1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/stat.h> 101 #include <net/dst.h> 102 #include <net/pkt_sched.h> 103 #include <net/checksum.h> 104 #include <net/xfrm.h> 105 #include <linux/highmem.h> 106 #include <linux/init.h> 107 #include <linux/module.h> 108 #include <linux/netpoll.h> 109 #include <linux/rcupdate.h> 110 #include <linux/delay.h> 111 #include <net/iw_handler.h> 112 #include <asm/current.h> 113 #include <linux/audit.h> 114 #include <linux/dmaengine.h> 115 #include <linux/err.h> 116 #include <linux/ctype.h> 117 #include <linux/if_arp.h> 118 #include <linux/if_vlan.h> 119 #include <linux/ip.h> 120 #include <net/ip.h> 121 #include <linux/ipv6.h> 122 #include <linux/in.h> 123 #include <linux/jhash.h> 124 #include <linux/random.h> 125 #include <trace/events/napi.h> 126 #include <trace/events/net.h> 127 #include <trace/events/skb.h> 128 #include <linux/pci.h> 129 #include <linux/inetdevice.h> 130 #include <linux/cpu_rmap.h> 131 #include <linux/static_key.h> 132 #include <linux/hashtable.h> 133 #include <linux/vmalloc.h> 134 #include <linux/if_macvlan.h> 135 136 #include "net-sysfs.h" 137 138 /* Instead of increasing this, you should create a hash table. */ 139 #define MAX_GRO_SKBS 8 140 141 /* This should be increased if a protocol with a bigger head is added. */ 142 #define GRO_MAX_HEAD (MAX_HEADER + 128) 143 144 static DEFINE_SPINLOCK(ptype_lock); 145 static DEFINE_SPINLOCK(offload_lock); 146 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 147 struct list_head ptype_all __read_mostly; /* Taps */ 148 static struct list_head offload_base __read_mostly; 149 150 static int netif_rx_internal(struct sk_buff *skb); 151 152 /* 153 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 154 * semaphore. 155 * 156 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 157 * 158 * Writers must hold the rtnl semaphore while they loop through the 159 * dev_base_head list, and hold dev_base_lock for writing when they do the 160 * actual updates. This allows pure readers to access the list even 161 * while a writer is preparing to update it. 162 * 163 * To put it another way, dev_base_lock is held for writing only to 164 * protect against pure readers; the rtnl semaphore provides the 165 * protection against other writers. 166 * 167 * See, for example usages, register_netdevice() and 168 * unregister_netdevice(), which must be called with the rtnl 169 * semaphore held. 170 */ 171 DEFINE_RWLOCK(dev_base_lock); 172 EXPORT_SYMBOL(dev_base_lock); 173 174 /* protects napi_hash addition/deletion and napi_gen_id */ 175 static DEFINE_SPINLOCK(napi_hash_lock); 176 177 static unsigned int napi_gen_id; 178 static DEFINE_HASHTABLE(napi_hash, 8); 179 180 static seqcount_t devnet_rename_seq; 181 182 static inline void dev_base_seq_inc(struct net *net) 183 { 184 while (++net->dev_base_seq == 0); 185 } 186 187 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 188 { 189 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 190 191 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 192 } 193 194 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 195 { 196 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 197 } 198 199 static inline void rps_lock(struct softnet_data *sd) 200 { 201 #ifdef CONFIG_RPS 202 spin_lock(&sd->input_pkt_queue.lock); 203 #endif 204 } 205 206 static inline void rps_unlock(struct softnet_data *sd) 207 { 208 #ifdef CONFIG_RPS 209 spin_unlock(&sd->input_pkt_queue.lock); 210 #endif 211 } 212 213 /* Device list insertion */ 214 static void list_netdevice(struct net_device *dev) 215 { 216 struct net *net = dev_net(dev); 217 218 ASSERT_RTNL(); 219 220 write_lock_bh(&dev_base_lock); 221 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 222 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 223 hlist_add_head_rcu(&dev->index_hlist, 224 dev_index_hash(net, dev->ifindex)); 225 write_unlock_bh(&dev_base_lock); 226 227 dev_base_seq_inc(net); 228 } 229 230 /* Device list removal 231 * caller must respect a RCU grace period before freeing/reusing dev 232 */ 233 static void unlist_netdevice(struct net_device *dev) 234 { 235 ASSERT_RTNL(); 236 237 /* Unlink dev from the device chain */ 238 write_lock_bh(&dev_base_lock); 239 list_del_rcu(&dev->dev_list); 240 hlist_del_rcu(&dev->name_hlist); 241 hlist_del_rcu(&dev->index_hlist); 242 write_unlock_bh(&dev_base_lock); 243 244 dev_base_seq_inc(dev_net(dev)); 245 } 246 247 /* 248 * Our notifier list 249 */ 250 251 static RAW_NOTIFIER_HEAD(netdev_chain); 252 253 /* 254 * Device drivers call our routines to queue packets here. We empty the 255 * queue in the local softnet handler. 256 */ 257 258 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 259 EXPORT_PER_CPU_SYMBOL(softnet_data); 260 261 #ifdef CONFIG_LOCKDEP 262 /* 263 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 264 * according to dev->type 265 */ 266 static const unsigned short netdev_lock_type[] = 267 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 268 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 269 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 270 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 271 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 272 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 273 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 274 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 275 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 276 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 277 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 278 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 279 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 280 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 281 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 282 283 static const char *const netdev_lock_name[] = 284 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 285 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 286 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 287 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 288 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 289 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 290 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 291 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 292 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 293 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 294 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 295 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 296 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 297 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 298 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 299 300 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 301 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 302 303 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 304 { 305 int i; 306 307 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 308 if (netdev_lock_type[i] == dev_type) 309 return i; 310 /* the last key is used by default */ 311 return ARRAY_SIZE(netdev_lock_type) - 1; 312 } 313 314 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 315 unsigned short dev_type) 316 { 317 int i; 318 319 i = netdev_lock_pos(dev_type); 320 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 321 netdev_lock_name[i]); 322 } 323 324 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 325 { 326 int i; 327 328 i = netdev_lock_pos(dev->type); 329 lockdep_set_class_and_name(&dev->addr_list_lock, 330 &netdev_addr_lock_key[i], 331 netdev_lock_name[i]); 332 } 333 #else 334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 335 unsigned short dev_type) 336 { 337 } 338 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 339 { 340 } 341 #endif 342 343 /******************************************************************************* 344 345 Protocol management and registration routines 346 347 *******************************************************************************/ 348 349 /* 350 * Add a protocol ID to the list. Now that the input handler is 351 * smarter we can dispense with all the messy stuff that used to be 352 * here. 353 * 354 * BEWARE!!! Protocol handlers, mangling input packets, 355 * MUST BE last in hash buckets and checking protocol handlers 356 * MUST start from promiscuous ptype_all chain in net_bh. 357 * It is true now, do not change it. 358 * Explanation follows: if protocol handler, mangling packet, will 359 * be the first on list, it is not able to sense, that packet 360 * is cloned and should be copied-on-write, so that it will 361 * change it and subsequent readers will get broken packet. 362 * --ANK (980803) 363 */ 364 365 static inline struct list_head *ptype_head(const struct packet_type *pt) 366 { 367 if (pt->type == htons(ETH_P_ALL)) 368 return &ptype_all; 369 else 370 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 371 } 372 373 /** 374 * dev_add_pack - add packet handler 375 * @pt: packet type declaration 376 * 377 * Add a protocol handler to the networking stack. The passed &packet_type 378 * is linked into kernel lists and may not be freed until it has been 379 * removed from the kernel lists. 380 * 381 * This call does not sleep therefore it can not 382 * guarantee all CPU's that are in middle of receiving packets 383 * will see the new packet type (until the next received packet). 384 */ 385 386 void dev_add_pack(struct packet_type *pt) 387 { 388 struct list_head *head = ptype_head(pt); 389 390 spin_lock(&ptype_lock); 391 list_add_rcu(&pt->list, head); 392 spin_unlock(&ptype_lock); 393 } 394 EXPORT_SYMBOL(dev_add_pack); 395 396 /** 397 * __dev_remove_pack - remove packet handler 398 * @pt: packet type declaration 399 * 400 * Remove a protocol handler that was previously added to the kernel 401 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 402 * from the kernel lists and can be freed or reused once this function 403 * returns. 404 * 405 * The packet type might still be in use by receivers 406 * and must not be freed until after all the CPU's have gone 407 * through a quiescent state. 408 */ 409 void __dev_remove_pack(struct packet_type *pt) 410 { 411 struct list_head *head = ptype_head(pt); 412 struct packet_type *pt1; 413 414 spin_lock(&ptype_lock); 415 416 list_for_each_entry(pt1, head, list) { 417 if (pt == pt1) { 418 list_del_rcu(&pt->list); 419 goto out; 420 } 421 } 422 423 pr_warn("dev_remove_pack: %p not found\n", pt); 424 out: 425 spin_unlock(&ptype_lock); 426 } 427 EXPORT_SYMBOL(__dev_remove_pack); 428 429 /** 430 * dev_remove_pack - remove packet handler 431 * @pt: packet type declaration 432 * 433 * Remove a protocol handler that was previously added to the kernel 434 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 435 * from the kernel lists and can be freed or reused once this function 436 * returns. 437 * 438 * This call sleeps to guarantee that no CPU is looking at the packet 439 * type after return. 440 */ 441 void dev_remove_pack(struct packet_type *pt) 442 { 443 __dev_remove_pack(pt); 444 445 synchronize_net(); 446 } 447 EXPORT_SYMBOL(dev_remove_pack); 448 449 450 /** 451 * dev_add_offload - register offload handlers 452 * @po: protocol offload declaration 453 * 454 * Add protocol offload handlers to the networking stack. The passed 455 * &proto_offload is linked into kernel lists and may not be freed until 456 * it has been removed from the kernel lists. 457 * 458 * This call does not sleep therefore it can not 459 * guarantee all CPU's that are in middle of receiving packets 460 * will see the new offload handlers (until the next received packet). 461 */ 462 void dev_add_offload(struct packet_offload *po) 463 { 464 struct list_head *head = &offload_base; 465 466 spin_lock(&offload_lock); 467 list_add_rcu(&po->list, head); 468 spin_unlock(&offload_lock); 469 } 470 EXPORT_SYMBOL(dev_add_offload); 471 472 /** 473 * __dev_remove_offload - remove offload handler 474 * @po: packet offload declaration 475 * 476 * Remove a protocol offload handler that was previously added to the 477 * kernel offload handlers by dev_add_offload(). The passed &offload_type 478 * is removed from the kernel lists and can be freed or reused once this 479 * function returns. 480 * 481 * The packet type might still be in use by receivers 482 * and must not be freed until after all the CPU's have gone 483 * through a quiescent state. 484 */ 485 static void __dev_remove_offload(struct packet_offload *po) 486 { 487 struct list_head *head = &offload_base; 488 struct packet_offload *po1; 489 490 spin_lock(&offload_lock); 491 492 list_for_each_entry(po1, head, list) { 493 if (po == po1) { 494 list_del_rcu(&po->list); 495 goto out; 496 } 497 } 498 499 pr_warn("dev_remove_offload: %p not found\n", po); 500 out: 501 spin_unlock(&offload_lock); 502 } 503 504 /** 505 * dev_remove_offload - remove packet offload handler 506 * @po: packet offload declaration 507 * 508 * Remove a packet offload handler that was previously added to the kernel 509 * offload handlers by dev_add_offload(). The passed &offload_type is 510 * removed from the kernel lists and can be freed or reused once this 511 * function returns. 512 * 513 * This call sleeps to guarantee that no CPU is looking at the packet 514 * type after return. 515 */ 516 void dev_remove_offload(struct packet_offload *po) 517 { 518 __dev_remove_offload(po); 519 520 synchronize_net(); 521 } 522 EXPORT_SYMBOL(dev_remove_offload); 523 524 /****************************************************************************** 525 526 Device Boot-time Settings Routines 527 528 *******************************************************************************/ 529 530 /* Boot time configuration table */ 531 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 532 533 /** 534 * netdev_boot_setup_add - add new setup entry 535 * @name: name of the device 536 * @map: configured settings for the device 537 * 538 * Adds new setup entry to the dev_boot_setup list. The function 539 * returns 0 on error and 1 on success. This is a generic routine to 540 * all netdevices. 541 */ 542 static int netdev_boot_setup_add(char *name, struct ifmap *map) 543 { 544 struct netdev_boot_setup *s; 545 int i; 546 547 s = dev_boot_setup; 548 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 549 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 550 memset(s[i].name, 0, sizeof(s[i].name)); 551 strlcpy(s[i].name, name, IFNAMSIZ); 552 memcpy(&s[i].map, map, sizeof(s[i].map)); 553 break; 554 } 555 } 556 557 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 558 } 559 560 /** 561 * netdev_boot_setup_check - check boot time settings 562 * @dev: the netdevice 563 * 564 * Check boot time settings for the device. 565 * The found settings are set for the device to be used 566 * later in the device probing. 567 * Returns 0 if no settings found, 1 if they are. 568 */ 569 int netdev_boot_setup_check(struct net_device *dev) 570 { 571 struct netdev_boot_setup *s = dev_boot_setup; 572 int i; 573 574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 575 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 576 !strcmp(dev->name, s[i].name)) { 577 dev->irq = s[i].map.irq; 578 dev->base_addr = s[i].map.base_addr; 579 dev->mem_start = s[i].map.mem_start; 580 dev->mem_end = s[i].map.mem_end; 581 return 1; 582 } 583 } 584 return 0; 585 } 586 EXPORT_SYMBOL(netdev_boot_setup_check); 587 588 589 /** 590 * netdev_boot_base - get address from boot time settings 591 * @prefix: prefix for network device 592 * @unit: id for network device 593 * 594 * Check boot time settings for the base address of device. 595 * The found settings are set for the device to be used 596 * later in the device probing. 597 * Returns 0 if no settings found. 598 */ 599 unsigned long netdev_boot_base(const char *prefix, int unit) 600 { 601 const struct netdev_boot_setup *s = dev_boot_setup; 602 char name[IFNAMSIZ]; 603 int i; 604 605 sprintf(name, "%s%d", prefix, unit); 606 607 /* 608 * If device already registered then return base of 1 609 * to indicate not to probe for this interface 610 */ 611 if (__dev_get_by_name(&init_net, name)) 612 return 1; 613 614 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 615 if (!strcmp(name, s[i].name)) 616 return s[i].map.base_addr; 617 return 0; 618 } 619 620 /* 621 * Saves at boot time configured settings for any netdevice. 622 */ 623 int __init netdev_boot_setup(char *str) 624 { 625 int ints[5]; 626 struct ifmap map; 627 628 str = get_options(str, ARRAY_SIZE(ints), ints); 629 if (!str || !*str) 630 return 0; 631 632 /* Save settings */ 633 memset(&map, 0, sizeof(map)); 634 if (ints[0] > 0) 635 map.irq = ints[1]; 636 if (ints[0] > 1) 637 map.base_addr = ints[2]; 638 if (ints[0] > 2) 639 map.mem_start = ints[3]; 640 if (ints[0] > 3) 641 map.mem_end = ints[4]; 642 643 /* Add new entry to the list */ 644 return netdev_boot_setup_add(str, &map); 645 } 646 647 __setup("netdev=", netdev_boot_setup); 648 649 /******************************************************************************* 650 651 Device Interface Subroutines 652 653 *******************************************************************************/ 654 655 /** 656 * __dev_get_by_name - find a device by its name 657 * @net: the applicable net namespace 658 * @name: name to find 659 * 660 * Find an interface by name. Must be called under RTNL semaphore 661 * or @dev_base_lock. If the name is found a pointer to the device 662 * is returned. If the name is not found then %NULL is returned. The 663 * reference counters are not incremented so the caller must be 664 * careful with locks. 665 */ 666 667 struct net_device *__dev_get_by_name(struct net *net, const char *name) 668 { 669 struct net_device *dev; 670 struct hlist_head *head = dev_name_hash(net, name); 671 672 hlist_for_each_entry(dev, head, name_hlist) 673 if (!strncmp(dev->name, name, IFNAMSIZ)) 674 return dev; 675 676 return NULL; 677 } 678 EXPORT_SYMBOL(__dev_get_by_name); 679 680 /** 681 * dev_get_by_name_rcu - find a device by its name 682 * @net: the applicable net namespace 683 * @name: name to find 684 * 685 * Find an interface by name. 686 * If the name is found a pointer to the device is returned. 687 * If the name is not found then %NULL is returned. 688 * The reference counters are not incremented so the caller must be 689 * careful with locks. The caller must hold RCU lock. 690 */ 691 692 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 693 { 694 struct net_device *dev; 695 struct hlist_head *head = dev_name_hash(net, name); 696 697 hlist_for_each_entry_rcu(dev, head, name_hlist) 698 if (!strncmp(dev->name, name, IFNAMSIZ)) 699 return dev; 700 701 return NULL; 702 } 703 EXPORT_SYMBOL(dev_get_by_name_rcu); 704 705 /** 706 * dev_get_by_name - find a device by its name 707 * @net: the applicable net namespace 708 * @name: name to find 709 * 710 * Find an interface by name. This can be called from any 711 * context and does its own locking. The returned handle has 712 * the usage count incremented and the caller must use dev_put() to 713 * release it when it is no longer needed. %NULL is returned if no 714 * matching device is found. 715 */ 716 717 struct net_device *dev_get_by_name(struct net *net, const char *name) 718 { 719 struct net_device *dev; 720 721 rcu_read_lock(); 722 dev = dev_get_by_name_rcu(net, name); 723 if (dev) 724 dev_hold(dev); 725 rcu_read_unlock(); 726 return dev; 727 } 728 EXPORT_SYMBOL(dev_get_by_name); 729 730 /** 731 * __dev_get_by_index - find a device by its ifindex 732 * @net: the applicable net namespace 733 * @ifindex: index of device 734 * 735 * Search for an interface by index. Returns %NULL if the device 736 * is not found or a pointer to the device. The device has not 737 * had its reference counter increased so the caller must be careful 738 * about locking. The caller must hold either the RTNL semaphore 739 * or @dev_base_lock. 740 */ 741 742 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 743 { 744 struct net_device *dev; 745 struct hlist_head *head = dev_index_hash(net, ifindex); 746 747 hlist_for_each_entry(dev, head, index_hlist) 748 if (dev->ifindex == ifindex) 749 return dev; 750 751 return NULL; 752 } 753 EXPORT_SYMBOL(__dev_get_by_index); 754 755 /** 756 * dev_get_by_index_rcu - find a device by its ifindex 757 * @net: the applicable net namespace 758 * @ifindex: index of device 759 * 760 * Search for an interface by index. Returns %NULL if the device 761 * is not found or a pointer to the device. The device has not 762 * had its reference counter increased so the caller must be careful 763 * about locking. The caller must hold RCU lock. 764 */ 765 766 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 767 { 768 struct net_device *dev; 769 struct hlist_head *head = dev_index_hash(net, ifindex); 770 771 hlist_for_each_entry_rcu(dev, head, index_hlist) 772 if (dev->ifindex == ifindex) 773 return dev; 774 775 return NULL; 776 } 777 EXPORT_SYMBOL(dev_get_by_index_rcu); 778 779 780 /** 781 * dev_get_by_index - find a device by its ifindex 782 * @net: the applicable net namespace 783 * @ifindex: index of device 784 * 785 * Search for an interface by index. Returns NULL if the device 786 * is not found or a pointer to the device. The device returned has 787 * had a reference added and the pointer is safe until the user calls 788 * dev_put to indicate they have finished with it. 789 */ 790 791 struct net_device *dev_get_by_index(struct net *net, int ifindex) 792 { 793 struct net_device *dev; 794 795 rcu_read_lock(); 796 dev = dev_get_by_index_rcu(net, ifindex); 797 if (dev) 798 dev_hold(dev); 799 rcu_read_unlock(); 800 return dev; 801 } 802 EXPORT_SYMBOL(dev_get_by_index); 803 804 /** 805 * netdev_get_name - get a netdevice name, knowing its ifindex. 806 * @net: network namespace 807 * @name: a pointer to the buffer where the name will be stored. 808 * @ifindex: the ifindex of the interface to get the name from. 809 * 810 * The use of raw_seqcount_begin() and cond_resched() before 811 * retrying is required as we want to give the writers a chance 812 * to complete when CONFIG_PREEMPT is not set. 813 */ 814 int netdev_get_name(struct net *net, char *name, int ifindex) 815 { 816 struct net_device *dev; 817 unsigned int seq; 818 819 retry: 820 seq = raw_seqcount_begin(&devnet_rename_seq); 821 rcu_read_lock(); 822 dev = dev_get_by_index_rcu(net, ifindex); 823 if (!dev) { 824 rcu_read_unlock(); 825 return -ENODEV; 826 } 827 828 strcpy(name, dev->name); 829 rcu_read_unlock(); 830 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 831 cond_resched(); 832 goto retry; 833 } 834 835 return 0; 836 } 837 838 /** 839 * dev_getbyhwaddr_rcu - find a device by its hardware address 840 * @net: the applicable net namespace 841 * @type: media type of device 842 * @ha: hardware address 843 * 844 * Search for an interface by MAC address. Returns NULL if the device 845 * is not found or a pointer to the device. 846 * The caller must hold RCU or RTNL. 847 * The returned device has not had its ref count increased 848 * and the caller must therefore be careful about locking 849 * 850 */ 851 852 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 853 const char *ha) 854 { 855 struct net_device *dev; 856 857 for_each_netdev_rcu(net, dev) 858 if (dev->type == type && 859 !memcmp(dev->dev_addr, ha, dev->addr_len)) 860 return dev; 861 862 return NULL; 863 } 864 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 865 866 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 867 { 868 struct net_device *dev; 869 870 ASSERT_RTNL(); 871 for_each_netdev(net, dev) 872 if (dev->type == type) 873 return dev; 874 875 return NULL; 876 } 877 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 878 879 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 880 { 881 struct net_device *dev, *ret = NULL; 882 883 rcu_read_lock(); 884 for_each_netdev_rcu(net, dev) 885 if (dev->type == type) { 886 dev_hold(dev); 887 ret = dev; 888 break; 889 } 890 rcu_read_unlock(); 891 return ret; 892 } 893 EXPORT_SYMBOL(dev_getfirstbyhwtype); 894 895 /** 896 * dev_get_by_flags_rcu - find any device with given flags 897 * @net: the applicable net namespace 898 * @if_flags: IFF_* values 899 * @mask: bitmask of bits in if_flags to check 900 * 901 * Search for any interface with the given flags. Returns NULL if a device 902 * is not found or a pointer to the device. Must be called inside 903 * rcu_read_lock(), and result refcount is unchanged. 