1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitops.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/mm.h> 81 #include <linux/mutex.h> 82 #include <linux/string.h> 83 #include <linux/mm.h> 84 #include <linux/socket.h> 85 #include <linux/sockios.h> 86 #include <linux/errno.h> 87 #include <linux/interrupt.h> 88 #include <linux/if_ether.h> 89 #include <linux/netdevice.h> 90 #include <linux/etherdevice.h> 91 #include <linux/ethtool.h> 92 #include <linux/skbuff.h> 93 #include <linux/bpf.h> 94 #include <linux/bpf_trace.h> 95 #include <net/net_namespace.h> 96 #include <net/sock.h> 97 #include <net/busy_poll.h> 98 #include <linux/rtnetlink.h> 99 #include <linux/stat.h> 100 #include <net/dst.h> 101 #include <net/dst_metadata.h> 102 #include <net/pkt_sched.h> 103 #include <net/pkt_cls.h> 104 #include <net/checksum.h> 105 #include <net/xfrm.h> 106 #include <linux/highmem.h> 107 #include <linux/init.h> 108 #include <linux/module.h> 109 #include <linux/netpoll.h> 110 #include <linux/rcupdate.h> 111 #include <linux/delay.h> 112 #include <net/iw_handler.h> 113 #include <asm/current.h> 114 #include <linux/audit.h> 115 #include <linux/dmaengine.h> 116 #include <linux/err.h> 117 #include <linux/ctype.h> 118 #include <linux/if_arp.h> 119 #include <linux/if_vlan.h> 120 #include <linux/ip.h> 121 #include <net/ip.h> 122 #include <net/mpls.h> 123 #include <linux/ipv6.h> 124 #include <linux/in.h> 125 #include <linux/jhash.h> 126 #include <linux/random.h> 127 #include <trace/events/napi.h> 128 #include <trace/events/net.h> 129 #include <trace/events/skb.h> 130 #include <linux/inetdevice.h> 131 #include <linux/cpu_rmap.h> 132 #include <linux/static_key.h> 133 #include <linux/hashtable.h> 134 #include <linux/vmalloc.h> 135 #include <linux/if_macvlan.h> 136 #include <linux/errqueue.h> 137 #include <linux/hrtimer.h> 138 #include <linux/netfilter_ingress.h> 139 #include <linux/crash_dump.h> 140 #include <linux/sctp.h> 141 #include <net/udp_tunnel.h> 142 #include <linux/net_namespace.h> 143 #include <linux/indirect_call_wrapper.h> 144 #include <net/devlink.h> 145 146 #include "net-sysfs.h" 147 148 #define MAX_GRO_SKBS 8 149 150 /* This should be increased if a protocol with a bigger head is added. */ 151 #define GRO_MAX_HEAD (MAX_HEADER + 128) 152 153 static DEFINE_SPINLOCK(ptype_lock); 154 static DEFINE_SPINLOCK(offload_lock); 155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 156 struct list_head ptype_all __read_mostly; /* Taps */ 157 static struct list_head offload_base __read_mostly; 158 159 static int netif_rx_internal(struct sk_buff *skb); 160 static int call_netdevice_notifiers_info(unsigned long val, 161 struct netdev_notifier_info *info); 162 static int call_netdevice_notifiers_extack(unsigned long val, 163 struct net_device *dev, 164 struct netlink_ext_ack *extack); 165 static struct napi_struct *napi_by_id(unsigned int napi_id); 166 167 /* 168 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 169 * semaphore. 170 * 171 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 172 * 173 * Writers must hold the rtnl semaphore while they loop through the 174 * dev_base_head list, and hold dev_base_lock for writing when they do the 175 * actual updates. This allows pure readers to access the list even 176 * while a writer is preparing to update it. 177 * 178 * To put it another way, dev_base_lock is held for writing only to 179 * protect against pure readers; the rtnl semaphore provides the 180 * protection against other writers. 181 * 182 * See, for example usages, register_netdevice() and 183 * unregister_netdevice(), which must be called with the rtnl 184 * semaphore held. 185 */ 186 DEFINE_RWLOCK(dev_base_lock); 187 EXPORT_SYMBOL(dev_base_lock); 188 189 static DEFINE_MUTEX(ifalias_mutex); 190 191 /* protects napi_hash addition/deletion and napi_gen_id */ 192 static DEFINE_SPINLOCK(napi_hash_lock); 193 194 static unsigned int napi_gen_id = NR_CPUS; 195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 196 197 static seqcount_t devnet_rename_seq; 198 199 static inline void dev_base_seq_inc(struct net *net) 200 { 201 while (++net->dev_base_seq == 0) 202 ; 203 } 204 205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 206 { 207 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 208 209 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 210 } 211 212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 213 { 214 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 215 } 216 217 static inline void rps_lock(struct softnet_data *sd) 218 { 219 #ifdef CONFIG_RPS 220 spin_lock(&sd->input_pkt_queue.lock); 221 #endif 222 } 223 224 static inline void rps_unlock(struct softnet_data *sd) 225 { 226 #ifdef CONFIG_RPS 227 spin_unlock(&sd->input_pkt_queue.lock); 228 #endif 229 } 230 231 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 232 const char *name) 233 { 234 struct netdev_name_node *name_node; 235 236 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 237 if (!name_node) 238 return NULL; 239 INIT_HLIST_NODE(&name_node->hlist); 240 name_node->dev = dev; 241 name_node->name = name; 242 return name_node; 243 } 244 245 static struct netdev_name_node * 246 netdev_name_node_head_alloc(struct net_device *dev) 247 { 248 struct netdev_name_node *name_node; 249 250 name_node = netdev_name_node_alloc(dev, dev->name); 251 if (!name_node) 252 return NULL; 253 INIT_LIST_HEAD(&name_node->list); 254 return name_node; 255 } 256 257 static void netdev_name_node_free(struct netdev_name_node *name_node) 258 { 259 kfree(name_node); 260 } 261 262 static void netdev_name_node_add(struct net *net, 263 struct netdev_name_node *name_node) 264 { 265 hlist_add_head_rcu(&name_node->hlist, 266 dev_name_hash(net, name_node->name)); 267 } 268 269 static void netdev_name_node_del(struct netdev_name_node *name_node) 270 { 271 hlist_del_rcu(&name_node->hlist); 272 } 273 274 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 275 const char *name) 276 { 277 struct hlist_head *head = dev_name_hash(net, name); 278 struct netdev_name_node *name_node; 279 280 hlist_for_each_entry(name_node, head, hlist) 281 if (!strcmp(name_node->name, name)) 282 return name_node; 283 return NULL; 284 } 285 286 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 287 const char *name) 288 { 289 struct hlist_head *head = dev_name_hash(net, name); 290 struct netdev_name_node *name_node; 291 292 hlist_for_each_entry_rcu(name_node, head, hlist) 293 if (!strcmp(name_node->name, name)) 294 return name_node; 295 return NULL; 296 } 297 298 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 299 { 300 struct netdev_name_node *name_node; 301 struct net *net = dev_net(dev); 302 303 name_node = netdev_name_node_lookup(net, name); 304 if (name_node) 305 return -EEXIST; 306 name_node = netdev_name_node_alloc(dev, name); 307 if (!name_node) 308 return -ENOMEM; 309 netdev_name_node_add(net, name_node); 310 /* The node that holds dev->name acts as a head of per-device list. */ 311 list_add_tail(&name_node->list, &dev->name_node->list); 312 313 return 0; 314 } 315 EXPORT_SYMBOL(netdev_name_node_alt_create); 316 317 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 318 { 319 list_del(&name_node->list); 320 netdev_name_node_del(name_node); 321 kfree(name_node->name); 322 netdev_name_node_free(name_node); 323 } 324 325 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 326 { 327 struct netdev_name_node *name_node; 328 struct net *net = dev_net(dev); 329 330 name_node = netdev_name_node_lookup(net, name); 331 if (!name_node) 332 return -ENOENT; 333 /* lookup might have found our primary name or a name belonging 334 * to another device. 335 */ 336 if (name_node == dev->name_node || name_node->dev != dev) 337 return -EINVAL; 338 339 __netdev_name_node_alt_destroy(name_node); 340 341 return 0; 342 } 343 EXPORT_SYMBOL(netdev_name_node_alt_destroy); 344 345 static void netdev_name_node_alt_flush(struct net_device *dev) 346 { 347 struct netdev_name_node *name_node, *tmp; 348 349 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) 350 __netdev_name_node_alt_destroy(name_node); 351 } 352 353 /* Device list insertion */ 354 static void list_netdevice(struct net_device *dev) 355 { 356 struct net *net = dev_net(dev); 357 358 ASSERT_RTNL(); 359 360 write_lock_bh(&dev_base_lock); 361 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 362 netdev_name_node_add(net, dev->name_node); 363 hlist_add_head_rcu(&dev->index_hlist, 364 dev_index_hash(net, dev->ifindex)); 365 write_unlock_bh(&dev_base_lock); 366 367 dev_base_seq_inc(net); 368 } 369 370 /* Device list removal 371 * caller must respect a RCU grace period before freeing/reusing dev 372 */ 373 static void unlist_netdevice(struct net_device *dev) 374 { 375 ASSERT_RTNL(); 376 377 /* Unlink dev from the device chain */ 378 write_lock_bh(&dev_base_lock); 379 list_del_rcu(&dev->dev_list); 380 netdev_name_node_del(dev->name_node); 381 hlist_del_rcu(&dev->index_hlist); 382 write_unlock_bh(&dev_base_lock); 383 384 dev_base_seq_inc(dev_net(dev)); 385 } 386 387 /* 388 * Our notifier list 389 */ 390 391 static RAW_NOTIFIER_HEAD(netdev_chain); 392 393 /* 394 * Device drivers call our routines to queue packets here. We empty the 395 * queue in the local softnet handler. 396 */ 397 398 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 399 EXPORT_PER_CPU_SYMBOL(softnet_data); 400 401 /******************************************************************************* 402 * 403 * Protocol management and registration routines 404 * 405 *******************************************************************************/ 406 407 408 /* 409 * Add a protocol ID to the list. Now that the input handler is 410 * smarter we can dispense with all the messy stuff that used to be 411 * here. 412 * 413 * BEWARE!!! Protocol handlers, mangling input packets, 414 * MUST BE last in hash buckets and checking protocol handlers 415 * MUST start from promiscuous ptype_all chain in net_bh. 416 * It is true now, do not change it. 417 * Explanation follows: if protocol handler, mangling packet, will 418 * be the first on list, it is not able to sense, that packet 419 * is cloned and should be copied-on-write, so that it will 420 * change it and subsequent readers will get broken packet. 421 * --ANK (980803) 422 */ 423 424 static inline struct list_head *ptype_head(const struct packet_type *pt) 425 { 426 if (pt->type == htons(ETH_P_ALL)) 427 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 428 else 429 return pt->dev ? &pt->dev->ptype_specific : 430 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 431 } 432 433 /** 434 * dev_add_pack - add packet handler 435 * @pt: packet type declaration 436 * 437 * Add a protocol handler to the networking stack. The passed &packet_type 438 * is linked into kernel lists and may not be freed until it has been 439 * removed from the kernel lists. 440 * 441 * This call does not sleep therefore it can not 442 * guarantee all CPU's that are in middle of receiving packets 443 * will see the new packet type (until the next received packet). 444 */ 445 446 void dev_add_pack(struct packet_type *pt) 447 { 448 struct list_head *head = ptype_head(pt); 449 450 spin_lock(&ptype_lock); 451 list_add_rcu(&pt->list, head); 452 spin_unlock(&ptype_lock); 453 } 454 EXPORT_SYMBOL(dev_add_pack); 455 456 /** 457 * __dev_remove_pack - remove packet handler 458 * @pt: packet type declaration 459 * 460 * Remove a protocol handler that was previously added to the kernel 461 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 462 * from the kernel lists and can be freed or reused once this function 463 * returns. 464 * 465 * The packet type might still be in use by receivers 466 * and must not be freed until after all the CPU's have gone 467 * through a quiescent state. 468 */ 469 void __dev_remove_pack(struct packet_type *pt) 470 { 471 struct list_head *head = ptype_head(pt); 472 struct packet_type *pt1; 473 474 spin_lock(&ptype_lock); 475 476 list_for_each_entry(pt1, head, list) { 477 if (pt == pt1) { 478 list_del_rcu(&pt->list); 479 goto out; 480 } 481 } 482 483 pr_warn("dev_remove_pack: %p not found\n", pt); 484 out: 485 spin_unlock(&ptype_lock); 486 } 487 EXPORT_SYMBOL(__dev_remove_pack); 488 489 /** 490 * dev_remove_pack - remove packet handler 491 * @pt: packet type declaration 492 * 493 * Remove a protocol handler that was previously added to the kernel 494 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 495 * from the kernel lists and can be freed or reused once this function 496 * returns. 497 * 498 * This call sleeps to guarantee that no CPU is looking at the packet 499 * type after return. 500 */ 501 void dev_remove_pack(struct packet_type *pt) 502 { 503 __dev_remove_pack(pt); 504 505 synchronize_net(); 506 } 507 EXPORT_SYMBOL(dev_remove_pack); 508 509 510 /** 511 * dev_add_offload - register offload handlers 512 * @po: protocol offload declaration 513 * 514 * Add protocol offload handlers to the networking stack. The passed 515 * &proto_offload is linked into kernel lists and may not be freed until 516 * it has been removed from the kernel lists. 517 * 518 * This call does not sleep therefore it can not 519 * guarantee all CPU's that are in middle of receiving packets 520 * will see the new offload handlers (until the next received packet). 521 */ 522 void dev_add_offload(struct packet_offload *po) 523 { 524 struct packet_offload *elem; 525 526 spin_lock(&offload_lock); 527 list_for_each_entry(elem, &offload_base, list) { 528 if (po->priority < elem->priority) 529 break; 530 } 531 list_add_rcu(&po->list, elem->list.prev); 532 spin_unlock(&offload_lock); 533 } 534 EXPORT_SYMBOL(dev_add_offload); 535 536 /** 537 * __dev_remove_offload - remove offload handler 538 * @po: packet offload declaration 539 * 540 * Remove a protocol offload handler that was previously added to the 541 * kernel offload handlers by dev_add_offload(). The passed &offload_type 542 * is removed from the kernel lists and can be freed or reused once this 543 * function returns. 544 * 545 * The packet type might still be in use by receivers 546 * and must not be freed until after all the CPU's have gone 547 * through a quiescent state. 548 */ 549 static void __dev_remove_offload(struct packet_offload *po) 550 { 551 struct list_head *head = &offload_base; 552 struct packet_offload *po1; 553 554 spin_lock(&offload_lock); 555 556 list_for_each_entry(po1, head, list) { 557 if (po == po1) { 558 list_del_rcu(&po->list); 559 goto out; 560 } 561 } 562 563 pr_warn("dev_remove_offload: %p not found\n", po); 564 out: 565 spin_unlock(&offload_lock); 566 } 567 568 /** 569 * dev_remove_offload - remove packet offload handler 570 * @po: packet offload declaration 571 * 572 * Remove a packet offload handler that was previously added to the kernel 573 * offload handlers by dev_add_offload(). The passed &offload_type is 574 * removed from the kernel lists and can be freed or reused once this 575 * function returns. 576 * 577 * This call sleeps to guarantee that no CPU is looking at the packet 578 * type after return. 579 */ 580 void dev_remove_offload(struct packet_offload *po) 581 { 582 __dev_remove_offload(po); 583 584 synchronize_net(); 585 } 586 EXPORT_SYMBOL(dev_remove_offload); 587 588 /****************************************************************************** 589 * 590 * Device Boot-time Settings Routines 591 * 592 ******************************************************************************/ 593 594 /* Boot time configuration table */ 595 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 596 597 /** 598 * netdev_boot_setup_add - add new setup entry 599 * @name: name of the device 600 * @map: configured settings for the device 601 * 602 * Adds new setup entry to the dev_boot_setup list. The function 603 * returns 0 on error and 1 on success. This is a generic routine to 604 * all netdevices. 605 */ 606 static int netdev_boot_setup_add(char *name, struct ifmap *map) 607 { 608 struct netdev_boot_setup *s; 609 int i; 610 611 s = dev_boot_setup; 612 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 613 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 614 memset(s[i].name, 0, sizeof(s[i].name)); 615 strlcpy(s[i].name, name, IFNAMSIZ); 616 memcpy(&s[i].map, map, sizeof(s[i].map)); 617 break; 618 } 619 } 620 621 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 622 } 623 624 /** 625 * netdev_boot_setup_check - check boot time settings 626 * @dev: the netdevice 627 * 628 * Check boot time settings for the device. 629 * The found settings are set for the device to be used 630 * later in the device probing. 631 * Returns 0 if no settings found, 1 if they are. 632 */ 633 int netdev_boot_setup_check(struct net_device *dev) 634 { 635 struct netdev_boot_setup *s = dev_boot_setup; 636 int i; 637 638 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 639 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 640 !strcmp(dev->name, s[i].name)) { 641 dev->irq = s[i].map.irq; 642 dev->base_addr = s[i].map.base_addr; 643 dev->mem_start = s[i].map.mem_start; 644 dev->mem_end = s[i].map.mem_end; 645 return 1; 646 } 647 } 648 return 0; 649 } 650 EXPORT_SYMBOL(netdev_boot_setup_check); 651 652 653 /** 654 * netdev_boot_base - get address from boot time settings 655 * @prefix: prefix for network device 656 * @unit: id for network device 657 * 658 * Check boot time settings for the base address of device. 659 * The found settings are set for the device to be used 660 * later in the device probing. 661 * Returns 0 if no settings found. 662 */ 663 unsigned long netdev_boot_base(const char *prefix, int unit) 664 { 665 const struct netdev_boot_setup *s = dev_boot_setup; 666 char name[IFNAMSIZ]; 667 int i; 668 669 sprintf(name, "%s%d", prefix, unit); 670 671 /* 672 * If device already registered then return base of 1 673 * to indicate not to probe for this interface 674 */ 675 if (__dev_get_by_name(&init_net, name)) 676 return 1; 677 678 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 679 if (!strcmp(name, s[i].name)) 680 return s[i].map.base_addr; 681 return 0; 682 } 683 684 /* 685 * Saves at boot time configured settings for any netdevice. 686 */ 687 int __init netdev_boot_setup(char *str) 688 { 689 int ints[5]; 690 struct ifmap map; 691 692 str = get_options(str, ARRAY_SIZE(ints), ints); 693 if (!str || !*str) 694 return 0; 695 696 /* Save settings */ 697 memset(&map, 0, sizeof(map)); 698 if (ints[0] > 0) 699 map.irq = ints[1]; 700 if (ints[0] > 1) 701 map.base_addr = ints[2]; 702 if (ints[0] > 2) 703 map.mem_start = ints[3]; 704 if (ints[0] > 3) 705 map.mem_end = ints[4]; 706 707 /* Add new entry to the list */ 708 return netdev_boot_setup_add(str, &map); 709 } 710 711 __setup("netdev=", netdev_boot_setup); 712 713 /******************************************************************************* 714 * 715 * Device Interface Subroutines 716 * 717 *******************************************************************************/ 718 719 /** 720 * dev_get_iflink - get 'iflink' value of a interface 721 * @dev: targeted interface 722 * 723 * Indicates the ifindex the interface is linked to. 724 * Physical interfaces have the same 'ifindex' and 'iflink' values. 725 */ 726 727 int dev_get_iflink(const struct net_device *dev) 728 { 729 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 730 return dev->netdev_ops->ndo_get_iflink(dev); 731 732 return dev->ifindex; 733 } 734 EXPORT_SYMBOL(dev_get_iflink); 735 736 /** 737 * dev_fill_metadata_dst - Retrieve tunnel egress information. 738 * @dev: targeted interface 739 * @skb: The packet. 740 * 741 * For better visibility of tunnel traffic OVS needs to retrieve 742 * egress tunnel information for a packet. Following API allows 743 * user to get this info. 744 */ 745 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 746 { 747 struct ip_tunnel_info *info; 748 749 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 750 return -EINVAL; 751 752 info = skb_tunnel_info_unclone(skb); 753 if (!info) 754 return -ENOMEM; 755 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 756 return -EINVAL; 757 758 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 759 } 760 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 761 762 /** 763 * __dev_get_by_name - find a device by its name 764 * @net: the applicable net namespace 765 * @name: name to find 766 * 767 * Find an interface by name. Must be called under RTNL semaphore 768 * or @dev_base_lock. If the name is found a pointer to the device 769 * is returned. If the name is not found then %NULL is returned. The 770 * reference counters are not incremented so the caller must be 771 * careful with locks. 772 */ 773 774 struct net_device *__dev_get_by_name(struct net *net, const char *name) 775 { 776 struct netdev_name_node *node_name; 777 778 node_name = netdev_name_node_lookup(net, name); 779 return node_name ? node_name->dev : NULL; 780 } 781 EXPORT_SYMBOL(__dev_get_by_name); 782 783 /** 784 * dev_get_by_name_rcu - find a device by its name 785 * @net: the applicable net namespace 786 * @name: name to find 787 * 788 * Find an interface by name. 789 * If the name is found a pointer to the device is returned. 790 * If the name is not found then %NULL is returned. 791 * The reference counters are not incremented so the caller must be 792 * careful with locks. The caller must hold RCU lock. 793 */ 794 795 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 796 { 797 struct netdev_name_node *node_name; 798 799 node_name = netdev_name_node_lookup_rcu(net, name); 800 return node_name ? node_name->dev : NULL; 801 } 802 EXPORT_SYMBOL(dev_get_by_name_rcu); 803 804 /** 805 * dev_get_by_name - find a device by its name 806 * @net: the applicable net namespace 807 * @name: name to find 808 * 809 * Find an interface by name. This can be called from any 810 * context and does its own locking. The returned handle has 811 * the usage count incremented and the caller must use dev_put() to 812 * release it when it is no longer needed. %NULL is returned if no 813 * matching device is found. 814 */ 815 816 struct net_device *dev_get_by_name(struct net *net, const char *name) 817 { 818 struct net_device *dev; 819 820 rcu_read_lock(); 821 dev = dev_get_by_name_rcu(net, name); 822 if (dev) 823 dev_hold(dev); 824 rcu_read_unlock(); 825 return dev; 826 } 827 EXPORT_SYMBOL(dev_get_by_name); 828 829 /** 830 * __dev_get_by_index - find a device by its ifindex 831 * @net: the applicable net namespace 832 * @ifindex: index of device 833 * 834 * Search for an interface by index. Returns %NULL if the device 835 * is not found or a pointer to the device. The device has not 836 * had its reference counter increased so the caller must be careful 837 * about locking. The caller must hold either the RTNL semaphore 838 * or @dev_base_lock. 839 */ 840 841 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 842 { 843 struct net_device *dev; 844 struct hlist_head *head = dev_index_hash(net, ifindex); 845 846 hlist_for_each_entry(dev, head, index_hlist) 847 if (dev->ifindex == ifindex) 848 return dev; 849 850 return NULL; 851 } 852 EXPORT_SYMBOL(__dev_get_by_index); 853 854 /** 855 * dev_get_by_index_rcu - find a device by its ifindex 856 * @net: the applicable net namespace 857 * @ifindex: index of device 858 * 859 * Search for an interface by index. Returns %NULL if the device 860 * is not found or a pointer to the device. The device has not 861 * had its reference counter increased so the caller must be careful 862 * about locking. The caller must hold RCU lock. 863 */ 864 865 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 866 { 867 struct net_device *dev; 868 struct hlist_head *head = dev_index_hash(net, ifindex); 869 870 hlist_for_each_entry_rcu(dev, head, index_hlist) 871 if (dev->ifindex == ifindex) 872 return dev; 873 874 return NULL; 875 } 876 EXPORT_SYMBOL(dev_get_by_index_rcu); 877 878 879 /** 880 * dev_get_by_index - find a device by its ifindex 881 * @net: the applicable net namespace 882 * @ifindex: index of device 883 * 884 * Search for an interface by index. Returns NULL if the device 885 * is not found or a pointer to the device. The device returned has 886 * had a reference added and the pointer is safe until the user calls 887 * dev_put to indicate they have finished with it. 888 */ 889 890 struct net_device *dev_get_by_index(struct net *net, int ifindex) 891 { 892 struct net_device *dev; 893 894 rcu_read_lock(); 895 dev = dev_get_by_index_rcu(net, ifindex); 896 if (dev) 897 dev_hold(dev); 898 rcu_read_unlock(); 899 return dev; 900 } 901 EXPORT_SYMBOL(dev_get_by_index); 902 903 /** 904 * dev_get_by_napi_id - find a device by napi_id 905 * @napi_id: ID of the NAPI struct 906 * 907 * Search for an interface by NAPI ID. Returns %NULL if the device 908 * is not found or a pointer to the device. The device has not had 909 * its reference counter increased so the caller must be careful 910 * about locking. The caller must hold RCU lock. 911 */ 912 913 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 914 { 915 struct napi_struct *napi; 916 917 WARN_ON_ONCE(!rcu_read_lock_held()); 918 919 if (napi_id < MIN_NAPI_ID) 920 return NULL; 921 922 napi = napi_by_id(napi_id); 923 924 return napi ? napi->dev : NULL; 925 } 926 EXPORT_SYMBOL(dev_get_by_napi_id); 927 928 /** 929 * netdev_get_name - get a netdevice name, knowing its ifindex. 930 * @net: network namespace 931 * @name: a pointer to the buffer where the name will be stored. 932 * @ifindex: the ifindex of the interface to get the name from. 933 * 934 * The use of raw_seqcount_begin() and cond_resched() before 935 * retrying is required as we want to give the writers a chance 936 * to complete when CONFIG_PREEMPTION is not set. 937 */ 938 int netdev_get_name(struct net *net, char *name, int ifindex) 939 { 940 struct net_device *dev; 941 unsigned int seq; 942 943 retry: 944 seq = raw_seqcount_begin(&devnet_rename_seq); 945 rcu_read_lock(); 946 dev = dev_get_by_index_rcu(net, ifindex); 947 if (!dev) { 948 rcu_read_unlock(); 949 return -ENODEV; 950 } 951 952 strcpy(name, dev->name); 953 rcu_read_unlock(); 954 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 955 cond_resched(); 956 goto retry; 957 } 958 959 return 0; 960 } 961 962 /** 963 * dev_getbyhwaddr_rcu - find a device by its hardware address 964 * @net: the applicable net namespace 965 * @type: media type of device 966 * @ha: hardware address 967 * 968 * Search for an interface by MAC address. Returns NULL if the device 969 * is not found or a pointer to the device. 970 * The caller must hold RCU or RTNL. 971 * The returned device has not had its ref count increased 972 * and the caller must therefore be careful about locking 973 * 974 */ 975 976 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 977 const char *ha) 978 { 979 struct net_device *dev; 980 981 for_each_netdev_rcu(net, dev) 982 if (dev->type == type && 983 !memcmp(dev->dev_addr, ha, dev->addr_len)) 984 return dev; 985 986 return NULL; 987 } 988 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 989 990 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 991 { 992 struct net_device *dev; 993 994 ASSERT_RTNL(); 995 for_each_netdev(net, dev) 996 if (dev->type == type) 997 return dev; 998 999 return NULL; 1000 } 1001 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 1002 1003 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 1004 { 1005 struct net_device *dev, *ret = NULL; 1006 1007 rcu_read_lock(); 1008 for_each_netdev_rcu(net, dev) 1009 if (dev->type == type) { 1010 dev_hold(dev); 1011 ret = dev; 1012 break; 1013 } 1014 rcu_read_unlock(); 1015 return ret; 1016 } 1017 EXPORT_SYMBOL(dev_getfirstbyhwtype); 1018 1019 /** 1020 * __dev_get_by_flags - find any device with given flags 1021 * @net: the applicable net namespace 1022 * @if_flags: IFF_* values 1023 * @mask: bitmask of bits in if_flags to check 1024 * 1025 * Search for any interface with the given flags. Returns NULL if a device 1026 * is not found or a pointer to the device. Must be called inside 1027 * rtnl_lock(), and result refcount is unchanged. 1028 */ 1029 1030 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1031 unsigned short mask) 1032 { 1033 struct net_device *dev, *ret; 1034 1035 ASSERT_RTNL(); 1036 1037 ret = NULL; 1038 for_each_netdev(net, dev) { 1039 if (((dev->flags ^ if_flags) & mask) == 0) { 1040 ret = dev; 1041 break; 1042 } 1043 } 1044 return ret; 1045 } 1046 EXPORT_SYMBOL(__dev_get_by_flags); 1047 1048 /** 1049 * dev_valid_name - check if name is okay for network device 1050 * @name: name string 1051 * 1052 * Network device names need to be valid file names to 1053 * to allow sysfs to work. We also disallow any kind of 1054 * whitespace. 1055 */ 1056 bool dev_valid_name(const char *name) 1057 { 1058 if (*name == '\0') 1059 return false; 1060 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1061 return false; 1062 if (!strcmp(name, ".") || !strcmp(name, "..")) 1063 return false; 1064 1065 while (*name) { 1066 if (*name == '/' || *name == ':' || isspace(*name)) 1067 return false; 1068 name++; 1069 } 1070 return true; 1071 } 1072 EXPORT_SYMBOL(dev_valid_name); 1073 1074 /** 1075 * __dev_alloc_name - allocate a name for a device 1076 * @net: network namespace to allocate the device name in 1077 * @name: name format string 1078 * @buf: scratch buffer and result name string 1079 * 1080 * Passed a format string - eg "lt%d" it will try and find a suitable 1081 * id. It scans list of devices to build up a free map, then chooses 1082 * the first empty slot. The caller must hold the dev_base or rtnl lock 1083 * while allocating the name and adding the device in order to avoid 1084 * duplicates. 1085 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1086 * Returns the number of the unit assigned or a negative errno code. 1087 */ 1088 1089 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1090 { 1091 int i = 0; 1092 const char *p; 1093 const int max_netdevices = 8*PAGE_SIZE; 1094 unsigned long *inuse; 1095 struct net_device *d; 1096 1097 if (!dev_valid_name(name)) 1098 return -EINVAL; 1099 1100 p = strchr(name, '%'); 1101 if (p) { 1102 /* 1103 * Verify the string as this thing may have come from 1104 * the user. There must be either one "%d" and no other "%" 1105 * characters. 1106 */ 1107 if (p[1] != 'd' || strchr(p + 2, '%')) 1108 return -EINVAL; 1109 1110 /* Use one page as a bit array of possible slots */ 1111 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1112 if (!inuse) 1113 return -ENOMEM; 1114 1115 for_each_netdev(net, d) { 1116 if (!sscanf(d->name, name, &i)) 1117 continue; 1118 if (i < 0 || i >= max_netdevices) 1119 continue; 1120 1121 /* avoid cases where sscanf is not exact inverse of printf */ 1122 snprintf(buf, IFNAMSIZ, name, i); 1123 if (!strncmp(buf, d->name, IFNAMSIZ)) 1124 set_bit(i, inuse); 1125 } 1126 1127 i = find_first_zero_bit(inuse, max_netdevices); 1128 free_page((unsigned long) inuse); 1129 } 1130 1131 snprintf(buf, IFNAMSIZ, name, i); 1132 if (!__dev_get_by_name(net, buf)) 1133 return i; 1134 1135 /* It is possible to run out of possible slots 1136 * when the name is long and there isn't enough space left 1137 * for the digits, or if all bits are used. 1138 */ 1139 return -ENFILE; 1140 } 1141 1142 static int dev_alloc_name_ns(struct net *net, 1143 struct net_device *dev, 1144 const char *name) 1145 { 1146 char buf[IFNAMSIZ]; 1147 int ret; 1148 1149 BUG_ON(!net); 1150 ret = __dev_alloc_name(net, name, buf); 1151 if (ret >= 0) 1152 strlcpy(dev->name, buf, IFNAMSIZ); 1153 return ret; 1154 } 1155 1156 /** 1157 * dev_alloc_name - allocate a name for a device 1158 * @dev: device 1159 * @name: name format string 1160 * 1161 * Passed a format string - eg "lt%d" it will try and find a suitable 1162 * id. It scans list of devices to build up a free map, then chooses 1163 * the first empty slot. The caller must hold the dev_base or rtnl lock 1164 * while allocating the name and adding the device in order to avoid 1165 * duplicates. 1166 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1167 * Returns the number of the unit assigned or a negative errno code. 1168 */ 1169 1170 int dev_alloc_name(struct net_device *dev, const char *name) 1171 { 1172 return dev_alloc_name_ns(dev_net(dev), dev, name); 1173 } 1174 EXPORT_SYMBOL(dev_alloc_name); 1175 1176 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1177 const char *name) 1178 { 1179 BUG_ON(!net); 1180 1181 if (!dev_valid_name(name)) 1182 return -EINVAL; 1183 1184 if (strchr(name, '%')) 1185 return dev_alloc_name_ns(net, dev, name); 1186 else if (__dev_get_by_name(net, name)) 1187 return -EEXIST; 1188 else if (dev->name != name) 1189 strlcpy(dev->name, name, IFNAMSIZ); 1190 1191 return 0; 1192 } 1193 1194 /** 1195 * dev_change_name - change name of a device 1196 * @dev: device 1197 * @newname: name (or format string) must be at least IFNAMSIZ 1198 * 1199 * Change name of a device, can pass format strings "eth%d". 1200 * for wildcarding. 1201 */ 1202 int dev_change_name(struct net_device *dev, const char *newname) 1203 { 1204 unsigned char old_assign_type; 1205 char oldname[IFNAMSIZ]; 1206 int err = 0; 1207 int ret; 1208 struct net *net; 1209 1210 ASSERT_RTNL(); 1211 BUG_ON(!dev_net(dev)); 1212 1213 net = dev_net(dev); 1214 1215 /* Some auto-enslaved devices e.g. failover slaves are 1216 * special, as userspace might rename the device after 1217 * the interface had been brought up and running since 1218 * the point kernel initiated auto-enslavement. Allow 1219 * live name change even when these slave devices are 1220 * up and running. 1221 * 1222 * Typically, users of these auto-enslaving devices 1223 * don't actually care about slave name change, as 1224 * they are supposed to operate on master interface 1225 * directly. 1226 */ 1227 if (dev->flags & IFF_UP && 1228 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK))) 1229 return -EBUSY; 1230 1231 write_seqcount_begin(&devnet_rename_seq); 1232 1233 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1234 write_seqcount_end(&devnet_rename_seq); 1235 return 0; 1236 } 1237 1238 memcpy(oldname, dev->name, IFNAMSIZ); 1239 1240 err = dev_get_valid_name(net, dev, newname); 1241 if (err < 0) { 1242 write_seqcount_end(&devnet_rename_seq); 1243 return err; 1244 } 1245 1246 if (oldname[0] && !strchr(oldname, '%')) 1247 netdev_info(dev, "renamed from %s\n", oldname); 1248 1249 old_assign_type = dev->name_assign_type; 1250 dev->name_assign_type = NET_NAME_RENAMED; 1251 1252 rollback: 1253 ret = device_rename(&dev->dev, dev->name); 1254 if (ret) { 1255 memcpy(dev->name, oldname, IFNAMSIZ); 1256 dev->name_assign_type = old_assign_type; 1257 write_seqcount_end(&devnet_rename_seq); 1258 return ret; 1259 } 1260 1261 write_seqcount_end(&devnet_rename_seq); 1262 1263 netdev_adjacent_rename_links(dev, oldname); 1264 1265 write_lock_bh(&dev_base_lock); 1266 netdev_name_node_del(dev->name_node); 1267 write_unlock_bh(&dev_base_lock); 1268 1269 synchronize_rcu(); 1270 1271 write_lock_bh(&dev_base_lock); 1272 netdev_name_node_add(net, dev->name_node); 1273 write_unlock_bh(&dev_base_lock); 1274 1275 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1276 ret = notifier_to_errno(ret); 1277 1278 if (ret) { 1279 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1280 if (err >= 0) { 1281 err = ret; 1282 write_seqcount_begin(&devnet_rename_seq); 1283 memcpy(dev->name, oldname, IFNAMSIZ); 1284 memcpy(oldname, newname, IFNAMSIZ); 1285 dev->name_assign_type = old_assign_type; 1286 old_assign_type = NET_NAME_RENAMED; 1287 goto rollback; 1288 } else { 1289 pr_err("%s: name change rollback failed: %d\n", 1290 dev->name, ret); 1291 } 1292 } 1293 1294 return err; 1295 } 1296 1297 /** 1298 * dev_set_alias - change ifalias of a device 1299 * @dev: device 1300 * @alias: name up to IFALIASZ 1301 * @len: limit of bytes to copy from info 1302 * 1303 * Set ifalias for a device, 1304 */ 1305 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1306 { 1307 struct dev_ifalias *new_alias = NULL; 1308 1309 if (len >= IFALIASZ) 1310 return -EINVAL; 1311 1312 if (len) { 1313 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1314 if (!new_alias) 1315 return -ENOMEM; 1316 1317 memcpy(new_alias->ifalias, alias, len); 1318 new_alias->ifalias[len] = 0; 1319 } 1320 1321 mutex_lock(&ifalias_mutex); 1322 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1323 mutex_is_locked(&ifalias_mutex)); 1324 mutex_unlock(&ifalias_mutex); 1325 1326 if (new_alias) 1327 kfree_rcu(new_alias, rcuhead); 1328 1329 return len; 1330 } 1331 EXPORT_SYMBOL(dev_set_alias); 1332 1333 /** 1334 * dev_get_alias - get ifalias of a device 1335 * @dev: device 1336 * @name: buffer to store name of ifalias 1337 * @len: size of buffer 1338 * 1339 * get ifalias for a device. Caller must make sure dev cannot go 1340 * away, e.g. rcu read lock or own a reference count to device. 1341 */ 1342 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1343 { 1344 const struct dev_ifalias *alias; 1345 int ret = 0; 1346 1347 rcu_read_lock(); 1348 alias = rcu_dereference(dev->ifalias); 1349 if (alias) 1350 ret = snprintf(name, len, "%s", alias->ifalias); 1351 rcu_read_unlock(); 1352 1353 return ret; 1354 } 1355 1356 /** 1357 * netdev_features_change - device changes features 1358 * @dev: device to cause notification 1359 * 1360 * Called to indicate a device has changed features. 