1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/stat.h> 101 #include <net/dst.h> 102 #include <net/pkt_sched.h> 103 #include <net/checksum.h> 104 #include <net/xfrm.h> 105 #include <linux/highmem.h> 106 #include <linux/init.h> 107 #include <linux/module.h> 108 #include <linux/netpoll.h> 109 #include <linux/rcupdate.h> 110 #include <linux/delay.h> 111 #include <net/iw_handler.h> 112 #include <asm/current.h> 113 #include <linux/audit.h> 114 #include <linux/dmaengine.h> 115 #include <linux/err.h> 116 #include <linux/ctype.h> 117 #include <linux/if_arp.h> 118 #include <linux/if_vlan.h> 119 #include <linux/ip.h> 120 #include <net/ip.h> 121 #include <net/mpls.h> 122 #include <linux/ipv6.h> 123 #include <linux/in.h> 124 #include <linux/jhash.h> 125 #include <linux/random.h> 126 #include <trace/events/napi.h> 127 #include <trace/events/net.h> 128 #include <trace/events/skb.h> 129 #include <linux/pci.h> 130 #include <linux/inetdevice.h> 131 #include <linux/cpu_rmap.h> 132 #include <linux/static_key.h> 133 #include <linux/hashtable.h> 134 #include <linux/vmalloc.h> 135 #include <linux/if_macvlan.h> 136 #include <linux/errqueue.h> 137 #include <linux/hrtimer.h> 138 #include <linux/netfilter_ingress.h> 139 140 #include "net-sysfs.h" 141 142 /* Instead of increasing this, you should create a hash table. */ 143 #define MAX_GRO_SKBS 8 144 145 /* This should be increased if a protocol with a bigger head is added. */ 146 #define GRO_MAX_HEAD (MAX_HEADER + 128) 147 148 static DEFINE_SPINLOCK(ptype_lock); 149 static DEFINE_SPINLOCK(offload_lock); 150 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 151 struct list_head ptype_all __read_mostly; /* Taps */ 152 static struct list_head offload_base __read_mostly; 153 154 static int netif_rx_internal(struct sk_buff *skb); 155 static int call_netdevice_notifiers_info(unsigned long val, 156 struct net_device *dev, 157 struct netdev_notifier_info *info); 158 159 /* 160 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 161 * semaphore. 162 * 163 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 164 * 165 * Writers must hold the rtnl semaphore while they loop through the 166 * dev_base_head list, and hold dev_base_lock for writing when they do the 167 * actual updates. This allows pure readers to access the list even 168 * while a writer is preparing to update it. 169 * 170 * To put it another way, dev_base_lock is held for writing only to 171 * protect against pure readers; the rtnl semaphore provides the 172 * protection against other writers. 173 * 174 * See, for example usages, register_netdevice() and 175 * unregister_netdevice(), which must be called with the rtnl 176 * semaphore held. 177 */ 178 DEFINE_RWLOCK(dev_base_lock); 179 EXPORT_SYMBOL(dev_base_lock); 180 181 /* protects napi_hash addition/deletion and napi_gen_id */ 182 static DEFINE_SPINLOCK(napi_hash_lock); 183 184 static unsigned int napi_gen_id; 185 static DEFINE_HASHTABLE(napi_hash, 8); 186 187 static seqcount_t devnet_rename_seq; 188 189 static inline void dev_base_seq_inc(struct net *net) 190 { 191 while (++net->dev_base_seq == 0); 192 } 193 194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 195 { 196 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 197 198 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 199 } 200 201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 202 { 203 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 204 } 205 206 static inline void rps_lock(struct softnet_data *sd) 207 { 208 #ifdef CONFIG_RPS 209 spin_lock(&sd->input_pkt_queue.lock); 210 #endif 211 } 212 213 static inline void rps_unlock(struct softnet_data *sd) 214 { 215 #ifdef CONFIG_RPS 216 spin_unlock(&sd->input_pkt_queue.lock); 217 #endif 218 } 219 220 /* Device list insertion */ 221 static void list_netdevice(struct net_device *dev) 222 { 223 struct net *net = dev_net(dev); 224 225 ASSERT_RTNL(); 226 227 write_lock_bh(&dev_base_lock); 228 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 229 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 230 hlist_add_head_rcu(&dev->index_hlist, 231 dev_index_hash(net, dev->ifindex)); 232 write_unlock_bh(&dev_base_lock); 233 234 dev_base_seq_inc(net); 235 } 236 237 /* Device list removal 238 * caller must respect a RCU grace period before freeing/reusing dev 239 */ 240 static void unlist_netdevice(struct net_device *dev) 241 { 242 ASSERT_RTNL(); 243 244 /* Unlink dev from the device chain */ 245 write_lock_bh(&dev_base_lock); 246 list_del_rcu(&dev->dev_list); 247 hlist_del_rcu(&dev->name_hlist); 248 hlist_del_rcu(&dev->index_hlist); 249 write_unlock_bh(&dev_base_lock); 250 251 dev_base_seq_inc(dev_net(dev)); 252 } 253 254 /* 255 * Our notifier list 256 */ 257 258 static RAW_NOTIFIER_HEAD(netdev_chain); 259 260 /* 261 * Device drivers call our routines to queue packets here. We empty the 262 * queue in the local softnet handler. 263 */ 264 265 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 266 EXPORT_PER_CPU_SYMBOL(softnet_data); 267 268 #ifdef CONFIG_LOCKDEP 269 /* 270 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 271 * according to dev->type 272 */ 273 static const unsigned short netdev_lock_type[] = 274 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 275 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 276 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 277 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 278 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 279 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 280 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 281 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 282 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 283 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 284 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 285 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 286 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 287 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 288 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 289 290 static const char *const netdev_lock_name[] = 291 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 292 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 293 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 294 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 295 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 296 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 297 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 298 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 299 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 300 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 301 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 302 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 303 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 304 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 305 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 306 307 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 308 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 309 310 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 311 { 312 int i; 313 314 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 315 if (netdev_lock_type[i] == dev_type) 316 return i; 317 /* the last key is used by default */ 318 return ARRAY_SIZE(netdev_lock_type) - 1; 319 } 320 321 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 322 unsigned short dev_type) 323 { 324 int i; 325 326 i = netdev_lock_pos(dev_type); 327 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 328 netdev_lock_name[i]); 329 } 330 331 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 332 { 333 int i; 334 335 i = netdev_lock_pos(dev->type); 336 lockdep_set_class_and_name(&dev->addr_list_lock, 337 &netdev_addr_lock_key[i], 338 netdev_lock_name[i]); 339 } 340 #else 341 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 342 unsigned short dev_type) 343 { 344 } 345 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 346 { 347 } 348 #endif 349 350 /******************************************************************************* 351 352 Protocol management and registration routines 353 354 *******************************************************************************/ 355 356 /* 357 * Add a protocol ID to the list. Now that the input handler is 358 * smarter we can dispense with all the messy stuff that used to be 359 * here. 360 * 361 * BEWARE!!! Protocol handlers, mangling input packets, 362 * MUST BE last in hash buckets and checking protocol handlers 363 * MUST start from promiscuous ptype_all chain in net_bh. 364 * It is true now, do not change it. 365 * Explanation follows: if protocol handler, mangling packet, will 366 * be the first on list, it is not able to sense, that packet 367 * is cloned and should be copied-on-write, so that it will 368 * change it and subsequent readers will get broken packet. 369 * --ANK (980803) 370 */ 371 372 static inline struct list_head *ptype_head(const struct packet_type *pt) 373 { 374 if (pt->type == htons(ETH_P_ALL)) 375 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 376 else 377 return pt->dev ? &pt->dev->ptype_specific : 378 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 379 } 380 381 /** 382 * dev_add_pack - add packet handler 383 * @pt: packet type declaration 384 * 385 * Add a protocol handler to the networking stack. The passed &packet_type 386 * is linked into kernel lists and may not be freed until it has been 387 * removed from the kernel lists. 388 * 389 * This call does not sleep therefore it can not 390 * guarantee all CPU's that are in middle of receiving packets 391 * will see the new packet type (until the next received packet). 392 */ 393 394 void dev_add_pack(struct packet_type *pt) 395 { 396 struct list_head *head = ptype_head(pt); 397 398 spin_lock(&ptype_lock); 399 list_add_rcu(&pt->list, head); 400 spin_unlock(&ptype_lock); 401 } 402 EXPORT_SYMBOL(dev_add_pack); 403 404 /** 405 * __dev_remove_pack - remove packet handler 406 * @pt: packet type declaration 407 * 408 * Remove a protocol handler that was previously added to the kernel 409 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 410 * from the kernel lists and can be freed or reused once this function 411 * returns. 412 * 413 * The packet type might still be in use by receivers 414 * and must not be freed until after all the CPU's have gone 415 * through a quiescent state. 416 */ 417 void __dev_remove_pack(struct packet_type *pt) 418 { 419 struct list_head *head = ptype_head(pt); 420 struct packet_type *pt1; 421 422 spin_lock(&ptype_lock); 423 424 list_for_each_entry(pt1, head, list) { 425 if (pt == pt1) { 426 list_del_rcu(&pt->list); 427 goto out; 428 } 429 } 430 431 pr_warn("dev_remove_pack: %p not found\n", pt); 432 out: 433 spin_unlock(&ptype_lock); 434 } 435 EXPORT_SYMBOL(__dev_remove_pack); 436 437 /** 438 * dev_remove_pack - remove packet handler 439 * @pt: packet type declaration 440 * 441 * Remove a protocol handler that was previously added to the kernel 442 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 443 * from the kernel lists and can be freed or reused once this function 444 * returns. 445 * 446 * This call sleeps to guarantee that no CPU is looking at the packet 447 * type after return. 448 */ 449 void dev_remove_pack(struct packet_type *pt) 450 { 451 __dev_remove_pack(pt); 452 453 synchronize_net(); 454 } 455 EXPORT_SYMBOL(dev_remove_pack); 456 457 458 /** 459 * dev_add_offload - register offload handlers 460 * @po: protocol offload declaration 461 * 462 * Add protocol offload handlers to the networking stack. The passed 463 * &proto_offload is linked into kernel lists and may not be freed until 464 * it has been removed from the kernel lists. 465 * 466 * This call does not sleep therefore it can not 467 * guarantee all CPU's that are in middle of receiving packets 468 * will see the new offload handlers (until the next received packet). 469 */ 470 void dev_add_offload(struct packet_offload *po) 471 { 472 struct packet_offload *elem; 473 474 spin_lock(&offload_lock); 475 list_for_each_entry(elem, &offload_base, list) { 476 if (po->priority < elem->priority) 477 break; 478 } 479 list_add_rcu(&po->list, elem->list.prev); 480 spin_unlock(&offload_lock); 481 } 482 EXPORT_SYMBOL(dev_add_offload); 483 484 /** 485 * __dev_remove_offload - remove offload handler 486 * @po: packet offload declaration 487 * 488 * Remove a protocol offload handler that was previously added to the 489 * kernel offload handlers by dev_add_offload(). The passed &offload_type 490 * is removed from the kernel lists and can be freed or reused once this 491 * function returns. 492 * 493 * The packet type might still be in use by receivers 494 * and must not be freed until after all the CPU's have gone 495 * through a quiescent state. 496 */ 497 static void __dev_remove_offload(struct packet_offload *po) 498 { 499 struct list_head *head = &offload_base; 500 struct packet_offload *po1; 501 502 spin_lock(&offload_lock); 503 504 list_for_each_entry(po1, head, list) { 505 if (po == po1) { 506 list_del_rcu(&po->list); 507 goto out; 508 } 509 } 510 511 pr_warn("dev_remove_offload: %p not found\n", po); 512 out: 513 spin_unlock(&offload_lock); 514 } 515 516 /** 517 * dev_remove_offload - remove packet offload handler 518 * @po: packet offload declaration 519 * 520 * Remove a packet offload handler that was previously added to the kernel 521 * offload handlers by dev_add_offload(). The passed &offload_type is 522 * removed from the kernel lists and can be freed or reused once this 523 * function returns. 524 * 525 * This call sleeps to guarantee that no CPU is looking at the packet 526 * type after return. 527 */ 528 void dev_remove_offload(struct packet_offload *po) 529 { 530 __dev_remove_offload(po); 531 532 synchronize_net(); 533 } 534 EXPORT_SYMBOL(dev_remove_offload); 535 536 /****************************************************************************** 537 538 Device Boot-time Settings Routines 539 540 *******************************************************************************/ 541 542 /* Boot time configuration table */ 543 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 544 545 /** 546 * netdev_boot_setup_add - add new setup entry 547 * @name: name of the device 548 * @map: configured settings for the device 549 * 550 * Adds new setup entry to the dev_boot_setup list. The function 551 * returns 0 on error and 1 on success. This is a generic routine to 552 * all netdevices. 553 */ 554 static int netdev_boot_setup_add(char *name, struct ifmap *map) 555 { 556 struct netdev_boot_setup *s; 557 int i; 558 559 s = dev_boot_setup; 560 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 561 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 562 memset(s[i].name, 0, sizeof(s[i].name)); 563 strlcpy(s[i].name, name, IFNAMSIZ); 564 memcpy(&s[i].map, map, sizeof(s[i].map)); 565 break; 566 } 567 } 568 569 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 570 } 571 572 /** 573 * netdev_boot_setup_check - check boot time settings 574 * @dev: the netdevice 575 * 576 * Check boot time settings for the device. 577 * The found settings are set for the device to be used 578 * later in the device probing. 579 * Returns 0 if no settings found, 1 if they are. 580 */ 581 int netdev_boot_setup_check(struct net_device *dev) 582 { 583 struct netdev_boot_setup *s = dev_boot_setup; 584 int i; 585 586 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 587 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 588 !strcmp(dev->name, s[i].name)) { 589 dev->irq = s[i].map.irq; 590 dev->base_addr = s[i].map.base_addr; 591 dev->mem_start = s[i].map.mem_start; 592 dev->mem_end = s[i].map.mem_end; 593 return 1; 594 } 595 } 596 return 0; 597 } 598 EXPORT_SYMBOL(netdev_boot_setup_check); 599 600 601 /** 602 * netdev_boot_base - get address from boot time settings 603 * @prefix: prefix for network device 604 * @unit: id for network device 605 * 606 * Check boot time settings for the base address of device. 607 * The found settings are set for the device to be used 608 * later in the device probing. 609 * Returns 0 if no settings found. 610 */ 611 unsigned long netdev_boot_base(const char *prefix, int unit) 612 { 613 const struct netdev_boot_setup *s = dev_boot_setup; 614 char name[IFNAMSIZ]; 615 int i; 616 617 sprintf(name, "%s%d", prefix, unit); 618 619 /* 620 * If device already registered then return base of 1 621 * to indicate not to probe for this interface 622 */ 623 if (__dev_get_by_name(&init_net, name)) 624 return 1; 625 626 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 627 if (!strcmp(name, s[i].name)) 628 return s[i].map.base_addr; 629 return 0; 630 } 631 632 /* 633 * Saves at boot time configured settings for any netdevice. 634 */ 635 int __init netdev_boot_setup(char *str) 636 { 637 int ints[5]; 638 struct ifmap map; 639 640 str = get_options(str, ARRAY_SIZE(ints), ints); 641 if (!str || !*str) 642 return 0; 643 644 /* Save settings */ 645 memset(&map, 0, sizeof(map)); 646 if (ints[0] > 0) 647 map.irq = ints[1]; 648 if (ints[0] > 1) 649 map.base_addr = ints[2]; 650 if (ints[0] > 2) 651 map.mem_start = ints[3]; 652 if (ints[0] > 3) 653 map.mem_end = ints[4]; 654 655 /* Add new entry to the list */ 656 return netdev_boot_setup_add(str, &map); 657 } 658 659 __setup("netdev=", netdev_boot_setup); 660 661 /******************************************************************************* 662 663 Device Interface Subroutines 664 665 *******************************************************************************/ 666 667 /** 668 * dev_get_iflink - get 'iflink' value of a interface 669 * @dev: targeted interface 670 * 671 * Indicates the ifindex the interface is linked to. 672 * Physical interfaces have the same 'ifindex' and 'iflink' values. 673 */ 674 675 int dev_get_iflink(const struct net_device *dev) 676 { 677 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 678 return dev->netdev_ops->ndo_get_iflink(dev); 679 680 return dev->ifindex; 681 } 682 EXPORT_SYMBOL(dev_get_iflink); 683 684 /** 685 * __dev_get_by_name - find a device by its name 686 * @net: the applicable net namespace 687 * @name: name to find 688 * 689 * Find an interface by name. Must be called under RTNL semaphore 690 * or @dev_base_lock. If the name is found a pointer to the device 691 * is returned. If the name is not found then %NULL is returned. The 692 * reference counters are not incremented so the caller must be 693 * careful with locks. 694 */ 695 696 struct net_device *__dev_get_by_name(struct net *net, const char *name) 697 { 698 struct net_device *dev; 699 struct hlist_head *head = dev_name_hash(net, name); 700 701 hlist_for_each_entry(dev, head, name_hlist) 702 if (!strncmp(dev->name, name, IFNAMSIZ)) 703 return dev; 704 705 return NULL; 706 } 707 EXPORT_SYMBOL(__dev_get_by_name); 708 709 /** 710 * dev_get_by_name_rcu - find a device by its name 711 * @net: the applicable net namespace 712 * @name: name to find 713 * 714 * Find an interface by name. 715 * If the name is found a pointer to the device is returned. 716 * If the name is not found then %NULL is returned. 717 * The reference counters are not incremented so the caller must be 718 * careful with locks. The caller must hold RCU lock. 719 */ 720 721 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 722 { 723 struct net_device *dev; 724 struct hlist_head *head = dev_name_hash(net, name); 725 726 hlist_for_each_entry_rcu(dev, head, name_hlist) 727 if (!strncmp(dev->name, name, IFNAMSIZ)) 728 return dev; 729 730 return NULL; 731 } 732 EXPORT_SYMBOL(dev_get_by_name_rcu); 733 734 /** 735 * dev_get_by_name - find a device by its name 736 * @net: the applicable net namespace 737 * @name: name to find 738 * 739 * Find an interface by name. This can be called from any 740 * context and does its own locking. The returned handle has 741 * the usage count incremented and the caller must use dev_put() to 742 * release it when it is no longer needed. %NULL is returned if no 743 * matching device is found. 744 */ 745 746 struct net_device *dev_get_by_name(struct net *net, const char *name) 747 { 748 struct net_device *dev; 749 750 rcu_read_lock(); 751 dev = dev_get_by_name_rcu(net, name); 752 if (dev) 753 dev_hold(dev); 754 rcu_read_unlock(); 755 return dev; 756 } 757 EXPORT_SYMBOL(dev_get_by_name); 758 759 /** 760 * __dev_get_by_index - find a device by its ifindex 761 * @net: the applicable net namespace 762 * @ifindex: index of device 763 * 764 * Search for an interface by index. Returns %NULL if the device 765 * is not found or a pointer to the device. The device has not 766 * had its reference counter increased so the caller must be careful 767 * about locking. The caller must hold either the RTNL semaphore 768 * or @dev_base_lock. 769 */ 770 771 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 772 { 773 struct net_device *dev; 774 struct hlist_head *head = dev_index_hash(net, ifindex); 775 776 hlist_for_each_entry(dev, head, index_hlist) 777 if (dev->ifindex == ifindex) 778 return dev; 779 780 return NULL; 781 } 782 EXPORT_SYMBOL(__dev_get_by_index); 783 784 /** 785 * dev_get_by_index_rcu - find a device by its ifindex 786 * @net: the applicable net namespace 787 * @ifindex: index of device 788 * 789 * Search for an interface by index. Returns %NULL if the device 790 * is not found or a pointer to the device. The device has not 791 * had its reference counter increased so the caller must be careful 792 * about locking. The caller must hold RCU lock. 793 */ 794 795 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 796 { 797 struct net_device *dev; 798 struct hlist_head *head = dev_index_hash(net, ifindex); 799 800 hlist_for_each_entry_rcu(dev, head, index_hlist) 801 if (dev->ifindex == ifindex) 802 return dev; 803 804 return NULL; 805 } 806 EXPORT_SYMBOL(dev_get_by_index_rcu); 807 808 809 /** 810 * dev_get_by_index - find a device by its ifindex 811 * @net: the applicable net namespace 812 * @ifindex: index of device 813 * 814 * Search for an interface by index. Returns NULL if the device 815 * is not found or a pointer to the device. The device returned has 816 * had a reference added and the pointer is safe until the user calls 817 * dev_put to indicate they have finished with it. 818 */ 819 820 struct net_device *dev_get_by_index(struct net *net, int ifindex) 821 { 822 struct net_device *dev; 823 824 rcu_read_lock(); 825 dev = dev_get_by_index_rcu(net, ifindex); 826 if (dev) 827 dev_hold(dev); 828 rcu_read_unlock(); 829 return dev; 830 } 831 EXPORT_SYMBOL(dev_get_by_index); 832 833 /** 834 * netdev_get_name - get a netdevice name, knowing its ifindex. 835 * @net: network namespace 836 * @name: a pointer to the buffer where the name will be stored. 837 * @ifindex: the ifindex of the interface to get the name from. 838 * 839 * The use of raw_seqcount_begin() and cond_resched() before 840 * retrying is required as we want to give the writers a chance 841 * to complete when CONFIG_PREEMPT is not set. 842 */ 843 int netdev_get_name(struct net *net, char *name, int ifindex) 844 { 845 struct net_device *dev; 846 unsigned int seq; 847 848 retry: 849 seq = raw_seqcount_begin(&devnet_rename_seq); 850 rcu_read_lock(); 851 dev = dev_get_by_index_rcu(net, ifindex); 852 if (!dev) { 853 rcu_read_unlock(); 854 return -ENODEV; 855 } 856 857 strcpy(name, dev->name); 858 rcu_read_unlock(); 859 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 860 cond_resched(); 861 goto retry; 862 } 863 864 return 0; 865 } 866 867 /** 868 * dev_getbyhwaddr_rcu - find a device by its hardware address 869 * @net: the applicable net namespace 870 * @type: media type of device 871 * @ha: hardware address 872 * 873 * Search for an interface by MAC address. Returns NULL if the device 874 * is not found or a pointer to the device. 875 * The caller must hold RCU or RTNL. 876 * The returned device has not had its ref count increased 877 * and the caller must therefore be careful about locking 878 * 879 */ 880 881 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 882 const char *ha) 883 { 884 struct net_device *dev; 885 886 for_each_netdev_rcu(net, dev) 887 if (dev->type == type && 888 !memcmp(dev->dev_addr, ha, dev->addr_len)) 889 return dev; 890 891 return NULL; 892 } 893 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 894 895 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 896 { 897 struct net_device *dev; 898 899 ASSERT_RTNL(); 900 for_each_netdev(net, dev) 901 if (dev->type == type) 902 return dev; 903 904 return NULL; 905 } 906 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 907 908 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 909 { 910 struct net_device *dev, *ret = NULL; 911 912 rcu_read_lock(); 913 for_each_netdev_rcu(net, dev) 914 if (dev->type == type) { 915 dev_hold(dev); 916 ret = dev; 917 break; 918 } 919 rcu_read_unlock(); 920 return ret; 921 } 922 EXPORT_SYMBOL(dev_getfirstbyhwtype); 923 924 /** 925 * __dev_get_by_flags - find any device with given flags 926 * @net: the applicable net namespace 927 * @if_flags: IFF_* values 928 * @mask: bitmask of bits in if_flags to check 929 * 930 * Search for any interface with the given flags. Returns NULL if a device 931 * is not found or a pointer to the device. Must be called inside 932 * rtnl_lock(), and result refcount is unchanged. 933 */ 934 935 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 936 unsigned short mask) 937 { 938 struct net_device *dev, *ret; 939 940 ASSERT_RTNL(); 941 942 ret = NULL; 943 for_each_netdev(net, dev) { 944 if (((dev->flags ^ if_flags) & mask) == 0) { 945 ret = dev; 946 break; 947 } 948 } 949 return ret; 950 } 951 EXPORT_SYMBOL(__dev_get_by_flags); 952 953 /** 954 * dev_valid_name - check if name is okay for network device 955 * @name: name string 956 * 957 * Network device names need to be valid file names to 958 * to allow sysfs to work. We also disallow any kind of 959 * whitespace. 960 */ 961 bool dev_valid_name(const char *name) 962 { 963 if (*name == '\0') 964 return false; 965 if (strlen(name) >= IFNAMSIZ) 966 return false; 967 if (!strcmp(name, ".") || !strcmp(name, "..")) 968 return false; 969 970 while (*name) { 971 if (*name == '/' || *name == ':' || isspace(*name)) 972 return false; 973 name++; 974 } 975 return true; 976 } 977 EXPORT_SYMBOL(dev_valid_name); 978 979 /** 980 * __dev_alloc_name - allocate a name for a device 981 * @net: network namespace to allocate the device name in 982 * @name: name format string 983 * @buf: scratch buffer and result name string 984 * 985 * Passed a format string - eg "lt%d" it will try and find a suitable 986 * id. It scans list of devices to build up a free map, then chooses 987 * the first empty slot. The caller must hold the dev_base or rtnl lock 988 * while allocating the name and adding the device in order to avoid 989 * duplicates. 