904 */ 905 906 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 907 unsigned short mask) 908 { 909 struct net_device *dev, *ret; 910 911 ret = NULL; 912 for_each_netdev_rcu(net, dev) { 913 if (((dev->flags ^ if_flags) & mask) == 0) { 914 ret = dev; 915 break; 916 } 917 } 918 return ret; 919 } 920 EXPORT_SYMBOL(dev_get_by_flags_rcu); 921 922 /** 923 * dev_valid_name - check if name is okay for network device 924 * @name: name string 925 * 926 * Network device names need to be valid file names to 927 * to allow sysfs to work. We also disallow any kind of 928 * whitespace. 929 */ 930 bool dev_valid_name(const char *name) 931 { 932 if (*name == '\0') 933 return false; 934 if (strlen(name) >= IFNAMSIZ) 935 return false; 936 if (!strcmp(name, ".") || !strcmp(name, "..")) 937 return false; 938 939 while (*name) { 940 if (*name == '/' || isspace(*name)) 941 return false; 942 name++; 943 } 944 return true; 945 } 946 EXPORT_SYMBOL(dev_valid_name); 947 948 /** 949 * __dev_alloc_name - allocate a name for a device 950 * @net: network namespace to allocate the device name in 951 * @name: name format string 952 * @buf: scratch buffer and result name string 953 * 954 * Passed a format string - eg "lt%d" it will try and find a suitable 955 * id. It scans list of devices to build up a free map, then chooses 956 * the first empty slot. The caller must hold the dev_base or rtnl lock 957 * while allocating the name and adding the device in order to avoid 958 * duplicates. 959 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 960 * Returns the number of the unit assigned or a negative errno code. 961 */ 962 963 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 964 { 965 int i = 0; 966 const char *p; 967 const int max_netdevices = 8*PAGE_SIZE; 968 unsigned long *inuse; 969 struct net_device *d; 970 971 p = strnchr(name, IFNAMSIZ-1, '%'); 972 if (p) { 973 /* 974 * Verify the string as this thing may have come from 975 * the user. There must be either one "%d" and no other "%" 976 * characters. 977 */ 978 if (p[1] != 'd' || strchr(p + 2, '%')) 979 return -EINVAL; 980 981 /* Use one page as a bit array of possible slots */ 982 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 983 if (!inuse) 984 return -ENOMEM; 985 986 for_each_netdev(net, d) { 987 if (!sscanf(d->name, name, &i)) 988 continue; 989 if (i < 0 || i >= max_netdevices) 990 continue; 991 992 /* avoid cases where sscanf is not exact inverse of printf */ 993 snprintf(buf, IFNAMSIZ, name, i); 994 if (!strncmp(buf, d->name, IFNAMSIZ)) 995 set_bit(i, inuse); 996 } 997 998 i = find_first_zero_bit(inuse, max_netdevices); 999 free_page((unsigned long) inuse); 1000 } 1001 1002 if (buf != name) 1003 snprintf(buf, IFNAMSIZ, name, i); 1004 if (!__dev_get_by_name(net, buf)) 1005 return i; 1006 1007 /* It is possible to run out of possible slots 1008 * when the name is long and there isn't enough space left 1009 * for the digits, or if all bits are used. 1010 */ 1011 return -ENFILE; 1012 } 1013 1014 /** 1015 * dev_alloc_name - allocate a name for a device 1016 * @dev: device 1017 * @name: name format string 1018 * 1019 * Passed a format string - eg "lt%d" it will try and find a suitable 1020 * id. It scans list of devices to build up a free map, then chooses 1021 * the first empty slot. The caller must hold the dev_base or rtnl lock 1022 * while allocating the name and adding the device in order to avoid 1023 * duplicates. 1024 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1025 * Returns the number of the unit assigned or a negative errno code. 1026 */ 1027 1028 int dev_alloc_name(struct net_device *dev, const char *name) 1029 { 1030 char buf[IFNAMSIZ]; 1031 struct net *net; 1032 int ret; 1033 1034 BUG_ON(!dev_net(dev)); 1035 net = dev_net(dev); 1036 ret = __dev_alloc_name(net, name, buf); 1037 if (ret >= 0) 1038 strlcpy(dev->name, buf, IFNAMSIZ); 1039 return ret; 1040 } 1041 EXPORT_SYMBOL(dev_alloc_name); 1042 1043 static int dev_alloc_name_ns(struct net *net, 1044 struct net_device *dev, 1045 const char *name) 1046 { 1047 char buf[IFNAMSIZ]; 1048 int ret; 1049 1050 ret = __dev_alloc_name(net, name, buf); 1051 if (ret >= 0) 1052 strlcpy(dev->name, buf, IFNAMSIZ); 1053 return ret; 1054 } 1055 1056 static int dev_get_valid_name(struct net *net, 1057 struct net_device *dev, 1058 const char *name) 1059 { 1060 BUG_ON(!net); 1061 1062 if (!dev_valid_name(name)) 1063 return -EINVAL; 1064 1065 if (strchr(name, '%')) 1066 return dev_alloc_name_ns(net, dev, name); 1067 else if (__dev_get_by_name(net, name)) 1068 return -EEXIST; 1069 else if (dev->name != name) 1070 strlcpy(dev->name, name, IFNAMSIZ); 1071 1072 return 0; 1073 } 1074 1075 /** 1076 * dev_change_name - change name of a device 1077 * @dev: device 1078 * @newname: name (or format string) must be at least IFNAMSIZ 1079 * 1080 * Change name of a device, can pass format strings "eth%d". 1081 * for wildcarding. 1082 */ 1083 int dev_change_name(struct net_device *dev, const char *newname) 1084 { 1085 char oldname[IFNAMSIZ]; 1086 int err = 0; 1087 int ret; 1088 struct net *net; 1089 1090 ASSERT_RTNL(); 1091 BUG_ON(!dev_net(dev)); 1092 1093 net = dev_net(dev); 1094 if (dev->flags & IFF_UP) 1095 return -EBUSY; 1096 1097 write_seqcount_begin(&devnet_rename_seq); 1098 1099 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1100 write_seqcount_end(&devnet_rename_seq); 1101 return 0; 1102 } 1103 1104 memcpy(oldname, dev->name, IFNAMSIZ); 1105 1106 err = dev_get_valid_name(net, dev, newname); 1107 if (err < 0) { 1108 write_seqcount_end(&devnet_rename_seq); 1109 return err; 1110 } 1111 1112 rollback: 1113 ret = device_rename(&dev->dev, dev->name); 1114 if (ret) { 1115 memcpy(dev->name, oldname, IFNAMSIZ); 1116 write_seqcount_end(&devnet_rename_seq); 1117 return ret; 1118 } 1119 1120 write_seqcount_end(&devnet_rename_seq); 1121 1122 netdev_adjacent_rename_links(dev, oldname); 1123 1124 write_lock_bh(&dev_base_lock); 1125 hlist_del_rcu(&dev->name_hlist); 1126 write_unlock_bh(&dev_base_lock); 1127 1128 synchronize_rcu(); 1129 1130 write_lock_bh(&dev_base_lock); 1131 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1132 write_unlock_bh(&dev_base_lock); 1133 1134 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1135 ret = notifier_to_errno(ret); 1136 1137 if (ret) { 1138 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1139 if (err >= 0) { 1140 err = ret; 1141 write_seqcount_begin(&devnet_rename_seq); 1142 memcpy(dev->name, oldname, IFNAMSIZ); 1143 memcpy(oldname, newname, IFNAMSIZ); 1144 goto rollback; 1145 } else { 1146 pr_err("%s: name change rollback failed: %d\n", 1147 dev->name, ret); 1148 } 1149 } 1150 1151 return err; 1152 } 1153 1154 /** 1155 * dev_set_alias - change ifalias of a device 1156 * @dev: device 1157 * @alias: name up to IFALIASZ 1158 * @len: limit of bytes to copy from info 1159 * 1160 * Set ifalias for a device, 1161 */ 1162 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1163 { 1164 char *new_ifalias; 1165 1166 ASSERT_RTNL(); 1167 1168 if (len >= IFALIASZ) 1169 return -EINVAL; 1170 1171 if (!len) { 1172 kfree(dev->ifalias); 1173 dev->ifalias = NULL; 1174 return 0; 1175 } 1176 1177 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1178 if (!new_ifalias) 1179 return -ENOMEM; 1180 dev->ifalias = new_ifalias; 1181 1182 strlcpy(dev->ifalias, alias, len+1); 1183 return len; 1184 } 1185 1186 1187 /** 1188 * netdev_features_change - device changes features 1189 * @dev: device to cause notification 1190 * 1191 * Called to indicate a device has changed features. 1192 */ 1193 void netdev_features_change(struct net_device *dev) 1194 { 1195 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1196 } 1197 EXPORT_SYMBOL(netdev_features_change); 1198 1199 /** 1200 * netdev_state_change - device changes state 1201 * @dev: device to cause notification 1202 * 1203 * Called to indicate a device has changed state. This function calls 1204 * the notifier chains for netdev_chain and sends a NEWLINK message 1205 * to the routing socket. 1206 */ 1207 void netdev_state_change(struct net_device *dev) 1208 { 1209 if (dev->flags & IFF_UP) { 1210 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1211 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1212 } 1213 } 1214 EXPORT_SYMBOL(netdev_state_change); 1215 1216 /** 1217 * netdev_notify_peers - notify network peers about existence of @dev 1218 * @dev: network device 1219 * 1220 * Generate traffic such that interested network peers are aware of 1221 * @dev, such as by generating a gratuitous ARP. This may be used when 1222 * a device wants to inform the rest of the network about some sort of 1223 * reconfiguration such as a failover event or virtual machine 1224 * migration. 1225 */ 1226 void netdev_notify_peers(struct net_device *dev) 1227 { 1228 rtnl_lock(); 1229 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1230 rtnl_unlock(); 1231 } 1232 EXPORT_SYMBOL(netdev_notify_peers); 1233 1234 static int __dev_open(struct net_device *dev) 1235 { 1236 const struct net_device_ops *ops = dev->netdev_ops; 1237 int ret; 1238 1239 ASSERT_RTNL(); 1240 1241 if (!netif_device_present(dev)) 1242 return -ENODEV; 1243 1244 /* Block netpoll from trying to do any rx path servicing. 1245 * If we don't do this there is a chance ndo_poll_controller 1246 * or ndo_poll may be running while we open the device 1247 */ 1248 netpoll_poll_disable(dev); 1249 1250 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1251 ret = notifier_to_errno(ret); 1252 if (ret) 1253 return ret; 1254 1255 set_bit(__LINK_STATE_START, &dev->state); 1256 1257 if (ops->ndo_validate_addr) 1258 ret = ops->ndo_validate_addr(dev); 1259 1260 if (!ret && ops->ndo_open) 1261 ret = ops->ndo_open(dev); 1262 1263 netpoll_poll_enable(dev); 1264 1265 if (ret) 1266 clear_bit(__LINK_STATE_START, &dev->state); 1267 else { 1268 dev->flags |= IFF_UP; 1269 net_dmaengine_get(); 1270 dev_set_rx_mode(dev); 1271 dev_activate(dev); 1272 add_device_randomness(dev->dev_addr, dev->addr_len); 1273 } 1274 1275 return ret; 1276 } 1277 1278 /** 1279 * dev_open - prepare an interface for use. 1280 * @dev: device to open 1281 * 1282 * Takes a device from down to up state. The device's private open 1283 * function is invoked and then the multicast lists are loaded. Finally 1284 * the device is moved into the up state and a %NETDEV_UP message is 1285 * sent to the netdev notifier chain. 1286 * 1287 * Calling this function on an active interface is a nop. On a failure 1288 * a negative errno code is returned. 1289 */ 1290 int dev_open(struct net_device *dev) 1291 { 1292 int ret; 1293 1294 if (dev->flags & IFF_UP) 1295 return 0; 1296 1297 ret = __dev_open(dev); 1298 if (ret < 0) 1299 return ret; 1300 1301 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1302 call_netdevice_notifiers(NETDEV_UP, dev); 1303 1304 return ret; 1305 } 1306 EXPORT_SYMBOL(dev_open); 1307 1308 static int __dev_close_many(struct list_head *head) 1309 { 1310 struct net_device *dev; 1311 1312 ASSERT_RTNL(); 1313 might_sleep(); 1314 1315 list_for_each_entry(dev, head, close_list) { 1316 /* Temporarily disable netpoll until the interface is down */ 1317 netpoll_poll_disable(dev); 1318 1319 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1320 1321 clear_bit(__LINK_STATE_START, &dev->state); 1322 1323 /* Synchronize to scheduled poll. We cannot touch poll list, it 1324 * can be even on different cpu. So just clear netif_running(). 1325 * 1326 * dev->stop() will invoke napi_disable() on all of it's 1327 * napi_struct instances on this device. 1328 */ 1329 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1330 } 1331 1332 dev_deactivate_many(head); 1333 1334 list_for_each_entry(dev, head, close_list) { 1335 const struct net_device_ops *ops = dev->netdev_ops; 1336 1337 /* 1338 * Call the device specific close. This cannot fail. 1339 * Only if device is UP 1340 * 1341 * We allow it to be called even after a DETACH hot-plug 1342 * event. 1343 */ 1344 if (ops->ndo_stop) 1345 ops->ndo_stop(dev); 1346 1347 dev->flags &= ~IFF_UP; 1348 net_dmaengine_put(); 1349 netpoll_poll_enable(dev); 1350 } 1351 1352 return 0; 1353 } 1354 1355 static int __dev_close(struct net_device *dev) 1356 { 1357 int retval; 1358 LIST_HEAD(single); 1359 1360 list_add(&dev->close_list, &single); 1361 retval = __dev_close_many(&single); 1362 list_del(&single); 1363 1364 return retval; 1365 } 1366 1367 static int dev_close_many(struct list_head *head) 1368 { 1369 struct net_device *dev, *tmp; 1370 1371 /* Remove the devices that don't need to be closed */ 1372 list_for_each_entry_safe(dev, tmp, head, close_list) 1373 if (!(dev->flags & IFF_UP)) 1374 list_del_init(&dev->close_list); 1375 1376 __dev_close_many(head); 1377 1378 list_for_each_entry_safe(dev, tmp, head, close_list) { 1379 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1380 call_netdevice_notifiers(NETDEV_DOWN, dev); 1381 list_del_init(&dev->close_list); 1382 } 1383 1384 return 0; 1385 } 1386 1387 /** 1388 * dev_close - shutdown an interface. 1389 * @dev: device to shutdown 1390 * 1391 * This function moves an active device into down state. A 1392 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1393 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1394 * chain. 1395 */ 1396 int dev_close(struct net_device *dev) 1397 { 1398 if (dev->flags & IFF_UP) { 1399 LIST_HEAD(single); 1400 1401 list_add(&dev->close_list, &single); 1402 dev_close_many(&single); 1403 list_del(&single); 1404 } 1405 return 0; 1406 } 1407 EXPORT_SYMBOL(dev_close); 1408 1409 1410 /** 1411 * dev_disable_lro - disable Large Receive Offload on a device 1412 * @dev: device 1413 * 1414 * Disable Large Receive Offload (LRO) on a net device. Must be 1415 * called under RTNL. This is needed if received packets may be 1416 * forwarded to another interface. 1417 */ 1418 void dev_disable_lro(struct net_device *dev) 1419 { 1420 /* 1421 * If we're trying to disable lro on a vlan device 1422 * use the underlying physical device instead 1423 */ 1424 if (is_vlan_dev(dev)) 1425 dev = vlan_dev_real_dev(dev); 1426 1427 /* the same for macvlan devices */ 1428 if (netif_is_macvlan(dev)) 1429 dev = macvlan_dev_real_dev(dev); 1430 1431 dev->wanted_features &= ~NETIF_F_LRO; 1432 netdev_update_features(dev); 1433 1434 if (unlikely(dev->features & NETIF_F_LRO)) 1435 netdev_WARN(dev, "failed to disable LRO!\n"); 1436 } 1437 EXPORT_SYMBOL(dev_disable_lro); 1438 1439 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1440 struct net_device *dev) 1441 { 1442 struct netdev_notifier_info info; 1443 1444 netdev_notifier_info_init(&info, dev); 1445 return nb->notifier_call(nb, val, &info); 1446 } 1447 1448 static int dev_boot_phase = 1; 1449 1450 /** 1451 * register_netdevice_notifier - register a network notifier block 1452 * @nb: notifier 1453 * 1454 * Register a notifier to be called when network device events occur. 1455 * The notifier passed is linked into the kernel structures and must 1456 * not be reused until it has been unregistered. A negative errno code 1457 * is returned on a failure. 1458 * 1459 * When registered all registration and up events are replayed 1460 * to the new notifier to allow device to have a race free 1461 * view of the network device list. 1462 */ 1463 1464 int register_netdevice_notifier(struct notifier_block *nb) 1465 { 1466 struct net_device *dev; 1467 struct net_device *last; 1468 struct net *net; 1469 int err; 1470 1471 rtnl_lock(); 1472 err = raw_notifier_chain_register(&netdev_chain, nb); 1473 if (err) 1474 goto unlock; 1475 if (dev_boot_phase) 1476 goto unlock; 1477 for_each_net(net) { 1478 for_each_netdev(net, dev) { 1479 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1480 err = notifier_to_errno(err); 1481 if (err) 1482 goto rollback; 1483 1484 if (!(dev->flags & IFF_UP)) 1485 continue; 1486 1487 call_netdevice_notifier(nb, NETDEV_UP, dev); 1488 } 1489 } 1490 1491 unlock: 1492 rtnl_unlock(); 1493 return err; 1494 1495 rollback: 1496 last = dev; 1497 for_each_net(net) { 1498 for_each_netdev(net, dev) { 1499 if (dev == last) 1500 goto outroll; 1501 1502 if (dev->flags & IFF_UP) { 1503 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1504 dev); 1505 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1506 } 1507 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1508 } 1509 } 1510 1511 outroll: 1512 raw_notifier_chain_unregister(&netdev_chain, nb); 1513 goto unlock; 1514 } 1515 EXPORT_SYMBOL(register_netdevice_notifier); 1516 1517 /** 1518 * unregister_netdevice_notifier - unregister a network notifier block 1519 * @nb: notifier 1520 * 1521 * Unregister a notifier previously registered by 1522 * register_netdevice_notifier(). The notifier is unlinked into the 1523 * kernel structures and may then be reused. A negative errno code 1524 * is returned on a failure. 1525 * 1526 * After unregistering unregister and down device events are synthesized 1527 * for all devices on the device list to the removed notifier to remove 1528 * the need for special case cleanup code. 1529 */ 1530 1531 int unregister_netdevice_notifier(struct notifier_block *nb) 1532 { 1533 struct net_device *dev; 1534 struct net *net; 1535 int err; 1536 1537 rtnl_lock(); 1538 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1539 if (err) 1540 goto unlock; 1541 1542 for_each_net(net) { 1543 for_each_netdev(net, dev) { 1544 if (dev->flags & IFF_UP) { 1545 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1546 dev); 1547 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1548 } 1549 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1550 } 1551 } 1552 unlock: 1553 rtnl_unlock(); 1554 return err; 1555 } 1556 EXPORT_SYMBOL(unregister_netdevice_notifier); 1557 1558 /** 1559 * call_netdevice_notifiers_info - call all network notifier blocks 1560 * @val: value passed unmodified to notifier function 1561 * @dev: net_device pointer passed unmodified to notifier function 1562 * @info: notifier information data 1563 * 1564 * Call all network notifier blocks. Parameters and return value 1565 * are as for raw_notifier_call_chain(). 1566 */ 1567 1568 static int call_netdevice_notifiers_info(unsigned long val, 1569 struct net_device *dev, 1570 struct netdev_notifier_info *info) 1571 { 1572 ASSERT_RTNL(); 1573 netdev_notifier_info_init(info, dev); 1574 return raw_notifier_call_chain(&netdev_chain, val, info); 1575 } 1576 1577 /** 1578 * call_netdevice_notifiers - call all network notifier blocks 1579 * @val: value passed unmodified to notifier function 1580 * @dev: net_device pointer passed unmodified to notifier function 1581 * 1582 * Call all network notifier blocks. Parameters and return value 1583 * are as for raw_notifier_call_chain(). 1584 */ 1585 1586 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1587 { 1588 struct netdev_notifier_info info; 1589 1590 return call_netdevice_notifiers_info(val, dev, &info); 1591 } 1592 EXPORT_SYMBOL(call_netdevice_notifiers); 1593 1594 static struct static_key netstamp_needed __read_mostly; 1595 #ifdef HAVE_JUMP_LABEL 1596 /* We are not allowed to call static_key_slow_dec() from irq context 1597 * If net_disable_timestamp() is called from irq context, defer the 1598 * static_key_slow_dec() calls. 1599 */ 1600 static atomic_t netstamp_needed_deferred; 1601 #endif 1602 1603 void net_enable_timestamp(void) 1604 { 1605 #ifdef HAVE_JUMP_LABEL 1606 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1607 1608 if (deferred) { 1609 while (--deferred) 1610 static_key_slow_dec(&netstamp_needed); 1611 return; 1612 } 1613 #endif 1614 static_key_slow_inc(&netstamp_needed); 1615 } 1616 EXPORT_SYMBOL(net_enable_timestamp); 1617 1618 void net_disable_timestamp(void) 1619 { 1620 #ifdef HAVE_JUMP_LABEL 1621 if (in_interrupt()) { 1622 atomic_inc(&netstamp_needed_deferred); 1623 return; 1624 } 1625 #endif 1626 static_key_slow_dec(&netstamp_needed); 1627 } 1628 EXPORT_SYMBOL(net_disable_timestamp); 1629 1630 static inline void net_timestamp_set(struct sk_buff *skb) 1631 { 1632 skb->tstamp.tv64 = 0; 1633 if (static_key_false(&netstamp_needed)) 1634 __net_timestamp(skb); 1635 } 1636 1637 #define net_timestamp_check(COND, SKB) \ 1638 if (static_key_false(&netstamp_needed)) { \ 1639 if ((COND) && !(SKB)->tstamp.tv64) \ 1640 __net_timestamp(SKB); \ 1641 } \ 1642 1643 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb) 1644 { 1645 unsigned int len; 1646 1647 if (!(dev->flags & IFF_UP)) 1648 return false; 1649 1650 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1651 if (skb->len <= len) 1652 return true; 1653 1654 /* if TSO is enabled, we don't care about the length as the packet 1655 * could be forwarded without being segmented before 1656 */ 1657 if (skb_is_gso(skb)) 1658 return true; 1659 1660 return false; 1661 } 1662 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1663 1664 /** 1665 * dev_forward_skb - loopback an skb to another netif 1666 * 1667 * @dev: destination network device 1668 * @skb: buffer to forward 1669 * 1670 * return values: 1671 * NET_RX_SUCCESS (no congestion) 1672 * NET_RX_DROP (packet was dropped, but freed) 1673 * 1674 * dev_forward_skb can be used for injecting an skb from the 1675 * start_xmit function of one device into the receive queue 1676 * of another device. 1677 * 1678 * The receiving device may be in another namespace, so 1679 * we have to clear all information in the skb that could 1680 * impact namespace isolation. 1681 */ 1682 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1683 { 1684 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1685 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1686 atomic_long_inc(&dev->rx_dropped); 1687 kfree_skb(skb); 1688 return NET_RX_DROP; 1689 } 1690 } 1691 1692 if (unlikely(!is_skb_forwardable(dev, skb))) { 1693 atomic_long_inc(&dev->rx_dropped); 1694 kfree_skb(skb); 1695 return NET_RX_DROP; 1696 } 1697 1698 skb_scrub_packet(skb, true); 1699 skb->protocol = eth_type_trans(skb, dev); 1700 1701 return netif_rx_internal(skb); 1702 } 1703 EXPORT_SYMBOL_GPL(dev_forward_skb); 1704 1705 static inline int deliver_skb(struct sk_buff *skb, 1706 struct packet_type *pt_prev, 1707 struct net_device *orig_dev) 1708 { 1709 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1710 return -ENOMEM; 1711 atomic_inc(&skb->users); 1712 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1713 } 1714 1715 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1716 { 1717 if (!ptype->af_packet_priv || !skb->sk) 1718 return false; 1719 1720 if (ptype->id_match) 1721 return ptype->id_match(ptype, skb->sk); 1722 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1723 return true; 1724 1725 return false; 1726 } 1727 1728 /* 1729 * Support routine. Sends outgoing frames to any network 1730 * taps currently in use. 1731 */ 1732 1733 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1734 { 1735 struct packet_type *ptype; 1736 struct sk_buff *skb2 = NULL; 1737 struct packet_type *pt_prev = NULL; 1738 1739 rcu_read_lock(); 1740 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1741 /* Never send packets back to the socket 1742 * they originated from - MvS (miquels@drinkel.ow.org) 1743 */ 1744 if ((ptype->dev == dev || !ptype->dev) && 1745 (!skb_loop_sk(ptype, skb))) { 1746 if (pt_prev) { 1747 deliver_skb(skb2, pt_prev, skb->dev); 1748 pt_prev = ptype; 1749 continue; 1750 } 1751 1752 skb2 = skb_clone(skb, GFP_ATOMIC); 1753 if (!skb2) 1754 break; 1755 1756 net_timestamp_set(skb2); 1757 1758 /* skb->nh should be correctly 1759 set by sender, so that the second statement is 1760 just protection against buggy protocols. 1761 */ 1762 skb_reset_mac_header(skb2); 1763 1764 if (skb_network_header(skb2) < skb2->data || 1765 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1766 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1767 ntohs(skb2->protocol), 1768 dev->name); 1769 skb_reset_network_header(skb2); 1770 } 1771 1772 skb2->transport_header = skb2->network_header; 1773 skb2->pkt_type = PACKET_OUTGOING; 1774 pt_prev = ptype; 1775 } 1776 } 1777 if (pt_prev) 1778 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1779 rcu_read_unlock(); 1780 } 1781 1782 /** 1783 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1784 * @dev: Network device 1785 * @txq: number of queues available 1786 * 1787 * If real_num_tx_queues is changed the tc mappings may no longer be 1788 * valid. To resolve this verify the tc mapping remains valid and if 1789 * not NULL the mapping. With no priorities mapping to this 1790 * offset/count pair it will no longer be used. In the worst case TC0 1791 * is invalid nothing can be done so disable priority mappings. If is 1792 * expected that drivers will fix this mapping if they can before 1793 * calling netif_set_real_num_tx_queues. 