1361 */ 1362 void netdev_features_change(struct net_device *dev) 1363 { 1364 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1365 } 1366 EXPORT_SYMBOL(netdev_features_change); 1367 1368 /** 1369 * netdev_state_change - device changes state 1370 * @dev: device to cause notification 1371 * 1372 * Called to indicate a device has changed state. This function calls 1373 * the notifier chains for netdev_chain and sends a NEWLINK message 1374 * to the routing socket. 1375 */ 1376 void netdev_state_change(struct net_device *dev) 1377 { 1378 if (dev->flags & IFF_UP) { 1379 struct netdev_notifier_change_info change_info = { 1380 .info.dev = dev, 1381 }; 1382 1383 call_netdevice_notifiers_info(NETDEV_CHANGE, 1384 &change_info.info); 1385 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1386 } 1387 } 1388 EXPORT_SYMBOL(netdev_state_change); 1389 1390 /** 1391 * netdev_notify_peers - notify network peers about existence of @dev 1392 * @dev: network device 1393 * 1394 * Generate traffic such that interested network peers are aware of 1395 * @dev, such as by generating a gratuitous ARP. This may be used when 1396 * a device wants to inform the rest of the network about some sort of 1397 * reconfiguration such as a failover event or virtual machine 1398 * migration. 1399 */ 1400 void netdev_notify_peers(struct net_device *dev) 1401 { 1402 rtnl_lock(); 1403 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1404 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1405 rtnl_unlock(); 1406 } 1407 EXPORT_SYMBOL(netdev_notify_peers); 1408 1409 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1410 { 1411 const struct net_device_ops *ops = dev->netdev_ops; 1412 int ret; 1413 1414 ASSERT_RTNL(); 1415 1416 if (!netif_device_present(dev)) 1417 return -ENODEV; 1418 1419 /* Block netpoll from trying to do any rx path servicing. 1420 * If we don't do this there is a chance ndo_poll_controller 1421 * or ndo_poll may be running while we open the device 1422 */ 1423 netpoll_poll_disable(dev); 1424 1425 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1426 ret = notifier_to_errno(ret); 1427 if (ret) 1428 return ret; 1429 1430 set_bit(__LINK_STATE_START, &dev->state); 1431 1432 if (ops->ndo_validate_addr) 1433 ret = ops->ndo_validate_addr(dev); 1434 1435 if (!ret && ops->ndo_open) 1436 ret = ops->ndo_open(dev); 1437 1438 netpoll_poll_enable(dev); 1439 1440 if (ret) 1441 clear_bit(__LINK_STATE_START, &dev->state); 1442 else { 1443 dev->flags |= IFF_UP; 1444 dev_set_rx_mode(dev); 1445 dev_activate(dev); 1446 add_device_randomness(dev->dev_addr, dev->addr_len); 1447 } 1448 1449 return ret; 1450 } 1451 1452 /** 1453 * dev_open - prepare an interface for use. 1454 * @dev: device to open 1455 * @extack: netlink extended ack 1456 * 1457 * Takes a device from down to up state. The device's private open 1458 * function is invoked and then the multicast lists are loaded. Finally 1459 * the device is moved into the up state and a %NETDEV_UP message is 1460 * sent to the netdev notifier chain. 1461 * 1462 * Calling this function on an active interface is a nop. On a failure 1463 * a negative errno code is returned. 1464 */ 1465 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1466 { 1467 int ret; 1468 1469 if (dev->flags & IFF_UP) 1470 return 0; 1471 1472 ret = __dev_open(dev, extack); 1473 if (ret < 0) 1474 return ret; 1475 1476 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1477 call_netdevice_notifiers(NETDEV_UP, dev); 1478 1479 return ret; 1480 } 1481 EXPORT_SYMBOL(dev_open); 1482 1483 static void __dev_close_many(struct list_head *head) 1484 { 1485 struct net_device *dev; 1486 1487 ASSERT_RTNL(); 1488 might_sleep(); 1489 1490 list_for_each_entry(dev, head, close_list) { 1491 /* Temporarily disable netpoll until the interface is down */ 1492 netpoll_poll_disable(dev); 1493 1494 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1495 1496 clear_bit(__LINK_STATE_START, &dev->state); 1497 1498 /* Synchronize to scheduled poll. We cannot touch poll list, it 1499 * can be even on different cpu. So just clear netif_running(). 1500 * 1501 * dev->stop() will invoke napi_disable() on all of it's 1502 * napi_struct instances on this device. 1503 */ 1504 smp_mb__after_atomic(); /* Commit netif_running(). */ 1505 } 1506 1507 dev_deactivate_many(head); 1508 1509 list_for_each_entry(dev, head, close_list) { 1510 const struct net_device_ops *ops = dev->netdev_ops; 1511 1512 /* 1513 * Call the device specific close. This cannot fail. 1514 * Only if device is UP 1515 * 1516 * We allow it to be called even after a DETACH hot-plug 1517 * event. 1518 */ 1519 if (ops->ndo_stop) 1520 ops->ndo_stop(dev); 1521 1522 dev->flags &= ~IFF_UP; 1523 netpoll_poll_enable(dev); 1524 } 1525 } 1526 1527 static void __dev_close(struct net_device *dev) 1528 { 1529 LIST_HEAD(single); 1530 1531 list_add(&dev->close_list, &single); 1532 __dev_close_many(&single); 1533 list_del(&single); 1534 } 1535 1536 void dev_close_many(struct list_head *head, bool unlink) 1537 { 1538 struct net_device *dev, *tmp; 1539 1540 /* Remove the devices that don't need to be closed */ 1541 list_for_each_entry_safe(dev, tmp, head, close_list) 1542 if (!(dev->flags & IFF_UP)) 1543 list_del_init(&dev->close_list); 1544 1545 __dev_close_many(head); 1546 1547 list_for_each_entry_safe(dev, tmp, head, close_list) { 1548 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1549 call_netdevice_notifiers(NETDEV_DOWN, dev); 1550 if (unlink) 1551 list_del_init(&dev->close_list); 1552 } 1553 } 1554 EXPORT_SYMBOL(dev_close_many); 1555 1556 /** 1557 * dev_close - shutdown an interface. 1558 * @dev: device to shutdown 1559 * 1560 * This function moves an active device into down state. A 1561 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1562 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1563 * chain. 1564 */ 1565 void dev_close(struct net_device *dev) 1566 { 1567 if (dev->flags & IFF_UP) { 1568 LIST_HEAD(single); 1569 1570 list_add(&dev->close_list, &single); 1571 dev_close_many(&single, true); 1572 list_del(&single); 1573 } 1574 } 1575 EXPORT_SYMBOL(dev_close); 1576 1577 1578 /** 1579 * dev_disable_lro - disable Large Receive Offload on a device 1580 * @dev: device 1581 * 1582 * Disable Large Receive Offload (LRO) on a net device. Must be 1583 * called under RTNL. This is needed if received packets may be 1584 * forwarded to another interface. 1585 */ 1586 void dev_disable_lro(struct net_device *dev) 1587 { 1588 struct net_device *lower_dev; 1589 struct list_head *iter; 1590 1591 dev->wanted_features &= ~NETIF_F_LRO; 1592 netdev_update_features(dev); 1593 1594 if (unlikely(dev->features & NETIF_F_LRO)) 1595 netdev_WARN(dev, "failed to disable LRO!\n"); 1596 1597 netdev_for_each_lower_dev(dev, lower_dev, iter) 1598 dev_disable_lro(lower_dev); 1599 } 1600 EXPORT_SYMBOL(dev_disable_lro); 1601 1602 /** 1603 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1604 * @dev: device 1605 * 1606 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1607 * called under RTNL. This is needed if Generic XDP is installed on 1608 * the device. 1609 */ 1610 static void dev_disable_gro_hw(struct net_device *dev) 1611 { 1612 dev->wanted_features &= ~NETIF_F_GRO_HW; 1613 netdev_update_features(dev); 1614 1615 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1616 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1617 } 1618 1619 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1620 { 1621 #define N(val) \ 1622 case NETDEV_##val: \ 1623 return "NETDEV_" __stringify(val); 1624 switch (cmd) { 1625 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1626 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1627 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1628 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1629 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1630 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1631 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1632 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1633 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1634 N(PRE_CHANGEADDR) 1635 } 1636 #undef N 1637 return "UNKNOWN_NETDEV_EVENT"; 1638 } 1639 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1640 1641 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1642 struct net_device *dev) 1643 { 1644 struct netdev_notifier_info info = { 1645 .dev = dev, 1646 }; 1647 1648 return nb->notifier_call(nb, val, &info); 1649 } 1650 1651 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1652 struct net_device *dev) 1653 { 1654 int err; 1655 1656 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1657 err = notifier_to_errno(err); 1658 if (err) 1659 return err; 1660 1661 if (!(dev->flags & IFF_UP)) 1662 return 0; 1663 1664 call_netdevice_notifier(nb, NETDEV_UP, dev); 1665 return 0; 1666 } 1667 1668 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1669 struct net_device *dev) 1670 { 1671 if (dev->flags & IFF_UP) { 1672 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1673 dev); 1674 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1675 } 1676 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1677 } 1678 1679 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1680 struct net *net) 1681 { 1682 struct net_device *dev; 1683 int err; 1684 1685 for_each_netdev(net, dev) { 1686 err = call_netdevice_register_notifiers(nb, dev); 1687 if (err) 1688 goto rollback; 1689 } 1690 return 0; 1691 1692 rollback: 1693 for_each_netdev_continue_reverse(net, dev) 1694 call_netdevice_unregister_notifiers(nb, dev); 1695 return err; 1696 } 1697 1698 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1699 struct net *net) 1700 { 1701 struct net_device *dev; 1702 1703 for_each_netdev(net, dev) 1704 call_netdevice_unregister_notifiers(nb, dev); 1705 } 1706 1707 static int dev_boot_phase = 1; 1708 1709 /** 1710 * register_netdevice_notifier - register a network notifier block 1711 * @nb: notifier 1712 * 1713 * Register a notifier to be called when network device events occur. 1714 * The notifier passed is linked into the kernel structures and must 1715 * not be reused until it has been unregistered. A negative errno code 1716 * is returned on a failure. 1717 * 1718 * When registered all registration and up events are replayed 1719 * to the new notifier to allow device to have a race free 1720 * view of the network device list. 1721 */ 1722 1723 int register_netdevice_notifier(struct notifier_block *nb) 1724 { 1725 struct net *net; 1726 int err; 1727 1728 /* Close race with setup_net() and cleanup_net() */ 1729 down_write(&pernet_ops_rwsem); 1730 rtnl_lock(); 1731 err = raw_notifier_chain_register(&netdev_chain, nb); 1732 if (err) 1733 goto unlock; 1734 if (dev_boot_phase) 1735 goto unlock; 1736 for_each_net(net) { 1737 err = call_netdevice_register_net_notifiers(nb, net); 1738 if (err) 1739 goto rollback; 1740 } 1741 1742 unlock: 1743 rtnl_unlock(); 1744 up_write(&pernet_ops_rwsem); 1745 return err; 1746 1747 rollback: 1748 for_each_net_continue_reverse(net) 1749 call_netdevice_unregister_net_notifiers(nb, net); 1750 1751 raw_notifier_chain_unregister(&netdev_chain, nb); 1752 goto unlock; 1753 } 1754 EXPORT_SYMBOL(register_netdevice_notifier); 1755 1756 /** 1757 * unregister_netdevice_notifier - unregister a network notifier block 1758 * @nb: notifier 1759 * 1760 * Unregister a notifier previously registered by 1761 * register_netdevice_notifier(). The notifier is unlinked into the 1762 * kernel structures and may then be reused. A negative errno code 1763 * is returned on a failure. 1764 * 1765 * After unregistering unregister and down device events are synthesized 1766 * for all devices on the device list to the removed notifier to remove 1767 * the need for special case cleanup code. 1768 */ 1769 1770 int unregister_netdevice_notifier(struct notifier_block *nb) 1771 { 1772 struct net *net; 1773 int err; 1774 1775 /* Close race with setup_net() and cleanup_net() */ 1776 down_write(&pernet_ops_rwsem); 1777 rtnl_lock(); 1778 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1779 if (err) 1780 goto unlock; 1781 1782 for_each_net(net) 1783 call_netdevice_unregister_net_notifiers(nb, net); 1784 1785 unlock: 1786 rtnl_unlock(); 1787 up_write(&pernet_ops_rwsem); 1788 return err; 1789 } 1790 EXPORT_SYMBOL(unregister_netdevice_notifier); 1791 1792 static int __register_netdevice_notifier_net(struct net *net, 1793 struct notifier_block *nb, 1794 bool ignore_call_fail) 1795 { 1796 int err; 1797 1798 err = raw_notifier_chain_register(&net->netdev_chain, nb); 1799 if (err) 1800 return err; 1801 if (dev_boot_phase) 1802 return 0; 1803 1804 err = call_netdevice_register_net_notifiers(nb, net); 1805 if (err && !ignore_call_fail) 1806 goto chain_unregister; 1807 1808 return 0; 1809 1810 chain_unregister: 1811 raw_notifier_chain_unregister(&net->netdev_chain, nb); 1812 return err; 1813 } 1814 1815 static int __unregister_netdevice_notifier_net(struct net *net, 1816 struct notifier_block *nb) 1817 { 1818 int err; 1819 1820 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 1821 if (err) 1822 return err; 1823 1824 call_netdevice_unregister_net_notifiers(nb, net); 1825 return 0; 1826 } 1827 1828 /** 1829 * register_netdevice_notifier_net - register a per-netns network notifier block 1830 * @net: network namespace 1831 * @nb: notifier 1832 * 1833 * Register a notifier to be called when network device events occur. 1834 * The notifier passed is linked into the kernel structures and must 1835 * not be reused until it has been unregistered. A negative errno code 1836 * is returned on a failure. 1837 * 1838 * When registered all registration and up events are replayed 1839 * to the new notifier to allow device to have a race free 1840 * view of the network device list. 1841 */ 1842 1843 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 1844 { 1845 int err; 1846 1847 rtnl_lock(); 1848 err = __register_netdevice_notifier_net(net, nb, false); 1849 rtnl_unlock(); 1850 return err; 1851 } 1852 EXPORT_SYMBOL(register_netdevice_notifier_net); 1853 1854 /** 1855 * unregister_netdevice_notifier_net - unregister a per-netns 1856 * network notifier block 1857 * @net: network namespace 1858 * @nb: notifier 1859 * 1860 * Unregister a notifier previously registered by 1861 * register_netdevice_notifier(). The notifier is unlinked into the 1862 * kernel structures and may then be reused. A negative errno code 1863 * is returned on a failure. 1864 * 1865 * After unregistering unregister and down device events are synthesized 1866 * for all devices on the device list to the removed notifier to remove 1867 * the need for special case cleanup code. 1868 */ 1869 1870 int unregister_netdevice_notifier_net(struct net *net, 1871 struct notifier_block *nb) 1872 { 1873 int err; 1874 1875 rtnl_lock(); 1876 err = __unregister_netdevice_notifier_net(net, nb); 1877 rtnl_unlock(); 1878 return err; 1879 } 1880 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 1881 1882 int register_netdevice_notifier_dev_net(struct net_device *dev, 1883 struct notifier_block *nb, 1884 struct netdev_net_notifier *nn) 1885 { 1886 int err; 1887 1888 rtnl_lock(); 1889 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 1890 if (!err) { 1891 nn->nb = nb; 1892 list_add(&nn->list, &dev->net_notifier_list); 1893 } 1894 rtnl_unlock(); 1895 return err; 1896 } 1897 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 1898 1899 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 1900 struct notifier_block *nb, 1901 struct netdev_net_notifier *nn) 1902 { 1903 int err; 1904 1905 rtnl_lock(); 1906 list_del(&nn->list); 1907 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 1908 rtnl_unlock(); 1909 return err; 1910 } 1911 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 1912 1913 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 1914 struct net *net) 1915 { 1916 struct netdev_net_notifier *nn; 1917 1918 list_for_each_entry(nn, &dev->net_notifier_list, list) { 1919 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb); 1920 __register_netdevice_notifier_net(net, nn->nb, true); 1921 } 1922 } 1923 1924 /** 1925 * call_netdevice_notifiers_info - call all network notifier blocks 1926 * @val: value passed unmodified to notifier function 1927 * @info: notifier information data 1928 * 1929 * Call all network notifier blocks. Parameters and return value 1930 * are as for raw_notifier_call_chain(). 1931 */ 1932 1933 static int call_netdevice_notifiers_info(unsigned long val, 1934 struct netdev_notifier_info *info) 1935 { 1936 struct net *net = dev_net(info->dev); 1937 int ret; 1938 1939 ASSERT_RTNL(); 1940 1941 /* Run per-netns notifier block chain first, then run the global one. 1942 * Hopefully, one day, the global one is going to be removed after 1943 * all notifier block registrators get converted to be per-netns. 1944 */ 1945 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 1946 if (ret & NOTIFY_STOP_MASK) 1947 return ret; 1948 return raw_notifier_call_chain(&netdev_chain, val, info); 1949 } 1950 1951 static int call_netdevice_notifiers_extack(unsigned long val, 1952 struct net_device *dev, 1953 struct netlink_ext_ack *extack) 1954 { 1955 struct netdev_notifier_info info = { 1956 .dev = dev, 1957 .extack = extack, 1958 }; 1959 1960 return call_netdevice_notifiers_info(val, &info); 1961 } 1962 1963 /** 1964 * call_netdevice_notifiers - call all network notifier blocks 1965 * @val: value passed unmodified to notifier function 1966 * @dev: net_device pointer passed unmodified to notifier function 1967 * 1968 * Call all network notifier blocks. Parameters and return value 1969 * are as for raw_notifier_call_chain(). 1970 */ 1971 1972 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1973 { 1974 return call_netdevice_notifiers_extack(val, dev, NULL); 1975 } 1976 EXPORT_SYMBOL(call_netdevice_notifiers); 1977 1978 /** 1979 * call_netdevice_notifiers_mtu - call all network notifier blocks 1980 * @val: value passed unmodified to notifier function 1981 * @dev: net_device pointer passed unmodified to notifier function 1982 * @arg: additional u32 argument passed to the notifier function 1983 * 1984 * Call all network notifier blocks. Parameters and return value 1985 * are as for raw_notifier_call_chain(). 1986 */ 1987 static int call_netdevice_notifiers_mtu(unsigned long val, 1988 struct net_device *dev, u32 arg) 1989 { 1990 struct netdev_notifier_info_ext info = { 1991 .info.dev = dev, 1992 .ext.mtu = arg, 1993 }; 1994 1995 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 1996 1997 return call_netdevice_notifiers_info(val, &info.info); 1998 } 1999 2000 #ifdef CONFIG_NET_INGRESS 2001 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2002 2003 void net_inc_ingress_queue(void) 2004 { 2005 static_branch_inc(&ingress_needed_key); 2006 } 2007 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2008 2009 void net_dec_ingress_queue(void) 2010 { 2011 static_branch_dec(&ingress_needed_key); 2012 } 2013 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2014 #endif 2015 2016 #ifdef CONFIG_NET_EGRESS 2017 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2018 2019 void net_inc_egress_queue(void) 2020 { 2021 static_branch_inc(&egress_needed_key); 2022 } 2023 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2024 2025 void net_dec_egress_queue(void) 2026 { 2027 static_branch_dec(&egress_needed_key); 2028 } 2029 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2030 #endif 2031 2032 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2033 #ifdef CONFIG_JUMP_LABEL 2034 static atomic_t netstamp_needed_deferred; 2035 static atomic_t netstamp_wanted; 2036 static void netstamp_clear(struct work_struct *work) 2037 { 2038 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2039 int wanted; 2040 2041 wanted = atomic_add_return(deferred, &netstamp_wanted); 2042 if (wanted > 0) 2043 static_branch_enable(&netstamp_needed_key); 2044 else 2045 static_branch_disable(&netstamp_needed_key); 2046 } 2047 static DECLARE_WORK(netstamp_work, netstamp_clear); 2048 #endif 2049 2050 void net_enable_timestamp(void) 2051 { 2052 #ifdef CONFIG_JUMP_LABEL 2053 int wanted; 2054 2055 while (1) { 2056 wanted = atomic_read(&netstamp_wanted); 2057 if (wanted <= 0) 2058 break; 2059 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 2060 return; 2061 } 2062 atomic_inc(&netstamp_needed_deferred); 2063 schedule_work(&netstamp_work); 2064 #else 2065 static_branch_inc(&netstamp_needed_key); 2066 #endif 2067 } 2068 EXPORT_SYMBOL(net_enable_timestamp); 2069 2070 void net_disable_timestamp(void) 2071 { 2072 #ifdef CONFIG_JUMP_LABEL 2073 int wanted; 2074 2075 while (1) { 2076 wanted = atomic_read(&netstamp_wanted); 2077 if (wanted <= 1) 2078 break; 2079 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 2080 return; 2081 } 2082 atomic_dec(&netstamp_needed_deferred); 2083 schedule_work(&netstamp_work); 2084 #else 2085 static_branch_dec(&netstamp_needed_key); 2086 #endif 2087 } 2088 EXPORT_SYMBOL(net_disable_timestamp); 2089 2090 static inline void net_timestamp_set(struct sk_buff *skb) 2091 { 2092 skb->tstamp = 0; 2093 if (static_branch_unlikely(&netstamp_needed_key)) 2094 __net_timestamp(skb); 2095 } 2096 2097 #define net_timestamp_check(COND, SKB) \ 2098 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2099 if ((COND) && !(SKB)->tstamp) \ 2100 __net_timestamp(SKB); \ 2101 } \ 2102 2103 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2104 { 2105 unsigned int len; 2106 2107 if (!(dev->flags & IFF_UP)) 2108 return false; 2109 2110 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 2111 if (skb->len <= len) 2112 return true; 2113 2114 /* if TSO is enabled, we don't care about the length as the packet 2115 * could be forwarded without being segmented before 2116 */ 2117 if (skb_is_gso(skb)) 2118 return true; 2119 2120 return false; 2121 } 2122 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2123 2124 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2125 { 2126 int ret = ____dev_forward_skb(dev, skb); 2127 2128 if (likely(!ret)) { 2129 skb->protocol = eth_type_trans(skb, dev); 2130 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2131 } 2132 2133 return ret; 2134 } 2135 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2136 2137 /** 2138 * dev_forward_skb - loopback an skb to another netif 2139 * 2140 * @dev: destination network device 2141 * @skb: buffer to forward 2142 * 2143 * return values: 2144 * NET_RX_SUCCESS (no congestion) 2145 * NET_RX_DROP (packet was dropped, but freed) 2146 * 2147 * dev_forward_skb can be used for injecting an skb from the 2148 * start_xmit function of one device into the receive queue 2149 * of another device. 2150 * 2151 * The receiving device may be in another namespace, so 2152 * we have to clear all information in the skb that could 2153 * impact namespace isolation. 2154 */ 2155 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2156 { 2157 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2158 } 2159 EXPORT_SYMBOL_GPL(dev_forward_skb); 2160 2161 static inline int deliver_skb(struct sk_buff *skb, 2162 struct packet_type *pt_prev, 2163 struct net_device *orig_dev) 2164 { 2165 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2166 return -ENOMEM; 2167 refcount_inc(&skb->users); 2168 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2169 } 2170 2171 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2172 struct packet_type **pt, 2173 struct net_device *orig_dev, 2174 __be16 type, 2175 struct list_head *ptype_list) 2176 { 2177 struct packet_type *ptype, *pt_prev = *pt; 2178 2179 list_for_each_entry_rcu(ptype, ptype_list, list) { 2180 if (ptype->type != type) 2181 continue; 2182 if (pt_prev) 2183 deliver_skb(skb, pt_prev, orig_dev); 2184 pt_prev = ptype; 2185 } 2186 *pt = pt_prev; 2187 } 2188 2189 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2190 { 2191 if (!ptype->af_packet_priv || !skb->sk) 2192 return false; 2193 2194 if (ptype->id_match) 2195 return ptype->id_match(ptype, skb->sk); 2196 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2197 return true; 2198 2199 return false; 2200 } 2201 2202 /** 2203 * dev_nit_active - return true if any network interface taps are in use 2204 * 2205 * @dev: network device to check for the presence of taps 2206 */ 2207 bool dev_nit_active(struct net_device *dev) 2208 { 2209 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 2210 } 2211 EXPORT_SYMBOL_GPL(dev_nit_active); 2212 2213 /* 2214 * Support routine. Sends outgoing frames to any network 2215 * taps currently in use. 2216 */ 2217 2218 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2219 { 2220 struct packet_type *ptype; 2221 struct sk_buff *skb2 = NULL; 2222 struct packet_type *pt_prev = NULL; 2223 struct list_head *ptype_list = &ptype_all; 2224 2225 rcu_read_lock(); 2226 again: 2227 list_for_each_entry_rcu(ptype, ptype_list, list) { 2228 if (ptype->ignore_outgoing) 2229 continue; 2230 2231 /* Never send packets back to the socket 2232 * they originated from - MvS (miquels@drinkel.ow.org) 2233 */ 2234 if (skb_loop_sk(ptype, skb)) 2235 continue; 2236 2237 if (pt_prev) { 2238 deliver_skb(skb2, pt_prev, skb->dev); 2239 pt_prev = ptype; 2240 continue; 2241 } 2242 2243 /* need to clone skb, done only once */ 2244 skb2 = skb_clone(skb, GFP_ATOMIC); 2245 if (!skb2) 2246 goto out_unlock; 2247 2248 net_timestamp_set(skb2); 2249 2250 /* skb->nh should be correctly 2251 * set by sender, so that the second statement is 2252 * just protection against buggy protocols. 2253 */ 2254 skb_reset_mac_header(skb2); 2255 2256 if (skb_network_header(skb2) < skb2->data || 2257 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2258 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2259 ntohs(skb2->protocol), 2260 dev->name); 2261 skb_reset_network_header(skb2); 2262 } 2263 2264 skb2->transport_header = skb2->network_header; 2265 skb2->pkt_type = PACKET_OUTGOING; 2266 pt_prev = ptype; 2267 } 2268 2269 if (ptype_list == &ptype_all) { 2270 ptype_list = &dev->ptype_all; 2271 goto again; 2272 } 2273 out_unlock: 2274 if (pt_prev) { 2275 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2276 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2277 else 2278 kfree_skb(skb2); 2279 } 2280 rcu_read_unlock(); 2281 } 2282 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2283 2284 /** 2285 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2286 * @dev: Network device 2287 * @txq: number of queues available 2288 * 2289 * If real_num_tx_queues is changed the tc mappings may no longer be 2290 * valid. To resolve this verify the tc mapping remains valid and if 2291 * not NULL the mapping. With no priorities mapping to this 2292 * offset/count pair it will no longer be used. In the worst case TC0 2293 * is invalid nothing can be done so disable priority mappings. If is 2294 * expected that drivers will fix this mapping if they can before 2295 * calling netif_set_real_num_tx_queues. 2296 */ 2297 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2298 { 2299 int i; 2300 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2301 2302 /* If TC0 is invalidated disable TC mapping */ 2303 if (tc->offset + tc->count > txq) { 2304 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2305 dev->num_tc = 0; 2306 return; 2307 } 2308 2309 /* Invalidated prio to tc mappings set to TC0 */ 2310 for (i = 1; i < TC_BITMASK + 1; i++) { 2311 int q = netdev_get_prio_tc_map(dev, i); 2312 2313 tc = &dev->tc_to_txq[q]; 2314 if (tc->offset + tc->count > txq) { 2315 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2316 i, q); 2317 netdev_set_prio_tc_map(dev, i, 0); 2318 } 2319 } 2320 } 2321 2322 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2323 { 2324 if (dev->num_tc) { 2325 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2326 int i; 2327 2328 /* walk through the TCs and see if it falls into any of them */ 2329 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2330 if ((txq - tc->offset) < tc->count) 2331 return i; 2332 } 2333 2334 /* didn't find it, just return -1 to indicate no match */ 2335 return -1; 2336 } 2337 2338 return 0; 2339 } 2340 EXPORT_SYMBOL(netdev_txq_to_tc); 2341 2342 #ifdef CONFIG_XPS 2343 struct static_key xps_needed __read_mostly; 2344 EXPORT_SYMBOL(xps_needed); 2345 struct static_key xps_rxqs_needed __read_mostly; 2346 EXPORT_SYMBOL(xps_rxqs_needed); 2347 static DEFINE_MUTEX(xps_map_mutex); 2348 #define xmap_dereference(P) \ 2349 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2350 2351 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2352 int tci, u16 index) 2353 { 2354 struct xps_map *map = NULL; 2355 int pos; 2356 2357 if (dev_maps) 2358 map = xmap_dereference(dev_maps->attr_map[tci]); 2359 if (!map) 2360 return false; 2361 2362 for (pos = map->len; pos--;) { 2363 if (map->queues[pos] != index) 2364 continue; 2365 2366 if (map->len > 1) { 2367 map->queues[pos] = map->queues[--map->len]; 2368 break; 2369 } 2370 2371 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2372 kfree_rcu(map, rcu); 2373 return false; 2374 } 2375 2376 return true; 2377 } 2378 2379 static bool remove_xps_queue_cpu(struct net_device *dev, 2380 struct xps_dev_maps *dev_maps, 2381 int cpu, u16 offset, u16 count) 2382 { 2383 int num_tc = dev->num_tc ? : 1; 2384 bool active = false; 2385 int tci; 2386 2387 for (tci = cpu * num_tc; num_tc--; tci++) { 2388 int i, j; 2389 2390 for (i = count, j = offset; i--; j++) { 2391 if (!remove_xps_queue(dev_maps, tci, j)) 2392 break; 2393 } 2394 2395 active |= i < 0; 2396 } 2397 2398 return active; 2399 } 2400 2401 static void reset_xps_maps(struct net_device *dev, 2402 struct xps_dev_maps *dev_maps, 2403 bool is_rxqs_map) 2404 { 2405 if (is_rxqs_map) { 2406 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2407 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL); 2408 } else { 2409 RCU_INIT_POINTER(dev->xps_cpus_map, NULL); 2410 } 2411 static_key_slow_dec_cpuslocked(&xps_needed); 2412 kfree_rcu(dev_maps, rcu); 2413 } 2414 2415 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask, 2416 struct xps_dev_maps *dev_maps, unsigned int nr_ids, 2417 u16 offset, u16 count, bool is_rxqs_map) 2418 { 2419 bool active = false; 2420 int i, j; 2421 2422 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids), 2423 j < nr_ids;) 2424 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, 2425 count); 2426 if (!active) 2427 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2428 2429 if (!is_rxqs_map) { 2430 for (i = offset + (count - 1); count--; i--) { 2431 netdev_queue_numa_node_write( 2432 netdev_get_tx_queue(dev, i), 2433 NUMA_NO_NODE); 2434 } 2435 } 2436 } 2437 2438 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2439 u16 count) 2440 { 2441 const unsigned long *possible_mask = NULL; 2442 struct xps_dev_maps *dev_maps; 2443 unsigned int nr_ids; 2444 2445 if (!static_key_false(&xps_needed)) 2446 return; 2447 2448 cpus_read_lock(); 2449 mutex_lock(&xps_map_mutex); 2450 2451 if (static_key_false(&xps_rxqs_needed)) { 2452 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2453 if (dev_maps) { 2454 nr_ids = dev->num_rx_queues; 2455 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, 2456 offset, count, true); 2457 } 2458 } 2459 2460 dev_maps = xmap_dereference(dev->xps_cpus_map); 2461 if (!dev_maps) 2462 goto out_no_maps; 2463 2464 if (num_possible_cpus() > 1) 2465 possible_mask = cpumask_bits(cpu_possible_mask); 2466 nr_ids = nr_cpu_ids; 2467 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count, 2468 false); 2469 2470 out_no_maps: 2471 mutex_unlock(&xps_map_mutex); 2472 cpus_read_unlock(); 2473 } 2474 2475 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2476 { 2477 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2478 } 2479 2480 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2481 u16 index, bool is_rxqs_map) 2482 { 2483 struct xps_map *new_map; 2484 int alloc_len = XPS_MIN_MAP_ALLOC; 2485 int i, pos; 2486 2487 for (pos = 0; map && pos < map->len; pos++) { 2488 if (map->queues[pos] != index) 2489 continue; 2490 return map; 2491 } 2492 2493 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2494 if (map) { 2495 if (pos < map->alloc_len) 2496 return map; 2497 2498 alloc_len = map->alloc_len * 2; 2499 } 2500 2501 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2502 * map 2503 */ 2504 if (is_rxqs_map) 2505 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2506 else 2507 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2508 cpu_to_node(attr_index)); 2509 if (!new_map) 2510 return NULL; 2511 2512 for (i = 0; i < pos; i++) 2513 new_map->queues[i] = map->queues[i]; 2514 new_map->alloc_len = alloc_len; 2515 new_map->len = pos; 2516 2517 return new_map; 2518 } 2519 2520 /* Must be called under cpus_read_lock */ 2521 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2522 u16 index, bool is_rxqs_map) 2523 { 2524 const unsigned long *online_mask = NULL, *possible_mask = NULL; 2525 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2526 int i, j, tci, numa_node_id = -2; 2527 int maps_sz, num_tc = 1, tc = 0; 2528 struct xps_map *map, *new_map; 2529 bool active = false; 2530 unsigned int nr_ids; 2531 2532 if (dev->num_tc) { 2533 /* Do not allow XPS on subordinate device directly */ 2534 num_tc = dev->num_tc; 2535 if (num_tc < 0) 2536 return -EINVAL; 2537 2538 /* If queue belongs to subordinate dev use its map */ 2539 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2540 2541 tc = netdev_txq_to_tc(dev, index); 2542 if (tc < 0) 2543 return -EINVAL; 2544 } 2545 2546 mutex_lock(&xps_map_mutex); 2547 if (is_rxqs_map) { 2548 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2549 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2550 nr_ids = dev->num_rx_queues; 2551 } else { 2552 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2553 if (num_possible_cpus() > 1) { 2554 online_mask = cpumask_bits(cpu_online_mask); 2555 possible_mask = cpumask_bits(cpu_possible_mask); 2556 } 2557 dev_maps = xmap_dereference(dev->xps_cpus_map); 2558 nr_ids = nr_cpu_ids; 2559 } 2560 2561 if (maps_sz < L1_CACHE_BYTES) 2562 maps_sz = L1_CACHE_BYTES; 2563 2564 /* allocate memory for queue storage */ 2565 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2566 j < nr_ids;) { 2567 if (!new_dev_maps) 2568 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2569 if (!new_dev_maps) { 2570 mutex_unlock(&xps_map_mutex); 2571 return -ENOMEM; 2572 } 2573 2574 tci = j * num_tc + tc; 2575 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) : 2576 NULL; 2577 2578 map = expand_xps_map(map, j, index, is_rxqs_map); 2579 if (!map) 2580 goto error; 2581 2582 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2583 } 2584 2585 if (!new_dev_maps) 2586 goto out_no_new_maps; 2587 2588 if (!dev_maps) { 2589 /* Increment static keys at most once per type */ 2590 static_key_slow_inc_cpuslocked(&xps_needed); 2591 if (is_rxqs_map) 2592 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2593 } 2594 2595 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2596 j < nr_ids;) { 2597 /* copy maps belonging to foreign traffic classes */ 2598 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) { 2599 /* fill in the new device map from the old device map */ 2600 map = xmap_dereference(dev_maps->attr_map[tci]); 2601 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2602 } 2603 2604 /* We need to explicitly update tci as prevous loop 2605 * could break out early if dev_maps is NULL. 2606 */ 2607 tci = j * num_tc + tc; 2608 2609 if (netif_attr_test_mask(j, mask, nr_ids) && 2610 netif_attr_test_online(j, online_mask, nr_ids)) { 2611 /* add tx-queue to CPU/rx-queue maps */ 2612 int pos = 0; 2613 2614 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2615 while ((pos < map->len) && (map->queues[pos] != index)) 2616 pos++; 2617 2618 if (pos == map->len) 2619 map->queues[map->len++] = index; 2620 #ifdef CONFIG_NUMA 2621 if (!is_rxqs_map) { 2622 if (numa_node_id == -2) 2623 numa_node_id = cpu_to_node(j); 2624 else if (numa_node_id != cpu_to_node(j)) 2625 numa_node_id = -1; 2626 } 2627 #endif 2628 } else if (dev_maps) { 2629 /* fill in the new device map from the old device map */ 2630 map = xmap_dereference(dev_maps->attr_map[tci]); 2631 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2632 } 2633 2634 /* copy maps belonging to foreign traffic classes */ 2635 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2636 /* fill in the new device map from the old device map */ 2637 map = xmap_dereference(dev_maps->attr_map[tci]); 2638 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2639 } 2640 } 2641 2642 if (is_rxqs_map) 2643 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps); 2644 else 2645 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps); 2646 2647 /* Cleanup old maps */ 2648 if (!dev_maps) 2649 goto out_no_old_maps; 2650 2651 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2652 j < nr_ids;) { 2653 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2654 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2655 map = xmap_dereference(dev_maps->attr_map[tci]); 2656 if (map && map != new_map) 2657 kfree_rcu(map, rcu); 2658 } 2659 } 2660 2661 kfree_rcu(dev_maps, rcu); 2662 2663 out_no_old_maps: 2664 dev_maps = new_dev_maps; 2665 active = true; 2666 2667 out_no_new_maps: 2668 if (!is_rxqs_map) { 2669 /* update Tx queue numa node */ 2670 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2671 (numa_node_id >= 0) ? 