990 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 991 * Returns the number of the unit assigned or a negative errno code. 992 */ 993 994 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 995 { 996 int i = 0; 997 const char *p; 998 const int max_netdevices = 8*PAGE_SIZE; 999 unsigned long *inuse; 1000 struct net_device *d; 1001 1002 p = strnchr(name, IFNAMSIZ-1, '%'); 1003 if (p) { 1004 /* 1005 * Verify the string as this thing may have come from 1006 * the user. There must be either one "%d" and no other "%" 1007 * characters. 1008 */ 1009 if (p[1] != 'd' || strchr(p + 2, '%')) 1010 return -EINVAL; 1011 1012 /* Use one page as a bit array of possible slots */ 1013 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1014 if (!inuse) 1015 return -ENOMEM; 1016 1017 for_each_netdev(net, d) { 1018 if (!sscanf(d->name, name, &i)) 1019 continue; 1020 if (i < 0 || i >= max_netdevices) 1021 continue; 1022 1023 /* avoid cases where sscanf is not exact inverse of printf */ 1024 snprintf(buf, IFNAMSIZ, name, i); 1025 if (!strncmp(buf, d->name, IFNAMSIZ)) 1026 set_bit(i, inuse); 1027 } 1028 1029 i = find_first_zero_bit(inuse, max_netdevices); 1030 free_page((unsigned long) inuse); 1031 } 1032 1033 if (buf != name) 1034 snprintf(buf, IFNAMSIZ, name, i); 1035 if (!__dev_get_by_name(net, buf)) 1036 return i; 1037 1038 /* It is possible to run out of possible slots 1039 * when the name is long and there isn't enough space left 1040 * for the digits, or if all bits are used. 1041 */ 1042 return -ENFILE; 1043 } 1044 1045 /** 1046 * dev_alloc_name - allocate a name for a device 1047 * @dev: device 1048 * @name: name format string 1049 * 1050 * Passed a format string - eg "lt%d" it will try and find a suitable 1051 * id. It scans list of devices to build up a free map, then chooses 1052 * the first empty slot. The caller must hold the dev_base or rtnl lock 1053 * while allocating the name and adding the device in order to avoid 1054 * duplicates. 1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1056 * Returns the number of the unit assigned or a negative errno code. 1057 */ 1058 1059 int dev_alloc_name(struct net_device *dev, const char *name) 1060 { 1061 char buf[IFNAMSIZ]; 1062 struct net *net; 1063 int ret; 1064 1065 BUG_ON(!dev_net(dev)); 1066 net = dev_net(dev); 1067 ret = __dev_alloc_name(net, name, buf); 1068 if (ret >= 0) 1069 strlcpy(dev->name, buf, IFNAMSIZ); 1070 return ret; 1071 } 1072 EXPORT_SYMBOL(dev_alloc_name); 1073 1074 static int dev_alloc_name_ns(struct net *net, 1075 struct net_device *dev, 1076 const char *name) 1077 { 1078 char buf[IFNAMSIZ]; 1079 int ret; 1080 1081 ret = __dev_alloc_name(net, name, buf); 1082 if (ret >= 0) 1083 strlcpy(dev->name, buf, IFNAMSIZ); 1084 return ret; 1085 } 1086 1087 static int dev_get_valid_name(struct net *net, 1088 struct net_device *dev, 1089 const char *name) 1090 { 1091 BUG_ON(!net); 1092 1093 if (!dev_valid_name(name)) 1094 return -EINVAL; 1095 1096 if (strchr(name, '%')) 1097 return dev_alloc_name_ns(net, dev, name); 1098 else if (__dev_get_by_name(net, name)) 1099 return -EEXIST; 1100 else if (dev->name != name) 1101 strlcpy(dev->name, name, IFNAMSIZ); 1102 1103 return 0; 1104 } 1105 1106 /** 1107 * dev_change_name - change name of a device 1108 * @dev: device 1109 * @newname: name (or format string) must be at least IFNAMSIZ 1110 * 1111 * Change name of a device, can pass format strings "eth%d". 1112 * for wildcarding. 1113 */ 1114 int dev_change_name(struct net_device *dev, const char *newname) 1115 { 1116 unsigned char old_assign_type; 1117 char oldname[IFNAMSIZ]; 1118 int err = 0; 1119 int ret; 1120 struct net *net; 1121 1122 ASSERT_RTNL(); 1123 BUG_ON(!dev_net(dev)); 1124 1125 net = dev_net(dev); 1126 if (dev->flags & IFF_UP) 1127 return -EBUSY; 1128 1129 write_seqcount_begin(&devnet_rename_seq); 1130 1131 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1132 write_seqcount_end(&devnet_rename_seq); 1133 return 0; 1134 } 1135 1136 memcpy(oldname, dev->name, IFNAMSIZ); 1137 1138 err = dev_get_valid_name(net, dev, newname); 1139 if (err < 0) { 1140 write_seqcount_end(&devnet_rename_seq); 1141 return err; 1142 } 1143 1144 if (oldname[0] && !strchr(oldname, '%')) 1145 netdev_info(dev, "renamed from %s\n", oldname); 1146 1147 old_assign_type = dev->name_assign_type; 1148 dev->name_assign_type = NET_NAME_RENAMED; 1149 1150 rollback: 1151 ret = device_rename(&dev->dev, dev->name); 1152 if (ret) { 1153 memcpy(dev->name, oldname, IFNAMSIZ); 1154 dev->name_assign_type = old_assign_type; 1155 write_seqcount_end(&devnet_rename_seq); 1156 return ret; 1157 } 1158 1159 write_seqcount_end(&devnet_rename_seq); 1160 1161 netdev_adjacent_rename_links(dev, oldname); 1162 1163 write_lock_bh(&dev_base_lock); 1164 hlist_del_rcu(&dev->name_hlist); 1165 write_unlock_bh(&dev_base_lock); 1166 1167 synchronize_rcu(); 1168 1169 write_lock_bh(&dev_base_lock); 1170 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1171 write_unlock_bh(&dev_base_lock); 1172 1173 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1174 ret = notifier_to_errno(ret); 1175 1176 if (ret) { 1177 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1178 if (err >= 0) { 1179 err = ret; 1180 write_seqcount_begin(&devnet_rename_seq); 1181 memcpy(dev->name, oldname, IFNAMSIZ); 1182 memcpy(oldname, newname, IFNAMSIZ); 1183 dev->name_assign_type = old_assign_type; 1184 old_assign_type = NET_NAME_RENAMED; 1185 goto rollback; 1186 } else { 1187 pr_err("%s: name change rollback failed: %d\n", 1188 dev->name, ret); 1189 } 1190 } 1191 1192 return err; 1193 } 1194 1195 /** 1196 * dev_set_alias - change ifalias of a device 1197 * @dev: device 1198 * @alias: name up to IFALIASZ 1199 * @len: limit of bytes to copy from info 1200 * 1201 * Set ifalias for a device, 1202 */ 1203 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1204 { 1205 char *new_ifalias; 1206 1207 ASSERT_RTNL(); 1208 1209 if (len >= IFALIASZ) 1210 return -EINVAL; 1211 1212 if (!len) { 1213 kfree(dev->ifalias); 1214 dev->ifalias = NULL; 1215 return 0; 1216 } 1217 1218 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1219 if (!new_ifalias) 1220 return -ENOMEM; 1221 dev->ifalias = new_ifalias; 1222 1223 strlcpy(dev->ifalias, alias, len+1); 1224 return len; 1225 } 1226 1227 1228 /** 1229 * netdev_features_change - device changes features 1230 * @dev: device to cause notification 1231 * 1232 * Called to indicate a device has changed features. 1233 */ 1234 void netdev_features_change(struct net_device *dev) 1235 { 1236 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1237 } 1238 EXPORT_SYMBOL(netdev_features_change); 1239 1240 /** 1241 * netdev_state_change - device changes state 1242 * @dev: device to cause notification 1243 * 1244 * Called to indicate a device has changed state. This function calls 1245 * the notifier chains for netdev_chain and sends a NEWLINK message 1246 * to the routing socket. 1247 */ 1248 void netdev_state_change(struct net_device *dev) 1249 { 1250 if (dev->flags & IFF_UP) { 1251 struct netdev_notifier_change_info change_info; 1252 1253 change_info.flags_changed = 0; 1254 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 1255 &change_info.info); 1256 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1257 } 1258 } 1259 EXPORT_SYMBOL(netdev_state_change); 1260 1261 /** 1262 * netdev_notify_peers - notify network peers about existence of @dev 1263 * @dev: network device 1264 * 1265 * Generate traffic such that interested network peers are aware of 1266 * @dev, such as by generating a gratuitous ARP. This may be used when 1267 * a device wants to inform the rest of the network about some sort of 1268 * reconfiguration such as a failover event or virtual machine 1269 * migration. 1270 */ 1271 void netdev_notify_peers(struct net_device *dev) 1272 { 1273 rtnl_lock(); 1274 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1275 rtnl_unlock(); 1276 } 1277 EXPORT_SYMBOL(netdev_notify_peers); 1278 1279 static int __dev_open(struct net_device *dev) 1280 { 1281 const struct net_device_ops *ops = dev->netdev_ops; 1282 int ret; 1283 1284 ASSERT_RTNL(); 1285 1286 if (!netif_device_present(dev)) 1287 return -ENODEV; 1288 1289 /* Block netpoll from trying to do any rx path servicing. 1290 * If we don't do this there is a chance ndo_poll_controller 1291 * or ndo_poll may be running while we open the device 1292 */ 1293 netpoll_poll_disable(dev); 1294 1295 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1296 ret = notifier_to_errno(ret); 1297 if (ret) 1298 return ret; 1299 1300 set_bit(__LINK_STATE_START, &dev->state); 1301 1302 if (ops->ndo_validate_addr) 1303 ret = ops->ndo_validate_addr(dev); 1304 1305 if (!ret && ops->ndo_open) 1306 ret = ops->ndo_open(dev); 1307 1308 netpoll_poll_enable(dev); 1309 1310 if (ret) 1311 clear_bit(__LINK_STATE_START, &dev->state); 1312 else { 1313 dev->flags |= IFF_UP; 1314 dev_set_rx_mode(dev); 1315 dev_activate(dev); 1316 add_device_randomness(dev->dev_addr, dev->addr_len); 1317 } 1318 1319 return ret; 1320 } 1321 1322 /** 1323 * dev_open - prepare an interface for use. 1324 * @dev: device to open 1325 * 1326 * Takes a device from down to up state. The device's private open 1327 * function is invoked and then the multicast lists are loaded. Finally 1328 * the device is moved into the up state and a %NETDEV_UP message is 1329 * sent to the netdev notifier chain. 1330 * 1331 * Calling this function on an active interface is a nop. On a failure 1332 * a negative errno code is returned. 1333 */ 1334 int dev_open(struct net_device *dev) 1335 { 1336 int ret; 1337 1338 if (dev->flags & IFF_UP) 1339 return 0; 1340 1341 ret = __dev_open(dev); 1342 if (ret < 0) 1343 return ret; 1344 1345 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1346 call_netdevice_notifiers(NETDEV_UP, dev); 1347 1348 return ret; 1349 } 1350 EXPORT_SYMBOL(dev_open); 1351 1352 static int __dev_close_many(struct list_head *head) 1353 { 1354 struct net_device *dev; 1355 1356 ASSERT_RTNL(); 1357 might_sleep(); 1358 1359 list_for_each_entry(dev, head, close_list) { 1360 /* Temporarily disable netpoll until the interface is down */ 1361 netpoll_poll_disable(dev); 1362 1363 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1364 1365 clear_bit(__LINK_STATE_START, &dev->state); 1366 1367 /* Synchronize to scheduled poll. We cannot touch poll list, it 1368 * can be even on different cpu. So just clear netif_running(). 1369 * 1370 * dev->stop() will invoke napi_disable() on all of it's 1371 * napi_struct instances on this device. 1372 */ 1373 smp_mb__after_atomic(); /* Commit netif_running(). */ 1374 } 1375 1376 dev_deactivate_many(head); 1377 1378 list_for_each_entry(dev, head, close_list) { 1379 const struct net_device_ops *ops = dev->netdev_ops; 1380 1381 /* 1382 * Call the device specific close. This cannot fail. 1383 * Only if device is UP 1384 * 1385 * We allow it to be called even after a DETACH hot-plug 1386 * event. 1387 */ 1388 if (ops->ndo_stop) 1389 ops->ndo_stop(dev); 1390 1391 dev->flags &= ~IFF_UP; 1392 netpoll_poll_enable(dev); 1393 } 1394 1395 return 0; 1396 } 1397 1398 static int __dev_close(struct net_device *dev) 1399 { 1400 int retval; 1401 LIST_HEAD(single); 1402 1403 list_add(&dev->close_list, &single); 1404 retval = __dev_close_many(&single); 1405 list_del(&single); 1406 1407 return retval; 1408 } 1409 1410 int dev_close_many(struct list_head *head, bool unlink) 1411 { 1412 struct net_device *dev, *tmp; 1413 1414 /* Remove the devices that don't need to be closed */ 1415 list_for_each_entry_safe(dev, tmp, head, close_list) 1416 if (!(dev->flags & IFF_UP)) 1417 list_del_init(&dev->close_list); 1418 1419 __dev_close_many(head); 1420 1421 list_for_each_entry_safe(dev, tmp, head, close_list) { 1422 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1423 call_netdevice_notifiers(NETDEV_DOWN, dev); 1424 if (unlink) 1425 list_del_init(&dev->close_list); 1426 } 1427 1428 return 0; 1429 } 1430 EXPORT_SYMBOL(dev_close_many); 1431 1432 /** 1433 * dev_close - shutdown an interface. 1434 * @dev: device to shutdown 1435 * 1436 * This function moves an active device into down state. A 1437 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1438 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1439 * chain. 1440 */ 1441 int dev_close(struct net_device *dev) 1442 { 1443 if (dev->flags & IFF_UP) { 1444 LIST_HEAD(single); 1445 1446 list_add(&dev->close_list, &single); 1447 dev_close_many(&single, true); 1448 list_del(&single); 1449 } 1450 return 0; 1451 } 1452 EXPORT_SYMBOL(dev_close); 1453 1454 1455 /** 1456 * dev_disable_lro - disable Large Receive Offload on a device 1457 * @dev: device 1458 * 1459 * Disable Large Receive Offload (LRO) on a net device. Must be 1460 * called under RTNL. This is needed if received packets may be 1461 * forwarded to another interface. 1462 */ 1463 void dev_disable_lro(struct net_device *dev) 1464 { 1465 struct net_device *lower_dev; 1466 struct list_head *iter; 1467 1468 dev->wanted_features &= ~NETIF_F_LRO; 1469 netdev_update_features(dev); 1470 1471 if (unlikely(dev->features & NETIF_F_LRO)) 1472 netdev_WARN(dev, "failed to disable LRO!\n"); 1473 1474 netdev_for_each_lower_dev(dev, lower_dev, iter) 1475 dev_disable_lro(lower_dev); 1476 } 1477 EXPORT_SYMBOL(dev_disable_lro); 1478 1479 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1480 struct net_device *dev) 1481 { 1482 struct netdev_notifier_info info; 1483 1484 netdev_notifier_info_init(&info, dev); 1485 return nb->notifier_call(nb, val, &info); 1486 } 1487 1488 static int dev_boot_phase = 1; 1489 1490 /** 1491 * register_netdevice_notifier - register a network notifier block 1492 * @nb: notifier 1493 * 1494 * Register a notifier to be called when network device events occur. 1495 * The notifier passed is linked into the kernel structures and must 1496 * not be reused until it has been unregistered. A negative errno code 1497 * is returned on a failure. 1498 * 1499 * When registered all registration and up events are replayed 1500 * to the new notifier to allow device to have a race free 1501 * view of the network device list. 1502 */ 1503 1504 int register_netdevice_notifier(struct notifier_block *nb) 1505 { 1506 struct net_device *dev; 1507 struct net_device *last; 1508 struct net *net; 1509 int err; 1510 1511 rtnl_lock(); 1512 err = raw_notifier_chain_register(&netdev_chain, nb); 1513 if (err) 1514 goto unlock; 1515 if (dev_boot_phase) 1516 goto unlock; 1517 for_each_net(net) { 1518 for_each_netdev(net, dev) { 1519 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1520 err = notifier_to_errno(err); 1521 if (err) 1522 goto rollback; 1523 1524 if (!(dev->flags & IFF_UP)) 1525 continue; 1526 1527 call_netdevice_notifier(nb, NETDEV_UP, dev); 1528 } 1529 } 1530 1531 unlock: 1532 rtnl_unlock(); 1533 return err; 1534 1535 rollback: 1536 last = dev; 1537 for_each_net(net) { 1538 for_each_netdev(net, dev) { 1539 if (dev == last) 1540 goto outroll; 1541 1542 if (dev->flags & IFF_UP) { 1543 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1544 dev); 1545 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1546 } 1547 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1548 } 1549 } 1550 1551 outroll: 1552 raw_notifier_chain_unregister(&netdev_chain, nb); 1553 goto unlock; 1554 } 1555 EXPORT_SYMBOL(register_netdevice_notifier); 1556 1557 /** 1558 * unregister_netdevice_notifier - unregister a network notifier block 1559 * @nb: notifier 1560 * 1561 * Unregister a notifier previously registered by 1562 * register_netdevice_notifier(). The notifier is unlinked into the 1563 * kernel structures and may then be reused. A negative errno code 1564 * is returned on a failure. 1565 * 1566 * After unregistering unregister and down device events are synthesized 1567 * for all devices on the device list to the removed notifier to remove 1568 * the need for special case cleanup code. 1569 */ 1570 1571 int unregister_netdevice_notifier(struct notifier_block *nb) 1572 { 1573 struct net_device *dev; 1574 struct net *net; 1575 int err; 1576 1577 rtnl_lock(); 1578 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1579 if (err) 1580 goto unlock; 1581 1582 for_each_net(net) { 1583 for_each_netdev(net, dev) { 1584 if (dev->flags & IFF_UP) { 1585 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1586 dev); 1587 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1588 } 1589 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1590 } 1591 } 1592 unlock: 1593 rtnl_unlock(); 1594 return err; 1595 } 1596 EXPORT_SYMBOL(unregister_netdevice_notifier); 1597 1598 /** 1599 * call_netdevice_notifiers_info - call all network notifier blocks 1600 * @val: value passed unmodified to notifier function 1601 * @dev: net_device pointer passed unmodified to notifier function 1602 * @info: notifier information data 1603 * 1604 * Call all network notifier blocks. Parameters and return value 1605 * are as for raw_notifier_call_chain(). 1606 */ 1607 1608 static int call_netdevice_notifiers_info(unsigned long val, 1609 struct net_device *dev, 1610 struct netdev_notifier_info *info) 1611 { 1612 ASSERT_RTNL(); 1613 netdev_notifier_info_init(info, dev); 1614 return raw_notifier_call_chain(&netdev_chain, val, info); 1615 } 1616 1617 /** 1618 * call_netdevice_notifiers - call all network notifier blocks 1619 * @val: value passed unmodified to notifier function 1620 * @dev: net_device pointer passed unmodified to notifier function 1621 * 1622 * Call all network notifier blocks. Parameters and return value 1623 * are as for raw_notifier_call_chain(). 1624 */ 1625 1626 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1627 { 1628 struct netdev_notifier_info info; 1629 1630 return call_netdevice_notifiers_info(val, dev, &info); 1631 } 1632 EXPORT_SYMBOL(call_netdevice_notifiers); 1633 1634 #ifdef CONFIG_NET_INGRESS 1635 static struct static_key ingress_needed __read_mostly; 1636 1637 void net_inc_ingress_queue(void) 1638 { 1639 static_key_slow_inc(&ingress_needed); 1640 } 1641 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1642 1643 void net_dec_ingress_queue(void) 1644 { 1645 static_key_slow_dec(&ingress_needed); 1646 } 1647 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1648 #endif 1649 1650 static struct static_key netstamp_needed __read_mostly; 1651 #ifdef HAVE_JUMP_LABEL 1652 /* We are not allowed to call static_key_slow_dec() from irq context 1653 * If net_disable_timestamp() is called from irq context, defer the 1654 * static_key_slow_dec() calls. 1655 */ 1656 static atomic_t netstamp_needed_deferred; 1657 #endif 1658 1659 void net_enable_timestamp(void) 1660 { 1661 #ifdef HAVE_JUMP_LABEL 1662 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1663 1664 if (deferred) { 1665 while (--deferred) 1666 static_key_slow_dec(&netstamp_needed); 1667 return; 1668 } 1669 #endif 1670 static_key_slow_inc(&netstamp_needed); 1671 } 1672 EXPORT_SYMBOL(net_enable_timestamp); 1673 1674 void net_disable_timestamp(void) 1675 { 1676 #ifdef HAVE_JUMP_LABEL 1677 if (in_interrupt()) { 1678 atomic_inc(&netstamp_needed_deferred); 1679 return; 1680 } 1681 #endif 1682 static_key_slow_dec(&netstamp_needed); 1683 } 1684 EXPORT_SYMBOL(net_disable_timestamp); 1685 1686 static inline void net_timestamp_set(struct sk_buff *skb) 1687 { 1688 skb->tstamp.tv64 = 0; 1689 if (static_key_false(&netstamp_needed)) 1690 __net_timestamp(skb); 1691 } 1692 1693 #define net_timestamp_check(COND, SKB) \ 1694 if (static_key_false(&netstamp_needed)) { \ 1695 if ((COND) && !(SKB)->tstamp.tv64) \ 1696 __net_timestamp(SKB); \ 1697 } \ 1698 1699 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb) 1700 { 1701 unsigned int len; 1702 1703 if (!(dev->flags & IFF_UP)) 1704 return false; 1705 1706 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1707 if (skb->len <= len) 1708 return true; 1709 1710 /* if TSO is enabled, we don't care about the length as the packet 1711 * could be forwarded without being segmented before 1712 */ 1713 if (skb_is_gso(skb)) 1714 return true; 1715 1716 return false; 1717 } 1718 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1719 1720 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1721 { 1722 if (skb_orphan_frags(skb, GFP_ATOMIC) || 1723 unlikely(!is_skb_forwardable(dev, skb))) { 1724 atomic_long_inc(&dev->rx_dropped); 1725 kfree_skb(skb); 1726 return NET_RX_DROP; 1727 } 1728 1729 skb_scrub_packet(skb, true); 1730 skb->priority = 0; 1731 skb->protocol = eth_type_trans(skb, dev); 1732 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1733 1734 return 0; 1735 } 1736 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1737 1738 /** 1739 * dev_forward_skb - loopback an skb to another netif 1740 * 1741 * @dev: destination network device 1742 * @skb: buffer to forward 1743 * 1744 * return values: 1745 * NET_RX_SUCCESS (no congestion) 1746 * NET_RX_DROP (packet was dropped, but freed) 1747 * 1748 * dev_forward_skb can be used for injecting an skb from the 1749 * start_xmit function of one device into the receive queue 1750 * of another device. 1751 * 1752 * The receiving device may be in another namespace, so 1753 * we have to clear all information in the skb that could 1754 * impact namespace isolation. 1755 */ 1756 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1757 { 1758 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1759 } 1760 EXPORT_SYMBOL_GPL(dev_forward_skb); 1761 1762 static inline int deliver_skb(struct sk_buff *skb, 1763 struct packet_type *pt_prev, 1764 struct net_device *orig_dev) 1765 { 1766 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1767 return -ENOMEM; 1768 atomic_inc(&skb->users); 1769 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1770 } 1771 1772 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1773 struct packet_type **pt, 1774 struct net_device *orig_dev, 1775 __be16 type, 1776 struct list_head *ptype_list) 1777 { 1778 struct packet_type *ptype, *pt_prev = *pt; 1779 1780 list_for_each_entry_rcu(ptype, ptype_list, list) { 1781 if (ptype->type != type) 1782 continue; 1783 if (pt_prev) 1784 deliver_skb(skb, pt_prev, orig_dev); 1785 pt_prev = ptype; 1786 } 1787 *pt = pt_prev; 1788 } 1789 1790 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1791 { 1792 if (!ptype->af_packet_priv || !skb->sk) 1793 return false; 1794 1795 if (ptype->id_match) 1796 return ptype->id_match(ptype, skb->sk); 1797 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1798 return true; 1799 1800 return false; 1801 } 1802 1803 /* 1804 * Support routine. Sends outgoing frames to any network 1805 * taps currently in use. 1806 */ 1807 1808 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1809 { 1810 struct packet_type *ptype; 1811 struct sk_buff *skb2 = NULL; 1812 struct packet_type *pt_prev = NULL; 1813 struct list_head *ptype_list = &ptype_all; 1814 1815 rcu_read_lock(); 1816 again: 1817 list_for_each_entry_rcu(ptype, ptype_list, list) { 1818 /* Never send packets back to the socket 1819 * they originated from - MvS (miquels@drinkel.ow.org) 1820 */ 1821 if (skb_loop_sk(ptype, skb)) 1822 continue; 1823 1824 if (pt_prev) { 1825 deliver_skb(skb2, pt_prev, skb->dev); 1826 pt_prev = ptype; 1827 continue; 1828 } 1829 1830 /* need to clone skb, done only once */ 1831 skb2 = skb_clone(skb, GFP_ATOMIC); 1832 if (!skb2) 1833 goto out_unlock; 1834 1835 net_timestamp_set(skb2); 1836 1837 /* skb->nh should be correctly 1838 * set by sender, so that the second statement is 1839 * just protection against buggy protocols. 1840 */ 1841 skb_reset_mac_header(skb2); 1842 1843 if (skb_network_header(skb2) < skb2->data || 1844 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1845 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1846 ntohs(skb2->protocol), 1847 dev->name); 1848 skb_reset_network_header(skb2); 1849 } 1850 1851 skb2->transport_header = skb2->network_header; 1852 skb2->pkt_type = PACKET_OUTGOING; 1853 pt_prev = ptype; 1854 } 1855 1856 if (ptype_list == &ptype_all) { 1857 ptype_list = &dev->ptype_all; 1858 goto again; 1859 } 1860 out_unlock: 1861 if (pt_prev) 1862 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1863 rcu_read_unlock(); 1864 } 1865 1866 /** 1867 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1868 * @dev: Network device 1869 * @txq: number of queues available 1870 * 1871 * If real_num_tx_queues is changed the tc mappings may no longer be 1872 * valid. To resolve this verify the tc mapping remains valid and if 1873 * not NULL the mapping. With no priorities mapping to this 1874 * offset/count pair it will no longer be used. In the worst case TC0 1875 * is invalid nothing can be done so disable priority mappings. If is 1876 * expected that drivers will fix this mapping if they can before 1877 * calling netif_set_real_num_tx_queues. 