1794 */ 1795 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1796 { 1797 int i; 1798 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1799 1800 /* If TC0 is invalidated disable TC mapping */ 1801 if (tc->offset + tc->count > txq) { 1802 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1803 dev->num_tc = 0; 1804 return; 1805 } 1806 1807 /* Invalidated prio to tc mappings set to TC0 */ 1808 for (i = 1; i < TC_BITMASK + 1; i++) { 1809 int q = netdev_get_prio_tc_map(dev, i); 1810 1811 tc = &dev->tc_to_txq[q]; 1812 if (tc->offset + tc->count > txq) { 1813 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1814 i, q); 1815 netdev_set_prio_tc_map(dev, i, 0); 1816 } 1817 } 1818 } 1819 1820 #ifdef CONFIG_XPS 1821 static DEFINE_MUTEX(xps_map_mutex); 1822 #define xmap_dereference(P) \ 1823 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1824 1825 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps, 1826 int cpu, u16 index) 1827 { 1828 struct xps_map *map = NULL; 1829 int pos; 1830 1831 if (dev_maps) 1832 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1833 1834 for (pos = 0; map && pos < map->len; pos++) { 1835 if (map->queues[pos] == index) { 1836 if (map->len > 1) { 1837 map->queues[pos] = map->queues[--map->len]; 1838 } else { 1839 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL); 1840 kfree_rcu(map, rcu); 1841 map = NULL; 1842 } 1843 break; 1844 } 1845 } 1846 1847 return map; 1848 } 1849 1850 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 1851 { 1852 struct xps_dev_maps *dev_maps; 1853 int cpu, i; 1854 bool active = false; 1855 1856 mutex_lock(&xps_map_mutex); 1857 dev_maps = xmap_dereference(dev->xps_maps); 1858 1859 if (!dev_maps) 1860 goto out_no_maps; 1861 1862 for_each_possible_cpu(cpu) { 1863 for (i = index; i < dev->num_tx_queues; i++) { 1864 if (!remove_xps_queue(dev_maps, cpu, i)) 1865 break; 1866 } 1867 if (i == dev->num_tx_queues) 1868 active = true; 1869 } 1870 1871 if (!active) { 1872 RCU_INIT_POINTER(dev->xps_maps, NULL); 1873 kfree_rcu(dev_maps, rcu); 1874 } 1875 1876 for (i = index; i < dev->num_tx_queues; i++) 1877 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 1878 NUMA_NO_NODE); 1879 1880 out_no_maps: 1881 mutex_unlock(&xps_map_mutex); 1882 } 1883 1884 static struct xps_map *expand_xps_map(struct xps_map *map, 1885 int cpu, u16 index) 1886 { 1887 struct xps_map *new_map; 1888 int alloc_len = XPS_MIN_MAP_ALLOC; 1889 int i, pos; 1890 1891 for (pos = 0; map && pos < map->len; pos++) { 1892 if (map->queues[pos] != index) 1893 continue; 1894 return map; 1895 } 1896 1897 /* Need to add queue to this CPU's existing map */ 1898 if (map) { 1899 if (pos < map->alloc_len) 1900 return map; 1901 1902 alloc_len = map->alloc_len * 2; 1903 } 1904 1905 /* Need to allocate new map to store queue on this CPU's map */ 1906 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 1907 cpu_to_node(cpu)); 1908 if (!new_map) 1909 return NULL; 1910 1911 for (i = 0; i < pos; i++) 1912 new_map->queues[i] = map->queues[i]; 1913 new_map->alloc_len = alloc_len; 1914 new_map->len = pos; 1915 1916 return new_map; 1917 } 1918 1919 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 1920 u16 index) 1921 { 1922 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 1923 struct xps_map *map, *new_map; 1924 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES); 1925 int cpu, numa_node_id = -2; 1926 bool active = false; 1927 1928 mutex_lock(&xps_map_mutex); 1929 1930 dev_maps = xmap_dereference(dev->xps_maps); 1931 1932 /* allocate memory for queue storage */ 1933 for_each_online_cpu(cpu) { 1934 if (!cpumask_test_cpu(cpu, mask)) 1935 continue; 1936 1937 if (!new_dev_maps) 1938 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 1939 if (!new_dev_maps) { 1940 mutex_unlock(&xps_map_mutex); 1941 return -ENOMEM; 1942 } 1943 1944 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 1945 NULL; 1946 1947 map = expand_xps_map(map, cpu, index); 1948 if (!map) 1949 goto error; 1950 1951 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1952 } 1953 1954 if (!new_dev_maps) 1955 goto out_no_new_maps; 1956 1957 for_each_possible_cpu(cpu) { 1958 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 1959 /* add queue to CPU maps */ 1960 int pos = 0; 1961 1962 map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1963 while ((pos < map->len) && (map->queues[pos] != index)) 1964 pos++; 1965 1966 if (pos == map->len) 1967 map->queues[map->len++] = index; 1968 #ifdef CONFIG_NUMA 1969 if (numa_node_id == -2) 1970 numa_node_id = cpu_to_node(cpu); 1971 else if (numa_node_id != cpu_to_node(cpu)) 1972 numa_node_id = -1; 1973 #endif 1974 } else if (dev_maps) { 1975 /* fill in the new device map from the old device map */ 1976 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1977 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1978 } 1979 1980 } 1981 1982 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 1983 1984 /* Cleanup old maps */ 1985 if (dev_maps) { 1986 for_each_possible_cpu(cpu) { 1987 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1988 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1989 if (map && map != new_map) 1990 kfree_rcu(map, rcu); 1991 } 1992 1993 kfree_rcu(dev_maps, rcu); 1994 } 1995 1996 dev_maps = new_dev_maps; 1997 active = true; 1998 1999 out_no_new_maps: 2000 /* update Tx queue numa node */ 2001 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2002 (numa_node_id >= 0) ? numa_node_id : 2003 NUMA_NO_NODE); 2004 2005 if (!dev_maps) 2006 goto out_no_maps; 2007 2008 /* removes queue from unused CPUs */ 2009 for_each_possible_cpu(cpu) { 2010 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) 2011 continue; 2012 2013 if (remove_xps_queue(dev_maps, cpu, index)) 2014 active = true; 2015 } 2016 2017 /* free map if not active */ 2018 if (!active) { 2019 RCU_INIT_POINTER(dev->xps_maps, NULL); 2020 kfree_rcu(dev_maps, rcu); 2021 } 2022 2023 out_no_maps: 2024 mutex_unlock(&xps_map_mutex); 2025 2026 return 0; 2027 error: 2028 /* remove any maps that we added */ 2029 for_each_possible_cpu(cpu) { 2030 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2031 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2032 NULL; 2033 if (new_map && new_map != map) 2034 kfree(new_map); 2035 } 2036 2037 mutex_unlock(&xps_map_mutex); 2038 2039 kfree(new_dev_maps); 2040 return -ENOMEM; 2041 } 2042 EXPORT_SYMBOL(netif_set_xps_queue); 2043 2044 #endif 2045 /* 2046 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2047 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2048 */ 2049 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2050 { 2051 int rc; 2052 2053 if (txq < 1 || txq > dev->num_tx_queues) 2054 return -EINVAL; 2055 2056 if (dev->reg_state == NETREG_REGISTERED || 2057 dev->reg_state == NETREG_UNREGISTERING) { 2058 ASSERT_RTNL(); 2059 2060 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2061 txq); 2062 if (rc) 2063 return rc; 2064 2065 if (dev->num_tc) 2066 netif_setup_tc(dev, txq); 2067 2068 if (txq < dev->real_num_tx_queues) { 2069 qdisc_reset_all_tx_gt(dev, txq); 2070 #ifdef CONFIG_XPS 2071 netif_reset_xps_queues_gt(dev, txq); 2072 #endif 2073 } 2074 } 2075 2076 dev->real_num_tx_queues = txq; 2077 return 0; 2078 } 2079 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2080 2081 #ifdef CONFIG_SYSFS 2082 /** 2083 * netif_set_real_num_rx_queues - set actual number of RX queues used 2084 * @dev: Network device 2085 * @rxq: Actual number of RX queues 2086 * 2087 * This must be called either with the rtnl_lock held or before 2088 * registration of the net device. Returns 0 on success, or a 2089 * negative error code. If called before registration, it always 2090 * succeeds. 2091 */ 2092 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2093 { 2094 int rc; 2095 2096 if (rxq < 1 || rxq > dev->num_rx_queues) 2097 return -EINVAL; 2098 2099 if (dev->reg_state == NETREG_REGISTERED) { 2100 ASSERT_RTNL(); 2101 2102 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2103 rxq); 2104 if (rc) 2105 return rc; 2106 } 2107 2108 dev->real_num_rx_queues = rxq; 2109 return 0; 2110 } 2111 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2112 #endif 2113 2114 /** 2115 * netif_get_num_default_rss_queues - default number of RSS queues 2116 * 2117 * This routine should set an upper limit on the number of RSS queues 2118 * used by default by multiqueue devices. 2119 */ 2120 int netif_get_num_default_rss_queues(void) 2121 { 2122 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2123 } 2124 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2125 2126 static inline void __netif_reschedule(struct Qdisc *q) 2127 { 2128 struct softnet_data *sd; 2129 unsigned long flags; 2130 2131 local_irq_save(flags); 2132 sd = &__get_cpu_var(softnet_data); 2133 q->next_sched = NULL; 2134 *sd->output_queue_tailp = q; 2135 sd->output_queue_tailp = &q->next_sched; 2136 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2137 local_irq_restore(flags); 2138 } 2139 2140 void __netif_schedule(struct Qdisc *q) 2141 { 2142 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2143 __netif_reschedule(q); 2144 } 2145 EXPORT_SYMBOL(__netif_schedule); 2146 2147 struct dev_kfree_skb_cb { 2148 enum skb_free_reason reason; 2149 }; 2150 2151 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2152 { 2153 return (struct dev_kfree_skb_cb *)skb->cb; 2154 } 2155 2156 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2157 { 2158 unsigned long flags; 2159 2160 if (likely(atomic_read(&skb->users) == 1)) { 2161 smp_rmb(); 2162 atomic_set(&skb->users, 0); 2163 } else if (likely(!atomic_dec_and_test(&skb->users))) { 2164 return; 2165 } 2166 get_kfree_skb_cb(skb)->reason = reason; 2167 local_irq_save(flags); 2168 skb->next = __this_cpu_read(softnet_data.completion_queue); 2169 __this_cpu_write(softnet_data.completion_queue, skb); 2170 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2171 local_irq_restore(flags); 2172 } 2173 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2174 2175 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2176 { 2177 if (in_irq() || irqs_disabled()) 2178 __dev_kfree_skb_irq(skb, reason); 2179 else 2180 dev_kfree_skb(skb); 2181 } 2182 EXPORT_SYMBOL(__dev_kfree_skb_any); 2183 2184 2185 /** 2186 * netif_device_detach - mark device as removed 2187 * @dev: network device 2188 * 2189 * Mark device as removed from system and therefore no longer available. 2190 */ 2191 void netif_device_detach(struct net_device *dev) 2192 { 2193 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2194 netif_running(dev)) { 2195 netif_tx_stop_all_queues(dev); 2196 } 2197 } 2198 EXPORT_SYMBOL(netif_device_detach); 2199 2200 /** 2201 * netif_device_attach - mark device as attached 2202 * @dev: network device 2203 * 2204 * Mark device as attached from system and restart if needed. 2205 */ 2206 void netif_device_attach(struct net_device *dev) 2207 { 2208 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2209 netif_running(dev)) { 2210 netif_tx_wake_all_queues(dev); 2211 __netdev_watchdog_up(dev); 2212 } 2213 } 2214 EXPORT_SYMBOL(netif_device_attach); 2215 2216 static void skb_warn_bad_offload(const struct sk_buff *skb) 2217 { 2218 static const netdev_features_t null_features = 0; 2219 struct net_device *dev = skb->dev; 2220 const char *driver = ""; 2221 2222 if (!net_ratelimit()) 2223 return; 2224 2225 if (dev && dev->dev.parent) 2226 driver = dev_driver_string(dev->dev.parent); 2227 2228 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2229 "gso_type=%d ip_summed=%d\n", 2230 driver, dev ? &dev->features : &null_features, 2231 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2232 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2233 skb_shinfo(skb)->gso_type, skb->ip_summed); 2234 } 2235 2236 /* 2237 * Invalidate hardware checksum when packet is to be mangled, and 2238 * complete checksum manually on outgoing path. 2239 */ 2240 int skb_checksum_help(struct sk_buff *skb) 2241 { 2242 __wsum csum; 2243 int ret = 0, offset; 2244 2245 if (skb->ip_summed == CHECKSUM_COMPLETE) 2246 goto out_set_summed; 2247 2248 if (unlikely(skb_shinfo(skb)->gso_size)) { 2249 skb_warn_bad_offload(skb); 2250 return -EINVAL; 2251 } 2252 2253 /* Before computing a checksum, we should make sure no frag could 2254 * be modified by an external entity : checksum could be wrong. 2255 */ 2256 if (skb_has_shared_frag(skb)) { 2257 ret = __skb_linearize(skb); 2258 if (ret) 2259 goto out; 2260 } 2261 2262 offset = skb_checksum_start_offset(skb); 2263 BUG_ON(offset >= skb_headlen(skb)); 2264 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2265 2266 offset += skb->csum_offset; 2267 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2268 2269 if (skb_cloned(skb) && 2270 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2271 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2272 if (ret) 2273 goto out; 2274 } 2275 2276 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 2277 out_set_summed: 2278 skb->ip_summed = CHECKSUM_NONE; 2279 out: 2280 return ret; 2281 } 2282 EXPORT_SYMBOL(skb_checksum_help); 2283 2284 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2285 { 2286 __be16 type = skb->protocol; 2287 int vlan_depth = ETH_HLEN; 2288 2289 /* Tunnel gso handlers can set protocol to ethernet. */ 2290 if (type == htons(ETH_P_TEB)) { 2291 struct ethhdr *eth; 2292 2293 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2294 return 0; 2295 2296 eth = (struct ethhdr *)skb_mac_header(skb); 2297 type = eth->h_proto; 2298 } 2299 2300 while (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) { 2301 struct vlan_hdr *vh; 2302 2303 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 2304 return 0; 2305 2306 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 2307 type = vh->h_vlan_encapsulated_proto; 2308 vlan_depth += VLAN_HLEN; 2309 } 2310 2311 *depth = vlan_depth; 2312 2313 return type; 2314 } 2315 2316 /** 2317 * skb_mac_gso_segment - mac layer segmentation handler. 2318 * @skb: buffer to segment 2319 * @features: features for the output path (see dev->features) 2320 */ 2321 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2322 netdev_features_t features) 2323 { 2324 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2325 struct packet_offload *ptype; 2326 int vlan_depth = skb->mac_len; 2327 __be16 type = skb_network_protocol(skb, &vlan_depth); 2328 2329 if (unlikely(!type)) 2330 return ERR_PTR(-EINVAL); 2331 2332 __skb_pull(skb, vlan_depth); 2333 2334 rcu_read_lock(); 2335 list_for_each_entry_rcu(ptype, &offload_base, list) { 2336 if (ptype->type == type && ptype->callbacks.gso_segment) { 2337 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 2338 int err; 2339 2340 err = ptype->callbacks.gso_send_check(skb); 2341 segs = ERR_PTR(err); 2342 if (err || skb_gso_ok(skb, features)) 2343 break; 2344 __skb_push(skb, (skb->data - 2345 skb_network_header(skb))); 2346 } 2347 segs = ptype->callbacks.gso_segment(skb, features); 2348 break; 2349 } 2350 } 2351 rcu_read_unlock(); 2352 2353 __skb_push(skb, skb->data - skb_mac_header(skb)); 2354 2355 return segs; 2356 } 2357 EXPORT_SYMBOL(skb_mac_gso_segment); 2358 2359 2360 /* openvswitch calls this on rx path, so we need a different check. 2361 */ 2362 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2363 { 2364 if (tx_path) 2365 return skb->ip_summed != CHECKSUM_PARTIAL; 2366 else 2367 return skb->ip_summed == CHECKSUM_NONE; 2368 } 2369 2370 /** 2371 * __skb_gso_segment - Perform segmentation on skb. 2372 * @skb: buffer to segment 2373 * @features: features for the output path (see dev->features) 2374 * @tx_path: whether it is called in TX path 2375 * 2376 * This function segments the given skb and returns a list of segments. 2377 * 2378 * It may return NULL if the skb requires no segmentation. This is 2379 * only possible when GSO is used for verifying header integrity. 2380 */ 2381 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2382 netdev_features_t features, bool tx_path) 2383 { 2384 if (unlikely(skb_needs_check(skb, tx_path))) { 2385 int err; 2386 2387 skb_warn_bad_offload(skb); 2388 2389 if (skb_header_cloned(skb) && 2390 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 2391 return ERR_PTR(err); 2392 } 2393 2394 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2395 SKB_GSO_CB(skb)->encap_level = 0; 2396 2397 skb_reset_mac_header(skb); 2398 skb_reset_mac_len(skb); 2399 2400 return skb_mac_gso_segment(skb, features); 2401 } 2402 EXPORT_SYMBOL(__skb_gso_segment); 2403 2404 /* Take action when hardware reception checksum errors are detected. */ 2405 #ifdef CONFIG_BUG 2406 void netdev_rx_csum_fault(struct net_device *dev) 2407 { 2408 if (net_ratelimit()) { 2409 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2410 dump_stack(); 2411 } 2412 } 2413 EXPORT_SYMBOL(netdev_rx_csum_fault); 2414 #endif 2415 2416 /* Actually, we should eliminate this check as soon as we know, that: 2417 * 1. IOMMU is present and allows to map all the memory. 2418 * 2. No high memory really exists on this machine. 2419 */ 2420 2421 static int illegal_highdma(const struct net_device *dev, struct sk_buff *skb) 2422 { 2423 #ifdef CONFIG_HIGHMEM 2424 int i; 2425 if (!(dev->features & NETIF_F_HIGHDMA)) { 2426 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2427 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2428 if (PageHighMem(skb_frag_page(frag))) 2429 return 1; 2430 } 2431 } 2432 2433 if (PCI_DMA_BUS_IS_PHYS) { 2434 struct device *pdev = dev->dev.parent; 2435 2436 if (!pdev) 2437 return 0; 2438 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2439 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2440 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2441 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2442 return 1; 2443 } 2444 } 2445 #endif 2446 return 0; 2447 } 2448 2449 struct dev_gso_cb { 2450 void (*destructor)(struct sk_buff *skb); 2451 }; 2452 2453 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 2454 2455 static void dev_gso_skb_destructor(struct sk_buff *skb) 2456 { 2457 struct dev_gso_cb *cb; 2458 2459 kfree_skb_list(skb->next); 2460 skb->next = NULL; 2461 2462 cb = DEV_GSO_CB(skb); 2463 if (cb->destructor) 2464 cb->destructor(skb); 2465 } 2466 2467 /** 2468 * dev_gso_segment - Perform emulated hardware segmentation on skb. 2469 * @skb: buffer to segment 2470 * @features: device features as applicable to this skb 2471 * 2472 * This function segments the given skb and stores the list of segments 2473 * in skb->next. 2474 */ 2475 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features) 2476 { 2477 struct sk_buff *segs; 2478 2479 segs = skb_gso_segment(skb, features); 2480 2481 /* Verifying header integrity only. */ 2482 if (!segs) 2483 return 0; 2484 2485 if (IS_ERR(segs)) 2486 return PTR_ERR(segs); 2487 2488 skb->next = segs; 2489 DEV_GSO_CB(skb)->destructor = skb->destructor; 2490 skb->destructor = dev_gso_skb_destructor; 2491 2492 return 0; 2493 } 2494 2495 static netdev_features_t harmonize_features(struct sk_buff *skb, 2496 const struct net_device *dev, 2497 netdev_features_t features) 2498 { 2499 int tmp; 2500 2501 if (skb->ip_summed != CHECKSUM_NONE && 2502 !can_checksum_protocol(features, skb_network_protocol(skb, &tmp))) { 2503 features &= ~NETIF_F_ALL_CSUM; 2504 } else if (illegal_highdma(dev, skb)) { 2505 features &= ~NETIF_F_SG; 2506 } 2507 2508 return features; 2509 } 2510 2511 netdev_features_t netif_skb_dev_features(struct sk_buff *skb, 2512 const struct net_device *dev) 2513 { 2514 __be16 protocol = skb->protocol; 2515 netdev_features_t features = dev->features; 2516 2517 if (skb_shinfo(skb)->gso_segs > dev->gso_max_segs) 2518 features &= ~NETIF_F_GSO_MASK; 2519 2520 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) { 2521 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2522 protocol = veh->h_vlan_encapsulated_proto; 2523 } else if (!vlan_tx_tag_present(skb)) { 2524 return harmonize_features(skb, dev, features); 2525 } 2526 2527 features &= (dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX | 2528 NETIF_F_HW_VLAN_STAG_TX); 2529 2530 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) 2531 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2532 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX | 2533 NETIF_F_HW_VLAN_STAG_TX; 2534 2535 return harmonize_features(skb, dev, features); 2536 } 2537 EXPORT_SYMBOL(netif_skb_dev_features); 2538 2539 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2540 struct netdev_queue *txq) 2541 { 2542 const struct net_device_ops *ops = dev->netdev_ops; 2543 int rc = NETDEV_TX_OK; 2544 unsigned int skb_len; 2545 2546 if (likely(!skb->next)) { 2547 netdev_features_t features; 2548 2549 /* 2550 * If device doesn't need skb->dst, release it right now while 2551 * its hot in this cpu cache 2552 */ 2553 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2554 skb_dst_drop(skb); 2555 2556 features = netif_skb_features(skb); 2557 2558 if (vlan_tx_tag_present(skb) && 2559 !vlan_hw_offload_capable(features, skb->vlan_proto)) { 2560 skb = __vlan_put_tag(skb, skb->vlan_proto, 2561 vlan_tx_tag_get(skb)); 2562 if (unlikely(!skb)) 2563 goto out; 2564 2565 skb->vlan_tci = 0; 2566 } 2567 2568 /* If encapsulation offload request, verify we are testing 2569 * hardware encapsulation features instead of standard 2570 * features for the netdev 2571 */ 2572 if (skb->encapsulation) 2573 features &= dev->hw_enc_features; 2574 2575 if (netif_needs_gso(skb, features)) { 2576 if (unlikely(dev_gso_segment(skb, features))) 2577 goto out_kfree_skb; 2578 if (skb->next) 2579 goto gso; 2580 } else { 2581 if (skb_needs_linearize(skb, features) && 2582 __skb_linearize(skb)) 2583 goto out_kfree_skb; 2584 2585 /* If packet is not checksummed and device does not 2586 * support checksumming for this protocol, complete 2587 * checksumming here. 2588 */ 2589 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2590 if (skb->encapsulation) 2591 skb_set_inner_transport_header(skb, 2592 skb_checksum_start_offset(skb)); 2593 else 2594 skb_set_transport_header(skb, 2595 skb_checksum_start_offset(skb)); 2596 if (!(features & NETIF_F_ALL_CSUM) && 2597 skb_checksum_help(skb)) 2598 goto out_kfree_skb; 2599 } 2600 } 2601 2602 if (!list_empty(&ptype_all)) 2603 dev_queue_xmit_nit(skb, dev); 2604 2605 skb_len = skb->len; 2606 trace_net_dev_start_xmit(skb, dev); 2607 rc = ops->ndo_start_xmit(skb, dev); 2608 trace_net_dev_xmit(skb, rc, dev, skb_len); 2609 if (rc == NETDEV_TX_OK) 2610 txq_trans_update(txq); 2611 return rc; 2612 } 2613 2614 gso: 2615 do { 2616 struct sk_buff *nskb = skb->next; 2617 2618 skb->next = nskb->next; 2619 nskb->next = NULL; 2620 2621 if (!list_empty(&ptype_all)) 2622 dev_queue_xmit_nit(nskb, dev); 2623 2624 skb_len = nskb->len; 2625 trace_net_dev_start_xmit(nskb, dev); 2626 rc = ops->ndo_start_xmit(nskb, dev); 2627 trace_net_dev_xmit(nskb, rc, dev, skb_len); 2628 if (unlikely(rc != NETDEV_TX_OK)) { 2629 if (rc & ~NETDEV_TX_MASK) 2630 goto out_kfree_gso_skb; 2631 nskb->next = skb->next; 2632 skb->next = nskb; 2633 return rc; 2634 } 2635 txq_trans_update(txq); 2636 if (unlikely(netif_xmit_stopped(txq) && skb->next)) 2637 return NETDEV_TX_BUSY; 2638 } while (skb->next); 2639 2640 out_kfree_gso_skb: 2641 if (likely(skb->next == NULL)) { 2642 skb->destructor = DEV_GSO_CB(skb)->destructor; 2643 consume_skb(skb); 2644 return rc; 2645 } 2646 out_kfree_skb: 2647 kfree_skb(skb); 2648 out: 2649 return rc; 2650 } 2651 EXPORT_SYMBOL_GPL(dev_hard_start_xmit); 2652 2653 static void qdisc_pkt_len_init(struct sk_buff *skb) 2654 { 2655 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2656 2657 qdisc_skb_cb(skb)->pkt_len = skb->len; 2658 2659 /* To get more precise estimation of bytes sent on wire, 2660 * we add to pkt_len the headers size of all segments 2661 */ 2662 if (shinfo->gso_size) { 2663 unsigned int hdr_len; 2664 u16 gso_segs = shinfo->gso_segs; 2665 2666 /* mac layer + network layer */ 2667 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 2668 2669 /* + transport layer */ 2670 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 2671 hdr_len += tcp_hdrlen(skb); 2672 else 2673 hdr_len += sizeof(struct udphdr); 2674 2675 if (shinfo->gso_type & SKB_GSO_DODGY) 2676 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 2677 shinfo->gso_size); 2678 2679 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 2680 } 2681 } 2682 2683 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2684 struct net_device *dev, 2685 struct netdev_queue *txq) 2686 { 2687 spinlock_t *root_lock = qdisc_lock(q); 2688 bool contended; 2689 int rc; 2690 2691 qdisc_pkt_len_init(skb); 2692 qdisc_calculate_pkt_len(skb, q); 2693 /* 2694 * Heuristic to force contended enqueues to serialize on a 2695 * separate lock before trying to get qdisc main lock. 2696 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2697 * and dequeue packets faster. 