2672 numa_node_id : NUMA_NO_NODE); 2673 } 2674 2675 if (!dev_maps) 2676 goto out_no_maps; 2677 2678 /* removes tx-queue from unused CPUs/rx-queues */ 2679 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2680 j < nr_ids;) { 2681 for (i = tc, tci = j * num_tc; i--; tci++) 2682 active |= remove_xps_queue(dev_maps, tci, index); 2683 if (!netif_attr_test_mask(j, mask, nr_ids) || 2684 !netif_attr_test_online(j, online_mask, nr_ids)) 2685 active |= remove_xps_queue(dev_maps, tci, index); 2686 for (i = num_tc - tc, tci++; --i; tci++) 2687 active |= remove_xps_queue(dev_maps, tci, index); 2688 } 2689 2690 /* free map if not active */ 2691 if (!active) 2692 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2693 2694 out_no_maps: 2695 mutex_unlock(&xps_map_mutex); 2696 2697 return 0; 2698 error: 2699 /* remove any maps that we added */ 2700 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2701 j < nr_ids;) { 2702 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2703 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2704 map = dev_maps ? 2705 xmap_dereference(dev_maps->attr_map[tci]) : 2706 NULL; 2707 if (new_map && new_map != map) 2708 kfree(new_map); 2709 } 2710 } 2711 2712 mutex_unlock(&xps_map_mutex); 2713 2714 kfree(new_dev_maps); 2715 return -ENOMEM; 2716 } 2717 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2718 2719 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2720 u16 index) 2721 { 2722 int ret; 2723 2724 cpus_read_lock(); 2725 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false); 2726 cpus_read_unlock(); 2727 2728 return ret; 2729 } 2730 EXPORT_SYMBOL(netif_set_xps_queue); 2731 2732 #endif 2733 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2734 { 2735 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2736 2737 /* Unbind any subordinate channels */ 2738 while (txq-- != &dev->_tx[0]) { 2739 if (txq->sb_dev) 2740 netdev_unbind_sb_channel(dev, txq->sb_dev); 2741 } 2742 } 2743 2744 void netdev_reset_tc(struct net_device *dev) 2745 { 2746 #ifdef CONFIG_XPS 2747 netif_reset_xps_queues_gt(dev, 0); 2748 #endif 2749 netdev_unbind_all_sb_channels(dev); 2750 2751 /* Reset TC configuration of device */ 2752 dev->num_tc = 0; 2753 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2754 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2755 } 2756 EXPORT_SYMBOL(netdev_reset_tc); 2757 2758 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2759 { 2760 if (tc >= dev->num_tc) 2761 return -EINVAL; 2762 2763 #ifdef CONFIG_XPS 2764 netif_reset_xps_queues(dev, offset, count); 2765 #endif 2766 dev->tc_to_txq[tc].count = count; 2767 dev->tc_to_txq[tc].offset = offset; 2768 return 0; 2769 } 2770 EXPORT_SYMBOL(netdev_set_tc_queue); 2771 2772 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2773 { 2774 if (num_tc > TC_MAX_QUEUE) 2775 return -EINVAL; 2776 2777 #ifdef CONFIG_XPS 2778 netif_reset_xps_queues_gt(dev, 0); 2779 #endif 2780 netdev_unbind_all_sb_channels(dev); 2781 2782 dev->num_tc = num_tc; 2783 return 0; 2784 } 2785 EXPORT_SYMBOL(netdev_set_num_tc); 2786 2787 void netdev_unbind_sb_channel(struct net_device *dev, 2788 struct net_device *sb_dev) 2789 { 2790 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2791 2792 #ifdef CONFIG_XPS 2793 netif_reset_xps_queues_gt(sb_dev, 0); 2794 #endif 2795 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2796 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2797 2798 while (txq-- != &dev->_tx[0]) { 2799 if (txq->sb_dev == sb_dev) 2800 txq->sb_dev = NULL; 2801 } 2802 } 2803 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2804 2805 int netdev_bind_sb_channel_queue(struct net_device *dev, 2806 struct net_device *sb_dev, 2807 u8 tc, u16 count, u16 offset) 2808 { 2809 /* Make certain the sb_dev and dev are already configured */ 2810 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2811 return -EINVAL; 2812 2813 /* We cannot hand out queues we don't have */ 2814 if ((offset + count) > dev->real_num_tx_queues) 2815 return -EINVAL; 2816 2817 /* Record the mapping */ 2818 sb_dev->tc_to_txq[tc].count = count; 2819 sb_dev->tc_to_txq[tc].offset = offset; 2820 2821 /* Provide a way for Tx queue to find the tc_to_txq map or 2822 * XPS map for itself. 2823 */ 2824 while (count--) 2825 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2826 2827 return 0; 2828 } 2829 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2830 2831 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2832 { 2833 /* Do not use a multiqueue device to represent a subordinate channel */ 2834 if (netif_is_multiqueue(dev)) 2835 return -ENODEV; 2836 2837 /* We allow channels 1 - 32767 to be used for subordinate channels. 2838 * Channel 0 is meant to be "native" mode and used only to represent 2839 * the main root device. We allow writing 0 to reset the device back 2840 * to normal mode after being used as a subordinate channel. 2841 */ 2842 if (channel > S16_MAX) 2843 return -EINVAL; 2844 2845 dev->num_tc = -channel; 2846 2847 return 0; 2848 } 2849 EXPORT_SYMBOL(netdev_set_sb_channel); 2850 2851 /* 2852 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2853 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2854 */ 2855 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2856 { 2857 bool disabling; 2858 int rc; 2859 2860 disabling = txq < dev->real_num_tx_queues; 2861 2862 if (txq < 1 || txq > dev->num_tx_queues) 2863 return -EINVAL; 2864 2865 if (dev->reg_state == NETREG_REGISTERED || 2866 dev->reg_state == NETREG_UNREGISTERING) { 2867 ASSERT_RTNL(); 2868 2869 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2870 txq); 2871 if (rc) 2872 return rc; 2873 2874 if (dev->num_tc) 2875 netif_setup_tc(dev, txq); 2876 2877 dev->real_num_tx_queues = txq; 2878 2879 if (disabling) { 2880 synchronize_net(); 2881 qdisc_reset_all_tx_gt(dev, txq); 2882 #ifdef CONFIG_XPS 2883 netif_reset_xps_queues_gt(dev, txq); 2884 #endif 2885 } 2886 } else { 2887 dev->real_num_tx_queues = txq; 2888 } 2889 2890 return 0; 2891 } 2892 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2893 2894 #ifdef CONFIG_SYSFS 2895 /** 2896 * netif_set_real_num_rx_queues - set actual number of RX queues used 2897 * @dev: Network device 2898 * @rxq: Actual number of RX queues 2899 * 2900 * This must be called either with the rtnl_lock held or before 2901 * registration of the net device. Returns 0 on success, or a 2902 * negative error code. If called before registration, it always 2903 * succeeds. 2904 */ 2905 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2906 { 2907 int rc; 2908 2909 if (rxq < 1 || rxq > dev->num_rx_queues) 2910 return -EINVAL; 2911 2912 if (dev->reg_state == NETREG_REGISTERED) { 2913 ASSERT_RTNL(); 2914 2915 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2916 rxq); 2917 if (rc) 2918 return rc; 2919 } 2920 2921 dev->real_num_rx_queues = rxq; 2922 return 0; 2923 } 2924 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2925 #endif 2926 2927 /** 2928 * netif_get_num_default_rss_queues - default number of RSS queues 2929 * 2930 * This routine should set an upper limit on the number of RSS queues 2931 * used by default by multiqueue devices. 2932 */ 2933 int netif_get_num_default_rss_queues(void) 2934 { 2935 return is_kdump_kernel() ? 2936 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2937 } 2938 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2939 2940 static void __netif_reschedule(struct Qdisc *q) 2941 { 2942 struct softnet_data *sd; 2943 unsigned long flags; 2944 2945 local_irq_save(flags); 2946 sd = this_cpu_ptr(&softnet_data); 2947 q->next_sched = NULL; 2948 *sd->output_queue_tailp = q; 2949 sd->output_queue_tailp = &q->next_sched; 2950 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2951 local_irq_restore(flags); 2952 } 2953 2954 void __netif_schedule(struct Qdisc *q) 2955 { 2956 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2957 __netif_reschedule(q); 2958 } 2959 EXPORT_SYMBOL(__netif_schedule); 2960 2961 struct dev_kfree_skb_cb { 2962 enum skb_free_reason reason; 2963 }; 2964 2965 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2966 { 2967 return (struct dev_kfree_skb_cb *)skb->cb; 2968 } 2969 2970 void netif_schedule_queue(struct netdev_queue *txq) 2971 { 2972 rcu_read_lock(); 2973 if (!netif_xmit_stopped(txq)) { 2974 struct Qdisc *q = rcu_dereference(txq->qdisc); 2975 2976 __netif_schedule(q); 2977 } 2978 rcu_read_unlock(); 2979 } 2980 EXPORT_SYMBOL(netif_schedule_queue); 2981 2982 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2983 { 2984 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2985 struct Qdisc *q; 2986 2987 rcu_read_lock(); 2988 q = rcu_dereference(dev_queue->qdisc); 2989 __netif_schedule(q); 2990 rcu_read_unlock(); 2991 } 2992 } 2993 EXPORT_SYMBOL(netif_tx_wake_queue); 2994 2995 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2996 { 2997 unsigned long flags; 2998 2999 if (unlikely(!skb)) 3000 return; 3001 3002 if (likely(refcount_read(&skb->users) == 1)) { 3003 smp_rmb(); 3004 refcount_set(&skb->users, 0); 3005 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3006 return; 3007 } 3008 get_kfree_skb_cb(skb)->reason = reason; 3009 local_irq_save(flags); 3010 skb->next = __this_cpu_read(softnet_data.completion_queue); 3011 __this_cpu_write(softnet_data.completion_queue, skb); 3012 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3013 local_irq_restore(flags); 3014 } 3015 EXPORT_SYMBOL(__dev_kfree_skb_irq); 3016 3017 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 3018 { 3019 if (in_irq() || irqs_disabled()) 3020 __dev_kfree_skb_irq(skb, reason); 3021 else 3022 dev_kfree_skb(skb); 3023 } 3024 EXPORT_SYMBOL(__dev_kfree_skb_any); 3025 3026 3027 /** 3028 * netif_device_detach - mark device as removed 3029 * @dev: network device 3030 * 3031 * Mark device as removed from system and therefore no longer available. 3032 */ 3033 void netif_device_detach(struct net_device *dev) 3034 { 3035 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3036 netif_running(dev)) { 3037 netif_tx_stop_all_queues(dev); 3038 } 3039 } 3040 EXPORT_SYMBOL(netif_device_detach); 3041 3042 /** 3043 * netif_device_attach - mark device as attached 3044 * @dev: network device 3045 * 3046 * Mark device as attached from system and restart if needed. 3047 */ 3048 void netif_device_attach(struct net_device *dev) 3049 { 3050 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3051 netif_running(dev)) { 3052 netif_tx_wake_all_queues(dev); 3053 __netdev_watchdog_up(dev); 3054 } 3055 } 3056 EXPORT_SYMBOL(netif_device_attach); 3057 3058 /* 3059 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3060 * to be used as a distribution range. 3061 */ 3062 static u16 skb_tx_hash(const struct net_device *dev, 3063 const struct net_device *sb_dev, 3064 struct sk_buff *skb) 3065 { 3066 u32 hash; 3067 u16 qoffset = 0; 3068 u16 qcount = dev->real_num_tx_queues; 3069 3070 if (dev->num_tc) { 3071 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3072 3073 qoffset = sb_dev->tc_to_txq[tc].offset; 3074 qcount = sb_dev->tc_to_txq[tc].count; 3075 } 3076 3077 if (skb_rx_queue_recorded(skb)) { 3078 hash = skb_get_rx_queue(skb); 3079 if (hash >= qoffset) 3080 hash -= qoffset; 3081 while (unlikely(hash >= qcount)) 3082 hash -= qcount; 3083 return hash + qoffset; 3084 } 3085 3086 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3087 } 3088 3089 static void skb_warn_bad_offload(const struct sk_buff *skb) 3090 { 3091 static const netdev_features_t null_features; 3092 struct net_device *dev = skb->dev; 3093 const char *name = ""; 3094 3095 if (!net_ratelimit()) 3096 return; 3097 3098 if (dev) { 3099 if (dev->dev.parent) 3100 name = dev_driver_string(dev->dev.parent); 3101 else 3102 name = netdev_name(dev); 3103 } 3104 skb_dump(KERN_WARNING, skb, false); 3105 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3106 name, dev ? &dev->features : &null_features, 3107 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3108 } 3109 3110 /* 3111 * Invalidate hardware checksum when packet is to be mangled, and 3112 * complete checksum manually on outgoing path. 3113 */ 3114 int skb_checksum_help(struct sk_buff *skb) 3115 { 3116 __wsum csum; 3117 int ret = 0, offset; 3118 3119 if (skb->ip_summed == CHECKSUM_COMPLETE) 3120 goto out_set_summed; 3121 3122 if (unlikely(skb_shinfo(skb)->gso_size)) { 3123 skb_warn_bad_offload(skb); 3124 return -EINVAL; 3125 } 3126 3127 /* Before computing a checksum, we should make sure no frag could 3128 * be modified by an external entity : checksum could be wrong. 3129 */ 3130 if (skb_has_shared_frag(skb)) { 3131 ret = __skb_linearize(skb); 3132 if (ret) 3133 goto out; 3134 } 3135 3136 offset = skb_checksum_start_offset(skb); 3137 BUG_ON(offset >= skb_headlen(skb)); 3138 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3139 3140 offset += skb->csum_offset; 3141 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 3142 3143 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3144 if (ret) 3145 goto out; 3146 3147 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3148 out_set_summed: 3149 skb->ip_summed = CHECKSUM_NONE; 3150 out: 3151 return ret; 3152 } 3153 EXPORT_SYMBOL(skb_checksum_help); 3154 3155 int skb_crc32c_csum_help(struct sk_buff *skb) 3156 { 3157 __le32 crc32c_csum; 3158 int ret = 0, offset, start; 3159 3160 if (skb->ip_summed != CHECKSUM_PARTIAL) 3161 goto out; 3162 3163 if (unlikely(skb_is_gso(skb))) 3164 goto out; 3165 3166 /* Before computing a checksum, we should make sure no frag could 3167 * be modified by an external entity : checksum could be wrong. 3168 */ 3169 if (unlikely(skb_has_shared_frag(skb))) { 3170 ret = __skb_linearize(skb); 3171 if (ret) 3172 goto out; 3173 } 3174 start = skb_checksum_start_offset(skb); 3175 offset = start + offsetof(struct sctphdr, checksum); 3176 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3177 ret = -EINVAL; 3178 goto out; 3179 } 3180 3181 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3182 if (ret) 3183 goto out; 3184 3185 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 3186 skb->len - start, ~(__u32)0, 3187 crc32c_csum_stub)); 3188 *(__le32 *)(skb->data + offset) = crc32c_csum; 3189 skb->ip_summed = CHECKSUM_NONE; 3190 skb->csum_not_inet = 0; 3191 out: 3192 return ret; 3193 } 3194 3195 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3196 { 3197 __be16 type = skb->protocol; 3198 3199 /* Tunnel gso handlers can set protocol to ethernet. */ 3200 if (type == htons(ETH_P_TEB)) { 3201 struct ethhdr *eth; 3202 3203 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3204 return 0; 3205 3206 eth = (struct ethhdr *)skb->data; 3207 type = eth->h_proto; 3208 } 3209 3210 return __vlan_get_protocol(skb, type, depth); 3211 } 3212 3213 /** 3214 * skb_mac_gso_segment - mac layer segmentation handler. 3215 * @skb: buffer to segment 3216 * @features: features for the output path (see dev->features) 3217 */ 3218 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3219 netdev_features_t features) 3220 { 3221 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 3222 struct packet_offload *ptype; 3223 int vlan_depth = skb->mac_len; 3224 __be16 type = skb_network_protocol(skb, &vlan_depth); 3225 3226 if (unlikely(!type)) 3227 return ERR_PTR(-EINVAL); 3228 3229 __skb_pull(skb, vlan_depth); 3230 3231 rcu_read_lock(); 3232 list_for_each_entry_rcu(ptype, &offload_base, list) { 3233 if (ptype->type == type && ptype->callbacks.gso_segment) { 3234 segs = ptype->callbacks.gso_segment(skb, features); 3235 break; 3236 } 3237 } 3238 rcu_read_unlock(); 3239 3240 __skb_push(skb, skb->data - skb_mac_header(skb)); 3241 3242 return segs; 3243 } 3244 EXPORT_SYMBOL(skb_mac_gso_segment); 3245 3246 3247 /* openvswitch calls this on rx path, so we need a different check. 3248 */ 3249 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 3250 { 3251 if (tx_path) 3252 return skb->ip_summed != CHECKSUM_PARTIAL && 3253 skb->ip_summed != CHECKSUM_UNNECESSARY; 3254 3255 return skb->ip_summed == CHECKSUM_NONE; 3256 } 3257 3258 /** 3259 * __skb_gso_segment - Perform segmentation on skb. 3260 * @skb: buffer to segment 3261 * @features: features for the output path (see dev->features) 3262 * @tx_path: whether it is called in TX path 3263 * 3264 * This function segments the given skb and returns a list of segments. 3265 * 3266 * It may return NULL if the skb requires no segmentation. This is 3267 * only possible when GSO is used for verifying header integrity. 3268 * 3269 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb. 3270 */ 3271 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3272 netdev_features_t features, bool tx_path) 3273 { 3274 struct sk_buff *segs; 3275 3276 if (unlikely(skb_needs_check(skb, tx_path))) { 3277 int err; 3278 3279 /* We're going to init ->check field in TCP or UDP header */ 3280 err = skb_cow_head(skb, 0); 3281 if (err < 0) 3282 return ERR_PTR(err); 3283 } 3284 3285 /* Only report GSO partial support if it will enable us to 3286 * support segmentation on this frame without needing additional 3287 * work. 3288 */ 3289 if (features & NETIF_F_GSO_PARTIAL) { 3290 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 3291 struct net_device *dev = skb->dev; 3292 3293 partial_features |= dev->features & dev->gso_partial_features; 3294 if (!skb_gso_ok(skb, features | partial_features)) 3295 features &= ~NETIF_F_GSO_PARTIAL; 3296 } 3297 3298 BUILD_BUG_ON(SKB_GSO_CB_OFFSET + 3299 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 3300 3301 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 3302 SKB_GSO_CB(skb)->encap_level = 0; 3303 3304 skb_reset_mac_header(skb); 3305 skb_reset_mac_len(skb); 3306 3307 segs = skb_mac_gso_segment(skb, features); 3308 3309 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 3310 skb_warn_bad_offload(skb); 3311 3312 return segs; 3313 } 3314 EXPORT_SYMBOL(__skb_gso_segment); 3315 3316 /* Take action when hardware reception checksum errors are detected. */ 3317 #ifdef CONFIG_BUG 3318 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3319 { 3320 if (net_ratelimit()) { 3321 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 3322 skb_dump(KERN_ERR, skb, true); 3323 dump_stack(); 3324 } 3325 } 3326 EXPORT_SYMBOL(netdev_rx_csum_fault); 3327 #endif 3328 3329 /* XXX: check that highmem exists at all on the given machine. */ 3330 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3331 { 3332 #ifdef CONFIG_HIGHMEM 3333 int i; 3334 3335 if (!(dev->features & NETIF_F_HIGHDMA)) { 3336 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3337 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3338 3339 if (PageHighMem(skb_frag_page(frag))) 3340 return 1; 3341 } 3342 } 3343 #endif 3344 return 0; 3345 } 3346 3347 /* If MPLS offload request, verify we are testing hardware MPLS features 3348 * instead of standard features for the netdev. 3349 */ 3350 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3351 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3352 netdev_features_t features, 3353 __be16 type) 3354 { 3355 if (eth_p_mpls(type)) 3356 features &= skb->dev->mpls_features; 3357 3358 return features; 3359 } 3360 #else 3361 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3362 netdev_features_t features, 3363 __be16 type) 3364 { 3365 return features; 3366 } 3367 #endif 3368 3369 static netdev_features_t harmonize_features(struct sk_buff *skb, 3370 netdev_features_t features) 3371 { 3372 int tmp; 3373 __be16 type; 3374 3375 type = skb_network_protocol(skb, &tmp); 3376 features = net_mpls_features(skb, features, type); 3377 3378 if (skb->ip_summed != CHECKSUM_NONE && 3379 !can_checksum_protocol(features, type)) { 3380 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3381 } 3382 if (illegal_highdma(skb->dev, skb)) 3383 features &= ~NETIF_F_SG; 3384 3385 return features; 3386 } 3387 3388 netdev_features_t passthru_features_check(struct sk_buff *skb, 3389 struct net_device *dev, 3390 netdev_features_t features) 3391 { 3392 return features; 3393 } 3394 EXPORT_SYMBOL(passthru_features_check); 3395 3396 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3397 struct net_device *dev, 3398 netdev_features_t features) 3399 { 3400 return vlan_features_check(skb, features); 3401 } 3402 3403 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3404 struct net_device *dev, 3405 netdev_features_t features) 3406 { 3407 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3408 3409 if (gso_segs > dev->gso_max_segs) 3410 return features & ~NETIF_F_GSO_MASK; 3411 3412 /* Support for GSO partial features requires software 3413 * intervention before we can actually process the packets 3414 * so we need to strip support for any partial features now 3415 * and we can pull them back in after we have partially 3416 * segmented the frame. 3417 */ 3418 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3419 features &= ~dev->gso_partial_features; 3420 3421 /* Make sure to clear the IPv4 ID mangling feature if the 3422 * IPv4 header has the potential to be fragmented. 3423 */ 3424 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3425 struct iphdr *iph = skb->encapsulation ? 3426 inner_ip_hdr(skb) : ip_hdr(skb); 3427 3428 if (!(iph->frag_off & htons(IP_DF))) 3429 features &= ~NETIF_F_TSO_MANGLEID; 3430 } 3431 3432 return features; 3433 } 3434 3435 netdev_features_t netif_skb_features(struct sk_buff *skb) 3436 { 3437 struct net_device *dev = skb->dev; 3438 netdev_features_t features = dev->features; 3439 3440 if (skb_is_gso(skb)) 3441 features = gso_features_check(skb, dev, features); 3442 3443 /* If encapsulation offload request, verify we are testing 3444 * hardware encapsulation features instead of standard 3445 * features for the netdev 3446 */ 3447 if (skb->encapsulation) 3448 features &= dev->hw_enc_features; 3449 3450 if (skb_vlan_tagged(skb)) 3451 features = netdev_intersect_features(features, 3452 dev->vlan_features | 3453 NETIF_F_HW_VLAN_CTAG_TX | 3454 NETIF_F_HW_VLAN_STAG_TX); 3455 3456 if (dev->netdev_ops->ndo_features_check) 3457 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3458 features); 3459 else 3460 features &= dflt_features_check(skb, dev, features); 3461 3462 return harmonize_features(skb, features); 3463 } 3464 EXPORT_SYMBOL(netif_skb_features); 3465 3466 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3467 struct netdev_queue *txq, bool more) 3468 { 3469 unsigned int len; 3470 int rc; 3471 3472 if (dev_nit_active(dev)) 3473 dev_queue_xmit_nit(skb, dev); 3474 3475 len = skb->len; 3476 trace_net_dev_start_xmit(skb, dev); 3477 rc = netdev_start_xmit(skb, dev, txq, more); 3478 trace_net_dev_xmit(skb, rc, dev, len); 3479 3480 return rc; 3481 } 3482 3483 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3484 struct netdev_queue *txq, int *ret) 3485 { 3486 struct sk_buff *skb = first; 3487 int rc = NETDEV_TX_OK; 3488 3489 while (skb) { 3490 struct sk_buff *next = skb->next; 3491 3492 skb_mark_not_on_list(skb); 3493 rc = xmit_one(skb, dev, txq, next != NULL); 3494 if (unlikely(!dev_xmit_complete(rc))) { 3495 skb->next = next; 3496 goto out; 3497 } 3498 3499 skb = next; 3500 if (netif_tx_queue_stopped(txq) && skb) { 3501 rc = NETDEV_TX_BUSY; 3502 break; 3503 } 3504 } 3505 3506 out: 3507 *ret = rc; 3508 return skb; 3509 } 3510 3511 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3512 netdev_features_t features) 3513 { 3514 if (skb_vlan_tag_present(skb) && 3515 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3516 skb = __vlan_hwaccel_push_inside(skb); 3517 return skb; 3518 } 3519 3520 int skb_csum_hwoffload_help(struct sk_buff *skb, 3521 const netdev_features_t features) 3522 { 3523 if (unlikely(skb->csum_not_inet)) 3524 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3525 skb_crc32c_csum_help(skb); 3526 3527 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3528 } 3529 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3530 3531 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3532 { 3533 netdev_features_t features; 3534 3535 features = netif_skb_features(skb); 3536 skb = validate_xmit_vlan(skb, features); 3537 if (unlikely(!skb)) 3538 goto out_null; 3539 3540 skb = sk_validate_xmit_skb(skb, dev); 3541 if (unlikely(!skb)) 3542 goto out_null; 3543 3544 if (netif_needs_gso(skb, features)) { 3545 struct sk_buff *segs; 3546 3547 segs = skb_gso_segment(skb, features); 3548 if (IS_ERR(segs)) { 3549 goto out_kfree_skb; 3550 } else if (segs) { 3551 consume_skb(skb); 3552 skb = segs; 3553 } 3554 } else { 3555 if (skb_needs_linearize(skb, features) && 3556 __skb_linearize(skb)) 3557 goto out_kfree_skb; 3558 3559 /* If packet is not checksummed and device does not 3560 * support checksumming for this protocol, complete 3561 * checksumming here. 3562 */ 3563 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3564 if (skb->encapsulation) 3565 skb_set_inner_transport_header(skb, 3566 skb_checksum_start_offset(skb)); 3567 else 3568 skb_set_transport_header(skb, 3569 skb_checksum_start_offset(skb)); 3570 if (skb_csum_hwoffload_help(skb, features)) 3571 goto out_kfree_skb; 3572 } 3573 } 3574 3575 skb = validate_xmit_xfrm(skb, features, again); 3576 3577 return skb; 3578 3579 out_kfree_skb: 3580 kfree_skb(skb); 3581 out_null: 3582 atomic_long_inc(&dev->tx_dropped); 3583 return NULL; 3584 } 3585 3586 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3587 { 3588 struct sk_buff *next, *head = NULL, *tail; 3589 3590 for (; skb != NULL; skb = next) { 3591 next = skb->next; 3592 skb_mark_not_on_list(skb); 3593 3594 /* in case skb wont be segmented, point to itself */ 3595 skb->prev = skb; 3596 3597 skb = validate_xmit_skb(skb, dev, again); 3598 if (!skb) 3599 continue; 3600 3601 if (!head) 3602 head = skb; 3603 else 3604 tail->next = skb; 3605 /* If skb was segmented, skb->prev points to 3606 * the last segment. If not, it still contains skb. 3607 */ 3608 tail = skb->prev; 3609 } 3610 return head; 3611 } 3612 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3613 3614 static void qdisc_pkt_len_init(struct sk_buff *skb) 3615 { 3616 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3617 3618 qdisc_skb_cb(skb)->pkt_len = skb->len; 3619 3620 /* To get more precise estimation of bytes sent on wire, 3621 * we add to pkt_len the headers size of all segments 3622 */ 3623 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3624 unsigned int hdr_len; 3625 u16 gso_segs = shinfo->gso_segs; 3626 3627 /* mac layer + network layer */ 3628 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3629 3630 /* + transport layer */ 3631 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3632 const struct tcphdr *th; 3633 struct tcphdr _tcphdr; 3634 3635 th = skb_header_pointer(skb, skb_transport_offset(skb), 3636 sizeof(_tcphdr), &_tcphdr); 3637 if (likely(th)) 3638 hdr_len += __tcp_hdrlen(th); 3639 } else { 3640 struct udphdr _udphdr; 3641 3642 if (skb_header_pointer(skb, skb_transport_offset(skb), 3643 sizeof(_udphdr), &_udphdr)) 3644 hdr_len += sizeof(struct udphdr); 3645 } 3646 3647 if (shinfo->gso_type & SKB_GSO_DODGY) 3648 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3649 shinfo->gso_size); 3650 3651 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3652 } 3653 } 3654 3655 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3656 struct net_device *dev, 3657 struct netdev_queue *txq) 3658 { 3659 spinlock_t *root_lock = qdisc_lock(q); 3660 struct sk_buff *to_free = NULL; 3661 bool contended; 3662 int rc; 3663 3664 qdisc_calculate_pkt_len(skb, q); 3665 3666 if (q->flags & TCQ_F_NOLOCK) { 3667 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3668 qdisc_run(q); 3669 3670 if (unlikely(to_free)) 3671 kfree_skb_list(to_free); 3672 return rc; 3673 } 3674 3675 /* 3676 * Heuristic to force contended enqueues to serialize on a 3677 * separate lock before trying to get qdisc main lock. 3678 * This permits qdisc->running owner to get the lock more 3679 * often and dequeue packets faster. 3680 */ 3681 contended = qdisc_is_running(q); 3682 if (unlikely(contended)) 3683 spin_lock(&q->busylock); 3684 3685 spin_lock(root_lock); 3686 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3687 __qdisc_drop(skb, &to_free); 3688 rc = NET_XMIT_DROP; 3689 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3690 qdisc_run_begin(q)) { 3691 /* 3692 * This is a work-conserving queue; there are no old skbs 3693 * waiting to be sent out; and the qdisc is not running - 3694 * xmit the skb directly. 3695 */ 3696 3697 qdisc_bstats_update(q, skb); 3698 3699 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3700 if (unlikely(contended)) { 3701 spin_unlock(&q->busylock); 3702 contended = false; 3703 } 3704 __qdisc_run(q); 3705 } 3706 3707 qdisc_run_end(q); 3708 rc = NET_XMIT_SUCCESS; 3709 } else { 3710 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3711 if (qdisc_run_begin(q)) { 3712 if (unlikely(contended)) { 3713 spin_unlock(&q->busylock); 3714 contended = false; 3715 } 3716 __qdisc_run(q); 3717 qdisc_run_end(q); 3718 } 3719 } 3720 spin_unlock(root_lock); 3721 if (unlikely(to_free)) 3722 kfree_skb_list(to_free); 3723 if (unlikely(contended)) 3724 spin_unlock(&q->busylock); 3725 return rc; 3726 } 3727 3728 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3729 static void skb_update_prio(struct sk_buff *skb) 3730 { 3731 const struct netprio_map *map; 3732 const struct sock *sk; 3733 unsigned int prioidx; 3734 3735 if (skb->priority) 3736 return; 3737 map = rcu_dereference_bh(skb->dev->priomap); 3738 if (!map) 3739 return; 3740 sk = skb_to_full_sk(skb); 3741 if (!sk) 3742 return; 3743 3744 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3745 3746 if (prioidx < map->priomap_len) 3747 skb->priority = map->priomap[prioidx]; 3748 } 3749 #else 3750 #define skb_update_prio(skb) 3751 #endif 3752 3753 /** 3754 * dev_loopback_xmit - loop back @skb 3755 * @net: network namespace this loopback is happening in 3756 * @sk: sk needed to be a netfilter okfn 3757 * @skb: buffer to transmit 3758 */ 3759 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3760 { 3761 skb_reset_mac_header(skb); 3762 __skb_pull(skb, skb_network_offset(skb)); 3763 skb->pkt_type = PACKET_LOOPBACK; 3764 skb->ip_summed = CHECKSUM_UNNECESSARY; 3765 WARN_ON(!skb_dst(skb)); 3766 skb_dst_force(skb); 3767 netif_rx_ni(skb); 3768 return 0; 3769 } 3770 EXPORT_SYMBOL(dev_loopback_xmit); 3771 3772 #ifdef CONFIG_NET_EGRESS 3773 static struct sk_buff * 3774 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3775 { 3776 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3777 struct tcf_result cl_res; 3778 3779 if (!miniq) 3780 return skb; 3781 3782 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3783 mini_qdisc_bstats_cpu_update(miniq, skb); 3784 3785 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3786 case TC_ACT_OK: 3787 case TC_ACT_RECLASSIFY: 3788 skb->tc_index = TC_H_MIN(cl_res.classid); 3789 break; 3790 case TC_ACT_SHOT: 3791 mini_qdisc_qstats_cpu_drop(miniq); 3792 *ret = NET_XMIT_DROP; 3793 kfree_skb(skb); 3794 return NULL; 3795 case TC_ACT_STOLEN: 3796 case TC_ACT_QUEUED: 3797 case TC_ACT_TRAP: 3798 *ret = NET_XMIT_SUCCESS; 3799 consume_skb(skb); 3800 return NULL; 3801 case TC_ACT_REDIRECT: 3802 /* No need to push/pop skb's mac_header here on egress! */ 3803 skb_do_redirect(skb); 3804 *ret = NET_XMIT_SUCCESS; 3805 return NULL; 3806 default: 3807 break; 3808 } 3809 3810 return skb; 3811 } 3812 #endif /* CONFIG_NET_EGRESS */ 3813 3814 #ifdef CONFIG_XPS 3815 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 3816 struct xps_dev_maps *dev_maps, unsigned int tci) 3817 { 3818 struct xps_map *map; 3819 int queue_index = -1; 3820 3821 if (dev->num_tc) { 3822 tci *= dev->num_tc; 3823 tci += netdev_get_prio_tc_map(dev, skb->priority); 3824 } 3825 3826 map = rcu_dereference(dev_maps->attr_map[tci]); 3827 if (map) { 3828 if (map->len == 1) 3829 queue_index = map->queues[0]; 3830 else 3831 queue_index = map->queues[reciprocal_scale( 3832 skb_get_hash(skb), map->len)]; 3833 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3834 queue_index = -1; 3835 } 3836 return queue_index; 3837 } 3838 #endif 3839 3840 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 3841 struct sk_buff *skb) 3842 { 3843 #ifdef CONFIG_XPS 3844 struct xps_dev_maps *dev_maps; 3845 struct sock *sk = skb->sk; 3846 int queue_index = -1; 3847 3848 if (!static_key_false(&xps_needed)) 3849 return -1; 3850 3851 rcu_read_lock(); 3852 if (!static_key_false(&xps_rxqs_needed)) 3853 goto get_cpus_map; 3854 3855 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map); 3856 if (dev_maps) { 3857 int tci = sk_rx_queue_get(sk); 3858 3859 if (tci >= 0 && tci < dev->num_rx_queues) 3860 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3861 tci); 3862 } 3863 3864 get_cpus_map: 3865 if (queue_index < 0) { 3866 dev_maps = rcu_dereference(sb_dev->xps_cpus_map); 3867 if (dev_maps) { 3868 unsigned int tci = skb->sender_cpu - 1; 3869 3870 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3871 tci); 3872 } 3873 } 3874 rcu_read_unlock(); 3875 3876 return queue_index; 3877 #else 3878 return -1; 3879 #endif 3880 } 3881 3882 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3883 struct net_device *sb_dev) 3884 { 3885 return 0; 3886 } 3887 EXPORT_SYMBOL(dev_pick_tx_zero); 3888 3889 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3890 struct net_device *sb_dev) 3891 { 3892 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 3893 } 3894 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 3895 3896 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 3897 struct net_device *sb_dev) 3898 { 3899 struct sock *sk = skb->sk; 3900 int queue_index = sk_tx_queue_get(sk); 3901 3902 sb_dev = sb_dev ? : dev; 3903 3904 if (queue_index < 0 || skb->ooo_okay || 3905 queue_index >= dev->real_num_tx_queues) { 3906 int new_index = get_xps_queue(dev, sb_dev, skb); 3907 3908 if (new_index < 0) 3909 new_index = skb_tx_hash(dev, sb_dev, skb); 3910 3911 if (queue_index != new_index && sk && 3912 sk_fullsock(sk) && 3913 rcu_access_pointer(sk->sk_dst_cache)) 3914 sk_tx_queue_set(sk, new_index); 3915 3916 queue_index = new_index; 3917 } 3918 3919 return queue_index; 3920 } 3921 EXPORT_SYMBOL(netdev_pick_tx); 3922 3923 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 3924 struct sk_buff *skb, 3925 struct net_device *sb_dev) 3926 { 3927 int queue_index = 0; 3928 3929 #ifdef CONFIG_XPS 3930 u32 sender_cpu = skb->sender_cpu - 1; 3931 3932 if (sender_cpu >= (u32)NR_CPUS) 3933 skb->sender_cpu = raw_smp_processor_id() + 1; 3934 #endif 3935 3936 if (dev->real_num_tx_queues != 1) { 3937 const struct net_device_ops *ops = dev->netdev_ops; 3938 3939 if (ops->ndo_select_queue) 3940 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 3941 else 3942 queue_index = netdev_pick_tx(dev, skb, sb_dev); 3943 3944 queue_index = netdev_cap_txqueue(dev, queue_index); 3945 } 3946 3947 skb_set_queue_mapping(skb, queue_index); 3948 return netdev_get_tx_queue(dev, queue_index); 3949 } 3950 3951 /** 3952 * __dev_queue_xmit - transmit a buffer 3953 * @skb: buffer to transmit 3954 * @sb_dev: suboordinate device used for L2 forwarding offload 3955 * 3956 * Queue a buffer for transmission to a network device. The caller must 3957 * have set the device and priority and built the buffer before calling 3958 * this function. The function can be called from an interrupt. 3959 * 3960 * A negative errno code is returned on a failure. A success does not 3961 * guarantee the frame will be transmitted as it may be dropped due 3962 * to congestion or traffic shaping. 3963 * 3964 * ----------------------------------------------------------------------------------- 3965 * I notice this method can also return errors from the queue disciplines, 3966 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3967 * be positive. 3968 * 3969 * Regardless of the return value, the skb is consumed, so it is currently 3970 * difficult to retry a send to this method. (You can bump the ref count 3971 * before sending to hold a reference for retry if you are careful.) 3972 * 3973 * When calling this method, interrupts MUST be enabled. This is because 3974 * the BH enable code must have IRQs enabled so that it will not deadlock. 3975 * --BLG 3976 */ 3977 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 3978 { 3979 struct net_device *dev = skb->dev; 3980 struct netdev_queue *txq; 3981 struct Qdisc *q; 3982 int rc = -ENOMEM; 3983 bool again = false; 3984 3985 skb_reset_mac_header(skb); 3986 3987 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3988 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3989 3990 /* Disable soft irqs for various locks below. Also 3991 * stops preemption for RCU. 3992 */ 3993 rcu_read_lock_bh(); 3994 3995 skb_update_prio(skb); 3996 3997 qdisc_pkt_len_init(skb); 3998 #ifdef CONFIG_NET_CLS_ACT 3999 skb->tc_at_ingress = 0; 4000 # ifdef CONFIG_NET_EGRESS 4001 if (static_branch_unlikely(&egress_needed_key)) { 4002 skb = sch_handle_egress(skb, &rc, dev); 4003 if (!skb) 4004 goto out; 4005 } 4006 # endif 4007 #endif 4008 /* If device/qdisc don't need skb->dst, release it right now while 4009 * its hot in this cpu cache. 