1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <linux/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/sched/mm.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/notifier.h> 97 #include <linux/skbuff.h> 98 #include <linux/bpf.h> 99 #include <linux/bpf_trace.h> 100 #include <net/net_namespace.h> 101 #include <net/sock.h> 102 #include <net/busy_poll.h> 103 #include <linux/rtnetlink.h> 104 #include <linux/stat.h> 105 #include <net/dst.h> 106 #include <net/dst_metadata.h> 107 #include <net/pkt_sched.h> 108 #include <net/checksum.h> 109 #include <net/xfrm.h> 110 #include <linux/highmem.h> 111 #include <linux/init.h> 112 #include <linux/module.h> 113 #include <linux/netpoll.h> 114 #include <linux/rcupdate.h> 115 #include <linux/delay.h> 116 #include <net/iw_handler.h> 117 #include <asm/current.h> 118 #include <linux/audit.h> 119 #include <linux/dmaengine.h> 120 #include <linux/err.h> 121 #include <linux/ctype.h> 122 #include <linux/if_arp.h> 123 #include <linux/if_vlan.h> 124 #include <linux/ip.h> 125 #include <net/ip.h> 126 #include <net/mpls.h> 127 #include <linux/ipv6.h> 128 #include <linux/in.h> 129 #include <linux/jhash.h> 130 #include <linux/random.h> 131 #include <trace/events/napi.h> 132 #include <trace/events/net.h> 133 #include <trace/events/skb.h> 134 #include <linux/pci.h> 135 #include <linux/inetdevice.h> 136 #include <linux/cpu_rmap.h> 137 #include <linux/static_key.h> 138 #include <linux/hashtable.h> 139 #include <linux/vmalloc.h> 140 #include <linux/if_macvlan.h> 141 #include <linux/errqueue.h> 142 #include <linux/hrtimer.h> 143 #include <linux/netfilter_ingress.h> 144 #include <linux/crash_dump.h> 145 146 #include "net-sysfs.h" 147 148 /* Instead of increasing this, you should create a hash table. */ 149 #define MAX_GRO_SKBS 8 150 151 /* This should be increased if a protocol with a bigger head is added. */ 152 #define GRO_MAX_HEAD (MAX_HEADER + 128) 153 154 static DEFINE_SPINLOCK(ptype_lock); 155 static DEFINE_SPINLOCK(offload_lock); 156 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 157 struct list_head ptype_all __read_mostly; /* Taps */ 158 static struct list_head offload_base __read_mostly; 159 160 static int netif_rx_internal(struct sk_buff *skb); 161 static int call_netdevice_notifiers_info(unsigned long val, 162 struct net_device *dev, 163 struct netdev_notifier_info *info); 164 165 /* 166 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 167 * semaphore. 168 * 169 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 170 * 171 * Writers must hold the rtnl semaphore while they loop through the 172 * dev_base_head list, and hold dev_base_lock for writing when they do the 173 * actual updates. This allows pure readers to access the list even 174 * while a writer is preparing to update it. 175 * 176 * To put it another way, dev_base_lock is held for writing only to 177 * protect against pure readers; the rtnl semaphore provides the 178 * protection against other writers. 179 * 180 * See, for example usages, register_netdevice() and 181 * unregister_netdevice(), which must be called with the rtnl 182 * semaphore held. 183 */ 184 DEFINE_RWLOCK(dev_base_lock); 185 EXPORT_SYMBOL(dev_base_lock); 186 187 /* protects napi_hash addition/deletion and napi_gen_id */ 188 static DEFINE_SPINLOCK(napi_hash_lock); 189 190 static unsigned int napi_gen_id = NR_CPUS; 191 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 192 193 static seqcount_t devnet_rename_seq; 194 195 static inline void dev_base_seq_inc(struct net *net) 196 { 197 while (++net->dev_base_seq == 0) 198 ; 199 } 200 201 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 202 { 203 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 204 205 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 206 } 207 208 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 209 { 210 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 211 } 212 213 static inline void rps_lock(struct softnet_data *sd) 214 { 215 #ifdef CONFIG_RPS 216 spin_lock(&sd->input_pkt_queue.lock); 217 #endif 218 } 219 220 static inline void rps_unlock(struct softnet_data *sd) 221 { 222 #ifdef CONFIG_RPS 223 spin_unlock(&sd->input_pkt_queue.lock); 224 #endif 225 } 226 227 /* Device list insertion */ 228 static void list_netdevice(struct net_device *dev) 229 { 230 struct net *net = dev_net(dev); 231 232 ASSERT_RTNL(); 233 234 write_lock_bh(&dev_base_lock); 235 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 236 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 237 hlist_add_head_rcu(&dev->index_hlist, 238 dev_index_hash(net, dev->ifindex)); 239 write_unlock_bh(&dev_base_lock); 240 241 dev_base_seq_inc(net); 242 } 243 244 /* Device list removal 245 * caller must respect a RCU grace period before freeing/reusing dev 246 */ 247 static void unlist_netdevice(struct net_device *dev) 248 { 249 ASSERT_RTNL(); 250 251 /* Unlink dev from the device chain */ 252 write_lock_bh(&dev_base_lock); 253 list_del_rcu(&dev->dev_list); 254 hlist_del_rcu(&dev->name_hlist); 255 hlist_del_rcu(&dev->index_hlist); 256 write_unlock_bh(&dev_base_lock); 257 258 dev_base_seq_inc(dev_net(dev)); 259 } 260 261 /* 262 * Our notifier list 263 */ 264 265 static RAW_NOTIFIER_HEAD(netdev_chain); 266 267 /* 268 * Device drivers call our routines to queue packets here. We empty the 269 * queue in the local softnet handler. 270 */ 271 272 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 273 EXPORT_PER_CPU_SYMBOL(softnet_data); 274 275 #ifdef CONFIG_LOCKDEP 276 /* 277 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 278 * according to dev->type 279 */ 280 static const unsigned short netdev_lock_type[] = { 281 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 282 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 283 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 284 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 285 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 286 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 287 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 288 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 289 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 290 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 291 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 292 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 293 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 294 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 295 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 296 297 static const char *const netdev_lock_name[] = { 298 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 299 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 300 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 301 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 302 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 303 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 304 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 305 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 306 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 307 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 308 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 309 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 310 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 311 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 312 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 313 314 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 315 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 316 317 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 318 { 319 int i; 320 321 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 322 if (netdev_lock_type[i] == dev_type) 323 return i; 324 /* the last key is used by default */ 325 return ARRAY_SIZE(netdev_lock_type) - 1; 326 } 327 328 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 329 unsigned short dev_type) 330 { 331 int i; 332 333 i = netdev_lock_pos(dev_type); 334 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 335 netdev_lock_name[i]); 336 } 337 338 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 339 { 340 int i; 341 342 i = netdev_lock_pos(dev->type); 343 lockdep_set_class_and_name(&dev->addr_list_lock, 344 &netdev_addr_lock_key[i], 345 netdev_lock_name[i]); 346 } 347 #else 348 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 349 unsigned short dev_type) 350 { 351 } 352 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 353 { 354 } 355 #endif 356 357 /******************************************************************************* 358 * 359 * Protocol management and registration routines 360 * 361 *******************************************************************************/ 362 363 364 /* 365 * Add a protocol ID to the list. Now that the input handler is 366 * smarter we can dispense with all the messy stuff that used to be 367 * here. 368 * 369 * BEWARE!!! Protocol handlers, mangling input packets, 370 * MUST BE last in hash buckets and checking protocol handlers 371 * MUST start from promiscuous ptype_all chain in net_bh. 372 * It is true now, do not change it. 373 * Explanation follows: if protocol handler, mangling packet, will 374 * be the first on list, it is not able to sense, that packet 375 * is cloned and should be copied-on-write, so that it will 376 * change it and subsequent readers will get broken packet. 377 * --ANK (980803) 378 */ 379 380 static inline struct list_head *ptype_head(const struct packet_type *pt) 381 { 382 if (pt->type == htons(ETH_P_ALL)) 383 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 384 else 385 return pt->dev ? &pt->dev->ptype_specific : 386 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 387 } 388 389 /** 390 * dev_add_pack - add packet handler 391 * @pt: packet type declaration 392 * 393 * Add a protocol handler to the networking stack. The passed &packet_type 394 * is linked into kernel lists and may not be freed until it has been 395 * removed from the kernel lists. 396 * 397 * This call does not sleep therefore it can not 398 * guarantee all CPU's that are in middle of receiving packets 399 * will see the new packet type (until the next received packet). 400 */ 401 402 void dev_add_pack(struct packet_type *pt) 403 { 404 struct list_head *head = ptype_head(pt); 405 406 spin_lock(&ptype_lock); 407 list_add_rcu(&pt->list, head); 408 spin_unlock(&ptype_lock); 409 } 410 EXPORT_SYMBOL(dev_add_pack); 411 412 /** 413 * __dev_remove_pack - remove packet handler 414 * @pt: packet type declaration 415 * 416 * Remove a protocol handler that was previously added to the kernel 417 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 418 * from the kernel lists and can be freed or reused once this function 419 * returns. 420 * 421 * The packet type might still be in use by receivers 422 * and must not be freed until after all the CPU's have gone 423 * through a quiescent state. 424 */ 425 void __dev_remove_pack(struct packet_type *pt) 426 { 427 struct list_head *head = ptype_head(pt); 428 struct packet_type *pt1; 429 430 spin_lock(&ptype_lock); 431 432 list_for_each_entry(pt1, head, list) { 433 if (pt == pt1) { 434 list_del_rcu(&pt->list); 435 goto out; 436 } 437 } 438 439 pr_warn("dev_remove_pack: %p not found\n", pt); 440 out: 441 spin_unlock(&ptype_lock); 442 } 443 EXPORT_SYMBOL(__dev_remove_pack); 444 445 /** 446 * dev_remove_pack - remove packet handler 447 * @pt: packet type declaration 448 * 449 * Remove a protocol handler that was previously added to the kernel 450 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 451 * from the kernel lists and can be freed or reused once this function 452 * returns. 453 * 454 * This call sleeps to guarantee that no CPU is looking at the packet 455 * type after return. 456 */ 457 void dev_remove_pack(struct packet_type *pt) 458 { 459 __dev_remove_pack(pt); 460 461 synchronize_net(); 462 } 463 EXPORT_SYMBOL(dev_remove_pack); 464 465 466 /** 467 * dev_add_offload - register offload handlers 468 * @po: protocol offload declaration 469 * 470 * Add protocol offload handlers to the networking stack. The passed 471 * &proto_offload is linked into kernel lists and may not be freed until 472 * it has been removed from the kernel lists. 473 * 474 * This call does not sleep therefore it can not 475 * guarantee all CPU's that are in middle of receiving packets 476 * will see the new offload handlers (until the next received packet). 477 */ 478 void dev_add_offload(struct packet_offload *po) 479 { 480 struct packet_offload *elem; 481 482 spin_lock(&offload_lock); 483 list_for_each_entry(elem, &offload_base, list) { 484 if (po->priority < elem->priority) 485 break; 486 } 487 list_add_rcu(&po->list, elem->list.prev); 488 spin_unlock(&offload_lock); 489 } 490 EXPORT_SYMBOL(dev_add_offload); 491 492 /** 493 * __dev_remove_offload - remove offload handler 494 * @po: packet offload declaration 495 * 496 * Remove a protocol offload handler that was previously added to the 497 * kernel offload handlers by dev_add_offload(). The passed &offload_type 498 * is removed from the kernel lists and can be freed or reused once this 499 * function returns. 500 * 501 * The packet type might still be in use by receivers 502 * and must not be freed until after all the CPU's have gone 503 * through a quiescent state. 504 */ 505 static void __dev_remove_offload(struct packet_offload *po) 506 { 507 struct list_head *head = &offload_base; 508 struct packet_offload *po1; 509 510 spin_lock(&offload_lock); 511 512 list_for_each_entry(po1, head, list) { 513 if (po == po1) { 514 list_del_rcu(&po->list); 515 goto out; 516 } 517 } 518 519 pr_warn("dev_remove_offload: %p not found\n", po); 520 out: 521 spin_unlock(&offload_lock); 522 } 523 524 /** 525 * dev_remove_offload - remove packet offload handler 526 * @po: packet offload declaration 527 * 528 * Remove a packet offload handler that was previously added to the kernel 529 * offload handlers by dev_add_offload(). The passed &offload_type is 530 * removed from the kernel lists and can be freed or reused once this 531 * function returns. 532 * 533 * This call sleeps to guarantee that no CPU is looking at the packet 534 * type after return. 535 */ 536 void dev_remove_offload(struct packet_offload *po) 537 { 538 __dev_remove_offload(po); 539 540 synchronize_net(); 541 } 542 EXPORT_SYMBOL(dev_remove_offload); 543 544 /****************************************************************************** 545 * 546 * Device Boot-time Settings Routines 547 * 548 ******************************************************************************/ 549 550 /* Boot time configuration table */ 551 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 552 553 /** 554 * netdev_boot_setup_add - add new setup entry 555 * @name: name of the device 556 * @map: configured settings for the device 557 * 558 * Adds new setup entry to the dev_boot_setup list. The function 559 * returns 0 on error and 1 on success. This is a generic routine to 560 * all netdevices. 561 */ 562 static int netdev_boot_setup_add(char *name, struct ifmap *map) 563 { 564 struct netdev_boot_setup *s; 565 int i; 566 567 s = dev_boot_setup; 568 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 569 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 570 memset(s[i].name, 0, sizeof(s[i].name)); 571 strlcpy(s[i].name, name, IFNAMSIZ); 572 memcpy(&s[i].map, map, sizeof(s[i].map)); 573 break; 574 } 575 } 576 577 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 578 } 579 580 /** 581 * netdev_boot_setup_check - check boot time settings 582 * @dev: the netdevice 583 * 584 * Check boot time settings for the device. 585 * The found settings are set for the device to be used 586 * later in the device probing. 587 * Returns 0 if no settings found, 1 if they are. 588 */ 589 int netdev_boot_setup_check(struct net_device *dev) 590 { 591 struct netdev_boot_setup *s = dev_boot_setup; 592 int i; 593 594 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 595 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 596 !strcmp(dev->name, s[i].name)) { 597 dev->irq = s[i].map.irq; 598 dev->base_addr = s[i].map.base_addr; 599 dev->mem_start = s[i].map.mem_start; 600 dev->mem_end = s[i].map.mem_end; 601 return 1; 602 } 603 } 604 return 0; 605 } 606 EXPORT_SYMBOL(netdev_boot_setup_check); 607 608 609 /** 610 * netdev_boot_base - get address from boot time settings 611 * @prefix: prefix for network device 612 * @unit: id for network device 613 * 614 * Check boot time settings for the base address of device. 615 * The found settings are set for the device to be used 616 * later in the device probing. 617 * Returns 0 if no settings found. 618 */ 619 unsigned long netdev_boot_base(const char *prefix, int unit) 620 { 621 const struct netdev_boot_setup *s = dev_boot_setup; 622 char name[IFNAMSIZ]; 623 int i; 624 625 sprintf(name, "%s%d", prefix, unit); 626 627 /* 628 * If device already registered then return base of 1 629 * to indicate not to probe for this interface 630 */ 631 if (__dev_get_by_name(&init_net, name)) 632 return 1; 633 634 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 635 if (!strcmp(name, s[i].name)) 636 return s[i].map.base_addr; 637 return 0; 638 } 639 640 /* 641 * Saves at boot time configured settings for any netdevice. 642 */ 643 int __init netdev_boot_setup(char *str) 644 { 645 int ints[5]; 646 struct ifmap map; 647 648 str = get_options(str, ARRAY_SIZE(ints), ints); 649 if (!str || !*str) 650 return 0; 651 652 /* Save settings */ 653 memset(&map, 0, sizeof(map)); 654 if (ints[0] > 0) 655 map.irq = ints[1]; 656 if (ints[0] > 1) 657 map.base_addr = ints[2]; 658 if (ints[0] > 2) 659 map.mem_start = ints[3]; 660 if (ints[0] > 3) 661 map.mem_end = ints[4]; 662 663 /* Add new entry to the list */ 664 return netdev_boot_setup_add(str, &map); 665 } 666 667 __setup("netdev=", netdev_boot_setup); 668 669 /******************************************************************************* 670 * 671 * Device Interface Subroutines 672 * 673 *******************************************************************************/ 674 675 /** 676 * dev_get_iflink - get 'iflink' value of a interface 677 * @dev: targeted interface 678 * 679 * Indicates the ifindex the interface is linked to. 680 * Physical interfaces have the same 'ifindex' and 'iflink' values. 681 */ 682 683 int dev_get_iflink(const struct net_device *dev) 684 { 685 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 686 return dev->netdev_ops->ndo_get_iflink(dev); 687 688 return dev->ifindex; 689 } 690 EXPORT_SYMBOL(dev_get_iflink); 691 692 /** 693 * dev_fill_metadata_dst - Retrieve tunnel egress information. 694 * @dev: targeted interface 695 * @skb: The packet. 696 * 697 * For better visibility of tunnel traffic OVS needs to retrieve 698 * egress tunnel information for a packet. Following API allows 699 * user to get this info. 700 */ 701 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 702 { 703 struct ip_tunnel_info *info; 704 705 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 706 return -EINVAL; 707 708 info = skb_tunnel_info_unclone(skb); 709 if (!info) 710 return -ENOMEM; 711 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 712 return -EINVAL; 713 714 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 715 } 716 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 717 718 /** 719 * __dev_get_by_name - find a device by its name 720 * @net: the applicable net namespace 721 * @name: name to find 722 * 723 * Find an interface by name. Must be called under RTNL semaphore 724 * or @dev_base_lock. If the name is found a pointer to the device 725 * is returned. If the name is not found then %NULL is returned. The 726 * reference counters are not incremented so the caller must be 727 * careful with locks. 728 */ 729 730 struct net_device *__dev_get_by_name(struct net *net, const char *name) 731 { 732 struct net_device *dev; 733 struct hlist_head *head = dev_name_hash(net, name); 734 735 hlist_for_each_entry(dev, head, name_hlist) 736 if (!strncmp(dev->name, name, IFNAMSIZ)) 737 return dev; 738 739 return NULL; 740 } 741 EXPORT_SYMBOL(__dev_get_by_name); 742 743 /** 744 * dev_get_by_name_rcu - find a device by its name 745 * @net: the applicable net namespace 746 * @name: name to find 747 * 748 * Find an interface by name. 749 * If the name is found a pointer to the device is returned. 750 * If the name is not found then %NULL is returned. 751 * The reference counters are not incremented so the caller must be 752 * careful with locks. The caller must hold RCU lock. 753 */ 754 755 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 756 { 757 struct net_device *dev; 758 struct hlist_head *head = dev_name_hash(net, name); 759 760 hlist_for_each_entry_rcu(dev, head, name_hlist) 761 if (!strncmp(dev->name, name, IFNAMSIZ)) 762 return dev; 763 764 return NULL; 765 } 766 EXPORT_SYMBOL(dev_get_by_name_rcu); 767 768 /** 769 * dev_get_by_name - find a device by its name 770 * @net: the applicable net namespace 771 * @name: name to find 772 * 773 * Find an interface by name. This can be called from any 774 * context and does its own locking. The returned handle has 775 * the usage count incremented and the caller must use dev_put() to 776 * release it when it is no longer needed. %NULL is returned if no 777 * matching device is found. 778 */ 779 780 struct net_device *dev_get_by_name(struct net *net, const char *name) 781 { 782 struct net_device *dev; 783 784 rcu_read_lock(); 785 dev = dev_get_by_name_rcu(net, name); 786 if (dev) 787 dev_hold(dev); 788 rcu_read_unlock(); 789 return dev; 790 } 791 EXPORT_SYMBOL(dev_get_by_name); 792 793 /** 794 * __dev_get_by_index - find a device by its ifindex 795 * @net: the applicable net namespace 796 * @ifindex: index of device 797 * 798 * Search for an interface by index. Returns %NULL if the device 799 * is not found or a pointer to the device. The device has not 800 * had its reference counter increased so the caller must be careful 801 * about locking. The caller must hold either the RTNL semaphore 802 * or @dev_base_lock. 803 */ 804 805 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 806 { 807 struct net_device *dev; 808 struct hlist_head *head = dev_index_hash(net, ifindex); 809 810 hlist_for_each_entry(dev, head, index_hlist) 811 if (dev->ifindex == ifindex) 812 return dev; 813 814 return NULL; 815 } 816 EXPORT_SYMBOL(__dev_get_by_index); 817 818 /** 819 * dev_get_by_index_rcu - find a device by its ifindex 820 * @net: the applicable net namespace 821 * @ifindex: index of device 822 * 823 * Search for an interface by index. Returns %NULL if the device 824 * is not found or a pointer to the device. The device has not 825 * had its reference counter increased so the caller must be careful 826 * about locking. The caller must hold RCU lock. 827 */ 828 829 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 830 { 831 struct net_device *dev; 832 struct hlist_head *head = dev_index_hash(net, ifindex); 833 834 hlist_for_each_entry_rcu(dev, head, index_hlist) 835 if (dev->ifindex == ifindex) 836 return dev; 837 838 return NULL; 839 } 840 EXPORT_SYMBOL(dev_get_by_index_rcu); 841 842 843 /** 844 * dev_get_by_index - find a device by its ifindex 845 * @net: the applicable net namespace 846 * @ifindex: index of device 847 * 848 * Search for an interface by index. Returns NULL if the device 849 * is not found or a pointer to the device. The device returned has 850 * had a reference added and the pointer is safe until the user calls 851 * dev_put to indicate they have finished with it. 852 */ 853 854 struct net_device *dev_get_by_index(struct net *net, int ifindex) 855 { 856 struct net_device *dev; 857 858 rcu_read_lock(); 859 dev = dev_get_by_index_rcu(net, ifindex); 860 if (dev) 861 dev_hold(dev); 862 rcu_read_unlock(); 863 return dev; 864 } 865 EXPORT_SYMBOL(dev_get_by_index); 866 867 /** 868 * netdev_get_name - get a netdevice name, knowing its ifindex. 869 * @net: network namespace 870 * @name: a pointer to the buffer where the name will be stored. 871 * @ifindex: the ifindex of the interface to get the name from. 872 * 873 * The use of raw_seqcount_begin() and cond_resched() before 874 * retrying is required as we want to give the writers a chance 875 * to complete when CONFIG_PREEMPT is not set. 876 */ 877 int netdev_get_name(struct net *net, char *name, int ifindex) 878 { 879 struct net_device *dev; 880 unsigned int seq; 881 882 retry: 883 seq = raw_seqcount_begin(&devnet_rename_seq); 884 rcu_read_lock(); 885 dev = dev_get_by_index_rcu(net, ifindex); 886 if (!dev) { 887 rcu_read_unlock(); 888 return -ENODEV; 889 } 890 891 strcpy(name, dev->name); 892 rcu_read_unlock(); 893 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 894 cond_resched(); 895 goto retry; 896 } 897 898 return 0; 899 } 900 901 /** 902 * dev_getbyhwaddr_rcu - find a device by its hardware address 903 * @net: the applicable net namespace 904 * @type: media type of device 905 * @ha: hardware address 906 * 907 * Search for an interface by MAC address. Returns NULL if the device 908 * is not found or a pointer to the device. 909 * The caller must hold RCU or RTNL. 910 * The returned device has not had its ref count increased 911 * and the caller must therefore be careful about locking 912 * 913 */ 914 915 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 916 const char *ha) 917 { 918 struct net_device *dev; 919 920 for_each_netdev_rcu(net, dev) 921 if (dev->type == type && 922 !memcmp(dev->dev_addr, ha, dev->addr_len)) 923 return dev; 924 925 return NULL; 926 } 927 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 928 929 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 930 { 931 struct net_device *dev; 932 933 ASSERT_RTNL(); 934 for_each_netdev(net, dev) 935 if (dev->type == type) 936 return dev; 937 938 return NULL; 939 } 940 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 941 942 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 943 { 944 struct net_device *dev, *ret = NULL; 945 946 rcu_read_lock(); 947 for_each_netdev_rcu(net, dev) 948 if (dev->type == type) { 949 dev_hold(dev); 950 ret = dev; 951 break; 952 } 953 rcu_read_unlock(); 954 return ret; 955 } 956 EXPORT_SYMBOL(dev_getfirstbyhwtype); 957 958 /** 959 * __dev_get_by_flags - find any device with given flags 960 * @net: the applicable net namespace 961 * @if_flags: IFF_* values 962 * @mask: bitmask of bits in if_flags to check 963 * 964 * Search for any interface with the given flags. Returns NULL if a device 965 * is not found or a pointer to the device. Must be called inside 966 * rtnl_lock(), and result refcount is unchanged. 967 */ 968 969 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 970 unsigned short mask) 971 { 972 struct net_device *dev, *ret; 973 974 ASSERT_RTNL(); 975 976 ret = NULL; 977 for_each_netdev(net, dev) { 978 if (((dev->flags ^ if_flags) & mask) == 0) { 979 ret = dev; 980 break; 981 } 982 } 983 return ret; 984 } 985 EXPORT_SYMBOL(__dev_get_by_flags); 986 987 /** 988 * dev_valid_name - check if name is okay for network device 989 * @name: name string 990 * 991 * Network device names need to be valid file names to 992 * to allow sysfs to work. We also disallow any kind of 993 * whitespace. 994 */ 995 bool dev_valid_name(const char *name) 996 { 997 if (*name == '\0') 998 return false; 999 if (strlen(name) >= IFNAMSIZ) 1000 return false; 1001 if (!strcmp(name, ".") || !strcmp(name, "..")) 1002 return false; 1003 1004 while (*name) { 1005 if (*name == '/' || *name == ':' || isspace(*name)) 1006 return false; 1007 name++; 1008 } 1009 return true; 1010 } 1011 EXPORT_SYMBOL(dev_valid_name); 1012 1013 /** 1014 * __dev_alloc_name - allocate a name for a device 1015 * @net: network namespace to allocate the device name in 1016 * @name: name format string 1017 * @buf: scratch buffer and result name string 1018 * 1019 * Passed a format string - eg "lt%d" it will try and find a suitable 1020 * id. It scans list of devices to build up a free map, then chooses 1021 * the first empty slot. The caller must hold the dev_base or rtnl lock 1022 * while allocating the name and adding the device in order to avoid 1023 * duplicates. 1024 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1025 * Returns the number of the unit assigned or a negative errno code. 1026 */ 1027 1028 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1029 { 1030 int i = 0; 1031 const char *p; 1032 const int max_netdevices = 8*PAGE_SIZE; 1033 unsigned long *inuse; 1034 struct net_device *d; 1035 1036 p = strnchr(name, IFNAMSIZ-1, '%'); 1037 if (p) { 1038 /* 1039 * Verify the string as this thing may have come from 1040 * the user. There must be either one "%d" and no other "%" 1041 * characters. 1042 */ 1043 if (p[1] != 'd' || strchr(p + 2, '%')) 1044 return -EINVAL; 1045 1046 /* Use one page as a bit array of possible slots */ 1047 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1048 if (!inuse) 1049 return -ENOMEM; 1050 1051 for_each_netdev(net, d) { 1052 if (!sscanf(d->name, name, &i)) 1053 continue; 1054 if (i < 0 || i >= max_netdevices) 1055 continue; 1056 1057 /* avoid cases where sscanf is not exact inverse of printf */ 1058 snprintf(buf, IFNAMSIZ, name, i); 1059 if (!strncmp(buf, d->name, IFNAMSIZ)) 1060 set_bit(i, inuse); 1061 } 1062 1063 i = find_first_zero_bit(inuse, max_netdevices); 1064 free_page((unsigned long) inuse); 1065 } 1066 1067 if (buf != name) 1068 snprintf(buf, IFNAMSIZ, name, i); 1069 if (!__dev_get_by_name(net, buf)) 1070 return i; 1071 1072 /* It is possible to run out of possible slots 1073 * when the name is long and there isn't enough space left 1074 * for the digits, or if all bits are used. 1075 */ 1076 return -ENFILE; 1077 } 1078 1079 /** 1080 * dev_alloc_name - allocate a name for a device 1081 * @dev: device 1082 * @name: name format string 1083 * 1084 * Passed a format string - eg "lt%d" it will try and find a suitable 1085 * id. It scans list of devices to build up a free map, then chooses 1086 * the first empty slot. The caller must hold the dev_base or rtnl lock 1087 * while allocating the name and adding the device in order to avoid 1088 * duplicates. 