xref: /openbmc/linux/net/core/dev.c (revision 1b69c6d0ae90b7f1a4f61d5c8209d5cb7a55f849)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <net/mpls.h>
122 #include <linux/ipv6.h>
123 #include <linux/in.h>
124 #include <linux/jhash.h>
125 #include <linux/random.h>
126 #include <trace/events/napi.h>
127 #include <trace/events/net.h>
128 #include <trace/events/skb.h>
129 #include <linux/pci.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139 
140 #include "net-sysfs.h"
141 
142 /* Instead of increasing this, you should create a hash table. */
143 #define MAX_GRO_SKBS 8
144 
145 /* This should be increased if a protocol with a bigger head is added. */
146 #define GRO_MAX_HEAD (MAX_HEADER + 128)
147 
148 static DEFINE_SPINLOCK(ptype_lock);
149 static DEFINE_SPINLOCK(offload_lock);
150 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
151 struct list_head ptype_all __read_mostly;	/* Taps */
152 static struct list_head offload_base __read_mostly;
153 
154 static int netif_rx_internal(struct sk_buff *skb);
155 static int call_netdevice_notifiers_info(unsigned long val,
156 					 struct net_device *dev,
157 					 struct netdev_notifier_info *info);
158 
159 /*
160  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
161  * semaphore.
162  *
163  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
164  *
165  * Writers must hold the rtnl semaphore while they loop through the
166  * dev_base_head list, and hold dev_base_lock for writing when they do the
167  * actual updates.  This allows pure readers to access the list even
168  * while a writer is preparing to update it.
169  *
170  * To put it another way, dev_base_lock is held for writing only to
171  * protect against pure readers; the rtnl semaphore provides the
172  * protection against other writers.
173  *
174  * See, for example usages, register_netdevice() and
175  * unregister_netdevice(), which must be called with the rtnl
176  * semaphore held.
177  */
178 DEFINE_RWLOCK(dev_base_lock);
179 EXPORT_SYMBOL(dev_base_lock);
180 
181 /* protects napi_hash addition/deletion and napi_gen_id */
182 static DEFINE_SPINLOCK(napi_hash_lock);
183 
184 static unsigned int napi_gen_id;
185 static DEFINE_HASHTABLE(napi_hash, 8);
186 
187 static seqcount_t devnet_rename_seq;
188 
189 static inline void dev_base_seq_inc(struct net *net)
190 {
191 	while (++net->dev_base_seq == 0);
192 }
193 
194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 {
196 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
197 
198 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 }
200 
201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 {
203 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 }
205 
206 static inline void rps_lock(struct softnet_data *sd)
207 {
208 #ifdef CONFIG_RPS
209 	spin_lock(&sd->input_pkt_queue.lock);
210 #endif
211 }
212 
213 static inline void rps_unlock(struct softnet_data *sd)
214 {
215 #ifdef CONFIG_RPS
216 	spin_unlock(&sd->input_pkt_queue.lock);
217 #endif
218 }
219 
220 /* Device list insertion */
221 static void list_netdevice(struct net_device *dev)
222 {
223 	struct net *net = dev_net(dev);
224 
225 	ASSERT_RTNL();
226 
227 	write_lock_bh(&dev_base_lock);
228 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
229 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
230 	hlist_add_head_rcu(&dev->index_hlist,
231 			   dev_index_hash(net, dev->ifindex));
232 	write_unlock_bh(&dev_base_lock);
233 
234 	dev_base_seq_inc(net);
235 }
236 
237 /* Device list removal
238  * caller must respect a RCU grace period before freeing/reusing dev
239  */
240 static void unlist_netdevice(struct net_device *dev)
241 {
242 	ASSERT_RTNL();
243 
244 	/* Unlink dev from the device chain */
245 	write_lock_bh(&dev_base_lock);
246 	list_del_rcu(&dev->dev_list);
247 	hlist_del_rcu(&dev->name_hlist);
248 	hlist_del_rcu(&dev->index_hlist);
249 	write_unlock_bh(&dev_base_lock);
250 
251 	dev_base_seq_inc(dev_net(dev));
252 }
253 
254 /*
255  *	Our notifier list
256  */
257 
258 static RAW_NOTIFIER_HEAD(netdev_chain);
259 
260 /*
261  *	Device drivers call our routines to queue packets here. We empty the
262  *	queue in the local softnet handler.
263  */
264 
265 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
266 EXPORT_PER_CPU_SYMBOL(softnet_data);
267 
268 #ifdef CONFIG_LOCKDEP
269 /*
270  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
271  * according to dev->type
272  */
273 static const unsigned short netdev_lock_type[] =
274 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
275 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
276 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
277 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
278 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
279 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
280 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
281 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
282 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
283 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
284 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
285 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
286 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
287 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
288 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
289 
290 static const char *const netdev_lock_name[] =
291 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
292 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
293 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
294 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
295 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
296 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
297 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
298 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
299 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
300 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
301 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
302 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
303 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
304 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
305 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
306 
307 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
308 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
309 
310 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
311 {
312 	int i;
313 
314 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
315 		if (netdev_lock_type[i] == dev_type)
316 			return i;
317 	/* the last key is used by default */
318 	return ARRAY_SIZE(netdev_lock_type) - 1;
319 }
320 
321 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
322 						 unsigned short dev_type)
323 {
324 	int i;
325 
326 	i = netdev_lock_pos(dev_type);
327 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
328 				   netdev_lock_name[i]);
329 }
330 
331 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
332 {
333 	int i;
334 
335 	i = netdev_lock_pos(dev->type);
336 	lockdep_set_class_and_name(&dev->addr_list_lock,
337 				   &netdev_addr_lock_key[i],
338 				   netdev_lock_name[i]);
339 }
340 #else
341 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
342 						 unsigned short dev_type)
343 {
344 }
345 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
346 {
347 }
348 #endif
349 
350 /*******************************************************************************
351 
352 		Protocol management and registration routines
353 
354 *******************************************************************************/
355 
356 /*
357  *	Add a protocol ID to the list. Now that the input handler is
358  *	smarter we can dispense with all the messy stuff that used to be
359  *	here.
360  *
361  *	BEWARE!!! Protocol handlers, mangling input packets,
362  *	MUST BE last in hash buckets and checking protocol handlers
363  *	MUST start from promiscuous ptype_all chain in net_bh.
364  *	It is true now, do not change it.
365  *	Explanation follows: if protocol handler, mangling packet, will
366  *	be the first on list, it is not able to sense, that packet
367  *	is cloned and should be copied-on-write, so that it will
368  *	change it and subsequent readers will get broken packet.
369  *							--ANK (980803)
370  */
371 
372 static inline struct list_head *ptype_head(const struct packet_type *pt)
373 {
374 	if (pt->type == htons(ETH_P_ALL))
375 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
376 	else
377 		return pt->dev ? &pt->dev->ptype_specific :
378 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
379 }
380 
381 /**
382  *	dev_add_pack - add packet handler
383  *	@pt: packet type declaration
384  *
385  *	Add a protocol handler to the networking stack. The passed &packet_type
386  *	is linked into kernel lists and may not be freed until it has been
387  *	removed from the kernel lists.
388  *
389  *	This call does not sleep therefore it can not
390  *	guarantee all CPU's that are in middle of receiving packets
391  *	will see the new packet type (until the next received packet).
392  */
393 
394 void dev_add_pack(struct packet_type *pt)
395 {
396 	struct list_head *head = ptype_head(pt);
397 
398 	spin_lock(&ptype_lock);
399 	list_add_rcu(&pt->list, head);
400 	spin_unlock(&ptype_lock);
401 }
402 EXPORT_SYMBOL(dev_add_pack);
403 
404 /**
405  *	__dev_remove_pack	 - remove packet handler
406  *	@pt: packet type declaration
407  *
408  *	Remove a protocol handler that was previously added to the kernel
409  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
410  *	from the kernel lists and can be freed or reused once this function
411  *	returns.
412  *
413  *      The packet type might still be in use by receivers
414  *	and must not be freed until after all the CPU's have gone
415  *	through a quiescent state.
416  */
417 void __dev_remove_pack(struct packet_type *pt)
418 {
419 	struct list_head *head = ptype_head(pt);
420 	struct packet_type *pt1;
421 
422 	spin_lock(&ptype_lock);
423 
424 	list_for_each_entry(pt1, head, list) {
425 		if (pt == pt1) {
426 			list_del_rcu(&pt->list);
427 			goto out;
428 		}
429 	}
430 
431 	pr_warn("dev_remove_pack: %p not found\n", pt);
432 out:
433 	spin_unlock(&ptype_lock);
434 }
435 EXPORT_SYMBOL(__dev_remove_pack);
436 
437 /**
438  *	dev_remove_pack	 - remove packet handler
439  *	@pt: packet type declaration
440  *
441  *	Remove a protocol handler that was previously added to the kernel
442  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
443  *	from the kernel lists and can be freed or reused once this function
444  *	returns.
445  *
446  *	This call sleeps to guarantee that no CPU is looking at the packet
447  *	type after return.
448  */
449 void dev_remove_pack(struct packet_type *pt)
450 {
451 	__dev_remove_pack(pt);
452 
453 	synchronize_net();
454 }
455 EXPORT_SYMBOL(dev_remove_pack);
456 
457 
458 /**
459  *	dev_add_offload - register offload handlers
460  *	@po: protocol offload declaration
461  *
462  *	Add protocol offload handlers to the networking stack. The passed
463  *	&proto_offload is linked into kernel lists and may not be freed until
464  *	it has been removed from the kernel lists.
465  *
466  *	This call does not sleep therefore it can not
467  *	guarantee all CPU's that are in middle of receiving packets
468  *	will see the new offload handlers (until the next received packet).
469  */
470 void dev_add_offload(struct packet_offload *po)
471 {
472 	struct packet_offload *elem;
473 
474 	spin_lock(&offload_lock);
475 	list_for_each_entry(elem, &offload_base, list) {
476 		if (po->priority < elem->priority)
477 			break;
478 	}
479 	list_add_rcu(&po->list, elem->list.prev);
480 	spin_unlock(&offload_lock);
481 }
482 EXPORT_SYMBOL(dev_add_offload);
483 
484 /**
485  *	__dev_remove_offload	 - remove offload handler
486  *	@po: packet offload declaration
487  *
488  *	Remove a protocol offload handler that was previously added to the
489  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
490  *	is removed from the kernel lists and can be freed or reused once this
491  *	function returns.
492  *
493  *      The packet type might still be in use by receivers
494  *	and must not be freed until after all the CPU's have gone
495  *	through a quiescent state.
496  */
497 static void __dev_remove_offload(struct packet_offload *po)
498 {
499 	struct list_head *head = &offload_base;
500 	struct packet_offload *po1;
501 
502 	spin_lock(&offload_lock);
503 
504 	list_for_each_entry(po1, head, list) {
505 		if (po == po1) {
506 			list_del_rcu(&po->list);
507 			goto out;
508 		}
509 	}
510 
511 	pr_warn("dev_remove_offload: %p not found\n", po);
512 out:
513 	spin_unlock(&offload_lock);
514 }
515 
516 /**
517  *	dev_remove_offload	 - remove packet offload handler
518  *	@po: packet offload declaration
519  *
520  *	Remove a packet offload handler that was previously added to the kernel
521  *	offload handlers by dev_add_offload(). The passed &offload_type is
522  *	removed from the kernel lists and can be freed or reused once this
523  *	function returns.
524  *
525  *	This call sleeps to guarantee that no CPU is looking at the packet
526  *	type after return.
527  */
528 void dev_remove_offload(struct packet_offload *po)
529 {
530 	__dev_remove_offload(po);
531 
532 	synchronize_net();
533 }
534 EXPORT_SYMBOL(dev_remove_offload);
535 
536 /******************************************************************************
537 
538 		      Device Boot-time Settings Routines
539 
540 *******************************************************************************/
541 
542 /* Boot time configuration table */
543 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
544 
545 /**
546  *	netdev_boot_setup_add	- add new setup entry
547  *	@name: name of the device
548  *	@map: configured settings for the device
549  *
550  *	Adds new setup entry to the dev_boot_setup list.  The function
551  *	returns 0 on error and 1 on success.  This is a generic routine to
552  *	all netdevices.
553  */
554 static int netdev_boot_setup_add(char *name, struct ifmap *map)
555 {
556 	struct netdev_boot_setup *s;
557 	int i;
558 
559 	s = dev_boot_setup;
560 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
561 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
562 			memset(s[i].name, 0, sizeof(s[i].name));
563 			strlcpy(s[i].name, name, IFNAMSIZ);
564 			memcpy(&s[i].map, map, sizeof(s[i].map));
565 			break;
566 		}
567 	}
568 
569 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
570 }
571 
572 /**
573  *	netdev_boot_setup_check	- check boot time settings
574  *	@dev: the netdevice
575  *
576  * 	Check boot time settings for the device.
577  *	The found settings are set for the device to be used
578  *	later in the device probing.
579  *	Returns 0 if no settings found, 1 if they are.
580  */
581 int netdev_boot_setup_check(struct net_device *dev)
582 {
583 	struct netdev_boot_setup *s = dev_boot_setup;
584 	int i;
585 
586 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
587 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
588 		    !strcmp(dev->name, s[i].name)) {
589 			dev->irq 	= s[i].map.irq;
590 			dev->base_addr 	= s[i].map.base_addr;
591 			dev->mem_start 	= s[i].map.mem_start;
592 			dev->mem_end 	= s[i].map.mem_end;
593 			return 1;
594 		}
595 	}
596 	return 0;
597 }
598 EXPORT_SYMBOL(netdev_boot_setup_check);
599 
600 
601 /**
602  *	netdev_boot_base	- get address from boot time settings
603  *	@prefix: prefix for network device
604  *	@unit: id for network device
605  *
606  * 	Check boot time settings for the base address of device.
607  *	The found settings are set for the device to be used
608  *	later in the device probing.
609  *	Returns 0 if no settings found.
610  */
611 unsigned long netdev_boot_base(const char *prefix, int unit)
612 {
613 	const struct netdev_boot_setup *s = dev_boot_setup;
614 	char name[IFNAMSIZ];
615 	int i;
616 
617 	sprintf(name, "%s%d", prefix, unit);
618 
619 	/*
620 	 * If device already registered then return base of 1
621 	 * to indicate not to probe for this interface
622 	 */
623 	if (__dev_get_by_name(&init_net, name))
624 		return 1;
625 
626 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
627 		if (!strcmp(name, s[i].name))
628 			return s[i].map.base_addr;
629 	return 0;
630 }
631 
632 /*
633  * Saves at boot time configured settings for any netdevice.
634  */
635 int __init netdev_boot_setup(char *str)
636 {
637 	int ints[5];
638 	struct ifmap map;
639 
640 	str = get_options(str, ARRAY_SIZE(ints), ints);
641 	if (!str || !*str)
642 		return 0;
643 
644 	/* Save settings */
645 	memset(&map, 0, sizeof(map));
646 	if (ints[0] > 0)
647 		map.irq = ints[1];
648 	if (ints[0] > 1)
649 		map.base_addr = ints[2];
650 	if (ints[0] > 2)
651 		map.mem_start = ints[3];
652 	if (ints[0] > 3)
653 		map.mem_end = ints[4];
654 
655 	/* Add new entry to the list */
656 	return netdev_boot_setup_add(str, &map);
657 }
658 
659 __setup("netdev=", netdev_boot_setup);
660 
661 /*******************************************************************************
662 
663 			    Device Interface Subroutines
664 
665 *******************************************************************************/
666 
667 /**
668  *	dev_get_iflink	- get 'iflink' value of a interface
669  *	@dev: targeted interface
670  *
671  *	Indicates the ifindex the interface is linked to.
672  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
673  */
674 
675 int dev_get_iflink(const struct net_device *dev)
676 {
677 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
678 		return dev->netdev_ops->ndo_get_iflink(dev);
679 
680 	return dev->ifindex;
681 }
682 EXPORT_SYMBOL(dev_get_iflink);
683 
684 /**
685  *	__dev_get_by_name	- find a device by its name
686  *	@net: the applicable net namespace
687  *	@name: name to find
688  *
689  *	Find an interface by name. Must be called under RTNL semaphore
690  *	or @dev_base_lock. If the name is found a pointer to the device
691  *	is returned. If the name is not found then %NULL is returned. The
692  *	reference counters are not incremented so the caller must be
693  *	careful with locks.
694  */
695 
696 struct net_device *__dev_get_by_name(struct net *net, const char *name)
697 {
698 	struct net_device *dev;
699 	struct hlist_head *head = dev_name_hash(net, name);
700 
701 	hlist_for_each_entry(dev, head, name_hlist)
702 		if (!strncmp(dev->name, name, IFNAMSIZ))
703 			return dev;
704 
705 	return NULL;
706 }
707 EXPORT_SYMBOL(__dev_get_by_name);
708 
709 /**
710  *	dev_get_by_name_rcu	- find a device by its name
711  *	@net: the applicable net namespace
712  *	@name: name to find
713  *
714  *	Find an interface by name.
715  *	If the name is found a pointer to the device is returned.
716  * 	If the name is not found then %NULL is returned.
717  *	The reference counters are not incremented so the caller must be
718  *	careful with locks. The caller must hold RCU lock.
719  */
720 
721 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
722 {
723 	struct net_device *dev;
724 	struct hlist_head *head = dev_name_hash(net, name);
725 
726 	hlist_for_each_entry_rcu(dev, head, name_hlist)
727 		if (!strncmp(dev->name, name, IFNAMSIZ))
728 			return dev;
729 
730 	return NULL;
731 }
732 EXPORT_SYMBOL(dev_get_by_name_rcu);
733 
734 /**
735  *	dev_get_by_name		- find a device by its name
736  *	@net: the applicable net namespace
737  *	@name: name to find
738  *
739  *	Find an interface by name. This can be called from any
740  *	context and does its own locking. The returned handle has
741  *	the usage count incremented and the caller must use dev_put() to
742  *	release it when it is no longer needed. %NULL is returned if no
743  *	matching device is found.
744  */
745 
746 struct net_device *dev_get_by_name(struct net *net, const char *name)
747 {
748 	struct net_device *dev;
749 
750 	rcu_read_lock();
751 	dev = dev_get_by_name_rcu(net, name);
752 	if (dev)
753 		dev_hold(dev);
754 	rcu_read_unlock();
755 	return dev;
756 }
757 EXPORT_SYMBOL(dev_get_by_name);
758 
759 /**
760  *	__dev_get_by_index - find a device by its ifindex
761  *	@net: the applicable net namespace
762  *	@ifindex: index of device
763  *
764  *	Search for an interface by index. Returns %NULL if the device
765  *	is not found or a pointer to the device. The device has not
766  *	had its reference counter increased so the caller must be careful
767  *	about locking. The caller must hold either the RTNL semaphore
768  *	or @dev_base_lock.
769  */
770 
771 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
772 {
773 	struct net_device *dev;
774 	struct hlist_head *head = dev_index_hash(net, ifindex);
775 
776 	hlist_for_each_entry(dev, head, index_hlist)
777 		if (dev->ifindex == ifindex)
778 			return dev;
779 
780 	return NULL;
781 }
782 EXPORT_SYMBOL(__dev_get_by_index);
783 
784 /**
785  *	dev_get_by_index_rcu - find a device by its ifindex
786  *	@net: the applicable net namespace
787  *	@ifindex: index of device
788  *
789  *	Search for an interface by index. Returns %NULL if the device
790  *	is not found or a pointer to the device. The device has not
791  *	had its reference counter increased so the caller must be careful
792  *	about locking. The caller must hold RCU lock.
793  */
794 
795 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
796 {
797 	struct net_device *dev;
798 	struct hlist_head *head = dev_index_hash(net, ifindex);
799 
800 	hlist_for_each_entry_rcu(dev, head, index_hlist)
801 		if (dev->ifindex == ifindex)
802 			return dev;
803 
804 	return NULL;
805 }
806 EXPORT_SYMBOL(dev_get_by_index_rcu);
807 
808 
809 /**
810  *	dev_get_by_index - find a device by its ifindex
811  *	@net: the applicable net namespace
812  *	@ifindex: index of device
813  *
814  *	Search for an interface by index. Returns NULL if the device
815  *	is not found or a pointer to the device. The device returned has
816  *	had a reference added and the pointer is safe until the user calls
817  *	dev_put to indicate they have finished with it.
818  */
819 
820 struct net_device *dev_get_by_index(struct net *net, int ifindex)
821 {
822 	struct net_device *dev;
823 
824 	rcu_read_lock();
825 	dev = dev_get_by_index_rcu(net, ifindex);
826 	if (dev)
827 		dev_hold(dev);
828 	rcu_read_unlock();
829 	return dev;
830 }
831 EXPORT_SYMBOL(dev_get_by_index);
832 
833 /**
834  *	netdev_get_name - get a netdevice name, knowing its ifindex.
835  *	@net: network namespace
836  *	@name: a pointer to the buffer where the name will be stored.
837  *	@ifindex: the ifindex of the interface to get the name from.
838  *
839  *	The use of raw_seqcount_begin() and cond_resched() before
840  *	retrying is required as we want to give the writers a chance
841  *	to complete when CONFIG_PREEMPT is not set.
842  */
843 int netdev_get_name(struct net *net, char *name, int ifindex)
844 {
845 	struct net_device *dev;
846 	unsigned int seq;
847 
848 retry:
849 	seq = raw_seqcount_begin(&devnet_rename_seq);
850 	rcu_read_lock();
851 	dev = dev_get_by_index_rcu(net, ifindex);
852 	if (!dev) {
853 		rcu_read_unlock();
854 		return -ENODEV;
855 	}
856 
857 	strcpy(name, dev->name);
858 	rcu_read_unlock();
859 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
860 		cond_resched();
861 		goto retry;
862 	}
863 
864 	return 0;
865 }
866 
867 /**
868  *	dev_getbyhwaddr_rcu - find a device by its hardware address
869  *	@net: the applicable net namespace
870  *	@type: media type of device
871  *	@ha: hardware address
872  *
873  *	Search for an interface by MAC address. Returns NULL if the device
874  *	is not found or a pointer to the device.
875  *	The caller must hold RCU or RTNL.
876  *	The returned device has not had its ref count increased
877  *	and the caller must therefore be careful about locking
878  *
879  */
880 
881 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
882 				       const char *ha)
883 {
884 	struct net_device *dev;
885 
886 	for_each_netdev_rcu(net, dev)
887 		if (dev->type == type &&
888 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
889 			return dev;
890 
891 	return NULL;
892 }
893 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
894 
895 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
896 {
897 	struct net_device *dev;
898 
899 	ASSERT_RTNL();
900 	for_each_netdev(net, dev)
901 		if (dev->type == type)
902 			return dev;
903 
904 	return NULL;
905 }
906 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
907 
908 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
909 {
910 	struct net_device *dev, *ret = NULL;
911 
912 	rcu_read_lock();
913 	for_each_netdev_rcu(net, dev)
914 		if (dev->type == type) {
915 			dev_hold(dev);
916 			ret = dev;
917 			break;
918 		}
919 	rcu_read_unlock();
920 	return ret;
921 }
922 EXPORT_SYMBOL(dev_getfirstbyhwtype);
923 
924 /**
925  *	__dev_get_by_flags - find any device with given flags
926  *	@net: the applicable net namespace
927  *	@if_flags: IFF_* values
928  *	@mask: bitmask of bits in if_flags to check
929  *
930  *	Search for any interface with the given flags. Returns NULL if a device
931  *	is not found or a pointer to the device. Must be called inside
932  *	rtnl_lock(), and result refcount is unchanged.
933  */
934 
935 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
936 				      unsigned short mask)
937 {
938 	struct net_device *dev, *ret;
939 
940 	ASSERT_RTNL();
941 
942 	ret = NULL;
943 	for_each_netdev(net, dev) {
944 		if (((dev->flags ^ if_flags) & mask) == 0) {
945 			ret = dev;
946 			break;
947 		}
948 	}
949 	return ret;
950 }
951 EXPORT_SYMBOL(__dev_get_by_flags);
952 
953 /**
954  *	dev_valid_name - check if name is okay for network device
955  *	@name: name string
956  *
957  *	Network device names need to be valid file names to
958  *	to allow sysfs to work.  We also disallow any kind of
959  *	whitespace.
960  */
961 bool dev_valid_name(const char *name)
962 {
963 	if (*name == '\0')
964 		return false;
965 	if (strlen(name) >= IFNAMSIZ)
966 		return false;
967 	if (!strcmp(name, ".") || !strcmp(name, ".."))
968 		return false;
969 
970 	while (*name) {
971 		if (*name == '/' || *name == ':' || isspace(*name))
972 			return false;
973 		name++;
974 	}
975 	return true;
976 }
977 EXPORT_SYMBOL(dev_valid_name);
978 
979 /**
980  *	__dev_alloc_name - allocate a name for a device
981  *	@net: network namespace to allocate the device name in
982  *	@name: name format string
983  *	@buf:  scratch buffer and result name string
984  *
985  *	Passed a format string - eg "lt%d" it will try and find a suitable
986  *	id. It scans list of devices to build up a free map, then chooses
987  *	the first empty slot. The caller must hold the dev_base or rtnl lock
988  *	while allocating the name and adding the device in order to avoid
989  *	duplicates.
990  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
991  *	Returns the number of the unit assigned or a negative errno code.
992  */
993 
994 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
995 {
996 	int i = 0;
997 	const char *p;
998 	const int max_netdevices = 8*PAGE_SIZE;
999 	unsigned long *inuse;
1000 	struct net_device *d;
1001 
1002 	p = strnchr(name, IFNAMSIZ-1, '%');
1003 	if (p) {
1004 		/*
1005 		 * Verify the string as this thing may have come from
1006 		 * the user.  There must be either one "%d" and no other "%"
1007 		 * characters.
1008 		 */
1009 		if (p[1] != 'd' || strchr(p + 2, '%'))
1010 			return -EINVAL;
1011 
1012 		/* Use one page as a bit array of possible slots */
1013 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1014 		if (!inuse)
1015 			return -ENOMEM;
1016 
1017 		for_each_netdev(net, d) {
1018 			if (!sscanf(d->name, name, &i))
1019 				continue;
1020 			if (i < 0 || i >= max_netdevices)
1021 				continue;
1022 
1023 			/*  avoid cases where sscanf is not exact inverse of printf */
1024 			snprintf(buf, IFNAMSIZ, name, i);
1025 			if (!strncmp(buf, d->name, IFNAMSIZ))
1026 				set_bit(i, inuse);
1027 		}
1028 
1029 		i = find_first_zero_bit(inuse, max_netdevices);
1030 		free_page((unsigned long) inuse);
1031 	}
1032 
1033 	if (buf != name)
1034 		snprintf(buf, IFNAMSIZ, name, i);
1035 	if (!__dev_get_by_name(net, buf))
1036 		return i;
1037 
1038 	/* It is possible to run out of possible slots
1039 	 * when the name is long and there isn't enough space left
1040 	 * for the digits, or if all bits are used.
1041 	 */
1042 	return -ENFILE;
1043 }
1044 
1045 /**
1046  *	dev_alloc_name - allocate a name for a device
1047  *	@dev: device
1048  *	@name: name format string
1049  *
1050  *	Passed a format string - eg "lt%d" it will try and find a suitable
1051  *	id. It scans list of devices to build up a free map, then chooses
1052  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1053  *	while allocating the name and adding the device in order to avoid
1054  *	duplicates.
1055  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056  *	Returns the number of the unit assigned or a negative errno code.
1057  */
1058 
1059 int dev_alloc_name(struct net_device *dev, const char *name)
1060 {
1061 	char buf[IFNAMSIZ];
1062 	struct net *net;
1063 	int ret;
1064 
1065 	BUG_ON(!dev_net(dev));
1066 	net = dev_net(dev);
1067 	ret = __dev_alloc_name(net, name, buf);
1068 	if (ret >= 0)
1069 		strlcpy(dev->name, buf, IFNAMSIZ);
1070 	return ret;
1071 }
1072 EXPORT_SYMBOL(dev_alloc_name);
1073 
1074 static int dev_alloc_name_ns(struct net *net,
1075 			     struct net_device *dev,
1076 			     const char *name)
1077 {
1078 	char buf[IFNAMSIZ];
1079 	int ret;
1080 
1081 	ret = __dev_alloc_name(net, name, buf);
1082 	if (ret >= 0)
1083 		strlcpy(dev->name, buf, IFNAMSIZ);
1084 	return ret;
1085 }
1086 
1087 static int dev_get_valid_name(struct net *net,
1088 			      struct net_device *dev,
1089 			      const char *name)
1090 {
1091 	BUG_ON(!net);
1092 
1093 	if (!dev_valid_name(name))
1094 		return -EINVAL;
1095 
1096 	if (strchr(name, '%'))
1097 		return dev_alloc_name_ns(net, dev, name);
1098 	else if (__dev_get_by_name(net, name))
1099 		return -EEXIST;
1100 	else if (dev->name != name)
1101 		strlcpy(dev->name, name, IFNAMSIZ);
1102 
1103 	return 0;
1104 }
1105 
1106 /**
1107  *	dev_change_name - change name of a device
1108  *	@dev: device
1109  *	@newname: name (or format string) must be at least IFNAMSIZ
1110  *
1111  *	Change name of a device, can pass format strings "eth%d".
