xref: /openbmc/linux/net/core/dev.c (revision 16b0314a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153 
154 #include "net-sysfs.h"
155 
156 #define MAX_GRO_SKBS 8
157 
158 /* This should be increased if a protocol with a bigger head is added. */
159 #define GRO_MAX_HEAD (MAX_HEADER + 128)
160 
161 static DEFINE_SPINLOCK(ptype_lock);
162 static DEFINE_SPINLOCK(offload_lock);
163 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
164 struct list_head ptype_all __read_mostly;	/* Taps */
165 static struct list_head offload_base __read_mostly;
166 
167 static int netif_rx_internal(struct sk_buff *skb);
168 static int call_netdevice_notifiers_info(unsigned long val,
169 					 struct netdev_notifier_info *info);
170 static int call_netdevice_notifiers_extack(unsigned long val,
171 					   struct net_device *dev,
172 					   struct netlink_ext_ack *extack);
173 static struct napi_struct *napi_by_id(unsigned int napi_id);
174 
175 /*
176  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
177  * semaphore.
178  *
179  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
180  *
181  * Writers must hold the rtnl semaphore while they loop through the
182  * dev_base_head list, and hold dev_base_lock for writing when they do the
183  * actual updates.  This allows pure readers to access the list even
184  * while a writer is preparing to update it.
185  *
186  * To put it another way, dev_base_lock is held for writing only to
187  * protect against pure readers; the rtnl semaphore provides the
188  * protection against other writers.
189  *
190  * See, for example usages, register_netdevice() and
191  * unregister_netdevice(), which must be called with the rtnl
192  * semaphore held.
193  */
194 DEFINE_RWLOCK(dev_base_lock);
195 EXPORT_SYMBOL(dev_base_lock);
196 
197 static DEFINE_MUTEX(ifalias_mutex);
198 
199 /* protects napi_hash addition/deletion and napi_gen_id */
200 static DEFINE_SPINLOCK(napi_hash_lock);
201 
202 static unsigned int napi_gen_id = NR_CPUS;
203 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
204 
205 static DECLARE_RWSEM(devnet_rename_sem);
206 
207 static inline void dev_base_seq_inc(struct net *net)
208 {
209 	while (++net->dev_base_seq == 0)
210 		;
211 }
212 
213 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
214 {
215 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
216 
217 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
218 }
219 
220 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
221 {
222 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
223 }
224 
225 static inline void rps_lock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228 	spin_lock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231 
232 static inline void rps_unlock(struct softnet_data *sd)
233 {
234 #ifdef CONFIG_RPS
235 	spin_unlock(&sd->input_pkt_queue.lock);
236 #endif
237 }
238 
239 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
240 						       const char *name)
241 {
242 	struct netdev_name_node *name_node;
243 
244 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
245 	if (!name_node)
246 		return NULL;
247 	INIT_HLIST_NODE(&name_node->hlist);
248 	name_node->dev = dev;
249 	name_node->name = name;
250 	return name_node;
251 }
252 
253 static struct netdev_name_node *
254 netdev_name_node_head_alloc(struct net_device *dev)
255 {
256 	struct netdev_name_node *name_node;
257 
258 	name_node = netdev_name_node_alloc(dev, dev->name);
259 	if (!name_node)
260 		return NULL;
261 	INIT_LIST_HEAD(&name_node->list);
262 	return name_node;
263 }
264 
265 static void netdev_name_node_free(struct netdev_name_node *name_node)
266 {
267 	kfree(name_node);
268 }
269 
270 static void netdev_name_node_add(struct net *net,
271 				 struct netdev_name_node *name_node)
272 {
273 	hlist_add_head_rcu(&name_node->hlist,
274 			   dev_name_hash(net, name_node->name));
275 }
276 
277 static void netdev_name_node_del(struct netdev_name_node *name_node)
278 {
279 	hlist_del_rcu(&name_node->hlist);
280 }
281 
282 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
283 							const char *name)
284 {
285 	struct hlist_head *head = dev_name_hash(net, name);
286 	struct netdev_name_node *name_node;
287 
288 	hlist_for_each_entry(name_node, head, hlist)
289 		if (!strcmp(name_node->name, name))
290 			return name_node;
291 	return NULL;
292 }
293 
294 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
295 							    const char *name)
296 {
297 	struct hlist_head *head = dev_name_hash(net, name);
298 	struct netdev_name_node *name_node;
299 
300 	hlist_for_each_entry_rcu(name_node, head, hlist)
301 		if (!strcmp(name_node->name, name))
302 			return name_node;
303 	return NULL;
304 }
305 
306 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
307 {
308 	struct netdev_name_node *name_node;
309 	struct net *net = dev_net(dev);
310 
311 	name_node = netdev_name_node_lookup(net, name);
312 	if (name_node)
313 		return -EEXIST;
314 	name_node = netdev_name_node_alloc(dev, name);
315 	if (!name_node)
316 		return -ENOMEM;
317 	netdev_name_node_add(net, name_node);
318 	/* The node that holds dev->name acts as a head of per-device list. */
319 	list_add_tail(&name_node->list, &dev->name_node->list);
320 
321 	return 0;
322 }
323 EXPORT_SYMBOL(netdev_name_node_alt_create);
324 
325 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
326 {
327 	list_del(&name_node->list);
328 	netdev_name_node_del(name_node);
329 	kfree(name_node->name);
330 	netdev_name_node_free(name_node);
331 }
332 
333 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
334 {
335 	struct netdev_name_node *name_node;
336 	struct net *net = dev_net(dev);
337 
338 	name_node = netdev_name_node_lookup(net, name);
339 	if (!name_node)
340 		return -ENOENT;
341 	/* lookup might have found our primary name or a name belonging
342 	 * to another device.
343 	 */
344 	if (name_node == dev->name_node || name_node->dev != dev)
345 		return -EINVAL;
346 
347 	__netdev_name_node_alt_destroy(name_node);
348 
349 	return 0;
350 }
351 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
352 
353 static void netdev_name_node_alt_flush(struct net_device *dev)
354 {
355 	struct netdev_name_node *name_node, *tmp;
356 
357 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
358 		__netdev_name_node_alt_destroy(name_node);
359 }
360 
361 /* Device list insertion */
362 static void list_netdevice(struct net_device *dev)
363 {
364 	struct net *net = dev_net(dev);
365 
366 	ASSERT_RTNL();
367 
368 	write_lock_bh(&dev_base_lock);
369 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
370 	netdev_name_node_add(net, dev->name_node);
371 	hlist_add_head_rcu(&dev->index_hlist,
372 			   dev_index_hash(net, dev->ifindex));
373 	write_unlock_bh(&dev_base_lock);
374 
375 	dev_base_seq_inc(net);
376 }
377 
378 /* Device list removal
379  * caller must respect a RCU grace period before freeing/reusing dev
380  */
381 static void unlist_netdevice(struct net_device *dev)
382 {
383 	ASSERT_RTNL();
384 
385 	/* Unlink dev from the device chain */
386 	write_lock_bh(&dev_base_lock);
387 	list_del_rcu(&dev->dev_list);
388 	netdev_name_node_del(dev->name_node);
389 	hlist_del_rcu(&dev->index_hlist);
390 	write_unlock_bh(&dev_base_lock);
391 
392 	dev_base_seq_inc(dev_net(dev));
393 }
394 
395 /*
396  *	Our notifier list
397  */
398 
399 static RAW_NOTIFIER_HEAD(netdev_chain);
400 
401 /*
402  *	Device drivers call our routines to queue packets here. We empty the
403  *	queue in the local softnet handler.
404  */
405 
406 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
407 EXPORT_PER_CPU_SYMBOL(softnet_data);
408 
409 #ifdef CONFIG_LOCKDEP
410 /*
411  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
412  * according to dev->type
413  */
414 static const unsigned short netdev_lock_type[] = {
415 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
416 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
417 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
418 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
419 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
420 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
421 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
422 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
423 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
424 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
425 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
426 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
427 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
428 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
429 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
430 
431 static const char *const netdev_lock_name[] = {
432 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
433 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
434 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
435 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
436 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
437 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
438 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
439 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
440 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
441 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
442 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
443 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
444 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
445 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
446 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
447 
448 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
449 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
450 
451 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
452 {
453 	int i;
454 
455 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
456 		if (netdev_lock_type[i] == dev_type)
457 			return i;
458 	/* the last key is used by default */
459 	return ARRAY_SIZE(netdev_lock_type) - 1;
460 }
461 
462 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
463 						 unsigned short dev_type)
464 {
465 	int i;
466 
467 	i = netdev_lock_pos(dev_type);
468 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
469 				   netdev_lock_name[i]);
470 }
471 
472 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
473 {
474 	int i;
475 
476 	i = netdev_lock_pos(dev->type);
477 	lockdep_set_class_and_name(&dev->addr_list_lock,
478 				   &netdev_addr_lock_key[i],
479 				   netdev_lock_name[i]);
480 }
481 #else
482 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
483 						 unsigned short dev_type)
484 {
485 }
486 
487 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
488 {
489 }
490 #endif
491 
492 /*******************************************************************************
493  *
494  *		Protocol management and registration routines
495  *
496  *******************************************************************************/
497 
498 
499 /*
500  *	Add a protocol ID to the list. Now that the input handler is
501  *	smarter we can dispense with all the messy stuff that used to be
502  *	here.
503  *
504  *	BEWARE!!! Protocol handlers, mangling input packets,
505  *	MUST BE last in hash buckets and checking protocol handlers
506  *	MUST start from promiscuous ptype_all chain in net_bh.
507  *	It is true now, do not change it.
508  *	Explanation follows: if protocol handler, mangling packet, will
509  *	be the first on list, it is not able to sense, that packet
510  *	is cloned and should be copied-on-write, so that it will
511  *	change it and subsequent readers will get broken packet.
512  *							--ANK (980803)
513  */
514 
515 static inline struct list_head *ptype_head(const struct packet_type *pt)
516 {
517 	if (pt->type == htons(ETH_P_ALL))
518 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
519 	else
520 		return pt->dev ? &pt->dev->ptype_specific :
521 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
522 }
523 
524 /**
525  *	dev_add_pack - add packet handler
526  *	@pt: packet type declaration
527  *
528  *	Add a protocol handler to the networking stack. The passed &packet_type
529  *	is linked into kernel lists and may not be freed until it has been
530  *	removed from the kernel lists.
531  *
532  *	This call does not sleep therefore it can not
533  *	guarantee all CPU's that are in middle of receiving packets
534  *	will see the new packet type (until the next received packet).
535  */
536 
537 void dev_add_pack(struct packet_type *pt)
538 {
539 	struct list_head *head = ptype_head(pt);
540 
541 	spin_lock(&ptype_lock);
542 	list_add_rcu(&pt->list, head);
543 	spin_unlock(&ptype_lock);
544 }
545 EXPORT_SYMBOL(dev_add_pack);
546 
547 /**
548  *	__dev_remove_pack	 - remove packet handler
549  *	@pt: packet type declaration
550  *
551  *	Remove a protocol handler that was previously added to the kernel
552  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
553  *	from the kernel lists and can be freed or reused once this function
554  *	returns.
555  *
556  *      The packet type might still be in use by receivers
557  *	and must not be freed until after all the CPU's have gone
558  *	through a quiescent state.
559  */
560 void __dev_remove_pack(struct packet_type *pt)
561 {
562 	struct list_head *head = ptype_head(pt);
563 	struct packet_type *pt1;
564 
565 	spin_lock(&ptype_lock);
566 
567 	list_for_each_entry(pt1, head, list) {
568 		if (pt == pt1) {
569 			list_del_rcu(&pt->list);
570 			goto out;
571 		}
572 	}
573 
574 	pr_warn("dev_remove_pack: %p not found\n", pt);
575 out:
576 	spin_unlock(&ptype_lock);
577 }
578 EXPORT_SYMBOL(__dev_remove_pack);
579 
580 /**
581  *	dev_remove_pack	 - remove packet handler
582  *	@pt: packet type declaration
583  *
584  *	Remove a protocol handler that was previously added to the kernel
585  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
586  *	from the kernel lists and can be freed or reused once this function
587  *	returns.
588  *
589  *	This call sleeps to guarantee that no CPU is looking at the packet
590  *	type after return.
591  */
592 void dev_remove_pack(struct packet_type *pt)
593 {
594 	__dev_remove_pack(pt);
595 
596 	synchronize_net();
597 }
598 EXPORT_SYMBOL(dev_remove_pack);
599 
600 
601 /**
602  *	dev_add_offload - register offload handlers
603  *	@po: protocol offload declaration
604  *
605  *	Add protocol offload handlers to the networking stack. The passed
606  *	&proto_offload is linked into kernel lists and may not be freed until
607  *	it has been removed from the kernel lists.
608  *
609  *	This call does not sleep therefore it can not
610  *	guarantee all CPU's that are in middle of receiving packets
611  *	will see the new offload handlers (until the next received packet).
612  */
613 void dev_add_offload(struct packet_offload *po)
614 {
615 	struct packet_offload *elem;
616 
617 	spin_lock(&offload_lock);
618 	list_for_each_entry(elem, &offload_base, list) {
619 		if (po->priority < elem->priority)
620 			break;
621 	}
622 	list_add_rcu(&po->list, elem->list.prev);
623 	spin_unlock(&offload_lock);
624 }
625 EXPORT_SYMBOL(dev_add_offload);
626 
627 /**
628  *	__dev_remove_offload	 - remove offload handler
629  *	@po: packet offload declaration
630  *
631  *	Remove a protocol offload handler that was previously added to the
632  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
633  *	is removed from the kernel lists and can be freed or reused once this
634  *	function returns.
635  *
636  *      The packet type might still be in use by receivers
637  *	and must not be freed until after all the CPU's have gone
638  *	through a quiescent state.
639  */
640 static void __dev_remove_offload(struct packet_offload *po)
641 {
642 	struct list_head *head = &offload_base;
643 	struct packet_offload *po1;
644 
645 	spin_lock(&offload_lock);
646 
647 	list_for_each_entry(po1, head, list) {
648 		if (po == po1) {
649 			list_del_rcu(&po->list);
650 			goto out;
651 		}
652 	}
653 
654 	pr_warn("dev_remove_offload: %p not found\n", po);
655 out:
656 	spin_unlock(&offload_lock);
657 }
658 
659 /**
660  *	dev_remove_offload	 - remove packet offload handler
661  *	@po: packet offload declaration
662  *
663  *	Remove a packet offload handler that was previously added to the kernel
664  *	offload handlers by dev_add_offload(). The passed &offload_type is
665  *	removed from the kernel lists and can be freed or reused once this
666  *	function returns.
667  *
668  *	This call sleeps to guarantee that no CPU is looking at the packet
669  *	type after return.
670  */
671 void dev_remove_offload(struct packet_offload *po)
672 {
673 	__dev_remove_offload(po);
674 
675 	synchronize_net();
676 }
677 EXPORT_SYMBOL(dev_remove_offload);
678 
679 /*******************************************************************************
680  *
681  *			    Device Interface Subroutines
682  *
683  *******************************************************************************/
684 
685 /**
686  *	dev_get_iflink	- get 'iflink' value of a interface
687  *	@dev: targeted interface
688  *
689  *	Indicates the ifindex the interface is linked to.
690  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
691  */
692 
693 int dev_get_iflink(const struct net_device *dev)
694 {
695 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
696 		return dev->netdev_ops->ndo_get_iflink(dev);
697 
698 	return dev->ifindex;
699 }
700 EXPORT_SYMBOL(dev_get_iflink);
701 
702 /**
703  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
704  *	@dev: targeted interface
705  *	@skb: The packet.
706  *
707  *	For better visibility of tunnel traffic OVS needs to retrieve
708  *	egress tunnel information for a packet. Following API allows
709  *	user to get this info.
710  */
711 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
712 {
713 	struct ip_tunnel_info *info;
714 
715 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
716 		return -EINVAL;
717 
718 	info = skb_tunnel_info_unclone(skb);
719 	if (!info)
720 		return -ENOMEM;
721 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
722 		return -EINVAL;
723 
724 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
725 }
726 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
727 
728 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
729 {
730 	int k = stack->num_paths++;
731 
732 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
733 		return NULL;
734 
735 	return &stack->path[k];
736 }
737 
738 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
739 			  struct net_device_path_stack *stack)
740 {
741 	const struct net_device *last_dev;
742 	struct net_device_path_ctx ctx = {
743 		.dev	= dev,
744 		.daddr	= daddr,
745 	};
746 	struct net_device_path *path;
747 	int ret = 0;
748 
749 	stack->num_paths = 0;
750 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
751 		last_dev = ctx.dev;
752 		path = dev_fwd_path(stack);
753 		if (!path)
754 			return -1;
755 
756 		memset(path, 0, sizeof(struct net_device_path));
757 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
758 		if (ret < 0)
759 			return -1;
760 
761 		if (WARN_ON_ONCE(last_dev == ctx.dev))
762 			return -1;
763 	}
764 	path = dev_fwd_path(stack);
765 	if (!path)
766 		return -1;
767 	path->type = DEV_PATH_ETHERNET;
768 	path->dev = ctx.dev;
769 
770 	return ret;
771 }
772 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
773 
774 /**
775  *	__dev_get_by_name	- find a device by its name
776  *	@net: the applicable net namespace
777  *	@name: name to find
778  *
779  *	Find an interface by name. Must be called under RTNL semaphore
780  *	or @dev_base_lock. If the name is found a pointer to the device
781  *	is returned. If the name is not found then %NULL is returned. The
782  *	reference counters are not incremented so the caller must be
783  *	careful with locks.
784  */
785 
786 struct net_device *__dev_get_by_name(struct net *net, const char *name)
787 {
788 	struct netdev_name_node *node_name;
789 
790 	node_name = netdev_name_node_lookup(net, name);
791 	return node_name ? node_name->dev : NULL;
792 }
793 EXPORT_SYMBOL(__dev_get_by_name);
794 
795 /**
796  * dev_get_by_name_rcu	- find a device by its name
797  * @net: the applicable net namespace
798  * @name: name to find
799  *
800  * Find an interface by name.
801  * If the name is found a pointer to the device is returned.
802  * If the name is not found then %NULL is returned.
803  * The reference counters are not incremented so the caller must be
804  * careful with locks. The caller must hold RCU lock.
805  */
806 
807 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
808 {
809 	struct netdev_name_node *node_name;
810 
811 	node_name = netdev_name_node_lookup_rcu(net, name);
812 	return node_name ? node_name->dev : NULL;
813 }
814 EXPORT_SYMBOL(dev_get_by_name_rcu);
815 
816 /**
817  *	dev_get_by_name		- find a device by its name
818  *	@net: the applicable net namespace
819  *	@name: name to find
820  *
821  *	Find an interface by name. This can be called from any
822  *	context and does its own locking. The returned handle has
823  *	the usage count incremented and the caller must use dev_put() to
824  *	release it when it is no longer needed. %NULL is returned if no
825  *	matching device is found.
826  */
827 
828 struct net_device *dev_get_by_name(struct net *net, const char *name)
829 {
830 	struct net_device *dev;
831 
832 	rcu_read_lock();
833 	dev = dev_get_by_name_rcu(net, name);
834 	dev_hold(dev);
835 	rcu_read_unlock();
836 	return dev;
837 }
838 EXPORT_SYMBOL(dev_get_by_name);
839 
840 /**
841  *	__dev_get_by_index - find a device by its ifindex
842  *	@net: the applicable net namespace
843  *	@ifindex: index of device
844  *
845  *	Search for an interface by index. Returns %NULL if the device
846  *	is not found or a pointer to the device. The device has not
847  *	had its reference counter increased so the caller must be careful
848  *	about locking. The caller must hold either the RTNL semaphore
849  *	or @dev_base_lock.
850  */
851 
852 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
853 {
854 	struct net_device *dev;
855 	struct hlist_head *head = dev_index_hash(net, ifindex);
856 
857 	hlist_for_each_entry(dev, head, index_hlist)
858 		if (dev->ifindex == ifindex)
859 			return dev;
860 
861 	return NULL;
862 }
863 EXPORT_SYMBOL(__dev_get_by_index);
864 
865 /**
866  *	dev_get_by_index_rcu - find a device by its ifindex
867  *	@net: the applicable net namespace
868  *	@ifindex: index of device
869  *
870  *	Search for an interface by index. Returns %NULL if the device
871  *	is not found or a pointer to the device. The device has not
872  *	had its reference counter increased so the caller must be careful
873  *	about locking. The caller must hold RCU lock.
874  */
875 
876 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
877 {
878 	struct net_device *dev;
879 	struct hlist_head *head = dev_index_hash(net, ifindex);
880 
881 	hlist_for_each_entry_rcu(dev, head, index_hlist)
882 		if (dev->ifindex == ifindex)
883 			return dev;
884 
885 	return NULL;
886 }
887 EXPORT_SYMBOL(dev_get_by_index_rcu);
888 
889 
890 /**
891  *	dev_get_by_index - find a device by its ifindex
892  *	@net: the applicable net namespace
893  *	@ifindex: index of device
894  *
895  *	Search for an interface by index. Returns NULL if the device
896  *	is not found or a pointer to the device. The device returned has
897  *	had a reference added and the pointer is safe until the user calls
898  *	dev_put to indicate they have finished with it.
899  */
900 
901 struct net_device *dev_get_by_index(struct net *net, int ifindex)
902 {
903 	struct net_device *dev;
904 
905 	rcu_read_lock();
906 	dev = dev_get_by_index_rcu(net, ifindex);
907 	dev_hold(dev);
908 	rcu_read_unlock();
909 	return dev;
910 }
911 EXPORT_SYMBOL(dev_get_by_index);
912 
913 /**
914  *	dev_get_by_napi_id - find a device by napi_id
915  *	@napi_id: ID of the NAPI struct
916  *
917  *	Search for an interface by NAPI ID. Returns %NULL if the device
918  *	is not found or a pointer to the device. The device has not had
919  *	its reference counter increased so the caller must be careful
920  *	about locking. The caller must hold RCU lock.
921  */
922 
923 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
924 {
925 	struct napi_struct *napi;
926 
927 	WARN_ON_ONCE(!rcu_read_lock_held());
928 
929 	if (napi_id < MIN_NAPI_ID)
930 		return NULL;
931 
932 	napi = napi_by_id(napi_id);
933 
934 	return napi ? napi->dev : NULL;
935 }
936 EXPORT_SYMBOL(dev_get_by_napi_id);
937 
938 /**
939  *	netdev_get_name - get a netdevice name, knowing its ifindex.
940  *	@net: network namespace
941  *	@name: a pointer to the buffer where the name will be stored.
942  *	@ifindex: the ifindex of the interface to get the name from.
943  */
944 int netdev_get_name(struct net *net, char *name, int ifindex)
945 {
946 	struct net_device *dev;
947 	int ret;
948 
949 	down_read(&devnet_rename_sem);
950 	rcu_read_lock();
951 
952 	dev = dev_get_by_index_rcu(net, ifindex);
953 	if (!dev) {
954 		ret = -ENODEV;
955 		goto out;
956 	}
957 
958 	strcpy(name, dev->name);
959 
960 	ret = 0;
961 out:
962 	rcu_read_unlock();
963 	up_read(&devnet_rename_sem);
964 	return ret;
965 }
966 
967 /**
968  *	dev_getbyhwaddr_rcu - find a device by its hardware address
969  *	@net: the applicable net namespace
970  *	@type: media type of device
971  *	@ha: hardware address
972  *
973  *	Search for an interface by MAC address. Returns NULL if the device
974  *	is not found or a pointer to the device.
975  *	The caller must hold RCU or RTNL.
976  *	The returned device has not had its ref count increased
977  *	and the caller must therefore be careful about locking
978  *
979  */
980 
981 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
982 				       const char *ha)
983 {
984 	struct net_device *dev;
985 
986 	for_each_netdev_rcu(net, dev)
987 		if (dev->type == type &&
988 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
989 			return dev;
990 
991 	return NULL;
992 }
993 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
994 
995 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
996 {
997 	struct net_device *dev, *ret = NULL;
998 
999 	rcu_read_lock();
1000 	for_each_netdev_rcu(net, dev)
1001 		if (dev->type == type) {
1002 			dev_hold(dev);
1003 			ret = dev;
1004 			break;
1005 		}
1006 	rcu_read_unlock();
1007 	return ret;
1008 }
1009 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1010 
1011 /**
1012  *	__dev_get_by_flags - find any device with given flags
1013  *	@net: the applicable net namespace
1014  *	@if_flags: IFF_* values
1015  *	@mask: bitmask of bits in if_flags to check
1016  *
1017  *	Search for any interface with the given flags. Returns NULL if a device
1018  *	is not found or a pointer to the device. Must be called inside
1019  *	rtnl_lock(), and result refcount is unchanged.
1020  */
1021 
1022 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1023 				      unsigned short mask)
1024 {
1025 	struct net_device *dev, *ret;
1026 
1027 	ASSERT_RTNL();
1028 
1029 	ret = NULL;
1030 	for_each_netdev(net, dev) {
1031 		if (((dev->flags ^ if_flags) & mask) == 0) {
1032 			ret = dev;
1033 			break;
1034 		}
1035 	}
1036 	return ret;
1037 }
1038 EXPORT_SYMBOL(__dev_get_by_flags);
1039 
1040 /**
1041  *	dev_valid_name - check if name is okay for network device
1042  *	@name: name string
1043  *
1044  *	Network device names need to be valid file names to
1045  *	allow sysfs to work.  We also disallow any kind of
1046  *	whitespace.
1047  */
1048 bool dev_valid_name(const char *name)
1049 {
1050 	if (*name == '\0')
1051 		return false;
1052 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1053 		return false;
1054 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1055 		return false;
1056 
1057 	while (*name) {
1058 		if (*name == '/' || *name == ':' || isspace(*name))
1059 			return false;
1060 		name++;
1061 	}
1062 	return true;
1063 }
1064 EXPORT_SYMBOL(dev_valid_name);
1065 
1066 /**
1067  *	__dev_alloc_name - allocate a name for a device
1068  *	@net: network namespace to allocate the device name in
1069  *	@name: name format string
1070  *	@buf:  scratch buffer and result name string
1071  *
1072  *	Passed a format string - eg "lt%d" it will try and find a suitable
1073  *	id. It scans list of devices to build up a free map, then chooses
1074  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1075  *	while allocating the name and adding the device in order to avoid
1076  *	duplicates.
1077  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1078  *	Returns the number of the unit assigned or a negative errno code.
1079  */
1080 
1081 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1082 {
1083 	int i = 0;
1084 	const char *p;
1085 	const int max_netdevices = 8*PAGE_SIZE;
1086 	unsigned long *inuse;
1087 	struct net_device *d;
1088 
1089 	if (!dev_valid_name(name))
1090 		return -EINVAL;
1091 
1092 	p = strchr(name, '%');
1093 	if (p) {
1094 		/*
1095 		 * Verify the string as this thing may have come from
1096 		 * the user.  There must be either one "%d" and no other "%"
1097 		 * characters.
1098 		 */
1099 		if (p[1] != 'd' || strchr(p + 2, '%'))
1100 			return -EINVAL;
1101 
1102 		/* Use one page as a bit array of possible slots */
1103 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1104 		if (!inuse)
1105 			return -ENOMEM;
1106 
1107 		for_each_netdev(net, d) {
1108 			struct netdev_name_node *name_node;
1109 			list_for_each_entry(name_node, &d->name_node->list, list) {
1110 				if (!sscanf(name_node->name, name, &i))
1111 					continue;
1112 				if (i < 0 || i >= max_netdevices)
1113 					continue;
1114 
1115 				/*  avoid cases where sscanf is not exact inverse of printf */
1116 				snprintf(buf, IFNAMSIZ, name, i);
1117 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1118 					set_bit(i, inuse);
1119 			}
1120 			if (!sscanf(d->name, name, &i))
1121 				continue;
1122 			if (i < 0 || i >= max_netdevices)
1123 				continue;
1124 
1125 			/*  avoid cases where sscanf is not exact inverse of printf */
1126 			snprintf(buf, IFNAMSIZ, name, i);
1127 			if (!strncmp(buf, d->name, IFNAMSIZ))
1128 				set_bit(i, inuse);
1129 		}
1130 
1131 		i = find_first_zero_bit(inuse, max_netdevices);
1132 		free_page((unsigned long) inuse);
1133 	}
1134 
1135 	snprintf(buf, IFNAMSIZ, name, i);
1136 	if (!__dev_get_by_name(net, buf))
1137 		return i;
1138 
1139 	/* It is possible to run out of possible slots
1140 	 * when the name is long and there isn't enough space left
1141 	 * for the digits, or if all bits are used.
1142 	 */
1143 	return -ENFILE;
1144 }
1145 
1146 static int dev_alloc_name_ns(struct net *net,
1147 			     struct net_device *dev,
1148 			     const char *name)
1149 {
1150 	char buf[IFNAMSIZ];
1151 	int ret;
1152 
1153 	BUG_ON(!net);
1154 	ret = __dev_alloc_name(net, name, buf);
1155 	if (ret >= 0)
1156 		strlcpy(dev->name, buf, IFNAMSIZ);
1157 	return ret;
1158 }
1159 
1160 /**
1161  *	dev_alloc_name - allocate a name for a device
1162  *	@dev: device
1163  *	@name: name format string
1164  *
1165  *	Passed a format string - eg "lt%d" it will try and find a suitable
1166  *	id. It scans list of devices to build up a free map, then chooses
1167  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1168  *	while allocating the name and adding the device in order to avoid
1169  *	duplicates.
1170  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1171  *	Returns the number of the unit assigned or a negative errno code.
1172  */
1173 
1174 int dev_alloc_name(struct net_device *dev, const char *name)
1175 {
1176 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1177 }
1178 EXPORT_SYMBOL(dev_alloc_name);
1179 
1180 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1181 			      const char *name)
1182 {
1183 	BUG_ON(!net);
1184 
1185 	if (!dev_valid_name(name))
1186 		return -EINVAL;
1187 
1188 	if (strchr(name, '%'))
1189 		return dev_alloc_name_ns(net, dev, name);
1190 	else if (__dev_get_by_name(net, name))
1191 		return -EEXIST;
1192 	else if (dev->name != name)
1193 		strlcpy(dev->name, name, IFNAMSIZ);
1194 
1195 	return 0;
1196 }
1197 
1198 /**
1199  *	dev_change_name - change name of a device
1200  *	@dev: device
1201  *	@newname: name (or format string) must be at least IFNAMSIZ
1202  *
1203  *	Change name of a device, can pass format strings "eth%d".
1204  *	for wildcarding.
1205  */
1206 int dev_change_name(struct net_device *dev, const char *newname)
1207 {
1208 	unsigned char old_assign_type;
1209 	char oldname[IFNAMSIZ];
1210 	int err = 0;
1211 	int ret;
1212 	struct net *net;
1213 
1214 	ASSERT_RTNL();
1215 	BUG_ON(!dev_net(dev));
1216 
1217 	net = dev_net(dev);
1218 
1219 	/* Some auto-enslaved devices e.g. failover slaves are
1220 	 * special, as userspace might rename the device after
1221 	 * the interface had been brought up and running since
1222 	 * the point kernel initiated auto-enslavement. Allow
1223 	 * live name change even when these slave devices are
1224 	 * up and running.
1225 	 *
1226 	 * Typically, users of these auto-enslaving devices
1227 	 * don't actually care about slave name change, as
1228 	 * they are supposed to operate on master interface
1229 	 * directly.
1230 	 */
1231 	if (dev->flags & IFF_UP &&
1232 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1233 		return -EBUSY;
1234 
1235 	down_write(&devnet_rename_sem);
1236 
1237 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1238 		up_write(&devnet_rename_sem);
1239 		return 0;
1240 	}
1241 
1242 	memcpy(oldname, dev->name, IFNAMSIZ);
1243 
1244 	err = dev_get_valid_name(net, dev, newname);
1245 	if (err < 0) {
1246 		up_write(&devnet_rename_sem);
1247 		return err;
1248 	}
1249 
1250 	if (oldname[0] && !strchr(oldname, '%'))
1251 		netdev_info(dev, "renamed from %s\n", oldname);
1252 
1253 	old_assign_type = dev->name_assign_type;
1254 	dev->name_assign_type = NET_NAME_RENAMED;
1255 
1256 rollback:
1257 	ret = device_rename(&dev->dev, dev->name);
1258 	if (ret) {
1259 		memcpy(dev->name, oldname, IFNAMSIZ);
1260 		dev->name_assign_type = old_assign_type;
1261 		up_write(&devnet_rename_sem);
1262 		return ret;
1263 	}
1264 
1265 	up_write(&devnet_rename_sem);
1266 
1267 	netdev_adjacent_rename_links(dev, oldname);
1268 
1269 	write_lock_bh(&dev_base_lock);
1270 	netdev_name_node_del(dev->name_node);
1271 	write_unlock_bh(&dev_base_lock);
1272 
1273 	synchronize_rcu();
1274 
1275 	write_lock_bh(&dev_base_lock);
1276 	netdev_name_node_add(net, dev->name_node);
1277 	write_unlock_bh(&dev_base_lock);
1278 
1279 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1280 	ret = notifier_to_errno(ret);
1281 
1282 	if (ret) {
1283 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1284 		if (err >= 0) {
1285 			err = ret;
1286 			down_write(&devnet_rename_sem);
1287 			memcpy(dev->name, oldname, IFNAMSIZ);
1288 			memcpy(oldname, newname, IFNAMSIZ);
1289 			dev->name_assign_type = old_assign_type;
1290 			old_assign_type = NET_NAME_RENAMED;
1291 			goto rollback;
1292 		} else {
1293 			pr_err("%s: name change rollback failed: %d\n",
1294 			       dev->name, ret);
1295 		}
1296 	}
1297 
1298 	return err;
1299 }
1300 
1301 /**
1302  *	dev_set_alias - change ifalias of a device
1303  *	@dev: device
1304  *	@alias: name up to IFALIASZ
1305  *	@len: limit of bytes to copy from info
1306  *
1307  *	Set ifalias for a device,
1308  */
1309 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1310 {
1311 	struct dev_ifalias *new_alias = NULL;
1312 
1313 	if (len >= IFALIASZ)
1314 		return -EINVAL;
1315 
1316 	if (len) {
1317 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1318 		if (!new_alias)
1319 			return -ENOMEM;
1320 
1321 		memcpy(new_alias->ifalias, alias, len);
1322 		new_alias->ifalias[len] = 0;
1323 	}
1324 
1325 	mutex_lock(&ifalias_mutex);
1326 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1327 					mutex_is_locked(&ifalias_mutex));
1328 	mutex_unlock(&ifalias_mutex);
1329 
1330 	if (new_alias)
1331 		kfree_rcu(new_alias, rcuhead);
1332 
1333 	return len;
1334 }
1335 EXPORT_SYMBOL(dev_set_alias);
1336 
1337 /**
1338  *	dev_get_alias - get ifalias of a device
1339  *	@dev: device
1340  *	@name: buffer to store name of ifalias
1341  *	@len: size of buffer
1342  *
1343  *	get ifalias for a device.  Caller must make sure dev cannot go
1344  *	away,  e.g. rcu read lock or own a reference count to device.
1345  */
1346 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1347 {
1348 	const struct dev_ifalias *alias;
1349 	int ret = 0;
1350 
1351 	rcu_read_lock();
1352 	alias = rcu_dereference(dev->ifalias);
1353 	if (alias)
1354 		ret = snprintf(name, len, "%s", alias->ifalias);
1355 	rcu_read_unlock();
1356 
1357 	return ret;
1358 }
1359 
1360 /**
1361  *	netdev_features_change - device changes features
1362  *	@dev: device to cause notification
1363  *
1364  *	Called to indicate a device has changed features.
1365  */
1366 void netdev_features_change(struct net_device *dev)
1367 {
1368 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1369 }
1370 EXPORT_SYMBOL(netdev_features_change);
1371 
1372 /**
1373  *	netdev_state_change - device changes state
1374  *	@dev: device to cause notification
1375  *
1376  *	Called to indicate a device has changed state. This function calls
1377  *	the notifier chains for netdev_chain and sends a NEWLINK message
1378  *	to the routing socket.
1379  */
1380 void netdev_state_change(struct net_device *dev)
1381 {
1382 	if (dev->flags & IFF_UP) {
1383 		struct netdev_notifier_change_info change_info = {
1384 			.info.dev = dev,
1385 		};
1386 
1387 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1388 					      &change_info.info);
1389 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1390 	}
1391 }
1392 EXPORT_SYMBOL(netdev_state_change);
1393 
1394 /**
1395  * __netdev_notify_peers - notify network peers about existence of @dev,
1396  * to be called when rtnl lock is already held.
1397  * @dev: network device
1398  *
1399  * Generate traffic such that interested network peers are aware of
1400  * @dev, such as by generating a gratuitous ARP. This may be used when
1401  * a device wants to inform the rest of the network about some sort of
1402  * reconfiguration such as a failover event or virtual machine
1403  * migration.
1404  */
1405 void __netdev_notify_peers(struct net_device *dev)
1406 {
1407 	ASSERT_RTNL();
1408 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1409 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1410 }
1411 EXPORT_SYMBOL(__netdev_notify_peers);
1412 
1413 /**
1414  * netdev_notify_peers - notify network peers about existence of @dev
1415  * @dev: network device
1416  *
1417  * Generate traffic such that interested network peers are aware of
1418  * @dev, such as by generating a gratuitous ARP. This may be used when
1419  * a device wants to inform the rest of the network about some sort of
1420  * reconfiguration such as a failover event or virtual machine
1421  * migration.
1422  */
1423 void netdev_notify_peers(struct net_device *dev)
1424 {
1425 	rtnl_lock();
1426 	__netdev_notify_peers(dev);
1427 	rtnl_unlock();
1428 }
1429 EXPORT_SYMBOL(netdev_notify_peers);
1430 
1431 static int napi_threaded_poll(void *data);
1432 
1433 static int napi_kthread_create(struct napi_struct *n)
1434 {
1435 	int err = 0;
1436 
1437 	/* Create and wake up the kthread once to put it in
1438 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1439 	 * warning and work with loadavg.
1440 	 */
1441 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1442 				n->dev->name, n->napi_id);
1443 	if (IS_ERR(n->thread)) {
1444 		err = PTR_ERR(n->thread);
1445 		pr_err("kthread_run failed with err %d\n", err);
1446 		n->thread = NULL;
1447 	}
1448 
1449 	return err;
1450 }
1451 
1452 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1453 {
1454 	const struct net_device_ops *ops = dev->netdev_ops;
1455 	int ret;
1456 
1457 	ASSERT_RTNL();
1458 
1459 	if (!netif_device_present(dev)) {
1460 		/* may be detached because parent is runtime-suspended */
1461 		if (dev->dev.parent)
1462 			pm_runtime_resume(dev->dev.parent);
1463 		if (!netif_device_present(dev))
1464 			return -ENODEV;
1465 	}
1466 
1467 	/* Block netpoll from trying to do any rx path servicing.
1468 	 * If we don't do this there is a chance ndo_poll_controller
1469 	 * or ndo_poll may be running while we open the device
1470 	 */
1471 	netpoll_poll_disable(dev);
1472 
1473 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1474 	ret = notifier_to_errno(ret);
1475 	if (ret)
1476 		return ret;
1477 
1478 	set_bit(__LINK_STATE_START, &dev->state);
1479 
1480 	if (ops->ndo_validate_addr)
1481 		ret = ops->ndo_validate_addr(dev);
1482 
1483 	if (!ret && ops->ndo_open)
1484 		ret = ops->ndo_open(dev);
1485 
1486 	netpoll_poll_enable(dev);
1487 
1488 	if (ret)
1489 		clear_bit(__LINK_STATE_START, &dev->state);
1490 	else {
1491 		dev->flags |= IFF_UP;
1492 		dev_set_rx_mode(dev);
1493 		dev_activate(dev);
1494 		add_device_randomness(dev->dev_addr, dev->addr_len);
1495 	}
1496 
1497 	return ret;
1498 }
1499 
1500 /**
1501  *	dev_open	- prepare an interface for use.
1502  *	@dev: device to open
1503  *	@extack: netlink extended ack
1504  *
1505  *	Takes a device from down to up state. The device's private open
1506  *	function is invoked and then the multicast lists are loaded. Finally
1507  *	the device is moved into the up state and a %NETDEV_UP message is
1508  *	sent to the netdev notifier chain.
1509  *
1510  *	Calling this function on an active interface is a nop. On a failure
1511  *	a negative errno code is returned.
1512  */
1513 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1514 {
1515 	int ret;
1516 
1517 	if (dev->flags & IFF_UP)
1518 		return 0;
1519 
1520 	ret = __dev_open(dev, extack);
1521 	if (ret < 0)
1522 		return ret;
1523 
1524 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1525 	call_netdevice_notifiers(NETDEV_UP, dev);
1526 
1527 	return ret;
1528 }
1529 EXPORT_SYMBOL(dev_open);
1530 
1531 static void __dev_close_many(struct list_head *head)
1532 {
1533 	struct net_device *dev;
1534 
1535 	ASSERT_RTNL();
1536 	might_sleep();
1537 
1538 	list_for_each_entry(dev, head, close_list) {
1539 		/* Temporarily disable netpoll until the interface is down */
1540 		netpoll_poll_disable(dev);
1541 
1542 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1543 
1544 		clear_bit(__LINK_STATE_START, &dev->state);
1545 
1546 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1547 		 * can be even on different cpu. So just clear netif_running().
1548 		 *
1549 		 * dev->stop() will invoke napi_disable() on all of it's
1550 		 * napi_struct instances on this device.
1551 		 */
1552 		smp_mb__after_atomic(); /* Commit netif_running(). */
1553 	}
1554 
1555 	dev_deactivate_many(head);
1556 
1557 	list_for_each_entry(dev, head, close_list) {
1558 		const struct net_device_ops *ops = dev->netdev_ops;
1559 
1560 		/*
1561 		 *	Call the device specific close. This cannot fail.
1562 		 *	Only if device is UP
1563 		 *
1564 		 *	We allow it to be called even after a DETACH hot-plug
1565 		 *	event.
1566 		 */
1567 		if (ops->ndo_stop)
1568 			ops->ndo_stop(dev);
1569 
1570 		dev->flags &= ~IFF_UP;
1571 		netpoll_poll_enable(dev);
1572 	}
1573 }
1574 
1575 static void __dev_close(struct net_device *dev)
1576 {
1577 	LIST_HEAD(single);
1578 
1579 	list_add(&dev->close_list, &single);
1580 	__dev_close_many(&single);
1581 	list_del(&single);
1582 }
1583 
1584 void dev_close_many(struct list_head *head, bool unlink)
1585 {
1586 	struct net_device *dev, *tmp;
1587 
1588 	/* Remove the devices that don't need to be closed */
1589 	list_for_each_entry_safe(dev, tmp, head, close_list)
1590 		if (!(dev->flags & IFF_UP))
1591 			list_del_init(&dev->close_list);
1592 
1593 	__dev_close_many(head);
1594 
1595 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1596 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1597 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1598 		if (unlink)
1599 			list_del_init(&dev->close_list);
1600 	}
1601 }
1602 EXPORT_SYMBOL(dev_close_many);
1603 
1604 /**
1605  *	dev_close - shutdown an interface.