1089 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1090 * Returns the number of the unit assigned or a negative errno code. 1091 */ 1092 1093 int dev_alloc_name(struct net_device *dev, const char *name) 1094 { 1095 char buf[IFNAMSIZ]; 1096 struct net *net; 1097 int ret; 1098 1099 BUG_ON(!dev_net(dev)); 1100 net = dev_net(dev); 1101 ret = __dev_alloc_name(net, name, buf); 1102 if (ret >= 0) 1103 strlcpy(dev->name, buf, IFNAMSIZ); 1104 return ret; 1105 } 1106 EXPORT_SYMBOL(dev_alloc_name); 1107 1108 static int dev_alloc_name_ns(struct net *net, 1109 struct net_device *dev, 1110 const char *name) 1111 { 1112 char buf[IFNAMSIZ]; 1113 int ret; 1114 1115 ret = __dev_alloc_name(net, name, buf); 1116 if (ret >= 0) 1117 strlcpy(dev->name, buf, IFNAMSIZ); 1118 return ret; 1119 } 1120 1121 static int dev_get_valid_name(struct net *net, 1122 struct net_device *dev, 1123 const char *name) 1124 { 1125 BUG_ON(!net); 1126 1127 if (!dev_valid_name(name)) 1128 return -EINVAL; 1129 1130 if (strchr(name, '%')) 1131 return dev_alloc_name_ns(net, dev, name); 1132 else if (__dev_get_by_name(net, name)) 1133 return -EEXIST; 1134 else if (dev->name != name) 1135 strlcpy(dev->name, name, IFNAMSIZ); 1136 1137 return 0; 1138 } 1139 1140 /** 1141 * dev_change_name - change name of a device 1142 * @dev: device 1143 * @newname: name (or format string) must be at least IFNAMSIZ 1144 * 1145 * Change name of a device, can pass format strings "eth%d". 1146 * for wildcarding. 1147 */ 1148 int dev_change_name(struct net_device *dev, const char *newname) 1149 { 1150 unsigned char old_assign_type; 1151 char oldname[IFNAMSIZ]; 1152 int err = 0; 1153 int ret; 1154 struct net *net; 1155 1156 ASSERT_RTNL(); 1157 BUG_ON(!dev_net(dev)); 1158 1159 net = dev_net(dev); 1160 if (dev->flags & IFF_UP) 1161 return -EBUSY; 1162 1163 write_seqcount_begin(&devnet_rename_seq); 1164 1165 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1166 write_seqcount_end(&devnet_rename_seq); 1167 return 0; 1168 } 1169 1170 memcpy(oldname, dev->name, IFNAMSIZ); 1171 1172 err = dev_get_valid_name(net, dev, newname); 1173 if (err < 0) { 1174 write_seqcount_end(&devnet_rename_seq); 1175 return err; 1176 } 1177 1178 if (oldname[0] && !strchr(oldname, '%')) 1179 netdev_info(dev, "renamed from %s\n", oldname); 1180 1181 old_assign_type = dev->name_assign_type; 1182 dev->name_assign_type = NET_NAME_RENAMED; 1183 1184 rollback: 1185 ret = device_rename(&dev->dev, dev->name); 1186 if (ret) { 1187 memcpy(dev->name, oldname, IFNAMSIZ); 1188 dev->name_assign_type = old_assign_type; 1189 write_seqcount_end(&devnet_rename_seq); 1190 return ret; 1191 } 1192 1193 write_seqcount_end(&devnet_rename_seq); 1194 1195 netdev_adjacent_rename_links(dev, oldname); 1196 1197 write_lock_bh(&dev_base_lock); 1198 hlist_del_rcu(&dev->name_hlist); 1199 write_unlock_bh(&dev_base_lock); 1200 1201 synchronize_rcu(); 1202 1203 write_lock_bh(&dev_base_lock); 1204 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1205 write_unlock_bh(&dev_base_lock); 1206 1207 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1208 ret = notifier_to_errno(ret); 1209 1210 if (ret) { 1211 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1212 if (err >= 0) { 1213 err = ret; 1214 write_seqcount_begin(&devnet_rename_seq); 1215 memcpy(dev->name, oldname, IFNAMSIZ); 1216 memcpy(oldname, newname, IFNAMSIZ); 1217 dev->name_assign_type = old_assign_type; 1218 old_assign_type = NET_NAME_RENAMED; 1219 goto rollback; 1220 } else { 1221 pr_err("%s: name change rollback failed: %d\n", 1222 dev->name, ret); 1223 } 1224 } 1225 1226 return err; 1227 } 1228 1229 /** 1230 * dev_set_alias - change ifalias of a device 1231 * @dev: device 1232 * @alias: name up to IFALIASZ 1233 * @len: limit of bytes to copy from info 1234 * 1235 * Set ifalias for a device, 1236 */ 1237 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1238 { 1239 char *new_ifalias; 1240 1241 ASSERT_RTNL(); 1242 1243 if (len >= IFALIASZ) 1244 return -EINVAL; 1245 1246 if (!len) { 1247 kfree(dev->ifalias); 1248 dev->ifalias = NULL; 1249 return 0; 1250 } 1251 1252 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1253 if (!new_ifalias) 1254 return -ENOMEM; 1255 dev->ifalias = new_ifalias; 1256 1257 strlcpy(dev->ifalias, alias, len+1); 1258 return len; 1259 } 1260 1261 1262 /** 1263 * netdev_features_change - device changes features 1264 * @dev: device to cause notification 1265 * 1266 * Called to indicate a device has changed features. 1267 */ 1268 void netdev_features_change(struct net_device *dev) 1269 { 1270 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1271 } 1272 EXPORT_SYMBOL(netdev_features_change); 1273 1274 /** 1275 * netdev_state_change - device changes state 1276 * @dev: device to cause notification 1277 * 1278 * Called to indicate a device has changed state. This function calls 1279 * the notifier chains for netdev_chain and sends a NEWLINK message 1280 * to the routing socket. 1281 */ 1282 void netdev_state_change(struct net_device *dev) 1283 { 1284 if (dev->flags & IFF_UP) { 1285 struct netdev_notifier_change_info change_info; 1286 1287 change_info.flags_changed = 0; 1288 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 1289 &change_info.info); 1290 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1291 } 1292 } 1293 EXPORT_SYMBOL(netdev_state_change); 1294 1295 /** 1296 * netdev_notify_peers - notify network peers about existence of @dev 1297 * @dev: network device 1298 * 1299 * Generate traffic such that interested network peers are aware of 1300 * @dev, such as by generating a gratuitous ARP. This may be used when 1301 * a device wants to inform the rest of the network about some sort of 1302 * reconfiguration such as a failover event or virtual machine 1303 * migration. 1304 */ 1305 void netdev_notify_peers(struct net_device *dev) 1306 { 1307 rtnl_lock(); 1308 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1309 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1310 rtnl_unlock(); 1311 } 1312 EXPORT_SYMBOL(netdev_notify_peers); 1313 1314 static int __dev_open(struct net_device *dev) 1315 { 1316 const struct net_device_ops *ops = dev->netdev_ops; 1317 int ret; 1318 1319 ASSERT_RTNL(); 1320 1321 if (!netif_device_present(dev)) 1322 return -ENODEV; 1323 1324 /* Block netpoll from trying to do any rx path servicing. 1325 * If we don't do this there is a chance ndo_poll_controller 1326 * or ndo_poll may be running while we open the device 1327 */ 1328 netpoll_poll_disable(dev); 1329 1330 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1331 ret = notifier_to_errno(ret); 1332 if (ret) 1333 return ret; 1334 1335 set_bit(__LINK_STATE_START, &dev->state); 1336 1337 if (ops->ndo_validate_addr) 1338 ret = ops->ndo_validate_addr(dev); 1339 1340 if (!ret && ops->ndo_open) 1341 ret = ops->ndo_open(dev); 1342 1343 netpoll_poll_enable(dev); 1344 1345 if (ret) 1346 clear_bit(__LINK_STATE_START, &dev->state); 1347 else { 1348 dev->flags |= IFF_UP; 1349 dev_set_rx_mode(dev); 1350 dev_activate(dev); 1351 add_device_randomness(dev->dev_addr, dev->addr_len); 1352 } 1353 1354 return ret; 1355 } 1356 1357 /** 1358 * dev_open - prepare an interface for use. 1359 * @dev: device to open 1360 * 1361 * Takes a device from down to up state. The device's private open 1362 * function is invoked and then the multicast lists are loaded. Finally 1363 * the device is moved into the up state and a %NETDEV_UP message is 1364 * sent to the netdev notifier chain. 1365 * 1366 * Calling this function on an active interface is a nop. On a failure 1367 * a negative errno code is returned. 1368 */ 1369 int dev_open(struct net_device *dev) 1370 { 1371 int ret; 1372 1373 if (dev->flags & IFF_UP) 1374 return 0; 1375 1376 ret = __dev_open(dev); 1377 if (ret < 0) 1378 return ret; 1379 1380 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1381 call_netdevice_notifiers(NETDEV_UP, dev); 1382 1383 return ret; 1384 } 1385 EXPORT_SYMBOL(dev_open); 1386 1387 static int __dev_close_many(struct list_head *head) 1388 { 1389 struct net_device *dev; 1390 1391 ASSERT_RTNL(); 1392 might_sleep(); 1393 1394 list_for_each_entry(dev, head, close_list) { 1395 /* Temporarily disable netpoll until the interface is down */ 1396 netpoll_poll_disable(dev); 1397 1398 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1399 1400 clear_bit(__LINK_STATE_START, &dev->state); 1401 1402 /* Synchronize to scheduled poll. We cannot touch poll list, it 1403 * can be even on different cpu. So just clear netif_running(). 1404 * 1405 * dev->stop() will invoke napi_disable() on all of it's 1406 * napi_struct instances on this device. 1407 */ 1408 smp_mb__after_atomic(); /* Commit netif_running(). */ 1409 } 1410 1411 dev_deactivate_many(head); 1412 1413 list_for_each_entry(dev, head, close_list) { 1414 const struct net_device_ops *ops = dev->netdev_ops; 1415 1416 /* 1417 * Call the device specific close. This cannot fail. 1418 * Only if device is UP 1419 * 1420 * We allow it to be called even after a DETACH hot-plug 1421 * event. 1422 */ 1423 if (ops->ndo_stop) 1424 ops->ndo_stop(dev); 1425 1426 dev->flags &= ~IFF_UP; 1427 netpoll_poll_enable(dev); 1428 } 1429 1430 return 0; 1431 } 1432 1433 static int __dev_close(struct net_device *dev) 1434 { 1435 int retval; 1436 LIST_HEAD(single); 1437 1438 list_add(&dev->close_list, &single); 1439 retval = __dev_close_many(&single); 1440 list_del(&single); 1441 1442 return retval; 1443 } 1444 1445 int dev_close_many(struct list_head *head, bool unlink) 1446 { 1447 struct net_device *dev, *tmp; 1448 1449 /* Remove the devices that don't need to be closed */ 1450 list_for_each_entry_safe(dev, tmp, head, close_list) 1451 if (!(dev->flags & IFF_UP)) 1452 list_del_init(&dev->close_list); 1453 1454 __dev_close_many(head); 1455 1456 list_for_each_entry_safe(dev, tmp, head, close_list) { 1457 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1458 call_netdevice_notifiers(NETDEV_DOWN, dev); 1459 if (unlink) 1460 list_del_init(&dev->close_list); 1461 } 1462 1463 return 0; 1464 } 1465 EXPORT_SYMBOL(dev_close_many); 1466 1467 /** 1468 * dev_close - shutdown an interface. 1469 * @dev: device to shutdown 1470 * 1471 * This function moves an active device into down state. A 1472 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1473 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1474 * chain. 1475 */ 1476 int dev_close(struct net_device *dev) 1477 { 1478 if (dev->flags & IFF_UP) { 1479 LIST_HEAD(single); 1480 1481 list_add(&dev->close_list, &single); 1482 dev_close_many(&single, true); 1483 list_del(&single); 1484 } 1485 return 0; 1486 } 1487 EXPORT_SYMBOL(dev_close); 1488 1489 1490 /** 1491 * dev_disable_lro - disable Large Receive Offload on a device 1492 * @dev: device 1493 * 1494 * Disable Large Receive Offload (LRO) on a net device. Must be 1495 * called under RTNL. This is needed if received packets may be 1496 * forwarded to another interface. 1497 */ 1498 void dev_disable_lro(struct net_device *dev) 1499 { 1500 struct net_device *lower_dev; 1501 struct list_head *iter; 1502 1503 dev->wanted_features &= ~NETIF_F_LRO; 1504 netdev_update_features(dev); 1505 1506 if (unlikely(dev->features & NETIF_F_LRO)) 1507 netdev_WARN(dev, "failed to disable LRO!\n"); 1508 1509 netdev_for_each_lower_dev(dev, lower_dev, iter) 1510 dev_disable_lro(lower_dev); 1511 } 1512 EXPORT_SYMBOL(dev_disable_lro); 1513 1514 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1515 struct net_device *dev) 1516 { 1517 struct netdev_notifier_info info; 1518 1519 netdev_notifier_info_init(&info, dev); 1520 return nb->notifier_call(nb, val, &info); 1521 } 1522 1523 static int dev_boot_phase = 1; 1524 1525 /** 1526 * register_netdevice_notifier - register a network notifier block 1527 * @nb: notifier 1528 * 1529 * Register a notifier to be called when network device events occur. 1530 * The notifier passed is linked into the kernel structures and must 1531 * not be reused until it has been unregistered. A negative errno code 1532 * is returned on a failure. 1533 * 1534 * When registered all registration and up events are replayed 1535 * to the new notifier to allow device to have a race free 1536 * view of the network device list. 1537 */ 1538 1539 int register_netdevice_notifier(struct notifier_block *nb) 1540 { 1541 struct net_device *dev; 1542 struct net_device *last; 1543 struct net *net; 1544 int err; 1545 1546 rtnl_lock(); 1547 err = raw_notifier_chain_register(&netdev_chain, nb); 1548 if (err) 1549 goto unlock; 1550 if (dev_boot_phase) 1551 goto unlock; 1552 for_each_net(net) { 1553 for_each_netdev(net, dev) { 1554 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1555 err = notifier_to_errno(err); 1556 if (err) 1557 goto rollback; 1558 1559 if (!(dev->flags & IFF_UP)) 1560 continue; 1561 1562 call_netdevice_notifier(nb, NETDEV_UP, dev); 1563 } 1564 } 1565 1566 unlock: 1567 rtnl_unlock(); 1568 return err; 1569 1570 rollback: 1571 last = dev; 1572 for_each_net(net) { 1573 for_each_netdev(net, dev) { 1574 if (dev == last) 1575 goto outroll; 1576 1577 if (dev->flags & IFF_UP) { 1578 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1579 dev); 1580 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1581 } 1582 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1583 } 1584 } 1585 1586 outroll: 1587 raw_notifier_chain_unregister(&netdev_chain, nb); 1588 goto unlock; 1589 } 1590 EXPORT_SYMBOL(register_netdevice_notifier); 1591 1592 /** 1593 * unregister_netdevice_notifier - unregister a network notifier block 1594 * @nb: notifier 1595 * 1596 * Unregister a notifier previously registered by 1597 * register_netdevice_notifier(). The notifier is unlinked into the 1598 * kernel structures and may then be reused. A negative errno code 1599 * is returned on a failure. 1600 * 1601 * After unregistering unregister and down device events are synthesized 1602 * for all devices on the device list to the removed notifier to remove 1603 * the need for special case cleanup code. 1604 */ 1605 1606 int unregister_netdevice_notifier(struct notifier_block *nb) 1607 { 1608 struct net_device *dev; 1609 struct net *net; 1610 int err; 1611 1612 rtnl_lock(); 1613 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1614 if (err) 1615 goto unlock; 1616 1617 for_each_net(net) { 1618 for_each_netdev(net, dev) { 1619 if (dev->flags & IFF_UP) { 1620 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1621 dev); 1622 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1623 } 1624 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1625 } 1626 } 1627 unlock: 1628 rtnl_unlock(); 1629 return err; 1630 } 1631 EXPORT_SYMBOL(unregister_netdevice_notifier); 1632 1633 /** 1634 * call_netdevice_notifiers_info - call all network notifier blocks 1635 * @val: value passed unmodified to notifier function 1636 * @dev: net_device pointer passed unmodified to notifier function 1637 * @info: notifier information data 1638 * 1639 * Call all network notifier blocks. Parameters and return value 1640 * are as for raw_notifier_call_chain(). 1641 */ 1642 1643 static int call_netdevice_notifiers_info(unsigned long val, 1644 struct net_device *dev, 1645 struct netdev_notifier_info *info) 1646 { 1647 ASSERT_RTNL(); 1648 netdev_notifier_info_init(info, dev); 1649 return raw_notifier_call_chain(&netdev_chain, val, info); 1650 } 1651 1652 /** 1653 * call_netdevice_notifiers - call all network notifier blocks 1654 * @val: value passed unmodified to notifier function 1655 * @dev: net_device pointer passed unmodified to notifier function 1656 * 1657 * Call all network notifier blocks. Parameters and return value 1658 * are as for raw_notifier_call_chain(). 1659 */ 1660 1661 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1662 { 1663 struct netdev_notifier_info info; 1664 1665 return call_netdevice_notifiers_info(val, dev, &info); 1666 } 1667 EXPORT_SYMBOL(call_netdevice_notifiers); 1668 1669 #ifdef CONFIG_NET_INGRESS 1670 static struct static_key ingress_needed __read_mostly; 1671 1672 void net_inc_ingress_queue(void) 1673 { 1674 static_key_slow_inc(&ingress_needed); 1675 } 1676 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1677 1678 void net_dec_ingress_queue(void) 1679 { 1680 static_key_slow_dec(&ingress_needed); 1681 } 1682 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1683 #endif 1684 1685 #ifdef CONFIG_NET_EGRESS 1686 static struct static_key egress_needed __read_mostly; 1687 1688 void net_inc_egress_queue(void) 1689 { 1690 static_key_slow_inc(&egress_needed); 1691 } 1692 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1693 1694 void net_dec_egress_queue(void) 1695 { 1696 static_key_slow_dec(&egress_needed); 1697 } 1698 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1699 #endif 1700 1701 static struct static_key netstamp_needed __read_mostly; 1702 #ifdef HAVE_JUMP_LABEL 1703 static atomic_t netstamp_needed_deferred; 1704 static atomic_t netstamp_wanted; 1705 static void netstamp_clear(struct work_struct *work) 1706 { 1707 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1708 int wanted; 1709 1710 wanted = atomic_add_return(deferred, &netstamp_wanted); 1711 if (wanted > 0) 1712 static_key_enable(&netstamp_needed); 1713 else 1714 static_key_disable(&netstamp_needed); 1715 } 1716 static DECLARE_WORK(netstamp_work, netstamp_clear); 1717 #endif 1718 1719 void net_enable_timestamp(void) 1720 { 1721 #ifdef HAVE_JUMP_LABEL 1722 int wanted; 1723 1724 while (1) { 1725 wanted = atomic_read(&netstamp_wanted); 1726 if (wanted <= 0) 1727 break; 1728 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 1729 return; 1730 } 1731 atomic_inc(&netstamp_needed_deferred); 1732 schedule_work(&netstamp_work); 1733 #else 1734 static_key_slow_inc(&netstamp_needed); 1735 #endif 1736 } 1737 EXPORT_SYMBOL(net_enable_timestamp); 1738 1739 void net_disable_timestamp(void) 1740 { 1741 #ifdef HAVE_JUMP_LABEL 1742 int wanted; 1743 1744 while (1) { 1745 wanted = atomic_read(&netstamp_wanted); 1746 if (wanted <= 1) 1747 break; 1748 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 1749 return; 1750 } 1751 atomic_dec(&netstamp_needed_deferred); 1752 schedule_work(&netstamp_work); 1753 #else 1754 static_key_slow_dec(&netstamp_needed); 1755 #endif 1756 } 1757 EXPORT_SYMBOL(net_disable_timestamp); 1758 1759 static inline void net_timestamp_set(struct sk_buff *skb) 1760 { 1761 skb->tstamp = 0; 1762 if (static_key_false(&netstamp_needed)) 1763 __net_timestamp(skb); 1764 } 1765 1766 #define net_timestamp_check(COND, SKB) \ 1767 if (static_key_false(&netstamp_needed)) { \ 1768 if ((COND) && !(SKB)->tstamp) \ 1769 __net_timestamp(SKB); \ 1770 } \ 1771 1772 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1773 { 1774 unsigned int len; 1775 1776 if (!(dev->flags & IFF_UP)) 1777 return false; 1778 1779 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1780 if (skb->len <= len) 1781 return true; 1782 1783 /* if TSO is enabled, we don't care about the length as the packet 1784 * could be forwarded without being segmented before 1785 */ 1786 if (skb_is_gso(skb)) 1787 return true; 1788 1789 return false; 1790 } 1791 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1792 1793 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1794 { 1795 int ret = ____dev_forward_skb(dev, skb); 1796 1797 if (likely(!ret)) { 1798 skb->protocol = eth_type_trans(skb, dev); 1799 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1800 } 1801 1802 return ret; 1803 } 1804 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1805 1806 /** 1807 * dev_forward_skb - loopback an skb to another netif 1808 * 1809 * @dev: destination network device 1810 * @skb: buffer to forward 1811 * 1812 * return values: 1813 * NET_RX_SUCCESS (no congestion) 1814 * NET_RX_DROP (packet was dropped, but freed) 1815 * 1816 * dev_forward_skb can be used for injecting an skb from the 1817 * start_xmit function of one device into the receive queue 1818 * of another device. 1819 * 1820 * The receiving device may be in another namespace, so 1821 * we have to clear all information in the skb that could 1822 * impact namespace isolation. 1823 */ 1824 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1825 { 1826 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1827 } 1828 EXPORT_SYMBOL_GPL(dev_forward_skb); 1829 1830 static inline int deliver_skb(struct sk_buff *skb, 1831 struct packet_type *pt_prev, 1832 struct net_device *orig_dev) 1833 { 1834 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1835 return -ENOMEM; 1836 atomic_inc(&skb->users); 1837 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1838 } 1839 1840 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1841 struct packet_type **pt, 1842 struct net_device *orig_dev, 1843 __be16 type, 1844 struct list_head *ptype_list) 1845 { 1846 struct packet_type *ptype, *pt_prev = *pt; 1847 1848 list_for_each_entry_rcu(ptype, ptype_list, list) { 1849 if (ptype->type != type) 1850 continue; 1851 if (pt_prev) 1852 deliver_skb(skb, pt_prev, orig_dev); 1853 pt_prev = ptype; 1854 } 1855 *pt = pt_prev; 1856 } 1857 1858 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1859 { 1860 if (!ptype->af_packet_priv || !skb->sk) 1861 return false; 1862 1863 if (ptype->id_match) 1864 return ptype->id_match(ptype, skb->sk); 1865 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1866 return true; 1867 1868 return false; 1869 } 1870 1871 /* 1872 * Support routine. Sends outgoing frames to any network 1873 * taps currently in use. 1874 */ 1875 1876 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1877 { 1878 struct packet_type *ptype; 1879 struct sk_buff *skb2 = NULL; 1880 struct packet_type *pt_prev = NULL; 1881 struct list_head *ptype_list = &ptype_all; 1882 1883 rcu_read_lock(); 1884 again: 1885 list_for_each_entry_rcu(ptype, ptype_list, list) { 1886 /* Never send packets back to the socket 1887 * they originated from - MvS (miquels@drinkel.ow.org) 1888 */ 1889 if (skb_loop_sk(ptype, skb)) 1890 continue; 1891 1892 if (pt_prev) { 1893 deliver_skb(skb2, pt_prev, skb->dev); 1894 pt_prev = ptype; 1895 continue; 1896 } 1897 1898 /* need to clone skb, done only once */ 1899 skb2 = skb_clone(skb, GFP_ATOMIC); 1900 if (!skb2) 1901 goto out_unlock; 1902 1903 net_timestamp_set(skb2); 1904 1905 /* skb->nh should be correctly 1906 * set by sender, so that the second statement is 1907 * just protection against buggy protocols. 1908 */ 1909 skb_reset_mac_header(skb2); 1910 1911 if (skb_network_header(skb2) < skb2->data || 1912 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1913 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1914 ntohs(skb2->protocol), 1915 dev->name); 1916 skb_reset_network_header(skb2); 1917 } 1918 1919 skb2->transport_header = skb2->network_header; 1920 skb2->pkt_type = PACKET_OUTGOING; 1921 pt_prev = ptype; 1922 } 1923 1924 if (ptype_list == &ptype_all) { 1925 ptype_list = &dev->ptype_all; 1926 goto again; 1927 } 1928 out_unlock: 1929 if (pt_prev) 1930 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1931 rcu_read_unlock(); 1932 } 1933 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 1934 1935 /** 1936 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1937 * @dev: Network device 1938 * @txq: number of queues available 1939 * 1940 * If real_num_tx_queues is changed the tc mappings may no longer be 1941 * valid. To resolve this verify the tc mapping remains valid and if 1942 * not NULL the mapping. With no priorities mapping to this 1943 * offset/count pair it will no longer be used. In the worst case TC0 1944 * is invalid nothing can be done so disable priority mappings. If is 1945 * expected that drivers will fix this mapping if they can before 1946 * calling netif_set_real_num_tx_queues. 1947 */ 1948 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1949 { 1950 int i; 1951 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1952 1953 /* If TC0 is invalidated disable TC mapping */ 1954 if (tc->offset + tc->count > txq) { 1955 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1956 dev->num_tc = 0; 1957 return; 1958 } 1959 1960 /* Invalidated prio to tc mappings set to TC0 */ 1961 for (i = 1; i < TC_BITMASK + 1; i++) { 1962 int q = netdev_get_prio_tc_map(dev, i); 1963 1964 tc = &dev->tc_to_txq[q]; 1965 if (tc->offset + tc->count > txq) { 1966 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1967 i, q); 1968 netdev_set_prio_tc_map(dev, i, 0); 1969 } 1970 } 1971 } 1972 1973 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 1974 { 1975 if (dev->num_tc) { 1976 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1977 int i; 1978 1979 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 1980 if ((txq - tc->offset) < tc->count) 1981 return i; 1982 } 1983 1984 return -1; 1985 } 1986 1987 return 0; 1988 } 1989 1990 #ifdef CONFIG_XPS 1991 static DEFINE_MUTEX(xps_map_mutex); 1992 #define xmap_dereference(P) \ 1993 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1994 1995 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 1996 int tci, u16 index) 1997 { 1998 struct xps_map *map = NULL; 1999 int pos; 2000 2001 if (dev_maps) 2002 map = xmap_dereference(dev_maps->cpu_map[tci]); 2003 if (!map) 2004 return false; 2005 2006 for (pos = map->len; pos--;) { 2007 if (map->queues[pos] != index) 2008 continue; 2009 2010 if (map->len > 1) { 2011 map->queues[pos] = map->queues[--map->len]; 2012 break; 2013 } 2014 2015 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL); 2016 kfree_rcu(map, rcu); 2017 return false; 2018 } 2019 2020 return true; 2021 } 2022 2023 static bool remove_xps_queue_cpu(struct net_device *dev, 2024 struct xps_dev_maps *dev_maps, 2025 int cpu, u16 offset, u16 count) 2026 { 2027 int num_tc = dev->num_tc ? : 1; 2028 bool active = false; 2029 int tci; 2030 2031 for (tci = cpu * num_tc; num_tc--; tci++) { 2032 int i, j; 2033 2034 for (i = count, j = offset; i--; j++) { 2035 if (!remove_xps_queue(dev_maps, cpu, j)) 2036 break; 2037 } 2038 2039 active |= i < 0; 2040 } 2041 2042 return active; 2043 } 2044 2045 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2046 u16 count) 2047 { 2048 struct xps_dev_maps *dev_maps; 2049 int cpu, i; 2050 bool active = false; 2051 2052 mutex_lock(&xps_map_mutex); 2053 dev_maps = xmap_dereference(dev->xps_maps); 2054 2055 if (!dev_maps) 2056 goto out_no_maps; 2057 2058 for_each_possible_cpu(cpu) 2059 active |= remove_xps_queue_cpu(dev, dev_maps, cpu, 2060 offset, count); 2061 2062 if (!active) { 2063 RCU_INIT_POINTER(dev->xps_maps, NULL); 2064 kfree_rcu(dev_maps, rcu); 2065 } 2066 2067 for (i = offset + (count - 1); count--; i--) 2068 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 2069 NUMA_NO_NODE); 2070 2071 out_no_maps: 2072 mutex_unlock(&xps_map_mutex); 2073 } 2074 2075 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2076 { 2077 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2078 } 2079 2080 static struct xps_map *expand_xps_map(struct xps_map *map, 2081 int cpu, u16 index) 2082 { 2083 struct xps_map *new_map; 2084 int alloc_len = XPS_MIN_MAP_ALLOC; 2085 int i, pos; 2086 2087 for (pos = 0; map && pos < map->len; pos++) { 2088 if (map->queues[pos] != index) 2089 continue; 2090 return map; 2091 } 2092 2093 /* Need to add queue to this CPU's existing map */ 2094 if (map) { 2095 if (pos < map->alloc_len) 2096 return map; 2097 2098 alloc_len = map->alloc_len * 2; 2099 } 2100 2101 /* Need to allocate new map to store queue on this CPU's map */ 2102 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2103 cpu_to_node(cpu)); 2104 if (!new_map) 2105 return NULL; 2106 2107 for (i = 0; i < pos; i++) 2108 new_map->queues[i] = map->queues[i]; 2109 new_map->alloc_len = alloc_len; 2110 new_map->len = pos; 2111 2112 return new_map; 2113 } 2114 2115 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2116 u16 index) 2117 { 2118 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2119 int i, cpu, tci, numa_node_id = -2; 2120 int maps_sz, num_tc = 1, tc = 0; 2121 struct xps_map *map, *new_map; 2122 bool active = false; 2123 2124 if (dev->num_tc) { 2125 num_tc = dev->num_tc; 2126 tc = netdev_txq_to_tc(dev, index); 2127 if (tc < 0) 2128 return -EINVAL; 2129 } 2130 2131 maps_sz = XPS_DEV_MAPS_SIZE(num_tc); 2132 if (maps_sz < L1_CACHE_BYTES) 2133 maps_sz = L1_CACHE_BYTES; 2134 2135 mutex_lock(&xps_map_mutex); 2136 2137 dev_maps = xmap_dereference(dev->xps_maps); 2138 2139 /* allocate memory for queue storage */ 2140 for_each_cpu_and(cpu, cpu_online_mask, mask) { 2141 if (!new_dev_maps) 2142 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2143 if (!new_dev_maps) { 2144 mutex_unlock(&xps_map_mutex); 2145 return -ENOMEM; 2146 } 2147 2148 tci = cpu * num_tc + tc; 2149 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) : 2150 NULL; 2151 2152 map = expand_xps_map(map, cpu, index); 2153 if (!map) 2154 goto error; 2155 2156 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2157 } 2158 2159 if (!new_dev_maps) 2160 goto out_no_new_maps; 2161 2162 for_each_possible_cpu(cpu) { 2163 /* copy maps belonging to foreign traffic classes */ 2164 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) { 2165 /* fill in the new device map from the old device map */ 2166 map = xmap_dereference(dev_maps->cpu_map[tci]); 2167 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2168 } 2169 2170 /* We need to explicitly update tci as prevous loop 2171 * could break out early if dev_maps is NULL. 2172 */ 2173 tci = cpu * num_tc + tc; 2174 2175 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 2176 /* add queue to CPU maps */ 2177 int pos = 0; 2178 2179 map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2180 while ((pos < map->len) && (map->queues[pos] != index)) 2181 pos++; 2182 2183 if (pos == map->len) 2184 map->queues[map->len++] = index; 2185 #ifdef CONFIG_NUMA 2186 if (numa_node_id == -2) 2187 numa_node_id = cpu_to_node(cpu); 2188 else if (numa_node_id != cpu_to_node(cpu)) 2189 numa_node_id = -1; 2190 #endif 2191 } else if (dev_maps) { 2192 /* fill in the new device map from the old device map */ 2193 map = xmap_dereference(dev_maps->cpu_map[tci]); 2194 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2195 } 2196 2197 /* copy maps belonging to foreign traffic classes */ 2198 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2199 /* fill in the new device map from the old device map */ 2200 map = xmap_dereference(dev_maps->cpu_map[tci]); 2201 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2202 } 2203 } 2204 2205 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2206 2207 /* Cleanup old maps */ 2208 if (!dev_maps) 2209 goto out_no_old_maps; 2210 2211 for_each_possible_cpu(cpu) { 2212 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2213 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2214 map = xmap_dereference(dev_maps->cpu_map[tci]); 2215 if (map && map != new_map) 2216 kfree_rcu(map, rcu); 2217 } 2218 } 2219 2220 kfree_rcu(dev_maps, rcu); 2221 2222 out_no_old_maps: 2223 dev_maps = new_dev_maps; 2224 active = true; 2225 2226 out_no_new_maps: 2227 /* update Tx queue numa node */ 2228 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2229 (numa_node_id >= 0) ? numa_node_id : 2230 NUMA_NO_NODE); 2231 2232 if (!dev_maps) 2233 goto out_no_maps; 2234 2235 /* removes queue from unused CPUs */ 2236 for_each_possible_cpu(cpu) { 2237 for (i = tc, tci = cpu * num_tc; i--; tci++) 2238 active |= remove_xps_queue(dev_maps, tci, index); 2239 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu)) 2240 active |= remove_xps_queue(dev_maps, tci, index); 2241 for (i = num_tc - tc, tci++; --i; tci++) 2242 active |= remove_xps_queue(dev_maps, tci, index); 2243 } 2244 2245 /* free map if not active */ 2246 if (!active) { 2247 RCU_INIT_POINTER(dev->xps_maps, NULL); 2248 kfree_rcu(dev_maps, rcu); 2249 } 2250 2251 out_no_maps: 2252 mutex_unlock(&xps_map_mutex); 2253 2254 return 0; 2255 error: 2256 /* remove any maps that we added */ 2257 for_each_possible_cpu(cpu) { 2258 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2259 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2260 map = dev_maps ? 