1112  *	for wildcarding.
1113  */
1114 int dev_change_name(struct net_device *dev, const char *newname)
1115 {
1116 	unsigned char old_assign_type;
1117 	char oldname[IFNAMSIZ];
1118 	int err = 0;
1119 	int ret;
1120 	struct net *net;
1121 
1122 	ASSERT_RTNL();
1123 	BUG_ON(!dev_net(dev));
1124 
1125 	net = dev_net(dev);
1126 	if (dev->flags & IFF_UP)
1127 		return -EBUSY;
1128 
1129 	write_seqcount_begin(&devnet_rename_seq);
1130 
1131 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1132 		write_seqcount_end(&devnet_rename_seq);
1133 		return 0;
1134 	}
1135 
1136 	memcpy(oldname, dev->name, IFNAMSIZ);
1137 
1138 	err = dev_get_valid_name(net, dev, newname);
1139 	if (err < 0) {
1140 		write_seqcount_end(&devnet_rename_seq);
1141 		return err;
1142 	}
1143 
1144 	if (oldname[0] && !strchr(oldname, '%'))
1145 		netdev_info(dev, "renamed from %s\n", oldname);
1146 
1147 	old_assign_type = dev->name_assign_type;
1148 	dev->name_assign_type = NET_NAME_RENAMED;
1149 
1150 rollback:
1151 	ret = device_rename(&dev->dev, dev->name);
1152 	if (ret) {
1153 		memcpy(dev->name, oldname, IFNAMSIZ);
1154 		dev->name_assign_type = old_assign_type;
1155 		write_seqcount_end(&devnet_rename_seq);
1156 		return ret;
1157 	}
1158 
1159 	write_seqcount_end(&devnet_rename_seq);
1160 
1161 	netdev_adjacent_rename_links(dev, oldname);
1162 
1163 	write_lock_bh(&dev_base_lock);
1164 	hlist_del_rcu(&dev->name_hlist);
1165 	write_unlock_bh(&dev_base_lock);
1166 
1167 	synchronize_rcu();
1168 
1169 	write_lock_bh(&dev_base_lock);
1170 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1171 	write_unlock_bh(&dev_base_lock);
1172 
1173 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1174 	ret = notifier_to_errno(ret);
1175 
1176 	if (ret) {
1177 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1178 		if (err >= 0) {
1179 			err = ret;
1180 			write_seqcount_begin(&devnet_rename_seq);
1181 			memcpy(dev->name, oldname, IFNAMSIZ);
1182 			memcpy(oldname, newname, IFNAMSIZ);
1183 			dev->name_assign_type = old_assign_type;
1184 			old_assign_type = NET_NAME_RENAMED;
1185 			goto rollback;
1186 		} else {
1187 			pr_err("%s: name change rollback failed: %d\n",
1188 			       dev->name, ret);
1189 		}
1190 	}
1191 
1192 	return err;
1193 }
1194 
1195 /**
1196  *	dev_set_alias - change ifalias of a device
1197  *	@dev: device
1198  *	@alias: name up to IFALIASZ
1199  *	@len: limit of bytes to copy from info
1200  *
1201  *	Set ifalias for a device,
1202  */
1203 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1204 {
1205 	char *new_ifalias;
1206 
1207 	ASSERT_RTNL();
1208 
1209 	if (len >= IFALIASZ)
1210 		return -EINVAL;
1211 
1212 	if (!len) {
1213 		kfree(dev->ifalias);
1214 		dev->ifalias = NULL;
1215 		return 0;
1216 	}
1217 
1218 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1219 	if (!new_ifalias)
1220 		return -ENOMEM;
1221 	dev->ifalias = new_ifalias;
1222 
1223 	strlcpy(dev->ifalias, alias, len+1);
1224 	return len;
1225 }
1226 
1227 
1228 /**
1229  *	netdev_features_change - device changes features
1230  *	@dev: device to cause notification
1231  *
1232  *	Called to indicate a device has changed features.
1233  */
1234 void netdev_features_change(struct net_device *dev)
1235 {
1236 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1237 }
1238 EXPORT_SYMBOL(netdev_features_change);
1239 
1240 /**
1241  *	netdev_state_change - device changes state
1242  *	@dev: device to cause notification
1243  *
1244  *	Called to indicate a device has changed state. This function calls
1245  *	the notifier chains for netdev_chain and sends a NEWLINK message
1246  *	to the routing socket.
1247  */
1248 void netdev_state_change(struct net_device *dev)
1249 {
1250 	if (dev->flags & IFF_UP) {
1251 		struct netdev_notifier_change_info change_info;
1252 
1253 		change_info.flags_changed = 0;
1254 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1255 					      &change_info.info);
1256 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1257 	}
1258 }
1259 EXPORT_SYMBOL(netdev_state_change);
1260 
1261 /**
1262  * 	netdev_notify_peers - notify network peers about existence of @dev
1263  * 	@dev: network device
1264  *
1265  * Generate traffic such that interested network peers are aware of
1266  * @dev, such as by generating a gratuitous ARP. This may be used when
1267  * a device wants to inform the rest of the network about some sort of
1268  * reconfiguration such as a failover event or virtual machine
1269  * migration.
1270  */
1271 void netdev_notify_peers(struct net_device *dev)
1272 {
1273 	rtnl_lock();
1274 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1275 	rtnl_unlock();
1276 }
1277 EXPORT_SYMBOL(netdev_notify_peers);
1278 
1279 static int __dev_open(struct net_device *dev)
1280 {
1281 	const struct net_device_ops *ops = dev->netdev_ops;
1282 	int ret;
1283 
1284 	ASSERT_RTNL();
1285 
1286 	if (!netif_device_present(dev))
1287 		return -ENODEV;
1288 
1289 	/* Block netpoll from trying to do any rx path servicing.
1290 	 * If we don't do this there is a chance ndo_poll_controller
1291 	 * or ndo_poll may be running while we open the device
1292 	 */
1293 	netpoll_poll_disable(dev);
1294 
1295 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1296 	ret = notifier_to_errno(ret);
1297 	if (ret)
1298 		return ret;
1299 
1300 	set_bit(__LINK_STATE_START, &dev->state);
1301 
1302 	if (ops->ndo_validate_addr)
1303 		ret = ops->ndo_validate_addr(dev);
1304 
1305 	if (!ret && ops->ndo_open)
1306 		ret = ops->ndo_open(dev);
1307 
1308 	netpoll_poll_enable(dev);
1309 
1310 	if (ret)
1311 		clear_bit(__LINK_STATE_START, &dev->state);
1312 	else {
1313 		dev->flags |= IFF_UP;
1314 		dev_set_rx_mode(dev);
1315 		dev_activate(dev);
1316 		add_device_randomness(dev->dev_addr, dev->addr_len);
1317 	}
1318 
1319 	return ret;
1320 }
1321 
1322 /**
1323  *	dev_open	- prepare an interface for use.
1324  *	@dev:	device to open
1325  *
1326  *	Takes a device from down to up state. The device's private open
1327  *	function is invoked and then the multicast lists are loaded. Finally
1328  *	the device is moved into the up state and a %NETDEV_UP message is
1329  *	sent to the netdev notifier chain.
1330  *
1331  *	Calling this function on an active interface is a nop. On a failure
1332  *	a negative errno code is returned.
1333  */
1334 int dev_open(struct net_device *dev)
1335 {
1336 	int ret;
1337 
1338 	if (dev->flags & IFF_UP)
1339 		return 0;
1340 
1341 	ret = __dev_open(dev);
1342 	if (ret < 0)
1343 		return ret;
1344 
1345 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1346 	call_netdevice_notifiers(NETDEV_UP, dev);
1347 
1348 	return ret;
1349 }
1350 EXPORT_SYMBOL(dev_open);
1351 
1352 static int __dev_close_many(struct list_head *head)
1353 {
1354 	struct net_device *dev;
1355 
1356 	ASSERT_RTNL();
1357 	might_sleep();
1358 
1359 	list_for_each_entry(dev, head, close_list) {
1360 		/* Temporarily disable netpoll until the interface is down */
1361 		netpoll_poll_disable(dev);
1362 
1363 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1364 
1365 		clear_bit(__LINK_STATE_START, &dev->state);
1366 
1367 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1368 		 * can be even on different cpu. So just clear netif_running().
1369 		 *
1370 		 * dev->stop() will invoke napi_disable() on all of it's
1371 		 * napi_struct instances on this device.
1372 		 */
1373 		smp_mb__after_atomic(); /* Commit netif_running(). */
1374 	}
1375 
1376 	dev_deactivate_many(head);
1377 
1378 	list_for_each_entry(dev, head, close_list) {
1379 		const struct net_device_ops *ops = dev->netdev_ops;
1380 
1381 		/*
1382 		 *	Call the device specific close. This cannot fail.
1383 		 *	Only if device is UP
1384 		 *
1385 		 *	We allow it to be called even after a DETACH hot-plug
1386 		 *	event.
1387 		 */
1388 		if (ops->ndo_stop)
1389 			ops->ndo_stop(dev);
1390 
1391 		dev->flags &= ~IFF_UP;
1392 		netpoll_poll_enable(dev);
1393 	}
1394 
1395 	return 0;
1396 }
1397 
1398 static int __dev_close(struct net_device *dev)
1399 {
1400 	int retval;
1401 	LIST_HEAD(single);
1402 
1403 	list_add(&dev->close_list, &single);
1404 	retval = __dev_close_many(&single);
1405 	list_del(&single);
1406 
1407 	return retval;
1408 }
1409 
1410 int dev_close_many(struct list_head *head, bool unlink)
1411 {
1412 	struct net_device *dev, *tmp;
1413 
1414 	/* Remove the devices that don't need to be closed */
1415 	list_for_each_entry_safe(dev, tmp, head, close_list)
1416 		if (!(dev->flags & IFF_UP))
1417 			list_del_init(&dev->close_list);
1418 
1419 	__dev_close_many(head);
1420 
1421 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1422 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1423 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1424 		if (unlink)
1425 			list_del_init(&dev->close_list);
1426 	}
1427 
1428 	return 0;
1429 }
1430 EXPORT_SYMBOL(dev_close_many);
1431 
1432 /**
1433  *	dev_close - shutdown an interface.
1434  *	@dev: device to shutdown
1435  *
1436  *	This function moves an active device into down state. A
1437  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1438  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1439  *	chain.
1440  */
1441 int dev_close(struct net_device *dev)
1442 {
1443 	if (dev->flags & IFF_UP) {
1444 		LIST_HEAD(single);
1445 
1446 		list_add(&dev->close_list, &single);
1447 		dev_close_many(&single, true);
1448 		list_del(&single);
1449 	}
1450 	return 0;
1451 }
1452 EXPORT_SYMBOL(dev_close);
1453 
1454 
1455 /**
1456  *	dev_disable_lro - disable Large Receive Offload on a device
1457  *	@dev: device
1458  *
1459  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1460  *	called under RTNL.  This is needed if received packets may be
1461  *	forwarded to another interface.
1462  */
1463 void dev_disable_lro(struct net_device *dev)
1464 {
1465 	struct net_device *lower_dev;
1466 	struct list_head *iter;
1467 
1468 	dev->wanted_features &= ~NETIF_F_LRO;
1469 	netdev_update_features(dev);
1470 
1471 	if (unlikely(dev->features & NETIF_F_LRO))
1472 		netdev_WARN(dev, "failed to disable LRO!\n");
1473 
1474 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1475 		dev_disable_lro(lower_dev);
1476 }
1477 EXPORT_SYMBOL(dev_disable_lro);
1478 
1479 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1480 				   struct net_device *dev)
1481 {
1482 	struct netdev_notifier_info info;
1483 
1484 	netdev_notifier_info_init(&info, dev);
1485 	return nb->notifier_call(nb, val, &info);
1486 }
1487 
1488 static int dev_boot_phase = 1;
1489 
1490 /**
1491  *	register_netdevice_notifier - register a network notifier block
1492  *	@nb: notifier
1493  *
1494  *	Register a notifier to be called when network device events occur.
1495  *	The notifier passed is linked into the kernel structures and must
1496  *	not be reused until it has been unregistered. A negative errno code
1497  *	is returned on a failure.
1498  *
1499  * 	When registered all registration and up events are replayed
1500  *	to the new notifier to allow device to have a race free
1501  *	view of the network device list.
1502  */
1503 
1504 int register_netdevice_notifier(struct notifier_block *nb)
1505 {
1506 	struct net_device *dev;
1507 	struct net_device *last;
1508 	struct net *net;
1509 	int err;
1510 
1511 	rtnl_lock();
1512 	err = raw_notifier_chain_register(&netdev_chain, nb);
1513 	if (err)
1514 		goto unlock;
1515 	if (dev_boot_phase)
1516 		goto unlock;
1517 	for_each_net(net) {
1518 		for_each_netdev(net, dev) {
1519 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1520 			err = notifier_to_errno(err);
1521 			if (err)
1522 				goto rollback;
1523 
1524 			if (!(dev->flags & IFF_UP))
1525 				continue;
1526 
1527 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1528 		}
1529 	}
1530 
1531 unlock:
1532 	rtnl_unlock();
1533 	return err;
1534 
1535 rollback:
1536 	last = dev;
1537 	for_each_net(net) {
1538 		for_each_netdev(net, dev) {
1539 			if (dev == last)
1540 				goto outroll;
1541 
1542 			if (dev->flags & IFF_UP) {
1543 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1544 							dev);
1545 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1546 			}
1547 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1548 		}
1549 	}
1550 
1551 outroll:
1552 	raw_notifier_chain_unregister(&netdev_chain, nb);
1553 	goto unlock;
1554 }
1555 EXPORT_SYMBOL(register_netdevice_notifier);
1556 
1557 /**
1558  *	unregister_netdevice_notifier - unregister a network notifier block
1559  *	@nb: notifier
1560  *
1561  *	Unregister a notifier previously registered by
1562  *	register_netdevice_notifier(). The notifier is unlinked into the
1563  *	kernel structures and may then be reused. A negative errno code
1564  *	is returned on a failure.
1565  *
1566  * 	After unregistering unregister and down device events are synthesized
1567  *	for all devices on the device list to the removed notifier to remove
1568  *	the need for special case cleanup code.
1569  */
1570 
1571 int unregister_netdevice_notifier(struct notifier_block *nb)
1572 {
1573 	struct net_device *dev;
1574 	struct net *net;
1575 	int err;
1576 
1577 	rtnl_lock();
1578 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1579 	if (err)
1580 		goto unlock;
1581 
1582 	for_each_net(net) {
1583 		for_each_netdev(net, dev) {
1584 			if (dev->flags & IFF_UP) {
1585 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1586 							dev);
1587 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1588 			}
1589 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1590 		}
1591 	}
1592 unlock:
1593 	rtnl_unlock();
1594 	return err;
1595 }
1596 EXPORT_SYMBOL(unregister_netdevice_notifier);
1597 
1598 /**
1599  *	call_netdevice_notifiers_info - call all network notifier blocks
1600  *	@val: value passed unmodified to notifier function
1601  *	@dev: net_device pointer passed unmodified to notifier function
1602  *	@info: notifier information data
1603  *
1604  *	Call all network notifier blocks.  Parameters and return value
1605  *	are as for raw_notifier_call_chain().
1606  */
1607 
1608 static int call_netdevice_notifiers_info(unsigned long val,
1609 					 struct net_device *dev,
1610 					 struct netdev_notifier_info *info)
1611 {
1612 	ASSERT_RTNL();
1613 	netdev_notifier_info_init(info, dev);
1614 	return raw_notifier_call_chain(&netdev_chain, val, info);
1615 }
1616 
1617 /**
1618  *	call_netdevice_notifiers - call all network notifier blocks
1619  *      @val: value passed unmodified to notifier function
1620  *      @dev: net_device pointer passed unmodified to notifier function
1621  *
1622  *	Call all network notifier blocks.  Parameters and return value
1623  *	are as for raw_notifier_call_chain().
1624  */
1625 
1626 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1627 {
1628 	struct netdev_notifier_info info;
1629 
1630 	return call_netdevice_notifiers_info(val, dev, &info);
1631 }
1632 EXPORT_SYMBOL(call_netdevice_notifiers);
1633 
1634 #ifdef CONFIG_NET_INGRESS
1635 static struct static_key ingress_needed __read_mostly;
1636 
1637 void net_inc_ingress_queue(void)
1638 {
1639 	static_key_slow_inc(&ingress_needed);
1640 }
1641 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1642 
1643 void net_dec_ingress_queue(void)
1644 {
1645 	static_key_slow_dec(&ingress_needed);
1646 }
1647 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1648 #endif
1649 
1650 static struct static_key netstamp_needed __read_mostly;
1651 #ifdef HAVE_JUMP_LABEL
1652 /* We are not allowed to call static_key_slow_dec() from irq context
1653  * If net_disable_timestamp() is called from irq context, defer the
1654  * static_key_slow_dec() calls.
1655  */
1656 static atomic_t netstamp_needed_deferred;
1657 #endif
1658 
1659 void net_enable_timestamp(void)
1660 {
1661 #ifdef HAVE_JUMP_LABEL
1662 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1663 
1664 	if (deferred) {
1665 		while (--deferred)
1666 			static_key_slow_dec(&netstamp_needed);
1667 		return;
1668 	}
1669 #endif
1670 	static_key_slow_inc(&netstamp_needed);
1671 }
1672 EXPORT_SYMBOL(net_enable_timestamp);
1673 
1674 void net_disable_timestamp(void)
1675 {
1676 #ifdef HAVE_JUMP_LABEL
1677 	if (in_interrupt()) {
1678 		atomic_inc(&netstamp_needed_deferred);
1679 		return;
1680 	}
1681 #endif
1682 	static_key_slow_dec(&netstamp_needed);
1683 }
1684 EXPORT_SYMBOL(net_disable_timestamp);
1685 
1686 static inline void net_timestamp_set(struct sk_buff *skb)
1687 {
1688 	skb->tstamp.tv64 = 0;
1689 	if (static_key_false(&netstamp_needed))
1690 		__net_timestamp(skb);
1691 }
1692 
1693 #define net_timestamp_check(COND, SKB)			\
1694 	if (static_key_false(&netstamp_needed)) {		\
1695 		if ((COND) && !(SKB)->tstamp.tv64)	\
1696 			__net_timestamp(SKB);		\
1697 	}						\
1698 
1699 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1700 {
1701 	unsigned int len;
1702 
1703 	if (!(dev->flags & IFF_UP))
1704 		return false;
1705 
1706 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1707 	if (skb->len <= len)
1708 		return true;
1709 
1710 	/* if TSO is enabled, we don't care about the length as the packet
1711 	 * could be forwarded without being segmented before
1712 	 */
1713 	if (skb_is_gso(skb))
1714 		return true;
1715 
1716 	return false;
1717 }
1718 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1719 
1720 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1721 {
1722 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1723 	    unlikely(!is_skb_forwardable(dev, skb))) {
1724 		atomic_long_inc(&dev->rx_dropped);
1725 		kfree_skb(skb);
1726 		return NET_RX_DROP;
1727 	}
1728 
1729 	skb_scrub_packet(skb, true);
1730 	skb->priority = 0;
1731 	skb->protocol = eth_type_trans(skb, dev);
1732 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1733 
1734 	return 0;
1735 }
1736 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1737 
1738 /**
1739  * dev_forward_skb - loopback an skb to another netif
1740  *
1741  * @dev: destination network device
1742  * @skb: buffer to forward
1743  *
1744  * return values:
1745  *	NET_RX_SUCCESS	(no congestion)
1746  *	NET_RX_DROP     (packet was dropped, but freed)
1747  *
1748  * dev_forward_skb can be used for injecting an skb from the
1749  * start_xmit function of one device into the receive queue
1750  * of another device.
1751  *
1752  * The receiving device may be in another namespace, so
1753  * we have to clear all information in the skb that could
1754  * impact namespace isolation.
1755  */
1756 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1757 {
1758 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1759 }
1760 EXPORT_SYMBOL_GPL(dev_forward_skb);
1761 
1762 static inline int deliver_skb(struct sk_buff *skb,
1763 			      struct packet_type *pt_prev,
1764 			      struct net_device *orig_dev)
1765 {
1766 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1767 		return -ENOMEM;
1768 	atomic_inc(&skb->users);
1769 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1770 }
1771 
1772 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1773 					  struct packet_type **pt,
1774 					  struct net_device *orig_dev,
1775 					  __be16 type,
1776 					  struct list_head *ptype_list)
1777 {
1778 	struct packet_type *ptype, *pt_prev = *pt;
1779 
1780 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1781 		if (ptype->type != type)
1782 			continue;
1783 		if (pt_prev)
1784 			deliver_skb(skb, pt_prev, orig_dev);
1785 		pt_prev = ptype;
1786 	}
1787 	*pt = pt_prev;
1788 }
1789 
1790 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1791 {
1792 	if (!ptype->af_packet_priv || !skb->sk)
1793 		return false;
1794 
1795 	if (ptype->id_match)
1796 		return ptype->id_match(ptype, skb->sk);
1797 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1798 		return true;
1799 
1800 	return false;
1801 }
1802 
1803 /*
1804  *	Support routine. Sends outgoing frames to any network
1805  *	taps currently in use.
1806  */
1807 
1808 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1809 {
1810 	struct packet_type *ptype;
1811 	struct sk_buff *skb2 = NULL;
1812 	struct packet_type *pt_prev = NULL;
1813 	struct list_head *ptype_list = &ptype_all;
1814 
1815 	rcu_read_lock();
1816 again:
1817 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1818 		/* Never send packets back to the socket
1819 		 * they originated from - MvS (miquels@drinkel.ow.org)
1820 		 */
1821 		if (skb_loop_sk(ptype, skb))
1822 			continue;
1823 
1824 		if (pt_prev) {
1825 			deliver_skb(skb2, pt_prev, skb->dev);
1826 			pt_prev = ptype;
1827 			continue;
1828 		}
1829 
1830 		/* need to clone skb, done only once */
1831 		skb2 = skb_clone(skb, GFP_ATOMIC);
1832 		if (!skb2)
1833 			goto out_unlock;
1834 
1835 		net_timestamp_set(skb2);
1836 
1837 		/* skb->nh should be correctly
1838 		 * set by sender, so that the second statement is
1839 		 * just protection against buggy protocols.
1840 		 */
1841 		skb_reset_mac_header(skb2);
1842 
1843 		if (skb_network_header(skb2) < skb2->data ||
1844 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1845 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1846 					     ntohs(skb2->protocol),
1847 					     dev->name);
1848 			skb_reset_network_header(skb2);
1849 		}
1850 
1851 		skb2->transport_header = skb2->network_header;
1852 		skb2->pkt_type = PACKET_OUTGOING;
1853 		pt_prev = ptype;
1854 	}
1855 
1856 	if (ptype_list == &ptype_all) {
1857 		ptype_list = &dev->ptype_all;
1858 		goto again;
1859 	}
1860 out_unlock:
1861 	if (pt_prev)
1862 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1863 	rcu_read_unlock();
1864 }
1865 
1866 /**
1867  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1868  * @dev: Network device
1869  * @txq: number of queues available
1870  *
1871  * If real_num_tx_queues is changed the tc mappings may no longer be
1872  * valid. To resolve this verify the tc mapping remains valid and if
1873  * not NULL the mapping. With no priorities mapping to this
1874  * offset/count pair it will no longer be used. In the worst case TC0
1875  * is invalid nothing can be done so disable priority mappings. If is
1876  * expected that drivers will fix this mapping if they can before
1877  * calling netif_set_real_num_tx_queues.
1878  */
1879 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1880 {
1881 	int i;
1882 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1883 
1884 	/* If TC0 is invalidated disable TC mapping */
1885 	if (tc->offset + tc->count > txq) {
1886 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1887 		dev->num_tc = 0;
1888 		return;
1889 	}
1890 
1891 	/* Invalidated prio to tc mappings set to TC0 */
1892 	for (i = 1; i < TC_BITMASK + 1; i++) {
1893 		int q = netdev_get_prio_tc_map(dev, i);
1894 
1895 		tc = &dev->tc_to_txq[q];
1896 		if (tc->offset + tc->count > txq) {
1897 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1898 				i, q);
1899 			netdev_set_prio_tc_map(dev, i, 0);
1900 		}
1901 	}
1902 }
1903 
1904 #ifdef CONFIG_XPS
1905 static DEFINE_MUTEX(xps_map_mutex);
1906 #define xmap_dereference(P)		\
1907 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1908 
1909 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1910 					int cpu, u16 index)
1911 {
1912 	struct xps_map *map = NULL;
1913 	int pos;
1914 
1915 	if (dev_maps)
1916 		map = xmap_dereference(dev_maps->cpu_map[cpu]);
1917 
1918 	for (pos = 0; map && pos < map->len; pos++) {
1919 		if (map->queues[pos] == index) {
1920 			if (map->len > 1) {
1921 				map->queues[pos] = map->queues[--map->len];
1922 			} else {
1923 				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1924 				kfree_rcu(map, rcu);
1925 				map = NULL;
1926 			}
1927 			break;
1928 		}
1929 	}
1930 
1931 	return map;
1932 }
1933 
1934 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1935 {
1936 	struct xps_dev_maps *dev_maps;
1937 	int cpu, i;
1938 	bool active = false;
1939 
1940 	mutex_lock(&xps_map_mutex);
1941 	dev_maps = xmap_dereference(dev->xps_maps);
1942 
1943 	if (!dev_maps)
1944 		goto out_no_maps;
1945 
1946 	for_each_possible_cpu(cpu) {
1947 		for (i = index; i < dev->num_tx_queues; i++) {
1948 			if (!remove_xps_queue(dev_maps, cpu, i))
1949 				break;
1950 		}
1951 		if (i == dev->num_tx_queues)
1952 			active = true;
1953 	}
1954 
1955 	if (!active) {
1956 		RCU_INIT_POINTER(dev->xps_maps, NULL);
1957 		kfree_rcu(dev_maps, rcu);
1958 	}
1959 
1960 	for (i = index; i < dev->num_tx_queues; i++)
1961 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1962 					     NUMA_NO_NODE);
1963 
1964 out_no_maps:
1965 	mutex_unlock(&xps_map_mutex);
1966 }
1967 
1968 static struct xps_map *expand_xps_map(struct xps_map *map,
1969 				      int cpu, u16 index)
1970 {
1971 	struct xps_map *new_map;
1972 	int alloc_len = XPS_MIN_MAP_ALLOC;
1973 	int i, pos;
1974 
1975 	for (pos = 0; map && pos < map->len; pos++) {
1976 		if (map->queues[pos] != index)
1977 			continue;
1978 		return map;
1979 	}
1980 
1981 	/* Need to add queue to this CPU's existing map */
1982 	if (map) {
1983 		if (pos < map->alloc_len)
1984 			return map;
1985 
1986 		alloc_len = map->alloc_len * 2;
1987 	}
1988 
1989 	/* Need to allocate new map to store queue on this CPU's map */
1990 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1991 			       cpu_to_node(cpu));
1992 	if (!new_map)
1993 		return NULL;
1994 
1995 	for (i = 0; i < pos; i++)
1996 		new_map->queues[i] = map->queues[i];
1997 	new_map->alloc_len = alloc_len;
1998 	new_map->len = pos;
1999 
2000 	return new_map;
2001 }
2002 
2003 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2004 			u16 index)
2005 {
2006 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2007 	struct xps_map *map, *new_map;
2008 	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2009 	int cpu, numa_node_id = -2;
2010 	bool active = false;
2011 
2012 	mutex_lock(&xps_map_mutex);
2013 
2014 	dev_maps = xmap_dereference(dev->xps_maps);
2015 
2016 	/* allocate memory for queue storage */
2017 	for_each_online_cpu(cpu) {
2018 		if (!cpumask_test_cpu(cpu, mask))
2019 			continue;
2020 
2021 		if (!new_dev_maps)
2022 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2023 		if (!new_dev_maps) {
2024 			mutex_unlock(&xps_map_mutex);
2025 			return -ENOMEM;
2026 		}
2027 
2028 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2029 				 NULL;
2030 
2031 		map = expand_xps_map(map, cpu, index);
2032 		if (!map)
2033 			goto error;
2034 
2035 		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2036 	}
2037 
2038 	if (!new_dev_maps)
2039 		goto out_no_new_maps;
2040 
2041 	for_each_possible_cpu(cpu) {
2042 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2043 			/* add queue to CPU maps */
2044 			int pos = 0;
2045 
2046 			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2047 			while ((pos < map->len) && (map->queues[pos] != index))
2048 				pos++;
2049 
2050 			if (pos == map->len)
2051 				map->queues[map->len++] = index;
2052 #ifdef CONFIG_NUMA
2053 			if (numa_node_id == -2)
2054 				numa_node_id = cpu_to_node(cpu);
2055 			else if (numa_node_id != cpu_to_node(cpu))
2056 				numa_node_id = -1;
2057 #endif
2058 		} else if (dev_maps) {
2059 			/* fill in the new device map from the old device map */
2060 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2061 			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2062 		}
2063 
2064 	}
2065 
2066 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2067 
2068 	/* Cleanup old maps */
2069 	if (dev_maps) {
2070 		for_each_possible_cpu(cpu) {
2071 			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2072 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2073 			if (map && map != new_map)
2074 				kfree_rcu(map, rcu);
2075 		}
2076 
2077 		kfree_rcu(dev_maps, rcu);
2078 	}
2079 
2080 	dev_maps = new_dev_maps;
2081 	active = true;
2082 
2083 out_no_new_maps:
2084 	/* update Tx queue numa node */
2085 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2086 				     (numa_node_id >= 0) ? numa_node_id :
2087 				     NUMA_NO_NODE);
2088 
2089 	if (!dev_maps)
2090 		goto out_no_maps;
2091 
2092 	/* removes queue from unused CPUs */
2093 	for_each_possible_cpu(cpu) {
2094 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2095 			continue;
2096 
2097 		if (remove_xps_queue(dev_maps, cpu, index))
2098 			active = true;
2099 	}
2100 
2101 	/* free map if not active */
2102 	if (!active) {
2103 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2104 		kfree_rcu(dev_maps, rcu);
2105 	}
2106 
2107 out_no_maps:
2108 	mutex_unlock(&xps_map_mutex);
2109 
2110 	return 0;
2111 error:
2112 	/* remove any maps that we added */
2113 	for_each_possible_cpu(cpu) {
2114 		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2115 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2116 				 NULL;
2117 		if (new_map && new_map != map)
2118 			kfree(new_map);
2119 	}
2120 
2121 	mutex_unlock(&xps_map_mutex);
2122 
2123 	kfree(new_dev_maps);
2124 	return -ENOMEM;
2125 }
2126 EXPORT_SYMBOL(netif_set_xps_queue);
2127 
2128 #endif
2129 /*
2130  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2131  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2132  */
2133 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2134 {
2135 	int rc;
2136 
2137 	if (txq < 1 || txq > dev->num_tx_queues)
2138 		return -EINVAL;
2139 
2140 	if (dev->reg_state == NETREG_REGISTERED ||
2141 	    dev->reg_state == NETREG_UNREGISTERING) {
2142 		ASSERT_RTNL();
2143 
2144 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2145 						  txq);
2146 		if (rc)
2147 			return rc;
2148 
2149 		if (dev->num_tc)
2150 			netif_setup_tc(dev, txq);
2151 
2152 		if (txq < dev->real_num_tx_queues) {
2153 			qdisc_reset_all_tx_gt(dev, txq);
2154 #ifdef CONFIG_XPS
2155 			netif_reset_xps_queues_gt(dev, txq);
2156 #endif
2157 		}
2158 	}
2159 
2160 	dev->real_num_tx_queues = txq;
2161 	return 0;
2162 }
2163 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2164 
2165 #ifdef CONFIG_SYSFS
2166 /**
2167  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2168  *	@dev: Network device
2169  *	@rxq: Actual number of RX queues
2170  *
2171  *	This must be called either with the rtnl_lock held or before
2172  *	registration of the net device.  Returns 0 on success, or a
2173  *	negative error code.  If called before registration, it always
2174  *	succeeds.
