xref: /openbmc/linux/net/core/dev.c (revision 239480ab)
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/pci.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145 
146 #include "net-sysfs.h"
147 
148 /* Instead of increasing this, you should create a hash table. */
149 #define MAX_GRO_SKBS 8
150 
151 /* This should be increased if a protocol with a bigger head is added. */
152 #define GRO_MAX_HEAD (MAX_HEADER + 128)
153 
154 static DEFINE_SPINLOCK(ptype_lock);
155 static DEFINE_SPINLOCK(offload_lock);
156 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
157 struct list_head ptype_all __read_mostly;	/* Taps */
158 static struct list_head offload_base __read_mostly;
159 
160 static int netif_rx_internal(struct sk_buff *skb);
161 static int call_netdevice_notifiers_info(unsigned long val,
162 					 struct net_device *dev,
163 					 struct netdev_notifier_info *info);
164 
165 /*
166  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
167  * semaphore.
168  *
169  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
170  *
171  * Writers must hold the rtnl semaphore while they loop through the
172  * dev_base_head list, and hold dev_base_lock for writing when they do the
173  * actual updates.  This allows pure readers to access the list even
174  * while a writer is preparing to update it.
175  *
176  * To put it another way, dev_base_lock is held for writing only to
177  * protect against pure readers; the rtnl semaphore provides the
178  * protection against other writers.
179  *
180  * See, for example usages, register_netdevice() and
181  * unregister_netdevice(), which must be called with the rtnl
182  * semaphore held.
183  */
184 DEFINE_RWLOCK(dev_base_lock);
185 EXPORT_SYMBOL(dev_base_lock);
186 
187 /* protects napi_hash addition/deletion and napi_gen_id */
188 static DEFINE_SPINLOCK(napi_hash_lock);
189 
190 static unsigned int napi_gen_id = NR_CPUS;
191 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
192 
193 static seqcount_t devnet_rename_seq;
194 
195 static inline void dev_base_seq_inc(struct net *net)
196 {
197 	while (++net->dev_base_seq == 0)
198 		;
199 }
200 
201 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
202 {
203 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
204 
205 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
206 }
207 
208 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
209 {
210 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
211 }
212 
213 static inline void rps_lock(struct softnet_data *sd)
214 {
215 #ifdef CONFIG_RPS
216 	spin_lock(&sd->input_pkt_queue.lock);
217 #endif
218 }
219 
220 static inline void rps_unlock(struct softnet_data *sd)
221 {
222 #ifdef CONFIG_RPS
223 	spin_unlock(&sd->input_pkt_queue.lock);
224 #endif
225 }
226 
227 /* Device list insertion */
228 static void list_netdevice(struct net_device *dev)
229 {
230 	struct net *net = dev_net(dev);
231 
232 	ASSERT_RTNL();
233 
234 	write_lock_bh(&dev_base_lock);
235 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
236 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
237 	hlist_add_head_rcu(&dev->index_hlist,
238 			   dev_index_hash(net, dev->ifindex));
239 	write_unlock_bh(&dev_base_lock);
240 
241 	dev_base_seq_inc(net);
242 }
243 
244 /* Device list removal
245  * caller must respect a RCU grace period before freeing/reusing dev
246  */
247 static void unlist_netdevice(struct net_device *dev)
248 {
249 	ASSERT_RTNL();
250 
251 	/* Unlink dev from the device chain */
252 	write_lock_bh(&dev_base_lock);
253 	list_del_rcu(&dev->dev_list);
254 	hlist_del_rcu(&dev->name_hlist);
255 	hlist_del_rcu(&dev->index_hlist);
256 	write_unlock_bh(&dev_base_lock);
257 
258 	dev_base_seq_inc(dev_net(dev));
259 }
260 
261 /*
262  *	Our notifier list
263  */
264 
265 static RAW_NOTIFIER_HEAD(netdev_chain);
266 
267 /*
268  *	Device drivers call our routines to queue packets here. We empty the
269  *	queue in the local softnet handler.
270  */
271 
272 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
273 EXPORT_PER_CPU_SYMBOL(softnet_data);
274 
275 #ifdef CONFIG_LOCKDEP
276 /*
277  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
278  * according to dev->type
279  */
280 static const unsigned short netdev_lock_type[] = {
281 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
282 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
283 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
284 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
285 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
286 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
287 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
288 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
289 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
290 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
291 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
292 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
293 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
294 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
295 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
296 
297 static const char *const netdev_lock_name[] = {
298 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
299 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
300 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
301 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
302 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
303 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
304 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
305 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
306 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
307 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
308 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
309 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
310 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
311 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
312 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
313 
314 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
315 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
316 
317 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
318 {
319 	int i;
320 
321 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
322 		if (netdev_lock_type[i] == dev_type)
323 			return i;
324 	/* the last key is used by default */
325 	return ARRAY_SIZE(netdev_lock_type) - 1;
326 }
327 
328 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
329 						 unsigned short dev_type)
330 {
331 	int i;
332 
333 	i = netdev_lock_pos(dev_type);
334 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
335 				   netdev_lock_name[i]);
336 }
337 
338 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
339 {
340 	int i;
341 
342 	i = netdev_lock_pos(dev->type);
343 	lockdep_set_class_and_name(&dev->addr_list_lock,
344 				   &netdev_addr_lock_key[i],
345 				   netdev_lock_name[i]);
346 }
347 #else
348 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
349 						 unsigned short dev_type)
350 {
351 }
352 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
353 {
354 }
355 #endif
356 
357 /*******************************************************************************
358  *
359  *		Protocol management and registration routines
360  *
361  *******************************************************************************/
362 
363 
364 /*
365  *	Add a protocol ID to the list. Now that the input handler is
366  *	smarter we can dispense with all the messy stuff that used to be
367  *	here.
368  *
369  *	BEWARE!!! Protocol handlers, mangling input packets,
370  *	MUST BE last in hash buckets and checking protocol handlers
371  *	MUST start from promiscuous ptype_all chain in net_bh.
372  *	It is true now, do not change it.
373  *	Explanation follows: if protocol handler, mangling packet, will
374  *	be the first on list, it is not able to sense, that packet
375  *	is cloned and should be copied-on-write, so that it will
376  *	change it and subsequent readers will get broken packet.
377  *							--ANK (980803)
378  */
379 
380 static inline struct list_head *ptype_head(const struct packet_type *pt)
381 {
382 	if (pt->type == htons(ETH_P_ALL))
383 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
384 	else
385 		return pt->dev ? &pt->dev->ptype_specific :
386 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
387 }
388 
389 /**
390  *	dev_add_pack - add packet handler
391  *	@pt: packet type declaration
392  *
393  *	Add a protocol handler to the networking stack. The passed &packet_type
394  *	is linked into kernel lists and may not be freed until it has been
395  *	removed from the kernel lists.
396  *
397  *	This call does not sleep therefore it can not
398  *	guarantee all CPU's that are in middle of receiving packets
399  *	will see the new packet type (until the next received packet).
400  */
401 
402 void dev_add_pack(struct packet_type *pt)
403 {
404 	struct list_head *head = ptype_head(pt);
405 
406 	spin_lock(&ptype_lock);
407 	list_add_rcu(&pt->list, head);
408 	spin_unlock(&ptype_lock);
409 }
410 EXPORT_SYMBOL(dev_add_pack);
411 
412 /**
413  *	__dev_remove_pack	 - remove packet handler
414  *	@pt: packet type declaration
415  *
416  *	Remove a protocol handler that was previously added to the kernel
417  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
418  *	from the kernel lists and can be freed or reused once this function
419  *	returns.
420  *
421  *      The packet type might still be in use by receivers
422  *	and must not be freed until after all the CPU's have gone
423  *	through a quiescent state.
424  */
425 void __dev_remove_pack(struct packet_type *pt)
426 {
427 	struct list_head *head = ptype_head(pt);
428 	struct packet_type *pt1;
429 
430 	spin_lock(&ptype_lock);
431 
432 	list_for_each_entry(pt1, head, list) {
433 		if (pt == pt1) {
434 			list_del_rcu(&pt->list);
435 			goto out;
436 		}
437 	}
438 
439 	pr_warn("dev_remove_pack: %p not found\n", pt);
440 out:
441 	spin_unlock(&ptype_lock);
442 }
443 EXPORT_SYMBOL(__dev_remove_pack);
444 
445 /**
446  *	dev_remove_pack	 - remove packet handler
447  *	@pt: packet type declaration
448  *
449  *	Remove a protocol handler that was previously added to the kernel
450  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
451  *	from the kernel lists and can be freed or reused once this function
452  *	returns.
453  *
454  *	This call sleeps to guarantee that no CPU is looking at the packet
455  *	type after return.
456  */
457 void dev_remove_pack(struct packet_type *pt)
458 {
459 	__dev_remove_pack(pt);
460 
461 	synchronize_net();
462 }
463 EXPORT_SYMBOL(dev_remove_pack);
464 
465 
466 /**
467  *	dev_add_offload - register offload handlers
468  *	@po: protocol offload declaration
469  *
470  *	Add protocol offload handlers to the networking stack. The passed
471  *	&proto_offload is linked into kernel lists and may not be freed until
472  *	it has been removed from the kernel lists.
473  *
474  *	This call does not sleep therefore it can not
475  *	guarantee all CPU's that are in middle of receiving packets
476  *	will see the new offload handlers (until the next received packet).
477  */
478 void dev_add_offload(struct packet_offload *po)
479 {
480 	struct packet_offload *elem;
481 
482 	spin_lock(&offload_lock);
483 	list_for_each_entry(elem, &offload_base, list) {
484 		if (po->priority < elem->priority)
485 			break;
486 	}
487 	list_add_rcu(&po->list, elem->list.prev);
488 	spin_unlock(&offload_lock);
489 }
490 EXPORT_SYMBOL(dev_add_offload);
491 
492 /**
493  *	__dev_remove_offload	 - remove offload handler
494  *	@po: packet offload declaration
495  *
496  *	Remove a protocol offload handler that was previously added to the
497  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
498  *	is removed from the kernel lists and can be freed or reused once this
499  *	function returns.
500  *
501  *      The packet type might still be in use by receivers
502  *	and must not be freed until after all the CPU's have gone
503  *	through a quiescent state.
504  */
505 static void __dev_remove_offload(struct packet_offload *po)
506 {
507 	struct list_head *head = &offload_base;
508 	struct packet_offload *po1;
509 
510 	spin_lock(&offload_lock);
511 
512 	list_for_each_entry(po1, head, list) {
513 		if (po == po1) {
514 			list_del_rcu(&po->list);
515 			goto out;
516 		}
517 	}
518 
519 	pr_warn("dev_remove_offload: %p not found\n", po);
520 out:
521 	spin_unlock(&offload_lock);
522 }
523 
524 /**
525  *	dev_remove_offload	 - remove packet offload handler
526  *	@po: packet offload declaration
527  *
528  *	Remove a packet offload handler that was previously added to the kernel
529  *	offload handlers by dev_add_offload(). The passed &offload_type is
530  *	removed from the kernel lists and can be freed or reused once this
531  *	function returns.
532  *
533  *	This call sleeps to guarantee that no CPU is looking at the packet
534  *	type after return.
535  */
536 void dev_remove_offload(struct packet_offload *po)
537 {
538 	__dev_remove_offload(po);
539 
540 	synchronize_net();
541 }
542 EXPORT_SYMBOL(dev_remove_offload);
543 
544 /******************************************************************************
545  *
546  *		      Device Boot-time Settings Routines
547  *
548  ******************************************************************************/
549 
550 /* Boot time configuration table */
551 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
552 
553 /**
554  *	netdev_boot_setup_add	- add new setup entry
555  *	@name: name of the device
556  *	@map: configured settings for the device
557  *
558  *	Adds new setup entry to the dev_boot_setup list.  The function
559  *	returns 0 on error and 1 on success.  This is a generic routine to
560  *	all netdevices.
561  */
562 static int netdev_boot_setup_add(char *name, struct ifmap *map)
563 {
564 	struct netdev_boot_setup *s;
565 	int i;
566 
567 	s = dev_boot_setup;
568 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
569 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
570 			memset(s[i].name, 0, sizeof(s[i].name));
571 			strlcpy(s[i].name, name, IFNAMSIZ);
572 			memcpy(&s[i].map, map, sizeof(s[i].map));
573 			break;
574 		}
575 	}
576 
577 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
578 }
579 
580 /**
581  * netdev_boot_setup_check	- check boot time settings
582  * @dev: the netdevice
583  *
584  * Check boot time settings for the device.
585  * The found settings are set for the device to be used
586  * later in the device probing.
587  * Returns 0 if no settings found, 1 if they are.
588  */
589 int netdev_boot_setup_check(struct net_device *dev)
590 {
591 	struct netdev_boot_setup *s = dev_boot_setup;
592 	int i;
593 
594 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
595 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
596 		    !strcmp(dev->name, s[i].name)) {
597 			dev->irq = s[i].map.irq;
598 			dev->base_addr = s[i].map.base_addr;
599 			dev->mem_start = s[i].map.mem_start;
600 			dev->mem_end = s[i].map.mem_end;
601 			return 1;
602 		}
603 	}
604 	return 0;
605 }
606 EXPORT_SYMBOL(netdev_boot_setup_check);
607 
608 
609 /**
610  * netdev_boot_base	- get address from boot time settings
611  * @prefix: prefix for network device
612  * @unit: id for network device
613  *
614  * Check boot time settings for the base address of device.
615  * The found settings are set for the device to be used
616  * later in the device probing.
617  * Returns 0 if no settings found.
618  */
619 unsigned long netdev_boot_base(const char *prefix, int unit)
620 {
621 	const struct netdev_boot_setup *s = dev_boot_setup;
622 	char name[IFNAMSIZ];
623 	int i;
624 
625 	sprintf(name, "%s%d", prefix, unit);
626 
627 	/*
628 	 * If device already registered then return base of 1
629 	 * to indicate not to probe for this interface
630 	 */
631 	if (__dev_get_by_name(&init_net, name))
632 		return 1;
633 
634 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
635 		if (!strcmp(name, s[i].name))
636 			return s[i].map.base_addr;
637 	return 0;
638 }
639 
640 /*
641  * Saves at boot time configured settings for any netdevice.
642  */
643 int __init netdev_boot_setup(char *str)
644 {
645 	int ints[5];
646 	struct ifmap map;
647 
648 	str = get_options(str, ARRAY_SIZE(ints), ints);
649 	if (!str || !*str)
650 		return 0;
651 
652 	/* Save settings */
653 	memset(&map, 0, sizeof(map));
654 	if (ints[0] > 0)
655 		map.irq = ints[1];
656 	if (ints[0] > 1)
657 		map.base_addr = ints[2];
658 	if (ints[0] > 2)
659 		map.mem_start = ints[3];
660 	if (ints[0] > 3)
661 		map.mem_end = ints[4];
662 
663 	/* Add new entry to the list */
664 	return netdev_boot_setup_add(str, &map);
665 }
666 
667 __setup("netdev=", netdev_boot_setup);
668 
669 /*******************************************************************************
670  *
671  *			    Device Interface Subroutines
672  *
673  *******************************************************************************/
674 
675 /**
676  *	dev_get_iflink	- get 'iflink' value of a interface
677  *	@dev: targeted interface
678  *
679  *	Indicates the ifindex the interface is linked to.
680  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
681  */
682 
683 int dev_get_iflink(const struct net_device *dev)
684 {
685 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
686 		return dev->netdev_ops->ndo_get_iflink(dev);
687 
688 	return dev->ifindex;
689 }
690 EXPORT_SYMBOL(dev_get_iflink);
691 
692 /**
693  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
694  *	@dev: targeted interface
695  *	@skb: The packet.
696  *
697  *	For better visibility of tunnel traffic OVS needs to retrieve
698  *	egress tunnel information for a packet. Following API allows
699  *	user to get this info.
700  */
701 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
702 {
703 	struct ip_tunnel_info *info;
704 
705 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
706 		return -EINVAL;
707 
708 	info = skb_tunnel_info_unclone(skb);
709 	if (!info)
710 		return -ENOMEM;
711 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
712 		return -EINVAL;
713 
714 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
715 }
716 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
717 
718 /**
719  *	__dev_get_by_name	- find a device by its name
720  *	@net: the applicable net namespace
721  *	@name: name to find
722  *
723  *	Find an interface by name. Must be called under RTNL semaphore
724  *	or @dev_base_lock. If the name is found a pointer to the device
725  *	is returned. If the name is not found then %NULL is returned. The
726  *	reference counters are not incremented so the caller must be
727  *	careful with locks.
728  */
729 
730 struct net_device *__dev_get_by_name(struct net *net, const char *name)
731 {
732 	struct net_device *dev;
733 	struct hlist_head *head = dev_name_hash(net, name);
734 
735 	hlist_for_each_entry(dev, head, name_hlist)
736 		if (!strncmp(dev->name, name, IFNAMSIZ))
737 			return dev;
738 
739 	return NULL;
740 }
741 EXPORT_SYMBOL(__dev_get_by_name);
742 
743 /**
744  * dev_get_by_name_rcu	- find a device by its name
745  * @net: the applicable net namespace
746  * @name: name to find
747  *
748  * Find an interface by name.
749  * If the name is found a pointer to the device is returned.
750  * If the name is not found then %NULL is returned.
751  * The reference counters are not incremented so the caller must be
752  * careful with locks. The caller must hold RCU lock.
753  */
754 
755 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
756 {
757 	struct net_device *dev;
758 	struct hlist_head *head = dev_name_hash(net, name);
759 
760 	hlist_for_each_entry_rcu(dev, head, name_hlist)
761 		if (!strncmp(dev->name, name, IFNAMSIZ))
762 			return dev;
763 
764 	return NULL;
765 }
766 EXPORT_SYMBOL(dev_get_by_name_rcu);
767 
768 /**
769  *	dev_get_by_name		- find a device by its name
770  *	@net: the applicable net namespace
771  *	@name: name to find
772  *
773  *	Find an interface by name. This can be called from any
774  *	context and does its own locking. The returned handle has
775  *	the usage count incremented and the caller must use dev_put() to
776  *	release it when it is no longer needed. %NULL is returned if no
777  *	matching device is found.
778  */
779 
780 struct net_device *dev_get_by_name(struct net *net, const char *name)
781 {
782 	struct net_device *dev;
783 
784 	rcu_read_lock();
785 	dev = dev_get_by_name_rcu(net, name);
786 	if (dev)
787 		dev_hold(dev);
788 	rcu_read_unlock();
789 	return dev;
790 }
791 EXPORT_SYMBOL(dev_get_by_name);
792 
793 /**
794  *	__dev_get_by_index - find a device by its ifindex
795  *	@net: the applicable net namespace
796  *	@ifindex: index of device
797  *
798  *	Search for an interface by index. Returns %NULL if the device
799  *	is not found or a pointer to the device. The device has not
800  *	had its reference counter increased so the caller must be careful
801  *	about locking. The caller must hold either the RTNL semaphore
802  *	or @dev_base_lock.
803  */
804 
805 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
806 {
807 	struct net_device *dev;
808 	struct hlist_head *head = dev_index_hash(net, ifindex);
809 
810 	hlist_for_each_entry(dev, head, index_hlist)
811 		if (dev->ifindex == ifindex)
812 			return dev;
813 
814 	return NULL;
815 }
816 EXPORT_SYMBOL(__dev_get_by_index);
817 
818 /**
819  *	dev_get_by_index_rcu - find a device by its ifindex
820  *	@net: the applicable net namespace
821  *	@ifindex: index of device
822  *
823  *	Search for an interface by index. Returns %NULL if the device
824  *	is not found or a pointer to the device. The device has not
825  *	had its reference counter increased so the caller must be careful
826  *	about locking. The caller must hold RCU lock.
827  */
828 
829 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
830 {
831 	struct net_device *dev;
832 	struct hlist_head *head = dev_index_hash(net, ifindex);
833 
834 	hlist_for_each_entry_rcu(dev, head, index_hlist)
835 		if (dev->ifindex == ifindex)
836 			return dev;
837 
838 	return NULL;
839 }
840 EXPORT_SYMBOL(dev_get_by_index_rcu);
841 
842 
843 /**
844  *	dev_get_by_index - find a device by its ifindex
845  *	@net: the applicable net namespace
846  *	@ifindex: index of device
847  *
848  *	Search for an interface by index. Returns NULL if the device
849  *	is not found or a pointer to the device. The device returned has
850  *	had a reference added and the pointer is safe until the user calls
851  *	dev_put to indicate they have finished with it.
852  */
853 
854 struct net_device *dev_get_by_index(struct net *net, int ifindex)
855 {
856 	struct net_device *dev;
857 
858 	rcu_read_lock();
859 	dev = dev_get_by_index_rcu(net, ifindex);
860 	if (dev)
861 		dev_hold(dev);
862 	rcu_read_unlock();
863 	return dev;
864 }
865 EXPORT_SYMBOL(dev_get_by_index);
866 
867 /**
868  *	netdev_get_name - get a netdevice name, knowing its ifindex.
869  *	@net: network namespace
870  *	@name: a pointer to the buffer where the name will be stored.
871  *	@ifindex: the ifindex of the interface to get the name from.
872  *
873  *	The use of raw_seqcount_begin() and cond_resched() before
874  *	retrying is required as we want to give the writers a chance
875  *	to complete when CONFIG_PREEMPT is not set.
876  */
877 int netdev_get_name(struct net *net, char *name, int ifindex)
878 {
879 	struct net_device *dev;
880 	unsigned int seq;
881 
882 retry:
883 	seq = raw_seqcount_begin(&devnet_rename_seq);
884 	rcu_read_lock();
885 	dev = dev_get_by_index_rcu(net, ifindex);
886 	if (!dev) {
887 		rcu_read_unlock();
888 		return -ENODEV;
889 	}
890 
891 	strcpy(name, dev->name);
892 	rcu_read_unlock();
893 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
894 		cond_resched();
895 		goto retry;
896 	}
897 
898 	return 0;
899 }
900 
901 /**
902  *	dev_getbyhwaddr_rcu - find a device by its hardware address
903  *	@net: the applicable net namespace
904  *	@type: media type of device
905  *	@ha: hardware address
906  *
907  *	Search for an interface by MAC address. Returns NULL if the device
908  *	is not found or a pointer to the device.
909  *	The caller must hold RCU or RTNL.
910  *	The returned device has not had its ref count increased
911  *	and the caller must therefore be careful about locking
912  *
913  */
914 
915 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
916 				       const char *ha)
917 {
918 	struct net_device *dev;
919 
920 	for_each_netdev_rcu(net, dev)
921 		if (dev->type == type &&
922 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
923 			return dev;
924 
925 	return NULL;
926 }
927 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
928 
929 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
930 {
931 	struct net_device *dev;
932 
933 	ASSERT_RTNL();
934 	for_each_netdev(net, dev)
935 		if (dev->type == type)
936 			return dev;
937 
938 	return NULL;
939 }
940 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
941 
942 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
943 {
944 	struct net_device *dev, *ret = NULL;
945 
946 	rcu_read_lock();
947 	for_each_netdev_rcu(net, dev)
948 		if (dev->type == type) {
949 			dev_hold(dev);
950 			ret = dev;
951 			break;
952 		}
953 	rcu_read_unlock();
954 	return ret;
955 }
956 EXPORT_SYMBOL(dev_getfirstbyhwtype);
957 
958 /**
959  *	__dev_get_by_flags - find any device with given flags
960  *	@net: the applicable net namespace
961  *	@if_flags: IFF_* values
962  *	@mask: bitmask of bits in if_flags to check
963  *
964  *	Search for any interface with the given flags. Returns NULL if a device
965  *	is not found or a pointer to the device. Must be called inside
966  *	rtnl_lock(), and result refcount is unchanged.
967  */
968 
969 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
970 				      unsigned short mask)
971 {
972 	struct net_device *dev, *ret;
973 
974 	ASSERT_RTNL();
975 
976 	ret = NULL;
977 	for_each_netdev(net, dev) {
978 		if (((dev->flags ^ if_flags) & mask) == 0) {
979 			ret = dev;
980 			break;
981 		}
982 	}
983 	return ret;
984 }
985 EXPORT_SYMBOL(__dev_get_by_flags);
986 
987 /**
988  *	dev_valid_name - check if name is okay for network device
989  *	@name: name string
990  *
991  *	Network device names need to be valid file names to
992  *	to allow sysfs to work.  We also disallow any kind of
993  *	whitespace.
994  */
995 bool dev_valid_name(const char *name)
996 {
997 	if (*name == '\0')
998 		return false;
999 	if (strlen(name) >= IFNAMSIZ)
1000 		return false;
1001 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1002 		return false;
1003 
1004 	while (*name) {
1005 		if (*name == '/' || *name == ':' || isspace(*name))
1006 			return false;
1007 		name++;
1008 	}
1009 	return true;
1010 }
1011 EXPORT_SYMBOL(dev_valid_name);
1012 
1013 /**
1014  *	__dev_alloc_name - allocate a name for a device
1015  *	@net: network namespace to allocate the device name in
1016  *	@name: name format string
1017  *	@buf:  scratch buffer and result name string
1018  *
1019  *	Passed a format string - eg "lt%d" it will try and find a suitable
1020  *	id. It scans list of devices to build up a free map, then chooses
1021  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1022  *	while allocating the name and adding the device in order to avoid
1023  *	duplicates.
1024  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025  *	Returns the number of the unit assigned or a negative errno code.
1026  */
1027 
1028 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1029 {
1030 	int i = 0;
1031 	const char *p;
1032 	const int max_netdevices = 8*PAGE_SIZE;
1033 	unsigned long *inuse;
1034 	struct net_device *d;
1035 
1036 	p = strnchr(name, IFNAMSIZ-1, '%');
1037 	if (p) {
1038 		/*
1039 		 * Verify the string as this thing may have come from
1040 		 * the user.  There must be either one "%d" and no other "%"
1041 		 * characters.
1042 		 */
1043 		if (p[1] != 'd' || strchr(p + 2, '%'))
1044 			return -EINVAL;
1045 
1046 		/* Use one page as a bit array of possible slots */
1047 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1048 		if (!inuse)
1049 			return -ENOMEM;
1050 
1051 		for_each_netdev(net, d) {
1052 			if (!sscanf(d->name, name, &i))
1053 				continue;
1054 			if (i < 0 || i >= max_netdevices)
1055 				continue;
1056 
1057 			/*  avoid cases where sscanf is not exact inverse of printf */
1058 			snprintf(buf, IFNAMSIZ, name, i);
1059 			if (!strncmp(buf, d->name, IFNAMSIZ))
1060 				set_bit(i, inuse);
1061 		}
1062 
1063 		i = find_first_zero_bit(inuse, max_netdevices);
1064 		free_page((unsigned long) inuse);
1065 	}
1066 
1067 	if (buf != name)
1068 		snprintf(buf, IFNAMSIZ, name, i);
1069 	if (!__dev_get_by_name(net, buf))
1070 		return i;
1071 
1072 	/* It is possible to run out of possible slots
1073 	 * when the name is long and there isn't enough space left
1074 	 * for the digits, or if all bits are used.
1075 	 */
1076 	return -ENFILE;
1077 }
1078 
1079 /**
1080  *	dev_alloc_name - allocate a name for a device
1081  *	@dev: device
1082  *	@name: name format string
1083  *
1084  *	Passed a format string - eg "lt%d" it will try and find a suitable
1085  *	id. It scans list of devices to build up a free map, then chooses
1086  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1087  *	while allocating the name and adding the device in order to avoid
1088  *	duplicates.
1089  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1090  *	Returns the number of the unit assigned or a negative errno code.
1091  */
1092 
1093 int dev_alloc_name(struct net_device *dev, const char *name)
1094 {
1095 	char buf[IFNAMSIZ];
1096 	struct net *net;
1097 	int ret;
1098 
1099 	BUG_ON(!dev_net(dev));
1100 	net = dev_net(dev);
1101 	ret = __dev_alloc_name(net, name, buf);
1102 	if (ret >= 0)
1103 		strlcpy(dev->name, buf, IFNAMSIZ);
1104 	return ret;
1105 }
1106 EXPORT_SYMBOL(dev_alloc_name);
1107 
1108 static int dev_alloc_name_ns(struct net *net,
1109 			     struct net_device *dev,
1110 			     const char *name)
1111 {
1112 	char buf[IFNAMSIZ];
1113 	int ret;
1114 
1115 	ret = __dev_alloc_name(net, name, buf);
1116 	if (ret >= 0)
1117 		strlcpy(dev->name, buf, IFNAMSIZ);
1118 	return ret;
1119 }
1120 
1121 static int dev_get_valid_name(struct net *net,
1122 			      struct net_device *dev,
1123 			      const char *name)
1124 {
1125 	BUG_ON(!net);
1126 
1127 	if (!dev_valid_name(name))
1128 		return -EINVAL;
1129 
1130 	if (strchr(name, '%'))
1131 		return dev_alloc_name_ns(net, dev, name);
1132 	else if (__dev_get_by_name(net, name))
1133 		return -EEXIST;
1134 	else if (dev->name != name)
1135 		strlcpy(dev->name, name, IFNAMSIZ);
1136 
1137 	return 0;
1138 }
1139 
1140 /**
1141  *	dev_change_name - change name of a device
1142  *	@dev: device
1143  *	@newname: name (or format string) must be at least IFNAMSIZ
1144  *
1145  *	Change name of a device, can pass format strings "eth%d".
1146  *	for wildcarding.
1147  */
1148 int dev_change_name(struct net_device *dev, const char *newname)
1149 {
1150 	unsigned char old_assign_type;
1151 	char oldname[IFNAMSIZ];
1152 	int err = 0;
1153 	int ret;
1154 	struct net *net;
1155 
1156 	ASSERT_RTNL();
1157 	BUG_ON(!dev_net(dev));
1158 
1159 	net = dev_net(dev);
1160 	if (dev->flags & IFF_UP)
1161 		return -EBUSY;
1162 
1163 	write_seqcount_begin(&devnet_rename_seq);
1164 
1165 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1166 		write_seqcount_end(&devnet_rename_seq);
1167 		return 0;
1168 	}
1169 
1170 	memcpy(oldname, dev->name, IFNAMSIZ);
1171 
1172 	err = dev_get_valid_name(net, dev, newname);
1173 	if (err < 0) {
1174 		write_seqcount_end(&devnet_rename_seq);
1175 		return err;
1176 	}
1177 
1178 	if (oldname[0] && !strchr(oldname, '%'))
1179 		netdev_info(dev, "renamed from %s\n", oldname);
1180 
1181 	old_assign_type = dev->name_assign_type;
1182 	dev->name_assign_type = NET_NAME_RENAMED;
1183 
1184 rollback:
1185 	ret = device_rename(&dev->dev, dev->name);
1186 	if (ret) {
1187 		memcpy(dev->name, oldname, IFNAMSIZ);
1188 		dev->name_assign_type = old_assign_type;
1189 		write_seqcount_end(&devnet_rename_seq);
1190 		return ret;
1191 	}
1192 
1193 	write_seqcount_end(&devnet_rename_seq);
1194 
1195 	netdev_adjacent_rename_links(dev, oldname);
1196 
1197 	write_lock_bh(&dev_base_lock);
1198 	hlist_del_rcu(&dev->name_hlist);
1199 	write_unlock_bh(&dev_base_lock);
1200 
1201 	synchronize_rcu();
1202 
1203 	write_lock_bh(&dev_base_lock);
1204 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1205 	write_unlock_bh(&dev_base_lock);
1206 
1207 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1208 	ret = notifier_to_errno(ret);
1209 
1210 	if (ret) {
1211 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1212 		if (err >= 0) {
1213 			err = ret;
1214 			write_seqcount_begin(&devnet_rename_seq);
1215 			memcpy(dev->name, oldname, IFNAMSIZ);
1216 			memcpy(oldname, newname, IFNAMSIZ);
1217 			dev->name_assign_type = old_assign_type;
1218 			old_assign_type = NET_NAME_RENAMED;
1219 			goto rollback;
1220 		} else {
1221 			pr_err("%s: name change rollback failed: %d\n",
1222 			       dev->name, ret);
1223 		}
1224 	}
1225 
1226 	return err;
1227 }
1228 
1229 /**
1230  *	dev_set_alias - change ifalias of a device
1231  *	@dev: device
1232  *	@alias: name up to IFALIASZ
1233  *	@len: limit of bytes to copy from info
1234  *
1235  *	Set ifalias for a device,
1236  */
1237 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1238 {
1239 	char *new_ifalias;
1240 
1241 	ASSERT_RTNL();
1242 
1243 	if (len >= IFALIASZ)
1244 		return -EINVAL;
1245 
1246 	if (!len) {
1247 		kfree(dev->ifalias);
1248 		dev->ifalias = NULL;
1249 		return 0;
1250 	}
1251 
1252 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1253 	if (!new_ifalias)
1254 		return -ENOMEM;
1255 	dev->ifalias = new_ifalias;
1256 
1257 	strlcpy(dev->ifalias, alias, len+1);
1258 	return len;
1259 }
1260 
1261 
1262 /**
1263  *	netdev_features_change - device changes features
1264  *	@dev: device to cause notification
1265  *
1266  *	Called to indicate a device has changed features.