2698 */ 2699 contended = qdisc_is_running(q); 2700 if (unlikely(contended)) 2701 spin_lock(&q->busylock); 2702 2703 spin_lock(root_lock); 2704 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2705 kfree_skb(skb); 2706 rc = NET_XMIT_DROP; 2707 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2708 qdisc_run_begin(q)) { 2709 /* 2710 * This is a work-conserving queue; there are no old skbs 2711 * waiting to be sent out; and the qdisc is not running - 2712 * xmit the skb directly. 2713 */ 2714 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2715 skb_dst_force(skb); 2716 2717 qdisc_bstats_update(q, skb); 2718 2719 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2720 if (unlikely(contended)) { 2721 spin_unlock(&q->busylock); 2722 contended = false; 2723 } 2724 __qdisc_run(q); 2725 } else 2726 qdisc_run_end(q); 2727 2728 rc = NET_XMIT_SUCCESS; 2729 } else { 2730 skb_dst_force(skb); 2731 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2732 if (qdisc_run_begin(q)) { 2733 if (unlikely(contended)) { 2734 spin_unlock(&q->busylock); 2735 contended = false; 2736 } 2737 __qdisc_run(q); 2738 } 2739 } 2740 spin_unlock(root_lock); 2741 if (unlikely(contended)) 2742 spin_unlock(&q->busylock); 2743 return rc; 2744 } 2745 2746 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2747 static void skb_update_prio(struct sk_buff *skb) 2748 { 2749 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2750 2751 if (!skb->priority && skb->sk && map) { 2752 unsigned int prioidx = skb->sk->sk_cgrp_prioidx; 2753 2754 if (prioidx < map->priomap_len) 2755 skb->priority = map->priomap[prioidx]; 2756 } 2757 } 2758 #else 2759 #define skb_update_prio(skb) 2760 #endif 2761 2762 static DEFINE_PER_CPU(int, xmit_recursion); 2763 #define RECURSION_LIMIT 10 2764 2765 /** 2766 * dev_loopback_xmit - loop back @skb 2767 * @skb: buffer to transmit 2768 */ 2769 int dev_loopback_xmit(struct sk_buff *skb) 2770 { 2771 skb_reset_mac_header(skb); 2772 __skb_pull(skb, skb_network_offset(skb)); 2773 skb->pkt_type = PACKET_LOOPBACK; 2774 skb->ip_summed = CHECKSUM_UNNECESSARY; 2775 WARN_ON(!skb_dst(skb)); 2776 skb_dst_force(skb); 2777 netif_rx_ni(skb); 2778 return 0; 2779 } 2780 EXPORT_SYMBOL(dev_loopback_xmit); 2781 2782 /** 2783 * __dev_queue_xmit - transmit a buffer 2784 * @skb: buffer to transmit 2785 * @accel_priv: private data used for L2 forwarding offload 2786 * 2787 * Queue a buffer for transmission to a network device. The caller must 2788 * have set the device and priority and built the buffer before calling 2789 * this function. The function can be called from an interrupt. 2790 * 2791 * A negative errno code is returned on a failure. A success does not 2792 * guarantee the frame will be transmitted as it may be dropped due 2793 * to congestion or traffic shaping. 2794 * 2795 * ----------------------------------------------------------------------------------- 2796 * I notice this method can also return errors from the queue disciplines, 2797 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2798 * be positive. 2799 * 2800 * Regardless of the return value, the skb is consumed, so it is currently 2801 * difficult to retry a send to this method. (You can bump the ref count 2802 * before sending to hold a reference for retry if you are careful.) 2803 * 2804 * When calling this method, interrupts MUST be enabled. This is because 2805 * the BH enable code must have IRQs enabled so that it will not deadlock. 2806 * --BLG 2807 */ 2808 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 2809 { 2810 struct net_device *dev = skb->dev; 2811 struct netdev_queue *txq; 2812 struct Qdisc *q; 2813 int rc = -ENOMEM; 2814 2815 skb_reset_mac_header(skb); 2816 2817 /* Disable soft irqs for various locks below. Also 2818 * stops preemption for RCU. 2819 */ 2820 rcu_read_lock_bh(); 2821 2822 skb_update_prio(skb); 2823 2824 txq = netdev_pick_tx(dev, skb, accel_priv); 2825 q = rcu_dereference_bh(txq->qdisc); 2826 2827 #ifdef CONFIG_NET_CLS_ACT 2828 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2829 #endif 2830 trace_net_dev_queue(skb); 2831 if (q->enqueue) { 2832 rc = __dev_xmit_skb(skb, q, dev, txq); 2833 goto out; 2834 } 2835 2836 /* The device has no queue. Common case for software devices: 2837 loopback, all the sorts of tunnels... 2838 2839 Really, it is unlikely that netif_tx_lock protection is necessary 2840 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2841 counters.) 2842 However, it is possible, that they rely on protection 2843 made by us here. 2844 2845 Check this and shot the lock. It is not prone from deadlocks. 2846 Either shot noqueue qdisc, it is even simpler 8) 2847 */ 2848 if (dev->flags & IFF_UP) { 2849 int cpu = smp_processor_id(); /* ok because BHs are off */ 2850 2851 if (txq->xmit_lock_owner != cpu) { 2852 2853 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2854 goto recursion_alert; 2855 2856 HARD_TX_LOCK(dev, txq, cpu); 2857 2858 if (!netif_xmit_stopped(txq)) { 2859 __this_cpu_inc(xmit_recursion); 2860 rc = dev_hard_start_xmit(skb, dev, txq); 2861 __this_cpu_dec(xmit_recursion); 2862 if (dev_xmit_complete(rc)) { 2863 HARD_TX_UNLOCK(dev, txq); 2864 goto out; 2865 } 2866 } 2867 HARD_TX_UNLOCK(dev, txq); 2868 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 2869 dev->name); 2870 } else { 2871 /* Recursion is detected! It is possible, 2872 * unfortunately 2873 */ 2874 recursion_alert: 2875 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 2876 dev->name); 2877 } 2878 } 2879 2880 rc = -ENETDOWN; 2881 rcu_read_unlock_bh(); 2882 2883 atomic_long_inc(&dev->tx_dropped); 2884 kfree_skb(skb); 2885 return rc; 2886 out: 2887 rcu_read_unlock_bh(); 2888 return rc; 2889 } 2890 2891 int dev_queue_xmit(struct sk_buff *skb) 2892 { 2893 return __dev_queue_xmit(skb, NULL); 2894 } 2895 EXPORT_SYMBOL(dev_queue_xmit); 2896 2897 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 2898 { 2899 return __dev_queue_xmit(skb, accel_priv); 2900 } 2901 EXPORT_SYMBOL(dev_queue_xmit_accel); 2902 2903 2904 /*======================================================================= 2905 Receiver routines 2906 =======================================================================*/ 2907 2908 int netdev_max_backlog __read_mostly = 1000; 2909 EXPORT_SYMBOL(netdev_max_backlog); 2910 2911 int netdev_tstamp_prequeue __read_mostly = 1; 2912 int netdev_budget __read_mostly = 300; 2913 int weight_p __read_mostly = 64; /* old backlog weight */ 2914 2915 /* Called with irq disabled */ 2916 static inline void ____napi_schedule(struct softnet_data *sd, 2917 struct napi_struct *napi) 2918 { 2919 list_add_tail(&napi->poll_list, &sd->poll_list); 2920 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2921 } 2922 2923 #ifdef CONFIG_RPS 2924 2925 /* One global table that all flow-based protocols share. */ 2926 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2927 EXPORT_SYMBOL(rps_sock_flow_table); 2928 2929 struct static_key rps_needed __read_mostly; 2930 2931 static struct rps_dev_flow * 2932 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2933 struct rps_dev_flow *rflow, u16 next_cpu) 2934 { 2935 if (next_cpu != RPS_NO_CPU) { 2936 #ifdef CONFIG_RFS_ACCEL 2937 struct netdev_rx_queue *rxqueue; 2938 struct rps_dev_flow_table *flow_table; 2939 struct rps_dev_flow *old_rflow; 2940 u32 flow_id; 2941 u16 rxq_index; 2942 int rc; 2943 2944 /* Should we steer this flow to a different hardware queue? */ 2945 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 2946 !(dev->features & NETIF_F_NTUPLE)) 2947 goto out; 2948 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 2949 if (rxq_index == skb_get_rx_queue(skb)) 2950 goto out; 2951 2952 rxqueue = dev->_rx + rxq_index; 2953 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2954 if (!flow_table) 2955 goto out; 2956 flow_id = skb_get_hash(skb) & flow_table->mask; 2957 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 2958 rxq_index, flow_id); 2959 if (rc < 0) 2960 goto out; 2961 old_rflow = rflow; 2962 rflow = &flow_table->flows[flow_id]; 2963 rflow->filter = rc; 2964 if (old_rflow->filter == rflow->filter) 2965 old_rflow->filter = RPS_NO_FILTER; 2966 out: 2967 #endif 2968 rflow->last_qtail = 2969 per_cpu(softnet_data, next_cpu).input_queue_head; 2970 } 2971 2972 rflow->cpu = next_cpu; 2973 return rflow; 2974 } 2975 2976 /* 2977 * get_rps_cpu is called from netif_receive_skb and returns the target 2978 * CPU from the RPS map of the receiving queue for a given skb. 2979 * rcu_read_lock must be held on entry. 2980 */ 2981 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2982 struct rps_dev_flow **rflowp) 2983 { 2984 struct netdev_rx_queue *rxqueue; 2985 struct rps_map *map; 2986 struct rps_dev_flow_table *flow_table; 2987 struct rps_sock_flow_table *sock_flow_table; 2988 int cpu = -1; 2989 u16 tcpu; 2990 u32 hash; 2991 2992 if (skb_rx_queue_recorded(skb)) { 2993 u16 index = skb_get_rx_queue(skb); 2994 if (unlikely(index >= dev->real_num_rx_queues)) { 2995 WARN_ONCE(dev->real_num_rx_queues > 1, 2996 "%s received packet on queue %u, but number " 2997 "of RX queues is %u\n", 2998 dev->name, index, dev->real_num_rx_queues); 2999 goto done; 3000 } 3001 rxqueue = dev->_rx + index; 3002 } else 3003 rxqueue = dev->_rx; 3004 3005 map = rcu_dereference(rxqueue->rps_map); 3006 if (map) { 3007 if (map->len == 1 && 3008 !rcu_access_pointer(rxqueue->rps_flow_table)) { 3009 tcpu = map->cpus[0]; 3010 if (cpu_online(tcpu)) 3011 cpu = tcpu; 3012 goto done; 3013 } 3014 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) { 3015 goto done; 3016 } 3017 3018 skb_reset_network_header(skb); 3019 hash = skb_get_hash(skb); 3020 if (!hash) 3021 goto done; 3022 3023 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3024 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3025 if (flow_table && sock_flow_table) { 3026 u16 next_cpu; 3027 struct rps_dev_flow *rflow; 3028 3029 rflow = &flow_table->flows[hash & flow_table->mask]; 3030 tcpu = rflow->cpu; 3031 3032 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask]; 3033 3034 /* 3035 * If the desired CPU (where last recvmsg was done) is 3036 * different from current CPU (one in the rx-queue flow 3037 * table entry), switch if one of the following holds: 3038 * - Current CPU is unset (equal to RPS_NO_CPU). 3039 * - Current CPU is offline. 3040 * - The current CPU's queue tail has advanced beyond the 3041 * last packet that was enqueued using this table entry. 3042 * This guarantees that all previous packets for the flow 3043 * have been dequeued, thus preserving in order delivery. 3044 */ 3045 if (unlikely(tcpu != next_cpu) && 3046 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 3047 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3048 rflow->last_qtail)) >= 0)) { 3049 tcpu = next_cpu; 3050 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3051 } 3052 3053 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 3054 *rflowp = rflow; 3055 cpu = tcpu; 3056 goto done; 3057 } 3058 } 3059 3060 if (map) { 3061 tcpu = map->cpus[((u64) hash * map->len) >> 32]; 3062 3063 if (cpu_online(tcpu)) { 3064 cpu = tcpu; 3065 goto done; 3066 } 3067 } 3068 3069 done: 3070 return cpu; 3071 } 3072 3073 #ifdef CONFIG_RFS_ACCEL 3074 3075 /** 3076 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3077 * @dev: Device on which the filter was set 3078 * @rxq_index: RX queue index 3079 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3080 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3081 * 3082 * Drivers that implement ndo_rx_flow_steer() should periodically call 3083 * this function for each installed filter and remove the filters for 3084 * which it returns %true. 3085 */ 3086 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3087 u32 flow_id, u16 filter_id) 3088 { 3089 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3090 struct rps_dev_flow_table *flow_table; 3091 struct rps_dev_flow *rflow; 3092 bool expire = true; 3093 int cpu; 3094 3095 rcu_read_lock(); 3096 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3097 if (flow_table && flow_id <= flow_table->mask) { 3098 rflow = &flow_table->flows[flow_id]; 3099 cpu = ACCESS_ONCE(rflow->cpu); 3100 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 3101 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3102 rflow->last_qtail) < 3103 (int)(10 * flow_table->mask))) 3104 expire = false; 3105 } 3106 rcu_read_unlock(); 3107 return expire; 3108 } 3109 EXPORT_SYMBOL(rps_may_expire_flow); 3110 3111 #endif /* CONFIG_RFS_ACCEL */ 3112 3113 /* Called from hardirq (IPI) context */ 3114 static void rps_trigger_softirq(void *data) 3115 { 3116 struct softnet_data *sd = data; 3117 3118 ____napi_schedule(sd, &sd->backlog); 3119 sd->received_rps++; 3120 } 3121 3122 #endif /* CONFIG_RPS */ 3123 3124 /* 3125 * Check if this softnet_data structure is another cpu one 3126 * If yes, queue it to our IPI list and return 1 3127 * If no, return 0 3128 */ 3129 static int rps_ipi_queued(struct softnet_data *sd) 3130 { 3131 #ifdef CONFIG_RPS 3132 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 3133 3134 if (sd != mysd) { 3135 sd->rps_ipi_next = mysd->rps_ipi_list; 3136 mysd->rps_ipi_list = sd; 3137 3138 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3139 return 1; 3140 } 3141 #endif /* CONFIG_RPS */ 3142 return 0; 3143 } 3144 3145 #ifdef CONFIG_NET_FLOW_LIMIT 3146 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3147 #endif 3148 3149 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3150 { 3151 #ifdef CONFIG_NET_FLOW_LIMIT 3152 struct sd_flow_limit *fl; 3153 struct softnet_data *sd; 3154 unsigned int old_flow, new_flow; 3155 3156 if (qlen < (netdev_max_backlog >> 1)) 3157 return false; 3158 3159 sd = &__get_cpu_var(softnet_data); 3160 3161 rcu_read_lock(); 3162 fl = rcu_dereference(sd->flow_limit); 3163 if (fl) { 3164 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3165 old_flow = fl->history[fl->history_head]; 3166 fl->history[fl->history_head] = new_flow; 3167 3168 fl->history_head++; 3169 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3170 3171 if (likely(fl->buckets[old_flow])) 3172 fl->buckets[old_flow]--; 3173 3174 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3175 fl->count++; 3176 rcu_read_unlock(); 3177 return true; 3178 } 3179 } 3180 rcu_read_unlock(); 3181 #endif 3182 return false; 3183 } 3184 3185 /* 3186 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3187 * queue (may be a remote CPU queue). 3188 */ 3189 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3190 unsigned int *qtail) 3191 { 3192 struct softnet_data *sd; 3193 unsigned long flags; 3194 unsigned int qlen; 3195 3196 sd = &per_cpu(softnet_data, cpu); 3197 3198 local_irq_save(flags); 3199 3200 rps_lock(sd); 3201 qlen = skb_queue_len(&sd->input_pkt_queue); 3202 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3203 if (skb_queue_len(&sd->input_pkt_queue)) { 3204 enqueue: 3205 __skb_queue_tail(&sd->input_pkt_queue, skb); 3206 input_queue_tail_incr_save(sd, qtail); 3207 rps_unlock(sd); 3208 local_irq_restore(flags); 3209 return NET_RX_SUCCESS; 3210 } 3211 3212 /* Schedule NAPI for backlog device 3213 * We can use non atomic operation since we own the queue lock 3214 */ 3215 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3216 if (!rps_ipi_queued(sd)) 3217 ____napi_schedule(sd, &sd->backlog); 3218 } 3219 goto enqueue; 3220 } 3221 3222 sd->dropped++; 3223 rps_unlock(sd); 3224 3225 local_irq_restore(flags); 3226 3227 atomic_long_inc(&skb->dev->rx_dropped); 3228 kfree_skb(skb); 3229 return NET_RX_DROP; 3230 } 3231 3232 static int netif_rx_internal(struct sk_buff *skb) 3233 { 3234 int ret; 3235 3236 net_timestamp_check(netdev_tstamp_prequeue, skb); 3237 3238 trace_netif_rx(skb); 3239 #ifdef CONFIG_RPS 3240 if (static_key_false(&rps_needed)) { 3241 struct rps_dev_flow voidflow, *rflow = &voidflow; 3242 int cpu; 3243 3244 preempt_disable(); 3245 rcu_read_lock(); 3246 3247 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3248 if (cpu < 0) 3249 cpu = smp_processor_id(); 3250 3251 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3252 3253 rcu_read_unlock(); 3254 preempt_enable(); 3255 } else 3256 #endif 3257 { 3258 unsigned int qtail; 3259 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3260 put_cpu(); 3261 } 3262 return ret; 3263 } 3264 3265 /** 3266 * netif_rx - post buffer to the network code 3267 * @skb: buffer to post 3268 * 3269 * This function receives a packet from a device driver and queues it for 3270 * the upper (protocol) levels to process. It always succeeds. The buffer 3271 * may be dropped during processing for congestion control or by the 3272 * protocol layers. 3273 * 3274 * return values: 3275 * NET_RX_SUCCESS (no congestion) 3276 * NET_RX_DROP (packet was dropped) 3277 * 3278 */ 3279 3280 int netif_rx(struct sk_buff *skb) 3281 { 3282 trace_netif_rx_entry(skb); 3283 3284 return netif_rx_internal(skb); 3285 } 3286 EXPORT_SYMBOL(netif_rx); 3287 3288 int netif_rx_ni(struct sk_buff *skb) 3289 { 3290 int err; 3291 3292 trace_netif_rx_ni_entry(skb); 3293 3294 preempt_disable(); 3295 err = netif_rx_internal(skb); 3296 if (local_softirq_pending()) 3297 do_softirq(); 3298 preempt_enable(); 3299 3300 return err; 3301 } 3302 EXPORT_SYMBOL(netif_rx_ni); 3303 3304 static void net_tx_action(struct softirq_action *h) 3305 { 3306 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3307 3308 if (sd->completion_queue) { 3309 struct sk_buff *clist; 3310 3311 local_irq_disable(); 3312 clist = sd->completion_queue; 3313 sd->completion_queue = NULL; 3314 local_irq_enable(); 3315 3316 while (clist) { 3317 struct sk_buff *skb = clist; 3318 clist = clist->next; 3319 3320 WARN_ON(atomic_read(&skb->users)); 3321 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 3322 trace_consume_skb(skb); 3323 else 3324 trace_kfree_skb(skb, net_tx_action); 3325 __kfree_skb(skb); 3326 } 3327 } 3328 3329 if (sd->output_queue) { 3330 struct Qdisc *head; 3331 3332 local_irq_disable(); 3333 head = sd->output_queue; 3334 sd->output_queue = NULL; 3335 sd->output_queue_tailp = &sd->output_queue; 3336 local_irq_enable(); 3337 3338 while (head) { 3339 struct Qdisc *q = head; 3340 spinlock_t *root_lock; 3341 3342 head = head->next_sched; 3343 3344 root_lock = qdisc_lock(q); 3345 if (spin_trylock(root_lock)) { 3346 smp_mb__before_clear_bit(); 3347 clear_bit(__QDISC_STATE_SCHED, 3348 &q->state); 3349 qdisc_run(q); 3350 spin_unlock(root_lock); 3351 } else { 3352 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3353 &q->state)) { 3354 __netif_reschedule(q); 3355 } else { 3356 smp_mb__before_clear_bit(); 3357 clear_bit(__QDISC_STATE_SCHED, 3358 &q->state); 3359 } 3360 } 3361 } 3362 } 3363 } 3364 3365 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3366 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3367 /* This hook is defined here for ATM LANE */ 3368 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3369 unsigned char *addr) __read_mostly; 3370 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3371 #endif 3372 3373 #ifdef CONFIG_NET_CLS_ACT 3374 /* TODO: Maybe we should just force sch_ingress to be compiled in 3375 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3376 * a compare and 2 stores extra right now if we dont have it on 3377 * but have CONFIG_NET_CLS_ACT 3378 * NOTE: This doesn't stop any functionality; if you dont have 3379 * the ingress scheduler, you just can't add policies on ingress. 3380 * 3381 */ 3382 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3383 { 3384 struct net_device *dev = skb->dev; 3385 u32 ttl = G_TC_RTTL(skb->tc_verd); 3386 int result = TC_ACT_OK; 3387 struct Qdisc *q; 3388 3389 if (unlikely(MAX_RED_LOOP < ttl++)) { 3390 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n", 3391 skb->skb_iif, dev->ifindex); 3392 return TC_ACT_SHOT; 3393 } 3394 3395 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3396 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3397 3398 q = rxq->qdisc; 3399 if (q != &noop_qdisc) { 3400 spin_lock(qdisc_lock(q)); 3401 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3402 result = qdisc_enqueue_root(skb, q); 3403 spin_unlock(qdisc_lock(q)); 3404 } 3405 3406 return result; 3407 } 3408 3409 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3410 struct packet_type **pt_prev, 3411 int *ret, struct net_device *orig_dev) 3412 { 3413 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3414 3415 if (!rxq || rxq->qdisc == &noop_qdisc) 3416 goto out; 3417 3418 if (*pt_prev) { 3419 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3420 *pt_prev = NULL; 3421 } 3422 3423 switch (ing_filter(skb, rxq)) { 3424 case TC_ACT_SHOT: 3425 case TC_ACT_STOLEN: 3426 kfree_skb(skb); 3427 return NULL; 3428 } 3429 3430 out: 3431 skb->tc_verd = 0; 3432 return skb; 3433 } 3434 #endif 3435 3436 /** 3437 * netdev_rx_handler_register - register receive handler 3438 * @dev: device to register a handler for 3439 * @rx_handler: receive handler to register 3440 * @rx_handler_data: data pointer that is used by rx handler 3441 * 3442 * Register a receive handler for a device. This handler will then be 3443 * called from __netif_receive_skb. A negative errno code is returned 3444 * on a failure. 3445 * 3446 * The caller must hold the rtnl_mutex. 3447 * 3448 * For a general description of rx_handler, see enum rx_handler_result. 3449 */ 3450 int netdev_rx_handler_register(struct net_device *dev, 3451 rx_handler_func_t *rx_handler, 3452 void *rx_handler_data) 3453 { 3454 ASSERT_RTNL(); 3455 3456 if (dev->rx_handler) 3457 return -EBUSY; 3458 3459 /* Note: rx_handler_data must be set before rx_handler */ 3460 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3461 rcu_assign_pointer(dev->rx_handler, rx_handler); 3462 3463 return 0; 3464 } 3465 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3466 3467 /** 3468 * netdev_rx_handler_unregister - unregister receive handler 3469 * @dev: device to unregister a handler from 3470 * 3471 * Unregister a receive handler from a device. 3472 * 3473 * The caller must hold the rtnl_mutex. 3474 */ 3475 void netdev_rx_handler_unregister(struct net_device *dev) 3476 { 3477 3478 ASSERT_RTNL(); 3479 RCU_INIT_POINTER(dev->rx_handler, NULL); 3480 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 3481 * section has a guarantee to see a non NULL rx_handler_data 3482 * as well. 3483 */ 3484 synchronize_net(); 3485 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3486 } 3487 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3488 3489 /* 3490 * Limit the use of PFMEMALLOC reserves to those protocols that implement 3491 * the special handling of PFMEMALLOC skbs. 3492 */ 3493 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 3494 { 3495 switch (skb->protocol) { 3496 case htons(ETH_P_ARP): 3497 case htons(ETH_P_IP): 3498 case htons(ETH_P_IPV6): 3499 case htons(ETH_P_8021Q): 3500 case htons(ETH_P_8021AD): 3501 return true; 3502 default: 3503 return false; 3504 } 3505 } 3506 3507 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 3508 { 3509 struct packet_type *ptype, *pt_prev; 3510 rx_handler_func_t *rx_handler; 3511 struct net_device *orig_dev; 3512 struct net_device *null_or_dev; 3513 bool deliver_exact = false; 3514 int ret = NET_RX_DROP; 3515 __be16 type; 3516 3517 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3518 3519 trace_netif_receive_skb(skb); 3520 3521 orig_dev = skb->dev; 3522 3523 skb_reset_network_header(skb); 3524 if (!skb_transport_header_was_set(skb)) 3525 skb_reset_transport_header(skb); 3526 skb_reset_mac_len(skb); 3527 3528 pt_prev = NULL; 3529 3530 rcu_read_lock(); 3531 3532 another_round: 3533 skb->skb_iif = skb->dev->ifindex; 3534 3535 __this_cpu_inc(softnet_data.processed); 3536 3537 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 3538 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 3539 skb = vlan_untag(skb); 3540 if (unlikely(!skb)) 3541 goto unlock; 3542 } 3543 3544 #ifdef CONFIG_NET_CLS_ACT 3545 if (skb->tc_verd & TC_NCLS) { 3546 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3547 goto ncls; 3548 } 3549 #endif 3550 3551 if (pfmemalloc) 3552 goto skip_taps; 3553 3554 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3555 if (!ptype->dev || ptype->dev == skb->dev) { 3556 if (pt_prev) 3557 ret = deliver_skb(skb, pt_prev, orig_dev); 3558 pt_prev = ptype; 3559 } 3560 } 3561 3562 skip_taps: 3563 #ifdef CONFIG_NET_CLS_ACT 3564 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3565 if (!skb) 3566 goto unlock; 3567 ncls: 3568 #endif 3569 3570 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 3571 goto drop; 3572 3573 if (vlan_tx_tag_present(skb)) { 3574 if (pt_prev) { 3575 ret = deliver_skb(skb, pt_prev, orig_dev); 3576 pt_prev = NULL; 3577 } 3578 if (vlan_do_receive(&skb)) 3579 goto another_round; 3580 else if (unlikely(!skb)) 3581 goto unlock; 3582 } 3583 3584 rx_handler = rcu_dereference(skb->dev->rx_handler); 3585 if (rx_handler) { 3586 if (pt_prev) { 3587 ret = deliver_skb(skb, pt_prev, orig_dev); 3588 pt_prev = NULL; 3589 } 3590 switch (rx_handler(&skb)) { 3591 case RX_HANDLER_CONSUMED: 3592 ret = NET_RX_SUCCESS; 3593 goto unlock; 3594 case RX_HANDLER_ANOTHER: 3595 goto another_round; 3596 case RX_HANDLER_EXACT: 3597 deliver_exact = true; 3598 case RX_HANDLER_PASS: 3599 break; 3600 default: 3601 BUG(); 3602 } 3603 } 3604 3605 if (unlikely(vlan_tx_tag_present(skb))) { 3606 if (vlan_tx_tag_get_id(skb)) 3607 skb->pkt_type = PACKET_OTHERHOST; 3608 /* Note: we might in the future use prio bits 3609 * and set skb->priority like in vlan_do_receive() 3610 * For the time being, just ignore Priority Code Point 3611 */ 3612 skb->vlan_tci = 0; 3613 } 3614 3615 /* deliver only exact match when indicated */ 3616 null_or_dev = deliver_exact ? skb->dev : NULL; 3617 3618 type = skb->protocol; 3619 list_for_each_entry_rcu(ptype, 3620 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3621 if (ptype->type == type && 3622 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3623 ptype->dev == orig_dev)) { 3624 if (pt_prev) 3625 ret = deliver_skb(skb, pt_prev, orig_dev); 3626 pt_prev = ptype; 3627 } 3628 } 3629 3630 if (pt_prev) { 3631 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 3632 goto drop; 3633 else 3634 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3635 } else { 3636 drop: 3637 atomic_long_inc(&skb->dev->rx_dropped); 3638 kfree_skb(skb); 3639 /* Jamal, now you will not able to escape explaining 3640 * me how you were going to use this. :-) 3641 */ 3642 ret = NET_RX_DROP; 3643 } 3644 3645 unlock: 3646 rcu_read_unlock(); 3647 return ret; 3648 } 3649 3650 static int __netif_receive_skb(struct sk_buff *skb) 3651 { 3652 int ret; 3653 3654 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 3655 unsigned long pflags = current->flags; 3656 3657 /* 3658 * PFMEMALLOC skbs are special, they should 3659 * - be delivered to SOCK_MEMALLOC sockets only 3660 * - stay away from userspace 3661 * - have bounded memory usage 3662 * 3663 * Use PF_MEMALLOC as this saves us from propagating the allocation 3664 * context down to all allocation sites. 