1606  *	@dev: device to shutdown
1607  *
1608  *	This function moves an active device into down state. A
1609  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1610  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1611  *	chain.
1612  */
1613 void dev_close(struct net_device *dev)
1614 {
1615 	if (dev->flags & IFF_UP) {
1616 		LIST_HEAD(single);
1617 
1618 		list_add(&dev->close_list, &single);
1619 		dev_close_many(&single, true);
1620 		list_del(&single);
1621 	}
1622 }
1623 EXPORT_SYMBOL(dev_close);
1624 
1625 
1626 /**
1627  *	dev_disable_lro - disable Large Receive Offload on a device
1628  *	@dev: device
1629  *
1630  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1631  *	called under RTNL.  This is needed if received packets may be
1632  *	forwarded to another interface.
1633  */
1634 void dev_disable_lro(struct net_device *dev)
1635 {
1636 	struct net_device *lower_dev;
1637 	struct list_head *iter;
1638 
1639 	dev->wanted_features &= ~NETIF_F_LRO;
1640 	netdev_update_features(dev);
1641 
1642 	if (unlikely(dev->features & NETIF_F_LRO))
1643 		netdev_WARN(dev, "failed to disable LRO!\n");
1644 
1645 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1646 		dev_disable_lro(lower_dev);
1647 }
1648 EXPORT_SYMBOL(dev_disable_lro);
1649 
1650 /**
1651  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1652  *	@dev: device
1653  *
1654  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1655  *	called under RTNL.  This is needed if Generic XDP is installed on
1656  *	the device.
1657  */
1658 static void dev_disable_gro_hw(struct net_device *dev)
1659 {
1660 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1661 	netdev_update_features(dev);
1662 
1663 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1664 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1665 }
1666 
1667 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1668 {
1669 #define N(val) 						\
1670 	case NETDEV_##val:				\
1671 		return "NETDEV_" __stringify(val);
1672 	switch (cmd) {
1673 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1674 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1675 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1676 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1677 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1678 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1679 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1680 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1681 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1682 	N(PRE_CHANGEADDR)
1683 	}
1684 #undef N
1685 	return "UNKNOWN_NETDEV_EVENT";
1686 }
1687 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1688 
1689 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1690 				   struct net_device *dev)
1691 {
1692 	struct netdev_notifier_info info = {
1693 		.dev = dev,
1694 	};
1695 
1696 	return nb->notifier_call(nb, val, &info);
1697 }
1698 
1699 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1700 					     struct net_device *dev)
1701 {
1702 	int err;
1703 
1704 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1705 	err = notifier_to_errno(err);
1706 	if (err)
1707 		return err;
1708 
1709 	if (!(dev->flags & IFF_UP))
1710 		return 0;
1711 
1712 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1713 	return 0;
1714 }
1715 
1716 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1717 						struct net_device *dev)
1718 {
1719 	if (dev->flags & IFF_UP) {
1720 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1721 					dev);
1722 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1723 	}
1724 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1725 }
1726 
1727 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1728 						 struct net *net)
1729 {
1730 	struct net_device *dev;
1731 	int err;
1732 
1733 	for_each_netdev(net, dev) {
1734 		err = call_netdevice_register_notifiers(nb, dev);
1735 		if (err)
1736 			goto rollback;
1737 	}
1738 	return 0;
1739 
1740 rollback:
1741 	for_each_netdev_continue_reverse(net, dev)
1742 		call_netdevice_unregister_notifiers(nb, dev);
1743 	return err;
1744 }
1745 
1746 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1747 						    struct net *net)
1748 {
1749 	struct net_device *dev;
1750 
1751 	for_each_netdev(net, dev)
1752 		call_netdevice_unregister_notifiers(nb, dev);
1753 }
1754 
1755 static int dev_boot_phase = 1;
1756 
1757 /**
1758  * register_netdevice_notifier - register a network notifier block
1759  * @nb: notifier
1760  *
1761  * Register a notifier to be called when network device events occur.
1762  * The notifier passed is linked into the kernel structures and must
1763  * not be reused until it has been unregistered. A negative errno code
1764  * is returned on a failure.
1765  *
1766  * When registered all registration and up events are replayed
1767  * to the new notifier to allow device to have a race free
1768  * view of the network device list.
1769  */
1770 
1771 int register_netdevice_notifier(struct notifier_block *nb)
1772 {
1773 	struct net *net;
1774 	int err;
1775 
1776 	/* Close race with setup_net() and cleanup_net() */
1777 	down_write(&pernet_ops_rwsem);
1778 	rtnl_lock();
1779 	err = raw_notifier_chain_register(&netdev_chain, nb);
1780 	if (err)
1781 		goto unlock;
1782 	if (dev_boot_phase)
1783 		goto unlock;
1784 	for_each_net(net) {
1785 		err = call_netdevice_register_net_notifiers(nb, net);
1786 		if (err)
1787 			goto rollback;
1788 	}
1789 
1790 unlock:
1791 	rtnl_unlock();
1792 	up_write(&pernet_ops_rwsem);
1793 	return err;
1794 
1795 rollback:
1796 	for_each_net_continue_reverse(net)
1797 		call_netdevice_unregister_net_notifiers(nb, net);
1798 
1799 	raw_notifier_chain_unregister(&netdev_chain, nb);
1800 	goto unlock;
1801 }
1802 EXPORT_SYMBOL(register_netdevice_notifier);
1803 
1804 /**
1805  * unregister_netdevice_notifier - unregister a network notifier block
1806  * @nb: notifier
1807  *
1808  * Unregister a notifier previously registered by
1809  * register_netdevice_notifier(). The notifier is unlinked into the
1810  * kernel structures and may then be reused. A negative errno code
1811  * is returned on a failure.
1812  *
1813  * After unregistering unregister and down device events are synthesized
1814  * for all devices on the device list to the removed notifier to remove
1815  * the need for special case cleanup code.
1816  */
1817 
1818 int unregister_netdevice_notifier(struct notifier_block *nb)
1819 {
1820 	struct net *net;
1821 	int err;
1822 
1823 	/* Close race with setup_net() and cleanup_net() */
1824 	down_write(&pernet_ops_rwsem);
1825 	rtnl_lock();
1826 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1827 	if (err)
1828 		goto unlock;
1829 
1830 	for_each_net(net)
1831 		call_netdevice_unregister_net_notifiers(nb, net);
1832 
1833 unlock:
1834 	rtnl_unlock();
1835 	up_write(&pernet_ops_rwsem);
1836 	return err;
1837 }
1838 EXPORT_SYMBOL(unregister_netdevice_notifier);
1839 
1840 static int __register_netdevice_notifier_net(struct net *net,
1841 					     struct notifier_block *nb,
1842 					     bool ignore_call_fail)
1843 {
1844 	int err;
1845 
1846 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1847 	if (err)
1848 		return err;
1849 	if (dev_boot_phase)
1850 		return 0;
1851 
1852 	err = call_netdevice_register_net_notifiers(nb, net);
1853 	if (err && !ignore_call_fail)
1854 		goto chain_unregister;
1855 
1856 	return 0;
1857 
1858 chain_unregister:
1859 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1860 	return err;
1861 }
1862 
1863 static int __unregister_netdevice_notifier_net(struct net *net,
1864 					       struct notifier_block *nb)
1865 {
1866 	int err;
1867 
1868 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1869 	if (err)
1870 		return err;
1871 
1872 	call_netdevice_unregister_net_notifiers(nb, net);
1873 	return 0;
1874 }
1875 
1876 /**
1877  * register_netdevice_notifier_net - register a per-netns network notifier block
1878  * @net: network namespace
1879  * @nb: notifier
1880  *
1881  * Register a notifier to be called when network device events occur.
1882  * The notifier passed is linked into the kernel structures and must
1883  * not be reused until it has been unregistered. A negative errno code
1884  * is returned on a failure.
1885  *
1886  * When registered all registration and up events are replayed
1887  * to the new notifier to allow device to have a race free
1888  * view of the network device list.
1889  */
1890 
1891 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1892 {
1893 	int err;
1894 
1895 	rtnl_lock();
1896 	err = __register_netdevice_notifier_net(net, nb, false);
1897 	rtnl_unlock();
1898 	return err;
1899 }
1900 EXPORT_SYMBOL(register_netdevice_notifier_net);
1901 
1902 /**
1903  * unregister_netdevice_notifier_net - unregister a per-netns
1904  *                                     network notifier block
1905  * @net: network namespace
1906  * @nb: notifier
1907  *
1908  * Unregister a notifier previously registered by
1909  * register_netdevice_notifier(). The notifier is unlinked into the
1910  * kernel structures and may then be reused. A negative errno code
1911  * is returned on a failure.
1912  *
1913  * After unregistering unregister and down device events are synthesized
1914  * for all devices on the device list to the removed notifier to remove
1915  * the need for special case cleanup code.
1916  */
1917 
1918 int unregister_netdevice_notifier_net(struct net *net,
1919 				      struct notifier_block *nb)
1920 {
1921 	int err;
1922 
1923 	rtnl_lock();
1924 	err = __unregister_netdevice_notifier_net(net, nb);
1925 	rtnl_unlock();
1926 	return err;
1927 }
1928 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1929 
1930 int register_netdevice_notifier_dev_net(struct net_device *dev,
1931 					struct notifier_block *nb,
1932 					struct netdev_net_notifier *nn)
1933 {
1934 	int err;
1935 
1936 	rtnl_lock();
1937 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1938 	if (!err) {
1939 		nn->nb = nb;
1940 		list_add(&nn->list, &dev->net_notifier_list);
1941 	}
1942 	rtnl_unlock();
1943 	return err;
1944 }
1945 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1946 
1947 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1948 					  struct notifier_block *nb,
1949 					  struct netdev_net_notifier *nn)
1950 {
1951 	int err;
1952 
1953 	rtnl_lock();
1954 	list_del(&nn->list);
1955 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1956 	rtnl_unlock();
1957 	return err;
1958 }
1959 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1960 
1961 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1962 					     struct net *net)
1963 {
1964 	struct netdev_net_notifier *nn;
1965 
1966 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
1967 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1968 		__register_netdevice_notifier_net(net, nn->nb, true);
1969 	}
1970 }
1971 
1972 /**
1973  *	call_netdevice_notifiers_info - call all network notifier blocks
1974  *	@val: value passed unmodified to notifier function
1975  *	@info: notifier information data
1976  *
1977  *	Call all network notifier blocks.  Parameters and return value
1978  *	are as for raw_notifier_call_chain().
1979  */
1980 
1981 static int call_netdevice_notifiers_info(unsigned long val,
1982 					 struct netdev_notifier_info *info)
1983 {
1984 	struct net *net = dev_net(info->dev);
1985 	int ret;
1986 
1987 	ASSERT_RTNL();
1988 
1989 	/* Run per-netns notifier block chain first, then run the global one.
1990 	 * Hopefully, one day, the global one is going to be removed after
1991 	 * all notifier block registrators get converted to be per-netns.
1992 	 */
1993 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1994 	if (ret & NOTIFY_STOP_MASK)
1995 		return ret;
1996 	return raw_notifier_call_chain(&netdev_chain, val, info);
1997 }
1998 
1999 static int call_netdevice_notifiers_extack(unsigned long val,
2000 					   struct net_device *dev,
2001 					   struct netlink_ext_ack *extack)
2002 {
2003 	struct netdev_notifier_info info = {
2004 		.dev = dev,
2005 		.extack = extack,
2006 	};
2007 
2008 	return call_netdevice_notifiers_info(val, &info);
2009 }
2010 
2011 /**
2012  *	call_netdevice_notifiers - call all network notifier blocks
2013  *      @val: value passed unmodified to notifier function
2014  *      @dev: net_device pointer passed unmodified to notifier function
2015  *
2016  *	Call all network notifier blocks.  Parameters and return value
2017  *	are as for raw_notifier_call_chain().
2018  */
2019 
2020 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2021 {
2022 	return call_netdevice_notifiers_extack(val, dev, NULL);
2023 }
2024 EXPORT_SYMBOL(call_netdevice_notifiers);
2025 
2026 /**
2027  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2028  *	@val: value passed unmodified to notifier function
2029  *	@dev: net_device pointer passed unmodified to notifier function
2030  *	@arg: additional u32 argument passed to the notifier function
2031  *
2032  *	Call all network notifier blocks.  Parameters and return value
2033  *	are as for raw_notifier_call_chain().
2034  */
2035 static int call_netdevice_notifiers_mtu(unsigned long val,
2036 					struct net_device *dev, u32 arg)
2037 {
2038 	struct netdev_notifier_info_ext info = {
2039 		.info.dev = dev,
2040 		.ext.mtu = arg,
2041 	};
2042 
2043 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2044 
2045 	return call_netdevice_notifiers_info(val, &info.info);
2046 }
2047 
2048 #ifdef CONFIG_NET_INGRESS
2049 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2050 
2051 void net_inc_ingress_queue(void)
2052 {
2053 	static_branch_inc(&ingress_needed_key);
2054 }
2055 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2056 
2057 void net_dec_ingress_queue(void)
2058 {
2059 	static_branch_dec(&ingress_needed_key);
2060 }
2061 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2062 #endif
2063 
2064 #ifdef CONFIG_NET_EGRESS
2065 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2066 
2067 void net_inc_egress_queue(void)
2068 {
2069 	static_branch_inc(&egress_needed_key);
2070 }
2071 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2072 
2073 void net_dec_egress_queue(void)
2074 {
2075 	static_branch_dec(&egress_needed_key);
2076 }
2077 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2078 #endif
2079 
2080 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2081 #ifdef CONFIG_JUMP_LABEL
2082 static atomic_t netstamp_needed_deferred;
2083 static atomic_t netstamp_wanted;
2084 static void netstamp_clear(struct work_struct *work)
2085 {
2086 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2087 	int wanted;
2088 
2089 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2090 	if (wanted > 0)
2091 		static_branch_enable(&netstamp_needed_key);
2092 	else
2093 		static_branch_disable(&netstamp_needed_key);
2094 }
2095 static DECLARE_WORK(netstamp_work, netstamp_clear);
2096 #endif
2097 
2098 void net_enable_timestamp(void)
2099 {
2100 #ifdef CONFIG_JUMP_LABEL
2101 	int wanted;
2102 
2103 	while (1) {
2104 		wanted = atomic_read(&netstamp_wanted);
2105 		if (wanted <= 0)
2106 			break;
2107 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2108 			return;
2109 	}
2110 	atomic_inc(&netstamp_needed_deferred);
2111 	schedule_work(&netstamp_work);
2112 #else
2113 	static_branch_inc(&netstamp_needed_key);
2114 #endif
2115 }
2116 EXPORT_SYMBOL(net_enable_timestamp);
2117 
2118 void net_disable_timestamp(void)
2119 {
2120 #ifdef CONFIG_JUMP_LABEL
2121 	int wanted;
2122 
2123 	while (1) {
2124 		wanted = atomic_read(&netstamp_wanted);
2125 		if (wanted <= 1)
2126 			break;
2127 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2128 			return;
2129 	}
2130 	atomic_dec(&netstamp_needed_deferred);
2131 	schedule_work(&netstamp_work);
2132 #else
2133 	static_branch_dec(&netstamp_needed_key);
2134 #endif
2135 }
2136 EXPORT_SYMBOL(net_disable_timestamp);
2137 
2138 static inline void net_timestamp_set(struct sk_buff *skb)
2139 {
2140 	skb->tstamp = 0;
2141 	if (static_branch_unlikely(&netstamp_needed_key))
2142 		__net_timestamp(skb);
2143 }
2144 
2145 #define net_timestamp_check(COND, SKB)				\
2146 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2147 		if ((COND) && !(SKB)->tstamp)			\
2148 			__net_timestamp(SKB);			\
2149 	}							\
2150 
2151 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2152 {
2153 	return __is_skb_forwardable(dev, skb, true);
2154 }
2155 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2156 
2157 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2158 			      bool check_mtu)
2159 {
2160 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2161 
2162 	if (likely(!ret)) {
2163 		skb->protocol = eth_type_trans(skb, dev);
2164 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2165 	}
2166 
2167 	return ret;
2168 }
2169 
2170 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2171 {
2172 	return __dev_forward_skb2(dev, skb, true);
2173 }
2174 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2175 
2176 /**
2177  * dev_forward_skb - loopback an skb to another netif
2178  *
2179  * @dev: destination network device
2180  * @skb: buffer to forward
2181  *
2182  * return values:
2183  *	NET_RX_SUCCESS	(no congestion)
2184  *	NET_RX_DROP     (packet was dropped, but freed)
2185  *
2186  * dev_forward_skb can be used for injecting an skb from the
2187  * start_xmit function of one device into the receive queue
2188  * of another device.
2189  *
2190  * The receiving device may be in another namespace, so
2191  * we have to clear all information in the skb that could
2192  * impact namespace isolation.
2193  */
2194 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2195 {
2196 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2197 }
2198 EXPORT_SYMBOL_GPL(dev_forward_skb);
2199 
2200 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2201 {
2202 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2203 }
2204 
2205 static inline int deliver_skb(struct sk_buff *skb,
2206 			      struct packet_type *pt_prev,
2207 			      struct net_device *orig_dev)
2208 {
2209 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2210 		return -ENOMEM;
2211 	refcount_inc(&skb->users);
2212 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2213 }
2214 
2215 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2216 					  struct packet_type **pt,
2217 					  struct net_device *orig_dev,
2218 					  __be16 type,
2219 					  struct list_head *ptype_list)
2220 {
2221 	struct packet_type *ptype, *pt_prev = *pt;
2222 
2223 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2224 		if (ptype->type != type)
2225 			continue;
2226 		if (pt_prev)
2227 			deliver_skb(skb, pt_prev, orig_dev);
2228 		pt_prev = ptype;
2229 	}
2230 	*pt = pt_prev;
2231 }
2232 
2233 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2234 {
2235 	if (!ptype->af_packet_priv || !skb->sk)
2236 		return false;
2237 
2238 	if (ptype->id_match)
2239 		return ptype->id_match(ptype, skb->sk);
2240 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2241 		return true;
2242 
2243 	return false;
2244 }
2245 
2246 /**
2247  * dev_nit_active - return true if any network interface taps are in use
2248  *
2249  * @dev: network device to check for the presence of taps
2250  */
2251 bool dev_nit_active(struct net_device *dev)
2252 {
2253 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2254 }
2255 EXPORT_SYMBOL_GPL(dev_nit_active);
2256 
2257 /*
2258  *	Support routine. Sends outgoing frames to any network
2259  *	taps currently in use.
2260  */
2261 
2262 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2263 {
2264 	struct packet_type *ptype;
2265 	struct sk_buff *skb2 = NULL;
2266 	struct packet_type *pt_prev = NULL;
2267 	struct list_head *ptype_list = &ptype_all;
2268 
2269 	rcu_read_lock();
2270 again:
2271 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2272 		if (ptype->ignore_outgoing)
2273 			continue;
2274 
2275 		/* Never send packets back to the socket
2276 		 * they originated from - MvS (miquels@drinkel.ow.org)
2277 		 */
2278 		if (skb_loop_sk(ptype, skb))
2279 			continue;
2280 
2281 		if (pt_prev) {
2282 			deliver_skb(skb2, pt_prev, skb->dev);
2283 			pt_prev = ptype;
2284 			continue;
2285 		}
2286 
2287 		/* need to clone skb, done only once */
2288 		skb2 = skb_clone(skb, GFP_ATOMIC);
2289 		if (!skb2)
2290 			goto out_unlock;
2291 
2292 		net_timestamp_set(skb2);
2293 
2294 		/* skb->nh should be correctly
2295 		 * set by sender, so that the second statement is
2296 		 * just protection against buggy protocols.
2297 		 */
2298 		skb_reset_mac_header(skb2);
2299 
2300 		if (skb_network_header(skb2) < skb2->data ||
2301 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2302 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2303 					     ntohs(skb2->protocol),
2304 					     dev->name);
2305 			skb_reset_network_header(skb2);
2306 		}
2307 
2308 		skb2->transport_header = skb2->network_header;
2309 		skb2->pkt_type = PACKET_OUTGOING;
2310 		pt_prev = ptype;
2311 	}
2312 
2313 	if (ptype_list == &ptype_all) {
2314 		ptype_list = &dev->ptype_all;
2315 		goto again;
2316 	}
2317 out_unlock:
2318 	if (pt_prev) {
2319 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2320 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2321 		else
2322 			kfree_skb(skb2);
2323 	}
2324 	rcu_read_unlock();
2325 }
2326 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2327 
2328 /**
2329  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2330  * @dev: Network device
2331  * @txq: number of queues available
2332  *
2333  * If real_num_tx_queues is changed the tc mappings may no longer be
2334  * valid. To resolve this verify the tc mapping remains valid and if
2335  * not NULL the mapping. With no priorities mapping to this
2336  * offset/count pair it will no longer be used. In the worst case TC0
2337  * is invalid nothing can be done so disable priority mappings. If is
2338  * expected that drivers will fix this mapping if they can before
2339  * calling netif_set_real_num_tx_queues.
2340  */
2341 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2342 {
2343 	int i;
2344 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2345 
2346 	/* If TC0 is invalidated disable TC mapping */
2347 	if (tc->offset + tc->count > txq) {
2348 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2349 		dev->num_tc = 0;
2350 		return;
2351 	}
2352 
2353 	/* Invalidated prio to tc mappings set to TC0 */
2354 	for (i = 1; i < TC_BITMASK + 1; i++) {
2355 		int q = netdev_get_prio_tc_map(dev, i);
2356 
2357 		tc = &dev->tc_to_txq[q];
2358 		if (tc->offset + tc->count > txq) {
2359 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2360 				i, q);
2361 			netdev_set_prio_tc_map(dev, i, 0);
2362 		}
2363 	}
2364 }
2365 
2366 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2367 {
2368 	if (dev->num_tc) {
2369 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2370 		int i;
2371 
2372 		/* walk through the TCs and see if it falls into any of them */
2373 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2374 			if ((txq - tc->offset) < tc->count)
2375 				return i;
2376 		}
2377 
2378 		/* didn't find it, just return -1 to indicate no match */
2379 		return -1;
2380 	}
2381 
2382 	return 0;
2383 }
2384 EXPORT_SYMBOL(netdev_txq_to_tc);
2385 
2386 #ifdef CONFIG_XPS
2387 static struct static_key xps_needed __read_mostly;
2388 static struct static_key xps_rxqs_needed __read_mostly;
2389 static DEFINE_MUTEX(xps_map_mutex);
2390 #define xmap_dereference(P)		\
2391 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2392 
2393 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2394 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2395 {
2396 	struct xps_map *map = NULL;
2397 	int pos;
2398 
2399 	if (dev_maps)
2400 		map = xmap_dereference(dev_maps->attr_map[tci]);
2401 	if (!map)
2402 		return false;
2403 
2404 	for (pos = map->len; pos--;) {
2405 		if (map->queues[pos] != index)
2406 			continue;
2407 
2408 		if (map->len > 1) {
2409 			map->queues[pos] = map->queues[--map->len];
2410 			break;
2411 		}
2412 
2413 		if (old_maps)
2414 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2415 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2416 		kfree_rcu(map, rcu);
2417 		return false;
2418 	}
2419 
2420 	return true;
2421 }
2422 
2423 static bool remove_xps_queue_cpu(struct net_device *dev,
2424 				 struct xps_dev_maps *dev_maps,
2425 				 int cpu, u16 offset, u16 count)
2426 {
2427 	int num_tc = dev_maps->num_tc;
2428 	bool active = false;
2429 	int tci;
2430 
2431 	for (tci = cpu * num_tc; num_tc--; tci++) {
2432 		int i, j;
2433 
2434 		for (i = count, j = offset; i--; j++) {
2435 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2436 				break;
2437 		}
2438 
2439 		active |= i < 0;
2440 	}
2441 
2442 	return active;
2443 }
2444 
2445 static void reset_xps_maps(struct net_device *dev,
2446 			   struct xps_dev_maps *dev_maps,
2447 			   enum xps_map_type type)
2448 {
2449 	static_key_slow_dec_cpuslocked(&xps_needed);
2450 	if (type == XPS_RXQS)
2451 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2452 
2453 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2454 
2455 	kfree_rcu(dev_maps, rcu);
2456 }
2457 
2458 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2459 			   u16 offset, u16 count)
2460 {
2461 	struct xps_dev_maps *dev_maps;
2462 	bool active = false;
2463 	int i, j;
2464 
2465 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2466 	if (!dev_maps)
2467 		return;
2468 
2469 	for (j = 0; j < dev_maps->nr_ids; j++)
2470 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2471 	if (!active)
2472 		reset_xps_maps(dev, dev_maps, type);
2473 
2474 	if (type == XPS_CPUS) {
2475 		for (i = offset + (count - 1); count--; i--)
2476 			netdev_queue_numa_node_write(
2477 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2478 	}
2479 }
2480 
2481 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2482 				   u16 count)
2483 {
2484 	if (!static_key_false(&xps_needed))
2485 		return;
2486 
2487 	cpus_read_lock();
2488 	mutex_lock(&xps_map_mutex);
2489 
2490 	if (static_key_false(&xps_rxqs_needed))
2491 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2492 
2493 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2494 
2495 	mutex_unlock(&xps_map_mutex);
2496 	cpus_read_unlock();
2497 }
2498 
2499 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2500 {
2501 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2502 }
2503 
2504 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2505 				      u16 index, bool is_rxqs_map)
2506 {
2507 	struct xps_map *new_map;
2508 	int alloc_len = XPS_MIN_MAP_ALLOC;
2509 	int i, pos;
2510 
2511 	for (pos = 0; map && pos < map->len; pos++) {
2512 		if (map->queues[pos] != index)
2513 			continue;
2514 		return map;
2515 	}
2516 
2517 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2518 	if (map) {
2519 		if (pos < map->alloc_len)
2520 			return map;
2521 
2522 		alloc_len = map->alloc_len * 2;
2523 	}
2524 
2525 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2526 	 *  map
2527 	 */
2528 	if (is_rxqs_map)
2529 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2530 	else
2531 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2532 				       cpu_to_node(attr_index));
2533 	if (!new_map)
2534 		return NULL;
2535 
2536 	for (i = 0; i < pos; i++)
2537 		new_map->queues[i] = map->queues[i];
2538 	new_map->alloc_len = alloc_len;
2539 	new_map->len = pos;
2540 
2541 	return new_map;
2542 }
2543 
2544 /* Copy xps maps at a given index */
2545 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2546 			      struct xps_dev_maps *new_dev_maps, int index,
2547 			      int tc, bool skip_tc)
2548 {
2549 	int i, tci = index * dev_maps->num_tc;
2550 	struct xps_map *map;
2551 
2552 	/* copy maps belonging to foreign traffic classes */
2553 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2554 		if (i == tc && skip_tc)
2555 			continue;
2556 
2557 		/* fill in the new device map from the old device map */
2558 		map = xmap_dereference(dev_maps->attr_map[tci]);
2559 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2560 	}
2561 }
2562 
2563 /* Must be called under cpus_read_lock */
2564 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2565 			  u16 index, enum xps_map_type type)
2566 {
2567 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2568 	const unsigned long *online_mask = NULL;
2569 	bool active = false, copy = false;
2570 	int i, j, tci, numa_node_id = -2;
2571 	int maps_sz, num_tc = 1, tc = 0;
2572 	struct xps_map *map, *new_map;
2573 	unsigned int nr_ids;
2574 
2575 	if (dev->num_tc) {
2576 		/* Do not allow XPS on subordinate device directly */
2577 		num_tc = dev->num_tc;
2578 		if (num_tc < 0)
2579 			return -EINVAL;
2580 
2581 		/* If queue belongs to subordinate dev use its map */
2582 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2583 
2584 		tc = netdev_txq_to_tc(dev, index);
2585 		if (tc < 0)
2586 			return -EINVAL;
2587 	}
2588 
2589 	mutex_lock(&xps_map_mutex);
2590 
2591 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2592 	if (type == XPS_RXQS) {
2593 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2594 		nr_ids = dev->num_rx_queues;
2595 	} else {
2596 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2597 		if (num_possible_cpus() > 1)
2598 			online_mask = cpumask_bits(cpu_online_mask);
2599 		nr_ids = nr_cpu_ids;
2600 	}
2601 
2602 	if (maps_sz < L1_CACHE_BYTES)
2603 		maps_sz = L1_CACHE_BYTES;
2604 
2605 	/* The old dev_maps could be larger or smaller than the one we're
2606 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2607 	 * between. We could try to be smart, but let's be safe instead and only
2608 	 * copy foreign traffic classes if the two map sizes match.
2609 	 */
2610 	if (dev_maps &&
2611 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2612 		copy = true;
2613 
2614 	/* allocate memory for queue storage */
2615 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2616 	     j < nr_ids;) {
2617 		if (!new_dev_maps) {
2618 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2619 			if (!new_dev_maps) {
2620 				mutex_unlock(&xps_map_mutex);
2621 				return -ENOMEM;
2622 			}
2623 
2624 			new_dev_maps->nr_ids = nr_ids;
2625 			new_dev_maps->num_tc = num_tc;
2626 		}
2627 
2628 		tci = j * num_tc + tc;
2629 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2630 
2631 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2632 		if (!map)
2633 			goto error;
2634 
2635 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2636 	}
2637 
2638 	if (!new_dev_maps)
2639 		goto out_no_new_maps;
2640 
2641 	if (!dev_maps) {
2642 		/* Increment static keys at most once per type */
2643 		static_key_slow_inc_cpuslocked(&xps_needed);
2644 		if (type == XPS_RXQS)
2645 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2646 	}
2647 
2648 	for (j = 0; j < nr_ids; j++) {
2649 		bool skip_tc = false;
2650 
2651 		tci = j * num_tc + tc;
2652 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2653 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2654 			/* add tx-queue to CPU/rx-queue maps */
2655 			int pos = 0;
2656 
2657 			skip_tc = true;
2658 
2659 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2660 			while ((pos < map->len) && (map->queues[pos] != index))
2661 				pos++;
2662 
2663 			if (pos == map->len)
2664 				map->queues[map->len++] = index;
2665 #ifdef CONFIG_NUMA
2666 			if (type == XPS_CPUS) {
2667 				if (numa_node_id == -2)
2668 					numa_node_id = cpu_to_node(j);
2669 				else if (numa_node_id != cpu_to_node(j))
2670 					numa_node_id = -1;
2671 			}
2672 #endif
2673 		}
2674 
2675 		if (copy)
2676 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2677 					  skip_tc);
2678 	}
2679 
2680 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2681 
2682 	/* Cleanup old maps */
2683 	if (!dev_maps)
2684 		goto out_no_old_maps;
2685 
2686 	for (j = 0; j < dev_maps->nr_ids; j++) {
2687 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2688 			map = xmap_dereference(dev_maps->attr_map[tci]);
2689 			if (!map)
2690 				continue;
2691 
2692 			if (copy) {
2693 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2694 				if (map == new_map)
2695 					continue;
2696 			}
2697 
2698 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2699 			kfree_rcu(map, rcu);
2700 		}
2701 	}
2702 
2703 	old_dev_maps = dev_maps;
2704 
2705 out_no_old_maps:
2706 	dev_maps = new_dev_maps;
2707 	active = true;
2708 
2709 out_no_new_maps:
2710 	if (type == XPS_CPUS)
2711 		/* update Tx queue numa node */
2712 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2713 					     (numa_node_id >= 0) ?
2714 					     numa_node_id : NUMA_NO_NODE);
2715 
2716 	if (!dev_maps)
2717 		goto out_no_maps;
2718 
2719 	/* removes tx-queue from unused CPUs/rx-queues */
2720 	for (j = 0; j < dev_maps->nr_ids; j++) {
2721 		tci = j * dev_maps->num_tc;
2722 
2723 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2724 			if (i == tc &&
2725 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2726 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2727 				continue;
2728 
2729 			active |= remove_xps_queue(dev_maps,
2730 						   copy ? old_dev_maps : NULL,
2731 						   tci, index);
2732 		}
2733 	}
2734 
2735 	if (old_dev_maps)
2736 		kfree_rcu(old_dev_maps, rcu);
2737 
2738 	/* free map if not active */
2739 	if (!active)
2740 		reset_xps_maps(dev, dev_maps, type);
2741 
2742 out_no_maps:
2743 	mutex_unlock(&xps_map_mutex);
2744 
2745 	return 0;
2746 error:
2747 	/* remove any maps that we added */
2748 	for (j = 0; j < nr_ids; j++) {
2749 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2750 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2751 			map = copy ?
2752 			      xmap_dereference(dev_maps->attr_map[tci]) :
2753 			      NULL;
2754 			if (new_map && new_map != map)
2755 				kfree(new_map);
2756 		}
2757 	}
2758 
2759 	mutex_unlock(&xps_map_mutex);
2760 
2761 	kfree(new_dev_maps);
2762 	return -ENOMEM;
2763 }
2764 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2765 
2766 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2767 			u16 index)
2768 {
2769 	int ret;
2770 
2771 	cpus_read_lock();
2772 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2773 	cpus_read_unlock();
2774 
2775 	return ret;
2776 }
2777 EXPORT_SYMBOL(netif_set_xps_queue);
2778 
2779 #endif
2780 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2781 {
2782 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2783 
2784 	/* Unbind any subordinate channels */
2785 	while (txq-- != &dev->_tx[0]) {
2786 		if (txq->sb_dev)
2787 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2788 	}
2789 }
2790 
2791 void netdev_reset_tc(struct net_device *dev)
2792 {
2793 #ifdef CONFIG_XPS
2794 	netif_reset_xps_queues_gt(dev, 0);
2795 #endif
2796 	netdev_unbind_all_sb_channels(dev);
2797 
2798 	/* Reset TC configuration of device */
2799 	dev->num_tc = 0;
2800 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2801 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2802 }
2803 EXPORT_SYMBOL(netdev_reset_tc);
2804 
2805 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2806 {
2807 	if (tc >= dev->num_tc)
2808 		return -EINVAL;
2809 
2810 #ifdef CONFIG_XPS
2811 	netif_reset_xps_queues(dev, offset, count);
2812 #endif
2813 	dev->tc_to_txq[tc].count = count;
2814 	dev->tc_to_txq[tc].offset = offset;
2815 	return 0;
2816 }
2817 EXPORT_SYMBOL(netdev_set_tc_queue);
2818 
2819 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2820 {
2821 	if (num_tc > TC_MAX_QUEUE)
2822 		return -EINVAL;
2823 
2824 #ifdef CONFIG_XPS
2825 	netif_reset_xps_queues_gt(dev, 0);
2826 #endif
2827 	netdev_unbind_all_sb_channels(dev);
2828 
2829 	dev->num_tc = num_tc;
2830 	return 0;
2831 }
2832 EXPORT_SYMBOL(netdev_set_num_tc);
2833 
2834 void netdev_unbind_sb_channel(struct net_device *dev,
2835 			      struct net_device *sb_dev)
2836 {
2837 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2838 
2839 #ifdef CONFIG_XPS
2840 	netif_reset_xps_queues_gt(sb_dev, 0);
2841 #endif
2842 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2843 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2844 
2845 	while (txq-- != &dev->_tx[0]) {
2846 		if (txq->sb_dev == sb_dev)
2847 			txq->sb_dev = NULL;
2848 	}
2849 }
2850 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2851 
2852 int netdev_bind_sb_channel_queue(struct net_device *dev,
2853 				 struct net_device *sb_dev,
2854 				 u8 tc, u16 count, u16 offset)
2855 {
2856 	/* Make certain the sb_dev and dev are already configured */
2857 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2858 		return -EINVAL;
2859 
2860 	/* We cannot hand out queues we don't have */
2861 	if ((offset + count) > dev->real_num_tx_queues)
2862 		return -EINVAL;
2863 
2864 	/* Record the mapping */
2865 	sb_dev->tc_to_txq[tc].count = count;
2866 	sb_dev->tc_to_txq[tc].offset = offset;
2867 
2868 	/* Provide a way for Tx queue to find the tc_to_txq map or
2869 	 * XPS map for itself.
2870 	 */
2871 	while (count--)
2872 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2873 
2874 	return 0;
2875 }
2876 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2877 
2878 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2879 {
2880 	/* Do not use a multiqueue device to represent a subordinate channel */
2881 	if (netif_is_multiqueue(dev))
2882 		return -ENODEV;
2883 
2884 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2885 	 * Channel 0 is meant to be "native" mode and used only to represent
2886 	 * the main root device. We allow writing 0 to reset the device back
2887 	 * to normal mode after being used as a subordinate channel.
2888 	 */
2889 	if (channel > S16_MAX)
2890 		return -EINVAL;
2891 
2892 	dev->num_tc = -channel;
2893 
2894 	return 0;
2895 }
2896 EXPORT_SYMBOL(netdev_set_sb_channel);
2897 
2898 /*
2899  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2900  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2901  */
2902 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2903 {
2904 	bool disabling;
2905 	int rc;
2906 
2907 	disabling = txq < dev->real_num_tx_queues;
2908 
2909 	if (txq < 1 || txq > dev->num_tx_queues)
2910 		return -EINVAL;
2911 
2912 	if (dev->reg_state == NETREG_REGISTERED ||
2913 	    dev->reg_state == NETREG_UNREGISTERING) {
2914 		ASSERT_RTNL();
2915 
2916 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2917 						  txq);
2918 		if (rc)
2919 			return rc;
2920 
2921 		if (dev->num_tc)
2922 			netif_setup_tc(dev, txq);
2923 
2924 		dev->real_num_tx_queues = txq;
2925 
2926 		if (disabling) {
2927 			synchronize_net();
2928 			qdisc_reset_all_tx_gt(dev, txq);
2929 #ifdef CONFIG_XPS
2930 			netif_reset_xps_queues_gt(dev, txq);
2931 #endif
2932 		}
2933 	} else {
2934 		dev->real_num_tx_queues = txq;
2935 	}
2936 
2937 	return 0;
2938 }
2939 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2940 
2941 #ifdef CONFIG_SYSFS
2942 /**
2943  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2944  *	@dev: Network device
2945  *	@rxq: Actual number of RX queues
2946  *
2947  *	This must be called either with the rtnl_lock held or before
2948  *	registration of the net device.  Returns 0 on success, or a
2949  *	negative error code.  If called before registration, it always
2950  *	succeeds.
2951  */
2952 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2953 {
2954 	int rc;
2955 
2956 	if (rxq < 1 || rxq > dev->num_rx_queues)
2957 		return -EINVAL;
2958 
2959 	if (dev->reg_state == NETREG_REGISTERED) {
2960 		ASSERT_RTNL();
2961 
2962 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2963 						  rxq);
2964 		if (rc)
2965 			return rc;
2966 	}
2967 
2968 	dev->real_num_rx_queues = rxq;
2969 	return 0;
2970 }
2971 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2972 #endif
2973 
2974 /**
2975  *	netif_set_real_num_queues - set actual number of RX and TX queues used
2976  *	@dev: Network device
2977  *	@txq: Actual number of TX queues
2978  *	@rxq: Actual number of RX queues
2979  *
2980  *	Set the real number of both TX and RX queues.
2981  *	Does nothing if the number of queues is already correct.
2982  */
2983 int netif_set_real_num_queues(struct net_device *dev,
2984 			      unsigned int txq, unsigned int rxq)
2985 {
2986 	unsigned int old_rxq = dev->real_num_rx_queues;
2987 	int err;
2988 
2989 	if (txq < 1 || txq > dev->num_tx_queues ||
2990 	    rxq < 1 || rxq > dev->num_rx_queues)
2991 		return -EINVAL;
2992 
2993 	/* Start from increases, so the error path only does decreases -
2994 	 * decreases can't fail.
2995 	 */
2996 	if (rxq > dev->real_num_rx_queues) {
2997 		err = netif_set_real_num_rx_queues(dev, rxq);
2998 		if (err)
2999 			return err;
3000 	}
3001 	if (txq > dev->real_num_tx_queues) {
3002 		err = netif_set_real_num_tx_queues(dev, txq);
3003 		if (err)
3004 			goto undo_rx;
3005 	}
3006 	if (rxq < dev->real_num_rx_queues)
3007 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3008 	if (txq < dev->real_num_tx_queues)
3009 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3010 
3011 	return 0;
3012 undo_rx:
3013 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3014 	return err;
3015 }
3016 EXPORT_SYMBOL(netif_set_real_num_queues);
3017 
3018 /**
3019  * netif_get_num_default_rss_queues - default number of RSS queues
3020  *
3021  * This routine should set an upper limit on the number of RSS queues
3022  * used by default by multiqueue devices.
3023  */
3024 int netif_get_num_default_rss_queues(void)
3025 {
3026 	return is_kdump_kernel() ?
3027 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3028 }
3029 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3030 
3031 static void __netif_reschedule(struct Qdisc *q)
3032 {
3033 	struct softnet_data *sd;
3034 	unsigned long flags;
3035 
3036 	local_irq_save(flags);
3037 	sd = this_cpu_ptr(&softnet_data);
3038 	q->next_sched = NULL;
3039 	*sd->output_queue_tailp = q;
3040 	sd->output_queue_tailp = &q->next_sched;
3041 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3042 	local_irq_restore(flags);
3043 }
3044 
3045 void __netif_schedule(struct Qdisc *q)
3046 {
3047 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3048 		__netif_reschedule(q);
3049 }
3050 EXPORT_SYMBOL(__netif_schedule);
3051 
3052 struct dev_kfree_skb_cb {
3053 	enum skb_free_reason reason;
3054 };
3055 
3056 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3057 {
3058 	return (struct dev_kfree_skb_cb *)skb->cb;
3059 }
3060 
3061 void netif_schedule_queue(struct netdev_queue *txq)
3062 {
3063 	rcu_read_lock();
3064 	if (!netif_xmit_stopped(txq)) {
3065 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3066 
3067 		__netif_schedule(q);
3068 	}
3069 	rcu_read_unlock();
3070 }
3071 EXPORT_SYMBOL(netif_schedule_queue);
3072 
3073 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3074 {
3075 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3076 		struct Qdisc *q;
3077 
3078 		rcu_read_lock();
3079 		q = rcu_dereference(dev_queue->qdisc);
3080 		__netif_schedule(q);
3081 		rcu_read_unlock();
3082 	}
3083 }
3084 EXPORT_SYMBOL(netif_tx_wake_queue);
3085 
3086 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3087 {
3088 	unsigned long flags;
3089 
3090 	if (unlikely(!skb))
3091 		return;
3092 
3093 	if (likely(refcount_read(&skb->users) == 1)) {
3094 		smp_rmb();
3095 		refcount_set(&skb->users, 0);
3096 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3097 		return;
3098 	}
3099 	get_kfree_skb_cb(skb)->reason = reason;
3100 	local_irq_save(flags);
3101 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3102 	__this_cpu_write(softnet_data.completion_queue, skb);
3103 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3104 	local_irq_restore(flags);
3105 }
3106 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3107 
3108 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3109 {
3110 	if (in_hardirq() || irqs_disabled())
3111 		__dev_kfree_skb_irq(skb, reason);
3112 	else
3113 		dev_kfree_skb(skb);
3114 }
3115 EXPORT_SYMBOL(__dev_kfree_skb_any);
3116 
3117 
3118 /**
3119  * netif_device_detach - mark device as removed
3120  * @dev: network device
3121  *
3122  * Mark device as removed from system and therefore no longer available.