2175  */
2176 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2177 {
2178 	int rc;
2179 
2180 	if (rxq < 1 || rxq > dev->num_rx_queues)
2181 		return -EINVAL;
2182 
2183 	if (dev->reg_state == NETREG_REGISTERED) {
2184 		ASSERT_RTNL();
2185 
2186 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2187 						  rxq);
2188 		if (rc)
2189 			return rc;
2190 	}
2191 
2192 	dev->real_num_rx_queues = rxq;
2193 	return 0;
2194 }
2195 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2196 #endif
2197 
2198 /**
2199  * netif_get_num_default_rss_queues - default number of RSS queues
2200  *
2201  * This routine should set an upper limit on the number of RSS queues
2202  * used by default by multiqueue devices.
2203  */
2204 int netif_get_num_default_rss_queues(void)
2205 {
2206 	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2207 }
2208 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2209 
2210 static inline void __netif_reschedule(struct Qdisc *q)
2211 {
2212 	struct softnet_data *sd;
2213 	unsigned long flags;
2214 
2215 	local_irq_save(flags);
2216 	sd = this_cpu_ptr(&softnet_data);
2217 	q->next_sched = NULL;
2218 	*sd->output_queue_tailp = q;
2219 	sd->output_queue_tailp = &q->next_sched;
2220 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2221 	local_irq_restore(flags);
2222 }
2223 
2224 void __netif_schedule(struct Qdisc *q)
2225 {
2226 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2227 		__netif_reschedule(q);
2228 }
2229 EXPORT_SYMBOL(__netif_schedule);
2230 
2231 struct dev_kfree_skb_cb {
2232 	enum skb_free_reason reason;
2233 };
2234 
2235 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2236 {
2237 	return (struct dev_kfree_skb_cb *)skb->cb;
2238 }
2239 
2240 void netif_schedule_queue(struct netdev_queue *txq)
2241 {
2242 	rcu_read_lock();
2243 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2244 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2245 
2246 		__netif_schedule(q);
2247 	}
2248 	rcu_read_unlock();
2249 }
2250 EXPORT_SYMBOL(netif_schedule_queue);
2251 
2252 /**
2253  *	netif_wake_subqueue - allow sending packets on subqueue
2254  *	@dev: network device
2255  *	@queue_index: sub queue index
2256  *
2257  * Resume individual transmit queue of a device with multiple transmit queues.
2258  */
2259 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2260 {
2261 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2262 
2263 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2264 		struct Qdisc *q;
2265 
2266 		rcu_read_lock();
2267 		q = rcu_dereference(txq->qdisc);
2268 		__netif_schedule(q);
2269 		rcu_read_unlock();
2270 	}
2271 }
2272 EXPORT_SYMBOL(netif_wake_subqueue);
2273 
2274 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2275 {
2276 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2277 		struct Qdisc *q;
2278 
2279 		rcu_read_lock();
2280 		q = rcu_dereference(dev_queue->qdisc);
2281 		__netif_schedule(q);
2282 		rcu_read_unlock();
2283 	}
2284 }
2285 EXPORT_SYMBOL(netif_tx_wake_queue);
2286 
2287 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2288 {
2289 	unsigned long flags;
2290 
2291 	if (likely(atomic_read(&skb->users) == 1)) {
2292 		smp_rmb();
2293 		atomic_set(&skb->users, 0);
2294 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2295 		return;
2296 	}
2297 	get_kfree_skb_cb(skb)->reason = reason;
2298 	local_irq_save(flags);
2299 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2300 	__this_cpu_write(softnet_data.completion_queue, skb);
2301 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2302 	local_irq_restore(flags);
2303 }
2304 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2305 
2306 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2307 {
2308 	if (in_irq() || irqs_disabled())
2309 		__dev_kfree_skb_irq(skb, reason);
2310 	else
2311 		dev_kfree_skb(skb);
2312 }
2313 EXPORT_SYMBOL(__dev_kfree_skb_any);
2314 
2315 
2316 /**
2317  * netif_device_detach - mark device as removed
2318  * @dev: network device
2319  *
2320  * Mark device as removed from system and therefore no longer available.
2321  */
2322 void netif_device_detach(struct net_device *dev)
2323 {
2324 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2325 	    netif_running(dev)) {
2326 		netif_tx_stop_all_queues(dev);
2327 	}
2328 }
2329 EXPORT_SYMBOL(netif_device_detach);
2330 
2331 /**
2332  * netif_device_attach - mark device as attached
2333  * @dev: network device
2334  *
2335  * Mark device as attached from system and restart if needed.
2336  */
2337 void netif_device_attach(struct net_device *dev)
2338 {
2339 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2340 	    netif_running(dev)) {
2341 		netif_tx_wake_all_queues(dev);
2342 		__netdev_watchdog_up(dev);
2343 	}
2344 }
2345 EXPORT_SYMBOL(netif_device_attach);
2346 
2347 /*
2348  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2349  * to be used as a distribution range.
2350  */
2351 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2352 		  unsigned int num_tx_queues)
2353 {
2354 	u32 hash;
2355 	u16 qoffset = 0;
2356 	u16 qcount = num_tx_queues;
2357 
2358 	if (skb_rx_queue_recorded(skb)) {
2359 		hash = skb_get_rx_queue(skb);
2360 		while (unlikely(hash >= num_tx_queues))
2361 			hash -= num_tx_queues;
2362 		return hash;
2363 	}
2364 
2365 	if (dev->num_tc) {
2366 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2367 		qoffset = dev->tc_to_txq[tc].offset;
2368 		qcount = dev->tc_to_txq[tc].count;
2369 	}
2370 
2371 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2372 }
2373 EXPORT_SYMBOL(__skb_tx_hash);
2374 
2375 static void skb_warn_bad_offload(const struct sk_buff *skb)
2376 {
2377 	static const netdev_features_t null_features = 0;
2378 	struct net_device *dev = skb->dev;
2379 	const char *driver = "";
2380 
2381 	if (!net_ratelimit())
2382 		return;
2383 
2384 	if (dev && dev->dev.parent)
2385 		driver = dev_driver_string(dev->dev.parent);
2386 
2387 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2388 	     "gso_type=%d ip_summed=%d\n",
2389 	     driver, dev ? &dev->features : &null_features,
2390 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2391 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2392 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2393 }
2394 
2395 /*
2396  * Invalidate hardware checksum when packet is to be mangled, and
2397  * complete checksum manually on outgoing path.
2398  */
2399 int skb_checksum_help(struct sk_buff *skb)
2400 {
2401 	__wsum csum;
2402 	int ret = 0, offset;
2403 
2404 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2405 		goto out_set_summed;
2406 
2407 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2408 		skb_warn_bad_offload(skb);
2409 		return -EINVAL;
2410 	}
2411 
2412 	/* Before computing a checksum, we should make sure no frag could
2413 	 * be modified by an external entity : checksum could be wrong.
2414 	 */
2415 	if (skb_has_shared_frag(skb)) {
2416 		ret = __skb_linearize(skb);
2417 		if (ret)
2418 			goto out;
2419 	}
2420 
2421 	offset = skb_checksum_start_offset(skb);
2422 	BUG_ON(offset >= skb_headlen(skb));
2423 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2424 
2425 	offset += skb->csum_offset;
2426 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2427 
2428 	if (skb_cloned(skb) &&
2429 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2430 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2431 		if (ret)
2432 			goto out;
2433 	}
2434 
2435 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2436 out_set_summed:
2437 	skb->ip_summed = CHECKSUM_NONE;
2438 out:
2439 	return ret;
2440 }
2441 EXPORT_SYMBOL(skb_checksum_help);
2442 
2443 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2444 {
2445 	__be16 type = skb->protocol;
2446 
2447 	/* Tunnel gso handlers can set protocol to ethernet. */
2448 	if (type == htons(ETH_P_TEB)) {
2449 		struct ethhdr *eth;
2450 
2451 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2452 			return 0;
2453 
2454 		eth = (struct ethhdr *)skb_mac_header(skb);
2455 		type = eth->h_proto;
2456 	}
2457 
2458 	return __vlan_get_protocol(skb, type, depth);
2459 }
2460 
2461 /**
2462  *	skb_mac_gso_segment - mac layer segmentation handler.
2463  *	@skb: buffer to segment
2464  *	@features: features for the output path (see dev->features)
2465  */
2466 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2467 				    netdev_features_t features)
2468 {
2469 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2470 	struct packet_offload *ptype;
2471 	int vlan_depth = skb->mac_len;
2472 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2473 
2474 	if (unlikely(!type))
2475 		return ERR_PTR(-EINVAL);
2476 
2477 	__skb_pull(skb, vlan_depth);
2478 
2479 	rcu_read_lock();
2480 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2481 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2482 			segs = ptype->callbacks.gso_segment(skb, features);
2483 			break;
2484 		}
2485 	}
2486 	rcu_read_unlock();
2487 
2488 	__skb_push(skb, skb->data - skb_mac_header(skb));
2489 
2490 	return segs;
2491 }
2492 EXPORT_SYMBOL(skb_mac_gso_segment);
2493 
2494 
2495 /* openvswitch calls this on rx path, so we need a different check.
2496  */
2497 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2498 {
2499 	if (tx_path)
2500 		return skb->ip_summed != CHECKSUM_PARTIAL;
2501 	else
2502 		return skb->ip_summed == CHECKSUM_NONE;
2503 }
2504 
2505 /**
2506  *	__skb_gso_segment - Perform segmentation on skb.
2507  *	@skb: buffer to segment
2508  *	@features: features for the output path (see dev->features)
2509  *	@tx_path: whether it is called in TX path
2510  *
2511  *	This function segments the given skb and returns a list of segments.
2512  *
2513  *	It may return NULL if the skb requires no segmentation.  This is
2514  *	only possible when GSO is used for verifying header integrity.
2515  */
2516 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2517 				  netdev_features_t features, bool tx_path)
2518 {
2519 	if (unlikely(skb_needs_check(skb, tx_path))) {
2520 		int err;
2521 
2522 		skb_warn_bad_offload(skb);
2523 
2524 		err = skb_cow_head(skb, 0);
2525 		if (err < 0)
2526 			return ERR_PTR(err);
2527 	}
2528 
2529 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2530 	SKB_GSO_CB(skb)->encap_level = 0;
2531 
2532 	skb_reset_mac_header(skb);
2533 	skb_reset_mac_len(skb);
2534 
2535 	return skb_mac_gso_segment(skb, features);
2536 }
2537 EXPORT_SYMBOL(__skb_gso_segment);
2538 
2539 /* Take action when hardware reception checksum errors are detected. */
2540 #ifdef CONFIG_BUG
2541 void netdev_rx_csum_fault(struct net_device *dev)
2542 {
2543 	if (net_ratelimit()) {
2544 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2545 		dump_stack();
2546 	}
2547 }
2548 EXPORT_SYMBOL(netdev_rx_csum_fault);
2549 #endif
2550 
2551 /* Actually, we should eliminate this check as soon as we know, that:
2552  * 1. IOMMU is present and allows to map all the memory.
2553  * 2. No high memory really exists on this machine.
2554  */
2555 
2556 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2557 {
2558 #ifdef CONFIG_HIGHMEM
2559 	int i;
2560 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2561 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2562 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2563 			if (PageHighMem(skb_frag_page(frag)))
2564 				return 1;
2565 		}
2566 	}
2567 
2568 	if (PCI_DMA_BUS_IS_PHYS) {
2569 		struct device *pdev = dev->dev.parent;
2570 
2571 		if (!pdev)
2572 			return 0;
2573 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2574 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2575 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2576 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2577 				return 1;
2578 		}
2579 	}
2580 #endif
2581 	return 0;
2582 }
2583 
2584 /* If MPLS offload request, verify we are testing hardware MPLS features
2585  * instead of standard features for the netdev.
2586  */
2587 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2588 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2589 					   netdev_features_t features,
2590 					   __be16 type)
2591 {
2592 	if (eth_p_mpls(type))
2593 		features &= skb->dev->mpls_features;
2594 
2595 	return features;
2596 }
2597 #else
2598 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2599 					   netdev_features_t features,
2600 					   __be16 type)
2601 {
2602 	return features;
2603 }
2604 #endif
2605 
2606 static netdev_features_t harmonize_features(struct sk_buff *skb,
2607 	netdev_features_t features)
2608 {
2609 	int tmp;
2610 	__be16 type;
2611 
2612 	type = skb_network_protocol(skb, &tmp);
2613 	features = net_mpls_features(skb, features, type);
2614 
2615 	if (skb->ip_summed != CHECKSUM_NONE &&
2616 	    !can_checksum_protocol(features, type)) {
2617 		features &= ~NETIF_F_ALL_CSUM;
2618 	} else if (illegal_highdma(skb->dev, skb)) {
2619 		features &= ~NETIF_F_SG;
2620 	}
2621 
2622 	return features;
2623 }
2624 
2625 netdev_features_t passthru_features_check(struct sk_buff *skb,
2626 					  struct net_device *dev,
2627 					  netdev_features_t features)
2628 {
2629 	return features;
2630 }
2631 EXPORT_SYMBOL(passthru_features_check);
2632 
2633 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2634 					     struct net_device *dev,
2635 					     netdev_features_t features)
2636 {
2637 	return vlan_features_check(skb, features);
2638 }
2639 
2640 netdev_features_t netif_skb_features(struct sk_buff *skb)
2641 {
2642 	struct net_device *dev = skb->dev;
2643 	netdev_features_t features = dev->features;
2644 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2645 
2646 	if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2647 		features &= ~NETIF_F_GSO_MASK;
2648 
2649 	/* If encapsulation offload request, verify we are testing
2650 	 * hardware encapsulation features instead of standard
2651 	 * features for the netdev
2652 	 */
2653 	if (skb->encapsulation)
2654 		features &= dev->hw_enc_features;
2655 
2656 	if (skb_vlan_tagged(skb))
2657 		features = netdev_intersect_features(features,
2658 						     dev->vlan_features |
2659 						     NETIF_F_HW_VLAN_CTAG_TX |
2660 						     NETIF_F_HW_VLAN_STAG_TX);
2661 
2662 	if (dev->netdev_ops->ndo_features_check)
2663 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2664 								features);
2665 	else
2666 		features &= dflt_features_check(skb, dev, features);
2667 
2668 	return harmonize_features(skb, features);
2669 }
2670 EXPORT_SYMBOL(netif_skb_features);
2671 
2672 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2673 		    struct netdev_queue *txq, bool more)
2674 {
2675 	unsigned int len;
2676 	int rc;
2677 
2678 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2679 		dev_queue_xmit_nit(skb, dev);
2680 
2681 	len = skb->len;
2682 	trace_net_dev_start_xmit(skb, dev);
2683 	rc = netdev_start_xmit(skb, dev, txq, more);
2684 	trace_net_dev_xmit(skb, rc, dev, len);
2685 
2686 	return rc;
2687 }
2688 
2689 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2690 				    struct netdev_queue *txq, int *ret)
2691 {
2692 	struct sk_buff *skb = first;
2693 	int rc = NETDEV_TX_OK;
2694 
2695 	while (skb) {
2696 		struct sk_buff *next = skb->next;
2697 
2698 		skb->next = NULL;
2699 		rc = xmit_one(skb, dev, txq, next != NULL);
2700 		if (unlikely(!dev_xmit_complete(rc))) {
2701 			skb->next = next;
2702 			goto out;
2703 		}
2704 
2705 		skb = next;
2706 		if (netif_xmit_stopped(txq) && skb) {
2707 			rc = NETDEV_TX_BUSY;
2708 			break;
2709 		}
2710 	}
2711 
2712 out:
2713 	*ret = rc;
2714 	return skb;
2715 }
2716 
2717 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2718 					  netdev_features_t features)
2719 {
2720 	if (skb_vlan_tag_present(skb) &&
2721 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
2722 		skb = __vlan_hwaccel_push_inside(skb);
2723 	return skb;
2724 }
2725 
2726 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2727 {
2728 	netdev_features_t features;
2729 
2730 	if (skb->next)
2731 		return skb;
2732 
2733 	features = netif_skb_features(skb);
2734 	skb = validate_xmit_vlan(skb, features);
2735 	if (unlikely(!skb))
2736 		goto out_null;
2737 
2738 	if (netif_needs_gso(skb, features)) {
2739 		struct sk_buff *segs;
2740 
2741 		segs = skb_gso_segment(skb, features);
2742 		if (IS_ERR(segs)) {
2743 			goto out_kfree_skb;
2744 		} else if (segs) {
2745 			consume_skb(skb);
2746 			skb = segs;
2747 		}
2748 	} else {
2749 		if (skb_needs_linearize(skb, features) &&
2750 		    __skb_linearize(skb))
2751 			goto out_kfree_skb;
2752 
2753 		/* If packet is not checksummed and device does not
2754 		 * support checksumming for this protocol, complete
2755 		 * checksumming here.
2756 		 */
2757 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2758 			if (skb->encapsulation)
2759 				skb_set_inner_transport_header(skb,
2760 							       skb_checksum_start_offset(skb));
2761 			else
2762 				skb_set_transport_header(skb,
2763 							 skb_checksum_start_offset(skb));
2764 			if (!(features & NETIF_F_ALL_CSUM) &&
2765 			    skb_checksum_help(skb))
2766 				goto out_kfree_skb;
2767 		}
2768 	}
2769 
2770 	return skb;
2771 
2772 out_kfree_skb:
2773 	kfree_skb(skb);
2774 out_null:
2775 	return NULL;
2776 }
2777 
2778 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2779 {
2780 	struct sk_buff *next, *head = NULL, *tail;
2781 
2782 	for (; skb != NULL; skb = next) {
2783 		next = skb->next;
2784 		skb->next = NULL;
2785 
2786 		/* in case skb wont be segmented, point to itself */
2787 		skb->prev = skb;
2788 
2789 		skb = validate_xmit_skb(skb, dev);
2790 		if (!skb)
2791 			continue;
2792 
2793 		if (!head)
2794 			head = skb;
2795 		else
2796 			tail->next = skb;
2797 		/* If skb was segmented, skb->prev points to
2798 		 * the last segment. If not, it still contains skb.
2799 		 */
2800 		tail = skb->prev;
2801 	}
2802 	return head;
2803 }
2804 
2805 static void qdisc_pkt_len_init(struct sk_buff *skb)
2806 {
2807 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2808 
2809 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2810 
2811 	/* To get more precise estimation of bytes sent on wire,
2812 	 * we add to pkt_len the headers size of all segments
2813 	 */
2814 	if (shinfo->gso_size)  {
2815 		unsigned int hdr_len;
2816 		u16 gso_segs = shinfo->gso_segs;
2817 
2818 		/* mac layer + network layer */
2819 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2820 
2821 		/* + transport layer */
2822 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2823 			hdr_len += tcp_hdrlen(skb);
2824 		else
2825 			hdr_len += sizeof(struct udphdr);
2826 
2827 		if (shinfo->gso_type & SKB_GSO_DODGY)
2828 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2829 						shinfo->gso_size);
2830 
2831 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2832 	}
2833 }
2834 
2835 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2836 				 struct net_device *dev,
2837 				 struct netdev_queue *txq)
2838 {
2839 	spinlock_t *root_lock = qdisc_lock(q);
2840 	bool contended;
2841 	int rc;
2842 
2843 	qdisc_pkt_len_init(skb);
2844 	qdisc_calculate_pkt_len(skb, q);
2845 	/*
2846 	 * Heuristic to force contended enqueues to serialize on a
2847 	 * separate lock before trying to get qdisc main lock.
2848 	 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2849 	 * often and dequeue packets faster.
2850 	 */
2851 	contended = qdisc_is_running(q);
2852 	if (unlikely(contended))
2853 		spin_lock(&q->busylock);
2854 
2855 	spin_lock(root_lock);
2856 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2857 		kfree_skb(skb);
2858 		rc = NET_XMIT_DROP;
2859 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2860 		   qdisc_run_begin(q)) {
2861 		/*
2862 		 * This is a work-conserving queue; there are no old skbs
2863 		 * waiting to be sent out; and the qdisc is not running -
2864 		 * xmit the skb directly.
2865 		 */
2866 
2867 		qdisc_bstats_update(q, skb);
2868 
2869 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2870 			if (unlikely(contended)) {
2871 				spin_unlock(&q->busylock);
2872 				contended = false;
2873 			}
2874 			__qdisc_run(q);
2875 		} else
2876 			qdisc_run_end(q);
2877 
2878 		rc = NET_XMIT_SUCCESS;
2879 	} else {
2880 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2881 		if (qdisc_run_begin(q)) {
2882 			if (unlikely(contended)) {
2883 				spin_unlock(&q->busylock);
2884 				contended = false;
2885 			}
2886 			__qdisc_run(q);
2887 		}
2888 	}
2889 	spin_unlock(root_lock);
2890 	if (unlikely(contended))
2891 		spin_unlock(&q->busylock);
2892 	return rc;
2893 }
2894 
2895 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2896 static void skb_update_prio(struct sk_buff *skb)
2897 {
2898 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2899 
2900 	if (!skb->priority && skb->sk && map) {
2901 		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2902 
2903 		if (prioidx < map->priomap_len)
2904 			skb->priority = map->priomap[prioidx];
2905 	}
2906 }
2907 #else
2908 #define skb_update_prio(skb)
2909 #endif
2910 
2911 DEFINE_PER_CPU(int, xmit_recursion);
2912 EXPORT_SYMBOL(xmit_recursion);
2913 
2914 #define RECURSION_LIMIT 10
2915 
2916 /**
2917  *	dev_loopback_xmit - loop back @skb
2918  *	@net: network namespace this loopback is happening in
2919  *	@sk:  sk needed to be a netfilter okfn
2920  *	@skb: buffer to transmit
2921  */
2922 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
2923 {
2924 	skb_reset_mac_header(skb);
2925 	__skb_pull(skb, skb_network_offset(skb));
2926 	skb->pkt_type = PACKET_LOOPBACK;
2927 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2928 	WARN_ON(!skb_dst(skb));
2929 	skb_dst_force(skb);
2930 	netif_rx_ni(skb);
2931 	return 0;
2932 }
2933 EXPORT_SYMBOL(dev_loopback_xmit);
2934 
2935 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2936 {
2937 #ifdef CONFIG_XPS
2938 	struct xps_dev_maps *dev_maps;
2939 	struct xps_map *map;
2940 	int queue_index = -1;
2941 
2942 	rcu_read_lock();
2943 	dev_maps = rcu_dereference(dev->xps_maps);
2944 	if (dev_maps) {
2945 		map = rcu_dereference(
2946 		    dev_maps->cpu_map[skb->sender_cpu - 1]);
2947 		if (map) {
2948 			if (map->len == 1)
2949 				queue_index = map->queues[0];
2950 			else
2951 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
2952 									   map->len)];
2953 			if (unlikely(queue_index >= dev->real_num_tx_queues))
2954 				queue_index = -1;
2955 		}
2956 	}
2957 	rcu_read_unlock();
2958 
2959 	return queue_index;
2960 #else
2961 	return -1;
2962 #endif
2963 }
2964 
2965 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
2966 {
2967 	struct sock *sk = skb->sk;
2968 	int queue_index = sk_tx_queue_get(sk);
2969 
2970 	if (queue_index < 0 || skb->ooo_okay ||
2971 	    queue_index >= dev->real_num_tx_queues) {
2972 		int new_index = get_xps_queue(dev, skb);
2973 		if (new_index < 0)
2974 			new_index = skb_tx_hash(dev, skb);
2975 
2976 		if (queue_index != new_index && sk &&
2977 		    rcu_access_pointer(sk->sk_dst_cache))
2978 			sk_tx_queue_set(sk, new_index);
2979 
2980 		queue_index = new_index;
2981 	}
2982 
2983 	return queue_index;
2984 }
2985 
2986 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2987 				    struct sk_buff *skb,
2988 				    void *accel_priv)
2989 {
2990 	int queue_index = 0;
2991 
2992 #ifdef CONFIG_XPS
2993 	if (skb->sender_cpu == 0)
2994 		skb->sender_cpu = raw_smp_processor_id() + 1;
2995 #endif
2996 
2997 	if (dev->real_num_tx_queues != 1) {
2998 		const struct net_device_ops *ops = dev->netdev_ops;
2999 		if (ops->ndo_select_queue)
3000 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3001 							    __netdev_pick_tx);
3002 		else
3003 			queue_index = __netdev_pick_tx(dev, skb);
3004 
3005 		if (!accel_priv)
3006 			queue_index = netdev_cap_txqueue(dev, queue_index);
3007 	}
3008 
3009 	skb_set_queue_mapping(skb, queue_index);
3010 	return netdev_get_tx_queue(dev, queue_index);
3011 }
3012 
3013 /**
3014  *	__dev_queue_xmit - transmit a buffer
3015  *	@skb: buffer to transmit
3016  *	@accel_priv: private data used for L2 forwarding offload
3017  *
3018  *	Queue a buffer for transmission to a network device. The caller must
3019  *	have set the device and priority and built the buffer before calling
3020  *	this function. The function can be called from an interrupt.
3021  *
3022  *	A negative errno code is returned on a failure. A success does not
3023  *	guarantee the frame will be transmitted as it may be dropped due
3024  *	to congestion or traffic shaping.
3025  *
3026  * -----------------------------------------------------------------------------------
3027  *      I notice this method can also return errors from the queue disciplines,
3028  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3029  *      be positive.