1267  */
1268 void netdev_features_change(struct net_device *dev)
1269 {
1270 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1271 }
1272 EXPORT_SYMBOL(netdev_features_change);
1273 
1274 /**
1275  *	netdev_state_change - device changes state
1276  *	@dev: device to cause notification
1277  *
1278  *	Called to indicate a device has changed state. This function calls
1279  *	the notifier chains for netdev_chain and sends a NEWLINK message
1280  *	to the routing socket.
1281  */
1282 void netdev_state_change(struct net_device *dev)
1283 {
1284 	if (dev->flags & IFF_UP) {
1285 		struct netdev_notifier_change_info change_info;
1286 
1287 		change_info.flags_changed = 0;
1288 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1289 					      &change_info.info);
1290 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1291 	}
1292 }
1293 EXPORT_SYMBOL(netdev_state_change);
1294 
1295 /**
1296  * netdev_notify_peers - notify network peers about existence of @dev
1297  * @dev: network device
1298  *
1299  * Generate traffic such that interested network peers are aware of
1300  * @dev, such as by generating a gratuitous ARP. This may be used when
1301  * a device wants to inform the rest of the network about some sort of
1302  * reconfiguration such as a failover event or virtual machine
1303  * migration.
1304  */
1305 void netdev_notify_peers(struct net_device *dev)
1306 {
1307 	rtnl_lock();
1308 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1309 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1310 	rtnl_unlock();
1311 }
1312 EXPORT_SYMBOL(netdev_notify_peers);
1313 
1314 static int __dev_open(struct net_device *dev)
1315 {
1316 	const struct net_device_ops *ops = dev->netdev_ops;
1317 	int ret;
1318 
1319 	ASSERT_RTNL();
1320 
1321 	if (!netif_device_present(dev))
1322 		return -ENODEV;
1323 
1324 	/* Block netpoll from trying to do any rx path servicing.
1325 	 * If we don't do this there is a chance ndo_poll_controller
1326 	 * or ndo_poll may be running while we open the device
1327 	 */
1328 	netpoll_poll_disable(dev);
1329 
1330 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1331 	ret = notifier_to_errno(ret);
1332 	if (ret)
1333 		return ret;
1334 
1335 	set_bit(__LINK_STATE_START, &dev->state);
1336 
1337 	if (ops->ndo_validate_addr)
1338 		ret = ops->ndo_validate_addr(dev);
1339 
1340 	if (!ret && ops->ndo_open)
1341 		ret = ops->ndo_open(dev);
1342 
1343 	netpoll_poll_enable(dev);
1344 
1345 	if (ret)
1346 		clear_bit(__LINK_STATE_START, &dev->state);
1347 	else {
1348 		dev->flags |= IFF_UP;
1349 		dev_set_rx_mode(dev);
1350 		dev_activate(dev);
1351 		add_device_randomness(dev->dev_addr, dev->addr_len);
1352 	}
1353 
1354 	return ret;
1355 }
1356 
1357 /**
1358  *	dev_open	- prepare an interface for use.
1359  *	@dev:	device to open
1360  *
1361  *	Takes a device from down to up state. The device's private open
1362  *	function is invoked and then the multicast lists are loaded. Finally
1363  *	the device is moved into the up state and a %NETDEV_UP message is
1364  *	sent to the netdev notifier chain.
1365  *
1366  *	Calling this function on an active interface is a nop. On a failure
1367  *	a negative errno code is returned.
1368  */
1369 int dev_open(struct net_device *dev)
1370 {
1371 	int ret;
1372 
1373 	if (dev->flags & IFF_UP)
1374 		return 0;
1375 
1376 	ret = __dev_open(dev);
1377 	if (ret < 0)
1378 		return ret;
1379 
1380 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1381 	call_netdevice_notifiers(NETDEV_UP, dev);
1382 
1383 	return ret;
1384 }
1385 EXPORT_SYMBOL(dev_open);
1386 
1387 static int __dev_close_many(struct list_head *head)
1388 {
1389 	struct net_device *dev;
1390 
1391 	ASSERT_RTNL();
1392 	might_sleep();
1393 
1394 	list_for_each_entry(dev, head, close_list) {
1395 		/* Temporarily disable netpoll until the interface is down */
1396 		netpoll_poll_disable(dev);
1397 
1398 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1399 
1400 		clear_bit(__LINK_STATE_START, &dev->state);
1401 
1402 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1403 		 * can be even on different cpu. So just clear netif_running().
1404 		 *
1405 		 * dev->stop() will invoke napi_disable() on all of it's
1406 		 * napi_struct instances on this device.
1407 		 */
1408 		smp_mb__after_atomic(); /* Commit netif_running(). */
1409 	}
1410 
1411 	dev_deactivate_many(head);
1412 
1413 	list_for_each_entry(dev, head, close_list) {
1414 		const struct net_device_ops *ops = dev->netdev_ops;
1415 
1416 		/*
1417 		 *	Call the device specific close. This cannot fail.
1418 		 *	Only if device is UP
1419 		 *
1420 		 *	We allow it to be called even after a DETACH hot-plug
1421 		 *	event.
1422 		 */
1423 		if (ops->ndo_stop)
1424 			ops->ndo_stop(dev);
1425 
1426 		dev->flags &= ~IFF_UP;
1427 		netpoll_poll_enable(dev);
1428 	}
1429 
1430 	return 0;
1431 }
1432 
1433 static int __dev_close(struct net_device *dev)
1434 {
1435 	int retval;
1436 	LIST_HEAD(single);
1437 
1438 	list_add(&dev->close_list, &single);
1439 	retval = __dev_close_many(&single);
1440 	list_del(&single);
1441 
1442 	return retval;
1443 }
1444 
1445 int dev_close_many(struct list_head *head, bool unlink)
1446 {
1447 	struct net_device *dev, *tmp;
1448 
1449 	/* Remove the devices that don't need to be closed */
1450 	list_for_each_entry_safe(dev, tmp, head, close_list)
1451 		if (!(dev->flags & IFF_UP))
1452 			list_del_init(&dev->close_list);
1453 
1454 	__dev_close_many(head);
1455 
1456 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1457 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1458 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1459 		if (unlink)
1460 			list_del_init(&dev->close_list);
1461 	}
1462 
1463 	return 0;
1464 }
1465 EXPORT_SYMBOL(dev_close_many);
1466 
1467 /**
1468  *	dev_close - shutdown an interface.
1469  *	@dev: device to shutdown
1470  *
1471  *	This function moves an active device into down state. A
1472  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1473  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1474  *	chain.
1475  */
1476 int dev_close(struct net_device *dev)
1477 {
1478 	if (dev->flags & IFF_UP) {
1479 		LIST_HEAD(single);
1480 
1481 		list_add(&dev->close_list, &single);
1482 		dev_close_many(&single, true);
1483 		list_del(&single);
1484 	}
1485 	return 0;
1486 }
1487 EXPORT_SYMBOL(dev_close);
1488 
1489 
1490 /**
1491  *	dev_disable_lro - disable Large Receive Offload on a device
1492  *	@dev: device
1493  *
1494  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1495  *	called under RTNL.  This is needed if received packets may be
1496  *	forwarded to another interface.
1497  */
1498 void dev_disable_lro(struct net_device *dev)
1499 {
1500 	struct net_device *lower_dev;
1501 	struct list_head *iter;
1502 
1503 	dev->wanted_features &= ~NETIF_F_LRO;
1504 	netdev_update_features(dev);
1505 
1506 	if (unlikely(dev->features & NETIF_F_LRO))
1507 		netdev_WARN(dev, "failed to disable LRO!\n");
1508 
1509 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1510 		dev_disable_lro(lower_dev);
1511 }
1512 EXPORT_SYMBOL(dev_disable_lro);
1513 
1514 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1515 				   struct net_device *dev)
1516 {
1517 	struct netdev_notifier_info info;
1518 
1519 	netdev_notifier_info_init(&info, dev);
1520 	return nb->notifier_call(nb, val, &info);
1521 }
1522 
1523 static int dev_boot_phase = 1;
1524 
1525 /**
1526  * register_netdevice_notifier - register a network notifier block
1527  * @nb: notifier
1528  *
1529  * Register a notifier to be called when network device events occur.
1530  * The notifier passed is linked into the kernel structures and must
1531  * not be reused until it has been unregistered. A negative errno code
1532  * is returned on a failure.
1533  *
1534  * When registered all registration and up events are replayed
1535  * to the new notifier to allow device to have a race free
1536  * view of the network device list.
1537  */
1538 
1539 int register_netdevice_notifier(struct notifier_block *nb)
1540 {
1541 	struct net_device *dev;
1542 	struct net_device *last;
1543 	struct net *net;
1544 	int err;
1545 
1546 	rtnl_lock();
1547 	err = raw_notifier_chain_register(&netdev_chain, nb);
1548 	if (err)
1549 		goto unlock;
1550 	if (dev_boot_phase)
1551 		goto unlock;
1552 	for_each_net(net) {
1553 		for_each_netdev(net, dev) {
1554 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1555 			err = notifier_to_errno(err);
1556 			if (err)
1557 				goto rollback;
1558 
1559 			if (!(dev->flags & IFF_UP))
1560 				continue;
1561 
1562 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1563 		}
1564 	}
1565 
1566 unlock:
1567 	rtnl_unlock();
1568 	return err;
1569 
1570 rollback:
1571 	last = dev;
1572 	for_each_net(net) {
1573 		for_each_netdev(net, dev) {
1574 			if (dev == last)
1575 				goto outroll;
1576 
1577 			if (dev->flags & IFF_UP) {
1578 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1579 							dev);
1580 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1581 			}
1582 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1583 		}
1584 	}
1585 
1586 outroll:
1587 	raw_notifier_chain_unregister(&netdev_chain, nb);
1588 	goto unlock;
1589 }
1590 EXPORT_SYMBOL(register_netdevice_notifier);
1591 
1592 /**
1593  * unregister_netdevice_notifier - unregister a network notifier block
1594  * @nb: notifier
1595  *
1596  * Unregister a notifier previously registered by
1597  * register_netdevice_notifier(). The notifier is unlinked into the
1598  * kernel structures and may then be reused. A negative errno code
1599  * is returned on a failure.
1600  *
1601  * After unregistering unregister and down device events are synthesized
1602  * for all devices on the device list to the removed notifier to remove
1603  * the need for special case cleanup code.
1604  */
1605 
1606 int unregister_netdevice_notifier(struct notifier_block *nb)
1607 {
1608 	struct net_device *dev;
1609 	struct net *net;
1610 	int err;
1611 
1612 	rtnl_lock();
1613 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1614 	if (err)
1615 		goto unlock;
1616 
1617 	for_each_net(net) {
1618 		for_each_netdev(net, dev) {
1619 			if (dev->flags & IFF_UP) {
1620 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1621 							dev);
1622 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1623 			}
1624 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1625 		}
1626 	}
1627 unlock:
1628 	rtnl_unlock();
1629 	return err;
1630 }
1631 EXPORT_SYMBOL(unregister_netdevice_notifier);
1632 
1633 /**
1634  *	call_netdevice_notifiers_info - call all network notifier blocks
1635  *	@val: value passed unmodified to notifier function
1636  *	@dev: net_device pointer passed unmodified to notifier function
1637  *	@info: notifier information data
1638  *
1639  *	Call all network notifier blocks.  Parameters and return value
1640  *	are as for raw_notifier_call_chain().
1641  */
1642 
1643 static int call_netdevice_notifiers_info(unsigned long val,
1644 					 struct net_device *dev,
1645 					 struct netdev_notifier_info *info)
1646 {
1647 	ASSERT_RTNL();
1648 	netdev_notifier_info_init(info, dev);
1649 	return raw_notifier_call_chain(&netdev_chain, val, info);
1650 }
1651 
1652 /**
1653  *	call_netdevice_notifiers - call all network notifier blocks
1654  *      @val: value passed unmodified to notifier function
1655  *      @dev: net_device pointer passed unmodified to notifier function
1656  *
1657  *	Call all network notifier blocks.  Parameters and return value
1658  *	are as for raw_notifier_call_chain().
1659  */
1660 
1661 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1662 {
1663 	struct netdev_notifier_info info;
1664 
1665 	return call_netdevice_notifiers_info(val, dev, &info);
1666 }
1667 EXPORT_SYMBOL(call_netdevice_notifiers);
1668 
1669 #ifdef CONFIG_NET_INGRESS
1670 static struct static_key ingress_needed __read_mostly;
1671 
1672 void net_inc_ingress_queue(void)
1673 {
1674 	static_key_slow_inc(&ingress_needed);
1675 }
1676 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1677 
1678 void net_dec_ingress_queue(void)
1679 {
1680 	static_key_slow_dec(&ingress_needed);
1681 }
1682 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1683 #endif
1684 
1685 #ifdef CONFIG_NET_EGRESS
1686 static struct static_key egress_needed __read_mostly;
1687 
1688 void net_inc_egress_queue(void)
1689 {
1690 	static_key_slow_inc(&egress_needed);
1691 }
1692 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1693 
1694 void net_dec_egress_queue(void)
1695 {
1696 	static_key_slow_dec(&egress_needed);
1697 }
1698 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1699 #endif
1700 
1701 static struct static_key netstamp_needed __read_mostly;
1702 #ifdef HAVE_JUMP_LABEL
1703 static atomic_t netstamp_needed_deferred;
1704 static atomic_t netstamp_wanted;
1705 static void netstamp_clear(struct work_struct *work)
1706 {
1707 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1708 	int wanted;
1709 
1710 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1711 	if (wanted > 0)
1712 		static_key_enable(&netstamp_needed);
1713 	else
1714 		static_key_disable(&netstamp_needed);
1715 }
1716 static DECLARE_WORK(netstamp_work, netstamp_clear);
1717 #endif
1718 
1719 void net_enable_timestamp(void)
1720 {
1721 #ifdef HAVE_JUMP_LABEL
1722 	int wanted;
1723 
1724 	while (1) {
1725 		wanted = atomic_read(&netstamp_wanted);
1726 		if (wanted <= 0)
1727 			break;
1728 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1729 			return;
1730 	}
1731 	atomic_inc(&netstamp_needed_deferred);
1732 	schedule_work(&netstamp_work);
1733 #else
1734 	static_key_slow_inc(&netstamp_needed);
1735 #endif
1736 }
1737 EXPORT_SYMBOL(net_enable_timestamp);
1738 
1739 void net_disable_timestamp(void)
1740 {
1741 #ifdef HAVE_JUMP_LABEL
1742 	int wanted;
1743 
1744 	while (1) {
1745 		wanted = atomic_read(&netstamp_wanted);
1746 		if (wanted <= 1)
1747 			break;
1748 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1749 			return;
1750 	}
1751 	atomic_dec(&netstamp_needed_deferred);
1752 	schedule_work(&netstamp_work);
1753 #else
1754 	static_key_slow_dec(&netstamp_needed);
1755 #endif
1756 }
1757 EXPORT_SYMBOL(net_disable_timestamp);
1758 
1759 static inline void net_timestamp_set(struct sk_buff *skb)
1760 {
1761 	skb->tstamp = 0;
1762 	if (static_key_false(&netstamp_needed))
1763 		__net_timestamp(skb);
1764 }
1765 
1766 #define net_timestamp_check(COND, SKB)			\
1767 	if (static_key_false(&netstamp_needed)) {		\
1768 		if ((COND) && !(SKB)->tstamp)	\
1769 			__net_timestamp(SKB);		\
1770 	}						\
1771 
1772 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1773 {
1774 	unsigned int len;
1775 
1776 	if (!(dev->flags & IFF_UP))
1777 		return false;
1778 
1779 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1780 	if (skb->len <= len)
1781 		return true;
1782 
1783 	/* if TSO is enabled, we don't care about the length as the packet
1784 	 * could be forwarded without being segmented before
1785 	 */
1786 	if (skb_is_gso(skb))
1787 		return true;
1788 
1789 	return false;
1790 }
1791 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1792 
1793 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1794 {
1795 	int ret = ____dev_forward_skb(dev, skb);
1796 
1797 	if (likely(!ret)) {
1798 		skb->protocol = eth_type_trans(skb, dev);
1799 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1800 	}
1801 
1802 	return ret;
1803 }
1804 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1805 
1806 /**
1807  * dev_forward_skb - loopback an skb to another netif
1808  *
1809  * @dev: destination network device
1810  * @skb: buffer to forward
1811  *
1812  * return values:
1813  *	NET_RX_SUCCESS	(no congestion)
1814  *	NET_RX_DROP     (packet was dropped, but freed)
1815  *
1816  * dev_forward_skb can be used for injecting an skb from the
1817  * start_xmit function of one device into the receive queue
1818  * of another device.
1819  *
1820  * The receiving device may be in another namespace, so
1821  * we have to clear all information in the skb that could
1822  * impact namespace isolation.
1823  */
1824 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1825 {
1826 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1827 }
1828 EXPORT_SYMBOL_GPL(dev_forward_skb);
1829 
1830 static inline int deliver_skb(struct sk_buff *skb,
1831 			      struct packet_type *pt_prev,
1832 			      struct net_device *orig_dev)
1833 {
1834 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1835 		return -ENOMEM;
1836 	atomic_inc(&skb->users);
1837 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1838 }
1839 
1840 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1841 					  struct packet_type **pt,
1842 					  struct net_device *orig_dev,
1843 					  __be16 type,
1844 					  struct list_head *ptype_list)
1845 {
1846 	struct packet_type *ptype, *pt_prev = *pt;
1847 
1848 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1849 		if (ptype->type != type)
1850 			continue;
1851 		if (pt_prev)
1852 			deliver_skb(skb, pt_prev, orig_dev);
1853 		pt_prev = ptype;
1854 	}
1855 	*pt = pt_prev;
1856 }
1857 
1858 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1859 {
1860 	if (!ptype->af_packet_priv || !skb->sk)
1861 		return false;
1862 
1863 	if (ptype->id_match)
1864 		return ptype->id_match(ptype, skb->sk);
1865 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1866 		return true;
1867 
1868 	return false;
1869 }
1870 
1871 /*
1872  *	Support routine. Sends outgoing frames to any network
1873  *	taps currently in use.
1874  */
1875 
1876 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1877 {
1878 	struct packet_type *ptype;
1879 	struct sk_buff *skb2 = NULL;
1880 	struct packet_type *pt_prev = NULL;
1881 	struct list_head *ptype_list = &ptype_all;
1882 
1883 	rcu_read_lock();
1884 again:
1885 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1886 		/* Never send packets back to the socket
1887 		 * they originated from - MvS (miquels@drinkel.ow.org)
1888 		 */
1889 		if (skb_loop_sk(ptype, skb))
1890 			continue;
1891 
1892 		if (pt_prev) {
1893 			deliver_skb(skb2, pt_prev, skb->dev);
1894 			pt_prev = ptype;
1895 			continue;
1896 		}
1897 
1898 		/* need to clone skb, done only once */
1899 		skb2 = skb_clone(skb, GFP_ATOMIC);
1900 		if (!skb2)
1901 			goto out_unlock;
1902 
1903 		net_timestamp_set(skb2);
1904 
1905 		/* skb->nh should be correctly
1906 		 * set by sender, so that the second statement is
1907 		 * just protection against buggy protocols.
1908 		 */
1909 		skb_reset_mac_header(skb2);
1910 
1911 		if (skb_network_header(skb2) < skb2->data ||
1912 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1913 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1914 					     ntohs(skb2->protocol),
1915 					     dev->name);
1916 			skb_reset_network_header(skb2);
1917 		}
1918 
1919 		skb2->transport_header = skb2->network_header;
1920 		skb2->pkt_type = PACKET_OUTGOING;
1921 		pt_prev = ptype;
1922 	}
1923 
1924 	if (ptype_list == &ptype_all) {
1925 		ptype_list = &dev->ptype_all;
1926 		goto again;
1927 	}
1928 out_unlock:
1929 	if (pt_prev)
1930 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1931 	rcu_read_unlock();
1932 }
1933 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1934 
1935 /**
1936  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1937  * @dev: Network device
1938  * @txq: number of queues available
1939  *
1940  * If real_num_tx_queues is changed the tc mappings may no longer be
1941  * valid. To resolve this verify the tc mapping remains valid and if
1942  * not NULL the mapping. With no priorities mapping to this
1943  * offset/count pair it will no longer be used. In the worst case TC0
1944  * is invalid nothing can be done so disable priority mappings. If is
1945  * expected that drivers will fix this mapping if they can before
1946  * calling netif_set_real_num_tx_queues.
1947  */
1948 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1949 {
1950 	int i;
1951 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1952 
1953 	/* If TC0 is invalidated disable TC mapping */
1954 	if (tc->offset + tc->count > txq) {
1955 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1956 		dev->num_tc = 0;
1957 		return;
1958 	}
1959 
1960 	/* Invalidated prio to tc mappings set to TC0 */
1961 	for (i = 1; i < TC_BITMASK + 1; i++) {
1962 		int q = netdev_get_prio_tc_map(dev, i);
1963 
1964 		tc = &dev->tc_to_txq[q];
1965 		if (tc->offset + tc->count > txq) {
1966 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1967 				i, q);
1968 			netdev_set_prio_tc_map(dev, i, 0);
1969 		}
1970 	}
1971 }
1972 
1973 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1974 {
1975 	if (dev->num_tc) {
1976 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1977 		int i;
1978 
1979 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1980 			if ((txq - tc->offset) < tc->count)
1981 				return i;
1982 		}
1983 
1984 		return -1;
1985 	}
1986 
1987 	return 0;
1988 }
1989 
1990 #ifdef CONFIG_XPS
1991 static DEFINE_MUTEX(xps_map_mutex);
1992 #define xmap_dereference(P)		\
1993 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1994 
1995 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1996 			     int tci, u16 index)
1997 {
1998 	struct xps_map *map = NULL;
1999 	int pos;
2000 
2001 	if (dev_maps)
2002 		map = xmap_dereference(dev_maps->cpu_map[tci]);
2003 	if (!map)
2004 		return false;
2005 
2006 	for (pos = map->len; pos--;) {
2007 		if (map->queues[pos] != index)
2008 			continue;
2009 
2010 		if (map->len > 1) {
2011 			map->queues[pos] = map->queues[--map->len];
2012 			break;
2013 		}
2014 
2015 		RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2016 		kfree_rcu(map, rcu);
2017 		return false;
2018 	}
2019 
2020 	return true;
2021 }
2022 
2023 static bool remove_xps_queue_cpu(struct net_device *dev,
2024 				 struct xps_dev_maps *dev_maps,
2025 				 int cpu, u16 offset, u16 count)
2026 {
2027 	int num_tc = dev->num_tc ? : 1;
2028 	bool active = false;
2029 	int tci;
2030 
2031 	for (tci = cpu * num_tc; num_tc--; tci++) {
2032 		int i, j;
2033 
2034 		for (i = count, j = offset; i--; j++) {
2035 			if (!remove_xps_queue(dev_maps, cpu, j))
2036 				break;
2037 		}
2038 
2039 		active |= i < 0;
2040 	}
2041 
2042 	return active;
2043 }
2044 
2045 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2046 				   u16 count)
2047 {
2048 	struct xps_dev_maps *dev_maps;
2049 	int cpu, i;
2050 	bool active = false;
2051 
2052 	mutex_lock(&xps_map_mutex);
2053 	dev_maps = xmap_dereference(dev->xps_maps);
2054 
2055 	if (!dev_maps)
2056 		goto out_no_maps;
2057 
2058 	for_each_possible_cpu(cpu)
2059 		active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2060 					       offset, count);
2061 
2062 	if (!active) {
2063 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2064 		kfree_rcu(dev_maps, rcu);
2065 	}
2066 
2067 	for (i = offset + (count - 1); count--; i--)
2068 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2069 					     NUMA_NO_NODE);
2070 
2071 out_no_maps:
2072 	mutex_unlock(&xps_map_mutex);
2073 }
2074 
2075 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2076 {
2077 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2078 }
2079 
2080 static struct xps_map *expand_xps_map(struct xps_map *map,
2081 				      int cpu, u16 index)
2082 {
2083 	struct xps_map *new_map;
2084 	int alloc_len = XPS_MIN_MAP_ALLOC;
2085 	int i, pos;
2086 
2087 	for (pos = 0; map && pos < map->len; pos++) {
2088 		if (map->queues[pos] != index)
2089 			continue;
2090 		return map;
2091 	}
2092 
2093 	/* Need to add queue to this CPU's existing map */
2094 	if (map) {
2095 		if (pos < map->alloc_len)
2096 			return map;
2097 
2098 		alloc_len = map->alloc_len * 2;
2099 	}
2100 
2101 	/* Need to allocate new map to store queue on this CPU's map */
2102 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2103 			       cpu_to_node(cpu));
2104 	if (!new_map)
2105 		return NULL;
2106 
2107 	for (i = 0; i < pos; i++)
2108 		new_map->queues[i] = map->queues[i];
2109 	new_map->alloc_len = alloc_len;
2110 	new_map->len = pos;
2111 
2112 	return new_map;
2113 }
2114 
2115 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2116 			u16 index)
2117 {
2118 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2119 	int i, cpu, tci, numa_node_id = -2;
2120 	int maps_sz, num_tc = 1, tc = 0;
2121 	struct xps_map *map, *new_map;
2122 	bool active = false;
2123 
2124 	if (dev->num_tc) {
2125 		num_tc = dev->num_tc;
2126 		tc = netdev_txq_to_tc(dev, index);
2127 		if (tc < 0)
2128 			return -EINVAL;
2129 	}
2130 
2131 	maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2132 	if (maps_sz < L1_CACHE_BYTES)
2133 		maps_sz = L1_CACHE_BYTES;
2134 
2135 	mutex_lock(&xps_map_mutex);
2136 
2137 	dev_maps = xmap_dereference(dev->xps_maps);
2138 
2139 	/* allocate memory for queue storage */
2140 	for_each_cpu_and(cpu, cpu_online_mask, mask) {
2141 		if (!new_dev_maps)
2142 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2143 		if (!new_dev_maps) {
2144 			mutex_unlock(&xps_map_mutex);
2145 			return -ENOMEM;
2146 		}
2147 
2148 		tci = cpu * num_tc + tc;
2149 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2150 				 NULL;
2151 
2152 		map = expand_xps_map(map, cpu, index);
2153 		if (!map)
2154 			goto error;
2155 
2156 		RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2157 	}
2158 
2159 	if (!new_dev_maps)
2160 		goto out_no_new_maps;
2161 
2162 	for_each_possible_cpu(cpu) {
2163 		/* copy maps belonging to foreign traffic classes */
2164 		for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2165 			/* fill in the new device map from the old device map */
2166 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2167 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2168 		}
2169 
2170 		/* We need to explicitly update tci as prevous loop
2171 		 * could break out early if dev_maps is NULL.
2172 		 */
2173 		tci = cpu * num_tc + tc;
2174 
2175 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2176 			/* add queue to CPU maps */
2177 			int pos = 0;
2178 
2179 			map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2180 			while ((pos < map->len) && (map->queues[pos] != index))
2181 				pos++;
2182 
2183 			if (pos == map->len)
2184 				map->queues[map->len++] = index;
2185 #ifdef CONFIG_NUMA
2186 			if (numa_node_id == -2)
2187 				numa_node_id = cpu_to_node(cpu);
2188 			else if (numa_node_id != cpu_to_node(cpu))
2189 				numa_node_id = -1;
2190 #endif
2191 		} else if (dev_maps) {
2192 			/* fill in the new device map from the old device map */
2193 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2194 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2195 		}
2196 
2197 		/* copy maps belonging to foreign traffic classes */
2198 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2199 			/* fill in the new device map from the old device map */
2200 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2201 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2202 		}
2203 	}
2204 
2205 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2206 
2207 	/* Cleanup old maps */
2208 	if (!dev_maps)
2209 		goto out_no_old_maps;
2210 
2211 	for_each_possible_cpu(cpu) {
2212 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2213 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2214 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2215 			if (map && map != new_map)
2216 				kfree_rcu(map, rcu);
2217 		}
2218 	}
2219 
2220 	kfree_rcu(dev_maps, rcu);
2221 
2222 out_no_old_maps:
2223 	dev_maps = new_dev_maps;
2224 	active = true;
2225 
2226 out_no_new_maps:
2227 	/* update Tx queue numa node */
2228 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2229 				     (numa_node_id >= 0) ? numa_node_id :
2230 				     NUMA_NO_NODE);
2231 
2232 	if (!dev_maps)
2233 		goto out_no_maps;
2234 
2235 	/* removes queue from unused CPUs */
2236 	for_each_possible_cpu(cpu) {
2237 		for (i = tc, tci = cpu * num_tc; i--; tci++)
2238 			active |= remove_xps_queue(dev_maps, tci, index);
2239 		if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2240 			active |= remove_xps_queue(dev_maps, tci, index);
2241 		for (i = num_tc - tc, tci++; --i; tci++)
2242 			active |= remove_xps_queue(dev_maps, tci, index);
2243 	}
2244 
2245 	/* free map if not active */
2246 	if (!active) {
2247 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2248 		kfree_rcu(dev_maps, rcu);
2249 	}
2250 
2251 out_no_maps:
2252 	mutex_unlock(&xps_map_mutex);
2253 
2254 	return 0;
2255 error:
2256 	/* remove any maps that we added */
2257 	for_each_possible_cpu(cpu) {
2258 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2259 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2260 			map = dev_maps ?
2261 			      xmap_dereference(dev_maps->cpu_map[tci]) :
2262 			      NULL;
2263 			if (new_map && new_map != map)
2264 				kfree(new_map);
2265 		}
2266 	}
2267 
2268 	mutex_unlock(&xps_map_mutex);
2269 
2270 	kfree(new_dev_maps);
2271 	return -ENOMEM;
2272 }
2273 EXPORT_SYMBOL(netif_set_xps_queue);
2274 
2275 #endif
2276 void netdev_reset_tc(struct net_device *dev)
2277 {
2278 #ifdef CONFIG_XPS
2279 	netif_reset_xps_queues_gt(dev, 0);
2280 #endif
2281 	dev->num_tc = 0;
2282 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2283 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2284 }
2285 EXPORT_SYMBOL(netdev_reset_tc);
2286 
2287 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2288 {
2289 	if (tc >= dev->num_tc)
2290 		return -EINVAL;
2291 
2292 #ifdef CONFIG_XPS
2293 	netif_reset_xps_queues(dev, offset, count);
2294 #endif
2295 	dev->tc_to_txq[tc].count = count;
2296 	dev->tc_to_txq[tc].offset = offset;
2297 	return 0;
2298 }
2299 EXPORT_SYMBOL(netdev_set_tc_queue);
2300 
2301 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2302 {
2303 	if (num_tc > TC_MAX_QUEUE)
2304 		return -EINVAL;
2305 
2306 #ifdef CONFIG_XPS
2307 	netif_reset_xps_queues_gt(dev, 0);
2308 #endif
2309 	dev->num_tc = num_tc;
2310 	return 0;
2311 }
2312 EXPORT_SYMBOL(netdev_set_num_tc);
2313 
2314 /*
2315  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2316  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2317  */
2318 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2319 {
2320 	int rc;
2321 
2322 	if (txq < 1 || txq > dev->num_tx_queues)
2323 		return -EINVAL;
2324 
2325 	if (dev->reg_state == NETREG_REGISTERED ||
2326 	    dev->reg_state == NETREG_UNREGISTERING) {
2327 		ASSERT_RTNL();
2328 
2329 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2330 						  txq);
2331 		if (rc)
2332 			return rc;
2333 
2334 		if (dev->num_tc)
2335 			netif_setup_tc(dev, txq);
2336 
2337 		if (txq < dev->real_num_tx_queues) {
2338 			qdisc_reset_all_tx_gt(dev, txq);
2339 #ifdef CONFIG_XPS
2340 			netif_reset_xps_queues_gt(dev, txq);
2341 #endif
2342 		}
2343 	}
2344 
2345 	dev->real_num_tx_queues = txq;
2346 	return 0;
2347 }
2348 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2349 
2350 #ifdef CONFIG_SYSFS
2351 /**
2352  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2353  *	@dev: Network device
2354  *	@rxq: Actual number of RX queues
2355  *
2356  *	This must be called either with the rtnl_lock held or before
2357  *	registration of the net device.  Returns 0 on success, or a
2358  *	negative error code.  If called before registration, it always
2359  *	succeeds.