3665 */ 3666 current->flags |= PF_MEMALLOC; 3667 ret = __netif_receive_skb_core(skb, true); 3668 tsk_restore_flags(current, pflags, PF_MEMALLOC); 3669 } else 3670 ret = __netif_receive_skb_core(skb, false); 3671 3672 return ret; 3673 } 3674 3675 static int netif_receive_skb_internal(struct sk_buff *skb) 3676 { 3677 net_timestamp_check(netdev_tstamp_prequeue, skb); 3678 3679 if (skb_defer_rx_timestamp(skb)) 3680 return NET_RX_SUCCESS; 3681 3682 #ifdef CONFIG_RPS 3683 if (static_key_false(&rps_needed)) { 3684 struct rps_dev_flow voidflow, *rflow = &voidflow; 3685 int cpu, ret; 3686 3687 rcu_read_lock(); 3688 3689 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3690 3691 if (cpu >= 0) { 3692 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3693 rcu_read_unlock(); 3694 return ret; 3695 } 3696 rcu_read_unlock(); 3697 } 3698 #endif 3699 return __netif_receive_skb(skb); 3700 } 3701 3702 /** 3703 * netif_receive_skb - process receive buffer from network 3704 * @skb: buffer to process 3705 * 3706 * netif_receive_skb() is the main receive data processing function. 3707 * It always succeeds. The buffer may be dropped during processing 3708 * for congestion control or by the protocol layers. 3709 * 3710 * This function may only be called from softirq context and interrupts 3711 * should be enabled. 3712 * 3713 * Return values (usually ignored): 3714 * NET_RX_SUCCESS: no congestion 3715 * NET_RX_DROP: packet was dropped 3716 */ 3717 int netif_receive_skb(struct sk_buff *skb) 3718 { 3719 trace_netif_receive_skb_entry(skb); 3720 3721 return netif_receive_skb_internal(skb); 3722 } 3723 EXPORT_SYMBOL(netif_receive_skb); 3724 3725 /* Network device is going away, flush any packets still pending 3726 * Called with irqs disabled. 3727 */ 3728 static void flush_backlog(void *arg) 3729 { 3730 struct net_device *dev = arg; 3731 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3732 struct sk_buff *skb, *tmp; 3733 3734 rps_lock(sd); 3735 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3736 if (skb->dev == dev) { 3737 __skb_unlink(skb, &sd->input_pkt_queue); 3738 kfree_skb(skb); 3739 input_queue_head_incr(sd); 3740 } 3741 } 3742 rps_unlock(sd); 3743 3744 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3745 if (skb->dev == dev) { 3746 __skb_unlink(skb, &sd->process_queue); 3747 kfree_skb(skb); 3748 input_queue_head_incr(sd); 3749 } 3750 } 3751 } 3752 3753 static int napi_gro_complete(struct sk_buff *skb) 3754 { 3755 struct packet_offload *ptype; 3756 __be16 type = skb->protocol; 3757 struct list_head *head = &offload_base; 3758 int err = -ENOENT; 3759 3760 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 3761 3762 if (NAPI_GRO_CB(skb)->count == 1) { 3763 skb_shinfo(skb)->gso_size = 0; 3764 goto out; 3765 } 3766 3767 rcu_read_lock(); 3768 list_for_each_entry_rcu(ptype, head, list) { 3769 if (ptype->type != type || !ptype->callbacks.gro_complete) 3770 continue; 3771 3772 err = ptype->callbacks.gro_complete(skb, 0); 3773 break; 3774 } 3775 rcu_read_unlock(); 3776 3777 if (err) { 3778 WARN_ON(&ptype->list == head); 3779 kfree_skb(skb); 3780 return NET_RX_SUCCESS; 3781 } 3782 3783 out: 3784 return netif_receive_skb_internal(skb); 3785 } 3786 3787 /* napi->gro_list contains packets ordered by age. 3788 * youngest packets at the head of it. 3789 * Complete skbs in reverse order to reduce latencies. 3790 */ 3791 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 3792 { 3793 struct sk_buff *skb, *prev = NULL; 3794 3795 /* scan list and build reverse chain */ 3796 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 3797 skb->prev = prev; 3798 prev = skb; 3799 } 3800 3801 for (skb = prev; skb; skb = prev) { 3802 skb->next = NULL; 3803 3804 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 3805 return; 3806 3807 prev = skb->prev; 3808 napi_gro_complete(skb); 3809 napi->gro_count--; 3810 } 3811 3812 napi->gro_list = NULL; 3813 } 3814 EXPORT_SYMBOL(napi_gro_flush); 3815 3816 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 3817 { 3818 struct sk_buff *p; 3819 unsigned int maclen = skb->dev->hard_header_len; 3820 u32 hash = skb_get_hash_raw(skb); 3821 3822 for (p = napi->gro_list; p; p = p->next) { 3823 unsigned long diffs; 3824 3825 NAPI_GRO_CB(p)->flush = 0; 3826 3827 if (hash != skb_get_hash_raw(p)) { 3828 NAPI_GRO_CB(p)->same_flow = 0; 3829 continue; 3830 } 3831 3832 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3833 diffs |= p->vlan_tci ^ skb->vlan_tci; 3834 if (maclen == ETH_HLEN) 3835 diffs |= compare_ether_header(skb_mac_header(p), 3836 skb_mac_header(skb)); 3837 else if (!diffs) 3838 diffs = memcmp(skb_mac_header(p), 3839 skb_mac_header(skb), 3840 maclen); 3841 NAPI_GRO_CB(p)->same_flow = !diffs; 3842 } 3843 } 3844 3845 static void skb_gro_reset_offset(struct sk_buff *skb) 3846 { 3847 const struct skb_shared_info *pinfo = skb_shinfo(skb); 3848 const skb_frag_t *frag0 = &pinfo->frags[0]; 3849 3850 NAPI_GRO_CB(skb)->data_offset = 0; 3851 NAPI_GRO_CB(skb)->frag0 = NULL; 3852 NAPI_GRO_CB(skb)->frag0_len = 0; 3853 3854 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 3855 pinfo->nr_frags && 3856 !PageHighMem(skb_frag_page(frag0))) { 3857 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 3858 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 3859 } 3860 } 3861 3862 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 3863 { 3864 struct skb_shared_info *pinfo = skb_shinfo(skb); 3865 3866 BUG_ON(skb->end - skb->tail < grow); 3867 3868 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3869 3870 skb->data_len -= grow; 3871 skb->tail += grow; 3872 3873 pinfo->frags[0].page_offset += grow; 3874 skb_frag_size_sub(&pinfo->frags[0], grow); 3875 3876 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 3877 skb_frag_unref(skb, 0); 3878 memmove(pinfo->frags, pinfo->frags + 1, 3879 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 3880 } 3881 } 3882 3883 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3884 { 3885 struct sk_buff **pp = NULL; 3886 struct packet_offload *ptype; 3887 __be16 type = skb->protocol; 3888 struct list_head *head = &offload_base; 3889 int same_flow; 3890 enum gro_result ret; 3891 int grow; 3892 3893 if (!(skb->dev->features & NETIF_F_GRO)) 3894 goto normal; 3895 3896 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3897 goto normal; 3898 3899 gro_list_prepare(napi, skb); 3900 NAPI_GRO_CB(skb)->csum = skb->csum; /* Needed for CHECKSUM_COMPLETE */ 3901 3902 rcu_read_lock(); 3903 list_for_each_entry_rcu(ptype, head, list) { 3904 if (ptype->type != type || !ptype->callbacks.gro_receive) 3905 continue; 3906 3907 skb_set_network_header(skb, skb_gro_offset(skb)); 3908 skb_reset_mac_len(skb); 3909 NAPI_GRO_CB(skb)->same_flow = 0; 3910 NAPI_GRO_CB(skb)->flush = 0; 3911 NAPI_GRO_CB(skb)->free = 0; 3912 NAPI_GRO_CB(skb)->udp_mark = 0; 3913 3914 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 3915 break; 3916 } 3917 rcu_read_unlock(); 3918 3919 if (&ptype->list == head) 3920 goto normal; 3921 3922 same_flow = NAPI_GRO_CB(skb)->same_flow; 3923 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3924 3925 if (pp) { 3926 struct sk_buff *nskb = *pp; 3927 3928 *pp = nskb->next; 3929 nskb->next = NULL; 3930 napi_gro_complete(nskb); 3931 napi->gro_count--; 3932 } 3933 3934 if (same_flow) 3935 goto ok; 3936 3937 if (NAPI_GRO_CB(skb)->flush) 3938 goto normal; 3939 3940 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 3941 struct sk_buff *nskb = napi->gro_list; 3942 3943 /* locate the end of the list to select the 'oldest' flow */ 3944 while (nskb->next) { 3945 pp = &nskb->next; 3946 nskb = *pp; 3947 } 3948 *pp = NULL; 3949 nskb->next = NULL; 3950 napi_gro_complete(nskb); 3951 } else { 3952 napi->gro_count++; 3953 } 3954 NAPI_GRO_CB(skb)->count = 1; 3955 NAPI_GRO_CB(skb)->age = jiffies; 3956 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3957 skb->next = napi->gro_list; 3958 napi->gro_list = skb; 3959 ret = GRO_HELD; 3960 3961 pull: 3962 grow = skb_gro_offset(skb) - skb_headlen(skb); 3963 if (grow > 0) 3964 gro_pull_from_frag0(skb, grow); 3965 ok: 3966 return ret; 3967 3968 normal: 3969 ret = GRO_NORMAL; 3970 goto pull; 3971 } 3972 3973 struct packet_offload *gro_find_receive_by_type(__be16 type) 3974 { 3975 struct list_head *offload_head = &offload_base; 3976 struct packet_offload *ptype; 3977 3978 list_for_each_entry_rcu(ptype, offload_head, list) { 3979 if (ptype->type != type || !ptype->callbacks.gro_receive) 3980 continue; 3981 return ptype; 3982 } 3983 return NULL; 3984 } 3985 EXPORT_SYMBOL(gro_find_receive_by_type); 3986 3987 struct packet_offload *gro_find_complete_by_type(__be16 type) 3988 { 3989 struct list_head *offload_head = &offload_base; 3990 struct packet_offload *ptype; 3991 3992 list_for_each_entry_rcu(ptype, offload_head, list) { 3993 if (ptype->type != type || !ptype->callbacks.gro_complete) 3994 continue; 3995 return ptype; 3996 } 3997 return NULL; 3998 } 3999 EXPORT_SYMBOL(gro_find_complete_by_type); 4000 4001 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4002 { 4003 switch (ret) { 4004 case GRO_NORMAL: 4005 if (netif_receive_skb_internal(skb)) 4006 ret = GRO_DROP; 4007 break; 4008 4009 case GRO_DROP: 4010 kfree_skb(skb); 4011 break; 4012 4013 case GRO_MERGED_FREE: 4014 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 4015 kmem_cache_free(skbuff_head_cache, skb); 4016 else 4017 __kfree_skb(skb); 4018 break; 4019 4020 case GRO_HELD: 4021 case GRO_MERGED: 4022 break; 4023 } 4024 4025 return ret; 4026 } 4027 4028 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4029 { 4030 trace_napi_gro_receive_entry(skb); 4031 4032 skb_gro_reset_offset(skb); 4033 4034 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 4035 } 4036 EXPORT_SYMBOL(napi_gro_receive); 4037 4038 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 4039 { 4040 __skb_pull(skb, skb_headlen(skb)); 4041 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 4042 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 4043 skb->vlan_tci = 0; 4044 skb->dev = napi->dev; 4045 skb->skb_iif = 0; 4046 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4047 4048 napi->skb = skb; 4049 } 4050 4051 struct sk_buff *napi_get_frags(struct napi_struct *napi) 4052 { 4053 struct sk_buff *skb = napi->skb; 4054 4055 if (!skb) { 4056 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 4057 napi->skb = skb; 4058 } 4059 return skb; 4060 } 4061 EXPORT_SYMBOL(napi_get_frags); 4062 4063 static gro_result_t napi_frags_finish(struct napi_struct *napi, 4064 struct sk_buff *skb, 4065 gro_result_t ret) 4066 { 4067 switch (ret) { 4068 case GRO_NORMAL: 4069 case GRO_HELD: 4070 __skb_push(skb, ETH_HLEN); 4071 skb->protocol = eth_type_trans(skb, skb->dev); 4072 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 4073 ret = GRO_DROP; 4074 break; 4075 4076 case GRO_DROP: 4077 case GRO_MERGED_FREE: 4078 napi_reuse_skb(napi, skb); 4079 break; 4080 4081 case GRO_MERGED: 4082 break; 4083 } 4084 4085 return ret; 4086 } 4087 4088 /* Upper GRO stack assumes network header starts at gro_offset=0 4089 * Drivers could call both napi_gro_frags() and napi_gro_receive() 4090 * We copy ethernet header into skb->data to have a common layout. 4091 */ 4092 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4093 { 4094 struct sk_buff *skb = napi->skb; 4095 const struct ethhdr *eth; 4096 unsigned int hlen = sizeof(*eth); 4097 4098 napi->skb = NULL; 4099 4100 skb_reset_mac_header(skb); 4101 skb_gro_reset_offset(skb); 4102 4103 eth = skb_gro_header_fast(skb, 0); 4104 if (unlikely(skb_gro_header_hard(skb, hlen))) { 4105 eth = skb_gro_header_slow(skb, hlen, 0); 4106 if (unlikely(!eth)) { 4107 napi_reuse_skb(napi, skb); 4108 return NULL; 4109 } 4110 } else { 4111 gro_pull_from_frag0(skb, hlen); 4112 NAPI_GRO_CB(skb)->frag0 += hlen; 4113 NAPI_GRO_CB(skb)->frag0_len -= hlen; 4114 } 4115 __skb_pull(skb, hlen); 4116 4117 /* 4118 * This works because the only protocols we care about don't require 4119 * special handling. 4120 * We'll fix it up properly in napi_frags_finish() 4121 */ 4122 skb->protocol = eth->h_proto; 4123 4124 return skb; 4125 } 4126 4127 gro_result_t napi_gro_frags(struct napi_struct *napi) 4128 { 4129 struct sk_buff *skb = napi_frags_skb(napi); 4130 4131 if (!skb) 4132 return GRO_DROP; 4133 4134 trace_napi_gro_frags_entry(skb); 4135 4136 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4137 } 4138 EXPORT_SYMBOL(napi_gro_frags); 4139 4140 /* 4141 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 4142 * Note: called with local irq disabled, but exits with local irq enabled. 4143 */ 4144 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 4145 { 4146 #ifdef CONFIG_RPS 4147 struct softnet_data *remsd = sd->rps_ipi_list; 4148 4149 if (remsd) { 4150 sd->rps_ipi_list = NULL; 4151 4152 local_irq_enable(); 4153 4154 /* Send pending IPI's to kick RPS processing on remote cpus. */ 4155 while (remsd) { 4156 struct softnet_data *next = remsd->rps_ipi_next; 4157 4158 if (cpu_online(remsd->cpu)) 4159 smp_call_function_single_async(remsd->cpu, 4160 &remsd->csd); 4161 remsd = next; 4162 } 4163 } else 4164 #endif 4165 local_irq_enable(); 4166 } 4167 4168 static int process_backlog(struct napi_struct *napi, int quota) 4169 { 4170 int work = 0; 4171 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 4172 4173 #ifdef CONFIG_RPS 4174 /* Check if we have pending ipi, its better to send them now, 4175 * not waiting net_rx_action() end. 4176 */ 4177 if (sd->rps_ipi_list) { 4178 local_irq_disable(); 4179 net_rps_action_and_irq_enable(sd); 4180 } 4181 #endif 4182 napi->weight = weight_p; 4183 local_irq_disable(); 4184 while (work < quota) { 4185 struct sk_buff *skb; 4186 unsigned int qlen; 4187 4188 while ((skb = __skb_dequeue(&sd->process_queue))) { 4189 local_irq_enable(); 4190 __netif_receive_skb(skb); 4191 local_irq_disable(); 4192 input_queue_head_incr(sd); 4193 if (++work >= quota) { 4194 local_irq_enable(); 4195 return work; 4196 } 4197 } 4198 4199 rps_lock(sd); 4200 qlen = skb_queue_len(&sd->input_pkt_queue); 4201 if (qlen) 4202 skb_queue_splice_tail_init(&sd->input_pkt_queue, 4203 &sd->process_queue); 4204 4205 if (qlen < quota - work) { 4206 /* 4207 * Inline a custom version of __napi_complete(). 4208 * only current cpu owns and manipulates this napi, 4209 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 4210 * we can use a plain write instead of clear_bit(), 4211 * and we dont need an smp_mb() memory barrier. 4212 */ 4213 list_del(&napi->poll_list); 4214 napi->state = 0; 4215 4216 quota = work + qlen; 4217 } 4218 rps_unlock(sd); 4219 } 4220 local_irq_enable(); 4221 4222 return work; 4223 } 4224 4225 /** 4226 * __napi_schedule - schedule for receive 4227 * @n: entry to schedule 4228 * 4229 * The entry's receive function will be scheduled to run 4230 */ 4231 void __napi_schedule(struct napi_struct *n) 4232 { 4233 unsigned long flags; 4234 4235 local_irq_save(flags); 4236 ____napi_schedule(&__get_cpu_var(softnet_data), n); 4237 local_irq_restore(flags); 4238 } 4239 EXPORT_SYMBOL(__napi_schedule); 4240 4241 void __napi_complete(struct napi_struct *n) 4242 { 4243 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 4244 BUG_ON(n->gro_list); 4245 4246 list_del(&n->poll_list); 4247 smp_mb__before_clear_bit(); 4248 clear_bit(NAPI_STATE_SCHED, &n->state); 4249 } 4250 EXPORT_SYMBOL(__napi_complete); 4251 4252 void napi_complete(struct napi_struct *n) 4253 { 4254 unsigned long flags; 4255 4256 /* 4257 * don't let napi dequeue from the cpu poll list 4258 * just in case its running on a different cpu 4259 */ 4260 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 4261 return; 4262 4263 napi_gro_flush(n, false); 4264 local_irq_save(flags); 4265 __napi_complete(n); 4266 local_irq_restore(flags); 4267 } 4268 EXPORT_SYMBOL(napi_complete); 4269 4270 /* must be called under rcu_read_lock(), as we dont take a reference */ 4271 struct napi_struct *napi_by_id(unsigned int napi_id) 4272 { 4273 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 4274 struct napi_struct *napi; 4275 4276 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 4277 if (napi->napi_id == napi_id) 4278 return napi; 4279 4280 return NULL; 4281 } 4282 EXPORT_SYMBOL_GPL(napi_by_id); 4283 4284 void napi_hash_add(struct napi_struct *napi) 4285 { 4286 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) { 4287 4288 spin_lock(&napi_hash_lock); 4289 4290 /* 0 is not a valid id, we also skip an id that is taken 4291 * we expect both events to be extremely rare 4292 */ 4293 napi->napi_id = 0; 4294 while (!napi->napi_id) { 4295 napi->napi_id = ++napi_gen_id; 4296 if (napi_by_id(napi->napi_id)) 4297 napi->napi_id = 0; 4298 } 4299 4300 hlist_add_head_rcu(&napi->napi_hash_node, 4301 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 4302 4303 spin_unlock(&napi_hash_lock); 4304 } 4305 } 4306 EXPORT_SYMBOL_GPL(napi_hash_add); 4307 4308 /* Warning : caller is responsible to make sure rcu grace period 4309 * is respected before freeing memory containing @napi 4310 */ 4311 void napi_hash_del(struct napi_struct *napi) 4312 { 4313 spin_lock(&napi_hash_lock); 4314 4315 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) 4316 hlist_del_rcu(&napi->napi_hash_node); 4317 4318 spin_unlock(&napi_hash_lock); 4319 } 4320 EXPORT_SYMBOL_GPL(napi_hash_del); 4321 4322 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 4323 int (*poll)(struct napi_struct *, int), int weight) 4324 { 4325 INIT_LIST_HEAD(&napi->poll_list); 4326 napi->gro_count = 0; 4327 napi->gro_list = NULL; 4328 napi->skb = NULL; 4329 napi->poll = poll; 4330 if (weight > NAPI_POLL_WEIGHT) 4331 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 4332 weight, dev->name); 4333 napi->weight = weight; 4334 list_add(&napi->dev_list, &dev->napi_list); 4335 napi->dev = dev; 4336 #ifdef CONFIG_NETPOLL 4337 spin_lock_init(&napi->poll_lock); 4338 napi->poll_owner = -1; 4339 #endif 4340 set_bit(NAPI_STATE_SCHED, &napi->state); 4341 } 4342 EXPORT_SYMBOL(netif_napi_add); 4343 4344 void netif_napi_del(struct napi_struct *napi) 4345 { 4346 list_del_init(&napi->dev_list); 4347 napi_free_frags(napi); 4348 4349 kfree_skb_list(napi->gro_list); 4350 napi->gro_list = NULL; 4351 napi->gro_count = 0; 4352 } 4353 EXPORT_SYMBOL(netif_napi_del); 4354 4355 static void net_rx_action(struct softirq_action *h) 4356 { 4357 struct softnet_data *sd = &__get_cpu_var(softnet_data); 4358 unsigned long time_limit = jiffies + 2; 4359 int budget = netdev_budget; 4360 void *have; 4361 4362 local_irq_disable(); 4363 4364 while (!list_empty(&sd->poll_list)) { 4365 struct napi_struct *n; 4366 int work, weight; 4367 4368 /* If softirq window is exhuasted then punt. 4369 * Allow this to run for 2 jiffies since which will allow 4370 * an average latency of 1.5/HZ. 4371 */ 4372 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit))) 4373 goto softnet_break; 4374 4375 local_irq_enable(); 4376 4377 /* Even though interrupts have been re-enabled, this 4378 * access is safe because interrupts can only add new 4379 * entries to the tail of this list, and only ->poll() 4380 * calls can remove this head entry from the list. 4381 */ 4382 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 4383 4384 have = netpoll_poll_lock(n); 4385 4386 weight = n->weight; 4387 4388 /* This NAPI_STATE_SCHED test is for avoiding a race 4389 * with netpoll's poll_napi(). Only the entity which 4390 * obtains the lock and sees NAPI_STATE_SCHED set will 4391 * actually make the ->poll() call. Therefore we avoid 4392 * accidentally calling ->poll() when NAPI is not scheduled. 4393 */ 4394 work = 0; 4395 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 4396 work = n->poll(n, weight); 4397 trace_napi_poll(n); 4398 } 4399 4400 WARN_ON_ONCE(work > weight); 4401 4402 budget -= work; 4403 4404 local_irq_disable(); 4405 4406 /* Drivers must not modify the NAPI state if they 4407 * consume the entire weight. In such cases this code 4408 * still "owns" the NAPI instance and therefore can 4409 * move the instance around on the list at-will. 4410 */ 4411 if (unlikely(work == weight)) { 4412 if (unlikely(napi_disable_pending(n))) { 4413 local_irq_enable(); 4414 napi_complete(n); 4415 local_irq_disable(); 4416 } else { 4417 if (n->gro_list) { 4418 /* flush too old packets 4419 * If HZ < 1000, flush all packets. 4420 */ 4421 local_irq_enable(); 4422 napi_gro_flush(n, HZ >= 1000); 4423 local_irq_disable(); 4424 } 4425 list_move_tail(&n->poll_list, &sd->poll_list); 4426 } 4427 } 4428 4429 netpoll_poll_unlock(have); 4430 } 4431 out: 4432 net_rps_action_and_irq_enable(sd); 4433 4434 #ifdef CONFIG_NET_DMA 4435 /* 4436 * There may not be any more sk_buffs coming right now, so push 4437 * any pending DMA copies to hardware 4438 */ 4439 dma_issue_pending_all(); 4440 #endif 4441 4442 return; 4443 4444 softnet_break: 4445 sd->time_squeeze++; 4446 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4447 goto out; 4448 } 4449 4450 struct netdev_adjacent { 4451 struct net_device *dev; 4452 4453 /* upper master flag, there can only be one master device per list */ 4454 bool master; 4455 4456 /* counter for the number of times this device was added to us */ 4457 u16 ref_nr; 4458 4459 /* private field for the users */ 4460 void *private; 4461 4462 struct list_head list; 4463 struct rcu_head rcu; 4464 }; 4465 4466 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev, 4467 struct net_device *adj_dev, 4468 struct list_head *adj_list) 4469 { 4470 struct netdev_adjacent *adj; 4471 4472 list_for_each_entry(adj, adj_list, list) { 4473 if (adj->dev == adj_dev) 4474 return adj; 4475 } 4476 return NULL; 4477 } 4478 4479 /** 4480 * netdev_has_upper_dev - Check if device is linked to an upper device 4481 * @dev: device 4482 * @upper_dev: upper device to check 4483 * 4484 * Find out if a device is linked to specified upper device and return true 4485 * in case it is. Note that this checks only immediate upper device, 4486 * not through a complete stack of devices. The caller must hold the RTNL lock. 4487 */ 4488 bool netdev_has_upper_dev(struct net_device *dev, 4489 struct net_device *upper_dev) 4490 { 4491 ASSERT_RTNL(); 4492 4493 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper); 4494 } 4495 EXPORT_SYMBOL(netdev_has_upper_dev); 4496 4497 /** 4498 * netdev_has_any_upper_dev - Check if device is linked to some device 4499 * @dev: device 4500 * 4501 * Find out if a device is linked to an upper device and return true in case 4502 * it is. The caller must hold the RTNL lock. 4503 */ 4504 static bool netdev_has_any_upper_dev(struct net_device *dev) 4505 { 4506 ASSERT_RTNL(); 4507 4508 return !list_empty(&dev->all_adj_list.upper); 4509 } 4510 4511 /** 4512 * netdev_master_upper_dev_get - Get master upper device 4513 * @dev: device 4514 * 4515 * Find a master upper device and return pointer to it or NULL in case 4516 * it's not there. The caller must hold the RTNL lock. 4517 */ 4518 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 4519 { 4520 struct netdev_adjacent *upper; 4521 4522 ASSERT_RTNL(); 4523 4524 if (list_empty(&dev->adj_list.upper)) 4525 return NULL; 4526 4527 upper = list_first_entry(&dev->adj_list.upper, 4528 struct netdev_adjacent, list); 4529 if (likely(upper->master)) 4530 return upper->dev; 4531 return NULL; 4532 } 4533 EXPORT_SYMBOL(netdev_master_upper_dev_get); 4534 4535 void *netdev_adjacent_get_private(struct list_head *adj_list) 4536 { 4537 struct netdev_adjacent *adj; 4538 4539 adj = list_entry(adj_list, struct netdev_adjacent, list); 4540 4541 return adj->private; 4542 } 4543 EXPORT_SYMBOL(netdev_adjacent_get_private); 4544 4545 /** 4546 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list 4547 * @dev: device 4548 * @iter: list_head ** of the current position 4549 * 4550 * Gets the next device from the dev's upper list, starting from iter 4551 * position. The caller must hold RCU read lock. 4552 */ 4553 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4554 struct list_head **iter) 4555 { 4556 struct netdev_adjacent *upper; 4557 4558 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 4559 4560 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4561 4562 if (&upper->list == &dev->all_adj_list.upper) 4563 return NULL; 4564 4565 *iter = &upper->list; 4566 4567 return upper->dev; 4568 } 4569 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu); 4570 4571 /** 4572 * netdev_lower_get_next_private - Get the next ->private from the 4573 * lower neighbour list 4574 * @dev: device 4575 * @iter: list_head ** of the current position 4576 * 4577 * Gets the next netdev_adjacent->private from the dev's lower neighbour 4578 * list, starting from iter position. The caller must hold either hold the 4579 * RTNL lock or its own locking that guarantees that the neighbour lower 4580 * list will remain unchainged. 