104 /* Don't allow namespace local devices to be moved. */ 9105 err = -EINVAL; 9106 if (dev->features & NETIF_F_NETNS_LOCAL) 9107 goto out; 9108 9109 /* Ensure the device has been registrered */ 9110 if (dev->reg_state != NETREG_REGISTERED) 9111 goto out; 9112 9113 /* Get out if there is nothing todo */ 9114 err = 0; 9115 if (net_eq(dev_net(dev), net)) 9116 goto out; 9117 9118 /* Pick the destination device name, and ensure 9119 * we can use it in the destination network namespace. 9120 */ 9121 err = -EEXIST; 9122 if (__dev_get_by_name(net, dev->name)) { 9123 /* We get here if we can't use the current device name */ 9124 if (!pat) 9125 goto out; 9126 err = dev_get_valid_name(net, dev, pat); 9127 if (err < 0) 9128 goto out; 9129 } 9130 9131 /* 9132 * And now a mini version of register_netdevice unregister_netdevice. 9133 */ 9134 9135 /* If device is running close it first. */ 9136 dev_close(dev); 9137 9138 /* And unlink it from device chain */ 9139 unlist_netdevice(dev); 9140 9141 synchronize_net(); 9142 9143 /* Shutdown queueing discipline. */ 9144 dev_shutdown(dev); 9145 9146 /* Notify protocols, that we are about to destroy 9147 * this device. They should clean all the things. 9148 * 9149 * Note that dev->reg_state stays at NETREG_REGISTERED. 9150 * This is wanted because this way 8021q and macvlan know 9151 * the device is just moving and can keep their slaves up. 9152 */ 9153 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 9154 rcu_barrier(); 9155 9156 new_nsid = peernet2id_alloc(dev_net(dev), net); 9157 /* If there is an ifindex conflict assign a new one */ 9158 if (__dev_get_by_index(net, dev->ifindex)) 9159 new_ifindex = dev_new_index(net); 9160 else 9161 new_ifindex = dev->ifindex; 9162 9163 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 9164 new_ifindex); 9165 9166 /* 9167 * Flush the unicast and multicast chains 9168 */ 9169 dev_uc_flush(dev); 9170 dev_mc_flush(dev); 9171 9172 /* Send a netdev-removed uevent to the old namespace */ 9173 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 9174 netdev_adjacent_del_links(dev); 9175 9176 /* Actually switch the network namespace */ 9177 dev_net_set(dev, net); 9178 dev->ifindex = new_ifindex; 9179 9180 /* Send a netdev-add uevent to the new namespace */ 9181 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 9182 netdev_adjacent_add_links(dev); 9183 9184 /* Fixup kobjects */ 9185 err = device_rename(&dev->dev, dev->name); 9186 WARN_ON(err); 9187 9188 /* Add the device back in the hashes */ 9189 list_netdevice(dev); 9190 9191 /* Notify protocols, that a new device appeared. */ 9192 call_netdevice_notifiers(NETDEV_REGISTER, dev); 9193 9194 /* 9195 * Prevent userspace races by waiting until the network 9196 * device is fully setup before sending notifications. 9197 */ 9198 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 9199 9200 synchronize_net(); 9201 err = 0; 9202 out: 9203 return err; 9204 } 9205 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 9206 9207 static int dev_cpu_dead(unsigned int oldcpu) 9208 { 9209 struct sk_buff **list_skb; 9210 struct sk_buff *skb; 9211 unsigned int cpu; 9212 struct softnet_data *sd, *oldsd, *remsd = NULL; 9213 9214 local_irq_disable(); 9215 cpu = smp_processor_id(); 9216 sd = &per_cpu(softnet_data, cpu); 9217 oldsd = &per_cpu(softnet_data, oldcpu); 9218 9219 /* Find end of our completion_queue. */ 9220 list_skb = &sd->completion_queue; 9221 while (*list_skb) 9222 list_skb = &(*list_skb)->next; 9223 /* Append completion queue from offline CPU. */ 9224 *list_skb = oldsd->completion_queue; 9225 oldsd->completion_queue = NULL; 9226 9227 /* Append output queue from offline CPU. */ 9228 if (oldsd->output_queue) { 9229 *sd->output_queue_tailp = oldsd->output_queue; 9230 sd->output_queue_tailp = oldsd->output_queue_tailp; 9231 oldsd->output_queue = NULL; 9232 oldsd->output_queue_tailp = &oldsd->output_queue; 9233 } 9234 /* Append NAPI poll list from offline CPU, with one exception : 9235 * process_backlog() must be called by cpu owning percpu backlog. 