2360  */
2361 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2362 {
2363 	int rc;
2364 
2365 	if (rxq < 1 || rxq > dev->num_rx_queues)
2366 		return -EINVAL;
2367 
2368 	if (dev->reg_state == NETREG_REGISTERED) {
2369 		ASSERT_RTNL();
2370 
2371 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2372 						  rxq);
2373 		if (rc)
2374 			return rc;
2375 	}
2376 
2377 	dev->real_num_rx_queues = rxq;
2378 	return 0;
2379 }
2380 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2381 #endif
2382 
2383 /**
2384  * netif_get_num_default_rss_queues - default number of RSS queues
2385  *
2386  * This routine should set an upper limit on the number of RSS queues
2387  * used by default by multiqueue devices.
2388  */
2389 int netif_get_num_default_rss_queues(void)
2390 {
2391 	return is_kdump_kernel() ?
2392 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2393 }
2394 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2395 
2396 static void __netif_reschedule(struct Qdisc *q)
2397 {
2398 	struct softnet_data *sd;
2399 	unsigned long flags;
2400 
2401 	local_irq_save(flags);
2402 	sd = this_cpu_ptr(&softnet_data);
2403 	q->next_sched = NULL;
2404 	*sd->output_queue_tailp = q;
2405 	sd->output_queue_tailp = &q->next_sched;
2406 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2407 	local_irq_restore(flags);
2408 }
2409 
2410 void __netif_schedule(struct Qdisc *q)
2411 {
2412 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2413 		__netif_reschedule(q);
2414 }
2415 EXPORT_SYMBOL(__netif_schedule);
2416 
2417 struct dev_kfree_skb_cb {
2418 	enum skb_free_reason reason;
2419 };
2420 
2421 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2422 {
2423 	return (struct dev_kfree_skb_cb *)skb->cb;
2424 }
2425 
2426 void netif_schedule_queue(struct netdev_queue *txq)
2427 {
2428 	rcu_read_lock();
2429 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2430 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2431 
2432 		__netif_schedule(q);
2433 	}
2434 	rcu_read_unlock();
2435 }
2436 EXPORT_SYMBOL(netif_schedule_queue);
2437 
2438 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2439 {
2440 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2441 		struct Qdisc *q;
2442 
2443 		rcu_read_lock();
2444 		q = rcu_dereference(dev_queue->qdisc);
2445 		__netif_schedule(q);
2446 		rcu_read_unlock();
2447 	}
2448 }
2449 EXPORT_SYMBOL(netif_tx_wake_queue);
2450 
2451 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2452 {
2453 	unsigned long flags;
2454 
2455 	if (unlikely(!skb))
2456 		return;
2457 
2458 	if (likely(atomic_read(&skb->users) == 1)) {
2459 		smp_rmb();
2460 		atomic_set(&skb->users, 0);
2461 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2462 		return;
2463 	}
2464 	get_kfree_skb_cb(skb)->reason = reason;
2465 	local_irq_save(flags);
2466 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2467 	__this_cpu_write(softnet_data.completion_queue, skb);
2468 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2469 	local_irq_restore(flags);
2470 }
2471 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2472 
2473 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2474 {
2475 	if (in_irq() || irqs_disabled())
2476 		__dev_kfree_skb_irq(skb, reason);
2477 	else
2478 		dev_kfree_skb(skb);
2479 }
2480 EXPORT_SYMBOL(__dev_kfree_skb_any);
2481 
2482 
2483 /**
2484  * netif_device_detach - mark device as removed
2485  * @dev: network device
2486  *
2487  * Mark device as removed from system and therefore no longer available.
2488  */
2489 void netif_device_detach(struct net_device *dev)
2490 {
2491 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2492 	    netif_running(dev)) {
2493 		netif_tx_stop_all_queues(dev);
2494 	}
2495 }
2496 EXPORT_SYMBOL(netif_device_detach);
2497 
2498 /**
2499  * netif_device_attach - mark device as attached
2500  * @dev: network device
2501  *
2502  * Mark device as attached from system and restart if needed.
2503  */
2504 void netif_device_attach(struct net_device *dev)
2505 {
2506 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2507 	    netif_running(dev)) {
2508 		netif_tx_wake_all_queues(dev);
2509 		__netdev_watchdog_up(dev);
2510 	}
2511 }
2512 EXPORT_SYMBOL(netif_device_attach);
2513 
2514 /*
2515  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2516  * to be used as a distribution range.
2517  */
2518 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2519 		  unsigned int num_tx_queues)
2520 {
2521 	u32 hash;
2522 	u16 qoffset = 0;
2523 	u16 qcount = num_tx_queues;
2524 
2525 	if (skb_rx_queue_recorded(skb)) {
2526 		hash = skb_get_rx_queue(skb);
2527 		while (unlikely(hash >= num_tx_queues))
2528 			hash -= num_tx_queues;
2529 		return hash;
2530 	}
2531 
2532 	if (dev->num_tc) {
2533 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2534 
2535 		qoffset = dev->tc_to_txq[tc].offset;
2536 		qcount = dev->tc_to_txq[tc].count;
2537 	}
2538 
2539 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2540 }
2541 EXPORT_SYMBOL(__skb_tx_hash);
2542 
2543 static void skb_warn_bad_offload(const struct sk_buff *skb)
2544 {
2545 	static const netdev_features_t null_features;
2546 	struct net_device *dev = skb->dev;
2547 	const char *name = "";
2548 
2549 	if (!net_ratelimit())
2550 		return;
2551 
2552 	if (dev) {
2553 		if (dev->dev.parent)
2554 			name = dev_driver_string(dev->dev.parent);
2555 		else
2556 			name = netdev_name(dev);
2557 	}
2558 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2559 	     "gso_type=%d ip_summed=%d\n",
2560 	     name, dev ? &dev->features : &null_features,
2561 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2562 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2563 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2564 }
2565 
2566 /*
2567  * Invalidate hardware checksum when packet is to be mangled, and
2568  * complete checksum manually on outgoing path.
2569  */
2570 int skb_checksum_help(struct sk_buff *skb)
2571 {
2572 	__wsum csum;
2573 	int ret = 0, offset;
2574 
2575 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2576 		goto out_set_summed;
2577 
2578 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2579 		skb_warn_bad_offload(skb);
2580 		return -EINVAL;
2581 	}
2582 
2583 	/* Before computing a checksum, we should make sure no frag could
2584 	 * be modified by an external entity : checksum could be wrong.
2585 	 */
2586 	if (skb_has_shared_frag(skb)) {
2587 		ret = __skb_linearize(skb);
2588 		if (ret)
2589 			goto out;
2590 	}
2591 
2592 	offset = skb_checksum_start_offset(skb);
2593 	BUG_ON(offset >= skb_headlen(skb));
2594 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2595 
2596 	offset += skb->csum_offset;
2597 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2598 
2599 	if (skb_cloned(skb) &&
2600 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2601 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2602 		if (ret)
2603 			goto out;
2604 	}
2605 
2606 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2607 out_set_summed:
2608 	skb->ip_summed = CHECKSUM_NONE;
2609 out:
2610 	return ret;
2611 }
2612 EXPORT_SYMBOL(skb_checksum_help);
2613 
2614 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2615 {
2616 	__be16 type = skb->protocol;
2617 
2618 	/* Tunnel gso handlers can set protocol to ethernet. */
2619 	if (type == htons(ETH_P_TEB)) {
2620 		struct ethhdr *eth;
2621 
2622 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2623 			return 0;
2624 
2625 		eth = (struct ethhdr *)skb_mac_header(skb);
2626 		type = eth->h_proto;
2627 	}
2628 
2629 	return __vlan_get_protocol(skb, type, depth);
2630 }
2631 
2632 /**
2633  *	skb_mac_gso_segment - mac layer segmentation handler.
2634  *	@skb: buffer to segment
2635  *	@features: features for the output path (see dev->features)
2636  */
2637 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2638 				    netdev_features_t features)
2639 {
2640 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2641 	struct packet_offload *ptype;
2642 	int vlan_depth = skb->mac_len;
2643 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2644 
2645 	if (unlikely(!type))
2646 		return ERR_PTR(-EINVAL);
2647 
2648 	__skb_pull(skb, vlan_depth);
2649 
2650 	rcu_read_lock();
2651 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2652 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2653 			segs = ptype->callbacks.gso_segment(skb, features);
2654 			break;
2655 		}
2656 	}
2657 	rcu_read_unlock();
2658 
2659 	__skb_push(skb, skb->data - skb_mac_header(skb));
2660 
2661 	return segs;
2662 }
2663 EXPORT_SYMBOL(skb_mac_gso_segment);
2664 
2665 
2666 /* openvswitch calls this on rx path, so we need a different check.
2667  */
2668 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2669 {
2670 	if (tx_path)
2671 		return skb->ip_summed != CHECKSUM_PARTIAL &&
2672 		       skb->ip_summed != CHECKSUM_NONE;
2673 
2674 	return skb->ip_summed == CHECKSUM_NONE;
2675 }
2676 
2677 /**
2678  *	__skb_gso_segment - Perform segmentation on skb.
2679  *	@skb: buffer to segment
2680  *	@features: features for the output path (see dev->features)
2681  *	@tx_path: whether it is called in TX path
2682  *
2683  *	This function segments the given skb and returns a list of segments.
2684  *
2685  *	It may return NULL if the skb requires no segmentation.  This is
2686  *	only possible when GSO is used for verifying header integrity.
2687  *
2688  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2689  */
2690 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2691 				  netdev_features_t features, bool tx_path)
2692 {
2693 	struct sk_buff *segs;
2694 
2695 	if (unlikely(skb_needs_check(skb, tx_path))) {
2696 		int err;
2697 
2698 		/* We're going to init ->check field in TCP or UDP header */
2699 		err = skb_cow_head(skb, 0);
2700 		if (err < 0)
2701 			return ERR_PTR(err);
2702 	}
2703 
2704 	/* Only report GSO partial support if it will enable us to
2705 	 * support segmentation on this frame without needing additional
2706 	 * work.
2707 	 */
2708 	if (features & NETIF_F_GSO_PARTIAL) {
2709 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2710 		struct net_device *dev = skb->dev;
2711 
2712 		partial_features |= dev->features & dev->gso_partial_features;
2713 		if (!skb_gso_ok(skb, features | partial_features))
2714 			features &= ~NETIF_F_GSO_PARTIAL;
2715 	}
2716 
2717 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2718 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2719 
2720 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2721 	SKB_GSO_CB(skb)->encap_level = 0;
2722 
2723 	skb_reset_mac_header(skb);
2724 	skb_reset_mac_len(skb);
2725 
2726 	segs = skb_mac_gso_segment(skb, features);
2727 
2728 	if (unlikely(skb_needs_check(skb, tx_path)))
2729 		skb_warn_bad_offload(skb);
2730 
2731 	return segs;
2732 }
2733 EXPORT_SYMBOL(__skb_gso_segment);
2734 
2735 /* Take action when hardware reception checksum errors are detected. */
2736 #ifdef CONFIG_BUG
2737 void netdev_rx_csum_fault(struct net_device *dev)
2738 {
2739 	if (net_ratelimit()) {
2740 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2741 		dump_stack();
2742 	}
2743 }
2744 EXPORT_SYMBOL(netdev_rx_csum_fault);
2745 #endif
2746 
2747 /* Actually, we should eliminate this check as soon as we know, that:
2748  * 1. IOMMU is present and allows to map all the memory.
2749  * 2. No high memory really exists on this machine.
2750  */
2751 
2752 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2753 {
2754 #ifdef CONFIG_HIGHMEM
2755 	int i;
2756 
2757 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2758 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2759 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2760 
2761 			if (PageHighMem(skb_frag_page(frag)))
2762 				return 1;
2763 		}
2764 	}
2765 
2766 	if (PCI_DMA_BUS_IS_PHYS) {
2767 		struct device *pdev = dev->dev.parent;
2768 
2769 		if (!pdev)
2770 			return 0;
2771 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2772 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2773 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2774 
2775 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2776 				return 1;
2777 		}
2778 	}
2779 #endif
2780 	return 0;
2781 }
2782 
2783 /* If MPLS offload request, verify we are testing hardware MPLS features
2784  * instead of standard features for the netdev.
2785  */
2786 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2787 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2788 					   netdev_features_t features,
2789 					   __be16 type)
2790 {
2791 	if (eth_p_mpls(type))
2792 		features &= skb->dev->mpls_features;
2793 
2794 	return features;
2795 }
2796 #else
2797 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2798 					   netdev_features_t features,
2799 					   __be16 type)
2800 {
2801 	return features;
2802 }
2803 #endif
2804 
2805 static netdev_features_t harmonize_features(struct sk_buff *skb,
2806 	netdev_features_t features)
2807 {
2808 	int tmp;
2809 	__be16 type;
2810 
2811 	type = skb_network_protocol(skb, &tmp);
2812 	features = net_mpls_features(skb, features, type);
2813 
2814 	if (skb->ip_summed != CHECKSUM_NONE &&
2815 	    !can_checksum_protocol(features, type)) {
2816 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2817 	}
2818 	if (illegal_highdma(skb->dev, skb))
2819 		features &= ~NETIF_F_SG;
2820 
2821 	return features;
2822 }
2823 
2824 netdev_features_t passthru_features_check(struct sk_buff *skb,
2825 					  struct net_device *dev,
2826 					  netdev_features_t features)
2827 {
2828 	return features;
2829 }
2830 EXPORT_SYMBOL(passthru_features_check);
2831 
2832 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2833 					     struct net_device *dev,
2834 					     netdev_features_t features)
2835 {
2836 	return vlan_features_check(skb, features);
2837 }
2838 
2839 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2840 					    struct net_device *dev,
2841 					    netdev_features_t features)
2842 {
2843 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2844 
2845 	if (gso_segs > dev->gso_max_segs)
2846 		return features & ~NETIF_F_GSO_MASK;
2847 
2848 	/* Support for GSO partial features requires software
2849 	 * intervention before we can actually process the packets
2850 	 * so we need to strip support for any partial features now
2851 	 * and we can pull them back in after we have partially
2852 	 * segmented the frame.
2853 	 */
2854 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2855 		features &= ~dev->gso_partial_features;
2856 
2857 	/* Make sure to clear the IPv4 ID mangling feature if the
2858 	 * IPv4 header has the potential to be fragmented.
2859 	 */
2860 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2861 		struct iphdr *iph = skb->encapsulation ?
2862 				    inner_ip_hdr(skb) : ip_hdr(skb);
2863 
2864 		if (!(iph->frag_off & htons(IP_DF)))
2865 			features &= ~NETIF_F_TSO_MANGLEID;
2866 	}
2867 
2868 	return features;
2869 }
2870 
2871 netdev_features_t netif_skb_features(struct sk_buff *skb)
2872 {
2873 	struct net_device *dev = skb->dev;
2874 	netdev_features_t features = dev->features;
2875 
2876 	if (skb_is_gso(skb))
2877 		features = gso_features_check(skb, dev, features);
2878 
2879 	/* If encapsulation offload request, verify we are testing
2880 	 * hardware encapsulation features instead of standard
2881 	 * features for the netdev
2882 	 */
2883 	if (skb->encapsulation)
2884 		features &= dev->hw_enc_features;
2885 
2886 	if (skb_vlan_tagged(skb))
2887 		features = netdev_intersect_features(features,
2888 						     dev->vlan_features |
2889 						     NETIF_F_HW_VLAN_CTAG_TX |
2890 						     NETIF_F_HW_VLAN_STAG_TX);
2891 
2892 	if (dev->netdev_ops->ndo_features_check)
2893 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2894 								features);
2895 	else
2896 		features &= dflt_features_check(skb, dev, features);
2897 
2898 	return harmonize_features(skb, features);
2899 }
2900 EXPORT_SYMBOL(netif_skb_features);
2901 
2902 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2903 		    struct netdev_queue *txq, bool more)
2904 {
2905 	unsigned int len;
2906 	int rc;
2907 
2908 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2909 		dev_queue_xmit_nit(skb, dev);
2910 
2911 	len = skb->len;
2912 	trace_net_dev_start_xmit(skb, dev);
2913 	rc = netdev_start_xmit(skb, dev, txq, more);
2914 	trace_net_dev_xmit(skb, rc, dev, len);
2915 
2916 	return rc;
2917 }
2918 
2919 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2920 				    struct netdev_queue *txq, int *ret)
2921 {
2922 	struct sk_buff *skb = first;
2923 	int rc = NETDEV_TX_OK;
2924 
2925 	while (skb) {
2926 		struct sk_buff *next = skb->next;
2927 
2928 		skb->next = NULL;
2929 		rc = xmit_one(skb, dev, txq, next != NULL);
2930 		if (unlikely(!dev_xmit_complete(rc))) {
2931 			skb->next = next;
2932 			goto out;
2933 		}
2934 
2935 		skb = next;
2936 		if (netif_xmit_stopped(txq) && skb) {
2937 			rc = NETDEV_TX_BUSY;
2938 			break;
2939 		}
2940 	}
2941 
2942 out:
2943 	*ret = rc;
2944 	return skb;
2945 }
2946 
2947 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2948 					  netdev_features_t features)
2949 {
2950 	if (skb_vlan_tag_present(skb) &&
2951 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
2952 		skb = __vlan_hwaccel_push_inside(skb);
2953 	return skb;
2954 }
2955 
2956 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2957 {
2958 	netdev_features_t features;
2959 
2960 	features = netif_skb_features(skb);
2961 	skb = validate_xmit_vlan(skb, features);
2962 	if (unlikely(!skb))
2963 		goto out_null;
2964 
2965 	if (netif_needs_gso(skb, features)) {
2966 		struct sk_buff *segs;
2967 
2968 		segs = skb_gso_segment(skb, features);
2969 		if (IS_ERR(segs)) {
2970 			goto out_kfree_skb;
2971 		} else if (segs) {
2972 			consume_skb(skb);
2973 			skb = segs;
2974 		}
2975 	} else {
2976 		if (skb_needs_linearize(skb, features) &&
2977 		    __skb_linearize(skb))
2978 			goto out_kfree_skb;
2979 
2980 		if (validate_xmit_xfrm(skb, features))
2981 			goto out_kfree_skb;
2982 
2983 		/* If packet is not checksummed and device does not
2984 		 * support checksumming for this protocol, complete
2985 		 * checksumming here.
2986 		 */
2987 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2988 			if (skb->encapsulation)
2989 				skb_set_inner_transport_header(skb,
2990 							       skb_checksum_start_offset(skb));
2991 			else
2992 				skb_set_transport_header(skb,
2993 							 skb_checksum_start_offset(skb));
2994 			if (!(features & NETIF_F_CSUM_MASK) &&
2995 			    skb_checksum_help(skb))
2996 				goto out_kfree_skb;
2997 		}
2998 	}
2999 
3000 	return skb;
3001 
3002 out_kfree_skb:
3003 	kfree_skb(skb);
3004 out_null:
3005 	atomic_long_inc(&dev->tx_dropped);
3006 	return NULL;
3007 }
3008 
3009 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3010 {
3011 	struct sk_buff *next, *head = NULL, *tail;
3012 
3013 	for (; skb != NULL; skb = next) {
3014 		next = skb->next;
3015 		skb->next = NULL;
3016 
3017 		/* in case skb wont be segmented, point to itself */
3018 		skb->prev = skb;
3019 
3020 		skb = validate_xmit_skb(skb, dev);
3021 		if (!skb)
3022 			continue;
3023 
3024 		if (!head)
3025 			head = skb;
3026 		else
3027 			tail->next = skb;
3028 		/* If skb was segmented, skb->prev points to
3029 		 * the last segment. If not, it still contains skb.
3030 		 */
3031 		tail = skb->prev;
3032 	}
3033 	return head;
3034 }
3035 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3036 
3037 static void qdisc_pkt_len_init(struct sk_buff *skb)
3038 {
3039 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3040 
3041 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3042 
3043 	/* To get more precise estimation of bytes sent on wire,
3044 	 * we add to pkt_len the headers size of all segments
3045 	 */
3046 	if (shinfo->gso_size)  {
3047 		unsigned int hdr_len;
3048 		u16 gso_segs = shinfo->gso_segs;
3049 
3050 		/* mac layer + network layer */
3051 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3052 
3053 		/* + transport layer */
3054 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3055 			hdr_len += tcp_hdrlen(skb);
3056 		else
3057 			hdr_len += sizeof(struct udphdr);
3058 
3059 		if (shinfo->gso_type & SKB_GSO_DODGY)
3060 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3061 						shinfo->gso_size);
3062 
3063 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3064 	}
3065 }
3066 
3067 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3068 				 struct net_device *dev,
3069 				 struct netdev_queue *txq)
3070 {
3071 	spinlock_t *root_lock = qdisc_lock(q);
3072 	struct sk_buff *to_free = NULL;
3073 	bool contended;
3074 	int rc;
3075 
3076 	qdisc_calculate_pkt_len(skb, q);
3077 	/*
3078 	 * Heuristic to force contended enqueues to serialize on a
3079 	 * separate lock before trying to get qdisc main lock.
3080 	 * This permits qdisc->running owner to get the lock more
3081 	 * often and dequeue packets faster.
3082 	 */
3083 	contended = qdisc_is_running(q);
3084 	if (unlikely(contended))
3085 		spin_lock(&q->busylock);
3086 
3087 	spin_lock(root_lock);
3088 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3089 		__qdisc_drop(skb, &to_free);
3090 		rc = NET_XMIT_DROP;
3091 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3092 		   qdisc_run_begin(q)) {
3093 		/*
3094 		 * This is a work-conserving queue; there are no old skbs
3095 		 * waiting to be sent out; and the qdisc is not running -
3096 		 * xmit the skb directly.
3097 		 */
3098 
3099 		qdisc_bstats_update(q, skb);
3100 
3101 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3102 			if (unlikely(contended)) {
3103 				spin_unlock(&q->busylock);
3104 				contended = false;
3105 			}
3106 			__qdisc_run(q);
3107 		} else
3108 			qdisc_run_end(q);
3109 
3110 		rc = NET_XMIT_SUCCESS;
3111 	} else {
3112 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3113 		if (qdisc_run_begin(q)) {
3114 			if (unlikely(contended)) {
3115 				spin_unlock(&q->busylock);
3116 				contended = false;
3117 			}
3118 			__qdisc_run(q);
3119 		}
3120 	}
3121 	spin_unlock(root_lock);
3122 	if (unlikely(to_free))
3123 		kfree_skb_list(to_free);
3124 	if (unlikely(contended))
3125 		spin_unlock(&q->busylock);
3126 	return rc;
3127 }
3128 
3129 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3130 static void skb_update_prio(struct sk_buff *skb)
3131 {
3132 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3133 
3134 	if (!skb->priority && skb->sk && map) {
3135 		unsigned int prioidx =
3136 			sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3137 
3138 		if (prioidx < map->priomap_len)
3139 			skb->priority = map->priomap[prioidx];
3140 	}
3141 }
3142 #else
3143 #define skb_update_prio(skb)
3144 #endif
3145 
3146 DEFINE_PER_CPU(int, xmit_recursion);
3147 EXPORT_SYMBOL(xmit_recursion);
3148 
3149 /**
3150  *	dev_loopback_xmit - loop back @skb
3151  *	@net: network namespace this loopback is happening in
3152  *	@sk:  sk needed to be a netfilter okfn
3153  *	@skb: buffer to transmit
3154  */
3155 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3156 {
3157 	skb_reset_mac_header(skb);
3158 	__skb_pull(skb, skb_network_offset(skb));
3159 	skb->pkt_type = PACKET_LOOPBACK;
3160 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3161 	WARN_ON(!skb_dst(skb));
3162 	skb_dst_force(skb);
3163 	netif_rx_ni(skb);
3164 	return 0;
3165 }
3166 EXPORT_SYMBOL(dev_loopback_xmit);
3167 
3168 #ifdef CONFIG_NET_EGRESS
3169 static struct sk_buff *
3170 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3171 {
3172 	struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3173 	struct tcf_result cl_res;
3174 
3175 	if (!cl)
3176 		return skb;
3177 
3178 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3179 	qdisc_bstats_cpu_update(cl->q, skb);
3180 
3181 	switch (tc_classify(skb, cl, &cl_res, false)) {
3182 	case TC_ACT_OK:
3183 	case TC_ACT_RECLASSIFY:
3184 		skb->tc_index = TC_H_MIN(cl_res.classid);
3185 		break;
3186 	case TC_ACT_SHOT:
3187 		qdisc_qstats_cpu_drop(cl->q);
3188 		*ret = NET_XMIT_DROP;
3189 		kfree_skb(skb);
3190 		return NULL;
3191 	case TC_ACT_STOLEN:
3192 	case TC_ACT_QUEUED:
3193 		*ret = NET_XMIT_SUCCESS;
3194 		consume_skb(skb);
3195 		return NULL;
3196 	case TC_ACT_REDIRECT:
3197 		/* No need to push/pop skb's mac_header here on egress! */
3198 		skb_do_redirect(skb);
3199 		*ret = NET_XMIT_SUCCESS;
3200 		return NULL;
3201 	default:
3202 		break;
3203 	}
3204 
3205 	return skb;
3206 }
3207 #endif /* CONFIG_NET_EGRESS */
3208 
3209 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3210 {
3211 #ifdef CONFIG_XPS
3212 	struct xps_dev_maps *dev_maps;
3213 	struct xps_map *map;
3214 	int queue_index = -1;
3215 
3216 	rcu_read_lock();
3217 	dev_maps = rcu_dereference(dev->xps_maps);
3218 	if (dev_maps) {
3219 		unsigned int tci = skb->sender_cpu - 1;
3220 
3221 		if (dev->num_tc) {
3222 			tci *= dev->num_tc;
3223 			tci += netdev_get_prio_tc_map(dev, skb->priority);
3224 		}
3225 
3226 		map = rcu_dereference(dev_maps->cpu_map[tci]);
3227 		if (map) {
3228 			if (map->len == 1)
3229 				queue_index = map->queues[0];
3230 			else
3231 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3232 									   map->len)];
3233 			if (unlikely(queue_index >= dev->real_num_tx_queues))
3234 				queue_index = -1;
3235 		}
3236 	}
3237 	rcu_read_unlock();
3238 
3239 	return queue_index;
3240 #else
3241 	return -1;
3242 #endif
3243 }
3244 
3245 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3246 {
3247 	struct sock *sk = skb->sk;
3248 	int queue_index = sk_tx_queue_get(sk);
3249 
3250 	if (queue_index < 0 || skb->ooo_okay ||
3251 	    queue_index >= dev->real_num_tx_queues) {
3252 		int new_index = get_xps_queue(dev, skb);
3253 
3254 		if (new_index < 0)
3255 			new_index = skb_tx_hash(dev, skb);
3256 
3257 		if (queue_index != new_index && sk &&
3258 		    sk_fullsock(sk) &&
3259 		    rcu_access_pointer(sk->sk_dst_cache))
3260 			sk_tx_queue_set(sk, new_index);
3261 
3262 		queue_index = new_index;
3263 	}
3264 
3265 	return queue_index;
3266 }
3267 
3268 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3269 				    struct sk_buff *skb,
3270 				    void *accel_priv)
3271 {
3272 	int queue_index = 0;
3273 
3274 #ifdef CONFIG_XPS
3275 	u32 sender_cpu = skb->sender_cpu - 1;
3276 
3277 	if (sender_cpu >= (u32)NR_CPUS)
3278 		skb->sender_cpu = raw_smp_processor_id() + 1;
3279 #endif
3280 
3281 	if (dev->real_num_tx_queues != 1) {
3282 		const struct net_device_ops *ops = dev->netdev_ops;
3283 
3284 		if (ops->ndo_select_queue)
3285 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3286 							    __netdev_pick_tx);
3287 		else
3288 			queue_index = __netdev_pick_tx(dev, skb);
3289 
3290 		if (!accel_priv)
3291 			queue_index = netdev_cap_txqueue(dev, queue_index);
3292 	}
3293 
3294 	skb_set_queue_mapping(skb, queue_index);
3295 	return netdev_get_tx_queue(dev, queue_index);
3296 }
3297 
3298 /**
3299  *	__dev_queue_xmit - transmit a buffer
3300  *	@skb: buffer to transmit
3301  *	@accel_priv: private data used for L2 forwarding offload
3302  *
3303  *	Queue a buffer for transmission to a network device. The caller must
3304  *	have set the device and priority and built the buffer before calling
3305  *	this function. The function can be called from an interrupt.
3306  *
3307  *	A negative errno code is returned on a failure. A success does not
3308  *	guarantee the frame will be transmitted as it may be dropped due
3309  *	to congestion or traffic shaping.
3310  *
3311  * -----------------------------------------------------------------------------------
3312  *      I notice this method can also return errors from the queue disciplines,
3313  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3314  *      be positive.
3315  *
3316  *      Regardless of the return value, the skb is consumed, so it is currently
3317  *      difficult to retry a send to this method.  (You can bump the ref count
3318  *      before sending to hold a reference for retry if you are careful.)
3319  *
3320  *      When calling this method, interrupts MUST be enabled.  This is because
3321  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3322  *          --BLG
3323  */
3324 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3325 {
3326 	struct net_device *dev = skb->dev;
3327 	struct netdev_queue *txq;
3328 	struct Qdisc *q;
3329 	int rc = -ENOMEM;
3330 
3331 	skb_reset_mac_header(skb);
3332 
3333 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3334 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3335 
3336 	/* Disable soft irqs for various locks below. Also
3337 	 * stops preemption for RCU.
3338 	 */
3339 	rcu_read_lock_bh();
3340 
3341 	skb_update_prio(skb);
3342 
3343 	qdisc_pkt_len_init(skb);
3344 #ifdef CONFIG_NET_CLS_ACT
3345 	skb->tc_at_ingress = 0;
3346 # ifdef CONFIG_NET_EGRESS
3347 	if (static_key_false(&egress_needed)) {
3348 		skb = sch_handle_egress(skb, &rc, dev);
3349 		if (!skb)
3350 			goto out;
3351 	}
3352 # endif
3353 #endif
3354 	/* If device/qdisc don't need skb->dst, release it right now while
3355 	 * its hot in this cpu cache.
3356 	 */
3357 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3358 		skb_dst_drop(skb);
3359 	else
3360 		skb_dst_force(skb);
3361 
3362 	txq = netdev_pick_tx(dev, skb, accel_priv);
3363 	q = rcu_dereference_bh(txq->qdisc);
3364 
3365 	trace_net_dev_queue(skb);
3366 	if (q->enqueue) {
3367 		rc = __dev_xmit_skb(skb, q, dev, txq);
3368 		goto out;
3369 	}
3370 
3371 	/* The device has no queue. Common case for software devices:
3372 	 * loopback, all the sorts of tunnels...
3373 
3374 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3375 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3376 	 * counters.)
3377 	 * However, it is possible, that they rely on protection
3378 	 * made by us here.
3379 
3380 	 * Check this and shot the lock. It is not prone from deadlocks.
