xref: /openbmc/linux/net/core/dev.c (revision 1c2f87c2)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134 #include <linux/if_macvlan.h>
135 
136 #include "net-sysfs.h"
137 
138 /* Instead of increasing this, you should create a hash table. */
139 #define MAX_GRO_SKBS 8
140 
141 /* This should be increased if a protocol with a bigger head is added. */
142 #define GRO_MAX_HEAD (MAX_HEADER + 128)
143 
144 static DEFINE_SPINLOCK(ptype_lock);
145 static DEFINE_SPINLOCK(offload_lock);
146 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
147 struct list_head ptype_all __read_mostly;	/* Taps */
148 static struct list_head offload_base __read_mostly;
149 
150 static int netif_rx_internal(struct sk_buff *skb);
151 
152 /*
153  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
154  * semaphore.
155  *
156  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
157  *
158  * Writers must hold the rtnl semaphore while they loop through the
159  * dev_base_head list, and hold dev_base_lock for writing when they do the
160  * actual updates.  This allows pure readers to access the list even
161  * while a writer is preparing to update it.
162  *
163  * To put it another way, dev_base_lock is held for writing only to
164  * protect against pure readers; the rtnl semaphore provides the
165  * protection against other writers.
166  *
167  * See, for example usages, register_netdevice() and
168  * unregister_netdevice(), which must be called with the rtnl
169  * semaphore held.
170  */
171 DEFINE_RWLOCK(dev_base_lock);
172 EXPORT_SYMBOL(dev_base_lock);
173 
174 /* protects napi_hash addition/deletion and napi_gen_id */
175 static DEFINE_SPINLOCK(napi_hash_lock);
176 
177 static unsigned int napi_gen_id;
178 static DEFINE_HASHTABLE(napi_hash, 8);
179 
180 static seqcount_t devnet_rename_seq;
181 
182 static inline void dev_base_seq_inc(struct net *net)
183 {
184 	while (++net->dev_base_seq == 0);
185 }
186 
187 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
188 {
189 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
190 
191 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
192 }
193 
194 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
195 {
196 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
197 }
198 
199 static inline void rps_lock(struct softnet_data *sd)
200 {
201 #ifdef CONFIG_RPS
202 	spin_lock(&sd->input_pkt_queue.lock);
203 #endif
204 }
205 
206 static inline void rps_unlock(struct softnet_data *sd)
207 {
208 #ifdef CONFIG_RPS
209 	spin_unlock(&sd->input_pkt_queue.lock);
210 #endif
211 }
212 
213 /* Device list insertion */
214 static void list_netdevice(struct net_device *dev)
215 {
216 	struct net *net = dev_net(dev);
217 
218 	ASSERT_RTNL();
219 
220 	write_lock_bh(&dev_base_lock);
221 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
222 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
223 	hlist_add_head_rcu(&dev->index_hlist,
224 			   dev_index_hash(net, dev->ifindex));
225 	write_unlock_bh(&dev_base_lock);
226 
227 	dev_base_seq_inc(net);
228 }
229 
230 /* Device list removal
231  * caller must respect a RCU grace period before freeing/reusing dev
232  */
233 static void unlist_netdevice(struct net_device *dev)
234 {
235 	ASSERT_RTNL();
236 
237 	/* Unlink dev from the device chain */
238 	write_lock_bh(&dev_base_lock);
239 	list_del_rcu(&dev->dev_list);
240 	hlist_del_rcu(&dev->name_hlist);
241 	hlist_del_rcu(&dev->index_hlist);
242 	write_unlock_bh(&dev_base_lock);
243 
244 	dev_base_seq_inc(dev_net(dev));
245 }
246 
247 /*
248  *	Our notifier list
249  */
250 
251 static RAW_NOTIFIER_HEAD(netdev_chain);
252 
253 /*
254  *	Device drivers call our routines to queue packets here. We empty the
255  *	queue in the local softnet handler.
256  */
257 
258 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
259 EXPORT_PER_CPU_SYMBOL(softnet_data);
260 
261 #ifdef CONFIG_LOCKDEP
262 /*
263  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
264  * according to dev->type
265  */
266 static const unsigned short netdev_lock_type[] =
267 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
268 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
269 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
270 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
271 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
272 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
273 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
274 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
275 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
276 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
277 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
278 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
279 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
280 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
281 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
282 
283 static const char *const netdev_lock_name[] =
284 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
285 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
286 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
287 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
288 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
289 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
290 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
291 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
292 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
293 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
294 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
295 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
296 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
297 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
298 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
299 
300 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
301 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
302 
303 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
304 {
305 	int i;
306 
307 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
308 		if (netdev_lock_type[i] == dev_type)
309 			return i;
310 	/* the last key is used by default */
311 	return ARRAY_SIZE(netdev_lock_type) - 1;
312 }
313 
314 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
315 						 unsigned short dev_type)
316 {
317 	int i;
318 
319 	i = netdev_lock_pos(dev_type);
320 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
321 				   netdev_lock_name[i]);
322 }
323 
324 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
325 {
326 	int i;
327 
328 	i = netdev_lock_pos(dev->type);
329 	lockdep_set_class_and_name(&dev->addr_list_lock,
330 				   &netdev_addr_lock_key[i],
331 				   netdev_lock_name[i]);
332 }
333 #else
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 						 unsigned short dev_type)
336 {
337 }
338 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
339 {
340 }
341 #endif
342 
343 /*******************************************************************************
344 
345 		Protocol management and registration routines
346 
347 *******************************************************************************/
348 
349 /*
350  *	Add a protocol ID to the list. Now that the input handler is
351  *	smarter we can dispense with all the messy stuff that used to be
352  *	here.
353  *
354  *	BEWARE!!! Protocol handlers, mangling input packets,
355  *	MUST BE last in hash buckets and checking protocol handlers
356  *	MUST start from promiscuous ptype_all chain in net_bh.
357  *	It is true now, do not change it.
358  *	Explanation follows: if protocol handler, mangling packet, will
359  *	be the first on list, it is not able to sense, that packet
360  *	is cloned and should be copied-on-write, so that it will
361  *	change it and subsequent readers will get broken packet.
362  *							--ANK (980803)
363  */
364 
365 static inline struct list_head *ptype_head(const struct packet_type *pt)
366 {
367 	if (pt->type == htons(ETH_P_ALL))
368 		return &ptype_all;
369 	else
370 		return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
371 }
372 
373 /**
374  *	dev_add_pack - add packet handler
375  *	@pt: packet type declaration
376  *
377  *	Add a protocol handler to the networking stack. The passed &packet_type
378  *	is linked into kernel lists and may not be freed until it has been
379  *	removed from the kernel lists.
380  *
381  *	This call does not sleep therefore it can not
382  *	guarantee all CPU's that are in middle of receiving packets
383  *	will see the new packet type (until the next received packet).
384  */
385 
386 void dev_add_pack(struct packet_type *pt)
387 {
388 	struct list_head *head = ptype_head(pt);
389 
390 	spin_lock(&ptype_lock);
391 	list_add_rcu(&pt->list, head);
392 	spin_unlock(&ptype_lock);
393 }
394 EXPORT_SYMBOL(dev_add_pack);
395 
396 /**
397  *	__dev_remove_pack	 - remove packet handler
398  *	@pt: packet type declaration
399  *
400  *	Remove a protocol handler that was previously added to the kernel
401  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
402  *	from the kernel lists and can be freed or reused once this function
403  *	returns.
404  *
405  *      The packet type might still be in use by receivers
406  *	and must not be freed until after all the CPU's have gone
407  *	through a quiescent state.
408  */
409 void __dev_remove_pack(struct packet_type *pt)
410 {
411 	struct list_head *head = ptype_head(pt);
412 	struct packet_type *pt1;
413 
414 	spin_lock(&ptype_lock);
415 
416 	list_for_each_entry(pt1, head, list) {
417 		if (pt == pt1) {
418 			list_del_rcu(&pt->list);
419 			goto out;
420 		}
421 	}
422 
423 	pr_warn("dev_remove_pack: %p not found\n", pt);
424 out:
425 	spin_unlock(&ptype_lock);
426 }
427 EXPORT_SYMBOL(__dev_remove_pack);
428 
429 /**
430  *	dev_remove_pack	 - remove packet handler
431  *	@pt: packet type declaration
432  *
433  *	Remove a protocol handler that was previously added to the kernel
434  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
435  *	from the kernel lists and can be freed or reused once this function
436  *	returns.
437  *
438  *	This call sleeps to guarantee that no CPU is looking at the packet
439  *	type after return.
440  */
441 void dev_remove_pack(struct packet_type *pt)
442 {
443 	__dev_remove_pack(pt);
444 
445 	synchronize_net();
446 }
447 EXPORT_SYMBOL(dev_remove_pack);
448 
449 
450 /**
451  *	dev_add_offload - register offload handlers
452  *	@po: protocol offload declaration
453  *
454  *	Add protocol offload handlers to the networking stack. The passed
455  *	&proto_offload is linked into kernel lists and may not be freed until
456  *	it has been removed from the kernel lists.
457  *
458  *	This call does not sleep therefore it can not
459  *	guarantee all CPU's that are in middle of receiving packets
460  *	will see the new offload handlers (until the next received packet).
461  */
462 void dev_add_offload(struct packet_offload *po)
463 {
464 	struct list_head *head = &offload_base;
465 
466 	spin_lock(&offload_lock);
467 	list_add_rcu(&po->list, head);
468 	spin_unlock(&offload_lock);
469 }
470 EXPORT_SYMBOL(dev_add_offload);
471 
472 /**
473  *	__dev_remove_offload	 - remove offload handler
474  *	@po: packet offload declaration
475  *
476  *	Remove a protocol offload handler that was previously added to the
477  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
478  *	is removed from the kernel lists and can be freed or reused once this
479  *	function returns.
480  *
481  *      The packet type might still be in use by receivers
482  *	and must not be freed until after all the CPU's have gone
483  *	through a quiescent state.
484  */
485 static void __dev_remove_offload(struct packet_offload *po)
486 {
487 	struct list_head *head = &offload_base;
488 	struct packet_offload *po1;
489 
490 	spin_lock(&offload_lock);
491 
492 	list_for_each_entry(po1, head, list) {
493 		if (po == po1) {
494 			list_del_rcu(&po->list);
495 			goto out;
496 		}
497 	}
498 
499 	pr_warn("dev_remove_offload: %p not found\n", po);
500 out:
501 	spin_unlock(&offload_lock);
502 }
503 
504 /**
505  *	dev_remove_offload	 - remove packet offload handler
506  *	@po: packet offload declaration
507  *
508  *	Remove a packet offload handler that was previously added to the kernel
509  *	offload handlers by dev_add_offload(). The passed &offload_type is
510  *	removed from the kernel lists and can be freed or reused once this
511  *	function returns.
512  *
513  *	This call sleeps to guarantee that no CPU is looking at the packet
514  *	type after return.
515  */
516 void dev_remove_offload(struct packet_offload *po)
517 {
518 	__dev_remove_offload(po);
519 
520 	synchronize_net();
521 }
522 EXPORT_SYMBOL(dev_remove_offload);
523 
524 /******************************************************************************
525 
526 		      Device Boot-time Settings Routines
527 
528 *******************************************************************************/
529 
530 /* Boot time configuration table */
531 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
532 
533 /**
534  *	netdev_boot_setup_add	- add new setup entry
535  *	@name: name of the device
536  *	@map: configured settings for the device
537  *
538  *	Adds new setup entry to the dev_boot_setup list.  The function
539  *	returns 0 on error and 1 on success.  This is a generic routine to
540  *	all netdevices.
541  */
542 static int netdev_boot_setup_add(char *name, struct ifmap *map)
543 {
544 	struct netdev_boot_setup *s;
545 	int i;
546 
547 	s = dev_boot_setup;
548 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
549 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
550 			memset(s[i].name, 0, sizeof(s[i].name));
551 			strlcpy(s[i].name, name, IFNAMSIZ);
552 			memcpy(&s[i].map, map, sizeof(s[i].map));
553 			break;
554 		}
555 	}
556 
557 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
558 }
559 
560 /**
561  *	netdev_boot_setup_check	- check boot time settings
562  *	@dev: the netdevice
563  *
564  * 	Check boot time settings for the device.
565  *	The found settings are set for the device to be used
566  *	later in the device probing.
567  *	Returns 0 if no settings found, 1 if they are.
568  */
569 int netdev_boot_setup_check(struct net_device *dev)
570 {
571 	struct netdev_boot_setup *s = dev_boot_setup;
572 	int i;
573 
574 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
576 		    !strcmp(dev->name, s[i].name)) {
577 			dev->irq 	= s[i].map.irq;
578 			dev->base_addr 	= s[i].map.base_addr;
579 			dev->mem_start 	= s[i].map.mem_start;
580 			dev->mem_end 	= s[i].map.mem_end;
581 			return 1;
582 		}
583 	}
584 	return 0;
585 }
586 EXPORT_SYMBOL(netdev_boot_setup_check);
587 
588 
589 /**
590  *	netdev_boot_base	- get address from boot time settings
591  *	@prefix: prefix for network device
592  *	@unit: id for network device
593  *
594  * 	Check boot time settings for the base address of device.
595  *	The found settings are set for the device to be used
596  *	later in the device probing.
597  *	Returns 0 if no settings found.
598  */
599 unsigned long netdev_boot_base(const char *prefix, int unit)
600 {
601 	const struct netdev_boot_setup *s = dev_boot_setup;
602 	char name[IFNAMSIZ];
603 	int i;
604 
605 	sprintf(name, "%s%d", prefix, unit);
606 
607 	/*
608 	 * If device already registered then return base of 1
609 	 * to indicate not to probe for this interface
610 	 */
611 	if (__dev_get_by_name(&init_net, name))
612 		return 1;
613 
614 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
615 		if (!strcmp(name, s[i].name))
616 			return s[i].map.base_addr;
617 	return 0;
618 }
619 
620 /*
621  * Saves at boot time configured settings for any netdevice.
622  */
623 int __init netdev_boot_setup(char *str)
624 {
625 	int ints[5];
626 	struct ifmap map;
627 
628 	str = get_options(str, ARRAY_SIZE(ints), ints);
629 	if (!str || !*str)
630 		return 0;
631 
632 	/* Save settings */
633 	memset(&map, 0, sizeof(map));
634 	if (ints[0] > 0)
635 		map.irq = ints[1];
636 	if (ints[0] > 1)
637 		map.base_addr = ints[2];
638 	if (ints[0] > 2)
639 		map.mem_start = ints[3];
640 	if (ints[0] > 3)
641 		map.mem_end = ints[4];
642 
643 	/* Add new entry to the list */
644 	return netdev_boot_setup_add(str, &map);
645 }
646 
647 __setup("netdev=", netdev_boot_setup);
648 
649 /*******************************************************************************
650 
651 			    Device Interface Subroutines
652 
653 *******************************************************************************/
654 
655 /**
656  *	__dev_get_by_name	- find a device by its name
657  *	@net: the applicable net namespace
658  *	@name: name to find
659  *
660  *	Find an interface by name. Must be called under RTNL semaphore
661  *	or @dev_base_lock. If the name is found a pointer to the device
662  *	is returned. If the name is not found then %NULL is returned. The
663  *	reference counters are not incremented so the caller must be
664  *	careful with locks.
665  */
666 
667 struct net_device *__dev_get_by_name(struct net *net, const char *name)
668 {
669 	struct net_device *dev;
670 	struct hlist_head *head = dev_name_hash(net, name);
671 
672 	hlist_for_each_entry(dev, head, name_hlist)
673 		if (!strncmp(dev->name, name, IFNAMSIZ))
674 			return dev;
675 
676 	return NULL;
677 }
678 EXPORT_SYMBOL(__dev_get_by_name);
679 
680 /**
681  *	dev_get_by_name_rcu	- find a device by its name
682  *	@net: the applicable net namespace
683  *	@name: name to find
684  *
685  *	Find an interface by name.
686  *	If the name is found a pointer to the device is returned.
687  * 	If the name is not found then %NULL is returned.
688  *	The reference counters are not incremented so the caller must be
689  *	careful with locks. The caller must hold RCU lock.
690  */
691 
692 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
693 {
694 	struct net_device *dev;
695 	struct hlist_head *head = dev_name_hash(net, name);
696 
697 	hlist_for_each_entry_rcu(dev, head, name_hlist)
698 		if (!strncmp(dev->name, name, IFNAMSIZ))
699 			return dev;
700 
701 	return NULL;
702 }
703 EXPORT_SYMBOL(dev_get_by_name_rcu);
704 
705 /**
706  *	dev_get_by_name		- find a device by its name
707  *	@net: the applicable net namespace
708  *	@name: name to find
709  *
710  *	Find an interface by name. This can be called from any
711  *	context and does its own locking. The returned handle has
712  *	the usage count incremented and the caller must use dev_put() to
713  *	release it when it is no longer needed. %NULL is returned if no
714  *	matching device is found.
715  */
716 
717 struct net_device *dev_get_by_name(struct net *net, const char *name)
718 {
719 	struct net_device *dev;
720 
721 	rcu_read_lock();
722 	dev = dev_get_by_name_rcu(net, name);
723 	if (dev)
724 		dev_hold(dev);
725 	rcu_read_unlock();
726 	return dev;
727 }
728 EXPORT_SYMBOL(dev_get_by_name);
729 
730 /**
731  *	__dev_get_by_index - find a device by its ifindex
732  *	@net: the applicable net namespace
733  *	@ifindex: index of device
734  *
735  *	Search for an interface by index. Returns %NULL if the device
736  *	is not found or a pointer to the device. The device has not
737  *	had its reference counter increased so the caller must be careful
738  *	about locking. The caller must hold either the RTNL semaphore
739  *	or @dev_base_lock.
740  */
741 
742 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
743 {
744 	struct net_device *dev;
745 	struct hlist_head *head = dev_index_hash(net, ifindex);
746 
747 	hlist_for_each_entry(dev, head, index_hlist)
748 		if (dev->ifindex == ifindex)
749 			return dev;
750 
751 	return NULL;
752 }
753 EXPORT_SYMBOL(__dev_get_by_index);
754 
755 /**
756  *	dev_get_by_index_rcu - find a device by its ifindex
757  *	@net: the applicable net namespace
758  *	@ifindex: index of device
759  *
760  *	Search for an interface by index. Returns %NULL if the device
761  *	is not found or a pointer to the device. The device has not
762  *	had its reference counter increased so the caller must be careful
763  *	about locking. The caller must hold RCU lock.
764  */
765 
766 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
767 {
768 	struct net_device *dev;
769 	struct hlist_head *head = dev_index_hash(net, ifindex);
770 
771 	hlist_for_each_entry_rcu(dev, head, index_hlist)
772 		if (dev->ifindex == ifindex)
773 			return dev;
774 
775 	return NULL;
776 }
777 EXPORT_SYMBOL(dev_get_by_index_rcu);
778 
779 
780 /**
781  *	dev_get_by_index - find a device by its ifindex
782  *	@net: the applicable net namespace
783  *	@ifindex: index of device
784  *
785  *	Search for an interface by index. Returns NULL if the device
786  *	is not found or a pointer to the device. The device returned has
787  *	had a reference added and the pointer is safe until the user calls
788  *	dev_put to indicate they have finished with it.
789  */
790 
791 struct net_device *dev_get_by_index(struct net *net, int ifindex)
792 {
793 	struct net_device *dev;
794 
795 	rcu_read_lock();
796 	dev = dev_get_by_index_rcu(net, ifindex);
797 	if (dev)
798 		dev_hold(dev);
799 	rcu_read_unlock();
800 	return dev;
801 }
802 EXPORT_SYMBOL(dev_get_by_index);
803 
804 /**
805  *	netdev_get_name - get a netdevice name, knowing its ifindex.
806  *	@net: network namespace
807  *	@name: a pointer to the buffer where the name will be stored.
808  *	@ifindex: the ifindex of the interface to get the name from.
809  *
810  *	The use of raw_seqcount_begin() and cond_resched() before
811  *	retrying is required as we want to give the writers a chance
812  *	to complete when CONFIG_PREEMPT is not set.
813  */
814 int netdev_get_name(struct net *net, char *name, int ifindex)
815 {
816 	struct net_device *dev;
817 	unsigned int seq;
818 
819 retry:
820 	seq = raw_seqcount_begin(&devnet_rename_seq);
821 	rcu_read_lock();
822 	dev = dev_get_by_index_rcu(net, ifindex);
823 	if (!dev) {
824 		rcu_read_unlock();
825 		return -ENODEV;
826 	}
827 
828 	strcpy(name, dev->name);
829 	rcu_read_unlock();
830 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
831 		cond_resched();
832 		goto retry;
833 	}
834 
835 	return 0;
836 }
837 
838 /**
839  *	dev_getbyhwaddr_rcu - find a device by its hardware address
840  *	@net: the applicable net namespace
841  *	@type: media type of device
842  *	@ha: hardware address
843  *
844  *	Search for an interface by MAC address. Returns NULL if the device
845  *	is not found or a pointer to the device.
846  *	The caller must hold RCU or RTNL.
847  *	The returned device has not had its ref count increased
848  *	and the caller must therefore be careful about locking
849  *
850  */
851 
852 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
853 				       const char *ha)
854 {
855 	struct net_device *dev;
856 
857 	for_each_netdev_rcu(net, dev)
858 		if (dev->type == type &&
859 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
860 			return dev;
861 
862 	return NULL;
863 }
864 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
865 
866 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
867 {
868 	struct net_device *dev;
869 
870 	ASSERT_RTNL();
871 	for_each_netdev(net, dev)
872 		if (dev->type == type)
873 			return dev;
874 
875 	return NULL;
876 }
877 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
878 
879 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
880 {
881 	struct net_device *dev, *ret = NULL;
882 
883 	rcu_read_lock();
884 	for_each_netdev_rcu(net, dev)
885 		if (dev->type == type) {
886 			dev_hold(dev);
887 			ret = dev;
888 			break;
889 		}
890 	rcu_read_unlock();
891 	return ret;
892 }
893 EXPORT_SYMBOL(dev_getfirstbyhwtype);
894 
895 /**
896  *	dev_get_by_flags_rcu - find any device with given flags
897  *	@net: the applicable net namespace
898  *	@if_flags: IFF_* values
899  *	@mask: bitmask of bits in if_flags to check
900  *
901  *	Search for any interface with the given flags. Returns NULL if a device
902  *	is not found or a pointer to the device. Must be called inside
903  *	rcu_read_lock(), and result refcount is unchanged.
904  */
905 
906 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
907 				    unsigned short mask)
908 {
909 	struct net_device *dev, *ret;
910 
911 	ret = NULL;
912 	for_each_netdev_rcu(net, dev) {
913 		if (((dev->flags ^ if_flags) & mask) == 0) {
914 			ret = dev;
915 			break;
916 		}
917 	}
918 	return ret;
919 }
920 EXPORT_SYMBOL(dev_get_by_flags_rcu);
921 
922 /**
923  *	dev_valid_name - check if name is okay for network device
924  *	@name: name string
925  *
926  *	Network device names need to be valid file names to
927  *	to allow sysfs to work.  We also disallow any kind of
928  *	whitespace.
929  */
930 bool dev_valid_name(const char *name)
931 {
932 	if (*name == '\0')
933 		return false;
934 	if (strlen(name) >= IFNAMSIZ)
935 		return false;
936 	if (!strcmp(name, ".") || !strcmp(name, ".."))
937 		return false;
938 
939 	while (*name) {
940 		if (*name == '/' || isspace(*name))
941 			return false;
942 		name++;
943 	}
944 	return true;
945 }
946 EXPORT_SYMBOL(dev_valid_name);
947 
948 /**
949  *	__dev_alloc_name - allocate a name for a device
950  *	@net: network namespace to allocate the device name in
951  *	@name: name format string
952  *	@buf:  scratch buffer and result name string
953  *
954  *	Passed a format string - eg "lt%d" it will try and find a suitable
955  *	id. It scans list of devices to build up a free map, then chooses
956  *	the first empty slot. The caller must hold the dev_base or rtnl lock
957  *	while allocating the name and adding the device in order to avoid
958  *	duplicates.
959  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
960  *	Returns the number of the unit assigned or a negative errno code.
961  */
962 
963 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
964 {
965 	int i = 0;
966 	const char *p;
967 	const int max_netdevices = 8*PAGE_SIZE;
968 	unsigned long *inuse;
969 	struct net_device *d;
970 
971 	p = strnchr(name, IFNAMSIZ-1, '%');
972 	if (p) {
973 		/*
974 		 * Verify the string as this thing may have come from
975 		 * the user.  There must be either one "%d" and no other "%"
976 		 * characters.
977 		 */
978 		if (p[1] != 'd' || strchr(p + 2, '%'))
979 			return -EINVAL;
980 
981 		/* Use one page as a bit array of possible slots */
982 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
983 		if (!inuse)
984 			return -ENOMEM;
985 
986 		for_each_netdev(net, d) {
987 			if (!sscanf(d->name, name, &i))
988 				continue;
989 			if (i < 0 || i >= max_netdevices)
990 				continue;
991 
992 			/*  avoid cases where sscanf is not exact inverse of printf */
993 			snprintf(buf, IFNAMSIZ, name, i);
994 			if (!strncmp(buf, d->name, IFNAMSIZ))
995 				set_bit(i, inuse);
996 		}
997 
998 		i = find_first_zero_bit(inuse, max_netdevices);
999 		free_page((unsigned long) inuse);
1000 	}
1001 
1002 	if (buf != name)
1003 		snprintf(buf, IFNAMSIZ, name, i);
1004 	if (!__dev_get_by_name(net, buf))
1005 		return i;
1006 
1007 	/* It is possible to run out of possible slots
1008 	 * when the name is long and there isn't enough space left
1009 	 * for the digits, or if all bits are used.
1010 	 */
1011 	return -ENFILE;
1012 }
1013 
1014 /**
1015  *	dev_alloc_name - allocate a name for a device
1016  *	@dev: device
1017  *	@name: name format string
1018  *
1019  *	Passed a format string - eg "lt%d" it will try and find a suitable
1020  *	id. It scans list of devices to build up a free map, then chooses
1021  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1022  *	while allocating the name and adding the device in order to avoid
1023  *	duplicates.
1024  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025  *	Returns the number of the unit assigned or a negative errno code.