3030  *
3031  *      Regardless of the return value, the skb is consumed, so it is currently
3032  *      difficult to retry a send to this method.  (You can bump the ref count
3033  *      before sending to hold a reference for retry if you are careful.)
3034  *
3035  *      When calling this method, interrupts MUST be enabled.  This is because
3036  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3037  *          --BLG
3038  */
3039 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3040 {
3041 	struct net_device *dev = skb->dev;
3042 	struct netdev_queue *txq;
3043 	struct Qdisc *q;
3044 	int rc = -ENOMEM;
3045 
3046 	skb_reset_mac_header(skb);
3047 
3048 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3049 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3050 
3051 	/* Disable soft irqs for various locks below. Also
3052 	 * stops preemption for RCU.
3053 	 */
3054 	rcu_read_lock_bh();
3055 
3056 	skb_update_prio(skb);
3057 
3058 	/* If device/qdisc don't need skb->dst, release it right now while
3059 	 * its hot in this cpu cache.
3060 	 */
3061 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3062 		skb_dst_drop(skb);
3063 	else
3064 		skb_dst_force(skb);
3065 
3066 #ifdef CONFIG_NET_SWITCHDEV
3067 	/* Don't forward if offload device already forwarded */
3068 	if (skb->offload_fwd_mark &&
3069 	    skb->offload_fwd_mark == dev->offload_fwd_mark) {
3070 		consume_skb(skb);
3071 		rc = NET_XMIT_SUCCESS;
3072 		goto out;
3073 	}
3074 #endif
3075 
3076 	txq = netdev_pick_tx(dev, skb, accel_priv);
3077 	q = rcu_dereference_bh(txq->qdisc);
3078 
3079 #ifdef CONFIG_NET_CLS_ACT
3080 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3081 #endif
3082 	trace_net_dev_queue(skb);
3083 	if (q->enqueue) {
3084 		rc = __dev_xmit_skb(skb, q, dev, txq);
3085 		goto out;
3086 	}
3087 
3088 	/* The device has no queue. Common case for software devices:
3089 	   loopback, all the sorts of tunnels...
3090 
3091 	   Really, it is unlikely that netif_tx_lock protection is necessary
3092 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3093 	   counters.)
3094 	   However, it is possible, that they rely on protection
3095 	   made by us here.
3096 
3097 	   Check this and shot the lock. It is not prone from deadlocks.
3098 	   Either shot noqueue qdisc, it is even simpler 8)
3099 	 */
3100 	if (dev->flags & IFF_UP) {
3101 		int cpu = smp_processor_id(); /* ok because BHs are off */
3102 
3103 		if (txq->xmit_lock_owner != cpu) {
3104 
3105 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3106 				goto recursion_alert;
3107 
3108 			skb = validate_xmit_skb(skb, dev);
3109 			if (!skb)
3110 				goto drop;
3111 
3112 			HARD_TX_LOCK(dev, txq, cpu);
3113 
3114 			if (!netif_xmit_stopped(txq)) {
3115 				__this_cpu_inc(xmit_recursion);
3116 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3117 				__this_cpu_dec(xmit_recursion);
3118 				if (dev_xmit_complete(rc)) {
3119 					HARD_TX_UNLOCK(dev, txq);
3120 					goto out;
3121 				}
3122 			}
3123 			HARD_TX_UNLOCK(dev, txq);
3124 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3125 					     dev->name);
3126 		} else {
3127 			/* Recursion is detected! It is possible,
3128 			 * unfortunately
3129 			 */
3130 recursion_alert:
3131 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3132 					     dev->name);
3133 		}
3134 	}
3135 
3136 	rc = -ENETDOWN;
3137 drop:
3138 	rcu_read_unlock_bh();
3139 
3140 	atomic_long_inc(&dev->tx_dropped);
3141 	kfree_skb_list(skb);
3142 	return rc;
3143 out:
3144 	rcu_read_unlock_bh();
3145 	return rc;
3146 }
3147 
3148 int dev_queue_xmit(struct sk_buff *skb)
3149 {
3150 	return __dev_queue_xmit(skb, NULL);
3151 }
3152 EXPORT_SYMBOL(dev_queue_xmit);
3153 
3154 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3155 {
3156 	return __dev_queue_xmit(skb, accel_priv);
3157 }
3158 EXPORT_SYMBOL(dev_queue_xmit_accel);
3159 
3160 
3161 /*=======================================================================
3162 			Receiver routines
3163   =======================================================================*/
3164 
3165 int netdev_max_backlog __read_mostly = 1000;
3166 EXPORT_SYMBOL(netdev_max_backlog);
3167 
3168 int netdev_tstamp_prequeue __read_mostly = 1;
3169 int netdev_budget __read_mostly = 300;
3170 int weight_p __read_mostly = 64;            /* old backlog weight */
3171 
3172 /* Called with irq disabled */
3173 static inline void ____napi_schedule(struct softnet_data *sd,
3174 				     struct napi_struct *napi)
3175 {
3176 	list_add_tail(&napi->poll_list, &sd->poll_list);
3177 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3178 }
3179 
3180 #ifdef CONFIG_RPS
3181 
3182 /* One global table that all flow-based protocols share. */
3183 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3184 EXPORT_SYMBOL(rps_sock_flow_table);
3185 u32 rps_cpu_mask __read_mostly;
3186 EXPORT_SYMBOL(rps_cpu_mask);
3187 
3188 struct static_key rps_needed __read_mostly;
3189 
3190 static struct rps_dev_flow *
3191 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3192 	    struct rps_dev_flow *rflow, u16 next_cpu)
3193 {
3194 	if (next_cpu < nr_cpu_ids) {
3195 #ifdef CONFIG_RFS_ACCEL
3196 		struct netdev_rx_queue *rxqueue;
3197 		struct rps_dev_flow_table *flow_table;
3198 		struct rps_dev_flow *old_rflow;
3199 		u32 flow_id;
3200 		u16 rxq_index;
3201 		int rc;
3202 
3203 		/* Should we steer this flow to a different hardware queue? */
3204 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3205 		    !(dev->features & NETIF_F_NTUPLE))
3206 			goto out;
3207 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3208 		if (rxq_index == skb_get_rx_queue(skb))
3209 			goto out;
3210 
3211 		rxqueue = dev->_rx + rxq_index;
3212 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3213 		if (!flow_table)
3214 			goto out;
3215 		flow_id = skb_get_hash(skb) & flow_table->mask;
3216 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3217 							rxq_index, flow_id);
3218 		if (rc < 0)
3219 			goto out;
3220 		old_rflow = rflow;
3221 		rflow = &flow_table->flows[flow_id];
3222 		rflow->filter = rc;
3223 		if (old_rflow->filter == rflow->filter)
3224 			old_rflow->filter = RPS_NO_FILTER;
3225 	out:
3226 #endif
3227 		rflow->last_qtail =
3228 			per_cpu(softnet_data, next_cpu).input_queue_head;
3229 	}
3230 
3231 	rflow->cpu = next_cpu;
3232 	return rflow;
3233 }
3234 
3235 /*
3236  * get_rps_cpu is called from netif_receive_skb and returns the target
3237  * CPU from the RPS map of the receiving queue for a given skb.
3238  * rcu_read_lock must be held on entry.
3239  */
3240 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3241 		       struct rps_dev_flow **rflowp)
3242 {
3243 	const struct rps_sock_flow_table *sock_flow_table;
3244 	struct netdev_rx_queue *rxqueue = dev->_rx;
3245 	struct rps_dev_flow_table *flow_table;
3246 	struct rps_map *map;
3247 	int cpu = -1;
3248 	u32 tcpu;
3249 	u32 hash;
3250 
3251 	if (skb_rx_queue_recorded(skb)) {
3252 		u16 index = skb_get_rx_queue(skb);
3253 
3254 		if (unlikely(index >= dev->real_num_rx_queues)) {
3255 			WARN_ONCE(dev->real_num_rx_queues > 1,
3256 				  "%s received packet on queue %u, but number "
3257 				  "of RX queues is %u\n",
3258 				  dev->name, index, dev->real_num_rx_queues);
3259 			goto done;
3260 		}
3261 		rxqueue += index;
3262 	}
3263 
3264 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3265 
3266 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3267 	map = rcu_dereference(rxqueue->rps_map);
3268 	if (!flow_table && !map)
3269 		goto done;
3270 
3271 	skb_reset_network_header(skb);
3272 	hash = skb_get_hash(skb);
3273 	if (!hash)
3274 		goto done;
3275 
3276 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3277 	if (flow_table && sock_flow_table) {
3278 		struct rps_dev_flow *rflow;
3279 		u32 next_cpu;
3280 		u32 ident;
3281 
3282 		/* First check into global flow table if there is a match */
3283 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3284 		if ((ident ^ hash) & ~rps_cpu_mask)
3285 			goto try_rps;
3286 
3287 		next_cpu = ident & rps_cpu_mask;
3288 
3289 		/* OK, now we know there is a match,
3290 		 * we can look at the local (per receive queue) flow table
3291 		 */
3292 		rflow = &flow_table->flows[hash & flow_table->mask];
3293 		tcpu = rflow->cpu;
3294 
3295 		/*
3296 		 * If the desired CPU (where last recvmsg was done) is
3297 		 * different from current CPU (one in the rx-queue flow
3298 		 * table entry), switch if one of the following holds:
3299 		 *   - Current CPU is unset (>= nr_cpu_ids).
3300 		 *   - Current CPU is offline.
3301 		 *   - The current CPU's queue tail has advanced beyond the
3302 		 *     last packet that was enqueued using this table entry.
3303 		 *     This guarantees that all previous packets for the flow
3304 		 *     have been dequeued, thus preserving in order delivery.
3305 		 */
3306 		if (unlikely(tcpu != next_cpu) &&
3307 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3308 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3309 		      rflow->last_qtail)) >= 0)) {
3310 			tcpu = next_cpu;
3311 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3312 		}
3313 
3314 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3315 			*rflowp = rflow;
3316 			cpu = tcpu;
3317 			goto done;
3318 		}
3319 	}
3320 
3321 try_rps:
3322 
3323 	if (map) {
3324 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3325 		if (cpu_online(tcpu)) {
3326 			cpu = tcpu;
3327 			goto done;
3328 		}
3329 	}
3330 
3331 done:
3332 	return cpu;
3333 }
3334 
3335 #ifdef CONFIG_RFS_ACCEL
3336 
3337 /**
3338  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3339  * @dev: Device on which the filter was set
3340  * @rxq_index: RX queue index
3341  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3342  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3343  *
3344  * Drivers that implement ndo_rx_flow_steer() should periodically call
3345  * this function for each installed filter and remove the filters for
3346  * which it returns %true.
3347  */
3348 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3349 			 u32 flow_id, u16 filter_id)
3350 {
3351 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3352 	struct rps_dev_flow_table *flow_table;
3353 	struct rps_dev_flow *rflow;
3354 	bool expire = true;
3355 	unsigned int cpu;
3356 
3357 	rcu_read_lock();
3358 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3359 	if (flow_table && flow_id <= flow_table->mask) {
3360 		rflow = &flow_table->flows[flow_id];
3361 		cpu = ACCESS_ONCE(rflow->cpu);
3362 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3363 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3364 			   rflow->last_qtail) <
3365 		     (int)(10 * flow_table->mask)))
3366 			expire = false;
3367 	}
3368 	rcu_read_unlock();
3369 	return expire;
3370 }
3371 EXPORT_SYMBOL(rps_may_expire_flow);
3372 
3373 #endif /* CONFIG_RFS_ACCEL */
3374 
3375 /* Called from hardirq (IPI) context */
3376 static void rps_trigger_softirq(void *data)
3377 {
3378 	struct softnet_data *sd = data;
3379 
3380 	____napi_schedule(sd, &sd->backlog);
3381 	sd->received_rps++;
3382 }
3383 
3384 #endif /* CONFIG_RPS */
3385 
3386 /*
3387  * Check if this softnet_data structure is another cpu one
3388  * If yes, queue it to our IPI list and return 1
3389  * If no, return 0
3390  */
3391 static int rps_ipi_queued(struct softnet_data *sd)
3392 {
3393 #ifdef CONFIG_RPS
3394 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3395 
3396 	if (sd != mysd) {
3397 		sd->rps_ipi_next = mysd->rps_ipi_list;
3398 		mysd->rps_ipi_list = sd;
3399 
3400 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3401 		return 1;
3402 	}
3403 #endif /* CONFIG_RPS */
3404 	return 0;
3405 }
3406 
3407 #ifdef CONFIG_NET_FLOW_LIMIT
3408 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3409 #endif
3410 
3411 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3412 {
3413 #ifdef CONFIG_NET_FLOW_LIMIT
3414 	struct sd_flow_limit *fl;
3415 	struct softnet_data *sd;
3416 	unsigned int old_flow, new_flow;
3417 
3418 	if (qlen < (netdev_max_backlog >> 1))
3419 		return false;
3420 
3421 	sd = this_cpu_ptr(&softnet_data);
3422 
3423 	rcu_read_lock();
3424 	fl = rcu_dereference(sd->flow_limit);
3425 	if (fl) {
3426 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3427 		old_flow = fl->history[fl->history_head];
3428 		fl->history[fl->history_head] = new_flow;
3429 
3430 		fl->history_head++;
3431 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3432 
3433 		if (likely(fl->buckets[old_flow]))
3434 			fl->buckets[old_flow]--;
3435 
3436 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3437 			fl->count++;
3438 			rcu_read_unlock();
3439 			return true;
3440 		}
3441 	}
3442 	rcu_read_unlock();
3443 #endif
3444 	return false;
3445 }
3446 
3447 /*
3448  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3449  * queue (may be a remote CPU queue).
3450  */
3451 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3452 			      unsigned int *qtail)
3453 {
3454 	struct softnet_data *sd;
3455 	unsigned long flags;
3456 	unsigned int qlen;
3457 
3458 	sd = &per_cpu(softnet_data, cpu);
3459 
3460 	local_irq_save(flags);
3461 
3462 	rps_lock(sd);
3463 	if (!netif_running(skb->dev))
3464 		goto drop;
3465 	qlen = skb_queue_len(&sd->input_pkt_queue);
3466 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3467 		if (qlen) {
3468 enqueue:
3469 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3470 			input_queue_tail_incr_save(sd, qtail);
3471 			rps_unlock(sd);
3472 			local_irq_restore(flags);
3473 			return NET_RX_SUCCESS;
3474 		}
3475 
3476 		/* Schedule NAPI for backlog device
3477 		 * We can use non atomic operation since we own the queue lock
3478 		 */
3479 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3480 			if (!rps_ipi_queued(sd))
3481 				____napi_schedule(sd, &sd->backlog);
3482 		}
3483 		goto enqueue;
3484 	}
3485 
3486 drop:
3487 	sd->dropped++;
3488 	rps_unlock(sd);
3489 
3490 	local_irq_restore(flags);
3491 
3492 	atomic_long_inc(&skb->dev->rx_dropped);
3493 	kfree_skb(skb);
3494 	return NET_RX_DROP;
3495 }
3496 
3497 static int netif_rx_internal(struct sk_buff *skb)
3498 {
3499 	int ret;
3500 
3501 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3502 
3503 	trace_netif_rx(skb);
3504 #ifdef CONFIG_RPS
3505 	if (static_key_false(&rps_needed)) {
3506 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3507 		int cpu;
3508 
3509 		preempt_disable();
3510 		rcu_read_lock();
3511 
3512 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3513 		if (cpu < 0)
3514 			cpu = smp_processor_id();
3515 
3516 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3517 
3518 		rcu_read_unlock();
3519 		preempt_enable();
3520 	} else
3521 #endif
3522 	{
3523 		unsigned int qtail;
3524 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3525 		put_cpu();
3526 	}
3527 	return ret;
3528 }
3529 
3530 /**
3531  *	netif_rx	-	post buffer to the network code
3532  *	@skb: buffer to post
3533  *
3534  *	This function receives a packet from a device driver and queues it for
3535  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3536  *	may be dropped during processing for congestion control or by the
3537  *	protocol layers.
3538  *
3539  *	return values:
3540  *	NET_RX_SUCCESS	(no congestion)
3541  *	NET_RX_DROP     (packet was dropped)
3542  *
3543  */
3544 
3545 int netif_rx(struct sk_buff *skb)
3546 {
3547 	trace_netif_rx_entry(skb);
3548 
3549 	return netif_rx_internal(skb);
3550 }
3551 EXPORT_SYMBOL(netif_rx);
3552 
3553 int netif_rx_ni(struct sk_buff *skb)
3554 {
3555 	int err;
3556 
3557 	trace_netif_rx_ni_entry(skb);
3558 
3559 	preempt_disable();
3560 	err = netif_rx_internal(skb);
3561 	if (local_softirq_pending())
3562 		do_softirq();
3563 	preempt_enable();
3564 
3565 	return err;
3566 }
3567 EXPORT_SYMBOL(netif_rx_ni);
3568 
3569 static void net_tx_action(struct softirq_action *h)
3570 {
3571 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3572 
3573 	if (sd->completion_queue) {
3574 		struct sk_buff *clist;
3575 
3576 		local_irq_disable();
3577 		clist = sd->completion_queue;
3578 		sd->completion_queue = NULL;
3579 		local_irq_enable();
3580 
3581 		while (clist) {
3582 			struct sk_buff *skb = clist;
3583 			clist = clist->next;
3584 
3585 			WARN_ON(atomic_read(&skb->users));
3586 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3587 				trace_consume_skb(skb);
3588 			else
3589 				trace_kfree_skb(skb, net_tx_action);
3590 			__kfree_skb(skb);
3591 		}
3592 	}
3593 
3594 	if (sd->output_queue) {
3595 		struct Qdisc *head;
3596 
3597 		local_irq_disable();
3598 		head = sd->output_queue;
3599 		sd->output_queue = NULL;
3600 		sd->output_queue_tailp = &sd->output_queue;
3601 		local_irq_enable();
3602 
3603 		while (head) {
3604 			struct Qdisc *q = head;
3605 			spinlock_t *root_lock;
3606 
3607 			head = head->next_sched;
3608 
3609 			root_lock = qdisc_lock(q);
3610 			if (spin_trylock(root_lock)) {
3611 				smp_mb__before_atomic();
3612 				clear_bit(__QDISC_STATE_SCHED,
3613 					  &q->state);
3614 				qdisc_run(q);
3615 				spin_unlock(root_lock);
3616 			} else {
3617 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3618 					      &q->state)) {
3619 					__netif_reschedule(q);
3620 				} else {
3621 					smp_mb__before_atomic();
3622 					clear_bit(__QDISC_STATE_SCHED,
3623 						  &q->state);
3624 				}
3625 			}
3626 		}
3627 	}
3628 }
3629 
3630 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3631     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3632 /* This hook is defined here for ATM LANE */
3633 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3634 			     unsigned char *addr) __read_mostly;
3635 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3636 #endif
3637 
3638 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3639 					 struct packet_type **pt_prev,
3640 					 int *ret, struct net_device *orig_dev)
3641 {
3642 #ifdef CONFIG_NET_CLS_ACT
3643 	struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3644 	struct tcf_result cl_res;
3645 
3646 	/* If there's at least one ingress present somewhere (so
3647 	 * we get here via enabled static key), remaining devices
3648 	 * that are not configured with an ingress qdisc will bail
3649 	 * out here.
3650 	 */
3651 	if (!cl)
3652 		return skb;
3653 	if (*pt_prev) {
3654 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3655 		*pt_prev = NULL;
3656 	}
3657 
3658 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3659 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3660 	qdisc_bstats_cpu_update(cl->q, skb);
3661 
3662 	switch (tc_classify(skb, cl, &cl_res, false)) {
3663 	case TC_ACT_OK:
3664 	case TC_ACT_RECLASSIFY:
3665 		skb->tc_index = TC_H_MIN(cl_res.classid);
3666 		break;
3667 	case TC_ACT_SHOT:
3668 		qdisc_qstats_cpu_drop(cl->q);
3669 	case TC_ACT_STOLEN:
3670 	case TC_ACT_QUEUED:
3671 		kfree_skb(skb);
3672 		return NULL;
3673 	case TC_ACT_REDIRECT:
3674 		/* skb_mac_header check was done by cls/act_bpf, so
3675 		 * we can safely push the L2 header back before
3676 		 * redirecting to another netdev
3677 		 */
3678 		__skb_push(skb, skb->mac_len);
3679 		skb_do_redirect(skb);
3680 		return NULL;
3681 	default:
3682 		break;
3683 	}
3684 #endif /* CONFIG_NET_CLS_ACT */
3685 	return skb;
3686 }
3687 
3688 /**
3689  *	netdev_rx_handler_register - register receive handler
3690  *	@dev: device to register a handler for
3691  *	@rx_handler: receive handler to register
3692  *	@rx_handler_data: data pointer that is used by rx handler
3693  *
3694  *	Register a receive handler for a device. This handler will then be
3695  *	called from __netif_receive_skb. A negative errno code is returned
3696  *	on a failure.
3697  *
3698  *	The caller must hold the rtnl_mutex.
3699  *
3700  *	For a general description of rx_handler, see enum rx_handler_result.
3701  */
3702 int netdev_rx_handler_register(struct net_device *dev,
3703 			       rx_handler_func_t *rx_handler,
3704 			       void *rx_handler_data)
3705 {
3706 	ASSERT_RTNL();
3707 
3708 	if (dev->rx_handler)
3709 		return -EBUSY;
3710 
3711 	/* Note: rx_handler_data must be set before rx_handler */
3712 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3713 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3714 
3715 	return 0;
3716 }
3717 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3718 
3719 /**
3720  *	netdev_rx_handler_unregister - unregister receive handler
3721  *	@dev: device to unregister a handler from
3722  *
3723  *	Unregister a receive handler from a device.
3724  *
3725  *	The caller must hold the rtnl_mutex.
3726  */
3727 void netdev_rx_handler_unregister(struct net_device *dev)
3728 {
3729 
3730 	ASSERT_RTNL();
3731 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3732 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3733 	 * section has a guarantee to see a non NULL rx_handler_data
3734 	 * as well.
3735 	 */
3736 	synchronize_net();
3737 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3738 }
3739 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3740 
3741 /*
3742  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3743  * the special handling of PFMEMALLOC skbs.
3744  */
3745 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3746 {
3747 	switch (skb->protocol) {
3748 	case htons(ETH_P_ARP):
3749 	case htons(ETH_P_IP):
3750 	case htons(ETH_P_IPV6):
3751 	case htons(ETH_P_8021Q):
3752 	case htons(ETH_P_8021AD):
3753 		return true;
3754 	default:
3755 		return false;
3756 	}
3757 }
3758 
3759 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3760 			     int *ret, struct net_device *orig_dev)
3761 {
3762 #ifdef CONFIG_NETFILTER_INGRESS
3763 	if (nf_hook_ingress_active(skb)) {
3764 		if (*pt_prev) {
3765 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
3766 			*pt_prev = NULL;
3767 		}
3768 
3769 		return nf_hook_ingress(skb);
3770 	}
3771 #endif /* CONFIG_NETFILTER_INGRESS */
3772 	return 0;
3773 }
3774 
3775 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3776 {
3777 	struct packet_type *ptype, *pt_prev;
3778 	rx_handler_func_t *rx_handler;
3779 	struct net_device *orig_dev;
3780 	bool deliver_exact = false;
3781 	int ret = NET_RX_DROP;
3782 	__be16 type;
3783 
3784 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3785 
3786 	trace_netif_receive_skb(skb);
3787 
3788 	orig_dev = skb->dev;
3789 
3790 	skb_reset_network_header(skb);
3791 	if (!skb_transport_header_was_set(skb))
3792 		skb_reset_transport_header(skb);
3793 	skb_reset_mac_len(skb);
3794 
3795 	pt_prev = NULL;
3796 
3797 another_round:
3798 	skb->skb_iif = skb->dev->ifindex;
3799 
3800 	__this_cpu_inc(softnet_data.processed);
3801 
3802 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3803 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3804 		skb = skb_vlan_untag(skb);
3805 		if (unlikely(!skb))
3806 			goto out;
3807 	}
3808 
3809 #ifdef CONFIG_NET_CLS_ACT
3810 	if (skb->tc_verd & TC_NCLS) {
3811 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3812 		goto ncls;
3813 	}
3814 #endif
3815 
3816 	if (pfmemalloc)
3817 		goto skip_taps;
3818 
3819 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3820 		if (pt_prev)
3821 			ret = deliver_skb(skb, pt_prev, orig_dev);
3822 		pt_prev = ptype;
3823 	}
3824 
3825 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3826 		if (pt_prev)
3827 			ret = deliver_skb(skb, pt_prev, orig_dev);
3828 		pt_prev = ptype;
3829 	}
3830 
3831 skip_taps:
3832 #ifdef CONFIG_NET_INGRESS
3833 	if (static_key_false(&ingress_needed)) {
3834 		skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3835 		if (!skb)
3836 			goto out;
3837 
3838 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
3839 			goto out;
3840 	}
3841 #endif
3842 #ifdef CONFIG_NET_CLS_ACT
3843 	skb->tc_verd = 0;
3844 ncls:
3845 #endif
3846 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3847 		goto drop;
3848 
3849 	if (skb_vlan_tag_present(skb)) {
3850 		if (pt_prev) {
3851 			ret = deliver_skb(skb, pt_prev, orig_dev);
3852 			pt_prev = NULL;
3853 		}
3854 		if (vlan_do_receive(&skb))
3855 			goto another_round;
3856 		else if (unlikely(!skb))
3857 			goto out;
3858 	}
3859 
3860 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3861 	if (rx_handler) {
3862 		if (pt_prev) {
3863 			ret = deliver_skb(skb, pt_prev, orig_dev);
3864 			pt_prev = NULL;
3865 		}
3866 		switch (rx_handler(&skb)) {
3867 		case RX_HANDLER_CONSUMED:
3868 			ret = NET_RX_SUCCESS;
3869 			goto out;
3870 		case RX_HANDLER_ANOTHER:
3871 			goto another_round;
3872 		case RX_HANDLER_EXACT:
3873 			deliver_exact = true;
3874 		case RX_HANDLER_PASS:
3875 			break;
3876 		default:
3877 			BUG();
3878 		}
3879 	}
3880 
3881 	if (unlikely(skb_vlan_tag_present(skb))) {
3882 		if (skb_vlan_tag_get_id(skb))
3883 			skb->pkt_type = PACKET_OTHERHOST;
3884 		/* Note: we might in the future use prio bits
3885 		 * and set skb->priority like in vlan_do_receive()
3886 		 * For the time being, just ignore Priority Code Point
3887 		 */
3888 		skb->vlan_tci = 0;
3889 	}
3890 
3891 	type = skb->protocol;
3892 
3893 	/* deliver only exact match when indicated */
3894 	if (likely(!deliver_exact)) {
3895 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3896 				       &ptype_base[ntohs(type) &
3897 						   PTYPE_HASH_MASK]);
3898 	}
3899 
3900 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3901 			       &orig_dev->ptype_specific);
3902 
3903 	if (unlikely(skb->dev != orig_dev)) {
3904 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3905 				       &skb->dev->ptype_specific);
3906 	}
3907 
3908 	if (pt_prev) {
3909 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3910 			goto drop;
3911 		else
3912 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3913 	} else {
3914 drop:
3915 		atomic_long_inc(&skb->dev->rx_dropped);
3916 		kfree_skb(skb);
3917 		/* Jamal, now you will not able to escape explaining
3918 		 * me how you were going to use this. :-)
3919 		 */
3920 		ret = NET_RX_DROP;
3921 	}
3922 
3923 out:
3924 	return ret;
3925 }
3926 
3927 static int __netif_receive_skb(struct sk_buff *skb)
3928 {
3929 	int ret;
3930 
3931 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3932 		unsigned long pflags = current->flags;
3933 
3934 		/*
3935 		 * PFMEMALLOC skbs are special, they should
3936 		 * - be delivered to SOCK_MEMALLOC sockets only
3937 		 * - stay away from userspace
3938 		 * - have bounded memory usage
3939 		 *
3940 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
3941 		 * context down to all allocation sites.
3942 		 */
3943 		current->flags |= PF_MEMALLOC;
3944 		ret = __netif_receive_skb_core(skb, true);
3945 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
3946 	} else
3947 		ret = __netif_receive_skb_core(skb, false);
3948 
3949 	return ret;
3950 }
3951 
3952 static int netif_receive_skb_internal(struct sk_buff *skb)
3953 {
3954 	int ret;
3955 
3956 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3957 
3958 	if (skb_defer_rx_timestamp(skb))
3959 		return NET_RX_SUCCESS;
3960 
3961 	rcu_read_lock();
3962 
3963 #ifdef CONFIG_RPS
3964 	if (static_key_false(&rps_needed)) {
3965 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3966 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
3967 
3968 		if (cpu >= 0) {
3969 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3970 			rcu_read_unlock();
3971 			return ret;
3972 		}
3973 	}
3974 #endif
3975 	ret = __netif_receive_skb(skb);
3976 	rcu_read_unlock();
3977 	return ret;
3978 }
3979 
3980 /**
3981  *	netif_receive_skb - process receive buffer from network
3982  *	@skb: buffer to process
3983  *
3984  *	netif_receive_skb() is the main receive data processing function.