2261 xmap_dereference(dev_maps->cpu_map[tci]) : 2262 NULL; 2263 if (new_map && new_map != map) 2264 kfree(new_map); 2265 } 2266 } 2267 2268 mutex_unlock(&xps_map_mutex); 2269 2270 kfree(new_dev_maps); 2271 return -ENOMEM; 2272 } 2273 EXPORT_SYMBOL(netif_set_xps_queue); 2274 2275 #endif 2276 void netdev_reset_tc(struct net_device *dev) 2277 { 2278 #ifdef CONFIG_XPS 2279 netif_reset_xps_queues_gt(dev, 0); 2280 #endif 2281 dev->num_tc = 0; 2282 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2283 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2284 } 2285 EXPORT_SYMBOL(netdev_reset_tc); 2286 2287 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2288 { 2289 if (tc >= dev->num_tc) 2290 return -EINVAL; 2291 2292 #ifdef CONFIG_XPS 2293 netif_reset_xps_queues(dev, offset, count); 2294 #endif 2295 dev->tc_to_txq[tc].count = count; 2296 dev->tc_to_txq[tc].offset = offset; 2297 return 0; 2298 } 2299 EXPORT_SYMBOL(netdev_set_tc_queue); 2300 2301 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2302 { 2303 if (num_tc > TC_MAX_QUEUE) 2304 return -EINVAL; 2305 2306 #ifdef CONFIG_XPS 2307 netif_reset_xps_queues_gt(dev, 0); 2308 #endif 2309 dev->num_tc = num_tc; 2310 return 0; 2311 } 2312 EXPORT_SYMBOL(netdev_set_num_tc); 2313 2314 /* 2315 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2316 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2317 */ 2318 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2319 { 2320 int rc; 2321 2322 if (txq < 1 || txq > dev->num_tx_queues) 2323 return -EINVAL; 2324 2325 if (dev->reg_state == NETREG_REGISTERED || 2326 dev->reg_state == NETREG_UNREGISTERING) { 2327 ASSERT_RTNL(); 2328 2329 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2330 txq); 2331 if (rc) 2332 return rc; 2333 2334 if (dev->num_tc) 2335 netif_setup_tc(dev, txq); 2336 2337 if (txq < dev->real_num_tx_queues) { 2338 qdisc_reset_all_tx_gt(dev, txq); 2339 #ifdef CONFIG_XPS 2340 netif_reset_xps_queues_gt(dev, txq); 2341 #endif 2342 } 2343 } 2344 2345 dev->real_num_tx_queues = txq; 2346 return 0; 2347 } 2348 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2349 2350 #ifdef CONFIG_SYSFS 2351 /** 2352 * netif_set_real_num_rx_queues - set actual number of RX queues used 2353 * @dev: Network device 2354 * @rxq: Actual number of RX queues 2355 * 2356 * This must be called either with the rtnl_lock held or before 2357 * registration of the net device. Returns 0 on success, or a 2358 * negative error code. If called before registration, it always 2359 * succeeds. 2360 */ 2361 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2362 { 2363 int rc; 2364 2365 if (rxq < 1 || rxq > dev->num_rx_queues) 2366 return -EINVAL; 2367 2368 if (dev->reg_state == NETREG_REGISTERED) { 2369 ASSERT_RTNL(); 2370 2371 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2372 rxq); 2373 if (rc) 2374 return rc; 2375 } 2376 2377 dev->real_num_rx_queues = rxq; 2378 return 0; 2379 } 2380 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2381 #endif 2382 2383 /** 2384 * netif_get_num_default_rss_queues - default number of RSS queues 2385 * 2386 * This routine should set an upper limit on the number of RSS queues 2387 * used by default by multiqueue devices. 2388 */ 2389 int netif_get_num_default_rss_queues(void) 2390 { 2391 return is_kdump_kernel() ? 2392 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2393 } 2394 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2395 2396 static void __netif_reschedule(struct Qdisc *q) 2397 { 2398 struct softnet_data *sd; 2399 unsigned long flags; 2400 2401 local_irq_save(flags); 2402 sd = this_cpu_ptr(&softnet_data); 2403 q->next_sched = NULL; 2404 *sd->output_queue_tailp = q; 2405 sd->output_queue_tailp = &q->next_sched; 2406 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2407 local_irq_restore(flags); 2408 } 2409 2410 void __netif_schedule(struct Qdisc *q) 2411 { 2412 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2413 __netif_reschedule(q); 2414 } 2415 EXPORT_SYMBOL(__netif_schedule); 2416 2417 struct dev_kfree_skb_cb { 2418 enum skb_free_reason reason; 2419 }; 2420 2421 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2422 { 2423 return (struct dev_kfree_skb_cb *)skb->cb; 2424 } 2425 2426 void netif_schedule_queue(struct netdev_queue *txq) 2427 { 2428 rcu_read_lock(); 2429 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2430 struct Qdisc *q = rcu_dereference(txq->qdisc); 2431 2432 __netif_schedule(q); 2433 } 2434 rcu_read_unlock(); 2435 } 2436 EXPORT_SYMBOL(netif_schedule_queue); 2437 2438 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2439 { 2440 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2441 struct Qdisc *q; 2442 2443 rcu_read_lock(); 2444 q = rcu_dereference(dev_queue->qdisc); 2445 __netif_schedule(q); 2446 rcu_read_unlock(); 2447 } 2448 } 2449 EXPORT_SYMBOL(netif_tx_wake_queue); 2450 2451 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2452 { 2453 unsigned long flags; 2454 2455 if (unlikely(!skb)) 2456 return; 2457 2458 if (likely(atomic_read(&skb->users) == 1)) { 2459 smp_rmb(); 2460 atomic_set(&skb->users, 0); 2461 } else if (likely(!atomic_dec_and_test(&skb->users))) { 2462 return; 2463 } 2464 get_kfree_skb_cb(skb)->reason = reason; 2465 local_irq_save(flags); 2466 skb->next = __this_cpu_read(softnet_data.completion_queue); 2467 __this_cpu_write(softnet_data.completion_queue, skb); 2468 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2469 local_irq_restore(flags); 2470 } 2471 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2472 2473 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2474 { 2475 if (in_irq() || irqs_disabled()) 2476 __dev_kfree_skb_irq(skb, reason); 2477 else 2478 dev_kfree_skb(skb); 2479 } 2480 EXPORT_SYMBOL(__dev_kfree_skb_any); 2481 2482 2483 /** 2484 * netif_device_detach - mark device as removed 2485 * @dev: network device 2486 * 2487 * Mark device as removed from system and therefore no longer available. 2488 */ 2489 void netif_device_detach(struct net_device *dev) 2490 { 2491 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2492 netif_running(dev)) { 2493 netif_tx_stop_all_queues(dev); 2494 } 2495 } 2496 EXPORT_SYMBOL(netif_device_detach); 2497 2498 /** 2499 * netif_device_attach - mark device as attached 2500 * @dev: network device 2501 * 2502 * Mark device as attached from system and restart if needed. 2503 */ 2504 void netif_device_attach(struct net_device *dev) 2505 { 2506 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2507 netif_running(dev)) { 2508 netif_tx_wake_all_queues(dev); 2509 __netdev_watchdog_up(dev); 2510 } 2511 } 2512 EXPORT_SYMBOL(netif_device_attach); 2513 2514 /* 2515 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2516 * to be used as a distribution range. 2517 */ 2518 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 2519 unsigned int num_tx_queues) 2520 { 2521 u32 hash; 2522 u16 qoffset = 0; 2523 u16 qcount = num_tx_queues; 2524 2525 if (skb_rx_queue_recorded(skb)) { 2526 hash = skb_get_rx_queue(skb); 2527 while (unlikely(hash >= num_tx_queues)) 2528 hash -= num_tx_queues; 2529 return hash; 2530 } 2531 2532 if (dev->num_tc) { 2533 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2534 2535 qoffset = dev->tc_to_txq[tc].offset; 2536 qcount = dev->tc_to_txq[tc].count; 2537 } 2538 2539 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2540 } 2541 EXPORT_SYMBOL(__skb_tx_hash); 2542 2543 static void skb_warn_bad_offload(const struct sk_buff *skb) 2544 { 2545 static const netdev_features_t null_features; 2546 struct net_device *dev = skb->dev; 2547 const char *name = ""; 2548 2549 if (!net_ratelimit()) 2550 return; 2551 2552 if (dev) { 2553 if (dev->dev.parent) 2554 name = dev_driver_string(dev->dev.parent); 2555 else 2556 name = netdev_name(dev); 2557 } 2558 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2559 "gso_type=%d ip_summed=%d\n", 2560 name, dev ? &dev->features : &null_features, 2561 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2562 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2563 skb_shinfo(skb)->gso_type, skb->ip_summed); 2564 } 2565 2566 /* 2567 * Invalidate hardware checksum when packet is to be mangled, and 2568 * complete checksum manually on outgoing path. 2569 */ 2570 int skb_checksum_help(struct sk_buff *skb) 2571 { 2572 __wsum csum; 2573 int ret = 0, offset; 2574 2575 if (skb->ip_summed == CHECKSUM_COMPLETE) 2576 goto out_set_summed; 2577 2578 if (unlikely(skb_shinfo(skb)->gso_size)) { 2579 skb_warn_bad_offload(skb); 2580 return -EINVAL; 2581 } 2582 2583 /* Before computing a checksum, we should make sure no frag could 2584 * be modified by an external entity : checksum could be wrong. 2585 */ 2586 if (skb_has_shared_frag(skb)) { 2587 ret = __skb_linearize(skb); 2588 if (ret) 2589 goto out; 2590 } 2591 2592 offset = skb_checksum_start_offset(skb); 2593 BUG_ON(offset >= skb_headlen(skb)); 2594 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2595 2596 offset += skb->csum_offset; 2597 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2598 2599 if (skb_cloned(skb) && 2600 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2601 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2602 if (ret) 2603 goto out; 2604 } 2605 2606 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2607 out_set_summed: 2608 skb->ip_summed = CHECKSUM_NONE; 2609 out: 2610 return ret; 2611 } 2612 EXPORT_SYMBOL(skb_checksum_help); 2613 2614 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2615 { 2616 __be16 type = skb->protocol; 2617 2618 /* Tunnel gso handlers can set protocol to ethernet. */ 2619 if (type == htons(ETH_P_TEB)) { 2620 struct ethhdr *eth; 2621 2622 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2623 return 0; 2624 2625 eth = (struct ethhdr *)skb_mac_header(skb); 2626 type = eth->h_proto; 2627 } 2628 2629 return __vlan_get_protocol(skb, type, depth); 2630 } 2631 2632 /** 2633 * skb_mac_gso_segment - mac layer segmentation handler. 2634 * @skb: buffer to segment 2635 * @features: features for the output path (see dev->features) 2636 */ 2637 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2638 netdev_features_t features) 2639 { 2640 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2641 struct packet_offload *ptype; 2642 int vlan_depth = skb->mac_len; 2643 __be16 type = skb_network_protocol(skb, &vlan_depth); 2644 2645 if (unlikely(!type)) 2646 return ERR_PTR(-EINVAL); 2647 2648 __skb_pull(skb, vlan_depth); 2649 2650 rcu_read_lock(); 2651 list_for_each_entry_rcu(ptype, &offload_base, list) { 2652 if (ptype->type == type && ptype->callbacks.gso_segment) { 2653 segs = ptype->callbacks.gso_segment(skb, features); 2654 break; 2655 } 2656 } 2657 rcu_read_unlock(); 2658 2659 __skb_push(skb, skb->data - skb_mac_header(skb)); 2660 2661 return segs; 2662 } 2663 EXPORT_SYMBOL(skb_mac_gso_segment); 2664 2665 2666 /* openvswitch calls this on rx path, so we need a different check. 2667 */ 2668 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2669 { 2670 if (tx_path) 2671 return skb->ip_summed != CHECKSUM_PARTIAL && 2672 skb->ip_summed != CHECKSUM_NONE; 2673 2674 return skb->ip_summed == CHECKSUM_NONE; 2675 } 2676 2677 /** 2678 * __skb_gso_segment - Perform segmentation on skb. 2679 * @skb: buffer to segment 2680 * @features: features for the output path (see dev->features) 2681 * @tx_path: whether it is called in TX path 2682 * 2683 * This function segments the given skb and returns a list of segments. 2684 * 2685 * It may return NULL if the skb requires no segmentation. This is 2686 * only possible when GSO is used for verifying header integrity. 2687 * 2688 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 2689 */ 2690 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2691 netdev_features_t features, bool tx_path) 2692 { 2693 struct sk_buff *segs; 2694 2695 if (unlikely(skb_needs_check(skb, tx_path))) { 2696 int err; 2697 2698 /* We're going to init ->check field in TCP or UDP header */ 2699 err = skb_cow_head(skb, 0); 2700 if (err < 0) 2701 return ERR_PTR(err); 2702 } 2703 2704 /* Only report GSO partial support if it will enable us to 2705 * support segmentation on this frame without needing additional 2706 * work. 2707 */ 2708 if (features & NETIF_F_GSO_PARTIAL) { 2709 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 2710 struct net_device *dev = skb->dev; 2711 2712 partial_features |= dev->features & dev->gso_partial_features; 2713 if (!skb_gso_ok(skb, features | partial_features)) 2714 features &= ~NETIF_F_GSO_PARTIAL; 2715 } 2716 2717 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 2718 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 2719 2720 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2721 SKB_GSO_CB(skb)->encap_level = 0; 2722 2723 skb_reset_mac_header(skb); 2724 skb_reset_mac_len(skb); 2725 2726 segs = skb_mac_gso_segment(skb, features); 2727 2728 if (unlikely(skb_needs_check(skb, tx_path))) 2729 skb_warn_bad_offload(skb); 2730 2731 return segs; 2732 } 2733 EXPORT_SYMBOL(__skb_gso_segment); 2734 2735 /* Take action when hardware reception checksum errors are detected. */ 2736 #ifdef CONFIG_BUG 2737 void netdev_rx_csum_fault(struct net_device *dev) 2738 { 2739 if (net_ratelimit()) { 2740 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2741 dump_stack(); 2742 } 2743 } 2744 EXPORT_SYMBOL(netdev_rx_csum_fault); 2745 #endif 2746 2747 /* Actually, we should eliminate this check as soon as we know, that: 2748 * 1. IOMMU is present and allows to map all the memory. 2749 * 2. No high memory really exists on this machine. 2750 */ 2751 2752 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2753 { 2754 #ifdef CONFIG_HIGHMEM 2755 int i; 2756 2757 if (!(dev->features & NETIF_F_HIGHDMA)) { 2758 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2759 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2760 2761 if (PageHighMem(skb_frag_page(frag))) 2762 return 1; 2763 } 2764 } 2765 2766 if (PCI_DMA_BUS_IS_PHYS) { 2767 struct device *pdev = dev->dev.parent; 2768 2769 if (!pdev) 2770 return 0; 2771 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2772 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2773 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2774 2775 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2776 return 1; 2777 } 2778 } 2779 #endif 2780 return 0; 2781 } 2782 2783 /* If MPLS offload request, verify we are testing hardware MPLS features 2784 * instead of standard features for the netdev. 2785 */ 2786 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2787 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2788 netdev_features_t features, 2789 __be16 type) 2790 { 2791 if (eth_p_mpls(type)) 2792 features &= skb->dev->mpls_features; 2793 2794 return features; 2795 } 2796 #else 2797 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2798 netdev_features_t features, 2799 __be16 type) 2800 { 2801 return features; 2802 } 2803 #endif 2804 2805 static netdev_features_t harmonize_features(struct sk_buff *skb, 2806 netdev_features_t features) 2807 { 2808 int tmp; 2809 __be16 type; 2810 2811 type = skb_network_protocol(skb, &tmp); 2812 features = net_mpls_features(skb, features, type); 2813 2814 if (skb->ip_summed != CHECKSUM_NONE && 2815 !can_checksum_protocol(features, type)) { 2816 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2817 } 2818 if (illegal_highdma(skb->dev, skb)) 2819 features &= ~NETIF_F_SG; 2820 2821 return features; 2822 } 2823 2824 netdev_features_t passthru_features_check(struct sk_buff *skb, 2825 struct net_device *dev, 2826 netdev_features_t features) 2827 { 2828 return features; 2829 } 2830 EXPORT_SYMBOL(passthru_features_check); 2831 2832 static netdev_features_t dflt_features_check(const struct sk_buff *skb, 2833 struct net_device *dev, 2834 netdev_features_t features) 2835 { 2836 return vlan_features_check(skb, features); 2837 } 2838 2839 static netdev_features_t gso_features_check(const struct sk_buff *skb, 2840 struct net_device *dev, 2841 netdev_features_t features) 2842 { 2843 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2844 2845 if (gso_segs > dev->gso_max_segs) 2846 return features & ~NETIF_F_GSO_MASK; 2847 2848 /* Support for GSO partial features requires software 2849 * intervention before we can actually process the packets 2850 * so we need to strip support for any partial features now 2851 * and we can pull them back in after we have partially 2852 * segmented the frame. 2853 */ 2854 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 2855 features &= ~dev->gso_partial_features; 2856 2857 /* Make sure to clear the IPv4 ID mangling feature if the 2858 * IPv4 header has the potential to be fragmented. 2859 */ 2860 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 2861 struct iphdr *iph = skb->encapsulation ? 2862 inner_ip_hdr(skb) : ip_hdr(skb); 2863 2864 if (!(iph->frag_off & htons(IP_DF))) 2865 features &= ~NETIF_F_TSO_MANGLEID; 2866 } 2867 2868 return features; 2869 } 2870 2871 netdev_features_t netif_skb_features(struct sk_buff *skb) 2872 { 2873 struct net_device *dev = skb->dev; 2874 netdev_features_t features = dev->features; 2875 2876 if (skb_is_gso(skb)) 2877 features = gso_features_check(skb, dev, features); 2878 2879 /* If encapsulation offload request, verify we are testing 2880 * hardware encapsulation features instead of standard 2881 * features for the netdev 2882 */ 2883 if (skb->encapsulation) 2884 features &= dev->hw_enc_features; 2885 2886 if (skb_vlan_tagged(skb)) 2887 features = netdev_intersect_features(features, 2888 dev->vlan_features | 2889 NETIF_F_HW_VLAN_CTAG_TX | 2890 NETIF_F_HW_VLAN_STAG_TX); 2891 2892 if (dev->netdev_ops->ndo_features_check) 2893 features &= dev->netdev_ops->ndo_features_check(skb, dev, 2894 features); 2895 else 2896 features &= dflt_features_check(skb, dev, features); 2897 2898 return harmonize_features(skb, features); 2899 } 2900 EXPORT_SYMBOL(netif_skb_features); 2901 2902 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 2903 struct netdev_queue *txq, bool more) 2904 { 2905 unsigned int len; 2906 int rc; 2907 2908 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 2909 dev_queue_xmit_nit(skb, dev); 2910 2911 len = skb->len; 2912 trace_net_dev_start_xmit(skb, dev); 2913 rc = netdev_start_xmit(skb, dev, txq, more); 2914 trace_net_dev_xmit(skb, rc, dev, len); 2915 2916 return rc; 2917 } 2918 2919 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 2920 struct netdev_queue *txq, int *ret) 2921 { 2922 struct sk_buff *skb = first; 2923 int rc = NETDEV_TX_OK; 2924 2925 while (skb) { 2926 struct sk_buff *next = skb->next; 2927 2928 skb->next = NULL; 2929 rc = xmit_one(skb, dev, txq, next != NULL); 2930 if (unlikely(!dev_xmit_complete(rc))) { 2931 skb->next = next; 2932 goto out; 2933 } 2934 2935 skb = next; 2936 if (netif_xmit_stopped(txq) && skb) { 2937 rc = NETDEV_TX_BUSY; 2938 break; 2939 } 2940 } 2941 2942 out: 2943 *ret = rc; 2944 return skb; 2945 } 2946 2947 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 2948 netdev_features_t features) 2949 { 2950 if (skb_vlan_tag_present(skb) && 2951 !vlan_hw_offload_capable(features, skb->vlan_proto)) 2952 skb = __vlan_hwaccel_push_inside(skb); 2953 return skb; 2954 } 2955 2956 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) 2957 { 2958 netdev_features_t features; 2959 2960 features = netif_skb_features(skb); 2961 skb = validate_xmit_vlan(skb, features); 2962 if (unlikely(!skb)) 2963 goto out_null; 2964 2965 if (netif_needs_gso(skb, features)) { 2966 struct sk_buff *segs; 2967 2968 segs = skb_gso_segment(skb, features); 2969 if (IS_ERR(segs)) { 2970 goto out_kfree_skb; 2971 } else if (segs) { 2972 consume_skb(skb); 2973 skb = segs; 2974 } 2975 } else { 2976 if (skb_needs_linearize(skb, features) && 2977 __skb_linearize(skb)) 2978 goto out_kfree_skb; 2979 2980 if (validate_xmit_xfrm(skb, features)) 2981 goto out_kfree_skb; 2982 2983 /* If packet is not checksummed and device does not 2984 * support checksumming for this protocol, complete 2985 * checksumming here. 2986 */ 2987 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2988 if (skb->encapsulation) 2989 skb_set_inner_transport_header(skb, 2990 skb_checksum_start_offset(skb)); 2991 else 2992 skb_set_transport_header(skb, 2993 skb_checksum_start_offset(skb)); 2994 if (!(features & NETIF_F_CSUM_MASK) && 2995 skb_checksum_help(skb)) 2996 goto out_kfree_skb; 2997 } 2998 } 2999 3000 return skb; 3001 3002 out_kfree_skb: 3003 kfree_skb(skb); 3004 out_null: 3005 atomic_long_inc(&dev->tx_dropped); 3006 return NULL; 3007 } 3008 3009 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev) 3010 { 3011 struct sk_buff *next, *head = NULL, *tail; 3012 3013 for (; skb != NULL; skb = next) { 3014 next = skb->next; 3015 skb->next = NULL; 3016 3017 /* in case skb wont be segmented, point to itself */ 3018 skb->prev = skb; 3019 3020 skb = validate_xmit_skb(skb, dev); 3021 if (!skb) 3022 continue; 3023 3024 if (!head) 3025 head = skb; 3026 else 3027 tail->next = skb; 3028 /* If skb was segmented, skb->prev points to 3029 * the last segment. If not, it still contains skb. 3030 */ 3031 tail = skb->prev; 3032 } 3033 return head; 3034 } 3035 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3036 3037 static void qdisc_pkt_len_init(struct sk_buff *skb) 3038 { 3039 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3040 3041 qdisc_skb_cb(skb)->pkt_len = skb->len; 3042 3043 /* To get more precise estimation of bytes sent on wire, 3044 * we add to pkt_len the headers size of all segments 3045 */ 3046 if (shinfo->gso_size) { 3047 unsigned int hdr_len; 3048 u16 gso_segs = shinfo->gso_segs; 3049 3050 /* mac layer + network layer */ 3051 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3052 3053 /* + transport layer */ 3054 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 3055 hdr_len += tcp_hdrlen(skb); 3056 else 3057 hdr_len += sizeof(struct udphdr); 3058 3059 if (shinfo->gso_type & SKB_GSO_DODGY) 3060 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3061 shinfo->gso_size); 3062 3063 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3064 } 3065 } 3066 3067 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3068 struct net_device *dev, 3069 struct netdev_queue *txq) 3070 { 3071 spinlock_t *root_lock = qdisc_lock(q); 3072 struct sk_buff *to_free = NULL; 3073 bool contended; 3074 int rc; 3075 3076 qdisc_calculate_pkt_len(skb, q); 3077 /* 3078 * Heuristic to force contended enqueues to serialize on a 3079 * separate lock before trying to get qdisc main lock. 3080 * This permits qdisc->running owner to get the lock more 3081 * often and dequeue packets faster. 3082 */ 3083 contended = qdisc_is_running(q); 3084 if (unlikely(contended)) 3085 spin_lock(&q->busylock); 3086 3087 spin_lock(root_lock); 3088 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3089 __qdisc_drop(skb, &to_free); 3090 rc = NET_XMIT_DROP; 3091 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3092 qdisc_run_begin(q)) { 3093 /* 3094 * This is a work-conserving queue; there are no old skbs 3095 * waiting to be sent out; and the qdisc is not running - 3096 * xmit the skb directly. 3097 */ 3098 3099 qdisc_bstats_update(q, skb); 3100 3101 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3102 if (unlikely(contended)) { 3103 spin_unlock(&q->busylock); 3104 contended = false; 3105 } 3106 __qdisc_run(q); 3107 } else 3108 qdisc_run_end(q); 3109 3110 rc = NET_XMIT_SUCCESS; 3111 } else { 3112 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3113 if (qdisc_run_begin(q)) { 3114 if (unlikely(contended)) { 3115 spin_unlock(&q->busylock); 3116 contended = false; 3117 } 3118 __qdisc_run(q); 3119 } 3120 } 3121 spin_unlock(root_lock); 3122 if (unlikely(to_free)) 3123 kfree_skb_list(to_free); 3124 if (unlikely(contended)) 3125 spin_unlock(&q->busylock); 3126 return rc; 3127 } 3128 3129 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3130 static void skb_update_prio(struct sk_buff *skb) 3131 { 3132 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 3133 3134 if (!skb->priority && skb->sk && map) { 3135 unsigned int prioidx = 3136 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data); 3137 3138 if (prioidx < map->priomap_len) 3139 skb->priority = map->priomap[prioidx]; 3140 } 3141 } 3142 #else 3143 #define skb_update_prio(skb) 3144 #endif 3145 3146 DEFINE_PER_CPU(int, xmit_recursion); 3147 EXPORT_SYMBOL(xmit_recursion); 3148 3149 /** 3150 * dev_loopback_xmit - loop back @skb 3151 * @net: network namespace this loopback is happening in 3152 * @sk: sk needed to be a netfilter okfn 3153 * @skb: buffer to transmit 3154 */ 3155 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3156 { 3157 skb_reset_mac_header(skb); 3158 __skb_pull(skb, skb_network_offset(skb)); 3159 skb->pkt_type = PACKET_LOOPBACK; 3160 skb->ip_summed = CHECKSUM_UNNECESSARY; 3161 WARN_ON(!skb_dst(skb)); 3162 skb_dst_force(skb); 3163 netif_rx_ni(skb); 3164 return 0; 3165 } 3166 EXPORT_SYMBOL(dev_loopback_xmit); 3167 3168 #ifdef CONFIG_NET_EGRESS 3169 static struct sk_buff * 3170 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3171 { 3172 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list); 3173 struct tcf_result cl_res; 3174 3175 if (!cl) 3176 return skb; 3177 3178 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3179 qdisc_bstats_cpu_update(cl->q, skb); 3180 3181 switch (tc_classify(skb, cl, &cl_res, false)) { 3182 case TC_ACT_OK: 3183 case TC_ACT_RECLASSIFY: 3184 skb->tc_index = TC_H_MIN(cl_res.classid); 3185 break; 3186 case TC_ACT_SHOT: 3187 qdisc_qstats_cpu_drop(cl->q); 3188 *ret = NET_XMIT_DROP; 3189 kfree_skb(skb); 3190 return NULL; 3191 case TC_ACT_STOLEN: 3192 case TC_ACT_QUEUED: 3193 *ret = NET_XMIT_SUCCESS; 3194 consume_skb(skb); 3195 return NULL; 3196 case TC_ACT_REDIRECT: 3197 /* No need to push/pop skb's mac_header here on egress! */ 3198 skb_do_redirect(skb); 3199 *ret = NET_XMIT_SUCCESS; 3200 return NULL; 3201 default: 3202 break; 3203 } 3204 3205 return skb; 3206 } 3207 #endif /* CONFIG_NET_EGRESS */ 3208 3209 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 3210 { 3211 #ifdef CONFIG_XPS 3212 struct xps_dev_maps *dev_maps; 3213 struct xps_map *map; 3214 int queue_index = -1; 3215 3216 rcu_read_lock(); 3217 dev_maps = rcu_dereference(dev->xps_maps); 3218 if (dev_maps) { 3219 unsigned int tci = skb->sender_cpu - 1; 3220 3221 if (dev->num_tc) { 3222 tci *= dev->num_tc; 3223 tci += netdev_get_prio_tc_map(dev, skb->priority); 3224 } 3225 3226 map = rcu_dereference(dev_maps->cpu_map[tci]); 3227 if (map) { 3228 if (map->len == 1) 3229 queue_index = map->queues[0]; 3230 else 3231 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb), 3232 map->len)]; 3233 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3234 queue_index = -1; 3235 } 3236 } 3237 rcu_read_unlock(); 3238 3239 return queue_index; 3240 #else 3241 return -1; 3242 #endif 3243 } 3244 3245 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb) 3246 { 3247 struct sock *sk = skb->sk; 3248 int queue_index = sk_tx_queue_get(sk); 3249 3250 if (queue_index < 0 || skb->ooo_okay || 3251 queue_index >= dev->real_num_tx_queues) { 3252 int new_index = get_xps_queue(dev, skb); 3253 3254 if (new_index < 0) 3255 new_index = skb_tx_hash(dev, skb); 3256 3257 if (queue_index != new_index && sk && 3258 sk_fullsock(sk) && 3259 rcu_access_pointer(sk->sk_dst_cache)) 3260 sk_tx_queue_set(sk, new_index); 3261 3262 queue_index = new_index; 3263 } 3264 3265 return queue_index; 3266 } 3267 3268 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3269 struct sk_buff *skb, 3270 void *accel_priv) 3271 { 3272 int queue_index = 0; 3273 3274 #ifdef CONFIG_XPS 3275 u32 sender_cpu = skb->sender_cpu - 1; 3276 3277 if (sender_cpu >= (u32)NR_CPUS) 3278 skb->sender_cpu = raw_smp_processor_id() + 1; 3279 #endif 3280 3281 if (dev->real_num_tx_queues != 1) { 3282 const struct net_device_ops *ops = dev->netdev_ops; 3283 3284 if (ops->ndo_select_queue) 3285 queue_index = ops->ndo_select_queue(dev, skb, accel_priv, 3286 __netdev_pick_tx); 3287 else 3288 queue_index = __netdev_pick_tx(dev, skb); 3289 3290 if (!accel_priv) 3291 queue_index = netdev_cap_txqueue(dev, queue_index); 3292 } 3293 3294 skb_set_queue_mapping(skb, queue_index); 3295 return netdev_get_tx_queue(dev, queue_index); 3296 } 3297 3298 /** 3299 * __dev_queue_xmit - transmit a buffer 3300 * @skb: buffer to transmit 3301 * @accel_priv: private data used for L2 forwarding offload 3302 * 3303 * Queue a buffer for transmission to a network device. The caller must 3304 * have set the device and priority and built the buffer before calling 3305 * this function. The function can be called from an interrupt. 