1026  */
1027 
1028 int dev_alloc_name(struct net_device *dev, const char *name)
1029 {
1030 	char buf[IFNAMSIZ];
1031 	struct net *net;
1032 	int ret;
1033 
1034 	BUG_ON(!dev_net(dev));
1035 	net = dev_net(dev);
1036 	ret = __dev_alloc_name(net, name, buf);
1037 	if (ret >= 0)
1038 		strlcpy(dev->name, buf, IFNAMSIZ);
1039 	return ret;
1040 }
1041 EXPORT_SYMBOL(dev_alloc_name);
1042 
1043 static int dev_alloc_name_ns(struct net *net,
1044 			     struct net_device *dev,
1045 			     const char *name)
1046 {
1047 	char buf[IFNAMSIZ];
1048 	int ret;
1049 
1050 	ret = __dev_alloc_name(net, name, buf);
1051 	if (ret >= 0)
1052 		strlcpy(dev->name, buf, IFNAMSIZ);
1053 	return ret;
1054 }
1055 
1056 static int dev_get_valid_name(struct net *net,
1057 			      struct net_device *dev,
1058 			      const char *name)
1059 {
1060 	BUG_ON(!net);
1061 
1062 	if (!dev_valid_name(name))
1063 		return -EINVAL;
1064 
1065 	if (strchr(name, '%'))
1066 		return dev_alloc_name_ns(net, dev, name);
1067 	else if (__dev_get_by_name(net, name))
1068 		return -EEXIST;
1069 	else if (dev->name != name)
1070 		strlcpy(dev->name, name, IFNAMSIZ);
1071 
1072 	return 0;
1073 }
1074 
1075 /**
1076  *	dev_change_name - change name of a device
1077  *	@dev: device
1078  *	@newname: name (or format string) must be at least IFNAMSIZ
1079  *
1080  *	Change name of a device, can pass format strings "eth%d".
1081  *	for wildcarding.
1082  */
1083 int dev_change_name(struct net_device *dev, const char *newname)
1084 {
1085 	char oldname[IFNAMSIZ];
1086 	int err = 0;
1087 	int ret;
1088 	struct net *net;
1089 
1090 	ASSERT_RTNL();
1091 	BUG_ON(!dev_net(dev));
1092 
1093 	net = dev_net(dev);
1094 	if (dev->flags & IFF_UP)
1095 		return -EBUSY;
1096 
1097 	write_seqcount_begin(&devnet_rename_seq);
1098 
1099 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1100 		write_seqcount_end(&devnet_rename_seq);
1101 		return 0;
1102 	}
1103 
1104 	memcpy(oldname, dev->name, IFNAMSIZ);
1105 
1106 	err = dev_get_valid_name(net, dev, newname);
1107 	if (err < 0) {
1108 		write_seqcount_end(&devnet_rename_seq);
1109 		return err;
1110 	}
1111 
1112 rollback:
1113 	ret = device_rename(&dev->dev, dev->name);
1114 	if (ret) {
1115 		memcpy(dev->name, oldname, IFNAMSIZ);
1116 		write_seqcount_end(&devnet_rename_seq);
1117 		return ret;
1118 	}
1119 
1120 	write_seqcount_end(&devnet_rename_seq);
1121 
1122 	netdev_adjacent_rename_links(dev, oldname);
1123 
1124 	write_lock_bh(&dev_base_lock);
1125 	hlist_del_rcu(&dev->name_hlist);
1126 	write_unlock_bh(&dev_base_lock);
1127 
1128 	synchronize_rcu();
1129 
1130 	write_lock_bh(&dev_base_lock);
1131 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1132 	write_unlock_bh(&dev_base_lock);
1133 
1134 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1135 	ret = notifier_to_errno(ret);
1136 
1137 	if (ret) {
1138 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1139 		if (err >= 0) {
1140 			err = ret;
1141 			write_seqcount_begin(&devnet_rename_seq);
1142 			memcpy(dev->name, oldname, IFNAMSIZ);
1143 			memcpy(oldname, newname, IFNAMSIZ);
1144 			goto rollback;
1145 		} else {
1146 			pr_err("%s: name change rollback failed: %d\n",
1147 			       dev->name, ret);
1148 		}
1149 	}
1150 
1151 	return err;
1152 }
1153 
1154 /**
1155  *	dev_set_alias - change ifalias of a device
1156  *	@dev: device
1157  *	@alias: name up to IFALIASZ
1158  *	@len: limit of bytes to copy from info
1159  *
1160  *	Set ifalias for a device,
1161  */
1162 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1163 {
1164 	char *new_ifalias;
1165 
1166 	ASSERT_RTNL();
1167 
1168 	if (len >= IFALIASZ)
1169 		return -EINVAL;
1170 
1171 	if (!len) {
1172 		kfree(dev->ifalias);
1173 		dev->ifalias = NULL;
1174 		return 0;
1175 	}
1176 
1177 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1178 	if (!new_ifalias)
1179 		return -ENOMEM;
1180 	dev->ifalias = new_ifalias;
1181 
1182 	strlcpy(dev->ifalias, alias, len+1);
1183 	return len;
1184 }
1185 
1186 
1187 /**
1188  *	netdev_features_change - device changes features
1189  *	@dev: device to cause notification
1190  *
1191  *	Called to indicate a device has changed features.
1192  */
1193 void netdev_features_change(struct net_device *dev)
1194 {
1195 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1196 }
1197 EXPORT_SYMBOL(netdev_features_change);
1198 
1199 /**
1200  *	netdev_state_change - device changes state
1201  *	@dev: device to cause notification
1202  *
1203  *	Called to indicate a device has changed state. This function calls
1204  *	the notifier chains for netdev_chain and sends a NEWLINK message
1205  *	to the routing socket.
1206  */
1207 void netdev_state_change(struct net_device *dev)
1208 {
1209 	if (dev->flags & IFF_UP) {
1210 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1211 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1212 	}
1213 }
1214 EXPORT_SYMBOL(netdev_state_change);
1215 
1216 /**
1217  * 	netdev_notify_peers - notify network peers about existence of @dev
1218  * 	@dev: network device
1219  *
1220  * Generate traffic such that interested network peers are aware of
1221  * @dev, such as by generating a gratuitous ARP. This may be used when
1222  * a device wants to inform the rest of the network about some sort of
1223  * reconfiguration such as a failover event or virtual machine
1224  * migration.
1225  */
1226 void netdev_notify_peers(struct net_device *dev)
1227 {
1228 	rtnl_lock();
1229 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1230 	rtnl_unlock();
1231 }
1232 EXPORT_SYMBOL(netdev_notify_peers);
1233 
1234 static int __dev_open(struct net_device *dev)
1235 {
1236 	const struct net_device_ops *ops = dev->netdev_ops;
1237 	int ret;
1238 
1239 	ASSERT_RTNL();
1240 
1241 	if (!netif_device_present(dev))
1242 		return -ENODEV;
1243 
1244 	/* Block netpoll from trying to do any rx path servicing.
1245 	 * If we don't do this there is a chance ndo_poll_controller
1246 	 * or ndo_poll may be running while we open the device
1247 	 */
1248 	netpoll_poll_disable(dev);
1249 
1250 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1251 	ret = notifier_to_errno(ret);
1252 	if (ret)
1253 		return ret;
1254 
1255 	set_bit(__LINK_STATE_START, &dev->state);
1256 
1257 	if (ops->ndo_validate_addr)
1258 		ret = ops->ndo_validate_addr(dev);
1259 
1260 	if (!ret && ops->ndo_open)
1261 		ret = ops->ndo_open(dev);
1262 
1263 	netpoll_poll_enable(dev);
1264 
1265 	if (ret)
1266 		clear_bit(__LINK_STATE_START, &dev->state);
1267 	else {
1268 		dev->flags |= IFF_UP;
1269 		net_dmaengine_get();
1270 		dev_set_rx_mode(dev);
1271 		dev_activate(dev);
1272 		add_device_randomness(dev->dev_addr, dev->addr_len);
1273 	}
1274 
1275 	return ret;
1276 }
1277 
1278 /**
1279  *	dev_open	- prepare an interface for use.
1280  *	@dev:	device to open
1281  *
1282  *	Takes a device from down to up state. The device's private open
1283  *	function is invoked and then the multicast lists are loaded. Finally
1284  *	the device is moved into the up state and a %NETDEV_UP message is
1285  *	sent to the netdev notifier chain.
1286  *
1287  *	Calling this function on an active interface is a nop. On a failure
1288  *	a negative errno code is returned.
1289  */
1290 int dev_open(struct net_device *dev)
1291 {
1292 	int ret;
1293 
1294 	if (dev->flags & IFF_UP)
1295 		return 0;
1296 
1297 	ret = __dev_open(dev);
1298 	if (ret < 0)
1299 		return ret;
1300 
1301 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1302 	call_netdevice_notifiers(NETDEV_UP, dev);
1303 
1304 	return ret;
1305 }
1306 EXPORT_SYMBOL(dev_open);
1307 
1308 static int __dev_close_many(struct list_head *head)
1309 {
1310 	struct net_device *dev;
1311 
1312 	ASSERT_RTNL();
1313 	might_sleep();
1314 
1315 	list_for_each_entry(dev, head, close_list) {
1316 		/* Temporarily disable netpoll until the interface is down */
1317 		netpoll_poll_disable(dev);
1318 
1319 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1320 
1321 		clear_bit(__LINK_STATE_START, &dev->state);
1322 
1323 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1324 		 * can be even on different cpu. So just clear netif_running().
1325 		 *
1326 		 * dev->stop() will invoke napi_disable() on all of it's
1327 		 * napi_struct instances on this device.
1328 		 */
1329 		smp_mb__after_clear_bit(); /* Commit netif_running(). */
1330 	}
1331 
1332 	dev_deactivate_many(head);
1333 
1334 	list_for_each_entry(dev, head, close_list) {
1335 		const struct net_device_ops *ops = dev->netdev_ops;
1336 
1337 		/*
1338 		 *	Call the device specific close. This cannot fail.
1339 		 *	Only if device is UP
1340 		 *
1341 		 *	We allow it to be called even after a DETACH hot-plug
1342 		 *	event.
1343 		 */
1344 		if (ops->ndo_stop)
1345 			ops->ndo_stop(dev);
1346 
1347 		dev->flags &= ~IFF_UP;
1348 		net_dmaengine_put();
1349 		netpoll_poll_enable(dev);
1350 	}
1351 
1352 	return 0;
1353 }
1354 
1355 static int __dev_close(struct net_device *dev)
1356 {
1357 	int retval;
1358 	LIST_HEAD(single);
1359 
1360 	list_add(&dev->close_list, &single);
1361 	retval = __dev_close_many(&single);
1362 	list_del(&single);
1363 
1364 	return retval;
1365 }
1366 
1367 static int dev_close_many(struct list_head *head)
1368 {
1369 	struct net_device *dev, *tmp;
1370 
1371 	/* Remove the devices that don't need to be closed */
1372 	list_for_each_entry_safe(dev, tmp, head, close_list)
1373 		if (!(dev->flags & IFF_UP))
1374 			list_del_init(&dev->close_list);
1375 
1376 	__dev_close_many(head);
1377 
1378 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1379 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1380 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1381 		list_del_init(&dev->close_list);
1382 	}
1383 
1384 	return 0;
1385 }
1386 
1387 /**
1388  *	dev_close - shutdown an interface.
1389  *	@dev: device to shutdown
1390  *
1391  *	This function moves an active device into down state. A
1392  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1393  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1394  *	chain.
1395  */
1396 int dev_close(struct net_device *dev)
1397 {
1398 	if (dev->flags & IFF_UP) {
1399 		LIST_HEAD(single);
1400 
1401 		list_add(&dev->close_list, &single);
1402 		dev_close_many(&single);
1403 		list_del(&single);
1404 	}
1405 	return 0;
1406 }
1407 EXPORT_SYMBOL(dev_close);
1408 
1409 
1410 /**
1411  *	dev_disable_lro - disable Large Receive Offload on a device
1412  *	@dev: device
1413  *
1414  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1415  *	called under RTNL.  This is needed if received packets may be
1416  *	forwarded to another interface.
1417  */
1418 void dev_disable_lro(struct net_device *dev)
1419 {
1420 	/*
1421 	 * If we're trying to disable lro on a vlan device
1422 	 * use the underlying physical device instead
1423 	 */
1424 	if (is_vlan_dev(dev))
1425 		dev = vlan_dev_real_dev(dev);
1426 
1427 	/* the same for macvlan devices */
1428 	if (netif_is_macvlan(dev))
1429 		dev = macvlan_dev_real_dev(dev);
1430 
1431 	dev->wanted_features &= ~NETIF_F_LRO;
1432 	netdev_update_features(dev);
1433 
1434 	if (unlikely(dev->features & NETIF_F_LRO))
1435 		netdev_WARN(dev, "failed to disable LRO!\n");
1436 }
1437 EXPORT_SYMBOL(dev_disable_lro);
1438 
1439 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1440 				   struct net_device *dev)
1441 {
1442 	struct netdev_notifier_info info;
1443 
1444 	netdev_notifier_info_init(&info, dev);
1445 	return nb->notifier_call(nb, val, &info);
1446 }
1447 
1448 static int dev_boot_phase = 1;
1449 
1450 /**
1451  *	register_netdevice_notifier - register a network notifier block
1452  *	@nb: notifier
1453  *
1454  *	Register a notifier to be called when network device events occur.
1455  *	The notifier passed is linked into the kernel structures and must
1456  *	not be reused until it has been unregistered. A negative errno code
1457  *	is returned on a failure.
1458  *
1459  * 	When registered all registration and up events are replayed
1460  *	to the new notifier to allow device to have a race free
1461  *	view of the network device list.
1462  */
1463 
1464 int register_netdevice_notifier(struct notifier_block *nb)
1465 {
1466 	struct net_device *dev;
1467 	struct net_device *last;
1468 	struct net *net;
1469 	int err;
1470 
1471 	rtnl_lock();
1472 	err = raw_notifier_chain_register(&netdev_chain, nb);
1473 	if (err)
1474 		goto unlock;
1475 	if (dev_boot_phase)
1476 		goto unlock;
1477 	for_each_net(net) {
1478 		for_each_netdev(net, dev) {
1479 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1480 			err = notifier_to_errno(err);
1481 			if (err)
1482 				goto rollback;
1483 
1484 			if (!(dev->flags & IFF_UP))
1485 				continue;
1486 
1487 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1488 		}
1489 	}
1490 
1491 unlock:
1492 	rtnl_unlock();
1493 	return err;
1494 
1495 rollback:
1496 	last = dev;
1497 	for_each_net(net) {
1498 		for_each_netdev(net, dev) {
1499 			if (dev == last)
1500 				goto outroll;
1501 
1502 			if (dev->flags & IFF_UP) {
1503 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1504 							dev);
1505 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1506 			}
1507 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1508 		}
1509 	}
1510 
1511 outroll:
1512 	raw_notifier_chain_unregister(&netdev_chain, nb);
1513 	goto unlock;
1514 }
1515 EXPORT_SYMBOL(register_netdevice_notifier);
1516 
1517 /**
1518  *	unregister_netdevice_notifier - unregister a network notifier block
1519  *	@nb: notifier
1520  *
1521  *	Unregister a notifier previously registered by
1522  *	register_netdevice_notifier(). The notifier is unlinked into the
1523  *	kernel structures and may then be reused. A negative errno code
1524  *	is returned on a failure.
1525  *
1526  * 	After unregistering unregister and down device events are synthesized
1527  *	for all devices on the device list to the removed notifier to remove
1528  *	the need for special case cleanup code.
1529  */
1530 
1531 int unregister_netdevice_notifier(struct notifier_block *nb)
1532 {
1533 	struct net_device *dev;
1534 	struct net *net;
1535 	int err;
1536 
1537 	rtnl_lock();
1538 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1539 	if (err)
1540 		goto unlock;
1541 
1542 	for_each_net(net) {
1543 		for_each_netdev(net, dev) {
1544 			if (dev->flags & IFF_UP) {
1545 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1546 							dev);
1547 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1548 			}
1549 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1550 		}
1551 	}
1552 unlock:
1553 	rtnl_unlock();
1554 	return err;
1555 }
1556 EXPORT_SYMBOL(unregister_netdevice_notifier);
1557 
1558 /**
1559  *	call_netdevice_notifiers_info - call all network notifier blocks
1560  *	@val: value passed unmodified to notifier function
1561  *	@dev: net_device pointer passed unmodified to notifier function
1562  *	@info: notifier information data
1563  *
1564  *	Call all network notifier blocks.  Parameters and return value
1565  *	are as for raw_notifier_call_chain().
1566  */
1567 
1568 static int call_netdevice_notifiers_info(unsigned long val,
1569 					 struct net_device *dev,
1570 					 struct netdev_notifier_info *info)
1571 {
1572 	ASSERT_RTNL();
1573 	netdev_notifier_info_init(info, dev);
1574 	return raw_notifier_call_chain(&netdev_chain, val, info);
1575 }
1576 
1577 /**
1578  *	call_netdevice_notifiers - call all network notifier blocks
1579  *      @val: value passed unmodified to notifier function
1580  *      @dev: net_device pointer passed unmodified to notifier function
1581  *
1582  *	Call all network notifier blocks.  Parameters and return value
1583  *	are as for raw_notifier_call_chain().
1584  */
1585 
1586 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1587 {
1588 	struct netdev_notifier_info info;
1589 
1590 	return call_netdevice_notifiers_info(val, dev, &info);
1591 }
1592 EXPORT_SYMBOL(call_netdevice_notifiers);
1593 
1594 static struct static_key netstamp_needed __read_mostly;
1595 #ifdef HAVE_JUMP_LABEL
1596 /* We are not allowed to call static_key_slow_dec() from irq context
1597  * If net_disable_timestamp() is called from irq context, defer the
1598  * static_key_slow_dec() calls.
1599  */
1600 static atomic_t netstamp_needed_deferred;
1601 #endif
1602 
1603 void net_enable_timestamp(void)
1604 {
1605 #ifdef HAVE_JUMP_LABEL
1606 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1607 
1608 	if (deferred) {
1609 		while (--deferred)
1610 			static_key_slow_dec(&netstamp_needed);
1611 		return;
1612 	}
1613 #endif
1614 	static_key_slow_inc(&netstamp_needed);
1615 }
1616 EXPORT_SYMBOL(net_enable_timestamp);
1617 
1618 void net_disable_timestamp(void)
1619 {
1620 #ifdef HAVE_JUMP_LABEL
1621 	if (in_interrupt()) {
1622 		atomic_inc(&netstamp_needed_deferred);
1623 		return;
1624 	}
1625 #endif
1626 	static_key_slow_dec(&netstamp_needed);
1627 }
1628 EXPORT_SYMBOL(net_disable_timestamp);
1629 
1630 static inline void net_timestamp_set(struct sk_buff *skb)
1631 {
1632 	skb->tstamp.tv64 = 0;
1633 	if (static_key_false(&netstamp_needed))
1634 		__net_timestamp(skb);
1635 }
1636 
1637 #define net_timestamp_check(COND, SKB)			\
1638 	if (static_key_false(&netstamp_needed)) {		\
1639 		if ((COND) && !(SKB)->tstamp.tv64)	\
1640 			__net_timestamp(SKB);		\
1641 	}						\
1642 
1643 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1644 {
1645 	unsigned int len;
1646 
1647 	if (!(dev->flags & IFF_UP))
1648 		return false;
1649 
1650 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1651 	if (skb->len <= len)
1652 		return true;
1653 
1654 	/* if TSO is enabled, we don't care about the length as the packet
1655 	 * could be forwarded without being segmented before
1656 	 */
1657 	if (skb_is_gso(skb))
1658 		return true;
1659 
1660 	return false;
1661 }
1662 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1663 
1664 /**
1665  * dev_forward_skb - loopback an skb to another netif
1666  *
1667  * @dev: destination network device
1668  * @skb: buffer to forward
1669  *
1670  * return values:
1671  *	NET_RX_SUCCESS	(no congestion)
1672  *	NET_RX_DROP     (packet was dropped, but freed)
1673  *
1674  * dev_forward_skb can be used for injecting an skb from the
1675  * start_xmit function of one device into the receive queue
1676  * of another device.
1677  *
1678  * The receiving device may be in another namespace, so
1679  * we have to clear all information in the skb that could
1680  * impact namespace isolation.
1681  */
1682 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1683 {
1684 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1685 		if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1686 			atomic_long_inc(&dev->rx_dropped);
1687 			kfree_skb(skb);
1688 			return NET_RX_DROP;
1689 		}
1690 	}
1691 
1692 	if (unlikely(!is_skb_forwardable(dev, skb))) {
1693 		atomic_long_inc(&dev->rx_dropped);
1694 		kfree_skb(skb);
1695 		return NET_RX_DROP;
1696 	}
1697 
1698 	skb_scrub_packet(skb, true);
1699 	skb->protocol = eth_type_trans(skb, dev);
1700 
1701 	return netif_rx_internal(skb);
1702 }
1703 EXPORT_SYMBOL_GPL(dev_forward_skb);
1704 
1705 static inline int deliver_skb(struct sk_buff *skb,
1706 			      struct packet_type *pt_prev,
1707 			      struct net_device *orig_dev)
1708 {
1709 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1710 		return -ENOMEM;
1711 	atomic_inc(&skb->users);
1712 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1713 }
1714 
1715 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1716 {
1717 	if (!ptype->af_packet_priv || !skb->sk)
1718 		return false;
1719 
1720 	if (ptype->id_match)
1721 		return ptype->id_match(ptype, skb->sk);
1722 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1723 		return true;
1724 
1725 	return false;
1726 }
1727 
1728 /*
1729  *	Support routine. Sends outgoing frames to any network
1730  *	taps currently in use.
1731  */
1732 
1733 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1734 {
1735 	struct packet_type *ptype;
1736 	struct sk_buff *skb2 = NULL;
1737 	struct packet_type *pt_prev = NULL;
1738 
1739 	rcu_read_lock();
1740 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1741 		/* Never send packets back to the socket
1742 		 * they originated from - MvS (miquels@drinkel.ow.org)
1743 		 */
1744 		if ((ptype->dev == dev || !ptype->dev) &&
1745 		    (!skb_loop_sk(ptype, skb))) {
1746 			if (pt_prev) {
1747 				deliver_skb(skb2, pt_prev, skb->dev);
1748 				pt_prev = ptype;
1749 				continue;
1750 			}
1751 
1752 			skb2 = skb_clone(skb, GFP_ATOMIC);
1753 			if (!skb2)
1754 				break;
1755 
1756 			net_timestamp_set(skb2);
1757 
1758 			/* skb->nh should be correctly
1759 			   set by sender, so that the second statement is
1760 			   just protection against buggy protocols.
1761 			 */
1762 			skb_reset_mac_header(skb2);
1763 
1764 			if (skb_network_header(skb2) < skb2->data ||
1765 			    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1766 				net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1767 						     ntohs(skb2->protocol),
1768 						     dev->name);
1769 				skb_reset_network_header(skb2);
1770 			}
1771 
1772 			skb2->transport_header = skb2->network_header;
1773 			skb2->pkt_type = PACKET_OUTGOING;
1774 			pt_prev = ptype;
1775 		}
1776 	}
1777 	if (pt_prev)
1778 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1779 	rcu_read_unlock();
1780 }
1781 
1782 /**
1783  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1784  * @dev: Network device
1785  * @txq: number of queues available
1786  *
1787  * If real_num_tx_queues is changed the tc mappings may no longer be
1788  * valid. To resolve this verify the tc mapping remains valid and if
1789  * not NULL the mapping. With no priorities mapping to this
1790  * offset/count pair it will no longer be used. In the worst case TC0
1791  * is invalid nothing can be done so disable priority mappings. If is
1792  * expected that drivers will fix this mapping if they can before
1793  * calling netif_set_real_num_tx_queues.