3381 	 *Either shot noqueue qdisc, it is even simpler 8)
3382 	 */
3383 	if (dev->flags & IFF_UP) {
3384 		int cpu = smp_processor_id(); /* ok because BHs are off */
3385 
3386 		if (txq->xmit_lock_owner != cpu) {
3387 			if (unlikely(__this_cpu_read(xmit_recursion) >
3388 				     XMIT_RECURSION_LIMIT))
3389 				goto recursion_alert;
3390 
3391 			skb = validate_xmit_skb(skb, dev);
3392 			if (!skb)
3393 				goto out;
3394 
3395 			HARD_TX_LOCK(dev, txq, cpu);
3396 
3397 			if (!netif_xmit_stopped(txq)) {
3398 				__this_cpu_inc(xmit_recursion);
3399 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3400 				__this_cpu_dec(xmit_recursion);
3401 				if (dev_xmit_complete(rc)) {
3402 					HARD_TX_UNLOCK(dev, txq);
3403 					goto out;
3404 				}
3405 			}
3406 			HARD_TX_UNLOCK(dev, txq);
3407 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3408 					     dev->name);
3409 		} else {
3410 			/* Recursion is detected! It is possible,
3411 			 * unfortunately
3412 			 */
3413 recursion_alert:
3414 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3415 					     dev->name);
3416 		}
3417 	}
3418 
3419 	rc = -ENETDOWN;
3420 	rcu_read_unlock_bh();
3421 
3422 	atomic_long_inc(&dev->tx_dropped);
3423 	kfree_skb_list(skb);
3424 	return rc;
3425 out:
3426 	rcu_read_unlock_bh();
3427 	return rc;
3428 }
3429 
3430 int dev_queue_xmit(struct sk_buff *skb)
3431 {
3432 	return __dev_queue_xmit(skb, NULL);
3433 }
3434 EXPORT_SYMBOL(dev_queue_xmit);
3435 
3436 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3437 {
3438 	return __dev_queue_xmit(skb, accel_priv);
3439 }
3440 EXPORT_SYMBOL(dev_queue_xmit_accel);
3441 
3442 
3443 /*************************************************************************
3444  *			Receiver routines
3445  *************************************************************************/
3446 
3447 int netdev_max_backlog __read_mostly = 1000;
3448 EXPORT_SYMBOL(netdev_max_backlog);
3449 
3450 int netdev_tstamp_prequeue __read_mostly = 1;
3451 int netdev_budget __read_mostly = 300;
3452 unsigned int __read_mostly netdev_budget_usecs = 2000;
3453 int weight_p __read_mostly = 64;           /* old backlog weight */
3454 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3455 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3456 int dev_rx_weight __read_mostly = 64;
3457 int dev_tx_weight __read_mostly = 64;
3458 
3459 /* Called with irq disabled */
3460 static inline void ____napi_schedule(struct softnet_data *sd,
3461 				     struct napi_struct *napi)
3462 {
3463 	list_add_tail(&napi->poll_list, &sd->poll_list);
3464 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3465 }
3466 
3467 #ifdef CONFIG_RPS
3468 
3469 /* One global table that all flow-based protocols share. */
3470 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3471 EXPORT_SYMBOL(rps_sock_flow_table);
3472 u32 rps_cpu_mask __read_mostly;
3473 EXPORT_SYMBOL(rps_cpu_mask);
3474 
3475 struct static_key rps_needed __read_mostly;
3476 EXPORT_SYMBOL(rps_needed);
3477 struct static_key rfs_needed __read_mostly;
3478 EXPORT_SYMBOL(rfs_needed);
3479 
3480 static struct rps_dev_flow *
3481 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3482 	    struct rps_dev_flow *rflow, u16 next_cpu)
3483 {
3484 	if (next_cpu < nr_cpu_ids) {
3485 #ifdef CONFIG_RFS_ACCEL
3486 		struct netdev_rx_queue *rxqueue;
3487 		struct rps_dev_flow_table *flow_table;
3488 		struct rps_dev_flow *old_rflow;
3489 		u32 flow_id;
3490 		u16 rxq_index;
3491 		int rc;
3492 
3493 		/* Should we steer this flow to a different hardware queue? */
3494 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3495 		    !(dev->features & NETIF_F_NTUPLE))
3496 			goto out;
3497 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3498 		if (rxq_index == skb_get_rx_queue(skb))
3499 			goto out;
3500 
3501 		rxqueue = dev->_rx + rxq_index;
3502 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3503 		if (!flow_table)
3504 			goto out;
3505 		flow_id = skb_get_hash(skb) & flow_table->mask;
3506 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3507 							rxq_index, flow_id);
3508 		if (rc < 0)
3509 			goto out;
3510 		old_rflow = rflow;
3511 		rflow = &flow_table->flows[flow_id];
3512 		rflow->filter = rc;
3513 		if (old_rflow->filter == rflow->filter)
3514 			old_rflow->filter = RPS_NO_FILTER;
3515 	out:
3516 #endif
3517 		rflow->last_qtail =
3518 			per_cpu(softnet_data, next_cpu).input_queue_head;
3519 	}
3520 
3521 	rflow->cpu = next_cpu;
3522 	return rflow;
3523 }
3524 
3525 /*
3526  * get_rps_cpu is called from netif_receive_skb and returns the target
3527  * CPU from the RPS map of the receiving queue for a given skb.
3528  * rcu_read_lock must be held on entry.
3529  */
3530 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3531 		       struct rps_dev_flow **rflowp)
3532 {
3533 	const struct rps_sock_flow_table *sock_flow_table;
3534 	struct netdev_rx_queue *rxqueue = dev->_rx;
3535 	struct rps_dev_flow_table *flow_table;
3536 	struct rps_map *map;
3537 	int cpu = -1;
3538 	u32 tcpu;
3539 	u32 hash;
3540 
3541 	if (skb_rx_queue_recorded(skb)) {
3542 		u16 index = skb_get_rx_queue(skb);
3543 
3544 		if (unlikely(index >= dev->real_num_rx_queues)) {
3545 			WARN_ONCE(dev->real_num_rx_queues > 1,
3546 				  "%s received packet on queue %u, but number "
3547 				  "of RX queues is %u\n",
3548 				  dev->name, index, dev->real_num_rx_queues);
3549 			goto done;
3550 		}
3551 		rxqueue += index;
3552 	}
3553 
3554 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3555 
3556 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3557 	map = rcu_dereference(rxqueue->rps_map);
3558 	if (!flow_table && !map)
3559 		goto done;
3560 
3561 	skb_reset_network_header(skb);
3562 	hash = skb_get_hash(skb);
3563 	if (!hash)
3564 		goto done;
3565 
3566 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3567 	if (flow_table && sock_flow_table) {
3568 		struct rps_dev_flow *rflow;
3569 		u32 next_cpu;
3570 		u32 ident;
3571 
3572 		/* First check into global flow table if there is a match */
3573 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3574 		if ((ident ^ hash) & ~rps_cpu_mask)
3575 			goto try_rps;
3576 
3577 		next_cpu = ident & rps_cpu_mask;
3578 
3579 		/* OK, now we know there is a match,
3580 		 * we can look at the local (per receive queue) flow table
3581 		 */
3582 		rflow = &flow_table->flows[hash & flow_table->mask];
3583 		tcpu = rflow->cpu;
3584 
3585 		/*
3586 		 * If the desired CPU (where last recvmsg was done) is
3587 		 * different from current CPU (one in the rx-queue flow
3588 		 * table entry), switch if one of the following holds:
3589 		 *   - Current CPU is unset (>= nr_cpu_ids).
3590 		 *   - Current CPU is offline.
3591 		 *   - The current CPU's queue tail has advanced beyond the
3592 		 *     last packet that was enqueued using this table entry.
3593 		 *     This guarantees that all previous packets for the flow
3594 		 *     have been dequeued, thus preserving in order delivery.
3595 		 */
3596 		if (unlikely(tcpu != next_cpu) &&
3597 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3598 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3599 		      rflow->last_qtail)) >= 0)) {
3600 			tcpu = next_cpu;
3601 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3602 		}
3603 
3604 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3605 			*rflowp = rflow;
3606 			cpu = tcpu;
3607 			goto done;
3608 		}
3609 	}
3610 
3611 try_rps:
3612 
3613 	if (map) {
3614 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3615 		if (cpu_online(tcpu)) {
3616 			cpu = tcpu;
3617 			goto done;
3618 		}
3619 	}
3620 
3621 done:
3622 	return cpu;
3623 }
3624 
3625 #ifdef CONFIG_RFS_ACCEL
3626 
3627 /**
3628  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3629  * @dev: Device on which the filter was set
3630  * @rxq_index: RX queue index
3631  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3632  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3633  *
3634  * Drivers that implement ndo_rx_flow_steer() should periodically call
3635  * this function for each installed filter and remove the filters for
3636  * which it returns %true.
3637  */
3638 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3639 			 u32 flow_id, u16 filter_id)
3640 {
3641 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3642 	struct rps_dev_flow_table *flow_table;
3643 	struct rps_dev_flow *rflow;
3644 	bool expire = true;
3645 	unsigned int cpu;
3646 
3647 	rcu_read_lock();
3648 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3649 	if (flow_table && flow_id <= flow_table->mask) {
3650 		rflow = &flow_table->flows[flow_id];
3651 		cpu = ACCESS_ONCE(rflow->cpu);
3652 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3653 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3654 			   rflow->last_qtail) <
3655 		     (int)(10 * flow_table->mask)))
3656 			expire = false;
3657 	}
3658 	rcu_read_unlock();
3659 	return expire;
3660 }
3661 EXPORT_SYMBOL(rps_may_expire_flow);
3662 
3663 #endif /* CONFIG_RFS_ACCEL */
3664 
3665 /* Called from hardirq (IPI) context */
3666 static void rps_trigger_softirq(void *data)
3667 {
3668 	struct softnet_data *sd = data;
3669 
3670 	____napi_schedule(sd, &sd->backlog);
3671 	sd->received_rps++;
3672 }
3673 
3674 #endif /* CONFIG_RPS */
3675 
3676 /*
3677  * Check if this softnet_data structure is another cpu one
3678  * If yes, queue it to our IPI list and return 1
3679  * If no, return 0
3680  */
3681 static int rps_ipi_queued(struct softnet_data *sd)
3682 {
3683 #ifdef CONFIG_RPS
3684 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3685 
3686 	if (sd != mysd) {
3687 		sd->rps_ipi_next = mysd->rps_ipi_list;
3688 		mysd->rps_ipi_list = sd;
3689 
3690 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3691 		return 1;
3692 	}
3693 #endif /* CONFIG_RPS */
3694 	return 0;
3695 }
3696 
3697 #ifdef CONFIG_NET_FLOW_LIMIT
3698 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3699 #endif
3700 
3701 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3702 {
3703 #ifdef CONFIG_NET_FLOW_LIMIT
3704 	struct sd_flow_limit *fl;
3705 	struct softnet_data *sd;
3706 	unsigned int old_flow, new_flow;
3707 
3708 	if (qlen < (netdev_max_backlog >> 1))
3709 		return false;
3710 
3711 	sd = this_cpu_ptr(&softnet_data);
3712 
3713 	rcu_read_lock();
3714 	fl = rcu_dereference(sd->flow_limit);
3715 	if (fl) {
3716 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3717 		old_flow = fl->history[fl->history_head];
3718 		fl->history[fl->history_head] = new_flow;
3719 
3720 		fl->history_head++;
3721 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3722 
3723 		if (likely(fl->buckets[old_flow]))
3724 			fl->buckets[old_flow]--;
3725 
3726 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3727 			fl->count++;
3728 			rcu_read_unlock();
3729 			return true;
3730 		}
3731 	}
3732 	rcu_read_unlock();
3733 #endif
3734 	return false;
3735 }
3736 
3737 /*
3738  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3739  * queue (may be a remote CPU queue).
3740  */
3741 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3742 			      unsigned int *qtail)
3743 {
3744 	struct softnet_data *sd;
3745 	unsigned long flags;
3746 	unsigned int qlen;
3747 
3748 	sd = &per_cpu(softnet_data, cpu);
3749 
3750 	local_irq_save(flags);
3751 
3752 	rps_lock(sd);
3753 	if (!netif_running(skb->dev))
3754 		goto drop;
3755 	qlen = skb_queue_len(&sd->input_pkt_queue);
3756 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3757 		if (qlen) {
3758 enqueue:
3759 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3760 			input_queue_tail_incr_save(sd, qtail);
3761 			rps_unlock(sd);
3762 			local_irq_restore(flags);
3763 			return NET_RX_SUCCESS;
3764 		}
3765 
3766 		/* Schedule NAPI for backlog device
3767 		 * We can use non atomic operation since we own the queue lock
3768 		 */
3769 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3770 			if (!rps_ipi_queued(sd))
3771 				____napi_schedule(sd, &sd->backlog);
3772 		}
3773 		goto enqueue;
3774 	}
3775 
3776 drop:
3777 	sd->dropped++;
3778 	rps_unlock(sd);
3779 
3780 	local_irq_restore(flags);
3781 
3782 	atomic_long_inc(&skb->dev->rx_dropped);
3783 	kfree_skb(skb);
3784 	return NET_RX_DROP;
3785 }
3786 
3787 static int netif_rx_internal(struct sk_buff *skb)
3788 {
3789 	int ret;
3790 
3791 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3792 
3793 	trace_netif_rx(skb);
3794 #ifdef CONFIG_RPS
3795 	if (static_key_false(&rps_needed)) {
3796 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3797 		int cpu;
3798 
3799 		preempt_disable();
3800 		rcu_read_lock();
3801 
3802 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3803 		if (cpu < 0)
3804 			cpu = smp_processor_id();
3805 
3806 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3807 
3808 		rcu_read_unlock();
3809 		preempt_enable();
3810 	} else
3811 #endif
3812 	{
3813 		unsigned int qtail;
3814 
3815 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3816 		put_cpu();
3817 	}
3818 	return ret;
3819 }
3820 
3821 /**
3822  *	netif_rx	-	post buffer to the network code
3823  *	@skb: buffer to post
3824  *
3825  *	This function receives a packet from a device driver and queues it for
3826  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3827  *	may be dropped during processing for congestion control or by the
3828  *	protocol layers.
3829  *
3830  *	return values:
3831  *	NET_RX_SUCCESS	(no congestion)
3832  *	NET_RX_DROP     (packet was dropped)
3833  *
3834  */
3835 
3836 int netif_rx(struct sk_buff *skb)
3837 {
3838 	trace_netif_rx_entry(skb);
3839 
3840 	return netif_rx_internal(skb);
3841 }
3842 EXPORT_SYMBOL(netif_rx);
3843 
3844 int netif_rx_ni(struct sk_buff *skb)
3845 {
3846 	int err;
3847 
3848 	trace_netif_rx_ni_entry(skb);
3849 
3850 	preempt_disable();
3851 	err = netif_rx_internal(skb);
3852 	if (local_softirq_pending())
3853 		do_softirq();
3854 	preempt_enable();
3855 
3856 	return err;
3857 }
3858 EXPORT_SYMBOL(netif_rx_ni);
3859 
3860 static __latent_entropy void net_tx_action(struct softirq_action *h)
3861 {
3862 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3863 
3864 	if (sd->completion_queue) {
3865 		struct sk_buff *clist;
3866 
3867 		local_irq_disable();
3868 		clist = sd->completion_queue;
3869 		sd->completion_queue = NULL;
3870 		local_irq_enable();
3871 
3872 		while (clist) {
3873 			struct sk_buff *skb = clist;
3874 
3875 			clist = clist->next;
3876 
3877 			WARN_ON(atomic_read(&skb->users));
3878 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3879 				trace_consume_skb(skb);
3880 			else
3881 				trace_kfree_skb(skb, net_tx_action);
3882 
3883 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3884 				__kfree_skb(skb);
3885 			else
3886 				__kfree_skb_defer(skb);
3887 		}
3888 
3889 		__kfree_skb_flush();
3890 	}
3891 
3892 	if (sd->output_queue) {
3893 		struct Qdisc *head;
3894 
3895 		local_irq_disable();
3896 		head = sd->output_queue;
3897 		sd->output_queue = NULL;
3898 		sd->output_queue_tailp = &sd->output_queue;
3899 		local_irq_enable();
3900 
3901 		while (head) {
3902 			struct Qdisc *q = head;
3903 			spinlock_t *root_lock;
3904 
3905 			head = head->next_sched;
3906 
3907 			root_lock = qdisc_lock(q);
3908 			spin_lock(root_lock);
3909 			/* We need to make sure head->next_sched is read
3910 			 * before clearing __QDISC_STATE_SCHED
3911 			 */
3912 			smp_mb__before_atomic();
3913 			clear_bit(__QDISC_STATE_SCHED, &q->state);
3914 			qdisc_run(q);
3915 			spin_unlock(root_lock);
3916 		}
3917 	}
3918 }
3919 
3920 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3921 /* This hook is defined here for ATM LANE */
3922 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3923 			     unsigned char *addr) __read_mostly;
3924 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3925 #endif
3926 
3927 static inline struct sk_buff *
3928 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3929 		   struct net_device *orig_dev)
3930 {
3931 #ifdef CONFIG_NET_CLS_ACT
3932 	struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3933 	struct tcf_result cl_res;
3934 
3935 	/* If there's at least one ingress present somewhere (so
3936 	 * we get here via enabled static key), remaining devices
3937 	 * that are not configured with an ingress qdisc will bail
3938 	 * out here.
3939 	 */
3940 	if (!cl)
3941 		return skb;
3942 	if (*pt_prev) {
3943 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3944 		*pt_prev = NULL;
3945 	}
3946 
3947 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3948 	skb->tc_at_ingress = 1;
3949 	qdisc_bstats_cpu_update(cl->q, skb);
3950 
3951 	switch (tc_classify(skb, cl, &cl_res, false)) {
3952 	case TC_ACT_OK:
3953 	case TC_ACT_RECLASSIFY:
3954 		skb->tc_index = TC_H_MIN(cl_res.classid);
3955 		break;
3956 	case TC_ACT_SHOT:
3957 		qdisc_qstats_cpu_drop(cl->q);
3958 		kfree_skb(skb);
3959 		return NULL;
3960 	case TC_ACT_STOLEN:
3961 	case TC_ACT_QUEUED:
3962 		consume_skb(skb);
3963 		return NULL;
3964 	case TC_ACT_REDIRECT:
3965 		/* skb_mac_header check was done by cls/act_bpf, so
3966 		 * we can safely push the L2 header back before
3967 		 * redirecting to another netdev
3968 		 */
3969 		__skb_push(skb, skb->mac_len);
3970 		skb_do_redirect(skb);
3971 		return NULL;
3972 	default:
3973 		break;
3974 	}
3975 #endif /* CONFIG_NET_CLS_ACT */
3976 	return skb;
3977 }
3978 
3979 /**
3980  *	netdev_is_rx_handler_busy - check if receive handler is registered
3981  *	@dev: device to check
3982  *
3983  *	Check if a receive handler is already registered for a given device.
3984  *	Return true if there one.
3985  *
3986  *	The caller must hold the rtnl_mutex.
3987  */
3988 bool netdev_is_rx_handler_busy(struct net_device *dev)
3989 {
3990 	ASSERT_RTNL();
3991 	return dev && rtnl_dereference(dev->rx_handler);
3992 }
3993 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3994 
3995 /**
3996  *	netdev_rx_handler_register - register receive handler
3997  *	@dev: device to register a handler for
3998  *	@rx_handler: receive handler to register
3999  *	@rx_handler_data: data pointer that is used by rx handler
4000  *
4001  *	Register a receive handler for a device. This handler will then be
4002  *	called from __netif_receive_skb. A negative errno code is returned
4003  *	on a failure.
4004  *
4005  *	The caller must hold the rtnl_mutex.
4006  *
4007  *	For a general description of rx_handler, see enum rx_handler_result.
4008  */
4009 int netdev_rx_handler_register(struct net_device *dev,
4010 			       rx_handler_func_t *rx_handler,
4011 			       void *rx_handler_data)
4012 {
4013 	if (netdev_is_rx_handler_busy(dev))
4014 		return -EBUSY;
4015 
4016 	/* Note: rx_handler_data must be set before rx_handler */
4017 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4018 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4019 
4020 	return 0;
4021 }
4022 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4023 
4024 /**
4025  *	netdev_rx_handler_unregister - unregister receive handler
4026  *	@dev: device to unregister a handler from
4027  *
4028  *	Unregister a receive handler from a device.
4029  *
4030  *	The caller must hold the rtnl_mutex.
4031  */
4032 void netdev_rx_handler_unregister(struct net_device *dev)
4033 {
4034 
4035 	ASSERT_RTNL();
4036 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4037 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4038 	 * section has a guarantee to see a non NULL rx_handler_data
4039 	 * as well.
4040 	 */
4041 	synchronize_net();
4042 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4043 }
4044 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4045 
4046 /*
4047  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4048  * the special handling of PFMEMALLOC skbs.
4049  */
4050 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4051 {
4052 	switch (skb->protocol) {
4053 	case htons(ETH_P_ARP):
4054 	case htons(ETH_P_IP):
4055 	case htons(ETH_P_IPV6):
4056 	case htons(ETH_P_8021Q):
4057 	case htons(ETH_P_8021AD):
4058 		return true;
4059 	default:
4060 		return false;
4061 	}
4062 }
4063 
4064 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4065 			     int *ret, struct net_device *orig_dev)
4066 {
4067 #ifdef CONFIG_NETFILTER_INGRESS
4068 	if (nf_hook_ingress_active(skb)) {
4069 		int ingress_retval;
4070 
4071 		if (*pt_prev) {
4072 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4073 			*pt_prev = NULL;
4074 		}
4075 
4076 		rcu_read_lock();
4077 		ingress_retval = nf_hook_ingress(skb);
4078 		rcu_read_unlock();
4079 		return ingress_retval;
4080 	}
4081 #endif /* CONFIG_NETFILTER_INGRESS */
4082 	return 0;
4083 }
4084 
4085 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4086 {
4087 	struct packet_type *ptype, *pt_prev;
4088 	rx_handler_func_t *rx_handler;
4089 	struct net_device *orig_dev;
4090 	bool deliver_exact = false;
4091 	int ret = NET_RX_DROP;
4092 	__be16 type;
4093 
4094 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4095 
4096 	trace_netif_receive_skb(skb);
4097 
4098 	orig_dev = skb->dev;
4099 
4100 	skb_reset_network_header(skb);
4101 	if (!skb_transport_header_was_set(skb))
4102 		skb_reset_transport_header(skb);
4103 	skb_reset_mac_len(skb);
4104 
4105 	pt_prev = NULL;
4106 
4107 another_round:
4108 	skb->skb_iif = skb->dev->ifindex;
4109 
4110 	__this_cpu_inc(softnet_data.processed);
4111 
4112 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4113 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4114 		skb = skb_vlan_untag(skb);
4115 		if (unlikely(!skb))
4116 			goto out;
4117 	}
4118 
4119 	if (skb_skip_tc_classify(skb))
4120 		goto skip_classify;
4121 
4122 	if (pfmemalloc)
4123 		goto skip_taps;
4124 
4125 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4126 		if (pt_prev)
4127 			ret = deliver_skb(skb, pt_prev, orig_dev);
4128 		pt_prev = ptype;
4129 	}
4130 
4131 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4132 		if (pt_prev)
4133 			ret = deliver_skb(skb, pt_prev, orig_dev);
4134 		pt_prev = ptype;
4135 	}
4136 
4137 skip_taps:
4138 #ifdef CONFIG_NET_INGRESS
4139 	if (static_key_false(&ingress_needed)) {
4140 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4141 		if (!skb)
4142 			goto out;
4143 
4144 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4145 			goto out;
4146 	}
4147 #endif
4148 	skb_reset_tc(skb);
4149 skip_classify:
4150 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4151 		goto drop;
4152 
4153 	if (skb_vlan_tag_present(skb)) {
4154 		if (pt_prev) {
4155 			ret = deliver_skb(skb, pt_prev, orig_dev);
4156 			pt_prev = NULL;
4157 		}
4158 		if (vlan_do_receive(&skb))
4159 			goto another_round;
4160 		else if (unlikely(!skb))
4161 			goto out;
4162 	}
4163 
4164 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4165 	if (rx_handler) {
4166 		if (pt_prev) {
4167 			ret = deliver_skb(skb, pt_prev, orig_dev);
4168 			pt_prev = NULL;
4169 		}
4170 		switch (rx_handler(&skb)) {
4171 		case RX_HANDLER_CONSUMED:
4172 			ret = NET_RX_SUCCESS;
4173 			goto out;
4174 		case RX_HANDLER_ANOTHER:
4175 			goto another_round;
4176 		case RX_HANDLER_EXACT:
4177 			deliver_exact = true;
4178 		case RX_HANDLER_PASS:
4179 			break;
4180 		default:
4181 			BUG();
4182 		}
4183 	}
4184 
4185 	if (unlikely(skb_vlan_tag_present(skb))) {
4186 		if (skb_vlan_tag_get_id(skb))
4187 			skb->pkt_type = PACKET_OTHERHOST;
4188 		/* Note: we might in the future use prio bits
4189 		 * and set skb->priority like in vlan_do_receive()
4190 		 * For the time being, just ignore Priority Code Point
4191 		 */
4192 		skb->vlan_tci = 0;
4193 	}
4194 
4195 	type = skb->protocol;
4196 
4197 	/* deliver only exact match when indicated */
4198 	if (likely(!deliver_exact)) {
4199 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4200 				       &ptype_base[ntohs(type) &
4201 						   PTYPE_HASH_MASK]);
4202 	}
4203 
4204 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4205 			       &orig_dev->ptype_specific);
4206 
4207 	if (unlikely(skb->dev != orig_dev)) {
4208 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4209 				       &skb->dev->ptype_specific);
4210 	}
4211 
4212 	if (pt_prev) {
4213 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4214 			goto drop;
4215 		else
4216 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4217 	} else {
4218 drop:
4219 		if (!deliver_exact)
4220 			atomic_long_inc(&skb->dev->rx_dropped);
4221 		else
4222 			atomic_long_inc(&skb->dev->rx_nohandler);
4223 		kfree_skb(skb);
4224 		/* Jamal, now you will not able to escape explaining
4225 		 * me how you were going to use this. :-)
4226 		 */
4227 		ret = NET_RX_DROP;
4228 	}
4229 
4230 out:
4231 	return ret;
4232 }
4233 
4234 static int __netif_receive_skb(struct sk_buff *skb)
4235 {
4236 	int ret;
4237 
4238 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4239 		unsigned int noreclaim_flag;
4240 
4241 		/*
4242 		 * PFMEMALLOC skbs are special, they should
4243 		 * - be delivered to SOCK_MEMALLOC sockets only
4244 		 * - stay away from userspace
4245 		 * - have bounded memory usage
4246 		 *
4247 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4248 		 * context down to all allocation sites.
4249 		 */
4250 		noreclaim_flag = memalloc_noreclaim_save();
4251 		ret = __netif_receive_skb_core(skb, true);
4252 		memalloc_noreclaim_restore(noreclaim_flag);
4253 	} else
4254 		ret = __netif_receive_skb_core(skb, false);
4255 
4256 	return ret;
4257 }
4258 
4259 static struct static_key generic_xdp_needed __read_mostly;
4260 
4261 static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp)
4262 {
4263 	struct bpf_prog *new = xdp->prog;
4264 	int ret = 0;
4265 
4266 	switch (xdp->command) {
4267 	case XDP_SETUP_PROG: {
4268 		struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4269 
4270 		rcu_assign_pointer(dev->xdp_prog, new);
4271 		if (old)
4272 			bpf_prog_put(old);
4273 
4274 		if (old && !new) {
4275 			static_key_slow_dec(&generic_xdp_needed);
4276 		} else if (new && !old) {
4277 			static_key_slow_inc(&generic_xdp_needed);
4278 			dev_disable_lro(dev);
4279 		}
4280 		break;
4281 	}
4282 
4283 	case XDP_QUERY_PROG:
4284 		xdp->prog_attached = !!rcu_access_pointer(dev->xdp_prog);
4285 		break;
4286 
4287 	default:
4288 		ret = -EINVAL;
4289 		break;
4290 	}
4291 
4292 	return ret;
4293 }
4294 
4295 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4296 				     struct bpf_prog *xdp_prog)
4297 {
4298 	struct xdp_buff xdp;
4299 	u32 act = XDP_DROP;
4300 	void *orig_data;
4301 	int hlen, off;
4302 	u32 mac_len;
4303 
4304 	/* Reinjected packets coming from act_mirred or similar should
4305 	 * not get XDP generic processing.
4306 	 */
4307 	if (skb_cloned(skb))
4308 		return XDP_PASS;
4309 
4310 	if (skb_linearize(skb))
4311 		goto do_drop;
4312 
4313 	/* The XDP program wants to see the packet starting at the MAC
4314 	 * header.
4315 	 */
4316 	mac_len = skb->data - skb_mac_header(skb);
4317 	hlen = skb_headlen(skb) + mac_len;
4318 	xdp.data = skb->data - mac_len;
4319 	xdp.data_end = xdp.data + hlen;
4320 	xdp.data_hard_start = skb->data - skb_headroom(skb);
4321 	orig_data = xdp.data;
4322 
4323 	act = bpf_prog_run_xdp(xdp_prog, &xdp);
4324 
4325 	off = xdp.data - orig_data;
4326 	if (off > 0)
4327 		__skb_pull(skb, off);
4328 	else if (off < 0)
4329 		__skb_push(skb, -off);
4330 
4331 	switch (act) {
4332 	case XDP_TX:
4333 		__skb_push(skb, mac_len);
4334 		/* fall through */
4335 	case XDP_PASS:
4336 		break;
4337 
4338 	default:
4339 		bpf_warn_invalid_xdp_action(act);
4340 		/* fall through */
4341 	case XDP_ABORTED:
4342 		trace_xdp_exception(skb->dev, xdp_prog, act);
4343 		/* fall through */
4344 	case XDP_DROP:
4345 	do_drop:
4346 		kfree_skb(skb);
4347 		break;
4348 	}
4349 
4350 	return act;
4351 }
4352 
4353 /* When doing generic XDP we have to bypass the qdisc layer and the
4354  * network taps in order to match in-driver-XDP behavior.
4355  */
4356 static void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4357 {
4358 	struct net_device *dev = skb->dev;
4359 	struct netdev_queue *txq;
4360 	bool free_skb = true;
4361 	int cpu, rc;
4362 
4363 	txq = netdev_pick_tx(dev, skb, NULL);
4364 	cpu = smp_processor_id();
4365 	HARD_TX_LOCK(dev, txq, cpu);
4366 	if (!netif_xmit_stopped(txq)) {
4367 		rc = netdev_start_xmit(skb, dev, txq, 0);
4368 		if (dev_xmit_complete(rc))
4369 			free_skb = false;
4370 	}
4371 	HARD_TX_UNLOCK(dev, txq);
4372 	if (free_skb) {
4373 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4374 		kfree_skb(skb);
4375 	}
4376 }
4377 
4378 static int netif_receive_skb_internal(struct sk_buff *skb)
4379 {
4380 	int ret;
4381 
4382 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4383 
4384 	if (skb_defer_rx_timestamp(skb))
4385 		return NET_RX_SUCCESS;
4386 
4387 	rcu_read_lock();
4388 
4389 	if (static_key_false(&generic_xdp_needed)) {
4390 		struct bpf_prog *xdp_prog = rcu_dereference(skb->dev->xdp_prog);
4391 
4392 		if (xdp_prog) {
4393 			u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4394 
4395 			if (act != XDP_PASS) {
4396 				rcu_read_unlock();
4397 				if (act == XDP_TX)
4398 					generic_xdp_tx(skb, xdp_prog);
4399 				return NET_RX_DROP;
4400 			}
4401 		}
4402 	}
4403 
4404 #ifdef CONFIG_RPS
4405 	if (static_key_false(&rps_needed)) {
4406 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4407 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4408 
4409 		if (cpu >= 0) {
4410 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4411 			rcu_read_unlock();
4412 			return ret;
4413 		}
4414 	}
4415 #endif
4416 	ret = __netif_receive_skb(skb);
4417 	rcu_read_unlock();
4418 	return ret;
4419 }
4420 
4421 /**
4422  *	netif_receive_skb - process receive buffer from network
4423  *	@skb: buffer to process
4424  *
4425  *	netif_receive_skb() is the main receive data processing function.