3306 * 3307 * A negative errno code is returned on a failure. A success does not 3308 * guarantee the frame will be transmitted as it may be dropped due 3309 * to congestion or traffic shaping. 3310 * 3311 * ----------------------------------------------------------------------------------- 3312 * I notice this method can also return errors from the queue disciplines, 3313 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3314 * be positive. 3315 * 3316 * Regardless of the return value, the skb is consumed, so it is currently 3317 * difficult to retry a send to this method. (You can bump the ref count 3318 * before sending to hold a reference for retry if you are careful.) 3319 * 3320 * When calling this method, interrupts MUST be enabled. This is because 3321 * the BH enable code must have IRQs enabled so that it will not deadlock. 3322 * --BLG 3323 */ 3324 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 3325 { 3326 struct net_device *dev = skb->dev; 3327 struct netdev_queue *txq; 3328 struct Qdisc *q; 3329 int rc = -ENOMEM; 3330 3331 skb_reset_mac_header(skb); 3332 3333 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3334 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3335 3336 /* Disable soft irqs for various locks below. Also 3337 * stops preemption for RCU. 3338 */ 3339 rcu_read_lock_bh(); 3340 3341 skb_update_prio(skb); 3342 3343 qdisc_pkt_len_init(skb); 3344 #ifdef CONFIG_NET_CLS_ACT 3345 skb->tc_at_ingress = 0; 3346 # ifdef CONFIG_NET_EGRESS 3347 if (static_key_false(&egress_needed)) { 3348 skb = sch_handle_egress(skb, &rc, dev); 3349 if (!skb) 3350 goto out; 3351 } 3352 # endif 3353 #endif 3354 /* If device/qdisc don't need skb->dst, release it right now while 3355 * its hot in this cpu cache. 3356 */ 3357 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3358 skb_dst_drop(skb); 3359 else 3360 skb_dst_force(skb); 3361 3362 txq = netdev_pick_tx(dev, skb, accel_priv); 3363 q = rcu_dereference_bh(txq->qdisc); 3364 3365 trace_net_dev_queue(skb); 3366 if (q->enqueue) { 3367 rc = __dev_xmit_skb(skb, q, dev, txq); 3368 goto out; 3369 } 3370 3371 /* The device has no queue. Common case for software devices: 3372 * loopback, all the sorts of tunnels... 3373 3374 * Really, it is unlikely that netif_tx_lock protection is necessary 3375 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 3376 * counters.) 3377 * However, it is possible, that they rely on protection 3378 * made by us here. 3379 3380 * Check this and shot the lock. It is not prone from deadlocks. 3381 *Either shot noqueue qdisc, it is even simpler 8) 3382 */ 3383 if (dev->flags & IFF_UP) { 3384 int cpu = smp_processor_id(); /* ok because BHs are off */ 3385 3386 if (txq->xmit_lock_owner != cpu) { 3387 if (unlikely(__this_cpu_read(xmit_recursion) > 3388 XMIT_RECURSION_LIMIT)) 3389 goto recursion_alert; 3390 3391 skb = validate_xmit_skb(skb, dev); 3392 if (!skb) 3393 goto out; 3394 3395 HARD_TX_LOCK(dev, txq, cpu); 3396 3397 if (!netif_xmit_stopped(txq)) { 3398 __this_cpu_inc(xmit_recursion); 3399 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3400 __this_cpu_dec(xmit_recursion); 3401 if (dev_xmit_complete(rc)) { 3402 HARD_TX_UNLOCK(dev, txq); 3403 goto out; 3404 } 3405 } 3406 HARD_TX_UNLOCK(dev, txq); 3407 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3408 dev->name); 3409 } else { 3410 /* Recursion is detected! It is possible, 3411 * unfortunately 3412 */ 3413 recursion_alert: 3414 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3415 dev->name); 3416 } 3417 } 3418 3419 rc = -ENETDOWN; 3420 rcu_read_unlock_bh(); 3421 3422 atomic_long_inc(&dev->tx_dropped); 3423 kfree_skb_list(skb); 3424 return rc; 3425 out: 3426 rcu_read_unlock_bh(); 3427 return rc; 3428 } 3429 3430 int dev_queue_xmit(struct sk_buff *skb) 3431 { 3432 return __dev_queue_xmit(skb, NULL); 3433 } 3434 EXPORT_SYMBOL(dev_queue_xmit); 3435 3436 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3437 { 3438 return __dev_queue_xmit(skb, accel_priv); 3439 } 3440 EXPORT_SYMBOL(dev_queue_xmit_accel); 3441 3442 3443 /************************************************************************* 3444 * Receiver routines 3445 *************************************************************************/ 3446 3447 int netdev_max_backlog __read_mostly = 1000; 3448 EXPORT_SYMBOL(netdev_max_backlog); 3449 3450 int netdev_tstamp_prequeue __read_mostly = 1; 3451 int netdev_budget __read_mostly = 300; 3452 unsigned int __read_mostly netdev_budget_usecs = 2000; 3453 int weight_p __read_mostly = 64; /* old backlog weight */ 3454 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 3455 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 3456 int dev_rx_weight __read_mostly = 64; 3457 int dev_tx_weight __read_mostly = 64; 3458 3459 /* Called with irq disabled */ 3460 static inline void ____napi_schedule(struct softnet_data *sd, 3461 struct napi_struct *napi) 3462 { 3463 list_add_tail(&napi->poll_list, &sd->poll_list); 3464 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3465 } 3466 3467 #ifdef CONFIG_RPS 3468 3469 /* One global table that all flow-based protocols share. */ 3470 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3471 EXPORT_SYMBOL(rps_sock_flow_table); 3472 u32 rps_cpu_mask __read_mostly; 3473 EXPORT_SYMBOL(rps_cpu_mask); 3474 3475 struct static_key rps_needed __read_mostly; 3476 EXPORT_SYMBOL(rps_needed); 3477 struct static_key rfs_needed __read_mostly; 3478 EXPORT_SYMBOL(rfs_needed); 3479 3480 static struct rps_dev_flow * 3481 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3482 struct rps_dev_flow *rflow, u16 next_cpu) 3483 { 3484 if (next_cpu < nr_cpu_ids) { 3485 #ifdef CONFIG_RFS_ACCEL 3486 struct netdev_rx_queue *rxqueue; 3487 struct rps_dev_flow_table *flow_table; 3488 struct rps_dev_flow *old_rflow; 3489 u32 flow_id; 3490 u16 rxq_index; 3491 int rc; 3492 3493 /* Should we steer this flow to a different hardware queue? */ 3494 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3495 !(dev->features & NETIF_F_NTUPLE)) 3496 goto out; 3497 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3498 if (rxq_index == skb_get_rx_queue(skb)) 3499 goto out; 3500 3501 rxqueue = dev->_rx + rxq_index; 3502 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3503 if (!flow_table) 3504 goto out; 3505 flow_id = skb_get_hash(skb) & flow_table->mask; 3506 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3507 rxq_index, flow_id); 3508 if (rc < 0) 3509 goto out; 3510 old_rflow = rflow; 3511 rflow = &flow_table->flows[flow_id]; 3512 rflow->filter = rc; 3513 if (old_rflow->filter == rflow->filter) 3514 old_rflow->filter = RPS_NO_FILTER; 3515 out: 3516 #endif 3517 rflow->last_qtail = 3518 per_cpu(softnet_data, next_cpu).input_queue_head; 3519 } 3520 3521 rflow->cpu = next_cpu; 3522 return rflow; 3523 } 3524 3525 /* 3526 * get_rps_cpu is called from netif_receive_skb and returns the target 3527 * CPU from the RPS map of the receiving queue for a given skb. 3528 * rcu_read_lock must be held on entry. 3529 */ 3530 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3531 struct rps_dev_flow **rflowp) 3532 { 3533 const struct rps_sock_flow_table *sock_flow_table; 3534 struct netdev_rx_queue *rxqueue = dev->_rx; 3535 struct rps_dev_flow_table *flow_table; 3536 struct rps_map *map; 3537 int cpu = -1; 3538 u32 tcpu; 3539 u32 hash; 3540 3541 if (skb_rx_queue_recorded(skb)) { 3542 u16 index = skb_get_rx_queue(skb); 3543 3544 if (unlikely(index >= dev->real_num_rx_queues)) { 3545 WARN_ONCE(dev->real_num_rx_queues > 1, 3546 "%s received packet on queue %u, but number " 3547 "of RX queues is %u\n", 3548 dev->name, index, dev->real_num_rx_queues); 3549 goto done; 3550 } 3551 rxqueue += index; 3552 } 3553 3554 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3555 3556 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3557 map = rcu_dereference(rxqueue->rps_map); 3558 if (!flow_table && !map) 3559 goto done; 3560 3561 skb_reset_network_header(skb); 3562 hash = skb_get_hash(skb); 3563 if (!hash) 3564 goto done; 3565 3566 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3567 if (flow_table && sock_flow_table) { 3568 struct rps_dev_flow *rflow; 3569 u32 next_cpu; 3570 u32 ident; 3571 3572 /* First check into global flow table if there is a match */ 3573 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3574 if ((ident ^ hash) & ~rps_cpu_mask) 3575 goto try_rps; 3576 3577 next_cpu = ident & rps_cpu_mask; 3578 3579 /* OK, now we know there is a match, 3580 * we can look at the local (per receive queue) flow table 3581 */ 3582 rflow = &flow_table->flows[hash & flow_table->mask]; 3583 tcpu = rflow->cpu; 3584 3585 /* 3586 * If the desired CPU (where last recvmsg was done) is 3587 * different from current CPU (one in the rx-queue flow 3588 * table entry), switch if one of the following holds: 3589 * - Current CPU is unset (>= nr_cpu_ids). 3590 * - Current CPU is offline. 3591 * - The current CPU's queue tail has advanced beyond the 3592 * last packet that was enqueued using this table entry. 3593 * This guarantees that all previous packets for the flow 3594 * have been dequeued, thus preserving in order delivery. 3595 */ 3596 if (unlikely(tcpu != next_cpu) && 3597 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 3598 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3599 rflow->last_qtail)) >= 0)) { 3600 tcpu = next_cpu; 3601 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3602 } 3603 3604 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 3605 *rflowp = rflow; 3606 cpu = tcpu; 3607 goto done; 3608 } 3609 } 3610 3611 try_rps: 3612 3613 if (map) { 3614 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3615 if (cpu_online(tcpu)) { 3616 cpu = tcpu; 3617 goto done; 3618 } 3619 } 3620 3621 done: 3622 return cpu; 3623 } 3624 3625 #ifdef CONFIG_RFS_ACCEL 3626 3627 /** 3628 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3629 * @dev: Device on which the filter was set 3630 * @rxq_index: RX queue index 3631 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3632 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3633 * 3634 * Drivers that implement ndo_rx_flow_steer() should periodically call 3635 * this function for each installed filter and remove the filters for 3636 * which it returns %true. 3637 */ 3638 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3639 u32 flow_id, u16 filter_id) 3640 { 3641 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3642 struct rps_dev_flow_table *flow_table; 3643 struct rps_dev_flow *rflow; 3644 bool expire = true; 3645 unsigned int cpu; 3646 3647 rcu_read_lock(); 3648 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3649 if (flow_table && flow_id <= flow_table->mask) { 3650 rflow = &flow_table->flows[flow_id]; 3651 cpu = ACCESS_ONCE(rflow->cpu); 3652 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 3653 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3654 rflow->last_qtail) < 3655 (int)(10 * flow_table->mask))) 3656 expire = false; 3657 } 3658 rcu_read_unlock(); 3659 return expire; 3660 } 3661 EXPORT_SYMBOL(rps_may_expire_flow); 3662 3663 #endif /* CONFIG_RFS_ACCEL */ 3664 3665 /* Called from hardirq (IPI) context */ 3666 static void rps_trigger_softirq(void *data) 3667 { 3668 struct softnet_data *sd = data; 3669 3670 ____napi_schedule(sd, &sd->backlog); 3671 sd->received_rps++; 3672 } 3673 3674 #endif /* CONFIG_RPS */ 3675 3676 /* 3677 * Check if this softnet_data structure is another cpu one 3678 * If yes, queue it to our IPI list and return 1 3679 * If no, return 0 3680 */ 3681 static int rps_ipi_queued(struct softnet_data *sd) 3682 { 3683 #ifdef CONFIG_RPS 3684 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3685 3686 if (sd != mysd) { 3687 sd->rps_ipi_next = mysd->rps_ipi_list; 3688 mysd->rps_ipi_list = sd; 3689 3690 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3691 return 1; 3692 } 3693 #endif /* CONFIG_RPS */ 3694 return 0; 3695 } 3696 3697 #ifdef CONFIG_NET_FLOW_LIMIT 3698 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3699 #endif 3700 3701 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3702 { 3703 #ifdef CONFIG_NET_FLOW_LIMIT 3704 struct sd_flow_limit *fl; 3705 struct softnet_data *sd; 3706 unsigned int old_flow, new_flow; 3707 3708 if (qlen < (netdev_max_backlog >> 1)) 3709 return false; 3710 3711 sd = this_cpu_ptr(&softnet_data); 3712 3713 rcu_read_lock(); 3714 fl = rcu_dereference(sd->flow_limit); 3715 if (fl) { 3716 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3717 old_flow = fl->history[fl->history_head]; 3718 fl->history[fl->history_head] = new_flow; 3719 3720 fl->history_head++; 3721 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3722 3723 if (likely(fl->buckets[old_flow])) 3724 fl->buckets[old_flow]--; 3725 3726 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3727 fl->count++; 3728 rcu_read_unlock(); 3729 return true; 3730 } 3731 } 3732 rcu_read_unlock(); 3733 #endif 3734 return false; 3735 } 3736 3737 /* 3738 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3739 * queue (may be a remote CPU queue). 3740 */ 3741 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3742 unsigned int *qtail) 3743 { 3744 struct softnet_data *sd; 3745 unsigned long flags; 3746 unsigned int qlen; 3747 3748 sd = &per_cpu(softnet_data, cpu); 3749 3750 local_irq_save(flags); 3751 3752 rps_lock(sd); 3753 if (!netif_running(skb->dev)) 3754 goto drop; 3755 qlen = skb_queue_len(&sd->input_pkt_queue); 3756 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3757 if (qlen) { 3758 enqueue: 3759 __skb_queue_tail(&sd->input_pkt_queue, skb); 3760 input_queue_tail_incr_save(sd, qtail); 3761 rps_unlock(sd); 3762 local_irq_restore(flags); 3763 return NET_RX_SUCCESS; 3764 } 3765 3766 /* Schedule NAPI for backlog device 3767 * We can use non atomic operation since we own the queue lock 3768 */ 3769 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3770 if (!rps_ipi_queued(sd)) 3771 ____napi_schedule(sd, &sd->backlog); 3772 } 3773 goto enqueue; 3774 } 3775 3776 drop: 3777 sd->dropped++; 3778 rps_unlock(sd); 3779 3780 local_irq_restore(flags); 3781 3782 atomic_long_inc(&skb->dev->rx_dropped); 3783 kfree_skb(skb); 3784 return NET_RX_DROP; 3785 } 3786 3787 static int netif_rx_internal(struct sk_buff *skb) 3788 { 3789 int ret; 3790 3791 net_timestamp_check(netdev_tstamp_prequeue, skb); 3792 3793 trace_netif_rx(skb); 3794 #ifdef CONFIG_RPS 3795 if (static_key_false(&rps_needed)) { 3796 struct rps_dev_flow voidflow, *rflow = &voidflow; 3797 int cpu; 3798 3799 preempt_disable(); 3800 rcu_read_lock(); 3801 3802 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3803 if (cpu < 0) 3804 cpu = smp_processor_id(); 3805 3806 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3807 3808 rcu_read_unlock(); 3809 preempt_enable(); 3810 } else 3811 #endif 3812 { 3813 unsigned int qtail; 3814 3815 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3816 put_cpu(); 3817 } 3818 return ret; 3819 } 3820 3821 /** 3822 * netif_rx - post buffer to the network code 3823 * @skb: buffer to post 3824 * 3825 * This function receives a packet from a device driver and queues it for 3826 * the upper (protocol) levels to process. It always succeeds. The buffer 3827 * may be dropped during processing for congestion control or by the 3828 * protocol layers. 3829 * 3830 * return values: 3831 * NET_RX_SUCCESS (no congestion) 3832 * NET_RX_DROP (packet was dropped) 3833 * 3834 */ 3835 3836 int netif_rx(struct sk_buff *skb) 3837 { 3838 trace_netif_rx_entry(skb); 3839 3840 return netif_rx_internal(skb); 3841 } 3842 EXPORT_SYMBOL(netif_rx); 3843 3844 int netif_rx_ni(struct sk_buff *skb) 3845 { 3846 int err; 3847 3848 trace_netif_rx_ni_entry(skb); 3849 3850 preempt_disable(); 3851 err = netif_rx_internal(skb); 3852 if (local_softirq_pending()) 3853 do_softirq(); 3854 preempt_enable(); 3855 3856 return err; 3857 } 3858 EXPORT_SYMBOL(netif_rx_ni); 3859 3860 static __latent_entropy void net_tx_action(struct softirq_action *h) 3861 { 3862 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 3863 3864 if (sd->completion_queue) { 3865 struct sk_buff *clist; 3866 3867 local_irq_disable(); 3868 clist = sd->completion_queue; 3869 sd->completion_queue = NULL; 3870 local_irq_enable(); 3871 3872 while (clist) { 3873 struct sk_buff *skb = clist; 3874 3875 clist = clist->next; 3876 3877 WARN_ON(atomic_read(&skb->users)); 3878 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 3879 trace_consume_skb(skb); 3880 else 3881 trace_kfree_skb(skb, net_tx_action); 3882 3883 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 3884 __kfree_skb(skb); 3885 else 3886 __kfree_skb_defer(skb); 3887 } 3888 3889 __kfree_skb_flush(); 3890 } 3891 3892 if (sd->output_queue) { 3893 struct Qdisc *head; 3894 3895 local_irq_disable(); 3896 head = sd->output_queue; 3897 sd->output_queue = NULL; 3898 sd->output_queue_tailp = &sd->output_queue; 3899 local_irq_enable(); 3900 3901 while (head) { 3902 struct Qdisc *q = head; 3903 spinlock_t *root_lock; 3904 3905 head = head->next_sched; 3906 3907 root_lock = qdisc_lock(q); 3908 spin_lock(root_lock); 3909 /* We need to make sure head->next_sched is read 3910 * before clearing __QDISC_STATE_SCHED 3911 */ 3912 smp_mb__before_atomic(); 3913 clear_bit(__QDISC_STATE_SCHED, &q->state); 3914 qdisc_run(q); 3915 spin_unlock(root_lock); 3916 } 3917 } 3918 } 3919 3920 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 3921 /* This hook is defined here for ATM LANE */ 3922 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3923 unsigned char *addr) __read_mostly; 3924 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3925 #endif 3926 3927 static inline struct sk_buff * 3928 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 3929 struct net_device *orig_dev) 3930 { 3931 #ifdef CONFIG_NET_CLS_ACT 3932 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list); 3933 struct tcf_result cl_res; 3934 3935 /* If there's at least one ingress present somewhere (so 3936 * we get here via enabled static key), remaining devices 3937 * that are not configured with an ingress qdisc will bail 3938 * out here. 3939 */ 3940 if (!cl) 3941 return skb; 3942 if (*pt_prev) { 3943 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3944 *pt_prev = NULL; 3945 } 3946 3947 qdisc_skb_cb(skb)->pkt_len = skb->len; 3948 skb->tc_at_ingress = 1; 3949 qdisc_bstats_cpu_update(cl->q, skb); 3950 3951 switch (tc_classify(skb, cl, &cl_res, false)) { 3952 case TC_ACT_OK: 3953 case TC_ACT_RECLASSIFY: 3954 skb->tc_index = TC_H_MIN(cl_res.classid); 3955 break; 3956 case TC_ACT_SHOT: 3957 qdisc_qstats_cpu_drop(cl->q); 3958 kfree_skb(skb); 3959 return NULL; 3960 case TC_ACT_STOLEN: 3961 case TC_ACT_QUEUED: 3962 consume_skb(skb); 3963 return NULL; 3964 case TC_ACT_REDIRECT: 3965 /* skb_mac_header check was done by cls/act_bpf, so 3966 * we can safely push the L2 header back before 3967 * redirecting to another netdev 3968 */ 3969 __skb_push(skb, skb->mac_len); 3970 skb_do_redirect(skb); 3971 return NULL; 3972 default: 3973 break; 3974 } 3975 #endif /* CONFIG_NET_CLS_ACT */ 3976 return skb; 3977 } 3978 3979 /** 3980 * netdev_is_rx_handler_busy - check if receive handler is registered 3981 * @dev: device to check 3982 * 3983 * Check if a receive handler is already registered for a given device. 3984 * Return true if there one. 3985 * 3986 * The caller must hold the rtnl_mutex. 3987 */ 3988 bool netdev_is_rx_handler_busy(struct net_device *dev) 3989 { 3990 ASSERT_RTNL(); 3991 return dev && rtnl_dereference(dev->rx_handler); 3992 } 3993 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 3994 3995 /** 3996 * netdev_rx_handler_register - register receive handler 3997 * @dev: device to register a handler for 3998 * @rx_handler: receive handler to register 3999 * @rx_handler_data: data pointer that is used by rx handler 4000 * 4001 * Register a receive handler for a device. This handler will then be 4002 * called from __netif_receive_skb. A negative errno code is returned 4003 * on a failure. 4004 * 4005 * The caller must hold the rtnl_mutex. 4006 * 4007 * For a general description of rx_handler, see enum rx_handler_result. 4008 */ 4009 int netdev_rx_handler_register(struct net_device *dev, 4010 rx_handler_func_t *rx_handler, 4011 void *rx_handler_data) 4012 { 4013 if (netdev_is_rx_handler_busy(dev)) 4014 return -EBUSY; 4015 4016 /* Note: rx_handler_data must be set before rx_handler */ 4017 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4018 rcu_assign_pointer(dev->rx_handler, rx_handler); 4019 4020 return 0; 4021 } 4022 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4023 4024 /** 4025 * netdev_rx_handler_unregister - unregister receive handler 4026 * @dev: device to unregister a handler from 4027 * 4028 * Unregister a receive handler from a device. 4029 * 4030 * The caller must hold the rtnl_mutex. 4031 */ 4032 void netdev_rx_handler_unregister(struct net_device *dev) 4033 { 4034 4035 ASSERT_RTNL(); 4036 RCU_INIT_POINTER(dev->rx_handler, NULL); 4037 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4038 * section has a guarantee to see a non NULL rx_handler_data 4039 * as well. 4040 */ 4041 synchronize_net(); 4042 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4043 } 4044 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4045 4046 /* 4047 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4048 * the special handling of PFMEMALLOC skbs. 4049 */ 4050 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4051 { 4052 switch (skb->protocol) { 4053 case htons(ETH_P_ARP): 4054 case htons(ETH_P_IP): 4055 case htons(ETH_P_IPV6): 4056 case htons(ETH_P_8021Q): 4057 case htons(ETH_P_8021AD): 4058 return true; 4059 default: 4060 return false; 4061 } 4062 } 4063 4064 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4065 int *ret, struct net_device *orig_dev) 4066 { 4067 #ifdef CONFIG_NETFILTER_INGRESS 4068 if (nf_hook_ingress_active(skb)) { 4069 int ingress_retval; 4070 4071 if (*pt_prev) { 4072 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4073 *pt_prev = NULL; 4074 } 4075 4076 rcu_read_lock(); 4077 ingress_retval = nf_hook_ingress(skb); 4078 rcu_read_unlock(); 4079 return ingress_retval; 4080 } 4081 #endif /* CONFIG_NETFILTER_INGRESS */ 4082 return 0; 4083 } 4084 4085 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 4086 { 4087 struct packet_type *ptype, *pt_prev; 4088 rx_handler_func_t *rx_handler; 4089 struct net_device *orig_dev; 4090 bool deliver_exact = false; 4091 int ret = NET_RX_DROP; 4092 __be16 type; 4093 4094 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4095 4096 trace_netif_receive_skb(skb); 4097 4098 orig_dev = skb->dev; 4099 4100 skb_reset_network_header(skb); 4101 if (!skb_transport_header_was_set(skb)) 4102 skb_reset_transport_header(skb); 4103 skb_reset_mac_len(skb); 4104 4105 pt_prev = NULL; 4106 4107 another_round: 4108 skb->skb_iif = skb->dev->ifindex; 4109 4110 __this_cpu_inc(softnet_data.processed); 4111 4112 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4113 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4114 skb = skb_vlan_untag(skb); 4115 if (unlikely(!skb)) 4116 goto out; 4117 } 4118 4119 if (skb_skip_tc_classify(skb)) 4120 goto skip_classify; 4121 4122 if (pfmemalloc) 4123 goto skip_taps; 4124 4125 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4126 if (pt_prev) 4127 ret = deliver_skb(skb, pt_prev, orig_dev); 4128 pt_prev = ptype; 4129 } 4130 4131 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4132 if (pt_prev) 4133 ret = deliver_skb(skb, pt_prev, orig_dev); 4134 pt_prev = ptype; 4135 } 4136 4137 skip_taps: 4138 #ifdef CONFIG_NET_INGRESS 4139 if (static_key_false(&ingress_needed)) { 4140 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4141 if (!skb) 4142 goto out; 4143 4144 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4145 goto out; 4146 } 4147 #endif 4148 skb_reset_tc(skb); 4149 skip_classify: 4150 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4151 goto drop; 4152 4153 if (skb_vlan_tag_present(skb)) { 4154 if (pt_prev) { 4155 ret = deliver_skb(skb, pt_prev, orig_dev); 4156 pt_prev = NULL; 4157 } 4158 if (vlan_do_receive(&skb)) 4159 goto another_round; 4160 else if (unlikely(!skb)) 4161 goto out; 4162 } 4163 4164 rx_handler = rcu_dereference(skb->dev->rx_handler); 4165 if (rx_handler) { 4166 if (pt_prev) { 4167 ret = deliver_skb(skb, pt_prev, orig_dev); 4168 pt_prev = NULL; 4169 } 4170 switch (rx_handler(&skb)) { 4171 case RX_HANDLER_CONSUMED: 4172 ret = NET_RX_SUCCESS; 4173 goto out; 4174 case RX_HANDLER_ANOTHER: 4175 goto another_round; 4176 case RX_HANDLER_EXACT: 4177 deliver_exact = true; 4178 case RX_HANDLER_PASS: 4179 break; 4180 default: 4181 BUG(); 4182 } 4183 } 4184 4185 if (unlikely(skb_vlan_tag_present(skb))) { 4186 if (skb_vlan_tag_get_id(skb)) 4187 skb->pkt_type = PACKET_OTHERHOST; 4188 /* Note: we might in the future use prio bits 4189 * and set skb->priority like in vlan_do_receive() 4190 * For the time being, just ignore Priority Code Point 4191 */ 4192 skb->vlan_tci = 0; 4193 } 4194 4195 type = skb->protocol; 4196 4197 /* deliver only exact match when indicated */ 4198 if (likely(!deliver_exact)) { 4199 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4200 &ptype_base[ntohs(type) & 4201 PTYPE_HASH_MASK]); 4202 } 4203 4204 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4205 &orig_dev->ptype_specific); 4206 4207 if (unlikely(skb->dev != orig_dev)) { 4208 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4209 &skb->dev->ptype_specific); 4210 } 4211 4212 if (pt_prev) { 4213 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 4214 goto drop; 4215 else 4216 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4217 } else { 4218 drop: 4219 if (!deliver_exact) 4220 atomic_long_inc(&skb->dev->rx_dropped); 4221 else 4222 atomic_long_inc(&skb->dev->rx_nohandler); 4223 kfree_skb(skb); 4224 /* Jamal, now you will not able to escape explaining 4225 * me how you were going to use this. :-) 4226 */ 4227 ret = NET_RX_DROP; 4228 } 4229 4230 out: 4231 return ret; 4232 } 4233 4234 static int __netif_receive_skb(struct sk_buff *skb) 4235 { 4236 int ret; 4237 4238 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 4239 unsigned int noreclaim_flag; 4240 4241 /* 4242 * PFMEMALLOC skbs are special, they should 4243 * - be delivered to SOCK_MEMALLOC sockets only 4244 * - stay away from userspace 4245 * - have bounded memory usage 4246 * 4247 * Use PF_MEMALLOC as this saves us from propagating the allocation 4248 * context down to all allocation sites. 4249 */ 4250 noreclaim_flag = memalloc_noreclaim_save(); 4251 ret = __netif_receive_skb_core(skb, true); 4252 memalloc_noreclaim_restore(noreclaim_flag); 4253 } else 4254 ret = __netif_receive_skb_core(skb, false); 4255 4256 return ret; 4257 } 4258 4259 static struct static_key generic_xdp_needed __read_mostly; 4260 4261 static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp) 4262 { 4263 struct bpf_prog *new = xdp->prog; 4264 int ret = 0; 4265 4266 switch (xdp->command) { 4267 case XDP_SETUP_PROG: { 4268 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 4269 4270 rcu_assign_pointer(dev->xdp_prog, new); 4271 if (old) 4272 bpf_prog_put(old); 4273 4274 if (old && !new) { 4275 static_key_slow_dec(&generic_xdp_needed); 4276 } else if (new && !old) { 4277 static_key_slow_inc(&generic_xdp_needed); 4278 dev_disable_lro(dev); 4279 } 4280 break; 4281 } 4282 4283 case XDP_QUERY_PROG: 4284 xdp->prog_attached = !!rcu_access_pointer(dev->xdp_prog); 4285 break; 4286 4287 default: 4288 ret = -EINVAL; 4289 break; 4290 } 4291 4292 return ret; 4293 } 4294 4295 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4296 struct bpf_prog *xdp_prog) 4297 { 4298 struct xdp_buff xdp; 4299 u32 act = XDP_DROP; 4300 void *orig_data; 4301 int hlen, off; 4302 u32 mac_len; 4303 4304 /* Reinjected packets coming from act_mirred or similar should 4305 * not get XDP generic processing. 4306 */ 4307 if (skb_cloned(skb)) 4308 return XDP_PASS; 4309 4310 if (skb_linearize(skb)) 4311 goto do_drop; 4312 4313 /* The XDP program wants to see the packet starting at the MAC 4314 * header. 4315 */ 4316 mac_len = skb->data - skb_mac_header(skb); 4317 hlen = skb_headlen(skb) + mac_len; 4318 xdp.data = skb->data - mac_len; 4319 xdp.data_end = xdp.data + hlen; 4320 xdp.data_hard_start = skb->data - skb_headroom(skb); 4321 orig_data = xdp.data; 4322 4323 act = bpf_prog_run_xdp(xdp_prog, &xdp); 4324 4325 off = xdp.data - orig_data; 4326 if (off > 0) 4327 __skb_pull(skb, off); 4328 else if (off < 0) 4329 __skb_push(skb, -off); 4330 4331 switch (act) { 4332 case XDP_TX: 4333 __skb_push(skb, mac_len); 4334 /* fall through */ 4335 case XDP_PASS: 4336 break; 4337 4338 default: 4339 bpf_warn_invalid_xdp_action(act); 4340 /* fall through */ 4341 case XDP_ABORTED: 4342 trace_xdp_exception(skb->dev, xdp_prog, act); 4343 /* fall through */ 4344 case XDP_DROP: 4345 do_drop: 4346 kfree_skb(skb); 4347 break; 4348 } 4349 4350 return act; 4351 } 4352 4353 /* When doing generic XDP we have to bypass the qdisc layer and the 4354 * network taps in order to match in-driver-XDP behavior. 