3985  *	It always succeeds. The buffer may be dropped during processing
3986  *	for congestion control or by the protocol layers.
3987  *
3988  *	This function may only be called from softirq context and interrupts
3989  *	should be enabled.
3990  *
3991  *	Return values (usually ignored):
3992  *	NET_RX_SUCCESS: no congestion
3993  *	NET_RX_DROP: packet was dropped
3994  */
3995 int netif_receive_skb(struct sk_buff *skb)
3996 {
3997 	trace_netif_receive_skb_entry(skb);
3998 
3999 	return netif_receive_skb_internal(skb);
4000 }
4001 EXPORT_SYMBOL(netif_receive_skb);
4002 
4003 /* Network device is going away, flush any packets still pending
4004  * Called with irqs disabled.
4005  */
4006 static void flush_backlog(void *arg)
4007 {
4008 	struct net_device *dev = arg;
4009 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4010 	struct sk_buff *skb, *tmp;
4011 
4012 	rps_lock(sd);
4013 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4014 		if (skb->dev == dev) {
4015 			__skb_unlink(skb, &sd->input_pkt_queue);
4016 			kfree_skb(skb);
4017 			input_queue_head_incr(sd);
4018 		}
4019 	}
4020 	rps_unlock(sd);
4021 
4022 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4023 		if (skb->dev == dev) {
4024 			__skb_unlink(skb, &sd->process_queue);
4025 			kfree_skb(skb);
4026 			input_queue_head_incr(sd);
4027 		}
4028 	}
4029 }
4030 
4031 static int napi_gro_complete(struct sk_buff *skb)
4032 {
4033 	struct packet_offload *ptype;
4034 	__be16 type = skb->protocol;
4035 	struct list_head *head = &offload_base;
4036 	int err = -ENOENT;
4037 
4038 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4039 
4040 	if (NAPI_GRO_CB(skb)->count == 1) {
4041 		skb_shinfo(skb)->gso_size = 0;
4042 		goto out;
4043 	}
4044 
4045 	rcu_read_lock();
4046 	list_for_each_entry_rcu(ptype, head, list) {
4047 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4048 			continue;
4049 
4050 		err = ptype->callbacks.gro_complete(skb, 0);
4051 		break;
4052 	}
4053 	rcu_read_unlock();
4054 
4055 	if (err) {
4056 		WARN_ON(&ptype->list == head);
4057 		kfree_skb(skb);
4058 		return NET_RX_SUCCESS;
4059 	}
4060 
4061 out:
4062 	return netif_receive_skb_internal(skb);
4063 }
4064 
4065 /* napi->gro_list contains packets ordered by age.
4066  * youngest packets at the head of it.
4067  * Complete skbs in reverse order to reduce latencies.
4068  */
4069 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4070 {
4071 	struct sk_buff *skb, *prev = NULL;
4072 
4073 	/* scan list and build reverse chain */
4074 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4075 		skb->prev = prev;
4076 		prev = skb;
4077 	}
4078 
4079 	for (skb = prev; skb; skb = prev) {
4080 		skb->next = NULL;
4081 
4082 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4083 			return;
4084 
4085 		prev = skb->prev;
4086 		napi_gro_complete(skb);
4087 		napi->gro_count--;
4088 	}
4089 
4090 	napi->gro_list = NULL;
4091 }
4092 EXPORT_SYMBOL(napi_gro_flush);
4093 
4094 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4095 {
4096 	struct sk_buff *p;
4097 	unsigned int maclen = skb->dev->hard_header_len;
4098 	u32 hash = skb_get_hash_raw(skb);
4099 
4100 	for (p = napi->gro_list; p; p = p->next) {
4101 		unsigned long diffs;
4102 
4103 		NAPI_GRO_CB(p)->flush = 0;
4104 
4105 		if (hash != skb_get_hash_raw(p)) {
4106 			NAPI_GRO_CB(p)->same_flow = 0;
4107 			continue;
4108 		}
4109 
4110 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4111 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4112 		if (maclen == ETH_HLEN)
4113 			diffs |= compare_ether_header(skb_mac_header(p),
4114 						      skb_mac_header(skb));
4115 		else if (!diffs)
4116 			diffs = memcmp(skb_mac_header(p),
4117 				       skb_mac_header(skb),
4118 				       maclen);
4119 		NAPI_GRO_CB(p)->same_flow = !diffs;
4120 	}
4121 }
4122 
4123 static void skb_gro_reset_offset(struct sk_buff *skb)
4124 {
4125 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4126 	const skb_frag_t *frag0 = &pinfo->frags[0];
4127 
4128 	NAPI_GRO_CB(skb)->data_offset = 0;
4129 	NAPI_GRO_CB(skb)->frag0 = NULL;
4130 	NAPI_GRO_CB(skb)->frag0_len = 0;
4131 
4132 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4133 	    pinfo->nr_frags &&
4134 	    !PageHighMem(skb_frag_page(frag0))) {
4135 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4136 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4137 	}
4138 }
4139 
4140 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4141 {
4142 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4143 
4144 	BUG_ON(skb->end - skb->tail < grow);
4145 
4146 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4147 
4148 	skb->data_len -= grow;
4149 	skb->tail += grow;
4150 
4151 	pinfo->frags[0].page_offset += grow;
4152 	skb_frag_size_sub(&pinfo->frags[0], grow);
4153 
4154 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4155 		skb_frag_unref(skb, 0);
4156 		memmove(pinfo->frags, pinfo->frags + 1,
4157 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4158 	}
4159 }
4160 
4161 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4162 {
4163 	struct sk_buff **pp = NULL;
4164 	struct packet_offload *ptype;
4165 	__be16 type = skb->protocol;
4166 	struct list_head *head = &offload_base;
4167 	int same_flow;
4168 	enum gro_result ret;
4169 	int grow;
4170 
4171 	if (!(skb->dev->features & NETIF_F_GRO))
4172 		goto normal;
4173 
4174 	if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4175 		goto normal;
4176 
4177 	gro_list_prepare(napi, skb);
4178 
4179 	rcu_read_lock();
4180 	list_for_each_entry_rcu(ptype, head, list) {
4181 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4182 			continue;
4183 
4184 		skb_set_network_header(skb, skb_gro_offset(skb));
4185 		skb_reset_mac_len(skb);
4186 		NAPI_GRO_CB(skb)->same_flow = 0;
4187 		NAPI_GRO_CB(skb)->flush = 0;
4188 		NAPI_GRO_CB(skb)->free = 0;
4189 		NAPI_GRO_CB(skb)->udp_mark = 0;
4190 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4191 
4192 		/* Setup for GRO checksum validation */
4193 		switch (skb->ip_summed) {
4194 		case CHECKSUM_COMPLETE:
4195 			NAPI_GRO_CB(skb)->csum = skb->csum;
4196 			NAPI_GRO_CB(skb)->csum_valid = 1;
4197 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4198 			break;
4199 		case CHECKSUM_UNNECESSARY:
4200 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4201 			NAPI_GRO_CB(skb)->csum_valid = 0;
4202 			break;
4203 		default:
4204 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4205 			NAPI_GRO_CB(skb)->csum_valid = 0;
4206 		}
4207 
4208 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4209 		break;
4210 	}
4211 	rcu_read_unlock();
4212 
4213 	if (&ptype->list == head)
4214 		goto normal;
4215 
4216 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4217 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4218 
4219 	if (pp) {
4220 		struct sk_buff *nskb = *pp;
4221 
4222 		*pp = nskb->next;
4223 		nskb->next = NULL;
4224 		napi_gro_complete(nskb);
4225 		napi->gro_count--;
4226 	}
4227 
4228 	if (same_flow)
4229 		goto ok;
4230 
4231 	if (NAPI_GRO_CB(skb)->flush)
4232 		goto normal;
4233 
4234 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4235 		struct sk_buff *nskb = napi->gro_list;
4236 
4237 		/* locate the end of the list to select the 'oldest' flow */
4238 		while (nskb->next) {
4239 			pp = &nskb->next;
4240 			nskb = *pp;
4241 		}
4242 		*pp = NULL;
4243 		nskb->next = NULL;
4244 		napi_gro_complete(nskb);
4245 	} else {
4246 		napi->gro_count++;
4247 	}
4248 	NAPI_GRO_CB(skb)->count = 1;
4249 	NAPI_GRO_CB(skb)->age = jiffies;
4250 	NAPI_GRO_CB(skb)->last = skb;
4251 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4252 	skb->next = napi->gro_list;
4253 	napi->gro_list = skb;
4254 	ret = GRO_HELD;
4255 
4256 pull:
4257 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4258 	if (grow > 0)
4259 		gro_pull_from_frag0(skb, grow);
4260 ok:
4261 	return ret;
4262 
4263 normal:
4264 	ret = GRO_NORMAL;
4265 	goto pull;
4266 }
4267 
4268 struct packet_offload *gro_find_receive_by_type(__be16 type)
4269 {
4270 	struct list_head *offload_head = &offload_base;
4271 	struct packet_offload *ptype;
4272 
4273 	list_for_each_entry_rcu(ptype, offload_head, list) {
4274 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4275 			continue;
4276 		return ptype;
4277 	}
4278 	return NULL;
4279 }
4280 EXPORT_SYMBOL(gro_find_receive_by_type);
4281 
4282 struct packet_offload *gro_find_complete_by_type(__be16 type)
4283 {
4284 	struct list_head *offload_head = &offload_base;
4285 	struct packet_offload *ptype;
4286 
4287 	list_for_each_entry_rcu(ptype, offload_head, list) {
4288 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4289 			continue;
4290 		return ptype;
4291 	}
4292 	return NULL;
4293 }
4294 EXPORT_SYMBOL(gro_find_complete_by_type);
4295 
4296 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4297 {
4298 	switch (ret) {
4299 	case GRO_NORMAL:
4300 		if (netif_receive_skb_internal(skb))
4301 			ret = GRO_DROP;
4302 		break;
4303 
4304 	case GRO_DROP:
4305 		kfree_skb(skb);
4306 		break;
4307 
4308 	case GRO_MERGED_FREE:
4309 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4310 			kmem_cache_free(skbuff_head_cache, skb);
4311 		else
4312 			__kfree_skb(skb);
4313 		break;
4314 
4315 	case GRO_HELD:
4316 	case GRO_MERGED:
4317 		break;
4318 	}
4319 
4320 	return ret;
4321 }
4322 
4323 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4324 {
4325 	trace_napi_gro_receive_entry(skb);
4326 
4327 	skb_gro_reset_offset(skb);
4328 
4329 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4330 }
4331 EXPORT_SYMBOL(napi_gro_receive);
4332 
4333 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4334 {
4335 	if (unlikely(skb->pfmemalloc)) {
4336 		consume_skb(skb);
4337 		return;
4338 	}
4339 	__skb_pull(skb, skb_headlen(skb));
4340 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4341 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4342 	skb->vlan_tci = 0;
4343 	skb->dev = napi->dev;
4344 	skb->skb_iif = 0;
4345 	skb->encapsulation = 0;
4346 	skb_shinfo(skb)->gso_type = 0;
4347 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4348 
4349 	napi->skb = skb;
4350 }
4351 
4352 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4353 {
4354 	struct sk_buff *skb = napi->skb;
4355 
4356 	if (!skb) {
4357 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4358 		napi->skb = skb;
4359 	}
4360 	return skb;
4361 }
4362 EXPORT_SYMBOL(napi_get_frags);
4363 
4364 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4365 				      struct sk_buff *skb,
4366 				      gro_result_t ret)
4367 {
4368 	switch (ret) {
4369 	case GRO_NORMAL:
4370 	case GRO_HELD:
4371 		__skb_push(skb, ETH_HLEN);
4372 		skb->protocol = eth_type_trans(skb, skb->dev);
4373 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4374 			ret = GRO_DROP;
4375 		break;
4376 
4377 	case GRO_DROP:
4378 	case GRO_MERGED_FREE:
4379 		napi_reuse_skb(napi, skb);
4380 		break;
4381 
4382 	case GRO_MERGED:
4383 		break;
4384 	}
4385 
4386 	return ret;
4387 }
4388 
4389 /* Upper GRO stack assumes network header starts at gro_offset=0
4390  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4391  * We copy ethernet header into skb->data to have a common layout.
4392  */
4393 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4394 {
4395 	struct sk_buff *skb = napi->skb;
4396 	const struct ethhdr *eth;
4397 	unsigned int hlen = sizeof(*eth);
4398 
4399 	napi->skb = NULL;
4400 
4401 	skb_reset_mac_header(skb);
4402 	skb_gro_reset_offset(skb);
4403 
4404 	eth = skb_gro_header_fast(skb, 0);
4405 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4406 		eth = skb_gro_header_slow(skb, hlen, 0);
4407 		if (unlikely(!eth)) {
4408 			napi_reuse_skb(napi, skb);
4409 			return NULL;
4410 		}
4411 	} else {
4412 		gro_pull_from_frag0(skb, hlen);
4413 		NAPI_GRO_CB(skb)->frag0 += hlen;
4414 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4415 	}
4416 	__skb_pull(skb, hlen);
4417 
4418 	/*
4419 	 * This works because the only protocols we care about don't require
4420 	 * special handling.
4421 	 * We'll fix it up properly in napi_frags_finish()
4422 	 */
4423 	skb->protocol = eth->h_proto;
4424 
4425 	return skb;
4426 }
4427 
4428 gro_result_t napi_gro_frags(struct napi_struct *napi)
4429 {
4430 	struct sk_buff *skb = napi_frags_skb(napi);
4431 
4432 	if (!skb)
4433 		return GRO_DROP;
4434 
4435 	trace_napi_gro_frags_entry(skb);
4436 
4437 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4438 }
4439 EXPORT_SYMBOL(napi_gro_frags);
4440 
4441 /* Compute the checksum from gro_offset and return the folded value
4442  * after adding in any pseudo checksum.
4443  */
4444 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4445 {
4446 	__wsum wsum;
4447 	__sum16 sum;
4448 
4449 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4450 
4451 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4452 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4453 	if (likely(!sum)) {
4454 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4455 		    !skb->csum_complete_sw)
4456 			netdev_rx_csum_fault(skb->dev);
4457 	}
4458 
4459 	NAPI_GRO_CB(skb)->csum = wsum;
4460 	NAPI_GRO_CB(skb)->csum_valid = 1;
4461 
4462 	return sum;
4463 }
4464 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4465 
4466 /*
4467  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4468  * Note: called with local irq disabled, but exits with local irq enabled.
4469  */
4470 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4471 {
4472 #ifdef CONFIG_RPS
4473 	struct softnet_data *remsd = sd->rps_ipi_list;
4474 
4475 	if (remsd) {
4476 		sd->rps_ipi_list = NULL;
4477 
4478 		local_irq_enable();
4479 
4480 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4481 		while (remsd) {
4482 			struct softnet_data *next = remsd->rps_ipi_next;
4483 
4484 			if (cpu_online(remsd->cpu))
4485 				smp_call_function_single_async(remsd->cpu,
4486 							   &remsd->csd);
4487 			remsd = next;
4488 		}
4489 	} else
4490 #endif
4491 		local_irq_enable();
4492 }
4493 
4494 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4495 {
4496 #ifdef CONFIG_RPS
4497 	return sd->rps_ipi_list != NULL;
4498 #else
4499 	return false;
4500 #endif
4501 }
4502 
4503 static int process_backlog(struct napi_struct *napi, int quota)
4504 {
4505 	int work = 0;
4506 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4507 
4508 	/* Check if we have pending ipi, its better to send them now,
4509 	 * not waiting net_rx_action() end.
4510 	 */
4511 	if (sd_has_rps_ipi_waiting(sd)) {
4512 		local_irq_disable();
4513 		net_rps_action_and_irq_enable(sd);
4514 	}
4515 
4516 	napi->weight = weight_p;
4517 	local_irq_disable();
4518 	while (1) {
4519 		struct sk_buff *skb;
4520 
4521 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4522 			rcu_read_lock();
4523 			local_irq_enable();
4524 			__netif_receive_skb(skb);
4525 			rcu_read_unlock();
4526 			local_irq_disable();
4527 			input_queue_head_incr(sd);
4528 			if (++work >= quota) {
4529 				local_irq_enable();
4530 				return work;
4531 			}
4532 		}
4533 
4534 		rps_lock(sd);
4535 		if (skb_queue_empty(&sd->input_pkt_queue)) {
4536 			/*
4537 			 * Inline a custom version of __napi_complete().
4538 			 * only current cpu owns and manipulates this napi,
4539 			 * and NAPI_STATE_SCHED is the only possible flag set
4540 			 * on backlog.
4541 			 * We can use a plain write instead of clear_bit(),
4542 			 * and we dont need an smp_mb() memory barrier.
4543 			 */
4544 			napi->state = 0;
4545 			rps_unlock(sd);
4546 
4547 			break;
4548 		}
4549 
4550 		skb_queue_splice_tail_init(&sd->input_pkt_queue,
4551 					   &sd->process_queue);
4552 		rps_unlock(sd);
4553 	}
4554 	local_irq_enable();
4555 
4556 	return work;
4557 }
4558 
4559 /**
4560  * __napi_schedule - schedule for receive
4561  * @n: entry to schedule
4562  *
4563  * The entry's receive function will be scheduled to run.
4564  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4565  */
4566 void __napi_schedule(struct napi_struct *n)
4567 {
4568 	unsigned long flags;
4569 
4570 	local_irq_save(flags);
4571 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4572 	local_irq_restore(flags);
4573 }
4574 EXPORT_SYMBOL(__napi_schedule);
4575 
4576 /**
4577  * __napi_schedule_irqoff - schedule for receive
4578  * @n: entry to schedule
4579  *
4580  * Variant of __napi_schedule() assuming hard irqs are masked
4581  */
4582 void __napi_schedule_irqoff(struct napi_struct *n)
4583 {
4584 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4585 }
4586 EXPORT_SYMBOL(__napi_schedule_irqoff);
4587 
4588 void __napi_complete(struct napi_struct *n)
4589 {
4590 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4591 
4592 	list_del_init(&n->poll_list);
4593 	smp_mb__before_atomic();
4594 	clear_bit(NAPI_STATE_SCHED, &n->state);
4595 }
4596 EXPORT_SYMBOL(__napi_complete);
4597 
4598 void napi_complete_done(struct napi_struct *n, int work_done)
4599 {
4600 	unsigned long flags;
4601 
4602 	/*
4603 	 * don't let napi dequeue from the cpu poll list
4604 	 * just in case its running on a different cpu
4605 	 */
4606 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4607 		return;
4608 
4609 	if (n->gro_list) {
4610 		unsigned long timeout = 0;
4611 
4612 		if (work_done)
4613 			timeout = n->dev->gro_flush_timeout;
4614 
4615 		if (timeout)
4616 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
4617 				      HRTIMER_MODE_REL_PINNED);
4618 		else
4619 			napi_gro_flush(n, false);
4620 	}
4621 	if (likely(list_empty(&n->poll_list))) {
4622 		WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4623 	} else {
4624 		/* If n->poll_list is not empty, we need to mask irqs */
4625 		local_irq_save(flags);
4626 		__napi_complete(n);
4627 		local_irq_restore(flags);
4628 	}
4629 }
4630 EXPORT_SYMBOL(napi_complete_done);
4631 
4632 /* must be called under rcu_read_lock(), as we dont take a reference */
4633 struct napi_struct *napi_by_id(unsigned int napi_id)
4634 {
4635 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4636 	struct napi_struct *napi;
4637 
4638 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4639 		if (napi->napi_id == napi_id)
4640 			return napi;
4641 
4642 	return NULL;
4643 }
4644 EXPORT_SYMBOL_GPL(napi_by_id);
4645 
4646 void napi_hash_add(struct napi_struct *napi)
4647 {
4648 	if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4649 
4650 		spin_lock(&napi_hash_lock);
4651 
4652 		/* 0 is not a valid id, we also skip an id that is taken
4653 		 * we expect both events to be extremely rare
4654 		 */
4655 		napi->napi_id = 0;
4656 		while (!napi->napi_id) {
4657 			napi->napi_id = ++napi_gen_id;
4658 			if (napi_by_id(napi->napi_id))
4659 				napi->napi_id = 0;
4660 		}
4661 
4662 		hlist_add_head_rcu(&napi->napi_hash_node,
4663 			&napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4664 
4665 		spin_unlock(&napi_hash_lock);
4666 	}
4667 }
4668 EXPORT_SYMBOL_GPL(napi_hash_add);
4669 
4670 /* Warning : caller is responsible to make sure rcu grace period
4671  * is respected before freeing memory containing @napi
4672  */
4673 void napi_hash_del(struct napi_struct *napi)
4674 {
4675 	spin_lock(&napi_hash_lock);
4676 
4677 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4678 		hlist_del_rcu(&napi->napi_hash_node);
4679 
4680 	spin_unlock(&napi_hash_lock);
4681 }
4682 EXPORT_SYMBOL_GPL(napi_hash_del);
4683 
4684 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4685 {
4686 	struct napi_struct *napi;
4687 
4688 	napi = container_of(timer, struct napi_struct, timer);
4689 	if (napi->gro_list)
4690 		napi_schedule(napi);
4691 
4692 	return HRTIMER_NORESTART;
4693 }
4694 
4695 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4696 		    int (*poll)(struct napi_struct *, int), int weight)
4697 {
4698 	INIT_LIST_HEAD(&napi->poll_list);
4699 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4700 	napi->timer.function = napi_watchdog;
4701 	napi->gro_count = 0;
4702 	napi->gro_list = NULL;
4703 	napi->skb = NULL;
4704 	napi->poll = poll;
4705 	if (weight > NAPI_POLL_WEIGHT)
4706 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4707 			    weight, dev->name);
4708 	napi->weight = weight;
4709 	list_add(&napi->dev_list, &dev->napi_list);
4710 	napi->dev = dev;
4711 #ifdef CONFIG_NETPOLL
4712 	spin_lock_init(&napi->poll_lock);
4713 	napi->poll_owner = -1;
4714 #endif
4715 	set_bit(NAPI_STATE_SCHED, &napi->state);
4716 }
4717 EXPORT_SYMBOL(netif_napi_add);
4718 
4719 void napi_disable(struct napi_struct *n)
4720 {
4721 	might_sleep();
4722 	set_bit(NAPI_STATE_DISABLE, &n->state);
4723 
4724 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4725 		msleep(1);
4726 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
4727 		msleep(1);
4728 
4729 	hrtimer_cancel(&n->timer);
4730 
4731 	clear_bit(NAPI_STATE_DISABLE, &n->state);
4732 }
4733 EXPORT_SYMBOL(napi_disable);
4734 
4735 void netif_napi_del(struct napi_struct *napi)
4736 {
4737 	list_del_init(&napi->dev_list);
4738 	napi_free_frags(napi);
4739 
4740 	kfree_skb_list(napi->gro_list);
4741 	napi->gro_list = NULL;
4742 	napi->gro_count = 0;
4743 }
4744 EXPORT_SYMBOL(netif_napi_del);
4745 
4746 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4747 {
4748 	void *have;
4749 	int work, weight;
4750 
4751 	list_del_init(&n->poll_list);
4752 
4753 	have = netpoll_poll_lock(n);
4754 
4755 	weight = n->weight;
4756 
4757 	/* This NAPI_STATE_SCHED test is for avoiding a race
4758 	 * with netpoll's poll_napi().  Only the entity which
4759 	 * obtains the lock and sees NAPI_STATE_SCHED set will
4760 	 * actually make the ->poll() call.  Therefore we avoid
4761 	 * accidentally calling ->poll() when NAPI is not scheduled.
4762 	 */
4763 	work = 0;
4764 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4765 		work = n->poll(n, weight);
4766 		trace_napi_poll(n);
4767 	}
4768 
4769 	WARN_ON_ONCE(work > weight);
4770 
4771 	if (likely(work < weight))
4772 		goto out_unlock;
4773 
4774 	/* Drivers must not modify the NAPI state if they
4775 	 * consume the entire weight.  In such cases this code
4776 	 * still "owns" the NAPI instance and therefore can
4777 	 * move the instance around on the list at-will.
4778 	 */
4779 	if (unlikely(napi_disable_pending(n))) {
4780 		napi_complete(n);
4781 		goto out_unlock;
4782 	}
4783 
4784 	if (n->gro_list) {
4785 		/* flush too old packets
4786 		 * If HZ < 1000, flush all packets.
4787 		 */
4788 		napi_gro_flush(n, HZ >= 1000);
4789 	}
4790 
4791 	/* Some drivers may have called napi_schedule
4792 	 * prior to exhausting their budget.
4793 	 */
4794 	if (unlikely(!list_empty(&n->poll_list))) {
4795 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4796 			     n->dev ? n->dev->name : "backlog");
4797 		goto out_unlock;
4798 	}
4799 
4800 	list_add_tail(&n->poll_list, repoll);
4801 
4802 out_unlock:
4803 	netpoll_poll_unlock(have);
4804 
4805 	return work;
4806 }
4807 
4808 static void net_rx_action(struct softirq_action *h)
4809 {
4810 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4811 	unsigned long time_limit = jiffies + 2;
4812 	int budget = netdev_budget;
4813 	LIST_HEAD(list);
4814 	LIST_HEAD(repoll);
4815 
4816 	local_irq_disable();
4817 	list_splice_init(&sd->poll_list, &list);
4818 	local_irq_enable();
4819 
4820 	for (;;) {
4821 		struct napi_struct *n;
4822 
4823 		if (list_empty(&list)) {
4824 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4825 				return;
4826 			break;
4827 		}
4828 
4829 		n = list_first_entry(&list, struct napi_struct, poll_list);
4830 		budget -= napi_poll(n, &repoll);
4831 
4832 		/* If softirq window is exhausted then punt.
4833 		 * Allow this to run for 2 jiffies since which will allow
4834 		 * an average latency of 1.5/HZ.
4835 		 */
4836 		if (unlikely(budget <= 0 ||
4837 			     time_after_eq(jiffies, time_limit))) {
4838 			sd->time_squeeze++;
4839 			break;
4840 		}
4841 	}
4842 
4843 	local_irq_disable();
4844 
4845 	list_splice_tail_init(&sd->poll_list, &list);
4846 	list_splice_tail(&repoll, &list);
4847 	list_splice(&list, &sd->poll_list);
4848 	if (!list_empty(&sd->poll_list))
4849 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4850 
4851 	net_rps_action_and_irq_enable(sd);
4852 }
4853 
4854 struct netdev_adjacent {
4855 	struct net_device *dev;
4856 
4857 	/* upper master flag, there can only be one master device per list */
4858 	bool master;
4859 
4860 	/* counter for the number of times this device was added to us */
4861 	u16 ref_nr;
4862 
4863 	/* private field for the users */
4864 	void *private;
4865 
4866 	struct list_head list;
4867 	struct rcu_head rcu;
4868 };
4869 
4870 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
4871 						 struct list_head *adj_list)
4872 {
4873 	struct netdev_adjacent *adj;
4874 
4875 	list_for_each_entry(adj, adj_list, list) {
4876 		if (adj->dev == adj_dev)
4877 			return adj;
4878 	}
4879 	return NULL;
4880 }
4881 
4882 /**
4883  * netdev_has_upper_dev - Check if device is linked to an upper device
4884  * @dev: device
4885  * @upper_dev: upper device to check
4886  *
4887  * Find out if a device is linked to specified upper device and return true
4888  * in case it is. Note that this checks only immediate upper device,
4889  * not through a complete stack of devices. The caller must hold the RTNL lock.
4890  */
4891 bool netdev_has_upper_dev(struct net_device *dev,
4892 			  struct net_device *upper_dev)
4893 {
4894 	ASSERT_RTNL();
4895 
4896 	return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
4897 }
4898 EXPORT_SYMBOL(netdev_has_upper_dev);
4899 
4900 /**
4901  * netdev_has_any_upper_dev - Check if device is linked to some device
4902  * @dev: device
4903  *
4904  * Find out if a device is linked to an upper device and return true in case
4905  * it is. The caller must hold the RTNL lock.
4906  */
4907 static bool netdev_has_any_upper_dev(struct net_device *dev)
4908 {
4909 	ASSERT_RTNL();
4910 
4911 	return !list_empty(&dev->all_adj_list.upper);
4912 }
4913 
4914 /**
4915  * netdev_master_upper_dev_get - Get master upper device
4916  * @dev: device
4917  *
4918  * Find a master upper device and return pointer to it or NULL in case
4919  * it's not there. The caller must hold the RTNL lock.