3123  */
3124 void netif_device_detach(struct net_device *dev)
3125 {
3126 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3127 	    netif_running(dev)) {
3128 		netif_tx_stop_all_queues(dev);
3129 	}
3130 }
3131 EXPORT_SYMBOL(netif_device_detach);
3132 
3133 /**
3134  * netif_device_attach - mark device as attached
3135  * @dev: network device
3136  *
3137  * Mark device as attached from system and restart if needed.
3138  */
3139 void netif_device_attach(struct net_device *dev)
3140 {
3141 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3142 	    netif_running(dev)) {
3143 		netif_tx_wake_all_queues(dev);
3144 		__netdev_watchdog_up(dev);
3145 	}
3146 }
3147 EXPORT_SYMBOL(netif_device_attach);
3148 
3149 /*
3150  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3151  * to be used as a distribution range.
3152  */
3153 static u16 skb_tx_hash(const struct net_device *dev,
3154 		       const struct net_device *sb_dev,
3155 		       struct sk_buff *skb)
3156 {
3157 	u32 hash;
3158 	u16 qoffset = 0;
3159 	u16 qcount = dev->real_num_tx_queues;
3160 
3161 	if (dev->num_tc) {
3162 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3163 
3164 		qoffset = sb_dev->tc_to_txq[tc].offset;
3165 		qcount = sb_dev->tc_to_txq[tc].count;
3166 	}
3167 
3168 	if (skb_rx_queue_recorded(skb)) {
3169 		hash = skb_get_rx_queue(skb);
3170 		if (hash >= qoffset)
3171 			hash -= qoffset;
3172 		while (unlikely(hash >= qcount))
3173 			hash -= qcount;
3174 		return hash + qoffset;
3175 	}
3176 
3177 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3178 }
3179 
3180 static void skb_warn_bad_offload(const struct sk_buff *skb)
3181 {
3182 	static const netdev_features_t null_features;
3183 	struct net_device *dev = skb->dev;
3184 	const char *name = "";
3185 
3186 	if (!net_ratelimit())
3187 		return;
3188 
3189 	if (dev) {
3190 		if (dev->dev.parent)
3191 			name = dev_driver_string(dev->dev.parent);
3192 		else
3193 			name = netdev_name(dev);
3194 	}
3195 	skb_dump(KERN_WARNING, skb, false);
3196 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3197 	     name, dev ? &dev->features : &null_features,
3198 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3199 }
3200 
3201 /*
3202  * Invalidate hardware checksum when packet is to be mangled, and
3203  * complete checksum manually on outgoing path.
3204  */
3205 int skb_checksum_help(struct sk_buff *skb)
3206 {
3207 	__wsum csum;
3208 	int ret = 0, offset;
3209 
3210 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3211 		goto out_set_summed;
3212 
3213 	if (unlikely(skb_is_gso(skb))) {
3214 		skb_warn_bad_offload(skb);
3215 		return -EINVAL;
3216 	}
3217 
3218 	/* Before computing a checksum, we should make sure no frag could
3219 	 * be modified by an external entity : checksum could be wrong.
3220 	 */
3221 	if (skb_has_shared_frag(skb)) {
3222 		ret = __skb_linearize(skb);
3223 		if (ret)
3224 			goto out;
3225 	}
3226 
3227 	offset = skb_checksum_start_offset(skb);
3228 	BUG_ON(offset >= skb_headlen(skb));
3229 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3230 
3231 	offset += skb->csum_offset;
3232 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3233 
3234 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3235 	if (ret)
3236 		goto out;
3237 
3238 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3239 out_set_summed:
3240 	skb->ip_summed = CHECKSUM_NONE;
3241 out:
3242 	return ret;
3243 }
3244 EXPORT_SYMBOL(skb_checksum_help);
3245 
3246 int skb_crc32c_csum_help(struct sk_buff *skb)
3247 {
3248 	__le32 crc32c_csum;
3249 	int ret = 0, offset, start;
3250 
3251 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3252 		goto out;
3253 
3254 	if (unlikely(skb_is_gso(skb)))
3255 		goto out;
3256 
3257 	/* Before computing a checksum, we should make sure no frag could
3258 	 * be modified by an external entity : checksum could be wrong.
3259 	 */
3260 	if (unlikely(skb_has_shared_frag(skb))) {
3261 		ret = __skb_linearize(skb);
3262 		if (ret)
3263 			goto out;
3264 	}
3265 	start = skb_checksum_start_offset(skb);
3266 	offset = start + offsetof(struct sctphdr, checksum);
3267 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3268 		ret = -EINVAL;
3269 		goto out;
3270 	}
3271 
3272 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3273 	if (ret)
3274 		goto out;
3275 
3276 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3277 						  skb->len - start, ~(__u32)0,
3278 						  crc32c_csum_stub));
3279 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3280 	skb->ip_summed = CHECKSUM_NONE;
3281 	skb->csum_not_inet = 0;
3282 out:
3283 	return ret;
3284 }
3285 
3286 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3287 {
3288 	__be16 type = skb->protocol;
3289 
3290 	/* Tunnel gso handlers can set protocol to ethernet. */
3291 	if (type == htons(ETH_P_TEB)) {
3292 		struct ethhdr *eth;
3293 
3294 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3295 			return 0;
3296 
3297 		eth = (struct ethhdr *)skb->data;
3298 		type = eth->h_proto;
3299 	}
3300 
3301 	return __vlan_get_protocol(skb, type, depth);
3302 }
3303 
3304 /**
3305  *	skb_mac_gso_segment - mac layer segmentation handler.
3306  *	@skb: buffer to segment
3307  *	@features: features for the output path (see dev->features)
3308  */
3309 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3310 				    netdev_features_t features)
3311 {
3312 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3313 	struct packet_offload *ptype;
3314 	int vlan_depth = skb->mac_len;
3315 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3316 
3317 	if (unlikely(!type))
3318 		return ERR_PTR(-EINVAL);
3319 
3320 	__skb_pull(skb, vlan_depth);
3321 
3322 	rcu_read_lock();
3323 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3324 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3325 			segs = ptype->callbacks.gso_segment(skb, features);
3326 			break;
3327 		}
3328 	}
3329 	rcu_read_unlock();
3330 
3331 	__skb_push(skb, skb->data - skb_mac_header(skb));
3332 
3333 	return segs;
3334 }
3335 EXPORT_SYMBOL(skb_mac_gso_segment);
3336 
3337 
3338 /* openvswitch calls this on rx path, so we need a different check.
3339  */
3340 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3341 {
3342 	if (tx_path)
3343 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3344 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3345 
3346 	return skb->ip_summed == CHECKSUM_NONE;
3347 }
3348 
3349 /**
3350  *	__skb_gso_segment - Perform segmentation on skb.
3351  *	@skb: buffer to segment
3352  *	@features: features for the output path (see dev->features)
3353  *	@tx_path: whether it is called in TX path
3354  *
3355  *	This function segments the given skb and returns a list of segments.
3356  *
3357  *	It may return NULL if the skb requires no segmentation.  This is
3358  *	only possible when GSO is used for verifying header integrity.
3359  *
3360  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3361  */
3362 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3363 				  netdev_features_t features, bool tx_path)
3364 {
3365 	struct sk_buff *segs;
3366 
3367 	if (unlikely(skb_needs_check(skb, tx_path))) {
3368 		int err;
3369 
3370 		/* We're going to init ->check field in TCP or UDP header */
3371 		err = skb_cow_head(skb, 0);
3372 		if (err < 0)
3373 			return ERR_PTR(err);
3374 	}
3375 
3376 	/* Only report GSO partial support if it will enable us to
3377 	 * support segmentation on this frame without needing additional
3378 	 * work.
3379 	 */
3380 	if (features & NETIF_F_GSO_PARTIAL) {
3381 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3382 		struct net_device *dev = skb->dev;
3383 
3384 		partial_features |= dev->features & dev->gso_partial_features;
3385 		if (!skb_gso_ok(skb, features | partial_features))
3386 			features &= ~NETIF_F_GSO_PARTIAL;
3387 	}
3388 
3389 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3390 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3391 
3392 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3393 	SKB_GSO_CB(skb)->encap_level = 0;
3394 
3395 	skb_reset_mac_header(skb);
3396 	skb_reset_mac_len(skb);
3397 
3398 	segs = skb_mac_gso_segment(skb, features);
3399 
3400 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3401 		skb_warn_bad_offload(skb);
3402 
3403 	return segs;
3404 }
3405 EXPORT_SYMBOL(__skb_gso_segment);
3406 
3407 /* Take action when hardware reception checksum errors are detected. */
3408 #ifdef CONFIG_BUG
3409 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3410 {
3411 	pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3412 	skb_dump(KERN_ERR, skb, true);
3413 	dump_stack();
3414 }
3415 
3416 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3417 {
3418 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3419 }
3420 EXPORT_SYMBOL(netdev_rx_csum_fault);
3421 #endif
3422 
3423 /* XXX: check that highmem exists at all on the given machine. */
3424 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3425 {
3426 #ifdef CONFIG_HIGHMEM
3427 	int i;
3428 
3429 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3430 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3431 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3432 
3433 			if (PageHighMem(skb_frag_page(frag)))
3434 				return 1;
3435 		}
3436 	}
3437 #endif
3438 	return 0;
3439 }
3440 
3441 /* If MPLS offload request, verify we are testing hardware MPLS features
3442  * instead of standard features for the netdev.
3443  */
3444 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3445 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3446 					   netdev_features_t features,
3447 					   __be16 type)
3448 {
3449 	if (eth_p_mpls(type))
3450 		features &= skb->dev->mpls_features;
3451 
3452 	return features;
3453 }
3454 #else
3455 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3456 					   netdev_features_t features,
3457 					   __be16 type)
3458 {
3459 	return features;
3460 }
3461 #endif
3462 
3463 static netdev_features_t harmonize_features(struct sk_buff *skb,
3464 	netdev_features_t features)
3465 {
3466 	__be16 type;
3467 
3468 	type = skb_network_protocol(skb, NULL);
3469 	features = net_mpls_features(skb, features, type);
3470 
3471 	if (skb->ip_summed != CHECKSUM_NONE &&
3472 	    !can_checksum_protocol(features, type)) {
3473 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3474 	}
3475 	if (illegal_highdma(skb->dev, skb))
3476 		features &= ~NETIF_F_SG;
3477 
3478 	return features;
3479 }
3480 
3481 netdev_features_t passthru_features_check(struct sk_buff *skb,
3482 					  struct net_device *dev,
3483 					  netdev_features_t features)
3484 {
3485 	return features;
3486 }
3487 EXPORT_SYMBOL(passthru_features_check);
3488 
3489 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3490 					     struct net_device *dev,
3491 					     netdev_features_t features)
3492 {
3493 	return vlan_features_check(skb, features);
3494 }
3495 
3496 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3497 					    struct net_device *dev,
3498 					    netdev_features_t features)
3499 {
3500 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3501 
3502 	if (gso_segs > dev->gso_max_segs)
3503 		return features & ~NETIF_F_GSO_MASK;
3504 
3505 	if (!skb_shinfo(skb)->gso_type) {
3506 		skb_warn_bad_offload(skb);
3507 		return features & ~NETIF_F_GSO_MASK;
3508 	}
3509 
3510 	/* Support for GSO partial features requires software
3511 	 * intervention before we can actually process the packets
3512 	 * so we need to strip support for any partial features now
3513 	 * and we can pull them back in after we have partially
3514 	 * segmented the frame.
3515 	 */
3516 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3517 		features &= ~dev->gso_partial_features;
3518 
3519 	/* Make sure to clear the IPv4 ID mangling feature if the
3520 	 * IPv4 header has the potential to be fragmented.
3521 	 */
3522 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3523 		struct iphdr *iph = skb->encapsulation ?
3524 				    inner_ip_hdr(skb) : ip_hdr(skb);
3525 
3526 		if (!(iph->frag_off & htons(IP_DF)))
3527 			features &= ~NETIF_F_TSO_MANGLEID;
3528 	}
3529 
3530 	return features;
3531 }
3532 
3533 netdev_features_t netif_skb_features(struct sk_buff *skb)
3534 {
3535 	struct net_device *dev = skb->dev;
3536 	netdev_features_t features = dev->features;
3537 
3538 	if (skb_is_gso(skb))
3539 		features = gso_features_check(skb, dev, features);
3540 
3541 	/* If encapsulation offload request, verify we are testing
3542 	 * hardware encapsulation features instead of standard
3543 	 * features for the netdev
3544 	 */
3545 	if (skb->encapsulation)
3546 		features &= dev->hw_enc_features;
3547 
3548 	if (skb_vlan_tagged(skb))
3549 		features = netdev_intersect_features(features,
3550 						     dev->vlan_features |
3551 						     NETIF_F_HW_VLAN_CTAG_TX |
3552 						     NETIF_F_HW_VLAN_STAG_TX);
3553 
3554 	if (dev->netdev_ops->ndo_features_check)
3555 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3556 								features);
3557 	else
3558 		features &= dflt_features_check(skb, dev, features);
3559 
3560 	return harmonize_features(skb, features);
3561 }
3562 EXPORT_SYMBOL(netif_skb_features);
3563 
3564 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3565 		    struct netdev_queue *txq, bool more)
3566 {
3567 	unsigned int len;
3568 	int rc;
3569 
3570 	if (dev_nit_active(dev))
3571 		dev_queue_xmit_nit(skb, dev);
3572 
3573 	len = skb->len;
3574 	PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3575 	trace_net_dev_start_xmit(skb, dev);
3576 	rc = netdev_start_xmit(skb, dev, txq, more);
3577 	trace_net_dev_xmit(skb, rc, dev, len);
3578 
3579 	return rc;
3580 }
3581 
3582 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3583 				    struct netdev_queue *txq, int *ret)
3584 {
3585 	struct sk_buff *skb = first;
3586 	int rc = NETDEV_TX_OK;
3587 
3588 	while (skb) {
3589 		struct sk_buff *next = skb->next;
3590 
3591 		skb_mark_not_on_list(skb);
3592 		rc = xmit_one(skb, dev, txq, next != NULL);
3593 		if (unlikely(!dev_xmit_complete(rc))) {
3594 			skb->next = next;
3595 			goto out;
3596 		}
3597 
3598 		skb = next;
3599 		if (netif_tx_queue_stopped(txq) && skb) {
3600 			rc = NETDEV_TX_BUSY;
3601 			break;
3602 		}
3603 	}
3604 
3605 out:
3606 	*ret = rc;
3607 	return skb;
3608 }
3609 
3610 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3611 					  netdev_features_t features)
3612 {
3613 	if (skb_vlan_tag_present(skb) &&
3614 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3615 		skb = __vlan_hwaccel_push_inside(skb);
3616 	return skb;
3617 }
3618 
3619 int skb_csum_hwoffload_help(struct sk_buff *skb,
3620 			    const netdev_features_t features)
3621 {
3622 	if (unlikely(skb_csum_is_sctp(skb)))
3623 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3624 			skb_crc32c_csum_help(skb);
3625 
3626 	if (features & NETIF_F_HW_CSUM)
3627 		return 0;
3628 
3629 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3630 		switch (skb->csum_offset) {
3631 		case offsetof(struct tcphdr, check):
3632 		case offsetof(struct udphdr, check):
3633 			return 0;
3634 		}
3635 	}
3636 
3637 	return skb_checksum_help(skb);
3638 }
3639 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3640 
3641 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3642 {
3643 	netdev_features_t features;
3644 
3645 	features = netif_skb_features(skb);
3646 	skb = validate_xmit_vlan(skb, features);
3647 	if (unlikely(!skb))
3648 		goto out_null;
3649 
3650 	skb = sk_validate_xmit_skb(skb, dev);
3651 	if (unlikely(!skb))
3652 		goto out_null;
3653 
3654 	if (netif_needs_gso(skb, features)) {
3655 		struct sk_buff *segs;
3656 
3657 		segs = skb_gso_segment(skb, features);
3658 		if (IS_ERR(segs)) {
3659 			goto out_kfree_skb;
3660 		} else if (segs) {
3661 			consume_skb(skb);
3662 			skb = segs;
3663 		}
3664 	} else {
3665 		if (skb_needs_linearize(skb, features) &&
3666 		    __skb_linearize(skb))
3667 			goto out_kfree_skb;
3668 
3669 		/* If packet is not checksummed and device does not
3670 		 * support checksumming for this protocol, complete
3671 		 * checksumming here.
3672 		 */
3673 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3674 			if (skb->encapsulation)
3675 				skb_set_inner_transport_header(skb,
3676 							       skb_checksum_start_offset(skb));
3677 			else
3678 				skb_set_transport_header(skb,
3679 							 skb_checksum_start_offset(skb));
3680 			if (skb_csum_hwoffload_help(skb, features))
3681 				goto out_kfree_skb;
3682 		}
3683 	}
3684 
3685 	skb = validate_xmit_xfrm(skb, features, again);
3686 
3687 	return skb;
3688 
3689 out_kfree_skb:
3690 	kfree_skb(skb);
3691 out_null:
3692 	atomic_long_inc(&dev->tx_dropped);
3693 	return NULL;
3694 }
3695 
3696 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3697 {
3698 	struct sk_buff *next, *head = NULL, *tail;
3699 
3700 	for (; skb != NULL; skb = next) {
3701 		next = skb->next;
3702 		skb_mark_not_on_list(skb);
3703 
3704 		/* in case skb wont be segmented, point to itself */
3705 		skb->prev = skb;
3706 
3707 		skb = validate_xmit_skb(skb, dev, again);
3708 		if (!skb)
3709 			continue;
3710 
3711 		if (!head)
3712 			head = skb;
3713 		else
3714 			tail->next = skb;
3715 		/* If skb was segmented, skb->prev points to
3716 		 * the last segment. If not, it still contains skb.
3717 		 */
3718 		tail = skb->prev;
3719 	}
3720 	return head;
3721 }
3722 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3723 
3724 static void qdisc_pkt_len_init(struct sk_buff *skb)
3725 {
3726 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3727 
3728 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3729 
3730 	/* To get more precise estimation of bytes sent on wire,
3731 	 * we add to pkt_len the headers size of all segments
3732 	 */
3733 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3734 		unsigned int hdr_len;
3735 		u16 gso_segs = shinfo->gso_segs;
3736 
3737 		/* mac layer + network layer */
3738 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3739 
3740 		/* + transport layer */
3741 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3742 			const struct tcphdr *th;
3743 			struct tcphdr _tcphdr;
3744 
3745 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3746 						sizeof(_tcphdr), &_tcphdr);
3747 			if (likely(th))
3748 				hdr_len += __tcp_hdrlen(th);
3749 		} else {
3750 			struct udphdr _udphdr;
3751 
3752 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3753 					       sizeof(_udphdr), &_udphdr))
3754 				hdr_len += sizeof(struct udphdr);
3755 		}
3756 
3757 		if (shinfo->gso_type & SKB_GSO_DODGY)
3758 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3759 						shinfo->gso_size);
3760 
3761 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3762 	}
3763 }
3764 
3765 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3766 			     struct sk_buff **to_free,
3767 			     struct netdev_queue *txq)
3768 {
3769 	int rc;
3770 
3771 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3772 	if (rc == NET_XMIT_SUCCESS)
3773 		trace_qdisc_enqueue(q, txq, skb);
3774 	return rc;
3775 }
3776 
3777 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3778 				 struct net_device *dev,
3779 				 struct netdev_queue *txq)
3780 {
3781 	spinlock_t *root_lock = qdisc_lock(q);
3782 	struct sk_buff *to_free = NULL;
3783 	bool contended;
3784 	int rc;
3785 
3786 	qdisc_calculate_pkt_len(skb, q);
3787 
3788 	if (q->flags & TCQ_F_NOLOCK) {
3789 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3790 		    qdisc_run_begin(q)) {
3791 			/* Retest nolock_qdisc_is_empty() within the protection
3792 			 * of q->seqlock to protect from racing with requeuing.
3793 			 */
3794 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3795 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3796 				__qdisc_run(q);
3797 				qdisc_run_end(q);
3798 
3799 				goto no_lock_out;
3800 			}
3801 
3802 			qdisc_bstats_cpu_update(q, skb);
3803 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3804 			    !nolock_qdisc_is_empty(q))
3805 				__qdisc_run(q);
3806 
3807 			qdisc_run_end(q);
3808 			return NET_XMIT_SUCCESS;
3809 		}
3810 
3811 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3812 		qdisc_run(q);
3813 
3814 no_lock_out:
3815 		if (unlikely(to_free))
3816 			kfree_skb_list(to_free);
3817 		return rc;
3818 	}
3819 
3820 	/*
3821 	 * Heuristic to force contended enqueues to serialize on a
3822 	 * separate lock before trying to get qdisc main lock.
3823 	 * This permits qdisc->running owner to get the lock more
3824 	 * often and dequeue packets faster.
3825 	 */
3826 	contended = qdisc_is_running(q);
3827 	if (unlikely(contended))
3828 		spin_lock(&q->busylock);
3829 
3830 	spin_lock(root_lock);
3831 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3832 		__qdisc_drop(skb, &to_free);
3833 		rc = NET_XMIT_DROP;
3834 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3835 		   qdisc_run_begin(q)) {
3836 		/*
3837 		 * This is a work-conserving queue; there are no old skbs
3838 		 * waiting to be sent out; and the qdisc is not running -
3839 		 * xmit the skb directly.
3840 		 */
3841 
3842 		qdisc_bstats_update(q, skb);
3843 
3844 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3845 			if (unlikely(contended)) {
3846 				spin_unlock(&q->busylock);
3847 				contended = false;
3848 			}
3849 			__qdisc_run(q);
3850 		}
3851 
3852 		qdisc_run_end(q);
3853 		rc = NET_XMIT_SUCCESS;
3854 	} else {
3855 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3856 		if (qdisc_run_begin(q)) {
3857 			if (unlikely(contended)) {
3858 				spin_unlock(&q->busylock);
3859 				contended = false;
3860 			}
3861 			__qdisc_run(q);
3862 			qdisc_run_end(q);
3863 		}
3864 	}
3865 	spin_unlock(root_lock);
3866 	if (unlikely(to_free))
3867 		kfree_skb_list(to_free);
3868 	if (unlikely(contended))
3869 		spin_unlock(&q->busylock);
3870 	return rc;
3871 }
3872 
3873 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3874 static void skb_update_prio(struct sk_buff *skb)
3875 {
3876 	const struct netprio_map *map;
3877 	const struct sock *sk;
3878 	unsigned int prioidx;
3879 
3880 	if (skb->priority)
3881 		return;
3882 	map = rcu_dereference_bh(skb->dev->priomap);
3883 	if (!map)
3884 		return;
3885 	sk = skb_to_full_sk(skb);
3886 	if (!sk)
3887 		return;
3888 
3889 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3890 
3891 	if (prioidx < map->priomap_len)
3892 		skb->priority = map->priomap[prioidx];
3893 }
3894 #else
3895 #define skb_update_prio(skb)
3896 #endif
3897 
3898 /**
3899  *	dev_loopback_xmit - loop back @skb
3900  *	@net: network namespace this loopback is happening in
3901  *	@sk:  sk needed to be a netfilter okfn
3902  *	@skb: buffer to transmit
3903  */
3904 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3905 {
3906 	skb_reset_mac_header(skb);
3907 	__skb_pull(skb, skb_network_offset(skb));
3908 	skb->pkt_type = PACKET_LOOPBACK;
3909 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3910 	WARN_ON(!skb_dst(skb));
3911 	skb_dst_force(skb);
3912 	netif_rx_ni(skb);
3913 	return 0;
3914 }
3915 EXPORT_SYMBOL(dev_loopback_xmit);
3916 
3917 #ifdef CONFIG_NET_EGRESS
3918 static struct sk_buff *
3919 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3920 {
3921 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3922 	struct tcf_result cl_res;
3923 
3924 	if (!miniq)
3925 		return skb;
3926 
3927 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3928 	qdisc_skb_cb(skb)->mru = 0;
3929 	qdisc_skb_cb(skb)->post_ct = false;
3930 	mini_qdisc_bstats_cpu_update(miniq, skb);
3931 
3932 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3933 	case TC_ACT_OK:
3934 	case TC_ACT_RECLASSIFY:
3935 		skb->tc_index = TC_H_MIN(cl_res.classid);
3936 		break;
3937 	case TC_ACT_SHOT:
3938 		mini_qdisc_qstats_cpu_drop(miniq);
3939 		*ret = NET_XMIT_DROP;
3940 		kfree_skb(skb);
3941 		return NULL;
3942 	case TC_ACT_STOLEN:
3943 	case TC_ACT_QUEUED:
3944 	case TC_ACT_TRAP:
3945 		*ret = NET_XMIT_SUCCESS;
3946 		consume_skb(skb);
3947 		return NULL;
3948 	case TC_ACT_REDIRECT:
3949 		/* No need to push/pop skb's mac_header here on egress! */
3950 		skb_do_redirect(skb);
3951 		*ret = NET_XMIT_SUCCESS;
3952 		return NULL;
3953 	default:
3954 		break;
3955 	}
3956 
3957 	return skb;
3958 }
3959 #endif /* CONFIG_NET_EGRESS */
3960 
3961 #ifdef CONFIG_XPS
3962 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3963 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3964 {
3965 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
3966 	struct xps_map *map;
3967 	int queue_index = -1;
3968 
3969 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
3970 		return queue_index;
3971 
3972 	tci *= dev_maps->num_tc;
3973 	tci += tc;
3974 
3975 	map = rcu_dereference(dev_maps->attr_map[tci]);
3976 	if (map) {
3977 		if (map->len == 1)
3978 			queue_index = map->queues[0];
3979 		else
3980 			queue_index = map->queues[reciprocal_scale(
3981 						skb_get_hash(skb), map->len)];
3982 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3983 			queue_index = -1;
3984 	}
3985 	return queue_index;
3986 }
3987 #endif
3988 
3989 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3990 			 struct sk_buff *skb)
3991 {
3992 #ifdef CONFIG_XPS
3993 	struct xps_dev_maps *dev_maps;
3994 	struct sock *sk = skb->sk;
3995 	int queue_index = -1;
3996 
3997 	if (!static_key_false(&xps_needed))
3998 		return -1;
3999 
4000 	rcu_read_lock();
4001 	if (!static_key_false(&xps_rxqs_needed))
4002 		goto get_cpus_map;
4003 
4004 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4005 	if (dev_maps) {
4006 		int tci = sk_rx_queue_get(sk);
4007 
4008 		if (tci >= 0)
4009 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4010 							  tci);
4011 	}
4012 
4013 get_cpus_map:
4014 	if (queue_index < 0) {
4015 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4016 		if (dev_maps) {
4017 			unsigned int tci = skb->sender_cpu - 1;
4018 
4019 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4020 							  tci);
4021 		}
4022 	}
4023 	rcu_read_unlock();
4024 
4025 	return queue_index;
4026 #else
4027 	return -1;
4028 #endif
4029 }
4030 
4031 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4032 		     struct net_device *sb_dev)
4033 {
4034 	return 0;
4035 }
4036 EXPORT_SYMBOL(dev_pick_tx_zero);
4037 
4038 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4039 		       struct net_device *sb_dev)
4040 {
4041 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4042 }
4043 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4044 
4045 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4046 		     struct net_device *sb_dev)
4047 {
4048 	struct sock *sk = skb->sk;
4049 	int queue_index = sk_tx_queue_get(sk);
4050 
4051 	sb_dev = sb_dev ? : dev;
4052 
4053 	if (queue_index < 0 || skb->ooo_okay ||
4054 	    queue_index >= dev->real_num_tx_queues) {
4055 		int new_index = get_xps_queue(dev, sb_dev, skb);
4056 
4057 		if (new_index < 0)
4058 			new_index = skb_tx_hash(dev, sb_dev, skb);
4059 
4060 		if (queue_index != new_index && sk &&
4061 		    sk_fullsock(sk) &&
4062 		    rcu_access_pointer(sk->sk_dst_cache))
4063 			sk_tx_queue_set(sk, new_index);
4064 
4065 		queue_index = new_index;
4066 	}
4067 
4068 	return queue_index;
4069 }
4070 EXPORT_SYMBOL(netdev_pick_tx);
4071 
4072 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4073 					 struct sk_buff *skb,
4074 					 struct net_device *sb_dev)
4075 {
4076 	int queue_index = 0;
4077 
4078 #ifdef CONFIG_XPS
4079 	u32 sender_cpu = skb->sender_cpu - 1;
4080 
4081 	if (sender_cpu >= (u32)NR_CPUS)
4082 		skb->sender_cpu = raw_smp_processor_id() + 1;
4083 #endif
4084 
4085 	if (dev->real_num_tx_queues != 1) {
4086 		const struct net_device_ops *ops = dev->netdev_ops;
4087 
4088 		if (ops->ndo_select_queue)
4089 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4090 		else
4091 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4092 
4093 		queue_index = netdev_cap_txqueue(dev, queue_index);
4094 	}
4095 
4096 	skb_set_queue_mapping(skb, queue_index);
4097 	return netdev_get_tx_queue(dev, queue_index);
4098 }
4099 
4100 /**
4101  *	__dev_queue_xmit - transmit a buffer
4102  *	@skb: buffer to transmit
4103  *	@sb_dev: suboordinate device used for L2 forwarding offload
4104  *
4105  *	Queue a buffer for transmission to a network device. The caller must
4106  *	have set the device and priority and built the buffer before calling
4107  *	this function. The function can be called from an interrupt.
4108  *
4109  *	A negative errno code is returned on a failure. A success does not
4110  *	guarantee the frame will be transmitted as it may be dropped due
4111  *	to congestion or traffic shaping.
4112  *
4113  * -----------------------------------------------------------------------------------
4114  *      I notice this method can also return errors from the queue disciplines,
4115  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4116  *      be positive.
4117  *
4118  *      Regardless of the return value, the skb is consumed, so it is currently
4119  *      difficult to retry a send to this method.  (You can bump the ref count
4120  *      before sending to hold a reference for retry if you are careful.)
4121  *
4122  *      When calling this method, interrupts MUST be enabled.  This is because
4123  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4124  *          --BLG
4125  */
4126 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4127 {
4128 	struct net_device *dev = skb->dev;
4129 	struct netdev_queue *txq;
4130 	struct Qdisc *q;
4131 	int rc = -ENOMEM;
4132 	bool again = false;
4133 
4134 	skb_reset_mac_header(skb);
4135 
4136 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4137 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4138 
4139 	/* Disable soft irqs for various locks below. Also
4140 	 * stops preemption for RCU.
4141 	 */
4142 	rcu_read_lock_bh();
4143 
4144 	skb_update_prio(skb);
4145 
4146 	qdisc_pkt_len_init(skb);
4147 #ifdef CONFIG_NET_CLS_ACT
4148 	skb->tc_at_ingress = 0;
4149 # ifdef CONFIG_NET_EGRESS
4150 	if (static_branch_unlikely(&egress_needed_key)) {
4151 		skb = sch_handle_egress(skb, &rc, dev);
4152 		if (!skb)
4153 			goto out;
4154 	}
4155 # endif
4156 #endif
4157 	/* If device/qdisc don't need skb->dst, release it right now while
4158 	 * its hot in this cpu cache.
4159 	 */
4160 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4161 		skb_dst_drop(skb);
4162 	else
4163 		skb_dst_force(skb);
4164 
4165 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4166 	q = rcu_dereference_bh(txq->qdisc);
4167 
4168 	trace_net_dev_queue(skb);
4169 	if (q->enqueue) {
4170 		rc = __dev_xmit_skb(skb, q, dev, txq);
4171 		goto out;
4172 	}
4173 
4174 	/* The device has no queue. Common case for software devices:
4175 	 * loopback, all the sorts of tunnels...
4176 
4177 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4178 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4179 	 * counters.)
4180 	 * However, it is possible, that they rely on protection
4181 	 * made by us here.
4182 
4183 	 * Check this and shot the lock. It is not prone from deadlocks.
4184 	 *Either shot noqueue qdisc, it is even simpler 8)
4185 	 */
4186 	if (dev->flags & IFF_UP) {
4187 		int cpu = smp_processor_id(); /* ok because BHs are off */
4188 
4189 		if (txq->xmit_lock_owner != cpu) {
4190 			if (dev_xmit_recursion())
4191 				goto recursion_alert;
4192 
4193 			skb = validate_xmit_skb(skb, dev, &again);
4194 			if (!skb)
4195 				goto out;
4196 
4197 			PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4198 			HARD_TX_LOCK(dev, txq, cpu);
4199 
4200 			if (!netif_xmit_stopped(txq)) {
4201 				dev_xmit_recursion_inc();
4202 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4203 				dev_xmit_recursion_dec();
4204 				if (dev_xmit_complete(rc)) {
4205 					HARD_TX_UNLOCK(dev, txq);
4206 					goto out;
4207 				}
4208 			}
4209 			HARD_TX_UNLOCK(dev, txq);
4210 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4211 					     dev->name);
4212 		} else {
4213 			/* Recursion is detected! It is possible,
4214 			 * unfortunately
4215 			 */
4216 recursion_alert:
4217 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4218 					     dev->name);
4219 		}
4220 	}
4221 
4222 	rc = -ENETDOWN;
4223 	rcu_read_unlock_bh();
4224 
4225 	atomic_long_inc(&dev->tx_dropped);
4226 	kfree_skb_list(skb);
4227 	return rc;
4228 out:
4229 	rcu_read_unlock_bh();
4230 	return rc;
4231 }
4232 
4233 int dev_queue_xmit(struct sk_buff *skb)
4234 {
4235 	return __dev_queue_xmit(skb, NULL);
4236 }
4237 EXPORT_SYMBOL(dev_queue_xmit);
4238 
4239 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4240 {
4241 	return __dev_queue_xmit(skb, sb_dev);
4242 }
4243 EXPORT_SYMBOL(dev_queue_xmit_accel);
4244 
4245 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4246 {
4247 	struct net_device *dev = skb->dev;
4248 	struct sk_buff *orig_skb = skb;
4249 	struct netdev_queue *txq;
4250 	int ret = NETDEV_TX_BUSY;
4251 	bool again = false;
4252 
4253 	if (unlikely(!netif_running(dev) ||
4254 		     !netif_carrier_ok(dev)))
4255 		goto drop;
4256 
4257 	skb = validate_xmit_skb_list(skb, dev, &again);
4258 	if (skb != orig_skb)
4259 		goto drop;
4260 
4261 	skb_set_queue_mapping(skb, queue_id);
4262 	txq = skb_get_tx_queue(dev, skb);
4263 	PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4264 
4265 	local_bh_disable();
4266 
4267 	dev_xmit_recursion_inc();
4268 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4269 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4270 		ret = netdev_start_xmit(skb, dev, txq, false);
4271 	HARD_TX_UNLOCK(dev, txq);
4272 	dev_xmit_recursion_dec();
4273 
4274 	local_bh_enable();
4275 	return ret;
4276 drop:
4277 	atomic_long_inc(&dev->tx_dropped);
4278 	kfree_skb_list(skb);
4279 	return NET_XMIT_DROP;
4280 }
4281 EXPORT_SYMBOL(__dev_direct_xmit);
4282 
4283 /*************************************************************************
4284  *			Receiver routines
4285  *************************************************************************/
4286 
4287 int netdev_max_backlog __read_mostly = 1000;
4288 EXPORT_SYMBOL(netdev_max_backlog);
4289 
4290 int netdev_tstamp_prequeue __read_mostly = 1;
4291 int netdev_budget __read_mostly = 300;
4292 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4293 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4294 int weight_p __read_mostly = 64;           /* old backlog weight */
4295 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4296 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4297 int dev_rx_weight __read_mostly = 64;
4298 int dev_tx_weight __read_mostly = 64;
4299 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4300 int gro_normal_batch __read_mostly = 8;
4301 
4302 /* Called with irq disabled */
4303 static inline void ____napi_schedule(struct softnet_data *sd,
4304 				     struct napi_struct *napi)
4305 {
4306 	struct task_struct *thread;
4307 
4308 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4309 		/* Paired with smp_mb__before_atomic() in
4310 		 * napi_enable()/dev_set_threaded().
4311 		 * Use READ_ONCE() to guarantee a complete
4312 		 * read on napi->thread. Only call
4313 		 * wake_up_process() when it's not NULL.
4314 		 */
4315 		thread = READ_ONCE(napi->thread);
4316 		if (thread) {
4317 			/* Avoid doing set_bit() if the thread is in
4318 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4319 			 * makes sure to proceed with napi polling
4320 			 * if the thread is explicitly woken from here.
4321 			 */
4322 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4323 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4324 			wake_up_process(thread);
4325 			return;
4326 		}
4327 	}
4328 
4329 	list_add_tail(&napi->poll_list, &sd->poll_list);
4330 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4331 }
4332 
4333 #ifdef CONFIG_RPS
4334 
4335 /* One global table that all flow-based protocols share. */
4336 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4337 EXPORT_SYMBOL(rps_sock_flow_table);
4338 u32 rps_cpu_mask __read_mostly;
4339 EXPORT_SYMBOL(rps_cpu_mask);
4340 
4341 struct static_key_false rps_needed __read_mostly;
4342 EXPORT_SYMBOL(rps_needed);
4343 struct static_key_false rfs_needed __read_mostly;
4344 EXPORT_SYMBOL(rfs_needed);
4345 
4346 static struct rps_dev_flow *
4347 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4348 	    struct rps_dev_flow *rflow, u16 next_cpu)
4349 {
4350 	if (next_cpu < nr_cpu_ids) {
4351 #ifdef CONFIG_RFS_ACCEL
4352 		struct netdev_rx_queue *rxqueue;
4353 		struct rps_dev_flow_table *flow_table;
4354 		struct rps_dev_flow *old_rflow;
4355 		u32 flow_id;
4356 		u16 rxq_index;
4357 		int rc;
4358 
4359 		/* Should we steer this flow to a different hardware queue? */
4360 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4361 		    !(dev->features & NETIF_F_NTUPLE))
4362 			goto out;
4363 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4364 		if (rxq_index == skb_get_rx_queue(skb))
4365 			goto out;
4366 
4367 		rxqueue = dev->_rx + rxq_index;
4368 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4369 		if (!flow_table)
4370 			goto out;
4371 		flow_id = skb_get_hash(skb) & flow_table->mask;
4372 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4373 							rxq_index, flow_id);
4374 		if (rc < 0)
4375 			goto out;
4376 		old_rflow = rflow;
4377 		rflow = &flow_table->flows[flow_id];
4378 		rflow->filter = rc;
4379 		if (old_rflow->filter == rflow->filter)
4380 			old_rflow->filter = RPS_NO_FILTER;
4381 	out:
4382 #endif
4383 		rflow->last_qtail =
4384 			per_cpu(softnet_data, next_cpu).input_queue_head;
4385 	}
4386 
4387 	rflow->cpu = next_cpu;
4388 	return rflow;
4389 }
4390 
4391 /*
4392  * get_rps_cpu is called from netif_receive_skb and returns the target
4393  * CPU from the RPS map of the receiving queue for a given skb.
4394  * rcu_read_lock must be held on entry.
4395  */
4396 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4397 		       struct rps_dev_flow **rflowp)
4398 {
4399 	const struct rps_sock_flow_table *sock_flow_table;
4400 	struct netdev_rx_queue *rxqueue = dev->_rx;
4401 	struct rps_dev_flow_table *flow_table;
4402 	struct rps_map *map;
4403 	int cpu = -1;
4404 	u32 tcpu;
4405 	u32 hash;
4406 
4407 	if (skb_rx_queue_recorded(skb)) {
4408 		u16 index = skb_get_rx_queue(skb);
4409 
4410 		if (unlikely(index >= dev->real_num_rx_queues)) {
4411 			WARN_ONCE(dev->real_num_rx_queues > 1,
4412 				  "%s received packet on queue %u, but number "
4413 				  "of RX queues is %u\n",
4414 				  dev->name, index, dev->real_num_rx_queues);
4415 			goto done;
4416 		}
4417 		rxqueue += index;
4418 	}
4419 
4420 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4421 
4422 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4423 	map = rcu_dereference(rxqueue->rps_map);
4424 	if (!flow_table && !map)
4425 		goto done;
4426 
4427 	skb_reset_network_header(skb);
4428 	hash = skb_get_hash(skb);
4429 	if (!hash)
4430 		goto done;
4431 
4432 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4433 	if (flow_table && sock_flow_table) {
4434 		struct rps_dev_flow *rflow;
4435 		u32 next_cpu;
4436 		u32 ident;
4437 
4438 		/* First check into global flow table if there is a match */
4439 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4440 		if ((ident ^ hash) & ~rps_cpu_mask)
4441 			goto try_rps;
4442 
4443 		next_cpu = ident & rps_cpu_mask;
4444 
4445 		/* OK, now we know there is a match,
4446 		 * we can look at the local (per receive queue) flow table
4447 		 */
4448 		rflow = &flow_table->flows[hash & flow_table->mask];
4449 		tcpu = rflow->cpu;
4450 
4451 		/*
4452 		 * If the desired CPU (where last recvmsg was done) is
4453 		 * different from current CPU (one in the rx-queue flow
4454 		 * table entry), switch if one of the following holds:
4455 		 *   - Current CPU is unset (>= nr_cpu_ids).
4456 		 *   - Current CPU is offline.
4457 		 *   - The current CPU's queue tail has advanced beyond the
4458 		 *     last packet that was enqueued using this table entry.
4459 		 *     This guarantees that all previous packets for the flow
4460 		 *     have been dequeued, thus preserving in order delivery.
4461 		 */
4462 		if (unlikely(tcpu != next_cpu) &&
4463 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4464 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4465 		      rflow->last_qtail)) >= 0)) {
4466 			tcpu = next_cpu;
4467 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4468 		}
4469 
4470 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4471 			*rflowp = rflow;
4472 			cpu = tcpu;
4473 			goto done;
4474 		}
4475 	}
4476 
4477 try_rps:
4478 
4479 	if (map) {
4480 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4481 		if (cpu_online(tcpu)) {
4482 			cpu = tcpu;
4483 			goto done;
4484 		}
4485 	}
4486 
4487 done:
4488 	return cpu;
4489 }
4490 
4491 #ifdef CONFIG_RFS_ACCEL
4492 
4493 /**
4494  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4495  * @dev: Device on which the filter was set
4496  * @rxq_index: RX queue index
4497  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4498  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4499  *
4500  * Drivers that implement ndo_rx_flow_steer() should periodically call
4501  * this function for each installed filter and remove the filters for
4502  * which it returns %true.