4010 */ 4011 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4012 skb_dst_drop(skb); 4013 else 4014 skb_dst_force(skb); 4015 4016 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4017 q = rcu_dereference_bh(txq->qdisc); 4018 4019 trace_net_dev_queue(skb); 4020 if (q->enqueue) { 4021 rc = __dev_xmit_skb(skb, q, dev, txq); 4022 goto out; 4023 } 4024 4025 /* The device has no queue. Common case for software devices: 4026 * loopback, all the sorts of tunnels... 4027 4028 * Really, it is unlikely that netif_tx_lock protection is necessary 4029 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4030 * counters.) 4031 * However, it is possible, that they rely on protection 4032 * made by us here. 4033 4034 * Check this and shot the lock. It is not prone from deadlocks. 4035 *Either shot noqueue qdisc, it is even simpler 8) 4036 */ 4037 if (dev->flags & IFF_UP) { 4038 int cpu = smp_processor_id(); /* ok because BHs are off */ 4039 4040 if (txq->xmit_lock_owner != cpu) { 4041 if (dev_xmit_recursion()) 4042 goto recursion_alert; 4043 4044 skb = validate_xmit_skb(skb, dev, &again); 4045 if (!skb) 4046 goto out; 4047 4048 HARD_TX_LOCK(dev, txq, cpu); 4049 4050 if (!netif_xmit_stopped(txq)) { 4051 dev_xmit_recursion_inc(); 4052 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4053 dev_xmit_recursion_dec(); 4054 if (dev_xmit_complete(rc)) { 4055 HARD_TX_UNLOCK(dev, txq); 4056 goto out; 4057 } 4058 } 4059 HARD_TX_UNLOCK(dev, txq); 4060 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4061 dev->name); 4062 } else { 4063 /* Recursion is detected! It is possible, 4064 * unfortunately 4065 */ 4066 recursion_alert: 4067 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4068 dev->name); 4069 } 4070 } 4071 4072 rc = -ENETDOWN; 4073 rcu_read_unlock_bh(); 4074 4075 atomic_long_inc(&dev->tx_dropped); 4076 kfree_skb_list(skb); 4077 return rc; 4078 out: 4079 rcu_read_unlock_bh(); 4080 return rc; 4081 } 4082 4083 int dev_queue_xmit(struct sk_buff *skb) 4084 { 4085 return __dev_queue_xmit(skb, NULL); 4086 } 4087 EXPORT_SYMBOL(dev_queue_xmit); 4088 4089 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev) 4090 { 4091 return __dev_queue_xmit(skb, sb_dev); 4092 } 4093 EXPORT_SYMBOL(dev_queue_xmit_accel); 4094 4095 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4096 { 4097 struct net_device *dev = skb->dev; 4098 struct sk_buff *orig_skb = skb; 4099 struct netdev_queue *txq; 4100 int ret = NETDEV_TX_BUSY; 4101 bool again = false; 4102 4103 if (unlikely(!netif_running(dev) || 4104 !netif_carrier_ok(dev))) 4105 goto drop; 4106 4107 skb = validate_xmit_skb_list(skb, dev, &again); 4108 if (skb != orig_skb) 4109 goto drop; 4110 4111 skb_set_queue_mapping(skb, queue_id); 4112 txq = skb_get_tx_queue(dev, skb); 4113 4114 local_bh_disable(); 4115 4116 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4117 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4118 ret = netdev_start_xmit(skb, dev, txq, false); 4119 HARD_TX_UNLOCK(dev, txq); 4120 4121 local_bh_enable(); 4122 4123 if (!dev_xmit_complete(ret)) 4124 kfree_skb(skb); 4125 4126 return ret; 4127 drop: 4128 atomic_long_inc(&dev->tx_dropped); 4129 kfree_skb_list(skb); 4130 return NET_XMIT_DROP; 4131 } 4132 EXPORT_SYMBOL(dev_direct_xmit); 4133 4134 /************************************************************************* 4135 * Receiver routines 4136 *************************************************************************/ 4137 4138 int netdev_max_backlog __read_mostly = 1000; 4139 EXPORT_SYMBOL(netdev_max_backlog); 4140 4141 int netdev_tstamp_prequeue __read_mostly = 1; 4142 int netdev_budget __read_mostly = 300; 4143 unsigned int __read_mostly netdev_budget_usecs = 2000; 4144 int weight_p __read_mostly = 64; /* old backlog weight */ 4145 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4146 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4147 int dev_rx_weight __read_mostly = 64; 4148 int dev_tx_weight __read_mostly = 64; 4149 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */ 4150 int gro_normal_batch __read_mostly = 8; 4151 4152 /* Called with irq disabled */ 4153 static inline void ____napi_schedule(struct softnet_data *sd, 4154 struct napi_struct *napi) 4155 { 4156 list_add_tail(&napi->poll_list, &sd->poll_list); 4157 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4158 } 4159 4160 #ifdef CONFIG_RPS 4161 4162 /* One global table that all flow-based protocols share. */ 4163 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 4164 EXPORT_SYMBOL(rps_sock_flow_table); 4165 u32 rps_cpu_mask __read_mostly; 4166 EXPORT_SYMBOL(rps_cpu_mask); 4167 4168 struct static_key_false rps_needed __read_mostly; 4169 EXPORT_SYMBOL(rps_needed); 4170 struct static_key_false rfs_needed __read_mostly; 4171 EXPORT_SYMBOL(rfs_needed); 4172 4173 static struct rps_dev_flow * 4174 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4175 struct rps_dev_flow *rflow, u16 next_cpu) 4176 { 4177 if (next_cpu < nr_cpu_ids) { 4178 #ifdef CONFIG_RFS_ACCEL 4179 struct netdev_rx_queue *rxqueue; 4180 struct rps_dev_flow_table *flow_table; 4181 struct rps_dev_flow *old_rflow; 4182 u32 flow_id; 4183 u16 rxq_index; 4184 int rc; 4185 4186 /* Should we steer this flow to a different hardware queue? */ 4187 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4188 !(dev->features & NETIF_F_NTUPLE)) 4189 goto out; 4190 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4191 if (rxq_index == skb_get_rx_queue(skb)) 4192 goto out; 4193 4194 rxqueue = dev->_rx + rxq_index; 4195 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4196 if (!flow_table) 4197 goto out; 4198 flow_id = skb_get_hash(skb) & flow_table->mask; 4199 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4200 rxq_index, flow_id); 4201 if (rc < 0) 4202 goto out; 4203 old_rflow = rflow; 4204 rflow = &flow_table->flows[flow_id]; 4205 rflow->filter = rc; 4206 if (old_rflow->filter == rflow->filter) 4207 old_rflow->filter = RPS_NO_FILTER; 4208 out: 4209 #endif 4210 rflow->last_qtail = 4211 per_cpu(softnet_data, next_cpu).input_queue_head; 4212 } 4213 4214 rflow->cpu = next_cpu; 4215 return rflow; 4216 } 4217 4218 /* 4219 * get_rps_cpu is called from netif_receive_skb and returns the target 4220 * CPU from the RPS map of the receiving queue for a given skb. 4221 * rcu_read_lock must be held on entry. 4222 */ 4223 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4224 struct rps_dev_flow **rflowp) 4225 { 4226 const struct rps_sock_flow_table *sock_flow_table; 4227 struct netdev_rx_queue *rxqueue = dev->_rx; 4228 struct rps_dev_flow_table *flow_table; 4229 struct rps_map *map; 4230 int cpu = -1; 4231 u32 tcpu; 4232 u32 hash; 4233 4234 if (skb_rx_queue_recorded(skb)) { 4235 u16 index = skb_get_rx_queue(skb); 4236 4237 if (unlikely(index >= dev->real_num_rx_queues)) { 4238 WARN_ONCE(dev->real_num_rx_queues > 1, 4239 "%s received packet on queue %u, but number " 4240 "of RX queues is %u\n", 4241 dev->name, index, dev->real_num_rx_queues); 4242 goto done; 4243 } 4244 rxqueue += index; 4245 } 4246 4247 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4248 4249 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4250 map = rcu_dereference(rxqueue->rps_map); 4251 if (!flow_table && !map) 4252 goto done; 4253 4254 skb_reset_network_header(skb); 4255 hash = skb_get_hash(skb); 4256 if (!hash) 4257 goto done; 4258 4259 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4260 if (flow_table && sock_flow_table) { 4261 struct rps_dev_flow *rflow; 4262 u32 next_cpu; 4263 u32 ident; 4264 4265 /* First check into global flow table if there is a match */ 4266 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 4267 if ((ident ^ hash) & ~rps_cpu_mask) 4268 goto try_rps; 4269 4270 next_cpu = ident & rps_cpu_mask; 4271 4272 /* OK, now we know there is a match, 4273 * we can look at the local (per receive queue) flow table 4274 */ 4275 rflow = &flow_table->flows[hash & flow_table->mask]; 4276 tcpu = rflow->cpu; 4277 4278 /* 4279 * If the desired CPU (where last recvmsg was done) is 4280 * different from current CPU (one in the rx-queue flow 4281 * table entry), switch if one of the following holds: 4282 * - Current CPU is unset (>= nr_cpu_ids). 4283 * - Current CPU is offline. 4284 * - The current CPU's queue tail has advanced beyond the 4285 * last packet that was enqueued using this table entry. 4286 * This guarantees that all previous packets for the flow 4287 * have been dequeued, thus preserving in order delivery. 4288 */ 4289 if (unlikely(tcpu != next_cpu) && 4290 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4291 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4292 rflow->last_qtail)) >= 0)) { 4293 tcpu = next_cpu; 4294 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4295 } 4296 4297 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4298 *rflowp = rflow; 4299 cpu = tcpu; 4300 goto done; 4301 } 4302 } 4303 4304 try_rps: 4305 4306 if (map) { 4307 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4308 if (cpu_online(tcpu)) { 4309 cpu = tcpu; 4310 goto done; 4311 } 4312 } 4313 4314 done: 4315 return cpu; 4316 } 4317 4318 #ifdef CONFIG_RFS_ACCEL 4319 4320 /** 4321 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4322 * @dev: Device on which the filter was set 4323 * @rxq_index: RX queue index 4324 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4325 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4326 * 4327 * Drivers that implement ndo_rx_flow_steer() should periodically call 4328 * this function for each installed filter and remove the filters for 4329 * which it returns %true. 4330 */ 4331 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4332 u32 flow_id, u16 filter_id) 4333 { 4334 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4335 struct rps_dev_flow_table *flow_table; 4336 struct rps_dev_flow *rflow; 4337 bool expire = true; 4338 unsigned int cpu; 4339 4340 rcu_read_lock(); 4341 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4342 if (flow_table && flow_id <= flow_table->mask) { 4343 rflow = &flow_table->flows[flow_id]; 4344 cpu = READ_ONCE(rflow->cpu); 4345 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4346 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4347 rflow->last_qtail) < 4348 (int)(10 * flow_table->mask))) 4349 expire = false; 4350 } 4351 rcu_read_unlock(); 4352 return expire; 4353 } 4354 EXPORT_SYMBOL(rps_may_expire_flow); 4355 4356 #endif /* CONFIG_RFS_ACCEL */ 4357 4358 /* Called from hardirq (IPI) context */ 4359 static void rps_trigger_softirq(void *data) 4360 { 4361 struct softnet_data *sd = data; 4362 4363 ____napi_schedule(sd, &sd->backlog); 4364 sd->received_rps++; 4365 } 4366 4367 #endif /* CONFIG_RPS */ 4368 4369 /* 4370 * Check if this softnet_data structure is another cpu one 4371 * If yes, queue it to our IPI list and return 1 4372 * If no, return 0 4373 */ 4374 static int rps_ipi_queued(struct softnet_data *sd) 4375 { 4376 #ifdef CONFIG_RPS 4377 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4378 4379 if (sd != mysd) { 4380 sd->rps_ipi_next = mysd->rps_ipi_list; 4381 mysd->rps_ipi_list = sd; 4382 4383 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4384 return 1; 4385 } 4386 #endif /* CONFIG_RPS */ 4387 return 0; 4388 } 4389 4390 #ifdef CONFIG_NET_FLOW_LIMIT 4391 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4392 #endif 4393 4394 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4395 { 4396 #ifdef CONFIG_NET_FLOW_LIMIT 4397 struct sd_flow_limit *fl; 4398 struct softnet_data *sd; 4399 unsigned int old_flow, new_flow; 4400 4401 if (qlen < (netdev_max_backlog >> 1)) 4402 return false; 4403 4404 sd = this_cpu_ptr(&softnet_data); 4405 4406 rcu_read_lock(); 4407 fl = rcu_dereference(sd->flow_limit); 4408 if (fl) { 4409 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4410 old_flow = fl->history[fl->history_head]; 4411 fl->history[fl->history_head] = new_flow; 4412 4413 fl->history_head++; 4414 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4415 4416 if (likely(fl->buckets[old_flow])) 4417 fl->buckets[old_flow]--; 4418 4419 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4420 fl->count++; 4421 rcu_read_unlock(); 4422 return true; 4423 } 4424 } 4425 rcu_read_unlock(); 4426 #endif 4427 return false; 4428 } 4429 4430 /* 4431 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4432 * queue (may be a remote CPU queue). 4433 */ 4434 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4435 unsigned int *qtail) 4436 { 4437 struct softnet_data *sd; 4438 unsigned long flags; 4439 unsigned int qlen; 4440 4441 sd = &per_cpu(softnet_data, cpu); 4442 4443 local_irq_save(flags); 4444 4445 rps_lock(sd); 4446 if (!netif_running(skb->dev)) 4447 goto drop; 4448 qlen = skb_queue_len(&sd->input_pkt_queue); 4449 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 4450 if (qlen) { 4451 enqueue: 4452 __skb_queue_tail(&sd->input_pkt_queue, skb); 4453 input_queue_tail_incr_save(sd, qtail); 4454 rps_unlock(sd); 4455 local_irq_restore(flags); 4456 return NET_RX_SUCCESS; 4457 } 4458 4459 /* Schedule NAPI for backlog device 4460 * We can use non atomic operation since we own the queue lock 4461 */ 4462 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 4463 if (!rps_ipi_queued(sd)) 4464 ____napi_schedule(sd, &sd->backlog); 4465 } 4466 goto enqueue; 4467 } 4468 4469 drop: 4470 sd->dropped++; 4471 rps_unlock(sd); 4472 4473 local_irq_restore(flags); 4474 4475 atomic_long_inc(&skb->dev->rx_dropped); 4476 kfree_skb(skb); 4477 return NET_RX_DROP; 4478 } 4479 4480 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4481 { 4482 struct net_device *dev = skb->dev; 4483 struct netdev_rx_queue *rxqueue; 4484 4485 rxqueue = dev->_rx; 4486 4487 if (skb_rx_queue_recorded(skb)) { 4488 u16 index = skb_get_rx_queue(skb); 4489 4490 if (unlikely(index >= dev->real_num_rx_queues)) { 4491 WARN_ONCE(dev->real_num_rx_queues > 1, 4492 "%s received packet on queue %u, but number " 4493 "of RX queues is %u\n", 4494 dev->name, index, dev->real_num_rx_queues); 4495 4496 return rxqueue; /* Return first rxqueue */ 4497 } 4498 rxqueue += index; 4499 } 4500 return rxqueue; 4501 } 4502 4503 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4504 struct xdp_buff *xdp, 4505 struct bpf_prog *xdp_prog) 4506 { 4507 struct netdev_rx_queue *rxqueue; 4508 void *orig_data, *orig_data_end; 4509 u32 metalen, act = XDP_DROP; 4510 __be16 orig_eth_type; 4511 struct ethhdr *eth; 4512 bool orig_bcast; 4513 int hlen, off; 4514 u32 mac_len; 4515 4516 /* Reinjected packets coming from act_mirred or similar should 4517 * not get XDP generic processing. 4518 */ 4519 if (skb_is_redirected(skb)) 4520 return XDP_PASS; 4521 4522 /* XDP packets must be linear and must have sufficient headroom 4523 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4524 * native XDP provides, thus we need to do it here as well. 4525 */ 4526 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 4527 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4528 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4529 int troom = skb->tail + skb->data_len - skb->end; 4530 4531 /* In case we have to go down the path and also linearize, 4532 * then lets do the pskb_expand_head() work just once here. 4533 */ 4534 if (pskb_expand_head(skb, 4535 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4536 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4537 goto do_drop; 4538 if (skb_linearize(skb)) 4539 goto do_drop; 4540 } 4541 4542 /* The XDP program wants to see the packet starting at the MAC 4543 * header. 4544 */ 4545 mac_len = skb->data - skb_mac_header(skb); 4546 hlen = skb_headlen(skb) + mac_len; 4547 xdp->data = skb->data - mac_len; 4548 xdp->data_meta = xdp->data; 4549 xdp->data_end = xdp->data + hlen; 4550 xdp->data_hard_start = skb->data - skb_headroom(skb); 4551 orig_data_end = xdp->data_end; 4552 orig_data = xdp->data; 4553 eth = (struct ethhdr *)xdp->data; 4554 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4555 orig_eth_type = eth->h_proto; 4556 4557 rxqueue = netif_get_rxqueue(skb); 4558 xdp->rxq = &rxqueue->xdp_rxq; 4559 4560 act = bpf_prog_run_xdp(xdp_prog, xdp); 4561 4562 /* check if bpf_xdp_adjust_head was used */ 4563 off = xdp->data - orig_data; 4564 if (off) { 4565 if (off > 0) 4566 __skb_pull(skb, off); 4567 else if (off < 0) 4568 __skb_push(skb, -off); 4569 4570 skb->mac_header += off; 4571 skb_reset_network_header(skb); 4572 } 4573 4574 /* check if bpf_xdp_adjust_tail was used. it can only "shrink" 4575 * pckt. 4576 */ 4577 off = orig_data_end - xdp->data_end; 4578 if (off != 0) { 4579 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4580 skb->len -= off; 4581 4582 } 4583 4584 /* check if XDP changed eth hdr such SKB needs update */ 4585 eth = (struct ethhdr *)xdp->data; 4586 if ((orig_eth_type != eth->h_proto) || 4587 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4588 __skb_push(skb, ETH_HLEN); 4589 skb->protocol = eth_type_trans(skb, skb->dev); 4590 } 4591 4592 switch (act) { 4593 case XDP_REDIRECT: 4594 case XDP_TX: 4595 __skb_push(skb, mac_len); 4596 break; 4597 case XDP_PASS: 4598 metalen = xdp->data - xdp->data_meta; 4599 if (metalen) 4600 skb_metadata_set(skb, metalen); 4601 break; 4602 default: 4603 bpf_warn_invalid_xdp_action(act); 4604 /* fall through */ 4605 case XDP_ABORTED: 4606 trace_xdp_exception(skb->dev, xdp_prog, act); 4607 /* fall through */ 4608 case XDP_DROP: 4609 do_drop: 4610 kfree_skb(skb); 4611 break; 4612 } 4613 4614 return act; 4615 } 4616 4617 /* When doing generic XDP we have to bypass the qdisc layer and the 4618 * network taps in order to match in-driver-XDP behavior. 4619 */ 4620 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4621 { 4622 struct net_device *dev = skb->dev; 4623 struct netdev_queue *txq; 4624 bool free_skb = true; 4625 int cpu, rc; 4626 4627 txq = netdev_core_pick_tx(dev, skb, NULL); 4628 cpu = smp_processor_id(); 4629 HARD_TX_LOCK(dev, txq, cpu); 4630 if (!netif_xmit_stopped(txq)) { 4631 rc = netdev_start_xmit(skb, dev, txq, 0); 4632 if (dev_xmit_complete(rc)) 4633 free_skb = false; 4634 } 4635 HARD_TX_UNLOCK(dev, txq); 4636 if (free_skb) { 4637 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4638 kfree_skb(skb); 4639 } 4640 } 4641 4642 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4643 4644 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4645 { 4646 if (xdp_prog) { 4647 struct xdp_buff xdp; 4648 u32 act; 4649 int err; 4650 4651 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4652 if (act != XDP_PASS) { 4653 switch (act) { 4654 case XDP_REDIRECT: 4655 err = xdp_do_generic_redirect(skb->dev, skb, 4656 &xdp, xdp_prog); 4657 if (err) 4658 goto out_redir; 4659 break; 4660 case XDP_TX: 4661 generic_xdp_tx(skb, xdp_prog); 4662 break; 4663 } 4664 return XDP_DROP; 4665 } 4666 } 4667 return XDP_PASS; 4668 out_redir: 4669 kfree_skb(skb); 4670 return XDP_DROP; 4671 } 4672 EXPORT_SYMBOL_GPL(do_xdp_generic); 4673 4674 static int netif_rx_internal(struct sk_buff *skb) 4675 { 4676 int ret; 4677 4678 net_timestamp_check(netdev_tstamp_prequeue, skb); 4679 4680 trace_netif_rx(skb); 4681 4682 #ifdef CONFIG_RPS 4683 if (static_branch_unlikely(&rps_needed)) { 4684 struct rps_dev_flow voidflow, *rflow = &voidflow; 4685 int cpu; 4686 4687 preempt_disable(); 4688 rcu_read_lock(); 4689 4690 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4691 if (cpu < 0) 4692 cpu = smp_processor_id(); 4693 4694 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4695 4696 rcu_read_unlock(); 4697 preempt_enable(); 4698 } else 4699 #endif 4700 { 4701 unsigned int qtail; 4702 4703 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4704 put_cpu(); 4705 } 4706 return ret; 4707 } 4708 4709 /** 4710 * netif_rx - post buffer to the network code 4711 * @skb: buffer to post 4712 * 4713 * This function receives a packet from a device driver and queues it for 4714 * the upper (protocol) levels to process. It always succeeds. The buffer 4715 * may be dropped during processing for congestion control or by the 4716 * protocol layers. 4717 * 4718 * return values: 4719 * NET_RX_SUCCESS (no congestion) 4720 * NET_RX_DROP (packet was dropped) 4721 * 4722 */ 4723 4724 int netif_rx(struct sk_buff *skb) 4725 { 4726 int ret; 4727 4728 trace_netif_rx_entry(skb); 4729 4730 ret = netif_rx_internal(skb); 4731 trace_netif_rx_exit(ret); 4732 4733 return ret; 4734 } 4735 EXPORT_SYMBOL(netif_rx); 4736 4737 int netif_rx_ni(struct sk_buff *skb) 4738 { 4739 int err; 4740 4741 trace_netif_rx_ni_entry(skb); 4742 4743 preempt_disable(); 4744 err = netif_rx_internal(skb); 4745 if (local_softirq_pending()) 4746 do_softirq(); 4747 preempt_enable(); 4748 trace_netif_rx_ni_exit(err); 4749 4750 return err; 4751 } 4752 EXPORT_SYMBOL(netif_rx_ni); 4753 4754 static __latent_entropy void net_tx_action(struct softirq_action *h) 4755 { 4756 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4757 4758 if (sd->completion_queue) { 4759 struct sk_buff *clist; 4760 4761 local_irq_disable(); 4762 clist = sd->completion_queue; 4763 sd->completion_queue = NULL; 4764 local_irq_enable(); 4765 4766 while (clist) { 4767 struct sk_buff *skb = clist; 4768 4769 clist = clist->next; 4770 4771 WARN_ON(refcount_read(&skb->users)); 4772 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4773 trace_consume_skb(skb); 4774 else 4775 trace_kfree_skb(skb, net_tx_action); 4776 4777 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4778 __kfree_skb(skb); 4779 else 4780 __kfree_skb_defer(skb); 4781 } 4782 4783 __kfree_skb_flush(); 4784 } 4785 4786 if (sd->output_queue) { 4787 struct Qdisc *head; 4788 4789 local_irq_disable(); 4790 head = sd->output_queue; 4791 sd->output_queue = NULL; 4792 sd->output_queue_tailp = &sd->output_queue; 4793 local_irq_enable(); 4794 4795 while (head) { 4796 struct Qdisc *q = head; 4797 spinlock_t *root_lock = NULL; 4798 4799 head = head->next_sched; 4800 4801 if (!(q->flags & TCQ_F_NOLOCK)) { 4802 root_lock = qdisc_lock(q); 4803 spin_lock(root_lock); 4804 } 4805 /* We need to make sure head->next_sched is read 4806 * before clearing __QDISC_STATE_SCHED 4807 */ 4808 smp_mb__before_atomic(); 4809 clear_bit(__QDISC_STATE_SCHED, &q->state); 4810 qdisc_run(q); 4811 if (root_lock) 4812 spin_unlock(root_lock); 4813 } 4814 } 4815 4816 xfrm_dev_backlog(sd); 4817 } 4818 4819 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4820 /* This hook is defined here for ATM LANE */ 4821 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4822 unsigned char *addr) __read_mostly; 4823 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4824 #endif 4825 4826 static inline struct sk_buff * 4827 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4828 struct net_device *orig_dev) 4829 { 4830 #ifdef CONFIG_NET_CLS_ACT 4831 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 4832 struct tcf_result cl_res; 4833 4834 /* If there's at least one ingress present somewhere (so 4835 * we get here via enabled static key), remaining devices 4836 * that are not configured with an ingress qdisc will bail 4837 * out here. 4838 */ 4839 if (!miniq) 4840 return skb; 4841 4842 if (*pt_prev) { 4843 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4844 *pt_prev = NULL; 4845 } 4846 4847 qdisc_skb_cb(skb)->pkt_len = skb->len; 4848 skb->tc_at_ingress = 1; 4849 mini_qdisc_bstats_cpu_update(miniq, skb); 4850 4851 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list, 4852 &cl_res, false)) { 4853 case TC_ACT_OK: 4854 case TC_ACT_RECLASSIFY: 4855 skb->tc_index = TC_H_MIN(cl_res.classid); 4856 break; 4857 case TC_ACT_SHOT: 4858 mini_qdisc_qstats_cpu_drop(miniq); 4859 kfree_skb(skb); 4860 return NULL; 4861 case TC_ACT_STOLEN: 4862 case TC_ACT_QUEUED: 4863 case TC_ACT_TRAP: 4864 consume_skb(skb); 4865 return NULL; 4866 case TC_ACT_REDIRECT: 4867 /* skb_mac_header check was done by cls/act_bpf, so 4868 * we can safely push the L2 header back before 4869 * redirecting to another netdev 4870 */ 4871 __skb_push(skb, skb->mac_len); 4872 skb_do_redirect(skb); 4873 return NULL; 4874 case TC_ACT_CONSUMED: 4875 return NULL; 4876 default: 4877 break; 4878 } 4879 #endif /* CONFIG_NET_CLS_ACT */ 4880 return skb; 4881 } 4882 4883 /** 4884 * netdev_is_rx_handler_busy - check if receive handler is registered 4885 * @dev: device to check 4886 * 4887 * Check if a receive handler is already registered for a given device. 4888 * Return true if there one. 4889 * 4890 * The caller must hold the rtnl_mutex. 4891 */ 4892 bool netdev_is_rx_handler_busy(struct net_device *dev) 4893 { 4894 ASSERT_RTNL(); 4895 return dev && rtnl_dereference(dev->rx_handler); 4896 } 4897 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4898 4899 /** 4900 * netdev_rx_handler_register - register receive handler 4901 * @dev: device to register a handler for 4902 * @rx_handler: receive handler to register 4903 * @rx_handler_data: data pointer that is used by rx handler 4904 * 4905 * Register a receive handler for a device. This handler will then be 4906 * called from __netif_receive_skb. A negative errno code is returned 4907 * on a failure. 4908 * 4909 * The caller must hold the rtnl_mutex. 4910 * 4911 * For a general description of rx_handler, see enum rx_handler_result. 4912 */ 4913 int netdev_rx_handler_register(struct net_device *dev, 4914 rx_handler_func_t *rx_handler, 4915 void *rx_handler_data) 4916 { 4917 if (netdev_is_rx_handler_busy(dev)) 4918 return -EBUSY; 4919 4920 if (dev->priv_flags & IFF_NO_RX_HANDLER) 4921 return -EINVAL; 4922 4923 /* Note: rx_handler_data must be set before rx_handler */ 4924 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4925 rcu_assign_pointer(dev->rx_handler, rx_handler); 4926 4927 return 0; 4928 } 4929 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4930 4931 /** 4932 * netdev_rx_handler_unregister - unregister receive handler 4933 * @dev: device to unregister a handler from 4934 * 4935 * Unregister a receive handler from a device. 4936 * 4937 * The caller must hold the rtnl_mutex. 4938 */ 4939 void netdev_rx_handler_unregister(struct net_device *dev) 4940 { 4941 4942 ASSERT_RTNL(); 4943 RCU_INIT_POINTER(dev->rx_handler, NULL); 4944 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4945 * section has a guarantee to see a non NULL rx_handler_data 4946 * as well. 4947 */ 4948 synchronize_net(); 4949 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4950 } 4951 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4952 4953 /* 4954 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4955 * the special handling of PFMEMALLOC skbs. 4956 */ 4957 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4958 { 4959 switch (skb->protocol) { 4960 case htons(ETH_P_ARP): 4961 case htons(ETH_P_IP): 4962 case htons(ETH_P_IPV6): 4963 case htons(ETH_P_8021Q): 4964 case htons(ETH_P_8021AD): 4965 return true; 4966 default: 4967 return false; 4968 } 4969 } 4970 4971 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4972 int *ret, struct net_device *orig_dev) 4973 { 4974 if (nf_hook_ingress_active(skb)) { 4975 int ingress_retval; 4976 4977 if (*pt_prev) { 4978 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4979 *pt_prev = NULL; 4980 } 4981 4982 rcu_read_lock(); 4983 ingress_retval = nf_hook_ingress(skb); 4984 rcu_read_unlock(); 4985 return ingress_retval; 4986 } 4987 return 0; 4988 } 4989 4990 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc, 4991 struct packet_type **ppt_prev) 4992 { 4993 struct packet_type *ptype, *pt_prev; 4994 rx_handler_func_t *rx_handler; 4995 struct net_device *orig_dev; 4996 bool deliver_exact = false; 4997 int ret = NET_RX_DROP; 4998 __be16 type; 4999 5000 net_timestamp_check(!netdev_tstamp_prequeue, skb); 5001 5002 trace_netif_receive_skb(skb); 5003 5004 orig_dev = skb->dev; 5005 5006 skb_reset_network_header(skb); 5007 if (!skb_transport_header_was_set(skb)) 5008 skb_reset_transport_header(skb); 5009 skb_reset_mac_len(skb); 5010 5011 pt_prev = NULL; 5012 5013 another_round: 5014 skb->skb_iif = skb->dev->ifindex; 5015 5016 __this_cpu_inc(softnet_data.processed); 5017 5018 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5019 int ret2; 5020 5021 preempt_disable(); 5022 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 5023 preempt_enable(); 5024 5025 if (ret2 != XDP_PASS) 5026 return NET_RX_DROP; 5027 skb_reset_mac_len(skb); 5028 } 5029 5030 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 5031 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 5032 skb = skb_vlan_untag(skb); 5033 if (unlikely(!skb)) 5034 goto out; 5035 } 5036 5037 if (skb_skip_tc_classify(skb)) 5038 goto skip_classify; 5039 5040 if (pfmemalloc) 5041 goto skip_taps; 5042 5043 list_for_each_entry_rcu(ptype, &ptype_all, list) { 5044 if (pt_prev) 5045 ret = deliver_skb(skb, pt_prev, orig_dev); 5046 pt_prev = ptype; 5047 } 5048 5049 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5050 if (pt_prev) 5051 ret = deliver_skb(skb, pt_prev, orig_dev); 5052 pt_prev = ptype; 5053 } 5054 5055 skip_taps: 5056 #ifdef CONFIG_NET_INGRESS 5057 if (static_branch_unlikely(&ingress_needed_key)) { 5058 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 5059 if (!skb) 5060 goto out; 5061 5062 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5063 goto out; 5064 } 5065 #endif 5066 skb_reset_redirect(skb); 5067 skip_classify: 5068 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5069 goto drop; 5070 5071 if (skb_vlan_tag_present(skb)) { 5072 if (pt_prev) { 5073 ret = deliver_skb(skb, pt_prev, orig_dev); 5074 pt_prev = NULL; 5075 } 5076 if (vlan_do_receive(&skb)) 5077 goto another_round; 5078 else if (unlikely(!skb)) 5079 goto out; 5080 } 5081 5082 rx_handler = rcu_dereference(skb->dev->rx_handler); 5083 if (rx_handler) { 5084 if (pt_prev) { 5085 ret = deliver_skb(skb, pt_prev, orig_dev); 5086 pt_prev = NULL; 5087 } 5088 switch (rx_handler(&skb)) { 5089 case RX_HANDLER_CONSUMED: 5090 ret = NET_RX_SUCCESS; 5091 goto out; 5092 case RX_HANDLER_ANOTHER: 5093 goto another_round; 5094 case RX_HANDLER_EXACT: 5095 deliver_exact = true; 5096 case RX_HANDLER_PASS: 5097 break; 5098 default: 5099 BUG(); 5100 } 5101 } 5102 5103 if (unlikely(skb_vlan_tag_present(skb))) { 5104 check_vlan_id: 5105 if (skb_vlan_tag_get_id(skb)) { 5106 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5107 * find vlan device. 5108 */ 5109 skb->pkt_type = PACKET_OTHERHOST; 5110 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 5111 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 5112 /* Outer header is 802.1P with vlan 0, inner header is 5113 * 802.1Q or 802.1AD and vlan_do_receive() above could 5114 * not find vlan dev for vlan id 0. 5115 */ 5116 __vlan_hwaccel_clear_tag(skb); 5117 skb = skb_vlan_untag(skb); 5118 if (unlikely(!skb)) 5119 goto out; 5120 if (vlan_do_receive(&skb)) 5121 /* After stripping off 802.1P header with vlan 0 5122 * vlan dev is found for inner header. 5123 */ 5124 goto another_round; 5125 else if (unlikely(!skb)) 5126 goto out; 5127 else 5128 /* We have stripped outer 802.1P vlan 0 header. 5129 * But could not find vlan dev. 5130 * check again for vlan id to set OTHERHOST. 5131 */ 5132 goto check_vlan_id; 5133 } 5134 /* Note: we might in the future use prio bits 5135 * and set skb->priority like in vlan_do_receive() 5136 * For the time being, just ignore Priority Code Point 5137 */ 5138 __vlan_hwaccel_clear_tag(skb); 5139 } 5140 5141 type = skb->protocol; 5142 5143 /* deliver only exact match when indicated */ 5144 if (likely(!deliver_exact)) { 5145 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5146 &ptype_base[ntohs(type) & 5147 PTYPE_HASH_MASK]); 5148 } 5149 5150 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5151 &orig_dev->ptype_specific); 5152 5153 if (unlikely(skb->dev != orig_dev)) { 5154 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5155 &skb->dev->ptype_specific); 5156 } 5157 5158 if (pt_prev) { 5159 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 5160 goto drop; 5161 *ppt_prev = pt_prev; 5162 } else { 5163 drop: 5164 if (!deliver_exact) 5165 atomic_long_inc(&skb->dev->rx_dropped); 5166 else 5167 atomic_long_inc(&skb->dev->rx_nohandler); 5168 kfree_skb(skb); 5169 /* Jamal, now you will not able to escape explaining 5170 * me how you were going to use this. :-) 5171 */ 5172 ret = NET_RX_DROP; 5173 } 5174 5175 out: 5176 return ret; 5177 } 5178 5179 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5180 { 5181 struct net_device *orig_dev = skb->dev; 5182 struct packet_type *pt_prev = NULL; 5183 int ret; 5184 5185 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 5186 if (pt_prev) 5187 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5188 skb->dev, pt_prev, orig_dev); 5189 return ret; 5190 } 5191 5192 /** 5193 * netif_receive_skb_core - special purpose version of netif_receive_skb 5194 * @skb: buffer to process 5195 * 5196 * More direct receive version of netif_receive_skb(). It should 5197 * only be used by callers that have a need to skip RPS and Generic XDP. 5198 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 5199 * 5200 * This function may only be called from softirq context and interrupts 5201 * should be enabled. 5202 * 5203 * Return values (usually ignored): 5204 * NET_RX_SUCCESS: no congestion 5205 * NET_RX_DROP: packet was dropped 5206 */ 5207 int netif_receive_skb_core(struct sk_buff *skb) 5208 { 5209 int ret; 5210 5211 rcu_read_lock(); 5212 ret = __netif_receive_skb_one_core(skb, false); 5213 rcu_read_unlock(); 5214 5215 return ret; 5216 } 5217 EXPORT_SYMBOL(netif_receive_skb_core); 5218 5219 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5220 struct packet_type *pt_prev, 5221 struct net_device *orig_dev) 5222 { 5223 struct sk_buff *skb, *next; 5224 5225 if (!pt_prev) 5226 return; 5227 if (list_empty(head)) 5228 return; 5229 if (pt_prev->list_func != NULL) 5230 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 5231 ip_list_rcv, head, pt_prev, orig_dev); 5232 else 5233 list_for_each_entry_safe(skb, next, head, list) { 5234 skb_list_del_init(skb); 5235 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5236 } 5237 } 5238 5239 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5240 { 5241 /* Fast-path assumptions: 5242 * - There is no RX handler. 5243 * - Only one packet_type matches. 5244 * If either of these fails, we will end up doing some per-packet 5245 * processing in-line, then handling the 'last ptype' for the whole 5246 * sublist. This can't cause out-of-order delivery to any single ptype, 5247 * because the 'last ptype' must be constant across the sublist, and all 5248 * other ptypes are handled per-packet. 5249 */ 5250 /* Current (common) ptype of sublist */ 5251 struct packet_type *pt_curr = NULL; 5252 /* Current (common) orig_dev of sublist */ 5253 struct net_device *od_curr = NULL; 5254 struct list_head sublist; 5255 struct sk_buff *skb, *next; 5256 5257 INIT_LIST_HEAD(&sublist); 5258 list_for_each_entry_safe(skb, next, head, list) { 5259 struct net_device *orig_dev = skb->dev; 5260 struct packet_type *pt_prev = NULL; 5261 5262 skb_list_del_init(skb); 5263 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 5264 if (!pt_prev) 5265 continue; 5266 if (pt_curr != pt_prev || od_curr != orig_dev) { 5267 /* dispatch old sublist */ 5268 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5269 /* start new sublist */ 5270 INIT_LIST_HEAD(&sublist); 5271 pt_curr = pt_prev; 5272 od_curr = orig_dev; 5273 } 5274 list_add_tail(&skb->list, &sublist); 5275 } 5276 5277 /* dispatch final sublist */ 5278 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5279 } 5280 5281 static int __netif_receive_skb(struct sk_buff *skb) 5282 { 5283 int ret; 5284 5285 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5286 unsigned int noreclaim_flag; 5287 5288 /* 5289 * PFMEMALLOC skbs are special, they should 5290 * - be delivered to SOCK_MEMALLOC sockets only 5291 * - stay away from userspace 5292 * - have bounded memory usage 5293 * 5294 * Use PF_MEMALLOC as this saves us from propagating the allocation 5295 * context down to all allocation sites. 