4920  */
4921 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4922 {
4923 	struct netdev_adjacent *upper;
4924 
4925 	ASSERT_RTNL();
4926 
4927 	if (list_empty(&dev->adj_list.upper))
4928 		return NULL;
4929 
4930 	upper = list_first_entry(&dev->adj_list.upper,
4931 				 struct netdev_adjacent, list);
4932 	if (likely(upper->master))
4933 		return upper->dev;
4934 	return NULL;
4935 }
4936 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4937 
4938 void *netdev_adjacent_get_private(struct list_head *adj_list)
4939 {
4940 	struct netdev_adjacent *adj;
4941 
4942 	adj = list_entry(adj_list, struct netdev_adjacent, list);
4943 
4944 	return adj->private;
4945 }
4946 EXPORT_SYMBOL(netdev_adjacent_get_private);
4947 
4948 /**
4949  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4950  * @dev: device
4951  * @iter: list_head ** of the current position
4952  *
4953  * Gets the next device from the dev's upper list, starting from iter
4954  * position. The caller must hold RCU read lock.
4955  */
4956 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4957 						 struct list_head **iter)
4958 {
4959 	struct netdev_adjacent *upper;
4960 
4961 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4962 
4963 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4964 
4965 	if (&upper->list == &dev->adj_list.upper)
4966 		return NULL;
4967 
4968 	*iter = &upper->list;
4969 
4970 	return upper->dev;
4971 }
4972 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4973 
4974 /**
4975  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4976  * @dev: device
4977  * @iter: list_head ** of the current position
4978  *
4979  * Gets the next device from the dev's upper list, starting from iter
4980  * position. The caller must hold RCU read lock.
4981  */
4982 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4983 						     struct list_head **iter)
4984 {
4985 	struct netdev_adjacent *upper;
4986 
4987 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4988 
4989 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4990 
4991 	if (&upper->list == &dev->all_adj_list.upper)
4992 		return NULL;
4993 
4994 	*iter = &upper->list;
4995 
4996 	return upper->dev;
4997 }
4998 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4999 
5000 /**
5001  * netdev_lower_get_next_private - Get the next ->private from the
5002  *				   lower neighbour list
5003  * @dev: device
5004  * @iter: list_head ** of the current position
5005  *
5006  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5007  * list, starting from iter position. The caller must hold either hold the
5008  * RTNL lock or its own locking that guarantees that the neighbour lower
5009  * list will remain unchanged.
5010  */
5011 void *netdev_lower_get_next_private(struct net_device *dev,
5012 				    struct list_head **iter)
5013 {
5014 	struct netdev_adjacent *lower;
5015 
5016 	lower = list_entry(*iter, struct netdev_adjacent, list);
5017 
5018 	if (&lower->list == &dev->adj_list.lower)
5019 		return NULL;
5020 
5021 	*iter = lower->list.next;
5022 
5023 	return lower->private;
5024 }
5025 EXPORT_SYMBOL(netdev_lower_get_next_private);
5026 
5027 /**
5028  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5029  *				       lower neighbour list, RCU
5030  *				       variant
5031  * @dev: device
5032  * @iter: list_head ** of the current position
5033  *
5034  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5035  * list, starting from iter position. The caller must hold RCU read lock.
5036  */
5037 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5038 					struct list_head **iter)
5039 {
5040 	struct netdev_adjacent *lower;
5041 
5042 	WARN_ON_ONCE(!rcu_read_lock_held());
5043 
5044 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5045 
5046 	if (&lower->list == &dev->adj_list.lower)
5047 		return NULL;
5048 
5049 	*iter = &lower->list;
5050 
5051 	return lower->private;
5052 }
5053 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5054 
5055 /**
5056  * netdev_lower_get_next - Get the next device from the lower neighbour
5057  *                         list
5058  * @dev: device
5059  * @iter: list_head ** of the current position
5060  *
5061  * Gets the next netdev_adjacent from the dev's lower neighbour
5062  * list, starting from iter position. The caller must hold RTNL lock or
5063  * its own locking that guarantees that the neighbour lower
5064  * list will remain unchanged.
5065  */
5066 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5067 {
5068 	struct netdev_adjacent *lower;
5069 
5070 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5071 
5072 	if (&lower->list == &dev->adj_list.lower)
5073 		return NULL;
5074 
5075 	*iter = &lower->list;
5076 
5077 	return lower->dev;
5078 }
5079 EXPORT_SYMBOL(netdev_lower_get_next);
5080 
5081 /**
5082  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5083  *				       lower neighbour list, RCU
5084  *				       variant
5085  * @dev: device
5086  *
5087  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5088  * list. The caller must hold RCU read lock.
5089  */
5090 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5091 {
5092 	struct netdev_adjacent *lower;
5093 
5094 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
5095 			struct netdev_adjacent, list);
5096 	if (lower)
5097 		return lower->private;
5098 	return NULL;
5099 }
5100 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5101 
5102 /**
5103  * netdev_master_upper_dev_get_rcu - Get master upper device
5104  * @dev: device
5105  *
5106  * Find a master upper device and return pointer to it or NULL in case
5107  * it's not there. The caller must hold the RCU read lock.
5108  */
5109 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5110 {
5111 	struct netdev_adjacent *upper;
5112 
5113 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
5114 				       struct netdev_adjacent, list);
5115 	if (upper && likely(upper->master))
5116 		return upper->dev;
5117 	return NULL;
5118 }
5119 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5120 
5121 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5122 			      struct net_device *adj_dev,
5123 			      struct list_head *dev_list)
5124 {
5125 	char linkname[IFNAMSIZ+7];
5126 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5127 		"upper_%s" : "lower_%s", adj_dev->name);
5128 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5129 				 linkname);
5130 }
5131 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5132 			       char *name,
5133 			       struct list_head *dev_list)
5134 {
5135 	char linkname[IFNAMSIZ+7];
5136 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5137 		"upper_%s" : "lower_%s", name);
5138 	sysfs_remove_link(&(dev->dev.kobj), linkname);
5139 }
5140 
5141 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5142 						 struct net_device *adj_dev,
5143 						 struct list_head *dev_list)
5144 {
5145 	return (dev_list == &dev->adj_list.upper ||
5146 		dev_list == &dev->adj_list.lower) &&
5147 		net_eq(dev_net(dev), dev_net(adj_dev));
5148 }
5149 
5150 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5151 					struct net_device *adj_dev,
5152 					struct list_head *dev_list,
5153 					void *private, bool master)
5154 {
5155 	struct netdev_adjacent *adj;
5156 	int ret;
5157 
5158 	adj = __netdev_find_adj(adj_dev, dev_list);
5159 
5160 	if (adj) {
5161 		adj->ref_nr++;
5162 		return 0;
5163 	}
5164 
5165 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5166 	if (!adj)
5167 		return -ENOMEM;
5168 
5169 	adj->dev = adj_dev;
5170 	adj->master = master;
5171 	adj->ref_nr = 1;
5172 	adj->private = private;
5173 	dev_hold(adj_dev);
5174 
5175 	pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5176 		 adj_dev->name, dev->name, adj_dev->name);
5177 
5178 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5179 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5180 		if (ret)
5181 			goto free_adj;
5182 	}
5183 
5184 	/* Ensure that master link is always the first item in list. */
5185 	if (master) {
5186 		ret = sysfs_create_link(&(dev->dev.kobj),
5187 					&(adj_dev->dev.kobj), "master");
5188 		if (ret)
5189 			goto remove_symlinks;
5190 
5191 		list_add_rcu(&adj->list, dev_list);
5192 	} else {
5193 		list_add_tail_rcu(&adj->list, dev_list);
5194 	}
5195 
5196 	return 0;
5197 
5198 remove_symlinks:
5199 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5200 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5201 free_adj:
5202 	kfree(adj);
5203 	dev_put(adj_dev);
5204 
5205 	return ret;
5206 }
5207 
5208 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5209 					 struct net_device *adj_dev,
5210 					 struct list_head *dev_list)
5211 {
5212 	struct netdev_adjacent *adj;
5213 
5214 	adj = __netdev_find_adj(adj_dev, dev_list);
5215 
5216 	if (!adj) {
5217 		pr_err("tried to remove device %s from %s\n",
5218 		       dev->name, adj_dev->name);
5219 		BUG();
5220 	}
5221 
5222 	if (adj->ref_nr > 1) {
5223 		pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5224 			 adj->ref_nr-1);
5225 		adj->ref_nr--;
5226 		return;
5227 	}
5228 
5229 	if (adj->master)
5230 		sysfs_remove_link(&(dev->dev.kobj), "master");
5231 
5232 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5233 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5234 
5235 	list_del_rcu(&adj->list);
5236 	pr_debug("dev_put for %s, because link removed from %s to %s\n",
5237 		 adj_dev->name, dev->name, adj_dev->name);
5238 	dev_put(adj_dev);
5239 	kfree_rcu(adj, rcu);
5240 }
5241 
5242 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5243 					    struct net_device *upper_dev,
5244 					    struct list_head *up_list,
5245 					    struct list_head *down_list,
5246 					    void *private, bool master)
5247 {
5248 	int ret;
5249 
5250 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5251 					   master);
5252 	if (ret)
5253 		return ret;
5254 
5255 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5256 					   false);
5257 	if (ret) {
5258 		__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5259 		return ret;
5260 	}
5261 
5262 	return 0;
5263 }
5264 
5265 static int __netdev_adjacent_dev_link(struct net_device *dev,
5266 				      struct net_device *upper_dev)
5267 {
5268 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5269 						&dev->all_adj_list.upper,
5270 						&upper_dev->all_adj_list.lower,
5271 						NULL, false);
5272 }
5273 
5274 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5275 					       struct net_device *upper_dev,
5276 					       struct list_head *up_list,
5277 					       struct list_head *down_list)
5278 {
5279 	__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5280 	__netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5281 }
5282 
5283 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5284 					 struct net_device *upper_dev)
5285 {
5286 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5287 					   &dev->all_adj_list.upper,
5288 					   &upper_dev->all_adj_list.lower);
5289 }
5290 
5291 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5292 						struct net_device *upper_dev,
5293 						void *private, bool master)
5294 {
5295 	int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5296 
5297 	if (ret)
5298 		return ret;
5299 
5300 	ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5301 					       &dev->adj_list.upper,
5302 					       &upper_dev->adj_list.lower,
5303 					       private, master);
5304 	if (ret) {
5305 		__netdev_adjacent_dev_unlink(dev, upper_dev);
5306 		return ret;
5307 	}
5308 
5309 	return 0;
5310 }
5311 
5312 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5313 						   struct net_device *upper_dev)
5314 {
5315 	__netdev_adjacent_dev_unlink(dev, upper_dev);
5316 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5317 					   &dev->adj_list.upper,
5318 					   &upper_dev->adj_list.lower);
5319 }
5320 
5321 static int __netdev_upper_dev_link(struct net_device *dev,
5322 				   struct net_device *upper_dev, bool master,
5323 				   void *private)
5324 {
5325 	struct netdev_notifier_changeupper_info changeupper_info;
5326 	struct netdev_adjacent *i, *j, *to_i, *to_j;
5327 	int ret = 0;
5328 
5329 	ASSERT_RTNL();
5330 
5331 	if (dev == upper_dev)
5332 		return -EBUSY;
5333 
5334 	/* To prevent loops, check if dev is not upper device to upper_dev. */
5335 	if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5336 		return -EBUSY;
5337 
5338 	if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5339 		return -EEXIST;
5340 
5341 	if (master && netdev_master_upper_dev_get(dev))
5342 		return -EBUSY;
5343 
5344 	changeupper_info.upper_dev = upper_dev;
5345 	changeupper_info.master = master;
5346 	changeupper_info.linking = true;
5347 
5348 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5349 						   master);
5350 	if (ret)
5351 		return ret;
5352 
5353 	/* Now that we linked these devs, make all the upper_dev's
5354 	 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5355 	 * versa, and don't forget the devices itself. All of these
5356 	 * links are non-neighbours.
5357 	 */
5358 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5359 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5360 			pr_debug("Interlinking %s with %s, non-neighbour\n",
5361 				 i->dev->name, j->dev->name);
5362 			ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5363 			if (ret)
5364 				goto rollback_mesh;
5365 		}
5366 	}
5367 
5368 	/* add dev to every upper_dev's upper device */
5369 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5370 		pr_debug("linking %s's upper device %s with %s\n",
5371 			 upper_dev->name, i->dev->name, dev->name);
5372 		ret = __netdev_adjacent_dev_link(dev, i->dev);
5373 		if (ret)
5374 			goto rollback_upper_mesh;
5375 	}
5376 
5377 	/* add upper_dev to every dev's lower device */
5378 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5379 		pr_debug("linking %s's lower device %s with %s\n", dev->name,
5380 			 i->dev->name, upper_dev->name);
5381 		ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5382 		if (ret)
5383 			goto rollback_lower_mesh;
5384 	}
5385 
5386 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5387 				      &changeupper_info.info);
5388 	return 0;
5389 
5390 rollback_lower_mesh:
5391 	to_i = i;
5392 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5393 		if (i == to_i)
5394 			break;
5395 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5396 	}
5397 
5398 	i = NULL;
5399 
5400 rollback_upper_mesh:
5401 	to_i = i;
5402 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5403 		if (i == to_i)
5404 			break;
5405 		__netdev_adjacent_dev_unlink(dev, i->dev);
5406 	}
5407 
5408 	i = j = NULL;
5409 
5410 rollback_mesh:
5411 	to_i = i;
5412 	to_j = j;
5413 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5414 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5415 			if (i == to_i && j == to_j)
5416 				break;
5417 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5418 		}
5419 		if (i == to_i)
5420 			break;
5421 	}
5422 
5423 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5424 
5425 	return ret;
5426 }
5427 
5428 /**
5429  * netdev_upper_dev_link - Add a link to the upper device
5430  * @dev: device
5431  * @upper_dev: new upper device
5432  *
5433  * Adds a link to device which is upper to this one. The caller must hold
5434  * the RTNL lock. On a failure a negative errno code is returned.
5435  * On success the reference counts are adjusted and the function
5436  * returns zero.
5437  */
5438 int netdev_upper_dev_link(struct net_device *dev,
5439 			  struct net_device *upper_dev)
5440 {
5441 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5442 }
5443 EXPORT_SYMBOL(netdev_upper_dev_link);
5444 
5445 /**
5446  * netdev_master_upper_dev_link - Add a master link to the upper device
5447  * @dev: device
5448  * @upper_dev: new upper device
5449  *
5450  * Adds a link to device which is upper to this one. In this case, only
5451  * one master upper device can be linked, although other non-master devices
5452  * might be linked as well. The caller must hold the RTNL lock.
5453  * On a failure a negative errno code is returned. On success the reference
5454  * counts are adjusted and the function returns zero.
5455  */
5456 int netdev_master_upper_dev_link(struct net_device *dev,
5457 				 struct net_device *upper_dev)
5458 {
5459 	return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5460 }
5461 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5462 
5463 int netdev_master_upper_dev_link_private(struct net_device *dev,
5464 					 struct net_device *upper_dev,
5465 					 void *private)
5466 {
5467 	return __netdev_upper_dev_link(dev, upper_dev, true, private);
5468 }
5469 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5470 
5471 /**
5472  * netdev_upper_dev_unlink - Removes a link to upper device
5473  * @dev: device
5474  * @upper_dev: new upper device
5475  *
5476  * Removes a link to device which is upper to this one. The caller must hold
5477  * the RTNL lock.
5478  */
5479 void netdev_upper_dev_unlink(struct net_device *dev,
5480 			     struct net_device *upper_dev)
5481 {
5482 	struct netdev_notifier_changeupper_info changeupper_info;
5483 	struct netdev_adjacent *i, *j;
5484 	ASSERT_RTNL();
5485 
5486 	changeupper_info.upper_dev = upper_dev;
5487 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5488 	changeupper_info.linking = false;
5489 
5490 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5491 
5492 	/* Here is the tricky part. We must remove all dev's lower
5493 	 * devices from all upper_dev's upper devices and vice
5494 	 * versa, to maintain the graph relationship.
5495 	 */
5496 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5497 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5498 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5499 
5500 	/* remove also the devices itself from lower/upper device
5501 	 * list
5502 	 */
5503 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5504 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5505 
5506 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5507 		__netdev_adjacent_dev_unlink(dev, i->dev);
5508 
5509 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5510 				      &changeupper_info.info);
5511 }
5512 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5513 
5514 /**
5515  * netdev_bonding_info_change - Dispatch event about slave change
5516  * @dev: device
5517  * @bonding_info: info to dispatch
5518  *
5519  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5520  * The caller must hold the RTNL lock.
5521  */
5522 void netdev_bonding_info_change(struct net_device *dev,
5523 				struct netdev_bonding_info *bonding_info)
5524 {
5525 	struct netdev_notifier_bonding_info	info;
5526 
5527 	memcpy(&info.bonding_info, bonding_info,
5528 	       sizeof(struct netdev_bonding_info));
5529 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5530 				      &info.info);
5531 }
5532 EXPORT_SYMBOL(netdev_bonding_info_change);
5533 
5534 static void netdev_adjacent_add_links(struct net_device *dev)
5535 {
5536 	struct netdev_adjacent *iter;
5537 
5538 	struct net *net = dev_net(dev);
5539 
5540 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5541 		if (!net_eq(net,dev_net(iter->dev)))
5542 			continue;
5543 		netdev_adjacent_sysfs_add(iter->dev, dev,
5544 					  &iter->dev->adj_list.lower);
5545 		netdev_adjacent_sysfs_add(dev, iter->dev,
5546 					  &dev->adj_list.upper);
5547 	}
5548 
5549 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5550 		if (!net_eq(net,dev_net(iter->dev)))
5551 			continue;
5552 		netdev_adjacent_sysfs_add(iter->dev, dev,
5553 					  &iter->dev->adj_list.upper);
5554 		netdev_adjacent_sysfs_add(dev, iter->dev,
5555 					  &dev->adj_list.lower);
5556 	}
5557 }
5558 
5559 static void netdev_adjacent_del_links(struct net_device *dev)
5560 {
5561 	struct netdev_adjacent *iter;
5562 
5563 	struct net *net = dev_net(dev);
5564 
5565 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5566 		if (!net_eq(net,dev_net(iter->dev)))
5567 			continue;
5568 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5569 					  &iter->dev->adj_list.lower);
5570 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5571 					  &dev->adj_list.upper);
5572 	}
5573 
5574 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5575 		if (!net_eq(net,dev_net(iter->dev)))
5576 			continue;
5577 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5578 					  &iter->dev->adj_list.upper);
5579 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5580 					  &dev->adj_list.lower);
5581 	}
5582 }
5583 
5584 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5585 {
5586 	struct netdev_adjacent *iter;
5587 
5588 	struct net *net = dev_net(dev);
5589 
5590 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5591 		if (!net_eq(net,dev_net(iter->dev)))
5592 			continue;
5593 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5594 					  &iter->dev->adj_list.lower);
5595 		netdev_adjacent_sysfs_add(iter->dev, dev,
5596 					  &iter->dev->adj_list.lower);
5597 	}
5598 
5599 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5600 		if (!net_eq(net,dev_net(iter->dev)))
5601 			continue;
5602 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5603 					  &iter->dev->adj_list.upper);
5604 		netdev_adjacent_sysfs_add(iter->dev, dev,
5605 					  &iter->dev->adj_list.upper);
5606 	}
5607 }
5608 
5609 void *netdev_lower_dev_get_private(struct net_device *dev,
5610 				   struct net_device *lower_dev)
5611 {
5612 	struct netdev_adjacent *lower;
5613 
5614 	if (!lower_dev)
5615 		return NULL;
5616 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
5617 	if (!lower)
5618 		return NULL;
5619 
5620 	return lower->private;
5621 }
5622 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5623 
5624 
5625 int dev_get_nest_level(struct net_device *dev,
5626 		       bool (*type_check)(struct net_device *dev))
5627 {
5628 	struct net_device *lower = NULL;
5629 	struct list_head *iter;
5630 	int max_nest = -1;
5631 	int nest;
5632 
5633 	ASSERT_RTNL();
5634 
5635 	netdev_for_each_lower_dev(dev, lower, iter) {
5636 		nest = dev_get_nest_level(lower, type_check);
5637 		if (max_nest < nest)
5638 			max_nest = nest;
5639 	}
5640 
5641 	if (type_check(dev))
5642 		max_nest++;
5643 
5644 	return max_nest;
5645 }
5646 EXPORT_SYMBOL(dev_get_nest_level);
5647 
5648 static void dev_change_rx_flags(struct net_device *dev, int flags)
5649 {
5650 	const struct net_device_ops *ops = dev->netdev_ops;
5651 
5652 	if (ops->ndo_change_rx_flags)
5653 		ops->ndo_change_rx_flags(dev, flags);
5654 }
5655 
5656 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5657 {
5658 	unsigned int old_flags = dev->flags;
5659 	kuid_t uid;
5660 	kgid_t gid;
5661 
5662 	ASSERT_RTNL();
5663 
5664 	dev->flags |= IFF_PROMISC;
5665 	dev->promiscuity += inc;
5666 	if (dev->promiscuity == 0) {
5667 		/*
5668 		 * Avoid overflow.
5669 		 * If inc causes overflow, untouch promisc and return error.
5670 		 */
5671 		if (inc < 0)
5672 			dev->flags &= ~IFF_PROMISC;
5673 		else {
5674 			dev->promiscuity -= inc;
5675 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5676 				dev->name);
5677 			return -EOVERFLOW;
5678 		}
5679 	}
5680 	if (dev->flags != old_flags) {
5681 		pr_info("device %s %s promiscuous mode\n",
5682 			dev->name,
5683 			dev->flags & IFF_PROMISC ? "entered" : "left");
5684 		if (audit_enabled) {
5685 			current_uid_gid(&uid, &gid);
5686 			audit_log(current->audit_context, GFP_ATOMIC,
5687 				AUDIT_ANOM_PROMISCUOUS,
5688 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5689 				dev->name, (dev->flags & IFF_PROMISC),
5690 				(old_flags & IFF_PROMISC),
5691 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
5692 				from_kuid(&init_user_ns, uid),
5693 				from_kgid(&init_user_ns, gid),
5694 				audit_get_sessionid(current));
5695 		}
5696 
5697 		dev_change_rx_flags(dev, IFF_PROMISC);
5698 	}
5699 	if (notify)
5700 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
5701 	return 0;
5702 }
5703 
5704 /**
5705  *	dev_set_promiscuity	- update promiscuity count on a device
5706  *	@dev: device
5707  *	@inc: modifier
5708  *
5709  *	Add or remove promiscuity from a device. While the count in the device
5710  *	remains above zero the interface remains promiscuous. Once it hits zero
5711  *	the device reverts back to normal filtering operation. A negative inc
5712  *	value is used to drop promiscuity on the device.
5713  *	Return 0 if successful or a negative errno code on error.
5714  */
5715 int dev_set_promiscuity(struct net_device *dev, int inc)
5716 {
5717 	unsigned int old_flags = dev->flags;
5718 	int err;
5719 
5720 	err = __dev_set_promiscuity(dev, inc, true);
5721 	if (err < 0)
5722 		return err;
5723 	if (dev->flags != old_flags)
5724 		dev_set_rx_mode(dev);
5725 	return err;
5726 }
5727 EXPORT_SYMBOL(dev_set_promiscuity);
5728 
5729 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5730 {
5731 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5732 
5733 	ASSERT_RTNL();
5734 
5735 	dev->flags |= IFF_ALLMULTI;
5736 	dev->allmulti += inc;
5737 	if (dev->allmulti == 0) {
5738 		/*
5739 		 * Avoid overflow.
5740 		 * If inc causes overflow, untouch allmulti and return error.
5741 		 */
5742 		if (inc < 0)
5743 			dev->flags &= ~IFF_ALLMULTI;
5744 		else {
5745 			dev->allmulti -= inc;
5746 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5747 				dev->name);
5748 			return -EOVERFLOW;
5749 		}
5750 	}
5751 	if (dev->flags ^ old_flags) {
5752 		dev_change_rx_flags(dev, IFF_ALLMULTI);
5753 		dev_set_rx_mode(dev);
5754 		if (notify)
5755 			__dev_notify_flags(dev, old_flags,
5756 					   dev->gflags ^ old_gflags);
5757 	}
5758 	return 0;
5759 }
5760 
5761 /**
5762  *	dev_set_allmulti	- update allmulti count on a device
5763  *	@dev: device
5764  *	@inc: modifier
5765  *
5766  *	Add or remove reception of all multicast frames to a device. While the
5767  *	count in the device remains above zero the interface remains listening
5768  *	to all interfaces. Once it hits zero the device reverts back to normal
5769  *	filtering operation. A negative @inc value is used to drop the counter
5770  *	when releasing a resource needing all multicasts.
5771  *	Return 0 if successful or a negative errno code on error.
5772  */
5773 
5774 int dev_set_allmulti(struct net_device *dev, int inc)
5775 {
5776 	return __dev_set_allmulti(dev, inc, true);
5777 }
5778 EXPORT_SYMBOL(dev_set_allmulti);
5779 
5780 /*
5781  *	Upload unicast and multicast address lists to device and
5782  *	configure RX filtering. When the device doesn't support unicast
5783  *	filtering it is put in promiscuous mode while unicast addresses
5784  *	are present.
5785  */
5786 void __dev_set_rx_mode(struct net_device *dev)
5787 {
5788 	const struct net_device_ops *ops = dev->netdev_ops;
5789 
5790 	/* dev_open will call this function so the list will stay sane. */
5791 	if (!(dev->flags&IFF_UP))
5792 		return;
5793 
5794 	if (!netif_device_present(dev))
5795 		return;
5796 
5797 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5798 		/* Unicast addresses changes may only happen under the rtnl,
5799 		 * therefore calling __dev_set_promiscuity here is safe.
5800 		 */
5801 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5802 			__dev_set_promiscuity(dev, 1, false);
5803 			dev->uc_promisc = true;
5804 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5805 			__dev_set_promiscuity(dev, -1, false);
5806 			dev->uc_promisc = false;
5807 		}
5808 	}
5809 
5810 	if (ops->ndo_set_rx_mode)
5811 		ops->ndo_set_rx_mode(dev);
5812 }
5813 
5814 void dev_set_rx_mode(struct net_device *dev)
5815 {
5816 	netif_addr_lock_bh(dev);
5817 	__dev_set_rx_mode(dev);
5818 	netif_addr_unlock_bh(dev);
5819 }
5820 
5821 /**
5822  *	dev_get_flags - get flags reported to userspace
5823  *	@dev: device
5824  *
5825  *	Get the combination of flag bits exported through APIs to userspace.
5826  */
5827 unsigned int dev_get_flags(const struct net_device *dev)
5828 {
5829 	unsigned int flags;
5830 
5831 	flags = (dev->flags & ~(IFF_PROMISC |
5832 				IFF_ALLMULTI |
5833 				IFF_RUNNING |
5834 				IFF_LOWER_UP |
5835 				IFF_DORMANT)) |
5836 		(dev->gflags & (IFF_PROMISC |
5837 				IFF_ALLMULTI));
5838 
5839 	if (netif_running(dev)) {
5840 		if (netif_oper_up(dev))
5841 			flags |= IFF_RUNNING;
5842 		if (netif_carrier_ok(dev))
5843 			flags |= IFF_LOWER_UP;
5844 		if (netif_dormant(dev))
5845 			flags |= IFF_DORMANT;
5846 	}
5847 
5848 	return flags;
5849 }
5850 EXPORT_SYMBOL(dev_get_flags);
5851 
5852 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5853 {
5854 	unsigned int old_flags = dev->flags;
5855 	int ret;
5856 
5857 	ASSERT_RTNL();
5858 
5859 	/*
5860 	 *	Set the flags on our device.
5861 	 */
5862 
5863 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5864 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5865 			       IFF_AUTOMEDIA)) |
5866 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5867 				    IFF_ALLMULTI));
5868 
5869 	/*
5870 	 *	Load in the correct multicast list now the flags have changed.
5871 	 */
5872 
5873 	if ((old_flags ^ flags) & IFF_MULTICAST)
5874 		dev_change_rx_flags(dev, IFF_MULTICAST);
5875 
5876 	dev_set_rx_mode(dev);
5877 
5878 	/*
5879 	 *	Have we downed the interface. We handle IFF_UP ourselves
5880 	 *	according to user attempts to set it, rather than blindly
5881 	 *	setting it.