4426  *	It always succeeds. The buffer may be dropped during processing
4427  *	for congestion control or by the protocol layers.
4428  *
4429  *	This function may only be called from softirq context and interrupts
4430  *	should be enabled.
4431  *
4432  *	Return values (usually ignored):
4433  *	NET_RX_SUCCESS: no congestion
4434  *	NET_RX_DROP: packet was dropped
4435  */
4436 int netif_receive_skb(struct sk_buff *skb)
4437 {
4438 	trace_netif_receive_skb_entry(skb);
4439 
4440 	return netif_receive_skb_internal(skb);
4441 }
4442 EXPORT_SYMBOL(netif_receive_skb);
4443 
4444 DEFINE_PER_CPU(struct work_struct, flush_works);
4445 
4446 /* Network device is going away, flush any packets still pending */
4447 static void flush_backlog(struct work_struct *work)
4448 {
4449 	struct sk_buff *skb, *tmp;
4450 	struct softnet_data *sd;
4451 
4452 	local_bh_disable();
4453 	sd = this_cpu_ptr(&softnet_data);
4454 
4455 	local_irq_disable();
4456 	rps_lock(sd);
4457 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4458 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4459 			__skb_unlink(skb, &sd->input_pkt_queue);
4460 			kfree_skb(skb);
4461 			input_queue_head_incr(sd);
4462 		}
4463 	}
4464 	rps_unlock(sd);
4465 	local_irq_enable();
4466 
4467 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4468 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4469 			__skb_unlink(skb, &sd->process_queue);
4470 			kfree_skb(skb);
4471 			input_queue_head_incr(sd);
4472 		}
4473 	}
4474 	local_bh_enable();
4475 }
4476 
4477 static void flush_all_backlogs(void)
4478 {
4479 	unsigned int cpu;
4480 
4481 	get_online_cpus();
4482 
4483 	for_each_online_cpu(cpu)
4484 		queue_work_on(cpu, system_highpri_wq,
4485 			      per_cpu_ptr(&flush_works, cpu));
4486 
4487 	for_each_online_cpu(cpu)
4488 		flush_work(per_cpu_ptr(&flush_works, cpu));
4489 
4490 	put_online_cpus();
4491 }
4492 
4493 static int napi_gro_complete(struct sk_buff *skb)
4494 {
4495 	struct packet_offload *ptype;
4496 	__be16 type = skb->protocol;
4497 	struct list_head *head = &offload_base;
4498 	int err = -ENOENT;
4499 
4500 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4501 
4502 	if (NAPI_GRO_CB(skb)->count == 1) {
4503 		skb_shinfo(skb)->gso_size = 0;
4504 		goto out;
4505 	}
4506 
4507 	rcu_read_lock();
4508 	list_for_each_entry_rcu(ptype, head, list) {
4509 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4510 			continue;
4511 
4512 		err = ptype->callbacks.gro_complete(skb, 0);
4513 		break;
4514 	}
4515 	rcu_read_unlock();
4516 
4517 	if (err) {
4518 		WARN_ON(&ptype->list == head);
4519 		kfree_skb(skb);
4520 		return NET_RX_SUCCESS;
4521 	}
4522 
4523 out:
4524 	return netif_receive_skb_internal(skb);
4525 }
4526 
4527 /* napi->gro_list contains packets ordered by age.
4528  * youngest packets at the head of it.
4529  * Complete skbs in reverse order to reduce latencies.
4530  */
4531 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4532 {
4533 	struct sk_buff *skb, *prev = NULL;
4534 
4535 	/* scan list and build reverse chain */
4536 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4537 		skb->prev = prev;
4538 		prev = skb;
4539 	}
4540 
4541 	for (skb = prev; skb; skb = prev) {
4542 		skb->next = NULL;
4543 
4544 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4545 			return;
4546 
4547 		prev = skb->prev;
4548 		napi_gro_complete(skb);
4549 		napi->gro_count--;
4550 	}
4551 
4552 	napi->gro_list = NULL;
4553 }
4554 EXPORT_SYMBOL(napi_gro_flush);
4555 
4556 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4557 {
4558 	struct sk_buff *p;
4559 	unsigned int maclen = skb->dev->hard_header_len;
4560 	u32 hash = skb_get_hash_raw(skb);
4561 
4562 	for (p = napi->gro_list; p; p = p->next) {
4563 		unsigned long diffs;
4564 
4565 		NAPI_GRO_CB(p)->flush = 0;
4566 
4567 		if (hash != skb_get_hash_raw(p)) {
4568 			NAPI_GRO_CB(p)->same_flow = 0;
4569 			continue;
4570 		}
4571 
4572 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4573 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4574 		diffs |= skb_metadata_dst_cmp(p, skb);
4575 		if (maclen == ETH_HLEN)
4576 			diffs |= compare_ether_header(skb_mac_header(p),
4577 						      skb_mac_header(skb));
4578 		else if (!diffs)
4579 			diffs = memcmp(skb_mac_header(p),
4580 				       skb_mac_header(skb),
4581 				       maclen);
4582 		NAPI_GRO_CB(p)->same_flow = !diffs;
4583 	}
4584 }
4585 
4586 static void skb_gro_reset_offset(struct sk_buff *skb)
4587 {
4588 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4589 	const skb_frag_t *frag0 = &pinfo->frags[0];
4590 
4591 	NAPI_GRO_CB(skb)->data_offset = 0;
4592 	NAPI_GRO_CB(skb)->frag0 = NULL;
4593 	NAPI_GRO_CB(skb)->frag0_len = 0;
4594 
4595 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4596 	    pinfo->nr_frags &&
4597 	    !PageHighMem(skb_frag_page(frag0))) {
4598 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4599 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4600 						    skb_frag_size(frag0),
4601 						    skb->end - skb->tail);
4602 	}
4603 }
4604 
4605 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4606 {
4607 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4608 
4609 	BUG_ON(skb->end - skb->tail < grow);
4610 
4611 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4612 
4613 	skb->data_len -= grow;
4614 	skb->tail += grow;
4615 
4616 	pinfo->frags[0].page_offset += grow;
4617 	skb_frag_size_sub(&pinfo->frags[0], grow);
4618 
4619 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4620 		skb_frag_unref(skb, 0);
4621 		memmove(pinfo->frags, pinfo->frags + 1,
4622 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4623 	}
4624 }
4625 
4626 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4627 {
4628 	struct sk_buff **pp = NULL;
4629 	struct packet_offload *ptype;
4630 	__be16 type = skb->protocol;
4631 	struct list_head *head = &offload_base;
4632 	int same_flow;
4633 	enum gro_result ret;
4634 	int grow;
4635 
4636 	if (netif_elide_gro(skb->dev))
4637 		goto normal;
4638 
4639 	if (skb->csum_bad)
4640 		goto normal;
4641 
4642 	gro_list_prepare(napi, skb);
4643 
4644 	rcu_read_lock();
4645 	list_for_each_entry_rcu(ptype, head, list) {
4646 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4647 			continue;
4648 
4649 		skb_set_network_header(skb, skb_gro_offset(skb));
4650 		skb_reset_mac_len(skb);
4651 		NAPI_GRO_CB(skb)->same_flow = 0;
4652 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4653 		NAPI_GRO_CB(skb)->free = 0;
4654 		NAPI_GRO_CB(skb)->encap_mark = 0;
4655 		NAPI_GRO_CB(skb)->recursion_counter = 0;
4656 		NAPI_GRO_CB(skb)->is_fou = 0;
4657 		NAPI_GRO_CB(skb)->is_atomic = 1;
4658 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4659 
4660 		/* Setup for GRO checksum validation */
4661 		switch (skb->ip_summed) {
4662 		case CHECKSUM_COMPLETE:
4663 			NAPI_GRO_CB(skb)->csum = skb->csum;
4664 			NAPI_GRO_CB(skb)->csum_valid = 1;
4665 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4666 			break;
4667 		case CHECKSUM_UNNECESSARY:
4668 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4669 			NAPI_GRO_CB(skb)->csum_valid = 0;
4670 			break;
4671 		default:
4672 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4673 			NAPI_GRO_CB(skb)->csum_valid = 0;
4674 		}
4675 
4676 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4677 		break;
4678 	}
4679 	rcu_read_unlock();
4680 
4681 	if (&ptype->list == head)
4682 		goto normal;
4683 
4684 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4685 		ret = GRO_CONSUMED;
4686 		goto ok;
4687 	}
4688 
4689 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4690 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4691 
4692 	if (pp) {
4693 		struct sk_buff *nskb = *pp;
4694 
4695 		*pp = nskb->next;
4696 		nskb->next = NULL;
4697 		napi_gro_complete(nskb);
4698 		napi->gro_count--;
4699 	}
4700 
4701 	if (same_flow)
4702 		goto ok;
4703 
4704 	if (NAPI_GRO_CB(skb)->flush)
4705 		goto normal;
4706 
4707 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4708 		struct sk_buff *nskb = napi->gro_list;
4709 
4710 		/* locate the end of the list to select the 'oldest' flow */
4711 		while (nskb->next) {
4712 			pp = &nskb->next;
4713 			nskb = *pp;
4714 		}
4715 		*pp = NULL;
4716 		nskb->next = NULL;
4717 		napi_gro_complete(nskb);
4718 	} else {
4719 		napi->gro_count++;
4720 	}
4721 	NAPI_GRO_CB(skb)->count = 1;
4722 	NAPI_GRO_CB(skb)->age = jiffies;
4723 	NAPI_GRO_CB(skb)->last = skb;
4724 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4725 	skb->next = napi->gro_list;
4726 	napi->gro_list = skb;
4727 	ret = GRO_HELD;
4728 
4729 pull:
4730 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4731 	if (grow > 0)
4732 		gro_pull_from_frag0(skb, grow);
4733 ok:
4734 	return ret;
4735 
4736 normal:
4737 	ret = GRO_NORMAL;
4738 	goto pull;
4739 }
4740 
4741 struct packet_offload *gro_find_receive_by_type(__be16 type)
4742 {
4743 	struct list_head *offload_head = &offload_base;
4744 	struct packet_offload *ptype;
4745 
4746 	list_for_each_entry_rcu(ptype, offload_head, list) {
4747 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4748 			continue;
4749 		return ptype;
4750 	}
4751 	return NULL;
4752 }
4753 EXPORT_SYMBOL(gro_find_receive_by_type);
4754 
4755 struct packet_offload *gro_find_complete_by_type(__be16 type)
4756 {
4757 	struct list_head *offload_head = &offload_base;
4758 	struct packet_offload *ptype;
4759 
4760 	list_for_each_entry_rcu(ptype, offload_head, list) {
4761 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4762 			continue;
4763 		return ptype;
4764 	}
4765 	return NULL;
4766 }
4767 EXPORT_SYMBOL(gro_find_complete_by_type);
4768 
4769 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4770 {
4771 	switch (ret) {
4772 	case GRO_NORMAL:
4773 		if (netif_receive_skb_internal(skb))
4774 			ret = GRO_DROP;
4775 		break;
4776 
4777 	case GRO_DROP:
4778 		kfree_skb(skb);
4779 		break;
4780 
4781 	case GRO_MERGED_FREE:
4782 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4783 			skb_dst_drop(skb);
4784 			secpath_reset(skb);
4785 			kmem_cache_free(skbuff_head_cache, skb);
4786 		} else {
4787 			__kfree_skb(skb);
4788 		}
4789 		break;
4790 
4791 	case GRO_HELD:
4792 	case GRO_MERGED:
4793 	case GRO_CONSUMED:
4794 		break;
4795 	}
4796 
4797 	return ret;
4798 }
4799 
4800 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4801 {
4802 	skb_mark_napi_id(skb, napi);
4803 	trace_napi_gro_receive_entry(skb);
4804 
4805 	skb_gro_reset_offset(skb);
4806 
4807 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4808 }
4809 EXPORT_SYMBOL(napi_gro_receive);
4810 
4811 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4812 {
4813 	if (unlikely(skb->pfmemalloc)) {
4814 		consume_skb(skb);
4815 		return;
4816 	}
4817 	__skb_pull(skb, skb_headlen(skb));
4818 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4819 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4820 	skb->vlan_tci = 0;
4821 	skb->dev = napi->dev;
4822 	skb->skb_iif = 0;
4823 	skb->encapsulation = 0;
4824 	skb_shinfo(skb)->gso_type = 0;
4825 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4826 	secpath_reset(skb);
4827 
4828 	napi->skb = skb;
4829 }
4830 
4831 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4832 {
4833 	struct sk_buff *skb = napi->skb;
4834 
4835 	if (!skb) {
4836 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4837 		if (skb) {
4838 			napi->skb = skb;
4839 			skb_mark_napi_id(skb, napi);
4840 		}
4841 	}
4842 	return skb;
4843 }
4844 EXPORT_SYMBOL(napi_get_frags);
4845 
4846 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4847 				      struct sk_buff *skb,
4848 				      gro_result_t ret)
4849 {
4850 	switch (ret) {
4851 	case GRO_NORMAL:
4852 	case GRO_HELD:
4853 		__skb_push(skb, ETH_HLEN);
4854 		skb->protocol = eth_type_trans(skb, skb->dev);
4855 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4856 			ret = GRO_DROP;
4857 		break;
4858 
4859 	case GRO_DROP:
4860 	case GRO_MERGED_FREE:
4861 		napi_reuse_skb(napi, skb);
4862 		break;
4863 
4864 	case GRO_MERGED:
4865 	case GRO_CONSUMED:
4866 		break;
4867 	}
4868 
4869 	return ret;
4870 }
4871 
4872 /* Upper GRO stack assumes network header starts at gro_offset=0
4873  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4874  * We copy ethernet header into skb->data to have a common layout.
4875  */
4876 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4877 {
4878 	struct sk_buff *skb = napi->skb;
4879 	const struct ethhdr *eth;
4880 	unsigned int hlen = sizeof(*eth);
4881 
4882 	napi->skb = NULL;
4883 
4884 	skb_reset_mac_header(skb);
4885 	skb_gro_reset_offset(skb);
4886 
4887 	eth = skb_gro_header_fast(skb, 0);
4888 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4889 		eth = skb_gro_header_slow(skb, hlen, 0);
4890 		if (unlikely(!eth)) {
4891 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4892 					     __func__, napi->dev->name);
4893 			napi_reuse_skb(napi, skb);
4894 			return NULL;
4895 		}
4896 	} else {
4897 		gro_pull_from_frag0(skb, hlen);
4898 		NAPI_GRO_CB(skb)->frag0 += hlen;
4899 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4900 	}
4901 	__skb_pull(skb, hlen);
4902 
4903 	/*
4904 	 * This works because the only protocols we care about don't require
4905 	 * special handling.
4906 	 * We'll fix it up properly in napi_frags_finish()
4907 	 */
4908 	skb->protocol = eth->h_proto;
4909 
4910 	return skb;
4911 }
4912 
4913 gro_result_t napi_gro_frags(struct napi_struct *napi)
4914 {
4915 	struct sk_buff *skb = napi_frags_skb(napi);
4916 
4917 	if (!skb)
4918 		return GRO_DROP;
4919 
4920 	trace_napi_gro_frags_entry(skb);
4921 
4922 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4923 }
4924 EXPORT_SYMBOL(napi_gro_frags);
4925 
4926 /* Compute the checksum from gro_offset and return the folded value
4927  * after adding in any pseudo checksum.
4928  */
4929 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4930 {
4931 	__wsum wsum;
4932 	__sum16 sum;
4933 
4934 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4935 
4936 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4937 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4938 	if (likely(!sum)) {
4939 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4940 		    !skb->csum_complete_sw)
4941 			netdev_rx_csum_fault(skb->dev);
4942 	}
4943 
4944 	NAPI_GRO_CB(skb)->csum = wsum;
4945 	NAPI_GRO_CB(skb)->csum_valid = 1;
4946 
4947 	return sum;
4948 }
4949 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4950 
4951 /*
4952  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4953  * Note: called with local irq disabled, but exits with local irq enabled.
4954  */
4955 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4956 {
4957 #ifdef CONFIG_RPS
4958 	struct softnet_data *remsd = sd->rps_ipi_list;
4959 
4960 	if (remsd) {
4961 		sd->rps_ipi_list = NULL;
4962 
4963 		local_irq_enable();
4964 
4965 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4966 		while (remsd) {
4967 			struct softnet_data *next = remsd->rps_ipi_next;
4968 
4969 			if (cpu_online(remsd->cpu))
4970 				smp_call_function_single_async(remsd->cpu,
4971 							   &remsd->csd);
4972 			remsd = next;
4973 		}
4974 	} else
4975 #endif
4976 		local_irq_enable();
4977 }
4978 
4979 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4980 {
4981 #ifdef CONFIG_RPS
4982 	return sd->rps_ipi_list != NULL;
4983 #else
4984 	return false;
4985 #endif
4986 }
4987 
4988 static int process_backlog(struct napi_struct *napi, int quota)
4989 {
4990 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4991 	bool again = true;
4992 	int work = 0;
4993 
4994 	/* Check if we have pending ipi, its better to send them now,
4995 	 * not waiting net_rx_action() end.
4996 	 */
4997 	if (sd_has_rps_ipi_waiting(sd)) {
4998 		local_irq_disable();
4999 		net_rps_action_and_irq_enable(sd);
5000 	}
5001 
5002 	napi->weight = dev_rx_weight;
5003 	while (again) {
5004 		struct sk_buff *skb;
5005 
5006 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5007 			rcu_read_lock();
5008 			__netif_receive_skb(skb);
5009 			rcu_read_unlock();
5010 			input_queue_head_incr(sd);
5011 			if (++work >= quota)
5012 				return work;
5013 
5014 		}
5015 
5016 		local_irq_disable();
5017 		rps_lock(sd);
5018 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5019 			/*
5020 			 * Inline a custom version of __napi_complete().
5021 			 * only current cpu owns and manipulates this napi,
5022 			 * and NAPI_STATE_SCHED is the only possible flag set
5023 			 * on backlog.
5024 			 * We can use a plain write instead of clear_bit(),
5025 			 * and we dont need an smp_mb() memory barrier.
5026 			 */
5027 			napi->state = 0;
5028 			again = false;
5029 		} else {
5030 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5031 						   &sd->process_queue);
5032 		}
5033 		rps_unlock(sd);
5034 		local_irq_enable();
5035 	}
5036 
5037 	return work;
5038 }
5039 
5040 /**
5041  * __napi_schedule - schedule for receive
5042  * @n: entry to schedule
5043  *
5044  * The entry's receive function will be scheduled to run.
5045  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5046  */
5047 void __napi_schedule(struct napi_struct *n)
5048 {
5049 	unsigned long flags;
5050 
5051 	local_irq_save(flags);
5052 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5053 	local_irq_restore(flags);
5054 }
5055 EXPORT_SYMBOL(__napi_schedule);
5056 
5057 /**
5058  *	napi_schedule_prep - check if napi can be scheduled
5059  *	@n: napi context
5060  *
5061  * Test if NAPI routine is already running, and if not mark
5062  * it as running.  This is used as a condition variable
5063  * insure only one NAPI poll instance runs.  We also make
5064  * sure there is no pending NAPI disable.
5065  */
5066 bool napi_schedule_prep(struct napi_struct *n)
5067 {
5068 	unsigned long val, new;
5069 
5070 	do {
5071 		val = READ_ONCE(n->state);
5072 		if (unlikely(val & NAPIF_STATE_DISABLE))
5073 			return false;
5074 		new = val | NAPIF_STATE_SCHED;
5075 
5076 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5077 		 * This was suggested by Alexander Duyck, as compiler
5078 		 * emits better code than :
5079 		 * if (val & NAPIF_STATE_SCHED)
5080 		 *     new |= NAPIF_STATE_MISSED;
5081 		 */
5082 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5083 						   NAPIF_STATE_MISSED;
5084 	} while (cmpxchg(&n->state, val, new) != val);
5085 
5086 	return !(val & NAPIF_STATE_SCHED);
5087 }
5088 EXPORT_SYMBOL(napi_schedule_prep);
5089 
5090 /**
5091  * __napi_schedule_irqoff - schedule for receive
5092  * @n: entry to schedule
5093  *
5094  * Variant of __napi_schedule() assuming hard irqs are masked
5095  */
5096 void __napi_schedule_irqoff(struct napi_struct *n)
5097 {
5098 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5099 }
5100 EXPORT_SYMBOL(__napi_schedule_irqoff);
5101 
5102 bool napi_complete_done(struct napi_struct *n, int work_done)
5103 {
5104 	unsigned long flags, val, new;
5105 
5106 	/*
5107 	 * 1) Don't let napi dequeue from the cpu poll list
5108 	 *    just in case its running on a different cpu.
5109 	 * 2) If we are busy polling, do nothing here, we have
5110 	 *    the guarantee we will be called later.
5111 	 */
5112 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5113 				 NAPIF_STATE_IN_BUSY_POLL)))
5114 		return false;
5115 
5116 	if (n->gro_list) {
5117 		unsigned long timeout = 0;
5118 
5119 		if (work_done)
5120 			timeout = n->dev->gro_flush_timeout;
5121 
5122 		if (timeout)
5123 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
5124 				      HRTIMER_MODE_REL_PINNED);
5125 		else
5126 			napi_gro_flush(n, false);
5127 	}
5128 	if (unlikely(!list_empty(&n->poll_list))) {
5129 		/* If n->poll_list is not empty, we need to mask irqs */
5130 		local_irq_save(flags);
5131 		list_del_init(&n->poll_list);
5132 		local_irq_restore(flags);
5133 	}
5134 
5135 	do {
5136 		val = READ_ONCE(n->state);
5137 
5138 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5139 
5140 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5141 
5142 		/* If STATE_MISSED was set, leave STATE_SCHED set,
5143 		 * because we will call napi->poll() one more time.
5144 		 * This C code was suggested by Alexander Duyck to help gcc.
5145 		 */
5146 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5147 						    NAPIF_STATE_SCHED;
5148 	} while (cmpxchg(&n->state, val, new) != val);
5149 
5150 	if (unlikely(val & NAPIF_STATE_MISSED)) {
5151 		__napi_schedule(n);
5152 		return false;
5153 	}
5154 
5155 	return true;
5156 }
5157 EXPORT_SYMBOL(napi_complete_done);
5158 
5159 /* must be called under rcu_read_lock(), as we dont take a reference */
5160 static struct napi_struct *napi_by_id(unsigned int napi_id)
5161 {
5162 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5163 	struct napi_struct *napi;
5164 
5165 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5166 		if (napi->napi_id == napi_id)
5167 			return napi;
5168 
5169 	return NULL;
5170 }
5171 
5172 #if defined(CONFIG_NET_RX_BUSY_POLL)
5173 
5174 #define BUSY_POLL_BUDGET 8
5175 
5176 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5177 {
5178 	int rc;
5179 
5180 	/* Busy polling means there is a high chance device driver hard irq
5181 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5182 	 * set in napi_schedule_prep().
5183 	 * Since we are about to call napi->poll() once more, we can safely
5184 	 * clear NAPI_STATE_MISSED.
5185 	 *
5186 	 * Note: x86 could use a single "lock and ..." instruction
5187 	 * to perform these two clear_bit()
5188 	 */
5189 	clear_bit(NAPI_STATE_MISSED, &napi->state);
5190 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5191 
5192 	local_bh_disable();
5193 
5194 	/* All we really want here is to re-enable device interrupts.
5195 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5196 	 */
5197 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
5198 	netpoll_poll_unlock(have_poll_lock);
5199 	if (rc == BUSY_POLL_BUDGET)
5200 		__napi_schedule(napi);
5201 	local_bh_enable();
5202 	if (local_softirq_pending())
5203 		do_softirq();
5204 }
5205 
5206 void napi_busy_loop(unsigned int napi_id,
5207 		    bool (*loop_end)(void *, unsigned long),
5208 		    void *loop_end_arg)
5209 {
5210 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5211 	int (*napi_poll)(struct napi_struct *napi, int budget);
5212 	void *have_poll_lock = NULL;
5213 	struct napi_struct *napi;
5214 
5215 restart:
5216 	napi_poll = NULL;
5217 
5218 	rcu_read_lock();
5219 
5220 	napi = napi_by_id(napi_id);
5221 	if (!napi)
5222 		goto out;
5223 
5224 	preempt_disable();
5225 	for (;;) {
5226 		int work = 0;
5227 
5228 		local_bh_disable();
5229 		if (!napi_poll) {
5230 			unsigned long val = READ_ONCE(napi->state);
5231 
5232 			/* If multiple threads are competing for this napi,
5233 			 * we avoid dirtying napi->state as much as we can.
5234 			 */
5235 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5236 				   NAPIF_STATE_IN_BUSY_POLL))
5237 				goto count;
5238 			if (cmpxchg(&napi->state, val,
5239 				    val | NAPIF_STATE_IN_BUSY_POLL |
5240 					  NAPIF_STATE_SCHED) != val)
5241 				goto count;
5242 			have_poll_lock = netpoll_poll_lock(napi);
5243 			napi_poll = napi->poll;
5244 		}
5245 		work = napi_poll(napi, BUSY_POLL_BUDGET);
5246 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5247 count:
5248 		if (work > 0)
5249 			__NET_ADD_STATS(dev_net(napi->dev),
5250 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
5251 		local_bh_enable();
5252 
5253 		if (!loop_end || loop_end(loop_end_arg, start_time))
5254 			break;
5255 
5256 		if (unlikely(need_resched())) {
5257 			if (napi_poll)
5258 				busy_poll_stop(napi, have_poll_lock);
5259 			preempt_enable();
5260 			rcu_read_unlock();
5261 			cond_resched();
5262 			if (loop_end(loop_end_arg, start_time))
5263 				return;
5264 			goto restart;
5265 		}
5266 		cpu_relax();
5267 	}
5268 	if (napi_poll)
5269 		busy_poll_stop(napi, have_poll_lock);
5270 	preempt_enable();
5271 out:
5272 	rcu_read_unlock();
5273 }
5274 EXPORT_SYMBOL(napi_busy_loop);
5275 
5276 #endif /* CONFIG_NET_RX_BUSY_POLL */
5277 
5278 static void napi_hash_add(struct napi_struct *napi)
5279 {
5280 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5281 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5282 		return;
5283 
5284 	spin_lock(&napi_hash_lock);
5285 
5286 	/* 0..NR_CPUS range is reserved for sender_cpu use */
5287 	do {
5288 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5289 			napi_gen_id = MIN_NAPI_ID;
5290 	} while (napi_by_id(napi_gen_id));
5291 	napi->napi_id = napi_gen_id;
5292 
5293 	hlist_add_head_rcu(&napi->napi_hash_node,
5294 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5295 
5296 	spin_unlock(&napi_hash_lock);
5297 }
5298 
5299 /* Warning : caller is responsible to make sure rcu grace period
5300  * is respected before freeing memory containing @napi
5301  */
5302 bool napi_hash_del(struct napi_struct *napi)
5303 {
5304 	bool rcu_sync_needed = false;
5305 
5306 	spin_lock(&napi_hash_lock);
5307 
5308 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5309 		rcu_sync_needed = true;
5310 		hlist_del_rcu(&napi->napi_hash_node);
5311 	}
5312 	spin_unlock(&napi_hash_lock);
5313 	return rcu_sync_needed;
5314 }
5315 EXPORT_SYMBOL_GPL(napi_hash_del);
5316 
5317 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5318 {
5319 	struct napi_struct *napi;
5320 
5321 	napi = container_of(timer, struct napi_struct, timer);
5322 
5323 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
5324 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5325 	 */
5326 	if (napi->gro_list && !napi_disable_pending(napi) &&
5327 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5328 		__napi_schedule_irqoff(napi);
5329 
5330 	return HRTIMER_NORESTART;
5331 }
5332 
5333 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5334 		    int (*poll)(struct napi_struct *, int), int weight)
5335 {
5336 	INIT_LIST_HEAD(&napi->poll_list);
5337 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5338 	napi->timer.function = napi_watchdog;
5339 	napi->gro_count = 0;
5340 	napi->gro_list = NULL;
5341 	napi->skb = NULL;
5342 	napi->poll = poll;
5343 	if (weight > NAPI_POLL_WEIGHT)
5344 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5345 			    weight, dev->name);
5346 	napi->weight = weight;
5347 	list_add(&napi->dev_list, &dev->napi_list);
5348 	napi->dev = dev;
5349 #ifdef CONFIG_NETPOLL
5350 	napi->poll_owner = -1;
5351 #endif
5352 	set_bit(NAPI_STATE_SCHED, &napi->state);
5353 	napi_hash_add(napi);
5354 }
5355 EXPORT_SYMBOL(netif_napi_add);
5356 
5357 void napi_disable(struct napi_struct *n)
5358 {
5359 	might_sleep();
5360 	set_bit(NAPI_STATE_DISABLE, &n->state);
5361 
5362 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5363 		msleep(1);
5364 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5365 		msleep(1);
5366 
5367 	hrtimer_cancel(&n->timer);
5368 
5369 	clear_bit(NAPI_STATE_DISABLE, &n->state);
5370 }
5371 EXPORT_SYMBOL(napi_disable);
5372 
5373 /* Must be called in process context */
5374 void netif_napi_del(struct napi_struct *napi)
5375 {
5376 	might_sleep();
5377 	if (napi_hash_del(napi))
5378 		synchronize_net();
5379 	list_del_init(&napi->dev_list);
5380 	napi_free_frags(napi);
5381 
5382 	kfree_skb_list(napi->gro_list);
5383 	napi->gro_list = NULL;
5384 	napi->gro_count = 0;
5385 }
5386 EXPORT_SYMBOL(netif_napi_del);
5387 
5388 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5389 {
5390 	void *have;
5391 	int work, weight;
5392 
5393 	list_del_init(&n->poll_list);
5394 
5395 	have = netpoll_poll_lock(n);
5396 
5397 	weight = n->weight;
5398 
5399 	/* This NAPI_STATE_SCHED test is for avoiding a race
5400 	 * with netpoll's poll_napi().  Only the entity which
5401 	 * obtains the lock and sees NAPI_STATE_SCHED set will
5402 	 * actually make the ->poll() call.  Therefore we avoid
5403 	 * accidentally calling ->poll() when NAPI is not scheduled.
5404 	 */
5405 	work = 0;
5406 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5407 		work = n->poll(n, weight);
5408 		trace_napi_poll(n, work, weight);
5409 	}
5410 
5411 	WARN_ON_ONCE(work > weight);
5412 
5413 	if (likely(work < weight))
5414 		goto out_unlock;
5415 
5416 	/* Drivers must not modify the NAPI state if they
5417 	 * consume the entire weight.  In such cases this code
5418 	 * still "owns" the NAPI instance and therefore can
5419 	 * move the instance around on the list at-will.
5420 	 */
5421 	if (unlikely(napi_disable_pending(n))) {
5422 		napi_complete(n);
5423 		goto out_unlock;
5424 	}
5425 
5426 	if (n->gro_list) {
5427 		/* flush too old packets
5428 		 * If HZ < 1000, flush all packets.
5429 		 */
5430 		napi_gro_flush(n, HZ >= 1000);
5431 	}
5432 
5433 	/* Some drivers may have called napi_schedule
5434 	 * prior to exhausting their budget.
5435 	 */
5436 	if (unlikely(!list_empty(&n->poll_list))) {
5437 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5438 			     n->dev ? n->dev->name : "backlog");
5439 		goto out_unlock;
5440 	}
5441 
5442 	list_add_tail(&n->poll_list, repoll);
5443 
5444 out_unlock:
5445 	netpoll_poll_unlock(have);
5446 
5447 	return work;
5448 }
5449 
5450 static __latent_entropy void net_rx_action(struct softirq_action *h)
5451 {
5452 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5453 	unsigned long time_limit = jiffies +
5454 		usecs_to_jiffies(netdev_budget_usecs);
5455 	int budget = netdev_budget;
5456 	LIST_HEAD(list);
5457 	LIST_HEAD(repoll);
5458 
5459 	local_irq_disable();
5460 	list_splice_init(&sd->poll_list, &list);
5461 	local_irq_enable();
5462 
5463 	for (;;) {
5464 		struct napi_struct *n;
5465 
5466 		if (list_empty(&list)) {
5467 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5468 				goto out;
5469 			break;
5470 		}
5471 
5472 		n = list_first_entry(&list, struct napi_struct, poll_list);
5473 		budget -= napi_poll(n, &repoll);
5474 
5475 		/* If softirq window is exhausted then punt.