4355 */ 4356 static void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4357 { 4358 struct net_device *dev = skb->dev; 4359 struct netdev_queue *txq; 4360 bool free_skb = true; 4361 int cpu, rc; 4362 4363 txq = netdev_pick_tx(dev, skb, NULL); 4364 cpu = smp_processor_id(); 4365 HARD_TX_LOCK(dev, txq, cpu); 4366 if (!netif_xmit_stopped(txq)) { 4367 rc = netdev_start_xmit(skb, dev, txq, 0); 4368 if (dev_xmit_complete(rc)) 4369 free_skb = false; 4370 } 4371 HARD_TX_UNLOCK(dev, txq); 4372 if (free_skb) { 4373 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4374 kfree_skb(skb); 4375 } 4376 } 4377 4378 static int netif_receive_skb_internal(struct sk_buff *skb) 4379 { 4380 int ret; 4381 4382 net_timestamp_check(netdev_tstamp_prequeue, skb); 4383 4384 if (skb_defer_rx_timestamp(skb)) 4385 return NET_RX_SUCCESS; 4386 4387 rcu_read_lock(); 4388 4389 if (static_key_false(&generic_xdp_needed)) { 4390 struct bpf_prog *xdp_prog = rcu_dereference(skb->dev->xdp_prog); 4391 4392 if (xdp_prog) { 4393 u32 act = netif_receive_generic_xdp(skb, xdp_prog); 4394 4395 if (act != XDP_PASS) { 4396 rcu_read_unlock(); 4397 if (act == XDP_TX) 4398 generic_xdp_tx(skb, xdp_prog); 4399 return NET_RX_DROP; 4400 } 4401 } 4402 } 4403 4404 #ifdef CONFIG_RPS 4405 if (static_key_false(&rps_needed)) { 4406 struct rps_dev_flow voidflow, *rflow = &voidflow; 4407 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 4408 4409 if (cpu >= 0) { 4410 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4411 rcu_read_unlock(); 4412 return ret; 4413 } 4414 } 4415 #endif 4416 ret = __netif_receive_skb(skb); 4417 rcu_read_unlock(); 4418 return ret; 4419 } 4420 4421 /** 4422 * netif_receive_skb - process receive buffer from network 4423 * @skb: buffer to process 4424 * 4425 * netif_receive_skb() is the main receive data processing function. 4426 * It always succeeds. The buffer may be dropped during processing 4427 * for congestion control or by the protocol layers. 4428 * 4429 * This function may only be called from softirq context and interrupts 4430 * should be enabled. 4431 * 4432 * Return values (usually ignored): 4433 * NET_RX_SUCCESS: no congestion 4434 * NET_RX_DROP: packet was dropped 4435 */ 4436 int netif_receive_skb(struct sk_buff *skb) 4437 { 4438 trace_netif_receive_skb_entry(skb); 4439 4440 return netif_receive_skb_internal(skb); 4441 } 4442 EXPORT_SYMBOL(netif_receive_skb); 4443 4444 DEFINE_PER_CPU(struct work_struct, flush_works); 4445 4446 /* Network device is going away, flush any packets still pending */ 4447 static void flush_backlog(struct work_struct *work) 4448 { 4449 struct sk_buff *skb, *tmp; 4450 struct softnet_data *sd; 4451 4452 local_bh_disable(); 4453 sd = this_cpu_ptr(&softnet_data); 4454 4455 local_irq_disable(); 4456 rps_lock(sd); 4457 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 4458 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4459 __skb_unlink(skb, &sd->input_pkt_queue); 4460 kfree_skb(skb); 4461 input_queue_head_incr(sd); 4462 } 4463 } 4464 rps_unlock(sd); 4465 local_irq_enable(); 4466 4467 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 4468 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4469 __skb_unlink(skb, &sd->process_queue); 4470 kfree_skb(skb); 4471 input_queue_head_incr(sd); 4472 } 4473 } 4474 local_bh_enable(); 4475 } 4476 4477 static void flush_all_backlogs(void) 4478 { 4479 unsigned int cpu; 4480 4481 get_online_cpus(); 4482 4483 for_each_online_cpu(cpu) 4484 queue_work_on(cpu, system_highpri_wq, 4485 per_cpu_ptr(&flush_works, cpu)); 4486 4487 for_each_online_cpu(cpu) 4488 flush_work(per_cpu_ptr(&flush_works, cpu)); 4489 4490 put_online_cpus(); 4491 } 4492 4493 static int napi_gro_complete(struct sk_buff *skb) 4494 { 4495 struct packet_offload *ptype; 4496 __be16 type = skb->protocol; 4497 struct list_head *head = &offload_base; 4498 int err = -ENOENT; 4499 4500 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 4501 4502 if (NAPI_GRO_CB(skb)->count == 1) { 4503 skb_shinfo(skb)->gso_size = 0; 4504 goto out; 4505 } 4506 4507 rcu_read_lock(); 4508 list_for_each_entry_rcu(ptype, head, list) { 4509 if (ptype->type != type || !ptype->callbacks.gro_complete) 4510 continue; 4511 4512 err = ptype->callbacks.gro_complete(skb, 0); 4513 break; 4514 } 4515 rcu_read_unlock(); 4516 4517 if (err) { 4518 WARN_ON(&ptype->list == head); 4519 kfree_skb(skb); 4520 return NET_RX_SUCCESS; 4521 } 4522 4523 out: 4524 return netif_receive_skb_internal(skb); 4525 } 4526 4527 /* napi->gro_list contains packets ordered by age. 4528 * youngest packets at the head of it. 4529 * Complete skbs in reverse order to reduce latencies. 4530 */ 4531 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 4532 { 4533 struct sk_buff *skb, *prev = NULL; 4534 4535 /* scan list and build reverse chain */ 4536 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 4537 skb->prev = prev; 4538 prev = skb; 4539 } 4540 4541 for (skb = prev; skb; skb = prev) { 4542 skb->next = NULL; 4543 4544 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 4545 return; 4546 4547 prev = skb->prev; 4548 napi_gro_complete(skb); 4549 napi->gro_count--; 4550 } 4551 4552 napi->gro_list = NULL; 4553 } 4554 EXPORT_SYMBOL(napi_gro_flush); 4555 4556 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 4557 { 4558 struct sk_buff *p; 4559 unsigned int maclen = skb->dev->hard_header_len; 4560 u32 hash = skb_get_hash_raw(skb); 4561 4562 for (p = napi->gro_list; p; p = p->next) { 4563 unsigned long diffs; 4564 4565 NAPI_GRO_CB(p)->flush = 0; 4566 4567 if (hash != skb_get_hash_raw(p)) { 4568 NAPI_GRO_CB(p)->same_flow = 0; 4569 continue; 4570 } 4571 4572 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 4573 diffs |= p->vlan_tci ^ skb->vlan_tci; 4574 diffs |= skb_metadata_dst_cmp(p, skb); 4575 if (maclen == ETH_HLEN) 4576 diffs |= compare_ether_header(skb_mac_header(p), 4577 skb_mac_header(skb)); 4578 else if (!diffs) 4579 diffs = memcmp(skb_mac_header(p), 4580 skb_mac_header(skb), 4581 maclen); 4582 NAPI_GRO_CB(p)->same_flow = !diffs; 4583 } 4584 } 4585 4586 static void skb_gro_reset_offset(struct sk_buff *skb) 4587 { 4588 const struct skb_shared_info *pinfo = skb_shinfo(skb); 4589 const skb_frag_t *frag0 = &pinfo->frags[0]; 4590 4591 NAPI_GRO_CB(skb)->data_offset = 0; 4592 NAPI_GRO_CB(skb)->frag0 = NULL; 4593 NAPI_GRO_CB(skb)->frag0_len = 0; 4594 4595 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 4596 pinfo->nr_frags && 4597 !PageHighMem(skb_frag_page(frag0))) { 4598 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 4599 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 4600 skb_frag_size(frag0), 4601 skb->end - skb->tail); 4602 } 4603 } 4604 4605 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 4606 { 4607 struct skb_shared_info *pinfo = skb_shinfo(skb); 4608 4609 BUG_ON(skb->end - skb->tail < grow); 4610 4611 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 4612 4613 skb->data_len -= grow; 4614 skb->tail += grow; 4615 4616 pinfo->frags[0].page_offset += grow; 4617 skb_frag_size_sub(&pinfo->frags[0], grow); 4618 4619 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 4620 skb_frag_unref(skb, 0); 4621 memmove(pinfo->frags, pinfo->frags + 1, 4622 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 4623 } 4624 } 4625 4626 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4627 { 4628 struct sk_buff **pp = NULL; 4629 struct packet_offload *ptype; 4630 __be16 type = skb->protocol; 4631 struct list_head *head = &offload_base; 4632 int same_flow; 4633 enum gro_result ret; 4634 int grow; 4635 4636 if (netif_elide_gro(skb->dev)) 4637 goto normal; 4638 4639 if (skb->csum_bad) 4640 goto normal; 4641 4642 gro_list_prepare(napi, skb); 4643 4644 rcu_read_lock(); 4645 list_for_each_entry_rcu(ptype, head, list) { 4646 if (ptype->type != type || !ptype->callbacks.gro_receive) 4647 continue; 4648 4649 skb_set_network_header(skb, skb_gro_offset(skb)); 4650 skb_reset_mac_len(skb); 4651 NAPI_GRO_CB(skb)->same_flow = 0; 4652 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 4653 NAPI_GRO_CB(skb)->free = 0; 4654 NAPI_GRO_CB(skb)->encap_mark = 0; 4655 NAPI_GRO_CB(skb)->recursion_counter = 0; 4656 NAPI_GRO_CB(skb)->is_fou = 0; 4657 NAPI_GRO_CB(skb)->is_atomic = 1; 4658 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 4659 4660 /* Setup for GRO checksum validation */ 4661 switch (skb->ip_summed) { 4662 case CHECKSUM_COMPLETE: 4663 NAPI_GRO_CB(skb)->csum = skb->csum; 4664 NAPI_GRO_CB(skb)->csum_valid = 1; 4665 NAPI_GRO_CB(skb)->csum_cnt = 0; 4666 break; 4667 case CHECKSUM_UNNECESSARY: 4668 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 4669 NAPI_GRO_CB(skb)->csum_valid = 0; 4670 break; 4671 default: 4672 NAPI_GRO_CB(skb)->csum_cnt = 0; 4673 NAPI_GRO_CB(skb)->csum_valid = 0; 4674 } 4675 4676 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4677 break; 4678 } 4679 rcu_read_unlock(); 4680 4681 if (&ptype->list == head) 4682 goto normal; 4683 4684 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) { 4685 ret = GRO_CONSUMED; 4686 goto ok; 4687 } 4688 4689 same_flow = NAPI_GRO_CB(skb)->same_flow; 4690 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 4691 4692 if (pp) { 4693 struct sk_buff *nskb = *pp; 4694 4695 *pp = nskb->next; 4696 nskb->next = NULL; 4697 napi_gro_complete(nskb); 4698 napi->gro_count--; 4699 } 4700 4701 if (same_flow) 4702 goto ok; 4703 4704 if (NAPI_GRO_CB(skb)->flush) 4705 goto normal; 4706 4707 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4708 struct sk_buff *nskb = napi->gro_list; 4709 4710 /* locate the end of the list to select the 'oldest' flow */ 4711 while (nskb->next) { 4712 pp = &nskb->next; 4713 nskb = *pp; 4714 } 4715 *pp = NULL; 4716 nskb->next = NULL; 4717 napi_gro_complete(nskb); 4718 } else { 4719 napi->gro_count++; 4720 } 4721 NAPI_GRO_CB(skb)->count = 1; 4722 NAPI_GRO_CB(skb)->age = jiffies; 4723 NAPI_GRO_CB(skb)->last = skb; 4724 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 4725 skb->next = napi->gro_list; 4726 napi->gro_list = skb; 4727 ret = GRO_HELD; 4728 4729 pull: 4730 grow = skb_gro_offset(skb) - skb_headlen(skb); 4731 if (grow > 0) 4732 gro_pull_from_frag0(skb, grow); 4733 ok: 4734 return ret; 4735 4736 normal: 4737 ret = GRO_NORMAL; 4738 goto pull; 4739 } 4740 4741 struct packet_offload *gro_find_receive_by_type(__be16 type) 4742 { 4743 struct list_head *offload_head = &offload_base; 4744 struct packet_offload *ptype; 4745 4746 list_for_each_entry_rcu(ptype, offload_head, list) { 4747 if (ptype->type != type || !ptype->callbacks.gro_receive) 4748 continue; 4749 return ptype; 4750 } 4751 return NULL; 4752 } 4753 EXPORT_SYMBOL(gro_find_receive_by_type); 4754 4755 struct packet_offload *gro_find_complete_by_type(__be16 type) 4756 { 4757 struct list_head *offload_head = &offload_base; 4758 struct packet_offload *ptype; 4759 4760 list_for_each_entry_rcu(ptype, offload_head, list) { 4761 if (ptype->type != type || !ptype->callbacks.gro_complete) 4762 continue; 4763 return ptype; 4764 } 4765 return NULL; 4766 } 4767 EXPORT_SYMBOL(gro_find_complete_by_type); 4768 4769 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4770 { 4771 switch (ret) { 4772 case GRO_NORMAL: 4773 if (netif_receive_skb_internal(skb)) 4774 ret = GRO_DROP; 4775 break; 4776 4777 case GRO_DROP: 4778 kfree_skb(skb); 4779 break; 4780 4781 case GRO_MERGED_FREE: 4782 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) { 4783 skb_dst_drop(skb); 4784 secpath_reset(skb); 4785 kmem_cache_free(skbuff_head_cache, skb); 4786 } else { 4787 __kfree_skb(skb); 4788 } 4789 break; 4790 4791 case GRO_HELD: 4792 case GRO_MERGED: 4793 case GRO_CONSUMED: 4794 break; 4795 } 4796 4797 return ret; 4798 } 4799 4800 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4801 { 4802 skb_mark_napi_id(skb, napi); 4803 trace_napi_gro_receive_entry(skb); 4804 4805 skb_gro_reset_offset(skb); 4806 4807 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 4808 } 4809 EXPORT_SYMBOL(napi_gro_receive); 4810 4811 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 4812 { 4813 if (unlikely(skb->pfmemalloc)) { 4814 consume_skb(skb); 4815 return; 4816 } 4817 __skb_pull(skb, skb_headlen(skb)); 4818 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 4819 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 4820 skb->vlan_tci = 0; 4821 skb->dev = napi->dev; 4822 skb->skb_iif = 0; 4823 skb->encapsulation = 0; 4824 skb_shinfo(skb)->gso_type = 0; 4825 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4826 secpath_reset(skb); 4827 4828 napi->skb = skb; 4829 } 4830 4831 struct sk_buff *napi_get_frags(struct napi_struct *napi) 4832 { 4833 struct sk_buff *skb = napi->skb; 4834 4835 if (!skb) { 4836 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 4837 if (skb) { 4838 napi->skb = skb; 4839 skb_mark_napi_id(skb, napi); 4840 } 4841 } 4842 return skb; 4843 } 4844 EXPORT_SYMBOL(napi_get_frags); 4845 4846 static gro_result_t napi_frags_finish(struct napi_struct *napi, 4847 struct sk_buff *skb, 4848 gro_result_t ret) 4849 { 4850 switch (ret) { 4851 case GRO_NORMAL: 4852 case GRO_HELD: 4853 __skb_push(skb, ETH_HLEN); 4854 skb->protocol = eth_type_trans(skb, skb->dev); 4855 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 4856 ret = GRO_DROP; 4857 break; 4858 4859 case GRO_DROP: 4860 case GRO_MERGED_FREE: 4861 napi_reuse_skb(napi, skb); 4862 break; 4863 4864 case GRO_MERGED: 4865 case GRO_CONSUMED: 4866 break; 4867 } 4868 4869 return ret; 4870 } 4871 4872 /* Upper GRO stack assumes network header starts at gro_offset=0 4873 * Drivers could call both napi_gro_frags() and napi_gro_receive() 4874 * We copy ethernet header into skb->data to have a common layout. 4875 */ 4876 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4877 { 4878 struct sk_buff *skb = napi->skb; 4879 const struct ethhdr *eth; 4880 unsigned int hlen = sizeof(*eth); 4881 4882 napi->skb = NULL; 4883 4884 skb_reset_mac_header(skb); 4885 skb_gro_reset_offset(skb); 4886 4887 eth = skb_gro_header_fast(skb, 0); 4888 if (unlikely(skb_gro_header_hard(skb, hlen))) { 4889 eth = skb_gro_header_slow(skb, hlen, 0); 4890 if (unlikely(!eth)) { 4891 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 4892 __func__, napi->dev->name); 4893 napi_reuse_skb(napi, skb); 4894 return NULL; 4895 } 4896 } else { 4897 gro_pull_from_frag0(skb, hlen); 4898 NAPI_GRO_CB(skb)->frag0 += hlen; 4899 NAPI_GRO_CB(skb)->frag0_len -= hlen; 4900 } 4901 __skb_pull(skb, hlen); 4902 4903 /* 4904 * This works because the only protocols we care about don't require 4905 * special handling. 4906 * We'll fix it up properly in napi_frags_finish() 4907 */ 4908 skb->protocol = eth->h_proto; 4909 4910 return skb; 4911 } 4912 4913 gro_result_t napi_gro_frags(struct napi_struct *napi) 4914 { 4915 struct sk_buff *skb = napi_frags_skb(napi); 4916 4917 if (!skb) 4918 return GRO_DROP; 4919 4920 trace_napi_gro_frags_entry(skb); 4921 4922 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4923 } 4924 EXPORT_SYMBOL(napi_gro_frags); 4925 4926 /* Compute the checksum from gro_offset and return the folded value 4927 * after adding in any pseudo checksum. 4928 */ 4929 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 4930 { 4931 __wsum wsum; 4932 __sum16 sum; 4933 4934 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 4935 4936 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 4937 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 4938 if (likely(!sum)) { 4939 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 4940 !skb->csum_complete_sw) 4941 netdev_rx_csum_fault(skb->dev); 4942 } 4943 4944 NAPI_GRO_CB(skb)->csum = wsum; 4945 NAPI_GRO_CB(skb)->csum_valid = 1; 4946 4947 return sum; 4948 } 4949 EXPORT_SYMBOL(__skb_gro_checksum_complete); 4950 4951 /* 4952 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 4953 * Note: called with local irq disabled, but exits with local irq enabled. 4954 */ 4955 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 4956 { 4957 #ifdef CONFIG_RPS 4958 struct softnet_data *remsd = sd->rps_ipi_list; 4959 4960 if (remsd) { 4961 sd->rps_ipi_list = NULL; 4962 4963 local_irq_enable(); 4964 4965 /* Send pending IPI's to kick RPS processing on remote cpus. */ 4966 while (remsd) { 4967 struct softnet_data *next = remsd->rps_ipi_next; 4968 4969 if (cpu_online(remsd->cpu)) 4970 smp_call_function_single_async(remsd->cpu, 4971 &remsd->csd); 4972 remsd = next; 4973 } 4974 } else 4975 #endif 4976 local_irq_enable(); 4977 } 4978 4979 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 4980 { 4981 #ifdef CONFIG_RPS 4982 return sd->rps_ipi_list != NULL; 4983 #else 4984 return false; 4985 #endif 4986 } 4987 4988 static int process_backlog(struct napi_struct *napi, int quota) 4989 { 4990 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 4991 bool again = true; 4992 int work = 0; 4993 4994 /* Check if we have pending ipi, its better to send them now, 4995 * not waiting net_rx_action() end. 4996 */ 4997 if (sd_has_rps_ipi_waiting(sd)) { 4998 local_irq_disable(); 4999 net_rps_action_and_irq_enable(sd); 5000 } 5001 5002 napi->weight = dev_rx_weight; 5003 while (again) { 5004 struct sk_buff *skb; 5005 5006 while ((skb = __skb_dequeue(&sd->process_queue))) { 5007 rcu_read_lock(); 5008 __netif_receive_skb(skb); 5009 rcu_read_unlock(); 5010 input_queue_head_incr(sd); 5011 if (++work >= quota) 5012 return work; 5013 5014 } 5015 5016 local_irq_disable(); 5017 rps_lock(sd); 5018 if (skb_queue_empty(&sd->input_pkt_queue)) { 5019 /* 5020 * Inline a custom version of __napi_complete(). 5021 * only current cpu owns and manipulates this napi, 5022 * and NAPI_STATE_SCHED is the only possible flag set 5023 * on backlog. 5024 * We can use a plain write instead of clear_bit(), 5025 * and we dont need an smp_mb() memory barrier. 5026 */ 5027 napi->state = 0; 5028 again = false; 5029 } else { 5030 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5031 &sd->process_queue); 5032 } 5033 rps_unlock(sd); 5034 local_irq_enable(); 5035 } 5036 5037 return work; 5038 } 5039 5040 /** 5041 * __napi_schedule - schedule for receive 5042 * @n: entry to schedule 5043 * 5044 * The entry's receive function will be scheduled to run. 5045 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5046 */ 5047 void __napi_schedule(struct napi_struct *n) 5048 { 5049 unsigned long flags; 5050 5051 local_irq_save(flags); 5052 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5053 local_irq_restore(flags); 5054 } 5055 EXPORT_SYMBOL(__napi_schedule); 5056 5057 /** 5058 * napi_schedule_prep - check if napi can be scheduled 5059 * @n: napi context 5060 * 5061 * Test if NAPI routine is already running, and if not mark 5062 * it as running. This is used as a condition variable 5063 * insure only one NAPI poll instance runs. We also make 5064 * sure there is no pending NAPI disable. 5065 */ 5066 bool napi_schedule_prep(struct napi_struct *n) 5067 { 5068 unsigned long val, new; 5069 5070 do { 5071 val = READ_ONCE(n->state); 5072 if (unlikely(val & NAPIF_STATE_DISABLE)) 5073 return false; 5074 new = val | NAPIF_STATE_SCHED; 5075 5076 /* Sets STATE_MISSED bit if STATE_SCHED was already set 5077 * This was suggested by Alexander Duyck, as compiler 5078 * emits better code than : 5079 * if (val & NAPIF_STATE_SCHED) 5080 * new |= NAPIF_STATE_MISSED; 5081 */ 5082 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 5083 NAPIF_STATE_MISSED; 5084 } while (cmpxchg(&n->state, val, new) != val); 5085 5086 return !(val & NAPIF_STATE_SCHED); 5087 } 5088 EXPORT_SYMBOL(napi_schedule_prep); 5089 5090 /** 5091 * __napi_schedule_irqoff - schedule for receive 5092 * @n: entry to schedule 5093 * 5094 * Variant of __napi_schedule() assuming hard irqs are masked 5095 */ 5096 void __napi_schedule_irqoff(struct napi_struct *n) 5097 { 5098 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5099 } 5100 EXPORT_SYMBOL(__napi_schedule_irqoff); 5101 5102 bool napi_complete_done(struct napi_struct *n, int work_done) 5103 { 5104 unsigned long flags, val, new; 5105 5106 /* 5107 * 1) Don't let napi dequeue from the cpu poll list 5108 * just in case its running on a different cpu. 5109 * 2) If we are busy polling, do nothing here, we have 5110 * the guarantee we will be called later. 5111 */ 5112 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 5113 NAPIF_STATE_IN_BUSY_POLL))) 5114 return false; 5115 5116 if (n->gro_list) { 5117 unsigned long timeout = 0; 5118 5119 if (work_done) 5120 timeout = n->dev->gro_flush_timeout; 5121 5122 if (timeout) 5123 hrtimer_start(&n->timer, ns_to_ktime(timeout), 5124 HRTIMER_MODE_REL_PINNED); 5125 else 5126 napi_gro_flush(n, false); 5127 } 5128 if (unlikely(!list_empty(&n->poll_list))) { 5129 /* If n->poll_list is not empty, we need to mask irqs */ 5130 local_irq_save(flags); 5131 list_del_init(&n->poll_list); 5132 local_irq_restore(flags); 5133 } 5134 5135 do { 5136 val = READ_ONCE(n->state); 5137 5138 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 5139 5140 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 5141 5142 /* If STATE_MISSED was set, leave STATE_SCHED set, 5143 * because we will call napi->poll() one more time. 5144 * This C code was suggested by Alexander Duyck to help gcc. 5145 */ 5146 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 5147 NAPIF_STATE_SCHED; 5148 } while (cmpxchg(&n->state, val, new) != val); 5149 5150 if (unlikely(val & NAPIF_STATE_MISSED)) { 5151 __napi_schedule(n); 5152 return false; 5153 } 5154 5155 return true; 5156 } 5157 EXPORT_SYMBOL(napi_complete_done); 5158 5159 /* must be called under rcu_read_lock(), as we dont take a reference */ 5160 static struct napi_struct *napi_by_id(unsigned int napi_id) 5161 { 5162 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 5163 struct napi_struct *napi; 5164 5165 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 5166 if (napi->napi_id == napi_id) 5167 return napi; 5168 5169 return NULL; 5170 } 5171 5172 #if defined(CONFIG_NET_RX_BUSY_POLL) 5173 5174 #define BUSY_POLL_BUDGET 8 5175 5176 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 5177 { 5178 int rc; 5179 5180 /* Busy polling means there is a high chance device driver hard irq 5181 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 5182 * set in napi_schedule_prep(). 5183 * Since we are about to call napi->poll() once more, we can safely 5184 * clear NAPI_STATE_MISSED. 5185 * 5186 * Note: x86 could use a single "lock and ..." instruction 5187 * to perform these two clear_bit() 5188 */ 5189 clear_bit(NAPI_STATE_MISSED, &napi->state); 5190 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 5191 5192 local_bh_disable(); 5193 5194 /* All we really want here is to re-enable device interrupts. 5195 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 5196 */ 5197 rc = napi->poll(napi, BUSY_POLL_BUDGET); 5198 netpoll_poll_unlock(have_poll_lock); 5199 if (rc == BUSY_POLL_BUDGET) 5200 __napi_schedule(napi); 5201 local_bh_enable(); 5202 if (local_softirq_pending()) 5203 do_softirq(); 5204 } 5205 5206 void napi_busy_loop(unsigned int napi_id, 5207 bool (*loop_end)(void *, unsigned long), 5208 void *loop_end_arg) 5209 { 5210 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 5211 int (*napi_poll)(struct napi_struct *napi, int budget); 5212 void *have_poll_lock = NULL; 5213 struct napi_struct *napi; 5214 5215 restart: 5216 napi_poll = NULL; 5217 5218 rcu_read_lock(); 5219 5220 napi = napi_by_id(napi_id); 5221 if (!napi) 5222 goto out; 5223 5224 preempt_disable(); 5225 for (;;) { 5226 int work = 0; 5227 5228 local_bh_disable(); 5229 if (!napi_poll) { 5230 unsigned long val = READ_ONCE(napi->state); 5231 5232 /* If multiple threads are competing for this napi, 5233 * we avoid dirtying napi->state as much as we can. 5234 */ 5235 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 5236 NAPIF_STATE_IN_BUSY_POLL)) 5237 goto count; 5238 if (cmpxchg(&napi->state, val, 5239 val | NAPIF_STATE_IN_BUSY_POLL | 5240 NAPIF_STATE_SCHED) != val) 5241 goto count; 5242 have_poll_lock = netpoll_poll_lock(napi); 5243 napi_poll = napi->poll; 5244 } 5245 work = napi_poll(napi, BUSY_POLL_BUDGET); 5246 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 5247 count: 5248 if (work > 0) 5249 __NET_ADD_STATS(dev_net(napi->dev), 5250 LINUX_MIB_BUSYPOLLRXPACKETS, work); 5251 local_bh_enable(); 5252 5253 if (!loop_end || loop_end(loop_end_arg, start_time)) 5254 break; 5255 5256 if (unlikely(need_resched())) { 5257 if (napi_poll) 5258 busy_poll_stop(napi, have_poll_lock); 5259 preempt_enable(); 5260 rcu_read_unlock(); 5261 cond_resched(); 5262 if (loop_end(loop_end_arg, start_time)) 5263 return; 5264 goto restart; 5265 } 5266 cpu_relax(); 5267 } 5268 if (napi_poll) 5269 busy_poll_stop(napi, have_poll_lock); 5270 preempt_enable(); 5271 out: 5272 rcu_read_unlock(); 5273 } 5274 EXPORT_SYMBOL(napi_busy_loop); 5275 5276 #endif /* CONFIG_NET_RX_BUSY_POLL */ 5277 5278 static void napi_hash_add(struct napi_struct *napi) 5279 { 5280 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 5281 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 5282 return; 5283 5284 spin_lock(&napi_hash_lock); 5285 5286 /* 0..NR_CPUS range is reserved for sender_cpu use */ 5287 do { 5288 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 5289 napi_gen_id = MIN_NAPI_ID; 5290 } while (napi_by_id(napi_gen_id)); 5291 napi->napi_id = napi_gen_id; 5292 5293 hlist_add_head_rcu(&napi->napi_hash_node, 5294 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 5295 5296 spin_unlock(&napi_hash_lock); 5297 } 5298 5299 /* Warning : caller is responsible to make sure rcu grace period 5300 * is respected before freeing memory containing @napi 5301 */ 5302 bool napi_hash_del(struct napi_struct *napi) 5303 { 5304 bool rcu_sync_needed = false; 5305 5306 spin_lock(&napi_hash_lock); 5307 5308 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 5309 rcu_sync_needed = true; 5310 hlist_del_rcu(&napi->napi_hash_node); 5311 } 5312 spin_unlock(&napi_hash_lock); 5313 return rcu_sync_needed; 5314 } 5315 EXPORT_SYMBOL_GPL(napi_hash_del); 5316 5317 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 5318 { 5319 struct napi_struct *napi; 5320 5321 napi = container_of(timer, struct napi_struct, timer); 5322 5323 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 5324 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 5325 */ 5326 if (napi->gro_list && !napi_disable_pending(napi) && 5327 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 5328 __napi_schedule_irqoff(napi); 5329 5330 return HRTIMER_NORESTART; 5331 } 5332 5333 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 5334 int (*poll)(struct napi_struct *, int), int weight) 5335 { 5336 INIT_LIST_HEAD(&napi->poll_list); 5337 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 5338 napi->timer.function = napi_watchdog; 5339 napi->gro_count = 0; 5340 napi->gro_list = NULL; 5341 napi->skb = NULL; 5342 napi->poll = poll; 5343 if (weight > NAPI_POLL_WEIGHT) 5344 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 5345 weight, dev->name); 5346 napi->weight = weight; 5347 list_add(&napi->dev_list, &dev->napi_list); 5348 napi->dev = dev; 5349 #ifdef CONFIG_NETPOLL 5350 napi->poll_owner = -1; 5351 #endif 5352 set_bit(NAPI_STATE_SCHED, &napi->state); 5353 napi_hash_add(napi); 5354 } 5355 EXPORT_SYMBOL(netif_napi_add); 5356 5357 void napi_disable(struct napi_struct *n) 5358 { 5359 might_sleep(); 5360 set_bit(NAPI_STATE_DISABLE, &n->state); 5361 5362 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 5363 msleep(1); 5364 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 5365 msleep(1); 5366 5367 hrtimer_cancel(&n->timer); 5368 5369 clear_bit(NAPI_STATE_DISABLE, &n->state); 5370 } 5371 EXPORT_SYMBOL(napi_disable); 5372 5373 /* Must be called in process context */ 5374 void netif_napi_del(struct napi_struct *napi) 5375 { 5376 might_sleep(); 5377 if (napi_hash_del(napi)) 5378 synchronize_net(); 5379 list_del_init(&napi->dev_list); 5380 napi_free_frags(napi); 5381 5382 kfree_skb_list(napi->gro_list); 5383 napi->gro_list = NULL; 5384 napi->gro_count = 0; 5385 } 5386 EXPORT_SYMBOL(netif_napi_del); 5387 5388 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 5389 { 5390 void *have; 5391 int work, weight; 5392 5393 list_del_init(&n->poll_list); 5394 5395 have = netpoll_poll_lock(n); 5396 5397 weight = n->weight; 5398 5399 /* This NAPI_STATE_SCHED test is for avoiding a race 5400 * with netpoll's poll_napi(). Only the entity which 5401 * obtains the lock and sees NAPI_STATE_SCHED set will 5402 * actually make the ->poll() call. Therefore we avoid 5403 * accidentally calling ->poll() when NAPI is not scheduled. 5404 */ 5405 work = 0; 5406 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 5407 work = n->poll(n, weight); 5408 trace_napi_poll(n, work, weight); 5409 } 5410 5411 WARN_ON_ONCE(work > weight); 5412 5413 if (likely(work < weight)) 5414 goto out_unlock; 5415 5416 /* Drivers must not modify the NAPI state if they 5417 * consume the entire weight. In such cases this code 5418 * still "owns" the NAPI instance and therefore can 5419 * move the instance around on the list at-will. 5420 */ 5421 if (unlikely(napi_disable_pending(n))) { 5422 napi_complete(n); 5423 goto out_unlock; 5424 } 5425 5426 if (n->gro_list) { 5427 /* flush too old packets 5428 * If HZ < 1000, flush all packets. 5429 */ 5430 napi_gro_flush(n, HZ >= 1000); 5431 } 5432 5433 /* Some drivers may have called napi_schedule 5434 * prior to exhausting their budget. 