1878 */ 1879 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1880 { 1881 int i; 1882 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1883 1884 /* If TC0 is invalidated disable TC mapping */ 1885 if (tc->offset + tc->count > txq) { 1886 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1887 dev->num_tc = 0; 1888 return; 1889 } 1890 1891 /* Invalidated prio to tc mappings set to TC0 */ 1892 for (i = 1; i < TC_BITMASK + 1; i++) { 1893 int q = netdev_get_prio_tc_map(dev, i); 1894 1895 tc = &dev->tc_to_txq[q]; 1896 if (tc->offset + tc->count > txq) { 1897 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1898 i, q); 1899 netdev_set_prio_tc_map(dev, i, 0); 1900 } 1901 } 1902 } 1903 1904 #ifdef CONFIG_XPS 1905 static DEFINE_MUTEX(xps_map_mutex); 1906 #define xmap_dereference(P) \ 1907 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1908 1909 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps, 1910 int cpu, u16 index) 1911 { 1912 struct xps_map *map = NULL; 1913 int pos; 1914 1915 if (dev_maps) 1916 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1917 1918 for (pos = 0; map && pos < map->len; pos++) { 1919 if (map->queues[pos] == index) { 1920 if (map->len > 1) { 1921 map->queues[pos] = map->queues[--map->len]; 1922 } else { 1923 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL); 1924 kfree_rcu(map, rcu); 1925 map = NULL; 1926 } 1927 break; 1928 } 1929 } 1930 1931 return map; 1932 } 1933 1934 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 1935 { 1936 struct xps_dev_maps *dev_maps; 1937 int cpu, i; 1938 bool active = false; 1939 1940 mutex_lock(&xps_map_mutex); 1941 dev_maps = xmap_dereference(dev->xps_maps); 1942 1943 if (!dev_maps) 1944 goto out_no_maps; 1945 1946 for_each_possible_cpu(cpu) { 1947 for (i = index; i < dev->num_tx_queues; i++) { 1948 if (!remove_xps_queue(dev_maps, cpu, i)) 1949 break; 1950 } 1951 if (i == dev->num_tx_queues) 1952 active = true; 1953 } 1954 1955 if (!active) { 1956 RCU_INIT_POINTER(dev->xps_maps, NULL); 1957 kfree_rcu(dev_maps, rcu); 1958 } 1959 1960 for (i = index; i < dev->num_tx_queues; i++) 1961 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 1962 NUMA_NO_NODE); 1963 1964 out_no_maps: 1965 mutex_unlock(&xps_map_mutex); 1966 } 1967 1968 static struct xps_map *expand_xps_map(struct xps_map *map, 1969 int cpu, u16 index) 1970 { 1971 struct xps_map *new_map; 1972 int alloc_len = XPS_MIN_MAP_ALLOC; 1973 int i, pos; 1974 1975 for (pos = 0; map && pos < map->len; pos++) { 1976 if (map->queues[pos] != index) 1977 continue; 1978 return map; 1979 } 1980 1981 /* Need to add queue to this CPU's existing map */ 1982 if (map) { 1983 if (pos < map->alloc_len) 1984 return map; 1985 1986 alloc_len = map->alloc_len * 2; 1987 } 1988 1989 /* Need to allocate new map to store queue on this CPU's map */ 1990 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 1991 cpu_to_node(cpu)); 1992 if (!new_map) 1993 return NULL; 1994 1995 for (i = 0; i < pos; i++) 1996 new_map->queues[i] = map->queues[i]; 1997 new_map->alloc_len = alloc_len; 1998 new_map->len = pos; 1999 2000 return new_map; 2001 } 2002 2003 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2004 u16 index) 2005 { 2006 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2007 struct xps_map *map, *new_map; 2008 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES); 2009 int cpu, numa_node_id = -2; 2010 bool active = false; 2011 2012 mutex_lock(&xps_map_mutex); 2013 2014 dev_maps = xmap_dereference(dev->xps_maps); 2015 2016 /* allocate memory for queue storage */ 2017 for_each_online_cpu(cpu) { 2018 if (!cpumask_test_cpu(cpu, mask)) 2019 continue; 2020 2021 if (!new_dev_maps) 2022 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2023 if (!new_dev_maps) { 2024 mutex_unlock(&xps_map_mutex); 2025 return -ENOMEM; 2026 } 2027 2028 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2029 NULL; 2030 2031 map = expand_xps_map(map, cpu, index); 2032 if (!map) 2033 goto error; 2034 2035 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 2036 } 2037 2038 if (!new_dev_maps) 2039 goto out_no_new_maps; 2040 2041 for_each_possible_cpu(cpu) { 2042 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 2043 /* add queue to CPU maps */ 2044 int pos = 0; 2045 2046 map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2047 while ((pos < map->len) && (map->queues[pos] != index)) 2048 pos++; 2049 2050 if (pos == map->len) 2051 map->queues[map->len++] = index; 2052 #ifdef CONFIG_NUMA 2053 if (numa_node_id == -2) 2054 numa_node_id = cpu_to_node(cpu); 2055 else if (numa_node_id != cpu_to_node(cpu)) 2056 numa_node_id = -1; 2057 #endif 2058 } else if (dev_maps) { 2059 /* fill in the new device map from the old device map */ 2060 map = xmap_dereference(dev_maps->cpu_map[cpu]); 2061 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 2062 } 2063 2064 } 2065 2066 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2067 2068 /* Cleanup old maps */ 2069 if (dev_maps) { 2070 for_each_possible_cpu(cpu) { 2071 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2072 map = xmap_dereference(dev_maps->cpu_map[cpu]); 2073 if (map && map != new_map) 2074 kfree_rcu(map, rcu); 2075 } 2076 2077 kfree_rcu(dev_maps, rcu); 2078 } 2079 2080 dev_maps = new_dev_maps; 2081 active = true; 2082 2083 out_no_new_maps: 2084 /* update Tx queue numa node */ 2085 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2086 (numa_node_id >= 0) ? numa_node_id : 2087 NUMA_NO_NODE); 2088 2089 if (!dev_maps) 2090 goto out_no_maps; 2091 2092 /* removes queue from unused CPUs */ 2093 for_each_possible_cpu(cpu) { 2094 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) 2095 continue; 2096 2097 if (remove_xps_queue(dev_maps, cpu, index)) 2098 active = true; 2099 } 2100 2101 /* free map if not active */ 2102 if (!active) { 2103 RCU_INIT_POINTER(dev->xps_maps, NULL); 2104 kfree_rcu(dev_maps, rcu); 2105 } 2106 2107 out_no_maps: 2108 mutex_unlock(&xps_map_mutex); 2109 2110 return 0; 2111 error: 2112 /* remove any maps that we added */ 2113 for_each_possible_cpu(cpu) { 2114 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2115 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2116 NULL; 2117 if (new_map && new_map != map) 2118 kfree(new_map); 2119 } 2120 2121 mutex_unlock(&xps_map_mutex); 2122 2123 kfree(new_dev_maps); 2124 return -ENOMEM; 2125 } 2126 EXPORT_SYMBOL(netif_set_xps_queue); 2127 2128 #endif 2129 /* 2130 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2131 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2132 */ 2133 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2134 { 2135 int rc; 2136 2137 if (txq < 1 || txq > dev->num_tx_queues) 2138 return -EINVAL; 2139 2140 if (dev->reg_state == NETREG_REGISTERED || 2141 dev->reg_state == NETREG_UNREGISTERING) { 2142 ASSERT_RTNL(); 2143 2144 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2145 txq); 2146 if (rc) 2147 return rc; 2148 2149 if (dev->num_tc) 2150 netif_setup_tc(dev, txq); 2151 2152 if (txq < dev->real_num_tx_queues) { 2153 qdisc_reset_all_tx_gt(dev, txq); 2154 #ifdef CONFIG_XPS 2155 netif_reset_xps_queues_gt(dev, txq); 2156 #endif 2157 } 2158 } 2159 2160 dev->real_num_tx_queues = txq; 2161 return 0; 2162 } 2163 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2164 2165 #ifdef CONFIG_SYSFS 2166 /** 2167 * netif_set_real_num_rx_queues - set actual number of RX queues used 2168 * @dev: Network device 2169 * @rxq: Actual number of RX queues 2170 * 2171 * This must be called either with the rtnl_lock held or before 2172 * registration of the net device. Returns 0 on success, or a 2173 * negative error code. If called before registration, it always 2174 * succeeds. 2175 */ 2176 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2177 { 2178 int rc; 2179 2180 if (rxq < 1 || rxq > dev->num_rx_queues) 2181 return -EINVAL; 2182 2183 if (dev->reg_state == NETREG_REGISTERED) { 2184 ASSERT_RTNL(); 2185 2186 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2187 rxq); 2188 if (rc) 2189 return rc; 2190 } 2191 2192 dev->real_num_rx_queues = rxq; 2193 return 0; 2194 } 2195 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2196 #endif 2197 2198 /** 2199 * netif_get_num_default_rss_queues - default number of RSS queues 2200 * 2201 * This routine should set an upper limit on the number of RSS queues 2202 * used by default by multiqueue devices. 2203 */ 2204 int netif_get_num_default_rss_queues(void) 2205 { 2206 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2207 } 2208 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2209 2210 static inline void __netif_reschedule(struct Qdisc *q) 2211 { 2212 struct softnet_data *sd; 2213 unsigned long flags; 2214 2215 local_irq_save(flags); 2216 sd = this_cpu_ptr(&softnet_data); 2217 q->next_sched = NULL; 2218 *sd->output_queue_tailp = q; 2219 sd->output_queue_tailp = &q->next_sched; 2220 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2221 local_irq_restore(flags); 2222 } 2223 2224 void __netif_schedule(struct Qdisc *q) 2225 { 2226 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2227 __netif_reschedule(q); 2228 } 2229 EXPORT_SYMBOL(__netif_schedule); 2230 2231 struct dev_kfree_skb_cb { 2232 enum skb_free_reason reason; 2233 }; 2234 2235 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2236 { 2237 return (struct dev_kfree_skb_cb *)skb->cb; 2238 } 2239 2240 void netif_schedule_queue(struct netdev_queue *txq) 2241 { 2242 rcu_read_lock(); 2243 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2244 struct Qdisc *q = rcu_dereference(txq->qdisc); 2245 2246 __netif_schedule(q); 2247 } 2248 rcu_read_unlock(); 2249 } 2250 EXPORT_SYMBOL(netif_schedule_queue); 2251 2252 /** 2253 * netif_wake_subqueue - allow sending packets on subqueue 2254 * @dev: network device 2255 * @queue_index: sub queue index 2256 * 2257 * Resume individual transmit queue of a device with multiple transmit queues. 2258 */ 2259 void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 2260 { 2261 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2262 2263 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) { 2264 struct Qdisc *q; 2265 2266 rcu_read_lock(); 2267 q = rcu_dereference(txq->qdisc); 2268 __netif_schedule(q); 2269 rcu_read_unlock(); 2270 } 2271 } 2272 EXPORT_SYMBOL(netif_wake_subqueue); 2273 2274 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2275 { 2276 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2277 struct Qdisc *q; 2278 2279 rcu_read_lock(); 2280 q = rcu_dereference(dev_queue->qdisc); 2281 __netif_schedule(q); 2282 rcu_read_unlock(); 2283 } 2284 } 2285 EXPORT_SYMBOL(netif_tx_wake_queue); 2286 2287 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2288 { 2289 unsigned long flags; 2290 2291 if (likely(atomic_read(&skb->users) == 1)) { 2292 smp_rmb(); 2293 atomic_set(&skb->users, 0); 2294 } else if (likely(!atomic_dec_and_test(&skb->users))) { 2295 return; 2296 } 2297 get_kfree_skb_cb(skb)->reason = reason; 2298 local_irq_save(flags); 2299 skb->next = __this_cpu_read(softnet_data.completion_queue); 2300 __this_cpu_write(softnet_data.completion_queue, skb); 2301 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2302 local_irq_restore(flags); 2303 } 2304 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2305 2306 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2307 { 2308 if (in_irq() || irqs_disabled()) 2309 __dev_kfree_skb_irq(skb, reason); 2310 else 2311 dev_kfree_skb(skb); 2312 } 2313 EXPORT_SYMBOL(__dev_kfree_skb_any); 2314 2315 2316 /** 2317 * netif_device_detach - mark device as removed 2318 * @dev: network device 2319 * 2320 * Mark device as removed from system and therefore no longer available. 2321 */ 2322 void netif_device_detach(struct net_device *dev) 2323 { 2324 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2325 netif_running(dev)) { 2326 netif_tx_stop_all_queues(dev); 2327 } 2328 } 2329 EXPORT_SYMBOL(netif_device_detach); 2330 2331 /** 2332 * netif_device_attach - mark device as attached 2333 * @dev: network device 2334 * 2335 * Mark device as attached from system and restart if needed. 2336 */ 2337 void netif_device_attach(struct net_device *dev) 2338 { 2339 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2340 netif_running(dev)) { 2341 netif_tx_wake_all_queues(dev); 2342 __netdev_watchdog_up(dev); 2343 } 2344 } 2345 EXPORT_SYMBOL(netif_device_attach); 2346 2347 /* 2348 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2349 * to be used as a distribution range. 2350 */ 2351 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 2352 unsigned int num_tx_queues) 2353 { 2354 u32 hash; 2355 u16 qoffset = 0; 2356 u16 qcount = num_tx_queues; 2357 2358 if (skb_rx_queue_recorded(skb)) { 2359 hash = skb_get_rx_queue(skb); 2360 while (unlikely(hash >= num_tx_queues)) 2361 hash -= num_tx_queues; 2362 return hash; 2363 } 2364 2365 if (dev->num_tc) { 2366 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2367 qoffset = dev->tc_to_txq[tc].offset; 2368 qcount = dev->tc_to_txq[tc].count; 2369 } 2370 2371 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2372 } 2373 EXPORT_SYMBOL(__skb_tx_hash); 2374 2375 static void skb_warn_bad_offload(const struct sk_buff *skb) 2376 { 2377 static const netdev_features_t null_features = 0; 2378 struct net_device *dev = skb->dev; 2379 const char *driver = ""; 2380 2381 if (!net_ratelimit()) 2382 return; 2383 2384 if (dev && dev->dev.parent) 2385 driver = dev_driver_string(dev->dev.parent); 2386 2387 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2388 "gso_type=%d ip_summed=%d\n", 2389 driver, dev ? &dev->features : &null_features, 2390 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2391 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2392 skb_shinfo(skb)->gso_type, skb->ip_summed); 2393 } 2394 2395 /* 2396 * Invalidate hardware checksum when packet is to be mangled, and 2397 * complete checksum manually on outgoing path. 2398 */ 2399 int skb_checksum_help(struct sk_buff *skb) 2400 { 2401 __wsum csum; 2402 int ret = 0, offset; 2403 2404 if (skb->ip_summed == CHECKSUM_COMPLETE) 2405 goto out_set_summed; 2406 2407 if (unlikely(skb_shinfo(skb)->gso_size)) { 2408 skb_warn_bad_offload(skb); 2409 return -EINVAL; 2410 } 2411 2412 /* Before computing a checksum, we should make sure no frag could 2413 * be modified by an external entity : checksum could be wrong. 2414 */ 2415 if (skb_has_shared_frag(skb)) { 2416 ret = __skb_linearize(skb); 2417 if (ret) 2418 goto out; 2419 } 2420 2421 offset = skb_checksum_start_offset(skb); 2422 BUG_ON(offset >= skb_headlen(skb)); 2423 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2424 2425 offset += skb->csum_offset; 2426 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2427 2428 if (skb_cloned(skb) && 2429 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2430 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2431 if (ret) 2432 goto out; 2433 } 2434 2435 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 2436 out_set_summed: 2437 skb->ip_summed = CHECKSUM_NONE; 2438 out: 2439 return ret; 2440 } 2441 EXPORT_SYMBOL(skb_checksum_help); 2442 2443 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2444 { 2445 __be16 type = skb->protocol; 2446 2447 /* Tunnel gso handlers can set protocol to ethernet. */ 2448 if (type == htons(ETH_P_TEB)) { 2449 struct ethhdr *eth; 2450 2451 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2452 return 0; 2453 2454 eth = (struct ethhdr *)skb_mac_header(skb); 2455 type = eth->h_proto; 2456 } 2457 2458 return __vlan_get_protocol(skb, type, depth); 2459 } 2460 2461 /** 2462 * skb_mac_gso_segment - mac layer segmentation handler. 2463 * @skb: buffer to segment 2464 * @features: features for the output path (see dev->features) 2465 */ 2466 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2467 netdev_features_t features) 2468 { 2469 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2470 struct packet_offload *ptype; 2471 int vlan_depth = skb->mac_len; 2472 __be16 type = skb_network_protocol(skb, &vlan_depth); 2473 2474 if (unlikely(!type)) 2475 return ERR_PTR(-EINVAL); 2476 2477 __skb_pull(skb, vlan_depth); 2478 2479 rcu_read_lock(); 2480 list_for_each_entry_rcu(ptype, &offload_base, list) { 2481 if (ptype->type == type && ptype->callbacks.gso_segment) { 2482 segs = ptype->callbacks.gso_segment(skb, features); 2483 break; 2484 } 2485 } 2486 rcu_read_unlock(); 2487 2488 __skb_push(skb, skb->data - skb_mac_header(skb)); 2489 2490 return segs; 2491 } 2492 EXPORT_SYMBOL(skb_mac_gso_segment); 2493 2494 2495 /* openvswitch calls this on rx path, so we need a different check. 2496 */ 2497 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2498 { 2499 if (tx_path) 2500 return skb->ip_summed != CHECKSUM_PARTIAL; 2501 else 2502 return skb->ip_summed == CHECKSUM_NONE; 2503 } 2504 2505 /** 2506 * __skb_gso_segment - Perform segmentation on skb. 2507 * @skb: buffer to segment 2508 * @features: features for the output path (see dev->features) 2509 * @tx_path: whether it is called in TX path 2510 * 2511 * This function segments the given skb and returns a list of segments. 2512 * 2513 * It may return NULL if the skb requires no segmentation. This is 2514 * only possible when GSO is used for verifying header integrity. 2515 */ 2516 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2517 netdev_features_t features, bool tx_path) 2518 { 2519 if (unlikely(skb_needs_check(skb, tx_path))) { 2520 int err; 2521 2522 skb_warn_bad_offload(skb); 2523 2524 err = skb_cow_head(skb, 0); 2525 if (err < 0) 2526 return ERR_PTR(err); 2527 } 2528 2529 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2530 SKB_GSO_CB(skb)->encap_level = 0; 2531 2532 skb_reset_mac_header(skb); 2533 skb_reset_mac_len(skb); 2534 2535 return skb_mac_gso_segment(skb, features); 2536 } 2537 EXPORT_SYMBOL(__skb_gso_segment); 2538 2539 /* Take action when hardware reception checksum errors are detected. */ 2540 #ifdef CONFIG_BUG 2541 void netdev_rx_csum_fault(struct net_device *dev) 2542 { 2543 if (net_ratelimit()) { 2544 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2545 dump_stack(); 2546 } 2547 } 2548 EXPORT_SYMBOL(netdev_rx_csum_fault); 2549 #endif 2550 2551 /* Actually, we should eliminate this check as soon as we know, that: 2552 * 1. IOMMU is present and allows to map all the memory. 2553 * 2. No high memory really exists on this machine. 2554 */ 2555 2556 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2557 { 2558 #ifdef CONFIG_HIGHMEM 2559 int i; 2560 if (!(dev->features & NETIF_F_HIGHDMA)) { 2561 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2562 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2563 if (PageHighMem(skb_frag_page(frag))) 2564 return 1; 2565 } 2566 } 2567 2568 if (PCI_DMA_BUS_IS_PHYS) { 2569 struct device *pdev = dev->dev.parent; 2570 2571 if (!pdev) 2572 return 0; 2573 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2574 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2575 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2576 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2577 return 1; 2578 } 2579 } 2580 #endif 2581 return 0; 2582 } 2583 2584 /* If MPLS offload request, verify we are testing hardware MPLS features 2585 * instead of standard features for the netdev. 2586 */ 2587 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2588 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2589 netdev_features_t features, 2590 __be16 type) 2591 { 2592 if (eth_p_mpls(type)) 2593 features &= skb->dev->mpls_features; 2594 2595 return features; 2596 } 2597 #else 2598 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2599 netdev_features_t features, 2600 __be16 type) 2601 { 2602 return features; 2603 } 2604 #endif 2605 2606 static netdev_features_t harmonize_features(struct sk_buff *skb, 2607 netdev_features_t features) 2608 { 2609 int tmp; 2610 __be16 type; 2611 2612 type = skb_network_protocol(skb, &tmp); 2613 features = net_mpls_features(skb, features, type); 2614 2615 if (skb->ip_summed != CHECKSUM_NONE && 2616 !can_checksum_protocol(features, type)) { 2617 features &= ~NETIF_F_ALL_CSUM; 2618 } else if (illegal_highdma(skb->dev, skb)) { 2619 features &= ~NETIF_F_SG; 2620 } 2621 2622 return features; 2623 } 2624 2625 netdev_features_t passthru_features_check(struct sk_buff *skb, 2626 struct net_device *dev, 2627 netdev_features_t features) 2628 { 2629 return features; 2630 } 2631 EXPORT_SYMBOL(passthru_features_check); 2632 2633 static netdev_features_t dflt_features_check(const struct sk_buff *skb, 2634 struct net_device *dev, 2635 netdev_features_t features) 2636 { 2637 return vlan_features_check(skb, features); 2638 } 2639 2640 netdev_features_t netif_skb_features(struct sk_buff *skb) 2641 { 2642 struct net_device *dev = skb->dev; 2643 netdev_features_t features = dev->features; 2644 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2645 2646 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs) 2647 features &= ~NETIF_F_GSO_MASK; 2648 2649 /* If encapsulation offload request, verify we are testing 2650 * hardware encapsulation features instead of standard 2651 * features for the netdev 2652 */ 2653 if (skb->encapsulation) 2654 features &= dev->hw_enc_features; 2655 2656 if (skb_vlan_tagged(skb)) 2657 features = netdev_intersect_features(features, 2658 dev->vlan_features | 2659 NETIF_F_HW_VLAN_CTAG_TX | 2660 NETIF_F_HW_VLAN_STAG_TX); 2661 2662 if (dev->netdev_ops->ndo_features_check) 2663 features &= dev->netdev_ops->ndo_features_check(skb, dev, 2664 features); 2665 else 2666 features &= dflt_features_check(skb, dev, features); 2667 2668 return harmonize_features(skb, features); 2669 } 2670 EXPORT_SYMBOL(netif_skb_features); 2671 2672 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 2673 struct netdev_queue *txq, bool more) 2674 { 2675 unsigned int len; 2676 int rc; 2677 2678 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 2679 dev_queue_xmit_nit(skb, dev); 2680 2681 len = skb->len; 2682 trace_net_dev_start_xmit(skb, dev); 2683 rc = netdev_start_xmit(skb, dev, txq, more); 2684 trace_net_dev_xmit(skb, rc, dev, len); 2685 2686 return rc; 2687 } 2688 2689 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 2690 struct netdev_queue *txq, int *ret) 2691 { 2692 struct sk_buff *skb = first; 2693 int rc = NETDEV_TX_OK; 2694 2695 while (skb) { 2696 struct sk_buff *next = skb->next; 2697 2698 skb->next = NULL; 2699 rc = xmit_one(skb, dev, txq, next != NULL); 2700 if (unlikely(!dev_xmit_complete(rc))) { 2701 skb->next = next; 2702 goto out; 2703 } 2704 2705 skb = next; 2706 if (netif_xmit_stopped(txq) && skb) { 2707 rc = NETDEV_TX_BUSY; 2708 break; 2709 } 2710 } 2711 2712 out: 2713 *ret = rc; 2714 return skb; 2715 } 2716 2717 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 2718 netdev_features_t features) 2719 { 2720 if (skb_vlan_tag_present(skb) && 2721 !vlan_hw_offload_capable(features, skb->vlan_proto)) 2722 skb = __vlan_hwaccel_push_inside(skb); 2723 return skb; 2724 } 2725 2726 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) 2727 { 2728 netdev_features_t features; 2729 2730 if (skb->next) 2731 return skb; 2732 2733 features = netif_skb_features(skb); 2734 skb = validate_xmit_vlan(skb, features); 2735 if (unlikely(!skb)) 2736 goto out_null; 2737 2738 if (netif_needs_gso(skb, features)) { 2739 struct sk_buff *segs; 2740 2741 segs = skb_gso_segment(skb, features); 2742 if (IS_ERR(segs)) { 2743 goto out_kfree_skb; 2744 } else if (segs) { 2745 consume_skb(skb); 2746 skb = segs; 2747 } 2748 } else { 2749 if (skb_needs_linearize(skb, features) && 2750 __skb_linearize(skb)) 2751 goto out_kfree_skb; 2752 2753 /* If packet is not checksummed and device does not 2754 * support checksumming for this protocol, complete 2755 * checksumming here. 2756 */ 2757 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2758 if (skb->encapsulation) 2759 skb_set_inner_transport_header(skb, 2760 skb_checksum_start_offset(skb)); 2761 else 2762 skb_set_transport_header(skb, 2763 skb_checksum_start_offset(skb)); 2764 if (!(features & NETIF_F_ALL_CSUM) && 2765 skb_checksum_help(skb)) 2766 goto out_kfree_skb; 2767 } 2768 } 2769 2770 return skb; 2771 2772 out_kfree_skb: 2773 kfree_skb(skb); 2774 out_null: 2775 return NULL; 2776 } 2777 2778 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev) 2779 { 2780 struct sk_buff *next, *head = NULL, *tail; 2781 2782 for (; skb != NULL; skb = next) { 2783 next = skb->next; 2784 skb->next = NULL; 2785 2786 /* in case skb wont be segmented, point to itself */ 2787 skb->prev = skb; 2788 2789 skb = validate_xmit_skb(skb, dev); 2790 if (!skb) 2791 continue; 2792 2793 if (!head) 2794 head = skb; 2795 else 2796 tail->next = skb; 2797 /* If skb was segmented, skb->prev points to 2798 * the last segment. If not, it still contains skb. 2799 */ 2800 tail = skb->prev; 2801 } 2802 return head; 2803 } 2804 2805 static void qdisc_pkt_len_init(struct sk_buff *skb) 2806 { 2807 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2808 2809 qdisc_skb_cb(skb)->pkt_len = skb->len; 2810 2811 /* To get more precise estimation of bytes sent on wire, 2812 * we add to pkt_len the headers size of all segments 2813 */ 2814 if (shinfo->gso_size) { 2815 unsigned int hdr_len; 2816 u16 gso_segs = shinfo->gso_segs; 2817 2818 /* mac layer + network layer */ 2819 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 2820 2821 /* + transport layer */ 2822 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 2823 hdr_len += tcp_hdrlen(skb); 2824 else 2825 hdr_len += sizeof(struct udphdr); 2826 2827 if (shinfo->gso_type & SKB_GSO_DODGY) 2828 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 2829 shinfo->gso_size); 2830 2831 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 2832 } 2833 } 2834 2835 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2836 struct net_device *dev, 2837 struct netdev_queue *txq) 2838 { 2839 spinlock_t *root_lock = qdisc_lock(q); 2840 bool contended; 2841 int rc; 2842 2843 qdisc_pkt_len_init(skb); 2844 qdisc_calculate_pkt_len(skb, q); 2845 /* 2846 * Heuristic to force contended enqueues to serialize on a 2847 * separate lock before trying to get qdisc main lock. 2848 * This permits __QDISC___STATE_RUNNING owner to get the lock more 2849 * often and dequeue packets faster. 2850 */ 2851 contended = qdisc_is_running(q); 2852 if (unlikely(contended)) 2853 spin_lock(&q->busylock); 2854 2855 spin_lock(root_lock); 2856 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2857 kfree_skb(skb); 2858 rc = NET_XMIT_DROP; 2859 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2860 qdisc_run_begin(q)) { 2861 /* 2862 * This is a work-conserving queue; there are no old skbs 2863 * waiting to be sent out; and the qdisc is not running - 2864 * xmit the skb directly. 2865 */ 2866 2867 qdisc_bstats_update(q, skb); 2868 2869 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 2870 if (unlikely(contended)) { 2871 spin_unlock(&q->busylock); 2872 contended = false; 2873 } 2874 __qdisc_run(q); 2875 } else 2876 qdisc_run_end(q); 2877 2878 rc = NET_XMIT_SUCCESS; 2879 } else { 2880 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2881 if (qdisc_run_begin(q)) { 2882 if (unlikely(contended)) { 2883 spin_unlock(&q->busylock); 2884 contended = false; 2885 } 2886 __qdisc_run(q); 2887 } 2888 } 2889 spin_unlock(root_lock); 2890 if (unlikely(contended)) 2891 spin_unlock(&q->busylock); 2892 return rc; 2893 } 2894 2895 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2896 static void skb_update_prio(struct sk_buff *skb) 2897 { 2898 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2899 2900 if (!skb->priority && skb->sk && map) { 2901 unsigned int prioidx = skb->sk->sk_cgrp_prioidx; 2902 2903 if (prioidx < map->priomap_len) 2904 skb->priority = map->priomap[prioidx]; 2905 } 2906 } 2907 #else 2908 #define skb_update_prio(skb) 2909 #endif 2910 2911 DEFINE_PER_CPU(int, xmit_recursion); 2912 EXPORT_SYMBOL(xmit_recursion); 2913 2914 #define RECURSION_LIMIT 10 2915 2916 /** 2917 * dev_loopback_xmit - loop back @skb 2918 * @net: network namespace this loopback is happening in 2919 * @sk: sk needed to be a netfilter okfn 2920 * @skb: buffer to transmit 2921 */ 2922 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 2923 { 2924 skb_reset_mac_header(skb); 2925 __skb_pull(skb, skb_network_offset(skb)); 2926 skb->pkt_type = PACKET_LOOPBACK; 2927 skb->ip_summed = CHECKSUM_UNNECESSARY; 2928 WARN_ON(!skb_dst(skb)); 2929 skb_dst_force(skb); 2930 netif_rx_ni(skb); 2931 return 0; 2932 } 2933 EXPORT_SYMBOL(dev_loopback_xmit); 2934 2935 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 2936 { 2937 #ifdef CONFIG_XPS 2938 struct xps_dev_maps *dev_maps; 2939 struct xps_map *map; 2940 int queue_index = -1; 2941 2942 rcu_read_lock(); 2943 dev_maps = rcu_dereference(dev->xps_maps); 2944 if (dev_maps) { 2945 map = rcu_dereference( 2946 dev_maps->cpu_map[skb->sender_cpu - 1]); 2947 if (map) { 2948 if (map->len == 1) 2949 queue_index = map->queues[0]; 2950 else 2951 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb), 2952 map->len)]; 2953 if (unlikely(queue_index >= dev->real_num_tx_queues)) 2954 queue_index = -1; 2955 } 2956 } 2957 rcu_read_unlock(); 2958 2959 return queue_index; 2960 #else 2961 return -1; 2962 #endif 2963 } 2964 2965 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb) 2966 { 2967 struct sock *sk = skb->sk; 2968 int queue_index = sk_tx_queue_get(sk); 2969 2970 if (queue_index < 0 || skb->ooo_okay || 2971 queue_index >= dev->real_num_tx_queues) { 2972 int new_index = get_xps_queue(dev, skb); 2973 if (new_index < 0) 2974 new_index = skb_tx_hash(dev, skb); 2975 2976 if (queue_index != new_index && sk && 2977 rcu_access_pointer(sk->sk_dst_cache)) 2978 sk_tx_queue_set(sk, new_index); 2979 2980 queue_index = new_index; 2981 } 2982 2983 return queue_index; 2984 } 2985 2986 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 2987 struct sk_buff *skb, 2988 void *accel_priv) 2989 { 2990 int queue_index = 0; 2991 2992 #ifdef CONFIG_XPS 2993 if (skb->sender_cpu == 0) 2994 skb->sender_cpu = raw_smp_processor_id() + 1; 2995 #endif 2996 2997 if (dev->real_num_tx_queues != 1) { 2998 const struct net_device_ops *ops = dev->netdev_ops; 2999 if (ops->ndo_select_queue) 3000 queue_index = ops->ndo_select_queue(dev, skb, accel_priv, 3001 __netdev_pick_tx); 3002 else 3003 queue_index = __netdev_pick_tx(dev, skb); 3004 3005 if (!accel_priv) 3006 queue_index = netdev_cap_txqueue(dev, queue_index); 3007 } 3008 3009 skb_set_queue_mapping(skb, queue_index); 3010 return netdev_get_tx_queue(dev, queue_index); 3011 } 3012 3013 /** 3014 * __dev_queue_xmit - transmit a buffer 3015 * @skb: buffer to transmit 3016 * @accel_priv: private data used for L2 forwarding offload 3017 * 3018 * Queue a buffer for transmission to a network device. The caller must 3019 * have set the device and priority and built the buffer before calling 3020 * this function. The function can be called from an interrupt. 