4503  */
4504 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4505 			 u32 flow_id, u16 filter_id)
4506 {
4507 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4508 	struct rps_dev_flow_table *flow_table;
4509 	struct rps_dev_flow *rflow;
4510 	bool expire = true;
4511 	unsigned int cpu;
4512 
4513 	rcu_read_lock();
4514 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4515 	if (flow_table && flow_id <= flow_table->mask) {
4516 		rflow = &flow_table->flows[flow_id];
4517 		cpu = READ_ONCE(rflow->cpu);
4518 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4519 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4520 			   rflow->last_qtail) <
4521 		     (int)(10 * flow_table->mask)))
4522 			expire = false;
4523 	}
4524 	rcu_read_unlock();
4525 	return expire;
4526 }
4527 EXPORT_SYMBOL(rps_may_expire_flow);
4528 
4529 #endif /* CONFIG_RFS_ACCEL */
4530 
4531 /* Called from hardirq (IPI) context */
4532 static void rps_trigger_softirq(void *data)
4533 {
4534 	struct softnet_data *sd = data;
4535 
4536 	____napi_schedule(sd, &sd->backlog);
4537 	sd->received_rps++;
4538 }
4539 
4540 #endif /* CONFIG_RPS */
4541 
4542 /*
4543  * Check if this softnet_data structure is another cpu one
4544  * If yes, queue it to our IPI list and return 1
4545  * If no, return 0
4546  */
4547 static int rps_ipi_queued(struct softnet_data *sd)
4548 {
4549 #ifdef CONFIG_RPS
4550 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4551 
4552 	if (sd != mysd) {
4553 		sd->rps_ipi_next = mysd->rps_ipi_list;
4554 		mysd->rps_ipi_list = sd;
4555 
4556 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4557 		return 1;
4558 	}
4559 #endif /* CONFIG_RPS */
4560 	return 0;
4561 }
4562 
4563 #ifdef CONFIG_NET_FLOW_LIMIT
4564 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4565 #endif
4566 
4567 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4568 {
4569 #ifdef CONFIG_NET_FLOW_LIMIT
4570 	struct sd_flow_limit *fl;
4571 	struct softnet_data *sd;
4572 	unsigned int old_flow, new_flow;
4573 
4574 	if (qlen < (netdev_max_backlog >> 1))
4575 		return false;
4576 
4577 	sd = this_cpu_ptr(&softnet_data);
4578 
4579 	rcu_read_lock();
4580 	fl = rcu_dereference(sd->flow_limit);
4581 	if (fl) {
4582 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4583 		old_flow = fl->history[fl->history_head];
4584 		fl->history[fl->history_head] = new_flow;
4585 
4586 		fl->history_head++;
4587 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4588 
4589 		if (likely(fl->buckets[old_flow]))
4590 			fl->buckets[old_flow]--;
4591 
4592 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4593 			fl->count++;
4594 			rcu_read_unlock();
4595 			return true;
4596 		}
4597 	}
4598 	rcu_read_unlock();
4599 #endif
4600 	return false;
4601 }
4602 
4603 /*
4604  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4605  * queue (may be a remote CPU queue).
4606  */
4607 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4608 			      unsigned int *qtail)
4609 {
4610 	struct softnet_data *sd;
4611 	unsigned long flags;
4612 	unsigned int qlen;
4613 
4614 	sd = &per_cpu(softnet_data, cpu);
4615 
4616 	local_irq_save(flags);
4617 
4618 	rps_lock(sd);
4619 	if (!netif_running(skb->dev))
4620 		goto drop;
4621 	qlen = skb_queue_len(&sd->input_pkt_queue);
4622 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4623 		if (qlen) {
4624 enqueue:
4625 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4626 			input_queue_tail_incr_save(sd, qtail);
4627 			rps_unlock(sd);
4628 			local_irq_restore(flags);
4629 			return NET_RX_SUCCESS;
4630 		}
4631 
4632 		/* Schedule NAPI for backlog device
4633 		 * We can use non atomic operation since we own the queue lock
4634 		 */
4635 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4636 			if (!rps_ipi_queued(sd))
4637 				____napi_schedule(sd, &sd->backlog);
4638 		}
4639 		goto enqueue;
4640 	}
4641 
4642 drop:
4643 	sd->dropped++;
4644 	rps_unlock(sd);
4645 
4646 	local_irq_restore(flags);
4647 
4648 	atomic_long_inc(&skb->dev->rx_dropped);
4649 	kfree_skb(skb);
4650 	return NET_RX_DROP;
4651 }
4652 
4653 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4654 {
4655 	struct net_device *dev = skb->dev;
4656 	struct netdev_rx_queue *rxqueue;
4657 
4658 	rxqueue = dev->_rx;
4659 
4660 	if (skb_rx_queue_recorded(skb)) {
4661 		u16 index = skb_get_rx_queue(skb);
4662 
4663 		if (unlikely(index >= dev->real_num_rx_queues)) {
4664 			WARN_ONCE(dev->real_num_rx_queues > 1,
4665 				  "%s received packet on queue %u, but number "
4666 				  "of RX queues is %u\n",
4667 				  dev->name, index, dev->real_num_rx_queues);
4668 
4669 			return rxqueue; /* Return first rxqueue */
4670 		}
4671 		rxqueue += index;
4672 	}
4673 	return rxqueue;
4674 }
4675 
4676 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4677 			     struct bpf_prog *xdp_prog)
4678 {
4679 	void *orig_data, *orig_data_end, *hard_start;
4680 	struct netdev_rx_queue *rxqueue;
4681 	bool orig_bcast, orig_host;
4682 	u32 mac_len, frame_sz;
4683 	__be16 orig_eth_type;
4684 	struct ethhdr *eth;
4685 	u32 metalen, act;
4686 	int off;
4687 
4688 	/* The XDP program wants to see the packet starting at the MAC
4689 	 * header.
4690 	 */
4691 	mac_len = skb->data - skb_mac_header(skb);
4692 	hard_start = skb->data - skb_headroom(skb);
4693 
4694 	/* SKB "head" area always have tailroom for skb_shared_info */
4695 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4696 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4697 
4698 	rxqueue = netif_get_rxqueue(skb);
4699 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4700 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4701 			 skb_headlen(skb) + mac_len, true);
4702 
4703 	orig_data_end = xdp->data_end;
4704 	orig_data = xdp->data;
4705 	eth = (struct ethhdr *)xdp->data;
4706 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4707 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4708 	orig_eth_type = eth->h_proto;
4709 
4710 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4711 
4712 	/* check if bpf_xdp_adjust_head was used */
4713 	off = xdp->data - orig_data;
4714 	if (off) {
4715 		if (off > 0)
4716 			__skb_pull(skb, off);
4717 		else if (off < 0)
4718 			__skb_push(skb, -off);
4719 
4720 		skb->mac_header += off;
4721 		skb_reset_network_header(skb);
4722 	}
4723 
4724 	/* check if bpf_xdp_adjust_tail was used */
4725 	off = xdp->data_end - orig_data_end;
4726 	if (off != 0) {
4727 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4728 		skb->len += off; /* positive on grow, negative on shrink */
4729 	}
4730 
4731 	/* check if XDP changed eth hdr such SKB needs update */
4732 	eth = (struct ethhdr *)xdp->data;
4733 	if ((orig_eth_type != eth->h_proto) ||
4734 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4735 						  skb->dev->dev_addr)) ||
4736 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4737 		__skb_push(skb, ETH_HLEN);
4738 		skb->pkt_type = PACKET_HOST;
4739 		skb->protocol = eth_type_trans(skb, skb->dev);
4740 	}
4741 
4742 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4743 	 * before calling us again on redirect path. We do not call do_redirect
4744 	 * as we leave that up to the caller.
4745 	 *
4746 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4747 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4748 	 */
4749 	switch (act) {
4750 	case XDP_REDIRECT:
4751 	case XDP_TX:
4752 		__skb_push(skb, mac_len);
4753 		break;
4754 	case XDP_PASS:
4755 		metalen = xdp->data - xdp->data_meta;
4756 		if (metalen)
4757 			skb_metadata_set(skb, metalen);
4758 		break;
4759 	}
4760 
4761 	return act;
4762 }
4763 
4764 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4765 				     struct xdp_buff *xdp,
4766 				     struct bpf_prog *xdp_prog)
4767 {
4768 	u32 act = XDP_DROP;
4769 
4770 	/* Reinjected packets coming from act_mirred or similar should
4771 	 * not get XDP generic processing.
4772 	 */
4773 	if (skb_is_redirected(skb))
4774 		return XDP_PASS;
4775 
4776 	/* XDP packets must be linear and must have sufficient headroom
4777 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4778 	 * native XDP provides, thus we need to do it here as well.
4779 	 */
4780 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4781 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4782 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4783 		int troom = skb->tail + skb->data_len - skb->end;
4784 
4785 		/* In case we have to go down the path and also linearize,
4786 		 * then lets do the pskb_expand_head() work just once here.
4787 		 */
4788 		if (pskb_expand_head(skb,
4789 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4790 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4791 			goto do_drop;
4792 		if (skb_linearize(skb))
4793 			goto do_drop;
4794 	}
4795 
4796 	act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4797 	switch (act) {
4798 	case XDP_REDIRECT:
4799 	case XDP_TX:
4800 	case XDP_PASS:
4801 		break;
4802 	default:
4803 		bpf_warn_invalid_xdp_action(act);
4804 		fallthrough;
4805 	case XDP_ABORTED:
4806 		trace_xdp_exception(skb->dev, xdp_prog, act);
4807 		fallthrough;
4808 	case XDP_DROP:
4809 	do_drop:
4810 		kfree_skb(skb);
4811 		break;
4812 	}
4813 
4814 	return act;
4815 }
4816 
4817 /* When doing generic XDP we have to bypass the qdisc layer and the
4818  * network taps in order to match in-driver-XDP behavior.
4819  */
4820 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4821 {
4822 	struct net_device *dev = skb->dev;
4823 	struct netdev_queue *txq;
4824 	bool free_skb = true;
4825 	int cpu, rc;
4826 
4827 	txq = netdev_core_pick_tx(dev, skb, NULL);
4828 	cpu = smp_processor_id();
4829 	HARD_TX_LOCK(dev, txq, cpu);
4830 	if (!netif_xmit_stopped(txq)) {
4831 		rc = netdev_start_xmit(skb, dev, txq, 0);
4832 		if (dev_xmit_complete(rc))
4833 			free_skb = false;
4834 	}
4835 	HARD_TX_UNLOCK(dev, txq);
4836 	if (free_skb) {
4837 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4838 		kfree_skb(skb);
4839 	}
4840 }
4841 
4842 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4843 
4844 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4845 {
4846 	if (xdp_prog) {
4847 		struct xdp_buff xdp;
4848 		u32 act;
4849 		int err;
4850 
4851 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4852 		if (act != XDP_PASS) {
4853 			switch (act) {
4854 			case XDP_REDIRECT:
4855 				err = xdp_do_generic_redirect(skb->dev, skb,
4856 							      &xdp, xdp_prog);
4857 				if (err)
4858 					goto out_redir;
4859 				break;
4860 			case XDP_TX:
4861 				generic_xdp_tx(skb, xdp_prog);
4862 				break;
4863 			}
4864 			return XDP_DROP;
4865 		}
4866 	}
4867 	return XDP_PASS;
4868 out_redir:
4869 	kfree_skb(skb);
4870 	return XDP_DROP;
4871 }
4872 EXPORT_SYMBOL_GPL(do_xdp_generic);
4873 
4874 static int netif_rx_internal(struct sk_buff *skb)
4875 {
4876 	int ret;
4877 
4878 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4879 
4880 	trace_netif_rx(skb);
4881 
4882 #ifdef CONFIG_RPS
4883 	if (static_branch_unlikely(&rps_needed)) {
4884 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4885 		int cpu;
4886 
4887 		preempt_disable();
4888 		rcu_read_lock();
4889 
4890 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4891 		if (cpu < 0)
4892 			cpu = smp_processor_id();
4893 
4894 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4895 
4896 		rcu_read_unlock();
4897 		preempt_enable();
4898 	} else
4899 #endif
4900 	{
4901 		unsigned int qtail;
4902 
4903 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4904 		put_cpu();
4905 	}
4906 	return ret;
4907 }
4908 
4909 /**
4910  *	netif_rx	-	post buffer to the network code
4911  *	@skb: buffer to post
4912  *
4913  *	This function receives a packet from a device driver and queues it for
4914  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4915  *	may be dropped during processing for congestion control or by the
4916  *	protocol layers.
4917  *
4918  *	return values:
4919  *	NET_RX_SUCCESS	(no congestion)
4920  *	NET_RX_DROP     (packet was dropped)
4921  *
4922  */
4923 
4924 int netif_rx(struct sk_buff *skb)
4925 {
4926 	int ret;
4927 
4928 	trace_netif_rx_entry(skb);
4929 
4930 	ret = netif_rx_internal(skb);
4931 	trace_netif_rx_exit(ret);
4932 
4933 	return ret;
4934 }
4935 EXPORT_SYMBOL(netif_rx);
4936 
4937 int netif_rx_ni(struct sk_buff *skb)
4938 {
4939 	int err;
4940 
4941 	trace_netif_rx_ni_entry(skb);
4942 
4943 	preempt_disable();
4944 	err = netif_rx_internal(skb);
4945 	if (local_softirq_pending())
4946 		do_softirq();
4947 	preempt_enable();
4948 	trace_netif_rx_ni_exit(err);
4949 
4950 	return err;
4951 }
4952 EXPORT_SYMBOL(netif_rx_ni);
4953 
4954 int netif_rx_any_context(struct sk_buff *skb)
4955 {
4956 	/*
4957 	 * If invoked from contexts which do not invoke bottom half
4958 	 * processing either at return from interrupt or when softrqs are
4959 	 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4960 	 * directly.
4961 	 */
4962 	if (in_interrupt())
4963 		return netif_rx(skb);
4964 	else
4965 		return netif_rx_ni(skb);
4966 }
4967 EXPORT_SYMBOL(netif_rx_any_context);
4968 
4969 static __latent_entropy void net_tx_action(struct softirq_action *h)
4970 {
4971 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4972 
4973 	if (sd->completion_queue) {
4974 		struct sk_buff *clist;
4975 
4976 		local_irq_disable();
4977 		clist = sd->completion_queue;
4978 		sd->completion_queue = NULL;
4979 		local_irq_enable();
4980 
4981 		while (clist) {
4982 			struct sk_buff *skb = clist;
4983 
4984 			clist = clist->next;
4985 
4986 			WARN_ON(refcount_read(&skb->users));
4987 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4988 				trace_consume_skb(skb);
4989 			else
4990 				trace_kfree_skb(skb, net_tx_action);
4991 
4992 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4993 				__kfree_skb(skb);
4994 			else
4995 				__kfree_skb_defer(skb);
4996 		}
4997 	}
4998 
4999 	if (sd->output_queue) {
5000 		struct Qdisc *head;
5001 
5002 		local_irq_disable();
5003 		head = sd->output_queue;
5004 		sd->output_queue = NULL;
5005 		sd->output_queue_tailp = &sd->output_queue;
5006 		local_irq_enable();
5007 
5008 		rcu_read_lock();
5009 
5010 		while (head) {
5011 			struct Qdisc *q = head;
5012 			spinlock_t *root_lock = NULL;
5013 
5014 			head = head->next_sched;
5015 
5016 			/* We need to make sure head->next_sched is read
5017 			 * before clearing __QDISC_STATE_SCHED
5018 			 */
5019 			smp_mb__before_atomic();
5020 
5021 			if (!(q->flags & TCQ_F_NOLOCK)) {
5022 				root_lock = qdisc_lock(q);
5023 				spin_lock(root_lock);
5024 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5025 						     &q->state))) {
5026 				/* There is a synchronize_net() between
5027 				 * STATE_DEACTIVATED flag being set and
5028 				 * qdisc_reset()/some_qdisc_is_busy() in
5029 				 * dev_deactivate(), so we can safely bail out
5030 				 * early here to avoid data race between
5031 				 * qdisc_deactivate() and some_qdisc_is_busy()
5032 				 * for lockless qdisc.
5033 				 */
5034 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5035 				continue;
5036 			}
5037 
5038 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5039 			qdisc_run(q);
5040 			if (root_lock)
5041 				spin_unlock(root_lock);
5042 		}
5043 
5044 		rcu_read_unlock();
5045 	}
5046 
5047 	xfrm_dev_backlog(sd);
5048 }
5049 
5050 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5051 /* This hook is defined here for ATM LANE */
5052 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5053 			     unsigned char *addr) __read_mostly;
5054 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5055 #endif
5056 
5057 static inline struct sk_buff *
5058 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5059 		   struct net_device *orig_dev, bool *another)
5060 {
5061 #ifdef CONFIG_NET_CLS_ACT
5062 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5063 	struct tcf_result cl_res;
5064 
5065 	/* If there's at least one ingress present somewhere (so
5066 	 * we get here via enabled static key), remaining devices
5067 	 * that are not configured with an ingress qdisc will bail
5068 	 * out here.
5069 	 */
5070 	if (!miniq)
5071 		return skb;
5072 
5073 	if (*pt_prev) {
5074 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
5075 		*pt_prev = NULL;
5076 	}
5077 
5078 	qdisc_skb_cb(skb)->pkt_len = skb->len;
5079 	qdisc_skb_cb(skb)->mru = 0;
5080 	qdisc_skb_cb(skb)->post_ct = false;
5081 	skb->tc_at_ingress = 1;
5082 	mini_qdisc_bstats_cpu_update(miniq, skb);
5083 
5084 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5085 	case TC_ACT_OK:
5086 	case TC_ACT_RECLASSIFY:
5087 		skb->tc_index = TC_H_MIN(cl_res.classid);
5088 		break;
5089 	case TC_ACT_SHOT:
5090 		mini_qdisc_qstats_cpu_drop(miniq);
5091 		kfree_skb(skb);
5092 		return NULL;
5093 	case TC_ACT_STOLEN:
5094 	case TC_ACT_QUEUED:
5095 	case TC_ACT_TRAP:
5096 		consume_skb(skb);
5097 		return NULL;
5098 	case TC_ACT_REDIRECT:
5099 		/* skb_mac_header check was done by cls/act_bpf, so
5100 		 * we can safely push the L2 header back before
5101 		 * redirecting to another netdev
5102 		 */
5103 		__skb_push(skb, skb->mac_len);
5104 		if (skb_do_redirect(skb) == -EAGAIN) {
5105 			__skb_pull(skb, skb->mac_len);
5106 			*another = true;
5107 			break;
5108 		}
5109 		return NULL;
5110 	case TC_ACT_CONSUMED:
5111 		return NULL;
5112 	default:
5113 		break;
5114 	}
5115 #endif /* CONFIG_NET_CLS_ACT */
5116 	return skb;
5117 }
5118 
5119 /**
5120  *	netdev_is_rx_handler_busy - check if receive handler is registered
5121  *	@dev: device to check
5122  *
5123  *	Check if a receive handler is already registered for a given device.
5124  *	Return true if there one.
5125  *
5126  *	The caller must hold the rtnl_mutex.
5127  */
5128 bool netdev_is_rx_handler_busy(struct net_device *dev)
5129 {
5130 	ASSERT_RTNL();
5131 	return dev && rtnl_dereference(dev->rx_handler);
5132 }
5133 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5134 
5135 /**
5136  *	netdev_rx_handler_register - register receive handler
5137  *	@dev: device to register a handler for
5138  *	@rx_handler: receive handler to register
5139  *	@rx_handler_data: data pointer that is used by rx handler
5140  *
5141  *	Register a receive handler for a device. This handler will then be
5142  *	called from __netif_receive_skb. A negative errno code is returned
5143  *	on a failure.
5144  *
5145  *	The caller must hold the rtnl_mutex.
5146  *
5147  *	For a general description of rx_handler, see enum rx_handler_result.
5148  */
5149 int netdev_rx_handler_register(struct net_device *dev,
5150 			       rx_handler_func_t *rx_handler,
5151 			       void *rx_handler_data)
5152 {
5153 	if (netdev_is_rx_handler_busy(dev))
5154 		return -EBUSY;
5155 
5156 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5157 		return -EINVAL;
5158 
5159 	/* Note: rx_handler_data must be set before rx_handler */
5160 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5161 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5162 
5163 	return 0;
5164 }
5165 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5166 
5167 /**
5168  *	netdev_rx_handler_unregister - unregister receive handler
5169  *	@dev: device to unregister a handler from
5170  *
5171  *	Unregister a receive handler from a device.
5172  *
5173  *	The caller must hold the rtnl_mutex.
5174  */
5175 void netdev_rx_handler_unregister(struct net_device *dev)
5176 {
5177 
5178 	ASSERT_RTNL();
5179 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5180 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5181 	 * section has a guarantee to see a non NULL rx_handler_data
5182 	 * as well.
5183 	 */
5184 	synchronize_net();
5185 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5186 }
5187 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5188 
5189 /*
5190  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5191  * the special handling of PFMEMALLOC skbs.
5192  */
5193 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5194 {
5195 	switch (skb->protocol) {
5196 	case htons(ETH_P_ARP):
5197 	case htons(ETH_P_IP):
5198 	case htons(ETH_P_IPV6):
5199 	case htons(ETH_P_8021Q):
5200 	case htons(ETH_P_8021AD):
5201 		return true;
5202 	default:
5203 		return false;
5204 	}
5205 }
5206 
5207 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5208 			     int *ret, struct net_device *orig_dev)
5209 {
5210 	if (nf_hook_ingress_active(skb)) {
5211 		int ingress_retval;
5212 
5213 		if (*pt_prev) {
5214 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5215 			*pt_prev = NULL;
5216 		}
5217 
5218 		rcu_read_lock();
5219 		ingress_retval = nf_hook_ingress(skb);
5220 		rcu_read_unlock();
5221 		return ingress_retval;
5222 	}
5223 	return 0;
5224 }
5225 
5226 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5227 				    struct packet_type **ppt_prev)
5228 {
5229 	struct packet_type *ptype, *pt_prev;
5230 	rx_handler_func_t *rx_handler;
5231 	struct sk_buff *skb = *pskb;
5232 	struct net_device *orig_dev;
5233 	bool deliver_exact = false;
5234 	int ret = NET_RX_DROP;
5235 	__be16 type;
5236 
5237 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5238 
5239 	trace_netif_receive_skb(skb);
5240 
5241 	orig_dev = skb->dev;
5242 
5243 	skb_reset_network_header(skb);
5244 	if (!skb_transport_header_was_set(skb))
5245 		skb_reset_transport_header(skb);
5246 	skb_reset_mac_len(skb);
5247 
5248 	pt_prev = NULL;
5249 
5250 another_round:
5251 	skb->skb_iif = skb->dev->ifindex;
5252 
5253 	__this_cpu_inc(softnet_data.processed);
5254 
5255 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5256 		int ret2;
5257 
5258 		migrate_disable();
5259 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5260 		migrate_enable();
5261 
5262 		if (ret2 != XDP_PASS) {
5263 			ret = NET_RX_DROP;
5264 			goto out;
5265 		}
5266 	}
5267 
5268 	if (eth_type_vlan(skb->protocol)) {
5269 		skb = skb_vlan_untag(skb);
5270 		if (unlikely(!skb))
5271 			goto out;
5272 	}
5273 
5274 	if (skb_skip_tc_classify(skb))
5275 		goto skip_classify;
5276 
5277 	if (pfmemalloc)
5278 		goto skip_taps;
5279 
5280 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5281 		if (pt_prev)
5282 			ret = deliver_skb(skb, pt_prev, orig_dev);
5283 		pt_prev = ptype;
5284 	}
5285 
5286 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5287 		if (pt_prev)
5288 			ret = deliver_skb(skb, pt_prev, orig_dev);
5289 		pt_prev = ptype;
5290 	}
5291 
5292 skip_taps:
5293 #ifdef CONFIG_NET_INGRESS
5294 	if (static_branch_unlikely(&ingress_needed_key)) {
5295 		bool another = false;
5296 
5297 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5298 					 &another);
5299 		if (another)
5300 			goto another_round;
5301 		if (!skb)
5302 			goto out;
5303 
5304 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5305 			goto out;
5306 	}
5307 #endif
5308 	skb_reset_redirect(skb);
5309 skip_classify:
5310 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5311 		goto drop;
5312 
5313 	if (skb_vlan_tag_present(skb)) {
5314 		if (pt_prev) {
5315 			ret = deliver_skb(skb, pt_prev, orig_dev);
5316 			pt_prev = NULL;
5317 		}
5318 		if (vlan_do_receive(&skb))
5319 			goto another_round;
5320 		else if (unlikely(!skb))
5321 			goto out;
5322 	}
5323 
5324 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5325 	if (rx_handler) {
5326 		if (pt_prev) {
5327 			ret = deliver_skb(skb, pt_prev, orig_dev);
5328 			pt_prev = NULL;
5329 		}
5330 		switch (rx_handler(&skb)) {
5331 		case RX_HANDLER_CONSUMED:
5332 			ret = NET_RX_SUCCESS;
5333 			goto out;
5334 		case RX_HANDLER_ANOTHER:
5335 			goto another_round;
5336 		case RX_HANDLER_EXACT:
5337 			deliver_exact = true;
5338 			break;
5339 		case RX_HANDLER_PASS:
5340 			break;
5341 		default:
5342 			BUG();
5343 		}
5344 	}
5345 
5346 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5347 check_vlan_id:
5348 		if (skb_vlan_tag_get_id(skb)) {
5349 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5350 			 * find vlan device.
5351 			 */
5352 			skb->pkt_type = PACKET_OTHERHOST;
5353 		} else if (eth_type_vlan(skb->protocol)) {
5354 			/* Outer header is 802.1P with vlan 0, inner header is
5355 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5356 			 * not find vlan dev for vlan id 0.
5357 			 */
5358 			__vlan_hwaccel_clear_tag(skb);
5359 			skb = skb_vlan_untag(skb);
5360 			if (unlikely(!skb))
5361 				goto out;
5362 			if (vlan_do_receive(&skb))
5363 				/* After stripping off 802.1P header with vlan 0
5364 				 * vlan dev is found for inner header.
5365 				 */
5366 				goto another_round;
5367 			else if (unlikely(!skb))
5368 				goto out;
5369 			else
5370 				/* We have stripped outer 802.1P vlan 0 header.
5371 				 * But could not find vlan dev.
5372 				 * check again for vlan id to set OTHERHOST.
5373 				 */
5374 				goto check_vlan_id;
5375 		}
5376 		/* Note: we might in the future use prio bits
5377 		 * and set skb->priority like in vlan_do_receive()
5378 		 * For the time being, just ignore Priority Code Point
5379 		 */
5380 		__vlan_hwaccel_clear_tag(skb);
5381 	}
5382 
5383 	type = skb->protocol;
5384 
5385 	/* deliver only exact match when indicated */
5386 	if (likely(!deliver_exact)) {
5387 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5388 				       &ptype_base[ntohs(type) &
5389 						   PTYPE_HASH_MASK]);
5390 	}
5391 
5392 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5393 			       &orig_dev->ptype_specific);
5394 
5395 	if (unlikely(skb->dev != orig_dev)) {
5396 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5397 				       &skb->dev->ptype_specific);
5398 	}
5399 
5400 	if (pt_prev) {
5401 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5402 			goto drop;
5403 		*ppt_prev = pt_prev;
5404 	} else {
5405 drop:
5406 		if (!deliver_exact)
5407 			atomic_long_inc(&skb->dev->rx_dropped);
5408 		else
5409 			atomic_long_inc(&skb->dev->rx_nohandler);
5410 		kfree_skb(skb);
5411 		/* Jamal, now you will not able to escape explaining
5412 		 * me how you were going to use this. :-)
5413 		 */
5414 		ret = NET_RX_DROP;
5415 	}
5416 
5417 out:
5418 	/* The invariant here is that if *ppt_prev is not NULL
5419 	 * then skb should also be non-NULL.
5420 	 *
5421 	 * Apparently *ppt_prev assignment above holds this invariant due to
5422 	 * skb dereferencing near it.
5423 	 */
5424 	*pskb = skb;
5425 	return ret;
5426 }
5427 
5428 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5429 {
5430 	struct net_device *orig_dev = skb->dev;
5431 	struct packet_type *pt_prev = NULL;
5432 	int ret;
5433 
5434 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5435 	if (pt_prev)
5436 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5437 					 skb->dev, pt_prev, orig_dev);
5438 	return ret;
5439 }
5440 
5441 /**
5442  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5443  *	@skb: buffer to process
5444  *
5445  *	More direct receive version of netif_receive_skb().  It should
5446  *	only be used by callers that have a need to skip RPS and Generic XDP.
5447  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5448  *
5449  *	This function may only be called from softirq context and interrupts
5450  *	should be enabled.
5451  *
5452  *	Return values (usually ignored):
5453  *	NET_RX_SUCCESS: no congestion
5454  *	NET_RX_DROP: packet was dropped
5455  */
5456 int netif_receive_skb_core(struct sk_buff *skb)
5457 {
5458 	int ret;
5459 
5460 	rcu_read_lock();
5461 	ret = __netif_receive_skb_one_core(skb, false);
5462 	rcu_read_unlock();
5463 
5464 	return ret;
5465 }
5466 EXPORT_SYMBOL(netif_receive_skb_core);
5467 
5468 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5469 						  struct packet_type *pt_prev,
5470 						  struct net_device *orig_dev)
5471 {
5472 	struct sk_buff *skb, *next;
5473 
5474 	if (!pt_prev)
5475 		return;
5476 	if (list_empty(head))
5477 		return;
5478 	if (pt_prev->list_func != NULL)
5479 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5480 				   ip_list_rcv, head, pt_prev, orig_dev);
5481 	else
5482 		list_for_each_entry_safe(skb, next, head, list) {
5483 			skb_list_del_init(skb);
5484 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5485 		}
5486 }
5487 
5488 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5489 {
5490 	/* Fast-path assumptions:
5491 	 * - There is no RX handler.
5492 	 * - Only one packet_type matches.
5493 	 * If either of these fails, we will end up doing some per-packet
5494 	 * processing in-line, then handling the 'last ptype' for the whole
5495 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5496 	 * because the 'last ptype' must be constant across the sublist, and all
5497 	 * other ptypes are handled per-packet.
5498 	 */
5499 	/* Current (common) ptype of sublist */
5500 	struct packet_type *pt_curr = NULL;
5501 	/* Current (common) orig_dev of sublist */
5502 	struct net_device *od_curr = NULL;
5503 	struct list_head sublist;
5504 	struct sk_buff *skb, *next;
5505 
5506 	INIT_LIST_HEAD(&sublist);
5507 	list_for_each_entry_safe(skb, next, head, list) {
5508 		struct net_device *orig_dev = skb->dev;
5509 		struct packet_type *pt_prev = NULL;
5510 
5511 		skb_list_del_init(skb);
5512 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5513 		if (!pt_prev)
5514 			continue;
5515 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5516 			/* dispatch old sublist */
5517 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5518 			/* start new sublist */
5519 			INIT_LIST_HEAD(&sublist);
5520 			pt_curr = pt_prev;
5521 			od_curr = orig_dev;
5522 		}
5523 		list_add_tail(&skb->list, &sublist);
5524 	}
5525 
5526 	/* dispatch final sublist */
5527 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5528 }
5529 
5530 static int __netif_receive_skb(struct sk_buff *skb)
5531 {
5532 	int ret;
5533 
5534 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5535 		unsigned int noreclaim_flag;
5536 
5537 		/*
5538 		 * PFMEMALLOC skbs are special, they should
5539 		 * - be delivered to SOCK_MEMALLOC sockets only
5540 		 * - stay away from userspace
5541 		 * - have bounded memory usage
5542 		 *
5543 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5544 		 * context down to all allocation sites.
5545 		 */
5546 		noreclaim_flag = memalloc_noreclaim_save();
5547 		ret = __netif_receive_skb_one_core(skb, true);
5548 		memalloc_noreclaim_restore(noreclaim_flag);
5549 	} else
5550 		ret = __netif_receive_skb_one_core(skb, false);
5551 
5552 	return ret;
5553 }
5554 
5555 static void __netif_receive_skb_list(struct list_head *head)
5556 {
5557 	unsigned long noreclaim_flag = 0;
5558 	struct sk_buff *skb, *next;
5559 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5560 
5561 	list_for_each_entry_safe(skb, next, head, list) {
5562 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5563 			struct list_head sublist;
5564 
5565 			/* Handle the previous sublist */
5566 			list_cut_before(&sublist, head, &skb->list);
5567 			if (!list_empty(&sublist))
5568 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5569 			pfmemalloc = !pfmemalloc;
5570 			/* See comments in __netif_receive_skb */
5571 			if (pfmemalloc)
5572 				noreclaim_flag = memalloc_noreclaim_save();
5573 			else
5574 				memalloc_noreclaim_restore(noreclaim_flag);
5575 		}
5576 	}
5577 	/* Handle the remaining sublist */
5578 	if (!list_empty(head))
5579 		__netif_receive_skb_list_core(head, pfmemalloc);
5580 	/* Restore pflags */
5581 	if (pfmemalloc)
5582 		memalloc_noreclaim_restore(noreclaim_flag);
5583 }
5584 
5585 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5586 {
5587 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5588 	struct bpf_prog *new = xdp->prog;
5589 	int ret = 0;
5590 
5591 	switch (xdp->command) {
5592 	case XDP_SETUP_PROG:
5593 		rcu_assign_pointer(dev->xdp_prog, new);
5594 		if (old)
5595 			bpf_prog_put(old);
5596 
5597 		if (old && !new) {
5598 			static_branch_dec(&generic_xdp_needed_key);
5599 		} else if (new && !old) {
5600 			static_branch_inc(&generic_xdp_needed_key);
5601 			dev_disable_lro(dev);
5602 			dev_disable_gro_hw(dev);
5603 		}
5604 		break;
5605 
5606 	default:
5607 		ret = -EINVAL;
5608 		break;
5609 	}
5610 
5611 	return ret;
5612 }
5613 
5614 static int netif_receive_skb_internal(struct sk_buff *skb)
5615 {
5616 	int ret;
5617 
5618 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5619 
5620 	if (skb_defer_rx_timestamp(skb))
5621 		return NET_RX_SUCCESS;
5622 
5623 	rcu_read_lock();
5624 #ifdef CONFIG_RPS
5625 	if (static_branch_unlikely(&rps_needed)) {
5626 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5627 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5628 
5629 		if (cpu >= 0) {
5630 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5631 			rcu_read_unlock();
5632 			return ret;
5633 		}
5634 	}
5635 #endif
5636 	ret = __netif_receive_skb(skb);
5637 	rcu_read_unlock();
5638 	return ret;
5639 }
5640 
5641 static void netif_receive_skb_list_internal(struct list_head *head)
5642 {
5643 	struct sk_buff *skb, *next;
5644 	struct list_head sublist;
5645 
5646 	INIT_LIST_HEAD(&sublist);
5647 	list_for_each_entry_safe(skb, next, head, list) {
5648 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5649 		skb_list_del_init(skb);
5650 		if (!skb_defer_rx_timestamp(skb))
5651 			list_add_tail(&skb->list, &sublist);
5652 	}
5653 	list_splice_init(&sublist, head);
5654 
5655 	rcu_read_lock();
5656 #ifdef CONFIG_RPS
5657 	if (static_branch_unlikely(&rps_needed)) {
5658 		list_for_each_entry_safe(skb, next, head, list) {
5659 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5660 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5661 
5662 			if (cpu >= 0) {
5663 				/* Will be handled, remove from list */
5664 				skb_list_del_init(skb);
5665 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5666 			}
5667 		}
5668 	}
5669 #endif
5670 	__netif_receive_skb_list(head);
5671 	rcu_read_unlock();
5672 }
5673 
5674 /**
5675  *	netif_receive_skb - process receive buffer from network
5676  *	@skb: buffer to process
5677  *
5678  *	netif_receive_skb() is the main receive data processing function.
5679  *	It always succeeds. The buffer may be dropped during processing
5680  *	for congestion control or by the protocol layers.
5681  *
5682  *	This function may only be called from softirq context and interrupts
5683  *	should be enabled.
5684  *
5685  *	Return values (usually ignored):
5686  *	NET_RX_SUCCESS: no congestion
5687  *	NET_RX_DROP: packet was dropped
5688  */
5689 int netif_receive_skb(struct sk_buff *skb)
5690 {
5691 	int ret;
5692 
5693 	trace_netif_receive_skb_entry(skb);
5694 
5695 	ret = netif_receive_skb_internal(skb);
5696 	trace_netif_receive_skb_exit(ret);
5697 
5698 	return ret;
5699 }
5700 EXPORT_SYMBOL(netif_receive_skb);
5701 
5702 /**
5703  *	netif_receive_skb_list - process many receive buffers from network
5704  *	@head: list of skbs to process.
5705  *
5706  *	Since return value of netif_receive_skb() is normally ignored, and
5707  *	wouldn't be meaningful for a list, this function returns void.
5708  *
5709  *	This function may only be called from softirq context and interrupts
5710  *	should be enabled.
5711  */
5712 void netif_receive_skb_list(struct list_head *head)
5713 {
5714 	struct sk_buff *skb;
5715 
5716 	if (list_empty(head))
5717 		return;
5718 	if (trace_netif_receive_skb_list_entry_enabled()) {
5719 		list_for_each_entry(skb, head, list)
5720 			trace_netif_receive_skb_list_entry(skb);
5721 	}
5722 	netif_receive_skb_list_internal(head);
5723 	trace_netif_receive_skb_list_exit(0);
5724 }
5725 EXPORT_SYMBOL(netif_receive_skb_list);
5726 
5727 static DEFINE_PER_CPU(struct work_struct, flush_works);
5728 
5729 /* Network device is going away, flush any packets still pending */
5730 static void flush_backlog(struct work_struct *work)
5731 {
5732 	struct sk_buff *skb, *tmp;
5733 	struct softnet_data *sd;
5734 
5735 	local_bh_disable();
5736 	sd = this_cpu_ptr(&softnet_data);
5737 
5738 	local_irq_disable();
5739 	rps_lock(sd);
5740 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5741 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5742 			__skb_unlink(skb, &sd->input_pkt_queue);
5743 			dev_kfree_skb_irq(skb);
5744 			input_queue_head_incr(sd);
5745 		}
5746 	}
5747 	rps_unlock(sd);
5748 	local_irq_enable();
5749 
5750 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5751 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5752 			__skb_unlink(skb, &sd->process_queue);
5753 			kfree_skb(skb);
5754 			input_queue_head_incr(sd);
5755 		}
5756 	}
5757 	local_bh_enable();
5758 }
5759 
5760 static bool flush_required(int cpu)
5761 {
5762 #if IS_ENABLED(CONFIG_RPS)
5763 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5764 	bool do_flush;
5765 
5766 	local_irq_disable();
5767 	rps_lock(sd);
5768 
5769 	/* as insertion into process_queue happens with the rps lock held,
5770 	 * process_queue access may race only with dequeue
5771 	 */
5772 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5773 		   !skb_queue_empty_lockless(&sd->process_queue);
5774 	rps_unlock(sd);
5775 	local_irq_enable();
5776 
5777 	return do_flush;
5778 #endif
5779 	/* without RPS we can't safely check input_pkt_queue: during a
5780 	 * concurrent remote skb_queue_splice() we can detect as empty both
5781 	 * input_pkt_queue and process_queue even if the latter could end-up
5782 	 * containing a lot of packets.
5783 	 */
5784 	return true;
5785 }
5786 
5787 static void flush_all_backlogs(void)
5788 {
5789 	static cpumask_t flush_cpus;
5790 	unsigned int cpu;
5791 
5792 	/* since we are under rtnl lock protection we can use static data
5793 	 * for the cpumask and avoid allocating on stack the possibly
5794 	 * large mask
5795 	 */
5796 	ASSERT_RTNL();
5797 
5798 	cpus_read_lock();
5799 
5800 	cpumask_clear(&flush_cpus);
5801 	for_each_online_cpu(cpu) {
5802 		if (flush_required(cpu)) {
5803 			queue_work_on(cpu, system_highpri_wq,
5804 				      per_cpu_ptr(&flush_works, cpu));
5805 			cpumask_set_cpu(cpu, &flush_cpus);
5806 		}
5807 	}
5808 
5809 	/* we can have in flight packet[s] on the cpus we are not flushing,
5810 	 * synchronize_net() in unregister_netdevice_many() will take care of
5811 	 * them
5812 	 */
5813 	for_each_cpu(cpu, &flush_cpus)
5814 		flush_work(per_cpu_ptr(&flush_works, cpu));
5815 
5816 	cpus_read_unlock();
5817 }
5818 
5819 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5820 static void gro_normal_list(struct napi_struct *napi)
5821 {
5822 	if (!napi->rx_count)
5823 		return;
5824 	netif_receive_skb_list_internal(&napi->rx_list);
5825 	INIT_LIST_HEAD(&napi->rx_list);
5826 	napi->rx_count = 0;
5827 }
5828 
5829 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5830  * pass the whole batch up to the stack.
5831  */
5832 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5833 {
5834 	list_add_tail(&skb->list, &napi->rx_list);
5835 	napi->rx_count += segs;
5836 	if (napi->rx_count >= gro_normal_batch)
5837 		gro_normal_list(napi);
5838 }
5839 
5840 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5841 {
5842 	struct packet_offload *ptype;
5843 	__be16 type = skb->protocol;
5844 	struct list_head *head = &offload_base;
5845 	int err = -ENOENT;
5846 
5847 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5848 
5849 	if (NAPI_GRO_CB(skb)->count == 1) {
5850 		skb_shinfo(skb)->gso_size = 0;
5851 		goto out;
5852 	}
5853 
5854 	rcu_read_lock();
5855 	list_for_each_entry_rcu(ptype, head, list) {
5856 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5857 			continue;
5858 
5859 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5860 					 ipv6_gro_complete, inet_gro_complete,
5861 					 skb, 0);
5862 		break;
5863 	}
5864 	rcu_read_unlock();
5865 
5866 	if (err) {
5867 		WARN_ON(&ptype->list == head);
5868 		kfree_skb(skb);
5869 		return NET_RX_SUCCESS;
5870 	}
5871 
5872 out:
5873 	gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5874 	return NET_RX_SUCCESS;
5875 }
5876 
5877 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5878 				   bool flush_old)
5879 {
5880 	struct list_head *head = &napi->gro_hash[index].list;
5881 	struct sk_buff *skb, *p;
5882 
5883 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5884 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5885 			return;
5886 		skb_list_del_init(skb);
5887 		napi_gro_complete(napi, skb);
5888 		napi->gro_hash[index].count--;
5889 	}
5890 
5891 	if (!napi->gro_hash[index].count)
5892 		__clear_bit(index, &napi->gro_bitmask);
5893 }
5894 
5895 /* napi->gro_hash[].list contains packets ordered by age.
5896  * youngest packets at the head of it.
5897  * Complete skbs in reverse order to reduce latencies.