5435 */ 5436 if (unlikely(!list_empty(&n->poll_list))) { 5437 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 5438 n->dev ? n->dev->name : "backlog"); 5439 goto out_unlock; 5440 } 5441 5442 list_add_tail(&n->poll_list, repoll); 5443 5444 out_unlock: 5445 netpoll_poll_unlock(have); 5446 5447 return work; 5448 } 5449 5450 static __latent_entropy void net_rx_action(struct softirq_action *h) 5451 { 5452 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5453 unsigned long time_limit = jiffies + 5454 usecs_to_jiffies(netdev_budget_usecs); 5455 int budget = netdev_budget; 5456 LIST_HEAD(list); 5457 LIST_HEAD(repoll); 5458 5459 local_irq_disable(); 5460 list_splice_init(&sd->poll_list, &list); 5461 local_irq_enable(); 5462 5463 for (;;) { 5464 struct napi_struct *n; 5465 5466 if (list_empty(&list)) { 5467 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 5468 goto out; 5469 break; 5470 } 5471 5472 n = list_first_entry(&list, struct napi_struct, poll_list); 5473 budget -= napi_poll(n, &repoll); 5474 5475 /* If softirq window is exhausted then punt. 5476 * Allow this to run for 2 jiffies since which will allow 5477 * an average latency of 1.5/HZ. 5478 */ 5479 if (unlikely(budget <= 0 || 5480 time_after_eq(jiffies, time_limit))) { 5481 sd->time_squeeze++; 5482 break; 5483 } 5484 } 5485 5486 local_irq_disable(); 5487 5488 list_splice_tail_init(&sd->poll_list, &list); 5489 list_splice_tail(&repoll, &list); 5490 list_splice(&list, &sd->poll_list); 5491 if (!list_empty(&sd->poll_list)) 5492 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5493 5494 net_rps_action_and_irq_enable(sd); 5495 out: 5496 __kfree_skb_flush(); 5497 } 5498 5499 struct netdev_adjacent { 5500 struct net_device *dev; 5501 5502 /* upper master flag, there can only be one master device per list */ 5503 bool master; 5504 5505 /* counter for the number of times this device was added to us */ 5506 u16 ref_nr; 5507 5508 /* private field for the users */ 5509 void *private; 5510 5511 struct list_head list; 5512 struct rcu_head rcu; 5513 }; 5514 5515 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 5516 struct list_head *adj_list) 5517 { 5518 struct netdev_adjacent *adj; 5519 5520 list_for_each_entry(adj, adj_list, list) { 5521 if (adj->dev == adj_dev) 5522 return adj; 5523 } 5524 return NULL; 5525 } 5526 5527 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 5528 { 5529 struct net_device *dev = data; 5530 5531 return upper_dev == dev; 5532 } 5533 5534 /** 5535 * netdev_has_upper_dev - Check if device is linked to an upper device 5536 * @dev: device 5537 * @upper_dev: upper device to check 5538 * 5539 * Find out if a device is linked to specified upper device and return true 5540 * in case it is. Note that this checks only immediate upper device, 5541 * not through a complete stack of devices. The caller must hold the RTNL lock. 5542 */ 5543 bool netdev_has_upper_dev(struct net_device *dev, 5544 struct net_device *upper_dev) 5545 { 5546 ASSERT_RTNL(); 5547 5548 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5549 upper_dev); 5550 } 5551 EXPORT_SYMBOL(netdev_has_upper_dev); 5552 5553 /** 5554 * netdev_has_upper_dev_all - Check if device is linked to an upper device 5555 * @dev: device 5556 * @upper_dev: upper device to check 5557 * 5558 * Find out if a device is linked to specified upper device and return true 5559 * in case it is. Note that this checks the entire upper device chain. 5560 * The caller must hold rcu lock. 5561 */ 5562 5563 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 5564 struct net_device *upper_dev) 5565 { 5566 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5567 upper_dev); 5568 } 5569 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 5570 5571 /** 5572 * netdev_has_any_upper_dev - Check if device is linked to some device 5573 * @dev: device 5574 * 5575 * Find out if a device is linked to an upper device and return true in case 5576 * it is. The caller must hold the RTNL lock. 5577 */ 5578 static bool netdev_has_any_upper_dev(struct net_device *dev) 5579 { 5580 ASSERT_RTNL(); 5581 5582 return !list_empty(&dev->adj_list.upper); 5583 } 5584 5585 /** 5586 * netdev_master_upper_dev_get - Get master upper device 5587 * @dev: device 5588 * 5589 * Find a master upper device and return pointer to it or NULL in case 5590 * it's not there. The caller must hold the RTNL lock. 5591 */ 5592 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 5593 { 5594 struct netdev_adjacent *upper; 5595 5596 ASSERT_RTNL(); 5597 5598 if (list_empty(&dev->adj_list.upper)) 5599 return NULL; 5600 5601 upper = list_first_entry(&dev->adj_list.upper, 5602 struct netdev_adjacent, list); 5603 if (likely(upper->master)) 5604 return upper->dev; 5605 return NULL; 5606 } 5607 EXPORT_SYMBOL(netdev_master_upper_dev_get); 5608 5609 /** 5610 * netdev_has_any_lower_dev - Check if device is linked to some device 5611 * @dev: device 5612 * 5613 * Find out if a device is linked to a lower device and return true in case 5614 * it is. The caller must hold the RTNL lock. 5615 */ 5616 static bool netdev_has_any_lower_dev(struct net_device *dev) 5617 { 5618 ASSERT_RTNL(); 5619 5620 return !list_empty(&dev->adj_list.lower); 5621 } 5622 5623 void *netdev_adjacent_get_private(struct list_head *adj_list) 5624 { 5625 struct netdev_adjacent *adj; 5626 5627 adj = list_entry(adj_list, struct netdev_adjacent, list); 5628 5629 return adj->private; 5630 } 5631 EXPORT_SYMBOL(netdev_adjacent_get_private); 5632 5633 /** 5634 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 5635 * @dev: device 5636 * @iter: list_head ** of the current position 5637 * 5638 * Gets the next device from the dev's upper list, starting from iter 5639 * position. The caller must hold RCU read lock. 5640 */ 5641 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 5642 struct list_head **iter) 5643 { 5644 struct netdev_adjacent *upper; 5645 5646 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5647 5648 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5649 5650 if (&upper->list == &dev->adj_list.upper) 5651 return NULL; 5652 5653 *iter = &upper->list; 5654 5655 return upper->dev; 5656 } 5657 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 5658 5659 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 5660 struct list_head **iter) 5661 { 5662 struct netdev_adjacent *upper; 5663 5664 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5665 5666 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5667 5668 if (&upper->list == &dev->adj_list.upper) 5669 return NULL; 5670 5671 *iter = &upper->list; 5672 5673 return upper->dev; 5674 } 5675 5676 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 5677 int (*fn)(struct net_device *dev, 5678 void *data), 5679 void *data) 5680 { 5681 struct net_device *udev; 5682 struct list_head *iter; 5683 int ret; 5684 5685 for (iter = &dev->adj_list.upper, 5686 udev = netdev_next_upper_dev_rcu(dev, &iter); 5687 udev; 5688 udev = netdev_next_upper_dev_rcu(dev, &iter)) { 5689 /* first is the upper device itself */ 5690 ret = fn(udev, data); 5691 if (ret) 5692 return ret; 5693 5694 /* then look at all of its upper devices */ 5695 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); 5696 if (ret) 5697 return ret; 5698 } 5699 5700 return 0; 5701 } 5702 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 5703 5704 /** 5705 * netdev_lower_get_next_private - Get the next ->private from the 5706 * lower neighbour list 5707 * @dev: device 5708 * @iter: list_head ** of the current position 5709 * 5710 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5711 * list, starting from iter position. The caller must hold either hold the 5712 * RTNL lock or its own locking that guarantees that the neighbour lower 5713 * list will remain unchanged. 5714 */ 5715 void *netdev_lower_get_next_private(struct net_device *dev, 5716 struct list_head **iter) 5717 { 5718 struct netdev_adjacent *lower; 5719 5720 lower = list_entry(*iter, struct netdev_adjacent, list); 5721 5722 if (&lower->list == &dev->adj_list.lower) 5723 return NULL; 5724 5725 *iter = lower->list.next; 5726 5727 return lower->private; 5728 } 5729 EXPORT_SYMBOL(netdev_lower_get_next_private); 5730 5731 /** 5732 * netdev_lower_get_next_private_rcu - Get the next ->private from the 5733 * lower neighbour list, RCU 5734 * variant 5735 * @dev: device 5736 * @iter: list_head ** of the current position 5737 * 5738 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5739 * list, starting from iter position. The caller must hold RCU read lock. 5740 */ 5741 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 5742 struct list_head **iter) 5743 { 5744 struct netdev_adjacent *lower; 5745 5746 WARN_ON_ONCE(!rcu_read_lock_held()); 5747 5748 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5749 5750 if (&lower->list == &dev->adj_list.lower) 5751 return NULL; 5752 5753 *iter = &lower->list; 5754 5755 return lower->private; 5756 } 5757 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 5758 5759 /** 5760 * netdev_lower_get_next - Get the next device from the lower neighbour 5761 * list 5762 * @dev: device 5763 * @iter: list_head ** of the current position 5764 * 5765 * Gets the next netdev_adjacent from the dev's lower neighbour 5766 * list, starting from iter position. The caller must hold RTNL lock or 5767 * its own locking that guarantees that the neighbour lower 5768 * list will remain unchanged. 5769 */ 5770 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 5771 { 5772 struct netdev_adjacent *lower; 5773 5774 lower = list_entry(*iter, struct netdev_adjacent, list); 5775 5776 if (&lower->list == &dev->adj_list.lower) 5777 return NULL; 5778 5779 *iter = lower->list.next; 5780 5781 return lower->dev; 5782 } 5783 EXPORT_SYMBOL(netdev_lower_get_next); 5784 5785 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 5786 struct list_head **iter) 5787 { 5788 struct netdev_adjacent *lower; 5789 5790 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 5791 5792 if (&lower->list == &dev->adj_list.lower) 5793 return NULL; 5794 5795 *iter = &lower->list; 5796 5797 return lower->dev; 5798 } 5799 5800 int netdev_walk_all_lower_dev(struct net_device *dev, 5801 int (*fn)(struct net_device *dev, 5802 void *data), 5803 void *data) 5804 { 5805 struct net_device *ldev; 5806 struct list_head *iter; 5807 int ret; 5808 5809 for (iter = &dev->adj_list.lower, 5810 ldev = netdev_next_lower_dev(dev, &iter); 5811 ldev; 5812 ldev = netdev_next_lower_dev(dev, &iter)) { 5813 /* first is the lower device itself */ 5814 ret = fn(ldev, data); 5815 if (ret) 5816 return ret; 5817 5818 /* then look at all of its lower devices */ 5819 ret = netdev_walk_all_lower_dev(ldev, fn, data); 5820 if (ret) 5821 return ret; 5822 } 5823 5824 return 0; 5825 } 5826 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 5827 5828 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 5829 struct list_head **iter) 5830 { 5831 struct netdev_adjacent *lower; 5832 5833 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5834 if (&lower->list == &dev->adj_list.lower) 5835 return NULL; 5836 5837 *iter = &lower->list; 5838 5839 return lower->dev; 5840 } 5841 5842 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 5843 int (*fn)(struct net_device *dev, 5844 void *data), 5845 void *data) 5846 { 5847 struct net_device *ldev; 5848 struct list_head *iter; 5849 int ret; 5850 5851 for (iter = &dev->adj_list.lower, 5852 ldev = netdev_next_lower_dev_rcu(dev, &iter); 5853 ldev; 5854 ldev = netdev_next_lower_dev_rcu(dev, &iter)) { 5855 /* first is the lower device itself */ 5856 ret = fn(ldev, data); 5857 if (ret) 5858 return ret; 5859 5860 /* then look at all of its lower devices */ 5861 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); 5862 if (ret) 5863 return ret; 5864 } 5865 5866 return 0; 5867 } 5868 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 5869 5870 /** 5871 * netdev_lower_get_first_private_rcu - Get the first ->private from the 5872 * lower neighbour list, RCU 5873 * variant 5874 * @dev: device 5875 * 5876 * Gets the first netdev_adjacent->private from the dev's lower neighbour 5877 * list. The caller must hold RCU read lock. 5878 */ 5879 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 5880 { 5881 struct netdev_adjacent *lower; 5882 5883 lower = list_first_or_null_rcu(&dev->adj_list.lower, 5884 struct netdev_adjacent, list); 5885 if (lower) 5886 return lower->private; 5887 return NULL; 5888 } 5889 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 5890 5891 /** 5892 * netdev_master_upper_dev_get_rcu - Get master upper device 5893 * @dev: device 5894 * 5895 * Find a master upper device and return pointer to it or NULL in case 5896 * it's not there. The caller must hold the RCU read lock. 5897 */ 5898 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 5899 { 5900 struct netdev_adjacent *upper; 5901 5902 upper = list_first_or_null_rcu(&dev->adj_list.upper, 5903 struct netdev_adjacent, list); 5904 if (upper && likely(upper->master)) 5905 return upper->dev; 5906 return NULL; 5907 } 5908 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 5909 5910 static int netdev_adjacent_sysfs_add(struct net_device *dev, 5911 struct net_device *adj_dev, 5912 struct list_head *dev_list) 5913 { 5914 char linkname[IFNAMSIZ+7]; 5915 5916 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5917 "upper_%s" : "lower_%s", adj_dev->name); 5918 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 5919 linkname); 5920 } 5921 static void netdev_adjacent_sysfs_del(struct net_device *dev, 5922 char *name, 5923 struct list_head *dev_list) 5924 { 5925 char linkname[IFNAMSIZ+7]; 5926 5927 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5928 "upper_%s" : "lower_%s", name); 5929 sysfs_remove_link(&(dev->dev.kobj), linkname); 5930 } 5931 5932 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 5933 struct net_device *adj_dev, 5934 struct list_head *dev_list) 5935 { 5936 return (dev_list == &dev->adj_list.upper || 5937 dev_list == &dev->adj_list.lower) && 5938 net_eq(dev_net(dev), dev_net(adj_dev)); 5939 } 5940 5941 static int __netdev_adjacent_dev_insert(struct net_device *dev, 5942 struct net_device *adj_dev, 5943 struct list_head *dev_list, 5944 void *private, bool master) 5945 { 5946 struct netdev_adjacent *adj; 5947 int ret; 5948 5949 adj = __netdev_find_adj(adj_dev, dev_list); 5950 5951 if (adj) { 5952 adj->ref_nr += 1; 5953 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 5954 dev->name, adj_dev->name, adj->ref_nr); 5955 5956 return 0; 5957 } 5958 5959 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 5960 if (!adj) 5961 return -ENOMEM; 5962 5963 adj->dev = adj_dev; 5964 adj->master = master; 5965 adj->ref_nr = 1; 5966 adj->private = private; 5967 dev_hold(adj_dev); 5968 5969 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 5970 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 5971 5972 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 5973 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 5974 if (ret) 5975 goto free_adj; 5976 } 5977 5978 /* Ensure that master link is always the first item in list. */ 5979 if (master) { 5980 ret = sysfs_create_link(&(dev->dev.kobj), 5981 &(adj_dev->dev.kobj), "master"); 5982 if (ret) 5983 goto remove_symlinks; 5984 5985 list_add_rcu(&adj->list, dev_list); 5986 } else { 5987 list_add_tail_rcu(&adj->list, dev_list); 5988 } 5989 5990 return 0; 5991 5992 remove_symlinks: 5993 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5994 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5995 free_adj: 5996 kfree(adj); 5997 dev_put(adj_dev); 5998 5999 return ret; 6000 } 6001 6002 static void __netdev_adjacent_dev_remove(struct net_device *dev, 6003 struct net_device *adj_dev, 6004 u16 ref_nr, 6005 struct list_head *dev_list) 6006 { 6007 struct netdev_adjacent *adj; 6008 6009 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 6010 dev->name, adj_dev->name, ref_nr); 6011 6012 adj = __netdev_find_adj(adj_dev, dev_list); 6013 6014 if (!adj) { 6015 pr_err("Adjacency does not exist for device %s from %s\n", 6016 dev->name, adj_dev->name); 6017 WARN_ON(1); 6018 return; 6019 } 6020 6021 if (adj->ref_nr > ref_nr) { 6022 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 6023 dev->name, adj_dev->name, ref_nr, 6024 adj->ref_nr - ref_nr); 6025 adj->ref_nr -= ref_nr; 6026 return; 6027 } 6028 6029 if (adj->master) 6030 sysfs_remove_link(&(dev->dev.kobj), "master"); 6031 6032 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6033 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6034 6035 list_del_rcu(&adj->list); 6036 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 6037 adj_dev->name, dev->name, adj_dev->name); 6038 dev_put(adj_dev); 6039 kfree_rcu(adj, rcu); 6040 } 6041 6042 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 6043 struct net_device *upper_dev, 6044 struct list_head *up_list, 6045 struct list_head *down_list, 6046 void *private, bool master) 6047 { 6048 int ret; 6049 6050 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 6051 private, master); 6052 if (ret) 6053 return ret; 6054 6055 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 6056 private, false); 6057 if (ret) { 6058 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 6059 return ret; 6060 } 6061 6062 return 0; 6063 } 6064 6065 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 6066 struct net_device *upper_dev, 6067 u16 ref_nr, 6068 struct list_head *up_list, 6069 struct list_head *down_list) 6070 { 6071 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 6072 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 6073 } 6074 6075 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 6076 struct net_device *upper_dev, 6077 void *private, bool master) 6078 { 6079 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 6080 &dev->adj_list.upper, 6081 &upper_dev->adj_list.lower, 6082 private, master); 6083 } 6084 6085 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 6086 struct net_device *upper_dev) 6087 { 6088 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 6089 &dev->adj_list.upper, 6090 &upper_dev->adj_list.lower); 6091 } 6092 6093 static int __netdev_upper_dev_link(struct net_device *dev, 6094 struct net_device *upper_dev, bool master, 6095 void *upper_priv, void *upper_info) 6096 { 6097 struct netdev_notifier_changeupper_info changeupper_info; 6098 int ret = 0; 6099 6100 ASSERT_RTNL(); 6101 6102 if (dev == upper_dev) 6103 return -EBUSY; 6104 6105 /* To prevent loops, check if dev is not upper device to upper_dev. */ 6106 if (netdev_has_upper_dev(upper_dev, dev)) 6107 return -EBUSY; 6108 6109 if (netdev_has_upper_dev(dev, upper_dev)) 6110 return -EEXIST; 6111 6112 if (master && netdev_master_upper_dev_get(dev)) 6113 return -EBUSY; 6114 6115 changeupper_info.upper_dev = upper_dev; 6116 changeupper_info.master = master; 6117 changeupper_info.linking = true; 6118 changeupper_info.upper_info = upper_info; 6119 6120 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 6121 &changeupper_info.info); 6122 ret = notifier_to_errno(ret); 6123 if (ret) 6124 return ret; 6125 6126 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 6127 master); 6128 if (ret) 6129 return ret; 6130 6131 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 6132 &changeupper_info.info); 6133 ret = notifier_to_errno(ret); 6134 if (ret) 6135 goto rollback; 6136 6137 return 0; 6138 6139 rollback: 6140 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6141 6142 return ret; 6143 } 6144 6145 /** 6146 * netdev_upper_dev_link - Add a link to the upper device 6147 * @dev: device 6148 * @upper_dev: new upper device 6149 * 6150 * Adds a link to device which is upper to this one. The caller must hold 6151 * the RTNL lock. On a failure a negative errno code is returned. 6152 * On success the reference counts are adjusted and the function 6153 * returns zero. 6154 */ 6155 int netdev_upper_dev_link(struct net_device *dev, 6156 struct net_device *upper_dev) 6157 { 6158 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL); 6159 } 6160 EXPORT_SYMBOL(netdev_upper_dev_link); 6161 6162 /** 6163 * netdev_master_upper_dev_link - Add a master link to the upper device 6164 * @dev: device 6165 * @upper_dev: new upper device 6166 * @upper_priv: upper device private 6167 * @upper_info: upper info to be passed down via notifier 6168 * 6169 * Adds a link to device which is upper to this one. In this case, only 6170 * one master upper device can be linked, although other non-master devices 6171 * might be linked as well. The caller must hold the RTNL lock. 6172 * On a failure a negative errno code is returned. On success the reference 6173 * counts are adjusted and the function returns zero. 6174 */ 6175 int netdev_master_upper_dev_link(struct net_device *dev, 6176 struct net_device *upper_dev, 6177 void *upper_priv, void *upper_info) 6178 { 6179 return __netdev_upper_dev_link(dev, upper_dev, true, 6180 upper_priv, upper_info); 6181 } 6182 EXPORT_SYMBOL(netdev_master_upper_dev_link); 6183 6184 /** 6185 * netdev_upper_dev_unlink - Removes a link to upper device 6186 * @dev: device 6187 * @upper_dev: new upper device 6188 * 6189 * Removes a link to device which is upper to this one. The caller must hold 6190 * the RTNL lock. 6191 */ 6192 void netdev_upper_dev_unlink(struct net_device *dev, 6193 struct net_device *upper_dev) 6194 { 6195 struct netdev_notifier_changeupper_info changeupper_info; 6196 6197 ASSERT_RTNL(); 6198 6199 changeupper_info.upper_dev = upper_dev; 6200 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 6201 changeupper_info.linking = false; 6202 6203 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 6204 &changeupper_info.info); 6205 6206 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6207 6208 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 6209 &changeupper_info.info); 6210 } 6211 EXPORT_SYMBOL(netdev_upper_dev_unlink); 6212 6213 /** 6214 * netdev_bonding_info_change - Dispatch event about slave change 6215 * @dev: device 6216 * @bonding_info: info to dispatch 6217 * 6218 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 6219 * The caller must hold the RTNL lock. 6220 */ 6221 void netdev_bonding_info_change(struct net_device *dev, 6222 struct netdev_bonding_info *bonding_info) 6223 { 6224 struct netdev_notifier_bonding_info info; 6225 6226 memcpy(&info.bonding_info, bonding_info, 6227 sizeof(struct netdev_bonding_info)); 6228 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev, 6229 &info.info); 6230 } 6231 EXPORT_SYMBOL(netdev_bonding_info_change); 6232 6233 static void netdev_adjacent_add_links(struct net_device *dev) 6234 { 6235 struct netdev_adjacent *iter; 6236 6237 struct net *net = dev_net(dev); 6238 6239 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6240 if (!net_eq(net, dev_net(iter->dev))) 6241 continue; 6242 netdev_adjacent_sysfs_add(iter->dev, dev, 6243 &iter->dev->adj_list.lower); 6244 netdev_adjacent_sysfs_add(dev, iter->dev, 6245 &dev->adj_list.upper); 6246 } 6247 6248 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6249 if (!net_eq(net, dev_net(iter->dev))) 6250 continue; 6251 netdev_adjacent_sysfs_add(iter->dev, dev, 6252 &iter->dev->adj_list.upper); 6253 netdev_adjacent_sysfs_add(dev, iter->dev, 6254 &dev->adj_list.lower); 6255 } 6256 } 6257 6258 static void netdev_adjacent_del_links(struct net_device *dev) 6259 { 6260 struct netdev_adjacent *iter; 6261 6262 struct net *net = dev_net(dev); 6263 6264 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6265 if (!net_eq(net, dev_net(iter->dev))) 6266 continue; 6267 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6268 &iter->dev->adj_list.lower); 6269 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6270 &dev->adj_list.upper); 6271 } 6272 6273 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6274 if (!net_eq(net, dev_net(iter->dev))) 6275 continue; 6276 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6277 &iter->dev->adj_list.upper); 6278 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6279 &dev->adj_list.lower); 6280 } 6281 } 6282 6283 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 6284 { 6285 struct netdev_adjacent *iter; 6286 6287 struct net *net = dev_net(dev); 6288 6289 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6290 if (!net_eq(net, dev_net(iter->dev))) 6291 continue; 6292 netdev_adjacent_sysfs_del(iter->dev, oldname, 6293 &iter->dev->adj_list.lower); 6294 netdev_adjacent_sysfs_add(iter->dev, dev, 6295 &iter->dev->adj_list.lower); 6296 } 6297 6298 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6299 if (!net_eq(net, dev_net(iter->dev))) 6300 continue; 6301 netdev_adjacent_sysfs_del(iter->dev, oldname, 6302 &iter->dev->adj_list.upper); 6303 netdev_adjacent_sysfs_add(iter->dev, dev, 6304 &iter->dev->adj_list.upper); 6305 } 6306 } 6307 6308 void *netdev_lower_dev_get_private(struct net_device *dev, 6309 struct net_device *lower_dev) 6310 { 6311 struct netdev_adjacent *lower; 6312 6313 if (!lower_dev) 6314 return NULL; 6315 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 6316 if (!lower) 6317 return NULL; 6318 6319 return lower->private; 6320 } 6321 EXPORT_SYMBOL(netdev_lower_dev_get_private); 6322 6323 6324 int dev_get_nest_level(struct net_device *dev) 6325 { 6326 struct net_device *lower = NULL; 6327 struct list_head *iter; 6328 int max_nest = -1; 6329 int nest; 6330 6331 ASSERT_RTNL(); 6332 6333 netdev_for_each_lower_dev(dev, lower, iter) { 6334 nest = dev_get_nest_level(lower); 6335 if (max_nest < nest) 6336 max_nest = nest; 6337 } 6338 6339 return max_nest + 1; 6340 } 6341 EXPORT_SYMBOL(dev_get_nest_level); 6342 6343 /** 6344 * netdev_lower_change - Dispatch event about lower device state change 6345 * @lower_dev: device 6346 * @lower_state_info: state to dispatch 6347 * 6348 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 6349 * The caller must hold the RTNL lock. 6350 */ 6351 void netdev_lower_state_changed(struct net_device *lower_dev, 6352 void *lower_state_info) 6353 { 6354 struct netdev_notifier_changelowerstate_info changelowerstate_info; 6355 6356 ASSERT_RTNL(); 6357 changelowerstate_info.lower_state_info = lower_state_info; 6358 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev, 6359 &changelowerstate_info.info); 6360 } 6361 EXPORT_SYMBOL(netdev_lower_state_changed); 6362 6363 static void dev_change_rx_flags(struct net_device *dev, int flags) 6364 { 6365 const struct net_device_ops *ops = dev->netdev_ops; 6366 6367 if (ops->ndo_change_rx_flags) 6368 ops->ndo_change_rx_flags(dev, flags); 6369 } 6370 6371 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 6372 { 6373 unsigned int old_flags = dev->flags; 6374 kuid_t uid; 6375 kgid_t gid; 6376 6377 ASSERT_RTNL(); 6378 6379 dev->flags |= IFF_PROMISC; 6380 dev->promiscuity += inc; 6381 if (dev->promiscuity == 0) { 6382 /* 6383 * Avoid overflow. 6384 * If inc causes overflow, untouch promisc and return error. 6385 */ 6386 if (inc < 0) 6387 dev->flags &= ~IFF_PROMISC; 6388 else { 6389 dev->promiscuity -= inc; 6390 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 6391 dev->name); 6392 return -EOVERFLOW; 6393 } 6394 } 6395 if (dev->flags != old_flags) { 6396 pr_info("device %s %s promiscuous mode\n", 6397 dev->name, 6398 dev->flags & IFF_PROMISC ? "entered" : "left"); 6399 if (audit_enabled) { 6400 current_uid_gid(&uid, &gid); 6401 audit_log(current->audit_context, GFP_ATOMIC, 6402 AUDIT_ANOM_PROMISCUOUS, 6403 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 6404 dev->name, (dev->flags & IFF_PROMISC), 6405 (old_flags & IFF_PROMISC), 6406 from_kuid(&init_user_ns, audit_get_loginuid(current)), 6407 from_kuid(&init_user_ns, uid), 6408 from_kgid(&init_user_ns, gid), 6409 audit_get_sessionid(current)); 6410 } 6411 6412 dev_change_rx_flags(dev, IFF_PROMISC); 6413 } 6414 if (notify) 6415 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 6416 return 0; 6417 } 6418 6419 /** 6420 * dev_set_promiscuity - update promiscuity count on a device 6421 * @dev: device 6422 * @inc: modifier 6423 * 6424 * Add or remove promiscuity from a device. While the count in the device 6425 * remains above zero the interface remains promiscuous. Once it hits zero 6426 * the device reverts back to normal filtering operation. A negative inc 6427 * value is used to drop promiscuity on the device. 6428 * Return 0 if successful or a negative errno code on error. 6429 */ 6430 int dev_set_promiscuity(struct net_device *dev, int inc) 6431 { 6432 unsigned int old_flags = dev->flags; 6433 int err; 6434 6435 err = __dev_set_promiscuity(dev, inc, true); 6436 if (err < 0) 6437 return err; 6438 if (dev->flags != old_flags) 6439 dev_set_rx_mode(dev); 6440 return err; 6441 } 6442 EXPORT_SYMBOL(dev_set_promiscuity); 6443 6444 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 6445 { 6446 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 6447 6448 ASSERT_RTNL(); 6449 6450 dev->flags |= IFF_ALLMULTI; 6451 dev->allmulti += inc; 6452 if (dev->allmulti == 0) { 6453 /* 6454 * Avoid overflow. 6455 * If inc causes overflow, untouch allmulti and return error. 6456 */ 6457 if (inc < 0) 6458 dev->flags &= ~IFF_ALLMULTI; 6459 else { 6460 dev->allmulti -= inc; 6461 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 6462 dev->name); 6463 return -EOVERFLOW; 6464 } 6465 } 6466 if (dev->flags ^ old_flags) { 6467 dev_change_rx_flags(dev, IFF_ALLMULTI); 6468 dev_set_rx_mode(dev); 6469 if (notify) 6470 __dev_notify_flags(dev, old_flags, 6471 dev->gflags ^ old_gflags); 6472 } 6473 return 0; 6474 } 6475 6476 /** 6477 * dev_set_allmulti - update allmulti count on a device 6478 * @dev: device 6479 * @inc: modifier 6480 * 6481 * Add or remove reception of all multicast frames to a device. While the 6482 * count in the device remains above zero the interface remains listening 6483 * to all interfaces. Once it hits zero the device reverts back to normal 6484 * filtering operation. A negative @inc value is used to drop the counter 6485 * when releasing a resource needing all multicasts. 6486 * Return 0 if successful or a negative errno code on error. 6487 */ 6488 6489 int dev_set_allmulti(struct net_device *dev, int inc) 6490 { 6491 return __dev_set_allmulti(dev, inc, true); 6492 } 6493 EXPORT_SYMBOL(dev_set_allmulti); 6494 6495 /* 6496 * Upload unicast and multicast address lists to device and 6497 * configure RX filtering. When the device doesn't support unicast 6498 * filtering it is put in promiscuous mode while unicast addresses 6499 * are present. 6500 */ 6501 void __dev_set_rx_mode(struct net_device *dev) 6502 { 6503 const struct net_device_ops *ops = dev->netdev_ops; 6504 6505 /* dev_open will call this function so the list will stay sane. */ 6506 if (!