5476 		 * Allow this to run for 2 jiffies since which will allow
5477 		 * an average latency of 1.5/HZ.
5478 		 */
5479 		if (unlikely(budget <= 0 ||
5480 			     time_after_eq(jiffies, time_limit))) {
5481 			sd->time_squeeze++;
5482 			break;
5483 		}
5484 	}
5485 
5486 	local_irq_disable();
5487 
5488 	list_splice_tail_init(&sd->poll_list, &list);
5489 	list_splice_tail(&repoll, &list);
5490 	list_splice(&list, &sd->poll_list);
5491 	if (!list_empty(&sd->poll_list))
5492 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5493 
5494 	net_rps_action_and_irq_enable(sd);
5495 out:
5496 	__kfree_skb_flush();
5497 }
5498 
5499 struct netdev_adjacent {
5500 	struct net_device *dev;
5501 
5502 	/* upper master flag, there can only be one master device per list */
5503 	bool master;
5504 
5505 	/* counter for the number of times this device was added to us */
5506 	u16 ref_nr;
5507 
5508 	/* private field for the users */
5509 	void *private;
5510 
5511 	struct list_head list;
5512 	struct rcu_head rcu;
5513 };
5514 
5515 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5516 						 struct list_head *adj_list)
5517 {
5518 	struct netdev_adjacent *adj;
5519 
5520 	list_for_each_entry(adj, adj_list, list) {
5521 		if (adj->dev == adj_dev)
5522 			return adj;
5523 	}
5524 	return NULL;
5525 }
5526 
5527 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5528 {
5529 	struct net_device *dev = data;
5530 
5531 	return upper_dev == dev;
5532 }
5533 
5534 /**
5535  * netdev_has_upper_dev - Check if device is linked to an upper device
5536  * @dev: device
5537  * @upper_dev: upper device to check
5538  *
5539  * Find out if a device is linked to specified upper device and return true
5540  * in case it is. Note that this checks only immediate upper device,
5541  * not through a complete stack of devices. The caller must hold the RTNL lock.
5542  */
5543 bool netdev_has_upper_dev(struct net_device *dev,
5544 			  struct net_device *upper_dev)
5545 {
5546 	ASSERT_RTNL();
5547 
5548 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5549 					     upper_dev);
5550 }
5551 EXPORT_SYMBOL(netdev_has_upper_dev);
5552 
5553 /**
5554  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5555  * @dev: device
5556  * @upper_dev: upper device to check
5557  *
5558  * Find out if a device is linked to specified upper device and return true
5559  * in case it is. Note that this checks the entire upper device chain.
5560  * The caller must hold rcu lock.
5561  */
5562 
5563 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5564 				  struct net_device *upper_dev)
5565 {
5566 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5567 					       upper_dev);
5568 }
5569 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5570 
5571 /**
5572  * netdev_has_any_upper_dev - Check if device is linked to some device
5573  * @dev: device
5574  *
5575  * Find out if a device is linked to an upper device and return true in case
5576  * it is. The caller must hold the RTNL lock.
5577  */
5578 static bool netdev_has_any_upper_dev(struct net_device *dev)
5579 {
5580 	ASSERT_RTNL();
5581 
5582 	return !list_empty(&dev->adj_list.upper);
5583 }
5584 
5585 /**
5586  * netdev_master_upper_dev_get - Get master upper device
5587  * @dev: device
5588  *
5589  * Find a master upper device and return pointer to it or NULL in case
5590  * it's not there. The caller must hold the RTNL lock.
5591  */
5592 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5593 {
5594 	struct netdev_adjacent *upper;
5595 
5596 	ASSERT_RTNL();
5597 
5598 	if (list_empty(&dev->adj_list.upper))
5599 		return NULL;
5600 
5601 	upper = list_first_entry(&dev->adj_list.upper,
5602 				 struct netdev_adjacent, list);
5603 	if (likely(upper->master))
5604 		return upper->dev;
5605 	return NULL;
5606 }
5607 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5608 
5609 /**
5610  * netdev_has_any_lower_dev - Check if device is linked to some device
5611  * @dev: device
5612  *
5613  * Find out if a device is linked to a lower device and return true in case
5614  * it is. The caller must hold the RTNL lock.
5615  */
5616 static bool netdev_has_any_lower_dev(struct net_device *dev)
5617 {
5618 	ASSERT_RTNL();
5619 
5620 	return !list_empty(&dev->adj_list.lower);
5621 }
5622 
5623 void *netdev_adjacent_get_private(struct list_head *adj_list)
5624 {
5625 	struct netdev_adjacent *adj;
5626 
5627 	adj = list_entry(adj_list, struct netdev_adjacent, list);
5628 
5629 	return adj->private;
5630 }
5631 EXPORT_SYMBOL(netdev_adjacent_get_private);
5632 
5633 /**
5634  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5635  * @dev: device
5636  * @iter: list_head ** of the current position
5637  *
5638  * Gets the next device from the dev's upper list, starting from iter
5639  * position. The caller must hold RCU read lock.
5640  */
5641 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5642 						 struct list_head **iter)
5643 {
5644 	struct netdev_adjacent *upper;
5645 
5646 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5647 
5648 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5649 
5650 	if (&upper->list == &dev->adj_list.upper)
5651 		return NULL;
5652 
5653 	*iter = &upper->list;
5654 
5655 	return upper->dev;
5656 }
5657 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5658 
5659 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5660 						    struct list_head **iter)
5661 {
5662 	struct netdev_adjacent *upper;
5663 
5664 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5665 
5666 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5667 
5668 	if (&upper->list == &dev->adj_list.upper)
5669 		return NULL;
5670 
5671 	*iter = &upper->list;
5672 
5673 	return upper->dev;
5674 }
5675 
5676 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5677 				  int (*fn)(struct net_device *dev,
5678 					    void *data),
5679 				  void *data)
5680 {
5681 	struct net_device *udev;
5682 	struct list_head *iter;
5683 	int ret;
5684 
5685 	for (iter = &dev->adj_list.upper,
5686 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
5687 	     udev;
5688 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5689 		/* first is the upper device itself */
5690 		ret = fn(udev, data);
5691 		if (ret)
5692 			return ret;
5693 
5694 		/* then look at all of its upper devices */
5695 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5696 		if (ret)
5697 			return ret;
5698 	}
5699 
5700 	return 0;
5701 }
5702 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5703 
5704 /**
5705  * netdev_lower_get_next_private - Get the next ->private from the
5706  *				   lower neighbour list
5707  * @dev: device
5708  * @iter: list_head ** of the current position
5709  *
5710  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5711  * list, starting from iter position. The caller must hold either hold the
5712  * RTNL lock or its own locking that guarantees that the neighbour lower
5713  * list will remain unchanged.
5714  */
5715 void *netdev_lower_get_next_private(struct net_device *dev,
5716 				    struct list_head **iter)
5717 {
5718 	struct netdev_adjacent *lower;
5719 
5720 	lower = list_entry(*iter, struct netdev_adjacent, list);
5721 
5722 	if (&lower->list == &dev->adj_list.lower)
5723 		return NULL;
5724 
5725 	*iter = lower->list.next;
5726 
5727 	return lower->private;
5728 }
5729 EXPORT_SYMBOL(netdev_lower_get_next_private);
5730 
5731 /**
5732  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5733  *				       lower neighbour list, RCU
5734  *				       variant
5735  * @dev: device
5736  * @iter: list_head ** of the current position
5737  *
5738  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5739  * list, starting from iter position. The caller must hold RCU read lock.
5740  */
5741 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5742 					struct list_head **iter)
5743 {
5744 	struct netdev_adjacent *lower;
5745 
5746 	WARN_ON_ONCE(!rcu_read_lock_held());
5747 
5748 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5749 
5750 	if (&lower->list == &dev->adj_list.lower)
5751 		return NULL;
5752 
5753 	*iter = &lower->list;
5754 
5755 	return lower->private;
5756 }
5757 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5758 
5759 /**
5760  * netdev_lower_get_next - Get the next device from the lower neighbour
5761  *                         list
5762  * @dev: device
5763  * @iter: list_head ** of the current position
5764  *
5765  * Gets the next netdev_adjacent from the dev's lower neighbour
5766  * list, starting from iter position. The caller must hold RTNL lock or
5767  * its own locking that guarantees that the neighbour lower
5768  * list will remain unchanged.
5769  */
5770 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5771 {
5772 	struct netdev_adjacent *lower;
5773 
5774 	lower = list_entry(*iter, struct netdev_adjacent, list);
5775 
5776 	if (&lower->list == &dev->adj_list.lower)
5777 		return NULL;
5778 
5779 	*iter = lower->list.next;
5780 
5781 	return lower->dev;
5782 }
5783 EXPORT_SYMBOL(netdev_lower_get_next);
5784 
5785 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5786 						struct list_head **iter)
5787 {
5788 	struct netdev_adjacent *lower;
5789 
5790 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5791 
5792 	if (&lower->list == &dev->adj_list.lower)
5793 		return NULL;
5794 
5795 	*iter = &lower->list;
5796 
5797 	return lower->dev;
5798 }
5799 
5800 int netdev_walk_all_lower_dev(struct net_device *dev,
5801 			      int (*fn)(struct net_device *dev,
5802 					void *data),
5803 			      void *data)
5804 {
5805 	struct net_device *ldev;
5806 	struct list_head *iter;
5807 	int ret;
5808 
5809 	for (iter = &dev->adj_list.lower,
5810 	     ldev = netdev_next_lower_dev(dev, &iter);
5811 	     ldev;
5812 	     ldev = netdev_next_lower_dev(dev, &iter)) {
5813 		/* first is the lower device itself */
5814 		ret = fn(ldev, data);
5815 		if (ret)
5816 			return ret;
5817 
5818 		/* then look at all of its lower devices */
5819 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
5820 		if (ret)
5821 			return ret;
5822 	}
5823 
5824 	return 0;
5825 }
5826 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5827 
5828 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5829 						    struct list_head **iter)
5830 {
5831 	struct netdev_adjacent *lower;
5832 
5833 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5834 	if (&lower->list == &dev->adj_list.lower)
5835 		return NULL;
5836 
5837 	*iter = &lower->list;
5838 
5839 	return lower->dev;
5840 }
5841 
5842 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5843 				  int (*fn)(struct net_device *dev,
5844 					    void *data),
5845 				  void *data)
5846 {
5847 	struct net_device *ldev;
5848 	struct list_head *iter;
5849 	int ret;
5850 
5851 	for (iter = &dev->adj_list.lower,
5852 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
5853 	     ldev;
5854 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5855 		/* first is the lower device itself */
5856 		ret = fn(ldev, data);
5857 		if (ret)
5858 			return ret;
5859 
5860 		/* then look at all of its lower devices */
5861 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5862 		if (ret)
5863 			return ret;
5864 	}
5865 
5866 	return 0;
5867 }
5868 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5869 
5870 /**
5871  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5872  *				       lower neighbour list, RCU
5873  *				       variant
5874  * @dev: device
5875  *
5876  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5877  * list. The caller must hold RCU read lock.
5878  */
5879 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5880 {
5881 	struct netdev_adjacent *lower;
5882 
5883 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
5884 			struct netdev_adjacent, list);
5885 	if (lower)
5886 		return lower->private;
5887 	return NULL;
5888 }
5889 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5890 
5891 /**
5892  * netdev_master_upper_dev_get_rcu - Get master upper device
5893  * @dev: device
5894  *
5895  * Find a master upper device and return pointer to it or NULL in case
5896  * it's not there. The caller must hold the RCU read lock.
5897  */
5898 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5899 {
5900 	struct netdev_adjacent *upper;
5901 
5902 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
5903 				       struct netdev_adjacent, list);
5904 	if (upper && likely(upper->master))
5905 		return upper->dev;
5906 	return NULL;
5907 }
5908 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5909 
5910 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5911 			      struct net_device *adj_dev,
5912 			      struct list_head *dev_list)
5913 {
5914 	char linkname[IFNAMSIZ+7];
5915 
5916 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5917 		"upper_%s" : "lower_%s", adj_dev->name);
5918 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5919 				 linkname);
5920 }
5921 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5922 			       char *name,
5923 			       struct list_head *dev_list)
5924 {
5925 	char linkname[IFNAMSIZ+7];
5926 
5927 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5928 		"upper_%s" : "lower_%s", name);
5929 	sysfs_remove_link(&(dev->dev.kobj), linkname);
5930 }
5931 
5932 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5933 						 struct net_device *adj_dev,
5934 						 struct list_head *dev_list)
5935 {
5936 	return (dev_list == &dev->adj_list.upper ||
5937 		dev_list == &dev->adj_list.lower) &&
5938 		net_eq(dev_net(dev), dev_net(adj_dev));
5939 }
5940 
5941 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5942 					struct net_device *adj_dev,
5943 					struct list_head *dev_list,
5944 					void *private, bool master)
5945 {
5946 	struct netdev_adjacent *adj;
5947 	int ret;
5948 
5949 	adj = __netdev_find_adj(adj_dev, dev_list);
5950 
5951 	if (adj) {
5952 		adj->ref_nr += 1;
5953 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5954 			 dev->name, adj_dev->name, adj->ref_nr);
5955 
5956 		return 0;
5957 	}
5958 
5959 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5960 	if (!adj)
5961 		return -ENOMEM;
5962 
5963 	adj->dev = adj_dev;
5964 	adj->master = master;
5965 	adj->ref_nr = 1;
5966 	adj->private = private;
5967 	dev_hold(adj_dev);
5968 
5969 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5970 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5971 
5972 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5973 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5974 		if (ret)
5975 			goto free_adj;
5976 	}
5977 
5978 	/* Ensure that master link is always the first item in list. */
5979 	if (master) {
5980 		ret = sysfs_create_link(&(dev->dev.kobj),
5981 					&(adj_dev->dev.kobj), "master");
5982 		if (ret)
5983 			goto remove_symlinks;
5984 
5985 		list_add_rcu(&adj->list, dev_list);
5986 	} else {
5987 		list_add_tail_rcu(&adj->list, dev_list);
5988 	}
5989 
5990 	return 0;
5991 
5992 remove_symlinks:
5993 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5994 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5995 free_adj:
5996 	kfree(adj);
5997 	dev_put(adj_dev);
5998 
5999 	return ret;
6000 }
6001 
6002 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6003 					 struct net_device *adj_dev,
6004 					 u16 ref_nr,
6005 					 struct list_head *dev_list)
6006 {
6007 	struct netdev_adjacent *adj;
6008 
6009 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6010 		 dev->name, adj_dev->name, ref_nr);
6011 
6012 	adj = __netdev_find_adj(adj_dev, dev_list);
6013 
6014 	if (!adj) {
6015 		pr_err("Adjacency does not exist for device %s from %s\n",
6016 		       dev->name, adj_dev->name);
6017 		WARN_ON(1);
6018 		return;
6019 	}
6020 
6021 	if (adj->ref_nr > ref_nr) {
6022 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6023 			 dev->name, adj_dev->name, ref_nr,
6024 			 adj->ref_nr - ref_nr);
6025 		adj->ref_nr -= ref_nr;
6026 		return;
6027 	}
6028 
6029 	if (adj->master)
6030 		sysfs_remove_link(&(dev->dev.kobj), "master");
6031 
6032 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6033 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6034 
6035 	list_del_rcu(&adj->list);
6036 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6037 		 adj_dev->name, dev->name, adj_dev->name);
6038 	dev_put(adj_dev);
6039 	kfree_rcu(adj, rcu);
6040 }
6041 
6042 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6043 					    struct net_device *upper_dev,
6044 					    struct list_head *up_list,
6045 					    struct list_head *down_list,
6046 					    void *private, bool master)
6047 {
6048 	int ret;
6049 
6050 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6051 					   private, master);
6052 	if (ret)
6053 		return ret;
6054 
6055 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6056 					   private, false);
6057 	if (ret) {
6058 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6059 		return ret;
6060 	}
6061 
6062 	return 0;
6063 }
6064 
6065 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6066 					       struct net_device *upper_dev,
6067 					       u16 ref_nr,
6068 					       struct list_head *up_list,
6069 					       struct list_head *down_list)
6070 {
6071 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6072 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6073 }
6074 
6075 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6076 						struct net_device *upper_dev,
6077 						void *private, bool master)
6078 {
6079 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6080 						&dev->adj_list.upper,
6081 						&upper_dev->adj_list.lower,
6082 						private, master);
6083 }
6084 
6085 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6086 						   struct net_device *upper_dev)
6087 {
6088 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6089 					   &dev->adj_list.upper,
6090 					   &upper_dev->adj_list.lower);
6091 }
6092 
6093 static int __netdev_upper_dev_link(struct net_device *dev,
6094 				   struct net_device *upper_dev, bool master,
6095 				   void *upper_priv, void *upper_info)
6096 {
6097 	struct netdev_notifier_changeupper_info changeupper_info;
6098 	int ret = 0;
6099 
6100 	ASSERT_RTNL();
6101 
6102 	if (dev == upper_dev)
6103 		return -EBUSY;
6104 
6105 	/* To prevent loops, check if dev is not upper device to upper_dev. */
6106 	if (netdev_has_upper_dev(upper_dev, dev))
6107 		return -EBUSY;
6108 
6109 	if (netdev_has_upper_dev(dev, upper_dev))
6110 		return -EEXIST;
6111 
6112 	if (master && netdev_master_upper_dev_get(dev))
6113 		return -EBUSY;
6114 
6115 	changeupper_info.upper_dev = upper_dev;
6116 	changeupper_info.master = master;
6117 	changeupper_info.linking = true;
6118 	changeupper_info.upper_info = upper_info;
6119 
6120 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6121 					    &changeupper_info.info);
6122 	ret = notifier_to_errno(ret);
6123 	if (ret)
6124 		return ret;
6125 
6126 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6127 						   master);
6128 	if (ret)
6129 		return ret;
6130 
6131 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6132 					    &changeupper_info.info);
6133 	ret = notifier_to_errno(ret);
6134 	if (ret)
6135 		goto rollback;
6136 
6137 	return 0;
6138 
6139 rollback:
6140 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6141 
6142 	return ret;
6143 }
6144 
6145 /**
6146  * netdev_upper_dev_link - Add a link to the upper device
6147  * @dev: device
6148  * @upper_dev: new upper device
6149  *
6150  * Adds a link to device which is upper to this one. The caller must hold
6151  * the RTNL lock. On a failure a negative errno code is returned.
6152  * On success the reference counts are adjusted and the function
6153  * returns zero.
6154  */
6155 int netdev_upper_dev_link(struct net_device *dev,
6156 			  struct net_device *upper_dev)
6157 {
6158 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
6159 }
6160 EXPORT_SYMBOL(netdev_upper_dev_link);
6161 
6162 /**
6163  * netdev_master_upper_dev_link - Add a master link to the upper device
6164  * @dev: device
6165  * @upper_dev: new upper device
6166  * @upper_priv: upper device private
6167  * @upper_info: upper info to be passed down via notifier
6168  *
6169  * Adds a link to device which is upper to this one. In this case, only
6170  * one master upper device can be linked, although other non-master devices
6171  * might be linked as well. The caller must hold the RTNL lock.
6172  * On a failure a negative errno code is returned. On success the reference
6173  * counts are adjusted and the function returns zero.
6174  */
6175 int netdev_master_upper_dev_link(struct net_device *dev,
6176 				 struct net_device *upper_dev,
6177 				 void *upper_priv, void *upper_info)
6178 {
6179 	return __netdev_upper_dev_link(dev, upper_dev, true,
6180 				       upper_priv, upper_info);
6181 }
6182 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6183 
6184 /**
6185  * netdev_upper_dev_unlink - Removes a link to upper device
6186  * @dev: device
6187  * @upper_dev: new upper device
6188  *
6189  * Removes a link to device which is upper to this one. The caller must hold
6190  * the RTNL lock.
6191  */
6192 void netdev_upper_dev_unlink(struct net_device *dev,
6193 			     struct net_device *upper_dev)
6194 {
6195 	struct netdev_notifier_changeupper_info changeupper_info;
6196 
6197 	ASSERT_RTNL();
6198 
6199 	changeupper_info.upper_dev = upper_dev;
6200 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6201 	changeupper_info.linking = false;
6202 
6203 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6204 				      &changeupper_info.info);
6205 
6206 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6207 
6208 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6209 				      &changeupper_info.info);
6210 }
6211 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6212 
6213 /**
6214  * netdev_bonding_info_change - Dispatch event about slave change
6215  * @dev: device
6216  * @bonding_info: info to dispatch
6217  *
6218  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6219  * The caller must hold the RTNL lock.
6220  */
6221 void netdev_bonding_info_change(struct net_device *dev,
6222 				struct netdev_bonding_info *bonding_info)
6223 {
6224 	struct netdev_notifier_bonding_info	info;
6225 
6226 	memcpy(&info.bonding_info, bonding_info,
6227 	       sizeof(struct netdev_bonding_info));
6228 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6229 				      &info.info);
6230 }
6231 EXPORT_SYMBOL(netdev_bonding_info_change);
6232 
6233 static void netdev_adjacent_add_links(struct net_device *dev)
6234 {
6235 	struct netdev_adjacent *iter;
6236 
6237 	struct net *net = dev_net(dev);
6238 
6239 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6240 		if (!net_eq(net, dev_net(iter->dev)))
6241 			continue;
6242 		netdev_adjacent_sysfs_add(iter->dev, dev,
6243 					  &iter->dev->adj_list.lower);
6244 		netdev_adjacent_sysfs_add(dev, iter->dev,
6245 					  &dev->adj_list.upper);
6246 	}
6247 
6248 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6249 		if (!net_eq(net, dev_net(iter->dev)))
6250 			continue;
6251 		netdev_adjacent_sysfs_add(iter->dev, dev,
6252 					  &iter->dev->adj_list.upper);
6253 		netdev_adjacent_sysfs_add(dev, iter->dev,
6254 					  &dev->adj_list.lower);
6255 	}
6256 }
6257 
6258 static void netdev_adjacent_del_links(struct net_device *dev)
6259 {
6260 	struct netdev_adjacent *iter;
6261 
6262 	struct net *net = dev_net(dev);
6263 
6264 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6265 		if (!net_eq(net, dev_net(iter->dev)))
6266 			continue;
6267 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6268 					  &iter->dev->adj_list.lower);
6269 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6270 					  &dev->adj_list.upper);
6271 	}
6272 
6273 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6274 		if (!net_eq(net, dev_net(iter->dev)))
6275 			continue;
6276 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6277 					  &iter->dev->adj_list.upper);
6278 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6279 					  &dev->adj_list.lower);
6280 	}
6281 }
6282 
6283 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6284 {
6285 	struct netdev_adjacent *iter;
6286 
6287 	struct net *net = dev_net(dev);
6288 
6289 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6290 		if (!net_eq(net, dev_net(iter->dev)))
6291 			continue;
6292 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6293 					  &iter->dev->adj_list.lower);
6294 		netdev_adjacent_sysfs_add(iter->dev, dev,
6295 					  &iter->dev->adj_list.lower);
6296 	}
6297 
6298 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6299 		if (!net_eq(net, dev_net(iter->dev)))
6300 			continue;
6301 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6302 					  &iter->dev->adj_list.upper);
6303 		netdev_adjacent_sysfs_add(iter->dev, dev,
6304 					  &iter->dev->adj_list.upper);
6305 	}
6306 }
6307 
6308 void *netdev_lower_dev_get_private(struct net_device *dev,
6309 				   struct net_device *lower_dev)
6310 {
6311 	struct netdev_adjacent *lower;
6312 
6313 	if (!lower_dev)
6314 		return NULL;
6315 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6316 	if (!lower)
6317 		return NULL;
6318 
6319 	return lower->private;
6320 }
6321 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6322 
6323 
6324 int dev_get_nest_level(struct net_device *dev)
6325 {
6326 	struct net_device *lower = NULL;
6327 	struct list_head *iter;
6328 	int max_nest = -1;
6329 	int nest;
6330 
6331 	ASSERT_RTNL();
6332 
6333 	netdev_for_each_lower_dev(dev, lower, iter) {
6334 		nest = dev_get_nest_level(lower);
6335 		if (max_nest < nest)
6336 			max_nest = nest;
6337 	}
6338 
6339 	return max_nest + 1;
6340 }
6341 EXPORT_SYMBOL(dev_get_nest_level);
6342 
6343 /**
6344  * netdev_lower_change - Dispatch event about lower device state change
6345  * @lower_dev: device
6346  * @lower_state_info: state to dispatch
6347  *
6348  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6349  * The caller must hold the RTNL lock.
6350  */
6351 void netdev_lower_state_changed(struct net_device *lower_dev,
6352 				void *lower_state_info)
6353 {
6354 	struct netdev_notifier_changelowerstate_info changelowerstate_info;
6355 
6356 	ASSERT_RTNL();
6357 	changelowerstate_info.lower_state_info = lower_state_info;
6358 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6359 				      &changelowerstate_info.info);
6360 }
6361 EXPORT_SYMBOL(netdev_lower_state_changed);
6362 
6363 static void dev_change_rx_flags(struct net_device *dev, int flags)
6364 {
6365 	const struct net_device_ops *ops = dev->netdev_ops;
6366 
6367 	if (ops->ndo_change_rx_flags)
6368 		ops->ndo_change_rx_flags(dev, flags);
6369 }
6370 
6371 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6372 {
6373 	unsigned int old_flags = dev->flags;
6374 	kuid_t uid;
6375 	kgid_t gid;
6376 
6377 	ASSERT_RTNL();
6378 
6379 	dev->flags |= IFF_PROMISC;
6380 	dev->promiscuity += inc;
6381 	if (dev->promiscuity == 0) {
6382 		/*
6383 		 * Avoid overflow.
6384 		 * If inc causes overflow, untouch promisc and return error.
6385 		 */
6386 		if (inc < 0)
6387 			dev->flags &= ~IFF_PROMISC;
6388 		else {
6389 			dev->promiscuity -= inc;
6390 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6391 				dev->name);
6392 			return -EOVERFLOW;
6393 		}
6394 	}
6395 	if (dev->flags != old_flags) {
6396 		pr_info("device %s %s promiscuous mode\n",
6397 			dev->name,
6398 			dev->flags & IFF_PROMISC ? "entered" : "left");
6399 		if (audit_enabled) {
6400 			current_uid_gid(&uid, &gid);
6401 			audit_log(current->audit_context, GFP_ATOMIC,
6402 				AUDIT_ANOM_PROMISCUOUS,
6403 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6404 				dev->name, (dev->flags & IFF_PROMISC),
6405 				(old_flags & IFF_PROMISC),
6406 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
6407 				from_kuid(&init_user_ns, uid),
6408 				from_kgid(&init_user_ns, gid),
6409 				audit_get_sessionid(current));
6410 		}
6411 
6412 		dev_change_rx_flags(dev, IFF_PROMISC);
6413 	}
6414 	if (notify)
6415 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
6416 	return 0;
6417 }
6418 
6419 /**
6420  *	dev_set_promiscuity	- update promiscuity count on a device
6421  *	@dev: device
6422  *	@inc: modifier
6423  *
6424  *	Add or remove promiscuity from a device. While the count in the device
6425  *	remains above zero the interface remains promiscuous. Once it hits zero
6426  *	the device reverts back to normal filtering operation. A negative inc
6427  *	value is used to drop promiscuity on the device.
6428  *	Return 0 if successful or a negative errno code on error.
6429  */
6430 int dev_set_promiscuity(struct net_device *dev, int inc)
6431 {
6432 	unsigned int old_flags = dev->flags;
6433 	int err;
6434 
6435 	err = __dev_set_promiscuity(dev, inc, true);
6436 	if (err < 0)
6437 		return err;
6438 	if (dev->flags != old_flags)
6439 		dev_set_rx_mode(dev);
6440 	return err;
6441 }
6442 EXPORT_SYMBOL(dev_set_promiscuity);
6443 
6444 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6445 {
6446 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6447 
6448 	ASSERT_RTNL();
6449 
6450 	dev->flags |= IFF_ALLMULTI;
6451 	dev->allmulti += inc;
6452 	if (dev->allmulti == 0) {
6453 		/*
6454 		 * Avoid overflow.
6455 		 * If inc causes overflow, untouch allmulti and return error.
6456 		 */
6457 		if (inc < 0)
6458 			dev->flags &= ~IFF_ALLMULTI;
6459 		else {
6460 			dev->allmulti -= inc;
6461 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6462 				dev->name);
6463 			return -EOVERFLOW;
6464 		}
6465 	}
6466 	if (dev->flags ^ old_flags) {
6467 		dev_change_rx_flags(dev, IFF_ALLMULTI);
6468 		dev_set_rx_mode(dev);
6469 		if (notify)
6470 			__dev_notify_flags(dev, old_flags,
6471 					   dev->gflags ^ old_gflags);
6472 	}
6473 	return 0;
6474 }
6475 
6476 /**
6477  *	dev_set_allmulti	- update allmulti count on a device
6478  *	@dev: device
6479  *	@inc: modifier
6480  *
6481  *	Add or remove reception of all multicast frames to a device. While the
6482  *	count in the device remains above zero the interface remains listening
6483  *	to all interfaces. Once it hits zero the device reverts back to normal
6484  *	filtering operation. A negative @inc value is used to drop the counter
6485  *	when releasing a resource needing all multicasts.
6486  *	Return 0 if successful or a negative errno code on error.
6487  */
6488 
6489 int dev_set_allmulti(struct net_device *dev, int inc)
6490 {
6491 	return __dev_set_allmulti(dev, inc, true);
6492 }
6493 EXPORT_SYMBOL(dev_set_allmulti);
6494 
6495 /*
6496  *	Upload unicast and multicast address lists to device and
6497  *	configure RX filtering. When the device doesn't support unicast
6498  *	filtering it is put in promiscuous mode while unicast addresses
6499  *	are present.
6500  */
6501 void __dev_set_rx_mode(struct net_device *dev)
6502 {
6503 	const struct net_device_ops *ops = dev->netdev_ops;
6504 
6505 	/* dev_open will call this function so the list will stay sane. */
6506 	if (!(dev->flags&IFF_UP))
6507 		return;
6508 
6509 	if (!netif_device_present(dev))
6510 		return;
6511 
6512 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6513 		/* Unicast addresses changes may only happen under the rtnl,
6514 		 * therefore calling __dev_set_promiscuity here is safe.
6515 		 */
6516 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6517 			__dev_set_promiscuity(dev, 1, false);
6518 			dev->uc_promisc = true;
6519 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6520 			__dev_set_promiscuity(dev, -1, false);
6521 			dev->uc_promisc = false;
6522 		}
6523 	}
6524 
6525 	if (ops->ndo_set_rx_mode)
6526 		ops->ndo_set_rx_mode(dev);
6527 }
6528 
6529 void dev_set_rx_mode(struct net_device *dev)
6530 {
6531 	netif_addr_lock_bh(dev);
6532 	__dev_set_rx_mode(dev);
6533 	netif_addr_unlock_bh(dev);
6534 }
6535 
6536 /**
6537  *	dev_get_flags - get flags reported to userspace
6538  *	@dev: device
6539  *
6540  *	Get the combination of flag bits exported through APIs to userspace.
6541  */
6542 unsigned int dev_get_flags(const struct net_device *dev)
6543 {
6544 	unsigned int flags;
6545 
6546 	flags = (dev->flags & ~(IFF_PROMISC |
6547 				IFF_ALLMULTI |
6548 				IFF_RUNNING |
6549 				IFF_LOWER_UP |
6550 				IFF_DORMANT)) |
6551 		(dev->gflags & (IFF_PROMISC |
6552 				IFF_ALLMULTI));
6553 
6554 	if (netif_running(dev)) {
6555 		if (netif_oper_up(dev))
6556 			flags |= IFF_RUNNING;
6557 		if (netif_carrier_ok(dev))
6558 			flags |= IFF_LOWER_UP;
6559 		if (netif_dormant(dev))
6560 			flags |= IFF_DORMANT;
6561 	}
6562 
6563 	return flags;
6564 }
6565 EXPORT_SYMBOL(dev_get_flags);
6566 
6567 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6568 {
6569 	unsigned int old_flags = dev->flags;
6570 	int ret;
6571 
6572 	ASSERT_RTNL();
6573 
6574 	/*
6575 	 *	Set the flags on our device.