4581 */ 4582 void *netdev_lower_get_next_private(struct net_device *dev, 4583 struct list_head **iter) 4584 { 4585 struct netdev_adjacent *lower; 4586 4587 lower = list_entry(*iter, struct netdev_adjacent, list); 4588 4589 if (&lower->list == &dev->adj_list.lower) 4590 return NULL; 4591 4592 *iter = lower->list.next; 4593 4594 return lower->private; 4595 } 4596 EXPORT_SYMBOL(netdev_lower_get_next_private); 4597 4598 /** 4599 * netdev_lower_get_next_private_rcu - Get the next ->private from the 4600 * lower neighbour list, RCU 4601 * variant 4602 * @dev: device 4603 * @iter: list_head ** of the current position 4604 * 4605 * Gets the next netdev_adjacent->private from the dev's lower neighbour 4606 * list, starting from iter position. The caller must hold RCU read lock. 4607 */ 4608 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4609 struct list_head **iter) 4610 { 4611 struct netdev_adjacent *lower; 4612 4613 WARN_ON_ONCE(!rcu_read_lock_held()); 4614 4615 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4616 4617 if (&lower->list == &dev->adj_list.lower) 4618 return NULL; 4619 4620 *iter = &lower->list; 4621 4622 return lower->private; 4623 } 4624 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 4625 4626 /** 4627 * netdev_lower_get_first_private_rcu - Get the first ->private from the 4628 * lower neighbour list, RCU 4629 * variant 4630 * @dev: device 4631 * 4632 * Gets the first netdev_adjacent->private from the dev's lower neighbour 4633 * list. The caller must hold RCU read lock. 4634 */ 4635 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 4636 { 4637 struct netdev_adjacent *lower; 4638 4639 lower = list_first_or_null_rcu(&dev->adj_list.lower, 4640 struct netdev_adjacent, list); 4641 if (lower) 4642 return lower->private; 4643 return NULL; 4644 } 4645 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 4646 4647 /** 4648 * netdev_master_upper_dev_get_rcu - Get master upper device 4649 * @dev: device 4650 * 4651 * Find a master upper device and return pointer to it or NULL in case 4652 * it's not there. The caller must hold the RCU read lock. 4653 */ 4654 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 4655 { 4656 struct netdev_adjacent *upper; 4657 4658 upper = list_first_or_null_rcu(&dev->adj_list.upper, 4659 struct netdev_adjacent, list); 4660 if (upper && likely(upper->master)) 4661 return upper->dev; 4662 return NULL; 4663 } 4664 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 4665 4666 static int netdev_adjacent_sysfs_add(struct net_device *dev, 4667 struct net_device *adj_dev, 4668 struct list_head *dev_list) 4669 { 4670 char linkname[IFNAMSIZ+7]; 4671 sprintf(linkname, dev_list == &dev->adj_list.upper ? 4672 "upper_%s" : "lower_%s", adj_dev->name); 4673 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 4674 linkname); 4675 } 4676 static void netdev_adjacent_sysfs_del(struct net_device *dev, 4677 char *name, 4678 struct list_head *dev_list) 4679 { 4680 char linkname[IFNAMSIZ+7]; 4681 sprintf(linkname, dev_list == &dev->adj_list.upper ? 4682 "upper_%s" : "lower_%s", name); 4683 sysfs_remove_link(&(dev->dev.kobj), linkname); 4684 } 4685 4686 #define netdev_adjacent_is_neigh_list(dev, dev_list) \ 4687 (dev_list == &dev->adj_list.upper || \ 4688 dev_list == &dev->adj_list.lower) 4689 4690 static int __netdev_adjacent_dev_insert(struct net_device *dev, 4691 struct net_device *adj_dev, 4692 struct list_head *dev_list, 4693 void *private, bool master) 4694 { 4695 struct netdev_adjacent *adj; 4696 int ret; 4697 4698 adj = __netdev_find_adj(dev, adj_dev, dev_list); 4699 4700 if (adj) { 4701 adj->ref_nr++; 4702 return 0; 4703 } 4704 4705 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 4706 if (!adj) 4707 return -ENOMEM; 4708 4709 adj->dev = adj_dev; 4710 adj->master = master; 4711 adj->ref_nr = 1; 4712 adj->private = private; 4713 dev_hold(adj_dev); 4714 4715 pr_debug("dev_hold for %s, because of link added from %s to %s\n", 4716 adj_dev->name, dev->name, adj_dev->name); 4717 4718 if (netdev_adjacent_is_neigh_list(dev, dev_list)) { 4719 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 4720 if (ret) 4721 goto free_adj; 4722 } 4723 4724 /* Ensure that master link is always the first item in list. */ 4725 if (master) { 4726 ret = sysfs_create_link(&(dev->dev.kobj), 4727 &(adj_dev->dev.kobj), "master"); 4728 if (ret) 4729 goto remove_symlinks; 4730 4731 list_add_rcu(&adj->list, dev_list); 4732 } else { 4733 list_add_tail_rcu(&adj->list, dev_list); 4734 } 4735 4736 return 0; 4737 4738 remove_symlinks: 4739 if (netdev_adjacent_is_neigh_list(dev, dev_list)) 4740 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 4741 free_adj: 4742 kfree(adj); 4743 dev_put(adj_dev); 4744 4745 return ret; 4746 } 4747 4748 static void __netdev_adjacent_dev_remove(struct net_device *dev, 4749 struct net_device *adj_dev, 4750 struct list_head *dev_list) 4751 { 4752 struct netdev_adjacent *adj; 4753 4754 adj = __netdev_find_adj(dev, adj_dev, dev_list); 4755 4756 if (!adj) { 4757 pr_err("tried to remove device %s from %s\n", 4758 dev->name, adj_dev->name); 4759 BUG(); 4760 } 4761 4762 if (adj->ref_nr > 1) { 4763 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name, 4764 adj->ref_nr-1); 4765 adj->ref_nr--; 4766 return; 4767 } 4768 4769 if (adj->master) 4770 sysfs_remove_link(&(dev->dev.kobj), "master"); 4771 4772 if (netdev_adjacent_is_neigh_list(dev, dev_list)) 4773 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 4774 4775 list_del_rcu(&adj->list); 4776 pr_debug("dev_put for %s, because link removed from %s to %s\n", 4777 adj_dev->name, dev->name, adj_dev->name); 4778 dev_put(adj_dev); 4779 kfree_rcu(adj, rcu); 4780 } 4781 4782 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 4783 struct net_device *upper_dev, 4784 struct list_head *up_list, 4785 struct list_head *down_list, 4786 void *private, bool master) 4787 { 4788 int ret; 4789 4790 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private, 4791 master); 4792 if (ret) 4793 return ret; 4794 4795 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private, 4796 false); 4797 if (ret) { 4798 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 4799 return ret; 4800 } 4801 4802 return 0; 4803 } 4804 4805 static int __netdev_adjacent_dev_link(struct net_device *dev, 4806 struct net_device *upper_dev) 4807 { 4808 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 4809 &dev->all_adj_list.upper, 4810 &upper_dev->all_adj_list.lower, 4811 NULL, false); 4812 } 4813 4814 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 4815 struct net_device *upper_dev, 4816 struct list_head *up_list, 4817 struct list_head *down_list) 4818 { 4819 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 4820 __netdev_adjacent_dev_remove(upper_dev, dev, down_list); 4821 } 4822 4823 static void __netdev_adjacent_dev_unlink(struct net_device *dev, 4824 struct net_device *upper_dev) 4825 { 4826 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 4827 &dev->all_adj_list.upper, 4828 &upper_dev->all_adj_list.lower); 4829 } 4830 4831 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 4832 struct net_device *upper_dev, 4833 void *private, bool master) 4834 { 4835 int ret = __netdev_adjacent_dev_link(dev, upper_dev); 4836 4837 if (ret) 4838 return ret; 4839 4840 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 4841 &dev->adj_list.upper, 4842 &upper_dev->adj_list.lower, 4843 private, master); 4844 if (ret) { 4845 __netdev_adjacent_dev_unlink(dev, upper_dev); 4846 return ret; 4847 } 4848 4849 return 0; 4850 } 4851 4852 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 4853 struct net_device *upper_dev) 4854 { 4855 __netdev_adjacent_dev_unlink(dev, upper_dev); 4856 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 4857 &dev->adj_list.upper, 4858 &upper_dev->adj_list.lower); 4859 } 4860 4861 static int __netdev_upper_dev_link(struct net_device *dev, 4862 struct net_device *upper_dev, bool master, 4863 void *private) 4864 { 4865 struct netdev_adjacent *i, *j, *to_i, *to_j; 4866 int ret = 0; 4867 4868 ASSERT_RTNL(); 4869 4870 if (dev == upper_dev) 4871 return -EBUSY; 4872 4873 /* To prevent loops, check if dev is not upper device to upper_dev. */ 4874 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper)) 4875 return -EBUSY; 4876 4877 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper)) 4878 return -EEXIST; 4879 4880 if (master && netdev_master_upper_dev_get(dev)) 4881 return -EBUSY; 4882 4883 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private, 4884 master); 4885 if (ret) 4886 return ret; 4887 4888 /* Now that we linked these devs, make all the upper_dev's 4889 * all_adj_list.upper visible to every dev's all_adj_list.lower an 4890 * versa, and don't forget the devices itself. All of these 4891 * links are non-neighbours. 4892 */ 4893 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 4894 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 4895 pr_debug("Interlinking %s with %s, non-neighbour\n", 4896 i->dev->name, j->dev->name); 4897 ret = __netdev_adjacent_dev_link(i->dev, j->dev); 4898 if (ret) 4899 goto rollback_mesh; 4900 } 4901 } 4902 4903 /* add dev to every upper_dev's upper device */ 4904 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 4905 pr_debug("linking %s's upper device %s with %s\n", 4906 upper_dev->name, i->dev->name, dev->name); 4907 ret = __netdev_adjacent_dev_link(dev, i->dev); 4908 if (ret) 4909 goto rollback_upper_mesh; 4910 } 4911 4912 /* add upper_dev to every dev's lower device */ 4913 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 4914 pr_debug("linking %s's lower device %s with %s\n", dev->name, 4915 i->dev->name, upper_dev->name); 4916 ret = __netdev_adjacent_dev_link(i->dev, upper_dev); 4917 if (ret) 4918 goto rollback_lower_mesh; 4919 } 4920 4921 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 4922 return 0; 4923 4924 rollback_lower_mesh: 4925 to_i = i; 4926 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 4927 if (i == to_i) 4928 break; 4929 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 4930 } 4931 4932 i = NULL; 4933 4934 rollback_upper_mesh: 4935 to_i = i; 4936 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 4937 if (i == to_i) 4938 break; 4939 __netdev_adjacent_dev_unlink(dev, i->dev); 4940 } 4941 4942 i = j = NULL; 4943 4944 rollback_mesh: 4945 to_i = i; 4946 to_j = j; 4947 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 4948 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 4949 if (i == to_i && j == to_j) 4950 break; 4951 __netdev_adjacent_dev_unlink(i->dev, j->dev); 4952 } 4953 if (i == to_i) 4954 break; 4955 } 4956 4957 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 4958 4959 return ret; 4960 } 4961 4962 /** 4963 * netdev_upper_dev_link - Add a link to the upper device 4964 * @dev: device 4965 * @upper_dev: new upper device 4966 * 4967 * Adds a link to device which is upper to this one. The caller must hold 4968 * the RTNL lock. On a failure a negative errno code is returned. 4969 * On success the reference counts are adjusted and the function 4970 * returns zero. 4971 */ 4972 int netdev_upper_dev_link(struct net_device *dev, 4973 struct net_device *upper_dev) 4974 { 4975 return __netdev_upper_dev_link(dev, upper_dev, false, NULL); 4976 } 4977 EXPORT_SYMBOL(netdev_upper_dev_link); 4978 4979 /** 4980 * netdev_master_upper_dev_link - Add a master link to the upper device 4981 * @dev: device 4982 * @upper_dev: new upper device 4983 * 4984 * Adds a link to device which is upper to this one. In this case, only 4985 * one master upper device can be linked, although other non-master devices 4986 * might be linked as well. The caller must hold the RTNL lock. 4987 * On a failure a negative errno code is returned. On success the reference 4988 * counts are adjusted and the function returns zero. 4989 */ 4990 int netdev_master_upper_dev_link(struct net_device *dev, 4991 struct net_device *upper_dev) 4992 { 4993 return __netdev_upper_dev_link(dev, upper_dev, true, NULL); 4994 } 4995 EXPORT_SYMBOL(netdev_master_upper_dev_link); 4996 4997 int netdev_master_upper_dev_link_private(struct net_device *dev, 4998 struct net_device *upper_dev, 4999 void *private) 5000 { 5001 return __netdev_upper_dev_link(dev, upper_dev, true, private); 5002 } 5003 EXPORT_SYMBOL(netdev_master_upper_dev_link_private); 5004 5005 /** 5006 * netdev_upper_dev_unlink - Removes a link to upper device 5007 * @dev: device 5008 * @upper_dev: new upper device 5009 * 5010 * Removes a link to device which is upper to this one. The caller must hold 5011 * the RTNL lock. 5012 */ 5013 void netdev_upper_dev_unlink(struct net_device *dev, 5014 struct net_device *upper_dev) 5015 { 5016 struct netdev_adjacent *i, *j; 5017 ASSERT_RTNL(); 5018 5019 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5020 5021 /* Here is the tricky part. We must remove all dev's lower 5022 * devices from all upper_dev's upper devices and vice 5023 * versa, to maintain the graph relationship. 5024 */ 5025 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5026 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) 5027 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5028 5029 /* remove also the devices itself from lower/upper device 5030 * list 5031 */ 5032 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5033 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5034 5035 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) 5036 __netdev_adjacent_dev_unlink(dev, i->dev); 5037 5038 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 5039 } 5040 EXPORT_SYMBOL(netdev_upper_dev_unlink); 5041 5042 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 5043 { 5044 struct netdev_adjacent *iter; 5045 5046 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5047 netdev_adjacent_sysfs_del(iter->dev, oldname, 5048 &iter->dev->adj_list.lower); 5049 netdev_adjacent_sysfs_add(iter->dev, dev, 5050 &iter->dev->adj_list.lower); 5051 } 5052 5053 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5054 netdev_adjacent_sysfs_del(iter->dev, oldname, 5055 &iter->dev->adj_list.upper); 5056 netdev_adjacent_sysfs_add(iter->dev, dev, 5057 &iter->dev->adj_list.upper); 5058 } 5059 } 5060 5061 void *netdev_lower_dev_get_private(struct net_device *dev, 5062 struct net_device *lower_dev) 5063 { 5064 struct netdev_adjacent *lower; 5065 5066 if (!lower_dev) 5067 return NULL; 5068 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower); 5069 if (!lower) 5070 return NULL; 5071 5072 return lower->private; 5073 } 5074 EXPORT_SYMBOL(netdev_lower_dev_get_private); 5075 5076 static void dev_change_rx_flags(struct net_device *dev, int flags) 5077 { 5078 const struct net_device_ops *ops = dev->netdev_ops; 5079 5080 if (ops->ndo_change_rx_flags) 5081 ops->ndo_change_rx_flags(dev, flags); 5082 } 5083 5084 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 5085 { 5086 unsigned int old_flags = dev->flags; 5087 kuid_t uid; 5088 kgid_t gid; 5089 5090 ASSERT_RTNL(); 5091 5092 dev->flags |= IFF_PROMISC; 5093 dev->promiscuity += inc; 5094 if (dev->promiscuity == 0) { 5095 /* 5096 * Avoid overflow. 5097 * If inc causes overflow, untouch promisc and return error. 5098 */ 5099 if (inc < 0) 5100 dev->flags &= ~IFF_PROMISC; 5101 else { 5102 dev->promiscuity -= inc; 5103 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 5104 dev->name); 5105 return -EOVERFLOW; 5106 } 5107 } 5108 if (dev->flags != old_flags) { 5109 pr_info("device %s %s promiscuous mode\n", 5110 dev->name, 5111 dev->flags & IFF_PROMISC ? "entered" : "left"); 5112 if (audit_enabled) { 5113 current_uid_gid(&uid, &gid); 5114 audit_log(current->audit_context, GFP_ATOMIC, 5115 AUDIT_ANOM_PROMISCUOUS, 5116 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 5117 dev->name, (dev->flags & IFF_PROMISC), 5118 (old_flags & IFF_PROMISC), 5119 from_kuid(&init_user_ns, audit_get_loginuid(current)), 5120 from_kuid(&init_user_ns, uid), 5121 from_kgid(&init_user_ns, gid), 5122 audit_get_sessionid(current)); 5123 } 5124 5125 dev_change_rx_flags(dev, IFF_PROMISC); 5126 } 5127 if (notify) 5128 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 5129 return 0; 5130 } 5131 5132 /** 5133 * dev_set_promiscuity - update promiscuity count on a device 5134 * @dev: device 5135 * @inc: modifier 5136 * 5137 * Add or remove promiscuity from a device. While the count in the device 5138 * remains above zero the interface remains promiscuous. Once it hits zero 5139 * the device reverts back to normal filtering operation. A negative inc 5140 * value is used to drop promiscuity on the device. 5141 * Return 0 if successful or a negative errno code on error. 5142 */ 5143 int dev_set_promiscuity(struct net_device *dev, int inc) 5144 { 5145 unsigned int old_flags = dev->flags; 5146 int err; 5147 5148 err = __dev_set_promiscuity(dev, inc, true); 5149 if (err < 0) 5150 return err; 5151 if (dev->flags != old_flags) 5152 dev_set_rx_mode(dev); 5153 return err; 5154 } 5155 EXPORT_SYMBOL(dev_set_promiscuity); 5156 5157 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 5158 { 5159 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 5160 5161 ASSERT_RTNL(); 5162 5163 dev->flags |= IFF_ALLMULTI; 5164 dev->allmulti += inc; 5165 if (dev->allmulti == 0) { 5166 /* 5167 * Avoid overflow. 5168 * If inc causes overflow, untouch allmulti and return error. 5169 */ 5170 if (inc < 0) 5171 dev->flags &= ~IFF_ALLMULTI; 5172 else { 5173 dev->allmulti -= inc; 5174 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 5175 dev->name); 5176 return -EOVERFLOW; 5177 } 5178 } 5179 if (dev->flags ^ old_flags) { 5180 dev_change_rx_flags(dev, IFF_ALLMULTI); 5181 dev_set_rx_mode(dev); 5182 if (notify) 5183 __dev_notify_flags(dev, old_flags, 5184 dev->gflags ^ old_gflags); 5185 } 5186 return 0; 5187 } 5188 5189 /** 5190 * dev_set_allmulti - update allmulti count on a device 5191 * @dev: device 5192 * @inc: modifier 5193 * 5194 * Add or remove reception of all multicast frames to a device. While the 5195 * count in the device remains above zero the interface remains listening 5196 * to all interfaces. Once it hits zero the device reverts back to normal 5197 * filtering operation. A negative @inc value is used to drop the counter 5198 * when releasing a resource needing all multicasts. 5199 * Return 0 if successful or a negative errno code on error. 5200 */ 5201 5202 int dev_set_allmulti(struct net_device *dev, int inc) 5203 { 5204 return __dev_set_allmulti(dev, inc, true); 5205 } 5206 EXPORT_SYMBOL(dev_set_allmulti); 5207 5208 /* 5209 * Upload unicast and multicast address lists to device and 5210 * configure RX filtering. When the device doesn't support unicast 5211 * filtering it is put in promiscuous mode while unicast addresses 5212 * are present. 5213 */ 5214 void __dev_set_rx_mode(struct net_device *dev) 5215 { 5216 const struct net_device_ops *ops = dev->netdev_ops; 5217 5218 /* dev_open will call this function so the list will stay sane. */ 5219 if (!(dev->flags&IFF_UP)) 5220 return; 5221 5222 if (!netif_device_present(dev)) 5223 return; 5224 5225 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 5226 /* Unicast addresses changes may only happen under the rtnl, 5227 * therefore calling __dev_set_promiscuity here is safe. 5228 */ 5229 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 5230 __dev_set_promiscuity(dev, 1, false); 5231 dev->uc_promisc = true; 5232 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 5233 __dev_set_promiscuity(dev, -1, false); 5234 dev->uc_promisc = false; 5235 } 5236 } 5237 5238 if (ops->ndo_set_rx_mode) 5239 ops->ndo_set_rx_mode(dev); 5240 } 5241 5242 void dev_set_rx_mode(struct net_device *dev) 5243 { 5244 netif_addr_lock_bh(dev); 5245 __dev_set_rx_mode(dev); 5246 netif_addr_unlock_bh(dev); 5247 } 5248 5249 /** 5250 * dev_get_flags - get flags reported to userspace 5251 * @dev: device 5252 * 5253 * Get the combination of flag bits exported through APIs to userspace. 5254 */ 5255 unsigned int dev_get_flags(const struct net_device *dev) 5256 { 5257 unsigned int flags; 5258 5259 flags = (dev->flags & ~(IFF_PROMISC | 5260 IFF_ALLMULTI | 5261 IFF_RUNNING | 5262 IFF_LOWER_UP | 5263 IFF_DORMANT)) | 5264 (dev->gflags & (IFF_PROMISC | 5265 IFF_ALLMULTI)); 5266 5267 if (netif_running(dev)) { 5268 if (netif_oper_up(dev)) 5269 flags |= IFF_RUNNING; 5270 if (netif_carrier_ok(dev)) 5271 flags |= IFF_LOWER_UP; 5272 if (netif_dormant(dev)) 5273 flags |= IFF_DORMANT; 5274 } 5275 5276 return flags; 5277 } 5278 EXPORT_SYMBOL(dev_get_flags); 5279 5280 int __dev_change_flags(struct net_device *dev, unsigned int flags) 5281 { 5282 unsigned int old_flags = dev->flags; 5283 int ret; 5284 5285 ASSERT_RTNL(); 5286 5287 /* 5288 * Set the flags on our device. 5289 */ 5290 5291 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 5292 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 5293 IFF_AUTOMEDIA)) | 5294 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 5295 IFF_ALLMULTI)); 5296 5297 /* 5298 * Load in the correct multicast list now the flags have changed. 5299 */ 5300 5301 if ((old_flags ^ flags) & IFF_MULTICAST) 5302 dev_change_rx_flags(dev, IFF_MULTICAST); 5303 5304 dev_set_rx_mode(dev); 5305 5306 /* 5307 * Have we downed the interface. We handle IFF_UP ourselves 5308 * according to user attempts to set it, rather than blindly 5309 * setting it. 5310 */ 5311 5312 ret = 0; 5313 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 5314 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 5315 5316 if (!ret) 5317 dev_set_rx_mode(dev); 5318 } 5319 5320 if ((flags ^ dev->gflags) & IFF_PROMISC) { 5321 int inc = (flags & IFF_PROMISC) ? 1 : -1; 5322 unsigned int old_flags = dev->flags; 5323 5324 dev->gflags ^= IFF_PROMISC; 5325 5326 if (__dev_set_promiscuity(dev, inc, false) >= 0) 5327 if (dev->flags != old_flags) 5328 dev_set_rx_mode(dev); 5329 } 5330 5331 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 5332 is important. Some (broken) drivers set IFF_PROMISC, when 5333 IFF_ALLMULTI is requested not asking us and not reporting. 