5898  */
5899 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5900 {
5901 	unsigned long bitmask = napi->gro_bitmask;
5902 	unsigned int i, base = ~0U;
5903 
5904 	while ((i = ffs(bitmask)) != 0) {
5905 		bitmask >>= i;
5906 		base += i;
5907 		__napi_gro_flush_chain(napi, base, flush_old);
5908 	}
5909 }
5910 EXPORT_SYMBOL(napi_gro_flush);
5911 
5912 static void gro_list_prepare(const struct list_head *head,
5913 			     const struct sk_buff *skb)
5914 {
5915 	unsigned int maclen = skb->dev->hard_header_len;
5916 	u32 hash = skb_get_hash_raw(skb);
5917 	struct sk_buff *p;
5918 
5919 	list_for_each_entry(p, head, list) {
5920 		unsigned long diffs;
5921 
5922 		NAPI_GRO_CB(p)->flush = 0;
5923 
5924 		if (hash != skb_get_hash_raw(p)) {
5925 			NAPI_GRO_CB(p)->same_flow = 0;
5926 			continue;
5927 		}
5928 
5929 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5930 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5931 		if (skb_vlan_tag_present(p))
5932 			diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5933 		diffs |= skb_metadata_differs(p, skb);
5934 		if (maclen == ETH_HLEN)
5935 			diffs |= compare_ether_header(skb_mac_header(p),
5936 						      skb_mac_header(skb));
5937 		else if (!diffs)
5938 			diffs = memcmp(skb_mac_header(p),
5939 				       skb_mac_header(skb),
5940 				       maclen);
5941 
5942 		/* in most common scenarions 'slow_gro' is 0
5943 		 * otherwise we are already on some slower paths
5944 		 * either skip all the infrequent tests altogether or
5945 		 * avoid trying too hard to skip each of them individually
5946 		 */
5947 		if (!diffs && unlikely(skb->slow_gro | p->slow_gro)) {
5948 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5949 			struct tc_skb_ext *skb_ext;
5950 			struct tc_skb_ext *p_ext;
5951 #endif
5952 
5953 			diffs |= p->sk != skb->sk;
5954 			diffs |= skb_metadata_dst_cmp(p, skb);
5955 			diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb);
5956 
5957 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5958 			skb_ext = skb_ext_find(skb, TC_SKB_EXT);
5959 			p_ext = skb_ext_find(p, TC_SKB_EXT);
5960 
5961 			diffs |= (!!p_ext) ^ (!!skb_ext);
5962 			if (!diffs && unlikely(skb_ext))
5963 				diffs |= p_ext->chain ^ skb_ext->chain;
5964 #endif
5965 		}
5966 
5967 		NAPI_GRO_CB(p)->same_flow = !diffs;
5968 	}
5969 }
5970 
5971 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
5972 {
5973 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5974 	const skb_frag_t *frag0 = &pinfo->frags[0];
5975 
5976 	NAPI_GRO_CB(skb)->data_offset = 0;
5977 	NAPI_GRO_CB(skb)->frag0 = NULL;
5978 	NAPI_GRO_CB(skb)->frag0_len = 0;
5979 
5980 	if (!skb_headlen(skb) && pinfo->nr_frags &&
5981 	    !PageHighMem(skb_frag_page(frag0)) &&
5982 	    (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
5983 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5984 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5985 						    skb_frag_size(frag0),
5986 						    skb->end - skb->tail);
5987 	}
5988 }
5989 
5990 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5991 {
5992 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5993 
5994 	BUG_ON(skb->end - skb->tail < grow);
5995 
5996 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5997 
5998 	skb->data_len -= grow;
5999 	skb->tail += grow;
6000 
6001 	skb_frag_off_add(&pinfo->frags[0], grow);
6002 	skb_frag_size_sub(&pinfo->frags[0], grow);
6003 
6004 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6005 		skb_frag_unref(skb, 0);
6006 		memmove(pinfo->frags, pinfo->frags + 1,
6007 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
6008 	}
6009 }
6010 
6011 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6012 {
6013 	struct sk_buff *oldest;
6014 
6015 	oldest = list_last_entry(head, struct sk_buff, list);
6016 
6017 	/* We are called with head length >= MAX_GRO_SKBS, so this is
6018 	 * impossible.
6019 	 */
6020 	if (WARN_ON_ONCE(!oldest))
6021 		return;
6022 
6023 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
6024 	 * SKB to the chain.
6025 	 */
6026 	skb_list_del_init(oldest);
6027 	napi_gro_complete(napi, oldest);
6028 }
6029 
6030 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6031 {
6032 	u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6033 	struct gro_list *gro_list = &napi->gro_hash[bucket];
6034 	struct list_head *head = &offload_base;
6035 	struct packet_offload *ptype;
6036 	__be16 type = skb->protocol;
6037 	struct sk_buff *pp = NULL;
6038 	enum gro_result ret;
6039 	int same_flow;
6040 	int grow;
6041 
6042 	if (netif_elide_gro(skb->dev))
6043 		goto normal;
6044 
6045 	gro_list_prepare(&gro_list->list, skb);
6046 
6047 	rcu_read_lock();
6048 	list_for_each_entry_rcu(ptype, head, list) {
6049 		if (ptype->type != type || !ptype->callbacks.gro_receive)
6050 			continue;
6051 
6052 		skb_set_network_header(skb, skb_gro_offset(skb));
6053 		skb_reset_mac_len(skb);
6054 		NAPI_GRO_CB(skb)->same_flow = 0;
6055 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6056 		NAPI_GRO_CB(skb)->free = 0;
6057 		NAPI_GRO_CB(skb)->encap_mark = 0;
6058 		NAPI_GRO_CB(skb)->recursion_counter = 0;
6059 		NAPI_GRO_CB(skb)->is_fou = 0;
6060 		NAPI_GRO_CB(skb)->is_atomic = 1;
6061 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6062 
6063 		/* Setup for GRO checksum validation */
6064 		switch (skb->ip_summed) {
6065 		case CHECKSUM_COMPLETE:
6066 			NAPI_GRO_CB(skb)->csum = skb->csum;
6067 			NAPI_GRO_CB(skb)->csum_valid = 1;
6068 			NAPI_GRO_CB(skb)->csum_cnt = 0;
6069 			break;
6070 		case CHECKSUM_UNNECESSARY:
6071 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6072 			NAPI_GRO_CB(skb)->csum_valid = 0;
6073 			break;
6074 		default:
6075 			NAPI_GRO_CB(skb)->csum_cnt = 0;
6076 			NAPI_GRO_CB(skb)->csum_valid = 0;
6077 		}
6078 
6079 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6080 					ipv6_gro_receive, inet_gro_receive,
6081 					&gro_list->list, skb);
6082 		break;
6083 	}
6084 	rcu_read_unlock();
6085 
6086 	if (&ptype->list == head)
6087 		goto normal;
6088 
6089 	if (PTR_ERR(pp) == -EINPROGRESS) {
6090 		ret = GRO_CONSUMED;
6091 		goto ok;
6092 	}
6093 
6094 	same_flow = NAPI_GRO_CB(skb)->same_flow;
6095 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6096 
6097 	if (pp) {
6098 		skb_list_del_init(pp);
6099 		napi_gro_complete(napi, pp);
6100 		gro_list->count--;
6101 	}
6102 
6103 	if (same_flow)
6104 		goto ok;
6105 
6106 	if (NAPI_GRO_CB(skb)->flush)
6107 		goto normal;
6108 
6109 	if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6110 		gro_flush_oldest(napi, &gro_list->list);
6111 	else
6112 		gro_list->count++;
6113 
6114 	NAPI_GRO_CB(skb)->count = 1;
6115 	NAPI_GRO_CB(skb)->age = jiffies;
6116 	NAPI_GRO_CB(skb)->last = skb;
6117 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6118 	list_add(&skb->list, &gro_list->list);
6119 	ret = GRO_HELD;
6120 
6121 pull:
6122 	grow = skb_gro_offset(skb) - skb_headlen(skb);
6123 	if (grow > 0)
6124 		gro_pull_from_frag0(skb, grow);
6125 ok:
6126 	if (gro_list->count) {
6127 		if (!test_bit(bucket, &napi->gro_bitmask))
6128 			__set_bit(bucket, &napi->gro_bitmask);
6129 	} else if (test_bit(bucket, &napi->gro_bitmask)) {
6130 		__clear_bit(bucket, &napi->gro_bitmask);
6131 	}
6132 
6133 	return ret;
6134 
6135 normal:
6136 	ret = GRO_NORMAL;
6137 	goto pull;
6138 }
6139 
6140 struct packet_offload *gro_find_receive_by_type(__be16 type)
6141 {
6142 	struct list_head *offload_head = &offload_base;
6143 	struct packet_offload *ptype;
6144 
6145 	list_for_each_entry_rcu(ptype, offload_head, list) {
6146 		if (ptype->type != type || !ptype->callbacks.gro_receive)
6147 			continue;
6148 		return ptype;
6149 	}
6150 	return NULL;
6151 }
6152 EXPORT_SYMBOL(gro_find_receive_by_type);
6153 
6154 struct packet_offload *gro_find_complete_by_type(__be16 type)
6155 {
6156 	struct list_head *offload_head = &offload_base;
6157 	struct packet_offload *ptype;
6158 
6159 	list_for_each_entry_rcu(ptype, offload_head, list) {
6160 		if (ptype->type != type || !ptype->callbacks.gro_complete)
6161 			continue;
6162 		return ptype;
6163 	}
6164 	return NULL;
6165 }
6166 EXPORT_SYMBOL(gro_find_complete_by_type);
6167 
6168 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6169 				    struct sk_buff *skb,
6170 				    gro_result_t ret)
6171 {
6172 	switch (ret) {
6173 	case GRO_NORMAL:
6174 		gro_normal_one(napi, skb, 1);
6175 		break;
6176 
6177 	case GRO_MERGED_FREE:
6178 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6179 			napi_skb_free_stolen_head(skb);
6180 		else if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
6181 			__kfree_skb(skb);
6182 		else
6183 			__kfree_skb_defer(skb);
6184 		break;
6185 
6186 	case GRO_HELD:
6187 	case GRO_MERGED:
6188 	case GRO_CONSUMED:
6189 		break;
6190 	}
6191 
6192 	return ret;
6193 }
6194 
6195 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6196 {
6197 	gro_result_t ret;
6198 
6199 	skb_mark_napi_id(skb, napi);
6200 	trace_napi_gro_receive_entry(skb);
6201 
6202 	skb_gro_reset_offset(skb, 0);
6203 
6204 	ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6205 	trace_napi_gro_receive_exit(ret);
6206 
6207 	return ret;
6208 }
6209 EXPORT_SYMBOL(napi_gro_receive);
6210 
6211 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6212 {
6213 	if (unlikely(skb->pfmemalloc)) {
6214 		consume_skb(skb);
6215 		return;
6216 	}
6217 	__skb_pull(skb, skb_headlen(skb));
6218 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
6219 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6220 	__vlan_hwaccel_clear_tag(skb);
6221 	skb->dev = napi->dev;
6222 	skb->skb_iif = 0;
6223 
6224 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
6225 	skb->pkt_type = PACKET_HOST;
6226 
6227 	skb->encapsulation = 0;
6228 	skb_shinfo(skb)->gso_type = 0;
6229 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6230 	if (unlikely(skb->slow_gro)) {
6231 		skb_orphan(skb);
6232 		skb_ext_reset(skb);
6233 		nf_reset_ct(skb);
6234 		skb->slow_gro = 0;
6235 	}
6236 
6237 	napi->skb = skb;
6238 }
6239 
6240 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6241 {
6242 	struct sk_buff *skb = napi->skb;
6243 
6244 	if (!skb) {
6245 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6246 		if (skb) {
6247 			napi->skb = skb;
6248 			skb_mark_napi_id(skb, napi);
6249 		}
6250 	}
6251 	return skb;
6252 }
6253 EXPORT_SYMBOL(napi_get_frags);
6254 
6255 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6256 				      struct sk_buff *skb,
6257 				      gro_result_t ret)
6258 {
6259 	switch (ret) {
6260 	case GRO_NORMAL:
6261 	case GRO_HELD:
6262 		__skb_push(skb, ETH_HLEN);
6263 		skb->protocol = eth_type_trans(skb, skb->dev);
6264 		if (ret == GRO_NORMAL)
6265 			gro_normal_one(napi, skb, 1);
6266 		break;
6267 
6268 	case GRO_MERGED_FREE:
6269 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6270 			napi_skb_free_stolen_head(skb);
6271 		else
6272 			napi_reuse_skb(napi, skb);
6273 		break;
6274 
6275 	case GRO_MERGED:
6276 	case GRO_CONSUMED:
6277 		break;
6278 	}
6279 
6280 	return ret;
6281 }
6282 
6283 /* Upper GRO stack assumes network header starts at gro_offset=0
6284  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6285  * We copy ethernet header into skb->data to have a common layout.
6286  */
6287 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6288 {
6289 	struct sk_buff *skb = napi->skb;
6290 	const struct ethhdr *eth;
6291 	unsigned int hlen = sizeof(*eth);
6292 
6293 	napi->skb = NULL;
6294 
6295 	skb_reset_mac_header(skb);
6296 	skb_gro_reset_offset(skb, hlen);
6297 
6298 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
6299 		eth = skb_gro_header_slow(skb, hlen, 0);
6300 		if (unlikely(!eth)) {
6301 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6302 					     __func__, napi->dev->name);
6303 			napi_reuse_skb(napi, skb);
6304 			return NULL;
6305 		}
6306 	} else {
6307 		eth = (const struct ethhdr *)skb->data;
6308 		gro_pull_from_frag0(skb, hlen);
6309 		NAPI_GRO_CB(skb)->frag0 += hlen;
6310 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
6311 	}
6312 	__skb_pull(skb, hlen);
6313 
6314 	/*
6315 	 * This works because the only protocols we care about don't require
6316 	 * special handling.
6317 	 * We'll fix it up properly in napi_frags_finish()
6318 	 */
6319 	skb->protocol = eth->h_proto;
6320 
6321 	return skb;
6322 }
6323 
6324 gro_result_t napi_gro_frags(struct napi_struct *napi)
6325 {
6326 	gro_result_t ret;
6327 	struct sk_buff *skb = napi_frags_skb(napi);
6328 
6329 	trace_napi_gro_frags_entry(skb);
6330 
6331 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6332 	trace_napi_gro_frags_exit(ret);
6333 
6334 	return ret;
6335 }
6336 EXPORT_SYMBOL(napi_gro_frags);
6337 
6338 /* Compute the checksum from gro_offset and return the folded value
6339  * after adding in any pseudo checksum.
6340  */
6341 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6342 {
6343 	__wsum wsum;
6344 	__sum16 sum;
6345 
6346 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6347 
6348 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6349 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6350 	/* See comments in __skb_checksum_complete(). */
6351 	if (likely(!sum)) {
6352 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6353 		    !skb->csum_complete_sw)
6354 			netdev_rx_csum_fault(skb->dev, skb);
6355 	}
6356 
6357 	NAPI_GRO_CB(skb)->csum = wsum;
6358 	NAPI_GRO_CB(skb)->csum_valid = 1;
6359 
6360 	return sum;
6361 }
6362 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6363 
6364 static void net_rps_send_ipi(struct softnet_data *remsd)
6365 {
6366 #ifdef CONFIG_RPS
6367 	while (remsd) {
6368 		struct softnet_data *next = remsd->rps_ipi_next;
6369 
6370 		if (cpu_online(remsd->cpu))
6371 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6372 		remsd = next;
6373 	}
6374 #endif
6375 }
6376 
6377 /*
6378  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6379  * Note: called with local irq disabled, but exits with local irq enabled.
6380  */
6381 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6382 {
6383 #ifdef CONFIG_RPS
6384 	struct softnet_data *remsd = sd->rps_ipi_list;
6385 
6386 	if (remsd) {
6387 		sd->rps_ipi_list = NULL;
6388 
6389 		local_irq_enable();
6390 
6391 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6392 		net_rps_send_ipi(remsd);
6393 	} else
6394 #endif
6395 		local_irq_enable();
6396 }
6397 
6398 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6399 {
6400 #ifdef CONFIG_RPS
6401 	return sd->rps_ipi_list != NULL;
6402 #else
6403 	return false;
6404 #endif
6405 }
6406 
6407 static int process_backlog(struct napi_struct *napi, int quota)
6408 {
6409 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6410 	bool again = true;
6411 	int work = 0;
6412 
6413 	/* Check if we have pending ipi, its better to send them now,
6414 	 * not waiting net_rx_action() end.
6415 	 */
6416 	if (sd_has_rps_ipi_waiting(sd)) {
6417 		local_irq_disable();
6418 		net_rps_action_and_irq_enable(sd);
6419 	}
6420 
6421 	napi->weight = dev_rx_weight;
6422 	while (again) {
6423 		struct sk_buff *skb;
6424 
6425 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6426 			rcu_read_lock();
6427 			__netif_receive_skb(skb);
6428 			rcu_read_unlock();
6429 			input_queue_head_incr(sd);
6430 			if (++work >= quota)
6431 				return work;
6432 
6433 		}
6434 
6435 		local_irq_disable();
6436 		rps_lock(sd);
6437 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6438 			/*
6439 			 * Inline a custom version of __napi_complete().
6440 			 * only current cpu owns and manipulates this napi,
6441 			 * and NAPI_STATE_SCHED is the only possible flag set
6442 			 * on backlog.
6443 			 * We can use a plain write instead of clear_bit(),
6444 			 * and we dont need an smp_mb() memory barrier.
6445 			 */
6446 			napi->state = 0;
6447 			again = false;
6448 		} else {
6449 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6450 						   &sd->process_queue);
6451 		}
6452 		rps_unlock(sd);
6453 		local_irq_enable();
6454 	}
6455 
6456 	return work;
6457 }
6458 
6459 /**
6460  * __napi_schedule - schedule for receive
6461  * @n: entry to schedule
6462  *
6463  * The entry's receive function will be scheduled to run.
6464  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6465  */
6466 void __napi_schedule(struct napi_struct *n)
6467 {
6468 	unsigned long flags;
6469 
6470 	local_irq_save(flags);
6471 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6472 	local_irq_restore(flags);
6473 }
6474 EXPORT_SYMBOL(__napi_schedule);
6475 
6476 /**
6477  *	napi_schedule_prep - check if napi can be scheduled
6478  *	@n: napi context
6479  *
6480  * Test if NAPI routine is already running, and if not mark
6481  * it as running.  This is used as a condition variable to
6482  * insure only one NAPI poll instance runs.  We also make
6483  * sure there is no pending NAPI disable.
6484  */
6485 bool napi_schedule_prep(struct napi_struct *n)
6486 {
6487 	unsigned long val, new;
6488 
6489 	do {
6490 		val = READ_ONCE(n->state);
6491 		if (unlikely(val & NAPIF_STATE_DISABLE))
6492 			return false;
6493 		new = val | NAPIF_STATE_SCHED;
6494 
6495 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6496 		 * This was suggested by Alexander Duyck, as compiler
6497 		 * emits better code than :
6498 		 * if (val & NAPIF_STATE_SCHED)
6499 		 *     new |= NAPIF_STATE_MISSED;
6500 		 */
6501 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6502 						   NAPIF_STATE_MISSED;
6503 	} while (cmpxchg(&n->state, val, new) != val);
6504 
6505 	return !(val & NAPIF_STATE_SCHED);
6506 }
6507 EXPORT_SYMBOL(napi_schedule_prep);
6508 
6509 /**
6510  * __napi_schedule_irqoff - schedule for receive
6511  * @n: entry to schedule
6512  *
6513  * Variant of __napi_schedule() assuming hard irqs are masked.
6514  *
6515  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6516  * because the interrupt disabled assumption might not be true
6517  * due to force-threaded interrupts and spinlock substitution.
6518  */
6519 void __napi_schedule_irqoff(struct napi_struct *n)
6520 {
6521 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6522 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6523 	else
6524 		__napi_schedule(n);
6525 }
6526 EXPORT_SYMBOL(__napi_schedule_irqoff);
6527 
6528 bool napi_complete_done(struct napi_struct *n, int work_done)
6529 {
6530 	unsigned long flags, val, new, timeout = 0;
6531 	bool ret = true;
6532 
6533 	/*
6534 	 * 1) Don't let napi dequeue from the cpu poll list
6535 	 *    just in case its running on a different cpu.
6536 	 * 2) If we are busy polling, do nothing here, we have
6537 	 *    the guarantee we will be called later.
6538 	 */
6539 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6540 				 NAPIF_STATE_IN_BUSY_POLL)))
6541 		return false;
6542 
6543 	if (work_done) {
6544 		if (n->gro_bitmask)
6545 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6546 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6547 	}
6548 	if (n->defer_hard_irqs_count > 0) {
6549 		n->defer_hard_irqs_count--;
6550 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6551 		if (timeout)
6552 			ret = false;
6553 	}
6554 	if (n->gro_bitmask) {
6555 		/* When the NAPI instance uses a timeout and keeps postponing
6556 		 * it, we need to bound somehow the time packets are kept in
6557 		 * the GRO layer
6558 		 */
6559 		napi_gro_flush(n, !!timeout);
6560 	}
6561 
6562 	gro_normal_list(n);
6563 
6564 	if (unlikely(!list_empty(&n->poll_list))) {
6565 		/* If n->poll_list is not empty, we need to mask irqs */
6566 		local_irq_save(flags);
6567 		list_del_init(&n->poll_list);
6568 		local_irq_restore(flags);
6569 	}
6570 
6571 	do {
6572 		val = READ_ONCE(n->state);
6573 
6574 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6575 
6576 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6577 			      NAPIF_STATE_SCHED_THREADED |
6578 			      NAPIF_STATE_PREFER_BUSY_POLL);
6579 
6580 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6581 		 * because we will call napi->poll() one more time.
6582 		 * This C code was suggested by Alexander Duyck to help gcc.
6583 		 */
6584 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6585 						    NAPIF_STATE_SCHED;
6586 	} while (cmpxchg(&n->state, val, new) != val);
6587 
6588 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6589 		__napi_schedule(n);
6590 		return false;
6591 	}
6592 
6593 	if (timeout)
6594 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6595 			      HRTIMER_MODE_REL_PINNED);
6596 	return ret;
6597 }
6598 EXPORT_SYMBOL(napi_complete_done);
6599 
6600 /* must be called under rcu_read_lock(), as we dont take a reference */
6601 static struct napi_struct *napi_by_id(unsigned int napi_id)
6602 {
6603 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6604 	struct napi_struct *napi;
6605 
6606 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6607 		if (napi->napi_id == napi_id)
6608 			return napi;
6609 
6610 	return NULL;
6611 }
6612 
6613 #if defined(CONFIG_NET_RX_BUSY_POLL)
6614 
6615 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6616 {
6617 	if (!skip_schedule) {
6618 		gro_normal_list(napi);
6619 		__napi_schedule(napi);
6620 		return;
6621 	}
6622 
6623 	if (napi->gro_bitmask) {
6624 		/* flush too old packets
6625 		 * If HZ < 1000, flush all packets.
6626 		 */
6627 		napi_gro_flush(napi, HZ >= 1000);
6628 	}
6629 
6630 	gro_normal_list(napi);
6631 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6632 }
6633 
6634 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6635 			   u16 budget)
6636 {
6637 	bool skip_schedule = false;
6638 	unsigned long timeout;
6639 	int rc;
6640 
6641 	/* Busy polling means there is a high chance device driver hard irq
6642 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6643 	 * set in napi_schedule_prep().
6644 	 * Since we are about to call napi->poll() once more, we can safely
6645 	 * clear NAPI_STATE_MISSED.
6646 	 *
6647 	 * Note: x86 could use a single "lock and ..." instruction
6648 	 * to perform these two clear_bit()
6649 	 */
6650 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6651 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6652 
6653 	local_bh_disable();
6654 
6655 	if (prefer_busy_poll) {
6656 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6657 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6658 		if (napi->defer_hard_irqs_count && timeout) {
6659 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6660 			skip_schedule = true;
6661 		}
6662 	}
6663 
6664 	/* All we really want here is to re-enable device interrupts.
6665 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6666 	 */
6667 	rc = napi->poll(napi, budget);
6668 	/* We can't gro_normal_list() here, because napi->poll() might have
6669 	 * rearmed the napi (napi_complete_done()) in which case it could
6670 	 * already be running on another CPU.
6671 	 */
6672 	trace_napi_poll(napi, rc, budget);
6673 	netpoll_poll_unlock(have_poll_lock);
6674 	if (rc == budget)
6675 		__busy_poll_stop(napi, skip_schedule);
6676 	local_bh_enable();
6677 }
6678 
6679 void napi_busy_loop(unsigned int napi_id,
6680 		    bool (*loop_end)(void *, unsigned long),
6681 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6682 {
6683 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6684 	int (*napi_poll)(struct napi_struct *napi, int budget);
6685 	void *have_poll_lock = NULL;
6686 	struct napi_struct *napi;
6687 
6688 restart:
6689 	napi_poll = NULL;
6690 
6691 	rcu_read_lock();
6692 
6693 	napi = napi_by_id(napi_id);
6694 	if (!napi)
6695 		goto out;
6696 
6697 	preempt_disable();
6698 	for (;;) {
6699 		int work = 0;
6700 
6701 		local_bh_disable();
6702 		if (!napi_poll) {
6703 			unsigned long val = READ_ONCE(napi->state);
6704 
6705 			/* If multiple threads are competing for this napi,
6706 			 * we avoid dirtying napi->state as much as we can.
6707 			 */
6708 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6709 				   NAPIF_STATE_IN_BUSY_POLL)) {
6710 				if (prefer_busy_poll)
6711 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6712 				goto count;
6713 			}
6714 			if (cmpxchg(&napi->state, val,
6715 				    val | NAPIF_STATE_IN_BUSY_POLL |
6716 					  NAPIF_STATE_SCHED) != val) {
6717 				if (prefer_busy_poll)
6718 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6719 				goto count;
6720 			}
6721 			have_poll_lock = netpoll_poll_lock(napi);
6722 			napi_poll = napi->poll;
6723 		}
6724 		work = napi_poll(napi, budget);
6725 		trace_napi_poll(napi, work, budget);
6726 		gro_normal_list(napi);
6727 count:
6728 		if (work > 0)
6729 			__NET_ADD_STATS(dev_net(napi->dev),
6730 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6731 		local_bh_enable();
6732 
6733 		if (!loop_end || loop_end(loop_end_arg, start_time))
6734 			break;
6735 
6736 		if (unlikely(need_resched())) {
6737 			if (napi_poll)
6738 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6739 			preempt_enable();
6740 			rcu_read_unlock();
6741 			cond_resched();
6742 			if (loop_end(loop_end_arg, start_time))
6743 				return;
6744 			goto restart;
6745 		}
6746 		cpu_relax();
6747 	}
6748 	if (napi_poll)
6749 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6750 	preempt_enable();
6751 out:
6752 	rcu_read_unlock();
6753 }
6754 EXPORT_SYMBOL(napi_busy_loop);
6755 
6756 #endif /* CONFIG_NET_RX_BUSY_POLL */
6757 
6758 static void napi_hash_add(struct napi_struct *napi)
6759 {
6760 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6761 		return;
6762 
6763 	spin_lock(&napi_hash_lock);
6764 
6765 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6766 	do {
6767 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6768 			napi_gen_id = MIN_NAPI_ID;
6769 	} while (napi_by_id(napi_gen_id));
6770 	napi->napi_id = napi_gen_id;
6771 
6772 	hlist_add_head_rcu(&napi->napi_hash_node,
6773 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6774 
6775 	spin_unlock(&napi_hash_lock);
6776 }
6777 
6778 /* Warning : caller is responsible to make sure rcu grace period
6779  * is respected before freeing memory containing @napi
6780  */
6781 static void napi_hash_del(struct napi_struct *napi)
6782 {
6783 	spin_lock(&napi_hash_lock);
6784 
6785 	hlist_del_init_rcu(&napi->napi_hash_node);
6786 
6787 	spin_unlock(&napi_hash_lock);
6788 }
6789 
6790 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6791 {
6792 	struct napi_struct *napi;
6793 
6794 	napi = container_of(timer, struct napi_struct, timer);
6795 
6796 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6797 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6798 	 */
6799 	if (!napi_disable_pending(napi) &&
6800 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6801 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6802 		__napi_schedule_irqoff(napi);
6803 	}
6804 
6805 	return HRTIMER_NORESTART;
6806 }
6807 
6808 static void init_gro_hash(struct napi_struct *napi)
6809 {
6810 	int i;
6811 
6812 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6813 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6814 		napi->gro_hash[i].count = 0;
6815 	}
6816 	napi->gro_bitmask = 0;
6817 }
6818 
6819 int dev_set_threaded(struct net_device *dev, bool threaded)
6820 {
6821 	struct napi_struct *napi;
6822 	int err = 0;
6823 
6824 	if (dev->threaded == threaded)
6825 		return 0;
6826 
6827 	if (threaded) {
6828 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6829 			if (!napi->thread) {
6830 				err = napi_kthread_create(napi);
6831 				if (err) {
6832 					threaded = false;
6833 					break;
6834 				}
6835 			}
6836 		}
6837 	}
6838 
6839 	dev->threaded = threaded;
6840 
6841 	/* Make sure kthread is created before THREADED bit
6842 	 * is set.
6843 	 */
6844 	smp_mb__before_atomic();
6845 
6846 	/* Setting/unsetting threaded mode on a napi might not immediately
6847 	 * take effect, if the current napi instance is actively being
6848 	 * polled. In this case, the switch between threaded mode and
6849 	 * softirq mode will happen in the next round of napi_schedule().
6850 	 * This should not cause hiccups/stalls to the live traffic.
6851 	 */
6852 	list_for_each_entry(napi, &dev->napi_list, dev_list) {
6853 		if (threaded)
6854 			set_bit(NAPI_STATE_THREADED, &napi->state);
6855 		else
6856 			clear_bit(NAPI_STATE_THREADED, &napi->state);
6857 	}
6858 
6859 	return err;
6860 }
6861 EXPORT_SYMBOL(dev_set_threaded);
6862 
6863 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6864 		    int (*poll)(struct napi_struct *, int), int weight)
6865 {
6866 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6867 		return;
6868 
6869 	INIT_LIST_HEAD(&napi->poll_list);
6870 	INIT_HLIST_NODE(&napi->napi_hash_node);
6871 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6872 	napi->timer.function = napi_watchdog;
6873 	init_gro_hash(napi);
6874 	napi->skb = NULL;
6875 	INIT_LIST_HEAD(&napi->rx_list);
6876 	napi->rx_count = 0;
6877 	napi->poll = poll;
6878 	if (weight > NAPI_POLL_WEIGHT)
6879 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6880 				weight);
6881 	napi->weight = weight;
6882 	napi->dev = dev;
6883 #ifdef CONFIG_NETPOLL
6884 	napi->poll_owner = -1;
6885 #endif
6886 	set_bit(NAPI_STATE_SCHED, &napi->state);
6887 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6888 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6889 	napi_hash_add(napi);
6890 	/* Create kthread for this napi if dev->threaded is set.
6891 	 * Clear dev->threaded if kthread creation failed so that
6892 	 * threaded mode will not be enabled in napi_enable().
6893 	 */
6894 	if (dev->threaded && napi_kthread_create(napi))
6895 		dev->threaded = 0;
6896 }
6897 EXPORT_SYMBOL(netif_napi_add);
6898 
6899 void napi_disable(struct napi_struct *n)
6900 {
6901 	might_sleep();
6902 	set_bit(NAPI_STATE_DISABLE, &n->state);
6903 
6904 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6905 		msleep(1);
6906 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6907 		msleep(1);
6908 
6909 	hrtimer_cancel(&n->timer);
6910 
6911 	clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6912 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6913 	clear_bit(NAPI_STATE_THREADED, &n->state);
6914 }
6915 EXPORT_SYMBOL(napi_disable);
6916 
6917 /**
6918  *	napi_enable - enable NAPI scheduling
6919  *	@n: NAPI context
6920  *
6921  * Resume NAPI from being scheduled on this context.
6922  * Must be paired with napi_disable.
6923  */
6924 void napi_enable(struct napi_struct *n)
6925 {
6926 	unsigned long val, new;
6927 
6928 	do {
6929 		val = READ_ONCE(n->state);
6930 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6931 
6932 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6933 		if (n->dev->threaded && n->thread)
6934 			new |= NAPIF_STATE_THREADED;
6935 	} while (cmpxchg(&n->state, val, new) != val);
6936 }
6937 EXPORT_SYMBOL(napi_enable);
6938 
6939 static void flush_gro_hash(struct napi_struct *napi)
6940 {
6941 	int i;
6942 
6943 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6944 		struct sk_buff *skb, *n;
6945 
6946 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6947 			kfree_skb(skb);
6948 		napi->gro_hash[i].count = 0;
6949 	}
6950 }
6951 
6952 /* Must be called in process context */
6953 void __netif_napi_del(struct napi_struct *napi)
6954 {
6955 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6956 		return;
6957 
6958 	napi_hash_del(napi);
6959 	list_del_rcu(&napi->dev_list);
6960 	napi_free_frags(napi);
6961 
6962 	flush_gro_hash(napi);
6963 	napi->gro_bitmask = 0;
6964 
6965 	if (napi->thread) {
6966 		kthread_stop(napi->thread);
6967 		napi->thread = NULL;
6968 	}
6969 }
6970 EXPORT_SYMBOL(__netif_napi_del);
6971 
6972 static int __napi_poll(struct napi_struct *n, bool *repoll)
6973 {
6974 	int work, weight;
6975 
6976 	weight = n->weight;
6977 
6978 	/* This NAPI_STATE_SCHED test is for avoiding a race
6979 	 * with netpoll's poll_napi().  Only the entity which
6980 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6981 	 * actually make the ->poll() call.  Therefore we avoid
6982 	 * accidentally calling ->poll() when NAPI is not scheduled.
6983 	 */
6984 	work = 0;
6985 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6986 		work = n->poll(n, weight);
6987 		trace_napi_poll(n, work, weight);
6988 	}
6989 
6990 	if (unlikely(work > weight))
6991 		pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6992 			    n->poll, work, weight);
6993 
6994 	if (likely(work < weight))
6995 		return work;
6996 
6997 	/* Drivers must not modify the NAPI state if they
6998 	 * consume the entire weight.  In such cases this code
6999 	 * still "owns" the NAPI instance and therefore can
7000 	 * move the instance around on the list at-will.
7001 	 */
7002 	if (unlikely(napi_disable_pending(n))) {
7003 		napi_complete(n);
7004 		return work;
7005 	}
7006 
7007 	/* The NAPI context has more processing work, but busy-polling
7008 	 * is preferred. Exit early.
7009 	 */
7010 	if (napi_prefer_busy_poll(n)) {
7011 		if (napi_complete_done(n, work)) {
7012 			/* If timeout is not set, we need to make sure
7013 			 * that the NAPI is re-scheduled.
7014 			 */
7015 			napi_schedule(n);
7016 		}
7017 		return work;
7018 	}
7019 
7020 	if (n->gro_bitmask) {
7021 		/* flush too old packets
7022 		 * If HZ < 1000, flush all packets.
7023 		 */
7024 		napi_gro_flush(n, HZ >= 1000);
7025 	}
7026 
7027 	gro_normal_list(n);
7028 
7029 	/* Some drivers may have called napi_schedule
7030 	 * prior to exhausting their budget.
7031 	 */
7032 	if (unlikely(!list_empty(&n->poll_list))) {
7033 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7034 			     n->dev ? n->dev->name : "backlog");
7035 		return work;
7036 	}
7037 
7038 	*repoll = true;
7039 
7040 	return work;
7041 }
7042 
7043 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7044 {
7045 	bool do_repoll = false;
7046 	void *have;
7047 	int work;
7048 
7049 	list_del_init(&n->poll_list);
7050 
7051 	have = netpoll_poll_lock(n);
7052 
7053 	work = __napi_poll(n, &do_repoll);
7054 
7055 	if (do_repoll)
7056 		list_add_tail(&n->poll_list, repoll);
7057 
7058 	netpoll_poll_unlock(have);
7059 
7060 	return work;
7061 }
7062 
7063 static int napi_thread_wait(struct napi_struct *napi)
7064 {
7065 	bool woken = false;
7066 
7067 	set_current_state(TASK_INTERRUPTIBLE);
7068 
7069 	while (!kthread_should_stop()) {
7070 		/* Testing SCHED_THREADED bit here to make sure the current
7071 		 * kthread owns this napi and could poll on this napi.
7072 		 * Testing SCHED bit is not enough because SCHED bit might be
7073 		 * set by some other busy poll thread or by napi_disable().
7074 		 */
7075 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7076 			WARN_ON(!list_empty(&napi->poll_list));
7077 			__set_current_state(TASK_RUNNING);
7078 			return 0;
7079 		}
7080 
7081 		schedule();
7082 		/* woken being true indicates this thread owns this napi. */
7083 		woken = true;
7084 		set_current_state(TASK_INTERRUPTIBLE);
7085 	}
7086 	__set_current_state(TASK_RUNNING);
7087 
7088 	return -1;
7089 }
7090 
7091 static int napi_threaded_poll(void *data)
7092 {
7093 	struct napi_struct *napi = data;
7094 	void *have;
7095 
7096 	while (!napi_thread_wait(napi)) {
7097 		for (;;) {
7098 			bool repoll = false;
7099 
7100 			local_bh_disable();
7101 
7102 			have = netpoll_poll_lock(napi);
7103 			__napi_poll(napi, &repoll);
7104 			netpoll_poll_unlock(have);
7105 
7106 			local_bh_enable();
7107 
7108 			if (!repoll)
7109 				break;
7110 
7111 			cond_resched();
7112 		}
7113 	}
7114 	return 0;
7115 }
7116 
7117 static __latent_entropy void net_rx_action(struct softirq_action *h)
7118 {
7119 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7120 	unsigned long time_limit = jiffies +
7121 		usecs_to_jiffies(netdev_budget_usecs);
7122 	int budget = netdev_budget;
7123 	LIST_HEAD(list);
7124 	LIST_HEAD(repoll);
7125 
7126 	local_irq_disable();
7127 	list_splice_init(&sd->poll_list, &list);
7128 	local_irq_enable();
7129 
7130 	for (;;) {
7131 		struct napi_struct *n;
7132 
7133 		if (list_empty(&list)) {
7134 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7135 				return;
7136 			break;
7137 		}
7138 
7139 		n = list_first_entry(&list, struct napi_struct, poll_list);
7140 		budget -= napi_poll(n, &repoll);
7141 
7142 		/* If softirq window is exhausted then punt.
7143 		 * Allow this to run for 2 jiffies since which will allow
7144 		 * an average latency of 1.5/HZ.
7145 		 */
7146 		if (unlikely(budget <= 0 ||
7147 			     time_after_eq(jiffies, time_limit))) {
7148 			sd->time_squeeze++;
7149 			break;
7150 		}
7151 	}
7152 
7153 	local_irq_disable();
7154 
7155 	list_splice_tail_init(&sd->poll_list, &list);
7156 	list_splice_tail(&repoll, &list);
7157 	list_splice(&list, &sd->poll_list);
7158 	if (!list_empty(&sd->poll_list))
7159 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7160 
7161 	net_rps_action_and_irq_enable(sd);
7162 }
7163 
7164 struct netdev_adjacent {
7165 	struct net_device *dev;
7166 
7167 	/* upper master flag, there can only be one master device per list */
7168 	bool master;
7169 
7170 	/* lookup ignore flag */
7171 	bool ignore;
7172 
7173 	/* counter for the number of times this device was added to us */
7174 	u16 ref_nr;
7175 
7176 	/* private field for the users */
7177 	void *private;
7178 
7179 	struct list_head list;
7180 	struct rcu_head rcu;
7181 };
7182 
7183 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7184 						 struct list_head *adj_list)
7185 {
7186 	struct netdev_adjacent *adj;
7187 
7188 	list_for_each_entry(adj, adj_list, list) {
7189 		if (adj->dev == adj_dev)
7190 			return adj;
7191 	}
7192 	return NULL;
7193 }
7194 
7195 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7196 				    struct netdev_nested_priv *priv)
7197 {
7198 	struct net_device *dev = (struct net_device *)priv->data;
7199 
7200 	return upper_dev == dev;
7201 }
7202 
7203 /**
7204  * netdev_has_upper_dev - Check if device is linked to an upper device
7205  * @dev: device
7206  * @upper_dev: upper device to check
7207  *
7208  * Find out if a device is linked to specified upper device and return true
7209  * in case it is. Note that this checks only immediate upper device,
7210  * not through a complete stack of devices. The caller must hold the RTNL lock.
7211  */
7212 bool netdev_has_upper_dev(struct net_device *dev,
7213 			  struct net_device *upper_dev)
7214 {
7215 	struct netdev_nested_priv priv = {
7216 		.data = (void *)upper_dev,
7217 	};
7218 
7219 	ASSERT_RTNL();
7220 
7221 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7222 					     &priv);
7223 }
7224 EXPORT_SYMBOL(netdev_has_upper_dev);
7225 
7226 /**
7227  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7228  * @dev: device
7229  * @upper_dev: upper device to check
7230  *
7231  * Find out if a device is linked to specified upper device and return true
7232  * in case it is. Note that this checks the entire upper device chain.
7233  * The caller must hold rcu lock.
7234  */
7235 
7236 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7237 				  struct net_device *upper_dev)
7238 {
7239 	struct netdev_nested_priv priv = {
7240 		.data = (void *)upper_dev,
7241 	};
7242 
7243 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7244 					       &priv);
7245 }
7246 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7247 
7248 /**
7249  * netdev_has_any_upper_dev - Check if device is linked to some device
7250  * @dev: device
7251  *
7252  * Find out if a device is linked to an upper device and return true in case
7253  * it is. The caller must hold the RTNL lock.
7254  */
7255 bool netdev_has_any_upper_dev(struct net_device *dev)
7256 {
7257 	ASSERT_RTNL();
7258 
7259 	return !list_empty(&dev->adj_list.upper);
7260 }
7261 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7262 
7263 /**
7264  * netdev_master_upper_dev_get - Get master upper device
7265  * @dev: device
7266  *
7267  * Find a master upper device and return pointer to it or NULL in case
7268  * it's not there. The caller must hold the RTNL lock.
7269  */
7270 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7271 {
7272 	struct netdev_adjacent *upper;
7273 
7274 	ASSERT_RTNL();
7275 
7276 	if (list_empty(&dev->adj_list.upper))
7277 		return NULL;
7278 
7279 	upper = list_first_entry(&dev->adj_list.upper,
7280 				 struct netdev_adjacent, list);
7281 	if (likely(upper->master))
7282 		return upper->dev;
7283 	return NULL;
7284 }
7285 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7286 
7287 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7288 {
7289 	struct netdev_adjacent *upper;
7290 
7291 	ASSERT_RTNL();
7292 
7293 	if (list_empty(&dev->adj_list.upper))
7294 		return NULL;
7295 
7296 	upper = list_first_entry(&dev->adj_list.upper,
7297 				 struct netdev_adjacent, list);
7298 	if (likely(upper->master) && !upper->ignore)
7299 		return upper->dev;
7300 	return NULL;
7301 }
7302 
7303 /**
7304  * netdev_has_any_lower_dev - Check if device is linked to some device
7305  * @dev: device
7306  *
7307  * Find out if a device is linked to a lower device and return true in case
7308  * it is. The caller must hold the RTNL lock.
7309  */
7310 static bool netdev_has_any_lower_dev(struct net_device *dev)
7311 {
7312 	ASSERT_RTNL();
7313 
7314 	return !list_empty(&dev->adj_list.lower);
7315 }
7316 
7317 void *netdev_adjacent_get_private(struct list_head *adj_list)
7318 {
7319 	struct netdev_adjacent *adj;
7320 
7321 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7322 
7323 	return adj->private;
7324 }
7325 EXPORT_SYMBOL(netdev_adjacent_get_private);
7326 
7327 /**
7328  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7329  * @dev: device
7330  * @iter: list_head ** of the current position
7331  *
7332  * Gets the next device from the dev's upper list, starting from iter
7333  * position. The caller must hold RCU read lock.