5296 */ 5297 noreclaim_flag = memalloc_noreclaim_save(); 5298 ret = __netif_receive_skb_one_core(skb, true); 5299 memalloc_noreclaim_restore(noreclaim_flag); 5300 } else 5301 ret = __netif_receive_skb_one_core(skb, false); 5302 5303 return ret; 5304 } 5305 5306 static void __netif_receive_skb_list(struct list_head *head) 5307 { 5308 unsigned long noreclaim_flag = 0; 5309 struct sk_buff *skb, *next; 5310 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5311 5312 list_for_each_entry_safe(skb, next, head, list) { 5313 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5314 struct list_head sublist; 5315 5316 /* Handle the previous sublist */ 5317 list_cut_before(&sublist, head, &skb->list); 5318 if (!list_empty(&sublist)) 5319 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5320 pfmemalloc = !pfmemalloc; 5321 /* See comments in __netif_receive_skb */ 5322 if (pfmemalloc) 5323 noreclaim_flag = memalloc_noreclaim_save(); 5324 else 5325 memalloc_noreclaim_restore(noreclaim_flag); 5326 } 5327 } 5328 /* Handle the remaining sublist */ 5329 if (!list_empty(head)) 5330 __netif_receive_skb_list_core(head, pfmemalloc); 5331 /* Restore pflags */ 5332 if (pfmemalloc) 5333 memalloc_noreclaim_restore(noreclaim_flag); 5334 } 5335 5336 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5337 { 5338 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5339 struct bpf_prog *new = xdp->prog; 5340 int ret = 0; 5341 5342 switch (xdp->command) { 5343 case XDP_SETUP_PROG: 5344 rcu_assign_pointer(dev->xdp_prog, new); 5345 if (old) 5346 bpf_prog_put(old); 5347 5348 if (old && !new) { 5349 static_branch_dec(&generic_xdp_needed_key); 5350 } else if (new && !old) { 5351 static_branch_inc(&generic_xdp_needed_key); 5352 dev_disable_lro(dev); 5353 dev_disable_gro_hw(dev); 5354 } 5355 break; 5356 5357 case XDP_QUERY_PROG: 5358 xdp->prog_id = old ? old->aux->id : 0; 5359 break; 5360 5361 default: 5362 ret = -EINVAL; 5363 break; 5364 } 5365 5366 return ret; 5367 } 5368 5369 static int netif_receive_skb_internal(struct sk_buff *skb) 5370 { 5371 int ret; 5372 5373 net_timestamp_check(netdev_tstamp_prequeue, skb); 5374 5375 if (skb_defer_rx_timestamp(skb)) 5376 return NET_RX_SUCCESS; 5377 5378 rcu_read_lock(); 5379 #ifdef CONFIG_RPS 5380 if (static_branch_unlikely(&rps_needed)) { 5381 struct rps_dev_flow voidflow, *rflow = &voidflow; 5382 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5383 5384 if (cpu >= 0) { 5385 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5386 rcu_read_unlock(); 5387 return ret; 5388 } 5389 } 5390 #endif 5391 ret = __netif_receive_skb(skb); 5392 rcu_read_unlock(); 5393 return ret; 5394 } 5395 5396 static void netif_receive_skb_list_internal(struct list_head *head) 5397 { 5398 struct sk_buff *skb, *next; 5399 struct list_head sublist; 5400 5401 INIT_LIST_HEAD(&sublist); 5402 list_for_each_entry_safe(skb, next, head, list) { 5403 net_timestamp_check(netdev_tstamp_prequeue, skb); 5404 skb_list_del_init(skb); 5405 if (!skb_defer_rx_timestamp(skb)) 5406 list_add_tail(&skb->list, &sublist); 5407 } 5408 list_splice_init(&sublist, head); 5409 5410 rcu_read_lock(); 5411 #ifdef CONFIG_RPS 5412 if (static_branch_unlikely(&rps_needed)) { 5413 list_for_each_entry_safe(skb, next, head, list) { 5414 struct rps_dev_flow voidflow, *rflow = &voidflow; 5415 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5416 5417 if (cpu >= 0) { 5418 /* Will be handled, remove from list */ 5419 skb_list_del_init(skb); 5420 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5421 } 5422 } 5423 } 5424 #endif 5425 __netif_receive_skb_list(head); 5426 rcu_read_unlock(); 5427 } 5428 5429 /** 5430 * netif_receive_skb - process receive buffer from network 5431 * @skb: buffer to process 5432 * 5433 * netif_receive_skb() is the main receive data processing function. 5434 * It always succeeds. The buffer may be dropped during processing 5435 * for congestion control or by the protocol layers. 5436 * 5437 * This function may only be called from softirq context and interrupts 5438 * should be enabled. 5439 * 5440 * Return values (usually ignored): 5441 * NET_RX_SUCCESS: no congestion 5442 * NET_RX_DROP: packet was dropped 5443 */ 5444 int netif_receive_skb(struct sk_buff *skb) 5445 { 5446 int ret; 5447 5448 trace_netif_receive_skb_entry(skb); 5449 5450 ret = netif_receive_skb_internal(skb); 5451 trace_netif_receive_skb_exit(ret); 5452 5453 return ret; 5454 } 5455 EXPORT_SYMBOL(netif_receive_skb); 5456 5457 /** 5458 * netif_receive_skb_list - process many receive buffers from network 5459 * @head: list of skbs to process. 5460 * 5461 * Since return value of netif_receive_skb() is normally ignored, and 5462 * wouldn't be meaningful for a list, this function returns void. 5463 * 5464 * This function may only be called from softirq context and interrupts 5465 * should be enabled. 5466 */ 5467 void netif_receive_skb_list(struct list_head *head) 5468 { 5469 struct sk_buff *skb; 5470 5471 if (list_empty(head)) 5472 return; 5473 if (trace_netif_receive_skb_list_entry_enabled()) { 5474 list_for_each_entry(skb, head, list) 5475 trace_netif_receive_skb_list_entry(skb); 5476 } 5477 netif_receive_skb_list_internal(head); 5478 trace_netif_receive_skb_list_exit(0); 5479 } 5480 EXPORT_SYMBOL(netif_receive_skb_list); 5481 5482 DEFINE_PER_CPU(struct work_struct, flush_works); 5483 5484 /* Network device is going away, flush any packets still pending */ 5485 static void flush_backlog(struct work_struct *work) 5486 { 5487 struct sk_buff *skb, *tmp; 5488 struct softnet_data *sd; 5489 5490 local_bh_disable(); 5491 sd = this_cpu_ptr(&softnet_data); 5492 5493 local_irq_disable(); 5494 rps_lock(sd); 5495 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5496 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5497 __skb_unlink(skb, &sd->input_pkt_queue); 5498 kfree_skb(skb); 5499 input_queue_head_incr(sd); 5500 } 5501 } 5502 rps_unlock(sd); 5503 local_irq_enable(); 5504 5505 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5506 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5507 __skb_unlink(skb, &sd->process_queue); 5508 kfree_skb(skb); 5509 input_queue_head_incr(sd); 5510 } 5511 } 5512 local_bh_enable(); 5513 } 5514 5515 static void flush_all_backlogs(void) 5516 { 5517 unsigned int cpu; 5518 5519 get_online_cpus(); 5520 5521 for_each_online_cpu(cpu) 5522 queue_work_on(cpu, system_highpri_wq, 5523 per_cpu_ptr(&flush_works, cpu)); 5524 5525 for_each_online_cpu(cpu) 5526 flush_work(per_cpu_ptr(&flush_works, cpu)); 5527 5528 put_online_cpus(); 5529 } 5530 5531 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */ 5532 static void gro_normal_list(struct napi_struct *napi) 5533 { 5534 if (!napi->rx_count) 5535 return; 5536 netif_receive_skb_list_internal(&napi->rx_list); 5537 INIT_LIST_HEAD(&napi->rx_list); 5538 napi->rx_count = 0; 5539 } 5540 5541 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded, 5542 * pass the whole batch up to the stack. 5543 */ 5544 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb) 5545 { 5546 list_add_tail(&skb->list, &napi->rx_list); 5547 if (++napi->rx_count >= gro_normal_batch) 5548 gro_normal_list(napi); 5549 } 5550 5551 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int)); 5552 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int)); 5553 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb) 5554 { 5555 struct packet_offload *ptype; 5556 __be16 type = skb->protocol; 5557 struct list_head *head = &offload_base; 5558 int err = -ENOENT; 5559 5560 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 5561 5562 if (NAPI_GRO_CB(skb)->count == 1) { 5563 skb_shinfo(skb)->gso_size = 0; 5564 goto out; 5565 } 5566 5567 rcu_read_lock(); 5568 list_for_each_entry_rcu(ptype, head, list) { 5569 if (ptype->type != type || !ptype->callbacks.gro_complete) 5570 continue; 5571 5572 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete, 5573 ipv6_gro_complete, inet_gro_complete, 5574 skb, 0); 5575 break; 5576 } 5577 rcu_read_unlock(); 5578 5579 if (err) { 5580 WARN_ON(&ptype->list == head); 5581 kfree_skb(skb); 5582 return NET_RX_SUCCESS; 5583 } 5584 5585 out: 5586 gro_normal_one(napi, skb); 5587 return NET_RX_SUCCESS; 5588 } 5589 5590 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index, 5591 bool flush_old) 5592 { 5593 struct list_head *head = &napi->gro_hash[index].list; 5594 struct sk_buff *skb, *p; 5595 5596 list_for_each_entry_safe_reverse(skb, p, head, list) { 5597 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 5598 return; 5599 skb_list_del_init(skb); 5600 napi_gro_complete(napi, skb); 5601 napi->gro_hash[index].count--; 5602 } 5603 5604 if (!napi->gro_hash[index].count) 5605 __clear_bit(index, &napi->gro_bitmask); 5606 } 5607 5608 /* napi->gro_hash[].list contains packets ordered by age. 5609 * youngest packets at the head of it. 5610 * Complete skbs in reverse order to reduce latencies. 5611 */ 5612 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 5613 { 5614 unsigned long bitmask = napi->gro_bitmask; 5615 unsigned int i, base = ~0U; 5616 5617 while ((i = ffs(bitmask)) != 0) { 5618 bitmask >>= i; 5619 base += i; 5620 __napi_gro_flush_chain(napi, base, flush_old); 5621 } 5622 } 5623 EXPORT_SYMBOL(napi_gro_flush); 5624 5625 static struct list_head *gro_list_prepare(struct napi_struct *napi, 5626 struct sk_buff *skb) 5627 { 5628 unsigned int maclen = skb->dev->hard_header_len; 5629 u32 hash = skb_get_hash_raw(skb); 5630 struct list_head *head; 5631 struct sk_buff *p; 5632 5633 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list; 5634 list_for_each_entry(p, head, list) { 5635 unsigned long diffs; 5636 5637 NAPI_GRO_CB(p)->flush = 0; 5638 5639 if (hash != skb_get_hash_raw(p)) { 5640 NAPI_GRO_CB(p)->same_flow = 0; 5641 continue; 5642 } 5643 5644 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 5645 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb); 5646 if (skb_vlan_tag_present(p)) 5647 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb); 5648 diffs |= skb_metadata_dst_cmp(p, skb); 5649 diffs |= skb_metadata_differs(p, skb); 5650 if (maclen == ETH_HLEN) 5651 diffs |= compare_ether_header(skb_mac_header(p), 5652 skb_mac_header(skb)); 5653 else if (!diffs) 5654 diffs = memcmp(skb_mac_header(p), 5655 skb_mac_header(skb), 5656 maclen); 5657 NAPI_GRO_CB(p)->same_flow = !diffs; 5658 } 5659 5660 return head; 5661 } 5662 5663 static void skb_gro_reset_offset(struct sk_buff *skb) 5664 { 5665 const struct skb_shared_info *pinfo = skb_shinfo(skb); 5666 const skb_frag_t *frag0 = &pinfo->frags[0]; 5667 5668 NAPI_GRO_CB(skb)->data_offset = 0; 5669 NAPI_GRO_CB(skb)->frag0 = NULL; 5670 NAPI_GRO_CB(skb)->frag0_len = 0; 5671 5672 if (!skb_headlen(skb) && pinfo->nr_frags && 5673 !PageHighMem(skb_frag_page(frag0))) { 5674 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 5675 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 5676 skb_frag_size(frag0), 5677 skb->end - skb->tail); 5678 } 5679 } 5680 5681 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 5682 { 5683 struct skb_shared_info *pinfo = skb_shinfo(skb); 5684 5685 BUG_ON(skb->end - skb->tail < grow); 5686 5687 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 5688 5689 skb->data_len -= grow; 5690 skb->tail += grow; 5691 5692 skb_frag_off_add(&pinfo->frags[0], grow); 5693 skb_frag_size_sub(&pinfo->frags[0], grow); 5694 5695 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 5696 skb_frag_unref(skb, 0); 5697 memmove(pinfo->frags, pinfo->frags + 1, 5698 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 5699 } 5700 } 5701 5702 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head) 5703 { 5704 struct sk_buff *oldest; 5705 5706 oldest = list_last_entry(head, struct sk_buff, list); 5707 5708 /* We are called with head length >= MAX_GRO_SKBS, so this is 5709 * impossible. 5710 */ 5711 if (WARN_ON_ONCE(!oldest)) 5712 return; 5713 5714 /* Do not adjust napi->gro_hash[].count, caller is adding a new 5715 * SKB to the chain. 5716 */ 5717 skb_list_del_init(oldest); 5718 napi_gro_complete(napi, oldest); 5719 } 5720 5721 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *, 5722 struct sk_buff *)); 5723 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *, 5724 struct sk_buff *)); 5725 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5726 { 5727 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1); 5728 struct list_head *head = &offload_base; 5729 struct packet_offload *ptype; 5730 __be16 type = skb->protocol; 5731 struct list_head *gro_head; 5732 struct sk_buff *pp = NULL; 5733 enum gro_result ret; 5734 int same_flow; 5735 int grow; 5736 5737 if (netif_elide_gro(skb->dev)) 5738 goto normal; 5739 5740 gro_head = gro_list_prepare(napi, skb); 5741 5742 rcu_read_lock(); 5743 list_for_each_entry_rcu(ptype, head, list) { 5744 if (ptype->type != type || !ptype->callbacks.gro_receive) 5745 continue; 5746 5747 skb_set_network_header(skb, skb_gro_offset(skb)); 5748 skb_reset_mac_len(skb); 5749 NAPI_GRO_CB(skb)->same_flow = 0; 5750 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 5751 NAPI_GRO_CB(skb)->free = 0; 5752 NAPI_GRO_CB(skb)->encap_mark = 0; 5753 NAPI_GRO_CB(skb)->recursion_counter = 0; 5754 NAPI_GRO_CB(skb)->is_fou = 0; 5755 NAPI_GRO_CB(skb)->is_atomic = 1; 5756 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 5757 5758 /* Setup for GRO checksum validation */ 5759 switch (skb->ip_summed) { 5760 case CHECKSUM_COMPLETE: 5761 NAPI_GRO_CB(skb)->csum = skb->csum; 5762 NAPI_GRO_CB(skb)->csum_valid = 1; 5763 NAPI_GRO_CB(skb)->csum_cnt = 0; 5764 break; 5765 case CHECKSUM_UNNECESSARY: 5766 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 5767 NAPI_GRO_CB(skb)->csum_valid = 0; 5768 break; 5769 default: 5770 NAPI_GRO_CB(skb)->csum_cnt = 0; 5771 NAPI_GRO_CB(skb)->csum_valid = 0; 5772 } 5773 5774 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive, 5775 ipv6_gro_receive, inet_gro_receive, 5776 gro_head, skb); 5777 break; 5778 } 5779 rcu_read_unlock(); 5780 5781 if (&ptype->list == head) 5782 goto normal; 5783 5784 if (PTR_ERR(pp) == -EINPROGRESS) { 5785 ret = GRO_CONSUMED; 5786 goto ok; 5787 } 5788 5789 same_flow = NAPI_GRO_CB(skb)->same_flow; 5790 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 5791 5792 if (pp) { 5793 skb_list_del_init(pp); 5794 napi_gro_complete(napi, pp); 5795 napi->gro_hash[hash].count--; 5796 } 5797 5798 if (same_flow) 5799 goto ok; 5800 5801 if (NAPI_GRO_CB(skb)->flush) 5802 goto normal; 5803 5804 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) { 5805 gro_flush_oldest(napi, gro_head); 5806 } else { 5807 napi->gro_hash[hash].count++; 5808 } 5809 NAPI_GRO_CB(skb)->count = 1; 5810 NAPI_GRO_CB(skb)->age = jiffies; 5811 NAPI_GRO_CB(skb)->last = skb; 5812 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 5813 list_add(&skb->list, gro_head); 5814 ret = GRO_HELD; 5815 5816 pull: 5817 grow = skb_gro_offset(skb) - skb_headlen(skb); 5818 if (grow > 0) 5819 gro_pull_from_frag0(skb, grow); 5820 ok: 5821 if (napi->gro_hash[hash].count) { 5822 if (!test_bit(hash, &napi->gro_bitmask)) 5823 __set_bit(hash, &napi->gro_bitmask); 5824 } else if (test_bit(hash, &napi->gro_bitmask)) { 5825 __clear_bit(hash, &napi->gro_bitmask); 5826 } 5827 5828 return ret; 5829 5830 normal: 5831 ret = GRO_NORMAL; 5832 goto pull; 5833 } 5834 5835 struct packet_offload *gro_find_receive_by_type(__be16 type) 5836 { 5837 struct list_head *offload_head = &offload_base; 5838 struct packet_offload *ptype; 5839 5840 list_for_each_entry_rcu(ptype, offload_head, list) { 5841 if (ptype->type != type || !ptype->callbacks.gro_receive) 5842 continue; 5843 return ptype; 5844 } 5845 return NULL; 5846 } 5847 EXPORT_SYMBOL(gro_find_receive_by_type); 5848 5849 struct packet_offload *gro_find_complete_by_type(__be16 type) 5850 { 5851 struct list_head *offload_head = &offload_base; 5852 struct packet_offload *ptype; 5853 5854 list_for_each_entry_rcu(ptype, offload_head, list) { 5855 if (ptype->type != type || !ptype->callbacks.gro_complete) 5856 continue; 5857 return ptype; 5858 } 5859 return NULL; 5860 } 5861 EXPORT_SYMBOL(gro_find_complete_by_type); 5862 5863 static void napi_skb_free_stolen_head(struct sk_buff *skb) 5864 { 5865 skb_dst_drop(skb); 5866 skb_ext_put(skb); 5867 kmem_cache_free(skbuff_head_cache, skb); 5868 } 5869 5870 static gro_result_t napi_skb_finish(struct napi_struct *napi, 5871 struct sk_buff *skb, 5872 gro_result_t ret) 5873 { 5874 switch (ret) { 5875 case GRO_NORMAL: 5876 gro_normal_one(napi, skb); 5877 break; 5878 5879 case GRO_DROP: 5880 kfree_skb(skb); 5881 break; 5882 5883 case GRO_MERGED_FREE: 5884 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5885 napi_skb_free_stolen_head(skb); 5886 else 5887 __kfree_skb(skb); 5888 break; 5889 5890 case GRO_HELD: 5891 case GRO_MERGED: 5892 case GRO_CONSUMED: 5893 break; 5894 } 5895 5896 return ret; 5897 } 5898 5899 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5900 { 5901 gro_result_t ret; 5902 5903 skb_mark_napi_id(skb, napi); 5904 trace_napi_gro_receive_entry(skb); 5905 5906 skb_gro_reset_offset(skb); 5907 5908 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb)); 5909 trace_napi_gro_receive_exit(ret); 5910 5911 return ret; 5912 } 5913 EXPORT_SYMBOL(napi_gro_receive); 5914 5915 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 5916 { 5917 if (unlikely(skb->pfmemalloc)) { 5918 consume_skb(skb); 5919 return; 5920 } 5921 __skb_pull(skb, skb_headlen(skb)); 5922 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 5923 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 5924 __vlan_hwaccel_clear_tag(skb); 5925 skb->dev = napi->dev; 5926 skb->skb_iif = 0; 5927 5928 /* eth_type_trans() assumes pkt_type is PACKET_HOST */ 5929 skb->pkt_type = PACKET_HOST; 5930 5931 skb->encapsulation = 0; 5932 skb_shinfo(skb)->gso_type = 0; 5933 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5934 skb_ext_reset(skb); 5935 5936 napi->skb = skb; 5937 } 5938 5939 struct sk_buff *napi_get_frags(struct napi_struct *napi) 5940 { 5941 struct sk_buff *skb = napi->skb; 5942 5943 if (!skb) { 5944 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 5945 if (skb) { 5946 napi->skb = skb; 5947 skb_mark_napi_id(skb, napi); 5948 } 5949 } 5950 return skb; 5951 } 5952 EXPORT_SYMBOL(napi_get_frags); 5953 5954 static gro_result_t napi_frags_finish(struct napi_struct *napi, 5955 struct sk_buff *skb, 5956 gro_result_t ret) 5957 { 5958 switch (ret) { 5959 case GRO_NORMAL: 5960 case GRO_HELD: 5961 __skb_push(skb, ETH_HLEN); 5962 skb->protocol = eth_type_trans(skb, skb->dev); 5963 if (ret == GRO_NORMAL) 5964 gro_normal_one(napi, skb); 5965 break; 5966 5967 case GRO_DROP: 5968 napi_reuse_skb(napi, skb); 5969 break; 5970 5971 case GRO_MERGED_FREE: 5972 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5973 napi_skb_free_stolen_head(skb); 5974 else 5975 napi_reuse_skb(napi, skb); 5976 break; 5977 5978 case GRO_MERGED: 5979 case GRO_CONSUMED: 5980 break; 5981 } 5982 5983 return ret; 5984 } 5985 5986 /* Upper GRO stack assumes network header starts at gro_offset=0 5987 * Drivers could call both napi_gro_frags() and napi_gro_receive() 5988 * We copy ethernet header into skb->data to have a common layout. 5989 */ 5990 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 5991 { 5992 struct sk_buff *skb = napi->skb; 5993 const struct ethhdr *eth; 5994 unsigned int hlen = sizeof(*eth); 5995 5996 napi->skb = NULL; 5997 5998 skb_reset_mac_header(skb); 5999 skb_gro_reset_offset(skb); 6000 6001 if (unlikely(skb_gro_header_hard(skb, hlen))) { 6002 eth = skb_gro_header_slow(skb, hlen, 0); 6003 if (unlikely(!eth)) { 6004 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 6005 __func__, napi->dev->name); 6006 napi_reuse_skb(napi, skb); 6007 return NULL; 6008 } 6009 } else { 6010 eth = (const struct ethhdr *)skb->data; 6011 gro_pull_from_frag0(skb, hlen); 6012 NAPI_GRO_CB(skb)->frag0 += hlen; 6013 NAPI_GRO_CB(skb)->frag0_len -= hlen; 6014 } 6015 __skb_pull(skb, hlen); 6016 6017 /* 6018 * This works because the only protocols we care about don't require 6019 * special handling. 6020 * We'll fix it up properly in napi_frags_finish() 6021 */ 6022 skb->protocol = eth->h_proto; 6023 6024 return skb; 6025 } 6026 6027 gro_result_t napi_gro_frags(struct napi_struct *napi) 6028 { 6029 gro_result_t ret; 6030 struct sk_buff *skb = napi_frags_skb(napi); 6031 6032 if (!skb) 6033 return GRO_DROP; 6034 6035 trace_napi_gro_frags_entry(skb); 6036 6037 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 6038 trace_napi_gro_frags_exit(ret); 6039 6040 return ret; 6041 } 6042 EXPORT_SYMBOL(napi_gro_frags); 6043 6044 /* Compute the checksum from gro_offset and return the folded value 6045 * after adding in any pseudo checksum. 6046 */ 6047 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 6048 { 6049 __wsum wsum; 6050 __sum16 sum; 6051 6052 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 6053 6054 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 6055 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 6056 /* See comments in __skb_checksum_complete(). */ 6057 if (likely(!sum)) { 6058 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 6059 !skb->csum_complete_sw) 6060 netdev_rx_csum_fault(skb->dev, skb); 6061 } 6062 6063 NAPI_GRO_CB(skb)->csum = wsum; 6064 NAPI_GRO_CB(skb)->csum_valid = 1; 6065 6066 return sum; 6067 } 6068 EXPORT_SYMBOL(__skb_gro_checksum_complete); 6069 6070 static void net_rps_send_ipi(struct softnet_data *remsd) 6071 { 6072 #ifdef CONFIG_RPS 6073 while (remsd) { 6074 struct softnet_data *next = remsd->rps_ipi_next; 6075 6076 if (cpu_online(remsd->cpu)) 6077 smp_call_function_single_async(remsd->cpu, &remsd->csd); 6078 remsd = next; 6079 } 6080 #endif 6081 } 6082 6083 /* 6084 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 6085 * Note: called with local irq disabled, but exits with local irq enabled. 6086 */ 6087 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 6088 { 6089 #ifdef CONFIG_RPS 6090 struct softnet_data *remsd = sd->rps_ipi_list; 6091 6092 if (remsd) { 6093 sd->rps_ipi_list = NULL; 6094 6095 local_irq_enable(); 6096 6097 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6098 net_rps_send_ipi(remsd); 6099 } else 6100 #endif 6101 local_irq_enable(); 6102 } 6103 6104 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6105 { 6106 #ifdef CONFIG_RPS 6107 return sd->rps_ipi_list != NULL; 6108 #else 6109 return false; 6110 #endif 6111 } 6112 6113 static int process_backlog(struct napi_struct *napi, int quota) 6114 { 6115 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6116 bool again = true; 6117 int work = 0; 6118 6119 /* Check if we have pending ipi, its better to send them now, 6120 * not waiting net_rx_action() end. 6121 */ 6122 if (sd_has_rps_ipi_waiting(sd)) { 6123 local_irq_disable(); 6124 net_rps_action_and_irq_enable(sd); 6125 } 6126 6127 napi->weight = dev_rx_weight; 6128 while (again) { 6129 struct sk_buff *skb; 6130 6131 while ((skb = __skb_dequeue(&sd->process_queue))) { 6132 rcu_read_lock(); 6133 __netif_receive_skb(skb); 6134 rcu_read_unlock(); 6135 input_queue_head_incr(sd); 6136 if (++work >= quota) 6137 return work; 6138 6139 } 6140 6141 local_irq_disable(); 6142 rps_lock(sd); 6143 if (skb_queue_empty(&sd->input_pkt_queue)) { 6144 /* 6145 * Inline a custom version of __napi_complete(). 6146 * only current cpu owns and manipulates this napi, 6147 * and NAPI_STATE_SCHED is the only possible flag set 6148 * on backlog. 6149 * We can use a plain write instead of clear_bit(), 6150 * and we dont need an smp_mb() memory barrier. 6151 */ 6152 napi->state = 0; 6153 again = false; 6154 } else { 6155 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6156 &sd->process_queue); 6157 } 6158 rps_unlock(sd); 6159 local_irq_enable(); 6160 } 6161 6162 return work; 6163 } 6164 6165 /** 6166 * __napi_schedule - schedule for receive 6167 * @n: entry to schedule 6168 * 6169 * The entry's receive function will be scheduled to run. 6170 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6171 */ 6172 void __napi_schedule(struct napi_struct *n) 6173 { 6174 unsigned long flags; 6175 6176 local_irq_save(flags); 6177 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6178 local_irq_restore(flags); 6179 } 6180 EXPORT_SYMBOL(__napi_schedule); 6181 6182 /** 6183 * napi_schedule_prep - check if napi can be scheduled 6184 * @n: napi context 6185 * 6186 * Test if NAPI routine is already running, and if not mark 6187 * it as running. This is used as a condition variable 6188 * insure only one NAPI poll instance runs. We also make 6189 * sure there is no pending NAPI disable. 6190 */ 6191 bool napi_schedule_prep(struct napi_struct *n) 6192 { 6193 unsigned long val, new; 6194 6195 do { 6196 val = READ_ONCE(n->state); 6197 if (unlikely(val & NAPIF_STATE_DISABLE)) 6198 return false; 6199 new = val | NAPIF_STATE_SCHED; 6200 6201 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6202 * This was suggested by Alexander Duyck, as compiler 6203 * emits better code than : 6204 * if (val & NAPIF_STATE_SCHED) 6205 * new |= NAPIF_STATE_MISSED; 6206 */ 6207 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6208 NAPIF_STATE_MISSED; 6209 } while (cmpxchg(&n->state, val, new) != val); 6210 6211 return !(val & NAPIF_STATE_SCHED); 6212 } 6213 EXPORT_SYMBOL(napi_schedule_prep); 6214 6215 /** 6216 * __napi_schedule_irqoff - schedule for receive 6217 * @n: entry to schedule 6218 * 6219 * Variant of __napi_schedule() assuming hard irqs are masked 6220 */ 6221 void __napi_schedule_irqoff(struct napi_struct *n) 6222 { 6223 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6224 } 6225 EXPORT_SYMBOL(__napi_schedule_irqoff); 6226 6227 bool napi_complete_done(struct napi_struct *n, int work_done) 6228 { 6229 unsigned long flags, val, new; 6230 6231 /* 6232 * 1) Don't let napi dequeue from the cpu poll list 6233 * just in case its running on a different cpu. 6234 * 2) If we are busy polling, do nothing here, we have 6235 * the guarantee we will be called later. 6236 */ 6237 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6238 NAPIF_STATE_IN_BUSY_POLL))) 6239 return false; 6240 6241 if (n->gro_bitmask) { 6242 unsigned long timeout = 0; 6243 6244 if (work_done) 6245 timeout = n->dev->gro_flush_timeout; 6246 6247 /* When the NAPI instance uses a timeout and keeps postponing 6248 * it, we need to bound somehow the time packets are kept in 6249 * the GRO layer 6250 */ 6251 napi_gro_flush(n, !!timeout); 6252 if (timeout) 6253 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6254 HRTIMER_MODE_REL_PINNED); 6255 } 6256 6257 gro_normal_list(n); 6258 6259 if (unlikely(!list_empty(&n->poll_list))) { 6260 /* If n->poll_list is not empty, we need to mask irqs */ 6261 local_irq_save(flags); 6262 list_del_init(&n->poll_list); 6263 local_irq_restore(flags); 6264 } 6265 6266 do { 6267 val = READ_ONCE(n->state); 6268 6269 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6270 6271 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 6272 6273 /* If STATE_MISSED was set, leave STATE_SCHED set, 6274 * because we will call napi->poll() one more time. 6275 * This C code was suggested by Alexander Duyck to help gcc. 6276 */ 6277 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6278 NAPIF_STATE_SCHED; 6279 } while (cmpxchg(&n->state, val, new) != val); 6280 6281 if (unlikely(val & NAPIF_STATE_MISSED)) { 6282 __napi_schedule(n); 6283 return false; 6284 } 6285 6286 return true; 6287 } 6288 EXPORT_SYMBOL(napi_complete_done); 6289 6290 /* must be called under rcu_read_lock(), as we dont take a reference */ 6291 static struct napi_struct *napi_by_id(unsigned int napi_id) 6292 { 6293 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6294 struct napi_struct *napi; 6295 6296 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6297 if (napi->napi_id == napi_id) 6298 return napi; 6299 6300 return NULL; 6301 } 6302 6303 #if defined(CONFIG_NET_RX_BUSY_POLL) 6304 6305 #define BUSY_POLL_BUDGET 8 6306 6307 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 6308 { 6309 int rc; 6310 6311 /* Busy polling means there is a high chance device driver hard irq 6312 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6313 * set in napi_schedule_prep(). 6314 * Since we are about to call napi->poll() once more, we can safely 6315 * clear NAPI_STATE_MISSED. 6316 * 6317 * Note: x86 could use a single "lock and ..." instruction 6318 * to perform these two clear_bit() 6319 */ 6320 clear_bit(NAPI_STATE_MISSED, &napi->state); 6321 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6322 6323 local_bh_disable(); 6324 6325 /* All we really want here is to re-enable device interrupts. 6326 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6327 */ 6328 rc = napi->poll(napi, BUSY_POLL_BUDGET); 6329 /* We can't gro_normal_list() here, because napi->poll() might have 6330 * rearmed the napi (napi_complete_done()) in which case it could 6331 * already be running on another CPU. 6332 */ 6333 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 6334 netpoll_poll_unlock(have_poll_lock); 6335 if (rc == BUSY_POLL_BUDGET) { 6336 /* As the whole budget was spent, we still own the napi so can 6337 * safely handle the rx_list. 6338 */ 6339 gro_normal_list(napi); 6340 __napi_schedule(napi); 6341 } 6342 local_bh_enable(); 6343 } 6344 6345 void napi_busy_loop(unsigned int napi_id, 6346 bool (*loop_end)(void *, unsigned long), 6347 void *loop_end_arg) 6348 { 6349 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6350 int (*napi_poll)(struct napi_struct *napi, int budget); 6351 void *have_poll_lock = NULL; 6352 struct napi_struct *napi; 6353 6354 restart: 6355 napi_poll = NULL; 6356 6357 rcu_read_lock(); 6358 6359 napi = napi_by_id(napi_id); 6360 if (!napi) 6361 goto out; 6362 6363 preempt_disable(); 6364 for (;;) { 6365 int work = 0; 6366 6367 local_bh_disable(); 6368 if (!napi_poll) { 6369 unsigned long val = READ_ONCE(napi->state); 6370 6371 /* If multiple threads are competing for this napi, 6372 * we avoid dirtying napi->state as much as we can. 6373 */ 6374 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6375 NAPIF_STATE_IN_BUSY_POLL)) 6376 goto count; 6377 if (cmpxchg(&napi->state, val, 6378 val | NAPIF_STATE_IN_BUSY_POLL | 6379 NAPIF_STATE_SCHED) != val) 6380 goto count; 6381 have_poll_lock = netpoll_poll_lock(napi); 6382 napi_poll = napi->poll; 6383 } 6384 work = napi_poll(napi, BUSY_POLL_BUDGET); 6385 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 6386 gro_normal_list(napi); 6387 count: 6388 if (work > 0) 6389 __NET_ADD_STATS(dev_net(napi->dev), 6390 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6391 local_bh_enable(); 6392 6393 if (!loop_end || loop_end(loop_end_arg, start_time)) 6394 break; 6395 6396 if (unlikely(need_resched())) { 6397 if (napi_poll) 6398 busy_poll_stop(napi, have_poll_lock); 6399 preempt_enable(); 6400 rcu_read_unlock(); 6401 cond_resched(); 6402 if (loop_end(loop_end_arg, start_time)) 6403 return; 6404 goto restart; 6405 } 6406 cpu_relax(); 6407 } 6408 if (napi_poll) 6409 busy_poll_stop(napi, have_poll_lock); 6410 preempt_enable(); 6411 out: 6412 rcu_read_unlock(); 6413 } 6414 EXPORT_SYMBOL(napi_busy_loop); 6415 6416 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6417 6418 static void napi_hash_add(struct napi_struct *napi) 6419 { 6420 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 6421 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 6422 return; 6423 6424 spin_lock(&napi_hash_lock); 6425 6426 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6427 do { 6428 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6429 napi_gen_id = MIN_NAPI_ID; 6430 } while (napi_by_id(napi_gen_id)); 6431 napi->napi_id = napi_gen_id; 6432 6433 hlist_add_head_rcu(&napi->napi_hash_node, 6434 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6435 6436 spin_unlock(&napi_hash_lock); 6437 } 6438 6439 /* Warning : caller is responsible to make sure rcu grace period 6440 * is respected before freeing memory containing @napi 6441 */ 6442 bool napi_hash_del(struct napi_struct *napi) 6443 { 6444 bool rcu_sync_needed = false; 6445 6446 spin_lock(&napi_hash_lock); 6447 6448 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 6449 rcu_sync_needed = true; 6450 hlist_del_rcu(&napi->napi_hash_node); 6451 } 6452 spin_unlock(&napi_hash_lock); 6453 return rcu_sync_needed; 6454 } 6455 EXPORT_SYMBOL_GPL(napi_hash_del); 6456 6457 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6458 { 6459 struct napi_struct *napi; 6460 6461 napi = container_of(timer, struct napi_struct, timer); 6462 6463 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6464 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6465 */ 6466 if (napi->gro_bitmask && !napi_disable_pending(napi) && 6467 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 6468 __napi_schedule_irqoff(napi); 6469 6470 return HRTIMER_NORESTART; 6471 } 6472 6473 static void init_gro_hash(struct napi_struct *napi) 6474 { 6475 int i; 6476 6477 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6478 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6479 napi->gro_hash[i].count = 0; 6480 } 6481 napi->gro_bitmask = 0; 6482 } 6483 6484 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 6485 int (*poll)(struct napi_struct *, int), int weight) 6486 { 6487 INIT_LIST_HEAD(&napi->poll_list); 6488 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6489 napi->timer.function = napi_watchdog; 6490 init_gro_hash(napi); 6491 napi->skb = NULL; 6492 INIT_LIST_HEAD(&napi->rx_list); 6493 napi->rx_count = 0; 6494 napi->poll = poll; 6495 if (weight > NAPI_POLL_WEIGHT) 6496 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6497 weight); 6498 napi->weight = weight; 6499 list_add(&napi->dev_list, &dev->napi_list); 6500 napi->dev = dev; 6501 #ifdef CONFIG_NETPOLL 6502 napi->poll_owner = -1; 6503 #endif 6504 set_bit(NAPI_STATE_SCHED, &napi->state); 6505 napi_hash_add(napi); 6506 } 6507 EXPORT_SYMBOL(netif_napi_add); 6508 6509 void napi_disable(struct napi_struct *n) 6510 { 6511 might_sleep(); 6512 set_bit(NAPI_STATE_DISABLE, &n->state); 6513 6514 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 6515 msleep(1); 6516 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 6517 msleep(1); 6518 6519 hrtimer_cancel(&n->timer); 6520 6521 clear_bit(NAPI_STATE_DISABLE, &n->state); 6522 } 6523 EXPORT_SYMBOL(napi_disable); 6524 6525 static void flush_gro_hash(struct napi_struct *napi) 6526 { 6527 int i; 6528 6529 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6530 struct sk_buff *skb, *n; 6531 6532 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6533 kfree_skb(skb); 6534 napi->gro_hash[i].count = 0; 6535 } 6536 } 6537 6538 /* Must be called in process context */ 6539 void netif_napi_del(struct napi_struct *napi) 6540 { 6541 might_sleep(); 6542 if (napi_hash_del(napi)) 6543 synchronize_net(); 6544 list_del_init(&napi->dev_list); 6545 napi_free_frags(napi); 6546 6547 flush_gro_hash(napi); 6548 napi->gro_bitmask = 0; 6549 } 6550 EXPORT_SYMBOL(netif_napi_del); 6551 6552 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6553 { 6554 void *have; 6555 int work, weight; 6556 6557 list_del_init(&n->poll_list); 6558 6559 have = netpoll_poll_lock(n); 6560 6561 weight = n->weight; 6562 6563 /* This NAPI_STATE_SCHED test is for avoiding a race 6564 * with netpoll's poll_napi(). Only the entity which 6565 * obtains the lock and sees NAPI_STATE_SCHED set will 6566 * actually make the ->poll() call. Therefore we avoid 6567 * accidentally calling ->poll() when NAPI is not scheduled. 6568 */ 6569 work = 0; 6570 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 6571 work = n->poll(n, weight); 6572 trace_napi_poll(n, work, weight); 6573 } 6574 6575 WARN_ON_ONCE(work > weight); 6576 6577 if (likely(work < weight)) 6578 goto out_unlock; 6579 6580 /* Drivers must not modify the NAPI state if they 6581 * consume the entire weight. In such cases this code 6582 * still "owns" the NAPI instance and therefore can 6583 * move the instance around on the list at-will. 6584 */ 6585 if (unlikely(napi_disable_pending(n))) { 6586 napi_complete(n); 6587 goto out_unlock; 6588 } 6589 6590 if (n->gro_bitmask) { 6591 /* flush too old packets 6592 * If HZ < 1000, flush all packets. 6593 */ 6594 napi_gro_flush(n, HZ >= 1000); 6595 } 6596 6597 gro_normal_list(n); 6598 6599 /* Some drivers may have called napi_schedule 6600 * prior to exhausting their budget. 