1794  */
1795 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1796 {
1797 	int i;
1798 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1799 
1800 	/* If TC0 is invalidated disable TC mapping */
1801 	if (tc->offset + tc->count > txq) {
1802 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1803 		dev->num_tc = 0;
1804 		return;
1805 	}
1806 
1807 	/* Invalidated prio to tc mappings set to TC0 */
1808 	for (i = 1; i < TC_BITMASK + 1; i++) {
1809 		int q = netdev_get_prio_tc_map(dev, i);
1810 
1811 		tc = &dev->tc_to_txq[q];
1812 		if (tc->offset + tc->count > txq) {
1813 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1814 				i, q);
1815 			netdev_set_prio_tc_map(dev, i, 0);
1816 		}
1817 	}
1818 }
1819 
1820 #ifdef CONFIG_XPS
1821 static DEFINE_MUTEX(xps_map_mutex);
1822 #define xmap_dereference(P)		\
1823 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1824 
1825 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1826 					int cpu, u16 index)
1827 {
1828 	struct xps_map *map = NULL;
1829 	int pos;
1830 
1831 	if (dev_maps)
1832 		map = xmap_dereference(dev_maps->cpu_map[cpu]);
1833 
1834 	for (pos = 0; map && pos < map->len; pos++) {
1835 		if (map->queues[pos] == index) {
1836 			if (map->len > 1) {
1837 				map->queues[pos] = map->queues[--map->len];
1838 			} else {
1839 				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1840 				kfree_rcu(map, rcu);
1841 				map = NULL;
1842 			}
1843 			break;
1844 		}
1845 	}
1846 
1847 	return map;
1848 }
1849 
1850 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1851 {
1852 	struct xps_dev_maps *dev_maps;
1853 	int cpu, i;
1854 	bool active = false;
1855 
1856 	mutex_lock(&xps_map_mutex);
1857 	dev_maps = xmap_dereference(dev->xps_maps);
1858 
1859 	if (!dev_maps)
1860 		goto out_no_maps;
1861 
1862 	for_each_possible_cpu(cpu) {
1863 		for (i = index; i < dev->num_tx_queues; i++) {
1864 			if (!remove_xps_queue(dev_maps, cpu, i))
1865 				break;
1866 		}
1867 		if (i == dev->num_tx_queues)
1868 			active = true;
1869 	}
1870 
1871 	if (!active) {
1872 		RCU_INIT_POINTER(dev->xps_maps, NULL);
1873 		kfree_rcu(dev_maps, rcu);
1874 	}
1875 
1876 	for (i = index; i < dev->num_tx_queues; i++)
1877 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1878 					     NUMA_NO_NODE);
1879 
1880 out_no_maps:
1881 	mutex_unlock(&xps_map_mutex);
1882 }
1883 
1884 static struct xps_map *expand_xps_map(struct xps_map *map,
1885 				      int cpu, u16 index)
1886 {
1887 	struct xps_map *new_map;
1888 	int alloc_len = XPS_MIN_MAP_ALLOC;
1889 	int i, pos;
1890 
1891 	for (pos = 0; map && pos < map->len; pos++) {
1892 		if (map->queues[pos] != index)
1893 			continue;
1894 		return map;
1895 	}
1896 
1897 	/* Need to add queue to this CPU's existing map */
1898 	if (map) {
1899 		if (pos < map->alloc_len)
1900 			return map;
1901 
1902 		alloc_len = map->alloc_len * 2;
1903 	}
1904 
1905 	/* Need to allocate new map to store queue on this CPU's map */
1906 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1907 			       cpu_to_node(cpu));
1908 	if (!new_map)
1909 		return NULL;
1910 
1911 	for (i = 0; i < pos; i++)
1912 		new_map->queues[i] = map->queues[i];
1913 	new_map->alloc_len = alloc_len;
1914 	new_map->len = pos;
1915 
1916 	return new_map;
1917 }
1918 
1919 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1920 			u16 index)
1921 {
1922 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1923 	struct xps_map *map, *new_map;
1924 	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1925 	int cpu, numa_node_id = -2;
1926 	bool active = false;
1927 
1928 	mutex_lock(&xps_map_mutex);
1929 
1930 	dev_maps = xmap_dereference(dev->xps_maps);
1931 
1932 	/* allocate memory for queue storage */
1933 	for_each_online_cpu(cpu) {
1934 		if (!cpumask_test_cpu(cpu, mask))
1935 			continue;
1936 
1937 		if (!new_dev_maps)
1938 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1939 		if (!new_dev_maps) {
1940 			mutex_unlock(&xps_map_mutex);
1941 			return -ENOMEM;
1942 		}
1943 
1944 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1945 				 NULL;
1946 
1947 		map = expand_xps_map(map, cpu, index);
1948 		if (!map)
1949 			goto error;
1950 
1951 		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1952 	}
1953 
1954 	if (!new_dev_maps)
1955 		goto out_no_new_maps;
1956 
1957 	for_each_possible_cpu(cpu) {
1958 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1959 			/* add queue to CPU maps */
1960 			int pos = 0;
1961 
1962 			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1963 			while ((pos < map->len) && (map->queues[pos] != index))
1964 				pos++;
1965 
1966 			if (pos == map->len)
1967 				map->queues[map->len++] = index;
1968 #ifdef CONFIG_NUMA
1969 			if (numa_node_id == -2)
1970 				numa_node_id = cpu_to_node(cpu);
1971 			else if (numa_node_id != cpu_to_node(cpu))
1972 				numa_node_id = -1;
1973 #endif
1974 		} else if (dev_maps) {
1975 			/* fill in the new device map from the old device map */
1976 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
1977 			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1978 		}
1979 
1980 	}
1981 
1982 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1983 
1984 	/* Cleanup old maps */
1985 	if (dev_maps) {
1986 		for_each_possible_cpu(cpu) {
1987 			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1988 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
1989 			if (map && map != new_map)
1990 				kfree_rcu(map, rcu);
1991 		}
1992 
1993 		kfree_rcu(dev_maps, rcu);
1994 	}
1995 
1996 	dev_maps = new_dev_maps;
1997 	active = true;
1998 
1999 out_no_new_maps:
2000 	/* update Tx queue numa node */
2001 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2002 				     (numa_node_id >= 0) ? numa_node_id :
2003 				     NUMA_NO_NODE);
2004 
2005 	if (!dev_maps)
2006 		goto out_no_maps;
2007 
2008 	/* removes queue from unused CPUs */
2009 	for_each_possible_cpu(cpu) {
2010 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2011 			continue;
2012 
2013 		if (remove_xps_queue(dev_maps, cpu, index))
2014 			active = true;
2015 	}
2016 
2017 	/* free map if not active */
2018 	if (!active) {
2019 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2020 		kfree_rcu(dev_maps, rcu);
2021 	}
2022 
2023 out_no_maps:
2024 	mutex_unlock(&xps_map_mutex);
2025 
2026 	return 0;
2027 error:
2028 	/* remove any maps that we added */
2029 	for_each_possible_cpu(cpu) {
2030 		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2031 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2032 				 NULL;
2033 		if (new_map && new_map != map)
2034 			kfree(new_map);
2035 	}
2036 
2037 	mutex_unlock(&xps_map_mutex);
2038 
2039 	kfree(new_dev_maps);
2040 	return -ENOMEM;
2041 }
2042 EXPORT_SYMBOL(netif_set_xps_queue);
2043 
2044 #endif
2045 /*
2046  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2047  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2048  */
2049 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2050 {
2051 	int rc;
2052 
2053 	if (txq < 1 || txq > dev->num_tx_queues)
2054 		return -EINVAL;
2055 
2056 	if (dev->reg_state == NETREG_REGISTERED ||
2057 	    dev->reg_state == NETREG_UNREGISTERING) {
2058 		ASSERT_RTNL();
2059 
2060 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2061 						  txq);
2062 		if (rc)
2063 			return rc;
2064 
2065 		if (dev->num_tc)
2066 			netif_setup_tc(dev, txq);
2067 
2068 		if (txq < dev->real_num_tx_queues) {
2069 			qdisc_reset_all_tx_gt(dev, txq);
2070 #ifdef CONFIG_XPS
2071 			netif_reset_xps_queues_gt(dev, txq);
2072 #endif
2073 		}
2074 	}
2075 
2076 	dev->real_num_tx_queues = txq;
2077 	return 0;
2078 }
2079 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2080 
2081 #ifdef CONFIG_SYSFS
2082 /**
2083  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2084  *	@dev: Network device
2085  *	@rxq: Actual number of RX queues
2086  *
2087  *	This must be called either with the rtnl_lock held or before
2088  *	registration of the net device.  Returns 0 on success, or a
2089  *	negative error code.  If called before registration, it always
2090  *	succeeds.
2091  */
2092 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2093 {
2094 	int rc;
2095 
2096 	if (rxq < 1 || rxq > dev->num_rx_queues)
2097 		return -EINVAL;
2098 
2099 	if (dev->reg_state == NETREG_REGISTERED) {
2100 		ASSERT_RTNL();
2101 
2102 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2103 						  rxq);
2104 		if (rc)
2105 			return rc;
2106 	}
2107 
2108 	dev->real_num_rx_queues = rxq;
2109 	return 0;
2110 }
2111 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2112 #endif
2113 
2114 /**
2115  * netif_get_num_default_rss_queues - default number of RSS queues
2116  *
2117  * This routine should set an upper limit on the number of RSS queues
2118  * used by default by multiqueue devices.
2119  */
2120 int netif_get_num_default_rss_queues(void)
2121 {
2122 	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2123 }
2124 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2125 
2126 static inline void __netif_reschedule(struct Qdisc *q)
2127 {
2128 	struct softnet_data *sd;
2129 	unsigned long flags;
2130 
2131 	local_irq_save(flags);
2132 	sd = &__get_cpu_var(softnet_data);
2133 	q->next_sched = NULL;
2134 	*sd->output_queue_tailp = q;
2135 	sd->output_queue_tailp = &q->next_sched;
2136 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2137 	local_irq_restore(flags);
2138 }
2139 
2140 void __netif_schedule(struct Qdisc *q)
2141 {
2142 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2143 		__netif_reschedule(q);
2144 }
2145 EXPORT_SYMBOL(__netif_schedule);
2146 
2147 struct dev_kfree_skb_cb {
2148 	enum skb_free_reason reason;
2149 };
2150 
2151 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2152 {
2153 	return (struct dev_kfree_skb_cb *)skb->cb;
2154 }
2155 
2156 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2157 {
2158 	unsigned long flags;
2159 
2160 	if (likely(atomic_read(&skb->users) == 1)) {
2161 		smp_rmb();
2162 		atomic_set(&skb->users, 0);
2163 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2164 		return;
2165 	}
2166 	get_kfree_skb_cb(skb)->reason = reason;
2167 	local_irq_save(flags);
2168 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2169 	__this_cpu_write(softnet_data.completion_queue, skb);
2170 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2171 	local_irq_restore(flags);
2172 }
2173 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2174 
2175 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2176 {
2177 	if (in_irq() || irqs_disabled())
2178 		__dev_kfree_skb_irq(skb, reason);
2179 	else
2180 		dev_kfree_skb(skb);
2181 }
2182 EXPORT_SYMBOL(__dev_kfree_skb_any);
2183 
2184 
2185 /**
2186  * netif_device_detach - mark device as removed
2187  * @dev: network device
2188  *
2189  * Mark device as removed from system and therefore no longer available.
2190  */
2191 void netif_device_detach(struct net_device *dev)
2192 {
2193 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2194 	    netif_running(dev)) {
2195 		netif_tx_stop_all_queues(dev);
2196 	}
2197 }
2198 EXPORT_SYMBOL(netif_device_detach);
2199 
2200 /**
2201  * netif_device_attach - mark device as attached
2202  * @dev: network device
2203  *
2204  * Mark device as attached from system and restart if needed.
2205  */
2206 void netif_device_attach(struct net_device *dev)
2207 {
2208 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2209 	    netif_running(dev)) {
2210 		netif_tx_wake_all_queues(dev);
2211 		__netdev_watchdog_up(dev);
2212 	}
2213 }
2214 EXPORT_SYMBOL(netif_device_attach);
2215 
2216 static void skb_warn_bad_offload(const struct sk_buff *skb)
2217 {
2218 	static const netdev_features_t null_features = 0;
2219 	struct net_device *dev = skb->dev;
2220 	const char *driver = "";
2221 
2222 	if (!net_ratelimit())
2223 		return;
2224 
2225 	if (dev && dev->dev.parent)
2226 		driver = dev_driver_string(dev->dev.parent);
2227 
2228 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2229 	     "gso_type=%d ip_summed=%d\n",
2230 	     driver, dev ? &dev->features : &null_features,
2231 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2232 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2233 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2234 }
2235 
2236 /*
2237  * Invalidate hardware checksum when packet is to be mangled, and
2238  * complete checksum manually on outgoing path.
2239  */
2240 int skb_checksum_help(struct sk_buff *skb)
2241 {
2242 	__wsum csum;
2243 	int ret = 0, offset;
2244 
2245 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2246 		goto out_set_summed;
2247 
2248 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2249 		skb_warn_bad_offload(skb);
2250 		return -EINVAL;
2251 	}
2252 
2253 	/* Before computing a checksum, we should make sure no frag could
2254 	 * be modified by an external entity : checksum could be wrong.
2255 	 */
2256 	if (skb_has_shared_frag(skb)) {
2257 		ret = __skb_linearize(skb);
2258 		if (ret)
2259 			goto out;
2260 	}
2261 
2262 	offset = skb_checksum_start_offset(skb);
2263 	BUG_ON(offset >= skb_headlen(skb));
2264 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2265 
2266 	offset += skb->csum_offset;
2267 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2268 
2269 	if (skb_cloned(skb) &&
2270 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2271 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2272 		if (ret)
2273 			goto out;
2274 	}
2275 
2276 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2277 out_set_summed:
2278 	skb->ip_summed = CHECKSUM_NONE;
2279 out:
2280 	return ret;
2281 }
2282 EXPORT_SYMBOL(skb_checksum_help);
2283 
2284 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2285 {
2286 	__be16 type = skb->protocol;
2287 	int vlan_depth = ETH_HLEN;
2288 
2289 	/* Tunnel gso handlers can set protocol to ethernet. */
2290 	if (type == htons(ETH_P_TEB)) {
2291 		struct ethhdr *eth;
2292 
2293 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2294 			return 0;
2295 
2296 		eth = (struct ethhdr *)skb_mac_header(skb);
2297 		type = eth->h_proto;
2298 	}
2299 
2300 	while (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2301 		struct vlan_hdr *vh;
2302 
2303 		if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2304 			return 0;
2305 
2306 		vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2307 		type = vh->h_vlan_encapsulated_proto;
2308 		vlan_depth += VLAN_HLEN;
2309 	}
2310 
2311 	*depth = vlan_depth;
2312 
2313 	return type;
2314 }
2315 
2316 /**
2317  *	skb_mac_gso_segment - mac layer segmentation handler.
2318  *	@skb: buffer to segment
2319  *	@features: features for the output path (see dev->features)
2320  */
2321 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2322 				    netdev_features_t features)
2323 {
2324 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2325 	struct packet_offload *ptype;
2326 	int vlan_depth = skb->mac_len;
2327 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2328 
2329 	if (unlikely(!type))
2330 		return ERR_PTR(-EINVAL);
2331 
2332 	__skb_pull(skb, vlan_depth);
2333 
2334 	rcu_read_lock();
2335 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2336 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2337 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2338 				int err;
2339 
2340 				err = ptype->callbacks.gso_send_check(skb);
2341 				segs = ERR_PTR(err);
2342 				if (err || skb_gso_ok(skb, features))
2343 					break;
2344 				__skb_push(skb, (skb->data -
2345 						 skb_network_header(skb)));
2346 			}
2347 			segs = ptype->callbacks.gso_segment(skb, features);
2348 			break;
2349 		}
2350 	}
2351 	rcu_read_unlock();
2352 
2353 	__skb_push(skb, skb->data - skb_mac_header(skb));
2354 
2355 	return segs;
2356 }
2357 EXPORT_SYMBOL(skb_mac_gso_segment);
2358 
2359 
2360 /* openvswitch calls this on rx path, so we need a different check.
2361  */
2362 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2363 {
2364 	if (tx_path)
2365 		return skb->ip_summed != CHECKSUM_PARTIAL;
2366 	else
2367 		return skb->ip_summed == CHECKSUM_NONE;
2368 }
2369 
2370 /**
2371  *	__skb_gso_segment - Perform segmentation on skb.
2372  *	@skb: buffer to segment
2373  *	@features: features for the output path (see dev->features)
2374  *	@tx_path: whether it is called in TX path
2375  *
2376  *	This function segments the given skb and returns a list of segments.
2377  *
2378  *	It may return NULL if the skb requires no segmentation.  This is
2379  *	only possible when GSO is used for verifying header integrity.
2380  */
2381 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2382 				  netdev_features_t features, bool tx_path)
2383 {
2384 	if (unlikely(skb_needs_check(skb, tx_path))) {
2385 		int err;
2386 
2387 		skb_warn_bad_offload(skb);
2388 
2389 		if (skb_header_cloned(skb) &&
2390 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2391 			return ERR_PTR(err);
2392 	}
2393 
2394 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2395 	SKB_GSO_CB(skb)->encap_level = 0;
2396 
2397 	skb_reset_mac_header(skb);
2398 	skb_reset_mac_len(skb);
2399 
2400 	return skb_mac_gso_segment(skb, features);
2401 }
2402 EXPORT_SYMBOL(__skb_gso_segment);
2403 
2404 /* Take action when hardware reception checksum errors are detected. */
2405 #ifdef CONFIG_BUG
2406 void netdev_rx_csum_fault(struct net_device *dev)
2407 {
2408 	if (net_ratelimit()) {
2409 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2410 		dump_stack();
2411 	}
2412 }
2413 EXPORT_SYMBOL(netdev_rx_csum_fault);
2414 #endif
2415 
2416 /* Actually, we should eliminate this check as soon as we know, that:
2417  * 1. IOMMU is present and allows to map all the memory.
2418  * 2. No high memory really exists on this machine.
2419  */
2420 
2421 static int illegal_highdma(const struct net_device *dev, struct sk_buff *skb)
2422 {
2423 #ifdef CONFIG_HIGHMEM
2424 	int i;
2425 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2426 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2427 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2428 			if (PageHighMem(skb_frag_page(frag)))
2429 				return 1;
2430 		}
2431 	}
2432 
2433 	if (PCI_DMA_BUS_IS_PHYS) {
2434 		struct device *pdev = dev->dev.parent;
2435 
2436 		if (!pdev)
2437 			return 0;
2438 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2439 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2440 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2441 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2442 				return 1;
2443 		}
2444 	}
2445 #endif
2446 	return 0;
2447 }
2448 
2449 struct dev_gso_cb {
2450 	void (*destructor)(struct sk_buff *skb);
2451 };
2452 
2453 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2454 
2455 static void dev_gso_skb_destructor(struct sk_buff *skb)
2456 {
2457 	struct dev_gso_cb *cb;
2458 
2459 	kfree_skb_list(skb->next);
2460 	skb->next = NULL;
2461 
2462 	cb = DEV_GSO_CB(skb);
2463 	if (cb->destructor)
2464 		cb->destructor(skb);
2465 }
2466 
2467 /**
2468  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
2469  *	@skb: buffer to segment
2470  *	@features: device features as applicable to this skb
2471  *
2472  *	This function segments the given skb and stores the list of segments
2473  *	in skb->next.
2474  */
2475 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2476 {
2477 	struct sk_buff *segs;
2478 
2479 	segs = skb_gso_segment(skb, features);
2480 
2481 	/* Verifying header integrity only. */
2482 	if (!segs)
2483 		return 0;
2484 
2485 	if (IS_ERR(segs))
2486 		return PTR_ERR(segs);
2487 
2488 	skb->next = segs;
2489 	DEV_GSO_CB(skb)->destructor = skb->destructor;
2490 	skb->destructor = dev_gso_skb_destructor;
2491 
2492 	return 0;
2493 }
2494 
2495 static netdev_features_t harmonize_features(struct sk_buff *skb,
2496 					    const struct net_device *dev,
2497 					    netdev_features_t features)
2498 {
2499 	int tmp;
2500 
2501 	if (skb->ip_summed != CHECKSUM_NONE &&
2502 	    !can_checksum_protocol(features, skb_network_protocol(skb, &tmp))) {
2503 		features &= ~NETIF_F_ALL_CSUM;
2504 	} else if (illegal_highdma(dev, skb)) {
2505 		features &= ~NETIF_F_SG;
2506 	}
2507 
2508 	return features;
2509 }
2510 
2511 netdev_features_t netif_skb_dev_features(struct sk_buff *skb,
2512 					 const struct net_device *dev)
2513 {
2514 	__be16 protocol = skb->protocol;
2515 	netdev_features_t features = dev->features;
2516 
2517 	if (skb_shinfo(skb)->gso_segs > dev->gso_max_segs)
2518 		features &= ~NETIF_F_GSO_MASK;
2519 
2520 	if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2521 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2522 		protocol = veh->h_vlan_encapsulated_proto;
2523 	} else if (!vlan_tx_tag_present(skb)) {
2524 		return harmonize_features(skb, dev, features);
2525 	}
2526 
2527 	features &= (dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2528 					       NETIF_F_HW_VLAN_STAG_TX);
2529 
2530 	if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2531 		features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2532 				NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2533 				NETIF_F_HW_VLAN_STAG_TX;
2534 
2535 	return harmonize_features(skb, dev, features);
2536 }
2537 EXPORT_SYMBOL(netif_skb_dev_features);
2538 
2539 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2540 			struct netdev_queue *txq)
2541 {
2542 	const struct net_device_ops *ops = dev->netdev_ops;
2543 	int rc = NETDEV_TX_OK;
2544 	unsigned int skb_len;
2545 
2546 	if (likely(!skb->next)) {
2547 		netdev_features_t features;
2548 
2549 		/*
2550 		 * If device doesn't need skb->dst, release it right now while
2551 		 * its hot in this cpu cache
2552 		 */
2553 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2554 			skb_dst_drop(skb);
2555 
2556 		features = netif_skb_features(skb);
2557 
2558 		if (vlan_tx_tag_present(skb) &&
2559 		    !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2560 			skb = __vlan_put_tag(skb, skb->vlan_proto,
2561 					     vlan_tx_tag_get(skb));
2562 			if (unlikely(!skb))
2563 				goto out;
2564 
2565 			skb->vlan_tci = 0;
2566 		}
2567 
2568 		/* If encapsulation offload request, verify we are testing
2569 		 * hardware encapsulation features instead of standard
2570 		 * features for the netdev
2571 		 */
2572 		if (skb->encapsulation)
2573 			features &= dev->hw_enc_features;
2574 
2575 		if (netif_needs_gso(skb, features)) {
2576 			if (unlikely(dev_gso_segment(skb, features)))
2577 				goto out_kfree_skb;
2578 			if (skb->next)
2579 				goto gso;
2580 		} else {
2581 			if (skb_needs_linearize(skb, features) &&
2582 			    __skb_linearize(skb))
2583 				goto out_kfree_skb;
2584 
2585 			/* If packet is not checksummed and device does not
2586 			 * support checksumming for this protocol, complete
2587 			 * checksumming here.
2588 			 */
2589 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
2590 				if (skb->encapsulation)
2591 					skb_set_inner_transport_header(skb,
2592 						skb_checksum_start_offset(skb));
2593 				else
2594 					skb_set_transport_header(skb,
2595 						skb_checksum_start_offset(skb));
2596 				if (!(features & NETIF_F_ALL_CSUM) &&
2597 				     skb_checksum_help(skb))
2598 					goto out_kfree_skb;
2599 			}
2600 		}
2601 
2602 		if (!list_empty(&ptype_all))
2603 			dev_queue_xmit_nit(skb, dev);
2604 
2605 		skb_len = skb->len;
2606 		trace_net_dev_start_xmit(skb, dev);
2607 		rc = ops->ndo_start_xmit(skb, dev);
2608 		trace_net_dev_xmit(skb, rc, dev, skb_len);
2609 		if (rc == NETDEV_TX_OK)
2610 			txq_trans_update(txq);
2611 		return rc;
2612 	}
2613 
2614 gso:
2615 	do {
2616 		struct sk_buff *nskb = skb->next;
2617 
2618 		skb->next = nskb->next;
2619 		nskb->next = NULL;
2620 
2621 		if (!list_empty(&ptype_all))
2622 			dev_queue_xmit_nit(nskb, dev);
2623 
2624 		skb_len = nskb->len;
2625 		trace_net_dev_start_xmit(nskb, dev);
2626 		rc = ops->ndo_start_xmit(nskb, dev);
2627 		trace_net_dev_xmit(nskb, rc, dev, skb_len);
2628 		if (unlikely(rc != NETDEV_TX_OK)) {
2629 			if (rc & ~NETDEV_TX_MASK)
2630 				goto out_kfree_gso_skb;
2631 			nskb->next = skb->next;
2632 			skb->next = nskb;
2633 			return rc;
2634 		}
2635 		txq_trans_update(txq);
2636 		if (unlikely(netif_xmit_stopped(txq) && skb->next))
2637 			return NETDEV_TX_BUSY;
2638 	} while (skb->next);
2639 
2640 out_kfree_gso_skb:
2641 	if (likely(skb->next == NULL)) {
2642 		skb->destructor = DEV_GSO_CB(skb)->destructor;
2643 		consume_skb(skb);
2644 		return rc;
2645 	}
2646 out_kfree_skb:
2647 	kfree_skb(skb);
2648 out:
2649 	return rc;
2650 }
2651 EXPORT_SYMBOL_GPL(dev_hard_start_xmit);
2652 
2653 static void qdisc_pkt_len_init(struct sk_buff *skb)
2654 {
2655 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2656 
2657 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2658 
2659 	/* To get more precise estimation of bytes sent on wire,
2660 	 * we add to pkt_len the headers size of all segments
2661 	 */
2662 	if (shinfo->gso_size)  {
2663 		unsigned int hdr_len;
2664 		u16 gso_segs = shinfo->gso_segs;
2665 
2666 		/* mac layer + network layer */
2667 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2668 
2669 		/* + transport layer */
2670 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2671 			hdr_len += tcp_hdrlen(skb);
2672 		else
2673 			hdr_len += sizeof(struct udphdr);
2674 
2675 		if (shinfo->gso_type & SKB_GSO_DODGY)
2676 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2677 						shinfo->gso_size);
2678 
2679 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2680 	}
2681 }
2682 
2683 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2684 				 struct net_device *dev,
2685 				 struct netdev_queue *txq)
2686 {
2687 	spinlock_t *root_lock = qdisc_lock(q);
2688 	bool contended;
2689 	int rc;
2690 
2691 	qdisc_pkt_len_init(skb);
2692 	qdisc_calculate_pkt_len(skb, q);
2693 	/*
2694 	 * Heuristic to force contended enqueues to serialize on a
2695 	 * separate lock before trying to get qdisc main lock.
2696 	 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2697 	 * and dequeue packets faster.
2698 	 */
2699 	contended = qdisc_is_running(q);
2700 	if (unlikely(contended))
2701 		spin_lock(&q->busylock);
2702 
2703 	spin_lock(root_lock);
2704 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2705 		kfree_skb(skb);
2706 		rc = NET_XMIT_DROP;
2707 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2708 		   qdisc_run_begin(q)) {
2709 		/*
2710 		 * This is a work-conserving queue; there are no old skbs
2711 		 * waiting to be sent out; and the qdisc is not running -
2712 		 * xmit the skb directly.
2713 		 */
2714 		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2715 			skb_dst_force(skb);
2716 
2717 		qdisc_bstats_update(q, skb);
2718 
2719 		if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2720 			if (unlikely(contended)) {
2721 				spin_unlock(&q->busylock);
2722 				contended = false;
2723 			}
2724 			__qdisc_run(q);
2725 		} else
2726 			qdisc_run_end(q);
2727 
2728 		rc = NET_XMIT_SUCCESS;
2729 	} else {
2730 		skb_dst_force(skb);
2731 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2732 		if (qdisc_run_begin(q)) {
2733 			if (unlikely(contended)) {
2734 				spin_unlock(&q->busylock);
2735 				contended = false;
2736 			}
2737 			__qdisc_run(q);
2738 		}
2739 	}
2740 	spin_unlock(root_lock);
2741 	if (unlikely(contended))
2742 		spin_unlock(&q->busylock);
2743 	return rc;
2744 }
2745 
2746 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2747 static void skb_update_prio(struct sk_buff *skb)
2748 {
2749 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2750 
2751 	if (!skb->priority && skb->sk && map) {
2752 		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2753 
2754 		if (prioidx < map->priomap_len)
2755 			skb->priority = map->priomap[prioidx];
2756 	}
2757 }
2758 #else
2759 #define skb_update_prio(skb)
2760 #endif
2761 
2762 static DEFINE_PER_CPU(int, xmit_recursion);
2763 #define RECURSION_LIMIT 10
2764 
2765 /**
2766  *	dev_loopback_xmit - loop back @skb
2767  *	@skb: buffer to transmit
2768  */
2769 int dev_loopback_xmit(struct sk_buff *skb)
2770 {
2771 	skb_reset_mac_header(skb);
2772 	__skb_pull(skb, skb_network_offset(skb));
2773 	skb->pkt_type = PACKET_LOOPBACK;
2774 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2775 	WARN_ON(!skb_dst(skb));
2776 	skb_dst_force(skb);
2777 	netif_rx_ni(skb);
2778 	return 0;
2779 }
2780 EXPORT_SYMBOL(dev_loopback_xmit);
2781 
2782 /**
2783  *	__dev_queue_xmit - transmit a buffer
2784  *	@skb: buffer to transmit
2785  *	@accel_priv: private data used for L2 forwarding offload
2786  *
2787  *	Queue a buffer for transmission to a network device. The caller must
2788  *	have set the device and priority and built the buffer before calling
2789  *	this function. The function can be called from an interrupt.
2790  *
2791  *	A negative errno code is returned on a failure. A success does not
2792  *	guarantee the frame will be transmitted as it may be dropped due
2793  *	to congestion or traffic shaping.