3021 * 3022 * A negative errno code is returned on a failure. A success does not 3023 * guarantee the frame will be transmitted as it may be dropped due 3024 * to congestion or traffic shaping. 3025 * 3026 * ----------------------------------------------------------------------------------- 3027 * I notice this method can also return errors from the queue disciplines, 3028 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3029 * be positive. 3030 * 3031 * Regardless of the return value, the skb is consumed, so it is currently 3032 * difficult to retry a send to this method. (You can bump the ref count 3033 * before sending to hold a reference for retry if you are careful.) 3034 * 3035 * When calling this method, interrupts MUST be enabled. This is because 3036 * the BH enable code must have IRQs enabled so that it will not deadlock. 3037 * --BLG 3038 */ 3039 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 3040 { 3041 struct net_device *dev = skb->dev; 3042 struct netdev_queue *txq; 3043 struct Qdisc *q; 3044 int rc = -ENOMEM; 3045 3046 skb_reset_mac_header(skb); 3047 3048 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3049 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3050 3051 /* Disable soft irqs for various locks below. Also 3052 * stops preemption for RCU. 3053 */ 3054 rcu_read_lock_bh(); 3055 3056 skb_update_prio(skb); 3057 3058 /* If device/qdisc don't need skb->dst, release it right now while 3059 * its hot in this cpu cache. 3060 */ 3061 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3062 skb_dst_drop(skb); 3063 else 3064 skb_dst_force(skb); 3065 3066 #ifdef CONFIG_NET_SWITCHDEV 3067 /* Don't forward if offload device already forwarded */ 3068 if (skb->offload_fwd_mark && 3069 skb->offload_fwd_mark == dev->offload_fwd_mark) { 3070 consume_skb(skb); 3071 rc = NET_XMIT_SUCCESS; 3072 goto out; 3073 } 3074 #endif 3075 3076 txq = netdev_pick_tx(dev, skb, accel_priv); 3077 q = rcu_dereference_bh(txq->qdisc); 3078 3079 #ifdef CONFIG_NET_CLS_ACT 3080 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 3081 #endif 3082 trace_net_dev_queue(skb); 3083 if (q->enqueue) { 3084 rc = __dev_xmit_skb(skb, q, dev, txq); 3085 goto out; 3086 } 3087 3088 /* The device has no queue. Common case for software devices: 3089 loopback, all the sorts of tunnels... 3090 3091 Really, it is unlikely that netif_tx_lock protection is necessary 3092 here. (f.e. loopback and IP tunnels are clean ignoring statistics 3093 counters.) 3094 However, it is possible, that they rely on protection 3095 made by us here. 3096 3097 Check this and shot the lock. It is not prone from deadlocks. 3098 Either shot noqueue qdisc, it is even simpler 8) 3099 */ 3100 if (dev->flags & IFF_UP) { 3101 int cpu = smp_processor_id(); /* ok because BHs are off */ 3102 3103 if (txq->xmit_lock_owner != cpu) { 3104 3105 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 3106 goto recursion_alert; 3107 3108 skb = validate_xmit_skb(skb, dev); 3109 if (!skb) 3110 goto drop; 3111 3112 HARD_TX_LOCK(dev, txq, cpu); 3113 3114 if (!netif_xmit_stopped(txq)) { 3115 __this_cpu_inc(xmit_recursion); 3116 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3117 __this_cpu_dec(xmit_recursion); 3118 if (dev_xmit_complete(rc)) { 3119 HARD_TX_UNLOCK(dev, txq); 3120 goto out; 3121 } 3122 } 3123 HARD_TX_UNLOCK(dev, txq); 3124 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3125 dev->name); 3126 } else { 3127 /* Recursion is detected! It is possible, 3128 * unfortunately 3129 */ 3130 recursion_alert: 3131 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3132 dev->name); 3133 } 3134 } 3135 3136 rc = -ENETDOWN; 3137 drop: 3138 rcu_read_unlock_bh(); 3139 3140 atomic_long_inc(&dev->tx_dropped); 3141 kfree_skb_list(skb); 3142 return rc; 3143 out: 3144 rcu_read_unlock_bh(); 3145 return rc; 3146 } 3147 3148 int dev_queue_xmit(struct sk_buff *skb) 3149 { 3150 return __dev_queue_xmit(skb, NULL); 3151 } 3152 EXPORT_SYMBOL(dev_queue_xmit); 3153 3154 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3155 { 3156 return __dev_queue_xmit(skb, accel_priv); 3157 } 3158 EXPORT_SYMBOL(dev_queue_xmit_accel); 3159 3160 3161 /*======================================================================= 3162 Receiver routines 3163 =======================================================================*/ 3164 3165 int netdev_max_backlog __read_mostly = 1000; 3166 EXPORT_SYMBOL(netdev_max_backlog); 3167 3168 int netdev_tstamp_prequeue __read_mostly = 1; 3169 int netdev_budget __read_mostly = 300; 3170 int weight_p __read_mostly = 64; /* old backlog weight */ 3171 3172 /* Called with irq disabled */ 3173 static inline void ____napi_schedule(struct softnet_data *sd, 3174 struct napi_struct *napi) 3175 { 3176 list_add_tail(&napi->poll_list, &sd->poll_list); 3177 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3178 } 3179 3180 #ifdef CONFIG_RPS 3181 3182 /* One global table that all flow-based protocols share. */ 3183 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3184 EXPORT_SYMBOL(rps_sock_flow_table); 3185 u32 rps_cpu_mask __read_mostly; 3186 EXPORT_SYMBOL(rps_cpu_mask); 3187 3188 struct static_key rps_needed __read_mostly; 3189 3190 static struct rps_dev_flow * 3191 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3192 struct rps_dev_flow *rflow, u16 next_cpu) 3193 { 3194 if (next_cpu < nr_cpu_ids) { 3195 #ifdef CONFIG_RFS_ACCEL 3196 struct netdev_rx_queue *rxqueue; 3197 struct rps_dev_flow_table *flow_table; 3198 struct rps_dev_flow *old_rflow; 3199 u32 flow_id; 3200 u16 rxq_index; 3201 int rc; 3202 3203 /* Should we steer this flow to a different hardware queue? */ 3204 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3205 !(dev->features & NETIF_F_NTUPLE)) 3206 goto out; 3207 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3208 if (rxq_index == skb_get_rx_queue(skb)) 3209 goto out; 3210 3211 rxqueue = dev->_rx + rxq_index; 3212 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3213 if (!flow_table) 3214 goto out; 3215 flow_id = skb_get_hash(skb) & flow_table->mask; 3216 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3217 rxq_index, flow_id); 3218 if (rc < 0) 3219 goto out; 3220 old_rflow = rflow; 3221 rflow = &flow_table->flows[flow_id]; 3222 rflow->filter = rc; 3223 if (old_rflow->filter == rflow->filter) 3224 old_rflow->filter = RPS_NO_FILTER; 3225 out: 3226 #endif 3227 rflow->last_qtail = 3228 per_cpu(softnet_data, next_cpu).input_queue_head; 3229 } 3230 3231 rflow->cpu = next_cpu; 3232 return rflow; 3233 } 3234 3235 /* 3236 * get_rps_cpu is called from netif_receive_skb and returns the target 3237 * CPU from the RPS map of the receiving queue for a given skb. 3238 * rcu_read_lock must be held on entry. 3239 */ 3240 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3241 struct rps_dev_flow **rflowp) 3242 { 3243 const struct rps_sock_flow_table *sock_flow_table; 3244 struct netdev_rx_queue *rxqueue = dev->_rx; 3245 struct rps_dev_flow_table *flow_table; 3246 struct rps_map *map; 3247 int cpu = -1; 3248 u32 tcpu; 3249 u32 hash; 3250 3251 if (skb_rx_queue_recorded(skb)) { 3252 u16 index = skb_get_rx_queue(skb); 3253 3254 if (unlikely(index >= dev->real_num_rx_queues)) { 3255 WARN_ONCE(dev->real_num_rx_queues > 1, 3256 "%s received packet on queue %u, but number " 3257 "of RX queues is %u\n", 3258 dev->name, index, dev->real_num_rx_queues); 3259 goto done; 3260 } 3261 rxqueue += index; 3262 } 3263 3264 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3265 3266 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3267 map = rcu_dereference(rxqueue->rps_map); 3268 if (!flow_table && !map) 3269 goto done; 3270 3271 skb_reset_network_header(skb); 3272 hash = skb_get_hash(skb); 3273 if (!hash) 3274 goto done; 3275 3276 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3277 if (flow_table && sock_flow_table) { 3278 struct rps_dev_flow *rflow; 3279 u32 next_cpu; 3280 u32 ident; 3281 3282 /* First check into global flow table if there is a match */ 3283 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3284 if ((ident ^ hash) & ~rps_cpu_mask) 3285 goto try_rps; 3286 3287 next_cpu = ident & rps_cpu_mask; 3288 3289 /* OK, now we know there is a match, 3290 * we can look at the local (per receive queue) flow table 3291 */ 3292 rflow = &flow_table->flows[hash & flow_table->mask]; 3293 tcpu = rflow->cpu; 3294 3295 /* 3296 * If the desired CPU (where last recvmsg was done) is 3297 * different from current CPU (one in the rx-queue flow 3298 * table entry), switch if one of the following holds: 3299 * - Current CPU is unset (>= nr_cpu_ids). 3300 * - Current CPU is offline. 3301 * - The current CPU's queue tail has advanced beyond the 3302 * last packet that was enqueued using this table entry. 3303 * This guarantees that all previous packets for the flow 3304 * have been dequeued, thus preserving in order delivery. 3305 */ 3306 if (unlikely(tcpu != next_cpu) && 3307 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 3308 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3309 rflow->last_qtail)) >= 0)) { 3310 tcpu = next_cpu; 3311 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3312 } 3313 3314 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 3315 *rflowp = rflow; 3316 cpu = tcpu; 3317 goto done; 3318 } 3319 } 3320 3321 try_rps: 3322 3323 if (map) { 3324 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3325 if (cpu_online(tcpu)) { 3326 cpu = tcpu; 3327 goto done; 3328 } 3329 } 3330 3331 done: 3332 return cpu; 3333 } 3334 3335 #ifdef CONFIG_RFS_ACCEL 3336 3337 /** 3338 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3339 * @dev: Device on which the filter was set 3340 * @rxq_index: RX queue index 3341 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3342 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3343 * 3344 * Drivers that implement ndo_rx_flow_steer() should periodically call 3345 * this function for each installed filter and remove the filters for 3346 * which it returns %true. 3347 */ 3348 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3349 u32 flow_id, u16 filter_id) 3350 { 3351 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3352 struct rps_dev_flow_table *flow_table; 3353 struct rps_dev_flow *rflow; 3354 bool expire = true; 3355 unsigned int cpu; 3356 3357 rcu_read_lock(); 3358 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3359 if (flow_table && flow_id <= flow_table->mask) { 3360 rflow = &flow_table->flows[flow_id]; 3361 cpu = ACCESS_ONCE(rflow->cpu); 3362 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 3363 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3364 rflow->last_qtail) < 3365 (int)(10 * flow_table->mask))) 3366 expire = false; 3367 } 3368 rcu_read_unlock(); 3369 return expire; 3370 } 3371 EXPORT_SYMBOL(rps_may_expire_flow); 3372 3373 #endif /* CONFIG_RFS_ACCEL */ 3374 3375 /* Called from hardirq (IPI) context */ 3376 static void rps_trigger_softirq(void *data) 3377 { 3378 struct softnet_data *sd = data; 3379 3380 ____napi_schedule(sd, &sd->backlog); 3381 sd->received_rps++; 3382 } 3383 3384 #endif /* CONFIG_RPS */ 3385 3386 /* 3387 * Check if this softnet_data structure is another cpu one 3388 * If yes, queue it to our IPI list and return 1 3389 * If no, return 0 3390 */ 3391 static int rps_ipi_queued(struct softnet_data *sd) 3392 { 3393 #ifdef CONFIG_RPS 3394 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3395 3396 if (sd != mysd) { 3397 sd->rps_ipi_next = mysd->rps_ipi_list; 3398 mysd->rps_ipi_list = sd; 3399 3400 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3401 return 1; 3402 } 3403 #endif /* CONFIG_RPS */ 3404 return 0; 3405 } 3406 3407 #ifdef CONFIG_NET_FLOW_LIMIT 3408 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3409 #endif 3410 3411 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3412 { 3413 #ifdef CONFIG_NET_FLOW_LIMIT 3414 struct sd_flow_limit *fl; 3415 struct softnet_data *sd; 3416 unsigned int old_flow, new_flow; 3417 3418 if (qlen < (netdev_max_backlog >> 1)) 3419 return false; 3420 3421 sd = this_cpu_ptr(&softnet_data); 3422 3423 rcu_read_lock(); 3424 fl = rcu_dereference(sd->flow_limit); 3425 if (fl) { 3426 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3427 old_flow = fl->history[fl->history_head]; 3428 fl->history[fl->history_head] = new_flow; 3429 3430 fl->history_head++; 3431 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3432 3433 if (likely(fl->buckets[old_flow])) 3434 fl->buckets[old_flow]--; 3435 3436 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3437 fl->count++; 3438 rcu_read_unlock(); 3439 return true; 3440 } 3441 } 3442 rcu_read_unlock(); 3443 #endif 3444 return false; 3445 } 3446 3447 /* 3448 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3449 * queue (may be a remote CPU queue). 3450 */ 3451 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3452 unsigned int *qtail) 3453 { 3454 struct softnet_data *sd; 3455 unsigned long flags; 3456 unsigned int qlen; 3457 3458 sd = &per_cpu(softnet_data, cpu); 3459 3460 local_irq_save(flags); 3461 3462 rps_lock(sd); 3463 if (!netif_running(skb->dev)) 3464 goto drop; 3465 qlen = skb_queue_len(&sd->input_pkt_queue); 3466 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3467 if (qlen) { 3468 enqueue: 3469 __skb_queue_tail(&sd->input_pkt_queue, skb); 3470 input_queue_tail_incr_save(sd, qtail); 3471 rps_unlock(sd); 3472 local_irq_restore(flags); 3473 return NET_RX_SUCCESS; 3474 } 3475 3476 /* Schedule NAPI for backlog device 3477 * We can use non atomic operation since we own the queue lock 3478 */ 3479 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3480 if (!rps_ipi_queued(sd)) 3481 ____napi_schedule(sd, &sd->backlog); 3482 } 3483 goto enqueue; 3484 } 3485 3486 drop: 3487 sd->dropped++; 3488 rps_unlock(sd); 3489 3490 local_irq_restore(flags); 3491 3492 atomic_long_inc(&skb->dev->rx_dropped); 3493 kfree_skb(skb); 3494 return NET_RX_DROP; 3495 } 3496 3497 static int netif_rx_internal(struct sk_buff *skb) 3498 { 3499 int ret; 3500 3501 net_timestamp_check(netdev_tstamp_prequeue, skb); 3502 3503 trace_netif_rx(skb); 3504 #ifdef CONFIG_RPS 3505 if (static_key_false(&rps_needed)) { 3506 struct rps_dev_flow voidflow, *rflow = &voidflow; 3507 int cpu; 3508 3509 preempt_disable(); 3510 rcu_read_lock(); 3511 3512 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3513 if (cpu < 0) 3514 cpu = smp_processor_id(); 3515 3516 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3517 3518 rcu_read_unlock(); 3519 preempt_enable(); 3520 } else 3521 #endif 3522 { 3523 unsigned int qtail; 3524 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3525 put_cpu(); 3526 } 3527 return ret; 3528 } 3529 3530 /** 3531 * netif_rx - post buffer to the network code 3532 * @skb: buffer to post 3533 * 3534 * This function receives a packet from a device driver and queues it for 3535 * the upper (protocol) levels to process. It always succeeds. The buffer 3536 * may be dropped during processing for congestion control or by the 3537 * protocol layers. 3538 * 3539 * return values: 3540 * NET_RX_SUCCESS (no congestion) 3541 * NET_RX_DROP (packet was dropped) 3542 * 3543 */ 3544 3545 int netif_rx(struct sk_buff *skb) 3546 { 3547 trace_netif_rx_entry(skb); 3548 3549 return netif_rx_internal(skb); 3550 } 3551 EXPORT_SYMBOL(netif_rx); 3552 3553 int netif_rx_ni(struct sk_buff *skb) 3554 { 3555 int err; 3556 3557 trace_netif_rx_ni_entry(skb); 3558 3559 preempt_disable(); 3560 err = netif_rx_internal(skb); 3561 if (local_softirq_pending()) 3562 do_softirq(); 3563 preempt_enable(); 3564 3565 return err; 3566 } 3567 EXPORT_SYMBOL(netif_rx_ni); 3568 3569 static void net_tx_action(struct softirq_action *h) 3570 { 3571 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 3572 3573 if (sd->completion_queue) { 3574 struct sk_buff *clist; 3575 3576 local_irq_disable(); 3577 clist = sd->completion_queue; 3578 sd->completion_queue = NULL; 3579 local_irq_enable(); 3580 3581 while (clist) { 3582 struct sk_buff *skb = clist; 3583 clist = clist->next; 3584 3585 WARN_ON(atomic_read(&skb->users)); 3586 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 3587 trace_consume_skb(skb); 3588 else 3589 trace_kfree_skb(skb, net_tx_action); 3590 __kfree_skb(skb); 3591 } 3592 } 3593 3594 if (sd->output_queue) { 3595 struct Qdisc *head; 3596 3597 local_irq_disable(); 3598 head = sd->output_queue; 3599 sd->output_queue = NULL; 3600 sd->output_queue_tailp = &sd->output_queue; 3601 local_irq_enable(); 3602 3603 while (head) { 3604 struct Qdisc *q = head; 3605 spinlock_t *root_lock; 3606 3607 head = head->next_sched; 3608 3609 root_lock = qdisc_lock(q); 3610 if (spin_trylock(root_lock)) { 3611 smp_mb__before_atomic(); 3612 clear_bit(__QDISC_STATE_SCHED, 3613 &q->state); 3614 qdisc_run(q); 3615 spin_unlock(root_lock); 3616 } else { 3617 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3618 &q->state)) { 3619 __netif_reschedule(q); 3620 } else { 3621 smp_mb__before_atomic(); 3622 clear_bit(__QDISC_STATE_SCHED, 3623 &q->state); 3624 } 3625 } 3626 } 3627 } 3628 } 3629 3630 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3631 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3632 /* This hook is defined here for ATM LANE */ 3633 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3634 unsigned char *addr) __read_mostly; 3635 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3636 #endif 3637 3638 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3639 struct packet_type **pt_prev, 3640 int *ret, struct net_device *orig_dev) 3641 { 3642 #ifdef CONFIG_NET_CLS_ACT 3643 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list); 3644 struct tcf_result cl_res; 3645 3646 /* If there's at least one ingress present somewhere (so 3647 * we get here via enabled static key), remaining devices 3648 * that are not configured with an ingress qdisc will bail 3649 * out here. 3650 */ 3651 if (!cl) 3652 return skb; 3653 if (*pt_prev) { 3654 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3655 *pt_prev = NULL; 3656 } 3657 3658 qdisc_skb_cb(skb)->pkt_len = skb->len; 3659 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3660 qdisc_bstats_cpu_update(cl->q, skb); 3661 3662 switch (tc_classify(skb, cl, &cl_res, false)) { 3663 case TC_ACT_OK: 3664 case TC_ACT_RECLASSIFY: 3665 skb->tc_index = TC_H_MIN(cl_res.classid); 3666 break; 3667 case TC_ACT_SHOT: 3668 qdisc_qstats_cpu_drop(cl->q); 3669 case TC_ACT_STOLEN: 3670 case TC_ACT_QUEUED: 3671 kfree_skb(skb); 3672 return NULL; 3673 case TC_ACT_REDIRECT: 3674 /* skb_mac_header check was done by cls/act_bpf, so 3675 * we can safely push the L2 header back before 3676 * redirecting to another netdev 3677 */ 3678 __skb_push(skb, skb->mac_len); 3679 skb_do_redirect(skb); 3680 return NULL; 3681 default: 3682 break; 3683 } 3684 #endif /* CONFIG_NET_CLS_ACT */ 3685 return skb; 3686 } 3687 3688 /** 3689 * netdev_rx_handler_register - register receive handler 3690 * @dev: device to register a handler for 3691 * @rx_handler: receive handler to register 3692 * @rx_handler_data: data pointer that is used by rx handler 3693 * 3694 * Register a receive handler for a device. This handler will then be 3695 * called from __netif_receive_skb. A negative errno code is returned 3696 * on a failure. 3697 * 3698 * The caller must hold the rtnl_mutex. 3699 * 3700 * For a general description of rx_handler, see enum rx_handler_result. 3701 */ 3702 int netdev_rx_handler_register(struct net_device *dev, 3703 rx_handler_func_t *rx_handler, 3704 void *rx_handler_data) 3705 { 3706 ASSERT_RTNL(); 3707 3708 if (dev->rx_handler) 3709 return -EBUSY; 3710 3711 /* Note: rx_handler_data must be set before rx_handler */ 3712 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3713 rcu_assign_pointer(dev->rx_handler, rx_handler); 3714 3715 return 0; 3716 } 3717 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3718 3719 /** 3720 * netdev_rx_handler_unregister - unregister receive handler 3721 * @dev: device to unregister a handler from 3722 * 3723 * Unregister a receive handler from a device. 3724 * 3725 * The caller must hold the rtnl_mutex. 3726 */ 3727 void netdev_rx_handler_unregister(struct net_device *dev) 3728 { 3729 3730 ASSERT_RTNL(); 3731 RCU_INIT_POINTER(dev->rx_handler, NULL); 3732 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 3733 * section has a guarantee to see a non NULL rx_handler_data 3734 * as well. 3735 */ 3736 synchronize_net(); 3737 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3738 } 3739 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3740 3741 /* 3742 * Limit the use of PFMEMALLOC reserves to those protocols that implement 3743 * the special handling of PFMEMALLOC skbs. 3744 */ 3745 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 3746 { 3747 switch (skb->protocol) { 3748 case htons(ETH_P_ARP): 3749 case htons(ETH_P_IP): 3750 case htons(ETH_P_IPV6): 3751 case htons(ETH_P_8021Q): 3752 case htons(ETH_P_8021AD): 3753 return true; 3754 default: 3755 return false; 3756 } 3757 } 3758 3759 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 3760 int *ret, struct net_device *orig_dev) 3761 { 3762 #ifdef CONFIG_NETFILTER_INGRESS 3763 if (nf_hook_ingress_active(skb)) { 3764 if (*pt_prev) { 3765 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3766 *pt_prev = NULL; 3767 } 3768 3769 return nf_hook_ingress(skb); 3770 } 3771 #endif /* CONFIG_NETFILTER_INGRESS */ 3772 return 0; 3773 } 3774 3775 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 3776 { 3777 struct packet_type *ptype, *pt_prev; 3778 rx_handler_func_t *rx_handler; 3779 struct net_device *orig_dev; 3780 bool deliver_exact = false; 3781 int ret = NET_RX_DROP; 3782 __be16 type; 3783 3784 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3785 3786 trace_netif_receive_skb(skb); 3787 3788 orig_dev = skb->dev; 3789 3790 skb_reset_network_header(skb); 3791 if (!skb_transport_header_was_set(skb)) 3792 skb_reset_transport_header(skb); 3793 skb_reset_mac_len(skb); 3794 3795 pt_prev = NULL; 3796 3797 another_round: 3798 skb->skb_iif = skb->dev->ifindex; 3799 3800 __this_cpu_inc(softnet_data.processed); 3801 3802 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 3803 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 3804 skb = skb_vlan_untag(skb); 3805 if (unlikely(!skb)) 3806 goto out; 3807 } 3808 3809 #ifdef CONFIG_NET_CLS_ACT 3810 if (skb->tc_verd & TC_NCLS) { 3811 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3812 goto ncls; 3813 } 3814 #endif 3815 3816 if (pfmemalloc) 3817 goto skip_taps; 3818 3819 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3820 if (pt_prev) 3821 ret = deliver_skb(skb, pt_prev, orig_dev); 3822 pt_prev = ptype; 3823 } 3824 3825 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 3826 if (pt_prev) 3827 ret = deliver_skb(skb, pt_prev, orig_dev); 3828 pt_prev = ptype; 3829 } 3830 3831 skip_taps: 3832 #ifdef CONFIG_NET_INGRESS 3833 if (static_key_false(&ingress_needed)) { 3834 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3835 if (!skb) 3836 goto out; 3837 3838 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 3839 goto out; 3840 } 3841 #endif 3842 #ifdef CONFIG_NET_CLS_ACT 3843 skb->tc_verd = 0; 3844 ncls: 3845 #endif 3846 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 3847 goto drop; 3848 3849 if (skb_vlan_tag_present(skb)) { 3850 if (pt_prev) { 3851 ret = deliver_skb(skb, pt_prev, orig_dev); 3852 pt_prev = NULL; 3853 } 3854 if (vlan_do_receive(&skb)) 3855 goto another_round; 3856 else if (unlikely(!skb)) 3857 goto out; 3858 } 3859 3860 rx_handler = rcu_dereference(skb->dev->rx_handler); 3861 if (rx_handler) { 3862 if (pt_prev) { 3863 ret = deliver_skb(skb, pt_prev, orig_dev); 3864 pt_prev = NULL; 3865 } 3866 switch (rx_handler(&skb)) { 3867 case RX_HANDLER_CONSUMED: 3868 ret = NET_RX_SUCCESS; 3869 goto out; 3870 case RX_HANDLER_ANOTHER: 3871 goto another_round; 3872 case RX_HANDLER_EXACT: 3873 deliver_exact = true; 3874 case RX_HANDLER_PASS: 3875 break; 3876 default: 3877 BUG(); 3878 } 3879 } 3880 3881 if (unlikely(skb_vlan_tag_present(skb))) { 3882 if (skb_vlan_tag_get_id(skb)) 3883 skb->pkt_type = PACKET_OTHERHOST; 3884 /* Note: we might in the future use prio bits 3885 * and set skb->priority like in vlan_do_receive() 3886 * For the time being, just ignore Priority Code Point 3887 */ 3888 skb->vlan_tci = 0; 3889 } 3890 3891 type = skb->protocol; 3892 3893 /* deliver only exact match when indicated */ 3894 if (likely(!deliver_exact)) { 3895 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 3896 &ptype_base[ntohs(type) & 3897 PTYPE_HASH_MASK]); 3898 } 3899 3900 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 3901 &orig_dev->ptype_specific); 3902 3903 if (unlikely(skb->dev != orig_dev)) { 3904 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 3905 &skb->dev->ptype_specific); 3906 } 3907 3908 if (pt_prev) { 3909 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 3910 goto drop; 3911 else 3912 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3913 } else { 3914 drop: 3915 atomic_long_inc(&skb->dev->rx_dropped); 3916 kfree_skb(skb); 3917 /* Jamal, now you will not able to escape explaining 3918 * me how you were going to use this. :-) 3919 */ 3920 ret = NET_RX_DROP; 3921 } 3922 3923 out: 3924 return ret; 3925 } 3926 3927 static int __netif_receive_skb(struct sk_buff *skb) 3928 { 3929 int ret; 3930 3931 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 3932 unsigned long pflags = current->flags; 3933 3934 /* 3935 * PFMEMALLOC skbs are special, they should 3936 * - be delivered to SOCK_MEMALLOC sockets only 3937 * - stay away from userspace 3938 * - have bounded memory usage 3939 * 3940 * Use PF_MEMALLOC as this saves us from propagating the allocation 3941 * context down to all allocation sites. 