7334  */
7335 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7336 						 struct list_head **iter)
7337 {
7338 	struct netdev_adjacent *upper;
7339 
7340 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7341 
7342 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7343 
7344 	if (&upper->list == &dev->adj_list.upper)
7345 		return NULL;
7346 
7347 	*iter = &upper->list;
7348 
7349 	return upper->dev;
7350 }
7351 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7352 
7353 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7354 						  struct list_head **iter,
7355 						  bool *ignore)
7356 {
7357 	struct netdev_adjacent *upper;
7358 
7359 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7360 
7361 	if (&upper->list == &dev->adj_list.upper)
7362 		return NULL;
7363 
7364 	*iter = &upper->list;
7365 	*ignore = upper->ignore;
7366 
7367 	return upper->dev;
7368 }
7369 
7370 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7371 						    struct list_head **iter)
7372 {
7373 	struct netdev_adjacent *upper;
7374 
7375 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7376 
7377 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7378 
7379 	if (&upper->list == &dev->adj_list.upper)
7380 		return NULL;
7381 
7382 	*iter = &upper->list;
7383 
7384 	return upper->dev;
7385 }
7386 
7387 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7388 				       int (*fn)(struct net_device *dev,
7389 					 struct netdev_nested_priv *priv),
7390 				       struct netdev_nested_priv *priv)
7391 {
7392 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7393 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7394 	int ret, cur = 0;
7395 	bool ignore;
7396 
7397 	now = dev;
7398 	iter = &dev->adj_list.upper;
7399 
7400 	while (1) {
7401 		if (now != dev) {
7402 			ret = fn(now, priv);
7403 			if (ret)
7404 				return ret;
7405 		}
7406 
7407 		next = NULL;
7408 		while (1) {
7409 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7410 			if (!udev)
7411 				break;
7412 			if (ignore)
7413 				continue;
7414 
7415 			next = udev;
7416 			niter = &udev->adj_list.upper;
7417 			dev_stack[cur] = now;
7418 			iter_stack[cur++] = iter;
7419 			break;
7420 		}
7421 
7422 		if (!next) {
7423 			if (!cur)
7424 				return 0;
7425 			next = dev_stack[--cur];
7426 			niter = iter_stack[cur];
7427 		}
7428 
7429 		now = next;
7430 		iter = niter;
7431 	}
7432 
7433 	return 0;
7434 }
7435 
7436 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7437 				  int (*fn)(struct net_device *dev,
7438 					    struct netdev_nested_priv *priv),
7439 				  struct netdev_nested_priv *priv)
7440 {
7441 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7442 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7443 	int ret, cur = 0;
7444 
7445 	now = dev;
7446 	iter = &dev->adj_list.upper;
7447 
7448 	while (1) {
7449 		if (now != dev) {
7450 			ret = fn(now, priv);
7451 			if (ret)
7452 				return ret;
7453 		}
7454 
7455 		next = NULL;
7456 		while (1) {
7457 			udev = netdev_next_upper_dev_rcu(now, &iter);
7458 			if (!udev)
7459 				break;
7460 
7461 			next = udev;
7462 			niter = &udev->adj_list.upper;
7463 			dev_stack[cur] = now;
7464 			iter_stack[cur++] = iter;
7465 			break;
7466 		}
7467 
7468 		if (!next) {
7469 			if (!cur)
7470 				return 0;
7471 			next = dev_stack[--cur];
7472 			niter = iter_stack[cur];
7473 		}
7474 
7475 		now = next;
7476 		iter = niter;
7477 	}
7478 
7479 	return 0;
7480 }
7481 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7482 
7483 static bool __netdev_has_upper_dev(struct net_device *dev,
7484 				   struct net_device *upper_dev)
7485 {
7486 	struct netdev_nested_priv priv = {
7487 		.flags = 0,
7488 		.data = (void *)upper_dev,
7489 	};
7490 
7491 	ASSERT_RTNL();
7492 
7493 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7494 					   &priv);
7495 }
7496 
7497 /**
7498  * netdev_lower_get_next_private - Get the next ->private from the
7499  *				   lower neighbour list
7500  * @dev: device
7501  * @iter: list_head ** of the current position
7502  *
7503  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7504  * list, starting from iter position. The caller must hold either hold the
7505  * RTNL lock or its own locking that guarantees that the neighbour lower
7506  * list will remain unchanged.
7507  */
7508 void *netdev_lower_get_next_private(struct net_device *dev,
7509 				    struct list_head **iter)
7510 {
7511 	struct netdev_adjacent *lower;
7512 
7513 	lower = list_entry(*iter, struct netdev_adjacent, list);
7514 
7515 	if (&lower->list == &dev->adj_list.lower)
7516 		return NULL;
7517 
7518 	*iter = lower->list.next;
7519 
7520 	return lower->private;
7521 }
7522 EXPORT_SYMBOL(netdev_lower_get_next_private);
7523 
7524 /**
7525  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7526  *				       lower neighbour list, RCU
7527  *				       variant
7528  * @dev: device
7529  * @iter: list_head ** of the current position
7530  *
7531  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7532  * list, starting from iter position. The caller must hold RCU read lock.
7533  */
7534 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7535 					struct list_head **iter)
7536 {
7537 	struct netdev_adjacent *lower;
7538 
7539 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7540 
7541 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7542 
7543 	if (&lower->list == &dev->adj_list.lower)
7544 		return NULL;
7545 
7546 	*iter = &lower->list;
7547 
7548 	return lower->private;
7549 }
7550 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7551 
7552 /**
7553  * netdev_lower_get_next - Get the next device from the lower neighbour
7554  *                         list
7555  * @dev: device
7556  * @iter: list_head ** of the current position
7557  *
7558  * Gets the next netdev_adjacent from the dev's lower neighbour
7559  * list, starting from iter position. The caller must hold RTNL lock or
7560  * its own locking that guarantees that the neighbour lower
7561  * list will remain unchanged.
7562  */
7563 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7564 {
7565 	struct netdev_adjacent *lower;
7566 
7567 	lower = list_entry(*iter, struct netdev_adjacent, list);
7568 
7569 	if (&lower->list == &dev->adj_list.lower)
7570 		return NULL;
7571 
7572 	*iter = lower->list.next;
7573 
7574 	return lower->dev;
7575 }
7576 EXPORT_SYMBOL(netdev_lower_get_next);
7577 
7578 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7579 						struct list_head **iter)
7580 {
7581 	struct netdev_adjacent *lower;
7582 
7583 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7584 
7585 	if (&lower->list == &dev->adj_list.lower)
7586 		return NULL;
7587 
7588 	*iter = &lower->list;
7589 
7590 	return lower->dev;
7591 }
7592 
7593 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7594 						  struct list_head **iter,
7595 						  bool *ignore)
7596 {
7597 	struct netdev_adjacent *lower;
7598 
7599 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7600 
7601 	if (&lower->list == &dev->adj_list.lower)
7602 		return NULL;
7603 
7604 	*iter = &lower->list;
7605 	*ignore = lower->ignore;
7606 
7607 	return lower->dev;
7608 }
7609 
7610 int netdev_walk_all_lower_dev(struct net_device *dev,
7611 			      int (*fn)(struct net_device *dev,
7612 					struct netdev_nested_priv *priv),
7613 			      struct netdev_nested_priv *priv)
7614 {
7615 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7616 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7617 	int ret, cur = 0;
7618 
7619 	now = dev;
7620 	iter = &dev->adj_list.lower;
7621 
7622 	while (1) {
7623 		if (now != dev) {
7624 			ret = fn(now, priv);
7625 			if (ret)
7626 				return ret;
7627 		}
7628 
7629 		next = NULL;
7630 		while (1) {
7631 			ldev = netdev_next_lower_dev(now, &iter);
7632 			if (!ldev)
7633 				break;
7634 
7635 			next = ldev;
7636 			niter = &ldev->adj_list.lower;
7637 			dev_stack[cur] = now;
7638 			iter_stack[cur++] = iter;
7639 			break;
7640 		}
7641 
7642 		if (!next) {
7643 			if (!cur)
7644 				return 0;
7645 			next = dev_stack[--cur];
7646 			niter = iter_stack[cur];
7647 		}
7648 
7649 		now = next;
7650 		iter = niter;
7651 	}
7652 
7653 	return 0;
7654 }
7655 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7656 
7657 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7658 				       int (*fn)(struct net_device *dev,
7659 					 struct netdev_nested_priv *priv),
7660 				       struct netdev_nested_priv *priv)
7661 {
7662 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7663 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7664 	int ret, cur = 0;
7665 	bool ignore;
7666 
7667 	now = dev;
7668 	iter = &dev->adj_list.lower;
7669 
7670 	while (1) {
7671 		if (now != dev) {
7672 			ret = fn(now, priv);
7673 			if (ret)
7674 				return ret;
7675 		}
7676 
7677 		next = NULL;
7678 		while (1) {
7679 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7680 			if (!ldev)
7681 				break;
7682 			if (ignore)
7683 				continue;
7684 
7685 			next = ldev;
7686 			niter = &ldev->adj_list.lower;
7687 			dev_stack[cur] = now;
7688 			iter_stack[cur++] = iter;
7689 			break;
7690 		}
7691 
7692 		if (!next) {
7693 			if (!cur)
7694 				return 0;
7695 			next = dev_stack[--cur];
7696 			niter = iter_stack[cur];
7697 		}
7698 
7699 		now = next;
7700 		iter = niter;
7701 	}
7702 
7703 	return 0;
7704 }
7705 
7706 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7707 					     struct list_head **iter)
7708 {
7709 	struct netdev_adjacent *lower;
7710 
7711 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7712 	if (&lower->list == &dev->adj_list.lower)
7713 		return NULL;
7714 
7715 	*iter = &lower->list;
7716 
7717 	return lower->dev;
7718 }
7719 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7720 
7721 static u8 __netdev_upper_depth(struct net_device *dev)
7722 {
7723 	struct net_device *udev;
7724 	struct list_head *iter;
7725 	u8 max_depth = 0;
7726 	bool ignore;
7727 
7728 	for (iter = &dev->adj_list.upper,
7729 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7730 	     udev;
7731 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7732 		if (ignore)
7733 			continue;
7734 		if (max_depth < udev->upper_level)
7735 			max_depth = udev->upper_level;
7736 	}
7737 
7738 	return max_depth;
7739 }
7740 
7741 static u8 __netdev_lower_depth(struct net_device *dev)
7742 {
7743 	struct net_device *ldev;
7744 	struct list_head *iter;
7745 	u8 max_depth = 0;
7746 	bool ignore;
7747 
7748 	for (iter = &dev->adj_list.lower,
7749 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7750 	     ldev;
7751 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7752 		if (ignore)
7753 			continue;
7754 		if (max_depth < ldev->lower_level)
7755 			max_depth = ldev->lower_level;
7756 	}
7757 
7758 	return max_depth;
7759 }
7760 
7761 static int __netdev_update_upper_level(struct net_device *dev,
7762 				       struct netdev_nested_priv *__unused)
7763 {
7764 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7765 	return 0;
7766 }
7767 
7768 static int __netdev_update_lower_level(struct net_device *dev,
7769 				       struct netdev_nested_priv *priv)
7770 {
7771 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7772 
7773 #ifdef CONFIG_LOCKDEP
7774 	if (!priv)
7775 		return 0;
7776 
7777 	if (priv->flags & NESTED_SYNC_IMM)
7778 		dev->nested_level = dev->lower_level - 1;
7779 	if (priv->flags & NESTED_SYNC_TODO)
7780 		net_unlink_todo(dev);
7781 #endif
7782 	return 0;
7783 }
7784 
7785 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7786 				  int (*fn)(struct net_device *dev,
7787 					    struct netdev_nested_priv *priv),
7788 				  struct netdev_nested_priv *priv)
7789 {
7790 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7791 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7792 	int ret, cur = 0;
7793 
7794 	now = dev;
7795 	iter = &dev->adj_list.lower;
7796 
7797 	while (1) {
7798 		if (now != dev) {
7799 			ret = fn(now, priv);
7800 			if (ret)
7801 				return ret;
7802 		}
7803 
7804 		next = NULL;
7805 		while (1) {
7806 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7807 			if (!ldev)
7808 				break;
7809 
7810 			next = ldev;
7811 			niter = &ldev->adj_list.lower;
7812 			dev_stack[cur] = now;
7813 			iter_stack[cur++] = iter;
7814 			break;
7815 		}
7816 
7817 		if (!next) {
7818 			if (!cur)
7819 				return 0;
7820 			next = dev_stack[--cur];
7821 			niter = iter_stack[cur];
7822 		}
7823 
7824 		now = next;
7825 		iter = niter;
7826 	}
7827 
7828 	return 0;
7829 }
7830 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7831 
7832 /**
7833  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7834  *				       lower neighbour list, RCU
7835  *				       variant
7836  * @dev: device
7837  *
7838  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7839  * list. The caller must hold RCU read lock.
7840  */
7841 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7842 {
7843 	struct netdev_adjacent *lower;
7844 
7845 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7846 			struct netdev_adjacent, list);
7847 	if (lower)
7848 		return lower->private;
7849 	return NULL;
7850 }
7851 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7852 
7853 /**
7854  * netdev_master_upper_dev_get_rcu - Get master upper device
7855  * @dev: device
7856  *
7857  * Find a master upper device and return pointer to it or NULL in case
7858  * it's not there. The caller must hold the RCU read lock.
7859  */
7860 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7861 {
7862 	struct netdev_adjacent *upper;
7863 
7864 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7865 				       struct netdev_adjacent, list);
7866 	if (upper && likely(upper->master))
7867 		return upper->dev;
7868 	return NULL;
7869 }
7870 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7871 
7872 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7873 			      struct net_device *adj_dev,
7874 			      struct list_head *dev_list)
7875 {
7876 	char linkname[IFNAMSIZ+7];
7877 
7878 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7879 		"upper_%s" : "lower_%s", adj_dev->name);
7880 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7881 				 linkname);
7882 }
7883 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7884 			       char *name,
7885 			       struct list_head *dev_list)
7886 {
7887 	char linkname[IFNAMSIZ+7];
7888 
7889 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7890 		"upper_%s" : "lower_%s", name);
7891 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7892 }
7893 
7894 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7895 						 struct net_device *adj_dev,
7896 						 struct list_head *dev_list)
7897 {
7898 	return (dev_list == &dev->adj_list.upper ||
7899 		dev_list == &dev->adj_list.lower) &&
7900 		net_eq(dev_net(dev), dev_net(adj_dev));
7901 }
7902 
7903 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7904 					struct net_device *adj_dev,
7905 					struct list_head *dev_list,
7906 					void *private, bool master)
7907 {
7908 	struct netdev_adjacent *adj;
7909 	int ret;
7910 
7911 	adj = __netdev_find_adj(adj_dev, dev_list);
7912 
7913 	if (adj) {
7914 		adj->ref_nr += 1;
7915 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7916 			 dev->name, adj_dev->name, adj->ref_nr);
7917 
7918 		return 0;
7919 	}
7920 
7921 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7922 	if (!adj)
7923 		return -ENOMEM;
7924 
7925 	adj->dev = adj_dev;
7926 	adj->master = master;
7927 	adj->ref_nr = 1;
7928 	adj->private = private;
7929 	adj->ignore = false;
7930 	dev_hold(adj_dev);
7931 
7932 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7933 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7934 
7935 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7936 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7937 		if (ret)
7938 			goto free_adj;
7939 	}
7940 
7941 	/* Ensure that master link is always the first item in list. */
7942 	if (master) {
7943 		ret = sysfs_create_link(&(dev->dev.kobj),
7944 					&(adj_dev->dev.kobj), "master");
7945 		if (ret)
7946 			goto remove_symlinks;
7947 
7948 		list_add_rcu(&adj->list, dev_list);
7949 	} else {
7950 		list_add_tail_rcu(&adj->list, dev_list);
7951 	}
7952 
7953 	return 0;
7954 
7955 remove_symlinks:
7956 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7957 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7958 free_adj:
7959 	kfree(adj);
7960 	dev_put(adj_dev);
7961 
7962 	return ret;
7963 }
7964 
7965 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7966 					 struct net_device *adj_dev,
7967 					 u16 ref_nr,
7968 					 struct list_head *dev_list)
7969 {
7970 	struct netdev_adjacent *adj;
7971 
7972 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7973 		 dev->name, adj_dev->name, ref_nr);
7974 
7975 	adj = __netdev_find_adj(adj_dev, dev_list);
7976 
7977 	if (!adj) {
7978 		pr_err("Adjacency does not exist for device %s from %s\n",
7979 		       dev->name, adj_dev->name);
7980 		WARN_ON(1);
7981 		return;
7982 	}
7983 
7984 	if (adj->ref_nr > ref_nr) {
7985 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7986 			 dev->name, adj_dev->name, ref_nr,
7987 			 adj->ref_nr - ref_nr);
7988 		adj->ref_nr -= ref_nr;
7989 		return;
7990 	}
7991 
7992 	if (adj->master)
7993 		sysfs_remove_link(&(dev->dev.kobj), "master");
7994 
7995 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7996 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7997 
7998 	list_del_rcu(&adj->list);
7999 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8000 		 adj_dev->name, dev->name, adj_dev->name);
8001 	dev_put(adj_dev);
8002 	kfree_rcu(adj, rcu);
8003 }
8004 
8005 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8006 					    struct net_device *upper_dev,
8007 					    struct list_head *up_list,
8008 					    struct list_head *down_list,
8009 					    void *private, bool master)
8010 {
8011 	int ret;
8012 
8013 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8014 					   private, master);
8015 	if (ret)
8016 		return ret;
8017 
8018 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8019 					   private, false);
8020 	if (ret) {
8021 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8022 		return ret;
8023 	}
8024 
8025 	return 0;
8026 }
8027 
8028 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8029 					       struct net_device *upper_dev,
8030 					       u16 ref_nr,
8031 					       struct list_head *up_list,
8032 					       struct list_head *down_list)
8033 {
8034 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8035 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8036 }
8037 
8038 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8039 						struct net_device *upper_dev,
8040 						void *private, bool master)
8041 {
8042 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8043 						&dev->adj_list.upper,
8044 						&upper_dev->adj_list.lower,
8045 						private, master);
8046 }
8047 
8048 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8049 						   struct net_device *upper_dev)
8050 {
8051 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8052 					   &dev->adj_list.upper,
8053 					   &upper_dev->adj_list.lower);
8054 }
8055 
8056 static int __netdev_upper_dev_link(struct net_device *dev,
8057 				   struct net_device *upper_dev, bool master,
8058 				   void *upper_priv, void *upper_info,
8059 				   struct netdev_nested_priv *priv,
8060 				   struct netlink_ext_ack *extack)
8061 {
8062 	struct netdev_notifier_changeupper_info changeupper_info = {
8063 		.info = {
8064 			.dev = dev,
8065 			.extack = extack,
8066 		},
8067 		.upper_dev = upper_dev,
8068 		.master = master,
8069 		.linking = true,
8070 		.upper_info = upper_info,
8071 	};
8072 	struct net_device *master_dev;
8073 	int ret = 0;
8074 
8075 	ASSERT_RTNL();
8076 
8077 	if (dev == upper_dev)
8078 		return -EBUSY;
8079 
8080 	/* To prevent loops, check if dev is not upper device to upper_dev. */
8081 	if (__netdev_has_upper_dev(upper_dev, dev))
8082 		return -EBUSY;
8083 
8084 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8085 		return -EMLINK;
8086 
8087 	if (!master) {
8088 		if (__netdev_has_upper_dev(dev, upper_dev))
8089 			return -EEXIST;
8090 	} else {
8091 		master_dev = __netdev_master_upper_dev_get(dev);
8092 		if (master_dev)
8093 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8094 	}
8095 
8096 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8097 					    &changeupper_info.info);
8098 	ret = notifier_to_errno(ret);
8099 	if (ret)
8100 		return ret;
8101 
8102 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8103 						   master);
8104 	if (ret)
8105 		return ret;
8106 
8107 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8108 					    &changeupper_info.info);
8109 	ret = notifier_to_errno(ret);
8110 	if (ret)
8111 		goto rollback;
8112 
8113 	__netdev_update_upper_level(dev, NULL);
8114 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8115 
8116 	__netdev_update_lower_level(upper_dev, priv);
8117 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8118 				    priv);
8119 
8120 	return 0;
8121 
8122 rollback:
8123 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8124 
8125 	return ret;
8126 }
8127 
8128 /**
8129  * netdev_upper_dev_link - Add a link to the upper device
8130  * @dev: device
8131  * @upper_dev: new upper device
8132  * @extack: netlink extended ack
8133  *
8134  * Adds a link to device which is upper to this one. The caller must hold
8135  * the RTNL lock. On a failure a negative errno code is returned.
8136  * On success the reference counts are adjusted and the function
8137  * returns zero.
8138  */
8139 int netdev_upper_dev_link(struct net_device *dev,
8140 			  struct net_device *upper_dev,
8141 			  struct netlink_ext_ack *extack)
8142 {
8143 	struct netdev_nested_priv priv = {
8144 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8145 		.data = NULL,
8146 	};
8147 
8148 	return __netdev_upper_dev_link(dev, upper_dev, false,
8149 				       NULL, NULL, &priv, extack);
8150 }
8151 EXPORT_SYMBOL(netdev_upper_dev_link);
8152 
8153 /**
8154  * netdev_master_upper_dev_link - Add a master link to the upper device
8155  * @dev: device
8156  * @upper_dev: new upper device
8157  * @upper_priv: upper device private
8158  * @upper_info: upper info to be passed down via notifier
8159  * @extack: netlink extended ack
8160  *
8161  * Adds a link to device which is upper to this one. In this case, only
8162  * one master upper device can be linked, although other non-master devices
8163  * might be linked as well. The caller must hold the RTNL lock.
8164  * On a failure a negative errno code is returned. On success the reference
8165  * counts are adjusted and the function returns zero.
8166  */
8167 int netdev_master_upper_dev_link(struct net_device *dev,
8168 				 struct net_device *upper_dev,
8169 				 void *upper_priv, void *upper_info,
8170 				 struct netlink_ext_ack *extack)
8171 {
8172 	struct netdev_nested_priv priv = {
8173 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8174 		.data = NULL,
8175 	};
8176 
8177 	return __netdev_upper_dev_link(dev, upper_dev, true,
8178 				       upper_priv, upper_info, &priv, extack);
8179 }
8180 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8181 
8182 static void __netdev_upper_dev_unlink(struct net_device *dev,
8183 				      struct net_device *upper_dev,
8184 				      struct netdev_nested_priv *priv)
8185 {
8186 	struct netdev_notifier_changeupper_info changeupper_info = {
8187 		.info = {
8188 			.dev = dev,
8189 		},
8190 		.upper_dev = upper_dev,
8191 		.linking = false,
8192 	};
8193 
8194 	ASSERT_RTNL();
8195 
8196 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8197 
8198 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8199 				      &changeupper_info.info);
8200 
8201 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8202 
8203 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8204 				      &changeupper_info.info);
8205 
8206 	__netdev_update_upper_level(dev, NULL);
8207 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8208 
8209 	__netdev_update_lower_level(upper_dev, priv);
8210 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8211 				    priv);
8212 }
8213 
8214 /**
8215  * netdev_upper_dev_unlink - Removes a link to upper device
8216  * @dev: device
8217  * @upper_dev: new upper device
8218  *
8219  * Removes a link to device which is upper to this one. The caller must hold
8220  * the RTNL lock.
8221  */
8222 void netdev_upper_dev_unlink(struct net_device *dev,
8223 			     struct net_device *upper_dev)
8224 {
8225 	struct netdev_nested_priv priv = {
8226 		.flags = NESTED_SYNC_TODO,
8227 		.data = NULL,
8228 	};
8229 
8230 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8231 }
8232 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8233 
8234 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8235 				      struct net_device *lower_dev,
8236 				      bool val)
8237 {
8238 	struct netdev_adjacent *adj;
8239 
8240 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8241 	if (adj)
8242 		adj->ignore = val;
8243 
8244 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8245 	if (adj)
8246 		adj->ignore = val;
8247 }
8248 
8249 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8250 					struct net_device *lower_dev)
8251 {
8252 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8253 }
8254 
8255 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8256 				       struct net_device *lower_dev)
8257 {
8258 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8259 }
8260 
8261 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8262 				   struct net_device *new_dev,
8263 				   struct net_device *dev,
8264 				   struct netlink_ext_ack *extack)
8265 {
8266 	struct netdev_nested_priv priv = {
8267 		.flags = 0,
8268 		.data = NULL,
8269 	};
8270 	int err;
8271 
8272 	if (!new_dev)
8273 		return 0;
8274 
8275 	if (old_dev && new_dev != old_dev)
8276 		netdev_adjacent_dev_disable(dev, old_dev);
8277 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8278 				      extack);
8279 	if (err) {
8280 		if (old_dev && new_dev != old_dev)
8281 			netdev_adjacent_dev_enable(dev, old_dev);
8282 		return err;
8283 	}
8284 
8285 	return 0;
8286 }
8287 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8288 
8289 void netdev_adjacent_change_commit(struct net_device *old_dev,
8290 				   struct net_device *new_dev,
8291 				   struct net_device *dev)
8292 {
8293 	struct netdev_nested_priv priv = {
8294 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8295 		.data = NULL,
8296 	};
8297 
8298 	if (!new_dev || !old_dev)
8299 		return;
8300 
8301 	if (new_dev == old_dev)
8302 		return;
8303 
8304 	netdev_adjacent_dev_enable(dev, old_dev);
8305 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8306 }
8307 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8308 
8309 void netdev_adjacent_change_abort(struct net_device *old_dev,
8310 				  struct net_device *new_dev,
8311 				  struct net_device *dev)
8312 {
8313 	struct netdev_nested_priv priv = {
8314 		.flags = 0,
8315 		.data = NULL,
8316 	};
8317 
8318 	if (!new_dev)
8319 		return;
8320 
8321 	if (old_dev && new_dev != old_dev)
8322 		netdev_adjacent_dev_enable(dev, old_dev);
8323 
8324 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8325 }
8326 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8327 
8328 /**
8329  * netdev_bonding_info_change - Dispatch event about slave change
8330  * @dev: device
8331  * @bonding_info: info to dispatch
8332  *
8333  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8334  * The caller must hold the RTNL lock.
8335  */
8336 void netdev_bonding_info_change(struct net_device *dev,
8337 				struct netdev_bonding_info *bonding_info)
8338 {
8339 	struct netdev_notifier_bonding_info info = {
8340 		.info.dev = dev,
8341 	};
8342 
8343 	memcpy(&info.bonding_info, bonding_info,
8344 	       sizeof(struct netdev_bonding_info));
8345 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8346 				      &info.info);
8347 }
8348 EXPORT_SYMBOL(netdev_bonding_info_change);
8349 
8350 /**
8351  * netdev_get_xmit_slave - Get the xmit slave of master device
8352  * @dev: device
8353  * @skb: The packet
8354  * @all_slaves: assume all the slaves are active
8355  *
8356  * The reference counters are not incremented so the caller must be
8357  * careful with locks. The caller must hold RCU lock.
8358  * %NULL is returned if no slave is found.
8359  */
8360 
8361 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8362 					 struct sk_buff *skb,
8363 					 bool all_slaves)
8364 {
8365 	const struct net_device_ops *ops = dev->netdev_ops;
8366 
8367 	if (!ops->ndo_get_xmit_slave)
8368 		return NULL;
8369 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8370 }
8371 EXPORT_SYMBOL(netdev_get_xmit_slave);
8372 
8373 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8374 						  struct sock *sk)
8375 {
8376 	const struct net_device_ops *ops = dev->netdev_ops;
8377 
8378 	if (!ops->ndo_sk_get_lower_dev)
8379 		return NULL;
8380 	return ops->ndo_sk_get_lower_dev(dev, sk);
8381 }
8382 
8383 /**
8384  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8385  * @dev: device
8386  * @sk: the socket
8387  *
8388  * %NULL is returned if no lower device is found.
8389  */
8390 
8391 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8392 					    struct sock *sk)
8393 {
8394 	struct net_device *lower;
8395 
8396 	lower = netdev_sk_get_lower_dev(dev, sk);
8397 	while (lower) {
8398 		dev = lower;
8399 		lower = netdev_sk_get_lower_dev(dev, sk);
8400 	}
8401 
8402 	return dev;
8403 }
8404 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8405 
8406 static void netdev_adjacent_add_links(struct net_device *dev)
8407 {
8408 	struct netdev_adjacent *iter;
8409 
8410 	struct net *net = dev_net(dev);
8411 
8412 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8413 		if (!net_eq(net, dev_net(iter->dev)))
8414 			continue;
8415 		netdev_adjacent_sysfs_add(iter->dev, dev,
8416 					  &iter->dev->adj_list.lower);
8417 		netdev_adjacent_sysfs_add(dev, iter->dev,
8418 					  &dev->adj_list.upper);
8419 	}
8420 
8421 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8422 		if (!net_eq(net, dev_net(iter->dev)))
8423 			continue;
8424 		netdev_adjacent_sysfs_add(iter->dev, dev,
8425 					  &iter->dev->adj_list.upper);
8426 		netdev_adjacent_sysfs_add(dev, iter->dev,
8427 					  &dev->adj_list.lower);
8428 	}
8429 }
8430 
8431 static void netdev_adjacent_del_links(struct net_device *dev)
8432 {
8433 	struct netdev_adjacent *iter;
8434 
8435 	struct net *net = dev_net(dev);
8436 
8437 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8438 		if (!net_eq(net, dev_net(iter->dev)))
8439 			continue;
8440 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8441 					  &iter->dev->adj_list.lower);
8442 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8443 					  &dev->adj_list.upper);
8444 	}
8445 
8446 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8447 		if (!net_eq(net, dev_net(iter->dev)))
8448 			continue;
8449 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8450 					  &iter->dev->adj_list.upper);
8451 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8452 					  &dev->adj_list.lower);
8453 	}
8454 }
8455 
8456 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8457 {
8458 	struct netdev_adjacent *iter;
8459 
8460 	struct net *net = dev_net(dev);
8461 
8462 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8463 		if (!net_eq(net, dev_net(iter->dev)))
8464 			continue;
8465 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8466 					  &iter->dev->adj_list.lower);
8467 		netdev_adjacent_sysfs_add(iter->dev, dev,
8468 					  &iter->dev->adj_list.lower);
8469 	}
8470 
8471 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8472 		if (!net_eq(net, dev_net(iter->dev)))
8473 			continue;
8474 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8475 					  &iter->dev->adj_list.upper);
8476 		netdev_adjacent_sysfs_add(iter->dev, dev,
8477 					  &iter->dev->adj_list.upper);
8478 	}
8479 }
8480 
8481 void *netdev_lower_dev_get_private(struct net_device *dev,
8482 				   struct net_device *lower_dev)
8483 {
8484 	struct netdev_adjacent *lower;
8485 
8486 	if (!lower_dev)
8487 		return NULL;
8488 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8489 	if (!lower)
8490 		return NULL;
8491 
8492 	return lower->private;
8493 }
8494 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8495 
8496 
8497 /**
8498  * netdev_lower_state_changed - Dispatch event about lower device state change
8499  * @lower_dev: device
8500  * @lower_state_info: state to dispatch
8501  *
8502  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8503  * The caller must hold the RTNL lock.
8504  */
8505 void netdev_lower_state_changed(struct net_device *lower_dev,
8506 				void *lower_state_info)
8507 {
8508 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8509 		.info.dev = lower_dev,
8510 	};
8511 
8512 	ASSERT_RTNL();
8513 	changelowerstate_info.lower_state_info = lower_state_info;
8514 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8515 				      &changelowerstate_info.info);
8516 }
8517 EXPORT_SYMBOL(netdev_lower_state_changed);
8518 
8519 static void dev_change_rx_flags(struct net_device *dev, int flags)
8520 {
8521 	const struct net_device_ops *ops = dev->netdev_ops;
8522 
8523 	if (ops->ndo_change_rx_flags)
8524 		ops->ndo_change_rx_flags(dev, flags);
8525 }
8526 
8527 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8528 {
8529 	unsigned int old_flags = dev->flags;
8530 	kuid_t uid;
8531 	kgid_t gid;
8532 
8533 	ASSERT_RTNL();
8534 
8535 	dev->flags |= IFF_PROMISC;
8536 	dev->promiscuity += inc;
8537 	if (dev->promiscuity == 0) {
8538 		/*
8539 		 * Avoid overflow.
8540 		 * If inc causes overflow, untouch promisc and return error.
8541 		 */
8542 		if (inc < 0)
8543 			dev->flags &= ~IFF_PROMISC;
8544 		else {
8545 			dev->promiscuity -= inc;
8546 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8547 				dev->name);
8548 			return -EOVERFLOW;
8549 		}
8550 	}
8551 	if (dev->flags != old_flags) {
8552 		pr_info("device %s %s promiscuous mode\n",
8553 			dev->name,
8554 			dev->flags & IFF_PROMISC ? "entered" : "left");
8555 		if (audit_enabled) {
8556 			current_uid_gid(&uid, &gid);
8557 			audit_log(audit_context(), GFP_ATOMIC,
8558 				  AUDIT_ANOM_PROMISCUOUS,
8559 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8560 				  dev->name, (dev->flags & IFF_PROMISC),
8561 				  (old_flags & IFF_PROMISC),
8562 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8563 				  from_kuid(&init_user_ns, uid),
8564 				  from_kgid(&init_user_ns, gid),
8565 				  audit_get_sessionid(current));
8566 		}
8567 
8568 		dev_change_rx_flags(dev, IFF_PROMISC);
8569 	}
8570 	if (notify)
8571 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8572 	return 0;
8573 }
8574 
8575 /**
8576  *	dev_set_promiscuity	- update promiscuity count on a device
8577  *	@dev: device
8578  *	@inc: modifier
8579  *
8580  *	Add or remove promiscuity from a device. While the count in the device
8581  *	remains above zero the interface remains promiscuous. Once it hits zero
8582  *	the device reverts back to normal filtering operation. A negative inc
8583  *	value is used to drop promiscuity on the device.
8584  *	Return 0 if successful or a negative errno code on error.
8585  */
8586 int dev_set_promiscuity(struct net_device *dev, int inc)
8587 {
8588 	unsigned int old_flags = dev->flags;
8589 	int err;
8590 
8591 	err = __dev_set_promiscuity(dev, inc, true);
8592 	if (err < 0)
8593 		return err;
8594 	if (dev->flags != old_flags)
8595 		dev_set_rx_mode(dev);
8596 	return err;
8597 }
8598 EXPORT_SYMBOL(dev_set_promiscuity);
8599 
8600 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8601 {
8602 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8603 
8604 	ASSERT_RTNL();
8605 
8606 	dev->flags |= IFF_ALLMULTI;
8607 	dev->allmulti += inc;
8608 	if (dev->allmulti == 0) {
8609 		/*
8610 		 * Avoid overflow.
8611 		 * If inc causes overflow, untouch allmulti and return error.
8612 		 */
8613 		if (inc < 0)
8614 			dev->flags &= ~IFF_ALLMULTI;
8615 		else {
8616 			dev->allmulti -= inc;
8617 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8618 				dev->name);
8619 			return -EOVERFLOW;
8620 		}
8621 	}
8622 	if (dev->flags ^ old_flags) {
8623 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8624 		dev_set_rx_mode(dev);
8625 		if (notify)
8626 			__dev_notify_flags(dev, old_flags,
8627 					   dev->gflags ^ old_gflags);
8628 	}
8629 	return 0;
8630 }
8631 
8632 /**
8633  *	dev_set_allmulti	- update allmulti count on a device
8634  *	@dev: device
8635  *	@inc: modifier
8636  *
8637  *	Add or remove reception of all multicast frames to a device. While the
8638  *	count in the device remains above zero the interface remains listening
8639  *	to all interfaces. Once it hits zero the device reverts back to normal
8640  *	filtering operation. A negative @inc value is used to drop the counter
8641  *	when releasing a resource needing all multicasts.
8642  *	Return 0 if successful or a negative errno code on error.
8643  */
8644 
8645 int dev_set_allmulti(struct net_device *dev, int inc)
8646 {
8647 	return __dev_set_allmulti(dev, inc, true);
8648 }
8649 EXPORT_SYMBOL(dev_set_allmulti);
8650 
8651 /*
8652  *	Upload unicast and multicast address lists to device and
8653  *	configure RX filtering. When the device doesn't support unicast
8654  *	filtering it is put in promiscuous mode while unicast addresses
8655  *	are present.
8656  */
8657 void __dev_set_rx_mode(struct net_device *dev)
8658 {
8659 	const struct net_device_ops *ops = dev->netdev_ops;
8660 
8661 	/* dev_open will call this function so the list will stay sane. */
8662 	if (!(dev->flags&IFF_UP))
8663 		return;
8664 
8665 	if (!netif_device_present(dev))
8666 		return;
8667 
8668 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8669 		/* Unicast addresses changes may only happen under the rtnl,
8670 		 * therefore calling __dev_set_promiscuity here is safe.
8671 		 */
8672 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8673 			__dev_set_promiscuity(dev, 1, false);
8674 			dev->uc_promisc = true;
8675 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8676 			__dev_set_promiscuity(dev, -1, false);
8677 			dev->uc_promisc = false;
8678 		}
8679 	}
8680 
8681 	if (ops->ndo_set_rx_mode)
8682 		ops->ndo_set_rx_mode(dev);
8683 }
8684 
8685 void dev_set_rx_mode(struct net_device *dev)
8686 {
8687 	netif_addr_lock_bh(dev);
8688 	__dev_set_rx_mode(dev);
8689 	netif_addr_unlock_bh(dev);
8690 }
8691 
8692 /**
8693  *	dev_get_flags - get flags reported to userspace
8694  *	@dev: device
8695  *
8696  *	Get the combination of flag bits exported through APIs to userspace.
8697  */
8698 unsigned int dev_get_flags(const struct net_device *dev)
8699 {
8700 	unsigned int flags;
8701 
8702 	flags = (dev->flags & ~(IFF_PROMISC |
8703 				IFF_ALLMULTI |
8704 				IFF_RUNNING |
8705 				IFF_LOWER_UP |
8706 				IFF_DORMANT)) |
8707 		(dev->gflags & (IFF_PROMISC |
8708 				IFF_ALLMULTI));
8709 
8710 	if (netif_running(dev)) {
8711 		if (netif_oper_up(dev))
8712 			flags |= IFF_RUNNING;
8713 		if (netif_carrier_ok(dev))
8714 			flags |= IFF_LOWER_UP;
8715 		if (netif_dormant(dev))
8716 			flags |= IFF_DORMANT;
8717 	}
8718 
8719 	return flags;
8720 }
8721 EXPORT_SYMBOL(dev_get_flags);
8722 
8723 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8724 		       struct netlink_ext_ack *extack)
8725 {
8726 	unsigned int old_flags = dev->flags;
8727 	int ret;
8728 
8729 	ASSERT_RTNL();
8730 
8731 	/*
8732 	 *	Set the flags on our device.
8733 	 */
8734 
8735 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8736 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8737 			       IFF_AUTOMEDIA)) |
8738 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8739 				    IFF_ALLMULTI));
8740 
8741 	/*
8742 	 *	Load in the correct multicast list now the flags have changed.
8743 	 */
8744 
8745 	if ((old_flags ^ flags) & IFF_MULTICAST)
8746 		dev_change_rx_flags(dev, IFF_MULTICAST);
8747 
8748 	dev_set_rx_mode(dev);
8749 
8750 	/*
8751 	 *	Have we downed the interface. We handle IFF_UP ourselves
8752 	 *	according to user attempts to set it, rather than blindly
8753 	 *	setting it.
8754 	 */
8755 
8756 	ret = 0;
8757 	if ((old_flags ^ flags) & IFF_UP) {
8758 		if (old_flags & IFF_UP)
8759 			__dev_close(dev);
8760 		else
8761 			ret = __dev_open(dev, extack);
8762 	}
8763 
8764 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8765 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8766 		unsigned int old_flags = dev->flags;
8767 
8768 		dev->gflags ^= IFF_PROMISC;
8769 
8770 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8771 			if (dev->flags != old_flags)
8772 				dev_set_rx_mode(dev);
8773 	}
8774 
8775 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8776 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8777 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8778 	 */
8779 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8780 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8781 
8782 		dev->gflags ^= IFF_ALLMULTI;
8783 		__dev_set_allmulti(dev, inc, false);
8784 	}
8785 
8786 	return ret;
8787 }
8788 
8789 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8790 			unsigned int gchanges)
8791 {
8792 	unsigned int changes = dev->flags ^ old_flags;
8793 
8794 	if (gchanges)
8795 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8796 
8797 	if (changes & IFF_UP) {
8798 		if (dev->flags & IFF_UP)
8799 			call_netdevice_notifiers(NETDEV_UP, dev);
8800 		else
8801 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8802 	}
8803 
8804 	if (dev->flags & IFF_UP &&
8805 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8806 		struct netdev_notifier_change_info change_info = {
8807 			.info = {
8808 				.dev = dev,
8809 			},
8810 			.flags_changed = changes,
8811 		};
8812 
8813 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8814 	}
8815 }
8816 
8817 /**
8818  *	dev_change_flags - change device settings
8819  *	@dev: device
8820  *	@flags: device state flags
8821  *	@extack: netlink extended ack
8822  *
8823  *	Change settings on device based state flags. The flags are
8824  *	in the userspace exported format.
8825  */
8826 int dev_change_flags(struct net_device *dev, unsigned int flags,
8827 		     struct netlink_ext_ack *extack)
8828 {
8829 	int ret;
8830 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8831 
8832 	ret = __dev_change_flags(dev, flags, extack);
8833 	if (ret < 0)
8834 		return ret;
8835 
8836 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8837 	__dev_notify_flags(dev, old_flags, changes);
8838 	return ret;
8839 }
8840 EXPORT_SYMBOL(dev_change_flags);
8841 
8842 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8843 {
8844 	const struct net_device_ops *ops = dev->netdev_ops;
8845 
8846 	if (ops->ndo_change_mtu)
8847 		return ops->ndo_change_mtu(dev, new_mtu);
8848 
8849 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8850 	WRITE_ONCE(dev->mtu, new_mtu);
8851 	return 0;
8852 }
8853 EXPORT_SYMBOL(__dev_set_mtu);
8854 
8855 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8856 		     struct netlink_ext_ack *extack)
8857 {
8858 	/* MTU must be positive, and in range */
8859 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8860 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8861 		return -EINVAL;
8862 	}
8863 
8864 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8865 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8866 		return -EINVAL;
8867 	}
8868 	return 0;
8869 }
8870 
8871 /**
8872  *	dev_set_mtu_ext - Change maximum transfer unit
8873  *	@dev: device
8874  *	@new_mtu: new transfer unit
8875  *	@extack: netlink extended ack
8876  *
8877  *	Change the maximum transfer size of the network device.