5334 */ 5335 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 5336 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 5337 5338 dev->gflags ^= IFF_ALLMULTI; 5339 __dev_set_allmulti(dev, inc, false); 5340 } 5341 5342 return ret; 5343 } 5344 5345 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 5346 unsigned int gchanges) 5347 { 5348 unsigned int changes = dev->flags ^ old_flags; 5349 5350 if (gchanges) 5351 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 5352 5353 if (changes & IFF_UP) { 5354 if (dev->flags & IFF_UP) 5355 call_netdevice_notifiers(NETDEV_UP, dev); 5356 else 5357 call_netdevice_notifiers(NETDEV_DOWN, dev); 5358 } 5359 5360 if (dev->flags & IFF_UP && 5361 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 5362 struct netdev_notifier_change_info change_info; 5363 5364 change_info.flags_changed = changes; 5365 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 5366 &change_info.info); 5367 } 5368 } 5369 5370 /** 5371 * dev_change_flags - change device settings 5372 * @dev: device 5373 * @flags: device state flags 5374 * 5375 * Change settings on device based state flags. The flags are 5376 * in the userspace exported format. 5377 */ 5378 int dev_change_flags(struct net_device *dev, unsigned int flags) 5379 { 5380 int ret; 5381 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 5382 5383 ret = __dev_change_flags(dev, flags); 5384 if (ret < 0) 5385 return ret; 5386 5387 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 5388 __dev_notify_flags(dev, old_flags, changes); 5389 return ret; 5390 } 5391 EXPORT_SYMBOL(dev_change_flags); 5392 5393 static int __dev_set_mtu(struct net_device *dev, int new_mtu) 5394 { 5395 const struct net_device_ops *ops = dev->netdev_ops; 5396 5397 if (ops->ndo_change_mtu) 5398 return ops->ndo_change_mtu(dev, new_mtu); 5399 5400 dev->mtu = new_mtu; 5401 return 0; 5402 } 5403 5404 /** 5405 * dev_set_mtu - Change maximum transfer unit 5406 * @dev: device 5407 * @new_mtu: new transfer unit 5408 * 5409 * Change the maximum transfer size of the network device. 5410 */ 5411 int dev_set_mtu(struct net_device *dev, int new_mtu) 5412 { 5413 int err, orig_mtu; 5414 5415 if (new_mtu == dev->mtu) 5416 return 0; 5417 5418 /* MTU must be positive. */ 5419 if (new_mtu < 0) 5420 return -EINVAL; 5421 5422 if (!netif_device_present(dev)) 5423 return -ENODEV; 5424 5425 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 5426 err = notifier_to_errno(err); 5427 if (err) 5428 return err; 5429 5430 orig_mtu = dev->mtu; 5431 err = __dev_set_mtu(dev, new_mtu); 5432 5433 if (!err) { 5434 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 5435 err = notifier_to_errno(err); 5436 if (err) { 5437 /* setting mtu back and notifying everyone again, 5438 * so that they have a chance to revert changes. 5439 */ 5440 __dev_set_mtu(dev, orig_mtu); 5441 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 5442 } 5443 } 5444 return err; 5445 } 5446 EXPORT_SYMBOL(dev_set_mtu); 5447 5448 /** 5449 * dev_set_group - Change group this device belongs to 5450 * @dev: device 5451 * @new_group: group this device should belong to 5452 */ 5453 void dev_set_group(struct net_device *dev, int new_group) 5454 { 5455 dev->group = new_group; 5456 } 5457 EXPORT_SYMBOL(dev_set_group); 5458 5459 /** 5460 * dev_set_mac_address - Change Media Access Control Address 5461 * @dev: device 5462 * @sa: new address 5463 * 5464 * Change the hardware (MAC) address of the device 5465 */ 5466 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 5467 { 5468 const struct net_device_ops *ops = dev->netdev_ops; 5469 int err; 5470 5471 if (!ops->ndo_set_mac_address) 5472 return -EOPNOTSUPP; 5473 if (sa->sa_family != dev->type) 5474 return -EINVAL; 5475 if (!netif_device_present(dev)) 5476 return -ENODEV; 5477 err = ops->ndo_set_mac_address(dev, sa); 5478 if (err) 5479 return err; 5480 dev->addr_assign_type = NET_ADDR_SET; 5481 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 5482 add_device_randomness(dev->dev_addr, dev->addr_len); 5483 return 0; 5484 } 5485 EXPORT_SYMBOL(dev_set_mac_address); 5486 5487 /** 5488 * dev_change_carrier - Change device carrier 5489 * @dev: device 5490 * @new_carrier: new value 5491 * 5492 * Change device carrier 5493 */ 5494 int dev_change_carrier(struct net_device *dev, bool new_carrier) 5495 { 5496 const struct net_device_ops *ops = dev->netdev_ops; 5497 5498 if (!ops->ndo_change_carrier) 5499 return -EOPNOTSUPP; 5500 if (!netif_device_present(dev)) 5501 return -ENODEV; 5502 return ops->ndo_change_carrier(dev, new_carrier); 5503 } 5504 EXPORT_SYMBOL(dev_change_carrier); 5505 5506 /** 5507 * dev_get_phys_port_id - Get device physical port ID 5508 * @dev: device 5509 * @ppid: port ID 5510 * 5511 * Get device physical port ID 5512 */ 5513 int dev_get_phys_port_id(struct net_device *dev, 5514 struct netdev_phys_port_id *ppid) 5515 { 5516 const struct net_device_ops *ops = dev->netdev_ops; 5517 5518 if (!ops->ndo_get_phys_port_id) 5519 return -EOPNOTSUPP; 5520 return ops->ndo_get_phys_port_id(dev, ppid); 5521 } 5522 EXPORT_SYMBOL(dev_get_phys_port_id); 5523 5524 /** 5525 * dev_new_index - allocate an ifindex 5526 * @net: the applicable net namespace 5527 * 5528 * Returns a suitable unique value for a new device interface 5529 * number. The caller must hold the rtnl semaphore or the 5530 * dev_base_lock to be sure it remains unique. 5531 */ 5532 static int dev_new_index(struct net *net) 5533 { 5534 int ifindex = net->ifindex; 5535 for (;;) { 5536 if (++ifindex <= 0) 5537 ifindex = 1; 5538 if (!__dev_get_by_index(net, ifindex)) 5539 return net->ifindex = ifindex; 5540 } 5541 } 5542 5543 /* Delayed registration/unregisteration */ 5544 static LIST_HEAD(net_todo_list); 5545 static DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 5546 5547 static void net_set_todo(struct net_device *dev) 5548 { 5549 list_add_tail(&dev->todo_list, &net_todo_list); 5550 dev_net(dev)->dev_unreg_count++; 5551 } 5552 5553 static void rollback_registered_many(struct list_head *head) 5554 { 5555 struct net_device *dev, *tmp; 5556 LIST_HEAD(close_head); 5557 5558 BUG_ON(dev_boot_phase); 5559 ASSERT_RTNL(); 5560 5561 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5562 /* Some devices call without registering 5563 * for initialization unwind. Remove those 5564 * devices and proceed with the remaining. 5565 */ 5566 if (dev->reg_state == NETREG_UNINITIALIZED) { 5567 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 5568 dev->name, dev); 5569 5570 WARN_ON(1); 5571 list_del(&dev->unreg_list); 5572 continue; 5573 } 5574 dev->dismantle = true; 5575 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5576 } 5577 5578 /* If device is running, close it first. */ 5579 list_for_each_entry(dev, head, unreg_list) 5580 list_add_tail(&dev->close_list, &close_head); 5581 dev_close_many(&close_head); 5582 5583 list_for_each_entry(dev, head, unreg_list) { 5584 /* And unlink it from device chain. */ 5585 unlist_netdevice(dev); 5586 5587 dev->reg_state = NETREG_UNREGISTERING; 5588 } 5589 5590 synchronize_net(); 5591 5592 list_for_each_entry(dev, head, unreg_list) { 5593 /* Shutdown queueing discipline. */ 5594 dev_shutdown(dev); 5595 5596 5597 /* Notify protocols, that we are about to destroy 5598 this device. They should clean all the things. 5599 */ 5600 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5601 5602 if (!dev->rtnl_link_ops || 5603 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5604 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 5605 5606 /* 5607 * Flush the unicast and multicast chains 5608 */ 5609 dev_uc_flush(dev); 5610 dev_mc_flush(dev); 5611 5612 if (dev->netdev_ops->ndo_uninit) 5613 dev->netdev_ops->ndo_uninit(dev); 5614 5615 /* Notifier chain MUST detach us all upper devices. */ 5616 WARN_ON(netdev_has_any_upper_dev(dev)); 5617 5618 /* Remove entries from kobject tree */ 5619 netdev_unregister_kobject(dev); 5620 #ifdef CONFIG_XPS 5621 /* Remove XPS queueing entries */ 5622 netif_reset_xps_queues_gt(dev, 0); 5623 #endif 5624 } 5625 5626 synchronize_net(); 5627 5628 list_for_each_entry(dev, head, unreg_list) 5629 dev_put(dev); 5630 } 5631 5632 static void rollback_registered(struct net_device *dev) 5633 { 5634 LIST_HEAD(single); 5635 5636 list_add(&dev->unreg_list, &single); 5637 rollback_registered_many(&single); 5638 list_del(&single); 5639 } 5640 5641 static netdev_features_t netdev_fix_features(struct net_device *dev, 5642 netdev_features_t features) 5643 { 5644 /* Fix illegal checksum combinations */ 5645 if ((features & NETIF_F_HW_CSUM) && 5646 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5647 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 5648 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5649 } 5650 5651 /* TSO requires that SG is present as well. */ 5652 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 5653 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 5654 features &= ~NETIF_F_ALL_TSO; 5655 } 5656 5657 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 5658 !(features & NETIF_F_IP_CSUM)) { 5659 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 5660 features &= ~NETIF_F_TSO; 5661 features &= ~NETIF_F_TSO_ECN; 5662 } 5663 5664 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 5665 !(features & NETIF_F_IPV6_CSUM)) { 5666 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 5667 features &= ~NETIF_F_TSO6; 5668 } 5669 5670 /* TSO ECN requires that TSO is present as well. */ 5671 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 5672 features &= ~NETIF_F_TSO_ECN; 5673 5674 /* Software GSO depends on SG. */ 5675 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 5676 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 5677 features &= ~NETIF_F_GSO; 5678 } 5679 5680 /* UFO needs SG and checksumming */ 5681 if (features & NETIF_F_UFO) { 5682 /* maybe split UFO into V4 and V6? */ 5683 if (!((features & NETIF_F_GEN_CSUM) || 5684 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5685 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5686 netdev_dbg(dev, 5687 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 5688 features &= ~NETIF_F_UFO; 5689 } 5690 5691 if (!(features & NETIF_F_SG)) { 5692 netdev_dbg(dev, 5693 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 5694 features &= ~NETIF_F_UFO; 5695 } 5696 } 5697 5698 #ifdef CONFIG_NET_RX_BUSY_POLL 5699 if (dev->netdev_ops->ndo_busy_poll) 5700 features |= NETIF_F_BUSY_POLL; 5701 else 5702 #endif 5703 features &= ~NETIF_F_BUSY_POLL; 5704 5705 return features; 5706 } 5707 5708 int __netdev_update_features(struct net_device *dev) 5709 { 5710 netdev_features_t features; 5711 int err = 0; 5712 5713 ASSERT_RTNL(); 5714 5715 features = netdev_get_wanted_features(dev); 5716 5717 if (dev->netdev_ops->ndo_fix_features) 5718 features = dev->netdev_ops->ndo_fix_features(dev, features); 5719 5720 /* driver might be less strict about feature dependencies */ 5721 features = netdev_fix_features(dev, features); 5722 5723 if (dev->features == features) 5724 return 0; 5725 5726 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 5727 &dev->features, &features); 5728 5729 if (dev->netdev_ops->ndo_set_features) 5730 err = dev->netdev_ops->ndo_set_features(dev, features); 5731 5732 if (unlikely(err < 0)) { 5733 netdev_err(dev, 5734 "set_features() failed (%d); wanted %pNF, left %pNF\n", 5735 err, &features, &dev->features); 5736 return -1; 5737 } 5738 5739 if (!err) 5740 dev->features = features; 5741 5742 return 1; 5743 } 5744 5745 /** 5746 * netdev_update_features - recalculate device features 5747 * @dev: the device to check 5748 * 5749 * Recalculate dev->features set and send notifications if it 5750 * has changed. Should be called after driver or hardware dependent 5751 * conditions might have changed that influence the features. 5752 */ 5753 void netdev_update_features(struct net_device *dev) 5754 { 5755 if (__netdev_update_features(dev)) 5756 netdev_features_change(dev); 5757 } 5758 EXPORT_SYMBOL(netdev_update_features); 5759 5760 /** 5761 * netdev_change_features - recalculate device features 5762 * @dev: the device to check 5763 * 5764 * Recalculate dev->features set and send notifications even 5765 * if they have not changed. Should be called instead of 5766 * netdev_update_features() if also dev->vlan_features might 5767 * have changed to allow the changes to be propagated to stacked 5768 * VLAN devices. 5769 */ 5770 void netdev_change_features(struct net_device *dev) 5771 { 5772 __netdev_update_features(dev); 5773 netdev_features_change(dev); 5774 } 5775 EXPORT_SYMBOL(netdev_change_features); 5776 5777 /** 5778 * netif_stacked_transfer_operstate - transfer operstate 5779 * @rootdev: the root or lower level device to transfer state from 5780 * @dev: the device to transfer operstate to 5781 * 5782 * Transfer operational state from root to device. This is normally 5783 * called when a stacking relationship exists between the root 5784 * device and the device(a leaf device). 5785 */ 5786 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5787 struct net_device *dev) 5788 { 5789 if (rootdev->operstate == IF_OPER_DORMANT) 5790 netif_dormant_on(dev); 5791 else 5792 netif_dormant_off(dev); 5793 5794 if (netif_carrier_ok(rootdev)) { 5795 if (!netif_carrier_ok(dev)) 5796 netif_carrier_on(dev); 5797 } else { 5798 if (netif_carrier_ok(dev)) 5799 netif_carrier_off(dev); 5800 } 5801 } 5802 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5803 5804 #ifdef CONFIG_SYSFS 5805 static int netif_alloc_rx_queues(struct net_device *dev) 5806 { 5807 unsigned int i, count = dev->num_rx_queues; 5808 struct netdev_rx_queue *rx; 5809 5810 BUG_ON(count < 1); 5811 5812 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5813 if (!rx) 5814 return -ENOMEM; 5815 5816 dev->_rx = rx; 5817 5818 for (i = 0; i < count; i++) 5819 rx[i].dev = dev; 5820 return 0; 5821 } 5822 #endif 5823 5824 static void netdev_init_one_queue(struct net_device *dev, 5825 struct netdev_queue *queue, void *_unused) 5826 { 5827 /* Initialize queue lock */ 5828 spin_lock_init(&queue->_xmit_lock); 5829 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5830 queue->xmit_lock_owner = -1; 5831 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5832 queue->dev = dev; 5833 #ifdef CONFIG_BQL 5834 dql_init(&queue->dql, HZ); 5835 #endif 5836 } 5837 5838 static void netif_free_tx_queues(struct net_device *dev) 5839 { 5840 if (is_vmalloc_addr(dev->_tx)) 5841 vfree(dev->_tx); 5842 else 5843 kfree(dev->_tx); 5844 } 5845 5846 static int netif_alloc_netdev_queues(struct net_device *dev) 5847 { 5848 unsigned int count = dev->num_tx_queues; 5849 struct netdev_queue *tx; 5850 size_t sz = count * sizeof(*tx); 5851 5852 BUG_ON(count < 1 || count > 0xffff); 5853 5854 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 5855 if (!tx) { 5856 tx = vzalloc(sz); 5857 if (!tx) 5858 return -ENOMEM; 5859 } 5860 dev->_tx = tx; 5861 5862 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5863 spin_lock_init(&dev->tx_global_lock); 5864 5865 return 0; 5866 } 5867 5868 /** 5869 * register_netdevice - register a network device 5870 * @dev: device to register 5871 * 5872 * Take a completed network device structure and add it to the kernel 5873 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5874 * chain. 0 is returned on success. A negative errno code is returned 5875 * on a failure to set up the device, or if the name is a duplicate. 5876 * 5877 * Callers must hold the rtnl semaphore. You may want 5878 * register_netdev() instead of this. 5879 * 5880 * BUGS: 5881 * The locking appears insufficient to guarantee two parallel registers 5882 * will not get the same name. 5883 */ 5884 5885 int register_netdevice(struct net_device *dev) 5886 { 5887 int ret; 5888 struct net *net = dev_net(dev); 5889 5890 BUG_ON(dev_boot_phase); 5891 ASSERT_RTNL(); 5892 5893 might_sleep(); 5894 5895 /* When net_device's are persistent, this will be fatal. */ 5896 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5897 BUG_ON(!net); 5898 5899 spin_lock_init(&dev->addr_list_lock); 5900 netdev_set_addr_lockdep_class(dev); 5901 5902 dev->iflink = -1; 5903 5904 ret = dev_get_valid_name(net, dev, dev->name); 5905 if (ret < 0) 5906 goto out; 5907 5908 /* Init, if this function is available */ 5909 if (dev->netdev_ops->ndo_init) { 5910 ret = dev->netdev_ops->ndo_init(dev); 5911 if (ret) { 5912 if (ret > 0) 5913 ret = -EIO; 5914 goto out; 5915 } 5916 } 5917 5918 if (((dev->hw_features | dev->features) & 5919 NETIF_F_HW_VLAN_CTAG_FILTER) && 5920 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 5921 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 5922 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 5923 ret = -EINVAL; 5924 goto err_uninit; 5925 } 5926 5927 ret = -EBUSY; 5928 if (!dev->ifindex) 5929 dev->ifindex = dev_new_index(net); 5930 else if (__dev_get_by_index(net, dev->ifindex)) 5931 goto err_uninit; 5932 5933 if (dev->iflink == -1) 5934 dev->iflink = dev->ifindex; 5935 5936 /* Transfer changeable features to wanted_features and enable 5937 * software offloads (GSO and GRO). 5938 */ 5939 dev->hw_features |= NETIF_F_SOFT_FEATURES; 5940 dev->features |= NETIF_F_SOFT_FEATURES; 5941 dev->wanted_features = dev->features & dev->hw_features; 5942 5943 if (!(dev->flags & IFF_LOOPBACK)) { 5944 dev->hw_features |= NETIF_F_NOCACHE_COPY; 5945 } 5946 5947 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 5948 */ 5949 dev->vlan_features |= NETIF_F_HIGHDMA; 5950 5951 /* Make NETIF_F_SG inheritable to tunnel devices. 5952 */ 5953 dev->hw_enc_features |= NETIF_F_SG; 5954 5955 /* Make NETIF_F_SG inheritable to MPLS. 5956 */ 5957 dev->mpls_features |= NETIF_F_SG; 5958 5959 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5960 ret = notifier_to_errno(ret); 5961 if (ret) 5962 goto err_uninit; 5963 5964 ret = netdev_register_kobject(dev); 5965 if (ret) 5966 goto err_uninit; 5967 dev->reg_state = NETREG_REGISTERED; 5968 5969 __netdev_update_features(dev); 5970 5971 /* 5972 * Default initial state at registry is that the 5973 * device is present. 5974 */ 5975 5976 set_bit(__LINK_STATE_PRESENT, &dev->state); 5977 5978 linkwatch_init_dev(dev); 5979 5980 dev_init_scheduler(dev); 5981 dev_hold(dev); 5982 list_netdevice(dev); 5983 add_device_randomness(dev->dev_addr, dev->addr_len); 5984 5985 /* If the device has permanent device address, driver should 5986 * set dev_addr and also addr_assign_type should be set to 5987 * NET_ADDR_PERM (default value). 5988 */ 5989 if (dev->addr_assign_type == NET_ADDR_PERM) 5990 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 5991 5992 /* Notify protocols, that a new device appeared. */ 5993 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5994 ret = notifier_to_errno(ret); 5995 if (ret) { 5996 rollback_registered(dev); 5997 dev->reg_state = NETREG_UNREGISTERED; 5998 } 5999 /* 6000 * Prevent userspace races by waiting until the network 6001 * device is fully setup before sending notifications. 6002 */ 6003 if (!dev->rtnl_link_ops || 6004 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 6005 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 6006 6007 out: 6008 return ret; 6009 6010 err_uninit: 6011 if (dev->netdev_ops->ndo_uninit) 6012 dev->netdev_ops->ndo_uninit(dev); 6013 goto out; 6014 } 6015 EXPORT_SYMBOL(register_netdevice); 6016 6017 /** 6018 * init_dummy_netdev - init a dummy network device for NAPI 6019 * @dev: device to init 6020 * 6021 * This takes a network device structure and initialize the minimum 6022 * amount of fields so it can be used to schedule NAPI polls without 6023 * registering a full blown interface. This is to be used by drivers 6024 * that need to tie several hardware interfaces to a single NAPI 6025 * poll scheduler due to HW limitations. 6026 */ 6027 int init_dummy_netdev(struct net_device *dev) 6028 { 6029 /* Clear everything. Note we don't initialize spinlocks 6030 * are they aren't supposed to be taken by any of the 6031 * NAPI code and this dummy netdev is supposed to be 6032 * only ever used for NAPI polls 6033 */ 6034 memset(dev, 0, sizeof(struct net_device)); 6035 6036 /* make sure we BUG if trying to hit standard 6037 * register/unregister code path 6038 */ 6039 dev->reg_state = NETREG_DUMMY; 6040 6041 /* NAPI wants this */ 6042 INIT_LIST_HEAD(&dev->napi_list); 6043 6044 /* a dummy interface is started by default */ 6045 set_bit(__LINK_STATE_PRESENT, &dev->state); 6046 set_bit(__LINK_STATE_START, &dev->state); 6047 6048 /* Note : We dont allocate pcpu_refcnt for dummy devices, 6049 * because users of this 'device' dont need to change 6050 * its refcount. 6051 */ 6052 6053 return 0; 6054 } 6055 EXPORT_SYMBOL_GPL(init_dummy_netdev); 6056 6057 6058 /** 6059 * register_netdev - register a network device 6060 * @dev: device to register 6061 * 6062 * Take a completed network device structure and add it to the kernel 6063 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 6064 * chain. 0 is returned on success. A negative errno code is returned 6065 * on a failure to set up the device, or if the name is a duplicate. 6066 * 6067 * This is a wrapper around register_netdevice that takes the rtnl semaphore 6068 * and expands the device name if you passed a format string to 6069 * alloc_netdev. 6070 */ 6071 int register_netdev(struct net_device *dev) 6072 { 6073 int err; 6074 6075 rtnl_lock(); 6076 err = register_netdevice(dev); 6077 rtnl_unlock(); 6078 return err; 6079 } 6080 EXPORT_SYMBOL(register_netdev); 6081 6082 int netdev_refcnt_read(const struct net_device *dev) 6083 { 6084 int i, refcnt = 0; 6085 6086 for_each_possible_cpu(i) 6087 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 6088 return refcnt; 6089 } 6090 EXPORT_SYMBOL(netdev_refcnt_read); 6091 6092 /** 6093 * netdev_wait_allrefs - wait until all references are gone. 6094 * @dev: target net_device 6095 * 6096 * This is called when unregistering network devices. 6097 * 6098 * Any protocol or device that holds a reference should register 6099 * for netdevice notification, and cleanup and put back the 6100 * reference if they receive an UNREGISTER event. 6101 * We can get stuck here if buggy protocols don't correctly 6102 * call dev_put. 6103 */ 6104 static void netdev_wait_allrefs(struct net_device *dev) 6105 { 6106 unsigned long rebroadcast_time, warning_time; 6107 int refcnt; 6108 6109 linkwatch_forget_dev(dev); 6110 6111 rebroadcast_time = warning_time = jiffies; 6112 refcnt = netdev_refcnt_read(dev); 6113 6114 while (refcnt != 0) { 6115 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 6116 rtnl_lock(); 6117 6118 /* Rebroadcast unregister notification */ 6119 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6120 6121 __rtnl_unlock(); 6122 rcu_barrier(); 6123 rtnl_lock(); 6124 6125 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6126 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 6127 &dev->state)) { 6128 /* We must not have linkwatch events 6129 * pending on unregister. If this 6130 * happens, we simply run the queue 6131 * unscheduled, resulting in a noop 6132 * for this device. 6133 */ 6134 linkwatch_run_queue(); 6135 } 6136 6137 __rtnl_unlock(); 6138 6139 rebroadcast_time = jiffies; 6140 } 6141 6142 msleep(250); 6143 6144 refcnt = netdev_refcnt_read(dev); 6145 6146 if (time_after(jiffies, warning_time + 10 * HZ)) { 6147 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 6148 dev->name, refcnt); 6149 warning_time = jiffies; 6150 } 6151 } 6152 } 6153 6154 /* The sequence is: 6155 * 6156 * rtnl_lock(); 6157 * ... 6158 * register_netdevice(x1); 6159 * register_netdevice(x2); 6160 * ... 6161 * unregister_netdevice(y1); 6162 * unregister_netdevice(y2); 6163 * ... 6164 * rtnl_unlock(); 6165 * free_netdev(y1); 6166 * free_netdev(y2); 6167 * 6168 * We are invoked by rtnl_unlock(). 6169 * This allows us to deal with problems: 6170 * 1) We can delete sysfs objects which invoke hotplug 6171 * without deadlocking with linkwatch via keventd. 6172 * 2) Since we run with the RTNL semaphore not held, we can sleep 6173 * safely in order to wait for the netdev refcnt to drop to zero. 6174 * 6175 * We must not return until all unregister events added during 6176 * the interval the lock was held have been completed. 6177 */ 6178 void netdev_run_todo(void) 6179 { 6180 struct list_head list; 6181 6182 /* Snapshot list, allow later requests */ 6183 list_replace_init(&net_todo_list, &list); 6184 6185 __rtnl_unlock(); 6186 6187 6188 /* Wait for rcu callbacks to finish before next phase */ 6189 if (!list_empty(&list)) 6190 rcu_barrier(); 6191 6192 while (!list_empty(&list)) { 6193 struct net_device *dev 6194 = list_first_entry(&list, struct net_device, todo_list); 6195 list_del(&dev->todo_list); 6196 6197 rtnl_lock(); 6198 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6199 __rtnl_unlock(); 6200 6201 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 6202 pr_err("network todo '%s' but state %d\n", 6203 dev->name, dev->reg_state); 6204 dump_stack(); 6205 continue; 6206 } 6207 6208 dev->reg_state = NETREG_UNREGISTERED; 6209 6210 on_each_cpu(flush_backlog, dev, 1); 6211 6212 netdev_wait_allrefs(dev); 6213 6214 /* paranoia */ 6215 BUG_ON(netdev_refcnt_read(dev)); 6216 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 6217 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 6218 WARN_ON(dev->dn_ptr); 6219 6220 if (dev->destructor) 6221 dev->destructor(dev); 6222 6223 /* Report a network device has been unregistered */ 6224 rtnl_lock(); 6225 dev_net(dev)->dev_unreg_count--; 6226 __rtnl_unlock(); 6227 wake_up(&netdev_unregistering_wq); 6228 6229 /* Free network device */ 6230 kobject_put(&dev->dev.kobj); 6231 } 6232 } 6233 6234 /* Convert net_device_stats to rtnl_link_stats64. They have the same 6235 * fields in the same order, with only the type differing. 