5882 	 */
5883 
5884 	ret = 0;
5885 	if ((old_flags ^ flags) & IFF_UP)
5886 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5887 
5888 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
5889 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
5890 		unsigned int old_flags = dev->flags;
5891 
5892 		dev->gflags ^= IFF_PROMISC;
5893 
5894 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
5895 			if (dev->flags != old_flags)
5896 				dev_set_rx_mode(dev);
5897 	}
5898 
5899 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5900 	   is important. Some (broken) drivers set IFF_PROMISC, when
5901 	   IFF_ALLMULTI is requested not asking us and not reporting.
5902 	 */
5903 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5904 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5905 
5906 		dev->gflags ^= IFF_ALLMULTI;
5907 		__dev_set_allmulti(dev, inc, false);
5908 	}
5909 
5910 	return ret;
5911 }
5912 
5913 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5914 			unsigned int gchanges)
5915 {
5916 	unsigned int changes = dev->flags ^ old_flags;
5917 
5918 	if (gchanges)
5919 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5920 
5921 	if (changes & IFF_UP) {
5922 		if (dev->flags & IFF_UP)
5923 			call_netdevice_notifiers(NETDEV_UP, dev);
5924 		else
5925 			call_netdevice_notifiers(NETDEV_DOWN, dev);
5926 	}
5927 
5928 	if (dev->flags & IFF_UP &&
5929 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5930 		struct netdev_notifier_change_info change_info;
5931 
5932 		change_info.flags_changed = changes;
5933 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5934 					      &change_info.info);
5935 	}
5936 }
5937 
5938 /**
5939  *	dev_change_flags - change device settings
5940  *	@dev: device
5941  *	@flags: device state flags
5942  *
5943  *	Change settings on device based state flags. The flags are
5944  *	in the userspace exported format.
5945  */
5946 int dev_change_flags(struct net_device *dev, unsigned int flags)
5947 {
5948 	int ret;
5949 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5950 
5951 	ret = __dev_change_flags(dev, flags);
5952 	if (ret < 0)
5953 		return ret;
5954 
5955 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5956 	__dev_notify_flags(dev, old_flags, changes);
5957 	return ret;
5958 }
5959 EXPORT_SYMBOL(dev_change_flags);
5960 
5961 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5962 {
5963 	const struct net_device_ops *ops = dev->netdev_ops;
5964 
5965 	if (ops->ndo_change_mtu)
5966 		return ops->ndo_change_mtu(dev, new_mtu);
5967 
5968 	dev->mtu = new_mtu;
5969 	return 0;
5970 }
5971 
5972 /**
5973  *	dev_set_mtu - Change maximum transfer unit
5974  *	@dev: device
5975  *	@new_mtu: new transfer unit
5976  *
5977  *	Change the maximum transfer size of the network device.
5978  */
5979 int dev_set_mtu(struct net_device *dev, int new_mtu)
5980 {
5981 	int err, orig_mtu;
5982 
5983 	if (new_mtu == dev->mtu)
5984 		return 0;
5985 
5986 	/*	MTU must be positive.	 */
5987 	if (new_mtu < 0)
5988 		return -EINVAL;
5989 
5990 	if (!netif_device_present(dev))
5991 		return -ENODEV;
5992 
5993 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5994 	err = notifier_to_errno(err);
5995 	if (err)
5996 		return err;
5997 
5998 	orig_mtu = dev->mtu;
5999 	err = __dev_set_mtu(dev, new_mtu);
6000 
6001 	if (!err) {
6002 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6003 		err = notifier_to_errno(err);
6004 		if (err) {
6005 			/* setting mtu back and notifying everyone again,
6006 			 * so that they have a chance to revert changes.
6007 			 */
6008 			__dev_set_mtu(dev, orig_mtu);
6009 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6010 		}
6011 	}
6012 	return err;
6013 }
6014 EXPORT_SYMBOL(dev_set_mtu);
6015 
6016 /**
6017  *	dev_set_group - Change group this device belongs to
6018  *	@dev: device
6019  *	@new_group: group this device should belong to
6020  */
6021 void dev_set_group(struct net_device *dev, int new_group)
6022 {
6023 	dev->group = new_group;
6024 }
6025 EXPORT_SYMBOL(dev_set_group);
6026 
6027 /**
6028  *	dev_set_mac_address - Change Media Access Control Address
6029  *	@dev: device
6030  *	@sa: new address
6031  *
6032  *	Change the hardware (MAC) address of the device
6033  */
6034 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6035 {
6036 	const struct net_device_ops *ops = dev->netdev_ops;
6037 	int err;
6038 
6039 	if (!ops->ndo_set_mac_address)
6040 		return -EOPNOTSUPP;
6041 	if (sa->sa_family != dev->type)
6042 		return -EINVAL;
6043 	if (!netif_device_present(dev))
6044 		return -ENODEV;
6045 	err = ops->ndo_set_mac_address(dev, sa);
6046 	if (err)
6047 		return err;
6048 	dev->addr_assign_type = NET_ADDR_SET;
6049 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6050 	add_device_randomness(dev->dev_addr, dev->addr_len);
6051 	return 0;
6052 }
6053 EXPORT_SYMBOL(dev_set_mac_address);
6054 
6055 /**
6056  *	dev_change_carrier - Change device carrier
6057  *	@dev: device
6058  *	@new_carrier: new value
6059  *
6060  *	Change device carrier
6061  */
6062 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6063 {
6064 	const struct net_device_ops *ops = dev->netdev_ops;
6065 
6066 	if (!ops->ndo_change_carrier)
6067 		return -EOPNOTSUPP;
6068 	if (!netif_device_present(dev))
6069 		return -ENODEV;
6070 	return ops->ndo_change_carrier(dev, new_carrier);
6071 }
6072 EXPORT_SYMBOL(dev_change_carrier);
6073 
6074 /**
6075  *	dev_get_phys_port_id - Get device physical port ID
6076  *	@dev: device
6077  *	@ppid: port ID
6078  *
6079  *	Get device physical port ID
6080  */
6081 int dev_get_phys_port_id(struct net_device *dev,
6082 			 struct netdev_phys_item_id *ppid)
6083 {
6084 	const struct net_device_ops *ops = dev->netdev_ops;
6085 
6086 	if (!ops->ndo_get_phys_port_id)
6087 		return -EOPNOTSUPP;
6088 	return ops->ndo_get_phys_port_id(dev, ppid);
6089 }
6090 EXPORT_SYMBOL(dev_get_phys_port_id);
6091 
6092 /**
6093  *	dev_get_phys_port_name - Get device physical port name
6094  *	@dev: device
6095  *	@name: port name
6096  *
6097  *	Get device physical port name
6098  */
6099 int dev_get_phys_port_name(struct net_device *dev,
6100 			   char *name, size_t len)
6101 {
6102 	const struct net_device_ops *ops = dev->netdev_ops;
6103 
6104 	if (!ops->ndo_get_phys_port_name)
6105 		return -EOPNOTSUPP;
6106 	return ops->ndo_get_phys_port_name(dev, name, len);
6107 }
6108 EXPORT_SYMBOL(dev_get_phys_port_name);
6109 
6110 /**
6111  *	dev_change_proto_down - update protocol port state information
6112  *	@dev: device
6113  *	@proto_down: new value
6114  *
6115  *	This info can be used by switch drivers to set the phys state of the
6116  *	port.
6117  */
6118 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6119 {
6120 	const struct net_device_ops *ops = dev->netdev_ops;
6121 
6122 	if (!ops->ndo_change_proto_down)
6123 		return -EOPNOTSUPP;
6124 	if (!netif_device_present(dev))
6125 		return -ENODEV;
6126 	return ops->ndo_change_proto_down(dev, proto_down);
6127 }
6128 EXPORT_SYMBOL(dev_change_proto_down);
6129 
6130 /**
6131  *	dev_new_index	-	allocate an ifindex
6132  *	@net: the applicable net namespace
6133  *
6134  *	Returns a suitable unique value for a new device interface
6135  *	number.  The caller must hold the rtnl semaphore or the
6136  *	dev_base_lock to be sure it remains unique.
6137  */
6138 static int dev_new_index(struct net *net)
6139 {
6140 	int ifindex = net->ifindex;
6141 	for (;;) {
6142 		if (++ifindex <= 0)
6143 			ifindex = 1;
6144 		if (!__dev_get_by_index(net, ifindex))
6145 			return net->ifindex = ifindex;
6146 	}
6147 }
6148 
6149 /* Delayed registration/unregisteration */
6150 static LIST_HEAD(net_todo_list);
6151 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6152 
6153 static void net_set_todo(struct net_device *dev)
6154 {
6155 	list_add_tail(&dev->todo_list, &net_todo_list);
6156 	dev_net(dev)->dev_unreg_count++;
6157 }
6158 
6159 static void rollback_registered_many(struct list_head *head)
6160 {
6161 	struct net_device *dev, *tmp;
6162 	LIST_HEAD(close_head);
6163 
6164 	BUG_ON(dev_boot_phase);
6165 	ASSERT_RTNL();
6166 
6167 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6168 		/* Some devices call without registering
6169 		 * for initialization unwind. Remove those
6170 		 * devices and proceed with the remaining.
6171 		 */
6172 		if (dev->reg_state == NETREG_UNINITIALIZED) {
6173 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6174 				 dev->name, dev);
6175 
6176 			WARN_ON(1);
6177 			list_del(&dev->unreg_list);
6178 			continue;
6179 		}
6180 		dev->dismantle = true;
6181 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
6182 	}
6183 
6184 	/* If device is running, close it first. */
6185 	list_for_each_entry(dev, head, unreg_list)
6186 		list_add_tail(&dev->close_list, &close_head);
6187 	dev_close_many(&close_head, true);
6188 
6189 	list_for_each_entry(dev, head, unreg_list) {
6190 		/* And unlink it from device chain. */
6191 		unlist_netdevice(dev);
6192 
6193 		dev->reg_state = NETREG_UNREGISTERING;
6194 		on_each_cpu(flush_backlog, dev, 1);
6195 	}
6196 
6197 	synchronize_net();
6198 
6199 	list_for_each_entry(dev, head, unreg_list) {
6200 		struct sk_buff *skb = NULL;
6201 
6202 		/* Shutdown queueing discipline. */
6203 		dev_shutdown(dev);
6204 
6205 
6206 		/* Notify protocols, that we are about to destroy
6207 		   this device. They should clean all the things.
6208 		*/
6209 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6210 
6211 		if (!dev->rtnl_link_ops ||
6212 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6213 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6214 						     GFP_KERNEL);
6215 
6216 		/*
6217 		 *	Flush the unicast and multicast chains
6218 		 */
6219 		dev_uc_flush(dev);
6220 		dev_mc_flush(dev);
6221 
6222 		if (dev->netdev_ops->ndo_uninit)
6223 			dev->netdev_ops->ndo_uninit(dev);
6224 
6225 		if (skb)
6226 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6227 
6228 		/* Notifier chain MUST detach us all upper devices. */
6229 		WARN_ON(netdev_has_any_upper_dev(dev));
6230 
6231 		/* Remove entries from kobject tree */
6232 		netdev_unregister_kobject(dev);
6233 #ifdef CONFIG_XPS
6234 		/* Remove XPS queueing entries */
6235 		netif_reset_xps_queues_gt(dev, 0);
6236 #endif
6237 	}
6238 
6239 	synchronize_net();
6240 
6241 	list_for_each_entry(dev, head, unreg_list)
6242 		dev_put(dev);
6243 }
6244 
6245 static void rollback_registered(struct net_device *dev)
6246 {
6247 	LIST_HEAD(single);
6248 
6249 	list_add(&dev->unreg_list, &single);
6250 	rollback_registered_many(&single);
6251 	list_del(&single);
6252 }
6253 
6254 static netdev_features_t netdev_fix_features(struct net_device *dev,
6255 	netdev_features_t features)
6256 {
6257 	/* Fix illegal checksum combinations */
6258 	if ((features & NETIF_F_HW_CSUM) &&
6259 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6260 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6261 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6262 	}
6263 
6264 	/* TSO requires that SG is present as well. */
6265 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6266 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6267 		features &= ~NETIF_F_ALL_TSO;
6268 	}
6269 
6270 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6271 					!(features & NETIF_F_IP_CSUM)) {
6272 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6273 		features &= ~NETIF_F_TSO;
6274 		features &= ~NETIF_F_TSO_ECN;
6275 	}
6276 
6277 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6278 					 !(features & NETIF_F_IPV6_CSUM)) {
6279 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6280 		features &= ~NETIF_F_TSO6;
6281 	}
6282 
6283 	/* TSO ECN requires that TSO is present as well. */
6284 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6285 		features &= ~NETIF_F_TSO_ECN;
6286 
6287 	/* Software GSO depends on SG. */
6288 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6289 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6290 		features &= ~NETIF_F_GSO;
6291 	}
6292 
6293 	/* UFO needs SG and checksumming */
6294 	if (features & NETIF_F_UFO) {
6295 		/* maybe split UFO into V4 and V6? */
6296 		if (!((features & NETIF_F_GEN_CSUM) ||
6297 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6298 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6299 			netdev_dbg(dev,
6300 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
6301 			features &= ~NETIF_F_UFO;
6302 		}
6303 
6304 		if (!(features & NETIF_F_SG)) {
6305 			netdev_dbg(dev,
6306 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6307 			features &= ~NETIF_F_UFO;
6308 		}
6309 	}
6310 
6311 #ifdef CONFIG_NET_RX_BUSY_POLL
6312 	if (dev->netdev_ops->ndo_busy_poll)
6313 		features |= NETIF_F_BUSY_POLL;
6314 	else
6315 #endif
6316 		features &= ~NETIF_F_BUSY_POLL;
6317 
6318 	return features;
6319 }
6320 
6321 int __netdev_update_features(struct net_device *dev)
6322 {
6323 	netdev_features_t features;
6324 	int err = 0;
6325 
6326 	ASSERT_RTNL();
6327 
6328 	features = netdev_get_wanted_features(dev);
6329 
6330 	if (dev->netdev_ops->ndo_fix_features)
6331 		features = dev->netdev_ops->ndo_fix_features(dev, features);
6332 
6333 	/* driver might be less strict about feature dependencies */
6334 	features = netdev_fix_features(dev, features);
6335 
6336 	if (dev->features == features)
6337 		return 0;
6338 
6339 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6340 		&dev->features, &features);
6341 
6342 	if (dev->netdev_ops->ndo_set_features)
6343 		err = dev->netdev_ops->ndo_set_features(dev, features);
6344 
6345 	if (unlikely(err < 0)) {
6346 		netdev_err(dev,
6347 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
6348 			err, &features, &dev->features);
6349 		return -1;
6350 	}
6351 
6352 	if (!err)
6353 		dev->features = features;
6354 
6355 	return 1;
6356 }
6357 
6358 /**
6359  *	netdev_update_features - recalculate device features
6360  *	@dev: the device to check
6361  *
6362  *	Recalculate dev->features set and send notifications if it
6363  *	has changed. Should be called after driver or hardware dependent
6364  *	conditions might have changed that influence the features.
6365  */
6366 void netdev_update_features(struct net_device *dev)
6367 {
6368 	if (__netdev_update_features(dev))
6369 		netdev_features_change(dev);
6370 }
6371 EXPORT_SYMBOL(netdev_update_features);
6372 
6373 /**
6374  *	netdev_change_features - recalculate device features
6375  *	@dev: the device to check
6376  *
6377  *	Recalculate dev->features set and send notifications even
6378  *	if they have not changed. Should be called instead of
6379  *	netdev_update_features() if also dev->vlan_features might
6380  *	have changed to allow the changes to be propagated to stacked
6381  *	VLAN devices.
6382  */
6383 void netdev_change_features(struct net_device *dev)
6384 {
6385 	__netdev_update_features(dev);
6386 	netdev_features_change(dev);
6387 }
6388 EXPORT_SYMBOL(netdev_change_features);
6389 
6390 /**
6391  *	netif_stacked_transfer_operstate -	transfer operstate
6392  *	@rootdev: the root or lower level device to transfer state from
6393  *	@dev: the device to transfer operstate to
6394  *
6395  *	Transfer operational state from root to device. This is normally
6396  *	called when a stacking relationship exists between the root
6397  *	device and the device(a leaf device).
6398  */
6399 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6400 					struct net_device *dev)
6401 {
6402 	if (rootdev->operstate == IF_OPER_DORMANT)
6403 		netif_dormant_on(dev);
6404 	else
6405 		netif_dormant_off(dev);
6406 
6407 	if (netif_carrier_ok(rootdev)) {
6408 		if (!netif_carrier_ok(dev))
6409 			netif_carrier_on(dev);
6410 	} else {
6411 		if (netif_carrier_ok(dev))
6412 			netif_carrier_off(dev);
6413 	}
6414 }
6415 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6416 
6417 #ifdef CONFIG_SYSFS
6418 static int netif_alloc_rx_queues(struct net_device *dev)
6419 {
6420 	unsigned int i, count = dev->num_rx_queues;
6421 	struct netdev_rx_queue *rx;
6422 	size_t sz = count * sizeof(*rx);
6423 
6424 	BUG_ON(count < 1);
6425 
6426 	rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6427 	if (!rx) {
6428 		rx = vzalloc(sz);
6429 		if (!rx)
6430 			return -ENOMEM;
6431 	}
6432 	dev->_rx = rx;
6433 
6434 	for (i = 0; i < count; i++)
6435 		rx[i].dev = dev;
6436 	return 0;
6437 }
6438 #endif
6439 
6440 static void netdev_init_one_queue(struct net_device *dev,
6441 				  struct netdev_queue *queue, void *_unused)
6442 {
6443 	/* Initialize queue lock */
6444 	spin_lock_init(&queue->_xmit_lock);
6445 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6446 	queue->xmit_lock_owner = -1;
6447 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6448 	queue->dev = dev;
6449 #ifdef CONFIG_BQL
6450 	dql_init(&queue->dql, HZ);
6451 #endif
6452 }
6453 
6454 static void netif_free_tx_queues(struct net_device *dev)
6455 {
6456 	kvfree(dev->_tx);
6457 }
6458 
6459 static int netif_alloc_netdev_queues(struct net_device *dev)
6460 {
6461 	unsigned int count = dev->num_tx_queues;
6462 	struct netdev_queue *tx;
6463 	size_t sz = count * sizeof(*tx);
6464 
6465 	if (count < 1 || count > 0xffff)
6466 		return -EINVAL;
6467 
6468 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6469 	if (!tx) {
6470 		tx = vzalloc(sz);
6471 		if (!tx)
6472 			return -ENOMEM;
6473 	}
6474 	dev->_tx = tx;
6475 
6476 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6477 	spin_lock_init(&dev->tx_global_lock);
6478 
6479 	return 0;
6480 }
6481 
6482 void netif_tx_stop_all_queues(struct net_device *dev)
6483 {
6484 	unsigned int i;
6485 
6486 	for (i = 0; i < dev->num_tx_queues; i++) {
6487 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6488 		netif_tx_stop_queue(txq);
6489 	}
6490 }
6491 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6492 
6493 /**
6494  *	register_netdevice	- register a network device
6495  *	@dev: device to register
6496  *
6497  *	Take a completed network device structure and add it to the kernel
6498  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6499  *	chain. 0 is returned on success. A negative errno code is returned
6500  *	on a failure to set up the device, or if the name is a duplicate.
6501  *
6502  *	Callers must hold the rtnl semaphore. You may want
6503  *	register_netdev() instead of this.
6504  *
6505  *	BUGS:
6506  *	The locking appears insufficient to guarantee two parallel registers
6507  *	will not get the same name.
6508  */
6509 
6510 int register_netdevice(struct net_device *dev)
6511 {
6512 	int ret;
6513 	struct net *net = dev_net(dev);
6514 
6515 	BUG_ON(dev_boot_phase);
6516 	ASSERT_RTNL();
6517 
6518 	might_sleep();
6519 
6520 	/* When net_device's are persistent, this will be fatal. */
6521 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6522 	BUG_ON(!net);
6523 
6524 	spin_lock_init(&dev->addr_list_lock);
6525 	netdev_set_addr_lockdep_class(dev);
6526 
6527 	ret = dev_get_valid_name(net, dev, dev->name);
6528 	if (ret < 0)
6529 		goto out;
6530 
6531 	/* Init, if this function is available */
6532 	if (dev->netdev_ops->ndo_init) {
6533 		ret = dev->netdev_ops->ndo_init(dev);
6534 		if (ret) {
6535 			if (ret > 0)
6536 				ret = -EIO;
6537 			goto out;
6538 		}
6539 	}
6540 
6541 	if (((dev->hw_features | dev->features) &
6542 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
6543 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6544 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6545 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6546 		ret = -EINVAL;
6547 		goto err_uninit;
6548 	}
6549 
6550 	ret = -EBUSY;
6551 	if (!dev->ifindex)
6552 		dev->ifindex = dev_new_index(net);
6553 	else if (__dev_get_by_index(net, dev->ifindex))
6554 		goto err_uninit;
6555 
6556 	/* Transfer changeable features to wanted_features and enable
6557 	 * software offloads (GSO and GRO).
6558 	 */
6559 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
6560 	dev->features |= NETIF_F_SOFT_FEATURES;
6561 	dev->wanted_features = dev->features & dev->hw_features;
6562 
6563 	if (!(dev->flags & IFF_LOOPBACK)) {
6564 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
6565 	}
6566 
6567 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6568 	 */
6569 	dev->vlan_features |= NETIF_F_HIGHDMA;
6570 
6571 	/* Make NETIF_F_SG inheritable to tunnel devices.
6572 	 */
6573 	dev->hw_enc_features |= NETIF_F_SG;
6574 
6575 	/* Make NETIF_F_SG inheritable to MPLS.
6576 	 */
6577 	dev->mpls_features |= NETIF_F_SG;
6578 
6579 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6580 	ret = notifier_to_errno(ret);
6581 	if (ret)
6582 		goto err_uninit;
6583 
6584 	ret = netdev_register_kobject(dev);
6585 	if (ret)
6586 		goto err_uninit;
6587 	dev->reg_state = NETREG_REGISTERED;
6588 
6589 	__netdev_update_features(dev);
6590 
6591 	/*
6592 	 *	Default initial state at registry is that the
6593 	 *	device is present.
6594 	 */
6595 
6596 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6597 
6598 	linkwatch_init_dev(dev);
6599 
6600 	dev_init_scheduler(dev);
6601 	dev_hold(dev);
6602 	list_netdevice(dev);
6603 	add_device_randomness(dev->dev_addr, dev->addr_len);
6604 
6605 	/* If the device has permanent device address, driver should
6606 	 * set dev_addr and also addr_assign_type should be set to
6607 	 * NET_ADDR_PERM (default value).
6608 	 */
6609 	if (dev->addr_assign_type == NET_ADDR_PERM)
6610 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6611 
6612 	/* Notify protocols, that a new device appeared. */
6613 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6614 	ret = notifier_to_errno(ret);
6615 	if (ret) {
6616 		rollback_registered(dev);
6617 		dev->reg_state = NETREG_UNREGISTERED;
6618 	}
6619 	/*
6620 	 *	Prevent userspace races by waiting until the network
6621 	 *	device is fully setup before sending notifications.
6622 	 */
6623 	if (!dev->rtnl_link_ops ||
6624 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6625 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6626 
6627 out:
6628 	return ret;
6629 
6630 err_uninit:
6631 	if (dev->netdev_ops->ndo_uninit)
6632 		dev->netdev_ops->ndo_uninit(dev);
6633 	goto out;
6634 }
6635 EXPORT_SYMBOL(register_netdevice);
6636 
6637 /**
6638  *	init_dummy_netdev	- init a dummy network device for NAPI
6639  *	@dev: device to init
6640  *
6641  *	This takes a network device structure and initialize the minimum
6642  *	amount of fields so it can be used to schedule NAPI polls without
6643  *	registering a full blown interface. This is to be used by drivers
6644  *	that need to tie several hardware interfaces to a single NAPI
6645  *	poll scheduler due to HW limitations.
6646  */
6647 int init_dummy_netdev(struct net_device *dev)
6648 {
6649 	/* Clear everything. Note we don't initialize spinlocks
6650 	 * are they aren't supposed to be taken by any of the
6651 	 * NAPI code and this dummy netdev is supposed to be
6652 	 * only ever used for NAPI polls
6653 	 */
6654 	memset(dev, 0, sizeof(struct net_device));
6655 
6656 	/* make sure we BUG if trying to hit standard
6657 	 * register/unregister code path
6658 	 */
6659 	dev->reg_state = NETREG_DUMMY;
6660 
6661 	/* NAPI wants this */
6662 	INIT_LIST_HEAD(&dev->napi_list);
6663 
6664 	/* a dummy interface is started by default */
6665 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6666 	set_bit(__LINK_STATE_START, &dev->state);
6667 
6668 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
6669 	 * because users of this 'device' dont need to change
6670 	 * its refcount.
6671 	 */
6672 
6673 	return 0;
6674 }
6675 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6676 
6677 
6678 /**
6679  *	register_netdev	- register a network device
6680  *	@dev: device to register
6681  *
6682  *	Take a completed network device structure and add it to the kernel
6683  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6684  *	chain. 0 is returned on success. A negative errno code is returned
6685  *	on a failure to set up the device, or if the name is a duplicate.
6686  *
6687  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
6688  *	and expands the device name if you passed a format string to
6689  *	alloc_netdev.
6690  */
6691 int register_netdev(struct net_device *dev)
6692 {
6693 	int err;
6694 
6695 	rtnl_lock();
6696 	err = register_netdevice(dev);
6697 	rtnl_unlock();
6698 	return err;
6699 }
6700 EXPORT_SYMBOL(register_netdev);
6701 
6702 int netdev_refcnt_read(const struct net_device *dev)
6703 {
6704 	int i, refcnt = 0;
6705 
6706 	for_each_possible_cpu(i)
6707 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6708 	return refcnt;
6709 }
6710 EXPORT_SYMBOL(netdev_refcnt_read);
6711 
6712 /**
6713  * netdev_wait_allrefs - wait until all references are gone.
6714  * @dev: target net_device
6715  *
6716  * This is called when unregistering network devices.
6717  *
6718  * Any protocol or device that holds a reference should register
6719  * for netdevice notification, and cleanup and put back the
6720  * reference if they receive an UNREGISTER event.
6721  * We can get stuck here if buggy protocols don't correctly
6722  * call dev_put.
6723  */
6724 static void netdev_wait_allrefs(struct net_device *dev)
6725 {
6726 	unsigned long rebroadcast_time, warning_time;
6727 	int refcnt;
6728 
6729 	linkwatch_forget_dev(dev);
6730 
6731 	rebroadcast_time = warning_time = jiffies;
6732 	refcnt = netdev_refcnt_read(dev);
6733 
6734 	while (refcnt != 0) {
6735 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6736 			rtnl_lock();
6737 
6738 			/* Rebroadcast unregister notification */
6739 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6740 
6741 			__rtnl_unlock();
6742 			rcu_barrier();
6743 			rtnl_lock();
6744 
6745 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6746 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6747 				     &dev->state)) {
6748 				/* We must not have linkwatch events
6749 				 * pending on unregister. If this
6750 				 * happens, we simply run the queue
6751 				 * unscheduled, resulting in a noop
6752 				 * for this device.
6753 				 */
6754 				linkwatch_run_queue();
6755 			}
6756 
6757 			__rtnl_unlock();
6758 
6759 			rebroadcast_time = jiffies;
6760 		}
6761 
6762 		msleep(250);
6763 
6764 		refcnt = netdev_refcnt_read(dev);
6765 
6766 		if (time_after(jiffies, warning_time + 10 * HZ)) {
6767 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6768 				 dev->name, refcnt);
6769 			warning_time = jiffies;
6770 		}
6771 	}
6772 }
6773 
6774 /* The sequence is:
6775  *
6776  *	rtnl_lock();
6777  *	...
6778  *	register_netdevice(x1);
6779  *	register_netdevice(x2);
6780  *	...
6781  *	unregister_netdevice(y1);
6782  *	unregister_netdevice(y2);
6783  *      ...
6784  *	rtnl_unlock();
6785  *	free_netdev(y1);
6786  *	free_netdev(y2);
6787  *
6788  * We are invoked by rtnl_unlock().
6789  * This allows us to deal with problems:
6790  * 1) We can delete sysfs objects which invoke hotplug
6791  *    without deadlocking with linkwatch via keventd.
6792  * 2) Since we run with the RTNL semaphore not held, we can sleep
6793  *    safely in order to wait for the netdev refcnt to drop to zero.
6794  *
6795  * We must not return until all unregister events added during
6796  * the interval the lock was held have been completed.