9236 * We properly handle process_queue & input_pkt_queue later. 9237 */ 9238 while (!list_empty(&oldsd->poll_list)) { 9239 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 9240 struct napi_struct, 9241 poll_list); 9242 9243 list_del_init(&napi->poll_list); 9244 if (napi->poll == process_backlog) 9245 napi->state = 0; 9246 else 9247 ____napi_schedule(sd, napi); 9248 } 9249 9250 raise_softirq_irqoff(NET_TX_SOFTIRQ); 9251 local_irq_enable(); 9252 9253 #ifdef CONFIG_RPS 9254 remsd = oldsd->rps_ipi_list; 9255 oldsd->rps_ipi_list = NULL; 9256 #endif 9257 /* send out pending IPI's on offline CPU */ 9258 net_rps_send_ipi(remsd); 9259 9260 /* Process offline CPU's input_pkt_queue */ 9261 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 9262 netif_rx_ni(skb); 9263 input_queue_head_incr(oldsd); 9264 } 9265 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 9266 netif_rx_ni(skb); 9267 input_queue_head_incr(oldsd); 9268 } 9269 9270 return 0; 9271 } 9272 9273 /** 9274 * netdev_increment_features - increment feature set by one 9275 * @all: current feature set 9276 * @one: new feature set 9277 * @mask: mask feature set 9278 * 9279 * Computes a new feature set after adding a device with feature set 9280 * @one to the master device with current feature set @all. Will not 9281 * enable anything that is off in @mask. Returns the new feature set. 9282 */ 9283 netdev_features_t netdev_increment_features(netdev_features_t all, 9284 netdev_features_t one, netdev_features_t mask) 9285 { 9286 if (mask & NETIF_F_HW_CSUM) 9287 mask |= NETIF_F_CSUM_MASK; 9288 mask |= NETIF_F_VLAN_CHALLENGED; 9289 9290 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 9291 all &= one | ~NETIF_F_ALL_FOR_ALL; 9292 9293 /* If one device supports hw checksumming, set for all. */ 9294 if (all & NETIF_F_HW_CSUM) 9295 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 9296 9297 return all; 9298 } 9299 EXPORT_SYMBOL(netdev_increment_features); 9300 9301 static struct hlist_head * __net_init netdev_create_hash(void) 9302 { 9303 int i; 9304 struct hlist_head *hash; 9305 9306 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 9307 if (hash != NULL) 9308 for (i = 0; i < NETDEV_HASHENTRIES; i++) 9309 INIT_HLIST_HEAD(&hash[i]); 9310 9311 return hash; 9312 } 9313 9314 /* Initialize per network namespace state */ 9315 static int __net_init netdev_init(struct net *net) 9316 { 9317 BUILD_BUG_ON(GRO_HASH_BUCKETS > 9318 8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask)); 9319 9320 if (net != &init_net) 9321 INIT_LIST_HEAD(&net->dev_base_head); 9322 9323 net->dev_name_head = netdev_create_hash(); 9324 if (net->dev_name_head == NULL) 9325 goto err_name; 9326 9327 net->dev_index_head = netdev_create_hash(); 9328 if (net->dev_index_head == NULL) 9329 goto err_idx; 9330 9331 return 0; 9332 9333 err_idx: 9334 kfree(net->dev_name_head); 9335 err_name: 9336 return -ENOMEM; 9337 } 9338 9339 /** 9340 * netdev_drivername - network driver for the device 9341 * @dev: network device 9342 * 9343 * Determine network driver for device. 9344 */ 9345 const char *netdev_drivername(const struct net_device *dev) 9346 { 9347 const struct device_driver *driver; 9348 const struct device *parent; 9349 const char *empty = ""; 9350 9351 parent = dev->dev.parent; 9352 if (!parent) 9353 return empty; 9354 9355 driver = parent->driver; 9356 if (driver && driver->name) 9357 return driver->name; 9358 return empty; 9359 } 9360 9361 static void __netdev_printk(const char *level, const struct net_device *dev, 9362 struct va_format *vaf) 9363 { 9364 if (dev && dev->dev.parent) { 9365 dev_printk_emit(level[1] - '0', 9366 dev->dev.parent, 9367 "%s %s %s%s: %pV", 9368 dev_driver_string(dev->dev.parent), 9369 dev_name(dev->dev.parent), 9370 netdev_name(dev), netdev_reg_state(dev), 9371 vaf); 9372 } else if (dev) { 9373 printk("%s%s%s: %pV", 9374 level, netdev_name(dev), netdev_reg_state(dev), vaf); 9375 } else { 9376 printk("%s(NULL net_device): %pV", level, vaf); 9377 } 9378 } 9379 9380 void netdev_printk(const char *level, const struct net_device *dev, 9381 const char *format, ...) 