3942 */ 3943 current->flags |= PF_MEMALLOC; 3944 ret = __netif_receive_skb_core(skb, true); 3945 tsk_restore_flags(current, pflags, PF_MEMALLOC); 3946 } else 3947 ret = __netif_receive_skb_core(skb, false); 3948 3949 return ret; 3950 } 3951 3952 static int netif_receive_skb_internal(struct sk_buff *skb) 3953 { 3954 int ret; 3955 3956 net_timestamp_check(netdev_tstamp_prequeue, skb); 3957 3958 if (skb_defer_rx_timestamp(skb)) 3959 return NET_RX_SUCCESS; 3960 3961 rcu_read_lock(); 3962 3963 #ifdef CONFIG_RPS 3964 if (static_key_false(&rps_needed)) { 3965 struct rps_dev_flow voidflow, *rflow = &voidflow; 3966 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 3967 3968 if (cpu >= 0) { 3969 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3970 rcu_read_unlock(); 3971 return ret; 3972 } 3973 } 3974 #endif 3975 ret = __netif_receive_skb(skb); 3976 rcu_read_unlock(); 3977 return ret; 3978 } 3979 3980 /** 3981 * netif_receive_skb - process receive buffer from network 3982 * @skb: buffer to process 3983 * 3984 * netif_receive_skb() is the main receive data processing function. 3985 * It always succeeds. The buffer may be dropped during processing 3986 * for congestion control or by the protocol layers. 3987 * 3988 * This function may only be called from softirq context and interrupts 3989 * should be enabled. 3990 * 3991 * Return values (usually ignored): 3992 * NET_RX_SUCCESS: no congestion 3993 * NET_RX_DROP: packet was dropped 3994 */ 3995 int netif_receive_skb(struct sk_buff *skb) 3996 { 3997 trace_netif_receive_skb_entry(skb); 3998 3999 return netif_receive_skb_internal(skb); 4000 } 4001 EXPORT_SYMBOL(netif_receive_skb); 4002 4003 /* Network device is going away, flush any packets still pending 4004 * Called with irqs disabled. 4005 */ 4006 static void flush_backlog(void *arg) 4007 { 4008 struct net_device *dev = arg; 4009 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4010 struct sk_buff *skb, *tmp; 4011 4012 rps_lock(sd); 4013 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 4014 if (skb->dev == dev) { 4015 __skb_unlink(skb, &sd->input_pkt_queue); 4016 kfree_skb(skb); 4017 input_queue_head_incr(sd); 4018 } 4019 } 4020 rps_unlock(sd); 4021 4022 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 4023 if (skb->dev == dev) { 4024 __skb_unlink(skb, &sd->process_queue); 4025 kfree_skb(skb); 4026 input_queue_head_incr(sd); 4027 } 4028 } 4029 } 4030 4031 static int napi_gro_complete(struct sk_buff *skb) 4032 { 4033 struct packet_offload *ptype; 4034 __be16 type = skb->protocol; 4035 struct list_head *head = &offload_base; 4036 int err = -ENOENT; 4037 4038 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 4039 4040 if (NAPI_GRO_CB(skb)->count == 1) { 4041 skb_shinfo(skb)->gso_size = 0; 4042 goto out; 4043 } 4044 4045 rcu_read_lock(); 4046 list_for_each_entry_rcu(ptype, head, list) { 4047 if (ptype->type != type || !ptype->callbacks.gro_complete) 4048 continue; 4049 4050 err = ptype->callbacks.gro_complete(skb, 0); 4051 break; 4052 } 4053 rcu_read_unlock(); 4054 4055 if (err) { 4056 WARN_ON(&ptype->list == head); 4057 kfree_skb(skb); 4058 return NET_RX_SUCCESS; 4059 } 4060 4061 out: 4062 return netif_receive_skb_internal(skb); 4063 } 4064 4065 /* napi->gro_list contains packets ordered by age. 4066 * youngest packets at the head of it. 4067 * Complete skbs in reverse order to reduce latencies. 4068 */ 4069 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 4070 { 4071 struct sk_buff *skb, *prev = NULL; 4072 4073 /* scan list and build reverse chain */ 4074 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 4075 skb->prev = prev; 4076 prev = skb; 4077 } 4078 4079 for (skb = prev; skb; skb = prev) { 4080 skb->next = NULL; 4081 4082 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 4083 return; 4084 4085 prev = skb->prev; 4086 napi_gro_complete(skb); 4087 napi->gro_count--; 4088 } 4089 4090 napi->gro_list = NULL; 4091 } 4092 EXPORT_SYMBOL(napi_gro_flush); 4093 4094 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 4095 { 4096 struct sk_buff *p; 4097 unsigned int maclen = skb->dev->hard_header_len; 4098 u32 hash = skb_get_hash_raw(skb); 4099 4100 for (p = napi->gro_list; p; p = p->next) { 4101 unsigned long diffs; 4102 4103 NAPI_GRO_CB(p)->flush = 0; 4104 4105 if (hash != skb_get_hash_raw(p)) { 4106 NAPI_GRO_CB(p)->same_flow = 0; 4107 continue; 4108 } 4109 4110 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 4111 diffs |= p->vlan_tci ^ skb->vlan_tci; 4112 if (maclen == ETH_HLEN) 4113 diffs |= compare_ether_header(skb_mac_header(p), 4114 skb_mac_header(skb)); 4115 else if (!diffs) 4116 diffs = memcmp(skb_mac_header(p), 4117 skb_mac_header(skb), 4118 maclen); 4119 NAPI_GRO_CB(p)->same_flow = !diffs; 4120 } 4121 } 4122 4123 static void skb_gro_reset_offset(struct sk_buff *skb) 4124 { 4125 const struct skb_shared_info *pinfo = skb_shinfo(skb); 4126 const skb_frag_t *frag0 = &pinfo->frags[0]; 4127 4128 NAPI_GRO_CB(skb)->data_offset = 0; 4129 NAPI_GRO_CB(skb)->frag0 = NULL; 4130 NAPI_GRO_CB(skb)->frag0_len = 0; 4131 4132 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 4133 pinfo->nr_frags && 4134 !PageHighMem(skb_frag_page(frag0))) { 4135 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 4136 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 4137 } 4138 } 4139 4140 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 4141 { 4142 struct skb_shared_info *pinfo = skb_shinfo(skb); 4143 4144 BUG_ON(skb->end - skb->tail < grow); 4145 4146 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 4147 4148 skb->data_len -= grow; 4149 skb->tail += grow; 4150 4151 pinfo->frags[0].page_offset += grow; 4152 skb_frag_size_sub(&pinfo->frags[0], grow); 4153 4154 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 4155 skb_frag_unref(skb, 0); 4156 memmove(pinfo->frags, pinfo->frags + 1, 4157 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 4158 } 4159 } 4160 4161 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4162 { 4163 struct sk_buff **pp = NULL; 4164 struct packet_offload *ptype; 4165 __be16 type = skb->protocol; 4166 struct list_head *head = &offload_base; 4167 int same_flow; 4168 enum gro_result ret; 4169 int grow; 4170 4171 if (!(skb->dev->features & NETIF_F_GRO)) 4172 goto normal; 4173 4174 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad) 4175 goto normal; 4176 4177 gro_list_prepare(napi, skb); 4178 4179 rcu_read_lock(); 4180 list_for_each_entry_rcu(ptype, head, list) { 4181 if (ptype->type != type || !ptype->callbacks.gro_receive) 4182 continue; 4183 4184 skb_set_network_header(skb, skb_gro_offset(skb)); 4185 skb_reset_mac_len(skb); 4186 NAPI_GRO_CB(skb)->same_flow = 0; 4187 NAPI_GRO_CB(skb)->flush = 0; 4188 NAPI_GRO_CB(skb)->free = 0; 4189 NAPI_GRO_CB(skb)->udp_mark = 0; 4190 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 4191 4192 /* Setup for GRO checksum validation */ 4193 switch (skb->ip_summed) { 4194 case CHECKSUM_COMPLETE: 4195 NAPI_GRO_CB(skb)->csum = skb->csum; 4196 NAPI_GRO_CB(skb)->csum_valid = 1; 4197 NAPI_GRO_CB(skb)->csum_cnt = 0; 4198 break; 4199 case CHECKSUM_UNNECESSARY: 4200 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 4201 NAPI_GRO_CB(skb)->csum_valid = 0; 4202 break; 4203 default: 4204 NAPI_GRO_CB(skb)->csum_cnt = 0; 4205 NAPI_GRO_CB(skb)->csum_valid = 0; 4206 } 4207 4208 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4209 break; 4210 } 4211 rcu_read_unlock(); 4212 4213 if (&ptype->list == head) 4214 goto normal; 4215 4216 same_flow = NAPI_GRO_CB(skb)->same_flow; 4217 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 4218 4219 if (pp) { 4220 struct sk_buff *nskb = *pp; 4221 4222 *pp = nskb->next; 4223 nskb->next = NULL; 4224 napi_gro_complete(nskb); 4225 napi->gro_count--; 4226 } 4227 4228 if (same_flow) 4229 goto ok; 4230 4231 if (NAPI_GRO_CB(skb)->flush) 4232 goto normal; 4233 4234 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4235 struct sk_buff *nskb = napi->gro_list; 4236 4237 /* locate the end of the list to select the 'oldest' flow */ 4238 while (nskb->next) { 4239 pp = &nskb->next; 4240 nskb = *pp; 4241 } 4242 *pp = NULL; 4243 nskb->next = NULL; 4244 napi_gro_complete(nskb); 4245 } else { 4246 napi->gro_count++; 4247 } 4248 NAPI_GRO_CB(skb)->count = 1; 4249 NAPI_GRO_CB(skb)->age = jiffies; 4250 NAPI_GRO_CB(skb)->last = skb; 4251 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 4252 skb->next = napi->gro_list; 4253 napi->gro_list = skb; 4254 ret = GRO_HELD; 4255 4256 pull: 4257 grow = skb_gro_offset(skb) - skb_headlen(skb); 4258 if (grow > 0) 4259 gro_pull_from_frag0(skb, grow); 4260 ok: 4261 return ret; 4262 4263 normal: 4264 ret = GRO_NORMAL; 4265 goto pull; 4266 } 4267 4268 struct packet_offload *gro_find_receive_by_type(__be16 type) 4269 { 4270 struct list_head *offload_head = &offload_base; 4271 struct packet_offload *ptype; 4272 4273 list_for_each_entry_rcu(ptype, offload_head, list) { 4274 if (ptype->type != type || !ptype->callbacks.gro_receive) 4275 continue; 4276 return ptype; 4277 } 4278 return NULL; 4279 } 4280 EXPORT_SYMBOL(gro_find_receive_by_type); 4281 4282 struct packet_offload *gro_find_complete_by_type(__be16 type) 4283 { 4284 struct list_head *offload_head = &offload_base; 4285 struct packet_offload *ptype; 4286 4287 list_for_each_entry_rcu(ptype, offload_head, list) { 4288 if (ptype->type != type || !ptype->callbacks.gro_complete) 4289 continue; 4290 return ptype; 4291 } 4292 return NULL; 4293 } 4294 EXPORT_SYMBOL(gro_find_complete_by_type); 4295 4296 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4297 { 4298 switch (ret) { 4299 case GRO_NORMAL: 4300 if (netif_receive_skb_internal(skb)) 4301 ret = GRO_DROP; 4302 break; 4303 4304 case GRO_DROP: 4305 kfree_skb(skb); 4306 break; 4307 4308 case GRO_MERGED_FREE: 4309 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 4310 kmem_cache_free(skbuff_head_cache, skb); 4311 else 4312 __kfree_skb(skb); 4313 break; 4314 4315 case GRO_HELD: 4316 case GRO_MERGED: 4317 break; 4318 } 4319 4320 return ret; 4321 } 4322 4323 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4324 { 4325 trace_napi_gro_receive_entry(skb); 4326 4327 skb_gro_reset_offset(skb); 4328 4329 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 4330 } 4331 EXPORT_SYMBOL(napi_gro_receive); 4332 4333 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 4334 { 4335 if (unlikely(skb->pfmemalloc)) { 4336 consume_skb(skb); 4337 return; 4338 } 4339 __skb_pull(skb, skb_headlen(skb)); 4340 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 4341 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 4342 skb->vlan_tci = 0; 4343 skb->dev = napi->dev; 4344 skb->skb_iif = 0; 4345 skb->encapsulation = 0; 4346 skb_shinfo(skb)->gso_type = 0; 4347 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4348 4349 napi->skb = skb; 4350 } 4351 4352 struct sk_buff *napi_get_frags(struct napi_struct *napi) 4353 { 4354 struct sk_buff *skb = napi->skb; 4355 4356 if (!skb) { 4357 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 4358 napi->skb = skb; 4359 } 4360 return skb; 4361 } 4362 EXPORT_SYMBOL(napi_get_frags); 4363 4364 static gro_result_t napi_frags_finish(struct napi_struct *napi, 4365 struct sk_buff *skb, 4366 gro_result_t ret) 4367 { 4368 switch (ret) { 4369 case GRO_NORMAL: 4370 case GRO_HELD: 4371 __skb_push(skb, ETH_HLEN); 4372 skb->protocol = eth_type_trans(skb, skb->dev); 4373 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 4374 ret = GRO_DROP; 4375 break; 4376 4377 case GRO_DROP: 4378 case GRO_MERGED_FREE: 4379 napi_reuse_skb(napi, skb); 4380 break; 4381 4382 case GRO_MERGED: 4383 break; 4384 } 4385 4386 return ret; 4387 } 4388 4389 /* Upper GRO stack assumes network header starts at gro_offset=0 4390 * Drivers could call both napi_gro_frags() and napi_gro_receive() 4391 * We copy ethernet header into skb->data to have a common layout. 4392 */ 4393 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4394 { 4395 struct sk_buff *skb = napi->skb; 4396 const struct ethhdr *eth; 4397 unsigned int hlen = sizeof(*eth); 4398 4399 napi->skb = NULL; 4400 4401 skb_reset_mac_header(skb); 4402 skb_gro_reset_offset(skb); 4403 4404 eth = skb_gro_header_fast(skb, 0); 4405 if (unlikely(skb_gro_header_hard(skb, hlen))) { 4406 eth = skb_gro_header_slow(skb, hlen, 0); 4407 if (unlikely(!eth)) { 4408 napi_reuse_skb(napi, skb); 4409 return NULL; 4410 } 4411 } else { 4412 gro_pull_from_frag0(skb, hlen); 4413 NAPI_GRO_CB(skb)->frag0 += hlen; 4414 NAPI_GRO_CB(skb)->frag0_len -= hlen; 4415 } 4416 __skb_pull(skb, hlen); 4417 4418 /* 4419 * This works because the only protocols we care about don't require 4420 * special handling. 4421 * We'll fix it up properly in napi_frags_finish() 4422 */ 4423 skb->protocol = eth->h_proto; 4424 4425 return skb; 4426 } 4427 4428 gro_result_t napi_gro_frags(struct napi_struct *napi) 4429 { 4430 struct sk_buff *skb = napi_frags_skb(napi); 4431 4432 if (!skb) 4433 return GRO_DROP; 4434 4435 trace_napi_gro_frags_entry(skb); 4436 4437 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4438 } 4439 EXPORT_SYMBOL(napi_gro_frags); 4440 4441 /* Compute the checksum from gro_offset and return the folded value 4442 * after adding in any pseudo checksum. 4443 */ 4444 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 4445 { 4446 __wsum wsum; 4447 __sum16 sum; 4448 4449 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 4450 4451 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 4452 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 4453 if (likely(!sum)) { 4454 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 4455 !skb->csum_complete_sw) 4456 netdev_rx_csum_fault(skb->dev); 4457 } 4458 4459 NAPI_GRO_CB(skb)->csum = wsum; 4460 NAPI_GRO_CB(skb)->csum_valid = 1; 4461 4462 return sum; 4463 } 4464 EXPORT_SYMBOL(__skb_gro_checksum_complete); 4465 4466 /* 4467 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 4468 * Note: called with local irq disabled, but exits with local irq enabled. 4469 */ 4470 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 4471 { 4472 #ifdef CONFIG_RPS 4473 struct softnet_data *remsd = sd->rps_ipi_list; 4474 4475 if (remsd) { 4476 sd->rps_ipi_list = NULL; 4477 4478 local_irq_enable(); 4479 4480 /* Send pending IPI's to kick RPS processing on remote cpus. */ 4481 while (remsd) { 4482 struct softnet_data *next = remsd->rps_ipi_next; 4483 4484 if (cpu_online(remsd->cpu)) 4485 smp_call_function_single_async(remsd->cpu, 4486 &remsd->csd); 4487 remsd = next; 4488 } 4489 } else 4490 #endif 4491 local_irq_enable(); 4492 } 4493 4494 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 4495 { 4496 #ifdef CONFIG_RPS 4497 return sd->rps_ipi_list != NULL; 4498 #else 4499 return false; 4500 #endif 4501 } 4502 4503 static int process_backlog(struct napi_struct *napi, int quota) 4504 { 4505 int work = 0; 4506 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 4507 4508 /* Check if we have pending ipi, its better to send them now, 4509 * not waiting net_rx_action() end. 4510 */ 4511 if (sd_has_rps_ipi_waiting(sd)) { 4512 local_irq_disable(); 4513 net_rps_action_and_irq_enable(sd); 4514 } 4515 4516 napi->weight = weight_p; 4517 local_irq_disable(); 4518 while (1) { 4519 struct sk_buff *skb; 4520 4521 while ((skb = __skb_dequeue(&sd->process_queue))) { 4522 rcu_read_lock(); 4523 local_irq_enable(); 4524 __netif_receive_skb(skb); 4525 rcu_read_unlock(); 4526 local_irq_disable(); 4527 input_queue_head_incr(sd); 4528 if (++work >= quota) { 4529 local_irq_enable(); 4530 return work; 4531 } 4532 } 4533 4534 rps_lock(sd); 4535 if (skb_queue_empty(&sd->input_pkt_queue)) { 4536 /* 4537 * Inline a custom version of __napi_complete(). 4538 * only current cpu owns and manipulates this napi, 4539 * and NAPI_STATE_SCHED is the only possible flag set 4540 * on backlog. 4541 * We can use a plain write instead of clear_bit(), 4542 * and we dont need an smp_mb() memory barrier. 4543 */ 4544 napi->state = 0; 4545 rps_unlock(sd); 4546 4547 break; 4548 } 4549 4550 skb_queue_splice_tail_init(&sd->input_pkt_queue, 4551 &sd->process_queue); 4552 rps_unlock(sd); 4553 } 4554 local_irq_enable(); 4555 4556 return work; 4557 } 4558 4559 /** 4560 * __napi_schedule - schedule for receive 4561 * @n: entry to schedule 4562 * 4563 * The entry's receive function will be scheduled to run. 4564 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 4565 */ 4566 void __napi_schedule(struct napi_struct *n) 4567 { 4568 unsigned long flags; 4569 4570 local_irq_save(flags); 4571 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4572 local_irq_restore(flags); 4573 } 4574 EXPORT_SYMBOL(__napi_schedule); 4575 4576 /** 4577 * __napi_schedule_irqoff - schedule for receive 4578 * @n: entry to schedule 4579 * 4580 * Variant of __napi_schedule() assuming hard irqs are masked 4581 */ 4582 void __napi_schedule_irqoff(struct napi_struct *n) 4583 { 4584 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4585 } 4586 EXPORT_SYMBOL(__napi_schedule_irqoff); 4587 4588 void __napi_complete(struct napi_struct *n) 4589 { 4590 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 4591 4592 list_del_init(&n->poll_list); 4593 smp_mb__before_atomic(); 4594 clear_bit(NAPI_STATE_SCHED, &n->state); 4595 } 4596 EXPORT_SYMBOL(__napi_complete); 4597 4598 void napi_complete_done(struct napi_struct *n, int work_done) 4599 { 4600 unsigned long flags; 4601 4602 /* 4603 * don't let napi dequeue from the cpu poll list 4604 * just in case its running on a different cpu 4605 */ 4606 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 4607 return; 4608 4609 if (n->gro_list) { 4610 unsigned long timeout = 0; 4611 4612 if (work_done) 4613 timeout = n->dev->gro_flush_timeout; 4614 4615 if (timeout) 4616 hrtimer_start(&n->timer, ns_to_ktime(timeout), 4617 HRTIMER_MODE_REL_PINNED); 4618 else 4619 napi_gro_flush(n, false); 4620 } 4621 if (likely(list_empty(&n->poll_list))) { 4622 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state)); 4623 } else { 4624 /* If n->poll_list is not empty, we need to mask irqs */ 4625 local_irq_save(flags); 4626 __napi_complete(n); 4627 local_irq_restore(flags); 4628 } 4629 } 4630 EXPORT_SYMBOL(napi_complete_done); 4631 4632 /* must be called under rcu_read_lock(), as we dont take a reference */ 4633 struct napi_struct *napi_by_id(unsigned int napi_id) 4634 { 4635 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 4636 struct napi_struct *napi; 4637 4638 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 4639 if (napi->napi_id == napi_id) 4640 return napi; 4641 4642 return NULL; 4643 } 4644 EXPORT_SYMBOL_GPL(napi_by_id); 4645 4646 void napi_hash_add(struct napi_struct *napi) 4647 { 4648 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) { 4649 4650 spin_lock(&napi_hash_lock); 4651 4652 /* 0 is not a valid id, we also skip an id that is taken 4653 * we expect both events to be extremely rare 4654 */ 4655 napi->napi_id = 0; 4656 while (!napi->napi_id) { 4657 napi->napi_id = ++napi_gen_id; 4658 if (napi_by_id(napi->napi_id)) 4659 napi->napi_id = 0; 4660 } 4661 4662 hlist_add_head_rcu(&napi->napi_hash_node, 4663 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 4664 4665 spin_unlock(&napi_hash_lock); 4666 } 4667 } 4668 EXPORT_SYMBOL_GPL(napi_hash_add); 4669 4670 /* Warning : caller is responsible to make sure rcu grace period 4671 * is respected before freeing memory containing @napi 4672 */ 4673 void napi_hash_del(struct napi_struct *napi) 4674 { 4675 spin_lock(&napi_hash_lock); 4676 4677 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) 4678 hlist_del_rcu(&napi->napi_hash_node); 4679 4680 spin_unlock(&napi_hash_lock); 4681 } 4682 EXPORT_SYMBOL_GPL(napi_hash_del); 4683 4684 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 4685 { 4686 struct napi_struct *napi; 4687 4688 napi = container_of(timer, struct napi_struct, timer); 4689 if (napi->gro_list) 4690 napi_schedule(napi); 4691 4692 return HRTIMER_NORESTART; 4693 } 4694 4695 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 4696 int (*poll)(struct napi_struct *, int), int weight) 4697 { 4698 INIT_LIST_HEAD(&napi->poll_list); 4699 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 4700 napi->timer.function = napi_watchdog; 4701 napi->gro_count = 0; 4702 napi->gro_list = NULL; 4703 napi->skb = NULL; 4704 napi->poll = poll; 4705 if (weight > NAPI_POLL_WEIGHT) 4706 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 4707 weight, dev->name); 4708 napi->weight = weight; 4709 list_add(&napi->dev_list, &dev->napi_list); 4710 napi->dev = dev; 4711 #ifdef CONFIG_NETPOLL 4712 spin_lock_init(&napi->poll_lock); 4713 napi->poll_owner = -1; 4714 #endif 4715 set_bit(NAPI_STATE_SCHED, &napi->state); 4716 } 4717 EXPORT_SYMBOL(netif_napi_add); 4718 4719 void napi_disable(struct napi_struct *n) 4720 { 4721 might_sleep(); 4722 set_bit(NAPI_STATE_DISABLE, &n->state); 4723 4724 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 4725 msleep(1); 4726 4727 hrtimer_cancel(&n->timer); 4728 4729 clear_bit(NAPI_STATE_DISABLE, &n->state); 4730 } 4731 EXPORT_SYMBOL(napi_disable); 4732 4733 void netif_napi_del(struct napi_struct *napi) 4734 { 4735 list_del_init(&napi->dev_list); 4736 napi_free_frags(napi); 4737 4738 kfree_skb_list(napi->gro_list); 4739 napi->gro_list = NULL; 4740 napi->gro_count = 0; 4741 } 4742 EXPORT_SYMBOL(netif_napi_del); 4743 4744 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 4745 { 4746 void *have; 4747 int work, weight; 4748 4749 list_del_init(&n->poll_list); 4750 4751 have = netpoll_poll_lock(n); 4752 4753 weight = n->weight; 4754 4755 /* This NAPI_STATE_SCHED test is for avoiding a race 4756 * with netpoll's poll_napi(). Only the entity which 4757 * obtains the lock and sees NAPI_STATE_SCHED set will 4758 * actually make the ->poll() call. Therefore we avoid 4759 * accidentally calling ->poll() when NAPI is not scheduled. 4760 */ 4761 work = 0; 4762 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 4763 work = n->poll(n, weight); 4764 trace_napi_poll(n); 4765 } 4766 4767 WARN_ON_ONCE(work > weight); 4768 4769 if (likely(work < weight)) 4770 goto out_unlock; 4771 4772 /* Drivers must not modify the NAPI state if they 4773 * consume the entire weight. In such cases this code 4774 * still "owns" the NAPI instance and therefore can 4775 * move the instance around on the list at-will. 4776 */ 4777 if (unlikely(napi_disable_pending(n))) { 4778 napi_complete(n); 4779 goto out_unlock; 4780 } 4781 4782 if (n->gro_list) { 4783 /* flush too old packets 4784 * If HZ < 1000, flush all packets. 4785 */ 4786 napi_gro_flush(n, HZ >= 1000); 4787 } 4788 4789 /* Some drivers may have called napi_schedule 4790 * prior to exhausting their budget. 4791 */ 4792 if (unlikely(!list_empty(&n->poll_list))) { 4793 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 4794 n->dev ? n->dev->name : "backlog"); 4795 goto out_unlock; 4796 } 4797 4798 list_add_tail(&n->poll_list, repoll); 4799 4800 out_unlock: 4801 netpoll_poll_unlock(have); 4802 4803 return work; 4804 } 4805 4806 static void net_rx_action(struct softirq_action *h) 4807 { 4808 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4809 unsigned long time_limit = jiffies + 2; 4810 int budget = netdev_budget; 4811 LIST_HEAD(list); 4812 LIST_HEAD(repoll); 4813 4814 local_irq_disable(); 4815 list_splice_init(&sd->poll_list, &list); 4816 local_irq_enable(); 4817 4818 for (;;) { 4819 struct napi_struct *n; 4820 4821 if (list_empty(&list)) { 4822 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 4823 return; 4824 break; 4825 } 4826 4827 n = list_first_entry(&list, struct napi_struct, poll_list); 4828 budget -= napi_poll(n, &repoll); 4829 4830 /* If softirq window is exhausted then punt. 4831 * Allow this to run for 2 jiffies since which will allow 4832 * an average latency of 1.5/HZ. 4833 */ 4834 if (unlikely(budget <= 0 || 4835 time_after_eq(jiffies, time_limit))) { 4836 sd->time_squeeze++; 4837 break; 4838 } 4839 } 4840 4841 local_irq_disable(); 4842 4843 list_splice_tail_init(&sd->poll_list, &list); 4844 list_splice_tail(&repoll, &list); 4845 list_splice(&list, &sd->poll_list); 4846 if (!list_empty(&sd->poll_list)) 4847 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4848 4849 net_rps_action_and_irq_enable(sd); 4850 } 4851 4852 struct netdev_adjacent { 4853 struct net_device *dev; 4854 4855 /* upper master flag, there can only be one master device per list */ 4856 bool master; 4857 4858 /* counter for the number of times this device was added to us */ 4859 u16 ref_nr; 4860 4861 /* private field for the users */ 4862 void *private; 4863 4864 struct list_head list; 4865 struct rcu_head rcu; 4866 }; 4867 4868 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev, 4869 struct net_device *adj_dev, 4870 struct list_head *adj_list) 4871 { 4872 struct netdev_adjacent *adj; 4873 4874 list_for_each_entry(adj, adj_list, list) { 4875 if (adj->dev == adj_dev) 4876 return adj; 4877 } 4878 return NULL; 4879 } 4880 4881 /** 4882 * netdev_has_upper_dev - Check if device is linked to an upper device 4883 * @dev: device 4884 * @upper_dev: upper device to check 4885 * 4886 * Find out if a device is linked to specified upper device and return true 4887 * in case it is. Note that this checks only immediate upper device, 4888 * not through a complete stack of devices. The caller must hold the RTNL lock. 4889 */ 4890 bool netdev_has_upper_dev(struct net_device *dev, 4891 struct net_device *upper_dev) 4892 { 4893 ASSERT_RTNL(); 4894 4895 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper); 4896 } 4897 EXPORT_SYMBOL(netdev_has_upper_dev); 4898 4899 /** 4900 * netdev_has_any_upper_dev - Check if device is linked to some device 4901 * @dev: device 4902 * 4903 * Find out if a device is linked to an upper device and return true in case 4904 * it is. The caller must hold the RTNL lock. 4905 */ 4906 static bool netdev_has_any_upper_dev(struct net_device *dev) 4907 { 4908 ASSERT_RTNL(); 4909 4910 return !list_empty(&dev->all_adj_list.upper); 4911 } 4912 4913 /** 4914 * netdev_master_upper_dev_get - Get master upper device 4915 * @dev: device 4916 * 4917 * Find a master upper device and return pointer to it or NULL in case 4918 * it's not there. The caller must hold the RTNL lock. 4919 */ 4920 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 4921 { 4922 struct netdev_adjacent *upper; 4923 4924 ASSERT_RTNL(); 4925 4926 if (list_empty(&dev->adj_list.upper)) 4927 return NULL; 4928 4929 upper = list_first_entry(&dev->adj_list.upper, 4930 struct netdev_adjacent, list); 4931 if (likely(upper->master)) 4932 return upper->dev; 4933 return NULL; 4934 } 4935 EXPORT_SYMBOL(netdev_master_upper_dev_get); 4936 4937 void *netdev_adjacent_get_private(struct list_head *adj_list) 4938 { 4939 struct netdev_adjacent *adj; 4940 4941 adj = list_entry(adj_list, struct netdev_adjacent, list); 4942 4943 return adj->private; 4944 } 4945 EXPORT_SYMBOL(netdev_adjacent_get_private); 4946 4947 /** 4948 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 4949 * @dev: device 4950 * @iter: list_head ** of the current position 4951 * 4952 * Gets the next device from the dev's upper list, starting from iter 4953 * position. The caller must hold RCU read lock. 4954 */ 4955 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4956 struct list_head **iter) 4957 { 4958 struct netdev_adjacent *upper; 4959 4960 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 4961 4962 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4963 4964 if (&upper->list == &dev->adj_list.upper) 4965 return NULL; 4966 4967 *iter = &upper->list; 4968 4969 return upper->dev; 4970 } 4971 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 4972 4973 /** 4974 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list 4975 * @dev: device 4976 * @iter: list_head ** of the current position 4977 * 4978 * Gets the next device from the dev's upper list, starting from iter 4979 * position. The caller must hold RCU read lock. 4980 */ 4981 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4982 struct list_head **iter) 4983 { 4984 struct netdev_adjacent *upper; 4985 4986 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 4987 4988 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4989 4990 if (&upper->list == &dev->all_adj_list.upper) 4991 return NULL; 4992 4993 *iter = &upper->list; 4994 4995 return upper->dev; 4996 } 4997 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu); 4998 4999 /** 5000 * netdev_lower_get_next_private - Get the next ->private from the 5001 * lower neighbour list 5002 * @dev: device 5003 * @iter: list_head ** of the current position 5004 * 5005 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5006 * list, starting from iter position. The caller must hold either hold the 5007 * RTNL lock or its own locking that guarantees that the neighbour lower 5008 * list will remain unchanged. 