(dev->flags&IFF_UP)) 6507 return; 6508 6509 if (!netif_device_present(dev)) 6510 return; 6511 6512 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 6513 /* Unicast addresses changes may only happen under the rtnl, 6514 * therefore calling __dev_set_promiscuity here is safe. 6515 */ 6516 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 6517 __dev_set_promiscuity(dev, 1, false); 6518 dev->uc_promisc = true; 6519 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 6520 __dev_set_promiscuity(dev, -1, false); 6521 dev->uc_promisc = false; 6522 } 6523 } 6524 6525 if (ops->ndo_set_rx_mode) 6526 ops->ndo_set_rx_mode(dev); 6527 } 6528 6529 void dev_set_rx_mode(struct net_device *dev) 6530 { 6531 netif_addr_lock_bh(dev); 6532 __dev_set_rx_mode(dev); 6533 netif_addr_unlock_bh(dev); 6534 } 6535 6536 /** 6537 * dev_get_flags - get flags reported to userspace 6538 * @dev: device 6539 * 6540 * Get the combination of flag bits exported through APIs to userspace. 6541 */ 6542 unsigned int dev_get_flags(const struct net_device *dev) 6543 { 6544 unsigned int flags; 6545 6546 flags = (dev->flags & ~(IFF_PROMISC | 6547 IFF_ALLMULTI | 6548 IFF_RUNNING | 6549 IFF_LOWER_UP | 6550 IFF_DORMANT)) | 6551 (dev->gflags & (IFF_PROMISC | 6552 IFF_ALLMULTI)); 6553 6554 if (netif_running(dev)) { 6555 if (netif_oper_up(dev)) 6556 flags |= IFF_RUNNING; 6557 if (netif_carrier_ok(dev)) 6558 flags |= IFF_LOWER_UP; 6559 if (netif_dormant(dev)) 6560 flags |= IFF_DORMANT; 6561 } 6562 6563 return flags; 6564 } 6565 EXPORT_SYMBOL(dev_get_flags); 6566 6567 int __dev_change_flags(struct net_device *dev, unsigned int flags) 6568 { 6569 unsigned int old_flags = dev->flags; 6570 int ret; 6571 6572 ASSERT_RTNL(); 6573 6574 /* 6575 * Set the flags on our device. 6576 */ 6577 6578 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 6579 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 6580 IFF_AUTOMEDIA)) | 6581 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 6582 IFF_ALLMULTI)); 6583 6584 /* 6585 * Load in the correct multicast list now the flags have changed. 6586 */ 6587 6588 if ((old_flags ^ flags) & IFF_MULTICAST) 6589 dev_change_rx_flags(dev, IFF_MULTICAST); 6590 6591 dev_set_rx_mode(dev); 6592 6593 /* 6594 * Have we downed the interface. We handle IFF_UP ourselves 6595 * according to user attempts to set it, rather than blindly 6596 * setting it. 6597 */ 6598 6599 ret = 0; 6600 if ((old_flags ^ flags) & IFF_UP) 6601 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 6602 6603 if ((flags ^ dev->gflags) & IFF_PROMISC) { 6604 int inc = (flags & IFF_PROMISC) ? 1 : -1; 6605 unsigned int old_flags = dev->flags; 6606 6607 dev->gflags ^= IFF_PROMISC; 6608 6609 if (__dev_set_promiscuity(dev, inc, false) >= 0) 6610 if (dev->flags != old_flags) 6611 dev_set_rx_mode(dev); 6612 } 6613 6614 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 6615 * is important. Some (broken) drivers set IFF_PROMISC, when 6616 * IFF_ALLMULTI is requested not asking us and not reporting. 6617 */ 6618 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 6619 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 6620 6621 dev->gflags ^= IFF_ALLMULTI; 6622 __dev_set_allmulti(dev, inc, false); 6623 } 6624 6625 return ret; 6626 } 6627 6628 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 6629 unsigned int gchanges) 6630 { 6631 unsigned int changes = dev->flags ^ old_flags; 6632 6633 if (gchanges) 6634 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 6635 6636 if (changes & IFF_UP) { 6637 if (dev->flags & IFF_UP) 6638 call_netdevice_notifiers(NETDEV_UP, dev); 6639 else 6640 call_netdevice_notifiers(NETDEV_DOWN, dev); 6641 } 6642 6643 if (dev->flags & IFF_UP && 6644 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 6645 struct netdev_notifier_change_info change_info; 6646 6647 change_info.flags_changed = changes; 6648 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 6649 &change_info.info); 6650 } 6651 } 6652 6653 /** 6654 * dev_change_flags - change device settings 6655 * @dev: device 6656 * @flags: device state flags 6657 * 6658 * Change settings on device based state flags. The flags are 6659 * in the userspace exported format. 6660 */ 6661 int dev_change_flags(struct net_device *dev, unsigned int flags) 6662 { 6663 int ret; 6664 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 6665 6666 ret = __dev_change_flags(dev, flags); 6667 if (ret < 0) 6668 return ret; 6669 6670 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 6671 __dev_notify_flags(dev, old_flags, changes); 6672 return ret; 6673 } 6674 EXPORT_SYMBOL(dev_change_flags); 6675 6676 static int __dev_set_mtu(struct net_device *dev, int new_mtu) 6677 { 6678 const struct net_device_ops *ops = dev->netdev_ops; 6679 6680 if (ops->ndo_change_mtu) 6681 return ops->ndo_change_mtu(dev, new_mtu); 6682 6683 dev->mtu = new_mtu; 6684 return 0; 6685 } 6686 6687 /** 6688 * dev_set_mtu - Change maximum transfer unit 6689 * @dev: device 6690 * @new_mtu: new transfer unit 6691 * 6692 * Change the maximum transfer size of the network device. 6693 */ 6694 int dev_set_mtu(struct net_device *dev, int new_mtu) 6695 { 6696 int err, orig_mtu; 6697 6698 if (new_mtu == dev->mtu) 6699 return 0; 6700 6701 /* MTU must be positive, and in range */ 6702 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 6703 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n", 6704 dev->name, new_mtu, dev->min_mtu); 6705 return -EINVAL; 6706 } 6707 6708 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 6709 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n", 6710 dev->name, new_mtu, dev->max_mtu); 6711 return -EINVAL; 6712 } 6713 6714 if (!netif_device_present(dev)) 6715 return -ENODEV; 6716 6717 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 6718 err = notifier_to_errno(err); 6719 if (err) 6720 return err; 6721 6722 orig_mtu = dev->mtu; 6723 err = __dev_set_mtu(dev, new_mtu); 6724 6725 if (!err) { 6726 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6727 err = notifier_to_errno(err); 6728 if (err) { 6729 /* setting mtu back and notifying everyone again, 6730 * so that they have a chance to revert changes. 6731 */ 6732 __dev_set_mtu(dev, orig_mtu); 6733 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6734 } 6735 } 6736 return err; 6737 } 6738 EXPORT_SYMBOL(dev_set_mtu); 6739 6740 /** 6741 * dev_set_group - Change group this device belongs to 6742 * @dev: device 6743 * @new_group: group this device should belong to 6744 */ 6745 void dev_set_group(struct net_device *dev, int new_group) 6746 { 6747 dev->group = new_group; 6748 } 6749 EXPORT_SYMBOL(dev_set_group); 6750 6751 /** 6752 * dev_set_mac_address - Change Media Access Control Address 6753 * @dev: device 6754 * @sa: new address 6755 * 6756 * Change the hardware (MAC) address of the device 6757 */ 6758 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 6759 { 6760 const struct net_device_ops *ops = dev->netdev_ops; 6761 int err; 6762 6763 if (!ops->ndo_set_mac_address) 6764 return -EOPNOTSUPP; 6765 if (sa->sa_family != dev->type) 6766 return -EINVAL; 6767 if (!netif_device_present(dev)) 6768 return -ENODEV; 6769 err = ops->ndo_set_mac_address(dev, sa); 6770 if (err) 6771 return err; 6772 dev->addr_assign_type = NET_ADDR_SET; 6773 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 6774 add_device_randomness(dev->dev_addr, dev->addr_len); 6775 return 0; 6776 } 6777 EXPORT_SYMBOL(dev_set_mac_address); 6778 6779 /** 6780 * dev_change_carrier - Change device carrier 6781 * @dev: device 6782 * @new_carrier: new value 6783 * 6784 * Change device carrier 6785 */ 6786 int dev_change_carrier(struct net_device *dev, bool new_carrier) 6787 { 6788 const struct net_device_ops *ops = dev->netdev_ops; 6789 6790 if (!ops->ndo_change_carrier) 6791 return -EOPNOTSUPP; 6792 if (!netif_device_present(dev)) 6793 return -ENODEV; 6794 return ops->ndo_change_carrier(dev, new_carrier); 6795 } 6796 EXPORT_SYMBOL(dev_change_carrier); 6797 6798 /** 6799 * dev_get_phys_port_id - Get device physical port ID 6800 * @dev: device 6801 * @ppid: port ID 6802 * 6803 * Get device physical port ID 6804 */ 6805 int dev_get_phys_port_id(struct net_device *dev, 6806 struct netdev_phys_item_id *ppid) 6807 { 6808 const struct net_device_ops *ops = dev->netdev_ops; 6809 6810 if (!ops->ndo_get_phys_port_id) 6811 return -EOPNOTSUPP; 6812 return ops->ndo_get_phys_port_id(dev, ppid); 6813 } 6814 EXPORT_SYMBOL(dev_get_phys_port_id); 6815 6816 /** 6817 * dev_get_phys_port_name - Get device physical port name 6818 * @dev: device 6819 * @name: port name 6820 * @len: limit of bytes to copy to name 6821 * 6822 * Get device physical port name 6823 */ 6824 int dev_get_phys_port_name(struct net_device *dev, 6825 char *name, size_t len) 6826 { 6827 const struct net_device_ops *ops = dev->netdev_ops; 6828 6829 if (!ops->ndo_get_phys_port_name) 6830 return -EOPNOTSUPP; 6831 return ops->ndo_get_phys_port_name(dev, name, len); 6832 } 6833 EXPORT_SYMBOL(dev_get_phys_port_name); 6834 6835 /** 6836 * dev_change_proto_down - update protocol port state information 6837 * @dev: device 6838 * @proto_down: new value 6839 * 6840 * This info can be used by switch drivers to set the phys state of the 6841 * port. 6842 */ 6843 int dev_change_proto_down(struct net_device *dev, bool proto_down) 6844 { 6845 const struct net_device_ops *ops = dev->netdev_ops; 6846 6847 if (!ops->ndo_change_proto_down) 6848 return -EOPNOTSUPP; 6849 if (!netif_device_present(dev)) 6850 return -ENODEV; 6851 return ops->ndo_change_proto_down(dev, proto_down); 6852 } 6853 EXPORT_SYMBOL(dev_change_proto_down); 6854 6855 /** 6856 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 6857 * @dev: device 6858 * @extack: netlink extended ack 6859 * @fd: new program fd or negative value to clear 6860 * @flags: xdp-related flags 6861 * 6862 * Set or clear a bpf program for a device 6863 */ 6864 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 6865 int fd, u32 flags) 6866 { 6867 int (*xdp_op)(struct net_device *dev, struct netdev_xdp *xdp); 6868 const struct net_device_ops *ops = dev->netdev_ops; 6869 struct bpf_prog *prog = NULL; 6870 struct netdev_xdp xdp; 6871 int err; 6872 6873 ASSERT_RTNL(); 6874 6875 xdp_op = ops->ndo_xdp; 6876 if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE)) 6877 xdp_op = generic_xdp_install; 6878 6879 if (fd >= 0) { 6880 if (flags & XDP_FLAGS_UPDATE_IF_NOEXIST) { 6881 memset(&xdp, 0, sizeof(xdp)); 6882 xdp.command = XDP_QUERY_PROG; 6883 6884 err = xdp_op(dev, &xdp); 6885 if (err < 0) 6886 return err; 6887 if (xdp.prog_attached) 6888 return -EBUSY; 6889 } 6890 6891 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP); 6892 if (IS_ERR(prog)) 6893 return PTR_ERR(prog); 6894 } 6895 6896 memset(&xdp, 0, sizeof(xdp)); 6897 xdp.command = XDP_SETUP_PROG; 6898 xdp.extack = extack; 6899 xdp.prog = prog; 6900 6901 err = xdp_op(dev, &xdp); 6902 if (err < 0 && prog) 6903 bpf_prog_put(prog); 6904 6905 return err; 6906 } 6907 6908 /** 6909 * dev_new_index - allocate an ifindex 6910 * @net: the applicable net namespace 6911 * 6912 * Returns a suitable unique value for a new device interface 6913 * number. The caller must hold the rtnl semaphore or the 6914 * dev_base_lock to be sure it remains unique. 6915 */ 6916 static int dev_new_index(struct net *net) 6917 { 6918 int ifindex = net->ifindex; 6919 6920 for (;;) { 6921 if (++ifindex <= 0) 6922 ifindex = 1; 6923 if (!__dev_get_by_index(net, ifindex)) 6924 return net->ifindex = ifindex; 6925 } 6926 } 6927 6928 /* Delayed registration/unregisteration */ 6929 static LIST_HEAD(net_todo_list); 6930 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 6931 6932 static void net_set_todo(struct net_device *dev) 6933 { 6934 list_add_tail(&dev->todo_list, &net_todo_list); 6935 dev_net(dev)->dev_unreg_count++; 6936 } 6937 6938 static void rollback_registered_many(struct list_head *head) 6939 { 6940 struct net_device *dev, *tmp; 6941 LIST_HEAD(close_head); 6942 6943 BUG_ON(dev_boot_phase); 6944 ASSERT_RTNL(); 6945 6946 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 6947 /* Some devices call without registering 6948 * for initialization unwind. Remove those 6949 * devices and proceed with the remaining. 6950 */ 6951 if (dev->reg_state == NETREG_UNINITIALIZED) { 6952 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 6953 dev->name, dev); 6954 6955 WARN_ON(1); 6956 list_del(&dev->unreg_list); 6957 continue; 6958 } 6959 dev->dismantle = true; 6960 BUG_ON(dev->reg_state != NETREG_REGISTERED); 6961 } 6962 6963 /* If device is running, close it first. */ 6964 list_for_each_entry(dev, head, unreg_list) 6965 list_add_tail(&dev->close_list, &close_head); 6966 dev_close_many(&close_head, true); 6967 6968 list_for_each_entry(dev, head, unreg_list) { 6969 /* And unlink it from device chain. */ 6970 unlist_netdevice(dev); 6971 6972 dev->reg_state = NETREG_UNREGISTERING; 6973 } 6974 flush_all_backlogs(); 6975 6976 synchronize_net(); 6977 6978 list_for_each_entry(dev, head, unreg_list) { 6979 struct sk_buff *skb = NULL; 6980 6981 /* Shutdown queueing discipline. */ 6982 dev_shutdown(dev); 6983 6984 6985 /* Notify protocols, that we are about to destroy 6986 * this device. They should clean all the things. 6987 */ 6988 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6989 6990 if (!dev->rtnl_link_ops || 6991 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 6992 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 6993 GFP_KERNEL); 6994 6995 /* 6996 * Flush the unicast and multicast chains 6997 */ 6998 dev_uc_flush(dev); 6999 dev_mc_flush(dev); 7000 7001 if (dev->netdev_ops->ndo_uninit) 7002 dev->netdev_ops->ndo_uninit(dev); 7003 7004 if (skb) 7005 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 7006 7007 /* Notifier chain MUST detach us all upper devices. */ 7008 WARN_ON(netdev_has_any_upper_dev(dev)); 7009 WARN_ON(netdev_has_any_lower_dev(dev)); 7010 7011 /* Remove entries from kobject tree */ 7012 netdev_unregister_kobject(dev); 7013 #ifdef CONFIG_XPS 7014 /* Remove XPS queueing entries */ 7015 netif_reset_xps_queues_gt(dev, 0); 7016 #endif 7017 } 7018 7019 synchronize_net(); 7020 7021 list_for_each_entry(dev, head, unreg_list) 7022 dev_put(dev); 7023 } 7024 7025 static void rollback_registered(struct net_device *dev) 7026 { 7027 LIST_HEAD(single); 7028 7029 list_add(&dev->unreg_list, &single); 7030 rollback_registered_many(&single); 7031 list_del(&single); 7032 } 7033 7034 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 7035 struct net_device *upper, netdev_features_t features) 7036 { 7037 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7038 netdev_features_t feature; 7039 int feature_bit; 7040 7041 for_each_netdev_feature(&upper_disables, feature_bit) { 7042 feature = __NETIF_F_BIT(feature_bit); 7043 if (!(upper->wanted_features & feature) 7044 && (features & feature)) { 7045 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 7046 &feature, upper->name); 7047 features &= ~feature; 7048 } 7049 } 7050 7051 return features; 7052 } 7053 7054 static void netdev_sync_lower_features(struct net_device *upper, 7055 struct net_device *lower, netdev_features_t features) 7056 { 7057 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7058 netdev_features_t feature; 7059 int feature_bit; 7060 7061 for_each_netdev_feature(&upper_disables, feature_bit) { 7062 feature = __NETIF_F_BIT(feature_bit); 7063 if (!(features & feature) && (lower->features & feature)) { 7064 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 7065 &feature, lower->name); 7066 lower->wanted_features &= ~feature; 7067 netdev_update_features(lower); 7068 7069 if (unlikely(lower->features & feature)) 7070 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 7071 &feature, lower->name); 7072 } 7073 } 7074 } 7075 7076 static netdev_features_t netdev_fix_features(struct net_device *dev, 7077 netdev_features_t features) 7078 { 7079 /* Fix illegal checksum combinations */ 7080 if ((features & NETIF_F_HW_CSUM) && 7081 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 7082 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 7083 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 7084 } 7085 7086 /* TSO requires that SG is present as well. */ 7087 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 7088 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 7089 features &= ~NETIF_F_ALL_TSO; 7090 } 7091 7092 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 7093 !(features & NETIF_F_IP_CSUM)) { 7094 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 7095 features &= ~NETIF_F_TSO; 7096 features &= ~NETIF_F_TSO_ECN; 7097 } 7098 7099 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 7100 !(features & NETIF_F_IPV6_CSUM)) { 7101 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 7102 features &= ~NETIF_F_TSO6; 7103 } 7104 7105 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 7106 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 7107 features &= ~NETIF_F_TSO_MANGLEID; 7108 7109 /* TSO ECN requires that TSO is present as well. */ 7110 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 7111 features &= ~NETIF_F_TSO_ECN; 7112 7113 /* Software GSO depends on SG. */ 7114 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 7115 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 7116 features &= ~NETIF_F_GSO; 7117 } 7118 7119 /* UFO needs SG and checksumming */ 7120 if (features & NETIF_F_UFO) { 7121 /* maybe split UFO into V4 and V6? */ 7122 if (!(features & NETIF_F_HW_CSUM) && 7123 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) != 7124 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) { 7125 netdev_dbg(dev, 7126 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 7127 features &= ~NETIF_F_UFO; 7128 } 7129 7130 if (!(features & NETIF_F_SG)) { 7131 netdev_dbg(dev, 7132 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 7133 features &= ~NETIF_F_UFO; 7134 } 7135 } 7136 7137 /* GSO partial features require GSO partial be set */ 7138 if ((features & dev->gso_partial_features) && 7139 !(features & NETIF_F_GSO_PARTIAL)) { 7140 netdev_dbg(dev, 7141 "Dropping partially supported GSO features since no GSO partial.\n"); 7142 features &= ~dev->gso_partial_features; 7143 } 7144 7145 return features; 7146 } 7147 7148 int __netdev_update_features(struct net_device *dev) 7149 { 7150 struct net_device *upper, *lower; 7151 netdev_features_t features; 7152 struct list_head *iter; 7153 int err = -1; 7154 7155 ASSERT_RTNL(); 7156 7157 features = netdev_get_wanted_features(dev); 7158 7159 if (dev->netdev_ops->ndo_fix_features) 7160 features = dev->netdev_ops->ndo_fix_features(dev, features); 7161 7162 /* driver might be less strict about feature dependencies */ 7163 features = netdev_fix_features(dev, features); 7164 7165 /* some features can't be enabled if they're off an an upper device */ 7166 netdev_for_each_upper_dev_rcu(dev, upper, iter) 7167 features = netdev_sync_upper_features(dev, upper, features); 7168 7169 if (dev->features == features) 7170 goto sync_lower; 7171 7172 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 7173 &dev->features, &features); 7174 7175 if (dev->netdev_ops->ndo_set_features) 7176 err = dev->netdev_ops->ndo_set_features(dev, features); 7177 else 7178 err = 0; 7179 7180 if (unlikely(err < 0)) { 7181 netdev_err(dev, 7182 "set_features() failed (%d); wanted %pNF, left %pNF\n", 7183 err, &features, &dev->features); 7184 /* return non-0 since some features might have changed and 7185 * it's better to fire a spurious notification than miss it 7186 */ 7187 return -1; 7188 } 7189 7190 sync_lower: 7191 /* some features must be disabled on lower devices when disabled 7192 * on an upper device (think: bonding master or bridge) 7193 */ 7194 netdev_for_each_lower_dev(dev, lower, iter) 7195 netdev_sync_lower_features(dev, lower, features); 7196 7197 if (!err) 7198 dev->features = features; 7199 7200 return err < 0 ? 0 : 1; 7201 } 7202 7203 /** 7204 * netdev_update_features - recalculate device features 7205 * @dev: the device to check 7206 * 7207 * Recalculate dev->features set and send notifications if it 7208 * has changed. Should be called after driver or hardware dependent 7209 * conditions might have changed that influence the features. 7210 */ 7211 void netdev_update_features(struct net_device *dev) 7212 { 7213 if (__netdev_update_features(dev)) 7214 netdev_features_change(dev); 7215 } 7216 EXPORT_SYMBOL(netdev_update_features); 7217 7218 /** 7219 * netdev_change_features - recalculate device features 7220 * @dev: the device to check 7221 * 7222 * Recalculate dev->features set and send notifications even 7223 * if they have not changed. Should be called instead of 7224 * netdev_update_features() if also dev->vlan_features might 7225 * have changed to allow the changes to be propagated to stacked 7226 * VLAN devices. 7227 */ 7228 void netdev_change_features(struct net_device *dev) 7229 { 7230 __netdev_update_features(dev); 7231 netdev_features_change(dev); 7232 } 7233 EXPORT_SYMBOL(netdev_change_features); 7234 7235 /** 7236 * netif_stacked_transfer_operstate - transfer operstate 7237 * @rootdev: the root or lower level device to transfer state from 7238 * @dev: the device to transfer operstate to 7239 * 7240 * Transfer operational state from root to device. This is normally 7241 * called when a stacking relationship exists between the root 7242 * device and the device(a leaf device). 7243 */ 7244 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 7245 struct net_device *dev) 7246 { 7247 if (rootdev->operstate == IF_OPER_DORMANT) 7248 netif_dormant_on(dev); 7249 else 7250 netif_dormant_off(dev); 7251 7252 if (netif_carrier_ok(rootdev)) 7253 netif_carrier_on(dev); 7254 else 7255 netif_carrier_off(dev); 7256 } 7257 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 7258 7259 #ifdef CONFIG_SYSFS 7260 static int netif_alloc_rx_queues(struct net_device *dev) 7261 { 7262 unsigned int i, count = dev->num_rx_queues; 7263 struct netdev_rx_queue *rx; 7264 size_t sz = count * sizeof(*rx); 7265 7266 BUG_ON(count < 1); 7267 7268 rx = kvzalloc(sz, GFP_KERNEL | __GFP_REPEAT); 7269 if (!rx) 7270 return -ENOMEM; 7271 7272 dev->_rx = rx; 7273 7274 for (i = 0; i < count; i++) 7275 rx[i].dev = dev; 7276 return 0; 7277 } 7278 #endif 7279 7280 static void netdev_init_one_queue(struct net_device *dev, 7281 struct netdev_queue *queue, void *_unused) 7282 { 7283 /* Initialize queue lock */ 7284 spin_lock_init(&queue->_xmit_lock); 7285 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 7286 queue->xmit_lock_owner = -1; 7287 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 7288 queue->dev = dev; 7289 #ifdef CONFIG_BQL 7290 dql_init(&queue->dql, HZ); 7291 #endif 7292 } 7293 7294 static void netif_free_tx_queues(struct net_device *dev) 7295 { 7296 kvfree(dev->_tx); 7297 } 7298 7299 static int netif_alloc_netdev_queues(struct net_device *dev) 7300 { 7301 unsigned int count = dev->num_tx_queues; 7302 struct netdev_queue *tx; 7303 size_t sz = count * sizeof(*tx); 7304 7305 if (count < 1 || count > 0xffff) 7306 return -EINVAL; 7307 7308 tx = kvzalloc(sz, GFP_KERNEL | __GFP_REPEAT); 7309 if (!tx) 7310 return -ENOMEM; 7311 7312 dev->_tx = tx; 7313 7314 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 7315 spin_lock_init(&dev->tx_global_lock); 7316 7317 return 0; 7318 } 7319 7320 void netif_tx_stop_all_queues(struct net_device *dev) 7321 { 7322 unsigned int i; 7323 7324 for (i = 0; i < dev->num_tx_queues; i++) { 7325 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 7326 7327 netif_tx_stop_queue(txq); 7328 } 7329 } 7330 EXPORT_SYMBOL(netif_tx_stop_all_queues); 7331 7332 /** 7333 * register_netdevice - register a network device 7334 * @dev: device to register 7335 * 7336 * Take a completed network device structure and add it to the kernel 7337 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7338 * chain. 0 is returned on success. A negative errno code is returned 7339 * on a failure to set up the device, or if the name is a duplicate. 7340 * 7341 * Callers must hold the rtnl semaphore. You may want 7342 * register_netdev() instead of this. 7343 * 7344 * BUGS: 7345 * The locking appears insufficient to guarantee two parallel registers 7346 * will not get the same name. 7347 */ 7348 7349 int register_netdevice(struct net_device *dev) 7350 { 7351 int ret; 7352 struct net *net = dev_net(dev); 7353 7354 BUG_ON(dev_boot_phase); 7355 ASSERT_RTNL(); 7356 7357 might_sleep(); 7358 7359 /* When net_device's are persistent, this will be fatal. */ 7360 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 7361 BUG_ON(!net); 7362 7363 spin_lock_init(&dev->addr_list_lock); 7364 netdev_set_addr_lockdep_class(dev); 7365 7366 ret = dev_get_valid_name(net, dev, dev->name); 7367 if (ret < 0) 7368 goto out; 7369 7370 /* Init, if this function is available */ 7371 if (dev->netdev_ops->ndo_init) { 7372 ret = dev->netdev_ops->ndo_init(dev); 7373 if (ret) { 7374 if (ret > 0) 7375 ret = -EIO; 7376 goto out; 7377 } 7378 } 7379 7380 if (((dev->hw_features | dev->features) & 7381 NETIF_F_HW_VLAN_CTAG_FILTER) && 7382 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 7383 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 7384 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 7385 ret = -EINVAL; 7386 goto err_uninit; 7387 } 7388 7389 ret = -EBUSY; 7390 if (!dev->ifindex) 7391 dev->ifindex = dev_new_index(net); 7392 else if (__dev_get_by_index(net, dev->ifindex)) 7393 goto err_uninit; 7394 7395 /* Transfer changeable features to wanted_features and enable 7396 * software offloads (GSO and GRO). 7397 */ 7398 dev->hw_features |= NETIF_F_SOFT_FEATURES; 7399 dev->features |= NETIF_F_SOFT_FEATURES; 7400 dev->wanted_features = dev->features & dev->hw_features; 7401 7402 if (!(dev->flags & IFF_LOOPBACK)) 7403 dev->hw_features |= NETIF_F_NOCACHE_COPY; 7404 7405 /* If IPv4 TCP segmentation offload is supported we should also 7406 * allow the device to enable segmenting the frame with the option 7407 * of ignoring a static IP ID value. This doesn't enable the 7408 * feature itself but allows the user to enable it later. 7409 */ 7410 if (dev->hw_features & NETIF_F_TSO) 7411 dev->hw_features |= NETIF_F_TSO_MANGLEID; 7412 if (dev->vlan_features & NETIF_F_TSO) 7413 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 7414 if (dev->mpls_features & NETIF_F_TSO) 7415 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 7416 if (dev->hw_enc_features & NETIF_F_TSO) 7417 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 7418 7419 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 7420 */ 7421 dev->vlan_features |= NETIF_F_HIGHDMA; 7422 7423 /* Make NETIF_F_SG inheritable to tunnel devices. 7424 */ 7425 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 7426 7427 /* Make NETIF_F_SG inheritable to MPLS. 7428 */ 7429 dev->mpls_features |= NETIF_F_SG; 7430 7431 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 7432 ret = notifier_to_errno(ret); 7433 if (ret) 7434 goto err_uninit; 7435 7436 ret = netdev_register_kobject(dev); 7437 if (ret) 7438 goto err_uninit; 7439 dev->reg_state = NETREG_REGISTERED; 7440 7441 __netdev_update_features(dev); 7442 7443 /* 7444 * Default initial state at registry is that the 7445 * device is present. 7446 */ 7447 7448 set_bit(__LINK_STATE_PRESENT, &dev->state); 7449 7450 linkwatch_init_dev(dev); 7451 7452 dev_init_scheduler(dev); 7453 dev_hold(dev); 7454 list_netdevice(dev); 7455 add_device_randomness(dev->dev_addr, dev->addr_len); 7456 7457 /* If the device has permanent device address, driver should 7458 * set dev_addr and also addr_assign_type should be set to 7459 * NET_ADDR_PERM (default value). 7460 */ 7461 if (dev->addr_assign_type == NET_ADDR_PERM) 7462 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 7463 7464 /* Notify protocols, that a new device appeared. */ 7465 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 7466 ret = notifier_to_errno(ret); 7467 if (ret) { 7468 rollback_registered(dev); 7469 dev->reg_state = NETREG_UNREGISTERED; 7470 } 7471 /* 7472 * Prevent userspace races by waiting until the network 7473 * device is fully setup before sending notifications. 7474 */ 7475 if (!dev->rtnl_link_ops || 7476 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7477 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7478 7479 out: 7480 return ret; 7481 7482 err_uninit: 7483 if (dev->netdev_ops->ndo_uninit) 7484 dev->netdev_ops->ndo_uninit(dev); 7485 goto out; 7486 } 7487 EXPORT_SYMBOL(register_netdevice); 7488 7489 /** 7490 * init_dummy_netdev - init a dummy network device for NAPI 7491 * @dev: device to init 7492 * 7493 * This takes a network device structure and initialize the minimum 7494 * amount of fields so it can be used to schedule NAPI polls without 7495 * registering a full blown interface. This is to be used by drivers 7496 * that need to tie several hardware interfaces to a single NAPI 7497 * poll scheduler due to HW limitations. 7498 */ 7499 int init_dummy_netdev(struct net_device *dev) 7500 { 7501 /* Clear everything. Note we don't initialize spinlocks 7502 * are they aren't supposed to be taken by any of the 7503 * NAPI code and this dummy netdev is supposed to be 7504 * only ever used for NAPI polls 7505 */ 7506 memset(dev, 0, sizeof(struct net_device)); 7507 7508 /* make sure we BUG if trying to hit standard 7509 * register/unregister code path 7510 */ 7511 dev->reg_state = NETREG_DUMMY; 7512 7513 /* NAPI wants this */ 7514 INIT_LIST_HEAD(&dev->napi_list); 7515 7516 /* a dummy interface is started by default */ 7517 set_bit(__LINK_STATE_PRESENT, &dev->state); 7518 set_bit(__LINK_STATE_START, &dev->state); 7519 7520 /* Note : We dont allocate pcpu_refcnt for dummy devices, 7521 * because users of this 'device' dont need to change 7522 * its refcount. 7523 */ 7524 7525 return 0; 7526 } 7527 EXPORT_SYMBOL_GPL(init_dummy_netdev); 7528 7529 7530 /** 7531 * register_netdev - register a network device 7532 * @dev: device to register 7533 * 7534 * Take a completed network device structure and add it to the kernel 7535 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7536 * chain. 0 is returned on success. A negative errno code is returned 7537 * on a failure to set up the device, or if the name is a duplicate. 7538 * 7539 * This is a wrapper around register_netdevice that takes the rtnl semaphore 7540 * and expands the device name if you passed a format string to 7541 * alloc_netdev. 