6601 */ 6602 if (unlikely(!list_empty(&n->poll_list))) { 6603 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6604 n->dev ? n->dev->name : "backlog"); 6605 goto out_unlock; 6606 } 6607 6608 list_add_tail(&n->poll_list, repoll); 6609 6610 out_unlock: 6611 netpoll_poll_unlock(have); 6612 6613 return work; 6614 } 6615 6616 static __latent_entropy void net_rx_action(struct softirq_action *h) 6617 { 6618 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6619 unsigned long time_limit = jiffies + 6620 usecs_to_jiffies(netdev_budget_usecs); 6621 int budget = netdev_budget; 6622 LIST_HEAD(list); 6623 LIST_HEAD(repoll); 6624 6625 local_irq_disable(); 6626 list_splice_init(&sd->poll_list, &list); 6627 local_irq_enable(); 6628 6629 for (;;) { 6630 struct napi_struct *n; 6631 6632 if (list_empty(&list)) { 6633 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 6634 goto out; 6635 break; 6636 } 6637 6638 n = list_first_entry(&list, struct napi_struct, poll_list); 6639 budget -= napi_poll(n, &repoll); 6640 6641 /* If softirq window is exhausted then punt. 6642 * Allow this to run for 2 jiffies since which will allow 6643 * an average latency of 1.5/HZ. 6644 */ 6645 if (unlikely(budget <= 0 || 6646 time_after_eq(jiffies, time_limit))) { 6647 sd->time_squeeze++; 6648 break; 6649 } 6650 } 6651 6652 local_irq_disable(); 6653 6654 list_splice_tail_init(&sd->poll_list, &list); 6655 list_splice_tail(&repoll, &list); 6656 list_splice(&list, &sd->poll_list); 6657 if (!list_empty(&sd->poll_list)) 6658 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6659 6660 net_rps_action_and_irq_enable(sd); 6661 out: 6662 __kfree_skb_flush(); 6663 } 6664 6665 struct netdev_adjacent { 6666 struct net_device *dev; 6667 6668 /* upper master flag, there can only be one master device per list */ 6669 bool master; 6670 6671 /* lookup ignore flag */ 6672 bool ignore; 6673 6674 /* counter for the number of times this device was added to us */ 6675 u16 ref_nr; 6676 6677 /* private field for the users */ 6678 void *private; 6679 6680 struct list_head list; 6681 struct rcu_head rcu; 6682 }; 6683 6684 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6685 struct list_head *adj_list) 6686 { 6687 struct netdev_adjacent *adj; 6688 6689 list_for_each_entry(adj, adj_list, list) { 6690 if (adj->dev == adj_dev) 6691 return adj; 6692 } 6693 return NULL; 6694 } 6695 6696 static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data) 6697 { 6698 struct net_device *dev = data; 6699 6700 return upper_dev == dev; 6701 } 6702 6703 /** 6704 * netdev_has_upper_dev - Check if device is linked to an upper device 6705 * @dev: device 6706 * @upper_dev: upper device to check 6707 * 6708 * Find out if a device is linked to specified upper device and return true 6709 * in case it is. Note that this checks only immediate upper device, 6710 * not through a complete stack of devices. The caller must hold the RTNL lock. 6711 */ 6712 bool netdev_has_upper_dev(struct net_device *dev, 6713 struct net_device *upper_dev) 6714 { 6715 ASSERT_RTNL(); 6716 6717 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6718 upper_dev); 6719 } 6720 EXPORT_SYMBOL(netdev_has_upper_dev); 6721 6722 /** 6723 * netdev_has_upper_dev_all - Check if device is linked to an upper device 6724 * @dev: device 6725 * @upper_dev: upper device to check 6726 * 6727 * Find out if a device is linked to specified upper device and return true 6728 * in case it is. Note that this checks the entire upper device chain. 6729 * The caller must hold rcu lock. 6730 */ 6731 6732 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 6733 struct net_device *upper_dev) 6734 { 6735 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6736 upper_dev); 6737 } 6738 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 6739 6740 /** 6741 * netdev_has_any_upper_dev - Check if device is linked to some device 6742 * @dev: device 6743 * 6744 * Find out if a device is linked to an upper device and return true in case 6745 * it is. The caller must hold the RTNL lock. 6746 */ 6747 bool netdev_has_any_upper_dev(struct net_device *dev) 6748 { 6749 ASSERT_RTNL(); 6750 6751 return !list_empty(&dev->adj_list.upper); 6752 } 6753 EXPORT_SYMBOL(netdev_has_any_upper_dev); 6754 6755 /** 6756 * netdev_master_upper_dev_get - Get master upper device 6757 * @dev: device 6758 * 6759 * Find a master upper device and return pointer to it or NULL in case 6760 * it's not there. The caller must hold the RTNL lock. 6761 */ 6762 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 6763 { 6764 struct netdev_adjacent *upper; 6765 6766 ASSERT_RTNL(); 6767 6768 if (list_empty(&dev->adj_list.upper)) 6769 return NULL; 6770 6771 upper = list_first_entry(&dev->adj_list.upper, 6772 struct netdev_adjacent, list); 6773 if (likely(upper->master)) 6774 return upper->dev; 6775 return NULL; 6776 } 6777 EXPORT_SYMBOL(netdev_master_upper_dev_get); 6778 6779 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 6780 { 6781 struct netdev_adjacent *upper; 6782 6783 ASSERT_RTNL(); 6784 6785 if (list_empty(&dev->adj_list.upper)) 6786 return NULL; 6787 6788 upper = list_first_entry(&dev->adj_list.upper, 6789 struct netdev_adjacent, list); 6790 if (likely(upper->master) && !upper->ignore) 6791 return upper->dev; 6792 return NULL; 6793 } 6794 6795 /** 6796 * netdev_has_any_lower_dev - Check if device is linked to some device 6797 * @dev: device 6798 * 6799 * Find out if a device is linked to a lower device and return true in case 6800 * it is. The caller must hold the RTNL lock. 6801 */ 6802 static bool netdev_has_any_lower_dev(struct net_device *dev) 6803 { 6804 ASSERT_RTNL(); 6805 6806 return !list_empty(&dev->adj_list.lower); 6807 } 6808 6809 void *netdev_adjacent_get_private(struct list_head *adj_list) 6810 { 6811 struct netdev_adjacent *adj; 6812 6813 adj = list_entry(adj_list, struct netdev_adjacent, list); 6814 6815 return adj->private; 6816 } 6817 EXPORT_SYMBOL(netdev_adjacent_get_private); 6818 6819 /** 6820 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 6821 * @dev: device 6822 * @iter: list_head ** of the current position 6823 * 6824 * Gets the next device from the dev's upper list, starting from iter 6825 * position. The caller must hold RCU read lock. 6826 */ 6827 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 6828 struct list_head **iter) 6829 { 6830 struct netdev_adjacent *upper; 6831 6832 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6833 6834 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6835 6836 if (&upper->list == &dev->adj_list.upper) 6837 return NULL; 6838 6839 *iter = &upper->list; 6840 6841 return upper->dev; 6842 } 6843 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 6844 6845 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 6846 struct list_head **iter, 6847 bool *ignore) 6848 { 6849 struct netdev_adjacent *upper; 6850 6851 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 6852 6853 if (&upper->list == &dev->adj_list.upper) 6854 return NULL; 6855 6856 *iter = &upper->list; 6857 *ignore = upper->ignore; 6858 6859 return upper->dev; 6860 } 6861 6862 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 6863 struct list_head **iter) 6864 { 6865 struct netdev_adjacent *upper; 6866 6867 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6868 6869 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6870 6871 if (&upper->list == &dev->adj_list.upper) 6872 return NULL; 6873 6874 *iter = &upper->list; 6875 6876 return upper->dev; 6877 } 6878 6879 static int __netdev_walk_all_upper_dev(struct net_device *dev, 6880 int (*fn)(struct net_device *dev, 6881 void *data), 6882 void *data) 6883 { 6884 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 6885 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 6886 int ret, cur = 0; 6887 bool ignore; 6888 6889 now = dev; 6890 iter = &dev->adj_list.upper; 6891 6892 while (1) { 6893 if (now != dev) { 6894 ret = fn(now, data); 6895 if (ret) 6896 return ret; 6897 } 6898 6899 next = NULL; 6900 while (1) { 6901 udev = __netdev_next_upper_dev(now, &iter, &ignore); 6902 if (!udev) 6903 break; 6904 if (ignore) 6905 continue; 6906 6907 next = udev; 6908 niter = &udev->adj_list.upper; 6909 dev_stack[cur] = now; 6910 iter_stack[cur++] = iter; 6911 break; 6912 } 6913 6914 if (!next) { 6915 if (!cur) 6916 return 0; 6917 next = dev_stack[--cur]; 6918 niter = iter_stack[cur]; 6919 } 6920 6921 now = next; 6922 iter = niter; 6923 } 6924 6925 return 0; 6926 } 6927 6928 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 6929 int (*fn)(struct net_device *dev, 6930 void *data), 6931 void *data) 6932 { 6933 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 6934 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 6935 int ret, cur = 0; 6936 6937 now = dev; 6938 iter = &dev->adj_list.upper; 6939 6940 while (1) { 6941 if (now != dev) { 6942 ret = fn(now, data); 6943 if (ret) 6944 return ret; 6945 } 6946 6947 next = NULL; 6948 while (1) { 6949 udev = netdev_next_upper_dev_rcu(now, &iter); 6950 if (!udev) 6951 break; 6952 6953 next = udev; 6954 niter = &udev->adj_list.upper; 6955 dev_stack[cur] = now; 6956 iter_stack[cur++] = iter; 6957 break; 6958 } 6959 6960 if (!next) { 6961 if (!cur) 6962 return 0; 6963 next = dev_stack[--cur]; 6964 niter = iter_stack[cur]; 6965 } 6966 6967 now = next; 6968 iter = niter; 6969 } 6970 6971 return 0; 6972 } 6973 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 6974 6975 static bool __netdev_has_upper_dev(struct net_device *dev, 6976 struct net_device *upper_dev) 6977 { 6978 ASSERT_RTNL(); 6979 6980 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 6981 upper_dev); 6982 } 6983 6984 /** 6985 * netdev_lower_get_next_private - Get the next ->private from the 6986 * lower neighbour list 6987 * @dev: device 6988 * @iter: list_head ** of the current position 6989 * 6990 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6991 * list, starting from iter position. The caller must hold either hold the 6992 * RTNL lock or its own locking that guarantees that the neighbour lower 6993 * list will remain unchanged. 6994 */ 6995 void *netdev_lower_get_next_private(struct net_device *dev, 6996 struct list_head **iter) 6997 { 6998 struct netdev_adjacent *lower; 6999 7000 lower = list_entry(*iter, struct netdev_adjacent, list); 7001 7002 if (&lower->list == &dev->adj_list.lower) 7003 return NULL; 7004 7005 *iter = lower->list.next; 7006 7007 return lower->private; 7008 } 7009 EXPORT_SYMBOL(netdev_lower_get_next_private); 7010 7011 /** 7012 * netdev_lower_get_next_private_rcu - Get the next ->private from the 7013 * lower neighbour list, RCU 7014 * variant 7015 * @dev: device 7016 * @iter: list_head ** of the current position 7017 * 7018 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7019 * list, starting from iter position. The caller must hold RCU read lock. 7020 */ 7021 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 7022 struct list_head **iter) 7023 { 7024 struct netdev_adjacent *lower; 7025 7026 WARN_ON_ONCE(!rcu_read_lock_held()); 7027 7028 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7029 7030 if (&lower->list == &dev->adj_list.lower) 7031 return NULL; 7032 7033 *iter = &lower->list; 7034 7035 return lower->private; 7036 } 7037 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 7038 7039 /** 7040 * netdev_lower_get_next - Get the next device from the lower neighbour 7041 * list 7042 * @dev: device 7043 * @iter: list_head ** of the current position 7044 * 7045 * Gets the next netdev_adjacent from the dev's lower neighbour 7046 * list, starting from iter position. The caller must hold RTNL lock or 7047 * its own locking that guarantees that the neighbour lower 7048 * list will remain unchanged. 7049 */ 7050 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 7051 { 7052 struct netdev_adjacent *lower; 7053 7054 lower = list_entry(*iter, struct netdev_adjacent, list); 7055 7056 if (&lower->list == &dev->adj_list.lower) 7057 return NULL; 7058 7059 *iter = lower->list.next; 7060 7061 return lower->dev; 7062 } 7063 EXPORT_SYMBOL(netdev_lower_get_next); 7064 7065 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 7066 struct list_head **iter) 7067 { 7068 struct netdev_adjacent *lower; 7069 7070 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7071 7072 if (&lower->list == &dev->adj_list.lower) 7073 return NULL; 7074 7075 *iter = &lower->list; 7076 7077 return lower->dev; 7078 } 7079 7080 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 7081 struct list_head **iter, 7082 bool *ignore) 7083 { 7084 struct netdev_adjacent *lower; 7085 7086 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7087 7088 if (&lower->list == &dev->adj_list.lower) 7089 return NULL; 7090 7091 *iter = &lower->list; 7092 *ignore = lower->ignore; 7093 7094 return lower->dev; 7095 } 7096 7097 int netdev_walk_all_lower_dev(struct net_device *dev, 7098 int (*fn)(struct net_device *dev, 7099 void *data), 7100 void *data) 7101 { 7102 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7103 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7104 int ret, cur = 0; 7105 7106 now = dev; 7107 iter = &dev->adj_list.lower; 7108 7109 while (1) { 7110 if (now != dev) { 7111 ret = fn(now, data); 7112 if (ret) 7113 return ret; 7114 } 7115 7116 next = NULL; 7117 while (1) { 7118 ldev = netdev_next_lower_dev(now, &iter); 7119 if (!ldev) 7120 break; 7121 7122 next = ldev; 7123 niter = &ldev->adj_list.lower; 7124 dev_stack[cur] = now; 7125 iter_stack[cur++] = iter; 7126 break; 7127 } 7128 7129 if (!next) { 7130 if (!cur) 7131 return 0; 7132 next = dev_stack[--cur]; 7133 niter = iter_stack[cur]; 7134 } 7135 7136 now = next; 7137 iter = niter; 7138 } 7139 7140 return 0; 7141 } 7142 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 7143 7144 static int __netdev_walk_all_lower_dev(struct net_device *dev, 7145 int (*fn)(struct net_device *dev, 7146 void *data), 7147 void *data) 7148 { 7149 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7150 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7151 int ret, cur = 0; 7152 bool ignore; 7153 7154 now = dev; 7155 iter = &dev->adj_list.lower; 7156 7157 while (1) { 7158 if (now != dev) { 7159 ret = fn(now, data); 7160 if (ret) 7161 return ret; 7162 } 7163 7164 next = NULL; 7165 while (1) { 7166 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 7167 if (!ldev) 7168 break; 7169 if (ignore) 7170 continue; 7171 7172 next = ldev; 7173 niter = &ldev->adj_list.lower; 7174 dev_stack[cur] = now; 7175 iter_stack[cur++] = iter; 7176 break; 7177 } 7178 7179 if (!next) { 7180 if (!cur) 7181 return 0; 7182 next = dev_stack[--cur]; 7183 niter = iter_stack[cur]; 7184 } 7185 7186 now = next; 7187 iter = niter; 7188 } 7189 7190 return 0; 7191 } 7192 7193 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 7194 struct list_head **iter) 7195 { 7196 struct netdev_adjacent *lower; 7197 7198 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7199 if (&lower->list == &dev->adj_list.lower) 7200 return NULL; 7201 7202 *iter = &lower->list; 7203 7204 return lower->dev; 7205 } 7206 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 7207 7208 static u8 __netdev_upper_depth(struct net_device *dev) 7209 { 7210 struct net_device *udev; 7211 struct list_head *iter; 7212 u8 max_depth = 0; 7213 bool ignore; 7214 7215 for (iter = &dev->adj_list.upper, 7216 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 7217 udev; 7218 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 7219 if (ignore) 7220 continue; 7221 if (max_depth < udev->upper_level) 7222 max_depth = udev->upper_level; 7223 } 7224 7225 return max_depth; 7226 } 7227 7228 static u8 __netdev_lower_depth(struct net_device *dev) 7229 { 7230 struct net_device *ldev; 7231 struct list_head *iter; 7232 u8 max_depth = 0; 7233 bool ignore; 7234 7235 for (iter = &dev->adj_list.lower, 7236 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 7237 ldev; 7238 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 7239 if (ignore) 7240 continue; 7241 if (max_depth < ldev->lower_level) 7242 max_depth = ldev->lower_level; 7243 } 7244 7245 return max_depth; 7246 } 7247 7248 static int __netdev_update_upper_level(struct net_device *dev, void *data) 7249 { 7250 dev->upper_level = __netdev_upper_depth(dev) + 1; 7251 return 0; 7252 } 7253 7254 static int __netdev_update_lower_level(struct net_device *dev, void *data) 7255 { 7256 dev->lower_level = __netdev_lower_depth(dev) + 1; 7257 return 0; 7258 } 7259 7260 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 7261 int (*fn)(struct net_device *dev, 7262 void *data), 7263 void *data) 7264 { 7265 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7266 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7267 int ret, cur = 0; 7268 7269 now = dev; 7270 iter = &dev->adj_list.lower; 7271 7272 while (1) { 7273 if (now != dev) { 7274 ret = fn(now, data); 7275 if (ret) 7276 return ret; 7277 } 7278 7279 next = NULL; 7280 while (1) { 7281 ldev = netdev_next_lower_dev_rcu(now, &iter); 7282 if (!ldev) 7283 break; 7284 7285 next = ldev; 7286 niter = &ldev->adj_list.lower; 7287 dev_stack[cur] = now; 7288 iter_stack[cur++] = iter; 7289 break; 7290 } 7291 7292 if (!next) { 7293 if (!cur) 7294 return 0; 7295 next = dev_stack[--cur]; 7296 niter = iter_stack[cur]; 7297 } 7298 7299 now = next; 7300 iter = niter; 7301 } 7302 7303 return 0; 7304 } 7305 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 7306 7307 /** 7308 * netdev_lower_get_first_private_rcu - Get the first ->private from the 7309 * lower neighbour list, RCU 7310 * variant 7311 * @dev: device 7312 * 7313 * Gets the first netdev_adjacent->private from the dev's lower neighbour 7314 * list. The caller must hold RCU read lock. 7315 */ 7316 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 7317 { 7318 struct netdev_adjacent *lower; 7319 7320 lower = list_first_or_null_rcu(&dev->adj_list.lower, 7321 struct netdev_adjacent, list); 7322 if (lower) 7323 return lower->private; 7324 return NULL; 7325 } 7326 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 7327 7328 /** 7329 * netdev_master_upper_dev_get_rcu - Get master upper device 7330 * @dev: device 7331 * 7332 * Find a master upper device and return pointer to it or NULL in case 7333 * it's not there. The caller must hold the RCU read lock. 7334 */ 7335 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 7336 { 7337 struct netdev_adjacent *upper; 7338 7339 upper = list_first_or_null_rcu(&dev->adj_list.upper, 7340 struct netdev_adjacent, list); 7341 if (upper && likely(upper->master)) 7342 return upper->dev; 7343 return NULL; 7344 } 7345 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 7346 7347 static int netdev_adjacent_sysfs_add(struct net_device *dev, 7348 struct net_device *adj_dev, 7349 struct list_head *dev_list) 7350 { 7351 char linkname[IFNAMSIZ+7]; 7352 7353 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7354 "upper_%s" : "lower_%s", adj_dev->name); 7355 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 7356 linkname); 7357 } 7358 static void netdev_adjacent_sysfs_del(struct net_device *dev, 7359 char *name, 7360 struct list_head *dev_list) 7361 { 7362 char linkname[IFNAMSIZ+7]; 7363 7364 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7365 "upper_%s" : "lower_%s", name); 7366 sysfs_remove_link(&(dev->dev.kobj), linkname); 7367 } 7368 7369 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 7370 struct net_device *adj_dev, 7371 struct list_head *dev_list) 7372 { 7373 return (dev_list == &dev->adj_list.upper || 7374 dev_list == &dev->adj_list.lower) && 7375 net_eq(dev_net(dev), dev_net(adj_dev)); 7376 } 7377 7378 static int __netdev_adjacent_dev_insert(struct net_device *dev, 7379 struct net_device *adj_dev, 7380 struct list_head *dev_list, 7381 void *private, bool master) 7382 { 7383 struct netdev_adjacent *adj; 7384 int ret; 7385 7386 adj = __netdev_find_adj(adj_dev, dev_list); 7387 7388 if (adj) { 7389 adj->ref_nr += 1; 7390 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 7391 dev->name, adj_dev->name, adj->ref_nr); 7392 7393 return 0; 7394 } 7395 7396 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 7397 if (!adj) 7398 return -ENOMEM; 7399 7400 adj->dev = adj_dev; 7401 adj->master = master; 7402 adj->ref_nr = 1; 7403 adj->private = private; 7404 adj->ignore = false; 7405 dev_hold(adj_dev); 7406 7407 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 7408 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 7409 7410 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 7411 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 7412 if (ret) 7413 goto free_adj; 7414 } 7415 7416 /* Ensure that master link is always the first item in list. */ 7417 if (master) { 7418 ret = sysfs_create_link(&(dev->dev.kobj), 7419 &(adj_dev->dev.kobj), "master"); 7420 if (ret) 7421 goto remove_symlinks; 7422 7423 list_add_rcu(&adj->list, dev_list); 7424 } else { 7425 list_add_tail_rcu(&adj->list, dev_list); 7426 } 7427 7428 return 0; 7429 7430 remove_symlinks: 7431 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7432 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7433 free_adj: 7434 kfree(adj); 7435 dev_put(adj_dev); 7436 7437 return ret; 7438 } 7439 7440 static void __netdev_adjacent_dev_remove(struct net_device *dev, 7441 struct net_device *adj_dev, 7442 u16 ref_nr, 7443 struct list_head *dev_list) 7444 { 7445 struct netdev_adjacent *adj; 7446 7447 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 7448 dev->name, adj_dev->name, ref_nr); 7449 7450 adj = __netdev_find_adj(adj_dev, dev_list); 7451 7452 if (!adj) { 7453 pr_err("Adjacency does not exist for device %s from %s\n", 7454 dev->name, adj_dev->name); 7455 WARN_ON(1); 7456 return; 7457 } 7458 7459 if (adj->ref_nr > ref_nr) { 7460 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 7461 dev->name, adj_dev->name, ref_nr, 7462 adj->ref_nr - ref_nr); 7463 adj->ref_nr -= ref_nr; 7464 return; 7465 } 7466 7467 if (adj->master) 7468 sysfs_remove_link(&(dev->dev.kobj), "master"); 7469 7470 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7471 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7472 7473 list_del_rcu(&adj->list); 7474 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 7475 adj_dev->name, dev->name, adj_dev->name); 7476 dev_put(adj_dev); 7477 kfree_rcu(adj, rcu); 7478 } 7479 7480 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 7481 struct net_device *upper_dev, 7482 struct list_head *up_list, 7483 struct list_head *down_list, 7484 void *private, bool master) 7485 { 7486 int ret; 7487 7488 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 7489 private, master); 7490 if (ret) 7491 return ret; 7492 7493 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 7494 private, false); 7495 if (ret) { 7496 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 7497 return ret; 7498 } 7499 7500 return 0; 7501 } 7502 7503 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 7504 struct net_device *upper_dev, 7505 u16 ref_nr, 7506 struct list_head *up_list, 7507 struct list_head *down_list) 7508 { 7509 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 7510 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 7511 } 7512 7513 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 7514 struct net_device *upper_dev, 7515 void *private, bool master) 7516 { 7517 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 7518 &dev->adj_list.upper, 7519 &upper_dev->adj_list.lower, 7520 private, master); 7521 } 7522 7523 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 7524 struct net_device *upper_dev) 7525 { 7526 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 7527 &dev->adj_list.upper, 7528 &upper_dev->adj_list.lower); 7529 } 7530 7531 static int __netdev_upper_dev_link(struct net_device *dev, 7532 struct net_device *upper_dev, bool master, 7533 void *upper_priv, void *upper_info, 7534 struct netlink_ext_ack *extack) 7535 { 7536 struct netdev_notifier_changeupper_info changeupper_info = { 7537 .info = { 7538 .dev = dev, 7539 .extack = extack, 7540 }, 7541 .upper_dev = upper_dev, 7542 .master = master, 7543 .linking = true, 7544 .upper_info = upper_info, 7545 }; 7546 struct net_device *master_dev; 7547 int ret = 0; 7548 7549 ASSERT_RTNL(); 7550 7551 if (dev == upper_dev) 7552 return -EBUSY; 7553 7554 /* To prevent loops, check if dev is not upper device to upper_dev. */ 7555 if (__netdev_has_upper_dev(upper_dev, dev)) 7556 return -EBUSY; 7557 7558 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 7559 return -EMLINK; 7560 7561 if (!master) { 7562 if (__netdev_has_upper_dev(dev, upper_dev)) 7563 return -EEXIST; 7564 } else { 7565 master_dev = __netdev_master_upper_dev_get(dev); 7566 if (master_dev) 7567 return master_dev == upper_dev ? -EEXIST : -EBUSY; 7568 } 7569 7570 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7571 &changeupper_info.info); 7572 ret = notifier_to_errno(ret); 7573 if (ret) 7574 return ret; 7575 7576 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7577 master); 7578 if (ret) 7579 return ret; 7580 7581 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7582 &changeupper_info.info); 7583 ret = notifier_to_errno(ret); 7584 if (ret) 7585 goto rollback; 7586 7587 __netdev_update_upper_level(dev, NULL); 7588 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7589 7590 __netdev_update_lower_level(upper_dev, NULL); 7591 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7592 NULL); 7593 7594 return 0; 7595 7596 rollback: 7597 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7598 7599 return ret; 7600 } 7601 7602 /** 7603 * netdev_upper_dev_link - Add a link to the upper device 7604 * @dev: device 7605 * @upper_dev: new upper device 7606 * @extack: netlink extended ack 7607 * 7608 * Adds a link to device which is upper to this one. The caller must hold 7609 * the RTNL lock. On a failure a negative errno code is returned. 7610 * On success the reference counts are adjusted and the function 7611 * returns zero. 7612 */ 7613 int netdev_upper_dev_link(struct net_device *dev, 7614 struct net_device *upper_dev, 7615 struct netlink_ext_ack *extack) 7616 { 7617 return __netdev_upper_dev_link(dev, upper_dev, false, 7618 NULL, NULL, extack); 7619 } 7620 EXPORT_SYMBOL(netdev_upper_dev_link); 7621 7622 /** 7623 * netdev_master_upper_dev_link - Add a master link to the upper device 7624 * @dev: device 7625 * @upper_dev: new upper device 7626 * @upper_priv: upper device private 7627 * @upper_info: upper info to be passed down via notifier 7628 * @extack: netlink extended ack 7629 * 7630 * Adds a link to device which is upper to this one. In this case, only 7631 * one master upper device can be linked, although other non-master devices 7632 * might be linked as well. The caller must hold the RTNL lock. 7633 * On a failure a negative errno code is returned. On success the reference 7634 * counts are adjusted and the function returns zero. 7635 */ 7636 int netdev_master_upper_dev_link(struct net_device *dev, 7637 struct net_device *upper_dev, 7638 void *upper_priv, void *upper_info, 7639 struct netlink_ext_ack *extack) 7640 { 7641 return __netdev_upper_dev_link(dev, upper_dev, true, 7642 upper_priv, upper_info, extack); 7643 } 7644 EXPORT_SYMBOL(netdev_master_upper_dev_link); 7645 7646 /** 7647 * netdev_upper_dev_unlink - Removes a link to upper device 7648 * @dev: device 7649 * @upper_dev: new upper device 7650 * 7651 * Removes a link to device which is upper to this one. The caller must hold 7652 * the RTNL lock. 7653 */ 7654 void netdev_upper_dev_unlink(struct net_device *dev, 7655 struct net_device *upper_dev) 7656 { 7657 struct netdev_notifier_changeupper_info changeupper_info = { 7658 .info = { 7659 .dev = dev, 7660 }, 7661 .upper_dev = upper_dev, 7662 .linking = false, 7663 }; 7664 7665 ASSERT_RTNL(); 7666 7667 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 7668 7669 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7670 &changeupper_info.info); 7671 7672 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7673 7674 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7675 &changeupper_info.info); 7676 7677 __netdev_update_upper_level(dev, NULL); 7678 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7679 7680 __netdev_update_lower_level(upper_dev, NULL); 7681 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7682 NULL); 7683 } 7684 EXPORT_SYMBOL(netdev_upper_dev_unlink); 7685 7686 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 7687 struct net_device *lower_dev, 7688 bool val) 7689 { 7690 struct netdev_adjacent *adj; 7691 7692 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 7693 if (adj) 7694 adj->ignore = val; 7695 7696 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 7697 if (adj) 7698 adj->ignore = val; 7699 } 7700 7701 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 7702 struct net_device *lower_dev) 7703 { 7704 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 7705 } 7706 7707 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 7708 struct net_device *lower_dev) 7709 { 7710 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 7711 } 7712 7713 int netdev_adjacent_change_prepare(struct net_device *old_dev, 7714 struct net_device *new_dev, 7715 struct net_device *dev, 7716 struct netlink_ext_ack *extack) 7717 { 7718 int err; 7719 7720 if (!new_dev) 7721 return 0; 7722 7723 if (old_dev && new_dev != old_dev) 7724 netdev_adjacent_dev_disable(dev, old_dev); 7725 7726 err = netdev_upper_dev_link(new_dev, dev, extack); 7727 if (err) { 7728 if (old_dev && new_dev != old_dev) 7729 netdev_adjacent_dev_enable(dev, old_dev); 7730 return err; 7731 } 7732 7733 return 0; 7734 } 7735 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 7736 7737 void netdev_adjacent_change_commit(struct net_device *old_dev, 7738 struct net_device *new_dev, 7739 struct net_device *dev) 7740 { 7741 if (!new_dev || !old_dev) 7742 return; 7743 7744 if (new_dev == old_dev) 7745 return; 7746 7747 netdev_adjacent_dev_enable(dev, old_dev); 7748 netdev_upper_dev_unlink(old_dev, dev); 7749 } 7750 EXPORT_SYMBOL(netdev_adjacent_change_commit); 7751 7752 void netdev_adjacent_change_abort(struct net_device *old_dev, 7753 struct net_device *new_dev, 7754 struct net_device *dev) 7755 { 7756 if (!new_dev) 7757 return; 7758 7759 if (old_dev && new_dev != old_dev) 7760 netdev_adjacent_dev_enable(dev, old_dev); 7761 7762 netdev_upper_dev_unlink(new_dev, dev); 7763 } 7764 EXPORT_SYMBOL(netdev_adjacent_change_abort); 7765 7766 /** 7767 * netdev_bonding_info_change - Dispatch event about slave change 7768 * @dev: device 7769 * @bonding_info: info to dispatch 7770 * 7771 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 7772 * The caller must hold the RTNL lock. 7773 */ 7774 void netdev_bonding_info_change(struct net_device *dev, 7775 struct netdev_bonding_info *bonding_info) 7776 { 7777 struct netdev_notifier_bonding_info info = { 7778 .info.dev = dev, 7779 }; 7780 7781 memcpy(&info.bonding_info, bonding_info, 7782 sizeof(struct netdev_bonding_info)); 7783 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 7784 &info.info); 7785 } 7786 EXPORT_SYMBOL(netdev_bonding_info_change); 7787 7788 static void netdev_adjacent_add_links(struct net_device *dev) 7789 { 7790 struct netdev_adjacent *iter; 7791 7792 struct net *net = dev_net(dev); 7793 7794 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7795 if (!net_eq(net, dev_net(iter->dev))) 7796 continue; 7797 netdev_adjacent_sysfs_add(iter->dev, dev, 7798 &iter->dev->adj_list.lower); 7799 netdev_adjacent_sysfs_add(dev, iter->dev, 7800 &dev->adj_list.upper); 7801 } 7802 7803 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7804 if (!net_eq(net, dev_net(iter->dev))) 7805 continue; 7806 netdev_adjacent_sysfs_add(iter->dev, dev, 7807 &iter->dev->adj_list.upper); 7808 netdev_adjacent_sysfs_add(dev, iter->dev, 7809 &dev->adj_list.lower); 7810 } 7811 } 7812 7813 static void netdev_adjacent_del_links(struct net_device *dev) 7814 { 7815 struct netdev_adjacent *iter; 7816 7817 struct net *net = dev_net(dev); 7818 7819 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7820 if (!net_eq(net, dev_net(iter->dev))) 7821 continue; 7822 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7823 &iter->dev->adj_list.lower); 7824 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7825 &dev->adj_list.upper); 7826 } 7827 7828 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7829 if (!net_eq(net, dev_net(iter->dev))) 7830 continue; 7831 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7832 &iter->dev->adj_list.upper); 7833 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7834 &dev->adj_list.lower); 7835 } 7836 } 7837 7838 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 7839 { 7840 struct netdev_adjacent *iter; 7841 7842 struct net *net = dev_net(dev); 7843 7844 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7845 if (!net_eq(net, dev_net(iter->dev))) 7846 continue; 7847 netdev_adjacent_sysfs_del(iter->dev, oldname, 7848 &iter->dev->adj_list.lower); 7849 netdev_adjacent_sysfs_add(iter->dev, dev, 7850 &iter->dev->adj_list.lower); 7851 } 7852 7853 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7854 if (!net_eq(net, dev_net(iter->dev))) 7855 continue; 7856 netdev_adjacent_sysfs_del(iter->dev, oldname, 7857 &iter->dev->adj_list.upper); 7858 netdev_adjacent_sysfs_add(iter->dev, dev, 7859 &iter->dev->adj_list.upper); 7860 } 7861 } 7862 7863 void *netdev_lower_dev_get_private(struct net_device *dev, 7864 struct net_device *lower_dev) 7865 { 7866 struct netdev_adjacent *lower; 7867 7868 if (!lower_dev) 7869 return NULL; 7870 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 7871 if (!lower) 7872 return NULL; 7873 7874 return lower->private; 7875 } 7876 EXPORT_SYMBOL(netdev_lower_dev_get_private); 7877 7878 7879 /** 7880 * netdev_lower_change - Dispatch event about lower device state change 7881 * @lower_dev: device 7882 * @lower_state_info: state to dispatch 7883 * 7884 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 7885 * The caller must hold the RTNL lock. 7886 */ 7887 void netdev_lower_state_changed(struct net_device *lower_dev, 7888 void *lower_state_info) 7889 { 7890 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 7891 .info.dev = lower_dev, 7892 }; 7893 7894 ASSERT_RTNL(); 7895 changelowerstate_info.lower_state_info = lower_state_info; 7896 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 7897 &changelowerstate_info.info); 7898 } 7899 EXPORT_SYMBOL(netdev_lower_state_changed); 7900 7901 static void dev_change_rx_flags(struct net_device *dev, int flags) 7902 { 7903 const struct net_device_ops *ops = dev->netdev_ops; 7904 7905 if (ops->ndo_change_rx_flags) 7906 ops->ndo_change_rx_flags(dev, flags); 7907 } 7908 7909 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 7910 { 7911 unsigned int old_flags = dev->flags; 7912 kuid_t uid; 7913 kgid_t gid; 7914 7915 ASSERT_RTNL(); 7916 7917 dev->flags |= IFF_PROMISC; 7918 dev->promiscuity += inc; 7919 if (dev->promiscuity == 0) { 7920 /* 7921 * Avoid overflow. 7922 * If inc causes overflow, untouch promisc and return error. 7923 */ 7924 if (inc < 0) 7925 dev->flags &= ~IFF_PROMISC; 7926 else { 7927 dev->promiscuity -= inc; 7928 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 7929 dev->name); 7930 return -EOVERFLOW; 7931 } 7932 } 7933 if (dev->flags != old_flags) { 7934 pr_info("device %s %s promiscuous mode\n", 7935 dev->name, 7936 dev->flags & IFF_PROMISC ? "entered" : "left"); 7937 if (audit_enabled) { 7938 current_uid_gid(&uid, &gid); 7939 audit_log(audit_context(), GFP_ATOMIC, 7940 AUDIT_ANOM_PROMISCUOUS, 7941 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 7942 dev->name, (dev->flags & IFF_PROMISC), 7943 (old_flags & IFF_PROMISC), 7944 from_kuid(&init_user_ns, audit_get_loginuid(current)), 7945 from_kuid(&init_user_ns, uid), 7946 from_kgid(&init_user_ns, gid), 7947 audit_get_sessionid(current)); 7948 } 7949 7950 dev_change_rx_flags(dev, IFF_PROMISC); 7951 } 7952 if (notify) 7953 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 7954 return 0; 7955 } 7956 7957 /** 7958 * dev_set_promiscuity - update promiscuity count on a device 7959 * @dev: device 7960 * @inc: modifier 7961 * 7962 * Add or remove promiscuity from a device. While the count in the device 7963 * remains above zero the interface remains promiscuous. Once it hits zero 7964 * the device reverts back to normal filtering operation. A negative inc 7965 * value is used to drop promiscuity on the device. 7966 * Return 0 if successful or a negative errno code on error. 7967 */ 7968 int dev_set_promiscuity(struct net_device *dev, int inc) 7969 { 7970 unsigned int old_flags = dev->flags; 7971 int err; 7972 7973 err = __dev_set_promiscuity(dev, inc, true); 7974 if (err < 0) 7975 return err; 7976 if (dev->flags != old_flags) 7977 dev_set_rx_mode(dev); 7978 return err; 7979 } 7980 EXPORT_SYMBOL(dev_set_promiscuity); 7981 7982 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 7983 { 7984 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 7985 7986 ASSERT_RTNL(); 7987 7988 dev->flags |= IFF_ALLMULTI; 7989 dev->allmulti += inc; 7990 if (dev->allmulti == 0) { 7991 /* 7992 * Avoid overflow. 7993 * If inc causes overflow, untouch allmulti and return error. 7994 */ 7995 if (inc < 0) 7996 dev->flags &= ~IFF_ALLMULTI; 7997 else { 7998 dev->allmulti -= inc; 7999 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 8000 dev->name); 8001 return -EOVERFLOW; 8002 } 8003 } 8004 if (dev->flags ^ old_flags) { 8005 dev_change_rx_flags(dev, IFF_ALLMULTI); 8006 dev_set_rx_mode(dev); 8007 if (notify) 8008 __dev_notify_flags(dev, old_flags, 8009 dev->gflags ^ old_gflags); 8010 } 8011 return 0; 8012 } 8013 8014 /** 8015 * dev_set_allmulti - update allmulti count on a device 8016 * @dev: device 8017 * @inc: modifier 8018 * 8019 * Add or remove reception of all multicast frames to a device. While the 8020 * count in the device remains above zero the interface remains listening 8021 * to all interfaces. Once it hits zero the device reverts back to normal 8022 * filtering operation. A negative @inc value is used to drop the counter 8023 * when releasing a resource needing all multicasts. 8024 * Return 0 if successful or a negative errno code on error. 8025 */ 8026 8027 int dev_set_allmulti(struct net_device *dev, int inc) 8028 { 8029 return __dev_set_allmulti(dev, inc, true); 8030 } 8031 EXPORT_SYMBOL(dev_set_allmulti); 8032 8033 /* 8034 * Upload unicast and multicast address lists to device and 8035 * configure RX filtering. When the device doesn't support unicast 8036 * filtering it is put in promiscuous mode while unicast addresses 8037 * are present. 8038 */ 8039 void __dev_set_rx_mode(struct net_device *dev) 8040 { 8041 const struct net_device_ops *ops = dev->netdev_ops; 8042 8043 /* dev_open will call this function so the list will stay sane. */ 8044 if (!