5009 */ 5010 void *netdev_lower_get_next_private(struct net_device *dev, 5011 struct list_head **iter) 5012 { 5013 struct netdev_adjacent *lower; 5014 5015 lower = list_entry(*iter, struct netdev_adjacent, list); 5016 5017 if (&lower->list == &dev->adj_list.lower) 5018 return NULL; 5019 5020 *iter = lower->list.next; 5021 5022 return lower->private; 5023 } 5024 EXPORT_SYMBOL(netdev_lower_get_next_private); 5025 5026 /** 5027 * netdev_lower_get_next_private_rcu - Get the next ->private from the 5028 * lower neighbour list, RCU 5029 * variant 5030 * @dev: device 5031 * @iter: list_head ** of the current position 5032 * 5033 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5034 * list, starting from iter position. The caller must hold RCU read lock. 5035 */ 5036 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 5037 struct list_head **iter) 5038 { 5039 struct netdev_adjacent *lower; 5040 5041 WARN_ON_ONCE(!rcu_read_lock_held()); 5042 5043 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5044 5045 if (&lower->list == &dev->adj_list.lower) 5046 return NULL; 5047 5048 *iter = &lower->list; 5049 5050 return lower->private; 5051 } 5052 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 5053 5054 /** 5055 * netdev_lower_get_next - Get the next device from the lower neighbour 5056 * list 5057 * @dev: device 5058 * @iter: list_head ** of the current position 5059 * 5060 * Gets the next netdev_adjacent from the dev's lower neighbour 5061 * list, starting from iter position. The caller must hold RTNL lock or 5062 * its own locking that guarantees that the neighbour lower 5063 * list will remain unchanged. 5064 */ 5065 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 5066 { 5067 struct netdev_adjacent *lower; 5068 5069 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 5070 5071 if (&lower->list == &dev->adj_list.lower) 5072 return NULL; 5073 5074 *iter = &lower->list; 5075 5076 return lower->dev; 5077 } 5078 EXPORT_SYMBOL(netdev_lower_get_next); 5079 5080 /** 5081 * netdev_lower_get_first_private_rcu - Get the first ->private from the 5082 * lower neighbour list, RCU 5083 * variant 5084 * @dev: device 5085 * 5086 * Gets the first netdev_adjacent->private from the dev's lower neighbour 5087 * list. The caller must hold RCU read lock. 5088 */ 5089 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 5090 { 5091 struct netdev_adjacent *lower; 5092 5093 lower = list_first_or_null_rcu(&dev->adj_list.lower, 5094 struct netdev_adjacent, list); 5095 if (lower) 5096 return lower->private; 5097 return NULL; 5098 } 5099 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 5100 5101 /** 5102 * netdev_master_upper_dev_get_rcu - Get master upper device 5103 * @dev: device 5104 * 5105 * Find a master upper device and return pointer to it or NULL in case 5106 * it's not there. The caller must hold the RCU read lock. 5107 */ 5108 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 5109 { 5110 struct netdev_adjacent *upper; 5111 5112 upper = list_first_or_null_rcu(&dev->adj_list.upper, 5113 struct netdev_adjacent, list); 5114 if (upper && likely(upper->master)) 5115 return upper->dev; 5116 return NULL; 5117 } 5118 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 5119 5120 static int netdev_adjacent_sysfs_add(struct net_device *dev, 5121 struct net_device *adj_dev, 5122 struct list_head *dev_list) 5123 { 5124 char linkname[IFNAMSIZ+7]; 5125 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5126 "upper_%s" : "lower_%s", adj_dev->name); 5127 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 5128 linkname); 5129 } 5130 static void netdev_adjacent_sysfs_del(struct net_device *dev, 5131 char *name, 5132 struct list_head *dev_list) 5133 { 5134 char linkname[IFNAMSIZ+7]; 5135 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5136 "upper_%s" : "lower_%s", name); 5137 sysfs_remove_link(&(dev->dev.kobj), linkname); 5138 } 5139 5140 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 5141 struct net_device *adj_dev, 5142 struct list_head *dev_list) 5143 { 5144 return (dev_list == &dev->adj_list.upper || 5145 dev_list == &dev->adj_list.lower) && 5146 net_eq(dev_net(dev), dev_net(adj_dev)); 5147 } 5148 5149 static int __netdev_adjacent_dev_insert(struct net_device *dev, 5150 struct net_device *adj_dev, 5151 struct list_head *dev_list, 5152 void *private, bool master) 5153 { 5154 struct netdev_adjacent *adj; 5155 int ret; 5156 5157 adj = __netdev_find_adj(dev, adj_dev, dev_list); 5158 5159 if (adj) { 5160 adj->ref_nr++; 5161 return 0; 5162 } 5163 5164 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 5165 if (!adj) 5166 return -ENOMEM; 5167 5168 adj->dev = adj_dev; 5169 adj->master = master; 5170 adj->ref_nr = 1; 5171 adj->private = private; 5172 dev_hold(adj_dev); 5173 5174 pr_debug("dev_hold for %s, because of link added from %s to %s\n", 5175 adj_dev->name, dev->name, adj_dev->name); 5176 5177 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 5178 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 5179 if (ret) 5180 goto free_adj; 5181 } 5182 5183 /* Ensure that master link is always the first item in list. */ 5184 if (master) { 5185 ret = sysfs_create_link(&(dev->dev.kobj), 5186 &(adj_dev->dev.kobj), "master"); 5187 if (ret) 5188 goto remove_symlinks; 5189 5190 list_add_rcu(&adj->list, dev_list); 5191 } else { 5192 list_add_tail_rcu(&adj->list, dev_list); 5193 } 5194 5195 return 0; 5196 5197 remove_symlinks: 5198 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5199 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5200 free_adj: 5201 kfree(adj); 5202 dev_put(adj_dev); 5203 5204 return ret; 5205 } 5206 5207 static void __netdev_adjacent_dev_remove(struct net_device *dev, 5208 struct net_device *adj_dev, 5209 struct list_head *dev_list) 5210 { 5211 struct netdev_adjacent *adj; 5212 5213 adj = __netdev_find_adj(dev, adj_dev, dev_list); 5214 5215 if (!adj) { 5216 pr_err("tried to remove device %s from %s\n", 5217 dev->name, adj_dev->name); 5218 BUG(); 5219 } 5220 5221 if (adj->ref_nr > 1) { 5222 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name, 5223 adj->ref_nr-1); 5224 adj->ref_nr--; 5225 return; 5226 } 5227 5228 if (adj->master) 5229 sysfs_remove_link(&(dev->dev.kobj), "master"); 5230 5231 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5232 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5233 5234 list_del_rcu(&adj->list); 5235 pr_debug("dev_put for %s, because link removed from %s to %s\n", 5236 adj_dev->name, dev->name, adj_dev->name); 5237 dev_put(adj_dev); 5238 kfree_rcu(adj, rcu); 5239 } 5240 5241 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 5242 struct net_device *upper_dev, 5243 struct list_head *up_list, 5244 struct list_head *down_list, 5245 void *private, bool master) 5246 { 5247 int ret; 5248 5249 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private, 5250 master); 5251 if (ret) 5252 return ret; 5253 5254 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private, 5255 false); 5256 if (ret) { 5257 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 5258 return ret; 5259 } 5260 5261 return 0; 5262 } 5263 5264 static int __netdev_adjacent_dev_link(struct net_device *dev, 5265 struct net_device *upper_dev) 5266 { 5267 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 5268 &dev->all_adj_list.upper, 5269 &upper_dev->all_adj_list.lower, 5270 NULL, false); 5271 } 5272 5273 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 5274 struct net_device *upper_dev, 5275 struct list_head *up_list, 5276 struct list_head *down_list) 5277 { 5278 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 5279 __netdev_adjacent_dev_remove(upper_dev, dev, down_list); 5280 } 5281 5282 static void __netdev_adjacent_dev_unlink(struct net_device *dev, 5283 struct net_device *upper_dev) 5284 { 5285 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 5286 &dev->all_adj_list.upper, 5287 &upper_dev->all_adj_list.lower); 5288 } 5289 5290 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 5291 struct net_device *upper_dev, 5292 void *private, bool master) 5293 { 5294 int ret = __netdev_adjacent_dev_link(dev, upper_dev); 5295 5296 if (ret) 5297 return ret; 5298 5299 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 5300 &dev->adj_list.upper, 5301 &upper_dev->adj_list.lower, 5302 private, master); 5303 if (ret) { 5304 __netdev_adjacent_dev_unlink(dev, upper_dev); 5305 return ret; 5306 } 5307 5308 return 0; 5309 } 5310 5311 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 5312 struct net_device *upper_dev) 5313 { 5314 __netdev_adjacent_dev_unlink(dev, upper_dev); 5315 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 5316 &dev->adj_list.upper, 5317 &upper_dev->adj_list.lower); 5318 } 5319 5320 static int __netdev_upper_dev_link(struct net_device *dev, 5321 struct net_device *upper_dev, bool master, 5322 void *private) 5323 { 5324 struct netdev_notifier_changeupper_info changeupper_info; 5325 struct netdev_adjacent *i, *j, *to_i, *to_j; 5326 int ret = 0; 5327 5328 ASSERT_RTNL(); 5329 5330 if (dev == upper_dev) 5331 return -EBUSY; 5332 5333 /* To prevent loops, check if dev is not upper device to upper_dev. */ 5334 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper)) 5335 return -EBUSY; 5336 5337 if (__netdev_find_adj(dev, upper_dev, &dev->adj_list.upper)) 5338 return -EEXIST; 5339 5340 if (master && netdev_master_upper_dev_get(dev)) 5341 return -EBUSY; 5342 5343 changeupper_info.upper_dev = upper_dev; 5344 changeupper_info.master = master; 5345 changeupper_info.linking = true; 5346 5347 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private, 5348 master); 5349 if (ret) 5350 return ret; 5351 5352 /* Now that we linked these devs, make all the upper_dev's 5353 * all_adj_list.upper visible to every dev's all_adj_list.lower an 5354 * versa, and don't forget the devices itself. All of these 5355 * links are non-neighbours. 5356 */ 5357 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5358 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5359 pr_debug("Interlinking %s with %s, non-neighbour\n", 5360 i->dev->name, j->dev->name); 5361 ret = __netdev_adjacent_dev_link(i->dev, j->dev); 5362 if (ret) 5363 goto rollback_mesh; 5364 } 5365 } 5366 5367 /* add dev to every upper_dev's upper device */ 5368 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 5369 pr_debug("linking %s's upper device %s with %s\n", 5370 upper_dev->name, i->dev->name, dev->name); 5371 ret = __netdev_adjacent_dev_link(dev, i->dev); 5372 if (ret) 5373 goto rollback_upper_mesh; 5374 } 5375 5376 /* add upper_dev to every dev's lower device */ 5377 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5378 pr_debug("linking %s's lower device %s with %s\n", dev->name, 5379 i->dev->name, upper_dev->name); 5380 ret = __netdev_adjacent_dev_link(i->dev, upper_dev); 5381 if (ret) 5382 goto rollback_lower_mesh; 5383 } 5384 5385 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 5386 &changeupper_info.info); 5387 return 0; 5388 5389 rollback_lower_mesh: 5390 to_i = i; 5391 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5392 if (i == to_i) 5393 break; 5394 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5395 } 5396 5397 i = NULL; 5398 5399 rollback_upper_mesh: 5400 to_i = i; 5401 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 5402 if (i == to_i) 5403 break; 5404 __netdev_adjacent_dev_unlink(dev, i->dev); 5405 } 5406 5407 i = j = NULL; 5408 5409 rollback_mesh: 5410 to_i = i; 5411 to_j = j; 5412 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5413 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5414 if (i == to_i && j == to_j) 5415 break; 5416 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5417 } 5418 if (i == to_i) 5419 break; 5420 } 5421 5422 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5423 5424 return ret; 5425 } 5426 5427 /** 5428 * netdev_upper_dev_link - Add a link to the upper device 5429 * @dev: device 5430 * @upper_dev: new upper device 5431 * 5432 * Adds a link to device which is upper to this one. The caller must hold 5433 * the RTNL lock. On a failure a negative errno code is returned. 5434 * On success the reference counts are adjusted and the function 5435 * returns zero. 5436 */ 5437 int netdev_upper_dev_link(struct net_device *dev, 5438 struct net_device *upper_dev) 5439 { 5440 return __netdev_upper_dev_link(dev, upper_dev, false, NULL); 5441 } 5442 EXPORT_SYMBOL(netdev_upper_dev_link); 5443 5444 /** 5445 * netdev_master_upper_dev_link - Add a master link to the upper device 5446 * @dev: device 5447 * @upper_dev: new upper device 5448 * 5449 * Adds a link to device which is upper to this one. In this case, only 5450 * one master upper device can be linked, although other non-master devices 5451 * might be linked as well. The caller must hold the RTNL lock. 5452 * On a failure a negative errno code is returned. On success the reference 5453 * counts are adjusted and the function returns zero. 5454 */ 5455 int netdev_master_upper_dev_link(struct net_device *dev, 5456 struct net_device *upper_dev) 5457 { 5458 return __netdev_upper_dev_link(dev, upper_dev, true, NULL); 5459 } 5460 EXPORT_SYMBOL(netdev_master_upper_dev_link); 5461 5462 int netdev_master_upper_dev_link_private(struct net_device *dev, 5463 struct net_device *upper_dev, 5464 void *private) 5465 { 5466 return __netdev_upper_dev_link(dev, upper_dev, true, private); 5467 } 5468 EXPORT_SYMBOL(netdev_master_upper_dev_link_private); 5469 5470 /** 5471 * netdev_upper_dev_unlink - Removes a link to upper device 5472 * @dev: device 5473 * @upper_dev: new upper device 5474 * 5475 * Removes a link to device which is upper to this one. The caller must hold 5476 * the RTNL lock. 5477 */ 5478 void netdev_upper_dev_unlink(struct net_device *dev, 5479 struct net_device *upper_dev) 5480 { 5481 struct netdev_notifier_changeupper_info changeupper_info; 5482 struct netdev_adjacent *i, *j; 5483 ASSERT_RTNL(); 5484 5485 changeupper_info.upper_dev = upper_dev; 5486 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 5487 changeupper_info.linking = false; 5488 5489 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5490 5491 /* Here is the tricky part. We must remove all dev's lower 5492 * devices from all upper_dev's upper devices and vice 5493 * versa, to maintain the graph relationship. 5494 */ 5495 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5496 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) 5497 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5498 5499 /* remove also the devices itself from lower/upper device 5500 * list 5501 */ 5502 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5503 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5504 5505 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) 5506 __netdev_adjacent_dev_unlink(dev, i->dev); 5507 5508 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 5509 &changeupper_info.info); 5510 } 5511 EXPORT_SYMBOL(netdev_upper_dev_unlink); 5512 5513 /** 5514 * netdev_bonding_info_change - Dispatch event about slave change 5515 * @dev: device 5516 * @bonding_info: info to dispatch 5517 * 5518 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 5519 * The caller must hold the RTNL lock. 5520 */ 5521 void netdev_bonding_info_change(struct net_device *dev, 5522 struct netdev_bonding_info *bonding_info) 5523 { 5524 struct netdev_notifier_bonding_info info; 5525 5526 memcpy(&info.bonding_info, bonding_info, 5527 sizeof(struct netdev_bonding_info)); 5528 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev, 5529 &info.info); 5530 } 5531 EXPORT_SYMBOL(netdev_bonding_info_change); 5532 5533 static void netdev_adjacent_add_links(struct net_device *dev) 5534 { 5535 struct netdev_adjacent *iter; 5536 5537 struct net *net = dev_net(dev); 5538 5539 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5540 if (!net_eq(net,dev_net(iter->dev))) 5541 continue; 5542 netdev_adjacent_sysfs_add(iter->dev, dev, 5543 &iter->dev->adj_list.lower); 5544 netdev_adjacent_sysfs_add(dev, iter->dev, 5545 &dev->adj_list.upper); 5546 } 5547 5548 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5549 if (!net_eq(net,dev_net(iter->dev))) 5550 continue; 5551 netdev_adjacent_sysfs_add(iter->dev, dev, 5552 &iter->dev->adj_list.upper); 5553 netdev_adjacent_sysfs_add(dev, iter->dev, 5554 &dev->adj_list.lower); 5555 } 5556 } 5557 5558 static void netdev_adjacent_del_links(struct net_device *dev) 5559 { 5560 struct netdev_adjacent *iter; 5561 5562 struct net *net = dev_net(dev); 5563 5564 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5565 if (!net_eq(net,dev_net(iter->dev))) 5566 continue; 5567 netdev_adjacent_sysfs_del(iter->dev, dev->name, 5568 &iter->dev->adj_list.lower); 5569 netdev_adjacent_sysfs_del(dev, iter->dev->name, 5570 &dev->adj_list.upper); 5571 } 5572 5573 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5574 if (!net_eq(net,dev_net(iter->dev))) 5575 continue; 5576 netdev_adjacent_sysfs_del(iter->dev, dev->name, 5577 &iter->dev->adj_list.upper); 5578 netdev_adjacent_sysfs_del(dev, iter->dev->name, 5579 &dev->adj_list.lower); 5580 } 5581 } 5582 5583 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 5584 { 5585 struct netdev_adjacent *iter; 5586 5587 struct net *net = dev_net(dev); 5588 5589 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5590 if (!net_eq(net,dev_net(iter->dev))) 5591 continue; 5592 netdev_adjacent_sysfs_del(iter->dev, oldname, 5593 &iter->dev->adj_list.lower); 5594 netdev_adjacent_sysfs_add(iter->dev, dev, 5595 &iter->dev->adj_list.lower); 5596 } 5597 5598 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5599 if (!net_eq(net,dev_net(iter->dev))) 5600 continue; 5601 netdev_adjacent_sysfs_del(iter->dev, oldname, 5602 &iter->dev->adj_list.upper); 5603 netdev_adjacent_sysfs_add(iter->dev, dev, 5604 &iter->dev->adj_list.upper); 5605 } 5606 } 5607 5608 void *netdev_lower_dev_get_private(struct net_device *dev, 5609 struct net_device *lower_dev) 5610 { 5611 struct netdev_adjacent *lower; 5612 5613 if (!lower_dev) 5614 return NULL; 5615 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower); 5616 if (!lower) 5617 return NULL; 5618 5619 return lower->private; 5620 } 5621 EXPORT_SYMBOL(netdev_lower_dev_get_private); 5622 5623 5624 int dev_get_nest_level(struct net_device *dev, 5625 bool (*type_check)(struct net_device *dev)) 5626 { 5627 struct net_device *lower = NULL; 5628 struct list_head *iter; 5629 int max_nest = -1; 5630 int nest; 5631 5632 ASSERT_RTNL(); 5633 5634 netdev_for_each_lower_dev(dev, lower, iter) { 5635 nest = dev_get_nest_level(lower, type_check); 5636 if (max_nest < nest) 5637 max_nest = nest; 5638 } 5639 5640 if (type_check(dev)) 5641 max_nest++; 5642 5643 return max_nest; 5644 } 5645 EXPORT_SYMBOL(dev_get_nest_level); 5646 5647 static void dev_change_rx_flags(struct net_device *dev, int flags) 5648 { 5649 const struct net_device_ops *ops = dev->netdev_ops; 5650 5651 if (ops->ndo_change_rx_flags) 5652 ops->ndo_change_rx_flags(dev, flags); 5653 } 5654 5655 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 5656 { 5657 unsigned int old_flags = dev->flags; 5658 kuid_t uid; 5659 kgid_t gid; 5660 5661 ASSERT_RTNL(); 5662 5663 dev->flags |= IFF_PROMISC; 5664 dev->promiscuity += inc; 5665 if (dev->promiscuity == 0) { 5666 /* 5667 * Avoid overflow. 5668 * If inc causes overflow, untouch promisc and return error. 5669 */ 5670 if (inc < 0) 5671 dev->flags &= ~IFF_PROMISC; 5672 else { 5673 dev->promiscuity -= inc; 5674 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 5675 dev->name); 5676 return -EOVERFLOW; 5677 } 5678 } 5679 if (dev->flags != old_flags) { 5680 pr_info("device %s %s promiscuous mode\n", 5681 dev->name, 5682 dev->flags & IFF_PROMISC ? "entered" : "left"); 5683 if (audit_enabled) { 5684 current_uid_gid(&uid, &gid); 5685 audit_log(current->audit_context, GFP_ATOMIC, 5686 AUDIT_ANOM_PROMISCUOUS, 5687 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 5688 dev->name, (dev->flags & IFF_PROMISC), 5689 (old_flags & IFF_PROMISC), 5690 from_kuid(&init_user_ns, audit_get_loginuid(current)), 5691 from_kuid(&init_user_ns, uid), 5692 from_kgid(&init_user_ns, gid), 5693 audit_get_sessionid(current)); 5694 } 5695 5696 dev_change_rx_flags(dev, IFF_PROMISC); 5697 } 5698 if (notify) 5699 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 5700 return 0; 5701 } 5702 5703 /** 5704 * dev_set_promiscuity - update promiscuity count on a device 5705 * @dev: device 5706 * @inc: modifier 5707 * 5708 * Add or remove promiscuity from a device. While the count in the device 5709 * remains above zero the interface remains promiscuous. Once it hits zero 5710 * the device reverts back to normal filtering operation. A negative inc 5711 * value is used to drop promiscuity on the device. 5712 * Return 0 if successful or a negative errno code on error. 5713 */ 5714 int dev_set_promiscuity(struct net_device *dev, int inc) 5715 { 5716 unsigned int old_flags = dev->flags; 5717 int err; 5718 5719 err = __dev_set_promiscuity(dev, inc, true); 5720 if (err < 0) 5721 return err; 5722 if (dev->flags != old_flags) 5723 dev_set_rx_mode(dev); 5724 return err; 5725 } 5726 EXPORT_SYMBOL(dev_set_promiscuity); 5727 5728 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 5729 { 5730 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 5731 5732 ASSERT_RTNL(); 5733 5734 dev->flags |= IFF_ALLMULTI; 5735 dev->allmulti += inc; 5736 if (dev->allmulti == 0) { 5737 /* 5738 * Avoid overflow. 5739 * If inc causes overflow, untouch allmulti and return error. 5740 */ 5741 if (inc < 0) 5742 dev->flags &= ~IFF_ALLMULTI; 5743 else { 5744 dev->allmulti -= inc; 5745 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 5746 dev->name); 5747 return -EOVERFLOW; 5748 } 5749 } 5750 if (dev->flags ^ old_flags) { 5751 dev_change_rx_flags(dev, IFF_ALLMULTI); 5752 dev_set_rx_mode(dev); 5753 if (notify) 5754 __dev_notify_flags(dev, old_flags, 5755 dev->gflags ^ old_gflags); 5756 } 5757 return 0; 5758 } 5759 5760 /** 5761 * dev_set_allmulti - update allmulti count on a device 5762 * @dev: device 5763 * @inc: modifier 5764 * 5765 * Add or remove reception of all multicast frames to a device. While the 5766 * count in the device remains above zero the interface remains listening 5767 * to all interfaces. Once it hits zero the device reverts back to normal 5768 * filtering operation. A negative @inc value is used to drop the counter 5769 * when releasing a resource needing all multicasts. 5770 * Return 0 if successful or a negative errno code on error. 5771 */ 5772 5773 int dev_set_allmulti(struct net_device *dev, int inc) 5774 { 5775 return __dev_set_allmulti(dev, inc, true); 5776 } 5777 EXPORT_SYMBOL(dev_set_allmulti); 5778 5779 /* 5780 * Upload unicast and multicast address lists to device and 5781 * configure RX filtering. When the device doesn't support unicast 5782 * filtering it is put in promiscuous mode while unicast addresses 5783 * are present. 5784 */ 5785 void __dev_set_rx_mode(struct net_device *dev) 5786 { 5787 const struct net_device_ops *ops = dev->netdev_ops; 5788 5789 /* dev_open will call this function so the list will stay sane. */ 5790 if (!(dev->flags&IFF_UP)) 5791 return; 5792 5793 if (!netif_device_present(dev)) 5794 return; 5795 5796 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 5797 /* Unicast addresses changes may only happen under the rtnl, 5798 * therefore calling __dev_set_promiscuity here is safe. 5799 */ 5800 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 5801 __dev_set_promiscuity(dev, 1, false); 5802 dev->uc_promisc = true; 5803 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 5804 __dev_set_promiscuity(dev, -1, false); 5805 dev->uc_promisc = false; 5806 } 5807 } 5808 5809 if (ops->ndo_set_rx_mode) 5810 ops->ndo_set_rx_mode(dev); 5811 } 5812 5813 void dev_set_rx_mode(struct net_device *dev) 5814 { 5815 netif_addr_lock_bh(dev); 5816 __dev_set_rx_mode(dev); 5817 netif_addr_unlock_bh(dev); 5818 } 5819 5820 /** 5821 * dev_get_flags - get flags reported to userspace 5822 * @dev: device 5823 * 5824 * Get the combination of flag bits exported through APIs to userspace. 