6236 */ 6237 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 6238 const struct net_device_stats *netdev_stats) 6239 { 6240 #if BITS_PER_LONG == 64 6241 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 6242 memcpy(stats64, netdev_stats, sizeof(*stats64)); 6243 #else 6244 size_t i, n = sizeof(*stats64) / sizeof(u64); 6245 const unsigned long *src = (const unsigned long *)netdev_stats; 6246 u64 *dst = (u64 *)stats64; 6247 6248 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 6249 sizeof(*stats64) / sizeof(u64)); 6250 for (i = 0; i < n; i++) 6251 dst[i] = src[i]; 6252 #endif 6253 } 6254 EXPORT_SYMBOL(netdev_stats_to_stats64); 6255 6256 /** 6257 * dev_get_stats - get network device statistics 6258 * @dev: device to get statistics from 6259 * @storage: place to store stats 6260 * 6261 * Get network statistics from device. Return @storage. 6262 * The device driver may provide its own method by setting 6263 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 6264 * otherwise the internal statistics structure is used. 6265 */ 6266 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 6267 struct rtnl_link_stats64 *storage) 6268 { 6269 const struct net_device_ops *ops = dev->netdev_ops; 6270 6271 if (ops->ndo_get_stats64) { 6272 memset(storage, 0, sizeof(*storage)); 6273 ops->ndo_get_stats64(dev, storage); 6274 } else if (ops->ndo_get_stats) { 6275 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 6276 } else { 6277 netdev_stats_to_stats64(storage, &dev->stats); 6278 } 6279 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 6280 storage->tx_dropped += atomic_long_read(&dev->tx_dropped); 6281 return storage; 6282 } 6283 EXPORT_SYMBOL(dev_get_stats); 6284 6285 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 6286 { 6287 struct netdev_queue *queue = dev_ingress_queue(dev); 6288 6289 #ifdef CONFIG_NET_CLS_ACT 6290 if (queue) 6291 return queue; 6292 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 6293 if (!queue) 6294 return NULL; 6295 netdev_init_one_queue(dev, queue, NULL); 6296 queue->qdisc = &noop_qdisc; 6297 queue->qdisc_sleeping = &noop_qdisc; 6298 rcu_assign_pointer(dev->ingress_queue, queue); 6299 #endif 6300 return queue; 6301 } 6302 6303 static const struct ethtool_ops default_ethtool_ops; 6304 6305 void netdev_set_default_ethtool_ops(struct net_device *dev, 6306 const struct ethtool_ops *ops) 6307 { 6308 if (dev->ethtool_ops == &default_ethtool_ops) 6309 dev->ethtool_ops = ops; 6310 } 6311 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 6312 6313 void netdev_freemem(struct net_device *dev) 6314 { 6315 char *addr = (char *)dev - dev->padded; 6316 6317 if (is_vmalloc_addr(addr)) 6318 vfree(addr); 6319 else 6320 kfree(addr); 6321 } 6322 6323 /** 6324 * alloc_netdev_mqs - allocate network device 6325 * @sizeof_priv: size of private data to allocate space for 6326 * @name: device name format string 6327 * @setup: callback to initialize device 6328 * @txqs: the number of TX subqueues to allocate 6329 * @rxqs: the number of RX subqueues to allocate 6330 * 6331 * Allocates a struct net_device with private data area for driver use 6332 * and performs basic initialization. Also allocates subqueue structs 6333 * for each queue on the device. 6334 */ 6335 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 6336 void (*setup)(struct net_device *), 6337 unsigned int txqs, unsigned int rxqs) 6338 { 6339 struct net_device *dev; 6340 size_t alloc_size; 6341 struct net_device *p; 6342 6343 BUG_ON(strlen(name) >= sizeof(dev->name)); 6344 6345 if (txqs < 1) { 6346 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 6347 return NULL; 6348 } 6349 6350 #ifdef CONFIG_SYSFS 6351 if (rxqs < 1) { 6352 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 6353 return NULL; 6354 } 6355 #endif 6356 6357 alloc_size = sizeof(struct net_device); 6358 if (sizeof_priv) { 6359 /* ensure 32-byte alignment of private area */ 6360 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 6361 alloc_size += sizeof_priv; 6362 } 6363 /* ensure 32-byte alignment of whole construct */ 6364 alloc_size += NETDEV_ALIGN - 1; 6365 6366 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6367 if (!p) 6368 p = vzalloc(alloc_size); 6369 if (!p) 6370 return NULL; 6371 6372 dev = PTR_ALIGN(p, NETDEV_ALIGN); 6373 dev->padded = (char *)dev - (char *)p; 6374 6375 dev->pcpu_refcnt = alloc_percpu(int); 6376 if (!dev->pcpu_refcnt) 6377 goto free_dev; 6378 6379 if (dev_addr_init(dev)) 6380 goto free_pcpu; 6381 6382 dev_mc_init(dev); 6383 dev_uc_init(dev); 6384 6385 dev_net_set(dev, &init_net); 6386 6387 dev->gso_max_size = GSO_MAX_SIZE; 6388 dev->gso_max_segs = GSO_MAX_SEGS; 6389 6390 INIT_LIST_HEAD(&dev->napi_list); 6391 INIT_LIST_HEAD(&dev->unreg_list); 6392 INIT_LIST_HEAD(&dev->close_list); 6393 INIT_LIST_HEAD(&dev->link_watch_list); 6394 INIT_LIST_HEAD(&dev->adj_list.upper); 6395 INIT_LIST_HEAD(&dev->adj_list.lower); 6396 INIT_LIST_HEAD(&dev->all_adj_list.upper); 6397 INIT_LIST_HEAD(&dev->all_adj_list.lower); 6398 dev->priv_flags = IFF_XMIT_DST_RELEASE; 6399 setup(dev); 6400 6401 dev->num_tx_queues = txqs; 6402 dev->real_num_tx_queues = txqs; 6403 if (netif_alloc_netdev_queues(dev)) 6404 goto free_all; 6405 6406 #ifdef CONFIG_SYSFS 6407 dev->num_rx_queues = rxqs; 6408 dev->real_num_rx_queues = rxqs; 6409 if (netif_alloc_rx_queues(dev)) 6410 goto free_all; 6411 #endif 6412 6413 strcpy(dev->name, name); 6414 dev->group = INIT_NETDEV_GROUP; 6415 if (!dev->ethtool_ops) 6416 dev->ethtool_ops = &default_ethtool_ops; 6417 return dev; 6418 6419 free_all: 6420 free_netdev(dev); 6421 return NULL; 6422 6423 free_pcpu: 6424 free_percpu(dev->pcpu_refcnt); 6425 netif_free_tx_queues(dev); 6426 #ifdef CONFIG_SYSFS 6427 kfree(dev->_rx); 6428 #endif 6429 6430 free_dev: 6431 netdev_freemem(dev); 6432 return NULL; 6433 } 6434 EXPORT_SYMBOL(alloc_netdev_mqs); 6435 6436 /** 6437 * free_netdev - free network device 6438 * @dev: device 6439 * 6440 * This function does the last stage of destroying an allocated device 6441 * interface. The reference to the device object is released. 6442 * If this is the last reference then it will be freed. 6443 */ 6444 void free_netdev(struct net_device *dev) 6445 { 6446 struct napi_struct *p, *n; 6447 6448 release_net(dev_net(dev)); 6449 6450 netif_free_tx_queues(dev); 6451 #ifdef CONFIG_SYSFS 6452 kfree(dev->_rx); 6453 #endif 6454 6455 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 6456 6457 /* Flush device addresses */ 6458 dev_addr_flush(dev); 6459 6460 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 6461 netif_napi_del(p); 6462 6463 free_percpu(dev->pcpu_refcnt); 6464 dev->pcpu_refcnt = NULL; 6465 6466 /* Compatibility with error handling in drivers */ 6467 if (dev->reg_state == NETREG_UNINITIALIZED) { 6468 netdev_freemem(dev); 6469 return; 6470 } 6471 6472 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 6473 dev->reg_state = NETREG_RELEASED; 6474 6475 /* will free via device release */ 6476 put_device(&dev->dev); 6477 } 6478 EXPORT_SYMBOL(free_netdev); 6479 6480 /** 6481 * synchronize_net - Synchronize with packet receive processing 6482 * 6483 * Wait for packets currently being received to be done. 6484 * Does not block later packets from starting. 6485 */ 6486 void synchronize_net(void) 6487 { 6488 might_sleep(); 6489 if (rtnl_is_locked()) 6490 synchronize_rcu_expedited(); 6491 else 6492 synchronize_rcu(); 6493 } 6494 EXPORT_SYMBOL(synchronize_net); 6495 6496 /** 6497 * unregister_netdevice_queue - remove device from the kernel 6498 * @dev: device 6499 * @head: list 6500 * 6501 * This function shuts down a device interface and removes it 6502 * from the kernel tables. 6503 * If head not NULL, device is queued to be unregistered later. 6504 * 6505 * Callers must hold the rtnl semaphore. You may want 6506 * unregister_netdev() instead of this. 6507 */ 6508 6509 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 6510 { 6511 ASSERT_RTNL(); 6512 6513 if (head) { 6514 list_move_tail(&dev->unreg_list, head); 6515 } else { 6516 rollback_registered(dev); 6517 /* Finish processing unregister after unlock */ 6518 net_set_todo(dev); 6519 } 6520 } 6521 EXPORT_SYMBOL(unregister_netdevice_queue); 6522 6523 /** 6524 * unregister_netdevice_many - unregister many devices 6525 * @head: list of devices 6526 */ 6527 void unregister_netdevice_many(struct list_head *head) 6528 { 6529 struct net_device *dev; 6530 6531 if (!list_empty(head)) { 6532 rollback_registered_many(head); 6533 list_for_each_entry(dev, head, unreg_list) 6534 net_set_todo(dev); 6535 } 6536 } 6537 EXPORT_SYMBOL(unregister_netdevice_many); 6538 6539 /** 6540 * unregister_netdev - remove device from the kernel 6541 * @dev: device 6542 * 6543 * This function shuts down a device interface and removes it 6544 * from the kernel tables. 6545 * 6546 * This is just a wrapper for unregister_netdevice that takes 6547 * the rtnl semaphore. In general you want to use this and not 6548 * unregister_netdevice. 6549 */ 6550 void unregister_netdev(struct net_device *dev) 6551 { 6552 rtnl_lock(); 6553 unregister_netdevice(dev); 6554 rtnl_unlock(); 6555 } 6556 EXPORT_SYMBOL(unregister_netdev); 6557 6558 /** 6559 * dev_change_net_namespace - move device to different nethost namespace 6560 * @dev: device 6561 * @net: network namespace 6562 * @pat: If not NULL name pattern to try if the current device name 6563 * is already taken in the destination network namespace. 6564 * 6565 * This function shuts down a device interface and moves it 6566 * to a new network namespace. On success 0 is returned, on 6567 * a failure a netagive errno code is returned. 6568 * 6569 * Callers must hold the rtnl semaphore. 6570 */ 6571 6572 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6573 { 6574 int err; 6575 6576 ASSERT_RTNL(); 6577 6578 /* Don't allow namespace local devices to be moved. */ 6579 err = -EINVAL; 6580 if (dev->features & NETIF_F_NETNS_LOCAL) 6581 goto out; 6582 6583 /* Ensure the device has been registrered */ 6584 if (dev->reg_state != NETREG_REGISTERED) 6585 goto out; 6586 6587 /* Get out if there is nothing todo */ 6588 err = 0; 6589 if (net_eq(dev_net(dev), net)) 6590 goto out; 6591 6592 /* Pick the destination device name, and ensure 6593 * we can use it in the destination network namespace. 6594 */ 6595 err = -EEXIST; 6596 if (__dev_get_by_name(net, dev->name)) { 6597 /* We get here if we can't use the current device name */ 6598 if (!pat) 6599 goto out; 6600 if (dev_get_valid_name(net, dev, pat) < 0) 6601 goto out; 6602 } 6603 6604 /* 6605 * And now a mini version of register_netdevice unregister_netdevice. 6606 */ 6607 6608 /* If device is running close it first. */ 6609 dev_close(dev); 6610 6611 /* And unlink it from device chain */ 6612 err = -ENODEV; 6613 unlist_netdevice(dev); 6614 6615 synchronize_net(); 6616 6617 /* Shutdown queueing discipline. */ 6618 dev_shutdown(dev); 6619 6620 /* Notify protocols, that we are about to destroy 6621 this device. They should clean all the things. 6622 6623 Note that dev->reg_state stays at NETREG_REGISTERED. 6624 This is wanted because this way 8021q and macvlan know 6625 the device is just moving and can keep their slaves up. 6626 */ 6627 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6628 rcu_barrier(); 6629 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6630 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 6631 6632 /* 6633 * Flush the unicast and multicast chains 6634 */ 6635 dev_uc_flush(dev); 6636 dev_mc_flush(dev); 6637 6638 /* Send a netdev-removed uevent to the old namespace */ 6639 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 6640 6641 /* Actually switch the network namespace */ 6642 dev_net_set(dev, net); 6643 6644 /* If there is an ifindex conflict assign a new one */ 6645 if (__dev_get_by_index(net, dev->ifindex)) { 6646 int iflink = (dev->iflink == dev->ifindex); 6647 dev->ifindex = dev_new_index(net); 6648 if (iflink) 6649 dev->iflink = dev->ifindex; 6650 } 6651 6652 /* Send a netdev-add uevent to the new namespace */ 6653 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 6654 6655 /* Fixup kobjects */ 6656 err = device_rename(&dev->dev, dev->name); 6657 WARN_ON(err); 6658 6659 /* Add the device back in the hashes */ 6660 list_netdevice(dev); 6661 6662 /* Notify protocols, that a new device appeared. */ 6663 call_netdevice_notifiers(NETDEV_REGISTER, dev); 6664 6665 /* 6666 * Prevent userspace races by waiting until the network 6667 * device is fully setup before sending notifications. 6668 */ 6669 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 6670 6671 synchronize_net(); 6672 err = 0; 6673 out: 6674 return err; 6675 } 6676 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 6677 6678 static int dev_cpu_callback(struct notifier_block *nfb, 6679 unsigned long action, 6680 void *ocpu) 6681 { 6682 struct sk_buff **list_skb; 6683 struct sk_buff *skb; 6684 unsigned int cpu, oldcpu = (unsigned long)ocpu; 6685 struct softnet_data *sd, *oldsd; 6686 6687 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 6688 return NOTIFY_OK; 6689 6690 local_irq_disable(); 6691 cpu = smp_processor_id(); 6692 sd = &per_cpu(softnet_data, cpu); 6693 oldsd = &per_cpu(softnet_data, oldcpu); 6694 6695 /* Find end of our completion_queue. */ 6696 list_skb = &sd->completion_queue; 6697 while (*list_skb) 6698 list_skb = &(*list_skb)->next; 6699 /* Append completion queue from offline CPU. */ 6700 *list_skb = oldsd->completion_queue; 6701 oldsd->completion_queue = NULL; 6702 6703 /* Append output queue from offline CPU. */ 6704 if (oldsd->output_queue) { 6705 *sd->output_queue_tailp = oldsd->output_queue; 6706 sd->output_queue_tailp = oldsd->output_queue_tailp; 6707 oldsd->output_queue = NULL; 6708 oldsd->output_queue_tailp = &oldsd->output_queue; 6709 } 6710 /* Append NAPI poll list from offline CPU. */ 6711 if (!list_empty(&oldsd->poll_list)) { 6712 list_splice_init(&oldsd->poll_list, &sd->poll_list); 6713 raise_softirq_irqoff(NET_RX_SOFTIRQ); 6714 } 6715 6716 raise_softirq_irqoff(NET_TX_SOFTIRQ); 6717 local_irq_enable(); 6718 6719 /* Process offline CPU's input_pkt_queue */ 6720 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 6721 netif_rx_internal(skb); 6722 input_queue_head_incr(oldsd); 6723 } 6724 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 6725 netif_rx_internal(skb); 6726 input_queue_head_incr(oldsd); 6727 } 6728 6729 return NOTIFY_OK; 6730 } 6731 6732 6733 /** 6734 * netdev_increment_features - increment feature set by one 6735 * @all: current feature set 6736 * @one: new feature set 6737 * @mask: mask feature set 6738 * 6739 * Computes a new feature set after adding a device with feature set 6740 * @one to the master device with current feature set @all. Will not 6741 * enable anything that is off in @mask. Returns the new feature set. 6742 */ 6743 netdev_features_t netdev_increment_features(netdev_features_t all, 6744 netdev_features_t one, netdev_features_t mask) 6745 { 6746 if (mask & NETIF_F_GEN_CSUM) 6747 mask |= NETIF_F_ALL_CSUM; 6748 mask |= NETIF_F_VLAN_CHALLENGED; 6749 6750 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 6751 all &= one | ~NETIF_F_ALL_FOR_ALL; 6752 6753 /* If one device supports hw checksumming, set for all. */ 6754 if (all & NETIF_F_GEN_CSUM) 6755 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 6756 6757 return all; 6758 } 6759 EXPORT_SYMBOL(netdev_increment_features); 6760 6761 static struct hlist_head * __net_init netdev_create_hash(void) 6762 { 6763 int i; 6764 struct hlist_head *hash; 6765 6766 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6767 if (hash != NULL) 6768 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6769 INIT_HLIST_HEAD(&hash[i]); 6770 6771 return hash; 6772 } 6773 6774 /* Initialize per network namespace state */ 6775 static int __net_init netdev_init(struct net *net) 6776 { 6777 if (net != &init_net) 6778 INIT_LIST_HEAD(&net->dev_base_head); 6779 6780 net->dev_name_head = netdev_create_hash(); 6781 if (net->dev_name_head == NULL) 6782 goto err_name; 6783 6784 net->dev_index_head = netdev_create_hash(); 6785 if (net->dev_index_head == NULL) 6786 goto err_idx; 6787 6788 return 0; 6789 6790 err_idx: 6791 kfree(net->dev_name_head); 6792 err_name: 6793 return -ENOMEM; 6794 } 6795 6796 /** 6797 * netdev_drivername - network driver for the device 6798 * @dev: network device 6799 * 6800 * Determine network driver for device. 6801 */ 6802 const char *netdev_drivername(const struct net_device *dev) 6803 { 6804 const struct device_driver *driver; 6805 const struct device *parent; 6806 const char *empty = ""; 6807 6808 parent = dev->dev.parent; 6809 if (!parent) 6810 return empty; 6811 6812 driver = parent->driver; 6813 if (driver && driver->name) 6814 return driver->name; 6815 return empty; 6816 } 6817 6818 static int __netdev_printk(const char *level, const struct net_device *dev, 6819 struct va_format *vaf) 6820 { 6821 int r; 6822 6823 if (dev && dev->dev.parent) { 6824 r = dev_printk_emit(level[1] - '0', 6825 dev->dev.parent, 6826 "%s %s %s: %pV", 6827 dev_driver_string(dev->dev.parent), 6828 dev_name(dev->dev.parent), 6829 netdev_name(dev), vaf); 6830 } else if (dev) { 6831 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6832 } else { 6833 r = printk("%s(NULL net_device): %pV", level, vaf); 6834 } 6835 6836 return r; 6837 } 6838 6839 int netdev_printk(const char *level, const struct net_device *dev, 6840 const char *format, ...) 6841 { 6842 struct va_format vaf; 6843 va_list args; 6844 int r; 6845 6846 va_start(args, format); 6847 6848 vaf.fmt = format; 6849 vaf.va = &args; 6850 6851 r = __netdev_printk(level, dev, &vaf); 6852 6853 va_end(args); 6854 6855 return r; 6856 } 6857 EXPORT_SYMBOL(netdev_printk); 6858 6859 #define define_netdev_printk_level(func, level) \ 6860 int func(const struct net_device *dev, const char *fmt, ...) \ 6861 { \ 6862 int r; \ 6863 struct va_format vaf; \ 6864 va_list args; \ 6865 \ 6866 va_start(args, fmt); \ 6867 \ 6868 vaf.fmt = fmt; \ 6869 vaf.va = &args; \ 6870 \ 6871 r = __netdev_printk(level, dev, &vaf); \ 6872 \ 6873 va_end(args); \ 6874 \ 6875 return r; \ 6876 } \ 6877 EXPORT_SYMBOL(func); 6878 6879 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6880 define_netdev_printk_level(netdev_alert, KERN_ALERT); 6881 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6882 define_netdev_printk_level(netdev_err, KERN_ERR); 6883 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6884 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6885 define_netdev_printk_level(netdev_info, KERN_INFO); 6886 6887 static void __net_exit netdev_exit(struct net *net) 6888 { 6889 kfree(net->dev_name_head); 6890 kfree(net->dev_index_head); 6891 } 6892 6893 static struct pernet_operations __net_initdata netdev_net_ops = { 6894 .init = netdev_init, 6895 .exit = netdev_exit, 6896 }; 6897 6898 static void __net_exit default_device_exit(struct net *net) 6899 { 6900 struct net_device *dev, *aux; 6901 /* 6902 * Push all migratable network devices back to the 6903 * initial network namespace 6904 */ 6905 rtnl_lock(); 6906 for_each_netdev_safe(net, dev, aux) { 6907 int err; 6908 char fb_name[IFNAMSIZ]; 6909 6910 /* Ignore unmoveable devices (i.e. loopback) */ 6911 if (dev->features & NETIF_F_NETNS_LOCAL) 6912 continue; 6913 6914 /* Leave virtual devices for the generic cleanup */ 6915 if (dev->rtnl_link_ops) 6916 continue; 6917 6918 /* Push remaining network devices to init_net */ 6919 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6920 err = dev_change_net_namespace(dev, &init_net, fb_name); 6921 if (err) { 6922 pr_emerg("%s: failed to move %s to init_net: %d\n", 6923 __func__, dev->name, err); 6924 BUG(); 6925 } 6926 } 6927 rtnl_unlock(); 6928 } 6929 6930 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 6931 { 6932 /* Return with the rtnl_lock held when there are no network 6933 * devices unregistering in any network namespace in net_list. 6934 */ 6935 struct net *net; 6936 bool unregistering; 6937 DEFINE_WAIT(wait); 6938 6939 for (;;) { 6940 prepare_to_wait(&netdev_unregistering_wq, &wait, 6941 TASK_UNINTERRUPTIBLE); 6942 unregistering = false; 6943 rtnl_lock(); 6944 list_for_each_entry(net, net_list, exit_list) { 6945 if (net->dev_unreg_count > 0) { 6946 unregistering = true; 6947 break; 6948 } 6949 } 6950 if (!unregistering) 6951 break; 6952 __rtnl_unlock(); 6953 schedule(); 6954 } 6955 finish_wait(&netdev_unregistering_wq, &wait); 6956 } 6957 6958 static void __net_exit default_device_exit_batch(struct list_head *net_list) 6959 { 6960 /* At exit all network devices most be removed from a network 6961 * namespace. Do this in the reverse order of registration. 6962 * Do this across as many network namespaces as possible to 6963 * improve batching efficiency. 6964 */ 6965 struct net_device *dev; 6966 struct net *net; 6967 LIST_HEAD(dev_kill_list); 6968 6969 /* To prevent network device cleanup code from dereferencing 6970 * loopback devices or network devices that have been freed 6971 * wait here for all pending unregistrations to complete, 6972 * before unregistring the loopback device and allowing the 6973 * network namespace be freed. 6974 * 6975 * The netdev todo list containing all network devices 6976 * unregistrations that happen in default_device_exit_batch 6977 * will run in the rtnl_unlock() at the end of 6978 * default_device_exit_batch. 6979 */ 6980 rtnl_lock_unregistering(net_list); 6981 list_for_each_entry(net, net_list, exit_list) { 6982 for_each_netdev_reverse(net, dev) { 6983 if (dev->rtnl_link_ops) 6984 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6985 else 6986 unregister_netdevice_queue(dev, &dev_kill_list); 6987 } 6988 } 6989 unregister_netdevice_many(&dev_kill_list); 6990 list_del(&dev_kill_list); 6991 rtnl_unlock(); 6992 } 6993 6994 static struct pernet_operations __net_initdata default_device_ops = { 6995 .exit = default_device_exit, 6996 .exit_batch = default_device_exit_batch, 6997 }; 6998 6999 /* 7000 * Initialize the DEV module. At boot time this walks the device list and 7001 * unhooks any devices that fail to initialise (normally hardware not 7002 * present) and leaves us with a valid list of present and active devices. 7003 * 7004 */ 7005 7006 /* 7007 * This is called single threaded during boot, so no need 7008 * to take the rtnl semaphore. 7009 */ 7010 static int __init net_dev_init(void) 7011 { 7012 int i, rc = -ENOMEM; 7013 7014 BUG_ON(!dev_boot_phase); 7015 7016 if (dev_proc_init()) 7017 goto out; 7018 7019 if (netdev_kobject_init()) 7020 goto out; 7021 7022 INIT_LIST_HEAD(&ptype_all); 7023 for (i = 0; i < PTYPE_HASH_SIZE; i++) 7024 INIT_LIST_HEAD(&ptype_base[i]); 7025 7026 INIT_LIST_HEAD(&offload_base); 7027 7028 if (register_pernet_subsys(&netdev_net_ops)) 7029 goto out; 7030 7031 /* 7032 * Initialise the packet receive queues. 7033 */ 7034 7035 for_each_possible_cpu(i) { 7036 struct softnet_data *sd = &per_cpu(softnet_data, i); 7037 7038 skb_queue_head_init(&sd->input_pkt_queue); 7039 skb_queue_head_init(&sd->process_queue); 7040 INIT_LIST_HEAD(&sd->poll_list); 7041 sd->output_queue_tailp = &sd->output_queue; 7042 #ifdef CONFIG_RPS 7043 sd->csd.func = rps_trigger_softirq; 7044 sd->csd.info = sd; 7045 sd->cpu = i; 7046 #endif 7047 7048 sd->backlog.poll = process_backlog; 7049 sd->backlog.weight = weight_p; 7050 } 7051 7052 dev_boot_phase = 0; 7053 7054 /* The loopback device is special if any other network devices 7055 * is present in a network namespace the loopback device must 7056 * be present. Since we now dynamically allocate and free the 7057 * loopback device ensure this invariant is maintained by 7058 * keeping the loopback device as the first device on the 7059 * list of network devices. Ensuring the loopback devices 7060 * is the first device that appears and the last network device 7061 * that disappears. 7062 */ 7063 if (register_pernet_device(&loopback_net_ops)) 7064 goto out; 7065 7066 if (register_pernet_device(&default_device_ops)) 7067 goto out; 7068 7069 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 7070 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 7071 7072 hotcpu_notifier(dev_cpu_callback, 0); 7073 dst_init(); 7074 rc = 0; 7075 out: 7076 return rc; 7077 } 7078 7079 subsys_initcall(net_dev_init); 7080