9382 { 9383 struct va_format vaf; 9384 va_list args; 9385 9386 va_start(args, format); 9387 9388 vaf.fmt = format; 9389 vaf.va = &args; 9390 9391 __netdev_printk(level, dev, &vaf); 9392 9393 va_end(args); 9394 } 9395 EXPORT_SYMBOL(netdev_printk); 9396 9397 #define define_netdev_printk_level(func, level) \ 9398 void func(const struct net_device *dev, const char *fmt, ...) \ 9399 { \ 9400 struct va_format vaf; \ 9401 va_list args; \ 9402 \ 9403 va_start(args, fmt); \ 9404 \ 9405 vaf.fmt = fmt; \ 9406 vaf.va = &args; \ 9407 \ 9408 __netdev_printk(level, dev, &vaf); \ 9409 \ 9410 va_end(args); \ 9411 } \ 9412 EXPORT_SYMBOL(func); 9413 9414 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 9415 define_netdev_printk_level(netdev_alert, KERN_ALERT); 9416 define_netdev_printk_level(netdev_crit, KERN_CRIT); 9417 define_netdev_printk_level(netdev_err, KERN_ERR); 9418 define_netdev_printk_level(netdev_warn, KERN_WARNING); 9419 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 9420 define_netdev_printk_level(netdev_info, KERN_INFO); 9421 9422 static void __net_exit netdev_exit(struct net *net) 9423 { 9424 kfree(net->dev_name_head); 9425 kfree(net->dev_index_head); 9426 if (net != &init_net) 9427 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 9428 } 9429 9430 static struct pernet_operations __net_initdata netdev_net_ops = { 9431 .init = netdev_init, 9432 .exit = netdev_exit, 9433 }; 9434 9435 static void __net_exit default_device_exit(struct net *net) 9436 { 9437 struct net_device *dev, *aux; 9438 /* 9439 * Push all migratable network devices back to the 9440 * initial network namespace 9441 */ 9442 rtnl_lock(); 9443 for_each_netdev_safe(net, dev, aux) { 9444 int err; 9445 char fb_name[IFNAMSIZ]; 9446 9447 /* Ignore unmoveable devices (i.e. loopback) */ 9448 if (dev->features & NETIF_F_NETNS_LOCAL) 9449 continue; 9450 9451 /* Leave virtual devices for the generic cleanup */ 9452 if (dev->rtnl_link_ops) 9453 continue; 9454 9455 /* Push remaining network devices to init_net */ 9456 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 9457 err = dev_change_net_namespace(dev, &init_net, fb_name); 9458 if (err) { 9459 pr_emerg("%s: failed to move %s to init_net: %d\n", 9460 __func__, dev->name, err); 9461 BUG(); 9462 } 9463 } 9464 rtnl_unlock(); 9465 } 9466 9467 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 9468 { 9469 /* Return with the rtnl_lock held when there are no network 9470 * devices unregistering in any network namespace in net_list. 9471 */ 9472 struct net *net; 9473 bool unregistering; 9474 DEFINE_WAIT_FUNC(wait, woken_wake_function); 9475 9476 add_wait_queue(&netdev_unregistering_wq, &wait); 9477 for (;;) { 9478 unregistering = false; 9479 rtnl_lock(); 9480 list_for_each_entry(net, net_list, exit_list) { 9481 if (net->dev_unreg_count > 0) { 9482 unregistering = true; 9483 break; 9484 } 9485 } 9486 if (!unregistering) 9487 break; 9488 __rtnl_unlock(); 9489 9490 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 9491 } 9492 remove_wait_queue(&netdev_unregistering_wq, &wait); 9493 } 9494 9495 static void __net_exit default_device_exit_batch(struct list_head *net_list) 9496 { 9497 /* At exit all network devices most be removed from a network 9498 * namespace. Do this in the reverse order of registration. 