2794  *
2795  * -----------------------------------------------------------------------------------
2796  *      I notice this method can also return errors from the queue disciplines,
2797  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2798  *      be positive.
2799  *
2800  *      Regardless of the return value, the skb is consumed, so it is currently
2801  *      difficult to retry a send to this method.  (You can bump the ref count
2802  *      before sending to hold a reference for retry if you are careful.)
2803  *
2804  *      When calling this method, interrupts MUST be enabled.  This is because
2805  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2806  *          --BLG
2807  */
2808 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2809 {
2810 	struct net_device *dev = skb->dev;
2811 	struct netdev_queue *txq;
2812 	struct Qdisc *q;
2813 	int rc = -ENOMEM;
2814 
2815 	skb_reset_mac_header(skb);
2816 
2817 	/* Disable soft irqs for various locks below. Also
2818 	 * stops preemption for RCU.
2819 	 */
2820 	rcu_read_lock_bh();
2821 
2822 	skb_update_prio(skb);
2823 
2824 	txq = netdev_pick_tx(dev, skb, accel_priv);
2825 	q = rcu_dereference_bh(txq->qdisc);
2826 
2827 #ifdef CONFIG_NET_CLS_ACT
2828 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2829 #endif
2830 	trace_net_dev_queue(skb);
2831 	if (q->enqueue) {
2832 		rc = __dev_xmit_skb(skb, q, dev, txq);
2833 		goto out;
2834 	}
2835 
2836 	/* The device has no queue. Common case for software devices:
2837 	   loopback, all the sorts of tunnels...
2838 
2839 	   Really, it is unlikely that netif_tx_lock protection is necessary
2840 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2841 	   counters.)
2842 	   However, it is possible, that they rely on protection
2843 	   made by us here.
2844 
2845 	   Check this and shot the lock. It is not prone from deadlocks.
2846 	   Either shot noqueue qdisc, it is even simpler 8)
2847 	 */
2848 	if (dev->flags & IFF_UP) {
2849 		int cpu = smp_processor_id(); /* ok because BHs are off */
2850 
2851 		if (txq->xmit_lock_owner != cpu) {
2852 
2853 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2854 				goto recursion_alert;
2855 
2856 			HARD_TX_LOCK(dev, txq, cpu);
2857 
2858 			if (!netif_xmit_stopped(txq)) {
2859 				__this_cpu_inc(xmit_recursion);
2860 				rc = dev_hard_start_xmit(skb, dev, txq);
2861 				__this_cpu_dec(xmit_recursion);
2862 				if (dev_xmit_complete(rc)) {
2863 					HARD_TX_UNLOCK(dev, txq);
2864 					goto out;
2865 				}
2866 			}
2867 			HARD_TX_UNLOCK(dev, txq);
2868 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2869 					     dev->name);
2870 		} else {
2871 			/* Recursion is detected! It is possible,
2872 			 * unfortunately
2873 			 */
2874 recursion_alert:
2875 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2876 					     dev->name);
2877 		}
2878 	}
2879 
2880 	rc = -ENETDOWN;
2881 	rcu_read_unlock_bh();
2882 
2883 	atomic_long_inc(&dev->tx_dropped);
2884 	kfree_skb(skb);
2885 	return rc;
2886 out:
2887 	rcu_read_unlock_bh();
2888 	return rc;
2889 }
2890 
2891 int dev_queue_xmit(struct sk_buff *skb)
2892 {
2893 	return __dev_queue_xmit(skb, NULL);
2894 }
2895 EXPORT_SYMBOL(dev_queue_xmit);
2896 
2897 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
2898 {
2899 	return __dev_queue_xmit(skb, accel_priv);
2900 }
2901 EXPORT_SYMBOL(dev_queue_xmit_accel);
2902 
2903 
2904 /*=======================================================================
2905 			Receiver routines
2906   =======================================================================*/
2907 
2908 int netdev_max_backlog __read_mostly = 1000;
2909 EXPORT_SYMBOL(netdev_max_backlog);
2910 
2911 int netdev_tstamp_prequeue __read_mostly = 1;
2912 int netdev_budget __read_mostly = 300;
2913 int weight_p __read_mostly = 64;            /* old backlog weight */
2914 
2915 /* Called with irq disabled */
2916 static inline void ____napi_schedule(struct softnet_data *sd,
2917 				     struct napi_struct *napi)
2918 {
2919 	list_add_tail(&napi->poll_list, &sd->poll_list);
2920 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2921 }
2922 
2923 #ifdef CONFIG_RPS
2924 
2925 /* One global table that all flow-based protocols share. */
2926 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2927 EXPORT_SYMBOL(rps_sock_flow_table);
2928 
2929 struct static_key rps_needed __read_mostly;
2930 
2931 static struct rps_dev_flow *
2932 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2933 	    struct rps_dev_flow *rflow, u16 next_cpu)
2934 {
2935 	if (next_cpu != RPS_NO_CPU) {
2936 #ifdef CONFIG_RFS_ACCEL
2937 		struct netdev_rx_queue *rxqueue;
2938 		struct rps_dev_flow_table *flow_table;
2939 		struct rps_dev_flow *old_rflow;
2940 		u32 flow_id;
2941 		u16 rxq_index;
2942 		int rc;
2943 
2944 		/* Should we steer this flow to a different hardware queue? */
2945 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2946 		    !(dev->features & NETIF_F_NTUPLE))
2947 			goto out;
2948 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2949 		if (rxq_index == skb_get_rx_queue(skb))
2950 			goto out;
2951 
2952 		rxqueue = dev->_rx + rxq_index;
2953 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
2954 		if (!flow_table)
2955 			goto out;
2956 		flow_id = skb_get_hash(skb) & flow_table->mask;
2957 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2958 							rxq_index, flow_id);
2959 		if (rc < 0)
2960 			goto out;
2961 		old_rflow = rflow;
2962 		rflow = &flow_table->flows[flow_id];
2963 		rflow->filter = rc;
2964 		if (old_rflow->filter == rflow->filter)
2965 			old_rflow->filter = RPS_NO_FILTER;
2966 	out:
2967 #endif
2968 		rflow->last_qtail =
2969 			per_cpu(softnet_data, next_cpu).input_queue_head;
2970 	}
2971 
2972 	rflow->cpu = next_cpu;
2973 	return rflow;
2974 }
2975 
2976 /*
2977  * get_rps_cpu is called from netif_receive_skb and returns the target
2978  * CPU from the RPS map of the receiving queue for a given skb.
2979  * rcu_read_lock must be held on entry.
2980  */
2981 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2982 		       struct rps_dev_flow **rflowp)
2983 {
2984 	struct netdev_rx_queue *rxqueue;
2985 	struct rps_map *map;
2986 	struct rps_dev_flow_table *flow_table;
2987 	struct rps_sock_flow_table *sock_flow_table;
2988 	int cpu = -1;
2989 	u16 tcpu;
2990 	u32 hash;
2991 
2992 	if (skb_rx_queue_recorded(skb)) {
2993 		u16 index = skb_get_rx_queue(skb);
2994 		if (unlikely(index >= dev->real_num_rx_queues)) {
2995 			WARN_ONCE(dev->real_num_rx_queues > 1,
2996 				  "%s received packet on queue %u, but number "
2997 				  "of RX queues is %u\n",
2998 				  dev->name, index, dev->real_num_rx_queues);
2999 			goto done;
3000 		}
3001 		rxqueue = dev->_rx + index;
3002 	} else
3003 		rxqueue = dev->_rx;
3004 
3005 	map = rcu_dereference(rxqueue->rps_map);
3006 	if (map) {
3007 		if (map->len == 1 &&
3008 		    !rcu_access_pointer(rxqueue->rps_flow_table)) {
3009 			tcpu = map->cpus[0];
3010 			if (cpu_online(tcpu))
3011 				cpu = tcpu;
3012 			goto done;
3013 		}
3014 	} else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3015 		goto done;
3016 	}
3017 
3018 	skb_reset_network_header(skb);
3019 	hash = skb_get_hash(skb);
3020 	if (!hash)
3021 		goto done;
3022 
3023 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3024 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3025 	if (flow_table && sock_flow_table) {
3026 		u16 next_cpu;
3027 		struct rps_dev_flow *rflow;
3028 
3029 		rflow = &flow_table->flows[hash & flow_table->mask];
3030 		tcpu = rflow->cpu;
3031 
3032 		next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
3033 
3034 		/*
3035 		 * If the desired CPU (where last recvmsg was done) is
3036 		 * different from current CPU (one in the rx-queue flow
3037 		 * table entry), switch if one of the following holds:
3038 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
3039 		 *   - Current CPU is offline.
3040 		 *   - The current CPU's queue tail has advanced beyond the
3041 		 *     last packet that was enqueued using this table entry.
3042 		 *     This guarantees that all previous packets for the flow
3043 		 *     have been dequeued, thus preserving in order delivery.
3044 		 */
3045 		if (unlikely(tcpu != next_cpu) &&
3046 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3047 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3048 		      rflow->last_qtail)) >= 0)) {
3049 			tcpu = next_cpu;
3050 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3051 		}
3052 
3053 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3054 			*rflowp = rflow;
3055 			cpu = tcpu;
3056 			goto done;
3057 		}
3058 	}
3059 
3060 	if (map) {
3061 		tcpu = map->cpus[((u64) hash * map->len) >> 32];
3062 
3063 		if (cpu_online(tcpu)) {
3064 			cpu = tcpu;
3065 			goto done;
3066 		}
3067 	}
3068 
3069 done:
3070 	return cpu;
3071 }
3072 
3073 #ifdef CONFIG_RFS_ACCEL
3074 
3075 /**
3076  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3077  * @dev: Device on which the filter was set
3078  * @rxq_index: RX queue index
3079  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3080  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3081  *
3082  * Drivers that implement ndo_rx_flow_steer() should periodically call
3083  * this function for each installed filter and remove the filters for
3084  * which it returns %true.
3085  */
3086 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3087 			 u32 flow_id, u16 filter_id)
3088 {
3089 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3090 	struct rps_dev_flow_table *flow_table;
3091 	struct rps_dev_flow *rflow;
3092 	bool expire = true;
3093 	int cpu;
3094 
3095 	rcu_read_lock();
3096 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3097 	if (flow_table && flow_id <= flow_table->mask) {
3098 		rflow = &flow_table->flows[flow_id];
3099 		cpu = ACCESS_ONCE(rflow->cpu);
3100 		if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3101 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3102 			   rflow->last_qtail) <
3103 		     (int)(10 * flow_table->mask)))
3104 			expire = false;
3105 	}
3106 	rcu_read_unlock();
3107 	return expire;
3108 }
3109 EXPORT_SYMBOL(rps_may_expire_flow);
3110 
3111 #endif /* CONFIG_RFS_ACCEL */
3112 
3113 /* Called from hardirq (IPI) context */
3114 static void rps_trigger_softirq(void *data)
3115 {
3116 	struct softnet_data *sd = data;
3117 
3118 	____napi_schedule(sd, &sd->backlog);
3119 	sd->received_rps++;
3120 }
3121 
3122 #endif /* CONFIG_RPS */
3123 
3124 /*
3125  * Check if this softnet_data structure is another cpu one
3126  * If yes, queue it to our IPI list and return 1
3127  * If no, return 0
3128  */
3129 static int rps_ipi_queued(struct softnet_data *sd)
3130 {
3131 #ifdef CONFIG_RPS
3132 	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3133 
3134 	if (sd != mysd) {
3135 		sd->rps_ipi_next = mysd->rps_ipi_list;
3136 		mysd->rps_ipi_list = sd;
3137 
3138 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3139 		return 1;
3140 	}
3141 #endif /* CONFIG_RPS */
3142 	return 0;
3143 }
3144 
3145 #ifdef CONFIG_NET_FLOW_LIMIT
3146 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3147 #endif
3148 
3149 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3150 {
3151 #ifdef CONFIG_NET_FLOW_LIMIT
3152 	struct sd_flow_limit *fl;
3153 	struct softnet_data *sd;
3154 	unsigned int old_flow, new_flow;
3155 
3156 	if (qlen < (netdev_max_backlog >> 1))
3157 		return false;
3158 
3159 	sd = &__get_cpu_var(softnet_data);
3160 
3161 	rcu_read_lock();
3162 	fl = rcu_dereference(sd->flow_limit);
3163 	if (fl) {
3164 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3165 		old_flow = fl->history[fl->history_head];
3166 		fl->history[fl->history_head] = new_flow;
3167 
3168 		fl->history_head++;
3169 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3170 
3171 		if (likely(fl->buckets[old_flow]))
3172 			fl->buckets[old_flow]--;
3173 
3174 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3175 			fl->count++;
3176 			rcu_read_unlock();
3177 			return true;
3178 		}
3179 	}
3180 	rcu_read_unlock();
3181 #endif
3182 	return false;
3183 }
3184 
3185 /*
3186  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3187  * queue (may be a remote CPU queue).
3188  */
3189 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3190 			      unsigned int *qtail)
3191 {
3192 	struct softnet_data *sd;
3193 	unsigned long flags;
3194 	unsigned int qlen;
3195 
3196 	sd = &per_cpu(softnet_data, cpu);
3197 
3198 	local_irq_save(flags);
3199 
3200 	rps_lock(sd);
3201 	qlen = skb_queue_len(&sd->input_pkt_queue);
3202 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3203 		if (skb_queue_len(&sd->input_pkt_queue)) {
3204 enqueue:
3205 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3206 			input_queue_tail_incr_save(sd, qtail);
3207 			rps_unlock(sd);
3208 			local_irq_restore(flags);
3209 			return NET_RX_SUCCESS;
3210 		}
3211 
3212 		/* Schedule NAPI for backlog device
3213 		 * We can use non atomic operation since we own the queue lock
3214 		 */
3215 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3216 			if (!rps_ipi_queued(sd))
3217 				____napi_schedule(sd, &sd->backlog);
3218 		}
3219 		goto enqueue;
3220 	}
3221 
3222 	sd->dropped++;
3223 	rps_unlock(sd);
3224 
3225 	local_irq_restore(flags);
3226 
3227 	atomic_long_inc(&skb->dev->rx_dropped);
3228 	kfree_skb(skb);
3229 	return NET_RX_DROP;
3230 }
3231 
3232 static int netif_rx_internal(struct sk_buff *skb)
3233 {
3234 	int ret;
3235 
3236 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3237 
3238 	trace_netif_rx(skb);
3239 #ifdef CONFIG_RPS
3240 	if (static_key_false(&rps_needed)) {
3241 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3242 		int cpu;
3243 
3244 		preempt_disable();
3245 		rcu_read_lock();
3246 
3247 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3248 		if (cpu < 0)
3249 			cpu = smp_processor_id();
3250 
3251 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3252 
3253 		rcu_read_unlock();
3254 		preempt_enable();
3255 	} else
3256 #endif
3257 	{
3258 		unsigned int qtail;
3259 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3260 		put_cpu();
3261 	}
3262 	return ret;
3263 }
3264 
3265 /**
3266  *	netif_rx	-	post buffer to the network code
3267  *	@skb: buffer to post
3268  *
3269  *	This function receives a packet from a device driver and queues it for
3270  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3271  *	may be dropped during processing for congestion control or by the
3272  *	protocol layers.
3273  *
3274  *	return values:
3275  *	NET_RX_SUCCESS	(no congestion)
3276  *	NET_RX_DROP     (packet was dropped)
3277  *
3278  */
3279 
3280 int netif_rx(struct sk_buff *skb)
3281 {
3282 	trace_netif_rx_entry(skb);
3283 
3284 	return netif_rx_internal(skb);
3285 }
3286 EXPORT_SYMBOL(netif_rx);
3287 
3288 int netif_rx_ni(struct sk_buff *skb)
3289 {
3290 	int err;
3291 
3292 	trace_netif_rx_ni_entry(skb);
3293 
3294 	preempt_disable();
3295 	err = netif_rx_internal(skb);
3296 	if (local_softirq_pending())
3297 		do_softirq();
3298 	preempt_enable();
3299 
3300 	return err;
3301 }
3302 EXPORT_SYMBOL(netif_rx_ni);
3303 
3304 static void net_tx_action(struct softirq_action *h)
3305 {
3306 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3307 
3308 	if (sd->completion_queue) {
3309 		struct sk_buff *clist;
3310 
3311 		local_irq_disable();
3312 		clist = sd->completion_queue;
3313 		sd->completion_queue = NULL;
3314 		local_irq_enable();
3315 
3316 		while (clist) {
3317 			struct sk_buff *skb = clist;
3318 			clist = clist->next;
3319 
3320 			WARN_ON(atomic_read(&skb->users));
3321 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3322 				trace_consume_skb(skb);
3323 			else
3324 				trace_kfree_skb(skb, net_tx_action);
3325 			__kfree_skb(skb);
3326 		}
3327 	}
3328 
3329 	if (sd->output_queue) {
3330 		struct Qdisc *head;
3331 
3332 		local_irq_disable();
3333 		head = sd->output_queue;
3334 		sd->output_queue = NULL;
3335 		sd->output_queue_tailp = &sd->output_queue;
3336 		local_irq_enable();
3337 
3338 		while (head) {
3339 			struct Qdisc *q = head;
3340 			spinlock_t *root_lock;
3341 
3342 			head = head->next_sched;
3343 
3344 			root_lock = qdisc_lock(q);
3345 			if (spin_trylock(root_lock)) {
3346 				smp_mb__before_clear_bit();
3347 				clear_bit(__QDISC_STATE_SCHED,
3348 					  &q->state);
3349 				qdisc_run(q);
3350 				spin_unlock(root_lock);
3351 			} else {
3352 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3353 					      &q->state)) {
3354 					__netif_reschedule(q);
3355 				} else {
3356 					smp_mb__before_clear_bit();
3357 					clear_bit(__QDISC_STATE_SCHED,
3358 						  &q->state);
3359 				}
3360 			}
3361 		}
3362 	}
3363 }
3364 
3365 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3366     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3367 /* This hook is defined here for ATM LANE */
3368 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3369 			     unsigned char *addr) __read_mostly;
3370 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3371 #endif
3372 
3373 #ifdef CONFIG_NET_CLS_ACT
3374 /* TODO: Maybe we should just force sch_ingress to be compiled in
3375  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3376  * a compare and 2 stores extra right now if we dont have it on
3377  * but have CONFIG_NET_CLS_ACT
3378  * NOTE: This doesn't stop any functionality; if you dont have
3379  * the ingress scheduler, you just can't add policies on ingress.
3380  *
3381  */
3382 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3383 {
3384 	struct net_device *dev = skb->dev;
3385 	u32 ttl = G_TC_RTTL(skb->tc_verd);
3386 	int result = TC_ACT_OK;
3387 	struct Qdisc *q;
3388 
3389 	if (unlikely(MAX_RED_LOOP < ttl++)) {
3390 		net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3391 				     skb->skb_iif, dev->ifindex);
3392 		return TC_ACT_SHOT;
3393 	}
3394 
3395 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3396 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3397 
3398 	q = rxq->qdisc;
3399 	if (q != &noop_qdisc) {
3400 		spin_lock(qdisc_lock(q));
3401 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3402 			result = qdisc_enqueue_root(skb, q);
3403 		spin_unlock(qdisc_lock(q));
3404 	}
3405 
3406 	return result;
3407 }
3408 
3409 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3410 					 struct packet_type **pt_prev,
3411 					 int *ret, struct net_device *orig_dev)
3412 {
3413 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3414 
3415 	if (!rxq || rxq->qdisc == &noop_qdisc)
3416 		goto out;
3417 
3418 	if (*pt_prev) {
3419 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3420 		*pt_prev = NULL;
3421 	}
3422 
3423 	switch (ing_filter(skb, rxq)) {
3424 	case TC_ACT_SHOT:
3425 	case TC_ACT_STOLEN:
3426 		kfree_skb(skb);
3427 		return NULL;
3428 	}
3429 
3430 out:
3431 	skb->tc_verd = 0;
3432 	return skb;
3433 }
3434 #endif
3435 
3436 /**
3437  *	netdev_rx_handler_register - register receive handler
3438  *	@dev: device to register a handler for
3439  *	@rx_handler: receive handler to register
3440  *	@rx_handler_data: data pointer that is used by rx handler
3441  *
3442  *	Register a receive handler for a device. This handler will then be
3443  *	called from __netif_receive_skb. A negative errno code is returned
3444  *	on a failure.
3445  *
3446  *	The caller must hold the rtnl_mutex.
3447  *
3448  *	For a general description of rx_handler, see enum rx_handler_result.
3449  */
3450 int netdev_rx_handler_register(struct net_device *dev,
3451 			       rx_handler_func_t *rx_handler,
3452 			       void *rx_handler_data)
3453 {
3454 	ASSERT_RTNL();
3455 
3456 	if (dev->rx_handler)
3457 		return -EBUSY;
3458 
3459 	/* Note: rx_handler_data must be set before rx_handler */
3460 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3461 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3462 
3463 	return 0;
3464 }
3465 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3466 
3467 /**
3468  *	netdev_rx_handler_unregister - unregister receive handler
3469  *	@dev: device to unregister a handler from
3470  *
3471  *	Unregister a receive handler from a device.
3472  *
3473  *	The caller must hold the rtnl_mutex.
3474  */
3475 void netdev_rx_handler_unregister(struct net_device *dev)
3476 {
3477 
3478 	ASSERT_RTNL();
3479 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3480 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3481 	 * section has a guarantee to see a non NULL rx_handler_data
3482 	 * as well.
3483 	 */
3484 	synchronize_net();
3485 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3486 }
3487 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3488 
3489 /*
3490  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3491  * the special handling of PFMEMALLOC skbs.
3492  */
3493 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3494 {
3495 	switch (skb->protocol) {
3496 	case htons(ETH_P_ARP):
3497 	case htons(ETH_P_IP):
3498 	case htons(ETH_P_IPV6):
3499 	case htons(ETH_P_8021Q):
3500 	case htons(ETH_P_8021AD):
3501 		return true;
3502 	default:
3503 		return false;
3504 	}
3505 }
3506 
3507 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3508 {
3509 	struct packet_type *ptype, *pt_prev;
3510 	rx_handler_func_t *rx_handler;
3511 	struct net_device *orig_dev;
3512 	struct net_device *null_or_dev;
3513 	bool deliver_exact = false;
3514 	int ret = NET_RX_DROP;
3515 	__be16 type;
3516 
3517 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3518 
3519 	trace_netif_receive_skb(skb);
3520 
3521 	orig_dev = skb->dev;
3522 
3523 	skb_reset_network_header(skb);
3524 	if (!skb_transport_header_was_set(skb))
3525 		skb_reset_transport_header(skb);
3526 	skb_reset_mac_len(skb);
3527 
3528 	pt_prev = NULL;
3529 
3530 	rcu_read_lock();
3531 
3532 another_round:
3533 	skb->skb_iif = skb->dev->ifindex;
3534 
3535 	__this_cpu_inc(softnet_data.processed);
3536 
3537 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3538 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3539 		skb = vlan_untag(skb);
3540 		if (unlikely(!skb))
3541 			goto unlock;
3542 	}
3543 
3544 #ifdef CONFIG_NET_CLS_ACT
3545 	if (skb->tc_verd & TC_NCLS) {
3546 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3547 		goto ncls;
3548 	}
3549 #endif
3550 
3551 	if (pfmemalloc)
3552 		goto skip_taps;
3553 
3554 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3555 		if (!ptype->dev || ptype->dev == skb->dev) {
3556 			if (pt_prev)
3557 				ret = deliver_skb(skb, pt_prev, orig_dev);
3558 			pt_prev = ptype;
3559 		}
3560 	}
3561 
3562 skip_taps:
3563 #ifdef CONFIG_NET_CLS_ACT
3564 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3565 	if (!skb)
3566 		goto unlock;
3567 ncls:
3568 #endif
3569 
3570 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3571 		goto drop;
3572 
3573 	if (vlan_tx_tag_present(skb)) {
3574 		if (pt_prev) {
3575 			ret = deliver_skb(skb, pt_prev, orig_dev);
3576 			pt_prev = NULL;
3577 		}
3578 		if (vlan_do_receive(&skb))
3579 			goto another_round;
3580 		else if (unlikely(!skb))
3581 			goto unlock;
3582 	}
3583 
3584 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3585 	if (rx_handler) {
3586 		if (pt_prev) {
3587 			ret = deliver_skb(skb, pt_prev, orig_dev);
3588 			pt_prev = NULL;
3589 		}
3590 		switch (rx_handler(&skb)) {
3591 		case RX_HANDLER_CONSUMED:
3592 			ret = NET_RX_SUCCESS;
3593 			goto unlock;
3594 		case RX_HANDLER_ANOTHER:
3595 			goto another_round;
3596 		case RX_HANDLER_EXACT:
3597 			deliver_exact = true;
3598 		case RX_HANDLER_PASS:
3599 			break;
3600 		default:
3601 			BUG();
3602 		}
3603 	}
3604 
3605 	if (unlikely(vlan_tx_tag_present(skb))) {
3606 		if (vlan_tx_tag_get_id(skb))
3607 			skb->pkt_type = PACKET_OTHERHOST;
3608 		/* Note: we might in the future use prio bits
3609 		 * and set skb->priority like in vlan_do_receive()
3610 		 * For the time being, just ignore Priority Code Point
3611 		 */
3612 		skb->vlan_tci = 0;
3613 	}
3614 
3615 	/* deliver only exact match when indicated */
3616 	null_or_dev = deliver_exact ? skb->dev : NULL;
3617 
3618 	type = skb->protocol;
3619 	list_for_each_entry_rcu(ptype,
3620 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3621 		if (ptype->type == type &&
3622 		    (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3623 		     ptype->dev == orig_dev)) {
3624 			if (pt_prev)
3625 				ret = deliver_skb(skb, pt_prev, orig_dev);
3626 			pt_prev = ptype;
3627 		}
3628 	}
3629 
3630 	if (pt_prev) {
3631 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3632 			goto drop;
3633 		else
3634 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3635 	} else {
3636 drop:
3637 		atomic_long_inc(&skb->dev->rx_dropped);
3638 		kfree_skb(skb);
3639 		/* Jamal, now you will not able to escape explaining
3640 		 * me how you were going to use this. :-)
3641 		 */
3642 		ret = NET_RX_DROP;
3643 	}
3644 
3645 unlock:
3646 	rcu_read_unlock();
3647 	return ret;
3648 }
3649 
3650 static int __netif_receive_skb(struct sk_buff *skb)
3651 {
3652 	int ret;
3653 
3654 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3655 		unsigned long pflags = current->flags;
3656 
3657 		/*
3658 		 * PFMEMALLOC skbs are special, they should
3659 		 * - be delivered to SOCK_MEMALLOC sockets only
3660 		 * - stay away from userspace
3661 		 * - have bounded memory usage
3662 		 *
3663 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
3664 		 * context down to all allocation sites.