6576 	 */
6577 
6578 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6579 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6580 			       IFF_AUTOMEDIA)) |
6581 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6582 				    IFF_ALLMULTI));
6583 
6584 	/*
6585 	 *	Load in the correct multicast list now the flags have changed.
6586 	 */
6587 
6588 	if ((old_flags ^ flags) & IFF_MULTICAST)
6589 		dev_change_rx_flags(dev, IFF_MULTICAST);
6590 
6591 	dev_set_rx_mode(dev);
6592 
6593 	/*
6594 	 *	Have we downed the interface. We handle IFF_UP ourselves
6595 	 *	according to user attempts to set it, rather than blindly
6596 	 *	setting it.
6597 	 */
6598 
6599 	ret = 0;
6600 	if ((old_flags ^ flags) & IFF_UP)
6601 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6602 
6603 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
6604 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
6605 		unsigned int old_flags = dev->flags;
6606 
6607 		dev->gflags ^= IFF_PROMISC;
6608 
6609 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
6610 			if (dev->flags != old_flags)
6611 				dev_set_rx_mode(dev);
6612 	}
6613 
6614 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6615 	 * is important. Some (broken) drivers set IFF_PROMISC, when
6616 	 * IFF_ALLMULTI is requested not asking us and not reporting.
6617 	 */
6618 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6619 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6620 
6621 		dev->gflags ^= IFF_ALLMULTI;
6622 		__dev_set_allmulti(dev, inc, false);
6623 	}
6624 
6625 	return ret;
6626 }
6627 
6628 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6629 			unsigned int gchanges)
6630 {
6631 	unsigned int changes = dev->flags ^ old_flags;
6632 
6633 	if (gchanges)
6634 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6635 
6636 	if (changes & IFF_UP) {
6637 		if (dev->flags & IFF_UP)
6638 			call_netdevice_notifiers(NETDEV_UP, dev);
6639 		else
6640 			call_netdevice_notifiers(NETDEV_DOWN, dev);
6641 	}
6642 
6643 	if (dev->flags & IFF_UP &&
6644 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6645 		struct netdev_notifier_change_info change_info;
6646 
6647 		change_info.flags_changed = changes;
6648 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6649 					      &change_info.info);
6650 	}
6651 }
6652 
6653 /**
6654  *	dev_change_flags - change device settings
6655  *	@dev: device
6656  *	@flags: device state flags
6657  *
6658  *	Change settings on device based state flags. The flags are
6659  *	in the userspace exported format.
6660  */
6661 int dev_change_flags(struct net_device *dev, unsigned int flags)
6662 {
6663 	int ret;
6664 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6665 
6666 	ret = __dev_change_flags(dev, flags);
6667 	if (ret < 0)
6668 		return ret;
6669 
6670 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6671 	__dev_notify_flags(dev, old_flags, changes);
6672 	return ret;
6673 }
6674 EXPORT_SYMBOL(dev_change_flags);
6675 
6676 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6677 {
6678 	const struct net_device_ops *ops = dev->netdev_ops;
6679 
6680 	if (ops->ndo_change_mtu)
6681 		return ops->ndo_change_mtu(dev, new_mtu);
6682 
6683 	dev->mtu = new_mtu;
6684 	return 0;
6685 }
6686 
6687 /**
6688  *	dev_set_mtu - Change maximum transfer unit
6689  *	@dev: device
6690  *	@new_mtu: new transfer unit
6691  *
6692  *	Change the maximum transfer size of the network device.
6693  */
6694 int dev_set_mtu(struct net_device *dev, int new_mtu)
6695 {
6696 	int err, orig_mtu;
6697 
6698 	if (new_mtu == dev->mtu)
6699 		return 0;
6700 
6701 	/* MTU must be positive, and in range */
6702 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6703 		net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6704 				    dev->name, new_mtu, dev->min_mtu);
6705 		return -EINVAL;
6706 	}
6707 
6708 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6709 		net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6710 				    dev->name, new_mtu, dev->max_mtu);
6711 		return -EINVAL;
6712 	}
6713 
6714 	if (!netif_device_present(dev))
6715 		return -ENODEV;
6716 
6717 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6718 	err = notifier_to_errno(err);
6719 	if (err)
6720 		return err;
6721 
6722 	orig_mtu = dev->mtu;
6723 	err = __dev_set_mtu(dev, new_mtu);
6724 
6725 	if (!err) {
6726 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6727 		err = notifier_to_errno(err);
6728 		if (err) {
6729 			/* setting mtu back and notifying everyone again,
6730 			 * so that they have a chance to revert changes.
6731 			 */
6732 			__dev_set_mtu(dev, orig_mtu);
6733 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6734 		}
6735 	}
6736 	return err;
6737 }
6738 EXPORT_SYMBOL(dev_set_mtu);
6739 
6740 /**
6741  *	dev_set_group - Change group this device belongs to
6742  *	@dev: device
6743  *	@new_group: group this device should belong to
6744  */
6745 void dev_set_group(struct net_device *dev, int new_group)
6746 {
6747 	dev->group = new_group;
6748 }
6749 EXPORT_SYMBOL(dev_set_group);
6750 
6751 /**
6752  *	dev_set_mac_address - Change Media Access Control Address
6753  *	@dev: device
6754  *	@sa: new address
6755  *
6756  *	Change the hardware (MAC) address of the device
6757  */
6758 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6759 {
6760 	const struct net_device_ops *ops = dev->netdev_ops;
6761 	int err;
6762 
6763 	if (!ops->ndo_set_mac_address)
6764 		return -EOPNOTSUPP;
6765 	if (sa->sa_family != dev->type)
6766 		return -EINVAL;
6767 	if (!netif_device_present(dev))
6768 		return -ENODEV;
6769 	err = ops->ndo_set_mac_address(dev, sa);
6770 	if (err)
6771 		return err;
6772 	dev->addr_assign_type = NET_ADDR_SET;
6773 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6774 	add_device_randomness(dev->dev_addr, dev->addr_len);
6775 	return 0;
6776 }
6777 EXPORT_SYMBOL(dev_set_mac_address);
6778 
6779 /**
6780  *	dev_change_carrier - Change device carrier
6781  *	@dev: device
6782  *	@new_carrier: new value
6783  *
6784  *	Change device carrier
6785  */
6786 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6787 {
6788 	const struct net_device_ops *ops = dev->netdev_ops;
6789 
6790 	if (!ops->ndo_change_carrier)
6791 		return -EOPNOTSUPP;
6792 	if (!netif_device_present(dev))
6793 		return -ENODEV;
6794 	return ops->ndo_change_carrier(dev, new_carrier);
6795 }
6796 EXPORT_SYMBOL(dev_change_carrier);
6797 
6798 /**
6799  *	dev_get_phys_port_id - Get device physical port ID
6800  *	@dev: device
6801  *	@ppid: port ID
6802  *
6803  *	Get device physical port ID
6804  */
6805 int dev_get_phys_port_id(struct net_device *dev,
6806 			 struct netdev_phys_item_id *ppid)
6807 {
6808 	const struct net_device_ops *ops = dev->netdev_ops;
6809 
6810 	if (!ops->ndo_get_phys_port_id)
6811 		return -EOPNOTSUPP;
6812 	return ops->ndo_get_phys_port_id(dev, ppid);
6813 }
6814 EXPORT_SYMBOL(dev_get_phys_port_id);
6815 
6816 /**
6817  *	dev_get_phys_port_name - Get device physical port name
6818  *	@dev: device
6819  *	@name: port name
6820  *	@len: limit of bytes to copy to name
6821  *
6822  *	Get device physical port name
6823  */
6824 int dev_get_phys_port_name(struct net_device *dev,
6825 			   char *name, size_t len)
6826 {
6827 	const struct net_device_ops *ops = dev->netdev_ops;
6828 
6829 	if (!ops->ndo_get_phys_port_name)
6830 		return -EOPNOTSUPP;
6831 	return ops->ndo_get_phys_port_name(dev, name, len);
6832 }
6833 EXPORT_SYMBOL(dev_get_phys_port_name);
6834 
6835 /**
6836  *	dev_change_proto_down - update protocol port state information
6837  *	@dev: device
6838  *	@proto_down: new value
6839  *
6840  *	This info can be used by switch drivers to set the phys state of the
6841  *	port.
6842  */
6843 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6844 {
6845 	const struct net_device_ops *ops = dev->netdev_ops;
6846 
6847 	if (!ops->ndo_change_proto_down)
6848 		return -EOPNOTSUPP;
6849 	if (!netif_device_present(dev))
6850 		return -ENODEV;
6851 	return ops->ndo_change_proto_down(dev, proto_down);
6852 }
6853 EXPORT_SYMBOL(dev_change_proto_down);
6854 
6855 /**
6856  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
6857  *	@dev: device
6858  *	@extack: netlink extended ack
6859  *	@fd: new program fd or negative value to clear
6860  *	@flags: xdp-related flags
6861  *
6862  *	Set or clear a bpf program for a device
6863  */
6864 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
6865 		      int fd, u32 flags)
6866 {
6867 	int (*xdp_op)(struct net_device *dev, struct netdev_xdp *xdp);
6868 	const struct net_device_ops *ops = dev->netdev_ops;
6869 	struct bpf_prog *prog = NULL;
6870 	struct netdev_xdp xdp;
6871 	int err;
6872 
6873 	ASSERT_RTNL();
6874 
6875 	xdp_op = ops->ndo_xdp;
6876 	if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE))
6877 		xdp_op = generic_xdp_install;
6878 
6879 	if (fd >= 0) {
6880 		if (flags & XDP_FLAGS_UPDATE_IF_NOEXIST) {
6881 			memset(&xdp, 0, sizeof(xdp));
6882 			xdp.command = XDP_QUERY_PROG;
6883 
6884 			err = xdp_op(dev, &xdp);
6885 			if (err < 0)
6886 				return err;
6887 			if (xdp.prog_attached)
6888 				return -EBUSY;
6889 		}
6890 
6891 		prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6892 		if (IS_ERR(prog))
6893 			return PTR_ERR(prog);
6894 	}
6895 
6896 	memset(&xdp, 0, sizeof(xdp));
6897 	xdp.command = XDP_SETUP_PROG;
6898 	xdp.extack = extack;
6899 	xdp.prog = prog;
6900 
6901 	err = xdp_op(dev, &xdp);
6902 	if (err < 0 && prog)
6903 		bpf_prog_put(prog);
6904 
6905 	return err;
6906 }
6907 
6908 /**
6909  *	dev_new_index	-	allocate an ifindex
6910  *	@net: the applicable net namespace
6911  *
6912  *	Returns a suitable unique value for a new device interface
6913  *	number.  The caller must hold the rtnl semaphore or the
6914  *	dev_base_lock to be sure it remains unique.
6915  */
6916 static int dev_new_index(struct net *net)
6917 {
6918 	int ifindex = net->ifindex;
6919 
6920 	for (;;) {
6921 		if (++ifindex <= 0)
6922 			ifindex = 1;
6923 		if (!__dev_get_by_index(net, ifindex))
6924 			return net->ifindex = ifindex;
6925 	}
6926 }
6927 
6928 /* Delayed registration/unregisteration */
6929 static LIST_HEAD(net_todo_list);
6930 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6931 
6932 static void net_set_todo(struct net_device *dev)
6933 {
6934 	list_add_tail(&dev->todo_list, &net_todo_list);
6935 	dev_net(dev)->dev_unreg_count++;
6936 }
6937 
6938 static void rollback_registered_many(struct list_head *head)
6939 {
6940 	struct net_device *dev, *tmp;
6941 	LIST_HEAD(close_head);
6942 
6943 	BUG_ON(dev_boot_phase);
6944 	ASSERT_RTNL();
6945 
6946 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6947 		/* Some devices call without registering
6948 		 * for initialization unwind. Remove those
6949 		 * devices and proceed with the remaining.
6950 		 */
6951 		if (dev->reg_state == NETREG_UNINITIALIZED) {
6952 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6953 				 dev->name, dev);
6954 
6955 			WARN_ON(1);
6956 			list_del(&dev->unreg_list);
6957 			continue;
6958 		}
6959 		dev->dismantle = true;
6960 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
6961 	}
6962 
6963 	/* If device is running, close it first. */
6964 	list_for_each_entry(dev, head, unreg_list)
6965 		list_add_tail(&dev->close_list, &close_head);
6966 	dev_close_many(&close_head, true);
6967 
6968 	list_for_each_entry(dev, head, unreg_list) {
6969 		/* And unlink it from device chain. */
6970 		unlist_netdevice(dev);
6971 
6972 		dev->reg_state = NETREG_UNREGISTERING;
6973 	}
6974 	flush_all_backlogs();
6975 
6976 	synchronize_net();
6977 
6978 	list_for_each_entry(dev, head, unreg_list) {
6979 		struct sk_buff *skb = NULL;
6980 
6981 		/* Shutdown queueing discipline. */
6982 		dev_shutdown(dev);
6983 
6984 
6985 		/* Notify protocols, that we are about to destroy
6986 		 * this device. They should clean all the things.
6987 		 */
6988 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6989 
6990 		if (!dev->rtnl_link_ops ||
6991 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6992 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6993 						     GFP_KERNEL);
6994 
6995 		/*
6996 		 *	Flush the unicast and multicast chains
6997 		 */
6998 		dev_uc_flush(dev);
6999 		dev_mc_flush(dev);
7000 
7001 		if (dev->netdev_ops->ndo_uninit)
7002 			dev->netdev_ops->ndo_uninit(dev);
7003 
7004 		if (skb)
7005 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7006 
7007 		/* Notifier chain MUST detach us all upper devices. */
7008 		WARN_ON(netdev_has_any_upper_dev(dev));
7009 		WARN_ON(netdev_has_any_lower_dev(dev));
7010 
7011 		/* Remove entries from kobject tree */
7012 		netdev_unregister_kobject(dev);
7013 #ifdef CONFIG_XPS
7014 		/* Remove XPS queueing entries */
7015 		netif_reset_xps_queues_gt(dev, 0);
7016 #endif
7017 	}
7018 
7019 	synchronize_net();
7020 
7021 	list_for_each_entry(dev, head, unreg_list)
7022 		dev_put(dev);
7023 }
7024 
7025 static void rollback_registered(struct net_device *dev)
7026 {
7027 	LIST_HEAD(single);
7028 
7029 	list_add(&dev->unreg_list, &single);
7030 	rollback_registered_many(&single);
7031 	list_del(&single);
7032 }
7033 
7034 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7035 	struct net_device *upper, netdev_features_t features)
7036 {
7037 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7038 	netdev_features_t feature;
7039 	int feature_bit;
7040 
7041 	for_each_netdev_feature(&upper_disables, feature_bit) {
7042 		feature = __NETIF_F_BIT(feature_bit);
7043 		if (!(upper->wanted_features & feature)
7044 		    && (features & feature)) {
7045 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7046 				   &feature, upper->name);
7047 			features &= ~feature;
7048 		}
7049 	}
7050 
7051 	return features;
7052 }
7053 
7054 static void netdev_sync_lower_features(struct net_device *upper,
7055 	struct net_device *lower, netdev_features_t features)
7056 {
7057 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7058 	netdev_features_t feature;
7059 	int feature_bit;
7060 
7061 	for_each_netdev_feature(&upper_disables, feature_bit) {
7062 		feature = __NETIF_F_BIT(feature_bit);
7063 		if (!(features & feature) && (lower->features & feature)) {
7064 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7065 				   &feature, lower->name);
7066 			lower->wanted_features &= ~feature;
7067 			netdev_update_features(lower);
7068 
7069 			if (unlikely(lower->features & feature))
7070 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7071 					    &feature, lower->name);
7072 		}
7073 	}
7074 }
7075 
7076 static netdev_features_t netdev_fix_features(struct net_device *dev,
7077 	netdev_features_t features)
7078 {
7079 	/* Fix illegal checksum combinations */
7080 	if ((features & NETIF_F_HW_CSUM) &&
7081 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7082 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7083 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7084 	}
7085 
7086 	/* TSO requires that SG is present as well. */
7087 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7088 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7089 		features &= ~NETIF_F_ALL_TSO;
7090 	}
7091 
7092 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7093 					!(features & NETIF_F_IP_CSUM)) {
7094 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7095 		features &= ~NETIF_F_TSO;
7096 		features &= ~NETIF_F_TSO_ECN;
7097 	}
7098 
7099 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7100 					 !(features & NETIF_F_IPV6_CSUM)) {
7101 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7102 		features &= ~NETIF_F_TSO6;
7103 	}
7104 
7105 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7106 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7107 		features &= ~NETIF_F_TSO_MANGLEID;
7108 
7109 	/* TSO ECN requires that TSO is present as well. */
7110 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7111 		features &= ~NETIF_F_TSO_ECN;
7112 
7113 	/* Software GSO depends on SG. */
7114 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7115 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7116 		features &= ~NETIF_F_GSO;
7117 	}
7118 
7119 	/* UFO needs SG and checksumming */
7120 	if (features & NETIF_F_UFO) {
7121 		/* maybe split UFO into V4 and V6? */
7122 		if (!(features & NETIF_F_HW_CSUM) &&
7123 		    ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
7124 		     (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
7125 			netdev_dbg(dev,
7126 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
7127 			features &= ~NETIF_F_UFO;
7128 		}
7129 
7130 		if (!(features & NETIF_F_SG)) {
7131 			netdev_dbg(dev,
7132 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
7133 			features &= ~NETIF_F_UFO;
7134 		}
7135 	}
7136 
7137 	/* GSO partial features require GSO partial be set */
7138 	if ((features & dev->gso_partial_features) &&
7139 	    !(features & NETIF_F_GSO_PARTIAL)) {
7140 		netdev_dbg(dev,
7141 			   "Dropping partially supported GSO features since no GSO partial.\n");
7142 		features &= ~dev->gso_partial_features;
7143 	}
7144 
7145 	return features;
7146 }
7147 
7148 int __netdev_update_features(struct net_device *dev)
7149 {
7150 	struct net_device *upper, *lower;
7151 	netdev_features_t features;
7152 	struct list_head *iter;
7153 	int err = -1;
7154 
7155 	ASSERT_RTNL();
7156 
7157 	features = netdev_get_wanted_features(dev);
7158 
7159 	if (dev->netdev_ops->ndo_fix_features)
7160 		features = dev->netdev_ops->ndo_fix_features(dev, features);
7161 
7162 	/* driver might be less strict about feature dependencies */
7163 	features = netdev_fix_features(dev, features);
7164 
7165 	/* some features can't be enabled if they're off an an upper device */
7166 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
7167 		features = netdev_sync_upper_features(dev, upper, features);
7168 
7169 	if (dev->features == features)
7170 		goto sync_lower;
7171 
7172 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7173 		&dev->features, &features);
7174 
7175 	if (dev->netdev_ops->ndo_set_features)
7176 		err = dev->netdev_ops->ndo_set_features(dev, features);
7177 	else
7178 		err = 0;
7179 
7180 	if (unlikely(err < 0)) {
7181 		netdev_err(dev,
7182 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
7183 			err, &features, &dev->features);
7184 		/* return non-0 since some features might have changed and
7185 		 * it's better to fire a spurious notification than miss it
7186 		 */
7187 		return -1;
7188 	}
7189 
7190 sync_lower:
7191 	/* some features must be disabled on lower devices when disabled
7192 	 * on an upper device (think: bonding master or bridge)
7193 	 */
7194 	netdev_for_each_lower_dev(dev, lower, iter)
7195 		netdev_sync_lower_features(dev, lower, features);
7196 
7197 	if (!err)
7198 		dev->features = features;
7199 
7200 	return err < 0 ? 0 : 1;
7201 }
7202 
7203 /**
7204  *	netdev_update_features - recalculate device features
7205  *	@dev: the device to check
7206  *
7207  *	Recalculate dev->features set and send notifications if it
7208  *	has changed. Should be called after driver or hardware dependent
7209  *	conditions might have changed that influence the features.
7210  */
7211 void netdev_update_features(struct net_device *dev)
7212 {
7213 	if (__netdev_update_features(dev))
7214 		netdev_features_change(dev);
7215 }
7216 EXPORT_SYMBOL(netdev_update_features);
7217 
7218 /**
7219  *	netdev_change_features - recalculate device features
7220  *	@dev: the device to check
7221  *
7222  *	Recalculate dev->features set and send notifications even
7223  *	if they have not changed. Should be called instead of
7224  *	netdev_update_features() if also dev->vlan_features might
7225  *	have changed to allow the changes to be propagated to stacked
7226  *	VLAN devices.
7227  */
7228 void netdev_change_features(struct net_device *dev)
7229 {
7230 	__netdev_update_features(dev);
7231 	netdev_features_change(dev);
7232 }
7233 EXPORT_SYMBOL(netdev_change_features);
7234 
7235 /**
7236  *	netif_stacked_transfer_operstate -	transfer operstate
7237  *	@rootdev: the root or lower level device to transfer state from
7238  *	@dev: the device to transfer operstate to
7239  *
7240  *	Transfer operational state from root to device. This is normally
7241  *	called when a stacking relationship exists between the root
7242  *	device and the device(a leaf device).
7243  */
7244 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7245 					struct net_device *dev)
7246 {
7247 	if (rootdev->operstate == IF_OPER_DORMANT)
7248 		netif_dormant_on(dev);
7249 	else
7250 		netif_dormant_off(dev);
7251 
7252 	if (netif_carrier_ok(rootdev))
7253 		netif_carrier_on(dev);
7254 	else
7255 		netif_carrier_off(dev);
7256 }
7257 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7258 
7259 #ifdef CONFIG_SYSFS
7260 static int netif_alloc_rx_queues(struct net_device *dev)
7261 {
7262 	unsigned int i, count = dev->num_rx_queues;
7263 	struct netdev_rx_queue *rx;
7264 	size_t sz = count * sizeof(*rx);
7265 
7266 	BUG_ON(count < 1);
7267 
7268 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_REPEAT);
7269 	if (!rx)
7270 		return -ENOMEM;
7271 
7272 	dev->_rx = rx;
7273 
7274 	for (i = 0; i < count; i++)
7275 		rx[i].dev = dev;
7276 	return 0;
7277 }
7278 #endif
7279 
7280 static void netdev_init_one_queue(struct net_device *dev,
7281 				  struct netdev_queue *queue, void *_unused)
7282 {
7283 	/* Initialize queue lock */
7284 	spin_lock_init(&queue->_xmit_lock);
7285 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7286 	queue->xmit_lock_owner = -1;
7287 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7288 	queue->dev = dev;
7289 #ifdef CONFIG_BQL
7290 	dql_init(&queue->dql, HZ);
7291 #endif
7292 }
7293 
7294 static void netif_free_tx_queues(struct net_device *dev)
7295 {
7296 	kvfree(dev->_tx);
7297 }
7298 
7299 static int netif_alloc_netdev_queues(struct net_device *dev)
7300 {
7301 	unsigned int count = dev->num_tx_queues;
7302 	struct netdev_queue *tx;
7303 	size_t sz = count * sizeof(*tx);
7304 
7305 	if (count < 1 || count > 0xffff)
7306 		return -EINVAL;
7307 
7308 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_REPEAT);
7309 	if (!tx)
7310 		return -ENOMEM;
7311 
7312 	dev->_tx = tx;
7313 
7314 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7315 	spin_lock_init(&dev->tx_global_lock);
7316 
7317 	return 0;
7318 }
7319 
7320 void netif_tx_stop_all_queues(struct net_device *dev)
7321 {
7322 	unsigned int i;
7323 
7324 	for (i = 0; i < dev->num_tx_queues; i++) {
7325 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7326 
7327 		netif_tx_stop_queue(txq);
7328 	}
7329 }
7330 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7331 
7332 /**
7333  *	register_netdevice	- register a network device
7334  *	@dev: device to register
7335  *
7336  *	Take a completed network device structure and add it to the kernel
7337  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7338  *	chain. 0 is returned on success. A negative errno code is returned
7339  *	on a failure to set up the device, or if the name is a duplicate.
7340  *
7341  *	Callers must hold the rtnl semaphore. You may want
7342  *	register_netdev() instead of this.
7343  *
7344  *	BUGS:
7345  *	The locking appears insufficient to guarantee two parallel registers
7346  *	will not get the same name.
7347  */
7348 
7349 int register_netdevice(struct net_device *dev)
7350 {
7351 	int ret;
7352 	struct net *net = dev_net(dev);
7353 
7354 	BUG_ON(dev_boot_phase);
7355 	ASSERT_RTNL();
7356 
7357 	might_sleep();
7358 
7359 	/* When net_device's are persistent, this will be fatal. */
7360 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7361 	BUG_ON(!net);
7362 
7363 	spin_lock_init(&dev->addr_list_lock);
7364 	netdev_set_addr_lockdep_class(dev);
7365 
7366 	ret = dev_get_valid_name(net, dev, dev->name);
7367 	if (ret < 0)
7368 		goto out;
7369 
7370 	/* Init, if this function is available */
7371 	if (dev->netdev_ops->ndo_init) {
7372 		ret = dev->netdev_ops->ndo_init(dev);
7373 		if (ret) {
7374 			if (ret > 0)
7375 				ret = -EIO;
7376 			goto out;
7377 		}
7378 	}
7379 
7380 	if (((dev->hw_features | dev->features) &
7381 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
7382 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7383 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7384 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7385 		ret = -EINVAL;
7386 		goto err_uninit;
7387 	}
7388 
7389 	ret = -EBUSY;
7390 	if (!dev->ifindex)
7391 		dev->ifindex = dev_new_index(net);
7392 	else if (__dev_get_by_index(net, dev->ifindex))
7393 		goto err_uninit;
7394 
7395 	/* Transfer changeable features to wanted_features and enable
7396 	 * software offloads (GSO and GRO).
7397 	 */
7398 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
7399 	dev->features |= NETIF_F_SOFT_FEATURES;
7400 	dev->wanted_features = dev->features & dev->hw_features;
7401 
7402 	if (!(dev->flags & IFF_LOOPBACK))
7403 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
7404 
7405 	/* If IPv4 TCP segmentation offload is supported we should also
7406 	 * allow the device to enable segmenting the frame with the option
7407 	 * of ignoring a static IP ID value.  This doesn't enable the
7408 	 * feature itself but allows the user to enable it later.
7409 	 */
7410 	if (dev->hw_features & NETIF_F_TSO)
7411 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
7412 	if (dev->vlan_features & NETIF_F_TSO)
7413 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7414 	if (dev->mpls_features & NETIF_F_TSO)
7415 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7416 	if (dev->hw_enc_features & NETIF_F_TSO)
7417 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7418 
7419 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7420 	 */
7421 	dev->vlan_features |= NETIF_F_HIGHDMA;
7422 
7423 	/* Make NETIF_F_SG inheritable to tunnel devices.
7424 	 */
7425 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7426 
7427 	/* Make NETIF_F_SG inheritable to MPLS.
7428 	 */
7429 	dev->mpls_features |= NETIF_F_SG;
7430 
7431 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7432 	ret = notifier_to_errno(ret);
7433 	if (ret)
7434 		goto err_uninit;
7435 
7436 	ret = netdev_register_kobject(dev);
7437 	if (ret)
7438 		goto err_uninit;
7439 	dev->reg_state = NETREG_REGISTERED;
7440 
7441 	__netdev_update_features(dev);
7442 
7443 	/*
7444 	 *	Default initial state at registry is that the
7445 	 *	device is present.
7446 	 */
7447 
7448 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7449 
7450 	linkwatch_init_dev(dev);
7451 
7452 	dev_init_scheduler(dev);
7453 	dev_hold(dev);
7454 	list_netdevice(dev);
7455 	add_device_randomness(dev->dev_addr, dev->addr_len);
7456 
7457 	/* If the device has permanent device address, driver should
7458 	 * set dev_addr and also addr_assign_type should be set to
7459 	 * NET_ADDR_PERM (default value).
7460 	 */
7461 	if (dev->addr_assign_type == NET_ADDR_PERM)
7462 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7463 
7464 	/* Notify protocols, that a new device appeared. */
7465 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7466 	ret = notifier_to_errno(ret);
7467 	if (ret) {
7468 		rollback_registered(dev);
7469 		dev->reg_state = NETREG_UNREGISTERED;
7470 	}
7471 	/*
7472 	 *	Prevent userspace races by waiting until the network
7473 	 *	device is fully setup before sending notifications.
7474 	 */
7475 	if (!dev->rtnl_link_ops ||
7476 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7477 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7478 
7479 out:
7480 	return ret;
7481 
7482 err_uninit:
7483 	if (dev->netdev_ops->ndo_uninit)
7484 		dev->netdev_ops->ndo_uninit(dev);
7485 	goto out;
7486 }
7487 EXPORT_SYMBOL(register_netdevice);
7488 
7489 /**
7490  *	init_dummy_netdev	- init a dummy network device for NAPI
7491  *	@dev: device to init
7492  *
7493  *	This takes a network device structure and initialize the minimum
7494  *	amount of fields so it can be used to schedule NAPI polls without
7495  *	registering a full blown interface. This is to be used by drivers
7496  *	that need to tie several hardware interfaces to a single NAPI
7497  *	poll scheduler due to HW limitations.
7498  */
7499 int init_dummy_netdev(struct net_device *dev)
7500 {
7501 	/* Clear everything. Note we don't initialize spinlocks
7502 	 * are they aren't supposed to be taken by any of the
7503 	 * NAPI code and this dummy netdev is supposed to be
7504 	 * only ever used for NAPI polls
7505 	 */
7506 	memset(dev, 0, sizeof(struct net_device));
7507 
7508 	/* make sure we BUG if trying to hit standard
7509 	 * register/unregister code path
7510 	 */
7511 	dev->reg_state = NETREG_DUMMY;
7512 
7513 	/* NAPI wants this */
7514 	INIT_LIST_HEAD(&dev->napi_list);
7515 
7516 	/* a dummy interface is started by default */
7517 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7518 	set_bit(__LINK_STATE_START, &dev->state);
7519 
7520 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
7521 	 * because users of this 'device' dont need to change
7522 	 * its refcount.
7523 	 */
7524 
7525 	return 0;
7526 }
7527 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7528 
7529 
7530 /**
7531  *	register_netdev	- register a network device
7532  *	@dev: device to register
7533  *
7534  *	Take a completed network device structure and add it to the kernel
7535  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7536  *	chain. 0 is returned on success. A negative errno code is returned
7537  *	on a failure to set up the device, or if the name is a duplicate.
7538  *
7539  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
7540  *	and expands the device name if you passed a format string to
7541  *	alloc_netdev.
7542  */
7543 int register_netdev(struct net_device *dev)
7544 {
7545 	int err;
7546 
7547 	rtnl_lock();
7548 	err = register_netdevice(dev);
7549 	rtnl_unlock();
7550 	return err;
7551 }
7552 EXPORT_SYMBOL(register_netdev);
7553 
7554 int netdev_refcnt_read(const struct net_device *dev)
7555 {
7556 	int i, refcnt = 0;
7557 
7558 	for_each_possible_cpu(i)
7559 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7560 	return refcnt;
7561 }
7562 EXPORT_SYMBOL(netdev_refcnt_read);
7563 
7564 /**
7565  * netdev_wait_allrefs - wait until all references are gone.
7566  * @dev: target net_device
7567  *
7568  * This is called when unregistering network devices.
7569  *
7570  * Any protocol or device that holds a reference should register
7571  * for netdevice notification, and cleanup and put back the
7572  * reference if they receive an UNREGISTER event.
7573  * We can get stuck here if buggy protocols don't correctly
7574  * call dev_put.