8878  */
8879 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8880 		    struct netlink_ext_ack *extack)
8881 {
8882 	int err, orig_mtu;
8883 
8884 	if (new_mtu == dev->mtu)
8885 		return 0;
8886 
8887 	err = dev_validate_mtu(dev, new_mtu, extack);
8888 	if (err)
8889 		return err;
8890 
8891 	if (!netif_device_present(dev))
8892 		return -ENODEV;
8893 
8894 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8895 	err = notifier_to_errno(err);
8896 	if (err)
8897 		return err;
8898 
8899 	orig_mtu = dev->mtu;
8900 	err = __dev_set_mtu(dev, new_mtu);
8901 
8902 	if (!err) {
8903 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8904 						   orig_mtu);
8905 		err = notifier_to_errno(err);
8906 		if (err) {
8907 			/* setting mtu back and notifying everyone again,
8908 			 * so that they have a chance to revert changes.
8909 			 */
8910 			__dev_set_mtu(dev, orig_mtu);
8911 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8912 						     new_mtu);
8913 		}
8914 	}
8915 	return err;
8916 }
8917 
8918 int dev_set_mtu(struct net_device *dev, int new_mtu)
8919 {
8920 	struct netlink_ext_ack extack;
8921 	int err;
8922 
8923 	memset(&extack, 0, sizeof(extack));
8924 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8925 	if (err && extack._msg)
8926 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8927 	return err;
8928 }
8929 EXPORT_SYMBOL(dev_set_mtu);
8930 
8931 /**
8932  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8933  *	@dev: device
8934  *	@new_len: new tx queue length
8935  */
8936 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8937 {
8938 	unsigned int orig_len = dev->tx_queue_len;
8939 	int res;
8940 
8941 	if (new_len != (unsigned int)new_len)
8942 		return -ERANGE;
8943 
8944 	if (new_len != orig_len) {
8945 		dev->tx_queue_len = new_len;
8946 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8947 		res = notifier_to_errno(res);
8948 		if (res)
8949 			goto err_rollback;
8950 		res = dev_qdisc_change_tx_queue_len(dev);
8951 		if (res)
8952 			goto err_rollback;
8953 	}
8954 
8955 	return 0;
8956 
8957 err_rollback:
8958 	netdev_err(dev, "refused to change device tx_queue_len\n");
8959 	dev->tx_queue_len = orig_len;
8960 	return res;
8961 }
8962 
8963 /**
8964  *	dev_set_group - Change group this device belongs to
8965  *	@dev: device
8966  *	@new_group: group this device should belong to
8967  */
8968 void dev_set_group(struct net_device *dev, int new_group)
8969 {
8970 	dev->group = new_group;
8971 }
8972 EXPORT_SYMBOL(dev_set_group);
8973 
8974 /**
8975  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8976  *	@dev: device
8977  *	@addr: new address
8978  *	@extack: netlink extended ack
8979  */
8980 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8981 			      struct netlink_ext_ack *extack)
8982 {
8983 	struct netdev_notifier_pre_changeaddr_info info = {
8984 		.info.dev = dev,
8985 		.info.extack = extack,
8986 		.dev_addr = addr,
8987 	};
8988 	int rc;
8989 
8990 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8991 	return notifier_to_errno(rc);
8992 }
8993 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8994 
8995 /**
8996  *	dev_set_mac_address - Change Media Access Control Address
8997  *	@dev: device
8998  *	@sa: new address
8999  *	@extack: netlink extended ack
9000  *
9001  *	Change the hardware (MAC) address of the device
9002  */
9003 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9004 			struct netlink_ext_ack *extack)
9005 {
9006 	const struct net_device_ops *ops = dev->netdev_ops;
9007 	int err;
9008 
9009 	if (!ops->ndo_set_mac_address)
9010 		return -EOPNOTSUPP;
9011 	if (sa->sa_family != dev->type)
9012 		return -EINVAL;
9013 	if (!netif_device_present(dev))
9014 		return -ENODEV;
9015 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9016 	if (err)
9017 		return err;
9018 	err = ops->ndo_set_mac_address(dev, sa);
9019 	if (err)
9020 		return err;
9021 	dev->addr_assign_type = NET_ADDR_SET;
9022 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9023 	add_device_randomness(dev->dev_addr, dev->addr_len);
9024 	return 0;
9025 }
9026 EXPORT_SYMBOL(dev_set_mac_address);
9027 
9028 static DECLARE_RWSEM(dev_addr_sem);
9029 
9030 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9031 			     struct netlink_ext_ack *extack)
9032 {
9033 	int ret;
9034 
9035 	down_write(&dev_addr_sem);
9036 	ret = dev_set_mac_address(dev, sa, extack);
9037 	up_write(&dev_addr_sem);
9038 	return ret;
9039 }
9040 EXPORT_SYMBOL(dev_set_mac_address_user);
9041 
9042 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9043 {
9044 	size_t size = sizeof(sa->sa_data);
9045 	struct net_device *dev;
9046 	int ret = 0;
9047 
9048 	down_read(&dev_addr_sem);
9049 	rcu_read_lock();
9050 
9051 	dev = dev_get_by_name_rcu(net, dev_name);
9052 	if (!dev) {
9053 		ret = -ENODEV;
9054 		goto unlock;
9055 	}
9056 	if (!dev->addr_len)
9057 		memset(sa->sa_data, 0, size);
9058 	else
9059 		memcpy(sa->sa_data, dev->dev_addr,
9060 		       min_t(size_t, size, dev->addr_len));
9061 	sa->sa_family = dev->type;
9062 
9063 unlock:
9064 	rcu_read_unlock();
9065 	up_read(&dev_addr_sem);
9066 	return ret;
9067 }
9068 EXPORT_SYMBOL(dev_get_mac_address);
9069 
9070 /**
9071  *	dev_change_carrier - Change device carrier
9072  *	@dev: device
9073  *	@new_carrier: new value
9074  *
9075  *	Change device carrier
9076  */
9077 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9078 {
9079 	const struct net_device_ops *ops = dev->netdev_ops;
9080 
9081 	if (!ops->ndo_change_carrier)
9082 		return -EOPNOTSUPP;
9083 	if (!netif_device_present(dev))
9084 		return -ENODEV;
9085 	return ops->ndo_change_carrier(dev, new_carrier);
9086 }
9087 EXPORT_SYMBOL(dev_change_carrier);
9088 
9089 /**
9090  *	dev_get_phys_port_id - Get device physical port ID
9091  *	@dev: device
9092  *	@ppid: port ID
9093  *
9094  *	Get device physical port ID
9095  */
9096 int dev_get_phys_port_id(struct net_device *dev,
9097 			 struct netdev_phys_item_id *ppid)
9098 {
9099 	const struct net_device_ops *ops = dev->netdev_ops;
9100 
9101 	if (!ops->ndo_get_phys_port_id)
9102 		return -EOPNOTSUPP;
9103 	return ops->ndo_get_phys_port_id(dev, ppid);
9104 }
9105 EXPORT_SYMBOL(dev_get_phys_port_id);
9106 
9107 /**
9108  *	dev_get_phys_port_name - Get device physical port name
9109  *	@dev: device
9110  *	@name: port name
9111  *	@len: limit of bytes to copy to name
9112  *
9113  *	Get device physical port name
9114  */
9115 int dev_get_phys_port_name(struct net_device *dev,
9116 			   char *name, size_t len)
9117 {
9118 	const struct net_device_ops *ops = dev->netdev_ops;
9119 	int err;
9120 
9121 	if (ops->ndo_get_phys_port_name) {
9122 		err = ops->ndo_get_phys_port_name(dev, name, len);
9123 		if (err != -EOPNOTSUPP)
9124 			return err;
9125 	}
9126 	return devlink_compat_phys_port_name_get(dev, name, len);
9127 }
9128 EXPORT_SYMBOL(dev_get_phys_port_name);
9129 
9130 /**
9131  *	dev_get_port_parent_id - Get the device's port parent identifier
9132  *	@dev: network device
9133  *	@ppid: pointer to a storage for the port's parent identifier
9134  *	@recurse: allow/disallow recursion to lower devices
9135  *
9136  *	Get the devices's port parent identifier
9137  */
9138 int dev_get_port_parent_id(struct net_device *dev,
9139 			   struct netdev_phys_item_id *ppid,
9140 			   bool recurse)
9141 {
9142 	const struct net_device_ops *ops = dev->netdev_ops;
9143 	struct netdev_phys_item_id first = { };
9144 	struct net_device *lower_dev;
9145 	struct list_head *iter;
9146 	int err;
9147 
9148 	if (ops->ndo_get_port_parent_id) {
9149 		err = ops->ndo_get_port_parent_id(dev, ppid);
9150 		if (err != -EOPNOTSUPP)
9151 			return err;
9152 	}
9153 
9154 	err = devlink_compat_switch_id_get(dev, ppid);
9155 	if (!err || err != -EOPNOTSUPP)
9156 		return err;
9157 
9158 	if (!recurse)
9159 		return -EOPNOTSUPP;
9160 
9161 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9162 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9163 		if (err)
9164 			break;
9165 		if (!first.id_len)
9166 			first = *ppid;
9167 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9168 			return -EOPNOTSUPP;
9169 	}
9170 
9171 	return err;
9172 }
9173 EXPORT_SYMBOL(dev_get_port_parent_id);
9174 
9175 /**
9176  *	netdev_port_same_parent_id - Indicate if two network devices have
9177  *	the same port parent identifier
9178  *	@a: first network device
9179  *	@b: second network device
9180  */
9181 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9182 {
9183 	struct netdev_phys_item_id a_id = { };
9184 	struct netdev_phys_item_id b_id = { };
9185 
9186 	if (dev_get_port_parent_id(a, &a_id, true) ||
9187 	    dev_get_port_parent_id(b, &b_id, true))
9188 		return false;
9189 
9190 	return netdev_phys_item_id_same(&a_id, &b_id);
9191 }
9192 EXPORT_SYMBOL(netdev_port_same_parent_id);
9193 
9194 /**
9195  *	dev_change_proto_down - update protocol port state information
9196  *	@dev: device
9197  *	@proto_down: new value
9198  *
9199  *	This info can be used by switch drivers to set the phys state of the
9200  *	port.
9201  */
9202 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9203 {
9204 	const struct net_device_ops *ops = dev->netdev_ops;
9205 
9206 	if (!ops->ndo_change_proto_down)
9207 		return -EOPNOTSUPP;
9208 	if (!netif_device_present(dev))
9209 		return -ENODEV;
9210 	return ops->ndo_change_proto_down(dev, proto_down);
9211 }
9212 EXPORT_SYMBOL(dev_change_proto_down);
9213 
9214 /**
9215  *	dev_change_proto_down_generic - generic implementation for
9216  * 	ndo_change_proto_down that sets carrier according to
9217  * 	proto_down.
9218  *
9219  *	@dev: device
9220  *	@proto_down: new value
9221  */
9222 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9223 {
9224 	if (proto_down)
9225 		netif_carrier_off(dev);
9226 	else
9227 		netif_carrier_on(dev);
9228 	dev->proto_down = proto_down;
9229 	return 0;
9230 }
9231 EXPORT_SYMBOL(dev_change_proto_down_generic);
9232 
9233 /**
9234  *	dev_change_proto_down_reason - proto down reason
9235  *
9236  *	@dev: device
9237  *	@mask: proto down mask
9238  *	@value: proto down value
9239  */
9240 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9241 				  u32 value)
9242 {
9243 	int b;
9244 
9245 	if (!mask) {
9246 		dev->proto_down_reason = value;
9247 	} else {
9248 		for_each_set_bit(b, &mask, 32) {
9249 			if (value & (1 << b))
9250 				dev->proto_down_reason |= BIT(b);
9251 			else
9252 				dev->proto_down_reason &= ~BIT(b);
9253 		}
9254 	}
9255 }
9256 EXPORT_SYMBOL(dev_change_proto_down_reason);
9257 
9258 struct bpf_xdp_link {
9259 	struct bpf_link link;
9260 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9261 	int flags;
9262 };
9263 
9264 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9265 {
9266 	if (flags & XDP_FLAGS_HW_MODE)
9267 		return XDP_MODE_HW;
9268 	if (flags & XDP_FLAGS_DRV_MODE)
9269 		return XDP_MODE_DRV;
9270 	if (flags & XDP_FLAGS_SKB_MODE)
9271 		return XDP_MODE_SKB;
9272 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9273 }
9274 
9275 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9276 {
9277 	switch (mode) {
9278 	case XDP_MODE_SKB:
9279 		return generic_xdp_install;
9280 	case XDP_MODE_DRV:
9281 	case XDP_MODE_HW:
9282 		return dev->netdev_ops->ndo_bpf;
9283 	default:
9284 		return NULL;
9285 	}
9286 }
9287 
9288 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9289 					 enum bpf_xdp_mode mode)
9290 {
9291 	return dev->xdp_state[mode].link;
9292 }
9293 
9294 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9295 				     enum bpf_xdp_mode mode)
9296 {
9297 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9298 
9299 	if (link)
9300 		return link->link.prog;
9301 	return dev->xdp_state[mode].prog;
9302 }
9303 
9304 u8 dev_xdp_prog_count(struct net_device *dev)
9305 {
9306 	u8 count = 0;
9307 	int i;
9308 
9309 	for (i = 0; i < __MAX_XDP_MODE; i++)
9310 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9311 			count++;
9312 	return count;
9313 }
9314 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9315 
9316 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9317 {
9318 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9319 
9320 	return prog ? prog->aux->id : 0;
9321 }
9322 
9323 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9324 			     struct bpf_xdp_link *link)
9325 {
9326 	dev->xdp_state[mode].link = link;
9327 	dev->xdp_state[mode].prog = NULL;
9328 }
9329 
9330 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9331 			     struct bpf_prog *prog)
9332 {
9333 	dev->xdp_state[mode].link = NULL;
9334 	dev->xdp_state[mode].prog = prog;
9335 }
9336 
9337 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9338 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9339 			   u32 flags, struct bpf_prog *prog)
9340 {
9341 	struct netdev_bpf xdp;
9342 	int err;
9343 
9344 	memset(&xdp, 0, sizeof(xdp));
9345 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9346 	xdp.extack = extack;
9347 	xdp.flags = flags;
9348 	xdp.prog = prog;
9349 
9350 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9351 	 * "moved" into driver), so they don't increment it on their own, but
9352 	 * they do decrement refcnt when program is detached or replaced.
9353 	 * Given net_device also owns link/prog, we need to bump refcnt here
9354 	 * to prevent drivers from underflowing it.
9355 	 */
9356 	if (prog)
9357 		bpf_prog_inc(prog);
9358 	err = bpf_op(dev, &xdp);
9359 	if (err) {
9360 		if (prog)
9361 			bpf_prog_put(prog);
9362 		return err;
9363 	}
9364 
9365 	if (mode != XDP_MODE_HW)
9366 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9367 
9368 	return 0;
9369 }
9370 
9371 static void dev_xdp_uninstall(struct net_device *dev)
9372 {
9373 	struct bpf_xdp_link *link;
9374 	struct bpf_prog *prog;
9375 	enum bpf_xdp_mode mode;
9376 	bpf_op_t bpf_op;
9377 
9378 	ASSERT_RTNL();
9379 
9380 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9381 		prog = dev_xdp_prog(dev, mode);
9382 		if (!prog)
9383 			continue;
9384 
9385 		bpf_op = dev_xdp_bpf_op(dev, mode);
9386 		if (!bpf_op)
9387 			continue;
9388 
9389 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9390 
9391 		/* auto-detach link from net device */
9392 		link = dev_xdp_link(dev, mode);
9393 		if (link)
9394 			link->dev = NULL;
9395 		else
9396 			bpf_prog_put(prog);
9397 
9398 		dev_xdp_set_link(dev, mode, NULL);
9399 	}
9400 }
9401 
9402 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9403 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9404 			  struct bpf_prog *old_prog, u32 flags)
9405 {
9406 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9407 	struct bpf_prog *cur_prog;
9408 	struct net_device *upper;
9409 	struct list_head *iter;
9410 	enum bpf_xdp_mode mode;
9411 	bpf_op_t bpf_op;
9412 	int err;
9413 
9414 	ASSERT_RTNL();
9415 
9416 	/* either link or prog attachment, never both */
9417 	if (link && (new_prog || old_prog))
9418 		return -EINVAL;
9419 	/* link supports only XDP mode flags */
9420 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9421 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9422 		return -EINVAL;
9423 	}
9424 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9425 	if (num_modes > 1) {
9426 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9427 		return -EINVAL;
9428 	}
9429 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9430 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9431 		NL_SET_ERR_MSG(extack,
9432 			       "More than one program loaded, unset mode is ambiguous");
9433 		return -EINVAL;
9434 	}
9435 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9436 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9437 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9438 		return -EINVAL;
9439 	}
9440 
9441 	mode = dev_xdp_mode(dev, flags);
9442 	/* can't replace attached link */
9443 	if (dev_xdp_link(dev, mode)) {
9444 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9445 		return -EBUSY;
9446 	}
9447 
9448 	/* don't allow if an upper device already has a program */
9449 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9450 		if (dev_xdp_prog_count(upper) > 0) {
9451 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9452 			return -EEXIST;
9453 		}
9454 	}
9455 
9456 	cur_prog = dev_xdp_prog(dev, mode);
9457 	/* can't replace attached prog with link */
9458 	if (link && cur_prog) {
9459 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9460 		return -EBUSY;
9461 	}
9462 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9463 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9464 		return -EEXIST;
9465 	}
9466 
9467 	/* put effective new program into new_prog */
9468 	if (link)
9469 		new_prog = link->link.prog;
9470 
9471 	if (new_prog) {
9472 		bool offload = mode == XDP_MODE_HW;
9473 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9474 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9475 
9476 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9477 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9478 			return -EBUSY;
9479 		}
9480 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9481 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9482 			return -EEXIST;
9483 		}
9484 		if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9485 			NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9486 			return -EINVAL;
9487 		}
9488 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9489 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9490 			return -EINVAL;
9491 		}
9492 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9493 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9494 			return -EINVAL;
9495 		}
9496 	}
9497 
9498 	/* don't call drivers if the effective program didn't change */
9499 	if (new_prog != cur_prog) {
9500 		bpf_op = dev_xdp_bpf_op(dev, mode);
9501 		if (!bpf_op) {
9502 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9503 			return -EOPNOTSUPP;
9504 		}
9505 
9506 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9507 		if (err)
9508 			return err;
9509 	}
9510 
9511 	if (link)
9512 		dev_xdp_set_link(dev, mode, link);
9513 	else
9514 		dev_xdp_set_prog(dev, mode, new_prog);
9515 	if (cur_prog)
9516 		bpf_prog_put(cur_prog);
9517 
9518 	return 0;
9519 }
9520 
9521 static int dev_xdp_attach_link(struct net_device *dev,
9522 			       struct netlink_ext_ack *extack,
9523 			       struct bpf_xdp_link *link)
9524 {
9525 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9526 }
9527 
9528 static int dev_xdp_detach_link(struct net_device *dev,
9529 			       struct netlink_ext_ack *extack,
9530 			       struct bpf_xdp_link *link)
9531 {
9532 	enum bpf_xdp_mode mode;
9533 	bpf_op_t bpf_op;
9534 
9535 	ASSERT_RTNL();
9536 
9537 	mode = dev_xdp_mode(dev, link->flags);
9538 	if (dev_xdp_link(dev, mode) != link)
9539 		return -EINVAL;
9540 
9541 	bpf_op = dev_xdp_bpf_op(dev, mode);
9542 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9543 	dev_xdp_set_link(dev, mode, NULL);
9544 	return 0;
9545 }
9546 
9547 static void bpf_xdp_link_release(struct bpf_link *link)
9548 {
9549 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9550 
9551 	rtnl_lock();
9552 
9553 	/* if racing with net_device's tear down, xdp_link->dev might be
9554 	 * already NULL, in which case link was already auto-detached
9555 	 */
9556 	if (xdp_link->dev) {
9557 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9558 		xdp_link->dev = NULL;
9559 	}
9560 
9561 	rtnl_unlock();
9562 }
9563 
9564 static int bpf_xdp_link_detach(struct bpf_link *link)
9565 {
9566 	bpf_xdp_link_release(link);
9567 	return 0;
9568 }
9569 
9570 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9571 {
9572 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9573 
9574 	kfree(xdp_link);
9575 }
9576 
9577 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9578 				     struct seq_file *seq)
9579 {
9580 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9581 	u32 ifindex = 0;
9582 
9583 	rtnl_lock();
9584 	if (xdp_link->dev)
9585 		ifindex = xdp_link->dev->ifindex;
9586 	rtnl_unlock();
9587 
9588 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9589 }
9590 
9591 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9592 				       struct bpf_link_info *info)
9593 {
9594 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9595 	u32 ifindex = 0;
9596 
9597 	rtnl_lock();
9598 	if (xdp_link->dev)
9599 		ifindex = xdp_link->dev->ifindex;
9600 	rtnl_unlock();
9601 
9602 	info->xdp.ifindex = ifindex;
9603 	return 0;
9604 }
9605 
9606 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9607 			       struct bpf_prog *old_prog)
9608 {
9609 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9610 	enum bpf_xdp_mode mode;
9611 	bpf_op_t bpf_op;
9612 	int err = 0;
9613 
9614 	rtnl_lock();
9615 
9616 	/* link might have been auto-released already, so fail */
9617 	if (!xdp_link->dev) {
9618 		err = -ENOLINK;
9619 		goto out_unlock;
9620 	}
9621 
9622 	if (old_prog && link->prog != old_prog) {
9623 		err = -EPERM;
9624 		goto out_unlock;
9625 	}
9626 	old_prog = link->prog;
9627 	if (old_prog == new_prog) {
9628 		/* no-op, don't disturb drivers */
9629 		bpf_prog_put(new_prog);
9630 		goto out_unlock;
9631 	}
9632 
9633 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9634 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9635 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9636 			      xdp_link->flags, new_prog);
9637 	if (err)
9638 		goto out_unlock;
9639 
9640 	old_prog = xchg(&link->prog, new_prog);
9641 	bpf_prog_put(old_prog);
9642 
9643 out_unlock:
9644 	rtnl_unlock();
9645 	return err;
9646 }
9647 
9648 static const struct bpf_link_ops bpf_xdp_link_lops = {
9649 	.release = bpf_xdp_link_release,
9650 	.dealloc = bpf_xdp_link_dealloc,
9651 	.detach = bpf_xdp_link_detach,
9652 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9653 	.fill_link_info = bpf_xdp_link_fill_link_info,
9654 	.update_prog = bpf_xdp_link_update,
9655 };
9656 
9657 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9658 {
9659 	struct net *net = current->nsproxy->net_ns;
9660 	struct bpf_link_primer link_primer;
9661 	struct bpf_xdp_link *link;
9662 	struct net_device *dev;
9663 	int err, fd;
9664 
9665 	rtnl_lock();
9666 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9667 	if (!dev) {
9668 		rtnl_unlock();
9669 		return -EINVAL;
9670 	}
9671 
9672 	link = kzalloc(sizeof(*link), GFP_USER);
9673 	if (!link) {
9674 		err = -ENOMEM;
9675 		goto unlock;
9676 	}
9677 
9678 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9679 	link->dev = dev;
9680 	link->flags = attr->link_create.flags;
9681 
9682 	err = bpf_link_prime(&link->link, &link_primer);
9683 	if (err) {
9684 		kfree(link);
9685 		goto unlock;
9686 	}
9687 
9688 	err = dev_xdp_attach_link(dev, NULL, link);
9689 	rtnl_unlock();
9690 
9691 	if (err) {
9692 		link->dev = NULL;
9693 		bpf_link_cleanup(&link_primer);
9694 		goto out_put_dev;
9695 	}
9696 
9697 	fd = bpf_link_settle(&link_primer);
9698 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9699 	dev_put(dev);
9700 	return fd;
9701 
9702 unlock:
9703 	rtnl_unlock();
9704 
9705 out_put_dev:
9706 	dev_put(dev);
9707 	return err;
9708 }
9709 
9710 /**
9711  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9712  *	@dev: device
9713  *	@extack: netlink extended ack
9714  *	@fd: new program fd or negative value to clear
9715  *	@expected_fd: old program fd that userspace expects to replace or clear
9716  *	@flags: xdp-related flags
9717  *
9718  *	Set or clear a bpf program for a device
9719  */
9720 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9721 		      int fd, int expected_fd, u32 flags)
9722 {
9723 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9724 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9725 	int err;
9726 
9727 	ASSERT_RTNL();
9728 
9729 	if (fd >= 0) {
9730 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9731 						 mode != XDP_MODE_SKB);
9732 		if (IS_ERR(new_prog))
9733 			return PTR_ERR(new_prog);
9734 	}
9735 
9736 	if (expected_fd >= 0) {
9737 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9738 						 mode != XDP_MODE_SKB);
9739 		if (IS_ERR(old_prog)) {
9740 			err = PTR_ERR(old_prog);
9741 			old_prog = NULL;
9742 			goto err_out;
9743 		}
9744 	}
9745 
9746 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9747 
9748 err_out:
9749 	if (err && new_prog)
9750 		bpf_prog_put(new_prog);
9751 	if (old_prog)
9752 		bpf_prog_put(old_prog);
9753 	return err;
9754 }
9755 
9756 /**
9757  *	dev_new_index	-	allocate an ifindex
9758  *	@net: the applicable net namespace
9759  *
9760  *	Returns a suitable unique value for a new device interface
9761  *	number.  The caller must hold the rtnl semaphore or the
9762  *	dev_base_lock to be sure it remains unique.
9763  */
9764 static int dev_new_index(struct net *net)
9765 {
9766 	int ifindex = net->ifindex;
9767 
9768 	for (;;) {
9769 		if (++ifindex <= 0)
9770 			ifindex = 1;
9771 		if (!__dev_get_by_index(net, ifindex))
9772 			return net->ifindex = ifindex;
9773 	}
9774 }
9775 
9776 /* Delayed registration/unregisteration */
9777 static LIST_HEAD(net_todo_list);
9778 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9779 
9780 static void net_set_todo(struct net_device *dev)
9781 {
9782 	list_add_tail(&dev->todo_list, &net_todo_list);
9783 	dev_net(dev)->dev_unreg_count++;
9784 }
9785 
9786 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9787 	struct net_device *upper, netdev_features_t features)
9788 {
9789 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9790 	netdev_features_t feature;
9791 	int feature_bit;
9792 
9793 	for_each_netdev_feature(upper_disables, feature_bit) {
9794 		feature = __NETIF_F_BIT(feature_bit);
9795 		if (!(upper->wanted_features & feature)
9796 		    && (features & feature)) {
9797 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9798 				   &feature, upper->name);
9799 			features &= ~feature;
9800 		}
9801 	}
9802 
9803 	return features;
9804 }
9805 
9806 static void netdev_sync_lower_features(struct net_device *upper,
9807 	struct net_device *lower, netdev_features_t features)
9808 {
9809 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9810 	netdev_features_t feature;
9811 	int feature_bit;
9812 
9813 	for_each_netdev_feature(upper_disables, feature_bit) {
9814 		feature = __NETIF_F_BIT(feature_bit);
9815 		if (!(features & feature) && (lower->features & feature)) {
9816 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9817 				   &feature, lower->name);
9818 			lower->wanted_features &= ~feature;
9819 			__netdev_update_features(lower);
9820 
9821 			if (unlikely(lower->features & feature))
9822 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9823 					    &feature, lower->name);
9824 			else
9825 				netdev_features_change(lower);
9826 		}
9827 	}
9828 }
9829 
9830 static netdev_features_t netdev_fix_features(struct net_device *dev,
9831 	netdev_features_t features)
9832 {
9833 	/* Fix illegal checksum combinations */
9834 	if ((features & NETIF_F_HW_CSUM) &&
9835 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9836 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9837 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9838 	}
9839 
9840 	/* TSO requires that SG is present as well. */
9841 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9842 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9843 		features &= ~NETIF_F_ALL_TSO;
9844 	}
9845 
9846 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9847 					!(features & NETIF_F_IP_CSUM)) {
9848 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9849 		features &= ~NETIF_F_TSO;
9850 		features &= ~NETIF_F_TSO_ECN;
9851 	}
9852 
9853 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9854 					 !(features & NETIF_F_IPV6_CSUM)) {
9855 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9856 		features &= ~NETIF_F_TSO6;
9857 	}
9858 
9859 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9860 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9861 		features &= ~NETIF_F_TSO_MANGLEID;
9862 
9863 	/* TSO ECN requires that TSO is present as well. */
9864 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9865 		features &= ~NETIF_F_TSO_ECN;
9866 
9867 	/* Software GSO depends on SG. */
9868 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9869 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9870 		features &= ~NETIF_F_GSO;
9871 	}
9872 
9873 	/* GSO partial features require GSO partial be set */
9874 	if ((features & dev->gso_partial_features) &&
9875 	    !(features & NETIF_F_GSO_PARTIAL)) {
9876 		netdev_dbg(dev,
9877 			   "Dropping partially supported GSO features since no GSO partial.\n");
9878 		features &= ~dev->gso_partial_features;
9879 	}
9880 
9881 	if (!(features & NETIF_F_RXCSUM)) {
9882 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9883 		 * successfully merged by hardware must also have the
9884 		 * checksum verified by hardware.  If the user does not
9885 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9886 		 */
9887 		if (features & NETIF_F_GRO_HW) {
9888 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9889 			features &= ~NETIF_F_GRO_HW;
9890 		}
9891 	}
9892 
9893 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9894 	if (features & NETIF_F_RXFCS) {
9895 		if (features & NETIF_F_LRO) {
9896 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9897 			features &= ~NETIF_F_LRO;
9898 		}
9899 
9900 		if (features & NETIF_F_GRO_HW) {
9901 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9902 			features &= ~NETIF_F_GRO_HW;
9903 		}
9904 	}
9905 
9906 	if (features & NETIF_F_HW_TLS_TX) {
9907 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9908 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9909 		bool hw_csum = features & NETIF_F_HW_CSUM;
9910 
9911 		if (!ip_csum && !hw_csum) {
9912 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9913 			features &= ~NETIF_F_HW_TLS_TX;
9914 		}
9915 	}
9916 
9917 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9918 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9919 		features &= ~NETIF_F_HW_TLS_RX;
9920 	}
9921 
9922 	return features;
9923 }
9924 
9925 int __netdev_update_features(struct net_device *dev)
9926 {
9927 	struct net_device *upper, *lower;
9928 	netdev_features_t features;
9929 	struct list_head *iter;
9930 	int err = -1;
9931 
9932 	ASSERT_RTNL();
9933 
9934 	features = netdev_get_wanted_features(dev);
9935 
9936 	if (dev->netdev_ops->ndo_fix_features)
9937 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9938 
9939 	/* driver might be less strict about feature dependencies */
9940 	features = netdev_fix_features(dev, features);
9941 
9942 	/* some features can't be enabled if they're off on an upper device */
9943 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9944 		features = netdev_sync_upper_features(dev, upper, features);
9945 
9946 	if (dev->features == features)
9947 		goto sync_lower;
9948 
9949 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9950 		&dev->features, &features);
9951 
9952 	if (dev->netdev_ops->ndo_set_features)
9953 		err = dev->netdev_ops->ndo_set_features(dev, features);
9954 	else
9955 		err = 0;
9956 
9957 	if (unlikely(err < 0)) {
9958 		netdev_err(dev,
9959 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9960 			err, &features, &dev->features);
9961 		/* return non-0 since some features might have changed and
9962 		 * it's better to fire a spurious notification than miss it
9963 		 */
9964 		return -1;
9965 	}
9966 
9967 sync_lower:
9968 	/* some features must be disabled on lower devices when disabled
9969 	 * on an upper device (think: bonding master or bridge)
9970 	 */
9971 	netdev_for_each_lower_dev(dev, lower, iter)
9972 		netdev_sync_lower_features(dev, lower, features);
9973 
9974 	if (!err) {
9975 		netdev_features_t diff = features ^ dev->features;
9976 
9977 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9978 			/* udp_tunnel_{get,drop}_rx_info both need
9979 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9980 			 * device, or they won't do anything.
9981 			 * Thus we need to update dev->features
9982 			 * *before* calling udp_tunnel_get_rx_info,
9983 			 * but *after* calling udp_tunnel_drop_rx_info.
9984 			 */
9985 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9986 				dev->features = features;
9987 				udp_tunnel_get_rx_info(dev);
9988 			} else {
9989 				udp_tunnel_drop_rx_info(dev);
9990 			}
9991 		}
9992 
9993 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9994 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9995 				dev->features = features;
9996 				err |= vlan_get_rx_ctag_filter_info(dev);
9997 			} else {
9998 				vlan_drop_rx_ctag_filter_info(dev);
9999 			}
10000 		}
10001 
10002 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10003 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10004 				dev->features = features;
10005 				err |= vlan_get_rx_stag_filter_info(dev);
10006 			} else {
10007 				vlan_drop_rx_stag_filter_info(dev);
10008 			}
10009 		}
10010 
10011 		dev->features = features;
10012 	}
10013 
10014 	return err < 0 ? 0 : 1;
10015 }
10016 
10017 /**
10018  *	netdev_update_features - recalculate device features
10019  *	@dev: the device to check
10020  *
10021  *	Recalculate dev->features set and send notifications if it
10022  *	has changed. Should be called after driver or hardware dependent
10023  *	conditions might have changed that influence the features.
10024  */
10025 void netdev_update_features(struct net_device *dev)
10026 {
10027 	if (__netdev_update_features(dev))
10028 		netdev_features_change(dev);
10029 }
10030 EXPORT_SYMBOL(netdev_update_features);
10031 
10032 /**
10033  *	netdev_change_features - recalculate device features
10034  *	@dev: the device to check
10035  *
10036  *	Recalculate dev->features set and send notifications even
10037  *	if they have not changed. Should be called instead of
10038  *	netdev_update_features() if also dev->vlan_features might
10039  *	have changed to allow the changes to be propagated to stacked
10040  *	VLAN devices.
10041  */
10042 void netdev_change_features(struct net_device *dev)
10043 {
10044 	__netdev_update_features(dev);
10045 	netdev_features_change(dev);
10046 }
10047 EXPORT_SYMBOL(netdev_change_features);
10048 
10049 /**
10050  *	netif_stacked_transfer_operstate -	transfer operstate
10051  *	@rootdev: the root or lower level device to transfer state from
10052  *	@dev: the device to transfer operstate to
10053  *
10054  *	Transfer operational state from root to device. This is normally
10055  *	called when a stacking relationship exists between the root
10056  *	device and the device(a leaf device).
10057  */
10058 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10059 					struct net_device *dev)
10060 {
10061 	if (rootdev->operstate == IF_OPER_DORMANT)
10062 		netif_dormant_on(dev);
10063 	else
10064 		netif_dormant_off(dev);
10065 
10066 	if (rootdev->operstate == IF_OPER_TESTING)
10067 		netif_testing_on(dev);
10068 	else
10069 		netif_testing_off(dev);
10070 
10071 	if (netif_carrier_ok(rootdev))
10072 		netif_carrier_on(dev);
10073 	else
10074 		netif_carrier_off(dev);
10075 }
10076 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10077 
10078 static int netif_alloc_rx_queues(struct net_device *dev)
10079 {
10080 	unsigned int i, count = dev->num_rx_queues;
10081 	struct netdev_rx_queue *rx;
10082 	size_t sz = count * sizeof(*rx);
10083 	int err = 0;
10084 
10085 	BUG_ON(count < 1);
10086 
10087 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10088 	if (!rx)
10089 		return -ENOMEM;
10090 
10091 	dev->_rx = rx;
10092 
10093 	for (i = 0; i < count; i++) {
10094 		rx[i].dev = dev;
10095 
10096 		/* XDP RX-queue setup */
10097 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10098 		if (err < 0)
10099 			goto err_rxq_info;
10100 	}
10101 	return 0;
10102 
10103 err_rxq_info:
10104 	/* Rollback successful reg's and free other resources */
10105 	while (i--)
10106 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10107 	kvfree(dev->_rx);
10108 	dev->_rx = NULL;
10109 	return err;
10110 }
10111 
10112 static void netif_free_rx_queues(struct net_device *dev)
10113 {
10114 	unsigned int i, count = dev->num_rx_queues;
10115 
10116 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10117 	if (!dev->_rx)
10118 		return;
10119 
10120 	for (i = 0; i < count; i++)
10121 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10122 
10123 	kvfree(dev->_rx);
10124 }
10125 
10126 static void netdev_init_one_queue(struct net_device *dev,
10127 				  struct netdev_queue *queue, void *_unused)
10128 {
10129 	/* Initialize queue lock */
10130 	spin_lock_init(&queue->_xmit_lock);
10131 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10132 	queue->xmit_lock_owner = -1;
10133 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10134 	queue->dev = dev;
10135 #ifdef CONFIG_BQL
10136 	dql_init(&queue->dql, HZ);
10137 #endif
10138 }
10139 
10140 static void netif_free_tx_queues(struct net_device *dev)
10141 {
10142 	kvfree(dev->_tx);
10143 }
10144 
10145 static int netif_alloc_netdev_queues(struct net_device *dev)
10146 {
10147 	unsigned int count = dev->num_tx_queues;
10148 	struct netdev_queue *tx;
10149 	size_t sz = count * sizeof(*tx);
10150 
10151 	if (count < 1 || count > 0xffff)
10152 		return -EINVAL;
10153 
10154 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10155 	if (!tx)
10156 		return -ENOMEM;
10157 
10158 	dev->_tx = tx;
10159 
10160 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10161 	spin_lock_init(&dev->tx_global_lock);
10162 
10163 	return 0;
10164 }
10165 
10166 void netif_tx_stop_all_queues(struct net_device *dev)
10167 {
10168 	unsigned int i;
10169 
10170 	for (i = 0; i < dev->num_tx_queues; i++) {
10171 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10172 
10173 		netif_tx_stop_queue(txq);
10174 	}
10175 }
10176 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10177 
10178 /**
10179  *	register_netdevice	- register a network device
10180  *	@dev: device to register
10181  *
10182  *	Take a completed network device structure and add it to the kernel
10183  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10184  *	chain. 0 is returned on success. A negative errno code is returned
10185  *	on a failure to set up the device, or if the name is a duplicate.
10186  *
10187  *	Callers must hold the rtnl semaphore. You may want
10188  *	register_netdev() instead of this.
10189  *
10190  *	BUGS:
10191  *	The locking appears insufficient to guarantee two parallel registers
10192  *	will not get the same name.
10193  */
10194 
10195 int register_netdevice(struct net_device *dev)
10196 {
10197 	int ret;
10198 	struct net *net = dev_net(dev);
10199 
10200 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10201 		     NETDEV_FEATURE_COUNT);
10202 	BUG_ON(dev_boot_phase);
10203 	ASSERT_RTNL();
10204 
10205 	might_sleep();
10206 
10207 	/* When net_device's are persistent, this will be fatal. */
10208 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10209 	BUG_ON(!net);
10210 
10211 	ret = ethtool_check_ops(dev->ethtool_ops);
10212 	if (ret)
10213 		return ret;
10214 
10215 	spin_lock_init(&dev->addr_list_lock);
10216 	netdev_set_addr_lockdep_class(dev);
10217 
10218 	ret = dev_get_valid_name(net, dev, dev->name);
10219 	if (ret < 0)
10220 		goto out;
10221 
10222 	ret = -ENOMEM;
10223 	dev->name_node = netdev_name_node_head_alloc(dev);
10224 	if (!dev->name_node)
10225 		goto out;
10226 
10227 	/* Init, if this function is available */
10228 	if (dev->netdev_ops->ndo_init) {
10229 		ret = dev->netdev_ops->ndo_init(dev);
10230 		if (ret) {
10231 			if (ret > 0)
10232 				ret = -EIO;
10233 			goto err_free_name;
10234 		}
10235 	}
10236 
10237 	if (((dev->hw_features | dev->features) &
10238 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10239 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10240 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10241 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10242 		ret = -EINVAL;
10243 		goto err_uninit;
10244 	}
10245 
10246 	ret = -EBUSY;
10247 	if (!dev->ifindex)
10248 		dev->ifindex = dev_new_index(net);
10249 	else if (__dev_get_by_index(net, dev->ifindex))
10250 		goto err_uninit;
10251 
10252 	/* Transfer changeable features to wanted_features and enable
10253 	 * software offloads (GSO and GRO).
10254 	 */
10255 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10256 	dev->features |= NETIF_F_SOFT_FEATURES;
10257 
10258 	if (dev->udp_tunnel_nic_info) {
10259 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10260 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10261 	}
10262 
10263 	dev->wanted_features = dev->features & dev->hw_features;
10264 
10265 	if (!(dev->flags & IFF_LOOPBACK))
10266 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10267 
10268 	/* If IPv4 TCP segmentation offload is supported we should also
10269 	 * allow the device to enable segmenting the frame with the option
10270 	 * of ignoring a static IP ID value.  This doesn't enable the
10271 	 * feature itself but allows the user to enable it later.
10272 	 */
10273 	if (dev->hw_features & NETIF_F_TSO)
10274 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10275 	if (dev->vlan_features & NETIF_F_TSO)
10276 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10277 	if (dev->mpls_features & NETIF_F_TSO)
10278 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10279 	if (dev->hw_enc_features & NETIF_F_TSO)
10280 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10281 
10282 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10283 	 */
10284 	dev->vlan_features |= NETIF_F_HIGHDMA;
10285 
10286 	/* Make NETIF_F_SG inheritable to tunnel devices.
10287 	 */
10288 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10289 
10290 	/* Make NETIF_F_SG inheritable to MPLS.
10291 	 */
10292 	dev->mpls_features |= NETIF_F_SG;
10293 
10294 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10295 	ret = notifier_to_errno(ret);
10296 	if (ret)
10297 		goto err_uninit;
10298 
10299 	ret = netdev_register_kobject(dev);
10300 	if (ret) {
10301 		dev->reg_state = NETREG_UNREGISTERED;
10302 		goto err_uninit;
10303 	}
10304 	dev->reg_state = NETREG_REGISTERED;
10305 
10306 	__netdev_update_features(dev);
10307 
10308 	/*
10309 	 *	Default initial state at registry is that the
10310 	 *	device is present.
10311 	 */
10312 
10313 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10314 
10315 	linkwatch_init_dev(dev);
10316 
10317 	dev_init_scheduler(dev);
10318 	dev_hold(dev);
10319 	list_netdevice(dev);
10320 	add_device_randomness(dev->dev_addr, dev->addr_len);
10321 
10322 	/* If the device has permanent device address, driver should
10323 	 * set dev_addr and also addr_assign_type should be set to
10324 	 * NET_ADDR_PERM (default value).
10325 	 */
10326 	if (dev->addr_assign_type == NET_ADDR_PERM)
10327 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10328 
10329 	/* Notify protocols, that a new device appeared. */
10330 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10331 	ret = notifier_to_errno(ret);
10332 	if (ret) {
10333 		/* Expect explicit free_netdev() on failure */
10334 		dev->needs_free_netdev = false;
10335 		unregister_netdevice_queue(dev, NULL);
10336 		goto out;
10337 	}
10338 	/*
10339 	 *	Prevent userspace races by waiting until the network
10340 	 *	device is fully setup before sending notifications.