3665 		 */
3666 		current->flags |= PF_MEMALLOC;
3667 		ret = __netif_receive_skb_core(skb, true);
3668 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
3669 	} else
3670 		ret = __netif_receive_skb_core(skb, false);
3671 
3672 	return ret;
3673 }
3674 
3675 static int netif_receive_skb_internal(struct sk_buff *skb)
3676 {
3677 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3678 
3679 	if (skb_defer_rx_timestamp(skb))
3680 		return NET_RX_SUCCESS;
3681 
3682 #ifdef CONFIG_RPS
3683 	if (static_key_false(&rps_needed)) {
3684 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3685 		int cpu, ret;
3686 
3687 		rcu_read_lock();
3688 
3689 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3690 
3691 		if (cpu >= 0) {
3692 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3693 			rcu_read_unlock();
3694 			return ret;
3695 		}
3696 		rcu_read_unlock();
3697 	}
3698 #endif
3699 	return __netif_receive_skb(skb);
3700 }
3701 
3702 /**
3703  *	netif_receive_skb - process receive buffer from network
3704  *	@skb: buffer to process
3705  *
3706  *	netif_receive_skb() is the main receive data processing function.
3707  *	It always succeeds. The buffer may be dropped during processing
3708  *	for congestion control or by the protocol layers.
3709  *
3710  *	This function may only be called from softirq context and interrupts
3711  *	should be enabled.
3712  *
3713  *	Return values (usually ignored):
3714  *	NET_RX_SUCCESS: no congestion
3715  *	NET_RX_DROP: packet was dropped
3716  */
3717 int netif_receive_skb(struct sk_buff *skb)
3718 {
3719 	trace_netif_receive_skb_entry(skb);
3720 
3721 	return netif_receive_skb_internal(skb);
3722 }
3723 EXPORT_SYMBOL(netif_receive_skb);
3724 
3725 /* Network device is going away, flush any packets still pending
3726  * Called with irqs disabled.
3727  */
3728 static void flush_backlog(void *arg)
3729 {
3730 	struct net_device *dev = arg;
3731 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3732 	struct sk_buff *skb, *tmp;
3733 
3734 	rps_lock(sd);
3735 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3736 		if (skb->dev == dev) {
3737 			__skb_unlink(skb, &sd->input_pkt_queue);
3738 			kfree_skb(skb);
3739 			input_queue_head_incr(sd);
3740 		}
3741 	}
3742 	rps_unlock(sd);
3743 
3744 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3745 		if (skb->dev == dev) {
3746 			__skb_unlink(skb, &sd->process_queue);
3747 			kfree_skb(skb);
3748 			input_queue_head_incr(sd);
3749 		}
3750 	}
3751 }
3752 
3753 static int napi_gro_complete(struct sk_buff *skb)
3754 {
3755 	struct packet_offload *ptype;
3756 	__be16 type = skb->protocol;
3757 	struct list_head *head = &offload_base;
3758 	int err = -ENOENT;
3759 
3760 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3761 
3762 	if (NAPI_GRO_CB(skb)->count == 1) {
3763 		skb_shinfo(skb)->gso_size = 0;
3764 		goto out;
3765 	}
3766 
3767 	rcu_read_lock();
3768 	list_for_each_entry_rcu(ptype, head, list) {
3769 		if (ptype->type != type || !ptype->callbacks.gro_complete)
3770 			continue;
3771 
3772 		err = ptype->callbacks.gro_complete(skb, 0);
3773 		break;
3774 	}
3775 	rcu_read_unlock();
3776 
3777 	if (err) {
3778 		WARN_ON(&ptype->list == head);
3779 		kfree_skb(skb);
3780 		return NET_RX_SUCCESS;
3781 	}
3782 
3783 out:
3784 	return netif_receive_skb_internal(skb);
3785 }
3786 
3787 /* napi->gro_list contains packets ordered by age.
3788  * youngest packets at the head of it.
3789  * Complete skbs in reverse order to reduce latencies.
3790  */
3791 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3792 {
3793 	struct sk_buff *skb, *prev = NULL;
3794 
3795 	/* scan list and build reverse chain */
3796 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3797 		skb->prev = prev;
3798 		prev = skb;
3799 	}
3800 
3801 	for (skb = prev; skb; skb = prev) {
3802 		skb->next = NULL;
3803 
3804 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3805 			return;
3806 
3807 		prev = skb->prev;
3808 		napi_gro_complete(skb);
3809 		napi->gro_count--;
3810 	}
3811 
3812 	napi->gro_list = NULL;
3813 }
3814 EXPORT_SYMBOL(napi_gro_flush);
3815 
3816 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3817 {
3818 	struct sk_buff *p;
3819 	unsigned int maclen = skb->dev->hard_header_len;
3820 	u32 hash = skb_get_hash_raw(skb);
3821 
3822 	for (p = napi->gro_list; p; p = p->next) {
3823 		unsigned long diffs;
3824 
3825 		NAPI_GRO_CB(p)->flush = 0;
3826 
3827 		if (hash != skb_get_hash_raw(p)) {
3828 			NAPI_GRO_CB(p)->same_flow = 0;
3829 			continue;
3830 		}
3831 
3832 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3833 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3834 		if (maclen == ETH_HLEN)
3835 			diffs |= compare_ether_header(skb_mac_header(p),
3836 						      skb_mac_header(skb));
3837 		else if (!diffs)
3838 			diffs = memcmp(skb_mac_header(p),
3839 				       skb_mac_header(skb),
3840 				       maclen);
3841 		NAPI_GRO_CB(p)->same_flow = !diffs;
3842 	}
3843 }
3844 
3845 static void skb_gro_reset_offset(struct sk_buff *skb)
3846 {
3847 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
3848 	const skb_frag_t *frag0 = &pinfo->frags[0];
3849 
3850 	NAPI_GRO_CB(skb)->data_offset = 0;
3851 	NAPI_GRO_CB(skb)->frag0 = NULL;
3852 	NAPI_GRO_CB(skb)->frag0_len = 0;
3853 
3854 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3855 	    pinfo->nr_frags &&
3856 	    !PageHighMem(skb_frag_page(frag0))) {
3857 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3858 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3859 	}
3860 }
3861 
3862 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3863 {
3864 	struct skb_shared_info *pinfo = skb_shinfo(skb);
3865 
3866 	BUG_ON(skb->end - skb->tail < grow);
3867 
3868 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3869 
3870 	skb->data_len -= grow;
3871 	skb->tail += grow;
3872 
3873 	pinfo->frags[0].page_offset += grow;
3874 	skb_frag_size_sub(&pinfo->frags[0], grow);
3875 
3876 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3877 		skb_frag_unref(skb, 0);
3878 		memmove(pinfo->frags, pinfo->frags + 1,
3879 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
3880 	}
3881 }
3882 
3883 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3884 {
3885 	struct sk_buff **pp = NULL;
3886 	struct packet_offload *ptype;
3887 	__be16 type = skb->protocol;
3888 	struct list_head *head = &offload_base;
3889 	int same_flow;
3890 	enum gro_result ret;
3891 	int grow;
3892 
3893 	if (!(skb->dev->features & NETIF_F_GRO))
3894 		goto normal;
3895 
3896 	if (skb_is_gso(skb) || skb_has_frag_list(skb))
3897 		goto normal;
3898 
3899 	gro_list_prepare(napi, skb);
3900 	NAPI_GRO_CB(skb)->csum = skb->csum; /* Needed for CHECKSUM_COMPLETE */
3901 
3902 	rcu_read_lock();
3903 	list_for_each_entry_rcu(ptype, head, list) {
3904 		if (ptype->type != type || !ptype->callbacks.gro_receive)
3905 			continue;
3906 
3907 		skb_set_network_header(skb, skb_gro_offset(skb));
3908 		skb_reset_mac_len(skb);
3909 		NAPI_GRO_CB(skb)->same_flow = 0;
3910 		NAPI_GRO_CB(skb)->flush = 0;
3911 		NAPI_GRO_CB(skb)->free = 0;
3912 		NAPI_GRO_CB(skb)->udp_mark = 0;
3913 
3914 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3915 		break;
3916 	}
3917 	rcu_read_unlock();
3918 
3919 	if (&ptype->list == head)
3920 		goto normal;
3921 
3922 	same_flow = NAPI_GRO_CB(skb)->same_flow;
3923 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3924 
3925 	if (pp) {
3926 		struct sk_buff *nskb = *pp;
3927 
3928 		*pp = nskb->next;
3929 		nskb->next = NULL;
3930 		napi_gro_complete(nskb);
3931 		napi->gro_count--;
3932 	}
3933 
3934 	if (same_flow)
3935 		goto ok;
3936 
3937 	if (NAPI_GRO_CB(skb)->flush)
3938 		goto normal;
3939 
3940 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
3941 		struct sk_buff *nskb = napi->gro_list;
3942 
3943 		/* locate the end of the list to select the 'oldest' flow */
3944 		while (nskb->next) {
3945 			pp = &nskb->next;
3946 			nskb = *pp;
3947 		}
3948 		*pp = NULL;
3949 		nskb->next = NULL;
3950 		napi_gro_complete(nskb);
3951 	} else {
3952 		napi->gro_count++;
3953 	}
3954 	NAPI_GRO_CB(skb)->count = 1;
3955 	NAPI_GRO_CB(skb)->age = jiffies;
3956 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3957 	skb->next = napi->gro_list;
3958 	napi->gro_list = skb;
3959 	ret = GRO_HELD;
3960 
3961 pull:
3962 	grow = skb_gro_offset(skb) - skb_headlen(skb);
3963 	if (grow > 0)
3964 		gro_pull_from_frag0(skb, grow);
3965 ok:
3966 	return ret;
3967 
3968 normal:
3969 	ret = GRO_NORMAL;
3970 	goto pull;
3971 }
3972 
3973 struct packet_offload *gro_find_receive_by_type(__be16 type)
3974 {
3975 	struct list_head *offload_head = &offload_base;
3976 	struct packet_offload *ptype;
3977 
3978 	list_for_each_entry_rcu(ptype, offload_head, list) {
3979 		if (ptype->type != type || !ptype->callbacks.gro_receive)
3980 			continue;
3981 		return ptype;
3982 	}
3983 	return NULL;
3984 }
3985 EXPORT_SYMBOL(gro_find_receive_by_type);
3986 
3987 struct packet_offload *gro_find_complete_by_type(__be16 type)
3988 {
3989 	struct list_head *offload_head = &offload_base;
3990 	struct packet_offload *ptype;
3991 
3992 	list_for_each_entry_rcu(ptype, offload_head, list) {
3993 		if (ptype->type != type || !ptype->callbacks.gro_complete)
3994 			continue;
3995 		return ptype;
3996 	}
3997 	return NULL;
3998 }
3999 EXPORT_SYMBOL(gro_find_complete_by_type);
4000 
4001 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4002 {
4003 	switch (ret) {
4004 	case GRO_NORMAL:
4005 		if (netif_receive_skb_internal(skb))
4006 			ret = GRO_DROP;
4007 		break;
4008 
4009 	case GRO_DROP:
4010 		kfree_skb(skb);
4011 		break;
4012 
4013 	case GRO_MERGED_FREE:
4014 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4015 			kmem_cache_free(skbuff_head_cache, skb);
4016 		else
4017 			__kfree_skb(skb);
4018 		break;
4019 
4020 	case GRO_HELD:
4021 	case GRO_MERGED:
4022 		break;
4023 	}
4024 
4025 	return ret;
4026 }
4027 
4028 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4029 {
4030 	trace_napi_gro_receive_entry(skb);
4031 
4032 	skb_gro_reset_offset(skb);
4033 
4034 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4035 }
4036 EXPORT_SYMBOL(napi_gro_receive);
4037 
4038 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4039 {
4040 	__skb_pull(skb, skb_headlen(skb));
4041 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4042 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4043 	skb->vlan_tci = 0;
4044 	skb->dev = napi->dev;
4045 	skb->skb_iif = 0;
4046 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4047 
4048 	napi->skb = skb;
4049 }
4050 
4051 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4052 {
4053 	struct sk_buff *skb = napi->skb;
4054 
4055 	if (!skb) {
4056 		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
4057 		napi->skb = skb;
4058 	}
4059 	return skb;
4060 }
4061 EXPORT_SYMBOL(napi_get_frags);
4062 
4063 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4064 				      struct sk_buff *skb,
4065 				      gro_result_t ret)
4066 {
4067 	switch (ret) {
4068 	case GRO_NORMAL:
4069 	case GRO_HELD:
4070 		__skb_push(skb, ETH_HLEN);
4071 		skb->protocol = eth_type_trans(skb, skb->dev);
4072 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4073 			ret = GRO_DROP;
4074 		break;
4075 
4076 	case GRO_DROP:
4077 	case GRO_MERGED_FREE:
4078 		napi_reuse_skb(napi, skb);
4079 		break;
4080 
4081 	case GRO_MERGED:
4082 		break;
4083 	}
4084 
4085 	return ret;
4086 }
4087 
4088 /* Upper GRO stack assumes network header starts at gro_offset=0
4089  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4090  * We copy ethernet header into skb->data to have a common layout.
4091  */
4092 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4093 {
4094 	struct sk_buff *skb = napi->skb;
4095 	const struct ethhdr *eth;
4096 	unsigned int hlen = sizeof(*eth);
4097 
4098 	napi->skb = NULL;
4099 
4100 	skb_reset_mac_header(skb);
4101 	skb_gro_reset_offset(skb);
4102 
4103 	eth = skb_gro_header_fast(skb, 0);
4104 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4105 		eth = skb_gro_header_slow(skb, hlen, 0);
4106 		if (unlikely(!eth)) {
4107 			napi_reuse_skb(napi, skb);
4108 			return NULL;
4109 		}
4110 	} else {
4111 		gro_pull_from_frag0(skb, hlen);
4112 		NAPI_GRO_CB(skb)->frag0 += hlen;
4113 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4114 	}
4115 	__skb_pull(skb, hlen);
4116 
4117 	/*
4118 	 * This works because the only protocols we care about don't require
4119 	 * special handling.
4120 	 * We'll fix it up properly in napi_frags_finish()
4121 	 */
4122 	skb->protocol = eth->h_proto;
4123 
4124 	return skb;
4125 }
4126 
4127 gro_result_t napi_gro_frags(struct napi_struct *napi)
4128 {
4129 	struct sk_buff *skb = napi_frags_skb(napi);
4130 
4131 	if (!skb)
4132 		return GRO_DROP;
4133 
4134 	trace_napi_gro_frags_entry(skb);
4135 
4136 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4137 }
4138 EXPORT_SYMBOL(napi_gro_frags);
4139 
4140 /*
4141  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4142  * Note: called with local irq disabled, but exits with local irq enabled.
4143  */
4144 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4145 {
4146 #ifdef CONFIG_RPS
4147 	struct softnet_data *remsd = sd->rps_ipi_list;
4148 
4149 	if (remsd) {
4150 		sd->rps_ipi_list = NULL;
4151 
4152 		local_irq_enable();
4153 
4154 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4155 		while (remsd) {
4156 			struct softnet_data *next = remsd->rps_ipi_next;
4157 
4158 			if (cpu_online(remsd->cpu))
4159 				smp_call_function_single_async(remsd->cpu,
4160 							   &remsd->csd);
4161 			remsd = next;
4162 		}
4163 	} else
4164 #endif
4165 		local_irq_enable();
4166 }
4167 
4168 static int process_backlog(struct napi_struct *napi, int quota)
4169 {
4170 	int work = 0;
4171 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4172 
4173 #ifdef CONFIG_RPS
4174 	/* Check if we have pending ipi, its better to send them now,
4175 	 * not waiting net_rx_action() end.
4176 	 */
4177 	if (sd->rps_ipi_list) {
4178 		local_irq_disable();
4179 		net_rps_action_and_irq_enable(sd);
4180 	}
4181 #endif
4182 	napi->weight = weight_p;
4183 	local_irq_disable();
4184 	while (work < quota) {
4185 		struct sk_buff *skb;
4186 		unsigned int qlen;
4187 
4188 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4189 			local_irq_enable();
4190 			__netif_receive_skb(skb);
4191 			local_irq_disable();
4192 			input_queue_head_incr(sd);
4193 			if (++work >= quota) {
4194 				local_irq_enable();
4195 				return work;
4196 			}
4197 		}
4198 
4199 		rps_lock(sd);
4200 		qlen = skb_queue_len(&sd->input_pkt_queue);
4201 		if (qlen)
4202 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
4203 						   &sd->process_queue);
4204 
4205 		if (qlen < quota - work) {
4206 			/*
4207 			 * Inline a custom version of __napi_complete().
4208 			 * only current cpu owns and manipulates this napi,
4209 			 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
4210 			 * we can use a plain write instead of clear_bit(),
4211 			 * and we dont need an smp_mb() memory barrier.
4212 			 */
4213 			list_del(&napi->poll_list);
4214 			napi->state = 0;
4215 
4216 			quota = work + qlen;
4217 		}
4218 		rps_unlock(sd);
4219 	}
4220 	local_irq_enable();
4221 
4222 	return work;
4223 }
4224 
4225 /**
4226  * __napi_schedule - schedule for receive
4227  * @n: entry to schedule
4228  *
4229  * The entry's receive function will be scheduled to run
4230  */
4231 void __napi_schedule(struct napi_struct *n)
4232 {
4233 	unsigned long flags;
4234 
4235 	local_irq_save(flags);
4236 	____napi_schedule(&__get_cpu_var(softnet_data), n);
4237 	local_irq_restore(flags);
4238 }
4239 EXPORT_SYMBOL(__napi_schedule);
4240 
4241 void __napi_complete(struct napi_struct *n)
4242 {
4243 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4244 	BUG_ON(n->gro_list);
4245 
4246 	list_del(&n->poll_list);
4247 	smp_mb__before_clear_bit();
4248 	clear_bit(NAPI_STATE_SCHED, &n->state);
4249 }
4250 EXPORT_SYMBOL(__napi_complete);
4251 
4252 void napi_complete(struct napi_struct *n)
4253 {
4254 	unsigned long flags;
4255 
4256 	/*
4257 	 * don't let napi dequeue from the cpu poll list
4258 	 * just in case its running on a different cpu
4259 	 */
4260 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4261 		return;
4262 
4263 	napi_gro_flush(n, false);
4264 	local_irq_save(flags);
4265 	__napi_complete(n);
4266 	local_irq_restore(flags);
4267 }
4268 EXPORT_SYMBOL(napi_complete);
4269 
4270 /* must be called under rcu_read_lock(), as we dont take a reference */
4271 struct napi_struct *napi_by_id(unsigned int napi_id)
4272 {
4273 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4274 	struct napi_struct *napi;
4275 
4276 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4277 		if (napi->napi_id == napi_id)
4278 			return napi;
4279 
4280 	return NULL;
4281 }
4282 EXPORT_SYMBOL_GPL(napi_by_id);
4283 
4284 void napi_hash_add(struct napi_struct *napi)
4285 {
4286 	if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4287 
4288 		spin_lock(&napi_hash_lock);
4289 
4290 		/* 0 is not a valid id, we also skip an id that is taken
4291 		 * we expect both events to be extremely rare
4292 		 */
4293 		napi->napi_id = 0;
4294 		while (!napi->napi_id) {
4295 			napi->napi_id = ++napi_gen_id;
4296 			if (napi_by_id(napi->napi_id))
4297 				napi->napi_id = 0;
4298 		}
4299 
4300 		hlist_add_head_rcu(&napi->napi_hash_node,
4301 			&napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4302 
4303 		spin_unlock(&napi_hash_lock);
4304 	}
4305 }
4306 EXPORT_SYMBOL_GPL(napi_hash_add);
4307 
4308 /* Warning : caller is responsible to make sure rcu grace period
4309  * is respected before freeing memory containing @napi
4310  */
4311 void napi_hash_del(struct napi_struct *napi)
4312 {
4313 	spin_lock(&napi_hash_lock);
4314 
4315 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4316 		hlist_del_rcu(&napi->napi_hash_node);
4317 
4318 	spin_unlock(&napi_hash_lock);
4319 }
4320 EXPORT_SYMBOL_GPL(napi_hash_del);
4321 
4322 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4323 		    int (*poll)(struct napi_struct *, int), int weight)
4324 {
4325 	INIT_LIST_HEAD(&napi->poll_list);
4326 	napi->gro_count = 0;
4327 	napi->gro_list = NULL;
4328 	napi->skb = NULL;
4329 	napi->poll = poll;
4330 	if (weight > NAPI_POLL_WEIGHT)
4331 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4332 			    weight, dev->name);
4333 	napi->weight = weight;
4334 	list_add(&napi->dev_list, &dev->napi_list);
4335 	napi->dev = dev;
4336 #ifdef CONFIG_NETPOLL
4337 	spin_lock_init(&napi->poll_lock);
4338 	napi->poll_owner = -1;
4339 #endif
4340 	set_bit(NAPI_STATE_SCHED, &napi->state);
4341 }
4342 EXPORT_SYMBOL(netif_napi_add);
4343 
4344 void netif_napi_del(struct napi_struct *napi)
4345 {
4346 	list_del_init(&napi->dev_list);
4347 	napi_free_frags(napi);
4348 
4349 	kfree_skb_list(napi->gro_list);
4350 	napi->gro_list = NULL;
4351 	napi->gro_count = 0;
4352 }
4353 EXPORT_SYMBOL(netif_napi_del);
4354 
4355 static void net_rx_action(struct softirq_action *h)
4356 {
4357 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
4358 	unsigned long time_limit = jiffies + 2;
4359 	int budget = netdev_budget;
4360 	void *have;
4361 
4362 	local_irq_disable();
4363 
4364 	while (!list_empty(&sd->poll_list)) {
4365 		struct napi_struct *n;
4366 		int work, weight;
4367 
4368 		/* If softirq window is exhuasted then punt.
4369 		 * Allow this to run for 2 jiffies since which will allow
4370 		 * an average latency of 1.5/HZ.
4371 		 */
4372 		if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4373 			goto softnet_break;
4374 
4375 		local_irq_enable();
4376 
4377 		/* Even though interrupts have been re-enabled, this
4378 		 * access is safe because interrupts can only add new
4379 		 * entries to the tail of this list, and only ->poll()
4380 		 * calls can remove this head entry from the list.
4381 		 */
4382 		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4383 
4384 		have = netpoll_poll_lock(n);
4385 
4386 		weight = n->weight;
4387 
4388 		/* This NAPI_STATE_SCHED test is for avoiding a race
4389 		 * with netpoll's poll_napi().  Only the entity which
4390 		 * obtains the lock and sees NAPI_STATE_SCHED set will
4391 		 * actually make the ->poll() call.  Therefore we avoid
4392 		 * accidentally calling ->poll() when NAPI is not scheduled.
4393 		 */
4394 		work = 0;
4395 		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4396 			work = n->poll(n, weight);
4397 			trace_napi_poll(n);
4398 		}
4399 
4400 		WARN_ON_ONCE(work > weight);
4401 
4402 		budget -= work;
4403 
4404 		local_irq_disable();
4405 
4406 		/* Drivers must not modify the NAPI state if they
4407 		 * consume the entire weight.  In such cases this code
4408 		 * still "owns" the NAPI instance and therefore can
4409 		 * move the instance around on the list at-will.
4410 		 */
4411 		if (unlikely(work == weight)) {
4412 			if (unlikely(napi_disable_pending(n))) {
4413 				local_irq_enable();
4414 				napi_complete(n);
4415 				local_irq_disable();
4416 			} else {
4417 				if (n->gro_list) {
4418 					/* flush too old packets
4419 					 * If HZ < 1000, flush all packets.
4420 					 */
4421 					local_irq_enable();
4422 					napi_gro_flush(n, HZ >= 1000);
4423 					local_irq_disable();
4424 				}
4425 				list_move_tail(&n->poll_list, &sd->poll_list);
4426 			}
4427 		}
4428 
4429 		netpoll_poll_unlock(have);
4430 	}
4431 out:
4432 	net_rps_action_and_irq_enable(sd);
4433 
4434 #ifdef CONFIG_NET_DMA
4435 	/*
4436 	 * There may not be any more sk_buffs coming right now, so push
4437 	 * any pending DMA copies to hardware
4438 	 */
4439 	dma_issue_pending_all();
4440 #endif
4441 
4442 	return;
4443 
4444 softnet_break:
4445 	sd->time_squeeze++;
4446 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4447 	goto out;
4448 }
4449 
4450 struct netdev_adjacent {
4451 	struct net_device *dev;
4452 
4453 	/* upper master flag, there can only be one master device per list */
4454 	bool master;
4455 
4456 	/* counter for the number of times this device was added to us */
4457 	u16 ref_nr;
4458 
4459 	/* private field for the users */
4460 	void *private;
4461 
4462 	struct list_head list;
4463 	struct rcu_head rcu;
4464 };
4465 
4466 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4467 						 struct net_device *adj_dev,
4468 						 struct list_head *adj_list)
4469 {
4470 	struct netdev_adjacent *adj;
4471 
4472 	list_for_each_entry(adj, adj_list, list) {
4473 		if (adj->dev == adj_dev)
4474 			return adj;
4475 	}
4476 	return NULL;
4477 }
4478 
4479 /**
4480  * netdev_has_upper_dev - Check if device is linked to an upper device
4481  * @dev: device
4482  * @upper_dev: upper device to check
4483  *
4484  * Find out if a device is linked to specified upper device and return true
4485  * in case it is. Note that this checks only immediate upper device,
4486  * not through a complete stack of devices. The caller must hold the RTNL lock.
4487  */
4488 bool netdev_has_upper_dev(struct net_device *dev,
4489 			  struct net_device *upper_dev)
4490 {
4491 	ASSERT_RTNL();
4492 
4493 	return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4494 }
4495 EXPORT_SYMBOL(netdev_has_upper_dev);
4496 
4497 /**
4498  * netdev_has_any_upper_dev - Check if device is linked to some device
4499  * @dev: device
4500  *
4501  * Find out if a device is linked to an upper device and return true in case
4502  * it is. The caller must hold the RTNL lock.
4503  */
4504 static bool netdev_has_any_upper_dev(struct net_device *dev)
4505 {
4506 	ASSERT_RTNL();
4507 
4508 	return !list_empty(&dev->all_adj_list.upper);
4509 }
4510 
4511 /**
4512  * netdev_master_upper_dev_get - Get master upper device
4513  * @dev: device
4514  *
4515  * Find a master upper device and return pointer to it or NULL in case
4516  * it's not there. The caller must hold the RTNL lock.