7575  */
7576 static void netdev_wait_allrefs(struct net_device *dev)
7577 {
7578 	unsigned long rebroadcast_time, warning_time;
7579 	int refcnt;
7580 
7581 	linkwatch_forget_dev(dev);
7582 
7583 	rebroadcast_time = warning_time = jiffies;
7584 	refcnt = netdev_refcnt_read(dev);
7585 
7586 	while (refcnt != 0) {
7587 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7588 			rtnl_lock();
7589 
7590 			/* Rebroadcast unregister notification */
7591 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7592 
7593 			__rtnl_unlock();
7594 			rcu_barrier();
7595 			rtnl_lock();
7596 
7597 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7598 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7599 				     &dev->state)) {
7600 				/* We must not have linkwatch events
7601 				 * pending on unregister. If this
7602 				 * happens, we simply run the queue
7603 				 * unscheduled, resulting in a noop
7604 				 * for this device.
7605 				 */
7606 				linkwatch_run_queue();
7607 			}
7608 
7609 			__rtnl_unlock();
7610 
7611 			rebroadcast_time = jiffies;
7612 		}
7613 
7614 		msleep(250);
7615 
7616 		refcnt = netdev_refcnt_read(dev);
7617 
7618 		if (time_after(jiffies, warning_time + 10 * HZ)) {
7619 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7620 				 dev->name, refcnt);
7621 			warning_time = jiffies;
7622 		}
7623 	}
7624 }
7625 
7626 /* The sequence is:
7627  *
7628  *	rtnl_lock();
7629  *	...
7630  *	register_netdevice(x1);
7631  *	register_netdevice(x2);
7632  *	...
7633  *	unregister_netdevice(y1);
7634  *	unregister_netdevice(y2);
7635  *      ...
7636  *	rtnl_unlock();
7637  *	free_netdev(y1);
7638  *	free_netdev(y2);
7639  *
7640  * We are invoked by rtnl_unlock().
7641  * This allows us to deal with problems:
7642  * 1) We can delete sysfs objects which invoke hotplug
7643  *    without deadlocking with linkwatch via keventd.
7644  * 2) Since we run with the RTNL semaphore not held, we can sleep
7645  *    safely in order to wait for the netdev refcnt to drop to zero.
7646  *
7647  * We must not return until all unregister events added during
7648  * the interval the lock was held have been completed.
7649  */
7650 void netdev_run_todo(void)
7651 {
7652 	struct list_head list;
7653 
7654 	/* Snapshot list, allow later requests */
7655 	list_replace_init(&net_todo_list, &list);
7656 
7657 	__rtnl_unlock();
7658 
7659 
7660 	/* Wait for rcu callbacks to finish before next phase */
7661 	if (!list_empty(&list))
7662 		rcu_barrier();
7663 
7664 	while (!list_empty(&list)) {
7665 		struct net_device *dev
7666 			= list_first_entry(&list, struct net_device, todo_list);
7667 		list_del(&dev->todo_list);
7668 
7669 		rtnl_lock();
7670 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7671 		__rtnl_unlock();
7672 
7673 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7674 			pr_err("network todo '%s' but state %d\n",
7675 			       dev->name, dev->reg_state);
7676 			dump_stack();
7677 			continue;
7678 		}
7679 
7680 		dev->reg_state = NETREG_UNREGISTERED;
7681 
7682 		netdev_wait_allrefs(dev);
7683 
7684 		/* paranoia */
7685 		BUG_ON(netdev_refcnt_read(dev));
7686 		BUG_ON(!list_empty(&dev->ptype_all));
7687 		BUG_ON(!list_empty(&dev->ptype_specific));
7688 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
7689 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7690 		WARN_ON(dev->dn_ptr);
7691 
7692 		if (dev->destructor)
7693 			dev->destructor(dev);
7694 
7695 		/* Report a network device has been unregistered */
7696 		rtnl_lock();
7697 		dev_net(dev)->dev_unreg_count--;
7698 		__rtnl_unlock();
7699 		wake_up(&netdev_unregistering_wq);
7700 
7701 		/* Free network device */
7702 		kobject_put(&dev->dev.kobj);
7703 	}
7704 }
7705 
7706 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7707  * all the same fields in the same order as net_device_stats, with only
7708  * the type differing, but rtnl_link_stats64 may have additional fields
7709  * at the end for newer counters.
7710  */
7711 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7712 			     const struct net_device_stats *netdev_stats)
7713 {
7714 #if BITS_PER_LONG == 64
7715 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7716 	memcpy(stats64, netdev_stats, sizeof(*stats64));
7717 	/* zero out counters that only exist in rtnl_link_stats64 */
7718 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
7719 	       sizeof(*stats64) - sizeof(*netdev_stats));
7720 #else
7721 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7722 	const unsigned long *src = (const unsigned long *)netdev_stats;
7723 	u64 *dst = (u64 *)stats64;
7724 
7725 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7726 	for (i = 0; i < n; i++)
7727 		dst[i] = src[i];
7728 	/* zero out counters that only exist in rtnl_link_stats64 */
7729 	memset((char *)stats64 + n * sizeof(u64), 0,
7730 	       sizeof(*stats64) - n * sizeof(u64));
7731 #endif
7732 }
7733 EXPORT_SYMBOL(netdev_stats_to_stats64);
7734 
7735 /**
7736  *	dev_get_stats	- get network device statistics
7737  *	@dev: device to get statistics from
7738  *	@storage: place to store stats
7739  *
7740  *	Get network statistics from device. Return @storage.
7741  *	The device driver may provide its own method by setting
7742  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7743  *	otherwise the internal statistics structure is used.
7744  */
7745 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7746 					struct rtnl_link_stats64 *storage)
7747 {
7748 	const struct net_device_ops *ops = dev->netdev_ops;
7749 
7750 	if (ops->ndo_get_stats64) {
7751 		memset(storage, 0, sizeof(*storage));
7752 		ops->ndo_get_stats64(dev, storage);
7753 	} else if (ops->ndo_get_stats) {
7754 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7755 	} else {
7756 		netdev_stats_to_stats64(storage, &dev->stats);
7757 	}
7758 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7759 	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7760 	storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7761 	return storage;
7762 }
7763 EXPORT_SYMBOL(dev_get_stats);
7764 
7765 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7766 {
7767 	struct netdev_queue *queue = dev_ingress_queue(dev);
7768 
7769 #ifdef CONFIG_NET_CLS_ACT
7770 	if (queue)
7771 		return queue;
7772 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7773 	if (!queue)
7774 		return NULL;
7775 	netdev_init_one_queue(dev, queue, NULL);
7776 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7777 	queue->qdisc_sleeping = &noop_qdisc;
7778 	rcu_assign_pointer(dev->ingress_queue, queue);
7779 #endif
7780 	return queue;
7781 }
7782 
7783 static const struct ethtool_ops default_ethtool_ops;
7784 
7785 void netdev_set_default_ethtool_ops(struct net_device *dev,
7786 				    const struct ethtool_ops *ops)
7787 {
7788 	if (dev->ethtool_ops == &default_ethtool_ops)
7789 		dev->ethtool_ops = ops;
7790 }
7791 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7792 
7793 void netdev_freemem(struct net_device *dev)
7794 {
7795 	char *addr = (char *)dev - dev->padded;
7796 
7797 	kvfree(addr);
7798 }
7799 
7800 /**
7801  * alloc_netdev_mqs - allocate network device
7802  * @sizeof_priv: size of private data to allocate space for
7803  * @name: device name format string
7804  * @name_assign_type: origin of device name
7805  * @setup: callback to initialize device
7806  * @txqs: the number of TX subqueues to allocate
7807  * @rxqs: the number of RX subqueues to allocate
7808  *
7809  * Allocates a struct net_device with private data area for driver use
7810  * and performs basic initialization.  Also allocates subqueue structs
7811  * for each queue on the device.
7812  */
7813 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7814 		unsigned char name_assign_type,
7815 		void (*setup)(struct net_device *),
7816 		unsigned int txqs, unsigned int rxqs)
7817 {
7818 	struct net_device *dev;
7819 	size_t alloc_size;
7820 	struct net_device *p;
7821 
7822 	BUG_ON(strlen(name) >= sizeof(dev->name));
7823 
7824 	if (txqs < 1) {
7825 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7826 		return NULL;
7827 	}
7828 
7829 #ifdef CONFIG_SYSFS
7830 	if (rxqs < 1) {
7831 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7832 		return NULL;
7833 	}
7834 #endif
7835 
7836 	alloc_size = sizeof(struct net_device);
7837 	if (sizeof_priv) {
7838 		/* ensure 32-byte alignment of private area */
7839 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7840 		alloc_size += sizeof_priv;
7841 	}
7842 	/* ensure 32-byte alignment of whole construct */
7843 	alloc_size += NETDEV_ALIGN - 1;
7844 
7845 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_REPEAT);
7846 	if (!p)
7847 		return NULL;
7848 
7849 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
7850 	dev->padded = (char *)dev - (char *)p;
7851 
7852 	dev->pcpu_refcnt = alloc_percpu(int);
7853 	if (!dev->pcpu_refcnt)
7854 		goto free_dev;
7855 
7856 	if (dev_addr_init(dev))
7857 		goto free_pcpu;
7858 
7859 	dev_mc_init(dev);
7860 	dev_uc_init(dev);
7861 
7862 	dev_net_set(dev, &init_net);
7863 
7864 	dev->gso_max_size = GSO_MAX_SIZE;
7865 	dev->gso_max_segs = GSO_MAX_SEGS;
7866 
7867 	INIT_LIST_HEAD(&dev->napi_list);
7868 	INIT_LIST_HEAD(&dev->unreg_list);
7869 	INIT_LIST_HEAD(&dev->close_list);
7870 	INIT_LIST_HEAD(&dev->link_watch_list);
7871 	INIT_LIST_HEAD(&dev->adj_list.upper);
7872 	INIT_LIST_HEAD(&dev->adj_list.lower);
7873 	INIT_LIST_HEAD(&dev->ptype_all);
7874 	INIT_LIST_HEAD(&dev->ptype_specific);
7875 #ifdef CONFIG_NET_SCHED
7876 	hash_init(dev->qdisc_hash);
7877 #endif
7878 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7879 	setup(dev);
7880 
7881 	if (!dev->tx_queue_len) {
7882 		dev->priv_flags |= IFF_NO_QUEUE;
7883 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
7884 	}
7885 
7886 	dev->num_tx_queues = txqs;
7887 	dev->real_num_tx_queues = txqs;
7888 	if (netif_alloc_netdev_queues(dev))
7889 		goto free_all;
7890 
7891 #ifdef CONFIG_SYSFS
7892 	dev->num_rx_queues = rxqs;
7893 	dev->real_num_rx_queues = rxqs;
7894 	if (netif_alloc_rx_queues(dev))
7895 		goto free_all;
7896 #endif
7897 
7898 	strcpy(dev->name, name);
7899 	dev->name_assign_type = name_assign_type;
7900 	dev->group = INIT_NETDEV_GROUP;
7901 	if (!dev->ethtool_ops)
7902 		dev->ethtool_ops = &default_ethtool_ops;
7903 
7904 	nf_hook_ingress_init(dev);
7905 
7906 	return dev;
7907 
7908 free_all:
7909 	free_netdev(dev);
7910 	return NULL;
7911 
7912 free_pcpu:
7913 	free_percpu(dev->pcpu_refcnt);
7914 free_dev:
7915 	netdev_freemem(dev);
7916 	return NULL;
7917 }
7918 EXPORT_SYMBOL(alloc_netdev_mqs);
7919 
7920 /**
7921  * free_netdev - free network device
7922  * @dev: device
7923  *
7924  * This function does the last stage of destroying an allocated device
7925  * interface. The reference to the device object is released. If this
7926  * is the last reference then it will be freed.Must be called in process
7927  * context.
7928  */
7929 void free_netdev(struct net_device *dev)
7930 {
7931 	struct napi_struct *p, *n;
7932 	struct bpf_prog *prog;
7933 
7934 	might_sleep();
7935 	netif_free_tx_queues(dev);
7936 #ifdef CONFIG_SYSFS
7937 	kvfree(dev->_rx);
7938 #endif
7939 
7940 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7941 
7942 	/* Flush device addresses */
7943 	dev_addr_flush(dev);
7944 
7945 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7946 		netif_napi_del(p);
7947 
7948 	free_percpu(dev->pcpu_refcnt);
7949 	dev->pcpu_refcnt = NULL;
7950 
7951 	prog = rcu_dereference_protected(dev->xdp_prog, 1);
7952 	if (prog) {
7953 		bpf_prog_put(prog);
7954 		static_key_slow_dec(&generic_xdp_needed);
7955 	}
7956 
7957 	/*  Compatibility with error handling in drivers */
7958 	if (dev->reg_state == NETREG_UNINITIALIZED) {
7959 		netdev_freemem(dev);
7960 		return;
7961 	}
7962 
7963 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7964 	dev->reg_state = NETREG_RELEASED;
7965 
7966 	/* will free via device release */
7967 	put_device(&dev->dev);
7968 }
7969 EXPORT_SYMBOL(free_netdev);
7970 
7971 /**
7972  *	synchronize_net -  Synchronize with packet receive processing
7973  *
7974  *	Wait for packets currently being received to be done.
7975  *	Does not block later packets from starting.
7976  */
7977 void synchronize_net(void)
7978 {
7979 	might_sleep();
7980 	if (rtnl_is_locked())
7981 		synchronize_rcu_expedited();
7982 	else
7983 		synchronize_rcu();
7984 }
7985 EXPORT_SYMBOL(synchronize_net);
7986 
7987 /**
7988  *	unregister_netdevice_queue - remove device from the kernel
7989  *	@dev: device
7990  *	@head: list
7991  *
7992  *	This function shuts down a device interface and removes it
7993  *	from the kernel tables.
7994  *	If head not NULL, device is queued to be unregistered later.
7995  *
7996  *	Callers must hold the rtnl semaphore.  You may want
7997  *	unregister_netdev() instead of this.
7998  */
7999 
8000 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8001 {
8002 	ASSERT_RTNL();
8003 
8004 	if (head) {
8005 		list_move_tail(&dev->unreg_list, head);
8006 	} else {
8007 		rollback_registered(dev);
8008 		/* Finish processing unregister after unlock */
8009 		net_set_todo(dev);
8010 	}
8011 }
8012 EXPORT_SYMBOL(unregister_netdevice_queue);
8013 
8014 /**
8015  *	unregister_netdevice_many - unregister many devices
8016  *	@head: list of devices
8017  *
8018  *  Note: As most callers use a stack allocated list_head,
8019  *  we force a list_del() to make sure stack wont be corrupted later.
8020  */
8021 void unregister_netdevice_many(struct list_head *head)
8022 {
8023 	struct net_device *dev;
8024 
8025 	if (!list_empty(head)) {
8026 		rollback_registered_many(head);
8027 		list_for_each_entry(dev, head, unreg_list)
8028 			net_set_todo(dev);
8029 		list_del(head);
8030 	}
8031 }
8032 EXPORT_SYMBOL(unregister_netdevice_many);
8033 
8034 /**
8035  *	unregister_netdev - remove device from the kernel
8036  *	@dev: device
8037  *
8038  *	This function shuts down a device interface and removes it
8039  *	from the kernel tables.
8040  *
8041  *	This is just a wrapper for unregister_netdevice that takes
8042  *	the rtnl semaphore.  In general you want to use this and not
8043  *	unregister_netdevice.
8044  */
8045 void unregister_netdev(struct net_device *dev)
8046 {
8047 	rtnl_lock();
8048 	unregister_netdevice(dev);
8049 	rtnl_unlock();
8050 }
8051 EXPORT_SYMBOL(unregister_netdev);
8052 
8053 /**
8054  *	dev_change_net_namespace - move device to different nethost namespace
8055  *	@dev: device
8056  *	@net: network namespace
8057  *	@pat: If not NULL name pattern to try if the current device name
8058  *	      is already taken in the destination network namespace.
8059  *
8060  *	This function shuts down a device interface and moves it
8061  *	to a new network namespace. On success 0 is returned, on
8062  *	a failure a netagive errno code is returned.
8063  *
8064  *	Callers must hold the rtnl semaphore.
8065  */
8066 
8067 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8068 {
8069 	int err;
8070 
8071 	ASSERT_RTNL();
8072 
8073 	/* Don't allow namespace local devices to be moved. */
8074 	err = -EINVAL;
8075 	if (dev->features & NETIF_F_NETNS_LOCAL)
8076 		goto out;
8077 
8078 	/* Ensure the device has been registrered */
8079 	if (dev->reg_state != NETREG_REGISTERED)
8080 		goto out;
8081 
8082 	/* Get out if there is nothing todo */
8083 	err = 0;
8084 	if (net_eq(dev_net(dev), net))
8085 		goto out;
8086 
8087 	/* Pick the destination device name, and ensure
8088 	 * we can use it in the destination network namespace.
8089 	 */
8090 	err = -EEXIST;
8091 	if (__dev_get_by_name(net, dev->name)) {
8092 		/* We get here if we can't use the current device name */
8093 		if (!pat)
8094 			goto out;
8095 		if (dev_get_valid_name(net, dev, pat) < 0)
8096 			goto out;
8097 	}
8098 
8099 	/*
8100 	 * And now a mini version of register_netdevice unregister_netdevice.
8101 	 */
8102 
8103 	/* If device is running close it first. */
8104 	dev_close(dev);
8105 
8106 	/* And unlink it from device chain */
8107 	err = -ENODEV;
8108 	unlist_netdevice(dev);
8109 
8110 	synchronize_net();
8111 
8112 	/* Shutdown queueing discipline. */
8113 	dev_shutdown(dev);
8114 
8115 	/* Notify protocols, that we are about to destroy
8116 	 * this device. They should clean all the things.
8117 	 *
8118 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
8119 	 * This is wanted because this way 8021q and macvlan know
8120 	 * the device is just moving and can keep their slaves up.
8121 	 */
8122 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8123 	rcu_barrier();
8124 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8125 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
8126 
8127 	/*
8128 	 *	Flush the unicast and multicast chains
8129 	 */
8130 	dev_uc_flush(dev);
8131 	dev_mc_flush(dev);
8132 
8133 	/* Send a netdev-removed uevent to the old namespace */
8134 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8135 	netdev_adjacent_del_links(dev);
8136 
8137 	/* Actually switch the network namespace */
8138 	dev_net_set(dev, net);
8139 
8140 	/* If there is an ifindex conflict assign a new one */
8141 	if (__dev_get_by_index(net, dev->ifindex))
8142 		dev->ifindex = dev_new_index(net);
8143 
8144 	/* Send a netdev-add uevent to the new namespace */
8145 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8146 	netdev_adjacent_add_links(dev);
8147 
8148 	/* Fixup kobjects */
8149 	err = device_rename(&dev->dev, dev->name);
8150 	WARN_ON(err);
8151 
8152 	/* Add the device back in the hashes */
8153 	list_netdevice(dev);
8154 
8155 	/* Notify protocols, that a new device appeared. */
8156 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
8157 
8158 	/*
8159 	 *	Prevent userspace races by waiting until the network
8160 	 *	device is fully setup before sending notifications.
8161 	 */
8162 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8163 
8164 	synchronize_net();
8165 	err = 0;
8166 out:
8167 	return err;
8168 }
8169 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8170 
8171 static int dev_cpu_dead(unsigned int oldcpu)
8172 {
8173 	struct sk_buff **list_skb;
8174 	struct sk_buff *skb;
8175 	unsigned int cpu;
8176 	struct softnet_data *sd, *oldsd;
8177 
8178 	local_irq_disable();
8179 	cpu = smp_processor_id();
8180 	sd = &per_cpu(softnet_data, cpu);
8181 	oldsd = &per_cpu(softnet_data, oldcpu);
8182 
8183 	/* Find end of our completion_queue. */
8184 	list_skb = &sd->completion_queue;
8185 	while (*list_skb)
8186 		list_skb = &(*list_skb)->next;
8187 	/* Append completion queue from offline CPU. */
8188 	*list_skb = oldsd->completion_queue;
8189 	oldsd->completion_queue = NULL;
8190 
8191 	/* Append output queue from offline CPU. */
8192 	if (oldsd->output_queue) {
8193 		*sd->output_queue_tailp = oldsd->output_queue;
8194 		sd->output_queue_tailp = oldsd->output_queue_tailp;
8195 		oldsd->output_queue = NULL;
8196 		oldsd->output_queue_tailp = &oldsd->output_queue;
8197 	}
8198 	/* Append NAPI poll list from offline CPU, with one exception :
8199 	 * process_backlog() must be called by cpu owning percpu backlog.
8200 	 * We properly handle process_queue & input_pkt_queue later.
8201 	 */
8202 	while (!list_empty(&oldsd->poll_list)) {
8203 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8204 							    struct napi_struct,
8205 							    poll_list);
8206 
8207 		list_del_init(&napi->poll_list);
8208 		if (napi->poll == process_backlog)
8209 			napi->state = 0;
8210 		else
8211 			____napi_schedule(sd, napi);
8212 	}
8213 
8214 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
8215 	local_irq_enable();
8216 
8217 	/* Process offline CPU's input_pkt_queue */
8218 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8219 		netif_rx_ni(skb);
8220 		input_queue_head_incr(oldsd);
8221 	}
8222 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8223 		netif_rx_ni(skb);
8224 		input_queue_head_incr(oldsd);
8225 	}
8226 
8227 	return 0;
8228 }
8229 
8230 /**
8231  *	netdev_increment_features - increment feature set by one
8232  *	@all: current feature set
8233  *	@one: new feature set
8234  *	@mask: mask feature set
8235  *
8236  *	Computes a new feature set after adding a device with feature set
8237  *	@one to the master device with current feature set @all.  Will not
8238  *	enable anything that is off in @mask. Returns the new feature set.
8239  */
8240 netdev_features_t netdev_increment_features(netdev_features_t all,
8241 	netdev_features_t one, netdev_features_t mask)
8242 {
8243 	if (mask & NETIF_F_HW_CSUM)
8244 		mask |= NETIF_F_CSUM_MASK;
8245 	mask |= NETIF_F_VLAN_CHALLENGED;
8246 
8247 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8248 	all &= one | ~NETIF_F_ALL_FOR_ALL;
8249 
8250 	/* If one device supports hw checksumming, set for all. */
8251 	if (all & NETIF_F_HW_CSUM)
8252 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8253 
8254 	return all;
8255 }
8256 EXPORT_SYMBOL(netdev_increment_features);
8257 
8258 static struct hlist_head * __net_init netdev_create_hash(void)
8259 {
8260 	int i;
8261 	struct hlist_head *hash;
8262 
8263 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8264 	if (hash != NULL)
8265 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
8266 			INIT_HLIST_HEAD(&hash[i]);
8267 
8268 	return hash;
8269 }
8270 
8271 /* Initialize per network namespace state */
8272 static int __net_init netdev_init(struct net *net)
8273 {
8274 	if (net != &init_net)
8275 		INIT_LIST_HEAD(&net->dev_base_head);
8276 
8277 	net->dev_name_head = netdev_create_hash();
8278 	if (net->dev_name_head == NULL)
8279 		goto err_name;
8280 
8281 	net->dev_index_head = netdev_create_hash();
8282 	if (net->dev_index_head == NULL)
8283 		goto err_idx;
8284 
8285 	return 0;
8286 
8287 err_idx:
8288 	kfree(net->dev_name_head);
8289 err_name:
8290 	return -ENOMEM;
8291 }
8292 
8293 /**
8294  *	netdev_drivername - network driver for the device
8295  *	@dev: network device
8296  *
8297  *	Determine network driver for device.
8298  */
8299 const char *netdev_drivername(const struct net_device *dev)
8300 {
8301 	const struct device_driver *driver;
8302 	const struct device *parent;
8303 	const char *empty = "";
8304 
8305 	parent = dev->dev.parent;
8306 	if (!parent)
8307 		return empty;
8308 
8309 	driver = parent->driver;
8310 	if (driver && driver->name)
8311 		return driver->name;
8312 	return empty;
8313 }
8314 
8315 static void __netdev_printk(const char *level, const struct net_device *dev,
8316 			    struct va_format *vaf)
8317 {
8318 	if (dev && dev->dev.parent) {
8319 		dev_printk_emit(level[1] - '0',
8320 				dev->dev.parent,
8321 				"%s %s %s%s: %pV",
8322 				dev_driver_string(dev->dev.parent),
8323 				dev_name(dev->dev.parent),
8324 				netdev_name(dev), netdev_reg_state(dev),
8325 				vaf);
8326 	} else if (dev) {
8327 		printk("%s%s%s: %pV",
8328 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
8329 	} else {
8330 		printk("%s(NULL net_device): %pV", level, vaf);
8331 	}
8332 }
8333 
8334 void netdev_printk(const char *level, const struct net_device *dev,
8335 		   const char *format, ...)
8336 {
8337 	struct va_format vaf;
8338 	va_list args;
8339 
8340 	va_start(args, format);
8341 
8342 	vaf.fmt = format;
8343 	vaf.va = &args;
8344 
8345 	__netdev_printk(level, dev, &vaf);
8346 
8347 	va_end(args);
8348 }
8349 EXPORT_SYMBOL(netdev_printk);
8350 
8351 #define define_netdev_printk_level(func, level)			\
8352 void func(const struct net_device *dev, const char *fmt, ...)	\
8353 {								\
8354 	struct va_format vaf;					\
8355 	va_list args;						\
8356 								\
8357 	va_start(args, fmt);					\
8358 								\
8359 	vaf.fmt = fmt;						\
8360 	vaf.va = &args;						\
8361 								\
8362 	__netdev_printk(level, dev, &vaf);			\
8363 								\
8364 	va_end(args);						\
8365 }								\
8366 EXPORT_SYMBOL(func);
8367 
8368 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8369 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8370 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8371 define_netdev_printk_level(netdev_err, KERN_ERR);
8372 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8373 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8374 define_netdev_printk_level(netdev_info, KERN_INFO);
8375 
8376 static void __net_exit netdev_exit(struct net *net)
8377 {
8378 	kfree(net->dev_name_head);
8379 	kfree(net->dev_index_head);
8380 }
8381 
8382 static struct pernet_operations __net_initdata netdev_net_ops = {
8383 	.init = netdev_init,
8384 	.exit = netdev_exit,
8385 };
8386 
8387 static void __net_exit default_device_exit(struct net *net)
8388 {
8389 	struct net_device *dev, *aux;
8390 	/*
8391 	 * Push all migratable network devices back to the
8392 	 * initial network namespace
8393 	 */
8394 	rtnl_lock();
8395 	for_each_netdev_safe(net, dev, aux) {
8396 		int err;
8397 		char fb_name[IFNAMSIZ];
8398 
8399 		/* Ignore unmoveable devices (i.e. loopback) */
8400 		if (dev->features & NETIF_F_NETNS_LOCAL)
8401 			continue;
8402 
8403 		/* Leave virtual devices for the generic cleanup */
8404 		if (dev->rtnl_link_ops)
8405 			continue;
8406 
8407 		/* Push remaining network devices to init_net */
8408 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8409 		err = dev_change_net_namespace(dev, &init_net, fb_name);
8410 		if (err) {
8411 			pr_emerg("%s: failed to move %s to init_net: %d\n",
8412 				 __func__, dev->name, err);
8413 			BUG();
8414 		}
8415 	}
8416 	rtnl_unlock();
8417 }
8418 
8419 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8420 {
8421 	/* Return with the rtnl_lock held when there are no network
8422 	 * devices unregistering in any network namespace in net_list.
8423 	 */
8424 	struct net *net;
8425 	bool unregistering;
8426 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
8427 
8428 	add_wait_queue(&netdev_unregistering_wq, &wait);
8429 	for (;;) {
8430 		unregistering = false;
8431 		rtnl_lock();
8432 		list_for_each_entry(net, net_list, exit_list) {
8433 			if (net->dev_unreg_count > 0) {
8434 				unregistering = true;
8435 				break;
8436 			}
8437 		}
8438 		if (!unregistering)
8439 			break;
8440 		__rtnl_unlock();
8441 
8442 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8443 	}
8444 	remove_wait_queue(&netdev_unregistering_wq, &wait);
8445 }
8446 
8447 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8448 {
8449 	/* At exit all network devices most be removed from a network
8450 	 * namespace.  Do this in the reverse order of registration.
8451 	 * Do this across as many network namespaces as possible to
8452 	 * improve batching efficiency.
8453 	 */
8454 	struct net_device *dev;
8455 	struct net *net;
8456 	LIST_HEAD(dev_kill_list);
8457 
8458 	/* To prevent network device cleanup code from dereferencing
8459 	 * loopback devices or network devices that have been freed
8460 	 * wait here for all pending unregistrations to complete,
8461 	 * before unregistring the loopback device and allowing the
8462 	 * network namespace be freed.
8463 	 *
8464 	 * The netdev todo list containing all network devices
8465 	 * unregistrations that happen in default_device_exit_batch
8466 	 * will run in the rtnl_unlock() at the end of
8467 	 * default_device_exit_batch.
8468 	 */
8469 	rtnl_lock_unregistering(net_list);
8470 	list_for_each_entry(net, net_list, exit_list) {
8471 		for_each_netdev_reverse(net, dev) {
8472 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8473 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8474 			else
8475 				unregister_netdevice_queue(dev, &dev_kill_list);
8476 		}
8477 	}
8478 	unregister_netdevice_many(&dev_kill_list);
8479 	rtnl_unlock();
8480 }
8481 
8482 static struct pernet_operations __net_initdata default_device_ops = {
8483 	.exit = default_device_exit,
8484 	.exit_batch = default_device_exit_batch,
8485 };
8486 
8487 /*
8488  *	Initialize the DEV module. At boot time this walks the device list and
8489  *	unhooks any devices that fail to initialise (normally hardware not
8490  *	present) and leaves us with a valid list of present and active devices.
8491  *
8492  */
8493 
8494 /*
8495  *       This is called single threaded during boot, so no need
8496  *       to take the rtnl semaphore.
8497  */
8498 static int __init net_dev_init(void)
8499 {
8500 	int i, rc = -ENOMEM;
8501 
8502 	BUG_ON(!dev_boot_phase);
8503 
8504 	if (dev_proc_init())
8505 		goto out;
8506 
8507 	if (netdev_kobject_init())
8508 		goto out;
8509 
8510 	INIT_LIST_HEAD(&ptype_all);
8511 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
8512 		INIT_LIST_HEAD(&ptype_base[i]);
8513 
8514 	INIT_LIST_HEAD(&offload_base);
8515 
8516 	if (register_pernet_subsys(&netdev_net_ops))
8517 		goto out;
8518 
8519 	/*
8520 	 *	Initialise the packet receive queues.
8521 	 */
8522 
8523 	for_each_possible_cpu(i) {
8524 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8525 		struct softnet_data *sd = &per_cpu(softnet_data, i);
8526 
8527 		INIT_WORK(flush, flush_backlog);
8528 
8529 		skb_queue_head_init(&sd->input_pkt_queue);
8530 		skb_queue_head_init(&sd->process_queue);
8531 		INIT_LIST_HEAD(&sd->poll_list);
8532 		sd->output_queue_tailp = &sd->output_queue;
8533 #ifdef CONFIG_RPS
8534 		sd->csd.func = rps_trigger_softirq;
8535 		sd->csd.info = sd;
8536 		sd->cpu = i;
8537 #endif
8538 
8539 		sd->backlog.poll = process_backlog;
8540 		sd->backlog.weight = weight_p;
8541 	}
8542 
8543 	dev_boot_phase = 0;
8544 
8545 	/* The loopback device is special if any other network devices
8546 	 * is present in a network namespace the loopback device must
8547 	 * be present. Since we now dynamically allocate and free the
8548 	 * loopback device ensure this invariant is maintained by
8549 	 * keeping the loopback device as the first device on the
8550 	 * list of network devices.  Ensuring the loopback devices
8551 	 * is the first device that appears and the last network device
8552 	 * that disappears.
8553 	 */
8554 	if (register_pernet_device(&loopback_net_ops))
8555 		goto out;
8556 
8557 	if (register_pernet_device(&default_device_ops))
8558 		goto out;
8559 
8560 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8561 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8562 
8563 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8564 				       NULL, dev_cpu_dead);
8565 	WARN_ON(rc < 0);
8566 	dst_subsys_init();
8567 	rc = 0;
8568 out:
8569 	return rc;
8570 }
8571 
8572 subsys_initcall(net_dev_init);
8573