(dev->flags&IFF_UP)) 8045 return; 8046 8047 if (!netif_device_present(dev)) 8048 return; 8049 8050 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 8051 /* Unicast addresses changes may only happen under the rtnl, 8052 * therefore calling __dev_set_promiscuity here is safe. 8053 */ 8054 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 8055 __dev_set_promiscuity(dev, 1, false); 8056 dev->uc_promisc = true; 8057 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 8058 __dev_set_promiscuity(dev, -1, false); 8059 dev->uc_promisc = false; 8060 } 8061 } 8062 8063 if (ops->ndo_set_rx_mode) 8064 ops->ndo_set_rx_mode(dev); 8065 } 8066 8067 void dev_set_rx_mode(struct net_device *dev) 8068 { 8069 netif_addr_lock_bh(dev); 8070 __dev_set_rx_mode(dev); 8071 netif_addr_unlock_bh(dev); 8072 } 8073 8074 /** 8075 * dev_get_flags - get flags reported to userspace 8076 * @dev: device 8077 * 8078 * Get the combination of flag bits exported through APIs to userspace. 8079 */ 8080 unsigned int dev_get_flags(const struct net_device *dev) 8081 { 8082 unsigned int flags; 8083 8084 flags = (dev->flags & ~(IFF_PROMISC | 8085 IFF_ALLMULTI | 8086 IFF_RUNNING | 8087 IFF_LOWER_UP | 8088 IFF_DORMANT)) | 8089 (dev->gflags & (IFF_PROMISC | 8090 IFF_ALLMULTI)); 8091 8092 if (netif_running(dev)) { 8093 if (netif_oper_up(dev)) 8094 flags |= IFF_RUNNING; 8095 if (netif_carrier_ok(dev)) 8096 flags |= IFF_LOWER_UP; 8097 if (netif_dormant(dev)) 8098 flags |= IFF_DORMANT; 8099 } 8100 8101 return flags; 8102 } 8103 EXPORT_SYMBOL(dev_get_flags); 8104 8105 int __dev_change_flags(struct net_device *dev, unsigned int flags, 8106 struct netlink_ext_ack *extack) 8107 { 8108 unsigned int old_flags = dev->flags; 8109 int ret; 8110 8111 ASSERT_RTNL(); 8112 8113 /* 8114 * Set the flags on our device. 8115 */ 8116 8117 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 8118 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 8119 IFF_AUTOMEDIA)) | 8120 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 8121 IFF_ALLMULTI)); 8122 8123 /* 8124 * Load in the correct multicast list now the flags have changed. 8125 */ 8126 8127 if ((old_flags ^ flags) & IFF_MULTICAST) 8128 dev_change_rx_flags(dev, IFF_MULTICAST); 8129 8130 dev_set_rx_mode(dev); 8131 8132 /* 8133 * Have we downed the interface. We handle IFF_UP ourselves 8134 * according to user attempts to set it, rather than blindly 8135 * setting it. 8136 */ 8137 8138 ret = 0; 8139 if ((old_flags ^ flags) & IFF_UP) { 8140 if (old_flags & IFF_UP) 8141 __dev_close(dev); 8142 else 8143 ret = __dev_open(dev, extack); 8144 } 8145 8146 if ((flags ^ dev->gflags) & IFF_PROMISC) { 8147 int inc = (flags & IFF_PROMISC) ? 1 : -1; 8148 unsigned int old_flags = dev->flags; 8149 8150 dev->gflags ^= IFF_PROMISC; 8151 8152 if (__dev_set_promiscuity(dev, inc, false) >= 0) 8153 if (dev->flags != old_flags) 8154 dev_set_rx_mode(dev); 8155 } 8156 8157 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 8158 * is important. Some (broken) drivers set IFF_PROMISC, when 8159 * IFF_ALLMULTI is requested not asking us and not reporting. 8160 */ 8161 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 8162 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 8163 8164 dev->gflags ^= IFF_ALLMULTI; 8165 __dev_set_allmulti(dev, inc, false); 8166 } 8167 8168 return ret; 8169 } 8170 8171 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 8172 unsigned int gchanges) 8173 { 8174 unsigned int changes = dev->flags ^ old_flags; 8175 8176 if (gchanges) 8177 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 8178 8179 if (changes & IFF_UP) { 8180 if (dev->flags & IFF_UP) 8181 call_netdevice_notifiers(NETDEV_UP, dev); 8182 else 8183 call_netdevice_notifiers(NETDEV_DOWN, dev); 8184 } 8185 8186 if (dev->flags & IFF_UP && 8187 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 8188 struct netdev_notifier_change_info change_info = { 8189 .info = { 8190 .dev = dev, 8191 }, 8192 .flags_changed = changes, 8193 }; 8194 8195 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 8196 } 8197 } 8198 8199 /** 8200 * dev_change_flags - change device settings 8201 * @dev: device 8202 * @flags: device state flags 8203 * @extack: netlink extended ack 8204 * 8205 * Change settings on device based state flags. The flags are 8206 * in the userspace exported format. 8207 */ 8208 int dev_change_flags(struct net_device *dev, unsigned int flags, 8209 struct netlink_ext_ack *extack) 8210 { 8211 int ret; 8212 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 8213 8214 ret = __dev_change_flags(dev, flags, extack); 8215 if (ret < 0) 8216 return ret; 8217 8218 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 8219 __dev_notify_flags(dev, old_flags, changes); 8220 return ret; 8221 } 8222 EXPORT_SYMBOL(dev_change_flags); 8223 8224 int __dev_set_mtu(struct net_device *dev, int new_mtu) 8225 { 8226 const struct net_device_ops *ops = dev->netdev_ops; 8227 8228 if (ops->ndo_change_mtu) 8229 return ops->ndo_change_mtu(dev, new_mtu); 8230 8231 /* Pairs with all the lockless reads of dev->mtu in the stack */ 8232 WRITE_ONCE(dev->mtu, new_mtu); 8233 return 0; 8234 } 8235 EXPORT_SYMBOL(__dev_set_mtu); 8236 8237 int dev_validate_mtu(struct net_device *dev, int new_mtu, 8238 struct netlink_ext_ack *extack) 8239 { 8240 /* MTU must be positive, and in range */ 8241 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 8242 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 8243 return -EINVAL; 8244 } 8245 8246 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 8247 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 8248 return -EINVAL; 8249 } 8250 return 0; 8251 } 8252 8253 /** 8254 * dev_set_mtu_ext - Change maximum transfer unit 8255 * @dev: device 8256 * @new_mtu: new transfer unit 8257 * @extack: netlink extended ack 8258 * 8259 * Change the maximum transfer size of the network device. 8260 */ 8261 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 8262 struct netlink_ext_ack *extack) 8263 { 8264 int err, orig_mtu; 8265 8266 if (new_mtu == dev->mtu) 8267 return 0; 8268 8269 err = dev_validate_mtu(dev, new_mtu, extack); 8270 if (err) 8271 return err; 8272 8273 if (!netif_device_present(dev)) 8274 return -ENODEV; 8275 8276 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 8277 err = notifier_to_errno(err); 8278 if (err) 8279 return err; 8280 8281 orig_mtu = dev->mtu; 8282 err = __dev_set_mtu(dev, new_mtu); 8283 8284 if (!err) { 8285 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8286 orig_mtu); 8287 err = notifier_to_errno(err); 8288 if (err) { 8289 /* setting mtu back and notifying everyone again, 8290 * so that they have a chance to revert changes. 8291 */ 8292 __dev_set_mtu(dev, orig_mtu); 8293 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8294 new_mtu); 8295 } 8296 } 8297 return err; 8298 } 8299 8300 int dev_set_mtu(struct net_device *dev, int new_mtu) 8301 { 8302 struct netlink_ext_ack extack; 8303 int err; 8304 8305 memset(&extack, 0, sizeof(extack)); 8306 err = dev_set_mtu_ext(dev, new_mtu, &extack); 8307 if (err && extack._msg) 8308 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 8309 return err; 8310 } 8311 EXPORT_SYMBOL(dev_set_mtu); 8312 8313 /** 8314 * dev_change_tx_queue_len - Change TX queue length of a netdevice 8315 * @dev: device 8316 * @new_len: new tx queue length 8317 */ 8318 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 8319 { 8320 unsigned int orig_len = dev->tx_queue_len; 8321 int res; 8322 8323 if (new_len != (unsigned int)new_len) 8324 return -ERANGE; 8325 8326 if (new_len != orig_len) { 8327 dev->tx_queue_len = new_len; 8328 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 8329 res = notifier_to_errno(res); 8330 if (res) 8331 goto err_rollback; 8332 res = dev_qdisc_change_tx_queue_len(dev); 8333 if (res) 8334 goto err_rollback; 8335 } 8336 8337 return 0; 8338 8339 err_rollback: 8340 netdev_err(dev, "refused to change device tx_queue_len\n"); 8341 dev->tx_queue_len = orig_len; 8342 return res; 8343 } 8344 8345 /** 8346 * dev_set_group - Change group this device belongs to 8347 * @dev: device 8348 * @new_group: group this device should belong to 8349 */ 8350 void dev_set_group(struct net_device *dev, int new_group) 8351 { 8352 dev->group = new_group; 8353 } 8354 EXPORT_SYMBOL(dev_set_group); 8355 8356 /** 8357 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 8358 * @dev: device 8359 * @addr: new address 8360 * @extack: netlink extended ack 8361 */ 8362 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 8363 struct netlink_ext_ack *extack) 8364 { 8365 struct netdev_notifier_pre_changeaddr_info info = { 8366 .info.dev = dev, 8367 .info.extack = extack, 8368 .dev_addr = addr, 8369 }; 8370 int rc; 8371 8372 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 8373 return notifier_to_errno(rc); 8374 } 8375 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 8376 8377 /** 8378 * dev_set_mac_address - Change Media Access Control Address 8379 * @dev: device 8380 * @sa: new address 8381 * @extack: netlink extended ack 8382 * 8383 * Change the hardware (MAC) address of the device 8384 */ 8385 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 8386 struct netlink_ext_ack *extack) 8387 { 8388 const struct net_device_ops *ops = dev->netdev_ops; 8389 int err; 8390 8391 if (!ops->ndo_set_mac_address) 8392 return -EOPNOTSUPP; 8393 if (sa->sa_family != dev->type) 8394 return -EINVAL; 8395 if (!netif_device_present(dev)) 8396 return -ENODEV; 8397 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 8398 if (err) 8399 return err; 8400 err = ops->ndo_set_mac_address(dev, sa); 8401 if (err) 8402 return err; 8403 dev->addr_assign_type = NET_ADDR_SET; 8404 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 8405 add_device_randomness(dev->dev_addr, dev->addr_len); 8406 return 0; 8407 } 8408 EXPORT_SYMBOL(dev_set_mac_address); 8409 8410 /** 8411 * dev_change_carrier - Change device carrier 8412 * @dev: device 8413 * @new_carrier: new value 8414 * 8415 * Change device carrier 8416 */ 8417 int dev_change_carrier(struct net_device *dev, bool new_carrier) 8418 { 8419 const struct net_device_ops *ops = dev->netdev_ops; 8420 8421 if (!ops->ndo_change_carrier) 8422 return -EOPNOTSUPP; 8423 if (!netif_device_present(dev)) 8424 return -ENODEV; 8425 return ops->ndo_change_carrier(dev, new_carrier); 8426 } 8427 EXPORT_SYMBOL(dev_change_carrier); 8428 8429 /** 8430 * dev_get_phys_port_id - Get device physical port ID 8431 * @dev: device 8432 * @ppid: port ID 8433 * 8434 * Get device physical port ID 8435 */ 8436 int dev_get_phys_port_id(struct net_device *dev, 8437 struct netdev_phys_item_id *ppid) 8438 { 8439 const struct net_device_ops *ops = dev->netdev_ops; 8440 8441 if (!ops->ndo_get_phys_port_id) 8442 return -EOPNOTSUPP; 8443 return ops->ndo_get_phys_port_id(dev, ppid); 8444 } 8445 EXPORT_SYMBOL(dev_get_phys_port_id); 8446 8447 /** 8448 * dev_get_phys_port_name - Get device physical port name 8449 * @dev: device 8450 * @name: port name 8451 * @len: limit of bytes to copy to name 8452 * 8453 * Get device physical port name 8454 */ 8455 int dev_get_phys_port_name(struct net_device *dev, 8456 char *name, size_t len) 8457 { 8458 const struct net_device_ops *ops = dev->netdev_ops; 8459 int err; 8460 8461 if (ops->ndo_get_phys_port_name) { 8462 err = ops->ndo_get_phys_port_name(dev, name, len); 8463 if (err != -EOPNOTSUPP) 8464 return err; 8465 } 8466 return devlink_compat_phys_port_name_get(dev, name, len); 8467 } 8468 EXPORT_SYMBOL(dev_get_phys_port_name); 8469 8470 /** 8471 * dev_get_port_parent_id - Get the device's port parent identifier 8472 * @dev: network device 8473 * @ppid: pointer to a storage for the port's parent identifier 8474 * @recurse: allow/disallow recursion to lower devices 8475 * 8476 * Get the devices's port parent identifier 8477 */ 8478 int dev_get_port_parent_id(struct net_device *dev, 8479 struct netdev_phys_item_id *ppid, 8480 bool recurse) 8481 { 8482 const struct net_device_ops *ops = dev->netdev_ops; 8483 struct netdev_phys_item_id first = { }; 8484 struct net_device *lower_dev; 8485 struct list_head *iter; 8486 int err; 8487 8488 if (ops->ndo_get_port_parent_id) { 8489 err = ops->ndo_get_port_parent_id(dev, ppid); 8490 if (err != -EOPNOTSUPP) 8491 return err; 8492 } 8493 8494 err = devlink_compat_switch_id_get(dev, ppid); 8495 if (!err || err != -EOPNOTSUPP) 8496 return err; 8497 8498 if (!recurse) 8499 return -EOPNOTSUPP; 8500 8501 netdev_for_each_lower_dev(dev, lower_dev, iter) { 8502 err = dev_get_port_parent_id(lower_dev, ppid, recurse); 8503 if (err) 8504 break; 8505 if (!first.id_len) 8506 first = *ppid; 8507 else if (memcmp(&first, ppid, sizeof(*ppid))) 8508 return -ENODATA; 8509 } 8510 8511 return err; 8512 } 8513 EXPORT_SYMBOL(dev_get_port_parent_id); 8514 8515 /** 8516 * netdev_port_same_parent_id - Indicate if two network devices have 8517 * the same port parent identifier 8518 * @a: first network device 8519 * @b: second network device 8520 */ 8521 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 8522 { 8523 struct netdev_phys_item_id a_id = { }; 8524 struct netdev_phys_item_id b_id = { }; 8525 8526 if (dev_get_port_parent_id(a, &a_id, true) || 8527 dev_get_port_parent_id(b, &b_id, true)) 8528 return false; 8529 8530 return netdev_phys_item_id_same(&a_id, &b_id); 8531 } 8532 EXPORT_SYMBOL(netdev_port_same_parent_id); 8533 8534 /** 8535 * dev_change_proto_down - update protocol port state information 8536 * @dev: device 8537 * @proto_down: new value 8538 * 8539 * This info can be used by switch drivers to set the phys state of the 8540 * port. 8541 */ 8542 int dev_change_proto_down(struct net_device *dev, bool proto_down) 8543 { 8544 const struct net_device_ops *ops = dev->netdev_ops; 8545 8546 if (!ops->ndo_change_proto_down) 8547 return -EOPNOTSUPP; 8548 if (!netif_device_present(dev)) 8549 return -ENODEV; 8550 return ops->ndo_change_proto_down(dev, proto_down); 8551 } 8552 EXPORT_SYMBOL(dev_change_proto_down); 8553 8554 /** 8555 * dev_change_proto_down_generic - generic implementation for 8556 * ndo_change_proto_down that sets carrier according to 8557 * proto_down. 8558 * 8559 * @dev: device 8560 * @proto_down: new value 8561 */ 8562 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down) 8563 { 8564 if (proto_down) 8565 netif_carrier_off(dev); 8566 else 8567 netif_carrier_on(dev); 8568 dev->proto_down = proto_down; 8569 return 0; 8570 } 8571 EXPORT_SYMBOL(dev_change_proto_down_generic); 8572 8573 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op, 8574 enum bpf_netdev_command cmd) 8575 { 8576 struct netdev_bpf xdp; 8577 8578 if (!bpf_op) 8579 return 0; 8580 8581 memset(&xdp, 0, sizeof(xdp)); 8582 xdp.command = cmd; 8583 8584 /* Query must always succeed. */ 8585 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG); 8586 8587 return xdp.prog_id; 8588 } 8589 8590 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op, 8591 struct netlink_ext_ack *extack, u32 flags, 8592 struct bpf_prog *prog) 8593 { 8594 bool non_hw = !(flags & XDP_FLAGS_HW_MODE); 8595 struct bpf_prog *prev_prog = NULL; 8596 struct netdev_bpf xdp; 8597 int err; 8598 8599 if (non_hw) { 8600 prev_prog = bpf_prog_by_id(__dev_xdp_query(dev, bpf_op, 8601 XDP_QUERY_PROG)); 8602 if (IS_ERR(prev_prog)) 8603 prev_prog = NULL; 8604 } 8605 8606 memset(&xdp, 0, sizeof(xdp)); 8607 if (flags & XDP_FLAGS_HW_MODE) 8608 xdp.command = XDP_SETUP_PROG_HW; 8609 else 8610 xdp.command = XDP_SETUP_PROG; 8611 xdp.extack = extack; 8612 xdp.flags = flags; 8613 xdp.prog = prog; 8614 8615 err = bpf_op(dev, &xdp); 8616 if (!err && non_hw) 8617 bpf_prog_change_xdp(prev_prog, prog); 8618 8619 if (prev_prog) 8620 bpf_prog_put(prev_prog); 8621 8622 return err; 8623 } 8624 8625 static void dev_xdp_uninstall(struct net_device *dev) 8626 { 8627 struct netdev_bpf xdp; 8628 bpf_op_t ndo_bpf; 8629 8630 /* Remove generic XDP */ 8631 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL)); 8632 8633 /* Remove from the driver */ 8634 ndo_bpf = dev->netdev_ops->ndo_bpf; 8635 if (!ndo_bpf) 8636 return; 8637 8638 memset(&xdp, 0, sizeof(xdp)); 8639 xdp.command = XDP_QUERY_PROG; 8640 WARN_ON(ndo_bpf(dev, &xdp)); 8641 if (xdp.prog_id) 8642 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 8643 NULL)); 8644 8645 /* Remove HW offload */ 8646 memset(&xdp, 0, sizeof(xdp)); 8647 xdp.command = XDP_QUERY_PROG_HW; 8648 if (!ndo_bpf(dev, &xdp) && xdp.prog_id) 8649 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 8650 NULL)); 8651 } 8652 8653 /** 8654 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 8655 * @dev: device 8656 * @extack: netlink extended ack 8657 * @fd: new program fd or negative value to clear 8658 * @expected_fd: old program fd that userspace expects to replace or clear 8659 * @flags: xdp-related flags 8660 * 8661 * Set or clear a bpf program for a device 8662 */ 8663 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 8664 int fd, int expected_fd, u32 flags) 8665 { 8666 const struct net_device_ops *ops = dev->netdev_ops; 8667 enum bpf_netdev_command query; 8668 u32 prog_id, expected_id = 0; 8669 struct bpf_prog *prog = NULL; 8670 bpf_op_t bpf_op, bpf_chk; 8671 bool offload; 8672 int err; 8673 8674 ASSERT_RTNL(); 8675 8676 offload = flags & XDP_FLAGS_HW_MODE; 8677 query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG; 8678 8679 bpf_op = bpf_chk = ops->ndo_bpf; 8680 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) { 8681 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode"); 8682 return -EOPNOTSUPP; 8683 } 8684 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE)) 8685 bpf_op = generic_xdp_install; 8686 if (bpf_op == bpf_chk) 8687 bpf_chk = generic_xdp_install; 8688 8689 prog_id = __dev_xdp_query(dev, bpf_op, query); 8690 if (flags & XDP_FLAGS_REPLACE) { 8691 if (expected_fd >= 0) { 8692 prog = bpf_prog_get_type_dev(expected_fd, 8693 BPF_PROG_TYPE_XDP, 8694 bpf_op == ops->ndo_bpf); 8695 if (IS_ERR(prog)) 8696 return PTR_ERR(prog); 8697 expected_id = prog->aux->id; 8698 bpf_prog_put(prog); 8699 } 8700 8701 if (prog_id != expected_id) { 8702 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 8703 return -EEXIST; 8704 } 8705 } 8706 if (fd >= 0) { 8707 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) { 8708 NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time"); 8709 return -EEXIST; 8710 } 8711 8712 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) { 8713 NL_SET_ERR_MSG(extack, "XDP program already attached"); 8714 return -EBUSY; 8715 } 8716 8717 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 8718 bpf_op == ops->ndo_bpf); 8719 if (IS_ERR(prog)) 8720 return PTR_ERR(prog); 8721 8722 if (!offload && bpf_prog_is_dev_bound(prog->aux)) { 8723 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported"); 8724 bpf_prog_put(prog); 8725 return -EINVAL; 8726 } 8727 8728 /* prog->aux->id may be 0 for orphaned device-bound progs */ 8729 if (prog->aux->id && prog->aux->id == prog_id) { 8730 bpf_prog_put(prog); 8731 return 0; 8732 } 8733 } else { 8734 if (!prog_id) 8735 return 0; 8736 } 8737 8738 err = dev_xdp_install(dev, bpf_op, extack, flags, prog); 8739 if (err < 0 && prog) 8740 bpf_prog_put(prog); 8741 8742 return err; 8743 } 8744 8745 /** 8746 * dev_new_index - allocate an ifindex 8747 * @net: the applicable net namespace 8748 * 8749 * Returns a suitable unique value for a new device interface 8750 * number. The caller must hold the rtnl semaphore or the 8751 * dev_base_lock to be sure it remains unique. 8752 */ 8753 static int dev_new_index(struct net *net) 8754 { 8755 int ifindex = net->ifindex; 8756 8757 for (;;) { 8758 if (++ifindex <= 0) 8759 ifindex = 1; 8760 if (!__dev_get_by_index(net, ifindex)) 8761 return net->ifindex = ifindex; 8762 } 8763 } 8764 8765 /* Delayed registration/unregisteration */ 8766 static LIST_HEAD(net_todo_list); 8767 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 8768 8769 static void net_set_todo(struct net_device *dev) 8770 { 8771 list_add_tail(&dev->todo_list, &net_todo_list); 8772 dev_net(dev)->dev_unreg_count++; 8773 } 8774 8775 static void rollback_registered_many(struct list_head *head) 8776 { 8777 struct net_device *dev, *tmp; 8778 LIST_HEAD(close_head); 8779 8780 BUG_ON(dev_boot_phase); 8781 ASSERT_RTNL(); 8782 8783 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 8784 /* Some devices call without registering 8785 * for initialization unwind. Remove those 8786 * devices and proceed with the remaining. 8787 */ 8788 if (dev->reg_state == NETREG_UNINITIALIZED) { 8789 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 8790 dev->name, dev); 8791 8792 WARN_ON(1); 8793 list_del(&dev->unreg_list); 8794 continue; 8795 } 8796 dev->dismantle = true; 8797 BUG_ON(dev->reg_state != NETREG_REGISTERED); 8798 } 8799 8800 /* If device is running, close it first. */ 8801 list_for_each_entry(dev, head, unreg_list) 8802 list_add_tail(&dev->close_list, &close_head); 8803 dev_close_many(&close_head, true); 8804 8805 list_for_each_entry(dev, head, unreg_list) { 8806 /* And unlink it from device chain. */ 8807 unlist_netdevice(dev); 8808 8809 dev->reg_state = NETREG_UNREGISTERING; 8810 } 8811 flush_all_backlogs(); 8812 8813 synchronize_net(); 8814 8815 list_for_each_entry(dev, head, unreg_list) { 8816 struct sk_buff *skb = NULL; 8817 8818 /* Shutdown queueing discipline. */ 8819 dev_shutdown(dev); 8820 8821 dev_xdp_uninstall(dev); 8822 8823 /* Notify protocols, that we are about to destroy 8824 * this device. They should clean all the things. 8825 */ 8826 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8827 8828 if (!dev->rtnl_link_ops || 8829 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 8830 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 8831 GFP_KERNEL, NULL, 0); 8832 8833 /* 8834 * Flush the unicast and multicast chains 8835 */ 8836 dev_uc_flush(dev); 8837 dev_mc_flush(dev); 8838 8839 netdev_name_node_alt_flush(dev); 8840 netdev_name_node_free(dev->name_node); 8841 8842 if (dev->netdev_ops->ndo_uninit) 8843 dev->netdev_ops->ndo_uninit(dev); 8844 8845 if (skb) 8846 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 8847 8848 /* Notifier chain MUST detach us all upper devices. */ 8849 WARN_ON(netdev_has_any_upper_dev(dev)); 8850 WARN_ON(netdev_has_any_lower_dev(dev)); 8851 8852 /* Remove entries from kobject tree */ 8853 netdev_unregister_kobject(dev); 8854 #ifdef CONFIG_XPS 8855 /* Remove XPS queueing entries */ 8856 netif_reset_xps_queues_gt(dev, 0); 8857 #endif 8858 } 8859 8860 synchronize_net(); 8861 8862 list_for_each_entry(dev, head, unreg_list) 8863 dev_put(dev); 8864 } 8865 8866 static void rollback_registered(struct net_device *dev) 8867 { 8868 LIST_HEAD(single); 8869 8870 list_add(&dev->unreg_list, &single); 8871 rollback_registered_many(&single); 8872 list_del(&single); 8873 } 8874 8875 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 8876 struct net_device *upper, netdev_features_t features) 8877 { 8878 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 8879 netdev_features_t feature; 8880 int feature_bit; 8881 8882 for_each_netdev_feature(upper_disables, feature_bit) { 8883 feature = __NETIF_F_BIT(feature_bit); 8884 if (!(upper->wanted_features & feature) 8885 && (features & feature)) { 8886 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 8887 &feature, upper->name); 8888 features &= ~feature; 8889 } 8890 } 8891 8892 return features; 8893 } 8894 8895 static void netdev_sync_lower_features(struct net_device *upper, 8896 struct net_device *lower, netdev_features_t features) 8897 { 8898 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 8899 netdev_features_t feature; 8900 int feature_bit; 8901 8902 for_each_netdev_feature(upper_disables, feature_bit) { 8903 feature = __NETIF_F_BIT(feature_bit); 8904 if (!(features & feature) && (lower->features & feature)) { 8905 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 8906 &feature, lower->name); 8907 lower->wanted_features &= ~feature; 8908 netdev_update_features(lower); 8909 8910 if (unlikely(lower->features & feature)) 8911 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 8912 &feature, lower->name); 8913 } 8914 } 8915 } 8916 8917 static netdev_features_t netdev_fix_features(struct net_device *dev, 8918 netdev_features_t features) 8919 { 8920 /* Fix illegal checksum combinations */ 8921 if ((features & NETIF_F_HW_CSUM) && 8922 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 8923 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 8924 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 8925 } 8926 8927 /* TSO requires that SG is present as well. */ 8928 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 8929 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 8930 features &= ~NETIF_F_ALL_TSO; 8931 } 8932 8933 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 8934 !(features & NETIF_F_IP_CSUM)) { 8935 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 8936 features &= ~NETIF_F_TSO; 8937 features &= ~NETIF_F_TSO_ECN; 8938 } 8939 8940 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 8941 !(features & NETIF_F_IPV6_CSUM)) { 8942 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 8943 features &= ~NETIF_F_TSO6; 8944 } 8945 8946 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 8947 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 8948 features &= ~NETIF_F_TSO_MANGLEID; 8949 8950 /* TSO ECN requires that TSO is present as well. */ 8951 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 8952 features &= ~NETIF_F_TSO_ECN; 8953 8954 /* Software GSO depends on SG. */ 8955 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 8956 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 8957 features &= ~NETIF_F_GSO; 8958 } 8959 8960 /* GSO partial features require GSO partial be set */ 8961 if ((features & dev->gso_partial_features) && 8962 !(features & NETIF_F_GSO_PARTIAL)) { 8963 netdev_dbg(dev, 8964 "Dropping partially supported GSO features since no GSO partial.\n"); 8965 features &= ~dev->gso_partial_features; 8966 } 8967 8968 if (!(features & NETIF_F_RXCSUM)) { 8969 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 8970 * successfully merged by hardware must also have the 8971 * checksum verified by hardware. If the user does not 8972 * want to enable RXCSUM, logically, we should disable GRO_HW. 8973 */ 8974 if (features & NETIF_F_GRO_HW) { 8975 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 8976 features &= ~NETIF_F_GRO_HW; 8977 } 8978 } 8979 8980 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 8981 if (features & NETIF_F_RXFCS) { 8982 if (features & NETIF_F_LRO) { 8983 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 8984 features &= ~NETIF_F_LRO; 8985 } 8986 8987 if (features & NETIF_F_GRO_HW) { 8988 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 8989 features &= ~NETIF_F_GRO_HW; 8990 } 8991 } 8992 8993 return features; 8994 } 8995 8996 int __netdev_update_features(struct net_device *dev) 8997 { 8998 struct net_device *upper, *lower; 8999 netdev_features_t features; 9000 struct list_head *iter; 9001 int err = -1; 9002 9003 ASSERT_RTNL(); 9004 9005 features = netdev_get_wanted_features(dev); 9006 9007 if (dev->netdev_ops->ndo_fix_features) 9008 features = dev->netdev_ops->ndo_fix_features(dev, features); 9009 9010 /* driver might be less strict about feature dependencies */ 9011 features = netdev_fix_features(dev, features); 9012 9013 /* some features can't be enabled if they're off an an upper device */ 9014 netdev_for_each_upper_dev_rcu(dev, upper, iter) 9015 features = netdev_sync_upper_features(dev, upper, features); 9016 9017 if (dev->features == features) 9018 goto sync_lower; 9019 9020 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 9021 &dev->features, &features); 9022 9023 if (dev->netdev_ops->ndo_set_features) 9024 err = dev->netdev_ops->ndo_set_features(dev, features); 9025 else 9026 err = 0; 9027 9028 if (unlikely(err < 0)) { 9029 netdev_err(dev, 9030 "set_features() failed (%d); wanted %pNF, left %pNF\n", 9031 err, &features, &dev->features); 9032 /* return non-0 since some features might have changed and 9033 * it's better to fire a spurious notification than miss it 9034 */ 9035 return -1; 9036 } 9037 9038 sync_lower: 9039 /* some features must be disabled on lower devices when disabled 9040 * on an upper device (think: bonding master or bridge) 9041 */ 9042 netdev_for_each_lower_dev(dev, lower, iter) 9043 netdev_sync_lower_features(dev, lower, features); 9044 9045 if (!err) { 9046 netdev_features_t diff = features ^ dev->features; 9047 9048 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 9049 /* udp_tunnel_{get,drop}_rx_info both need 9050 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 9051 * device, or they won't do anything. 9052 * Thus we need to update dev->features 9053 * *before* calling udp_tunnel_get_rx_info, 9054 * but *after* calling udp_tunnel_drop_rx_info. 9055 */ 9056 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 9057 dev->features = features; 9058 udp_tunnel_get_rx_info(dev); 9059 } else { 9060 udp_tunnel_drop_rx_info(dev); 9061 } 9062 } 9063 9064 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 9065 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 9066 dev->features = features; 9067 err |= vlan_get_rx_ctag_filter_info(dev); 9068 } else { 9069 vlan_drop_rx_ctag_filter_info(dev); 9070 } 9071 } 9072 9073 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 9074 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 9075 dev->features = features; 9076 err |= vlan_get_rx_stag_filter_info(dev); 9077 } else { 9078 vlan_drop_rx_stag_filter_info(dev); 9079 } 9080 } 9081 9082 dev->features = features; 9083 } 9084 9085 return err < 0 ? 0 : 1; 9086 } 9087 9088 /** 9089 * netdev_update_features - recalculate device features 9090 * @dev: the device to check 9091 * 9092 * Recalculate dev->features set and send notifications if it 9093 * has changed. Should be called after driver or hardware dependent 9094 * conditions might have changed that influence the features. 9095 */ 9096 void netdev_update_features(struct net_device *dev) 9097 { 9098 if (__netdev_update_features(dev)) 9099 netdev_features_change(dev); 9100 } 9101 EXPORT_SYMBOL(netdev_update_features); 9102 9103 /** 9104 * netdev_change_features - recalculate device features 9105 * @dev: the device to check 9106 * 9107 * Recalculate dev->features set and send notifications even 9108 * if they have not changed. Should be called instead of 9109 * netdev_update_features() if also dev->vlan_features might 9110 * have changed to allow the changes to be propagated to stacked 9111 * VLAN devices. 9112 */ 9113 void netdev_change_features(struct net_device *dev) 9114 { 9115 __netdev_update_features(dev); 9116 netdev_features_change(dev); 9117 } 9118 EXPORT_SYMBOL(netdev_change_features); 9119 9120 /** 9121 * netif_stacked_transfer_operstate - transfer operstate 9122 * @rootdev: the root or lower level device to transfer state from 9123 * @dev: the device to transfer operstate to 9124 * 9125 * Transfer operational state from root to device. This is normally 9126 * called when a stacking relationship exists between the root 9127 * device and the device(a leaf device). 9128 */ 9129 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 9130 struct net_device *dev) 9131 { 9132 if (rootdev->operstate == IF_OPER_DORMANT) 9133 netif_dormant_on(dev); 9134 else 9135 netif_dormant_off(dev); 9136 9137 if (netif_carrier_ok(rootdev)) 9138 netif_carrier_on(dev); 9139 else 9140 netif_carrier_off(dev); 9141 } 9142 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 9143 9144 static int netif_alloc_rx_queues(struct net_device *dev) 9145 { 9146 unsigned int i, count = dev->num_rx_queues; 9147 struct netdev_rx_queue *rx; 9148 size_t sz = count * sizeof(*rx); 9149 int err = 0; 9150 9151 BUG_ON(count < 1); 9152 9153 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9154 if (!rx) 9155 return -ENOMEM; 9156 9157 dev->_rx = rx; 9158 9159 for (i = 0; i < count; i++) { 9160 rx[i].dev = dev; 9161 9162 /* XDP RX-queue setup */ 9163 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i); 9164 if (err < 0) 9165 goto err_rxq_info; 9166 } 9167 return 0; 9168 9169 err_rxq_info: 9170 /* Rollback successful reg's and free other resources */ 9171 while (i--) 9172 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 9173 kvfree(dev->_rx); 9174 dev->_rx = NULL; 9175 return err; 9176 } 9177 9178 static void netif_free_rx_queues(struct net_device *dev) 9179 { 9180 unsigned int i, count = dev->num_rx_queues; 9181 9182 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 9183 if (!dev->_rx) 9184 return; 9185 9186 for (i = 0; i < count; i++) 9187 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 9188 9189 kvfree(dev->_rx); 9190 } 9191 9192 static void netdev_init_one_queue(struct net_device *dev, 9193 struct netdev_queue *queue, void *_unused) 9194 { 9195 /* Initialize queue lock */ 9196 spin_lock_init(&queue->_xmit_lock); 9197 lockdep_set_class(&queue->_xmit_lock, &dev->qdisc_xmit_lock_key); 9198 queue->xmit_lock_owner = -1; 9199 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 9200 queue->dev = dev; 9201 #ifdef CONFIG_BQL 9202 dql_init(&queue->dql, HZ); 9203 #endif 9204 } 9205 9206 static void netif_free_tx_queues(struct net_device *dev) 9207 { 9208 kvfree(dev->_tx); 9209 } 9210 9211 static int netif_alloc_netdev_queues(struct net_device *dev) 9212 { 9213 unsigned int count = dev->num_tx_queues; 9214 struct netdev_queue *tx; 9215 size_t sz = count * sizeof(*tx); 9216 9217 if (count < 1 || count > 0xffff) 9218 return -EINVAL; 9219 9220 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9221 if (!tx) 9222 return -ENOMEM; 9223 9224 dev->_tx = tx; 9225 9226 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 9227 spin_lock_init(&dev->tx_global_lock); 9228 9229 return 0; 9230 } 9231 9232 void netif_tx_stop_all_queues(struct net_device *dev) 9233 { 9234 unsigned int i; 9235 9236 for (i = 0; i < dev->num_tx_queues; i++) { 9237 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 9238 9239 netif_tx_stop_queue(txq); 9240 } 9241 } 9242 EXPORT_SYMBOL(netif_tx_stop_all_queues); 9243 9244 static void netdev_register_lockdep_key(struct net_device *dev) 9245 { 9246 lockdep_register_key(&dev->qdisc_tx_busylock_key); 9247 lockdep_register_key(&dev->qdisc_running_key); 9248 lockdep_register_key(&dev->qdisc_xmit_lock_key); 9249 lockdep_register_key(&dev->addr_list_lock_key); 9250 } 9251 9252 static void netdev_unregister_lockdep_key(struct net_device *dev) 9253 { 9254 lockdep_unregister_key(&dev->qdisc_tx_busylock_key); 9255 lockdep_unregister_key(&dev->qdisc_running_key); 9256 lockdep_unregister_key(&dev->qdisc_xmit_lock_key); 9257 lockdep_unregister_key(&dev->addr_list_lock_key); 9258 } 9259 9260 void netdev_update_lockdep_key(struct net_device *dev) 9261 { 9262 lockdep_unregister_key(&dev->addr_list_lock_key); 9263 lockdep_register_key(&dev->addr_list_lock_key); 9264 9265 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key); 9266 } 9267 EXPORT_SYMBOL(netdev_update_lockdep_key); 9268 9269 /** 9270 * register_netdevice - register a network device 9271 * @dev: device to register 9272 * 9273 * Take a completed network device structure and add it to the kernel 9274 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 9275 * chain. 0 is returned on success. A negative errno code is returned 9276 * on a failure to set up the device, or if the name is a duplicate. 9277 * 9278 * Callers must hold the rtnl semaphore. You may want 9279 * register_netdev() instead of this. 9280 * 9281 * BUGS: 9282 * The locking appears insufficient to guarantee two parallel registers 9283 * will not get the same name. 9284 */ 9285 9286 int register_netdevice(struct net_device *dev) 9287 { 9288 int ret; 9289 struct net *net = dev_net(dev); 9290 9291 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 9292 NETDEV_FEATURE_COUNT); 9293 BUG_ON(dev_boot_phase); 9294 ASSERT_RTNL(); 9295 9296 might_sleep(); 9297 9298 /* When net_device's are persistent, this will be fatal. */ 9299 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 9300 BUG_ON(!net); 9301 9302 ret = ethtool_check_ops(dev->ethtool_ops); 9303 if (ret) 9304 return ret; 9305 9306 spin_lock_init(&dev->addr_list_lock); 9307 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key); 9308 9309 ret = dev_get_valid_name(net, dev, dev->name); 9310 if (ret < 0) 9311 goto out; 9312 9313 ret = -ENOMEM; 9314 dev->name_node = netdev_name_node_head_alloc(dev); 9315 if (!dev->name_node) 9316 goto out; 9317 9318 /* Init, if this function is available */ 9319 if (dev->netdev_ops->ndo_init) { 9320 ret = dev->netdev_ops->ndo_init(dev); 9321 if (ret) { 9322 if (ret > 0) 9323 ret = -EIO; 9324 goto err_free_name; 9325 } 9326 } 9327 9328 if (((dev->hw_features | dev->features) & 9329 NETIF_F_HW_VLAN_CTAG_FILTER) && 9330 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 9331 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 9332 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 9333 ret = -EINVAL; 9334 goto err_uninit; 9335 } 9336 9337 ret = -EBUSY; 9338 if (!dev->ifindex) 9339 dev->ifindex = dev_new_index(net); 9340 else if (__dev_get_by_index(net, dev->ifindex)) 9341 goto err_uninit; 9342 9343 /* Transfer changeable features to wanted_features and enable 9344 * software offloads (GSO and GRO). 