4517  */
4518 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4519 {
4520 	struct netdev_adjacent *upper;
4521 
4522 	ASSERT_RTNL();
4523 
4524 	if (list_empty(&dev->adj_list.upper))
4525 		return NULL;
4526 
4527 	upper = list_first_entry(&dev->adj_list.upper,
4528 				 struct netdev_adjacent, list);
4529 	if (likely(upper->master))
4530 		return upper->dev;
4531 	return NULL;
4532 }
4533 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4534 
4535 void *netdev_adjacent_get_private(struct list_head *adj_list)
4536 {
4537 	struct netdev_adjacent *adj;
4538 
4539 	adj = list_entry(adj_list, struct netdev_adjacent, list);
4540 
4541 	return adj->private;
4542 }
4543 EXPORT_SYMBOL(netdev_adjacent_get_private);
4544 
4545 /**
4546  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4547  * @dev: device
4548  * @iter: list_head ** of the current position
4549  *
4550  * Gets the next device from the dev's upper list, starting from iter
4551  * position. The caller must hold RCU read lock.
4552  */
4553 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4554 						     struct list_head **iter)
4555 {
4556 	struct netdev_adjacent *upper;
4557 
4558 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4559 
4560 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4561 
4562 	if (&upper->list == &dev->all_adj_list.upper)
4563 		return NULL;
4564 
4565 	*iter = &upper->list;
4566 
4567 	return upper->dev;
4568 }
4569 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4570 
4571 /**
4572  * netdev_lower_get_next_private - Get the next ->private from the
4573  *				   lower neighbour list
4574  * @dev: device
4575  * @iter: list_head ** of the current position
4576  *
4577  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4578  * list, starting from iter position. The caller must hold either hold the
4579  * RTNL lock or its own locking that guarantees that the neighbour lower
4580  * list will remain unchainged.
4581  */
4582 void *netdev_lower_get_next_private(struct net_device *dev,
4583 				    struct list_head **iter)
4584 {
4585 	struct netdev_adjacent *lower;
4586 
4587 	lower = list_entry(*iter, struct netdev_adjacent, list);
4588 
4589 	if (&lower->list == &dev->adj_list.lower)
4590 		return NULL;
4591 
4592 	*iter = lower->list.next;
4593 
4594 	return lower->private;
4595 }
4596 EXPORT_SYMBOL(netdev_lower_get_next_private);
4597 
4598 /**
4599  * netdev_lower_get_next_private_rcu - Get the next ->private from the
4600  *				       lower neighbour list, RCU
4601  *				       variant
4602  * @dev: device
4603  * @iter: list_head ** of the current position
4604  *
4605  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4606  * list, starting from iter position. The caller must hold RCU read lock.
4607  */
4608 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4609 					struct list_head **iter)
4610 {
4611 	struct netdev_adjacent *lower;
4612 
4613 	WARN_ON_ONCE(!rcu_read_lock_held());
4614 
4615 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4616 
4617 	if (&lower->list == &dev->adj_list.lower)
4618 		return NULL;
4619 
4620 	*iter = &lower->list;
4621 
4622 	return lower->private;
4623 }
4624 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4625 
4626 /**
4627  * netdev_lower_get_first_private_rcu - Get the first ->private from the
4628  *				       lower neighbour list, RCU
4629  *				       variant
4630  * @dev: device
4631  *
4632  * Gets the first netdev_adjacent->private from the dev's lower neighbour
4633  * list. The caller must hold RCU read lock.
4634  */
4635 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4636 {
4637 	struct netdev_adjacent *lower;
4638 
4639 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
4640 			struct netdev_adjacent, list);
4641 	if (lower)
4642 		return lower->private;
4643 	return NULL;
4644 }
4645 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4646 
4647 /**
4648  * netdev_master_upper_dev_get_rcu - Get master upper device
4649  * @dev: device
4650  *
4651  * Find a master upper device and return pointer to it or NULL in case
4652  * it's not there. The caller must hold the RCU read lock.
4653  */
4654 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4655 {
4656 	struct netdev_adjacent *upper;
4657 
4658 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
4659 				       struct netdev_adjacent, list);
4660 	if (upper && likely(upper->master))
4661 		return upper->dev;
4662 	return NULL;
4663 }
4664 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4665 
4666 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4667 			      struct net_device *adj_dev,
4668 			      struct list_head *dev_list)
4669 {
4670 	char linkname[IFNAMSIZ+7];
4671 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
4672 		"upper_%s" : "lower_%s", adj_dev->name);
4673 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4674 				 linkname);
4675 }
4676 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4677 			       char *name,
4678 			       struct list_head *dev_list)
4679 {
4680 	char linkname[IFNAMSIZ+7];
4681 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
4682 		"upper_%s" : "lower_%s", name);
4683 	sysfs_remove_link(&(dev->dev.kobj), linkname);
4684 }
4685 
4686 #define netdev_adjacent_is_neigh_list(dev, dev_list) \
4687 		(dev_list == &dev->adj_list.upper || \
4688 		 dev_list == &dev->adj_list.lower)
4689 
4690 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4691 					struct net_device *adj_dev,
4692 					struct list_head *dev_list,
4693 					void *private, bool master)
4694 {
4695 	struct netdev_adjacent *adj;
4696 	int ret;
4697 
4698 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
4699 
4700 	if (adj) {
4701 		adj->ref_nr++;
4702 		return 0;
4703 	}
4704 
4705 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4706 	if (!adj)
4707 		return -ENOMEM;
4708 
4709 	adj->dev = adj_dev;
4710 	adj->master = master;
4711 	adj->ref_nr = 1;
4712 	adj->private = private;
4713 	dev_hold(adj_dev);
4714 
4715 	pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4716 		 adj_dev->name, dev->name, adj_dev->name);
4717 
4718 	if (netdev_adjacent_is_neigh_list(dev, dev_list)) {
4719 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4720 		if (ret)
4721 			goto free_adj;
4722 	}
4723 
4724 	/* Ensure that master link is always the first item in list. */
4725 	if (master) {
4726 		ret = sysfs_create_link(&(dev->dev.kobj),
4727 					&(adj_dev->dev.kobj), "master");
4728 		if (ret)
4729 			goto remove_symlinks;
4730 
4731 		list_add_rcu(&adj->list, dev_list);
4732 	} else {
4733 		list_add_tail_rcu(&adj->list, dev_list);
4734 	}
4735 
4736 	return 0;
4737 
4738 remove_symlinks:
4739 	if (netdev_adjacent_is_neigh_list(dev, dev_list))
4740 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4741 free_adj:
4742 	kfree(adj);
4743 	dev_put(adj_dev);
4744 
4745 	return ret;
4746 }
4747 
4748 static void __netdev_adjacent_dev_remove(struct net_device *dev,
4749 					 struct net_device *adj_dev,
4750 					 struct list_head *dev_list)
4751 {
4752 	struct netdev_adjacent *adj;
4753 
4754 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
4755 
4756 	if (!adj) {
4757 		pr_err("tried to remove device %s from %s\n",
4758 		       dev->name, adj_dev->name);
4759 		BUG();
4760 	}
4761 
4762 	if (adj->ref_nr > 1) {
4763 		pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4764 			 adj->ref_nr-1);
4765 		adj->ref_nr--;
4766 		return;
4767 	}
4768 
4769 	if (adj->master)
4770 		sysfs_remove_link(&(dev->dev.kobj), "master");
4771 
4772 	if (netdev_adjacent_is_neigh_list(dev, dev_list))
4773 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4774 
4775 	list_del_rcu(&adj->list);
4776 	pr_debug("dev_put for %s, because link removed from %s to %s\n",
4777 		 adj_dev->name, dev->name, adj_dev->name);
4778 	dev_put(adj_dev);
4779 	kfree_rcu(adj, rcu);
4780 }
4781 
4782 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4783 					    struct net_device *upper_dev,
4784 					    struct list_head *up_list,
4785 					    struct list_head *down_list,
4786 					    void *private, bool master)
4787 {
4788 	int ret;
4789 
4790 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4791 					   master);
4792 	if (ret)
4793 		return ret;
4794 
4795 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4796 					   false);
4797 	if (ret) {
4798 		__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4799 		return ret;
4800 	}
4801 
4802 	return 0;
4803 }
4804 
4805 static int __netdev_adjacent_dev_link(struct net_device *dev,
4806 				      struct net_device *upper_dev)
4807 {
4808 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4809 						&dev->all_adj_list.upper,
4810 						&upper_dev->all_adj_list.lower,
4811 						NULL, false);
4812 }
4813 
4814 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4815 					       struct net_device *upper_dev,
4816 					       struct list_head *up_list,
4817 					       struct list_head *down_list)
4818 {
4819 	__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4820 	__netdev_adjacent_dev_remove(upper_dev, dev, down_list);
4821 }
4822 
4823 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
4824 					 struct net_device *upper_dev)
4825 {
4826 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4827 					   &dev->all_adj_list.upper,
4828 					   &upper_dev->all_adj_list.lower);
4829 }
4830 
4831 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4832 						struct net_device *upper_dev,
4833 						void *private, bool master)
4834 {
4835 	int ret = __netdev_adjacent_dev_link(dev, upper_dev);
4836 
4837 	if (ret)
4838 		return ret;
4839 
4840 	ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
4841 					       &dev->adj_list.upper,
4842 					       &upper_dev->adj_list.lower,
4843 					       private, master);
4844 	if (ret) {
4845 		__netdev_adjacent_dev_unlink(dev, upper_dev);
4846 		return ret;
4847 	}
4848 
4849 	return 0;
4850 }
4851 
4852 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
4853 						   struct net_device *upper_dev)
4854 {
4855 	__netdev_adjacent_dev_unlink(dev, upper_dev);
4856 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4857 					   &dev->adj_list.upper,
4858 					   &upper_dev->adj_list.lower);
4859 }
4860 
4861 static int __netdev_upper_dev_link(struct net_device *dev,
4862 				   struct net_device *upper_dev, bool master,
4863 				   void *private)
4864 {
4865 	struct netdev_adjacent *i, *j, *to_i, *to_j;
4866 	int ret = 0;
4867 
4868 	ASSERT_RTNL();
4869 
4870 	if (dev == upper_dev)
4871 		return -EBUSY;
4872 
4873 	/* To prevent loops, check if dev is not upper device to upper_dev. */
4874 	if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
4875 		return -EBUSY;
4876 
4877 	if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
4878 		return -EEXIST;
4879 
4880 	if (master && netdev_master_upper_dev_get(dev))
4881 		return -EBUSY;
4882 
4883 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
4884 						   master);
4885 	if (ret)
4886 		return ret;
4887 
4888 	/* Now that we linked these devs, make all the upper_dev's
4889 	 * all_adj_list.upper visible to every dev's all_adj_list.lower an
4890 	 * versa, and don't forget the devices itself. All of these
4891 	 * links are non-neighbours.
4892 	 */
4893 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4894 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4895 			pr_debug("Interlinking %s with %s, non-neighbour\n",
4896 				 i->dev->name, j->dev->name);
4897 			ret = __netdev_adjacent_dev_link(i->dev, j->dev);
4898 			if (ret)
4899 				goto rollback_mesh;
4900 		}
4901 	}
4902 
4903 	/* add dev to every upper_dev's upper device */
4904 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
4905 		pr_debug("linking %s's upper device %s with %s\n",
4906 			 upper_dev->name, i->dev->name, dev->name);
4907 		ret = __netdev_adjacent_dev_link(dev, i->dev);
4908 		if (ret)
4909 			goto rollback_upper_mesh;
4910 	}
4911 
4912 	/* add upper_dev to every dev's lower device */
4913 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4914 		pr_debug("linking %s's lower device %s with %s\n", dev->name,
4915 			 i->dev->name, upper_dev->name);
4916 		ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
4917 		if (ret)
4918 			goto rollback_lower_mesh;
4919 	}
4920 
4921 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4922 	return 0;
4923 
4924 rollback_lower_mesh:
4925 	to_i = i;
4926 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4927 		if (i == to_i)
4928 			break;
4929 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
4930 	}
4931 
4932 	i = NULL;
4933 
4934 rollback_upper_mesh:
4935 	to_i = i;
4936 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
4937 		if (i == to_i)
4938 			break;
4939 		__netdev_adjacent_dev_unlink(dev, i->dev);
4940 	}
4941 
4942 	i = j = NULL;
4943 
4944 rollback_mesh:
4945 	to_i = i;
4946 	to_j = j;
4947 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4948 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4949 			if (i == to_i && j == to_j)
4950 				break;
4951 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
4952 		}
4953 		if (i == to_i)
4954 			break;
4955 	}
4956 
4957 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
4958 
4959 	return ret;
4960 }
4961 
4962 /**
4963  * netdev_upper_dev_link - Add a link to the upper device
4964  * @dev: device
4965  * @upper_dev: new upper device
4966  *
4967  * Adds a link to device which is upper to this one. The caller must hold
4968  * the RTNL lock. On a failure a negative errno code is returned.
4969  * On success the reference counts are adjusted and the function
4970  * returns zero.
4971  */
4972 int netdev_upper_dev_link(struct net_device *dev,
4973 			  struct net_device *upper_dev)
4974 {
4975 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
4976 }
4977 EXPORT_SYMBOL(netdev_upper_dev_link);
4978 
4979 /**
4980  * netdev_master_upper_dev_link - Add a master link to the upper device
4981  * @dev: device
4982  * @upper_dev: new upper device
4983  *
4984  * Adds a link to device which is upper to this one. In this case, only
4985  * one master upper device can be linked, although other non-master devices
4986  * might be linked as well. The caller must hold the RTNL lock.
4987  * On a failure a negative errno code is returned. On success the reference
4988  * counts are adjusted and the function returns zero.
4989  */
4990 int netdev_master_upper_dev_link(struct net_device *dev,
4991 				 struct net_device *upper_dev)
4992 {
4993 	return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
4994 }
4995 EXPORT_SYMBOL(netdev_master_upper_dev_link);
4996 
4997 int netdev_master_upper_dev_link_private(struct net_device *dev,
4998 					 struct net_device *upper_dev,
4999 					 void *private)
5000 {
5001 	return __netdev_upper_dev_link(dev, upper_dev, true, private);
5002 }
5003 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5004 
5005 /**
5006  * netdev_upper_dev_unlink - Removes a link to upper device
5007  * @dev: device
5008  * @upper_dev: new upper device
5009  *
5010  * Removes a link to device which is upper to this one. The caller must hold
5011  * the RTNL lock.
5012  */
5013 void netdev_upper_dev_unlink(struct net_device *dev,
5014 			     struct net_device *upper_dev)
5015 {
5016 	struct netdev_adjacent *i, *j;
5017 	ASSERT_RTNL();
5018 
5019 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5020 
5021 	/* Here is the tricky part. We must remove all dev's lower
5022 	 * devices from all upper_dev's upper devices and vice
5023 	 * versa, to maintain the graph relationship.
5024 	 */
5025 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5026 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5027 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5028 
5029 	/* remove also the devices itself from lower/upper device
5030 	 * list
5031 	 */
5032 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5033 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5034 
5035 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5036 		__netdev_adjacent_dev_unlink(dev, i->dev);
5037 
5038 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5039 }
5040 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5041 
5042 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5043 {
5044 	struct netdev_adjacent *iter;
5045 
5046 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5047 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5048 					  &iter->dev->adj_list.lower);
5049 		netdev_adjacent_sysfs_add(iter->dev, dev,
5050 					  &iter->dev->adj_list.lower);
5051 	}
5052 
5053 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5054 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5055 					  &iter->dev->adj_list.upper);
5056 		netdev_adjacent_sysfs_add(iter->dev, dev,
5057 					  &iter->dev->adj_list.upper);
5058 	}
5059 }
5060 
5061 void *netdev_lower_dev_get_private(struct net_device *dev,
5062 				   struct net_device *lower_dev)
5063 {
5064 	struct netdev_adjacent *lower;
5065 
5066 	if (!lower_dev)
5067 		return NULL;
5068 	lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5069 	if (!lower)
5070 		return NULL;
5071 
5072 	return lower->private;
5073 }
5074 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5075 
5076 static void dev_change_rx_flags(struct net_device *dev, int flags)
5077 {
5078 	const struct net_device_ops *ops = dev->netdev_ops;
5079 
5080 	if (ops->ndo_change_rx_flags)
5081 		ops->ndo_change_rx_flags(dev, flags);
5082 }
5083 
5084 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5085 {
5086 	unsigned int old_flags = dev->flags;
5087 	kuid_t uid;
5088 	kgid_t gid;
5089 
5090 	ASSERT_RTNL();
5091 
5092 	dev->flags |= IFF_PROMISC;
5093 	dev->promiscuity += inc;
5094 	if (dev->promiscuity == 0) {
5095 		/*
5096 		 * Avoid overflow.
5097 		 * If inc causes overflow, untouch promisc and return error.
5098 		 */
5099 		if (inc < 0)
5100 			dev->flags &= ~IFF_PROMISC;
5101 		else {
5102 			dev->promiscuity -= inc;
5103 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5104 				dev->name);
5105 			return -EOVERFLOW;
5106 		}
5107 	}
5108 	if (dev->flags != old_flags) {
5109 		pr_info("device %s %s promiscuous mode\n",
5110 			dev->name,
5111 			dev->flags & IFF_PROMISC ? "entered" : "left");
5112 		if (audit_enabled) {
5113 			current_uid_gid(&uid, &gid);
5114 			audit_log(current->audit_context, GFP_ATOMIC,
5115 				AUDIT_ANOM_PROMISCUOUS,
5116 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5117 				dev->name, (dev->flags & IFF_PROMISC),
5118 				(old_flags & IFF_PROMISC),
5119 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
5120 				from_kuid(&init_user_ns, uid),
5121 				from_kgid(&init_user_ns, gid),
5122 				audit_get_sessionid(current));
5123 		}
5124 
5125 		dev_change_rx_flags(dev, IFF_PROMISC);
5126 	}
5127 	if (notify)
5128 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
5129 	return 0;
5130 }
5131 
5132 /**
5133  *	dev_set_promiscuity	- update promiscuity count on a device
5134  *	@dev: device
5135  *	@inc: modifier
5136  *
5137  *	Add or remove promiscuity from a device. While the count in the device
5138  *	remains above zero the interface remains promiscuous. Once it hits zero
5139  *	the device reverts back to normal filtering operation. A negative inc
5140  *	value is used to drop promiscuity on the device.
5141  *	Return 0 if successful or a negative errno code on error.
5142  */
5143 int dev_set_promiscuity(struct net_device *dev, int inc)
5144 {
5145 	unsigned int old_flags = dev->flags;
5146 	int err;
5147 
5148 	err = __dev_set_promiscuity(dev, inc, true);
5149 	if (err < 0)
5150 		return err;
5151 	if (dev->flags != old_flags)
5152 		dev_set_rx_mode(dev);
5153 	return err;
5154 }
5155 EXPORT_SYMBOL(dev_set_promiscuity);
5156 
5157 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5158 {
5159 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5160 
5161 	ASSERT_RTNL();
5162 
5163 	dev->flags |= IFF_ALLMULTI;
5164 	dev->allmulti += inc;
5165 	if (dev->allmulti == 0) {
5166 		/*
5167 		 * Avoid overflow.
5168 		 * If inc causes overflow, untouch allmulti and return error.
5169 		 */
5170 		if (inc < 0)
5171 			dev->flags &= ~IFF_ALLMULTI;
5172 		else {
5173 			dev->allmulti -= inc;
5174 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5175 				dev->name);
5176 			return -EOVERFLOW;
5177 		}
5178 	}
5179 	if (dev->flags ^ old_flags) {
5180 		dev_change_rx_flags(dev, IFF_ALLMULTI);
5181 		dev_set_rx_mode(dev);
5182 		if (notify)
5183 			__dev_notify_flags(dev, old_flags,
5184 					   dev->gflags ^ old_gflags);
5185 	}
5186 	return 0;
5187 }
5188 
5189 /**
5190  *	dev_set_allmulti	- update allmulti count on a device
5191  *	@dev: device
5192  *	@inc: modifier
5193  *
5194  *	Add or remove reception of all multicast frames to a device. While the
5195  *	count in the device remains above zero the interface remains listening
5196  *	to all interfaces. Once it hits zero the device reverts back to normal
5197  *	filtering operation. A negative @inc value is used to drop the counter
5198  *	when releasing a resource needing all multicasts.
5199  *	Return 0 if successful or a negative errno code on error.
5200  */
5201 
5202 int dev_set_allmulti(struct net_device *dev, int inc)
5203 {
5204 	return __dev_set_allmulti(dev, inc, true);
5205 }
5206 EXPORT_SYMBOL(dev_set_allmulti);
5207 
5208 /*
5209  *	Upload unicast and multicast address lists to device and
5210  *	configure RX filtering. When the device doesn't support unicast
5211  *	filtering it is put in promiscuous mode while unicast addresses
5212  *	are present.
5213  */
5214 void __dev_set_rx_mode(struct net_device *dev)
5215 {
5216 	const struct net_device_ops *ops = dev->netdev_ops;
5217 
5218 	/* dev_open will call this function so the list will stay sane. */
5219 	if (!(dev->flags&IFF_UP))
5220 		return;
5221 
5222 	if (!netif_device_present(dev))
5223 		return;
5224 
5225 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5226 		/* Unicast addresses changes may only happen under the rtnl,
5227 		 * therefore calling __dev_set_promiscuity here is safe.
5228 		 */
5229 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5230 			__dev_set_promiscuity(dev, 1, false);
5231 			dev->uc_promisc = true;
5232 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5233 			__dev_set_promiscuity(dev, -1, false);
5234 			dev->uc_promisc = false;
5235 		}
5236 	}
5237 
5238 	if (ops->ndo_set_rx_mode)
5239 		ops->ndo_set_rx_mode(dev);
5240 }
5241 
5242 void dev_set_rx_mode(struct net_device *dev)
5243 {
5244 	netif_addr_lock_bh(dev);
5245 	__dev_set_rx_mode(dev);
5246 	netif_addr_unlock_bh(dev);
5247 }
5248 
5249 /**
5250  *	dev_get_flags - get flags reported to userspace
5251  *	@dev: device
5252  *
5253  *	Get the combination of flag bits exported through APIs to userspace.
5254  */
5255 unsigned int dev_get_flags(const struct net_device *dev)
5256 {
5257 	unsigned int flags;
5258 
5259 	flags = (dev->flags & ~(IFF_PROMISC |
5260 				IFF_ALLMULTI |
5261 				IFF_RUNNING |
5262 				IFF_LOWER_UP |
5263 				IFF_DORMANT)) |
5264 		(dev->gflags & (IFF_PROMISC |
5265 				IFF_ALLMULTI));
5266 
5267 	if (netif_running(dev)) {
5268 		if (netif_oper_up(dev))
5269 			flags |= IFF_RUNNING;
5270 		if (netif_carrier_ok(dev))
5271 			flags |= IFF_LOWER_UP;
5272 		if (netif_dormant(dev))
5273 			flags |= IFF_DORMANT;
5274 	}
5275 
5276 	return flags;
5277 }
5278 EXPORT_SYMBOL(dev_get_flags);
5279 
5280 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5281 {
5282 	unsigned int old_flags = dev->flags;
5283 	int ret;
5284 
5285 	ASSERT_RTNL();
5286 
5287 	/*
5288 	 *	Set the flags on our device.
5289 	 */
5290 
5291 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5292 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5293 			       IFF_AUTOMEDIA)) |
5294 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5295 				    IFF_ALLMULTI));
5296 
5297 	/*
5298 	 *	Load in the correct multicast list now the flags have changed.
5299 	 */
5300 
5301 	if ((old_flags ^ flags) & IFF_MULTICAST)
5302 		dev_change_rx_flags(dev, IFF_MULTICAST);
5303 
5304 	dev_set_rx_mode(dev);
5305 
5306 	/*
5307 	 *	Have we downed the interface. We handle IFF_UP ourselves
5308 	 *	according to user attempts to set it, rather than blindly
5309 	 *	setting it.
5310 	 */
5311 
5312 	ret = 0;
5313 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
5314 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5315 
5316 		if (!ret)
5317 			dev_set_rx_mode(dev);
5318 	}
5319 
5320 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
5321 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
5322 		unsigned int old_flags = dev->flags;
5323 
5324 		dev->gflags ^= IFF_PROMISC;
5325 
5326 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
5327 			if (dev->flags != old_flags)
5328 				dev_set_rx_mode(dev);
5329 	}
5330 
5331 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5332 	   is important. Some (broken) drivers set IFF_PROMISC, when
5333 	   IFF_ALLMULTI is requested not asking us and not reporting.
5334 	 */
5335 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5336 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5337 
5338 		dev->gflags ^= IFF_ALLMULTI;
5339 		__dev_set_allmulti(dev, inc, false);
5340 	}
5341 
5342 	return ret;
5343 }
5344 
5345 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5346 			unsigned int gchanges)
5347 {
5348 	unsigned int changes = dev->flags ^ old_flags;
5349 
5350 	if (gchanges)
5351 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5352 
5353 	if (changes & IFF_UP) {
5354 		if (dev->flags & IFF_UP)
5355 			call_netdevice_notifiers(NETDEV_UP, dev);
5356 		else
5357 			call_netdevice_notifiers(NETDEV_DOWN, dev);
5358 	}
5359 
5360 	if (dev->flags & IFF_UP &&
5361 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5362 		struct netdev_notifier_change_info change_info;
5363 
5364 		change_info.flags_changed = changes;
5365 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5366 					      &change_info.info);
5367 	}
5368 }
5369 
5370 /**
5371  *	dev_change_flags - change device settings
5372  *	@dev: device
5373  *	@flags: device state flags
5374  *
5375  *	Change settings on device based state flags. The flags are
5376  *	in the userspace exported format.
5377  */
5378 int dev_change_flags(struct net_device *dev, unsigned int flags)
5379 {
5380 	int ret;
5381 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5382 
5383 	ret = __dev_change_flags(dev, flags);
5384 	if (ret < 0)
5385 		return ret;
5386 
5387 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5388 	__dev_notify_flags(dev, old_flags, changes);
5389 	return ret;
5390 }
5391 EXPORT_SYMBOL(dev_change_flags);
5392 
5393 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5394 {
5395 	const struct net_device_ops *ops = dev->netdev_ops;
5396 
5397 	if (ops->ndo_change_mtu)
5398 		return ops->ndo_change_mtu(dev, new_mtu);
5399 
5400 	dev->mtu = new_mtu;
5401 	return 0;
5402 }
5403 
5404 /**
5405  *	dev_set_mtu - Change maximum transfer unit
5406  *	@dev: device
5407  *	@new_mtu: new transfer unit
5408  *
5409  *	Change the maximum transfer size of the network device.