10341 	 */
10342 	if (!dev->rtnl_link_ops ||
10343 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10344 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10345 
10346 out:
10347 	return ret;
10348 
10349 err_uninit:
10350 	if (dev->netdev_ops->ndo_uninit)
10351 		dev->netdev_ops->ndo_uninit(dev);
10352 	if (dev->priv_destructor)
10353 		dev->priv_destructor(dev);
10354 err_free_name:
10355 	netdev_name_node_free(dev->name_node);
10356 	goto out;
10357 }
10358 EXPORT_SYMBOL(register_netdevice);
10359 
10360 /**
10361  *	init_dummy_netdev	- init a dummy network device for NAPI
10362  *	@dev: device to init
10363  *
10364  *	This takes a network device structure and initialize the minimum
10365  *	amount of fields so it can be used to schedule NAPI polls without
10366  *	registering a full blown interface. This is to be used by drivers
10367  *	that need to tie several hardware interfaces to a single NAPI
10368  *	poll scheduler due to HW limitations.
10369  */
10370 int init_dummy_netdev(struct net_device *dev)
10371 {
10372 	/* Clear everything. Note we don't initialize spinlocks
10373 	 * are they aren't supposed to be taken by any of the
10374 	 * NAPI code and this dummy netdev is supposed to be
10375 	 * only ever used for NAPI polls
10376 	 */
10377 	memset(dev, 0, sizeof(struct net_device));
10378 
10379 	/* make sure we BUG if trying to hit standard
10380 	 * register/unregister code path
10381 	 */
10382 	dev->reg_state = NETREG_DUMMY;
10383 
10384 	/* NAPI wants this */
10385 	INIT_LIST_HEAD(&dev->napi_list);
10386 
10387 	/* a dummy interface is started by default */
10388 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10389 	set_bit(__LINK_STATE_START, &dev->state);
10390 
10391 	/* napi_busy_loop stats accounting wants this */
10392 	dev_net_set(dev, &init_net);
10393 
10394 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10395 	 * because users of this 'device' dont need to change
10396 	 * its refcount.
10397 	 */
10398 
10399 	return 0;
10400 }
10401 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10402 
10403 
10404 /**
10405  *	register_netdev	- register a network device
10406  *	@dev: device to register
10407  *
10408  *	Take a completed network device structure and add it to the kernel
10409  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10410  *	chain. 0 is returned on success. A negative errno code is returned
10411  *	on a failure to set up the device, or if the name is a duplicate.
10412  *
10413  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10414  *	and expands the device name if you passed a format string to
10415  *	alloc_netdev.
10416  */
10417 int register_netdev(struct net_device *dev)
10418 {
10419 	int err;
10420 
10421 	if (rtnl_lock_killable())
10422 		return -EINTR;
10423 	err = register_netdevice(dev);
10424 	rtnl_unlock();
10425 	return err;
10426 }
10427 EXPORT_SYMBOL(register_netdev);
10428 
10429 int netdev_refcnt_read(const struct net_device *dev)
10430 {
10431 #ifdef CONFIG_PCPU_DEV_REFCNT
10432 	int i, refcnt = 0;
10433 
10434 	for_each_possible_cpu(i)
10435 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10436 	return refcnt;
10437 #else
10438 	return refcount_read(&dev->dev_refcnt);
10439 #endif
10440 }
10441 EXPORT_SYMBOL(netdev_refcnt_read);
10442 
10443 int netdev_unregister_timeout_secs __read_mostly = 10;
10444 
10445 #define WAIT_REFS_MIN_MSECS 1
10446 #define WAIT_REFS_MAX_MSECS 250
10447 /**
10448  * netdev_wait_allrefs - wait until all references are gone.
10449  * @dev: target net_device
10450  *
10451  * This is called when unregistering network devices.
10452  *
10453  * Any protocol or device that holds a reference should register
10454  * for netdevice notification, and cleanup and put back the
10455  * reference if they receive an UNREGISTER event.
10456  * We can get stuck here if buggy protocols don't correctly
10457  * call dev_put.
10458  */
10459 static void netdev_wait_allrefs(struct net_device *dev)
10460 {
10461 	unsigned long rebroadcast_time, warning_time;
10462 	int wait = 0, refcnt;
10463 
10464 	linkwatch_forget_dev(dev);
10465 
10466 	rebroadcast_time = warning_time = jiffies;
10467 	refcnt = netdev_refcnt_read(dev);
10468 
10469 	while (refcnt != 1) {
10470 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10471 			rtnl_lock();
10472 
10473 			/* Rebroadcast unregister notification */
10474 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10475 
10476 			__rtnl_unlock();
10477 			rcu_barrier();
10478 			rtnl_lock();
10479 
10480 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10481 				     &dev->state)) {
10482 				/* We must not have linkwatch events
10483 				 * pending on unregister. If this
10484 				 * happens, we simply run the queue
10485 				 * unscheduled, resulting in a noop
10486 				 * for this device.
10487 				 */
10488 				linkwatch_run_queue();
10489 			}
10490 
10491 			__rtnl_unlock();
10492 
10493 			rebroadcast_time = jiffies;
10494 		}
10495 
10496 		if (!wait) {
10497 			rcu_barrier();
10498 			wait = WAIT_REFS_MIN_MSECS;
10499 		} else {
10500 			msleep(wait);
10501 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10502 		}
10503 
10504 		refcnt = netdev_refcnt_read(dev);
10505 
10506 		if (refcnt != 1 &&
10507 		    time_after(jiffies, warning_time +
10508 			       netdev_unregister_timeout_secs * HZ)) {
10509 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10510 				 dev->name, refcnt);
10511 			warning_time = jiffies;
10512 		}
10513 	}
10514 }
10515 
10516 /* The sequence is:
10517  *
10518  *	rtnl_lock();
10519  *	...
10520  *	register_netdevice(x1);
10521  *	register_netdevice(x2);
10522  *	...
10523  *	unregister_netdevice(y1);
10524  *	unregister_netdevice(y2);
10525  *      ...
10526  *	rtnl_unlock();
10527  *	free_netdev(y1);
10528  *	free_netdev(y2);
10529  *
10530  * We are invoked by rtnl_unlock().
10531  * This allows us to deal with problems:
10532  * 1) We can delete sysfs objects which invoke hotplug
10533  *    without deadlocking with linkwatch via keventd.
10534  * 2) Since we run with the RTNL semaphore not held, we can sleep
10535  *    safely in order to wait for the netdev refcnt to drop to zero.
10536  *
10537  * We must not return until all unregister events added during
10538  * the interval the lock was held have been completed.
10539  */
10540 void netdev_run_todo(void)
10541 {
10542 	struct list_head list;
10543 #ifdef CONFIG_LOCKDEP
10544 	struct list_head unlink_list;
10545 
10546 	list_replace_init(&net_unlink_list, &unlink_list);
10547 
10548 	while (!list_empty(&unlink_list)) {
10549 		struct net_device *dev = list_first_entry(&unlink_list,
10550 							  struct net_device,
10551 							  unlink_list);
10552 		list_del_init(&dev->unlink_list);
10553 		dev->nested_level = dev->lower_level - 1;
10554 	}
10555 #endif
10556 
10557 	/* Snapshot list, allow later requests */
10558 	list_replace_init(&net_todo_list, &list);
10559 
10560 	__rtnl_unlock();
10561 
10562 
10563 	/* Wait for rcu callbacks to finish before next phase */
10564 	if (!list_empty(&list))
10565 		rcu_barrier();
10566 
10567 	while (!list_empty(&list)) {
10568 		struct net_device *dev
10569 			= list_first_entry(&list, struct net_device, todo_list);
10570 		list_del(&dev->todo_list);
10571 
10572 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10573 			pr_err("network todo '%s' but state %d\n",
10574 			       dev->name, dev->reg_state);
10575 			dump_stack();
10576 			continue;
10577 		}
10578 
10579 		dev->reg_state = NETREG_UNREGISTERED;
10580 
10581 		netdev_wait_allrefs(dev);
10582 
10583 		/* paranoia */
10584 		BUG_ON(netdev_refcnt_read(dev) != 1);
10585 		BUG_ON(!list_empty(&dev->ptype_all));
10586 		BUG_ON(!list_empty(&dev->ptype_specific));
10587 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10588 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10589 #if IS_ENABLED(CONFIG_DECNET)
10590 		WARN_ON(dev->dn_ptr);
10591 #endif
10592 		if (dev->priv_destructor)
10593 			dev->priv_destructor(dev);
10594 		if (dev->needs_free_netdev)
10595 			free_netdev(dev);
10596 
10597 		/* Report a network device has been unregistered */
10598 		rtnl_lock();
10599 		dev_net(dev)->dev_unreg_count--;
10600 		__rtnl_unlock();
10601 		wake_up(&netdev_unregistering_wq);
10602 
10603 		/* Free network device */
10604 		kobject_put(&dev->dev.kobj);
10605 	}
10606 }
10607 
10608 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10609  * all the same fields in the same order as net_device_stats, with only
10610  * the type differing, but rtnl_link_stats64 may have additional fields
10611  * at the end for newer counters.
10612  */
10613 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10614 			     const struct net_device_stats *netdev_stats)
10615 {
10616 #if BITS_PER_LONG == 64
10617 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10618 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10619 	/* zero out counters that only exist in rtnl_link_stats64 */
10620 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
10621 	       sizeof(*stats64) - sizeof(*netdev_stats));
10622 #else
10623 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10624 	const unsigned long *src = (const unsigned long *)netdev_stats;
10625 	u64 *dst = (u64 *)stats64;
10626 
10627 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10628 	for (i = 0; i < n; i++)
10629 		dst[i] = src[i];
10630 	/* zero out counters that only exist in rtnl_link_stats64 */
10631 	memset((char *)stats64 + n * sizeof(u64), 0,
10632 	       sizeof(*stats64) - n * sizeof(u64));
10633 #endif
10634 }
10635 EXPORT_SYMBOL(netdev_stats_to_stats64);
10636 
10637 /**
10638  *	dev_get_stats	- get network device statistics
10639  *	@dev: device to get statistics from
10640  *	@storage: place to store stats
10641  *
10642  *	Get network statistics from device. Return @storage.
10643  *	The device driver may provide its own method by setting
10644  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10645  *	otherwise the internal statistics structure is used.
10646  */
10647 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10648 					struct rtnl_link_stats64 *storage)
10649 {
10650 	const struct net_device_ops *ops = dev->netdev_ops;
10651 
10652 	if (ops->ndo_get_stats64) {
10653 		memset(storage, 0, sizeof(*storage));
10654 		ops->ndo_get_stats64(dev, storage);
10655 	} else if (ops->ndo_get_stats) {
10656 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10657 	} else {
10658 		netdev_stats_to_stats64(storage, &dev->stats);
10659 	}
10660 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10661 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10662 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10663 	return storage;
10664 }
10665 EXPORT_SYMBOL(dev_get_stats);
10666 
10667 /**
10668  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10669  *	@s: place to store stats
10670  *	@netstats: per-cpu network stats to read from
10671  *
10672  *	Read per-cpu network statistics and populate the related fields in @s.
10673  */
10674 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10675 			   const struct pcpu_sw_netstats __percpu *netstats)
10676 {
10677 	int cpu;
10678 
10679 	for_each_possible_cpu(cpu) {
10680 		const struct pcpu_sw_netstats *stats;
10681 		struct pcpu_sw_netstats tmp;
10682 		unsigned int start;
10683 
10684 		stats = per_cpu_ptr(netstats, cpu);
10685 		do {
10686 			start = u64_stats_fetch_begin_irq(&stats->syncp);
10687 			tmp.rx_packets = stats->rx_packets;
10688 			tmp.rx_bytes   = stats->rx_bytes;
10689 			tmp.tx_packets = stats->tx_packets;
10690 			tmp.tx_bytes   = stats->tx_bytes;
10691 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10692 
10693 		s->rx_packets += tmp.rx_packets;
10694 		s->rx_bytes   += tmp.rx_bytes;
10695 		s->tx_packets += tmp.tx_packets;
10696 		s->tx_bytes   += tmp.tx_bytes;
10697 	}
10698 }
10699 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10700 
10701 /**
10702  *	dev_get_tstats64 - ndo_get_stats64 implementation
10703  *	@dev: device to get statistics from
10704  *	@s: place to store stats
10705  *
10706  *	Populate @s from dev->stats and dev->tstats. Can be used as
10707  *	ndo_get_stats64() callback.
10708  */
10709 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10710 {
10711 	netdev_stats_to_stats64(s, &dev->stats);
10712 	dev_fetch_sw_netstats(s, dev->tstats);
10713 }
10714 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10715 
10716 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10717 {
10718 	struct netdev_queue *queue = dev_ingress_queue(dev);
10719 
10720 #ifdef CONFIG_NET_CLS_ACT
10721 	if (queue)
10722 		return queue;
10723 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10724 	if (!queue)
10725 		return NULL;
10726 	netdev_init_one_queue(dev, queue, NULL);
10727 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10728 	queue->qdisc_sleeping = &noop_qdisc;
10729 	rcu_assign_pointer(dev->ingress_queue, queue);
10730 #endif
10731 	return queue;
10732 }
10733 
10734 static const struct ethtool_ops default_ethtool_ops;
10735 
10736 void netdev_set_default_ethtool_ops(struct net_device *dev,
10737 				    const struct ethtool_ops *ops)
10738 {
10739 	if (dev->ethtool_ops == &default_ethtool_ops)
10740 		dev->ethtool_ops = ops;
10741 }
10742 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10743 
10744 void netdev_freemem(struct net_device *dev)
10745 {
10746 	char *addr = (char *)dev - dev->padded;
10747 
10748 	kvfree(addr);
10749 }
10750 
10751 /**
10752  * alloc_netdev_mqs - allocate network device
10753  * @sizeof_priv: size of private data to allocate space for
10754  * @name: device name format string
10755  * @name_assign_type: origin of device name
10756  * @setup: callback to initialize device
10757  * @txqs: the number of TX subqueues to allocate
10758  * @rxqs: the number of RX subqueues to allocate
10759  *
10760  * Allocates a struct net_device with private data area for driver use
10761  * and performs basic initialization.  Also allocates subqueue structs
10762  * for each queue on the device.
10763  */
10764 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10765 		unsigned char name_assign_type,
10766 		void (*setup)(struct net_device *),
10767 		unsigned int txqs, unsigned int rxqs)
10768 {
10769 	struct net_device *dev;
10770 	unsigned int alloc_size;
10771 	struct net_device *p;
10772 
10773 	BUG_ON(strlen(name) >= sizeof(dev->name));
10774 
10775 	if (txqs < 1) {
10776 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10777 		return NULL;
10778 	}
10779 
10780 	if (rxqs < 1) {
10781 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10782 		return NULL;
10783 	}
10784 
10785 	alloc_size = sizeof(struct net_device);
10786 	if (sizeof_priv) {
10787 		/* ensure 32-byte alignment of private area */
10788 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10789 		alloc_size += sizeof_priv;
10790 	}
10791 	/* ensure 32-byte alignment of whole construct */
10792 	alloc_size += NETDEV_ALIGN - 1;
10793 
10794 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10795 	if (!p)
10796 		return NULL;
10797 
10798 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10799 	dev->padded = (char *)dev - (char *)p;
10800 
10801 #ifdef CONFIG_PCPU_DEV_REFCNT
10802 	dev->pcpu_refcnt = alloc_percpu(int);
10803 	if (!dev->pcpu_refcnt)
10804 		goto free_dev;
10805 	dev_hold(dev);
10806 #else
10807 	refcount_set(&dev->dev_refcnt, 1);
10808 #endif
10809 
10810 	if (dev_addr_init(dev))
10811 		goto free_pcpu;
10812 
10813 	dev_mc_init(dev);
10814 	dev_uc_init(dev);
10815 
10816 	dev_net_set(dev, &init_net);
10817 
10818 	dev->gso_max_size = GSO_MAX_SIZE;
10819 	dev->gso_max_segs = GSO_MAX_SEGS;
10820 	dev->upper_level = 1;
10821 	dev->lower_level = 1;
10822 #ifdef CONFIG_LOCKDEP
10823 	dev->nested_level = 0;
10824 	INIT_LIST_HEAD(&dev->unlink_list);
10825 #endif
10826 
10827 	INIT_LIST_HEAD(&dev->napi_list);
10828 	INIT_LIST_HEAD(&dev->unreg_list);
10829 	INIT_LIST_HEAD(&dev->close_list);
10830 	INIT_LIST_HEAD(&dev->link_watch_list);
10831 	INIT_LIST_HEAD(&dev->adj_list.upper);
10832 	INIT_LIST_HEAD(&dev->adj_list.lower);
10833 	INIT_LIST_HEAD(&dev->ptype_all);
10834 	INIT_LIST_HEAD(&dev->ptype_specific);
10835 	INIT_LIST_HEAD(&dev->net_notifier_list);
10836 #ifdef CONFIG_NET_SCHED
10837 	hash_init(dev->qdisc_hash);
10838 #endif
10839 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10840 	setup(dev);
10841 
10842 	if (!dev->tx_queue_len) {
10843 		dev->priv_flags |= IFF_NO_QUEUE;
10844 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10845 	}
10846 
10847 	dev->num_tx_queues = txqs;
10848 	dev->real_num_tx_queues = txqs;
10849 	if (netif_alloc_netdev_queues(dev))
10850 		goto free_all;
10851 
10852 	dev->num_rx_queues = rxqs;
10853 	dev->real_num_rx_queues = rxqs;
10854 	if (netif_alloc_rx_queues(dev))
10855 		goto free_all;
10856 
10857 	strcpy(dev->name, name);
10858 	dev->name_assign_type = name_assign_type;
10859 	dev->group = INIT_NETDEV_GROUP;
10860 	if (!dev->ethtool_ops)
10861 		dev->ethtool_ops = &default_ethtool_ops;
10862 
10863 	nf_hook_ingress_init(dev);
10864 
10865 	return dev;
10866 
10867 free_all:
10868 	free_netdev(dev);
10869 	return NULL;
10870 
10871 free_pcpu:
10872 #ifdef CONFIG_PCPU_DEV_REFCNT
10873 	free_percpu(dev->pcpu_refcnt);
10874 free_dev:
10875 #endif
10876 	netdev_freemem(dev);
10877 	return NULL;
10878 }
10879 EXPORT_SYMBOL(alloc_netdev_mqs);
10880 
10881 /**
10882  * free_netdev - free network device
10883  * @dev: device
10884  *
10885  * This function does the last stage of destroying an allocated device
10886  * interface. The reference to the device object is released. If this
10887  * is the last reference then it will be freed.Must be called in process
10888  * context.
10889  */
10890 void free_netdev(struct net_device *dev)
10891 {
10892 	struct napi_struct *p, *n;
10893 
10894 	might_sleep();
10895 
10896 	/* When called immediately after register_netdevice() failed the unwind
10897 	 * handling may still be dismantling the device. Handle that case by
10898 	 * deferring the free.
10899 	 */
10900 	if (dev->reg_state == NETREG_UNREGISTERING) {
10901 		ASSERT_RTNL();
10902 		dev->needs_free_netdev = true;
10903 		return;
10904 	}
10905 
10906 	netif_free_tx_queues(dev);
10907 	netif_free_rx_queues(dev);
10908 
10909 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10910 
10911 	/* Flush device addresses */
10912 	dev_addr_flush(dev);
10913 
10914 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10915 		netif_napi_del(p);
10916 
10917 #ifdef CONFIG_PCPU_DEV_REFCNT
10918 	free_percpu(dev->pcpu_refcnt);
10919 	dev->pcpu_refcnt = NULL;
10920 #endif
10921 	free_percpu(dev->xdp_bulkq);
10922 	dev->xdp_bulkq = NULL;
10923 
10924 	/*  Compatibility with error handling in drivers */
10925 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10926 		netdev_freemem(dev);
10927 		return;
10928 	}
10929 
10930 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10931 	dev->reg_state = NETREG_RELEASED;
10932 
10933 	/* will free via device release */
10934 	put_device(&dev->dev);
10935 }
10936 EXPORT_SYMBOL(free_netdev);
10937 
10938 /**
10939  *	synchronize_net -  Synchronize with packet receive processing
10940  *
10941  *	Wait for packets currently being received to be done.
10942  *	Does not block later packets from starting.
10943  */
10944 void synchronize_net(void)
10945 {
10946 	might_sleep();
10947 	if (rtnl_is_locked())
10948 		synchronize_rcu_expedited();
10949 	else
10950 		synchronize_rcu();
10951 }
10952 EXPORT_SYMBOL(synchronize_net);
10953 
10954 /**
10955  *	unregister_netdevice_queue - remove device from the kernel
10956  *	@dev: device
10957  *	@head: list
10958  *
10959  *	This function shuts down a device interface and removes it
10960  *	from the kernel tables.
10961  *	If head not NULL, device is queued to be unregistered later.
10962  *
10963  *	Callers must hold the rtnl semaphore.  You may want
10964  *	unregister_netdev() instead of this.
10965  */
10966 
10967 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10968 {
10969 	ASSERT_RTNL();
10970 
10971 	if (head) {
10972 		list_move_tail(&dev->unreg_list, head);
10973 	} else {
10974 		LIST_HEAD(single);
10975 
10976 		list_add(&dev->unreg_list, &single);
10977 		unregister_netdevice_many(&single);
10978 	}
10979 }
10980 EXPORT_SYMBOL(unregister_netdevice_queue);
10981 
10982 /**
10983  *	unregister_netdevice_many - unregister many devices
10984  *	@head: list of devices
10985  *
10986  *  Note: As most callers use a stack allocated list_head,
10987  *  we force a list_del() to make sure stack wont be corrupted later.
10988  */
10989 void unregister_netdevice_many(struct list_head *head)
10990 {
10991 	struct net_device *dev, *tmp;
10992 	LIST_HEAD(close_head);
10993 
10994 	BUG_ON(dev_boot_phase);
10995 	ASSERT_RTNL();
10996 
10997 	if (list_empty(head))
10998 		return;
10999 
11000 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11001 		/* Some devices call without registering
11002 		 * for initialization unwind. Remove those
11003 		 * devices and proceed with the remaining.
11004 		 */
11005 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11006 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11007 				 dev->name, dev);
11008 
11009 			WARN_ON(1);
11010 			list_del(&dev->unreg_list);
11011 			continue;
11012 		}
11013 		dev->dismantle = true;
11014 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11015 	}
11016 
11017 	/* If device is running, close it first. */
11018 	list_for_each_entry(dev, head, unreg_list)
11019 		list_add_tail(&dev->close_list, &close_head);
11020 	dev_close_many(&close_head, true);
11021 
11022 	list_for_each_entry(dev, head, unreg_list) {
11023 		/* And unlink it from device chain. */
11024 		unlist_netdevice(dev);
11025 
11026 		dev->reg_state = NETREG_UNREGISTERING;
11027 	}
11028 	flush_all_backlogs();
11029 
11030 	synchronize_net();
11031 
11032 	list_for_each_entry(dev, head, unreg_list) {
11033 		struct sk_buff *skb = NULL;
11034 
11035 		/* Shutdown queueing discipline. */
11036 		dev_shutdown(dev);
11037 
11038 		dev_xdp_uninstall(dev);
11039 
11040 		/* Notify protocols, that we are about to destroy
11041 		 * this device. They should clean all the things.
11042 		 */
11043 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11044 
11045 		if (!dev->rtnl_link_ops ||
11046 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11047 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11048 						     GFP_KERNEL, NULL, 0);
11049 
11050 		/*
11051 		 *	Flush the unicast and multicast chains
11052 		 */
11053 		dev_uc_flush(dev);
11054 		dev_mc_flush(dev);
11055 
11056 		netdev_name_node_alt_flush(dev);
11057 		netdev_name_node_free(dev->name_node);
11058 
11059 		if (dev->netdev_ops->ndo_uninit)
11060 			dev->netdev_ops->ndo_uninit(dev);
11061 
11062 		if (skb)
11063 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11064 
11065 		/* Notifier chain MUST detach us all upper devices. */
11066 		WARN_ON(netdev_has_any_upper_dev(dev));
11067 		WARN_ON(netdev_has_any_lower_dev(dev));
11068 
11069 		/* Remove entries from kobject tree */
11070 		netdev_unregister_kobject(dev);
11071 #ifdef CONFIG_XPS
11072 		/* Remove XPS queueing entries */
11073 		netif_reset_xps_queues_gt(dev, 0);
11074 #endif
11075 	}
11076 
11077 	synchronize_net();
11078 
11079 	list_for_each_entry(dev, head, unreg_list) {
11080 		dev_put(dev);
11081 		net_set_todo(dev);
11082 	}
11083 
11084 	list_del(head);
11085 }
11086 EXPORT_SYMBOL(unregister_netdevice_many);
11087 
11088 /**
11089  *	unregister_netdev - remove device from the kernel
11090  *	@dev: device
11091  *
11092  *	This function shuts down a device interface and removes it
11093  *	from the kernel tables.
11094  *
11095  *	This is just a wrapper for unregister_netdevice that takes
11096  *	the rtnl semaphore.  In general you want to use this and not
11097  *	unregister_netdevice.
11098  */
11099 void unregister_netdev(struct net_device *dev)
11100 {
11101 	rtnl_lock();
11102 	unregister_netdevice(dev);
11103 	rtnl_unlock();
11104 }
11105 EXPORT_SYMBOL(unregister_netdev);
11106 
11107 /**
11108  *	__dev_change_net_namespace - move device to different nethost namespace
11109  *	@dev: device
11110  *	@net: network namespace
11111  *	@pat: If not NULL name pattern to try if the current device name
11112  *	      is already taken in the destination network namespace.
11113  *	@new_ifindex: If not zero, specifies device index in the target
11114  *	              namespace.
11115  *
11116  *	This function shuts down a device interface and moves it
11117  *	to a new network namespace. On success 0 is returned, on
11118  *	a failure a netagive errno code is returned.
11119  *
11120  *	Callers must hold the rtnl semaphore.
11121  */
11122 
11123 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11124 			       const char *pat, int new_ifindex)
11125 {
11126 	struct net *net_old = dev_net(dev);
11127 	int err, new_nsid;
11128 
11129 	ASSERT_RTNL();
11130 
11131 	/* Don't allow namespace local devices to be moved. */
11132 	err = -EINVAL;
11133 	if (dev->features & NETIF_F_NETNS_LOCAL)
11134 		goto out;
11135 
11136 	/* Ensure the device has been registrered */
11137 	if (dev->reg_state != NETREG_REGISTERED)
11138 		goto out;
11139 
11140 	/* Get out if there is nothing todo */
11141 	err = 0;
11142 	if (net_eq(net_old, net))
11143 		goto out;
11144 
11145 	/* Pick the destination device name, and ensure
11146 	 * we can use it in the destination network namespace.
11147 	 */
11148 	err = -EEXIST;
11149 	if (__dev_get_by_name(net, dev->name)) {
11150 		/* We get here if we can't use the current device name */
11151 		if (!pat)
11152 			goto out;
11153 		err = dev_get_valid_name(net, dev, pat);
11154 		if (err < 0)
11155 			goto out;
11156 	}
11157 
11158 	/* Check that new_ifindex isn't used yet. */
11159 	err = -EBUSY;
11160 	if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11161 		goto out;
11162 
11163 	/*
11164 	 * And now a mini version of register_netdevice unregister_netdevice.
11165 	 */
11166 
11167 	/* If device is running close it first. */
11168 	dev_close(dev);
11169 
11170 	/* And unlink it from device chain */
11171 	unlist_netdevice(dev);
11172 
11173 	synchronize_net();
11174 
11175 	/* Shutdown queueing discipline. */
11176 	dev_shutdown(dev);
11177 
11178 	/* Notify protocols, that we are about to destroy
11179 	 * this device. They should clean all the things.
11180 	 *
11181 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11182 	 * This is wanted because this way 8021q and macvlan know
11183 	 * the device is just moving and can keep their slaves up.
11184 	 */
11185 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11186 	rcu_barrier();
11187 
11188 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11189 	/* If there is an ifindex conflict assign a new one */
11190 	if (!new_ifindex) {
11191 		if (__dev_get_by_index(net, dev->ifindex))
11192 			new_ifindex = dev_new_index(net);
11193 		else
11194 			new_ifindex = dev->ifindex;
11195 	}
11196 
11197 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11198 			    new_ifindex);
11199 
11200 	/*
11201 	 *	Flush the unicast and multicast chains
11202 	 */
11203 	dev_uc_flush(dev);
11204 	dev_mc_flush(dev);
11205 
11206 	/* Send a netdev-removed uevent to the old namespace */
11207 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11208 	netdev_adjacent_del_links(dev);
11209 
11210 	/* Move per-net netdevice notifiers that are following the netdevice */
11211 	move_netdevice_notifiers_dev_net(dev, net);
11212 
11213 	/* Actually switch the network namespace */
11214 	dev_net_set(dev, net);
11215 	dev->ifindex = new_ifindex;
11216 
11217 	/* Send a netdev-add uevent to the new namespace */
11218 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11219 	netdev_adjacent_add_links(dev);
11220 
11221 	/* Fixup kobjects */
11222 	err = device_rename(&dev->dev, dev->name);
11223 	WARN_ON(err);
11224 
11225 	/* Adapt owner in case owning user namespace of target network
11226 	 * namespace is different from the original one.
11227 	 */
11228 	err = netdev_change_owner(dev, net_old, net);
11229 	WARN_ON(err);
11230 
11231 	/* Add the device back in the hashes */
11232 	list_netdevice(dev);
11233 
11234 	/* Notify protocols, that a new device appeared. */
11235 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11236 
11237 	/*
11238 	 *	Prevent userspace races by waiting until the network
11239 	 *	device is fully setup before sending notifications.
11240 	 */
11241 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11242 
11243 	synchronize_net();
11244 	err = 0;
11245 out:
11246 	return err;
11247 }
11248 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11249 
11250 static int dev_cpu_dead(unsigned int oldcpu)
11251 {
11252 	struct sk_buff **list_skb;
11253 	struct sk_buff *skb;
11254 	unsigned int cpu;
11255 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11256 
11257 	local_irq_disable();
11258 	cpu = smp_processor_id();
11259 	sd = &per_cpu(softnet_data, cpu);
11260 	oldsd = &per_cpu(softnet_data, oldcpu);
11261 
11262 	/* Find end of our completion_queue. */
11263 	list_skb = &sd->completion_queue;
11264 	while (*list_skb)
11265 		list_skb = &(*list_skb)->next;
11266 	/* Append completion queue from offline CPU. */
11267 	*list_skb = oldsd->completion_queue;
11268 	oldsd->completion_queue = NULL;
11269 
11270 	/* Append output queue from offline CPU. */
11271 	if (oldsd->output_queue) {
11272 		*sd->output_queue_tailp = oldsd->output_queue;
11273 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11274 		oldsd->output_queue = NULL;
11275 		oldsd->output_queue_tailp = &oldsd->output_queue;
11276 	}
11277 	/* Append NAPI poll list from offline CPU, with one exception :
11278 	 * process_backlog() must be called by cpu owning percpu backlog.
11279 	 * We properly handle process_queue & input_pkt_queue later.
11280 	 */
11281 	while (!list_empty(&oldsd->poll_list)) {
11282 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11283 							    struct napi_struct,
11284 							    poll_list);
11285 
11286 		list_del_init(&napi->poll_list);
11287 		if (napi->poll == process_backlog)
11288 			napi->state = 0;
11289 		else
11290 			____napi_schedule(sd, napi);
11291 	}
11292 
11293 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11294 	local_irq_enable();
11295 
11296 #ifdef CONFIG_RPS
11297 	remsd = oldsd->rps_ipi_list;
11298 	oldsd->rps_ipi_list = NULL;
11299 #endif
11300 	/* send out pending IPI's on offline CPU */
11301 	net_rps_send_ipi(remsd);
11302 
11303 	/* Process offline CPU's input_pkt_queue */
11304 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11305 		netif_rx_ni(skb);
11306 		input_queue_head_incr(oldsd);
11307 	}
11308 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11309 		netif_rx_ni(skb);
11310 		input_queue_head_incr(oldsd);
11311 	}
11312 
11313 	return 0;
11314 }
11315 
11316 /**
11317  *	netdev_increment_features - increment feature set by one
11318  *	@all: current feature set
11319  *	@one: new feature set
11320  *	@mask: mask feature set
11321  *
11322  *	Computes a new feature set after adding a device with feature set
11323  *	@one to the master device with current feature set @all.  Will not
11324  *	enable anything that is off in @mask. Returns the new feature set.
11325  */
11326 netdev_features_t netdev_increment_features(netdev_features_t all,
11327 	netdev_features_t one, netdev_features_t mask)
11328 {
11329 	if (mask & NETIF_F_HW_CSUM)
11330 		mask |= NETIF_F_CSUM_MASK;
11331 	mask |= NETIF_F_VLAN_CHALLENGED;
11332 
11333 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11334 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11335 
11336 	/* If one device supports hw checksumming, set for all. */
11337 	if (all & NETIF_F_HW_CSUM)
11338 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11339 
11340 	return all;
11341 }
11342 EXPORT_SYMBOL(netdev_increment_features);
11343 
11344 static struct hlist_head * __net_init netdev_create_hash(void)
11345 {
11346 	int i;
11347 	struct hlist_head *hash;
11348 
11349 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11350 	if (hash != NULL)
11351 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11352 			INIT_HLIST_HEAD(&hash[i]);
11353 
11354 	return hash;
11355 }
11356 
11357 /* Initialize per network namespace state */
11358 static int __net_init netdev_init(struct net *net)
11359 {
11360 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11361 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11362 
11363 	if (net != &init_net)
11364 		INIT_LIST_HEAD(&net->dev_base_head);
11365 
11366 	net->dev_name_head = netdev_create_hash();
11367 	if (net->dev_name_head == NULL)
11368 		goto err_name;
11369 
11370 	net->dev_index_head = netdev_create_hash();
11371 	if (net->dev_index_head == NULL)
11372 		goto err_idx;
11373 
11374 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11375 
11376 	return 0;
11377 
11378 err_idx:
11379 	kfree(net->dev_name_head);
11380 err_name:
11381 	return -ENOMEM;
11382 }
11383 
11384 /**
11385  *	netdev_drivername - network driver for the device
11386  *	@dev: network device
11387  *
11388  *	Determine network driver for device.
11389  */
11390 const char *netdev_drivername(const struct net_device *dev)
11391 {
11392 	const struct device_driver *driver;
11393 	const struct device *parent;
11394 	const char *empty = "";
11395 
11396 	parent = dev->dev.parent;
11397 	if (!parent)
11398 		return empty;
11399 
11400 	driver = parent->driver;
11401 	if (driver && driver->name)
11402 		return driver->name;
11403 	return empty;
11404 }
11405 
11406 static void __netdev_printk(const char *level, const struct net_device *dev,
11407 			    struct va_format *vaf)
11408 {
11409 	if (dev && dev->dev.parent) {
11410 		dev_printk_emit(level[1] - '0',
11411 				dev->dev.parent,
11412 				"%s %s %s%s: %pV",
11413 				dev_driver_string(dev->dev.parent),
11414 				dev_name(dev->dev.parent),
11415 				netdev_name(dev), netdev_reg_state(dev),
11416 				vaf);
11417 	} else if (dev) {
11418 		printk("%s%s%s: %pV",
11419 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11420 	} else {
11421 		printk("%s(NULL net_device): %pV", level, vaf);
11422 	}
11423 }
11424 
11425 void netdev_printk(const char *level, const struct net_device *dev,
11426 		   const char *format, ...)
11427 {
11428 	struct va_format vaf;
11429 	va_list args;
11430 
11431 	va_start(args, format);
11432 
11433 	vaf.fmt = format;
11434 	vaf.va = &args;
11435 
11436 	__netdev_printk(level, dev, &vaf);
11437 
11438 	va_end(args);
11439 }
11440 EXPORT_SYMBOL(netdev_printk);
11441 
11442 #define define_netdev_printk_level(func, level)			\
11443 void func(const struct net_device *dev, const char *fmt, ...)	\
11444 {								\
11445 	struct va_format vaf;					\
11446 	va_list args;						\
11447 								\
11448 	va_start(args, fmt);					\
11449 								\
11450 	vaf.fmt = fmt;						\
11451 	vaf.va = &args;						\
11452 								\
11453 	__netdev_printk(level, dev, &vaf);			\
11454 								\
11455 	va_end(args);						\
11456 }								\
11457 EXPORT_SYMBOL(func);
11458 
11459 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11460 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11461 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11462 define_netdev_printk_level(netdev_err, KERN_ERR);
11463 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11464 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11465 define_netdev_printk_level(netdev_info, KERN_INFO);
11466 
11467 static void __net_exit netdev_exit(struct net *net)
11468 {
11469 	kfree(net->dev_name_head);
11470 	kfree(net->dev_index_head);
11471 	if (net != &init_net)
11472 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11473 }
11474 
11475 static struct pernet_operations __net_initdata netdev_net_ops = {
11476 	.init = netdev_init,
11477 	.exit = netdev_exit,
11478 };
11479 
11480 static void __net_exit default_device_exit(struct net *net)
11481 {
11482 	struct net_device *dev, *aux;
11483 	/*
11484 	 * Push all migratable network devices back to the
11485 	 * initial network namespace
11486 	 */
11487 	rtnl_lock();
11488 	for_each_netdev_safe(net, dev, aux) {
11489 		int err;
11490 		char fb_name[IFNAMSIZ];
11491 
11492 		/* Ignore unmoveable devices (i.e. loopback) */
11493 		if (dev->features & NETIF_F_NETNS_LOCAL)
11494 			continue;
11495 
11496 		/* Leave virtual devices for the generic cleanup */
11497 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11498 			continue;
11499 
11500 		/* Push remaining network devices to init_net */
11501 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11502 		if (__dev_get_by_name(&init_net, fb_name))
11503 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11504 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11505 		if (err) {
11506 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11507 				 __func__, dev->name, err);
11508 			BUG();
11509 		}
11510 	}
11511 	rtnl_unlock();
11512 }
11513 
11514 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11515 {
11516 	/* Return with the rtnl_lock held when there are no network
11517 	 * devices unregistering in any network namespace in net_list.
11518 	 */
11519 	struct net *net;
11520 	bool unregistering;
11521 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
11522 
11523 	add_wait_queue(&netdev_unregistering_wq, &wait);
11524 	for (;;) {
11525 		unregistering = false;
11526 		rtnl_lock();
11527 		list_for_each_entry(net, net_list, exit_list) {
11528 			if (net->dev_unreg_count > 0) {
11529 				unregistering = true;
11530 				break;
11531 			}
11532 		}
11533 		if (!unregistering)
11534 			break;
11535 		__rtnl_unlock();
11536 
11537 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11538 	}
11539 	remove_wait_queue(&netdev_unregistering_wq, &wait);
11540 }
11541 
11542 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11543 {
11544 	/* At exit all network devices most be removed from a network
11545 	 * namespace.  Do this in the reverse order of registration.
11546 	 * Do this across as many network namespaces as possible to
11547 	 * improve batching efficiency.
11548 	 */
11549 	struct net_device *dev;
11550 	struct net *net;
11551 	LIST_HEAD(dev_kill_list);
11552 
11553 	/* To prevent network device cleanup code from dereferencing
11554 	 * loopback devices or network devices that have been freed
11555 	 * wait here for all pending unregistrations to complete,
11556 	 * before unregistring the loopback device and allowing the
11557 	 * network namespace be freed.
11558 	 *
11559 	 * The netdev todo list containing all network devices
11560 	 * unregistrations that happen in default_device_exit_batch
11561 	 * will run in the rtnl_unlock() at the end of
11562 	 * default_device_exit_batch.
11563 	 */
11564 	rtnl_lock_unregistering(net_list);
11565 	list_for_each_entry(net, net_list, exit_list) {
11566 		for_each_netdev_reverse(net, dev) {
11567 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11568 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11569 			else
11570 				unregister_netdevice_queue(dev, &dev_kill_list);
11571 		}
11572 	}
11573 	unregister_netdevice_many(&dev_kill_list);
11574 	rtnl_unlock();
11575 }
11576 
11577 static struct pernet_operations __net_initdata default_device_ops = {
11578 	.exit = default_device_exit,
11579 	.exit_batch = default_device_exit_batch,
11580 };
11581 
11582 /*
11583  *	Initialize the DEV module. At boot time this walks the device list and
11584  *	unhooks any devices that fail to initialise (normally hardware not
11585  *	present) and leaves us with a valid list of present and active devices.
11586  *
11587  */
11588 
11589 /*
11590  *       This is called single threaded during boot, so no need
11591  *       to take the rtnl semaphore.
11592  */
11593 static int __init net_dev_init(void)
11594 {
11595 	int i, rc = -ENOMEM;
11596 
11597 	BUG_ON(!dev_boot_phase);
11598 
11599 	if (dev_proc_init())
11600 		goto out;
11601 
11602 	if (netdev_kobject_init())
11603 		goto out;
11604 
11605 	INIT_LIST_HEAD(&ptype_all);
11606 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11607 		INIT_LIST_HEAD(&ptype_base[i]);
11608 
11609 	INIT_LIST_HEAD(&offload_base);
11610 
11611 	if (register_pernet_subsys(&netdev_net_ops))
11612 		goto out;
11613 
11614 	/*
11615 	 *	Initialise the packet receive queues.
11616 	 */
11617 
11618 	for_each_possible_cpu(i) {
11619 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11620 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11621 
11622 		INIT_WORK(flush, flush_backlog);
11623 
11624 		skb_queue_head_init(&sd->input_pkt_queue);
11625 		skb_queue_head_init(&sd->process_queue);
11626 #ifdef CONFIG_XFRM_OFFLOAD
11627 		skb_queue_head_init(&sd->xfrm_backlog);
11628 #endif
11629 		INIT_LIST_HEAD(&sd->poll_list);
11630 		sd->output_queue_tailp = &sd->output_queue;
11631 #ifdef CONFIG_RPS
11632 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11633 		sd->cpu = i;
11634 #endif
11635 
11636 		init_gro_hash(&sd->backlog);
11637 		sd->backlog.poll = process_backlog;
11638 		sd->backlog.weight = weight_p;
11639 	}
11640 
11641 	dev_boot_phase = 0;
11642 
11643 	/* The loopback device is special if any other network devices
11644 	 * is present in a network namespace the loopback device must
11645 	 * be present. Since we now dynamically allocate and free the
11646 	 * loopback device ensure this invariant is maintained by
11647 	 * keeping the loopback device as the first device on the
11648 	 * list of network devices.  Ensuring the loopback devices
11649 	 * is the first device that appears and the last network device
11650 	 * that disappears.
11651 	 */
11652 	if (register_pernet_device(&loopback_net_ops))
11653 		goto out;
11654 
11655 	if (register_pernet_device(&default_device_ops))
11656 		goto out;
11657 
11658 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11659 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11660 
11661 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11662 				       NULL, dev_cpu_dead);
11663 	WARN_ON(rc < 0);
11664 	rc = 0;
11665 out:
11666 	return rc;
11667 }
11668 
11669 subsys_initcall(net_dev_init);
11670