9345 */ 9346 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 9347 dev->features |= NETIF_F_SOFT_FEATURES; 9348 9349 if (dev->netdev_ops->ndo_udp_tunnel_add) { 9350 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 9351 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 9352 } 9353 9354 dev->wanted_features = dev->features & dev->hw_features; 9355 9356 if (!(dev->flags & IFF_LOOPBACK)) 9357 dev->hw_features |= NETIF_F_NOCACHE_COPY; 9358 9359 /* If IPv4 TCP segmentation offload is supported we should also 9360 * allow the device to enable segmenting the frame with the option 9361 * of ignoring a static IP ID value. This doesn't enable the 9362 * feature itself but allows the user to enable it later. 9363 */ 9364 if (dev->hw_features & NETIF_F_TSO) 9365 dev->hw_features |= NETIF_F_TSO_MANGLEID; 9366 if (dev->vlan_features & NETIF_F_TSO) 9367 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 9368 if (dev->mpls_features & NETIF_F_TSO) 9369 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 9370 if (dev->hw_enc_features & NETIF_F_TSO) 9371 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 9372 9373 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 9374 */ 9375 dev->vlan_features |= NETIF_F_HIGHDMA; 9376 9377 /* Make NETIF_F_SG inheritable to tunnel devices. 9378 */ 9379 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 9380 9381 /* Make NETIF_F_SG inheritable to MPLS. 9382 */ 9383 dev->mpls_features |= NETIF_F_SG; 9384 9385 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 9386 ret = notifier_to_errno(ret); 9387 if (ret) 9388 goto err_uninit; 9389 9390 ret = netdev_register_kobject(dev); 9391 if (ret) { 9392 dev->reg_state = NETREG_UNREGISTERED; 9393 goto err_uninit; 9394 } 9395 dev->reg_state = NETREG_REGISTERED; 9396 9397 __netdev_update_features(dev); 9398 9399 /* 9400 * Default initial state at registry is that the 9401 * device is present. 9402 */ 9403 9404 set_bit(__LINK_STATE_PRESENT, &dev->state); 9405 9406 linkwatch_init_dev(dev); 9407 9408 dev_init_scheduler(dev); 9409 dev_hold(dev); 9410 list_netdevice(dev); 9411 add_device_randomness(dev->dev_addr, dev->addr_len); 9412 9413 /* If the device has permanent device address, driver should 9414 * set dev_addr and also addr_assign_type should be set to 9415 * NET_ADDR_PERM (default value). 9416 */ 9417 if (dev->addr_assign_type == NET_ADDR_PERM) 9418 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 9419 9420 /* Notify protocols, that a new device appeared. */ 9421 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 9422 ret = notifier_to_errno(ret); 9423 if (ret) { 9424 rollback_registered(dev); 9425 rcu_barrier(); 9426 9427 dev->reg_state = NETREG_UNREGISTERED; 9428 } 9429 /* 9430 * Prevent userspace races by waiting until the network 9431 * device is fully setup before sending notifications. 9432 */ 9433 if (!dev->rtnl_link_ops || 9434 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 9435 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 9436 9437 out: 9438 return ret; 9439 9440 err_uninit: 9441 if (dev->netdev_ops->ndo_uninit) 9442 dev->netdev_ops->ndo_uninit(dev); 9443 if (dev->priv_destructor) 9444 dev->priv_destructor(dev); 9445 err_free_name: 9446 netdev_name_node_free(dev->name_node); 9447 goto out; 9448 } 9449 EXPORT_SYMBOL(register_netdevice); 9450 9451 /** 9452 * init_dummy_netdev - init a dummy network device for NAPI 9453 * @dev: device to init 9454 * 9455 * This takes a network device structure and initialize the minimum 9456 * amount of fields so it can be used to schedule NAPI polls without 9457 * registering a full blown interface. This is to be used by drivers 9458 * that need to tie several hardware interfaces to a single NAPI 9459 * poll scheduler due to HW limitations. 9460 */ 9461 int init_dummy_netdev(struct net_device *dev) 9462 { 9463 /* Clear everything. Note we don't initialize spinlocks 9464 * are they aren't supposed to be taken by any of the 9465 * NAPI code and this dummy netdev is supposed to be 9466 * only ever used for NAPI polls 9467 */ 9468 memset(dev, 0, sizeof(struct net_device)); 9469 9470 /* make sure we BUG if trying to hit standard 9471 * register/unregister code path 9472 */ 9473 dev->reg_state = NETREG_DUMMY; 9474 9475 /* NAPI wants this */ 9476 INIT_LIST_HEAD(&dev->napi_list); 9477 9478 /* a dummy interface is started by default */ 9479 set_bit(__LINK_STATE_PRESENT, &dev->state); 9480 set_bit(__LINK_STATE_START, &dev->state); 9481 9482 /* napi_busy_loop stats accounting wants this */ 9483 dev_net_set(dev, &init_net); 9484 9485 /* Note : We dont allocate pcpu_refcnt for dummy devices, 9486 * because users of this 'device' dont need to change 9487 * its refcount. 9488 */ 9489 9490 return 0; 9491 } 9492 EXPORT_SYMBOL_GPL(init_dummy_netdev); 9493 9494 9495 /** 9496 * register_netdev - register a network device 9497 * @dev: device to register 9498 * 9499 * Take a completed network device structure and add it to the kernel 9500 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 9501 * chain. 0 is returned on success. A negative errno code is returned 9502 * on a failure to set up the device, or if the name is a duplicate. 9503 * 9504 * This is a wrapper around register_netdevice that takes the rtnl semaphore 9505 * and expands the device name if you passed a format string to 9506 * alloc_netdev. 9507 */ 9508 int register_netdev(struct net_device *dev) 9509 { 9510 int err; 9511 9512 if (rtnl_lock_killable()) 9513 return -EINTR; 9514 err = register_netdevice(dev); 9515 rtnl_unlock(); 9516 return err; 9517 } 9518 EXPORT_SYMBOL(register_netdev); 9519 9520 int netdev_refcnt_read(const struct net_device *dev) 9521 { 9522 int i, refcnt = 0; 9523 9524 for_each_possible_cpu(i) 9525 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 9526 return refcnt; 9527 } 9528 EXPORT_SYMBOL(netdev_refcnt_read); 9529 9530 /** 9531 * netdev_wait_allrefs - wait until all references are gone. 9532 * @dev: target net_device 9533 * 9534 * This is called when unregistering network devices. 9535 * 9536 * Any protocol or device that holds a reference should register 9537 * for netdevice notification, and cleanup and put back the 9538 * reference if they receive an UNREGISTER event. 9539 * We can get stuck here if buggy protocols don't correctly 9540 * call dev_put. 9541 */ 9542 static void netdev_wait_allrefs(struct net_device *dev) 9543 { 9544 unsigned long rebroadcast_time, warning_time; 9545 int refcnt; 9546 9547 linkwatch_forget_dev(dev); 9548 9549 rebroadcast_time = warning_time = jiffies; 9550 refcnt = netdev_refcnt_read(dev); 9551 9552 while (refcnt != 0) { 9553 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 9554 rtnl_lock(); 9555 9556 /* Rebroadcast unregister notification */ 9557 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 9558 9559 __rtnl_unlock(); 9560 rcu_barrier(); 9561 rtnl_lock(); 9562 9563 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 9564 &dev->state)) { 9565 /* We must not have linkwatch events 9566 * pending on unregister. If this 9567 * happens, we simply run the queue 9568 * unscheduled, resulting in a noop 9569 * for this device. 9570 */ 9571 linkwatch_run_queue(); 9572 } 9573 9574 __rtnl_unlock(); 9575 9576 rebroadcast_time = jiffies; 9577 } 9578 9579 msleep(250); 9580 9581 refcnt = netdev_refcnt_read(dev); 9582 9583 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) { 9584 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 9585 dev->name, refcnt); 9586 warning_time = jiffies; 9587 } 9588 } 9589 } 9590 9591 /* The sequence is: 9592 * 9593 * rtnl_lock(); 9594 * ... 9595 * register_netdevice(x1); 9596 * register_netdevice(x2); 9597 * ... 9598 * unregister_netdevice(y1); 9599 * unregister_netdevice(y2); 9600 * ... 9601 * rtnl_unlock(); 9602 * free_netdev(y1); 9603 * free_netdev(y2); 9604 * 9605 * We are invoked by rtnl_unlock(). 9606 * This allows us to deal with problems: 9607 * 1) We can delete sysfs objects which invoke hotplug 9608 * without deadlocking with linkwatch via keventd. 9609 * 2) Since we run with the RTNL semaphore not held, we can sleep 9610 * safely in order to wait for the netdev refcnt to drop to zero. 9611 * 9612 * We must not return until all unregister events added during 9613 * the interval the lock was held have been completed. 9614 */ 9615 void netdev_run_todo(void) 9616 { 9617 struct list_head list; 9618 9619 /* Snapshot list, allow later requests */ 9620 list_replace_init(&net_todo_list, &list); 9621 9622 __rtnl_unlock(); 9623 9624 9625 /* Wait for rcu callbacks to finish before next phase */ 9626 if (!list_empty(&list)) 9627 rcu_barrier(); 9628 9629 while (!list_empty(&list)) { 9630 struct net_device *dev 9631 = list_first_entry(&list, struct net_device, todo_list); 9632 list_del(&dev->todo_list); 9633 9634 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 9635 pr_err("network todo '%s' but state %d\n", 9636 dev->name, dev->reg_state); 9637 dump_stack(); 9638 continue; 9639 } 9640 9641 dev->reg_state = NETREG_UNREGISTERED; 9642 9643 netdev_wait_allrefs(dev); 9644 9645 /* paranoia */ 9646 BUG_ON(netdev_refcnt_read(dev)); 9647 BUG_ON(!list_empty(&dev->ptype_all)); 9648 BUG_ON(!list_empty(&dev->ptype_specific)); 9649 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 9650 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 9651 #if IS_ENABLED(CONFIG_DECNET) 9652 WARN_ON(dev->dn_ptr); 9653 #endif 9654 if (dev->priv_destructor) 9655 dev->priv_destructor(dev); 9656 if (dev->needs_free_netdev) 9657 free_netdev(dev); 9658 9659 /* Report a network device has been unregistered */ 9660 rtnl_lock(); 9661 dev_net(dev)->dev_unreg_count--; 9662 __rtnl_unlock(); 9663 wake_up(&netdev_unregistering_wq); 9664 9665 /* Free network device */ 9666 kobject_put(&dev->dev.kobj); 9667 } 9668 } 9669 9670 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 9671 * all the same fields in the same order as net_device_stats, with only 9672 * the type differing, but rtnl_link_stats64 may have additional fields 9673 * at the end for newer counters. 9674 */ 9675 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 9676 const struct net_device_stats *netdev_stats) 9677 { 9678 #if BITS_PER_LONG == 64 9679 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 9680 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 9681 /* zero out counters that only exist in rtnl_link_stats64 */ 9682 memset((char *)stats64 + sizeof(*netdev_stats), 0, 9683 sizeof(*stats64) - sizeof(*netdev_stats)); 9684 #else 9685 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 9686 const unsigned long *src = (const unsigned long *)netdev_stats; 9687 u64 *dst = (u64 *)stats64; 9688 9689 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 9690 for (i = 0; i < n; i++) 9691 dst[i] = src[i]; 9692 /* zero out counters that only exist in rtnl_link_stats64 */ 9693 memset((char *)stats64 + n * sizeof(u64), 0, 9694 sizeof(*stats64) - n * sizeof(u64)); 9695 #endif 9696 } 9697 EXPORT_SYMBOL(netdev_stats_to_stats64); 9698 9699 /** 9700 * dev_get_stats - get network device statistics 9701 * @dev: device to get statistics from 9702 * @storage: place to store stats 9703 * 9704 * Get network statistics from device. Return @storage. 9705 * The device driver may provide its own method by setting 9706 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 9707 * otherwise the internal statistics structure is used. 9708 */ 9709 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 9710 struct rtnl_link_stats64 *storage) 9711 { 9712 const struct net_device_ops *ops = dev->netdev_ops; 9713 9714 if (ops->ndo_get_stats64) { 9715 memset(storage, 0, sizeof(*storage)); 9716 ops->ndo_get_stats64(dev, storage); 9717 } else if (ops->ndo_get_stats) { 9718 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 9719 } else { 9720 netdev_stats_to_stats64(storage, &dev->stats); 9721 } 9722 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 9723 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 9724 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 9725 return storage; 9726 } 9727 EXPORT_SYMBOL(dev_get_stats); 9728 9729 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 9730 { 9731 struct netdev_queue *queue = dev_ingress_queue(dev); 9732 9733 #ifdef CONFIG_NET_CLS_ACT 9734 if (queue) 9735 return queue; 9736 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 9737 if (!queue) 9738 return NULL; 9739 netdev_init_one_queue(dev, queue, NULL); 9740 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 9741 queue->qdisc_sleeping = &noop_qdisc; 9742 rcu_assign_pointer(dev->ingress_queue, queue); 9743 #endif 9744 return queue; 9745 } 9746 9747 static const struct ethtool_ops default_ethtool_ops; 9748 9749 void netdev_set_default_ethtool_ops(struct net_device *dev, 9750 const struct ethtool_ops *ops) 9751 { 9752 if (dev->ethtool_ops == &default_ethtool_ops) 9753 dev->ethtool_ops = ops; 9754 } 9755 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 9756 9757 void netdev_freemem(struct net_device *dev) 9758 { 9759 char *addr = (char *)dev - dev->padded; 9760 9761 kvfree(addr); 9762 } 9763 9764 /** 9765 * alloc_netdev_mqs - allocate network device 9766 * @sizeof_priv: size of private data to allocate space for 9767 * @name: device name format string 9768 * @name_assign_type: origin of device name 9769 * @setup: callback to initialize device 9770 * @txqs: the number of TX subqueues to allocate 9771 * @rxqs: the number of RX subqueues to allocate 9772 * 9773 * Allocates a struct net_device with private data area for driver use 9774 * and performs basic initialization. Also allocates subqueue structs 9775 * for each queue on the device. 9776 */ 9777 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 9778 unsigned char name_assign_type, 9779 void (*setup)(struct net_device *), 9780 unsigned int txqs, unsigned int rxqs) 9781 { 9782 struct net_device *dev; 9783 unsigned int alloc_size; 9784 struct net_device *p; 9785 9786 BUG_ON(strlen(name) >= sizeof(dev->name)); 9787 9788 if (txqs < 1) { 9789 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 9790 return NULL; 9791 } 9792 9793 if (rxqs < 1) { 9794 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 9795 return NULL; 9796 } 9797 9798 alloc_size = sizeof(struct net_device); 9799 if (sizeof_priv) { 9800 /* ensure 32-byte alignment of private area */ 9801 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 9802 alloc_size += sizeof_priv; 9803 } 9804 /* ensure 32-byte alignment of whole construct */ 9805 alloc_size += NETDEV_ALIGN - 1; 9806 9807 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9808 if (!p) 9809 return NULL; 9810 9811 dev = PTR_ALIGN(p, NETDEV_ALIGN); 9812 dev->padded = (char *)dev - (char *)p; 9813 9814 dev->pcpu_refcnt = alloc_percpu(int); 9815 if (!dev->pcpu_refcnt) 9816 goto free_dev; 9817 9818 if (dev_addr_init(dev)) 9819 goto free_pcpu; 9820 9821 dev_mc_init(dev); 9822 dev_uc_init(dev); 9823 9824 dev_net_set(dev, &init_net); 9825 9826 netdev_register_lockdep_key(dev); 9827 9828 dev->gso_max_size = GSO_MAX_SIZE; 9829 dev->gso_max_segs = GSO_MAX_SEGS; 9830 dev->upper_level = 1; 9831 dev->lower_level = 1; 9832 9833 INIT_LIST_HEAD(&dev->napi_list); 9834 INIT_LIST_HEAD(&dev->unreg_list); 9835 INIT_LIST_HEAD(&dev->close_list); 9836 INIT_LIST_HEAD(&dev->link_watch_list); 9837 INIT_LIST_HEAD(&dev->adj_list.upper); 9838 INIT_LIST_HEAD(&dev->adj_list.lower); 9839 INIT_LIST_HEAD(&dev->ptype_all); 9840 INIT_LIST_HEAD(&dev->ptype_specific); 9841 INIT_LIST_HEAD(&dev->net_notifier_list); 9842 #ifdef CONFIG_NET_SCHED 9843 hash_init(dev->qdisc_hash); 9844 #endif 9845 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 9846 setup(dev); 9847 9848 if (!dev->tx_queue_len) { 9849 dev->priv_flags |= IFF_NO_QUEUE; 9850 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 9851 } 9852 9853 dev->num_tx_queues = txqs; 9854 dev->real_num_tx_queues = txqs; 9855 if (netif_alloc_netdev_queues(dev)) 9856 goto free_all; 9857 9858 dev->num_rx_queues = rxqs; 9859 dev->real_num_rx_queues = rxqs; 9860 if (netif_alloc_rx_queues(dev)) 9861 goto free_all; 9862 9863 strcpy(dev->name, name); 9864 dev->name_assign_type = name_assign_type; 9865 dev->group = INIT_NETDEV_GROUP; 9866 if (!dev->ethtool_ops) 9867 dev->ethtool_ops = &default_ethtool_ops; 9868 9869 nf_hook_ingress_init(dev); 9870 9871 return dev; 9872 9873 free_all: 9874 free_netdev(dev); 9875 return NULL; 9876 9877 free_pcpu: 9878 free_percpu(dev->pcpu_refcnt); 9879 free_dev: 9880 netdev_freemem(dev); 9881 return NULL; 9882 } 9883 EXPORT_SYMBOL(alloc_netdev_mqs); 9884 9885 /** 9886 * free_netdev - free network device 9887 * @dev: device 9888 * 9889 * This function does the last stage of destroying an allocated device 9890 * interface. The reference to the device object is released. If this 9891 * is the last reference then it will be freed.Must be called in process 9892 * context. 9893 */ 9894 void free_netdev(struct net_device *dev) 9895 { 9896 struct napi_struct *p, *n; 9897 9898 might_sleep(); 9899 netif_free_tx_queues(dev); 9900 netif_free_rx_queues(dev); 9901 9902 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 9903 9904 /* Flush device addresses */ 9905 dev_addr_flush(dev); 9906 9907 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 9908 netif_napi_del(p); 9909 9910 free_percpu(dev->pcpu_refcnt); 9911 dev->pcpu_refcnt = NULL; 9912 free_percpu(dev->xdp_bulkq); 9913 dev->xdp_bulkq = NULL; 9914 9915 netdev_unregister_lockdep_key(dev); 9916 9917 /* Compatibility with error handling in drivers */ 9918 if (dev->reg_state == NETREG_UNINITIALIZED) { 9919 netdev_freemem(dev); 9920 return; 9921 } 9922 9923 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 9924 dev->reg_state = NETREG_RELEASED; 9925 9926 /* will free via device release */ 9927 put_device(&dev->dev); 9928 } 9929 EXPORT_SYMBOL(free_netdev); 9930 9931 /** 9932 * synchronize_net - Synchronize with packet receive processing 9933 * 9934 * Wait for packets currently being received to be done. 9935 * Does not block later packets from starting. 9936 */ 9937 void synchronize_net(void) 9938 { 9939 might_sleep(); 9940 if (rtnl_is_locked()) 9941 synchronize_rcu_expedited(); 9942 else 9943 synchronize_rcu(); 9944 } 9945 EXPORT_SYMBOL(synchronize_net); 9946 9947 /** 9948 * unregister_netdevice_queue - remove device from the kernel 9949 * @dev: device 9950 * @head: list 9951 * 9952 * This function shuts down a device interface and removes it 9953 * from the kernel tables. 9954 * If head not NULL, device is queued to be unregistered later. 9955 * 9956 * Callers must hold the rtnl semaphore. You may want 9957 * unregister_netdev() instead of this. 9958 */ 9959 9960 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 9961 { 9962 ASSERT_RTNL(); 9963 9964 if (head) { 9965 list_move_tail(&dev->unreg_list, head); 9966 } else { 9967 rollback_registered(dev); 9968 /* Finish processing unregister after unlock */ 9969 net_set_todo(dev); 9970 } 9971 } 9972 EXPORT_SYMBOL(unregister_netdevice_queue); 9973 9974 /** 9975 * unregister_netdevice_many - unregister many devices 9976 * @head: list of devices 9977 * 9978 * Note: As most callers use a stack allocated list_head, 9979 * we force a list_del() to make sure stack wont be corrupted later. 9980 */ 9981 void unregister_netdevice_many(struct list_head *head) 9982 { 9983 struct net_device *dev; 9984 9985 if (!list_empty(head)) { 9986 rollback_registered_many(head); 9987 list_for_each_entry(dev, head, unreg_list) 9988 net_set_todo(dev); 9989 list_del(head); 9990 } 9991 } 9992 EXPORT_SYMBOL(unregister_netdevice_many); 9993 9994 /** 9995 * unregister_netdev - remove device from the kernel 9996 * @dev: device 9997 * 9998 * This function shuts down a device interface and removes it 9999 * from the kernel tables. 10000 * 10001 * This is just a wrapper for unregister_netdevice that takes 10002 * the rtnl semaphore. In general you want to use this and not 10003 * unregister_netdevice. 10004 */ 10005 void unregister_netdev(struct net_device *dev) 10006 { 10007 rtnl_lock(); 10008 unregister_netdevice(dev); 10009 rtnl_unlock(); 10010 } 10011 EXPORT_SYMBOL(unregister_netdev); 10012 10013 /** 10014 * dev_change_net_namespace - move device to different nethost namespace 10015 * @dev: device 10016 * @net: network namespace 10017 * @pat: If not NULL name pattern to try if the current device name 10018 * is already taken in the destination network namespace. 10019 * 10020 * This function shuts down a device interface and moves it 10021 * to a new network namespace. On success 0 is returned, on 10022 * a failure a netagive errno code is returned. 10023 * 10024 * Callers must hold the rtnl semaphore. 10025 */ 10026 10027 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 10028 { 10029 struct net *net_old = dev_net(dev); 10030 int err, new_nsid, new_ifindex; 10031 10032 ASSERT_RTNL(); 10033 10034 /* Don't allow namespace local devices to be moved. */ 10035 err = -EINVAL; 10036 if (dev->features & NETIF_F_NETNS_LOCAL) 10037 goto out; 10038 10039 /* Ensure the device has been registrered */ 10040 if (dev->reg_state != NETREG_REGISTERED) 10041 goto out; 10042 10043 /* Get out if there is nothing todo */ 10044 err = 0; 10045 if (net_eq(net_old, net)) 10046 goto out; 10047 10048 /* Pick the destination device name, and ensure 10049 * we can use it in the destination network namespace. 10050 */ 10051 err = -EEXIST; 10052 if (__dev_get_by_name(net, dev->name)) { 10053 /* We get here if we can't use the current device name */ 10054 if (!pat) 10055 goto out; 10056 err = dev_get_valid_name(net, dev, pat); 10057 if (err < 0) 10058 goto out; 10059 } 10060 10061 /* 10062 * And now a mini version of register_netdevice unregister_netdevice. 10063 */ 10064 10065 /* If device is running close it first. */ 10066 dev_close(dev); 10067 10068 /* And unlink it from device chain */ 10069 unlist_netdevice(dev); 10070 10071 synchronize_net(); 10072 10073 /* Shutdown queueing discipline. */ 10074 dev_shutdown(dev); 10075 10076 /* Notify protocols, that we are about to destroy 10077 * this device. They should clean all the things. 10078 * 10079 * Note that dev->reg_state stays at NETREG_REGISTERED. 10080 * This is wanted because this way 8021q and macvlan know 10081 * the device is just moving and can keep their slaves up. 10082 */ 10083 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10084 rcu_barrier(); 10085 10086 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 10087 /* If there is an ifindex conflict assign a new one */ 10088 if (__dev_get_by_index(net, dev->ifindex)) 10089 new_ifindex = dev_new_index(net); 10090 else 10091 new_ifindex = dev->ifindex; 10092 10093 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 10094 new_ifindex); 10095 10096 /* 10097 * Flush the unicast and multicast chains 10098 */ 10099 dev_uc_flush(dev); 10100 dev_mc_flush(dev); 10101 10102 /* Send a netdev-removed uevent to the old namespace */ 10103 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 10104 netdev_adjacent_del_links(dev); 10105 10106 /* Move per-net netdevice notifiers that are following the netdevice */ 10107 move_netdevice_notifiers_dev_net(dev, net); 10108 10109 /* Actually switch the network namespace */ 10110 dev_net_set(dev, net); 10111 dev->ifindex = new_ifindex; 10112 10113 /* Send a netdev-add uevent to the new namespace */ 10114 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 10115 netdev_adjacent_add_links(dev); 10116 10117 /* Fixup kobjects */ 10118 err = device_rename(&dev->dev, dev->name); 10119 WARN_ON(err); 10120 10121 /* Adapt owner in case owning user namespace of target network 10122 * namespace is different from the original one. 10123 */ 10124 err = netdev_change_owner(dev, net_old, net); 10125 WARN_ON(err); 10126 10127 /* Add the device back in the hashes */ 10128 list_netdevice(dev); 10129 10130 /* Notify protocols, that a new device appeared. */ 10131 call_netdevice_notifiers(NETDEV_REGISTER, dev); 10132 10133 /* 10134 * Prevent userspace races by waiting until the network 10135 * device is fully setup before sending notifications. 10136 */ 10137 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 10138 10139 synchronize_net(); 10140 err = 0; 10141 out: 10142 return err; 10143 } 10144 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 10145 10146 static int dev_cpu_dead(unsigned int oldcpu) 10147 { 10148 struct sk_buff **list_skb; 10149 struct sk_buff *skb; 10150 unsigned int cpu; 10151 struct softnet_data *sd, *oldsd, *remsd = NULL; 10152 10153 local_irq_disable(); 10154 cpu = smp_processor_id(); 10155 sd = &per_cpu(softnet_data, cpu); 10156 oldsd = &per_cpu(softnet_data, oldcpu); 10157 10158 /* Find end of our completion_queue. */ 10159 list_skb = &sd->completion_queue; 10160 while (*list_skb) 10161 list_skb = &(*list_skb)->next; 10162 /* Append completion queue from offline CPU. */ 10163 *list_skb = oldsd->completion_queue; 10164 oldsd->completion_queue = NULL; 10165 10166 /* Append output queue from offline CPU. */ 10167 if (oldsd->output_queue) { 10168 *sd->output_queue_tailp = oldsd->output_queue; 10169 sd->output_queue_tailp = oldsd->output_queue_tailp; 10170 oldsd->output_queue = NULL; 10171 oldsd->output_queue_tailp = &oldsd->output_queue; 10172 } 10173 /* Append NAPI poll list from offline CPU, with one exception : 10174 * process_backlog() must be called by cpu owning percpu backlog. 10175 * We properly handle process_queue & input_pkt_queue later. 10176 */ 10177 while (!list_empty(&oldsd->poll_list)) { 10178 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 10179 struct napi_struct, 10180 poll_list); 10181 10182 list_del_init(&napi->poll_list); 10183 if (napi->poll == process_backlog) 10184 napi->state = 0; 10185 else 10186 ____napi_schedule(sd, napi); 10187 } 10188 10189 raise_softirq_irqoff(NET_TX_SOFTIRQ); 10190 local_irq_enable(); 10191 10192 #ifdef CONFIG_RPS 10193 remsd = oldsd->rps_ipi_list; 10194 oldsd->rps_ipi_list = NULL; 10195 #endif 10196 /* send out pending IPI's on offline CPU */ 10197 net_rps_send_ipi(remsd); 10198 10199 /* Process offline CPU's input_pkt_queue */ 10200 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 10201 netif_rx_ni(skb); 10202 input_queue_head_incr(oldsd); 10203 } 10204 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 10205 netif_rx_ni(skb); 10206 input_queue_head_incr(oldsd); 10207 } 10208 10209 return 0; 10210 } 10211 10212 /** 10213 * netdev_increment_features - increment feature set by one 10214 * @all: current feature set 10215 * @one: new feature set 10216 * @mask: mask feature set 10217 * 10218 * Computes a new feature set after adding a device with feature set 10219 * @one to the master device with current feature set @all. Will not 10220 * enable anything that is off in @mask. Returns the new feature set. 10221 */ 10222 netdev_features_t netdev_increment_features(netdev_features_t all, 10223 netdev_features_t one, netdev_features_t mask) 10224 { 10225 if (mask & NETIF_F_HW_CSUM) 10226 mask |= NETIF_F_CSUM_MASK; 10227 mask |= NETIF_F_VLAN_CHALLENGED; 10228 10229 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 10230 all &= one | ~NETIF_F_ALL_FOR_ALL; 10231 10232 /* If one device supports hw checksumming, set for all. */ 10233 if (all & NETIF_F_HW_CSUM) 10234 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 10235 10236 return all; 10237 } 10238 EXPORT_SYMBOL(netdev_increment_features); 10239 10240 static struct hlist_head * __net_init netdev_create_hash(void) 10241 { 10242 int i; 10243 struct hlist_head *hash; 10244 10245 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 10246 if (hash != NULL) 10247 for (i = 0; i < NETDEV_HASHENTRIES; i++) 10248 INIT_HLIST_HEAD(&hash[i]); 10249 10250 return hash; 10251 } 10252 10253 /* Initialize per network namespace state */ 10254 static int __net_init netdev_init(struct net *net) 10255 { 10256 BUILD_BUG_ON(GRO_HASH_BUCKETS > 10257 8 * sizeof_field(struct napi_struct, gro_bitmask)); 10258 10259 if (net != &init_net) 10260 INIT_LIST_HEAD(&net->dev_base_head); 10261 10262 net->dev_name_head = netdev_create_hash(); 10263 if (net->dev_name_head == NULL) 10264 goto err_name; 10265 10266 net->dev_index_head = netdev_create_hash(); 10267 if (net->dev_index_head == NULL) 10268 goto err_idx; 10269 10270 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 10271 10272 return 0; 10273 10274 err_idx: 10275 kfree(net->dev_name_head); 10276 err_name: 10277 return -ENOMEM; 10278 } 10279 10280 /** 10281 * netdev_drivername - network driver for the device 10282 * @dev: network device 10283 * 10284 * Determine network driver for device. 10285 */ 10286 const char *netdev_drivername(const struct net_device *dev) 10287 { 10288 const struct device_driver *driver; 10289 const struct device *parent; 10290 const char *empty = ""; 10291 10292 parent = dev->dev.parent; 10293 if (!parent) 10294 return empty; 10295 10296 driver = parent->driver; 10297 if (driver && driver->name) 10298 return driver->name; 10299 return empty; 10300 } 10301 10302 static void __netdev_printk(const char *level, const struct net_device *dev, 10303 struct va_format *vaf) 10304 { 10305 if (dev && dev->dev.parent) { 10306 dev_printk_emit(level[1] - '0', 10307 dev->dev.parent, 10308 "%s %s %s%s: %pV", 10309 dev_driver_string(dev->dev.parent), 10310 dev_name(dev->dev.parent), 10311 netdev_name(dev), netdev_reg_state(dev), 10312 vaf); 10313 } else if (dev) { 10314 printk("%s%s%s: %pV", 10315 level, netdev_name(dev), netdev_reg_state(dev), vaf); 10316 } else { 10317 printk("%s(NULL net_device): %pV", level, vaf); 10318 } 10319 } 10320 10321 void netdev_printk(const char *level, const struct net_device *dev, 10322 const char *format, ...) 10323 { 10324 struct va_format vaf; 10325 va_list args; 10326 10327 va_start(args, format); 10328 10329 vaf.fmt = format; 10330 vaf.va = &args; 10331 10332 __netdev_printk(level, dev, &vaf); 10333 10334 va_end(args); 10335 } 10336 EXPORT_SYMBOL(netdev_printk); 10337 10338 #define define_netdev_printk_level(func, level) \ 10339 void func(const struct net_device *dev, const char *fmt, ...) \ 10340 { \ 10341 struct va_format vaf; \ 10342 va_list args; \ 10343 \ 10344 va_start(args, fmt); \ 10345 \ 10346 vaf.fmt = fmt; \ 10347 vaf.va = &args; \ 10348 \ 10349 __netdev_printk(level, dev, &vaf); \ 10350 \ 10351 va_end(args); \ 10352 } \ 10353 EXPORT_SYMBOL(func); 10354 10355 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 10356 define_netdev_printk_level(netdev_alert, KERN_ALERT); 10357 define_netdev_printk_level(netdev_crit, KERN_CRIT); 10358 define_netdev_printk_level(netdev_err, KERN_ERR); 10359 define_netdev_printk_level(netdev_warn, KERN_WARNING); 10360 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 10361 define_netdev_printk_level(netdev_info, KERN_INFO); 10362 10363 static void __net_exit netdev_exit(struct net *net) 10364 { 10365 kfree(net->dev_name_head); 10366 kfree(net->dev_index_head); 10367 if (net != &init_net) 10368 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 10369 } 10370 10371 static struct pernet_operations __net_initdata netdev_net_ops = { 10372 .init = netdev_init, 10373 .exit = netdev_exit, 10374 }; 10375 10376 static void __net_exit default_device_exit(struct net *net) 10377 { 10378 struct net_device *dev, *aux; 10379 /* 10380 * Push all migratable network devices back to the 10381 * initial network namespace 10382 */ 10383 rtnl_lock(); 10384 for_each_netdev_safe(net, dev, aux) { 10385 int err; 10386 char fb_name[IFNAMSIZ]; 10387 10388 /* Ignore unmoveable devices (i.e. loopback) */ 10389 if (dev->features & NETIF_F_NETNS_LOCAL) 10390 continue; 10391 10392 /* Leave virtual devices for the generic cleanup */ 10393 if (dev->rtnl_link_ops) 10394 continue; 10395 10396 /* Push remaining network devices to init_net */ 10397 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 10398 if (__dev_get_by_name(&init_net, fb_name)) 10399 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 10400 err = dev_change_net_namespace(dev, &init_net, fb_name); 10401 if (err) { 10402 pr_emerg("%s: failed to move %s to init_net: %d\n", 10403 __func__, dev->name, err); 10404 BUG(); 10405 } 10406 } 10407 rtnl_unlock(); 10408 } 10409 10410 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 10411 { 10412 /* Return with the rtnl_lock held when there are no network 10413 * devices unregistering in any network namespace in net_list. 10414 */ 10415 struct net *net; 10416 bool unregistering; 10417 DEFINE_WAIT_FUNC(wait, woken_wake_function); 10418 10419 add_wait_queue(&netdev_unregistering_wq, &wait); 10420 for (;;) { 10421 unregistering = false; 10422 rtnl_lock(); 10423 list_for_each_entry(net, net_list, exit_list) { 10424 if (net->dev_unreg_count > 0) { 10425 unregistering = true; 10426 break; 10427 } 10428 } 10429 if (!unregistering) 10430 break; 10431 __rtnl_unlock(); 10432 10433 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 10434 } 10435 remove_wait_queue(&netdev_unregistering_wq, &wait); 10436 } 10437 10438 static void __net_exit default_device_exit_batch(struct list_head *net_list) 10439 { 10440 /* At exit all network devices most be removed from a network 10441 * namespace. Do this in the reverse order of registration. 10442 * Do this across as many network namespaces as possible to 10443 * improve batching efficiency. 10444 */ 10445 struct net_device *dev; 10446 struct net *net; 10447 LIST_HEAD(dev_kill_list); 10448 10449 /* To prevent network device cleanup code from dereferencing 10450 * loopback devices or network devices that have been freed 10451 * wait here for all pending unregistrations to complete, 10452 * before unregistring the loopback device and allowing the 10453 * network namespace be freed. 10454 * 10455 * The netdev todo list containing all network devices 10456 * unregistrations that happen in default_device_exit_batch 10457 * will run in the rtnl_unlock() at the end of 10458 * default_device_exit_batch. 10459 */ 10460 rtnl_lock_unregistering(net_list); 10461 list_for_each_entry(net, net_list, exit_list) { 10462 for_each_netdev_reverse(net, dev) { 10463 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 10464 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 10465 else 10466 unregister_netdevice_queue(dev, &dev_kill_list); 10467 } 10468 } 10469 unregister_netdevice_many(&dev_kill_list); 10470 rtnl_unlock(); 10471 } 10472 10473 static struct pernet_operations __net_initdata default_device_ops = { 10474 .exit = default_device_exit, 10475 .exit_batch = default_device_exit_batch, 10476 }; 10477 10478 /* 10479 * Initialize the DEV module. At boot time this walks the device list and 10480 * unhooks any devices that fail to initialise (normally hardware not 10481 * present) and leaves us with a valid list of present and active devices. 10482 * 10483 */ 10484 10485 /* 10486 * This is called single threaded during boot, so no need 10487 * to take the rtnl semaphore. 10488 */ 10489 static int __init net_dev_init(void) 10490 { 10491 int i, rc = -ENOMEM; 10492 10493 BUG_ON(!dev_boot_phase); 10494 10495 if (dev_proc_init()) 10496 goto out; 10497 10498 if (netdev_kobject_init()) 10499 goto out; 10500 10501 INIT_LIST_HEAD(&ptype_all); 10502 for (i = 0; i < PTYPE_HASH_SIZE; i++) 10503 INIT_LIST_HEAD(&ptype_base[i]); 10504 10505 INIT_LIST_HEAD(&offload_base); 10506 10507 if (register_pernet_subsys(&netdev_net_ops)) 10508 goto out; 10509 10510 /* 10511 * Initialise the packet receive queues. 10512 */ 10513 10514 for_each_possible_cpu(i) { 10515 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 10516 struct softnet_data *sd = &per_cpu(softnet_data, i); 10517 10518 INIT_WORK(flush, flush_backlog); 10519 10520 skb_queue_head_init(&sd->input_pkt_queue); 10521 skb_queue_head_init(&sd->process_queue); 10522 #ifdef CONFIG_XFRM_OFFLOAD 10523 skb_queue_head_init(&sd->xfrm_backlog); 10524 #endif 10525 INIT_LIST_HEAD(&sd->poll_list); 10526 sd->output_queue_tailp = &sd->output_queue; 10527 #ifdef CONFIG_RPS 10528 sd->csd.func = rps_trigger_softirq; 10529 sd->csd.info = sd; 10530 sd->cpu = i; 10531 #endif 10532 10533 init_gro_hash(&sd->backlog); 10534 sd->backlog.poll = process_backlog; 10535 sd->backlog.weight = weight_p; 10536 } 10537 10538 dev_boot_phase = 0; 10539 10540 /* The loopback device is special if any other network devices 10541 * is present in a network namespace the loopback device must 10542 * be present. Since we now dynamically allocate and free the 10543 * loopback device ensure this invariant is maintained by 10544 * keeping the loopback device as the first device on the 10545 * list of network devices. Ensuring the loopback devices 10546 * is the first device that appears and the last network device 10547 * that disappears. 10548 */ 10549 if (register_pernet_device(&loopback_net_ops)) 10550 goto out; 10551 10552 if (register_pernet_device(&default_device_ops)) 10553 goto out; 10554 10555 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 10556 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 10557 10558 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 10559 NULL, dev_cpu_dead); 10560 WARN_ON(rc < 0); 10561 rc = 0; 10562 out: 10563 return rc; 10564 } 10565 10566 subsys_initcall(net_dev_init); 10567