5825 */ 5826 unsigned int dev_get_flags(const struct net_device *dev) 5827 { 5828 unsigned int flags; 5829 5830 flags = (dev->flags & ~(IFF_PROMISC | 5831 IFF_ALLMULTI | 5832 IFF_RUNNING | 5833 IFF_LOWER_UP | 5834 IFF_DORMANT)) | 5835 (dev->gflags & (IFF_PROMISC | 5836 IFF_ALLMULTI)); 5837 5838 if (netif_running(dev)) { 5839 if (netif_oper_up(dev)) 5840 flags |= IFF_RUNNING; 5841 if (netif_carrier_ok(dev)) 5842 flags |= IFF_LOWER_UP; 5843 if (netif_dormant(dev)) 5844 flags |= IFF_DORMANT; 5845 } 5846 5847 return flags; 5848 } 5849 EXPORT_SYMBOL(dev_get_flags); 5850 5851 int __dev_change_flags(struct net_device *dev, unsigned int flags) 5852 { 5853 unsigned int old_flags = dev->flags; 5854 int ret; 5855 5856 ASSERT_RTNL(); 5857 5858 /* 5859 * Set the flags on our device. 5860 */ 5861 5862 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 5863 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 5864 IFF_AUTOMEDIA)) | 5865 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 5866 IFF_ALLMULTI)); 5867 5868 /* 5869 * Load in the correct multicast list now the flags have changed. 5870 */ 5871 5872 if ((old_flags ^ flags) & IFF_MULTICAST) 5873 dev_change_rx_flags(dev, IFF_MULTICAST); 5874 5875 dev_set_rx_mode(dev); 5876 5877 /* 5878 * Have we downed the interface. We handle IFF_UP ourselves 5879 * according to user attempts to set it, rather than blindly 5880 * setting it. 5881 */ 5882 5883 ret = 0; 5884 if ((old_flags ^ flags) & IFF_UP) 5885 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 5886 5887 if ((flags ^ dev->gflags) & IFF_PROMISC) { 5888 int inc = (flags & IFF_PROMISC) ? 1 : -1; 5889 unsigned int old_flags = dev->flags; 5890 5891 dev->gflags ^= IFF_PROMISC; 5892 5893 if (__dev_set_promiscuity(dev, inc, false) >= 0) 5894 if (dev->flags != old_flags) 5895 dev_set_rx_mode(dev); 5896 } 5897 5898 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 5899 is important. Some (broken) drivers set IFF_PROMISC, when 5900 IFF_ALLMULTI is requested not asking us and not reporting. 5901 */ 5902 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 5903 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 5904 5905 dev->gflags ^= IFF_ALLMULTI; 5906 __dev_set_allmulti(dev, inc, false); 5907 } 5908 5909 return ret; 5910 } 5911 5912 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 5913 unsigned int gchanges) 5914 { 5915 unsigned int changes = dev->flags ^ old_flags; 5916 5917 if (gchanges) 5918 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 5919 5920 if (changes & IFF_UP) { 5921 if (dev->flags & IFF_UP) 5922 call_netdevice_notifiers(NETDEV_UP, dev); 5923 else 5924 call_netdevice_notifiers(NETDEV_DOWN, dev); 5925 } 5926 5927 if (dev->flags & IFF_UP && 5928 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 5929 struct netdev_notifier_change_info change_info; 5930 5931 change_info.flags_changed = changes; 5932 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 5933 &change_info.info); 5934 } 5935 } 5936 5937 /** 5938 * dev_change_flags - change device settings 5939 * @dev: device 5940 * @flags: device state flags 5941 * 5942 * Change settings on device based state flags. The flags are 5943 * in the userspace exported format. 5944 */ 5945 int dev_change_flags(struct net_device *dev, unsigned int flags) 5946 { 5947 int ret; 5948 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 5949 5950 ret = __dev_change_flags(dev, flags); 5951 if (ret < 0) 5952 return ret; 5953 5954 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 5955 __dev_notify_flags(dev, old_flags, changes); 5956 return ret; 5957 } 5958 EXPORT_SYMBOL(dev_change_flags); 5959 5960 static int __dev_set_mtu(struct net_device *dev, int new_mtu) 5961 { 5962 const struct net_device_ops *ops = dev->netdev_ops; 5963 5964 if (ops->ndo_change_mtu) 5965 return ops->ndo_change_mtu(dev, new_mtu); 5966 5967 dev->mtu = new_mtu; 5968 return 0; 5969 } 5970 5971 /** 5972 * dev_set_mtu - Change maximum transfer unit 5973 * @dev: device 5974 * @new_mtu: new transfer unit 5975 * 5976 * Change the maximum transfer size of the network device. 5977 */ 5978 int dev_set_mtu(struct net_device *dev, int new_mtu) 5979 { 5980 int err, orig_mtu; 5981 5982 if (new_mtu == dev->mtu) 5983 return 0; 5984 5985 /* MTU must be positive. */ 5986 if (new_mtu < 0) 5987 return -EINVAL; 5988 5989 if (!netif_device_present(dev)) 5990 return -ENODEV; 5991 5992 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 5993 err = notifier_to_errno(err); 5994 if (err) 5995 return err; 5996 5997 orig_mtu = dev->mtu; 5998 err = __dev_set_mtu(dev, new_mtu); 5999 6000 if (!err) { 6001 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6002 err = notifier_to_errno(err); 6003 if (err) { 6004 /* setting mtu back and notifying everyone again, 6005 * so that they have a chance to revert changes. 6006 */ 6007 __dev_set_mtu(dev, orig_mtu); 6008 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6009 } 6010 } 6011 return err; 6012 } 6013 EXPORT_SYMBOL(dev_set_mtu); 6014 6015 /** 6016 * dev_set_group - Change group this device belongs to 6017 * @dev: device 6018 * @new_group: group this device should belong to 6019 */ 6020 void dev_set_group(struct net_device *dev, int new_group) 6021 { 6022 dev->group = new_group; 6023 } 6024 EXPORT_SYMBOL(dev_set_group); 6025 6026 /** 6027 * dev_set_mac_address - Change Media Access Control Address 6028 * @dev: device 6029 * @sa: new address 6030 * 6031 * Change the hardware (MAC) address of the device 6032 */ 6033 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 6034 { 6035 const struct net_device_ops *ops = dev->netdev_ops; 6036 int err; 6037 6038 if (!ops->ndo_set_mac_address) 6039 return -EOPNOTSUPP; 6040 if (sa->sa_family != dev->type) 6041 return -EINVAL; 6042 if (!netif_device_present(dev)) 6043 return -ENODEV; 6044 err = ops->ndo_set_mac_address(dev, sa); 6045 if (err) 6046 return err; 6047 dev->addr_assign_type = NET_ADDR_SET; 6048 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 6049 add_device_randomness(dev->dev_addr, dev->addr_len); 6050 return 0; 6051 } 6052 EXPORT_SYMBOL(dev_set_mac_address); 6053 6054 /** 6055 * dev_change_carrier - Change device carrier 6056 * @dev: device 6057 * @new_carrier: new value 6058 * 6059 * Change device carrier 6060 */ 6061 int dev_change_carrier(struct net_device *dev, bool new_carrier) 6062 { 6063 const struct net_device_ops *ops = dev->netdev_ops; 6064 6065 if (!ops->ndo_change_carrier) 6066 return -EOPNOTSUPP; 6067 if (!netif_device_present(dev)) 6068 return -ENODEV; 6069 return ops->ndo_change_carrier(dev, new_carrier); 6070 } 6071 EXPORT_SYMBOL(dev_change_carrier); 6072 6073 /** 6074 * dev_get_phys_port_id - Get device physical port ID 6075 * @dev: device 6076 * @ppid: port ID 6077 * 6078 * Get device physical port ID 6079 */ 6080 int dev_get_phys_port_id(struct net_device *dev, 6081 struct netdev_phys_item_id *ppid) 6082 { 6083 const struct net_device_ops *ops = dev->netdev_ops; 6084 6085 if (!ops->ndo_get_phys_port_id) 6086 return -EOPNOTSUPP; 6087 return ops->ndo_get_phys_port_id(dev, ppid); 6088 } 6089 EXPORT_SYMBOL(dev_get_phys_port_id); 6090 6091 /** 6092 * dev_get_phys_port_name - Get device physical port name 6093 * @dev: device 6094 * @name: port name 6095 * 6096 * Get device physical port name 6097 */ 6098 int dev_get_phys_port_name(struct net_device *dev, 6099 char *name, size_t len) 6100 { 6101 const struct net_device_ops *ops = dev->netdev_ops; 6102 6103 if (!ops->ndo_get_phys_port_name) 6104 return -EOPNOTSUPP; 6105 return ops->ndo_get_phys_port_name(dev, name, len); 6106 } 6107 EXPORT_SYMBOL(dev_get_phys_port_name); 6108 6109 /** 6110 * dev_change_proto_down - update protocol port state information 6111 * @dev: device 6112 * @proto_down: new value 6113 * 6114 * This info can be used by switch drivers to set the phys state of the 6115 * port. 6116 */ 6117 int dev_change_proto_down(struct net_device *dev, bool proto_down) 6118 { 6119 const struct net_device_ops *ops = dev->netdev_ops; 6120 6121 if (!ops->ndo_change_proto_down) 6122 return -EOPNOTSUPP; 6123 if (!netif_device_present(dev)) 6124 return -ENODEV; 6125 return ops->ndo_change_proto_down(dev, proto_down); 6126 } 6127 EXPORT_SYMBOL(dev_change_proto_down); 6128 6129 /** 6130 * dev_new_index - allocate an ifindex 6131 * @net: the applicable net namespace 6132 * 6133 * Returns a suitable unique value for a new device interface 6134 * number. The caller must hold the rtnl semaphore or the 6135 * dev_base_lock to be sure it remains unique. 6136 */ 6137 static int dev_new_index(struct net *net) 6138 { 6139 int ifindex = net->ifindex; 6140 for (;;) { 6141 if (++ifindex <= 0) 6142 ifindex = 1; 6143 if (!__dev_get_by_index(net, ifindex)) 6144 return net->ifindex = ifindex; 6145 } 6146 } 6147 6148 /* Delayed registration/unregisteration */ 6149 static LIST_HEAD(net_todo_list); 6150 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 6151 6152 static void net_set_todo(struct net_device *dev) 6153 { 6154 list_add_tail(&dev->todo_list, &net_todo_list); 6155 dev_net(dev)->dev_unreg_count++; 6156 } 6157 6158 static void rollback_registered_many(struct list_head *head) 6159 { 6160 struct net_device *dev, *tmp; 6161 LIST_HEAD(close_head); 6162 6163 BUG_ON(dev_boot_phase); 6164 ASSERT_RTNL(); 6165 6166 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 6167 /* Some devices call without registering 6168 * for initialization unwind. Remove those 6169 * devices and proceed with the remaining. 6170 */ 6171 if (dev->reg_state == NETREG_UNINITIALIZED) { 6172 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 6173 dev->name, dev); 6174 6175 WARN_ON(1); 6176 list_del(&dev->unreg_list); 6177 continue; 6178 } 6179 dev->dismantle = true; 6180 BUG_ON(dev->reg_state != NETREG_REGISTERED); 6181 } 6182 6183 /* If device is running, close it first. */ 6184 list_for_each_entry(dev, head, unreg_list) 6185 list_add_tail(&dev->close_list, &close_head); 6186 dev_close_many(&close_head, true); 6187 6188 list_for_each_entry(dev, head, unreg_list) { 6189 /* And unlink it from device chain. */ 6190 unlist_netdevice(dev); 6191 6192 dev->reg_state = NETREG_UNREGISTERING; 6193 on_each_cpu(flush_backlog, dev, 1); 6194 } 6195 6196 synchronize_net(); 6197 6198 list_for_each_entry(dev, head, unreg_list) { 6199 struct sk_buff *skb = NULL; 6200 6201 /* Shutdown queueing discipline. */ 6202 dev_shutdown(dev); 6203 6204 6205 /* Notify protocols, that we are about to destroy 6206 this device. They should clean all the things. 6207 */ 6208 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6209 6210 if (!dev->rtnl_link_ops || 6211 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 6212 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 6213 GFP_KERNEL); 6214 6215 /* 6216 * Flush the unicast and multicast chains 6217 */ 6218 dev_uc_flush(dev); 6219 dev_mc_flush(dev); 6220 6221 if (dev->netdev_ops->ndo_uninit) 6222 dev->netdev_ops->ndo_uninit(dev); 6223 6224 if (skb) 6225 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 6226 6227 /* Notifier chain MUST detach us all upper devices. */ 6228 WARN_ON(netdev_has_any_upper_dev(dev)); 6229 6230 /* Remove entries from kobject tree */ 6231 netdev_unregister_kobject(dev); 6232 #ifdef CONFIG_XPS 6233 /* Remove XPS queueing entries */ 6234 netif_reset_xps_queues_gt(dev, 0); 6235 #endif 6236 } 6237 6238 synchronize_net(); 6239 6240 list_for_each_entry(dev, head, unreg_list) 6241 dev_put(dev); 6242 } 6243 6244 static void rollback_registered(struct net_device *dev) 6245 { 6246 LIST_HEAD(single); 6247 6248 list_add(&dev->unreg_list, &single); 6249 rollback_registered_many(&single); 6250 list_del(&single); 6251 } 6252 6253 static netdev_features_t netdev_fix_features(struct net_device *dev, 6254 netdev_features_t features) 6255 { 6256 /* Fix illegal checksum combinations */ 6257 if ((features & NETIF_F_HW_CSUM) && 6258 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 6259 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 6260 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 6261 } 6262 6263 /* TSO requires that SG is present as well. */ 6264 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 6265 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 6266 features &= ~NETIF_F_ALL_TSO; 6267 } 6268 6269 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 6270 !(features & NETIF_F_IP_CSUM)) { 6271 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 6272 features &= ~NETIF_F_TSO; 6273 features &= ~NETIF_F_TSO_ECN; 6274 } 6275 6276 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 6277 !(features & NETIF_F_IPV6_CSUM)) { 6278 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 6279 features &= ~NETIF_F_TSO6; 6280 } 6281 6282 /* TSO ECN requires that TSO is present as well. */ 6283 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 6284 features &= ~NETIF_F_TSO_ECN; 6285 6286 /* Software GSO depends on SG. */ 6287 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 6288 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 6289 features &= ~NETIF_F_GSO; 6290 } 6291 6292 /* UFO needs SG and checksumming */ 6293 if (features & NETIF_F_UFO) { 6294 /* maybe split UFO into V4 and V6? */ 6295 if (!((features & NETIF_F_GEN_CSUM) || 6296 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 6297 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 6298 netdev_dbg(dev, 6299 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 6300 features &= ~NETIF_F_UFO; 6301 } 6302 6303 if (!(features & NETIF_F_SG)) { 6304 netdev_dbg(dev, 6305 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 6306 features &= ~NETIF_F_UFO; 6307 } 6308 } 6309 6310 #ifdef CONFIG_NET_RX_BUSY_POLL 6311 if (dev->netdev_ops->ndo_busy_poll) 6312 features |= NETIF_F_BUSY_POLL; 6313 else 6314 #endif 6315 features &= ~NETIF_F_BUSY_POLL; 6316 6317 return features; 6318 } 6319 6320 int __netdev_update_features(struct net_device *dev) 6321 { 6322 netdev_features_t features; 6323 int err = 0; 6324 6325 ASSERT_RTNL(); 6326 6327 features = netdev_get_wanted_features(dev); 6328 6329 if (dev->netdev_ops->ndo_fix_features) 6330 features = dev->netdev_ops->ndo_fix_features(dev, features); 6331 6332 /* driver might be less strict about feature dependencies */ 6333 features = netdev_fix_features(dev, features); 6334 6335 if (dev->features == features) 6336 return 0; 6337 6338 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 6339 &dev->features, &features); 6340 6341 if (dev->netdev_ops->ndo_set_features) 6342 err = dev->netdev_ops->ndo_set_features(dev, features); 6343 6344 if (unlikely(err < 0)) { 6345 netdev_err(dev, 6346 "set_features() failed (%d); wanted %pNF, left %pNF\n", 6347 err, &features, &dev->features); 6348 return -1; 6349 } 6350 6351 if (!err) 6352 dev->features = features; 6353 6354 return 1; 6355 } 6356 6357 /** 6358 * netdev_update_features - recalculate device features 6359 * @dev: the device to check 6360 * 6361 * Recalculate dev->features set and send notifications if it 6362 * has changed. Should be called after driver or hardware dependent 6363 * conditions might have changed that influence the features. 6364 */ 6365 void netdev_update_features(struct net_device *dev) 6366 { 6367 if (__netdev_update_features(dev)) 6368 netdev_features_change(dev); 6369 } 6370 EXPORT_SYMBOL(netdev_update_features); 6371 6372 /** 6373 * netdev_change_features - recalculate device features 6374 * @dev: the device to check 6375 * 6376 * Recalculate dev->features set and send notifications even 6377 * if they have not changed. Should be called instead of 6378 * netdev_update_features() if also dev->vlan_features might 6379 * have changed to allow the changes to be propagated to stacked 6380 * VLAN devices. 6381 */ 6382 void netdev_change_features(struct net_device *dev) 6383 { 6384 __netdev_update_features(dev); 6385 netdev_features_change(dev); 6386 } 6387 EXPORT_SYMBOL(netdev_change_features); 6388 6389 /** 6390 * netif_stacked_transfer_operstate - transfer operstate 6391 * @rootdev: the root or lower level device to transfer state from 6392 * @dev: the device to transfer operstate to 6393 * 6394 * Transfer operational state from root to device. This is normally 6395 * called when a stacking relationship exists between the root 6396 * device and the device(a leaf device). 6397 */ 6398 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 6399 struct net_device *dev) 6400 { 6401 if (rootdev->operstate == IF_OPER_DORMANT) 6402 netif_dormant_on(dev); 6403 else 6404 netif_dormant_off(dev); 6405 6406 if (netif_carrier_ok(rootdev)) { 6407 if (!netif_carrier_ok(dev)) 6408 netif_carrier_on(dev); 6409 } else { 6410 if (netif_carrier_ok(dev)) 6411 netif_carrier_off(dev); 6412 } 6413 } 6414 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 6415 6416 #ifdef CONFIG_SYSFS 6417 static int netif_alloc_rx_queues(struct net_device *dev) 6418 { 6419 unsigned int i, count = dev->num_rx_queues; 6420 struct netdev_rx_queue *rx; 6421 size_t sz = count * sizeof(*rx); 6422 6423 BUG_ON(count < 1); 6424 6425 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6426 if (!rx) { 6427 rx = vzalloc(sz); 6428 if (!rx) 6429 return -ENOMEM; 6430 } 6431 dev->_rx = rx; 6432 6433 for (i = 0; i < count; i++) 6434 rx[i].dev = dev; 6435 return 0; 6436 } 6437 #endif 6438 6439 static void netdev_init_one_queue(struct net_device *dev, 6440 struct netdev_queue *queue, void *_unused) 6441 { 6442 /* Initialize queue lock */ 6443 spin_lock_init(&queue->_xmit_lock); 6444 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 6445 queue->xmit_lock_owner = -1; 6446 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 6447 queue->dev = dev; 6448 #ifdef CONFIG_BQL 6449 dql_init(&queue->dql, HZ); 6450 #endif 6451 } 6452 6453 static void netif_free_tx_queues(struct net_device *dev) 6454 { 6455 kvfree(dev->_tx); 6456 } 6457 6458 static int netif_alloc_netdev_queues(struct net_device *dev) 6459 { 6460 unsigned int count = dev->num_tx_queues; 6461 struct netdev_queue *tx; 6462 size_t sz = count * sizeof(*tx); 6463 6464 if (count < 1 || count > 0xffff) 6465 return -EINVAL; 6466 6467 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6468 if (!tx) { 6469 tx = vzalloc(sz); 6470 if (!tx) 6471 return -ENOMEM; 6472 } 6473 dev->_tx = tx; 6474 6475 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 6476 spin_lock_init(&dev->tx_global_lock); 6477 6478 return 0; 6479 } 6480 6481 void netif_tx_stop_all_queues(struct net_device *dev) 6482 { 6483 unsigned int i; 6484 6485 for (i = 0; i < dev->num_tx_queues; i++) { 6486 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 6487 netif_tx_stop_queue(txq); 6488 } 6489 } 6490 EXPORT_SYMBOL(netif_tx_stop_all_queues); 6491 6492 /** 6493 * register_netdevice - register a network device 6494 * @dev: device to register 6495 * 6496 * Take a completed network device structure and add it to the kernel 6497 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 6498 * chain. 0 is returned on success. A negative errno code is returned 6499 * on a failure to set up the device, or if the name is a duplicate. 6500 * 6501 * Callers must hold the rtnl semaphore. You may want 6502 * register_netdev() instead of this. 6503 * 6504 * BUGS: 6505 * The locking appears insufficient to guarantee two parallel registers 6506 * will not get the same name. 6507 */ 6508 6509 int register_netdevice(struct net_device *dev) 6510 { 6511 int ret; 6512 struct net *net = dev_net(dev); 6513 6514 BUG_ON(dev_boot_phase); 6515 ASSERT_RTNL(); 6516 6517 might_sleep(); 6518 6519 /* When net_device's are persistent, this will be fatal. */ 6520 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 6521 BUG_ON(!net); 6522 6523 spin_lock_init(&dev->addr_list_lock); 6524 netdev_set_addr_lockdep_class(dev); 6525 6526 ret = dev_get_valid_name(net, dev, dev->name); 6527 if (ret < 0) 6528 goto out; 6529 6530 /* Init, if this function is available */ 6531 if (dev->netdev_ops->ndo_init) { 6532 ret = dev->netdev_ops->ndo_init(dev); 6533 if (ret) { 6534 if (ret > 0) 6535 ret = -EIO; 6536 goto out; 6537 } 6538 } 6539 6540 if (((dev->hw_features | dev->features) & 6541 NETIF_F_HW_VLAN_CTAG_FILTER) && 6542 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 6543 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 6544 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 6545 ret = -EINVAL; 6546 goto err_uninit; 6547 } 6548 6549 ret = -EBUSY; 6550 if (!dev->ifindex) 6551 dev->ifindex = dev_new_index(net); 6552 else if (__dev_get_by_index(net, dev->ifindex)) 6553 goto err_uninit; 6554 6555 /* Transfer changeable features to wanted_features and enable 6556 * software offloads (GSO and GRO). 6557 */ 6558 dev->hw_features |= NETIF_F_SOFT_FEATURES; 6559 dev->features |= NETIF_F_SOFT_FEATURES; 6560 dev->wanted_features = dev->features & dev->hw_features; 6561 6562 if (!(dev->flags & IFF_LOOPBACK)) { 6563 dev->hw_features |= NETIF_F_NOCACHE_COPY; 6564 } 6565 6566 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 6567 */ 6568 dev->vlan_features |= NETIF_F_HIGHDMA; 6569 6570 /* Make NETIF_F_SG inheritable to tunnel devices. 6571 */ 6572 dev->hw_enc_features |= NETIF_F_SG; 6573 6574 /* Make NETIF_F_SG inheritable to MPLS. 6575 */ 6576 dev->mpls_features |= NETIF_F_SG; 6577 6578 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 6579 ret = notifier_to_errno(ret); 6580 if (ret) 6581 goto err_uninit; 6582 6583 ret = netdev_register_kobject(dev); 6584 if (ret) 6585 goto err_uninit; 6586 dev->reg_state = NETREG_REGISTERED; 6587 6588 __netdev_update_features(dev); 6589 6590 /* 6591 * Default initial state at registry is that the 6592 * device is present. 6593 */ 6594 6595 set_bit(__LINK_STATE_PRESENT, &dev->state); 6596 6597 linkwatch_init_dev(dev); 6598 6599 dev_init_scheduler(dev); 6600 dev_hold(dev); 6601 list_netdevice(dev); 6602 add_device_randomness(dev->dev_addr, dev->addr_len); 6603 6604 /* If the device has permanent device address, driver should 6605 * set dev_addr and also addr_assign_type should be set to 6606 * NET_ADDR_PERM (default value). 6607 */ 6608 if (dev->addr_assign_type == NET_ADDR_PERM) 6609 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 6610 6611 /* Notify protocols, that a new device appeared. */ 6612 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 6613 ret = notifier_to_errno(ret); 6614 if (ret) { 6615 rollback_registered(dev); 6616 dev->reg_state = NETREG_UNREGISTERED; 6617 } 6618 /* 6619 * Prevent userspace races by waiting until the network 6620 * device is fully setup before sending notifications. 6621 */ 6622 if (!dev->rtnl_link_ops || 6623 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 6624 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 6625 6626 out: 6627 return ret; 6628 6629 err_uninit: 6630 if (dev->netdev_ops->ndo_uninit) 6631 dev->netdev_ops->ndo_uninit(dev); 6632 goto out; 6633 } 6634 EXPORT_SYMBOL(register_netdevice); 6635 6636 /** 6637 * init_dummy_netdev - init a dummy network device for NAPI 6638 * @dev: device to init 6639 * 6640 * This takes a network device structure and initialize the minimum 6641 * amount of fields so it can be used to schedule NAPI polls without 6642 * registering a full blown interface. This is to be used by drivers 6643 * that need to tie several hardware interfaces to a single NAPI 6644 * poll scheduler due to HW limitations. 6645 */ 6646 int init_dummy_netdev(struct net_device *dev) 6647 { 6648 /* Clear everything. Note we don't initialize spinlocks 6649 * are they aren't supposed to be taken by any of the 6650 * NAPI code and this dummy netdev is supposed to be 6651 * only ever used for NAPI polls 6652 */ 6653 memset(dev, 0, sizeof(struct net_device)); 6654 6655 /* make sure we BUG if trying to hit standard 6656 * register/unregister code path 6657 */ 6658 dev->reg_state = NETREG_DUMMY; 6659 6660 /* NAPI wants this */ 6661 INIT_LIST_HEAD(&dev->napi_list); 6662 6663 /* a dummy interface is started by default */ 6664 set_bit(__LINK_STATE_PRESENT, &dev->state); 6665 set_bit(__LINK_STATE_START, &dev->state); 6666 6667 /* Note : We dont allocate pcpu_refcnt for dummy devices, 6668 * because users of this 'device' dont need to change 6669 * its refcount. 6670 */ 6671 6672 return 0; 6673 } 6674 EXPORT_SYMBOL_GPL(init_dummy_netdev); 6675 6676 6677 /** 6678 * register_netdev - register a network device 6679 * @dev: device to register 6680 * 6681 * Take a completed network device structure and add it to the kernel 6682 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 6683 * chain. 0 is returned on success. A negative errno code is returned 6684 * on a failure to set up the device, or if the name is a duplicate. 6685 * 6686 * This is a wrapper around register_netdevice that takes the rtnl semaphore 6687 * and expands the device name if you passed a format string to 6688 * alloc_netdev. 6689 */ 6690 int register_netdev(struct net_device *dev) 6691 { 6692 int err; 6693 6694 rtnl_lock(); 6695 err = register_netdevice(dev); 6696 rtnl_unlock(); 6697 return err; 6698 } 6699 EXPORT_SYMBOL(register_netdev); 6700 6701 int netdev_refcnt_read(const struct net_device *dev) 6702 { 6703 int i, refcnt = 0; 6704 6705 for_each_possible_cpu(i) 6706 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 6707 return refcnt; 6708 } 6709 EXPORT_SYMBOL(netdev_refcnt_read); 6710 6711 /** 6712 * netdev_wait_allrefs - wait until all references are gone. 6713 * @dev: target net_device 6714 * 6715 * This is called when unregistering network devices. 6716 * 6717 * Any protocol or device that holds a reference should register 6718 * for netdevice notification, and cleanup and put back the 6719 * reference if they receive an UNREGISTER event. 6720 * We can get stuck here if buggy protocols don't correctly 6721 * call dev_put. 6722 */ 6723 static void netdev_wait_allrefs(struct net_device *dev) 6724 { 6725 unsigned long rebroadcast_time, warning_time; 6726 int refcnt; 6727 6728 linkwatch_forget_dev(dev); 6729 6730 rebroadcast_time = warning_time = jiffies; 6731 refcnt = netdev_refcnt_read(dev); 6732 6733 while (refcnt != 0) { 6734 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 6735 rtnl_lock(); 6736 6737 /* Rebroadcast unregister notification */ 6738 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6739 6740 __rtnl_unlock(); 6741 rcu_barrier(); 6742 rtnl_lock(); 6743 6744 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6745 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 6746 &dev->state)) { 6747 /* We must not have linkwatch events 6748 * pending on unregister. If this 6749 * happens, we simply run the queue 6750 * unscheduled, resulting in a noop 6751 * for this device. 6752 */ 6753 linkwatch_run_queue(); 6754 } 6755 6756 __rtnl_unlock(); 6757 6758 rebroadcast_time = jiffies; 6759 } 6760 6761 msleep(250); 6762 6763 refcnt = netdev_refcnt_read(dev); 6764 6765 if (time_after(jiffies, warning_time + 10 * HZ)) { 6766 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 6767 dev->name, refcnt); 6768 warning_time = jiffies; 6769 } 6770 } 6771 } 6772 6773 /* The sequence is: 6774 * 6775 * rtnl_lock(); 6776 * ... 6777 * register_netdevice(x1); 6778 * register_netdevice(x2); 6779 * ... 6780 * unregister_netdevice(y1); 6781 * unregister_netdevice(y2); 6782 * ... 6783 * rtnl_unlock(); 6784 * free_netdev(y1); 6785 * free_netdev(y2); 6786 * 6787 * We are invoked by rtnl_unlock(). 