7542 */ 7543 int register_netdev(struct net_device *dev) 7544 { 7545 int err; 7546 7547 rtnl_lock(); 7548 err = register_netdevice(dev); 7549 rtnl_unlock(); 7550 return err; 7551 } 7552 EXPORT_SYMBOL(register_netdev); 7553 7554 int netdev_refcnt_read(const struct net_device *dev) 7555 { 7556 int i, refcnt = 0; 7557 7558 for_each_possible_cpu(i) 7559 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 7560 return refcnt; 7561 } 7562 EXPORT_SYMBOL(netdev_refcnt_read); 7563 7564 /** 7565 * netdev_wait_allrefs - wait until all references are gone. 7566 * @dev: target net_device 7567 * 7568 * This is called when unregistering network devices. 7569 * 7570 * Any protocol or device that holds a reference should register 7571 * for netdevice notification, and cleanup and put back the 7572 * reference if they receive an UNREGISTER event. 7573 * We can get stuck here if buggy protocols don't correctly 7574 * call dev_put. 7575 */ 7576 static void netdev_wait_allrefs(struct net_device *dev) 7577 { 7578 unsigned long rebroadcast_time, warning_time; 7579 int refcnt; 7580 7581 linkwatch_forget_dev(dev); 7582 7583 rebroadcast_time = warning_time = jiffies; 7584 refcnt = netdev_refcnt_read(dev); 7585 7586 while (refcnt != 0) { 7587 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 7588 rtnl_lock(); 7589 7590 /* Rebroadcast unregister notification */ 7591 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7592 7593 __rtnl_unlock(); 7594 rcu_barrier(); 7595 rtnl_lock(); 7596 7597 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7598 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 7599 &dev->state)) { 7600 /* We must not have linkwatch events 7601 * pending on unregister. If this 7602 * happens, we simply run the queue 7603 * unscheduled, resulting in a noop 7604 * for this device. 7605 */ 7606 linkwatch_run_queue(); 7607 } 7608 7609 __rtnl_unlock(); 7610 7611 rebroadcast_time = jiffies; 7612 } 7613 7614 msleep(250); 7615 7616 refcnt = netdev_refcnt_read(dev); 7617 7618 if (time_after(jiffies, warning_time + 10 * HZ)) { 7619 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 7620 dev->name, refcnt); 7621 warning_time = jiffies; 7622 } 7623 } 7624 } 7625 7626 /* The sequence is: 7627 * 7628 * rtnl_lock(); 7629 * ... 7630 * register_netdevice(x1); 7631 * register_netdevice(x2); 7632 * ... 7633 * unregister_netdevice(y1); 7634 * unregister_netdevice(y2); 7635 * ... 7636 * rtnl_unlock(); 7637 * free_netdev(y1); 7638 * free_netdev(y2); 7639 * 7640 * We are invoked by rtnl_unlock(). 7641 * This allows us to deal with problems: 7642 * 1) We can delete sysfs objects which invoke hotplug 7643 * without deadlocking with linkwatch via keventd. 7644 * 2) Since we run with the RTNL semaphore not held, we can sleep 7645 * safely in order to wait for the netdev refcnt to drop to zero. 7646 * 7647 * We must not return until all unregister events added during 7648 * the interval the lock was held have been completed. 7649 */ 7650 void netdev_run_todo(void) 7651 { 7652 struct list_head list; 7653 7654 /* Snapshot list, allow later requests */ 7655 list_replace_init(&net_todo_list, &list); 7656 7657 __rtnl_unlock(); 7658 7659 7660 /* Wait for rcu callbacks to finish before next phase */ 7661 if (!list_empty(&list)) 7662 rcu_barrier(); 7663 7664 while (!list_empty(&list)) { 7665 struct net_device *dev 7666 = list_first_entry(&list, struct net_device, todo_list); 7667 list_del(&dev->todo_list); 7668 7669 rtnl_lock(); 7670 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7671 __rtnl_unlock(); 7672 7673 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 7674 pr_err("network todo '%s' but state %d\n", 7675 dev->name, dev->reg_state); 7676 dump_stack(); 7677 continue; 7678 } 7679 7680 dev->reg_state = NETREG_UNREGISTERED; 7681 7682 netdev_wait_allrefs(dev); 7683 7684 /* paranoia */ 7685 BUG_ON(netdev_refcnt_read(dev)); 7686 BUG_ON(!list_empty(&dev->ptype_all)); 7687 BUG_ON(!list_empty(&dev->ptype_specific)); 7688 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 7689 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 7690 WARN_ON(dev->dn_ptr); 7691 7692 if (dev->destructor) 7693 dev->destructor(dev); 7694 7695 /* Report a network device has been unregistered */ 7696 rtnl_lock(); 7697 dev_net(dev)->dev_unreg_count--; 7698 __rtnl_unlock(); 7699 wake_up(&netdev_unregistering_wq); 7700 7701 /* Free network device */ 7702 kobject_put(&dev->dev.kobj); 7703 } 7704 } 7705 7706 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 7707 * all the same fields in the same order as net_device_stats, with only 7708 * the type differing, but rtnl_link_stats64 may have additional fields 7709 * at the end for newer counters. 7710 */ 7711 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 7712 const struct net_device_stats *netdev_stats) 7713 { 7714 #if BITS_PER_LONG == 64 7715 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 7716 memcpy(stats64, netdev_stats, sizeof(*stats64)); 7717 /* zero out counters that only exist in rtnl_link_stats64 */ 7718 memset((char *)stats64 + sizeof(*netdev_stats), 0, 7719 sizeof(*stats64) - sizeof(*netdev_stats)); 7720 #else 7721 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 7722 const unsigned long *src = (const unsigned long *)netdev_stats; 7723 u64 *dst = (u64 *)stats64; 7724 7725 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 7726 for (i = 0; i < n; i++) 7727 dst[i] = src[i]; 7728 /* zero out counters that only exist in rtnl_link_stats64 */ 7729 memset((char *)stats64 + n * sizeof(u64), 0, 7730 sizeof(*stats64) - n * sizeof(u64)); 7731 #endif 7732 } 7733 EXPORT_SYMBOL(netdev_stats_to_stats64); 7734 7735 /** 7736 * dev_get_stats - get network device statistics 7737 * @dev: device to get statistics from 7738 * @storage: place to store stats 7739 * 7740 * Get network statistics from device. Return @storage. 7741 * The device driver may provide its own method by setting 7742 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 7743 * otherwise the internal statistics structure is used. 7744 */ 7745 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 7746 struct rtnl_link_stats64 *storage) 7747 { 7748 const struct net_device_ops *ops = dev->netdev_ops; 7749 7750 if (ops->ndo_get_stats64) { 7751 memset(storage, 0, sizeof(*storage)); 7752 ops->ndo_get_stats64(dev, storage); 7753 } else if (ops->ndo_get_stats) { 7754 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 7755 } else { 7756 netdev_stats_to_stats64(storage, &dev->stats); 7757 } 7758 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 7759 storage->tx_dropped += atomic_long_read(&dev->tx_dropped); 7760 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler); 7761 return storage; 7762 } 7763 EXPORT_SYMBOL(dev_get_stats); 7764 7765 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 7766 { 7767 struct netdev_queue *queue = dev_ingress_queue(dev); 7768 7769 #ifdef CONFIG_NET_CLS_ACT 7770 if (queue) 7771 return queue; 7772 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 7773 if (!queue) 7774 return NULL; 7775 netdev_init_one_queue(dev, queue, NULL); 7776 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 7777 queue->qdisc_sleeping = &noop_qdisc; 7778 rcu_assign_pointer(dev->ingress_queue, queue); 7779 #endif 7780 return queue; 7781 } 7782 7783 static const struct ethtool_ops default_ethtool_ops; 7784 7785 void netdev_set_default_ethtool_ops(struct net_device *dev, 7786 const struct ethtool_ops *ops) 7787 { 7788 if (dev->ethtool_ops == &default_ethtool_ops) 7789 dev->ethtool_ops = ops; 7790 } 7791 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 7792 7793 void netdev_freemem(struct net_device *dev) 7794 { 7795 char *addr = (char *)dev - dev->padded; 7796 7797 kvfree(addr); 7798 } 7799 7800 /** 7801 * alloc_netdev_mqs - allocate network device 7802 * @sizeof_priv: size of private data to allocate space for 7803 * @name: device name format string 7804 * @name_assign_type: origin of device name 7805 * @setup: callback to initialize device 7806 * @txqs: the number of TX subqueues to allocate 7807 * @rxqs: the number of RX subqueues to allocate 7808 * 7809 * Allocates a struct net_device with private data area for driver use 7810 * and performs basic initialization. Also allocates subqueue structs 7811 * for each queue on the device. 7812 */ 7813 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 7814 unsigned char name_assign_type, 7815 void (*setup)(struct net_device *), 7816 unsigned int txqs, unsigned int rxqs) 7817 { 7818 struct net_device *dev; 7819 size_t alloc_size; 7820 struct net_device *p; 7821 7822 BUG_ON(strlen(name) >= sizeof(dev->name)); 7823 7824 if (txqs < 1) { 7825 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 7826 return NULL; 7827 } 7828 7829 #ifdef CONFIG_SYSFS 7830 if (rxqs < 1) { 7831 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 7832 return NULL; 7833 } 7834 #endif 7835 7836 alloc_size = sizeof(struct net_device); 7837 if (sizeof_priv) { 7838 /* ensure 32-byte alignment of private area */ 7839 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 7840 alloc_size += sizeof_priv; 7841 } 7842 /* ensure 32-byte alignment of whole construct */ 7843 alloc_size += NETDEV_ALIGN - 1; 7844 7845 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_REPEAT); 7846 if (!p) 7847 return NULL; 7848 7849 dev = PTR_ALIGN(p, NETDEV_ALIGN); 7850 dev->padded = (char *)dev - (char *)p; 7851 7852 dev->pcpu_refcnt = alloc_percpu(int); 7853 if (!dev->pcpu_refcnt) 7854 goto free_dev; 7855 7856 if (dev_addr_init(dev)) 7857 goto free_pcpu; 7858 7859 dev_mc_init(dev); 7860 dev_uc_init(dev); 7861 7862 dev_net_set(dev, &init_net); 7863 7864 dev->gso_max_size = GSO_MAX_SIZE; 7865 dev->gso_max_segs = GSO_MAX_SEGS; 7866 7867 INIT_LIST_HEAD(&dev->napi_list); 7868 INIT_LIST_HEAD(&dev->unreg_list); 7869 INIT_LIST_HEAD(&dev->close_list); 7870 INIT_LIST_HEAD(&dev->link_watch_list); 7871 INIT_LIST_HEAD(&dev->adj_list.upper); 7872 INIT_LIST_HEAD(&dev->adj_list.lower); 7873 INIT_LIST_HEAD(&dev->ptype_all); 7874 INIT_LIST_HEAD(&dev->ptype_specific); 7875 #ifdef CONFIG_NET_SCHED 7876 hash_init(dev->qdisc_hash); 7877 #endif 7878 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 7879 setup(dev); 7880 7881 if (!dev->tx_queue_len) { 7882 dev->priv_flags |= IFF_NO_QUEUE; 7883 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 7884 } 7885 7886 dev->num_tx_queues = txqs; 7887 dev->real_num_tx_queues = txqs; 7888 if (netif_alloc_netdev_queues(dev)) 7889 goto free_all; 7890 7891 #ifdef CONFIG_SYSFS 7892 dev->num_rx_queues = rxqs; 7893 dev->real_num_rx_queues = rxqs; 7894 if (netif_alloc_rx_queues(dev)) 7895 goto free_all; 7896 #endif 7897 7898 strcpy(dev->name, name); 7899 dev->name_assign_type = name_assign_type; 7900 dev->group = INIT_NETDEV_GROUP; 7901 if (!dev->ethtool_ops) 7902 dev->ethtool_ops = &default_ethtool_ops; 7903 7904 nf_hook_ingress_init(dev); 7905 7906 return dev; 7907 7908 free_all: 7909 free_netdev(dev); 7910 return NULL; 7911 7912 free_pcpu: 7913 free_percpu(dev->pcpu_refcnt); 7914 free_dev: 7915 netdev_freemem(dev); 7916 return NULL; 7917 } 7918 EXPORT_SYMBOL(alloc_netdev_mqs); 7919 7920 /** 7921 * free_netdev - free network device 7922 * @dev: device 7923 * 7924 * This function does the last stage of destroying an allocated device 7925 * interface. The reference to the device object is released. If this 7926 * is the last reference then it will be freed.Must be called in process 7927 * context. 7928 */ 7929 void free_netdev(struct net_device *dev) 7930 { 7931 struct napi_struct *p, *n; 7932 struct bpf_prog *prog; 7933 7934 might_sleep(); 7935 netif_free_tx_queues(dev); 7936 #ifdef CONFIG_SYSFS 7937 kvfree(dev->_rx); 7938 #endif 7939 7940 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 7941 7942 /* Flush device addresses */ 7943 dev_addr_flush(dev); 7944 7945 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 7946 netif_napi_del(p); 7947 7948 free_percpu(dev->pcpu_refcnt); 7949 dev->pcpu_refcnt = NULL; 7950 7951 prog = rcu_dereference_protected(dev->xdp_prog, 1); 7952 if (prog) { 7953 bpf_prog_put(prog); 7954 static_key_slow_dec(&generic_xdp_needed); 7955 } 7956 7957 /* Compatibility with error handling in drivers */ 7958 if (dev->reg_state == NETREG_UNINITIALIZED) { 7959 netdev_freemem(dev); 7960 return; 7961 } 7962 7963 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 7964 dev->reg_state = NETREG_RELEASED; 7965 7966 /* will free via device release */ 7967 put_device(&dev->dev); 7968 } 7969 EXPORT_SYMBOL(free_netdev); 7970 7971 /** 7972 * synchronize_net - Synchronize with packet receive processing 7973 * 7974 * Wait for packets currently being received to be done. 7975 * Does not block later packets from starting. 7976 */ 7977 void synchronize_net(void) 7978 { 7979 might_sleep(); 7980 if (rtnl_is_locked()) 7981 synchronize_rcu_expedited(); 7982 else 7983 synchronize_rcu(); 7984 } 7985 EXPORT_SYMBOL(synchronize_net); 7986 7987 /** 7988 * unregister_netdevice_queue - remove device from the kernel 7989 * @dev: device 7990 * @head: list 7991 * 7992 * This function shuts down a device interface and removes it 7993 * from the kernel tables. 7994 * If head not NULL, device is queued to be unregistered later. 7995 * 7996 * Callers must hold the rtnl semaphore. You may want 7997 * unregister_netdev() instead of this. 7998 */ 7999 8000 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 8001 { 8002 ASSERT_RTNL(); 8003 8004 if (head) { 8005 list_move_tail(&dev->unreg_list, head); 8006 } else { 8007 rollback_registered(dev); 8008 /* Finish processing unregister after unlock */ 8009 net_set_todo(dev); 8010 } 8011 } 8012 EXPORT_SYMBOL(unregister_netdevice_queue); 8013 8014 /** 8015 * unregister_netdevice_many - unregister many devices 8016 * @head: list of devices 8017 * 8018 * Note: As most callers use a stack allocated list_head, 8019 * we force a list_del() to make sure stack wont be corrupted later. 8020 */ 8021 void unregister_netdevice_many(struct list_head *head) 8022 { 8023 struct net_device *dev; 8024 8025 if (!list_empty(head)) { 8026 rollback_registered_many(head); 8027 list_for_each_entry(dev, head, unreg_list) 8028 net_set_todo(dev); 8029 list_del(head); 8030 } 8031 } 8032 EXPORT_SYMBOL(unregister_netdevice_many); 8033 8034 /** 8035 * unregister_netdev - remove device from the kernel 8036 * @dev: device 8037 * 8038 * This function shuts down a device interface and removes it 8039 * from the kernel tables. 8040 * 8041 * This is just a wrapper for unregister_netdevice that takes 8042 * the rtnl semaphore. In general you want to use this and not 8043 * unregister_netdevice. 8044 */ 8045 void unregister_netdev(struct net_device *dev) 8046 { 8047 rtnl_lock(); 8048 unregister_netdevice(dev); 8049 rtnl_unlock(); 8050 } 8051 EXPORT_SYMBOL(unregister_netdev); 8052 8053 /** 8054 * dev_change_net_namespace - move device to different nethost namespace 8055 * @dev: device 8056 * @net: network namespace 8057 * @pat: If not NULL name pattern to try if the current device name 8058 * is already taken in the destination network namespace. 8059 * 8060 * This function shuts down a device interface and moves it 8061 * to a new network namespace. On success 0 is returned, on 8062 * a failure a netagive errno code is returned. 8063 * 8064 * Callers must hold the rtnl semaphore. 8065 */ 8066 8067 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 8068 { 8069 int err; 8070 8071 ASSERT_RTNL(); 8072 8073 /* Don't allow namespace local devices to be moved. */ 8074 err = -EINVAL; 8075 if (dev->features & NETIF_F_NETNS_LOCAL) 8076 goto out; 8077 8078 /* Ensure the device has been registrered */ 8079 if (dev->reg_state != NETREG_REGISTERED) 8080 goto out; 8081 8082 /* Get out if there is nothing todo */ 8083 err = 0; 8084 if (net_eq(dev_net(dev), net)) 8085 goto out; 8086 8087 /* Pick the destination device name, and ensure 8088 * we can use it in the destination network namespace. 8089 */ 8090 err = -EEXIST; 8091 if (__dev_get_by_name(net, dev->name)) { 8092 /* We get here if we can't use the current device name */ 8093 if (!pat) 8094 goto out; 8095 if (dev_get_valid_name(net, dev, pat) < 0) 8096 goto out; 8097 } 8098 8099 /* 8100 * And now a mini version of register_netdevice unregister_netdevice. 8101 */ 8102 8103 /* If device is running close it first. */ 8104 dev_close(dev); 8105 8106 /* And unlink it from device chain */ 8107 err = -ENODEV; 8108 unlist_netdevice(dev); 8109 8110 synchronize_net(); 8111 8112 /* Shutdown queueing discipline. */ 8113 dev_shutdown(dev); 8114 8115 /* Notify protocols, that we are about to destroy 8116 * this device. They should clean all the things. 8117 * 8118 * Note that dev->reg_state stays at NETREG_REGISTERED. 8119 * This is wanted because this way 8021q and macvlan know 8120 * the device is just moving and can keep their slaves up. 8121 */ 8122 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8123 rcu_barrier(); 8124 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 8125 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 8126 8127 /* 8128 * Flush the unicast and multicast chains 8129 */ 8130 dev_uc_flush(dev); 8131 dev_mc_flush(dev); 8132 8133 /* Send a netdev-removed uevent to the old namespace */ 8134 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 8135 netdev_adjacent_del_links(dev); 8136 8137 /* Actually switch the network namespace */ 8138 dev_net_set(dev, net); 8139 8140 /* If there is an ifindex conflict assign a new one */ 8141 if (__dev_get_by_index(net, dev->ifindex)) 8142 dev->ifindex = dev_new_index(net); 8143 8144 /* Send a netdev-add uevent to the new namespace */ 8145 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 8146 netdev_adjacent_add_links(dev); 8147 8148 /* Fixup kobjects */ 8149 err = device_rename(&dev->dev, dev->name); 8150 WARN_ON(err); 8151 8152 /* Add the device back in the hashes */ 8153 list_netdevice(dev); 8154 8155 /* Notify protocols, that a new device appeared. */ 8156 call_netdevice_notifiers(NETDEV_REGISTER, dev); 8157 8158 /* 8159 * Prevent userspace races by waiting until the network 8160 * device is fully setup before sending notifications. 8161 */ 8162 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8163 8164 synchronize_net(); 8165 err = 0; 8166 out: 8167 return err; 8168 } 8169 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 8170 8171 static int dev_cpu_dead(unsigned int oldcpu) 8172 { 8173 struct sk_buff **list_skb; 8174 struct sk_buff *skb; 8175 unsigned int cpu; 8176 struct softnet_data *sd, *oldsd; 8177 8178 local_irq_disable(); 8179 cpu = smp_processor_id(); 8180 sd = &per_cpu(softnet_data, cpu); 8181 oldsd = &per_cpu(softnet_data, oldcpu); 8182 8183 /* Find end of our completion_queue. */ 8184 list_skb = &sd->completion_queue; 8185 while (*list_skb) 8186 list_skb = &(*list_skb)->next; 8187 /* Append completion queue from offline CPU. */ 8188 *list_skb = oldsd->completion_queue; 8189 oldsd->completion_queue = NULL; 8190 8191 /* Append output queue from offline CPU. */ 8192 if (oldsd->output_queue) { 8193 *sd->output_queue_tailp = oldsd->output_queue; 8194 sd->output_queue_tailp = oldsd->output_queue_tailp; 8195 oldsd->output_queue = NULL; 8196 oldsd->output_queue_tailp = &oldsd->output_queue; 8197 } 8198 /* Append NAPI poll list from offline CPU, with one exception : 8199 * process_backlog() must be called by cpu owning percpu backlog. 8200 * We properly handle process_queue & input_pkt_queue later. 8201 */ 8202 while (!list_empty(&oldsd->poll_list)) { 8203 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 8204 struct napi_struct, 8205 poll_list); 8206 8207 list_del_init(&napi->poll_list); 8208 if (napi->poll == process_backlog) 8209 napi->state = 0; 8210 else 8211 ____napi_schedule(sd, napi); 8212 } 8213 8214 raise_softirq_irqoff(NET_TX_SOFTIRQ); 8215 local_irq_enable(); 8216 8217 /* Process offline CPU's input_pkt_queue */ 8218 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 8219 netif_rx_ni(skb); 8220 input_queue_head_incr(oldsd); 8221 } 8222 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 8223 netif_rx_ni(skb); 8224 input_queue_head_incr(oldsd); 8225 } 8226 8227 return 0; 8228 } 8229 8230 /** 8231 * netdev_increment_features - increment feature set by one 8232 * @all: current feature set 8233 * @one: new feature set 8234 * @mask: mask feature set 8235 * 8236 * Computes a new feature set after adding a device with feature set 8237 * @one to the master device with current feature set @all. Will not 8238 * enable anything that is off in @mask. Returns the new feature set. 8239 */ 8240 netdev_features_t netdev_increment_features(netdev_features_t all, 8241 netdev_features_t one, netdev_features_t mask) 8242 { 8243 if (mask & NETIF_F_HW_CSUM) 8244 mask |= NETIF_F_CSUM_MASK; 8245 mask |= NETIF_F_VLAN_CHALLENGED; 8246 8247 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 8248 all &= one | ~NETIF_F_ALL_FOR_ALL; 8249 8250 /* If one device supports hw checksumming, set for all. */ 8251 if (all & NETIF_F_HW_CSUM) 8252 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 8253 8254 return all; 8255 } 8256 EXPORT_SYMBOL(netdev_increment_features); 8257 8258 static struct hlist_head * __net_init netdev_create_hash(void) 8259 { 8260 int i; 8261 struct hlist_head *hash; 8262 8263 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 8264 if (hash != NULL) 8265 for (i = 0; i < NETDEV_HASHENTRIES; i++) 8266 INIT_HLIST_HEAD(&hash[i]); 8267 8268 return hash; 8269 } 8270 8271 /* Initialize per network namespace state */ 8272 static int __net_init netdev_init(struct net *net) 8273 { 8274 if (net != &init_net) 8275 INIT_LIST_HEAD(&net->dev_base_head); 8276 8277 net->dev_name_head = netdev_create_hash(); 8278 if (net->dev_name_head == NULL) 8279 goto err_name; 8280 8281 net->dev_index_head = netdev_create_hash(); 8282 if (net->dev_index_head == NULL) 8283 goto err_idx; 8284 8285 return 0; 8286 8287 err_idx: 8288 kfree(net->dev_name_head); 8289 err_name: 8290 return -ENOMEM; 8291 } 8292 8293 /** 8294 * netdev_drivername - network driver for the device 8295 * @dev: network device 8296 * 8297 * Determine network driver for device. 8298 */ 8299 const char *netdev_drivername(const struct net_device *dev) 8300 { 8301 const struct device_driver *driver; 8302 const struct device *parent; 8303 const char *empty = ""; 8304 8305 parent = dev->dev.parent; 8306 if (!parent) 8307 return empty; 8308 8309 driver = parent->driver; 8310 if (driver && driver->name) 8311 return driver->name; 8312 return empty; 8313 } 8314 8315 static void __netdev_printk(const char *level, const struct net_device *dev, 8316 struct va_format *vaf) 8317 { 8318 if (dev && dev->dev.parent) { 8319 dev_printk_emit(level[1] - '0', 8320 dev->dev.parent, 8321 "%s %s %s%s: %pV", 8322 dev_driver_string(dev->dev.parent), 8323 dev_name(dev->dev.parent), 8324 netdev_name(dev), netdev_reg_state(dev), 8325 vaf); 8326 } else if (dev) { 8327 printk("%s%s%s: %pV", 8328 level, netdev_name(dev), netdev_reg_state(dev), vaf); 8329 } else { 8330 printk("%s(NULL net_device): %pV", level, vaf); 8331 } 8332 } 8333 8334 void netdev_printk(const char *level, const struct net_device *dev, 8335 const char *format, ...) 8336 { 8337 struct va_format vaf; 8338 va_list args; 8339 8340 va_start(args, format); 8341 8342 vaf.fmt = format; 8343 vaf.va = &args; 8344 8345 __netdev_printk(level, dev, &vaf); 8346 8347 va_end(args); 8348 } 8349 EXPORT_SYMBOL(netdev_printk); 8350 8351 #define define_netdev_printk_level(func, level) \ 8352 void func(const struct net_device *dev, const char *fmt, ...) \ 8353 { \ 8354 struct va_format vaf; \ 8355 va_list args; \ 8356 \ 8357 va_start(args, fmt); \ 8358 \ 8359 vaf.fmt = fmt; \ 8360 vaf.va = &args; \ 8361 \ 8362 __netdev_printk(level, dev, &vaf); \ 8363 \ 8364 va_end(args); \ 8365 } \ 8366 EXPORT_SYMBOL(func); 8367 8368 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 8369 define_netdev_printk_level(netdev_alert, KERN_ALERT); 8370 define_netdev_printk_level(netdev_crit, KERN_CRIT); 8371 define_netdev_printk_level(netdev_err, KERN_ERR); 8372 define_netdev_printk_level(netdev_warn, KERN_WARNING); 8373 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 8374 define_netdev_printk_level(netdev_info, KERN_INFO); 8375 8376 static void __net_exit netdev_exit(struct net *net) 8377 { 8378 kfree(net->dev_name_head); 8379 kfree(net->dev_index_head); 8380 } 8381 8382 static struct pernet_operations __net_initdata netdev_net_ops = { 8383 .init = netdev_init, 8384 .exit = netdev_exit, 8385 }; 8386 8387 static void __net_exit default_device_exit(struct net *net) 8388 { 8389 struct net_device *dev, *aux; 8390 /* 8391 * Push all migratable network devices back to the 8392 * initial network namespace 8393 */ 8394 rtnl_lock(); 8395 for_each_netdev_safe(net, dev, aux) { 8396 int err; 8397 char fb_name[IFNAMSIZ]; 8398 8399 /* Ignore unmoveable devices (i.e. loopback) */ 8400 if (dev->features & NETIF_F_NETNS_LOCAL) 8401 continue; 8402 8403 /* Leave virtual devices for the generic cleanup */ 8404 if (dev->rtnl_link_ops) 8405 continue; 8406 8407 /* Push remaining network devices to init_net */ 8408 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 8409 err = dev_change_net_namespace(dev, &init_net, fb_name); 8410 if (err) { 8411 pr_emerg("%s: failed to move %s to init_net: %d\n", 8412 __func__, dev->name, err); 8413 BUG(); 8414 } 8415 } 8416 rtnl_unlock(); 8417 } 8418 8419 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 8420 { 8421 /* Return with the rtnl_lock held when there are no network 8422 * devices unregistering in any network namespace in net_list. 8423 */ 8424 struct net *net; 8425 bool unregistering; 8426 DEFINE_WAIT_FUNC(wait, woken_wake_function); 8427 8428 add_wait_queue(&netdev_unregistering_wq, &wait); 8429 for (;;) { 8430 unregistering = false; 8431 rtnl_lock(); 8432 list_for_each_entry(net, net_list, exit_list) { 8433 if (net->dev_unreg_count > 0) { 8434 unregistering = true; 8435 break; 8436 } 8437 } 8438 if (!unregistering) 8439 break; 8440 __rtnl_unlock(); 8441 8442 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 8443 } 8444 remove_wait_queue(&netdev_unregistering_wq, &wait); 8445 } 8446 8447 static void __net_exit default_device_exit_batch(struct list_head *net_list) 8448 { 8449 /* At exit all network devices most be removed from a network 8450 * namespace. Do this in the reverse order of registration. 8451 * Do this across as many network namespaces as possible to 8452 * improve batching efficiency. 8453 */ 8454 struct net_device *dev; 8455 struct net *net; 8456 LIST_HEAD(dev_kill_list); 8457 8458 /* To prevent network device cleanup code from dereferencing 8459 * loopback devices or network devices that have been freed 8460 * wait here for all pending unregistrations to complete, 8461 * before unregistring the loopback device and allowing the 8462 * network namespace be freed. 8463 * 8464 * The netdev todo list containing all network devices 8465 * unregistrations that happen in default_device_exit_batch 8466 * will run in the rtnl_unlock() at the end of 8467 * default_device_exit_batch. 8468 */ 8469 rtnl_lock_unregistering(net_list); 8470 list_for_each_entry(net, net_list, exit_list) { 8471 for_each_netdev_reverse(net, dev) { 8472 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 8473 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 8474 else 8475 unregister_netdevice_queue(dev, &dev_kill_list); 8476 } 8477 } 8478 unregister_netdevice_many(&dev_kill_list); 8479 rtnl_unlock(); 8480 } 8481 8482 static struct pernet_operations __net_initdata default_device_ops = { 8483 .exit = default_device_exit, 8484 .exit_batch = default_device_exit_batch, 8485 }; 8486 8487 /* 8488 * Initialize the DEV module. At boot time this walks the device list and 8489 * unhooks any devices that fail to initialise (normally hardware not 8490 * present) and leaves us with a valid list of present and active devices. 8491 * 8492 */ 8493 8494 /* 8495 * This is called single threaded during boot, so no need 8496 * to take the rtnl semaphore. 8497 */ 8498 static int __init net_dev_init(void) 8499 { 8500 int i, rc = -ENOMEM; 8501 8502 BUG_ON(!dev_boot_phase); 8503 8504 if (dev_proc_init()) 8505 goto out; 8506 8507 if (netdev_kobject_init()) 8508 goto out; 8509 8510 INIT_LIST_HEAD(&ptype_all); 8511 for (i = 0; i < PTYPE_HASH_SIZE; i++) 8512 INIT_LIST_HEAD(&ptype_base[i]); 8513 8514 INIT_LIST_HEAD(&offload_base); 8515 8516 if (register_pernet_subsys(&netdev_net_ops)) 8517 goto out; 8518 8519 /* 8520 * Initialise the packet receive queues. 8521 */ 8522 8523 for_each_possible_cpu(i) { 8524 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 8525 struct softnet_data *sd = &per_cpu(softnet_data, i); 8526 8527 INIT_WORK(flush, flush_backlog); 8528 8529 skb_queue_head_init(&sd->input_pkt_queue); 8530 skb_queue_head_init(&sd->process_queue); 8531 INIT_LIST_HEAD(&sd->poll_list); 8532 sd->output_queue_tailp = &sd->output_queue; 8533 #ifdef CONFIG_RPS 8534 sd->csd.func = rps_trigger_softirq; 8535 sd->csd.info = sd; 8536 sd->cpu = i; 8537 #endif 8538 8539 sd->backlog.poll = process_backlog; 8540 sd->backlog.weight = weight_p; 8541 } 8542 8543 dev_boot_phase = 0; 8544 8545 /* The loopback device is special if any other network devices 8546 * is present in a network namespace the loopback device must 8547 * be present. Since we now dynamically allocate and free the 8548 * loopback device ensure this invariant is maintained by 8549 * keeping the loopback device as the first device on the 8550 * list of network devices. Ensuring the loopback devices 8551 * is the first device that appears and the last network device 8552 * that disappears. 8553 */ 8554 if (register_pernet_device(&loopback_net_ops)) 8555 goto out; 8556 8557 if (register_pernet_device(&default_device_ops)) 8558 goto out; 8559 8560 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 8561 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 8562 8563 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 8564 NULL, dev_cpu_dead); 8565 WARN_ON(rc < 0); 8566 dst_subsys_init(); 8567 rc = 0; 8568 out: 8569 return rc; 8570 } 8571 8572 subsys_initcall(net_dev_init); 8573