5410  */
5411 int dev_set_mtu(struct net_device *dev, int new_mtu)
5412 {
5413 	int err, orig_mtu;
5414 
5415 	if (new_mtu == dev->mtu)
5416 		return 0;
5417 
5418 	/*	MTU must be positive.	 */
5419 	if (new_mtu < 0)
5420 		return -EINVAL;
5421 
5422 	if (!netif_device_present(dev))
5423 		return -ENODEV;
5424 
5425 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5426 	err = notifier_to_errno(err);
5427 	if (err)
5428 		return err;
5429 
5430 	orig_mtu = dev->mtu;
5431 	err = __dev_set_mtu(dev, new_mtu);
5432 
5433 	if (!err) {
5434 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5435 		err = notifier_to_errno(err);
5436 		if (err) {
5437 			/* setting mtu back and notifying everyone again,
5438 			 * so that they have a chance to revert changes.
5439 			 */
5440 			__dev_set_mtu(dev, orig_mtu);
5441 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5442 		}
5443 	}
5444 	return err;
5445 }
5446 EXPORT_SYMBOL(dev_set_mtu);
5447 
5448 /**
5449  *	dev_set_group - Change group this device belongs to
5450  *	@dev: device
5451  *	@new_group: group this device should belong to
5452  */
5453 void dev_set_group(struct net_device *dev, int new_group)
5454 {
5455 	dev->group = new_group;
5456 }
5457 EXPORT_SYMBOL(dev_set_group);
5458 
5459 /**
5460  *	dev_set_mac_address - Change Media Access Control Address
5461  *	@dev: device
5462  *	@sa: new address
5463  *
5464  *	Change the hardware (MAC) address of the device
5465  */
5466 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5467 {
5468 	const struct net_device_ops *ops = dev->netdev_ops;
5469 	int err;
5470 
5471 	if (!ops->ndo_set_mac_address)
5472 		return -EOPNOTSUPP;
5473 	if (sa->sa_family != dev->type)
5474 		return -EINVAL;
5475 	if (!netif_device_present(dev))
5476 		return -ENODEV;
5477 	err = ops->ndo_set_mac_address(dev, sa);
5478 	if (err)
5479 		return err;
5480 	dev->addr_assign_type = NET_ADDR_SET;
5481 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5482 	add_device_randomness(dev->dev_addr, dev->addr_len);
5483 	return 0;
5484 }
5485 EXPORT_SYMBOL(dev_set_mac_address);
5486 
5487 /**
5488  *	dev_change_carrier - Change device carrier
5489  *	@dev: device
5490  *	@new_carrier: new value
5491  *
5492  *	Change device carrier
5493  */
5494 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5495 {
5496 	const struct net_device_ops *ops = dev->netdev_ops;
5497 
5498 	if (!ops->ndo_change_carrier)
5499 		return -EOPNOTSUPP;
5500 	if (!netif_device_present(dev))
5501 		return -ENODEV;
5502 	return ops->ndo_change_carrier(dev, new_carrier);
5503 }
5504 EXPORT_SYMBOL(dev_change_carrier);
5505 
5506 /**
5507  *	dev_get_phys_port_id - Get device physical port ID
5508  *	@dev: device
5509  *	@ppid: port ID
5510  *
5511  *	Get device physical port ID
5512  */
5513 int dev_get_phys_port_id(struct net_device *dev,
5514 			 struct netdev_phys_port_id *ppid)
5515 {
5516 	const struct net_device_ops *ops = dev->netdev_ops;
5517 
5518 	if (!ops->ndo_get_phys_port_id)
5519 		return -EOPNOTSUPP;
5520 	return ops->ndo_get_phys_port_id(dev, ppid);
5521 }
5522 EXPORT_SYMBOL(dev_get_phys_port_id);
5523 
5524 /**
5525  *	dev_new_index	-	allocate an ifindex
5526  *	@net: the applicable net namespace
5527  *
5528  *	Returns a suitable unique value for a new device interface
5529  *	number.  The caller must hold the rtnl semaphore or the
5530  *	dev_base_lock to be sure it remains unique.
5531  */
5532 static int dev_new_index(struct net *net)
5533 {
5534 	int ifindex = net->ifindex;
5535 	for (;;) {
5536 		if (++ifindex <= 0)
5537 			ifindex = 1;
5538 		if (!__dev_get_by_index(net, ifindex))
5539 			return net->ifindex = ifindex;
5540 	}
5541 }
5542 
5543 /* Delayed registration/unregisteration */
5544 static LIST_HEAD(net_todo_list);
5545 static DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5546 
5547 static void net_set_todo(struct net_device *dev)
5548 {
5549 	list_add_tail(&dev->todo_list, &net_todo_list);
5550 	dev_net(dev)->dev_unreg_count++;
5551 }
5552 
5553 static void rollback_registered_many(struct list_head *head)
5554 {
5555 	struct net_device *dev, *tmp;
5556 	LIST_HEAD(close_head);
5557 
5558 	BUG_ON(dev_boot_phase);
5559 	ASSERT_RTNL();
5560 
5561 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5562 		/* Some devices call without registering
5563 		 * for initialization unwind. Remove those
5564 		 * devices and proceed with the remaining.
5565 		 */
5566 		if (dev->reg_state == NETREG_UNINITIALIZED) {
5567 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5568 				 dev->name, dev);
5569 
5570 			WARN_ON(1);
5571 			list_del(&dev->unreg_list);
5572 			continue;
5573 		}
5574 		dev->dismantle = true;
5575 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
5576 	}
5577 
5578 	/* If device is running, close it first. */
5579 	list_for_each_entry(dev, head, unreg_list)
5580 		list_add_tail(&dev->close_list, &close_head);
5581 	dev_close_many(&close_head);
5582 
5583 	list_for_each_entry(dev, head, unreg_list) {
5584 		/* And unlink it from device chain. */
5585 		unlist_netdevice(dev);
5586 
5587 		dev->reg_state = NETREG_UNREGISTERING;
5588 	}
5589 
5590 	synchronize_net();
5591 
5592 	list_for_each_entry(dev, head, unreg_list) {
5593 		/* Shutdown queueing discipline. */
5594 		dev_shutdown(dev);
5595 
5596 
5597 		/* Notify protocols, that we are about to destroy
5598 		   this device. They should clean all the things.
5599 		*/
5600 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5601 
5602 		if (!dev->rtnl_link_ops ||
5603 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5604 			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5605 
5606 		/*
5607 		 *	Flush the unicast and multicast chains
5608 		 */
5609 		dev_uc_flush(dev);
5610 		dev_mc_flush(dev);
5611 
5612 		if (dev->netdev_ops->ndo_uninit)
5613 			dev->netdev_ops->ndo_uninit(dev);
5614 
5615 		/* Notifier chain MUST detach us all upper devices. */
5616 		WARN_ON(netdev_has_any_upper_dev(dev));
5617 
5618 		/* Remove entries from kobject tree */
5619 		netdev_unregister_kobject(dev);
5620 #ifdef CONFIG_XPS
5621 		/* Remove XPS queueing entries */
5622 		netif_reset_xps_queues_gt(dev, 0);
5623 #endif
5624 	}
5625 
5626 	synchronize_net();
5627 
5628 	list_for_each_entry(dev, head, unreg_list)
5629 		dev_put(dev);
5630 }
5631 
5632 static void rollback_registered(struct net_device *dev)
5633 {
5634 	LIST_HEAD(single);
5635 
5636 	list_add(&dev->unreg_list, &single);
5637 	rollback_registered_many(&single);
5638 	list_del(&single);
5639 }
5640 
5641 static netdev_features_t netdev_fix_features(struct net_device *dev,
5642 	netdev_features_t features)
5643 {
5644 	/* Fix illegal checksum combinations */
5645 	if ((features & NETIF_F_HW_CSUM) &&
5646 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5647 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5648 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5649 	}
5650 
5651 	/* TSO requires that SG is present as well. */
5652 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5653 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5654 		features &= ~NETIF_F_ALL_TSO;
5655 	}
5656 
5657 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5658 					!(features & NETIF_F_IP_CSUM)) {
5659 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5660 		features &= ~NETIF_F_TSO;
5661 		features &= ~NETIF_F_TSO_ECN;
5662 	}
5663 
5664 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5665 					 !(features & NETIF_F_IPV6_CSUM)) {
5666 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5667 		features &= ~NETIF_F_TSO6;
5668 	}
5669 
5670 	/* TSO ECN requires that TSO is present as well. */
5671 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5672 		features &= ~NETIF_F_TSO_ECN;
5673 
5674 	/* Software GSO depends on SG. */
5675 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5676 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5677 		features &= ~NETIF_F_GSO;
5678 	}
5679 
5680 	/* UFO needs SG and checksumming */
5681 	if (features & NETIF_F_UFO) {
5682 		/* maybe split UFO into V4 and V6? */
5683 		if (!((features & NETIF_F_GEN_CSUM) ||
5684 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5685 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5686 			netdev_dbg(dev,
5687 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
5688 			features &= ~NETIF_F_UFO;
5689 		}
5690 
5691 		if (!(features & NETIF_F_SG)) {
5692 			netdev_dbg(dev,
5693 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5694 			features &= ~NETIF_F_UFO;
5695 		}
5696 	}
5697 
5698 #ifdef CONFIG_NET_RX_BUSY_POLL
5699 	if (dev->netdev_ops->ndo_busy_poll)
5700 		features |= NETIF_F_BUSY_POLL;
5701 	else
5702 #endif
5703 		features &= ~NETIF_F_BUSY_POLL;
5704 
5705 	return features;
5706 }
5707 
5708 int __netdev_update_features(struct net_device *dev)
5709 {
5710 	netdev_features_t features;
5711 	int err = 0;
5712 
5713 	ASSERT_RTNL();
5714 
5715 	features = netdev_get_wanted_features(dev);
5716 
5717 	if (dev->netdev_ops->ndo_fix_features)
5718 		features = dev->netdev_ops->ndo_fix_features(dev, features);
5719 
5720 	/* driver might be less strict about feature dependencies */
5721 	features = netdev_fix_features(dev, features);
5722 
5723 	if (dev->features == features)
5724 		return 0;
5725 
5726 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5727 		&dev->features, &features);
5728 
5729 	if (dev->netdev_ops->ndo_set_features)
5730 		err = dev->netdev_ops->ndo_set_features(dev, features);
5731 
5732 	if (unlikely(err < 0)) {
5733 		netdev_err(dev,
5734 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
5735 			err, &features, &dev->features);
5736 		return -1;
5737 	}
5738 
5739 	if (!err)
5740 		dev->features = features;
5741 
5742 	return 1;
5743 }
5744 
5745 /**
5746  *	netdev_update_features - recalculate device features
5747  *	@dev: the device to check
5748  *
5749  *	Recalculate dev->features set and send notifications if it
5750  *	has changed. Should be called after driver or hardware dependent
5751  *	conditions might have changed that influence the features.
5752  */
5753 void netdev_update_features(struct net_device *dev)
5754 {
5755 	if (__netdev_update_features(dev))
5756 		netdev_features_change(dev);
5757 }
5758 EXPORT_SYMBOL(netdev_update_features);
5759 
5760 /**
5761  *	netdev_change_features - recalculate device features
5762  *	@dev: the device to check
5763  *
5764  *	Recalculate dev->features set and send notifications even
5765  *	if they have not changed. Should be called instead of
5766  *	netdev_update_features() if also dev->vlan_features might
5767  *	have changed to allow the changes to be propagated to stacked
5768  *	VLAN devices.
5769  */
5770 void netdev_change_features(struct net_device *dev)
5771 {
5772 	__netdev_update_features(dev);
5773 	netdev_features_change(dev);
5774 }
5775 EXPORT_SYMBOL(netdev_change_features);
5776 
5777 /**
5778  *	netif_stacked_transfer_operstate -	transfer operstate
5779  *	@rootdev: the root or lower level device to transfer state from
5780  *	@dev: the device to transfer operstate to
5781  *
5782  *	Transfer operational state from root to device. This is normally
5783  *	called when a stacking relationship exists between the root
5784  *	device and the device(a leaf device).
5785  */
5786 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5787 					struct net_device *dev)
5788 {
5789 	if (rootdev->operstate == IF_OPER_DORMANT)
5790 		netif_dormant_on(dev);
5791 	else
5792 		netif_dormant_off(dev);
5793 
5794 	if (netif_carrier_ok(rootdev)) {
5795 		if (!netif_carrier_ok(dev))
5796 			netif_carrier_on(dev);
5797 	} else {
5798 		if (netif_carrier_ok(dev))
5799 			netif_carrier_off(dev);
5800 	}
5801 }
5802 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5803 
5804 #ifdef CONFIG_SYSFS
5805 static int netif_alloc_rx_queues(struct net_device *dev)
5806 {
5807 	unsigned int i, count = dev->num_rx_queues;
5808 	struct netdev_rx_queue *rx;
5809 
5810 	BUG_ON(count < 1);
5811 
5812 	rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5813 	if (!rx)
5814 		return -ENOMEM;
5815 
5816 	dev->_rx = rx;
5817 
5818 	for (i = 0; i < count; i++)
5819 		rx[i].dev = dev;
5820 	return 0;
5821 }
5822 #endif
5823 
5824 static void netdev_init_one_queue(struct net_device *dev,
5825 				  struct netdev_queue *queue, void *_unused)
5826 {
5827 	/* Initialize queue lock */
5828 	spin_lock_init(&queue->_xmit_lock);
5829 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5830 	queue->xmit_lock_owner = -1;
5831 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5832 	queue->dev = dev;
5833 #ifdef CONFIG_BQL
5834 	dql_init(&queue->dql, HZ);
5835 #endif
5836 }
5837 
5838 static void netif_free_tx_queues(struct net_device *dev)
5839 {
5840 	if (is_vmalloc_addr(dev->_tx))
5841 		vfree(dev->_tx);
5842 	else
5843 		kfree(dev->_tx);
5844 }
5845 
5846 static int netif_alloc_netdev_queues(struct net_device *dev)
5847 {
5848 	unsigned int count = dev->num_tx_queues;
5849 	struct netdev_queue *tx;
5850 	size_t sz = count * sizeof(*tx);
5851 
5852 	BUG_ON(count < 1 || count > 0xffff);
5853 
5854 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
5855 	if (!tx) {
5856 		tx = vzalloc(sz);
5857 		if (!tx)
5858 			return -ENOMEM;
5859 	}
5860 	dev->_tx = tx;
5861 
5862 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5863 	spin_lock_init(&dev->tx_global_lock);
5864 
5865 	return 0;
5866 }
5867 
5868 /**
5869  *	register_netdevice	- register a network device
5870  *	@dev: device to register
5871  *
5872  *	Take a completed network device structure and add it to the kernel
5873  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5874  *	chain. 0 is returned on success. A negative errno code is returned
5875  *	on a failure to set up the device, or if the name is a duplicate.
5876  *
5877  *	Callers must hold the rtnl semaphore. You may want
5878  *	register_netdev() instead of this.
5879  *
5880  *	BUGS:
5881  *	The locking appears insufficient to guarantee two parallel registers
5882  *	will not get the same name.
5883  */
5884 
5885 int register_netdevice(struct net_device *dev)
5886 {
5887 	int ret;
5888 	struct net *net = dev_net(dev);
5889 
5890 	BUG_ON(dev_boot_phase);
5891 	ASSERT_RTNL();
5892 
5893 	might_sleep();
5894 
5895 	/* When net_device's are persistent, this will be fatal. */
5896 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5897 	BUG_ON(!net);
5898 
5899 	spin_lock_init(&dev->addr_list_lock);
5900 	netdev_set_addr_lockdep_class(dev);
5901 
5902 	dev->iflink = -1;
5903 
5904 	ret = dev_get_valid_name(net, dev, dev->name);
5905 	if (ret < 0)
5906 		goto out;
5907 
5908 	/* Init, if this function is available */
5909 	if (dev->netdev_ops->ndo_init) {
5910 		ret = dev->netdev_ops->ndo_init(dev);
5911 		if (ret) {
5912 			if (ret > 0)
5913 				ret = -EIO;
5914 			goto out;
5915 		}
5916 	}
5917 
5918 	if (((dev->hw_features | dev->features) &
5919 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
5920 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
5921 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
5922 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
5923 		ret = -EINVAL;
5924 		goto err_uninit;
5925 	}
5926 
5927 	ret = -EBUSY;
5928 	if (!dev->ifindex)
5929 		dev->ifindex = dev_new_index(net);
5930 	else if (__dev_get_by_index(net, dev->ifindex))
5931 		goto err_uninit;
5932 
5933 	if (dev->iflink == -1)
5934 		dev->iflink = dev->ifindex;
5935 
5936 	/* Transfer changeable features to wanted_features and enable
5937 	 * software offloads (GSO and GRO).
5938 	 */
5939 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
5940 	dev->features |= NETIF_F_SOFT_FEATURES;
5941 	dev->wanted_features = dev->features & dev->hw_features;
5942 
5943 	if (!(dev->flags & IFF_LOOPBACK)) {
5944 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
5945 	}
5946 
5947 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5948 	 */
5949 	dev->vlan_features |= NETIF_F_HIGHDMA;
5950 
5951 	/* Make NETIF_F_SG inheritable to tunnel devices.
5952 	 */
5953 	dev->hw_enc_features |= NETIF_F_SG;
5954 
5955 	/* Make NETIF_F_SG inheritable to MPLS.
5956 	 */
5957 	dev->mpls_features |= NETIF_F_SG;
5958 
5959 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5960 	ret = notifier_to_errno(ret);
5961 	if (ret)
5962 		goto err_uninit;
5963 
5964 	ret = netdev_register_kobject(dev);
5965 	if (ret)
5966 		goto err_uninit;
5967 	dev->reg_state = NETREG_REGISTERED;
5968 
5969 	__netdev_update_features(dev);
5970 
5971 	/*
5972 	 *	Default initial state at registry is that the
5973 	 *	device is present.
5974 	 */
5975 
5976 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5977 
5978 	linkwatch_init_dev(dev);
5979 
5980 	dev_init_scheduler(dev);
5981 	dev_hold(dev);
5982 	list_netdevice(dev);
5983 	add_device_randomness(dev->dev_addr, dev->addr_len);
5984 
5985 	/* If the device has permanent device address, driver should
5986 	 * set dev_addr and also addr_assign_type should be set to
5987 	 * NET_ADDR_PERM (default value).
5988 	 */
5989 	if (dev->addr_assign_type == NET_ADDR_PERM)
5990 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5991 
5992 	/* Notify protocols, that a new device appeared. */
5993 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5994 	ret = notifier_to_errno(ret);
5995 	if (ret) {
5996 		rollback_registered(dev);
5997 		dev->reg_state = NETREG_UNREGISTERED;
5998 	}
5999 	/*
6000 	 *	Prevent userspace races by waiting until the network
6001 	 *	device is fully setup before sending notifications.
6002 	 */
6003 	if (!dev->rtnl_link_ops ||
6004 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6005 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6006 
6007 out:
6008 	return ret;
6009 
6010 err_uninit:
6011 	if (dev->netdev_ops->ndo_uninit)
6012 		dev->netdev_ops->ndo_uninit(dev);
6013 	goto out;
6014 }
6015 EXPORT_SYMBOL(register_netdevice);
6016 
6017 /**
6018  *	init_dummy_netdev	- init a dummy network device for NAPI
6019  *	@dev: device to init
6020  *
6021  *	This takes a network device structure and initialize the minimum
6022  *	amount of fields so it can be used to schedule NAPI polls without
6023  *	registering a full blown interface. This is to be used by drivers
6024  *	that need to tie several hardware interfaces to a single NAPI
6025  *	poll scheduler due to HW limitations.
6026  */
6027 int init_dummy_netdev(struct net_device *dev)
6028 {
6029 	/* Clear everything. Note we don't initialize spinlocks
6030 	 * are they aren't supposed to be taken by any of the
6031 	 * NAPI code and this dummy netdev is supposed to be
6032 	 * only ever used for NAPI polls
6033 	 */
6034 	memset(dev, 0, sizeof(struct net_device));
6035 
6036 	/* make sure we BUG if trying to hit standard
6037 	 * register/unregister code path
6038 	 */
6039 	dev->reg_state = NETREG_DUMMY;
6040 
6041 	/* NAPI wants this */
6042 	INIT_LIST_HEAD(&dev->napi_list);
6043 
6044 	/* a dummy interface is started by default */
6045 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6046 	set_bit(__LINK_STATE_START, &dev->state);
6047 
6048 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
6049 	 * because users of this 'device' dont need to change
6050 	 * its refcount.
6051 	 */
6052 
6053 	return 0;
6054 }
6055 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6056 
6057 
6058 /**
6059  *	register_netdev	- register a network device
6060  *	@dev: device to register
6061  *
6062  *	Take a completed network device structure and add it to the kernel
6063  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6064  *	chain. 0 is returned on success. A negative errno code is returned
6065  *	on a failure to set up the device, or if the name is a duplicate.
6066  *
6067  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
6068  *	and expands the device name if you passed a format string to
6069  *	alloc_netdev.
6070  */
6071 int register_netdev(struct net_device *dev)
6072 {
6073 	int err;
6074 
6075 	rtnl_lock();
6076 	err = register_netdevice(dev);
6077 	rtnl_unlock();
6078 	return err;
6079 }
6080 EXPORT_SYMBOL(register_netdev);
6081 
6082 int netdev_refcnt_read(const struct net_device *dev)
6083 {
6084 	int i, refcnt = 0;
6085 
6086 	for_each_possible_cpu(i)
6087 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6088 	return refcnt;
6089 }
6090 EXPORT_SYMBOL(netdev_refcnt_read);
6091 
6092 /**
6093  * netdev_wait_allrefs - wait until all references are gone.
6094  * @dev: target net_device
6095  *
6096  * This is called when unregistering network devices.
6097  *
6098  * Any protocol or device that holds a reference should register
6099  * for netdevice notification, and cleanup and put back the
6100  * reference if they receive an UNREGISTER event.
6101  * We can get stuck here if buggy protocols don't correctly
6102  * call dev_put.
6103  */
6104 static void netdev_wait_allrefs(struct net_device *dev)
6105 {
6106 	unsigned long rebroadcast_time, warning_time;
6107 	int refcnt;
6108 
6109 	linkwatch_forget_dev(dev);
6110 
6111 	rebroadcast_time = warning_time = jiffies;
6112 	refcnt = netdev_refcnt_read(dev);
6113 
6114 	while (refcnt != 0) {
6115 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6116 			rtnl_lock();
6117 
6118 			/* Rebroadcast unregister notification */
6119 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6120 
6121 			__rtnl_unlock();
6122 			rcu_barrier();
6123 			rtnl_lock();
6124 
6125 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6126 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6127 				     &dev->state)) {
6128 				/* We must not have linkwatch events
6129 				 * pending on unregister. If this
6130 				 * happens, we simply run the queue
6131 				 * unscheduled, resulting in a noop
6132 				 * for this device.
6133 				 */
6134 				linkwatch_run_queue();
6135 			}
6136 
6137 			__rtnl_unlock();
6138 
6139 			rebroadcast_time = jiffies;
6140 		}
6141 
6142 		msleep(250);
6143 
6144 		refcnt = netdev_refcnt_read(dev);
6145 
6146 		if (time_after(jiffies, warning_time + 10 * HZ)) {
6147 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6148 				 dev->name, refcnt);
6149 			warning_time = jiffies;
6150 		}
6151 	}
6152 }
6153 
6154 /* The sequence is:
6155  *
6156  *	rtnl_lock();
6157  *	...
6158  *	register_netdevice(x1);
6159  *	register_netdevice(x2);
6160  *	...
6161  *	unregister_netdevice(y1);
6162  *	unregister_netdevice(y2);
6163  *      ...
6164  *	rtnl_unlock();
6165  *	free_netdev(y1);
6166  *	free_netdev(y2);
6167  *
6168  * We are invoked by rtnl_unlock().
6169  * This allows us to deal with problems:
6170  * 1) We can delete sysfs objects which invoke hotplug
6171  *    without deadlocking with linkwatch via keventd.
6172  * 2) Since we run with the RTNL semaphore not held, we can sleep
6173  *    safely in order to wait for the netdev refcnt to drop to zero.
6174  *
6175  * We must not return until all unregister events added during
6176  * the interval the lock was held have been completed.
6177  */
6178 void netdev_run_todo(void)
6179 {
6180 	struct list_head list;
6181 
6182 	/* Snapshot list, allow later requests */
6183 	list_replace_init(&net_todo_list, &list);
6184 
6185 	__rtnl_unlock();
6186 
6187 
6188 	/* Wait for rcu callbacks to finish before next phase */
6189 	if (!list_empty(&list))
6190 		rcu_barrier();
6191 
6192 	while (!list_empty(&list)) {
6193 		struct net_device *dev
6194 			= list_first_entry(&list, struct net_device, todo_list);
6195 		list_del(&dev->todo_list);
6196 
6197 		rtnl_lock();
6198 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6199 		__rtnl_unlock();
6200 
6201 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6202 			pr_err("network todo '%s' but state %d\n",
6203 			       dev->name, dev->reg_state);
6204 			dump_stack();
6205 			continue;
6206 		}
6207 
6208 		dev->reg_state = NETREG_UNREGISTERED;
6209 
6210 		on_each_cpu(flush_backlog, dev, 1);
6211 
6212 		netdev_wait_allrefs(dev);
6213 
6214 		/* paranoia */
6215 		BUG_ON(netdev_refcnt_read(dev));
6216 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
6217 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6218 		WARN_ON(dev->dn_ptr);
6219 
6220 		if (dev->destructor)
6221 			dev->destructor(dev);
6222 
6223 		/* Report a network device has been unregistered */
6224 		rtnl_lock();
6225 		dev_net(dev)->dev_unreg_count--;
6226 		__rtnl_unlock();
6227 		wake_up(&netdev_unregistering_wq);
6228 
6229 		/* Free network device */
6230 		kobject_put(&dev->dev.kobj);
6231 	}
6232 }
6233 
6234 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6235  * fields in the same order, with only the type differing.
6236  */
6237 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6238 			     const struct net_device_stats *netdev_stats)
6239 {
6240 #if BITS_PER_LONG == 64
6241 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6242 	memcpy(stats64, netdev_stats, sizeof(*stats64));
6243 #else
6244 	size_t i, n = sizeof(*stats64) / sizeof(u64);
6245 	const unsigned long *src = (const unsigned long *)netdev_stats;
6246 	u64 *dst = (u64 *)stats64;
6247 
6248 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6249 		     sizeof(*stats64) / sizeof(u64));
6250 	for (i = 0; i < n; i++)
6251 		dst[i] = src[i];
6252 #endif
6253 }
6254 EXPORT_SYMBOL(netdev_stats_to_stats64);
6255 
6256 /**
6257  *	dev_get_stats	- get network device statistics
6258  *	@dev: device to get statistics from
6259  *	@storage: place to store stats
6260  *
6261  *	Get network statistics from device. Return @storage.