6788 * This allows us to deal with problems: 6789 * 1) We can delete sysfs objects which invoke hotplug 6790 * without deadlocking with linkwatch via keventd. 6791 * 2) Since we run with the RTNL semaphore not held, we can sleep 6792 * safely in order to wait for the netdev refcnt to drop to zero. 6793 * 6794 * We must not return until all unregister events added during 6795 * the interval the lock was held have been completed. 6796 */ 6797 void netdev_run_todo(void) 6798 { 6799 struct list_head list; 6800 6801 /* Snapshot list, allow later requests */ 6802 list_replace_init(&net_todo_list, &list); 6803 6804 __rtnl_unlock(); 6805 6806 6807 /* Wait for rcu callbacks to finish before next phase */ 6808 if (!list_empty(&list)) 6809 rcu_barrier(); 6810 6811 while (!list_empty(&list)) { 6812 struct net_device *dev 6813 = list_first_entry(&list, struct net_device, todo_list); 6814 list_del(&dev->todo_list); 6815 6816 rtnl_lock(); 6817 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6818 __rtnl_unlock(); 6819 6820 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 6821 pr_err("network todo '%s' but state %d\n", 6822 dev->name, dev->reg_state); 6823 dump_stack(); 6824 continue; 6825 } 6826 6827 dev->reg_state = NETREG_UNREGISTERED; 6828 6829 netdev_wait_allrefs(dev); 6830 6831 /* paranoia */ 6832 BUG_ON(netdev_refcnt_read(dev)); 6833 BUG_ON(!list_empty(&dev->ptype_all)); 6834 BUG_ON(!list_empty(&dev->ptype_specific)); 6835 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 6836 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 6837 WARN_ON(dev->dn_ptr); 6838 6839 if (dev->destructor) 6840 dev->destructor(dev); 6841 6842 /* Report a network device has been unregistered */ 6843 rtnl_lock(); 6844 dev_net(dev)->dev_unreg_count--; 6845 __rtnl_unlock(); 6846 wake_up(&netdev_unregistering_wq); 6847 6848 /* Free network device */ 6849 kobject_put(&dev->dev.kobj); 6850 } 6851 } 6852 6853 /* Convert net_device_stats to rtnl_link_stats64. They have the same 6854 * fields in the same order, with only the type differing. 6855 */ 6856 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 6857 const struct net_device_stats *netdev_stats) 6858 { 6859 #if BITS_PER_LONG == 64 6860 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 6861 memcpy(stats64, netdev_stats, sizeof(*stats64)); 6862 #else 6863 size_t i, n = sizeof(*stats64) / sizeof(u64); 6864 const unsigned long *src = (const unsigned long *)netdev_stats; 6865 u64 *dst = (u64 *)stats64; 6866 6867 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 6868 sizeof(*stats64) / sizeof(u64)); 6869 for (i = 0; i < n; i++) 6870 dst[i] = src[i]; 6871 #endif 6872 } 6873 EXPORT_SYMBOL(netdev_stats_to_stats64); 6874 6875 /** 6876 * dev_get_stats - get network device statistics 6877 * @dev: device to get statistics from 6878 * @storage: place to store stats 6879 * 6880 * Get network statistics from device. Return @storage. 6881 * The device driver may provide its own method by setting 6882 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 6883 * otherwise the internal statistics structure is used. 6884 */ 6885 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 6886 struct rtnl_link_stats64 *storage) 6887 { 6888 const struct net_device_ops *ops = dev->netdev_ops; 6889 6890 if (ops->ndo_get_stats64) { 6891 memset(storage, 0, sizeof(*storage)); 6892 ops->ndo_get_stats64(dev, storage); 6893 } else if (ops->ndo_get_stats) { 6894 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 6895 } else { 6896 netdev_stats_to_stats64(storage, &dev->stats); 6897 } 6898 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 6899 storage->tx_dropped += atomic_long_read(&dev->tx_dropped); 6900 return storage; 6901 } 6902 EXPORT_SYMBOL(dev_get_stats); 6903 6904 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 6905 { 6906 struct netdev_queue *queue = dev_ingress_queue(dev); 6907 6908 #ifdef CONFIG_NET_CLS_ACT 6909 if (queue) 6910 return queue; 6911 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 6912 if (!queue) 6913 return NULL; 6914 netdev_init_one_queue(dev, queue, NULL); 6915 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 6916 queue->qdisc_sleeping = &noop_qdisc; 6917 rcu_assign_pointer(dev->ingress_queue, queue); 6918 #endif 6919 return queue; 6920 } 6921 6922 static const struct ethtool_ops default_ethtool_ops; 6923 6924 void netdev_set_default_ethtool_ops(struct net_device *dev, 6925 const struct ethtool_ops *ops) 6926 { 6927 if (dev->ethtool_ops == &default_ethtool_ops) 6928 dev->ethtool_ops = ops; 6929 } 6930 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 6931 6932 void netdev_freemem(struct net_device *dev) 6933 { 6934 char *addr = (char *)dev - dev->padded; 6935 6936 kvfree(addr); 6937 } 6938 6939 /** 6940 * alloc_netdev_mqs - allocate network device 6941 * @sizeof_priv: size of private data to allocate space for 6942 * @name: device name format string 6943 * @name_assign_type: origin of device name 6944 * @setup: callback to initialize device 6945 * @txqs: the number of TX subqueues to allocate 6946 * @rxqs: the number of RX subqueues to allocate 6947 * 6948 * Allocates a struct net_device with private data area for driver use 6949 * and performs basic initialization. Also allocates subqueue structs 6950 * for each queue on the device. 6951 */ 6952 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 6953 unsigned char name_assign_type, 6954 void (*setup)(struct net_device *), 6955 unsigned int txqs, unsigned int rxqs) 6956 { 6957 struct net_device *dev; 6958 size_t alloc_size; 6959 struct net_device *p; 6960 6961 BUG_ON(strlen(name) >= sizeof(dev->name)); 6962 6963 if (txqs < 1) { 6964 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 6965 return NULL; 6966 } 6967 6968 #ifdef CONFIG_SYSFS 6969 if (rxqs < 1) { 6970 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 6971 return NULL; 6972 } 6973 #endif 6974 6975 alloc_size = sizeof(struct net_device); 6976 if (sizeof_priv) { 6977 /* ensure 32-byte alignment of private area */ 6978 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 6979 alloc_size += sizeof_priv; 6980 } 6981 /* ensure 32-byte alignment of whole construct */ 6982 alloc_size += NETDEV_ALIGN - 1; 6983 6984 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6985 if (!p) 6986 p = vzalloc(alloc_size); 6987 if (!p) 6988 return NULL; 6989 6990 dev = PTR_ALIGN(p, NETDEV_ALIGN); 6991 dev->padded = (char *)dev - (char *)p; 6992 6993 dev->pcpu_refcnt = alloc_percpu(int); 6994 if (!dev->pcpu_refcnt) 6995 goto free_dev; 6996 6997 if (dev_addr_init(dev)) 6998 goto free_pcpu; 6999 7000 dev_mc_init(dev); 7001 dev_uc_init(dev); 7002 7003 dev_net_set(dev, &init_net); 7004 7005 dev->gso_max_size = GSO_MAX_SIZE; 7006 dev->gso_max_segs = GSO_MAX_SEGS; 7007 dev->gso_min_segs = 0; 7008 7009 INIT_LIST_HEAD(&dev->napi_list); 7010 INIT_LIST_HEAD(&dev->unreg_list); 7011 INIT_LIST_HEAD(&dev->close_list); 7012 INIT_LIST_HEAD(&dev->link_watch_list); 7013 INIT_LIST_HEAD(&dev->adj_list.upper); 7014 INIT_LIST_HEAD(&dev->adj_list.lower); 7015 INIT_LIST_HEAD(&dev->all_adj_list.upper); 7016 INIT_LIST_HEAD(&dev->all_adj_list.lower); 7017 INIT_LIST_HEAD(&dev->ptype_all); 7018 INIT_LIST_HEAD(&dev->ptype_specific); 7019 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 7020 setup(dev); 7021 7022 if (!dev->tx_queue_len) 7023 dev->priv_flags |= IFF_NO_QUEUE; 7024 7025 dev->num_tx_queues = txqs; 7026 dev->real_num_tx_queues = txqs; 7027 if (netif_alloc_netdev_queues(dev)) 7028 goto free_all; 7029 7030 #ifdef CONFIG_SYSFS 7031 dev->num_rx_queues = rxqs; 7032 dev->real_num_rx_queues = rxqs; 7033 if (netif_alloc_rx_queues(dev)) 7034 goto free_all; 7035 #endif 7036 7037 strcpy(dev->name, name); 7038 dev->name_assign_type = name_assign_type; 7039 dev->group = INIT_NETDEV_GROUP; 7040 if (!dev->ethtool_ops) 7041 dev->ethtool_ops = &default_ethtool_ops; 7042 7043 nf_hook_ingress_init(dev); 7044 7045 return dev; 7046 7047 free_all: 7048 free_netdev(dev); 7049 return NULL; 7050 7051 free_pcpu: 7052 free_percpu(dev->pcpu_refcnt); 7053 free_dev: 7054 netdev_freemem(dev); 7055 return NULL; 7056 } 7057 EXPORT_SYMBOL(alloc_netdev_mqs); 7058 7059 /** 7060 * free_netdev - free network device 7061 * @dev: device 7062 * 7063 * This function does the last stage of destroying an allocated device 7064 * interface. The reference to the device object is released. 7065 * If this is the last reference then it will be freed. 7066 */ 7067 void free_netdev(struct net_device *dev) 7068 { 7069 struct napi_struct *p, *n; 7070 7071 netif_free_tx_queues(dev); 7072 #ifdef CONFIG_SYSFS 7073 kvfree(dev->_rx); 7074 #endif 7075 7076 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 7077 7078 /* Flush device addresses */ 7079 dev_addr_flush(dev); 7080 7081 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 7082 netif_napi_del(p); 7083 7084 free_percpu(dev->pcpu_refcnt); 7085 dev->pcpu_refcnt = NULL; 7086 7087 /* Compatibility with error handling in drivers */ 7088 if (dev->reg_state == NETREG_UNINITIALIZED) { 7089 netdev_freemem(dev); 7090 return; 7091 } 7092 7093 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 7094 dev->reg_state = NETREG_RELEASED; 7095 7096 /* will free via device release */ 7097 put_device(&dev->dev); 7098 } 7099 EXPORT_SYMBOL(free_netdev); 7100 7101 /** 7102 * synchronize_net - Synchronize with packet receive processing 7103 * 7104 * Wait for packets currently being received to be done. 7105 * Does not block later packets from starting. 7106 */ 7107 void synchronize_net(void) 7108 { 7109 might_sleep(); 7110 if (rtnl_is_locked()) 7111 synchronize_rcu_expedited(); 7112 else 7113 synchronize_rcu(); 7114 } 7115 EXPORT_SYMBOL(synchronize_net); 7116 7117 /** 7118 * unregister_netdevice_queue - remove device from the kernel 7119 * @dev: device 7120 * @head: list 7121 * 7122 * This function shuts down a device interface and removes it 7123 * from the kernel tables. 7124 * If head not NULL, device is queued to be unregistered later. 7125 * 7126 * Callers must hold the rtnl semaphore. You may want 7127 * unregister_netdev() instead of this. 7128 */ 7129 7130 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 7131 { 7132 ASSERT_RTNL(); 7133 7134 if (head) { 7135 list_move_tail(&dev->unreg_list, head); 7136 } else { 7137 rollback_registered(dev); 7138 /* Finish processing unregister after unlock */ 7139 net_set_todo(dev); 7140 } 7141 } 7142 EXPORT_SYMBOL(unregister_netdevice_queue); 7143 7144 /** 7145 * unregister_netdevice_many - unregister many devices 7146 * @head: list of devices 7147 * 7148 * Note: As most callers use a stack allocated list_head, 7149 * we force a list_del() to make sure stack wont be corrupted later. 7150 */ 7151 void unregister_netdevice_many(struct list_head *head) 7152 { 7153 struct net_device *dev; 7154 7155 if (!list_empty(head)) { 7156 rollback_registered_many(head); 7157 list_for_each_entry(dev, head, unreg_list) 7158 net_set_todo(dev); 7159 list_del(head); 7160 } 7161 } 7162 EXPORT_SYMBOL(unregister_netdevice_many); 7163 7164 /** 7165 * unregister_netdev - remove device from the kernel 7166 * @dev: device 7167 * 7168 * This function shuts down a device interface and removes it 7169 * from the kernel tables. 7170 * 7171 * This is just a wrapper for unregister_netdevice that takes 7172 * the rtnl semaphore. In general you want to use this and not 7173 * unregister_netdevice. 7174 */ 7175 void unregister_netdev(struct net_device *dev) 7176 { 7177 rtnl_lock(); 7178 unregister_netdevice(dev); 7179 rtnl_unlock(); 7180 } 7181 EXPORT_SYMBOL(unregister_netdev); 7182 7183 /** 7184 * dev_change_net_namespace - move device to different nethost namespace 7185 * @dev: device 7186 * @net: network namespace 7187 * @pat: If not NULL name pattern to try if the current device name 7188 * is already taken in the destination network namespace. 7189 * 7190 * This function shuts down a device interface and moves it 7191 * to a new network namespace. On success 0 is returned, on 7192 * a failure a netagive errno code is returned. 7193 * 7194 * Callers must hold the rtnl semaphore. 7195 */ 7196 7197 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 7198 { 7199 int err; 7200 7201 ASSERT_RTNL(); 7202 7203 /* Don't allow namespace local devices to be moved. */ 7204 err = -EINVAL; 7205 if (dev->features & NETIF_F_NETNS_LOCAL) 7206 goto out; 7207 7208 /* Ensure the device has been registrered */ 7209 if (dev->reg_state != NETREG_REGISTERED) 7210 goto out; 7211 7212 /* Get out if there is nothing todo */ 7213 err = 0; 7214 if (net_eq(dev_net(dev), net)) 7215 goto out; 7216 7217 /* Pick the destination device name, and ensure 7218 * we can use it in the destination network namespace. 7219 */ 7220 err = -EEXIST; 7221 if (__dev_get_by_name(net, dev->name)) { 7222 /* We get here if we can't use the current device name */ 7223 if (!pat) 7224 goto out; 7225 if (dev_get_valid_name(net, dev, pat) < 0) 7226 goto out; 7227 } 7228 7229 /* 7230 * And now a mini version of register_netdevice unregister_netdevice. 7231 */ 7232 7233 /* If device is running close it first. */ 7234 dev_close(dev); 7235 7236 /* And unlink it from device chain */ 7237 err = -ENODEV; 7238 unlist_netdevice(dev); 7239 7240 synchronize_net(); 7241 7242 /* Shutdown queueing discipline. */ 7243 dev_shutdown(dev); 7244 7245 /* Notify protocols, that we are about to destroy 7246 this device. They should clean all the things. 7247 7248 Note that dev->reg_state stays at NETREG_REGISTERED. 7249 This is wanted because this way 8021q and macvlan know 7250 the device is just moving and can keep their slaves up. 7251 */ 7252 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7253 rcu_barrier(); 7254 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7255 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 7256 7257 /* 7258 * Flush the unicast and multicast chains 7259 */ 7260 dev_uc_flush(dev); 7261 dev_mc_flush(dev); 7262 7263 /* Send a netdev-removed uevent to the old namespace */ 7264 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 7265 netdev_adjacent_del_links(dev); 7266 7267 /* Actually switch the network namespace */ 7268 dev_net_set(dev, net); 7269 7270 /* If there is an ifindex conflict assign a new one */ 7271 if (__dev_get_by_index(net, dev->ifindex)) 7272 dev->ifindex = dev_new_index(net); 7273 7274 /* Send a netdev-add uevent to the new namespace */ 7275 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 7276 netdev_adjacent_add_links(dev); 7277 7278 /* Fixup kobjects */ 7279 err = device_rename(&dev->dev, dev->name); 7280 WARN_ON(err); 7281 7282 /* Add the device back in the hashes */ 7283 list_netdevice(dev); 7284 7285 /* Notify protocols, that a new device appeared. */ 7286 call_netdevice_notifiers(NETDEV_REGISTER, dev); 7287 7288 /* 7289 * Prevent userspace races by waiting until the network 7290 * device is fully setup before sending notifications. 7291 */ 7292 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7293 7294 synchronize_net(); 7295 err = 0; 7296 out: 7297 return err; 7298 } 7299 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 7300 7301 static int dev_cpu_callback(struct notifier_block *nfb, 7302 unsigned long action, 7303 void *ocpu) 7304 { 7305 struct sk_buff **list_skb; 7306 struct sk_buff *skb; 7307 unsigned int cpu, oldcpu = (unsigned long)ocpu; 7308 struct softnet_data *sd, *oldsd; 7309 7310 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 7311 return NOTIFY_OK; 7312 7313 local_irq_disable(); 7314 cpu = smp_processor_id(); 7315 sd = &per_cpu(softnet_data, cpu); 7316 oldsd = &per_cpu(softnet_data, oldcpu); 7317 7318 /* Find end of our completion_queue. */ 7319 list_skb = &sd->completion_queue; 7320 while (*list_skb) 7321 list_skb = &(*list_skb)->next; 7322 /* Append completion queue from offline CPU. */ 7323 *list_skb = oldsd->completion_queue; 7324 oldsd->completion_queue = NULL; 7325 7326 /* Append output queue from offline CPU. */ 7327 if (oldsd->output_queue) { 7328 *sd->output_queue_tailp = oldsd->output_queue; 7329 sd->output_queue_tailp = oldsd->output_queue_tailp; 7330 oldsd->output_queue = NULL; 7331 oldsd->output_queue_tailp = &oldsd->output_queue; 7332 } 7333 /* Append NAPI poll list from offline CPU, with one exception : 7334 * process_backlog() must be called by cpu owning percpu backlog. 7335 * We properly handle process_queue & input_pkt_queue later. 7336 */ 7337 while (!list_empty(&oldsd->poll_list)) { 7338 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 7339 struct napi_struct, 7340 poll_list); 7341 7342 list_del_init(&napi->poll_list); 7343 if (napi->poll == process_backlog) 7344 napi->state = 0; 7345 else 7346 ____napi_schedule(sd, napi); 7347 } 7348 7349 raise_softirq_irqoff(NET_TX_SOFTIRQ); 7350 local_irq_enable(); 7351 7352 /* Process offline CPU's input_pkt_queue */ 7353 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 7354 netif_rx_ni(skb); 7355 input_queue_head_incr(oldsd); 7356 } 7357 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 7358 netif_rx_ni(skb); 7359 input_queue_head_incr(oldsd); 7360 } 7361 7362 return NOTIFY_OK; 7363 } 7364 7365 7366 /** 7367 * netdev_increment_features - increment feature set by one 7368 * @all: current feature set 7369 * @one: new feature set 7370 * @mask: mask feature set 7371 * 7372 * Computes a new feature set after adding a device with feature set 7373 * @one to the master device with current feature set @all. Will not 7374 * enable anything that is off in @mask. Returns the new feature set. 7375 */ 7376 netdev_features_t netdev_increment_features(netdev_features_t all, 7377 netdev_features_t one, netdev_features_t mask) 7378 { 7379 if (mask & NETIF_F_GEN_CSUM) 7380 mask |= NETIF_F_ALL_CSUM; 7381 mask |= NETIF_F_VLAN_CHALLENGED; 7382 7383 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 7384 all &= one | ~NETIF_F_ALL_FOR_ALL; 7385 7386 /* If one device supports hw checksumming, set for all. */ 7387 if (all & NETIF_F_GEN_CSUM) 7388 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 7389 7390 return all; 7391 } 7392 EXPORT_SYMBOL(netdev_increment_features); 7393 7394 static struct hlist_head * __net_init netdev_create_hash(void) 7395 { 7396 int i; 7397 struct hlist_head *hash; 7398 7399 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 7400 if (hash != NULL) 7401 for (i = 0; i < NETDEV_HASHENTRIES; i++) 7402 INIT_HLIST_HEAD(&hash[i]); 7403 7404 return hash; 7405 } 7406 7407 /* Initialize per network namespace state */ 7408 static int __net_init netdev_init(struct net *net) 7409 { 7410 if (net != &init_net) 7411 INIT_LIST_HEAD(&net->dev_base_head); 7412 7413 net->dev_name_head = netdev_create_hash(); 7414 if (net->dev_name_head == NULL) 7415 goto err_name; 7416 7417 net->dev_index_head = netdev_create_hash(); 7418 if (net->dev_index_head == NULL) 7419 goto err_idx; 7420 7421 return 0; 7422 7423 err_idx: 7424 kfree(net->dev_name_head); 7425 err_name: 7426 return -ENOMEM; 7427 } 7428 7429 /** 7430 * netdev_drivername - network driver for the device 7431 * @dev: network device 7432 * 7433 * Determine network driver for device. 7434 */ 7435 const char *netdev_drivername(const struct net_device *dev) 7436 { 7437 const struct device_driver *driver; 7438 const struct device *parent; 7439 const char *empty = ""; 7440 7441 parent = dev->dev.parent; 7442 if (!parent) 7443 return empty; 7444 7445 driver = parent->driver; 7446 if (driver && driver->name) 7447 return driver->name; 7448 return empty; 7449 } 7450 7451 static void __netdev_printk(const char *level, const struct net_device *dev, 7452 struct va_format *vaf) 7453 { 7454 if (dev && dev->dev.parent) { 7455 dev_printk_emit(level[1] - '0', 7456 dev->dev.parent, 7457 "%s %s %s%s: %pV", 7458 dev_driver_string(dev->dev.parent), 7459 dev_name(dev->dev.parent), 7460 netdev_name(dev), netdev_reg_state(dev), 7461 vaf); 7462 } else if (dev) { 7463 printk("%s%s%s: %pV", 7464 level, netdev_name(dev), netdev_reg_state(dev), vaf); 7465 } else { 7466 printk("%s(NULL net_device): %pV", level, vaf); 7467 } 7468 } 7469 7470 void netdev_printk(const char *level, const struct net_device *dev, 7471 const char *format, ...) 7472 { 7473 struct va_format vaf; 7474 va_list args; 7475 7476 va_start(args, format); 7477 7478 vaf.fmt = format; 7479 vaf.va = &args; 7480 7481 __netdev_printk(level, dev, &vaf); 7482 7483 va_end(args); 7484 } 7485 EXPORT_SYMBOL(netdev_printk); 7486 7487 #define define_netdev_printk_level(func, level) \ 7488 void func(const struct net_device *dev, const char *fmt, ...) \ 7489 { \ 7490 struct va_format vaf; \ 7491 va_list args; \ 7492 \ 7493 va_start(args, fmt); \ 7494 \ 7495 vaf.fmt = fmt; \ 7496 vaf.va = &args; \ 7497 \ 7498 __netdev_printk(level, dev, &vaf); \ 7499 \ 7500 va_end(args); \ 7501 } \ 7502 EXPORT_SYMBOL(func); 7503 7504 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 7505 define_netdev_printk_level(netdev_alert, KERN_ALERT); 7506 define_netdev_printk_level(netdev_crit, KERN_CRIT); 7507 define_netdev_printk_level(netdev_err, KERN_ERR); 7508 define_netdev_printk_level(netdev_warn, KERN_WARNING); 7509 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 7510 define_netdev_printk_level(netdev_info, KERN_INFO); 7511 7512 static void __net_exit netdev_exit(struct net *net) 7513 { 7514 kfree(net->dev_name_head); 7515 kfree(net->dev_index_head); 7516 } 7517 7518 static struct pernet_operations __net_initdata netdev_net_ops = { 7519 .init = netdev_init, 7520 .exit = netdev_exit, 7521 }; 7522 7523 static void __net_exit default_device_exit(struct net *net) 7524 { 7525 struct net_device *dev, *aux; 7526 /* 7527 * Push all migratable network devices back to the 7528 * initial network namespace 7529 */ 7530 rtnl_lock(); 7531 for_each_netdev_safe(net, dev, aux) { 7532 int err; 7533 char fb_name[IFNAMSIZ]; 7534 7535 /* Ignore unmoveable devices (i.e. loopback) */ 7536 if (dev->features & NETIF_F_NETNS_LOCAL) 7537 continue; 7538 7539 /* Leave virtual devices for the generic cleanup */ 7540 if (dev->rtnl_link_ops) 7541 continue; 7542 7543 /* Push remaining network devices to init_net */ 7544 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 7545 err = dev_change_net_namespace(dev, &init_net, fb_name); 7546 if (err) { 7547 pr_emerg("%s: failed to move %s to init_net: %d\n", 7548 __func__, dev->name, err); 7549 BUG(); 7550 } 7551 } 7552 rtnl_unlock(); 7553 } 7554 7555 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 7556 { 7557 /* Return with the rtnl_lock held when there are no network 7558 * devices unregistering in any network namespace in net_list. 7559 */ 7560 struct net *net; 7561 bool unregistering; 7562 DEFINE_WAIT_FUNC(wait, woken_wake_function); 7563 7564 add_wait_queue(&netdev_unregistering_wq, &wait); 7565 for (;;) { 7566 unregistering = false; 7567 rtnl_lock(); 7568 list_for_each_entry(net, net_list, exit_list) { 7569 if (net->dev_unreg_count > 0) { 7570 unregistering = true; 7571 break; 7572 } 7573 } 7574 if (!unregistering) 7575 break; 7576 __rtnl_unlock(); 7577 7578 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 7579 } 7580 remove_wait_queue(&netdev_unregistering_wq, &wait); 7581 } 7582 7583 static void __net_exit default_device_exit_batch(struct list_head *net_list) 7584 { 7585 /* At exit all network devices most be removed from a network 7586 * namespace. Do this in the reverse order of registration. 7587 * Do this across as many network namespaces as possible to 7588 * improve batching efficiency. 7589 */ 7590 struct net_device *dev; 7591 struct net *net; 7592 LIST_HEAD(dev_kill_list); 7593 7594 /* To prevent network device cleanup code from dereferencing 7595 * loopback devices or network devices that have been freed 7596 * wait here for all pending unregistrations to complete, 7597 * before unregistring the loopback device and allowing the 7598 * network namespace be freed. 7599 * 7600 * The netdev todo list containing all network devices 7601 * unregistrations that happen in default_device_exit_batch 7602 * will run in the rtnl_unlock() at the end of 7603 * default_device_exit_batch. 7604 */ 7605 rtnl_lock_unregistering(net_list); 7606 list_for_each_entry(net, net_list, exit_list) { 7607 for_each_netdev_reverse(net, dev) { 7608 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 7609 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 7610 else 7611 unregister_netdevice_queue(dev, &dev_kill_list); 7612 } 7613 } 7614 unregister_netdevice_many(&dev_kill_list); 7615 rtnl_unlock(); 7616 } 7617 7618 static struct pernet_operations __net_initdata default_device_ops = { 7619 .exit = default_device_exit, 7620 .exit_batch = default_device_exit_batch, 7621 }; 7622 7623 /* 7624 * Initialize the DEV module. At boot time this walks the device list and 7625 * unhooks any devices that fail to initialise (normally hardware not 7626 * present) and leaves us with a valid list of present and active devices. 7627 * 7628 */ 7629 7630 /* 7631 * This is called single threaded during boot, so no need 7632 * to take the rtnl semaphore. 7633 */ 7634 static int __init net_dev_init(void) 7635 { 7636 int i, rc = -ENOMEM; 7637 7638 BUG_ON(!dev_boot_phase); 7639 7640 if (dev_proc_init()) 7641 goto out; 7642 7643 if (netdev_kobject_init()) 7644 goto out; 7645 7646 INIT_LIST_HEAD(&ptype_all); 7647 for (i = 0; i < PTYPE_HASH_SIZE; i++) 7648 INIT_LIST_HEAD(&ptype_base[i]); 7649 7650 INIT_LIST_HEAD(&offload_base); 7651 7652 if (register_pernet_subsys(&netdev_net_ops)) 7653 goto out; 7654 7655 /* 7656 * Initialise the packet receive queues. 7657 */ 7658 7659 for_each_possible_cpu(i) { 7660 struct softnet_data *sd = &per_cpu(softnet_data, i); 7661 7662 skb_queue_head_init(&sd->input_pkt_queue); 7663 skb_queue_head_init(&sd->process_queue); 7664 INIT_LIST_HEAD(&sd->poll_list); 7665 sd->output_queue_tailp = &sd->output_queue; 7666 #ifdef CONFIG_RPS 7667 sd->csd.func = rps_trigger_softirq; 7668 sd->csd.info = sd; 7669 sd->cpu = i; 7670 #endif 7671 7672 sd->backlog.poll = process_backlog; 7673 sd->backlog.weight = weight_p; 7674 } 7675 7676 dev_boot_phase = 0; 7677 7678 /* The loopback device is special if any other network devices 7679 * is present in a network namespace the loopback device must 7680 * be present. Since we now dynamically allocate and free the 7681 * loopback device ensure this invariant is maintained by 7682 * keeping the loopback device as the first device on the 7683 * list of network devices. Ensuring the loopback devices 7684 * is the first device that appears and the last network device 7685 * that disappears. 7686 */ 7687 if (register_pernet_device(&loopback_net_ops)) 7688 goto out; 7689 7690 if (register_pernet_device(&default_device_ops)) 7691 goto out; 7692 7693 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 7694 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 7695 7696 hotcpu_notifier(dev_cpu_callback, 0); 7697 dst_subsys_init(); 7698 rc = 0; 7699 out: 7700 return rc; 7701 } 7702 7703 subsys_initcall(net_dev_init); 7704