9499 * Do this across as many network namespaces as possible to 9500 * improve batching efficiency. 9501 */ 9502 struct net_device *dev; 9503 struct net *net; 9504 LIST_HEAD(dev_kill_list); 9505 9506 /* To prevent network device cleanup code from dereferencing 9507 * loopback devices or network devices that have been freed 9508 * wait here for all pending unregistrations to complete, 9509 * before unregistring the loopback device and allowing the 9510 * network namespace be freed. 9511 * 9512 * The netdev todo list containing all network devices 9513 * unregistrations that happen in default_device_exit_batch 9514 * will run in the rtnl_unlock() at the end of 9515 * default_device_exit_batch. 9516 */ 9517 rtnl_lock_unregistering(net_list); 9518 list_for_each_entry(net, net_list, exit_list) { 9519 for_each_netdev_reverse(net, dev) { 9520 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 9521 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 9522 else 9523 unregister_netdevice_queue(dev, &dev_kill_list); 9524 } 9525 } 9526 unregister_netdevice_many(&dev_kill_list); 9527 rtnl_unlock(); 9528 } 9529 9530 static struct pernet_operations __net_initdata default_device_ops = { 9531 .exit = default_device_exit, 9532 .exit_batch = default_device_exit_batch, 9533 }; 9534 9535 /* 9536 * Initialize the DEV module. At boot time this walks the device list and 9537 * unhooks any devices that fail to initialise (normally hardware not 9538 * present) and leaves us with a valid list of present and active devices. 9539 * 9540 */ 9541 9542 /* 9543 * This is called single threaded during boot, so no need 9544 * to take the rtnl semaphore. 9545 */ 9546 static int __init net_dev_init(void) 9547 { 9548 int i, rc = -ENOMEM; 9549 9550 BUG_ON(!dev_boot_phase); 9551 9552 if (dev_proc_init()) 9553 goto out; 9554 9555 if (netdev_kobject_init()) 9556 goto out; 9557 9558 INIT_LIST_HEAD(&ptype_all); 9559 for (i = 0; i < PTYPE_HASH_SIZE; i++) 9560 INIT_LIST_HEAD(&ptype_base[i]); 9561 9562 INIT_LIST_HEAD(&offload_base); 9563 9564 if (register_pernet_subsys(&netdev_net_ops)) 9565 goto out; 9566 9567 /* 9568 * Initialise the packet receive queues. 9569 */ 9570 9571 for_each_possible_cpu(i) { 9572 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 9573 struct softnet_data *sd = &per_cpu(softnet_data, i); 9574 9575 INIT_WORK(flush, flush_backlog); 9576 9577 skb_queue_head_init(&sd->input_pkt_queue); 9578 skb_queue_head_init(&sd->process_queue); 9579 #ifdef CONFIG_XFRM_OFFLOAD 9580 skb_queue_head_init(&sd->xfrm_backlog); 9581 #endif 9582 INIT_LIST_HEAD(&sd->poll_list); 9583 sd->output_queue_tailp = &sd->output_queue; 9584 #ifdef CONFIG_RPS 9585 sd->csd.func = rps_trigger_softirq; 9586 sd->csd.info = sd; 9587 sd->cpu = i; 9588 #endif 9589 9590 init_gro_hash(&sd->backlog); 9591 sd->backlog.poll = process_backlog; 9592 sd->backlog.weight = weight_p; 9593 } 9594 9595 dev_boot_phase = 0; 9596 9597 /* The loopback device is special if any other network devices 9598 * is present in a network namespace the loopback device must 9599 * be present. Since we now dynamically allocate and free the 9600 * loopback device ensure this invariant is maintained by 9601 * keeping the loopback device as the first device on the 9602 * list of network devices. Ensuring the loopback devices 9603 * is the first device that appears and the last network device 9604 * that disappears. 9605 */ 9606 if (register_pernet_device(&loopback_net_ops)) 9607 goto out; 9608 9609 if (register_pernet_device(&default_device_ops)) 9610 goto out; 9611 9612 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 9613 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 9614 9615 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 9616 NULL, dev_cpu_dead); 9617 WARN_ON(rc < 0); 9618 rc = 0; 9619 out: 9620 return rc; 9621 } 9622 9623 subsys_initcall(net_dev_init); 9624