6797  */
6798 void netdev_run_todo(void)
6799 {
6800 	struct list_head list;
6801 
6802 	/* Snapshot list, allow later requests */
6803 	list_replace_init(&net_todo_list, &list);
6804 
6805 	__rtnl_unlock();
6806 
6807 
6808 	/* Wait for rcu callbacks to finish before next phase */
6809 	if (!list_empty(&list))
6810 		rcu_barrier();
6811 
6812 	while (!list_empty(&list)) {
6813 		struct net_device *dev
6814 			= list_first_entry(&list, struct net_device, todo_list);
6815 		list_del(&dev->todo_list);
6816 
6817 		rtnl_lock();
6818 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6819 		__rtnl_unlock();
6820 
6821 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6822 			pr_err("network todo '%s' but state %d\n",
6823 			       dev->name, dev->reg_state);
6824 			dump_stack();
6825 			continue;
6826 		}
6827 
6828 		dev->reg_state = NETREG_UNREGISTERED;
6829 
6830 		netdev_wait_allrefs(dev);
6831 
6832 		/* paranoia */
6833 		BUG_ON(netdev_refcnt_read(dev));
6834 		BUG_ON(!list_empty(&dev->ptype_all));
6835 		BUG_ON(!list_empty(&dev->ptype_specific));
6836 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
6837 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6838 		WARN_ON(dev->dn_ptr);
6839 
6840 		if (dev->destructor)
6841 			dev->destructor(dev);
6842 
6843 		/* Report a network device has been unregistered */
6844 		rtnl_lock();
6845 		dev_net(dev)->dev_unreg_count--;
6846 		__rtnl_unlock();
6847 		wake_up(&netdev_unregistering_wq);
6848 
6849 		/* Free network device */
6850 		kobject_put(&dev->dev.kobj);
6851 	}
6852 }
6853 
6854 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6855  * fields in the same order, with only the type differing.
6856  */
6857 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6858 			     const struct net_device_stats *netdev_stats)
6859 {
6860 #if BITS_PER_LONG == 64
6861 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6862 	memcpy(stats64, netdev_stats, sizeof(*stats64));
6863 #else
6864 	size_t i, n = sizeof(*stats64) / sizeof(u64);
6865 	const unsigned long *src = (const unsigned long *)netdev_stats;
6866 	u64 *dst = (u64 *)stats64;
6867 
6868 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6869 		     sizeof(*stats64) / sizeof(u64));
6870 	for (i = 0; i < n; i++)
6871 		dst[i] = src[i];
6872 #endif
6873 }
6874 EXPORT_SYMBOL(netdev_stats_to_stats64);
6875 
6876 /**
6877  *	dev_get_stats	- get network device statistics
6878  *	@dev: device to get statistics from
6879  *	@storage: place to store stats
6880  *
6881  *	Get network statistics from device. Return @storage.
6882  *	The device driver may provide its own method by setting
6883  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6884  *	otherwise the internal statistics structure is used.
6885  */
6886 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6887 					struct rtnl_link_stats64 *storage)
6888 {
6889 	const struct net_device_ops *ops = dev->netdev_ops;
6890 
6891 	if (ops->ndo_get_stats64) {
6892 		memset(storage, 0, sizeof(*storage));
6893 		ops->ndo_get_stats64(dev, storage);
6894 	} else if (ops->ndo_get_stats) {
6895 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6896 	} else {
6897 		netdev_stats_to_stats64(storage, &dev->stats);
6898 	}
6899 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6900 	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6901 	return storage;
6902 }
6903 EXPORT_SYMBOL(dev_get_stats);
6904 
6905 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6906 {
6907 	struct netdev_queue *queue = dev_ingress_queue(dev);
6908 
6909 #ifdef CONFIG_NET_CLS_ACT
6910 	if (queue)
6911 		return queue;
6912 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6913 	if (!queue)
6914 		return NULL;
6915 	netdev_init_one_queue(dev, queue, NULL);
6916 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
6917 	queue->qdisc_sleeping = &noop_qdisc;
6918 	rcu_assign_pointer(dev->ingress_queue, queue);
6919 #endif
6920 	return queue;
6921 }
6922 
6923 static const struct ethtool_ops default_ethtool_ops;
6924 
6925 void netdev_set_default_ethtool_ops(struct net_device *dev,
6926 				    const struct ethtool_ops *ops)
6927 {
6928 	if (dev->ethtool_ops == &default_ethtool_ops)
6929 		dev->ethtool_ops = ops;
6930 }
6931 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6932 
6933 void netdev_freemem(struct net_device *dev)
6934 {
6935 	char *addr = (char *)dev - dev->padded;
6936 
6937 	kvfree(addr);
6938 }
6939 
6940 /**
6941  *	alloc_netdev_mqs - allocate network device
6942  *	@sizeof_priv:		size of private data to allocate space for
6943  *	@name:			device name format string
6944  *	@name_assign_type: 	origin of device name
6945  *	@setup:			callback to initialize device
6946  *	@txqs:			the number of TX subqueues to allocate
6947  *	@rxqs:			the number of RX subqueues to allocate
6948  *
6949  *	Allocates a struct net_device with private data area for driver use
6950  *	and performs basic initialization.  Also allocates subqueue structs
6951  *	for each queue on the device.
6952  */
6953 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6954 		unsigned char name_assign_type,
6955 		void (*setup)(struct net_device *),
6956 		unsigned int txqs, unsigned int rxqs)
6957 {
6958 	struct net_device *dev;
6959 	size_t alloc_size;
6960 	struct net_device *p;
6961 
6962 	BUG_ON(strlen(name) >= sizeof(dev->name));
6963 
6964 	if (txqs < 1) {
6965 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6966 		return NULL;
6967 	}
6968 
6969 #ifdef CONFIG_SYSFS
6970 	if (rxqs < 1) {
6971 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6972 		return NULL;
6973 	}
6974 #endif
6975 
6976 	alloc_size = sizeof(struct net_device);
6977 	if (sizeof_priv) {
6978 		/* ensure 32-byte alignment of private area */
6979 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6980 		alloc_size += sizeof_priv;
6981 	}
6982 	/* ensure 32-byte alignment of whole construct */
6983 	alloc_size += NETDEV_ALIGN - 1;
6984 
6985 	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6986 	if (!p)
6987 		p = vzalloc(alloc_size);
6988 	if (!p)
6989 		return NULL;
6990 
6991 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
6992 	dev->padded = (char *)dev - (char *)p;
6993 
6994 	dev->pcpu_refcnt = alloc_percpu(int);
6995 	if (!dev->pcpu_refcnt)
6996 		goto free_dev;
6997 
6998 	if (dev_addr_init(dev))
6999 		goto free_pcpu;
7000 
7001 	dev_mc_init(dev);
7002 	dev_uc_init(dev);
7003 
7004 	dev_net_set(dev, &init_net);
7005 
7006 	dev->gso_max_size = GSO_MAX_SIZE;
7007 	dev->gso_max_segs = GSO_MAX_SEGS;
7008 	dev->gso_min_segs = 0;
7009 
7010 	INIT_LIST_HEAD(&dev->napi_list);
7011 	INIT_LIST_HEAD(&dev->unreg_list);
7012 	INIT_LIST_HEAD(&dev->close_list);
7013 	INIT_LIST_HEAD(&dev->link_watch_list);
7014 	INIT_LIST_HEAD(&dev->adj_list.upper);
7015 	INIT_LIST_HEAD(&dev->adj_list.lower);
7016 	INIT_LIST_HEAD(&dev->all_adj_list.upper);
7017 	INIT_LIST_HEAD(&dev->all_adj_list.lower);
7018 	INIT_LIST_HEAD(&dev->ptype_all);
7019 	INIT_LIST_HEAD(&dev->ptype_specific);
7020 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7021 	setup(dev);
7022 
7023 	if (!dev->tx_queue_len)
7024 		dev->priv_flags |= IFF_NO_QUEUE;
7025 
7026 	dev->num_tx_queues = txqs;
7027 	dev->real_num_tx_queues = txqs;
7028 	if (netif_alloc_netdev_queues(dev))
7029 		goto free_all;
7030 
7031 #ifdef CONFIG_SYSFS
7032 	dev->num_rx_queues = rxqs;
7033 	dev->real_num_rx_queues = rxqs;
7034 	if (netif_alloc_rx_queues(dev))
7035 		goto free_all;
7036 #endif
7037 
7038 	strcpy(dev->name, name);
7039 	dev->name_assign_type = name_assign_type;
7040 	dev->group = INIT_NETDEV_GROUP;
7041 	if (!dev->ethtool_ops)
7042 		dev->ethtool_ops = &default_ethtool_ops;
7043 
7044 	nf_hook_ingress_init(dev);
7045 
7046 	return dev;
7047 
7048 free_all:
7049 	free_netdev(dev);
7050 	return NULL;
7051 
7052 free_pcpu:
7053 	free_percpu(dev->pcpu_refcnt);
7054 free_dev:
7055 	netdev_freemem(dev);
7056 	return NULL;
7057 }
7058 EXPORT_SYMBOL(alloc_netdev_mqs);
7059 
7060 /**
7061  *	free_netdev - free network device
7062  *	@dev: device
7063  *
7064  *	This function does the last stage of destroying an allocated device
7065  * 	interface. The reference to the device object is released.
7066  *	If this is the last reference then it will be freed.
7067  */
7068 void free_netdev(struct net_device *dev)
7069 {
7070 	struct napi_struct *p, *n;
7071 
7072 	netif_free_tx_queues(dev);
7073 #ifdef CONFIG_SYSFS
7074 	kvfree(dev->_rx);
7075 #endif
7076 
7077 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7078 
7079 	/* Flush device addresses */
7080 	dev_addr_flush(dev);
7081 
7082 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7083 		netif_napi_del(p);
7084 
7085 	free_percpu(dev->pcpu_refcnt);
7086 	dev->pcpu_refcnt = NULL;
7087 
7088 	/*  Compatibility with error handling in drivers */
7089 	if (dev->reg_state == NETREG_UNINITIALIZED) {
7090 		netdev_freemem(dev);
7091 		return;
7092 	}
7093 
7094 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7095 	dev->reg_state = NETREG_RELEASED;
7096 
7097 	/* will free via device release */
7098 	put_device(&dev->dev);
7099 }
7100 EXPORT_SYMBOL(free_netdev);
7101 
7102 /**
7103  *	synchronize_net -  Synchronize with packet receive processing
7104  *
7105  *	Wait for packets currently being received to be done.
7106  *	Does not block later packets from starting.
7107  */
7108 void synchronize_net(void)
7109 {
7110 	might_sleep();
7111 	if (rtnl_is_locked())
7112 		synchronize_rcu_expedited();
7113 	else
7114 		synchronize_rcu();
7115 }
7116 EXPORT_SYMBOL(synchronize_net);
7117 
7118 /**
7119  *	unregister_netdevice_queue - remove device from the kernel
7120  *	@dev: device
7121  *	@head: list
7122  *
7123  *	This function shuts down a device interface and removes it
7124  *	from the kernel tables.
7125  *	If head not NULL, device is queued to be unregistered later.
7126  *
7127  *	Callers must hold the rtnl semaphore.  You may want
7128  *	unregister_netdev() instead of this.
7129  */
7130 
7131 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7132 {
7133 	ASSERT_RTNL();
7134 
7135 	if (head) {
7136 		list_move_tail(&dev->unreg_list, head);
7137 	} else {
7138 		rollback_registered(dev);
7139 		/* Finish processing unregister after unlock */
7140 		net_set_todo(dev);
7141 	}
7142 }
7143 EXPORT_SYMBOL(unregister_netdevice_queue);
7144 
7145 /**
7146  *	unregister_netdevice_many - unregister many devices
7147  *	@head: list of devices
7148  *
7149  *  Note: As most callers use a stack allocated list_head,
7150  *  we force a list_del() to make sure stack wont be corrupted later.
7151  */
7152 void unregister_netdevice_many(struct list_head *head)
7153 {
7154 	struct net_device *dev;
7155 
7156 	if (!list_empty(head)) {
7157 		rollback_registered_many(head);
7158 		list_for_each_entry(dev, head, unreg_list)
7159 			net_set_todo(dev);
7160 		list_del(head);
7161 	}
7162 }
7163 EXPORT_SYMBOL(unregister_netdevice_many);
7164 
7165 /**
7166  *	unregister_netdev - remove device from the kernel
7167  *	@dev: device
7168  *
7169  *	This function shuts down a device interface and removes it
7170  *	from the kernel tables.
7171  *
7172  *	This is just a wrapper for unregister_netdevice that takes
7173  *	the rtnl semaphore.  In general you want to use this and not
7174  *	unregister_netdevice.
7175  */
7176 void unregister_netdev(struct net_device *dev)
7177 {
7178 	rtnl_lock();
7179 	unregister_netdevice(dev);
7180 	rtnl_unlock();
7181 }
7182 EXPORT_SYMBOL(unregister_netdev);
7183 
7184 /**
7185  *	dev_change_net_namespace - move device to different nethost namespace
7186  *	@dev: device
7187  *	@net: network namespace
7188  *	@pat: If not NULL name pattern to try if the current device name
7189  *	      is already taken in the destination network namespace.
7190  *
7191  *	This function shuts down a device interface and moves it
7192  *	to a new network namespace. On success 0 is returned, on
7193  *	a failure a netagive errno code is returned.
7194  *
7195  *	Callers must hold the rtnl semaphore.
7196  */
7197 
7198 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7199 {
7200 	int err;
7201 
7202 	ASSERT_RTNL();
7203 
7204 	/* Don't allow namespace local devices to be moved. */
7205 	err = -EINVAL;
7206 	if (dev->features & NETIF_F_NETNS_LOCAL)
7207 		goto out;
7208 
7209 	/* Ensure the device has been registrered */
7210 	if (dev->reg_state != NETREG_REGISTERED)
7211 		goto out;
7212 
7213 	/* Get out if there is nothing todo */
7214 	err = 0;
7215 	if (net_eq(dev_net(dev), net))
7216 		goto out;
7217 
7218 	/* Pick the destination device name, and ensure
7219 	 * we can use it in the destination network namespace.
7220 	 */
7221 	err = -EEXIST;
7222 	if (__dev_get_by_name(net, dev->name)) {
7223 		/* We get here if we can't use the current device name */
7224 		if (!pat)
7225 			goto out;
7226 		if (dev_get_valid_name(net, dev, pat) < 0)
7227 			goto out;
7228 	}
7229 
7230 	/*
7231 	 * And now a mini version of register_netdevice unregister_netdevice.
7232 	 */
7233 
7234 	/* If device is running close it first. */
7235 	dev_close(dev);
7236 
7237 	/* And unlink it from device chain */
7238 	err = -ENODEV;
7239 	unlist_netdevice(dev);
7240 
7241 	synchronize_net();
7242 
7243 	/* Shutdown queueing discipline. */
7244 	dev_shutdown(dev);
7245 
7246 	/* Notify protocols, that we are about to destroy
7247 	   this device. They should clean all the things.
7248 
7249 	   Note that dev->reg_state stays at NETREG_REGISTERED.
7250 	   This is wanted because this way 8021q and macvlan know
7251 	   the device is just moving and can keep their slaves up.
7252 	*/
7253 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7254 	rcu_barrier();
7255 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7256 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7257 
7258 	/*
7259 	 *	Flush the unicast and multicast chains
7260 	 */
7261 	dev_uc_flush(dev);
7262 	dev_mc_flush(dev);
7263 
7264 	/* Send a netdev-removed uevent to the old namespace */
7265 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7266 	netdev_adjacent_del_links(dev);
7267 
7268 	/* Actually switch the network namespace */
7269 	dev_net_set(dev, net);
7270 
7271 	/* If there is an ifindex conflict assign a new one */
7272 	if (__dev_get_by_index(net, dev->ifindex))
7273 		dev->ifindex = dev_new_index(net);
7274 
7275 	/* Send a netdev-add uevent to the new namespace */
7276 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7277 	netdev_adjacent_add_links(dev);
7278 
7279 	/* Fixup kobjects */
7280 	err = device_rename(&dev->dev, dev->name);
7281 	WARN_ON(err);
7282 
7283 	/* Add the device back in the hashes */
7284 	list_netdevice(dev);
7285 
7286 	/* Notify protocols, that a new device appeared. */
7287 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
7288 
7289 	/*
7290 	 *	Prevent userspace races by waiting until the network
7291 	 *	device is fully setup before sending notifications.
7292 	 */
7293 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7294 
7295 	synchronize_net();
7296 	err = 0;
7297 out:
7298 	return err;
7299 }
7300 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7301 
7302 static int dev_cpu_callback(struct notifier_block *nfb,
7303 			    unsigned long action,
7304 			    void *ocpu)
7305 {
7306 	struct sk_buff **list_skb;
7307 	struct sk_buff *skb;
7308 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
7309 	struct softnet_data *sd, *oldsd;
7310 
7311 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7312 		return NOTIFY_OK;
7313 
7314 	local_irq_disable();
7315 	cpu = smp_processor_id();
7316 	sd = &per_cpu(softnet_data, cpu);
7317 	oldsd = &per_cpu(softnet_data, oldcpu);
7318 
7319 	/* Find end of our completion_queue. */
7320 	list_skb = &sd->completion_queue;
7321 	while (*list_skb)
7322 		list_skb = &(*list_skb)->next;
7323 	/* Append completion queue from offline CPU. */
7324 	*list_skb = oldsd->completion_queue;
7325 	oldsd->completion_queue = NULL;
7326 
7327 	/* Append output queue from offline CPU. */
7328 	if (oldsd->output_queue) {
7329 		*sd->output_queue_tailp = oldsd->output_queue;
7330 		sd->output_queue_tailp = oldsd->output_queue_tailp;
7331 		oldsd->output_queue = NULL;
7332 		oldsd->output_queue_tailp = &oldsd->output_queue;
7333 	}
7334 	/* Append NAPI poll list from offline CPU, with one exception :
7335 	 * process_backlog() must be called by cpu owning percpu backlog.
7336 	 * We properly handle process_queue & input_pkt_queue later.
7337 	 */
7338 	while (!list_empty(&oldsd->poll_list)) {
7339 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7340 							    struct napi_struct,
7341 							    poll_list);
7342 
7343 		list_del_init(&napi->poll_list);
7344 		if (napi->poll == process_backlog)
7345 			napi->state = 0;
7346 		else
7347 			____napi_schedule(sd, napi);
7348 	}
7349 
7350 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
7351 	local_irq_enable();
7352 
7353 	/* Process offline CPU's input_pkt_queue */
7354 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7355 		netif_rx_ni(skb);
7356 		input_queue_head_incr(oldsd);
7357 	}
7358 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7359 		netif_rx_ni(skb);
7360 		input_queue_head_incr(oldsd);
7361 	}
7362 
7363 	return NOTIFY_OK;
7364 }
7365 
7366 
7367 /**
7368  *	netdev_increment_features - increment feature set by one
7369  *	@all: current feature set
7370  *	@one: new feature set
7371  *	@mask: mask feature set
7372  *
7373  *	Computes a new feature set after adding a device with feature set
7374  *	@one to the master device with current feature set @all.  Will not
7375  *	enable anything that is off in @mask. Returns the new feature set.
7376  */
7377 netdev_features_t netdev_increment_features(netdev_features_t all,
7378 	netdev_features_t one, netdev_features_t mask)
7379 {
7380 	if (mask & NETIF_F_GEN_CSUM)
7381 		mask |= NETIF_F_ALL_CSUM;
7382 	mask |= NETIF_F_VLAN_CHALLENGED;
7383 
7384 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7385 	all &= one | ~NETIF_F_ALL_FOR_ALL;
7386 
7387 	/* If one device supports hw checksumming, set for all. */
7388 	if (all & NETIF_F_GEN_CSUM)
7389 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7390 
7391 	return all;
7392 }
7393 EXPORT_SYMBOL(netdev_increment_features);
7394 
7395 static struct hlist_head * __net_init netdev_create_hash(void)
7396 {
7397 	int i;
7398 	struct hlist_head *hash;
7399 
7400 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7401 	if (hash != NULL)
7402 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
7403 			INIT_HLIST_HEAD(&hash[i]);
7404 
7405 	return hash;
7406 }
7407 
7408 /* Initialize per network namespace state */
7409 static int __net_init netdev_init(struct net *net)
7410 {
7411 	if (net != &init_net)
7412 		INIT_LIST_HEAD(&net->dev_base_head);
7413 
7414 	net->dev_name_head = netdev_create_hash();
7415 	if (net->dev_name_head == NULL)
7416 		goto err_name;
7417 
7418 	net->dev_index_head = netdev_create_hash();
7419 	if (net->dev_index_head == NULL)
7420 		goto err_idx;
7421 
7422 	return 0;
7423 
7424 err_idx:
7425 	kfree(net->dev_name_head);
7426 err_name:
7427 	return -ENOMEM;
7428 }
7429 
7430 /**
7431  *	netdev_drivername - network driver for the device
7432  *	@dev: network device
7433  *
7434  *	Determine network driver for device.
7435  */
7436 const char *netdev_drivername(const struct net_device *dev)
7437 {
7438 	const struct device_driver *driver;
7439 	const struct device *parent;
7440 	const char *empty = "";
7441 
7442 	parent = dev->dev.parent;
7443 	if (!parent)
7444 		return empty;
7445 
7446 	driver = parent->driver;
7447 	if (driver && driver->name)
7448 		return driver->name;
7449 	return empty;
7450 }
7451 
7452 static void __netdev_printk(const char *level, const struct net_device *dev,
7453 			    struct va_format *vaf)
7454 {
7455 	if (dev && dev->dev.parent) {
7456 		dev_printk_emit(level[1] - '0',
7457 				dev->dev.parent,
7458 				"%s %s %s%s: %pV",
7459 				dev_driver_string(dev->dev.parent),
7460 				dev_name(dev->dev.parent),
7461 				netdev_name(dev), netdev_reg_state(dev),
7462 				vaf);
7463 	} else if (dev) {
7464 		printk("%s%s%s: %pV",
7465 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
7466 	} else {
7467 		printk("%s(NULL net_device): %pV", level, vaf);
7468 	}
7469 }
7470 
7471 void netdev_printk(const char *level, const struct net_device *dev,
7472 		   const char *format, ...)
7473 {
7474 	struct va_format vaf;
7475 	va_list args;
7476 
7477 	va_start(args, format);
7478 
7479 	vaf.fmt = format;
7480 	vaf.va = &args;
7481 
7482 	__netdev_printk(level, dev, &vaf);
7483 
7484 	va_end(args);
7485 }
7486 EXPORT_SYMBOL(netdev_printk);
7487 
7488 #define define_netdev_printk_level(func, level)			\
7489 void func(const struct net_device *dev, const char *fmt, ...)	\
7490 {								\
7491 	struct va_format vaf;					\
7492 	va_list args;						\
7493 								\
7494 	va_start(args, fmt);					\
7495 								\
7496 	vaf.fmt = fmt;						\
7497 	vaf.va = &args;						\
7498 								\
7499 	__netdev_printk(level, dev, &vaf);			\
7500 								\
7501 	va_end(args);						\
7502 }								\
7503 EXPORT_SYMBOL(func);
7504 
7505 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7506 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7507 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7508 define_netdev_printk_level(netdev_err, KERN_ERR);
7509 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7510 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7511 define_netdev_printk_level(netdev_info, KERN_INFO);
7512 
7513 static void __net_exit netdev_exit(struct net *net)
7514 {
7515 	kfree(net->dev_name_head);
7516 	kfree(net->dev_index_head);
7517 }
7518 
7519 static struct pernet_operations __net_initdata netdev_net_ops = {
7520 	.init = netdev_init,
7521 	.exit = netdev_exit,
7522 };
7523 
7524 static void __net_exit default_device_exit(struct net *net)
7525 {
7526 	struct net_device *dev, *aux;
7527 	/*
7528 	 * Push all migratable network devices back to the
7529 	 * initial network namespace
7530 	 */
7531 	rtnl_lock();
7532 	for_each_netdev_safe(net, dev, aux) {
7533 		int err;
7534 		char fb_name[IFNAMSIZ];
7535 
7536 		/* Ignore unmoveable devices (i.e. loopback) */
7537 		if (dev->features & NETIF_F_NETNS_LOCAL)
7538 			continue;
7539 
7540 		/* Leave virtual devices for the generic cleanup */
7541 		if (dev->rtnl_link_ops)
7542 			continue;
7543 
7544 		/* Push remaining network devices to init_net */
7545 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7546 		err = dev_change_net_namespace(dev, &init_net, fb_name);
7547 		if (err) {
7548 			pr_emerg("%s: failed to move %s to init_net: %d\n",
7549 				 __func__, dev->name, err);
7550 			BUG();
7551 		}
7552 	}
7553 	rtnl_unlock();
7554 }
7555 
7556 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7557 {
7558 	/* Return with the rtnl_lock held when there are no network
7559 	 * devices unregistering in any network namespace in net_list.
7560 	 */
7561 	struct net *net;
7562 	bool unregistering;
7563 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
7564 
7565 	add_wait_queue(&netdev_unregistering_wq, &wait);
7566 	for (;;) {
7567 		unregistering = false;
7568 		rtnl_lock();
7569 		list_for_each_entry(net, net_list, exit_list) {
7570 			if (net->dev_unreg_count > 0) {
7571 				unregistering = true;
7572 				break;
7573 			}
7574 		}
7575 		if (!unregistering)
7576 			break;
7577 		__rtnl_unlock();
7578 
7579 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7580 	}
7581 	remove_wait_queue(&netdev_unregistering_wq, &wait);
7582 }
7583 
7584 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7585 {
7586 	/* At exit all network devices most be removed from a network
7587 	 * namespace.  Do this in the reverse order of registration.
7588 	 * Do this across as many network namespaces as possible to
7589 	 * improve batching efficiency.
7590 	 */
7591 	struct net_device *dev;
7592 	struct net *net;
7593 	LIST_HEAD(dev_kill_list);
7594 
7595 	/* To prevent network device cleanup code from dereferencing
7596 	 * loopback devices or network devices that have been freed
7597 	 * wait here for all pending unregistrations to complete,
7598 	 * before unregistring the loopback device and allowing the
7599 	 * network namespace be freed.
7600 	 *
7601 	 * The netdev todo list containing all network devices
7602 	 * unregistrations that happen in default_device_exit_batch
7603 	 * will run in the rtnl_unlock() at the end of
7604 	 * default_device_exit_batch.
7605 	 */
7606 	rtnl_lock_unregistering(net_list);
7607 	list_for_each_entry(net, net_list, exit_list) {
7608 		for_each_netdev_reverse(net, dev) {
7609 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7610 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7611 			else
7612 				unregister_netdevice_queue(dev, &dev_kill_list);
7613 		}
7614 	}
7615 	unregister_netdevice_many(&dev_kill_list);
7616 	rtnl_unlock();
7617 }
7618 
7619 static struct pernet_operations __net_initdata default_device_ops = {
7620 	.exit = default_device_exit,
7621 	.exit_batch = default_device_exit_batch,
7622 };
7623 
7624 /*
7625  *	Initialize the DEV module. At boot time this walks the device list and
7626  *	unhooks any devices that fail to initialise (normally hardware not
7627  *	present) and leaves us with a valid list of present and active devices.
7628  *
7629  */
7630 
7631 /*
7632  *       This is called single threaded during boot, so no need
7633  *       to take the rtnl semaphore.
7634  */
7635 static int __init net_dev_init(void)
7636 {
7637 	int i, rc = -ENOMEM;
7638 
7639 	BUG_ON(!dev_boot_phase);
7640 
7641 	if (dev_proc_init())
7642 		goto out;
7643 
7644 	if (netdev_kobject_init())
7645 		goto out;
7646 
7647 	INIT_LIST_HEAD(&ptype_all);
7648 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
7649 		INIT_LIST_HEAD(&ptype_base[i]);
7650 
7651 	INIT_LIST_HEAD(&offload_base);
7652 
7653 	if (register_pernet_subsys(&netdev_net_ops))
7654 		goto out;
7655 
7656 	/*
7657 	 *	Initialise the packet receive queues.
7658 	 */
7659 
7660 	for_each_possible_cpu(i) {
7661 		struct softnet_data *sd = &per_cpu(softnet_data, i);
7662 
7663 		skb_queue_head_init(&sd->input_pkt_queue);
7664 		skb_queue_head_init(&sd->process_queue);
7665 		INIT_LIST_HEAD(&sd->poll_list);
7666 		sd->output_queue_tailp = &sd->output_queue;
7667 #ifdef CONFIG_RPS
7668 		sd->csd.func = rps_trigger_softirq;
7669 		sd->csd.info = sd;
7670 		sd->cpu = i;
7671 #endif
7672 
7673 		sd->backlog.poll = process_backlog;
7674 		sd->backlog.weight = weight_p;
7675 	}
7676 
7677 	dev_boot_phase = 0;
7678 
7679 	/* The loopback device is special if any other network devices
7680 	 * is present in a network namespace the loopback device must
7681 	 * be present. Since we now dynamically allocate and free the
7682 	 * loopback device ensure this invariant is maintained by
7683 	 * keeping the loopback device as the first device on the
7684 	 * list of network devices.  Ensuring the loopback devices
7685 	 * is the first device that appears and the last network device
7686 	 * that disappears.
7687 	 */
7688 	if (register_pernet_device(&loopback_net_ops))
7689 		goto out;
7690 
7691 	if (register_pernet_device(&default_device_ops))
7692 		goto out;
7693 
7694 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7695 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7696 
7697 	hotcpu_notifier(dev_cpu_callback, 0);
7698 	dst_subsys_init();
7699 	rc = 0;
7700 out:
7701 	return rc;
7702 }
7703 
7704 subsys_initcall(net_dev_init);
7705