6262  *	The device driver may provide its own method by setting
6263  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6264  *	otherwise the internal statistics structure is used.
6265  */
6266 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6267 					struct rtnl_link_stats64 *storage)
6268 {
6269 	const struct net_device_ops *ops = dev->netdev_ops;
6270 
6271 	if (ops->ndo_get_stats64) {
6272 		memset(storage, 0, sizeof(*storage));
6273 		ops->ndo_get_stats64(dev, storage);
6274 	} else if (ops->ndo_get_stats) {
6275 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6276 	} else {
6277 		netdev_stats_to_stats64(storage, &dev->stats);
6278 	}
6279 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6280 	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6281 	return storage;
6282 }
6283 EXPORT_SYMBOL(dev_get_stats);
6284 
6285 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6286 {
6287 	struct netdev_queue *queue = dev_ingress_queue(dev);
6288 
6289 #ifdef CONFIG_NET_CLS_ACT
6290 	if (queue)
6291 		return queue;
6292 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6293 	if (!queue)
6294 		return NULL;
6295 	netdev_init_one_queue(dev, queue, NULL);
6296 	queue->qdisc = &noop_qdisc;
6297 	queue->qdisc_sleeping = &noop_qdisc;
6298 	rcu_assign_pointer(dev->ingress_queue, queue);
6299 #endif
6300 	return queue;
6301 }
6302 
6303 static const struct ethtool_ops default_ethtool_ops;
6304 
6305 void netdev_set_default_ethtool_ops(struct net_device *dev,
6306 				    const struct ethtool_ops *ops)
6307 {
6308 	if (dev->ethtool_ops == &default_ethtool_ops)
6309 		dev->ethtool_ops = ops;
6310 }
6311 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6312 
6313 void netdev_freemem(struct net_device *dev)
6314 {
6315 	char *addr = (char *)dev - dev->padded;
6316 
6317 	if (is_vmalloc_addr(addr))
6318 		vfree(addr);
6319 	else
6320 		kfree(addr);
6321 }
6322 
6323 /**
6324  *	alloc_netdev_mqs - allocate network device
6325  *	@sizeof_priv:	size of private data to allocate space for
6326  *	@name:		device name format string
6327  *	@setup:		callback to initialize device
6328  *	@txqs:		the number of TX subqueues to allocate
6329  *	@rxqs:		the number of RX subqueues to allocate
6330  *
6331  *	Allocates a struct net_device with private data area for driver use
6332  *	and performs basic initialization.  Also allocates subqueue structs
6333  *	for each queue on the device.
6334  */
6335 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6336 		void (*setup)(struct net_device *),
6337 		unsigned int txqs, unsigned int rxqs)
6338 {
6339 	struct net_device *dev;
6340 	size_t alloc_size;
6341 	struct net_device *p;
6342 
6343 	BUG_ON(strlen(name) >= sizeof(dev->name));
6344 
6345 	if (txqs < 1) {
6346 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6347 		return NULL;
6348 	}
6349 
6350 #ifdef CONFIG_SYSFS
6351 	if (rxqs < 1) {
6352 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6353 		return NULL;
6354 	}
6355 #endif
6356 
6357 	alloc_size = sizeof(struct net_device);
6358 	if (sizeof_priv) {
6359 		/* ensure 32-byte alignment of private area */
6360 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6361 		alloc_size += sizeof_priv;
6362 	}
6363 	/* ensure 32-byte alignment of whole construct */
6364 	alloc_size += NETDEV_ALIGN - 1;
6365 
6366 	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6367 	if (!p)
6368 		p = vzalloc(alloc_size);
6369 	if (!p)
6370 		return NULL;
6371 
6372 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
6373 	dev->padded = (char *)dev - (char *)p;
6374 
6375 	dev->pcpu_refcnt = alloc_percpu(int);
6376 	if (!dev->pcpu_refcnt)
6377 		goto free_dev;
6378 
6379 	if (dev_addr_init(dev))
6380 		goto free_pcpu;
6381 
6382 	dev_mc_init(dev);
6383 	dev_uc_init(dev);
6384 
6385 	dev_net_set(dev, &init_net);
6386 
6387 	dev->gso_max_size = GSO_MAX_SIZE;
6388 	dev->gso_max_segs = GSO_MAX_SEGS;
6389 
6390 	INIT_LIST_HEAD(&dev->napi_list);
6391 	INIT_LIST_HEAD(&dev->unreg_list);
6392 	INIT_LIST_HEAD(&dev->close_list);
6393 	INIT_LIST_HEAD(&dev->link_watch_list);
6394 	INIT_LIST_HEAD(&dev->adj_list.upper);
6395 	INIT_LIST_HEAD(&dev->adj_list.lower);
6396 	INIT_LIST_HEAD(&dev->all_adj_list.upper);
6397 	INIT_LIST_HEAD(&dev->all_adj_list.lower);
6398 	dev->priv_flags = IFF_XMIT_DST_RELEASE;
6399 	setup(dev);
6400 
6401 	dev->num_tx_queues = txqs;
6402 	dev->real_num_tx_queues = txqs;
6403 	if (netif_alloc_netdev_queues(dev))
6404 		goto free_all;
6405 
6406 #ifdef CONFIG_SYSFS
6407 	dev->num_rx_queues = rxqs;
6408 	dev->real_num_rx_queues = rxqs;
6409 	if (netif_alloc_rx_queues(dev))
6410 		goto free_all;
6411 #endif
6412 
6413 	strcpy(dev->name, name);
6414 	dev->group = INIT_NETDEV_GROUP;
6415 	if (!dev->ethtool_ops)
6416 		dev->ethtool_ops = &default_ethtool_ops;
6417 	return dev;
6418 
6419 free_all:
6420 	free_netdev(dev);
6421 	return NULL;
6422 
6423 free_pcpu:
6424 	free_percpu(dev->pcpu_refcnt);
6425 	netif_free_tx_queues(dev);
6426 #ifdef CONFIG_SYSFS
6427 	kfree(dev->_rx);
6428 #endif
6429 
6430 free_dev:
6431 	netdev_freemem(dev);
6432 	return NULL;
6433 }
6434 EXPORT_SYMBOL(alloc_netdev_mqs);
6435 
6436 /**
6437  *	free_netdev - free network device
6438  *	@dev: device
6439  *
6440  *	This function does the last stage of destroying an allocated device
6441  * 	interface. The reference to the device object is released.
6442  *	If this is the last reference then it will be freed.
6443  */
6444 void free_netdev(struct net_device *dev)
6445 {
6446 	struct napi_struct *p, *n;
6447 
6448 	release_net(dev_net(dev));
6449 
6450 	netif_free_tx_queues(dev);
6451 #ifdef CONFIG_SYSFS
6452 	kfree(dev->_rx);
6453 #endif
6454 
6455 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6456 
6457 	/* Flush device addresses */
6458 	dev_addr_flush(dev);
6459 
6460 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6461 		netif_napi_del(p);
6462 
6463 	free_percpu(dev->pcpu_refcnt);
6464 	dev->pcpu_refcnt = NULL;
6465 
6466 	/*  Compatibility with error handling in drivers */
6467 	if (dev->reg_state == NETREG_UNINITIALIZED) {
6468 		netdev_freemem(dev);
6469 		return;
6470 	}
6471 
6472 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6473 	dev->reg_state = NETREG_RELEASED;
6474 
6475 	/* will free via device release */
6476 	put_device(&dev->dev);
6477 }
6478 EXPORT_SYMBOL(free_netdev);
6479 
6480 /**
6481  *	synchronize_net -  Synchronize with packet receive processing
6482  *
6483  *	Wait for packets currently being received to be done.
6484  *	Does not block later packets from starting.
6485  */
6486 void synchronize_net(void)
6487 {
6488 	might_sleep();
6489 	if (rtnl_is_locked())
6490 		synchronize_rcu_expedited();
6491 	else
6492 		synchronize_rcu();
6493 }
6494 EXPORT_SYMBOL(synchronize_net);
6495 
6496 /**
6497  *	unregister_netdevice_queue - remove device from the kernel
6498  *	@dev: device
6499  *	@head: list
6500  *
6501  *	This function shuts down a device interface and removes it
6502  *	from the kernel tables.
6503  *	If head not NULL, device is queued to be unregistered later.
6504  *
6505  *	Callers must hold the rtnl semaphore.  You may want
6506  *	unregister_netdev() instead of this.
6507  */
6508 
6509 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6510 {
6511 	ASSERT_RTNL();
6512 
6513 	if (head) {
6514 		list_move_tail(&dev->unreg_list, head);
6515 	} else {
6516 		rollback_registered(dev);
6517 		/* Finish processing unregister after unlock */
6518 		net_set_todo(dev);
6519 	}
6520 }
6521 EXPORT_SYMBOL(unregister_netdevice_queue);
6522 
6523 /**
6524  *	unregister_netdevice_many - unregister many devices
6525  *	@head: list of devices
6526  */
6527 void unregister_netdevice_many(struct list_head *head)
6528 {
6529 	struct net_device *dev;
6530 
6531 	if (!list_empty(head)) {
6532 		rollback_registered_many(head);
6533 		list_for_each_entry(dev, head, unreg_list)
6534 			net_set_todo(dev);
6535 	}
6536 }
6537 EXPORT_SYMBOL(unregister_netdevice_many);
6538 
6539 /**
6540  *	unregister_netdev - remove device from the kernel
6541  *	@dev: device
6542  *
6543  *	This function shuts down a device interface and removes it
6544  *	from the kernel tables.
6545  *
6546  *	This is just a wrapper for unregister_netdevice that takes
6547  *	the rtnl semaphore.  In general you want to use this and not
6548  *	unregister_netdevice.
6549  */
6550 void unregister_netdev(struct net_device *dev)
6551 {
6552 	rtnl_lock();
6553 	unregister_netdevice(dev);
6554 	rtnl_unlock();
6555 }
6556 EXPORT_SYMBOL(unregister_netdev);
6557 
6558 /**
6559  *	dev_change_net_namespace - move device to different nethost namespace
6560  *	@dev: device
6561  *	@net: network namespace
6562  *	@pat: If not NULL name pattern to try if the current device name
6563  *	      is already taken in the destination network namespace.
6564  *
6565  *	This function shuts down a device interface and moves it
6566  *	to a new network namespace. On success 0 is returned, on
6567  *	a failure a netagive errno code is returned.
6568  *
6569  *	Callers must hold the rtnl semaphore.
6570  */
6571 
6572 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6573 {
6574 	int err;
6575 
6576 	ASSERT_RTNL();
6577 
6578 	/* Don't allow namespace local devices to be moved. */
6579 	err = -EINVAL;
6580 	if (dev->features & NETIF_F_NETNS_LOCAL)
6581 		goto out;
6582 
6583 	/* Ensure the device has been registrered */
6584 	if (dev->reg_state != NETREG_REGISTERED)
6585 		goto out;
6586 
6587 	/* Get out if there is nothing todo */
6588 	err = 0;
6589 	if (net_eq(dev_net(dev), net))
6590 		goto out;
6591 
6592 	/* Pick the destination device name, and ensure
6593 	 * we can use it in the destination network namespace.
6594 	 */
6595 	err = -EEXIST;
6596 	if (__dev_get_by_name(net, dev->name)) {
6597 		/* We get here if we can't use the current device name */
6598 		if (!pat)
6599 			goto out;
6600 		if (dev_get_valid_name(net, dev, pat) < 0)
6601 			goto out;
6602 	}
6603 
6604 	/*
6605 	 * And now a mini version of register_netdevice unregister_netdevice.
6606 	 */
6607 
6608 	/* If device is running close it first. */
6609 	dev_close(dev);
6610 
6611 	/* And unlink it from device chain */
6612 	err = -ENODEV;
6613 	unlist_netdevice(dev);
6614 
6615 	synchronize_net();
6616 
6617 	/* Shutdown queueing discipline. */
6618 	dev_shutdown(dev);
6619 
6620 	/* Notify protocols, that we are about to destroy
6621 	   this device. They should clean all the things.
6622 
6623 	   Note that dev->reg_state stays at NETREG_REGISTERED.
6624 	   This is wanted because this way 8021q and macvlan know
6625 	   the device is just moving and can keep their slaves up.
6626 	*/
6627 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6628 	rcu_barrier();
6629 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6630 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6631 
6632 	/*
6633 	 *	Flush the unicast and multicast chains
6634 	 */
6635 	dev_uc_flush(dev);
6636 	dev_mc_flush(dev);
6637 
6638 	/* Send a netdev-removed uevent to the old namespace */
6639 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6640 
6641 	/* Actually switch the network namespace */
6642 	dev_net_set(dev, net);
6643 
6644 	/* If there is an ifindex conflict assign a new one */
6645 	if (__dev_get_by_index(net, dev->ifindex)) {
6646 		int iflink = (dev->iflink == dev->ifindex);
6647 		dev->ifindex = dev_new_index(net);
6648 		if (iflink)
6649 			dev->iflink = dev->ifindex;
6650 	}
6651 
6652 	/* Send a netdev-add uevent to the new namespace */
6653 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6654 
6655 	/* Fixup kobjects */
6656 	err = device_rename(&dev->dev, dev->name);
6657 	WARN_ON(err);
6658 
6659 	/* Add the device back in the hashes */
6660 	list_netdevice(dev);
6661 
6662 	/* Notify protocols, that a new device appeared. */
6663 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
6664 
6665 	/*
6666 	 *	Prevent userspace races by waiting until the network
6667 	 *	device is fully setup before sending notifications.
6668 	 */
6669 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6670 
6671 	synchronize_net();
6672 	err = 0;
6673 out:
6674 	return err;
6675 }
6676 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6677 
6678 static int dev_cpu_callback(struct notifier_block *nfb,
6679 			    unsigned long action,
6680 			    void *ocpu)
6681 {
6682 	struct sk_buff **list_skb;
6683 	struct sk_buff *skb;
6684 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
6685 	struct softnet_data *sd, *oldsd;
6686 
6687 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6688 		return NOTIFY_OK;
6689 
6690 	local_irq_disable();
6691 	cpu = smp_processor_id();
6692 	sd = &per_cpu(softnet_data, cpu);
6693 	oldsd = &per_cpu(softnet_data, oldcpu);
6694 
6695 	/* Find end of our completion_queue. */
6696 	list_skb = &sd->completion_queue;
6697 	while (*list_skb)
6698 		list_skb = &(*list_skb)->next;
6699 	/* Append completion queue from offline CPU. */
6700 	*list_skb = oldsd->completion_queue;
6701 	oldsd->completion_queue = NULL;
6702 
6703 	/* Append output queue from offline CPU. */
6704 	if (oldsd->output_queue) {
6705 		*sd->output_queue_tailp = oldsd->output_queue;
6706 		sd->output_queue_tailp = oldsd->output_queue_tailp;
6707 		oldsd->output_queue = NULL;
6708 		oldsd->output_queue_tailp = &oldsd->output_queue;
6709 	}
6710 	/* Append NAPI poll list from offline CPU. */
6711 	if (!list_empty(&oldsd->poll_list)) {
6712 		list_splice_init(&oldsd->poll_list, &sd->poll_list);
6713 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
6714 	}
6715 
6716 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
6717 	local_irq_enable();
6718 
6719 	/* Process offline CPU's input_pkt_queue */
6720 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6721 		netif_rx_internal(skb);
6722 		input_queue_head_incr(oldsd);
6723 	}
6724 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6725 		netif_rx_internal(skb);
6726 		input_queue_head_incr(oldsd);
6727 	}
6728 
6729 	return NOTIFY_OK;
6730 }
6731 
6732 
6733 /**
6734  *	netdev_increment_features - increment feature set by one
6735  *	@all: current feature set
6736  *	@one: new feature set
6737  *	@mask: mask feature set
6738  *
6739  *	Computes a new feature set after adding a device with feature set
6740  *	@one to the master device with current feature set @all.  Will not
6741  *	enable anything that is off in @mask. Returns the new feature set.
6742  */
6743 netdev_features_t netdev_increment_features(netdev_features_t all,
6744 	netdev_features_t one, netdev_features_t mask)
6745 {
6746 	if (mask & NETIF_F_GEN_CSUM)
6747 		mask |= NETIF_F_ALL_CSUM;
6748 	mask |= NETIF_F_VLAN_CHALLENGED;
6749 
6750 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6751 	all &= one | ~NETIF_F_ALL_FOR_ALL;
6752 
6753 	/* If one device supports hw checksumming, set for all. */
6754 	if (all & NETIF_F_GEN_CSUM)
6755 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6756 
6757 	return all;
6758 }
6759 EXPORT_SYMBOL(netdev_increment_features);
6760 
6761 static struct hlist_head * __net_init netdev_create_hash(void)
6762 {
6763 	int i;
6764 	struct hlist_head *hash;
6765 
6766 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6767 	if (hash != NULL)
6768 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
6769 			INIT_HLIST_HEAD(&hash[i]);
6770 
6771 	return hash;
6772 }
6773 
6774 /* Initialize per network namespace state */
6775 static int __net_init netdev_init(struct net *net)
6776 {
6777 	if (net != &init_net)
6778 		INIT_LIST_HEAD(&net->dev_base_head);
6779 
6780 	net->dev_name_head = netdev_create_hash();
6781 	if (net->dev_name_head == NULL)
6782 		goto err_name;
6783 
6784 	net->dev_index_head = netdev_create_hash();
6785 	if (net->dev_index_head == NULL)
6786 		goto err_idx;
6787 
6788 	return 0;
6789 
6790 err_idx:
6791 	kfree(net->dev_name_head);
6792 err_name:
6793 	return -ENOMEM;
6794 }
6795 
6796 /**
6797  *	netdev_drivername - network driver for the device
6798  *	@dev: network device
6799  *
6800  *	Determine network driver for device.
6801  */
6802 const char *netdev_drivername(const struct net_device *dev)
6803 {
6804 	const struct device_driver *driver;
6805 	const struct device *parent;
6806 	const char *empty = "";
6807 
6808 	parent = dev->dev.parent;
6809 	if (!parent)
6810 		return empty;
6811 
6812 	driver = parent->driver;
6813 	if (driver && driver->name)
6814 		return driver->name;
6815 	return empty;
6816 }
6817 
6818 static int __netdev_printk(const char *level, const struct net_device *dev,
6819 			   struct va_format *vaf)
6820 {
6821 	int r;
6822 
6823 	if (dev && dev->dev.parent) {
6824 		r = dev_printk_emit(level[1] - '0',
6825 				    dev->dev.parent,
6826 				    "%s %s %s: %pV",
6827 				    dev_driver_string(dev->dev.parent),
6828 				    dev_name(dev->dev.parent),
6829 				    netdev_name(dev), vaf);
6830 	} else if (dev) {
6831 		r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6832 	} else {
6833 		r = printk("%s(NULL net_device): %pV", level, vaf);
6834 	}
6835 
6836 	return r;
6837 }
6838 
6839 int netdev_printk(const char *level, const struct net_device *dev,
6840 		  const char *format, ...)
6841 {
6842 	struct va_format vaf;
6843 	va_list args;
6844 	int r;
6845 
6846 	va_start(args, format);
6847 
6848 	vaf.fmt = format;
6849 	vaf.va = &args;
6850 
6851 	r = __netdev_printk(level, dev, &vaf);
6852 
6853 	va_end(args);
6854 
6855 	return r;
6856 }
6857 EXPORT_SYMBOL(netdev_printk);
6858 
6859 #define define_netdev_printk_level(func, level)			\
6860 int func(const struct net_device *dev, const char *fmt, ...)	\
6861 {								\
6862 	int r;							\
6863 	struct va_format vaf;					\
6864 	va_list args;						\
6865 								\
6866 	va_start(args, fmt);					\
6867 								\
6868 	vaf.fmt = fmt;						\
6869 	vaf.va = &args;						\
6870 								\
6871 	r = __netdev_printk(level, dev, &vaf);			\
6872 								\
6873 	va_end(args);						\
6874 								\
6875 	return r;						\
6876 }								\
6877 EXPORT_SYMBOL(func);
6878 
6879 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6880 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6881 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6882 define_netdev_printk_level(netdev_err, KERN_ERR);
6883 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6884 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6885 define_netdev_printk_level(netdev_info, KERN_INFO);
6886 
6887 static void __net_exit netdev_exit(struct net *net)
6888 {
6889 	kfree(net->dev_name_head);
6890 	kfree(net->dev_index_head);
6891 }
6892 
6893 static struct pernet_operations __net_initdata netdev_net_ops = {
6894 	.init = netdev_init,
6895 	.exit = netdev_exit,
6896 };
6897 
6898 static void __net_exit default_device_exit(struct net *net)
6899 {
6900 	struct net_device *dev, *aux;
6901 	/*
6902 	 * Push all migratable network devices back to the
6903 	 * initial network namespace
6904 	 */
6905 	rtnl_lock();
6906 	for_each_netdev_safe(net, dev, aux) {
6907 		int err;
6908 		char fb_name[IFNAMSIZ];
6909 
6910 		/* Ignore unmoveable devices (i.e. loopback) */
6911 		if (dev->features & NETIF_F_NETNS_LOCAL)
6912 			continue;
6913 
6914 		/* Leave virtual devices for the generic cleanup */
6915 		if (dev->rtnl_link_ops)
6916 			continue;
6917 
6918 		/* Push remaining network devices to init_net */
6919 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6920 		err = dev_change_net_namespace(dev, &init_net, fb_name);
6921 		if (err) {
6922 			pr_emerg("%s: failed to move %s to init_net: %d\n",
6923 				 __func__, dev->name, err);
6924 			BUG();
6925 		}
6926 	}
6927 	rtnl_unlock();
6928 }
6929 
6930 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
6931 {
6932 	/* Return with the rtnl_lock held when there are no network
6933 	 * devices unregistering in any network namespace in net_list.
6934 	 */
6935 	struct net *net;
6936 	bool unregistering;
6937 	DEFINE_WAIT(wait);
6938 
6939 	for (;;) {
6940 		prepare_to_wait(&netdev_unregistering_wq, &wait,
6941 				TASK_UNINTERRUPTIBLE);
6942 		unregistering = false;
6943 		rtnl_lock();
6944 		list_for_each_entry(net, net_list, exit_list) {
6945 			if (net->dev_unreg_count > 0) {
6946 				unregistering = true;
6947 				break;
6948 			}
6949 		}
6950 		if (!unregistering)
6951 			break;
6952 		__rtnl_unlock();
6953 		schedule();
6954 	}
6955 	finish_wait(&netdev_unregistering_wq, &wait);
6956 }
6957 
6958 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6959 {
6960 	/* At exit all network devices most be removed from a network
6961 	 * namespace.  Do this in the reverse order of registration.
6962 	 * Do this across as many network namespaces as possible to
6963 	 * improve batching efficiency.
6964 	 */
6965 	struct net_device *dev;
6966 	struct net *net;
6967 	LIST_HEAD(dev_kill_list);
6968 
6969 	/* To prevent network device cleanup code from dereferencing
6970 	 * loopback devices or network devices that have been freed
6971 	 * wait here for all pending unregistrations to complete,
6972 	 * before unregistring the loopback device and allowing the
6973 	 * network namespace be freed.
6974 	 *
6975 	 * The netdev todo list containing all network devices
6976 	 * unregistrations that happen in default_device_exit_batch
6977 	 * will run in the rtnl_unlock() at the end of
6978 	 * default_device_exit_batch.
6979 	 */
6980 	rtnl_lock_unregistering(net_list);
6981 	list_for_each_entry(net, net_list, exit_list) {
6982 		for_each_netdev_reverse(net, dev) {
6983 			if (dev->rtnl_link_ops)
6984 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6985 			else
6986 				unregister_netdevice_queue(dev, &dev_kill_list);
6987 		}
6988 	}
6989 	unregister_netdevice_many(&dev_kill_list);
6990 	list_del(&dev_kill_list);
6991 	rtnl_unlock();
6992 }
6993 
6994 static struct pernet_operations __net_initdata default_device_ops = {
6995 	.exit = default_device_exit,
6996 	.exit_batch = default_device_exit_batch,
6997 };
6998 
6999 /*
7000  *	Initialize the DEV module. At boot time this walks the device list and
7001  *	unhooks any devices that fail to initialise (normally hardware not
7002  *	present) and leaves us with a valid list of present and active devices.
7003  *
7004  */
7005 
7006 /*
7007  *       This is called single threaded during boot, so no need
7008  *       to take the rtnl semaphore.
7009  */
7010 static int __init net_dev_init(void)
7011 {
7012 	int i, rc = -ENOMEM;
7013 
7014 	BUG_ON(!dev_boot_phase);
7015 
7016 	if (dev_proc_init())
7017 		goto out;
7018 
7019 	if (netdev_kobject_init())
7020 		goto out;
7021 
7022 	INIT_LIST_HEAD(&ptype_all);
7023 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
7024 		INIT_LIST_HEAD(&ptype_base[i]);
7025 
7026 	INIT_LIST_HEAD(&offload_base);
7027 
7028 	if (register_pernet_subsys(&netdev_net_ops))
7029 		goto out;
7030 
7031 	/*
7032 	 *	Initialise the packet receive queues.
7033 	 */
7034 
7035 	for_each_possible_cpu(i) {
7036 		struct softnet_data *sd = &per_cpu(softnet_data, i);
7037 
7038 		skb_queue_head_init(&sd->input_pkt_queue);
7039 		skb_queue_head_init(&sd->process_queue);
7040 		INIT_LIST_HEAD(&sd->poll_list);
7041 		sd->output_queue_tailp = &sd->output_queue;
7042 #ifdef CONFIG_RPS
7043 		sd->csd.func = rps_trigger_softirq;
7044 		sd->csd.info = sd;
7045 		sd->cpu = i;
7046 #endif
7047 
7048 		sd->backlog.poll = process_backlog;
7049 		sd->backlog.weight = weight_p;
7050 	}
7051 
7052 	dev_boot_phase = 0;
7053 
7054 	/* The loopback device is special if any other network devices
7055 	 * is present in a network namespace the loopback device must
7056 	 * be present. Since we now dynamically allocate and free the
7057 	 * loopback device ensure this invariant is maintained by
7058 	 * keeping the loopback device as the first device on the
7059 	 * list of network devices.  Ensuring the loopback devices
7060 	 * is the first device that appears and the last network device
7061 	 * that disappears.
7062 	 */
7063 	if (register_pernet_device(&loopback_net_ops))
7064 		goto out;
7065 
7066 	if (register_pernet_device(&default_device_ops))
7067 		goto out;
7068 
7069 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7070 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7071 
7072 	hotcpu_notifier(dev_cpu_callback, 0);
7073 	dst_init();
7074 	rc = 0;
7075 out:
7076 	return rc;
7077 }
7078 
7079 subsys_initcall(net_dev_init);
7080